mirror of
https://github.com/esphome/esphome.git
synced 2025-08-01 07:57:47 +00:00
core/scheduler: split millis_64_ into different platform functions
This commit is contained in:
parent
211739bba0
commit
fde80bc530
@ -229,14 +229,19 @@
|
|||||||
#define USE_SOCKET_SELECT_SUPPORT
|
#define USE_SOCKET_SELECT_SUPPORT
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// Helper macro for platforms that lack atomic scheduler support
|
// Helper macro for single core platforms that lack atomic scheduler support
|
||||||
#if defined(USE_ESP8266) || defined(USE_RP2040)
|
#if defined(USE_ESP8266) || defined(USE_RP2040)
|
||||||
#define ESPHOME_SINGLE_CORE
|
#define ESPHOME_SINGLE_CORE
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// Helper macro for platforms with atomic scheduler support
|
// Helper macro for multi core platforms that lack atomic scheduler support
|
||||||
|
#if !defined(ESPHOME_SINGLE_CORE) && defined(USE_LIBRETINY)
|
||||||
|
#define ESPHOME_MULTI_CORE_NO_ATOMICS
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// Helper macro for multi core platforms with atomic scheduler support
|
||||||
#if !defined(ESPHOME_SINGLE_CORE) && !defined(USE_LIBRETINY)
|
#if !defined(ESPHOME_SINGLE_CORE) && !defined(USE_LIBRETINY)
|
||||||
#define ESPHOME_ATOMIC_SCHEDULER
|
#define ESPHOME_MULTI_CORE_ATOMICS
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// Disabled feature flags
|
// Disabled feature flags
|
||||||
|
@ -273,15 +273,15 @@ void HOT Scheduler::call(uint32_t now) {
|
|||||||
if (now_64 - last_print > 2000) {
|
if (now_64 - last_print > 2000) {
|
||||||
last_print = now_64;
|
last_print = now_64;
|
||||||
std::vector<std::unique_ptr<SchedulerItem>> old_items;
|
std::vector<std::unique_ptr<SchedulerItem>> old_items;
|
||||||
#ifdef ESPHOME_ATOMIC_SCHEDULER
|
#ifdef ESPHOME_MULTI_CORE_ATOMICS
|
||||||
const auto last_dbg = this->last_millis_.load(std::memory_order_relaxed);
|
const auto last_dbg = this->last_millis_.load(std::memory_order_relaxed);
|
||||||
const auto major_dbg = this->millis_major_.load(std::memory_order_relaxed);
|
const auto major_dbg = this->millis_major_.load(std::memory_order_relaxed);
|
||||||
ESP_LOGD(TAG, "Items: count=%zu, now=%" PRIu64 " (%" PRIu16 ", %" PRIu32 ")", this->items_.size(), now_64,
|
ESP_LOGD(TAG, "Items: count=%zu, now=%" PRIu64 " (%" PRIu16 ", %" PRIu32 ")", this->items_.size(), now_64,
|
||||||
major_dbg, last_dbg);
|
major_dbg, last_dbg);
|
||||||
#else /* not ESPHOME_ATOMIC_SCHEDULER */
|
#else /* not ESPHOME_MULTI_CORE_ATOMICS */
|
||||||
ESP_LOGD(TAG, "Items: count=%zu, now=%" PRIu64 " (%" PRIu16 ", %" PRIu32 ")", this->items_.size(), now_64,
|
ESP_LOGD(TAG, "Items: count=%zu, now=%" PRIu64 " (%" PRIu16 ", %" PRIu32 ")", this->items_.size(), now_64,
|
||||||
this->millis_major_, this->last_millis_);
|
this->millis_major_, this->last_millis_);
|
||||||
#endif /* else ESPHOME_ATOMIC_SCHEDULER */
|
#endif /* else ESPHOME_MULTI_CORE_ATOMICS */
|
||||||
while (!this->empty_()) {
|
while (!this->empty_()) {
|
||||||
std::unique_ptr<SchedulerItem> item;
|
std::unique_ptr<SchedulerItem> item;
|
||||||
{
|
{
|
||||||
@ -494,10 +494,18 @@ bool HOT Scheduler::cancel_item_locked_(Component *component, const char *name_c
|
|||||||
return total_cancelled > 0;
|
return total_cancelled > 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#ifdef ESPHOME_SINGLE_CORE
|
||||||
|
|
||||||
uint64_t Scheduler::millis_64_(uint32_t now) {
|
uint64_t Scheduler::millis_64_(uint32_t now) {
|
||||||
// THREAD SAFETY NOTE:
|
// THREAD SAFETY NOTE:
|
||||||
// This function can be called from multiple threads simultaneously on ESP32/LibreTiny.
|
// This function has three implemenations, based on the precompiler flags
|
||||||
// On single-core platforms, atomics are not needed.
|
// - ESPHOME_SINGLE_CORE
|
||||||
|
// - ESPHOME_MULTI_CORE_NO_ATOMICS
|
||||||
|
// - ESPHOME_MULTI_CORE_ATOMICS
|
||||||
|
//
|
||||||
|
// Make sure all changes are synchronous if you edit this function.
|
||||||
|
//
|
||||||
|
// This is the single core implementation.
|
||||||
//
|
//
|
||||||
// IMPORTANT: Always pass fresh millis() values to this function. The implementation
|
// IMPORTANT: Always pass fresh millis() values to this function. The implementation
|
||||||
// handles out-of-order timestamps between threads, but minimizing time differences
|
// handles out-of-order timestamps between threads, but minimizing time differences
|
||||||
@ -509,101 +517,8 @@ uint64_t Scheduler::millis_64_(uint32_t now) {
|
|||||||
// This prevents race conditions at the rollover boundary without requiring
|
// This prevents race conditions at the rollover boundary without requiring
|
||||||
// 64-bit atomics or locking on every call.
|
// 64-bit atomics or locking on every call.
|
||||||
|
|
||||||
#ifdef ESPHOME_ATOMIC_SCHEDULER
|
|
||||||
for (;;) {
|
|
||||||
uint16_t major = this->millis_major_.load(std::memory_order_acquire);
|
|
||||||
#else /* not ESPHOME_ATOMIC_SCHEDULER */
|
|
||||||
uint16_t major = this->millis_major_;
|
uint16_t major = this->millis_major_;
|
||||||
#endif /* else ESPHOME_ATOMIC_SCHEDULER */
|
|
||||||
|
|
||||||
#ifdef USE_LIBRETINY
|
|
||||||
// LibreTiny: Multi-threaded but lacks atomic operation support
|
|
||||||
// TODO: If LibreTiny ever adds atomic support, remove this entire block and
|
|
||||||
// let it fall through to the atomic-based implementation below
|
|
||||||
// We need to use a lock when near the rollover boundary to prevent races
|
|
||||||
uint32_t last = this->last_millis_;
|
|
||||||
|
|
||||||
// Define a safe window around the rollover point (10 seconds)
|
|
||||||
// This covers any reasonable scheduler delays or thread preemption
|
|
||||||
static const uint32_t ROLLOVER_WINDOW = 10000; // 10 seconds in milliseconds
|
|
||||||
|
|
||||||
// Check if we're near the rollover boundary (close to std::numeric_limits<uint32_t>::max() or just past 0)
|
|
||||||
bool near_rollover = (last > (std::numeric_limits<uint32_t>::max() - ROLLOVER_WINDOW)) || (now < ROLLOVER_WINDOW);
|
|
||||||
|
|
||||||
if (near_rollover || (now < last && (last - now) > HALF_MAX_UINT32)) {
|
|
||||||
// Near rollover or detected a rollover - need lock for safety
|
|
||||||
LockGuard guard{this->lock_};
|
|
||||||
// Re-read with lock held
|
|
||||||
last = this->last_millis_;
|
|
||||||
|
|
||||||
if (now < last && (last - now) > HALF_MAX_UINT32) {
|
|
||||||
// True rollover detected (happens every ~49.7 days)
|
|
||||||
this->millis_major_++;
|
|
||||||
major++;
|
|
||||||
#ifdef ESPHOME_DEBUG_SCHEDULER
|
|
||||||
ESP_LOGD(TAG, "Detected true 32-bit rollover at %" PRIu32 "ms (was %" PRIu32 ")", now, last);
|
|
||||||
#endif /* ESPHOME_DEBUG_SCHEDULER */
|
|
||||||
}
|
|
||||||
// Update last_millis_ while holding lock
|
|
||||||
this->last_millis_ = now;
|
|
||||||
} else if (now > last) {
|
|
||||||
// Normal case: Not near rollover and time moved forward
|
|
||||||
// Update without lock. While this may cause minor races (microseconds of
|
|
||||||
// backwards time movement), they're acceptable because:
|
|
||||||
// 1. The scheduler operates at millisecond resolution, not microsecond
|
|
||||||
// 2. We've already prevented the critical rollover race condition
|
|
||||||
// 3. Any backwards movement is orders of magnitude smaller than scheduler delays
|
|
||||||
this->last_millis_ = now;
|
|
||||||
}
|
|
||||||
// If now <= last and we're not near rollover, don't update
|
|
||||||
// This minimizes backwards time movement
|
|
||||||
|
|
||||||
#elif defined(ESPHOME_ATOMIC_SCHEDULER)
|
|
||||||
/*
|
|
||||||
* Multi-threaded platforms with atomic support (ESP32)
|
|
||||||
* Acquire so that if we later decide **not** to take the lock we still
|
|
||||||
* observe a `millis_major_` value coherent with the loaded `last_millis_`.
|
|
||||||
* The acquire load ensures any later read of `millis_major_` sees its
|
|
||||||
* corresponding increment.
|
|
||||||
*/
|
|
||||||
uint32_t last = this->last_millis_.load(std::memory_order_acquire);
|
|
||||||
|
|
||||||
// If we might be near a rollover (large backwards jump), take the lock for the entire operation
|
|
||||||
// This ensures rollover detection and last_millis_ update are atomic together
|
|
||||||
if (now < last && (last - now) > HALF_MAX_UINT32) {
|
|
||||||
// Potential rollover - need lock for atomic rollover detection + update
|
|
||||||
LockGuard guard{this->lock_};
|
|
||||||
// Re-read with lock held; mutex already provides ordering
|
|
||||||
last = this->last_millis_.load(std::memory_order_relaxed);
|
|
||||||
|
|
||||||
if (now < last && (last - now) > HALF_MAX_UINT32) {
|
|
||||||
// True rollover detected (happens every ~49.7 days)
|
|
||||||
this->millis_major_.fetch_add(1, std::memory_order_relaxed);
|
|
||||||
major++;
|
|
||||||
#ifdef ESPHOME_DEBUG_SCHEDULER
|
|
||||||
ESP_LOGD(TAG, "Detected true 32-bit rollover at %" PRIu32 "ms (was %" PRIu32 ")", now, last);
|
|
||||||
#endif /* ESPHOME_DEBUG_SCHEDULER */
|
|
||||||
}
|
|
||||||
/*
|
|
||||||
* Update last_millis_ while holding the lock to prevent races
|
|
||||||
* Publish the new low-word *after* bumping `millis_major_` (done above)
|
|
||||||
* so readers never see a mismatched pair.
|
|
||||||
*/
|
|
||||||
this->last_millis_.store(now, std::memory_order_release);
|
|
||||||
} else {
|
|
||||||
// Normal case: Try lock-free update, but only allow forward movement within same epoch
|
|
||||||
// This prevents accidentally moving backwards across a rollover boundary
|
|
||||||
while (now > last && (now - last) < HALF_MAX_UINT32) {
|
|
||||||
if (this->last_millis_.compare_exchange_weak(last, now,
|
|
||||||
std::memory_order_release, // success
|
|
||||||
std::memory_order_relaxed)) { // failure
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
// CAS failure means no data was published; relaxed is fine
|
|
||||||
// last is automatically updated by compare_exchange_weak if it fails
|
|
||||||
}
|
|
||||||
}
|
|
||||||
#else /* not USE_LIBRETINY; not ESPHOME_ATOMIC_SCHEDULER */
|
|
||||||
// Single-core platforms: No atomics needed
|
// Single-core platforms: No atomics needed
|
||||||
uint32_t last = this->last_millis_;
|
uint32_t last = this->last_millis_;
|
||||||
|
|
||||||
@ -620,19 +535,163 @@ uint64_t Scheduler::millis_64_(uint32_t now) {
|
|||||||
if (now > last) {
|
if (now > last) {
|
||||||
this->last_millis_ = now;
|
this->last_millis_ = now;
|
||||||
}
|
}
|
||||||
#endif /* else (USE_LIBRETINY / ESPHOME_ATOMIC_SCHEDULER) */
|
|
||||||
|
|
||||||
#ifdef ESPHOME_ATOMIC_SCHEDULER
|
// Combine major (high 32 bits) and now (low 32 bits) into 64-bit time
|
||||||
|
return now + (static_cast<uint64_t>(major) << 32);
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#ifdef ESPHOME_MULTI_CORE_NO_ATOMICS
|
||||||
|
|
||||||
|
uint64_t Scheduler::millis_64_(uint32_t now) {
|
||||||
|
// THREAD SAFETY NOTE:
|
||||||
|
// This function has three implemenations, based on the precompiler flags
|
||||||
|
// - ESPHOME_SINGLE_CORE
|
||||||
|
// - ESPHOME_MULTI_CORE_NO_ATOMICS
|
||||||
|
// - ESPHOME_MULTI_CORE_ATOMICS
|
||||||
|
//
|
||||||
|
// Make sure all changes are synchronous if you edit this function.
|
||||||
|
//
|
||||||
|
// This is the multi core no atomics implementation.
|
||||||
|
//
|
||||||
|
// IMPORTANT: Always pass fresh millis() values to this function. The implementation
|
||||||
|
// handles out-of-order timestamps between threads, but minimizing time differences
|
||||||
|
// helps maintain accuracy.
|
||||||
|
//
|
||||||
|
// The implementation handles the 32-bit rollover (every 49.7 days) by:
|
||||||
|
// 1. Using a lock when detecting rollover to ensure atomic update
|
||||||
|
// 2. Restricting normal updates to forward movement within the same epoch
|
||||||
|
// This prevents race conditions at the rollover boundary without requiring
|
||||||
|
// 64-bit atomics or locking on every call.
|
||||||
|
|
||||||
|
uint16_t major = this->millis_major_;
|
||||||
|
|
||||||
|
// LibreTiny: Multi-threaded but lacks atomic operation support
|
||||||
|
// TODO: If LibreTiny ever adds atomic support, remove this entire block and
|
||||||
|
// let it fall through to the atomic-based implementation below
|
||||||
|
// We need to use a lock when near the rollover boundary to prevent races
|
||||||
|
uint32_t last = this->last_millis_;
|
||||||
|
|
||||||
|
// Define a safe window around the rollover point (10 seconds)
|
||||||
|
// This covers any reasonable scheduler delays or thread preemption
|
||||||
|
static const uint32_t ROLLOVER_WINDOW = 10000; // 10 seconds in milliseconds
|
||||||
|
|
||||||
|
// Check if we're near the rollover boundary (close to std::numeric_limits<uint32_t>::max() or just past 0)
|
||||||
|
bool near_rollover = (last > (std::numeric_limits<uint32_t>::max() - ROLLOVER_WINDOW)) || (now < ROLLOVER_WINDOW);
|
||||||
|
|
||||||
|
if (near_rollover || (now < last && (last - now) > HALF_MAX_UINT32)) {
|
||||||
|
// Near rollover or detected a rollover - need lock for safety
|
||||||
|
LockGuard guard{this->lock_};
|
||||||
|
// Re-read with lock held
|
||||||
|
last = this->last_millis_;
|
||||||
|
|
||||||
|
if (now < last && (last - now) > HALF_MAX_UINT32) {
|
||||||
|
// True rollover detected (happens every ~49.7 days)
|
||||||
|
this->millis_major_++;
|
||||||
|
major++;
|
||||||
|
#ifdef ESPHOME_DEBUG_SCHEDULER
|
||||||
|
ESP_LOGD(TAG, "Detected true 32-bit rollover at %" PRIu32 "ms (was %" PRIu32 ")", now, last);
|
||||||
|
#endif /* ESPHOME_DEBUG_SCHEDULER */
|
||||||
|
}
|
||||||
|
// Update last_millis_ while holding lock
|
||||||
|
this->last_millis_ = now;
|
||||||
|
} else if (now > last) {
|
||||||
|
// Normal case: Not near rollover and time moved forward
|
||||||
|
// Update without lock. While this may cause minor races (microseconds of
|
||||||
|
// backwards time movement), they're acceptable because:
|
||||||
|
// 1. The scheduler operates at millisecond resolution, not microsecond
|
||||||
|
// 2. We've already prevented the critical rollover race condition
|
||||||
|
// 3. Any backwards movement is orders of magnitude smaller than scheduler delays
|
||||||
|
this->last_millis_ = now;
|
||||||
|
}
|
||||||
|
// If now <= last and we're not near rollover, don't update
|
||||||
|
// This minimizes backwards time movement
|
||||||
|
|
||||||
|
// Combine major (high 32 bits) and now (low 32 bits) into 64-bit time
|
||||||
|
return now + (static_cast<uint64_t>(major) << 32);
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#ifdef ESPHOME_MULTI_CORE_ATOMICS
|
||||||
|
|
||||||
|
uint64_t Scheduler::millis_64_(uint32_t now) {
|
||||||
|
// THREAD SAFETY NOTE:
|
||||||
|
// This function has three implemenations, based on the precompiler flags
|
||||||
|
// - ESPHOME_SINGLE_CORE
|
||||||
|
// - ESPHOME_MULTI_CORE_NO_ATOMICS
|
||||||
|
// - ESPHOME_MULTI_CORE_ATOMICS
|
||||||
|
//
|
||||||
|
// Make sure all changes are synchronous if you edit this function.
|
||||||
|
//
|
||||||
|
// This is the multi core with atomics implementation.
|
||||||
|
//
|
||||||
|
// IMPORTANT: Always pass fresh millis() values to this function. The implementation
|
||||||
|
// handles out-of-order timestamps between threads, but minimizing time differences
|
||||||
|
// helps maintain accuracy.
|
||||||
|
//
|
||||||
|
// The implementation handles the 32-bit rollover (every 49.7 days) by:
|
||||||
|
// 1. Using a lock when detecting rollover to ensure atomic update
|
||||||
|
// 2. Restricting normal updates to forward movement within the same epoch
|
||||||
|
// This prevents race conditions at the rollover boundary without requiring
|
||||||
|
// 64-bit atomics or locking on every call.
|
||||||
|
|
||||||
|
for (;;) {
|
||||||
|
uint16_t major = this->millis_major_.load(std::memory_order_acquire);
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Multi-threaded platforms with atomic support (ESP32)
|
||||||
|
* Acquire so that if we later decide **not** to take the lock we still
|
||||||
|
* observe a `millis_major_` value coherent with the loaded `last_millis_`.
|
||||||
|
* The acquire load ensures any later read of `millis_major_` sees its
|
||||||
|
* corresponding increment.
|
||||||
|
*/
|
||||||
|
uint32_t last = this->last_millis_.load(std::memory_order_acquire);
|
||||||
|
|
||||||
|
// If we might be near a rollover (large backwards jump), take the lock for the entire operation
|
||||||
|
// This ensures rollover detection and last_millis_ update are atomic together
|
||||||
|
if (now < last && (last - now) > HALF_MAX_UINT32) {
|
||||||
|
// Potential rollover - need lock for atomic rollover detection + update
|
||||||
|
LockGuard guard{this->lock_};
|
||||||
|
// Re-read with lock held; mutex already provides ordering
|
||||||
|
last = this->last_millis_.load(std::memory_order_relaxed);
|
||||||
|
|
||||||
|
if (now < last && (last - now) > HALF_MAX_UINT32) {
|
||||||
|
// True rollover detected (happens every ~49.7 days)
|
||||||
|
this->millis_major_.fetch_add(1, std::memory_order_relaxed);
|
||||||
|
major++;
|
||||||
|
#ifdef ESPHOME_DEBUG_SCHEDULER
|
||||||
|
ESP_LOGD(TAG, "Detected true 32-bit rollover at %" PRIu32 "ms (was %" PRIu32 ")", now, last);
|
||||||
|
#endif /* ESPHOME_DEBUG_SCHEDULER */
|
||||||
|
}
|
||||||
|
/*
|
||||||
|
* Update last_millis_ while holding the lock to prevent races
|
||||||
|
* Publish the new low-word *after* bumping `millis_major_` (done above)
|
||||||
|
* so readers never see a mismatched pair.
|
||||||
|
*/
|
||||||
|
this->last_millis_.store(now, std::memory_order_release);
|
||||||
|
} else {
|
||||||
|
// Normal case: Try lock-free update, but only allow forward movement within same epoch
|
||||||
|
// This prevents accidentally moving backwards across a rollover boundary
|
||||||
|
while (now > last && (now - last) < HALF_MAX_UINT32) {
|
||||||
|
if (this->last_millis_.compare_exchange_weak(last, now,
|
||||||
|
std::memory_order_release, // success
|
||||||
|
std::memory_order_relaxed)) { // failure
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
// CAS failure means no data was published; relaxed is fine
|
||||||
|
// last is automatically updated by compare_exchange_weak if it fails
|
||||||
|
}
|
||||||
|
}
|
||||||
uint16_t major_end = this->millis_major_.load(std::memory_order_relaxed);
|
uint16_t major_end = this->millis_major_.load(std::memory_order_relaxed);
|
||||||
if (major_end == major)
|
if (major_end == major)
|
||||||
return now + (static_cast<uint64_t>(major) << 32);
|
return now + (static_cast<uint64_t>(major) << 32);
|
||||||
}
|
}
|
||||||
#else /* not ESPHOME_ATOMIC_SCHEDULER */
|
|
||||||
// Combine major (high 32 bits) and now (low 32 bits) into 64-bit time
|
|
||||||
return now + (static_cast<uint64_t>(major) << 32);
|
|
||||||
#endif /* ESPHOME_ATOMIC_SCHEDULER */
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#endif
|
||||||
|
|
||||||
bool HOT Scheduler::SchedulerItem::cmp(const std::unique_ptr<SchedulerItem> &a,
|
bool HOT Scheduler::SchedulerItem::cmp(const std::unique_ptr<SchedulerItem> &a,
|
||||||
const std::unique_ptr<SchedulerItem> &b) {
|
const std::unique_ptr<SchedulerItem> &b) {
|
||||||
return a->next_execution_ > b->next_execution_;
|
return a->next_execution_ > b->next_execution_;
|
||||||
|
@ -5,7 +5,7 @@
|
|||||||
#include <memory>
|
#include <memory>
|
||||||
#include <cstring>
|
#include <cstring>
|
||||||
#include <deque>
|
#include <deque>
|
||||||
#ifdef ESPHOME_ATOMIC_SCHEDULER
|
#ifdef ESPHOME_MULTI_CORE_ATOMICS
|
||||||
#include <atomic>
|
#include <atomic>
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
@ -209,7 +209,7 @@ class Scheduler {
|
|||||||
// Single-core platforms don't need the defer queue and save 40 bytes of RAM
|
// Single-core platforms don't need the defer queue and save 40 bytes of RAM
|
||||||
std::deque<std::unique_ptr<SchedulerItem>> defer_queue_; // FIFO queue for defer() calls
|
std::deque<std::unique_ptr<SchedulerItem>> defer_queue_; // FIFO queue for defer() calls
|
||||||
#endif /* ESPHOME_SINGLE_CORE */
|
#endif /* ESPHOME_SINGLE_CORE */
|
||||||
#ifdef ESPHOME_ATOMIC_SCHEDULER
|
#ifdef ESPHOME_MULTI_CORE_ATOMICS
|
||||||
/*
|
/*
|
||||||
* Multi-threaded platforms with atomic support: last_millis_ needs atomic for lock-free updates
|
* Multi-threaded platforms with atomic support: last_millis_ needs atomic for lock-free updates
|
||||||
*
|
*
|
||||||
@ -221,21 +221,21 @@ class Scheduler {
|
|||||||
* it also observes the corresponding increment of `millis_major_`.
|
* it also observes the corresponding increment of `millis_major_`.
|
||||||
*/
|
*/
|
||||||
std::atomic<uint32_t> last_millis_{0};
|
std::atomic<uint32_t> last_millis_{0};
|
||||||
#else /* not ESPHOME_ATOMIC_SCHEDULER */
|
#else /* not ESPHOME_MULTI_CORE_ATOMICS */
|
||||||
// Platforms without atomic support or single-threaded platforms
|
// Platforms without atomic support or single-threaded platforms
|
||||||
uint32_t last_millis_{0};
|
uint32_t last_millis_{0};
|
||||||
#endif /* else ESPHOME_ATOMIC_SCHEDULER */
|
#endif /* else ESPHOME_MULTI_CORE_ATOMICS */
|
||||||
/*
|
/*
|
||||||
* Upper 16 bits of the 64-bit millis counter. Incremented only while holding
|
* Upper 16 bits of the 64-bit millis counter. Incremented only while holding
|
||||||
* `lock_`; read concurrently. Atomic (relaxed) avoids a formal data race.
|
* `lock_`; read concurrently. Atomic (relaxed) avoids a formal data race.
|
||||||
* Ordering relative to `last_millis_` is provided by its release store and the
|
* Ordering relative to `last_millis_` is provided by its release store and the
|
||||||
* corresponding acquire loads.
|
* corresponding acquire loads.
|
||||||
*/
|
*/
|
||||||
#ifdef ESPHOME_ATOMIC_SCHEDULER
|
#ifdef ESPHOME_MULTI_CORE_ATOMICS
|
||||||
std::atomic<uint16_t> millis_major_{0};
|
std::atomic<uint16_t> millis_major_{0};
|
||||||
#else /* not ESPHOME_ATOMIC_SCHEDULER */
|
#else /* not ESPHOME_MULTI_CORE_ATOMICS */
|
||||||
uint16_t millis_major_{0};
|
uint16_t millis_major_{0};
|
||||||
#endif /* else ESPHOME_ATOMIC_SCHEDULER */
|
#endif /* else ESPHOME_MULTI_CORE_ATOMICS */
|
||||||
uint32_t to_remove_{0};
|
uint32_t to_remove_{0};
|
||||||
};
|
};
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user