chore: update mllama to use ollama engine (#10637)
This commit is contained in:
parent
0478d440f0
commit
23125648b8
@ -15,11 +15,13 @@ help:
|
||||
@echo " make -f $(lastword $(MAKEFILE_LIST)) clean sync"
|
||||
|
||||
.PHONY: sync
|
||||
sync: llama/build-info.cpp llama/llama.cpp ml/backend/ggml/ggml
|
||||
sync: llama/build-info.cpp ml/backend/ggml/ggml/src/ggml-metal/ggml-metal-embed.metal
|
||||
|
||||
.PHONY: llama/build-info.cpp
|
||||
llama/build-info.cpp: llama/build-info.cpp.in
|
||||
sed -e 's|@FETCH_HEAD@|$(FETCH_HEAD)|' $< > $@
|
||||
llama/build-info.cpp: llama/build-info.cpp.in llama/llama.cpp
|
||||
sed -e 's|@FETCH_HEAD@|$(FETCH_HEAD)|' <$< >$@
|
||||
|
||||
ml/backend/ggml/ggml/src/ggml-metal/ggml-metal-embed.metal: ml/backend/ggml/ggml
|
||||
go generate ./$(@D)
|
||||
|
||||
.PHONY: llama/llama.cpp
|
||||
llama/llama.cpp: llama/vendor/
|
||||
@ -30,12 +32,13 @@ ml/backend/ggml/ggml: llama/vendor/ggml/
|
||||
rsync -arvzc -f "merge $@/.rsync-filter" $< $@
|
||||
|
||||
PATCHES=$(wildcard llama/patches/*.patch)
|
||||
PATCHED=$(join $(dir $(PATCHES)), $(addsuffix ed, $(addprefix ., $(notdir $(PATCHES)))))
|
||||
|
||||
.PHONY: apply-patches
|
||||
.NOTPARALLEL:
|
||||
apply-patches: $(addsuffix ed, $(PATCHES))
|
||||
apply-patches: $(PATCHED)
|
||||
|
||||
%.patched: %.patch
|
||||
llama/patches/.%.patched: llama/patches/%.patch
|
||||
@if git -c user.name=nobody -c 'user.email=<>' -C $(WORKDIR) am -3 $(realpath $<); then touch $@; else git -C $(WORKDIR) am --abort; exit 1; fi
|
||||
|
||||
.PHONY: checkout
|
||||
@ -57,4 +60,4 @@ format-patches: llama/patches
|
||||
|
||||
.PHONE: clean
|
||||
clean: checkout
|
||||
$(RM) $(addsuffix ed, $(PATCHES))
|
||||
$(RM) llama/patches/.*.patched
|
||||
|
@ -1,6 +1,7 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"fmt"
|
||||
@ -14,13 +15,12 @@ import (
|
||||
)
|
||||
|
||||
type ModelParameters struct {
|
||||
Architectures []string `json:"architectures"`
|
||||
VocabSize uint32 `json:"vocab_size"`
|
||||
TextModel TextParameters `json:"text_config"`
|
||||
}
|
||||
Architectures []string `json:"architectures"`
|
||||
VocabSize uint32 `json:"vocab_size"`
|
||||
|
||||
type TextParameters struct {
|
||||
VocabSize uint32 `json:"vocab_size"`
|
||||
TextModel struct {
|
||||
VocabSize uint32 `json:"vocab_size"`
|
||||
} `json:"text_config"`
|
||||
}
|
||||
|
||||
type AdapterParameters struct {
|
||||
@ -173,6 +173,8 @@ func ConvertModel(fsys fs.FS, f *os.File) error {
|
||||
switch p.Architectures[0] {
|
||||
case "LlamaForCausalLM":
|
||||
conv = &llamaModel{}
|
||||
case "MllamaForConditionalGeneration":
|
||||
conv = &mllamaModel{}
|
||||
case "Llama4ForConditionalGeneration":
|
||||
conv = &llama4Model{}
|
||||
case "Mistral3ForConditionalGeneration":
|
||||
@ -212,24 +214,22 @@ func ConvertModel(fsys fs.FS, f *os.File) error {
|
||||
return err
|
||||
}
|
||||
|
||||
vocabSize := int(p.VocabSize)
|
||||
if vocabSize == 0 {
|
||||
tVocabSize := int(p.TextModel.VocabSize)
|
||||
vocabSize = tVocabSize
|
||||
}
|
||||
vocabSize := int(cmp.Or(p.VocabSize, p.TextModel.VocabSize))
|
||||
|
||||
switch {
|
||||
case vocabSize == 0:
|
||||
slog.Warn("vocabulary size was not explicitly set by the model", "default size", len(t.Vocabulary.Tokens))
|
||||
slog.Debug("vocabulary size was not explicitly set by the model", "default size", len(t.Vocabulary.Tokens))
|
||||
case vocabSize > len(t.Vocabulary.Tokens):
|
||||
slog.Warn("vocabulary is smaller than expected, padding with dummy tokens", "expect", vocabSize, "actual", len(t.Vocabulary.Tokens))
|
||||
slog.Debug("vocabulary is smaller than expected, padding with dummy tokens", "expect", vocabSize, "actual", len(t.Vocabulary.Tokens))
|
||||
for i := range vocabSize - len(t.Vocabulary.Tokens) {
|
||||
t.Vocabulary.Tokens = append(t.Vocabulary.Tokens, fmt.Sprintf("[PAD%d]", i))
|
||||
t.Vocabulary.Scores = append(t.Vocabulary.Scores, -1)
|
||||
t.Vocabulary.Types = append(t.Vocabulary.Types, tokenTypeUserDefined)
|
||||
}
|
||||
case vocabSize < len(t.Vocabulary.Tokens):
|
||||
return fmt.Errorf("vocabulary is larger than expected '%d' instead of '%d'", len(t.Vocabulary.Tokens), vocabSize)
|
||||
slog.Debug("vocabulary is larger than expected", "want", vocabSize, "got", len(t.Vocabulary.Tokens))
|
||||
p.VocabSize = uint32(len(t.Vocabulary.Tokens))
|
||||
p.TextModel.VocabSize = uint32(len(t.Vocabulary.Tokens))
|
||||
default:
|
||||
slog.Debug("vocabulary", "size", len(t.Vocabulary.Tokens))
|
||||
}
|
||||
|
160
convert/convert_mllama.go
Normal file
160
convert/convert_mllama.go
Normal file
@ -0,0 +1,160 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
)
|
||||
|
||||
type mllamaModel struct {
|
||||
ModelParameters
|
||||
TextModel struct {
|
||||
llamaModel
|
||||
|
||||
CrossAttentionLayers []int32 `json:"cross_attention_layers"`
|
||||
} `json:"text_config"`
|
||||
VisionModel struct {
|
||||
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
NumGlobalLayers uint32 `json:"num_global_layers"`
|
||||
IntermediateLayersIndices []int32 `json:"intermediate_layers_indices"`
|
||||
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
|
||||
AttentionHeads uint32 `json:"attention_heads"`
|
||||
|
||||
ImageSize uint32 `json:"image_size"`
|
||||
PatchSize uint32 `json:"patch_size"`
|
||||
NumChannels uint32 `json:"num_channels"`
|
||||
MaxNumTiles uint32 `json:"max_num_tiles"`
|
||||
NormEpsilon float32 `json:"norm_eps"`
|
||||
RopeTheta float32 `json:"rope.freq_base"`
|
||||
} `json:"vision_config"`
|
||||
}
|
||||
|
||||
func (m *mllamaModel) KV(t *Tokenizer) ggml.KV {
|
||||
kv := m.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "mllama"
|
||||
|
||||
for k, v := range m.TextModel.KV(t) {
|
||||
if strings.HasPrefix(k, "llama.") {
|
||||
kv[strings.ReplaceAll(k, "llama.", "mllama.")] = v
|
||||
}
|
||||
}
|
||||
|
||||
kv["mllama.attention.cross_attention_layers"] = m.TextModel.CrossAttentionLayers
|
||||
|
||||
kv["mllama.vision.block_count"] = m.VisionModel.NumHiddenLayers
|
||||
kv["mllama.vision.global.block_count"] = m.VisionModel.NumGlobalLayers
|
||||
kv["mllama.vision.intermediate_layers_indices"] = m.VisionModel.IntermediateLayersIndices
|
||||
|
||||
kv["mllama.vision.embedding_length"] = m.VisionModel.HiddenSize
|
||||
kv["mllama.vision.feed_forward_length"] = m.VisionModel.IntermediateSize
|
||||
|
||||
kv["mllama.vision.attention.head_count"] = m.VisionModel.AttentionHeads
|
||||
kv["mllama.vision.attention.layer_norm_epsilon"] = m.VisionModel.NormEpsilon
|
||||
|
||||
kv["mllama.vision.image_size"] = m.VisionModel.ImageSize
|
||||
kv["mllama.vision.patch_size"] = m.VisionModel.PatchSize
|
||||
kv["mllama.vision.max_num_tiles"] = m.VisionModel.MaxNumTiles
|
||||
kv["mllama.vision.num_channels"] = m.VisionModel.NumChannels
|
||||
|
||||
return kv
|
||||
}
|
||||
|
||||
func (m *mllamaModel) Replacements() []string {
|
||||
return append(
|
||||
m.TextModel.Replacements(),
|
||||
"language_model.", "",
|
||||
"gate_attn", "attn_gate",
|
||||
"gate_ffn", "ffn_gate",
|
||||
"cross_attn.", "cross_attn_",
|
||||
"vision_model", "v",
|
||||
"class_embedding", "class_embd",
|
||||
"patch_embedding", "patch_embd",
|
||||
"gated_positional_embedding.tile_embedding", "tile_position_embd",
|
||||
"gated_positional_embedding.embedding", "position_embd.weight",
|
||||
"gated_positional_embedding", "position_embd",
|
||||
"embedding.weight", "weight",
|
||||
"pre_tile_positional_embedding", "pre_tile_position_embd",
|
||||
"post_tile_positional_embedding", "post_tile_position_embd",
|
||||
"layernorm_pre", "pre_ln",
|
||||
"layernorm_post", "post_ln",
|
||||
"global_transformer.layers", "global.blk",
|
||||
"transformer.layers", "blk",
|
||||
"mlp.fc1", "ffn_up",
|
||||
"mlp.fc2", "ffn_down",
|
||||
"multi_modal_projector", "mm.0",
|
||||
)
|
||||
}
|
||||
|
||||
func (m *mllamaModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
var out []*ggml.Tensor
|
||||
var text []Tensor
|
||||
for _, t := range ts {
|
||||
if t.Name() == "v.position_embd.gate" {
|
||||
for _, name := range []string{"v.position_embd.gate", "v.tile_position_embd.gate"} {
|
||||
tt := t.Clone()
|
||||
tt.SetRepacker(m.repack(name))
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: name,
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: tt,
|
||||
})
|
||||
}
|
||||
} else if t.Name() == "v.pre_tile_position_embd.gate" || t.Name() == "v.post_tile_position_embd.gate" {
|
||||
t.SetRepacker(m.repack(t.Name()))
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
})
|
||||
} else if strings.HasPrefix(t.Name(), "v.") || strings.HasPrefix(t.Name(), "mm.") {
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
})
|
||||
} else {
|
||||
text = append(text, t)
|
||||
}
|
||||
}
|
||||
|
||||
return append(out, m.TextModel.Tensors(text)...)
|
||||
}
|
||||
|
||||
func (m *mllamaModel) repack(name string) Repacker {
|
||||
return func(_ string, data []float32, shape []uint64) (_ []float32, err error) {
|
||||
dims := make([]int, len(shape))
|
||||
for i, dim := range shape {
|
||||
dims[i] = int(dim)
|
||||
}
|
||||
|
||||
var t tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
||||
|
||||
t, err = tensor.Tanh(t)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if name == "v.position_embd.gate" {
|
||||
t, err = tensor.Sub(float32(1), t)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
|
||||
t = tensor.Materialize(t)
|
||||
// flatten tensor so it can be return as a vector
|
||||
if err := t.Reshape(t.Shape().TotalSize()); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return native.VectorF32(t.(*tensor.Dense))
|
||||
}
|
||||
}
|
@ -38,7 +38,10 @@ const (
|
||||
func (t tensorBase) Kind() uint32 {
|
||||
if strings.HasSuffix(t.name, ".ffn_gate_inp.weight") ||
|
||||
t.name == "token_types.weight" ||
|
||||
t.name == "v.positional_embedding_vlm" {
|
||||
t.name == "v.positional_embedding_vlm" ||
|
||||
t.name == "v.tile_position_embd.weight" ||
|
||||
t.name == "v.pre_tile_position_embd.weight" ||
|
||||
t.name == "v.post_tile_position_embd.weight" {
|
||||
// these tensors are always F32
|
||||
return 0
|
||||
}
|
||||
|
@ -125,6 +125,7 @@ func (kv KV) OllamaEngineRequired() bool {
|
||||
"gemma3",
|
||||
"mistral3",
|
||||
"llama4",
|
||||
"mllama",
|
||||
}, kv.Architecture())
|
||||
}
|
||||
|
||||
|
6
llama/llama.cpp/include/llama.h
vendored
6
llama/llama.cpp/include/llama.h
vendored
@ -258,7 +258,6 @@ extern "C" {
|
||||
|
||||
llama_token * token;
|
||||
float * embd;
|
||||
int32_t n_embd;
|
||||
llama_pos * pos;
|
||||
int32_t * n_seq_id;
|
||||
llama_seq_id ** seq_id;
|
||||
@ -366,7 +365,6 @@ extern "C" {
|
||||
bool flash_attn; // whether to use flash attention [EXPERIMENTAL]
|
||||
bool no_perf; // whether to measure performance timings
|
||||
bool op_offload; // whether to offload host tensor operations to device
|
||||
bool cross_attn; // whether to use cross attention
|
||||
};
|
||||
|
||||
// model quantization parameters
|
||||
@ -466,10 +464,6 @@ extern "C" {
|
||||
struct llama_context_params params),
|
||||
"use llama_init_from_model instead");
|
||||
|
||||
// TODO (jmorganca): this should most likely be passed in as part of a batch
|
||||
// and not set on the context for all batches.
|
||||
LLAMA_API void llama_set_cross_attention(struct llama_context * ctx, bool cross_attn_state);
|
||||
|
||||
// Frees all allocated memory
|
||||
LLAMA_API void llama_free(struct llama_context * ctx);
|
||||
|
||||
|
44
llama/llama.cpp/src/llama-arch.cpp
vendored
44
llama/llama.cpp/src/llama-arch.cpp
vendored
@ -6,7 +6,6 @@
|
||||
|
||||
static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_LLAMA, "llama" },
|
||||
{ LLM_ARCH_MLLAMA, "mllama" },
|
||||
{ LLM_ARCH_LLAMA4, "llama4" },
|
||||
{ LLM_ARCH_DECI, "deci" },
|
||||
{ LLM_ARCH_FALCON, "falcon" },
|
||||
@ -145,7 +144,6 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
|
||||
{ LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
|
||||
{ LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
|
||||
{ LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION, "%s.attention.block_skip_connection" },
|
||||
{ LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS, "%s.attention.cross_attention_layers" },
|
||||
{ LLM_KV_ATTENTION_KEY_LENGTH_MLA, "%s.attention.key_length_mla" },
|
||||
{ LLM_KV_ATTENTION_VALUE_LENGTH_MLA, "%s.attention.value_length_mla" },
|
||||
|
||||
@ -275,40 +273,6 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_MLLAMA,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
|
||||
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
{ LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
|
||||
{ LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
|
||||
{ LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
|
||||
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
|
||||
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
||||
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||||
{ LLM_TENSOR_CROSS_ATTN_K_NORM, "blk.%d.cross_attn_k_norm" },
|
||||
{ LLM_TENSOR_CROSS_ATTN_K_PROJ, "blk.%d.cross_attn_k_proj" },
|
||||
{ LLM_TENSOR_CROSS_ATTN_O_PROJ, "blk.%d.cross_attn_o_proj" },
|
||||
{ LLM_TENSOR_CROSS_ATTN_Q_NORM, "blk.%d.cross_attn_q_norm" },
|
||||
{ LLM_TENSOR_CROSS_ATTN_Q_PROJ, "blk.%d.cross_attn_q_proj" },
|
||||
{ LLM_TENSOR_CROSS_ATTN_V_PROJ, "blk.%d.cross_attn_v_proj" },
|
||||
{ LLM_TENSOR_CROSS_ATTN_ATTN_GATE, "blk.%d.cross_attn_attn_gate" },
|
||||
{ LLM_TENSOR_CROSS_ATTN_MLP_GATE, "blk.%d.cross_attn_mlp_gate" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_DECI,
|
||||
{
|
||||
@ -1737,14 +1701,6 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
|
||||
// this tensor is loaded for T5, but never used
|
||||
{LLM_TENSOR_DEC_CROSS_ATTN_REL_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_NONE}},
|
||||
{LLM_TENSOR_BSKCN_TV, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
||||
{LLM_TENSOR_CROSS_ATTN_K_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
||||
{LLM_TENSOR_CROSS_ATTN_K_PROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||
{LLM_TENSOR_CROSS_ATTN_O_PROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||
{LLM_TENSOR_CROSS_ATTN_Q_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
||||
{LLM_TENSOR_CROSS_ATTN_Q_PROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||
{LLM_TENSOR_CROSS_ATTN_V_PROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||
{LLM_TENSOR_CROSS_ATTN_ATTN_GATE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
||||
{LLM_TENSOR_CROSS_ATTN_MLP_GATE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
||||
{LLM_TENSOR_CONV1D, {LLM_TENSOR_LAYER_INPUT, GGML_OP_IM2COL}},
|
||||
{LLM_TENSOR_POS_NET_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
||||
{LLM_TENSOR_POS_NET_NORM1, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
||||
|
10
llama/llama.cpp/src/llama-arch.h
vendored
10
llama/llama.cpp/src/llama-arch.h
vendored
@ -11,7 +11,6 @@
|
||||
enum llm_arch {
|
||||
LLM_ARCH_LLAMA,
|
||||
LLM_ARCH_LLAMA4,
|
||||
LLM_ARCH_MLLAMA,
|
||||
LLM_ARCH_DECI,
|
||||
LLM_ARCH_FALCON,
|
||||
LLM_ARCH_BAICHUAN,
|
||||
@ -149,7 +148,6 @@ enum llm_kv {
|
||||
LLM_KV_ATTENTION_SLIDING_WINDOW,
|
||||
LLM_KV_ATTENTION_SCALE,
|
||||
LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION,
|
||||
LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS,
|
||||
LLM_KV_ATTENTION_KEY_LENGTH_MLA,
|
||||
LLM_KV_ATTENTION_VALUE_LENGTH_MLA,
|
||||
|
||||
@ -351,14 +349,6 @@ enum llm_tensor {
|
||||
LLM_TENSOR_CLS,
|
||||
LLM_TENSOR_CLS_OUT,
|
||||
LLM_TENSOR_BSKCN_TV,
|
||||
LLM_TENSOR_CROSS_ATTN_K_NORM,
|
||||
LLM_TENSOR_CROSS_ATTN_K_PROJ,
|
||||
LLM_TENSOR_CROSS_ATTN_O_PROJ,
|
||||
LLM_TENSOR_CROSS_ATTN_Q_NORM,
|
||||
LLM_TENSOR_CROSS_ATTN_Q_PROJ,
|
||||
LLM_TENSOR_CROSS_ATTN_V_PROJ,
|
||||
LLM_TENSOR_CROSS_ATTN_ATTN_GATE,
|
||||
LLM_TENSOR_CROSS_ATTN_MLP_GATE,
|
||||
LLM_TENSOR_CONV1D,
|
||||
LLM_TENSOR_CONVNEXT_DW,
|
||||
LLM_TENSOR_CONVNEXT_NORM,
|
||||
|
3
llama/llama.cpp/src/llama-batch.cpp
vendored
3
llama/llama.cpp/src/llama-batch.cpp
vendored
@ -320,7 +320,6 @@ struct llama_batch llama_batch_get_one(
|
||||
/*n_tokens =*/ n_tokens,
|
||||
/*tokens =*/ tokens,
|
||||
/*embd =*/ nullptr,
|
||||
/*n_embd =*/ 0,
|
||||
/*pos =*/ nullptr,
|
||||
/*n_seq_id =*/ nullptr,
|
||||
/*seq_id =*/ nullptr,
|
||||
@ -333,7 +332,6 @@ struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_
|
||||
/*n_tokens =*/ 0,
|
||||
/*tokens =*/ nullptr,
|
||||
/*embd =*/ nullptr,
|
||||
/*n_embd =*/ 0,
|
||||
/*pos =*/ nullptr,
|
||||
/*n_seq_id =*/ nullptr,
|
||||
/*seq_id =*/ nullptr,
|
||||
@ -342,7 +340,6 @@ struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_
|
||||
|
||||
if (embd) {
|
||||
batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
|
||||
batch.n_embd = embd;
|
||||
} else {
|
||||
batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
|
||||
}
|
||||
|
23
llama/llama.cpp/src/llama-context.cpp
vendored
23
llama/llama.cpp/src/llama-context.cpp
vendored
@ -514,7 +514,7 @@ float * llama_context::get_logits_ith(int32_t i) {
|
||||
throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, n_outputs));
|
||||
}
|
||||
|
||||
return logits + j*model.hparams.n_vocab;
|
||||
return logits + j*model.vocab.n_tokens();
|
||||
} catch (const std::exception & err) {
|
||||
LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
|
||||
#ifndef NDEBUG
|
||||
@ -632,10 +632,6 @@ void llama_context::set_warmup(bool value) {
|
||||
cparams.warmup = value;
|
||||
}
|
||||
|
||||
void llama_context::set_cross_attn(bool value) {
|
||||
cparams.cross_attn = value;
|
||||
}
|
||||
|
||||
void llama_context::set_adapter_lora(
|
||||
llama_adapter_lora * adapter,
|
||||
float scale) {
|
||||
@ -713,7 +709,7 @@ int llama_context::encode(llama_batch & inp_batch) {
|
||||
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
|
||||
llama_sbatch sbatch = llama_sbatch(batch, batch.n_embd, /* simple_split */ true, /* logits_all */ true);
|
||||
llama_sbatch sbatch = llama_sbatch(batch, n_embd, /* simple_split */ true, /* logits_all */ true);
|
||||
|
||||
const llama_ubatch ubatch = sbatch.split_simple(n_tokens);
|
||||
|
||||
@ -867,9 +863,10 @@ int llama_context::decode(llama_batch & inp_batch) {
|
||||
|
||||
const llama_batch & batch = batch_allocr.batch;
|
||||
|
||||
const auto & vocab = model.vocab;
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
const int32_t n_vocab = hparams.n_vocab;
|
||||
const int32_t n_vocab = vocab.n_tokens();
|
||||
|
||||
const int64_t n_tokens_all = batch.n_tokens;
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
@ -1093,7 +1090,7 @@ int llama_context::decode(llama_batch & inp_batch) {
|
||||
// make the outputs have the same order they had in the user-provided batch
|
||||
// note: this is mostly relevant for recurrent models atm
|
||||
if (!sorted_output) {
|
||||
const uint32_t n_vocab = model.hparams.n_vocab;
|
||||
const uint32_t n_vocab = model.vocab.n_tokens();
|
||||
const uint32_t n_embd = model.hparams.n_embd;
|
||||
|
||||
GGML_ASSERT((size_t) n_outputs == out_ids.size());
|
||||
@ -1148,11 +1145,12 @@ int llama_context::decode(llama_batch & inp_batch) {
|
||||
|
||||
int32_t llama_context::output_reserve(int32_t n_outputs) {
|
||||
const auto & hparams = model.hparams;
|
||||
const auto & vocab = model.vocab;
|
||||
|
||||
const int64_t n_outputs_max = std::max<int64_t>(n_outputs, n_seq_max());
|
||||
|
||||
const auto n_batch = cparams.n_batch;
|
||||
const auto n_vocab = hparams.n_vocab;
|
||||
const auto n_vocab = vocab.n_tokens();
|
||||
const auto n_embd = hparams.n_embd;
|
||||
|
||||
// TODO: use a per-batch flag for logits presence instead
|
||||
@ -1687,7 +1685,7 @@ size_t llama_context::state_write_data(llama_io_write_i & io) {
|
||||
{
|
||||
LLAMA_LOG_DEBUG("%s: - writing logits\n", __func__);
|
||||
|
||||
const uint64_t logits_size = std::min((uint64_t) this->logits_size, (uint64_t) n_outputs * model.hparams.n_vocab);
|
||||
const uint64_t logits_size = std::min((uint64_t) this->logits_size, (uint64_t) n_outputs * model.vocab.n_tokens());
|
||||
|
||||
io.write(&logits_size, sizeof(logits_size));
|
||||
|
||||
@ -2099,7 +2097,6 @@ llama_context_params llama_context_default_params() {
|
||||
/*.flash_attn =*/ false,
|
||||
/*.no_perf =*/ true,
|
||||
/*.op_offload =*/ true,
|
||||
/*.cross_attn =*/ false,
|
||||
};
|
||||
|
||||
return result;
|
||||
@ -2225,10 +2222,6 @@ void llama_set_warmup(llama_context * ctx, bool warmup) {
|
||||
ctx->set_warmup(warmup);
|
||||
}
|
||||
|
||||
void llama_set_cross_attention(struct llama_context * ctx, bool cross_attention) {
|
||||
ctx->set_cross_attn(cross_attention);
|
||||
}
|
||||
|
||||
void llama_synchronize(llama_context * ctx) {
|
||||
ctx->synchronize();
|
||||
}
|
||||
|
1
llama/llama.cpp/src/llama-context.h
vendored
1
llama/llama.cpp/src/llama-context.h
vendored
@ -72,7 +72,6 @@ struct llama_context {
|
||||
void set_embeddings (bool value);
|
||||
void set_causal_attn(bool value);
|
||||
void set_warmup(bool value);
|
||||
void set_cross_attn(bool value);
|
||||
|
||||
void set_adapter_lora(
|
||||
llama_adapter_lora * adapter,
|
||||
|
1
llama/llama.cpp/src/llama-cparams.h
vendored
1
llama/llama.cpp/src/llama-cparams.h
vendored
@ -31,7 +31,6 @@ struct llama_cparams {
|
||||
bool no_perf;
|
||||
bool warmup;
|
||||
bool op_offload;
|
||||
bool cross_attn;
|
||||
|
||||
enum llama_pooling_type pooling_type;
|
||||
|
||||
|
25
llama/llama.cpp/src/llama-graph.cpp
vendored
25
llama/llama.cpp/src/llama-graph.cpp
vendored
@ -532,12 +532,6 @@ void llm_graph_input_attn_cross::set_input(const llama_ubatch * ubatch) {
|
||||
}
|
||||
}
|
||||
|
||||
void llm_graph_input_cross_attn_state::set_input(const llama_ubatch * ubatch) {
|
||||
if (ubatch->embd) {
|
||||
ggml_backend_tensor_set(cross_attn_state, ubatch->embd, 0, ggml_nbytes(cross_attn_state));
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// llm_graph_context
|
||||
//
|
||||
@ -1520,25 +1514,6 @@ llm_graph_input_attn_cross * llm_graph_context::build_attn_inp_cross() const {
|
||||
return (llm_graph_input_attn_cross *) res->add_input(std::move(inp));
|
||||
}
|
||||
|
||||
ggml_tensor * llm_graph_context::build_inp_cross_attn_state() const {
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
|
||||
auto inp = std::make_unique<llm_graph_input_cross_attn_state>();
|
||||
|
||||
ggml_tensor * cur = nullptr;
|
||||
|
||||
inp->cross_attn_state = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd, 1601, 4);
|
||||
ggml_set_input(inp->cross_attn_state);
|
||||
|
||||
cur = inp->cross_attn_state;
|
||||
|
||||
cb(cur, "inp_cross_attn_state", -1);
|
||||
|
||||
res->add_input(std::move(inp));
|
||||
|
||||
return cur;
|
||||
}
|
||||
|
||||
ggml_tensor * llm_graph_context::build_attn(
|
||||
llm_graph_input_attn_cross * inp,
|
||||
ggml_cgraph * gf,
|
||||
|
12
llama/llama.cpp/src/llama-graph.h
vendored
12
llama/llama.cpp/src/llama-graph.h
vendored
@ -87,7 +87,6 @@ public:
|
||||
|
||||
ggml_tensor * tokens = nullptr; // I32 [n_batch]
|
||||
ggml_tensor * embd = nullptr; // F32 [n_embd, n_batch]
|
||||
ggml_tensor * cross_attn_state; // F32 [4, n_embd, 1061]
|
||||
};
|
||||
|
||||
class llm_graph_input_pos : public llm_graph_input_i {
|
||||
@ -285,16 +284,6 @@ public:
|
||||
const llama_cross * cross = nullptr;
|
||||
};
|
||||
|
||||
class llm_graph_input_cross_attn_state : public llm_graph_input_i {
|
||||
public:
|
||||
llm_graph_input_cross_attn_state() = default;
|
||||
virtual ~llm_graph_input_cross_attn_state() = default;
|
||||
|
||||
void set_input(const llama_ubatch * ubatch) override;
|
||||
|
||||
ggml_tensor * cross_attn_state; // F32 [4, n_embd, 1061]
|
||||
};
|
||||
|
||||
//
|
||||
// llm_graph_result
|
||||
//
|
||||
@ -506,7 +495,6 @@ struct llm_graph_context {
|
||||
ggml_tensor * build_inp_cls() const;
|
||||
ggml_tensor * build_inp_s_copy() const;
|
||||
ggml_tensor * build_inp_s_mask() const;
|
||||
ggml_tensor * build_inp_cross_attn_state() const;
|
||||
|
||||
ggml_tensor * build_inp_cross_embd() const;
|
||||
ggml_tensor * build_inp_pos_bucket_enc() const;
|
||||
|
4
llama/llama.cpp/src/llama-hparams.cpp
vendored
4
llama/llama.cpp/src/llama-hparams.cpp
vendored
@ -85,7 +85,3 @@ bool llama_hparams::is_swa(uint32_t il) const {
|
||||
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
|
||||
bool llama_hparams::cross_attention_layers(uint32_t il) const {
|
||||
return std::find(cross_attn_layers.begin(), cross_attn_layers.end(), il) != cross_attn_layers.end();
|
||||
}
|
||||
|
7
llama/llama.cpp/src/llama-hparams.h
vendored
7
llama/llama.cpp/src/llama-hparams.h
vendored
@ -2,8 +2,6 @@
|
||||
|
||||
#include "llama.h"
|
||||
|
||||
#include <algorithm>
|
||||
|
||||
#include <array>
|
||||
|
||||
// bump if necessary
|
||||
@ -44,7 +42,6 @@ struct llama_hparams {
|
||||
uint32_t n_expert = 0;
|
||||
uint32_t n_expert_used = 0;
|
||||
uint32_t n_rel_attn_bkts = 0;
|
||||
uint32_t n_vocab = 0;
|
||||
|
||||
// note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
|
||||
uint32_t n_embd_head_k_mla = 0;
|
||||
@ -59,7 +56,6 @@ struct llama_hparams {
|
||||
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
|
||||
|
||||
std::array<std::array<uint32_t, LLAMA_MAX_LAYERS>, 4> n_bskcn_arr = {};
|
||||
std::array<uint32_t, LLAMA_MAX_LAYERS> cross_attn_layers;
|
||||
|
||||
uint32_t n_layer_dense_lead = 0;
|
||||
uint32_t n_lora_q = 0;
|
||||
@ -163,9 +159,6 @@ struct llama_hparams {
|
||||
// Block skip connection
|
||||
bool n_bskcn(uint32_t n, uint32_t il) const;
|
||||
|
||||
// cross attention layers
|
||||
bool cross_attention_layers(uint32_t il) const;
|
||||
|
||||
bool is_swa(uint32_t il) const;
|
||||
};
|
||||
|
||||
|
14
llama/llama.cpp/src/llama-kv-cache.cpp
vendored
14
llama/llama.cpp/src/llama-kv-cache.cpp
vendored
@ -100,16 +100,8 @@ llama_kv_cache_unified::llama_kv_cache_unified(
|
||||
throw std::runtime_error("failed to create ggml context for kv cache");
|
||||
}
|
||||
|
||||
ggml_tensor * k, *v;
|
||||
|
||||
// for cross attention layers
|
||||
if (model.arch == LLM_ARCH_MLLAMA && hparams.cross_attention_layers(i)) {
|
||||
k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_k, 6404, hparams.n_head_kv(i));
|
||||
v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_v, 6404, hparams.n_head_kv(i));
|
||||
} else {
|
||||
k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
|
||||
v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
|
||||
}
|
||||
ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
|
||||
ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
|
||||
ggml_format_name(k, "cache_k_l%d", i);
|
||||
ggml_format_name(v, "cache_v_l%d", i);
|
||||
k_l.push_back(k);
|
||||
@ -459,7 +451,7 @@ void llama_kv_cache_unified::set_full() {
|
||||
llama_sbatch llama_kv_cache_unified::sbatch_init(
|
||||
const llama_batch & batch,
|
||||
bool logits_all) {
|
||||
return llama_sbatch(batch, batch.n_embd, true, logits_all);
|
||||
return llama_sbatch(batch, hparams.n_embd, true, logits_all);
|
||||
}
|
||||
|
||||
llama_ubatch llama_kv_cache_unified::ubatch_next(
|
||||
|
2
llama/llama.cpp/src/llama-model-loader.cpp
vendored
2
llama/llama.cpp/src/llama-model-loader.cpp
vendored
@ -315,8 +315,6 @@ namespace GGUFMeta {
|
||||
return true;
|
||||
}
|
||||
|
||||
template bool llama_model_loader::get_arr<std::array<unsigned int, 512>>(enum llm_kv kid, std::array<unsigned int, 512>& result, bool required);
|
||||
|
||||
template<typename T, size_t N_MAX>
|
||||
bool llama_model_loader::get_arr(const std::string & key, std::array<T, N_MAX> & result, bool required) {
|
||||
const int kid = gguf_find_key(meta.get(), key.c_str());
|
||||
|
309
llama/llama.cpp/src/llama-model.cpp
vendored
309
llama/llama.cpp/src/llama-model.cpp
vendored
@ -433,7 +433,6 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
|
||||
// get general kv
|
||||
ml.get_key(LLM_KV_GENERAL_NAME, name, false);
|
||||
ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab, false);
|
||||
|
||||
// everything past this point is not vocab-related
|
||||
if (hparams.vocab_only) {
|
||||
@ -445,7 +444,6 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
|
||||
ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
|
||||
ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
|
||||
ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false);
|
||||
|
||||
if (arch == LLM_ARCH_WAVTOKENIZER_DEC) {
|
||||
ml.get_key(LLM_KV_FEATURES_LENGTH, hparams.n_embd_features);
|
||||
@ -469,11 +467,9 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0);
|
||||
std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
|
||||
std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0);
|
||||
std::fill(hparams.cross_attn_layers.begin(), hparams.cross_attn_layers.end(), -1);
|
||||
|
||||
ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer, false);
|
||||
ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer, false);
|
||||
ml.get_arr(LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS, hparams.cross_attn_layers, false);
|
||||
|
||||
// n_head_kv is optional, default to n_head
|
||||
hparams.n_head_kv_arr = hparams.n_head_arr;
|
||||
@ -526,7 +522,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
|
||||
ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
|
||||
|
||||
if (arch == LLM_ARCH_LLAMA || arch == LLM_ARCH_MLLAMA || arch == LLM_ARCH_DECI || arch == LLM_ARCH_FALCON) {
|
||||
if (arch == LLM_ARCH_LLAMA || arch == LLM_ARCH_DECI || arch == LLM_ARCH_FALCON) {
|
||||
if (hparams.n_rot != hparams.n_embd_head_k) {
|
||||
throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
|
||||
}
|
||||
@ -589,16 +585,6 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
hparams.use_kq_norm = false;
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_MLLAMA:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
|
||||
switch (hparams.n_layer) {
|
||||
case 40: type = LLM_TYPE_11B; break;
|
||||
case 100: type = LLM_TYPE_90B; break;
|
||||
default: type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_DECI:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
@ -1595,7 +1581,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
const int64_t n_embd_head_v = hparams.n_embd_head_v;
|
||||
const int64_t n_ff = hparams.n_ff();
|
||||
const int64_t n_embd_gqa = n_embd_v_gqa;
|
||||
const int64_t n_vocab = hparams.n_vocab;
|
||||
const int64_t n_vocab = vocab.n_tokens();
|
||||
const int64_t n_token_types = vocab.n_token_types();
|
||||
const int64_t n_rot = hparams.n_rot;
|
||||
const int64_t n_expert = hparams.n_expert;
|
||||
@ -1854,52 +1840,6 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
}
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_MLLAMA:
|
||||
{
|
||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab+8}, 0);
|
||||
|
||||
// output
|
||||
{
|
||||
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
|
||||
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||
|
||||
// if output is NULL, init from the input tok embed
|
||||
if (output == NULL) {
|
||||
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
auto & layer = layers[i];
|
||||
|
||||
if (hparams.cross_attention_layers(i)) {
|
||||
layer.cross_attn_k_norm = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_K_NORM, "weight", i), {128}, 0);
|
||||
layer.cross_attn_k_proj = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_K_PROJ, "weight", i), {n_embd, 1024}, 0);
|
||||
layer.cross_attn_o_proj = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_O_PROJ, "weight", i), {n_embd, n_embd}, 0);
|
||||
layer.cross_attn_q_norm = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_Q_NORM, "weight", i), {128}, 0);
|
||||
layer.cross_attn_q_proj = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_Q_PROJ, "weight", i), {n_embd, n_embd}, 0);
|
||||
layer.cross_attn_v_proj = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_V_PROJ, "weight", i), {n_embd, 1024}, 0);
|
||||
layer.cross_attn_attn_gate = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_ATTN_GATE, i), {1}, 0);
|
||||
layer.cross_attn_mlp_gate = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_MLP_GATE, i), {1}, 0);
|
||||
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
|
||||
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
|
||||
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
|
||||
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
||||
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
|
||||
} else {
|
||||
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
|
||||
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
|
||||
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
|
||||
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
|
||||
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
|
||||
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
|
||||
layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
||||
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
|
||||
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
|
||||
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
||||
}
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_DECI:
|
||||
{
|
||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
||||
@ -4816,246 +4756,6 @@ struct llm_build_llama : public llm_graph_context {
|
||||
}
|
||||
};
|
||||
|
||||
struct llm_build_mllama: public llm_graph_context {
|
||||
llm_build_mllama(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
|
||||
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||||
int32_t n_tokens = this->n_tokens;
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||
|
||||
ggml_tensor * cur;
|
||||
ggml_tensor * inpL;
|
||||
ggml_tensor * inpCAS;
|
||||
|
||||
inpL = build_inp_embd(model.tok_embd);
|
||||
inpCAS = build_inp_cross_attn_state();
|
||||
|
||||
// inp_pos - contains the positions
|
||||
ggml_tensor * inp_pos = build_inp_pos();
|
||||
|
||||
auto * inp_attn = build_attn_inp_kv_unified();
|
||||
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
ggml_tensor * inpSA = inpL;
|
||||
|
||||
// norm
|
||||
cur = build_norm(inpL,
|
||||
model.layers[il].attn_norm, NULL,
|
||||
LLM_NORM_RMS, il);
|
||||
cb(cur, "attn_norm", il);
|
||||
|
||||
if (hparams.cross_attention_layers(il)) {
|
||||
if (!ubatch.embd && !cparams.cross_attn) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// cross attention layer
|
||||
ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_q_proj, cur);
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
Qcur = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 0, 2, 1, 3));
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
Qcur = build_norm(Qcur, model.layers[il].cross_attn_q_norm, NULL, LLM_NORM_RMS, il);
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
ggml_tensor * Kcur, * Vcur;
|
||||
if (ubatch.embd) {
|
||||
Kcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_k_proj, inpCAS);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, 6404);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
Kcur = build_norm(Kcur, model.layers[il].cross_attn_k_norm, NULL, LLM_NORM_RMS, il);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, kv_self->k_l[il]));
|
||||
|
||||
Vcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_v_proj, inpCAS);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, 6404);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
Vcur = ggml_permute(ctx0, Vcur, 0, 2, 1, 3);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, kv_self->v_l[il]));
|
||||
} else {
|
||||
Kcur = ggml_view_tensor(ctx0, kv_self->k_l[il]);
|
||||
cb(Kcur, "Kcur (view)", il);
|
||||
|
||||
Vcur = ggml_view_tensor(ctx0, kv_self->v_l[il]);
|
||||
cb(Vcur, "Vcur (view)", il);
|
||||
}
|
||||
|
||||
struct ggml_tensor * kq = ggml_mul_mat(ctx0, Kcur, Qcur);
|
||||
cb(kq, "kq", il);
|
||||
|
||||
// TODO: apply causal masks
|
||||
struct ggml_tensor * kq_soft_max = ggml_soft_max_ext(ctx0, kq, nullptr, 1.f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
|
||||
cb(kq_soft_max, "kq_soft_max", il);
|
||||
|
||||
Vcur = ggml_cont(ctx0, ggml_transpose(ctx0, Vcur));
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
struct ggml_tensor * kqv = ggml_mul_mat(ctx0, Vcur, kq_soft_max);
|
||||
cb(kqv, "kqv", il);
|
||||
|
||||
struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
|
||||
cb(kqv_merged, "kqv_merged", il);
|
||||
|
||||
cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_head_v*n_head, n_tokens);
|
||||
cb(cur, "kqv_merged_cont", il);
|
||||
|
||||
cur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_o_proj, cur);
|
||||
cb(cur, "cur", il);
|
||||
|
||||
// TODO: do this in place once?
|
||||
cur = ggml_mul(ctx0, cur, ggml_tanh(ctx0, model.layers[il].cross_attn_attn_gate));
|
||||
|
||||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||
cb(ffn_inp, "ffn_inp", il);
|
||||
|
||||
// feed-forward network
|
||||
cur = build_norm(ffn_inp,
|
||||
model.layers[il].ffn_norm, NULL,
|
||||
LLM_NORM_RMS, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
cur = build_ffn(cur,
|
||||
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
||||
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
|
||||
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
||||
NULL,
|
||||
LLM_FFN_SILU, LLM_FFN_PAR, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
|
||||
// TODO: do this inplace once?
|
||||
cur = ggml_add_inplace(ctx0, ggml_mul_inplace(ctx0, cur, ggml_tanh(ctx0, model.layers[il].cross_attn_mlp_gate)), ffn_inp);
|
||||
cb(cur, "ffn_out", il);
|
||||
|
||||
cur = build_cvec(cur, il);
|
||||
cb(cur, "l_out", il);
|
||||
|
||||
// input for next layer
|
||||
inpL = cur;
|
||||
} else {
|
||||
// self attention layer
|
||||
|
||||
// rope freq factors for llama3; may return nullptr for llama2 and other models
|
||||
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
|
||||
|
||||
// compute Q and K and RoPE them
|
||||
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
||||
cb(Qcur, "Qcur", il);
|
||||
if (model.layers[il].bq) {
|
||||
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
||||
cb(Qcur, "Qcur", il);
|
||||
}
|
||||
|
||||
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
||||
cb(Kcur, "Kcur", il);
|
||||
if (model.layers[il].bk) {
|
||||
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
||||
cb(Kcur, "Kcur", il);
|
||||
}
|
||||
|
||||
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
||||
cb(Vcur, "Vcur", il);
|
||||
if (model.layers[il].bv) {
|
||||
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
||||
cb(Vcur, "Vcur", il);
|
||||
}
|
||||
|
||||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||||
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
||||
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
||||
|
||||
Qcur = ggml_rope_ext(
|
||||
ctx0, Qcur, inp_pos, rope_factors,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
|
||||
Kcur = ggml_rope_ext(
|
||||
ctx0, Kcur, inp_pos, rope_factors,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
|
||||
cb(Qcur, "Qcur", il);
|
||||
cb(Kcur, "Kcur", il);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
cur = build_attn(inp_attn, gf,
|
||||
model.layers[il].wo, model.layers[il].bo,
|
||||
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
|
||||
|
||||
if (il == n_layer - 1) {
|
||||
// skip computing output for unused tokens
|
||||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
n_tokens = n_outputs;
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||
cb(ffn_inp, "ffn_inp", il);
|
||||
|
||||
// feed-forward network
|
||||
cur = build_norm(ffn_inp,
|
||||
model.layers[il].ffn_norm, NULL,
|
||||
LLM_NORM_RMS, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
cur = build_ffn(cur,
|
||||
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
||||
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
|
||||
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
||||
NULL,
|
||||
LLM_FFN_SILU, LLM_FFN_PAR, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
|
||||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||
cb(cur, "ffn_out", il);
|
||||
|
||||
cur = build_cvec(cur, il);
|
||||
cb(cur, "l_out", il);
|
||||
|
||||
// input for next layer
|
||||
inpL = cur;
|
||||
}
|
||||
}
|
||||
|
||||
cur = inpL;
|
||||
|
||||
cur = build_norm(cur,
|
||||
model.output_norm, NULL,
|
||||
LLM_NORM_RMS, -1);
|
||||
cb(cur, "result_norm", -1);
|
||||
res->t_embd = cur;
|
||||
|
||||
// lm_head
|
||||
cur = build_lora_mm(model.output, cur);
|
||||
|
||||
cb(cur, "result_output", -1);
|
||||
res->t_logits = cur;
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
}
|
||||
};
|
||||
|
||||
struct llm_build_deci : public llm_graph_context {
|
||||
llm_build_deci(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
@ -13428,10 +13128,6 @@ llm_graph_result_ptr llama_model::build_graph(
|
||||
{
|
||||
llm = std::make_unique<llm_build_llama>(*this, params, gf);
|
||||
} break;
|
||||
case LLM_ARCH_MLLAMA:
|
||||
{
|
||||
llm = std::make_unique<llm_build_mllama>(*this, params, gf);
|
||||
} break;
|
||||
case LLM_ARCH_DECI:
|
||||
{
|
||||
llm = std::make_unique<llm_build_deci>(*this, params, gf);
|
||||
@ -13793,7 +13489,6 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
||||
// use what we call a normal RoPE, operating on pairs of consecutive head values
|
||||
case LLM_ARCH_LLAMA:
|
||||
case LLM_ARCH_LLAMA4:
|
||||
case LLM_ARCH_MLLAMA:
|
||||
case LLM_ARCH_DECI:
|
||||
case LLM_ARCH_BAICHUAN:
|
||||
case LLM_ARCH_STARCODER:
|
||||
|
12
llama/llama.cpp/src/llama-model.h
vendored
12
llama/llama.cpp/src/llama-model.h
vendored
@ -11,7 +11,6 @@
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
#include <stdexcept>
|
||||
|
||||
struct llama_cparams;
|
||||
struct llama_ubatch;
|
||||
@ -75,7 +74,6 @@ enum llm_type {
|
||||
LLM_TYPE_40B,
|
||||
LLM_TYPE_65B,
|
||||
LLM_TYPE_70B,
|
||||
LLM_TYPE_90B,
|
||||
LLM_TYPE_236B,
|
||||
LLM_TYPE_290B,
|
||||
LLM_TYPE_314B,
|
||||
@ -320,16 +318,6 @@ struct llama_layer {
|
||||
|
||||
struct ggml_tensor * bskcn_tv = nullptr;
|
||||
|
||||
// cross attention
|
||||
struct ggml_tensor * cross_attn_k_norm = nullptr;
|
||||
struct ggml_tensor * cross_attn_k_proj = nullptr;
|
||||
struct ggml_tensor * cross_attn_o_proj = nullptr;
|
||||
struct ggml_tensor * cross_attn_q_norm = nullptr;
|
||||
struct ggml_tensor * cross_attn_q_proj = nullptr;
|
||||
struct ggml_tensor * cross_attn_v_proj = nullptr;
|
||||
struct ggml_tensor * cross_attn_attn_gate = nullptr;
|
||||
struct ggml_tensor * cross_attn_mlp_gate = nullptr;
|
||||
|
||||
struct llama_layer_posnet posnet;
|
||||
|
||||
struct llama_layer_convnext convnext;
|
||||
|
4
llama/llama.cpp/src/llama-quant.cpp
vendored
4
llama/llama.cpp/src/llama-quant.cpp
vendored
@ -639,9 +639,7 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
|
||||
if (llama_model_has_encoder(&model)) {
|
||||
n_attn_layer *= 3;
|
||||
}
|
||||
if (qs.n_attention_wv != n_attn_layer) {
|
||||
LLAMA_LOG_WARN("%s: n_attention_wv is unexpected, expected: %d, found: %d\n", __func__, n_attn_layer, qs.n_attention_wv);
|
||||
}
|
||||
GGML_ASSERT((qs.n_attention_wv == n_attn_layer) && "n_attention_wv is unexpected");
|
||||
}
|
||||
|
||||
size_t total_size_org = 0;
|
||||
|
5
llama/llama.cpp/tools/mtmd/llava.cpp
vendored
5
llama/llama.cpp/tools/mtmd/llava.cpp
vendored
@ -462,7 +462,7 @@ struct llava_embd_batch {
|
||||
std::vector<llama_seq_id *> seq_ids;
|
||||
std::vector<int8_t> logits;
|
||||
llama_batch batch;
|
||||
llava_embd_batch(float * embd, int32_t n_embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
|
||||
llava_embd_batch(float * embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
|
||||
pos .resize(n_tokens);
|
||||
n_seq_id.resize(n_tokens);
|
||||
seq_ids .resize(n_tokens + 1);
|
||||
@ -474,7 +474,6 @@ struct llava_embd_batch {
|
||||
/*n_tokens =*/ n_tokens,
|
||||
/*tokens =*/ nullptr,
|
||||
/*embd =*/ embd,
|
||||
/*n_embd =*/ n_embd,
|
||||
/*pos =*/ pos.data(),
|
||||
/*n_seq_id =*/ n_seq_id.data(),
|
||||
/*seq_id =*/ seq_ids.data(),
|
||||
@ -498,7 +497,7 @@ bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_
|
||||
n_eval = n_batch;
|
||||
}
|
||||
float * embd = image_embed->embed+i*n_embd;
|
||||
llava_embd_batch llava_batch = llava_embd_batch(embd, n_embd, n_eval, *n_past, 0);
|
||||
llava_embd_batch llava_batch = llava_embd_batch(embd, n_eval, *n_past, 0);
|
||||
if (llama_decode(ctx_llama, llava_batch.batch)) {
|
||||
LOG_ERR("%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
|
@ -17,7 +17,6 @@ package llama
|
||||
#include "llava.h"
|
||||
#include "gguf.h"
|
||||
|
||||
#include "mllama.h"
|
||||
#include "sampling_ext.h"
|
||||
|
||||
extern bool llamaProgressCallback(float progress, void *user_data);
|
||||
@ -510,63 +509,6 @@ func (c *ClipContext) NewEmbed(llamaContext *Context, data []byte) ([][]float32,
|
||||
return embed, nil
|
||||
}
|
||||
|
||||
type MllamaContext struct {
|
||||
c *C.struct_mllama_ctx
|
||||
}
|
||||
|
||||
func NewMllamaContext(llamaContext *Context, modelPath string) (*MllamaContext, error) {
|
||||
mp := C.CString(modelPath)
|
||||
defer C.free(unsafe.Pointer(mp))
|
||||
c := C.mllama_model_load(mp, 1)
|
||||
if c == nil {
|
||||
return nil, fmt.Errorf("unable to load mllama model: %v", modelPath)
|
||||
}
|
||||
|
||||
projEmbedSize := int(C.mllama_n_embd(c))
|
||||
modelEmbedSize := llamaContext.Model().NEmbd()
|
||||
if projEmbedSize != modelEmbedSize {
|
||||
return nil, fmt.Errorf("projector embedding size (%d) does not match model (%d)", projEmbedSize, modelEmbedSize)
|
||||
}
|
||||
|
||||
return &MllamaContext{c: c}, nil
|
||||
}
|
||||
|
||||
func (m *MllamaContext) Free() {
|
||||
C.mllama_free(m.c)
|
||||
}
|
||||
|
||||
func (m *MllamaContext) NewEmbed(llamaContext *Context, data []byte, aspectRatioId int) ([][]float32, error) {
|
||||
img := C.mllama_image_init()
|
||||
defer C.mllama_image_free(img)
|
||||
|
||||
ok := bool(C.mllama_image_load_from_data(unsafe.Pointer(&data[0]), C.int(len(data)), 560, 560, 3, 4, C.int(aspectRatioId), img))
|
||||
if !ok {
|
||||
return nil, errors.New("unable to load mllama image data")
|
||||
}
|
||||
|
||||
rows := make([]float32, m.EmbedSize(llamaContext))
|
||||
ok = bool(C.mllama_image_encode(m.c, C.int(llamaContext.numThreads), img, (*C.float)(unsafe.Pointer(&rows[0]))))
|
||||
if !ok {
|
||||
return nil, errors.New("unable to make mllama embedding from image")
|
||||
}
|
||||
|
||||
embed := make([][]float32, 1)
|
||||
embed[0] = rows
|
||||
|
||||
return embed, nil
|
||||
}
|
||||
|
||||
func (m *MllamaContext) EmbedSize(llamaContext *Context) int {
|
||||
numTokens := int(C.mllama_n_positions(m.c) * C.mllama_n_tiles(m.c))
|
||||
numEmbed := llamaContext.Model().NEmbd()
|
||||
|
||||
return numTokens * numEmbed
|
||||
}
|
||||
|
||||
func (c *Context) SetCrossAttention(state bool) {
|
||||
C.llama_set_cross_attention(c.c, C.bool(state))
|
||||
}
|
||||
|
||||
func (c *Context) Synchronize() {
|
||||
C.llama_synchronize(c.c)
|
||||
}
|
||||
|
887
llama/mllama.cpp
vendored
887
llama/mllama.cpp
vendored
@ -1,887 +0,0 @@
|
||||
// NOTE: This is modified from clip.cpp for Mllama only
|
||||
#include "mllama.h"
|
||||
|
||||
#include "ggml-alloc.h"
|
||||
#include "ggml-backend.h"
|
||||
#include "ggml-cpu.h"
|
||||
#include "ggml.h"
|
||||
#include "gguf.h"
|
||||
|
||||
#ifdef GGML_USE_CUDA
|
||||
#include "ggml-cuda.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_METAL
|
||||
#include "ggml-metal.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_CANN
|
||||
#include "ggml-cann.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_VULKAN
|
||||
#include "ggml-vulkan.h"
|
||||
#endif
|
||||
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <cstdarg>
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <stdexcept>
|
||||
#include <vector>
|
||||
|
||||
#define REQUIRE(x) \
|
||||
do { \
|
||||
if (!(x)) { \
|
||||
throw std::runtime_error("REQUIRE failed: " #x); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#define LOG(fmt, ...) fprintf(stderr, "%s: " fmt "\n", __func__, ##__VA_ARGS__)
|
||||
|
||||
#if defined(_WIN32)
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#ifndef NOMINMAX
|
||||
#define NOMINMAX
|
||||
#endif
|
||||
#include <windows.h>
|
||||
#if __GLIBCXX__
|
||||
#include <cstdio>
|
||||
#include <ext/stdio_filebuf.h>
|
||||
#include <fcntl.h>
|
||||
#endif
|
||||
#endif
|
||||
|
||||
struct mllama_image {
|
||||
int width;
|
||||
int height;
|
||||
|
||||
int num_channels = 3;
|
||||
int num_tiles = 4;
|
||||
|
||||
int aspect_ratio_id;
|
||||
|
||||
std::vector<float> data;
|
||||
};
|
||||
|
||||
static std::string format(const char *fmt, ...) {
|
||||
va_list args;
|
||||
va_start(args, fmt);
|
||||
std::vector<char> b(128);
|
||||
int n = vsnprintf(b.data(), b.size(), fmt, args);
|
||||
REQUIRE(n >= 0 && n < b.size());
|
||||
va_end(args);
|
||||
return std::string(b.data(), b.size());
|
||||
}
|
||||
|
||||
//
|
||||
// utilities to get data from a gguf file
|
||||
//
|
||||
|
||||
static int get_key_index(const gguf_context *ctx, const char *key) {
|
||||
int key_index = gguf_find_key(ctx, key);
|
||||
REQUIRE(key_index != -1);
|
||||
return key_index;
|
||||
}
|
||||
|
||||
static std::vector<uint32_t> get_u32_array(const gguf_context *ctx, const std::string &key) {
|
||||
const int i = get_key_index(ctx, key.c_str());
|
||||
const int n = gguf_get_arr_n(ctx, i);
|
||||
const uint32_t *data = (uint32_t *)gguf_get_arr_data(ctx, i);
|
||||
|
||||
std::vector<uint32_t> s(n);
|
||||
for (size_t j = 0; j < s.size(); j++) {
|
||||
s[j] = data[j];
|
||||
}
|
||||
|
||||
return s;
|
||||
}
|
||||
|
||||
static uint32_t get_u32(const gguf_context *ctx, const std::string &key) {
|
||||
return gguf_get_val_u32(ctx, get_key_index(ctx, key.c_str()));
|
||||
}
|
||||
|
||||
static float get_f32(const gguf_context *ctx, const std::string &key) {
|
||||
return gguf_get_val_f32(ctx, get_key_index(ctx, key.c_str()));
|
||||
}
|
||||
|
||||
static std::string get_ftype(int ftype) {
|
||||
return ggml_type_name(static_cast<ggml_type>(ftype));
|
||||
}
|
||||
|
||||
//
|
||||
// mllama layers
|
||||
//
|
||||
|
||||
struct mllama_hparams {
|
||||
uint32_t image_size;
|
||||
uint32_t patch_size;
|
||||
uint32_t hidden_size;
|
||||
uint32_t n_intermediate;
|
||||
uint32_t projection_dim;
|
||||
uint32_t n_head;
|
||||
uint32_t n_layer;
|
||||
uint32_t n_global_layer;
|
||||
uint32_t n_tiles;
|
||||
|
||||
float eps;
|
||||
|
||||
std::vector<bool> intermediate_layers;
|
||||
};
|
||||
|
||||
struct mllama_layer {
|
||||
// attention
|
||||
struct ggml_tensor *k_w;
|
||||
struct ggml_tensor *k_b;
|
||||
struct ggml_tensor *q_w;
|
||||
struct ggml_tensor *q_b;
|
||||
struct ggml_tensor *v_w;
|
||||
struct ggml_tensor *v_b;
|
||||
|
||||
struct ggml_tensor *o_w;
|
||||
struct ggml_tensor *o_b;
|
||||
|
||||
struct ggml_tensor *attn_gate;
|
||||
|
||||
// layernorm 1
|
||||
struct ggml_tensor *ln_1_w;
|
||||
struct ggml_tensor *ln_1_b;
|
||||
|
||||
// ff
|
||||
struct ggml_tensor *ff_i_w;
|
||||
struct ggml_tensor *ff_i_b;
|
||||
|
||||
struct ggml_tensor *ff_o_w;
|
||||
struct ggml_tensor *ff_o_b;
|
||||
|
||||
struct ggml_tensor *ff_gate;
|
||||
|
||||
// layernorm 2
|
||||
struct ggml_tensor *ln_2_w;
|
||||
struct ggml_tensor *ln_2_b;
|
||||
};
|
||||
|
||||
struct mllama_vision_model {
|
||||
struct mllama_hparams hparams;
|
||||
|
||||
// embeddings
|
||||
struct ggml_tensor *class_embedding;
|
||||
struct ggml_tensor *patch_embeddings;
|
||||
struct ggml_tensor *position_embeddings;
|
||||
struct ggml_tensor *position_embeddings_gate;
|
||||
struct ggml_tensor *tile_position_embeddings;
|
||||
struct ggml_tensor *tile_position_embeddings_gate;
|
||||
struct ggml_tensor *pre_tile_position_embeddings;
|
||||
struct ggml_tensor *pre_tile_position_embeddings_gate;
|
||||
struct ggml_tensor *post_tile_position_embeddings;
|
||||
struct ggml_tensor *post_tile_position_embeddings_gate;
|
||||
|
||||
struct ggml_tensor *pre_ln_w;
|
||||
struct ggml_tensor *pre_ln_b;
|
||||
|
||||
std::vector<mllama_layer> layers;
|
||||
std::vector<mllama_layer> global_layers;
|
||||
|
||||
struct ggml_tensor *post_ln_w;
|
||||
struct ggml_tensor *post_ln_b;
|
||||
|
||||
struct ggml_tensor *mm_0_w;
|
||||
struct ggml_tensor *mm_0_b;
|
||||
};
|
||||
|
||||
struct mllama_ctx {
|
||||
struct mllama_vision_model vision_model;
|
||||
|
||||
uint32_t ftype = 1;
|
||||
|
||||
struct gguf_context *ctx_gguf;
|
||||
struct ggml_context *ctx_data;
|
||||
|
||||
std::vector<uint8_t> buf_compute_meta;
|
||||
|
||||
// memory buffers to evaluate the model
|
||||
ggml_backend_buffer_t params_buffer = nullptr;
|
||||
|
||||
ggml_backend_t backend = nullptr;
|
||||
ggml_gallocr_t compute_alloc = nullptr;
|
||||
};
|
||||
|
||||
static ggml_tensor *mllama_image_build_encoder_layer(
|
||||
struct ggml_context *ctx0, const size_t il, const struct mllama_layer &layer, struct ggml_tensor *embeddings,
|
||||
const float eps, const int hidden_size, const int batch_size, const int n_head, const int d_head) {
|
||||
struct ggml_tensor *cur = embeddings;
|
||||
|
||||
{
|
||||
// layernorm1
|
||||
cur = ggml_norm(ctx0, cur, eps);
|
||||
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.ln_1_w), layer.ln_1_b);
|
||||
ggml_set_name(cur, format("%d pre layernorm", il).c_str());
|
||||
}
|
||||
|
||||
{
|
||||
// self-attention
|
||||
struct ggml_tensor *Q = ggml_mul_mat(ctx0, layer.q_w, cur);
|
||||
if (layer.q_b != nullptr) {
|
||||
Q = ggml_add(ctx0, Q, layer.q_b);
|
||||
}
|
||||
|
||||
Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, Q->ne[1], batch_size);
|
||||
Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
|
||||
ggml_set_name(Q, format("%d query", il).c_str());
|
||||
|
||||
struct ggml_tensor *K = ggml_mul_mat(ctx0, layer.k_w, cur);
|
||||
if (layer.k_b != nullptr) {
|
||||
K = ggml_add(ctx0, K, layer.k_b);
|
||||
}
|
||||
|
||||
K = ggml_reshape_4d(ctx0, K, d_head, n_head, K->ne[1], batch_size);
|
||||
K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
|
||||
ggml_set_name(K, format("%d key", il).c_str());
|
||||
|
||||
struct ggml_tensor *V = ggml_mul_mat(ctx0, layer.v_w, cur);
|
||||
if (layer.v_b != nullptr) {
|
||||
V = ggml_add(ctx0, V, layer.v_b);
|
||||
}
|
||||
|
||||
V = ggml_reshape_4d(ctx0, V, d_head, n_head, V->ne[1], batch_size);
|
||||
V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
|
||||
ggml_set_name(V, format("%d value", il).c_str());
|
||||
|
||||
struct ggml_tensor *KQ = ggml_mul_mat(ctx0, K, Q);
|
||||
KQ = ggml_scale_inplace(ctx0, KQ, 1.0f / sqrtf((float)d_head));
|
||||
KQ = ggml_soft_max_inplace(ctx0, KQ);
|
||||
ggml_set_name(KQ, format("%d KQ", il).c_str());
|
||||
|
||||
struct ggml_tensor *KQV = ggml_mul_mat(ctx0, V, KQ);
|
||||
KQV = ggml_reshape_4d(ctx0, KQV, d_head, KQV->ne[1], n_head, batch_size);
|
||||
KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
||||
KQV = ggml_cont_3d(ctx0, KQV, hidden_size, KQV->ne[2], batch_size);
|
||||
ggml_set_name(KQV, format("%d KQV", il).c_str());
|
||||
|
||||
cur = ggml_mul_mat(ctx0, layer.o_w, KQV);
|
||||
if (layer.o_b != nullptr) {
|
||||
cur = ggml_add(ctx0, cur, layer.o_b);
|
||||
}
|
||||
ggml_set_name(cur, format("%d self attention", il).c_str());
|
||||
|
||||
if (layer.attn_gate != nullptr) {
|
||||
cur = ggml_mul_inplace(ctx0, cur, layer.attn_gate);
|
||||
ggml_set_name(cur, format("%d self attention gate", il).c_str());
|
||||
}
|
||||
}
|
||||
|
||||
cur = ggml_add(ctx0, cur, embeddings);
|
||||
ggml_set_name(cur, format("%d residual", il).c_str());
|
||||
|
||||
embeddings = cur;
|
||||
|
||||
{
|
||||
// layernorm2
|
||||
cur = ggml_norm(ctx0, cur, eps);
|
||||
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.ln_2_w), layer.ln_2_b);
|
||||
ggml_set_name(cur, format("%d post layernorm", il).c_str());
|
||||
}
|
||||
|
||||
{
|
||||
// feed forward
|
||||
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, layer.ff_i_w, cur), layer.ff_i_b);
|
||||
cur = ggml_gelu_inplace(ctx0, cur);
|
||||
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, layer.ff_o_w, cur), layer.ff_o_b);
|
||||
ggml_set_name(cur, format("%d feed forward", il).c_str());
|
||||
|
||||
if (layer.ff_gate != nullptr) {
|
||||
cur = ggml_mul_inplace(ctx0, cur, layer.ff_gate);
|
||||
ggml_set_name(cur, format("%d feed forward gate", il).c_str());
|
||||
}
|
||||
}
|
||||
|
||||
// residual 2
|
||||
cur = ggml_add(ctx0, cur, embeddings);
|
||||
ggml_set_name(cur, format("%d residual", il).c_str());
|
||||
|
||||
embeddings = cur;
|
||||
|
||||
return embeddings;
|
||||
}
|
||||
|
||||
static ggml_cgraph *mllama_image_build_graph(mllama_ctx *ctx, const mllama_image_batch *imgs) {
|
||||
const auto &model = ctx->vision_model;
|
||||
const auto &hparams = model.hparams;
|
||||
|
||||
const int image_size = hparams.image_size;
|
||||
const int image_size_width = image_size;
|
||||
const int image_size_height = image_size;
|
||||
|
||||
const int patch_size = hparams.patch_size;
|
||||
const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
|
||||
const int num_positions = num_patches + (model.class_embedding == nullptr ? 0 : 1);
|
||||
const int hidden_size = hparams.hidden_size;
|
||||
const int n_head = hparams.n_head;
|
||||
const int d_head = hidden_size / n_head;
|
||||
|
||||
const int batch_size = imgs->size;
|
||||
REQUIRE(batch_size == 1);
|
||||
|
||||
int num_tiles = 4;
|
||||
int num_channels = 3;
|
||||
if (imgs->data != nullptr) {
|
||||
num_tiles = imgs->data[0].num_tiles > 0 ? imgs->data[0].num_tiles : num_tiles;
|
||||
num_channels = imgs->data[0].num_channels > 0 ? imgs->data[0].num_channels : num_channels;
|
||||
}
|
||||
|
||||
struct ggml_init_params params = {
|
||||
ctx->buf_compute_meta.size(), // mem_size
|
||||
ctx->buf_compute_meta.data(), // mem_buffer
|
||||
true, // no_alloc
|
||||
};
|
||||
|
||||
struct ggml_context *ctx0 = ggml_init(params);
|
||||
struct ggml_cgraph *gf = ggml_new_graph(ctx0);
|
||||
|
||||
struct ggml_tensor *inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, num_channels, num_tiles);
|
||||
ggml_set_name(inp_raw, "inp_raw");
|
||||
ggml_set_input(inp_raw);
|
||||
|
||||
struct ggml_tensor *inp = ggml_conv_2d(ctx0, model.patch_embeddings, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
|
||||
|
||||
inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, num_tiles);
|
||||
inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
|
||||
|
||||
struct ggml_tensor *aspect_ratios = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, imgs->size);
|
||||
ggml_set_name(aspect_ratios, "aspect_ratios");
|
||||
ggml_set_input(aspect_ratios);
|
||||
|
||||
if (model.pre_tile_position_embeddings != nullptr) {
|
||||
struct ggml_tensor *pre_tile_position_embeddings = ggml_get_rows(ctx0, model.pre_tile_position_embeddings, aspect_ratios);
|
||||
ggml_set_name(pre_tile_position_embeddings, "pre_tile_position_embeddings");
|
||||
|
||||
pre_tile_position_embeddings = ggml_reshape_3d(ctx0, pre_tile_position_embeddings, hidden_size, 1, num_tiles);
|
||||
if (model.pre_tile_position_embeddings_gate != nullptr) {
|
||||
pre_tile_position_embeddings = ggml_mul_inplace(ctx0, pre_tile_position_embeddings, model.pre_tile_position_embeddings_gate);
|
||||
}
|
||||
|
||||
inp = ggml_add(ctx0, inp, pre_tile_position_embeddings);
|
||||
}
|
||||
|
||||
struct ggml_tensor *embeddings = inp;
|
||||
|
||||
if (model.class_embedding != nullptr) {
|
||||
// concat class_embeddings and patch_embeddings
|
||||
embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, num_tiles);
|
||||
ggml_set_name(embeddings, "embeddings");
|
||||
ggml_set_input(embeddings);
|
||||
for (int i = 0; i < num_tiles; ++i) {
|
||||
// repeat class embeddings for each tile
|
||||
embeddings = ggml_acc_inplace(ctx0, embeddings, model.class_embedding, embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], i * embeddings->nb[2]);
|
||||
}
|
||||
|
||||
embeddings = ggml_acc_inplace(ctx0, embeddings, inp, embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
|
||||
}
|
||||
|
||||
struct ggml_tensor *positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions);
|
||||
ggml_set_name(positions, "positions");
|
||||
ggml_set_input(positions);
|
||||
|
||||
struct ggml_tensor *position_embd = ggml_get_rows(ctx0, model.position_embeddings, positions);
|
||||
if (model.position_embeddings_gate != nullptr) {
|
||||
position_embd = ggml_mul_inplace(ctx0, position_embd, model.position_embeddings_gate);
|
||||
}
|
||||
|
||||
embeddings = ggml_add(ctx0, embeddings, position_embd);
|
||||
|
||||
if (model.tile_position_embeddings != nullptr) {
|
||||
struct ggml_tensor *tile_position_embeddings = ggml_get_rows(ctx0, model.tile_position_embeddings, aspect_ratios);
|
||||
ggml_set_name(tile_position_embeddings, "tile_position_embeddings");
|
||||
|
||||
tile_position_embeddings = ggml_reshape_3d(ctx0, tile_position_embeddings, hidden_size, num_positions, num_tiles);
|
||||
if (model.tile_position_embeddings_gate != nullptr) {
|
||||
tile_position_embeddings = ggml_mul_inplace(ctx0, tile_position_embeddings, model.tile_position_embeddings_gate);
|
||||
}
|
||||
|
||||
embeddings = ggml_add(ctx0, embeddings, tile_position_embeddings);
|
||||
}
|
||||
|
||||
// pre-layernorm
|
||||
if (model.pre_ln_w != nullptr) {
|
||||
embeddings = ggml_mul(ctx0, ggml_norm(ctx0, embeddings, hparams.eps), model.pre_ln_w);
|
||||
if (model.pre_ln_b != nullptr) {
|
||||
embeddings = ggml_add(ctx0, embeddings, model.pre_ln_b);
|
||||
}
|
||||
|
||||
ggml_set_name(embeddings, "pre layernorm");
|
||||
}
|
||||
|
||||
const int num_padding_patches = 8 - (embeddings->ne[1] % 8) % 8;
|
||||
|
||||
embeddings = ggml_pad(ctx0, embeddings, 0, num_padding_patches, 0, 0);
|
||||
embeddings = ggml_view_3d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1] * embeddings->ne[2], batch_size, embeddings->nb[1], embeddings->nb[2] * embeddings->ne[3], 0);
|
||||
|
||||
std::vector<struct ggml_tensor *> intermediate_embeddings;
|
||||
|
||||
// encoder
|
||||
for (size_t il = 0; il < model.layers.size(); il++) {
|
||||
if (hparams.intermediate_layers[il]) {
|
||||
intermediate_embeddings.push_back(embeddings);
|
||||
}
|
||||
|
||||
embeddings = mllama_image_build_encoder_layer(
|
||||
ctx0, il, model.layers[il], embeddings,
|
||||
hparams.eps, hidden_size, batch_size, n_head, d_head);
|
||||
}
|
||||
|
||||
// post-layernorm
|
||||
if (model.post_ln_w != nullptr) {
|
||||
embeddings = ggml_mul(ctx0, ggml_norm(ctx0, embeddings, hparams.eps), model.post_ln_w);
|
||||
if (model.post_ln_b != nullptr) {
|
||||
embeddings = ggml_add(ctx0, embeddings, model.post_ln_b);
|
||||
}
|
||||
|
||||
ggml_set_name(embeddings, "post layernorm");
|
||||
}
|
||||
|
||||
embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size, num_positions + num_padding_patches, num_tiles);
|
||||
|
||||
if (model.post_tile_position_embeddings != nullptr) {
|
||||
struct ggml_tensor *post_tile_position_embeddings = ggml_get_rows(ctx0, model.post_tile_position_embeddings, aspect_ratios);
|
||||
ggml_set_name(post_tile_position_embeddings, "post_tile_position_embeddings");
|
||||
|
||||
post_tile_position_embeddings = ggml_reshape_3d(ctx0, post_tile_position_embeddings, hidden_size, 1, num_tiles);
|
||||
if (model.post_tile_position_embeddings_gate != nullptr) {
|
||||
post_tile_position_embeddings = ggml_mul(ctx0, post_tile_position_embeddings, model.post_tile_position_embeddings_gate);
|
||||
}
|
||||
|
||||
embeddings = ggml_add(ctx0, embeddings, post_tile_position_embeddings);
|
||||
}
|
||||
|
||||
embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size, num_tiles * (num_positions + num_padding_patches), 1);
|
||||
|
||||
// global encoder
|
||||
for (size_t il = 0; il < model.global_layers.size(); il++) {
|
||||
embeddings = mllama_image_build_encoder_layer(
|
||||
ctx0, il, model.global_layers[il], embeddings,
|
||||
hparams.eps, hidden_size, batch_size, n_head, d_head);
|
||||
}
|
||||
|
||||
struct ggml_tensor *stacked_embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 0, hidden_size, (num_positions + num_padding_patches) * num_tiles);
|
||||
for (size_t i = 0; i < intermediate_embeddings.size(); ++i) {
|
||||
stacked_embeddings = ggml_concat(ctx0, stacked_embeddings, ggml_reshape_3d(ctx0, intermediate_embeddings[i], 1, intermediate_embeddings[i]->ne[0], intermediate_embeddings[i]->ne[1]), 0);
|
||||
}
|
||||
|
||||
stacked_embeddings = ggml_reshape_4d(ctx0, stacked_embeddings, intermediate_embeddings.size() * hidden_size, num_positions + num_padding_patches, num_tiles, batch_size);
|
||||
stacked_embeddings = ggml_unpad(ctx0, stacked_embeddings, 0, num_padding_patches, 0, 0);
|
||||
|
||||
embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size, num_positions + num_padding_patches, num_tiles);
|
||||
embeddings = ggml_unpad(ctx0, embeddings, 0, num_padding_patches, 0, 0);
|
||||
embeddings = ggml_concat(ctx0, embeddings, stacked_embeddings, 0);
|
||||
|
||||
// mllama projector
|
||||
embeddings = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_0_w, embeddings), model.mm_0_b);
|
||||
ggml_set_name(embeddings, "multi modal projector");
|
||||
|
||||
// build the graph
|
||||
ggml_build_forward_expand(gf, embeddings);
|
||||
|
||||
ggml_free(ctx0);
|
||||
|
||||
return gf;
|
||||
}
|
||||
|
||||
static struct ggml_tensor *mllama_tensor_load(struct ggml_context *ctx, const char *name, const bool optional) {
|
||||
struct ggml_tensor *cur = ggml_get_tensor(ctx, name);
|
||||
REQUIRE(cur != nullptr || optional);
|
||||
return cur;
|
||||
}
|
||||
|
||||
static std::vector<struct mllama_layer> mllama_layers_load(struct ggml_context *ctx, const char *prefix, const int n) {
|
||||
std::vector<struct mllama_layer> layers(n);
|
||||
for (size_t i = 0; i < layers.size(); i++) {
|
||||
auto &layer = layers[i];
|
||||
layer.ln_1_w = mllama_tensor_load(ctx, format("%s.blk.%d.ln1.weight", prefix, i).c_str(), false);
|
||||
layer.ln_1_b = mllama_tensor_load(ctx, format("%s.blk.%d.ln1.bias", prefix, i).c_str(), false);
|
||||
layer.ln_2_w = mllama_tensor_load(ctx, format("%s.blk.%d.ln2.weight", prefix, i).c_str(), false);
|
||||
layer.ln_2_b = mllama_tensor_load(ctx, format("%s.blk.%d.ln2.bias", prefix, i).c_str(), false);
|
||||
|
||||
layer.k_w = mllama_tensor_load(ctx, format("%s.blk.%d.attn_k.weight", prefix, i).c_str(), false);
|
||||
layer.k_b = mllama_tensor_load(ctx, format("%s.blk.%d.attn_k.bias", prefix, i).c_str(), true);
|
||||
layer.q_w = mllama_tensor_load(ctx, format("%s.blk.%d.attn_q.weight", prefix, i).c_str(), false);
|
||||
layer.q_b = mllama_tensor_load(ctx, format("%s.blk.%d.attn_q.bias", prefix, i).c_str(), true);
|
||||
layer.v_w = mllama_tensor_load(ctx, format("%s.blk.%d.attn_v.weight", prefix, i).c_str(), false);
|
||||
layer.v_b = mllama_tensor_load(ctx, format("%s.blk.%d.attn_v.bias", prefix, i).c_str(), true);
|
||||
layer.o_w = mllama_tensor_load(ctx, format("%s.blk.%d.attn_out.weight", prefix, i).c_str(), false);
|
||||
layer.o_b = mllama_tensor_load(ctx, format("%s.blk.%d.attn_out.bias", prefix, i).c_str(), true);
|
||||
|
||||
layer.ff_i_w = mllama_tensor_load(ctx, format("%s.blk.%d.ffn_down.weight", prefix, i).c_str(), false);
|
||||
layer.ff_i_b = mllama_tensor_load(ctx, format("%s.blk.%d.ffn_down.bias", prefix, i).c_str(), false);
|
||||
layer.ff_o_w = mllama_tensor_load(ctx, format("%s.blk.%d.ffn_up.weight", prefix, i).c_str(), false);
|
||||
layer.ff_o_b = mllama_tensor_load(ctx, format("%s.blk.%d.ffn_up.bias", prefix, i).c_str(), false);
|
||||
|
||||
layer.attn_gate = mllama_tensor_load(ctx, format("%s.blk.%d.attn_gate", prefix, i).c_str(), true);
|
||||
layer.ff_gate = mllama_tensor_load(ctx, format("%s.blk.%d.ffn_gate", prefix, i).c_str(), true);
|
||||
}
|
||||
|
||||
return layers;
|
||||
}
|
||||
|
||||
// read and create ggml_context containing the tensors and their data
|
||||
struct mllama_ctx *mllama_model_load(const char *fname, const int verbosity = 1) {
|
||||
struct ggml_context *meta = nullptr;
|
||||
|
||||
struct gguf_init_params params = {
|
||||
true, // no_alloc
|
||||
&meta, // ctx
|
||||
};
|
||||
|
||||
struct gguf_context *ctx = gguf_init_from_file(fname, params);
|
||||
REQUIRE(ctx != nullptr);
|
||||
|
||||
if (verbosity >= 1) {
|
||||
const int n_tensors = gguf_get_n_tensors(ctx);
|
||||
const int n_kv = gguf_get_n_kv(ctx);
|
||||
const std::string ftype = get_ftype(get_u32(ctx, "general.file_type"));
|
||||
const int idx_desc = get_key_index(ctx, "general.description");
|
||||
const std::string description = gguf_get_val_str(ctx, idx_desc);
|
||||
const int idx_name = gguf_find_key(ctx, "general.name");
|
||||
if (idx_name != -1) { // make name optional temporarily as some of the uploaded models missing it due to a bug
|
||||
const std::string name = gguf_get_val_str(ctx, idx_name);
|
||||
LOG("model name: %s", name.c_str());
|
||||
}
|
||||
LOG("description: %s", description.c_str());
|
||||
LOG("GGUF version: %d", gguf_get_version(ctx));
|
||||
LOG("alignment: %zu", gguf_get_alignment(ctx));
|
||||
LOG("n_tensors: %d", n_tensors);
|
||||
LOG("n_kv: %d", n_kv);
|
||||
LOG("ftype: %s", ftype.c_str());
|
||||
LOG("");
|
||||
}
|
||||
const int n_tensors = gguf_get_n_tensors(ctx);
|
||||
|
||||
mllama_ctx *new_mllama = new mllama_ctx{};
|
||||
|
||||
ggml_backend_t backend = ggml_backend_init_best();
|
||||
if (backend == nullptr) {
|
||||
LOG("%s: failed to initialize backend\n", __func__);
|
||||
mllama_free(new_mllama);
|
||||
gguf_free(ctx);
|
||||
return nullptr;
|
||||
}
|
||||
LOG("%s: using %s backend\n", __func__, ggml_backend_name(backend));
|
||||
new_mllama->backend = backend;
|
||||
|
||||
// load tensors
|
||||
{
|
||||
std::vector<uint8_t> read_buf;
|
||||
struct ggml_init_params params = {
|
||||
(n_tensors + 1) * ggml_tensor_overhead(), // mem_size
|
||||
nullptr, // mem_buffer
|
||||
true, // no_alloc
|
||||
};
|
||||
|
||||
new_mllama->ctx_data = ggml_init(params);
|
||||
if (!new_mllama->ctx_data) {
|
||||
LOG("ggml_init() failed");
|
||||
mllama_free(new_mllama);
|
||||
gguf_free(ctx);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
#ifdef _WIN32
|
||||
int wlen = MultiByteToWideChar(CP_UTF8, 0, fname, -1, NULL, 0);
|
||||
if (!wlen) {
|
||||
return NULL;
|
||||
}
|
||||
wchar_t * wbuf = (wchar_t *) malloc(wlen * sizeof(wchar_t));
|
||||
wlen = MultiByteToWideChar(CP_UTF8, 0, fname, -1, wbuf, wlen);
|
||||
if (!wlen) {
|
||||
free(wbuf);
|
||||
return NULL;
|
||||
}
|
||||
#if __GLIBCXX__
|
||||
int fd = _wopen(wbuf, _O_RDONLY | _O_BINARY);
|
||||
__gnu_cxx::stdio_filebuf<char> buffer(fd, std::ios_base::in);
|
||||
std::istream fin(&buffer);
|
||||
#else // MSVC
|
||||
// unused in our current build
|
||||
auto fin = std::ifstream(wbuf, std::ios::binary);
|
||||
#endif
|
||||
free(wbuf);
|
||||
#else
|
||||
auto fin = std::ifstream(fname, std::ios::binary);
|
||||
#endif
|
||||
if (!fin) {
|
||||
LOG("cannot open model file for loading tensors\n");
|
||||
mllama_free(new_mllama);
|
||||
gguf_free(ctx);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// add tensors to context
|
||||
for (int i = 0; i < n_tensors; ++i) {
|
||||
const char *name = gguf_get_tensor_name(ctx, i);
|
||||
struct ggml_tensor *t = ggml_get_tensor(meta, name);
|
||||
struct ggml_tensor *cur = ggml_dup_tensor(new_mllama->ctx_data, t);
|
||||
ggml_set_name(cur, name);
|
||||
}
|
||||
|
||||
// alloc memory and offload data
|
||||
new_mllama->params_buffer = ggml_backend_alloc_ctx_tensors(new_mllama->ctx_data, new_mllama->backend);
|
||||
for (int i = 0; i < n_tensors; ++i) {
|
||||
const char *name = gguf_get_tensor_name(ctx, i);
|
||||
struct ggml_tensor *cur = ggml_get_tensor(new_mllama->ctx_data, name);
|
||||
const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i);
|
||||
fin.seekg(offset, std::ios::beg);
|
||||
if (!fin) {
|
||||
LOG("failed to seek for tensor %s\n", name);
|
||||
mllama_free(new_mllama);
|
||||
gguf_free(ctx);
|
||||
return nullptr;
|
||||
}
|
||||
int num_bytes = ggml_nbytes(cur);
|
||||
if (ggml_backend_buffer_is_host(new_mllama->params_buffer)) {
|
||||
// for the CPU and Metal backend, we can read directly into the tensor
|
||||
fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
|
||||
} else {
|
||||
// read into a temporary buffer first, then copy to device memory
|
||||
read_buf.resize(num_bytes);
|
||||
fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
|
||||
ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
|
||||
}
|
||||
}
|
||||
|
||||
#if defined(_WIN32) && defined(__GLIBCXX__)
|
||||
close(fd);
|
||||
#else
|
||||
fin.close();
|
||||
#endif
|
||||
}
|
||||
|
||||
// vision model
|
||||
// load vision model
|
||||
auto &vision_model = new_mllama->vision_model;
|
||||
auto &hparams = vision_model.hparams;
|
||||
hparams.hidden_size = get_u32(ctx, "mllama.vision.embedding_length");
|
||||
hparams.n_head = get_u32(ctx, "mllama.vision.attention.head_count");
|
||||
hparams.n_intermediate = get_u32(ctx, "mllama.vision.feed_forward_length");
|
||||
hparams.n_layer = get_u32(ctx, "mllama.vision.block_count");
|
||||
hparams.n_global_layer = get_u32(ctx, "mllama.vision.global.block_count");
|
||||
hparams.n_tiles = get_u32(ctx, "mllama.vision.max_num_tiles");
|
||||
hparams.image_size = get_u32(ctx, "mllama.vision.image_size");
|
||||
hparams.patch_size = get_u32(ctx, "mllama.vision.patch_size");
|
||||
hparams.projection_dim = get_u32(ctx, "mllama.vision.projection_dim");
|
||||
hparams.eps = get_f32(ctx, "mllama.vision.attention.layer_norm_epsilon");
|
||||
|
||||
std::vector<uint32_t> intermediate_layers_indices = get_u32_array(ctx, "mllama.vision.intermediate_layers_indices");
|
||||
hparams.intermediate_layers.resize(hparams.n_layer);
|
||||
for (size_t i = 0; i < intermediate_layers_indices.size(); i++) {
|
||||
hparams.intermediate_layers[intermediate_layers_indices[i]] = true;
|
||||
}
|
||||
|
||||
if (verbosity >= 2) {
|
||||
LOG("");
|
||||
LOG("vision model hparams");
|
||||
LOG("image_size %d", hparams.image_size);
|
||||
LOG("patch_size %d", hparams.patch_size);
|
||||
LOG("v_hidden_size %d", hparams.hidden_size);
|
||||
LOG("v_n_intermediate %d", hparams.n_intermediate);
|
||||
LOG("v_projection_dim %d", hparams.projection_dim);
|
||||
LOG("v_n_head %d", hparams.n_head);
|
||||
LOG("v_n_layer %d", hparams.n_layer);
|
||||
LOG("v_n_global_layer %d", hparams.n_global_layer);
|
||||
LOG("v_eps %f", hparams.eps);
|
||||
}
|
||||
|
||||
vision_model.class_embedding = mllama_tensor_load(new_mllama->ctx_data, "v.class_embd", true);
|
||||
vision_model.patch_embeddings = mllama_tensor_load(new_mllama->ctx_data, "v.patch_embd.weight", true);
|
||||
|
||||
vision_model.position_embeddings = mllama_tensor_load(new_mllama->ctx_data, "v.position_embd.weight", true);
|
||||
vision_model.position_embeddings_gate = mllama_tensor_load(new_mllama->ctx_data, "v.position_embd.gate", true);
|
||||
|
||||
vision_model.pre_ln_w = mllama_tensor_load(new_mllama->ctx_data, "v.pre_ln.weight", true);
|
||||
vision_model.pre_ln_b = mllama_tensor_load(new_mllama->ctx_data, "v.pre_ln.bias", true);
|
||||
vision_model.post_ln_w = mllama_tensor_load(new_mllama->ctx_data, "v.post_ln.weight", true);
|
||||
vision_model.post_ln_b = mllama_tensor_load(new_mllama->ctx_data, "v.post_ln.bias", true);
|
||||
|
||||
vision_model.tile_position_embeddings = mllama_tensor_load(new_mllama->ctx_data, "v.tile_position_embd.weight", true);
|
||||
vision_model.tile_position_embeddings_gate = mllama_tensor_load(new_mllama->ctx_data, "v.tile_position_embd.gate", true);
|
||||
|
||||
vision_model.pre_tile_position_embeddings = mllama_tensor_load(new_mllama->ctx_data, "v.pre_tile_position_embd.weight", true);
|
||||
vision_model.pre_tile_position_embeddings_gate = mllama_tensor_load(new_mllama->ctx_data, "v.pre_tile_position_embd.gate", true);
|
||||
|
||||
vision_model.post_tile_position_embeddings = mllama_tensor_load(new_mllama->ctx_data, "v.post_tile_position_embd.weight", true);
|
||||
vision_model.post_tile_position_embeddings_gate = mllama_tensor_load(new_mllama->ctx_data, "v.post_tile_position_embd.gate", true);
|
||||
|
||||
vision_model.mm_0_w = mllama_tensor_load(new_mllama->ctx_data, "mm.0.weight", false);
|
||||
vision_model.mm_0_b = mllama_tensor_load(new_mllama->ctx_data, "mm.0.bias", false);
|
||||
|
||||
vision_model.layers = mllama_layers_load(new_mllama->ctx_data, "v", hparams.n_layer);
|
||||
vision_model.global_layers = mllama_layers_load(new_mllama->ctx_data, "v.global", hparams.n_global_layer);
|
||||
|
||||
ggml_free(meta);
|
||||
|
||||
new_mllama->ctx_gguf = ctx;
|
||||
|
||||
{
|
||||
// measure mem requirement and allocate
|
||||
new_mllama->buf_compute_meta.resize(GGML_DEFAULT_GRAPH_SIZE * ggml_tensor_overhead() + ggml_graph_overhead());
|
||||
new_mllama->compute_alloc = ggml_gallocr_new(ggml_backend_get_default_buffer_type(new_mllama->backend));
|
||||
struct mllama_image_batch batch;
|
||||
batch.size = 1;
|
||||
ggml_cgraph *gf = mllama_image_build_graph(new_mllama, &batch);
|
||||
ggml_gallocr_reserve(new_mllama->compute_alloc, gf);
|
||||
size_t compute_memory_buffer_size = ggml_gallocr_get_buffer_size(new_mllama->compute_alloc, 0);
|
||||
LOG("compute allocated memory: %.2f MB", compute_memory_buffer_size / 1024.0 / 1024.0);
|
||||
}
|
||||
|
||||
return new_mllama;
|
||||
}
|
||||
|
||||
struct mllama_image *mllama_image_init() {
|
||||
return new mllama_image();
|
||||
}
|
||||
|
||||
void mllama_image_free(struct mllama_image *img) { delete img; }
|
||||
void mllama_image_batch_free(struct mllama_image_batch *batch) {
|
||||
if (batch->size > 0) {
|
||||
delete[] batch->data;
|
||||
batch->size = 0;
|
||||
}
|
||||
}
|
||||
|
||||
bool mllama_image_load_from_data(const void *data, const int n, const int width, const int height, const int num_channels, const int num_tiles, const int aspect_ratio_id, struct mllama_image *img) {
|
||||
img->width = width;
|
||||
img->height = height;
|
||||
img->num_channels = num_channels;
|
||||
img->num_tiles = num_tiles;
|
||||
img->aspect_ratio_id = aspect_ratio_id;
|
||||
img->data.resize(n);
|
||||
|
||||
memcpy(img->data.data(), data, n);
|
||||
return true;
|
||||
}
|
||||
|
||||
inline int mllama(int x, int lower, int upper) {
|
||||
return std::max(lower, std::min(x, upper));
|
||||
}
|
||||
|
||||
void mllama_free(mllama_ctx *ctx) {
|
||||
ggml_free(ctx->ctx_data);
|
||||
gguf_free(ctx->ctx_gguf);
|
||||
|
||||
ggml_backend_buffer_free(ctx->params_buffer);
|
||||
ggml_backend_free(ctx->backend);
|
||||
ggml_gallocr_free(ctx->compute_alloc);
|
||||
delete ctx;
|
||||
}
|
||||
|
||||
bool mllama_image_encode(struct mllama_ctx *ctx, const int n_threads, mllama_image *img, float *vec) {
|
||||
mllama_image_batch imgs{};
|
||||
imgs.size = 1;
|
||||
imgs.data = img;
|
||||
return mllama_image_batch_encode(ctx, n_threads, &imgs, vec);
|
||||
}
|
||||
|
||||
bool mllama_image_batch_encode(mllama_ctx *ctx, const int n_threads, const mllama_image_batch *imgs, float *vec) {
|
||||
int batch_size = imgs->size;
|
||||
REQUIRE(batch_size == 1);
|
||||
|
||||
// build the inference graph
|
||||
ggml_cgraph *gf = mllama_image_build_graph(ctx, imgs);
|
||||
ggml_gallocr_alloc_graph(ctx->compute_alloc, gf);
|
||||
|
||||
// set inputs
|
||||
const auto &model = ctx->vision_model;
|
||||
const auto &hparams = model.hparams;
|
||||
|
||||
const int image_size = hparams.image_size;
|
||||
int image_size_width = image_size;
|
||||
int image_size_height = image_size;
|
||||
|
||||
const int patch_size = hparams.patch_size;
|
||||
const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
|
||||
const int num_positions = num_patches + (model.class_embedding == nullptr ? 0 : 1);
|
||||
|
||||
{
|
||||
struct ggml_tensor *inp_raw = ggml_graph_get_tensor(gf, "inp_raw");
|
||||
ggml_backend_tensor_set(inp_raw, imgs->data[0].data.data(), 0, ggml_nbytes(inp_raw));
|
||||
}
|
||||
|
||||
{
|
||||
struct ggml_tensor *embeddings = ggml_graph_get_tensor(gf, "embeddings");
|
||||
if (embeddings != nullptr) {
|
||||
void *zeros = malloc(ggml_nbytes(embeddings));
|
||||
memset(zeros, 0, ggml_nbytes(embeddings));
|
||||
ggml_backend_tensor_set(embeddings, zeros, 0, ggml_nbytes(embeddings));
|
||||
free(zeros);
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
struct ggml_tensor *positions = ggml_graph_get_tensor(gf, "positions");
|
||||
if (positions != nullptr) {
|
||||
int *positions_data = (int *)malloc(ggml_nbytes(positions));
|
||||
for (int i = 0; i < num_positions; i++) {
|
||||
positions_data[i] = i;
|
||||
}
|
||||
ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
|
||||
free(positions_data);
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
struct ggml_tensor *aspect_ratios = ggml_graph_get_tensor(gf, "aspect_ratios");
|
||||
if (aspect_ratios != nullptr) {
|
||||
int *aspect_ratios_data = (int *)malloc(ggml_nbytes(aspect_ratios));
|
||||
aspect_ratios_data[0] = imgs->data[0].aspect_ratio_id;
|
||||
ggml_backend_tensor_set(aspect_ratios, aspect_ratios_data, 0, ggml_nbytes(aspect_ratios));
|
||||
free(aspect_ratios_data);
|
||||
}
|
||||
}
|
||||
|
||||
if (ggml_backend_is_cpu(ctx->backend)) {
|
||||
ggml_backend_cpu_set_n_threads(ctx->backend, n_threads);
|
||||
}
|
||||
|
||||
ggml_backend_graph_compute(ctx->backend, gf);
|
||||
|
||||
// the last node is the embedding tensor
|
||||
struct ggml_tensor *embeddings = ggml_graph_node(gf, ggml_graph_n_nodes(gf) - 1);
|
||||
|
||||
// copy the embeddings to the location passed by the user
|
||||
ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
int32_t mllama_image_size(const struct mllama_ctx *ctx) {
|
||||
return ctx->vision_model.hparams.image_size;
|
||||
}
|
||||
|
||||
int32_t mllama_patch_size(const struct mllama_ctx *ctx) {
|
||||
return ctx->vision_model.hparams.patch_size;
|
||||
}
|
||||
|
||||
int32_t mllama_hidden_size(const struct mllama_ctx *ctx) {
|
||||
return ctx->vision_model.hparams.hidden_size;
|
||||
}
|
||||
|
||||
int mllama_n_patches(const struct mllama_ctx *ctx) {
|
||||
const auto &hparams = ctx->vision_model.hparams;
|
||||
return (hparams.image_size / hparams.patch_size) * (hparams.image_size / hparams.patch_size);
|
||||
}
|
||||
|
||||
int mllama_n_positions(const struct mllama_ctx *ctx) {
|
||||
return mllama_n_patches(ctx) + (ctx->vision_model.class_embedding == nullptr ? 0 : 1);
|
||||
}
|
||||
|
||||
int mllama_n_tiles(const struct mllama_ctx *ctx) {
|
||||
return ctx->vision_model.hparams.n_tiles;
|
||||
}
|
||||
|
||||
int mllama_n_embd(const struct mllama_ctx *ctx) {
|
||||
return ctx->vision_model.hparams.projection_dim;
|
||||
}
|
||||
|
||||
size_t mllama_n_embd_bytes(const struct mllama_ctx *ctx) {
|
||||
return mllama_n_positions(ctx) * mllama_n_embd(ctx) * mllama_n_tiles(ctx) * sizeof(float);
|
||||
}
|
61
llama/mllama.h
vendored
61
llama/mllama.h
vendored
@ -1,61 +0,0 @@
|
||||
#ifndef MLLAMA_H
|
||||
#define MLLAMA_H
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#ifdef LLAMA_SHARED
|
||||
#if defined(_WIN32) && !defined(__MINGW32__)
|
||||
#ifdef LLAMA_BUILD
|
||||
#define MLLAMA_API __declspec(dllexport)
|
||||
#else
|
||||
#define MLLAMA_API __declspec(dllimport)
|
||||
#endif
|
||||
#else
|
||||
#define MLLAMA_API __attribute__((visibility("default")))
|
||||
#endif
|
||||
#else
|
||||
#define MLLAMA_API
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct mllama_ctx;
|
||||
|
||||
struct mllama_image_batch {
|
||||
struct mllama_image *data;
|
||||
size_t size;
|
||||
};
|
||||
|
||||
MLLAMA_API struct mllama_ctx *mllama_model_load(const char *fname, int verbosity);
|
||||
MLLAMA_API struct mllama_ctx *mllama_model_load_cpu(const char *fname, int verbosity);
|
||||
|
||||
MLLAMA_API void mllama_free(struct mllama_ctx *ctx);
|
||||
|
||||
MLLAMA_API int32_t mllama_image_size(const struct mllama_ctx *ctx);
|
||||
MLLAMA_API int32_t mllama_patch_size(const struct mllama_ctx *ctx);
|
||||
MLLAMA_API int32_t mllama_hidden_size(const struct mllama_ctx *ctx);
|
||||
|
||||
MLLAMA_API int mllama_n_patches(const struct mllama_ctx *ctx);
|
||||
MLLAMA_API int mllama_n_positions(const struct mllama_ctx *ctx);
|
||||
MLLAMA_API int mllama_n_tiles(const struct mllama_ctx *ctx);
|
||||
MLLAMA_API int mllama_n_embd(const struct mllama_ctx *ctx);
|
||||
MLLAMA_API size_t mllama_n_embd_bytes(const struct mllama_ctx *ctx);
|
||||
|
||||
MLLAMA_API struct mllama_image *mllama_image_init();
|
||||
|
||||
MLLAMA_API void mllama_image_free(struct mllama_image *img);
|
||||
MLLAMA_API void mllama_image_batch_free(struct mllama_image_batch *batch);
|
||||
|
||||
MLLAMA_API bool mllama_image_load_from_data(const void *data, const int n, const int nx, const int ny, const int nc, const int nt, const int aspect_ratio_id, struct mllama_image *img);
|
||||
|
||||
MLLAMA_API bool mllama_image_encode(struct mllama_ctx *ctx, int n_threads, struct mllama_image *img, float *vec);
|
||||
MLLAMA_API bool mllama_image_batch_encode(struct mllama_ctx *ctx, int n_threads, const struct mllama_image_batch *imgs, float *vec);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // MLLAMA_H
|
@ -270,7 +270,7 @@ index 3a4e72a3..831b68c0 100644
|
||||
+ // self-attention
|
||||
+ {
|
||||
+ // rope freq factors for llama3; may return nullptr for llama2 and other models
|
||||
+ ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
|
||||
+ ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
|
||||
+
|
||||
+ // compute Q and K and RoPE them
|
||||
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1,419 +0,0 @@
|
||||
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
||||
From: jmorganca <jmorganca@gmail.com>
|
||||
Date: Sun, 13 Apr 2025 22:10:06 -0400
|
||||
Subject: [PATCH] add unpad operator
|
||||
|
||||
adds the unpad operator to GGML
|
||||
---
|
||||
ggml/include/ggml.h | 10 +++++
|
||||
ggml/src/ggml-cpu/ggml-cpu.c | 5 +++
|
||||
ggml/src/ggml-cpu/ops.cpp | 55 ++++++++++++++++++++++++++++
|
||||
ggml/src/ggml-cpu/ops.h | 1 +
|
||||
ggml/src/ggml-cuda/ggml-cuda.cu | 4 ++
|
||||
ggml/src/ggml-cuda/pad.cu | 46 +++++++++++++++++++++++
|
||||
ggml/src/ggml-cuda/pad.cuh | 1 +
|
||||
ggml/src/ggml-metal/ggml-metal.m | 33 +++++++++++++++++
|
||||
ggml/src/ggml-metal/ggml-metal.metal | 45 +++++++++++++++++++++++
|
||||
ggml/src/ggml.c | 25 ++++++++++++-
|
||||
10 files changed, 223 insertions(+), 2 deletions(-)
|
||||
|
||||
diff --git a/ggml/include/ggml.h b/ggml/include/ggml.h
|
||||
index e91dedf1..8dc107ba 100644
|
||||
--- a/ggml/include/ggml.h
|
||||
+++ b/ggml/include/ggml.h
|
||||
@@ -489,6 +489,7 @@ extern "C" {
|
||||
GGML_OP_UPSCALE, // nearest interpolate
|
||||
GGML_OP_PAD,
|
||||
GGML_OP_PAD_REFLECT_1D,
|
||||
+ GGML_OP_UNPAD,
|
||||
GGML_OP_ARANGE,
|
||||
GGML_OP_TIMESTEP_EMBEDDING,
|
||||
GGML_OP_ARGSORT,
|
||||
@@ -1781,6 +1782,15 @@ extern "C" {
|
||||
int p0,
|
||||
int p1);
|
||||
|
||||
+ // unpad each dimension: [x, ..., x, y, ..., y] -> [x, ..., x]
|
||||
+ GGML_API struct ggml_tensor * ggml_unpad(
|
||||
+ struct ggml_context * ctx,
|
||||
+ struct ggml_tensor * a,
|
||||
+ int p0,
|
||||
+ int p1,
|
||||
+ int p2,
|
||||
+ int p3);
|
||||
+
|
||||
// Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
|
||||
// timesteps: [N,]
|
||||
// return: [N, dim]
|
||||
diff --git a/ggml/src/ggml-cpu/ggml-cpu.c b/ggml/src/ggml-cpu/ggml-cpu.c
|
||||
index a30e67f2..835e6495 100644
|
||||
--- a/ggml/src/ggml-cpu/ggml-cpu.c
|
||||
+++ b/ggml/src/ggml-cpu/ggml-cpu.c
|
||||
@@ -1951,6 +1951,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
||||
{
|
||||
ggml_compute_forward_pad_reflect_1d(params, tensor);
|
||||
} break;
|
||||
+ case GGML_OP_UNPAD:
|
||||
+ {
|
||||
+ ggml_compute_forward_unpad(params, tensor);
|
||||
+ } break;
|
||||
case GGML_OP_ARANGE:
|
||||
{
|
||||
ggml_compute_forward_arange(params, tensor);
|
||||
@@ -2274,6 +2278,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
||||
case GGML_OP_UPSCALE:
|
||||
case GGML_OP_PAD:
|
||||
case GGML_OP_PAD_REFLECT_1D:
|
||||
+ case GGML_OP_UNPAD:
|
||||
case GGML_OP_ARANGE:
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_ARGSORT:
|
||||
diff --git a/ggml/src/ggml-cpu/ops.cpp b/ggml/src/ggml-cpu/ops.cpp
|
||||
index 955fec59..1868a10c 100644
|
||||
--- a/ggml/src/ggml-cpu/ops.cpp
|
||||
+++ b/ggml/src/ggml-cpu/ops.cpp
|
||||
@@ -6690,6 +6690,61 @@ void ggml_compute_forward_pad_reflect_1d(
|
||||
}
|
||||
}
|
||||
|
||||
+// ggml_compute_forward_unpad
|
||||
+
|
||||
+static void ggml_compute_forward_unpad_f32(
|
||||
+ const struct ggml_compute_params *params,
|
||||
+ struct ggml_tensor *dst) {
|
||||
+
|
||||
+ const struct ggml_tensor * src0 = dst->src[0];
|
||||
+
|
||||
+ GGML_ASSERT(src0->nb[0] == sizeof(float));
|
||||
+ GGML_ASSERT( dst->nb[0] == sizeof(float));
|
||||
+
|
||||
+ const int ith = params->ith;
|
||||
+ const int nth = params->nth;
|
||||
+
|
||||
+ GGML_TENSOR_UNARY_OP_LOCALS
|
||||
+
|
||||
+ float * dst_ptr = (float *) dst->data;
|
||||
+
|
||||
+ // TODO: optimize
|
||||
+
|
||||
+ for (int64_t i2 = 0; i2 < ne2; ++i2) {
|
||||
+ for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
|
||||
+ for (int64_t i0 = 0; i0 < ne0; ++i0) {
|
||||
+ for (int64_t i3 = 0; i3 < ne3; ++i3) {
|
||||
+ const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
|
||||
+
|
||||
+ const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
||||
+
|
||||
+ if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
|
||||
+ dst_ptr[dst_idx] = *src_ptr;
|
||||
+ }
|
||||
+ }
|
||||
+ }
|
||||
+ }
|
||||
+ }
|
||||
+}
|
||||
+
|
||||
+void ggml_compute_forward_unpad(
|
||||
+ const struct ggml_compute_params * params,
|
||||
+ struct ggml_tensor * dst) {
|
||||
+
|
||||
+ const struct ggml_tensor * src0 = dst->src[0];
|
||||
+
|
||||
+ switch (src0->type) {
|
||||
+ case GGML_TYPE_F32:
|
||||
+ {
|
||||
+ ggml_compute_forward_unpad_f32(params, dst);
|
||||
+ } break;
|
||||
+ default:
|
||||
+ {
|
||||
+ GGML_ABORT("fatal error");
|
||||
+ }
|
||||
+ }
|
||||
+}
|
||||
+
|
||||
// ggml_compute_forward_arange
|
||||
|
||||
static void ggml_compute_forward_arange_f32(
|
||||
diff --git a/ggml/src/ggml-cpu/ops.h b/ggml/src/ggml-cpu/ops.h
|
||||
index dc081b9e..a7125555 100644
|
||||
--- a/ggml/src/ggml-cpu/ops.h
|
||||
+++ b/ggml/src/ggml-cpu/ops.h
|
||||
@@ -72,6 +72,7 @@ void ggml_compute_forward_pool_2d_back(const struct ggml_compute_params * params
|
||||
void ggml_compute_forward_upscale(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_pad(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_pad_reflect_1d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
+void ggml_compute_forward_unpad(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_arange(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_timestep_embedding(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_argsort(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
index cb0d8528..6fe86674 100644
|
||||
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
@@ -2238,6 +2238,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
||||
case GGML_OP_PAD:
|
||||
ggml_cuda_op_pad(ctx, dst);
|
||||
break;
|
||||
+ case GGML_OP_UNPAD:
|
||||
+ ggml_cuda_op_unpad(ctx, dst);
|
||||
+ break;
|
||||
case GGML_OP_ARANGE:
|
||||
ggml_cuda_op_arange(ctx, dst);
|
||||
break;
|
||||
@@ -3212,6 +3215,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
case GGML_OP_UPSCALE:
|
||||
return op->src[0]->type == GGML_TYPE_F32 && op->op_params[0] == GGML_SCALE_MODE_NEAREST;
|
||||
case GGML_OP_PAD:
|
||||
+ case GGML_OP_UNPAD:
|
||||
case GGML_OP_ARANGE:
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_LEAKY_RELU:
|
||||
diff --git a/ggml/src/ggml-cuda/pad.cu b/ggml/src/ggml-cuda/pad.cu
|
||||
index 77432b04..7d45a7e1 100644
|
||||
--- a/ggml/src/ggml-cuda/pad.cu
|
||||
+++ b/ggml/src/ggml-cuda/pad.cu
|
||||
@@ -47,3 +47,49 @@ void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
|
||||
dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream);
|
||||
}
|
||||
+
|
||||
+static __global__ void unpad_f32(const float * x, float * dst, const int ne0, const int ne00, const int ne01, const int ne02, const int ne03) {
|
||||
+ // blockIdx.z: idx of ne2*ne3, aka ne02*ne03
|
||||
+ // blockIdx.y: idx of ne1
|
||||
+ // blockIDx.x: idx of ne0 / BLOCK_SIZE
|
||||
+ int nidx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
+ if (nidx >= ne0) {
|
||||
+ return;
|
||||
+ }
|
||||
+
|
||||
+ // operation
|
||||
+ int offset_dst =
|
||||
+ nidx +
|
||||
+ blockIdx.y * ne0 +
|
||||
+ blockIdx.z * ne0 * gridDim.y;
|
||||
+ if (nidx < ne00 && blockIdx.y < ne01 && blockIdx.z < ne02*ne03) {
|
||||
+ int offset_src =
|
||||
+ nidx +
|
||||
+ blockIdx.y * ne00 +
|
||||
+ blockIdx.z * ne00 * ne01;
|
||||
+ dst[offset_dst] = x[offset_src];
|
||||
+ }
|
||||
+}
|
||||
+
|
||||
+static void unpad_f32_cuda(const float * x, float * dst,
|
||||
+ const int ne00, const int ne01, const int ne02, const int ne03,
|
||||
+ const int ne0, const int ne1, const int ne2, const int ne3, cudaStream_t stream) {
|
||||
+ int num_blocks = (ne0 + CUDA_PAD_BLOCK_SIZE - 1) / CUDA_PAD_BLOCK_SIZE;
|
||||
+ dim3 gridDim(num_blocks, ne1, ne2*ne3);
|
||||
+ unpad_f32<<<gridDim, CUDA_PAD_BLOCK_SIZE, 0, stream>>>(x, dst, ne0, ne00, ne01, ne02, ne03);
|
||||
+}
|
||||
+
|
||||
+void ggml_cuda_op_unpad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
+ const ggml_tensor * src0 = dst->src[0];
|
||||
+ const float * src0_d = (const float *)src0->data;
|
||||
+ float * dst_d = (float *)dst->data;
|
||||
+ cudaStream_t stream = ctx.stream();
|
||||
+
|
||||
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
+ GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
+ GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
|
||||
+
|
||||
+ unpad_f32_cuda(src0_d, dst_d,
|
||||
+ src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
|
||||
+ dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream);
|
||||
+}
|
||||
\ No newline at end of file
|
||||
diff --git a/ggml/src/ggml-cuda/pad.cuh b/ggml/src/ggml-cuda/pad.cuh
|
||||
index 8fd386b0..e2ededc3 100644
|
||||
--- a/ggml/src/ggml-cuda/pad.cuh
|
||||
+++ b/ggml/src/ggml-cuda/pad.cuh
|
||||
@@ -3,3 +3,4 @@
|
||||
#define CUDA_PAD_BLOCK_SIZE 256
|
||||
|
||||
void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
+void ggml_cuda_op_unpad(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
diff --git a/ggml/src/ggml-metal/ggml-metal.m b/ggml/src/ggml-metal/ggml-metal.m
|
||||
index 1b56f858..7641247e 100644
|
||||
--- a/ggml/src/ggml-metal/ggml-metal.m
|
||||
+++ b/ggml/src/ggml-metal/ggml-metal.m
|
||||
@@ -347,6 +347,7 @@ static void ggml_backend_metal_device_rel(struct ggml_backend_metal_device_conte
|
||||
GGML_METAL_KERNEL_TYPE_UPSCALE_F32,
|
||||
GGML_METAL_KERNEL_TYPE_PAD_F32,
|
||||
GGML_METAL_KERNEL_TYPE_PAD_REFLECT_1D_F32,
|
||||
+ GGML_METAL_KERNEL_TYPE_UNPAD_F32,
|
||||
GGML_METAL_KERNEL_TYPE_ARANGE_F32,
|
||||
GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32,
|
||||
GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC,
|
||||
@@ -1294,6 +1295,7 @@ @implementation GGMLMetalClass
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UPSCALE_F32, upscale_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_F32, pad_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_REFLECT_1D_F32, pad_reflect_1d_f32, true);
|
||||
+ GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UNPAD_F32, unpad_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32, timestep_embedding_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARANGE_F32, arange_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, argsort_f32_i32_asc, true);
|
||||
@@ -1655,6 +1657,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
|
||||
case GGML_OP_POOL_2D:
|
||||
case GGML_OP_PAD:
|
||||
case GGML_OP_PAD_REFLECT_1D:
|
||||
+ case GGML_OP_UNPAD:
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_ARGSORT:
|
||||
case GGML_OP_LEAKY_RELU:
|
||||
@@ -4184,6 +4187,36 @@ static bool ggml_metal_encode_node(
|
||||
|
||||
const int nth = MIN(1024, ne0);
|
||||
|
||||
+ [encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
||||
+ } break;
|
||||
+ case GGML_OP_UNPAD:
|
||||
+ {
|
||||
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
+
|
||||
+ id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_UNPAD_F32].pipeline;
|
||||
+
|
||||
+ [encoder setComputePipelineState:pipeline];
|
||||
+ [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
+ [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
+ [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
|
||||
+ [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
|
||||
+ [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
|
||||
+ [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5];
|
||||
+ [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
|
||||
+ [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
|
||||
+ [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
|
||||
+ [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9];
|
||||
+ [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:10];
|
||||
+ [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:11];
|
||||
+ [encoder setBytes:&ne2 length:sizeof(ne2) atIndex:12];
|
||||
+ [encoder setBytes:&ne3 length:sizeof(ne3) atIndex:13];
|
||||
+ [encoder setBytes:&nb0 length:sizeof(nb0) atIndex:14];
|
||||
+ [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15];
|
||||
+ [encoder setBytes:&nb2 length:sizeof(nb2) atIndex:16];
|
||||
+ [encoder setBytes:&nb3 length:sizeof(nb3) atIndex:17];
|
||||
+
|
||||
+ const int nth = MIN(1024, ne0);
|
||||
+
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
||||
} break;
|
||||
case GGML_OP_ARANGE:
|
||||
diff --git a/ggml/src/ggml-metal/ggml-metal.metal b/ggml/src/ggml-metal/ggml-metal.metal
|
||||
index 9cfddf45..080a943b 100644
|
||||
--- a/ggml/src/ggml-metal/ggml-metal.metal
|
||||
+++ b/ggml/src/ggml-metal/ggml-metal.metal
|
||||
@@ -3121,6 +3121,51 @@ kernel void kernel_pad_reflect_1d_f32(
|
||||
}
|
||||
}
|
||||
|
||||
+kernel void kernel_unpad_f32(
|
||||
+ device const char * src0,
|
||||
+ device char * dst,
|
||||
+ constant int64_t & ne00,
|
||||
+ constant int64_t & ne01,
|
||||
+ constant int64_t & ne02,
|
||||
+ constant int64_t & ne03,
|
||||
+ constant uint64_t & nb00,
|
||||
+ constant uint64_t & nb01,
|
||||
+ constant uint64_t & nb02,
|
||||
+ constant uint64_t & nb03,
|
||||
+ constant int64_t & ne0,
|
||||
+ constant int64_t & ne1,
|
||||
+ constant int64_t & ne2,
|
||||
+ constant int64_t & ne3,
|
||||
+ constant uint64_t & nb0,
|
||||
+ constant uint64_t & nb1,
|
||||
+ constant uint64_t & nb2,
|
||||
+ constant uint64_t & nb3,
|
||||
+ uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
+ uint3 tpitg[[thread_position_in_threadgroup]],
|
||||
+ uint3 ntg[[threads_per_threadgroup]]) {
|
||||
+
|
||||
+ const int64_t i3 = tgpig.z;
|
||||
+ const int64_t i2 = tgpig.y;
|
||||
+ const int64_t i1 = tgpig.x;
|
||||
+
|
||||
+ const int64_t i03 = i3;
|
||||
+ const int64_t i02 = i2;
|
||||
+ const int64_t i01 = i1;
|
||||
+
|
||||
+ device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01);
|
||||
+ device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1);
|
||||
+
|
||||
+ if (i1 < ne01 && i2 < ne02 && i3 < ne03) {
|
||||
+ for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
|
||||
+ if (i0 < ne00) {
|
||||
+ dst_ptr[i0] = src0_ptr[i0];
|
||||
+ }
|
||||
+ }
|
||||
+
|
||||
+ return;
|
||||
+ }
|
||||
+}
|
||||
+
|
||||
kernel void kernel_arange_f32(
|
||||
device char * dst,
|
||||
constant ggml_metal_kargs_arange & args,
|
||||
diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c
|
||||
index 8a654624..6b034d35 100644
|
||||
--- a/ggml/src/ggml.c
|
||||
+++ b/ggml/src/ggml.c
|
||||
@@ -923,6 +923,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
|
||||
"UPSCALE",
|
||||
"PAD",
|
||||
"PAD_REFLECT_1D",
|
||||
+ "UNPAD",
|
||||
"ARANGE",
|
||||
"TIMESTEP_EMBEDDING",
|
||||
"ARGSORT",
|
||||
@@ -953,7 +954,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
|
||||
"OPT_STEP_ADAMW",
|
||||
};
|
||||
|
||||
-static_assert(GGML_OP_COUNT == 82, "GGML_OP_COUNT != 82");
|
||||
+static_assert(GGML_OP_COUNT == 83, "GGML_OP_COUNT != 83");
|
||||
|
||||
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
||||
"none",
|
||||
@@ -1018,6 +1019,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
||||
"upscale(x)",
|
||||
"pad(x)",
|
||||
"pad_reflect_1d(x)",
|
||||
+ "unpad(x)",
|
||||
"arange(start, stop, step)",
|
||||
"timestep_embedding(timesteps, dim, max_period)",
|
||||
"argsort(x)",
|
||||
@@ -1048,7 +1050,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
||||
"adamw(x)",
|
||||
};
|
||||
|
||||
-static_assert(GGML_OP_COUNT == 82, "GGML_OP_COUNT != 82");
|
||||
+static_assert(GGML_OP_COUNT == 83, "GGML_OP_COUNT != 83");
|
||||
|
||||
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
|
||||
|
||||
@@ -4274,6 +4276,25 @@ struct ggml_tensor * ggml_pad_reflect_1d(
|
||||
return result;
|
||||
}
|
||||
|
||||
+// ggml_unpad
|
||||
+
|
||||
+struct ggml_tensor * ggml_unpad(
|
||||
+ struct ggml_context * ctx,
|
||||
+ struct ggml_tensor * a,
|
||||
+ int p0, int p1, int p2, int p3) {
|
||||
+
|
||||
+ struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
|
||||
+ a->ne[0] - p0,
|
||||
+ a->ne[1] - p1,
|
||||
+ a->ne[2] - p2,
|
||||
+ a->ne[3] - p3);
|
||||
+
|
||||
+ result->op = GGML_OP_UNPAD;
|
||||
+ result->src[0] = a;
|
||||
+
|
||||
+ return result;
|
||||
+}
|
||||
+
|
||||
// ggml_arange
|
||||
|
||||
struct ggml_tensor * ggml_arange(
|
@ -58,7 +58,7 @@ index c22687e4..c5948e8f 100644
|
||||
|
||||
auto * gf = graph_init();
|
||||
diff --git a/src/llama-context.h b/src/llama-context.h
|
||||
index c4ab242a..9970dfc6 100644
|
||||
index c0ceacb1..0264e937 100644
|
||||
--- a/src/llama-context.h
|
||||
+++ b/src/llama-context.h
|
||||
@@ -5,6 +5,7 @@
|
||||
@ -70,10 +70,10 @@ index c4ab242a..9970dfc6 100644
|
||||
#include "ggml-cpp.h"
|
||||
#include "ggml-opt.h"
|
||||
diff --git a/src/llama-kv-cache.cpp b/src/llama-kv-cache.cpp
|
||||
index a7b0a7eb..1a50c034 100644
|
||||
index 3dcad65b..60e67b03 100644
|
||||
--- a/src/llama-kv-cache.cpp
|
||||
+++ b/src/llama-kv-cache.cpp
|
||||
@@ -372,8 +372,6 @@ void llama_kv_cache_unified::commit() {
|
||||
@@ -364,8 +364,6 @@ void llama_kv_cache_unified::commit() {
|
||||
}
|
||||
|
||||
bool llama_kv_cache_unified::update(llama_context & lctx) {
|
||||
@ -82,7 +82,7 @@ index a7b0a7eb..1a50c034 100644
|
||||
auto * sched = lctx.get_sched();
|
||||
|
||||
if (has_shift) {
|
||||
@@ -396,8 +394,6 @@ bool llama_kv_cache_unified::update(llama_context & lctx) {
|
||||
@@ -388,8 +386,6 @@ bool llama_kv_cache_unified::update(llama_context & lctx) {
|
||||
res->set_inputs(nullptr);
|
||||
|
||||
lctx.graph_compute(gf, false);
|
||||
@ -91,7 +91,7 @@ index a7b0a7eb..1a50c034 100644
|
||||
}
|
||||
|
||||
{
|
||||
@@ -411,27 +407,36 @@ bool llama_kv_cache_unified::update(llama_context & lctx) {
|
||||
@@ -403,27 +399,36 @@ bool llama_kv_cache_unified::update(llama_context & lctx) {
|
||||
|
||||
if (do_defrag) {
|
||||
LLAMA_LOG_DEBUG("%s: defragmenting KV cache\n", __func__);
|
||||
@ -133,7 +133,7 @@ index a7b0a7eb..1a50c034 100644
|
||||
}
|
||||
|
||||
void llama_kv_cache_unified::defrag_sched(float thold) {
|
||||
@@ -715,11 +720,10 @@ llm_graph_result_ptr llama_kv_cache_unified::build_graph_shift(
|
||||
@@ -707,11 +712,10 @@ llm_graph_result_ptr llama_kv_cache_unified::build_graph_shift(
|
||||
llm_graph_result_ptr llama_kv_cache_unified::build_graph_defrag(
|
||||
const llama_cparams & cparams,
|
||||
ggml_context * ctx,
|
||||
@ -147,7 +147,7 @@ index a7b0a7eb..1a50c034 100644
|
||||
#if 0
|
||||
// CPU defrag
|
||||
//
|
||||
@@ -791,32 +795,20 @@ llm_graph_result_ptr llama_kv_cache_unified::build_graph_defrag(
|
||||
@@ -783,32 +787,20 @@ llm_graph_result_ptr llama_kv_cache_unified::build_graph_defrag(
|
||||
ggml_backend_tensor_set(v_l[il], buf_v.data(), 0, buf_v.size());
|
||||
}
|
||||
#else
|
||||
@ -185,7 +185,7 @@ index a7b0a7eb..1a50c034 100644
|
||||
|
||||
ggml_tensor * view_v_src;
|
||||
ggml_tensor * view_v_dst;
|
||||
@@ -824,31 +816,29 @@ llm_graph_result_ptr llama_kv_cache_unified::build_graph_defrag(
|
||||
@@ -816,31 +808,29 @@ llm_graph_result_ptr llama_kv_cache_unified::build_graph_defrag(
|
||||
if (cparams.flash_attn) {
|
||||
// NOTE: the V cache is not transposed when using flash attention
|
||||
view_v_src = ggml_view_2d(ctx, v_l[il],
|
||||
@ -225,7 +225,7 @@ index a7b0a7eb..1a50c034 100644
|
||||
}
|
||||
|
||||
//LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
|
||||
@@ -865,17 +855,7 @@ bool llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) {
|
||||
@@ -857,17 +847,7 @@ bool llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) {
|
||||
|
||||
assert(n_used <= n_kv);
|
||||
|
||||
@ -244,7 +244,7 @@ index a7b0a7eb..1a50c034 100644
|
||||
|
||||
// determine which KV cells to move where
|
||||
//
|
||||
@@ -883,10 +863,7 @@ bool llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) {
|
||||
@@ -875,10 +855,7 @@ bool llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) {
|
||||
//
|
||||
// if ids[i] == i || ids[i] == n_kv, then cell i is not moved
|
||||
//
|
||||
@ -256,7 +256,7 @@ index a7b0a7eb..1a50c034 100644
|
||||
|
||||
for (uint32_t i0 = 0; i0 < n_used; ++i0) {
|
||||
const auto & cell0 = cells[i0];
|
||||
@@ -935,19 +912,11 @@ bool llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) {
|
||||
@@ -927,19 +904,11 @@ bool llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) {
|
||||
// are we moving a continuous block of memory?
|
||||
bool cont = false;
|
||||
|
||||
@ -276,7 +276,7 @@ index a7b0a7eb..1a50c034 100644
|
||||
cont = false;
|
||||
continue;
|
||||
}
|
||||
@@ -963,8 +932,10 @@ bool llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) {
|
||||
@@ -955,8 +924,10 @@ bool llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) {
|
||||
head = n_used;
|
||||
|
||||
if (!cont) {
|
||||
@ -288,7 +288,7 @@ index a7b0a7eb..1a50c034 100644
|
||||
}
|
||||
|
||||
nf++;
|
||||
@@ -974,22 +945,16 @@ bool llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) {
|
||||
@@ -966,22 +937,16 @@ bool llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) {
|
||||
}
|
||||
}
|
||||
|
@ -11,7 +11,7 @@ with the fastest acceleration is loaded
|
||||
1 file changed, 13 insertions(+), 8 deletions(-)
|
||||
|
||||
diff --git a/ggml/src/ggml-backend-reg.cpp b/ggml/src/ggml-backend-reg.cpp
|
||||
index 82ae1b5b..1487f322 100644
|
||||
index 405d8e31..4e67d243 100644
|
||||
--- a/ggml/src/ggml-backend-reg.cpp
|
||||
+++ b/ggml/src/ggml-backend-reg.cpp
|
||||
@@ -157,7 +157,7 @@ struct ggml_backend_reg_entry {
|
@ -8,7 +8,7 @@ Subject: [PATCH] ollama debug tensor
|
||||
1 file changed, 6 insertions(+)
|
||||
|
||||
diff --git a/ggml/src/ggml-cpu/ggml-cpu.c b/ggml/src/ggml-cpu/ggml-cpu.c
|
||||
index 835e6495..3902894b 100644
|
||||
index a30e67f2..2462d2b8 100644
|
||||
--- a/ggml/src/ggml-cpu/ggml-cpu.c
|
||||
+++ b/ggml/src/ggml-cpu/ggml-cpu.c
|
||||
@@ -15,6 +15,8 @@
|
||||
@ -20,7 +20,7 @@ index 835e6495..3902894b 100644
|
||||
#if defined(_MSC_VER) || defined(__MINGW32__)
|
||||
#include <malloc.h> // using malloc.h with MSC/MINGW
|
||||
#elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
|
||||
@@ -2846,6 +2848,10 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
|
||||
@@ -2841,6 +2843,10 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
|
||||
|
||||
ggml_compute_forward(¶ms, node);
|
||||
|
@ -111,9 +111,8 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
|
||||
slog.Debug("evaluating", "library", gpus[0].Library, "gpu_count", len(gpus), "available", availableList)
|
||||
|
||||
for _, projector := range projectors {
|
||||
weight, graph := projectorMemoryRequirements(projector)
|
||||
weight := projectorMemoryRequirements(projector)
|
||||
projectorWeights += weight
|
||||
projectorGraph += graph
|
||||
|
||||
// multimodal models require at least 2048 context
|
||||
opts.NumCtx = max(opts.NumCtx, 2048)
|
||||
@ -409,51 +408,21 @@ func (m MemoryEstimate) LogValue() slog.Value {
|
||||
return slog.GroupValue(attrs...)
|
||||
}
|
||||
|
||||
func projectorMemoryRequirements(filename string) (weights, graphSize uint64) {
|
||||
func projectorMemoryRequirements(filename string) (weights uint64) {
|
||||
file, err := os.Open(filename)
|
||||
if err != nil {
|
||||
return 0, 0
|
||||
return 0
|
||||
}
|
||||
defer file.Close()
|
||||
|
||||
ggml, _, err := ggml.Decode(file, 1024)
|
||||
if err != nil {
|
||||
return 0, 0
|
||||
return 0
|
||||
}
|
||||
|
||||
for _, layer := range ggml.Tensors().GroupLayers() {
|
||||
weights += layer.Size()
|
||||
}
|
||||
|
||||
switch arch := ggml.KV().Architecture(); arch {
|
||||
case "mllama":
|
||||
kv := func(n string) uint64 {
|
||||
if v, ok := ggml.KV()[arch+".vision."+n].(uint32); ok {
|
||||
return uint64(v)
|
||||
}
|
||||
|
||||
return 0
|
||||
}
|
||||
|
||||
imageSize := kv("image_size")
|
||||
|
||||
maxNumTiles := kv("max_num_tiles")
|
||||
embeddingLength := kv("embedding_length")
|
||||
headCount := kv("attention.head_count")
|
||||
|
||||
numPatches := (imageSize / kv("patch_size")) * (imageSize / kv("patch_size"))
|
||||
if _, ok := ggml.Tensors().GroupLayers()["v"]["class_embd"]; ok {
|
||||
numPatches++
|
||||
}
|
||||
|
||||
numPaddedPatches := numPatches + 8 - (numPatches%8)%8
|
||||
|
||||
graphSize = 4 * (8 +
|
||||
imageSize*imageSize*kv("num_channels")*maxNumTiles +
|
||||
embeddingLength*numPatches*maxNumTiles +
|
||||
9*embeddingLength*numPaddedPatches*maxNumTiles +
|
||||
numPaddedPatches*maxNumTiles*numPaddedPatches*maxNumTiles*headCount)
|
||||
}
|
||||
|
||||
return weights, graphSize
|
||||
return weights
|
||||
}
|
||||
|
@ -679,9 +679,8 @@ ws ::= ([ \t\n] ws)?
|
||||
const maxBufferSize = 512 * format.KiloByte
|
||||
|
||||
type ImageData struct {
|
||||
Data []byte `json:"data"`
|
||||
ID int `json:"id"`
|
||||
AspectRatioID int `json:"aspect_ratio_id"`
|
||||
Data []byte `json:"data"`
|
||||
ID int `json:"id"`
|
||||
}
|
||||
|
||||
type CompletionRequest struct {
|
||||
|
@ -161,7 +161,6 @@ type Tensor interface {
|
||||
Set(ctx Context, t2 Tensor, offset int, strides ...int) Tensor
|
||||
|
||||
Pad(ctx Context, shape ...int) Tensor
|
||||
Unpad(ctx Context, shape ...int) Tensor
|
||||
|
||||
Stack(ctx Context, dim int, s ...Tensor) Tensor
|
||||
|
||||
|
@ -1017,17 +1017,6 @@ func (t *Tensor) Sigmoid(ctx ml.Context) ml.Tensor {
|
||||
}
|
||||
}
|
||||
|
||||
func (t *Tensor) Unpad(ctx ml.Context, shape ...int) ml.Tensor {
|
||||
if len(shape) != 4 {
|
||||
panic("expected 4 dimensions")
|
||||
}
|
||||
|
||||
return &Tensor{
|
||||
b: t.b,
|
||||
t: C.ggml_unpad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
|
||||
}
|
||||
}
|
||||
|
||||
func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
|
||||
switch len(shape) {
|
||||
case 1:
|
||||
|
10
ml/backend/ggml/ggml/include/ggml.h
vendored
10
ml/backend/ggml/ggml/include/ggml.h
vendored
@ -489,7 +489,6 @@ extern "C" {
|
||||
GGML_OP_UPSCALE, // nearest interpolate
|
||||
GGML_OP_PAD,
|
||||
GGML_OP_PAD_REFLECT_1D,
|
||||
GGML_OP_UNPAD,
|
||||
GGML_OP_ARANGE,
|
||||
GGML_OP_TIMESTEP_EMBEDDING,
|
||||
GGML_OP_ARGSORT,
|
||||
@ -1782,15 +1781,6 @@ extern "C" {
|
||||
int p0,
|
||||
int p1);
|
||||
|
||||
// unpad each dimension: [x, ..., x, y, ..., y] -> [x, ..., x]
|
||||
GGML_API struct ggml_tensor * ggml_unpad(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int p0,
|
||||
int p1,
|
||||
int p2,
|
||||
int p3);
|
||||
|
||||
// Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
|
||||
// timesteps: [N,]
|
||||
// return: [N, dim]
|
||||
|
@ -178,9 +178,9 @@ struct ggml_backend_registry {
|
||||
#ifdef GGML_USE_CANN
|
||||
register_backend(ggml_backend_cann_reg());
|
||||
#endif
|
||||
// #ifdef GGML_USE_BLAS
|
||||
// register_backend(ggml_backend_blas_reg());
|
||||
// #endif
|
||||
#ifdef GGML_USE_BLAS
|
||||
register_backend(ggml_backend_blas_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_RPC
|
||||
register_backend(ggml_backend_rpc_reg());
|
||||
#endif
|
||||
|
5
ml/backend/ggml/ggml/src/ggml-cpu/ggml-cpu.c
vendored
5
ml/backend/ggml/ggml/src/ggml-cpu/ggml-cpu.c
vendored
@ -1953,10 +1953,6 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
||||
{
|
||||
ggml_compute_forward_pad_reflect_1d(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_UNPAD:
|
||||
{
|
||||
ggml_compute_forward_unpad(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_ARANGE:
|
||||
{
|
||||
ggml_compute_forward_arange(params, tensor);
|
||||
@ -2280,7 +2276,6 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
||||
case GGML_OP_UPSCALE:
|
||||
case GGML_OP_PAD:
|
||||
case GGML_OP_PAD_REFLECT_1D:
|
||||
case GGML_OP_UNPAD:
|
||||
case GGML_OP_ARANGE:
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_ARGSORT:
|
||||
|
55
ml/backend/ggml/ggml/src/ggml-cpu/ops.cpp
vendored
55
ml/backend/ggml/ggml/src/ggml-cpu/ops.cpp
vendored
@ -6690,61 +6690,6 @@ void ggml_compute_forward_pad_reflect_1d(
|
||||
}
|
||||
}
|
||||
|
||||
// ggml_compute_forward_unpad
|
||||
|
||||
static void ggml_compute_forward_unpad_f32(
|
||||
const struct ggml_compute_params *params,
|
||||
struct ggml_tensor *dst) {
|
||||
|
||||
const struct ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
||||
GGML_ASSERT( dst->nb[0] == sizeof(float));
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
GGML_TENSOR_UNARY_OP_LOCALS
|
||||
|
||||
float * dst_ptr = (float *) dst->data;
|
||||
|
||||
// TODO: optimize
|
||||
|
||||
for (int64_t i2 = 0; i2 < ne2; ++i2) {
|
||||
for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
|
||||
for (int64_t i0 = 0; i0 < ne0; ++i0) {
|
||||
for (int64_t i3 = 0; i3 < ne3; ++i3) {
|
||||
const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
|
||||
|
||||
const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
||||
|
||||
if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
|
||||
dst_ptr[dst_idx] = *src_ptr;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_compute_forward_unpad(
|
||||
const struct ggml_compute_params * params,
|
||||
struct ggml_tensor * dst) {
|
||||
|
||||
const struct ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
ggml_compute_forward_unpad_f32(params, dst);
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ggml_compute_forward_arange
|
||||
|
||||
static void ggml_compute_forward_arange_f32(
|
||||
|
1
ml/backend/ggml/ggml/src/ggml-cpu/ops.h
vendored
1
ml/backend/ggml/ggml/src/ggml-cpu/ops.h
vendored
@ -72,7 +72,6 @@ void ggml_compute_forward_pool_2d_back(const struct ggml_compute_params * params
|
||||
void ggml_compute_forward_upscale(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_pad(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_pad_reflect_1d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_unpad(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_arange(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_timestep_embedding(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_argsort(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
|
@ -2238,9 +2238,6 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
||||
case GGML_OP_PAD:
|
||||
ggml_cuda_op_pad(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_UNPAD:
|
||||
ggml_cuda_op_unpad(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_ARANGE:
|
||||
ggml_cuda_op_arange(ctx, dst);
|
||||
break;
|
||||
@ -3215,7 +3212,6 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
case GGML_OP_UPSCALE:
|
||||
return op->src[0]->type == GGML_TYPE_F32 && op->op_params[0] == GGML_SCALE_MODE_NEAREST;
|
||||
case GGML_OP_PAD:
|
||||
case GGML_OP_UNPAD:
|
||||
case GGML_OP_ARANGE:
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_LEAKY_RELU:
|
||||
|
46
ml/backend/ggml/ggml/src/ggml-cuda/pad.cu
vendored
46
ml/backend/ggml/ggml/src/ggml-cuda/pad.cu
vendored
@ -47,49 +47,3 @@ void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
|
||||
dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream);
|
||||
}
|
||||
|
||||
static __global__ void unpad_f32(const float * x, float * dst, const int ne0, const int ne00, const int ne01, const int ne02, const int ne03) {
|
||||
// blockIdx.z: idx of ne2*ne3, aka ne02*ne03
|
||||
// blockIdx.y: idx of ne1
|
||||
// blockIDx.x: idx of ne0 / BLOCK_SIZE
|
||||
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
if (nidx >= ne0) {
|
||||
return;
|
||||
}
|
||||
|
||||
// operation
|
||||
int offset_dst =
|
||||
nidx +
|
||||
blockIdx.y * ne0 +
|
||||
blockIdx.z * ne0 * gridDim.y;
|
||||
if (nidx < ne00 && blockIdx.y < ne01 && blockIdx.z < ne02*ne03) {
|
||||
int offset_src =
|
||||
nidx +
|
||||
blockIdx.y * ne00 +
|
||||
blockIdx.z * ne00 * ne01;
|
||||
dst[offset_dst] = x[offset_src];
|
||||
}
|
||||
}
|
||||
|
||||
static void unpad_f32_cuda(const float * x, float * dst,
|
||||
const int ne00, const int ne01, const int ne02, const int ne03,
|
||||
const int ne0, const int ne1, const int ne2, const int ne3, cudaStream_t stream) {
|
||||
int num_blocks = (ne0 + CUDA_PAD_BLOCK_SIZE - 1) / CUDA_PAD_BLOCK_SIZE;
|
||||
dim3 gridDim(num_blocks, ne1, ne2*ne3);
|
||||
unpad_f32<<<gridDim, CUDA_PAD_BLOCK_SIZE, 0, stream>>>(x, dst, ne0, ne00, ne01, ne02, ne03);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_unpad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
float * dst_d = (float *)dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
|
||||
|
||||
unpad_f32_cuda(src0_d, dst_d,
|
||||
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
|
||||
dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream);
|
||||
}
|
1
ml/backend/ggml/ggml/src/ggml-cuda/pad.cuh
vendored
1
ml/backend/ggml/ggml/src/ggml-cuda/pad.cuh
vendored
@ -3,4 +3,3 @@
|
||||
#define CUDA_PAD_BLOCK_SIZE 256
|
||||
|
||||
void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
void ggml_cuda_op_unpad(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
@ -5599,51 +5599,6 @@ kernel void kernel_pad_reflect_1d_f32(
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_unpad_f32(
|
||||
device const char * src0,
|
||||
device char * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
constant int64_t & ne03,
|
||||
constant uint64_t & nb00,
|
||||
constant uint64_t & nb01,
|
||||
constant uint64_t & nb02,
|
||||
constant uint64_t & nb03,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
constant int64_t & ne2,
|
||||
constant int64_t & ne3,
|
||||
constant uint64_t & nb0,
|
||||
constant uint64_t & nb1,
|
||||
constant uint64_t & nb2,
|
||||
constant uint64_t & nb3,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||
uint3 ntg[[threads_per_threadgroup]]) {
|
||||
|
||||
const int64_t i3 = tgpig.z;
|
||||
const int64_t i2 = tgpig.y;
|
||||
const int64_t i1 = tgpig.x;
|
||||
|
||||
const int64_t i03 = i3;
|
||||
const int64_t i02 = i2;
|
||||
const int64_t i01 = i1;
|
||||
|
||||
device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01);
|
||||
device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1);
|
||||
|
||||
if (i1 < ne01 && i2 < ne02 && i3 < ne03) {
|
||||
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
|
||||
if (i0 < ne00) {
|
||||
dst_ptr[i0] = src0_ptr[i0];
|
||||
}
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_arange_f32(
|
||||
device char * dst,
|
||||
constant ggml_metal_kargs_arange & args,
|
||||
|
33
ml/backend/ggml/ggml/src/ggml-metal/ggml-metal.m
vendored
33
ml/backend/ggml/ggml/src/ggml-metal/ggml-metal.m
vendored
@ -347,7 +347,6 @@ enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_UPSCALE_F32,
|
||||
GGML_METAL_KERNEL_TYPE_PAD_F32,
|
||||
GGML_METAL_KERNEL_TYPE_PAD_REFLECT_1D_F32,
|
||||
GGML_METAL_KERNEL_TYPE_UNPAD_F32,
|
||||
GGML_METAL_KERNEL_TYPE_ARANGE_F32,
|
||||
GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32,
|
||||
GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC,
|
||||
@ -1295,7 +1294,6 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UPSCALE_F32, upscale_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_F32, pad_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_REFLECT_1D_F32, pad_reflect_1d_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UNPAD_F32, unpad_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32, timestep_embedding_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARANGE_F32, arange_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, argsort_f32_i32_asc, true);
|
||||
@ -1657,7 +1655,6 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
|
||||
case GGML_OP_POOL_2D:
|
||||
case GGML_OP_PAD:
|
||||
case GGML_OP_PAD_REFLECT_1D:
|
||||
case GGML_OP_UNPAD:
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_ARGSORT:
|
||||
case GGML_OP_LEAKY_RELU:
|
||||
@ -4187,36 +4184,6 @@ static bool ggml_metal_encode_node(
|
||||
|
||||
const int nth = MIN(1024, ne0);
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
||||
} break;
|
||||
case GGML_OP_UNPAD:
|
||||
{
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
|
||||
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_UNPAD_F32].pipeline;
|
||||
|
||||
[encoder setComputePipelineState:pipeline];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
|
||||
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
|
||||
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
|
||||
[encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5];
|
||||
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
|
||||
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
|
||||
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
|
||||
[encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9];
|
||||
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:10];
|
||||
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:11];
|
||||
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:12];
|
||||
[encoder setBytes:&ne3 length:sizeof(ne3) atIndex:13];
|
||||
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:14];
|
||||
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15];
|
||||
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:16];
|
||||
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:17];
|
||||
|
||||
const int nth = MIN(1024, ne0);
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
||||
} break;
|
||||
case GGML_OP_ARANGE:
|
||||
|
@ -3121,51 +3121,6 @@ kernel void kernel_pad_reflect_1d_f32(
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_unpad_f32(
|
||||
device const char * src0,
|
||||
device char * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
constant int64_t & ne03,
|
||||
constant uint64_t & nb00,
|
||||
constant uint64_t & nb01,
|
||||
constant uint64_t & nb02,
|
||||
constant uint64_t & nb03,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
constant int64_t & ne2,
|
||||
constant int64_t & ne3,
|
||||
constant uint64_t & nb0,
|
||||
constant uint64_t & nb1,
|
||||
constant uint64_t & nb2,
|
||||
constant uint64_t & nb3,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||
uint3 ntg[[threads_per_threadgroup]]) {
|
||||
|
||||
const int64_t i3 = tgpig.z;
|
||||
const int64_t i2 = tgpig.y;
|
||||
const int64_t i1 = tgpig.x;
|
||||
|
||||
const int64_t i03 = i3;
|
||||
const int64_t i02 = i2;
|
||||
const int64_t i01 = i1;
|
||||
|
||||
device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01);
|
||||
device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1);
|
||||
|
||||
if (i1 < ne01 && i2 < ne02 && i3 < ne03) {
|
||||
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
|
||||
if (i0 < ne00) {
|
||||
dst_ptr[i0] = src0_ptr[i0];
|
||||
}
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_arange_f32(
|
||||
device char * dst,
|
||||
constant ggml_metal_kargs_arange & args,
|
||||
|
25
ml/backend/ggml/ggml/src/ggml.c
vendored
25
ml/backend/ggml/ggml/src/ggml.c
vendored
@ -923,7 +923,6 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
|
||||
"UPSCALE",
|
||||
"PAD",
|
||||
"PAD_REFLECT_1D",
|
||||
"UNPAD",
|
||||
"ARANGE",
|
||||
"TIMESTEP_EMBEDDING",
|
||||
"ARGSORT",
|
||||
@ -954,7 +953,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
|
||||
"OPT_STEP_ADAMW",
|
||||
};
|
||||
|
||||
static_assert(GGML_OP_COUNT == 83, "GGML_OP_COUNT != 83");
|
||||
static_assert(GGML_OP_COUNT == 82, "GGML_OP_COUNT != 82");
|
||||
|
||||
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
||||
"none",
|
||||
@ -1019,7 +1018,6 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
||||
"upscale(x)",
|
||||
"pad(x)",
|
||||
"pad_reflect_1d(x)",
|
||||
"unpad(x)",
|
||||
"arange(start, stop, step)",
|
||||
"timestep_embedding(timesteps, dim, max_period)",
|
||||
"argsort(x)",
|
||||
@ -1050,7 +1048,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
||||
"adamw(x)",
|
||||
};
|
||||
|
||||
static_assert(GGML_OP_COUNT == 83, "GGML_OP_COUNT != 83");
|
||||
static_assert(GGML_OP_COUNT == 82, "GGML_OP_COUNT != 82");
|
||||
|
||||
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
|
||||
|
||||
@ -4276,25 +4274,6 @@ struct ggml_tensor * ggml_pad_reflect_1d(
|
||||
return result;
|
||||
}
|
||||
|
||||
// ggml_unpad
|
||||
|
||||
struct ggml_tensor * ggml_unpad(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int p0, int p1, int p2, int p3) {
|
||||
|
||||
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
|
||||
a->ne[0] - p0,
|
||||
a->ne[1] - p1,
|
||||
a->ne[2] - p2,
|
||||
a->ne[3] - p3);
|
||||
|
||||
result->op = GGML_OP_UNPAD;
|
||||
result->src[0] = a;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// ggml_arange
|
||||
|
||||
struct ggml_tensor * ggml_arange(
|
||||
|
@ -208,7 +208,7 @@ func (m *VisionModel) Forward(ctx ml.Context, pixelValues ml.Tensor) ml.Tensor {
|
||||
}
|
||||
|
||||
hiddenStates = m.LayerNormPost.Forward(ctx, hiddenStates, m.eps)
|
||||
hiddenStates = hiddenStates.Unpad(ctx, 0, 1, 0, 0)
|
||||
hiddenStates = hiddenStates.Pad(ctx, 0, -1, 0, 0)
|
||||
hiddenStates = m.VisionAdapter.Forward(ctx, hiddenStates, m.VisionOptions)
|
||||
return hiddenStates
|
||||
}
|
||||
|
@ -1,201 +0,0 @@
|
||||
package mllama
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"image"
|
||||
_ "image/jpeg"
|
||||
_ "image/png"
|
||||
"io"
|
||||
"math"
|
||||
"slices"
|
||||
|
||||
"golang.org/x/image/draw"
|
||||
|
||||
"github.com/ollama/ollama/model/imageproc"
|
||||
)
|
||||
|
||||
func getSupportedAspectRatios(maxTiles int) []image.Point {
|
||||
ratios := []image.Point{}
|
||||
|
||||
for w := range maxTiles {
|
||||
for h := range maxTiles {
|
||||
if (w+1)*(h+1) <= maxTiles {
|
||||
ratios = append(ratios, image.Point{w + 1, h + 1})
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return ratios
|
||||
}
|
||||
|
||||
func clip(a, a_min, a_max int) int {
|
||||
if a < a_min {
|
||||
return a_min
|
||||
} else if a > a_max {
|
||||
return a_max
|
||||
}
|
||||
|
||||
return a
|
||||
}
|
||||
|
||||
func getOptimalTiledCanvas(imageSize image.Point, maxImageTiles, tileSize int) image.Point {
|
||||
possibleTileArrangements := getSupportedAspectRatios(maxImageTiles)
|
||||
possibleCanvasSizes := []image.Point{}
|
||||
for _, pta := range possibleTileArrangements {
|
||||
possibleCanvasSizes = append(possibleCanvasSizes, image.Point{pta.X * tileSize, pta.Y * tileSize})
|
||||
}
|
||||
|
||||
scales := []float64{}
|
||||
|
||||
for _, pcs := range possibleCanvasSizes {
|
||||
scaleHeight := float64(pcs.Y) / float64(imageSize.Y)
|
||||
scaleWidth := float64(pcs.X) / float64(imageSize.X)
|
||||
|
||||
if scaleWidth > scaleHeight {
|
||||
scales = append(scales, scaleHeight)
|
||||
} else {
|
||||
scales = append(scales, scaleWidth)
|
||||
}
|
||||
}
|
||||
|
||||
var minUpscale float64
|
||||
var maxDownscale float64
|
||||
var upscale bool
|
||||
|
||||
for _, s := range scales {
|
||||
if s > 1.0 {
|
||||
upscale = true
|
||||
if minUpscale == 0 {
|
||||
minUpscale = s
|
||||
} else {
|
||||
minUpscale = math.Min(minUpscale, s)
|
||||
}
|
||||
} else {
|
||||
maxDownscale = math.Max(maxDownscale, s)
|
||||
}
|
||||
}
|
||||
|
||||
selectedScale := maxDownscale
|
||||
if upscale {
|
||||
selectedScale = minUpscale
|
||||
}
|
||||
|
||||
var selectedCanvas image.Point
|
||||
for n, pcs := range possibleCanvasSizes {
|
||||
if scales[n] == selectedScale {
|
||||
// choose the smallest possible canvas
|
||||
if selectedCanvas.X == 0 && selectedCanvas.Y == 0 {
|
||||
selectedCanvas = pcs
|
||||
} else if pcs.X*pcs.Y < selectedCanvas.X*selectedCanvas.Y {
|
||||
selectedCanvas = pcs
|
||||
}
|
||||
}
|
||||
}
|
||||
return selectedCanvas
|
||||
}
|
||||
|
||||
func getImageSizeFitToCanvas(imageSize, canvasSize image.Point, tileSize int) image.Point {
|
||||
targetWidth := clip(imageSize.X, tileSize, canvasSize.X)
|
||||
targetHeight := clip(imageSize.Y, tileSize, canvasSize.Y)
|
||||
|
||||
scaleWidth := float64(targetWidth) / float64(imageSize.X)
|
||||
scaleHeight := float64(targetHeight) / float64(imageSize.Y)
|
||||
|
||||
var w, h int
|
||||
|
||||
if scaleWidth < scaleHeight {
|
||||
w = targetWidth
|
||||
h = min(int(math.Floor(float64(imageSize.Y)*scaleWidth)), targetHeight)
|
||||
} else {
|
||||
w = min(int(math.Floor(float64(imageSize.X)*scaleHeight)), targetWidth)
|
||||
h = targetHeight
|
||||
}
|
||||
|
||||
return image.Point{w, h}
|
||||
}
|
||||
|
||||
func resizeImage(img image.Image, format string, outputSize image.Point, maxImageTiles int) (image.Image, image.Point) {
|
||||
if format == "png" {
|
||||
img = imageproc.Composite(img)
|
||||
}
|
||||
|
||||
b := img.Bounds()
|
||||
tileSize := outputSize.Y
|
||||
|
||||
canvasSize := getOptimalTiledCanvas(b.Max, maxImageTiles, tileSize)
|
||||
aspectRatio := image.Point{canvasSize.X / tileSize, canvasSize.Y / tileSize}
|
||||
newSize := getImageSizeFitToCanvas(b.Max, canvasSize, tileSize)
|
||||
|
||||
return imageproc.Resize(img, newSize, imageproc.ResizeBilinear), aspectRatio
|
||||
}
|
||||
|
||||
func padImage(img image.Image, outputSize, aspectRatio image.Point) image.Image {
|
||||
paddedSize := image.Point{
|
||||
X: outputSize.X * aspectRatio.X,
|
||||
Y: outputSize.Y * aspectRatio.Y,
|
||||
}
|
||||
|
||||
dst := image.NewRGBA(image.Rect(0, 0, paddedSize.X, paddedSize.Y))
|
||||
draw.Draw(dst, img.Bounds(), img, image.Point{0, 0}, draw.Over)
|
||||
|
||||
return dst
|
||||
}
|
||||
|
||||
func splitToTiles(img image.Image, numTilesSize image.Point) []image.Image {
|
||||
b := img.Bounds()
|
||||
width := b.Max.X - b.Min.X
|
||||
height := b.Max.Y - b.Min.Y
|
||||
tileHeight := height / numTilesSize.Y
|
||||
tileWidth := width / numTilesSize.X
|
||||
|
||||
images := []image.Image{}
|
||||
|
||||
for h := range numTilesSize.Y {
|
||||
for w := range numTilesSize.X {
|
||||
rect := image.Rect(tileWidth*w, tileHeight*h, tileWidth*(w+1), tileHeight*(h+1))
|
||||
images = append(images, img.(interface {
|
||||
SubImage(image.Rectangle) image.Image
|
||||
}).SubImage(rect))
|
||||
}
|
||||
}
|
||||
|
||||
return images
|
||||
}
|
||||
|
||||
func packImages(img image.Image, aspectRatio image.Point) []float32 {
|
||||
subImages := splitToTiles(img, aspectRatio)
|
||||
|
||||
var pixelVals []float32
|
||||
|
||||
rescale := true
|
||||
channelFirst := true
|
||||
|
||||
for _, subImg := range subImages {
|
||||
vals := imageproc.Normalize(subImg, imageproc.ClipDefaultMean, imageproc.ClipDefaultSTD, rescale, channelFirst)
|
||||
pixelVals = append(pixelVals, vals...)
|
||||
}
|
||||
|
||||
return pixelVals
|
||||
}
|
||||
|
||||
func Preprocess(imageData io.Reader) ([]float32, map[string]any, error) {
|
||||
outputSize := image.Point{560, 560}
|
||||
maxTiles := 4
|
||||
|
||||
img, format, err := image.Decode(imageData)
|
||||
if err != nil {
|
||||
return nil, nil, fmt.Errorf("failed to decode image: %w", err)
|
||||
}
|
||||
|
||||
newImage, aspectRatio := resizeImage(img, format, outputSize, maxTiles)
|
||||
newImage = padImage(newImage, outputSize, aspectRatio)
|
||||
|
||||
data := packImages(newImage, aspectRatio)
|
||||
aspectRatioIndex := slices.Index(getSupportedAspectRatios(maxTiles), aspectRatio) + 1
|
||||
|
||||
opts := map[string]any{
|
||||
"aspectRatioIndex": aspectRatioIndex,
|
||||
}
|
||||
|
||||
return data, opts, nil
|
||||
}
|
@ -1,420 +0,0 @@
|
||||
package mllama
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"image"
|
||||
"image/png"
|
||||
"testing"
|
||||
|
||||
"github.com/google/go-cmp/cmp"
|
||||
)
|
||||
|
||||
func TestAspectRatios(t *testing.T) {
|
||||
type aspectCase struct {
|
||||
MaxTiles int
|
||||
Expected []image.Point
|
||||
}
|
||||
|
||||
cases := []aspectCase{
|
||||
{
|
||||
MaxTiles: 1,
|
||||
Expected: []image.Point{{1, 1}},
|
||||
},
|
||||
{
|
||||
MaxTiles: 2,
|
||||
Expected: []image.Point{{1, 1}, {1, 2}, {2, 1}},
|
||||
},
|
||||
{
|
||||
MaxTiles: 3,
|
||||
Expected: []image.Point{{1, 1}, {1, 2}, {1, 3}, {2, 1}, {3, 1}},
|
||||
},
|
||||
{
|
||||
MaxTiles: 4,
|
||||
Expected: []image.Point{{1, 1}, {1, 2}, {1, 3}, {1, 4}, {2, 1}, {2, 2}, {3, 1}, {4, 1}},
|
||||
},
|
||||
}
|
||||
|
||||
for _, c := range cases {
|
||||
actual := getSupportedAspectRatios(c.MaxTiles)
|
||||
|
||||
if diff := cmp.Diff(actual, c.Expected); diff != "" {
|
||||
t.Errorf("mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestGetImageSizeFitToCanvas(t *testing.T) {
|
||||
type imageSizeCase struct {
|
||||
ImageRect image.Point
|
||||
CanvasRect image.Point
|
||||
TileSize int
|
||||
Expected image.Point
|
||||
}
|
||||
|
||||
cases := []imageSizeCase{
|
||||
{
|
||||
ImageRect: image.Point{400, 400},
|
||||
CanvasRect: image.Point{640, 480},
|
||||
TileSize: 200,
|
||||
Expected: image.Point{400, 400},
|
||||
},
|
||||
{
|
||||
ImageRect: image.Point{1024, 768},
|
||||
CanvasRect: image.Point{640, 480},
|
||||
TileSize: 200,
|
||||
Expected: image.Point{640, 480},
|
||||
},
|
||||
{
|
||||
ImageRect: image.Point{500, 500},
|
||||
CanvasRect: image.Point{1000, 1000},
|
||||
TileSize: 750,
|
||||
Expected: image.Point{750, 750},
|
||||
},
|
||||
{
|
||||
ImageRect: image.Point{500, 1000},
|
||||
CanvasRect: image.Point{2000, 2000},
|
||||
TileSize: 2000,
|
||||
Expected: image.Point{1000, 2000},
|
||||
},
|
||||
{
|
||||
ImageRect: image.Point{4000, 3000},
|
||||
CanvasRect: image.Point{2000, 1000},
|
||||
TileSize: 1000,
|
||||
Expected: image.Point{1333, 1000},
|
||||
},
|
||||
{
|
||||
ImageRect: image.Point{667, 1000},
|
||||
CanvasRect: image.Point{1000, 1000},
|
||||
TileSize: 560,
|
||||
Expected: image.Point{667, 1000},
|
||||
},
|
||||
}
|
||||
|
||||
for _, c := range cases {
|
||||
actual := getImageSizeFitToCanvas(c.ImageRect, c.CanvasRect, c.TileSize)
|
||||
|
||||
if actual != c.Expected {
|
||||
t.Errorf("incorrect image rect: '%#v'. expected: '%#v'", actual, c.Expected)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestGetOptimalTiledCanvas(t *testing.T) {
|
||||
type tiledCanvasSizeCase struct {
|
||||
ImageSize image.Point
|
||||
MaxImageTiles int
|
||||
TileSize int
|
||||
Expected image.Point
|
||||
}
|
||||
|
||||
cases := []tiledCanvasSizeCase{
|
||||
{
|
||||
ImageSize: image.Point{1024, 768},
|
||||
MaxImageTiles: 4,
|
||||
TileSize: 1000,
|
||||
Expected: image.Point{2000, 1000},
|
||||
},
|
||||
{
|
||||
ImageSize: image.Point{1024, 768},
|
||||
MaxImageTiles: 4,
|
||||
TileSize: 560,
|
||||
Expected: image.Point{1120, 1120},
|
||||
},
|
||||
{
|
||||
ImageSize: image.Point{800, 600},
|
||||
MaxImageTiles: 4,
|
||||
TileSize: 560,
|
||||
Expected: image.Point{1120, 1120},
|
||||
},
|
||||
{
|
||||
ImageSize: image.Point{640, 480},
|
||||
MaxImageTiles: 4,
|
||||
TileSize: 560,
|
||||
Expected: image.Point{1120, 560},
|
||||
},
|
||||
{
|
||||
ImageSize: image.Point{320, 200},
|
||||
MaxImageTiles: 4,
|
||||
TileSize: 560,
|
||||
Expected: image.Point{560, 560},
|
||||
},
|
||||
{
|
||||
ImageSize: image.Point{1320, 200},
|
||||
MaxImageTiles: 4,
|
||||
TileSize: 560,
|
||||
Expected: image.Point{1680, 560},
|
||||
},
|
||||
{
|
||||
ImageSize: image.Point{2000, 200},
|
||||
MaxImageTiles: 4,
|
||||
TileSize: 560,
|
||||
Expected: image.Point{2240, 560},
|
||||
},
|
||||
{
|
||||
ImageSize: image.Point{10000, 200},
|
||||
MaxImageTiles: 4,
|
||||
TileSize: 560,
|
||||
Expected: image.Point{2240, 560},
|
||||
},
|
||||
{
|
||||
ImageSize: image.Point{480, 640},
|
||||
MaxImageTiles: 4,
|
||||
TileSize: 560,
|
||||
Expected: image.Point{560, 1120},
|
||||
},
|
||||
{
|
||||
ImageSize: image.Point{200, 320},
|
||||
MaxImageTiles: 4,
|
||||
TileSize: 560,
|
||||
Expected: image.Point{560, 560},
|
||||
},
|
||||
{
|
||||
ImageSize: image.Point{200, 1320},
|
||||
MaxImageTiles: 4,
|
||||
TileSize: 560,
|
||||
Expected: image.Point{560, 1680},
|
||||
},
|
||||
{
|
||||
ImageSize: image.Point{200, 2000},
|
||||
MaxImageTiles: 4,
|
||||
TileSize: 560,
|
||||
Expected: image.Point{560, 2240},
|
||||
},
|
||||
{
|
||||
ImageSize: image.Point{200, 10000},
|
||||
MaxImageTiles: 4,
|
||||
TileSize: 560,
|
||||
Expected: image.Point{560, 2240},
|
||||
},
|
||||
{
|
||||
ImageSize: image.Point{10000, 10000},
|
||||
MaxImageTiles: 4,
|
||||
TileSize: 560,
|
||||
Expected: image.Point{1120, 1120},
|
||||
},
|
||||
}
|
||||
|
||||
for _, c := range cases {
|
||||
actual := getOptimalTiledCanvas(c.ImageSize, c.MaxImageTiles, c.TileSize)
|
||||
|
||||
if actual != c.Expected {
|
||||
t.Errorf("incorrect tiled canvas: '%#v'. expected: '%#v'", actual, c.Expected)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestSplitToTiles(t *testing.T) {
|
||||
type splitCase struct {
|
||||
TestImage image.Image
|
||||
NumTilesSize image.Point
|
||||
Expected []image.Image
|
||||
}
|
||||
|
||||
cases := []splitCase{
|
||||
{
|
||||
TestImage: image.NewRGBA(image.Rect(0, 0, 1024, 768)),
|
||||
NumTilesSize: image.Point{1, 1},
|
||||
Expected: []image.Image{image.NewRGBA(image.Rect(0, 0, 1024, 768))},
|
||||
},
|
||||
{
|
||||
TestImage: image.NewRGBA(image.Rect(0, 0, 1000, 500)),
|
||||
NumTilesSize: image.Point{2, 1},
|
||||
Expected: []image.Image{
|
||||
image.NewRGBA(image.Rect(0, 0, 500, 500)),
|
||||
image.NewRGBA(image.Rect(500, 0, 1000, 500)),
|
||||
},
|
||||
},
|
||||
{
|
||||
TestImage: image.NewRGBA(image.Rect(0, 0, 1000, 1000)),
|
||||
NumTilesSize: image.Point{2, 2},
|
||||
Expected: []image.Image{
|
||||
image.NewRGBA(image.Rect(0, 0, 500, 500)),
|
||||
image.NewRGBA(image.Rect(500, 0, 1000, 500)),
|
||||
image.NewRGBA(image.Rect(0, 500, 500, 1000)),
|
||||
image.NewRGBA(image.Rect(500, 500, 1000, 1000)),
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
for _, c := range cases {
|
||||
actual := splitToTiles(c.TestImage, c.NumTilesSize)
|
||||
|
||||
if len(actual) != len(c.Expected) {
|
||||
t.Errorf("incorrect number of images '%d': expected: '%d'", len(actual), len(c.Expected))
|
||||
}
|
||||
|
||||
for i := range actual {
|
||||
if actual[i].Bounds() != c.Expected[i].Bounds() {
|
||||
t.Errorf("image size incorrect: '%#v': expected: '%#v'", actual[i].Bounds(), c.Expected[i].Bounds())
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestResize(t *testing.T) {
|
||||
type resizeCase struct {
|
||||
TestImage image.Image
|
||||
OutputSize image.Point
|
||||
MaxImageTiles int
|
||||
ExpectedImage image.Image
|
||||
ExpectedAspectRatio image.Point
|
||||
}
|
||||
|
||||
cases := []resizeCase{
|
||||
{
|
||||
TestImage: image.NewRGBA(image.Rect(0, 0, 200, 200)),
|
||||
OutputSize: image.Point{100, 100},
|
||||
MaxImageTiles: 1,
|
||||
ExpectedImage: image.NewRGBA(image.Rect(0, 0, 100, 100)),
|
||||
ExpectedAspectRatio: image.Point{1, 1},
|
||||
},
|
||||
{
|
||||
TestImage: image.NewRGBA(image.Rect(0, 0, 200, 200)),
|
||||
OutputSize: image.Point{100, 100},
|
||||
MaxImageTiles: 2,
|
||||
ExpectedImage: image.NewRGBA(image.Rect(0, 0, 100, 100)),
|
||||
ExpectedAspectRatio: image.Point{1, 1},
|
||||
},
|
||||
{
|
||||
TestImage: image.NewRGBA(image.Rect(0, 0, 10, 10)),
|
||||
OutputSize: image.Point{560, 560},
|
||||
MaxImageTiles: 4,
|
||||
ExpectedImage: image.NewRGBA(image.Rect(0, 0, 560, 560)),
|
||||
ExpectedAspectRatio: image.Point{1, 1},
|
||||
},
|
||||
{
|
||||
TestImage: image.NewRGBA(image.Rect(0, 0, 2560, 1920)),
|
||||
OutputSize: image.Point{560, 560},
|
||||
MaxImageTiles: 4,
|
||||
ExpectedImage: image.NewRGBA(image.Rect(0, 0, 1120, 840)),
|
||||
ExpectedAspectRatio: image.Point{2, 2},
|
||||
},
|
||||
{
|
||||
TestImage: image.NewRGBA(image.Rect(0, 0, 1024, 768)),
|
||||
OutputSize: image.Point{560, 560},
|
||||
MaxImageTiles: 4,
|
||||
ExpectedImage: image.NewRGBA(image.Rect(0, 0, 1024, 768)),
|
||||
ExpectedAspectRatio: image.Point{2, 2},
|
||||
},
|
||||
}
|
||||
|
||||
for _, c := range cases {
|
||||
actualImage, actualAspectRatio := resizeImage(c.TestImage, "png", c.OutputSize, c.MaxImageTiles)
|
||||
|
||||
if actualImage.Bounds() != c.ExpectedImage.Bounds() {
|
||||
t.Errorf("image size incorrect: '%#v': expected: '%#v'", actualImage.Bounds(), c.ExpectedImage.Bounds())
|
||||
}
|
||||
|
||||
if actualAspectRatio != c.ExpectedAspectRatio {
|
||||
t.Errorf("aspect ratio incorrect: '%#v': expected: '%#v'", actualAspectRatio, c.ExpectedAspectRatio)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestPad(t *testing.T) {
|
||||
type padCase struct {
|
||||
TestImage image.Image
|
||||
OutputSize image.Point
|
||||
AspectRatio image.Point
|
||||
Expected image.Image
|
||||
}
|
||||
|
||||
cases := []padCase{
|
||||
{
|
||||
TestImage: image.NewRGBA(image.Rect(0, 0, 1000, 667)),
|
||||
OutputSize: image.Point{560, 560},
|
||||
AspectRatio: image.Point{2, 2},
|
||||
Expected: image.NewRGBA(image.Rect(0, 0, 1120, 1120)),
|
||||
},
|
||||
}
|
||||
|
||||
for _, c := range cases {
|
||||
actual := padImage(c.TestImage, c.OutputSize, c.AspectRatio)
|
||||
|
||||
if actual.Bounds() != c.Expected.Bounds() {
|
||||
t.Errorf("image size incorrect: '%#v': expected: '%#v'", actual.Bounds(), c.Expected.Bounds())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestPackImages(t *testing.T) {
|
||||
type packCase struct {
|
||||
TestImage image.Image
|
||||
AspectRatio image.Point
|
||||
ExpectedVals int
|
||||
}
|
||||
|
||||
cases := []packCase{
|
||||
{
|
||||
TestImage: image.NewRGBA(image.Rect(0, 0, 1120, 1120)),
|
||||
AspectRatio: image.Point{2, 2},
|
||||
ExpectedVals: 2 * 2 * 3 * 560 * 560,
|
||||
},
|
||||
{
|
||||
TestImage: image.NewRGBA(image.Rect(0, 0, 560, 560)),
|
||||
AspectRatio: image.Point{1, 1},
|
||||
ExpectedVals: 1 * 1 * 3 * 560 * 560,
|
||||
},
|
||||
{
|
||||
TestImage: image.NewRGBA(image.Rect(0, 0, 1120, 560)),
|
||||
AspectRatio: image.Point{1, 2},
|
||||
ExpectedVals: 1 * 2 * 3 * 560 * 560,
|
||||
},
|
||||
}
|
||||
|
||||
for _, c := range cases {
|
||||
actualVals := packImages(c.TestImage, c.AspectRatio)
|
||||
if len(actualVals) != c.ExpectedVals {
|
||||
t.Errorf("packed image size incorrect: '%d': expected: '%d'", len(actualVals), c.ExpectedVals)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestPreprocess(t *testing.T) {
|
||||
type preprocessCase struct {
|
||||
TestImage image.Image
|
||||
ExpectedVals int
|
||||
ExpectedAspectRatioID int
|
||||
}
|
||||
|
||||
cases := []preprocessCase{
|
||||
{
|
||||
TestImage: image.NewRGBA(image.Rect(0, 0, 10, 10)),
|
||||
ExpectedVals: 0,
|
||||
ExpectedAspectRatioID: 1,
|
||||
},
|
||||
{
|
||||
TestImage: image.NewRGBA(image.Rect(0, 0, 1024, 768)),
|
||||
ExpectedVals: 0,
|
||||
ExpectedAspectRatioID: 6,
|
||||
},
|
||||
}
|
||||
|
||||
for _, c := range cases {
|
||||
var buf bytes.Buffer
|
||||
err := png.Encode(&buf, c.TestImage)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
imgData, opts, err := Preprocess(&buf)
|
||||
if err != nil {
|
||||
t.Fatalf("error processing: %q", err)
|
||||
}
|
||||
|
||||
if len(imgData) == 0 {
|
||||
t.Errorf("no image data returned")
|
||||
}
|
||||
|
||||
ar, ok := opts["aspectRatioIndex"]
|
||||
if !ok {
|
||||
t.Fatalf("no aspect ratio found")
|
||||
}
|
||||
|
||||
aspectRatioID := ar.(int)
|
||||
|
||||
if aspectRatioID != c.ExpectedAspectRatioID {
|
||||
t.Errorf("aspect ratio incorrect: '%d': expected: '%d'", aspectRatioID, c.ExpectedAspectRatioID)
|
||||
}
|
||||
}
|
||||
}
|
@ -2,11 +2,7 @@ package mllama
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/binary"
|
||||
"fmt"
|
||||
"hash/fnv"
|
||||
"image"
|
||||
"slices"
|
||||
|
||||
"github.com/ollama/ollama/fs"
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
@ -34,10 +30,6 @@ const (
|
||||
)
|
||||
|
||||
func New(c fs.Config) (model.Model, error) {
|
||||
// Verify unified config
|
||||
if c.Uint("vision.block_count") == 0 {
|
||||
return nil, fmt.Errorf("non-unified vision model not supported")
|
||||
}
|
||||
m := Model{
|
||||
BytePairEncoding: model.NewBytePairEncoding(
|
||||
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
|
||||
@ -76,22 +68,19 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, er
|
||||
return nil, err
|
||||
}
|
||||
|
||||
f32s, aspectRatioID, err := m.ImageProcessor.ProcessImage(image)
|
||||
f32s, ratio, err := m.ImageProcessor.ProcessImage(image)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
pixelValues, err := ctx.Input().FromFloatSlice(f32s,
|
||||
m.ImageProcessor.imageSize,
|
||||
m.ImageProcessor.imageSize,
|
||||
m.ImageProcessor.numChannels,
|
||||
m.ImageProcessor.maxNumTiles,
|
||||
)
|
||||
pixelValues, err := ctx.Input().FromFloatSlice(f32s, m.imageSize, m.imageSize, m.numChannels, ratio.numTiles())
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
aspectRatio, err := ctx.Input().FromIntSlice([]int32{int32(aspectRatioID)}, 1)
|
||||
pixelValues = pixelValues.Pad(ctx, 0, 0, 0, m.ImageProcessor.maxNumTiles-ratio.numTiles())
|
||||
|
||||
aspectRatio, err := ctx.Input().FromIntSlice([]int32{int32(ratio.rank)}, 1)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
@ -102,41 +91,19 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, er
|
||||
}
|
||||
|
||||
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
|
||||
var images []input.Input
|
||||
fnvHash := fnv.New64a()
|
||||
|
||||
for i := range inputs {
|
||||
if inputs[i].Multimodal == nil {
|
||||
if len(images) > 0 {
|
||||
inputs[i].Multimodal = []ml.Tensor{images[0].Multimodal.(ml.Tensor)}
|
||||
inputs[i].MultimodalHash = images[0].MultimodalHash
|
||||
for j := 1; j < len(images); j++ {
|
||||
inputs[i].Multimodal = append(inputs[i].Multimodal.([]ml.Tensor), images[0].Multimodal.(ml.Tensor))
|
||||
fnvHash.Reset()
|
||||
binary.Write(fnvHash, binary.NativeEndian, inputs[i].MultimodalHash)
|
||||
binary.Write(fnvHash, binary.NativeEndian, inputs[j].MultimodalHash)
|
||||
inputs[i].MultimodalHash = fnvHash.Sum64()
|
||||
}
|
||||
images = nil
|
||||
}
|
||||
} else {
|
||||
images = append(images, inputs[i])
|
||||
inputs[i].Token = -1
|
||||
if inputs[i].Multimodal != nil {
|
||||
inputs[i].Token = 128256 // <|image|>
|
||||
}
|
||||
}
|
||||
|
||||
inputs = slices.DeleteFunc(inputs, func(input input.Input) bool { return input.Token == -1 })
|
||||
|
||||
return inputs, nil
|
||||
}
|
||||
|
||||
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||||
var crossAttentionStates ml.Tensor
|
||||
if len(batch.Multimodal) > 0 {
|
||||
images := batch.Multimodal[len(batch.Multimodal)-1].Multimodal.([]ml.Tensor)
|
||||
if len(images) > 0 {
|
||||
crossAttentionStates = images[len(images)-1]
|
||||
}
|
||||
crossAttentionStates = batch.Multimodal[len(batch.Multimodal)-1].Multimodal.(ml.Tensor)
|
||||
}
|
||||
|
||||
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
|
||||
@ -150,7 +117,7 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||||
}
|
||||
|
||||
// TODO: attention mask, cross attention mask
|
||||
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, nil, crossAttentionStates, nil, m.Cache.(*kvcache.WrapperCache)), nil
|
||||
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, crossAttentionStates, nil, m.Cache.(*kvcache.WrapperCache)), nil
|
||||
}
|
||||
|
||||
func init() {
|
||||
|
@ -18,7 +18,7 @@ type TextSelfAttention struct {
|
||||
RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
|
||||
}
|
||||
|
||||
func (sa *TextSelfAttention) Forward(ctx ml.Context, hiddenState, positions, _ ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
|
||||
func (sa *TextSelfAttention) Forward(ctx ml.Context, hiddenState, positions ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
|
||||
batchSize := hiddenState.Dim(1)
|
||||
headDim := opts.hiddenSize / opts.numHeads
|
||||
ropeType := uint32(0)
|
||||
@ -69,11 +69,11 @@ type TextSelfAttentionDecoderLayer struct {
|
||||
MLP *TextMLP
|
||||
}
|
||||
|
||||
func (d *TextSelfAttentionDecoderLayer) Forward(ctx ml.Context, hiddenState, positions, outputs, mask, _, _ ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
|
||||
func (d *TextSelfAttentionDecoderLayer) Forward(ctx ml.Context, hiddenState, positions, outputs, _, _ ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
|
||||
residual := hiddenState
|
||||
|
||||
hiddenState = d.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
|
||||
hiddenState = d.SelfAttention.Forward(ctx, hiddenState, positions, mask, cache, opts)
|
||||
hiddenState = d.SelfAttention.Forward(ctx, hiddenState, positions, cache, opts)
|
||||
|
||||
// In the final layer (outputs != nil), optimize by pruning to just the token positions
|
||||
// we need logits for.
|
||||
@ -151,7 +151,7 @@ type TextCrossAttentionDecoderLayer struct {
|
||||
MLPGate ml.Tensor `gguf:"cross_attn_mlp_gate"`
|
||||
}
|
||||
|
||||
func (d *TextCrossAttentionDecoderLayer) Forward(ctx ml.Context, hiddenState, _, _, _, crossAttentionStates, crossAttentionMask ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
|
||||
func (d *TextCrossAttentionDecoderLayer) Forward(ctx ml.Context, hiddenState, _, _, crossAttentionStates, crossAttentionMask ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
|
||||
residual := hiddenState
|
||||
|
||||
hiddenState = d.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
|
||||
@ -167,14 +167,14 @@ func (d *TextCrossAttentionDecoderLayer) Forward(ctx ml.Context, hiddenState, _,
|
||||
}
|
||||
|
||||
type TextDecoderLayer interface {
|
||||
Forward(ctx ml.Context, hiddenState, positionIDs, outputs, mask, crossAttentionStates, crossAttentionMask ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor
|
||||
Forward(ctx ml.Context, hiddenState, positionIDs, outputs, crossAttentionStates, crossAttentionMask ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor
|
||||
}
|
||||
|
||||
type TextDecoder struct {
|
||||
Layers []TextDecoderLayer
|
||||
}
|
||||
|
||||
func (d *TextDecoder) Forward(ctx ml.Context, hiddenState, positionIDs, outputs, mask, crossAttentionStates, crossAttentionMask ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
|
||||
func (d *TextDecoder) Forward(ctx ml.Context, hiddenState, positionIDs, outputs, crossAttentionStates, crossAttentionMask ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
|
||||
for i, layer := range d.Layers {
|
||||
layerType := selfAttentionLayer
|
||||
if slices.Contains(opts.crossAttentionLayers, int32(i)) {
|
||||
@ -190,7 +190,7 @@ func (d *TextDecoder) Forward(ctx ml.Context, hiddenState, positionIDs, outputs,
|
||||
lastLayerOutputs = outputs
|
||||
}
|
||||
|
||||
hiddenState = layer.Forward(ctx, hiddenState, positionIDs, lastLayerOutputs, mask, crossAttentionStates, crossAttentionMask, cache, opts)
|
||||
hiddenState = layer.Forward(ctx, hiddenState, positionIDs, lastLayerOutputs, crossAttentionStates, crossAttentionMask, cache, opts)
|
||||
}
|
||||
}
|
||||
|
||||
@ -214,9 +214,9 @@ type TextModel struct {
|
||||
*TextModelOptions
|
||||
}
|
||||
|
||||
func (m *TextModel) Forward(ctx ml.Context, inputIDs, positionIDs, outputs, mask, crossAttentionStates, crossAttentionMask ml.Tensor, cache *kvcache.WrapperCache) ml.Tensor {
|
||||
func (m *TextModel) Forward(ctx ml.Context, inputIDs, positionIDs, outputs, crossAttentionStates, crossAttentionMask ml.Tensor, cache *kvcache.WrapperCache) ml.Tensor {
|
||||
hiddenState := m.TokenEmbedding.Forward(ctx, inputIDs)
|
||||
hiddenState = m.Transformer.Forward(ctx, hiddenState, positionIDs, outputs, mask, crossAttentionStates, crossAttentionMask, cache, m.TextModelOptions)
|
||||
hiddenState = m.Transformer.Forward(ctx, hiddenState, positionIDs, outputs, crossAttentionStates, crossAttentionMask, cache, m.TextModelOptions)
|
||||
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
|
||||
return m.Output.Forward(ctx, hiddenState)
|
||||
}
|
||||
|
@ -15,7 +15,7 @@ type VisionSelfAttention struct {
|
||||
Query *nn.Linear `gguf:"attn_q"`
|
||||
Key *nn.Linear `gguf:"attn_k"`
|
||||
Value *nn.Linear `gguf:"attn_v"`
|
||||
Output *nn.Linear `gguf:"attn_out"`
|
||||
Output *nn.Linear `gguf:"attn_output"`
|
||||
|
||||
Gate ml.Tensor `gguf:"attn_gate"`
|
||||
}
|
||||
@ -45,36 +45,29 @@ func (sa *VisionSelfAttention) Forward(ctx ml.Context, hiddenState ml.Tensor, op
|
||||
attention = attention.Reshape(ctx, opts.hiddenSize, attention.Dim(2), batchSize)
|
||||
|
||||
hiddenState = sa.Output.Forward(ctx, attention)
|
||||
if sa.Gate != nil {
|
||||
hiddenState = hiddenState.Mul(ctx, sa.Gate)
|
||||
}
|
||||
|
||||
return hiddenState
|
||||
}
|
||||
|
||||
type VisionMLP struct {
|
||||
Down *nn.Linear `gguf:"ffn_down"`
|
||||
Up *nn.Linear `gguf:"ffn_up"`
|
||||
|
||||
Gate ml.Tensor `gguf:"ffn_gate"`
|
||||
Down *nn.Linear `gguf:"ffn_down"`
|
||||
}
|
||||
|
||||
func (mlp *VisionMLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *VisionModelOptions) ml.Tensor {
|
||||
hiddenState = mlp.Down.Forward(ctx, hiddenState).GELU(ctx)
|
||||
hiddenState = mlp.Up.Forward(ctx, hiddenState)
|
||||
if mlp.Gate != nil {
|
||||
hiddenState = hiddenState.Mul(ctx, mlp.Gate)
|
||||
}
|
||||
hiddenState = mlp.Up.Forward(ctx, hiddenState).GELU(ctx)
|
||||
hiddenState = mlp.Down.Forward(ctx, hiddenState)
|
||||
|
||||
return hiddenState
|
||||
}
|
||||
|
||||
type VisionEncoderLayer struct {
|
||||
AttentionNorm *nn.LayerNorm `gguf:"ln1"`
|
||||
AttentionNorm *nn.LayerNorm `gguf:"attn_norm"`
|
||||
SelfAttention *VisionSelfAttention
|
||||
AttentionGate ml.Tensor `gguf:"attn_gate"`
|
||||
|
||||
MLPNorm *nn.LayerNorm `gguf:"ln2"`
|
||||
MLPNorm *nn.LayerNorm `gguf:"ffn_norm"`
|
||||
MLP *VisionMLP
|
||||
MLPGate ml.Tensor `gguf:"ffn_gate"`
|
||||
}
|
||||
|
||||
func (e *VisionEncoderLayer) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *VisionModelOptions) ml.Tensor {
|
||||
@ -83,13 +76,22 @@ func (e *VisionEncoderLayer) Forward(ctx ml.Context, hiddenState ml.Tensor, opts
|
||||
// self attention
|
||||
hiddenState = e.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
|
||||
hiddenState = e.SelfAttention.Forward(ctx, hiddenState, opts)
|
||||
|
||||
if e.AttentionGate != nil {
|
||||
hiddenState = hiddenState.Mul(ctx, e.AttentionGate)
|
||||
}
|
||||
hiddenState = hiddenState.Add(ctx, residual)
|
||||
residual = hiddenState
|
||||
|
||||
// feed forward
|
||||
hiddenState = e.MLPNorm.Forward(ctx, hiddenState, opts.eps)
|
||||
hiddenState = e.MLP.Forward(ctx, hiddenState, opts)
|
||||
return hiddenState.Add(ctx, residual)
|
||||
hiddenState = hiddenState.Add(ctx, residual)
|
||||
if e.MLPGate != nil {
|
||||
hiddenState = hiddenState.Mul(ctx, e.MLPGate)
|
||||
}
|
||||
|
||||
return hiddenState
|
||||
}
|
||||
|
||||
type VisionEncoder struct {
|
||||
@ -114,9 +116,9 @@ type PrecomputedAspectRatioEmbedding struct {
|
||||
Gate ml.Tensor `gguf:"gate"`
|
||||
}
|
||||
|
||||
func (e *PrecomputedAspectRatioEmbedding) Forward(ctx ml.Context, hiddenState ml.Tensor, aspectRatioIDs ml.Tensor, opts *VisionModelOptions) ml.Tensor {
|
||||
func (e *PrecomputedAspectRatioEmbedding) Forward(ctx ml.Context, hiddenState ml.Tensor, aspectRatioIDs ml.Tensor, numTiles int, opts *VisionModelOptions) ml.Tensor {
|
||||
embeddings := e.Embedding.Forward(ctx, aspectRatioIDs)
|
||||
embeddings = embeddings.Reshape(ctx, opts.hiddenSize, 1, opts.numTiles)
|
||||
embeddings = embeddings.Reshape(ctx, opts.hiddenSize, 1, numTiles)
|
||||
if e.Gate != nil {
|
||||
embeddings = embeddings.Mul(ctx, e.Gate)
|
||||
}
|
||||
@ -132,7 +134,7 @@ type PrecomputedPositionEmbedding struct {
|
||||
TilePositionEmbeddingGate ml.Tensor `gguf:"tile_position_embd.gate"`
|
||||
}
|
||||
|
||||
func (e *PrecomputedPositionEmbedding) Forward(ctx ml.Context, hiddenState, positionIDs, aspectRatioIDs ml.Tensor, numPositions int, opts *VisionModelOptions) ml.Tensor {
|
||||
func (e *PrecomputedPositionEmbedding) Forward(ctx ml.Context, hiddenState, positionIDs, aspectRatioIDs ml.Tensor, numPositions, numTiles int, opts *VisionModelOptions) ml.Tensor {
|
||||
positionEmbedding := e.PositionEmbedding.Forward(ctx, positionIDs)
|
||||
if e.PositionEmbeddingGate != nil {
|
||||
positionEmbedding = positionEmbedding.Mul(ctx, e.PositionEmbeddingGate)
|
||||
@ -141,7 +143,7 @@ func (e *PrecomputedPositionEmbedding) Forward(ctx ml.Context, hiddenState, posi
|
||||
hiddenState = hiddenState.Add(ctx, positionEmbedding)
|
||||
|
||||
tilePositionEmbedding := e.TilePositionEmbedding.Forward(ctx, aspectRatioIDs)
|
||||
tilePositionEmbedding = tilePositionEmbedding.Reshape(ctx, opts.hiddenSize, numPositions, opts.numTiles)
|
||||
tilePositionEmbedding = tilePositionEmbedding.Reshape(ctx, opts.hiddenSize, numPositions, numTiles)
|
||||
if e.TilePositionEmbeddingGate != nil {
|
||||
tilePositionEmbedding = tilePositionEmbedding.Mul(ctx, e.TilePositionEmbeddingGate)
|
||||
}
|
||||
@ -150,9 +152,9 @@ func (e *PrecomputedPositionEmbedding) Forward(ctx ml.Context, hiddenState, posi
|
||||
}
|
||||
|
||||
type VisionModelOptions struct {
|
||||
hiddenSize, numHeads, numTiles int
|
||||
imageSize, patchSize int
|
||||
eps float32
|
||||
hiddenSize, numHeads int
|
||||
imageSize, patchSize int
|
||||
eps float32
|
||||
|
||||
intermediateLayersIndices []int32
|
||||
}
|
||||
@ -181,14 +183,16 @@ func (m *VisionModel) Forward(ctx ml.Context, pixelValues, positionIDs, aspectRa
|
||||
numPositions++
|
||||
}
|
||||
|
||||
numTiles := pixelValues.Dim(3)
|
||||
|
||||
hiddenState := m.PatchEmbeddings.Forward(ctx, pixelValues, m.patchSize, m.patchSize, 0, 0, 1, 1)
|
||||
hiddenState = hiddenState.Reshape(ctx, numPatches, m.hiddenSize, m.numTiles)
|
||||
hiddenState = hiddenState.Reshape(ctx, numPatches, m.hiddenSize, numTiles)
|
||||
hiddenState = hiddenState.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
|
||||
|
||||
hiddenState = m.PreTilePositionEmbedding.Forward(ctx, hiddenState, aspectRatioIDs, m.VisionModelOptions)
|
||||
hiddenState = m.ClassEmbedding.Repeat(ctx, 2, m.numTiles).Concat(ctx, hiddenState, 1)
|
||||
hiddenState = m.PreTilePositionEmbedding.Forward(ctx, hiddenState, aspectRatioIDs, numTiles, m.VisionModelOptions)
|
||||
hiddenState = m.ClassEmbedding.Repeat(ctx, 2, numTiles).Concat(ctx, hiddenState, 1)
|
||||
|
||||
hiddenState = m.PositionEmbedding.Forward(ctx, hiddenState, positionIDs, aspectRatioIDs, numPositions, m.VisionModelOptions)
|
||||
hiddenState = m.PositionEmbedding.Forward(ctx, hiddenState, positionIDs, aspectRatioIDs, numPositions, numTiles, m.VisionModelOptions)
|
||||
hiddenState = m.PreLayerNorm.Forward(ctx, hiddenState, m.eps)
|
||||
|
||||
numPaddingPatches := 8 - (hiddenState.Dim(1)%8)%8
|
||||
@ -199,18 +203,18 @@ func (m *VisionModel) Forward(ctx ml.Context, pixelValues, positionIDs, aspectRa
|
||||
|
||||
hiddenState = m.PostLayerNorm.Forward(ctx, hiddenState, m.eps)
|
||||
|
||||
hiddenState = hiddenState.Reshape(ctx, m.hiddenSize, numPositions+numPaddingPatches, m.numTiles, batchSize)
|
||||
hiddenState = m.PostTilePositionEmbedding.Forward(ctx, hiddenState, aspectRatioIDs, m.VisionModelOptions)
|
||||
hiddenState = hiddenState.Reshape(ctx, m.hiddenSize, numPositions+numPaddingPatches, numTiles, batchSize)
|
||||
hiddenState = m.PostTilePositionEmbedding.Forward(ctx, hiddenState, aspectRatioIDs, numTiles, m.VisionModelOptions)
|
||||
|
||||
hiddenState = hiddenState.Reshape(ctx, m.hiddenSize, m.numTiles*(numPositions+numPaddingPatches), batchSize)
|
||||
hiddenState = hiddenState.Reshape(ctx, m.hiddenSize, numTiles*(numPositions+numPaddingPatches), batchSize)
|
||||
hiddenState, _ = m.GlobalTransformer.Forward(ctx, hiddenState, nil, m.VisionModelOptions)
|
||||
|
||||
hiddenStates := intermediateHiddenStates[0].Stack(ctx, 0, intermediateHiddenStates[1:]...)
|
||||
hiddenStates = hiddenStates.Reshape(ctx, len(intermediateHiddenStates)*m.hiddenSize, numPositions+numPaddingPatches, m.numTiles, batchSize)
|
||||
hiddenStates = hiddenStates.Unpad(ctx, 0, numPaddingPatches, 0, 0)
|
||||
hiddenStates = hiddenStates.Reshape(ctx, len(intermediateHiddenStates)*m.hiddenSize, numPositions+numPaddingPatches, numTiles, batchSize)
|
||||
hiddenStates = hiddenStates.Pad(ctx, 0, -numPaddingPatches, 0, 0)
|
||||
|
||||
hiddenState = hiddenState.Reshape(ctx, m.hiddenSize, numPositions+numPaddingPatches, m.numTiles, batchSize)
|
||||
hiddenState = hiddenState.Unpad(ctx, 0, numPaddingPatches, 0, 0)
|
||||
hiddenState = hiddenState.Reshape(ctx, m.hiddenSize, numPositions+numPaddingPatches, numTiles, batchSize)
|
||||
hiddenState = hiddenState.Pad(ctx, 0, -numPaddingPatches, 0, 0)
|
||||
return hiddenState.Concat(ctx, hiddenStates, 0)
|
||||
}
|
||||
|
||||
@ -222,7 +226,6 @@ func newVisionModel(c fs.Config) *VisionModel {
|
||||
VisionModelOptions: &VisionModelOptions{
|
||||
hiddenSize: int(c.Uint("vision.embedding_length")),
|
||||
numHeads: int(c.Uint("vision.attention.head_count")),
|
||||
numTiles: int(c.Uint("vision.max_num_tiles")),
|
||||
|
||||
imageSize: int(c.Uint("vision.image_size")),
|
||||
patchSize: int(c.Uint("vision.patch_size")),
|
||||
|
@ -2,17 +2,31 @@ package mllama
|
||||
|
||||
import (
|
||||
"image"
|
||||
"image/color"
|
||||
"math"
|
||||
"slices"
|
||||
|
||||
"golang.org/x/image/draw"
|
||||
|
||||
"github.com/ollama/ollama/fs"
|
||||
"github.com/ollama/ollama/model/imageproc"
|
||||
)
|
||||
|
||||
type supportedAspectRatio struct {
|
||||
rank, width, height int
|
||||
}
|
||||
|
||||
func (a supportedAspectRatio) Point() image.Point {
|
||||
return image.Point{a.width, a.height}
|
||||
}
|
||||
|
||||
func (a supportedAspectRatio) numTiles() int {
|
||||
return a.width * a.height
|
||||
}
|
||||
|
||||
type ImageProcessor struct {
|
||||
imageSize, numChannels, maxNumTiles int
|
||||
|
||||
mean, std [3]float32
|
||||
}
|
||||
|
||||
func newImageProcessor(c fs.Config) ImageProcessor {
|
||||
@ -20,71 +34,49 @@ func newImageProcessor(c fs.Config) ImageProcessor {
|
||||
imageSize: int(c.Uint("vision.image_size")),
|
||||
numChannels: int(c.Uint("vision.num_channels")),
|
||||
maxNumTiles: int(c.Uint("vision.max_num_tiles")),
|
||||
|
||||
mean: imageproc.ClipDefaultMean,
|
||||
std: imageproc.ClipDefaultSTD,
|
||||
}
|
||||
}
|
||||
|
||||
func (p *ImageProcessor) supportedAspectRatios(maxTiles int) []image.Point {
|
||||
ratios := []image.Point{}
|
||||
|
||||
for w := range maxTiles {
|
||||
for h := range maxTiles {
|
||||
if (w+1)*(h+1) <= maxTiles {
|
||||
ratios = append(ratios, image.Point{w + 1, h + 1})
|
||||
}
|
||||
func (p ImageProcessor) supportedAspectRatios() (ratios []supportedAspectRatio) {
|
||||
for w := 1; w <= p.maxNumTiles; w++ {
|
||||
for h := 1; h <= p.maxNumTiles/w; h++ {
|
||||
ratios = append(ratios, supportedAspectRatio{len(ratios) + 1, w, h})
|
||||
}
|
||||
}
|
||||
|
||||
return ratios
|
||||
}
|
||||
|
||||
func (p *ImageProcessor) clip(a, a_min, a_max int) int {
|
||||
if a < a_min {
|
||||
return a_min
|
||||
} else if a > a_max {
|
||||
return a_max
|
||||
}
|
||||
func (p ImageProcessor) fitToCanvas(imageSize, canvasSize image.Point) image.Point {
|
||||
tw := min(max(imageSize.X, p.imageSize), canvasSize.X)
|
||||
th := min(max(imageSize.Y, p.imageSize), canvasSize.Y)
|
||||
|
||||
return a
|
||||
}
|
||||
r := math.Min(
|
||||
float64(tw)/float64(imageSize.X),
|
||||
float64(th)/float64(imageSize.Y),
|
||||
)
|
||||
|
||||
func (p *ImageProcessor) fitToCanvas(imageSize, canvasSize image.Point, tileSize int) image.Point {
|
||||
targetWidth := p.clip(imageSize.X, tileSize, canvasSize.X)
|
||||
targetHeight := p.clip(imageSize.Y, tileSize, canvasSize.Y)
|
||||
|
||||
scaleWidth := float64(targetWidth) / float64(imageSize.X)
|
||||
scaleHeight := float64(targetHeight) / float64(imageSize.Y)
|
||||
|
||||
var w, h int
|
||||
|
||||
if scaleWidth < scaleHeight {
|
||||
w = targetWidth
|
||||
h = min(int(math.Floor(float64(imageSize.Y)*scaleWidth)), targetHeight)
|
||||
} else {
|
||||
w = min(int(math.Floor(float64(imageSize.X)*scaleHeight)), targetWidth)
|
||||
h = targetHeight
|
||||
}
|
||||
w := min(int(math.Floor(float64(imageSize.X)*r)), tw)
|
||||
h := min(int(math.Floor(float64(imageSize.Y)*r)), th)
|
||||
|
||||
return image.Point{w, h}
|
||||
}
|
||||
|
||||
func (p *ImageProcessor) optimalTiledCanvas(imageSize image.Point, maxImageTiles, tileSize int) image.Point {
|
||||
possibleTileArrangements := p.supportedAspectRatios(maxImageTiles)
|
||||
possibleCanvasSizes := []image.Point{}
|
||||
for _, pta := range possibleTileArrangements {
|
||||
possibleCanvasSizes = append(possibleCanvasSizes, image.Point{pta.X * tileSize, pta.Y * tileSize})
|
||||
func (p ImageProcessor) optimalTiledCanvas(imageSize image.Point) image.Point {
|
||||
possibleTileArrangements := p.supportedAspectRatios()
|
||||
possibleCanvasSizes := make([]image.Point, len(possibleTileArrangements))
|
||||
for i, pta := range possibleTileArrangements {
|
||||
possibleCanvasSizes[i] = image.Point{pta.width * p.imageSize, pta.height * p.imageSize}
|
||||
}
|
||||
|
||||
scales := []float64{}
|
||||
|
||||
for _, pcs := range possibleCanvasSizes {
|
||||
scaleHeight := float64(pcs.Y) / float64(imageSize.Y)
|
||||
scaleWidth := float64(pcs.X) / float64(imageSize.X)
|
||||
|
||||
if scaleWidth > scaleHeight {
|
||||
scales = append(scales, scaleHeight)
|
||||
} else {
|
||||
scales = append(scales, scaleWidth)
|
||||
}
|
||||
scales := make([]float64, len(possibleCanvasSizes))
|
||||
for i, pcs := range possibleCanvasSizes {
|
||||
scales[i] = min(
|
||||
float64(pcs.Y)/float64(imageSize.Y),
|
||||
float64(pcs.X)/float64(imageSize.X),
|
||||
)
|
||||
}
|
||||
|
||||
var minUpscale float64
|
||||
@ -123,47 +115,41 @@ func (p *ImageProcessor) optimalTiledCanvas(imageSize image.Point, maxImageTiles
|
||||
return selectedCanvas
|
||||
}
|
||||
|
||||
func (p *ImageProcessor) splitToTiles(img image.Image, numTilesSize image.Point) []image.Image {
|
||||
func (p ImageProcessor) splitToTiles(img image.Image, numTilesSize image.Point) []image.Image {
|
||||
b := img.Bounds()
|
||||
width := b.Max.X - b.Min.X
|
||||
height := b.Max.Y - b.Min.Y
|
||||
tileHeight := height / numTilesSize.Y
|
||||
tileWidth := width / numTilesSize.X
|
||||
|
||||
images := []image.Image{}
|
||||
images := make([]image.Image, 0, numTilesSize.Y*numTilesSize.X)
|
||||
|
||||
for h := range numTilesSize.Y {
|
||||
for w := range numTilesSize.X {
|
||||
rect := image.Rect(tileWidth*w, tileHeight*h, tileWidth*(w+1), tileHeight*(h+1))
|
||||
images = append(images, img.(interface {
|
||||
if subImg, ok := img.(interface {
|
||||
SubImage(image.Rectangle) image.Image
|
||||
}).SubImage(rect))
|
||||
}); ok {
|
||||
images = append(images, subImg.SubImage(rect))
|
||||
} else {
|
||||
// Handle the case where img does not implement SubImage
|
||||
// This is a fallback and may not be efficient
|
||||
newImg := image.NewRGBA(rect)
|
||||
draw.Draw(newImg, rect, img, rect.Min, draw.Src)
|
||||
images = append(images, newImg)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return images
|
||||
}
|
||||
|
||||
// remove the "alpha" channel by drawing over a prefilled image
|
||||
//
|
||||
//nolint:unused
|
||||
func (p *ImageProcessor) compositeImage(img image.Image) image.Image {
|
||||
dst := image.NewRGBA(img.Bounds())
|
||||
|
||||
white := color.RGBA{255, 255, 255, 255}
|
||||
draw.Draw(dst, dst.Bounds(), &image.Uniform{white}, image.Point{}, draw.Src)
|
||||
draw.Draw(dst, dst.Bounds(), img, img.Bounds().Min, draw.Over)
|
||||
|
||||
return dst
|
||||
}
|
||||
|
||||
func (p *ImageProcessor) resize(img image.Image, outputSize image.Point, maxImageTiles int) (image.Image, image.Point) {
|
||||
func (p ImageProcessor) resize(img image.Image) (image.Image, image.Point) {
|
||||
b := img.Bounds()
|
||||
tileSize := outputSize.Y
|
||||
|
||||
canvasSize := p.optimalTiledCanvas(b.Max, maxImageTiles, tileSize)
|
||||
aspectRatio := image.Point{canvasSize.X / tileSize, canvasSize.Y / tileSize}
|
||||
newSize := p.fitToCanvas(b.Max, canvasSize, tileSize)
|
||||
canvasSize := p.optimalTiledCanvas(b.Max)
|
||||
aspectRatio := image.Point{canvasSize.X / p.imageSize, canvasSize.Y / p.imageSize}
|
||||
newSize := p.fitToCanvas(b.Max, canvasSize)
|
||||
|
||||
dst := image.NewRGBA(image.Rect(0, 0, newSize.X, newSize.Y))
|
||||
|
||||
@ -177,10 +163,10 @@ func (p *ImageProcessor) resize(img image.Image, outputSize image.Point, maxImag
|
||||
return dst, aspectRatio
|
||||
}
|
||||
|
||||
func (p *ImageProcessor) pad(img image.Image, outputSize, aspectRatio image.Point) image.Image {
|
||||
func (p ImageProcessor) pad(img image.Image, aspectRatio image.Point) image.Image {
|
||||
paddedSize := image.Point{
|
||||
X: outputSize.X * aspectRatio.X,
|
||||
Y: outputSize.Y * aspectRatio.Y,
|
||||
X: p.imageSize * aspectRatio.X,
|
||||
Y: p.imageSize * aspectRatio.Y,
|
||||
}
|
||||
|
||||
dst := image.NewRGBA(image.Rect(0, 0, paddedSize.X, paddedSize.Y))
|
||||
@ -189,7 +175,7 @@ func (p *ImageProcessor) pad(img image.Image, outputSize, aspectRatio image.Poin
|
||||
return dst
|
||||
}
|
||||
|
||||
func (p *ImageProcessor) pack(img image.Image, aspectRatio image.Point, mean, std [3]float32) []float32 {
|
||||
func (p ImageProcessor) pack(img image.Image, aspectRatio image.Point) []float32 {
|
||||
subImages := p.splitToTiles(img, aspectRatio)
|
||||
|
||||
var pixelVals []float32
|
||||
@ -205,9 +191,9 @@ func (p *ImageProcessor) pack(img image.Image, aspectRatio image.Point, mean, st
|
||||
gVal := float32(g>>8) / 255.0
|
||||
bVal := float32(b>>8) / 255.0
|
||||
|
||||
rVal = (rVal - mean[0]) / std[0]
|
||||
gVal = (gVal - mean[1]) / std[1]
|
||||
bVal = (bVal - mean[2]) / std[2]
|
||||
rVal = (rVal - p.mean[0]) / p.std[0]
|
||||
gVal = (gVal - p.mean[1]) / p.std[1]
|
||||
bVal = (bVal - p.mean[2]) / p.std[2]
|
||||
|
||||
rVals = append(rVals, rVal)
|
||||
gVals = append(gVals, gVal)
|
||||
@ -222,17 +208,15 @@ func (p *ImageProcessor) pack(img image.Image, aspectRatio image.Point, mean, st
|
||||
return pixelVals
|
||||
}
|
||||
|
||||
func (p ImageProcessor) ProcessImage(img image.Image) ([]float32, int, error) {
|
||||
outputSize := image.Point{p.imageSize, p.imageSize}
|
||||
func (p ImageProcessor) ProcessImage(img image.Image) ([]float32, supportedAspectRatio, error) {
|
||||
newImage, newImageRatio := p.resize(img)
|
||||
newImage = p.pad(newImage, newImageRatio)
|
||||
pixelValues := p.pack(newImage, newImageRatio)
|
||||
|
||||
// clip values
|
||||
mean := [3]float32{0.48145466, 0.4578275, 0.40821073}
|
||||
std := [3]float32{0.26862954, 0.26130258, 0.27577711}
|
||||
supportedAspectRatios := p.supportedAspectRatios()
|
||||
aspectRatioID := slices.IndexFunc(supportedAspectRatios, func(i supportedAspectRatio) bool {
|
||||
return i.width == newImageRatio.X && i.height == newImageRatio.Y
|
||||
})
|
||||
|
||||
newImage, aspectRatio := p.resize(img, outputSize, p.maxNumTiles)
|
||||
newImage = p.pad(newImage, outputSize, aspectRatio)
|
||||
|
||||
data := p.pack(newImage, aspectRatio, mean, std)
|
||||
aspectRatioIndex := slices.Index(p.supportedAspectRatios(p.maxNumTiles), aspectRatio) + 1
|
||||
return data, aspectRatioIndex, nil
|
||||
return pixelValues, supportedAspectRatios[aspectRatioID], nil
|
||||
}
|
||||
|
387
model/models/mllama/process_image_test.go
Normal file
387
model/models/mllama/process_image_test.go
Normal file
@ -0,0 +1,387 @@
|
||||
package mllama
|
||||
|
||||
import (
|
||||
"image"
|
||||
"testing"
|
||||
|
||||
"github.com/google/go-cmp/cmp"
|
||||
)
|
||||
|
||||
func TestSupportedAspectRatios(t *testing.T) {
|
||||
cases := []struct {
|
||||
p ImageProcessor
|
||||
want []supportedAspectRatio
|
||||
}{
|
||||
{
|
||||
p: ImageProcessor{maxNumTiles: 1},
|
||||
want: []supportedAspectRatio{
|
||||
{1, 1, 1},
|
||||
},
|
||||
},
|
||||
{
|
||||
p: ImageProcessor{maxNumTiles: 2},
|
||||
want: []supportedAspectRatio{
|
||||
{1, 1, 1},
|
||||
{2, 1, 2},
|
||||
{3, 2, 1},
|
||||
},
|
||||
},
|
||||
{
|
||||
p: ImageProcessor{maxNumTiles: 3},
|
||||
want: []supportedAspectRatio{
|
||||
{1, 1, 1},
|
||||
{2, 1, 2},
|
||||
{3, 1, 3},
|
||||
{4, 2, 1},
|
||||
{5, 3, 1},
|
||||
},
|
||||
},
|
||||
{
|
||||
p: ImageProcessor{maxNumTiles: 4},
|
||||
want: []supportedAspectRatio{
|
||||
{1, 1, 1},
|
||||
{2, 1, 2},
|
||||
{3, 1, 3},
|
||||
{4, 1, 4},
|
||||
{5, 2, 1},
|
||||
{6, 2, 2},
|
||||
{7, 3, 1},
|
||||
{8, 4, 1},
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range cases {
|
||||
actual := tt.p.supportedAspectRatios()
|
||||
if diff := cmp.Diff(actual, tt.want, cmp.AllowUnexported(supportedAspectRatio{})); diff != "" {
|
||||
t.Errorf("mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestFitToCanvas(t *testing.T) {
|
||||
cases := []struct {
|
||||
p ImageProcessor
|
||||
image image.Point
|
||||
canvas image.Point
|
||||
expect image.Point
|
||||
}{
|
||||
{
|
||||
p: ImageProcessor{imageSize: 200},
|
||||
image: image.Point{400, 400},
|
||||
canvas: image.Point{640, 480},
|
||||
expect: image.Point{400, 400},
|
||||
},
|
||||
{
|
||||
p: ImageProcessor{imageSize: 200},
|
||||
image: image.Point{1024, 768},
|
||||
canvas: image.Point{640, 480},
|
||||
expect: image.Point{640, 480},
|
||||
},
|
||||
{
|
||||
p: ImageProcessor{imageSize: 750},
|
||||
image: image.Point{500, 500},
|
||||
canvas: image.Point{1000, 1000},
|
||||
expect: image.Point{750, 750},
|
||||
},
|
||||
{
|
||||
p: ImageProcessor{imageSize: 2000},
|
||||
image: image.Point{500, 1000},
|
||||
canvas: image.Point{2000, 2000},
|
||||
expect: image.Point{1000, 2000},
|
||||
},
|
||||
{
|
||||
p: ImageProcessor{imageSize: 1000},
|
||||
image: image.Point{4000, 3000},
|
||||
canvas: image.Point{2000, 1000},
|
||||
expect: image.Point{1333, 1000},
|
||||
},
|
||||
{
|
||||
p: ImageProcessor{imageSize: 560},
|
||||
image: image.Point{667, 1000},
|
||||
canvas: image.Point{1000, 1000},
|
||||
expect: image.Point{667, 1000},
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range cases {
|
||||
actual := tt.p.fitToCanvas(tt.image, tt.canvas)
|
||||
if diff := cmp.Diff(actual, tt.expect); diff != "" {
|
||||
t.Errorf("mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestOptimalTiledCanvas(t *testing.T) {
|
||||
cases := []struct {
|
||||
p ImageProcessor
|
||||
image image.Point
|
||||
expect image.Point
|
||||
}{
|
||||
{
|
||||
p: ImageProcessor{maxNumTiles: 4, imageSize: 1000},
|
||||
image: image.Point{1024, 768},
|
||||
expect: image.Point{2000, 1000},
|
||||
},
|
||||
{
|
||||
p: ImageProcessor{maxNumTiles: 4, imageSize: 560},
|
||||
image: image.Point{1024, 768},
|
||||
expect: image.Point{1120, 1120},
|
||||
},
|
||||
{
|
||||
p: ImageProcessor{maxNumTiles: 4, imageSize: 560},
|
||||
image: image.Point{800, 600},
|
||||
expect: image.Point{1120, 1120},
|
||||
},
|
||||
{
|
||||
p: ImageProcessor{maxNumTiles: 4, imageSize: 560},
|
||||
image: image.Point{640, 480},
|
||||
expect: image.Point{1120, 560},
|
||||
},
|
||||
{
|
||||
p: ImageProcessor{maxNumTiles: 4, imageSize: 560},
|
||||
image: image.Point{320, 200},
|
||||
expect: image.Point{560, 560},
|
||||
},
|
||||
{
|
||||
p: ImageProcessor{maxNumTiles: 4, imageSize: 560},
|
||||
image: image.Point{1320, 200},
|
||||
expect: image.Point{1680, 560},
|
||||
},
|
||||
{
|
||||
p: ImageProcessor{maxNumTiles: 4, imageSize: 560},
|
||||
image: image.Point{2000, 200},
|
||||
expect: image.Point{2240, 560},
|
||||
},
|
||||
{
|
||||
p: ImageProcessor{maxNumTiles: 4, imageSize: 560},
|
||||
image: image.Point{10000, 200},
|
||||
expect: image.Point{2240, 560},
|
||||
},
|
||||
{
|
||||
p: ImageProcessor{maxNumTiles: 4, imageSize: 560},
|
||||
image: image.Point{480, 640},
|
||||
expect: image.Point{560, 1120},
|
||||
},
|
||||
{
|
||||
p: ImageProcessor{maxNumTiles: 4, imageSize: 560},
|
||||
image: image.Point{200, 320},
|
||||
expect: image.Point{560, 560},
|
||||
},
|
||||
{
|
||||
p: ImageProcessor{maxNumTiles: 4, imageSize: 560},
|
||||
image: image.Point{200, 1320},
|
||||
expect: image.Point{560, 1680},
|
||||
},
|
||||
{
|
||||
p: ImageProcessor{maxNumTiles: 4, imageSize: 560},
|
||||
image: image.Point{200, 2000},
|
||||
expect: image.Point{560, 2240},
|
||||
},
|
||||
{
|
||||
p: ImageProcessor{maxNumTiles: 4, imageSize: 560},
|
||||
image: image.Point{200, 10000},
|
||||
expect: image.Point{560, 2240},
|
||||
},
|
||||
{
|
||||
p: ImageProcessor{maxNumTiles: 4, imageSize: 560},
|
||||
image: image.Point{10000, 10000},
|
||||
expect: image.Point{1120, 1120},
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range cases {
|
||||
actual := tt.p.optimalTiledCanvas(tt.image)
|
||||
if diff := cmp.Diff(actual, tt.expect); diff != "" {
|
||||
t.Errorf("mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestSplitToTiles(t *testing.T) {
|
||||
cases := []struct {
|
||||
imageMax image.Point
|
||||
numTiles image.Point
|
||||
expect []image.Image
|
||||
}{
|
||||
{
|
||||
imageMax: image.Point{1024, 768},
|
||||
numTiles: image.Point{1, 1},
|
||||
expect: []image.Image{image.NewRGBA(image.Rect(0, 0, 1024, 768))},
|
||||
},
|
||||
{
|
||||
imageMax: image.Point{1000, 500},
|
||||
numTiles: image.Point{2, 1},
|
||||
expect: []image.Image{
|
||||
image.NewRGBA(image.Rect(0, 0, 500, 500)),
|
||||
image.NewRGBA(image.Rect(500, 0, 1000, 500)),
|
||||
},
|
||||
},
|
||||
{
|
||||
imageMax: image.Point{1000, 1000},
|
||||
numTiles: image.Point{2, 2},
|
||||
expect: []image.Image{
|
||||
image.NewRGBA(image.Rect(0, 0, 500, 500)),
|
||||
image.NewRGBA(image.Rect(500, 0, 1000, 500)),
|
||||
image.NewRGBA(image.Rect(0, 500, 500, 1000)),
|
||||
image.NewRGBA(image.Rect(500, 500, 1000, 1000)),
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
var p ImageProcessor
|
||||
|
||||
for _, tt := range cases {
|
||||
actual := p.splitToTiles(image.NewRGBA(image.Rectangle{Max: tt.imageMax}), tt.numTiles)
|
||||
|
||||
if len(actual) != len(tt.expect) {
|
||||
t.Errorf("incorrect number of images '%d': expect: '%d'", len(actual), len(tt.expect))
|
||||
}
|
||||
|
||||
for i := range actual {
|
||||
if actual[i].Bounds() != tt.expect[i].Bounds() {
|
||||
t.Errorf("image size incorrect: '%#v': expect: '%#v'", actual[i].Bounds(), tt.expect[i].Bounds())
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestResize(t *testing.T) {
|
||||
cases := []struct {
|
||||
p ImageProcessor
|
||||
imageMax image.Point
|
||||
expectImage image.Image
|
||||
expectAspectRatio image.Point
|
||||
}{
|
||||
{
|
||||
p: ImageProcessor{maxNumTiles: 1, imageSize: 100},
|
||||
imageMax: image.Point{200, 200},
|
||||
expectImage: image.NewRGBA(image.Rect(0, 0, 100, 100)),
|
||||
expectAspectRatio: image.Point{1, 1},
|
||||
},
|
||||
{
|
||||
p: ImageProcessor{maxNumTiles: 2, imageSize: 100},
|
||||
imageMax: image.Point{200, 200},
|
||||
expectImage: image.NewRGBA(image.Rect(0, 0, 100, 100)),
|
||||
expectAspectRatio: image.Point{1, 1},
|
||||
},
|
||||
{
|
||||
p: ImageProcessor{maxNumTiles: 4, imageSize: 560},
|
||||
imageMax: image.Point{10, 10},
|
||||
expectImage: image.NewRGBA(image.Rect(0, 0, 560, 560)),
|
||||
expectAspectRatio: image.Point{1, 1},
|
||||
},
|
||||
{
|
||||
p: ImageProcessor{maxNumTiles: 4, imageSize: 560},
|
||||
imageMax: image.Point{2560, 1920},
|
||||
expectImage: image.NewRGBA(image.Rect(0, 0, 1120, 840)),
|
||||
expectAspectRatio: image.Point{2, 2},
|
||||
},
|
||||
{
|
||||
p: ImageProcessor{maxNumTiles: 4, imageSize: 560},
|
||||
imageMax: image.Point{1024, 768},
|
||||
expectImage: image.NewRGBA(image.Rect(0, 0, 1024, 768)),
|
||||
expectAspectRatio: image.Point{2, 2},
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range cases {
|
||||
actualImage, actualAspectRatio := tt.p.resize(image.Rectangle{Max: tt.imageMax})
|
||||
|
||||
if actualImage.Bounds() != tt.expectImage.Bounds() {
|
||||
t.Errorf("image size incorrect: '%#v': expect: '%#v'", actualImage.Bounds(), tt.expectImage.Bounds())
|
||||
}
|
||||
|
||||
if actualAspectRatio != tt.expectAspectRatio {
|
||||
t.Errorf("aspect ratio incorrect: '%#v': expect: '%#v'", actualAspectRatio, tt.expectAspectRatio)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestPad(t *testing.T) {
|
||||
cases := []struct {
|
||||
p ImageProcessor
|
||||
imageMax image.Point
|
||||
aspectRatio image.Point
|
||||
expect image.Image
|
||||
}{
|
||||
{
|
||||
p: ImageProcessor{maxNumTiles: 4, imageSize: 560},
|
||||
imageMax: image.Point{1000, 667},
|
||||
aspectRatio: image.Point{2, 2},
|
||||
expect: image.NewRGBA(image.Rect(0, 0, 1120, 1120)),
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range cases {
|
||||
actual := tt.p.pad(image.Rectangle{Max: tt.imageMax}, tt.aspectRatio)
|
||||
|
||||
if actual.Bounds() != tt.expect.Bounds() {
|
||||
t.Errorf("image size incorrect: '%#v': expect: '%#v'", actual.Bounds(), tt.expect.Bounds())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestPackImages(t *testing.T) {
|
||||
cases := []struct {
|
||||
imageMax image.Point
|
||||
aspectRatio image.Point
|
||||
expectVals int
|
||||
}{
|
||||
{
|
||||
imageMax: image.Point{1120, 1120},
|
||||
aspectRatio: image.Point{2, 2},
|
||||
expectVals: 2 * 2 * 3 * 560 * 560,
|
||||
},
|
||||
{
|
||||
imageMax: image.Point{560, 560},
|
||||
aspectRatio: image.Point{1, 1},
|
||||
expectVals: 1 * 1 * 3 * 560 * 560,
|
||||
},
|
||||
{
|
||||
imageMax: image.Point{1120, 560},
|
||||
aspectRatio: image.Point{1, 2},
|
||||
expectVals: 1 * 2 * 3 * 560 * 560,
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range cases {
|
||||
var p ImageProcessor
|
||||
actualVals := p.pack(image.NewRGBA(image.Rectangle{Max: tt.imageMax}), tt.aspectRatio)
|
||||
if len(actualVals) != tt.expectVals {
|
||||
t.Errorf("packed image size incorrect: '%d': expect: '%d'", len(actualVals), tt.expectVals)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestPreprocess(t *testing.T) {
|
||||
cases := []struct {
|
||||
imageMax image.Point
|
||||
expectAspectRatioID int
|
||||
}{
|
||||
{
|
||||
imageMax: image.Point{10, 10},
|
||||
expectAspectRatioID: 1,
|
||||
},
|
||||
{
|
||||
imageMax: image.Point{1024, 768},
|
||||
expectAspectRatioID: 6,
|
||||
},
|
||||
}
|
||||
|
||||
p := ImageProcessor{imageSize: 560, maxNumTiles: 4}
|
||||
for _, tt := range cases {
|
||||
img, aspectRatio, err := p.ProcessImage(image.NewRGBA(image.Rectangle{Max: tt.imageMax}))
|
||||
if err != nil {
|
||||
t.Fatalf("error processing: %q", err)
|
||||
}
|
||||
|
||||
if len(img) == 0 {
|
||||
t.Errorf("no image data returned")
|
||||
}
|
||||
|
||||
if aspectRatio.rank != tt.expectAspectRatioID {
|
||||
t.Errorf("aspect ratio incorrect: '%d': expect: '%d'", aspectRatio, tt.expectAspectRatioID)
|
||||
}
|
||||
}
|
||||
}
|
@ -5,7 +5,6 @@ import (
|
||||
"fmt"
|
||||
"hash/maphash"
|
||||
"log/slog"
|
||||
"slices"
|
||||
"sync"
|
||||
"time"
|
||||
|
||||
@ -18,8 +17,7 @@ type ImageContext struct {
|
||||
// mu is required to be held when generating embeddings or accessing the cache
|
||||
mu sync.Mutex
|
||||
|
||||
clip *llama.ClipContext
|
||||
mllama *llama.MllamaContext
|
||||
clip *llama.ClipContext
|
||||
|
||||
// cache of images to embeddings
|
||||
images []imageCache
|
||||
@ -35,8 +33,6 @@ func NewImageContext(llamaContext *llama.Context, modelPath string) (*ImageConte
|
||||
var c ImageContext
|
||||
if arch == "clip" {
|
||||
c.clip, err = llama.NewClipContext(llamaContext, modelPath)
|
||||
} else if arch == "mllama" {
|
||||
c.mllama, err = llama.NewMllamaContext(llamaContext, modelPath)
|
||||
} else {
|
||||
return nil, fmt.Errorf("unknown vision model architecture: %s", arch)
|
||||
}
|
||||
@ -58,12 +54,9 @@ func (c *ImageContext) Free(modelPath string) {
|
||||
if c.clip != nil {
|
||||
c.clip.Free()
|
||||
}
|
||||
if c.mllama != nil {
|
||||
c.mllama.Free()
|
||||
}
|
||||
}
|
||||
|
||||
func (c *ImageContext) NewEmbed(llamaContext *llama.Context, data []byte, aspectRatioId int) ([][]float32, error) {
|
||||
func (c *ImageContext) NewEmbed(llamaContext *llama.Context, data []byte) ([][]float32, error) {
|
||||
if c == nil {
|
||||
return nil, nil
|
||||
}
|
||||
@ -79,12 +72,7 @@ func (c *ImageContext) NewEmbed(llamaContext *llama.Context, data []byte, aspect
|
||||
|
||||
embed, err := c.findImage(hash)
|
||||
if err != nil {
|
||||
if c.mllama != nil {
|
||||
embed, err = c.mllama.NewEmbed(llamaContext, data, aspectRatioId)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
} else if c.clip != nil {
|
||||
if c.clip != nil {
|
||||
embed, err = c.clip.NewEmbed(llamaContext, data)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
@ -105,33 +93,11 @@ func (c *ImageContext) BatchSize(configuredBatchSize int) int {
|
||||
return 0
|
||||
}
|
||||
|
||||
// Mllama maps an image to 1 embedding token (llava creates many tokens)
|
||||
// and doesn't support more than a single image per request.
|
||||
// The embeddings are large (100 MB), so allocating a big batch can fail
|
||||
// on some systems
|
||||
if c.mllama != nil {
|
||||
return 1
|
||||
}
|
||||
|
||||
return configuredBatchSize
|
||||
}
|
||||
|
||||
func (c *ImageContext) EmbedSize(llamaContext *llama.Context) int {
|
||||
if c != nil && c.mllama != nil {
|
||||
return c.mllama.EmbedSize(llamaContext)
|
||||
} else {
|
||||
return llamaContext.Model().NEmbd()
|
||||
}
|
||||
}
|
||||
|
||||
func (c *ImageContext) NeedCrossAttention(inputs ...input) bool {
|
||||
if c == nil || c.mllama == nil {
|
||||
return false
|
||||
}
|
||||
|
||||
return slices.ContainsFunc(inputs, func(input input) bool {
|
||||
return input.embed != nil
|
||||
})
|
||||
return llamaContext.Model().NEmbd()
|
||||
}
|
||||
|
||||
type imageCache struct {
|
||||
|
@ -57,10 +57,6 @@ type Sequence struct {
|
||||
// input cache being used by this sequence
|
||||
cache *InputCacheSlot
|
||||
|
||||
// does this sequence require cross-attention layers to be processed? - if we have seen
|
||||
// an image for certain multi-modal models
|
||||
crossAttention bool
|
||||
|
||||
// channel to send responses over
|
||||
responses chan string
|
||||
|
||||
@ -205,7 +201,7 @@ func (s *Server) inputs(prompt string, images []llm.ImageData) ([]input, error)
|
||||
return nil, fmt.Errorf("invalid image index: %d", n)
|
||||
}
|
||||
|
||||
embed, err := s.image.NewEmbed(s.lc, images[imageIndex].Data, images[imageIndex].AspectRatioID)
|
||||
embed, err := s.image.NewEmbed(s.lc, images[imageIndex].Data)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
@ -368,7 +364,6 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
|
||||
defer s.mu.Unlock()
|
||||
|
||||
var batch *llama.Batch
|
||||
crossAttention := false
|
||||
|
||||
seqIdx := s.nextSeq - 1
|
||||
for range s.seqs {
|
||||
@ -416,9 +411,8 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
|
||||
batch = tokenBatch
|
||||
} else {
|
||||
batch = embedBatch
|
||||
seq.crossAttention = s.image.NeedCrossAttention(input)
|
||||
}
|
||||
} else if embedding != batch.IsEmbedding() || crossAttention != seq.crossAttention {
|
||||
} else if embedding != batch.IsEmbedding() {
|
||||
s.nextSeq = seqIdx
|
||||
break
|
||||
}
|
||||
@ -427,7 +421,6 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
|
||||
break
|
||||
}
|
||||
|
||||
crossAttention = seq.crossAttention
|
||||
batch.Add(input.token, input.embed, len(seq.cache.Inputs)+len(seq.pendingInputs), i+1 == len(seq.inputs), seq.cache.Id)
|
||||
seq.pendingInputs = append(seq.pendingInputs, input)
|
||||
seq.iBatch = batch.NumTokens() - 1
|
||||
@ -440,20 +433,11 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
|
||||
return nil
|
||||
}
|
||||
|
||||
s.lc.SetCrossAttention(crossAttention)
|
||||
|
||||
err := s.lc.Decode(batch)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed to decode batch: %w", err)
|
||||
}
|
||||
|
||||
if crossAttention {
|
||||
// synchronize state to ensure the cross attention batch is complete.
|
||||
// needed specifically for multi-GPU systems otherwise an inflight
|
||||
// task may be incorrectly invalidated causing a crash
|
||||
s.lc.Synchronize()
|
||||
}
|
||||
|
||||
for i, seq := range s.seqs {
|
||||
if seq == nil {
|
||||
continue
|
||||
@ -622,8 +606,6 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
|
||||
return
|
||||
}
|
||||
|
||||
seq.crossAttention = s.image.NeedCrossAttention(seq.cache.Inputs...)
|
||||
|
||||
s.seqs[i] = seq
|
||||
s.cond.Signal()
|
||||
found = true
|
||||
|
@ -3,47 +3,32 @@ package server
|
||||
import (
|
||||
"bytes"
|
||||
"context"
|
||||
"encoding/binary"
|
||||
"errors"
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/model/models/mllama"
|
||||
"github.com/ollama/ollama/template"
|
||||
)
|
||||
|
||||
type tokenizeFunc func(context.Context, string) ([]int, error)
|
||||
|
||||
var errTooManyImages = errors.New("vision model only supports a single image per message")
|
||||
|
||||
// chatPrompt accepts a list of messages and returns the prompt and images that should be used for the next chat turn.
|
||||
// chatPrompt truncates any messages that exceed the context window of the model, making sure to always include 1) the
|
||||
// latest message and 2) system messages
|
||||
func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.Options, msgs []api.Message, tools []api.Tool) (prompt string, images []llm.ImageData, _ error) {
|
||||
var system []api.Message
|
||||
|
||||
isMllama := checkMllamaModelFamily(m)
|
||||
|
||||
var imageNumTokens int
|
||||
// TODO: Ideally we would compute this from the projector metadata but some pieces are implementation dependent
|
||||
if isMllama {
|
||||
// Our mllama implementation packs all of the embeddings into a single token
|
||||
imageNumTokens = 1
|
||||
} else {
|
||||
// Clip images are represented as 768 tokens, each an embedding
|
||||
imageNumTokens = 768
|
||||
}
|
||||
// Clip images are represented as 768 tokens, each an embedding
|
||||
imageNumTokens := 768
|
||||
|
||||
n := len(msgs) - 1
|
||||
// in reverse, find all messages that fit into context window
|
||||
for i := n; i >= 0; i-- {
|
||||
if isMllama && len(msgs[i].Images) > 1 {
|
||||
return "", nil, errTooManyImages
|
||||
}
|
||||
|
||||
// always include the last message
|
||||
if i == n {
|
||||
continue
|
||||
@ -84,48 +69,17 @@ func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.
|
||||
currMsgIdx := n
|
||||
|
||||
for cnt, msg := range msgs[currMsgIdx:] {
|
||||
prefix := ""
|
||||
imgPrompt := ""
|
||||
if slices.Contains(m.Config.ModelFamilies, "mllama") && len(msg.Images) > 1 {
|
||||
return "", nil, errors.New("this model only supports one image while more than one image requested")
|
||||
}
|
||||
|
||||
var prefix string
|
||||
prompt := msg.Content
|
||||
|
||||
for _, i := range msg.Images {
|
||||
var imgData llm.ImageData
|
||||
|
||||
if isMllama {
|
||||
if len(m.ProjectorPaths) == 0 {
|
||||
imgData = llm.ImageData{
|
||||
ID: len(images),
|
||||
Data: i,
|
||||
}
|
||||
} else {
|
||||
data, opts, err := mllama.Preprocess(bytes.NewReader(i))
|
||||
if err != nil {
|
||||
return "", nil, err
|
||||
}
|
||||
|
||||
buf := new(bytes.Buffer)
|
||||
err = binary.Write(buf, binary.LittleEndian, data)
|
||||
if err != nil {
|
||||
return "", nil, err
|
||||
}
|
||||
|
||||
ar, ok := opts["aspectRatioIndex"].(int)
|
||||
if !ok {
|
||||
return "", nil, fmt.Errorf("missing aspect ratio for image")
|
||||
}
|
||||
|
||||
imgData = llm.ImageData{
|
||||
ID: len(images),
|
||||
Data: buf.Bytes(),
|
||||
AspectRatioID: ar,
|
||||
}
|
||||
}
|
||||
imgPrompt = "<|image|>"
|
||||
} else {
|
||||
imgData = llm.ImageData{
|
||||
ID: len(images),
|
||||
Data: i,
|
||||
}
|
||||
imgData := llm.ImageData{
|
||||
ID: len(images),
|
||||
Data: i,
|
||||
}
|
||||
|
||||
imgTag := fmt.Sprintf("[img-%d]", imgData.ID)
|
||||
@ -137,7 +91,7 @@ func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.
|
||||
|
||||
images = append(images, imgData)
|
||||
}
|
||||
msgs[currMsgIdx+cnt].Content = prefix + imgPrompt + prompt
|
||||
msgs[currMsgIdx+cnt].Content = prefix + prompt
|
||||
}
|
||||
|
||||
// truncate any messages that do not fit into the context window
|
||||
@ -148,12 +102,3 @@ func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.
|
||||
|
||||
return b.String(), images, nil
|
||||
}
|
||||
|
||||
func checkMllamaModelFamily(m *Model) bool {
|
||||
for _, arch := range m.Config.ModelFamilies {
|
||||
if arch == "mllama" {
|
||||
return true
|
||||
}
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
@ -2,8 +2,6 @@ package server
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"image"
|
||||
"image/png"
|
||||
"testing"
|
||||
|
||||
"github.com/google/go-cmp/cmp"
|
||||
@ -14,10 +12,9 @@ import (
|
||||
|
||||
func TestChatPrompt(t *testing.T) {
|
||||
type expect struct {
|
||||
prompt string
|
||||
images [][]byte
|
||||
aspectRatioID int
|
||||
error error
|
||||
prompt string
|
||||
images [][]byte
|
||||
error error
|
||||
}
|
||||
|
||||
tmpl, err := template.Parse(`
|
||||
@ -28,28 +25,6 @@ func TestChatPrompt(t *testing.T) {
|
||||
t.Fatal(err)
|
||||
}
|
||||
visionModel := Model{Template: tmpl, ProjectorPaths: []string{"vision"}}
|
||||
mllamaModel := Model{Template: tmpl, ProjectorPaths: []string{"vision"}, Config: ConfigV2{ModelFamilies: []string{"mllama"}}}
|
||||
|
||||
createImg := func(width, height int) ([]byte, error) {
|
||||
img := image.NewRGBA(image.Rect(0, 0, width, height))
|
||||
var buf bytes.Buffer
|
||||
|
||||
if err := png.Encode(&buf, img); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return buf.Bytes(), nil
|
||||
}
|
||||
|
||||
imgBuf, err := createImg(5, 5)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
imgBuf2, err := createImg(6, 6)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
cases := []struct {
|
||||
name string
|
||||
@ -227,90 +202,6 @@ func TestChatPrompt(t *testing.T) {
|
||||
images: [][]byte{[]byte("one hotdog"), []byte("two hotdogs")},
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "messages with mllama (no images)",
|
||||
model: mllamaModel,
|
||||
limit: 2048,
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "You're a test, Harry!"},
|
||||
{Role: "assistant", Content: "I-I'm a what?"},
|
||||
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager."},
|
||||
},
|
||||
expect: expect{
|
||||
prompt: "You're a test, Harry! I-I'm a what? A test. And a thumping good one at that, I'd wager. ",
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "messages with mllama single prompt",
|
||||
model: mllamaModel,
|
||||
limit: 2048,
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "How many hotdogs are in this image?", Images: []api.ImageData{imgBuf}},
|
||||
},
|
||||
expect: expect{
|
||||
prompt: "[img-0]<|image|>How many hotdogs are in this image? ",
|
||||
images: [][]byte{imgBuf},
|
||||
aspectRatioID: 1,
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "messages with mllama",
|
||||
model: mllamaModel,
|
||||
limit: 2048,
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "You're a test, Harry!"},
|
||||
{Role: "assistant", Content: "I-I'm a what?"},
|
||||
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager.", Images: []api.ImageData{imgBuf}},
|
||||
},
|
||||
expect: expect{
|
||||
prompt: "You're a test, Harry! I-I'm a what? [img-0]<|image|>A test. And a thumping good one at that, I'd wager. ",
|
||||
images: [][]byte{imgBuf},
|
||||
aspectRatioID: 1,
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "multiple messages with mllama",
|
||||
model: mllamaModel,
|
||||
limit: 2048,
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "You're a test, Harry!", Images: []api.ImageData{imgBuf}},
|
||||
{Role: "assistant", Content: "I-I'm a what?"},
|
||||
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager.", Images: []api.ImageData{imgBuf2}},
|
||||
},
|
||||
expect: expect{
|
||||
prompt: "[img-0]<|image|>You're a test, Harry! I-I'm a what? [img-1]<|image|>A test. And a thumping good one at that, I'd wager. ",
|
||||
images: [][]byte{imgBuf, imgBuf2},
|
||||
aspectRatioID: 1,
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "earlier image with mllama",
|
||||
model: mllamaModel,
|
||||
limit: 2048,
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "How many hotdogs are in this image?", Images: []api.ImageData{imgBuf}},
|
||||
{Role: "assistant", Content: "There are four hotdogs."},
|
||||
{Role: "user", Content: "Which ones have mustard?"},
|
||||
},
|
||||
expect: expect{
|
||||
prompt: "[img-0]<|image|>How many hotdogs are in this image? There are four hotdogs. Which ones have mustard? ",
|
||||
images: [][]byte{imgBuf},
|
||||
aspectRatioID: 1,
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "too many images with mllama",
|
||||
model: mllamaModel,
|
||||
limit: 2048,
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "You're a test, Harry!"},
|
||||
{Role: "assistant", Content: "I-I'm a what?"},
|
||||
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager.", Images: []api.ImageData{imgBuf, imgBuf}},
|
||||
},
|
||||
expect: expect{
|
||||
error: errTooManyImages,
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range cases {
|
||||
@ -341,10 +232,6 @@ func TestChatPrompt(t *testing.T) {
|
||||
if !bytes.Equal(images[i].Data, tt.images[i]) {
|
||||
t.Errorf("expected %q, got %q", tt.images[i], images[i].Data)
|
||||
}
|
||||
} else {
|
||||
if images[i].AspectRatioID != tt.aspectRatioID {
|
||||
t.Errorf("expected aspect ratio %d, got %d", tt.aspectRatioID, images[i].AspectRatioID)
|
||||
}
|
||||
}
|
||||
}
|
||||
})
|
||||
|
@ -4,7 +4,6 @@ import (
|
||||
"bytes"
|
||||
"cmp"
|
||||
"context"
|
||||
"encoding/binary"
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"fmt"
|
||||
@ -35,7 +34,6 @@ import (
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/logutil"
|
||||
"github.com/ollama/ollama/model/models/mllama"
|
||||
"github.com/ollama/ollama/openai"
|
||||
"github.com/ollama/ollama/server/internal/client/ollama"
|
||||
"github.com/ollama/ollama/server/internal/registry"
|
||||
@ -100,6 +98,10 @@ func (s *Server) scheduleRunner(ctx context.Context, name string, caps []model.C
|
||||
return nil, nil, nil, err
|
||||
}
|
||||
|
||||
if slices.Contains(model.Config.ModelFamilies, "mllama") && len(model.ProjectorPaths) > 0 {
|
||||
return nil, nil, nil, fmt.Errorf("'llama3.2-vision' is no longer compatible with your version of Ollama and has been replaced by a newer version. To re-download, run 'ollama pull llama3.2-vision'")
|
||||
}
|
||||
|
||||
if err := model.CheckCapabilities(caps...); err != nil {
|
||||
return nil, nil, nil, fmt.Errorf("%s %w", name, err)
|
||||
}
|
||||
@ -206,38 +208,14 @@ func (s *Server) GenerateHandler(c *gin.Context) {
|
||||
return
|
||||
}
|
||||
|
||||
isMllama := checkMllamaModelFamily(m)
|
||||
if isMllama && len(req.Images) > 1 {
|
||||
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "this model only supports one image: more than one image sent"})
|
||||
if slices.Contains(m.Config.ModelFamilies, "mllama") && len(req.Images) > 1 {
|
||||
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "this model only supports one image while more than one image requested"})
|
||||
return
|
||||
}
|
||||
|
||||
images := make([]llm.ImageData, len(req.Images))
|
||||
for i := range req.Images {
|
||||
if isMllama && len(m.ProjectorPaths) > 0 {
|
||||
data, opts, err := mllama.Preprocess(bytes.NewReader(req.Images[i]))
|
||||
if err != nil {
|
||||
c.AbortWithStatusJSON(http.StatusInternalServerError, gin.H{"error": "error processing image"})
|
||||
return
|
||||
}
|
||||
|
||||
ar, ok := opts["aspectRatioIndex"].(int)
|
||||
if !ok {
|
||||
c.AbortWithStatusJSON(http.StatusInternalServerError, gin.H{"error": "error processing image"})
|
||||
return
|
||||
}
|
||||
|
||||
buf := new(bytes.Buffer)
|
||||
err = binary.Write(buf, binary.LittleEndian, data)
|
||||
if err != nil {
|
||||
c.AbortWithStatusJSON(http.StatusInternalServerError, gin.H{"error": "error processing image"})
|
||||
return
|
||||
}
|
||||
|
||||
images[i] = llm.ImageData{ID: i, Data: buf.Bytes(), AspectRatioID: ar}
|
||||
} else {
|
||||
images[i] = llm.ImageData{ID: i, Data: req.Images[i]}
|
||||
}
|
||||
images[i] = llm.ImageData{ID: i, Data: req.Images[i]}
|
||||
}
|
||||
|
||||
prompt := req.Prompt
|
||||
@ -269,9 +247,6 @@ func (s *Server) GenerateHandler(c *gin.Context) {
|
||||
|
||||
for _, i := range images {
|
||||
imgPrompt := ""
|
||||
if isMllama {
|
||||
imgPrompt = "<|image|>"
|
||||
}
|
||||
msgs = append(msgs, api.Message{Role: "user", Content: fmt.Sprintf("[img-%d]"+imgPrompt, i.ID)})
|
||||
}
|
||||
|
||||
|
@ -8,6 +8,7 @@ import (
|
||||
"os"
|
||||
"reflect"
|
||||
"runtime"
|
||||
"slices"
|
||||
"sort"
|
||||
"strconv"
|
||||
"strings"
|
||||
@ -132,11 +133,11 @@ func (s *Scheduler) processPending(ctx context.Context) {
|
||||
continue
|
||||
}
|
||||
numParallel := int(envconfig.NumParallel())
|
||||
// TODO (jmorganca): mllama doesn't support parallel yet
|
||||
// see https://github.com/ollama/ollama/issues/4165
|
||||
if checkMllamaModelFamily(pending.model) && numParallel != 1 {
|
||||
// `mllama` is a snowflake and uses an encoder cache which cannot be used with num_parallel > 1
|
||||
// ref: https://github.com/ollama/ollama/issues/4165
|
||||
if slices.Contains(pending.model.Config.ModelFamilies, "mllama") && numParallel != 1 {
|
||||
numParallel = 1
|
||||
slog.Warn("mllama doesn't support parallel requests yet")
|
||||
slog.Warn("mllama does not currently support parallel requests")
|
||||
}
|
||||
|
||||
for {
|
||||
|
Loading…
x
Reference in New Issue
Block a user