new changes
This commit is contained in:
parent
c63b4ecbf7
commit
24e8292e94
21
llm/llm.go
21
llm/llm.go
@ -10,14 +10,17 @@ package llm
|
||||
// #cgo linux,arm64 LDFLAGS: -L${SRCDIR}/build/linux/arm64_static -L${SRCDIR}/build/linux/arm64_static/src -L${SRCDIR}/build/linux/arm64_static/ggml/src
|
||||
// #include <stdlib.h>
|
||||
// #include "llama.h"
|
||||
// bool update_quantize_progress(int progress, void* data) {
|
||||
// *((int*)data) = progress;
|
||||
// static bool update_quantize_progress(float progress, void* data) {
|
||||
// *((float*)data) = progress;
|
||||
// return true;
|
||||
// }
|
||||
import "C"
|
||||
import (
|
||||
"fmt"
|
||||
"unsafe"
|
||||
"time"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
)
|
||||
|
||||
// SystemInfo is an unused example of calling llama.cpp functions using CGo
|
||||
@ -25,7 +28,7 @@ func SystemInfo() string {
|
||||
return C.GoString(C.llama_print_system_info())
|
||||
}
|
||||
|
||||
func Quantize(infile, outfile string, ftype fileType, count *int) error {
|
||||
func Quantize(infile, outfile string, ftype fileType, fn func(resp api.ProgressResponse) ) error {
|
||||
cinfile := C.CString(infile)
|
||||
defer C.free(unsafe.Pointer(cinfile))
|
||||
|
||||
@ -37,7 +40,11 @@ func Quantize(infile, outfile string, ftype fileType, count *int) error {
|
||||
params.ftype = ftype.Value()
|
||||
|
||||
// Initialize "global" to store progress
|
||||
store := C.malloc(C.sizeof(int))
|
||||
store := C.malloc(C.sizeof_float)
|
||||
defer C.free(unsafe.Pointer(store))
|
||||
|
||||
// Initialize store value, e.g., setting initial progress to 0
|
||||
*(*C.float)(store) = 0.0
|
||||
|
||||
params.quantize_callback_data = store
|
||||
params.quantize_callback = C.update_quantize_progress
|
||||
@ -48,7 +55,11 @@ func Quantize(infile, outfile string, ftype fileType, count *int) error {
|
||||
if params.quantize_callback_data == nil {
|
||||
return
|
||||
} else {
|
||||
*count = int(*(*C.int)(store))
|
||||
progress := *((*C.float)(store))
|
||||
fn(api.ProgressResponse{
|
||||
Status: fmt.Sprintf("quantizing model %d%%", int(progress*100)),
|
||||
Quantize: "quant",
|
||||
})
|
||||
}
|
||||
}
|
||||
}()
|
||||
|
76
llm/quantize.diff
Normal file
76
llm/quantize.diff
Normal file
@ -0,0 +1,76 @@
|
||||
commit c260daa84166c568cd998410dc9ba5628c530bee
|
||||
Author: Josh Yan <jyan00017@gmail.com>
|
||||
Date: Tue Jul 9 15:34:24 2024 -0700
|
||||
|
||||
quantize progress
|
||||
|
||||
diff --git a/llama.cpp b/llama.cpp
|
||||
index 61948751..c06d31b6 100644
|
||||
--- a/llama.cpp
|
||||
+++ b/llama.cpp
|
||||
@@ -15370,7 +15370,7 @@ static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const floa
|
||||
return new_size;
|
||||
}
|
||||
|
||||
-static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
|
||||
+static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, llama_model_quantize_params * params) {
|
||||
ggml_type default_type;
|
||||
llama_ftype ftype = params->ftype;
|
||||
|
||||
@@ -15586,6 +15586,15 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
const auto tn = LLM_TN(model.arch);
|
||||
new_ofstream(0);
|
||||
for (int i = 0; i < ml.n_tensors; ++i) {
|
||||
+
|
||||
+ if (params->quantize_callback){
|
||||
+ if (!params->quantize_callback(i/ml.n_tensors, params->quantize_callback_data)) {
|
||||
+ close_ofstream();
|
||||
+ params->quantize_callback_data = nullptr;
|
||||
+ return;
|
||||
+ }
|
||||
+ }
|
||||
+
|
||||
auto weight = ml.get_weight(i);
|
||||
struct ggml_tensor * tensor = weight->tensor;
|
||||
if (weight->idx != cur_split && params->keep_split) {
|
||||
@@ -16119,6 +16128,8 @@ struct llama_model_quantize_params llama_model_quantize_default_params() {
|
||||
/*.keep_split =*/ false,
|
||||
/*.imatrix =*/ nullptr,
|
||||
/*.kv_overrides =*/ nullptr,
|
||||
+ /*.quantize_callback =*/ nullptr,
|
||||
+ /*.quantize_callback_data =*/ nullptr,
|
||||
};
|
||||
|
||||
return result;
|
||||
@@ -16784,7 +16795,7 @@ struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const ch
|
||||
uint32_t llama_model_quantize(
|
||||
const char * fname_inp,
|
||||
const char * fname_out,
|
||||
- const llama_model_quantize_params * params) {
|
||||
+ llama_model_quantize_params * params) {
|
||||
try {
|
||||
llama_model_quantize_internal(fname_inp, fname_out, params);
|
||||
return 0;
|
||||
diff --git a/llama.h b/llama.h
|
||||
index da310ffa..847c40d4 100644
|
||||
--- a/llama.h
|
||||
+++ b/llama.h
|
||||
@@ -196,6 +196,8 @@ extern "C" {
|
||||
|
||||
typedef bool (*llama_progress_callback)(float progress, void * user_data);
|
||||
|
||||
+ typedef bool (*llama_quantize_callback)(int progress, void * user_data);
|
||||
+
|
||||
// Input data for llama_decode
|
||||
// A llama_batch object can contain input about one or many sequences
|
||||
// The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
|
||||
@@ -337,6 +339,9 @@ extern "C" {
|
||||
bool keep_split; // quantize to the same number of shards
|
||||
void * imatrix; // pointer to importance matrix data
|
||||
void * kv_overrides; // pointer to vector containing overrides
|
||||
+
|
||||
+ llama_quantize_callback quantize_callback;
|
||||
+ void * quantize_callback_data;
|
||||
} llama_model_quantize_params;
|
||||
|
||||
// grammar types
|
@ -21,7 +21,6 @@ import (
|
||||
"slices"
|
||||
"strconv"
|
||||
"strings"
|
||||
"time"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/auth"
|
||||
@ -414,8 +413,6 @@ func CreateModel(ctx context.Context, name model.Name, modelFileDir, quantizatio
|
||||
return fmt.Errorf("invalid model reference: %s", c.Args)
|
||||
}
|
||||
|
||||
var quantized int
|
||||
tensorCount := 0
|
||||
for _, baseLayer := range baseLayers {
|
||||
if quantization != "" &&
|
||||
baseLayer.MediaType == "application/vnd.ollama.image.model" &&
|
||||
@ -426,27 +423,10 @@ func CreateModel(ctx context.Context, name model.Name, modelFileDir, quantizatio
|
||||
return err
|
||||
}
|
||||
|
||||
tensorCount = len(baseLayer.GGML.Tensors())
|
||||
ticker := time.NewTicker(60 * time.Millisecond)
|
||||
done := make(chan struct{})
|
||||
defer close(done)
|
||||
|
||||
go func() {
|
||||
defer ticker.Stop()
|
||||
for {
|
||||
select {
|
||||
case <-ticker.C:
|
||||
fn(api.ProgressResponse{
|
||||
Status: fmt.Sprintf("quantizing model %d%%", quantized*100/tensorCount),
|
||||
Quantize: quantization})
|
||||
case <-done:
|
||||
fn(api.ProgressResponse{
|
||||
Status: "quantizing model",
|
||||
Quantize: quantization})
|
||||
}
|
||||
return
|
||||
}
|
||||
}()
|
||||
fn(api.ProgressResponse{
|
||||
Status: "quantizing model",
|
||||
Quantize: "quant",
|
||||
})
|
||||
|
||||
ft := baseLayer.GGML.KV().FileType()
|
||||
if !slices.Contains([]string{"F16", "F32"}, ft.String()) {
|
||||
@ -466,7 +446,7 @@ func CreateModel(ctx context.Context, name model.Name, modelFileDir, quantizatio
|
||||
|
||||
// Quantizes per layer
|
||||
// Save total quantized tensors
|
||||
if err := llm.Quantize(blob, temp.Name(), want, &quantized); err != nil {
|
||||
if err := llm.Quantize(blob, temp.Name(), want, fn); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user