ml/backend/ggml: offload vision to cpu
temporary until tensor loading can accurately account for vision models
This commit is contained in:
parent
b5312f30e8
commit
2dc60d4620
@ -134,13 +134,7 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
|
|||||||
cpuDeviceBufferTypes := deviceBufferType{C.ggml_backend_dev_by_type(C.GGML_BACKEND_DEVICE_TYPE_CPU), cpuBufferTypes}
|
cpuDeviceBufferTypes := deviceBufferType{C.ggml_backend_dev_by_type(C.GGML_BACKEND_DEVICE_TYPE_CPU), cpuBufferTypes}
|
||||||
input := cpuDeviceBufferTypes
|
input := cpuDeviceBufferTypes
|
||||||
|
|
||||||
var blocks int
|
blocks := int(meta.KV().BlockCount())
|
||||||
for key, value := range meta.KV() {
|
|
||||||
if strings.HasSuffix(key, ".block_count") {
|
|
||||||
blocks += int(value.(uint32))
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
assignLayer := func(i int) (temp deviceBufferType) {
|
assignLayer := func(i int) (temp deviceBufferType) {
|
||||||
if i >= params.NumGPULayers {
|
if i >= params.NumGPULayers {
|
||||||
return cpuDeviceBufferTypes
|
return cpuDeviceBufferTypes
|
||||||
@ -206,7 +200,7 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
|
|||||||
return nil
|
return nil
|
||||||
}
|
}
|
||||||
|
|
||||||
hasPart := func(s string, parts ...string) bool {
|
contains := func(s string, parts ...string) bool {
|
||||||
split := strings.Split(s, ".")
|
split := strings.Split(s, ".")
|
||||||
for _, part := range parts {
|
for _, part := range parts {
|
||||||
if slices.Contains(split, part) {
|
if slices.Contains(split, part) {
|
||||||
@ -219,10 +213,12 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
|
|||||||
|
|
||||||
for _, t := range meta.Tensors().Items() {
|
for _, t := range meta.Tensors().Items() {
|
||||||
switch {
|
switch {
|
||||||
case hasPart(t.Name, "position_embd", "token_embd", "token_norm_embd", "token_types"):
|
case contains(t.Name, "position_embd", "token_embd", "token_norm_embd", "token_types"):
|
||||||
createTensor(tensor{source: t}, input.bts)
|
createTensor(tensor{source: t}, input.bts)
|
||||||
case hasPart(t.Name, "cls", "output", "output_norm"):
|
case contains(t.Name, "cls", "output", "output_norm"):
|
||||||
createTensor(tensor{source: t}, output.bts)
|
createTensor(tensor{source: t}, output.bts)
|
||||||
|
case strings.HasPrefix(t.Name, "v.") || strings.HasPrefix(t.Name, "mm."):
|
||||||
|
createTensor(tensor{source: t}, input.bts)
|
||||||
default:
|
default:
|
||||||
if i := func() int {
|
if i := func() int {
|
||||||
if fields := strings.FieldsFunc(t.Name, func(r rune) bool { return !unicode.IsNumber(r) }); len(fields) > 0 {
|
if fields := strings.FieldsFunc(t.Name, func(r rune) bool { return !unicode.IsNumber(r) }); len(fields) > 0 {
|
||||||
|
Loading…
x
Reference in New Issue
Block a user