sample: use container/heap for top_k
This commit is contained in:
parent
aee28501b5
commit
448fc4cd2a
@ -1,10 +1,30 @@
|
|||||||
package sample
|
package sample
|
||||||
|
|
||||||
import (
|
import (
|
||||||
|
"container/heap"
|
||||||
"math"
|
"math"
|
||||||
"slices"
|
"slices"
|
||||||
)
|
)
|
||||||
|
|
||||||
|
// tokenHeap implements heap.Interface and holds tokens as a min-heap to track k largest elements
|
||||||
|
type tokenHeap []token
|
||||||
|
|
||||||
|
func (h tokenHeap) Len() int { return len(h) }
|
||||||
|
func (h tokenHeap) Less(i, j int) bool { return h[i].value < h[j].value } // Use < for min-heap to track largest elements
|
||||||
|
func (h tokenHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
|
||||||
|
|
||||||
|
func (h *tokenHeap) Push(x any) {
|
||||||
|
*h = append(*h, x.(token))
|
||||||
|
}
|
||||||
|
|
||||||
|
func (h *tokenHeap) Pop() any {
|
||||||
|
old := *h
|
||||||
|
n := len(old)
|
||||||
|
x := old[n-1]
|
||||||
|
*h = old[0 : n-1]
|
||||||
|
return x
|
||||||
|
}
|
||||||
|
|
||||||
// temperature applies scaling and softmax to the logits
|
// temperature applies scaling and softmax to the logits
|
||||||
func temperature(ts []token, temp float32) []token {
|
func temperature(ts []token, temp float32) []token {
|
||||||
// Find max logit for numerical stability
|
// Find max logit for numerical stability
|
||||||
@ -31,62 +51,33 @@ func temperature(ts []token, temp float32) []token {
|
|||||||
return ts
|
return ts
|
||||||
}
|
}
|
||||||
|
|
||||||
// siftDown maintains a min-heap property by recursively moving larger elements down the heap.
|
|
||||||
//
|
|
||||||
// The heap is represented as an array where for any node at index i:
|
|
||||||
// - Left child is at index 2i + 1
|
|
||||||
// - Right child is at index 2i + 2
|
|
||||||
// - Parent is at index (i-1)/2
|
|
||||||
//
|
|
||||||
// The function compares a node with its children and:
|
|
||||||
// 1. Finds the smallest value between the node and its children
|
|
||||||
// 2. If the node is not the smallest, swaps it with its smallest child
|
|
||||||
// 3. Continues this process down the affected path until the min-heap property is restored
|
|
||||||
func siftDown(data []token, start, end int) {
|
|
||||||
root := start
|
|
||||||
for {
|
|
||||||
child := 2*root + 1
|
|
||||||
if child >= end {
|
|
||||||
break
|
|
||||||
}
|
|
||||||
// Find smaller child (we want min heap)
|
|
||||||
if child+1 < end && data[child+1].value < data[child].value {
|
|
||||||
child++
|
|
||||||
}
|
|
||||||
// Exit if root is already smaller than children
|
|
||||||
if data[root].value <= data[child].value {
|
|
||||||
break
|
|
||||||
}
|
|
||||||
// Swap with smaller child and continue
|
|
||||||
data[root], data[child] = data[child], data[root]
|
|
||||||
root = child
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// topK limits the number of tokens considered to the k highest logits
|
// topK limits the number of tokens considered to the k highest logits
|
||||||
func topK(ts []token, k int) []token {
|
func topK(ts []token, k int) []token {
|
||||||
if k >= len(ts) {
|
if k >= len(ts) {
|
||||||
|
sortLogits(ts)
|
||||||
return ts
|
return ts
|
||||||
}
|
}
|
||||||
// Heapify + siftDown - O(nlog(k))
|
|
||||||
// Build min-heap of first k elements
|
|
||||||
heap := ts[:k]
|
|
||||||
for i := k/2 - 1; i >= 0; i-- {
|
|
||||||
siftDown(heap, i, k)
|
|
||||||
}
|
|
||||||
|
|
||||||
// Process remaining elements - if larger than heap root, replace root
|
// Initialize min-heap with first k elements
|
||||||
|
h := make(tokenHeap, k)
|
||||||
|
copy(h, ts[:k])
|
||||||
|
heap.Init(&h)
|
||||||
|
|
||||||
|
// Process remaining elements
|
||||||
for i := k; i < len(ts); i++ {
|
for i := k; i < len(ts); i++ {
|
||||||
if ts[i].value > heap[0].value {
|
if ts[i].value > h[0].value {
|
||||||
heap[0] = ts[i]
|
heap.Pop(&h)
|
||||||
siftDown(heap, 0, k)
|
heap.Push(&h, ts[i])
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
slices.Reverse(heap)
|
// Convert heap to sorted slice in descending order
|
||||||
|
result := make([]token, k)
|
||||||
|
for i := k - 1; i >= 0; i-- {
|
||||||
|
result[i] = heap.Pop(&h).(token)
|
||||||
|
}
|
||||||
|
|
||||||
ts = heap
|
return result
|
||||||
return ts
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// topP limits tokens to those with cumulative probability p
|
// topP limits tokens to those with cumulative probability p
|
||||||
|
Loading…
x
Reference in New Issue
Block a user