fix: patch merger and convert
convert: - split patch embedding - split qkv remove duplicate PatchMerger
This commit is contained in:
parent
dd8c619fba
commit
7e920c8d75
@ -15,6 +15,7 @@ type qwen2Model struct {
|
||||
Type string `json:"type"`
|
||||
Factor ropeFactor `json:"factor"`
|
||||
OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
|
||||
MropeSection []int32 `json:"mrope_section"`
|
||||
} `json:"rope_scaling"`
|
||||
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||
}
|
||||
@ -39,6 +40,8 @@ func (q *qwen2Model) KV(t *Tokenizer) ggml.KV {
|
||||
case "yarn":
|
||||
kv["qwen2.rope.scaling.type"] = q.RopeScaling.Type
|
||||
kv["qwen2.rope.scaling.factor"] = q.RopeScaling.Factor
|
||||
case "mrope":
|
||||
kv["qwen2.rope.mrope_section"] = q.RopeScaling.MropeSection
|
||||
default:
|
||||
panic("unknown rope scaling type")
|
||||
}
|
||||
|
@ -1,31 +1,26 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/binary"
|
||||
"io"
|
||||
"log/slog"
|
||||
"cmp"
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
"github.com/x448/float16"
|
||||
)
|
||||
|
||||
type qwen25VLModel struct {
|
||||
ModelParameters
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||
HiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
RopeTheta float32 `json:"rope_theta"`
|
||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||
qwen2Model
|
||||
|
||||
VisionModel struct {
|
||||
SpatialMergeSize uint32 `json:"spatial_merge_size"` // TODO: is this set?
|
||||
Depth uint32 `json:"depth"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
InChannels uint32 `json:"in_chans"`
|
||||
NumHeads uint32 `json:"num_heads"`
|
||||
PatchSize uint32 `json:"patch_size"`
|
||||
SpatialMergeSize uint32 `json:"spatial_merge_size"` // TODO: is this set?
|
||||
SpatialPatchSize uint32 `json:"spatial_patch_size"`
|
||||
RopeTheta float32 `json:"rope_theta"`
|
||||
} `json:"vision_config"`
|
||||
}
|
||||
|
||||
@ -34,14 +29,22 @@ var _ ModelConverter = (*qwen25VLModel)(nil)
|
||||
func (q *qwen25VLModel) KV(t *Tokenizer) ggml.KV {
|
||||
kv := q.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "qwen25vl"
|
||||
kv["qwen25vl.block_count"] = q.HiddenLayers
|
||||
kv["qwen25vl.context_length"] = q.MaxPositionEmbeddings
|
||||
kv["qwen25vl.embedding_length"] = q.HiddenSize
|
||||
kv["qwen25vl.feed_forward_length"] = q.IntermediateSize
|
||||
kv["qwen25vl.attention.head_count"] = q.NumAttentionHeads
|
||||
kv["qwen25vl.attention.head_count_kv"] = q.NumKeyValueHeads
|
||||
kv["qwen25vl.rope.freq_base"] = q.RopeTheta
|
||||
kv["qwen25vl.attention.layer_norm_rms_epsilon"] = q.RMSNormEPS
|
||||
|
||||
for k, v := range q.qwen2Model.KV(t) {
|
||||
if strings.HasPrefix(k, "qwen2.") {
|
||||
kv[strings.Replace(k, "qwen2.", "qwen25vl.", 1)] = v
|
||||
}
|
||||
}
|
||||
|
||||
kv["qwen25vl.vision.block_count"] = q.VisionModel.Depth
|
||||
kv["qwen25vl.vision.embedding_length"] = q.VisionModel.HiddenSize
|
||||
kv["qwen25vl.vision.feed_forward_length"] = q.VisionModel.IntermediateSize
|
||||
kv["qwen25vl.vision.attention.head_count"] = q.VisionModel.NumHeads
|
||||
kv["qwen25vl.vision.num_channels"] = q.VisionModel.InChannels
|
||||
kv["qwen25vl.vision.patch_size"] = q.VisionModel.PatchSize
|
||||
kv["qwen25vl.vision.spatial_merge_size"] = q.VisionModel.SpatialMergeSize
|
||||
kv["qwen25vl.vision.spatial_patch_size"] = q.VisionModel.SpatialPatchSize
|
||||
kv["qwen25vl.vision.rope.freq_base"] = cmp.Or(q.VisionModel.RopeTheta, 1e5)
|
||||
|
||||
return kv
|
||||
}
|
||||
@ -50,11 +53,20 @@ func (q *qwen25VLModel) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
var out []ggml.Tensor
|
||||
|
||||
for _, t := range ts {
|
||||
if strings.HasSuffix(t.Name(), "patch_embed.proj.weight") {
|
||||
var buf bytes.Buffer
|
||||
t.WriteTo(&buf)
|
||||
newTensors := splitPatchEmbed(buf, t.Kind(), t.Shape())
|
||||
out = append(out, newTensors...)
|
||||
if strings.Contains(t.Name(), "patch_embed.proj") {
|
||||
for t := range splitDim(t, 2,
|
||||
strings.NewReplacer("patch_embed.proj", "patch_embd_0"),
|
||||
strings.NewReplacer("patch_embed.proj", "patch_embd_1"),
|
||||
) {
|
||||
t.Shape = slices.DeleteFunc(t.Shape, func(i uint64) bool { return i == 1 })
|
||||
out = append(out, t)
|
||||
}
|
||||
} else if strings.Contains(t.Name(), "attn.qkv") {
|
||||
out = append(out, slices.Collect(splitDim(t, 0,
|
||||
strings.NewReplacer("attn.qkv", "attn_q"),
|
||||
strings.NewReplacer("attn.qkv", "attn_k"),
|
||||
strings.NewReplacer("attn.qkv", "attn_v"),
|
||||
))...)
|
||||
} else {
|
||||
out = append(out, ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
@ -69,109 +81,12 @@ func (q *qwen25VLModel) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
}
|
||||
|
||||
func (p *qwen25VLModel) Replacements() []string {
|
||||
return []string{
|
||||
"lm_head", "output",
|
||||
"model.embed_tokens", "token_embd",
|
||||
"model.layers", "blk",
|
||||
"visual.blocks", "v.blk",
|
||||
"input_layernorm", "attn_norm",
|
||||
"self_attn.k_proj", "attn_k",
|
||||
"self_attn.v_proj", "attn_v",
|
||||
"self_attn.q_proj", "attn_q",
|
||||
"self_attn.o_proj", "attn_output",
|
||||
"mlp.down_proj", "ffn_down",
|
||||
"mlp.gate_proj", "ffn_gate",
|
||||
"mlp.up_proj", "ffn_up",
|
||||
"post_attention_layernorm", "ffn_norm",
|
||||
"model.norm", "output_norm",
|
||||
}
|
||||
}
|
||||
|
||||
func splitPatchEmbed(buf bytes.Buffer, kind uint32, shape []uint64) []ggml.Tensor {
|
||||
slog.Debug("patch stuff", "kind", kind, "shape", shape)
|
||||
|
||||
if kind != tensorKindF16 {
|
||||
panic("tensor is of wrong type")
|
||||
}
|
||||
|
||||
if len(shape) != 5 || (len(shape) == 5 && shape[2] != 2) {
|
||||
panic("wrong sized tensor")
|
||||
}
|
||||
|
||||
// determine the size of the tensor based on its shape
|
||||
shapeToSize := func(s []int) int {
|
||||
r := 1
|
||||
for _, n := range s {
|
||||
r *= int(n)
|
||||
}
|
||||
return r
|
||||
}
|
||||
|
||||
// tensor.WithShape() wants []int
|
||||
intShape := make([]int, len(shape))
|
||||
for i, v := range shape {
|
||||
intShape[i] = int(v)
|
||||
}
|
||||
|
||||
u16s := make([]uint16, shapeToSize(intShape))
|
||||
if err := binary.Read(&buf, binary.LittleEndian, u16s); err != nil {
|
||||
panic("bad read")
|
||||
}
|
||||
|
||||
f32s := make([]float32, len(u16s))
|
||||
for i := range u16s {
|
||||
f32s[i] = float16.Frombits(u16s[i]).Float32()
|
||||
}
|
||||
|
||||
newTensors := []ggml.Tensor{}
|
||||
|
||||
getDataFromSlice := func(f32s []float32, shape []int, s []tensor.Slice) patchEmbed {
|
||||
slog.Debug("getDataFromSlice", "num f32s", len(f32s), "shape", shape)
|
||||
n := tensor.New(tensor.WithShape(shape...), tensor.WithBacking(f32s))
|
||||
t, err := n.Slice(s...)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
ts, err := native.SelectF32(t.Materialize().(*tensor.Dense), 0)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
slog.Debug("first vals", "val 1", ts[0][0], "val 2", ts[0][1], "val 3", ts[0][2])
|
||||
|
||||
f16s := make(patchEmbed, shapeToSize(shape))
|
||||
for r, row := range ts {
|
||||
for c, col := range row {
|
||||
f16s[r+c] = float16.Fromfloat32(col).Bits()
|
||||
}
|
||||
}
|
||||
|
||||
return f16s
|
||||
}
|
||||
|
||||
p := getDataFromSlice(f32s, intShape, []tensor.Slice{nil, nil, tensor.S(0, 1, 1), nil, nil})
|
||||
newTensors = append(newTensors, ggml.Tensor{
|
||||
Name: "v.patch_embed_0.weight",
|
||||
Kind: kind,
|
||||
Shape: append(shape[:2], shape[3:]...),
|
||||
WriterTo: p,
|
||||
})
|
||||
|
||||
p = getDataFromSlice(f32s, intShape, []tensor.Slice{nil, nil, tensor.S(1, 2, 1), nil, nil})
|
||||
newTensors = append(newTensors, ggml.Tensor{
|
||||
Name: "v.patch_embed_1.weight",
|
||||
Kind: kind,
|
||||
Shape: append(shape[:2], shape[3:]...),
|
||||
WriterTo: p,
|
||||
})
|
||||
|
||||
return newTensors
|
||||
}
|
||||
|
||||
type patchEmbed []uint16
|
||||
|
||||
func (t patchEmbed) WriteTo(w io.Writer) (int64, error) {
|
||||
err := binary.Write(w, binary.LittleEndian, t)
|
||||
return 0, err
|
||||
return append(
|
||||
p.qwen2Model.Replacements(),
|
||||
"visual", "v",
|
||||
"blocks", "blk",
|
||||
"attn.proj", "attn_out",
|
||||
"norm1", "ln1",
|
||||
"norm2", "ln2",
|
||||
)
|
||||
}
|
||||
|
56
convert/tensor.go
Normal file
56
convert/tensor.go
Normal file
@ -0,0 +1,56 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"iter"
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
)
|
||||
|
||||
// splitDim splits a tensor along a specified dimension into multiple tensors. The dimension
|
||||
// is split evenly based on the number of replacers provided.
|
||||
func splitDim(t Tensor, dim int, replacers ...*strings.Replacer) iter.Seq[ggml.Tensor] {
|
||||
return func(yield func(ggml.Tensor) bool) {
|
||||
for i, replacer := range replacers {
|
||||
shape := slices.Clone(t.Shape())
|
||||
shape[dim] = shape[dim] / uint64(len(replacers))
|
||||
|
||||
slice := slices.Repeat([]tensor.Slice{nil}, len(shape))
|
||||
slice[dim] = tensor.S(i*int(shape[dim]), (i+1)*int(shape[dim]))
|
||||
|
||||
tt := t.Clone()
|
||||
tt.SetRepacker(func(_ string, data []float32, shape []uint64) ([]float32, error) {
|
||||
dims := make([]int, len(shape))
|
||||
for i := range shape {
|
||||
dims[i] = int(shape[i])
|
||||
}
|
||||
|
||||
var t tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
||||
t, err := t.Slice(slice...)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
t = tensor.Materialize(t)
|
||||
// flatten tensor so it can be written as a vector
|
||||
if err := t.Reshape(t.Shape().TotalSize()); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return native.VectorF32(t.(*tensor.Dense))
|
||||
})
|
||||
|
||||
if !yield(ggml.Tensor{
|
||||
Name: replacer.Replace(t.Name()),
|
||||
Kind: t.Kind(),
|
||||
Shape: shape,
|
||||
WriterTo: tt,
|
||||
}) {
|
||||
break
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
@ -4,11 +4,11 @@ import (
|
||||
"bytes"
|
||||
"fmt"
|
||||
"image"
|
||||
"slices"
|
||||
|
||||
"github.com/ollama/ollama/fs"
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/model"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
@ -17,7 +17,6 @@ type Model struct {
|
||||
model.Base
|
||||
*TextModel
|
||||
*VisionModel `gguf:"v,vision"`
|
||||
*PatchMerger `gguf:"mm"`
|
||||
|
||||
ImageProcessor
|
||||
}
|
||||
@ -25,31 +24,6 @@ type Model struct {
|
||||
// Implement MultimodalProcessor interface
|
||||
var _ model.MultimodalProcessor = (*Model)(nil)
|
||||
|
||||
type PatchMerger struct {
|
||||
MLPLayer1 *nn.Linear `gguf:"0"`
|
||||
MLPLayer2 *nn.Linear `gguf:"2"`
|
||||
}
|
||||
|
||||
// Forward computes patch merging for the vision model
|
||||
func (pm *PatchMerger) Forward(ctx ml.Context, visionOutputs ml.Tensor, eps float32) ml.Tensor {
|
||||
// Get dimensions
|
||||
hiddenSize := visionOutputs.Dim(0)
|
||||
numPositions := visionOutputs.Dim(1)
|
||||
batchSize := visionOutputs.Dim(2)
|
||||
|
||||
reshaped := visionOutputs.Reshape(ctx, hiddenSize*4, numPositions/4, batchSize)
|
||||
|
||||
// Apply first linear layer (mm_0_w, mm_0_b)
|
||||
hidden := pm.MLPLayer1.Forward(ctx, reshaped)
|
||||
|
||||
activated := hidden.GELU(ctx)
|
||||
|
||||
// Apply second linear layer (mm_1_w, mm_1_b)
|
||||
output := pm.MLPLayer2.Forward(ctx, activated)
|
||||
|
||||
return output
|
||||
}
|
||||
|
||||
func New(c fs.Config) (model.Model, error) {
|
||||
m := &Model{
|
||||
TextModel: NewTextModel(c),
|
||||
@ -62,11 +36,6 @@ func New(c fs.Config) (model.Model, error) {
|
||||
return m, nil
|
||||
}
|
||||
|
||||
type imageFeatures struct {
|
||||
Tensor ml.Tensor
|
||||
Grid *Grid
|
||||
}
|
||||
|
||||
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, error) {
|
||||
if len(m.VisionModel.Layers) == 0 {
|
||||
return nil, model.ErrNoVisionModel
|
||||
@ -93,12 +62,7 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, er
|
||||
}
|
||||
|
||||
visionOutputs := m.VisionModel.Forward(ctx, pixelValues, grid)
|
||||
visionOutputs = m.PatchMerger.Forward(ctx, visionOutputs, m.VisionModel.eps)
|
||||
|
||||
return &imageFeatures{
|
||||
Tensor: visionOutputs,
|
||||
Grid: grid,
|
||||
}, nil
|
||||
return visionOutputs, nil
|
||||
}
|
||||
|
||||
// PostTokenize arranges Qwen-2.5-VL's inputs for the forward pass
|
||||
@ -106,12 +70,11 @@ func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
|
||||
var result []input.Input
|
||||
|
||||
// Get image token IDs from config
|
||||
imageToken := 151655
|
||||
visionStartToken := 151652
|
||||
visionEndToken := 151653
|
||||
|
||||
// Get merge size from config
|
||||
mergeSize := m.ImageProcessor.mergeSize
|
||||
var (
|
||||
imageToken int32 = 151655
|
||||
visionStartToken int32 = 151652
|
||||
visionEndToken int32 = 151653
|
||||
)
|
||||
|
||||
for _, inp := range inputs {
|
||||
if inp.Multimodal == nil {
|
||||
@ -119,29 +82,20 @@ func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
|
||||
result = append(result, inp)
|
||||
} else {
|
||||
// This is an image token with multimodal data
|
||||
features := inp.Multimodal.(*imageFeatures)
|
||||
visionOutputs := inp.Multimodal.(ml.Tensor)
|
||||
|
||||
// Calculate tokens per grid based on grid dimensions
|
||||
mergeLength := mergeSize * mergeSize
|
||||
gridProduct := features.Grid.Temporal * features.Grid.Height * features.Grid.Width
|
||||
tokensPerGrid := gridProduct / mergeLength
|
||||
|
||||
// First add the vision start token
|
||||
result = append(result, input.Input{Token: int32(visionStartToken)})
|
||||
result = append(result, input.Input{Token: visionStartToken, SameBatch: visionOutputs.Dim(1) + 2})
|
||||
|
||||
// Add the image token with the multimodal tensor data at the first position
|
||||
result = append(result, input.Input{
|
||||
Token: int32(imageToken),
|
||||
Multimodal: features.Tensor,
|
||||
MultimodalHash: inp.MultimodalHash,
|
||||
})
|
||||
result = append(result, input.Input{Token: imageToken, Multimodal: visionOutputs, MultimodalHash: inp.MultimodalHash})
|
||||
|
||||
// Add the placeholder tokens for the remaining positions (tokensPerGrid-1)
|
||||
for range tokensPerGrid - 1 {
|
||||
result = append(result, input.Input{Token: int32(imageToken)})
|
||||
}
|
||||
result = append(result, slices.Repeat([]input.Input{{Token: imageToken}}, visionOutputs.Dim(1)-1)...)
|
||||
|
||||
result = append(result, input.Input{Token: int32(visionEndToken)})
|
||||
result = append(result, input.Input{Token: visionEndToken})
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -148,6 +148,11 @@ func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor
|
||||
// Initial token embedding
|
||||
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
|
||||
|
||||
for _, image := range batch.Multimodal {
|
||||
visionOutputs := image.Multimodal.(ml.Tensor)
|
||||
ctx.Forward(visionOutputs.Copy(ctx, hiddenState.View(ctx, image.Index*hiddenState.Stride(1), visionOutputs.Dim(0)*visionOutputs.Dim(1))))
|
||||
}
|
||||
|
||||
// Process through transformer layers
|
||||
for i, layer := range m.Layers {
|
||||
cache.SetLayer(i)
|
||||
|
@ -70,8 +70,8 @@ func (mlp *VisionMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Visi
|
||||
// VisionEncoderLayer implements an encoder layer for the Qwen vision model
|
||||
type VisionEncoderLayer struct {
|
||||
Norm1 *nn.RMSNorm `gguf:"ln1"`
|
||||
Norm2 *nn.RMSNorm `gguf:"ln2"`
|
||||
SelfAttention *VisionSelfAttention
|
||||
Norm2 *nn.RMSNorm `gguf:"ln2"`
|
||||
MLP *VisionMLP
|
||||
}
|
||||
|
||||
@ -138,30 +138,36 @@ func (pe *PatchEmbedding) Forward(ctx ml.Context, pixelValues ml.Tensor, numChan
|
||||
|
||||
// VisionPatchMerger implements patch merging for the Qwen vision model
|
||||
type VisionPatchMerger struct {
|
||||
LNQ *nn.RMSNorm `gguf:"ln_q"`
|
||||
MLP *nn.Linear `gguf:"mlp"`
|
||||
LNQ *nn.RMSNorm `gguf:"ln_q"`
|
||||
MLP0 *nn.Linear `gguf:"mlp.0"`
|
||||
MLP2 *nn.Linear `gguf:"mlp.2"`
|
||||
}
|
||||
|
||||
// Forward computes patch merging for the vision model
|
||||
func (pm *VisionPatchMerger) Forward(ctx ml.Context, x ml.Tensor, outDim, contextDim, spatialMergeSize int) ml.Tensor {
|
||||
hiddenSize := contextDim * (spatialMergeSize * spatialMergeSize)
|
||||
func (pm *VisionPatchMerger) Forward(ctx ml.Context, visionOutputs ml.Tensor, eps float32) ml.Tensor {
|
||||
// Get dimensions
|
||||
hiddenSize := visionOutputs.Dim(0)
|
||||
numPositions := visionOutputs.Dim(1)
|
||||
batchSize := visionOutputs.Dim(2)
|
||||
|
||||
// Normalize and reshape
|
||||
x = pm.LNQ.Forward(ctx, x, 1e-6)
|
||||
x = x.Reshape(ctx, -1, hiddenSize)
|
||||
reshaped := pm.LNQ.Forward(ctx, visionOutputs, 1e6).Reshape(ctx, hiddenSize*4, numPositions/4, batchSize)
|
||||
|
||||
// Apply MLP for merging
|
||||
x = pm.MLP.Forward(ctx, x)
|
||||
// Apply first linear layer (mm_0_w, mm_0_b)
|
||||
hidden := pm.MLP0.Forward(ctx, reshaped)
|
||||
|
||||
return x
|
||||
activated := hidden.GELU(ctx)
|
||||
|
||||
// Apply second linear layer (mm_1_w, mm_1_b)
|
||||
output := pm.MLP2.Forward(ctx, activated)
|
||||
|
||||
return output
|
||||
}
|
||||
|
||||
// VisionModel implements the Qwen vision model
|
||||
type VisionModel struct {
|
||||
PatchEmbedding *PatchEmbedding
|
||||
Layers []VisionEncoderLayer `gguf:"blk"`
|
||||
PostLayerNorm *nn.LayerNorm `gguf:"post_ln"`
|
||||
PatchMerger *VisionPatchMerger `gguf:"patch_merger"`
|
||||
PatchMerger *VisionPatchMerger `gguf:"merger"`
|
||||
|
||||
*VisionModelOptions
|
||||
}
|
||||
@ -187,8 +193,7 @@ func (m *VisionModel) Forward(ctx ml.Context, pixelValues ml.Tensor, grid *Grid)
|
||||
hiddenStates = layer.Forward(ctx, hiddenStates, cos, sin, m.VisionModelOptions)
|
||||
}
|
||||
|
||||
// hiddenStates = m.PostLayerNorm.Forward(ctx, hiddenStates, m.eps)
|
||||
return hiddenStates
|
||||
return m.PatchMerger.Forward(ctx, hiddenStates, m.eps)
|
||||
}
|
||||
|
||||
// positionalEmbedding generates rotary position embeddings for attention mechanisms
|
||||
@ -248,7 +253,7 @@ func (m *VisionModel) positionalEmbedding(ctx ml.Context, grid *Grid) ml.Tensor
|
||||
func newVisionModel(c fs.Config) *VisionModel {
|
||||
patchSize := int(c.Uint("vision.patch_size", 14))
|
||||
hiddenSize := int(c.Uint("vision.embedding_length", 1280))
|
||||
ropeTheta := c.Float("vision.rope_theta", 10000.0) // not set
|
||||
ropeTheta := c.Float("vision.rope.freq_base", 10000.0) // not set
|
||||
outHiddenSize := int(c.Uint("vision.out_embedding_length", 0)) // not set
|
||||
numHeads := int(c.Uint("vision.attention.head_count", 16))
|
||||
|
||||
|
@ -26,13 +26,12 @@ type ImageProcessor struct {
|
||||
|
||||
// newImageProcessor creates a new image processor with default values
|
||||
func newImageProcessor(c fs.Config) ImageProcessor {
|
||||
|
||||
patchSize := int(c.Uint("vision.patch_size", 14))
|
||||
mergeSize := int(c.Uint("vision.spatial_merge_size", 2))
|
||||
|
||||
return ImageProcessor{
|
||||
imageSize: int(c.Uint("vision.image_size", 560)),
|
||||
numChannels: 3,
|
||||
numChannels: int(c.Uint("vision.num_channels", 3)), // not set
|
||||
patchSize: patchSize,
|
||||
temporalPatchSize: 2,
|
||||
mergeSize: mergeSize,
|
||||
|
Loading…
x
Reference in New Issue
Block a user