model: document qwen2 forward pass
This commit is contained in:
parent
9f8c89354b
commit
96510b9353
@ -10,10 +10,15 @@ import (
|
||||
)
|
||||
|
||||
type Options struct {
|
||||
RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
|
||||
ctxLen, hiddenSize, numHeads, numKVHeads int
|
||||
eps, ropeBase, ropeScale float32
|
||||
ropeDim uint32
|
||||
RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
|
||||
contextLength int
|
||||
hiddenSize int
|
||||
numAttnHeads int
|
||||
numKVHeads int
|
||||
modelEpsilon float32
|
||||
ropeBaseFreq float32
|
||||
ropeFreqScale float32
|
||||
ropeDimensions uint32
|
||||
}
|
||||
|
||||
type Model struct {
|
||||
@ -42,14 +47,14 @@ func New(c ml.Config) (model.Model, error) {
|
||||
),
|
||||
Layers: make([]Layer, c.Uint("block_count")),
|
||||
Options: &Options{
|
||||
hiddenSize: int(c.Uint("embedding_length")),
|
||||
numHeads: int(c.Uint("attention.head_count")),
|
||||
numKVHeads: int(c.Uint("attention.head_count_kv")),
|
||||
eps: c.Float("attention.layer_norm_rms_epsilon"),
|
||||
ctxLen: int(c.Uint("context_length")),
|
||||
ropeBase: c.Float("rope.freq_base"),
|
||||
ropeScale: c.Float("rope.freq_scale", 1),
|
||||
ropeDim: c.Uint("rope.dimension_count", 64),
|
||||
hiddenSize: int(c.Uint("embedding_length")),
|
||||
numAttnHeads: int(c.Uint("attention.head_count")),
|
||||
numKVHeads: int(c.Uint("attention.head_count_kv")),
|
||||
modelEpsilon: c.Float("attention.layer_norm_rms_epsilon"),
|
||||
contextLength: int(c.Uint("context_length")),
|
||||
ropeBaseFreq: c.Float("rope.freq_base"),
|
||||
ropeFreqScale: c.Float("rope.freq_scale", 1),
|
||||
ropeDimensions: c.Uint("rope.dimension_count", 64),
|
||||
},
|
||||
}
|
||||
|
||||
@ -58,21 +63,24 @@ func New(c ml.Config) (model.Model, error) {
|
||||
return m, nil
|
||||
}
|
||||
|
||||
// Shift applies rotary position embeddings to the key tensor for causal attention caching
|
||||
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||
return key.RoPE(
|
||||
ctx,
|
||||
ml.RopeConfig{
|
||||
PositionIDs: shift,
|
||||
RopeFactors: m.Options.RopeFactors,
|
||||
RopeDim: m.Options.ropeDim,
|
||||
RopeDim: m.Options.ropeDimensions,
|
||||
RopeType: ml.RopeTypeNeoX,
|
||||
OrigCtxLen: m.Options.ctxLen,
|
||||
RopeBase: m.Options.ropeBase,
|
||||
RopeScale: m.Options.ropeScale,
|
||||
OrigCtxLen: m.Options.contextLength,
|
||||
RopeBase: m.Options.ropeBaseFreq,
|
||||
RopeScale: m.Options.ropeFreqScale,
|
||||
},
|
||||
), nil
|
||||
}
|
||||
|
||||
// SelfAttention implements the multi-head self-attention mechanism
|
||||
// with separate projections for query, key, value and output transformations
|
||||
type SelfAttention struct {
|
||||
Query *nn.Linear `gguf:"attn_q"`
|
||||
Key *nn.Linear `gguf:"attn_k"`
|
||||
@ -81,49 +89,59 @@ type SelfAttention struct {
|
||||
}
|
||||
|
||||
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, inputPositions ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
|
||||
// Initialize dimensions and configuration
|
||||
batchSize := hiddenState.Dim(1)
|
||||
headDim := opts.hiddenSize / opts.numHeads
|
||||
rc := ml.RopeConfig{
|
||||
headDimension := opts.hiddenSize / opts.numAttnHeads
|
||||
ropeConfig := ml.RopeConfig{
|
||||
PositionIDs: inputPositions,
|
||||
RopeFactors: nil,
|
||||
RopeDim: opts.ropeDim,
|
||||
RopeDim: opts.ropeDimensions,
|
||||
RopeType: ml.RopeTypeNeoX,
|
||||
OrigCtxLen: opts.ctxLen,
|
||||
RopeBase: opts.ropeBase,
|
||||
RopeScale: opts.ropeScale,
|
||||
OrigCtxLen: opts.contextLength,
|
||||
RopeBase: opts.ropeBaseFreq,
|
||||
RopeScale: opts.ropeFreqScale,
|
||||
}
|
||||
|
||||
q := sa.Query.Forward(ctx, hiddenState)
|
||||
// Project and reshape query states with rotary embeddings
|
||||
queryStates := sa.Query.Forward(ctx, hiddenState)
|
||||
queryStates = queryStates.Reshape(ctx, headDimension, opts.numAttnHeads, batchSize)
|
||||
queryStates = queryStates.RoPE(ctx, ropeConfig)
|
||||
|
||||
q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
|
||||
q = q.RoPE(ctx, rc)
|
||||
// Project and reshape key states with rotary embeddings
|
||||
keyStates := sa.Key.Forward(ctx, hiddenState)
|
||||
keyStates = keyStates.Reshape(ctx, headDimension, opts.numKVHeads, batchSize)
|
||||
keyStates = keyStates.RoPE(ctx, ropeConfig)
|
||||
|
||||
k := sa.Key.Forward(ctx, hiddenState)
|
||||
k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
k = k.RoPE(ctx, rc)
|
||||
// Project and reshape value states
|
||||
valueStates := sa.Value.Forward(ctx, hiddenState)
|
||||
valueStates = valueStates.Reshape(ctx, headDimension, opts.numKVHeads, batchSize)
|
||||
|
||||
v := sa.Value.Forward(ctx, hiddenState)
|
||||
v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
// Update and retrieve from KV cache
|
||||
cache.Put(ctx, keyStates, valueStates)
|
||||
keyStates, valueStates, attentionMask := cache.Get(ctx)
|
||||
|
||||
cache.Put(ctx, k, v)
|
||||
k, v, mask := cache.Get(ctx)
|
||||
// Prepare tensors for attention computation
|
||||
queryStates = queryStates.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
||||
keyStates = keyStates.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
||||
valueStates = valueStates.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
|
||||
|
||||
q = q.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
||||
k = k.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
||||
v = v.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
|
||||
// Apply scaling and attention mask to scores
|
||||
attentionScores := keyStates.MulmatFullPrec(ctx, queryStates)
|
||||
attentionScores = attentionScores.Scale(ctx, 1.0/math.Sqrt(float64(headDimension)))
|
||||
attentionScores = attentionScores.Add(ctx, attentionMask)
|
||||
// Compute scaled dot-product attention
|
||||
attentionProbs := attentionScores.Softmax(ctx)
|
||||
|
||||
kq := k.MulmatFullPrec(ctx, q)
|
||||
kq = kq.Scale(ctx, 1.0/math.Sqrt(float64(headDim)))
|
||||
kq = kq.Add(ctx, mask)
|
||||
kq = kq.Softmax(ctx)
|
||||
// Apply attention weights and reshape
|
||||
weightedStates := valueStates.Mulmat(ctx, attentionProbs)
|
||||
weightedStates = weightedStates.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
||||
weightedStates = weightedStates.Reshape(ctx, opts.hiddenSize, batchSize)
|
||||
|
||||
kqv := v.Mulmat(ctx, kq)
|
||||
kqv = kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
||||
kqv = kqv.Reshape(ctx, opts.hiddenSize, batchSize)
|
||||
|
||||
return sa.Output.Forward(ctx, kqv)
|
||||
// Project to output dimension
|
||||
return sa.Output.Forward(ctx, weightedStates)
|
||||
}
|
||||
|
||||
// MLP implements the feed-forward network component with SwiGLU activation
|
||||
type MLP struct {
|
||||
Up *nn.Linear `gguf:"ffn_up"`
|
||||
Down *nn.Linear `gguf:"ffn_down"`
|
||||
@ -131,10 +149,16 @@ type MLP struct {
|
||||
}
|
||||
|
||||
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
|
||||
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
|
||||
return mlp.Down.Forward(ctx, hiddenState)
|
||||
// Apply SwiGLU activation gating
|
||||
gateActivation := mlp.Gate.Forward(ctx, hiddenState).SILU(ctx)
|
||||
upProjection := mlp.Up.Forward(ctx, hiddenState)
|
||||
intermediateStates := gateActivation.Mul(ctx, upProjection)
|
||||
|
||||
// Project back to hidden dimension
|
||||
return mlp.Down.Forward(ctx, intermediateStates)
|
||||
}
|
||||
|
||||
// Layer represents a single transformer layer combining self-attention and feed-forward components
|
||||
type Layer struct {
|
||||
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
|
||||
SelfAttention *SelfAttention
|
||||
@ -143,52 +167,54 @@ type Layer struct {
|
||||
}
|
||||
|
||||
func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
|
||||
// Self-attention branch with residual connection
|
||||
residual := hiddenState
|
||||
|
||||
hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
|
||||
normalizedAttention := l.AttentionNorm.Forward(ctx, hiddenState, opts.modelEpsilon)
|
||||
attentionOutput := l.SelfAttention.Forward(ctx, normalizedAttention, positionIDs, cache, opts)
|
||||
hiddenState = attentionOutput.Add(ctx, residual)
|
||||
|
||||
hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)
|
||||
|
||||
hiddenState = hiddenState.Add(ctx, residual)
|
||||
// Feed-forward branch with residual connection
|
||||
residual = hiddenState
|
||||
|
||||
hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
|
||||
|
||||
hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
|
||||
|
||||
output := hiddenState.Add(ctx, residual)
|
||||
normalizedMLP := l.MLPNorm.Forward(ctx, hiddenState, opts.modelEpsilon)
|
||||
mlpOutput := l.MLP.Forward(ctx, normalizedMLP, opts)
|
||||
output := mlpOutput.Add(ctx, residual)
|
||||
|
||||
return output
|
||||
}
|
||||
|
||||
func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
|
||||
inputs, err := ctx.FromIntSlice(opts.Inputs, len(opts.Inputs))
|
||||
// Convert input tokens and positions to tensors
|
||||
inputTensor, err := ctx.FromIntSlice(opts.Inputs, len(opts.Inputs))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
positions, err := ctx.FromIntSlice(opts.Positions, len(opts.Positions))
|
||||
positionsTensor, err := ctx.FromIntSlice(opts.Positions, len(opts.Positions))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
|
||||
// Initial token embedding
|
||||
hiddenStates := m.TokenEmbedding.Forward(ctx, inputTensor)
|
||||
|
||||
// Process through transformer layers
|
||||
for i, layer := range m.Layers {
|
||||
m.Cache.SetLayer(i)
|
||||
hiddenState = layer.Forward(ctx, hiddenState, positions, m.Cache, m.Options)
|
||||
hiddenStates = layer.Forward(ctx, hiddenStates, positionsTensor, m.Cache, m.Options)
|
||||
}
|
||||
|
||||
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
|
||||
// Final layer normalization and output projection
|
||||
normalizedOutput := m.OutputNorm.Forward(ctx, hiddenStates, m.modelEpsilon)
|
||||
logits := m.Output.Forward(ctx, normalizedOutput)
|
||||
|
||||
hiddenState = m.Output.Forward(ctx, hiddenState)
|
||||
|
||||
outputs, err := ctx.FromIntSlice(opts.Outputs, len(opts.Outputs))
|
||||
// Extract requested output token positions
|
||||
outputsTensor, err := ctx.FromIntSlice(opts.Outputs, len(opts.Outputs))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return hiddenState.Rows(ctx, outputs), nil
|
||||
return logits.Rows(ctx, outputsTensor), nil
|
||||
}
|
||||
|
||||
func init() {
|
||||
|
Loading…
x
Reference in New Issue
Block a user