fix configs
This commit is contained in:
parent
46bb0169c4
commit
9b54267e69
@ -10,6 +10,7 @@ type gemma3Model struct {
|
|||||||
gemmaModel
|
gemmaModel
|
||||||
Architecture string
|
Architecture string
|
||||||
TextModel struct {
|
TextModel struct {
|
||||||
|
HeadDim uint32 `json:"head_dim"`
|
||||||
HiddenSize uint32 `json:"hidden_size"`
|
HiddenSize uint32 `json:"hidden_size"`
|
||||||
HiddenLayers uint32 `json:"num_hidden_layers"`
|
HiddenLayers uint32 `json:"num_hidden_layers"`
|
||||||
IntermediateSize uint32 `json:"intermediate_size"`
|
IntermediateSize uint32 `json:"intermediate_size"`
|
||||||
@ -36,15 +37,45 @@ type gemma3Model struct {
|
|||||||
SlidingWindow uint32 `json:"sliding_window"`
|
SlidingWindow uint32 `json:"sliding_window"`
|
||||||
}
|
}
|
||||||
|
|
||||||
|
const (
|
||||||
|
gemma4BLayerCount = 34
|
||||||
|
gemma12BLayerCount = 48
|
||||||
|
gemma27BLayerCount = 62
|
||||||
|
)
|
||||||
|
|
||||||
func (p *gemma3Model) KV(t *Tokenizer) ggml.KV {
|
func (p *gemma3Model) KV(t *Tokenizer) ggml.KV {
|
||||||
kv := p.ModelParameters.KV(t)
|
kv := p.ModelParameters.KV(t)
|
||||||
kv["general.architecture"] = "gemma3"
|
kv["general.architecture"] = "gemma3"
|
||||||
|
|
||||||
|
numBlocks := cmp.Or(p.HiddenLayers, p.TextModel.HiddenLayers)
|
||||||
|
kv["gemma3.block_count"] = numBlocks
|
||||||
|
|
||||||
|
var (
|
||||||
|
numHeads uint32
|
||||||
|
numKVHeads uint32
|
||||||
|
)
|
||||||
|
|
||||||
|
switch numBlocks {
|
||||||
|
case gemma4BLayerCount:
|
||||||
|
numHeads = 8
|
||||||
|
numKVHeads = 4
|
||||||
|
case gemma12BLayerCount:
|
||||||
|
numHeads = 16
|
||||||
|
numKVHeads = 8
|
||||||
|
case gemma27BLayerCount:
|
||||||
|
numHeads = 32
|
||||||
|
numKVHeads = 16
|
||||||
|
default:
|
||||||
|
numHeads = p.NumAttentionHeads
|
||||||
|
numKVHeads = p.NumKeyValueHeads
|
||||||
|
}
|
||||||
|
|
||||||
|
kv["gemma3.attention.head_count"] = numHeads
|
||||||
|
kv["gemma3.attention.head_count_kv"] = numKVHeads
|
||||||
|
|
||||||
switch p.Architecture {
|
switch p.Architecture {
|
||||||
case "Gemma3ForCausalLM":
|
case "Gemma3ForCausalLM":
|
||||||
kv["gemma3.context_length"] = p.MaxPositionEmbeddings
|
kv["gemma3.context_length"] = p.MaxPositionEmbeddings
|
||||||
kv["gemma3.attention.head_count"] = p.NumAttentionHeads
|
|
||||||
kv["gemma3.attention.head_count_kv"] = p.NumKeyValueHeads
|
|
||||||
kv["gemma3.text.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
|
kv["gemma3.text.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
|
||||||
kv["gemma3.attention.key_length"] = p.HeadDim
|
kv["gemma3.attention.key_length"] = p.HeadDim
|
||||||
kv["gemma3.attention.value_length"] = p.HeadDim
|
kv["gemma3.attention.value_length"] = p.HeadDim
|
||||||
@ -53,11 +84,9 @@ func (p *gemma3Model) KV(t *Tokenizer) ggml.KV {
|
|||||||
kv["gemma3.text.rope.local.freq_base"] = p.RopeLocalTheta
|
kv["gemma3.text.rope.local.freq_base"] = p.RopeLocalTheta
|
||||||
kv["gemma3.text.rope.global.freq_base"] = p.RopeGlobalTheta
|
kv["gemma3.text.rope.global.freq_base"] = p.RopeGlobalTheta
|
||||||
kv["gemma3.embedding_length"] = p.HiddenSize
|
kv["gemma3.embedding_length"] = p.HiddenSize
|
||||||
kv["gemma3.block_count"] = p.HiddenLayers
|
|
||||||
kv["gemma3.text.feed_forward_length"] = p.IntermediateSize
|
kv["gemma3.text.feed_forward_length"] = p.IntermediateSize
|
||||||
default:
|
default:
|
||||||
kv["gemma3.embedding_length"] = p.TextModel.HiddenSize
|
kv["gemma3.embedding_length"] = p.TextModel.HiddenSize
|
||||||
kv["gemma3.block_count"] = p.TextModel.HiddenLayers
|
|
||||||
kv["gemma3.text.feed_forward_length"] = p.TextModel.IntermediateSize
|
kv["gemma3.text.feed_forward_length"] = p.TextModel.IntermediateSize
|
||||||
kv["gemma3.text.attention.sliding_window"] = p.TextModel.SlidingWindow
|
kv["gemma3.text.attention.sliding_window"] = p.TextModel.SlidingWindow
|
||||||
kv["gemma3.vision.block_count"] = p.VisionModel.NumHiddenLayers
|
kv["gemma3.vision.block_count"] = p.VisionModel.NumHiddenLayers
|
||||||
@ -68,11 +97,10 @@ func (p *gemma3Model) KV(t *Tokenizer) ggml.KV {
|
|||||||
kv["gemma3.vision.num_channels"] = cmp.Or(p.VisionModel.NumChannels, 3)
|
kv["gemma3.vision.num_channels"] = cmp.Or(p.VisionModel.NumChannels, 3)
|
||||||
kv["gemma3.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
|
kv["gemma3.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
|
||||||
kv["gemma3.vision.attention.layer_norm_epsilon"] = cmp.Or(p.VisionModel.LayerNormEpsilon, 1e-6)
|
kv["gemma3.vision.attention.layer_norm_epsilon"] = cmp.Or(p.VisionModel.LayerNormEpsilon, 1e-6)
|
||||||
|
kv["gemma3.attention.key_length"] = cmp.Or(p.TextModel.HeadDim, 256)
|
||||||
|
kv["gemma3.attention.value_length"] = cmp.Or(p.TextModel.HeadDim, 256)
|
||||||
}
|
}
|
||||||
|
|
||||||
kv["tokenizer.ggml.bos_token_id"] = uint32(2)
|
|
||||||
kv["tokenizer.ggml.eot_token_id"] = uint32(1)
|
|
||||||
|
|
||||||
return kv
|
return kv
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -33,7 +33,7 @@ type TextModel struct {
|
|||||||
|
|
||||||
const (
|
const (
|
||||||
gemmaGlobalCacheCount = 6
|
gemmaGlobalCacheCount = 6
|
||||||
gemma27BLayerCount = 46
|
gemma27BLayerCount = 62
|
||||||
)
|
)
|
||||||
|
|
||||||
const (
|
const (
|
||||||
@ -42,6 +42,8 @@ const (
|
|||||||
)
|
)
|
||||||
|
|
||||||
func newTextModel(c ml.Config) *TextModel {
|
func newTextModel(c ml.Config) *TextModel {
|
||||||
|
numBlocks := int(c.Uint("block_count"))
|
||||||
|
|
||||||
m := TextModel{
|
m := TextModel{
|
||||||
SentencePieceModel: model.NewSentencePieceModel(
|
SentencePieceModel: model.NewSentencePieceModel(
|
||||||
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
|
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
|
||||||
@ -53,11 +55,11 @@ func newTextModel(c ml.Config) *TextModel {
|
|||||||
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
|
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
|
||||||
},
|
},
|
||||||
),
|
),
|
||||||
Layers: make([]TextLayer, c.Uint("block_count")),
|
Layers: make([]TextLayer, numBlocks),
|
||||||
TextOptions: &TextOptions{
|
TextOptions: &TextOptions{
|
||||||
hiddenSize: int(c.Uint("embedding_length")),
|
hiddenSize: int(c.Uint("embedding_length")),
|
||||||
numHeads: int(c.Uint("attention.head_count", 8)),
|
numHeads: int(c.Uint("attention.head_count")),
|
||||||
numKVHeads: int(c.Uint("attention.head_count_kv", 4)),
|
numKVHeads: int(c.Uint("attention.head_count_kv")),
|
||||||
attnKeyLen: int(c.Uint("attention.key_length", 256)),
|
attnKeyLen: int(c.Uint("attention.key_length", 256)),
|
||||||
attnValLen: int(c.Uint("attention.value_length", 256)),
|
attnValLen: int(c.Uint("attention.value_length", 256)),
|
||||||
eps: c.Float("text.attention.layer_norm_rms_epsilon", 1e-06),
|
eps: c.Float("text.attention.layer_norm_rms_epsilon", 1e-06),
|
||||||
@ -68,6 +70,10 @@ func newTextModel(c ml.Config) *TextModel {
|
|||||||
},
|
},
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if numBlocks == gemma27BLayerCount {
|
||||||
|
m.largeModelScaling = true
|
||||||
|
}
|
||||||
|
|
||||||
return &m
|
return &m
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -177,10 +183,6 @@ func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor
|
|||||||
hiddenState = hiddenState.Set(ctx, visionOutputs, offset*hiddenState.Stride(0))
|
hiddenState = hiddenState.Set(ctx, visionOutputs, offset*hiddenState.Stride(0))
|
||||||
}
|
}
|
||||||
|
|
||||||
if len(m.Layers) == gemma27BLayerCount {
|
|
||||||
m.TextOptions.largeModelScaling = true
|
|
||||||
}
|
|
||||||
|
|
||||||
for i, layer := range m.Layers {
|
for i, layer := range m.Layers {
|
||||||
// gemma alternates between the sliding window (local) and causal (global)
|
// gemma alternates between the sliding window (local) and causal (global)
|
||||||
// kv cache every 6 layers
|
// kv cache every 6 layers
|
||||||
|
Loading…
x
Reference in New Issue
Block a user