model: load non-repeated tensors into multiple backends
some tensors are expected to be used in repeating layers but are not themselves repeated. this change copies these tensors into the same backends as their repeating counterparts to minimize copying tensors between backends
This commit is contained in:
parent
bab6f34dc0
commit
bfce55db3d
@ -25,11 +25,13 @@ import (
|
||||
"github.com/ollama/ollama/format"
|
||||
fs "github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/ollama/ollama/ml"
|
||||
ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
|
||||
"golang.org/x/sync/errgroup"
|
||||
)
|
||||
|
||||
func devices() iter.Seq[*C.struct_ggml_backend_device] {
|
||||
return func(yield func(*C.struct_ggml_backend_device) bool) {
|
||||
ggml.OnceLoad()
|
||||
for i := range C.ggml_backend_dev_count() {
|
||||
if !yield(C.ggml_backend_dev_get(i)) {
|
||||
return
|
||||
@ -146,8 +148,15 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
|
||||
|
||||
slog.Info("max tensors", "max_tensors", maxTensors)
|
||||
|
||||
type tensor struct {
|
||||
source *fs.Tensor
|
||||
target string
|
||||
}
|
||||
|
||||
targets := make(map[string][]string)
|
||||
|
||||
ctxs := make(map[*C.struct_ggml_backend_buffer_type]*C.struct_ggml_context)
|
||||
createTensor := func(t *fs.Tensor, bts []*C.struct_ggml_backend_buffer_type) *C.struct_ggml_tensor {
|
||||
createTensor := func(t tensor, bts []*C.struct_ggml_backend_buffer_type) *C.struct_ggml_tensor {
|
||||
for _, bt := range bts {
|
||||
if _, ok := ctxs[bt]; !ok {
|
||||
ctxs[bt] = C.ggml_init(C.struct_ggml_init_params{
|
||||
@ -156,16 +165,23 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
|
||||
})
|
||||
}
|
||||
|
||||
cname := C.CString(t.Name)
|
||||
targets[t.source.Name] = append(targets[t.source.Name], t.target)
|
||||
|
||||
name := t.source.Name
|
||||
if t.target != "" {
|
||||
name = t.target
|
||||
}
|
||||
|
||||
cname := C.CString(name)
|
||||
defer C.free(unsafe.Pointer(cname))
|
||||
if tt := C.ggml_get_tensor(ctxs[bt], cname); tt != nil {
|
||||
return tt
|
||||
}
|
||||
|
||||
tt := C.ggml_new_tensor(ctxs[bt], t.Kind, C.int(len(t.Shape)), (*C.int64_t)(unsafe.Pointer(&t.Shape[0])))
|
||||
tt := C.ggml_new_tensor(ctxs[bt], t.source.Kind, C.int(len(t.source.Shape)), (*C.int64_t)(unsafe.Pointer(&t.source.Shape[0])))
|
||||
C.ggml_set_name(tt, cname)
|
||||
|
||||
slog.Debug("created tensor", "name", t.Name, "shape", t.Shape, "dtype", t.Kind, "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
|
||||
slog.Debug("created tensor", "name", name, "shape", t.source.Shape, "dtype", t.source.Kind, "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
|
||||
//nolint:staticcheck // TODO: check if buffer type supports this tensor
|
||||
return tt
|
||||
}
|
||||
@ -187,9 +203,9 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
|
||||
for _, t := range meta.Tensors().Items() {
|
||||
switch {
|
||||
case hasPart(t.Name, "position_embd", "token_embd", "token_norm_embd", "token_types"):
|
||||
createTensor(t, input.bts)
|
||||
createTensor(tensor{source: t}, input.bts)
|
||||
case hasPart(t.Name, "cls", "output", "output_norm"):
|
||||
createTensor(t, output.bts)
|
||||
createTensor(tensor{source: t}, output.bts)
|
||||
default:
|
||||
if i := func() int {
|
||||
if fields := strings.FieldsFunc(t.Name, func(r rune) bool { return !unicode.IsNumber(r) }); len(fields) > 0 {
|
||||
@ -200,10 +216,13 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
|
||||
|
||||
return -1
|
||||
}(); i >= 0 {
|
||||
createTensor(t, layers[i].bts)
|
||||
createTensor(tensor{source: t}, layers[i].bts)
|
||||
} else {
|
||||
for _, layer := range layers {
|
||||
createTensor(t, layer.bts)
|
||||
for i, layer := range layers {
|
||||
createTensor(tensor{
|
||||
source: t,
|
||||
target: "blk." + strconv.Itoa(i) + "." + t.Name,
|
||||
}, layer.bts)
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -237,28 +256,34 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
|
||||
sr := io.NewSectionReader(r, int64(meta.Tensors().Offset), n-int64(meta.Tensors().Offset))
|
||||
var g errgroup.Group
|
||||
for _, t := range meta.Tensors().Items() {
|
||||
g.Go(func() error {
|
||||
tt, ok := tensors[t.Name]
|
||||
if !ok {
|
||||
return fmt.Errorf("unassigned tensor: %s", t.Name)
|
||||
}
|
||||
for _, target := range targets[t.Name] {
|
||||
g.Go(func() error {
|
||||
if target == "" {
|
||||
target = t.Name
|
||||
}
|
||||
|
||||
bts := make([]byte, t.Size())
|
||||
n, err := io.ReadFull(io.NewSectionReader(sr, int64(t.Offset), int64(t.Size())), bts)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
tt, ok := tensors[target]
|
||||
if !ok {
|
||||
return fmt.Errorf("unassigned tensor: %s", t.Name)
|
||||
}
|
||||
|
||||
if n != len(bts) {
|
||||
return errors.New("short read")
|
||||
}
|
||||
bts := make([]byte, t.Size())
|
||||
n, err := io.ReadFull(io.NewSectionReader(sr, int64(t.Offset), int64(t.Size())), bts)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
cname := C.CString(t.Name)
|
||||
C.ggml_backend_tensor_set(tt, unsafe.Pointer(&bts[0]), 0, C.size_t(t.Size()))
|
||||
C.free(unsafe.Pointer(cname))
|
||||
if n != len(bts) {
|
||||
return errors.New("short read")
|
||||
}
|
||||
|
||||
return nil
|
||||
})
|
||||
cname := C.CString(t.Name)
|
||||
C.ggml_backend_tensor_set(tt, unsafe.Pointer(&bts[0]), 0, C.size_t(t.Size()))
|
||||
C.free(unsafe.Pointer(cname))
|
||||
|
||||
return nil
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
if g.Wait() != nil {
|
||||
|
21
ml/backend/ggml/ggml/src/ggml-backend-reg.cpp
vendored
21
ml/backend/ggml/ggml/src/ggml-backend-reg.cpp
vendored
@ -207,7 +207,13 @@ struct ggml_backend_registry {
|
||||
for (size_t i = 0; i < ggml_backend_reg_dev_count(reg); i++) {
|
||||
register_device(ggml_backend_reg_dev_get(reg, i), score);
|
||||
}
|
||||
}
|
||||
|
||||
void register_device(ggml_backend_dev_t device, int score = -1) {
|
||||
#ifndef NDEBUG
|
||||
GGML_LOG_DEBUG("%s: registered device %s (%s)\n", __func__, ggml_backend_dev_name(device), ggml_backend_dev_description(device));
|
||||
#endif
|
||||
devices.push_back({device, score});
|
||||
std::stable_sort(devices.begin(), devices.end(),
|
||||
[](const auto & a, const auto & b) {
|
||||
return a.second > b.second;
|
||||
@ -215,21 +221,6 @@ struct ggml_backend_registry {
|
||||
);
|
||||
}
|
||||
|
||||
void register_device(ggml_backend_dev_t device, int score = -1) {
|
||||
switch (ggml_backend_dev_type(device)) {
|
||||
case GGML_BACKEND_DEVICE_TYPE_CPU:
|
||||
case GGML_BACKEND_DEVICE_TYPE_GPU:
|
||||
score += 1 << 16;
|
||||
case GGML_BACKEND_DEVICE_TYPE_ACCEL:
|
||||
score += 1 << 20;
|
||||
}
|
||||
|
||||
#ifndef NDEBUG
|
||||
GGML_LOG_DEBUG("%s: registered device %s (%s)\n", __func__, ggml_backend_dev_name(device), ggml_backend_dev_description(device));
|
||||
#endif
|
||||
devices.push_back({device, score});
|
||||
}
|
||||
|
||||
ggml_backend_reg_t load_backend(const std::filesystem::path & path, bool silent) {
|
||||
dl_handle_ptr handle { dl_load_library(path) };
|
||||
if (!handle) {
|
||||
|
Loading…
x
Reference in New Issue
Block a user