fixed patches, llava

This commit is contained in:
Josh Yan 2024-08-23 14:12:26 -07:00
parent c631633bce
commit e6802df906
2 changed files with 69 additions and 39 deletions

View File

@ -1313,8 +1313,7 @@ struct llama_server_context
return true;
}
// for multiple images processing
bool ingest_images(server_slot &slot, int n_batch)
bool process_llava(server_slot &slot, int n_batch)
{
int image_idx = 0;
@ -1391,6 +1390,20 @@ struct llama_server_context
return true;
}
// for multiple images processing based on model architecture
bool ingest_images(server_slot &slot, int n_batch)
{
switch (llama_get_architecture(model))
{
case 0:
return process_llava(slot, n_batch);
case 25:
return prepare_pali(slot, n_batch);
default:
return false;
}
}
void request_cancel(int task_id)
{
task_server task;
@ -1880,9 +1893,14 @@ struct llama_server_context
llama_batch_add(batch, prefix_tokens[slot.n_past], system_tokens.size() + slot_npast, { slot.id }, false);
slot_npast++;
}
LOG_DEBUG("hi gpt params processing images", {
{"gpt_params.model", params.model.c_str()},
{"model alias", params.model_alias.c_str()},
});
printf("gpt_params model is %s\n", params.model.c_str());
printf("gpt_params model is %s\n", params.model.c_str());
// if (has_images && !ingest_images(slot, n_batch))
if (has_images && !prepare_pali(slot, n_batch))
if (has_images && !ingest_images(slot, n_batch))
{
LOG_ERROR("failed processing images", {
{"slot_id", slot.id},

View File

@ -1,78 +1,72 @@
diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp
index 7cda5f10..50fbcf08 100644
index 7cda5f10..671806fd 100644
--- a/examples/llava/clip.cpp
+++ b/examples/llava/clip.cpp
@@ -709,9 +709,12 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
@@ -708,11 +708,12 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
-
- embeddings = ggml_gelu(ctx0, embeddings);
- embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
+ // paligemma missing second linear layer
+ if (model.mm_2_w) {
-
+ if (model.mm_2_w)
+ {
+ embeddings = ggml_gelu(ctx0, embeddings);
+ embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
+ embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
+ }
} else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
@@ -2076,7 +2079,10 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
@@ -2076,6 +2077,10 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
return ctx->vision_model.mm_model_peg_0_b->ne[0];
}
if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
- return ctx->vision_model.mm_2_b->ne[0];
+ // paligemma missing second linear layer
+ if (ctx->vision_model.mm_2_b == nullptr) {
+ if (ctx->vision_model.mm_2_b == nullptr)
+ {
+ return ctx->vision_model.mm_0_b->ne[0];
+ }
return ctx->vision_model.mm_2_b->ne[0];
}
if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
return ctx->vision_model.mm_3_b->ne[0];
diff --git a/include/llama.h b/include/llama.h
index f23355a6..7c6301bf 100644
index f23355a6..e48da401 100644
--- a/include/llama.h
+++ b/include/llama.h
@@ -444,6 +444,9 @@ extern "C" {
@@ -444,6 +444,12 @@ extern "C" {
// Frees all allocated memory
LLAMA_API void llama_free(struct llama_context * ctx);
+ // save image embeddings
+ // Sets image embeddings
+ LLAMA_API void set_image_embeds(struct llama_context *ctx, float *data);
+
+ // Gets architecture
+ LLAMA_API int llama_get_architecture(struct llama_model *model);
+
LLAMA_API int64_t llama_time_us(void);
LLAMA_API size_t llama_max_devices(void);
diff --git a/src/llama.cpp b/src/llama.cpp
index a7b1c9eb..b0a6bc27 100644
index a7b1c9eb..ee067919 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -2668,6 +2668,7 @@ struct llama_context {
@@ -2710,6 +2710,8 @@ struct llama_context {
const struct llama_model & model;
bool logits_all = false;
+ float *image_embeds = nullptr;
struct llama_cparams cparams;
struct llama_sampling sampling;
struct llama_kv_cache kv_self;
@@ -2751,6 +2752,10 @@ struct llama_context {
struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch]
};
+void set_image_embeds(llama_context *ctx, float *data) {
+ ctx->image_embeds = data;
+}
+
struct llama_lora_weight {
struct ggml_tensor * a = nullptr;
struct ggml_tensor * b = nullptr;
@@ -11599,6 +11604,15 @@ struct llm_build_context {
// embeddings output (2-dimensional array: [n_outputs][n_embd])
// populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
size_t embd_size = 0; // capacity (of floats) for embeddings
@@ -11599,6 +11601,15 @@ struct llm_build_context {
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+ // set the image embeddings in the input tensor
+ if (lctx.image_embeds) {
+ if (lctx.image_embeds)
+ {
+ struct ggml_tensor *image_embeds = ggml_dup_tensor(ctx0, inpL);
+ image_embeds->data = lctx.image_embeds;
+ image_embeds->ne[1] = 256;
@ -83,12 +77,30 @@ index a7b1c9eb..b0a6bc27 100644
inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
cb(inpL, "inp_scaled", -1);
@@ -14589,7 +14603,7 @@ static int llama_decode_internal(
@@ -14589,7 +14600,8 @@ static int llama_decode_internal(
}
// non-causal masks do not use the KV cache
- if (hparams.causal_attn) {
+ if (hparams.causal_attn || lctx.image_embeds) {
+ if (hparams.causal_attn || lctx.image_embeds)
+ {
llama_kv_cache_update(&lctx);
// if we have enough unused cells before the current head ->
@@ -16448,6 +16460,16 @@ void llama_free_model(struct llama_model * model) {
delete model;
}
+void set_image_embeds(llama_context *ctx, float *data)
+{
+ ctx->image_embeds = data;
+}
+
+int llama_get_architecture(llama_model *model)
+{
+ return model->arch;
+}
+
struct llama_context * llama_new_context_with_model(
struct llama_model * model,
struct llama_context_params params) {