clean up vision model forward pass
This commit is contained in:
parent
fcfad744ff
commit
eed0ac2948
@ -12,16 +12,17 @@ type qwen25VLModel struct {
|
||||
qwen2Model
|
||||
|
||||
VisionModel struct {
|
||||
Depth uint32 `json:"depth"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
InChannels uint32 `json:"in_chans"`
|
||||
NumHeads uint32 `json:"num_heads"`
|
||||
PatchSize uint32 `json:"patch_size"`
|
||||
SpatialMergeSize uint32 `json:"spatial_merge_size"`
|
||||
SpatialPatchSize uint32 `json:"spatial_patch_size"`
|
||||
WindowSize uint32 `json:"window_size"`
|
||||
RopeTheta float32 `json:"rope_theta"`
|
||||
Depth uint32 `json:"depth"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
NumHeads uint32 `json:"num_heads"`
|
||||
InChannels uint32 `json:"in_chans"`
|
||||
PatchSize uint32 `json:"patch_size"`
|
||||
SpatialMergeSize uint32 `json:"spatial_merge_size"`
|
||||
SpatialPatchSize uint32 `json:"spatial_patch_size"`
|
||||
WindowSize uint32 `json:"window_size"`
|
||||
RMSNormEps float32 `json:"layer_norm_epsilon"`
|
||||
RopeTheta float32 `json:"rope_theta"`
|
||||
TemporalPatchSize uint32 `json:"temporal_patch_size"`
|
||||
} `json:"vision_config"`
|
||||
}
|
||||
|
||||
@ -39,13 +40,15 @@ func (q *qwen25VLModel) KV(t *Tokenizer) ggml.KV {
|
||||
|
||||
kv["qwen25vl.vision.block_count"] = q.VisionModel.Depth
|
||||
kv["qwen25vl.vision.embedding_length"] = q.VisionModel.HiddenSize
|
||||
kv["qwen25vl.vision.feed_forward_length"] = q.VisionModel.IntermediateSize
|
||||
kv["qwen25vl.vision.attention.head_count"] = q.VisionModel.NumHeads
|
||||
kv["qwen25vl.vision.num_channels"] = q.VisionModel.InChannels
|
||||
kv["qwen25vl.vision.patch_size"] = q.VisionModel.PatchSize
|
||||
kv["qwen25vl.vision.spatial_merge_size"] = q.VisionModel.SpatialMergeSize
|
||||
kv["qwen25vl.vision.spatial_patch_size"] = q.VisionModel.SpatialPatchSize
|
||||
kv["qwen25vl.vision.window_size"] = q.VisionModel.WindowSize
|
||||
kv["qwen25vl.vision.attention.layer_norm_epsilon"] = cmp.Or(q.VisionModel.RMSNormEps, 1e-6)
|
||||
kv["qwen25vl.vision.rope.freq_base"] = cmp.Or(q.VisionModel.RopeTheta, 1e5)
|
||||
kv["qwen25vl.vision.temporal_patch_size"] = q.VisionModel.TemporalPatchSize
|
||||
|
||||
return kv
|
||||
}
|
||||
|
@ -118,6 +118,4 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||||
|
||||
func init() {
|
||||
model.Register("qwen25vl", New)
|
||||
model.Register("qwen2", New)
|
||||
model.Register("qwen2vl", New)
|
||||
}
|
||||
|
@ -8,6 +8,7 @@ import (
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
)
|
||||
|
||||
// We only support batch size of 1
|
||||
var batchSize int = 1
|
||||
|
||||
func rotateHalf(ctx ml.Context, t ml.Tensor) ml.Tensor {
|
||||
@ -20,7 +21,6 @@ func applyRotaryPositionalEmbedding(ctx ml.Context, t, cos, sin ml.Tensor) ml.Te
|
||||
return t.Mul(ctx, cos).Add(ctx, rotateHalf(ctx, t).Mul(ctx, sin))
|
||||
}
|
||||
|
||||
// VisionSelfAttention implements self-attention for the Qwen vision model
|
||||
type VisionSelfAttention struct {
|
||||
Query *nn.Linear `gguf:"attn_q"`
|
||||
Key *nn.Linear `gguf:"attn_k"`
|
||||
@ -28,7 +28,6 @@ type VisionSelfAttention struct {
|
||||
Output *nn.Linear `gguf:"attn_out"`
|
||||
}
|
||||
|
||||
// Forward computes self-attention for the vision model
|
||||
func (sa *VisionSelfAttention) Forward(ctx ml.Context, hiddenStates, cos, sin ml.Tensor, opts *VisionModelOptions) ml.Tensor {
|
||||
query := sa.Query.Forward(ctx, hiddenStates)
|
||||
key := sa.Key.Forward(ctx, hiddenStates)
|
||||
@ -50,16 +49,15 @@ func (sa *VisionSelfAttention) Forward(ctx ml.Context, hiddenStates, cos, sin ml
|
||||
return sa.Output.Forward(ctx, attention)
|
||||
}
|
||||
|
||||
// VisionMLP implements the MLP for the Qwen vision model
|
||||
// VisionMLP implements the multi-layer perceptron
|
||||
type VisionMLP struct {
|
||||
Gate *nn.Linear `gguf:"ffn_gate"`
|
||||
Up *nn.Linear `gguf:"ffn_up"`
|
||||
Down *nn.Linear `gguf:"ffn_down"`
|
||||
}
|
||||
|
||||
// Forward computes the MLP for the vision model
|
||||
func (mlp *VisionMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *VisionModelOptions) ml.Tensor {
|
||||
// Using GEGLU activation: (Gate * Up) * GELU(Gate)
|
||||
// Using activation as specified in config (likely GELU or SiLU/Swish)
|
||||
gateOutput := mlp.Gate.Forward(ctx, hiddenStates)
|
||||
upOutput := mlp.Up.Forward(ctx, hiddenStates)
|
||||
hiddenStates = gateOutput.GELU(ctx).Mul(ctx, upOutput)
|
||||
@ -67,7 +65,6 @@ func (mlp *VisionMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Visi
|
||||
return mlp.Down.Forward(ctx, hiddenStates)
|
||||
}
|
||||
|
||||
// VisionEncoderLayer implements an encoder layer for the Qwen vision model
|
||||
type VisionEncoderLayer struct {
|
||||
Norm1 *nn.RMSNorm `gguf:"ln1"`
|
||||
SelfAttention *VisionSelfAttention
|
||||
@ -75,7 +72,6 @@ type VisionEncoderLayer struct {
|
||||
MLP *VisionMLP
|
||||
}
|
||||
|
||||
// Forward computes an encoder layer for the vision model
|
||||
func (e *VisionEncoderLayer) Forward(ctx ml.Context, hiddenStates, cos, sin ml.Tensor, opts *VisionModelOptions) ml.Tensor {
|
||||
residual := hiddenStates
|
||||
hiddenStates = e.Norm1.Forward(ctx, hiddenStates, opts.eps)
|
||||
@ -88,21 +84,18 @@ func (e *VisionEncoderLayer) Forward(ctx ml.Context, hiddenStates, cos, sin ml.T
|
||||
return hiddenStates.Add(ctx, residual)
|
||||
}
|
||||
|
||||
// VisionModelOptions contains configuration options for the Qwen vision model
|
||||
// VisionModelOptions contains configuration options
|
||||
type VisionModelOptions struct {
|
||||
hiddenSize int
|
||||
numHeads int
|
||||
headDim int
|
||||
intermediateSize int
|
||||
imageSize int
|
||||
patchSize int
|
||||
numChannels int
|
||||
eps float32
|
||||
ropeTheta float32
|
||||
outHiddenSize int
|
||||
spatialMergeSize int
|
||||
spatialPatchSize int
|
||||
windowSize int
|
||||
hiddenSize int
|
||||
numHeads int
|
||||
headDim int
|
||||
patchSize int
|
||||
numChannels int
|
||||
eps float32
|
||||
ropeTheta float32
|
||||
spatialMergeSize int
|
||||
windowSize int
|
||||
temporalPatchSize int
|
||||
}
|
||||
|
||||
type PatchEmbedding struct {
|
||||
@ -110,25 +103,24 @@ type PatchEmbedding struct {
|
||||
PatchConv1 *nn.Conv2D `gguf:"patch_embd_1"`
|
||||
}
|
||||
|
||||
func (pe *PatchEmbedding) Forward(ctx ml.Context, pixelValues ml.Tensor, numChannels, embedDim, patchSize int) ml.Tensor {
|
||||
temporalPatchSize := 2 // we have two temporal convolutions
|
||||
func (pe *PatchEmbedding) Forward(ctx ml.Context, pixelValues ml.Tensor, opts *VisionModelOptions) ml.Tensor {
|
||||
numPatches := pixelValues.Shape()[1]
|
||||
|
||||
// Reshape the input tensor to match the expected dimensions
|
||||
pixelValues = pixelValues.Reshape(ctx, patchSize*patchSize, temporalPatchSize, numChannels, numPatches)
|
||||
pixelValues = pixelValues.Reshape(ctx, opts.patchSize*opts.patchSize, opts.temporalPatchSize, opts.numChannels, numPatches)
|
||||
|
||||
// Permute the tensor to bring the temporal dimension to the front
|
||||
pixelValues = pixelValues.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
|
||||
|
||||
// Split the tensor into two parts for the two temporal convolutions
|
||||
// Split the tensor into parts for the temporal convolutions
|
||||
in0 := pixelValues.View(ctx, 0, 1, pixelValues.Stride(1), pixelValues.Dim(1), pixelValues.Stride(2), pixelValues.Dim(2), pixelValues.Stride(3), pixelValues.Dim(3)).Contiguous(ctx)
|
||||
in0 = in0.Reshape(ctx, patchSize, patchSize, numChannels, numPatches)
|
||||
in0 = in0.Reshape(ctx, opts.patchSize, opts.patchSize, opts.numChannels, numPatches)
|
||||
in1 := pixelValues.View(ctx, pixelValues.Stride(0), 1, pixelValues.Stride(1), pixelValues.Dim(1), pixelValues.Stride(2), pixelValues.Dim(2), pixelValues.Stride(3), pixelValues.Dim(3)).Contiguous(ctx)
|
||||
in1 = in1.Reshape(ctx, patchSize, patchSize, numChannels, numPatches)
|
||||
in1 = in1.Reshape(ctx, opts.patchSize, opts.patchSize, opts.numChannels, numPatches)
|
||||
|
||||
s0, s1 := patchSize, patchSize // Use full stride
|
||||
p0, p1 := 0, 0 // padding
|
||||
d0, d1 := 1, 1 // dilation
|
||||
s0, s1 := opts.patchSize, opts.patchSize // Use full stride
|
||||
p0, p1 := 0, 0 // padding
|
||||
d0, d1 := 1, 1 // dilation
|
||||
out0 := pe.PatchConv0.Forward(ctx, in0, s0, s1, p0, p1, d0, d1)
|
||||
out1 := pe.PatchConv1.Forward(ctx, in1, s0, s1, p0, p1, d0, d1)
|
||||
|
||||
@ -136,7 +128,7 @@ func (pe *PatchEmbedding) Forward(ctx ml.Context, pixelValues ml.Tensor, numChan
|
||||
out := out0.Add(ctx, out1)
|
||||
|
||||
// Reshape the output tensor to match the expected dimensions
|
||||
return out.Reshape(ctx, embedDim, numPatches)
|
||||
return out.Reshape(ctx, opts.hiddenSize, numPatches)
|
||||
}
|
||||
|
||||
// VisionPatchMerger implements patch merging for the Qwen vision model
|
||||
@ -147,17 +139,16 @@ type VisionPatchMerger struct {
|
||||
}
|
||||
|
||||
// Forward computes patch merging for the vision model
|
||||
func (pm *VisionPatchMerger) Forward(ctx ml.Context, visionOutputs ml.Tensor, eps float32) ml.Tensor {
|
||||
normalized := pm.LNQ.Forward(ctx, visionOutputs, eps)
|
||||
func (pm *VisionPatchMerger) Forward(ctx ml.Context, visionOutputs ml.Tensor, opts *VisionModelOptions) ml.Tensor {
|
||||
normalized := pm.LNQ.Forward(ctx, visionOutputs, opts.eps)
|
||||
|
||||
spatialMergeSize := 2 // This should come from config?
|
||||
hiddenSize := visionOutputs.Dim(0) * (spatialMergeSize * spatialMergeSize)
|
||||
hiddenSize := visionOutputs.Dim(0) * (opts.spatialMergeSize * opts.spatialMergeSize)
|
||||
|
||||
// Reshape the normalized output to view the hidden size dimension
|
||||
// Similar to .view(-1, self.hidden_size) in PyTorch
|
||||
reshaped := normalized.Reshape(ctx, hiddenSize, normalized.Dim(1)/(spatialMergeSize*spatialMergeSize), batchSize)
|
||||
reshaped := normalized.Reshape(ctx, hiddenSize, normalized.Dim(1)/(opts.spatialMergeSize*opts.spatialMergeSize), batchSize)
|
||||
hidden := pm.MLP0.Forward(ctx, reshaped)
|
||||
activated := hidden.GELU(ctx)
|
||||
|
||||
output := pm.MLP2.Forward(ctx, activated)
|
||||
|
||||
return output
|
||||
@ -175,13 +166,7 @@ type VisionModel struct {
|
||||
// Forward computes the vision model for an input tensor
|
||||
func (m *VisionModel) Forward(ctx ml.Context, pixelValues ml.Tensor, grid *Grid) ml.Tensor {
|
||||
// Extract patch embeddings
|
||||
hiddenStates := m.PatchEmbedding.Forward(
|
||||
ctx,
|
||||
pixelValues, // processed image tensor
|
||||
m.numChannels, // number of channels, e.g., 3 for RGB
|
||||
m.hiddenSize, // embedding size
|
||||
m.patchSize, // patch size, e.g., 14
|
||||
)
|
||||
hiddenStates := m.PatchEmbedding.Forward(ctx, pixelValues, m.VisionModelOptions)
|
||||
|
||||
positionEmbedding := m.positionalEmbedding(ctx, grid)
|
||||
|
||||
@ -207,7 +192,7 @@ func (m *VisionModel) Forward(ctx ml.Context, pixelValues ml.Tensor, grid *Grid)
|
||||
hiddenStates = layer.Forward(ctx, hiddenStates, cos, sin, m.VisionModelOptions)
|
||||
}
|
||||
|
||||
return m.PatchMerger.Forward(ctx, hiddenStates, m.eps)
|
||||
return m.PatchMerger.Forward(ctx, hiddenStates, m.VisionModelOptions)
|
||||
}
|
||||
|
||||
func (m *VisionModel) windowIndex(ctx ml.Context, grid *Grid) ml.Tensor {
|
||||
@ -250,18 +235,13 @@ func (m *VisionModel) windowIndex(ctx ml.Context, grid *Grid) ml.Tensor {
|
||||
}
|
||||
|
||||
// positionalEmbedding generates rotary position embeddings for attention mechanisms
|
||||
// This implements rotary embeddings using spatial merging patterns for grid-based
|
||||
// vision transformers
|
||||
func (m *VisionModel) positionalEmbedding(ctx ml.Context, grid *Grid) ml.Tensor {
|
||||
// Configuration parameters
|
||||
dim := 80 / 2 // Head dimension divided by 2
|
||||
freq := dim / 2 // Frequency dimension (half of head dimension)
|
||||
theta := 10000.0 // Base for frequency scaling
|
||||
merge := 2 // Spatial merge size for rearranging coordinates
|
||||
dim := m.headDim / 2
|
||||
freq := dim / 2
|
||||
theta := float64(m.ropeTheta)
|
||||
merge := m.spatialMergeSize
|
||||
|
||||
// Create frequency patterns for position encoding
|
||||
// These are scaled position values based on frequency
|
||||
// In PyTorch: Similar to inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2) / dim))
|
||||
maxGridSize := max(grid.Height, grid.Width)
|
||||
freqVals := make([]float32, freq*maxGridSize)
|
||||
for i := range maxGridSize {
|
||||
@ -288,7 +268,6 @@ func (m *VisionModel) positionalEmbedding(ctx ml.Context, grid *Grid) ml.Tensor
|
||||
}
|
||||
|
||||
// Reshape and permute positions to match spatial merging pattern
|
||||
// This rearranges positions to group spatially related coordinates
|
||||
pos = pos.Reshape(ctx, 2, grid.Width, merge, grid.Height/merge)
|
||||
pos = pos.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
||||
pos = pos.Reshape(ctx, 2, merge, merge, grid.Width/merge*grid.Height/merge)
|
||||
@ -305,26 +284,27 @@ func (m *VisionModel) positionalEmbedding(ctx ml.Context, grid *Grid) ml.Tensor
|
||||
func newVisionModel(c fs.Config) *VisionModel {
|
||||
patchSize := int(c.Uint("vision.patch_size", 14))
|
||||
hiddenSize := int(c.Uint("vision.embedding_length", 1280))
|
||||
ropeTheta := c.Float("vision.rope.freq_base", 10000.0) // not set
|
||||
outHiddenSize := int(c.Uint("vision.out_embedding_length", 0)) // not set
|
||||
numHeads := int(c.Uint("vision.attention.head_count", 16))
|
||||
numChannels := int(c.Uint("vision.num_channels", 3))
|
||||
eps := c.Float("vision.attention.layer_norm_epsilon", 1e-6)
|
||||
ropeTheta := c.Float("vision.rope.freq_base", 10000.0)
|
||||
spatialMergeSize := int(c.Uint("vision.spatial_merge_size", 2))
|
||||
windowSize := int(c.Uint("vision.window_size", 112))
|
||||
temporalPatchSize := int(c.Uint("vision.temporal_patch_size", 2))
|
||||
|
||||
return &VisionModel{
|
||||
Layers: make([]VisionEncoderLayer, c.Uint("vision.block_count", 32)),
|
||||
VisionModelOptions: &VisionModelOptions{
|
||||
hiddenSize: hiddenSize,
|
||||
numHeads: numHeads,
|
||||
headDim: hiddenSize / numHeads,
|
||||
intermediateSize: int(c.Uint("vision.feed_forward_length", 0)),
|
||||
imageSize: int(c.Uint("vision.image_size", 560)),
|
||||
patchSize: patchSize,
|
||||
numChannels: int(c.Uint("vision.num_channels", 3)), // not set
|
||||
eps: c.Float("vision.attention.layer_norm_epsilon", 1e-6),
|
||||
ropeTheta: ropeTheta,
|
||||
outHiddenSize: outHiddenSize,
|
||||
spatialMergeSize: int(c.Uint("vision.spatial_merge_size", 2)),
|
||||
spatialPatchSize: int(c.Uint("vision.spatial_patch_size", 2)),
|
||||
windowSize: int(c.Uint("vision.window_size", 112)),
|
||||
hiddenSize: hiddenSize,
|
||||
numHeads: numHeads,
|
||||
headDim: hiddenSize / numHeads,
|
||||
patchSize: patchSize,
|
||||
numChannels: numChannels,
|
||||
eps: eps,
|
||||
ropeTheta: ropeTheta,
|
||||
spatialMergeSize: spatialMergeSize,
|
||||
windowSize: windowSize,
|
||||
temporalPatchSize: temporalPatchSize,
|
||||
},
|
||||
}
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user