Initial Draft

This commit is contained in:
Roy Han 2024-06-25 13:29:47 -07:00
parent 0f87628b6d
commit ff191d7cba
5 changed files with 71 additions and 41 deletions

View File

@ -210,7 +210,10 @@ type EmbeddingRequest struct {
Model string `json:"model"` Model string `json:"model"`
// Prompt is the textual prompt to embed. // Prompt is the textual prompt to embed.
Prompt string `json:"prompt"` Prompt string `json:"prompt,omitempty"`
// PromptBatch is a list of prompts to embed.
PromptBatch []string `json:"prompt_batch,omitempty"`
// KeepAlive controls how long the model will stay loaded in memory following // KeepAlive controls how long the model will stay loaded in memory following
// this request. // this request.
@ -222,7 +225,8 @@ type EmbeddingRequest struct {
// EmbeddingResponse is the response from [Client.Embeddings]. // EmbeddingResponse is the response from [Client.Embeddings].
type EmbeddingResponse struct { type EmbeddingResponse struct {
Embedding []float64 `json:"embedding"` Embedding []float64 `json:"embedding,omitempty"`
EmbeddingBatch [][]float64 `json:"embedding_batch,omitempty"`
} }
// CreateRequest is the request passed to [Client.Create]. // CreateRequest is the request passed to [Client.Create].

View File

@ -3166,26 +3166,36 @@ int main(int argc, char **argv) {
prompt = ""; prompt = "";
} }
json image_data;
if (body.count("image_data") != 0) {
image_data = body["image_data"];
}
else
{
image_data = "";
}
// create and queue the task // create and queue the task
const int task_id = llama.queue_tasks.get_new_id(); json responses;
llama.queue_results.add_waiting_task_id(task_id); {
llama.request_completion(task_id, { {"prompt", prompt}, { "n_predict", 0}, {"image_data", image_data} }, true, -1); const int id_task = llama.queue_tasks.get_new_id();
llama.queue_results.add_waiting_task_id(id_task);
llama.request_completion(id_task, {{"prompt", prompt}}, true, -1);
// get the result // get the result
task_result result = llama.queue_results.recv(task_id); task_result result = llama.queue_results.recv(id_task);
llama.queue_results.remove_waiting_task_id(task_id); llama.queue_results.remove_waiting_task_id(id_task);
if (!result.error) {
if (result.result_json.count("results")) {
// result for multi-task
responses = result.result_json.at("results");
} else {
// result for single task
responses = std::vector<json>(1, result.result_json);
}
json embeddings = json::array();
for (auto & elem : responses) {
embeddings.push_back(json_value(elem, "embedding", json::array()));
}
// send the result // send the result
json result = json{{"embedding", embeddings}};
return res.set_content(result.dump(), "application/json; charset=utf-8");
} else {
// return error
return res.set_content(result.result_json.dump(), "application/json; charset=utf-8"); return res.set_content(result.result_json.dump(), "application/json; charset=utf-8");
}
}
}); });
// GG: if I put the main loop inside a thread, it crashes on the first request when build in Debug!? // GG: if I put the main loop inside a thread, it crashes on the first request when build in Debug!?

View File

@ -33,7 +33,7 @@ type LlamaServer interface {
Ping(ctx context.Context) error Ping(ctx context.Context) error
WaitUntilRunning(ctx context.Context) error WaitUntilRunning(ctx context.Context) error
Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error
Embedding(ctx context.Context, prompt string) ([]float64, error) Embedding(ctx context.Context, prompt []string) ([][]float64, error)
Tokenize(ctx context.Context, content string) ([]int, error) Tokenize(ctx context.Context, content string) ([]int, error)
Detokenize(ctx context.Context, tokens []int) (string, error) Detokenize(ctx context.Context, tokens []int) (string, error)
Close() error Close() error
@ -842,14 +842,14 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
} }
type EmbeddingRequest struct { type EmbeddingRequest struct {
Content string `json:"content"` Content []string `json:"content"`
} }
type EmbeddingResponse struct { type EmbeddingResponse struct {
Embedding []float64 `json:"embedding"` Embedding [][]float64 `json:"embedding"`
} }
func (s *llmServer) Embedding(ctx context.Context, prompt string) ([]float64, error) { func (s *llmServer) Embedding(ctx context.Context, prompt []string) ([][]float64, error) {
if err := s.sem.Acquire(ctx, 1); err != nil { if err := s.sem.Acquire(ctx, 1); err != nil {
slog.Error("Failed to acquire semaphore", "error", err) slog.Error("Failed to acquire semaphore", "error", err)
return nil, err return nil, err
@ -864,7 +864,7 @@ func (s *llmServer) Embedding(ctx context.Context, prompt string) ([]float64, er
return nil, fmt.Errorf("unexpected server status: %s", status.ToString()) return nil, fmt.Errorf("unexpected server status: %s", status.ToString())
} }
data, err := json.Marshal(TokenizeRequest{Content: prompt}) data, err := json.Marshal(EmbeddingRequest{Content: prompt})
if err != nil { if err != nil {
return nil, fmt.Errorf("error marshaling embed data: %w", err) return nil, fmt.Errorf("error marshaling embed data: %w", err)
} }

View File

@ -389,23 +389,39 @@ func (s *Server) EmbeddingsHandler(c *gin.Context) {
return return
} }
// an empty request loads the model switch {
if req.Prompt == "" { // single embedding
c.JSON(http.StatusOK, api.EmbeddingResponse{Embedding: []float64{}}) case len(req.Prompt) > 0:
return slog.Info("embedding request", "prompt", req.Prompt)
} embeddings, err := runner.llama.Embedding(c.Request.Context(), []string{req.Prompt})
embedding, err := runner.llama.Embedding(c.Request.Context(), req.Prompt)
if err != nil { if err != nil {
slog.Info(fmt.Sprintf("embedding generation failed: %v", err)) slog.Info(fmt.Sprintf("embedding generation failed: %v", err))
c.JSON(http.StatusInternalServerError, gin.H{"error": "failed to generate embedding"}) c.JSON(http.StatusInternalServerError, gin.H{"error": "failed to generate embedding"})
return return
} }
resp := api.EmbeddingResponse{ resp := api.EmbeddingResponse{Embedding: embeddings[0]}
Embedding: embedding,
}
c.JSON(http.StatusOK, resp) c.JSON(http.StatusOK, resp)
// batch embeddings
case len(req.PromptBatch) > 0:
embeddings, err := runner.llama.Embedding(c.Request.Context(), req.PromptBatch)
if err != nil {
slog.Info(fmt.Sprintf("batch embedding generation failed: %v", err))
c.JSON(http.StatusInternalServerError, gin.H{"error": "failed to generate embedding"})
return
}
resp := api.EmbeddingResponse{EmbeddingBatch: embeddings}
c.JSON(http.StatusOK, resp)
// empty prompt loads the model
default:
if req.PromptBatch != nil {
c.JSON(http.StatusOK, api.EmbeddingResponse{EmbeddingBatch: [][]float64{}})
} else {
c.JSON(http.StatusOK, api.EmbeddingResponse{Embedding: []float64{}})
}
}
} }
func (s *Server) PullModelHandler(c *gin.Context) { func (s *Server) PullModelHandler(c *gin.Context) {

View File

@ -608,7 +608,7 @@ type mockLlm struct {
pingResp error pingResp error
waitResp error waitResp error
completionResp error completionResp error
embeddingResp []float64 embeddingResp [][]float64
embeddingRespErr error embeddingRespErr error
tokenizeResp []int tokenizeResp []int
tokenizeRespErr error tokenizeRespErr error
@ -626,7 +626,7 @@ func (s *mockLlm) WaitUntilRunning(ctx context.Context) error { return s.waitRes
func (s *mockLlm) Completion(ctx context.Context, req llm.CompletionRequest, fn func(llm.CompletionResponse)) error { func (s *mockLlm) Completion(ctx context.Context, req llm.CompletionRequest, fn func(llm.CompletionResponse)) error {
return s.completionResp return s.completionResp
} }
func (s *mockLlm) Embedding(ctx context.Context, prompt string) ([]float64, error) { func (s *mockLlm) Embedding(ctx context.Context, prompt []string) ([][]float64, error) {
return s.embeddingResp, s.embeddingRespErr return s.embeddingResp, s.embeddingRespErr
} }
func (s *mockLlm) Tokenize(ctx context.Context, content string) ([]int, error) { func (s *mockLlm) Tokenize(ctx context.Context, content string) ([]int, error) {