Compare commits
12 Commits
main
...
brucemacd/
Author | SHA1 | Date | |
---|---|---|---|
![]() |
9de1410542 | ||
![]() |
9a9944fc6b | ||
![]() |
26767c665a | ||
![]() |
1eab2c85cc | ||
![]() |
c133341847 | ||
![]() |
ca07379f57 | ||
![]() |
713f7550a1 | ||
![]() |
fe796cfc75 | ||
![]() |
434f793075 | ||
![]() |
8025781dce | ||
![]() |
afb34b0e60 | ||
![]() |
191b1b1eb3 |
@ -182,8 +182,10 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
|
||||
|
||||
var conv ModelConverter
|
||||
switch p.Architectures[0] {
|
||||
case "LlamaForCausalLM", "MistralForCausalLM":
|
||||
case "LlamaForCausalLM":
|
||||
conv = &llamaModel{}
|
||||
case "Mistral3ForConditionalGeneration":
|
||||
conv = &mistral3Model{}
|
||||
case "MixtralForCausalLM":
|
||||
conv = &mixtralModel{}
|
||||
case "GemmaForCausalLM":
|
||||
@ -246,5 +248,10 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
|
||||
return err
|
||||
}
|
||||
|
||||
// iterate through all ts and print the name
|
||||
for _, t := range ts {
|
||||
fmt.Print(t.Name(), "\n")
|
||||
}
|
||||
|
||||
return conv.writeFile(ws, conv.KV(t), conv.Tensors(ts))
|
||||
}
|
||||
|
223
convert/convert_mistral.go
Normal file
223
convert/convert_mistral.go
Normal file
@ -0,0 +1,223 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
"fmt"
|
||||
"strings"
|
||||
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type mistral3Model struct {
|
||||
ModelParameters
|
||||
ImageTokenIndex uint32 `json:"image_token_index"`
|
||||
SpatialMergeSize uint32 `json:"spatial_merge_size"`
|
||||
VisionFeatureLayer int32 `json:"vision_feature_layer"`
|
||||
TextModel struct {
|
||||
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||
RopeTheta float32 `json:"rope_theta"`
|
||||
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||
HeadDim uint32 `json:"head_dim"`
|
||||
SlidingWindow *uint32 `json:"sliding_window"`
|
||||
HiddenAct string `json:"hidden_act"`
|
||||
VocabSize uint32 `json:"vocab_size"`
|
||||
} `json:"text_config"`
|
||||
VisionModel struct {
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
ImageSize uint32 `json:"image_size"`
|
||||
NumChannels uint32 `json:"num_channels"`
|
||||
PatchSize uint32 `json:"patch_size"`
|
||||
HeadDim uint32 `json:"head_dim"`
|
||||
HiddenAct string `json:"hidden_act"`
|
||||
RopeTheta float32 `json:"rope_theta"`
|
||||
} `json:"vision_config"`
|
||||
MultiModalProjectorBias bool `json:"multimodal_projector_bias"`
|
||||
ProjectorHiddenAct string `json:"projector_hidden_act"`
|
||||
}
|
||||
|
||||
func (p *mistral3Model) KV(t *Tokenizer) ggml.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "mistral3"
|
||||
kv["mistral3.vocab_size"] = p.TextModel.VocabSize
|
||||
|
||||
// Text configuration
|
||||
kv["mistral3.block_count"] = p.TextModel.NumHiddenLayers
|
||||
kv["mistral3.context_length"] = p.TextModel.MaxPositionEmbeddings
|
||||
kv["mistral3.embedding_length"] = p.TextModel.HiddenSize
|
||||
kv["mistral3.feed_forward_length"] = p.TextModel.IntermediateSize
|
||||
kv["mistral3.attention.head_count"] = p.TextModel.NumAttentionHeads
|
||||
kv["mistral3.attention.head_count_kv"] = p.TextModel.NumKeyValueHeads
|
||||
kv["mistral3.attention.layer_norm_rms_epsilon"] = p.TextModel.RMSNormEPS
|
||||
kv["mistral3.attention.key_length"] = p.TextModel.HeadDim
|
||||
kv["mistral3.attention.value_length"] = p.TextModel.HeadDim
|
||||
kv["mistral3.rope.dimension_count"] = p.TextModel.HiddenSize / p.TextModel.NumHiddenLayers
|
||||
kv["mistral3.rope.freq_base"] = p.TextModel.RopeTheta
|
||||
|
||||
// Vision configuration
|
||||
kv["mistral3.vision.block_count"] = p.VisionModel.NumHiddenLayers
|
||||
kv["mistral3.vision.embedding_length"] = p.VisionModel.HiddenSize
|
||||
kv["mistral3.vision.feed_forward_length"] = p.VisionModel.IntermediateSize
|
||||
kv["mistral3.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
|
||||
kv["mistral3.vision.attention.key_length"] = p.VisionModel.HeadDim
|
||||
kv["mistral3.vision.image_size"] = p.VisionModel.ImageSize
|
||||
kv["mistral3.vision.patch_size"] = p.VisionModel.PatchSize
|
||||
kv["mistral3.vision.num_channels"] = p.VisionModel.NumChannels
|
||||
// kv["mistral3.vision.attention.layer_norm_epsilon"] = 1e-05 // Default value
|
||||
kv["mistral3.vision.rope.freq_base"] = p.VisionModel.RopeTheta
|
||||
|
||||
// Multimodal configuration
|
||||
kv["mistral3.image_token_index"] = p.ImageTokenIndex
|
||||
kv["mistral3.spatial_merge_size"] = p.SpatialMergeSize
|
||||
|
||||
kv["mistral3.mm.projector_bias"] = p.MultiModalProjectorBias
|
||||
|
||||
if p.ProjectorHiddenAct != "" {
|
||||
kv["mistral3.mm.projector_hidden_act"] = p.ProjectorHiddenAct
|
||||
}
|
||||
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *mistral3Model) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
var out []ggml.Tensor
|
||||
|
||||
for _, t := range ts {
|
||||
if strings.HasSuffix(t.Name(), "attn_q.weight") ||
|
||||
strings.HasSuffix(t.Name(), "attn_k.weight") {
|
||||
t.SetRepacker(p.repack)
|
||||
}
|
||||
|
||||
// Skip certain vision model tensors that might need special handling
|
||||
if strings.HasPrefix(t.Name(), "patch_merger.") || strings.HasPrefix(t.Name(), "pre_mm_projector_output_norm.") {
|
||||
continue
|
||||
}
|
||||
|
||||
out = append(out, ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
})
|
||||
}
|
||||
|
||||
return out
|
||||
}
|
||||
|
||||
func (p *mistral3Model) Replacements() []string {
|
||||
return []string{
|
||||
// Text model replacements
|
||||
"model.layers", "blk",
|
||||
"input_layernorm", "attn_norm",
|
||||
"post_attention_layernorm", "ffn_norm",
|
||||
"lm_head", "output",
|
||||
"model.embed_tokens.weight", "token_embd.weight",
|
||||
"model.norm.weight", "output_norm.weight",
|
||||
"self_attn.q_proj", "attn_q",
|
||||
"self_attn.k_proj", "attn_k",
|
||||
"self_attn.v_proj", "attn_v",
|
||||
"self_attn.o_proj", "attn_output",
|
||||
"mlp.down_proj", "ffn_down",
|
||||
"mlp.gate_proj", "ffn_gate",
|
||||
"mlp.up_proj", "ffn_up",
|
||||
|
||||
// Language model replacements
|
||||
"language_model.model.embed_tokens", "token_embd",
|
||||
"language_model.model.layers", "blk",
|
||||
"language_model.model.layers.*.input_layernorm", "attn_norm",
|
||||
"language_model.model.layers.*.self_attn.q_proj", "attn_q",
|
||||
"language_model.model.layers.*.self_attn.k_proj", "attn_k",
|
||||
"language_model.model.layers.*.self_attn.v_proj", "attn_v",
|
||||
"language_model.model.layers.*.self_attn.o_proj", "attn_output",
|
||||
"language_model.model.layers.*.mlp.gate_proj", "ffn_gate",
|
||||
"language_model.model.layers.*.mlp.down_proj", "ffn_down",
|
||||
"language_model.model.layers.*.mlp.up_proj", "ffn_up",
|
||||
"language_model.model.layers.*.post_attention_layernorm", "ffn_norm",
|
||||
"language_model.lm_head", "output",
|
||||
"language_model.model.norm", "output_norm",
|
||||
|
||||
// Vision model replacements - map to shorter prefixes
|
||||
"vision_tower", "v",
|
||||
"multi_modal_projector", "mm",
|
||||
|
||||
// Vision transformer blocks - these should be updated accordingly
|
||||
"vision_tower.transformer.layers", "v.blk",
|
||||
"vision_tower.transformer.layers.*.attention_norm", "v.attn_norm",
|
||||
"vision_tower.transformer.layers.*.attention.q_proj", "v.attn_q",
|
||||
"vision_tower.transformer.layers.*.attention.k_proj", "v.attn_k",
|
||||
"vision_tower.transformer.layers.*.attention.v_proj", "v.attn_v",
|
||||
"vision_tower.transformer.layers.*.attention.o_proj", "v.attn_output",
|
||||
"vision_tower.transformer.layers.*.feed_forward.gate_proj", "v.ffn_gate",
|
||||
"vision_tower.transformer.layers.*.feed_forward.down_proj", "v.ffn_down",
|
||||
"vision_tower.transformer.layers.*.feed_forward.up_proj", "v.ffn_up",
|
||||
"vision_tower.transformer.layers.*.ffn_norm", "v.ffn_norm",
|
||||
"vision_tower.ln_pre", "v.encoder_norm",
|
||||
"vision_tower.patch_conv", "v.patch_conv",
|
||||
"vision_tower.embeddings", "v.embeddings",
|
||||
|
||||
// Alternative vision model paths
|
||||
"vision_model.vision_model.embeddings", "v.embeddings",
|
||||
"vision_model.vision_model", "v",
|
||||
"vision_model.layers", "v.blk",
|
||||
|
||||
// Multimodal projector components
|
||||
"multi_modal_projector.patch_merger", "mm.patch_merger",
|
||||
"multi_modal_projector.norm", "mm.norm",
|
||||
"multi_modal_projector.linear", "mm.projection",
|
||||
}
|
||||
}
|
||||
|
||||
func (p *mistral3Model) repack(name string, data []float32, shape []uint64) ([]float32, error) {
|
||||
var dims []int
|
||||
for _, dim := range shape {
|
||||
dims = append(dims, int(dim))
|
||||
}
|
||||
|
||||
var heads uint32
|
||||
if strings.HasSuffix(name, "attn_q.weight") {
|
||||
heads = p.TextModel.NumAttentionHeads
|
||||
} else if strings.HasSuffix(name, "attn_k.weight") {
|
||||
heads = cmp.Or(p.TextModel.NumKeyValueHeads, p.TextModel.NumAttentionHeads)
|
||||
} else {
|
||||
return nil, fmt.Errorf("unknown tensor for repack: %s", name)
|
||||
}
|
||||
|
||||
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
||||
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.T(0, 2, 1, 3); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.Reshape(dims...); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.Transpose(); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
ts, err := native.SelectF32(n, 1)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var f32s []float32
|
||||
for _, t := range ts {
|
||||
f32s = append(f32s, t...)
|
||||
}
|
||||
|
||||
return f32s, nil
|
||||
}
|
@ -62,10 +62,7 @@ func parseTensors(fsys fs.FS, replacer *strings.Replacer) ([]Tensor, error) {
|
||||
Pattern string
|
||||
Func func(fs.FS, *strings.Replacer, ...string) ([]Tensor, error)
|
||||
}{
|
||||
{"model-*-of-*.safetensors", parseSafetensors},
|
||||
{"model.safetensors", parseSafetensors},
|
||||
{"adapters.safetensors", parseSafetensors},
|
||||
{"adapter_model.safetensors", parseSafetensors},
|
||||
{"*.safetensors", parseSafetensors},
|
||||
{"pytorch_model-*-of-*.bin", parseTorch},
|
||||
{"pytorch_model.bin", parseTorch},
|
||||
{"consolidated.*.pth", parseTorch},
|
||||
|
@ -10,7 +10,7 @@ import (
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
type TextOptions struct {
|
||||
type TextConfig struct {
|
||||
hiddenSize, numHeads, numKVHeads int
|
||||
attnKeyLen, attnValLen int
|
||||
eps, ropeScale float32
|
||||
@ -27,7 +27,7 @@ type TextModel struct {
|
||||
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
|
||||
Output *nn.Linear `gguf:"output,alt:token_embd"`
|
||||
|
||||
*TextOptions
|
||||
*TextConfig
|
||||
}
|
||||
|
||||
const (
|
||||
@ -55,7 +55,7 @@ func newTextModel(c ml.Config) *TextModel {
|
||||
},
|
||||
),
|
||||
Layers: make([]TextLayer, numBlocks),
|
||||
TextOptions: &TextOptions{
|
||||
TextConfig: &TextConfig{
|
||||
hiddenSize: int(c.Uint("embedding_length")),
|
||||
numHeads: int(c.Uint("attention.head_count")),
|
||||
numKVHeads: int(c.Uint("attention.head_count_kv")),
|
||||
@ -84,7 +84,7 @@ type TextSelfAttention struct {
|
||||
Output *nn.Linear `gguf:"attn_output"`
|
||||
}
|
||||
|
||||
func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
|
||||
func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *TextConfig) ml.Tensor {
|
||||
batchSize := hiddenState.Dim(1)
|
||||
ropeType := uint32(2)
|
||||
|
||||
@ -120,12 +120,12 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, pos
|
||||
}
|
||||
|
||||
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||
ropeBase := m.TextOptions.ropeLocalBase
|
||||
ropeBase := m.TextConfig.ropeLocalBase
|
||||
if (layer+1)%gemmaGlobalCacheCount == 0 {
|
||||
ropeBase = m.TextOptions.ropeGlobalBase
|
||||
ropeBase = m.TextConfig.ropeGlobalBase
|
||||
}
|
||||
|
||||
return key.RoPE(ctx, shift, nil, uint32(m.TextOptions.attnKeyLen), uint32(2), ropeBase, m.TextOptions.ropeScale), nil
|
||||
return key.RoPE(ctx, shift, nil, uint32(m.TextConfig.attnKeyLen), uint32(2), ropeBase, m.TextConfig.ropeScale), nil
|
||||
}
|
||||
|
||||
type TextMLP struct {
|
||||
@ -134,7 +134,7 @@ type TextMLP struct {
|
||||
Gate *nn.Linear `gguf:"ffn_gate"`
|
||||
}
|
||||
|
||||
func (mlp *TextMLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextOptions) ml.Tensor {
|
||||
func (mlp *TextMLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextConfig) ml.Tensor {
|
||||
hiddenState = mlp.Gate.Forward(ctx, hiddenState).GELU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
|
||||
return mlp.Down.Forward(ctx, hiddenState)
|
||||
}
|
||||
@ -148,7 +148,7 @@ type TextLayer struct {
|
||||
PostMLPNorm *nn.RMSNorm `gguf:"post_ffw_norm"`
|
||||
}
|
||||
|
||||
func (l *TextLayer) Forward(ctx ml.Context, layer int, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
|
||||
func (l *TextLayer) Forward(ctx ml.Context, layer int, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *TextConfig) ml.Tensor {
|
||||
residual := hiddenState
|
||||
|
||||
hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
|
||||
@ -173,7 +173,7 @@ func (l *TextLayer) Forward(ctx ml.Context, layer int, hiddenState, positionIDs,
|
||||
|
||||
func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor, opts input.Options, cache kvcache.Cache) ml.Tensor {
|
||||
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
|
||||
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.TextOptions.hiddenSize)))
|
||||
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.TextConfig.hiddenSize)))
|
||||
|
||||
// set image embeddings
|
||||
var except []int
|
||||
@ -206,7 +206,7 @@ func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor
|
||||
lastLayerOutputs = outputs
|
||||
}
|
||||
|
||||
hiddenState = layer.Forward(ctx, i, hiddenState, positions, lastLayerOutputs, cache, m.TextOptions)
|
||||
hiddenState = layer.Forward(ctx, i, hiddenState, positions, lastLayerOutputs, cache, m.TextConfig)
|
||||
}
|
||||
|
||||
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
|
||||
|
@ -51,7 +51,7 @@ func (p *ImageProcessor) pack(img image.Image, mean, std [3]float32) []float32 {
|
||||
func (p ImageProcessor) ProcessImage(img image.Image) ([]float32, error) {
|
||||
outputSize := image.Point{p.imageSize, p.imageSize}
|
||||
newImage := imageproc.Composite(img)
|
||||
newImage = imageproc.Resize(newImage, outputSize, imageproc.ResizeBilinear)
|
||||
newImage = imageproc.Resize(newImage, outputSize, imageproc.ResizeBicubic)
|
||||
|
||||
data := p.pack(newImage, imageproc.ImageNetStandardMean, imageproc.ImageNetStandardSTD)
|
||||
return data, nil
|
||||
|
@ -13,9 +13,9 @@ import (
|
||||
)
|
||||
|
||||
type Options struct {
|
||||
hiddenSize, numHeads, numKVHeads int
|
||||
eps, ropeBase, ropeScale float32
|
||||
ropeDim uint32
|
||||
hiddenSize, numHeads, numKVHeads, headDim int
|
||||
eps, ropeBase, ropeScale float32
|
||||
ropeDim uint32
|
||||
}
|
||||
|
||||
type Model struct {
|
||||
@ -37,6 +37,8 @@ func New(c ml.Config) (model.Model, error) {
|
||||
|
||||
m := Model{
|
||||
BytePairEncoding: model.NewBytePairEncoding(
|
||||
// TODO: need to set this in the conversion for mistral:
|
||||
// tokenizer.ggml.pretokenizer = [^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]*[\p{Ll}\p{Lm}\p{Lo}\p{M}]+|[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]+[\p{Ll}\p{Lm}\p{Lo}\p{M}]*|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n/]*|\s*[\r\n]+|\s+(?!\S)|\s+
|
||||
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
|
||||
&model.Vocabulary{
|
||||
Values: c.Strings("tokenizer.ggml.tokens"),
|
||||
@ -53,6 +55,7 @@ func New(c ml.Config) (model.Model, error) {
|
||||
hiddenSize: int(c.Uint("embedding_length")),
|
||||
numHeads: int(c.Uint("attention.head_count")),
|
||||
numKVHeads: int(c.Uint("attention.head_count_kv")),
|
||||
headDim: int(c.Uint("attention.key_length")),
|
||||
eps: c.Float("attention.layer_norm_rms_epsilon"),
|
||||
ropeBase: c.Float("rope.freq_base"),
|
||||
ropeScale: c.Float("rope.freq_scale", 1),
|
||||
@ -75,24 +78,36 @@ type SelfAttention struct {
|
||||
|
||||
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
|
||||
batchSize := hiddenState.Dim(1)
|
||||
headDim := opts.hiddenSize / opts.numHeads
|
||||
ropeType := uint32(0)
|
||||
// Get head dimension - use explicit value if available, otherwise calculate
|
||||
headDim := opts.headDim
|
||||
if headDim == 0 {
|
||||
headDim = opts.hiddenSize / opts.numHeads
|
||||
}
|
||||
|
||||
// Query projection and reshape
|
||||
q := sa.Query.Forward(ctx, hiddenState)
|
||||
q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
|
||||
q = q.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
|
||||
|
||||
// Key projection and reshape
|
||||
k := sa.Key.Forward(ctx, hiddenState)
|
||||
k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
k = k.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
|
||||
|
||||
// Value projection and reshape
|
||||
v := sa.Value.Forward(ctx, hiddenState)
|
||||
v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
|
||||
// Attention computation
|
||||
scaleFactor := 1.0 / math.Sqrt(float64(headDim))
|
||||
kqv := nn.Attention(ctx, q, k, v, scaleFactor, cache)
|
||||
kqv = kqv.Reshape(ctx, opts.hiddenSize, batchSize)
|
||||
|
||||
// Reshape attention output for final projection
|
||||
outputDim := headDim * opts.numHeads
|
||||
kqv = kqv.Reshape(ctx, outputDim, batchSize)
|
||||
|
||||
// Apply output projection
|
||||
return sa.Output.Forward(ctx, kqv)
|
||||
}
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
package pixtral
|
||||
package mistral3
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
@ -8,6 +8,7 @@ import (
|
||||
"io"
|
||||
"math"
|
||||
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/model/imageproc"
|
||||
)
|
||||
|
||||
@ -27,8 +28,8 @@ func getResizeOutputImageSize(img image.Image, longestEdge int, patchSize image.
|
||||
|
||||
if ratio > 1.0 {
|
||||
newSize = image.Point{
|
||||
int(math.Ceil(float64(b.Max.X) / ratio)),
|
||||
int(math.Ceil(float64(b.Max.Y) / ratio)),
|
||||
int(math.Floor(float64(b.Max.X) / ratio)),
|
||||
int(math.Floor(float64(b.Max.Y) / ratio)),
|
||||
}
|
||||
}
|
||||
|
||||
@ -66,3 +67,30 @@ func Preprocess(imageData io.Reader) ([]float32, map[string]any, error) {
|
||||
opts := map[string]any{}
|
||||
return data, opts, nil
|
||||
}
|
||||
|
||||
type ImageProcessor struct {
|
||||
imageSize int
|
||||
patchSize int
|
||||
numChannels int
|
||||
longestEdge int
|
||||
}
|
||||
|
||||
func newImageProcessor(c ml.Config) ImageProcessor {
|
||||
return ImageProcessor{
|
||||
imageSize: int(c.Uint("vision.image_size", 1540)),
|
||||
patchSize: int(c.Uint("vision.patch_size", 14)),
|
||||
numChannels: int(c.Uint("vision.num_channels", 3)),
|
||||
longestEdge: int(c.Uint("vision.longest_edge", 1024)),
|
||||
}
|
||||
}
|
||||
|
||||
func (p *ImageProcessor) ProcessImage(img image.Image) ([]float32, error) {
|
||||
outputSize := getResizeOutputImageSize(img, p.longestEdge, image.Point{p.patchSize, p.patchSize})
|
||||
|
||||
newImage := imageproc.Composite(img)
|
||||
newImage = imageproc.Resize(newImage, outputSize, imageproc.ResizeBilinear)
|
||||
|
||||
data := imageproc.Normalize(newImage, imageproc.ClipDefaultMean, imageproc.ClipDefaultSTD, true, true)
|
||||
|
||||
return data, nil
|
||||
}
|
@ -1,4 +1,4 @@
|
||||
package pixtral
|
||||
package mistral3
|
||||
|
||||
import (
|
||||
"bytes"
|
139
model/models/mistral3/model.go
Normal file
139
model/models/mistral3/model.go
Normal file
@ -0,0 +1,139 @@
|
||||
package mistral3
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"image"
|
||||
"slices"
|
||||
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/model"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
type Model struct {
|
||||
model.Base
|
||||
*TextModel
|
||||
*VisionModel `gguf:"v,vision"`
|
||||
*MultiModalProjector `gguf:"mm"`
|
||||
|
||||
ImageProcessor
|
||||
}
|
||||
|
||||
// Implement MultimodalProcessor interface
|
||||
var _ model.MultimodalProcessor = (*Model)(nil)
|
||||
|
||||
func New(c ml.Config) (model.Model, error) {
|
||||
textModel, err := NewTextModel(c)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
m := &Model{
|
||||
TextModel: textModel,
|
||||
VisionModel: newVisionModel(c),
|
||||
ImageProcessor: newImageProcessor(c),
|
||||
MultiModalProjector: newMultiModalProjector(c),
|
||||
}
|
||||
|
||||
m.Cache = kvcache.NewCausalCache(m.TextModel.Shift)
|
||||
|
||||
return m, nil
|
||||
}
|
||||
|
||||
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, error) {
|
||||
if len(m.VisionModel.Layers) == 0 {
|
||||
return nil, model.ErrNoVisionModel
|
||||
}
|
||||
|
||||
// Decode image
|
||||
image, _, err := image.Decode(bytes.NewReader(multimodalData))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// Process image
|
||||
f32s, err := m.ImageProcessor.ProcessImage(image)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// Create tensor from image data
|
||||
pixelValues, err := ctx.Input().FromFloatSlice(f32s,
|
||||
m.ImageProcessor.imageSize,
|
||||
m.ImageProcessor.imageSize,
|
||||
m.ImageProcessor.numChannels,
|
||||
)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// Forward pass through vision model
|
||||
visionOutputs := m.VisionModel.Forward(ctx, pixelValues)
|
||||
|
||||
// Project to text embedding space
|
||||
visionOutputs = m.MultiModalProjector.Forward(ctx, visionOutputs, m.VisionModel.eps)
|
||||
|
||||
return visionOutputs, nil
|
||||
}
|
||||
|
||||
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
|
||||
var result []input.Input
|
||||
|
||||
for _, inp := range inputs {
|
||||
if inp.Multimodal == nil {
|
||||
result = append(result, inp)
|
||||
} else {
|
||||
inputMultimodal := inp.Multimodal.(ml.Tensor)
|
||||
|
||||
// Add special image tokens - using the imageTokenIndex from config
|
||||
result = append(result,
|
||||
input.Input{Token: int32(m.MultiModalProjector.imageTokenIndex)}, // Image token
|
||||
input.Input{Multimodal: inputMultimodal, MultimodalHash: inp.MultimodalHash}, // Image data
|
||||
)
|
||||
|
||||
// Add image token placeholders
|
||||
result = append(result, slices.Repeat([]input.Input{{Token: 0}}, inputMultimodal.Dim(1)-1)...)
|
||||
}
|
||||
}
|
||||
|
||||
return result, nil
|
||||
}
|
||||
|
||||
func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
|
||||
inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
positions, err := ctx.Input().FromIntSlice(opts.Positions, len(opts.Positions))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
outputs, err := ctx.Output().FromIntSlice(opts.Outputs, len(opts.Outputs))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// Handle multimodal inputs
|
||||
// var except []int
|
||||
// hiddenState := m.TextModel.TokenEmbedding.Forward(ctx, inputs)
|
||||
|
||||
// for _, image := range opts.Multimodal {
|
||||
// visionOutputs := image.Multimodal.(ml.Tensor)
|
||||
|
||||
// // Copy vision outputs into the hidden state
|
||||
// ctx.Forward(visionOutputs.Copy(ctx, hiddenState.View(ctx, image.Index*hiddenState.Stride(1), visionOutputs.Dim(0)*visionOutputs.Dim(1))))
|
||||
|
||||
// for i := range visionOutputs.Dim(1) {
|
||||
// except = append(except, image.Index+i)
|
||||
// }
|
||||
// }
|
||||
|
||||
return m.TextModel.Forward(ctx, inputs, positions, outputs, opts, m.Cache), nil
|
||||
}
|
||||
|
||||
func init() {
|
||||
model.Register("mistral3", New)
|
||||
}
|
171
model/models/mistral3/model_text.go
Normal file
171
model/models/mistral3/model_text.go
Normal file
@ -0,0 +1,171 @@
|
||||
package mistral3
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"math"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/model"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
type TextOptions struct {
|
||||
hiddenSize, numHeads, numKVHeads, headDim int
|
||||
eps, ropeBase, ropeScale float32
|
||||
ropeDim uint32
|
||||
}
|
||||
|
||||
type TextModel struct {
|
||||
model.Base
|
||||
model.BytePairEncoding
|
||||
|
||||
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
|
||||
Layers []Layer `gguf:"blk"`
|
||||
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
|
||||
Output *nn.Linear `gguf:"output,alt:token_embd"`
|
||||
|
||||
*TextOptions
|
||||
}
|
||||
|
||||
type SelfAttention struct {
|
||||
Query *nn.Linear `gguf:"attn_q"`
|
||||
Key *nn.Linear `gguf:"attn_k"`
|
||||
Value *nn.Linear `gguf:"attn_v"`
|
||||
Output *nn.Linear `gguf:"attn_output"`
|
||||
RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
|
||||
}
|
||||
|
||||
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
|
||||
batchSize := hiddenState.Dim(1)
|
||||
ropeType := uint32(0)
|
||||
// Get head dimension - use explicit value if available, otherwise calculate
|
||||
headDim := opts.headDim
|
||||
if headDim == 0 {
|
||||
headDim = opts.hiddenSize / opts.numHeads
|
||||
}
|
||||
|
||||
// Query projection and reshape
|
||||
q := sa.Query.Forward(ctx, hiddenState)
|
||||
q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
|
||||
q = q.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
|
||||
|
||||
// Key projection and reshape
|
||||
k := sa.Key.Forward(ctx, hiddenState)
|
||||
k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
k = k.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
|
||||
|
||||
// Value projection and reshape
|
||||
v := sa.Value.Forward(ctx, hiddenState)
|
||||
v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
|
||||
// Attention computation
|
||||
scaleFactor := 1.0 / math.Sqrt(float64(headDim))
|
||||
kqv := nn.Attention(ctx, q, k, v, scaleFactor, cache)
|
||||
|
||||
// Reshape attention output for final projection
|
||||
outputDim := headDim * opts.numHeads
|
||||
kqv = kqv.Reshape(ctx, outputDim, batchSize)
|
||||
|
||||
// Apply output projection
|
||||
return sa.Output.Forward(ctx, kqv)
|
||||
}
|
||||
|
||||
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||
return key.RoPE(ctx, shift, m.Layers[layer].SelfAttention.RopeFactors, uint32(0), m.ropeDim, m.ropeBase, m.ropeScale), nil
|
||||
}
|
||||
|
||||
type MLP struct {
|
||||
Up *nn.Linear `gguf:"ffn_up"`
|
||||
Down *nn.Linear `gguf:"ffn_down"`
|
||||
Gate *nn.Linear `gguf:"ffn_gate"`
|
||||
}
|
||||
|
||||
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextOptions) ml.Tensor {
|
||||
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
|
||||
return mlp.Down.Forward(ctx, hiddenState)
|
||||
}
|
||||
|
||||
type Layer struct {
|
||||
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
|
||||
SelfAttention *SelfAttention
|
||||
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
|
||||
MLP *MLP
|
||||
}
|
||||
|
||||
func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
|
||||
residual := hiddenState
|
||||
|
||||
hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
|
||||
hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)
|
||||
|
||||
// In the final layer (outputs != nil), optimize by pruning to just the token positions
|
||||
// we need logits for.
|
||||
if outputs != nil {
|
||||
hiddenState = hiddenState.Rows(ctx, outputs)
|
||||
residual = residual.Rows(ctx, outputs)
|
||||
}
|
||||
|
||||
hiddenState = hiddenState.Add(ctx, residual)
|
||||
residual = hiddenState
|
||||
|
||||
hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
|
||||
hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
|
||||
return hiddenState.Add(ctx, residual)
|
||||
}
|
||||
|
||||
func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor, opts input.Options, cache kvcache.Cache) ml.Tensor {
|
||||
// Process text inputs
|
||||
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
|
||||
|
||||
// Process through text transformer layers
|
||||
for i, layer := range m.Layers {
|
||||
cache.SetLayer(i)
|
||||
|
||||
var lastLayerOutputs ml.Tensor
|
||||
if i == len(m.Layers)-1 {
|
||||
lastLayerOutputs = outputs
|
||||
}
|
||||
|
||||
hiddenState = layer.Forward(ctx, hiddenState, positions, lastLayerOutputs, cache, m.TextOptions)
|
||||
}
|
||||
|
||||
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
|
||||
return m.Output.Forward(ctx, hiddenState)
|
||||
}
|
||||
|
||||
func NewTextModel(c ml.Config) (*TextModel, error) {
|
||||
if !strings.EqualFold(c.String("tokenizer.ggml.model"), "gpt2") {
|
||||
return nil, fmt.Errorf("tokenizer %s not yet supported", c.String("tokenizer.ggml.model"))
|
||||
}
|
||||
|
||||
textModel := &TextModel{
|
||||
BytePairEncoding: model.NewBytePairEncoding(
|
||||
c.String("tokenizer.ggml.pretokenizer", `[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]*[\p{Ll}\p{Lm}\p{Lo}\p{M}]+|[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]+[\p{Ll}\p{Lm}\p{Lo}\p{M}]*|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n/]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
|
||||
&model.Vocabulary{
|
||||
Values: c.Strings("tokenizer.ggml.tokens"),
|
||||
Types: c.Uints("tokenizer.ggml.token_type"),
|
||||
Merges: c.Strings("tokenizer.ggml.merges"),
|
||||
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id", 1)),
|
||||
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
|
||||
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id", 2)),
|
||||
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
|
||||
},
|
||||
),
|
||||
Layers: make([]Layer, c.Uint("block_count")),
|
||||
TextOptions: &TextOptions{
|
||||
hiddenSize: int(c.Uint("embedding_length")),
|
||||
numHeads: int(c.Uint("attention.head_count")),
|
||||
numKVHeads: int(c.Uint("attention.head_count_kv")),
|
||||
headDim: int(c.Uint("attention.key_length")),
|
||||
eps: c.Float("attention.layer_norm_rms_epsilon"),
|
||||
ropeBase: c.Float("rope.freq_base"),
|
||||
ropeScale: c.Float("rope.freq_scale", 1),
|
||||
ropeDim: c.Uint("rope.dimension_count"),
|
||||
},
|
||||
}
|
||||
|
||||
return textModel, nil
|
||||
}
|
143
model/models/mistral3/model_vision.go
Normal file
143
model/models/mistral3/model_vision.go
Normal file
@ -0,0 +1,143 @@
|
||||
package mistral3
|
||||
|
||||
import (
|
||||
"math"
|
||||
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
)
|
||||
|
||||
var batchSize int = 1
|
||||
|
||||
type VisionSelfAttention struct {
|
||||
Query *nn.Linear `gguf:"attn_q"`
|
||||
Key *nn.Linear `gguf:"attn_k"`
|
||||
Value *nn.Linear `gguf:"attn_v"`
|
||||
Output *nn.Linear `gguf:"attn_output"`
|
||||
RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
|
||||
}
|
||||
|
||||
func (sa *VisionSelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, opts *VisionModelOptions) ml.Tensor {
|
||||
headDim := opts.headDim
|
||||
|
||||
query := sa.Query.Forward(ctx, hiddenState)
|
||||
key := sa.Key.Forward(ctx, hiddenState)
|
||||
value := sa.Value.Forward(ctx, hiddenState)
|
||||
|
||||
query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
|
||||
key = key.Reshape(ctx, headDim, opts.numHeads, batchSize)
|
||||
value = value.Reshape(ctx, headDim, opts.numHeads, batchSize)
|
||||
|
||||
ropeType := uint32(0)
|
||||
query = query.RoPE(ctx, positionIDs, sa.RopeFactors, uint32(headDim), ropeType, opts.ropeBase, opts.ropeScale)
|
||||
key = key.RoPE(ctx, positionIDs, sa.RopeFactors, uint32(headDim), ropeType, opts.ropeBase, opts.ropeScale)
|
||||
|
||||
attention := nn.Attention(ctx, query, key, value, 1.0/math.Sqrt(float64(headDim)), nil)
|
||||
attention = attention.Reshape(ctx, opts.hiddenSize, attention.Dim(2), batchSize)
|
||||
|
||||
return sa.Output.Forward(ctx, attention)
|
||||
}
|
||||
|
||||
type VisionMLP struct {
|
||||
Gate *nn.Linear `gguf:"ffn_gate"`
|
||||
Up *nn.Linear `gguf:"ffn_up"`
|
||||
Down *nn.Linear `gguf:"ffn_down"`
|
||||
}
|
||||
|
||||
func (mlp *VisionMLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *VisionModelOptions) ml.Tensor {
|
||||
hiddenState = mlp.Gate.Forward(ctx, hiddenState).GELU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
|
||||
return mlp.Down.Forward(ctx, hiddenState)
|
||||
}
|
||||
|
||||
type VisionEncoderLayer struct {
|
||||
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
|
||||
SelfAttention *VisionSelfAttention
|
||||
|
||||
FFNNorm *nn.RMSNorm `gguf:"ffn_norm"`
|
||||
MLP *VisionMLP `gguf:"mlp"`
|
||||
}
|
||||
|
||||
func (e *VisionEncoderLayer) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, opts *VisionModelOptions) ml.Tensor {
|
||||
residual := hiddenState
|
||||
|
||||
// self attention
|
||||
hiddenState = e.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
|
||||
hiddenState = e.SelfAttention.Forward(ctx, hiddenState, positionIDs, opts)
|
||||
hiddenState = hiddenState.Add(ctx, residual)
|
||||
residual = hiddenState
|
||||
|
||||
// feed forward
|
||||
hiddenState = e.FFNNorm.Forward(ctx, hiddenState, opts.eps)
|
||||
hiddenState = e.MLP.Forward(ctx, hiddenState, opts)
|
||||
return hiddenState.Add(ctx, residual)
|
||||
}
|
||||
|
||||
type VisionModelOptions struct {
|
||||
hiddenSize int
|
||||
numHeads int
|
||||
headDim int
|
||||
intermediateSize int
|
||||
imageSize int
|
||||
patchSize int
|
||||
numChannels int
|
||||
eps float32
|
||||
ropeBase float32
|
||||
ropeScale float32
|
||||
}
|
||||
|
||||
type VisionModel struct {
|
||||
PatchEmbedding *nn.Conv2D `gguf:"patch_conv"`
|
||||
EncoderNorm *nn.LayerNorm `gguf:"encoder_norm"`
|
||||
Layers []VisionEncoderLayer `gguf:"blk"`
|
||||
|
||||
*VisionModelOptions
|
||||
}
|
||||
|
||||
func (m *VisionModel) Forward(ctx ml.Context, pixelValues ml.Tensor) ml.Tensor {
|
||||
numPatchesH := m.imageSize / m.patchSize
|
||||
numPatchesW := m.imageSize / m.patchSize
|
||||
numPatches := numPatchesH * numPatchesW
|
||||
|
||||
hiddenState := m.PatchEmbedding.Forward(ctx, pixelValues, m.patchSize, m.patchSize, 0, 0, 1, 1)
|
||||
hiddenState = hiddenState.Reshape(ctx, numPatches, m.hiddenSize)
|
||||
hiddenState = hiddenState.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
|
||||
|
||||
// Create position IDs
|
||||
positions := make([]int32, numPatches)
|
||||
for i := range positions {
|
||||
positions[i] = int32(i)
|
||||
}
|
||||
|
||||
positionIDs, err := ctx.Input().FromIntSlice(positions, len(positions))
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
// Apply encoder normalization
|
||||
hiddenState = m.EncoderNorm.Forward(ctx, hiddenState, m.eps)
|
||||
|
||||
// Process through transformer layers
|
||||
for _, layer := range m.Layers {
|
||||
hiddenState = layer.Forward(ctx, hiddenState, positionIDs, m.VisionModelOptions)
|
||||
}
|
||||
|
||||
return hiddenState
|
||||
}
|
||||
|
||||
func newVisionModel(c ml.Config) *VisionModel {
|
||||
return &VisionModel{
|
||||
Layers: make([]VisionEncoderLayer, c.Uint("vision.block_count", 24)),
|
||||
VisionModelOptions: &VisionModelOptions{
|
||||
hiddenSize: int(c.Uint("vision.embedding_length", 1024)),
|
||||
numHeads: int(c.Uint("vision.attention.head_count", 16)),
|
||||
headDim: int(c.Uint("vision.attention.key_length", 64)),
|
||||
intermediateSize: int(c.Uint("vision.feed_forward_length", 4096)),
|
||||
imageSize: int(c.Uint("vision.image_size", 1540)),
|
||||
patchSize: int(c.Uint("vision.patch_size", 14)),
|
||||
numChannels: int(c.Uint("vision.num_channels", 3)),
|
||||
eps: c.Float("vision.attention.layer_norm_epsilon", 1e-05),
|
||||
ropeBase: c.Float("vision.rope.freq_base", 10000.0),
|
||||
ropeScale: c.Float("vision.rope.freq_scale", 1.0),
|
||||
},
|
||||
}
|
||||
}
|
38
model/models/mistral3/multimodal_proj.go
Normal file
38
model/models/mistral3/multimodal_proj.go
Normal file
@ -0,0 +1,38 @@
|
||||
package mistral3
|
||||
|
||||
import (
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
)
|
||||
|
||||
type MultiModalProjector struct {
|
||||
Norm *nn.RMSNorm `gguf:"norm"`
|
||||
Projection *nn.Linear `gguf:"projection"`
|
||||
|
||||
spatialMergeSize int
|
||||
imageTokenIndex int
|
||||
hasBias bool
|
||||
}
|
||||
|
||||
func (p *MultiModalProjector) Forward(ctx ml.Context, visionOutputs ml.Tensor, eps float32) ml.Tensor {
|
||||
// Apply normalization
|
||||
visionOutputs = p.Norm.Forward(ctx, visionOutputs, eps)
|
||||
|
||||
// If the spatial merge size is > 1, average pool the patches
|
||||
if p.spatialMergeSize > 1 {
|
||||
// Implementation depends on how the model handles spatial merging
|
||||
// For simplicity, we'll use a spatial pooling approach
|
||||
visionOutputs = visionOutputs.AvgPool2D(ctx, p.spatialMergeSize, p.spatialMergeSize, 0)
|
||||
}
|
||||
|
||||
// Project to text embedding dimension
|
||||
return p.Projection.Forward(ctx, visionOutputs)
|
||||
}
|
||||
|
||||
func newMultiModalProjector(c ml.Config) *MultiModalProjector {
|
||||
return &MultiModalProjector{
|
||||
spatialMergeSize: int(c.Uint("spatial_merge_size", 2)),
|
||||
imageTokenIndex: int(c.Uint("image_token_index", 10)),
|
||||
hasBias: c.Bool("mm.projector_bias", false),
|
||||
}
|
||||
}
|
@ -4,5 +4,6 @@ import (
|
||||
_ "github.com/ollama/ollama/model/models/gemma2"
|
||||
_ "github.com/ollama/ollama/model/models/gemma3"
|
||||
_ "github.com/ollama/ollama/model/models/llama"
|
||||
_ "github.com/ollama/ollama/model/models/mistral3"
|
||||
_ "github.com/ollama/ollama/model/models/mllama"
|
||||
)
|
||||
|
@ -263,6 +263,10 @@ func (bpe BytePairEncoding) Encode(s string, addSpecial bool) ([]int32, error) {
|
||||
continue
|
||||
}
|
||||
|
||||
if id := bpe.vocab.Encode(pair.value); id < 0 {
|
||||
continue
|
||||
}
|
||||
|
||||
merges[pair.a].runes = append(left.runes, right.runes...)
|
||||
merges[pair.b].runes = nil
|
||||
|
||||
|
@ -209,6 +209,322 @@ func TestLlama(t *testing.T) {
|
||||
})
|
||||
}
|
||||
|
||||
// tekken loads the Tekken tokenizer for testing
|
||||
func tekken(t testing.TB) TextProcessor {
|
||||
t.Helper()
|
||||
|
||||
// Load tokenizer config from mistral-small
|
||||
tokenizerConfigPath := filepath.Join("testdata", "mistral-small", "tokenizer_config.json")
|
||||
configFile, err := os.Open(tokenizerConfigPath)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
defer configFile.Close()
|
||||
|
||||
var config struct {
|
||||
AddBosToken bool `json:"add_bos_token"`
|
||||
AddEosToken bool `json:"add_eos_token"`
|
||||
BosToken string `json:"bos_token"`
|
||||
EosToken string `json:"eos_token"`
|
||||
}
|
||||
if err := json.NewDecoder(configFile).Decode(&config); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
// Load tokenizer.json which contains the vocabulary and other settings
|
||||
tokenizerJsonPath := filepath.Join("testdata", "mistral-small", "tokenizer.json")
|
||||
tokenizerFile, err := os.Open(tokenizerJsonPath)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
defer tokenizerFile.Close()
|
||||
|
||||
var tokenizerData struct {
|
||||
Model struct {
|
||||
Type string `json:"type"`
|
||||
Vocab map[string]int32 `json:"vocab"`
|
||||
Merges []string `json:"merges"`
|
||||
} `json:"model"`
|
||||
AddedTokens []struct {
|
||||
Id int32 `json:"id"`
|
||||
Content string `json:"content"`
|
||||
Special bool `json:"special"`
|
||||
} `json:"added_tokens"`
|
||||
PreTokenizer struct {
|
||||
Type string `json:"type"`
|
||||
Pretokenizers []struct {
|
||||
Type string `json:"type"`
|
||||
Pattern struct {
|
||||
String string `json:"String"`
|
||||
} `json:"pattern"`
|
||||
Behavior string `json:"behavior"`
|
||||
} `json:"pretokenizers"`
|
||||
} `json:"pre_tokenizer"`
|
||||
}
|
||||
if err := json.NewDecoder(tokenizerFile).Decode(&tokenizerData); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
// Extract the pattern from pre_tokenizer if available
|
||||
var pattern string
|
||||
if tokenizerData.PreTokenizer.Type == "Sequence" && len(tokenizerData.PreTokenizer.Pretokenizers) > 0 {
|
||||
pattern = tokenizerData.PreTokenizer.Pretokenizers[0].Pattern.String
|
||||
}
|
||||
|
||||
// Combine regular vocab and added tokens
|
||||
vocab := tokenizerData.Model.Vocab
|
||||
|
||||
// Add special tokens from added_tokens
|
||||
for _, token := range tokenizerData.AddedTokens {
|
||||
vocab[token.Content] = token.Id
|
||||
}
|
||||
|
||||
// Create vocabulary arrays
|
||||
maxId := int32(-1)
|
||||
for _, id := range vocab {
|
||||
if id > maxId {
|
||||
maxId = id
|
||||
}
|
||||
}
|
||||
|
||||
vocabSize := int(maxId + 1)
|
||||
types := make([]uint32, vocabSize)
|
||||
tokens := make([]string, vocabSize)
|
||||
scores := make([]float32, vocabSize)
|
||||
|
||||
for token, id := range vocab {
|
||||
tokens[id] = token
|
||||
types[id] = TOKEN_TYPE_NORMAL
|
||||
|
||||
// Assign appropriate token types for special tokens
|
||||
if token == "<s>" {
|
||||
types[id] = TOKEN_TYPE_CONTROL
|
||||
} else if token == "</s>" {
|
||||
types[id] = TOKEN_TYPE_CONTROL
|
||||
} else if token == "[INST]" || token == "[/INST]" {
|
||||
types[id] = TOKEN_TYPE_CONTROL
|
||||
}
|
||||
}
|
||||
|
||||
// In Tekken, we don't need to load merges separately as they're part of the model
|
||||
var merges []string
|
||||
|
||||
// Create vocabulary object
|
||||
vocabObj := &Vocabulary{
|
||||
Values: tokens,
|
||||
Types: types,
|
||||
Scores: scores,
|
||||
Merges: merges,
|
||||
BOS: vocab[config.BosToken],
|
||||
EOS: vocab[config.EosToken],
|
||||
AddBOS: config.AddBosToken,
|
||||
AddEOS: config.AddEosToken,
|
||||
}
|
||||
|
||||
// Use pattern from tokenizer.json if available
|
||||
if pattern != "" {
|
||||
// Ensure pattern has proper escaping for Go regexp
|
||||
pattern = strings.ReplaceAll(pattern, "p{", "\\p{")
|
||||
return NewBytePairEncoding(pattern, vocabObj)
|
||||
}
|
||||
|
||||
// Fallback pattern if not found
|
||||
return NewBytePairEncoding(
|
||||
`\p{L}+|\p{N}+|[^\s\p{L}\p{N}]+|\s+`,
|
||||
vocabObj,
|
||||
)
|
||||
}
|
||||
|
||||
func TestTekken(t *testing.T) {
|
||||
// Skip if the test data isn't available
|
||||
if _, err := os.Stat(filepath.Join("testdata", "mistral-small")); os.IsNotExist(err) {
|
||||
t.Skip("Mistral-small test data not available")
|
||||
}
|
||||
|
||||
tokenizer := tekken(t)
|
||||
|
||||
t.Run("whitespace_handling", func(t *testing.T) {
|
||||
t.Parallel()
|
||||
|
||||
// The key difference from SentencePiece is that Tekken doesn't prepend whitespace
|
||||
cases := []struct {
|
||||
input string
|
||||
expected string
|
||||
}{
|
||||
{" hello", " hello"},
|
||||
{"hello ", "hello "},
|
||||
{"hello world", "hello world"},
|
||||
{" hello world ", " hello world "},
|
||||
}
|
||||
|
||||
for _, tc := range cases {
|
||||
ids, err := tokenizer.Encode(tc.input, false)
|
||||
if err != nil {
|
||||
t.Errorf("Failed to encode %q: %v", tc.input, err)
|
||||
continue
|
||||
}
|
||||
|
||||
decoded, err := tokenizer.Decode(ids)
|
||||
if err != nil {
|
||||
t.Errorf("Failed to decode tokens for %q: %v", tc.input, err)
|
||||
continue
|
||||
}
|
||||
|
||||
if decoded != tc.expected {
|
||||
t.Errorf("Whitespace handling: got %q, want %q", decoded, tc.expected)
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("chat_templates", func(t *testing.T) {
|
||||
t.Parallel()
|
||||
|
||||
// Test the Tekken chat template format which doesn't have spaces after special tokens
|
||||
templates := []struct {
|
||||
input string
|
||||
expectSpace bool // whether we expect a space after special tokens
|
||||
}{
|
||||
{"<s>[INST]user message[/INST]", false},
|
||||
{"<s>[INST] user message[/INST]", true},
|
||||
{"<s>[INST]user message [/INST]", true},
|
||||
}
|
||||
|
||||
for _, tc := range templates {
|
||||
ids, err := tokenizer.Encode(tc.input, false)
|
||||
if err != nil {
|
||||
t.Errorf("Failed to encode %q: %v", tc.input, err)
|
||||
continue
|
||||
}
|
||||
|
||||
decoded, err := tokenizer.Decode(ids)
|
||||
if err != nil {
|
||||
t.Errorf("Failed to decode tokens for %q: %v", tc.input, err)
|
||||
continue
|
||||
}
|
||||
|
||||
// Check if there's a space after special tokens
|
||||
hasSpaceAfterINST := strings.Contains(decoded, "[INST] ")
|
||||
|
||||
if hasSpaceAfterINST != tc.expectSpace {
|
||||
t.Errorf("Chat template space handling: got space=%v, want space=%v for %q",
|
||||
hasSpaceAfterINST, tc.expectSpace, tc.input)
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("special_tokens", func(t *testing.T) {
|
||||
t.Parallel()
|
||||
|
||||
// Test how Tekken handles special tokens
|
||||
cases := []struct {
|
||||
input string
|
||||
expected []string // We'll check if these tokens are in the decoded output
|
||||
}{
|
||||
{"<s>[INST]hello[/INST]", []string{"<s>", "[INST]", "hello", "[/INST]"}},
|
||||
{"[INST]hello[/INST]</s>", []string{"[INST]", "hello", "[/INST]", "</s>"}},
|
||||
{"<s>[INST]hello[/INST]</s>[INST]again[/INST]", []string{"<s>", "[INST]", "hello", "[/INST]", "</s>", "[INST]", "again", "[/INST]"}},
|
||||
}
|
||||
|
||||
for _, tc := range cases {
|
||||
ids, err := tokenizer.Encode(tc.input, false)
|
||||
if err != nil {
|
||||
t.Errorf("Failed to encode %q: %v", tc.input, err)
|
||||
continue
|
||||
}
|
||||
|
||||
decoded, err := tokenizer.Decode(ids)
|
||||
if err != nil {
|
||||
t.Errorf("Failed to decode tokens for %q: %v", tc.input, err)
|
||||
continue
|
||||
}
|
||||
|
||||
for _, expected := range tc.expected {
|
||||
if !strings.Contains(decoded, expected) {
|
||||
t.Errorf("Special token handling: %q missing in decoded output %q", expected, decoded)
|
||||
}
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("vocabulary_coverage", func(t *testing.T) {
|
||||
t.Parallel()
|
||||
|
||||
// Tekken has a larger vocabulary, so test coverage of various token types
|
||||
samples := []string{
|
||||
"Hello world!",
|
||||
"This is a test of the Tekken tokenizer.",
|
||||
"It has a considerably larger vocabulary size.",
|
||||
"Special characters: !@#$%^&*()",
|
||||
"Numbers: 1234567890",
|
||||
"Multiple languages: こんにちは 你好 안녕하세요",
|
||||
"Code snippets: def function(): return True",
|
||||
}
|
||||
|
||||
for _, sample := range samples {
|
||||
ids, err := tokenizer.Encode(sample, false)
|
||||
if err != nil {
|
||||
t.Errorf("Failed to encode %q: %v", sample, err)
|
||||
continue
|
||||
}
|
||||
|
||||
decoded, err := tokenizer.Decode(ids)
|
||||
if err != nil {
|
||||
t.Errorf("Failed to decode tokens for %q: %v", sample, err)
|
||||
continue
|
||||
}
|
||||
|
||||
if decoded != sample {
|
||||
t.Errorf("Vocabulary coverage: got %q, want %q", decoded, sample)
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("splitting_behavior", func(t *testing.T) {
|
||||
t.Parallel()
|
||||
|
||||
// Test the splitting behavior which might differ from SentencePiece
|
||||
cases := map[string][]string{
|
||||
"Hello World!": {"Hello", " World", "!"},
|
||||
"user message": {"user", " message"},
|
||||
"[INST]hello": {"[INST]", "hello"},
|
||||
"hello[/INST]": {"hello", "[/INST]"},
|
||||
}
|
||||
|
||||
for s, want := range cases {
|
||||
got := slices.Collect(tokenizer.(*BytePairEncoding).split(s))
|
||||
if diff := cmp.Diff(want, got); diff != "" {
|
||||
t.Errorf("Splitting behavior no match (-want +got):\n%s", diff)
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("full_chat_sequence", func(t *testing.T) {
|
||||
t.Parallel()
|
||||
|
||||
// Test a complete chat sequence with Tekken's format
|
||||
chatSequence := "<s>[INST]user message[/INST]assistant message</s>[INST]new user message[/INST]"
|
||||
|
||||
ids, err := tokenizer.Encode(chatSequence, false)
|
||||
if err != nil {
|
||||
t.Fatalf("Failed to encode chat sequence: %v", err)
|
||||
}
|
||||
|
||||
decoded, err := tokenizer.Decode(ids)
|
||||
if err != nil {
|
||||
t.Fatalf("Failed to decode chat sequence tokens: %v", err)
|
||||
}
|
||||
|
||||
// In Tekken, the whitespace shouldn't be added after special tokens
|
||||
if strings.Contains(decoded, "[INST] ") {
|
||||
t.Errorf("Tekken chat sequence has unexpected space after [INST]: %q", decoded)
|
||||
}
|
||||
|
||||
if strings.Contains(decoded, "[/INST] ") {
|
||||
t.Errorf("Tekken chat sequence has unexpected space after [/INST]: %q", decoded)
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
func BenchmarkBytePairEncoding(b *testing.B) {
|
||||
tokenizer := llama(b)
|
||||
bts, err := os.ReadFile(filepath.Join("testdata", "war-and-peace.txt"))
|
||||
|
1217945
model/testdata/mistral-small/tokenizer.json
vendored
Normal file
1217945
model/testdata/mistral-small/tokenizer.json
vendored
Normal file
File diff suppressed because it is too large
Load Diff
9020
model/testdata/mistral-small/tokenizer_config.json
vendored
Normal file
9020
model/testdata/mistral-small/tokenizer_config.json
vendored
Normal file
File diff suppressed because it is too large
Load Diff
@ -211,16 +211,10 @@ func filesForModel(path string) ([]string, error) {
|
||||
}
|
||||
|
||||
var files []string
|
||||
if st, _ := glob(filepath.Join(path, "model*.safetensors"), "application/octet-stream"); len(st) > 0 {
|
||||
if st, _ := glob(filepath.Join(path, "*.safetensors"), "application/octet-stream"); len(st) > 0 {
|
||||
// safetensors files might be unresolved git lfs references; skip if they are
|
||||
// covers model-x-of-y.safetensors, model.fp32-x-of-y.safetensors, model.safetensors
|
||||
files = append(files, st...)
|
||||
} else if st, _ := glob(filepath.Join(path, "adapters.safetensors"), "application/octet-stream"); len(st) > 0 {
|
||||
// covers adapters.safetensors
|
||||
files = append(files, st...)
|
||||
} else if st, _ := glob(filepath.Join(path, "adapter_model.safetensors"), "application/octet-stream"); len(st) > 0 {
|
||||
// covers adapter_model.safetensors
|
||||
files = append(files, st...)
|
||||
} else if pt, _ := glob(filepath.Join(path, "pytorch_model*.bin"), "application/zip"); len(pt) > 0 {
|
||||
// pytorch files might also be unresolved git lfs references; skip if they are
|
||||
// covers pytorch_model-x-of-y.bin, pytorch_model.fp32-x-of-y.bin, pytorch_model.bin
|
||||
|
@ -179,6 +179,10 @@ func (s *Server) inputs(prompt string, images []llm.ImageData) ([]input.Input, *
|
||||
return nil, nil, err
|
||||
}
|
||||
|
||||
for _, t := range tokens {
|
||||
decoded, _ := s.model.(model.TextProcessor).Decode([]int32{t})
|
||||
fmt.Println("token", t, "decoded", decoded)
|
||||
}
|
||||
for _, t := range tokens {
|
||||
inputs = append(inputs, input.Input{Token: t})
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user