Compare commits
5 Commits
main
...
parth/temp
Author | SHA1 | Date | |
---|---|---|---|
![]() |
6556540655 | ||
![]() |
3f60fd57e3 | ||
![]() |
38cd80d52c | ||
![]() |
c9a46140e6 | ||
![]() |
1d529d8b7b |
@ -3,9 +3,7 @@ ollama
|
|||||||
app
|
app
|
||||||
macapp
|
macapp
|
||||||
dist
|
dist
|
||||||
build
|
|
||||||
.env
|
.env
|
||||||
.cache
|
.cache
|
||||||
test_data
|
test_data
|
||||||
.git
|
llama/build
|
||||||
|
|
||||||
|
13
.gitattributes
vendored
13
.gitattributes
vendored
@ -7,18 +7,5 @@ llama/**/*.cuh linguist-vendored
|
|||||||
llama/**/*.m linguist-vendored
|
llama/**/*.m linguist-vendored
|
||||||
llama/**/*.metal linguist-vendored
|
llama/**/*.metal linguist-vendored
|
||||||
|
|
||||||
ml/backend/**/*.c linguist-vendored
|
|
||||||
ml/backend/**/*.h linguist-vendored
|
|
||||||
ml/backend/**/*.cpp linguist-vendored
|
|
||||||
ml/backend/**/*.hpp linguist-vendored
|
|
||||||
ml/backend/**/*.cu linguist-vendored
|
|
||||||
ml/backend/**/*.cuh linguist-vendored
|
|
||||||
ml/backend/**/*.m linguist-vendored
|
|
||||||
ml/backend/**/*.metal linguist-vendored
|
|
||||||
ml/backend/**/CMakeLists.txt linguist-vendored
|
|
||||||
|
|
||||||
llama/build-info.cpp linguist-generated
|
|
||||||
ml/backend/ggml/ggml/src/ggml-metal/ggml-metal-embed.s linguist-generated
|
|
||||||
|
|
||||||
* text=auto
|
* text=auto
|
||||||
*.go text eol=lf
|
*.go text eol=lf
|
||||||
|
8
.github/ISSUE_TEMPLATE/10_bug_report.yml
vendored
8
.github/ISSUE_TEMPLATE/10_bug_report.yml
vendored
@ -9,14 +9,6 @@ body:
|
|||||||
description: What happened? What did you expect to happen?
|
description: What happened? What did you expect to happen?
|
||||||
validations:
|
validations:
|
||||||
required: true
|
required: true
|
||||||
- type: textarea
|
|
||||||
id: logs
|
|
||||||
attributes:
|
|
||||||
label: Relevant log output
|
|
||||||
description: Please copy and paste any relevant log output. See [Troubleshooting Guide](https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md#how-to-troubleshoot-issues) for details.
|
|
||||||
render: shell
|
|
||||||
validations:
|
|
||||||
required: false
|
|
||||||
- type: dropdown
|
- type: dropdown
|
||||||
id: os
|
id: os
|
||||||
attributes:
|
attributes:
|
||||||
|
1061
.github/workflows/release.yaml
vendored
1061
.github/workflows/release.yaml
vendored
File diff suppressed because it is too large
Load Diff
434
.github/workflows/test.yaml
vendored
434
.github/workflows/test.yaml
vendored
@ -1,5 +1,11 @@
|
|||||||
name: test
|
name: test
|
||||||
|
|
||||||
|
env:
|
||||||
|
ROCM_WINDOWS_URL: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe
|
||||||
|
MSYS2_URL: https://github.com/msys2/msys2-installer/releases/download/2024-07-27/msys2-x86_64-20240727.exe
|
||||||
|
CUDA_12_WINDOWS_URL: https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_551.61_windows.exe
|
||||||
|
CUDA_12_WINDOWS_VER: 12.4
|
||||||
|
|
||||||
concurrency:
|
concurrency:
|
||||||
# For PRs, later CI runs preempt previous ones. e.g. a force push on a PR
|
# For PRs, later CI runs preempt previous ones. e.g. a force push on a PR
|
||||||
# cancels running CI jobs and starts all new ones.
|
# cancels running CI jobs and starts all new ones.
|
||||||
@ -21,7 +27,7 @@ jobs:
|
|||||||
changes:
|
changes:
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
outputs:
|
outputs:
|
||||||
changed: ${{ steps.changes.outputs.changed }}
|
RUNNERS: ${{ steps.changes.outputs.RUNNERS }}
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v4
|
- uses: actions/checkout@v4
|
||||||
with:
|
with:
|
||||||
@ -29,213 +35,309 @@ jobs:
|
|||||||
- id: changes
|
- id: changes
|
||||||
run: |
|
run: |
|
||||||
changed() {
|
changed() {
|
||||||
local BASE=${{ github.event.pull_request.base.sha }}
|
git diff-tree -r --no-commit-id --name-only \
|
||||||
local HEAD=${{ github.event.pull_request.head.sha }}
|
$(git merge-base ${{ github.event.pull_request.base.sha }} ${{ github.event.pull_request.head.sha }}) \
|
||||||
local MERGE_BASE=$(git merge-base $BASE $HEAD)
|
${{ github.event.pull_request.head.sha }} \
|
||||||
git diff-tree -r --no-commit-id --name-only "$MERGE_BASE" "$HEAD" \
|
|
||||||
| xargs python3 -c "import sys; from pathlib import Path; print(any(Path(x).match(glob) for x in sys.argv[1:] for glob in '$*'.split(' ')))"
|
| xargs python3 -c "import sys; from pathlib import Path; print(any(Path(x).match(glob) for x in sys.argv[1:] for glob in '$*'.split(' ')))"
|
||||||
}
|
}
|
||||||
|
|
||||||
echo changed=$(changed 'llama/llama.cpp/**' 'ml/backend/ggml/ggml/**') | tee -a $GITHUB_OUTPUT
|
{
|
||||||
|
echo RUNNERS=$(changed 'llama/**')
|
||||||
|
} >>$GITHUB_OUTPUT
|
||||||
|
|
||||||
linux:
|
runners-linux-cuda:
|
||||||
needs: [changes]
|
needs: [changes]
|
||||||
if: needs.changes.outputs.changed == 'True'
|
if: ${{ needs.changes.outputs.RUNNERS == 'True' }}
|
||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
include:
|
cuda-version:
|
||||||
- preset: CPU
|
- '11.8.0'
|
||||||
- preset: CUDA
|
|
||||||
container: nvidia/cuda:11.8.0-devel-ubuntu22.04
|
|
||||||
flags: '-DCMAKE_CUDA_ARCHITECTURES=87'
|
|
||||||
- preset: ROCm
|
|
||||||
container: rocm/dev-ubuntu-22.04:6.1.2
|
|
||||||
extra-packages: rocm-libs
|
|
||||||
flags: '-DAMDGPU_TARGETS=gfx1010 -DCMAKE_PREFIX_PATH=/opt/rocm'
|
|
||||||
runs-on: linux
|
runs-on: linux
|
||||||
container: ${{ matrix.container }}
|
container: nvidia/cuda:${{ matrix.cuda-version }}-devel-ubuntu20.04
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v4
|
|
||||||
- run: |
|
- run: |
|
||||||
[ -n "${{ matrix.container }}" ] || sudo=sudo
|
apt-get update && apt-get install -y git build-essential curl
|
||||||
$sudo apt-get update
|
|
||||||
$sudo apt-get install -y cmake ccache ${{ matrix.extra-packages }}
|
|
||||||
env:
|
env:
|
||||||
DEBIAN_FRONTEND: noninteractive
|
DEBIAN_FRONTEND: noninteractive
|
||||||
- uses: actions/cache@v4
|
- uses: actions/checkout@v4
|
||||||
|
- uses: actions/setup-go@v4
|
||||||
with:
|
with:
|
||||||
path: /github/home/.cache/ccache
|
go-version-file: go.mod
|
||||||
key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }}
|
cache: true
|
||||||
|
- run: go get ./...
|
||||||
- run: |
|
- run: |
|
||||||
cmake --preset ${{ matrix.preset }} ${{ matrix.flags }}
|
git config --global --add safe.directory /__w/ollama/ollama
|
||||||
cmake --build --preset ${{ matrix.preset }} --parallel
|
cores=$(grep '^core id' /proc/cpuinfo |sort -u|wc -l)
|
||||||
|
make -j $cores cuda_v11
|
||||||
windows:
|
runners-linux-rocm:
|
||||||
needs: [changes]
|
needs: [changes]
|
||||||
if: needs.changes.outputs.changed == 'True'
|
if: ${{ needs.changes.outputs.RUNNERS == 'True' }}
|
||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
include:
|
rocm-version:
|
||||||
- preset: CPU
|
- '6.1.2'
|
||||||
- preset: CUDA
|
runs-on: linux
|
||||||
install: https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe
|
container: rocm/dev-ubuntu-20.04:${{ matrix.rocm-version }}
|
||||||
flags: '-DCMAKE_CUDA_ARCHITECTURES=80'
|
steps:
|
||||||
- preset: ROCm
|
- run: |
|
||||||
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q4-WinSvr2022-For-HIP.exe
|
apt-get update && apt-get install -y git build-essential curl rocm-libs
|
||||||
flags: '-DAMDGPU_TARGETS=gfx1010'
|
env:
|
||||||
|
DEBIAN_FRONTEND: noninteractive
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
- uses: actions/setup-go@v4
|
||||||
|
with:
|
||||||
|
go-version-file: go.mod
|
||||||
|
cache: true
|
||||||
|
- run: go get ./...
|
||||||
|
- run: |
|
||||||
|
git config --global --add safe.directory /__w/ollama/ollama
|
||||||
|
cores=$(grep '^core id' /proc/cpuinfo |sort -u|wc -l)
|
||||||
|
make -j $cores rocm
|
||||||
|
|
||||||
|
# ROCm generation step
|
||||||
|
runners-windows-rocm:
|
||||||
|
needs: [changes]
|
||||||
|
if: ${{ needs.changes.outputs.RUNNERS == 'True' }}
|
||||||
runs-on: windows
|
runs-on: windows
|
||||||
steps:
|
steps:
|
||||||
- run: |
|
|
||||||
choco install -y --no-progress ccache ninja
|
|
||||||
ccache -o cache_dir=${{ github.workspace }}\.ccache
|
|
||||||
- if: matrix.preset == 'CUDA' || matrix.preset == 'ROCm'
|
|
||||||
id: cache-install
|
|
||||||
uses: actions/cache/restore@v4
|
|
||||||
with:
|
|
||||||
path: |
|
|
||||||
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA
|
|
||||||
C:\Program Files\AMD\ROCm
|
|
||||||
key: ${{ matrix.install }}
|
|
||||||
- if: matrix.preset == 'CUDA'
|
|
||||||
name: Install CUDA ${{ matrix.cuda-version }}
|
|
||||||
run: |
|
|
||||||
$ErrorActionPreference = "Stop"
|
|
||||||
if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') {
|
|
||||||
Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe"
|
|
||||||
Start-Process -FilePath .\install.exe -ArgumentList (@("-s", "cudart_11.3", "nvcc_11.3", "cublas_11.3", "cublas_dev_11.3")) -NoNewWindow -Wait
|
|
||||||
}
|
|
||||||
|
|
||||||
$cudaPath = (Resolve-Path "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\*").path
|
|
||||||
echo "$cudaPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
|
||||||
- if: matrix.preset == 'ROCm'
|
|
||||||
name: Install ROCm ${{ matrix.rocm-version }}
|
|
||||||
run: |
|
|
||||||
$ErrorActionPreference = "Stop"
|
|
||||||
if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') {
|
|
||||||
Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe"
|
|
||||||
Start-Process -FilePath .\install.exe -ArgumentList '-install' -NoNewWindow -Wait
|
|
||||||
}
|
|
||||||
|
|
||||||
$hipPath = (Resolve-Path "C:\Program Files\AMD\ROCm\*").path
|
|
||||||
echo "$hipPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
|
||||||
echo "CC=$hipPath\bin\clang.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
|
|
||||||
echo "CXX=$hipPath\bin\clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
|
|
||||||
- if: ${{ !cancelled() && steps.cache-install.outputs.cache-hit != 'true' }}
|
|
||||||
uses: actions/cache/save@v4
|
|
||||||
with:
|
|
||||||
path: |
|
|
||||||
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA
|
|
||||||
C:\Program Files\AMD\ROCm
|
|
||||||
key: ${{ matrix.install }}
|
|
||||||
- uses: actions/checkout@v4
|
- uses: actions/checkout@v4
|
||||||
- uses: actions/cache@v4
|
- uses: actions/setup-go@v5
|
||||||
with:
|
with:
|
||||||
path: ${{ github.workspace }}\.ccache
|
go-version-file: go.mod
|
||||||
key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }}
|
cache: true
|
||||||
- run: |
|
- name: Set make jobs default
|
||||||
Import-Module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
|
run: |
|
||||||
Enter-VsDevShell -VsInstallPath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -SkipAutomaticLocation -DevCmdArguments '-arch=x64 -no_logo'
|
echo "MAKEFLAGS=--jobs=$((Get-ComputerInfo -Property CsProcessors).CsProcessors.NumberOfCores)" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
|
||||||
cmake --preset "${{ matrix.preset }}" ${{ matrix.flags }}
|
|
||||||
cmake --build --parallel --preset "${{ matrix.preset }}"
|
|
||||||
env:
|
|
||||||
CMAKE_GENERATOR: Ninja
|
|
||||||
|
|
||||||
go_mod_tidy:
|
# ROCM installation steps
|
||||||
runs-on: ubuntu-latest
|
- name: 'Cache ROCm installer'
|
||||||
|
id: cache-rocm
|
||||||
|
uses: actions/cache@v4
|
||||||
|
with:
|
||||||
|
path: rocm-install.exe
|
||||||
|
key: ${{ env.ROCM_WINDOWS_URL }}
|
||||||
|
- name: 'Conditionally Download ROCm'
|
||||||
|
if: steps.cache-rocm.outputs.cache-hit != 'true'
|
||||||
|
run: |
|
||||||
|
$ErrorActionPreference = "Stop"
|
||||||
|
Invoke-WebRequest -Uri "${env:ROCM_WINDOWS_URL}" -OutFile "rocm-install.exe"
|
||||||
|
- name: 'Install ROCm'
|
||||||
|
run: |
|
||||||
|
Start-Process "rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
|
||||||
|
- name: 'Verify ROCm'
|
||||||
|
run: |
|
||||||
|
& 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' --version
|
||||||
|
echo "HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path | select -first 1)" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
|
||||||
|
|
||||||
|
- name: Add msys paths
|
||||||
|
run: |
|
||||||
|
echo "c:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||||
|
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||||
|
- name: Install msys2 tools
|
||||||
|
run: |
|
||||||
|
Start-Process "c:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang") -NoNewWindow -Wait
|
||||||
|
|
||||||
|
- name: make rocm runner
|
||||||
|
run: |
|
||||||
|
import-module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
|
||||||
|
Enter-VsDevShell -vsinstallpath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -skipautomaticlocation -DevCmdArguments '-arch=x64 -no_logo'
|
||||||
|
if (!(gcc --version | select-string -quiet clang)) { throw "wrong gcc compiler detected - must be clang" }
|
||||||
|
make -C llama print-HIP_PATH print-HIP_LIB_DIR
|
||||||
|
make rocm
|
||||||
|
|
||||||
|
# CUDA generation step
|
||||||
|
runners-windows-cuda:
|
||||||
|
needs: [changes]
|
||||||
|
if: ${{ needs.changes.outputs.RUNNERS == 'True' }}
|
||||||
|
runs-on: windows
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v4
|
- uses: actions/checkout@v4
|
||||||
- name: check that 'go mod tidy' is clean
|
- uses: actions/setup-go@v5
|
||||||
run: go mod tidy --diff || (echo "Please run 'go mod tidy'." && exit 1)
|
with:
|
||||||
|
go-version-file: go.mod
|
||||||
|
cache: true
|
||||||
|
- name: Set make jobs default
|
||||||
|
run: |
|
||||||
|
echo "MAKEFLAGS=--jobs=$((Get-ComputerInfo -Property CsProcessors).CsProcessors.NumberOfCores)" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
|
||||||
|
|
||||||
test:
|
# CUDA installation steps
|
||||||
|
- name: 'Cache CUDA installer'
|
||||||
|
id: cache-cuda
|
||||||
|
uses: actions/cache@v4
|
||||||
|
with:
|
||||||
|
path: cuda-install.exe
|
||||||
|
key: ${{ env.CUDA_12_WINDOWS_URL }}
|
||||||
|
- name: 'Conditionally Download CUDA'
|
||||||
|
if: steps.cache-cuda.outputs.cache-hit != 'true'
|
||||||
|
run: |
|
||||||
|
$ErrorActionPreference = "Stop"
|
||||||
|
Invoke-WebRequest -Uri "${env:CUDA_12_WINDOWS_URL}" -OutFile "cuda-install.exe"
|
||||||
|
- name: 'Install CUDA'
|
||||||
|
run: |
|
||||||
|
$subpackages = @("cudart", "nvcc", "cublas", "cublas_dev") | foreach-object {"${_}_${{ env.CUDA_12_WINDOWS_VER }}"}
|
||||||
|
Start-Process "cuda-install.exe" -ArgumentList (@("-s") + $subpackages) -NoNewWindow -Wait
|
||||||
|
- name: 'Verify CUDA'
|
||||||
|
run: |
|
||||||
|
& (resolve-path "c:\Program Files\NVIDIA*\CUDA\v*\bin\nvcc.exe")[0] --version
|
||||||
|
$cudaPath=((resolve-path "c:\Program Files\NVIDIA*\CUDA\v*\bin\nvcc.exe")[0].path | split-path | split-path)
|
||||||
|
$cudaVer=($cudaPath | split-path -leaf ) -replace 'v(\d+).(\d+)', '$1_$2'
|
||||||
|
echo "$cudaPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||||
|
echo "CUDA_PATH=$cudaPath" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
|
||||||
|
echo "CUDA_PATH_V${cudaVer}=$cudaPath" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
|
||||||
|
echo "CUDA_PATH_VX_Y=CUDA_PATH_V${cudaVer}" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
|
||||||
|
|
||||||
|
- name: Add msys paths
|
||||||
|
run: |
|
||||||
|
echo "c:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||||
|
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||||
|
- name: Install msys2 tools
|
||||||
|
run: |
|
||||||
|
Start-Process "c:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang") -NoNewWindow -Wait
|
||||||
|
- name: make cuda runner
|
||||||
|
run: |
|
||||||
|
import-module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
|
||||||
|
Enter-VsDevShell -vsinstallpath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -skipautomaticlocation -DevCmdArguments '-arch=x64 -no_logo'
|
||||||
|
if (!(gcc --version | select-string -quiet clang)) { throw "wrong gcc compiler detected - must be clang" }
|
||||||
|
make cuda_v$(($env:CUDA_PATH | split-path -leaf) -replace 'v(\d+).*', '$1')
|
||||||
|
|
||||||
|
runners-cpu:
|
||||||
|
needs: [changes]
|
||||||
|
if: ${{ needs.changes.outputs.RUNNERS == 'True' }}
|
||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
os: [ubuntu-latest, macos-latest, windows-latest]
|
os: [ubuntu-latest, macos-latest, windows-2019]
|
||||||
|
arch: [amd64, arm64]
|
||||||
|
exclude:
|
||||||
|
- os: ubuntu-latest
|
||||||
|
arch: arm64
|
||||||
|
- os: windows-2019
|
||||||
|
arch: arm64
|
||||||
runs-on: ${{ matrix.os }}
|
runs-on: ${{ matrix.os }}
|
||||||
env:
|
env:
|
||||||
|
GOARCH: ${{ matrix.arch }}
|
||||||
|
ARCH: ${{ matrix.arch }}
|
||||||
CGO_ENABLED: '1'
|
CGO_ENABLED: '1'
|
||||||
GOEXPERIMENT: 'synctest'
|
|
||||||
steps:
|
steps:
|
||||||
- name: checkout
|
- uses: actions/checkout@v4
|
||||||
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # 4.2.2
|
- uses: actions/setup-go@v5
|
||||||
|
|
||||||
- name: cache restore
|
|
||||||
uses: actions/cache/restore@1bd1e32a3bdc45362d1e726936510720a7c30a57 # v4.2.0
|
|
||||||
with:
|
with:
|
||||||
# Note: unlike the other setups, this is only grabbing the mod download
|
|
||||||
# cache, rather than the whole mod directory, as the download cache
|
|
||||||
# contains zips that can be unpacked in parallel faster than they can be
|
|
||||||
# fetched and extracted by tar
|
|
||||||
path: |
|
|
||||||
~/.cache/go-build
|
|
||||||
~/go/pkg/mod/cache
|
|
||||||
~\AppData\Local\go-build
|
|
||||||
# NOTE: The -3- here should be incremented when the scheme of data to be
|
|
||||||
# cached changes (e.g. path above changes).
|
|
||||||
key: ${{ github.job }}-${{ runner.os }}-${{ matrix.goarch }}-${{ matrix.buildflags }}-go-3-${{ hashFiles('**/go.sum') }}-${{ github.run_id }}
|
|
||||||
restore-keys: |
|
|
||||||
${{ github.job }}-${{ runner.os }}-${{ matrix.goarch }}-${{ matrix.buildflags }}-go-3-${{ hashFiles('**/go.sum') }}
|
|
||||||
${{ github.job }}-${{ runner.os }}-${{ matrix.goarch }}-${{ matrix.buildflags }}-go-3-
|
|
||||||
|
|
||||||
- name: Setup Go
|
|
||||||
uses: actions/setup-go@v5
|
|
||||||
with:
|
|
||||||
# The caching strategy of setup-go is less than ideal, and wastes
|
|
||||||
# time by not saving artifacts due to small failures like the linter
|
|
||||||
# complaining, etc. This means subsequent have to rebuild their world
|
|
||||||
# again until all checks pass. For instance, if you mispell a word,
|
|
||||||
# you're punished until you fix it. This is more hostile than
|
|
||||||
# helpful.
|
|
||||||
cache: false
|
|
||||||
|
|
||||||
go-version-file: go.mod
|
go-version-file: go.mod
|
||||||
|
cache: true
|
||||||
# It is tempting to run this in a platform independent way, but the past
|
- name: Add msys paths
|
||||||
# shows this codebase will see introductions of platform specific code
|
if: ${{ startsWith(matrix.os, 'windows-') }}
|
||||||
# generation, and so we need to check this per platform to ensure we
|
|
||||||
# don't abuse go generate on specific platforms.
|
|
||||||
- name: check that 'go generate' is clean
|
|
||||||
if: always()
|
|
||||||
run: |
|
run: |
|
||||||
go generate ./...
|
echo "c:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||||
git diff --name-only --exit-code || (echo "Please run 'go generate ./...'." && exit 1)
|
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||||
|
- name: Install msys2 tools
|
||||||
|
if: ${{ startsWith(matrix.os, 'windows-') }}
|
||||||
|
run: |
|
||||||
|
Start-Process "c:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang") -NoNewWindow -Wait
|
||||||
|
- name: 'Build Windows Go Runners'
|
||||||
|
if: ${{ startsWith(matrix.os, 'windows-') }}
|
||||||
|
run: |
|
||||||
|
$gopath=(get-command go).source | split-path -parent
|
||||||
|
$gccpath=(get-command gcc).source | split-path -parent
|
||||||
|
import-module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
|
||||||
|
Enter-VsDevShell -vsinstallpath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -skipautomaticlocation -DevCmdArguments '-arch=x64 -no_logo'
|
||||||
|
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
|
||||||
|
$env:PATH="$gopath;$gccpath;$env:PATH"
|
||||||
|
echo $env:PATH
|
||||||
|
if (!(gcc --version | select-string -quiet clang)) { throw "wrong gcc compiler detected - must be clang" }
|
||||||
|
make -j 4
|
||||||
|
- name: 'Build Unix Go Runners'
|
||||||
|
if: ${{ ! startsWith(matrix.os, 'windows-') }}
|
||||||
|
run: make -j 4
|
||||||
|
- run: go build .
|
||||||
|
|
||||||
- name: go test
|
lint:
|
||||||
if: always()
|
strategy:
|
||||||
run: go test -count=1 -benchtime=1x ./...
|
matrix:
|
||||||
|
os: [ubuntu-latest, macos-latest, windows-2019]
|
||||||
# TODO(bmizerany): replace this heavy tool with just the
|
arch: [amd64, arm64]
|
||||||
# tools/checks/binaries we want and then make them all run in parallel
|
exclude:
|
||||||
# across jobs, not on a single tiny vm on Github Actions.
|
- os: ubuntu-latest
|
||||||
|
arch: arm64
|
||||||
|
- os: windows-2019
|
||||||
|
arch: arm64
|
||||||
|
- os: macos-latest
|
||||||
|
arch: amd64
|
||||||
|
runs-on: ${{ matrix.os }}
|
||||||
|
env:
|
||||||
|
GOARCH: ${{ matrix.arch }}
|
||||||
|
CGO_ENABLED: '1'
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
with:
|
||||||
|
submodules: recursive
|
||||||
|
- name: Add msys paths
|
||||||
|
if: ${{ startsWith(matrix.os, 'windows-') }}
|
||||||
|
run: |
|
||||||
|
echo "c:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||||
|
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||||
|
- name: Install msys2 tools
|
||||||
|
if: ${{ startsWith(matrix.os, 'windows-') }}
|
||||||
|
run: |
|
||||||
|
Start-Process "c:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang") -NoNewWindow -Wait
|
||||||
|
- uses: actions/setup-go@v5
|
||||||
|
with:
|
||||||
|
go-version-file: go.mod
|
||||||
|
cache: false
|
||||||
|
- run: |
|
||||||
|
case ${{ matrix.arch }} in
|
||||||
|
amd64) echo ARCH=x86_64 ;;
|
||||||
|
arm64) echo ARCH=arm64 ;;
|
||||||
|
esac >>$GITHUB_ENV
|
||||||
|
shell: bash
|
||||||
- uses: golangci/golangci-lint-action@v6
|
- uses: golangci/golangci-lint-action@v6
|
||||||
with:
|
with:
|
||||||
args: --timeout 10m0s -v
|
args: --timeout 10m0s -v
|
||||||
|
test:
|
||||||
- name: cache save
|
strategy:
|
||||||
# Always save the cache, even if the job fails. The artifacts produced
|
matrix:
|
||||||
# during the building of test binaries are not all for naught. They can
|
os: [ubuntu-latest, macos-latest, windows-2019]
|
||||||
# be used to speed up subsequent runs.
|
arch: [amd64]
|
||||||
if: always()
|
exclude:
|
||||||
|
- os: ubuntu-latest
|
||||||
uses: actions/cache/save@1bd1e32a3bdc45362d1e726936510720a7c30a57 # v4.2.0
|
arch: arm64
|
||||||
|
- os: windows-2019
|
||||||
|
arch: arm64
|
||||||
|
runs-on: ${{ matrix.os }}
|
||||||
|
env:
|
||||||
|
GOARCH: ${{ matrix.arch }}
|
||||||
|
CGO_ENABLED: '1'
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v4
|
||||||
with:
|
with:
|
||||||
# Note: unlike the other setups, this is only grabbing the mod download
|
submodules: recursive
|
||||||
# cache, rather than the whole mod directory, as the download cache
|
- name: Add msys paths
|
||||||
# contains zips that can be unpacked in parallel faster than they can be
|
if: ${{ startsWith(matrix.os, 'windows-') }}
|
||||||
# fetched and extracted by tar
|
run: |
|
||||||
path: |
|
echo "c:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||||
~/.cache/go-build
|
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||||
~/go/pkg/mod/cache
|
- name: Install msys2 tools
|
||||||
~\AppData\Local\go-build
|
if: ${{ startsWith(matrix.os, 'windows-') }}
|
||||||
# NOTE: The -3- here should be incremented when the scheme of data to be
|
run: |
|
||||||
# cached changes (e.g. path above changes).
|
Start-Process "c:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang") -NoNewWindow -Wait
|
||||||
key: ${{ github.job }}-${{ runner.os }}-${{ matrix.goarch }}-${{ matrix.buildflags }}-go-3-${{ hashFiles('**/go.sum') }}-${{ github.run_id }}
|
- uses: actions/setup-go@v5
|
||||||
|
with:
|
||||||
|
go-version-file: go.mod
|
||||||
|
cache: true
|
||||||
|
- run: |
|
||||||
|
case ${{ matrix.arch }} in
|
||||||
|
amd64) echo ARCH=amd64 ;;
|
||||||
|
arm64) echo ARCH=arm64 ;;
|
||||||
|
esac >>$GITHUB_ENV
|
||||||
|
shell: bash
|
||||||
|
- run: go test ./...
|
||||||
|
|
||||||
patches:
|
patches:
|
||||||
|
needs: [changes]
|
||||||
|
if: ${{ needs.changes.outputs.RUNNERS == 'True' }}
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v4
|
- uses: actions/checkout@v4
|
||||||
- name: Verify patches apply cleanly and do not change files
|
with:
|
||||||
|
submodules: recursive
|
||||||
|
- name: Verify patches carry all the changes
|
||||||
run: |
|
run: |
|
||||||
make -f Makefile.sync clean checkout apply-patches sync
|
make apply-patches sync && git diff --compact-summary --exit-code llama
|
||||||
git diff --compact-summary --exit-code
|
|
||||||
|
5
.gitignore
vendored
5
.gitignore
vendored
@ -4,13 +4,12 @@
|
|||||||
.venv
|
.venv
|
||||||
.swp
|
.swp
|
||||||
dist
|
dist
|
||||||
build
|
ollama
|
||||||
.cache
|
.cache
|
||||||
*.exe
|
*.exe
|
||||||
.idea
|
.idea
|
||||||
test_data
|
test_data
|
||||||
*.crt
|
*.crt
|
||||||
__debug_bin*
|
|
||||||
llama/build
|
llama/build
|
||||||
|
__debug_bin*
|
||||||
llama/vendor
|
llama/vendor
|
||||||
/ollama
|
|
||||||
|
@ -6,6 +6,8 @@ linters:
|
|||||||
- bidichk
|
- bidichk
|
||||||
- bodyclose
|
- bodyclose
|
||||||
- containedctx
|
- containedctx
|
||||||
|
- contextcheck
|
||||||
|
- errcheck
|
||||||
- gocheckcompilerdirectives
|
- gocheckcompilerdirectives
|
||||||
- gofmt
|
- gofmt
|
||||||
- gofumpt
|
- gofumpt
|
||||||
@ -19,13 +21,12 @@ linters:
|
|||||||
- nolintlint
|
- nolintlint
|
||||||
- nosprintfhostport
|
- nosprintfhostport
|
||||||
- staticcheck
|
- staticcheck
|
||||||
|
- tenv
|
||||||
- unconvert
|
- unconvert
|
||||||
- usetesting
|
- unused
|
||||||
|
- usestdlibvars
|
||||||
- wastedassign
|
- wastedassign
|
||||||
- whitespace
|
- whitespace
|
||||||
disable:
|
|
||||||
- usestdlibvars
|
|
||||||
- errcheck
|
|
||||||
linters-settings:
|
linters-settings:
|
||||||
staticcheck:
|
staticcheck:
|
||||||
checks:
|
checks:
|
||||||
@ -38,4 +39,5 @@ severity:
|
|||||||
- gofmt
|
- gofmt
|
||||||
- goimports
|
- goimports
|
||||||
- intrange
|
- intrange
|
||||||
|
- usestdlibvars
|
||||||
severity: info
|
severity: info
|
||||||
|
10
.prettierrc.json
Normal file
10
.prettierrc.json
Normal file
@ -0,0 +1,10 @@
|
|||||||
|
{
|
||||||
|
"trailingComma": "es5",
|
||||||
|
"tabWidth": 2,
|
||||||
|
"useTabs": false,
|
||||||
|
"semi": false,
|
||||||
|
"singleQuote": true,
|
||||||
|
"jsxSingleQuote": true,
|
||||||
|
"printWidth": 120,
|
||||||
|
"arrowParens": "avoid"
|
||||||
|
}
|
133
CMakeLists.txt
133
CMakeLists.txt
@ -1,133 +0,0 @@
|
|||||||
cmake_minimum_required(VERSION 3.21)
|
|
||||||
|
|
||||||
project(Ollama C CXX)
|
|
||||||
|
|
||||||
include(CheckLanguage)
|
|
||||||
|
|
||||||
find_package(Threads REQUIRED)
|
|
||||||
|
|
||||||
set(CMAKE_BUILD_TYPE Release)
|
|
||||||
set(BUILD_SHARED_LIBS ON)
|
|
||||||
|
|
||||||
set(CMAKE_CXX_STANDARD 17)
|
|
||||||
set(CMAKE_CXX_STANDARD_REQUIRED ON)
|
|
||||||
set(CMAKE_CXX_EXTENSIONS OFF)
|
|
||||||
|
|
||||||
set(GGML_BUILD ON)
|
|
||||||
set(GGML_SHARED ON)
|
|
||||||
set(GGML_CCACHE ON)
|
|
||||||
set(GGML_BACKEND_DL ON)
|
|
||||||
set(GGML_BACKEND_SHARED ON)
|
|
||||||
set(GGML_SCHED_MAX_COPIES 4)
|
|
||||||
|
|
||||||
set(GGML_LLAMAFILE ON)
|
|
||||||
set(GGML_CUDA_PEER_MAX_BATCH_SIZE 128)
|
|
||||||
set(GGML_CUDA_GRAPHS ON)
|
|
||||||
set(GGML_CUDA_FA ON)
|
|
||||||
set(GGML_CUDA_COMPRESSION_MODE default)
|
|
||||||
|
|
||||||
if((CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_OSX_ARCHITECTURES MATCHES "arm64")
|
|
||||||
OR (NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_SYSTEM_PROCESSOR MATCHES "arm|aarch64|ARM64|ARMv[0-9]+"))
|
|
||||||
set(GGML_CPU_ALL_VARIANTS ON)
|
|
||||||
endif()
|
|
||||||
|
|
||||||
if (CMAKE_OSX_ARCHITECTURES MATCHES "x86_64")
|
|
||||||
set(CMAKE_BUILD_RPATH "@loader_path")
|
|
||||||
set(CMAKE_INSTALL_RPATH "@loader_path")
|
|
||||||
endif()
|
|
||||||
|
|
||||||
set(OLLAMA_BUILD_DIR ${CMAKE_BINARY_DIR}/lib/ollama)
|
|
||||||
set(OLLAMA_INSTALL_DIR ${CMAKE_INSTALL_PREFIX}/lib/ollama)
|
|
||||||
|
|
||||||
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${OLLAMA_BUILD_DIR})
|
|
||||||
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY_DEBUG ${OLLAMA_BUILD_DIR})
|
|
||||||
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY_RELEASE ${OLLAMA_BUILD_DIR})
|
|
||||||
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${OLLAMA_BUILD_DIR})
|
|
||||||
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY_DEBUG ${OLLAMA_BUILD_DIR})
|
|
||||||
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY_RELEASE ${OLLAMA_BUILD_DIR})
|
|
||||||
|
|
||||||
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src)
|
|
||||||
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/include)
|
|
||||||
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cpu)
|
|
||||||
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cpu/amx)
|
|
||||||
|
|
||||||
set(GGML_CPU ON)
|
|
||||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src)
|
|
||||||
set_property(TARGET ggml PROPERTY EXCLUDE_FROM_ALL TRUE)
|
|
||||||
|
|
||||||
get_target_property(CPU_VARIANTS ggml-cpu MANUALLY_ADDED_DEPENDENCIES)
|
|
||||||
if(NOT CPU_VARIANTS)
|
|
||||||
set(CPU_VARIANTS "ggml-cpu")
|
|
||||||
endif()
|
|
||||||
|
|
||||||
install(TARGETS ggml-base ${CPU_VARIANTS}
|
|
||||||
RUNTIME_DEPENDENCIES
|
|
||||||
PRE_EXCLUDE_REGEXES ".*"
|
|
||||||
RUNTIME DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT CPU
|
|
||||||
LIBRARY DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT CPU
|
|
||||||
FRAMEWORK DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT CPU
|
|
||||||
)
|
|
||||||
|
|
||||||
check_language(CUDA)
|
|
||||||
if(CMAKE_CUDA_COMPILER)
|
|
||||||
if(CMAKE_VERSION VERSION_GREATER_EQUAL "3.24" AND NOT CMAKE_CUDA_ARCHITECTURES)
|
|
||||||
set(CMAKE_CUDA_ARCHITECTURES "native")
|
|
||||||
endif()
|
|
||||||
|
|
||||||
find_package(CUDAToolkit)
|
|
||||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cuda)
|
|
||||||
set(OLLAMA_CUDA_INSTALL_DIR ${OLLAMA_INSTALL_DIR}/cuda_v${CUDAToolkit_VERSION_MAJOR})
|
|
||||||
install(TARGETS ggml-cuda
|
|
||||||
RUNTIME_DEPENDENCIES
|
|
||||||
DIRECTORIES ${CUDAToolkit_BIN_DIR} ${CUDAToolkit_LIBRARY_DIR}
|
|
||||||
PRE_INCLUDE_REGEXES cublas cublasLt cudart
|
|
||||||
PRE_EXCLUDE_REGEXES ".*"
|
|
||||||
RUNTIME DESTINATION ${OLLAMA_CUDA_INSTALL_DIR} COMPONENT CUDA
|
|
||||||
LIBRARY DESTINATION ${OLLAMA_CUDA_INSTALL_DIR} COMPONENT CUDA
|
|
||||||
)
|
|
||||||
endif()
|
|
||||||
|
|
||||||
set(WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX "^gfx(906|908|90a|1200|1201):xnack[+-]$"
|
|
||||||
CACHE STRING
|
|
||||||
"Regular expression describing AMDGPU_TARGETS not supported on Windows. Override to force building these targets. Default \"^gfx(906|908|90a|1200|1201):xnack[+-]$\"."
|
|
||||||
)
|
|
||||||
|
|
||||||
check_language(HIP)
|
|
||||||
if(CMAKE_HIP_COMPILER)
|
|
||||||
set(HIP_PLATFORM "amd")
|
|
||||||
|
|
||||||
find_package(hip REQUIRED)
|
|
||||||
if(NOT AMDGPU_TARGETS)
|
|
||||||
list(FILTER AMDGPU_TARGETS INCLUDE REGEX "^gfx(900|94[012]|101[02]|1030|110[012]|120[01])$")
|
|
||||||
elseif(WIN32 AND WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX)
|
|
||||||
list(FILTER AMDGPU_TARGETS EXCLUDE REGEX ${WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX})
|
|
||||||
endif()
|
|
||||||
|
|
||||||
if(AMDGPU_TARGETS)
|
|
||||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-hip)
|
|
||||||
|
|
||||||
if (WIN32)
|
|
||||||
target_compile_definitions(ggml-hip PRIVATE GGML_CUDA_NO_PEER_COPY)
|
|
||||||
endif()
|
|
||||||
|
|
||||||
target_compile_definitions(ggml-hip PRIVATE GGML_HIP_NO_VMM)
|
|
||||||
|
|
||||||
set(OLLAMA_HIP_INSTALL_DIR ${OLLAMA_INSTALL_DIR}/rocm)
|
|
||||||
install(TARGETS ggml-hip
|
|
||||||
RUNTIME_DEPENDENCIES
|
|
||||||
DIRECTORIES ${HIP_BIN_INSTALL_DIR} ${HIP_LIB_INSTALL_DIR}
|
|
||||||
PRE_INCLUDE_REGEXES hipblas rocblas amdhip64 rocsolver amd_comgr hsa-runtime64 rocsparse tinfo rocprofiler-register drm drm_amdgpu numa elf
|
|
||||||
PRE_EXCLUDE_REGEXES ".*"
|
|
||||||
POST_EXCLUDE_REGEXES "system32"
|
|
||||||
RUNTIME DESTINATION ${OLLAMA_HIP_INSTALL_DIR} COMPONENT HIP
|
|
||||||
LIBRARY DESTINATION ${OLLAMA_HIP_INSTALL_DIR} COMPONENT HIP
|
|
||||||
)
|
|
||||||
|
|
||||||
foreach(HIP_LIB_BIN_INSTALL_DIR IN ITEMS ${HIP_BIN_INSTALL_DIR} ${HIP_LIB_INSTALL_DIR})
|
|
||||||
if(EXISTS ${HIP_LIB_BIN_INSTALL_DIR}/rocblas)
|
|
||||||
install(DIRECTORY ${HIP_LIB_BIN_INSTALL_DIR}/rocblas DESTINATION ${OLLAMA_HIP_INSTALL_DIR} COMPONENT HIP)
|
|
||||||
break()
|
|
||||||
endif()
|
|
||||||
endforeach()
|
|
||||||
endif()
|
|
||||||
endif()
|
|
@ -1,112 +0,0 @@
|
|||||||
{
|
|
||||||
"version": 3,
|
|
||||||
"configurePresets": [
|
|
||||||
{
|
|
||||||
"name": "Default",
|
|
||||||
"binaryDir": "${sourceDir}/build",
|
|
||||||
"installDir": "${sourceDir}/dist",
|
|
||||||
"cacheVariables": {
|
|
||||||
"CMAKE_BUILD_TYPE": "Release"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "CPU",
|
|
||||||
"inherits": [ "Default" ]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "CUDA",
|
|
||||||
"inherits": [ "Default" ]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "CUDA 11",
|
|
||||||
"inherits": [ "CUDA" ],
|
|
||||||
"cacheVariables": {
|
|
||||||
"CMAKE_CUDA_ARCHITECTURES": "50;52;53;60;61;70;75;80;86",
|
|
||||||
"CMAKE_CUDA_FLAGS": "-Wno-deprecated-gpu-targets"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "CUDA 12",
|
|
||||||
"inherits": [ "CUDA" ],
|
|
||||||
"cacheVariables": {
|
|
||||||
"CMAKE_CUDA_ARCHITECTURES": "50;60;61;70;75;80;86;87;89;90;90a;120",
|
|
||||||
"CMAKE_CUDA_FLAGS": "-Wno-deprecated-gpu-targets"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "JetPack 5",
|
|
||||||
"inherits": [ "CUDA" ],
|
|
||||||
"cacheVariables": {
|
|
||||||
"CMAKE_CUDA_ARCHITECTURES": "72;87"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "JetPack 6",
|
|
||||||
"inherits": [ "CUDA" ],
|
|
||||||
"cacheVariables": {
|
|
||||||
"CMAKE_CUDA_ARCHITECTURES": "87"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "ROCm",
|
|
||||||
"inherits": [ "Default" ],
|
|
||||||
"cacheVariables": {
|
|
||||||
"CMAKE_HIP_PLATFORM": "amd"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "ROCm 6",
|
|
||||||
"inherits": [ "ROCm" ],
|
|
||||||
"cacheVariables": {
|
|
||||||
"AMDGPU_TARGETS": "gfx900;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102;gfx1151;gfx1200;gfx1201;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-"
|
|
||||||
}
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"buildPresets": [
|
|
||||||
{
|
|
||||||
"name": "Default",
|
|
||||||
"configurePreset": "Default",
|
|
||||||
"configuration": "Release"
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "CPU",
|
|
||||||
"configurePreset": "Default",
|
|
||||||
"targets": [ "ggml-cpu" ]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "CUDA",
|
|
||||||
"configurePreset": "CUDA",
|
|
||||||
"targets": [ "ggml-cuda" ]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "CUDA 11",
|
|
||||||
"inherits": [ "CUDA" ],
|
|
||||||
"configurePreset": "CUDA 11"
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "CUDA 12",
|
|
||||||
"inherits": [ "CUDA" ],
|
|
||||||
"configurePreset": "CUDA 12"
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "JetPack 5",
|
|
||||||
"inherits": [ "CUDA" ],
|
|
||||||
"configurePreset": "JetPack 5"
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "JetPack 6",
|
|
||||||
"inherits": [ "CUDA" ],
|
|
||||||
"configurePreset": "JetPack 6"
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "ROCm",
|
|
||||||
"configurePreset": "ROCm",
|
|
||||||
"targets": [ "ggml-hip" ]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "ROCm 6",
|
|
||||||
"inherits": [ "ROCm" ],
|
|
||||||
"configurePreset": "ROCm 6"
|
|
||||||
}
|
|
||||||
]
|
|
||||||
}
|
|
@ -6,6 +6,8 @@ Thank you for your interest in contributing to Ollama! Here are a few guidelines
|
|||||||
|
|
||||||
See the [development documentation](./docs/development.md) for instructions on how to build and run Ollama locally.
|
See the [development documentation](./docs/development.md) for instructions on how to build and run Ollama locally.
|
||||||
|
|
||||||
|
## Pull requests
|
||||||
|
|
||||||
### Ideal issues
|
### Ideal issues
|
||||||
|
|
||||||
* [Bugs](https://github.com/ollama/ollama/issues?q=is%3Aissue+is%3Aopen+label%3Abug): issues where Ollama stops working or where it results in an unexpected error.
|
* [Bugs](https://github.com/ollama/ollama/issues?q=is%3Aissue+is%3Aopen+label%3Abug): issues where Ollama stops working or where it results in an unexpected error.
|
||||||
@ -24,64 +26,11 @@ See the [development documentation](./docs/development.md) for instructions on h
|
|||||||
* Changes that add significant friction to the user experience
|
* Changes that add significant friction to the user experience
|
||||||
* Changes that create a large future maintenance burden for maintainers and contributors
|
* Changes that create a large future maintenance burden for maintainers and contributors
|
||||||
|
|
||||||
## Proposing a (non-trivial) change
|
### Best practices
|
||||||
|
|
||||||
> By "non-trivial", we mean a change that is not a bug fix or small
|
* Commit messages: please leave both a title and a description in your commit messages. The title should be a short summary of the changes, with a leading word that explains the section of the code being changed (e.g. `api: fix parsing of prompt field`) . In the description, leave a short 2-3 sentences that explain more about the change and its impact.
|
||||||
> documentation update. If you are unsure, please ask us on our [Discord
|
* Tests: please add test coverage to changes where possible.
|
||||||
> server](https://discord.gg/ollama).
|
* Minimize dependencies: avoid adding new dependencies unless absolutely necessary.
|
||||||
|
|
||||||
Before opening a non-trivial Pull Request, please open an issue to discuss the change and
|
|
||||||
get feedback from the maintainers. This helps us understand the context of the
|
|
||||||
change and how it fits into Ollama's roadmap and prevents us from duplicating
|
|
||||||
work or you from spending time on a change that we may not be able to accept.
|
|
||||||
|
|
||||||
Tips for proposals:
|
|
||||||
|
|
||||||
* Explain the problem you are trying to solve, not what you are trying to do.
|
|
||||||
* Explain why the change is important.
|
|
||||||
* Explain how the change will be used.
|
|
||||||
* Explain how the change will be tested.
|
|
||||||
|
|
||||||
Additionally, for bonus points: Provide draft documentation you would expect to
|
|
||||||
see if the change were accepted.
|
|
||||||
|
|
||||||
## Pull requests
|
|
||||||
|
|
||||||
**Commit messages**
|
|
||||||
|
|
||||||
The title should look like:
|
|
||||||
|
|
||||||
<package>: <short description>
|
|
||||||
|
|
||||||
The package is the most affected Go package. If the change does not affect Go
|
|
||||||
code, then use the directory name instead. Changes to a single well-known
|
|
||||||
file in the root directory may use the file name.
|
|
||||||
|
|
||||||
The short description should start with a lowercase letter and be a
|
|
||||||
continuation of the sentence:
|
|
||||||
|
|
||||||
"This changes Ollama to..."
|
|
||||||
|
|
||||||
Examples:
|
|
||||||
|
|
||||||
llm/backend/mlx: support the llama architecture
|
|
||||||
CONTRIBUTING: provide clairity on good commit messages, and bad
|
|
||||||
|
|
||||||
Bad Examples:
|
|
||||||
|
|
||||||
feat: add more emoji
|
|
||||||
fix: was not using famous web framework
|
|
||||||
chore: generify code
|
|
||||||
|
|
||||||
**Tests**
|
|
||||||
|
|
||||||
Please include tests. Strive to test behavior, not implementation.
|
|
||||||
|
|
||||||
**New dependencies**
|
|
||||||
|
|
||||||
Dependencies should be added sparingly. If you are adding a new dependency,
|
|
||||||
please explain why it is necessary and what other ways you attempted that
|
|
||||||
did not work without it.
|
|
||||||
|
|
||||||
## Need help?
|
## Need help?
|
||||||
|
|
||||||
|
301
Dockerfile
301
Dockerfile
@ -1,131 +1,200 @@
|
|||||||
# vim: filetype=dockerfile
|
ARG GOLANG_VERSION=1.22.8
|
||||||
|
ARG CUDA_VERSION_11=11.3.1
|
||||||
|
ARG CUDA_VERSION_12=12.4.0
|
||||||
|
ARG ROCM_VERSION=6.1.2
|
||||||
|
ARG JETPACK_6=r36.2.0
|
||||||
|
ARG JETPACK_5=r35.4.1
|
||||||
|
|
||||||
ARG FLAVOR=${TARGETARCH}
|
### To create a local image for building linux binaries on mac or windows with efficient incremental builds
|
||||||
|
#
|
||||||
|
# docker build --platform linux/amd64 -t builder-amd64 -f Dockerfile --target unified-builder-amd64 .
|
||||||
|
# docker run --platform linux/amd64 --rm -it -v $(pwd):/go/src/github.com/ollama/ollama/ builder-amd64
|
||||||
|
#
|
||||||
|
### Then incremental builds will be much faster in this container
|
||||||
|
#
|
||||||
|
# make -j 10 dist
|
||||||
|
#
|
||||||
|
FROM --platform=linux/amd64 rocm/dev-centos-7:${ROCM_VERSION}-complete AS unified-builder-amd64
|
||||||
|
ARG GOLANG_VERSION
|
||||||
|
ARG CUDA_VERSION_11
|
||||||
|
ARG CUDA_VERSION_12
|
||||||
|
COPY ./scripts/rh_linux_deps.sh /
|
||||||
|
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:/usr/local/cuda/bin:$PATH
|
||||||
|
ENV LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/cuda/lib64
|
||||||
|
RUN GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
|
||||||
|
RUN yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel7/x86_64/cuda-rhel7.repo && \
|
||||||
|
dnf clean all && \
|
||||||
|
dnf install -y \
|
||||||
|
zsh \
|
||||||
|
cuda-toolkit-$(echo ${CUDA_VERSION_11} | cut -f1-2 -d. | sed -e "s/\./-/g") \
|
||||||
|
cuda-toolkit-$(echo ${CUDA_VERSION_12} | cut -f1-2 -d. | sed -e "s/\./-/g")
|
||||||
|
# TODO intel oneapi goes here...
|
||||||
|
ENV GOARCH amd64
|
||||||
|
ENV CGO_ENABLED 1
|
||||||
|
WORKDIR /go/src/github.com/ollama/ollama/
|
||||||
|
ENTRYPOINT [ "zsh" ]
|
||||||
|
|
||||||
ARG ROCMVERSION=6.3.3
|
### To create a local image for building linux binaries on mac or linux/arm64 with efficient incremental builds
|
||||||
ARG JETPACK5VERSION=r35.4.1
|
# Note: this does not contain jetson variants
|
||||||
ARG JETPACK6VERSION=r36.4.0
|
#
|
||||||
ARG CMAKEVERSION=3.31.2
|
# docker build --platform linux/arm64 -t builder-arm64 -f Dockerfile --target unified-builder-arm64 .
|
||||||
|
# docker run --platform linux/arm64 --rm -it -v $(pwd):/go/src/github.com/ollama/ollama/ builder-arm64
|
||||||
|
#
|
||||||
|
FROM --platform=linux/arm64 rockylinux:8 AS unified-builder-arm64
|
||||||
|
ARG GOLANG_VERSION
|
||||||
|
ARG CUDA_VERSION_11
|
||||||
|
ARG CUDA_VERSION_12
|
||||||
|
COPY ./scripts/rh_linux_deps.sh /
|
||||||
|
RUN GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
|
||||||
|
RUN yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/sbsa/cuda-rhel8.repo && \
|
||||||
|
dnf config-manager --set-enabled appstream && \
|
||||||
|
dnf clean all && \
|
||||||
|
dnf install -y \
|
||||||
|
zsh \
|
||||||
|
cuda-toolkit-$(echo ${CUDA_VERSION_11} | cut -f1-2 -d. | sed -e "s/\./-/g") \
|
||||||
|
cuda-toolkit-$(echo ${CUDA_VERSION_12} | cut -f1-2 -d. | sed -e "s/\./-/g")
|
||||||
|
ENV PATH /opt/rh/gcc-toolset-10/root/usr/bin:$PATH:/usr/local/cuda/bin
|
||||||
|
ENV LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/cuda/lib64
|
||||||
|
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs:/opt/amdgpu/lib64
|
||||||
|
ENV GOARCH arm64
|
||||||
|
ENV CGO_ENABLED 1
|
||||||
|
WORKDIR /go/src/github.com/ollama/ollama/
|
||||||
|
ENTRYPOINT [ "zsh" ]
|
||||||
|
|
||||||
# CUDA v11 requires gcc v10. v10.3 has regressions, so the rockylinux 8.5 AppStream has the latest compatible version
|
FROM --platform=linux/amd64 unified-builder-amd64 AS build-amd64
|
||||||
FROM --platform=linux/amd64 rocm/dev-almalinux-8:${ROCMVERSION}-complete AS base-amd64
|
|
||||||
RUN yum install -y yum-utils \
|
|
||||||
&& yum-config-manager --add-repo https://dl.rockylinux.org/vault/rocky/8.5/AppStream/\$basearch/os/ \
|
|
||||||
&& rpm --import https://dl.rockylinux.org/pub/rocky/RPM-GPG-KEY-Rocky-8 \
|
|
||||||
&& dnf install -y yum-utils ccache gcc-toolset-10-gcc-10.2.1-8.2.el8 gcc-toolset-10-gcc-c++-10.2.1-8.2.el8 gcc-toolset-10-binutils-2.35-11.el8 \
|
|
||||||
&& yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/x86_64/cuda-rhel8.repo
|
|
||||||
ENV PATH=/opt/rh/gcc-toolset-10/root/usr/bin:$PATH
|
|
||||||
|
|
||||||
FROM --platform=linux/arm64 almalinux:8 AS base-arm64
|
|
||||||
# install epel-release for ccache
|
|
||||||
RUN yum install -y yum-utils epel-release \
|
|
||||||
&& dnf install -y clang ccache \
|
|
||||||
&& yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/sbsa/cuda-rhel8.repo
|
|
||||||
ENV CC=clang CXX=clang++
|
|
||||||
|
|
||||||
FROM base-${TARGETARCH} AS base
|
|
||||||
ARG CMAKEVERSION
|
|
||||||
RUN curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKEVERSION}/cmake-${CMAKEVERSION}-linux-$(uname -m).tar.gz | tar xz -C /usr/local --strip-components 1
|
|
||||||
COPY CMakeLists.txt CMakePresets.json .
|
|
||||||
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
|
|
||||||
ENV LDFLAGS=-s
|
|
||||||
|
|
||||||
FROM base AS cpu
|
|
||||||
RUN dnf install -y gcc-toolset-11-gcc gcc-toolset-11-gcc-c++
|
|
||||||
ENV PATH=/opt/rh/gcc-toolset-11/root/usr/bin:$PATH
|
|
||||||
RUN --mount=type=cache,target=/root/.ccache \
|
|
||||||
cmake --preset 'CPU' \
|
|
||||||
&& cmake --build --parallel --preset 'CPU' \
|
|
||||||
&& cmake --install build --component CPU --strip --parallel 8
|
|
||||||
|
|
||||||
FROM base AS cuda-11
|
|
||||||
ARG CUDA11VERSION=11.3
|
|
||||||
RUN dnf install -y cuda-toolkit-${CUDA11VERSION//./-}
|
|
||||||
ENV PATH=/usr/local/cuda-11/bin:$PATH
|
|
||||||
RUN --mount=type=cache,target=/root/.ccache \
|
|
||||||
cmake --preset 'CUDA 11' \
|
|
||||||
&& cmake --build --parallel --preset 'CUDA 11' \
|
|
||||||
&& cmake --install build --component CUDA --strip --parallel 8
|
|
||||||
|
|
||||||
FROM base AS cuda-12
|
|
||||||
ARG CUDA12VERSION=12.8
|
|
||||||
RUN dnf install -y cuda-toolkit-${CUDA12VERSION//./-}
|
|
||||||
ENV PATH=/usr/local/cuda-12/bin:$PATH
|
|
||||||
RUN --mount=type=cache,target=/root/.ccache \
|
|
||||||
cmake --preset 'CUDA 12' \
|
|
||||||
&& cmake --build --parallel --preset 'CUDA 12' \
|
|
||||||
&& cmake --install build --component CUDA --strip --parallel 8
|
|
||||||
|
|
||||||
FROM base AS rocm-6
|
|
||||||
ENV PATH=/opt/rocm/hcc/bin:/opt/rocm/hip/bin:/opt/rocm/bin:/opt/rocm/hcc/bin:$PATH
|
|
||||||
RUN --mount=type=cache,target=/root/.ccache \
|
|
||||||
cmake --preset 'ROCm 6' \
|
|
||||||
&& cmake --build --parallel --preset 'ROCm 6' \
|
|
||||||
&& cmake --install build --component HIP --strip --parallel 8
|
|
||||||
|
|
||||||
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK5VERSION} AS jetpack-5
|
|
||||||
ARG CMAKEVERSION
|
|
||||||
RUN apt-get update && apt-get install -y curl ccache \
|
|
||||||
&& curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKEVERSION}/cmake-${CMAKEVERSION}-linux-$(uname -m).tar.gz | tar xz -C /usr/local --strip-components 1
|
|
||||||
COPY CMakeLists.txt CMakePresets.json .
|
|
||||||
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
|
|
||||||
RUN --mount=type=cache,target=/root/.ccache \
|
|
||||||
cmake --preset 'JetPack 5' \
|
|
||||||
&& cmake --build --parallel --preset 'JetPack 5' \
|
|
||||||
&& cmake --install build --component CUDA --strip --parallel 8
|
|
||||||
|
|
||||||
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK6VERSION} AS jetpack-6
|
|
||||||
ARG CMAKEVERSION
|
|
||||||
RUN apt-get update && apt-get install -y curl ccache \
|
|
||||||
&& curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKEVERSION}/cmake-${CMAKEVERSION}-linux-$(uname -m).tar.gz | tar xz -C /usr/local --strip-components 1
|
|
||||||
COPY CMakeLists.txt CMakePresets.json .
|
|
||||||
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
|
|
||||||
RUN --mount=type=cache,target=/root/.ccache \
|
|
||||||
cmake --preset 'JetPack 6' \
|
|
||||||
&& cmake --build --parallel --preset 'JetPack 6' \
|
|
||||||
&& cmake --install build --component CUDA --strip --parallel 8
|
|
||||||
|
|
||||||
FROM base AS build
|
|
||||||
WORKDIR /go/src/github.com/ollama/ollama
|
|
||||||
COPY go.mod go.sum .
|
|
||||||
RUN curl -fsSL https://golang.org/dl/go$(awk '/^go/ { print $2 }' go.mod).linux-$(case $(uname -m) in x86_64) echo amd64 ;; aarch64) echo arm64 ;; esac).tar.gz | tar xz -C /usr/local
|
|
||||||
ENV PATH=/usr/local/go/bin:$PATH
|
|
||||||
RUN go mod download
|
|
||||||
COPY . .
|
COPY . .
|
||||||
ARG GOFLAGS="'-ldflags=-w -s'"
|
ARG OLLAMA_SKIP_CUDA_GENERATE
|
||||||
ENV CGO_ENABLED=1
|
ARG OLLAMA_SKIP_ROCM_GENERATE
|
||||||
RUN --mount=type=cache,target=/root/.cache/go-build \
|
ARG OLLAMA_FAST_BUILD
|
||||||
go build -trimpath -buildmode=pie -o /bin/ollama .
|
ARG VERSION
|
||||||
|
RUN --mount=type=cache,target=/root/.ccache \
|
||||||
|
if grep "^flags" /proc/cpuinfo|grep avx>/dev/null; then \
|
||||||
|
make -j $(nproc) dist ; \
|
||||||
|
else \
|
||||||
|
make -j 5 dist ; \
|
||||||
|
fi
|
||||||
|
RUN cd dist/linux-$GOARCH && \
|
||||||
|
tar -cf - . | pigz --best > ../ollama-linux-$GOARCH.tgz
|
||||||
|
RUN if [ -z ${OLLAMA_SKIP_ROCM_GENERATE} ] ; then \
|
||||||
|
cd dist/linux-$GOARCH-rocm && \
|
||||||
|
tar -cf - . | pigz --best > ../ollama-linux-$GOARCH-rocm.tgz ;\
|
||||||
|
fi
|
||||||
|
|
||||||
FROM --platform=linux/amd64 scratch AS amd64
|
# Jetsons need to be built in discrete stages
|
||||||
COPY --from=cuda-11 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_v11
|
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK_5} AS runners-jetpack5-arm64
|
||||||
COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12
|
ARG GOLANG_VERSION
|
||||||
|
RUN apt-get update && apt-get install -y git curl ccache && \
|
||||||
|
curl -s -L https://dl.google.com/go/go${GOLANG_VERSION}.linux-arm64.tar.gz | tar xz -C /usr/local && \
|
||||||
|
ln -s /usr/local/go/bin/go /usr/local/bin/go && \
|
||||||
|
ln -s /usr/local/go/bin/gofmt /usr/local/bin/gofmt && \
|
||||||
|
apt-get clean && rm -rf /var/lib/apt/lists/*
|
||||||
|
WORKDIR /go/src/github.com/ollama/ollama/
|
||||||
|
COPY . .
|
||||||
|
ARG CGO_CFLAGS
|
||||||
|
ENV GOARCH arm64
|
||||||
|
ARG VERSION
|
||||||
|
RUN --mount=type=cache,target=/root/.ccache \
|
||||||
|
make -j 5 dist_cuda_v11 \
|
||||||
|
CUDA_ARCHITECTURES="72;87" \
|
||||||
|
GPU_RUNNER_VARIANT=_jetpack5 \
|
||||||
|
DIST_LIB_DIR=/go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack5/lib/ollama \
|
||||||
|
DIST_GPU_RUNNER_DEPS_DIR=/go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack5/lib/ollama/cuda_jetpack5
|
||||||
|
|
||||||
FROM --platform=linux/arm64 scratch AS arm64
|
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK_6} AS runners-jetpack6-arm64
|
||||||
COPY --from=cuda-11 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_v11
|
ARG GOLANG_VERSION
|
||||||
COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12
|
RUN apt-get update && apt-get install -y git curl ccache && \
|
||||||
COPY --from=jetpack-5 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_jetpack5
|
curl -s -L https://dl.google.com/go/go${GOLANG_VERSION}.linux-arm64.tar.gz | tar xz -C /usr/local && \
|
||||||
COPY --from=jetpack-6 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_jetpack6
|
ln -s /usr/local/go/bin/go /usr/local/bin/go && \
|
||||||
|
ln -s /usr/local/go/bin/gofmt /usr/local/bin/gofmt && \
|
||||||
|
apt-get clean && rm -rf /var/lib/apt/lists/*
|
||||||
|
WORKDIR /go/src/github.com/ollama/ollama/
|
||||||
|
COPY . .
|
||||||
|
ARG CGO_CFLAGS
|
||||||
|
ENV GOARCH arm64
|
||||||
|
ARG VERSION
|
||||||
|
RUN --mount=type=cache,target=/root/.ccache \
|
||||||
|
make -j 5 dist_cuda_v12 \
|
||||||
|
CUDA_ARCHITECTURES="87" \
|
||||||
|
GPU_RUNNER_VARIANT=_jetpack6 \
|
||||||
|
DIST_LIB_DIR=/go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack6/lib/ollama \
|
||||||
|
DIST_GPU_RUNNER_DEPS_DIR=/go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack6/lib/ollama/cuda_jetpack6
|
||||||
|
|
||||||
FROM scratch AS rocm
|
FROM --platform=linux/arm64 unified-builder-arm64 AS build-arm64
|
||||||
COPY --from=rocm-6 dist/lib/ollama/rocm /lib/ollama/rocm
|
COPY . .
|
||||||
|
ARG OLLAMA_SKIP_CUDA_GENERATE
|
||||||
|
ARG OLLAMA_FAST_BUILD
|
||||||
|
ARG VERSION
|
||||||
|
RUN --mount=type=cache,target=/root/.ccache \
|
||||||
|
make -j 5 dist
|
||||||
|
COPY --from=runners-jetpack5-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
|
||||||
|
COPY --from=runners-jetpack6-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
|
||||||
|
RUN cd dist/linux-$GOARCH && \
|
||||||
|
tar -cf - . | pigz --best > ../ollama-linux-$GOARCH.tgz
|
||||||
|
RUN cd dist/linux-$GOARCH-jetpack5 && \
|
||||||
|
tar -cf - . | pigz --best > ../ollama-linux-$GOARCH-jetpack5.tgz
|
||||||
|
RUN cd dist/linux-$GOARCH-jetpack6 && \
|
||||||
|
tar -cf - . | pigz --best > ../ollama-linux-$GOARCH-jetpack6.tgz
|
||||||
|
|
||||||
FROM ${FLAVOR} AS archive
|
FROM --platform=linux/amd64 scratch AS dist-amd64
|
||||||
COPY --from=cpu dist/lib/ollama /lib/ollama
|
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/ollama-linux-*.tgz /
|
||||||
COPY --from=build /bin/ollama /bin/ollama
|
FROM --platform=linux/arm64 scratch AS dist-arm64
|
||||||
|
COPY --from=build-arm64 /go/src/github.com/ollama/ollama/dist/ollama-linux-*.tgz /
|
||||||
|
FROM dist-$TARGETARCH AS dist
|
||||||
|
|
||||||
FROM ubuntu:20.04
|
|
||||||
RUN apt-get update \
|
# For amd64 container images, filter out cuda/rocm to minimize size
|
||||||
&& apt-get install -y ca-certificates \
|
FROM build-amd64 AS runners-cuda-amd64
|
||||||
&& apt-get clean \
|
RUN rm -rf \
|
||||||
&& rm -rf /var/lib/apt/lists/*
|
./dist/linux-amd64/lib/ollama/libggml_hipblas.so \
|
||||||
COPY --from=archive /bin /usr/bin
|
./dist/linux-amd64/lib/ollama/runners/rocm*
|
||||||
|
|
||||||
|
FROM build-amd64 AS runners-rocm-amd64
|
||||||
|
RUN rm -rf \
|
||||||
|
./dist/linux-amd64/lib/ollama/libggml_cuda*.so \
|
||||||
|
./dist/linux-amd64/lib/ollama/libcu*.so* \
|
||||||
|
./dist/linux-amd64/lib/ollama/runners/cuda*
|
||||||
|
|
||||||
|
FROM --platform=linux/amd64 ubuntu:22.04 AS runtime-amd64
|
||||||
|
RUN apt-get update && \
|
||||||
|
apt-get install -y ca-certificates && \
|
||||||
|
apt-get clean && rm -rf /var/lib/apt/lists/*
|
||||||
|
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/bin/ /bin/
|
||||||
|
COPY --from=runners-cuda-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
|
||||||
|
|
||||||
|
FROM --platform=linux/arm64 ubuntu:22.04 AS runtime-arm64
|
||||||
|
RUN apt-get update && \
|
||||||
|
apt-get install -y ca-certificates && \
|
||||||
|
apt-get clean && rm -rf /var/lib/apt/lists/*
|
||||||
|
COPY --from=build-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/bin/ /bin/
|
||||||
|
COPY --from=build-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
|
||||||
|
COPY --from=runners-jetpack5-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack5/lib/ /lib/
|
||||||
|
COPY --from=runners-jetpack6-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack6/lib/ /lib/
|
||||||
|
|
||||||
|
|
||||||
|
# ROCm libraries larger so we keep it distinct from the CPU/CUDA image
|
||||||
|
FROM --platform=linux/amd64 ubuntu:22.04 AS runtime-rocm
|
||||||
|
# Frontload the rocm libraries which are large, and rarely change to increase chance of a common layer
|
||||||
|
# across releases
|
||||||
|
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64-rocm/lib/ /lib/
|
||||||
|
RUN apt-get update && \
|
||||||
|
apt-get install -y ca-certificates && \
|
||||||
|
apt-get clean && rm -rf /var/lib/apt/lists/*
|
||||||
|
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/bin/ /bin/
|
||||||
|
COPY --from=runners-rocm-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
|
||||||
|
|
||||||
|
EXPOSE 11434
|
||||||
|
ENV OLLAMA_HOST 0.0.0.0
|
||||||
|
|
||||||
|
ENTRYPOINT ["/bin/ollama"]
|
||||||
|
CMD ["serve"]
|
||||||
|
|
||||||
|
FROM runtime-$TARGETARCH
|
||||||
|
EXPOSE 11434
|
||||||
|
ENV OLLAMA_HOST 0.0.0.0
|
||||||
ENV PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
|
ENV PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
|
||||||
COPY --from=archive /lib/ollama /usr/lib/ollama
|
|
||||||
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
|
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
|
||||||
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
|
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
|
||||||
ENV NVIDIA_VISIBLE_DEVICES=all
|
ENV NVIDIA_VISIBLE_DEVICES=all
|
||||||
ENV OLLAMA_HOST=0.0.0.0:11434
|
|
||||||
EXPOSE 11434
|
|
||||||
ENTRYPOINT ["/bin/ollama"]
|
ENTRYPOINT ["/bin/ollama"]
|
||||||
CMD ["serve"]
|
CMD ["serve"]
|
||||||
|
103
Makefile
Normal file
103
Makefile
Normal file
@ -0,0 +1,103 @@
|
|||||||
|
# top level makefile for Ollama
|
||||||
|
include make/common-defs.make
|
||||||
|
|
||||||
|
|
||||||
|
# Determine which if any GPU runners we should build
|
||||||
|
include make/cuda-v11-defs.make
|
||||||
|
include make/cuda-v12-defs.make
|
||||||
|
include make/rocm-defs.make
|
||||||
|
|
||||||
|
ifeq ($(CUSTOM_CPU_FLAGS),)
|
||||||
|
ifeq ($(ARCH),amd64)
|
||||||
|
RUNNER_TARGETS=cpu
|
||||||
|
endif
|
||||||
|
# Without CUSTOM_CPU_FLAGS we default to build both v11 and v12 if present
|
||||||
|
ifeq ($(OLLAMA_SKIP_CUDA_GENERATE),)
|
||||||
|
ifneq ($(CUDA_11_COMPILER),)
|
||||||
|
RUNNER_TARGETS += cuda_v11
|
||||||
|
endif
|
||||||
|
ifneq ($(CUDA_12_COMPILER),)
|
||||||
|
RUNNER_TARGETS += cuda_v12
|
||||||
|
endif
|
||||||
|
endif
|
||||||
|
else # CUSTOM_CPU_FLAGS is set, we'll build only the latest cuda version detected
|
||||||
|
ifneq ($(CUDA_12_COMPILER),)
|
||||||
|
RUNNER_TARGETS += cuda_v12
|
||||||
|
else ifneq ($(CUDA_11_COMPILER),)
|
||||||
|
RUNNER_TARGETS += cuda_v11
|
||||||
|
endif
|
||||||
|
endif
|
||||||
|
|
||||||
|
ifeq ($(OLLAMA_SKIP_ROCM_GENERATE),)
|
||||||
|
ifneq ($(HIP_COMPILER),)
|
||||||
|
RUNNER_TARGETS += rocm
|
||||||
|
endif
|
||||||
|
endif
|
||||||
|
|
||||||
|
|
||||||
|
all: runners exe
|
||||||
|
|
||||||
|
dist: $(addprefix dist_, $(RUNNER_TARGETS)) dist_exe
|
||||||
|
|
||||||
|
dist_%:
|
||||||
|
@$(MAKE) --no-print-directory -f make/Makefile.$* dist
|
||||||
|
|
||||||
|
runners: $(RUNNER_TARGETS)
|
||||||
|
|
||||||
|
$(RUNNER_TARGETS):
|
||||||
|
@$(MAKE) --no-print-directory -f make/Makefile.$@
|
||||||
|
|
||||||
|
exe dist_exe:
|
||||||
|
@$(MAKE) --no-print-directory -f make/Makefile.ollama $@
|
||||||
|
|
||||||
|
help-sync apply-patches create-patches sync sync-clean:
|
||||||
|
@$(MAKE) --no-print-directory -f make/Makefile.sync $@
|
||||||
|
|
||||||
|
test integration lint:
|
||||||
|
@$(MAKE) --no-print-directory -f make/Makefile.test $@
|
||||||
|
|
||||||
|
clean:
|
||||||
|
rm -rf $(BUILD_DIR) $(DIST_LIB_DIR) $(OLLAMA_EXE) $(DIST_OLLAMA_EXE)
|
||||||
|
go clean -cache
|
||||||
|
|
||||||
|
help:
|
||||||
|
@echo "The following make targets will help you build Ollama"
|
||||||
|
@echo ""
|
||||||
|
@echo " make all # (default target) Build Ollama llm subprocess runners, and the primary ollama executable"
|
||||||
|
@echo " make runners # Build Ollama llm subprocess runners; after you may use 'go build .' to build the primary ollama exectuable"
|
||||||
|
@echo " make <runner> # Build specific runners. Enabled: '$(RUNNER_TARGETS)'"
|
||||||
|
@echo " make dist # Build the runners and primary ollama executable for distribution"
|
||||||
|
@echo " make help-sync # Help information on vendor update targets"
|
||||||
|
@echo " make help-runners # Help information on runner targets"
|
||||||
|
@echo ""
|
||||||
|
@echo "The following make targets will help you test Ollama"
|
||||||
|
@echo ""
|
||||||
|
@echo " make test # Run unit tests"
|
||||||
|
@echo " make integration # Run integration tests. You must 'make all' first"
|
||||||
|
@echo " make lint # Run lint and style tests"
|
||||||
|
@echo ""
|
||||||
|
@echo "For more information see 'docs/development.md'"
|
||||||
|
@echo ""
|
||||||
|
|
||||||
|
|
||||||
|
help-runners:
|
||||||
|
@echo "The following runners will be built based on discovered GPU libraries: '$(RUNNER_TARGETS)'"
|
||||||
|
@echo ""
|
||||||
|
@echo "GPU Runner CPU Flags: '$(GPU_RUNNER_CPU_FLAGS)' (Override with CUSTOM_CPU_FLAGS)"
|
||||||
|
@echo ""
|
||||||
|
@echo "# CUDA_PATH sets the location where CUDA toolkits are present"
|
||||||
|
@echo "CUDA_PATH=$(CUDA_PATH)"
|
||||||
|
@echo " CUDA_11_PATH=$(CUDA_11_PATH)"
|
||||||
|
@echo " CUDA_11_COMPILER=$(CUDA_11_COMPILER)"
|
||||||
|
@echo " CUDA_12_PATH=$(CUDA_12_PATH)"
|
||||||
|
@echo " CUDA_12_COMPILER=$(CUDA_12_COMPILER)"
|
||||||
|
@echo ""
|
||||||
|
@echo "# HIP_PATH sets the location where the ROCm toolkit is present"
|
||||||
|
@echo "HIP_PATH=$(HIP_PATH)"
|
||||||
|
@echo " HIP_COMPILER=$(HIP_COMPILER)"
|
||||||
|
|
||||||
|
.PHONY: all exe dist help help-sync help-runners test integration lint runners clean $(RUNNER_TARGETS)
|
||||||
|
|
||||||
|
# Handy debugging for make variables
|
||||||
|
print-%:
|
||||||
|
@echo '$*=$($*)'
|
@ -1,63 +0,0 @@
|
|||||||
UPSTREAM=https://github.com/ggerganov/llama.cpp.git
|
|
||||||
WORKDIR=llama/vendor
|
|
||||||
FETCH_HEAD=de4c07f93783a1a96456a44dc16b9db538ee1618
|
|
||||||
|
|
||||||
.PHONY: help
|
|
||||||
help:
|
|
||||||
@echo "Available targets:"
|
|
||||||
@echo " sync Sync with upstream repositories"
|
|
||||||
@echo " checkout Checkout upstream repository"
|
|
||||||
@echo " apply-patches Apply patches to local repository"
|
|
||||||
@echo " format-patches Format patches from local repository"
|
|
||||||
@echo " clean Clean local repository"
|
|
||||||
@echo
|
|
||||||
@echo "Example:"
|
|
||||||
@echo " make -f $(lastword $(MAKEFILE_LIST)) clean sync"
|
|
||||||
|
|
||||||
.PHONY: sync
|
|
||||||
sync: llama/build-info.cpp ml/backend/ggml/ggml/src/ggml-metal/ggml-metal-embed.metal
|
|
||||||
|
|
||||||
llama/build-info.cpp: llama/build-info.cpp.in llama/llama.cpp
|
|
||||||
sed -e 's|@FETCH_HEAD@|$(FETCH_HEAD)|' <$< >$@
|
|
||||||
|
|
||||||
ml/backend/ggml/ggml/src/ggml-metal/ggml-metal-embed.metal: ml/backend/ggml/ggml
|
|
||||||
go generate ./$(@D)
|
|
||||||
|
|
||||||
.PHONY: llama/llama.cpp
|
|
||||||
llama/llama.cpp: llama/vendor/
|
|
||||||
rsync -arvzc -f "merge $@/.rsync-filter" $< $@
|
|
||||||
|
|
||||||
.PHONY: ml/backend/ggml/ggml
|
|
||||||
ml/backend/ggml/ggml: llama/vendor/ggml/
|
|
||||||
rsync -arvzc -f "merge $@/.rsync-filter" $< $@
|
|
||||||
|
|
||||||
PATCHES=$(wildcard llama/patches/*.patch)
|
|
||||||
PATCHED=$(join $(dir $(PATCHES)), $(addsuffix ed, $(addprefix ., $(notdir $(PATCHES)))))
|
|
||||||
|
|
||||||
.PHONY: apply-patches
|
|
||||||
.NOTPARALLEL:
|
|
||||||
apply-patches: $(PATCHED)
|
|
||||||
|
|
||||||
llama/patches/.%.patched: llama/patches/%.patch
|
|
||||||
@if git -c user.name=nobody -c 'user.email=<>' -C $(WORKDIR) am -3 $(realpath $<); then touch $@; else git -C $(WORKDIR) am --abort; exit 1; fi
|
|
||||||
|
|
||||||
.PHONY: checkout
|
|
||||||
checkout: $(WORKDIR)
|
|
||||||
git -C $(WORKDIR) fetch
|
|
||||||
git -C $(WORKDIR) checkout -f $(FETCH_HEAD)
|
|
||||||
|
|
||||||
$(WORKDIR):
|
|
||||||
git clone $(UPSTREAM) $(WORKDIR)
|
|
||||||
|
|
||||||
.PHONE: format-patches
|
|
||||||
format-patches: llama/patches
|
|
||||||
git -C $(WORKDIR) format-patch \
|
|
||||||
--no-signature \
|
|
||||||
--no-numbered \
|
|
||||||
--zero-commit \
|
|
||||||
-o $(realpath $<) \
|
|
||||||
$(FETCH_HEAD)
|
|
||||||
|
|
||||||
.PHONE: clean
|
|
||||||
clean: checkout
|
|
||||||
$(RM) llama/patches/.*.patched
|
|
165
README.md
165
README.md
@ -1,11 +1,11 @@
|
|||||||
<div align="center">
|
<div align="center">
|
||||||
<a href="https://ollama.com">
|
<img alt="ollama" height="200px" src="https://github.com/ollama/ollama/assets/3325447/0d0b44e2-8f4a-4e99-9b52-a5c1c741c8f7">
|
||||||
<img alt="ollama" height="200px" src="https://github.com/ollama/ollama/assets/3325447/0d0b44e2-8f4a-4e99-9b52-a5c1c741c8f7">
|
|
||||||
</a>
|
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
# Ollama
|
# Ollama
|
||||||
|
|
||||||
|
[](https://discord.gg/ollama)
|
||||||
|
|
||||||
Get up and running with large language models.
|
Get up and running with large language models.
|
||||||
|
|
||||||
### macOS
|
### macOS
|
||||||
@ -18,7 +18,7 @@ Get up and running with large language models.
|
|||||||
|
|
||||||
### Linux
|
### Linux
|
||||||
|
|
||||||
```shell
|
```
|
||||||
curl -fsSL https://ollama.com/install.sh | sh
|
curl -fsSL https://ollama.com/install.sh | sh
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -33,16 +33,11 @@ The official [Ollama Docker image](https://hub.docker.com/r/ollama/ollama) `olla
|
|||||||
- [ollama-python](https://github.com/ollama/ollama-python)
|
- [ollama-python](https://github.com/ollama/ollama-python)
|
||||||
- [ollama-js](https://github.com/ollama/ollama-js)
|
- [ollama-js](https://github.com/ollama/ollama-js)
|
||||||
|
|
||||||
### Community
|
|
||||||
|
|
||||||
- [Discord](https://discord.gg/ollama)
|
|
||||||
- [Reddit](https://reddit.com/r/ollama)
|
|
||||||
|
|
||||||
## Quickstart
|
## Quickstart
|
||||||
|
|
||||||
To run and chat with [Llama 3.2](https://ollama.com/library/llama3.2):
|
To run and chat with [Llama 3.2](https://ollama.com/library/llama3.2):
|
||||||
|
|
||||||
```shell
|
```
|
||||||
ollama run llama3.2
|
ollama run llama3.2
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -54,15 +49,6 @@ Here are some example models that can be downloaded:
|
|||||||
|
|
||||||
| Model | Parameters | Size | Download |
|
| Model | Parameters | Size | Download |
|
||||||
| ------------------ | ---------- | ----- | -------------------------------- |
|
| ------------------ | ---------- | ----- | -------------------------------- |
|
||||||
| Gemma 3 | 1B | 815MB | `ollama run gemma3:1b` |
|
|
||||||
| Gemma 3 | 4B | 3.3GB | `ollama run gemma3` |
|
|
||||||
| Gemma 3 | 12B | 8.1GB | `ollama run gemma3:12b` |
|
|
||||||
| Gemma 3 | 27B | 17GB | `ollama run gemma3:27b` |
|
|
||||||
| QwQ | 32B | 20GB | `ollama run qwq` |
|
|
||||||
| DeepSeek-R1 | 7B | 4.7GB | `ollama run deepseek-r1` |
|
|
||||||
| DeepSeek-R1 | 671B | 404GB | `ollama run deepseek-r1:671b` |
|
|
||||||
| Llama 4 | 109B | 67GB | `ollama run llama4:scout` |
|
|
||||||
| Llama 4 | 400B | 245GB | `ollama run llama4:maverick` |
|
|
||||||
| Llama 3.3 | 70B | 43GB | `ollama run llama3.3` |
|
| Llama 3.3 | 70B | 43GB | `ollama run llama3.3` |
|
||||||
| Llama 3.2 | 3B | 2.0GB | `ollama run llama3.2` |
|
| Llama 3.2 | 3B | 2.0GB | `ollama run llama3.2` |
|
||||||
| Llama 3.2 | 1B | 1.3GB | `ollama run llama3.2:1b` |
|
| Llama 3.2 | 1B | 1.3GB | `ollama run llama3.2:1b` |
|
||||||
@ -70,8 +56,11 @@ Here are some example models that can be downloaded:
|
|||||||
| Llama 3.2 Vision | 90B | 55GB | `ollama run llama3.2-vision:90b` |
|
| Llama 3.2 Vision | 90B | 55GB | `ollama run llama3.2-vision:90b` |
|
||||||
| Llama 3.1 | 8B | 4.7GB | `ollama run llama3.1` |
|
| Llama 3.1 | 8B | 4.7GB | `ollama run llama3.1` |
|
||||||
| Llama 3.1 | 405B | 231GB | `ollama run llama3.1:405b` |
|
| Llama 3.1 | 405B | 231GB | `ollama run llama3.1:405b` |
|
||||||
| Phi 4 | 14B | 9.1GB | `ollama run phi4` |
|
| Phi 3 Mini | 3.8B | 2.3GB | `ollama run phi3` |
|
||||||
| Phi 4 Mini | 3.8B | 2.5GB | `ollama run phi4-mini` |
|
| Phi 3 Medium | 14B | 7.9GB | `ollama run phi3:medium` |
|
||||||
|
| Gemma 2 | 2B | 1.6GB | `ollama run gemma2:2b` |
|
||||||
|
| Gemma 2 | 9B | 5.5GB | `ollama run gemma2` |
|
||||||
|
| Gemma 2 | 27B | 16GB | `ollama run gemma2:27b` |
|
||||||
| Mistral | 7B | 4.1GB | `ollama run mistral` |
|
| Mistral | 7B | 4.1GB | `ollama run mistral` |
|
||||||
| Moondream 2 | 1.4B | 829MB | `ollama run moondream` |
|
| Moondream 2 | 1.4B | 829MB | `ollama run moondream` |
|
||||||
| Neural Chat | 7B | 4.1GB | `ollama run neural-chat` |
|
| Neural Chat | 7B | 4.1GB | `ollama run neural-chat` |
|
||||||
@ -79,7 +68,7 @@ Here are some example models that can be downloaded:
|
|||||||
| Code Llama | 7B | 3.8GB | `ollama run codellama` |
|
| Code Llama | 7B | 3.8GB | `ollama run codellama` |
|
||||||
| Llama 2 Uncensored | 7B | 3.8GB | `ollama run llama2-uncensored` |
|
| Llama 2 Uncensored | 7B | 3.8GB | `ollama run llama2-uncensored` |
|
||||||
| LLaVA | 7B | 4.5GB | `ollama run llava` |
|
| LLaVA | 7B | 4.5GB | `ollama run llava` |
|
||||||
| Granite-3.3 | 8B | 4.9GB | `ollama run granite3.3` |
|
| Solar | 10.7B | 6.1GB | `ollama run solar` |
|
||||||
|
|
||||||
> [!NOTE]
|
> [!NOTE]
|
||||||
> You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
|
> You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
|
||||||
@ -98,17 +87,17 @@ Ollama supports importing GGUF models in the Modelfile:
|
|||||||
|
|
||||||
2. Create the model in Ollama
|
2. Create the model in Ollama
|
||||||
|
|
||||||
```shell
|
```
|
||||||
ollama create example -f Modelfile
|
ollama create example -f Modelfile
|
||||||
```
|
```
|
||||||
|
|
||||||
3. Run the model
|
3. Run the model
|
||||||
|
|
||||||
```shell
|
```
|
||||||
ollama run example
|
ollama run example
|
||||||
```
|
```
|
||||||
|
|
||||||
### Import from Safetensors
|
### Import from PyTorch or Safetensors
|
||||||
|
|
||||||
See the [guide](docs/import.md) on importing models for more information.
|
See the [guide](docs/import.md) on importing models for more information.
|
||||||
|
|
||||||
@ -116,7 +105,7 @@ See the [guide](docs/import.md) on importing models for more information.
|
|||||||
|
|
||||||
Models from the Ollama library can be customized with a prompt. For example, to customize the `llama3.2` model:
|
Models from the Ollama library can be customized with a prompt. For example, to customize the `llama3.2` model:
|
||||||
|
|
||||||
```shell
|
```
|
||||||
ollama pull llama3.2
|
ollama pull llama3.2
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -143,7 +132,7 @@ ollama run mario
|
|||||||
Hello! It's your friend Mario.
|
Hello! It's your friend Mario.
|
||||||
```
|
```
|
||||||
|
|
||||||
For more information on working with a Modelfile, see the [Modelfile](docs/modelfile.md) documentation.
|
For more examples, see the [examples](examples) directory. For more information on working with a Modelfile, see the [Modelfile](docs/modelfile.md) documentation.
|
||||||
|
|
||||||
## CLI Reference
|
## CLI Reference
|
||||||
|
|
||||||
@ -151,13 +140,13 @@ For more information on working with a Modelfile, see the [Modelfile](docs/model
|
|||||||
|
|
||||||
`ollama create` is used to create a model from a Modelfile.
|
`ollama create` is used to create a model from a Modelfile.
|
||||||
|
|
||||||
```shell
|
```
|
||||||
ollama create mymodel -f ./Modelfile
|
ollama create mymodel -f ./Modelfile
|
||||||
```
|
```
|
||||||
|
|
||||||
### Pull a model
|
### Pull a model
|
||||||
|
|
||||||
```shell
|
```
|
||||||
ollama pull llama3.2
|
ollama pull llama3.2
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -165,13 +154,13 @@ ollama pull llama3.2
|
|||||||
|
|
||||||
### Remove a model
|
### Remove a model
|
||||||
|
|
||||||
```shell
|
```
|
||||||
ollama rm llama3.2
|
ollama rm llama3.2
|
||||||
```
|
```
|
||||||
|
|
||||||
### Copy a model
|
### Copy a model
|
||||||
|
|
||||||
```shell
|
```
|
||||||
ollama cp llama3.2 my-model
|
ollama cp llama3.2 my-model
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -190,39 +179,37 @@ I'm a basic program that prints the famous "Hello, world!" message to the consol
|
|||||||
|
|
||||||
```
|
```
|
||||||
ollama run llava "What's in this image? /Users/jmorgan/Desktop/smile.png"
|
ollama run llava "What's in this image? /Users/jmorgan/Desktop/smile.png"
|
||||||
|
The image features a yellow smiley face, which is likely the central focus of the picture.
|
||||||
```
|
```
|
||||||
|
|
||||||
> **Output**: The image features a yellow smiley face, which is likely the central focus of the picture.
|
|
||||||
|
|
||||||
### Pass the prompt as an argument
|
### Pass the prompt as an argument
|
||||||
|
|
||||||
```shell
|
|
||||||
ollama run llama3.2 "Summarize this file: $(cat README.md)"
|
|
||||||
```
|
```
|
||||||
|
$ ollama run llama3.2 "Summarize this file: $(cat README.md)"
|
||||||
> **Output**: Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.
|
Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.
|
||||||
|
```
|
||||||
|
|
||||||
### Show model information
|
### Show model information
|
||||||
|
|
||||||
```shell
|
```
|
||||||
ollama show llama3.2
|
ollama show llama3.2
|
||||||
```
|
```
|
||||||
|
|
||||||
### List models on your computer
|
### List models on your computer
|
||||||
|
|
||||||
```shell
|
```
|
||||||
ollama list
|
ollama list
|
||||||
```
|
```
|
||||||
|
|
||||||
### List which models are currently loaded
|
### List which models are currently loaded
|
||||||
|
|
||||||
```shell
|
```
|
||||||
ollama ps
|
ollama ps
|
||||||
```
|
```
|
||||||
|
|
||||||
### Stop a model which is currently running
|
### Stop a model which is currently running
|
||||||
|
|
||||||
```shell
|
```
|
||||||
ollama stop llama3.2
|
ollama stop llama3.2
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -238,13 +225,13 @@ See the [developer guide](https://github.com/ollama/ollama/blob/main/docs/develo
|
|||||||
|
|
||||||
Next, start the server:
|
Next, start the server:
|
||||||
|
|
||||||
```shell
|
```
|
||||||
./ollama serve
|
./ollama serve
|
||||||
```
|
```
|
||||||
|
|
||||||
Finally, in a separate shell, run a model:
|
Finally, in a separate shell, run a model:
|
||||||
|
|
||||||
```shell
|
```
|
||||||
./ollama run llama3.2
|
./ollama run llama3.2
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -254,7 +241,7 @@ Ollama has a REST API for running and managing models.
|
|||||||
|
|
||||||
### Generate a response
|
### Generate a response
|
||||||
|
|
||||||
```shell
|
```
|
||||||
curl http://localhost:11434/api/generate -d '{
|
curl http://localhost:11434/api/generate -d '{
|
||||||
"model": "llama3.2",
|
"model": "llama3.2",
|
||||||
"prompt":"Why is the sky blue?"
|
"prompt":"Why is the sky blue?"
|
||||||
@ -263,7 +250,7 @@ curl http://localhost:11434/api/generate -d '{
|
|||||||
|
|
||||||
### Chat with a model
|
### Chat with a model
|
||||||
|
|
||||||
```shell
|
```
|
||||||
curl http://localhost:11434/api/chat -d '{
|
curl http://localhost:11434/api/chat -d '{
|
||||||
"model": "llama3.2",
|
"model": "llama3.2",
|
||||||
"messages": [
|
"messages": [
|
||||||
@ -279,7 +266,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
|||||||
### Web & Desktop
|
### Web & Desktop
|
||||||
|
|
||||||
- [Open WebUI](https://github.com/open-webui/open-webui)
|
- [Open WebUI](https://github.com/open-webui/open-webui)
|
||||||
- [SwiftChat (macOS with ReactNative)](https://github.com/aws-samples/swift-chat)
|
|
||||||
- [Enchanted (macOS native)](https://github.com/AugustDev/enchanted)
|
- [Enchanted (macOS native)](https://github.com/AugustDev/enchanted)
|
||||||
- [Hollama](https://github.com/fmaclen/hollama)
|
- [Hollama](https://github.com/fmaclen/hollama)
|
||||||
- [Lollms-Webui](https://github.com/ParisNeo/lollms-webui)
|
- [Lollms-Webui](https://github.com/ParisNeo/lollms-webui)
|
||||||
@ -287,13 +273,12 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
|||||||
- [Bionic GPT](https://github.com/bionic-gpt/bionic-gpt)
|
- [Bionic GPT](https://github.com/bionic-gpt/bionic-gpt)
|
||||||
- [HTML UI](https://github.com/rtcfirefly/ollama-ui)
|
- [HTML UI](https://github.com/rtcfirefly/ollama-ui)
|
||||||
- [Saddle](https://github.com/jikkuatwork/saddle)
|
- [Saddle](https://github.com/jikkuatwork/saddle)
|
||||||
- [TagSpaces](https://www.tagspaces.org) (A platform for file-based apps, [utilizing Ollama](https://docs.tagspaces.org/ai/) for the generation of tags and descriptions)
|
|
||||||
- [Chatbot UI](https://github.com/ivanfioravanti/chatbot-ollama)
|
- [Chatbot UI](https://github.com/ivanfioravanti/chatbot-ollama)
|
||||||
- [Chatbot UI v2](https://github.com/mckaywrigley/chatbot-ui)
|
- [Chatbot UI v2](https://github.com/mckaywrigley/chatbot-ui)
|
||||||
- [Typescript UI](https://github.com/ollama-interface/Ollama-Gui?tab=readme-ov-file)
|
- [Typescript UI](https://github.com/ollama-interface/Ollama-Gui?tab=readme-ov-file)
|
||||||
- [Minimalistic React UI for Ollama Models](https://github.com/richawo/minimal-llm-ui)
|
- [Minimalistic React UI for Ollama Models](https://github.com/richawo/minimal-llm-ui)
|
||||||
- [Ollamac](https://github.com/kevinhermawan/Ollamac)
|
- [Ollamac](https://github.com/kevinhermawan/Ollamac)
|
||||||
- [big-AGI](https://github.com/enricoros/big-AGI)
|
- [big-AGI](https://github.com/enricoros/big-AGI/blob/main/docs/config-local-ollama.md)
|
||||||
- [Cheshire Cat assistant framework](https://github.com/cheshire-cat-ai/core)
|
- [Cheshire Cat assistant framework](https://github.com/cheshire-cat-ai/core)
|
||||||
- [Amica](https://github.com/semperai/amica)
|
- [Amica](https://github.com/semperai/amica)
|
||||||
- [chatd](https://github.com/BruceMacD/chatd)
|
- [chatd](https://github.com/BruceMacD/chatd)
|
||||||
@ -313,9 +298,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
|||||||
- [AnythingLLM (Docker + MacOs/Windows/Linux native app)](https://github.com/Mintplex-Labs/anything-llm)
|
- [AnythingLLM (Docker + MacOs/Windows/Linux native app)](https://github.com/Mintplex-Labs/anything-llm)
|
||||||
- [Ollama Basic Chat: Uses HyperDiv Reactive UI](https://github.com/rapidarchitect/ollama_basic_chat)
|
- [Ollama Basic Chat: Uses HyperDiv Reactive UI](https://github.com/rapidarchitect/ollama_basic_chat)
|
||||||
- [Ollama-chats RPG](https://github.com/drazdra/ollama-chats)
|
- [Ollama-chats RPG](https://github.com/drazdra/ollama-chats)
|
||||||
- [IntelliBar](https://intellibar.app/) (AI-powered assistant for macOS)
|
|
||||||
- [Jirapt](https://github.com/AliAhmedNada/jirapt) (Jira Integration to generate issues, tasks, epics)
|
|
||||||
- [ojira](https://github.com/AliAhmedNada/ojira) (Jira chrome plugin to easily generate descriptions for tasks)
|
|
||||||
- [QA-Pilot](https://github.com/reid41/QA-Pilot) (Interactive chat tool that can leverage Ollama models for rapid understanding and navigation of GitHub code repositories)
|
- [QA-Pilot](https://github.com/reid41/QA-Pilot) (Interactive chat tool that can leverage Ollama models for rapid understanding and navigation of GitHub code repositories)
|
||||||
- [ChatOllama](https://github.com/sugarforever/chat-ollama) (Open Source Chatbot based on Ollama with Knowledge Bases)
|
- [ChatOllama](https://github.com/sugarforever/chat-ollama) (Open Source Chatbot based on Ollama with Knowledge Bases)
|
||||||
- [CRAG Ollama Chat](https://github.com/Nagi-ovo/CRAG-Ollama-Chat) (Simple Web Search with Corrective RAG)
|
- [CRAG Ollama Chat](https://github.com/Nagi-ovo/CRAG-Ollama-Chat) (Simple Web Search with Corrective RAG)
|
||||||
@ -329,14 +311,13 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
|||||||
- [RWKV-Runner](https://github.com/josStorer/RWKV-Runner) (RWKV offline LLM deployment tool, also usable as a client for ChatGPT and Ollama)
|
- [RWKV-Runner](https://github.com/josStorer/RWKV-Runner) (RWKV offline LLM deployment tool, also usable as a client for ChatGPT and Ollama)
|
||||||
- [Ollama Grid Search](https://github.com/dezoito/ollama-grid-search) (app to evaluate and compare models)
|
- [Ollama Grid Search](https://github.com/dezoito/ollama-grid-search) (app to evaluate and compare models)
|
||||||
- [Olpaka](https://github.com/Otacon/olpaka) (User-friendly Flutter Web App for Ollama)
|
- [Olpaka](https://github.com/Otacon/olpaka) (User-friendly Flutter Web App for Ollama)
|
||||||
- [Casibase](https://casibase.org) (An open source AI knowledge base and dialogue system combining the latest RAG, SSO, ollama support, and multiple large language models.)
|
|
||||||
- [OllamaSpring](https://github.com/CrazyNeil/OllamaSpring) (Ollama Client for macOS)
|
- [OllamaSpring](https://github.com/CrazyNeil/OllamaSpring) (Ollama Client for macOS)
|
||||||
- [LLocal.in](https://github.com/kartikm7/llocal) (Easy to use Electron Desktop Client for Ollama)
|
- [LLocal.in](https://github.com/kartikm7/llocal) (Easy to use Electron Desktop Client for Ollama)
|
||||||
- [Shinkai Desktop](https://github.com/dcSpark/shinkai-apps) (Two click install Local AI using Ollama + Files + RAG)
|
- [Shinkai Desktop](https://github.com/dcSpark/shinkai-apps) (Two click install Local AI using Ollama + Files + RAG)
|
||||||
- [AiLama](https://github.com/zeyoyt/ailama) (A Discord User App that allows you to interact with Ollama anywhere in Discord)
|
- [AiLama](https://github.com/zeyoyt/ailama) (A Discord User App that allows you to interact with Ollama anywhere in discord )
|
||||||
- [Ollama with Google Mesop](https://github.com/rapidarchitect/ollama_mesop/) (Mesop Chat Client implementation with Ollama)
|
- [Ollama with Google Mesop](https://github.com/rapidarchitect/ollama_mesop/) (Mesop Chat Client implementation with Ollama)
|
||||||
- [R2R](https://github.com/SciPhi-AI/R2R) (Open-source RAG engine)
|
- [R2R](https://github.com/SciPhi-AI/R2R) (Open-source RAG engine)
|
||||||
- [Ollama-Kis](https://github.com/elearningshow/ollama-kis) (A simple easy-to-use GUI with sample custom LLM for Drivers Education)
|
- [Ollama-Kis](https://github.com/elearningshow/ollama-kis) (A simple easy to use GUI with sample custom LLM for Drivers Education)
|
||||||
- [OpenGPA](https://opengpa.org) (Open-source offline-first Enterprise Agentic Application)
|
- [OpenGPA](https://opengpa.org) (Open-source offline-first Enterprise Agentic Application)
|
||||||
- [Painting Droid](https://github.com/mateuszmigas/painting-droid) (Painting app with AI integrations)
|
- [Painting Droid](https://github.com/mateuszmigas/painting-droid) (Painting app with AI integrations)
|
||||||
- [Kerlig AI](https://www.kerlig.com/) (AI writing assistant for macOS)
|
- [Kerlig AI](https://www.kerlig.com/) (AI writing assistant for macOS)
|
||||||
@ -345,16 +326,15 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
|||||||
- [LLMStack](https://github.com/trypromptly/LLMStack) (No-code multi-agent framework to build LLM agents and workflows)
|
- [LLMStack](https://github.com/trypromptly/LLMStack) (No-code multi-agent framework to build LLM agents and workflows)
|
||||||
- [BoltAI for Mac](https://boltai.com) (AI Chat Client for Mac)
|
- [BoltAI for Mac](https://boltai.com) (AI Chat Client for Mac)
|
||||||
- [Harbor](https://github.com/av/harbor) (Containerized LLM Toolkit with Ollama as default backend)
|
- [Harbor](https://github.com/av/harbor) (Containerized LLM Toolkit with Ollama as default backend)
|
||||||
- [PyGPT](https://github.com/szczyglis-dev/py-gpt) (AI desktop assistant for Linux, Windows, and Mac)
|
- [PyGPT](https://github.com/szczyglis-dev/py-gpt) (AI desktop assistant for Linux, Windows and Mac)
|
||||||
- [Alpaca](https://github.com/Jeffser/Alpaca) (An Ollama client application for Linux and macOS made with GTK4 and Adwaita)
|
|
||||||
- [AutoGPT](https://github.com/Significant-Gravitas/AutoGPT/blob/master/docs/content/platform/ollama.md) (AutoGPT Ollama integration)
|
- [AutoGPT](https://github.com/Significant-Gravitas/AutoGPT/blob/master/docs/content/platform/ollama.md) (AutoGPT Ollama integration)
|
||||||
- [Go-CREW](https://www.jonathanhecl.com/go-crew/) (Powerful Offline RAG in Golang)
|
- [Go-CREW](https://www.jonathanhecl.com/go-crew/) (Powerful Offline RAG in Golang)
|
||||||
- [PartCAD](https://github.com/openvmp/partcad/) (CAD model generation with OpenSCAD and CadQuery)
|
- [PartCAD](https://github.com/openvmp/partcad/) (CAD model generation with OpenSCAD and CadQuery)
|
||||||
- [Ollama4j Web UI](https://github.com/ollama4j/ollama4j-web-ui) - Java-based Web UI for Ollama built with Vaadin, Spring Boot, and Ollama4j
|
- [Ollama4j Web UI](https://github.com/ollama4j/ollama4j-web-ui) - Java-based Web UI for Ollama built with Vaadin, Spring Boot and Ollama4j
|
||||||
- [PyOllaMx](https://github.com/kspviswa/pyOllaMx) - macOS application capable of chatting with both Ollama and Apple MLX models.
|
- [PyOllaMx](https://github.com/kspviswa/pyOllaMx) - macOS application capable of chatting with both Ollama and Apple MLX models.
|
||||||
- [Cline](https://github.com/cline/cline) - Formerly known as Claude Dev is a VSCode extension for multi-file/whole-repo coding
|
- [Claude Dev](https://github.com/saoudrizwan/claude-dev) - VSCode extension for multi-file/whole-repo coding
|
||||||
- [Cherry Studio](https://github.com/kangfenmao/cherry-studio) (Desktop client with Ollama support)
|
- [Cherry Studio](https://github.com/kangfenmao/cherry-studio) (Desktop client with Ollama support)
|
||||||
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy-focused LLM chat interface with optional encryption)
|
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)
|
||||||
- [Archyve](https://github.com/nickthecook/archyve) (RAG-enabling document library)
|
- [Archyve](https://github.com/nickthecook/archyve) (RAG-enabling document library)
|
||||||
- [crewAI with Mesop](https://github.com/rapidarchitect/ollama-crew-mesop) (Mesop Web Interface to run crewAI with Ollama)
|
- [crewAI with Mesop](https://github.com/rapidarchitect/ollama-crew-mesop) (Mesop Web Interface to run crewAI with Ollama)
|
||||||
- [Tkinter-based client](https://github.com/chyok/ollama-gui) (Python tkinter-based Client for Ollama)
|
- [Tkinter-based client](https://github.com/chyok/ollama-gui) (Python tkinter-based Client for Ollama)
|
||||||
@ -366,13 +346,12 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
|||||||
- [Web management](https://github.com/lemonit-eric-mao/ollama-web-management) (Web management page)
|
- [Web management](https://github.com/lemonit-eric-mao/ollama-web-management) (Web management page)
|
||||||
- [Promptery](https://github.com/promptery/promptery) (desktop client for Ollama.)
|
- [Promptery](https://github.com/promptery/promptery) (desktop client for Ollama.)
|
||||||
- [Ollama App](https://github.com/JHubi1/ollama-app) (Modern and easy-to-use multi-platform client for Ollama)
|
- [Ollama App](https://github.com/JHubi1/ollama-app) (Modern and easy-to-use multi-platform client for Ollama)
|
||||||
- [chat-ollama](https://github.com/annilq/chat-ollama) (a React Native client for Ollama)
|
|
||||||
- [SpaceLlama](https://github.com/tcsenpai/spacellama) (Firefox and Chrome extension to quickly summarize web pages with ollama in a sidebar)
|
- [SpaceLlama](https://github.com/tcsenpai/spacellama) (Firefox and Chrome extension to quickly summarize web pages with ollama in a sidebar)
|
||||||
- [YouLama](https://github.com/tcsenpai/youlama) (Webapp to quickly summarize any YouTube video, supporting Invidious as well)
|
- [YouLama](https://github.com/tcsenpai/youlama) (Webapp to quickly summarize any YouTube video, supporting Invidious as well)
|
||||||
- [DualMind](https://github.com/tcsenpai/dualmind) (Experimental app allowing two models to talk to each other in the terminal or in a web interface)
|
- [DualMind](https://github.com/tcsenpai/dualmind) (Experimental app allowing two models to talk to each other in the terminal or in a web interface)
|
||||||
- [ollamarama-matrix](https://github.com/h1ddenpr0cess20/ollamarama-matrix) (Ollama chatbot for the Matrix chat protocol)
|
- [ollamarama-matrix](https://github.com/h1ddenpr0cess20/ollamarama-matrix) (Ollama chatbot for the Matrix chat protocol)
|
||||||
- [ollama-chat-app](https://github.com/anan1213095357/ollama-chat-app) (Flutter-based chat app)
|
- [ollama-chat-app](https://github.com/anan1213095357/ollama-chat-app) (Flutter-based chat app)
|
||||||
- [Perfect Memory AI](https://www.perfectmemory.ai/) (Productivity AI assists personalized by what you have seen on your screen, heard, and said in the meetings)
|
- [Perfect Memory AI](https://www.perfectmemory.ai/) (Productivity AI assists personalized by what you have seen on your screen, heard and said in the meetings)
|
||||||
- [Hexabot](https://github.com/hexastack/hexabot) (A conversational AI builder)
|
- [Hexabot](https://github.com/hexastack/hexabot) (A conversational AI builder)
|
||||||
- [Reddit Rate](https://github.com/rapidarchitect/reddit_analyzer) (Search and Rate Reddit topics with a weighted summation)
|
- [Reddit Rate](https://github.com/rapidarchitect/reddit_analyzer) (Search and Rate Reddit topics with a weighted summation)
|
||||||
- [OpenTalkGpt](https://github.com/adarshM84/OpenTalkGpt) (Chrome Extension to manage open-source models supported by Ollama, create custom models, and chat with models from a user-friendly UI)
|
- [OpenTalkGpt](https://github.com/adarshM84/OpenTalkGpt) (Chrome Extension to manage open-source models supported by Ollama, create custom models, and chat with models from a user-friendly UI)
|
||||||
@ -382,29 +361,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
|||||||
- [Abbey](https://github.com/US-Artificial-Intelligence/abbey) (A configurable AI interface server with notebooks, document storage, and YouTube support)
|
- [Abbey](https://github.com/US-Artificial-Intelligence/abbey) (A configurable AI interface server with notebooks, document storage, and YouTube support)
|
||||||
- [Minima](https://github.com/dmayboroda/minima) (RAG with on-premises or fully local workflow)
|
- [Minima](https://github.com/dmayboroda/minima) (RAG with on-premises or fully local workflow)
|
||||||
- [aidful-ollama-model-delete](https://github.com/AidfulAI/aidful-ollama-model-delete) (User interface for simplified model cleanup)
|
- [aidful-ollama-model-delete](https://github.com/AidfulAI/aidful-ollama-model-delete) (User interface for simplified model cleanup)
|
||||||
- [Perplexica](https://github.com/ItzCrazyKns/Perplexica) (An AI-powered search engine & an open-source alternative to Perplexity AI)
|
|
||||||
- [Ollama Chat WebUI for Docker ](https://github.com/oslook/ollama-webui) (Support for local docker deployment, lightweight ollama webui)
|
|
||||||
- [AI Toolkit for Visual Studio Code](https://aka.ms/ai-tooklit/ollama-docs) (Microsoft-official VSCode extension to chat, test, evaluate models with Ollama support, and use them in your AI applications.)
|
|
||||||
- [MinimalNextOllamaChat](https://github.com/anilkay/MinimalNextOllamaChat) (Minimal Web UI for Chat and Model Control)
|
|
||||||
- [Chipper](https://github.com/TilmanGriesel/chipper) AI interface for tinkerers (Ollama, Haystack RAG, Python)
|
|
||||||
- [ChibiChat](https://github.com/CosmicEventHorizon/ChibiChat) (Kotlin-based Android app to chat with Ollama and Koboldcpp API endpoints)
|
|
||||||
- [LocalLLM](https://github.com/qusaismael/localllm) (Minimal Web-App to run ollama models on it with a GUI)
|
|
||||||
- [Ollamazing](https://github.com/buiducnhat/ollamazing) (Web extension to run Ollama models)
|
|
||||||
- [OpenDeepResearcher-via-searxng](https://github.com/benhaotang/OpenDeepResearcher-via-searxng) (A Deep Research equivalent endpoint with Ollama support for running locally)
|
|
||||||
- [AntSK](https://github.com/AIDotNet/AntSK) (Out-of-the-box & Adaptable RAG Chatbot)
|
|
||||||
- [MaxKB](https://github.com/1Panel-dev/MaxKB/) (Ready-to-use & flexible RAG Chatbot)
|
|
||||||
- [yla](https://github.com/danielekp/yla) (Web interface to freely interact with your customized models)
|
|
||||||
- [LangBot](https://github.com/RockChinQ/LangBot) (LLM-based instant messaging bots platform, with Agents, RAG features, supports multiple platforms)
|
|
||||||
- [1Panel](https://github.com/1Panel-dev/1Panel/) (Web-based Linux Server Management Tool)
|
|
||||||
- [AstrBot](https://github.com/Soulter/AstrBot/) (User-friendly LLM-based multi-platform chatbot with a WebUI, supporting RAG, LLM agents, and plugins integration)
|
|
||||||
- [Reins](https://github.com/ibrahimcetin/reins) (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)
|
|
||||||
- [Flufy](https://github.com/Aharon-Bensadoun/Flufy) (A beautiful chat interface for interacting with Ollama's API. Built with React, TypeScript, and Material-UI.)
|
|
||||||
- [Ellama](https://github.com/zeozeozeo/ellama) (Friendly native app to chat with an Ollama instance)
|
|
||||||
- [screenpipe](https://github.com/mediar-ai/screenpipe) Build agents powered by your screen history
|
|
||||||
- [Ollamb](https://github.com/hengkysteen/ollamb) (Simple yet rich in features, cross-platform built with Flutter and designed for Ollama. Try the [web demo](https://hengkysteen.github.io/demo/ollamb/).)
|
|
||||||
- [Writeopia](https://github.com/Writeopia/Writeopia) (Text editor with integration with Ollama)
|
|
||||||
- [AppFlowy](https://github.com/AppFlowy-IO/AppFlowy) (AI collaborative workspace with Ollama, cross-platform and self-hostable)
|
|
||||||
- [Lumina](https://github.com/cushydigit/lumina.git) (A lightweight, minimal React.js frontend for interacting with Ollama servers)
|
|
||||||
|
|
||||||
### Cloud
|
### Cloud
|
||||||
|
|
||||||
@ -417,7 +373,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
|||||||
- [oterm](https://github.com/ggozad/oterm)
|
- [oterm](https://github.com/ggozad/oterm)
|
||||||
- [Ellama Emacs client](https://github.com/s-kostyaev/ellama)
|
- [Ellama Emacs client](https://github.com/s-kostyaev/ellama)
|
||||||
- [Emacs client](https://github.com/zweifisch/ollama)
|
- [Emacs client](https://github.com/zweifisch/ollama)
|
||||||
- [neollama](https://github.com/paradoxical-dev/neollama) UI client for interacting with models from within Neovim
|
|
||||||
- [gen.nvim](https://github.com/David-Kunz/gen.nvim)
|
- [gen.nvim](https://github.com/David-Kunz/gen.nvim)
|
||||||
- [ollama.nvim](https://github.com/nomnivore/ollama.nvim)
|
- [ollama.nvim](https://github.com/nomnivore/ollama.nvim)
|
||||||
- [ollero.nvim](https://github.com/marco-souza/ollero.nvim)
|
- [ollero.nvim](https://github.com/marco-souza/ollero.nvim)
|
||||||
@ -444,14 +399,10 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
|||||||
- [SwollamaCLI](https://github.com/marcusziade/Swollama) bundled with the Swollama Swift package. [Demo](https://github.com/marcusziade/Swollama?tab=readme-ov-file#cli-usage)
|
- [SwollamaCLI](https://github.com/marcusziade/Swollama) bundled with the Swollama Swift package. [Demo](https://github.com/marcusziade/Swollama?tab=readme-ov-file#cli-usage)
|
||||||
- [aichat](https://github.com/sigoden/aichat) All-in-one LLM CLI tool featuring Shell Assistant, Chat-REPL, RAG, AI tools & agents, with access to OpenAI, Claude, Gemini, Ollama, Groq, and more.
|
- [aichat](https://github.com/sigoden/aichat) All-in-one LLM CLI tool featuring Shell Assistant, Chat-REPL, RAG, AI tools & agents, with access to OpenAI, Claude, Gemini, Ollama, Groq, and more.
|
||||||
- [PowershAI](https://github.com/rrg92/powershai) PowerShell module that brings AI to terminal on Windows, including support for Ollama
|
- [PowershAI](https://github.com/rrg92/powershai) PowerShell module that brings AI to terminal on Windows, including support for Ollama
|
||||||
- [DeepShell](https://github.com/Abyss-c0re/deepshell) Your self-hosted AI assistant. Interactive Shell, Files and Folders analysis.
|
|
||||||
- [orbiton](https://github.com/xyproto/orbiton) Configuration-free text editor and IDE with support for tab completion with Ollama.
|
- [orbiton](https://github.com/xyproto/orbiton) Configuration-free text editor and IDE with support for tab completion with Ollama.
|
||||||
- [orca-cli](https://github.com/molbal/orca-cli) Ollama Registry CLI Application - Browse, pull, and download models from Ollama Registry in your terminal.
|
|
||||||
- [GGUF-to-Ollama](https://github.com/jonathanhecl/gguf-to-ollama) - Importing GGUF to Ollama made easy (multiplatform)
|
|
||||||
|
|
||||||
### Apple Vision Pro
|
### Apple Vision Pro
|
||||||
|
|
||||||
- [SwiftChat](https://github.com/aws-samples/swift-chat) (Cross-platform AI chat app supporting Apple Vision Pro via "Designed for iPad")
|
|
||||||
- [Enchanted](https://github.com/AugustDev/enchanted)
|
- [Enchanted](https://github.com/AugustDev/enchanted)
|
||||||
|
|
||||||
### Database
|
### Database
|
||||||
@ -466,23 +417,20 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
|||||||
|
|
||||||
- [Pacman](https://archlinux.org/packages/extra/x86_64/ollama/)
|
- [Pacman](https://archlinux.org/packages/extra/x86_64/ollama/)
|
||||||
- [Gentoo](https://github.com/gentoo/guru/tree/master/app-misc/ollama)
|
- [Gentoo](https://github.com/gentoo/guru/tree/master/app-misc/ollama)
|
||||||
- [Homebrew](https://formulae.brew.sh/formula/ollama)
|
|
||||||
- [Helm Chart](https://artifacthub.io/packages/helm/ollama-helm/ollama)
|
- [Helm Chart](https://artifacthub.io/packages/helm/ollama-helm/ollama)
|
||||||
- [Guix channel](https://codeberg.org/tusharhero/ollama-guix)
|
- [Guix channel](https://codeberg.org/tusharhero/ollama-guix)
|
||||||
- [Nix package](https://search.nixos.org/packages?show=ollama&from=0&size=50&sort=relevance&type=packages&query=ollama)
|
- [Nix package](https://search.nixos.org/packages?channel=24.05&show=ollama&from=0&size=50&sort=relevance&type=packages&query=ollama)
|
||||||
- [Flox](https://flox.dev/blog/ollama-part-one)
|
- [Flox](https://flox.dev/blog/ollama-part-one)
|
||||||
|
|
||||||
### Libraries
|
### Libraries
|
||||||
|
|
||||||
- [LangChain](https://python.langchain.com/docs/integrations/chat/ollama/) and [LangChain.js](https://js.langchain.com/docs/integrations/chat/ollama/) with [example](https://js.langchain.com/docs/tutorials/local_rag/)
|
- [LangChain](https://python.langchain.com/docs/integrations/llms/ollama) and [LangChain.js](https://js.langchain.com/docs/integrations/chat/ollama/) with [example](https://js.langchain.com/docs/tutorials/local_rag/)
|
||||||
- [Firebase Genkit](https://firebase.google.com/docs/genkit/plugins/ollama)
|
- [Firebase Genkit](https://firebase.google.com/docs/genkit/plugins/ollama)
|
||||||
- [crewAI](https://github.com/crewAIInc/crewAI)
|
- [crewAI](https://github.com/crewAIInc/crewAI)
|
||||||
- [Yacana](https://remembersoftwares.github.io/yacana/) (User-friendly multi-agent framework for brainstorming and executing predetermined flows with built-in tool integration)
|
|
||||||
- [Spring AI](https://github.com/spring-projects/spring-ai) with [reference](https://docs.spring.io/spring-ai/reference/api/chat/ollama-chat.html) and [example](https://github.com/tzolov/ollama-tools)
|
- [Spring AI](https://github.com/spring-projects/spring-ai) with [reference](https://docs.spring.io/spring-ai/reference/api/chat/ollama-chat.html) and [example](https://github.com/tzolov/ollama-tools)
|
||||||
- [LangChainGo](https://github.com/tmc/langchaingo/) with [example](https://github.com/tmc/langchaingo/tree/main/examples/ollama-completion-example)
|
- [LangChainGo](https://github.com/tmc/langchaingo/) with [example](https://github.com/tmc/langchaingo/tree/main/examples/ollama-completion-example)
|
||||||
- [LangChain4j](https://github.com/langchain4j/langchain4j) with [example](https://github.com/langchain4j/langchain4j-examples/tree/main/ollama-examples/src/main/java)
|
- [LangChain4j](https://github.com/langchain4j/langchain4j) with [example](https://github.com/langchain4j/langchain4j-examples/tree/main/ollama-examples/src/main/java)
|
||||||
- [LangChainRust](https://github.com/Abraxas-365/langchain-rust) with [example](https://github.com/Abraxas-365/langchain-rust/blob/main/examples/llm_ollama.rs)
|
- [LangChainRust](https://github.com/Abraxas-365/langchain-rust) with [example](https://github.com/Abraxas-365/langchain-rust/blob/main/examples/llm_ollama.rs)
|
||||||
- [LangChain for .NET](https://github.com/tryAGI/LangChain) with [example](https://github.com/tryAGI/LangChain/blob/main/examples/LangChain.Samples.OpenAI/Program.cs)
|
|
||||||
- [LLPhant](https://github.com/theodo-group/LLPhant?tab=readme-ov-file#ollama)
|
- [LLPhant](https://github.com/theodo-group/LLPhant?tab=readme-ov-file#ollama)
|
||||||
- [LlamaIndex](https://docs.llamaindex.ai/en/stable/examples/llm/ollama/) and [LlamaIndexTS](https://ts.llamaindex.ai/modules/llms/available_llms/ollama)
|
- [LlamaIndex](https://docs.llamaindex.ai/en/stable/examples/llm/ollama/) and [LlamaIndexTS](https://ts.llamaindex.ai/modules/llms/available_llms/ollama)
|
||||||
- [LiteLLM](https://github.com/BerriAI/litellm)
|
- [LiteLLM](https://github.com/BerriAI/litellm)
|
||||||
@ -521,23 +469,14 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
|||||||
- [Swollama for Swift](https://github.com/marcusziade/Swollama) with [DocC](https://marcusziade.github.io/Swollama/documentation/swollama/)
|
- [Swollama for Swift](https://github.com/marcusziade/Swollama) with [DocC](https://marcusziade.github.io/Swollama/documentation/swollama/)
|
||||||
- [GoLamify](https://github.com/prasad89/golamify)
|
- [GoLamify](https://github.com/prasad89/golamify)
|
||||||
- [Ollama for Haskell](https://github.com/tusharad/ollama-haskell)
|
- [Ollama for Haskell](https://github.com/tusharad/ollama-haskell)
|
||||||
- [multi-llm-ts](https://github.com/nbonamy/multi-llm-ts) (A Typescript/JavaScript library allowing access to different LLM in a unified API)
|
- [multi-llm-ts](https://github.com/nbonamy/multi-llm-ts) (A Typescript/JavaScript library allowing access to different LLM in unified API)
|
||||||
- [LlmTornado](https://github.com/lofcz/llmtornado) (C# library providing a unified interface for major FOSS & Commercial inference APIs)
|
|
||||||
- [Ollama for Zig](https://github.com/dravenk/ollama-zig)
|
|
||||||
- [Abso](https://github.com/lunary-ai/abso) (OpenAI-compatible TypeScript SDK for any LLM provider)
|
|
||||||
- [Nichey](https://github.com/goodreasonai/nichey) is a Python package for generating custom wikis for your research topic
|
|
||||||
- [Ollama for D](https://github.com/kassane/ollama-d)
|
|
||||||
- [OllamaPlusPlus](https://github.com/HardCodeDev777/OllamaPlusPlus) (Very simple C++ library for Ollama)
|
|
||||||
|
|
||||||
### Mobile
|
### Mobile
|
||||||
|
|
||||||
- [SwiftChat](https://github.com/aws-samples/swift-chat) (Lightning-fast Cross-platform AI chat app with native UI for Android, iOS, and iPad)
|
|
||||||
- [Enchanted](https://github.com/AugustDev/enchanted)
|
- [Enchanted](https://github.com/AugustDev/enchanted)
|
||||||
- [Maid](https://github.com/Mobile-Artificial-Intelligence/maid)
|
- [Maid](https://github.com/Mobile-Artificial-Intelligence/maid)
|
||||||
- [Ollama App](https://github.com/JHubi1/ollama-app) (Modern and easy-to-use multi-platform client for Ollama)
|
- [Ollama App](https://github.com/JHubi1/ollama-app) (Modern and easy-to-use multi-platform client for Ollama)
|
||||||
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy-focused LLM chat interface with optional encryption)
|
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)
|
||||||
- [Ollama Android Chat](https://github.com/sunshine0523/OllamaServer) (No need for Termux, start the Ollama service with one click on an Android device)
|
|
||||||
- [Reins](https://github.com/ibrahimcetin/reins) (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)
|
|
||||||
|
|
||||||
### Extensions & Plugins
|
### Extensions & Plugins
|
||||||
|
|
||||||
@ -559,7 +498,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
|||||||
- [Obsidian Local GPT plugin](https://github.com/pfrankov/obsidian-local-gpt)
|
- [Obsidian Local GPT plugin](https://github.com/pfrankov/obsidian-local-gpt)
|
||||||
- [Open Interpreter](https://docs.openinterpreter.com/language-model-setup/local-models/ollama)
|
- [Open Interpreter](https://docs.openinterpreter.com/language-model-setup/local-models/ollama)
|
||||||
- [Llama Coder](https://github.com/ex3ndr/llama-coder) (Copilot alternative using Ollama)
|
- [Llama Coder](https://github.com/ex3ndr/llama-coder) (Copilot alternative using Ollama)
|
||||||
- [Ollama Copilot](https://github.com/bernardo-bruning/ollama-copilot) (Proxy that allows you to use Ollama as a copilot like GitHub Copilot)
|
- [Ollama Copilot](https://github.com/bernardo-bruning/ollama-copilot) (Proxy that allows you to use ollama as a copilot like Github copilot)
|
||||||
- [twinny](https://github.com/rjmacarthy/twinny) (Copilot and Copilot chat alternative using Ollama)
|
- [twinny](https://github.com/rjmacarthy/twinny) (Copilot and Copilot chat alternative using Ollama)
|
||||||
- [Wingman-AI](https://github.com/RussellCanfield/wingman-ai) (Copilot code and chat alternative using Ollama and Hugging Face)
|
- [Wingman-AI](https://github.com/RussellCanfield/wingman-ai) (Copilot code and chat alternative using Ollama and Hugging Face)
|
||||||
- [Page Assist](https://github.com/n4ze3m/page-assist) (Chrome Extension)
|
- [Page Assist](https://github.com/n4ze3m/page-assist) (Chrome Extension)
|
||||||
@ -569,8 +508,8 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
|||||||
- [Discord-Ollama Chat Bot](https://github.com/kevinthedang/discord-ollama) (Generalized TypeScript Discord Bot w/ Tuning Documentation)
|
- [Discord-Ollama Chat Bot](https://github.com/kevinthedang/discord-ollama) (Generalized TypeScript Discord Bot w/ Tuning Documentation)
|
||||||
- [ChatGPTBox: All in one browser extension](https://github.com/josStorer/chatGPTBox) with [Integrating Tutorial](https://github.com/josStorer/chatGPTBox/issues/616#issuecomment-1975186467)
|
- [ChatGPTBox: All in one browser extension](https://github.com/josStorer/chatGPTBox) with [Integrating Tutorial](https://github.com/josStorer/chatGPTBox/issues/616#issuecomment-1975186467)
|
||||||
- [Discord AI chat/moderation bot](https://github.com/rapmd73/Companion) Chat/moderation bot written in python. Uses Ollama to create personalities.
|
- [Discord AI chat/moderation bot](https://github.com/rapmd73/Companion) Chat/moderation bot written in python. Uses Ollama to create personalities.
|
||||||
- [Headless Ollama](https://github.com/nischalj10/headless-ollama) (Scripts to automatically install ollama client & models on any OS for apps that depend on ollama server)
|
- [Headless Ollama](https://github.com/nischalj10/headless-ollama) (Scripts to automatically install ollama client & models on any OS for apps that depends on ollama server)
|
||||||
- [Terraform AWS Ollama & Open WebUI](https://github.com/xuyangbocn/terraform-aws-self-host-llm) (A Terraform module to deploy on AWS a ready-to-use Ollama service, together with its front-end Open WebUI service.)
|
- [Terraform AWS Ollama & Open WebUI](https://github.com/xuyangbocn/terraform-aws-self-host-llm) (A Terraform module to deploy on AWS a ready-to-use Ollama service, together with its front end Open WebUI service.)
|
||||||
- [node-red-contrib-ollama](https://github.com/jakubburkiewicz/node-red-contrib-ollama)
|
- [node-red-contrib-ollama](https://github.com/jakubburkiewicz/node-red-contrib-ollama)
|
||||||
- [Local AI Helper](https://github.com/ivostoykov/localAI) (Chrome and Firefox extensions that enable interactions with the active tab and customisable API endpoints. Includes secure storage for user prompts.)
|
- [Local AI Helper](https://github.com/ivostoykov/localAI) (Chrome and Firefox extensions that enable interactions with the active tab and customisable API endpoints. Includes secure storage for user prompts.)
|
||||||
- [vnc-lm](https://github.com/jake83741/vnc-lm) (Discord bot for messaging with LLMs through Ollama and LiteLLM. Seamlessly move between local and flagship models.)
|
- [vnc-lm](https://github.com/jake83741/vnc-lm) (Discord bot for messaging with LLMs through Ollama and LiteLLM. Seamlessly move between local and flagship models.)
|
||||||
@ -580,20 +519,12 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
|||||||
- [AI Summmary Helper plugin](https://github.com/philffm/ai-summary-helper)
|
- [AI Summmary Helper plugin](https://github.com/philffm/ai-summary-helper)
|
||||||
- [TextCraft](https://github.com/suncloudsmoon/TextCraft) (Copilot in Word alternative using Ollama)
|
- [TextCraft](https://github.com/suncloudsmoon/TextCraft) (Copilot in Word alternative using Ollama)
|
||||||
- [Alfred Ollama](https://github.com/zeitlings/alfred-ollama) (Alfred Workflow)
|
- [Alfred Ollama](https://github.com/zeitlings/alfred-ollama) (Alfred Workflow)
|
||||||
- [TextLLaMA](https://github.com/adarshM84/TextLLaMA) A Chrome Extension that helps you write emails, correct grammar, and translate into any language
|
|
||||||
- [Simple-Discord-AI](https://github.com/zyphixor/simple-discord-ai)
|
|
||||||
- [LLM Telegram Bot](https://github.com/innightwolfsleep/llm_telegram_bot) (telegram bot, primary for RP. Oobabooga-like buttons, [A1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui) API integration e.t.c)
|
|
||||||
- [mcp-llm](https://github.com/sammcj/mcp-llm) (MCP Server to allow LLMs to call other LLMs)
|
|
||||||
- [UnityCodeLama](https://github.com/HardCodeDev777/UnityCodeLama) (Unity Edtior tool to analyze scripts via Ollama)
|
|
||||||
|
|
||||||
### Supported backends
|
### Supported backends
|
||||||
|
|
||||||
- [llama.cpp](https://github.com/ggerganov/llama.cpp) project founded by Georgi Gerganov.
|
- [llama.cpp](https://github.com/ggerganov/llama.cpp) project founded by Georgi Gerganov.
|
||||||
|
|
||||||
### Observability
|
### Observability
|
||||||
- [Opik](https://www.comet.com/docs/opik/cookbook/ollama) is an open-source platform to debug, evaluate, and monitor your LLM applications, RAG systems, and agentic workflows with comprehensive tracing, automated evaluations, and production-ready dashboards. Opik supports native intergration to Ollama.
|
|
||||||
- [Lunary](https://lunary.ai/docs/integrations/ollama) is the leading open-source LLM observability platform. It provides a variety of enterprise-grade features such as real-time analytics, prompt templates management, PII masking, and comprehensive agent tracing.
|
|
||||||
- [OpenLIT](https://github.com/openlit/openlit) is an OpenTelemetry-native tool for monitoring Ollama Applications & GPUs using traces and metrics.
|
- [OpenLIT](https://github.com/openlit/openlit) is an OpenTelemetry-native tool for monitoring Ollama Applications & GPUs using traces and metrics.
|
||||||
- [HoneyHive](https://docs.honeyhive.ai/integrations/ollama) is an AI observability and evaluation platform for AI agents. Use HoneyHive to evaluate agent performance, interrogate failures, and monitor quality in production.
|
- [HoneyHive](https://docs.honeyhive.ai/integrations/ollama) is an AI observability and evaluation platform for AI agents. Use HoneyHive to evaluate agent performance, interrogate failures, and monitor quality in production.
|
||||||
- [Langfuse](https://langfuse.com/docs/integrations/ollama) is an open source LLM observability platform that enables teams to collaboratively monitor, evaluate and debug AI applications.
|
|
||||||
- [MLflow Tracing](https://mlflow.org/docs/latest/llms/tracing/index.html#automatic-tracing) is an open source LLM observability tool with a convenient API to log and visualize traces, making it easy to debug and evaluate GenAI applications.
|
|
||||||
|
@ -10,7 +10,7 @@
|
|||||||
// repository].
|
// repository].
|
||||||
//
|
//
|
||||||
// [the API documentation]: https://github.com/ollama/ollama/blob/main/docs/api.md
|
// [the API documentation]: https://github.com/ollama/ollama/blob/main/docs/api.md
|
||||||
// [in the GitHub repository]: https://github.com/ollama/ollama/tree/main/api/examples
|
// [in the GitHub repository]: https://github.com/ollama/ollama/tree/main/examples
|
||||||
package api
|
package api
|
||||||
|
|
||||||
import (
|
import (
|
||||||
@ -132,7 +132,7 @@ func (c *Client) do(ctx context.Context, method, path string, reqData, respData
|
|||||||
const maxBufferSize = 512 * format.KiloByte
|
const maxBufferSize = 512 * format.KiloByte
|
||||||
|
|
||||||
func (c *Client) stream(ctx context.Context, method, path string, data any, fn func([]byte) error) error {
|
func (c *Client) stream(ctx context.Context, method, path string, data any, fn func([]byte) error) error {
|
||||||
var buf io.Reader
|
var buf *bytes.Buffer
|
||||||
if data != nil {
|
if data != nil {
|
||||||
bts, err := json.Marshal(data)
|
bts, err := json.Marshal(data)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
|
@ -1,12 +1,6 @@
|
|||||||
package api
|
package api
|
||||||
|
|
||||||
import (
|
import (
|
||||||
"encoding/json"
|
|
||||||
"fmt"
|
|
||||||
"net/http"
|
|
||||||
"net/http/httptest"
|
|
||||||
"net/url"
|
|
||||||
"strings"
|
|
||||||
"testing"
|
"testing"
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -49,206 +43,3 @@ func TestClientFromEnvironment(t *testing.T) {
|
|||||||
})
|
})
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// testError represents an internal error type with status code and message
|
|
||||||
// this is used since the error response from the server is not a standard error struct
|
|
||||||
type testError struct {
|
|
||||||
message string
|
|
||||||
statusCode int
|
|
||||||
}
|
|
||||||
|
|
||||||
func (e testError) Error() string {
|
|
||||||
return e.message
|
|
||||||
}
|
|
||||||
|
|
||||||
func TestClientStream(t *testing.T) {
|
|
||||||
testCases := []struct {
|
|
||||||
name string
|
|
||||||
responses []any
|
|
||||||
wantErr string
|
|
||||||
}{
|
|
||||||
{
|
|
||||||
name: "immediate error response",
|
|
||||||
responses: []any{
|
|
||||||
testError{
|
|
||||||
message: "test error message",
|
|
||||||
statusCode: http.StatusBadRequest,
|
|
||||||
},
|
|
||||||
},
|
|
||||||
wantErr: "test error message",
|
|
||||||
},
|
|
||||||
{
|
|
||||||
name: "error after successful chunks, ok response",
|
|
||||||
responses: []any{
|
|
||||||
ChatResponse{Message: Message{Content: "partial response 1"}},
|
|
||||||
ChatResponse{Message: Message{Content: "partial response 2"}},
|
|
||||||
testError{
|
|
||||||
message: "mid-stream error",
|
|
||||||
statusCode: http.StatusOK,
|
|
||||||
},
|
|
||||||
},
|
|
||||||
wantErr: "mid-stream error",
|
|
||||||
},
|
|
||||||
{
|
|
||||||
name: "successful stream completion",
|
|
||||||
responses: []any{
|
|
||||||
ChatResponse{Message: Message{Content: "chunk 1"}},
|
|
||||||
ChatResponse{Message: Message{Content: "chunk 2"}},
|
|
||||||
ChatResponse{
|
|
||||||
Message: Message{Content: "final chunk"},
|
|
||||||
Done: true,
|
|
||||||
DoneReason: "stop",
|
|
||||||
},
|
|
||||||
},
|
|
||||||
},
|
|
||||||
}
|
|
||||||
|
|
||||||
for _, tc := range testCases {
|
|
||||||
t.Run(tc.name, func(t *testing.T) {
|
|
||||||
ts := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
|
|
||||||
flusher, ok := w.(http.Flusher)
|
|
||||||
if !ok {
|
|
||||||
t.Fatal("expected http.Flusher")
|
|
||||||
}
|
|
||||||
|
|
||||||
w.Header().Set("Content-Type", "application/x-ndjson")
|
|
||||||
|
|
||||||
for _, resp := range tc.responses {
|
|
||||||
if errResp, ok := resp.(testError); ok {
|
|
||||||
w.WriteHeader(errResp.statusCode)
|
|
||||||
err := json.NewEncoder(w).Encode(map[string]string{
|
|
||||||
"error": errResp.message,
|
|
||||||
})
|
|
||||||
if err != nil {
|
|
||||||
t.Fatal("failed to encode error response:", err)
|
|
||||||
}
|
|
||||||
return
|
|
||||||
}
|
|
||||||
|
|
||||||
if err := json.NewEncoder(w).Encode(resp); err != nil {
|
|
||||||
t.Fatalf("failed to encode response: %v", err)
|
|
||||||
}
|
|
||||||
flusher.Flush()
|
|
||||||
}
|
|
||||||
}))
|
|
||||||
defer ts.Close()
|
|
||||||
|
|
||||||
client := NewClient(&url.URL{Scheme: "http", Host: ts.Listener.Addr().String()}, http.DefaultClient)
|
|
||||||
|
|
||||||
var receivedChunks []ChatResponse
|
|
||||||
err := client.stream(t.Context(), http.MethodPost, "/v1/chat", nil, func(chunk []byte) error {
|
|
||||||
var resp ChatResponse
|
|
||||||
if err := json.Unmarshal(chunk, &resp); err != nil {
|
|
||||||
return fmt.Errorf("failed to unmarshal chunk: %w", err)
|
|
||||||
}
|
|
||||||
receivedChunks = append(receivedChunks, resp)
|
|
||||||
return nil
|
|
||||||
})
|
|
||||||
|
|
||||||
if tc.wantErr != "" {
|
|
||||||
if err == nil {
|
|
||||||
t.Fatal("expected error but got nil")
|
|
||||||
}
|
|
||||||
if !strings.Contains(err.Error(), tc.wantErr) {
|
|
||||||
t.Errorf("expected error containing %q, got %v", tc.wantErr, err)
|
|
||||||
}
|
|
||||||
return
|
|
||||||
}
|
|
||||||
if err != nil {
|
|
||||||
t.Errorf("unexpected error: %v", err)
|
|
||||||
}
|
|
||||||
})
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
func TestClientDo(t *testing.T) {
|
|
||||||
testCases := []struct {
|
|
||||||
name string
|
|
||||||
response any
|
|
||||||
wantErr string
|
|
||||||
}{
|
|
||||||
{
|
|
||||||
name: "immediate error response",
|
|
||||||
response: testError{
|
|
||||||
message: "test error message",
|
|
||||||
statusCode: http.StatusBadRequest,
|
|
||||||
},
|
|
||||||
wantErr: "test error message",
|
|
||||||
},
|
|
||||||
{
|
|
||||||
name: "server error response",
|
|
||||||
response: testError{
|
|
||||||
message: "internal error",
|
|
||||||
statusCode: http.StatusInternalServerError,
|
|
||||||
},
|
|
||||||
wantErr: "internal error",
|
|
||||||
},
|
|
||||||
{
|
|
||||||
name: "successful response",
|
|
||||||
response: struct {
|
|
||||||
ID string `json:"id"`
|
|
||||||
Success bool `json:"success"`
|
|
||||||
}{
|
|
||||||
ID: "msg_123",
|
|
||||||
Success: true,
|
|
||||||
},
|
|
||||||
},
|
|
||||||
}
|
|
||||||
|
|
||||||
for _, tc := range testCases {
|
|
||||||
t.Run(tc.name, func(t *testing.T) {
|
|
||||||
ts := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
|
|
||||||
if errResp, ok := tc.response.(testError); ok {
|
|
||||||
w.WriteHeader(errResp.statusCode)
|
|
||||||
err := json.NewEncoder(w).Encode(map[string]string{
|
|
||||||
"error": errResp.message,
|
|
||||||
})
|
|
||||||
if err != nil {
|
|
||||||
t.Fatal("failed to encode error response:", err)
|
|
||||||
}
|
|
||||||
return
|
|
||||||
}
|
|
||||||
|
|
||||||
w.Header().Set("Content-Type", "application/json")
|
|
||||||
if err := json.NewEncoder(w).Encode(tc.response); err != nil {
|
|
||||||
t.Fatalf("failed to encode response: %v", err)
|
|
||||||
}
|
|
||||||
}))
|
|
||||||
defer ts.Close()
|
|
||||||
|
|
||||||
client := NewClient(&url.URL{Scheme: "http", Host: ts.Listener.Addr().String()}, http.DefaultClient)
|
|
||||||
|
|
||||||
var resp struct {
|
|
||||||
ID string `json:"id"`
|
|
||||||
Success bool `json:"success"`
|
|
||||||
}
|
|
||||||
err := client.do(t.Context(), http.MethodPost, "/v1/messages", nil, &resp)
|
|
||||||
|
|
||||||
if tc.wantErr != "" {
|
|
||||||
if err == nil {
|
|
||||||
t.Fatalf("got nil, want error %q", tc.wantErr)
|
|
||||||
}
|
|
||||||
if err.Error() != tc.wantErr {
|
|
||||||
t.Errorf("error message mismatch: got %q, want %q", err.Error(), tc.wantErr)
|
|
||||||
}
|
|
||||||
return
|
|
||||||
}
|
|
||||||
|
|
||||||
if err != nil {
|
|
||||||
t.Fatalf("got error %q, want nil", err)
|
|
||||||
}
|
|
||||||
|
|
||||||
if expectedResp, ok := tc.response.(struct {
|
|
||||||
ID string `json:"id"`
|
|
||||||
Success bool `json:"success"`
|
|
||||||
}); ok {
|
|
||||||
if resp.ID != expectedResp.ID {
|
|
||||||
t.Errorf("response ID mismatch: got %q, want %q", resp.ID, expectedResp.ID)
|
|
||||||
}
|
|
||||||
if resp.Success != expectedResp.Success {
|
|
||||||
t.Errorf("response Success mismatch: got %v, want %v", resp.Success, expectedResp.Success)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
})
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
@ -1,18 +0,0 @@
|
|||||||
# Ollama API Examples
|
|
||||||
|
|
||||||
Run the examples in this directory with:
|
|
||||||
|
|
||||||
```shell
|
|
||||||
go run example_name/main.go
|
|
||||||
```
|
|
||||||
|
|
||||||
## Chat - Chat with a model
|
|
||||||
- [chat/main.go](chat/main.go)
|
|
||||||
|
|
||||||
## Generate - Generate text from a model
|
|
||||||
- [generate/main.go](generate/main.go)
|
|
||||||
- [generate-streaming/main.go](generate-streaming/main.go)
|
|
||||||
|
|
||||||
## Pull - Pull a model
|
|
||||||
- [pull-progress/main.go](pull-progress/main.go)
|
|
||||||
|
|
168
api/types.go
168
api/types.go
@ -10,9 +10,6 @@ import (
|
|||||||
"strconv"
|
"strconv"
|
||||||
"strings"
|
"strings"
|
||||||
"time"
|
"time"
|
||||||
|
|
||||||
"github.com/ollama/ollama/envconfig"
|
|
||||||
"github.com/ollama/ollama/types/model"
|
|
||||||
)
|
)
|
||||||
|
|
||||||
// StatusError is an error with an HTTP status code and message.
|
// StatusError is an error with an HTTP status code and message.
|
||||||
@ -76,13 +73,13 @@ type GenerateRequest struct {
|
|||||||
// this request.
|
// this request.
|
||||||
KeepAlive *Duration `json:"keep_alive,omitempty"`
|
KeepAlive *Duration `json:"keep_alive,omitempty"`
|
||||||
|
|
||||||
// Images is an optional list of raw image bytes accompanying this
|
// Images is an optional list of base64-encoded images accompanying this
|
||||||
// request, for multimodal models.
|
// request, for multimodal models.
|
||||||
Images []ImageData `json:"images,omitempty"`
|
Images []ImageData `json:"images,omitempty"`
|
||||||
|
|
||||||
// Options lists model-specific options. For example, temperature can be
|
// Options lists model-specific options. For example, temperature can be
|
||||||
// set through this field, if the model supports it.
|
// set through this field, if the model supports it.
|
||||||
Options map[string]any `json:"options"`
|
Options map[string]interface{} `json:"options"`
|
||||||
}
|
}
|
||||||
|
|
||||||
// ChatRequest describes a request sent by [Client.Chat].
|
// ChatRequest describes a request sent by [Client.Chat].
|
||||||
@ -106,8 +103,16 @@ type ChatRequest struct {
|
|||||||
// Tools is an optional list of tools the model has access to.
|
// Tools is an optional list of tools the model has access to.
|
||||||
Tools `json:"tools,omitempty"`
|
Tools `json:"tools,omitempty"`
|
||||||
|
|
||||||
|
Debug *Debug `json:"debug,omitempty"`
|
||||||
|
|
||||||
|
Dry bool `json:"dry,omitempty"`
|
||||||
|
|
||||||
// Options lists model-specific options.
|
// Options lists model-specific options.
|
||||||
Options map[string]any `json:"options"`
|
Options map[string]interface{} `json:"options"`
|
||||||
|
}
|
||||||
|
|
||||||
|
type Debug struct {
|
||||||
|
Include []string `json:"include,omitempty"`
|
||||||
}
|
}
|
||||||
|
|
||||||
type Tools []Tool
|
type Tools []Tool
|
||||||
@ -163,65 +168,19 @@ func (t *ToolCallFunctionArguments) String() string {
|
|||||||
|
|
||||||
type Tool struct {
|
type Tool struct {
|
||||||
Type string `json:"type"`
|
Type string `json:"type"`
|
||||||
Items any `json:"items,omitempty"`
|
|
||||||
Function ToolFunction `json:"function"`
|
Function ToolFunction `json:"function"`
|
||||||
}
|
}
|
||||||
|
|
||||||
// PropertyType can be either a string or an array of strings
|
|
||||||
type PropertyType []string
|
|
||||||
|
|
||||||
// UnmarshalJSON implements the json.Unmarshaler interface
|
|
||||||
func (pt *PropertyType) UnmarshalJSON(data []byte) error {
|
|
||||||
// Try to unmarshal as a string first
|
|
||||||
var s string
|
|
||||||
if err := json.Unmarshal(data, &s); err == nil {
|
|
||||||
*pt = []string{s}
|
|
||||||
return nil
|
|
||||||
}
|
|
||||||
|
|
||||||
// If that fails, try to unmarshal as an array of strings
|
|
||||||
var a []string
|
|
||||||
if err := json.Unmarshal(data, &a); err != nil {
|
|
||||||
return err
|
|
||||||
}
|
|
||||||
*pt = a
|
|
||||||
return nil
|
|
||||||
}
|
|
||||||
|
|
||||||
// MarshalJSON implements the json.Marshaler interface
|
|
||||||
func (pt PropertyType) MarshalJSON() ([]byte, error) {
|
|
||||||
if len(pt) == 1 {
|
|
||||||
// If there's only one type, marshal as a string
|
|
||||||
return json.Marshal(pt[0])
|
|
||||||
}
|
|
||||||
// Otherwise marshal as an array
|
|
||||||
return json.Marshal([]string(pt))
|
|
||||||
}
|
|
||||||
|
|
||||||
// String returns a string representation of the PropertyType
|
|
||||||
func (pt PropertyType) String() string {
|
|
||||||
if len(pt) == 0 {
|
|
||||||
return ""
|
|
||||||
}
|
|
||||||
if len(pt) == 1 {
|
|
||||||
return pt[0]
|
|
||||||
}
|
|
||||||
return fmt.Sprintf("%v", []string(pt))
|
|
||||||
}
|
|
||||||
|
|
||||||
type ToolFunction struct {
|
type ToolFunction struct {
|
||||||
Name string `json:"name"`
|
Name string `json:"name"`
|
||||||
Description string `json:"description"`
|
Description string `json:"description"`
|
||||||
Parameters struct {
|
Parameters struct {
|
||||||
Type string `json:"type"`
|
Type string `json:"type"`
|
||||||
Defs any `json:"$defs,omitempty"`
|
|
||||||
Items any `json:"items,omitempty"`
|
|
||||||
Required []string `json:"required"`
|
Required []string `json:"required"`
|
||||||
Properties map[string]struct {
|
Properties map[string]struct {
|
||||||
Type PropertyType `json:"type"`
|
Type string `json:"type"`
|
||||||
Items any `json:"items,omitempty"`
|
Description string `json:"description"`
|
||||||
Description string `json:"description"`
|
Enum []string `json:"enum,omitempty"`
|
||||||
Enum []any `json:"enum,omitempty"`
|
|
||||||
} `json:"properties"`
|
} `json:"properties"`
|
||||||
} `json:"parameters"`
|
} `json:"parameters"`
|
||||||
}
|
}
|
||||||
@ -239,6 +198,8 @@ type ChatResponse struct {
|
|||||||
Message Message `json:"message"`
|
Message Message `json:"message"`
|
||||||
DoneReason string `json:"done_reason,omitempty"`
|
DoneReason string `json:"done_reason,omitempty"`
|
||||||
|
|
||||||
|
Debug map[string]any `json:"debug,omitempty"`
|
||||||
|
|
||||||
Done bool `json:"done"`
|
Done bool `json:"done"`
|
||||||
|
|
||||||
Metrics
|
Metrics
|
||||||
@ -271,6 +232,10 @@ type Options struct {
|
|||||||
RepeatPenalty float32 `json:"repeat_penalty,omitempty"`
|
RepeatPenalty float32 `json:"repeat_penalty,omitempty"`
|
||||||
PresencePenalty float32 `json:"presence_penalty,omitempty"`
|
PresencePenalty float32 `json:"presence_penalty,omitempty"`
|
||||||
FrequencyPenalty float32 `json:"frequency_penalty,omitempty"`
|
FrequencyPenalty float32 `json:"frequency_penalty,omitempty"`
|
||||||
|
Mirostat int `json:"mirostat,omitempty"`
|
||||||
|
MirostatTau float32 `json:"mirostat_tau,omitempty"`
|
||||||
|
MirostatEta float32 `json:"mirostat_eta,omitempty"`
|
||||||
|
PenalizeNewline bool `json:"penalize_newline,omitempty"`
|
||||||
Stop []string `json:"stop,omitempty"`
|
Stop []string `json:"stop,omitempty"`
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -280,7 +245,12 @@ type Runner struct {
|
|||||||
NumBatch int `json:"num_batch,omitempty"`
|
NumBatch int `json:"num_batch,omitempty"`
|
||||||
NumGPU int `json:"num_gpu,omitempty"`
|
NumGPU int `json:"num_gpu,omitempty"`
|
||||||
MainGPU int `json:"main_gpu,omitempty"`
|
MainGPU int `json:"main_gpu,omitempty"`
|
||||||
|
LowVRAM bool `json:"low_vram,omitempty"`
|
||||||
|
F16KV bool `json:"f16_kv,omitempty"` // Deprecated: This option is ignored
|
||||||
|
LogitsAll bool `json:"logits_all,omitempty"`
|
||||||
|
VocabOnly bool `json:"vocab_only,omitempty"`
|
||||||
UseMMap *bool `json:"use_mmap,omitempty"`
|
UseMMap *bool `json:"use_mmap,omitempty"`
|
||||||
|
UseMLock bool `json:"use_mlock,omitempty"`
|
||||||
NumThread int `json:"num_thread,omitempty"`
|
NumThread int `json:"num_thread,omitempty"`
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -299,7 +269,7 @@ type EmbedRequest struct {
|
|||||||
Truncate *bool `json:"truncate,omitempty"`
|
Truncate *bool `json:"truncate,omitempty"`
|
||||||
|
|
||||||
// Options lists model-specific options.
|
// Options lists model-specific options.
|
||||||
Options map[string]any `json:"options"`
|
Options map[string]interface{} `json:"options"`
|
||||||
}
|
}
|
||||||
|
|
||||||
// EmbedResponse is the response from [Client.Embed].
|
// EmbedResponse is the response from [Client.Embed].
|
||||||
@ -325,7 +295,7 @@ type EmbeddingRequest struct {
|
|||||||
KeepAlive *Duration `json:"keep_alive,omitempty"`
|
KeepAlive *Duration `json:"keep_alive,omitempty"`
|
||||||
|
|
||||||
// Options lists model-specific options.
|
// Options lists model-specific options.
|
||||||
Options map[string]any `json:"options"`
|
Options map[string]interface{} `json:"options"`
|
||||||
}
|
}
|
||||||
|
|
||||||
// EmbeddingResponse is the response from [Client.Embeddings].
|
// EmbeddingResponse is the response from [Client.Embeddings].
|
||||||
@ -335,21 +305,17 @@ type EmbeddingResponse struct {
|
|||||||
|
|
||||||
// CreateRequest is the request passed to [Client.Create].
|
// CreateRequest is the request passed to [Client.Create].
|
||||||
type CreateRequest struct {
|
type CreateRequest struct {
|
||||||
Model string `json:"model"`
|
Model string `json:"model"`
|
||||||
Stream *bool `json:"stream,omitempty"`
|
Modelfile string `json:"modelfile"`
|
||||||
Quantize string `json:"quantize,omitempty"`
|
Stream *bool `json:"stream,omitempty"`
|
||||||
|
Quantize string `json:"quantize,omitempty"`
|
||||||
From string `json:"from,omitempty"`
|
|
||||||
Files map[string]string `json:"files,omitempty"`
|
|
||||||
Adapters map[string]string `json:"adapters,omitempty"`
|
|
||||||
Template string `json:"template,omitempty"`
|
|
||||||
License any `json:"license,omitempty"`
|
|
||||||
System string `json:"system,omitempty"`
|
|
||||||
Parameters map[string]any `json:"parameters,omitempty"`
|
|
||||||
Messages []Message `json:"messages,omitempty"`
|
|
||||||
|
|
||||||
// Deprecated: set the model name with Model instead
|
// Deprecated: set the model name with Model instead
|
||||||
Name string `json:"name"`
|
Name string `json:"name"`
|
||||||
|
|
||||||
|
// Deprecated: set the file content with Modelfile instead
|
||||||
|
Path string `json:"path"`
|
||||||
|
|
||||||
// Deprecated: use Quantize instead
|
// Deprecated: use Quantize instead
|
||||||
Quantization string `json:"quantization,omitempty"`
|
Quantization string `json:"quantization,omitempty"`
|
||||||
}
|
}
|
||||||
@ -371,7 +337,7 @@ type ShowRequest struct {
|
|||||||
Template string `json:"template"`
|
Template string `json:"template"`
|
||||||
Verbose bool `json:"verbose"`
|
Verbose bool `json:"verbose"`
|
||||||
|
|
||||||
Options map[string]any `json:"options"`
|
Options map[string]interface{} `json:"options"`
|
||||||
|
|
||||||
// Deprecated: set the model name with Model instead
|
// Deprecated: set the model name with Model instead
|
||||||
Name string `json:"name"`
|
Name string `json:"name"`
|
||||||
@ -379,18 +345,16 @@ type ShowRequest struct {
|
|||||||
|
|
||||||
// ShowResponse is the response returned from [Client.Show].
|
// ShowResponse is the response returned from [Client.Show].
|
||||||
type ShowResponse struct {
|
type ShowResponse struct {
|
||||||
License string `json:"license,omitempty"`
|
License string `json:"license,omitempty"`
|
||||||
Modelfile string `json:"modelfile,omitempty"`
|
Modelfile string `json:"modelfile,omitempty"`
|
||||||
Parameters string `json:"parameters,omitempty"`
|
Parameters string `json:"parameters,omitempty"`
|
||||||
Template string `json:"template,omitempty"`
|
Template string `json:"template,omitempty"`
|
||||||
System string `json:"system,omitempty"`
|
System string `json:"system,omitempty"`
|
||||||
Details ModelDetails `json:"details,omitempty"`
|
Details ModelDetails `json:"details,omitempty"`
|
||||||
Messages []Message `json:"messages,omitempty"`
|
Messages []Message `json:"messages,omitempty"`
|
||||||
ModelInfo map[string]any `json:"model_info,omitempty"`
|
ModelInfo map[string]any `json:"model_info,omitempty"`
|
||||||
ProjectorInfo map[string]any `json:"projector_info,omitempty"`
|
ProjectorInfo map[string]any `json:"projector_info,omitempty"`
|
||||||
Tensors []Tensor `json:"tensors,omitempty"`
|
ModifiedAt time.Time `json:"modified_at,omitempty"`
|
||||||
Capabilities []model.Capability `json:"capabilities,omitempty"`
|
|
||||||
ModifiedAt time.Time `json:"modified_at,omitempty"`
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// CopyRequest is the request passed to [Client.Copy].
|
// CopyRequest is the request passed to [Client.Copy].
|
||||||
@ -402,9 +366,9 @@ type CopyRequest struct {
|
|||||||
// PullRequest is the request passed to [Client.Pull].
|
// PullRequest is the request passed to [Client.Pull].
|
||||||
type PullRequest struct {
|
type PullRequest struct {
|
||||||
Model string `json:"model"`
|
Model string `json:"model"`
|
||||||
Insecure bool `json:"insecure,omitempty"` // Deprecated: ignored
|
Insecure bool `json:"insecure,omitempty"`
|
||||||
Username string `json:"username"` // Deprecated: ignored
|
Username string `json:"username"`
|
||||||
Password string `json:"password"` // Deprecated: ignored
|
Password string `json:"password"`
|
||||||
Stream *bool `json:"stream,omitempty"`
|
Stream *bool `json:"stream,omitempty"`
|
||||||
|
|
||||||
// Deprecated: set the model name with Model instead
|
// Deprecated: set the model name with Model instead
|
||||||
@ -463,6 +427,13 @@ type ProcessModelResponse struct {
|
|||||||
SizeVRAM int64 `json:"size_vram"`
|
SizeVRAM int64 `json:"size_vram"`
|
||||||
}
|
}
|
||||||
|
|
||||||
|
type RetrieveModelResponse struct {
|
||||||
|
Id string `json:"id"`
|
||||||
|
Object string `json:"object"`
|
||||||
|
Created int64 `json:"created"`
|
||||||
|
OwnedBy string `json:"owned_by"`
|
||||||
|
}
|
||||||
|
|
||||||
type TokenResponse struct {
|
type TokenResponse struct {
|
||||||
Token string `json:"token"`
|
Token string `json:"token"`
|
||||||
}
|
}
|
||||||
@ -501,13 +472,6 @@ type ModelDetails struct {
|
|||||||
QuantizationLevel string `json:"quantization_level"`
|
QuantizationLevel string `json:"quantization_level"`
|
||||||
}
|
}
|
||||||
|
|
||||||
// Tensor describes the metadata for a given tensor.
|
|
||||||
type Tensor struct {
|
|
||||||
Name string `json:"name"`
|
|
||||||
Type string `json:"type"`
|
|
||||||
Shape []uint64 `json:"shape"`
|
|
||||||
}
|
|
||||||
|
|
||||||
func (m *Metrics) Summary() {
|
func (m *Metrics) Summary() {
|
||||||
if m.TotalDuration > 0 {
|
if m.TotalDuration > 0 {
|
||||||
fmt.Fprintf(os.Stderr, "total duration: %v\n", m.TotalDuration)
|
fmt.Fprintf(os.Stderr, "total duration: %v\n", m.TotalDuration)
|
||||||
@ -536,7 +500,7 @@ func (m *Metrics) Summary() {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
func (opts *Options) FromMap(m map[string]any) error {
|
func (opts *Options) FromMap(m map[string]interface{}) error {
|
||||||
valueOpts := reflect.ValueOf(opts).Elem() // names of the fields in the options struct
|
valueOpts := reflect.ValueOf(opts).Elem() // names of the fields in the options struct
|
||||||
typeOpts := reflect.TypeOf(opts).Elem() // types of the fields in the options struct
|
typeOpts := reflect.TypeOf(opts).Elem() // types of the fields in the options struct
|
||||||
|
|
||||||
@ -593,12 +557,12 @@ func (opts *Options) FromMap(m map[string]any) error {
|
|||||||
}
|
}
|
||||||
field.SetString(val)
|
field.SetString(val)
|
||||||
case reflect.Slice:
|
case reflect.Slice:
|
||||||
// JSON unmarshals to []any, not []string
|
// JSON unmarshals to []interface{}, not []string
|
||||||
val, ok := val.([]any)
|
val, ok := val.([]interface{})
|
||||||
if !ok {
|
if !ok {
|
||||||
return fmt.Errorf("option %q must be of type array", key)
|
return fmt.Errorf("option %q must be of type array", key)
|
||||||
}
|
}
|
||||||
// convert []any to []string
|
// convert []interface{} to []string
|
||||||
slice := make([]string, len(val))
|
slice := make([]string, len(val))
|
||||||
for i, item := range val {
|
for i, item := range val {
|
||||||
str, ok := item.(string)
|
str, ok := item.(string)
|
||||||
@ -645,14 +609,20 @@ func DefaultOptions() Options {
|
|||||||
RepeatPenalty: 1.1,
|
RepeatPenalty: 1.1,
|
||||||
PresencePenalty: 0.0,
|
PresencePenalty: 0.0,
|
||||||
FrequencyPenalty: 0.0,
|
FrequencyPenalty: 0.0,
|
||||||
|
Mirostat: 0,
|
||||||
|
MirostatTau: 5.0,
|
||||||
|
MirostatEta: 0.1,
|
||||||
|
PenalizeNewline: true,
|
||||||
Seed: -1,
|
Seed: -1,
|
||||||
|
|
||||||
Runner: Runner{
|
Runner: Runner{
|
||||||
// options set when the model is loaded
|
// options set when the model is loaded
|
||||||
NumCtx: int(envconfig.ContextLength()),
|
NumCtx: 2048,
|
||||||
NumBatch: 512,
|
NumBatch: 512,
|
||||||
NumGPU: -1, // -1 here indicates that NumGPU should be set dynamically
|
NumGPU: -1, // -1 here indicates that NumGPU should be set dynamically
|
||||||
NumThread: 0, // let the runtime decide
|
NumThread: 0, // let the runtime decide
|
||||||
|
LowVRAM: false,
|
||||||
|
UseMLock: false,
|
||||||
UseMMap: nil,
|
UseMMap: nil,
|
||||||
},
|
},
|
||||||
}
|
}
|
||||||
@ -700,7 +670,7 @@ func (d *Duration) UnmarshalJSON(b []byte) (err error) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
// FormatParams converts specified parameter options to their correct types
|
// FormatParams converts specified parameter options to their correct types
|
||||||
func FormatParams(params map[string][]string) (map[string]any, error) {
|
func FormatParams(params map[string][]string) (map[string]interface{}, error) {
|
||||||
opts := Options{}
|
opts := Options{}
|
||||||
valueOpts := reflect.ValueOf(&opts).Elem() // names of the fields in the options struct
|
valueOpts := reflect.ValueOf(&opts).Elem() // names of the fields in the options struct
|
||||||
typeOpts := reflect.TypeOf(opts) // types of the fields in the options struct
|
typeOpts := reflect.TypeOf(opts) // types of the fields in the options struct
|
||||||
@ -714,7 +684,7 @@ func FormatParams(params map[string][]string) (map[string]any, error) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
out := make(map[string]any)
|
out := make(map[string]interface{})
|
||||||
// iterate params and set values based on json struct tags
|
// iterate params and set values based on json struct tags
|
||||||
for key, vals := range params {
|
for key, vals := range params {
|
||||||
if opt, ok := jsonOpts[key]; !ok {
|
if opt, ok := jsonOpts[key]; !ok {
|
||||||
|
@ -134,7 +134,7 @@ func TestUseMmapParsingFromJSON(t *testing.T) {
|
|||||||
|
|
||||||
for _, test := range tests {
|
for _, test := range tests {
|
||||||
t.Run(test.name, func(t *testing.T) {
|
t.Run(test.name, func(t *testing.T) {
|
||||||
var oMap map[string]any
|
var oMap map[string]interface{}
|
||||||
err := json.Unmarshal([]byte(test.req), &oMap)
|
err := json.Unmarshal([]byte(test.req), &oMap)
|
||||||
require.NoError(t, err)
|
require.NoError(t, err)
|
||||||
opts := DefaultOptions()
|
opts := DefaultOptions()
|
||||||
@ -231,144 +231,3 @@ func TestMessage_UnmarshalJSON(t *testing.T) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
func TestToolFunction_UnmarshalJSON(t *testing.T) {
|
|
||||||
tests := []struct {
|
|
||||||
name string
|
|
||||||
input string
|
|
||||||
wantErr string
|
|
||||||
}{
|
|
||||||
{
|
|
||||||
name: "valid enum with same types",
|
|
||||||
input: `{
|
|
||||||
"name": "test",
|
|
||||||
"description": "test function",
|
|
||||||
"parameters": {
|
|
||||||
"type": "object",
|
|
||||||
"required": ["test"],
|
|
||||||
"properties": {
|
|
||||||
"test": {
|
|
||||||
"type": "string",
|
|
||||||
"description": "test prop",
|
|
||||||
"enum": ["a", "b", "c"]
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}`,
|
|
||||||
wantErr: "",
|
|
||||||
},
|
|
||||||
{
|
|
||||||
name: "empty enum array",
|
|
||||||
input: `{
|
|
||||||
"name": "test",
|
|
||||||
"description": "test function",
|
|
||||||
"parameters": {
|
|
||||||
"type": "object",
|
|
||||||
"required": ["test"],
|
|
||||||
"properties": {
|
|
||||||
"test": {
|
|
||||||
"type": "string",
|
|
||||||
"description": "test prop",
|
|
||||||
"enum": []
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}`,
|
|
||||||
wantErr: "",
|
|
||||||
},
|
|
||||||
}
|
|
||||||
|
|
||||||
for _, tt := range tests {
|
|
||||||
t.Run(tt.name, func(t *testing.T) {
|
|
||||||
var tf ToolFunction
|
|
||||||
err := json.Unmarshal([]byte(tt.input), &tf)
|
|
||||||
|
|
||||||
if tt.wantErr != "" {
|
|
||||||
require.Error(t, err)
|
|
||||||
assert.Contains(t, err.Error(), tt.wantErr)
|
|
||||||
} else {
|
|
||||||
require.NoError(t, err)
|
|
||||||
}
|
|
||||||
})
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
func TestPropertyType_UnmarshalJSON(t *testing.T) {
|
|
||||||
tests := []struct {
|
|
||||||
name string
|
|
||||||
input string
|
|
||||||
expected PropertyType
|
|
||||||
}{
|
|
||||||
{
|
|
||||||
name: "string type",
|
|
||||||
input: `"string"`,
|
|
||||||
expected: PropertyType{"string"},
|
|
||||||
},
|
|
||||||
{
|
|
||||||
name: "array of types",
|
|
||||||
input: `["string", "number"]`,
|
|
||||||
expected: PropertyType{"string", "number"},
|
|
||||||
},
|
|
||||||
{
|
|
||||||
name: "array with single type",
|
|
||||||
input: `["string"]`,
|
|
||||||
expected: PropertyType{"string"},
|
|
||||||
},
|
|
||||||
}
|
|
||||||
|
|
||||||
for _, test := range tests {
|
|
||||||
t.Run(test.name, func(t *testing.T) {
|
|
||||||
var pt PropertyType
|
|
||||||
if err := json.Unmarshal([]byte(test.input), &pt); err != nil {
|
|
||||||
t.Errorf("Unexpected error: %v", err)
|
|
||||||
}
|
|
||||||
|
|
||||||
if len(pt) != len(test.expected) {
|
|
||||||
t.Errorf("Length mismatch: got %v, expected %v", len(pt), len(test.expected))
|
|
||||||
}
|
|
||||||
|
|
||||||
for i, v := range pt {
|
|
||||||
if v != test.expected[i] {
|
|
||||||
t.Errorf("Value mismatch at index %d: got %v, expected %v", i, v, test.expected[i])
|
|
||||||
}
|
|
||||||
}
|
|
||||||
})
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
func TestPropertyType_MarshalJSON(t *testing.T) {
|
|
||||||
tests := []struct {
|
|
||||||
name string
|
|
||||||
input PropertyType
|
|
||||||
expected string
|
|
||||||
}{
|
|
||||||
{
|
|
||||||
name: "single type",
|
|
||||||
input: PropertyType{"string"},
|
|
||||||
expected: `"string"`,
|
|
||||||
},
|
|
||||||
{
|
|
||||||
name: "multiple types",
|
|
||||||
input: PropertyType{"string", "number"},
|
|
||||||
expected: `["string","number"]`,
|
|
||||||
},
|
|
||||||
{
|
|
||||||
name: "empty type",
|
|
||||||
input: PropertyType{},
|
|
||||||
expected: `[]`,
|
|
||||||
},
|
|
||||||
}
|
|
||||||
|
|
||||||
for _, test := range tests {
|
|
||||||
t.Run(test.name, func(t *testing.T) {
|
|
||||||
data, err := json.Marshal(test.input)
|
|
||||||
if err != nil {
|
|
||||||
t.Errorf("Unexpected error: %v", err)
|
|
||||||
}
|
|
||||||
|
|
||||||
if string(data) != test.expected {
|
|
||||||
t.Errorf("Marshaled data mismatch: got %v, expected %v", string(data), test.expected)
|
|
||||||
}
|
|
||||||
})
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
@ -17,6 +17,6 @@ If you want to build the installer, youll need to install
|
|||||||
In the top directory of this repo, run the following powershell script
|
In the top directory of this repo, run the following powershell script
|
||||||
to build the ollama CLI, ollama app, and ollama installer.
|
to build the ollama CLI, ollama app, and ollama installer.
|
||||||
|
|
||||||
```powershell
|
```
|
||||||
powershell -ExecutionPolicy Bypass -File .\scripts\build_windows.ps1
|
powershell -ExecutionPolicy Bypass -File .\scripts\build_windows.ps1
|
||||||
```
|
```
|
||||||
|
@ -4,14 +4,20 @@ import (
|
|||||||
"fmt"
|
"fmt"
|
||||||
"log/slog"
|
"log/slog"
|
||||||
"os"
|
"os"
|
||||||
|
"path/filepath"
|
||||||
"strconv"
|
"strconv"
|
||||||
"strings"
|
"strings"
|
||||||
|
|
||||||
"github.com/ollama/ollama/envconfig"
|
"github.com/ollama/ollama/envconfig"
|
||||||
"github.com/ollama/ollama/logutil"
|
|
||||||
)
|
)
|
||||||
|
|
||||||
func InitLogging() {
|
func InitLogging() {
|
||||||
|
level := slog.LevelInfo
|
||||||
|
|
||||||
|
if envconfig.Debug() {
|
||||||
|
level = slog.LevelDebug
|
||||||
|
}
|
||||||
|
|
||||||
var logFile *os.File
|
var logFile *os.File
|
||||||
var err error
|
var err error
|
||||||
// Detect if we're a GUI app on windows, and if not, send logs to console
|
// Detect if we're a GUI app on windows, and if not, send logs to console
|
||||||
@ -27,8 +33,20 @@ func InitLogging() {
|
|||||||
return
|
return
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
handler := slog.NewTextHandler(logFile, &slog.HandlerOptions{
|
||||||
|
Level: level,
|
||||||
|
AddSource: true,
|
||||||
|
ReplaceAttr: func(_ []string, attr slog.Attr) slog.Attr {
|
||||||
|
if attr.Key == slog.SourceKey {
|
||||||
|
source := attr.Value.Any().(*slog.Source)
|
||||||
|
source.File = filepath.Base(source.File)
|
||||||
|
}
|
||||||
|
return attr
|
||||||
|
},
|
||||||
|
})
|
||||||
|
|
||||||
|
slog.SetDefault(slog.New(handler))
|
||||||
|
|
||||||
slog.SetDefault(logutil.NewLogger(logFile, envconfig.LogLevel()))
|
|
||||||
slog.Info("ollama app started")
|
slog.Info("ollama app started")
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -1,178 +0,0 @@
|
|||||||
package benchmark
|
|
||||||
|
|
||||||
import (
|
|
||||||
"context"
|
|
||||||
"flag"
|
|
||||||
"fmt"
|
|
||||||
"testing"
|
|
||||||
"time"
|
|
||||||
|
|
||||||
"github.com/ollama/ollama/api"
|
|
||||||
)
|
|
||||||
|
|
||||||
// Command line flags
|
|
||||||
var modelFlag string
|
|
||||||
|
|
||||||
func init() {
|
|
||||||
flag.StringVar(&modelFlag, "m", "", "Name of the model to benchmark")
|
|
||||||
flag.Lookup("m").DefValue = "model"
|
|
||||||
}
|
|
||||||
|
|
||||||
// modelName returns the model name from flags, failing the test if not set
|
|
||||||
func modelName(b *testing.B) string {
|
|
||||||
if modelFlag == "" {
|
|
||||||
b.Fatal("Error: -m flag is required for benchmark tests")
|
|
||||||
}
|
|
||||||
return modelFlag
|
|
||||||
}
|
|
||||||
|
|
||||||
type TestCase struct {
|
|
||||||
name string
|
|
||||||
prompt string
|
|
||||||
maxTokens int
|
|
||||||
}
|
|
||||||
|
|
||||||
// runGenerateBenchmark contains the common generate and metrics logic
|
|
||||||
func runGenerateBenchmark(b *testing.B, ctx context.Context, client *api.Client, req *api.GenerateRequest) {
|
|
||||||
start := time.Now()
|
|
||||||
var ttft time.Duration
|
|
||||||
var metrics api.Metrics
|
|
||||||
|
|
||||||
err := client.Generate(ctx, req, func(resp api.GenerateResponse) error {
|
|
||||||
if ttft == 0 && resp.Response != "" {
|
|
||||||
ttft = time.Since(start)
|
|
||||||
}
|
|
||||||
if resp.Done {
|
|
||||||
metrics = resp.Metrics
|
|
||||||
}
|
|
||||||
return nil
|
|
||||||
})
|
|
||||||
|
|
||||||
// Report custom metrics as part of the benchmark results
|
|
||||||
b.ReportMetric(float64(ttft.Milliseconds()), "ttft_ms")
|
|
||||||
b.ReportMetric(float64(metrics.LoadDuration.Milliseconds()), "load_ms")
|
|
||||||
|
|
||||||
// Token throughput metrics
|
|
||||||
promptThroughput := float64(metrics.PromptEvalCount) / metrics.PromptEvalDuration.Seconds()
|
|
||||||
genThroughput := float64(metrics.EvalCount) / metrics.EvalDuration.Seconds()
|
|
||||||
b.ReportMetric(promptThroughput, "prompt_tok/s")
|
|
||||||
b.ReportMetric(genThroughput, "gen_tok/s")
|
|
||||||
|
|
||||||
// Token counts
|
|
||||||
b.ReportMetric(float64(metrics.PromptEvalCount), "prompt_tokens")
|
|
||||||
b.ReportMetric(float64(metrics.EvalCount), "gen_tokens")
|
|
||||||
if err != nil {
|
|
||||||
b.Fatal(err)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// BenchmarkColdStart runs benchmarks with model loading from cold state
|
|
||||||
func BenchmarkColdStart(b *testing.B) {
|
|
||||||
client := setup(b)
|
|
||||||
tests := []TestCase{
|
|
||||||
{"short_prompt", "Write a long story", 100},
|
|
||||||
{"medium_prompt", "Write a detailed economic analysis", 500},
|
|
||||||
{"long_prompt", "Write a comprehensive AI research paper", 1000},
|
|
||||||
}
|
|
||||||
m := modelName(b)
|
|
||||||
|
|
||||||
for _, tt := range tests {
|
|
||||||
b.Run(fmt.Sprintf("%s/cold/%s", m, tt.name), func(b *testing.B) {
|
|
||||||
ctx := b.Context()
|
|
||||||
|
|
||||||
// Set number of tokens as our throughput metric
|
|
||||||
b.SetBytes(int64(tt.maxTokens))
|
|
||||||
|
|
||||||
for b.Loop() {
|
|
||||||
b.StopTimer()
|
|
||||||
// Ensure model is unloaded before each iteration
|
|
||||||
unload(client, m, b)
|
|
||||||
b.StartTimer()
|
|
||||||
|
|
||||||
req := &api.GenerateRequest{
|
|
||||||
Model: m,
|
|
||||||
Prompt: tt.prompt,
|
|
||||||
Options: map[string]any{"num_predict": tt.maxTokens, "temperature": 0.1},
|
|
||||||
}
|
|
||||||
|
|
||||||
runGenerateBenchmark(b, ctx, client, req)
|
|
||||||
}
|
|
||||||
})
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// BenchmarkWarmStart runs benchmarks with pre-loaded model
|
|
||||||
func BenchmarkWarmStart(b *testing.B) {
|
|
||||||
client := setup(b)
|
|
||||||
tests := []TestCase{
|
|
||||||
{"short_prompt", "Write a long story", 100},
|
|
||||||
{"medium_prompt", "Write a detailed economic analysis", 500},
|
|
||||||
{"long_prompt", "Write a comprehensive AI research paper", 1000},
|
|
||||||
}
|
|
||||||
m := modelName(b)
|
|
||||||
|
|
||||||
for _, tt := range tests {
|
|
||||||
b.Run(fmt.Sprintf("%s/warm/%s", m, tt.name), func(b *testing.B) {
|
|
||||||
ctx := b.Context()
|
|
||||||
|
|
||||||
// Pre-warm the model
|
|
||||||
warmup(client, m, tt.prompt, b)
|
|
||||||
|
|
||||||
// Set number of tokens as our throughput metric
|
|
||||||
b.SetBytes(int64(tt.maxTokens))
|
|
||||||
|
|
||||||
for b.Loop() {
|
|
||||||
req := &api.GenerateRequest{
|
|
||||||
Model: m,
|
|
||||||
Prompt: tt.prompt,
|
|
||||||
Options: map[string]any{"num_predict": tt.maxTokens, "temperature": 0.1},
|
|
||||||
}
|
|
||||||
|
|
||||||
runGenerateBenchmark(b, ctx, client, req)
|
|
||||||
}
|
|
||||||
})
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// setup verifies server and model availability
|
|
||||||
func setup(b *testing.B) *api.Client {
|
|
||||||
client, err := api.ClientFromEnvironment()
|
|
||||||
if err != nil {
|
|
||||||
b.Fatal(err)
|
|
||||||
}
|
|
||||||
if _, err := client.Show(b.Context(), &api.ShowRequest{Model: modelName(b)}); err != nil {
|
|
||||||
b.Fatalf("Model unavailable: %v", err)
|
|
||||||
}
|
|
||||||
|
|
||||||
return client
|
|
||||||
}
|
|
||||||
|
|
||||||
// warmup ensures the model is loaded and warmed up
|
|
||||||
func warmup(client *api.Client, model string, prompt string, b *testing.B) {
|
|
||||||
for range 3 {
|
|
||||||
err := client.Generate(
|
|
||||||
context.Background(),
|
|
||||||
&api.GenerateRequest{
|
|
||||||
Model: model,
|
|
||||||
Prompt: prompt,
|
|
||||||
Options: map[string]any{"num_predict": 50, "temperature": 0.1},
|
|
||||||
},
|
|
||||||
func(api.GenerateResponse) error { return nil },
|
|
||||||
)
|
|
||||||
if err != nil {
|
|
||||||
b.Logf("Error during model warm-up: %v", err)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// unload forces model unloading using KeepAlive: 0 parameter
|
|
||||||
func unload(client *api.Client, model string, b *testing.B) {
|
|
||||||
req := &api.GenerateRequest{
|
|
||||||
Model: model,
|
|
||||||
KeepAlive: &api.Duration{Duration: 0},
|
|
||||||
}
|
|
||||||
if err := client.Generate(context.Background(), req, func(api.GenerateResponse) error { return nil }); err != nil {
|
|
||||||
b.Logf("Unload error: %v", err)
|
|
||||||
}
|
|
||||||
time.Sleep(1 * time.Second)
|
|
||||||
}
|
|
378
cmd/cmd.go
378
cmd/cmd.go
@ -1,10 +1,13 @@
|
|||||||
package cmd
|
package cmd
|
||||||
|
|
||||||
import (
|
import (
|
||||||
|
"archive/zip"
|
||||||
"bufio"
|
"bufio"
|
||||||
|
"bytes"
|
||||||
"context"
|
"context"
|
||||||
"crypto/ed25519"
|
"crypto/ed25519"
|
||||||
"crypto/rand"
|
"crypto/rand"
|
||||||
|
"crypto/sha256"
|
||||||
"encoding/json"
|
"encoding/json"
|
||||||
"encoding/pem"
|
"encoding/pem"
|
||||||
"errors"
|
"errors"
|
||||||
@ -18,8 +21,6 @@ import (
|
|||||||
"os/signal"
|
"os/signal"
|
||||||
"path/filepath"
|
"path/filepath"
|
||||||
"runtime"
|
"runtime"
|
||||||
"slices"
|
|
||||||
"sort"
|
|
||||||
"strconv"
|
"strconv"
|
||||||
"strings"
|
"strings"
|
||||||
"sync/atomic"
|
"sync/atomic"
|
||||||
@ -31,26 +32,29 @@ import (
|
|||||||
"github.com/olekukonko/tablewriter"
|
"github.com/olekukonko/tablewriter"
|
||||||
"github.com/spf13/cobra"
|
"github.com/spf13/cobra"
|
||||||
"golang.org/x/crypto/ssh"
|
"golang.org/x/crypto/ssh"
|
||||||
"golang.org/x/sync/errgroup"
|
|
||||||
"golang.org/x/term"
|
"golang.org/x/term"
|
||||||
|
|
||||||
"github.com/ollama/ollama/api"
|
"github.com/ollama/ollama/api"
|
||||||
"github.com/ollama/ollama/envconfig"
|
"github.com/ollama/ollama/envconfig"
|
||||||
"github.com/ollama/ollama/format"
|
"github.com/ollama/ollama/format"
|
||||||
|
"github.com/ollama/ollama/llama"
|
||||||
|
"github.com/ollama/ollama/llama/runner"
|
||||||
"github.com/ollama/ollama/parser"
|
"github.com/ollama/ollama/parser"
|
||||||
"github.com/ollama/ollama/progress"
|
"github.com/ollama/ollama/progress"
|
||||||
"github.com/ollama/ollama/runner"
|
|
||||||
"github.com/ollama/ollama/server"
|
"github.com/ollama/ollama/server"
|
||||||
"github.com/ollama/ollama/types/model"
|
"github.com/ollama/ollama/types/model"
|
||||||
"github.com/ollama/ollama/types/syncmap"
|
|
||||||
"github.com/ollama/ollama/version"
|
"github.com/ollama/ollama/version"
|
||||||
)
|
)
|
||||||
|
|
||||||
var errModelfileNotFound = errors.New("specified Modelfile wasn't found")
|
var (
|
||||||
|
errModelNotFound = errors.New("no Modelfile or safetensors files found")
|
||||||
|
errModelfileNotFound = errors.New("specified Modelfile wasn't found")
|
||||||
|
)
|
||||||
|
|
||||||
func getModelfileName(cmd *cobra.Command) (string, error) {
|
func getModelfileName(cmd *cobra.Command) (string, error) {
|
||||||
filename, _ := cmd.Flags().GetString("file")
|
fn, _ := cmd.Flags().GetString("file")
|
||||||
|
|
||||||
|
filename := fn
|
||||||
if filename == "" {
|
if filename == "" {
|
||||||
filename = "Modelfile"
|
filename = "Modelfile"
|
||||||
}
|
}
|
||||||
@ -62,7 +66,7 @@ func getModelfileName(cmd *cobra.Command) (string, error) {
|
|||||||
|
|
||||||
_, err = os.Stat(absName)
|
_, err = os.Stat(absName)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return "", err
|
return fn, err
|
||||||
}
|
}
|
||||||
|
|
||||||
return absName, nil
|
return absName, nil
|
||||||
@ -98,75 +102,71 @@ func CreateHandler(cmd *cobra.Command, args []string) error {
|
|||||||
return err
|
return err
|
||||||
}
|
}
|
||||||
|
|
||||||
status := "gathering model components"
|
home, err := os.UserHomeDir()
|
||||||
spinner := progress.NewSpinner(status)
|
|
||||||
p.Add(status, spinner)
|
|
||||||
|
|
||||||
req, err := modelfile.CreateRequest(filepath.Dir(filename))
|
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return err
|
return err
|
||||||
}
|
}
|
||||||
spinner.Stop()
|
|
||||||
|
|
||||||
req.Model = args[0]
|
status := "transferring model data"
|
||||||
quantize, _ := cmd.Flags().GetString("quantize")
|
spinner := progress.NewSpinner(status)
|
||||||
if quantize != "" {
|
p.Add(status, spinner)
|
||||||
req.Quantize = quantize
|
defer p.Stop()
|
||||||
}
|
|
||||||
|
|
||||||
client, err := api.ClientFromEnvironment()
|
client, err := api.ClientFromEnvironment()
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return err
|
return err
|
||||||
}
|
}
|
||||||
|
|
||||||
var g errgroup.Group
|
for i := range modelfile.Commands {
|
||||||
g.SetLimit(max(runtime.GOMAXPROCS(0)-1, 1))
|
switch modelfile.Commands[i].Name {
|
||||||
|
case "model", "adapter":
|
||||||
|
path := modelfile.Commands[i].Args
|
||||||
|
if path == "~" {
|
||||||
|
path = home
|
||||||
|
} else if strings.HasPrefix(path, "~/") {
|
||||||
|
path = filepath.Join(home, path[2:])
|
||||||
|
}
|
||||||
|
|
||||||
files := syncmap.NewSyncMap[string, string]()
|
if !filepath.IsAbs(path) {
|
||||||
for f, digest := range req.Files {
|
path = filepath.Join(filepath.Dir(filename), path)
|
||||||
g.Go(func() error {
|
}
|
||||||
if _, err := createBlob(cmd, client, f, digest, p); err != nil {
|
|
||||||
|
fi, err := os.Stat(path)
|
||||||
|
if errors.Is(err, os.ErrNotExist) && modelfile.Commands[i].Name == "model" {
|
||||||
|
continue
|
||||||
|
} else if err != nil {
|
||||||
return err
|
return err
|
||||||
}
|
}
|
||||||
|
|
||||||
// TODO: this is incorrect since the file might be in a subdirectory
|
if fi.IsDir() {
|
||||||
// instead this should take the path relative to the model directory
|
// this is likely a safetensors or pytorch directory
|
||||||
// but the current implementation does not allow this
|
// TODO make this work w/ adapters
|
||||||
files.Store(filepath.Base(f), digest)
|
tempfile, err := tempZipFiles(path)
|
||||||
return nil
|
if err != nil {
|
||||||
})
|
return err
|
||||||
}
|
}
|
||||||
|
defer os.RemoveAll(tempfile)
|
||||||
|
|
||||||
adapters := syncmap.NewSyncMap[string, string]()
|
path = tempfile
|
||||||
for f, digest := range req.Adapters {
|
}
|
||||||
g.Go(func() error {
|
|
||||||
if _, err := createBlob(cmd, client, f, digest, p); err != nil {
|
digest, err := createBlob(cmd, client, path, spinner)
|
||||||
|
if err != nil {
|
||||||
return err
|
return err
|
||||||
}
|
}
|
||||||
|
|
||||||
// TODO: same here
|
modelfile.Commands[i].Args = "@" + digest
|
||||||
adapters.Store(filepath.Base(f), digest)
|
}
|
||||||
return nil
|
|
||||||
})
|
|
||||||
}
|
}
|
||||||
|
|
||||||
if err := g.Wait(); err != nil {
|
|
||||||
return err
|
|
||||||
}
|
|
||||||
|
|
||||||
req.Files = files.Items()
|
|
||||||
req.Adapters = adapters.Items()
|
|
||||||
|
|
||||||
bars := make(map[string]*progress.Bar)
|
bars := make(map[string]*progress.Bar)
|
||||||
fn := func(resp api.ProgressResponse) error {
|
fn := func(resp api.ProgressResponse) error {
|
||||||
if resp.Digest != "" {
|
if resp.Digest != "" {
|
||||||
|
spinner.Stop()
|
||||||
|
|
||||||
bar, ok := bars[resp.Digest]
|
bar, ok := bars[resp.Digest]
|
||||||
if !ok {
|
if !ok {
|
||||||
msg := resp.Status
|
bar = progress.NewBar(fmt.Sprintf("pulling %s...", resp.Digest[7:19]), resp.Total, resp.Completed)
|
||||||
if msg == "" {
|
|
||||||
msg = fmt.Sprintf("pulling %s...", resp.Digest[7:19])
|
|
||||||
}
|
|
||||||
bar = progress.NewBar(msg, resp.Total, resp.Completed)
|
|
||||||
bars[resp.Digest] = bar
|
bars[resp.Digest] = bar
|
||||||
p.Add(resp.Digest, bar)
|
p.Add(resp.Digest, bar)
|
||||||
}
|
}
|
||||||
@ -183,23 +183,145 @@ func CreateHandler(cmd *cobra.Command, args []string) error {
|
|||||||
return nil
|
return nil
|
||||||
}
|
}
|
||||||
|
|
||||||
if err := client.Create(cmd.Context(), req, fn); err != nil {
|
quantize, _ := cmd.Flags().GetString("quantize")
|
||||||
if strings.Contains(err.Error(), "path or Modelfile are required") {
|
|
||||||
return fmt.Errorf("the ollama server must be updated to use `ollama create` with this client")
|
request := api.CreateRequest{Name: args[0], Modelfile: modelfile.String(), Quantize: quantize}
|
||||||
}
|
if err := client.Create(cmd.Context(), &request, fn); err != nil {
|
||||||
return err
|
return err
|
||||||
}
|
}
|
||||||
|
|
||||||
return nil
|
return nil
|
||||||
}
|
}
|
||||||
|
|
||||||
func createBlob(cmd *cobra.Command, client *api.Client, path string, digest string, p *progress.Progress) (string, error) {
|
func tempZipFiles(path string) (string, error) {
|
||||||
realPath, err := filepath.EvalSymlinks(path)
|
tempfile, err := os.CreateTemp("", "ollama-tf")
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return "", err
|
return "", err
|
||||||
}
|
}
|
||||||
|
defer tempfile.Close()
|
||||||
|
|
||||||
bin, err := os.Open(realPath)
|
detectContentType := func(path string) (string, error) {
|
||||||
|
f, err := os.Open(path)
|
||||||
|
if err != nil {
|
||||||
|
return "", err
|
||||||
|
}
|
||||||
|
defer f.Close()
|
||||||
|
|
||||||
|
var b bytes.Buffer
|
||||||
|
b.Grow(512)
|
||||||
|
|
||||||
|
if _, err := io.CopyN(&b, f, 512); err != nil && !errors.Is(err, io.EOF) {
|
||||||
|
return "", err
|
||||||
|
}
|
||||||
|
|
||||||
|
contentType, _, _ := strings.Cut(http.DetectContentType(b.Bytes()), ";")
|
||||||
|
return contentType, nil
|
||||||
|
}
|
||||||
|
|
||||||
|
glob := func(pattern, contentType string) ([]string, error) {
|
||||||
|
matches, err := filepath.Glob(pattern)
|
||||||
|
if err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, safetensor := range matches {
|
||||||
|
if ct, err := detectContentType(safetensor); err != nil {
|
||||||
|
return nil, err
|
||||||
|
} else if ct != contentType {
|
||||||
|
return nil, fmt.Errorf("invalid content type: expected %s for %s", ct, safetensor)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return matches, nil
|
||||||
|
}
|
||||||
|
|
||||||
|
var files []string
|
||||||
|
if st, _ := glob(filepath.Join(path, "model*.safetensors"), "application/octet-stream"); len(st) > 0 {
|
||||||
|
// safetensors files might be unresolved git lfs references; skip if they are
|
||||||
|
// covers model-x-of-y.safetensors, model.fp32-x-of-y.safetensors, model.safetensors
|
||||||
|
files = append(files, st...)
|
||||||
|
} else if st, _ := glob(filepath.Join(path, "adapters.safetensors"), "application/octet-stream"); len(st) > 0 {
|
||||||
|
// covers adapters.safetensors
|
||||||
|
files = append(files, st...)
|
||||||
|
} else if st, _ := glob(filepath.Join(path, "adapter_model.safetensors"), "application/octet-stream"); len(st) > 0 {
|
||||||
|
// covers adapter_model.safetensors
|
||||||
|
files = append(files, st...)
|
||||||
|
} else if pt, _ := glob(filepath.Join(path, "pytorch_model*.bin"), "application/zip"); len(pt) > 0 {
|
||||||
|
// pytorch files might also be unresolved git lfs references; skip if they are
|
||||||
|
// covers pytorch_model-x-of-y.bin, pytorch_model.fp32-x-of-y.bin, pytorch_model.bin
|
||||||
|
files = append(files, pt...)
|
||||||
|
} else if pt, _ := glob(filepath.Join(path, "consolidated*.pth"), "application/zip"); len(pt) > 0 {
|
||||||
|
// pytorch files might also be unresolved git lfs references; skip if they are
|
||||||
|
// covers consolidated.x.pth, consolidated.pth
|
||||||
|
files = append(files, pt...)
|
||||||
|
} else {
|
||||||
|
return "", errModelNotFound
|
||||||
|
}
|
||||||
|
|
||||||
|
// add configuration files, json files are detected as text/plain
|
||||||
|
js, err := glob(filepath.Join(path, "*.json"), "text/plain")
|
||||||
|
if err != nil {
|
||||||
|
return "", err
|
||||||
|
}
|
||||||
|
files = append(files, js...)
|
||||||
|
|
||||||
|
// bert models require a nested config.json
|
||||||
|
// TODO(mxyng): merge this with the glob above
|
||||||
|
js, err = glob(filepath.Join(path, "**/*.json"), "text/plain")
|
||||||
|
if err != nil {
|
||||||
|
return "", err
|
||||||
|
}
|
||||||
|
files = append(files, js...)
|
||||||
|
|
||||||
|
if tks, _ := glob(filepath.Join(path, "tokenizer.model"), "application/octet-stream"); len(tks) > 0 {
|
||||||
|
// add tokenizer.model if it exists, tokenizer.json is automatically picked up by the previous glob
|
||||||
|
// tokenizer.model might be a unresolved git lfs reference; error if it is
|
||||||
|
files = append(files, tks...)
|
||||||
|
} else if tks, _ := glob(filepath.Join(path, "**/tokenizer.model"), "text/plain"); len(tks) > 0 {
|
||||||
|
// some times tokenizer.model is in a subdirectory (e.g. meta-llama/Meta-Llama-3-8B)
|
||||||
|
files = append(files, tks...)
|
||||||
|
}
|
||||||
|
|
||||||
|
zipfile := zip.NewWriter(tempfile)
|
||||||
|
defer zipfile.Close()
|
||||||
|
|
||||||
|
for _, file := range files {
|
||||||
|
f, err := os.Open(file)
|
||||||
|
if err != nil {
|
||||||
|
return "", err
|
||||||
|
}
|
||||||
|
defer f.Close()
|
||||||
|
|
||||||
|
fi, err := f.Stat()
|
||||||
|
if err != nil {
|
||||||
|
return "", err
|
||||||
|
}
|
||||||
|
|
||||||
|
zfi, err := zip.FileInfoHeader(fi)
|
||||||
|
if err != nil {
|
||||||
|
return "", err
|
||||||
|
}
|
||||||
|
|
||||||
|
zfi.Name, err = filepath.Rel(path, file)
|
||||||
|
if err != nil {
|
||||||
|
return "", err
|
||||||
|
}
|
||||||
|
|
||||||
|
zf, err := zipfile.CreateHeader(zfi)
|
||||||
|
if err != nil {
|
||||||
|
return "", err
|
||||||
|
}
|
||||||
|
|
||||||
|
if _, err := io.Copy(zf, f); err != nil {
|
||||||
|
return "", err
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return tempfile.Name(), nil
|
||||||
|
}
|
||||||
|
|
||||||
|
func createBlob(cmd *cobra.Command, client *api.Client, path string, spinner *progress.Spinner) (string, error) {
|
||||||
|
bin, err := os.Open(path)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return "", err
|
return "", err
|
||||||
}
|
}
|
||||||
@ -212,11 +334,18 @@ func createBlob(cmd *cobra.Command, client *api.Client, path string, digest stri
|
|||||||
}
|
}
|
||||||
fileSize := fileInfo.Size()
|
fileSize := fileInfo.Size()
|
||||||
|
|
||||||
|
hash := sha256.New()
|
||||||
|
if _, err := io.Copy(hash, bin); err != nil {
|
||||||
|
return "", err
|
||||||
|
}
|
||||||
|
|
||||||
|
if _, err := bin.Seek(0, io.SeekStart); err != nil {
|
||||||
|
return "", err
|
||||||
|
}
|
||||||
|
|
||||||
var pw progressWriter
|
var pw progressWriter
|
||||||
status := fmt.Sprintf("copying file %s 0%%", digest)
|
status := "transferring model data 0%"
|
||||||
spinner := progress.NewSpinner(status)
|
spinner.SetMessage(status)
|
||||||
p.Add(status, spinner)
|
|
||||||
defer spinner.Stop()
|
|
||||||
|
|
||||||
done := make(chan struct{})
|
done := make(chan struct{})
|
||||||
defer close(done)
|
defer close(done)
|
||||||
@ -227,15 +356,16 @@ func createBlob(cmd *cobra.Command, client *api.Client, path string, digest stri
|
|||||||
for {
|
for {
|
||||||
select {
|
select {
|
||||||
case <-ticker.C:
|
case <-ticker.C:
|
||||||
spinner.SetMessage(fmt.Sprintf("copying file %s %d%%", digest, int(100*pw.n.Load()/fileSize)))
|
spinner.SetMessage(fmt.Sprintf("transferring model data %d%%", int(100*pw.n.Load()/fileSize)))
|
||||||
case <-done:
|
case <-done:
|
||||||
spinner.SetMessage(fmt.Sprintf("copying file %s 100%%", digest))
|
spinner.SetMessage("transferring model data 100%")
|
||||||
return
|
return
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}()
|
}()
|
||||||
|
|
||||||
if err := client.CreateBlob(cmd.Context(), digest, io.TeeReader(bin, &pw)); err != nil {
|
digest := fmt.Sprintf("sha256:%x", hash.Sum(nil))
|
||||||
|
if err = client.CreateBlob(cmd.Context(), digest, io.TeeReader(bin, &pw)); err != nil {
|
||||||
return "", err
|
return "", err
|
||||||
}
|
}
|
||||||
return digest, nil
|
return digest, nil
|
||||||
@ -279,7 +409,6 @@ func StopHandler(cmd *cobra.Command, args []string) error {
|
|||||||
if strings.Contains(err.Error(), "not found") {
|
if strings.Contains(err.Error(), "not found") {
|
||||||
return fmt.Errorf("couldn't find model \"%s\" to stop", args[0])
|
return fmt.Errorf("couldn't find model \"%s\" to stop", args[0])
|
||||||
}
|
}
|
||||||
return err
|
|
||||||
}
|
}
|
||||||
return nil
|
return nil
|
||||||
}
|
}
|
||||||
@ -290,7 +419,7 @@ func RunHandler(cmd *cobra.Command, args []string) error {
|
|||||||
opts := runOptions{
|
opts := runOptions{
|
||||||
Model: args[0],
|
Model: args[0],
|
||||||
WordWrap: os.Getenv("TERM") == "xterm-256color",
|
WordWrap: os.Getenv("TERM") == "xterm-256color",
|
||||||
Options: map[string]any{},
|
Options: map[string]interface{}{},
|
||||||
}
|
}
|
||||||
|
|
||||||
format, err := cmd.Flags().GetString("format")
|
format, err := cmd.Flags().GetString("format")
|
||||||
@ -362,21 +491,7 @@ func RunHandler(cmd *cobra.Command, args []string) error {
|
|||||||
return err
|
return err
|
||||||
}
|
}
|
||||||
|
|
||||||
opts.MultiModal = slices.Contains(info.Capabilities, model.CapabilityVision)
|
opts.MultiModal = len(info.ProjectorInfo) != 0
|
||||||
|
|
||||||
// TODO: remove the projector info and vision info checks below,
|
|
||||||
// these are left in for backwards compatibility with older servers
|
|
||||||
// that don't have the capabilities field in the model info
|
|
||||||
if len(info.ProjectorInfo) != 0 {
|
|
||||||
opts.MultiModal = true
|
|
||||||
}
|
|
||||||
for k := range info.ModelInfo {
|
|
||||||
if strings.Contains(k, ".vision.") {
|
|
||||||
opts.MultiModal = true
|
|
||||||
break
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
opts.ParentModel = info.Details.ParentModel
|
opts.ParentModel = info.Details.ParentModel
|
||||||
|
|
||||||
if interactive {
|
if interactive {
|
||||||
@ -597,9 +712,8 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
|
|||||||
parameters, errParams := cmd.Flags().GetBool("parameters")
|
parameters, errParams := cmd.Flags().GetBool("parameters")
|
||||||
system, errSystem := cmd.Flags().GetBool("system")
|
system, errSystem := cmd.Flags().GetBool("system")
|
||||||
template, errTemplate := cmd.Flags().GetBool("template")
|
template, errTemplate := cmd.Flags().GetBool("template")
|
||||||
verbose, errVerbose := cmd.Flags().GetBool("verbose")
|
|
||||||
|
|
||||||
for _, boolErr := range []error{errLicense, errModelfile, errParams, errSystem, errTemplate, errVerbose} {
|
for _, boolErr := range []error{errLicense, errModelfile, errParams, errSystem, errTemplate} {
|
||||||
if boolErr != nil {
|
if boolErr != nil {
|
||||||
return errors.New("error retrieving flags")
|
return errors.New("error retrieving flags")
|
||||||
}
|
}
|
||||||
@ -637,7 +751,7 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
|
|||||||
return errors.New("only one of '--license', '--modelfile', '--parameters', '--system', or '--template' can be specified")
|
return errors.New("only one of '--license', '--modelfile', '--parameters', '--system', or '--template' can be specified")
|
||||||
}
|
}
|
||||||
|
|
||||||
req := api.ShowRequest{Name: args[0], Verbose: verbose}
|
req := api.ShowRequest{Name: args[0]}
|
||||||
resp, err := client.Show(cmd.Context(), &req)
|
resp, err := client.Show(cmd.Context(), &req)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return err
|
return err
|
||||||
@ -660,10 +774,10 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
|
|||||||
return nil
|
return nil
|
||||||
}
|
}
|
||||||
|
|
||||||
return showInfo(resp, verbose, os.Stdout)
|
return showInfo(resp, os.Stdout)
|
||||||
}
|
}
|
||||||
|
|
||||||
func showInfo(resp *api.ShowResponse, verbose bool, w io.Writer) error {
|
func showInfo(resp *api.ShowResponse, w io.Writer) error {
|
||||||
tableRender := func(header string, rows func() [][]string) {
|
tableRender := func(header string, rows func() [][]string) {
|
||||||
fmt.Fprintln(w, " ", header)
|
fmt.Fprintln(w, " ", header)
|
||||||
table := tablewriter.NewWriter(w)
|
table := tablewriter.NewWriter(w)
|
||||||
@ -697,15 +811,6 @@ func showInfo(resp *api.ShowResponse, verbose bool, w io.Writer) error {
|
|||||||
return
|
return
|
||||||
})
|
})
|
||||||
|
|
||||||
if len(resp.Capabilities) > 0 {
|
|
||||||
tableRender("Capabilities", func() (rows [][]string) {
|
|
||||||
for _, capability := range resp.Capabilities {
|
|
||||||
rows = append(rows, []string{"", capability.String()})
|
|
||||||
}
|
|
||||||
return
|
|
||||||
})
|
|
||||||
}
|
|
||||||
|
|
||||||
if resp.ProjectorInfo != nil {
|
if resp.ProjectorInfo != nil {
|
||||||
tableRender("Projector", func() (rows [][]string) {
|
tableRender("Projector", func() (rows [][]string) {
|
||||||
arch := resp.ProjectorInfo["general.architecture"].(string)
|
arch := resp.ProjectorInfo["general.architecture"].(string)
|
||||||
@ -729,47 +834,6 @@ func showInfo(resp *api.ShowResponse, verbose bool, w io.Writer) error {
|
|||||||
})
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
if resp.ModelInfo != nil && verbose {
|
|
||||||
tableRender("Metadata", func() (rows [][]string) {
|
|
||||||
keys := make([]string, 0, len(resp.ModelInfo))
|
|
||||||
for k := range resp.ModelInfo {
|
|
||||||
keys = append(keys, k)
|
|
||||||
}
|
|
||||||
sort.Strings(keys)
|
|
||||||
|
|
||||||
for _, k := range keys {
|
|
||||||
var v string
|
|
||||||
switch vData := resp.ModelInfo[k].(type) {
|
|
||||||
case bool:
|
|
||||||
v = fmt.Sprintf("%t", vData)
|
|
||||||
case string:
|
|
||||||
v = vData
|
|
||||||
case float64:
|
|
||||||
v = fmt.Sprintf("%g", vData)
|
|
||||||
case []any:
|
|
||||||
n := 3
|
|
||||||
if len(vData) < n {
|
|
||||||
n = len(vData)
|
|
||||||
}
|
|
||||||
v = fmt.Sprintf("%v", vData[:n])
|
|
||||||
default:
|
|
||||||
v = fmt.Sprintf("%T", vData)
|
|
||||||
}
|
|
||||||
rows = append(rows, []string{"", k, v})
|
|
||||||
}
|
|
||||||
return
|
|
||||||
})
|
|
||||||
}
|
|
||||||
|
|
||||||
if len(resp.Tensors) > 0 && verbose {
|
|
||||||
tableRender("Tensors", func() (rows [][]string) {
|
|
||||||
for _, t := range resp.Tensors {
|
|
||||||
rows = append(rows, []string{"", t.Name, t.Type, fmt.Sprint(t.Shape)})
|
|
||||||
}
|
|
||||||
return
|
|
||||||
})
|
|
||||||
}
|
|
||||||
|
|
||||||
head := func(s string, n int) (rows [][]string) {
|
head := func(s string, n int) (rows [][]string) {
|
||||||
scanner := bufio.NewScanner(strings.NewReader(s))
|
scanner := bufio.NewScanner(strings.NewReader(s))
|
||||||
for scanner.Scan() && (len(rows) < n || n < 0) {
|
for scanner.Scan() && (len(rows) < n || n < 0) {
|
||||||
@ -830,38 +894,13 @@ func PullHandler(cmd *cobra.Command, args []string) error {
|
|||||||
|
|
||||||
fn := func(resp api.ProgressResponse) error {
|
fn := func(resp api.ProgressResponse) error {
|
||||||
if resp.Digest != "" {
|
if resp.Digest != "" {
|
||||||
if resp.Completed == 0 {
|
|
||||||
// This is the initial status update for the
|
|
||||||
// layer, which the server sends before
|
|
||||||
// beginning the download, for clients to
|
|
||||||
// compute total size and prepare for
|
|
||||||
// downloads, if needed.
|
|
||||||
//
|
|
||||||
// Skipping this here to avoid showing a 0%
|
|
||||||
// progress bar, which *should* clue the user
|
|
||||||
// into the fact that many things are being
|
|
||||||
// downloaded and that the current active
|
|
||||||
// download is not that last. However, in rare
|
|
||||||
// cases it seems to be triggering to some, and
|
|
||||||
// it isn't worth explaining, so just ignore
|
|
||||||
// and regress to the old UI that keeps giving
|
|
||||||
// you the "But wait, there is more!" after
|
|
||||||
// each "100% done" bar, which is "better."
|
|
||||||
return nil
|
|
||||||
}
|
|
||||||
|
|
||||||
if spinner != nil {
|
if spinner != nil {
|
||||||
spinner.Stop()
|
spinner.Stop()
|
||||||
}
|
}
|
||||||
|
|
||||||
bar, ok := bars[resp.Digest]
|
bar, ok := bars[resp.Digest]
|
||||||
if !ok {
|
if !ok {
|
||||||
name, isDigest := strings.CutPrefix(resp.Digest, "sha256:")
|
bar = progress.NewBar(fmt.Sprintf("pulling %s...", resp.Digest[7:19]), resp.Total, resp.Completed)
|
||||||
name = strings.TrimSpace(name)
|
|
||||||
if isDigest {
|
|
||||||
name = name[:min(12, len(name))]
|
|
||||||
}
|
|
||||||
bar = progress.NewBar(fmt.Sprintf("pulling %s:", name), resp.Total, resp.Completed)
|
|
||||||
bars[resp.Digest] = bar
|
bars[resp.Digest] = bar
|
||||||
p.Add(resp.Digest, bar)
|
p.Add(resp.Digest, bar)
|
||||||
}
|
}
|
||||||
@ -881,7 +920,11 @@ func PullHandler(cmd *cobra.Command, args []string) error {
|
|||||||
}
|
}
|
||||||
|
|
||||||
request := api.PullRequest{Name: args[0], Insecure: insecure}
|
request := api.PullRequest{Name: args[0], Insecure: insecure}
|
||||||
return client.Pull(cmd.Context(), &request, fn)
|
if err := client.Pull(cmd.Context(), &request, fn); err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
|
||||||
|
return nil
|
||||||
}
|
}
|
||||||
|
|
||||||
type generateContextKey string
|
type generateContextKey string
|
||||||
@ -895,7 +938,7 @@ type runOptions struct {
|
|||||||
Format string
|
Format string
|
||||||
System string
|
System string
|
||||||
Images []api.ImageData
|
Images []api.ImageData
|
||||||
Options map[string]any
|
Options map[string]interface{}
|
||||||
MultiModal bool
|
MultiModal bool
|
||||||
KeepAlive *api.Duration
|
KeepAlive *api.Duration
|
||||||
}
|
}
|
||||||
@ -1297,7 +1340,6 @@ func NewCLI() *cobra.Command {
|
|||||||
showCmd.Flags().Bool("parameters", false, "Show parameters of a model")
|
showCmd.Flags().Bool("parameters", false, "Show parameters of a model")
|
||||||
showCmd.Flags().Bool("template", false, "Show template of a model")
|
showCmd.Flags().Bool("template", false, "Show template of a model")
|
||||||
showCmd.Flags().Bool("system", false, "Show system message of a model")
|
showCmd.Flags().Bool("system", false, "Show system message of a model")
|
||||||
showCmd.Flags().BoolP("verbose", "v", false, "Show detailed model information")
|
|
||||||
|
|
||||||
runCmd := &cobra.Command{
|
runCmd := &cobra.Command{
|
||||||
Use: "run MODEL [PROMPT]",
|
Use: "run MODEL [PROMPT]",
|
||||||
@ -1382,6 +1424,7 @@ func NewCLI() *cobra.Command {
|
|||||||
|
|
||||||
runnerCmd := &cobra.Command{
|
runnerCmd := &cobra.Command{
|
||||||
Use: "runner",
|
Use: "runner",
|
||||||
|
Short: llama.PrintSystemInfo(),
|
||||||
Hidden: true,
|
Hidden: true,
|
||||||
RunE: func(cmd *cobra.Command, args []string) error {
|
RunE: func(cmd *cobra.Command, args []string) error {
|
||||||
return runner.Execute(os.Args[1:])
|
return runner.Execute(os.Args[1:])
|
||||||
@ -1424,6 +1467,7 @@ func NewCLI() *cobra.Command {
|
|||||||
envVars["OLLAMA_NOPRUNE"],
|
envVars["OLLAMA_NOPRUNE"],
|
||||||
envVars["OLLAMA_ORIGINS"],
|
envVars["OLLAMA_ORIGINS"],
|
||||||
envVars["OLLAMA_SCHED_SPREAD"],
|
envVars["OLLAMA_SCHED_SPREAD"],
|
||||||
|
envVars["OLLAMA_TMPDIR"],
|
||||||
envVars["OLLAMA_FLASH_ATTENTION"],
|
envVars["OLLAMA_FLASH_ATTENTION"],
|
||||||
envVars["OLLAMA_KV_CACHE_TYPE"],
|
envVars["OLLAMA_KV_CACHE_TYPE"],
|
||||||
envVars["OLLAMA_LLM_LIBRARY"],
|
envVars["OLLAMA_LLM_LIBRARY"],
|
||||||
|
459
cmd/cmd_test.go
459
cmd/cmd_test.go
@ -2,6 +2,7 @@ package cmd
|
|||||||
|
|
||||||
import (
|
import (
|
||||||
"bytes"
|
"bytes"
|
||||||
|
"context"
|
||||||
"encoding/json"
|
"encoding/json"
|
||||||
"io"
|
"io"
|
||||||
"net/http"
|
"net/http"
|
||||||
@ -9,13 +10,11 @@ import (
|
|||||||
"os"
|
"os"
|
||||||
"strings"
|
"strings"
|
||||||
"testing"
|
"testing"
|
||||||
"time"
|
|
||||||
|
|
||||||
"github.com/google/go-cmp/cmp"
|
"github.com/google/go-cmp/cmp"
|
||||||
"github.com/spf13/cobra"
|
"github.com/spf13/cobra"
|
||||||
|
|
||||||
"github.com/ollama/ollama/api"
|
"github.com/ollama/ollama/api"
|
||||||
"github.com/ollama/ollama/types/model"
|
|
||||||
)
|
)
|
||||||
|
|
||||||
func TestShowInfo(t *testing.T) {
|
func TestShowInfo(t *testing.T) {
|
||||||
@ -27,7 +26,7 @@ func TestShowInfo(t *testing.T) {
|
|||||||
ParameterSize: "7B",
|
ParameterSize: "7B",
|
||||||
QuantizationLevel: "FP16",
|
QuantizationLevel: "FP16",
|
||||||
},
|
},
|
||||||
}, false, &b); err != nil {
|
}, &b); err != nil {
|
||||||
t.Fatal(err)
|
t.Fatal(err)
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -57,7 +56,7 @@ func TestShowInfo(t *testing.T) {
|
|||||||
ParameterSize: "7B",
|
ParameterSize: "7B",
|
||||||
QuantizationLevel: "FP16",
|
QuantizationLevel: "FP16",
|
||||||
},
|
},
|
||||||
}, false, &b); err != nil {
|
}, &b); err != nil {
|
||||||
t.Fatal(err)
|
t.Fatal(err)
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -68,60 +67,6 @@ func TestShowInfo(t *testing.T) {
|
|||||||
embedding length 0
|
embedding length 0
|
||||||
quantization FP16
|
quantization FP16
|
||||||
|
|
||||||
`
|
|
||||||
if diff := cmp.Diff(expect, b.String()); diff != "" {
|
|
||||||
t.Errorf("unexpected output (-want +got):\n%s", diff)
|
|
||||||
}
|
|
||||||
})
|
|
||||||
|
|
||||||
t.Run("verbose model", func(t *testing.T) {
|
|
||||||
var b bytes.Buffer
|
|
||||||
if err := showInfo(&api.ShowResponse{
|
|
||||||
Details: api.ModelDetails{
|
|
||||||
Family: "test",
|
|
||||||
ParameterSize: "8B",
|
|
||||||
QuantizationLevel: "FP16",
|
|
||||||
},
|
|
||||||
Parameters: `
|
|
||||||
stop up`,
|
|
||||||
ModelInfo: map[string]any{
|
|
||||||
"general.architecture": "test",
|
|
||||||
"general.parameter_count": float64(8_000_000_000),
|
|
||||||
"some.true_bool": true,
|
|
||||||
"some.false_bool": false,
|
|
||||||
"test.context_length": float64(1000),
|
|
||||||
"test.embedding_length": float64(11434),
|
|
||||||
},
|
|
||||||
Tensors: []api.Tensor{
|
|
||||||
{Name: "blk.0.attn_k.weight", Type: "BF16", Shape: []uint64{42, 3117}},
|
|
||||||
{Name: "blk.0.attn_q.weight", Type: "FP16", Shape: []uint64{3117, 42}},
|
|
||||||
},
|
|
||||||
}, true, &b); err != nil {
|
|
||||||
t.Fatal(err)
|
|
||||||
}
|
|
||||||
|
|
||||||
expect := ` Model
|
|
||||||
architecture test
|
|
||||||
parameters 8B
|
|
||||||
context length 1000
|
|
||||||
embedding length 11434
|
|
||||||
quantization FP16
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
stop up
|
|
||||||
|
|
||||||
Metadata
|
|
||||||
general.architecture test
|
|
||||||
general.parameter_count 8e+09
|
|
||||||
some.false_bool false
|
|
||||||
some.true_bool true
|
|
||||||
test.context_length 1000
|
|
||||||
test.embedding_length 11434
|
|
||||||
|
|
||||||
Tensors
|
|
||||||
blk.0.attn_k.weight BF16 [42 3117]
|
|
||||||
blk.0.attn_q.weight FP16 [3117 42]
|
|
||||||
|
|
||||||
`
|
`
|
||||||
if diff := cmp.Diff(expect, b.String()); diff != "" {
|
if diff := cmp.Diff(expect, b.String()); diff != "" {
|
||||||
t.Errorf("unexpected output (-want +got):\n%s", diff)
|
t.Errorf("unexpected output (-want +got):\n%s", diff)
|
||||||
@ -143,7 +88,7 @@ func TestShowInfo(t *testing.T) {
|
|||||||
stop you
|
stop you
|
||||||
stop up
|
stop up
|
||||||
temperature 99`,
|
temperature 99`,
|
||||||
}, false, &b); err != nil {
|
}, &b); err != nil {
|
||||||
t.Fatal(err)
|
t.Fatal(err)
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -180,7 +125,7 @@ func TestShowInfo(t *testing.T) {
|
|||||||
"clip.vision.embedding_length": float64(0),
|
"clip.vision.embedding_length": float64(0),
|
||||||
"clip.vision.projection_dim": float64(0),
|
"clip.vision.projection_dim": float64(0),
|
||||||
},
|
},
|
||||||
}, false, &b); err != nil {
|
}, &b); err != nil {
|
||||||
t.Fatal(err)
|
t.Fatal(err)
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -213,7 +158,7 @@ func TestShowInfo(t *testing.T) {
|
|||||||
Ahoy, matey!
|
Ahoy, matey!
|
||||||
Weigh anchor!
|
Weigh anchor!
|
||||||
`,
|
`,
|
||||||
}, false, &b); err != nil {
|
}, &b); err != nil {
|
||||||
t.Fatal(err)
|
t.Fatal(err)
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -242,7 +187,7 @@ Weigh anchor!
|
|||||||
QuantizationLevel: "FP16",
|
QuantizationLevel: "FP16",
|
||||||
},
|
},
|
||||||
License: license,
|
License: license,
|
||||||
}, false, &b); err != nil {
|
}, &b); err != nil {
|
||||||
t.Fatal(err)
|
t.Fatal(err)
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -260,34 +205,6 @@ Weigh anchor!
|
|||||||
t.Errorf("unexpected output (-want +got):\n%s", diff)
|
t.Errorf("unexpected output (-want +got):\n%s", diff)
|
||||||
}
|
}
|
||||||
})
|
})
|
||||||
|
|
||||||
t.Run("capabilities", func(t *testing.T) {
|
|
||||||
var b bytes.Buffer
|
|
||||||
if err := showInfo(&api.ShowResponse{
|
|
||||||
Details: api.ModelDetails{
|
|
||||||
Family: "test",
|
|
||||||
ParameterSize: "7B",
|
|
||||||
QuantizationLevel: "FP16",
|
|
||||||
},
|
|
||||||
Capabilities: []model.Capability{model.CapabilityVision, model.CapabilityTools},
|
|
||||||
}, false, &b); err != nil {
|
|
||||||
t.Fatal(err)
|
|
||||||
}
|
|
||||||
|
|
||||||
expect := " Model\n" +
|
|
||||||
" architecture test \n" +
|
|
||||||
" parameters 7B \n" +
|
|
||||||
" quantization FP16 \n" +
|
|
||||||
"\n" +
|
|
||||||
" Capabilities\n" +
|
|
||||||
" vision \n" +
|
|
||||||
" tools \n" +
|
|
||||||
"\n"
|
|
||||||
|
|
||||||
if diff := cmp.Diff(expect, b.String()); diff != "" {
|
|
||||||
t.Errorf("unexpected output (-want +got):\n%s", diff)
|
|
||||||
}
|
|
||||||
})
|
|
||||||
}
|
}
|
||||||
|
|
||||||
func TestDeleteHandler(t *testing.T) {
|
func TestDeleteHandler(t *testing.T) {
|
||||||
@ -336,7 +253,7 @@ func TestDeleteHandler(t *testing.T) {
|
|||||||
t.Cleanup(mockServer.Close)
|
t.Cleanup(mockServer.Close)
|
||||||
|
|
||||||
cmd := &cobra.Command{}
|
cmd := &cobra.Command{}
|
||||||
cmd.SetContext(t.Context())
|
cmd.SetContext(context.TODO())
|
||||||
if err := DeleteHandler(cmd, []string{"test-model"}); err != nil {
|
if err := DeleteHandler(cmd, []string{"test-model"}); err != nil {
|
||||||
t.Fatalf("DeleteHandler failed: %v", err)
|
t.Fatalf("DeleteHandler failed: %v", err)
|
||||||
}
|
}
|
||||||
@ -376,7 +293,7 @@ func TestGetModelfileName(t *testing.T) {
|
|||||||
name: "modelfile specified, no modelfile exists",
|
name: "modelfile specified, no modelfile exists",
|
||||||
modelfileName: "crazyfile",
|
modelfileName: "crazyfile",
|
||||||
fileExists: false,
|
fileExists: false,
|
||||||
expectedName: "",
|
expectedName: "crazyfile",
|
||||||
expectedErr: os.ErrNotExist,
|
expectedErr: os.ErrNotExist,
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -398,6 +315,11 @@ func TestGetModelfileName(t *testing.T) {
|
|||||||
var expectedFilename string
|
var expectedFilename string
|
||||||
|
|
||||||
if tt.fileExists {
|
if tt.fileExists {
|
||||||
|
tempDir, err := os.MkdirTemp("", "modelfiledir")
|
||||||
|
defer os.RemoveAll(tempDir)
|
||||||
|
if err != nil {
|
||||||
|
t.Fatalf("temp modelfile dir creation failed: %v", err)
|
||||||
|
}
|
||||||
var fn string
|
var fn string
|
||||||
if tt.modelfileName != "" {
|
if tt.modelfileName != "" {
|
||||||
fn = tt.modelfileName
|
fn = tt.modelfileName
|
||||||
@ -405,11 +327,10 @@ func TestGetModelfileName(t *testing.T) {
|
|||||||
fn = "Modelfile"
|
fn = "Modelfile"
|
||||||
}
|
}
|
||||||
|
|
||||||
tempFile, err := os.CreateTemp(t.TempDir(), fn)
|
tempFile, err := os.CreateTemp(tempDir, fn)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
t.Fatalf("temp modelfile creation failed: %v", err)
|
t.Fatalf("temp modelfile creation failed: %v", err)
|
||||||
}
|
}
|
||||||
defer tempFile.Close()
|
|
||||||
|
|
||||||
expectedFilename = tempFile.Name()
|
expectedFilename = tempFile.Name()
|
||||||
err = cmd.Flags().Set("file", expectedFilename)
|
err = cmd.Flags().Set("file", expectedFilename)
|
||||||
@ -417,8 +338,8 @@ func TestGetModelfileName(t *testing.T) {
|
|||||||
t.Fatalf("couldn't set file flag: %v", err)
|
t.Fatalf("couldn't set file flag: %v", err)
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
expectedFilename = tt.expectedName
|
|
||||||
if tt.modelfileName != "" {
|
if tt.modelfileName != "" {
|
||||||
|
expectedFilename = tt.modelfileName
|
||||||
err := cmd.Flags().Set("file", tt.modelfileName)
|
err := cmd.Flags().Set("file", tt.modelfileName)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
t.Fatalf("couldn't set file flag: %v", err)
|
t.Fatalf("couldn't set file flag: %v", err)
|
||||||
@ -524,7 +445,7 @@ func TestPushHandler(t *testing.T) {
|
|||||||
|
|
||||||
cmd := &cobra.Command{}
|
cmd := &cobra.Command{}
|
||||||
cmd.Flags().Bool("insecure", false, "")
|
cmd.Flags().Bool("insecure", false, "")
|
||||||
cmd.SetContext(t.Context())
|
cmd.SetContext(context.TODO())
|
||||||
|
|
||||||
// Redirect stderr to capture progress output
|
// Redirect stderr to capture progress output
|
||||||
oldStderr := os.Stderr
|
oldStderr := os.Stderr
|
||||||
@ -568,349 +489,3 @@ func TestPushHandler(t *testing.T) {
|
|||||||
})
|
})
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
func TestListHandler(t *testing.T) {
|
|
||||||
tests := []struct {
|
|
||||||
name string
|
|
||||||
args []string
|
|
||||||
serverResponse []api.ListModelResponse
|
|
||||||
expectedError string
|
|
||||||
expectedOutput string
|
|
||||||
}{
|
|
||||||
{
|
|
||||||
name: "list all models",
|
|
||||||
args: []string{},
|
|
||||||
serverResponse: []api.ListModelResponse{
|
|
||||||
{Name: "model1", Digest: "sha256:abc123", Size: 1024, ModifiedAt: time.Now().Add(-24 * time.Hour)},
|
|
||||||
{Name: "model2", Digest: "sha256:def456", Size: 2048, ModifiedAt: time.Now().Add(-48 * time.Hour)},
|
|
||||||
},
|
|
||||||
expectedOutput: "NAME ID SIZE MODIFIED \n" +
|
|
||||||
"model1 sha256:abc12 1.0 KB 24 hours ago \n" +
|
|
||||||
"model2 sha256:def45 2.0 KB 2 days ago \n",
|
|
||||||
},
|
|
||||||
{
|
|
||||||
name: "filter models by prefix",
|
|
||||||
args: []string{"model1"},
|
|
||||||
serverResponse: []api.ListModelResponse{
|
|
||||||
{Name: "model1", Digest: "sha256:abc123", Size: 1024, ModifiedAt: time.Now().Add(-24 * time.Hour)},
|
|
||||||
{Name: "model2", Digest: "sha256:def456", Size: 2048, ModifiedAt: time.Now().Add(-24 * time.Hour)},
|
|
||||||
},
|
|
||||||
expectedOutput: "NAME ID SIZE MODIFIED \n" +
|
|
||||||
"model1 sha256:abc12 1.0 KB 24 hours ago \n",
|
|
||||||
},
|
|
||||||
{
|
|
||||||
name: "server error",
|
|
||||||
args: []string{},
|
|
||||||
expectedError: "server error",
|
|
||||||
},
|
|
||||||
}
|
|
||||||
|
|
||||||
for _, tt := range tests {
|
|
||||||
t.Run(tt.name, func(t *testing.T) {
|
|
||||||
mockServer := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
|
|
||||||
if r.URL.Path != "/api/tags" || r.Method != http.MethodGet {
|
|
||||||
t.Errorf("unexpected request to %s %s", r.Method, r.URL.Path)
|
|
||||||
http.Error(w, "not found", http.StatusNotFound)
|
|
||||||
return
|
|
||||||
}
|
|
||||||
|
|
||||||
if tt.expectedError != "" {
|
|
||||||
http.Error(w, tt.expectedError, http.StatusInternalServerError)
|
|
||||||
return
|
|
||||||
}
|
|
||||||
|
|
||||||
response := api.ListResponse{Models: tt.serverResponse}
|
|
||||||
if err := json.NewEncoder(w).Encode(response); err != nil {
|
|
||||||
t.Fatal(err)
|
|
||||||
}
|
|
||||||
}))
|
|
||||||
defer mockServer.Close()
|
|
||||||
|
|
||||||
t.Setenv("OLLAMA_HOST", mockServer.URL)
|
|
||||||
|
|
||||||
cmd := &cobra.Command{}
|
|
||||||
cmd.SetContext(t.Context())
|
|
||||||
|
|
||||||
// Capture stdout
|
|
||||||
oldStdout := os.Stdout
|
|
||||||
r, w, _ := os.Pipe()
|
|
||||||
os.Stdout = w
|
|
||||||
|
|
||||||
err := ListHandler(cmd, tt.args)
|
|
||||||
|
|
||||||
// Restore stdout and get output
|
|
||||||
w.Close()
|
|
||||||
os.Stdout = oldStdout
|
|
||||||
output, _ := io.ReadAll(r)
|
|
||||||
|
|
||||||
if tt.expectedError == "" {
|
|
||||||
if err != nil {
|
|
||||||
t.Errorf("expected no error, got %v", err)
|
|
||||||
}
|
|
||||||
if got := string(output); got != tt.expectedOutput {
|
|
||||||
t.Errorf("expected output:\n%s\ngot:\n%s", tt.expectedOutput, got)
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
if err == nil || !strings.Contains(err.Error(), tt.expectedError) {
|
|
||||||
t.Errorf("expected error containing %q, got %v", tt.expectedError, err)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
})
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
func TestCreateHandler(t *testing.T) {
|
|
||||||
tests := []struct {
|
|
||||||
name string
|
|
||||||
modelName string
|
|
||||||
modelFile string
|
|
||||||
serverResponse map[string]func(w http.ResponseWriter, r *http.Request)
|
|
||||||
expectedError string
|
|
||||||
expectedOutput string
|
|
||||||
}{
|
|
||||||
{
|
|
||||||
name: "successful create",
|
|
||||||
modelName: "test-model",
|
|
||||||
modelFile: "FROM foo",
|
|
||||||
serverResponse: map[string]func(w http.ResponseWriter, r *http.Request){
|
|
||||||
"/api/create": func(w http.ResponseWriter, r *http.Request) {
|
|
||||||
if r.Method != http.MethodPost {
|
|
||||||
t.Errorf("expected POST request, got %s", r.Method)
|
|
||||||
}
|
|
||||||
|
|
||||||
req := api.CreateRequest{}
|
|
||||||
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
|
|
||||||
http.Error(w, err.Error(), http.StatusBadRequest)
|
|
||||||
return
|
|
||||||
}
|
|
||||||
|
|
||||||
if req.Model != "test-model" {
|
|
||||||
t.Errorf("expected model name 'test-model', got %s", req.Name)
|
|
||||||
}
|
|
||||||
|
|
||||||
if req.From != "foo" {
|
|
||||||
t.Errorf("expected from 'foo', got %s", req.From)
|
|
||||||
}
|
|
||||||
|
|
||||||
responses := []api.ProgressResponse{
|
|
||||||
{Status: "using existing layer sha256:56bb8bd477a519ffa694fc449c2413c6f0e1d3b1c88fa7e3c9d88d3ae49d4dcb"},
|
|
||||||
{Status: "writing manifest"},
|
|
||||||
{Status: "success"},
|
|
||||||
}
|
|
||||||
|
|
||||||
for _, resp := range responses {
|
|
||||||
if err := json.NewEncoder(w).Encode(resp); err != nil {
|
|
||||||
http.Error(w, err.Error(), http.StatusInternalServerError)
|
|
||||||
return
|
|
||||||
}
|
|
||||||
w.(http.Flusher).Flush()
|
|
||||||
}
|
|
||||||
},
|
|
||||||
},
|
|
||||||
expectedOutput: "",
|
|
||||||
},
|
|
||||||
}
|
|
||||||
|
|
||||||
for _, tt := range tests {
|
|
||||||
t.Run(tt.name, func(t *testing.T) {
|
|
||||||
mockServer := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
|
|
||||||
handler, ok := tt.serverResponse[r.URL.Path]
|
|
||||||
if !ok {
|
|
||||||
t.Errorf("unexpected request to %s", r.URL.Path)
|
|
||||||
http.Error(w, "not found", http.StatusNotFound)
|
|
||||||
return
|
|
||||||
}
|
|
||||||
handler(w, r)
|
|
||||||
}))
|
|
||||||
t.Setenv("OLLAMA_HOST", mockServer.URL)
|
|
||||||
t.Cleanup(mockServer.Close)
|
|
||||||
tempFile, err := os.CreateTemp(t.TempDir(), "modelfile")
|
|
||||||
if err != nil {
|
|
||||||
t.Fatal(err)
|
|
||||||
}
|
|
||||||
defer os.Remove(tempFile.Name())
|
|
||||||
|
|
||||||
if _, err := tempFile.WriteString(tt.modelFile); err != nil {
|
|
||||||
t.Fatal(err)
|
|
||||||
}
|
|
||||||
if err := tempFile.Close(); err != nil {
|
|
||||||
t.Fatal(err)
|
|
||||||
}
|
|
||||||
|
|
||||||
cmd := &cobra.Command{}
|
|
||||||
cmd.Flags().String("file", "", "")
|
|
||||||
if err := cmd.Flags().Set("file", tempFile.Name()); err != nil {
|
|
||||||
t.Fatal(err)
|
|
||||||
}
|
|
||||||
|
|
||||||
cmd.Flags().Bool("insecure", false, "")
|
|
||||||
cmd.SetContext(t.Context())
|
|
||||||
|
|
||||||
// Redirect stderr to capture progress output
|
|
||||||
oldStderr := os.Stderr
|
|
||||||
r, w, _ := os.Pipe()
|
|
||||||
os.Stderr = w
|
|
||||||
|
|
||||||
// Capture stdout for the "Model pushed" message
|
|
||||||
oldStdout := os.Stdout
|
|
||||||
outR, outW, _ := os.Pipe()
|
|
||||||
os.Stdout = outW
|
|
||||||
|
|
||||||
err = CreateHandler(cmd, []string{tt.modelName})
|
|
||||||
|
|
||||||
// Restore stderr
|
|
||||||
w.Close()
|
|
||||||
os.Stderr = oldStderr
|
|
||||||
// drain the pipe
|
|
||||||
if _, err := io.ReadAll(r); err != nil {
|
|
||||||
t.Fatal(err)
|
|
||||||
}
|
|
||||||
|
|
||||||
// Restore stdout and get output
|
|
||||||
outW.Close()
|
|
||||||
os.Stdout = oldStdout
|
|
||||||
stdout, _ := io.ReadAll(outR)
|
|
||||||
|
|
||||||
if tt.expectedError == "" {
|
|
||||||
if err != nil {
|
|
||||||
t.Errorf("expected no error, got %v", err)
|
|
||||||
}
|
|
||||||
|
|
||||||
if tt.expectedOutput != "" {
|
|
||||||
if got := string(stdout); got != tt.expectedOutput {
|
|
||||||
t.Errorf("expected output %q, got %q", tt.expectedOutput, got)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
})
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
func TestNewCreateRequest(t *testing.T) {
|
|
||||||
tests := []struct {
|
|
||||||
name string
|
|
||||||
from string
|
|
||||||
opts runOptions
|
|
||||||
expected *api.CreateRequest
|
|
||||||
}{
|
|
||||||
{
|
|
||||||
"basic test",
|
|
||||||
"newmodel",
|
|
||||||
runOptions{
|
|
||||||
Model: "mymodel",
|
|
||||||
ParentModel: "",
|
|
||||||
Prompt: "You are a fun AI agent",
|
|
||||||
Messages: []api.Message{},
|
|
||||||
WordWrap: true,
|
|
||||||
},
|
|
||||||
&api.CreateRequest{
|
|
||||||
From: "mymodel",
|
|
||||||
Model: "newmodel",
|
|
||||||
},
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"parent model test",
|
|
||||||
"newmodel",
|
|
||||||
runOptions{
|
|
||||||
Model: "mymodel",
|
|
||||||
ParentModel: "parentmodel",
|
|
||||||
Messages: []api.Message{},
|
|
||||||
WordWrap: true,
|
|
||||||
},
|
|
||||||
&api.CreateRequest{
|
|
||||||
From: "parentmodel",
|
|
||||||
Model: "newmodel",
|
|
||||||
},
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"parent model as filepath test",
|
|
||||||
"newmodel",
|
|
||||||
runOptions{
|
|
||||||
Model: "mymodel",
|
|
||||||
ParentModel: "/some/file/like/etc/passwd",
|
|
||||||
Messages: []api.Message{},
|
|
||||||
WordWrap: true,
|
|
||||||
},
|
|
||||||
&api.CreateRequest{
|
|
||||||
From: "mymodel",
|
|
||||||
Model: "newmodel",
|
|
||||||
},
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"parent model as windows filepath test",
|
|
||||||
"newmodel",
|
|
||||||
runOptions{
|
|
||||||
Model: "mymodel",
|
|
||||||
ParentModel: "D:\\some\\file\\like\\etc\\passwd",
|
|
||||||
Messages: []api.Message{},
|
|
||||||
WordWrap: true,
|
|
||||||
},
|
|
||||||
&api.CreateRequest{
|
|
||||||
From: "mymodel",
|
|
||||||
Model: "newmodel",
|
|
||||||
},
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"options test",
|
|
||||||
"newmodel",
|
|
||||||
runOptions{
|
|
||||||
Model: "mymodel",
|
|
||||||
ParentModel: "parentmodel",
|
|
||||||
Options: map[string]any{
|
|
||||||
"temperature": 1.0,
|
|
||||||
},
|
|
||||||
},
|
|
||||||
&api.CreateRequest{
|
|
||||||
From: "parentmodel",
|
|
||||||
Model: "newmodel",
|
|
||||||
Parameters: map[string]any{
|
|
||||||
"temperature": 1.0,
|
|
||||||
},
|
|
||||||
},
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"messages test",
|
|
||||||
"newmodel",
|
|
||||||
runOptions{
|
|
||||||
Model: "mymodel",
|
|
||||||
ParentModel: "parentmodel",
|
|
||||||
System: "You are a fun AI agent",
|
|
||||||
Messages: []api.Message{
|
|
||||||
{
|
|
||||||
Role: "user",
|
|
||||||
Content: "hello there!",
|
|
||||||
},
|
|
||||||
{
|
|
||||||
Role: "assistant",
|
|
||||||
Content: "hello to you!",
|
|
||||||
},
|
|
||||||
},
|
|
||||||
WordWrap: true,
|
|
||||||
},
|
|
||||||
&api.CreateRequest{
|
|
||||||
From: "parentmodel",
|
|
||||||
Model: "newmodel",
|
|
||||||
System: "You are a fun AI agent",
|
|
||||||
Messages: []api.Message{
|
|
||||||
{
|
|
||||||
Role: "user",
|
|
||||||
Content: "hello there!",
|
|
||||||
},
|
|
||||||
{
|
|
||||||
Role: "assistant",
|
|
||||||
Content: "hello to you!",
|
|
||||||
},
|
|
||||||
},
|
|
||||||
},
|
|
||||||
},
|
|
||||||
}
|
|
||||||
|
|
||||||
for _, tt := range tests {
|
|
||||||
t.Run(tt.name, func(t *testing.T) {
|
|
||||||
actual := NewCreateRequest(tt.from, tt.opts)
|
|
||||||
if !cmp.Equal(actual, tt.expected) {
|
|
||||||
t.Errorf("expected output %#v, got %#v", tt.expected, actual)
|
|
||||||
}
|
|
||||||
})
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
@ -13,12 +13,13 @@ import (
|
|||||||
"strings"
|
"strings"
|
||||||
|
|
||||||
"github.com/spf13/cobra"
|
"github.com/spf13/cobra"
|
||||||
|
"golang.org/x/exp/maps"
|
||||||
|
|
||||||
"github.com/ollama/ollama/api"
|
"github.com/ollama/ollama/api"
|
||||||
"github.com/ollama/ollama/envconfig"
|
"github.com/ollama/ollama/envconfig"
|
||||||
|
"github.com/ollama/ollama/parser"
|
||||||
"github.com/ollama/ollama/readline"
|
"github.com/ollama/ollama/readline"
|
||||||
"github.com/ollama/ollama/types/errtypes"
|
"github.com/ollama/ollama/types/errtypes"
|
||||||
"github.com/ollama/ollama/types/model"
|
|
||||||
)
|
)
|
||||||
|
|
||||||
type MultilineState int
|
type MultilineState int
|
||||||
@ -44,7 +45,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
|||||||
fmt.Fprintln(os.Stderr, "Use \"\"\" to begin a multi-line message.")
|
fmt.Fprintln(os.Stderr, "Use \"\"\" to begin a multi-line message.")
|
||||||
|
|
||||||
if opts.MultiModal {
|
if opts.MultiModal {
|
||||||
fmt.Fprintf(os.Stderr, "Use %s to include .jpg, .png, or .webp images.\n", filepath.FromSlash("/path/to/file"))
|
fmt.Fprintf(os.Stderr, "Use %s to include .jpg or .png images.\n", filepath.FromSlash("/path/to/file"))
|
||||||
}
|
}
|
||||||
|
|
||||||
fmt.Fprintln(os.Stderr, "")
|
fmt.Fprintln(os.Stderr, "")
|
||||||
@ -196,10 +197,6 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
|||||||
opts.Messages = []api.Message{}
|
opts.Messages = []api.Message{}
|
||||||
fmt.Printf("Loading model '%s'\n", opts.Model)
|
fmt.Printf("Loading model '%s'\n", opts.Model)
|
||||||
if err := loadOrUnloadModel(cmd, &opts); err != nil {
|
if err := loadOrUnloadModel(cmd, &opts); err != nil {
|
||||||
if strings.Contains(err.Error(), "not found") {
|
|
||||||
fmt.Printf("error: %v\n", err)
|
|
||||||
continue
|
|
||||||
}
|
|
||||||
return err
|
return err
|
||||||
}
|
}
|
||||||
continue
|
continue
|
||||||
@ -216,7 +213,10 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
|||||||
return err
|
return err
|
||||||
}
|
}
|
||||||
|
|
||||||
req := NewCreateRequest(args[1], opts)
|
req := &api.CreateRequest{
|
||||||
|
Name: args[1],
|
||||||
|
Modelfile: buildModelfile(opts),
|
||||||
|
}
|
||||||
fn := func(resp api.ProgressResponse) error { return nil }
|
fn := func(resp api.ProgressResponse) error { return nil }
|
||||||
err = client.Create(cmd.Context(), req, fn)
|
err = client.Create(cmd.Context(), req, fn)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
@ -348,7 +348,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
|||||||
|
|
||||||
switch args[1] {
|
switch args[1] {
|
||||||
case "info":
|
case "info":
|
||||||
_ = showInfo(resp, false, os.Stderr)
|
_ = showInfo(resp, os.Stderr)
|
||||||
case "license":
|
case "license":
|
||||||
if resp.License == "" {
|
if resp.License == "" {
|
||||||
fmt.Println("No license was specified for this model.")
|
fmt.Println("No license was specified for this model.")
|
||||||
@ -459,32 +459,36 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
func NewCreateRequest(name string, opts runOptions) *api.CreateRequest {
|
func buildModelfile(opts runOptions) string {
|
||||||
parentModel := opts.ParentModel
|
var f parser.File
|
||||||
|
f.Commands = append(f.Commands, parser.Command{Name: "model", Args: cmp.Or(opts.ParentModel, opts.Model)})
|
||||||
modelName := model.ParseName(parentModel)
|
|
||||||
if !modelName.IsValid() {
|
|
||||||
parentModel = ""
|
|
||||||
}
|
|
||||||
|
|
||||||
req := &api.CreateRequest{
|
|
||||||
Model: name,
|
|
||||||
From: cmp.Or(parentModel, opts.Model),
|
|
||||||
}
|
|
||||||
|
|
||||||
if opts.System != "" {
|
if opts.System != "" {
|
||||||
req.System = opts.System
|
f.Commands = append(f.Commands, parser.Command{Name: "system", Args: opts.System})
|
||||||
}
|
}
|
||||||
|
|
||||||
if len(opts.Options) > 0 {
|
keys := maps.Keys(opts.Options)
|
||||||
req.Parameters = opts.Options
|
slices.Sort(keys)
|
||||||
|
for _, k := range keys {
|
||||||
|
v := opts.Options[k]
|
||||||
|
var cmds []parser.Command
|
||||||
|
switch t := v.(type) {
|
||||||
|
case []string:
|
||||||
|
for _, s := range t {
|
||||||
|
cmds = append(cmds, parser.Command{Name: k, Args: s})
|
||||||
|
}
|
||||||
|
default:
|
||||||
|
cmds = append(cmds, parser.Command{Name: k, Args: fmt.Sprintf("%v", t)})
|
||||||
|
}
|
||||||
|
|
||||||
|
f.Commands = append(f.Commands, cmds...)
|
||||||
}
|
}
|
||||||
|
|
||||||
if len(opts.Messages) > 0 {
|
for _, msg := range opts.Messages {
|
||||||
req.Messages = opts.Messages
|
f.Commands = append(f.Commands, parser.Command{Name: "message", Args: fmt.Sprintf("%s: %s", msg.Role, msg.Content)})
|
||||||
}
|
}
|
||||||
|
|
||||||
return req
|
return f.String()
|
||||||
}
|
}
|
||||||
|
|
||||||
func normalizeFilePath(fp string) string {
|
func normalizeFilePath(fp string) string {
|
||||||
@ -503,7 +507,6 @@ func normalizeFilePath(fp string) string {
|
|||||||
"\\\\", "\\", // Escaped backslash
|
"\\\\", "\\", // Escaped backslash
|
||||||
"\\*", "*", // Escaped asterisk
|
"\\*", "*", // Escaped asterisk
|
||||||
"\\?", "?", // Escaped question mark
|
"\\?", "?", // Escaped question mark
|
||||||
"\\~", "~", // Escaped tilde
|
|
||||||
).Replace(fp)
|
).Replace(fp)
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -511,7 +514,7 @@ func extractFileNames(input string) []string {
|
|||||||
// Regex to match file paths starting with optional drive letter, / ./ \ or .\ and include escaped or unescaped spaces (\ or %20)
|
// Regex to match file paths starting with optional drive letter, / ./ \ or .\ and include escaped or unescaped spaces (\ or %20)
|
||||||
// and followed by more characters and a file extension
|
// and followed by more characters and a file extension
|
||||||
// This will capture non filename strings, but we'll check for file existence to remove mismatches
|
// This will capture non filename strings, but we'll check for file existence to remove mismatches
|
||||||
regexPattern := `(?:[a-zA-Z]:)?(?:\./|/|\\)[\S\\ ]+?\.(?i:jpg|jpeg|png|webp)\b`
|
regexPattern := `(?:[a-zA-Z]:)?(?:\./|/|\\)[\S\\ ]+?\.(?i:jpg|jpeg|png)\b`
|
||||||
re := regexp.MustCompile(regexPattern)
|
re := regexp.MustCompile(regexPattern)
|
||||||
|
|
||||||
return re.FindAllString(input, -1)
|
return re.FindAllString(input, -1)
|
||||||
@ -531,8 +534,6 @@ func extractFileData(input string) (string, []api.ImageData, error) {
|
|||||||
return "", imgs, err
|
return "", imgs, err
|
||||||
}
|
}
|
||||||
fmt.Fprintf(os.Stderr, "Added image '%s'\n", nfp)
|
fmt.Fprintf(os.Stderr, "Added image '%s'\n", nfp)
|
||||||
input = strings.ReplaceAll(input, "'"+nfp+"'", "")
|
|
||||||
input = strings.ReplaceAll(input, "'"+fp+"'", "")
|
|
||||||
input = strings.ReplaceAll(input, fp, "")
|
input = strings.ReplaceAll(input, fp, "")
|
||||||
imgs = append(imgs, data)
|
imgs = append(imgs, data)
|
||||||
}
|
}
|
||||||
@ -553,7 +554,7 @@ func getImageData(filePath string) ([]byte, error) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
contentType := http.DetectContentType(buf)
|
contentType := http.DetectContentType(buf)
|
||||||
allowedTypes := []string{"image/jpeg", "image/jpg", "image/png", "image/webp"}
|
allowedTypes := []string{"image/jpeg", "image/jpg", "image/png"}
|
||||||
if !slices.Contains(allowedTypes, contentType) {
|
if !slices.Contains(allowedTypes, contentType) {
|
||||||
return nil, fmt.Errorf("invalid image type: %s", contentType)
|
return nil, fmt.Errorf("invalid image type: %s", contentType)
|
||||||
}
|
}
|
||||||
|
@ -1,28 +1,26 @@
|
|||||||
package cmd
|
package cmd
|
||||||
|
|
||||||
import (
|
import (
|
||||||
"os"
|
|
||||||
"path/filepath"
|
|
||||||
"testing"
|
"testing"
|
||||||
|
|
||||||
|
"github.com/google/go-cmp/cmp"
|
||||||
"github.com/stretchr/testify/assert"
|
"github.com/stretchr/testify/assert"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/api"
|
||||||
)
|
)
|
||||||
|
|
||||||
func TestExtractFilenames(t *testing.T) {
|
func TestExtractFilenames(t *testing.T) {
|
||||||
// Unix style paths
|
// Unix style paths
|
||||||
input := ` some preamble
|
input := ` some preamble
|
||||||
./relative\ path/one.png inbetween1 ./not a valid two.jpg inbetween2 ./1.svg
|
./relative\ path/one.png inbetween1 ./not a valid two.jpg inbetween2 ./1.svg
|
||||||
/unescaped space /three.jpeg inbetween3 /valid\ path/dir/four.png "./quoted with spaces/five.JPG
|
/unescaped space /three.jpeg inbetween3 /valid\ path/dir/four.png "./quoted with spaces/five.JPG`
|
||||||
/unescaped space /six.webp inbetween6 /valid\ path/dir/seven.WEBP`
|
|
||||||
res := extractFileNames(input)
|
res := extractFileNames(input)
|
||||||
assert.Len(t, res, 7)
|
assert.Len(t, res, 5)
|
||||||
assert.Contains(t, res[0], "one.png")
|
assert.Contains(t, res[0], "one.png")
|
||||||
assert.Contains(t, res[1], "two.jpg")
|
assert.Contains(t, res[1], "two.jpg")
|
||||||
assert.Contains(t, res[2], "three.jpeg")
|
assert.Contains(t, res[2], "three.jpeg")
|
||||||
assert.Contains(t, res[3], "four.png")
|
assert.Contains(t, res[3], "four.png")
|
||||||
assert.Contains(t, res[4], "five.JPG")
|
assert.Contains(t, res[4], "five.JPG")
|
||||||
assert.Contains(t, res[5], "six.webp")
|
|
||||||
assert.Contains(t, res[6], "seven.WEBP")
|
|
||||||
assert.NotContains(t, res[4], '"')
|
assert.NotContains(t, res[4], '"')
|
||||||
assert.NotContains(t, res, "inbetween1")
|
assert.NotContains(t, res, "inbetween1")
|
||||||
assert.NotContains(t, res, "./1.svg")
|
assert.NotContains(t, res, "./1.svg")
|
||||||
@ -33,12 +31,10 @@ func TestExtractFilenames(t *testing.T) {
|
|||||||
/absolute/nospace/three.jpeg inbetween3 /absolute/with space/four.png inbetween4
|
/absolute/nospace/three.jpeg inbetween3 /absolute/with space/four.png inbetween4
|
||||||
./relative\ path/five.JPG inbetween5 "./relative with/spaces/six.png inbetween6
|
./relative\ path/five.JPG inbetween5 "./relative with/spaces/six.png inbetween6
|
||||||
d:\path with\spaces\seven.JPEG inbetween7 c:\users\jdoe\eight.png inbetween8
|
d:\path with\spaces\seven.JPEG inbetween7 c:\users\jdoe\eight.png inbetween8
|
||||||
d:\program files\someplace\nine.png inbetween9 "E:\program files\someplace\ten.PNG
|
d:\program files\someplace\nine.png inbetween9 "E:\program files\someplace\ten.PNG some ending
|
||||||
c:/users/jdoe/eleven.webp inbetween11 c:/program files/someplace/twelve.WebP inbetween12
|
|
||||||
d:\path with\spaces\thirteen.WEBP some ending
|
|
||||||
`
|
`
|
||||||
res = extractFileNames(input)
|
res = extractFileNames(input)
|
||||||
assert.Len(t, res, 13)
|
assert.Len(t, res, 10)
|
||||||
assert.NotContains(t, res, "inbetween2")
|
assert.NotContains(t, res, "inbetween2")
|
||||||
assert.Contains(t, res[0], "one.png")
|
assert.Contains(t, res[0], "one.png")
|
||||||
assert.Contains(t, res[0], "c:")
|
assert.Contains(t, res[0], "c:")
|
||||||
@ -56,31 +52,57 @@ d:\path with\spaces\thirteen.WEBP some ending
|
|||||||
assert.Contains(t, res[8], "d:")
|
assert.Contains(t, res[8], "d:")
|
||||||
assert.Contains(t, res[9], "ten.PNG")
|
assert.Contains(t, res[9], "ten.PNG")
|
||||||
assert.Contains(t, res[9], "E:")
|
assert.Contains(t, res[9], "E:")
|
||||||
assert.Contains(t, res[10], "eleven.webp")
|
|
||||||
assert.Contains(t, res[10], "c:")
|
|
||||||
assert.Contains(t, res[11], "twelve.WebP")
|
|
||||||
assert.Contains(t, res[11], "c:")
|
|
||||||
assert.Contains(t, res[12], "thirteen.WEBP")
|
|
||||||
assert.Contains(t, res[12], "d:")
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// Ensure that file paths wrapped in single quotes are removed with the quotes.
|
func TestModelfileBuilder(t *testing.T) {
|
||||||
func TestExtractFileDataRemovesQuotedFilepath(t *testing.T) {
|
opts := runOptions{
|
||||||
dir := t.TempDir()
|
Model: "hork",
|
||||||
fp := filepath.Join(dir, "img.jpg")
|
System: "You are part horse and part shark, but all hork. Do horklike things",
|
||||||
data := make([]byte, 600)
|
Messages: []api.Message{
|
||||||
copy(data, []byte{
|
{Role: "user", Content: "Hey there hork!"},
|
||||||
0xff, 0xd8, 0xff, 0xe0, 0x00, 0x10, 'J', 'F', 'I', 'F',
|
{Role: "assistant", Content: "Yes it is true, I am half horse, half shark."},
|
||||||
0x00, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
},
|
||||||
0xff, 0xd9,
|
Options: map[string]any{
|
||||||
})
|
"temperature": 0.9,
|
||||||
if err := os.WriteFile(fp, data, 0o600); err != nil {
|
"seed": 42,
|
||||||
t.Fatalf("failed to write test image: %v", err)
|
"penalize_newline": false,
|
||||||
|
"stop": []string{"hi", "there"},
|
||||||
|
},
|
||||||
}
|
}
|
||||||
|
|
||||||
input := "before '" + fp + "' after"
|
t.Run("model", func(t *testing.T) {
|
||||||
cleaned, imgs, err := extractFileData(input)
|
expect := `FROM hork
|
||||||
assert.NoError(t, err)
|
SYSTEM You are part horse and part shark, but all hork. Do horklike things
|
||||||
assert.Len(t, imgs, 1)
|
PARAMETER penalize_newline false
|
||||||
assert.Equal(t, cleaned, "before after")
|
PARAMETER seed 42
|
||||||
|
PARAMETER stop hi
|
||||||
|
PARAMETER stop there
|
||||||
|
PARAMETER temperature 0.9
|
||||||
|
MESSAGE user Hey there hork!
|
||||||
|
MESSAGE assistant Yes it is true, I am half horse, half shark.
|
||||||
|
`
|
||||||
|
|
||||||
|
actual := buildModelfile(opts)
|
||||||
|
if diff := cmp.Diff(expect, actual); diff != "" {
|
||||||
|
t.Errorf("mismatch (-want +got):\n%s", diff)
|
||||||
|
}
|
||||||
|
})
|
||||||
|
|
||||||
|
t.Run("parent model", func(t *testing.T) {
|
||||||
|
opts.ParentModel = "horseshark"
|
||||||
|
expect := `FROM horseshark
|
||||||
|
SYSTEM You are part horse and part shark, but all hork. Do horklike things
|
||||||
|
PARAMETER penalize_newline false
|
||||||
|
PARAMETER seed 42
|
||||||
|
PARAMETER stop hi
|
||||||
|
PARAMETER stop there
|
||||||
|
PARAMETER temperature 0.9
|
||||||
|
MESSAGE user Hey there hork!
|
||||||
|
MESSAGE assistant Yes it is true, I am half horse, half shark.
|
||||||
|
`
|
||||||
|
actual := buildModelfile(opts)
|
||||||
|
if diff := cmp.Diff(expect, actual); diff != "" {
|
||||||
|
t.Errorf("mismatch (-want +got):\n%s", diff)
|
||||||
|
}
|
||||||
|
})
|
||||||
}
|
}
|
||||||
|
@ -4,7 +4,7 @@ import (
|
|||||||
"fmt"
|
"fmt"
|
||||||
"os"
|
"os"
|
||||||
|
|
||||||
"github.com/ollama/ollama/runner"
|
"github.com/ollama/ollama/llama/runner"
|
||||||
)
|
)
|
||||||
|
|
||||||
func main() {
|
func main() {
|
||||||
|
@ -1,26 +1,20 @@
|
|||||||
package convert
|
package convert
|
||||||
|
|
||||||
import (
|
import (
|
||||||
"cmp"
|
|
||||||
"encoding/json"
|
"encoding/json"
|
||||||
"errors"
|
"errors"
|
||||||
"fmt"
|
"fmt"
|
||||||
|
"io"
|
||||||
"io/fs"
|
"io/fs"
|
||||||
"log/slog"
|
"log/slog"
|
||||||
"os"
|
|
||||||
"slices"
|
|
||||||
"strings"
|
"strings"
|
||||||
|
|
||||||
"github.com/ollama/ollama/fs/ggml"
|
"github.com/ollama/ollama/llm"
|
||||||
)
|
)
|
||||||
|
|
||||||
type ModelParameters struct {
|
type ModelParameters struct {
|
||||||
Architectures []string `json:"architectures"`
|
Architectures []string `json:"architectures"`
|
||||||
VocabSize uint32 `json:"vocab_size"`
|
VocabSize uint32 `json:"vocab_size"`
|
||||||
|
|
||||||
TextModel struct {
|
|
||||||
VocabSize uint32 `json:"vocab_size"`
|
|
||||||
} `json:"text_config"`
|
|
||||||
}
|
}
|
||||||
|
|
||||||
type AdapterParameters struct {
|
type AdapterParameters struct {
|
||||||
@ -33,8 +27,8 @@ type AdapterParameters struct {
|
|||||||
} `json:"lora_parameters"`
|
} `json:"lora_parameters"`
|
||||||
}
|
}
|
||||||
|
|
||||||
func (ModelParameters) KV(t *Tokenizer) ggml.KV {
|
func (ModelParameters) KV(t *Tokenizer) llm.KV {
|
||||||
kv := ggml.KV{
|
kv := llm.KV{
|
||||||
"general.file_type": uint32(1),
|
"general.file_type": uint32(1),
|
||||||
"general.quantization_version": uint32(2),
|
"general.quantization_version": uint32(2),
|
||||||
"tokenizer.ggml.pre": t.Pre,
|
"tokenizer.ggml.pre": t.Pre,
|
||||||
@ -60,7 +54,7 @@ func (ModelParameters) KV(t *Tokenizer) ggml.KV {
|
|||||||
return kv
|
return kv
|
||||||
}
|
}
|
||||||
|
|
||||||
func (p AdapterParameters) KV() ggml.KV {
|
func (p AdapterParameters) KV() llm.KV {
|
||||||
var alpha float32
|
var alpha float32
|
||||||
if p.LoraParameters.Alpha == 0 {
|
if p.LoraParameters.Alpha == 0 {
|
||||||
alpha = float32(p.Alpha)
|
alpha = float32(p.Alpha)
|
||||||
@ -68,7 +62,7 @@ func (p AdapterParameters) KV() ggml.KV {
|
|||||||
alpha = p.LoraParameters.Alpha
|
alpha = p.LoraParameters.Alpha
|
||||||
}
|
}
|
||||||
|
|
||||||
kv := ggml.KV{
|
kv := llm.KV{
|
||||||
"adapter.lora.alpha": alpha,
|
"adapter.lora.alpha": alpha,
|
||||||
"adapter.type": "lora",
|
"adapter.type": "lora",
|
||||||
"general.file_type": uint32(1),
|
"general.file_type": uint32(1),
|
||||||
@ -85,17 +79,27 @@ func (ModelParameters) specialTokenTypes() []string {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func (ModelParameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
|
||||||
|
return llm.WriteGGUF(ws, kv, ts)
|
||||||
|
}
|
||||||
|
|
||||||
|
func (AdapterParameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
|
||||||
|
return llm.WriteGGUF(ws, kv, ts)
|
||||||
|
}
|
||||||
|
|
||||||
type ModelConverter interface {
|
type ModelConverter interface {
|
||||||
// KV maps parameters to LLM key-values
|
// KV maps parameters to LLM key-values
|
||||||
KV(*Tokenizer) ggml.KV
|
KV(*Tokenizer) llm.KV
|
||||||
// Tensors maps input tensors to LLM tensors. Model specific modifications can be done here.
|
// Tensors maps input tensors to LLM tensors. Model specific modifications can be done here.
|
||||||
Tensors([]Tensor) []*ggml.Tensor
|
Tensors([]Tensor) []llm.Tensor
|
||||||
// Replacements returns a list of string pairs to replace in tensor names.
|
// Replacements returns a list of string pairs to replace in tensor names.
|
||||||
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
|
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
|
||||||
Replacements() []string
|
Replacements() []string
|
||||||
|
|
||||||
// specialTokenTypes returns any special token types the model uses
|
// specialTokenTypes returns any special token types the model uses
|
||||||
specialTokenTypes() []string
|
specialTokenTypes() []string
|
||||||
|
// writeFile writes the model to the provided io.WriteSeeker
|
||||||
|
writeFile(io.WriteSeeker, llm.KV, []llm.Tensor) error
|
||||||
}
|
}
|
||||||
|
|
||||||
type moreParser interface {
|
type moreParser interface {
|
||||||
@ -104,15 +108,17 @@ type moreParser interface {
|
|||||||
|
|
||||||
type AdapterConverter interface {
|
type AdapterConverter interface {
|
||||||
// KV maps parameters to LLM key-values
|
// KV maps parameters to LLM key-values
|
||||||
KV(ggml.KV) ggml.KV
|
KV(llm.KV) llm.KV
|
||||||
// Tensors maps input tensors to LLM tensors. Adapter specific modifications can be done here.
|
// Tensors maps input tensors to LLM tensors. Adapter specific modifications can be done here.
|
||||||
Tensors([]Tensor) []*ggml.Tensor
|
Tensors([]Tensor) []llm.Tensor
|
||||||
// Replacements returns a list of string pairs to replace in tensor names.
|
// Replacements returns a list of string pairs to replace in tensor names.
|
||||||
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
|
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
|
||||||
Replacements() []string
|
Replacements() []string
|
||||||
|
|
||||||
|
writeFile(io.WriteSeeker, llm.KV, []llm.Tensor) error
|
||||||
}
|
}
|
||||||
|
|
||||||
func ConvertAdapter(fsys fs.FS, f *os.File, baseKV ggml.KV) error {
|
func ConvertAdapter(fsys fs.FS, ws io.WriteSeeker, baseKV llm.KV) error {
|
||||||
bts, err := fs.ReadFile(fsys, "adapter_config.json")
|
bts, err := fs.ReadFile(fsys, "adapter_config.json")
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return err
|
return err
|
||||||
@ -147,14 +153,14 @@ func ConvertAdapter(fsys fs.FS, f *os.File, baseKV ggml.KV) error {
|
|||||||
return err
|
return err
|
||||||
}
|
}
|
||||||
|
|
||||||
return writeFile(f, conv.KV(baseKV), conv.Tensors(ts))
|
return conv.writeFile(ws, conv.KV(baseKV), conv.Tensors(ts))
|
||||||
}
|
}
|
||||||
|
|
||||||
// Convert writes an Ollama compatible model to the provided io.WriteSeeker based on configurations
|
// Convert writes an Ollama compatible model to the provided io.WriteSeeker based on configurations
|
||||||
// and files it finds in the input path.
|
// and files it finds in the input path.
|
||||||
// Supported input model formats include safetensors.
|
// Supported input model formats include safetensors.
|
||||||
// Supported input tokenizers files include tokenizer.json (preferred) and tokenizer.model.
|
// Supported input tokenizers files include tokenizer.json (preferred) and tokenizer.model.
|
||||||
func ConvertModel(fsys fs.FS, f *os.File) error {
|
func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
|
||||||
bts, err := fs.ReadFile(fsys, "config.json")
|
bts, err := fs.ReadFile(fsys, "config.json")
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return err
|
return err
|
||||||
@ -171,34 +177,20 @@ func ConvertModel(fsys fs.FS, f *os.File) error {
|
|||||||
|
|
||||||
var conv ModelConverter
|
var conv ModelConverter
|
||||||
switch p.Architectures[0] {
|
switch p.Architectures[0] {
|
||||||
case "LlamaForCausalLM":
|
case "LlamaForCausalLM", "MistralForCausalLM":
|
||||||
conv = &llamaModel{}
|
conv = &llamaModel{}
|
||||||
case "MllamaForConditionalGeneration":
|
|
||||||
conv = &mllamaModel{}
|
|
||||||
case "Llama4ForConditionalGeneration":
|
|
||||||
conv = &llama4Model{}
|
|
||||||
case "Mistral3ForConditionalGeneration":
|
|
||||||
conv = &mistral3Model{}
|
|
||||||
case "MixtralForCausalLM":
|
case "MixtralForCausalLM":
|
||||||
conv = &mixtralModel{}
|
conv = &mixtralModel{}
|
||||||
case "GemmaForCausalLM":
|
case "GemmaForCausalLM":
|
||||||
conv = &gemmaModel{}
|
conv = &gemmaModel{}
|
||||||
case "Gemma2ForCausalLM":
|
case "Gemma2ForCausalLM":
|
||||||
conv = &gemma2Model{}
|
conv = &gemma2Model{}
|
||||||
case "Gemma3ForCausalLM", "Gemma3ForConditionalGeneration":
|
|
||||||
conv = &gemma3Model{Architecture: p.Architectures[0]}
|
|
||||||
case "Phi3ForCausalLM":
|
case "Phi3ForCausalLM":
|
||||||
conv = &phi3Model{}
|
conv = &phi3Model{}
|
||||||
case "Qwen2ForCausalLM":
|
|
||||||
conv = &qwen2Model{}
|
|
||||||
case "Qwen2_5_VLForConditionalGeneration":
|
|
||||||
conv = &qwen25VLModel{}
|
|
||||||
case "BertModel":
|
case "BertModel":
|
||||||
conv = &bertModel{}
|
conv = &bertModel{}
|
||||||
case "CohereForCausalLM":
|
|
||||||
conv = &commandrModel{}
|
|
||||||
default:
|
default:
|
||||||
return fmt.Errorf("unsupported architecture %q", p.Architectures[0])
|
return errors.New("unsupported architecture")
|
||||||
}
|
}
|
||||||
|
|
||||||
if err := json.Unmarshal(bts, conv); err != nil {
|
if err := json.Unmarshal(bts, conv); err != nil {
|
||||||
@ -216,22 +208,17 @@ func ConvertModel(fsys fs.FS, f *os.File) error {
|
|||||||
return err
|
return err
|
||||||
}
|
}
|
||||||
|
|
||||||
vocabSize := int(cmp.Or(p.VocabSize, p.TextModel.VocabSize))
|
vocabSize := int(p.VocabSize)
|
||||||
|
|
||||||
switch {
|
switch {
|
||||||
case vocabSize == 0:
|
|
||||||
slog.Debug("vocabulary size was not explicitly set by the model", "default size", len(t.Vocabulary.Tokens))
|
|
||||||
case vocabSize > len(t.Vocabulary.Tokens):
|
case vocabSize > len(t.Vocabulary.Tokens):
|
||||||
slog.Debug("vocabulary is smaller than expected, padding with dummy tokens", "expect", vocabSize, "actual", len(t.Vocabulary.Tokens))
|
slog.Warn("vocabulary is smaller than expected, padding with dummy tokens", "expect", vocabSize, "actual", len(t.Vocabulary.Tokens))
|
||||||
for i := range vocabSize - len(t.Vocabulary.Tokens) {
|
for i := range vocabSize - len(t.Vocabulary.Tokens) {
|
||||||
t.Vocabulary.Tokens = append(t.Vocabulary.Tokens, fmt.Sprintf("[PAD%d]", i))
|
t.Vocabulary.Tokens = append(t.Vocabulary.Tokens, fmt.Sprintf("[PAD%d]", i))
|
||||||
t.Vocabulary.Scores = append(t.Vocabulary.Scores, -1)
|
t.Vocabulary.Scores = append(t.Vocabulary.Scores, -1)
|
||||||
t.Vocabulary.Types = append(t.Vocabulary.Types, tokenTypeUserDefined)
|
t.Vocabulary.Types = append(t.Vocabulary.Types, tokenTypeUserDefined)
|
||||||
}
|
}
|
||||||
case vocabSize < len(t.Vocabulary.Tokens):
|
case vocabSize < len(t.Vocabulary.Tokens):
|
||||||
slog.Debug("vocabulary is larger than expected", "want", vocabSize, "got", len(t.Vocabulary.Tokens))
|
return fmt.Errorf("vocabulary is larger than expected '%d' instead of '%d'", len(t.Vocabulary.Tokens), vocabSize)
|
||||||
p.VocabSize = uint32(len(t.Vocabulary.Tokens))
|
|
||||||
p.TextModel.VocabSize = uint32(len(t.Vocabulary.Tokens))
|
|
||||||
default:
|
default:
|
||||||
slog.Debug("vocabulary", "size", len(t.Vocabulary.Tokens))
|
slog.Debug("vocabulary", "size", len(t.Vocabulary.Tokens))
|
||||||
}
|
}
|
||||||
@ -241,13 +228,5 @@ func ConvertModel(fsys fs.FS, f *os.File) error {
|
|||||||
return err
|
return err
|
||||||
}
|
}
|
||||||
|
|
||||||
return writeFile(f, conv.KV(t), conv.Tensors(ts))
|
return conv.writeFile(ws, conv.KV(t), conv.Tensors(ts))
|
||||||
}
|
|
||||||
|
|
||||||
func writeFile(f *os.File, kv ggml.KV, ts []*ggml.Tensor) error {
|
|
||||||
for i := range ts {
|
|
||||||
ts[i].Shape = slices.Clone(ts[i].Shape)
|
|
||||||
slices.Reverse(ts[i].Shape)
|
|
||||||
}
|
|
||||||
return ggml.WriteGGUF(f, kv, ts)
|
|
||||||
}
|
}
|
||||||
|
@ -8,7 +8,7 @@ import (
|
|||||||
"slices"
|
"slices"
|
||||||
"strings"
|
"strings"
|
||||||
|
|
||||||
"github.com/ollama/ollama/fs/ggml"
|
"github.com/ollama/ollama/llm"
|
||||||
)
|
)
|
||||||
|
|
||||||
type bertModel struct {
|
type bertModel struct {
|
||||||
@ -85,7 +85,7 @@ func (p *bertModel) parseMore(fsys fs.FS) error {
|
|||||||
return nil
|
return nil
|
||||||
}
|
}
|
||||||
|
|
||||||
func (p *bertModel) KV(t *Tokenizer) ggml.KV {
|
func (p *bertModel) KV(t *Tokenizer) llm.KV {
|
||||||
kv := p.ModelParameters.KV(t)
|
kv := p.ModelParameters.KV(t)
|
||||||
kv["general.architecture"] = "bert"
|
kv["general.architecture"] = "bert"
|
||||||
kv["bert.attention.causal"] = false
|
kv["bert.attention.causal"] = false
|
||||||
@ -132,8 +132,8 @@ func (p *bertModel) KV(t *Tokenizer) ggml.KV {
|
|||||||
return kv
|
return kv
|
||||||
}
|
}
|
||||||
|
|
||||||
func (p *bertModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
func (p *bertModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||||
var out []*ggml.Tensor
|
var out []llm.Tensor
|
||||||
for _, t := range ts {
|
for _, t := range ts {
|
||||||
if slices.Contains([]string{
|
if slices.Contains([]string{
|
||||||
"embeddings.position_ids",
|
"embeddings.position_ids",
|
||||||
@ -143,7 +143,7 @@ func (p *bertModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
|||||||
continue
|
continue
|
||||||
}
|
}
|
||||||
|
|
||||||
out = append(out, &ggml.Tensor{
|
out = append(out, llm.Tensor{
|
||||||
Name: t.Name(),
|
Name: t.Name(),
|
||||||
Kind: t.Kind(),
|
Kind: t.Kind(),
|
||||||
Shape: t.Shape(),
|
Shape: t.Shape(),
|
||||||
|
@ -1,76 +0,0 @@
|
|||||||
package convert
|
|
||||||
|
|
||||||
import (
|
|
||||||
"cmp"
|
|
||||||
|
|
||||||
"github.com/ollama/ollama/fs/ggml"
|
|
||||||
)
|
|
||||||
|
|
||||||
type commandrModel struct {
|
|
||||||
ModelParameters
|
|
||||||
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
|
||||||
HiddenSize uint32 `json:"hidden_size"`
|
|
||||||
HiddenLayers uint32 `json:"num_hidden_layers"`
|
|
||||||
IntermediateSize uint32 `json:"intermediate_size"`
|
|
||||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
|
||||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
|
||||||
LayerNormEPS float32 `json:"layer_norm_eps"`
|
|
||||||
RopeTheta float32 `json:"rope_theta"`
|
|
||||||
UseQKNorm bool `json:"use_qk_norm"`
|
|
||||||
MaxLength uint32 `json:"model_max_length"`
|
|
||||||
LogitScale float32 `json:"logit_scale"`
|
|
||||||
NCtx uint32 `json:"n_ctx"`
|
|
||||||
}
|
|
||||||
|
|
||||||
var _ ModelConverter = (*commandrModel)(nil)
|
|
||||||
|
|
||||||
func (p *commandrModel) KV(t *Tokenizer) ggml.KV {
|
|
||||||
kv := p.ModelParameters.KV(t)
|
|
||||||
kv["general.architecture"] = "command-r"
|
|
||||||
kv["general.name"] = "command-r"
|
|
||||||
kv["command-r.context_length"] = cmp.Or(p.MaxLength, p.MaxPositionEmbeddings, p.NCtx)
|
|
||||||
kv["command-r.embedding_length"] = p.HiddenSize
|
|
||||||
kv["command-r.block_count"] = p.HiddenLayers
|
|
||||||
kv["command-r.feed_forward_length"] = p.IntermediateSize
|
|
||||||
kv["command-r.attention.head_count"] = p.NumAttentionHeads
|
|
||||||
kv["command-r.attention.head_count_kv"] = p.NumKeyValueHeads
|
|
||||||
kv["command-r.attention.layer_norm_epsilon"] = p.LayerNormEPS
|
|
||||||
kv["command-r.rope.freq_base"] = p.RopeTheta
|
|
||||||
kv["command-r.max_position_embeddings"] = cmp.Or(p.MaxLength, p.MaxPositionEmbeddings)
|
|
||||||
kv["command-r.logit_scale"] = p.LogitScale
|
|
||||||
kv["command-r.rope.scaling.type"] = "none"
|
|
||||||
|
|
||||||
return kv
|
|
||||||
}
|
|
||||||
|
|
||||||
func (p *commandrModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
|
||||||
var out []*ggml.Tensor
|
|
||||||
for _, t := range ts {
|
|
||||||
out = append(out, &ggml.Tensor{
|
|
||||||
Name: t.Name(),
|
|
||||||
Kind: t.Kind(),
|
|
||||||
Shape: t.Shape(),
|
|
||||||
WriterTo: t,
|
|
||||||
})
|
|
||||||
}
|
|
||||||
|
|
||||||
return out
|
|
||||||
}
|
|
||||||
|
|
||||||
func (p *commandrModel) Replacements() []string {
|
|
||||||
return []string{
|
|
||||||
"self_attn.q_norm", "attn_q_norm",
|
|
||||||
"self_attn.k_norm", "attn_k_norm",
|
|
||||||
"model.layers", "blk",
|
|
||||||
"input_layernorm", "attn_norm",
|
|
||||||
"mlp.down_proj", "ffn_down",
|
|
||||||
"mlp.gate_proj", "ffn_gate",
|
|
||||||
"mlp.up_proj", "ffn_up",
|
|
||||||
"self_attn.k_proj", "attn_k",
|
|
||||||
"self_attn.o_proj", "attn_output",
|
|
||||||
"self_attn.q_proj", "attn_q",
|
|
||||||
"self_attn.v_proj", "attn_v",
|
|
||||||
"model.norm", "output_norm",
|
|
||||||
"model.embed_tokens", "token_embd",
|
|
||||||
}
|
|
||||||
}
|
|
@ -6,7 +6,7 @@ import (
|
|||||||
"github.com/pdevine/tensor"
|
"github.com/pdevine/tensor"
|
||||||
"github.com/pdevine/tensor/native"
|
"github.com/pdevine/tensor/native"
|
||||||
|
|
||||||
"github.com/ollama/ollama/fs/ggml"
|
"github.com/ollama/ollama/llm"
|
||||||
)
|
)
|
||||||
|
|
||||||
type gemmaModel struct {
|
type gemmaModel struct {
|
||||||
@ -23,7 +23,7 @@ type gemmaModel struct {
|
|||||||
|
|
||||||
var _ ModelConverter = (*gemmaModel)(nil)
|
var _ ModelConverter = (*gemmaModel)(nil)
|
||||||
|
|
||||||
func (p *gemmaModel) KV(t *Tokenizer) ggml.KV {
|
func (p *gemmaModel) KV(t *Tokenizer) llm.KV {
|
||||||
kv := p.ModelParameters.KV(t)
|
kv := p.ModelParameters.KV(t)
|
||||||
kv["general.architecture"] = "gemma"
|
kv["general.architecture"] = "gemma"
|
||||||
kv["gemma.context_length"] = p.MaxPositionEmbeddings
|
kv["gemma.context_length"] = p.MaxPositionEmbeddings
|
||||||
@ -42,14 +42,14 @@ func (p *gemmaModel) KV(t *Tokenizer) ggml.KV {
|
|||||||
return kv
|
return kv
|
||||||
}
|
}
|
||||||
|
|
||||||
func (p *gemmaModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
func (p *gemmaModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||||
var out []*ggml.Tensor
|
var out []llm.Tensor
|
||||||
for _, t := range ts {
|
for _, t := range ts {
|
||||||
if !strings.HasPrefix(t.Name(), "v.") && strings.HasSuffix(t.Name(), "_norm.weight") {
|
if strings.HasSuffix(t.Name(), "_norm.weight") {
|
||||||
t.SetRepacker(p.addOne)
|
t.SetRepacker(p.addOne)
|
||||||
}
|
}
|
||||||
|
|
||||||
out = append(out, &ggml.Tensor{
|
out = append(out, llm.Tensor{
|
||||||
Name: t.Name(),
|
Name: t.Name(),
|
||||||
Kind: t.Kind(),
|
Kind: t.Kind(),
|
||||||
Shape: t.Shape(),
|
Shape: t.Shape(),
|
||||||
|
@ -1,6 +1,8 @@
|
|||||||
package convert
|
package convert
|
||||||
|
|
||||||
import "github.com/ollama/ollama/fs/ggml"
|
import (
|
||||||
|
"github.com/ollama/ollama/llm"
|
||||||
|
)
|
||||||
|
|
||||||
type gemma2Model struct {
|
type gemma2Model struct {
|
||||||
gemmaModel
|
gemmaModel
|
||||||
@ -9,7 +11,7 @@ type gemma2Model struct {
|
|||||||
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
|
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
|
||||||
}
|
}
|
||||||
|
|
||||||
func (p *gemma2Model) KV(t *Tokenizer) ggml.KV {
|
func (p *gemma2Model) KV(t *Tokenizer) llm.KV {
|
||||||
kv := p.ModelParameters.KV(t)
|
kv := p.ModelParameters.KV(t)
|
||||||
kv["general.architecture"] = "gemma2"
|
kv["general.architecture"] = "gemma2"
|
||||||
kv["gemma2.context_length"] = p.MaxPositionEmbeddings
|
kv["gemma2.context_length"] = p.MaxPositionEmbeddings
|
||||||
|
@ -6,7 +6,7 @@ import (
|
|||||||
"github.com/pdevine/tensor"
|
"github.com/pdevine/tensor"
|
||||||
"github.com/pdevine/tensor/native"
|
"github.com/pdevine/tensor/native"
|
||||||
|
|
||||||
"github.com/ollama/ollama/fs/ggml"
|
"github.com/ollama/ollama/llm"
|
||||||
)
|
)
|
||||||
|
|
||||||
type gemma2Adapter struct {
|
type gemma2Adapter struct {
|
||||||
@ -15,14 +15,14 @@ type gemma2Adapter struct {
|
|||||||
|
|
||||||
var _ AdapterConverter = (*gemma2Adapter)(nil)
|
var _ AdapterConverter = (*gemma2Adapter)(nil)
|
||||||
|
|
||||||
func (p *gemma2Adapter) KV(baseKV ggml.KV) ggml.KV {
|
func (p *gemma2Adapter) KV(baseKV llm.KV) llm.KV {
|
||||||
kv := p.AdapterParameters.KV()
|
kv := p.AdapterParameters.KV()
|
||||||
kv["general.architecture"] = "gemma2"
|
kv["general.architecture"] = "gemma2"
|
||||||
return kv
|
return kv
|
||||||
}
|
}
|
||||||
|
|
||||||
func (p *gemma2Adapter) Tensors(ts []Tensor) []*ggml.Tensor {
|
func (p *gemma2Adapter) Tensors(ts []Tensor) []llm.Tensor {
|
||||||
var out []*ggml.Tensor
|
var out []llm.Tensor
|
||||||
for _, t := range ts {
|
for _, t := range ts {
|
||||||
shape := t.Shape()
|
shape := t.Shape()
|
||||||
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
|
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
|
||||||
@ -31,7 +31,7 @@ func (p *gemma2Adapter) Tensors(ts []Tensor) []*ggml.Tensor {
|
|||||||
t.SetRepacker(p.repack)
|
t.SetRepacker(p.repack)
|
||||||
}
|
}
|
||||||
|
|
||||||
out = append(out, &ggml.Tensor{
|
out = append(out, llm.Tensor{
|
||||||
Name: t.Name(),
|
Name: t.Name(),
|
||||||
Kind: t.Kind(),
|
Kind: t.Kind(),
|
||||||
Shape: t.Shape(),
|
Shape: t.Shape(),
|
||||||
|
@ -1,142 +0,0 @@
|
|||||||
package convert
|
|
||||||
|
|
||||||
import (
|
|
||||||
"cmp"
|
|
||||||
|
|
||||||
"github.com/ollama/ollama/fs/ggml"
|
|
||||||
)
|
|
||||||
|
|
||||||
type gemma3Model struct {
|
|
||||||
gemmaModel
|
|
||||||
Architecture string
|
|
||||||
TextModel struct {
|
|
||||||
HeadDim uint32 `json:"head_dim"`
|
|
||||||
HiddenSize uint32 `json:"hidden_size"`
|
|
||||||
HiddenLayers uint32 `json:"num_hidden_layers"`
|
|
||||||
IntermediateSize uint32 `json:"intermediate_size"`
|
|
||||||
SlidingWindow uint32 `json:"sliding_window"`
|
|
||||||
} `json:"text_config"`
|
|
||||||
VisionModel struct {
|
|
||||||
NumAttentionHeads uint32 `json:"num_attention_heads"` // attention.head_count 16
|
|
||||||
LayerNormEpsilon float32 `json:"layer_norm_eps"` // attention.layer_norm_epsilon 1e-05
|
|
||||||
NumHiddenLayers uint32 `json:"num_hidden_layers"` // block_count 32
|
|
||||||
HiddenSize uint32 `json:"hidden_size"` // embedding_length 1280
|
|
||||||
IntermediateSize uint32 `json:"intermediate_size"` // feed_forward_length 5120
|
|
||||||
ImageSize uint32 `json:"image_size"` // image_size 560
|
|
||||||
NumChannels uint32 `json:"num_channels"` // num_channels 3
|
|
||||||
PatchSize uint32 `json:"patch_size"` // patch_size 14
|
|
||||||
} `json:"vision_config"`
|
|
||||||
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
|
||||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
|
||||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
|
||||||
RMSNormEPS float32 `json:"rms_norm_eps"`
|
|
||||||
HeadDim uint32 `json:"head_dim"`
|
|
||||||
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
|
|
||||||
RopeLocalTheta float32 `json:"rope_local_base_freq"`
|
|
||||||
RopeGlobalTheta float32 `json:"rope_global_base_freq"`
|
|
||||||
SlidingWindow uint32 `json:"sliding_window"`
|
|
||||||
MultiModalTokensPerImage uint32 `json:"mm_tokens_per_image"`
|
|
||||||
}
|
|
||||||
|
|
||||||
const (
|
|
||||||
gemma4BLayerCount = 34
|
|
||||||
gemma12BLayerCount = 48
|
|
||||||
gemma27BLayerCount = 62
|
|
||||||
)
|
|
||||||
|
|
||||||
func (p *gemma3Model) KV(t *Tokenizer) ggml.KV {
|
|
||||||
kv := p.ModelParameters.KV(t)
|
|
||||||
kv["general.architecture"] = "gemma3"
|
|
||||||
|
|
||||||
numBlocks := cmp.Or(p.HiddenLayers, p.TextModel.HiddenLayers)
|
|
||||||
kv["gemma3.block_count"] = numBlocks
|
|
||||||
|
|
||||||
var (
|
|
||||||
numHeads uint32
|
|
||||||
numKVHeads uint32
|
|
||||||
)
|
|
||||||
|
|
||||||
switch numBlocks {
|
|
||||||
case gemma4BLayerCount:
|
|
||||||
numHeads = 8
|
|
||||||
numKVHeads = 4
|
|
||||||
case gemma12BLayerCount:
|
|
||||||
numHeads = 16
|
|
||||||
numKVHeads = 8
|
|
||||||
case gemma27BLayerCount:
|
|
||||||
numHeads = 32
|
|
||||||
numKVHeads = 16
|
|
||||||
default:
|
|
||||||
numHeads = p.NumAttentionHeads
|
|
||||||
numKVHeads = p.NumKeyValueHeads
|
|
||||||
}
|
|
||||||
|
|
||||||
kv["gemma3.attention.head_count"] = numHeads
|
|
||||||
kv["gemma3.attention.head_count_kv"] = numKVHeads
|
|
||||||
|
|
||||||
switch p.Architecture {
|
|
||||||
case "Gemma3ForCausalLM":
|
|
||||||
kv["gemma3.context_length"] = p.MaxPositionEmbeddings
|
|
||||||
kv["gemma3.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
|
|
||||||
kv["gemma3.attention.key_length"] = p.HeadDim
|
|
||||||
kv["gemma3.attention.value_length"] = p.HeadDim
|
|
||||||
kv["gemma3.attention.sliding_window"] = p.SlidingWindow
|
|
||||||
kv["gemma3.final_logit_softcapping"] = cmp.Or(p.FinalLogitSoftcap, 30)
|
|
||||||
kv["gemma3.rope.local.freq_base"] = cmp.Or(p.RopeLocalTheta, 10000.0)
|
|
||||||
kv["gemma3.rope.global.freq_base"] = cmp.Or(p.RopeGlobalTheta, 1000000.0)
|
|
||||||
kv["gemma3.embedding_length"] = p.HiddenSize
|
|
||||||
kv["gemma3.feed_forward_length"] = p.IntermediateSize
|
|
||||||
default:
|
|
||||||
kv["gemma3.context_length"] = cmp.Or(p.MaxPositionEmbeddings, 131072)
|
|
||||||
kv["gemma3.embedding_length"] = p.TextModel.HiddenSize
|
|
||||||
kv["gemma3.feed_forward_length"] = p.TextModel.IntermediateSize
|
|
||||||
kv["gemma3.attention.sliding_window"] = p.TextModel.SlidingWindow
|
|
||||||
kv["gemma3.vision.block_count"] = p.VisionModel.NumHiddenLayers
|
|
||||||
kv["gemma3.vision.embedding_length"] = p.VisionModel.HiddenSize
|
|
||||||
kv["gemma3.vision.feed_forward_length"] = p.VisionModel.IntermediateSize
|
|
||||||
kv["gemma3.vision.image_size"] = p.VisionModel.ImageSize
|
|
||||||
kv["gemma3.vision.patch_size"] = p.VisionModel.PatchSize
|
|
||||||
kv["gemma3.vision.num_channels"] = cmp.Or(p.VisionModel.NumChannels, 3)
|
|
||||||
kv["gemma3.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
|
|
||||||
kv["gemma3.vision.attention.layer_norm_epsilon"] = cmp.Or(p.VisionModel.LayerNormEpsilon, 1e-6)
|
|
||||||
kv["gemma3.attention.key_length"] = cmp.Or(p.TextModel.HeadDim, 256)
|
|
||||||
kv["gemma3.attention.value_length"] = cmp.Or(p.TextModel.HeadDim, 256)
|
|
||||||
}
|
|
||||||
|
|
||||||
if p.MultiModalTokensPerImage > 0 {
|
|
||||||
kv["gemma3.mm.tokens_per_image"] = p.MultiModalTokensPerImage
|
|
||||||
}
|
|
||||||
|
|
||||||
return kv
|
|
||||||
}
|
|
||||||
|
|
||||||
func (p *gemma3Model) Replacements() []string {
|
|
||||||
return []string{
|
|
||||||
"lm_head", "output",
|
|
||||||
"model.embed_tokens", "token_embd",
|
|
||||||
"model.norm", "output_norm",
|
|
||||||
"vision_tower.vision_model.embeddings", "v",
|
|
||||||
"vision_tower.vision_model", "v",
|
|
||||||
"vision_model.vision_model.embeddings", "v",
|
|
||||||
"vision_model.vision_model", "v",
|
|
||||||
"language_model.", "",
|
|
||||||
"model.layers", "blk",
|
|
||||||
"encoder.layers", "blk",
|
|
||||||
"input_layernorm", "attn_norm",
|
|
||||||
"self_attn.q_proj", "attn_q",
|
|
||||||
"self_attn.q_norm", "attn_q_norm",
|
|
||||||
"self_attn.k_proj", "attn_k",
|
|
||||||
"self_attn.k_norm", "attn_k_norm",
|
|
||||||
"self_attn.v_proj", "attn_v",
|
|
||||||
"self_attn.o_proj", "attn_output",
|
|
||||||
"self_attn.out_proj", "attn_output",
|
|
||||||
"mlp.gate_proj", "ffn_gate",
|
|
||||||
"mlp.down_proj", "ffn_down",
|
|
||||||
"mlp.up_proj", "ffn_up",
|
|
||||||
"post_attention_layernorm", "post_attention_norm",
|
|
||||||
"pre_feedforward_layernorm", "ffn_norm",
|
|
||||||
"post_feedforward_layernorm", "post_ffw_norm",
|
|
||||||
"input_projection_weight", "input_projection.weight",
|
|
||||||
"multi_modal_projector", "mm",
|
|
||||||
}
|
|
||||||
}
|
|
@ -9,7 +9,7 @@ import (
|
|||||||
"github.com/pdevine/tensor"
|
"github.com/pdevine/tensor"
|
||||||
"github.com/pdevine/tensor/native"
|
"github.com/pdevine/tensor/native"
|
||||||
|
|
||||||
"github.com/ollama/ollama/fs/ggml"
|
"github.com/ollama/ollama/llm"
|
||||||
)
|
)
|
||||||
|
|
||||||
type llamaModel struct {
|
type llamaModel struct {
|
||||||
@ -28,12 +28,12 @@ type llamaModel struct {
|
|||||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||||
RopeTheta float32 `json:"rope_theta"`
|
RopeTheta float32 `json:"rope_theta"`
|
||||||
RopeScaling struct {
|
RopeScaling struct {
|
||||||
Type string `json:"type"`
|
Type string `json:"type"`
|
||||||
RopeType string `json:"rope_type"`
|
RopeType string `json:"rope_type"`
|
||||||
Factor float32 `json:"factor"`
|
Factor float32 `json:"factor"`
|
||||||
LowFrequencyFactor float32 `json:"low_freq_factor"`
|
LowFrequencyFactor float32 `json:"low_freq_factor"`
|
||||||
HighFrequencyFactor float32 `json:"high_freq_factor"`
|
HighFrequencyFactor float32 `json:"high_freq_factor"`
|
||||||
OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
|
OriginalMaxPositionalEmbeddings uint32 `json:"original_max_positional_embeddings"`
|
||||||
|
|
||||||
factors ropeFactor
|
factors ropeFactor
|
||||||
} `json:"rope_scaling"`
|
} `json:"rope_scaling"`
|
||||||
@ -42,13 +42,11 @@ type llamaModel struct {
|
|||||||
LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
|
LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
|
||||||
NormEpsilon float32 `json:"norm_epsilon"`
|
NormEpsilon float32 `json:"norm_epsilon"`
|
||||||
HeadDim uint32 `json:"head_dim"`
|
HeadDim uint32 `json:"head_dim"`
|
||||||
|
|
||||||
skipRepack bool
|
|
||||||
}
|
}
|
||||||
|
|
||||||
var _ ModelConverter = (*llamaModel)(nil)
|
var _ ModelConverter = (*llamaModel)(nil)
|
||||||
|
|
||||||
func (p *llamaModel) KV(t *Tokenizer) ggml.KV {
|
func (p *llamaModel) KV(t *Tokenizer) llm.KV {
|
||||||
kv := p.ModelParameters.KV(t)
|
kv := p.ModelParameters.KV(t)
|
||||||
kv["general.architecture"] = "llama"
|
kv["general.architecture"] = "llama"
|
||||||
kv["llama.vocab_size"] = p.VocabSize
|
kv["llama.vocab_size"] = p.VocabSize
|
||||||
@ -72,10 +70,6 @@ func (p *llamaModel) KV(t *Tokenizer) ggml.KV {
|
|||||||
kv["llama.rope.dimension_count"] = p.HiddenSize / headCount
|
kv["llama.rope.dimension_count"] = p.HiddenSize / headCount
|
||||||
}
|
}
|
||||||
|
|
||||||
if p.HeadDim > 0 {
|
|
||||||
kv["llama.attention.head_dim"] = p.HeadDim
|
|
||||||
}
|
|
||||||
|
|
||||||
if p.RopeTheta > 0 {
|
if p.RopeTheta > 0 {
|
||||||
kv["llama.rope.freq_base"] = p.RopeTheta
|
kv["llama.rope.freq_base"] = p.RopeTheta
|
||||||
}
|
}
|
||||||
@ -90,7 +84,7 @@ func (p *llamaModel) KV(t *Tokenizer) ggml.KV {
|
|||||||
factorLow := cmp.Or(p.RopeScaling.LowFrequencyFactor, 1.0)
|
factorLow := cmp.Or(p.RopeScaling.LowFrequencyFactor, 1.0)
|
||||||
factorHigh := cmp.Or(p.RopeScaling.HighFrequencyFactor, 4.0)
|
factorHigh := cmp.Or(p.RopeScaling.HighFrequencyFactor, 4.0)
|
||||||
|
|
||||||
original := cmp.Or(p.RopeScaling.OriginalMaxPositionEmbeddings, 8192)
|
original := cmp.Or(p.RopeScaling.OriginalMaxPositionalEmbeddings, 8192)
|
||||||
lambdaLow := float32(original) / factorLow
|
lambdaLow := float32(original) / factorLow
|
||||||
lambdaHigh := float32(original) / factorHigh
|
lambdaHigh := float32(original) / factorHigh
|
||||||
|
|
||||||
@ -126,11 +120,11 @@ func (p *llamaModel) KV(t *Tokenizer) ggml.KV {
|
|||||||
return kv
|
return kv
|
||||||
}
|
}
|
||||||
|
|
||||||
func (p *llamaModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
func (p *llamaModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||||
var out []*ggml.Tensor
|
var out []llm.Tensor
|
||||||
|
|
||||||
if p.RopeScaling.factors != nil {
|
if p.RopeScaling.factors != nil {
|
||||||
out = append(out, &ggml.Tensor{
|
out = append(out, llm.Tensor{
|
||||||
Name: "rope_freqs.weight",
|
Name: "rope_freqs.weight",
|
||||||
Kind: 0,
|
Kind: 0,
|
||||||
Shape: []uint64{uint64(len(p.RopeScaling.factors))},
|
Shape: []uint64{uint64(len(p.RopeScaling.factors))},
|
||||||
@ -139,13 +133,12 @@ func (p *llamaModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
|||||||
}
|
}
|
||||||
|
|
||||||
for _, t := range ts {
|
for _, t := range ts {
|
||||||
if strings.HasSuffix(t.Name(), "attn_q.weight") || strings.HasSuffix(t.Name(), "attn_k.weight") {
|
if strings.HasSuffix(t.Name(), "attn_q.weight") ||
|
||||||
if !p.skipRepack {
|
strings.HasSuffix(t.Name(), "attn_k.weight") {
|
||||||
t.SetRepacker(p.repack)
|
t.SetRepacker(p.repack)
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
out = append(out, &ggml.Tensor{
|
out = append(out, llm.Tensor{
|
||||||
Name: t.Name(),
|
Name: t.Name(),
|
||||||
Kind: t.Kind(),
|
Kind: t.Kind(),
|
||||||
Shape: t.Shape(),
|
Shape: t.Shape(),
|
||||||
|
@ -1,169 +0,0 @@
|
|||||||
package convert
|
|
||||||
|
|
||||||
import (
|
|
||||||
"slices"
|
|
||||||
"strings"
|
|
||||||
|
|
||||||
"github.com/pdevine/tensor"
|
|
||||||
"github.com/pdevine/tensor/native"
|
|
||||||
|
|
||||||
"github.com/ollama/ollama/fs/ggml"
|
|
||||||
)
|
|
||||||
|
|
||||||
type llama4Model struct {
|
|
||||||
ModelParameters
|
|
||||||
TextModel struct {
|
|
||||||
llamaModel
|
|
||||||
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
|
|
||||||
NumLocalExperts uint32 `json:"num_local_experts"`
|
|
||||||
InterleaveMOELayerStep uint32 `json:"interleave_moe_layer_step"`
|
|
||||||
UseQKNorm bool `json:"use_qk_norm"`
|
|
||||||
IntermediateSizeMLP uint32 `json:"intermediate_size_mlp"`
|
|
||||||
AttentionChunkSize uint32 `json:"attention_chunk_size"`
|
|
||||||
} `json:"text_config"`
|
|
||||||
VisionModel struct {
|
|
||||||
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
|
||||||
HiddenSize uint32 `json:"hidden_size"`
|
|
||||||
IntermediateSize uint32 `json:"intermediate_size"`
|
|
||||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
|
||||||
ImageSize uint32 `json:"image_size"`
|
|
||||||
PatchSize uint32 `json:"patch_size"`
|
|
||||||
RopeTheta float32 `json:"rope_theta"`
|
|
||||||
NormEpsilon float32 `json:"norm_eps"`
|
|
||||||
PixelShuffleRatio float32 `json:"pixel_shuffle_ratio"`
|
|
||||||
} `json:"vision_config"`
|
|
||||||
}
|
|
||||||
|
|
||||||
// KV implements ModelConverter.
|
|
||||||
func (p *llama4Model) KV(t *Tokenizer) ggml.KV {
|
|
||||||
kv := p.ModelParameters.KV(t)
|
|
||||||
kv["general.architecture"] = "llama4"
|
|
||||||
|
|
||||||
for k, v := range p.TextModel.KV(t) {
|
|
||||||
if strings.HasPrefix(k, "llama.") {
|
|
||||||
kv[strings.ReplaceAll(k, "llama.", "llama4.")] = v
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
kv["llama4.feed_forward_length"] = p.TextModel.IntermediateSizeMLP
|
|
||||||
kv["llama4.expert_feed_forward_length"] = p.TextModel.IntermediateSize
|
|
||||||
|
|
||||||
kv["llama4.expert_count"] = p.TextModel.NumLocalExperts
|
|
||||||
kv["llama4.expert_used_count"] = p.TextModel.NumExpertsPerToken
|
|
||||||
kv["llama4.interleave_moe_layer_step"] = p.TextModel.InterleaveMOELayerStep
|
|
||||||
kv["llama4.use_qk_norm"] = p.TextModel.UseQKNorm
|
|
||||||
kv["llama4.attention.chunk_size"] = p.TextModel.AttentionChunkSize
|
|
||||||
|
|
||||||
kv["llama4.vision.block_count"] = p.VisionModel.NumHiddenLayers
|
|
||||||
kv["llama4.vision.embedding_length"] = p.VisionModel.HiddenSize
|
|
||||||
kv["llama4.vision.feed_forward_length"] = p.VisionModel.IntermediateSize
|
|
||||||
kv["llama4.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
|
|
||||||
kv["llama4.vision.image_size"] = p.VisionModel.ImageSize
|
|
||||||
kv["llama4.vision.patch_size"] = p.VisionModel.PatchSize
|
|
||||||
kv["llama4.vision.rope.freq_base"] = p.VisionModel.RopeTheta
|
|
||||||
kv["llama4.vision.layer_norm_epsilon"] = p.VisionModel.NormEpsilon
|
|
||||||
kv["llama4.vision.pixel_shuffle_ratio"] = p.VisionModel.PixelShuffleRatio
|
|
||||||
return kv
|
|
||||||
}
|
|
||||||
|
|
||||||
// Replacements implements ModelConverter.
|
|
||||||
func (p *llama4Model) Replacements() []string {
|
|
||||||
return append(
|
|
||||||
p.TextModel.Replacements(),
|
|
||||||
"language_model.", "",
|
|
||||||
"vision_model", "v",
|
|
||||||
"multi_modal_projector", "mm",
|
|
||||||
"feed_forward.down_proj", "ffn_down",
|
|
||||||
"feed_forward.up_proj", "ffn_up",
|
|
||||||
"feed_forward.gate_proj", "ffn_gate",
|
|
||||||
"feed_forward.", "ffn_",
|
|
||||||
"shared_expert.down_proj", "down_shexp",
|
|
||||||
"shared_expert.gate_proj", "gate_shexp",
|
|
||||||
"shared_expert.up_proj", "up_shexp",
|
|
||||||
"experts.down_proj", "down_exps.weight",
|
|
||||||
"experts.gate_up_proj", "gate_up_exps.weight",
|
|
||||||
"router", "gate_inp",
|
|
||||||
"patch_embedding.linear", "patch_embedding",
|
|
||||||
)
|
|
||||||
}
|
|
||||||
|
|
||||||
// Tensors implements ModelConverter.
|
|
||||||
func (p *llama4Model) Tensors(ts []Tensor) []*ggml.Tensor {
|
|
||||||
var out []*ggml.Tensor
|
|
||||||
|
|
||||||
var textTensors []Tensor
|
|
||||||
for _, t := range ts {
|
|
||||||
if strings.HasPrefix(t.Name(), "v.") || strings.HasPrefix(t.Name(), "mm.") {
|
|
||||||
out = append(out, &ggml.Tensor{
|
|
||||||
Name: t.Name(),
|
|
||||||
Kind: t.Kind(),
|
|
||||||
Shape: t.Shape(),
|
|
||||||
WriterTo: t,
|
|
||||||
})
|
|
||||||
} else if strings.Contains(t.Name(), "ffn_gate_up_exps") {
|
|
||||||
// gate and up projectors are fused
|
|
||||||
// dims[1], dims[2] must be swapped
|
|
||||||
// [experts, hidden_size, intermediate_size * 2] --> [experts, intermediate_size, hidden_size]
|
|
||||||
halfDim := int(t.Shape()[2]) / 2
|
|
||||||
|
|
||||||
newShape := slices.Clone(t.Shape())
|
|
||||||
newShape[1], newShape[2] = newShape[2]/2, newShape[1]
|
|
||||||
for i, name := range []string{"ffn_gate_exps", "ffn_up_exps"} {
|
|
||||||
// clone tensor since we need separate repackers
|
|
||||||
tt := t.Clone()
|
|
||||||
tt.SetRepacker(p.repack(nil, nil, tensor.S(i*halfDim, (i+1)*halfDim)))
|
|
||||||
out = append(out, &ggml.Tensor{
|
|
||||||
Name: strings.ReplaceAll(tt.Name(), "ffn_gate_up_exps", name),
|
|
||||||
Kind: tt.Kind(),
|
|
||||||
Shape: newShape,
|
|
||||||
WriterTo: tt,
|
|
||||||
})
|
|
||||||
}
|
|
||||||
} else if strings.Contains(t.Name(), "ffn_down_exps") {
|
|
||||||
// dims[1], dims[2] must be swapped
|
|
||||||
// [experts, intermediate_size, hidden_size] --> [experts, hidden_size, intermediate_size]
|
|
||||||
t.SetRepacker(p.repack())
|
|
||||||
newShape := slices.Clone(t.Shape())
|
|
||||||
newShape[1], newShape[2] = newShape[2], newShape[1]
|
|
||||||
out = append(out, &ggml.Tensor{
|
|
||||||
Name: t.Name(),
|
|
||||||
Kind: t.Kind(),
|
|
||||||
Shape: newShape,
|
|
||||||
WriterTo: t,
|
|
||||||
})
|
|
||||||
} else {
|
|
||||||
textTensors = append(textTensors, t)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
p.TextModel.skipRepack = true
|
|
||||||
out = append(out, p.TextModel.Tensors(textTensors)...)
|
|
||||||
return out
|
|
||||||
}
|
|
||||||
|
|
||||||
func (p *llama4Model) repack(slice ...tensor.Slice) Repacker {
|
|
||||||
return func(name string, data []float32, shape []uint64) ([]float32, error) {
|
|
||||||
dims := make([]int, len(shape))
|
|
||||||
for i, dim := range shape {
|
|
||||||
dims[i] = int(dim)
|
|
||||||
}
|
|
||||||
|
|
||||||
var t tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
|
||||||
t, err := t.Slice(slice...)
|
|
||||||
if err != nil {
|
|
||||||
return nil, err
|
|
||||||
}
|
|
||||||
|
|
||||||
if err := t.T(0, 2, 1); err != nil {
|
|
||||||
return nil, err
|
|
||||||
}
|
|
||||||
|
|
||||||
t = tensor.Materialize(t)
|
|
||||||
// flatten tensor so it can be return as a vector
|
|
||||||
if err := t.Reshape(t.Shape().TotalSize()); err != nil {
|
|
||||||
return nil, err
|
|
||||||
}
|
|
||||||
|
|
||||||
return native.VectorF32(t.(*tensor.Dense))
|
|
||||||
}
|
|
||||||
}
|
|
@ -7,7 +7,7 @@ import (
|
|||||||
"github.com/pdevine/tensor"
|
"github.com/pdevine/tensor"
|
||||||
"github.com/pdevine/tensor/native"
|
"github.com/pdevine/tensor/native"
|
||||||
|
|
||||||
"github.com/ollama/ollama/fs/ggml"
|
"github.com/ollama/ollama/llm"
|
||||||
)
|
)
|
||||||
|
|
||||||
type llamaAdapter struct {
|
type llamaAdapter struct {
|
||||||
@ -18,7 +18,7 @@ type llamaAdapter struct {
|
|||||||
|
|
||||||
var _ AdapterConverter = (*llamaAdapter)(nil)
|
var _ AdapterConverter = (*llamaAdapter)(nil)
|
||||||
|
|
||||||
func (p *llamaAdapter) KV(baseKV ggml.KV) ggml.KV {
|
func (p *llamaAdapter) KV(baseKV llm.KV) llm.KV {
|
||||||
kv := p.AdapterParameters.KV()
|
kv := p.AdapterParameters.KV()
|
||||||
kv["general.architecture"] = "llama"
|
kv["general.architecture"] = "llama"
|
||||||
kv["llama.attention.head_count"] = baseKV["llama.attention.head_count"]
|
kv["llama.attention.head_count"] = baseKV["llama.attention.head_count"]
|
||||||
@ -29,8 +29,8 @@ func (p *llamaAdapter) KV(baseKV ggml.KV) ggml.KV {
|
|||||||
return kv
|
return kv
|
||||||
}
|
}
|
||||||
|
|
||||||
func (p *llamaAdapter) Tensors(ts []Tensor) []*ggml.Tensor {
|
func (p *llamaAdapter) Tensors(ts []Tensor) []llm.Tensor {
|
||||||
var out []*ggml.Tensor
|
var out []llm.Tensor
|
||||||
for _, t := range ts {
|
for _, t := range ts {
|
||||||
shape := t.Shape()
|
shape := t.Shape()
|
||||||
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
|
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
|
||||||
@ -41,7 +41,7 @@ func (p *llamaAdapter) Tensors(ts []Tensor) []*ggml.Tensor {
|
|||||||
t.SetRepacker(p.repack)
|
t.SetRepacker(p.repack)
|
||||||
}
|
}
|
||||||
|
|
||||||
out = append(out, &ggml.Tensor{
|
out = append(out, llm.Tensor{
|
||||||
Name: t.Name(),
|
Name: t.Name(),
|
||||||
Kind: t.Kind(),
|
Kind: t.Kind(),
|
||||||
Shape: shape,
|
Shape: shape,
|
||||||
|
@ -1,190 +0,0 @@
|
|||||||
package convert
|
|
||||||
|
|
||||||
import (
|
|
||||||
"cmp"
|
|
||||||
"fmt"
|
|
||||||
"strings"
|
|
||||||
|
|
||||||
"github.com/pdevine/tensor"
|
|
||||||
"github.com/pdevine/tensor/native"
|
|
||||||
|
|
||||||
"github.com/ollama/ollama/fs/ggml"
|
|
||||||
)
|
|
||||||
|
|
||||||
type mistral3Model struct {
|
|
||||||
ModelParameters
|
|
||||||
ImageTokenIndex uint32 `json:"image_token_index"`
|
|
||||||
SpatialMergeSize uint32 `json:"spatial_merge_size"`
|
|
||||||
VisionFeatureLayer int32 `json:"vision_feature_layer"`
|
|
||||||
TextModel struct {
|
|
||||||
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
|
||||||
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
|
||||||
HiddenSize uint32 `json:"hidden_size"`
|
|
||||||
IntermediateSize uint32 `json:"intermediate_size"`
|
|
||||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
|
||||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
|
||||||
RopeTheta float32 `json:"rope_theta"`
|
|
||||||
RMSNormEPS float32 `json:"rms_norm_eps"`
|
|
||||||
HeadDim uint32 `json:"head_dim"`
|
|
||||||
SlidingWindow *uint32 `json:"sliding_window"`
|
|
||||||
HiddenAct string `json:"hidden_act"`
|
|
||||||
VocabSize uint32 `json:"vocab_size"`
|
|
||||||
} `json:"text_config"`
|
|
||||||
VisionModel struct {
|
|
||||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
|
||||||
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
|
||||||
HiddenSize uint32 `json:"hidden_size"`
|
|
||||||
IntermediateSize uint32 `json:"intermediate_size"`
|
|
||||||
ImageSize uint32 `json:"image_size"`
|
|
||||||
NumChannels uint32 `json:"num_channels"`
|
|
||||||
PatchSize uint32 `json:"patch_size"`
|
|
||||||
HeadDim uint32 `json:"head_dim"`
|
|
||||||
HiddenAct string `json:"hidden_act"`
|
|
||||||
RopeTheta float32 `json:"rope_theta"`
|
|
||||||
} `json:"vision_config"`
|
|
||||||
MultiModalProjectorBias bool `json:"multimodal_projector_bias"`
|
|
||||||
ProjectorHiddenAct string `json:"projector_hidden_act"`
|
|
||||||
}
|
|
||||||
|
|
||||||
func (p *mistral3Model) KV(t *Tokenizer) ggml.KV {
|
|
||||||
kv := p.ModelParameters.KV(t)
|
|
||||||
kv["general.architecture"] = "mistral3"
|
|
||||||
kv["mistral3.vocab_size"] = p.TextModel.VocabSize
|
|
||||||
|
|
||||||
// Text configuration
|
|
||||||
kv["mistral3.block_count"] = p.TextModel.NumHiddenLayers
|
|
||||||
kv["mistral3.context_length"] = p.TextModel.MaxPositionEmbeddings
|
|
||||||
kv["mistral3.embedding_length"] = p.TextModel.HiddenSize
|
|
||||||
kv["mistral3.feed_forward_length"] = p.TextModel.IntermediateSize
|
|
||||||
kv["mistral3.attention.head_count"] = p.TextModel.NumAttentionHeads
|
|
||||||
kv["mistral3.attention.head_count_kv"] = p.TextModel.NumKeyValueHeads
|
|
||||||
kv["mistral3.attention.layer_norm_rms_epsilon"] = p.TextModel.RMSNormEPS
|
|
||||||
kv["mistral3.attention.key_length"] = p.TextModel.HeadDim
|
|
||||||
kv["mistral3.attention.value_length"] = p.TextModel.HeadDim
|
|
||||||
kv["mistral3.rope.dimension_count"] = p.TextModel.HiddenSize / p.TextModel.NumHiddenLayers
|
|
||||||
kv["mistral3.rope.freq_base"] = p.TextModel.RopeTheta
|
|
||||||
|
|
||||||
// Vision configuration
|
|
||||||
kv["mistral3.vision.block_count"] = p.VisionModel.NumHiddenLayers
|
|
||||||
kv["mistral3.vision.embedding_length"] = p.VisionModel.HiddenSize
|
|
||||||
kv["mistral3.vision.feed_forward_length"] = p.VisionModel.IntermediateSize
|
|
||||||
kv["mistral3.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
|
|
||||||
kv["mistral3.vision.attention.key_length"] = p.VisionModel.HeadDim
|
|
||||||
kv["mistral3.vision.image_size"] = p.VisionModel.ImageSize
|
|
||||||
kv["mistral3.vision.patch_size"] = p.VisionModel.PatchSize
|
|
||||||
kv["mistral3.vision.num_channels"] = p.VisionModel.NumChannels
|
|
||||||
// kv["mistral3.vision.attention.layer_norm_epsilon"] = 1e-05 // Default value
|
|
||||||
kv["mistral3.vision.rope.freq_base"] = p.VisionModel.RopeTheta
|
|
||||||
|
|
||||||
// Multimodal configuration
|
|
||||||
kv["mistral3.image_token_index"] = p.ImageTokenIndex
|
|
||||||
kv["mistral3.spatial_merge_size"] = p.SpatialMergeSize
|
|
||||||
|
|
||||||
kv["mistral3.mm.projector_bias"] = p.MultiModalProjectorBias
|
|
||||||
|
|
||||||
if p.ProjectorHiddenAct != "" {
|
|
||||||
kv["mistral3.mm.projector_hidden_act"] = p.ProjectorHiddenAct
|
|
||||||
}
|
|
||||||
|
|
||||||
return kv
|
|
||||||
}
|
|
||||||
|
|
||||||
func (p *mistral3Model) Tensors(ts []Tensor) []*ggml.Tensor {
|
|
||||||
var out []*ggml.Tensor
|
|
||||||
|
|
||||||
for _, t := range ts {
|
|
||||||
if !strings.HasPrefix(t.Name(), "v.") {
|
|
||||||
if strings.HasSuffix(t.Name(), ".attn_q.weight") ||
|
|
||||||
strings.HasSuffix(t.Name(), ".attn_k.weight") {
|
|
||||||
t.SetRepacker(p.repack)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
out = append(out, &ggml.Tensor{
|
|
||||||
Name: t.Name(),
|
|
||||||
Kind: t.Kind(),
|
|
||||||
Shape: t.Shape(),
|
|
||||||
WriterTo: t,
|
|
||||||
})
|
|
||||||
}
|
|
||||||
|
|
||||||
return out
|
|
||||||
}
|
|
||||||
|
|
||||||
func (p *mistral3Model) Replacements() []string {
|
|
||||||
return []string{
|
|
||||||
"language_model.model.norm", "output_norm",
|
|
||||||
"language_model.model.", "",
|
|
||||||
"language_model.", "",
|
|
||||||
"layers", "blk",
|
|
||||||
"transformer.layers", "blk",
|
|
||||||
"vision_tower", "v",
|
|
||||||
"ln_pre", "encoder_norm",
|
|
||||||
"input_layernorm", "attn_norm",
|
|
||||||
"post_attention_layernorm", "ffn_norm",
|
|
||||||
"embed_tokens", "token_embd",
|
|
||||||
"self_attn.q_proj", "attn_q",
|
|
||||||
"self_attn.k_proj", "attn_k",
|
|
||||||
"self_attn.v_proj", "attn_v",
|
|
||||||
"self_attn.o_proj", "attn_output",
|
|
||||||
"mlp.down_proj", "ffn_down",
|
|
||||||
"mlp.gate_proj", "ffn_gate",
|
|
||||||
"mlp.up_proj", "ffn_up",
|
|
||||||
"attention.q_proj", "attn_q",
|
|
||||||
"attention.k_proj", "attn_k",
|
|
||||||
"attention.v_proj", "attn_v",
|
|
||||||
"attention.o_proj", "attn_output",
|
|
||||||
"attention_norm", "attn_norm",
|
|
||||||
"feed_forward.gate_proj", "ffn_gate",
|
|
||||||
"feed_forward.down_proj", "ffn_down",
|
|
||||||
"feed_forward.up_proj", "ffn_up",
|
|
||||||
"multi_modal_projector", "mm",
|
|
||||||
"ffn_norm", "ffn_norm",
|
|
||||||
"lm_head", "output",
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
func (p *mistral3Model) repack(name string, data []float32, shape []uint64) ([]float32, error) {
|
|
||||||
var dims []int
|
|
||||||
for _, dim := range shape {
|
|
||||||
dims = append(dims, int(dim))
|
|
||||||
}
|
|
||||||
|
|
||||||
var heads uint32
|
|
||||||
if strings.HasSuffix(name, ".attn_q.weight") {
|
|
||||||
heads = p.TextModel.NumAttentionHeads
|
|
||||||
} else if strings.HasSuffix(name, ".attn_k.weight") {
|
|
||||||
heads = cmp.Or(p.TextModel.NumKeyValueHeads, p.TextModel.NumAttentionHeads)
|
|
||||||
} else {
|
|
||||||
return nil, fmt.Errorf("unknown tensor for repack: %s", name)
|
|
||||||
}
|
|
||||||
|
|
||||||
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
|
||||||
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
|
|
||||||
return nil, err
|
|
||||||
}
|
|
||||||
|
|
||||||
if err := n.T(0, 2, 1, 3); err != nil {
|
|
||||||
return nil, err
|
|
||||||
}
|
|
||||||
|
|
||||||
if err := n.Reshape(dims...); err != nil {
|
|
||||||
return nil, err
|
|
||||||
}
|
|
||||||
|
|
||||||
if err := n.Transpose(); err != nil {
|
|
||||||
return nil, err
|
|
||||||
}
|
|
||||||
|
|
||||||
ts, err := native.SelectF32(n, 1)
|
|
||||||
if err != nil {
|
|
||||||
return nil, err
|
|
||||||
}
|
|
||||||
|
|
||||||
var f32s []float32
|
|
||||||
for _, t := range ts {
|
|
||||||
f32s = append(f32s, t...)
|
|
||||||
}
|
|
||||||
|
|
||||||
return f32s, nil
|
|
||||||
}
|
|
@ -6,7 +6,7 @@ import (
|
|||||||
"slices"
|
"slices"
|
||||||
"strings"
|
"strings"
|
||||||
|
|
||||||
"github.com/ollama/ollama/fs/ggml"
|
"github.com/ollama/ollama/llm"
|
||||||
)
|
)
|
||||||
|
|
||||||
type mixtralModel struct {
|
type mixtralModel struct {
|
||||||
@ -15,7 +15,7 @@ type mixtralModel struct {
|
|||||||
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
|
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
|
||||||
}
|
}
|
||||||
|
|
||||||
func (p *mixtralModel) KV(t *Tokenizer) ggml.KV {
|
func (p *mixtralModel) KV(t *Tokenizer) llm.KV {
|
||||||
kv := p.llamaModel.KV(t)
|
kv := p.llamaModel.KV(t)
|
||||||
|
|
||||||
if p.NumLocalExperts > 0 {
|
if p.NumLocalExperts > 0 {
|
||||||
@ -29,7 +29,7 @@ func (p *mixtralModel) KV(t *Tokenizer) ggml.KV {
|
|||||||
return kv
|
return kv
|
||||||
}
|
}
|
||||||
|
|
||||||
func (p *mixtralModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
func (p *mixtralModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||||
oldnew := []string{
|
oldnew := []string{
|
||||||
"model.layers", "blk",
|
"model.layers", "blk",
|
||||||
"w1", "ffn_gate_exps",
|
"w1", "ffn_gate_exps",
|
||||||
@ -56,10 +56,10 @@ func (p *mixtralModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
|||||||
return true
|
return true
|
||||||
})
|
})
|
||||||
|
|
||||||
var out []*ggml.Tensor
|
var out []llm.Tensor
|
||||||
for n, e := range experts {
|
for n, e := range experts {
|
||||||
// TODO(mxyng): sanity check experts
|
// TODO(mxyng): sanity check experts
|
||||||
out = append(out, &ggml.Tensor{
|
out = append(out, llm.Tensor{
|
||||||
Name: n,
|
Name: n,
|
||||||
Kind: e[0].Kind(),
|
Kind: e[0].Kind(),
|
||||||
Shape: append([]uint64{uint64(len(e))}, e[0].Shape()...),
|
Shape: append([]uint64{uint64(len(e))}, e[0].Shape()...),
|
||||||
|
@ -1,160 +0,0 @@
|
|||||||
package convert
|
|
||||||
|
|
||||||
import (
|
|
||||||
"strings"
|
|
||||||
|
|
||||||
"github.com/ollama/ollama/fs/ggml"
|
|
||||||
"github.com/pdevine/tensor"
|
|
||||||
"github.com/pdevine/tensor/native"
|
|
||||||
)
|
|
||||||
|
|
||||||
type mllamaModel struct {
|
|
||||||
ModelParameters
|
|
||||||
TextModel struct {
|
|
||||||
llamaModel
|
|
||||||
|
|
||||||
CrossAttentionLayers []int32 `json:"cross_attention_layers"`
|
|
||||||
} `json:"text_config"`
|
|
||||||
VisionModel struct {
|
|
||||||
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
|
||||||
NumGlobalLayers uint32 `json:"num_global_layers"`
|
|
||||||
IntermediateLayersIndices []int32 `json:"intermediate_layers_indices"`
|
|
||||||
|
|
||||||
HiddenSize uint32 `json:"hidden_size"`
|
|
||||||
IntermediateSize uint32 `json:"intermediate_size"`
|
|
||||||
|
|
||||||
AttentionHeads uint32 `json:"attention_heads"`
|
|
||||||
|
|
||||||
ImageSize uint32 `json:"image_size"`
|
|
||||||
PatchSize uint32 `json:"patch_size"`
|
|
||||||
NumChannels uint32 `json:"num_channels"`
|
|
||||||
MaxNumTiles uint32 `json:"max_num_tiles"`
|
|
||||||
NormEpsilon float32 `json:"norm_eps"`
|
|
||||||
RopeTheta float32 `json:"rope.freq_base"`
|
|
||||||
} `json:"vision_config"`
|
|
||||||
}
|
|
||||||
|
|
||||||
func (m *mllamaModel) KV(t *Tokenizer) ggml.KV {
|
|
||||||
kv := m.ModelParameters.KV(t)
|
|
||||||
kv["general.architecture"] = "mllama"
|
|
||||||
|
|
||||||
for k, v := range m.TextModel.KV(t) {
|
|
||||||
if strings.HasPrefix(k, "llama.") {
|
|
||||||
kv[strings.ReplaceAll(k, "llama.", "mllama.")] = v
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
kv["mllama.attention.cross_attention_layers"] = m.TextModel.CrossAttentionLayers
|
|
||||||
|
|
||||||
kv["mllama.vision.block_count"] = m.VisionModel.NumHiddenLayers
|
|
||||||
kv["mllama.vision.global.block_count"] = m.VisionModel.NumGlobalLayers
|
|
||||||
kv["mllama.vision.intermediate_layers_indices"] = m.VisionModel.IntermediateLayersIndices
|
|
||||||
|
|
||||||
kv["mllama.vision.embedding_length"] = m.VisionModel.HiddenSize
|
|
||||||
kv["mllama.vision.feed_forward_length"] = m.VisionModel.IntermediateSize
|
|
||||||
|
|
||||||
kv["mllama.vision.attention.head_count"] = m.VisionModel.AttentionHeads
|
|
||||||
kv["mllama.vision.attention.layer_norm_epsilon"] = m.VisionModel.NormEpsilon
|
|
||||||
|
|
||||||
kv["mllama.vision.image_size"] = m.VisionModel.ImageSize
|
|
||||||
kv["mllama.vision.patch_size"] = m.VisionModel.PatchSize
|
|
||||||
kv["mllama.vision.max_num_tiles"] = m.VisionModel.MaxNumTiles
|
|
||||||
kv["mllama.vision.num_channels"] = m.VisionModel.NumChannels
|
|
||||||
|
|
||||||
return kv
|
|
||||||
}
|
|
||||||
|
|
||||||
func (m *mllamaModel) Replacements() []string {
|
|
||||||
return append(
|
|
||||||
m.TextModel.Replacements(),
|
|
||||||
"language_model.", "",
|
|
||||||
"gate_attn", "attn_gate",
|
|
||||||
"gate_ffn", "ffn_gate",
|
|
||||||
"cross_attn.", "cross_attn_",
|
|
||||||
"vision_model", "v",
|
|
||||||
"class_embedding", "class_embd",
|
|
||||||
"patch_embedding", "patch_embd",
|
|
||||||
"gated_positional_embedding.tile_embedding", "tile_position_embd",
|
|
||||||
"gated_positional_embedding.embedding", "position_embd.weight",
|
|
||||||
"gated_positional_embedding", "position_embd",
|
|
||||||
"embedding.weight", "weight",
|
|
||||||
"pre_tile_positional_embedding", "pre_tile_position_embd",
|
|
||||||
"post_tile_positional_embedding", "post_tile_position_embd",
|
|
||||||
"layernorm_pre", "pre_ln",
|
|
||||||
"layernorm_post", "post_ln",
|
|
||||||
"global_transformer.layers", "global.blk",
|
|
||||||
"transformer.layers", "blk",
|
|
||||||
"mlp.fc1", "ffn_up",
|
|
||||||
"mlp.fc2", "ffn_down",
|
|
||||||
"multi_modal_projector", "mm.0",
|
|
||||||
)
|
|
||||||
}
|
|
||||||
|
|
||||||
func (m *mllamaModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
|
||||||
var out []*ggml.Tensor
|
|
||||||
var text []Tensor
|
|
||||||
for _, t := range ts {
|
|
||||||
if t.Name() == "v.position_embd.gate" {
|
|
||||||
for _, name := range []string{"v.position_embd.gate", "v.tile_position_embd.gate"} {
|
|
||||||
tt := t.Clone()
|
|
||||||
tt.SetRepacker(m.repack(name))
|
|
||||||
out = append(out, &ggml.Tensor{
|
|
||||||
Name: name,
|
|
||||||
Kind: t.Kind(),
|
|
||||||
Shape: t.Shape(),
|
|
||||||
WriterTo: tt,
|
|
||||||
})
|
|
||||||
}
|
|
||||||
} else if t.Name() == "v.pre_tile_position_embd.gate" || t.Name() == "v.post_tile_position_embd.gate" {
|
|
||||||
t.SetRepacker(m.repack(t.Name()))
|
|
||||||
out = append(out, &ggml.Tensor{
|
|
||||||
Name: t.Name(),
|
|
||||||
Kind: t.Kind(),
|
|
||||||
Shape: t.Shape(),
|
|
||||||
WriterTo: t,
|
|
||||||
})
|
|
||||||
} else if strings.HasPrefix(t.Name(), "v.") || strings.HasPrefix(t.Name(), "mm.") {
|
|
||||||
out = append(out, &ggml.Tensor{
|
|
||||||
Name: t.Name(),
|
|
||||||
Kind: t.Kind(),
|
|
||||||
Shape: t.Shape(),
|
|
||||||
WriterTo: t,
|
|
||||||
})
|
|
||||||
} else {
|
|
||||||
text = append(text, t)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return append(out, m.TextModel.Tensors(text)...)
|
|
||||||
}
|
|
||||||
|
|
||||||
func (m *mllamaModel) repack(name string) Repacker {
|
|
||||||
return func(_ string, data []float32, shape []uint64) (_ []float32, err error) {
|
|
||||||
dims := make([]int, len(shape))
|
|
||||||
for i, dim := range shape {
|
|
||||||
dims[i] = int(dim)
|
|
||||||
}
|
|
||||||
|
|
||||||
var t tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
|
||||||
|
|
||||||
t, err = tensor.Tanh(t)
|
|
||||||
if err != nil {
|
|
||||||
return nil, err
|
|
||||||
}
|
|
||||||
|
|
||||||
if name == "v.position_embd.gate" {
|
|
||||||
t, err = tensor.Sub(float32(1), t)
|
|
||||||
if err != nil {
|
|
||||||
return nil, err
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
t = tensor.Materialize(t)
|
|
||||||
// flatten tensor so it can be return as a vector
|
|
||||||
if err := t.Reshape(t.Shape().TotalSize()); err != nil {
|
|
||||||
return nil, err
|
|
||||||
}
|
|
||||||
|
|
||||||
return native.VectorF32(t.(*tensor.Dense))
|
|
||||||
}
|
|
||||||
}
|
|
@ -8,7 +8,7 @@ import (
|
|||||||
"strings"
|
"strings"
|
||||||
"sync"
|
"sync"
|
||||||
|
|
||||||
"github.com/ollama/ollama/fs/ggml"
|
"github.com/ollama/ollama/llm"
|
||||||
)
|
)
|
||||||
|
|
||||||
type phi3Model struct {
|
type phi3Model struct {
|
||||||
@ -37,7 +37,7 @@ type phi3Model struct {
|
|||||||
|
|
||||||
var _ ModelConverter = (*phi3Model)(nil)
|
var _ ModelConverter = (*phi3Model)(nil)
|
||||||
|
|
||||||
func (p *phi3Model) KV(t *Tokenizer) ggml.KV {
|
func (p *phi3Model) KV(t *Tokenizer) llm.KV {
|
||||||
kv := p.ModelParameters.KV(t)
|
kv := p.ModelParameters.KV(t)
|
||||||
kv["general.architecture"] = "phi3"
|
kv["general.architecture"] = "phi3"
|
||||||
kv["phi3.context_length"] = p.MaxPositionEmbeddings
|
kv["phi3.context_length"] = p.MaxPositionEmbeddings
|
||||||
@ -68,19 +68,19 @@ func (p *phi3Model) KV(t *Tokenizer) ggml.KV {
|
|||||||
return kv
|
return kv
|
||||||
}
|
}
|
||||||
|
|
||||||
func (p *phi3Model) Tensors(ts []Tensor) []*ggml.Tensor {
|
func (p *phi3Model) Tensors(ts []Tensor) []llm.Tensor {
|
||||||
var addRopeFactors sync.Once
|
var addRopeFactors sync.Once
|
||||||
|
|
||||||
out := make([]*ggml.Tensor, 0, len(ts)+2)
|
out := make([]llm.Tensor, 0, len(ts)+2)
|
||||||
for _, t := range ts {
|
for _, t := range ts {
|
||||||
if strings.HasPrefix(t.Name(), "blk.0.") {
|
if strings.HasPrefix(t.Name(), "blk.0.") {
|
||||||
addRopeFactors.Do(func() {
|
addRopeFactors.Do(func() {
|
||||||
out = append(out, &ggml.Tensor{
|
out = append(out, llm.Tensor{
|
||||||
Name: "rope_factors_long.weight",
|
Name: "rope_factors_long.weight",
|
||||||
Kind: 0,
|
Kind: 0,
|
||||||
Shape: []uint64{uint64(len(p.RopeScaling.LongFactor))},
|
Shape: []uint64{uint64(len(p.RopeScaling.LongFactor))},
|
||||||
WriterTo: p.RopeScaling.LongFactor,
|
WriterTo: p.RopeScaling.LongFactor,
|
||||||
}, &ggml.Tensor{
|
}, llm.Tensor{
|
||||||
Name: "rope_factors_short.weight",
|
Name: "rope_factors_short.weight",
|
||||||
Kind: 0,
|
Kind: 0,
|
||||||
Shape: []uint64{uint64(len(p.RopeScaling.ShortFactor))},
|
Shape: []uint64{uint64(len(p.RopeScaling.ShortFactor))},
|
||||||
@ -89,7 +89,7 @@ func (p *phi3Model) Tensors(ts []Tensor) []*ggml.Tensor {
|
|||||||
})
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
out = append(out, &ggml.Tensor{
|
out = append(out, llm.Tensor{
|
||||||
Name: t.Name(),
|
Name: t.Name(),
|
||||||
Kind: t.Kind(),
|
Kind: t.Kind(),
|
||||||
Shape: t.Shape(),
|
Shape: t.Shape(),
|
||||||
@ -118,5 +118,6 @@ func (p *phi3Model) Replacements() []string {
|
|||||||
type ropeFactor []float32
|
type ropeFactor []float32
|
||||||
|
|
||||||
func (r ropeFactor) WriteTo(w io.Writer) (int64, error) {
|
func (r ropeFactor) WriteTo(w io.Writer) (int64, error) {
|
||||||
return 0, binary.Write(w, binary.LittleEndian, r)
|
err := binary.Write(w, binary.LittleEndian, r)
|
||||||
|
return 0, err
|
||||||
}
|
}
|
||||||
|
@ -1,81 +0,0 @@
|
|||||||
package convert
|
|
||||||
|
|
||||||
import "github.com/ollama/ollama/fs/ggml"
|
|
||||||
|
|
||||||
type qwen2Model struct {
|
|
||||||
ModelParameters
|
|
||||||
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
|
||||||
HiddenSize uint32 `json:"hidden_size"`
|
|
||||||
HiddenLayers uint32 `json:"num_hidden_layers"`
|
|
||||||
IntermediateSize uint32 `json:"intermediate_size"`
|
|
||||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
|
||||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
|
||||||
RopeTheta float32 `json:"rope_theta"`
|
|
||||||
RopeScaling struct {
|
|
||||||
Type string `json:"type"`
|
|
||||||
Factor ropeFactor `json:"factor"`
|
|
||||||
OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
|
|
||||||
MropeSection []int32 `json:"mrope_section"`
|
|
||||||
} `json:"rope_scaling"`
|
|
||||||
RMSNormEPS float32 `json:"rms_norm_eps"`
|
|
||||||
}
|
|
||||||
|
|
||||||
var _ ModelConverter = (*qwen2Model)(nil)
|
|
||||||
|
|
||||||
func (q *qwen2Model) KV(t *Tokenizer) ggml.KV {
|
|
||||||
kv := q.ModelParameters.KV(t)
|
|
||||||
kv["general.architecture"] = "qwen2"
|
|
||||||
kv["qwen2.block_count"] = q.HiddenLayers
|
|
||||||
kv["qwen2.context_length"] = q.MaxPositionEmbeddings
|
|
||||||
kv["qwen2.embedding_length"] = q.HiddenSize
|
|
||||||
kv["qwen2.feed_forward_length"] = q.IntermediateSize
|
|
||||||
kv["qwen2.attention.head_count"] = q.NumAttentionHeads
|
|
||||||
kv["qwen2.attention.head_count_kv"] = q.NumKeyValueHeads
|
|
||||||
kv["qwen2.rope.freq_base"] = q.RopeTheta
|
|
||||||
kv["qwen2.attention.layer_norm_rms_epsilon"] = q.RMSNormEPS
|
|
||||||
|
|
||||||
switch q.RopeScaling.Type {
|
|
||||||
case "":
|
|
||||||
// no scaling
|
|
||||||
case "yarn":
|
|
||||||
kv["qwen2.rope.scaling.type"] = q.RopeScaling.Type
|
|
||||||
kv["qwen2.rope.scaling.factor"] = q.RopeScaling.Factor
|
|
||||||
case "mrope", "default":
|
|
||||||
kv["qwen2.rope.mrope_section"] = q.RopeScaling.MropeSection
|
|
||||||
default:
|
|
||||||
panic("unknown rope scaling type")
|
|
||||||
}
|
|
||||||
return kv
|
|
||||||
}
|
|
||||||
|
|
||||||
func (q *qwen2Model) Tensors(ts []Tensor) []*ggml.Tensor {
|
|
||||||
var out []*ggml.Tensor
|
|
||||||
for _, t := range ts {
|
|
||||||
out = append(out, &ggml.Tensor{
|
|
||||||
Name: t.Name(),
|
|
||||||
Kind: t.Kind(),
|
|
||||||
Shape: t.Shape(),
|
|
||||||
WriterTo: t,
|
|
||||||
})
|
|
||||||
}
|
|
||||||
|
|
||||||
return out
|
|
||||||
}
|
|
||||||
|
|
||||||
func (p *qwen2Model) Replacements() []string {
|
|
||||||
return []string{
|
|
||||||
"lm_head", "output",
|
|
||||||
"model.embed_tokens", "token_embd",
|
|
||||||
"model.layers", "blk",
|
|
||||||
"input_layernorm", "attn_norm",
|
|
||||||
"self_attn.k_proj", "attn_k",
|
|
||||||
"self_attn.v_proj", "attn_v",
|
|
||||||
"self_attn.q_proj", "attn_q",
|
|
||||||
"self_attn.o_proj", "attn_output",
|
|
||||||
"mlp.down_proj", "ffn_down",
|
|
||||||
"mlp.gate_proj", "ffn_gate",
|
|
||||||
"mlp.up_proj", "ffn_up",
|
|
||||||
"post_attention_layernorm", "ffn_norm",
|
|
||||||
"model.norm", "output_norm",
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,102 +0,0 @@
|
|||||||
package convert
|
|
||||||
|
|
||||||
import (
|
|
||||||
"cmp"
|
|
||||||
"slices"
|
|
||||||
"strings"
|
|
||||||
|
|
||||||
"github.com/ollama/ollama/fs/ggml"
|
|
||||||
)
|
|
||||||
|
|
||||||
type qwen25VLModel struct {
|
|
||||||
qwen2Model
|
|
||||||
|
|
||||||
VisionModel struct {
|
|
||||||
Depth uint32 `json:"depth"`
|
|
||||||
HiddenSize uint32 `json:"hidden_size"`
|
|
||||||
NumHeads uint32 `json:"num_heads"`
|
|
||||||
InChannels uint32 `json:"in_chans"`
|
|
||||||
PatchSize uint32 `json:"patch_size"`
|
|
||||||
SpatialMergeSize uint32 `json:"spatial_merge_size"`
|
|
||||||
SpatialPatchSize uint32 `json:"spatial_patch_size"`
|
|
||||||
WindowSize uint32 `json:"window_size"`
|
|
||||||
RMSNormEps float32 `json:"layer_norm_epsilon"`
|
|
||||||
RopeTheta float32 `json:"rope_theta"`
|
|
||||||
FullAttentionBlocks []int32 `json:"fullatt_block_indexes"`
|
|
||||||
TemporalPatchSize uint32 `json:"temporal_patch_size"`
|
|
||||||
} `json:"vision_config"`
|
|
||||||
}
|
|
||||||
|
|
||||||
var _ ModelConverter = (*qwen25VLModel)(nil)
|
|
||||||
|
|
||||||
func (q *qwen25VLModel) KV(t *Tokenizer) ggml.KV {
|
|
||||||
kv := q.ModelParameters.KV(t)
|
|
||||||
kv["general.architecture"] = "qwen25vl"
|
|
||||||
|
|
||||||
for k, v := range q.qwen2Model.KV(t) {
|
|
||||||
if strings.HasPrefix(k, "qwen2.") {
|
|
||||||
kv[strings.Replace(k, "qwen2.", "qwen25vl.", 1)] = v
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if q.VisionModel.FullAttentionBlocks == nil {
|
|
||||||
kv["qwen25vl.vision.fullatt_block_indexes"] = []int32{7, 15, 23, 31}
|
|
||||||
}
|
|
||||||
|
|
||||||
kv["qwen25vl.vision.block_count"] = cmp.Or(q.VisionModel.Depth, 32)
|
|
||||||
kv["qwen25vl.vision.embedding_length"] = q.VisionModel.HiddenSize
|
|
||||||
kv["qwen25vl.vision.attention.head_count"] = cmp.Or(q.VisionModel.NumHeads, 16)
|
|
||||||
kv["qwen25vl.vision.num_channels"] = q.VisionModel.InChannels
|
|
||||||
kv["qwen25vl.vision.patch_size"] = cmp.Or(q.VisionModel.PatchSize, 14)
|
|
||||||
kv["qwen25vl.vision.spatial_merge_size"] = cmp.Or(q.VisionModel.SpatialMergeSize, 2)
|
|
||||||
kv["qwen25vl.vision.spatial_patch_size"] = q.VisionModel.SpatialPatchSize
|
|
||||||
kv["qwen25vl.vision.window_size"] = cmp.Or(q.VisionModel.WindowSize, 112)
|
|
||||||
kv["qwen25vl.vision.attention.layer_norm_epsilon"] = cmp.Or(q.VisionModel.RMSNormEps, 1e-6)
|
|
||||||
kv["qwen25vl.vision.rope.freq_base"] = cmp.Or(q.VisionModel.RopeTheta, 1e4)
|
|
||||||
kv["qwen25vl.vision.fullatt_block_indexes"] = q.VisionModel.FullAttentionBlocks
|
|
||||||
kv["qwen25vl.vision.temporal_patch_size"] = cmp.Or(q.VisionModel.TemporalPatchSize, 2)
|
|
||||||
|
|
||||||
return kv
|
|
||||||
}
|
|
||||||
|
|
||||||
func (q *qwen25VLModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
|
||||||
var out []*ggml.Tensor
|
|
||||||
|
|
||||||
for _, t := range ts {
|
|
||||||
if strings.Contains(t.Name(), "patch_embed.proj") {
|
|
||||||
for t := range splitDim(t, 2,
|
|
||||||
strings.NewReplacer("patch_embed.proj", "patch_embd_0"),
|
|
||||||
strings.NewReplacer("patch_embed.proj", "patch_embd_1"),
|
|
||||||
) {
|
|
||||||
t.Shape = slices.DeleteFunc(t.Shape, func(i uint64) bool { return i == 1 })
|
|
||||||
out = append(out, t)
|
|
||||||
}
|
|
||||||
} else if strings.Contains(t.Name(), "attn.qkv") {
|
|
||||||
out = append(out, slices.Collect(splitDim(t, 0,
|
|
||||||
strings.NewReplacer("attn.qkv", "attn_q"),
|
|
||||||
strings.NewReplacer("attn.qkv", "attn_k"),
|
|
||||||
strings.NewReplacer("attn.qkv", "attn_v"),
|
|
||||||
))...)
|
|
||||||
} else {
|
|
||||||
out = append(out, &ggml.Tensor{
|
|
||||||
Name: t.Name(),
|
|
||||||
Kind: t.Kind(),
|
|
||||||
Shape: t.Shape(),
|
|
||||||
WriterTo: t,
|
|
||||||
})
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return out
|
|
||||||
}
|
|
||||||
|
|
||||||
func (p *qwen25VLModel) Replacements() []string {
|
|
||||||
return append(
|
|
||||||
p.qwen2Model.Replacements(),
|
|
||||||
"visual", "v",
|
|
||||||
"blocks", "blk",
|
|
||||||
"attn.proj", "attn_out",
|
|
||||||
"norm1", "ln1",
|
|
||||||
"norm2", "ln2",
|
|
||||||
)
|
|
||||||
}
|
|
@ -11,6 +11,7 @@ import (
|
|||||||
"io"
|
"io"
|
||||||
"io/fs"
|
"io/fs"
|
||||||
"log/slog"
|
"log/slog"
|
||||||
|
"math"
|
||||||
"os"
|
"os"
|
||||||
"path/filepath"
|
"path/filepath"
|
||||||
"slices"
|
"slices"
|
||||||
@ -19,7 +20,7 @@ import (
|
|||||||
|
|
||||||
"golang.org/x/exp/maps"
|
"golang.org/x/exp/maps"
|
||||||
|
|
||||||
"github.com/ollama/ollama/fs/ggml"
|
"github.com/ollama/ollama/llm"
|
||||||
)
|
)
|
||||||
|
|
||||||
type tensorData struct {
|
type tensorData struct {
|
||||||
@ -28,7 +29,7 @@ type tensorData struct {
|
|||||||
Shape []int `json:"shape"`
|
Shape []int `json:"shape"`
|
||||||
}
|
}
|
||||||
|
|
||||||
func convertFull(t *testing.T, fsys fs.FS) (*os.File, ggml.KV, ggml.Tensors) {
|
func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, *llm.Tensors) {
|
||||||
t.Helper()
|
t.Helper()
|
||||||
|
|
||||||
f, err := os.CreateTemp(t.TempDir(), "f16")
|
f, err := os.CreateTemp(t.TempDir(), "f16")
|
||||||
@ -47,7 +48,7 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, ggml.KV, ggml.Tensors) {
|
|||||||
}
|
}
|
||||||
t.Cleanup(func() { r.Close() })
|
t.Cleanup(func() { r.Close() })
|
||||||
|
|
||||||
m, _, err := ggml.Decode(r, -1)
|
m, _, err := llm.DecodeGGML(r, math.MaxInt)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
t.Fatal(err)
|
t.Fatal(err)
|
||||||
}
|
}
|
||||||
@ -59,7 +60,7 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, ggml.KV, ggml.Tensors) {
|
|||||||
return r, m.KV(), m.Tensors()
|
return r, m.KV(), m.Tensors()
|
||||||
}
|
}
|
||||||
|
|
||||||
func generateResultsJSON(t *testing.T, f *os.File, kv ggml.KV, tensors ggml.Tensors) map[string]string {
|
func generateResultsJSON(t *testing.T, f *os.File, kv llm.KV, tensors *llm.Tensors) map[string]string {
|
||||||
actual := make(map[string]string)
|
actual := make(map[string]string)
|
||||||
for k, v := range kv {
|
for k, v := range kv {
|
||||||
if s, ok := v.(json.Marshaler); !ok {
|
if s, ok := v.(json.Marshaler); !ok {
|
||||||
@ -74,7 +75,7 @@ func generateResultsJSON(t *testing.T, f *os.File, kv ggml.KV, tensors ggml.Tens
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
for _, tensor := range tensors.Items() {
|
for _, tensor := range tensors.Items {
|
||||||
sha256sum := sha256.New()
|
sha256sum := sha256.New()
|
||||||
sr := io.NewSectionReader(f, int64(tensors.Offset+tensor.Offset), int64(tensor.Size()))
|
sr := io.NewSectionReader(f, int64(tensors.Offset+tensor.Offset), int64(tensor.Size()))
|
||||||
if _, err := io.Copy(sha256sum, sr); err != nil {
|
if _, err := io.Copy(sha256sum, sr); err != nil {
|
||||||
@ -107,8 +108,6 @@ func TestConvertModel(t *testing.T) {
|
|||||||
"Phi-3-mini-128k-instruct",
|
"Phi-3-mini-128k-instruct",
|
||||||
"all-MiniLM-L6-v2",
|
"all-MiniLM-L6-v2",
|
||||||
"gemma-2-9b-it",
|
"gemma-2-9b-it",
|
||||||
"Qwen2.5-0.5B-Instruct",
|
|
||||||
"c4ai-command-r-v01",
|
|
||||||
}
|
}
|
||||||
|
|
||||||
for i := range cases {
|
for i := range cases {
|
||||||
@ -130,7 +129,6 @@ func TestConvertModel(t *testing.T) {
|
|||||||
if err != nil {
|
if err != nil {
|
||||||
t.Fatal(err)
|
t.Fatal(err)
|
||||||
}
|
}
|
||||||
defer expectFile.Close()
|
|
||||||
|
|
||||||
var expect map[string]string
|
var expect map[string]string
|
||||||
if err := json.NewDecoder(expectFile).Decode(&expect); err != nil {
|
if err := json.NewDecoder(expectFile).Decode(&expect); err != nil {
|
||||||
@ -332,7 +330,7 @@ func TestConvertAdapter(t *testing.T) {
|
|||||||
}
|
}
|
||||||
defer r.Close()
|
defer r.Close()
|
||||||
|
|
||||||
m, _, err := ggml.Decode(r, -1)
|
m, _, err := llm.DecodeGGML(r, math.MaxInt)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
t.Fatal(err)
|
t.Fatal(err)
|
||||||
}
|
}
|
||||||
|
58
convert/fs.go
Normal file
58
convert/fs.go
Normal file
@ -0,0 +1,58 @@
|
|||||||
|
package convert
|
||||||
|
|
||||||
|
import (
|
||||||
|
"archive/zip"
|
||||||
|
"errors"
|
||||||
|
"io"
|
||||||
|
"io/fs"
|
||||||
|
"os"
|
||||||
|
"path/filepath"
|
||||||
|
)
|
||||||
|
|
||||||
|
type ZipReader struct {
|
||||||
|
r *zip.Reader
|
||||||
|
p string
|
||||||
|
|
||||||
|
// limit is the maximum size of a file that can be read directly
|
||||||
|
// from the zip archive. Files larger than this size will be extracted
|
||||||
|
limit int64
|
||||||
|
}
|
||||||
|
|
||||||
|
func NewZipReader(r *zip.Reader, p string, limit int64) fs.FS {
|
||||||
|
return &ZipReader{r, p, limit}
|
||||||
|
}
|
||||||
|
|
||||||
|
func (z *ZipReader) Open(name string) (fs.File, error) {
|
||||||
|
r, err := z.r.Open(name)
|
||||||
|
if err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
defer r.Close()
|
||||||
|
|
||||||
|
if fi, err := r.Stat(); err != nil {
|
||||||
|
return nil, err
|
||||||
|
} else if fi.Size() < z.limit {
|
||||||
|
return r, nil
|
||||||
|
}
|
||||||
|
|
||||||
|
if !filepath.IsLocal(name) {
|
||||||
|
return nil, zip.ErrInsecurePath
|
||||||
|
}
|
||||||
|
|
||||||
|
n := filepath.Join(z.p, name)
|
||||||
|
if _, err := os.Stat(n); errors.Is(err, os.ErrNotExist) {
|
||||||
|
w, err := os.Create(n)
|
||||||
|
if err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
defer w.Close()
|
||||||
|
|
||||||
|
if _, err := io.Copy(w, r); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
} else if err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
return os.Open(n)
|
||||||
|
}
|
@ -11,15 +11,14 @@ type Tensor interface {
|
|||||||
Name() string
|
Name() string
|
||||||
Shape() []uint64
|
Shape() []uint64
|
||||||
Kind() uint32
|
Kind() uint32
|
||||||
SetRepacker(Repacker)
|
SetRepacker(repacker)
|
||||||
WriteTo(io.Writer) (int64, error)
|
WriteTo(io.Writer) (int64, error)
|
||||||
Clone() Tensor
|
|
||||||
}
|
}
|
||||||
|
|
||||||
type tensorBase struct {
|
type tensorBase struct {
|
||||||
name string
|
name string
|
||||||
shape []uint64
|
shape []uint64
|
||||||
repacker Repacker
|
repacker
|
||||||
}
|
}
|
||||||
|
|
||||||
func (t tensorBase) Name() string {
|
func (t tensorBase) Name() string {
|
||||||
@ -37,11 +36,7 @@ const (
|
|||||||
|
|
||||||
func (t tensorBase) Kind() uint32 {
|
func (t tensorBase) Kind() uint32 {
|
||||||
if strings.HasSuffix(t.name, ".ffn_gate_inp.weight") ||
|
if strings.HasSuffix(t.name, ".ffn_gate_inp.weight") ||
|
||||||
t.name == "token_types.weight" ||
|
t.name == "token_types.weight" {
|
||||||
t.name == "v.positional_embedding_vlm" ||
|
|
||||||
t.name == "v.tile_position_embd.weight" ||
|
|
||||||
t.name == "v.pre_tile_position_embd.weight" ||
|
|
||||||
t.name == "v.post_tile_position_embd.weight" {
|
|
||||||
// these tensors are always F32
|
// these tensors are always F32
|
||||||
return 0
|
return 0
|
||||||
}
|
}
|
||||||
@ -56,18 +51,21 @@ func (t tensorBase) Kind() uint32 {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
func (t *tensorBase) SetRepacker(fn Repacker) {
|
func (t *tensorBase) SetRepacker(fn repacker) {
|
||||||
t.repacker = fn
|
t.repacker = fn
|
||||||
}
|
}
|
||||||
|
|
||||||
type Repacker func(string, []float32, []uint64) ([]float32, error)
|
type repacker func(string, []float32, []uint64) ([]float32, error)
|
||||||
|
|
||||||
func parseTensors(fsys fs.FS, replacer *strings.Replacer) ([]Tensor, error) {
|
func parseTensors(fsys fs.FS, replacer *strings.Replacer) ([]Tensor, error) {
|
||||||
patterns := []struct {
|
patterns := []struct {
|
||||||
Pattern string
|
Pattern string
|
||||||
Func func(fs.FS, *strings.Replacer, ...string) ([]Tensor, error)
|
Func func(fs.FS, *strings.Replacer, ...string) ([]Tensor, error)
|
||||||
}{
|
}{
|
||||||
{"*.safetensors", parseSafetensors},
|
{"model-*-of-*.safetensors", parseSafetensors},
|
||||||
|
{"model.safetensors", parseSafetensors},
|
||||||
|
{"adapters.safetensors", parseSafetensors},
|
||||||
|
{"adapter_model.safetensors", parseSafetensors},
|
||||||
{"pytorch_model-*-of-*.bin", parseTorch},
|
{"pytorch_model-*-of-*.bin", parseTorch},
|
||||||
{"pytorch_model.bin", parseTorch},
|
{"pytorch_model.bin", parseTorch},
|
||||||
{"consolidated.*.pth", parseTorch},
|
{"consolidated.*.pth", parseTorch},
|
||||||
|
@ -94,21 +94,6 @@ type safetensor struct {
|
|||||||
*tensorBase
|
*tensorBase
|
||||||
}
|
}
|
||||||
|
|
||||||
func (st safetensor) Clone() Tensor {
|
|
||||||
return &safetensor{
|
|
||||||
fs: st.fs,
|
|
||||||
path: st.path,
|
|
||||||
dtype: st.dtype,
|
|
||||||
offset: st.offset,
|
|
||||||
size: st.size,
|
|
||||||
tensorBase: &tensorBase{
|
|
||||||
name: st.name,
|
|
||||||
repacker: st.repacker,
|
|
||||||
shape: slices.Clone(st.shape),
|
|
||||||
},
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
func (st safetensor) WriteTo(w io.Writer) (int64, error) {
|
func (st safetensor) WriteTo(w io.Writer) (int64, error) {
|
||||||
f, err := st.fs.Open(st.path)
|
f, err := st.fs.Open(st.path)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
|
@ -43,17 +43,6 @@ type torch struct {
|
|||||||
*tensorBase
|
*tensorBase
|
||||||
}
|
}
|
||||||
|
|
||||||
func (t torch) Clone() Tensor {
|
|
||||||
return torch{
|
|
||||||
storage: t.storage,
|
|
||||||
tensorBase: &tensorBase{
|
|
||||||
name: t.name,
|
|
||||||
shape: t.shape,
|
|
||||||
repacker: t.repacker,
|
|
||||||
},
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
func (pt torch) WriteTo(w io.Writer) (int64, error) {
|
func (pt torch) WriteTo(w io.Writer) (int64, error) {
|
||||||
return 0, nil
|
return 0, nil
|
||||||
}
|
}
|
||||||
|
@ -1360,7 +1360,7 @@ func file_sentencepiece_model_proto_rawDescGZIP() []byte {
|
|||||||
|
|
||||||
var file_sentencepiece_model_proto_enumTypes = make([]protoimpl.EnumInfo, 2)
|
var file_sentencepiece_model_proto_enumTypes = make([]protoimpl.EnumInfo, 2)
|
||||||
var file_sentencepiece_model_proto_msgTypes = make([]protoimpl.MessageInfo, 6)
|
var file_sentencepiece_model_proto_msgTypes = make([]protoimpl.MessageInfo, 6)
|
||||||
var file_sentencepiece_model_proto_goTypes = []any{
|
var file_sentencepiece_model_proto_goTypes = []interface{}{
|
||||||
(TrainerSpec_ModelType)(0), // 0: sentencepiece.TrainerSpec.ModelType
|
(TrainerSpec_ModelType)(0), // 0: sentencepiece.TrainerSpec.ModelType
|
||||||
(ModelProto_SentencePiece_Type)(0), // 1: sentencepiece.ModelProto.SentencePiece.Type
|
(ModelProto_SentencePiece_Type)(0), // 1: sentencepiece.ModelProto.SentencePiece.Type
|
||||||
(*TrainerSpec)(nil), // 2: sentencepiece.TrainerSpec
|
(*TrainerSpec)(nil), // 2: sentencepiece.TrainerSpec
|
||||||
@ -1392,7 +1392,7 @@ func file_sentencepiece_model_proto_init() {
|
|||||||
return
|
return
|
||||||
}
|
}
|
||||||
if !protoimpl.UnsafeEnabled {
|
if !protoimpl.UnsafeEnabled {
|
||||||
file_sentencepiece_model_proto_msgTypes[0].Exporter = func(v any, i int) any {
|
file_sentencepiece_model_proto_msgTypes[0].Exporter = func(v interface{}, i int) interface{} {
|
||||||
switch v := v.(*TrainerSpec); i {
|
switch v := v.(*TrainerSpec); i {
|
||||||
case 0:
|
case 0:
|
||||||
return &v.state
|
return &v.state
|
||||||
@ -1406,7 +1406,7 @@ func file_sentencepiece_model_proto_init() {
|
|||||||
return nil
|
return nil
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
file_sentencepiece_model_proto_msgTypes[1].Exporter = func(v any, i int) any {
|
file_sentencepiece_model_proto_msgTypes[1].Exporter = func(v interface{}, i int) interface{} {
|
||||||
switch v := v.(*NormalizerSpec); i {
|
switch v := v.(*NormalizerSpec); i {
|
||||||
case 0:
|
case 0:
|
||||||
return &v.state
|
return &v.state
|
||||||
@ -1420,7 +1420,7 @@ func file_sentencepiece_model_proto_init() {
|
|||||||
return nil
|
return nil
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
file_sentencepiece_model_proto_msgTypes[2].Exporter = func(v any, i int) any {
|
file_sentencepiece_model_proto_msgTypes[2].Exporter = func(v interface{}, i int) interface{} {
|
||||||
switch v := v.(*SelfTestData); i {
|
switch v := v.(*SelfTestData); i {
|
||||||
case 0:
|
case 0:
|
||||||
return &v.state
|
return &v.state
|
||||||
@ -1434,7 +1434,7 @@ func file_sentencepiece_model_proto_init() {
|
|||||||
return nil
|
return nil
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
file_sentencepiece_model_proto_msgTypes[3].Exporter = func(v any, i int) any {
|
file_sentencepiece_model_proto_msgTypes[3].Exporter = func(v interface{}, i int) interface{} {
|
||||||
switch v := v.(*ModelProto); i {
|
switch v := v.(*ModelProto); i {
|
||||||
case 0:
|
case 0:
|
||||||
return &v.state
|
return &v.state
|
||||||
@ -1448,7 +1448,7 @@ func file_sentencepiece_model_proto_init() {
|
|||||||
return nil
|
return nil
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
file_sentencepiece_model_proto_msgTypes[4].Exporter = func(v any, i int) any {
|
file_sentencepiece_model_proto_msgTypes[4].Exporter = func(v interface{}, i int) interface{} {
|
||||||
switch v := v.(*SelfTestData_Sample); i {
|
switch v := v.(*SelfTestData_Sample); i {
|
||||||
case 0:
|
case 0:
|
||||||
return &v.state
|
return &v.state
|
||||||
@ -1460,7 +1460,7 @@ func file_sentencepiece_model_proto_init() {
|
|||||||
return nil
|
return nil
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
file_sentencepiece_model_proto_msgTypes[5].Exporter = func(v any, i int) any {
|
file_sentencepiece_model_proto_msgTypes[5].Exporter = func(v interface{}, i int) interface{} {
|
||||||
switch v := v.(*ModelProto_SentencePiece); i {
|
switch v := v.(*ModelProto_SentencePiece); i {
|
||||||
case 0:
|
case 0:
|
||||||
return &v.state
|
return &v.state
|
||||||
|
@ -1,56 +0,0 @@
|
|||||||
package convert
|
|
||||||
|
|
||||||
import (
|
|
||||||
"iter"
|
|
||||||
"slices"
|
|
||||||
"strings"
|
|
||||||
|
|
||||||
"github.com/ollama/ollama/fs/ggml"
|
|
||||||
"github.com/pdevine/tensor"
|
|
||||||
"github.com/pdevine/tensor/native"
|
|
||||||
)
|
|
||||||
|
|
||||||
// splitDim splits a tensor along a specified dimension into multiple tensors. The dimension
|
|
||||||
// is split evenly based on the number of replacers provided.
|
|
||||||
func splitDim(t Tensor, dim int, replacers ...*strings.Replacer) iter.Seq[*ggml.Tensor] {
|
|
||||||
return func(yield func(*ggml.Tensor) bool) {
|
|
||||||
for i, replacer := range replacers {
|
|
||||||
shape := slices.Clone(t.Shape())
|
|
||||||
shape[dim] = shape[dim] / uint64(len(replacers))
|
|
||||||
|
|
||||||
slice := slices.Repeat([]tensor.Slice{nil}, len(shape))
|
|
||||||
slice[dim] = tensor.S(i*int(shape[dim]), (i+1)*int(shape[dim]))
|
|
||||||
|
|
||||||
tt := t.Clone()
|
|
||||||
tt.SetRepacker(func(_ string, data []float32, shape []uint64) ([]float32, error) {
|
|
||||||
dims := make([]int, len(shape))
|
|
||||||
for i := range shape {
|
|
||||||
dims[i] = int(shape[i])
|
|
||||||
}
|
|
||||||
|
|
||||||
var t tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
|
||||||
t, err := t.Slice(slice...)
|
|
||||||
if err != nil {
|
|
||||||
return nil, err
|
|
||||||
}
|
|
||||||
|
|
||||||
t = tensor.Materialize(t)
|
|
||||||
// flatten tensor so it can be written as a vector
|
|
||||||
if err := t.Reshape(t.Shape().TotalSize()); err != nil {
|
|
||||||
return nil, err
|
|
||||||
}
|
|
||||||
|
|
||||||
return native.VectorF32(t.(*tensor.Dense))
|
|
||||||
})
|
|
||||||
|
|
||||||
if !yield(&ggml.Tensor{
|
|
||||||
Name: replacer.Replace(t.Name()),
|
|
||||||
Kind: t.Kind(),
|
|
||||||
Shape: shape,
|
|
||||||
WriterTo: tt,
|
|
||||||
}) {
|
|
||||||
break
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
314
convert/testdata/Qwen2.5-0.5B-Instruct.json
vendored
314
convert/testdata/Qwen2.5-0.5B-Instruct.json
vendored
@ -1,314 +0,0 @@
|
|||||||
{
|
|
||||||
"general.architecture": "qwen2",
|
|
||||||
"general.file_type": "1",
|
|
||||||
"general.parameter_count": "494032768",
|
|
||||||
"general.quantization_version": "2",
|
|
||||||
"output_norm.weight": "93a01a6db3419e85320a244bbf8ae81c43033b1d10c342bea3797ff2ce348390",
|
|
||||||
"qwen2.attention.head_count": "14",
|
|
||||||
"qwen2.attention.head_count_kv": "2",
|
|
||||||
"qwen2.attention.layer_norm_rms_epsilon": "1e-06",
|
|
||||||
"qwen2.block_count": "24",
|
|
||||||
"qwen2.context_length": "32768",
|
|
||||||
"qwen2.embedding_length": "896",
|
|
||||||
"qwen2.feed_forward_length": "4864",
|
|
||||||
"qwen2.rope.freq_base": "1e+06",
|
|
||||||
"token_embd.weight": "d74257dc547b48be5ae7b93f1c9af072c0c42dbbb85503078e25c59cd09e68d0",
|
|
||||||
"tokenizer.ggml.add_eos_token": "false",
|
|
||||||
"tokenizer.ggml.add_padding_token": "false",
|
|
||||||
"tokenizer.ggml.eos_token_id": "151645",
|
|
||||||
"tokenizer.ggml.merges": "6b1b1c58f1223d74f9095929d3e6416cdd74784440221a5507b87b8197f2bfd2",
|
|
||||||
"tokenizer.ggml.model": "gpt2",
|
|
||||||
"tokenizer.ggml.padding_token_id": "151643",
|
|
||||||
"tokenizer.ggml.pre": "qwen2",
|
|
||||||
"tokenizer.ggml.scores": "94e247e531e8b0fa3d248f3de09c9beae0c87da8106208a8edfaac0b8ec4b53d",
|
|
||||||
"tokenizer.ggml.token_type": "b178dbc9d1b2e08f84d02918e00fc2de2619a250e6c188c91a6605f701860055",
|
|
||||||
"tokenizer.ggml.tokens": "1d93f6679b23a1152b725f7f473792d54d53c1040c5250d3e46b42f81e0a1a34",
|
|
||||||
"blk.0.attn_k.bias": "5ce6617845f66c34515978d23d52e729c298d8bffa28c356a0428bef17142cf1",
|
|
||||||
"blk.0.attn_k.weight": "a960832a9e0e83e4d95402e5d1a01cc74300fcca0c381237162126330e1a7af8",
|
|
||||||
"blk.0.attn_norm.weight": "32c7d51cd0958f1f1771174192db341f9770516d7595a2f0fd18a4d78bd5aba3",
|
|
||||||
"blk.0.attn_output.weight": "c67e6e7e868354a11bf9121c70ee56c140b20eec611a8955e7dfe54a21d40a98",
|
|
||||||
"blk.0.attn_q.bias": "3e9e994eb1f03bccfc82f8bb3c324c920d42d547e07de5be83be12c428645063",
|
|
||||||
"blk.0.attn_q.weight": "dc12132f789b97cfa1e3f5775ceb835247fa67aa47400fd09c8f9f3769208583",
|
|
||||||
"blk.0.attn_v.bias": "a3fd0757b31fdc78af5ec320332d239c1a79d34e8804df06c5454e86955e8cc9",
|
|
||||||
"blk.0.attn_v.weight": "f43094a2134c7ee2dcc52aac3c8b7d9d64fb0295a8adb94cabfd49213f017b84",
|
|
||||||
"blk.0.ffn_down.weight": "18c2aec92db14f21976838a8c35d5575f80d0e4b1e05ccc0d8388d5877e80147",
|
|
||||||
"blk.0.ffn_gate.weight": "a3a1c4ef38f8f750eabadfe3d83bbb0f77941eec1cc1a388e51852e99c8691f6",
|
|
||||||
"blk.0.ffn_norm.weight": "b59b779c42d44b5c4cec41e39b4eb61e0491a07c1b3e946ccb5b8d5c657eda3f",
|
|
||||||
"blk.0.ffn_up.weight": "db64f09987ea59449e90abae5a2ffcc20efd9203f0eebec77a6aacb5809d6cff",
|
|
||||||
"blk.1.attn_k.bias": "a5c8c5671703ec0aa0143ff70a20ffdd67b5d5790ca1dfa5bba4e87e4071ed9f",
|
|
||||||
"blk.1.attn_k.weight": "835c7c7cc95b3cb2e55bd9cac585aa0760a033896621d3e06421f3378c540f7d",
|
|
||||||
"blk.1.attn_norm.weight": "f4c36fb6c14fce721fab0de78cc118d6f66e3a3d3ea0017bb14aade24c3c5434",
|
|
||||||
"blk.1.attn_output.weight": "cc1e80310c97cef068e48e40b7096f32fa2138519d6209c6a1a9994985999016",
|
|
||||||
"blk.1.attn_q.bias": "bc332780e66b0aac80ec5e63ac32344919a840db2fcc8f87bcef16a43a54138e",
|
|
||||||
"blk.1.attn_q.weight": "d766f06c925cce38d4b31b2165b3448e1fb49a7d561985f95d9cd2fcba52367a",
|
|
||||||
"blk.1.attn_v.bias": "9f486626fb6ed9ac84970a71e9b9818dd2758501fd3f61bb1c08540dcc7a8631",
|
|
||||||
"blk.1.attn_v.weight": "e873d1e5bd4f4d6abfd47c0f55119c2c111105838753ee273a03c5ccea25ce5c",
|
|
||||||
"blk.1.ffn_down.weight": "b3ce82b093f187344de04284b1783a452de1b72640914609b8f830dc81580521",
|
|
||||||
"blk.1.ffn_gate.weight": "5cd44ad237edaca525a28a3ac13975d1b565f576d6a8003237a341ae0d156f2e",
|
|
||||||
"blk.1.ffn_norm.weight": "4ac774ee8afaee119610c46aa1ff89fc6c9084a29d226075bc4aa4d2f15f746c",
|
|
||||||
"blk.1.ffn_up.weight": "042d81ab5f1983d85c81213232f3bfc05a9302d9dfaa98d931ebba326b6058b8",
|
|
||||||
"blk.10.attn_k.bias": "767ecfeacd60a2c2221ac4d76c357190849dd9cdf64ced418d9d0c7949101401",
|
|
||||||
"blk.10.attn_k.weight": "a9f3df343227537636be8202303453086375091944e498bad11e0b91e45e8c71",
|
|
||||||
"blk.10.attn_norm.weight": "01acd0e7b3e363f873dbfde6f0995ffcce83f5aaa10ff91c31dbf775035f6d5a",
|
|
||||||
"blk.10.attn_output.weight": "a531fe660769604ab869f01b203eb115e025cad4c0baeacdd1bcca99cf6d0264",
|
|
||||||
"blk.10.attn_q.bias": "356a02c9163dd660c1340fbe1e049b335ac6178891e00996131bba9ab4cb3e59",
|
|
||||||
"blk.10.attn_q.weight": "81be0cfb227339d83f954cd8dcf35828441211c6e1d184060e3eb76085041e2f",
|
|
||||||
"blk.10.attn_v.bias": "ed0450653284b62f8bf2c2db19c0ff7a6cf3cda1324d0a044c5e3db7bb692bd3",
|
|
||||||
"blk.10.attn_v.weight": "c1247ff7092babd2ed979883095b9aa022b2996cab1c77fb9e6176ddc1498d16",
|
|
||||||
"blk.10.ffn_down.weight": "fda7544965dc9af874f1062c22151c6cefc8ba08cbe15dc67aa89979e77b2de4",
|
|
||||||
"blk.10.ffn_gate.weight": "9f2632b1dee7304d10c70bd38d85bb1f148a628a8468f894f57975b8a2f1d945",
|
|
||||||
"blk.10.ffn_norm.weight": "94f8cbd6b17a4d5aabd93fa32930a687db3b11f086142f1cd71c535c11adcad4",
|
|
||||||
"blk.10.ffn_up.weight": "8dc2f8db0474939a277a3d89db34c3bcc3381cfea57bd05a8426a164634d9112",
|
|
||||||
"blk.11.attn_k.bias": "3b8e5a662b19411e3f6530714b766aad2ee41eebc8161bec9db0bc82d383a6e0",
|
|
||||||
"blk.11.attn_k.weight": "2c29f1ed1ce53ce9604e9ea3663c2c373157e909a0d6064a8920005f6d15dad9",
|
|
||||||
"blk.11.attn_norm.weight": "48f68a99c3da4ab4c9e492677b606d1b8e0e3de1fdbf6a977523f97b8c21ec31",
|
|
||||||
"blk.11.attn_output.weight": "5859f3838a94898b020c23040941ed88f4fcb132db400d0849f30a01f62c0f1c",
|
|
||||||
"blk.11.attn_q.bias": "c5ad89a5628f2bd81252ef44ef6bbcbff15c33ad16fba66435509b959c2af6d3",
|
|
||||||
"blk.11.attn_q.weight": "d102104e5d61c1e3219564f1d0149fd593db6c6daa9f3872460c84403323cfef",
|
|
||||||
"blk.11.attn_v.bias": "8653f7d48c5f75a5b55630819f99ecf01c932f12d33fd1a3ee634613e70edde8",
|
|
||||||
"blk.11.attn_v.weight": "e0a7c7d89b9f2d0d781ce85330022229126e130a8600a09d4a5f920f0bbd50b2",
|
|
||||||
"blk.11.ffn_down.weight": "4a22b3361eba8bbe1d9a6fda1812618e894c49f13bcacb505defa9badb6b96a6",
|
|
||||||
"blk.11.ffn_gate.weight": "484698b206760d3fd8df68b252a3c5bae65c8bf6392fb53a5261b021b6f39144",
|
|
||||||
"blk.11.ffn_norm.weight": "da69e96338cbe30882cf5a9544004387f5bbc0bcb6038e61ba2baabbd2623bac",
|
|
||||||
"blk.11.ffn_up.weight": "26ec74f1f504d1281715680dfbcc321db4e9900c53932fa40955daceb891b9aa",
|
|
||||||
"blk.12.attn_k.bias": "f94b49ec3e498f14f6bc3ebefe1f82018935bbe594df03253bfffae36bc20751",
|
|
||||||
"blk.12.attn_k.weight": "ae6323d0bbcfcea01f598d308993d1a7530317e78c1f64923e36d4b1649e9e73",
|
|
||||||
"blk.12.attn_norm.weight": "3784536a7611a839a42a29a5cc538c74ee4f9793092e5efe1b227b48f8c4d37f",
|
|
||||||
"blk.12.attn_output.weight": "46826c00b066829355db78293ab216e890f5eaaed3a70499ee68785189a6b0d9",
|
|
||||||
"blk.12.attn_q.bias": "b14db2d327ce0deec97beda7d3965a56c43e1e63dc9181840fb176b114cf643a",
|
|
||||||
"blk.12.attn_q.weight": "30f67df52ced06f76b6c85531657584276a454d6ec9bb7d0c7d2ca8f067f5551",
|
|
||||||
"blk.12.attn_v.bias": "57ab4b7e43f4fc5853bca7bfbb2702f8c2c391a49252a760abbb7b26330dc4aa",
|
|
||||||
"blk.12.attn_v.weight": "3ccd9da0cfe241cd33a63310f3ca6d81c5bc5a50d200bfea6612ac376166aca2",
|
|
||||||
"blk.12.ffn_down.weight": "a095774413198a83c549ce132d7c9684c0baef33145eaa889be370ef9c881c81",
|
|
||||||
"blk.12.ffn_gate.weight": "bb3b2bbdfb065d2a0a795909c53beec327781a4a7e974bf9f99c436cea459991",
|
|
||||||
"blk.12.ffn_norm.weight": "3b486c6cd97eb4b17967d9d6c0cc3821a1a6ad73d96b4d8fbf980101b32b8dab",
|
|
||||||
"blk.12.ffn_up.weight": "d020b82dd39a5d5a9d3881397bf53a567790a07f395284e6eb0f5fe0fef53de3",
|
|
||||||
"blk.13.attn_k.bias": "69381f8254586eba3623eceb18697fe79f9b4d8f2c30136acb10d5926e3ba1d0",
|
|
||||||
"blk.13.attn_k.weight": "c4d7a31495d71269f81b586203a50abea3a9e2985667faf258c9306ec6030f1d",
|
|
||||||
"blk.13.attn_norm.weight": "907da11075d16eda668dabe548af3cfd794df26b8ab53939af1344d91bec6fba",
|
|
||||||
"blk.13.attn_output.weight": "ca01cf6d2b8ece2fb3b0f56f1eb76194471ac27b54fe264f99c909f5eb7fef4a",
|
|
||||||
"blk.13.attn_q.bias": "2f5ecebafe03b1d485b93c41cff756ca57fb65b02e9d8336f14a3d26ab5d159a",
|
|
||||||
"blk.13.attn_q.weight": "f557f8acad7f0fa62da06b5da134182fe04a5bed8bdb269e316f970c9cc440fb",
|
|
||||||
"blk.13.attn_v.bias": "a492a88ae131e95714b092545a8752eaea7c7d2f9cb77852628ca8296c415525",
|
|
||||||
"blk.13.attn_v.weight": "d1220b1fe9f1cc0a5a88ee239d65fec900f5eaf6c448b6c2cbe74c81e15ed333",
|
|
||||||
"blk.13.ffn_down.weight": "53184e33440b49848a896304eb16a983efbc6b8bee0b93de8c8de716e1585fcb",
|
|
||||||
"blk.13.ffn_gate.weight": "684bf8896f148c851506c62717e45c426921b93c10d536ecdeb0fb28259a106d",
|
|
||||||
"blk.13.ffn_norm.weight": "6cb4e547ad8665eb7c174855c08afe1e5490fece66122522c1e9e8132d9064eb",
|
|
||||||
"blk.13.ffn_up.weight": "c64107897e38c06727075aba4ea7940b2cdd0e278b5c555dffb2790ef553bb57",
|
|
||||||
"blk.14.attn_k.bias": "2814ca9b160b16ae39557c9b629482fbe3a7592d372c1e1bf1ac59a2d578fde1",
|
|
||||||
"blk.14.attn_k.weight": "3377177396463afba667742972920ebb45dfdc37e9950e1f0e1d60a2f936b27d",
|
|
||||||
"blk.14.attn_norm.weight": "5cae870477d51dd35a6d22aaeacfce4dff218ffba693820ede6a4e11f02afd6d",
|
|
||||||
"blk.14.attn_output.weight": "3cfe9ccf3d48ae9e95b93a132a1c6240189a277d764f58590fb36fdbb714cad0",
|
|
||||||
"blk.14.attn_q.bias": "6a75acc2f090b2e67bfc26f7fca080ae8bd7c7aa090ec252e694be66b8b8f038",
|
|
||||||
"blk.14.attn_q.weight": "5ef45c86d7dda1df585aa1b827b89823adf679a6bb9c164bd0f97b2aa6eb96f1",
|
|
||||||
"blk.14.attn_v.bias": "5534480443e10ed72c31a917f3d104b0f49df5e6dbfa58d0eb5e7318120e3aee",
|
|
||||||
"blk.14.attn_v.weight": "58f45cf3240c4623626ec415c7d5441eaa8d2fb184f101aba973f222989422d1",
|
|
||||||
"blk.14.ffn_down.weight": "2dc82a0f20c05b77512458738130d8d05ce150cc078680ae7ee6dd7ed68d955d",
|
|
||||||
"blk.14.ffn_gate.weight": "d4a6c6f0fcccddfd1fcaa074846622f4a74cb22b9a654ab497abdc1d0dde9450",
|
|
||||||
"blk.14.ffn_norm.weight": "777e444932a0212ff3feac98442444e17bd8a98cb758ea3356697d0846d12c56",
|
|
||||||
"blk.14.ffn_up.weight": "6b75f6bd00195198447b69a417ed9d98f8ca28b3cb8be82f4bad908be0777d57",
|
|
||||||
"blk.15.attn_k.bias": "2d07211a58e6c2f23aa3a6dc03c80a7d135dfb28726b60b0e0fdd0f35ea5c37b",
|
|
||||||
"blk.15.attn_k.weight": "e77f3c0075a1810e70df956cc51fd08612f576cc09b6de8708dcae5daedb0739",
|
|
||||||
"blk.15.attn_norm.weight": "379a10d90609a5d5ba67d633803eda1424fc61ba5cca8d3bffe70c8b18b58ebf",
|
|
||||||
"blk.15.attn_output.weight": "402751c12ee9dbc9db5e3bf66a7b23ebe7d36c0500e0be67be4c8b1c4357fa62",
|
|
||||||
"blk.15.attn_q.bias": "acb37fc409ee725ceedf7a3a41b40106086abc47b76780728f781942c5120208",
|
|
||||||
"blk.15.attn_q.weight": "89cd3047a09b46ed2bb57c69dd687f67a1f0235149b30376fa31b525898e4a55",
|
|
||||||
"blk.15.attn_v.bias": "f081a37289cbe811978feb4da3ef543bdeb7355414d476f44e09b498da10cb2c",
|
|
||||||
"blk.15.attn_v.weight": "8404f242a11e6d512c9ead9b2f083cda031e9b269f8a0a83f57ee4c56934764e",
|
|
||||||
"blk.15.ffn_down.weight": "93438f43ee8cc4f1a7fd3840a6afdd5f02123e76db4f0d9474430c0100d148fc",
|
|
||||||
"blk.15.ffn_gate.weight": "ff935a2698843e87fad9dbf7125f53e460190ec71ee128b650b3fc027fe37bfc",
|
|
||||||
"blk.15.ffn_norm.weight": "4be80f199841cba831982e988451e1833c3c938a4d6ca1169319087bf0bd723e",
|
|
||||||
"blk.15.ffn_up.weight": "ee9ba63c66d71053e33551ddd519878bb30b88eeb03cfe047119c5c4000fb0a6",
|
|
||||||
"blk.16.attn_k.bias": "3f5fbabed4510c620b99d9d542739295fa6a262a7157f3a00a4889253f8341b8",
|
|
||||||
"blk.16.attn_k.weight": "8ca6eb139b281c257324cddea97a8e9aa7c048b53075cf00153123b967c27ee5",
|
|
||||||
"blk.16.attn_norm.weight": "290157f005e5aa7dddf4bd60100e7ee7b0baa7f11ec5c2cea5e0ead2aad3a4c6",
|
|
||||||
"blk.16.attn_output.weight": "b1f4d80a7447f08f1c331712527f750d00147f35c042442ade96fd029dadc5a1",
|
|
||||||
"blk.16.attn_q.bias": "e3e4e442ad4416791b468cad8de0d0d2d68c7e7df8d06002f4d49b4da9cb25e4",
|
|
||||||
"blk.16.attn_q.weight": "cc7392fa5bb1107d3816e7e7363de252d37efd4165d065e258806291ce0a147b",
|
|
||||||
"blk.16.attn_v.bias": "a7629830f2f6293e018916849614636d40b1bcd11245f75dbc34d38abae8f324",
|
|
||||||
"blk.16.attn_v.weight": "b6c7856c7d594437630929c8cf3b31d476e817875daf1095334ec08e40c5e355",
|
|
||||||
"blk.16.ffn_down.weight": "f9c0a777a00170990a4982d5a06717511bf9b0dd08aeaab64d9040d59bcbebba",
|
|
||||||
"blk.16.ffn_gate.weight": "ed88f11bc3176c9f22004e3559ccb9830a278b75edd05e11971d51c014bd5cd2",
|
|
||||||
"blk.16.ffn_norm.weight": "ab24abdcc4957895e434c6bb3a5237a71ff5044efb9f76c1a9e76e280c128410",
|
|
||||||
"blk.16.ffn_up.weight": "99f594dc8db37f554efa606e71d215fbc3907aa464a54038d6e40e9229a547ff",
|
|
||||||
"blk.17.attn_k.bias": "f236625676f9b2faa6781c7184d12d84c089c130d2a9350a6cf70210990f6bf1",
|
|
||||||
"blk.17.attn_k.weight": "c2a4f20cd3e98538308a13afe9cc5880bdd90d543449c6072dedd694b511ee1a",
|
|
||||||
"blk.17.attn_norm.weight": "5a9da4ee168311f487a79fc9d065a035432c6cafa8adb963a84954cf32f57a2a",
|
|
||||||
"blk.17.attn_output.weight": "d5df7031e354186ce65dc09d6f8a92eb721c0319816f8596b0c8a5d148ed0a2a",
|
|
||||||
"blk.17.attn_q.bias": "3212d5eeaa7ed7fac93cc99e16544de93c01bb681ae9391256ed4a8671fc6b00",
|
|
||||||
"blk.17.attn_q.weight": "d18cd9aa7ee10c551cb705549fa1ae974aea233f86471c9a19022dc29b63d0d5",
|
|
||||||
"blk.17.attn_v.bias": "a74ad11a1f8357742f80e2a0c0b3a2578fc8bbaf14c8223000767e07a5d79703",
|
|
||||||
"blk.17.attn_v.weight": "da18ac0e90884436a1cb0ad6a067f97a37f321b03c70b8b03bf481339fef5c80",
|
|
||||||
"blk.17.ffn_down.weight": "81a8a5d7a194fb53d976558e0347efbe9fdb1effffde9634c70162e1a20eff51",
|
|
||||||
"blk.17.ffn_gate.weight": "72870d83ab62f2dcd45f593924e291a45e4ae1b87f804b5b88aa34cfd76dd15e",
|
|
||||||
"blk.17.ffn_norm.weight": "cae39ac69b9bdaeefab7533796fdf11dbb7a4bdbdeed601e20f209503aafe008",
|
|
||||||
"blk.17.ffn_up.weight": "e7cb40b0842468507cec0e502bbed8a86428b51d439e3466bc12f44b2754e28f",
|
|
||||||
"blk.18.attn_k.bias": "8bfc02b94f9587aa125e2d8bbc2b15f0a5eb8f378d8b3e64a8150ae0a8ca3df2",
|
|
||||||
"blk.18.attn_k.weight": "434bc3b3332ea48afee890aa689eb458a75c50bc783492b0cbf64d42db40e8ad",
|
|
||||||
"blk.18.attn_norm.weight": "d6ffc09396c42a70d1f0e97d81113eee704d3bfc9eeae2bed022075a5dd08075",
|
|
||||||
"blk.18.attn_output.weight": "133f001f81f3b082468a7de67cb2e7a76508fce34bcc4dee7f0858e06eee082c",
|
|
||||||
"blk.18.attn_q.bias": "758d0e28bf5e660b3090aafb70e2a3191b4f3bb218d65e9139a086ceacaf599f",
|
|
||||||
"blk.18.attn_q.weight": "12d7b86fc1b09b9fa7f8b7ed43d8a410892cec8672d0c752f8346f6193343696",
|
|
||||||
"blk.18.attn_v.bias": "9efd15bab0519462431d6c6e8a5b7dd4e151dc449468097ee0ddca369c0ecc2e",
|
|
||||||
"blk.18.attn_v.weight": "f631231a79d4a2e9730fb2e386d8c18621eb3fb7900fbfdff5e6d52cc42db122",
|
|
||||||
"blk.18.ffn_down.weight": "874a2dddf456f3ab56b958b0860d71c8c680a6f89322c9bf6b2f32a113592300",
|
|
||||||
"blk.18.ffn_gate.weight": "4549ef8976c345a511df4a7133bdaf6fe387335f52dfd8a4605a8ae3f728c403",
|
|
||||||
"blk.18.ffn_norm.weight": "80c258a2536a860e19bfcbd9f29afa13214fbb4c34bde0d4da51287d354e9a59",
|
|
||||||
"blk.18.ffn_up.weight": "8b03308a581457a3c038b7a086f3cdf14941d7ad4107c4bd6d9d6b062fd00d73",
|
|
||||||
"blk.19.attn_k.bias": "e77f7b0c8e3e0a9b0d61918cd88371047752a1b02b1576936f4ec807d4d870ee",
|
|
||||||
"blk.19.attn_k.weight": "a2a318e93355230c0d0f95c441b080bf9c4914507255f363fb67a5e771d4d1e6",
|
|
||||||
"blk.19.attn_norm.weight": "9a4bdeb3970be21ac74a94c2c81eb36986533db81b78db6edec48d9802910d59",
|
|
||||||
"blk.19.attn_output.weight": "2369b103dd3947e2cef02b2669b405af5957fb3a7f9d0ff40646078c4b4317ad",
|
|
||||||
"blk.19.attn_q.bias": "e20bf427bef69059ae84a5d9f98f7d688489627f198fb6153def018ff9fd2e34",
|
|
||||||
"blk.19.attn_q.weight": "45a3bb3bdfd2f29dd76e5f78ddae73678b9a2a85dfaf609e460240ef5b7be2ad",
|
|
||||||
"blk.19.attn_v.bias": "a441f58a3e02ed86ee1819eefc9bd4e8b70d11b864a929d58a2c2ac0aeb8203d",
|
|
||||||
"blk.19.attn_v.weight": "30b0b04480c510450a7abb2ce9fa05c65b150a3cc4dc76f8916bf8d013f1b6be",
|
|
||||||
"blk.19.ffn_down.weight": "eebb9ab8fdb6a6efcfff8cf383adac9ec2d64aeeff703d16ed60d3621f86c395",
|
|
||||||
"blk.19.ffn_gate.weight": "3fef1493029298378886586478410b3d2e4e879f6aa83c07e210a7ce6481817f",
|
|
||||||
"blk.19.ffn_norm.weight": "e1be99ea1e8fb9678f7b8ba200f3f37e03878f3574d65d57bcd3a9fd796e2112",
|
|
||||||
"blk.19.ffn_up.weight": "f07cf25e09394fb69fe3ef324bdc0df9a4cecf3dc53070b8acc39e6d1689bf82",
|
|
||||||
"blk.2.attn_k.bias": "b29baa8221f125eff6b8ac1a950fa1d7cfc1bce7bdc636bf3df7d4065ab6466c",
|
|
||||||
"blk.2.attn_k.weight": "4bd0c179bced8bc37a09f5748c394e0cf50273942fb38a866e5cf50b6c96c437",
|
|
||||||
"blk.2.attn_norm.weight": "07b3edc6a6325c3428aa12f29bcae0be0de363ce61a6af487bc5c93fb8c468d9",
|
|
||||||
"blk.2.attn_output.weight": "056b5b31dbc81087c81b9d41c25960aa66c7190004c842ba343979644d7f4d88",
|
|
||||||
"blk.2.attn_q.bias": "479b6212401e097767c9d52b12a1adb8961c0fce9fcaaab81f202a9d85744376",
|
|
||||||
"blk.2.attn_q.weight": "f89196076f446a6dd8a9eee017f303504f9c03094c326449cee5a7fc0a97fade",
|
|
||||||
"blk.2.attn_v.bias": "ef9b1b986dbd9d7291027a88b67dc31434435b20e76e4f1e9d6273ebd31224f0",
|
|
||||||
"blk.2.attn_v.weight": "9322f4f00e85f8c0936845c51ca64b202a93df104f36886986a8452a8e4967a5",
|
|
||||||
"blk.2.ffn_down.weight": "7beac0d2440dc49af33ededb85a6cc3ba23ab33ad3ffa5760714b2ef84d94f6e",
|
|
||||||
"blk.2.ffn_gate.weight": "818a93864a5890c1f4dc66429004fad07645a50142350e9bff9a68fe24608a52",
|
|
||||||
"blk.2.ffn_norm.weight": "152c924d5514942ad274aafb8cc91b35c1db3627c3d973d92f60ff75f3daf9ba",
|
|
||||||
"blk.2.ffn_up.weight": "9c9579e600f209546db6015c9acfeda4f51b6d3cca6e8db4d20a04285fe61a37",
|
|
||||||
"blk.20.attn_k.bias": "fd22bfeffb63d818ce2ff1ea2ace0db5d940f7a9489b6bfc1ec4a5398848d7fe",
|
|
||||||
"blk.20.attn_k.weight": "f74439bc74c2f9252130c9c28384fd7352368b58bb7ce3f2444cf0288dfff861",
|
|
||||||
"blk.20.attn_norm.weight": "5c15d2613df87be6495fb7546b7dcedd2801d12fa5ecc02c877df889330e8f37",
|
|
||||||
"blk.20.attn_output.weight": "6731a39286a67f6859832f96695732e579e14e0c36956eccd1edce3db11595b8",
|
|
||||||
"blk.20.attn_q.bias": "04466e5a3f454a19b9b433fc2585396feac780027ece7ccb4e4bb3e406fc14d8",
|
|
||||||
"blk.20.attn_q.weight": "ead4c71daaeb17bf20d014a34c88b97f238456488e815ae0f281a5daf6fc99b8",
|
|
||||||
"blk.20.attn_v.bias": "adcc848e043025de9bd55ccb14dd8fb6343e8b5185ed07e12964be41d0faf99f",
|
|
||||||
"blk.20.attn_v.weight": "81bfc23f83526386a4761c2c16b6a93cd0bbf9d846c1a51b82c71f1474a465f1",
|
|
||||||
"blk.20.ffn_down.weight": "9bf660af3bafad919d03173c89a65fc9c89440a76c42c9e55e4d171076f3c17f",
|
|
||||||
"blk.20.ffn_gate.weight": "c04b4f3ccce44917ee228b998e2c19dd702aef10a43413afb152e808b5ac5c42",
|
|
||||||
"blk.20.ffn_norm.weight": "3d5b555d7746a71220143c6b8fff5ce4eb63283d9d9c772f1233d848f69f4ff4",
|
|
||||||
"blk.20.ffn_up.weight": "d7a196505c39e5469dfc7c6958bdbb54e93629ac1a047a6663ed96b318753094",
|
|
||||||
"blk.21.attn_k.bias": "4db1f48e5c6a3bc5720a5da813bbef08283e6269e12d83f8a9c54e52715d8011",
|
|
||||||
"blk.21.attn_k.weight": "c687b2f0e132a5e220a2a059b61aa2a537f37d8a674d7709f87880637b263b31",
|
|
||||||
"blk.21.attn_norm.weight": "ec23b0ff847a4b45585ab8e04f10fc20bb1637c5f1fbcdc4d73f336bcb5d1bd0",
|
|
||||||
"blk.21.attn_output.weight": "01255390576316c1731ef201e32c6e934eba356c28438cd06d9027ac6a3ff84f",
|
|
||||||
"blk.21.attn_q.bias": "3098f37205a15418e1681e407c82b7ce7c6fda6c6826b0590a13e1b68a38a1ea",
|
|
||||||
"blk.21.attn_q.weight": "30ea62cbb702a5359229dc96819df17ee535e2e9988d044b005c73ea536e1005",
|
|
||||||
"blk.21.attn_v.bias": "7bbedb2c22a04737f21993115701d4a06b985b7ca3b64681f53cd1be8d7ea39e",
|
|
||||||
"blk.21.attn_v.weight": "e11905e63579e36fbee978062af7599339ae29633765a4835628d79a795ec8df",
|
|
||||||
"blk.21.ffn_down.weight": "84def2ffd8aca766f9ce12ed9ac76919ab81eb34bdeae44fa4224417c38af527",
|
|
||||||
"blk.21.ffn_gate.weight": "4e99f05377b4a0b8d875045530a5c59dee6a46ac8a45597f6579f6fdfa800787",
|
|
||||||
"blk.21.ffn_norm.weight": "af48f13d03fba38ff8794a5f5005e666e501f971ca2e30bbded2777a8096f37d",
|
|
||||||
"blk.21.ffn_up.weight": "a29541c39a6acbc364be86994632a5bf55d701027cb7f23320f8c6d55ee42c91",
|
|
||||||
"blk.22.attn_k.bias": "c97f84db6c75422df6ef5768676d4e9abefaa3b8337aa2730ff260f8fc350480",
|
|
||||||
"blk.22.attn_k.weight": "af9a0c56f68779513e95be11611b7be6175ddae27d48bee9dd72fdbf05f6cbfa",
|
|
||||||
"blk.22.attn_norm.weight": "1c7518eb5bcff4a202c6f4a2827f14abd76f9bcc64ce75fe9db60b69437a5c9c",
|
|
||||||
"blk.22.attn_output.weight": "1abcf1f3caa2f59dd018646b93f9cf8fd30d49e98a473e6a8704419a751be46f",
|
|
||||||
"blk.22.attn_q.bias": "7221e01cb692faf2f7f8c2eb6e2fac38a1b751a9c9fdb6a21a0a936eb0bf4b96",
|
|
||||||
"blk.22.attn_q.weight": "faaf8fb7b6c19f343d47f3ea6b57151fb46c787e0b3bd2c292fd327d3d4d8e35",
|
|
||||||
"blk.22.attn_v.bias": "3ec05942e82d735de99dfd0d8228d8425e63e2fc584da98b3326bdef89ecb2e5",
|
|
||||||
"blk.22.attn_v.weight": "42e7b0ad06db76227837da9d4e74b2db97f3df4050ecb3a87cb9b55e08dfcb42",
|
|
||||||
"blk.22.ffn_down.weight": "87ef98ad2d0e824b0fa5ad8aa18787162922e527c9b1b721a99bc07d3bf97c82",
|
|
||||||
"blk.22.ffn_gate.weight": "562d6e5a1654b03aaa0e33864d23c10297fd4bcaa72d30fac69fb771ee1df9d6",
|
|
||||||
"blk.22.ffn_norm.weight": "f8a405dee467749d59427ce05cdd4b9c11bb18934a89258ea461f013b7d251f5",
|
|
||||||
"blk.22.ffn_up.weight": "90e1f4ae4062649d4d838399eb353e8bb8d56a49982b6a7f64aa3945377f7187",
|
|
||||||
"blk.23.attn_k.bias": "9ad22178a85f3be7e25f5aff462f31627466364f2f5e92f265cc91db0da9a8a8",
|
|
||||||
"blk.23.attn_k.weight": "d813beffb10f03278f5b58eea0f9d73cdcb7b5b4045ae025c379592e854f7dfd",
|
|
||||||
"blk.23.attn_norm.weight": "f583c9836044bdb056d6f8911088ac28add68e500043ae1f97b5d9158fe3d769",
|
|
||||||
"blk.23.attn_output.weight": "02789911ac3b97f6b761e958b7dd6dc7da61a46a1be92bd0b346039ca7ecd2b2",
|
|
||||||
"blk.23.attn_q.bias": "38c4970fb9b4f7e4a139258a45639d848653814b4bc89ea9849709b13f16414b",
|
|
||||||
"blk.23.attn_q.weight": "eb694be9a5ab5858b8dab064ee4cce247dc757424e65282989bd4d015b8580ce",
|
|
||||||
"blk.23.attn_v.bias": "0a25f6533aa7e7a152a4b198cf6c411c2408a34afa4f161bb4d5ffba2f74e33f",
|
|
||||||
"blk.23.attn_v.weight": "187e1bac6b70f74e6364de226565aa8275ee2854d09cbe5895451a689596049e",
|
|
||||||
"blk.23.ffn_down.weight": "88880dd9ba7ee80ade972927f810b5d2c30a69520c615190b27f9daabc0a8c5a",
|
|
||||||
"blk.23.ffn_gate.weight": "5abec63197935ab3eb8e6de0a5307396ec46cdb1cc5de25d87c845f3c4a3e887",
|
|
||||||
"blk.23.ffn_norm.weight": "60e1f5e6310c3a531c554a6bb7cd883aed58db1e51853f739436ea461c1843d7",
|
|
||||||
"blk.23.ffn_up.weight": "3d7f502771743f4a634188dfcd8b8a384fb07467ca8528366aee59ddb25b7bce",
|
|
||||||
"blk.3.attn_k.bias": "0b6b442ebbac29c8c4b67e8e3876d0382dd2dc52efdf4ab0ebbc6f71b6252393",
|
|
||||||
"blk.3.attn_k.weight": "480f40584fbda692c26f2cee45f5923780b236f8b4e8ec7bbee0237777a0918d",
|
|
||||||
"blk.3.attn_norm.weight": "39872be2af31bc9cd6b583ebba6fb759f621d586d66e5a2fc0b85991615a8923",
|
|
||||||
"blk.3.attn_output.weight": "924b2c80d8513bf637f8ebb3756a340d9cf2243de723fd08d7f5dccd46b3f8b6",
|
|
||||||
"blk.3.attn_q.bias": "863c9d848156847a3fe9bbc44415a4395245b5d13e95673c014fdb71e494ab0a",
|
|
||||||
"blk.3.attn_q.weight": "bff73ee5de92fba8f6c089bbb19ce57e17ab3c9c29295712804bb752711b882e",
|
|
||||||
"blk.3.attn_v.bias": "e1b6fea126e86189112fcdfee79ffc66a087461527bc9c2dc52dc80f3b7de95e",
|
|
||||||
"blk.3.attn_v.weight": "7812b7f5133636f06cdbb4dcc48ef7803206538641b6c960777b37f60a8e6752",
|
|
||||||
"blk.3.ffn_down.weight": "00b393d6a7e3ad9b5224211ccdbc54a96aae151f24ed631764ac224972a6bc82",
|
|
||||||
"blk.3.ffn_gate.weight": "cfd63fa3a038af05dc53c6eeb3c192f1602f26ff24cb840bcf1510fcb37b5513",
|
|
||||||
"blk.3.ffn_norm.weight": "7389fc240a282949580ea2f5b0d7973ac79f32f76dc0155b537bb6b751f8e27a",
|
|
||||||
"blk.3.ffn_up.weight": "2a945f47090df9cb16f92f1f06c520f156f8e232182eaaed09f257b8947a2a62",
|
|
||||||
"blk.4.attn_k.bias": "62533c31f0de498187593f238c6597503fef2a92e920cd540a96bc5311b3b2a0",
|
|
||||||
"blk.4.attn_k.weight": "93e829868bffd980a8e589b9c4566cd81e6ce4296a5f357a2ae93febe1284156",
|
|
||||||
"blk.4.attn_norm.weight": "9e0aaa4bbdd1389890f8abec20533f3ab16d61b872b1a8dbd623023921c660a9",
|
|
||||||
"blk.4.attn_output.weight": "74467d6f44357d67f452ac49da861468b38e98057017bd38bc9a449f9d3538e6",
|
|
||||||
"blk.4.attn_q.bias": "8e6d9026fd69b314c1773c5946be2e11daf806ef22a5d91d744344fd30c58c59",
|
|
||||||
"blk.4.attn_q.weight": "e5bfbafd94a4d530f3769f5edbba8cc08d9b5bee8f66ebf4cb54e69bc0b7f63b",
|
|
||||||
"blk.4.attn_v.bias": "20c570f92022d9905eb85c0e41d1fdb30db22007a9628b51f512f8268d6c34a2",
|
|
||||||
"blk.4.attn_v.weight": "9638d459d61da03c9dd34dad985e03c43b4f8a5bc9701a82153478329b0517e0",
|
|
||||||
"blk.4.ffn_down.weight": "9d91b06e89d52f4365dece7eaeec50f81e52cb2407b333248a81e6e2f84c05b8",
|
|
||||||
"blk.4.ffn_gate.weight": "bf6350a79c6a6ee9146edfd788b88d4a4c2b54db1aa0adcc1464dbba8a84b646",
|
|
||||||
"blk.4.ffn_norm.weight": "11a70a6b9f7ce336292f4e3a2c6c92d366d4ee4306ad4fdb1870fde107e9cc31",
|
|
||||||
"blk.4.ffn_up.weight": "64f23f493d02b147a72a59605e6b7dd1c4c74f6813a38a2a60818bd66f697347",
|
|
||||||
"blk.5.attn_k.bias": "f6c2c279c0ed686f298ad1e5514b5cd882199341f896abbb2c2129d4c64ce9c5",
|
|
||||||
"blk.5.attn_k.weight": "0e682f75870abf9efaca10dac5f04c580f42820ecf4e234d43af967019acb86f",
|
|
||||||
"blk.5.attn_norm.weight": "01efae7653705e741932fcd79dff3be643d7e97f4b5719b887835dffe44b3a82",
|
|
||||||
"blk.5.attn_output.weight": "69e841d00d196acc489cd70bc5ffbbb63530ac5fabb169d40c4fb3a32ebb8ed8",
|
|
||||||
"blk.5.attn_q.bias": "f3304d76ccd44fed887565857c8e513b1211d89a5d3e81782de507ab3f6fc045",
|
|
||||||
"blk.5.attn_q.weight": "98612a6b7920a247853ada95c240807d4ca8e43604279e7a2fc9bb265ae40469",
|
|
||||||
"blk.5.attn_v.bias": "39940a9b353ceed3edfd4a39b985c9520490aa1b9f11749c94fdf6d879d1a259",
|
|
||||||
"blk.5.attn_v.weight": "839f84b828cf83aecf479a0dc7bc86cce05145ef77dcf29916dc3e0680f5b665",
|
|
||||||
"blk.5.ffn_down.weight": "1f48cbb0960f15e06ab8a3754ade792995a655856389ddbca629c07e89d1b114",
|
|
||||||
"blk.5.ffn_gate.weight": "33d8219fce3189e1aab376039896eebd4ad36ebd26a8278cd19b26e4357e4f81",
|
|
||||||
"blk.5.ffn_norm.weight": "0f4a0f83d37127fa4483f2905cb4f38ef6ddc71584b6cb05632c62a9af313dda",
|
|
||||||
"blk.5.ffn_up.weight": "22a64a11e5f0a1ff45ca327bf9e1efa258f085ff6a96edc398b7474f725b4514",
|
|
||||||
"blk.6.attn_k.bias": "baa91df99d4df2d25e8d590bca4e334b97f2d9aa3df8e748fedc8a6188499111",
|
|
||||||
"blk.6.attn_k.weight": "121f3b9f4b9491996499392e2688a929cafe102a67920b4cb2a039349c43d8eb",
|
|
||||||
"blk.6.attn_norm.weight": "b4cf987e923d71f2f84c58d20ea8af7576b225bf61952145b489fdd395e3d411",
|
|
||||||
"blk.6.attn_output.weight": "a112642150a138d54b2a4038042fd33619035a35694771e966f3575856c635d6",
|
|
||||||
"blk.6.attn_q.bias": "a97ea10469cdfa3fdddf8bad6de683ef99f6170eb8d29d15dcf6bf4bce37c5a3",
|
|
||||||
"blk.6.attn_q.weight": "d80c787019317a87361de6bbc7df6701357216bdd9b404522cede34a719a5500",
|
|
||||||
"blk.6.attn_v.bias": "d846269db9cd77ae28da26ba0914cace1b6754bd5301af9c44607085dfcbd2d7",
|
|
||||||
"blk.6.attn_v.weight": "06567c433e8a391647633291b50828a076ad7c2436106bb9278c60a3f8fccb3b",
|
|
||||||
"blk.6.ffn_down.weight": "f15f66f56b3c474eac8c6315c5fff07c3e29c6e483d7efd4d303c7f43814be91",
|
|
||||||
"blk.6.ffn_gate.weight": "47768f89c6da8eefb29adb766ff4eb38c9dfd79320bbc1386248319fcbcf567f",
|
|
||||||
"blk.6.ffn_norm.weight": "7f8195e6b148212967145fc9d86ce36b699cff0de026042245c2d344f1ef8510",
|
|
||||||
"blk.6.ffn_up.weight": "53d7707ae4347aadb445289f9f87a008b72df5cb855b00080a605442fdd8edf3",
|
|
||||||
"blk.7.attn_k.bias": "63e274df3217dde25b8369a383e480fe4f6b403a74385f15ac0b5db71dce2744",
|
|
||||||
"blk.7.attn_k.weight": "f6fce88602f5945eee09767acbcad387d132614e6da39ae359f2bbf380d94b1f",
|
|
||||||
"blk.7.attn_norm.weight": "bbf5dc7336c0f9a511afef6bf5efeffd78f1b83940850c3eb7eb20c621b75656",
|
|
||||||
"blk.7.attn_output.weight": "d9fb907a138396a859cecbfcb377927308dc93c24c7fb52dba5eb59265feadec",
|
|
||||||
"blk.7.attn_q.bias": "f02ba1318346af77e309f40aee716e2de7ee8cab67e67b17636db9bf40894fb0",
|
|
||||||
"blk.7.attn_q.weight": "54a691e824be287a61c35c172edc01922ed792d2addeee029afc17ba6c7e11b9",
|
|
||||||
"blk.7.attn_v.bias": "3a4f182f51e84ce862d558fb2751b91802b65d74596bb14d624808513a8a83ec",
|
|
||||||
"blk.7.attn_v.weight": "a142fe6e106d3ab484e2dc6f9c72b8fc0a385279dde08deb1ad1fd05ac25deb1",
|
|
||||||
"blk.7.ffn_down.weight": "8daf7e8c430d183a4d6ab3eb575fafa4b5e31689f68b290c8b370411ad9d0f12",
|
|
||||||
"blk.7.ffn_gate.weight": "a2a786b45eb660994254b48e2aaf22f3e9821cfb383dee0ba04cc4350a2f8e72",
|
|
||||||
"blk.7.ffn_norm.weight": "73828bbc8c9610cc139fcf03e96272648cdc291263251fe3a67367408deb69e1",
|
|
||||||
"blk.7.ffn_up.weight": "e85dd0f63fed449ce16893c5795ea6a050a2d7a66d9534410a227e22c905dafa",
|
|
||||||
"blk.8.attn_k.bias": "91a752a6e2c364e5ee6a015770fe289aece4911ae6c6bbfe74ac52f465465f93",
|
|
||||||
"blk.8.attn_k.weight": "99c069e92c43a2efb74e23188256b3cabbbe06399878e681ce203a05d5da378a",
|
|
||||||
"blk.8.attn_norm.weight": "c76d36d3cc06aa2a9edb1abf9f602bb7ed61ac9d61f8ef7ed736a1e619abe717",
|
|
||||||
"blk.8.attn_output.weight": "ee5ff156a2625e1f203f65e69b514f9df04bd9a5e82b28e3876e16cf1c6f65c5",
|
|
||||||
"blk.8.attn_q.bias": "8fbd868a93b330c8b0418b488c5301f42a7eb0c58445a4e515d56777f1d96ed5",
|
|
||||||
"blk.8.attn_q.weight": "9f20ef86e80098ba52a3a31ebcc315bea3a614dac9cba7ac1db02f156db9b577",
|
|
||||||
"blk.8.attn_v.bias": "c4813571d5d618742183a7890c0b89cd7f18e210c758f63aad564659bc38a26d",
|
|
||||||
"blk.8.attn_v.weight": "ea88e1a4cf8bd56e9a88ada427d2b0cd352234827640757ee2a9ed594fb67a53",
|
|
||||||
"blk.8.ffn_down.weight": "b0d1a7495811580b189aaa3e20ea871d6d01ed7b6c23e59825078ef786944ff2",
|
|
||||||
"blk.8.ffn_gate.weight": "0a17c0caa0b06721c49b59b2a63a5dcbf744dd1cffa55962b404ba910c658a62",
|
|
||||||
"blk.8.ffn_norm.weight": "f15f109d4a8e9d1ff7c71fa5bc6373df7ee80c5f7d1de3fa0d4849d747e36bcb",
|
|
||||||
"blk.8.ffn_up.weight": "bbf4c5c4c5c8a0f9ae8b88e3cc8b86f81b98148722d5a350995af176c0b774f2",
|
|
||||||
"blk.9.attn_k.bias": "a7f60d962686b8ca60f69643e0e0fa8614688be738fb0b1c6bd54de35c2beb5e",
|
|
||||||
"blk.9.attn_k.weight": "dd80ce4adb00e338fc04b307e4c18a27071f4ba4397184a24d765e6e4a268ef4",
|
|
||||||
"blk.9.attn_norm.weight": "721e6487547e2b3986ab4b4e2500ceade59d908bccf4436e1e8031f246deb2bd",
|
|
||||||
"blk.9.attn_output.weight": "5a800af39107b363861e5f5173483cdcd644d8ac3b0c8a443b9c759d71285db8",
|
|
||||||
"blk.9.attn_q.bias": "0a19b4925ea8ca8067acc909b058adc327de3874cfc94cc9eb4a106d3f370123",
|
|
||||||
"blk.9.attn_q.weight": "93e84906684c0c7ede79967236d9fc8344da84a9f1daa04e8295c2c9b6b26a24",
|
|
||||||
"blk.9.attn_v.bias": "615421f812f821e230ecde4e6da35d868823248355ce7e4e51e2d650ead565f9",
|
|
||||||
"blk.9.attn_v.weight": "7f4913e289aefd9ceecbdaf9767b1e95303f5d59dd67ecb2cc15768477f4d08e",
|
|
||||||
"blk.9.ffn_down.weight": "95d1b3933221e87dc4af70dd566daec9498bf358070b8d26f1fc70766a84a152",
|
|
||||||
"blk.9.ffn_gate.weight": "530f2d04f6a1fbffaaa5f2fbc3a328ebed7b330e3af14b4fc7d8a51b13ad8d42",
|
|
||||||
"blk.9.ffn_norm.weight": "28077de416217ea1df94b96017bef4cc562ab62e51b1a03a671c70abc29ce52a",
|
|
||||||
"blk.9.ffn_up.weight": "b87b6190778aaee4695938e24ac6c90dbbee6dce7c5c2ab5bc26ba4564581822"
|
|
||||||
}
|
|
344
convert/testdata/c4ai-command-r-v01.json
vendored
344
convert/testdata/c4ai-command-r-v01.json
vendored
@ -1,344 +0,0 @@
|
|||||||
{
|
|
||||||
"general.architecture": "command-r",
|
|
||||||
"general.name": "command-r",
|
|
||||||
"command-r.attention.head_count": "64",
|
|
||||||
"command-r.attention.head_count_kv": "64",
|
|
||||||
"command-r.attention.layer_norm_epsilon": "1e-05",
|
|
||||||
"command-r.block_count": "40",
|
|
||||||
"command-r.context_length": "131072",
|
|
||||||
"command-r.embedding_length": "8192",
|
|
||||||
"command-r.feed_forward_length": "22528",
|
|
||||||
"command-r.logit_scale": "0.0625",
|
|
||||||
"command-r.rope.freq_base": "8e+06",
|
|
||||||
"command-r.rope.scaling.type": "none",
|
|
||||||
"tokenizer.ggml.add_bos_token": "true",
|
|
||||||
"tokenizer.ggml.add_eos_token": "false",
|
|
||||||
"tokenizer.ggml.bos_token_id": "5",
|
|
||||||
"tokenizer.ggml.eos_token_id": "255001",
|
|
||||||
"tokenizer.ggml.merges": "902a060cac8884a5793d2a857dd2e53a259de46c8d08c4deb243c239671e1350",
|
|
||||||
"tokenizer.ggml.model": "gpt2",
|
|
||||||
"tokenizer.ggml.padding_token_id": "0",
|
|
||||||
"tokenizer.ggml.token_type": "b7a352ccd1c99d4413bcf452c2db707b0526d0e1216616b865560fab80296462",
|
|
||||||
"tokenizer.ggml.tokens": "815ac90ff23565081522d7258f46648c8a0619eb847a9c7c31b238a9b984e4ae",
|
|
||||||
"blk.0.attn_k.weight": "6fcfdb466f9ceb1229404ce4ec4e480751b8d00da12707a11783dad7256cb864",
|
|
||||||
"blk.0.attn_norm.weight": "6063317f731371864049c7704a70772f1eb632194201ebdc2ed0f8e483507c72",
|
|
||||||
"blk.0.attn_output.weight": "920f49716a1e2fc73b6794ec777947f1c122701e63ed302422ac89e90f06e9da",
|
|
||||||
"blk.0.attn_q.weight": "ddbcd7cde197e632564ac58e4f25d9e3a8ca52917329eeb6081eb41a797932ab",
|
|
||||||
"blk.0.attn_v.weight": "318fc02a189d87420f0cbf57f47f11e00c21ec1ed472ce0a2a895b44f7fa0fca",
|
|
||||||
"blk.0.ffn_down.weight": "aa71975b6eb1f4c77b03d2ac4a194cf8d95718efac741bb12f0f3ff79a27f9bc",
|
|
||||||
"blk.0.ffn_gate.weight": "42967702fa0bc738b88dc50007ace26dbe74a5a9e0978124dd093f818241a9e1",
|
|
||||||
"blk.0.ffn_up.weight": "5282c8788b086bd30f46525e7995a17464882a72703fd27165491afdd8bfd4af",
|
|
||||||
"blk.1.attn_k.weight": "cd248882e64fd2c3402c44790ebe12440133dc671b6893fdad0564c461973adc",
|
|
||||||
"blk.1.attn_norm.weight": "ba84e1c8fd30af6ec94208db4078befac8c921aad3acb887812887f3282ea2be",
|
|
||||||
"blk.1.attn_output.weight": "2efa3ef7c5666ccceb05e339b83ad680cc0d2c3ec78203f5da5959f23a80e14f",
|
|
||||||
"blk.1.attn_q.weight": "5106f2e255358a1303c22e8b5f0ec044852bb30a866c52cabefd30017a7a6b7d",
|
|
||||||
"blk.1.attn_v.weight": "a211a634a1a5df1d5f973645438be0461dd922210f9747c6b04e386c7f1ebe95",
|
|
||||||
"blk.1.ffn_down.weight": "37093afe48d32c578ec956c9ed85242cd000d6aa979e60526aafa10c822dbb10",
|
|
||||||
"blk.1.ffn_gate.weight": "469860819e9159caefb1aad0bc66db790f3393f05fd87b08e52256a7ed256543",
|
|
||||||
"blk.1.ffn_up.weight": "736742c97d35d1a011f9cafd3c0ce947ad559bb2fba6da73c816f6bfd0fa9aeb",
|
|
||||||
"blk.2.attn_k.weight": "92c219d92804d832ab404bd6dc7339c90877bb7cf405dd030c121f8b27757739",
|
|
||||||
"blk.2.attn_norm.weight": "61e4466069474b76b6d1e702566420eb669faf3556b00ff7b824784aca13a2d6",
|
|
||||||
"blk.2.attn_output.weight": "d2fb38a2b2171fd91caf037faa585a62225819aa232d86fd4f7f9d2c3c8a45e9",
|
|
||||||
"blk.2.attn_q.weight": "f6faf5cc6844e3daa4f9f68d90f5458c64879de68a7728860e38374e30c3429d",
|
|
||||||
"blk.2.attn_v.weight": "f340ef8f7341d987a6f37c0e9afe0aef5be67be00c0ce5f57612daf73319cce1",
|
|
||||||
"blk.2.ffn_down.weight": "c7be61a701d779860b621b143fb6365b607bf99ec7c0f153b07908ac8120885a",
|
|
||||||
"blk.2.ffn_gate.weight": "b64f0878187bd3392abfa4c3e8ad2f8b4c133903e54246747ff8f3b4639ad83e",
|
|
||||||
"blk.2.ffn_up.weight": "50b11c712652e90ee7428dbb45cffebb80662ac982bc72bd9eafff361b5eb5a8",
|
|
||||||
"blk.3.attn_k.weight": "2b7bcbe9ee5c9c630c8c8d7483887e78b73581016f4cbb6933db2a147a25f431",
|
|
||||||
"blk.3.attn_norm.weight": "0181dac7f4eee7252980323e8032cf339bef2046ce0a16c0fd72af7c98a8a37b",
|
|
||||||
"blk.3.attn_output.weight": "aef8843b636ce231da9e7c9acbee197883cc15df0e2887709324c6a50f16da7b",
|
|
||||||
"blk.3.attn_q.weight": "55404130fa10e81322d33eb378aa0de31a92990ce7730f1338c0ace0406bb1b1",
|
|
||||||
"blk.3.attn_v.weight": "76f7fb8040d82b957d689ce34fea2302a6640ad5bbaa0052ad2b7ebce270c33d",
|
|
||||||
"blk.3.ffn_down.weight": "648628933eff3b357c3729c33c5b1ae51c28e59b9c19acd1601a2ff7c5d5d9a5",
|
|
||||||
"blk.3.ffn_gate.weight": "6a588885d16e98d5f50ebed05af089154f680085ca9c97691e5b489088630a4a",
|
|
||||||
"blk.3.ffn_up.weight": "e12455a1d702f4986e1a663493e3d5102b367af74d45557522002a35d63ecac2",
|
|
||||||
"blk.4.attn_k.weight": "40d943380a8a85e4eab147934bf6e16f23cc8ab753f6636526382c074d182288",
|
|
||||||
"blk.4.attn_norm.weight": "4ab2c098983d4599fe540eef624c4df954adb7473faebda7471ef0ba4134814c",
|
|
||||||
"blk.4.attn_output.weight": "d14b91e40f58bf4a3c8c2eca0b12bb541de406574af39027d56f6c588a147082",
|
|
||||||
"blk.4.attn_q.weight": "e1224960a3562107488589f883fa32414bae41712fa8dbd47c5f3e3a7801452f",
|
|
||||||
"blk.4.attn_v.weight": "063f297bc4aa6e709fc32c4c32e35af7d07d80e83cb939b76adbba858006c03d",
|
|
||||||
"blk.4.ffn_down.weight": "f88a18020c5e1caaa29596895eb348e76ee5bfad27ed57651a86cd8cd1f9b5aa",
|
|
||||||
"blk.4.ffn_gate.weight": "48e7e1eed3fb52e92e61d3557dd0ec002418327090e034ce4322fd68542266f8",
|
|
||||||
"blk.4.ffn_up.weight": "1ca8a7aa17355b6ce0d9ad5539fdad3899fa47fd359c285fbfb31f19f47bf073",
|
|
||||||
"blk.5.attn_k.weight": "2bdf15f8e73d068d972380f25d207004cf0bf3b5bfa46946803ba6fba07d9175",
|
|
||||||
"blk.5.attn_norm.weight": "60448d7cde6e1b6467aa31bdea012e39cdb08c88081cee7d102dca4f93f766ef",
|
|
||||||
"blk.5.attn_output.weight": "f9f687d7c457537f9fca8a4087a59f1c3bebfaf5537b94e42c831a13224f7799",
|
|
||||||
"blk.5.attn_q.weight": "987db7a2ad68657a92625e1980effbb1f79697c2183f2b9f3b3a0570c51b0ab9",
|
|
||||||
"blk.5.attn_v.weight": "cf696891148f3e4783ad1d20f93462ae091eb8651c656bba9b662253b6263e02",
|
|
||||||
"blk.5.ffn_down.weight": "c0662b0bd0929136005fb9d691fdd9b2c33867d9ce9622339a6a456b720b059a",
|
|
||||||
"blk.5.ffn_gate.weight": "200bbdfab615d7a3a84719b6ced7751e3ce52757ef212d96f87798bc1de5e987",
|
|
||||||
"blk.5.ffn_up.weight": "df5d23e7e035fb1b9d163da7ddfdfe38da6a37e86e96534dc02ad20f011b55b3",
|
|
||||||
"blk.6.attn_k.weight": "c0dae2d272a7c5a2fa004bbb8475dbab362fc1f6d008e73d5a4434a9382ac6ba",
|
|
||||||
"blk.6.attn_norm.weight": "51c57ac8b55e04354d5dca6bb9c0cf4177639d3b038e80209e33036209688f64",
|
|
||||||
"blk.6.attn_output.weight": "229d97892c62f85bcdf431675250e01c976ad69ffa450b01fb543bf88f14a2fb",
|
|
||||||
"blk.6.attn_q.weight": "c20e49621821bd46ed156e6823864a5bda4f317750e71ab8dc54e44eb48cf7c2",
|
|
||||||
"blk.6.attn_v.weight": "53ceb1a2ee43fce3c7b5b33c58a9fc5ee7f44dc1c6f29bc9dbefc37582102dc9",
|
|
||||||
"blk.6.ffn_down.weight": "7923c943b7629d560a032d1efa210d1d75c6692140f1be94464ee7ed24f44ed0",
|
|
||||||
"blk.6.ffn_gate.weight": "57593d350361af753a6a39f53b066282634c0fb44f396f6f2966a574b01d8f8c",
|
|
||||||
"blk.6.ffn_up.weight": "327b6a7a387098b8899d3ded04a4d4e7c658ca61b80d4e7b17594be232721602",
|
|
||||||
"blk.7.attn_k.weight": "9ca48b87a10116fd8868e62b76f211d4bb91f166096be9061439ee2e1c3a5c20",
|
|
||||||
"blk.7.attn_norm.weight": "cd56cfcc4e2ad6b96e23ea7b0d32b4caf236107d99a0b22c56760b62e63c8cfd",
|
|
||||||
"blk.7.attn_output.weight": "7352b509a03cae2491ffc060e577d189341a0f861233f18c96f9d275dc4234bf",
|
|
||||||
"blk.7.attn_q.weight": "2b3791c8c008c33ddbe12bedba8191322ceea2dcce5cf0eb7a93d40ad254e672",
|
|
||||||
"blk.7.attn_v.weight": "3ae721d52466487a3d48150581e57f6d64ea1e83ab929f23b28c3d777422eeb6",
|
|
||||||
"blk.7.ffn_down.weight": "3b6fa8ececdb3c34af3a5363863d6f94289c1c95bf47fce3a3ddcf184c5f0848",
|
|
||||||
"blk.7.ffn_gate.weight": "dbd7df6c5ae5eb4adb859f0d36453813a4e289a359a1ba8f72d67fcbf21c3e22",
|
|
||||||
"blk.7.ffn_up.weight": "de68380a334b4c5cfd4c318b0e9854aec59bd79aa0f0c30af3f56414f83482b0",
|
|
||||||
"blk.8.attn_k.weight": "7303c4e4480abc72a7ee271811311199245fb5c2ea27a2bd3b8cad3a53a03c27",
|
|
||||||
"blk.8.attn_norm.weight": "2e3d1921898d1b943ce1a1b6818546c8b471d6d542da24f51a8b514b8c3dd4ef",
|
|
||||||
"blk.8.attn_output.weight": "30421520887b66bf97a18dbcdc283bc8d0b60590b612fd638a319a6eae923227",
|
|
||||||
"blk.8.attn_q.weight": "73e064d5433c9b500068a1c31744dbd53f4ade298fb450a0e8c97f62cf1f8a8d",
|
|
||||||
"blk.8.attn_v.weight": "27e21f8b9a9a8533e8178ca34a72aa1d786393d57302b7806dcdf3e51de511a8",
|
|
||||||
"blk.8.ffn_down.weight": "bf694bd8e00047982108000e7b3dee7b225db8b19abc595e5697b6bbefd92e7c",
|
|
||||||
"blk.8.ffn_gate.weight": "d55fdbf8606d9141b774b0500c58944fd1253b9e69d1f765eaa9a680b9f2ca40",
|
|
||||||
"blk.8.ffn_up.weight": "1ae3f580655e7c8e8dd6c34fa4ac574fdfc5e3f1a8536da0c5442d3a2976f0e7",
|
|
||||||
"blk.9.attn_k.weight": "b18080626012d8aabcf78542d6c7bf31c712bf55a70172fbfe173fcf34481036",
|
|
||||||
"blk.9.attn_norm.weight": "2e3620620dc09998c6d3063a7d5de5433fbbae8c11e5b00d13f145d39140e162",
|
|
||||||
"blk.9.attn_output.weight": "69c3c0e27ef1c0fc933eeb7b612b70909f18cde238873c0d576a2ba9714ef174",
|
|
||||||
"blk.9.attn_q.weight": "68330e5aa28a28873c9a6e67f032186ef651df2df5844e0f27094ba349fbe4ab",
|
|
||||||
"blk.9.attn_v.weight": "3df8d45a102be082d0793a51cb82aa62a43cd0e9d047ba4115ca0f2414b39325",
|
|
||||||
"blk.9.ffn_down.weight": "1d6cc162b73745b135b4f040a0aac3c06d5135a3dc5b2421e7ee2af48662fd7f",
|
|
||||||
"blk.9.ffn_gate.weight": "034a9d40fb1e32b534b45f4bccd65cbe43c4a6a3f5d01132bd245ca0005de5fc",
|
|
||||||
"blk.9.ffn_up.weight": "c838c38d0e1a0ac0da17eb2a66023ed31929f07d8fcfe1cc546df26096c91f0c",
|
|
||||||
"blk.10.attn_k.weight": "a78507cb72f744b86ceaa032596e74e5571c822d0226d334881169addb32cbd5",
|
|
||||||
"blk.10.attn_norm.weight": "35f48d0b28ee0e6b4cad4e983925737562d64824be5b168b3e26df3d6b260cf1",
|
|
||||||
"blk.10.attn_output.weight": "53712db06796de39b131323e7abf9a58551b6d52da6db66a471580386d396252",
|
|
||||||
"blk.10.attn_q.weight": "efe08429ba196026b81cd1c471e1c7418afd9e966659feb3936b674aa0803b58",
|
|
||||||
"blk.10.attn_v.weight": "7ec6055e134f89da0cbe79ec9f13ef2e442ac584b1f03c3e13e7d0cdad0078bd",
|
|
||||||
"blk.10.ffn_down.weight": "37e66af4bcd1f3079e841e892255b8255070655901864ea3a8c602a7f681a640",
|
|
||||||
"blk.10.ffn_gate.weight": "1825282bc34830d371c6edcc3c1e73e6ecc1e10f4aea0122dbb7acc1d6f7b1bc",
|
|
||||||
"blk.10.ffn_up.weight": "819b3b276a4d4c14a35ed6682d5ef18a5e8ed468e5ce3f12e8c75ec18ac20ec4",
|
|
||||||
"blk.11.attn_k.weight": "5327e6a2af82dfff0619a14971f5864a15553c36fead84e1af42c7630f2729c6",
|
|
||||||
"blk.11.attn_norm.weight": "fec363b3c4a43036d2c635fb8aa9e122dd87ee79811839f2f6cd955be3373e7b",
|
|
||||||
"blk.11.attn_output.weight": "ccf7b38f18ee8798b8a6a35018e2df3eb3e007de62876befb68025dd66c79763",
|
|
||||||
"blk.11.attn_q.weight": "da8c4a1c824ffe174e39f126cd72f7ef83c56aff1259d452a1212de80f98f5e9",
|
|
||||||
"blk.11.attn_v.weight": "d17ae6bb77f03982b55d341eb67acb5969e9ad3da5994b96eafc09793dcfe3a0",
|
|
||||||
"blk.11.ffn_down.weight": "a6bac521e2791345f22c57205fa1c2f2f687794dfd24d0e98d50ae0d0eb6088a",
|
|
||||||
"blk.11.ffn_gate.weight": "5ed902c488cb51ba5635f3df08258c5f84f31a679a00211ea5f9d8b824ef6d9d",
|
|
||||||
"blk.11.ffn_up.weight": "ee9f1437eb890d2cf9df2574afa1cecf20aafdd847cd75b152d7eb74419afd34",
|
|
||||||
"blk.12.attn_k.weight": "5a069c06e1019b0f889088e67458f7a11ec77fa190ada6069e46211f62219947",
|
|
||||||
"blk.12.attn_norm.weight": "194d7e5fcc8c49aea62daf1940532419cf3c505afdce6be377286b677db5db8f",
|
|
||||||
"blk.12.attn_output.weight": "6534995fd4d6fecb55e317add4b1723aba4d825e1e9471d0b08813dfdc247176",
|
|
||||||
"blk.12.attn_q.weight": "4ab51ca519b5995581fa34f846276feca3b907ef2b51f192f6cc0b3263c3f5a2",
|
|
||||||
"blk.12.attn_v.weight": "5652ca3fa81ef9a1ac1543d71fc6813f8517f8ec54b25c701f6f98061614830f",
|
|
||||||
"blk.12.ffn_down.weight": "4b2c263f54c88516b8eb273bb8d9615b01c5c8b484dc70358adb91b50b300edd",
|
|
||||||
"blk.12.ffn_gate.weight": "8f50c3c3e3e8568991d6c1b0e74b500cf4f208e7700bbb8e87c3f6a6d359b6b5",
|
|
||||||
"blk.12.ffn_up.weight": "1c1a581fec1fbe959e1427fa513f400100b5e1ee9d83932630be9905fb49c231",
|
|
||||||
"blk.13.attn_k.weight": "efd7a38c46f08d8376d82974f33c644e3a02220e142d63b1704718699a8a884c",
|
|
||||||
"blk.13.attn_norm.weight": "d28fa4f1bd75abbd063b0e622e08f579c89cd0c0c5ce63c1952ec9f944f8ee13",
|
|
||||||
"blk.13.attn_output.weight": "71e0068a639288718bdb70a6cfdefd50bc8b3ec3993347a65129e70001ca5827",
|
|
||||||
"blk.13.attn_q.weight": "b97077adc92cff07a2e07d80ee38f214ad8713571c69cd5c70ebd43dc501ac87",
|
|
||||||
"blk.13.attn_v.weight": "79b3e2749ab4b459c81e96e322b215f1e8af645eb346e176c326bd00cf6ed2fd",
|
|
||||||
"blk.13.ffn_down.weight": "9f8687d11effa1db7cfecf7bec5631734bcf2962aad74a9f519144491e08ec85",
|
|
||||||
"blk.13.ffn_gate.weight": "7d14dfa0543852e7777fe8fff29ca533744cbcf1ebcf10067e5adfc4eb345e65",
|
|
||||||
"blk.13.ffn_up.weight": "852b9527b97fdab211ff3f832a660ee1d93ccb56906144c50f01319a6e8ee615",
|
|
||||||
"blk.14.attn_k.weight": "79e926b20f36f66d58226cb358881f2f68ae7b468787d33cafae5110287a14a0",
|
|
||||||
"blk.14.attn_norm.weight": "97d481b63deb0df6142c2c6cd23043720c62eb609e390f47a7113751c79974ec",
|
|
||||||
"blk.14.attn_output.weight": "aa6e94d7176d5c79fbb89b96e5f13ce75702ce3dd23ee52986446da436a6c3d6",
|
|
||||||
"blk.14.attn_q.weight": "214becb6d1bb460da9fb8ace0f99b9a5afa9edf7aa7acc19606c7401b11d6305",
|
|
||||||
"blk.14.attn_v.weight": "488b0e6d7f1a7a2ed0972aaa6d10ef9c775ee5373460324efcf5b3e3da9311df",
|
|
||||||
"blk.14.ffn_down.weight": "29c7ad16cf9542e30996a1a01ab95b844533b28051f04cc7949c371afb796471",
|
|
||||||
"blk.14.ffn_gate.weight": "b7ef208f2b054803665b377f5a5980c122c026841809cf855c6ba06d1c3a885a",
|
|
||||||
"blk.14.ffn_up.weight": "76a5cc28100748d79c4398ce7b9176aab4d661548b6293a82f99144812e5b70e",
|
|
||||||
"blk.15.attn_k.weight": "a6b8f9e98ab878fa7ebc5d080978ebf2d050acc2ab2fa8ea9188eb10e27702c8",
|
|
||||||
"blk.15.attn_norm.weight": "a26d07a9752d6dccb68e3a8a2a49fd0752cdd0a415e05547819bc37d9ba63d5e",
|
|
||||||
"blk.15.attn_output.weight": "c63616c69048ccbee801e05be4f56d21fda21aa0cc470f41d57c31b4d9283a4d",
|
|
||||||
"blk.15.attn_q.weight": "fd595a67bf96c6ba16eb148a9d02fa52fa3c1d33ed10be28a08f851409fd6e64",
|
|
||||||
"blk.15.attn_v.weight": "1c5c9d33fa07c05d5f4ed0032c6c4aa83d863f0d31c94a66109d239dcd03cea3",
|
|
||||||
"blk.15.ffn_down.weight": "585ea62ab8aff7d7d212ea5c1a03226fda6b68370c890b776834af70c948dcbc",
|
|
||||||
"blk.15.ffn_gate.weight": "a13c63f86f879b03a573d5dd2a25cfd1f4dc73e8132e6454ecc23e538b4cdf6f",
|
|
||||||
"blk.15.ffn_up.weight": "f7112450f57c12fcd511f049e0dc0b541625a107a7901c3261ed9e984299f65c",
|
|
||||||
"blk.16.attn_k.weight": "2d2c8b11dd71fba6d1c106aa1673c113a5448653cca7eab897c8739212ed5003",
|
|
||||||
"blk.16.attn_norm.weight": "95c2ec7be9469690e18a9a1779684acb3e9da44b13e263a0da840305646fbf8a",
|
|
||||||
"blk.16.attn_output.weight": "31a65046e677f54dae654ded4e733479fcc0f7283d83076b7dc7cbcae8528230",
|
|
||||||
"blk.16.attn_q.weight": "bfc6292b9c6d49b7118d08060242a138182eb182d136ba5dfaf469437c16081d",
|
|
||||||
"blk.16.attn_v.weight": "68f81d037340217d87c7853ff4d6edfbc46d9e827ee6d5bff7c3f6238e3a95ad",
|
|
||||||
"blk.16.ffn_down.weight": "bbd6629691950cef4d5113e1c6670e91b216a9b872cb92cee02dfda4d6c4f7b8",
|
|
||||||
"blk.16.ffn_gate.weight": "63cb56f282b7401ed6c76e5bb6fdf1bf68a64f9af0c82c014209b55bcb5191d0",
|
|
||||||
"blk.16.ffn_up.weight": "b54f39a2541063cbfb6f713aa81c3b69a04100e999aa2ebbeec195dc382eceec",
|
|
||||||
"blk.17.attn_k.weight": "3d9ba49799cc56664ec30a002bcad61eb651294212a68c3ddb573eb042aef5a4",
|
|
||||||
"blk.17.attn_norm.weight": "42ee0db4b9d63257bca0012a30b12737ead1caafeb5ed3d93c8f48ffec4b46de",
|
|
||||||
"blk.17.attn_output.weight": "a38fd100f05c9041c592bc739e287de0b10d08ef2bda41a879225bdca9002f71",
|
|
||||||
"blk.17.attn_q.weight": "8a3bee285b0180a9eb35662e449ee4cbe16d992bdd48fb3a94bc4a347728cfa2",
|
|
||||||
"blk.17.attn_v.weight": "d7f8f1b8b863494ed4392a1656775912e9b264ad36016547b12e832a1d6757d6",
|
|
||||||
"blk.17.ffn_down.weight": "bb7ee58f61da8630972e25b621996fbe8ec06f4dc9ab1e268ab5b120c526ca28",
|
|
||||||
"blk.17.ffn_gate.weight": "6b652dbf167fee09a45ebfd78d500ff6548fb2756dbe5343ffec3f7e6207179f",
|
|
||||||
"blk.17.ffn_up.weight": "3b67f727e55e742715de978fab80457781e7a3762bc48f79d13b45dcb8de664c",
|
|
||||||
"blk.18.attn_k.weight": "ff7fe57c57b90c6fcc0aefc39ec24593c3a7d1ea1c23770480075a015450e0f5",
|
|
||||||
"blk.18.attn_norm.weight": "1d40faca082d2633ef0ccf19e121870dd6c7c3e2154607c7f3543fa96e99cb2d",
|
|
||||||
"blk.18.attn_output.weight": "9adfecaaa397a92db4687efd5fcabfa0daef9e6b0493763b7ff5ebc185c43a6c",
|
|
||||||
"blk.18.attn_q.weight": "ad1803eb9b291948639277afe981e666b07167eb3fcae903ba5b73bf86d8f50b",
|
|
||||||
"blk.18.attn_v.weight": "308cf23399adccf27401a4ab60d74dac6fb9d4cd4b9c5940d9145118d1881b34",
|
|
||||||
"blk.18.ffn_down.weight": "7de4ac9a561fb580619b745687dfd7ca8a69ef70471dee978741b80e9ff7bead",
|
|
||||||
"blk.18.ffn_gate.weight": "0c66970f696b33bd5ee8f1f2fbcb41fd78fa5ccabdc927e11a4d5a4089f19c69",
|
|
||||||
"blk.18.ffn_up.weight": "66a42e988e8a1f468fabf976c48e9e4bb045eaac6916ef16555ac101cd674abc",
|
|
||||||
"blk.19.attn_k.weight": "a928ab50390bacbcebe2e4b66922498134ce22d7b93beaa87d6cf4ab52eb7174",
|
|
||||||
"blk.19.attn_norm.weight": "b4a02c55b46c2a96aec9c64a254087cf48e6c1d4b6f31782c77a46fc4daebad1",
|
|
||||||
"blk.19.attn_output.weight": "b768319c641dff1eac5d1f8ceb960c9899c795bf2b24c1d6bf70aa24fda45f77",
|
|
||||||
"blk.19.attn_q.weight": "79ef3f57d187d3954a26362096e1b6c222d76f537dff73e034d6e9999935b8bc",
|
|
||||||
"blk.19.attn_v.weight": "ce13d6b13e24fcb2d5bc6a2662e5bd295b31b12db10a6d0307f86cf29b8d5001",
|
|
||||||
"blk.19.ffn_down.weight": "cf90d7e2137482cfd50934a8223ad774621d08554969da80a9712df5e6227eb0",
|
|
||||||
"blk.19.ffn_gate.weight": "71ce30150f003b6eeb3bf7464e05b6ae615f135110d8e47f0a47fd973e537c0f",
|
|
||||||
"blk.19.ffn_up.weight": "7f92aca0cc29866633feec701ec01a85a8ee2fd4e2b9630173a6cffb1d9d50ee",
|
|
||||||
"blk.20.attn_k.weight": "a2df23159d6fb74ef28e14b61028fe8b00a693a2fc9234a980be74f20b958682",
|
|
||||||
"blk.20.attn_norm.weight": "c6cd5f1b096fc5efa4eb59ca1c8c4bd28730f3dcedd59a63601663eccc6724ed",
|
|
||||||
"blk.20.attn_output.weight": "896a8a166d0f006d4b09867ae4345426303cbc3fb13a18d3d4e1bde00f16dbdf",
|
|
||||||
"blk.20.attn_q.weight": "01eb79588fe61baea0da43e99f4dc5939590e1bafd01e12dadb8326f102bfea2",
|
|
||||||
"blk.20.attn_v.weight": "bd39630fdd5a7c859ac1addaf53e63faf524c3f32f5f4896d86b6e746b1d5c06",
|
|
||||||
"blk.20.ffn_down.weight": "0304a5d39957a0e3f031c4bcc4549a135d396c8d97c8d276fd1c823ce86560c2",
|
|
||||||
"blk.20.ffn_gate.weight": "117b79d595b1dca0c8b37586beaecc4d84411507276212dc286cde7fc36c9bef",
|
|
||||||
"blk.20.ffn_up.weight": "6e799346db145c125f01783539749d3828fcc451cd4f10c5352f047a47e28714",
|
|
||||||
"blk.21.attn_k.weight": "1c37e4c0664147e775bb006b226b9553e3421140cd96288ea755f81731ab80ba",
|
|
||||||
"blk.21.attn_norm.weight": "00ae783a29000ccda5e4bdbff03df0752fb82805dc3f9b987500ebd80714476e",
|
|
||||||
"blk.21.attn_output.weight": "7588b84f9fb19f15095b5265c60b4a4e7ae74bcc47d4607dfa5d0bfab6f136cb",
|
|
||||||
"blk.21.attn_q.weight": "a65f1c0dd06d45bb97532d3e932689c1eecfe7359089b39174a96a149335cbc1",
|
|
||||||
"blk.21.attn_v.weight": "4220b77e7d5e8709b4eef33a679b5dad11f297085ef44c9977f9e54ef08f7a2d",
|
|
||||||
"blk.21.ffn_down.weight": "b8c082a0530d4b5328e67db0df84c5498f2af956de23c639fa0198ffea853950",
|
|
||||||
"blk.21.ffn_gate.weight": "cd1b656ee72d00e9835ef667c19ef89a88de261eb8eb7c0e936e0f9ddf83ef9f",
|
|
||||||
"blk.21.ffn_up.weight": "dc445f73e36ec7a3bd86884186b728f8e0187f32848c3b8b69d4d41f8571bf31",
|
|
||||||
"blk.22.attn_k.weight": "e37cf0b893ec8b9ee8c78dd139b8d9c45cb997a3bc0c3d93a70ca1c3f6af8859",
|
|
||||||
"blk.22.attn_norm.weight": "248a27838d3c46cc03a5c312facc84e2e0e2c990ef8401e93da25918497f88d1",
|
|
||||||
"blk.22.attn_output.weight": "fc191a18f6d18332c66761f7ab28008bfe295dd1f5c8741a2488442f9e00d0f5",
|
|
||||||
"blk.22.attn_q.weight": "4b193a2ab8bc2b085db18f2bf3eeba26e02b537b2cdd738160c8f14b165d0f5a",
|
|
||||||
"blk.22.attn_v.weight": "7a60ce5ccac7e045e55ba1e1e85bd2a0f93f8c781daee96c5223665e22f0c666",
|
|
||||||
"blk.22.ffn_down.weight": "e0a34fb4244e2c7168f3dbaa1904c15d339ec39999cdf27128bbaf619ee0a237",
|
|
||||||
"blk.22.ffn_gate.weight": "8bac872d4b8549c8812f927efa309f1792b524f33601095fff61b826de5a5615",
|
|
||||||
"blk.22.ffn_up.weight": "b67fa2b94dd901b6ec64c0853ce8ca2d86fe9cb1cc6d2f15fbbbe0e691c0c648",
|
|
||||||
"blk.23.attn_k.weight": "2c32e66ad01942b819ac09a197c71579fe66f02226a264fdd72ad1e02c67a27e",
|
|
||||||
"blk.23.attn_norm.weight": "825fdc94deb439cb93c713eeb077c1052b90ed658d6d464fc4ad3d611e911d48",
|
|
||||||
"blk.23.attn_output.weight": "95ca6707a95b8750b0c7c5d379d368f0f2e7ebef631954e7d4d8ec0f41f13a3a",
|
|
||||||
"blk.23.attn_q.weight": "6eccc84faca5fac015d1b26e2854501edcfd292a302228fe14cf99f5eb59a34b",
|
|
||||||
"blk.23.attn_v.weight": "b343ac3d226040f1033ee049668aa1d89b1774bc18431965682e5dbdce78ccdc",
|
|
||||||
"blk.23.ffn_down.weight": "9fc599befea8d3b1e342d564a110074f66d2542df406c4b90b6bdc5828fbb2b2",
|
|
||||||
"blk.23.ffn_gate.weight": "488556c1b0c9f0b20b0c99b4bac2e0f4046b81edb601d7b91e7e5b3bab47d667",
|
|
||||||
"blk.23.ffn_up.weight": "1088e291d7008dd9c7c2dd6830af686a8a84b724d123a016209bd5156d6898f1",
|
|
||||||
"blk.24.attn_k.weight": "a923fbe35e61e009a53927d7828818e0592bb737d6a1106c4b0b5a1efc367e07",
|
|
||||||
"blk.24.attn_norm.weight": "9b51aaaa939cefafdd9b13a7e5b74ac7fa2d603427e55a16a909d6f3f353750a",
|
|
||||||
"blk.24.attn_output.weight": "1beb2baba56f8409466434b037771248c2f620ec5f53e15f44c271d5a2d9ecf4",
|
|
||||||
"blk.24.attn_q.weight": "4b0194fe5bfae0c6bf6131dcf8cb6e2b994f6ea10b27cb03574f0f4f8cc0c950",
|
|
||||||
"blk.24.attn_v.weight": "6ac34b1ab0f66226d85bca1194a7c212cd93d384ecbc8b8395de48aec0970a61",
|
|
||||||
"blk.24.ffn_down.weight": "5508f74cb732a662c2936b32ac5e90742d172b9f961a747b0e5cba0e5906a89d",
|
|
||||||
"blk.24.ffn_gate.weight": "095e39b8584403835f9bb1ac33e0e81f54175575e4800273d281b845bff381e7",
|
|
||||||
"blk.24.ffn_up.weight": "2d43ec21637dda12973de367b0113ee9840b0d815bf6fce042f7c3f270b0b530",
|
|
||||||
"blk.25.attn_k.weight": "9e2aee029f3d2c7f67dfc7926e72c8228fb978382c8e5a4701bbf82c93801419",
|
|
||||||
"blk.25.attn_norm.weight": "220cd7164fb4cdbe22d26058e4153b26c27c7b5ce2bec8e95bf2c0ea08d23103",
|
|
||||||
"blk.25.attn_output.weight": "a17f4a5dc6aa51f03dbd75602d98e9491767c205cdc2c3a5f8667fc54bbf7c64",
|
|
||||||
"blk.25.attn_q.weight": "f60827496835c440c794bf57ce9780704d10a59d8229886bf75ebb18900ba4ef",
|
|
||||||
"blk.25.attn_v.weight": "9cac217e9e9f4f4c85f14ee51165a77c580165bd4a34b202389169bbe61a1ced",
|
|
||||||
"blk.25.ffn_down.weight": "a0f36949b663e80849581dfb71e7babcc73580793bbcb0c80ab26d5a6e000359",
|
|
||||||
"blk.25.ffn_gate.weight": "df4d1be4d50d6afe5ad3ef0d0e0fac76a33e85c963dea769641d612dd53e7d13",
|
|
||||||
"blk.25.ffn_up.weight": "992da76be762632e25ebc5ef4d03728eece1b43f7c4e31827df19ca724aea694",
|
|
||||||
"blk.26.attn_k.weight": "34199ff856ac32a500c754539d070258574192a34ecba87a182897cb59fdff52",
|
|
||||||
"blk.26.attn_norm.weight": "a8e9dfb2dae5d22b5c0aec5f3675991c0e3c3e6a44153db2579136b73f456e00",
|
|
||||||
"blk.26.attn_output.weight": "1c4f257ffb0d7db0f11cfb275e38b4af736917b43ad82de1badce3f1d227da4d",
|
|
||||||
"blk.26.attn_q.weight": "33d55786274c2e718cf61e8fbecf3dfa5ee0c208f0b716d42b061f55459acb3c",
|
|
||||||
"blk.26.attn_v.weight": "684b636939cd4ffcfec5a6238a0790ffa43d853c95783af9b9e8275e74071a7a",
|
|
||||||
"blk.26.ffn_down.weight": "89d0bf066db154e6d312b5433aed1714f6a28b40f4c52e3e1530ee07703303c8",
|
|
||||||
"blk.26.ffn_gate.weight": "393d649bebe5e2940e1b043649f6c860b4b8b9f380f30e9da1744a830f358156",
|
|
||||||
"blk.26.ffn_up.weight": "179edc85ababd9d8440cc6093eecd1004290aa1cb96434b26ecf7585b6cca17b",
|
|
||||||
"blk.27.attn_k.weight": "334841445a7f1e14731b08f56eb0b1f0938c63823d28bc6d078c4c5f05b36f19",
|
|
||||||
"blk.27.attn_norm.weight": "57344471bbda2e9deffdfdb2dd05a07aa47f8761e24de53525588639145bf551",
|
|
||||||
"blk.27.attn_output.weight": "506126af9ee54b535d49f97e36f630e74834f480329f098d6d62e96246d8d65a",
|
|
||||||
"blk.27.attn_q.weight": "dd984df1acb4783849e25ba7ae378bfd385cd9efc540fb798cd5bdd873f0118f",
|
|
||||||
"blk.27.attn_v.weight": "b4b3fe9a4455d34c297ff20a2f537b647cef424741d840a747b265f23d320ac0",
|
|
||||||
"blk.27.ffn_down.weight": "621fdb185ba0d35ba5476dae73d2c81ec1482a0e878d5bfd5c3b29fe837af013",
|
|
||||||
"blk.27.ffn_gate.weight": "e4fbab45f2ec506fa374103251a0bdb7baa6f576080bdd796f3e9db92098e08f",
|
|
||||||
"blk.27.ffn_up.weight": "a0c57e463e988002bbd6a6c6792baa21a65e6f89ae303a2c301951b0ae6e4bbe",
|
|
||||||
"blk.28.attn_k.weight": "bac36cbd52ec5056841663865e1291ddab4b47ef9a2544dd285d4503bfb0e4a0",
|
|
||||||
"blk.28.attn_norm.weight": "5774a9df2bbb2e86d1f70179c7b92d81e1f401160148b3328fb64db6646a5425",
|
|
||||||
"blk.28.attn_output.weight": "e8712622d1569557000c75f26c3f55fad267fd300463c2c2cfe3afbfa1c8f908",
|
|
||||||
"blk.28.attn_q.weight": "11677751fddee52cc739699c02836f7be54d96038be4240be5d4f53d00161608",
|
|
||||||
"blk.28.attn_v.weight": "e5ee459b8958d65e1445997b9aa1e90e2f5d17761ebcf5357313119a45322507",
|
|
||||||
"blk.28.ffn_down.weight": "3934518f9f85292da8475fe38a8edcbfc4e24ac56c351b472d6351f98750871e",
|
|
||||||
"blk.28.ffn_gate.weight": "6ba735d57e98d0847e487f25ffaa25256deaa8abec76f428cb70bd9774279d83",
|
|
||||||
"blk.28.ffn_up.weight": "977fae6e1e5353114fc645dd98429464749758765cbc6e6457593d596e57850c",
|
|
||||||
"blk.29.attn_k.weight": "8122a457307d580ad6f1e0acea09a2f593d97f595ba0d6737f5fea16d2433642",
|
|
||||||
"blk.29.attn_norm.weight": "d626f721e05aa1202439b01027031d4caf1adace61ed37870a277cb6297c77cc",
|
|
||||||
"blk.29.attn_output.weight": "7fb7122ab1b6b1e6615ca746897da27bc52c92cb70d3147183cdde61795b72b3",
|
|
||||||
"blk.29.attn_q.weight": "be43e94ff6b6e391024dc824101efa0ddf4005d5b002ac26cb03765c0c73c2fa",
|
|
||||||
"blk.29.attn_v.weight": "af93c85ebff908f74f9935b81bde0516ca487c84139868a1ce079c3ae20036b1",
|
|
||||||
"blk.29.ffn_down.weight": "39dae12340ed3120bd19c495fe0872b559613641e41fde69d02d8631900b84c0",
|
|
||||||
"blk.29.ffn_gate.weight": "36fd482439840ef197c9f3b8905d86acfcea49bcf018544106ca465d4bf8d5c7",
|
|
||||||
"blk.29.ffn_up.weight": "5243fbdfdc1e2a1dd84b6210a9869d18a014db9088897e345240cdc99990bd5d",
|
|
||||||
"blk.30.attn_k.weight": "948f263616bd3788b2b968baafd69b9c5bd1b77578665f096c4b7e247b4cea42",
|
|
||||||
"blk.30.attn_norm.weight": "e168df981e744874ff303faf2eb470e5f6868c2040ba5f383f6c5148669975e7",
|
|
||||||
"blk.30.attn_output.weight": "4cf0ccca04b792573b756655a24fc89cfb1f272da8305633f0bc66ef14990b93",
|
|
||||||
"blk.30.attn_q.weight": "21e07d6cba6c50d65350289258209717174a13c42be57e8141d69712cbaf32c1",
|
|
||||||
"blk.30.attn_v.weight": "65a8ca29c7237b3182ccf03e2fc94e84f9a53d0e160fb679ab401c853170dd9c",
|
|
||||||
"blk.30.ffn_down.weight": "8b00500a6d00d84058f6658ee1d6f06fb4fcae2f90d4341792259362923b3c13",
|
|
||||||
"blk.30.ffn_gate.weight": "5bc0e19ab7a31b50ac2118ad1b36e31055271a322cd8ff661d47c3ac0210703c",
|
|
||||||
"blk.30.ffn_up.weight": "f37a0561955725bd59ee2d064fa9f4e00a12a1b620b624db3bc3add5330bc321",
|
|
||||||
"blk.31.attn_k.weight": "9a5663edda227f5d87533897146764f8e8a7481b9e71fae197c39204f8463221",
|
|
||||||
"blk.31.attn_norm.weight": "060a4f438a1ee5e220b5b5278ad2f5c085a428bf38c515766781815597c87529",
|
|
||||||
"blk.31.attn_output.weight": "6ada5d3cad9dea4780ffbb43302bb6ccc2f24eddd0fc4f5f84c9ce0fc0c6e5dd",
|
|
||||||
"blk.31.attn_q.weight": "bb5d08c08603907981ad388d5d8b70fcc9b98034ba264b8474c8890cc0297af0",
|
|
||||||
"blk.31.attn_v.weight": "e01b4252ea9c6a889c32b21144b441a347464d04536ef4f6572425be55759796",
|
|
||||||
"blk.31.ffn_down.weight": "8ba4d679c36e93ba65ba03180385ef35ea86b3b7cdf2fded9df59369f1c09630",
|
|
||||||
"blk.31.ffn_gate.weight": "e5b41dc93645f8b5e8eebae3ada3ea43a18f97ce2654228655170b07b463ccb0",
|
|
||||||
"blk.31.ffn_up.weight": "25b88cdddc8b547af294ed107d3d1312e90b983cae87936fa6062ecd8ea02539",
|
|
||||||
"blk.32.attn_k.weight": "4bcf86dc0858c8ca2fbdf6aa76674d43eb698f78979fdc1a38f556a7af1facc4",
|
|
||||||
"blk.32.attn_norm.weight": "cdcc12f3b8b9773c6722736bfb748a2729230b21478cbcc4104859d3148df815",
|
|
||||||
"blk.32.attn_output.weight": "d43f1196822995ed89a9365c97054753a8b30ce20b6e273c8edcc42673a1e141",
|
|
||||||
"blk.32.attn_q.weight": "ebf2972bb3865cbc5be4840113a322089752038344beab2a0122c7cb4fb399b6",
|
|
||||||
"blk.32.attn_v.weight": "714db81704ff34fa137512903c1013acee7877467473e46600728b9240582eb7",
|
|
||||||
"blk.32.ffn_down.weight": "2cde3da1258bb170a79d5d3cdfe10c86a71eb34b77da46b74c5ed71e7f4fe274",
|
|
||||||
"blk.32.ffn_gate.weight": "c7e1ed792532613ff9d4e5834b6536e2e0f47df2303bc0fdaa90aac0c1f4e8db",
|
|
||||||
"blk.32.ffn_up.weight": "d8d6f13fe66a716e28f79101a29817f0c0d6f99969a6f017d51bafd1a16c600c",
|
|
||||||
"blk.33.attn_k.weight": "a0a28f6cbca88da00cab2ca37094d9b0503bf9defdae77b91895b911c408cbb6",
|
|
||||||
"blk.33.attn_norm.weight": "0251200c24cc8445607ace6dc8c5aa0566567997262b7cca53a11ac23cc564b2",
|
|
||||||
"blk.33.attn_output.weight": "b2423205bdf6a1096d43c44d8d12f1a84fcd4e1bb70fcf6dc8542b8b8a71a13c",
|
|
||||||
"blk.33.attn_q.weight": "00b425c3ef71065ce5e0234e702bf38143b4952da78a85f52ab2c2e3073d97ab",
|
|
||||||
"blk.33.attn_v.weight": "035edd2335df816c42c765a5e66b9d9b9e15a822a8dc1863508145499c942c14",
|
|
||||||
"blk.33.ffn_down.weight": "4894a923a3db75bae4496ba3ce5f28796ad31fe33996a066271fb8654964310e",
|
|
||||||
"blk.33.ffn_gate.weight": "8f6c819b8bbfbe3357fae89e1ac5a3d58be85b3b04be3bacf7b62775869046ff",
|
|
||||||
"blk.33.ffn_up.weight": "257c3544b5b544fd5d839665bf5caf107a329b59dbc3751efcaa24ae63c56179",
|
|
||||||
"blk.34.attn_k.weight": "b6cd8bba892e38dac4a2ebc3ba1bce49e71b967fc436fde30c6d76f54a18935f",
|
|
||||||
"blk.34.attn_norm.weight": "2b3c8e60a064cba9955752bbbbdd92c71ba5c2f1bd721097bdbe88b5abc68787",
|
|
||||||
"blk.34.attn_output.weight": "8cc272551c9aaca9db5a660c6927bab94a0243d74a30b2bc165f06bd577714ea",
|
|
||||||
"blk.34.attn_q.weight": "74b561eb4792484e6a94b58fe2583848c3ae28ff2f1bf3d02939a0cfdfa49990",
|
|
||||||
"blk.34.attn_v.weight": "dba19e24ff05154dc5a1f55c023729303a583d13d68732ce22ea74d4410dc8f0",
|
|
||||||
"blk.34.ffn_down.weight": "76eca5dfeb274c35774e0bf9f22ee420ed9085c8e99aa2cd5a236e4918b44c61",
|
|
||||||
"blk.34.ffn_gate.weight": "9af0862d5fcbc24732846488e653db8242a467765c0cdbc00332b3a40256b4a6",
|
|
||||||
"blk.34.ffn_up.weight": "2a03126bf73587eaba99ece2066103d12e47bcd4ce30ff6c17b2f383b81d40df",
|
|
||||||
"blk.35.attn_k.weight": "52513fc0cd4e997a842729af7d21dd09399bce0a339558374738be266d0fa2f0",
|
|
||||||
"blk.35.attn_norm.weight": "e5281fa911964263ccf1630b14762edbd41d0b9472d6ec695fc600fed4892c35",
|
|
||||||
"blk.35.attn_output.weight": "b391d6705d5dc6f48326b5fd16573f679edf64109d86fb729a498819676590ca",
|
|
||||||
"blk.35.attn_q.weight": "d16446921966db9b0e0539626ad22a2511ace780e59379d6a4162d8c5441440b",
|
|
||||||
"blk.35.attn_v.weight": "9d8cdf23ffdb0c5c74106843390b94b24c9f33ef0eb9998d39f78c73390101ea",
|
|
||||||
"blk.35.ffn_down.weight": "938eb6301f7bbf162d7dd965682a5ed11d0a4a530c6fedd7e5469ce80012fc17",
|
|
||||||
"blk.35.ffn_gate.weight": "5ad84f5a0c8edcfea1ecf1a3e3d21d85ceda0c4ad9e3c6ca68885eeff8ed3c2f",
|
|
||||||
"blk.35.ffn_up.weight": "1c4330d9dc71bf4c98812c34356c51f520f47610a534152aa6d29284b758090d",
|
|
||||||
"blk.36.attn_k.weight": "ef720655e5ca2465f13db2dfc4732fb4ef2c9d53acde52f514fd4f301e974081",
|
|
||||||
"blk.36.attn_norm.weight": "88f4b9310b3c8c2644e3029160cd35678c79dfa59280430e03f5c29a6fe84a58",
|
|
||||||
"blk.36.attn_output.weight": "aec6f915fffd7bb72cd783273e871b4f09605950089d45e72059d1316b6c4b01",
|
|
||||||
"blk.36.attn_q.weight": "72f9408a2405d42f8db6ce5fcf1d26a3660b6f225fc60e77d0277109cfcb82ed",
|
|
||||||
"blk.36.attn_v.weight": "0f3b3d851dc44b3893ef53f6cca5b4acc9658bacfe1cc2d13c3d704ddd409b67",
|
|
||||||
"blk.36.ffn_down.weight": "470aec48ce8c5129a6654d9fd26fcae72776f9fc1429a8bb05818072a876475d",
|
|
||||||
"blk.36.ffn_gate.weight": "7f5f296d09cf55679767b5d15de3eff489c456782119f25204be4b1647f18dcf",
|
|
||||||
"blk.36.ffn_up.weight": "b7ef74a1f7ffb4982711d93f1787be3a70edc3d2358d5203c41d8900508037d4",
|
|
||||||
"blk.37.attn_k.weight": "c4ffa5412e4ff2dcfe1aed991c1f54169fd171a4c7638e4b9f21a1ca64c5e1d6",
|
|
||||||
"blk.37.attn_norm.weight": "4eb6c888d841cccfacf5b963f8611120f6ff24b84af0b5714fd9ab36dcda422f",
|
|
||||||
"blk.37.attn_output.weight": "db2a7bbf9682f9f6eea672dae8e150738f1bf74dbc80edc7022017a3f040c8ac",
|
|
||||||
"blk.37.attn_q.weight": "e38c0462aff139afcbab289189823527e453abc9e541154adde5e7af88cacf0b",
|
|
||||||
"blk.37.attn_v.weight": "952eb2492ed452a72f96bcc12d4b2affad9dfdf46ee39ce4a5d7b57a5dc301e5",
|
|
||||||
"blk.37.ffn_down.weight": "25f23a8fbc44febf6dc4848fd7fe03a580e2822bd3b3b5a51f4990826bfe3e4e",
|
|
||||||
"blk.37.ffn_gate.weight": "707da5eb40118b035305d3262444382351f170a20a537386a70e90c5a83a7817",
|
|
||||||
"blk.37.ffn_up.weight": "d2d2ba5cfc4ef47338dd7384219e22bf030a5a2209e0354d88f5bbaaafd20e87",
|
|
||||||
"blk.38.attn_k.weight": "abc4bb189dedf7ce661e79028427623a4f91ac091c2cd60e31b58bc62b1cda71",
|
|
||||||
"blk.38.attn_norm.weight": "9f4803a7d03fd40fcb83d85f84eb1d5682ea4e5bb084f210c02850675d804c3d",
|
|
||||||
"blk.38.attn_output.weight": "77cb66007f1a41df7135d0e7f900ceb499c2f667dfc3f1a6ac01a3203bbd3ccf",
|
|
||||||
"blk.38.attn_q.weight": "d94a8b26cd375bf2bcaa76597e314aa8268ee50a479d00931e5e0e021feadb5d",
|
|
||||||
"blk.38.attn_v.weight": "660c907888bc5016dc69b7d35fe6f55c7ded697c93be0e2d332a2f17aff88758",
|
|
||||||
"blk.38.ffn_down.weight": "6f06173bae5b00ffaf88ef383619a8b9c6a8d0d5c6494695d17f6c1de1a68a13",
|
|
||||||
"blk.38.ffn_gate.weight": "89f99be149d03f116527bfcabe073c50001c874de40fb6e817f6619027f3cd05",
|
|
||||||
"blk.38.ffn_up.weight": "8d57557c8d5e2d2688b73f01dddf1ce8d5194990cda6358153320aea88aac7f8",
|
|
||||||
"blk.39.attn_k.weight": "21be09c988b46c8393e6c2ec9230f3b5136eb7607dd1953ba92d0811c2f0dd75",
|
|
||||||
"blk.39.attn_norm.weight": "ba7c1912dd1c4e2d16917201f62396fd0600e4a451137eaddff255548c209abd",
|
|
||||||
"blk.39.attn_output.weight": "acfaf4abb3fd27fd899b5563c3877f176b597d8f6cdb2f2fd3f3a0bd4da15ed6",
|
|
||||||
"blk.39.attn_q.weight": "e8adbc140d4c8f0db2a27ca584c5531d5b1e080555fe627e34d80d0814a92bed",
|
|
||||||
"blk.39.attn_v.weight": "92f96b0e1f724e73a0f90a76c145654418844c04a6d4b14c05eb5af8a62bf8dc",
|
|
||||||
"blk.39.ffn_down.weight": "4d9ee7c65fc16fe95d10c47b79ac6a525741947600a64b5fcea5d300a82c50de",
|
|
||||||
"blk.39.ffn_gate.weight": "7e18507989f39b32191133d2657c2ee3b74f42f070579204d727eb72215793d1",
|
|
||||||
"blk.39.ffn_up.weight": "22cda752269c9757ba918abede1df95bb0f83a5c772dea13c8deea3d5f2723d9",
|
|
||||||
"output_norm.weight": "2858cf0e39d32caf52b7861378ace076000241e147f10b9eb21d8a5cd149e3cb"
|
|
||||||
}
|
|
@ -100,8 +100,6 @@ func parseTokenizer(fsys fs.FS, specialTokenTypes []string) (*Tokenizer, error)
|
|||||||
t.Pre = "deepseek-llm"
|
t.Pre = "deepseek-llm"
|
||||||
case "21cde974d587f0d54dc8d56b183cc1e6239600172035c68fbd6d4b9f8da0576e":
|
case "21cde974d587f0d54dc8d56b183cc1e6239600172035c68fbd6d4b9f8da0576e":
|
||||||
t.Pre = "deepseek-coder"
|
t.Pre = "deepseek-coder"
|
||||||
case "1ff7f41064896984db5d1bb6ff64fa4bc29007d08c1b439e505b7392777a319e":
|
|
||||||
t.Pre = "qwen2"
|
|
||||||
case "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855":
|
case "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855":
|
||||||
// noop, empty pretokenizer
|
// noop, empty pretokenizer
|
||||||
default:
|
default:
|
||||||
|
@ -6,9 +6,7 @@ import (
|
|||||||
"errors"
|
"errors"
|
||||||
"fmt"
|
"fmt"
|
||||||
"io/fs"
|
"io/fs"
|
||||||
"log/slog"
|
|
||||||
"os"
|
"os"
|
||||||
"reflect"
|
|
||||||
"slices"
|
"slices"
|
||||||
|
|
||||||
"google.golang.org/protobuf/proto"
|
"google.golang.org/protobuf/proto"
|
||||||
@ -17,8 +15,6 @@ import (
|
|||||||
)
|
)
|
||||||
|
|
||||||
func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
|
func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
|
||||||
slog.Debug("using spm vocabulary")
|
|
||||||
|
|
||||||
ast, err := parseAdditionalSpecialTokens(fsys)
|
ast, err := parseAdditionalSpecialTokens(fsys)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return nil, err
|
return nil, err
|
||||||
@ -47,19 +43,10 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
|
|||||||
v.Types = append(v.Types, int32(t))
|
v.Types = append(v.Types, int32(t))
|
||||||
default:
|
default:
|
||||||
tt := int32(sentencepiece.ModelProto_SentencePiece_NORMAL)
|
tt := int32(sentencepiece.ModelProto_SentencePiece_NORMAL)
|
||||||
|
if slices.Contains(ast, piece.GetPiece()) {
|
||||||
// temporary fix to handle gemma3 broken configs
|
|
||||||
if slices.Contains([]string{"<end_of_turn>", "<start_of_turn>"}, piece.GetPiece()) {
|
|
||||||
tt = int32(sentencepiece.ModelProto_SentencePiece_CONTROL)
|
tt = int32(sentencepiece.ModelProto_SentencePiece_CONTROL)
|
||||||
}
|
}
|
||||||
|
|
||||||
for _, t := range ast {
|
|
||||||
if t.Content == piece.GetPiece() {
|
|
||||||
tt = int32(sentencepiece.ModelProto_SentencePiece_CONTROL)
|
|
||||||
break
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
v.Types = append(v.Types, tt)
|
v.Types = append(v.Types, tt)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -91,16 +78,10 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
|
|||||||
return cmp.Compare(i.id, j.id)
|
return cmp.Compare(i.id, j.id)
|
||||||
})
|
})
|
||||||
|
|
||||||
for _, t := range ts {
|
n := len(v.Tokens)
|
||||||
if t.id < len(v.Tokens) {
|
for i, t := range ts {
|
||||||
if v.Tokens[t.id] == t.content {
|
if t.id != i+n {
|
||||||
slog.Warn("tokenizer", "duplicate token", t.content, "id", t.id)
|
return nil, fmt.Errorf("invalid token id: %d", t.id)
|
||||||
continue
|
|
||||||
}
|
|
||||||
return nil, fmt.Errorf("token mismatch: %s != %s at pos [%d]", t.content, v.Tokens[t.id], t.id)
|
|
||||||
}
|
|
||||||
if t.id != len(v.Tokens) {
|
|
||||||
return nil, fmt.Errorf("invalid token id: [%d] as pos [%d]", t.id, len(v.Tokens))
|
|
||||||
}
|
}
|
||||||
|
|
||||||
v.Tokens = append(v.Tokens, t.content)
|
v.Tokens = append(v.Tokens, t.content)
|
||||||
@ -111,15 +92,7 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
|
|||||||
return &v, nil
|
return &v, nil
|
||||||
}
|
}
|
||||||
|
|
||||||
type specialToken struct {
|
func parseAdditionalSpecialTokens(fsys fs.FS) ([]string, error) {
|
||||||
Content string `json:"content"`
|
|
||||||
Lstrip bool `json:"lstrip"`
|
|
||||||
Normalized bool `json:"normalized"`
|
|
||||||
Rstrip bool `json:"rstrip"`
|
|
||||||
SingleWord bool `json:"single_word"`
|
|
||||||
}
|
|
||||||
|
|
||||||
func parseAdditionalSpecialTokens(fsys fs.FS) ([]specialToken, error) {
|
|
||||||
f, err := fsys.Open("special_tokens_map.json")
|
f, err := fsys.Open("special_tokens_map.json")
|
||||||
if errors.Is(err, os.ErrNotExist) {
|
if errors.Is(err, os.ErrNotExist) {
|
||||||
return nil, nil
|
return nil, nil
|
||||||
@ -129,43 +102,12 @@ func parseAdditionalSpecialTokens(fsys fs.FS) ([]specialToken, error) {
|
|||||||
defer f.Close()
|
defer f.Close()
|
||||||
|
|
||||||
var m struct {
|
var m struct {
|
||||||
AdditionalSpecialTokens any `json:"additional_special_tokens"`
|
AdditionalSpecialTokens []string `json:"additional_special_tokens"`
|
||||||
}
|
}
|
||||||
|
|
||||||
if err := json.NewDecoder(f).Decode(&m); err != nil {
|
if err := json.NewDecoder(f).Decode(&m); err != nil {
|
||||||
return nil, err
|
return nil, err
|
||||||
}
|
}
|
||||||
|
|
||||||
var ast []specialToken
|
return m.AdditionalSpecialTokens, nil
|
||||||
|
|
||||||
switch st := m.AdditionalSpecialTokens.(type) {
|
|
||||||
case []string:
|
|
||||||
for _, s := range st {
|
|
||||||
ast = append(ast, specialToken{Content: s})
|
|
||||||
}
|
|
||||||
case []any:
|
|
||||||
for _, s := range st {
|
|
||||||
// marshal and unmarshal the object to get the special token
|
|
||||||
tMap := s.(map[string]any)
|
|
||||||
data, err := json.Marshal(tMap)
|
|
||||||
if err != nil {
|
|
||||||
return nil, err
|
|
||||||
}
|
|
||||||
|
|
||||||
var token specialToken
|
|
||||||
err = json.Unmarshal(data, &token)
|
|
||||||
if err != nil {
|
|
||||||
return nil, err
|
|
||||||
}
|
|
||||||
|
|
||||||
ast = append(ast, token)
|
|
||||||
}
|
|
||||||
|
|
||||||
default:
|
|
||||||
slog.Warn("special token", "unknown token", reflect.TypeOf(st))
|
|
||||||
}
|
|
||||||
|
|
||||||
slog.Debug("spm tokenizer", "additional tokens", ast)
|
|
||||||
|
|
||||||
return ast, nil
|
|
||||||
}
|
}
|
||||||
|
@ -9,6 +9,8 @@ import (
|
|||||||
"path/filepath"
|
"path/filepath"
|
||||||
"runtime"
|
"runtime"
|
||||||
"strings"
|
"strings"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/envconfig"
|
||||||
)
|
)
|
||||||
|
|
||||||
// Determine if the given ROCm lib directory is usable by checking for existence of some glob patterns
|
// Determine if the given ROCm lib directory is usable by checking for existence of some glob patterns
|
||||||
@ -39,10 +41,13 @@ func commonAMDValidateLibDir() (string, error) {
|
|||||||
// Favor our bundled version
|
// Favor our bundled version
|
||||||
|
|
||||||
// Installer payload location if we're running the installed binary
|
// Installer payload location if we're running the installed binary
|
||||||
rocmTargetDir := filepath.Join(LibOllamaPath, "rocm")
|
exe, err := os.Executable()
|
||||||
if rocmLibUsable(rocmTargetDir) {
|
if err == nil {
|
||||||
slog.Debug("detected ROCM next to ollama executable " + rocmTargetDir)
|
rocmTargetDir := filepath.Join(filepath.Dir(exe), envconfig.LibRelativeToExe(), "lib", "ollama")
|
||||||
return rocmTargetDir, nil
|
if rocmLibUsable(rocmTargetDir) {
|
||||||
|
slog.Debug("detected ROCM next to ollama executable " + rocmTargetDir)
|
||||||
|
return rocmTargetDir, nil
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Prefer explicit HIP env var
|
// Prefer explicit HIP env var
|
||||||
|
@ -77,7 +77,8 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
|
|||||||
|
|
||||||
gfxOverride := envconfig.HsaOverrideGfxVersion()
|
gfxOverride := envconfig.HsaOverrideGfxVersion()
|
||||||
var supported []string
|
var supported []string
|
||||||
var libDir string
|
depPaths := LibraryDirs()
|
||||||
|
libDir := ""
|
||||||
|
|
||||||
// The amdgpu driver always exposes the host CPU(s) first, but we have to skip them and subtract
|
// The amdgpu driver always exposes the host CPU(s) first, but we have to skip them and subtract
|
||||||
// from the other IDs to get alignment with the HIP libraries expectations (zero is the first GPU, not the CPU)
|
// from the other IDs to get alignment with the HIP libraries expectations (zero is the first GPU, not the CPU)
|
||||||
@ -352,8 +353,9 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
|
|||||||
})
|
})
|
||||||
return nil, err
|
return nil, err
|
||||||
}
|
}
|
||||||
|
depPaths = append(depPaths, libDir)
|
||||||
}
|
}
|
||||||
gpuInfo.DependencyPath = []string{libDir}
|
gpuInfo.DependencyPath = depPaths
|
||||||
|
|
||||||
if gfxOverride == "" {
|
if gfxOverride == "" {
|
||||||
// Only load supported list once
|
// Only load supported list once
|
||||||
|
@ -5,6 +5,7 @@ import (
|
|||||||
"errors"
|
"errors"
|
||||||
"fmt"
|
"fmt"
|
||||||
"log/slog"
|
"log/slog"
|
||||||
|
"os"
|
||||||
"path/filepath"
|
"path/filepath"
|
||||||
"slices"
|
"slices"
|
||||||
"strconv"
|
"strconv"
|
||||||
@ -49,13 +50,14 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
|
|||||||
slog.Info(err.Error())
|
slog.Info(err.Error())
|
||||||
return nil, err
|
return nil, err
|
||||||
}
|
}
|
||||||
|
depPaths := LibraryDirs()
|
||||||
libDir, err := AMDValidateLibDir()
|
libDir, err := AMDValidateLibDir()
|
||||||
if err != nil {
|
if err != nil {
|
||||||
err = fmt.Errorf("unable to verify rocm library: %w", err)
|
err = fmt.Errorf("unable to verify rocm library: %w", err)
|
||||||
slog.Warn(err.Error())
|
slog.Warn(err.Error())
|
||||||
return nil, err
|
return nil, err
|
||||||
}
|
}
|
||||||
|
depPaths = append(depPaths, libDir)
|
||||||
|
|
||||||
var supported []string
|
var supported []string
|
||||||
gfxOverride := envconfig.HsaOverrideGfxVersion()
|
gfxOverride := envconfig.HsaOverrideGfxVersion()
|
||||||
@ -111,7 +113,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
|
|||||||
UnreliableFreeMemory: true,
|
UnreliableFreeMemory: true,
|
||||||
|
|
||||||
ID: strconv.Itoa(i), // TODO this is probably wrong if we specify visible devices
|
ID: strconv.Itoa(i), // TODO this is probably wrong if we specify visible devices
|
||||||
DependencyPath: []string{libDir},
|
DependencyPath: depPaths,
|
||||||
MinimumMemory: rocmMinimumMemory,
|
MinimumMemory: rocmMinimumMemory,
|
||||||
Name: name,
|
Name: name,
|
||||||
Compute: gfx,
|
Compute: gfx,
|
||||||
@ -162,7 +164,9 @@ func AMDValidateLibDir() (string, error) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
// Installer payload (if we're running from some other location)
|
// Installer payload (if we're running from some other location)
|
||||||
rocmTargetDir := filepath.Join(LibOllamaPath, "rocm")
|
localAppData := os.Getenv("LOCALAPPDATA")
|
||||||
|
appDir := filepath.Join(localAppData, "Programs", "Ollama")
|
||||||
|
rocmTargetDir := filepath.Join(appDir, envconfig.LibRelativeToExe(), "lib", "ollama")
|
||||||
if rocmLibUsable(rocmTargetDir) {
|
if rocmLibUsable(rocmTargetDir) {
|
||||||
slog.Debug("detected ollama installed ROCm at " + rocmTargetDir)
|
slog.Debug("detected ollama installed ROCm at " + rocmTargetDir)
|
||||||
return rocmTargetDir, nil
|
return rocmTargetDir, nil
|
||||||
|
@ -12,7 +12,7 @@ func IsNUMA() bool {
|
|||||||
// numa support in llama.cpp is linux only
|
// numa support in llama.cpp is linux only
|
||||||
return false
|
return false
|
||||||
}
|
}
|
||||||
ids := map[string]any{}
|
ids := map[string]interface{}{}
|
||||||
packageIds, _ := filepath.Glob("/sys/devices/system/cpu/cpu*/topology/physical_package_id")
|
packageIds, _ := filepath.Glob("/sys/devices/system/cpu/cpu*/topology/physical_package_id")
|
||||||
for _, packageId := range packageIds {
|
for _, packageId := range packageIds {
|
||||||
id, err := os.ReadFile(packageId)
|
id, err := os.ReadFile(packageId)
|
||||||
|
@ -57,8 +57,7 @@ func cudaVariant(gpuInfo CudaGPUInfo) string {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// driver 12.0 has problems with the cuda v12 library, so run v11 on those older drivers
|
if gpuInfo.computeMajor < 6 || gpuInfo.DriverMajor < 12 || (gpuInfo.DriverMajor == 12 && gpuInfo.DriverMinor == 0) {
|
||||||
if gpuInfo.DriverMajor < 12 || (gpuInfo.DriverMajor == 12 && gpuInfo.DriverMinor == 0) {
|
|
||||||
return "v11"
|
return "v11"
|
||||||
}
|
}
|
||||||
return "v12"
|
return "v12"
|
||||||
|
@ -23,6 +23,7 @@ import (
|
|||||||
|
|
||||||
"github.com/ollama/ollama/envconfig"
|
"github.com/ollama/ollama/envconfig"
|
||||||
"github.com/ollama/ollama/format"
|
"github.com/ollama/ollama/format"
|
||||||
|
"github.com/ollama/ollama/runners"
|
||||||
)
|
)
|
||||||
|
|
||||||
type cudaHandles struct {
|
type cudaHandles struct {
|
||||||
@ -100,7 +101,15 @@ func initCudaHandles() *cudaHandles {
|
|||||||
|
|
||||||
// Aligned with driver, we can't carry as payloads
|
// Aligned with driver, we can't carry as payloads
|
||||||
nvcudaMgmtPatterns := NvcudaGlobs
|
nvcudaMgmtPatterns := NvcudaGlobs
|
||||||
cudartMgmtPatterns = append(cudartMgmtPatterns, filepath.Join(LibOllamaPath, "cuda_v*", CudartMgmtName))
|
|
||||||
|
if runtime.GOOS == "windows" {
|
||||||
|
localAppData := os.Getenv("LOCALAPPDATA")
|
||||||
|
cudartMgmtPatterns = []string{filepath.Join(localAppData, "Programs", "Ollama", CudartMgmtName)}
|
||||||
|
}
|
||||||
|
libDirs := LibraryDirs()
|
||||||
|
for _, d := range libDirs {
|
||||||
|
cudartMgmtPatterns = append(cudartMgmtPatterns, filepath.Join(d, CudartMgmtName))
|
||||||
|
}
|
||||||
cudartMgmtPatterns = append(cudartMgmtPatterns, CudartGlobs...)
|
cudartMgmtPatterns = append(cudartMgmtPatterns, CudartGlobs...)
|
||||||
|
|
||||||
if len(NvmlGlobs) > 0 {
|
if len(NvmlGlobs) > 0 {
|
||||||
@ -231,7 +240,7 @@ func GetGPUInfo() GpuInfoList {
|
|||||||
if err != nil {
|
if err != nil {
|
||||||
slog.Warn("error looking up system memory", "error", err)
|
slog.Warn("error looking up system memory", "error", err)
|
||||||
}
|
}
|
||||||
|
depPaths := LibraryDirs()
|
||||||
details, err := GetCPUDetails()
|
details, err := GetCPUDetails()
|
||||||
if err != nil {
|
if err != nil {
|
||||||
slog.Warn("failed to lookup CPU details", "error", err)
|
slog.Warn("failed to lookup CPU details", "error", err)
|
||||||
@ -239,9 +248,11 @@ func GetGPUInfo() GpuInfoList {
|
|||||||
cpus = []CPUInfo{
|
cpus = []CPUInfo{
|
||||||
{
|
{
|
||||||
GpuInfo: GpuInfo{
|
GpuInfo: GpuInfo{
|
||||||
memInfo: mem,
|
memInfo: mem,
|
||||||
Library: "cpu",
|
Library: "cpu",
|
||||||
ID: "0",
|
Variant: runners.GetCPUCapability().String(),
|
||||||
|
ID: "0",
|
||||||
|
DependencyPath: depPaths,
|
||||||
},
|
},
|
||||||
CPUs: details,
|
CPUs: details,
|
||||||
},
|
},
|
||||||
@ -283,13 +294,17 @@ func GetGPUInfo() GpuInfoList {
|
|||||||
gpuInfo.DriverMajor = driverMajor
|
gpuInfo.DriverMajor = driverMajor
|
||||||
gpuInfo.DriverMinor = driverMinor
|
gpuInfo.DriverMinor = driverMinor
|
||||||
variant := cudaVariant(gpuInfo)
|
variant := cudaVariant(gpuInfo)
|
||||||
|
if depPaths != nil {
|
||||||
// Start with our bundled libraries
|
gpuInfo.DependencyPath = depPaths
|
||||||
if variant != "" {
|
// Check for variant specific directory
|
||||||
variantPath := filepath.Join(LibOllamaPath, "cuda_"+variant)
|
if variant != "" {
|
||||||
if _, err := os.Stat(variantPath); err == nil {
|
for _, d := range depPaths {
|
||||||
// Put the variant directory first in the search path to avoid runtime linking to the wrong library
|
if _, err := os.Stat(filepath.Join(d, "cuda_"+variant)); err == nil {
|
||||||
gpuInfo.DependencyPath = append([]string{variantPath}, gpuInfo.DependencyPath...)
|
// Put the variant directory first in the search path to avoid runtime linking to the wrong library
|
||||||
|
gpuInfo.DependencyPath = append([]string{filepath.Join(d, "cuda_"+variant)}, gpuInfo.DependencyPath...)
|
||||||
|
break
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
|
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
|
||||||
@ -361,7 +376,7 @@ func GetGPUInfo() GpuInfoList {
|
|||||||
gpuInfo.FreeMemory = uint64(memInfo.free)
|
gpuInfo.FreeMemory = uint64(memInfo.free)
|
||||||
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
|
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
|
||||||
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
|
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
|
||||||
gpuInfo.DependencyPath = []string{LibOllamaPath}
|
gpuInfo.DependencyPath = depPaths
|
||||||
oneapiGPUs = append(oneapiGPUs, gpuInfo)
|
oneapiGPUs = append(oneapiGPUs, gpuInfo)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -497,33 +512,37 @@ func GetGPUInfo() GpuInfoList {
|
|||||||
|
|
||||||
func FindGPULibs(baseLibName string, defaultPatterns []string) []string {
|
func FindGPULibs(baseLibName string, defaultPatterns []string) []string {
|
||||||
// Multiple GPU libraries may exist, and some may not work, so keep trying until we exhaust them
|
// Multiple GPU libraries may exist, and some may not work, so keep trying until we exhaust them
|
||||||
|
var ldPaths []string
|
||||||
gpuLibPaths := []string{}
|
gpuLibPaths := []string{}
|
||||||
slog.Debug("Searching for GPU library", "name", baseLibName)
|
slog.Debug("Searching for GPU library", "name", baseLibName)
|
||||||
|
|
||||||
// search our bundled libraries first
|
// Start with our bundled libraries
|
||||||
patterns := []string{filepath.Join(LibOllamaPath, baseLibName)}
|
patterns := []string{}
|
||||||
|
for _, d := range LibraryDirs() {
|
||||||
var ldPaths []string
|
patterns = append(patterns, filepath.Join(d, baseLibName))
|
||||||
switch runtime.GOOS {
|
|
||||||
case "windows":
|
|
||||||
ldPaths = strings.Split(os.Getenv("PATH"), string(os.PathListSeparator))
|
|
||||||
case "linux":
|
|
||||||
ldPaths = strings.Split(os.Getenv("LD_LIBRARY_PATH"), string(os.PathListSeparator))
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// then search the system's LD_LIBRARY_PATH
|
switch runtime.GOOS {
|
||||||
for _, p := range ldPaths {
|
case "windows":
|
||||||
p, err := filepath.Abs(p)
|
ldPaths = strings.Split(os.Getenv("PATH"), ";")
|
||||||
|
case "linux":
|
||||||
|
ldPaths = strings.Split(os.Getenv("LD_LIBRARY_PATH"), ":")
|
||||||
|
default:
|
||||||
|
return gpuLibPaths
|
||||||
|
}
|
||||||
|
|
||||||
|
// Then with whatever we find in the PATH/LD_LIBRARY_PATH
|
||||||
|
for _, ldPath := range ldPaths {
|
||||||
|
d, err := filepath.Abs(ldPath)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
continue
|
continue
|
||||||
}
|
}
|
||||||
patterns = append(patterns, filepath.Join(p, baseLibName))
|
patterns = append(patterns, filepath.Join(d, baseLibName))
|
||||||
}
|
}
|
||||||
|
|
||||||
// finally, search the default patterns provided by the caller
|
|
||||||
patterns = append(patterns, defaultPatterns...)
|
patterns = append(patterns, defaultPatterns...)
|
||||||
slog.Debug("gpu library search", "globs", patterns)
|
slog.Debug("gpu library search", "globs", patterns)
|
||||||
for _, pattern := range patterns {
|
for _, pattern := range patterns {
|
||||||
|
|
||||||
// Nvidia PhysX known to return bogus results
|
// Nvidia PhysX known to return bogus results
|
||||||
if strings.Contains(pattern, "PhysX") {
|
if strings.Contains(pattern, "PhysX") {
|
||||||
slog.Debug("skipping PhysX cuda library path", "path", pattern)
|
slog.Debug("skipping PhysX cuda library path", "path", pattern)
|
||||||
@ -670,7 +689,7 @@ func loadOneapiMgmt(oneapiLibPaths []string) (int, *C.oneapi_handle_t, string, e
|
|||||||
}
|
}
|
||||||
|
|
||||||
func getVerboseState() C.uint16_t {
|
func getVerboseState() C.uint16_t {
|
||||||
if envconfig.LogLevel() < slog.LevelInfo {
|
if envconfig.Debug() {
|
||||||
return C.uint16_t(1)
|
return C.uint16_t(1)
|
||||||
}
|
}
|
||||||
return C.uint16_t(0)
|
return C.uint16_t(0)
|
||||||
@ -697,6 +716,28 @@ func (l GpuInfoList) GetVisibleDevicesEnv() (string, string) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func LibraryDirs() []string {
|
||||||
|
// dependencies can exist wherever we found the runners (e.g. build tree for developers) and relative to the executable
|
||||||
|
// This can be simplified once we no longer carry runners as payloads
|
||||||
|
paths := []string{}
|
||||||
|
appExe, err := os.Executable()
|
||||||
|
if err != nil {
|
||||||
|
slog.Warn("failed to lookup executable path", "error", err)
|
||||||
|
} else {
|
||||||
|
appRelative := filepath.Join(filepath.Dir(appExe), envconfig.LibRelativeToExe(), "lib", "ollama")
|
||||||
|
if _, err := os.Stat(appRelative); err == nil {
|
||||||
|
paths = append(paths, appRelative)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
rDir := runners.Locate()
|
||||||
|
if err != nil {
|
||||||
|
slog.Warn("unable to locate gpu dependency libraries", "error", err)
|
||||||
|
} else {
|
||||||
|
paths = append(paths, filepath.Dir(rDir))
|
||||||
|
}
|
||||||
|
return paths
|
||||||
|
}
|
||||||
|
|
||||||
func GetSystemInfo() SystemInfo {
|
func GetSystemInfo() SystemInfo {
|
||||||
gpus := GetGPUInfo()
|
gpus := GetGPUInfo()
|
||||||
gpuMutex.Lock()
|
gpuMutex.Lock()
|
||||||
|
@ -15,6 +15,7 @@ import (
|
|||||||
"syscall"
|
"syscall"
|
||||||
|
|
||||||
"github.com/ollama/ollama/format"
|
"github.com/ollama/ollama/format"
|
||||||
|
"github.com/ollama/ollama/runners"
|
||||||
)
|
)
|
||||||
|
|
||||||
const (
|
const (
|
||||||
@ -27,6 +28,7 @@ func GetGPUInfo() GpuInfoList {
|
|||||||
return []GpuInfo{
|
return []GpuInfo{
|
||||||
{
|
{
|
||||||
Library: "cpu",
|
Library: "cpu",
|
||||||
|
Variant: runners.GetCPUCapability().String(),
|
||||||
memInfo: mem,
|
memInfo: mem,
|
||||||
},
|
},
|
||||||
}
|
}
|
||||||
@ -49,6 +51,7 @@ func GetCPUInfo() GpuInfoList {
|
|||||||
return []GpuInfo{
|
return []GpuInfo{
|
||||||
{
|
{
|
||||||
Library: "cpu",
|
Library: "cpu",
|
||||||
|
Variant: runners.GetCPUCapability().String(),
|
||||||
memInfo: mem,
|
memInfo: mem,
|
||||||
},
|
},
|
||||||
}
|
}
|
||||||
|
@ -27,14 +27,12 @@
|
|||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#ifndef LOG
|
|
||||||
#define LOG(verbose, ...) \
|
#define LOG(verbose, ...) \
|
||||||
do { \
|
do { \
|
||||||
if (verbose) { \
|
if (verbose) { \
|
||||||
fprintf(stderr, __VA_ARGS__); \
|
fprintf(stderr, __VA_ARGS__); \
|
||||||
} \
|
} \
|
||||||
} while (0)
|
} while (0)
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
extern "C" {
|
extern "C" {
|
||||||
|
@ -1,7 +1,6 @@
|
|||||||
#ifndef __APPLE__ // TODO - maybe consider nvidia support on intel macs?
|
#ifndef __APPLE__ // TODO - maybe consider nvidia support on intel macs?
|
||||||
|
|
||||||
#include <string.h>
|
#include <string.h>
|
||||||
#include <inttypes.h>
|
|
||||||
#include "gpu_info_cudart.h"
|
#include "gpu_info_cudart.h"
|
||||||
|
|
||||||
void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp) {
|
void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp) {
|
||||||
@ -59,7 +58,7 @@ void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp) {
|
|||||||
LOG(resp->ch.verbose, "cudaSetDevice err: %d\n", ret);
|
LOG(resp->ch.verbose, "cudaSetDevice err: %d\n", ret);
|
||||||
UNLOAD_LIBRARY(resp->ch.handle);
|
UNLOAD_LIBRARY(resp->ch.handle);
|
||||||
resp->ch.handle = NULL;
|
resp->ch.handle = NULL;
|
||||||
if (ret == CUDART_ERROR_INSUFFICIENT_DRIVER) {
|
if (ret == CUDA_ERROR_INSUFFICIENT_DRIVER) {
|
||||||
resp->err = strdup("your nvidia driver is too old or missing. If you have a CUDA GPU please upgrade to run ollama");
|
resp->err = strdup("your nvidia driver is too old or missing. If you have a CUDA GPU please upgrade to run ollama");
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
@ -169,9 +168,9 @@ void cudart_bootstrap(cudart_handle_t h, int i, mem_info_t *resp) {
|
|||||||
resp->free = memInfo.free;
|
resp->free = memInfo.free;
|
||||||
resp->used = memInfo.used;
|
resp->used = memInfo.used;
|
||||||
|
|
||||||
LOG(h.verbose, "[%s] CUDA totalMem %" PRId64 "\n", resp->gpu_id, resp->total);
|
LOG(h.verbose, "[%s] CUDA totalMem %lu\n", resp->gpu_id, resp->total);
|
||||||
LOG(h.verbose, "[%s] CUDA freeMem %" PRId64 "\n", resp->gpu_id, resp->free);
|
LOG(h.verbose, "[%s] CUDA freeMem %lu\n", resp->gpu_id, resp->free);
|
||||||
LOG(h.verbose, "[%s] CUDA usedMem %" PRId64 "\n", resp->gpu_id, resp->used);
|
LOG(h.verbose, "[%s] CUDA usedMem %lu\n", resp->gpu_id, resp->used);
|
||||||
LOG(h.verbose, "[%s] Compute Capability %d.%d\n", resp->gpu_id, resp->major, resp->minor);
|
LOG(h.verbose, "[%s] Compute Capability %d.%d\n", resp->gpu_id, resp->major, resp->minor);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -1,7 +1,6 @@
|
|||||||
#ifndef __APPLE__ // TODO - maybe consider nvidia support on intel macs?
|
#ifndef __APPLE__ // TODO - maybe consider nvidia support on intel macs?
|
||||||
|
|
||||||
#include <string.h>
|
#include <string.h>
|
||||||
#include <inttypes.h>
|
|
||||||
#include "gpu_info_nvcuda.h"
|
#include "gpu_info_nvcuda.h"
|
||||||
|
|
||||||
void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
|
void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
|
||||||
@ -194,8 +193,8 @@ void nvcuda_bootstrap(nvcuda_handle_t h, int i, mem_info_t *resp) {
|
|||||||
resp->total = memInfo.total;
|
resp->total = memInfo.total;
|
||||||
resp->free = memInfo.free;
|
resp->free = memInfo.free;
|
||||||
|
|
||||||
LOG(h.verbose, "[%s] CUDA totalMem %" PRId64 "mb\n", resp->gpu_id, resp->total / 1024 / 1024);
|
LOG(h.verbose, "[%s] CUDA totalMem %lu mb\n", resp->gpu_id, resp->total / 1024 / 1024);
|
||||||
LOG(h.verbose, "[%s] CUDA freeMem %" PRId64 "mb\n", resp->gpu_id, resp->free / 1024 / 1024);
|
LOG(h.verbose, "[%s] CUDA freeMem %lu mb\n", resp->gpu_id, resp->free / 1024 / 1024);
|
||||||
LOG(h.verbose, "[%s] Compute Capability %d.%d\n", resp->gpu_id, resp->major, resp->minor);
|
LOG(h.verbose, "[%s] Compute Capability %d.%d\n", resp->gpu_id, resp->major, resp->minor);
|
||||||
|
|
||||||
|
|
||||||
|
@ -111,7 +111,6 @@ func GetCPUDetails() ([]CPU, error) {
|
|||||||
if err != nil {
|
if err != nil {
|
||||||
return nil, err
|
return nil, err
|
||||||
}
|
}
|
||||||
defer file.Close()
|
|
||||||
return linuxCPUDetails(file)
|
return linuxCPUDetails(file)
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -169,11 +168,13 @@ func linuxCPUDetails(file io.Reader) ([]CPU, error) {
|
|||||||
for id, s := range socketByID {
|
for id, s := range socketByID {
|
||||||
s.CoreCount = len(coreBySocket[id])
|
s.CoreCount = len(coreBySocket[id])
|
||||||
s.ThreadCount = 0
|
s.ThreadCount = 0
|
||||||
|
for _, tc := range threadsByCoreBySocket[id] {
|
||||||
|
s.ThreadCount += tc
|
||||||
|
}
|
||||||
|
|
||||||
// This only works if HT is enabled, consider a more reliable model, maybe cache size comparisons?
|
// This only works if HT is enabled, consider a more reliable model, maybe cache size comparisons?
|
||||||
efficiencyCoreCount := 0
|
efficiencyCoreCount := 0
|
||||||
for _, threads := range threadsByCoreBySocket[id] {
|
for _, threads := range threadsByCoreBySocket[id] {
|
||||||
s.ThreadCount += threads
|
|
||||||
if threads == 1 {
|
if threads == 1 {
|
||||||
efficiencyCoreCount++
|
efficiencyCoreCount++
|
||||||
}
|
}
|
||||||
|
@ -1,56 +0,0 @@
|
|||||||
package discover
|
|
||||||
|
|
||||||
import (
|
|
||||||
"os"
|
|
||||||
"path/filepath"
|
|
||||||
"runtime"
|
|
||||||
)
|
|
||||||
|
|
||||||
// LibPath is a path to lookup dynamic libraries
|
|
||||||
// in development it's usually 'build/lib/ollama'
|
|
||||||
// in distribution builds it's 'lib/ollama' on Windows
|
|
||||||
// '../lib/ollama' on Linux and the executable's directory on macOS
|
|
||||||
// note: distribution builds, additional GPU-specific libraries are
|
|
||||||
// found in subdirectories of the returned path, such as
|
|
||||||
// 'cuda_v11', 'cuda_v12', 'rocm', etc.
|
|
||||||
var LibOllamaPath string = func() string {
|
|
||||||
exe, err := os.Executable()
|
|
||||||
if err != nil {
|
|
||||||
return ""
|
|
||||||
}
|
|
||||||
|
|
||||||
if eval, err := filepath.EvalSymlinks(exe); err == nil {
|
|
||||||
exe = eval
|
|
||||||
}
|
|
||||||
|
|
||||||
var libPath string
|
|
||||||
switch runtime.GOOS {
|
|
||||||
case "windows":
|
|
||||||
libPath = filepath.Join(filepath.Dir(exe), "lib", "ollama")
|
|
||||||
case "linux":
|
|
||||||
libPath = filepath.Join(filepath.Dir(exe), "..", "lib", "ollama")
|
|
||||||
case "darwin":
|
|
||||||
libPath = filepath.Dir(exe)
|
|
||||||
}
|
|
||||||
|
|
||||||
cwd, err := os.Getwd()
|
|
||||||
if err != nil {
|
|
||||||
return ""
|
|
||||||
}
|
|
||||||
|
|
||||||
paths := []string{
|
|
||||||
libPath,
|
|
||||||
|
|
||||||
// build paths for development
|
|
||||||
filepath.Join(filepath.Dir(exe), "build", "lib", "ollama"),
|
|
||||||
filepath.Join(cwd, "build", "lib", "ollama"),
|
|
||||||
}
|
|
||||||
|
|
||||||
for _, p := range paths {
|
|
||||||
if _, err := os.Stat(p); err == nil {
|
|
||||||
return p
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return filepath.Dir(exe)
|
|
||||||
}()
|
|
@ -5,6 +5,7 @@ import (
|
|||||||
"log/slog"
|
"log/slog"
|
||||||
|
|
||||||
"github.com/ollama/ollama/format"
|
"github.com/ollama/ollama/format"
|
||||||
|
"github.com/ollama/ollama/runners"
|
||||||
)
|
)
|
||||||
|
|
||||||
type memInfo struct {
|
type memInfo struct {
|
||||||
@ -106,7 +107,7 @@ func (l GpuInfoList) ByLibrary() []GpuInfoList {
|
|||||||
for _, info := range l {
|
for _, info := range l {
|
||||||
found := false
|
found := false
|
||||||
requested := info.Library
|
requested := info.Library
|
||||||
if info.Variant != "" {
|
if info.Variant != runners.CPUCapabilityNone.String() {
|
||||||
requested += "_" + info.Variant
|
requested += "_" + info.Variant
|
||||||
}
|
}
|
||||||
for i, lib := range libs {
|
for i, lib := range libs {
|
||||||
|
@ -2,7 +2,7 @@
|
|||||||
|
|
||||||
### Getting Started
|
### Getting Started
|
||||||
* [Quickstart](../README.md#quickstart)
|
* [Quickstart](../README.md#quickstart)
|
||||||
* [Examples](./examples.md)
|
* [Examples](../examples)
|
||||||
* [Importing models](./import.md)
|
* [Importing models](./import.md)
|
||||||
* [Linux Documentation](./linux.md)
|
* [Linux Documentation](./linux.md)
|
||||||
* [Windows Documentation](./windows.md)
|
* [Windows Documentation](./windows.md)
|
||||||
|
265
docs/api.md
265
docs/api.md
@ -13,13 +13,12 @@
|
|||||||
- [Push a Model](#push-a-model)
|
- [Push a Model](#push-a-model)
|
||||||
- [Generate Embeddings](#generate-embeddings)
|
- [Generate Embeddings](#generate-embeddings)
|
||||||
- [List Running Models](#list-running-models)
|
- [List Running Models](#list-running-models)
|
||||||
- [Version](#version)
|
|
||||||
|
|
||||||
## Conventions
|
## Conventions
|
||||||
|
|
||||||
### Model names
|
### Model names
|
||||||
|
|
||||||
Model names follow a `model:tag` format, where `model` can have an optional namespace such as `example/model`. Some examples are `orca-mini:3b-q8_0` and `llama3:70b`. The tag is optional and, if not provided, will default to `latest`. The tag is used to identify a specific version.
|
Model names follow a `model:tag` format, where `model` can have an optional namespace such as `example/model`. Some examples are `orca-mini:3b-q4_1` and `llama3:70b`. The tag is optional and, if not provided, will default to `latest`. The tag is used to identify a specific version.
|
||||||
|
|
||||||
### Durations
|
### Durations
|
||||||
|
|
||||||
@ -31,7 +30,7 @@ Certain endpoints stream responses as JSON objects. Streaming can be disabled by
|
|||||||
|
|
||||||
## Generate a completion
|
## Generate a completion
|
||||||
|
|
||||||
```
|
```shell
|
||||||
POST /api/generate
|
POST /api/generate
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -173,7 +172,7 @@ curl http://localhost:11434/api/generate -d '{
|
|||||||
|
|
||||||
##### Response
|
##### Response
|
||||||
|
|
||||||
```json5
|
```json
|
||||||
{
|
{
|
||||||
"model": "codellama:code",
|
"model": "codellama:code",
|
||||||
"created_at": "2024-07-22T20:47:51.147561Z",
|
"created_at": "2024-07-22T20:47:51.147561Z",
|
||||||
@ -306,7 +305,7 @@ curl http://localhost:11434/api/generate -d '{
|
|||||||
|
|
||||||
#### Response
|
#### Response
|
||||||
|
|
||||||
```json
|
```
|
||||||
{
|
{
|
||||||
"model": "llava",
|
"model": "llava",
|
||||||
"created_at": "2023-11-03T15:36:02.583064Z",
|
"created_at": "2023-11-03T15:36:02.583064Z",
|
||||||
@ -394,6 +393,9 @@ curl http://localhost:11434/api/generate -d '{
|
|||||||
"repeat_penalty": 1.2,
|
"repeat_penalty": 1.2,
|
||||||
"presence_penalty": 1.5,
|
"presence_penalty": 1.5,
|
||||||
"frequency_penalty": 1.0,
|
"frequency_penalty": 1.0,
|
||||||
|
"mirostat": 1,
|
||||||
|
"mirostat_tau": 0.8,
|
||||||
|
"mirostat_eta": 0.6,
|
||||||
"penalize_newline": true,
|
"penalize_newline": true,
|
||||||
"stop": ["\n", "user:"],
|
"stop": ["\n", "user:"],
|
||||||
"numa": false,
|
"numa": false,
|
||||||
@ -401,7 +403,10 @@ curl http://localhost:11434/api/generate -d '{
|
|||||||
"num_batch": 2,
|
"num_batch": 2,
|
||||||
"num_gpu": 1,
|
"num_gpu": 1,
|
||||||
"main_gpu": 0,
|
"main_gpu": 0,
|
||||||
|
"low_vram": false,
|
||||||
|
"vocab_only": false,
|
||||||
"use_mmap": true,
|
"use_mmap": true,
|
||||||
|
"use_mlock": false,
|
||||||
"num_thread": 8
|
"num_thread": 8
|
||||||
}
|
}
|
||||||
}'
|
}'
|
||||||
@ -479,7 +484,7 @@ A single JSON object is returned:
|
|||||||
|
|
||||||
## Generate a chat completion
|
## Generate a chat completion
|
||||||
|
|
||||||
```
|
```shell
|
||||||
POST /api/chat
|
POST /api/chat
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -489,14 +494,14 @@ Generate the next message in a chat with a provided model. This is a streaming e
|
|||||||
|
|
||||||
- `model`: (required) the [model name](#model-names)
|
- `model`: (required) the [model name](#model-names)
|
||||||
- `messages`: the messages of the chat, this can be used to keep a chat memory
|
- `messages`: the messages of the chat, this can be used to keep a chat memory
|
||||||
- `tools`: list of tools in JSON for the model to use if supported
|
- `tools`: tools for the model to use if supported. Requires `stream` to be set to `false`
|
||||||
|
|
||||||
The `message` object has the following fields:
|
The `message` object has the following fields:
|
||||||
|
|
||||||
- `role`: the role of the message, either `system`, `user`, `assistant`, or `tool`
|
- `role`: the role of the message, either `system`, `user`, `assistant`, or `tool`
|
||||||
- `content`: the content of the message
|
- `content`: the content of the message
|
||||||
- `images` (optional): a list of images to include in the message (for multimodal models such as `llava`)
|
- `images` (optional): a list of images to include in the message (for multimodal models such as `llava`)
|
||||||
- `tool_calls` (optional): a list of tools in JSON that the model wants to use
|
- `tool_calls` (optional): a list of tools the model wants to use
|
||||||
|
|
||||||
Advanced parameters (optional):
|
Advanced parameters (optional):
|
||||||
|
|
||||||
@ -552,10 +557,6 @@ Final response:
|
|||||||
{
|
{
|
||||||
"model": "llama3.2",
|
"model": "llama3.2",
|
||||||
"created_at": "2023-08-04T19:22:45.499127Z",
|
"created_at": "2023-08-04T19:22:45.499127Z",
|
||||||
"message": {
|
|
||||||
"role": "assistant",
|
|
||||||
"content": ""
|
|
||||||
},
|
|
||||||
"done": true,
|
"done": true,
|
||||||
"total_duration": 4883583458,
|
"total_duration": 4883583458,
|
||||||
"load_duration": 1334875,
|
"load_duration": 1334875,
|
||||||
@ -793,7 +794,7 @@ curl http://localhost:11434/api/chat -d '{
|
|||||||
|
|
||||||
##### Request
|
##### Request
|
||||||
|
|
||||||
```shell
|
```
|
||||||
curl http://localhost:11434/api/chat -d '{
|
curl http://localhost:11434/api/chat -d '{
|
||||||
"model": "llama3.2",
|
"model": "llama3.2",
|
||||||
"messages": [
|
"messages": [
|
||||||
@ -868,7 +869,7 @@ If the messages array is empty, the model will be loaded into memory.
|
|||||||
|
|
||||||
##### Request
|
##### Request
|
||||||
|
|
||||||
```shell
|
```
|
||||||
curl http://localhost:11434/api/chat -d '{
|
curl http://localhost:11434/api/chat -d '{
|
||||||
"model": "llama3.2",
|
"model": "llama3.2",
|
||||||
"messages": []
|
"messages": []
|
||||||
@ -876,7 +877,6 @@ curl http://localhost:11434/api/chat -d '{
|
|||||||
```
|
```
|
||||||
|
|
||||||
##### Response
|
##### Response
|
||||||
|
|
||||||
```json
|
```json
|
||||||
{
|
{
|
||||||
"model": "llama3.2",
|
"model": "llama3.2",
|
||||||
@ -896,7 +896,7 @@ If the messages array is empty and the `keep_alive` parameter is set to `0`, a m
|
|||||||
|
|
||||||
##### Request
|
##### Request
|
||||||
|
|
||||||
```shell
|
```
|
||||||
curl http://localhost:11434/api/chat -d '{
|
curl http://localhost:11434/api/chat -d '{
|
||||||
"model": "llama3.2",
|
"model": "llama3.2",
|
||||||
"messages": [],
|
"messages": [],
|
||||||
@ -923,52 +923,51 @@ A single JSON object is returned:
|
|||||||
|
|
||||||
## Create a Model
|
## Create a Model
|
||||||
|
|
||||||
```
|
```shell
|
||||||
POST /api/create
|
POST /api/create
|
||||||
```
|
```
|
||||||
|
|
||||||
Create a model from:
|
Create a model from a [`Modelfile`](./modelfile.md). It is recommended to set `modelfile` to the content of the Modelfile rather than just set `path`. This is a requirement for remote create. Remote model creation must also create any file blobs, fields such as `FROM` and `ADAPTER`, explicitly with the server using [Create a Blob](#create-a-blob) and the value to the path indicated in the response.
|
||||||
* another model;
|
|
||||||
* a safetensors directory; or
|
|
||||||
* a GGUF file.
|
|
||||||
|
|
||||||
If you are creating a model from a safetensors directory or from a GGUF file, you must [create a blob](#create-a-blob) for each of the files and then use the file name and SHA256 digest associated with each blob in the `files` field.
|
|
||||||
|
|
||||||
### Parameters
|
### Parameters
|
||||||
|
|
||||||
- `model`: name of the model to create
|
- `model`: name of the model to create
|
||||||
- `from`: (optional) name of an existing model to create the new model from
|
- `modelfile` (optional): contents of the Modelfile
|
||||||
- `files`: (optional) a dictionary of file names to SHA256 digests of blobs to create the model from
|
|
||||||
- `adapters`: (optional) a dictionary of file names to SHA256 digests of blobs for LORA adapters
|
|
||||||
- `template`: (optional) the prompt template for the model
|
|
||||||
- `license`: (optional) a string or list of strings containing the license or licenses for the model
|
|
||||||
- `system`: (optional) a string containing the system prompt for the model
|
|
||||||
- `parameters`: (optional) a dictionary of parameters for the model (see [Modelfile](./modelfile.md#valid-parameters-and-values) for a list of parameters)
|
|
||||||
- `messages`: (optional) a list of message objects used to create a conversation
|
|
||||||
- `stream`: (optional) if `false` the response will be returned as a single response object, rather than a stream of objects
|
- `stream`: (optional) if `false` the response will be returned as a single response object, rather than a stream of objects
|
||||||
|
- `path` (optional): path to the Modelfile
|
||||||
- `quantize` (optional): quantize a non-quantized (e.g. float16) model
|
- `quantize` (optional): quantize a non-quantized (e.g. float16) model
|
||||||
|
|
||||||
#### Quantization types
|
#### Quantization types
|
||||||
|
|
||||||
| Type | Recommended |
|
| Type | Recommended |
|
||||||
| --- | :-: |
|
| --- | :-: |
|
||||||
|
| q2_K | |
|
||||||
|
| q3_K_L | |
|
||||||
|
| q3_K_M | |
|
||||||
|
| q3_K_S | |
|
||||||
|
| q4_0 | |
|
||||||
|
| q4_1 | |
|
||||||
| q4_K_M | * |
|
| q4_K_M | * |
|
||||||
| q4_K_S | |
|
| q4_K_S | |
|
||||||
|
| q5_0 | |
|
||||||
|
| q5_1 | |
|
||||||
|
| q5_K_M | |
|
||||||
|
| q5_K_S | |
|
||||||
|
| q6_K | |
|
||||||
| q8_0 | * |
|
| q8_0 | * |
|
||||||
|
|
||||||
### Examples
|
### Examples
|
||||||
|
|
||||||
#### Create a new model
|
#### Create a new model
|
||||||
|
|
||||||
Create a new model from an existing model.
|
Create a new model from a `Modelfile`.
|
||||||
|
|
||||||
##### Request
|
##### Request
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
curl http://localhost:11434/api/create -d '{
|
curl http://localhost:11434/api/create -d '{
|
||||||
"model": "mario",
|
"model": "mario",
|
||||||
"from": "llama3.2",
|
"modelfile": "FROM llama3\nSYSTEM You are mario from Super Mario Bros."
|
||||||
"system": "You are Mario from Super Mario Bros."
|
|
||||||
}'
|
}'
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -998,8 +997,8 @@ Quantize a non-quantized model.
|
|||||||
|
|
||||||
```shell
|
```shell
|
||||||
curl http://localhost:11434/api/create -d '{
|
curl http://localhost:11434/api/create -d '{
|
||||||
"model": "llama3.2:quantized",
|
"model": "llama3.1:quantized",
|
||||||
"from": "llama3.2:3b-instruct-fp16",
|
"modelfile": "FROM llama3.1:8b-instruct-fp16",
|
||||||
"quantize": "q4_K_M"
|
"quantize": "q4_K_M"
|
||||||
}'
|
}'
|
||||||
```
|
```
|
||||||
@ -1008,131 +1007,69 @@ curl http://localhost:11434/api/create -d '{
|
|||||||
|
|
||||||
A stream of JSON objects is returned:
|
A stream of JSON objects is returned:
|
||||||
|
|
||||||
```json
|
```
|
||||||
{"status":"quantizing F16 model to Q4_K_M","digest":"0","total":6433687776,"completed":12302}
|
{"status":"quantizing F16 model to Q4_K_M"}
|
||||||
{"status":"quantizing F16 model to Q4_K_M","digest":"0","total":6433687776,"completed":6433687552}
|
{"status":"creating new layer sha256:667b0c1932bc6ffc593ed1d03f895bf2dc8dc6df21db3042284a6f4416b06a29"}
|
||||||
{"status":"verifying conversion"}
|
{"status":"using existing layer sha256:11ce4ee3e170f6adebac9a991c22e22ab3f8530e154ee669954c4bc73061c258"}
|
||||||
{"status":"creating new layer sha256:fb7f4f211b89c6c4928ff4ddb73db9f9c0cfca3e000c3e40d6cf27ddc6ca72eb"}
|
{"status":"using existing layer sha256:0ba8f0e314b4264dfd19df045cde9d4c394a52474bf92ed6a3de22a4ca31a177"}
|
||||||
{"status":"using existing layer sha256:966de95ca8a62200913e3f8bfbf84c8494536f1b94b49166851e76644e966396"}
|
|
||||||
{"status":"using existing layer sha256:fcc5a6bec9daf9b561a68827b67ab6088e1dba9d1fa2a50d7bbcc8384e0a265d"}
|
|
||||||
{"status":"using existing layer sha256:a70ff7e570d97baaf4e62ac6e6ad9975e04caa6d900d3742d37698494479e0cd"}
|
|
||||||
{"status":"using existing layer sha256:56bb8bd477a519ffa694fc449c2413c6f0e1d3b1c88fa7e3c9d88d3ae49d4dcb"}
|
{"status":"using existing layer sha256:56bb8bd477a519ffa694fc449c2413c6f0e1d3b1c88fa7e3c9d88d3ae49d4dcb"}
|
||||||
{"status":"writing manifest"}
|
{"status":"creating new layer sha256:455f34728c9b5dd3376378bfb809ee166c145b0b4c1f1a6feca069055066ef9a"}
|
||||||
{"status":"success"}
|
|
||||||
```
|
|
||||||
|
|
||||||
#### Create a model from GGUF
|
|
||||||
|
|
||||||
Create a model from a GGUF file. The `files` parameter should be filled out with the file name and SHA256 digest of the GGUF file you wish to use. Use [/api/blobs/:digest](#push-a-blob) to push the GGUF file to the server before calling this API.
|
|
||||||
|
|
||||||
|
|
||||||
##### Request
|
|
||||||
|
|
||||||
```shell
|
|
||||||
curl http://localhost:11434/api/create -d '{
|
|
||||||
"model": "my-gguf-model",
|
|
||||||
"files": {
|
|
||||||
"test.gguf": "sha256:432f310a77f4650a88d0fd59ecdd7cebed8d684bafea53cbff0473542964f0c3"
|
|
||||||
}
|
|
||||||
}'
|
|
||||||
```
|
|
||||||
|
|
||||||
##### Response
|
|
||||||
|
|
||||||
A stream of JSON objects is returned:
|
|
||||||
|
|
||||||
```json
|
|
||||||
{"status":"parsing GGUF"}
|
|
||||||
{"status":"using existing layer sha256:432f310a77f4650a88d0fd59ecdd7cebed8d684bafea53cbff0473542964f0c3"}
|
|
||||||
{"status":"writing manifest"}
|
{"status":"writing manifest"}
|
||||||
{"status":"success"}
|
{"status":"success"}
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
#### Create a model from a Safetensors directory
|
### Check if a Blob Exists
|
||||||
|
|
||||||
The `files` parameter should include a dictionary of files for the safetensors model which includes the file names and SHA256 digest of each file. Use [/api/blobs/:digest](#push-a-blob) to first push each of the files to the server before calling this API. Files will remain in the cache until the Ollama server is restarted.
|
|
||||||
|
|
||||||
##### Request
|
|
||||||
|
|
||||||
```shell
|
|
||||||
curl http://localhost:11434/api/create -d '{
|
|
||||||
"model": "fred",
|
|
||||||
"files": {
|
|
||||||
"config.json": "sha256:dd3443e529fb2290423a0c65c2d633e67b419d273f170259e27297219828e389",
|
|
||||||
"generation_config.json": "sha256:88effbb63300dbbc7390143fbbdd9d9fa50587b37e8bfd16c8c90d4970a74a36",
|
|
||||||
"special_tokens_map.json": "sha256:b7455f0e8f00539108837bfa586c4fbf424e31f8717819a6798be74bef813d05",
|
|
||||||
"tokenizer.json": "sha256:bbc1904d35169c542dffbe1f7589a5994ec7426d9e5b609d07bab876f32e97ab",
|
|
||||||
"tokenizer_config.json": "sha256:24e8a6dc2547164b7002e3125f10b415105644fcf02bf9ad8b674c87b1eaaed6",
|
|
||||||
"model.safetensors": "sha256:1ff795ff6a07e6a68085d206fb84417da2f083f68391c2843cd2b8ac6df8538f"
|
|
||||||
}
|
|
||||||
}'
|
|
||||||
```
|
|
||||||
|
|
||||||
##### Response
|
|
||||||
|
|
||||||
A stream of JSON objects is returned:
|
|
||||||
|
|
||||||
```shell
|
|
||||||
{"status":"converting model"}
|
|
||||||
{"status":"creating new layer sha256:05ca5b813af4a53d2c2922933936e398958855c44ee534858fcfd830940618b6"}
|
|
||||||
{"status":"using autodetected template llama3-instruct"}
|
|
||||||
{"status":"using existing layer sha256:56bb8bd477a519ffa694fc449c2413c6f0e1d3b1c88fa7e3c9d88d3ae49d4dcb"}
|
|
||||||
{"status":"writing manifest"}
|
|
||||||
{"status":"success"}
|
|
||||||
```
|
|
||||||
|
|
||||||
## Check if a Blob Exists
|
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
HEAD /api/blobs/:digest
|
HEAD /api/blobs/:digest
|
||||||
```
|
```
|
||||||
|
|
||||||
Ensures that the file blob (Binary Large Object) used with create a model exists on the server. This checks your Ollama server and not ollama.com.
|
Ensures that the file blob used for a FROM or ADAPTER field exists on the server. This is checking your Ollama server and not ollama.com.
|
||||||
|
|
||||||
### Query Parameters
|
#### Query Parameters
|
||||||
|
|
||||||
- `digest`: the SHA256 digest of the blob
|
- `digest`: the SHA256 digest of the blob
|
||||||
|
|
||||||
### Examples
|
#### Examples
|
||||||
|
|
||||||
#### Request
|
##### Request
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
curl -I http://localhost:11434/api/blobs/sha256:29fdb92e57cf0827ded04ae6461b5931d01fa595843f55d36f5b275a52087dd2
|
curl -I http://localhost:11434/api/blobs/sha256:29fdb92e57cf0827ded04ae6461b5931d01fa595843f55d36f5b275a52087dd2
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Response
|
##### Response
|
||||||
|
|
||||||
Return 200 OK if the blob exists, 404 Not Found if it does not.
|
Return 200 OK if the blob exists, 404 Not Found if it does not.
|
||||||
|
|
||||||
## Push a Blob
|
### Create a Blob
|
||||||
|
|
||||||
```
|
```shell
|
||||||
POST /api/blobs/:digest
|
POST /api/blobs/:digest
|
||||||
```
|
```
|
||||||
|
|
||||||
Push a file to the Ollama server to create a "blob" (Binary Large Object).
|
Create a blob from a file on the server. Returns the server file path.
|
||||||
|
|
||||||
### Query Parameters
|
#### Query Parameters
|
||||||
|
|
||||||
- `digest`: the expected SHA256 digest of the file
|
- `digest`: the expected SHA256 digest of the file
|
||||||
|
|
||||||
### Examples
|
#### Examples
|
||||||
|
|
||||||
#### Request
|
##### Request
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
curl -T model.gguf -X POST http://localhost:11434/api/blobs/sha256:29fdb92e57cf0827ded04ae6461b5931d01fa595843f55d36f5b275a52087dd2
|
curl -T model.bin -X POST http://localhost:11434/api/blobs/sha256:29fdb92e57cf0827ded04ae6461b5931d01fa595843f55d36f5b275a52087dd2
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Response
|
##### Response
|
||||||
|
|
||||||
Return 201 Created if the blob was successfully created, 400 Bad Request if the digest used is not expected.
|
Return 201 Created if the blob was successfully created, 400 Bad Request if the digest used is not expected.
|
||||||
|
|
||||||
## List Local Models
|
## List Local Models
|
||||||
|
|
||||||
```
|
```shell
|
||||||
GET /api/tags
|
GET /api/tags
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -1154,37 +1091,29 @@ A single JSON object will be returned.
|
|||||||
{
|
{
|
||||||
"models": [
|
"models": [
|
||||||
{
|
{
|
||||||
"name": "deepseek-r1:latest",
|
"name": "codellama:13b",
|
||||||
"model": "deepseek-r1:latest",
|
"modified_at": "2023-11-04T14:56:49.277302595-07:00",
|
||||||
"modified_at": "2025-05-10T08:06:48.639712648-07:00",
|
"size": 7365960935,
|
||||||
"size": 4683075271,
|
"digest": "9f438cb9cd581fc025612d27f7c1a6669ff83a8bb0ed86c94fcf4c5440555697",
|
||||||
"digest": "0a8c266910232fd3291e71e5ba1e058cc5af9d411192cf88b6d30e92b6e73163",
|
|
||||||
"details": {
|
"details": {
|
||||||
"parent_model": "",
|
|
||||||
"format": "gguf",
|
"format": "gguf",
|
||||||
"family": "qwen2",
|
"family": "llama",
|
||||||
"families": [
|
"families": null,
|
||||||
"qwen2"
|
"parameter_size": "13B",
|
||||||
],
|
"quantization_level": "Q4_0"
|
||||||
"parameter_size": "7.6B",
|
|
||||||
"quantization_level": "Q4_K_M"
|
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "llama3.2:latest",
|
"name": "llama3:latest",
|
||||||
"model": "llama3.2:latest",
|
"modified_at": "2023-12-07T09:32:18.757212583-08:00",
|
||||||
"modified_at": "2025-05-04T17:37:44.706015396-07:00",
|
"size": 3825819519,
|
||||||
"size": 2019393189,
|
"digest": "fe938a131f40e6f6d40083c9f0f430a515233eb2edaa6d72eb85c50d64f2300e",
|
||||||
"digest": "a80c4f17acd55265feec403c7aef86be0c25983ab279d83f3bcd3abbcb5b8b72",
|
|
||||||
"details": {
|
"details": {
|
||||||
"parent_model": "",
|
|
||||||
"format": "gguf",
|
"format": "gguf",
|
||||||
"family": "llama",
|
"family": "llama",
|
||||||
"families": [
|
"families": null,
|
||||||
"llama"
|
"parameter_size": "7B",
|
||||||
],
|
"quantization_level": "Q4_0"
|
||||||
"parameter_size": "3.2B",
|
|
||||||
"quantization_level": "Q4_K_M"
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
]
|
]
|
||||||
@ -1193,7 +1122,7 @@ A single JSON object will be returned.
|
|||||||
|
|
||||||
## Show Model Information
|
## Show Model Information
|
||||||
|
|
||||||
```
|
```shell
|
||||||
POST /api/show
|
POST /api/show
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -1210,13 +1139,13 @@ Show information about a model including details, modelfile, template, parameter
|
|||||||
|
|
||||||
```shell
|
```shell
|
||||||
curl http://localhost:11434/api/show -d '{
|
curl http://localhost:11434/api/show -d '{
|
||||||
"model": "llava"
|
"model": "llama3.2"
|
||||||
}'
|
}'
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Response
|
#### Response
|
||||||
|
|
||||||
```json5
|
```json
|
||||||
{
|
{
|
||||||
"modelfile": "# Modelfile generated by \"ollama show\"\n# To build a new Modelfile based on this one, replace the FROM line with:\n# FROM llava:latest\n\nFROM /Users/matt/.ollama/models/blobs/sha256:200765e1283640ffbd013184bf496e261032fa75b99498a9613be4e94d63ad52\nTEMPLATE \"\"\"{{ .System }}\nUSER: {{ .Prompt }}\nASSISTANT: \"\"\"\nPARAMETER num_ctx 4096\nPARAMETER stop \"\u003c/s\u003e\"\nPARAMETER stop \"USER:\"\nPARAMETER stop \"ASSISTANT:\"",
|
"modelfile": "# Modelfile generated by \"ollama show\"\n# To build a new Modelfile based on this one, replace the FROM line with:\n# FROM llava:latest\n\nFROM /Users/matt/.ollama/models/blobs/sha256:200765e1283640ffbd013184bf496e261032fa75b99498a9613be4e94d63ad52\nTEMPLATE \"\"\"{{ .System }}\nUSER: {{ .Prompt }}\nASSISTANT: \"\"\"\nPARAMETER num_ctx 4096\nPARAMETER stop \"\u003c/s\u003e\"\nPARAMETER stop \"USER:\"\nPARAMETER stop \"ASSISTANT:\"",
|
||||||
"parameters": "num_keep 24\nstop \"<|start_header_id|>\"\nstop \"<|end_header_id|>\"\nstop \"<|eot_id|>\"",
|
"parameters": "num_keep 24\nstop \"<|start_header_id|>\"\nstop \"<|end_header_id|>\"\nstop \"<|eot_id|>\"",
|
||||||
@ -1253,17 +1182,13 @@ curl http://localhost:11434/api/show -d '{
|
|||||||
"tokenizer.ggml.pre": "llama-bpe",
|
"tokenizer.ggml.pre": "llama-bpe",
|
||||||
"tokenizer.ggml.token_type": [], // populates if `verbose=true`
|
"tokenizer.ggml.token_type": [], // populates if `verbose=true`
|
||||||
"tokenizer.ggml.tokens": [] // populates if `verbose=true`
|
"tokenizer.ggml.tokens": [] // populates if `verbose=true`
|
||||||
},
|
}
|
||||||
"capabilities": [
|
|
||||||
"completion",
|
|
||||||
"vision"
|
|
||||||
],
|
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
## Copy a Model
|
## Copy a Model
|
||||||
|
|
||||||
```
|
```shell
|
||||||
POST /api/copy
|
POST /api/copy
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -1286,7 +1211,7 @@ Returns a 200 OK if successful, or a 404 Not Found if the source model doesn't e
|
|||||||
|
|
||||||
## Delete a Model
|
## Delete a Model
|
||||||
|
|
||||||
```
|
```shell
|
||||||
DELETE /api/delete
|
DELETE /api/delete
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -1312,7 +1237,7 @@ Returns a 200 OK if successful, 404 Not Found if the model to be deleted doesn't
|
|||||||
|
|
||||||
## Pull a Model
|
## Pull a Model
|
||||||
|
|
||||||
```
|
```shell
|
||||||
POST /api/pull
|
POST /api/pull
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -1384,7 +1309,7 @@ if `stream` is set to false, then the response is a single JSON object:
|
|||||||
|
|
||||||
## Push a Model
|
## Push a Model
|
||||||
|
|
||||||
```
|
```shell
|
||||||
POST /api/push
|
POST /api/push
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -1449,7 +1374,7 @@ If `stream` is set to `false`, then the response is a single JSON object:
|
|||||||
|
|
||||||
## Generate Embeddings
|
## Generate Embeddings
|
||||||
|
|
||||||
```
|
```shell
|
||||||
POST /api/embed
|
POST /api/embed
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -1517,7 +1442,7 @@ curl http://localhost:11434/api/embed -d '{
|
|||||||
```
|
```
|
||||||
|
|
||||||
## List Running Models
|
## List Running Models
|
||||||
```
|
```shell
|
||||||
GET /api/ps
|
GET /api/ps
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -1564,7 +1489,7 @@ A single JSON object will be returned.
|
|||||||
|
|
||||||
> Note: this endpoint has been superseded by `/api/embed`
|
> Note: this endpoint has been superseded by `/api/embed`
|
||||||
|
|
||||||
```
|
```shell
|
||||||
POST /api/embeddings
|
POST /api/embeddings
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -1601,29 +1526,3 @@ curl http://localhost:11434/api/embeddings -d '{
|
|||||||
]
|
]
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
## Version
|
|
||||||
|
|
||||||
```
|
|
||||||
GET /api/version
|
|
||||||
```
|
|
||||||
|
|
||||||
Retrieve the Ollama version
|
|
||||||
|
|
||||||
### Examples
|
|
||||||
|
|
||||||
#### Request
|
|
||||||
|
|
||||||
```shell
|
|
||||||
curl http://localhost:11434/api/version
|
|
||||||
```
|
|
||||||
|
|
||||||
#### Response
|
|
||||||
|
|
||||||
```json
|
|
||||||
{
|
|
||||||
"version": "0.5.1"
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -1,59 +0,0 @@
|
|||||||
# Benchmark
|
|
||||||
|
|
||||||
Go benchmark tests that measure end-to-end performance of a running Ollama server. Run these tests to evaluate model inference performance on your hardware and measure the impact of code changes.
|
|
||||||
|
|
||||||
## When to use
|
|
||||||
|
|
||||||
Run these benchmarks when:
|
|
||||||
- Making changes to the model inference engine
|
|
||||||
- Modifying model loading/unloading logic
|
|
||||||
- Changing prompt processing or token generation code
|
|
||||||
- Implementing a new model architecture
|
|
||||||
- Testing performance across different hardware setups
|
|
||||||
|
|
||||||
## Prerequisites
|
|
||||||
- Ollama server running locally with `ollama serve` on `127.0.0.1:11434`
|
|
||||||
## Usage and Examples
|
|
||||||
|
|
||||||
>[!NOTE]
|
|
||||||
>All commands must be run from the root directory of the Ollama project.
|
|
||||||
|
|
||||||
Basic syntax:
|
|
||||||
```bash
|
|
||||||
go test -bench=. ./benchmark/... -m $MODEL_NAME
|
|
||||||
```
|
|
||||||
|
|
||||||
Required flags:
|
|
||||||
- `-bench=.`: Run all benchmarks
|
|
||||||
- `-m`: Model name to benchmark
|
|
||||||
|
|
||||||
Optional flags:
|
|
||||||
- `-count N`: Number of times to run the benchmark (useful for statistical analysis)
|
|
||||||
- `-timeout T`: Maximum time for the benchmark to run (e.g. "10m" for 10 minutes)
|
|
||||||
|
|
||||||
Common usage patterns:
|
|
||||||
|
|
||||||
Single benchmark run with a model specified:
|
|
||||||
```bash
|
|
||||||
go test -bench=. ./benchmark/... -m llama3.3
|
|
||||||
```
|
|
||||||
|
|
||||||
## Output metrics
|
|
||||||
|
|
||||||
The benchmark reports several key metrics:
|
|
||||||
|
|
||||||
- `gen_tok/s`: Generated tokens per second
|
|
||||||
- `prompt_tok/s`: Prompt processing tokens per second
|
|
||||||
- `ttft_ms`: Time to first token in milliseconds
|
|
||||||
- `load_ms`: Model load time in milliseconds
|
|
||||||
- `gen_tokens`: Total tokens generated
|
|
||||||
- `prompt_tokens`: Total prompt tokens processed
|
|
||||||
|
|
||||||
Each benchmark runs two scenarios:
|
|
||||||
- Cold start: Model is loaded from disk for each test
|
|
||||||
- Warm start: Model is pre-loaded in memory
|
|
||||||
|
|
||||||
Three prompt lengths are tested for each scenario:
|
|
||||||
- Short prompt (100 tokens)
|
|
||||||
- Medium prompt (500 tokens)
|
|
||||||
- Long prompt (1000 tokens)
|
|
@ -1,159 +1,165 @@
|
|||||||
# Development
|
# Development
|
||||||
|
|
||||||
Install prerequisites:
|
Install required tools:
|
||||||
|
|
||||||
- [Go](https://go.dev/doc/install)
|
- go version 1.22 or higher
|
||||||
- C/C++ Compiler e.g. Clang on macOS, [TDM-GCC](https://github.com/jmeubank/tdm-gcc/releases/latest) (Windows amd64) or [llvm-mingw](https://github.com/mstorsjo/llvm-mingw) (Windows arm64), GCC/Clang on Linux.
|
- OS specific C/C++ compiler (see below)
|
||||||
|
- GNU Make
|
||||||
|
|
||||||
Then build and run Ollama from the root directory of the repository:
|
|
||||||
|
|
||||||
```shell
|
## Overview
|
||||||
go run . serve
|
|
||||||
|
Ollama uses a mix of Go and C/C++ code to interface with GPUs. The C/C++ code is compiled with both CGO and GPU library specific compilers. A set of GNU Makefiles are used to compile the project. GPU Libraries are auto-detected based on the typical environment variables used by the respective libraries, but can be overridden if necessary. The default make target will build the runners and primary Go Ollama application that will run within the repo directory. Throughout the examples below `-j 5` is suggested for 5 parallel jobs to speed up the build. You can adjust the job count based on your CPU Core count to reduce build times. If you want to relocate the built binaries, use the `dist` target and recursively copy the files in `./dist/$OS-$ARCH/` to your desired location. To learn more about the other make targets use `make help`
|
||||||
|
|
||||||
|
Once you have built the GPU/CPU runners, you can compile the main application with `go build .`
|
||||||
|
|
||||||
|
### MacOS
|
||||||
|
|
||||||
|
[Download Go](https://go.dev/dl/)
|
||||||
|
|
||||||
|
```bash
|
||||||
|
make -j 5
|
||||||
```
|
```
|
||||||
|
|
||||||
## macOS (Apple Silicon)
|
Now you can run `ollama`:
|
||||||
|
|
||||||
macOS Apple Silicon supports Metal which is built-in to the Ollama binary. No additional steps are required.
|
```bash
|
||||||
|
./ollama
|
||||||
## macOS (Intel)
|
|
||||||
|
|
||||||
Install prerequisites:
|
|
||||||
|
|
||||||
- [CMake](https://cmake.org/download/) or `brew install cmake`
|
|
||||||
|
|
||||||
Then, configure and build the project:
|
|
||||||
|
|
||||||
```shell
|
|
||||||
cmake -B build
|
|
||||||
cmake --build build
|
|
||||||
```
|
```
|
||||||
|
|
||||||
Lastly, run Ollama:
|
#### Xcode 15 warnings
|
||||||
|
|
||||||
```shell
|
If you are using Xcode newer than version 14, you may see a warning during `go build` about `ld: warning: ignoring duplicate libraries: '-lobjc'` due to Golang issue https://github.com/golang/go/issues/67799 which can be safely ignored. You can suppress the warning with `export CGO_LDFLAGS="-Wl,-no_warn_duplicate_libraries"`
|
||||||
go run . serve
|
|
||||||
|
### Linux
|
||||||
|
|
||||||
|
#### Linux CUDA (NVIDIA)
|
||||||
|
|
||||||
|
_Your operating system distribution may already have packages for NVIDIA CUDA. Distro packages are often preferable, but instructions are distro-specific. Please consult distro-specific docs for dependencies if available!_
|
||||||
|
|
||||||
|
Install `make`, `gcc` and `golang` as well as [NVIDIA CUDA](https://developer.nvidia.com/cuda-downloads)
|
||||||
|
development and runtime packages.
|
||||||
|
|
||||||
|
Typically the makefile will auto-detect CUDA, however, if your Linux distro
|
||||||
|
or installation approach uses alternative paths, you can specify the location by
|
||||||
|
overriding `CUDA_PATH` to the location of the CUDA toolkit. You can customize
|
||||||
|
a set of target CUDA architectures by setting `CUDA_ARCHITECTURES` (e.g. `CUDA_ARCHITECTURES=50;60;70`)
|
||||||
|
|
||||||
|
```
|
||||||
|
make -j 5
|
||||||
```
|
```
|
||||||
|
|
||||||
## Windows
|
If both v11 and v12 tookkits are detected, runners for both major versions will be built by default. You can build just v12 with `make cuda_v12`
|
||||||
|
|
||||||
Install prerequisites:
|
#### Older Linux CUDA (NVIDIA)
|
||||||
|
|
||||||
- [CMake](https://cmake.org/download/)
|
To support older GPUs with Compute Capability 3.5 or 3.7, you will need to use an older version of the Driver from [Unix Driver Archive](https://www.nvidia.com/en-us/drivers/unix/) (tested with 470) and [CUDA Toolkit Archive](https://developer.nvidia.com/cuda-toolkit-archive) (tested with cuda V11). When you build Ollama, you will need to set two make variable to adjust the minimum compute capability Ollama supports via `make -j 5 CUDA_ARCHITECTURES="35;37;50;52" EXTRA_GOLDFLAGS="\"-X=github.com/ollama/ollama/discover.CudaComputeMajorMin=3\" \"-X=github.com/ollama/ollama/discover.CudaComputeMinorMin=5\""`. To find the Compute Capability of your older GPU, refer to [GPU Compute Capability](https://developer.nvidia.com/cuda-gpus).
|
||||||
- [Visual Studio 2022](https://visualstudio.microsoft.com/downloads/) including the Native Desktop Workload
|
|
||||||
- (Optional) AMD GPU support
|
|
||||||
- [ROCm](https://rocm.docs.amd.com/en/latest/)
|
|
||||||
- [Ninja](https://github.com/ninja-build/ninja/releases)
|
|
||||||
- (Optional) NVIDIA GPU support
|
|
||||||
- [CUDA SDK](https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network)
|
|
||||||
|
|
||||||
Then, configure and build the project:
|
#### Linux ROCm (AMD)
|
||||||
|
|
||||||
```shell
|
_Your operating system distribution may already have packages for AMD ROCm. Distro packages are often preferable, but instructions are distro-specific. Please consult distro-specific docs for dependencies if available!_
|
||||||
cmake -B build
|
|
||||||
cmake --build build --config Release
|
Install [ROCm](https://rocm.docs.amd.com/en/latest/) development packages first, as well as `make`, `gcc`, and `golang`.
|
||||||
|
|
||||||
|
Typically the build scripts will auto-detect ROCm, however, if your Linux distro
|
||||||
|
or installation approach uses unusual paths, you can specify the location by
|
||||||
|
specifying an environment variable `HIP_PATH` to the location of the ROCm
|
||||||
|
install (typically `/opt/rocm`). You can also customize
|
||||||
|
the AMD GPU targets by setting HIP_ARCHS (e.g. `HIP_ARCHS=gfx1101;gfx1102`)
|
||||||
|
|
||||||
|
```
|
||||||
|
make -j 5
|
||||||
```
|
```
|
||||||
|
|
||||||
> [!IMPORTANT]
|
ROCm requires elevated privileges to access the GPU at runtime. On most distros you can add your user account to the `render` group, or run as root.
|
||||||
> Building for ROCm requires additional flags:
|
|
||||||
> ```
|
|
||||||
> cmake -B build -G Ninja -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++
|
|
||||||
> cmake --build build --config Release
|
|
||||||
> ```
|
|
||||||
|
|
||||||
|
#### Containerized Linux Build
|
||||||
|
|
||||||
Lastly, run Ollama:
|
If you have Docker and buildx available, you can build linux binaries with `./scripts/build_linux.sh` which has the CUDA and ROCm dependencies included. The resulting artifacts are placed in `./dist` and by default the script builds both arm64 and amd64 binaries. If you want to build only amd64, you can build with `PLATFORM=linux/amd64 ./scripts/build_linux.sh`
|
||||||
|
|
||||||
```shell
|
### Windows
|
||||||
go run . serve
|
|
||||||
|
The following tools are required as a minimal development environment to build CPU inference support.
|
||||||
|
|
||||||
|
- Go version 1.22 or higher
|
||||||
|
- https://go.dev/dl/
|
||||||
|
- Git
|
||||||
|
- https://git-scm.com/download/win
|
||||||
|
- clang with gcc compat and Make. There are multiple options on how to go about installing these tools on Windows. We have verified the following, but others may work as well:
|
||||||
|
- [MSYS2](https://www.msys2.org/)
|
||||||
|
- After installing, from an MSYS2 terminal, run `pacman -S mingw-w64-clang-x86_64-gcc-compat mingw-w64-clang-x86_64-clang make` to install the required tools
|
||||||
|
- Assuming you used the default install prefix for msys2 above, add `C:\msys64\clang64\bin` and `c:\msys64\usr\bin` to your environment variable `PATH` where you will perform the build steps below (e.g. system-wide, account-level, powershell, cmd, etc.)
|
||||||
|
|
||||||
|
> [!NOTE]
|
||||||
|
> Due to bugs in the GCC C++ library for unicode support, Ollama should be built with clang on windows.
|
||||||
|
|
||||||
|
```
|
||||||
|
make -j 5
|
||||||
```
|
```
|
||||||
|
|
||||||
## Windows (ARM)
|
#### GPU Support
|
||||||
|
|
||||||
Windows ARM does not support additional acceleration libraries at this time. Do not use cmake, simply `go run` or `go build`.
|
The GPU tools require the Microsoft native build tools. To build either CUDA or ROCm, you must first install MSVC via Visual Studio:
|
||||||
|
|
||||||
## Linux
|
- Make sure to select `Desktop development with C++` as a Workload during the Visual Studio install
|
||||||
|
- You must complete the Visual Studio install and run it once **BEFORE** installing CUDA or ROCm for the tools to properly register
|
||||||
|
- Add the location of the **64 bit (x64)** compiler (`cl.exe`) to your `PATH`
|
||||||
|
- Note: the default Developer Shell may configure the 32 bit (x86) compiler which will lead to build failures. Ollama requires a 64 bit toolchain.
|
||||||
|
|
||||||
Install prerequisites:
|
#### Windows CUDA (NVIDIA)
|
||||||
|
|
||||||
- [CMake](https://cmake.org/download/) or `sudo apt install cmake` or `sudo dnf install cmake`
|
In addition to the common Windows development tools and MSVC described above:
|
||||||
- (Optional) AMD GPU support
|
|
||||||
- [ROCm](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/quick-start.html)
|
|
||||||
- (Optional) NVIDIA GPU support
|
|
||||||
- [CUDA SDK](https://developer.nvidia.com/cuda-downloads)
|
|
||||||
|
|
||||||
> [!IMPORTANT]
|
- [NVIDIA CUDA](https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html)
|
||||||
> Ensure prerequisites are in `PATH` before running CMake.
|
|
||||||
|
|
||||||
|
#### Windows ROCm (AMD Radeon)
|
||||||
|
|
||||||
Then, configure and build the project:
|
In addition to the common Windows development tools and MSVC described above:
|
||||||
|
|
||||||
```shell
|
- [AMD HIP](https://www.amd.com/en/developer/resources/rocm-hub/hip-sdk.html)
|
||||||
cmake -B build
|
|
||||||
cmake --build build
|
#### Windows arm64
|
||||||
|
|
||||||
|
The default `Developer PowerShell for VS 2022` may default to x86 which is not what you want. To ensure you get an arm64 development environment, start a plain PowerShell terminal and run:
|
||||||
|
|
||||||
|
```powershell
|
||||||
|
import-module 'C:\\Program Files\\Microsoft Visual Studio\\2022\\Community\\Common7\\Tools\\Microsoft.VisualStudio.DevShell.dll'
|
||||||
|
Enter-VsDevShell -Arch arm64 -vsinstallpath 'C:\\Program Files\\Microsoft Visual Studio\\2022\\Community' -skipautomaticlocation
|
||||||
```
|
```
|
||||||
|
|
||||||
Lastly, run Ollama:
|
You can confirm with `write-host $env:VSCMD_ARG_TGT_ARCH`
|
||||||
|
|
||||||
```shell
|
Follow the instructions at https://www.msys2.org/wiki/arm64/ to set up an arm64 msys2 environment. Ollama requires gcc and mingw32-make to compile, which is not currently available on Windows arm64, but a gcc compatibility adapter is available via `mingw-w64-clang-aarch64-gcc-compat`. At a minimum you will need to install the following:
|
||||||
go run . serve
|
|
||||||
|
```
|
||||||
|
pacman -S mingw-w64-clang-aarch64-clang mingw-w64-clang-aarch64-gcc-compat mingw-w64-clang-aarch64-make make
|
||||||
```
|
```
|
||||||
|
|
||||||
## Docker
|
You will need to ensure your PATH includes go, cmake, gcc and clang mingw32-make to build ollama from source. (typically `C:\msys64\clangarm64\bin\`)
|
||||||
|
|
||||||
```shell
|
|
||||||
docker build .
|
## Advanced CPU Vector Settings
|
||||||
|
|
||||||
|
On x86, running `make` will compile several CPU runners which can run on different CPU families. At runtime, Ollama will auto-detect the best variation to load. If GPU libraries are present at build time, Ollama also compiles GPU runners with the `AVX` CPU vector feature enabled. This provides a good performance balance when loading large models that split across GPU and CPU with broad compatibility. Some users may prefer no vector extensions (e.g. older Xeon/Celeron processors, or hypervisors that mask the vector features) while other users may prefer turning on many more vector extensions to further improve performance for split model loads.
|
||||||
|
|
||||||
|
To customize the set of CPU vector features enabled for a CPU runner and all GPU runners, use CUSTOM_CPU_FLAGS during the build.
|
||||||
|
|
||||||
|
To build without any vector flags:
|
||||||
|
|
||||||
|
```
|
||||||
|
make CUSTOM_CPU_FLAGS=""
|
||||||
```
|
```
|
||||||
|
|
||||||
### ROCm
|
To build with both AVX and AVX2:
|
||||||
|
```
|
||||||
```shell
|
make CUSTOM_CPU_FLAGS=avx,avx2
|
||||||
docker build --build-arg FLAVOR=rocm .
|
|
||||||
```
|
```
|
||||||
|
|
||||||
## Running tests
|
To build with AVX512 features turned on:
|
||||||
|
|
||||||
To run tests, use `go test`:
|
```
|
||||||
|
make CUSTOM_CPU_FLAGS=avx,avx2,avx512,avx512vbmi,avx512vnni,avx512bf16
|
||||||
```shell
|
|
||||||
go test ./...
|
|
||||||
```
|
```
|
||||||
|
|
||||||
> NOTE: In rare cirumstances, you may nedd to change a package using the new
|
> [!NOTE]
|
||||||
> "synctest" package in go1.24.
|
> If you are experimenting with different flags, make sure to do a `make clean` between each change to ensure everything is rebuilt with the new compiler flags
|
||||||
>
|
|
||||||
> If you do not have the "synctest" package enabled, you will not see build or
|
|
||||||
> test failures resulting from your change(s), if any, locally, but CI will
|
|
||||||
> break.
|
|
||||||
>
|
|
||||||
> If you see failures in CI, you can either keep pushing changes to see if the
|
|
||||||
> CI build passes, or you can enable the "synctest" package locally to see the
|
|
||||||
> failures before pushing.
|
|
||||||
>
|
|
||||||
> To enable the "synctest" package for testing, run the following command:
|
|
||||||
>
|
|
||||||
> ```shell
|
|
||||||
> GOEXPERIMENT=synctest go test ./...
|
|
||||||
> ```
|
|
||||||
>
|
|
||||||
> If you wish to enable synctest for all go commands, you can set the
|
|
||||||
> `GOEXPERIMENT` environment variable in your shell profile or by using:
|
|
||||||
>
|
|
||||||
> ```shell
|
|
||||||
> go env -w GOEXPERIMENT=synctest
|
|
||||||
> ```
|
|
||||||
>
|
|
||||||
> Which will enable the "synctest" package for all go commands without needing
|
|
||||||
> to set it for all shell sessions.
|
|
||||||
>
|
|
||||||
> The synctest package is not required for production builds.
|
|
||||||
|
|
||||||
## Library detection
|
|
||||||
|
|
||||||
Ollama looks for acceleration libraries in the following paths relative to the `ollama` executable:
|
|
||||||
|
|
||||||
* `./lib/ollama` (Windows)
|
|
||||||
* `../lib/ollama` (Linux)
|
|
||||||
* `.` (macOS)
|
|
||||||
* `build/lib/ollama` (for development)
|
|
||||||
|
|
||||||
If the libraries are not found, Ollama will not run with any acceleration libraries.
|
|
||||||
|
@ -2,7 +2,7 @@
|
|||||||
|
|
||||||
### CPU only
|
### CPU only
|
||||||
|
|
||||||
```shell
|
```bash
|
||||||
docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
|
docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -11,46 +11,42 @@ Install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-
|
|||||||
|
|
||||||
#### Install with Apt
|
#### Install with Apt
|
||||||
1. Configure the repository
|
1. Configure the repository
|
||||||
|
```bash
|
||||||
```shell
|
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey \
|
||||||
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey \
|
| sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg
|
||||||
| sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg
|
curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list \
|
||||||
curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list \
|
| sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' \
|
||||||
| sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' \
|
| sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
|
||||||
| sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
|
sudo apt-get update
|
||||||
sudo apt-get update
|
```
|
||||||
```
|
|
||||||
|
|
||||||
2. Install the NVIDIA Container Toolkit packages
|
2. Install the NVIDIA Container Toolkit packages
|
||||||
|
```bash
|
||||||
```shell
|
sudo apt-get install -y nvidia-container-toolkit
|
||||||
sudo apt-get install -y nvidia-container-toolkit
|
```
|
||||||
```
|
|
||||||
|
|
||||||
#### Install with Yum or Dnf
|
#### Install with Yum or Dnf
|
||||||
1. Configure the repository
|
1. Configure the repository
|
||||||
|
|
||||||
```shell
|
```bash
|
||||||
curl -s -L https://nvidia.github.io/libnvidia-container/stable/rpm/nvidia-container-toolkit.repo \
|
curl -s -L https://nvidia.github.io/libnvidia-container/stable/rpm/nvidia-container-toolkit.repo \
|
||||||
| sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo
|
| sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo
|
||||||
```
|
```
|
||||||
|
|
||||||
2. Install the NVIDIA Container Toolkit packages
|
2. Install the NVIDIA Container Toolkit packages
|
||||||
|
|
||||||
```shell
|
```bash
|
||||||
sudo yum install -y nvidia-container-toolkit
|
sudo yum install -y nvidia-container-toolkit
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Configure Docker to use Nvidia driver
|
#### Configure Docker to use Nvidia driver
|
||||||
|
```
|
||||||
```shell
|
|
||||||
sudo nvidia-ctk runtime configure --runtime=docker
|
sudo nvidia-ctk runtime configure --runtime=docker
|
||||||
sudo systemctl restart docker
|
sudo systemctl restart docker
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Start the container
|
#### Start the container
|
||||||
|
|
||||||
```shell
|
```bash
|
||||||
docker run -d --gpus=all -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
|
docker run -d --gpus=all -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -61,7 +57,7 @@ docker run -d --gpus=all -v ollama:/root/.ollama -p 11434:11434 --name ollama ol
|
|||||||
|
|
||||||
To run Ollama using Docker with AMD GPUs, use the `rocm` tag and the following command:
|
To run Ollama using Docker with AMD GPUs, use the `rocm` tag and the following command:
|
||||||
|
|
||||||
```shell
|
```
|
||||||
docker run -d --device /dev/kfd --device /dev/dri -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama:rocm
|
docker run -d --device /dev/kfd --device /dev/dri -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama:rocm
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -69,7 +65,7 @@ docker run -d --device /dev/kfd --device /dev/dri -v ollama:/root/.ollama -p 114
|
|||||||
|
|
||||||
Now you can run a model:
|
Now you can run a model:
|
||||||
|
|
||||||
```shell
|
```
|
||||||
docker exec -it ollama ollama run llama3.2
|
docker exec -it ollama ollama run llama3.2
|
||||||
```
|
```
|
||||||
|
|
||||||
|
37
docs/faq.md
37
docs/faq.md
@ -20,17 +20,11 @@ Please refer to the [GPU docs](./gpu.md).
|
|||||||
|
|
||||||
## How can I specify the context window size?
|
## How can I specify the context window size?
|
||||||
|
|
||||||
By default, Ollama uses a context window size of 4096 tokens.
|
By default, Ollama uses a context window size of 2048 tokens.
|
||||||
|
|
||||||
This can be overridden with the `OLLAMA_CONTEXT_LENGTH` environment variable. For example, to set the default context window to 8K, use:
|
|
||||||
|
|
||||||
```shell
|
|
||||||
OLLAMA_CONTEXT_LENGTH=8192 ollama serve
|
|
||||||
```
|
|
||||||
|
|
||||||
To change this when using `ollama run`, use `/set parameter`:
|
To change this when using `ollama run`, use `/set parameter`:
|
||||||
|
|
||||||
```shell
|
```
|
||||||
/set parameter num_ctx 4096
|
/set parameter num_ctx 4096
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -52,15 +46,10 @@ Use the `ollama ps` command to see what models are currently loaded into memory.
|
|||||||
|
|
||||||
```shell
|
```shell
|
||||||
ollama ps
|
ollama ps
|
||||||
|
NAME ID SIZE PROCESSOR UNTIL
|
||||||
|
llama3:70b bcfb190ca3a7 42 GB 100% GPU 4 minutes from now
|
||||||
```
|
```
|
||||||
|
|
||||||
> **Output**:
|
|
||||||
>
|
|
||||||
> ```
|
|
||||||
> NAME ID SIZE PROCESSOR UNTIL
|
|
||||||
> llama3:70b bcfb190ca3a7 42 GB 100% GPU 4 minutes from now
|
|
||||||
> ```
|
|
||||||
|
|
||||||
The `Processor` column will show which memory the model was loaded in to:
|
The `Processor` column will show which memory the model was loaded in to:
|
||||||
* `100% GPU` means the model was loaded entirely into the GPU
|
* `100% GPU` means the model was loaded entirely into the GPU
|
||||||
* `100% CPU` means the model was loaded entirely in system memory
|
* `100% CPU` means the model was loaded entirely in system memory
|
||||||
@ -77,7 +66,7 @@ If Ollama is run as a macOS application, environment variables should be set usi
|
|||||||
1. For each environment variable, call `launchctl setenv`.
|
1. For each environment variable, call `launchctl setenv`.
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
launchctl setenv OLLAMA_HOST "0.0.0.0:11434"
|
launchctl setenv OLLAMA_HOST "0.0.0.0"
|
||||||
```
|
```
|
||||||
|
|
||||||
2. Restart Ollama application.
|
2. Restart Ollama application.
|
||||||
@ -92,14 +81,14 @@ If Ollama is run as a systemd service, environment variables should be set using
|
|||||||
|
|
||||||
```ini
|
```ini
|
||||||
[Service]
|
[Service]
|
||||||
Environment="OLLAMA_HOST=0.0.0.0:11434"
|
Environment="OLLAMA_HOST=0.0.0.0"
|
||||||
```
|
```
|
||||||
|
|
||||||
3. Save and exit.
|
3. Save and exit.
|
||||||
|
|
||||||
4. Reload `systemd` and restart Ollama:
|
4. Reload `systemd` and restart Ollama:
|
||||||
|
|
||||||
```shell
|
```bash
|
||||||
systemctl daemon-reload
|
systemctl daemon-reload
|
||||||
systemctl restart ollama
|
systemctl restart ollama
|
||||||
```
|
```
|
||||||
@ -193,13 +182,6 @@ cloudflared tunnel --url http://localhost:11434 --http-host-header="localhost:11
|
|||||||
|
|
||||||
Ollama allows cross-origin requests from `127.0.0.1` and `0.0.0.0` by default. Additional origins can be configured with `OLLAMA_ORIGINS`.
|
Ollama allows cross-origin requests from `127.0.0.1` and `0.0.0.0` by default. Additional origins can be configured with `OLLAMA_ORIGINS`.
|
||||||
|
|
||||||
For browser extensions, you'll need to explicitly allow the extension's origin pattern. Set `OLLAMA_ORIGINS` to include `chrome-extension://*`, `moz-extension://*`, and `safari-web-extension://*` if you wish to allow all browser extensions access, or specific extensions as needed:
|
|
||||||
|
|
||||||
```
|
|
||||||
# Allow all Chrome, Firefox, and Safari extensions
|
|
||||||
OLLAMA_ORIGINS=chrome-extension://*,moz-extension://*,safari-web-extension://* ollama serve
|
|
||||||
```
|
|
||||||
|
|
||||||
Refer to the section [above](#how-do-i-configure-ollama-server) for how to set environment variables on your platform.
|
Refer to the section [above](#how-do-i-configure-ollama-server) for how to set environment variables on your platform.
|
||||||
|
|
||||||
## Where are models stored?
|
## Where are models stored?
|
||||||
@ -239,19 +221,16 @@ properties.
|
|||||||
If you are using the API you can preload a model by sending the Ollama server an empty request. This works with both the `/api/generate` and `/api/chat` API endpoints.
|
If you are using the API you can preload a model by sending the Ollama server an empty request. This works with both the `/api/generate` and `/api/chat` API endpoints.
|
||||||
|
|
||||||
To preload the mistral model using the generate endpoint, use:
|
To preload the mistral model using the generate endpoint, use:
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
curl http://localhost:11434/api/generate -d '{"model": "mistral"}'
|
curl http://localhost:11434/api/generate -d '{"model": "mistral"}'
|
||||||
```
|
```
|
||||||
|
|
||||||
To use the chat completions endpoint, use:
|
To use the chat completions endpoint, use:
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
curl http://localhost:11434/api/chat -d '{"model": "mistral"}'
|
curl http://localhost:11434/api/chat -d '{"model": "mistral"}'
|
||||||
```
|
```
|
||||||
|
|
||||||
To preload a model using the CLI, use the command:
|
To preload a model using the CLI, use the command:
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
ollama run llama3.2 ""
|
ollama run llama3.2 ""
|
||||||
```
|
```
|
||||||
@ -271,13 +250,11 @@ If you're using the API, use the `keep_alive` parameter with the `/api/generate`
|
|||||||
* '0' which will unload the model immediately after generating a response
|
* '0' which will unload the model immediately after generating a response
|
||||||
|
|
||||||
For example, to preload a model and leave it in memory use:
|
For example, to preload a model and leave it in memory use:
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
curl http://localhost:11434/api/generate -d '{"model": "llama3.2", "keep_alive": -1}'
|
curl http://localhost:11434/api/generate -d '{"model": "llama3.2", "keep_alive": -1}'
|
||||||
```
|
```
|
||||||
|
|
||||||
To unload the model and free up memory use:
|
To unload the model and free up memory use:
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
curl http://localhost:11434/api/generate -d '{"model": "llama3.2", "keep_alive": 0}'
|
curl http://localhost:11434/api/generate -d '{"model": "llama3.2", "keep_alive": 0}'
|
||||||
```
|
```
|
||||||
|
@ -7,7 +7,7 @@ Check your compute compatibility to see if your card is supported:
|
|||||||
|
|
||||||
| Compute Capability | Family | Cards |
|
| Compute Capability | Family | Cards |
|
||||||
| ------------------ | ------------------- | ----------------------------------------------------------------------------------------------------------- |
|
| ------------------ | ------------------- | ----------------------------------------------------------------------------------------------------------- |
|
||||||
| 9.0 | NVIDIA | `H200` `H100` |
|
| 9.0 | NVIDIA | `H100` |
|
||||||
| 8.9 | GeForce RTX 40xx | `RTX 4090` `RTX 4080 SUPER` `RTX 4080` `RTX 4070 Ti SUPER` `RTX 4070 Ti` `RTX 4070 SUPER` `RTX 4070` `RTX 4060 Ti` `RTX 4060` |
|
| 8.9 | GeForce RTX 40xx | `RTX 4090` `RTX 4080 SUPER` `RTX 4080` `RTX 4070 Ti SUPER` `RTX 4070 Ti` `RTX 4070 SUPER` `RTX 4070` `RTX 4060 Ti` `RTX 4060` |
|
||||||
| | NVIDIA Professional | `L4` `L40` `RTX 6000` |
|
| | NVIDIA Professional | `L4` `L40` `RTX 6000` |
|
||||||
| 8.6 | GeForce RTX 30xx | `RTX 3090 Ti` `RTX 3090` `RTX 3080 Ti` `RTX 3080` `RTX 3070 Ti` `RTX 3070` `RTX 3060 Ti` `RTX 3060` `RTX 3050 Ti` `RTX 3050` |
|
| 8.6 | GeForce RTX 30xx | `RTX 3090 Ti` `RTX 3090` `RTX 3080 Ti` `RTX 3080` `RTX 3070 Ti` `RTX 3070` `RTX 3060 Ti` `RTX 3060` `RTX 3050 Ti` `RTX 3050` |
|
||||||
@ -38,7 +38,7 @@ Numeric IDs may be used, however ordering may vary, so UUIDs are more reliable.
|
|||||||
You can discover the UUID of your GPUs by running `nvidia-smi -L` If you want to
|
You can discover the UUID of your GPUs by running `nvidia-smi -L` If you want to
|
||||||
ignore the GPUs and force CPU usage, use an invalid GPU ID (e.g., "-1")
|
ignore the GPUs and force CPU usage, use an invalid GPU ID (e.g., "-1")
|
||||||
|
|
||||||
### Linux Suspend Resume
|
### Laptop Suspend Resume
|
||||||
|
|
||||||
On linux, after a suspend/resume cycle, sometimes Ollama will fail to discover
|
On linux, after a suspend/resume cycle, sometimes Ollama will fail to discover
|
||||||
your NVIDIA GPU, and fallback to running on the CPU. You can workaround this
|
your NVIDIA GPU, and fallback to running on the CPU. You can workaround this
|
||||||
|
@ -20,13 +20,13 @@ Make sure that you use the same base model in the `FROM` command as you used to
|
|||||||
|
|
||||||
Now run `ollama create` from the directory where the `Modelfile` was created:
|
Now run `ollama create` from the directory where the `Modelfile` was created:
|
||||||
|
|
||||||
```shell
|
```bash
|
||||||
ollama create my-model
|
ollama create my-model
|
||||||
```
|
```
|
||||||
|
|
||||||
Lastly, test the model:
|
Lastly, test the model:
|
||||||
|
|
||||||
```shell
|
```bash
|
||||||
ollama run my-model
|
ollama run my-model
|
||||||
```
|
```
|
||||||
|
|
||||||
|
@ -75,7 +75,7 @@ RestartSec=3
|
|||||||
Environment="PATH=$PATH"
|
Environment="PATH=$PATH"
|
||||||
|
|
||||||
[Install]
|
[Install]
|
||||||
WantedBy=multi-user.target
|
WantedBy=default.target
|
||||||
```
|
```
|
||||||
|
|
||||||
Then start the service:
|
Then start the service:
|
||||||
@ -119,7 +119,7 @@ sudo systemctl status ollama
|
|||||||
|
|
||||||
To customize the installation of Ollama, you can edit the systemd service file or the environment variables by running:
|
To customize the installation of Ollama, you can edit the systemd service file or the environment variables by running:
|
||||||
|
|
||||||
```shell
|
```
|
||||||
sudo systemctl edit ollama
|
sudo systemctl edit ollama
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -152,7 +152,7 @@ Use `OLLAMA_VERSION` environment variable with the install script to install a s
|
|||||||
For example:
|
For example:
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION=0.5.7 sh
|
curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION=0.3.9 sh
|
||||||
```
|
```
|
||||||
|
|
||||||
## Viewing logs
|
## Viewing logs
|
||||||
@ -186,9 +186,3 @@ sudo rm -r /usr/share/ollama
|
|||||||
sudo userdel ollama
|
sudo userdel ollama
|
||||||
sudo groupdel ollama
|
sudo groupdel ollama
|
||||||
```
|
```
|
||||||
|
|
||||||
Remove installed libraries:
|
|
||||||
|
|
||||||
```shell
|
|
||||||
sudo rm -rf /usr/local/lib/ollama
|
|
||||||
```
|
|
||||||
|
@ -28,7 +28,7 @@ A model file is the blueprint to create and share models with Ollama.
|
|||||||
|
|
||||||
The format of the `Modelfile`:
|
The format of the `Modelfile`:
|
||||||
|
|
||||||
```
|
```modelfile
|
||||||
# comment
|
# comment
|
||||||
INSTRUCTION arguments
|
INSTRUCTION arguments
|
||||||
```
|
```
|
||||||
@ -49,7 +49,7 @@ INSTRUCTION arguments
|
|||||||
|
|
||||||
An example of a `Modelfile` creating a mario blueprint:
|
An example of a `Modelfile` creating a mario blueprint:
|
||||||
|
|
||||||
```
|
```modelfile
|
||||||
FROM llama3.2
|
FROM llama3.2
|
||||||
# sets the temperature to 1 [higher is more creative, lower is more coherent]
|
# sets the temperature to 1 [higher is more creative, lower is more coherent]
|
||||||
PARAMETER temperature 1
|
PARAMETER temperature 1
|
||||||
@ -67,32 +67,28 @@ To use this:
|
|||||||
3. `ollama run choose-a-model-name`
|
3. `ollama run choose-a-model-name`
|
||||||
4. Start using the model!
|
4. Start using the model!
|
||||||
|
|
||||||
|
More examples are available in the [examples directory](../examples).
|
||||||
|
|
||||||
To view the Modelfile of a given model, use the `ollama show --modelfile` command.
|
To view the Modelfile of a given model, use the `ollama show --modelfile` command.
|
||||||
|
|
||||||
```shell
|
```bash
|
||||||
ollama show --modelfile llama3.2
|
> ollama show --modelfile llama3.2
|
||||||
```
|
# Modelfile generated by "ollama show"
|
||||||
|
# To build a new Modelfile based on this one, replace the FROM line with:
|
||||||
|
# FROM llama3.2:latest
|
||||||
|
FROM /Users/pdevine/.ollama/models/blobs/sha256-00e1317cbf74d901080d7100f57580ba8dd8de57203072dc6f668324ba545f29
|
||||||
|
TEMPLATE """{{ if .System }}<|start_header_id|>system<|end_header_id|>
|
||||||
|
|
||||||
> **Output**:
|
{{ .System }}<|eot_id|>{{ end }}{{ if .Prompt }}<|start_header_id|>user<|end_header_id|>
|
||||||
>
|
|
||||||
> ```
|
|
||||||
> # Modelfile generated by "ollama show"
|
|
||||||
> # To build a new Modelfile based on this one, replace the FROM line with:
|
|
||||||
> # FROM llama3.2:latest
|
|
||||||
> FROM /Users/pdevine/.ollama/models/blobs/sha256-00e1317cbf74d901080d7100f57580ba8dd8de57203072dc6f668324ba545f29
|
|
||||||
> TEMPLATE """{{ if .System }}<|start_header_id|>system<|end_header_id|>
|
|
||||||
>
|
|
||||||
> {{ .System }}<|eot_id|>{{ end }}{{ if .Prompt }}<|start_header_id|>user<|end_header_id|>
|
|
||||||
>
|
|
||||||
> {{ .Prompt }}<|eot_id|>{{ end }}<|start_header_id|>assistant<|end_header_id|>
|
|
||||||
>
|
|
||||||
> {{ .Response }}<|eot_id|>"""
|
|
||||||
> PARAMETER stop "<|start_header_id|>"
|
|
||||||
> PARAMETER stop "<|end_header_id|>"
|
|
||||||
> PARAMETER stop "<|eot_id|>"
|
|
||||||
> PARAMETER stop "<|reserved_special_token"
|
|
||||||
> ```
|
|
||||||
|
|
||||||
|
{{ .Prompt }}<|eot_id|>{{ end }}<|start_header_id|>assistant<|end_header_id|>
|
||||||
|
|
||||||
|
{{ .Response }}<|eot_id|>"""
|
||||||
|
PARAMETER stop "<|start_header_id|>"
|
||||||
|
PARAMETER stop "<|end_header_id|>"
|
||||||
|
PARAMETER stop "<|eot_id|>"
|
||||||
|
PARAMETER stop "<|reserved_special_token"
|
||||||
|
```
|
||||||
|
|
||||||
## Instructions
|
## Instructions
|
||||||
|
|
||||||
@ -100,13 +96,13 @@ ollama show --modelfile llama3.2
|
|||||||
|
|
||||||
The `FROM` instruction defines the base model to use when creating a model.
|
The `FROM` instruction defines the base model to use when creating a model.
|
||||||
|
|
||||||
```
|
```modelfile
|
||||||
FROM <model name>:<tag>
|
FROM <model name>:<tag>
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Build from existing model
|
#### Build from existing model
|
||||||
|
|
||||||
```
|
```modelfile
|
||||||
FROM llama3.2
|
FROM llama3.2
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -117,7 +113,7 @@ Additional models can be found at:
|
|||||||
|
|
||||||
#### Build from a Safetensors model
|
#### Build from a Safetensors model
|
||||||
|
|
||||||
```
|
```modelfile
|
||||||
FROM <model directory>
|
FROM <model directory>
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -131,7 +127,7 @@ Currently supported model architectures:
|
|||||||
|
|
||||||
#### Build from a GGUF file
|
#### Build from a GGUF file
|
||||||
|
|
||||||
```
|
```modelfile
|
||||||
FROM ./ollama-model.gguf
|
FROM ./ollama-model.gguf
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -142,7 +138,7 @@ The GGUF file location should be specified as an absolute path or relative to th
|
|||||||
|
|
||||||
The `PARAMETER` instruction defines a parameter that can be set when the model is run.
|
The `PARAMETER` instruction defines a parameter that can be set when the model is run.
|
||||||
|
|
||||||
```
|
```modelfile
|
||||||
PARAMETER <parameter> <parametervalue>
|
PARAMETER <parameter> <parametervalue>
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -150,12 +146,16 @@ PARAMETER <parameter> <parametervalue>
|
|||||||
|
|
||||||
| Parameter | Description | Value Type | Example Usage |
|
| Parameter | Description | Value Type | Example Usage |
|
||||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------- | -------------------- |
|
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------- | -------------------- |
|
||||||
|
| mirostat | Enable Mirostat sampling for controlling perplexity. (default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0) | int | mirostat 0 |
|
||||||
|
| mirostat_eta | Influences how quickly the algorithm responds to feedback from the generated text. A lower learning rate will result in slower adjustments, while a higher learning rate will make the algorithm more responsive. (Default: 0.1) | float | mirostat_eta 0.1 |
|
||||||
|
| mirostat_tau | Controls the balance between coherence and diversity of the output. A lower value will result in more focused and coherent text. (Default: 5.0) | float | mirostat_tau 5.0 |
|
||||||
| num_ctx | Sets the size of the context window used to generate the next token. (Default: 2048) | int | num_ctx 4096 |
|
| num_ctx | Sets the size of the context window used to generate the next token. (Default: 2048) | int | num_ctx 4096 |
|
||||||
| repeat_last_n | Sets how far back for the model to look back to prevent repetition. (Default: 64, 0 = disabled, -1 = num_ctx) | int | repeat_last_n 64 |
|
| repeat_last_n | Sets how far back for the model to look back to prevent repetition. (Default: 64, 0 = disabled, -1 = num_ctx) | int | repeat_last_n 64 |
|
||||||
| repeat_penalty | Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1) | float | repeat_penalty 1.1 |
|
| repeat_penalty | Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1) | float | repeat_penalty 1.1 |
|
||||||
| temperature | The temperature of the model. Increasing the temperature will make the model answer more creatively. (Default: 0.8) | float | temperature 0.7 |
|
| temperature | The temperature of the model. Increasing the temperature will make the model answer more creatively. (Default: 0.8) | float | temperature 0.7 |
|
||||||
| seed | Sets the random number seed to use for generation. Setting this to a specific number will make the model generate the same text for the same prompt. (Default: 0) | int | seed 42 |
|
| seed | Sets the random number seed to use for generation. Setting this to a specific number will make the model generate the same text for the same prompt. (Default: 0) | int | seed 42 |
|
||||||
| stop | Sets the stop sequences to use. When this pattern is encountered the LLM will stop generating text and return. Multiple stop patterns may be set by specifying multiple separate `stop` parameters in a modelfile. | string | stop "AI assistant:" |
|
| stop | Sets the stop sequences to use. When this pattern is encountered the LLM will stop generating text and return. Multiple stop patterns may be set by specifying multiple separate `stop` parameters in a modelfile. | string | stop "AI assistant:" |
|
||||||
|
| tfs_z | Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting. (default: 1) | float | tfs_z 1 |
|
||||||
| num_predict | Maximum number of tokens to predict when generating text. (Default: -1, infinite generation) | int | num_predict 42 |
|
| num_predict | Maximum number of tokens to predict when generating text. (Default: -1, infinite generation) | int | num_predict 42 |
|
||||||
| top_k | Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40) | int | top_k 40 |
|
| top_k | Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40) | int | top_k 40 |
|
||||||
| top_p | Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9) | float | top_p 0.9 |
|
| top_p | Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9) | float | top_p 0.9 |
|
||||||
@ -186,7 +186,7 @@ TEMPLATE """{{ if .System }}<|im_start|>system
|
|||||||
|
|
||||||
The `SYSTEM` instruction specifies the system message to be used in the template, if applicable.
|
The `SYSTEM` instruction specifies the system message to be used in the template, if applicable.
|
||||||
|
|
||||||
```
|
```modelfile
|
||||||
SYSTEM """<system message>"""
|
SYSTEM """<system message>"""
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -196,7 +196,7 @@ The `ADAPTER` instruction specifies a fine tuned LoRA adapter that should apply
|
|||||||
|
|
||||||
#### Safetensor adapter
|
#### Safetensor adapter
|
||||||
|
|
||||||
```
|
```modelfile
|
||||||
ADAPTER <path to safetensor adapter>
|
ADAPTER <path to safetensor adapter>
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -207,7 +207,7 @@ Currently supported Safetensor adapters:
|
|||||||
|
|
||||||
#### GGUF adapter
|
#### GGUF adapter
|
||||||
|
|
||||||
```
|
```modelfile
|
||||||
ADAPTER ./ollama-lora.gguf
|
ADAPTER ./ollama-lora.gguf
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -215,7 +215,7 @@ ADAPTER ./ollama-lora.gguf
|
|||||||
|
|
||||||
The `LICENSE` instruction allows you to specify the legal license under which the model used with this Modelfile is shared or distributed.
|
The `LICENSE` instruction allows you to specify the legal license under which the model used with this Modelfile is shared or distributed.
|
||||||
|
|
||||||
```
|
```modelfile
|
||||||
LICENSE """
|
LICENSE """
|
||||||
<license text>
|
<license text>
|
||||||
"""
|
"""
|
||||||
@ -225,7 +225,7 @@ LICENSE """
|
|||||||
|
|
||||||
The `MESSAGE` instruction allows you to specify a message history for the model to use when responding. Use multiple iterations of the MESSAGE command to build up a conversation which will guide the model to answer in a similar way.
|
The `MESSAGE` instruction allows you to specify a message history for the model to use when responding. Use multiple iterations of the MESSAGE command to build up a conversation which will guide the model to answer in a similar way.
|
||||||
|
|
||||||
```
|
```modelfile
|
||||||
MESSAGE <role> <message>
|
MESSAGE <role> <message>
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -240,7 +240,7 @@ MESSAGE <role> <message>
|
|||||||
|
|
||||||
#### Example conversation
|
#### Example conversation
|
||||||
|
|
||||||
```
|
```modelfile
|
||||||
MESSAGE user Is Toronto in Canada?
|
MESSAGE user Is Toronto in Canada?
|
||||||
MESSAGE assistant yes
|
MESSAGE assistant yes
|
||||||
MESSAGE user Is Sacramento in Canada?
|
MESSAGE user Is Sacramento in Canada?
|
||||||
|
@ -1,7 +1,6 @@
|
|||||||
# OpenAI compatibility
|
# OpenAI compatibility
|
||||||
|
|
||||||
> [!NOTE]
|
> **Note:** OpenAI compatibility is experimental and is subject to major adjustments including breaking changes. For fully-featured access to the Ollama API, see the Ollama [Python library](https://github.com/ollama/ollama-python), [JavaScript library](https://github.com/ollama/ollama-js) and [REST API](https://github.com/ollama/ollama/blob/main/docs/api.md).
|
||||||
> OpenAI compatibility is experimental and is subject to major adjustments including breaking changes. For fully-featured access to the Ollama API, see the Ollama [Python library](https://github.com/ollama/ollama-python), [JavaScript library](https://github.com/ollama/ollama-js) and [REST API](https://github.com/ollama/ollama/blob/main/docs/api.md).
|
|
||||||
|
|
||||||
Ollama provides experimental compatibility with parts of the [OpenAI API](https://platform.openai.com/docs/api-reference) to help connect existing applications to Ollama.
|
Ollama provides experimental compatibility with parts of the [OpenAI API](https://platform.openai.com/docs/api-reference) to help connect existing applications to Ollama.
|
||||||
|
|
||||||
@ -60,10 +59,8 @@ embeddings = client.embeddings.create(
|
|||||||
input=["why is the sky blue?", "why is the grass green?"],
|
input=["why is the sky blue?", "why is the grass green?"],
|
||||||
)
|
)
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Structured outputs
|
#### Structured outputs
|
||||||
|
```py
|
||||||
```python
|
|
||||||
from pydantic import BaseModel
|
from pydantic import BaseModel
|
||||||
from openai import OpenAI
|
from openai import OpenAI
|
||||||
|
|
||||||
@ -147,7 +144,7 @@ const embedding = await openai.embeddings.create({
|
|||||||
|
|
||||||
### `curl`
|
### `curl`
|
||||||
|
|
||||||
```shell
|
``` shell
|
||||||
curl http://localhost:11434/v1/chat/completions \
|
curl http://localhost:11434/v1/chat/completions \
|
||||||
-H "Content-Type: application/json" \
|
-H "Content-Type: application/json" \
|
||||||
-d '{
|
-d '{
|
||||||
@ -322,7 +319,7 @@ ollama pull llama3.2
|
|||||||
|
|
||||||
For tooling that relies on default OpenAI model names such as `gpt-3.5-turbo`, use `ollama cp` to copy an existing model name to a temporary name:
|
For tooling that relies on default OpenAI model names such as `gpt-3.5-turbo`, use `ollama cp` to copy an existing model name to a temporary name:
|
||||||
|
|
||||||
```shell
|
```
|
||||||
ollama cp llama3.2 gpt-3.5-turbo
|
ollama cp llama3.2 gpt-3.5-turbo
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -346,7 +343,7 @@ curl http://localhost:11434/v1/chat/completions \
|
|||||||
|
|
||||||
The OpenAI API does not have a way of setting the context size for a model. If you need to change the context size, create a `Modelfile` which looks like:
|
The OpenAI API does not have a way of setting the context size for a model. If you need to change the context size, create a `Modelfile` which looks like:
|
||||||
|
|
||||||
```
|
```modelfile
|
||||||
FROM <some model>
|
FROM <some model>
|
||||||
PARAMETER num_ctx <context size>
|
PARAMETER num_ctx <context size>
|
||||||
```
|
```
|
||||||
|
@ -12,7 +12,7 @@ A basic Go template consists of three main parts:
|
|||||||
|
|
||||||
Here's an example of a simple chat template:
|
Here's an example of a simple chat template:
|
||||||
|
|
||||||
```go
|
```gotmpl
|
||||||
{{- range .Messages }}
|
{{- range .Messages }}
|
||||||
{{ .Role }}: {{ .Content }}
|
{{ .Role }}: {{ .Content }}
|
||||||
{{- end }}
|
{{- end }}
|
||||||
@ -111,7 +111,7 @@ Keep the following tips and best practices in mind when working with Go template
|
|||||||
|
|
||||||
ChatML is a popular template format. It can be used for models such as Databrick's DBRX, Intel's Neural Chat, and Microsoft's Orca 2.
|
ChatML is a popular template format. It can be used for models such as Databrick's DBRX, Intel's Neural Chat, and Microsoft's Orca 2.
|
||||||
|
|
||||||
```go
|
```gotmpl
|
||||||
{{- range .Messages }}<|im_start|>{{ .Role }}
|
{{- range .Messages }}<|im_start|>{{ .Role }}
|
||||||
{{ .Content }}<|im_end|>
|
{{ .Content }}<|im_end|>
|
||||||
{{ end }}<|im_start|>assistant
|
{{ end }}<|im_start|>assistant
|
||||||
@ -125,7 +125,7 @@ Tools support can be added to a model by adding a `{{ .Tools }}` node to the tem
|
|||||||
|
|
||||||
Mistral v0.3 and Mixtral 8x22B supports tool calling.
|
Mistral v0.3 and Mixtral 8x22B supports tool calling.
|
||||||
|
|
||||||
```go
|
```gotmpl
|
||||||
{{- range $index, $_ := .Messages }}
|
{{- range $index, $_ := .Messages }}
|
||||||
{{- if eq .Role "user" }}
|
{{- if eq .Role "user" }}
|
||||||
{{- if and (le (len (slice $.Messages $index)) 2) $.Tools }}[AVAILABLE_TOOLS] {{ json $.Tools }}[/AVAILABLE_TOOLS]
|
{{- if and (le (len (slice $.Messages $index)) 2) $.Tools }}[AVAILABLE_TOOLS] {{ json $.Tools }}[/AVAILABLE_TOOLS]
|
||||||
@ -151,7 +151,7 @@ Fill-in-middle support can be added to a model by adding a `{{ .Suffix }}` node
|
|||||||
|
|
||||||
CodeLlama [7B](https://ollama.com/library/codellama:7b-code) and [13B](https://ollama.com/library/codellama:13b-code) code completion models support fill-in-middle.
|
CodeLlama [7B](https://ollama.com/library/codellama:7b-code) and [13B](https://ollama.com/library/codellama:13b-code) code completion models support fill-in-middle.
|
||||||
|
|
||||||
```go
|
```gotmpl
|
||||||
<PRE> {{ .Prompt }} <SUF>{{ .Suffix }} <MID>
|
<PRE> {{ .Prompt }} <SUF>{{ .Suffix }} <MID>
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -162,6 +162,6 @@ CodeLlama [7B](https://ollama.com/library/codellama:7b-code) and [13B](https://o
|
|||||||
|
|
||||||
Codestral [22B](https://ollama.com/library/codestral:22b) supports fill-in-middle.
|
Codestral [22B](https://ollama.com/library/codestral:22b) supports fill-in-middle.
|
||||||
|
|
||||||
```go
|
```gotmpl
|
||||||
[SUFFIX]{{ .Suffix }}[PREFIX] {{ .Prompt }}
|
[SUFFIX]{{ .Suffix }}[PREFIX] {{ .Prompt }}
|
||||||
```
|
```
|
||||||
|
@ -9,7 +9,7 @@ cat ~/.ollama/logs/server.log
|
|||||||
On **Linux** systems with systemd, the logs can be found with this command:
|
On **Linux** systems with systemd, the logs can be found with this command:
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
journalctl -u ollama --no-pager --follow --pager-end
|
journalctl -u ollama --no-pager
|
||||||
```
|
```
|
||||||
|
|
||||||
When you run Ollama in a **container**, the logs go to stdout/stderr in the container:
|
When you run Ollama in a **container**, the logs go to stdout/stderr in the container:
|
||||||
@ -17,7 +17,6 @@ When you run Ollama in a **container**, the logs go to stdout/stderr in the cont
|
|||||||
```shell
|
```shell
|
||||||
docker logs <container-name>
|
docker logs <container-name>
|
||||||
```
|
```
|
||||||
|
|
||||||
(Use `docker ps` to find the container name)
|
(Use `docker ps` to find the container name)
|
||||||
|
|
||||||
If manually running `ollama serve` in a terminal, the logs will be on that terminal.
|
If manually running `ollama serve` in a terminal, the logs will be on that terminal.
|
||||||
@ -26,9 +25,9 @@ When you run Ollama on **Windows**, there are a few different locations. You can
|
|||||||
- `explorer %LOCALAPPDATA%\Ollama` to view logs. The most recent server logs will be in `server.log` and older logs will be in `server-#.log`
|
- `explorer %LOCALAPPDATA%\Ollama` to view logs. The most recent server logs will be in `server.log` and older logs will be in `server-#.log`
|
||||||
- `explorer %LOCALAPPDATA%\Programs\Ollama` to browse the binaries (The installer adds this to your user PATH)
|
- `explorer %LOCALAPPDATA%\Programs\Ollama` to browse the binaries (The installer adds this to your user PATH)
|
||||||
- `explorer %HOMEPATH%\.ollama` to browse where models and configuration is stored
|
- `explorer %HOMEPATH%\.ollama` to browse where models and configuration is stored
|
||||||
|
- `explorer %TEMP%` where temporary executable files are stored in one or more `ollama*` directories
|
||||||
|
|
||||||
To enable additional debug logging to help troubleshoot problems, first **Quit the running app from the tray menu** then in a powershell terminal
|
To enable additional debug logging to help troubleshoot problems, first **Quit the running app from the tray menu** then in a powershell terminal
|
||||||
|
|
||||||
```powershell
|
```powershell
|
||||||
$env:OLLAMA_DEBUG="1"
|
$env:OLLAMA_DEBUG="1"
|
||||||
& "ollama app.exe"
|
& "ollama app.exe"
|
||||||
@ -50,13 +49,12 @@ Dynamic LLM libraries [rocm_v6 cpu cpu_avx cpu_avx2 cuda_v11 rocm_v5]
|
|||||||
|
|
||||||
You can set OLLAMA_LLM_LIBRARY to any of the available LLM libraries to bypass autodetection, so for example, if you have a CUDA card, but want to force the CPU LLM library with AVX2 vector support, use:
|
You can set OLLAMA_LLM_LIBRARY to any of the available LLM libraries to bypass autodetection, so for example, if you have a CUDA card, but want to force the CPU LLM library with AVX2 vector support, use:
|
||||||
|
|
||||||
```shell
|
```
|
||||||
OLLAMA_LLM_LIBRARY="cpu_avx2" ollama serve
|
OLLAMA_LLM_LIBRARY="cpu_avx2" ollama serve
|
||||||
```
|
```
|
||||||
|
|
||||||
You can see what features your CPU has with the following.
|
You can see what features your CPU has with the following.
|
||||||
|
```
|
||||||
```shell
|
|
||||||
cat /proc/cpuinfo| grep flags | head -1
|
cat /proc/cpuinfo| grep flags | head -1
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -64,13 +62,13 @@ cat /proc/cpuinfo| grep flags | head -1
|
|||||||
|
|
||||||
If you run into problems on Linux and want to install an older version, or you'd like to try out a pre-release before it's officially released, you can tell the install script which version to install.
|
If you run into problems on Linux and want to install an older version, or you'd like to try out a pre-release before it's officially released, you can tell the install script which version to install.
|
||||||
|
|
||||||
```shell
|
```sh
|
||||||
curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION=0.5.7 sh
|
curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION="0.1.29" sh
|
||||||
```
|
```
|
||||||
|
|
||||||
## Linux docker
|
## Linux tmp noexec
|
||||||
|
|
||||||
If Ollama initially works on the GPU in a docker container, but then switches to running on CPU after some period of time with errors in the server log reporting GPU discovery failures, this can be resolved by disabling systemd cgroup management in Docker. Edit `/etc/docker/daemon.json` on the host and add `"exec-opts": ["native.cgroupdriver=cgroupfs"]` to the docker configuration.
|
If your system is configured with the "noexec" flag where Ollama stores its temporary executable files, you can specify an alternate location by setting OLLAMA_TMPDIR to a location writable by the user ollama runs as. For example OLLAMA_TMPDIR=/usr/share/ollama/
|
||||||
|
|
||||||
## NVIDIA GPU Discovery
|
## NVIDIA GPU Discovery
|
||||||
|
|
||||||
@ -99,6 +97,8 @@ On linux, AMD GPU access typically requires `video` and/or `render` group member
|
|||||||
|
|
||||||
When running in a container, in some Linux distributions and container runtimes, the ollama process may be unable to access the GPU. Use `ls -lnd /dev/kfd /dev/dri /dev/dri/*` on the host system to determine the **numeric** group IDs on your system, and pass additional `--group-add ...` arguments to the container so it can access the required devices. For example, in the following output `crw-rw---- 1 0 44 226, 0 Sep 16 16:55 /dev/dri/card0` the group ID column is `44`
|
When running in a container, in some Linux distributions and container runtimes, the ollama process may be unable to access the GPU. Use `ls -lnd /dev/kfd /dev/dri /dev/dri/*` on the host system to determine the **numeric** group IDs on your system, and pass additional `--group-add ...` arguments to the container so it can access the required devices. For example, in the following output `crw-rw---- 1 0 44 226, 0 Sep 16 16:55 /dev/dri/card0` the group ID column is `44`
|
||||||
|
|
||||||
|
If Ollama initially works on the GPU in a docker container, but then switches to running on CPU after some period of time with errors in the server log reporting GPU discovery failures, this can be resolved by disabling systemd cgroup management in Docker. Edit `/etc/docker/daemon.json` on the host and add `"exec-opts": ["native.cgroupdriver=cgroupfs"]` to the docker configuration.
|
||||||
|
|
||||||
If you are experiencing problems getting Ollama to correctly discover or use your GPU for inference, the following may help isolate the failure.
|
If you are experiencing problems getting Ollama to correctly discover or use your GPU for inference, the following may help isolate the failure.
|
||||||
- `AMD_LOG_LEVEL=3` Enable info log levels in the AMD HIP/ROCm libraries. This can help show more detailed error codes that can help troubleshoot problems
|
- `AMD_LOG_LEVEL=3` Enable info log levels in the AMD HIP/ROCm libraries. This can help show more detailed error codes that can help troubleshoot problems
|
||||||
- `OLLAMA_DEBUG=1` During GPU discovery additional information will be reported
|
- `OLLAMA_DEBUG=1` During GPU discovery additional information will be reported
|
||||||
|
9
docs/tutorials.md
Normal file
9
docs/tutorials.md
Normal file
@ -0,0 +1,9 @@
|
|||||||
|
# Tutorials
|
||||||
|
|
||||||
|
Here is a list of ways you can use Ollama with other tools to build interesting applications.
|
||||||
|
|
||||||
|
- [Using LangChain with Ollama in JavaScript](./tutorials/langchainjs.md)
|
||||||
|
- [Using LangChain with Ollama in Python](./tutorials/langchainpy.md)
|
||||||
|
- [Running Ollama on NVIDIA Jetson Devices](./tutorials/nvidia-jetson.md)
|
||||||
|
|
||||||
|
Also be sure to check out the [examples](../examples) directory for more ways to use Ollama.
|
@ -47,7 +47,6 @@ If Ollama is already running, Quit the tray application and relaunch it from the
|
|||||||
## API Access
|
## API Access
|
||||||
|
|
||||||
Here's a quick example showing API access from `powershell`
|
Here's a quick example showing API access from `powershell`
|
||||||
|
|
||||||
```powershell
|
```powershell
|
||||||
(Invoke-WebRequest -method POST -Body '{"model":"llama3.2", "prompt":"Why is the sky blue?", "stream": false}' -uri http://localhost:11434/api/generate ).Content | ConvertFrom-json
|
(Invoke-WebRequest -method POST -Body '{"model":"llama3.2", "prompt":"Why is the sky blue?", "stream": false}' -uri http://localhost:11434/api/generate ).Content | ConvertFrom-json
|
||||||
```
|
```
|
||||||
@ -55,13 +54,14 @@ Here's a quick example showing API access from `powershell`
|
|||||||
## Troubleshooting
|
## Troubleshooting
|
||||||
|
|
||||||
Ollama on Windows stores files in a few different locations. You can view them in
|
Ollama on Windows stores files in a few different locations. You can view them in
|
||||||
the explorer window by hitting `<Ctrl>+R` and type in:
|
the explorer window by hitting `<cmd>+R` and type in:
|
||||||
- `explorer %LOCALAPPDATA%\Ollama` contains logs, and downloaded updates
|
- `explorer %LOCALAPPDATA%\Ollama` contains logs, and downloaded updates
|
||||||
- *app.log* contains most resent logs from the GUI application
|
- *app.log* contains most resent logs from the GUI application
|
||||||
- *server.log* contains the most recent server logs
|
- *server.log* contains the most recent server logs
|
||||||
- *upgrade.log* contains log output for upgrades
|
- *upgrade.log* contains log output for upgrades
|
||||||
- `explorer %LOCALAPPDATA%\Programs\Ollama` contains the binaries (The installer adds this to your user PATH)
|
- `explorer %LOCALAPPDATA%\Programs\Ollama` contains the binaries (The installer adds this to your user PATH)
|
||||||
- `explorer %HOMEPATH%\.ollama` contains models and configuration
|
- `explorer %HOMEPATH%\.ollama` contains models and configuration
|
||||||
|
- `explorer %TEMP%` contains temporary executable files in one or more `ollama*` directories
|
||||||
|
|
||||||
## Uninstall
|
## Uninstall
|
||||||
|
|
||||||
@ -80,11 +80,9 @@ help you keep up to date.
|
|||||||
|
|
||||||
If you'd like to install or integrate Ollama as a service, a standalone
|
If you'd like to install or integrate Ollama as a service, a standalone
|
||||||
`ollama-windows-amd64.zip` zip file is available containing only the Ollama CLI
|
`ollama-windows-amd64.zip` zip file is available containing only the Ollama CLI
|
||||||
and GPU library dependencies for Nvidia. If you have an AMD GPU, also download
|
and GPU library dependencies for Nvidia and AMD. This allows for embedding
|
||||||
and extract the additional ROCm package `ollama-windows-amd64-rocm.zip` into the
|
Ollama in existing applications, or running it as a system service via `ollama
|
||||||
same directory. This allows for embedding Ollama in existing applications, or
|
serve` with tools such as [NSSM](https://nssm.cc/).
|
||||||
running it as a system service via `ollama serve` with tools such as
|
|
||||||
[NSSM](https://nssm.cc/).
|
|
||||||
|
|
||||||
> [!NOTE]
|
> [!NOTE]
|
||||||
> If you are upgrading from a prior version, you should remove the old directories first.
|
> If you are upgrading from a prior version, you should remove the old directories first.
|
||||||
|
@ -53,8 +53,8 @@ func Host() *url.URL {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// AllowedOrigins returns a list of allowed origins. AllowedOrigins can be configured via the OLLAMA_ORIGINS environment variable.
|
// Origins returns a list of allowed origins. Origins can be configured via the OLLAMA_ORIGINS environment variable.
|
||||||
func AllowedOrigins() (origins []string) {
|
func Origins() (origins []string) {
|
||||||
if s := Var("OLLAMA_ORIGINS"); s != "" {
|
if s := Var("OLLAMA_ORIGINS"); s != "" {
|
||||||
origins = strings.Split(s, ",")
|
origins = strings.Split(s, ",")
|
||||||
}
|
}
|
||||||
@ -73,7 +73,6 @@ func AllowedOrigins() (origins []string) {
|
|||||||
"file://*",
|
"file://*",
|
||||||
"tauri://*",
|
"tauri://*",
|
||||||
"vscode-webview://*",
|
"vscode-webview://*",
|
||||||
"vscode-file://*",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
return origins
|
return origins
|
||||||
@ -149,22 +148,9 @@ func Bool(k string) func() bool {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// LogLevel returns the log level for the application.
|
|
||||||
// Values are 0 or false INFO (Default), 1 or true DEBUG, 2 TRACE
|
|
||||||
func LogLevel() slog.Level {
|
|
||||||
level := slog.LevelInfo
|
|
||||||
if s := Var("OLLAMA_DEBUG"); s != "" {
|
|
||||||
if b, _ := strconv.ParseBool(s); b {
|
|
||||||
level = slog.LevelDebug
|
|
||||||
} else if i, _ := strconv.ParseInt(s, 10, 64); i != 0 {
|
|
||||||
level = slog.Level(i * -4)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return level
|
|
||||||
}
|
|
||||||
|
|
||||||
var (
|
var (
|
||||||
|
// Debug enabled additional debug information.
|
||||||
|
Debug = Bool("OLLAMA_DEBUG")
|
||||||
// FlashAttention enables the experimental flash attention feature.
|
// FlashAttention enables the experimental flash attention feature.
|
||||||
FlashAttention = Bool("OLLAMA_FLASH_ATTENTION")
|
FlashAttention = Bool("OLLAMA_FLASH_ATTENTION")
|
||||||
// KvCacheType is the quantization type for the K/V cache.
|
// KvCacheType is the quantization type for the K/V cache.
|
||||||
@ -179,10 +165,6 @@ var (
|
|||||||
IntelGPU = Bool("OLLAMA_INTEL_GPU")
|
IntelGPU = Bool("OLLAMA_INTEL_GPU")
|
||||||
// MultiUserCache optimizes prompt caching for multi-user scenarios
|
// MultiUserCache optimizes prompt caching for multi-user scenarios
|
||||||
MultiUserCache = Bool("OLLAMA_MULTIUSER_CACHE")
|
MultiUserCache = Bool("OLLAMA_MULTIUSER_CACHE")
|
||||||
// Enable the new Ollama engine
|
|
||||||
NewEngine = Bool("OLLAMA_NEW_ENGINE")
|
|
||||||
// ContextLength sets the default context length
|
|
||||||
ContextLength = Uint("OLLAMA_CONTEXT_LENGTH", 4096)
|
|
||||||
)
|
)
|
||||||
|
|
||||||
func String(s string) func() string {
|
func String(s string) func() string {
|
||||||
@ -222,6 +204,8 @@ var (
|
|||||||
MaxRunners = Uint("OLLAMA_MAX_LOADED_MODELS", 0)
|
MaxRunners = Uint("OLLAMA_MAX_LOADED_MODELS", 0)
|
||||||
// MaxQueue sets the maximum number of queued requests. MaxQueue can be configured via the OLLAMA_MAX_QUEUE environment variable.
|
// MaxQueue sets the maximum number of queued requests. MaxQueue can be configured via the OLLAMA_MAX_QUEUE environment variable.
|
||||||
MaxQueue = Uint("OLLAMA_MAX_QUEUE", 512)
|
MaxQueue = Uint("OLLAMA_MAX_QUEUE", 512)
|
||||||
|
// MaxVRAM sets a maximum VRAM override in bytes. MaxVRAM can be configured via the OLLAMA_MAX_VRAM environment variable.
|
||||||
|
MaxVRAM = Uint("OLLAMA_MAX_VRAM", 0)
|
||||||
)
|
)
|
||||||
|
|
||||||
func Uint64(key string, defaultValue uint64) func() uint64 {
|
func Uint64(key string, defaultValue uint64) func() uint64 {
|
||||||
@ -249,7 +233,7 @@ type EnvVar struct {
|
|||||||
|
|
||||||
func AsMap() map[string]EnvVar {
|
func AsMap() map[string]EnvVar {
|
||||||
ret := map[string]EnvVar{
|
ret := map[string]EnvVar{
|
||||||
"OLLAMA_DEBUG": {"OLLAMA_DEBUG", LogLevel(), "Show additional debug information (e.g. OLLAMA_DEBUG=1)"},
|
"OLLAMA_DEBUG": {"OLLAMA_DEBUG", Debug(), "Show additional debug information (e.g. OLLAMA_DEBUG=1)"},
|
||||||
"OLLAMA_FLASH_ATTENTION": {"OLLAMA_FLASH_ATTENTION", FlashAttention(), "Enabled flash attention"},
|
"OLLAMA_FLASH_ATTENTION": {"OLLAMA_FLASH_ATTENTION", FlashAttention(), "Enabled flash attention"},
|
||||||
"OLLAMA_KV_CACHE_TYPE": {"OLLAMA_KV_CACHE_TYPE", KvCacheType(), "Quantization type for the K/V cache (default: f16)"},
|
"OLLAMA_KV_CACHE_TYPE": {"OLLAMA_KV_CACHE_TYPE", KvCacheType(), "Quantization type for the K/V cache (default: f16)"},
|
||||||
"OLLAMA_GPU_OVERHEAD": {"OLLAMA_GPU_OVERHEAD", GpuOverhead(), "Reserve a portion of VRAM per GPU (bytes)"},
|
"OLLAMA_GPU_OVERHEAD": {"OLLAMA_GPU_OVERHEAD", GpuOverhead(), "Reserve a portion of VRAM per GPU (bytes)"},
|
||||||
@ -263,11 +247,9 @@ func AsMap() map[string]EnvVar {
|
|||||||
"OLLAMA_NOHISTORY": {"OLLAMA_NOHISTORY", NoHistory(), "Do not preserve readline history"},
|
"OLLAMA_NOHISTORY": {"OLLAMA_NOHISTORY", NoHistory(), "Do not preserve readline history"},
|
||||||
"OLLAMA_NOPRUNE": {"OLLAMA_NOPRUNE", NoPrune(), "Do not prune model blobs on startup"},
|
"OLLAMA_NOPRUNE": {"OLLAMA_NOPRUNE", NoPrune(), "Do not prune model blobs on startup"},
|
||||||
"OLLAMA_NUM_PARALLEL": {"OLLAMA_NUM_PARALLEL", NumParallel(), "Maximum number of parallel requests"},
|
"OLLAMA_NUM_PARALLEL": {"OLLAMA_NUM_PARALLEL", NumParallel(), "Maximum number of parallel requests"},
|
||||||
"OLLAMA_ORIGINS": {"OLLAMA_ORIGINS", AllowedOrigins(), "A comma separated list of allowed origins"},
|
"OLLAMA_ORIGINS": {"OLLAMA_ORIGINS", Origins(), "A comma separated list of allowed origins"},
|
||||||
"OLLAMA_SCHED_SPREAD": {"OLLAMA_SCHED_SPREAD", SchedSpread(), "Always schedule model across all GPUs"},
|
"OLLAMA_SCHED_SPREAD": {"OLLAMA_SCHED_SPREAD", SchedSpread(), "Always schedule model across all GPUs"},
|
||||||
"OLLAMA_MULTIUSER_CACHE": {"OLLAMA_MULTIUSER_CACHE", MultiUserCache(), "Optimize prompt caching for multi-user scenarios"},
|
"OLLAMA_MULTIUSER_CACHE": {"OLLAMA_MULTIUSER_CACHE", MultiUserCache(), "Optimize prompt caching for multi-user scenarios"},
|
||||||
"OLLAMA_CONTEXT_LENGTH": {"OLLAMA_CONTEXT_LENGTH", ContextLength(), "Context length to use unless otherwise specified (default: 4096)"},
|
|
||||||
"OLLAMA_NEW_ENGINE": {"OLLAMA_NEW_ENGINE", NewEngine(), "Enable the new Ollama engine"},
|
|
||||||
|
|
||||||
// Informational
|
// Informational
|
||||||
"HTTP_PROXY": {"HTTP_PROXY", String("HTTP_PROXY")(), "HTTP proxy"},
|
"HTTP_PROXY": {"HTTP_PROXY", String("HTTP_PROXY")(), "HTTP proxy"},
|
||||||
@ -306,3 +288,12 @@ func Values() map[string]string {
|
|||||||
func Var(key string) string {
|
func Var(key string) string {
|
||||||
return strings.Trim(strings.TrimSpace(os.Getenv(key)), "\"'")
|
return strings.Trim(strings.TrimSpace(os.Getenv(key)), "\"'")
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// On windows, we keep the binary at the top directory, but
|
||||||
|
// other platforms use a "bin" directory, so this returns ".."
|
||||||
|
func LibRelativeToExe() string {
|
||||||
|
if runtime.GOOS == "windows" {
|
||||||
|
return "."
|
||||||
|
}
|
||||||
|
return ".."
|
||||||
|
}
|
||||||
|
@ -1,13 +1,11 @@
|
|||||||
package envconfig
|
package envconfig
|
||||||
|
|
||||||
import (
|
import (
|
||||||
"log/slog"
|
|
||||||
"math"
|
"math"
|
||||||
"testing"
|
"testing"
|
||||||
"time"
|
"time"
|
||||||
|
|
||||||
"github.com/google/go-cmp/cmp"
|
"github.com/google/go-cmp/cmp"
|
||||||
"github.com/ollama/ollama/logutil"
|
|
||||||
)
|
)
|
||||||
|
|
||||||
func TestHost(t *testing.T) {
|
func TestHost(t *testing.T) {
|
||||||
@ -71,7 +69,6 @@ func TestOrigins(t *testing.T) {
|
|||||||
"file://*",
|
"file://*",
|
||||||
"tauri://*",
|
"tauri://*",
|
||||||
"vscode-webview://*",
|
"vscode-webview://*",
|
||||||
"vscode-file://*",
|
|
||||||
}},
|
}},
|
||||||
{"http://10.0.0.1", []string{
|
{"http://10.0.0.1", []string{
|
||||||
"http://10.0.0.1",
|
"http://10.0.0.1",
|
||||||
@ -91,7 +88,6 @@ func TestOrigins(t *testing.T) {
|
|||||||
"file://*",
|
"file://*",
|
||||||
"tauri://*",
|
"tauri://*",
|
||||||
"vscode-webview://*",
|
"vscode-webview://*",
|
||||||
"vscode-file://*",
|
|
||||||
}},
|
}},
|
||||||
{"http://172.16.0.1,https://192.168.0.1", []string{
|
{"http://172.16.0.1,https://192.168.0.1", []string{
|
||||||
"http://172.16.0.1",
|
"http://172.16.0.1",
|
||||||
@ -112,7 +108,6 @@ func TestOrigins(t *testing.T) {
|
|||||||
"file://*",
|
"file://*",
|
||||||
"tauri://*",
|
"tauri://*",
|
||||||
"vscode-webview://*",
|
"vscode-webview://*",
|
||||||
"vscode-file://*",
|
|
||||||
}},
|
}},
|
||||||
{"http://totally.safe,http://definitely.legit", []string{
|
{"http://totally.safe,http://definitely.legit", []string{
|
||||||
"http://totally.safe",
|
"http://totally.safe",
|
||||||
@ -133,14 +128,13 @@ func TestOrigins(t *testing.T) {
|
|||||||
"file://*",
|
"file://*",
|
||||||
"tauri://*",
|
"tauri://*",
|
||||||
"vscode-webview://*",
|
"vscode-webview://*",
|
||||||
"vscode-file://*",
|
|
||||||
}},
|
}},
|
||||||
}
|
}
|
||||||
for _, tt := range cases {
|
for _, tt := range cases {
|
||||||
t.Run(tt.value, func(t *testing.T) {
|
t.Run(tt.value, func(t *testing.T) {
|
||||||
t.Setenv("OLLAMA_ORIGINS", tt.value)
|
t.Setenv("OLLAMA_ORIGINS", tt.value)
|
||||||
|
|
||||||
if diff := cmp.Diff(AllowedOrigins(), tt.expect); diff != "" {
|
if diff := cmp.Diff(Origins(), tt.expect); diff != "" {
|
||||||
t.Errorf("%s: mismatch (-want +got):\n%s", tt.value, diff)
|
t.Errorf("%s: mismatch (-want +got):\n%s", tt.value, diff)
|
||||||
}
|
}
|
||||||
})
|
})
|
||||||
@ -278,50 +272,3 @@ func TestVar(t *testing.T) {
|
|||||||
})
|
})
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
func TestContextLength(t *testing.T) {
|
|
||||||
cases := map[string]uint{
|
|
||||||
"": 4096,
|
|
||||||
"2048": 2048,
|
|
||||||
}
|
|
||||||
|
|
||||||
for k, v := range cases {
|
|
||||||
t.Run(k, func(t *testing.T) {
|
|
||||||
t.Setenv("OLLAMA_CONTEXT_LENGTH", k)
|
|
||||||
if i := ContextLength(); i != v {
|
|
||||||
t.Errorf("%s: expected %d, got %d", k, v, i)
|
|
||||||
}
|
|
||||||
})
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
func TestLogLevel(t *testing.T) {
|
|
||||||
cases := map[string]slog.Level{
|
|
||||||
// Default to INFO
|
|
||||||
"": slog.LevelInfo,
|
|
||||||
"false": slog.LevelInfo,
|
|
||||||
"f": slog.LevelInfo,
|
|
||||||
"0": slog.LevelInfo,
|
|
||||||
|
|
||||||
// True values enable Debug
|
|
||||||
"true": slog.LevelDebug,
|
|
||||||
"t": slog.LevelDebug,
|
|
||||||
|
|
||||||
// Positive values increase verbosity
|
|
||||||
"1": slog.LevelDebug,
|
|
||||||
"2": logutil.LevelTrace,
|
|
||||||
|
|
||||||
// Negative values decrease verbosity
|
|
||||||
"-1": slog.LevelWarn,
|
|
||||||
"-2": slog.LevelError,
|
|
||||||
}
|
|
||||||
|
|
||||||
for k, v := range cases {
|
|
||||||
t.Run(k, func(t *testing.T) {
|
|
||||||
t.Setenv("OLLAMA_DEBUG", k)
|
|
||||||
if i := LogLevel(); i != v {
|
|
||||||
t.Errorf("%s: expected %d, got %d", k, v, i)
|
|
||||||
}
|
|
||||||
})
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
174
examples/.gitignore
vendored
Normal file
174
examples/.gitignore
vendored
Normal file
@ -0,0 +1,174 @@
|
|||||||
|
node_modules
|
||||||
|
bun.lockb
|
||||||
|
.vscode
|
||||||
|
# OSX
|
||||||
|
.DS_STORE
|
||||||
|
|
||||||
|
|
||||||
|
# Models
|
||||||
|
models/
|
||||||
|
|
||||||
|
# Local Chroma db
|
||||||
|
.chroma/
|
||||||
|
db/
|
||||||
|
|
||||||
|
# Byte-compiled / optimized / DLL files
|
||||||
|
__pycache__/
|
||||||
|
*.py[cod]
|
||||||
|
*$py.class
|
||||||
|
|
||||||
|
# C extensions
|
||||||
|
*.so
|
||||||
|
|
||||||
|
# Distribution / packaging
|
||||||
|
.Python
|
||||||
|
build/
|
||||||
|
develop-eggs/
|
||||||
|
dist/
|
||||||
|
downloads/
|
||||||
|
eggs/
|
||||||
|
.eggs/
|
||||||
|
lib/
|
||||||
|
lib64/
|
||||||
|
parts/
|
||||||
|
sdist/
|
||||||
|
var/
|
||||||
|
wheels/
|
||||||
|
share/python-wheels/
|
||||||
|
*.egg-info/
|
||||||
|
.installed.cfg
|
||||||
|
*.egg
|
||||||
|
MANIFEST
|
||||||
|
|
||||||
|
# PyInstaller
|
||||||
|
# Usually these files are written by a python script from a template
|
||||||
|
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||||
|
*.manifest
|
||||||
|
*.spec
|
||||||
|
|
||||||
|
# Installer logs
|
||||||
|
pip-log.txt
|
||||||
|
pip-delete-this-directory.txt
|
||||||
|
|
||||||
|
# Unit test / coverage reports
|
||||||
|
htmlcov/
|
||||||
|
.tox/
|
||||||
|
.nox/
|
||||||
|
.coverage
|
||||||
|
.coverage.*
|
||||||
|
.cache
|
||||||
|
nosetests.xml
|
||||||
|
coverage.xml
|
||||||
|
*.cover
|
||||||
|
*.py,cover
|
||||||
|
.hypothesis/
|
||||||
|
.pytest_cache/
|
||||||
|
cover/
|
||||||
|
|
||||||
|
# Translations
|
||||||
|
*.mo
|
||||||
|
*.pot
|
||||||
|
|
||||||
|
# Django stuff:
|
||||||
|
*.log
|
||||||
|
local_settings.py
|
||||||
|
db.sqlite3
|
||||||
|
db.sqlite3-journal
|
||||||
|
|
||||||
|
# Flask stuff:
|
||||||
|
instance/
|
||||||
|
.webassets-cache
|
||||||
|
|
||||||
|
# Scrapy stuff:
|
||||||
|
.scrapy
|
||||||
|
|
||||||
|
# Sphinx documentation
|
||||||
|
docs/_build/
|
||||||
|
|
||||||
|
# PyBuilder
|
||||||
|
.pybuilder/
|
||||||
|
target/
|
||||||
|
|
||||||
|
# Jupyter Notebook
|
||||||
|
.ipynb_checkpoints
|
||||||
|
|
||||||
|
# IPython
|
||||||
|
profile_default/
|
||||||
|
ipython_config.py
|
||||||
|
|
||||||
|
# pyenv
|
||||||
|
# For a library or package, you might want to ignore these files since the code is
|
||||||
|
# intended to run in multiple environments; otherwise, check them in:
|
||||||
|
# .python-version
|
||||||
|
|
||||||
|
# pipenv
|
||||||
|
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
||||||
|
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
||||||
|
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
||||||
|
# install all needed dependencies.
|
||||||
|
#Pipfile.lock
|
||||||
|
|
||||||
|
# poetry
|
||||||
|
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
||||||
|
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
||||||
|
# commonly ignored for libraries.
|
||||||
|
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
||||||
|
#poetry.lock
|
||||||
|
|
||||||
|
# pdm
|
||||||
|
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
||||||
|
#pdm.lock
|
||||||
|
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
||||||
|
# in version control.
|
||||||
|
# https://pdm.fming.dev/#use-with-ide
|
||||||
|
.pdm.toml
|
||||||
|
|
||||||
|
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
||||||
|
__pypackages__/
|
||||||
|
|
||||||
|
# Celery stuff
|
||||||
|
celerybeat-schedule
|
||||||
|
celerybeat.pid
|
||||||
|
|
||||||
|
# SageMath parsed files
|
||||||
|
*.sage.py
|
||||||
|
|
||||||
|
# Environments
|
||||||
|
.env
|
||||||
|
.venv
|
||||||
|
env/
|
||||||
|
venv/
|
||||||
|
ENV/
|
||||||
|
env.bak/
|
||||||
|
venv.bak/
|
||||||
|
|
||||||
|
# Spyder project settings
|
||||||
|
.spyderproject
|
||||||
|
.spyproject
|
||||||
|
|
||||||
|
# Rope project settings
|
||||||
|
.ropeproject
|
||||||
|
|
||||||
|
# mkdocs documentation
|
||||||
|
/site
|
||||||
|
|
||||||
|
# mypy
|
||||||
|
.mypy_cache/
|
||||||
|
.dmypy.json
|
||||||
|
dmypy.json
|
||||||
|
|
||||||
|
# Pyre type checker
|
||||||
|
.pyre/
|
||||||
|
|
||||||
|
# pytype static type analyzer
|
||||||
|
.pytype/
|
||||||
|
|
||||||
|
# Cython debug symbols
|
||||||
|
cython_debug/
|
||||||
|
|
||||||
|
# PyCharm
|
||||||
|
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
||||||
|
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
||||||
|
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
||||||
|
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
||||||
|
#.idea/
|
@ -12,9 +12,3 @@ Ollama JavaScript examples at [ollama-js/examples](https://github.com/ollama/oll
|
|||||||
|
|
||||||
## OpenAI compatibility examples
|
## OpenAI compatibility examples
|
||||||
Ollama OpenAI compatibility examples at [ollama/examples/openai](../docs/openai.md)
|
Ollama OpenAI compatibility examples at [ollama/examples/openai](../docs/openai.md)
|
||||||
|
|
||||||
|
|
||||||
## Community examples
|
|
||||||
|
|
||||||
- [LangChain Ollama Python](https://python.langchain.com/docs/integrations/chat/ollama/)
|
|
||||||
- [LangChain Ollama JS](https://js.langchain.com/docs/integrations/chat/ollama/)
|
|
1
examples/flyio/.gitignore
vendored
Normal file
1
examples/flyio/.gitignore
vendored
Normal file
@ -0,0 +1 @@
|
|||||||
|
fly.toml
|
67
examples/flyio/README.md
Normal file
67
examples/flyio/README.md
Normal file
@ -0,0 +1,67 @@
|
|||||||
|
# Deploy Ollama to Fly.io
|
||||||
|
|
||||||
|
> Note: this example exposes a public endpoint and does not configure authentication. Use with care.
|
||||||
|
|
||||||
|
## Prerequisites
|
||||||
|
|
||||||
|
- Ollama: https://ollama.com/download
|
||||||
|
- Fly.io account. Sign up for a free account: https://fly.io/app/sign-up
|
||||||
|
|
||||||
|
## Steps
|
||||||
|
|
||||||
|
1. Login to Fly.io
|
||||||
|
|
||||||
|
```bash
|
||||||
|
fly auth login
|
||||||
|
```
|
||||||
|
|
||||||
|
1. Create a new Fly app
|
||||||
|
|
||||||
|
```bash
|
||||||
|
fly launch --name <name> --image ollama/ollama --internal-port 11434 --vm-size shared-cpu-8x --now
|
||||||
|
```
|
||||||
|
|
||||||
|
1. Pull and run `orca-mini:3b`
|
||||||
|
|
||||||
|
```bash
|
||||||
|
OLLAMA_HOST=https://<name>.fly.dev ollama run orca-mini:3b
|
||||||
|
```
|
||||||
|
|
||||||
|
`shared-cpu-8x` is a free-tier eligible machine type. For better performance, switch to a `performance` or `dedicated` machine type or attach a GPU for hardware acceleration (see below).
|
||||||
|
|
||||||
|
## (Optional) Persistent Volume
|
||||||
|
|
||||||
|
By default Fly Machines use ephemeral storage which is problematic if you want to use the same model across restarts without pulling it again. Create and attach a persistent volume to store the downloaded models:
|
||||||
|
|
||||||
|
1. Create the Fly Volume
|
||||||
|
|
||||||
|
```bash
|
||||||
|
fly volume create ollama
|
||||||
|
```
|
||||||
|
|
||||||
|
1. Update `fly.toml` and add `[mounts]`
|
||||||
|
|
||||||
|
```toml
|
||||||
|
[mounts]
|
||||||
|
source = "ollama"
|
||||||
|
destination = "/mnt/ollama/models"
|
||||||
|
```
|
||||||
|
|
||||||
|
1. Update `fly.toml` and add `[env]`
|
||||||
|
|
||||||
|
```toml
|
||||||
|
[env]
|
||||||
|
OLLAMA_MODELS = "/mnt/ollama/models"
|
||||||
|
```
|
||||||
|
|
||||||
|
1. Deploy your app
|
||||||
|
|
||||||
|
```bash
|
||||||
|
fly deploy
|
||||||
|
```
|
||||||
|
|
||||||
|
## (Optional) Hardware Acceleration
|
||||||
|
|
||||||
|
Fly.io GPU is currently in waitlist. Sign up for the waitlist: https://fly.io/gpu
|
||||||
|
|
||||||
|
Once you've been accepted, create the app with the additional flags `--vm-gpu-kind a100-pcie-40gb` or `--vm-gpu-kind a100-pcie-80gb`.
|
29
examples/go-http-generate/main.go
Normal file
29
examples/go-http-generate/main.go
Normal file
@ -0,0 +1,29 @@
|
|||||||
|
package main
|
||||||
|
|
||||||
|
import (
|
||||||
|
"bytes"
|
||||||
|
"fmt"
|
||||||
|
"io"
|
||||||
|
"log"
|
||||||
|
"net/http"
|
||||||
|
"os"
|
||||||
|
)
|
||||||
|
|
||||||
|
func main() {
|
||||||
|
body := []byte(`{"model":"mistral"}`)
|
||||||
|
resp, err := http.Post("http://localhost:11434/api/generate", "application/json", bytes.NewBuffer(body))
|
||||||
|
|
||||||
|
if err != nil {
|
||||||
|
fmt.Print(err.Error())
|
||||||
|
os.Exit(1)
|
||||||
|
}
|
||||||
|
|
||||||
|
defer resp.Body.Close()
|
||||||
|
|
||||||
|
responseData, err := io.ReadAll(resp.Body)
|
||||||
|
if err != nil {
|
||||||
|
log.Fatal(err)
|
||||||
|
}
|
||||||
|
fmt.Println(string(responseData))
|
||||||
|
|
||||||
|
}
|
5
examples/jupyter-notebook/README.md
Normal file
5
examples/jupyter-notebook/README.md
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
# Ollama Jupyter Notebook
|
||||||
|
|
||||||
|
This example downloads and installs Ollama in a Jupyter instance such as Google Colab. It will start the Ollama service and expose an endpoint using `ngrok` which can be used to communicate with the Ollama instance remotely.
|
||||||
|
|
||||||
|
For best results, use an instance with GPU accelerator.
|
102
examples/jupyter-notebook/ollama.ipynb
Normal file
102
examples/jupyter-notebook/ollama.ipynb
Normal file
@ -0,0 +1,102 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "93f59dcb-c588-41b8-a792-55d88ade739c",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# Download and run the Ollama Linux install script\n",
|
||||||
|
"!curl -fsSL https://ollama.com/install.sh | sh\n",
|
||||||
|
"!command -v systemctl >/dev/null && sudo systemctl stop ollama"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "658c147e-c7f8-490e-910e-62b80f577dda",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"!pip install aiohttp pyngrok\n",
|
||||||
|
"\n",
|
||||||
|
"import os\n",
|
||||||
|
"import asyncio\n",
|
||||||
|
"from aiohttp import ClientSession\n",
|
||||||
|
"\n",
|
||||||
|
"# Set LD_LIBRARY_PATH so the system NVIDIA library becomes preferred\n",
|
||||||
|
"# over the built-in library. This is particularly important for \n",
|
||||||
|
"# Google Colab which installs older drivers\n",
|
||||||
|
"os.environ.update({'LD_LIBRARY_PATH': '/usr/lib64-nvidia'})\n",
|
||||||
|
"\n",
|
||||||
|
"async def run(cmd):\n",
|
||||||
|
" '''\n",
|
||||||
|
" run is a helper function to run subcommands asynchronously.\n",
|
||||||
|
" '''\n",
|
||||||
|
" print('>>> starting', *cmd)\n",
|
||||||
|
" p = await asyncio.subprocess.create_subprocess_exec(\n",
|
||||||
|
" *cmd,\n",
|
||||||
|
" stdout=asyncio.subprocess.PIPE,\n",
|
||||||
|
" stderr=asyncio.subprocess.PIPE,\n",
|
||||||
|
" )\n",
|
||||||
|
"\n",
|
||||||
|
" async def pipe(lines):\n",
|
||||||
|
" async for line in lines:\n",
|
||||||
|
" print(line.strip().decode('utf-8'))\n",
|
||||||
|
"\n",
|
||||||
|
" await asyncio.gather(\n",
|
||||||
|
" pipe(p.stdout),\n",
|
||||||
|
" pipe(p.stderr),\n",
|
||||||
|
" )\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"await asyncio.gather(\n",
|
||||||
|
" run(['ollama', 'serve']),\n",
|
||||||
|
" run(['ngrok', 'http', '--log', 'stderr', '11434']),\n",
|
||||||
|
")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "e7735a55-9aad-4caf-8683-52e2163ba53b",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"The previous cell starts two processes, `ollama` and `ngrok`. The log output will show a line like the following which describes the external address.\n",
|
||||||
|
"\n",
|
||||||
|
"```\n",
|
||||||
|
"t=2023-11-12T22:55:56+0000 lvl=info msg=\"started tunnel\" obj=tunnels name=command_line addr=http://localhost:11434 url=https://8249-34-125-179-11.ngrok.io\n",
|
||||||
|
"```\n",
|
||||||
|
"\n",
|
||||||
|
"The external address in this case is `https://8249-34-125-179-11.ngrok.io` which can be passed into `OLLAMA_HOST` to access this instance.\n",
|
||||||
|
"\n",
|
||||||
|
"```bash\n",
|
||||||
|
"export OLLAMA_HOST=https://8249-34-125-179-11.ngrok.io\n",
|
||||||
|
"ollama list\n",
|
||||||
|
"ollama run mistral\n",
|
||||||
|
"```"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3 (ipykernel)",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.11.6"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 5
|
||||||
|
}
|
38
examples/kubernetes/README.md
Normal file
38
examples/kubernetes/README.md
Normal file
@ -0,0 +1,38 @@
|
|||||||
|
# Deploy Ollama to Kubernetes
|
||||||
|
|
||||||
|
## Prerequisites
|
||||||
|
|
||||||
|
- Ollama: https://ollama.com/download
|
||||||
|
- Kubernetes cluster. This example will use Google Kubernetes Engine.
|
||||||
|
|
||||||
|
## Steps
|
||||||
|
|
||||||
|
1. Create the Ollama namespace, deployment, and service
|
||||||
|
|
||||||
|
```bash
|
||||||
|
kubectl apply -f cpu.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
## (Optional) Hardware Acceleration
|
||||||
|
|
||||||
|
Hardware acceleration in Kubernetes requires NVIDIA's [`k8s-device-plugin`](https://github.com/NVIDIA/k8s-device-plugin) which is deployed in Kubernetes in form of daemonset. Follow the link for more details.
|
||||||
|
|
||||||
|
Once configured, create a GPU enabled Ollama deployment.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
kubectl apply -f gpu.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
## Test
|
||||||
|
|
||||||
|
1. Port forward the Ollama service to connect and use it locally
|
||||||
|
|
||||||
|
```bash
|
||||||
|
kubectl -n ollama port-forward service/ollama 11434:80
|
||||||
|
```
|
||||||
|
|
||||||
|
1. Pull and run a model, for example `orca-mini:3b`
|
||||||
|
|
||||||
|
```bash
|
||||||
|
ollama run orca-mini:3b
|
||||||
|
```
|
42
examples/kubernetes/cpu.yaml
Normal file
42
examples/kubernetes/cpu.yaml
Normal file
@ -0,0 +1,42 @@
|
|||||||
|
---
|
||||||
|
apiVersion: v1
|
||||||
|
kind: Namespace
|
||||||
|
metadata:
|
||||||
|
name: ollama
|
||||||
|
---
|
||||||
|
apiVersion: apps/v1
|
||||||
|
kind: Deployment
|
||||||
|
metadata:
|
||||||
|
name: ollama
|
||||||
|
namespace: ollama
|
||||||
|
spec:
|
||||||
|
selector:
|
||||||
|
matchLabels:
|
||||||
|
name: ollama
|
||||||
|
template:
|
||||||
|
metadata:
|
||||||
|
labels:
|
||||||
|
name: ollama
|
||||||
|
spec:
|
||||||
|
containers:
|
||||||
|
- name: ollama
|
||||||
|
image: ollama/ollama:latest
|
||||||
|
ports:
|
||||||
|
- name: http
|
||||||
|
containerPort: 11434
|
||||||
|
protocol: TCP
|
||||||
|
---
|
||||||
|
apiVersion: v1
|
||||||
|
kind: Service
|
||||||
|
metadata:
|
||||||
|
name: ollama
|
||||||
|
namespace: ollama
|
||||||
|
spec:
|
||||||
|
type: ClusterIP
|
||||||
|
selector:
|
||||||
|
name: ollama
|
||||||
|
ports:
|
||||||
|
- port: 80
|
||||||
|
name: http
|
||||||
|
targetPort: http
|
||||||
|
protocol: TCP
|
58
examples/kubernetes/gpu.yaml
Normal file
58
examples/kubernetes/gpu.yaml
Normal file
@ -0,0 +1,58 @@
|
|||||||
|
---
|
||||||
|
apiVersion: v1
|
||||||
|
kind: Namespace
|
||||||
|
metadata:
|
||||||
|
name: ollama
|
||||||
|
---
|
||||||
|
apiVersion: apps/v1
|
||||||
|
kind: Deployment
|
||||||
|
metadata:
|
||||||
|
name: ollama
|
||||||
|
namespace: ollama
|
||||||
|
spec:
|
||||||
|
strategy:
|
||||||
|
type: Recreate
|
||||||
|
selector:
|
||||||
|
matchLabels:
|
||||||
|
name: ollama
|
||||||
|
template:
|
||||||
|
metadata:
|
||||||
|
labels:
|
||||||
|
name: ollama
|
||||||
|
spec:
|
||||||
|
containers:
|
||||||
|
- name: ollama
|
||||||
|
image: ollama/ollama:latest
|
||||||
|
env:
|
||||||
|
- name: PATH
|
||||||
|
value: /usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
|
||||||
|
- name: LD_LIBRARY_PATH
|
||||||
|
value: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
|
||||||
|
- name: NVIDIA_DRIVER_CAPABILITIES
|
||||||
|
value: compute,utility
|
||||||
|
ports:
|
||||||
|
- name: http
|
||||||
|
containerPort: 11434
|
||||||
|
protocol: TCP
|
||||||
|
resources:
|
||||||
|
limits:
|
||||||
|
nvidia.com/gpu: 1
|
||||||
|
tolerations:
|
||||||
|
- key: nvidia.com/gpu
|
||||||
|
operator: Exists
|
||||||
|
effect: NoSchedule
|
||||||
|
---
|
||||||
|
apiVersion: v1
|
||||||
|
kind: Service
|
||||||
|
metadata:
|
||||||
|
name: ollama
|
||||||
|
namespace: ollama
|
||||||
|
spec:
|
||||||
|
type: ClusterIP
|
||||||
|
selector:
|
||||||
|
name: ollama
|
||||||
|
ports:
|
||||||
|
- port: 80
|
||||||
|
name: http
|
||||||
|
targetPort: http
|
||||||
|
protocol: TCP
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
x
Reference in New Issue
Block a user