Compare commits

...

412 Commits

Author SHA1 Message Date
Patrick Devine
1852755154 show a default message when license/parameters/system prompt/template aren't specified (#681) 2023-10-02 14:34:52 -07:00
Bruce MacDonald
b1f7123301 clean up num_gpu calculation code (#673) 2023-10-02 14:53:42 -04:00
Bruce MacDonald
1fbf3585d6 Relay default values to llama runner (#672)
* include seed in params for llama.cpp server and remove empty filter for temp

* relay default predict options to llama.cpp

- reorganize options to match predict request for readability

* omit empty stop

---------

Co-authored-by: hallh <hallh@users.noreply.github.com>
2023-10-02 14:53:16 -04:00
Patrick Devine
99d5161e8a don't wordwrap when stdout is redirected or piped (#662) 2023-10-02 11:50:55 -07:00
Michael
ea8380be45 add community project: Chatbot Ollama
add community project: Chatbot Ollama by @ivanfioravanti
2023-10-02 09:04:31 -07:00
Jeffrey Morgan
4f25092dc1 fix build_docker.sh permissions 2023-10-01 16:42:32 -07:00
Jiayu Liu
4fc10acce9 add some missing code directives in docs (#664) 2023-10-01 11:51:01 -07:00
Michael Yang
0a4f21c0a7 fix docker build (#659) 2023-09-30 13:34:01 -07:00
Jeffrey Morgan
9abb66254a docker: fix volume permission errors 2023-09-30 12:32:15 -07:00
Jay Nakrani
1d0ebe67e8 Document response stream chunk delimiter. (#632)
Document response stream chunk delimiter.
2023-09-29 21:45:52 -07:00
Bruce MacDonald
a1b2d95f96 remove unused push/pull params (#650) 2023-09-29 17:27:19 -04:00
Michael Yang
c0b1bf7537 Merge pull request #606 from jmorganca/mxyng/install.sh-2
ordered list of install locations
2023-09-29 11:30:46 -07:00
Michael Yang
cdfeb165ca Merge pull request #608 from jmorganca/mxyng/build
update build scripts
2023-09-29 11:30:25 -07:00
Michael Yang
92d454ec5f update build_darwin.sh 2023-09-29 11:29:23 -07:00
Michael Yang
9333b0cc82 Merge pull request #612 from jmorganca/mxyng/prune-empty-directories
prune empty directories
2023-09-29 11:23:39 -07:00
Bruce MacDonald
9771b1ec51 windows runner fixes (#637) 2023-09-29 11:47:55 -04:00
Patrick Devine
76db4a49cf allow the user to cancel generating with ctrl-C (#641) 2023-09-28 17:13:01 -07:00
Luc Stepniewski
4aa0976a2e Added missing return preventing SIGSEGV because of missing resp (#621)
Co-authored-by: Luc Stepniewski <luc@eclipse-fr.com>
2023-09-28 14:25:22 -07:00
Patrick Devine
92c20fdae6 fix error messages for unknown commands in the repl (#611) 2023-09-28 14:19:45 -07:00
Michael Yang
c951da7096 Merge pull request #634 from jmorganca/mxyng/int64
use int64 consistently
2023-09-28 14:17:47 -07:00
Bruce MacDonald
24d82a23a2 do not download updates multiple times (#633) 2023-09-28 15:29:17 -04:00
Michael Yang
f40b3de758 use int64 consistently 2023-09-28 11:07:24 -07:00
Michael
5f4008c296 Update README.md
adding in instruction to run mistral
2023-09-28 09:06:03 -07:00
Aaron Coffey
6ae33d8141 Update modelfile.md to reflect the usage of num_gpu. (#629) 2023-09-28 10:21:21 -04:00
Jeffrey Morgan
c5664c1fef Update faq.md 2023-09-27 13:49:43 -07:00
Bruce MacDonald
958a5a8184 revert fedora cuda version check 2023-09-27 15:12:29 -04:00
Michael Yang
8608eb4760 prune empty directories 2023-09-27 10:58:09 -07:00
Bruce MacDonald
a2b210130f fedora install fixes (#609) 2023-09-27 11:43:47 -04:00
Bruce MacDonald
ed20837f9a Update modelfile.md 2023-09-27 10:38:10 -04:00
James Braza
1db2a61dd0 Added num_predict to the options table (#614) 2023-09-27 10:26:08 -04:00
Jeffrey Morgan
2ded8ab206 use 11.8.0 nvidia dockerfile base image for now 2023-09-26 21:48:41 -07:00
Michael Yang
e6b3648bbf Merge pull request #616 from jmorganca/mxyng/fix-model-name 2023-09-26 20:54:18 -07:00
Michael Yang
0625e805f0 fix model name not matching 2023-09-26 19:50:04 -07:00
Michael Yang
c38ec5befb Merge pull request #598 from jmorganca/mxyng/help-exit
add painter message for exit
2023-09-26 15:17:40 -07:00
Michael Yang
c577721a43 Merge pull request #605 from jmorganca/mxyng/install.sh
do not unload nouveau driver
2023-09-26 09:53:05 -07:00
Michael Yang
29c056ea39 ordered list of install locations 2023-09-26 09:38:11 -07:00
Michael Yang
9fc3bba9cf do no unload nouveau driver 2023-09-26 09:36:54 -07:00
Michael Chiang
7774ed4ae6 Update README.md for linux + cleanup (#601)
Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com>
2023-09-25 23:44:53 -07:00
Michael Yang
11f920f209 Merge pull request #599 from jmorganca/mxyng/install.sh
update install.sh
2023-09-25 18:24:13 -07:00
Michael Yang
6e6b655956 update install.sh 2023-09-25 18:09:44 -07:00
Michael Yang
110ae89a6c Merge pull request #596 from jmorganca/mxyng/install.sh
update install.sh
2023-09-25 17:59:13 -07:00
Michael Yang
5e388f931e check cuda installed before installing 2023-09-25 17:56:43 -07:00
Michael Yang
d5ad41dd7b fix path for wsl user 2023-09-25 17:56:25 -07:00
Michael Yang
d294a11bc9 start service on exit instead of immediately 2023-09-25 17:54:02 -07:00
Michael Yang
93d887e4bc add painter message for exit 2023-09-25 16:30:22 -07:00
Jeffrey Morgan
5306b0269d Update linux.md 2023-09-25 16:10:32 -07:00
Michael Yang
7de0c8345d Merge pull request #595 from jmorganca/mxyng/install.sh
ignore systemctl is-system-running exit code
2023-09-25 15:49:47 -07:00
Michael Yang
1b9dcab3ab ignore systemctl is-system-running exit code 2023-09-25 15:47:45 -07:00
Bruce MacDonald
86279f4ae3 unbound max num gpu layers (#591)
---------

Co-authored-by: Michael Yang <mxyng@pm.me>
2023-09-25 18:36:46 -04:00
Michael Yang
b934bf23e6 exit on unknown distro (#594) 2023-09-25 15:30:58 -07:00
Michael Yang
2b8ef455ad Merge pull request #593 from jmorganca/mxyng/install.sh
update install.sh
2023-09-25 14:09:40 -07:00
Michael Yang
0c5f47177c update install.sh 2023-09-25 14:01:44 -07:00
Michael Yang
1210db2924 Merge pull request #592 from jmorganca/mxyng/install.sh
fix dkms on debian
2023-09-25 12:59:01 -07:00
Michael Yang
d0854bf1e6 fix dkms on debian 2023-09-25 12:57:25 -07:00
Michael Yang
8396463255 Merge pull request #590 from jmorganca/mxyng/install.sh
fix dkms install
2023-09-25 12:17:31 -07:00
Michael Yang
a027bbf4d7 fix dkms install 2023-09-25 12:16:41 -07:00
Michael Yang
ed94a3dd02 Merge pull request #589 from jmorganca/mxyng/install.sh
update install.sh
2023-09-25 11:08:25 -07:00
Michael Yang
f14f62ab3b update install.sh 2023-09-25 11:05:38 -07:00
Jeffrey Morgan
0fb5268496 Update linux.md 2023-09-25 10:06:23 -07:00
Bruce MacDonald
c65edb1506 fix linux installer warning logs (#588) 2023-09-25 11:22:56 -04:00
Twan L
1605af32ec Added a new community project (#574) 2023-09-25 10:40:59 -04:00
Jeffrey Morgan
ee3032ad89 improvements to docs/linux.md 2023-09-24 21:50:07 -07:00
Jeffrey Morgan
5b7a27281d improvements to docs/linux.md 2023-09-24 21:38:23 -07:00
Jeffrey Morgan
d2a784e33e add docs/linux.md 2023-09-24 21:34:44 -07:00
Jeffrey Morgan
413a2e4f91 set DEBIAN_FRONTEND=noninteractive correctly 2023-09-24 20:35:42 -07:00
Patrick Devine
b5614f3ebc fix end-of-line issue with the new prompt (#582) 2023-09-23 17:20:30 -07:00
Jeffrey Morgan
8b2ba9cab8 minor improvements to install.sh 2023-09-23 11:20:39 -04:00
Jeffrey Morgan
e29662ab5c fix minor install script issues on debian 2023-09-23 10:25:47 -04:00
Bruce MacDonald
cbc40aa996 debian installer support (#579)
* debian installer support

- normalize os name to lowercase
- check needed commands are available
- dont check sudo when root user
- share common install commands
- support debian cuda install
- skip aarm cuda install
- system user shared home dir

* refactor and add other platforms (#580)

---------

Co-authored-by: Michael Yang <mxyng@pm.me>
2023-09-23 09:46:47 -04:00
Jeffrey Morgan
5cb82540c9 install.sh: update install url 2023-09-23 09:35:14 -04:00
Jeffrey Morgan
d7849a1dc9 add .env to .dockerignore 2023-09-23 00:53:48 -04:00
Jeffrey Morgan
01c44d687e add multi line strings to final prompt 2023-09-23 00:27:24 -04:00
Jeffrey Morgan
9b12a511ca check other request fields before load short circuit in /api/generate 2023-09-22 23:50:55 -04:00
Jeffrey Morgan
e20362e0d5 fix multi line input in ollama run 2023-09-22 23:49:35 -04:00
Patrick Devine
c928ceb927 add word wrapping for lines which are longer than the terminal width (#553) 2023-09-22 13:36:08 -07:00
Michael Yang
e1a0846483 Merge pull request #571 from jmorganca/mxyng/update-dockerfile
update dockerfile.cuda
2023-09-22 12:34:41 -07:00
Jeffrey Morgan
f997e29e45 Add Dockerfile.build for building linux binaries (#558)
Add `Dockerfile.build` for building linux binaries

---------

Co-authored-by: Michael Yang <mxyng@pm.me>
2023-09-22 15:20:12 -04:00
Patrick Devine
87d9efb364 switch to forked readline lib which doesn't wreck the repl prompt (#578) 2023-09-22 12:17:45 -07:00
Michael Yang
93d3a2568d replace dockerfile 2023-09-22 11:57:38 -07:00
Michael Yang
5a81390b24 update dockerfile.cuda 2023-09-22 11:57:38 -07:00
Michael Yang
a89ef99aed Merge pull request #575 from jmorganca/mxyng/fix-ipv6-only
fix ipv6 parse ip
2023-09-22 11:47:11 -07:00
Bruce MacDonald
dc0c725ceb ubuntu cuda drivers (#576) 2023-09-22 19:43:14 +01:00
Bruce MacDonald
5d71bda478 close llm on interrupt (#577) 2023-09-22 19:41:52 +01:00
Michael Yang
88897a90e4 fix ipv6 parse ip 2023-09-22 10:41:32 -07:00
Bruce MacDonald
9df31c3518 linux installer script (#534)
Co-authored-by: Michael Yang <mxyng@pm.me>
2023-09-22 17:01:03 +01:00
Michael Yang
2044f9d4da Merge pull request #570 from jmorganca/mxyng/head-request
fix HEAD request
2023-09-21 16:56:17 -07:00
Michael Yang
0d186f3b33 Merge pull request #569 from jmorganca/mxyng/update-submodules
silence warm up log
2023-09-21 16:52:42 -07:00
Michael Yang
82f5b66c01 register HEAD /api/tags 2023-09-21 16:38:03 -07:00
Michael Yang
c986694367 fix HEAD / request
HEAD request should respond like their GET counterparts except without a
response body.
2023-09-21 16:35:58 -07:00
Michael Yang
058d0cd04b silence warm up log 2023-09-21 14:53:33 -07:00
Michael Yang
ee1c994d15 update submodule (#567) 2023-09-21 16:22:23 -04:00
Bruce MacDonald
4cba75efc5 remove tmp directories created by previous servers (#559)
* remove tmp directories created by previous servers

* clean up on server stop

* Update routes.go

* Update server/routes.go

Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com>

* create top-level temp ollama dir

* check file exists before creating

---------

Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com>
Co-authored-by: Michael Yang <mxyng@pm.me>
2023-09-21 20:38:49 +01:00
Michael Yang
8c83701e9f Merge pull request #566 from jmorganca/mxyng/api-check-model-exists
Use API to check if model exists and pull if necessary
2023-09-21 10:35:14 -07:00
Michael Yang
6137b12799 validate existence and pull model using api 2023-09-21 09:55:34 -07:00
Michael Yang
1fabba474b refactor default allow origins
this should be less error prone
2023-09-21 09:42:25 -07:00
Michael Yang
765770efdb Merge pull request #562 from jmorganca/mxyng/fix-ollama-host
fix OLLAMA_HOST parsing for ip6
2023-09-20 19:54:47 -07:00
Michael Yang
9297ff8330 fix OLLAMA_HOST parsing for ip6 2023-09-20 18:52:57 -07:00
Michael Yang
ee4fd16f2c Merge pull request #556 from jmorganca/pack-cuda
pack in cuda libs
2023-09-20 15:02:36 -07:00
Michael Yang
a9ed7cc6aa rename generate.go 2023-09-20 14:42:17 -07:00
Michael Yang
6c6a31a1e8 embed libraries using cmake 2023-09-20 14:41:57 -07:00
Bruce MacDonald
fc6ec356fc remove libcuda.so 2023-09-20 20:36:14 +01:00
Bruce MacDonald
1255bc9b45 only package 11.8 runner 2023-09-20 20:00:41 +01:00
Michael Yang
084e4c782a Merge pull request #557 from jmorganca/mxyng/cleanup
fix impossible condition
2023-09-20 11:51:01 -07:00
Michael Yang
58ffa03d8b fix impossible condition 2023-09-20 11:27:44 -07:00
Michael Yang
637f8bc6a5 Merge pull request #536 from jmorganca/mxyng/redirect-uploads
explicitly follow upload redirects
2023-09-20 11:27:03 -07:00
Michael Yang
499e9007a5 pick chunksize based on location 2023-09-20 11:10:24 -07:00
Bruce MacDonald
b9bb5ca288 use cuda_version 2023-09-20 17:58:16 +01:00
Bruce MacDonald
4e8be787c7 pack in cuda libs 2023-09-20 17:40:42 +01:00
Michael Yang
aa45d7c1df draft: explicitly follow upload redirects 2023-09-19 13:36:58 -07:00
Michael Yang
e35565c567 Merge pull request #555 from jmorganca/mxyng/fix-windows-startup
fix build
2023-09-19 10:51:58 -07:00
Michael Yang
a5520bfb42 fix build 2023-09-19 10:42:24 -07:00
Michael Yang
2627c464ba Merge pull request #554 from jmorganca/mxyng/fix-windows-startup
fix mkdir on windows
2023-09-19 09:42:12 -07:00
Michael Yang
b58d5d16b0 fix mkdir on windows 2023-09-19 09:41:13 -07:00
Patrick Devine
24580df958 only add a layer if there is actual data (#535) 2023-09-18 13:47:45 -07:00
Patrick Devine
80dd44e80a Cmd changes (#541) 2023-09-18 12:26:56 -07:00
James Braza
94e1d96b29 Updated README section on community projects for table (#550) 2023-09-18 15:22:50 -04:00
Bruce MacDonald
66003e1d05 subprocess improvements (#524)
* subprocess improvements

- increase start-up timeout
- when runner fails to start fail rather than timing out
- try runners in order rather than choosing 1 runner
- embed metal runner in metal dir rather than gpu
- refactor logging and error messages

* Update llama.go

* Update llama.go

* simplify by using glob
2023-09-18 15:16:32 -04:00
Michael Yang
c345053a8b Merge pull request #537 from jmorganca/mxyng/upload
fix error on upload chunk
2023-09-15 17:48:39 -07:00
Michael Yang
08d7c2a944 fix error on upload chunk 2023-09-15 15:59:30 -07:00
Michael Yang
bc9573dcb1 Merge pull request #530 from jmorganca/mxyng/progresswriter
implement ProgressWriter
2023-09-15 12:43:46 -07:00
Michael Yang
e53bc57d4d split uploadBlobChunked 2023-09-14 17:22:05 -07:00
Michael Yang
f0b398d17f implement ProgressWriter 2023-09-14 17:22:04 -07:00
Patrick Devine
8efbc5df55 DRAFT: add a simple python client to access ollama (#522) 2023-09-14 16:37:38 -07:00
Michael Yang
ccc3e9ac6d Merge pull request #531 from jmorganca/mxyng/content-length
set request.ContentLength
2023-09-14 13:33:11 -07:00
Michael Yang
daa4f096f9 set request.ContentLength
This informs the HTTP client the content length is known and disables
chunked Transfer-Encoding
2023-09-14 13:32:44 -07:00
Michael Yang
3ee85f1c6c Merge pull request #526 from jmorganca/mxyng/cleanup
remove unused
2023-09-14 13:10:59 -07:00
Bruce MacDonald
2540c9181c support for packaging in multiple cuda runners (#509)
* enable packaging multiple cuda versions
* use nvcc cuda version if available

---------

Co-authored-by: Michael Yang <mxyng@pm.me>
2023-09-14 15:08:13 -04:00
Michael Yang
83ffb154bc Merge pull request #507 from jmorganca/mxyng/build
update docker image
2023-09-14 11:25:59 -07:00
Michael Yang
9aa192c812 update cuda docker image 2023-09-14 11:25:20 -07:00
Matt Williams
fc8707686f Update API docs (#527)
* Update API docs

Signed-off-by: Matt Williams <m@technovangelist.com>

* strange TOC was getting auto generated

Signed-off-by: Matt Williams <m@technovangelist.com>

* Update docs/api.md

Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>

* Update docs/api.md

Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>

* Update docs/api.md

Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>

* Update api.md

---------

Signed-off-by: Matt Williams <m@technovangelist.com>
Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
Co-authored-by: Michael Chiang <mchiang0610@users.noreply.github.com>
2023-09-14 08:51:26 -07:00
Michael Yang
f89c23764b Merge pull request #525 from jmorganca/mxyng/falcon-decode
fix: add falcon.go
2023-09-13 15:08:47 -07:00
Michael Yang
e6881cabd0 remove unused 2023-09-13 14:48:33 -07:00
Michael Yang
d028853879 fix: add falcon.go 2023-09-13 14:47:37 -07:00
Michael Yang
949553db23 Merge pull request #519 from jmorganca/mxyng/decode
Mxyng/decode
2023-09-13 12:43:57 -07:00
Michael Yang
0c5a454361 fix model type for 70b 2023-09-12 15:12:59 -07:00
Bruce MacDonald
f59c4d03f7 fix ggml arm64 cuda build (#520) 2023-09-12 17:06:48 -04:00
Michael Yang
7dee25a07f fix falcon decode
get model and file type from bin file
2023-09-12 12:34:53 -07:00
Bruce MacDonald
f221637053 first pass at linux gpu support (#454)
* linux gpu support
* handle multiple gpus
* add cuda docker image (#488)
---------

Co-authored-by: Michael Yang <mxyng@pm.me>
2023-09-12 11:04:35 -04:00
Patrick Devine
45ac07cd02 create the blobs directory correctly (#508) 2023-09-11 14:54:52 -07:00
Jeffrey Morgan
7d749cc787 fix darwin build script 2023-09-11 16:31:46 -04:00
Patrick Devine
e7e91cd71c add autoprune to remove unused layers (#491) 2023-09-11 11:46:35 -07:00
Jeffrey Morgan
3920e15386 add model format to config layer (#497) 2023-09-09 17:53:44 -04:00
Michael Yang
41e976edde Merge pull request #492 from jmorganca/mxyng/nil-pointer
fix nil pointer dereference
2023-09-07 17:25:23 -07:00
Michael Yang
de227b620f fix nil pointer dereference 2023-09-07 17:24:31 -07:00
Michael Yang
63def6ca49 Merge pull request #487 from jmorganca/mxyng/dockerignore
update dockerignore
2023-09-07 14:16:17 -07:00
Michael Yang
738fe9c4aa Merge pull request #486 from jmorganca/mxyng/fix-push
fix: retry push on expired token
2023-09-07 13:58:34 -07:00
Michael Yang
a8da0bacbe update dockerignore 2023-09-07 13:36:25 -07:00
Michael Yang
bf146fb072 fix retry on unauthorized chunk 2023-09-07 12:02:04 -07:00
Michael Yang
f0f4943577 fix get auth token 2023-09-07 12:01:56 -07:00
Bruce MacDonald
09dd2aeff9 GGUF support (#441) 2023-09-07 13:55:37 -04:00
Alexander Pepper
07b4074e7b [docs] Improve build instructions (#482)
Go is required and not installed by default.
2023-09-07 06:43:26 -04:00
Jeffrey Morgan
61dda6a5e0 set minimum CMAKE_OSX_DEPLOYMENT_TARGET to 11.0 2023-09-06 19:56:50 -04:00
Michael Yang
e1f9ced568 Merge pull request #479 from jmorganca/mxyng/dockerfile
update dockerfile
2023-09-06 15:44:24 -07:00
Michael Yang
9795b43d93 update dockerfile 2023-09-06 15:31:25 -07:00
Michael Yang
0980d5c7e3 Merge pull request #478 from jmorganca/mxyng/cleanup
remove unused openssh key types
2023-09-06 15:18:54 -07:00
Michael Yang
0dae34b6a7 remove unused openssh key types 2023-09-06 14:34:09 -07:00
Michael Yang
83c6be1666 fix model manifests (#477) 2023-09-06 17:30:08 -04:00
Patrick Devine
1adfa67589 tighten up the error string for ollama show flags (#476) 2023-09-06 13:38:49 -07:00
Patrick Devine
790d24eb7b add show command (#474) 2023-09-06 11:04:17 -07:00
Jeffrey Morgan
7de300856b use osPath in gpu check 2023-09-05 21:52:21 -04:00
Jeffrey Morgan
213ffdb548 macos amd64 compatibility fixes 2023-09-05 21:33:31 -04:00
Michael Yang
d42d88386a Merge pull request #473 from jmorganca/mxyng/fix-manifest-path
create manifests directory
2023-09-05 17:37:41 -07:00
Ackermann Yuriy
154f24af91 Added missing options params to the embeddings docs (#472) 2023-09-05 20:18:49 -04:00
Michael Yang
a1ecdd36d5 create manifests directory 2023-09-05 17:10:40 -07:00
Bruce MacDonald
d18282bfda metal: add missing barriers for mul-mat (#469) 2023-09-05 19:37:13 -04:00
Michael Yang
9ae76ba8c9 Merge pull request #471 from jmorganca/mxyng/fix-empty-response
fix empty response
2023-09-05 15:23:05 -07:00
Michael Yang
2bc06565c7 fix empty response 2023-09-05 15:03:24 -07:00
Michael Yang
d1c2558f7e Merge pull request #461 from jmorganca/mxyng/fix-inherit-params
fix inherit params
2023-09-05 12:30:23 -07:00
Michael Yang
7b5aefb427 Merge pull request #462 from jmorganca/mxyng/rm-marshal-prompt
remove marshalPrompt which is no longer needed
2023-09-05 11:48:41 -07:00
Michael Yang
06ef90c051 fix parameter inheritence
parameters are not inherited because they are processed differently from
other layer. fix this by explicitly merging the inherited params into
the new params. parameter values defined in the new modelfile will
override those defined in the inherited modelfile. array lists are
replaced instead of appended
2023-09-05 11:40:20 -07:00
Michael Yang
7efbc84320 Merge pull request #464 from jmorganca/mxyng/fix-num-keep
fix num_keep
2023-09-05 11:30:45 -07:00
Michael Yang
e9f6df7dca use slices.DeleteFunc 2023-09-05 09:56:59 -07:00
Jeffrey Morgan
7fa6e51686 generate binary dependencies based on GOARCH on macos (#459) 2023-09-05 12:53:57 -04:00
Michael Yang
8dc68417e7 Merge pull request #463 from jmorganca/mxyng/fix-last-token
fix not forwarding last token
2023-09-05 09:01:32 -07:00
Michael Yang
681f3c4c42 fix num_keep 2023-09-03 17:47:49 -04:00
Michael Yang
59a705525c fix not forwarding last token 2023-09-03 17:46:50 -04:00
Michael Yang
5d3f314b0b remove marshalPrompt which is no longer needed 2023-09-03 17:01:05 -04:00
Michael Yang
adaa13088b Merge pull request #457 from sqs/dont-html-escape-prompt
do not HTML-escape prompt
2023-09-01 17:41:53 -07:00
Quinn Slack
62d29b2157 do not HTML-escape prompt
The `html/template` package automatically HTML-escapes interpolated strings in templates. This behavior is undesirable because it causes prompts like `<h1>hello` to be escaped to `&lt;h1&gt;hello` before being passed to the LLM.

The included test case passes, but before the code change, it failed:

```
--- FAIL: TestModelPrompt
    images_test.go:21: got "a&lt;h1&gt;b", want "a<h1>b"
```
2023-09-01 17:16:38 -05:00
Michael Yang
ed19d10aa5 update readme (#451)
* update readme

* readme: more run examples
2023-09-01 16:44:14 -04:00
Michael Yang
36c2f45c40 Merge pull request #450 from jmorganca/mxyng/update-readme
update readme
2023-09-01 08:21:49 -07:00
Michael Yang
742226625f update readme 2023-09-01 10:54:31 -04:00
Matt Williams
6bb8a16ccb Merge pull request #273 from jmorganca/matt/moreexamples
Create a sentiments example
2023-08-31 16:31:59 -07:00
Jeffrey Morgan
a5dbcf2e73 app: dont package ggml-metal.metal 2023-08-31 17:41:09 -04:00
Michael Yang
9304f0e7a8 Merge pull request #443 from jmorganca/mxyng/fix-list-models
windows: fix filepath bugs
2023-08-31 14:19:10 -07:00
Michael Yang
6578b2f8a1 Merge pull request #448 from callmephilip/patch-1
fix spelling errors in example prompts
2023-08-31 08:57:07 -07:00
Michael Yang
1c8fd627ad windows: fix create modelfile 2023-08-31 09:47:10 -04:00
Michael Yang
ae950b00f1 windows: fix delete 2023-08-31 09:47:10 -04:00
Michael Yang
eeb40a672c fix list models for windows 2023-08-31 09:47:10 -04:00
Michael Yang
0f541a0367 s/ListResponseModel/ModelResponse/ 2023-08-31 09:47:10 -04:00
Philip Nuzhnyi
1363f537ce fix spelling errors in prompt 2023-08-31 10:02:46 +01:00
Jeffrey Morgan
bc3e21fdc6 update README.md 2023-08-30 17:56:14 -04:00
Jeffrey Morgan
a82eb275ff update docs for subprocess 2023-08-30 17:54:02 -04:00
Bruce MacDonald
f964aea9a2 remove test not applicate to subprocess 2023-08-30 16:36:11 -04:00
Bruce MacDonald
42998d797d subprocess llama.cpp server (#401)
* remove c code
* pack llama.cpp
* use request context for llama_cpp
* let llama_cpp decide the number of threads to use
* stop llama runner when app stops
* remove sample count and duration metrics
* use go generate to get libraries
* tmp dir for running llm
2023-08-30 16:35:03 -04:00
Quinn Slack
f4432e1dba treat stop as stop sequences, not exact tokens (#442)
The `stop` option to the generate API is a list of sequences that should cause generation to stop. Although these are commonly called "stop tokens", they do not necessarily correspond to LLM tokens (per the LLM's tokenizer). For example, if the caller sends a generate request with `"stop":["\n"]`, then generation should stop on any token containing `\n` (and trim `\n` from the output), not just if the token exactly matches `\n`. If `stop` were interpreted strictly as LLM tokens, then it would require callers of the generate API to know the LLM's tokenizer and enumerate many tokens in the `stop` list.

Fixes https://github.com/jmorganca/ollama/issues/295.
2023-08-30 11:53:42 -04:00
Michael Yang
982c535428 Merge pull request #428 from jmorganca/mxyng/upload-chunks
update upload chunks
2023-08-30 07:47:17 -07:00
Michael Yang
7df342a6ea Merge pull request #421 from jmorganca/mxyng/f16-metal
allow F16 to use metal
2023-08-29 06:32:59 -07:00
Patrick Devine
8bbff2df98 add model IDs (#439) 2023-08-28 20:50:24 -07:00
Michael Yang
16b06699fd remove unused parameter 2023-08-28 18:35:18 -04:00
Michael Yang
246dc65417 loosen http status code checks 2023-08-28 18:34:53 -04:00
Michael Yang
865fceb73c chunked pipe 2023-08-28 18:34:53 -04:00
Michael Yang
72266c7684 bump chunk size to 95MB 2023-08-28 18:34:53 -04:00
Jeffrey Morgan
d3b838ce60 update orca to orca-mini 2023-08-27 13:26:30 -04:00
Michael Yang
e639a12fa1 Merge pull request #412 from jmorganca/mxyng/update-readme
update README.md
2023-08-26 21:26:34 -07:00
Michael Yang
e82fcf30c6 Merge pull request #420 from jmorganca/mxyng/34b-mem-check
add 34b to mem check
2023-08-26 14:15:52 -07:00
Michael Yang
495e8b0a6a Merge pull request #426 from jmorganca/default-template
set default template
2023-08-26 14:15:38 -07:00
Michael Yang
59734ca24d set default template 2023-08-26 12:20:48 -07:00
Jeffrey Morgan
22ab7f5f88 default host to 127.0.0.1, fixes #424 2023-08-26 11:59:28 -07:00
Michael Yang
b25dd1795d allow F16 to use metal
warning F16 uses significantly more memory than quantized model so the
standard requires don't apply.
2023-08-26 08:38:48 -07:00
Michael Yang
304f2b6c96 add 34b to mem check 2023-08-26 08:29:21 -07:00
Quinn Slack
2ecc3a33c3 delete all models (not just 1st) in ollama rm (#415)
Previously, `ollama rm model1 model2 modelN` would only delete `model1`. The other model command-line arguments would be silently ignored. Now, all models mentioned are deleted.
2023-08-26 00:47:56 -07:00
Jeffrey Morgan
ee6e1df118 add codellama to model list in readme 2023-08-25 20:44:26 -07:00
Jeffrey Morgan
177b69a211 add missing entries for 34B 2023-08-25 18:35:35 -07:00
Michael Yang
dad63f0821 Merge pull request #411 from jmorganca/mxyng/34b
patch llama.cpp for 34B
2023-08-25 11:59:05 -07:00
Michael Yang
041f9ad1a1 update README.md 2023-08-25 11:44:25 -07:00
Michael Yang
7a378f8b66 patch llama.cpp for 34B 2023-08-25 10:06:55 -07:00
Michael Yang
de0bdd7f29 Merge pull request #405 from jmorganca/mxyng/34b
add 34b model type
2023-08-24 10:37:22 -07:00
Michael Yang
b1cececb8e add 34b model type 2023-08-24 10:35:44 -07:00
Michael Yang
e0d39fa3bf Merge pull request #398 from jmorganca/mxyng/cleanup
Mxyng/cleanup
2023-08-22 15:51:41 -07:00
Michael Yang
968ced2e71 Merge pull request #393 from jmorganca/mxyng/net-url
use url.URL
2023-08-22 15:51:33 -07:00
Michael Yang
32d1a00017 remove unused requestContextKey 2023-08-22 10:49:54 -07:00
Michael Yang
04e2128273 move upload funcs to upload.go 2023-08-22 10:49:53 -07:00
Michael Yang
2cc634689b use url.URL 2023-08-22 10:49:07 -07:00
Michael Yang
8f827641b0 Merge pull request #397 from jmorganca/mxyng/release-mode
build release mode
2023-08-22 10:48:44 -07:00
Michael Yang
95187d7e1e build release mode 2023-08-22 09:52:43 -07:00
Michael Yang
9ec7e37534 Merge pull request #392 from jmorganca/mxyng/version
add version
2023-08-22 09:50:25 -07:00
Michael Yang
2c7f956b38 add version 2023-08-22 09:40:58 -07:00
Jeffrey Morgan
a9f6c56652 fix FROM instruction erroring when referring to a file 2023-08-22 09:39:42 -07:00
Ryan Baker
0a892419ad Strip protocol from model path (#377) 2023-08-21 21:56:56 -07:00
Jeffrey Morgan
e3054fc74e add .env to .dockerignore 2023-08-21 09:32:02 -07:00
Michael Yang
23c2485044 Merge pull request #381 from jmorganca/mxyng/fix-push-chunks
retry on unauthorized chunk push
2023-08-18 13:49:25 -07:00
Michael Yang
386c66f285 Merge pull request #378 from jmorganca/mxyng/copy-metadata-from-source
copy metadata from source
2023-08-18 13:49:09 -07:00
Michael Yang
3b49315f97 retry on unauthorized chunk push
The token printed for authorized requests has a lifetime of 1h. If an
upload exceeds 1h, a chunk push will fail since the token is created on
a "start upload" request.

This replaces the Pipe with SectionReader which is simpler and
implements Seek, a requirement for makeRequestWithRetry. This is
slightly worse than using a Pipe since the progress update is directly
tied to the chunk size instead of controlled separately.
2023-08-18 11:23:47 -07:00
Michael Yang
5ca05c2e88 fix ModelType() 2023-08-18 11:23:38 -07:00
Michael Yang
7eda70f23b copy metadata from source 2023-08-17 21:55:25 -07:00
Jeffrey Morgan
3d79b414d3 app: package ggml-metal.metal from correct directory 2023-08-17 23:55:45 -04:00
Michael Yang
c84bbf1dd6 Merge pull request #376 from jmorganca/mxyng/from-map-ignore-nil
ignore nil map values
2023-08-17 15:57:12 -07:00
Michael Yang
f723bf0879 ignore nil map values 2023-08-17 15:50:46 -07:00
Michael Yang
cbf725a9ba Merge pull request #375 from jmorganca/mxyng/fix-push
fix push manifest
2023-08-17 15:33:31 -07:00
Michael Yang
086449b6c7 fmt 2023-08-17 15:32:31 -07:00
Michael Yang
3cbc6a5c01 fix push manifest 2023-08-17 15:28:12 -07:00
Jeffrey Morgan
54bb49a502 parse protocol for OLLAMA_HOST 2023-08-17 18:20:44 -04:00
Michael Yang
cabaada956 Merge pull request #372 from jmorganca/mxyng/string-types
model and file type as strings
2023-08-17 15:10:59 -07:00
Michael Yang
a894cc792d model and file type as strings 2023-08-17 12:08:04 -07:00
Bruce MacDonald
519f4d98ef add embed docs for modelfile 2023-08-17 13:37:42 -04:00
Michael Yang
b963a83559 Merge pull request #364 from jmorganca/chunked-uploads
reimplement chunked uploads
2023-08-17 09:58:51 -07:00
Michael Yang
bf6688abe6 Merge pull request #360 from jmorganca/fix-request-copies
Fix request copies
2023-08-17 09:58:42 -07:00
Bruce MacDonald
6005b157c2 retry download on network errors 2023-08-17 10:31:45 -04:00
Patrick Devine
14220d9833 set the scopes correctly (#368) 2023-08-16 21:42:02 -07:00
Michael Chiang
8ca50f24f3 fix nous-hermes model file size listing in readme (#367)
fix nous-hermes model file size listing in readme
2023-08-16 23:42:00 -04:00
Michael Chiang
c149fc3143 Update README.md 2023-08-16 22:54:55 -04:00
Michael Chiang
afbc763dac adding link to models directly available on ollama (#366)
- adding link to models directly available on ollama

- ability to push your own models to the library will come in the future
2023-08-16 22:53:27 -04:00
Michael Yang
5dfe91be8b reimplement chunked uploads 2023-08-16 14:50:24 -07:00
Michael Yang
9f944c00f1 push: retry on unauthorized 2023-08-16 11:35:33 -07:00
Michael Yang
56e87cecb1 images: remove body copies 2023-08-16 10:30:41 -07:00
Jeffrey Morgan
5ee6116420 set default OLLAMA_HOST to http://localhost:11434 2023-08-16 12:22:59 -04:00
Michael Yang
5d9a4cd251 Merge pull request #348 from jmorganca/cross-repo-mount
cross repo blob mount
2023-08-16 09:20:36 -07:00
Michael Yang
0ebec07569 Merge pull request #345 from jmorganca/exit-non-zero
set non-zero error code on error
2023-08-16 09:20:28 -07:00
Matt Williams
08265515b3 Merge pull request #303 from jmorganca/matt/dockerit
DockerIt example
2023-08-16 08:04:34 -07:00
Blake Mizerany
67e593e355 cmd: support OLLAMA_CLIENT_HOST environment variable (#262)
* cmd: support OLLAMA_HOST environment variable

This commit adds support for the OLLAMA_HOST environment
variable. This variable can be used to specify the host to which
the client should connect. This is useful when the client is
running somewhere other than the host where the server is running.

The new api.FromEnv function is used to read configure clients from the
environment. Clients wishing to use the environment variable being
consistent with the Ollama CLI can use this new function.

* Update api/client.go

Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com>

* Update api/client.go

Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com>

---------

Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com>
2023-08-16 11:03:48 -04:00
Jeffrey Morgan
d15c7622b9 Update orca to orca-mini in README.md 2023-08-15 21:10:28 -04:00
Bruce MacDonald
1deb35ca64 use loaded llm for generating model file embeddings 2023-08-15 16:12:02 -03:00
Bruce MacDonald
e2de886831 do not regenerate embeddings 2023-08-15 16:10:22 -03:00
Bruce MacDonald
f0d7c2f5ea retry download on network errors 2023-08-15 15:07:19 -03:00
Bruce MacDonald
12052a7624 always remove from in progress map on download 2023-08-15 13:20:32 -03:00
Bruce MacDonald
23e1da778d Add context to api docs 2023-08-15 11:43:22 -03:00
Bruce MacDonald
326de48930 use loaded llm for embeddings 2023-08-15 10:50:54 -03:00
Bruce MacDonald
18f2cb0472 dont log fatal 2023-08-15 10:39:59 -03:00
Bruce MacDonald
53bc36d207 Update modelfile.md 2023-08-15 09:23:36 -03:00
Michael Yang
4dcf5c3e0b Merge pull request #349 from jmorganca/close-files
close open files
2023-08-14 16:15:58 -07:00
Michael Yang
d1b2f532b9 Merge pull request #350 from jmorganca/update-llama-cpp
update llama.cpp
2023-08-14 16:15:51 -07:00
Michael Yang
e26085b921 close open files 2023-08-14 16:08:06 -07:00
Michael Yang
f7b613332c update llama.cpp 2023-08-14 15:47:00 -07:00
Michael Yang
f594c8eb91 cross repo mount 2023-08-14 15:07:35 -07:00
Michael Yang
76b85bc0e9 set non-zero error code on error 2023-08-14 14:09:58 -07:00
Bruce MacDonald
af98a1773f update python example 2023-08-14 16:38:44 -03:00
Bruce MacDonald
9ae9a89883 Update modelfile.md 2023-08-14 16:26:53 -03:00
Bruce MacDonald
648f0974c6 python example 2023-08-14 15:27:13 -03:00
Bruce MacDonald
fc5230dffa Add context to api docs 2023-08-14 15:23:24 -03:00
Bruce MacDonald
2ab20095b3 log embedding eval timing 2023-08-14 12:15:55 -04:00
Bruce MacDonald
f020e1d519 always remove from in progress map on download 2023-08-14 13:09:20 -03:00
Bruce MacDonald
4b2d366c37 Update llama.go 2023-08-14 12:55:50 -03:00
Bruce MacDonald
56fd4e4ef2 log embedding eval timing 2023-08-14 12:51:31 -03:00
Bruce MacDonald
2c8b680b03 use file info for embeddings cache 2023-08-14 12:11:04 -03:00
Bruce MacDonald
99b6b60085 use model bin digest for embed digest 2023-08-14 11:57:12 -03:00
Bruce MacDonald
74f00474e1 Merge pull request #340 from gusanmaz/main
Update langchainpy.md
2023-08-14 09:38:42 -04:00
Bruce MacDonald
e9a9580bdd do not regenerate embeddings
- re-use previously evaluated embeddings when possible
- change embeddings digest identifier to be based on model name and embedded file path
2023-08-14 10:34:17 -03:00
Güvenç Usanmaz
4c33a9ac67 Update langchainpy.md
base_url value for Ollama object creation is corrected.
2023-08-14 12:12:56 +03:00
Jeffrey Morgan
22885aeaee update llama.cpp to f64d44a 2023-08-12 22:47:15 -04:00
Jeffrey Morgan
ed969d2a06 add LiteLLM to README.md 2023-08-12 20:47:57 -04:00
Patrick Devine
d9cf18e28d add maximum retries when pushing (#334) 2023-08-11 15:41:55 -07:00
Jeffrey Morgan
1556162c90 create .ollama directory if it doesnt exist 2023-08-11 15:35:55 -07:00
Jeffrey Morgan
148f0225c0 create .ollama directory if it doesnt exist 2023-08-11 15:33:11 -07:00
Matt Williams
4e07941b1e Merge pull request #329 from jmorganca/matt/tutorials
Add tutorials for using Langchain with ollama
2023-08-11 15:19:39 -07:00
Matt Williams
202c29c21a resolving bmacd comment
Signed-off-by: Matt Williams <m@technovangelist.com>
2023-08-11 13:51:44 -07:00
Matt Williams
c1c871620a Update docs/tutorials/langchainjs.md
Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
2023-08-11 13:48:46 -07:00
Matt Williams
a21a8bef56 Update docs/tutorials/langchainjs.md
Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
2023-08-11 13:48:35 -07:00
Matt Williams
522726228a Update docs/tutorials.md
Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
2023-08-11 13:48:16 -07:00
Patrick Devine
9770e3b325 Generate private/public keypair for use w/ auth (#324) 2023-08-11 10:58:23 -07:00
Michael Yang
d617823355 Merge pull request #333 from jmorganca/off-by-one
ggml: fix off by one error
2023-08-11 10:51:06 -07:00
Michael Yang
6ed991c8e2 ggml: fix off by one error
remove used Unknown FileType
2023-08-11 10:45:22 -07:00
Michael Chiang
e41576e768 Merge branch 'new-syntax' of https://github.com/jmorganca/ollama into new-syntax 2023-08-11 09:00:43 -07:00
Michael Chiang
155c1640f1 add demo video 2023-08-11 08:58:57 -07:00
Jeffrey Morgan
f7d4947573 update header note for privategpt example 2023-08-11 08:52:26 -07:00
Jeffrey Morgan
0d7a133b15 Update README.md for privategpt 2023-08-11 08:29:19 -07:00
Jeffrey Morgan
e863066144 clean up privategpt example 2023-08-11 00:34:52 -07:00
Jeffrey Morgan
89a92477ad fix README.md for privategpt example 2023-08-11 00:26:33 -07:00
Jeffrey Morgan
5cda9cdd13 add instructions to privategpt example to try another model 2023-08-11 00:23:31 -07:00
Jeffrey Morgan
e5914eb320 add venv instructions to privategpt example 2023-08-11 00:20:22 -07:00
Jeffrey Morgan
ab78f48ff8 more setup instructions for privategpt example 2023-08-11 00:19:25 -07:00
Jeffrey Morgan
b1c88eb978 add privategpt example 2023-08-11 00:18:13 -07:00
Jeffrey Morgan
efae43f932 update langchain examples 2023-08-10 23:35:19 -07:00
Matt Williams
d3ee1329e9 Add tutorials for using Langchain with ollama
Signed-off-by: Matt Williams <m@technovangelist.com>
2023-08-10 21:27:37 -07:00
Jeffrey Morgan
700c719422 remove document example for now 2023-08-10 20:25:01 -07:00
Jeffrey Morgan
55aa4aaf0f add langchain examples 2023-08-10 20:23:50 -07:00
Jeffrey Morgan
820f95c4c4 add example 2023-08-10 20:13:47 -07:00
Michael Yang
3a05d3def7 Merge pull request #326 from asarturas/document-num-gqa-parameter
Document num_gqa parameter
2023-08-10 18:18:38 -07:00
Michael Yang
edac9c2446 Merge pull request #325 from jmorganca/mxyng/typo
s/parmeter/parameter/
2023-08-10 17:30:02 -07:00
Arturas Smorgun
d9c2687fd0 document default num_gqa to 1, as it's applicable to most models
Co-authored-by: Michael Yang <mxyng@pm.me>
2023-08-11 01:29:40 +01:00
Michael Yang
6517bcc53c Merge pull request #290 from jmorganca/add-adapter-layers
implement loading ggml lora adapters through the modelfile
2023-08-10 17:23:01 -07:00
Michael Yang
4f54f25b66 Merge pull request #272 from jmorganca/decode-ggml-2
Decode ggml 2: Use decoded values
2023-08-10 17:22:48 -07:00
Michael Yang
6a6828bddf Merge pull request #167 from jmorganca/decode-ggml
partial decode ggml bin for more info
2023-08-10 17:22:40 -07:00
Arturas Smorgun
c0e7a3b90e Document num_gqa parameter
It is required to be adjusted for some models, see https://github.com/jmorganca/ollama/issues/320 for more context
2023-08-11 00:58:09 +01:00
Michael Yang
f27bc261cf s/parmeter/parameter/ 2023-08-10 16:26:06 -07:00
Michael Yang
21e6197c0b Merge pull request #322 from jmorganca/no-comment-warning
no warning on comments
2023-08-10 16:24:41 -07:00
Michael Yang
75d7d681c9 Merge pull request #323 from jmorganca/fix-convert-int
fix could not convert int
2023-08-10 16:24:33 -07:00
Michael Yang
81d8d7b73f fix could not convert int 2023-08-10 16:24:17 -07:00
Michael Yang
5c0de09a07 Merge pull request #321 from jmorganca/fix-parameters
length check for parameters
2023-08-10 16:23:10 -07:00
Michael Yang
20bf000e55 no warning on comments 2023-08-10 16:22:38 -07:00
Michael Yang
40d0c4a1dc length check for parameters 2023-08-10 16:09:02 -07:00
Jeffrey Morgan
be889b2f81 add docs for /api/embeddings 2023-08-10 15:56:59 -07:00
Jeffrey Morgan
7e26a8df31 cmd: use environment variables for server options 2023-08-10 14:17:53 -07:00
Jeffrey Morgan
4ab1da38ba guard around id() 2023-08-10 14:11:54 -07:00
Patrick Devine
be989d89d1 Token auth (#314) 2023-08-10 11:34:25 -07:00
Soroush Javadi
bea683e3bf cmd: check GetBlobsPath error (#317)
The error returned by `server.GetBlobsPath` in `showLayer` was never
checked. Check the error and return if not nil. Also, make newlines at
the end of error messages consistent and fix a typo.
2023-08-10 09:57:49 -07:00
Jeffrey Morgan
178237d37f tweak README.md 2023-08-10 09:54:03 -07:00
Jeffrey Morgan
76a678af34 app: dont always show installer window on top now that it lives in the dock 2023-08-10 09:53:46 -07:00
Jeffrey Morgan
f65169b13e clean up cli flags 2023-08-10 09:28:56 -07:00
Jeffrey Morgan
040a5b9750 clean up cli flags 2023-08-10 09:27:03 -07:00
Michael Yang
37c9a8eea9 add lora docs 2023-08-10 09:23:40 -07:00
Michael Yang
6de5d032e1 implement loading ggml lora adapters through the modelfile 2023-08-10 09:23:39 -07:00
Michael Yang
d791df75dd check memory requirements before loading 2023-08-10 09:23:11 -07:00
Michael Yang
020a3b3530 disable gpu for q5_0, q5_1, q8_0 quants 2023-08-10 09:23:11 -07:00
Michael Yang
fccf8d179f partial decode ggml bin for more info 2023-08-10 09:23:10 -07:00
Bruce MacDonald
5b5cc9c9f1 embeddings endpoint 2023-08-10 11:49:55 -04:00
Bruce MacDonald
4b3507f036 embeddings endpoint
Co-Authored-By: Jeffrey Morgan <jmorganca@gmail.com>
2023-08-10 11:45:57 -04:00
Jun Tian
5ebce03c77 Add an example on multiline input (#311) 2023-08-10 08:22:28 -07:00
Bruce MacDonald
5e25f801ed fix a typo in the tweetwriter example Modelfile 2023-08-10 10:19:53 -04:00
Bruce MacDonald
8e1234b758 fix embeddings invalid values 2023-08-10 10:17:00 -04:00
Soroush Javadi
10885986b8 fix a typo in the tweetwriter example Modelfile 2023-08-10 15:12:48 +03:30
Bruce MacDonald
984c9c628c fix embeddings invalid values 2023-08-09 16:50:53 -04:00
Bruce MacDonald
43c40c500e add embed docs for modelfile 2023-08-09 16:14:58 -04:00
Bruce MacDonald
c4861360ec remove embed docs 2023-08-09 16:14:19 -04:00
Bruce MacDonald
9738ef85db allow for concurrent pulls of the same files 2023-08-09 11:35:24 -04:00
Bruce MacDonald
ac971c56d1 Update images.go 2023-08-09 11:31:54 -04:00
Bruce MacDonald
8228d166ce pr comments 2023-08-09 11:31:54 -04:00
Bruce MacDonald
907e6c56b3 unlock downloadu in case or requestDownload err 2023-08-09 11:31:54 -04:00
Bruce MacDonald
868e3b31c7 allow for concurrent pulls of the same files 2023-08-09 11:31:54 -04:00
Bruce MacDonald
09d8bf6730 fix build errors 2023-08-09 10:45:57 -04:00
Bruce MacDonald
7a5f3616fd embed text document in modelfile 2023-08-09 10:26:19 -04:00
Jeffrey Morgan
cff002b824 use content type application/x-ndjson for streaming responses 2023-08-08 21:38:10 -07:00
Jeffrey Morgan
55cf5021f0 update langchain example to include python 2023-08-08 21:03:10 -07:00
Jeffrey Morgan
f58caa5ab5 update README.md 2023-08-08 15:50:23 -07:00
Jeffrey Morgan
82df473ec9 use note syntax in README.md 2023-08-08 15:49:50 -07:00
Jeffrey Morgan
e184c1d035 Link to api.md in README.md 2023-08-08 15:48:47 -07:00
Jeffrey Morgan
371d4e5df3 docs: fix invalid json in api.md 2023-08-08 15:46:05 -07:00
Jeffrey Morgan
1f78e409b4 docs: format with prettier 2023-08-08 15:41:48 -07:00
Jeffrey Morgan
34a88cd776 docs: update api.md formatting 2023-08-08 15:41:19 -07:00
Bruce MacDonald
1bee2347be pr feedback
- defer closing llm on embedding
- do not override licenses
- remove debugging print line
- reformat model file docs
2023-08-08 17:01:37 -04:00
Jeffrey Morgan
a027a7dd65 add 0.0.0.0 as an allowed origin by default
Fixes #282
2023-08-08 13:39:50 -07:00
Jeffrey Morgan
22986ccb38 add llama2:70b to the model library list 2023-08-08 13:08:05 -07:00
Bruce MacDonald
884d78ceb3 allow embedding from model binary 2023-08-08 14:38:57 -04:00
Bruce MacDonald
3ceac05108 Add embedding docs 2023-08-08 14:04:11 -04:00
Bruce MacDonald
21ddcaa1f1 pr comments
- default to embeddings enabled
- move embedding logic for loaded model to request
- allow embedding full directory
- close llm on reload
2023-08-08 13:49:37 -04:00
Michael Yang
f2074ed4c0 Merge pull request #306 from jmorganca/default-keep-system
automatically set num_keep if num_keep < 0
2023-08-08 09:25:34 -07:00
Bruce MacDonald
a6f6d18f83 embed text document in modelfile 2023-08-08 11:27:17 -04:00
Bruce MacDonald
34a13a9d05 pass flags to serve to allow setting allowed-origins + host and port 2023-08-08 10:41:42 -04:00
Jeffrey Morgan
8713ac23a8 allow overriding template and system in /api/generate
Fixes #297
Fixes #296
2023-08-08 00:55:34 -04:00
Jeffrey Morgan
5eb712f962 trim whitespace before checking stop conditions
Fixes #295
2023-08-08 00:29:19 -04:00
Michael Yang
4dc5b117dd automatically set num_keep if num_keep < 0
num_keep defines how many tokens to keep in the context when truncating
inputs. if left to its default value of -1, the server will calculate
num_keep to be the left of the system instructions
2023-08-07 16:19:12 -07:00
Matt Williams
931a5f3cb9 Merge pull request #304 from jmorganca/matt/docs
missed a backtick
2023-08-07 15:14:06 -07:00
Jeffrey Morgan
639288bf2b make ollama binary executable on build 2023-08-07 18:10:37 -04:00
Jeffrey Morgan
d112c15d58 remove old library and web directories 2023-08-07 18:09:24 -04:00
Matt Williams
1267895e44 missed a backtick
Signed-off-by: Matt Williams <m@technovangelist.com>
2023-08-07 13:53:49 -07:00
Matt Williams
089d03bc8d Merge pull request #289 from jmorganca/docs
First draft of API Docs
2023-08-07 13:46:22 -07:00
Matt Williams
e37f4c4f42 DockerIt example
Signed-off-by: Matt Williams <m@technovangelist.com>
2023-08-07 13:45:22 -07:00
Michael Yang
ab3ced9d32 Merge pull request #276 from jmorganca/rope-freq
configurable rope frequency parameters
2023-08-07 13:39:38 -07:00
Matt Williams
0c52b4509b get rid of namespace and site
Signed-off-by: Matt Williams <m@technovangelist.com>
2023-08-07 13:27:58 -07:00
Matt Williams
13aace3d34 clarify some more
Signed-off-by: Matt Williams <m@technovangelist.com>
2023-08-07 13:21:54 -07:00
Matt Williams
2b3bb41598 model name format added
Signed-off-by: Matt Williams <m@technovangelist.com>
2023-08-07 13:17:16 -07:00
cmiller01
93492f1e18 correct precedence of serve params (args over env over default) 2023-08-07 19:55:20 +00:00
Michael Chiang
54ba3e2ceb langchain JS integration (#302)
langchain JS integration
2023-08-07 12:21:36 -04:00
Matt Williams
4904cd8bcd update simpler code samples
Signed-off-by: Matt Williams <m@technovangelist.com>
2023-08-07 07:40:38 -07:00
Matt Williams
8a45359ec6 Update docs/api.md
Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com>
2023-08-07 07:33:05 -07:00
cmiller01
fb593b7bfc pass flags to serve to allow setting allowed-origins + host and port
* resolves: https://github.com/jmorganca/ollama/issues/300 and
https://github.com/jmorganca/ollama/issues/282

* example usage:
```
ollama serve --port 9999 --allowed-origins "http://foo.example.com,http://192.0.0.1"
```
2023-08-07 03:34:37 +00:00
Matt Williams
2544b8afa1 update as per Mike's comments
Signed-off-by: Matt Williams <m@technovangelist.com>
2023-08-04 17:42:24 -07:00
Matt Williams
ac1b04f271 Update docs/api.md
Co-authored-by: Michael Yang <mxyng@pm.me>
2023-08-04 17:40:52 -07:00
Matt Williams
123fdeb919 Update docs/api.md
Co-authored-by: Michael Yang <mxyng@pm.me>
2023-08-04 17:38:52 -07:00
Matt Williams
5c82bf95d1 Update docs/api.md
Co-authored-by: Michael Yang <mxyng@pm.me>
2023-08-04 17:12:24 -07:00
Matt Williams
38a9b1618c missed some quotes
Signed-off-by: Matt Williams <m@technovangelist.com>
2023-08-04 16:09:07 -07:00
Matt Williams
c18be72a3b complete 1st draft of api docs
Signed-off-by: Matt Williams <m@technovangelist.com>
2023-08-04 16:08:11 -07:00
Matt Williams
a101fe51a7 clean up
Signed-off-by: Matt Williams <m@technovangelist.com>
2023-08-04 12:56:41 -07:00
Bruce MacDonald
06fc48ad66 Update README.md (#285)
Ollama now supports Intel Macs
2023-08-04 15:45:55 -04:00
Matt Williams
d93e2f9210 fleshing out response
Signed-off-by: Matt Williams <m@technovangelist.com>
2023-08-04 12:38:58 -07:00
Matt Williams
31edc829fc continuing
Signed-off-by: Matt Williams <m@technovangelist.com>
2023-08-04 12:30:23 -07:00
Matt Williams
b31104768c filling out generate
Signed-off-by: Matt Williams <m@technovangelist.com>
2023-08-04 12:27:47 -07:00
Matt Williams
b662d9fd8c starting to build out some docs
Signed-off-by: Matt Williams <m@technovangelist.com>
2023-08-04 11:55:00 -07:00
Matt Williams
da36196d79 Update the modelfile
needed to override the system prompt
from orca and make it easier for a downstream
user to define their system prompt

Signed-off-by: Matt Williams <m@technovangelist.com>
2023-08-04 08:11:24 -07:00
Michael Yang
b9f4d67554 configurable rope frequency parameters 2023-08-03 22:11:58 -07:00
Matt Williams
42903973b7 Added an example to generate a list of 10 tweets
Signed-off-by: Matt Williams <m@technovangelist.com>
2023-08-03 17:26:05 -07:00
Matt Williams
8f2df948ab Create a sentiments example
Signed-off-by: Matt Williams <m@technovangelist.com>
2023-08-03 16:38:31 -07:00
142 changed files with 12974 additions and 49092 deletions

View File

@@ -1,7 +1,8 @@
build
llama/build
.venv
.vscode
ollama
app
web
dist
scripts
llm/llama.cpp/ggml
llm/llama.cpp/gguf
.env

2
.gitignore vendored
View File

@@ -5,4 +5,4 @@
.swp
dist
ollama
/ggml-metal.metal
ggml-metal.metal

10
.gitmodules vendored Normal file
View File

@@ -0,0 +1,10 @@
[submodule "llm/llama.cpp/ggml"]
path = llm/llama.cpp/ggml
url = https://github.com/ggerganov/llama.cpp.git
ignore = dirty
shallow = true
[submodule "llm/llama.cpp/gguf"]
path = llm/llama.cpp/gguf
url = https://github.com/ggerganov/llama.cpp.git
ignore = dirty
shallow = true

View File

@@ -1,15 +1,23 @@
FROM golang:1.20
WORKDIR /go/src/github.com/jmorganca/ollama
COPY . .
RUN CGO_ENABLED=1 go build -ldflags '-linkmode external -extldflags "-static"' .
FROM nvidia/cuda:11.8.0-devel-ubuntu22.04
FROM alpine
ARG TARGETARCH
ARG VERSION=0.0.0
ARG GOFLAGS="'-ldflags=-w -s'"
WORKDIR /go/src/github.com/jmorganca/ollama
RUN apt-get update && apt-get install -y git build-essential cmake
ADD https://dl.google.com/go/go1.21.1.linux-$TARGETARCH.tar.gz /tmp/go1.21.1.tar.gz
RUN mkdir -p /usr/local && tar xz -C /usr/local </tmp/go1.21.1.tar.gz
COPY . .
ENV GOARCH=$TARGETARCH
RUN /usr/local/go/bin/go generate ./... \
&& /usr/local/go/bin/go build .
FROM ubuntu:22.04
RUN apt-get update && apt-get install -y ca-certificates
COPY --from=0 /go/src/github.com/jmorganca/ollama/ollama /bin/ollama
EXPOSE 11434
ARG USER=ollama
ARG GROUP=ollama
RUN addgroup -g 1000 $GROUP && adduser -u 1000 -DG $GROUP $USER
USER $USER:$GROUP
ENTRYPOINT ["/bin/ollama"]
ENV OLLAMA_HOST 0.0.0.0
ENTRYPOINT ["/bin/ollama"]
CMD ["serve"]

32
Dockerfile.build Normal file
View File

@@ -0,0 +1,32 @@
# centos7 amd64 dependencies
FROM --platform=linux/amd64 nvidia/cuda:11.8.0-devel-centos7 AS base-amd64
RUN yum install -y https://repo.ius.io/ius-release-el7.rpm centos-release-scl && \
yum update -y && \
yum install -y devtoolset-10-gcc devtoolset-10-gcc-c++ git236 wget
RUN wget "https://github.com/Kitware/CMake/releases/download/v3.27.6/cmake-3.27.6-linux-x86_64.sh" -O cmake-installer.sh && chmod +x cmake-installer.sh && ./cmake-installer.sh --skip-license --prefix=/usr/local
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
# centos8 arm64 dependencies
FROM --platform=linux/arm64 nvidia/cuda:11.4.3-devel-centos8 AS base-arm64
RUN sed -i -e 's/mirrorlist/#mirrorlist/g' -e 's|#baseurl=http://mirror.centos.org|baseurl=http://vault.centos.org|g' /etc/yum.repos.d/CentOS-*
RUN yum install -y git cmake
FROM base-${TARGETARCH}
ARG TARGETARCH
# install go
ADD https://dl.google.com/go/go1.21.1.linux-$TARGETARCH.tar.gz /tmp/go1.21.1.tar.gz
RUN mkdir -p /usr/local && tar xz -C /usr/local </tmp/go1.21.1.tar.gz
# build the final binary
WORKDIR /go/src/github.com/jmorganca/ollama
COPY . .
ENV GOOS=linux
ENV GOARCH=$TARGETARCH
ARG VERSION=0.0.0
ARG GOFLAGS="'-ldflags -w -s'"
RUN /usr/local/go/bin/go generate ./... && \
/usr/local/go/bin/go build .

188
README.md
View File

@@ -9,19 +9,27 @@
[![Discord](https://dcbadge.vercel.app/api/server/ollama?style=flat&compact=true)](https://discord.gg/ollama)
> Note: Ollama is in early preview. Please report any issues you find.
Get up and running with large language models locally.
Run, create, and share large language models (LLMs).
### macOS
## Download
[Download](https://ollama.ai/download/Ollama-darwin.zip)
- [Download](https://ollama.ai/download) for macOS on Apple Silicon (Intel coming soon)
- Download for Windows and Linux (coming soon)
- Build [from source](#building)
### Linux & WSL2
```
curl https://ollama.ai/install.sh | sh
```
[Manual install instructions](https://github.com/jmorganca/ollama/blob/main/docs/linux.md)
### Windows
coming soon
## Quickstart
To run and chat with [Llama 2](https://ai.meta.com/llama), the new model by Meta:
To run and chat with [Llama 2](https://ollama.ai/library/llama2):
```
ollama run llama2
@@ -29,38 +37,54 @@ ollama run llama2
## Model library
`ollama` includes a library of open-source models:
Ollama supports a list of open-source models available on [ollama.ai/library](https://ollama.ai/library "ollama model library")
| Model | Parameters | Size | Download |
| ------------------------ | ---------- | ----- | ------------------------------- |
| Llama2 | 7B | 3.8GB | `ollama pull llama2` |
| Llama2 Uncensored | 7B | 3.8GB | `ollama pull llama2-uncensored` |
| Llama2 13B | 13B | 7.3GB | `ollama pull llama2:13b` |
| Orca Mini | 3B | 1.9GB | `ollama pull orca` |
| Vicuna | 7B | 3.8GB | `ollama pull vicuna` |
| Nous-Hermes | 13B | 7.3GB | `ollama pull nous-hermes` |
| Wizard Vicuna Uncensored | 13B | 7.3GB | `ollama pull wizard-vicuna` |
Here are some example open-source models that can be downloaded:
| Model | Parameters | Size | Download |
| ------------------ | ---------- | ----- | ------------------------------ |
| Mistral | 7B | 4.1GB | `ollama run mistral` |
| Llama 2 | 7B | 3.8GB | `ollama run llama2` |
| Code Llama | 7B | 3.8GB | `ollama run codellama` |
| Llama 2 Uncensored | 7B | 3.8GB | `ollama run llama2-uncensored` |
| Llama 2 13B | 13B | 7.3GB | `ollama run llama2:13b` |
| Llama 2 70B | 70B | 39GB | `ollama run llama2:70b` |
| Orca Mini | 3B | 1.9GB | `ollama run orca-mini` |
| Vicuna | 7B | 3.8GB | `ollama run vicuna` |
> Note: You should have at least 8 GB of RAM to run the 3B models, 16 GB to run the 7B models, and 32 GB to run the 13B models.
## Examples
## Customize your own model
### Run a model
### Import from GGUF or GGML
```
ollama run llama2
>>> hi
Hello! How can I help you today?
```
Ollama supports importing GGUF and GGML file formats in the Modelfile. This means if you have a model that is not in the Ollama library, you can create it, iterate on it, and upload it to the Ollama library to share with others when you are ready.
### Create a custom model
1. Create a file named Modelfile, and add a `FROM` instruction with the local filepath to the model you want to import.
Pull a base model:
```
FROM ./vicuna-33b.Q4_0.gguf
```
3. Create the model in Ollama
```
ollama create name -f path_to_modelfile
```
5. Run the model
```
ollama run name
```
### Customize a prompt
Models from the Ollama library can be customized with a prompt. The example
```
ollama pull llama2
```
> To update a model to the latest version, run `ollama pull llama2` again. The model will be updated (if necessary).
Create a `Modelfile`:
@@ -85,46 +109,85 @@ ollama run mario
Hello! It's your friend Mario.
```
For more examples, see the [examples](./examples) directory.
For more examples, see the [examples](./examples) directory. For more information on working with a Modelfile, see the [Modelfile](./docs/modelfile.md) documentation.
For more information on creating a Modelfile, see the [Modelfile](./docs/modelfile.md) documentation.
## CLI Reference
### Pull a model from the registry
### Create a model
`ollama create` is used to create a model from a Modelfile.
### Pull a model
```
ollama pull orca
ollama pull llama2
```
### Listing local models
> This command can also be used to update a local model. Only the diff will be pulled.
### Remove a model
```
ollama rm llama2
```
### Copy a model
```
ollama cp llama2 my-llama2
```
### Multiline input
For multiline input, you can wrap text with `"""`:
```
>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.
```
### Pass in prompt as arguments
```
$ ollama run llama2 "summarize this file:" "$(cat README.md)"
Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.
```
### List models on your computer
```
ollama list
```
## Model packages
### Start Ollama
### Overview
Ollama bundles model weights, configuration, and data into a single package, defined by a [Modelfile](./docs/modelfile.md).
<picture>
<source media="(prefers-color-scheme: dark)" height="480" srcset="https://github.com/jmorganca/ollama/assets/251292/2fd96b5f-191b-45c1-9668-941cfad4eb70">
<img alt="logo" height="480" src="https://github.com/jmorganca/ollama/assets/251292/2fd96b5f-191b-45c1-9668-941cfad4eb70">
</picture>
`ollama serve` is used when you want to start ollama without running the desktop application.
## Building
Install `cmake` and `go`:
```
brew install cmake
brew install go
```
Then generate dependencies and build:
```
go generate ./...
go build .
```
To run it start the server:
Next, start the server:
```
./ollama serve &
./ollama serve
```
Finally, run a model!
Finally, in a separate shell, run a model:
```
./ollama run llama2
@@ -132,25 +195,30 @@ Finally, run a model!
## REST API
### `POST /api/generate`
> See the [API documentation](./docs/api.md) for all endpoints.
Generate text from a model.
Ollama has an API for running and managing models. For example to generate text from a model:
```
curl -X POST http://localhost:11434/api/generate -d '{"model": "llama2", "prompt":"Why is the sky blue?"}'
curl -X POST http://localhost:11434/api/generate -d '{
"model": "llama2",
"prompt":"Why is the sky blue?"
}'
```
### `POST /api/create`
## Community Integrations
Create a model from a `Modelfile`.
```
curl -X POST http://localhost:11434/api/create -d '{"name": "my-model", "path": "/path/to/modelfile"}'
```
## Projects built with Ollama
- [Continue](https://github.com/continuedev/continue) - embeds Ollama inside Visual Studio Code. The extension lets you highlight code to add to the prompt, ask questions in the sidebar, and generate code inline.
- [Discord AI Bot](https://github.com/mekb-turtle/discord-ai-bot) - interact with Ollama as a chatbot on Discord.
- [Raycast Ollama](https://github.com/MassimilianoPasquini97/raycast_ollama) - Raycast extension to use Ollama for local llama inference on Raycast.
- [Simple HTML UI for Ollama](https://github.com/rtcfirefly/ollama-ui)
- [LangChain](https://python.langchain.com/docs/integrations/llms/ollama) and [LangChain.js](https://js.langchain.com/docs/modules/model_io/models/llms/integrations/ollama) with [example](https://js.langchain.com/docs/use_cases/question_answering/local_retrieval_qa)
- [LlamaIndex](https://gpt-index.readthedocs.io/en/stable/examples/llm/ollama.html)
- [Raycast extension](https://github.com/MassimilianoPasquini97/raycast_ollama)
- [Discollama](https://github.com/mxyng/discollama) (Discord bot inside the Ollama discord channel)
- [Continue](https://github.com/continuedev/continue)
- [Obsidian Ollama plugin](https://github.com/hinterdupfinger/obsidian-ollama)
- [Dagger Chatbot](https://github.com/samalba/dagger-chatbot)
- [LiteLLM](https://github.com/BerriAI/litellm)
- [Discord AI Bot](https://github.com/mekb-turtle/discord-ai-bot)
- [Chatbot UI](https://github.com/ivanfioravanti/chatbot-ollama)
- [HTML UI](https://github.com/rtcfirefly/ollama-ui)
- [Typescript UI](https://github.com/ollama-interface/Ollama-Gui?tab=readme-ov-file)
- [Dumbar](https://github.com/JerrySievert/Dumbar)
- [Emacs client](https://github.com/zweifisch/ollama)

View File

@@ -9,16 +9,27 @@ import (
"io"
"net/http"
"net/url"
"os"
"runtime"
"strings"
"github.com/jmorganca/ollama/version"
)
const DefaultHost = "127.0.0.1:11434"
var (
envHost = os.Getenv("OLLAMA_HOST")
)
type Client struct {
base url.URL
Base url.URL
HTTP http.Client
Headers http.Header
}
func checkError(resp *http.Response, body []byte) error {
if resp.StatusCode >= 200 && resp.StatusCode < 400 {
if resp.StatusCode < http.StatusBadRequest {
return nil
}
@@ -33,16 +44,34 @@ func checkError(resp *http.Response, body []byte) error {
return apiError
}
func NewClient(hosts ...string) *Client {
host := "127.0.0.1:11434"
if len(hosts) > 0 {
host = hosts[0]
// Host returns the default host to use for the client. It is determined in the following order:
// 1. The OLLAMA_HOST environment variable
// 2. The default host (localhost:11434)
func Host() string {
if envHost != "" {
return envHost
}
return DefaultHost
}
// FromEnv creates a new client using Host() as the host. An error is returns
// if the host is invalid.
func FromEnv() (*Client, error) {
h := Host()
if !strings.HasPrefix(h, "http://") && !strings.HasPrefix(h, "https://") {
h = "http://" + h
}
return &Client{
base: url.URL{Scheme: "http", Host: host},
HTTP: http.Client{},
u, err := url.Parse(h)
if err != nil {
return nil, fmt.Errorf("could not parse host: %w", err)
}
if u.Port() == "" {
u.Host += ":11434"
}
return &Client{Base: *u, HTTP: http.Client{}}, nil
}
func (c *Client) do(ctx context.Context, method, path string, reqData, respData any) error {
@@ -57,21 +86,21 @@ func (c *Client) do(ctx context.Context, method, path string, reqData, respData
reqBody = bytes.NewReader(data)
}
url := c.base.JoinPath(path).String()
req, err := http.NewRequestWithContext(ctx, method, url, reqBody)
requestURL := c.Base.JoinPath(path)
request, err := http.NewRequestWithContext(ctx, method, requestURL.String(), reqBody)
if err != nil {
return err
}
req.Header.Set("Content-Type", "application/json")
req.Header.Set("Accept", "application/json")
request.Header.Set("Content-Type", "application/json")
request.Header.Set("Accept", "application/json")
request.Header.Set("User-Agent", fmt.Sprintf("ollama/%s (%s %s) Go/%s", version.Version, runtime.GOARCH, runtime.GOOS, runtime.Version()))
for k, v := range c.Headers {
req.Header[k] = v
request.Header[k] = v
}
respObj, err := c.HTTP.Do(req)
respObj, err := c.HTTP.Do(request)
if err != nil {
return err
}
@@ -105,13 +134,15 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
buf = bytes.NewBuffer(bts)
}
request, err := http.NewRequestWithContext(ctx, method, c.base.JoinPath(path).String(), buf)
requestURL := c.Base.JoinPath(path)
request, err := http.NewRequestWithContext(ctx, method, requestURL.String(), buf)
if err != nil {
return err
}
request.Header.Set("Content-Type", "application/json")
request.Header.Set("Accept", "application/json")
request.Header.Set("User-Agent", fmt.Sprintf("ollama/%s (%s %s) Go/%s", version.Version, runtime.GOARCH, runtime.GOOS, runtime.Version()))
response, err := http.DefaultClient.Do(request)
if err != nil {
@@ -134,7 +165,7 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
return fmt.Errorf(errorResponse.Error)
}
if response.StatusCode >= 400 {
if response.StatusCode >= http.StatusBadRequest {
return StatusError{
StatusCode: response.StatusCode,
Status: response.Status,
@@ -224,6 +255,14 @@ func (c *Client) Delete(ctx context.Context, req *DeleteRequest) error {
return nil
}
func (c *Client) Show(ctx context.Context, req *ShowRequest) (*ShowResponse, error) {
var resp ShowResponse
if err := c.do(ctx, http.MethodPost, "/api/show", req, &resp); err != nil {
return nil, err
}
return &resp, nil
}
func (c *Client) Heartbeat(ctx context.Context) error {
if err := c.do(ctx, http.MethodHead, "/", nil, nil); err != nil {
return err

225
api/client.py Normal file
View File

@@ -0,0 +1,225 @@
import os
import json
import requests
BASE_URL = os.environ.get('OLLAMA_HOST', 'http://localhost:11434')
# Generate a response for a given prompt with a provided model. This is a streaming endpoint, so will be a series of responses.
# The final response object will include statistics and additional data from the request. Use the callback function to override
# the default handler.
def generate(model_name, prompt, system=None, template=None, context=None, options=None, callback=None):
try:
url = f"{BASE_URL}/api/generate"
payload = {
"model": model_name,
"prompt": prompt,
"system": system,
"template": template,
"context": context,
"options": options
}
# Remove keys with None values
payload = {k: v for k, v in payload.items() if v is not None}
with requests.post(url, json=payload, stream=True) as response:
response.raise_for_status()
# Creating a variable to hold the context history of the final chunk
final_context = None
# Variable to hold concatenated response strings if no callback is provided
full_response = ""
# Iterating over the response line by line and displaying the details
for line in response.iter_lines():
if line:
# Parsing each line (JSON chunk) and extracting the details
chunk = json.loads(line)
# If a callback function is provided, call it with the chunk
if callback:
callback(chunk)
else:
# If this is not the last chunk, add the "response" field value to full_response and print it
if not chunk.get("done"):
response_piece = chunk.get("response", "")
full_response += response_piece
print(response_piece, end="", flush=True)
# Check if it's the last chunk (done is true)
if chunk.get("done"):
final_context = chunk.get("context")
# Return the full response and the final context
return full_response, final_context
except requests.exceptions.RequestException as e:
print(f"An error occurred: {e}")
return None, None
# Create a model from a Modelfile. Use the callback function to override the default handler.
def create(model_name, model_path, callback=None):
try:
url = f"{BASE_URL}/api/create"
payload = {"name": model_name, "path": model_path}
# Making a POST request with the stream parameter set to True to handle streaming responses
with requests.post(url, json=payload, stream=True) as response:
response.raise_for_status()
# Iterating over the response line by line and displaying the status
for line in response.iter_lines():
if line:
# Parsing each line (JSON chunk) and extracting the status
chunk = json.loads(line)
if callback:
callback(chunk)
else:
print(f"Status: {chunk.get('status')}")
except requests.exceptions.RequestException as e:
print(f"An error occurred: {e}")
# Pull a model from a the model registry. Cancelled pulls are resumed from where they left off, and multiple
# calls to will share the same download progress. Use the callback function to override the default handler.
def pull(model_name, insecure=False, callback=None):
try:
url = f"{BASE_URL}/api/pull"
payload = {
"name": model_name,
"insecure": insecure
}
# Making a POST request with the stream parameter set to True to handle streaming responses
with requests.post(url, json=payload, stream=True) as response:
response.raise_for_status()
# Iterating over the response line by line and displaying the details
for line in response.iter_lines():
if line:
# Parsing each line (JSON chunk) and extracting the details
chunk = json.loads(line)
# If a callback function is provided, call it with the chunk
if callback:
callback(chunk)
else:
# Print the status message directly to the console
print(chunk.get('status', ''), end='', flush=True)
# If there's layer data, you might also want to print that (adjust as necessary)
if 'digest' in chunk:
print(f" - Digest: {chunk['digest']}", end='', flush=True)
print(f" - Total: {chunk['total']}", end='', flush=True)
print(f" - Completed: {chunk['completed']}", end='\n', flush=True)
else:
print()
except requests.exceptions.RequestException as e:
print(f"An error occurred: {e}")
# Push a model to the model registry. Use the callback function to override the default handler.
def push(model_name, insecure=False, callback=None):
try:
url = f"{BASE_URL}/api/push"
payload = {
"name": model_name,
"insecure": insecure
}
# Making a POST request with the stream parameter set to True to handle streaming responses
with requests.post(url, json=payload, stream=True) as response:
response.raise_for_status()
# Iterating over the response line by line and displaying the details
for line in response.iter_lines():
if line:
# Parsing each line (JSON chunk) and extracting the details
chunk = json.loads(line)
# If a callback function is provided, call it with the chunk
if callback:
callback(chunk)
else:
# Print the status message directly to the console
print(chunk.get('status', ''), end='', flush=True)
# If there's layer data, you might also want to print that (adjust as necessary)
if 'digest' in chunk:
print(f" - Digest: {chunk['digest']}", end='', flush=True)
print(f" - Total: {chunk['total']}", end='', flush=True)
print(f" - Completed: {chunk['completed']}", end='\n', flush=True)
else:
print()
except requests.exceptions.RequestException as e:
print(f"An error occurred: {e}")
# List models that are available locally.
def list():
try:
response = requests.get(f"{BASE_URL}/api/tags")
response.raise_for_status()
data = response.json()
models = data.get('models', [])
return models
except requests.exceptions.RequestException as e:
print(f"An error occurred: {e}")
return None
# Copy a model. Creates a model with another name from an existing model.
def copy(source, destination):
try:
# Create the JSON payload
payload = {
"source": source,
"destination": destination
}
response = requests.post(f"{BASE_URL}/api/copy", json=payload)
response.raise_for_status()
# If the request was successful, return a message indicating that the copy was successful
return "Copy successful"
except requests.exceptions.RequestException as e:
print(f"An error occurred: {e}")
return None
# Delete a model and its data.
def delete(model_name):
try:
url = f"{BASE_URL}/api/delete"
payload = {"name": model_name}
response = requests.delete(url, json=payload)
response.raise_for_status()
return "Delete successful"
except requests.exceptions.RequestException as e:
print(f"An error occurred: {e}")
return None
# Show info about a model.
def show(model_name):
try:
url = f"{BASE_URL}/api/show"
payload = {"name": model_name}
response = requests.post(url, json=payload)
response.raise_for_status()
# Parse the JSON response and return it
data = response.json()
return data
except requests.exceptions.RequestException as e:
print(f"An error occurred: {e}")
return None
def heartbeat():
try:
url = f"{BASE_URL}/"
response = requests.head(url)
response.raise_for_status()
return "Ollama is running"
except requests.exceptions.RequestException as e:
print(f"An error occurred: {e}")
return "Ollama is not running"

View File

@@ -7,7 +7,6 @@ import (
"math"
"os"
"reflect"
"runtime"
"strings"
"time"
)
@@ -33,13 +32,26 @@ func (e StatusError) Error() string {
}
type GenerateRequest struct {
Model string `json:"model"`
Prompt string `json:"prompt"`
Context []int `json:"context,omitempty"`
Model string `json:"model"`
Prompt string `json:"prompt"`
System string `json:"system"`
Template string `json:"template"`
Context []int `json:"context,omitempty"`
Options map[string]interface{} `json:"options"`
}
type EmbeddingRequest struct {
Model string `json:"model"`
Prompt string `json:"prompt"`
Options map[string]interface{} `json:"options"`
}
type EmbeddingResponse struct {
Embedding []float64 `json:"embedding"`
}
type CreateRequest struct {
Name string `json:"name"`
Path string `json:"path"`
@@ -49,6 +61,18 @@ type DeleteRequest struct {
Name string `json:"name"`
}
type ShowRequest struct {
Name string `json:"name"`
}
type ShowResponse struct {
License string `json:"license,omitempty"`
Modelfile string `json:"modelfile,omitempty"`
Parameters string `json:"parameters,omitempty"`
Template string `json:"template,omitempty"`
System string `json:"system,omitempty"`
}
type CopyRequest struct {
Source string `json:"source"`
Destination string `json:"destination"`
@@ -57,32 +81,33 @@ type CopyRequest struct {
type PullRequest struct {
Name string `json:"name"`
Insecure bool `json:"insecure,omitempty"`
Username string `json:"username"`
Password string `json:"password"`
}
type ProgressResponse struct {
Status string `json:"status"`
Digest string `json:"digest,omitempty"`
Total int `json:"total,omitempty"`
Completed int `json:"completed,omitempty"`
Total int64 `json:"total,omitempty"`
Completed int64 `json:"completed,omitempty"`
}
type PushRequest struct {
Name string `json:"name"`
Insecure bool `json:"insecure,omitempty"`
Username string `json:"username"`
Password string `json:"password"`
}
type ListResponse struct {
Models []ListResponseModel `json:"models"`
Models []ModelResponse `json:"models"`
}
type ListResponseModel struct {
type ModelResponse struct {
Name string `json:"name"`
ModifiedAt time.Time `json:"modified_at"`
Size int `json:"size"`
Size int64 `json:"size"`
Digest string `json:"digest"`
}
type TokenResponse struct {
Token string `json:"token"`
}
type GenerateResponse struct {
@@ -95,8 +120,6 @@ type GenerateResponse struct {
TotalDuration time.Duration `json:"total_duration,omitempty"`
LoadDuration time.Duration `json:"load_duration,omitempty"`
SampleCount int `json:"sample_count,omitempty"`
SampleDuration time.Duration `json:"sample_duration,omitempty"`
PromptEvalCount int `json:"prompt_eval_count,omitempty"`
PromptEvalDuration time.Duration `json:"prompt_eval_duration,omitempty"`
EvalCount int `json:"eval_count,omitempty"`
@@ -112,15 +135,6 @@ func (r *GenerateResponse) Summary() {
fmt.Fprintf(os.Stderr, "load duration: %v\n", r.LoadDuration)
}
if r.SampleCount > 0 {
fmt.Fprintf(os.Stderr, "sample count: %d token(s)\n", r.SampleCount)
}
if r.SampleDuration > 0 {
fmt.Fprintf(os.Stderr, "sample duration: %s\n", r.SampleDuration)
fmt.Fprintf(os.Stderr, "sample rate: %.2f tokens/s\n", float64(r.SampleCount)/r.SampleDuration.Seconds())
}
if r.PromptEvalCount > 0 {
fmt.Fprintf(os.Stderr, "prompt eval count: %d token(s)\n", r.PromptEvalCount)
}
@@ -147,30 +161,33 @@ type Options struct {
UseNUMA bool `json:"numa,omitempty"`
// Model options
NumCtx int `json:"num_ctx,omitempty"`
NumKeep int `json:"num_keep,omitempty"`
NumBatch int `json:"num_batch,omitempty"`
NumGQA int `json:"num_gqa,omitempty"`
NumGPU int `json:"num_gpu,omitempty"`
MainGPU int `json:"main_gpu,omitempty"`
LowVRAM bool `json:"low_vram,omitempty"`
F16KV bool `json:"f16_kv,omitempty"`
LogitsAll bool `json:"logits_all,omitempty"`
VocabOnly bool `json:"vocab_only,omitempty"`
UseMMap bool `json:"use_mmap,omitempty"`
UseMLock bool `json:"use_mlock,omitempty"`
EmbeddingOnly bool `json:"embedding_only,omitempty"`
NumCtx int `json:"num_ctx,omitempty"`
NumKeep int `json:"num_keep,omitempty"`
NumBatch int `json:"num_batch,omitempty"`
NumGQA int `json:"num_gqa,omitempty"`
NumGPU int `json:"num_gpu,omitempty"`
MainGPU int `json:"main_gpu,omitempty"`
LowVRAM bool `json:"low_vram,omitempty"`
F16KV bool `json:"f16_kv,omitempty"`
LogitsAll bool `json:"logits_all,omitempty"`
VocabOnly bool `json:"vocab_only,omitempty"`
UseMMap bool `json:"use_mmap,omitempty"`
UseMLock bool `json:"use_mlock,omitempty"`
EmbeddingOnly bool `json:"embedding_only,omitempty"`
RopeFrequencyBase float32 `json:"rope_frequency_base,omitempty"`
RopeFrequencyScale float32 `json:"rope_frequency_scale,omitempty"`
// Predict options
RepeatLastN int `json:"repeat_last_n,omitempty"`
RepeatPenalty float32 `json:"repeat_penalty,omitempty"`
FrequencyPenalty float32 `json:"frequency_penalty,omitempty"`
PresencePenalty float32 `json:"presence_penalty,omitempty"`
Temperature float32 `json:"temperature,omitempty"`
NumPredict int `json:"num_predict,omitempty"`
TopK int `json:"top_k,omitempty"`
TopP float32 `json:"top_p,omitempty"`
TFSZ float32 `json:"tfs_z,omitempty"`
TypicalP float32 `json:"typical_p,omitempty"`
RepeatLastN int `json:"repeat_last_n,omitempty"`
Temperature float32 `json:"temperature,omitempty"`
RepeatPenalty float32 `json:"repeat_penalty,omitempty"`
PresencePenalty float32 `json:"presence_penalty,omitempty"`
FrequencyPenalty float32 `json:"frequency_penalty,omitempty"`
Mirostat int `json:"mirostat,omitempty"`
MirostatTau float32 `json:"mirostat_tau,omitempty"`
MirostatEta float32 `json:"mirostat_eta,omitempty"`
@@ -197,19 +214,25 @@ func (opts *Options) FromMap(m map[string]interface{}) error {
if opt, ok := jsonOpts[key]; ok {
field := valueOpts.FieldByName(opt.Name)
if field.IsValid() && field.CanSet() {
if val == nil {
continue
}
switch field.Kind() {
case reflect.Int:
// when JSON unmarshals numbers, it uses float64 by default, not int
val, ok := val.(float64)
if !ok {
log.Printf("could not convert model parmeter %v to int, skipped", key)
continue
switch t := val.(type) {
case int64:
field.SetInt(t)
case float64:
// when JSON unmarshals numbers, it uses float64, not int
field.SetInt(int64(t))
default:
log.Printf("could not convert model parameter %v to int, skipped", key)
}
field.SetInt(int64(val))
case reflect.Bool:
val, ok := val.(bool)
if !ok {
log.Printf("could not convert model parmeter %v to bool, skipped", key)
log.Printf("could not convert model parameter %v to bool, skipped", key)
continue
}
field.SetBool(val)
@@ -217,14 +240,14 @@ func (opts *Options) FromMap(m map[string]interface{}) error {
// JSON unmarshals to float64
val, ok := val.(float64)
if !ok {
log.Printf("could not convert model parmeter %v to float32, skipped", key)
log.Printf("could not convert model parameter %v to float32, skipped", key)
continue
}
field.SetFloat(val)
case reflect.String:
val, ok := val.(string)
if !ok {
log.Printf("could not convert model parmeter %v to string, skipped", key)
log.Printf("could not convert model parameter %v to string, skipped", key)
continue
}
field.SetString(val)
@@ -232,7 +255,7 @@ func (opts *Options) FromMap(m map[string]interface{}) error {
// JSON unmarshals to []interface{}, not []string
val, ok := val.([]interface{})
if !ok {
log.Printf("could not convert model parmeter %v to slice, skipped", key)
log.Printf("could not convert model parameter %v to slice, skipped", key)
continue
}
// convert []interface{} to []string
@@ -240,7 +263,7 @@ func (opts *Options) FromMap(m map[string]interface{}) error {
for i, item := range val {
str, ok := item.(string)
if !ok {
log.Printf("could not convert model parmeter %v to slice of strings, skipped", key)
log.Printf("could not convert model parameter %v to slice of strings, skipped", key)
continue
}
slice[i] = str
@@ -257,34 +280,38 @@ func (opts *Options) FromMap(m map[string]interface{}) error {
func DefaultOptions() Options {
return Options{
Seed: -1,
UseNUMA: false,
NumCtx: 2048,
NumBatch: 512,
NumGPU: 1,
NumGQA: 1,
LowVRAM: false,
F16KV: true,
UseMMap: true,
UseMLock: false,
RepeatLastN: 64,
RepeatPenalty: 1.1,
FrequencyPenalty: 0.0,
PresencePenalty: 0.0,
// options set on request to runner
NumPredict: -1,
NumKeep: -1,
Temperature: 0.8,
TopK: 40,
TopP: 0.9,
TFSZ: 1.0,
TypicalP: 1.0,
RepeatLastN: 64,
RepeatPenalty: 1.1,
PresencePenalty: 0.0,
FrequencyPenalty: 0.0,
Mirostat: 0,
MirostatTau: 5.0,
MirostatEta: 0.1,
PenalizeNewline: true,
Seed: -1,
NumThread: runtime.NumCPU(),
// options set when the model is loaded
NumCtx: 2048,
RopeFrequencyBase: 10000.0,
RopeFrequencyScale: 1.0,
NumBatch: 512,
NumGPU: -1, // -1 here indicates that NumGPU should be set dynamically
NumGQA: 1,
NumThread: 0, // let the runtime decide
LowVRAM: false,
F16KV: true,
UseMLock: false,
UseMMap: true,
UseNUMA: false,
EmbeddingOnly: true,
}
}

View File

@@ -27,7 +27,6 @@ const config: ForgeConfig = {
path.join(__dirname, './assets/iconDarkTemplate@2x.png'),
path.join(__dirname, './assets/iconDarkUpdateTemplate.png'),
path.join(__dirname, './assets/iconDarkUpdateTemplate@2x.png'),
...(process.platform === 'darwin' ? ['../llama/ggml-metal.metal'] : []),
],
...(process.env.SIGN
? {

View File

@@ -5,7 +5,7 @@ import winston from 'winston'
import 'winston-daily-rotate-file'
import * as path from 'path'
import { analytics, id } from './telemetry'
import { v4 as uuidv4 } from 'uuid'
import { installed } from './install'
require('@electron/remote/main').initialize()
@@ -71,7 +71,6 @@ function firstRunWindow() {
nodeIntegration: true,
contextIsolation: false,
},
alwaysOnTop: true,
})
require('@electron/remote/main').enable(welcomeWindow.webContents)
@@ -159,17 +158,17 @@ function restart() {
app.on('before-quit', () => {
if (proc) {
proc.off('exit', restart)
proc.kill()
proc.kill('SIGINT') // send SIGINT signal to the server, which also stops any loaded llms
}
})
function init() {
if (app.isPackaged) {
heartbeat()
autoUpdater.checkForUpdates()
setInterval(() => {
heartbeat()
autoUpdater.checkForUpdates()
if (!updateAvailable) {
autoUpdater.checkForUpdates()
}
}, 60 * 60 * 1000)
}
@@ -235,23 +234,26 @@ app.on('window-all-closed', () => {
}
})
// In this file you can include the rest of your app's specific main process
// code. You can also put them in separate files and import them here.
autoUpdater.setFeedURL({
url: `https://ollama.ai/api/update?os=${process.platform}&arch=${process.arch}&version=${app.getVersion()}`,
})
function id(): string {
const id = store.get('id') as string
async function heartbeat() {
analytics.track({
anonymousId: id(),
event: 'heartbeat',
properties: {
version: app.getVersion(),
},
})
if (id) {
return id
}
const uuid = uuidv4()
store.set('id', uuid)
return uuid
}
autoUpdater.setFeedURL({
url: `https://ollama.ai/api/update?os=${process.platform}&arch=${
process.arch
}&version=${app.getVersion()}&id=${id()}`,
})
autoUpdater.on('error', e => {
logger.error(`update check failed - ${e.message}`)
console.error(`update check failed - ${e.message}`)
})

View File

@@ -1,19 +0,0 @@
import { Analytics } from '@segment/analytics-node'
import { v4 as uuidv4 } from 'uuid'
import Store from 'electron-store'
const store = new Store()
export const analytics = new Analytics({ writeKey: process.env.TELEMETRY_WRITE_KEY || '<empty>' })
export function id(): string {
const id = store.get('id') as string
if (id) {
return id
}
const uuid = uuidv4()
store.set('id', uuid)
return uuid
}

View File

@@ -3,30 +3,57 @@ package cmd
import (
"bufio"
"context"
"crypto/ed25519"
"crypto/rand"
"encoding/pem"
"errors"
"fmt"
"io"
"log"
"net"
"net/http"
"os"
"os/exec"
"os/signal"
"path/filepath"
"runtime"
"strings"
"syscall"
"time"
"github.com/chzyer/readline"
"github.com/dustin/go-humanize"
"github.com/olekukonko/tablewriter"
"github.com/pdevine/readline"
"github.com/spf13/cobra"
"golang.org/x/crypto/ssh"
"golang.org/x/term"
"github.com/jmorganca/ollama/api"
"github.com/jmorganca/ollama/format"
"github.com/jmorganca/ollama/progressbar"
"github.com/jmorganca/ollama/server"
"github.com/jmorganca/ollama/version"
)
type Painter struct {
IsMultiLine bool
}
func (p Painter) Paint(line []rune, _ int) []rune {
termType := os.Getenv("TERM")
if termType == "xterm-256color" && len(line) == 0 {
var prompt string
if p.IsMultiLine {
prompt = "Use \"\"\" to end multi-line input"
} else {
prompt = "Send a message (/? for help)"
}
return []rune(fmt.Sprintf("\033[38;5;245m%s\033[%dD\033[0m", prompt, len(prompt)))
}
// add a space and a backspace to prevent the cursor from walking up the screen
line = append(line, []rune(" \b")...)
return line
}
func CreateHandler(cmd *cobra.Command, args []string) error {
filename, _ := cmd.Flags().GetString("file")
filename, err := filepath.Abs(filename)
@@ -34,7 +61,10 @@ func CreateHandler(cmd *cobra.Command, args []string) error {
return err
}
client := api.NewClient()
client, err := api.FromEnv()
if err != nil {
return err
}
var spinner *Spinner
@@ -48,14 +78,20 @@ func CreateHandler(cmd *cobra.Command, args []string) error {
spinner.Stop()
}
currentDigest = resp.Digest
bar = progressbar.DefaultBytes(
int64(resp.Total),
fmt.Sprintf("pulling %s...", resp.Digest[7:19]),
)
bar.Set(resp.Completed)
switch {
case strings.Contains(resp.Status, "embeddings"):
bar = progressbar.Default(resp.Total, resp.Status)
bar.Set64(resp.Completed)
default:
// pulling
bar = progressbar.DefaultBytes(
resp.Total,
resp.Status,
)
bar.Set64(resp.Completed)
}
} else if resp.Digest == currentDigest && resp.Digest != "" {
bar.Set(resp.Completed)
bar.Set64(resp.Completed)
} else {
currentDigest = ""
if spinner != nil {
@@ -64,6 +100,7 @@ func CreateHandler(cmd *cobra.Command, args []string) error {
spinner = NewSpinner(resp.Status)
go spinner.Spin(100 * time.Millisecond)
}
return nil
}
@@ -73,32 +110,33 @@ func CreateHandler(cmd *cobra.Command, args []string) error {
if spinner != nil {
spinner.Stop()
if spinner.description != "success" {
return errors.New("unexpected end to create model")
}
}
return nil
}
func RunHandler(cmd *cobra.Command, args []string) error {
mp := server.ParseModelPath(args[0])
fp, err := mp.GetManifestPath(false)
client, err := api.FromEnv()
if err != nil {
return err
}
_, err = os.Stat(fp)
switch {
case errors.Is(err, os.ErrNotExist):
if err := pull(args[0], false); err != nil {
var apiStatusError api.StatusError
if !errors.As(err, &apiStatusError) {
return err
}
models, err := client.List(context.Background())
if err != nil {
return err
}
if apiStatusError.StatusCode != http.StatusBadGateway {
return err
}
canonicalModelPath := server.ParseModelPath(args[0])
for _, model := range models.Models {
if model.Name == canonicalModelPath.GetShortTagname() {
return RunGenerate(cmd, args)
}
case err != nil:
}
if err := PullHandler(cmd, args); err != nil {
return err
}
@@ -106,7 +144,10 @@ func RunHandler(cmd *cobra.Command, args []string) error {
}
func PushHandler(cmd *cobra.Command, args []string) error {
client := api.NewClient()
client, err := api.FromEnv()
if err != nil {
return err
}
insecure, err := cmd.Flags().GetBool("insecure")
if err != nil {
@@ -121,13 +162,13 @@ func PushHandler(cmd *cobra.Command, args []string) error {
if resp.Digest != currentDigest && resp.Digest != "" {
currentDigest = resp.Digest
bar = progressbar.DefaultBytes(
int64(resp.Total),
resp.Total,
fmt.Sprintf("pushing %s...", resp.Digest[7:19]),
)
bar.Set(resp.Completed)
bar.Set64(resp.Completed)
} else if resp.Digest == currentDigest && resp.Digest != "" {
bar.Set(resp.Completed)
bar.Set64(resp.Completed)
} else {
currentDigest = ""
fmt.Println(resp.Status)
@@ -138,11 +179,19 @@ func PushHandler(cmd *cobra.Command, args []string) error {
if err := client.Push(context.Background(), &request, fn); err != nil {
return err
}
if bar != nil && !bar.IsFinished() {
return errors.New("unexpected end to push model")
}
return nil
}
func ListHandler(cmd *cobra.Command, args []string) error {
client := api.NewClient()
client, err := api.FromEnv()
if err != nil {
return err
}
models, err := client.List(context.Background())
if err != nil {
@@ -153,12 +202,12 @@ func ListHandler(cmd *cobra.Command, args []string) error {
for _, m := range models.Models {
if len(args) == 0 || strings.HasPrefix(m.Name, args[0]) {
data = append(data, []string{m.Name, humanize.Bytes(uint64(m.Size)), format.HumanTime(m.ModifiedAt, "Never")})
data = append(data, []string{m.Name, m.Digest[:12], humanize.Bytes(uint64(m.Size)), format.HumanTime(m.ModifiedAt, "Never")})
}
}
table := tablewriter.NewWriter(os.Stdout)
table.SetHeader([]string{"NAME", "SIZE", "MODIFIED"})
table.SetHeader([]string{"NAME", "ID", "SIZE", "MODIFIED"})
table.SetHeaderAlignment(tablewriter.ALIGN_LEFT)
table.SetAlignment(tablewriter.ALIGN_LEFT)
table.SetHeaderLine(false)
@@ -172,18 +221,104 @@ func ListHandler(cmd *cobra.Command, args []string) error {
}
func DeleteHandler(cmd *cobra.Command, args []string) error {
client := api.NewClient()
req := api.DeleteRequest{Name: args[0]}
if err := client.Delete(context.Background(), &req); err != nil {
client, err := api.FromEnv()
if err != nil {
return err
}
fmt.Printf("deleted '%s'\n", args[0])
for _, name := range args {
req := api.DeleteRequest{Name: name}
if err := client.Delete(context.Background(), &req); err != nil {
return err
}
fmt.Printf("deleted '%s'\n", name)
}
return nil
}
func ShowHandler(cmd *cobra.Command, args []string) error {
client, err := api.FromEnv()
if err != nil {
return err
}
if len(args) != 1 {
return errors.New("missing model name")
}
license, errLicense := cmd.Flags().GetBool("license")
modelfile, errModelfile := cmd.Flags().GetBool("modelfile")
parameters, errParams := cmd.Flags().GetBool("parameters")
system, errSystem := cmd.Flags().GetBool("system")
template, errTemplate := cmd.Flags().GetBool("template")
for _, boolErr := range []error{errLicense, errModelfile, errParams, errSystem, errTemplate} {
if boolErr != nil {
return errors.New("error retrieving flags")
}
}
flagsSet := 0
showType := ""
if license {
flagsSet++
showType = "license"
}
if modelfile {
flagsSet++
showType = "modelfile"
}
if parameters {
flagsSet++
showType = "parameters"
}
if system {
flagsSet++
showType = "system"
}
if template {
flagsSet++
showType = "template"
}
if flagsSet > 1 {
return errors.New("only one of '--license', '--modelfile', '--parameters', '--system', or '--template' can be specified")
} else if flagsSet == 0 {
return errors.New("one of '--license', '--modelfile', '--parameters', '--system', or '--template' must be specified")
}
req := api.ShowRequest{Name: args[0]}
resp, err := client.Show(context.Background(), &req)
if err != nil {
return err
}
switch showType {
case "license":
fmt.Println(resp.License)
case "modelfile":
fmt.Println(resp.Modelfile)
case "parameters":
fmt.Println(resp.Parameters)
case "system":
fmt.Println(resp.System)
case "template":
fmt.Println(resp.Template)
}
return nil
}
func CopyHandler(cmd *cobra.Command, args []string) error {
client := api.NewClient()
client, err := api.FromEnv()
if err != nil {
return err
}
req := api.CopyRequest{Source: args[0], Destination: args[1]}
if err := client.Copy(context.Background(), &req); err != nil {
@@ -203,7 +338,10 @@ func PullHandler(cmd *cobra.Command, args []string) error {
}
func pull(model string, insecure bool) error {
client := api.NewClient()
client, err := api.FromEnv()
if err != nil {
return err
}
var currentDigest string
var bar *progressbar.ProgressBar
@@ -213,30 +351,49 @@ func pull(model string, insecure bool) error {
if resp.Digest != currentDigest && resp.Digest != "" {
currentDigest = resp.Digest
bar = progressbar.DefaultBytes(
int64(resp.Total),
resp.Total,
fmt.Sprintf("pulling %s...", resp.Digest[7:19]),
)
bar.Set(resp.Completed)
bar.Set64(resp.Completed)
} else if resp.Digest == currentDigest && resp.Digest != "" {
bar.Set(resp.Completed)
bar.Set64(resp.Completed)
} else {
currentDigest = ""
fmt.Println(resp.Status)
}
return nil
}
if err := client.Pull(context.Background(), &request, fn); err != nil {
return err
}
if bar != nil && !bar.IsFinished() {
return errors.New("unexpected end to pull model")
}
return nil
}
func RunGenerate(cmd *cobra.Command, args []string) error {
if len(args) > 1 {
// join all args into a single prompt
return generate(cmd, args[0], strings.Join(args[1:], " "))
wordWrap := false
if term.IsTerminal(int(os.Stdout.Fd())) {
wordWrap = true
}
nowrap, err := cmd.Flags().GetBool("nowordwrap")
if err != nil {
return err
}
if nowrap {
wordWrap = false
}
return generate(cmd, args[0], strings.Join(args[1:], " "), wordWrap)
}
if readline.IsTerminal(int(os.Stdin.Fd())) {
@@ -248,100 +405,151 @@ func RunGenerate(cmd *cobra.Command, args []string) error {
type generateContextKey string
func generate(cmd *cobra.Command, model, prompt string) error {
if len(strings.TrimSpace(prompt)) > 0 {
client := api.NewClient()
func generate(cmd *cobra.Command, model, prompt string, wordWrap bool) error {
client, err := api.FromEnv()
if err != nil {
return err
}
spinner := NewSpinner("")
go spinner.Spin(60 * time.Millisecond)
spinner := NewSpinner("")
go spinner.Spin(60 * time.Millisecond)
var latest api.GenerateResponse
var latest api.GenerateResponse
generateContext, ok := cmd.Context().Value(generateContextKey("context")).([]int)
if !ok {
generateContext = []int{}
generateContext, ok := cmd.Context().Value(generateContextKey("context")).([]int)
if !ok {
generateContext = []int{}
}
termWidth, _, err := term.GetSize(int(0))
if err != nil {
wordWrap = false
}
cancelCtx, cancel := context.WithCancel(context.Background())
defer cancel()
sigChan := make(chan os.Signal, 1)
signal.Notify(sigChan, syscall.SIGINT)
var abort bool
go func() {
<-sigChan
cancel()
abort = true
}()
var currentLineLength int
var wordBuffer string
request := api.GenerateRequest{Model: model, Prompt: prompt, Context: generateContext}
fn := func(response api.GenerateResponse) error {
if !spinner.IsFinished() {
spinner.Finish()
}
request := api.GenerateRequest{Model: model, Prompt: prompt, Context: generateContext}
fn := func(response api.GenerateResponse) error {
if !spinner.IsFinished() {
spinner.Finish()
latest = response
if wordWrap {
for _, ch := range response.Response {
if currentLineLength+1 > termWidth-5 {
// backtrack the length of the last word and clear to the end of the line
fmt.Printf("\x1b[%dD\x1b[K\n", len(wordBuffer))
fmt.Printf("%s%c", wordBuffer, ch)
currentLineLength = len(wordBuffer) + 1
} else {
fmt.Print(string(ch))
currentLineLength += 1
switch ch {
case ' ':
wordBuffer = ""
case '\n':
currentLineLength = 0
default:
wordBuffer += string(ch)
}
}
}
latest = response
} else {
fmt.Print(response.Response)
}
return nil
}
if err := client.Generate(cancelCtx, &request, fn); err != nil {
if strings.Contains(err.Error(), "failed to load model") {
// tell the user to check the server log, if it exists locally
home, nestedErr := os.UserHomeDir()
if nestedErr != nil {
// return the original error
return err
}
logPath := filepath.Join(home, ".ollama", "logs", "server.log")
if _, nestedErr := os.Stat(logPath); nestedErr == nil {
err = fmt.Errorf("%w\nFor more details, check the error logs at %s", err, logPath)
}
} else if strings.Contains(err.Error(), "context canceled") && abort {
spinner.Finish()
return nil
}
if err := client.Generate(context.Background(), &request, fn); err != nil {
if strings.Contains(err.Error(), "failed to load model") {
// tell the user to check the server log, if it exists locally
home, nestedErr := os.UserHomeDir()
if nestedErr != nil {
// return the original error
return err
}
logPath := filepath.Join(home, ".ollama", "logs", "server.log")
if _, nestedErr := os.Stat(logPath); nestedErr == nil {
err = fmt.Errorf("%w\nFor more details, check the error logs at %s", err, logPath)
}
}
return err
}
fmt.Println()
fmt.Println()
verbose, err := cmd.Flags().GetBool("verbose")
if err != nil {
return err
}
if verbose {
latest.Summary()
}
ctx := cmd.Context()
ctx = context.WithValue(ctx, generateContextKey("context"), latest.Context)
cmd.SetContext(ctx)
return err
}
if prompt != "" {
fmt.Println()
fmt.Println()
}
if !latest.Done {
if abort {
return nil
}
return errors.New("unexpected end of response")
}
verbose, err := cmd.Flags().GetBool("verbose")
if err != nil {
return err
}
if verbose {
latest.Summary()
}
ctx := cmd.Context()
ctx = context.WithValue(ctx, generateContextKey("context"), latest.Context)
cmd.SetContext(ctx)
return nil
}
func showLayer(l *server.Layer) {
filename, err := server.GetBlobsPath(l.Digest)
bts, err := os.ReadFile(filename)
if err != nil {
fmt.Printf("Couldn't read layer")
return
}
fmt.Printf(string(bts) + "\n")
}
func generateInteractive(cmd *cobra.Command, model string) error {
home, err := os.UserHomeDir()
if err != nil {
return err
}
// load the model
if err := generate(cmd, model, "", false); err != nil {
return err
}
completer := readline.NewPrefixCompleter(
readline.PcItem("/help"),
readline.PcItem("/list"),
readline.PcItem("/set",
readline.PcItem("history"),
readline.PcItem("nohistory"),
readline.PcItem("wordwrap"),
readline.PcItem("nowordwrap"),
readline.PcItem("verbose"),
readline.PcItem("quiet"),
readline.PcItem("mode",
readline.PcItem("vim"),
readline.PcItem("emacs"),
readline.PcItem("default"),
),
),
readline.PcItem("/show",
readline.PcItem("license"),
readline.PcItem("modelfile"),
readline.PcItem("parameters"),
readline.PcItem("system"),
readline.PcItem("template"),
),
@@ -354,7 +562,10 @@ func generateInteractive(cmd *cobra.Command, model string) error {
fmt.Fprintln(os.Stderr, completer.Tree(" "))
}
var painter Painter
config := readline.Config{
Painter: &painter,
Prompt: ">>> ",
HistoryFile: filepath.Join(home, ".ollama", "history"),
AutoComplete: completer,
@@ -366,6 +577,21 @@ func generateInteractive(cmd *cobra.Command, model string) error {
}
defer scanner.Close()
var wordWrap bool
termType := os.Getenv("TERM")
if termType == "xterm-256color" {
wordWrap = true
}
// override wrapping if the user turned it off
nowrap, err := cmd.Flags().GetBool("nowordwrap")
if err != nil {
return err
}
if nowrap {
wordWrap = false
}
var multiLineBuffer string
var isMultiLine bool
@@ -376,7 +602,7 @@ func generateInteractive(cmd *cobra.Command, model string) error {
return nil
case errors.Is(err, readline.ErrInterrupt):
if line == "" {
return nil
fmt.Println("Use Ctrl-D or /bye to exit.")
}
continue
@@ -390,6 +616,7 @@ func generateInteractive(cmd *cobra.Command, model string) error {
case isMultiLine:
if strings.HasSuffix(line, `"""`) {
isMultiLine = false
painter.IsMultiLine = isMultiLine
multiLineBuffer += strings.TrimSuffix(line, `"""`)
line = multiLineBuffer
multiLineBuffer = ""
@@ -400,6 +627,7 @@ func generateInteractive(cmd *cobra.Command, model string) error {
}
case strings.HasPrefix(line, `"""`):
isMultiLine = true
painter.IsMultiLine = isMultiLine
multiLineBuffer = strings.TrimPrefix(line, `"""`) + " "
scanner.SetPrompt("... ")
continue
@@ -408,94 +636,100 @@ func generateInteractive(cmd *cobra.Command, model string) error {
if err := ListHandler(cmd, args[1:]); err != nil {
return err
}
continue
case strings.HasPrefix(line, "/set"):
args := strings.Fields(line)
if len(args) > 1 {
switch args[1] {
case "history":
scanner.HistoryEnable()
continue
case "nohistory":
scanner.HistoryDisable()
continue
case "wordwrap":
wordWrap = true
fmt.Println("Set 'wordwrap' mode.")
case "nowordwrap":
wordWrap = false
fmt.Println("Set 'nowordwrap' mode.")
case "verbose":
cmd.Flags().Set("verbose", "true")
continue
fmt.Println("Set 'verbose' mode.")
case "quiet":
cmd.Flags().Set("verbose", "false")
continue
fmt.Println("Set 'quiet' mode.")
case "mode":
if len(args) > 2 {
switch args[2] {
case "vim":
scanner.SetVimMode(true)
continue
case "emacs", "default":
scanner.SetVimMode(false)
continue
default:
usage()
continue
}
} else {
usage()
continue
}
default:
fmt.Printf("Unknown command '/set %s'. Type /? for help\n", args[1])
}
} else {
usage()
continue
}
case strings.HasPrefix(line, "/show"):
args := strings.Fields(line)
if len(args) > 1 {
mp := server.ParseModelPath(model)
manifest, err := server.GetManifest(mp)
resp, err := server.GetModelInfo(model)
if err != nil {
fmt.Printf("error: couldn't get a manifestfor this model")
continue
fmt.Println("error: couldn't get model")
return err
}
switch args[1] {
case "license":
for _, l := range manifest.Layers {
if l.MediaType == "application/vnd.ollama.image.license" {
showLayer(l)
}
if resp.License == "" {
fmt.Println("No license was specified for this model.\n")
} else {
fmt.Println(resp.License)
}
case "modelfile":
fmt.Println(resp.Modelfile)
case "parameters":
if resp.Parameters == "" {
fmt.Println("No parameters were specified for this model.\n")
} else {
fmt.Println(resp.Parameters)
}
continue
case "system":
for _, l := range manifest.Layers {
if l.MediaType == "application/vnd.ollama.image.system" {
showLayer(l)
}
if resp.System == "" {
fmt.Println("No system prompt was specified for this model.\n")
} else {
fmt.Println(resp.System)
}
continue
case "template":
for _, l := range manifest.Layers {
if l.MediaType == "application/vnd.ollama.image.template" {
showLayer(l)
}
if resp.Template == "" {
fmt.Println("No prompt template was specified for this model.\n")
} else {
fmt.Println(resp.Template)
}
continue
default:
usage()
continue
fmt.Printf("Unknown command '/show %s'. Type /? for help\n", args[1])
}
} else {
usage()
continue
}
case line == "/help", line == "/?":
usage()
continue
case line == "/exit", line == "/bye":
return nil
case strings.HasPrefix(line, "/"):
args := strings.Fields(line)
fmt.Printf("Unknown command '%s'. Type /? for help\n", args[0])
}
if err := generate(cmd, model, line); err != nil {
return err
if len(line) > 0 && line[0] != '/' {
if err := generate(cmd, model, line, wordWrap); err != nil {
return err
}
}
}
}
@@ -505,7 +739,7 @@ func generateBatch(cmd *cobra.Command, model string) error {
for scanner.Scan() {
prompt := scanner.Text()
fmt.Printf(">>> %s\n", prompt)
if err := generate(cmd, model, prompt); err != nil {
if err := generate(cmd, model, prompt, false); err != nil {
return err
}
}
@@ -513,23 +747,94 @@ func generateBatch(cmd *cobra.Command, model string) error {
return nil
}
func RunServer(_ *cobra.Command, _ []string) error {
host := os.Getenv("OLLAMA_HOST")
if host == "" {
host = "127.0.0.1"
func RunServer(cmd *cobra.Command, _ []string) error {
host, port, err := net.SplitHostPort(os.Getenv("OLLAMA_HOST"))
if err != nil {
host, port = "127.0.0.1", "11434"
if ip := net.ParseIP(strings.Trim(os.Getenv("OLLAMA_HOST"), "[]")); ip != nil {
host = ip.String()
}
}
port := os.Getenv("OLLAMA_PORT")
if port == "" {
port = "11434"
if err := initializeKeypair(); err != nil {
return err
}
ln, err := net.Listen("tcp", fmt.Sprintf("%s:%s", host, port))
ln, err := net.Listen("tcp", net.JoinHostPort(host, port))
if err != nil {
return err
}
return server.Serve(ln)
var origins []string
if o := os.Getenv("OLLAMA_ORIGINS"); o != "" {
origins = strings.Split(o, ",")
}
if noprune := os.Getenv("OLLAMA_NOPRUNE"); noprune == "" {
if err := server.PruneLayers(); err != nil {
return err
}
manifestsPath, err := server.GetManifestPath()
if err != nil {
return err
}
if err := server.PruneDirectory(manifestsPath); err != nil {
return err
}
}
return server.Serve(ln, origins)
}
func initializeKeypair() error {
home, err := os.UserHomeDir()
if err != nil {
return err
}
privKeyPath := filepath.Join(home, ".ollama", "id_ed25519")
pubKeyPath := filepath.Join(home, ".ollama", "id_ed25519.pub")
_, err = os.Stat(privKeyPath)
if os.IsNotExist(err) {
fmt.Printf("Couldn't find '%s'. Generating new private key.\n", privKeyPath)
_, privKey, err := ed25519.GenerateKey(rand.Reader)
if err != nil {
return err
}
privKeyBytes, err := format.OpenSSHPrivateKey(privKey, "")
if err != nil {
return err
}
err = os.MkdirAll(filepath.Dir(privKeyPath), 0o755)
if err != nil {
return fmt.Errorf("could not create directory %w", err)
}
err = os.WriteFile(privKeyPath, pem.EncodeToMemory(privKeyBytes), 0o600)
if err != nil {
return err
}
sshPrivateKey, err := ssh.NewSignerFromKey(privKey)
if err != nil {
return err
}
pubKeyData := ssh.MarshalAuthorizedKey(sshPrivateKey.PublicKey())
err = os.WriteFile(pubKeyPath, pubKeyData, 0o644)
if err != nil {
return err
}
fmt.Printf("Your new public key is: \n\n%s\n", string(pubKeyData))
}
return nil
}
func startMacApp(client *api.Client) error {
@@ -564,7 +869,10 @@ func startMacApp(client *api.Client) error {
}
func checkServerHeartbeat(_ *cobra.Command, _ []string) error {
client := api.NewClient()
client, err := api.FromEnv()
if err != nil {
return err
}
if err := client.Heartbeat(context.Background()); err != nil {
if !strings.Contains(err.Error(), "connection refused") {
return err
@@ -584,12 +892,14 @@ func NewCLI() *cobra.Command {
log.SetFlags(log.LstdFlags | log.Lshortfile)
rootCmd := &cobra.Command{
Use: "ollama",
Short: "Large language model runner",
SilenceUsage: true,
Use: "ollama",
Short: "Large language model runner",
SilenceUsage: true,
SilenceErrors: true,
CompletionOptions: cobra.CompletionOptions{
DisableDefaultCmd: true,
},
Version: version.Version,
}
cobra.EnableCommandSorting = false
@@ -604,6 +914,20 @@ func NewCLI() *cobra.Command {
createCmd.Flags().StringP("file", "f", "Modelfile", "Name of the Modelfile (default \"Modelfile\")")
showCmd := &cobra.Command{
Use: "show MODEL",
Short: "Show information for a model",
Args: cobra.MinimumNArgs(1),
PreRunE: checkServerHeartbeat,
RunE: ShowHandler,
}
showCmd.Flags().Bool("license", false, "Show license of a model")
showCmd.Flags().Bool("modelfile", false, "Show Modelfile of a model")
showCmd.Flags().Bool("parameters", false, "Show parameters of a model")
showCmd.Flags().Bool("template", false, "Show template of a model")
showCmd.Flags().Bool("system", false, "Show system prompt of a model")
runCmd := &cobra.Command{
Use: "run MODEL [PROMPT]",
Short: "Run a model",
@@ -613,6 +937,8 @@ func NewCLI() *cobra.Command {
}
runCmd.Flags().Bool("verbose", false, "Show timings for response")
runCmd.Flags().Bool("insecure", false, "Use an insecure registry")
runCmd.Flags().Bool("nowordwrap", false, "Don't wrap words to the next line automatically")
serveCmd := &cobra.Command{
Use: "serve",
@@ -668,6 +994,7 @@ func NewCLI() *cobra.Command {
rootCmd.AddCommand(
serveCmd,
createCmd,
showCmd,
runCmd,
pullCmd,
pushCmd,

6
docs/README.md Normal file
View File

@@ -0,0 +1,6 @@
# Documentation
- [Modelfile](./modelfile.md)
- [How to develop Ollama](./development.md)
- [API](./api.md)
- [Tutorials](./tutorials.md)

355
docs/api.md Normal file
View File

@@ -0,0 +1,355 @@
# API
## Endpoints
- [Generate a completion](#generate-a-completion)
- [Create a Model](#create-a-model)
- [List Local Models](#list-local-models)
- [Show Model Information](#show-model-information)
- [Copy a Model](#copy-a-model)
- [Delete a Model](#delete-a-model)
- [Pull a Model](#pull-a-model)
- [Push a Model](#push-a-model)
- [Generate Embeddings](#generate-embeddings)
## Conventions
### Model names
Model names follow a `model:tag` format. Some examples are `orca-mini:3b-q4_1` and `llama2:70b`. The tag is optional and, if not provided, will default to `latest`. The tag is used to identify a specific version.
### Durations
All durations are returned in nanoseconds.
### Streaming responses
Certain endpoints stream responses as JSON objects delineated with the newline (`\n`) character.
## Generate a completion
```shell
POST /api/generate
```
Generate a response for a given prompt with a provided model. This is a streaming endpoint, so will be a series of responses. The final response object will include statistics and additional data from the request.
### Parameters
- `model`: (required) the [model name](#model-names)
- `prompt`: the prompt to generate a response for
Advanced parameters:
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `system`: system prompt to (overrides what is defined in the `Modelfile`)
- `template`: the full prompt or prompt template (overrides what is defined in the `Modelfile`)
- `context`: the context parameter returned from a previous request to `/generate`, this can be used to keep a short conversational memory
### Request
```shell
curl -X POST http://localhost:11434/api/generate -d '{
"model": "llama2:7b",
"prompt": "Why is the sky blue?"
}'
```
### Response
A stream of JSON objects:
```json
{
"model": "llama2:7b",
"created_at": "2023-08-04T08:52:19.385406455-07:00",
"response": "The",
"done": false
}
```
The final response in the stream also includes additional data about the generation:
- `total_duration`: time spent generating the response
- `load_duration`: time spent in nanoseconds loading the model
- `sample_count`: number of samples generated
- `sample_duration`: time spent generating samples
- `prompt_eval_count`: number of tokens in the prompt
- `prompt_eval_duration`: time spent in nanoseconds evaluating the prompt
- `eval_count`: number of tokens the response
- `eval_duration`: time in nanoseconds spent generating the response
- `context`: an encoding of the conversation used in this response, this can be sent in the next request to keep a conversational memory
To calculate how fast the response is generated in tokens per second (token/s), divide `eval_count` / `eval_duration`.
```json
{
"model": "llama2:7b",
"created_at": "2023-08-04T19:22:45.499127Z",
"context": [1, 2, 3],
"done": true,
"total_duration": 5589157167,
"load_duration": 3013701500,
"sample_count": 114,
"sample_duration": 81442000,
"prompt_eval_count": 46,
"prompt_eval_duration": 1160282000,
"eval_count": 113,
"eval_duration": 1325948000
}
```
## Create a Model
```shell
POST /api/create
```
Create a model from a [`Modelfile`](./modelfile.md)
### Parameters
- `name`: name of the model to create
- `path`: path to the Modelfile
### Request
```shell
curl -X POST http://localhost:11434/api/create -d '{
"name": "mario",
"path": "~/Modelfile"
}'
```
### Response
A stream of JSON objects. When finished, `status` is `success`.
```json
{
"status": "parsing modelfile"
}
```
## List Local Models
```shell
GET /api/tags
```
List models that are available locally.
### Request
```shell
curl http://localhost:11434/api/tags
```
### Response
```json
{
"models": [
{
"name": "llama2:7b",
"modified_at": "2023-08-02T17:02:23.713454393-07:00",
"size": 3791730596
},
{
"name": "llama2:13b",
"modified_at": "2023-08-08T12:08:38.093596297-07:00",
"size": 7323310500
}
]
}
```
## Show Model Information
```shell
POST /api/show
```
Show details about a model including modelfile, template, parameters, license, and system prompt.
### Parameters
- `name`: name of the model to show
### Request
```shell
curl http://localhost:11434/api/show -d '{
"name": "llama2:7b"
}'
```
### Response
```json
{
"license": "<contents of license block>",
"modelfile": "# Modelfile generated by \"ollama show\"\n# To build a new Modelfile based on this one, replace the FROM line with:\n# FROM llama2:latest\n\nFROM /Users/username/.ollama/models/blobs/sha256:8daa9615cce30c259a9555b1cc250d461d1bc69980a274b44d7eda0be78076d8\nTEMPLATE \"\"\"[INST] {{ if and .First .System }}<<SYS>>{{ .System }}<</SYS>>\n\n{{ end }}{{ .Prompt }} [/INST] \"\"\"\nSYSTEM \"\"\"\"\"\"\nPARAMETER stop [INST]\nPARAMETER stop [/INST]\nPARAMETER stop <<SYS>>\nPARAMETER stop <</SYS>>\n",
"parameters": "stop [INST]\nstop [/INST]\nstop <<SYS>>\nstop <</SYS>>",
"template": "[INST] {{ if and .First .System }}<<SYS>>{{ .System }}<</SYS>>\n\n{{ end }}{{ .Prompt }} [/INST] "
}
```
## Copy a Model
```shell
POST /api/copy
```
Copy a model. Creates a model with another name from an existing model.
### Request
```shell
curl http://localhost:11434/api/copy -d '{
"source": "llama2:7b",
"destination": "llama2-backup"
}'
```
## Delete a Model
```shell
DELETE /api/delete
```
Delete a model and its data.
### Parameters
- `model`: model name to delete
### Request
```shell
curl -X DELETE http://localhost:11434/api/delete -d '{
"name": "llama2:13b"
}'
```
## Pull a Model
```shell
POST /api/pull
```
Download a model from the ollama library. Cancelled pulls are resumed from where they left off, and multiple calls will share the same download progress.
### Parameters
- `name`: name of the model to pull
- `insecure`: (optional) allow insecure connections to the library. Only use this if you are pulling from your own library during development.
### Request
```shell
curl -X POST http://localhost:11434/api/pull -d '{
"name": "llama2:7b"
}'
```
### Response
```json
{
"status": "downloading digestname",
"digest": "digestname",
"total": 2142590208
}
```
## Push a Model
```shell
POST /api/push
```
Upload a model to a model library. Requires registering for ollama.ai and adding a public key first.
### Parameters
- `name`: name of the model to push in the form of `<namespace>/<model>:<tag>`
- `insecure`: (optional) allow insecure connections to the library. Only use this if you are pushing to your library during development.
### Request
```shell
curl -X POST http://localhost:11434/api/push -d '{
"name": "mattw/pygmalion:latest"
}'
```
### Response
Streaming response that starts with:
```json
{"status":"retrieving manifest"}
```
and then:
```json
{
"status":"starting upload","digest":"sha256:bc07c81de745696fdf5afca05e065818a8149fb0c77266fb584d9b2cba3711ab",
"total":1928429856
}
```
Then there is a series of uploading responses:
```json
{
"status":"starting upload",
"digest":"sha256:bc07c81de745696fdf5afca05e065818a8149fb0c77266fb584d9b2cba3711ab",
"total":1928429856}
```
Finally, when the upload is complete:
```json
{"status":"pushing manifest"}
{"status":"success"}
```
## Generate Embeddings
```shell
POST /api/embeddings
```
Generate embeddings from a model
### Parameters
- `model`: name of model to generate embeddings from
- `prompt`: text to generate embeddings for
Advanced parameters:
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
### Request
```shell
curl -X POST http://localhost:11434/api/embeddings -d '{
"model": "llama2:7b",
"prompt": "Here is an article about llamas..."
}'
```
### Response
```json
{
"embeddings": [
0.5670403838157654, 0.009260174818336964, 0.23178744316101074, -0.2916173040866852, -0.8924556970596313,
0.8785552978515625, -0.34576427936553955, 0.5742510557174683, -0.04222835972905159, -0.137906014919281
]
}```

View File

@@ -1,48 +1,39 @@
# Development
- Install cmake or (optionally, required tools for GPUs)
- run `go generate ./...`
- run `go build .`
Install required tools:
```
brew install go
- cmake version 3.24 or higher
- go version 1.20 or higher
- gcc version 11.4.0 or higher
```bash
brew install go cmake gcc
```
Enable CGO:
Get the required libraries:
```bash
go generate ./...
```
export CGO_ENABLED=1
```
You will also need a C/C++ compiler such as GCC for MacOS and Linux or Mingw-w64 GCC for Windows.
Then build ollama:
```
```bash
go build .
```
Now you can run `ollama`:
```
```bash
./ollama
```
## Releasing
To release a new version of Ollama you'll need to set some environment variables:
* `GITHUB_TOKEN`: your GitHub token
* `APPLE_IDENTITY`: the Apple signing identity (macOS only)
* `APPLE_ID`: your Apple ID
* `APPLE_PASSWORD`: your Apple ID app-specific password
* `APPLE_TEAM_ID`: the Apple team ID for the signing identity
* `TELEMETRY_WRITE_KEY`: segment write key for telemetry
Then run the publish script with the target version:
```
VERSION=0.0.2 ./scripts/publish.sh
```
## Building on Linux with GPU support
- Install cmake and nvidia-cuda-toolkit
- run `go generate ./...`
- run `go build .`

18
docs/faq.md Normal file
View File

@@ -0,0 +1,18 @@
# FAQ
## How can I expose the Ollama server?
```bash
OLLAMA_HOST=0.0.0.0:11435 ollama serve
```
By default, Ollama allows cross origin requests from `127.0.0.1` and `0.0.0.0`. To support more origins, you can use the `OLLAMA_ORIGINS` environment variable:
```bash
OLLAMA_ORIGINS=http://192.168.1.1:*,https://example.com ollama serve
```
## Where are models stored?
* macOS: Raw model data is stored under `~/.ollama/models`.
* Linux: Raw model data is stored under `/usr/share/ollama/.ollama/models`

83
docs/linux.md Normal file
View File

@@ -0,0 +1,83 @@
# Installing Ollama on Linux
> Note: A one line installer for Ollama is available by running:
>
> ```bash
> curl https://ollama.ai/install.sh | sh
> ```
## Download the `ollama` binary
Ollama is distributed as a self-contained binary. Download it to a directory in your PATH:
```bash
sudo curl -L https://ollama.ai/download/ollama-linux-amd64 -o /usr/bin/ollama
sudo chmod +x /usr/bin/ollama
```
## Start Ollama
Start Ollama by running `ollama serve`:
```bash
ollama serve
```
Once Ollama is running, run a model in another terminal session:
```bash
ollama run llama2
```
## Install CUDA drivers (optional for Nvidia GPUs)
[Download and install](https://developer.nvidia.com/cuda-downloads) CUDA.
Verify that the drivers are installed by running the following command, which should print details about your GPU:
```bash
nvidia-smi
```
## Adding Ollama as a startup service (optional)
Create a user for Ollama:
```bash
sudo useradd -r -s /bin/false -m -d /usr/share/ollama ollama
```
Create a service file in `/etc/systemd/system/ollama.service`:
```ini
[Unit]
Description=Ollama Service
After=network-online.target
[Service]
ExecStart=/usr/bin/ollama serve
User=ollama
Group=ollama
Restart=always
RestartSec=3
Environment="HOME=/usr/share/ollama"
[Install]
WantedBy=default.target
```
Then start the service:
```bash
sudo systemctl daemon-reload
sudo systemctl enable ollama
```
### Viewing logs
To view logs of Ollama running as a startup service, run:
```bash
journalctl -u ollama
```

View File

@@ -12,11 +12,13 @@ A model file is the blueprint to create and share models with Ollama.
- [FROM (Required)](#from-required)
- [Build from llama2](#build-from-llama2)
- [Build from a bin file](#build-from-a-bin-file)
- [EMBED](#embed)
- [PARAMETER](#parameter)
- [Valid Parameters and Values](#valid-parameters-and-values)
- [TEMPLATE](#template)
- [Template Variables](#template-variables)
- [SYSTEM](#system)
- [ADAPTER](#adapter)
- [LICENSE](#license)
- [Notes](#notes)
@@ -35,13 +37,14 @@ INSTRUCTION arguments
| [`PARAMETER`](#parameter) | Sets the parameters for how Ollama will run the model. |
| [`TEMPLATE`](#template) | The full prompt template to be sent to the model. |
| [`SYSTEM`](#system) | Specifies the system prompt that will be set in the template. |
| [`ADAPTER`](#adapter) | Defines the (Q)LoRA adapters to apply to the model. |
| [`LICENSE`](#license) | Specifies the legal license. |
## Examples
An example of a model file creating a mario blueprint:
```
```modelfile
FROM llama2
# sets the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1
@@ -67,13 +70,13 @@ More examples are available in the [examples directory](../examples).
The FROM instruction defines the base model to use when creating a model.
```
```modelfile
FROM <model name>:<tag>
```
#### Build from llama2
```
```modelfile
FROM llama2
```
@@ -82,17 +85,28 @@ A list of available base models:
#### Build from a bin file
```
```modelfile
FROM ./ollama-model.bin
```
This bin file location should be specified as an absolute path or relative to the Modelfile location.
### EMBED
The EMBED instruction is used to add embeddings of files to a model. This is useful for adding custom data that the model can reference when generating an answer. Note that currently only text files are supported, formatted with each line as one embedding.
```modelfile
FROM <model name>:<tag>
EMBED <file path>.txt
EMBED <different file path>.txt
EMBED <path to directory>/*.txt
```
### PARAMETER
The `PARAMETER` instruction defines a parameter that can be set when the model is run.
```
```modelfile
PARAMETER <parameter> <parametervalue>
```
@@ -104,13 +118,15 @@ PARAMETER <parameter> <parametervalue>
| mirostat_eta | Influences how quickly the algorithm responds to feedback from the generated text. A lower learning rate will result in slower adjustments, while a higher learning rate will make the algorithm more responsive. (Default: 0.1) | float | mirostat_eta 0.1 |
| mirostat_tau | Controls the balance between coherence and diversity of the output. A lower value will result in more focused and coherent text. (Default: 5.0) | float | mirostat_tau 5.0 |
| num_ctx | Sets the size of the context window used to generate the next token. (Default: 2048) | int | num_ctx 4096 |
| num_gpu | The number of GPUs to use. On macOS it defaults to 1 to enable metal support, 0 to disable. | int | num_gpu 1 |
| num_gqa | The number of GQA groups in the transformer layer. Required for some models, for example it is 8 for llama2:70b | int | num_gqa 1 |
| num_gpu | The number of layers to send to the GPU(s). On macOS it defaults to 1 to enable metal support, 0 to disable. | int | num_gpu 50 |
| num_thread | Sets the number of threads to use during computation. By default, Ollama will detect this for optimal performance. It is recommended to set this value to the number of physical CPU cores your system has (as opposed to the logical number of cores). | int | num_thread 8 |
| repeat_last_n | Sets how far back for the model to look back to prevent repetition. (Default: 64, 0 = disabled, -1 = num_ctx) | int | repeat_last_n 64 |
| repeat_penalty | Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1) | float | repeat_penalty 1.1 |
| temperature | The temperature of the model. Increasing the temperature will make the model answer more creatively. (Default: 0.8) | float | temperature 0.7 |
| stop | Sets the stop tokens to use. | string | stop "AI assistant:" |
| stop | Sets the stop sequences to use. | string | stop "AI assistant:" |
| tfs_z | Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting. (default: 1) | float | tfs_z 1 |
| num_predict | Maximum number of tokens to predict when generating text. (Default: 128, -1 = infinite generation, -2 = fill context) | int | num_predict 42 |
| top_k | Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40) | int | top_k 40 |
| top_p | Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9) | float | top_p 0.9 |
@@ -126,7 +142,7 @@ PARAMETER <parameter> <parametervalue>
| `{{ .Prompt }}` | The incoming prompt, this is not specified in the model file and will be set based on input. |
| `{{ .First }}` | A boolean value used to render specific template information for the first generation of a session. |
```
```modelfile
TEMPLATE """
{{- if .First }}
### System:
@@ -146,15 +162,23 @@ SYSTEM """<system message>"""
The `SYSTEM` instruction specifies the system prompt to be used in the template, if applicable.
```
```modelfile
SYSTEM """<system message>"""
```
### ADAPTER
The `ADAPTER` instruction specifies the LoRA adapter to apply to the base model. The value of this instruction should be an absolute path or a path relative to the Modelfile and the file must be in a GGML file format. The adapter should be tuned from the base model otherwise the behaviour is undefined.
```modelfile
ADAPTER ./ollama-lora.bin
```
### LICENSE
The `LICENSE` instruction allows you to specify the legal license under which the model used with this Modelfile is shared or distributed.
```
```modelfile
LICENSE """
<license text>
"""

8
docs/tutorials.md Normal file
View File

@@ -0,0 +1,8 @@
# Tutorials
Here is a list of ways you can use Ollama with other tools to build interesting applications.
- [Using LangChain with Ollama in JavaScript](./tutorials/langchainjs.md)
- [Using LangChain with Ollama in Python](./tutorials/langchainpy.md)
Also be sure to check out the [examples](../examples) directory for more ways to use Ollama.

View File

@@ -0,0 +1,73 @@
# Using LangChain with Ollama using JavaScript
In this tutorial, we are going to use JavaScript with LangChain and Ollama to learn about something just a touch more recent. In August 2023, there was a series of wildfires on Maui. There is no way an LLM trained before that time can know about this, since their training data would not include anything as recent as that. So we can find the [Wikipedia article about the fires](https://en.wikipedia.org/wiki/2023_Hawaii_wildfires) and ask questions about the contents.
To get started, let's just use **LangChain** to ask a simple question to a model. To do this with JavaScript, we need to install **LangChain**:
```bash
npm install langchain
```
Now we can start building out our JavaScript:
```javascript
import { Ollama } from "langchain/llms/ollama";
const ollama = new Ollama({
baseUrl: "http://localhost:11434",
model: "llama2",
});
const answer = await ollama.call(`why is the sky blue?`);
console.log(answer);
```
That will get us the same thing as if we ran `ollama run llama2 "why is the sky blue"` in the terminal. But we want to load a document from the web to ask a question against. **Cheerio** is a great library for ingesting a webpage, and **LangChain** uses it in their **CheerioWebBaseLoader**. So let's build that part of the app.
```javascript
import { CheerioWebBaseLoader } from "langchain/document_loaders/web/cheerio";
const loader = new CheerioWebBaseLoader("https://en.wikipedia.org/wiki/2023_Hawaii_wildfires");
const data = loader.load();
```
That will load the document. Although this page is smaller than the Odyssey, it is certainly bigger than the context size for most LLMs. So we are going to need to split into smaller pieces, and then select just the pieces relevant to our question. This is a great use for a vector datastore. In this example, we will use the **MemoryVectorStore** that is part of **LangChain**. But there is one more thing we need to get the content into the datastore. We have to run an embeddings process that converts the tokens in the text into a series of vectors. And for that, we are going to use **Tensorflow**. There is a lot of stuff going on in this one. First, install the **Tensorflow** components that we need.
```javascript
npm install @tensorflow/tfjs-core@3.6.0 @tensorflow/tfjs-converter@3.6.0 @tensorflow-models/universal-sentence-encoder@1.3.3 @tensorflow/tfjs-node@4.10.0
```
If you just install those components without the version numbers, it will install the latest versions, but there are conflicts within **Tensorflow**, so you need to install the compatible versions.
```javascript
import { RecursiveCharacterTextSplitter } from "langchain/text_splitter"
import { MemoryVectorStore } from "langchain/vectorstores/memory";
import "@tensorflow/tfjs-node";
import { TensorFlowEmbeddings } from "langchain/embeddings/tensorflow";
// Split the text into 500 character chunks. And overlap each chunk by 20 characters
const textSplitter = new RecursiveCharacterTextSplitter({
chunkSize: 500,
chunkOverlap: 20
});
const splitDocs = await textSplitter.splitDocuments(data);
// Then use the TensorFlow Embedding to store these chunks in the datastore
const vectorStore = await MemoryVectorStore.fromDocuments(splitDocs, new TensorFlowEmbeddings());
```
To connect the datastore to a question asked to a LLM, we need to use the concept at the heart of **LangChain**: the chain. Chains are a way to connect a number of activities together to accomplish a particular tasks. There are a number of chain types available, but for this tutorial we are using the **RetrievalQAChain**.
```javascript
import { RetrievalQAChain } from "langchain/chains";
const retriever = vectorStore.asRetriever();
const chain = RetrievalQAChain.fromLLM(ollama, retriever);
const result = await chain.call({query: "When was Hawaii's request for a major disaster declaration approved?"});
console.log(result.text)
```
So we created a retriever, which is a way to return the chunks that match a query from a datastore. And then connect the retriever and the model via a chain. Finally, we send a query to the chain, which results in an answer using our document as a source. The answer it returned was correct, August 10, 2023.
And that is a simple introduction to what you can do with **LangChain** and **Ollama.**

View File

@@ -0,0 +1,81 @@
# Using LangChain with Ollama in Python
Let's imagine we are studying the classics, such as **the Odyssey** by **Homer**. We might have a question about Neleus and his family. If you ask llama2 for that info, you may get something like:
> I apologize, but I'm a large language model, I cannot provide information on individuals or families that do not exist in reality. Neleus is not a real person or character, and therefore does not have a family or any other personal details. My apologies for any confusion. Is there anything else I can help you with?
This sounds like a typical censored response, but even llama2-uncensored gives a mediocre answer:
> Neleus was a legendary king of Pylos and the father of Nestor, one of the Argonauts. His mother was Clymene, a sea nymph, while his father was Neptune, the god of the sea.
So let's figure out how we can use **LangChain** with Ollama to ask our question to the actual document, the Odyssey by Homer, using Python.
Let's start by asking a simple question that we can get an answer to from the **Llama2** model using **Ollama**. First, we need to install the **LangChain** package:
`pip install langchain`
Then we can create a model and ask the question:
```python
from langchain.llms import Ollama
ollama = Ollama(base_url='http://localhost:11434',
model="llama2")
print(ollama("why is the sky blue"))
```
Notice that we are defining the model and the base URL for Ollama.
Now let's load a document to ask questions against. I'll load up the Odyssey by Homer, which you can find at Project Gutenberg. We will need **WebBaseLoader** which is part of **LangChain** and loads text from any webpage. On my machine, I also needed to install **bs4** to get that to work, so run `pip install bs4`.
```python
from langchain.document_loaders import WebBaseLoader
loader = WebBaseLoader("https://www.gutenberg.org/files/1727/1727-h/1727-h.htm")
data = loader.load()
```
This file is pretty big. Just the preface is 3000 tokens. Which means the full document won't fit into the context for the model. So we need to split it up into smaller pieces.
```python
from langchain.text_splitter import RecursiveCharacterTextSplitter
text_splitter=RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
all_splits = text_splitter.split_documents(data)
```
It's split up, but we have to find the relevant splits and then submit those to the model. We can do this by creating embeddings and storing them in a vector database. For now, we don't have embeddings built in to Ollama, though we will be adding that soon, so for now, we can use the GPT4All library for that. We will use ChromaDB in this example for a vector database. `pip install GPT4All chromadb`
```python
from langchain.embeddings import GPT4AllEmbeddings
from langchain.vectorstores import Chroma
vectorstore = Chroma.from_documents(documents=all_splits, embedding=GPT4AllEmbeddings())
```
Now let's ask a question from the document. **Who was Neleus, and who is in his family?** Neleus is a character in the Odyssey, and the answer can be found in our text.
```python
question="Who is Neleus and who is in Neleus' family?"
docs = vectorstore.similarity_search(question)
len(docs)
```
This will output the number of matches for chunks of data similar to the search.
The next thing is to send the question and the relevant parts of the docs to the model to see if we can get a good answer. But we are stitching two parts of the process together, and that is called a chain. This means we need to define a chain:
```python
from langchain.chains import RetrievalQA
qachain=RetrievalQA.from_chain_type(ollama, retriever=vectorstore.as_retriever())
qachain({"query": question})
```
The answer received from this chain was:
> Neleus is a character in Homer's "Odyssey" and is mentioned in the context of Penelope's suitors. Neleus is the father of Chloris, who is married to Neleus and bears him several children, including Nestor, Chromius, Periclymenus, and Pero. Amphinomus, the son of Nisus, is also mentioned as a suitor of Penelope and is known for his good natural disposition and agreeable conversation.
It's not a perfect answer, as it implies Neleus married his daughter when actually Chloris "was the youngest daughter to Amphion son of Iasus and king of Minyan Orchomenus, and was Queen in Pylos".
I updated the chunk_overlap for the text splitter to 20 and tried again and got a much better answer:
> Neleus is a character in Homer's epic poem "The Odyssey." He is the husband of Chloris, who is the youngest daughter of Amphion son of Iasus and king of Minyan Orchomenus. Neleus has several children with Chloris, including Nestor, Chromius, Periclymenus, and Pero.
And that is a much better answer.

View File

@@ -0,0 +1,7 @@
# Modelfile for creating a list of ten tweets from a topic
# Run `ollama create 10tweets -f ./Modelfile` and then `ollama run 10tweets` and enter a topic
FROM llama2
SYSTEM """
You are a content marketer who needs to come up with 10 short but succinct tweets. The answer should be a list of ten tweets. Each tweet can have a maximum of 280 characters and should include hashtags. Each user input will be a subject and you should expand it in ten creative ways. Never stop after just one tweet. Always include ten.
"""

View File

@@ -1,6 +1,6 @@
# Examples
This directory contains examples that can be created and run with `ollama`.
This directory contains different examples of using Ollama
To create a model:

View File

@@ -0,0 +1,20 @@
FROM llama2
SYSTEM """
You are an experienced Devops engineer focused on docker. When given specifications for a particular need or application you know the best way to host that within a docker container. For instance if someone tells you they want an nginx server to host files located at /web you will answer as follows
---start
FROM nginx:alpine
COPY /myweb /usr/share/nginx/html
EXPOSE 80
---end
Notice that the answer you should give is just the contents of the dockerfile with no explanation and there are three dashes and the word start at the beginning and 3 dashes and the word end. The full output can be piped into a file and run as is. Here is another example. The user will ask to launch a Postgres server with a password of abc123. And the response should be
---start
FROM postgres:latest
ENV POSTGRES_PASSWORD=abc123
EXPOSE 5432
---end
Again it's just the contents of the dockerfile and nothing else.
"""

View File

@@ -0,0 +1,15 @@
# DockerIt
DockerIt is a tool to help you build and run your application in a Docker container. It consists of a model that defines the system prompt and model weights to use, along with a python script to then build the container and run the image automatically.
## Caveats
This is an simple example. It's assuming the Dockerfile content generated is going to work. In many cases, even with simple web servers, it fails when trying to copy files that don't exist. It's simply an example of what you could possibly do.
## Example Usage
```bash
> python3 ./dockerit.py "simple postgres server with admin password set to 123"
Enter the name of the image: matttest
Container named happy_keller started with id: 7c201bb6c30f02b356ddbc8e2a5af9d7d7d7b8c228519c9a501d15c0bd9d6b3e
```

View File

@@ -0,0 +1,17 @@
import requests, json, docker, io, sys
inputDescription = " ".join(sys.argv[1:])
imageName = input("Enter the name of the image: ")
client = docker.from_env()
s = requests.Session()
output=""
with s.post('http://localhost:11434/api/generate', json={'model': 'dockerit', 'prompt': inputDescription}, stream=True) as r:
for line in r.iter_lines():
if line:
j = json.loads(line)
if "response" in j:
output = output +j["response"]
output = output[output.find("---start")+9:output.find("---end")-1]
f = io.BytesIO(bytes(output, 'utf-8'))
client.images.build(fileobj=f, tag=imageName)
container = client.containers.run(imageName, detach=True)
print("Container named", container.name, " started with id: ",container.id)

View File

@@ -0,0 +1 @@
docker

View File

@@ -0,0 +1,21 @@
# LangChain Document QA
This example provides an interface for asking questions to a PDF document.
## Setup
```
pip install -r requirements.txt
```
## Run
```
python main.py
```
A prompt will appear, where questions may be asked:
```
Query: How many locations does WeWork have?
```

View File

@@ -0,0 +1,61 @@
from langchain.document_loaders import OnlinePDFLoader
from langchain.vectorstores import Chroma
from langchain.embeddings import GPT4AllEmbeddings
from langchain import PromptTemplate
from langchain.llms import Ollama
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.chains import RetrievalQA
import sys
import os
class SuppressStdout:
def __enter__(self):
self._original_stdout = sys.stdout
self._original_stderr = sys.stderr
sys.stdout = open(os.devnull, 'w')
sys.stderr = open(os.devnull, 'w')
def __exit__(self, exc_type, exc_val, exc_tb):
sys.stdout.close()
sys.stdout = self._original_stdout
sys.stderr = self._original_stderr
# load the pdf and split it into chunks
loader = OnlinePDFLoader("https://d18rn0p25nwr6d.cloudfront.net/CIK-0001813756/975b3e9b-268e-4798-a9e4-2a9a7c92dc10.pdf")
data = loader.load()
from langchain.text_splitter import RecursiveCharacterTextSplitter
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
all_splits = text_splitter.split_documents(data)
with SuppressStdout():
vectorstore = Chroma.from_documents(documents=all_splits, embedding=GPT4AllEmbeddings())
while True:
query = input("\nQuery: ")
if query == "exit":
break
if query.strip() == "":
continue
# Prompt
template = """Use the following pieces of context to answer the question at the end.
If you don't know the answer, just say that you don't know, don't try to make up an answer.
Use three sentences maximum and keep the answer as concise as possible.
{context}
Question: {question}
Helpful Answer:"""
QA_CHAIN_PROMPT = PromptTemplate(
input_variables=["context", "question"],
template=template,
)
llm = Ollama(model="llama2:13b", callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]))
qa_chain = RetrievalQA.from_chain_type(
llm,
retriever=vectorstore.as_retriever(),
chain_type_kwargs={"prompt": QA_CHAIN_PROMPT},
)
result = qa_chain({"query": query})

View File

@@ -0,0 +1,109 @@
absl-py==1.4.0
aiohttp==3.8.5
aiosignal==1.3.1
anyio==3.7.1
astunparse==1.6.3
async-timeout==4.0.3
attrs==23.1.0
backoff==2.2.1
beautifulsoup4==4.12.2
bs4==0.0.1
cachetools==5.3.1
certifi==2023.7.22
cffi==1.15.1
chardet==5.2.0
charset-normalizer==3.2.0
Chroma==0.2.0
chroma-hnswlib==0.7.2
chromadb==0.4.5
click==8.1.6
coloredlogs==15.0.1
cryptography==41.0.3
dataclasses-json==0.5.14
fastapi==0.99.1
filetype==1.2.0
flatbuffers==23.5.26
frozenlist==1.4.0
gast==0.4.0
google-auth==2.22.0
google-auth-oauthlib==1.0.0
google-pasta==0.2.0
gpt4all==1.0.8
grpcio==1.57.0
h11==0.14.0
h5py==3.9.0
httptools==0.6.0
humanfriendly==10.0
idna==3.4
importlib-resources==6.0.1
joblib==1.3.2
keras==2.13.1
langchain==0.0.261
langsmith==0.0.21
libclang==16.0.6
lxml==4.9.3
Markdown==3.4.4
MarkupSafe==2.1.3
marshmallow==3.20.1
monotonic==1.6
mpmath==1.3.0
multidict==6.0.4
mypy-extensions==1.0.0
nltk==3.8.1
numexpr==2.8.5
numpy==1.24.3
oauthlib==3.2.2
onnxruntime==1.15.1
openapi-schema-pydantic==1.2.4
opt-einsum==3.3.0
overrides==7.4.0
packaging==23.1
pdf2image==1.16.3
pdfminer==20191125
pdfminer.six==20221105
Pillow==10.0.0
posthog==3.0.1
protobuf==4.24.0
pulsar-client==3.2.0
pyasn1==0.5.0
pyasn1-modules==0.3.0
pycparser==2.21
pycryptodome==3.18.0
pydantic==1.10.12
PyPika==0.48.9
python-dateutil==2.8.2
python-dotenv==1.0.0
python-magic==0.4.27
PyYAML==6.0.1
regex==2023.8.8
requests==2.31.0
requests-oauthlib==1.3.1
rsa==4.9
six==1.16.0
sniffio==1.3.0
soupsieve==2.4.1
SQLAlchemy==2.0.19
starlette==0.27.0
sympy==1.12
tabulate==0.9.0
tenacity==8.2.2
tensorboard==2.13.0
tensorboard-data-server==0.7.1
tensorflow==2.13.0
tensorflow-estimator==2.13.0
tensorflow-hub==0.14.0
tensorflow-macos==2.13.0
termcolor==2.3.0
tokenizers==0.13.3
tqdm==4.66.1
typing-inspect==0.9.0
typing_extensions==4.5.0
unstructured==0.9.2
urllib3==1.26.16
uvicorn==0.23.2
uvloop==0.17.0
watchfiles==0.19.0
websockets==11.0.3
Werkzeug==2.3.6
wrapt==1.15.0
yarl==1.9.2

View File

@@ -0,0 +1,15 @@
# LangChain Web Summarization
This example summarizes a website
## Setup
```
pip install -r requirements.txt
```
## Run
```
python main.py
```

View File

@@ -0,0 +1,12 @@
from langchain.llms import Ollama
from langchain.document_loaders import WebBaseLoader
from langchain.chains.summarize import load_summarize_chain
loader = WebBaseLoader("https://ollama.ai/blog/run-llama2-uncensored-locally")
docs = loader.load()
llm = Ollama(model="llama2")
chain = load_summarize_chain(llm, chain_type="stuff")
result = chain.run(docs)
print(result)

View File

@@ -0,0 +1,2 @@
langchain==0.0.259
bs4==0.0.1

View File

@@ -0,0 +1,21 @@
# LangChain
This example is a basic "hello world" of using LangChain with Ollama.
## Setup
```
pip install -r requirements.txt
```
## Run
```
python main.py
```
Running this example will print the response for "hello":
```
Hello! It's nice to meet you. hopefully you are having a great day! Is there something I can help you with or would you like to chat?
```

View File

@@ -0,0 +1,4 @@
from langchain.llms import Ollama
llm = Ollama(model="llama2")
res = llm.predict("hello")
print (res)

View File

@@ -0,0 +1 @@
langchain==0.0.259

170
examples/privategpt/.gitignore vendored Normal file
View File

@@ -0,0 +1,170 @@
# OSX
.DS_STORE
# Models
models/
# Local Chroma db
.chroma/
db/
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
# pdm
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
#pdm.lock
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/#use-with-ide
.pdm.toml
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# PyCharm
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/

201
examples/privategpt/LICENSE Normal file
View File

@@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@@ -0,0 +1,91 @@
# PrivateGPT with Llama 2 uncensored
https://github.com/jmorganca/ollama/assets/3325447/20cf8ec6-ff25-42c6-bdd8-9be594e3ce1b
> Note: this example is a slightly modified version of PrivateGPT using models such as Llama 2 Uncensored. All credit for PrivateGPT goes to Iván Martínez who is the creator of it, and you can find his GitHub repo [here](https://github.com/imartinez/privateGPT).
### Setup
Set up a virtual environment (optional):
```
python3 -m venv .venv
source .venv/bin/activate
```
Install the Python dependencies:
```shell
pip install -r requirements.txt
```
Pull the model you'd like to use:
```
ollama pull llama2-uncensored
```
### Getting WeWork's latest quarterly earnings report (10-Q)
```
mkdir source_documents
curl https://d18rn0p25nwr6d.cloudfront.net/CIK-0001813756/975b3e9b-268e-4798-a9e4-2a9a7c92dc10.pdf -o source_documents/wework.pdf
```
### Ingesting files
```shell
python ingest.py
```
Output should look like this:
```shell
Creating new vectorstore
Loading documents from source_documents
Loading new documents: 100%|██████████████████████| 1/1 [00:01<00:00, 1.73s/it]
Loaded 1 new documents from source_documents
Split into 90 chunks of text (max. 500 tokens each)
Creating embeddings. May take some minutes...
Using embedded DuckDB with persistence: data will be stored in: db
Ingestion complete! You can now run privateGPT.py to query your documents
```
### Ask questions
```shell
python privateGPT.py
Enter a query: How many locations does WeWork have?
> Answer (took 17.7 s.):
As of June 2023, WeWork has 777 locations worldwide, including 610 Consolidated Locations (as defined in the section entitled Key Performance Indicators).
```
### Try a different model:
```
ollama pull llama2:13b
MODEL=llama2:13b python privateGPT.py
```
## Adding more files
Put any and all your files into the `source_documents` directory
The supported extensions are:
- `.csv`: CSV,
- `.docx`: Word Document,
- `.doc`: Word Document,
- `.enex`: EverNote,
- `.eml`: Email,
- `.epub`: EPub,
- `.html`: HTML File,
- `.md`: Markdown,
- `.msg`: Outlook Message,
- `.odt`: Open Document Text,
- `.pdf`: Portable Document Format (PDF),
- `.pptx` : PowerPoint Document,
- `.ppt` : PowerPoint Document,
- `.txt`: Text file (UTF-8),

View File

@@ -0,0 +1,12 @@
import os
from chromadb.config import Settings
# Define the folder for storing database
PERSIST_DIRECTORY = os.environ.get('PERSIST_DIRECTORY', 'db')
# Define the Chroma settings
CHROMA_SETTINGS = Settings(
chroma_db_impl='duckdb+parquet',
persist_directory=PERSIST_DIRECTORY,
anonymized_telemetry=False
)

161
examples/privategpt/ingest.py Executable file
View File

@@ -0,0 +1,161 @@
#!/usr/bin/env python3
import os
import glob
from typing import List
from multiprocessing import Pool
from tqdm import tqdm
from langchain.document_loaders import (
CSVLoader,
EverNoteLoader,
PyMuPDFLoader,
TextLoader,
UnstructuredEmailLoader,
UnstructuredEPubLoader,
UnstructuredHTMLLoader,
UnstructuredMarkdownLoader,
UnstructuredODTLoader,
UnstructuredPowerPointLoader,
UnstructuredWordDocumentLoader,
)
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.docstore.document import Document
from constants import CHROMA_SETTINGS
# Load environment variables
persist_directory = os.environ.get('PERSIST_DIRECTORY', 'db')
source_directory = os.environ.get('SOURCE_DIRECTORY', 'source_documents')
embeddings_model_name = os.environ.get('EMBEDDINGS_MODEL_NAME', 'all-MiniLM-L6-v2')
chunk_size = 500
chunk_overlap = 50
# Custom document loaders
class MyElmLoader(UnstructuredEmailLoader):
"""Wrapper to fallback to text/plain when default does not work"""
def load(self) -> List[Document]:
"""Wrapper adding fallback for elm without html"""
try:
try:
doc = UnstructuredEmailLoader.load(self)
except ValueError as e:
if 'text/html content not found in email' in str(e):
# Try plain text
self.unstructured_kwargs["content_source"]="text/plain"
doc = UnstructuredEmailLoader.load(self)
else:
raise
except Exception as e:
# Add file_path to exception message
raise type(e)(f"{self.file_path}: {e}") from e
return doc
# Map file extensions to document loaders and their arguments
LOADER_MAPPING = {
".csv": (CSVLoader, {}),
# ".docx": (Docx2txtLoader, {}),
".doc": (UnstructuredWordDocumentLoader, {}),
".docx": (UnstructuredWordDocumentLoader, {}),
".enex": (EverNoteLoader, {}),
".eml": (MyElmLoader, {}),
".epub": (UnstructuredEPubLoader, {}),
".html": (UnstructuredHTMLLoader, {}),
".md": (UnstructuredMarkdownLoader, {}),
".odt": (UnstructuredODTLoader, {}),
".pdf": (PyMuPDFLoader, {}),
".ppt": (UnstructuredPowerPointLoader, {}),
".pptx": (UnstructuredPowerPointLoader, {}),
".txt": (TextLoader, {"encoding": "utf8"}),
# Add more mappings for other file extensions and loaders as needed
}
def load_single_document(file_path: str) -> List[Document]:
ext = "." + file_path.rsplit(".", 1)[-1]
if ext in LOADER_MAPPING:
loader_class, loader_args = LOADER_MAPPING[ext]
loader = loader_class(file_path, **loader_args)
return loader.load()
raise ValueError(f"Unsupported file extension '{ext}'")
def load_documents(source_dir: str, ignored_files: List[str] = []) -> List[Document]:
"""
Loads all documents from the source documents directory, ignoring specified files
"""
all_files = []
for ext in LOADER_MAPPING:
all_files.extend(
glob.glob(os.path.join(source_dir, f"**/*{ext}"), recursive=True)
)
filtered_files = [file_path for file_path in all_files if file_path not in ignored_files]
with Pool(processes=os.cpu_count()) as pool:
results = []
with tqdm(total=len(filtered_files), desc='Loading new documents', ncols=80) as pbar:
for i, docs in enumerate(pool.imap_unordered(load_single_document, filtered_files)):
results.extend(docs)
pbar.update()
return results
def process_documents(ignored_files: List[str] = []) -> List[Document]:
"""
Load documents and split in chunks
"""
print(f"Loading documents from {source_directory}")
documents = load_documents(source_directory, ignored_files)
if not documents:
print("No new documents to load")
exit(0)
print(f"Loaded {len(documents)} new documents from {source_directory}")
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
texts = text_splitter.split_documents(documents)
print(f"Split into {len(texts)} chunks of text (max. {chunk_size} tokens each)")
return texts
def does_vectorstore_exist(persist_directory: str) -> bool:
"""
Checks if vectorstore exists
"""
if os.path.exists(os.path.join(persist_directory, 'index')):
if os.path.exists(os.path.join(persist_directory, 'chroma-collections.parquet')) and os.path.exists(os.path.join(persist_directory, 'chroma-embeddings.parquet')):
list_index_files = glob.glob(os.path.join(persist_directory, 'index/*.bin'))
list_index_files += glob.glob(os.path.join(persist_directory, 'index/*.pkl'))
# At least 3 documents are needed in a working vectorstore
if len(list_index_files) > 3:
return True
return False
def main():
# Create embeddings
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
if does_vectorstore_exist(persist_directory):
# Update and store locally vectorstore
print(f"Appending to existing vectorstore at {persist_directory}")
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings, client_settings=CHROMA_SETTINGS)
collection = db.get()
texts = process_documents([metadata['source'] for metadata in collection['metadatas']])
print(f"Creating embeddings. May take some minutes...")
db.add_documents(texts)
else:
# Create and store locally vectorstore
print("Creating new vectorstore")
texts = process_documents()
print(f"Creating embeddings. May take some minutes...")
db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS)
db.persist()
db = None
print(f"Ingestion complete! You can now run privateGPT.py to query your documents")
if __name__ == "__main__":
main()

3833
examples/privategpt/poetry.lock generated Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,71 @@
#!/usr/bin/env python3
from langchain.chains import RetrievalQA
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.vectorstores import Chroma
from langchain.llms import Ollama
import os
import argparse
import time
model = os.environ.get("MODEL", "llama2-uncensored")
# For embeddings model, the example uses a sentence-transformers model
# https://www.sbert.net/docs/pretrained_models.html
# "The all-mpnet-base-v2 model provides the best quality, while all-MiniLM-L6-v2 is 5 times faster and still offers good quality."
embeddings_model_name = os.environ.get("EMBEDDINGS_MODEL_NAME", "all-MiniLM-L6-v2")
persist_directory = os.environ.get("PERSIST_DIRECTORY", "db")
target_source_chunks = int(os.environ.get('TARGET_SOURCE_CHUNKS',4))
from constants import CHROMA_SETTINGS
def main():
# Parse the command line arguments
args = parse_arguments()
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings, client_settings=CHROMA_SETTINGS)
retriever = db.as_retriever(search_kwargs={"k": target_source_chunks})
# activate/deactivate the streaming StdOut callback for LLMs
callbacks = [] if args.mute_stream else [StreamingStdOutCallbackHandler()]
llm = Ollama(model=model, callbacks=callbacks)
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents= not args.hide_source)
# Interactive questions and answers
while True:
query = input("\nEnter a query: ")
if query == "exit":
break
if query.strip() == "":
continue
# Get the answer from the chain
start = time.time()
res = qa(query)
answer, docs = res['result'], [] if args.hide_source else res['source_documents']
end = time.time()
# Print the result
print("\n\n> Question:")
print(query)
print(answer)
# Print the relevant sources used for the answer
for document in docs:
print("\n> " + document.metadata["source"] + ":")
print(document.page_content)
def parse_arguments():
parser = argparse.ArgumentParser(description='privateGPT: Ask questions to your documents without an internet connection, '
'using the power of LLMs.')
parser.add_argument("--hide-source", "-S", action='store_true',
help='Use this flag to disable printing of source documents used for answers.')
parser.add_argument("--mute-stream", "-M",
action='store_true',
help='Use this flag to disable the streaming StdOut callback for LLMs.')
return parser.parse_args()
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,26 @@
[tool.poetry]
name = "privategpt"
version = "0.1.0"
description = ""
authors = ["Ivan Martinez <ivanmartit@gmail.com>"]
license = "Apache Version 2.0"
readme = "README.md"
[tool.poetry.dependencies]
python = "^3.10"
langchain = "0.0.261"
gpt4all = "^1.0.3"
chromadb = "^0.3.26"
PyMuPDF = "^1.22.5"
python-dotenv = "^1.0.0"
unstructured = "^0.8.0"
extract-msg = "^0.41.5"
tabulate = "^0.9.0"
pandoc = "^2.3"
pypandoc = "^1.11"
tqdm = "^4.65.0"
sentence-transformers = "^2.2.2"
[build-system]
requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api"

File diff suppressed because it is too large Load Diff

38
examples/python/client.py Normal file
View File

@@ -0,0 +1,38 @@
import json
import requests
# NOTE: ollama must be running for this to work, start the ollama app or run `ollama serve`
model = 'llama2' # TODO: update this for whatever model you wish to use
def generate(prompt, context):
r = requests.post('http://localhost:11434/api/generate',
json={
'model': model,
'prompt': prompt,
'context': context,
},
stream=True)
r.raise_for_status()
for line in r.iter_lines():
body = json.loads(line)
response_part = body.get('response', '')
# the response streams one token at a time, print that as we recieve it
print(response_part, end='', flush=True)
if 'error' in body:
raise Exception(body['error'])
if body.get('done', False):
return body['context']
def main():
context = [] # the context stores a conversation history, you can use this to make the model more context aware
while True:
user_input = input("Enter a prompt: ")
print()
context = generate(user_input, context)
print()
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,28 @@
# Modelfile for creating a sentiment analyzer.
# Run `ollama create sentiments -f pathtofile` and then `ollama run sentiments` and enter a topic
FROM orca
TEMPLATE """
{{- if .First }}
### System:
{{ .System }}
{{- end }}
### User:
I hate it when my phone dies
### Response:
NEGATIVE
### User:
He is awesome
### Response:
POSITIVE
### User:
This is the link to the article
### Response:
NEUTRAL
### User:
{{ .Prompt }}
### Response:
"""
SYSTEM """You are a sentiment analyzer. You will receive text and output only one word, either POSITIVE or NEGATIVE or NEUTRAL, depending on the sentiment of the text."""

View File

@@ -0,0 +1,25 @@
# Sentiments Modelfile
This is a simple sentiments analyzer using the Orca model. When you pull Orca from the registry, it has a Template already defined that looks like this:
```Modelfile
{{- if .First }}
### System:
{{ .System }}
{{- end }}
### User:
{{ .Prompt }}
### Response:
```
If we just wanted to have the text:
```Plaintext
You are a sentiment analyzer. You will receive text and output only one word, either POSITIVE or NEGATIVE or NEUTRAL, depending on the sentiment of the text.
```
then we could have put this in a SYSTEM block. But we want to provide examples which require updating the full Template. Any Modelfile you create will inherit all the settings from the source model. But in this example, we are overriding the Template.
When providing examples for the input and output, you should include the way the model usually provides information. Since the Orca model expects a user prompt to appear after ### User: and the response is after ### Response, we should format our examples like that as well. If we were using the Llama 2 model, the format would be a bit different.

View File

@@ -3,5 +3,5 @@
FROM nous-hermes
SYSTEM """
You are a content marketer who needs to come up with a short but succinct tweet. Make sure to include the appropriate hashtags and links. Sometimes when appropriate, describe a meme that can be includes as well. All answers should be in the form of a tweet which has a max size of 280 characters. Every instruction will be the topic to create a tweet about.
You are a content marketer who needs to come up with a short but succinct tweet. Make sure to include the appropriate hashtags and links. Sometimes when appropriate, describe a meme that can be included as well. All answers should be in the form of a tweet which has a max size of 280 characters. Every instruction will be the topic to create a tweet about.
"""

102
format/openssh.go Normal file
View File

@@ -0,0 +1,102 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Code originally from https://go-review.googlesource.com/c/crypto/+/218620
// TODO: replace with upstream once the above change is merged and released.
package format
import (
"crypto"
"crypto/ed25519"
"crypto/rand"
"encoding/binary"
"encoding/pem"
"fmt"
"golang.org/x/crypto/ssh"
)
const privateKeyAuthMagic = "openssh-key-v1\x00"
type openSSHEncryptedPrivateKey struct {
CipherName string
KDFName string
KDFOptions string
KeysCount uint32
PubKey []byte
KeyBlocks []byte
}
type openSSHPrivateKey struct {
Check1 uint32
Check2 uint32
Keytype string
Rest []byte `ssh:"rest"`
}
type openSSHEd25519PrivateKey struct {
Pub []byte
Priv []byte
Comment string
Pad []byte `ssh:"rest"`
}
func OpenSSHPrivateKey(key crypto.PrivateKey, comment string) (*pem.Block, error) {
var check uint32
if err := binary.Read(rand.Reader, binary.BigEndian, &check); err != nil {
return nil, err
}
var pk1 openSSHPrivateKey
pk1.Check1 = check
pk1.Check2 = check
var w openSSHEncryptedPrivateKey
w.KeysCount = 1
if k, ok := key.(*ed25519.PrivateKey); ok {
key = *k
}
switch k := key.(type) {
case ed25519.PrivateKey:
pub, priv := k[32:], k
key := openSSHEd25519PrivateKey{
Pub: pub,
Priv: priv,
Comment: comment,
}
pk1.Keytype = ssh.KeyAlgoED25519
pk1.Rest = ssh.Marshal(key)
w.PubKey = ssh.Marshal(struct {
KeyType string
Pub []byte
}{
ssh.KeyAlgoED25519, pub,
})
default:
return nil, fmt.Errorf("ssh: unknown key type %T", k)
}
w.KeyBlocks = openSSHPadding(ssh.Marshal(pk1), 8)
w.CipherName, w.KDFName, w.KDFOptions = "none", "none", ""
return &pem.Block{
Type: "OPENSSH PRIVATE KEY",
Bytes: append([]byte(privateKeyAuthMagic), ssh.Marshal(w)...),
}, nil
}
func openSSHPadding(block []byte, blocksize int) []byte {
for i, j := 0, len(block); (j+i)%blocksize != 0; i++ {
block = append(block, byte(i+1))
}
return block
}

9
go.mod
View File

@@ -8,6 +8,7 @@ require (
github.com/mattn/go-runewidth v0.0.14
github.com/mitchellh/colorstring v0.0.0-20190213212951-d06e56a500db
github.com/olekukonko/tablewriter v0.0.5
github.com/pdevine/readline v1.5.2
github.com/spf13/cobra v1.7.0
)
@@ -16,7 +17,6 @@ require github.com/rivo/uniseg v0.2.0 // indirect
require (
github.com/bytedance/sonic v1.9.1 // indirect
github.com/chenzhuoyu/base64x v0.0.0-20221115062448-fe3a3abad311 // indirect
github.com/chzyer/readline v1.5.1
github.com/gabriel-vasile/mimetype v1.4.2 // indirect
github.com/gin-contrib/cors v1.4.0
github.com/gin-contrib/sse v0.1.0 // indirect
@@ -32,16 +32,19 @@ require (
github.com/mattn/go-isatty v0.0.19 // indirect
github.com/modern-go/concurrent v0.0.0-20180306012644-bacd9c7ef1dd // indirect
github.com/modern-go/reflect2 v1.0.2 // indirect
github.com/pbnjay/memory v0.0.0-20210728143218-7b4eea64cf58
github.com/pelletier/go-toml/v2 v2.0.8 // indirect
github.com/spf13/pflag v1.0.5 // indirect
github.com/twitchyliquid64/golang-asm v0.15.1 // indirect
github.com/ugorji/go/codec v1.2.11 // indirect
golang.org/x/arch v0.3.0 // indirect
golang.org/x/crypto v0.10.0 // indirect
golang.org/x/crypto v0.10.0
golang.org/x/exp v0.0.0-20230817173708-d852ddb80c63
golang.org/x/net v0.10.0 // indirect
golang.org/x/sys v0.10.0 // indirect
golang.org/x/sys v0.11.0 // indirect
golang.org/x/term v0.10.0
golang.org/x/text v0.10.0 // indirect
gonum.org/v1/gonum v0.13.0
google.golang.org/protobuf v1.30.0 // indirect
gopkg.in/yaml.v3 v3.0.1 // indirect
)

14
go.sum
View File

@@ -6,8 +6,6 @@ github.com/chenzhuoyu/base64x v0.0.0-20221115062448-fe3a3abad311 h1:qSGYFH7+jGhD
github.com/chenzhuoyu/base64x v0.0.0-20221115062448-fe3a3abad311/go.mod h1:b583jCggY9gE99b6G5LEC39OIiVsWj+R97kbl5odCEk=
github.com/chzyer/logex v1.2.1 h1:XHDu3E6q+gdHgsdTPH6ImJMIp436vR6MPtH8gP05QzM=
github.com/chzyer/logex v1.2.1/go.mod h1:JLbx6lG2kDbNRFnfkgvh4eRJRPX1QCoOIWomwysCBrQ=
github.com/chzyer/readline v1.5.1 h1:upd/6fQk4src78LMRzh5vItIt361/o4uq553V8B5sGI=
github.com/chzyer/readline v1.5.1/go.mod h1:Eh+b79XXUwfKfcPLepksvw2tcLE/Ct21YObkaSkeBlk=
github.com/chzyer/test v1.0.0 h1:p3BQDXSxOhOG0P9z6/hGnII4LGiEPOYBhs8asl/fC04=
github.com/chzyer/test v1.0.0/go.mod h1:2JlltgoNkt4TW/z9V/IzDdFaMTM2JPIi26O1pF38GC8=
github.com/cpuguy83/go-md2man/v2 v2.0.2/go.mod h1:tgQtvFlXSQOSOSIRvRPT7W67SCa46tRHOmNcaadrF8o=
@@ -78,6 +76,10 @@ github.com/modern-go/reflect2 v1.0.2 h1:xBagoLtFs94CBntxluKeaWgTMpvLxC4ur3nMaC9G
github.com/modern-go/reflect2 v1.0.2/go.mod h1:yWuevngMOJpCy52FWWMvUC8ws7m/LJsjYzDa0/r8luk=
github.com/olekukonko/tablewriter v0.0.5 h1:P2Ga83D34wi1o9J6Wh1mRuqd4mF/x/lgBS7N7AbDhec=
github.com/olekukonko/tablewriter v0.0.5/go.mod h1:hPp6KlRPjbx+hW8ykQs1w3UBbZlj6HuIJcUGPhkA7kY=
github.com/pbnjay/memory v0.0.0-20210728143218-7b4eea64cf58 h1:onHthvaw9LFnH4t2DcNVpwGmV9E1BkGknEliJkfwQj0=
github.com/pbnjay/memory v0.0.0-20210728143218-7b4eea64cf58/go.mod h1:DXv8WO4yhMYhSNPKjeNKa5WY9YCIEBRbNzFFPJbWO6Y=
github.com/pdevine/readline v1.5.2 h1:oz6Y5GdTmhPG+08hhxcAvtHitSANWuA2100Sppb38xI=
github.com/pdevine/readline v1.5.2/go.mod h1:na/LbuE5PYwxI7GyopWdIs3U8HVe89lYlNTFTXH3wOw=
github.com/pelletier/go-toml/v2 v2.0.1/go.mod h1:r9LEWfGN8R5k0VXJ+0BkIe7MYkRdwZOjgMj2KwnJFUo=
github.com/pelletier/go-toml/v2 v2.0.8 h1:0ctb6s9mE31h0/lhu+J6OPmVeDxJn+kYnJc2jZR9tGQ=
github.com/pelletier/go-toml/v2 v2.0.8/go.mod h1:vuYfssBdrU2XDZ9bYydBu6t+6a6PYNcZljzZR9VXg+4=
@@ -118,6 +120,8 @@ golang.org/x/arch v0.3.0/go.mod h1:5om86z9Hs0C8fWVUuoMHwpExlXzs5Tkyp9hOrfG7pp8=
golang.org/x/crypto v0.0.0-20210711020723-a769d52b0f97/go.mod h1:GvvjBRRGRdwPK5ydBHafDWAxML/pGHZbMvKqRZ5+Abc=
golang.org/x/crypto v0.10.0 h1:LKqV2xt9+kDzSTfOhx4FrkEBcMrAgHSYgzywV9zcGmM=
golang.org/x/crypto v0.10.0/go.mod h1:o4eNf7Ede1fv+hwOwZsTHl9EsPFO6q6ZvYR8vYfY45I=
golang.org/x/exp v0.0.0-20230817173708-d852ddb80c63 h1:m64FZMko/V45gv0bNmrNYoDEq8U5YUhetc9cBWKS1TQ=
golang.org/x/exp v0.0.0-20230817173708-d852ddb80c63/go.mod h1:0v4NqG35kSWCMzLaMeX+IQrlSnVE/bqGSyC2cz/9Le8=
golang.org/x/net v0.0.0-20210226172049-e18ecbb05110/go.mod h1:m0MpNAwzfU5UDzcl9v0D8zg8gWTRqZa9RBIspLL5mdg=
golang.org/x/net v0.10.0 h1:X2//UzNDwYmtCLn7To6G58Wr6f5ahEAQgKNzv9Y951M=
golang.org/x/net v0.10.0/go.mod h1:0qNGK6F8kojg2nk9dLZ2mShWaEBan6FAoqfSigmmuDg=
@@ -128,8 +132,8 @@ golang.org/x/sys v0.0.0-20210806184541-e5e7981a1069/go.mod h1:oPkhp1MJrh7nUepCBc
golang.org/x/sys v0.0.0-20220310020820-b874c991c1a5/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20220704084225-05e143d24a9e/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.6.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.10.0 h1:SqMFp9UcQJZa+pmYuAKjd9xq1f0j5rLcDIk0mj4qAsA=
golang.org/x/sys v0.10.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.11.0 h1:eG7RXZHdqOJ1i+0lgLgCpSXAp6M3LYlAo6osgSi0xOM=
golang.org/x/sys v0.11.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/term v0.0.0-20201126162022-7de9c90e9dd1/go.mod h1:bj7SfCRtBDWHUb9snDiAeCFNEtKQo2Wmx5Cou7ajbmo=
golang.org/x/term v0.10.0 h1:3R7pNqamzBraeqj/Tj8qt1aQ2HpmlC+Cx/qL/7hn4/c=
golang.org/x/term v0.10.0/go.mod h1:lpqdcUyK/oCiQxvxVrppt5ggO2KCZ5QblwqPnfZ6d5o=
@@ -139,6 +143,8 @@ golang.org/x/text v0.10.0 h1:UpjohKhiEgNc0CSauXmwYftY1+LlaC75SJwh0SgCX58=
golang.org/x/text v0.10.0/go.mod h1:TvPlkZtksWOMsz7fbANvkp4WM8x/WCo/om8BMLbz+aE=
golang.org/x/tools v0.0.0-20180917221912-90fa682c2a6e/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
golang.org/x/xerrors v0.0.0-20191204190536-9bdfabe68543/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
gonum.org/v1/gonum v0.13.0 h1:a0T3bh+7fhRyqeNbiC3qVHYmkiQgit3wnNan/2c0HMM=
gonum.org/v1/gonum v0.13.0/go.mod h1:/WPYRckkfWrhWefxyYTfrTtQR0KH4iyHNuzxqXAKyAU=
google.golang.org/protobuf v1.26.0-rc.1/go.mod h1:jlhhOSvTdKEhbULTjvd4ARK9grFBp09yW+WbY/TyQbw=
google.golang.org/protobuf v1.28.0/go.mod h1:HV8QOd/L58Z+nl8r43ehVNZIU/HEI6OcFqwMG9pJV4I=
google.golang.org/protobuf v1.30.0 h1:kPPoIgf3TsEvrm0PFe15JQ+570QVxYzEvvHqChK+cng=

1
library/.gitignore vendored
View File

@@ -1 +0,0 @@
models

View File

@@ -1,7 +0,0 @@
https://huggingface.co/TheBloke/orca_mini_3B-GGML/resolve/main/orca-mini-3b.ggmlv3.q4_0.bin e84705205f71dd55be7b24a778f248f0eda9999a125d313358c087e092d83148
https://huggingface.co/TheBloke/Nous-Hermes-13B-GGML/resolve/main/nous-hermes-13b.ggmlv3.q4_0.bin d1735b93e1dc503f1045ccd6c8bd73277b18ba892befd1dc29e9b9a7822ed998
https://huggingface.co/TheBloke/vicuna-7B-v1.3-GGML/resolve/main/vicuna-7b-v1.3.ggmlv3.q4_0.bin 23ce5ed290b56a19305178b9ada2c3d96036bd69a6c18304b6158eb6672d6c0f
https://huggingface.co/TheBloke/Wizard-Vicuna-13B-Uncensored-GGML/resolve/main/Wizard-Vicuna-13B-Uncensored.ggmlv3.q4_0.bin 1f08b147a5bce41cfcbb3fd5d51ba765dea1786e15b5655ab69ba3a337a893b7
https://huggingface.co/TheBloke/Llama-2-7B-GGML/resolve/main/llama-2-7b.ggmlv3.q4_0.bin bfa26d855e44629c4cf919985e90bd7fa03b77eea1676791519e39a4d45fd4d5
https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGML/resolve/main/llama-2-7b-chat.ggmlv3.q4_0.bin 8daa9615cce30c259a9555b1cc250d461d1bc69980a274b44d7eda0be78076d8
https://huggingface.co/TheBloke/Llama-2-13B-chat-GGML/resolve/main/llama-2-13b-chat.ggmlv3.q4_0.bin f79142715bc9539a2edbb4b253548db8b34fac22736593eeaa28555874476e30

View File

@@ -1,147 +0,0 @@
FROM ../models/llama-2-7b-chat.ggmlv3.q4_0.bin
TEMPLATE """
{{- if .First }}
<<SYS>>
{{ .System }}
<</SYS>>
{{- end }}
[INST] {{ .Prompt }} [/INST]
"""
SYSTEM """
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
"""
LICENSE """
Llama 2 Community License Agreement
Llama 2 Version Release Date: July 18, 2023
“Agreement” means the terms and conditions for use, reproduction, distribution and modification of the Llama Materials set forth herein.
“Documentation” means the specifications, manuals and documentation accompanying Llama 2 distributed by Meta at ai.meta.com/resources/models-and-libraries/llama-downloads/.
“Licensee” or “you” means you, or your employer or any other person or entity (if you are entering into this Agreement on such person or entitys behalf), of the age required under applicable laws, rules or regulations to provide legal consent and that has legal authority to bind your employer or such other person or entity if you are entering in this Agreement on their behalf.
“Llama 2” means the foundational large language models and software and algorithms, including machine-learning model code, trained model weights, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Meta at ai.meta.com/resources/models-and-libraries/llama-downloads/.
“Llama Materials” means, collectively, Metas proprietary Llama 2 and Documentation (and any portion thereof) made available under this Agreement.
“Meta” or “we” means Meta Platforms Ireland Limited (if you are located in or, if you are an entity, your principal place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland).
By clicking “I Accept” below or by using or distributing any portion or element of the Llama Materials, you agree to be bound by this Agreement.
1. License Rights and Redistribution.
a. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Metas intellectual property or other rights owned by Meta embodied in the Llama Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Llama Materials.
b. Redistribution and Use.
i. If you distribute or make the Llama Materials, or any derivative works thereof, available to a third party, you shall provide a copy of this Agreement to such third party.
ii. If you receive Llama Materials, or any derivative works thereof, from a Licensee as part of an integrated end user product, then Section 2 of this Agreement will not apply to you.
iii. You must retain in all copies of the Llama Materials that you distribute the following attribution notice within a “Notice” text file distributed as a part of such copies: “Llama 2 is licensed under the LLAMA 2 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved.”
iv. Your use of the Llama Materials must comply with applicable laws and regulations (including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for the Llama Materials (available at https://ai.meta.com/llama/use-policy), which is hereby incorporated by reference into this Agreement.
v. You will not use the Llama Materials or any output or results of the Llama Materials to improve any other large language model (excluding Llama 2 or derivative works thereof).
2. Additional Commercial Terms. If, on the Llama 2 version release date, the monthly active users of the products or services made available by or for Licensee, or Licensees affiliates, is greater than 700 million monthly active users in the preceding calendar month, you must request a license from Meta, which Meta may grant to you in its sole discretion, and you are not authorized to exercise any of the rights under this Agreement unless or until Meta otherwise expressly grants you such rights.
3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN “AS IS” BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.
4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.
5. Intellectual Property.
a. No trademark licenses are granted under this Agreement, and in connection with the Llama Materials, neither Meta nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates, except as required for reasonable and customary use in describing and redistributing the Llama Materials.
b. Subject to Metas ownership of Llama Materials and derivatives made by or for Meta, with respect to any derivative works and modifications of the Llama Materials that are made by you, as between you and Meta, you are and will be the owner of such derivative works and modifications.
c. If you institute litigation or other proceedings against Meta or any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Llama Materials or Llama 2 outputs or results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold harmless Meta from and against any claim by any third party arising out of or related to your use or distribution of the Llama Materials.
6. Term and Termination. The term of this Agreement will commence upon your acceptance of this Agreement or access to the Llama Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein. Meta may terminate this Agreement if you are in breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the termination of this Agreement.
7. Governing Law and Jurisdiction. This Agreement will be governed and construed under the laws of the State of California without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement. The courts of California shall have exclusive jurisdiction of any dispute arising out of this Agreement.
"""
LICENSE """
Llama 2 Acceptable Use Policy
Meta is committed to promoting safe and fair use of its tools and features, including Llama 2. If you access or use Llama 2, you agree to this Acceptable Use Policy (“Policy”). The most recent copy of this policy can be found at ai.meta.com/llama/use-policy.
Prohibited Uses
We want everyone to use Llama 2 safely and responsibly. You agree you will not use, or allow others to use, Llama 2 to:
1. Violate the law or others rights, including to:
a. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as:
i. Violence or terrorism
ii. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material
b. Human trafficking, exploitation, and sexual violence
iii. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials.
iv. Sexual solicitation
vi. Any other criminal activity
c. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals
d. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services
e. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices
f. Collect, process, disclose, generate, or infer health, demographic, or other sensitive personal or private information about individuals without rights and consents required by applicable laws
g. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Llama 2 Materials
h. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system
2. Engage in, promote, incite, facilitate, or assist in the planning or development of activities that present a risk of death or bodily harm to individuals, including use of Llama 2 related to the following:
a. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are subject to the International Traffic Arms Regulations (ITAR) maintained by the United States Department of State
b. Guns and illegal weapons (including weapon development)
c. Illegal drugs and regulated/controlled substances
d. Operation of critical infrastructure, transportation technologies, or heavy machinery
e. Self-harm or harm to others, including suicide, cutting, and eating disorders
f. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual
3. Intentionally deceive or mislead others, including use of Llama 2 related to the following:
a. Generating, promoting, or furthering fraud or the creation or promotion of disinformation
b. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content
c. Generating, promoting, or further distributing spam
d. Impersonating another individual without consent, authorization, or legal right
e. Representing that the use of Llama 2 or outputs are human-generated
f. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement
4. Fail to appropriately disclose to end users any known dangers of your AI system
Please report any violation of this Policy, software “bug,” or other problems that could lead to a violation of this Policy through one of the following means:
Reporting issues with the model: github.com/facebookresearch/llama
Reporting risky content generated by the model: developers.facebook.com/llama_output_feedback
Reporting bugs and security concerns: facebook.com/whitehat/info
Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama: LlamaUseReport@meta.com
"""

View File

@@ -1,147 +0,0 @@
FROM ../models/llama-2-13b-chat.ggmlv3.q4_0.bin
TEMPLATE """
{{- if .First }}
<<SYS>>
{{ .System }}
<</SYS>>
{{- end }}
[INST] {{ .Prompt }} [/INST]
"""
SYSTEM """
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
"""
LICENSE """
Llama 2 Community License Agreement
Llama 2 Version Release Date: July 18, 2023
“Agreement” means the terms and conditions for use, reproduction, distribution and modification of the Llama Materials set forth herein.
“Documentation” means the specifications, manuals and documentation accompanying Llama 2 distributed by Meta at ai.meta.com/resources/models-and-libraries/llama-downloads/.
“Licensee” or “you” means you, or your employer or any other person or entity (if you are entering into this Agreement on such person or entitys behalf), of the age required under applicable laws, rules or regulations to provide legal consent and that has legal authority to bind your employer or such other person or entity if you are entering in this Agreement on their behalf.
“Llama 2” means the foundational large language models and software and algorithms, including machine-learning model code, trained model weights, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Meta at ai.meta.com/resources/models-and-libraries/llama-downloads/.
“Llama Materials” means, collectively, Metas proprietary Llama 2 and Documentation (and any portion thereof) made available under this Agreement.
“Meta” or “we” means Meta Platforms Ireland Limited (if you are located in or, if you are an entity, your principal place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland).
By clicking “I Accept” below or by using or distributing any portion or element of the Llama Materials, you agree to be bound by this Agreement.
1. License Rights and Redistribution.
a. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Metas intellectual property or other rights owned by Meta embodied in the Llama Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Llama Materials.
b. Redistribution and Use.
i. If you distribute or make the Llama Materials, or any derivative works thereof, available to a third party, you shall provide a copy of this Agreement to such third party.
ii. If you receive Llama Materials, or any derivative works thereof, from a Licensee as part of an integrated end user product, then Section 2 of this Agreement will not apply to you.
iii. You must retain in all copies of the Llama Materials that you distribute the following attribution notice within a “Notice” text file distributed as a part of such copies: “Llama 2 is licensed under the LLAMA 2 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved.”
iv. Your use of the Llama Materials must comply with applicable laws and regulations (including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for the Llama Materials (available at https://ai.meta.com/llama/use-policy), which is hereby incorporated by reference into this Agreement.
v. You will not use the Llama Materials or any output or results of the Llama Materials to improve any other large language model (excluding Llama 2 or derivative works thereof).
2. Additional Commercial Terms. If, on the Llama 2 version release date, the monthly active users of the products or services made available by or for Licensee, or Licensees affiliates, is greater than 700 million monthly active users in the preceding calendar month, you must request a license from Meta, which Meta may grant to you in its sole discretion, and you are not authorized to exercise any of the rights under this Agreement unless or until Meta otherwise expressly grants you such rights.
3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN “AS IS” BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.
4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.
5. Intellectual Property.
a. No trademark licenses are granted under this Agreement, and in connection with the Llama Materials, neither Meta nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates, except as required for reasonable and customary use in describing and redistributing the Llama Materials.
b. Subject to Metas ownership of Llama Materials and derivatives made by or for Meta, with respect to any derivative works and modifications of the Llama Materials that are made by you, as between you and Meta, you are and will be the owner of such derivative works and modifications.
c. If you institute litigation or other proceedings against Meta or any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Llama Materials or Llama 2 outputs or results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold harmless Meta from and against any claim by any third party arising out of or related to your use or distribution of the Llama Materials.
6. Term and Termination. The term of this Agreement will commence upon your acceptance of this Agreement or access to the Llama Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein. Meta may terminate this Agreement if you are in breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the termination of this Agreement.
7. Governing Law and Jurisdiction. This Agreement will be governed and construed under the laws of the State of California without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement. The courts of California shall have exclusive jurisdiction of any dispute arising out of this Agreement.
"""
LICENSE """
Llama 2 Acceptable Use Policy
Meta is committed to promoting safe and fair use of its tools and features, including Llama 2. If you access or use Llama 2, you agree to this Acceptable Use Policy (“Policy”). The most recent copy of this policy can be found at ai.meta.com/llama/use-policy.
Prohibited Uses
We want everyone to use Llama 2 safely and responsibly. You agree you will not use, or allow others to use, Llama 2 to:
1. Violate the law or others rights, including to:
a. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as:
i. Violence or terrorism
ii. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material
b. Human trafficking, exploitation, and sexual violence
iii. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials.
iv. Sexual solicitation
vi. Any other criminal activity
c. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals
d. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services
e. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices
f. Collect, process, disclose, generate, or infer health, demographic, or other sensitive personal or private information about individuals without rights and consents required by applicable laws
g. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Llama 2 Materials
h. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system
2. Engage in, promote, incite, facilitate, or assist in the planning or development of activities that present a risk of death or bodily harm to individuals, including use of Llama 2 related to the following:
a. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are subject to the International Traffic Arms Regulations (ITAR) maintained by the United States Department of State
b. Guns and illegal weapons (including weapon development)
c. Illegal drugs and regulated/controlled substances
d. Operation of critical infrastructure, transportation technologies, or heavy machinery
e. Self-harm or harm to others, including suicide, cutting, and eating disorders
f. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual
3. Intentionally deceive or mislead others, including use of Llama 2 related to the following:
a. Generating, promoting, or furthering fraud or the creation or promotion of disinformation
b. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content
c. Generating, promoting, or further distributing spam
d. Impersonating another individual without consent, authorization, or legal right
e. Representing that the use of Llama 2 or outputs are human-generated
f. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement
4. Fail to appropriately disclose to end users any known dangers of your AI system
Please report any violation of this Policy, software “bug,” or other problems that could lead to a violation of this Policy through one of the following means:
Reporting issues with the model: github.com/facebookresearch/llama
Reporting risky content generated by the model: developers.facebook.com/llama_output_feedback
Reporting bugs and security concerns: facebook.com/whitehat/info
Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama: LlamaUseReport@meta.com
"""

View File

@@ -1,147 +0,0 @@
FROM ../models/llama-2-7b-chat.ggmlv3.q4_0.bin
TEMPLATE """
{{- if .First }}
<<SYS>>
{{ .System }}
<</SYS>>
{{- end }}
[INST] {{ .Prompt }} [/INST]
"""
SYSTEM """
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
"""
LICENSE """
Llama 2 Community License Agreement
Llama 2 Version Release Date: July 18, 2023
“Agreement” means the terms and conditions for use, reproduction, distribution and modification of the Llama Materials set forth herein.
“Documentation” means the specifications, manuals and documentation accompanying Llama 2 distributed by Meta at ai.meta.com/resources/models-and-libraries/llama-downloads/.
“Licensee” or “you” means you, or your employer or any other person or entity (if you are entering into this Agreement on such person or entitys behalf), of the age required under applicable laws, rules or regulations to provide legal consent and that has legal authority to bind your employer or such other person or entity if you are entering in this Agreement on their behalf.
“Llama 2” means the foundational large language models and software and algorithms, including machine-learning model code, trained model weights, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Meta at ai.meta.com/resources/models-and-libraries/llama-downloads/.
“Llama Materials” means, collectively, Metas proprietary Llama 2 and Documentation (and any portion thereof) made available under this Agreement.
“Meta” or “we” means Meta Platforms Ireland Limited (if you are located in or, if you are an entity, your principal place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland).
By clicking “I Accept” below or by using or distributing any portion or element of the Llama Materials, you agree to be bound by this Agreement.
1. License Rights and Redistribution.
a. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Metas intellectual property or other rights owned by Meta embodied in the Llama Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Llama Materials.
b. Redistribution and Use.
i. If you distribute or make the Llama Materials, or any derivative works thereof, available to a third party, you shall provide a copy of this Agreement to such third party.
ii. If you receive Llama Materials, or any derivative works thereof, from a Licensee as part of an integrated end user product, then Section 2 of this Agreement will not apply to you.
iii. You must retain in all copies of the Llama Materials that you distribute the following attribution notice within a “Notice” text file distributed as a part of such copies: “Llama 2 is licensed under the LLAMA 2 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved.”
iv. Your use of the Llama Materials must comply with applicable laws and regulations (including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for the Llama Materials (available at https://ai.meta.com/llama/use-policy), which is hereby incorporated by reference into this Agreement.
v. You will not use the Llama Materials or any output or results of the Llama Materials to improve any other large language model (excluding Llama 2 or derivative works thereof).
2. Additional Commercial Terms. If, on the Llama 2 version release date, the monthly active users of the products or services made available by or for Licensee, or Licensees affiliates, is greater than 700 million monthly active users in the preceding calendar month, you must request a license from Meta, which Meta may grant to you in its sole discretion, and you are not authorized to exercise any of the rights under this Agreement unless or until Meta otherwise expressly grants you such rights.
3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN “AS IS” BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.
4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.
5. Intellectual Property.
a. No trademark licenses are granted under this Agreement, and in connection with the Llama Materials, neither Meta nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates, except as required for reasonable and customary use in describing and redistributing the Llama Materials.
b. Subject to Metas ownership of Llama Materials and derivatives made by or for Meta, with respect to any derivative works and modifications of the Llama Materials that are made by you, as between you and Meta, you are and will be the owner of such derivative works and modifications.
c. If you institute litigation or other proceedings against Meta or any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Llama Materials or Llama 2 outputs or results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold harmless Meta from and against any claim by any third party arising out of or related to your use or distribution of the Llama Materials.
6. Term and Termination. The term of this Agreement will commence upon your acceptance of this Agreement or access to the Llama Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein. Meta may terminate this Agreement if you are in breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the termination of this Agreement.
7. Governing Law and Jurisdiction. This Agreement will be governed and construed under the laws of the State of California without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement. The courts of California shall have exclusive jurisdiction of any dispute arising out of this Agreement.
"""
LICENSE """
Llama 2 Acceptable Use Policy
Meta is committed to promoting safe and fair use of its tools and features, including Llama 2. If you access or use Llama 2, you agree to this Acceptable Use Policy (“Policy”). The most recent copy of this policy can be found at ai.meta.com/llama/use-policy.
Prohibited Uses
We want everyone to use Llama 2 safely and responsibly. You agree you will not use, or allow others to use, Llama 2 to:
1. Violate the law or others rights, including to:
a. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as:
i. Violence or terrorism
ii. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material
b. Human trafficking, exploitation, and sexual violence
iii. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials.
iv. Sexual solicitation
vi. Any other criminal activity
c. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals
d. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services
e. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices
f. Collect, process, disclose, generate, or infer health, demographic, or other sensitive personal or private information about individuals without rights and consents required by applicable laws
g. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Llama 2 Materials
h. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system
2. Engage in, promote, incite, facilitate, or assist in the planning or development of activities that present a risk of death or bodily harm to individuals, including use of Llama 2 related to the following:
a. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are subject to the International Traffic Arms Regulations (ITAR) maintained by the United States Department of State
b. Guns and illegal weapons (including weapon development)
c. Illegal drugs and regulated/controlled substances
d. Operation of critical infrastructure, transportation technologies, or heavy machinery
e. Self-harm or harm to others, including suicide, cutting, and eating disorders
f. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual
3. Intentionally deceive or mislead others, including use of Llama 2 related to the following:
a. Generating, promoting, or furthering fraud or the creation or promotion of disinformation
b. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content
c. Generating, promoting, or further distributing spam
d. Impersonating another individual without consent, authorization, or legal right
e. Representing that the use of Llama 2 or outputs are human-generated
f. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement
4. Fail to appropriately disclose to end users any known dangers of your AI system
Please report any violation of this Policy, software “bug,” or other problems that could lead to a violation of this Policy through one of the following means:
Reporting issues with the model: github.com/facebookresearch/llama
Reporting risky content generated by the model: developers.facebook.com/llama_output_feedback
Reporting bugs and security concerns: facebook.com/whitehat/info
Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama: LlamaUseReport@meta.com
"""

View File

@@ -1,7 +0,0 @@
FROM ../models/nous-hermes-13b.ggmlv3.q4_0.bin
TEMPLATE """
### Instruction:
{{ .Prompt }}
### Response:
"""

View File

@@ -1,14 +0,0 @@
FROM ../models/orca-mini-3b.ggmlv3.q4_0.bin
TEMPLATE """
{{- if .First }}
### System:
{{ .System }}
{{- end }}
### User:
{{ .Prompt }}
### Response:
"""
SYSTEM """You are an AI assistant that follows instruction extremely well. Help as much as you can."""

View File

@@ -1,11 +0,0 @@
FROM ../models/vicuna-7b-v1.3.ggmlv3.q4_0.bin
TEMPLATE """
{{ if .First }}
{{ .System }}
{{- end }}
USER: {{ .Prompt }}
ASSISTANT:
"""
SYSTEM """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions."""

View File

@@ -1,5 +0,0 @@
FROM ../models/Wizard-Vicuna-13B-Uncensored.ggmlv3.q4_0.bin
TEMPLATE """
USER: {{ .Prompt }}
ASSISTANT:
"""

View File

@@ -1,52 +0,0 @@
#!/bin/bash
mkdir -p models
# download binaries
function process_line {
local url=$1
local checksum=$2
# Get the filename from the URL
local filename=models/$(basename $url)
echo "verifying $filename..."
# If the file exists, compute its checksum
if [ -f $filename ]; then
local existing_checksum=$(shasum -a 256 $filename | cut -d ' ' -f1)
fi
# If the file does not exist, or its checksum does not match, download it
if [ ! -f $filename ] || [ $existing_checksum != $checksum ]; then
echo "downloading $filename..."
# Download the file
curl -L $url -o $filename
# Compute the SHA256 hash of the downloaded file
local computed_checksum=$(shasum -a 256 $filename | cut -d ' ' -f1)
# Verify the checksum
if [ $computed_checksum != $checksum ]; then
echo "Checksum verification failed for $filename"
exit 1
fi
fi
}
while IFS=' ' read -r url checksum
do
process_line $url $checksum
done < "downloads"
# create and publish the models
for file in modelfiles/*; do
if [ -f "$file" ]; then
filename=$(basename "$file")
echo $filename
ollama create "library/${filename}" -f "$file"
ollama push "${filename}"
fi
done

View File

@@ -1,567 +0,0 @@
/**
* llama.cpp - git 8183159cf3def112f6d1fe94815fce70e1bffa12
*
* MIT License
*
* Copyright (c) 2023 Georgi Gerganov
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "ggml-alloc.h"
#include "ggml.h"
#include <assert.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define UNUSED(x) (void)(x)
#define MAX(a, b) ((a) > (b) ? (a) : (b))
//#define GGML_ALLOCATOR_DEBUG
//#define AT_PRINTF printf
#define AT_PRINTF(...) ((void)0)
struct hash_node {
struct ggml_tensor * t;
int n_children;
int n_views;
};
static size_t hash(void * p) {
return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
}
static struct hash_node * hash_get(struct hash_node hash_table[], struct ggml_tensor * t) {
size_t h = hash(t);
// linear probing
size_t i = h;
while (hash_table[i].t != NULL) {
if (hash_table[i].t == t) {
return &hash_table[i];
}
i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
if (i == h) {
// hash table is full
GGML_ASSERT(false);
}
}
hash_table[i].t = t;
return &hash_table[i];
}
// TODO: GGML_PAD ?
static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) {
assert(alignment && !(alignment & (alignment - 1))); // power of 2
size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment;
return offset + align;
}
struct free_block {
void * addr;
size_t size;
};
#define MAX_FREE_BLOCKS 128
struct ggml_allocr {
void * data;
size_t size;
size_t alignment;
int n_free_blocks;
struct free_block free_blocks[MAX_FREE_BLOCKS];
struct hash_node hash_table[GGML_GRAPH_HASHTABLE_SIZE];
size_t max_size;
bool measure;
#ifdef GGML_ALLOCATOR_DEBUG
struct ggml_tensor * allocated_tensors[1024];
#endif
};
#ifdef GGML_ALLOCATOR_DEBUG
static void add_allocated_tensor(struct ggml_allocator * alloc, struct ggml_tensor * tensor) {
for (int i = 0; i < 1024; i++) {
if (alloc->allocated_tensors[i] == NULL) {
alloc->allocated_tensors[i] = tensor;
return;
}
}
GGML_ASSERT(!"out of allocated_tensors");
}
static void remove_allocated_tensor(struct ggml_allocator * alloc, struct ggml_tensor * tensor) {
for (int i = 0; i < 1024; i++) {
if (alloc->allocated_tensors[i] == tensor ||
(alloc->allocated_tensors[i] != NULL && alloc->allocated_tensors[i]->data == tensor->data)) {
alloc->allocated_tensors[i] = NULL;
return;
}
}
printf("tried to free tensor %s not found\n", tensor->name);
GGML_ASSERT(!"tensor not found");
}
#endif
static size_t ggml_allocator_get_alloc_size(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
return ggml_nbytes(tensor);
UNUSED(alloc);
}
void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
size_t size = ggml_allocator_get_alloc_size(alloc, tensor);
size = aligned_offset(NULL, size, alloc->alignment);
AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size);
size_t max_avail = 0;
// find the best fitting free block
int best_fit_block = -1;
size_t best_fit_size = SIZE_MAX;
for (int i = 0; i < alloc->n_free_blocks; i++) {
struct free_block * block = &alloc->free_blocks[i];
max_avail = MAX(max_avail, block->size);
if (block->size >= size && block->size <= best_fit_size) {
best_fit_block = i;
best_fit_size = block->size;
}
}
AT_PRINTF("block %d\n", best_fit_block);
if (best_fit_block == -1) {
fprintf(stderr, "%s: not enough space in the buffer (needed %zu, largest block available %zu)\n",
__func__, size, max_avail);
GGML_ASSERT(!"not enough space in the buffer");
return;
}
struct free_block * block = &alloc->free_blocks[best_fit_block];
void * addr = block->addr;
block->addr = (char*)block->addr + size;
block->size -= size;
if (block->size == 0) {
// remove block if empty
alloc->n_free_blocks--;
for (int j = best_fit_block; j < alloc->n_free_blocks; j++) {
alloc->free_blocks[j] = alloc->free_blocks[j+1];
}
}
tensor->data = addr;
#ifdef GGML_ALLOCATOR_DEBUG
add_allocated_tensor(alloc, tensor);
size_t cur_max = (char*)addr - (char*)alloc->data + size;
if (cur_max > alloc->max_size) {
printf("max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0);
for (int i = 0; i < 1024; i++) {
if (alloc->allocated_tensors[i]) {
printf("%s (%.2f MB) ", alloc->allocated_tensors[i]->name, ggml_nbytes(alloc->allocated_tensors[i]) / 1024.0 / 1024.0);
}
}
printf("\n");
}
#endif
alloc->max_size = MAX(alloc->max_size, (char*)addr - (char*)alloc->data + size);
}
// this is a very naive implementation, but for our case the number of free blocks should be very small
static void ggml_allocator_free_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
void * ptr = tensor->data;
if (ptr < alloc->data || (char*)ptr >= (char*)alloc->data + alloc->max_size) {
// the tensor was not allocated in this buffer
// this can happen because the graph allocator will try to free weights and other tensors from different buffers
// the easiest way to deal with this is just to ignore it
return;
}
size_t size = ggml_allocator_get_alloc_size(alloc, tensor);
size = aligned_offset(NULL, size, alloc->alignment);
AT_PRINTF("%s: freeing %s (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, size, alloc->n_free_blocks);
#ifdef GGML_ALLOCATOR_DEBUG
remove_allocated_tensor(alloc, tensor);
#endif
// see if we can merge with an existing block
for (int i = 0; i < alloc->n_free_blocks; i++) {
struct free_block * block = &alloc->free_blocks[i];
// check if ptr is at the end of the block
if ((char*)block->addr + block->size == ptr) {
block->size += size;
// check if we can merge with the next block
if (i < alloc->n_free_blocks - 1 && (char*)block->addr + block->size == alloc->free_blocks[i+1].addr) {
block->size += alloc->free_blocks[i+1].size;
alloc->n_free_blocks--;
for (int j = i+1; j < alloc->n_free_blocks; j++) {
alloc->free_blocks[j] = alloc->free_blocks[j+1];
}
}
return;
}
// check if ptr is at the beginning of the block
if ((char*)ptr + size == block->addr) {
block->addr = ptr;
block->size += size;
// check if we can merge with the previous block
if (i > 0 && (char*)alloc->free_blocks[i-1].addr + alloc->free_blocks[i-1].size == block->addr) {
alloc->free_blocks[i-1].size += block->size;
alloc->n_free_blocks--;
for (int j = i; j < alloc->n_free_blocks; j++) {
alloc->free_blocks[j] = alloc->free_blocks[j+1];
}
}
return;
}
}
// otherwise, add a new block
GGML_ASSERT(alloc->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks");
// insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster)
int insert_pos = 0;
while (insert_pos < alloc->n_free_blocks && alloc->free_blocks[insert_pos].addr < ptr) {
insert_pos++;
}
// shift all blocks from insert_pos onward to make room for the new block
for (int i = alloc->n_free_blocks; i > insert_pos; i--) {
alloc->free_blocks[i] = alloc->free_blocks[i-1];
}
// insert the new block
alloc->free_blocks[insert_pos].addr = ptr;
alloc->free_blocks[insert_pos].size = size;
alloc->n_free_blocks++;
}
void ggml_allocr_reset(struct ggml_allocr * alloc) {
alloc->n_free_blocks = 1;
size_t align_offset = aligned_offset(alloc->data, 0, alloc->alignment);
alloc->free_blocks[0].addr = (char *)alloc->data + align_offset;
alloc->free_blocks[0].size = alloc->size - align_offset;
}
struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment) {
struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */);
*alloc = (struct ggml_allocr){
/*.data = */ data,
/*.size = */ size,
/*.alignment = */ alignment,
/*.n_free_blocks = */ 0,
/*.free_blocks = */ {{0}},
/*.hash_table = */ {{0}},
/*.max_size = */ 0,
/*.measure = */ false,
#ifdef GGML_ALLOCATOR_DEBUG
/*.allocated_tensors = */ = {0},
#endif
};
ggml_allocr_reset(alloc);
return alloc;
}
// address and size of the buffer when measuring
// it needs to be large enough to fit all the tensors, but it cannot overlap with other existing buffers
static void * const MEASURE_BASE_ADDR = (void *) 0x1000;
static const size_t MEASURE_MAX_SIZE = 1ULL<<40; // 1 TB
struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) {
struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */);
*alloc = (struct ggml_allocr){
/*.data = */ MEASURE_BASE_ADDR,
/*.size = */ MEASURE_MAX_SIZE,
/*.alignment = */ alignment,
/*.n_free_blocks = */ 0,
/*.free_blocks = */ {{0}},
/*.hash_table = */ {{0}},
/*.max_size = */ 0,
/*.measure = */ true,
#ifdef GGML_ALLOCATOR_DEBUG
/*.allocated_tensors = */ = {0},
#endif
};
ggml_allocr_reset(alloc);
return alloc;
}
void ggml_allocr_free(struct ggml_allocr * alloc) {
free(alloc);
}
bool ggml_allocr_is_measure(struct ggml_allocr * alloc) {
return alloc->measure;
}
//////////// compute graph allocator
static bool ggml_is_view(struct ggml_tensor * t) {
return t->op == GGML_OP_RESHAPE || t->op == GGML_OP_VIEW || t->op == GGML_OP_TRANSPOSE ||
t->op == GGML_OP_PERMUTE || t->op == GGML_OP_CPY;
}
static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
if (a->type != b->type) {
return false;
}
for (int i = 0; i < GGML_MAX_DIMS; i++) {
if (a->ne[i] != b->ne[i]) {
return false;
}
if (a->nb[i] != b->nb[i]) {
return false;
}
}
return true;
}
static struct ggml_tensor * get_view_parent(struct ggml_tensor * t) {
switch (t->op) {
case GGML_OP_PERMUTE:
case GGML_OP_RESHAPE:
case GGML_OP_TRANSPOSE:
case GGML_OP_VIEW:
return t->src[0];
case GGML_OP_CPY:
return t->src[1];
default:
return NULL;
}
}
static struct ggml_tensor * get_view_source(struct ggml_tensor * t) {
struct ggml_tensor * parent = t;
do {
parent = get_view_parent(parent);
} while (ggml_is_view(parent));
return parent;
}
static bool ggml_op_can_inplace(enum ggml_op op) {
switch (op) {
case GGML_OP_SCALE:
case GGML_OP_DIAG_MASK_ZERO:
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_ADD:
case GGML_OP_ADD1:
case GGML_OP_ACC:
case GGML_OP_SUB:
case GGML_OP_MUL:
case GGML_OP_DIV:
case GGML_OP_SQR:
case GGML_OP_SQRT:
case GGML_OP_LOG:
case GGML_OP_UNARY:
case GGML_OP_ROPE:
case GGML_OP_RMS_NORM:
case GGML_OP_SET:
case GGML_OP_SOFT_MAX:
case GGML_OP_CONT:
return true;
default:
return false;
}
}
static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node) {
struct hash_node * ht = alloc->hash_table;
if (node->data == NULL) {
if (ggml_is_view(node)) {
size_t offset;
switch(node->op) {
case GGML_OP_VIEW:
memcpy(&offset, node->op_params, sizeof(size_t));
node->data = (char *) node->src[0]->data + offset;
break;
case GGML_OP_PERMUTE:
case GGML_OP_RESHAPE:
case GGML_OP_TRANSPOSE:
node->data = node->src[0]->data;
break;
case GGML_OP_CPY:
node->data = node->src[1]->data;
break;
default:
GGML_ASSERT(!"unknown view op");
break;
}
} else {
// see if we can reuse a parent's buffer (inplace)
if (ggml_op_can_inplace(node->op)) {
for (int i = 0; i < GGML_MAX_SRC; i++) {
struct ggml_tensor * parent = node->src[i];
if (parent == NULL) {
break;
}
struct hash_node * p_hn = hash_get(ht, parent);
if (parent->data != NULL && p_hn->n_children == 1 && p_hn->n_views == 0 && ggml_are_same_layout(node, parent)) {
if (ggml_is_view(parent)) {
struct ggml_tensor * view_src = get_view_source(parent);
struct hash_node * view_src_hn = hash_get(ht, view_src);
if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) {
// TODO: the offset of the view parent must be kept to ensure that the op doesn't overwrite
// the parent's data that it will need later (same layout requirement). the problem is that then
// we cannot free the tensor because the original address of the allocation is lost.
// adding a view_src pointer to the tensor would solve this and simplify the code dealing with views
// for now, we only reuse the parent's data if the offset is zero (view_src->data == parent->data)
AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name);
node->data = parent->data;
return;
}
}
else {
AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name);
node->data = parent->data;
}
return;
}
}
}
ggml_allocr_alloc(alloc, node);
}
}
}
static size_t ggml_allocator_alloc_graph_tensors_n(
struct ggml_allocr * alloc,
struct ggml_cgraph ** graphs, int n_graphs,
struct ggml_tensor *** inputs, struct ggml_tensor *** outputs) {
// reset hash table
struct hash_node * ht = alloc->hash_table;
memset(ht, 0, sizeof(struct hash_node) * GGML_GRAPH_HASHTABLE_SIZE);
// count number of children and views
for (int g = 0; g < n_graphs; g++) {
struct ggml_cgraph * gf = graphs[g];
for (int i = 0; i < gf->n_nodes; i++) {
struct ggml_tensor * node = gf->nodes[i];
if (ggml_is_view(node)) {
struct ggml_tensor * view_src = get_view_source(node);
hash_get(ht, view_src)->n_views += 1;
}
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * parent = node->src[j];
if (parent == NULL) {
break;
}
hash_get(ht, parent)->n_children += 1;
}
}
}
// allocate tensors
for (int g = 0; g < n_graphs; g++) {
struct ggml_cgraph * gf = graphs[g];
AT_PRINTF("####### graph %d/%d\n", g, n_graphs);
// graph inputs are allocated first to ensure that they are not overwritten by each other
if (inputs != NULL && inputs[g] != NULL) {
for (int i = 0; inputs[g][i] != NULL; i++) {
struct ggml_tensor * input = inputs[g][i];
AT_PRINTF("input: %s\n", input->name);
allocate_node(alloc, input);
}
}
for (int i = 0; i < gf->n_nodes; i++) {
struct ggml_tensor * node = gf->nodes[i];
// allocate parents (leafs)
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * parent = node->src[j];
if (parent == NULL) {
break;
}
allocate_node(alloc, parent);
}
// allocate node
allocate_node(alloc, node);
AT_PRINTF("exec: %s (%s) <= ", ggml_op_name(node->op), node->name);
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * parent = node->src[j];
if (parent == NULL) {
break;
}
AT_PRINTF("%s", parent->name);
if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) {
AT_PRINTF(", ");
}
}
AT_PRINTF("\n");
// update parents
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * parent = node->src[j];
if (parent == NULL) {
break;
}
struct hash_node * p_hn = hash_get(ht, parent);
p_hn->n_children -= 1;
//AT_PRINTF("parent %s: %d children, %d views\n", parent->name, parent->n_children, parent->n_views);
if (p_hn->n_children == 0 && p_hn->n_views == 0) {
if (ggml_is_view(parent)) {
struct ggml_tensor * view_src = get_view_source(parent);
struct hash_node * view_src_hn = hash_get(ht, view_src);
view_src_hn->n_views -= 1;
AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src->n_children, view_src->n_views);
if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src->data != node->data) {
ggml_allocator_free_tensor(alloc, view_src);
}
}
else {
if (parent->data != node->data) {
ggml_allocator_free_tensor(alloc, parent);
}
}
}
}
AT_PRINTF("\n");
}
// free graph outputs here that wouldn't be freed otherwise because they have no children
if (outputs != NULL && outputs[g] != NULL) {
for (int i = 0; outputs[g][i] != NULL; i++) {
struct ggml_tensor * output = outputs[g][i];
AT_PRINTF("output: %s\n", output->name);
ggml_allocator_free_tensor(alloc, output);
}
}
}
return alloc->max_size;
}
size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph) {
return ggml_allocator_alloc_graph_tensors_n(alloc, &graph, 1, NULL, NULL);
}

View File

@@ -1,48 +0,0 @@
/**
* llama.cpp - git 8183159cf3def112f6d1fe94815fce70e1bffa12
*
* MIT License
*
* Copyright (c) 2023 Georgi Gerganov
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#pragma once
#include "ggml.h"
#ifdef __cplusplus
extern "C" {
#endif
GGML_API struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment);
GGML_API struct ggml_allocr * ggml_allocr_new_measure(size_t alignment);
GGML_API void ggml_allocr_free(struct ggml_allocr * alloc);
GGML_API bool ggml_allocr_is_measure(struct ggml_allocr * alloc);
GGML_API void ggml_allocr_reset(struct ggml_allocr * alloc);
GGML_API void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor);
GGML_API size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph);
#ifdef __cplusplus
}
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -1,63 +0,0 @@
/**
* llama.cpp - git 8183159cf3def112f6d1fe94815fce70e1bffa12
*
* MIT License
*
* Copyright (c) 2023 Georgi Gerganov
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#pragma once
#include "ggml.h"
#ifdef __cplusplus
extern "C" {
#endif
#define GGML_CUDA_MAX_DEVICES 16
void ggml_init_cublas(void);
void ggml_cuda_set_tensor_split(const float * tensor_split);
void ggml_cuda_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
size_t ggml_cuda_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
void ggml_cuda_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize);
// TODO: export these with GGML_API
void * ggml_cuda_host_malloc(size_t size);
void ggml_cuda_host_free(void * ptr);
void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor);
void ggml_cuda_free_data(struct ggml_tensor * tensor);
void ggml_cuda_assign_buffers(struct ggml_tensor * tensor);
void ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor);
void ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tensor);
void ggml_cuda_set_main_device(int main_device);
void ggml_cuda_set_mul_mat_q(bool mul_mat_q);
void ggml_cuda_set_scratch_size(size_t scratch_size);
void ggml_cuda_free_scratch(void);
bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor);
#ifdef __cplusplus
}
#endif

View File

@@ -1,106 +0,0 @@
//go:build darwin
/**
* llama.cpp - git 8183159cf3def112f6d1fe94815fce70e1bffa12
*
* MIT License
*
* Copyright (c) 2023 Georgi Gerganov
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
// An interface allowing to compute ggml_cgraph with Metal
//
// This is a fully functional interface that extends ggml with GPU support for Apple devices.
// A similar interface can be created for other GPU backends (e.g. Vulkan, CUDA, OpenCL, etc.)
//
// How it works?
//
// As long as your program can create and evaluate a ggml_cgraph on the CPU, you can use this
// interface to evaluate the same graph on the GPU. Instead of using ggml_graph_compute(), you
// use ggml_metal_graph_compute() (or ggml_vulkan_graph_compute(), etc.)
//
// You only need to make sure that all memory buffers that you used during the graph creation
// are mapped to the device memory with the ggml_metal_add_buffer() function. This mapping is
// used during the graph evaluation to determine the arguments of the compute kernels.
//
// Synchronization between device and host memory (for example for input and output tensors)
// is done with the ggml_metal_set_tensor() and ggml_metal_get_tensor() functions.
//
#pragma once
#include <stddef.h>
#include <stdbool.h>
// max memory buffers that can be mapped to the device
#define GGML_METAL_MAX_BUFFERS 16
struct ggml_tensor;
struct ggml_cgraph;
#ifdef __cplusplus
extern "C" {
#endif
struct ggml_metal_context;
// number of command buffers to use
struct ggml_metal_context * ggml_metal_init(int n_cb);
void ggml_metal_free(struct ggml_metal_context * ctx);
// set the number of command buffers to use
void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb);
// creates a mapping between a host memory buffer and a device memory buffer
// - make sure to map all buffers used in the graph before calling ggml_metal_graph_compute
// - the mapping is used during computation to determine the arguments of the compute kernels
// - you don't need to keep the host memory buffer allocated as it is never accessed by Metal
// - max_size specifies the maximum size of a tensor and is used to create shared views such
// that it is guaranteed that the tensor will fit in at least one of the views
//
bool ggml_metal_add_buffer(
struct ggml_metal_context * ctx,
const char * name,
void * data,
size_t size,
size_t max_size);
// set data from host memory into the device
void ggml_metal_set_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t);
// get data from the device into host memory
void ggml_metal_get_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t);
// try to find operations that can be run concurrently in the graph
// you should run it again if the topology of your graph changes
void ggml_metal_graph_find_concurrency(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);
// if the graph has been optimized for concurrently dispatch
bool ggml_metal_if_optimized(struct ggml_metal_context * ctx);
// same as ggml_graph_compute but uses Metal
// creates gf->n_threads command buffers in parallel
void ggml_metal_graph_compute(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);
#ifdef __cplusplus
}
#endif

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -1,244 +0,0 @@
//go:build mpi
/**
* llama.cpp - git 8183159cf3def112f6d1fe94815fce70e1bffa12
*
* MIT License
*
* Copyright (c) 2023 Georgi Gerganov
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "ggml-mpi.h"
#include "ggml.h"
#include <mpi.h>
#include <stdio.h>
#include <stdlib.h>
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define UNUSED GGML_UNUSED
struct ggml_mpi_context {
int rank;
int size;
};
void ggml_mpi_backend_init(void) {
MPI_Init(NULL, NULL);
}
void ggml_mpi_backend_free(void) {
MPI_Finalize();
}
struct ggml_mpi_context * ggml_mpi_init(void) {
struct ggml_mpi_context * ctx = calloc(1, sizeof(struct ggml_mpi_context));
MPI_Comm_rank(MPI_COMM_WORLD, &ctx->rank);
MPI_Comm_size(MPI_COMM_WORLD, &ctx->size);
return ctx;
}
void ggml_mpi_free(struct ggml_mpi_context * ctx) {
free(ctx);
}
int ggml_mpi_rank(struct ggml_mpi_context * ctx) {
return ctx->rank;
}
void ggml_mpi_eval_init(
struct ggml_mpi_context * ctx_mpi,
int * n_tokens,
int * n_past,
int * n_threads) {
UNUSED(ctx_mpi);
// synchronize the worker node parameters with the root node
MPI_Barrier(MPI_COMM_WORLD);
MPI_Bcast(n_tokens, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Bcast(n_past, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Bcast(n_threads, 1, MPI_INT, 0, MPI_COMM_WORLD);
}
static int ggml_graph_get_node_idx(struct ggml_cgraph * gf, const char * name) {
struct ggml_tensor * t = ggml_graph_get_tensor(gf, name);
if (t == NULL) {
fprintf(stderr, "%s: tensor %s not found\n", __func__, name);
return -1;
}
for (int i = 0; i < gf->n_nodes; i++) {
if (gf->nodes[i] == t) {
return i;
}
}
fprintf(stderr, "%s: tensor %s not found in graph (should not happen)\n", __func__, name);
return -1;
}
static void ggml_mpi_tensor_send(struct ggml_tensor * t, int mpi_rank_dst) {
MPI_Datatype mpi_type;
switch (t->type) {
case GGML_TYPE_I32: mpi_type = MPI_INT32_T; break;
case GGML_TYPE_F32: mpi_type = MPI_FLOAT; break;
default: GGML_ASSERT(false && "not implemented");
}
const int retval = MPI_Send(t->data, ggml_nelements(t), mpi_type, mpi_rank_dst, 0, MPI_COMM_WORLD);
GGML_ASSERT(retval == MPI_SUCCESS);
}
static void ggml_mpi_tensor_recv(struct ggml_tensor * t, int mpi_rank_src) {
MPI_Datatype mpi_type;
switch (t->type) {
case GGML_TYPE_I32: mpi_type = MPI_INT32_T; break;
case GGML_TYPE_F32: mpi_type = MPI_FLOAT; break;
default: GGML_ASSERT(false && "not implemented");
}
MPI_Status status; UNUSED(status);
const int retval = MPI_Recv(t->data, ggml_nelements(t), mpi_type, mpi_rank_src, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
GGML_ASSERT(retval == MPI_SUCCESS);
}
// TODO: there are many improvements that can be done to this implementation
void ggml_mpi_graph_compute_pre(
struct ggml_mpi_context * ctx_mpi,
struct ggml_cgraph * gf,
int n_layers) {
const int mpi_rank = ctx_mpi->rank;
const int mpi_size = ctx_mpi->size;
struct ggml_tensor * inp_tokens = ggml_graph_get_tensor(gf, "inp_tokens");
if (inp_tokens == NULL) {
fprintf(stderr, "%s: tensor 'inp_tokens' not found\n", __func__);
return;
}
struct ggml_tensor * inp0 = ggml_graph_get_tensor(gf, "layer_inp_0");
if (inp0 == NULL) {
fprintf(stderr, "%s: tensor 'inp0' not found\n", __func__);
return;
}
GGML_ASSERT(inp0 == gf->nodes[0]);
// distribute the compute graph into slices across the MPI nodes
//
// the main node (0) processes the last layers + the remainder of the compute graph
// and is responsible to pass the input tokens to the first node (1)
//
// node 1: [( 0) * n_per_node, ( 1) * n_per_node)
// node 2: [( 1) * n_per_node, ( 2) * n_per_node)
// ...
// node n-1: [(n-2) * n_per_node, (n-1) * n_per_node)
// node 0: [(n-1) * n_per_node, n_nodes)
//
if (mpi_rank > 0) {
if (mpi_rank == 1) {
// the first node (1) receives the input tokens from the main node (0)
ggml_mpi_tensor_recv(inp_tokens, 0);
} else {
// recv input data for each node into the "inp0" tensor (i.e. the first node in the compute graph)
ggml_mpi_tensor_recv(inp0, mpi_rank - 1);
}
} else if (mpi_size > 1) {
// node 0 sends the input tokens to node 1
ggml_mpi_tensor_send(inp_tokens, 1);
// recv the output data from the last node
ggml_mpi_tensor_recv(inp0, mpi_size - 1);
}
{
const int n_per_node = (n_layers + (mpi_size - 1)) / mpi_size;
const int mpi_idx = mpi_rank > 0 ? mpi_rank - 1 : mpi_size - 1;
const int il0 = (mpi_idx + 0) * n_per_node;
const int il1 = MIN(n_layers, (mpi_idx + 1) * n_per_node);
char name_l0[GGML_MAX_NAME];
char name_l1[GGML_MAX_NAME];
snprintf(name_l0, sizeof(name_l0), "layer_inp_%d", il0);
snprintf(name_l1, sizeof(name_l1), "layer_inp_%d", il1);
const int idx_l0 = ggml_graph_get_node_idx(gf, name_l0);
const int idx_l1 = mpi_rank > 0 ? ggml_graph_get_node_idx(gf, name_l1) + 1 : gf->n_nodes;
if (idx_l0 < 0 || idx_l1 < 0) {
fprintf(stderr, "%s: layer input nodes not found\n", __func__);
return;
}
// attach the input data to all nodes that need it
// TODO: not great - should be able to do this without modifying the compute graph (see next TODO below)
for (int i = idx_l0; i < idx_l1; i++) {
if (gf->nodes[i]->src[0] == gf->nodes[idx_l0]) {
gf->nodes[i]->src[0] = inp0;
}
if (gf->nodes[i]->src[1] == gf->nodes[idx_l0]) {
gf->nodes[i]->src[1] = inp0;
}
}
// TODO: instead of rearranging the nodes, we should be able to execute a subset of the compute graph
for (int i = 1; i < idx_l1 - idx_l0; i++) {
gf->nodes[i] = gf->nodes[idx_l0 + i];
gf->grads[i] = gf->grads[idx_l0 + i];
}
// the first node performs the "get_rows" operation, the rest of the nodes get the data from the previous node
if (mpi_idx != 0) {
gf->nodes[0]->op = GGML_OP_NONE;
}
gf->n_nodes = idx_l1 - idx_l0;
//fprintf(stderr, "%s: node %d: processing %d nodes [%d, %d)\n", __func__, mpi_rank, gf->n_nodes, il0, il1);
}
}
void ggml_mpi_graph_compute_post(
struct ggml_mpi_context * ctx_mpi,
struct ggml_cgraph * gf,
int n_layers) {
UNUSED(n_layers);
const int mpi_rank = ctx_mpi->rank;
const int mpi_size = ctx_mpi->size;
// send the output data to the next node
if (mpi_rank > 0) {
ggml_mpi_tensor_send(gf->nodes[gf->n_nodes - 1], (mpi_rank + 1) % mpi_size);
}
}

View File

@@ -1,67 +0,0 @@
//go:build mpi
/**
* llama.cpp - git 8183159cf3def112f6d1fe94815fce70e1bffa12
*
* MIT License
*
* Copyright (c) 2023 Georgi Gerganov
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#pragma once
struct ggml_context;
struct ggml_tensor;
struct ggml_cgraph;
#ifdef __cplusplus
extern "C" {
#endif
struct ggml_mpi_context;
void ggml_mpi_backend_init(void);
void ggml_mpi_backend_free(void);
struct ggml_mpi_context * ggml_mpi_init(void);
void ggml_mpi_free(struct ggml_mpi_context * ctx);
int ggml_mpi_rank(struct ggml_mpi_context * ctx);
void ggml_mpi_eval_init(
struct ggml_mpi_context * ctx_mpi,
int * n_tokens,
int * n_past,
int * n_threads);
void ggml_mpi_graph_compute_pre(
struct ggml_mpi_context * ctx_mpi,
struct ggml_cgraph * gf,
int n_layers);
void ggml_mpi_graph_compute_post(
struct ggml_mpi_context * ctx_mpi,
struct ggml_cgraph * gf,
int n_layers);
#ifdef __cplusplus
}
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -1,53 +0,0 @@
//go:build opencl
/**
* llama.cpp - git 8183159cf3def112f6d1fe94815fce70e1bffa12
*
* MIT License
*
* Copyright (c) 2023 Georgi Gerganov
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#pragma once
#include "ggml.h"
#ifdef __cplusplus
extern "C" {
#endif
void ggml_cl_init(void);
void ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
void ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize);
void * ggml_cl_host_malloc(size_t size);
void ggml_cl_host_free(void * ptr);
void ggml_cl_free_data(const struct ggml_tensor* tensor);
void ggml_cl_transform_tensor(void * data, struct ggml_tensor * tensor);
#ifdef __cplusplus
}
#endif

18476
llama/ggml.c

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -1,191 +0,0 @@
/**
* llama.cpp - git 8183159cf3def112f6d1fe94815fce70e1bffa12
*
* MIT License
*
* Copyright (c) 2023 Georgi Gerganov
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#pragma once
#include "ggml.h"
#include <stdint.h>
#include <assert.h>
#include <stddef.h>
// Super-block size
#ifdef GGML_QKK_64
#define QK_K 64
#define K_SCALE_SIZE 4
#else
#define QK_K 256
#define K_SCALE_SIZE 12
#endif
#ifndef static_assert
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
#define static_assert(cond, msg) _Static_assert(cond, msg)
#else
#define static_assert(cond, msg) struct global_scope_noop_trick
#endif
#endif
//
// Super-block quantization structures
//
// 2-bit quantization
// weight is represented as x = a * q + b
// 16 blocks of 16 elemenets each
// Effectively 2.5625 bits per weight
typedef struct {
uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
uint8_t qs[QK_K/4]; // quants
ggml_fp16_t d; // super-block scale for quantized scales
ggml_fp16_t dmin; // super-block scale for quantized mins
} block_q2_K;
static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "wrong q2_K block size/padding");
// 3-bit quantization
// weight is represented as x = a * q
// 16 blocks of 16 elemenets each
// Effectively 3.4375 bits per weight
#ifdef GGML_QKK_64
typedef struct {
uint8_t hmask[QK_K/8]; // quants - high bit
uint8_t qs[QK_K/4]; // quants - low 2 bits
uint8_t scales[2];
ggml_fp16_t d; // super-block scale
} block_q3_K;
static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + 2, "wrong q3_K block size/padding");
#else
typedef struct {
uint8_t hmask[QK_K/8]; // quants - high bit
uint8_t qs[QK_K/4]; // quants - low 2 bits
uint8_t scales[12]; // scales, quantized with 6 bits
ggml_fp16_t d; // super-block scale
} block_q3_K;
static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + 12, "wrong q3_K block size/padding");
#endif
// 4-bit quantization
// 16 blocks of 32 elements each
// weight is represented as x = a * q + b
// Effectively 4.5 bits per weight
#ifdef GGML_QKK_64
typedef struct {
ggml_fp16_t d[2]; // super-block scales/mins
uint8_t scales[2]; // 4-bit block scales/mins
uint8_t qs[QK_K/2]; // 4--bit quants
} block_q4_K;
static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + QK_K/2 + 2, "wrong q4_K block size/padding");
#else
typedef struct {
ggml_fp16_t d; // super-block scale for quantized scales
ggml_fp16_t dmin; // super-block scale for quantized mins
uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
uint8_t qs[QK_K/2]; // 4--bit quants
} block_q4_K;
static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2, "wrong q4_K block size/padding");
#endif
// 5-bit quantization
// 16 blocks of 32 elements each
// weight is represented as x = a * q + b
// Effectively 5.5 bits per weight
#ifdef GGML_QKK_64
typedef struct {
ggml_fp16_t d; // super-block scale
int8_t scales[QK_K/16]; // 8-bit block scales
uint8_t qh[QK_K/8]; // quants, high bit
uint8_t qs[QK_K/2]; // quants, low 4 bits
} block_q5_K;
static_assert(sizeof(block_q5_K) == sizeof(ggml_fp16_t) + QK_K/2 + QK_K/8 + QK_K/16, "wrong q5_K block size/padding");
#else
typedef struct {
ggml_fp16_t d; // super-block scale for quantized scales
ggml_fp16_t dmin; // super-block scale for quantized mins
uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
uint8_t qh[QK_K/8]; // quants, high bit
uint8_t qs[QK_K/2]; // quants, low 4 bits
} block_q5_K;
static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2 + QK_K/8, "wrong q5_K block size/padding");
#endif
// 6-bit quantization
// weight is represented as x = a * q
// 16 blocks of 16 elemenets each
// Effectively 6.5625 bits per weight
typedef struct {
uint8_t ql[QK_K/2]; // quants, lower 4 bits
uint8_t qh[QK_K/4]; // quants, upper 2 bits
int8_t scales[QK_K/16]; // scales, quantized with 8 bits
ggml_fp16_t d; // super-block scale
} block_q6_K;
static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + QK_K / 16 + 3*QK_K/4, "wrong q6_K block size/padding");
// This is only used for intermediate quantization and dot products
typedef struct {
float d; // delta
int8_t qs[QK_K]; // quants
int16_t bsums[QK_K/16]; // sum of quants in groups of 16
} block_q8_K;
static_assert(sizeof(block_q8_K) == sizeof(float) + QK_K + QK_K/16*sizeof(int16_t), "wrong q8_K block size/padding");
// Quantization
void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int k);
void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int k);
void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k);
void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k);
void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k);
void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k);
void quantize_row_q2_K(const float * restrict x, void * restrict y, int k);
void quantize_row_q3_K(const float * restrict x, void * restrict y, int k);
void quantize_row_q4_K(const float * restrict x, void * restrict y, int k);
void quantize_row_q5_K(const float * restrict x, void * restrict y, int k);
void quantize_row_q6_K(const float * restrict x, void * restrict y, int k);
void quantize_row_q8_K(const float * restrict x, void * restrict y, int k);
// Dequantization
void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int k);
void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k);
void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int k);
void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int k);
void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int k);
void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int k);
// Dot product
void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
// Quantization with histogram collection
size_t ggml_quantize_q2_K(const float * src, void * dst, int n, int k, int64_t * hist);
size_t ggml_quantize_q3_K(const float * src, void * dst, int n, int k, int64_t * hist);
size_t ggml_quantize_q4_K(const float * src, void * dst, int n, int k, int64_t * hist);
size_t ggml_quantize_q5_K(const float * src, void * dst, int n, int k, int64_t * hist);
size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist);

View File

@@ -1,530 +0,0 @@
/**
* llama.cpp - git 8183159cf3def112f6d1fe94815fce70e1bffa12
*
* MIT License
*
* Copyright (c) 2023 Georgi Gerganov
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
// Internal header to be included only by llama.cpp.
// Contains wrappers around OS interfaces.
#ifndef LLAMA_UTIL_H
#define LLAMA_UTIL_H
#include <cstdio>
#include <cstdint>
#include <cerrno>
#include <cstring>
#include <cstdarg>
#include <cstdlib>
#include <climits>
#include <string>
#include <vector>
#include <stdexcept>
#ifdef __has_include
#if __has_include(<unistd.h>)
#include <unistd.h>
#if defined(_POSIX_MAPPED_FILES)
#include <sys/mman.h>
#endif
#if defined(_POSIX_MEMLOCK_RANGE)
#include <sys/resource.h>
#endif
#endif
#endif
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#include <io.h>
#include <stdio.h> // for _fseeki64
#endif
#define LLAMA_ASSERT(x) \
do { \
if (!(x)) { \
fprintf(stderr, "LLAMA_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
abort(); \
} \
} while (0)
#ifdef __GNUC__
#ifdef __MINGW32__
__attribute__((format(gnu_printf, 1, 2)))
#else
__attribute__((format(printf, 1, 2)))
#endif
#endif
static std::string format(const char * fmt, ...) {
va_list ap, ap2;
va_start(ap, fmt);
va_copy(ap2, ap);
int size = vsnprintf(NULL, 0, fmt, ap);
LLAMA_ASSERT(size >= 0 && size < INT_MAX);
std::vector<char> buf(size + 1);
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
LLAMA_ASSERT(size2 == size);
va_end(ap2);
va_end(ap);
return std::string(buf.data(), size);
}
struct llama_file {
// use FILE * so we don't have to re-open the file to mmap
FILE * fp;
size_t size;
llama_file(const char * fname, const char * mode) {
fp = std::fopen(fname, mode);
if (fp == NULL) {
throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
}
seek(0, SEEK_END);
size = tell();
seek(0, SEEK_SET);
}
size_t tell() const {
#ifdef _WIN32
__int64 ret = _ftelli64(fp);
#else
long ret = std::ftell(fp);
#endif
LLAMA_ASSERT(ret != -1); // this really shouldn't fail
return (size_t) ret;
}
void seek(size_t offset, int whence) {
#ifdef _WIN32
int ret = _fseeki64(fp, (__int64) offset, whence);
#else
int ret = std::fseek(fp, (long) offset, whence);
#endif
LLAMA_ASSERT(ret == 0); // same
}
void read_raw(void * ptr, size_t len) const {
if (len == 0) {
return;
}
errno = 0;
std::size_t ret = std::fread(ptr, len, 1, fp);
if (ferror(fp)) {
throw std::runtime_error(format("read error: %s", strerror(errno)));
}
if (ret != 1) {
throw std::runtime_error(std::string("unexpectedly reached end of file"));
}
}
std::uint32_t read_u32() {
std::uint32_t ret;
read_raw(&ret, sizeof(ret));
return ret;
}
std::string read_string(std::uint32_t len) {
std::vector<char> chars(len);
read_raw(chars.data(), len);
return std::string(chars.data(), len);
}
void write_raw(const void * ptr, size_t len) const {
if (len == 0) {
return;
}
errno = 0;
size_t ret = std::fwrite(ptr, len, 1, fp);
if (ret != 1) {
throw std::runtime_error(format("write error: %s", strerror(errno)));
}
}
void write_u32(std::uint32_t val) {
write_raw(&val, sizeof(val));
}
~llama_file() {
if (fp) {
std::fclose(fp);
}
}
};
#if defined(_WIN32)
static std::string llama_format_win_err(DWORD err) {
LPSTR buf;
size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
if (!size) {
return "FormatMessageA failed";
}
std::string ret(buf, size);
LocalFree(buf);
return ret;
}
#endif
struct llama_mmap {
void * addr;
size_t size;
llama_mmap(const llama_mmap &) = delete;
#ifdef _POSIX_MAPPED_FILES
static constexpr bool SUPPORTED = true;
llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
size = file->size;
int fd = fileno(file->fp);
int flags = MAP_SHARED;
// prefetch/readahead impairs performance on NUMA systems
if (numa) { prefetch = 0; }
#ifdef __linux__
if (prefetch) { flags |= MAP_POPULATE; }
#endif
addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
if (addr == MAP_FAILED) {
throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
}
if (prefetch > 0) {
// Advise the kernel to preload the mapped memory
if (madvise(addr, std::min(file->size, prefetch), MADV_WILLNEED)) {
fprintf(stderr, "warning: madvise(.., MADV_WILLNEED) failed: %s\n",
strerror(errno));
}
}
if (numa) {
// advise the kernel not to use readahead
// (because the next page might not belong on the same node)
if (madvise(addr, file->size, MADV_RANDOM)) {
fprintf(stderr, "warning: madvise(.., MADV_RANDOM) failed: %s\n",
strerror(errno));
}
}
}
~llama_mmap() {
munmap(addr, size);
}
#elif defined(_WIN32)
static constexpr bool SUPPORTED = true;
llama_mmap(struct llama_file * file, bool prefetch = true, bool numa = false) {
(void) numa;
size = file->size;
HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
DWORD error = GetLastError();
if (hMapping == NULL) {
throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
}
addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
error = GetLastError();
CloseHandle(hMapping);
if (addr == NULL) {
throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
}
#if _WIN32_WINNT >= _WIN32_WINNT_WIN8
if (prefetch) {
// Advise the kernel to preload the mapped memory
WIN32_MEMORY_RANGE_ENTRY range;
range.VirtualAddress = addr;
range.NumberOfBytes = (SIZE_T)size;
if (!PrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
fprintf(stderr, "warning: PrefetchVirtualMemory failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
}
#else
#pragma message("warning: You are building for pre-Windows 8; prefetch not supported")
#endif // _WIN32_WINNT >= _WIN32_WINNT_WIN8
}
~llama_mmap() {
if (!UnmapViewOfFile(addr)) {
fprintf(stderr, "warning: UnmapViewOfFile failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
}
#else
static constexpr bool SUPPORTED = false;
llama_mmap(struct llama_file *, bool prefetch = true, bool numa = false) {
(void) prefetch;
(void) numa;
throw std::runtime_error(std::string("mmap not supported"));
}
#endif
};
// Represents some region of memory being locked using mlock or VirtualLock;
// will automatically unlock on destruction.
struct llama_mlock {
void * addr = NULL;
size_t size = 0;
bool failed_already = false;
llama_mlock() {}
llama_mlock(const llama_mlock &) = delete;
~llama_mlock() {
if (size) {
raw_unlock(addr, size);
}
}
void init(void * ptr) {
LLAMA_ASSERT(addr == NULL && size == 0);
addr = ptr;
}
void grow_to(size_t target_size) {
LLAMA_ASSERT(addr);
if (failed_already) {
return;
}
size_t granularity = lock_granularity();
target_size = (target_size + granularity - 1) & ~(granularity - 1);
if (target_size > size) {
if (raw_lock((uint8_t *) addr + size, target_size - size)) {
size = target_size;
} else {
failed_already = true;
}
}
}
#ifdef _POSIX_MEMLOCK_RANGE
static constexpr bool SUPPORTED = true;
size_t lock_granularity() {
return (size_t) sysconf(_SC_PAGESIZE);
}
#ifdef __APPLE__
#define MLOCK_SUGGESTION \
"Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
"decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l).\n"
#else
#define MLOCK_SUGGESTION \
"Try increasing RLIMIT_MLOCK ('ulimit -l' as root).\n"
#endif
bool raw_lock(const void * addr, size_t size) {
if (!mlock(addr, size)) {
return true;
} else {
char* errmsg = std::strerror(errno);
bool suggest = (errno == ENOMEM);
// Check if the resource limit is fine after all
struct rlimit lock_limit;
if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit))
suggest = false;
if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size))
suggest = false;
fprintf(stderr, "warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
return false;
}
}
#undef MLOCK_SUGGESTION
void raw_unlock(void * addr, size_t size) {
if (munlock(addr, size)) {
fprintf(stderr, "warning: failed to munlock buffer: %s\n", std::strerror(errno));
}
}
#elif defined(_WIN32)
static constexpr bool SUPPORTED = true;
size_t lock_granularity() {
SYSTEM_INFO si;
GetSystemInfo(&si);
return (size_t) si.dwPageSize;
}
bool raw_lock(void * ptr, size_t len) {
for (int tries = 1; ; tries++) {
if (VirtualLock(ptr, len)) {
return true;
}
if (tries == 2) {
fprintf(stderr, "warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
len, size, llama_format_win_err(GetLastError()).c_str());
return false;
}
// It failed but this was only the first try; increase the working
// set size and try again.
SIZE_T min_ws_size, max_ws_size;
if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
fprintf(stderr, "warning: GetProcessWorkingSetSize failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
return false;
}
// Per MSDN: "The maximum number of pages that a process can lock
// is equal to the number of pages in its minimum working set minus
// a small overhead."
// Hopefully a megabyte is enough overhead:
size_t increment = len + 1048576;
// The minimum must be <= the maximum, so we need to increase both:
min_ws_size += increment;
max_ws_size += increment;
if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
fprintf(stderr, "warning: SetProcessWorkingSetSize failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
return false;
}
}
}
void raw_unlock(void * ptr, size_t len) {
if (!VirtualUnlock(ptr, len)) {
fprintf(stderr, "warning: failed to VirtualUnlock buffer: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
}
#else
static constexpr bool SUPPORTED = false;
size_t lock_granularity() {
return (size_t) 65536;
}
bool raw_lock(const void * addr, size_t len) {
fprintf(stderr, "warning: mlock not supported on this system\n");
return false;
}
void raw_unlock(const void * addr, size_t len) {}
#endif
};
// Replacement for std::vector<uint8_t> that doesn't require zero-initialization.
struct llama_buffer {
uint8_t * addr = NULL;
size_t size = 0;
llama_buffer() = default;
void resize(size_t len) {
#ifdef GGML_USE_METAL
free(addr);
int result = posix_memalign((void **) &addr, getpagesize(), len);
if (result == 0) {
memset(addr, 0, len);
}
else {
addr = NULL;
}
#else
delete[] addr;
addr = new uint8_t[len];
#endif
size = len;
}
~llama_buffer() {
#ifdef GGML_USE_METAL
free(addr);
#else
delete[] addr;
#endif
addr = NULL;
}
// disable copy and move
llama_buffer(const llama_buffer&) = delete;
llama_buffer(llama_buffer&&) = delete;
llama_buffer& operator=(const llama_buffer&) = delete;
llama_buffer& operator=(llama_buffer&&) = delete;
};
#ifdef GGML_USE_CUBLAS
#include "ggml-cuda.h"
struct llama_ctx_buffer {
uint8_t * addr = NULL;
bool is_cuda;
size_t size = 0;
llama_ctx_buffer() = default;
void resize(size_t size) {
free();
addr = (uint8_t *) ggml_cuda_host_malloc(size);
if (addr) {
is_cuda = true;
}
else {
// fall back to pageable memory
addr = new uint8_t[size];
is_cuda = false;
}
this->size = size;
}
void free() {
if (addr) {
if (is_cuda) {
ggml_cuda_host_free(addr);
}
else {
delete[] addr;
}
}
addr = NULL;
}
~llama_ctx_buffer() {
free();
}
// disable copy and move
llama_ctx_buffer(const llama_ctx_buffer&) = delete;
llama_ctx_buffer(llama_ctx_buffer&&) = delete;
llama_ctx_buffer& operator=(const llama_ctx_buffer&) = delete;
llama_ctx_buffer& operator=(llama_ctx_buffer&&) = delete;
};
#else
typedef llama_buffer llama_ctx_buffer;
#endif
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -1,414 +0,0 @@
package llama
/*
#cgo CPPFLAGS: -O3 -Wall -Wextra -Wno-unused-function -Wno-unused-variable -DNDEBUG -DGGML_USE_K_QUANTS
#cgo CXXFLAGS: -std=gnu++11
#cgo darwin CPPFLAGS: -DGGML_USE_ACCELERATE
#cgo darwin,arm64 CPPFLAGS: -DGGML_USE_METAL -DGGML_METAL_NDEBUG
#cgo darwin LDFLAGS: -framework Accelerate -framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders
#include <stdlib.h>
#include "llama.h"
struct llama_sample_options
{
float repeat_penalty;
float frequency_penalty;
float presence_penalty;
float temperature;
int32_t top_k;
float top_p;
float tfs_z;
float typical_p;
int mirostat;
float mirostat_tau;
float mirostat_eta;
bool penalize_newline;
};
llama_token llama_sample(
struct llama_context *ctx,
struct llama_token_data *candidates,
size_t n_candidates,
const llama_token *last_tokens,
size_t n_last_tokens,
struct llama_sample_options *opts)
{
llama_token_data_array candidates_p = {
candidates,
n_candidates,
false,
};
struct llama_token_data newline = candidates_p.data[llama_token_nl()];
llama_sample_repetition_penalty(
ctx, &candidates_p,
last_tokens, n_last_tokens,
opts->repeat_penalty);
llama_sample_frequency_and_presence_penalties(
ctx, &candidates_p,
last_tokens, n_last_tokens,
opts->frequency_penalty, opts->presence_penalty);
if (!opts->penalize_newline) {
candidates_p.data[llama_token_nl()] = newline;
}
if (opts->temperature <= 0) {
return llama_sample_token_greedy(ctx, &candidates_p);
}
if (opts->mirostat == 1) {
int mirostat_m = 100;
float mirostat_mu = 2.0f * opts->mirostat_tau;
llama_sample_temperature(ctx, &candidates_p, opts->temperature);
return llama_sample_token_mirostat(
ctx, &candidates_p,
opts->mirostat_tau, opts->mirostat_eta,
mirostat_m, &mirostat_mu);
} else if (opts->mirostat == 2) {
float mirostat_mu = 2.0f * opts->mirostat_tau;
llama_sample_temperature(ctx, &candidates_p, opts->temperature);
return llama_sample_token_mirostat_v2(
ctx, &candidates_p,
opts->mirostat_tau, opts->mirostat_eta,
&mirostat_mu);
} else {
llama_sample_top_k(ctx, &candidates_p, opts->top_k, 1);
llama_sample_tail_free(ctx, &candidates_p, opts->tfs_z, 1);
llama_sample_typical(ctx, &candidates_p, opts->typical_p, 1);
llama_sample_top_p(ctx, &candidates_p, opts->top_p, 1);
llama_sample_temperature(ctx, &candidates_p, opts->temperature);
return llama_sample_token(ctx, &candidates_p);
}
}
*/
import "C"
import (
"bytes"
"embed"
"errors"
"fmt"
"io"
"log"
"os"
"strings"
"sync"
"unicode/utf8"
"unsafe"
"github.com/jmorganca/ollama/api"
)
//go:embed ggml-metal.metal
var fs embed.FS
type LLM struct {
params *C.struct_llama_context_params
model *C.struct_llama_model
ctx *C.struct_llama_context
last []C.llama_token
embd []C.llama_token
cursor int
mu sync.Mutex
gc bool
api.Options
}
func New(model string, opts api.Options) (*LLM, error) {
if _, err := os.Stat(model); err != nil {
return nil, err
}
llm := LLM{Options: opts}
C.llama_backend_init(C.bool(llm.UseNUMA))
params := C.llama_context_default_params()
params.seed = C.uint(llm.Seed)
params.n_ctx = C.int(llm.NumCtx)
params.n_batch = C.int(llm.NumBatch)
params.n_gqa = C.int(llm.NumGQA)
params.n_gpu_layers = C.int(llm.NumGPU)
params.main_gpu = C.int(llm.MainGPU)
params.low_vram = C.bool(llm.LowVRAM)
params.f16_kv = C.bool(llm.F16KV)
params.logits_all = C.bool(llm.LogitsAll)
params.vocab_only = C.bool(llm.VocabOnly)
params.use_mmap = C.bool(llm.UseMMap)
params.use_mlock = C.bool(llm.UseMLock)
params.embedding = C.bool(llm.EmbeddingOnly)
llm.params = &params
cModel := C.CString(model)
defer C.free(unsafe.Pointer(cModel))
llm.model = C.llama_load_model_from_file(cModel, params)
if llm.model == nil {
return nil, errors.New("failed to load model")
}
llm.ctx = C.llama_new_context_with_model(llm.model, params)
if llm.ctx == nil {
return nil, errors.New("failed to create context")
}
// warm up the model
bos := []C.llama_token{C.llama_token_bos()}
C.llama_eval(llm.ctx, unsafe.SliceData(bos), C.int(len(bos)), 0, C.int(opts.NumThread))
C.llama_reset_timings(llm.ctx)
return &llm, nil
}
func (llm *LLM) Close() {
llm.gc = true
llm.mu.Lock()
defer llm.mu.Unlock()
defer C.llama_free_model(llm.model)
defer C.llama_free(llm.ctx)
C.llama_print_timings(llm.ctx)
}
var errNeedMoreData = errors.New("need more data")
func (llm *LLM) Predict(ctx []int, prompt string, fn func(api.GenerateResponse)) error {
C.llama_reset_timings(llm.ctx)
tokens := make([]C.llama_token, len(ctx))
for i := range tokens {
tokens[i] = C.llama_token(ctx[i])
}
if len(tokens) == 0 {
tokens = llm.tokenize(" ")
}
llm.marshalPrompt(tokens, prompt)
C.llama_set_rng_seed(llm.ctx, C.uint(llm.Seed))
var b bytes.Buffer
for {
token, err := llm.next()
if llm.gc {
return nil
} else if errors.Is(err, io.EOF) {
break
} else if err != nil {
return err
}
b.WriteString(llm.detokenize(token))
if err := llm.checkStopConditions(b); err != nil {
if errors.Is(err, io.EOF) {
break
} else if errors.Is(err, errNeedMoreData) {
continue
}
return err
}
if utf8.Valid(b.Bytes()) || b.Len() >= utf8.UTFMax {
fn(api.GenerateResponse{Response: b.String()})
b.Reset()
}
}
last := make([]int, 0, len(llm.last))
for _, i := range llm.last {
if i != 0 {
last = append(last, int(i))
}
}
timings := C.llama_get_timings(llm.ctx)
fn(api.GenerateResponse{
Done: true,
Context: last,
SampleCount: int(timings.n_sample),
SampleDuration: parseDurationMs(float64(timings.t_sample_ms)),
PromptEvalCount: int(timings.n_p_eval),
PromptEvalDuration: parseDurationMs(float64(timings.t_p_eval_ms)),
EvalCount: int(timings.n_eval),
EvalDuration: parseDurationMs(float64(timings.t_eval_ms)),
})
return nil
}
func (llm *LLM) checkStopConditions(b bytes.Buffer) error {
for _, stopCondition := range llm.Stop {
if stopCondition == b.String() {
return io.EOF
} else if strings.HasPrefix(stopCondition, b.String()) {
return errNeedMoreData
}
}
return nil
}
func (llm *LLM) marshalPrompt(ctx []C.llama_token, prompt string) []C.llama_token {
tokens := append(ctx, llm.tokenize(prompt)...)
if llm.NumKeep < 0 {
llm.NumKeep = len(tokens)
}
// min(llm.NumCtx - 4, llm.NumKeep)
if llm.NumCtx-4 < llm.NumKeep {
llm.NumKeep = llm.NumCtx - 4
}
if len(tokens) >= llm.NumCtx {
// truncate input
numLeft := (llm.NumCtx - llm.NumKeep) / 2
truncated := tokens[:llm.NumKeep]
erasedBlocks := (len(tokens) - llm.NumKeep - numLeft - 1) / numLeft
truncated = append(truncated, tokens[llm.NumKeep+erasedBlocks*numLeft:]...)
copy(llm.last, tokens[len(tokens)-llm.NumCtx:])
tokens = truncated
log.Printf("input truncated: num_ctx=%d num_keep=%d num_left=%d num_tokens=%d", llm.NumCtx, llm.NumKeep, numLeft, len(truncated))
} else {
llm.last = make([]C.llama_token, llm.NumCtx-len(tokens))
llm.last = append(llm.last, tokens...)
}
var i int
for i = 0; i < len(llm.embd) && i < len(tokens) && llm.embd[i] == tokens[i]; i++ {
// noop
}
llm.embd = tokens
if i == len(tokens) {
// evaluate at least one token to generate logits
i--
}
llm.cursor = i
log.Printf("prompt: num_past=%d cached=%v eval=%v", i, len(llm.embd[:i]), len(llm.embd[i:]))
return tokens
}
func (llm *LLM) tokenize(prompt string) []C.llama_token {
cPrompt := C.CString(prompt)
defer C.free(unsafe.Pointer(cPrompt))
tokens := make([]C.llama_token, len(prompt)+1)
if n := C.llama_tokenize(llm.ctx, cPrompt, unsafe.SliceData(tokens), C.int(len(tokens)), true); n > 0 {
return tokens[:n]
}
return nil
}
func (llm *LLM) detokenize(tokens ...C.llama_token) string {
var sb strings.Builder
for _, token := range tokens {
sb.WriteString(C.GoString(C.llama_token_to_str(llm.ctx, token)))
}
return sb.String()
}
func (llm *LLM) next() (C.llama_token, error) {
llm.mu.Lock()
defer llm.mu.Unlock()
if len(llm.embd) >= llm.NumCtx {
numLeft := (llm.NumCtx - llm.NumKeep) / 2
truncated := llm.embd[:llm.NumKeep]
truncated = append(truncated, llm.embd[len(llm.embd)-numLeft:]...)
llm.embd = truncated
llm.cursor = llm.NumKeep
log.Printf("input truncated: num_ctx=%d num_keep=%d num_left=%d num_tokens=%d cursor=%d", llm.NumCtx, llm.NumKeep, numLeft, len(truncated), llm.cursor)
}
for {
if llm.gc {
return 0, io.EOF
}
if llm.cursor >= len(llm.embd) {
break
}
numEval := len(llm.embd) - llm.cursor
if numEval > llm.NumBatch {
numEval = llm.NumBatch
}
if retval := C.llama_eval(llm.ctx, unsafe.SliceData(llm.embd[llm.cursor:]), C.int(numEval), C.int(llm.cursor), C.int(llm.NumThread)); retval != 0 {
return 0, fmt.Errorf("llama_eval: %d", retval)
}
llm.cursor += numEval
}
var sampleOpts C.struct_llama_sample_options
sampleOpts.repeat_penalty = C.float(llm.RepeatPenalty)
sampleOpts.frequency_penalty = C.float(llm.FrequencyPenalty)
sampleOpts.presence_penalty = C.float(llm.PresencePenalty)
sampleOpts.temperature = C.float(llm.Temperature)
sampleOpts.top_k = C.int(llm.TopK)
sampleOpts.top_p = C.float(llm.TopP)
sampleOpts.tfs_z = C.float(llm.TFSZ)
sampleOpts.typical_p = C.float(llm.TypicalP)
sampleOpts.mirostat = C.int(llm.Mirostat)
sampleOpts.mirostat_tau = C.float(llm.MirostatTau)
sampleOpts.mirostat_eta = C.float(llm.MirostatEta)
sampleOpts.penalize_newline = C.bool(llm.PenalizeNewline)
numVocab := C.llama_n_vocab(llm.ctx)
logits := unsafe.Slice(C.llama_get_logits(llm.ctx), numVocab)
// TODO: logit bias
candidates := make([]C.llama_token_data, numVocab)
for i := range logits {
candidates[i] = C.llama_token_data{
id: C.int(i),
logit: logits[i],
p: 0,
}
}
repeatLastN := llm.RepeatLastN
if len(llm.last) < repeatLastN {
repeatLastN = len(llm.last)
}
if llm.NumCtx < repeatLastN {
repeatLastN = llm.NumCtx
}
lastN := llm.last[len(llm.last)-repeatLastN:]
token := C.llama_sample(
llm.ctx,
unsafe.SliceData(candidates), C.size_t(len(candidates)),
unsafe.SliceData(lastN), C.size_t(len(lastN)),
&sampleOpts,
)
llm.last = append(llm.last, token)
llm.embd = append(llm.embd, token)
if token == C.llama_token_eos() {
return 0, io.EOF
}
return token, nil
}

View File

@@ -1,495 +0,0 @@
/**
* llama.cpp - git 8183159cf3def112f6d1fe94815fce70e1bffa12
*
* MIT License
*
* Copyright (c) 2023 Georgi Gerganov
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef LLAMA_H
#define LLAMA_H
#include "ggml.h"
#ifdef GGML_USE_CUBLAS
#include "ggml-cuda.h"
#define LLAMA_MAX_DEVICES GGML_CUDA_MAX_DEVICES
#else
#define LLAMA_MAX_DEVICES 1
#endif // GGML_USE_CUBLAS
#include <stddef.h>
#include <stdint.h>
#include <stdbool.h>
#ifdef LLAMA_SHARED
# if defined(_WIN32) && !defined(__MINGW32__)
# ifdef LLAMA_BUILD
# define LLAMA_API __declspec(dllexport)
# else
# define LLAMA_API __declspec(dllimport)
# endif
# else
# define LLAMA_API __attribute__ ((visibility ("default")))
# endif
#else
# define LLAMA_API
#endif
#ifdef __GNUC__
# define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
#elif defined(_MSC_VER)
# define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
#else
# define DEPRECATED(func, hint) func
#endif
#define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt'
#define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
#define LLAMA_FILE_MAGIC_GGMF 0x67676d66u // 'ggmf'
#define LLAMA_FILE_MAGIC_GGML 0x67676d6cu // 'ggml'
#define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
#define LLAMA_FILE_VERSION 3
#define LLAMA_FILE_MAGIC LLAMA_FILE_MAGIC_GGJT
#define LLAMA_FILE_MAGIC_UNVERSIONED LLAMA_FILE_MAGIC_GGML
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
#define LLAMA_SESSION_VERSION 1
#define LLAMA_DEFAULT_SEED 0xFFFFFFFF
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL)
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
#define LLAMA_SUPPORTS_GPU_OFFLOAD
#endif
#ifndef LLAMA_DEFAULT_RMS_EPS
#define LLAMA_DEFAULT_RMS_EPS 5e-6f
#endif
#ifdef __cplusplus
extern "C" {
#endif
//
// C interface
//
// TODO: show sample usage
//
struct llama_model;
struct llama_context;
typedef int llama_token;
typedef struct llama_token_data {
llama_token id; // token id
float logit; // log-odds of the token
float p; // probability of the token
} llama_token_data;
typedef struct llama_token_data_array {
llama_token_data * data;
size_t size;
bool sorted;
} llama_token_data_array;
typedef void (*llama_progress_callback)(float progress, void *ctx);
struct llama_context_params {
uint32_t seed; // RNG seed, -1 for random
int32_t n_ctx; // text context
int32_t n_batch; // prompt processing batch size
int32_t n_gqa; // grouped-query attention (TEMP - will be moved to model hparams)
float rms_norm_eps; // rms norm epsilon (TEMP - will be moved to model hparams)
int32_t n_gpu_layers; // number of layers to store in VRAM
int32_t main_gpu; // the GPU that is used for scratch and small tensors
const float * tensor_split; // how to split layers across multiple GPUs (size: LLAMA_MAX_DEVICES)
// ref: https://github.com/ggerganov/llama.cpp/pull/2054
float rope_freq_base; // RoPE base frequency
float rope_freq_scale; // RoPE frequency scaling factor
// called with a progress value between 0 and 1, pass NULL to disable
llama_progress_callback progress_callback;
// context pointer passed to the progress callback
void * progress_callback_user_data;
// Keep the booleans together to avoid misalignment during copy-by-value.
bool low_vram; // if true, reduce VRAM usage at the cost of performance
bool mul_mat_q; // if true, use experimental mul_mat_q kernels
bool f16_kv; // use fp16 for KV cache
bool logits_all; // the llama_eval() call computes all logits, not just the last one
bool vocab_only; // only load the vocabulary, no weights
bool use_mmap; // use mmap if possible
bool use_mlock; // force system to keep model in RAM
bool embedding; // embedding mode only
};
// model file types
enum llama_ftype {
LLAMA_FTYPE_ALL_F32 = 0,
LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
// LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
// LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q2_K = 10,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q3_K_S = 11,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q3_K_M = 12,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q3_K_L = 13,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_K_S = 14,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_K_M = 15,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_K_S = 16,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_K_M = 17,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q6_K = 18,// except 1d tensors
};
// model quantization parameters
typedef struct llama_model_quantize_params {
int nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
enum llama_ftype ftype; // quantize to this llama_ftype
bool allow_requantize; // allow quantizing non-f32/f16 tensors
bool quantize_output_tensor; // quantize output.weight
} llama_model_quantize_params;
// grammar types
struct llama_grammar;
// grammar element type
enum llama_gretype {
// end of rule definition
LLAMA_GRETYPE_END = 0,
// start of alternate definition for rule
LLAMA_GRETYPE_ALT = 1,
// non-terminal element: reference to rule
LLAMA_GRETYPE_RULE_REF = 2,
// terminal element: character (code point)
LLAMA_GRETYPE_CHAR = 3,
// inverse char(s) ([^a], [^a-b] [^abc])
LLAMA_GRETYPE_CHAR_NOT = 4,
// modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
// be an inclusive range ([a-z])
LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,
// modifies a preceding LLAMA_GRETYPE_CHAR or
// LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
LLAMA_GRETYPE_CHAR_ALT = 6,
};
typedef struct llama_grammar_element {
enum llama_gretype type;
uint32_t value; // Unicode code point or rule ID
} llama_grammar_element;
// performance timing information
struct llama_timings {
double t_start_ms;
double t_end_ms;
double t_load_ms;
double t_sample_ms;
double t_p_eval_ms;
double t_eval_ms;
int32_t n_sample;
int32_t n_p_eval;
int32_t n_eval;
};
LLAMA_API int llama_max_devices();
LLAMA_API struct llama_context_params llama_context_default_params();
LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params();
LLAMA_API bool llama_mmap_supported();
LLAMA_API bool llama_mlock_supported();
// TODO: not great API - very likely to change
// Initialize the llama + ggml backend
// If numa is true, use NUMA optimizations
// Call once at the start of the program
LLAMA_API void llama_backend_init(bool numa);
// Call once at the end of the program - currently only used for MPI
LLAMA_API void llama_backend_free();
LLAMA_API int64_t llama_time_us();
LLAMA_API struct llama_model * llama_load_model_from_file(
const char * path_model,
struct llama_context_params params);
LLAMA_API void llama_free_model(struct llama_model * model);
LLAMA_API struct llama_context * llama_new_context_with_model(
struct llama_model * model,
struct llama_context_params params);
// Various functions for loading a ggml llama model.
// Allocate (almost) all memory needed for the model.
// Return NULL on failure
LLAMA_API DEPRECATED(struct llama_context * llama_init_from_file(
const char * path_model,
struct llama_context_params params),
"please use llama_load_model_from_file combined with llama_new_context_with_model instead");
// Frees all allocated memory
LLAMA_API void llama_free(struct llama_context * ctx);
// Returns 0 on success
LLAMA_API int llama_model_quantize(
const char * fname_inp,
const char * fname_out,
const llama_model_quantize_params * params);
// Apply a LoRA adapter to a loaded model
// path_base_model is the path to a higher quality model to use as a base for
// the layers modified by the adapter. Can be NULL to use the current loaded model.
// The model needs to be reloaded before applying a new adapter, otherwise the adapter
// will be applied on top of the previous one
// Returns 0 on success
LLAMA_API DEPRECATED(int llama_apply_lora_from_file(
struct llama_context * ctx,
const char * path_lora,
const char * path_base_model,
int n_threads),
"please use llama_model_apply_lora_from_file instead");
LLAMA_API int llama_model_apply_lora_from_file(
const struct llama_model * model,
const char * path_lora,
const char * path_base_model,
int n_threads);
// Returns the number of tokens in the KV cache
LLAMA_API int llama_get_kv_cache_token_count(const struct llama_context * ctx);
// Sets the current rng seed.
LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
// Returns the maximum size in bytes of the state (rng, logits, embedding
// and kv_cache) - will often be smaller after compacting tokens
LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx);
// Copies the state to the specified destination address.
// Destination needs to have allocated enough memory.
// Returns the number of bytes copied
LLAMA_API size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst);
// Set the state reading from the specified address
// Returns the number of bytes read
LLAMA_API size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src);
// Save/load session file
LLAMA_API bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out);
LLAMA_API bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count);
// Run the llama inference to obtain the logits and probabilities for the next token.
// tokens + n_tokens is the provided batch of new tokens to process
// n_past is the number of tokens to use from previous eval calls
// Returns 0 on success
LLAMA_API int llama_eval(
struct llama_context * ctx,
const llama_token * tokens,
int n_tokens,
int n_past,
int n_threads);
// Same as llama_eval, but use float matrix input directly.
LLAMA_API int llama_eval_embd(
struct llama_context * ctx,
const float * embd,
int n_tokens,
int n_past,
int n_threads);
// Export a static computation graph for context of 511 and batch size of 1
// NOTE: since this functionality is mostly for debugging and demonstration purposes, we hardcode these
// parameters here to keep things simple
// IMPORTANT: do not use for anything else other than debugging and testing!
LLAMA_API int llama_eval_export(struct llama_context * ctx, const char * fname);
// Convert the provided text into tokens.
// The tokens pointer must be large enough to hold the resulting tokens.
// Returns the number of tokens on success, no more than n_max_tokens
// Returns a negative number on failure - the number of tokens that would have been returned
// TODO: not sure if correct
LLAMA_API int llama_tokenize(
struct llama_context * ctx,
const char * text,
llama_token * tokens,
int n_max_tokens,
bool add_bos);
LLAMA_API int llama_tokenize_with_model(
const struct llama_model * model,
const char * text,
llama_token * tokens,
int n_max_tokens,
bool add_bos);
LLAMA_API int llama_n_vocab(const struct llama_context * ctx);
LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
LLAMA_API int llama_n_embd (const struct llama_context * ctx);
LLAMA_API int llama_n_vocab_from_model(const struct llama_model * model);
LLAMA_API int llama_n_ctx_from_model (const struct llama_model * model);
LLAMA_API int llama_n_embd_from_model (const struct llama_model * model);
// Get the vocabulary as output parameters.
// Returns number of results.
LLAMA_API int llama_get_vocab(
const struct llama_context * ctx,
const char * * strings,
float * scores,
int capacity);
LLAMA_API int llama_get_vocab_from_model(
const struct llama_model * model,
const char * * strings,
float * scores,
int capacity);
// Token logits obtained from the last call to llama_eval()
// The logits for the last token are stored in the last row
// Can be mutated in order to change the probabilities of the next token
// Rows: n_tokens
// Cols: n_vocab
LLAMA_API float * llama_get_logits(struct llama_context * ctx);
// Get the embeddings for the input
// shape: [n_embd] (1-dimensional)
LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
// Token Id -> String. Uses the vocabulary in the provided context
LLAMA_API const char * llama_token_to_str(
const struct llama_context * ctx,
llama_token token);
LLAMA_API const char * llama_token_to_str_with_model(
const struct llama_model * model,
llama_token token);
// Special tokens
LLAMA_API llama_token llama_token_bos(); // beginning-of-sentence
LLAMA_API llama_token llama_token_eos(); // end-of-sentence
LLAMA_API llama_token llama_token_nl(); // next-line
// Grammar
//
LLAMA_API struct llama_grammar * llama_grammar_init(
const llama_grammar_element ** rules,
size_t n_rules,
size_t start_rule_index);
LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
// Sampling functions
/// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
LLAMA_API void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty);
/// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
LLAMA_API void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence);
/// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, the logits must be directly extracted from the original generation context without being sorted.
/// @params guidance_ctx A separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
/// @params scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
LLAMA_API void llama_sample_classifier_free_guidance(
struct llama_context * ctx,
llama_token_data_array * candidates,
struct llama_context * guidance_ctx,
float scale);
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates);
/// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
LLAMA_API void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep);
/// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
LLAMA_API void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
/// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
LLAMA_API void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep);
/// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
LLAMA_API void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
LLAMA_API void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates, float temp);
/// @details Apply constraints from grammar
LLAMA_API void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar);
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
/// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
LLAMA_API llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu);
/// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
LLAMA_API llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu);
/// @details Selects the token with the highest probability.
LLAMA_API llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates);
/// @details Randomly selects a token from the candidates based on their probabilities.
LLAMA_API llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates);
/// @details Accepts the sampled token into the grammar
LLAMA_API void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token);
// Performance information
LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
LLAMA_API void llama_print_timings(struct llama_context * ctx);
LLAMA_API void llama_reset_timings(struct llama_context * ctx);
// Print system information
LLAMA_API const char * llama_print_system_info(void);
#ifdef __cplusplus
}
#endif
// Internal API to be implemented by llama.cpp and used by tests/benchmarks only
#ifdef LLAMA_API_INTERNAL
#include <vector>
#include <string>
struct ggml_tensor;
const std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx);
#endif
#endif // LLAMA_H

View File

@@ -1,80 +0,0 @@
package llama
import (
"bytes"
"crypto/sha256"
"errors"
"io"
"log"
"os"
"path/filepath"
)
func init() {
if err := initBackend(); err != nil {
log.Printf("WARNING: GPU could not be initialized correctly: %v", err)
log.Printf("WARNING: falling back to CPU")
}
}
func initBackend() error {
exec, err := os.Executable()
if err != nil {
return err
}
exec, err = filepath.EvalSymlinks(exec)
if err != nil {
return err
}
metal := filepath.Join(filepath.Dir(exec), "ggml-metal.metal")
fi, err := os.Stat(metal)
if err != nil && !errors.Is(err, os.ErrNotExist) {
return err
}
if fi != nil {
actual, err := os.Open(metal)
if err != nil {
return err
}
actualSum := sha256.New()
if _, err := io.Copy(actualSum, actual); err != nil {
return err
}
expect, err := fs.Open("ggml-metal.metal")
if err != nil {
return err
}
expectSum := sha256.New()
if _, err := io.Copy(expectSum, expect); err != nil {
return err
}
if bytes.Equal(actualSum.Sum(nil), expectSum.Sum(nil)) {
return nil
}
}
dst, err := os.Create(filepath.Join(filepath.Dir(exec), "ggml-metal.metal"))
if err != nil {
return err
}
defer dst.Close()
src, err := fs.Open("ggml-metal.metal")
if err != nil {
return err
}
defer src.Close()
if _, err := io.Copy(dst, src); err != nil {
return err
}
return nil
}

View File

@@ -1,70 +0,0 @@
#!/bin/sh
set -eu
status() { echo >&2 ">>> $*"; }
error() { status "ERROR $*"; }
usage() {
echo "usage: $(basename $0) /path/to/repo"
exit 1
}
OUT=$(dirname $0)
while getopts "hC:" OPTION; do
case $OPTION in
C) OUT=$OPTARG ;;
*) usage ;;
esac
done
shift $(( $OPTIND - 1 ))
[ $# -eq 1 ] || usage
status "updating source..."
cp -a "$1"/*.{c,h,cpp,m,metal,cu} "$OUT"
status "removing incompatible files..."
rm -f "$OUT"/build-info.h
SHA1=$(git -C $1 rev-parse @)
LICENSE=$(mktemp)
cleanup() {
rm -f $LICENSE
}
trap cleanup 0
cat <<EOF | sed 's/ *$//' >$LICENSE
/**
* llama.cpp - git $SHA1
*
$(sed 's/^/ * /' <$1/LICENSE)
*/
EOF
for IN in $OUT/*.{c,h,cpp,m,metal,cu}; do
TMP=$(mktemp)
status "updating license $IN"
cat $LICENSE $IN >$TMP
mv $TMP $IN
done
touchup() {
local CONSTRAINT=$1 && shift
for IN in $*; do
status "touching up $IN..."
TMP=$(mktemp)
{
echo "//go:build $CONSTRAINT"
echo
} | cat - $IN >$TMP
mv $TMP $IN
done
}
touchup darwin $OUT/ggml-metal.*
touchup mpi $OUT/ggml-mpi.*
touchup opencl $OUT/ggml-opencl.*

22
llm/falcon.go Normal file
View File

@@ -0,0 +1,22 @@
package llm
const ModelFamilyFalcon = "falcon"
const (
falconModelType7B = 32
falconModelType40B = 60
falconModelType180B = 80
)
func falconModelType(numLayer uint32) string {
switch numLayer {
case 32:
return "7B"
case 60:
return "40B"
case 80:
return "180B"
default:
return "Unknown"
}
}

209
llm/ggml.go Normal file
View File

@@ -0,0 +1,209 @@
package llm
import (
"encoding/binary"
"errors"
"io"
)
type GGML struct {
magic uint32
container
model
}
const (
fileTypeF32 uint32 = iota
fileTypeF16
fileTypeQ4_0
fileTypeQ4_1
fileTypeQ4_1_F16
fileTypeQ8_0 uint32 = iota + 2
fileTypeQ5_0
fileTypeQ5_1
fileTypeQ2_K
fileTypeQ3_K_S
fileTypeQ3_K_M
fileTypeQ3_K_L
fileTypeQ4_K_S
fileTypeQ4_K_M
fileTypeQ5_K_S
fileTypeQ5_K_M
fileTypeQ6_K
)
func fileType(fileType uint32) string {
switch fileType {
case fileTypeF32:
return "F32"
case fileTypeF16:
return "F16"
case fileTypeQ4_0:
return "Q4_0"
case fileTypeQ4_1:
return "Q4_1"
case fileTypeQ4_1_F16:
return "Q4_1_F16"
case fileTypeQ8_0:
return "Q8_0"
case fileTypeQ5_0:
return "Q5_0"
case fileTypeQ5_1:
return "Q5_1"
case fileTypeQ2_K:
return "Q2_K"
case fileTypeQ3_K_S:
return "Q3_K_S"
case fileTypeQ3_K_M:
return "Q3_K_M"
case fileTypeQ3_K_L:
return "Q3_K_L"
case fileTypeQ4_K_S:
return "Q4_K_S"
case fileTypeQ4_K_M:
return "Q4_K_M"
case fileTypeQ5_K_S:
return "Q5_K_S"
case fileTypeQ5_K_M:
return "Q5_K_M"
case fileTypeQ6_K:
return "Q6_K"
default:
return "Unknown"
}
}
type model interface {
ModelFamily() string
ModelType() string
FileType() string
NumLayers() int64
}
type container interface {
Name() string
Decode(io.Reader) (model, error)
}
type containerGGML struct{}
func (c *containerGGML) Name() string {
return "ggml"
}
func (c *containerGGML) Decode(r io.Reader) (model, error) {
return nil, nil
}
type containerGGMF struct {
version uint32
}
func (c *containerGGMF) Name() string {
return "ggmf"
}
func (c *containerGGMF) Decode(r io.Reader) (model, error) {
var version uint32
binary.Read(r, binary.LittleEndian, &version)
switch version {
case 1:
default:
return nil, errors.New("invalid version")
}
c.version = version
return nil, nil
}
type containerGGJT struct {
version uint32
}
func (c *containerGGJT) Name() string {
return "ggjt"
}
func (c *containerGGJT) Decode(r io.Reader) (model, error) {
var version uint32
binary.Read(r, binary.LittleEndian, &version)
switch version {
case 1, 2, 3:
default:
return nil, errors.New("invalid version")
}
c.version = version
// different model types may have different layouts for hyperparameters
var llama llamaModel
binary.Read(r, binary.LittleEndian, &llama.hyperparameters)
return &llama, nil
}
type containerLORA struct {
version uint32
}
func (c *containerLORA) Name() string {
return "ggla"
}
func (c *containerLORA) Decode(r io.Reader) (model, error) {
var version uint32
binary.Read(r, binary.LittleEndian, &version)
switch version {
case 1:
default:
return nil, errors.New("invalid version")
}
c.version = version
return nil, nil
}
const (
// Magic constant for `ggml` files (unversioned).
FILE_MAGIC_GGML = 0x67676d6c
// Magic constant for `ggml` files (versioned, ggmf).
FILE_MAGIC_GGMF = 0x67676d66
// Magic constant for `ggml` files (versioned, ggjt).
FILE_MAGIC_GGJT = 0x67676a74
// Magic constant for `ggla` files (LoRA adapter).
FILE_MAGIC_GGLA = 0x67676C61
// Magic constant for `gguf` files (versioned, gguf)
FILE_MAGIC_GGUF = 0x46554747
)
func DecodeGGML(r io.ReadSeeker) (*GGML, error) {
var ggml GGML
binary.Read(r, binary.LittleEndian, &ggml.magic)
switch ggml.magic {
case FILE_MAGIC_GGML:
ggml.container = &containerGGML{}
case FILE_MAGIC_GGMF:
ggml.container = &containerGGMF{}
case FILE_MAGIC_GGJT:
ggml.container = &containerGGJT{}
case FILE_MAGIC_GGLA:
ggml.container = &containerLORA{}
case FILE_MAGIC_GGUF:
ggml.container = &containerGGUF{}
default:
return nil, errors.New("invalid file magic")
}
model, err := ggml.Decode(r)
if err != nil {
return nil, err
}
ggml.model = model
// final model type
return &ggml, nil
}

379
llm/gguf.go Normal file
View File

@@ -0,0 +1,379 @@
package llm
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"io"
)
type containerGGUF struct {
Version uint32
V1 struct {
NumTensor uint32
NumKV uint32
}
V2 struct {
NumTensor uint64
NumKV uint64
}
}
func (c *containerGGUF) Name() string {
return "gguf"
}
func (c *containerGGUF) Decode(r io.Reader) (model, error) {
binary.Read(r, binary.LittleEndian, &c.Version)
switch c.Version {
case 1:
binary.Read(r, binary.LittleEndian, &c.V1)
case 2:
binary.Read(r, binary.LittleEndian, &c.V2)
default:
return nil, errors.New("invalid version")
}
model := newGGUFModel(c)
if err := model.Decode(r); err != nil {
return nil, err
}
return model, nil
}
const (
ggufTypeUint8 uint32 = iota
ggufTypeInt8
ggufTypeUint16
ggufTypeInt16
ggufTypeUint32
ggufTypeInt32
ggufTypeFloat32
ggufTypeBool
ggufTypeString
ggufTypeArray
ggufTypeUint64
ggufTypeInt64
ggufTypeFloat64
)
type kv map[string]any
type ggufModel struct {
*containerGGUF
kv
}
func newGGUFModel(container *containerGGUF) *ggufModel {
return &ggufModel{
containerGGUF: container,
kv: make(kv),
}
}
func (llm *ggufModel) NumKV() uint64 {
if llm.Version == 1 {
return uint64(llm.V1.NumKV)
}
return llm.V2.NumKV
}
func (llm *ggufModel) ModelFamily() string {
t, ok := llm.kv["general.architecture"].(string)
if ok {
return t
}
return "unknown"
}
func (llm *ggufModel) ModelType() string {
switch llm.ModelFamily() {
case "llama":
if blocks, ok := llm.kv["llama.block_count"].(uint32); ok {
heads, headsOK := llm.kv["llama.head_count"].(uint32)
headKVs, headsKVsOK := llm.kv["llama.head_count_kv"].(uint32)
if headsOK && headsKVsOK && heads/headKVs == 8 {
return "70B"
}
return llamaModelType(blocks)
}
case "falcon":
if blocks, ok := llm.kv["falcon.block_count"].(uint32); ok {
return falconModelType(blocks)
}
}
return "Unknown"
}
func (llm *ggufModel) FileType() string {
t, ok := llm.kv["general.file_type"].(uint32)
if ok {
return fileType(t)
}
return "Unknown"
}
func (llm *ggufModel) Decode(r io.Reader) error {
read := llm.readString
if llm.Version == 1 {
read = llm.readStringV1
}
for i := 0; uint64(i) < llm.NumKV(); i++ {
k, err := read(r)
if err != nil {
return err
}
vtype := llm.readU32(r)
var v any
switch vtype {
case ggufTypeUint8:
v = llm.readU8(r)
case ggufTypeInt8:
v = llm.readI8(r)
case ggufTypeUint16:
v = llm.readU16(r)
case ggufTypeInt16:
v = llm.readI16(r)
case ggufTypeUint32:
v = llm.readU32(r)
case ggufTypeInt32:
v = llm.readI32(r)
case ggufTypeUint64:
v = llm.readU64(r)
case ggufTypeInt64:
v = llm.readI64(r)
case ggufTypeFloat32:
v = llm.readF32(r)
case ggufTypeFloat64:
v = llm.readF64(r)
case ggufTypeBool:
v = llm.readBool(r)
case ggufTypeString:
fn := llm.readString
if llm.Version == 1 {
fn = llm.readStringV1
}
s, err := fn(r)
if err != nil {
return err
}
v = s
case ggufTypeArray:
fn := llm.readArray
if llm.Version == 1 {
fn = llm.readArrayV1
}
a, err := fn(r)
if err != nil {
return err
}
v = a
default:
return fmt.Errorf("invalid type: %d", vtype)
}
llm.kv[k] = v
}
return nil
}
func (llm *ggufModel) NumLayers() int64 {
value, exists := llm.kv[fmt.Sprintf("%s.block_count", llm.ModelFamily())]
if !exists {
return 0
}
v := value.(uint32)
return int64(v)
}
func (ggufModel) readU8(r io.Reader) uint8 {
var u8 uint8
binary.Read(r, binary.LittleEndian, &u8)
return u8
}
func (ggufModel) readI8(r io.Reader) int8 {
var i8 int8
binary.Read(r, binary.LittleEndian, &i8)
return i8
}
func (ggufModel) readU16(r io.Reader) uint16 {
var u16 uint16
binary.Read(r, binary.LittleEndian, &u16)
return u16
}
func (ggufModel) readI16(r io.Reader) int16 {
var i16 int16
binary.Read(r, binary.LittleEndian, &i16)
return i16
}
func (ggufModel) readU32(r io.Reader) uint32 {
var u32 uint32
binary.Read(r, binary.LittleEndian, &u32)
return u32
}
func (ggufModel) readI32(r io.Reader) int32 {
var i32 int32
binary.Read(r, binary.LittleEndian, &i32)
return i32
}
func (ggufModel) readU64(r io.Reader) uint64 {
var u64 uint64
binary.Read(r, binary.LittleEndian, &u64)
return u64
}
func (ggufModel) readI64(r io.Reader) int64 {
var i64 int64
binary.Read(r, binary.LittleEndian, &i64)
return i64
}
func (ggufModel) readF32(r io.Reader) float32 {
var f32 float32
binary.Read(r, binary.LittleEndian, &f32)
return f32
}
func (ggufModel) readF64(r io.Reader) float64 {
var f64 float64
binary.Read(r, binary.LittleEndian, &f64)
return f64
}
func (ggufModel) readBool(r io.Reader) bool {
var b bool
binary.Read(r, binary.LittleEndian, &b)
return b
}
func (ggufModel) readStringV1(r io.Reader) (string, error) {
var nameLength uint32
binary.Read(r, binary.LittleEndian, &nameLength)
var b bytes.Buffer
if _, err := io.CopyN(&b, r, int64(nameLength)); err != nil {
return "", err
}
// gguf v1 strings are null-terminated
b.Truncate(b.Len() - 1)
return b.String(), nil
}
func (llm ggufModel) readString(r io.Reader) (string, error) {
var nameLength uint64
binary.Read(r, binary.LittleEndian, &nameLength)
var b bytes.Buffer
if _, err := io.CopyN(&b, r, int64(nameLength)); err != nil {
return "", err
}
return b.String(), nil
}
func (llm *ggufModel) readArrayV1(r io.Reader) (arr []any, err error) {
atype := llm.readU32(r)
n := llm.readU32(r)
for i := 0; uint32(i) < n; i++ {
switch atype {
case ggufTypeUint8:
arr = append(arr, llm.readU8(r))
case ggufTypeInt8:
arr = append(arr, llm.readU8(r))
case ggufTypeUint16:
arr = append(arr, llm.readU16(r))
case ggufTypeInt16:
arr = append(arr, llm.readI16(r))
case ggufTypeUint32:
arr = append(arr, llm.readU32(r))
case ggufTypeInt32:
arr = append(arr, llm.readI32(r))
case ggufTypeFloat32:
arr = append(arr, llm.readF32(r))
case ggufTypeBool:
arr = append(arr, llm.readBool(r))
case ggufTypeString:
s, err := llm.readStringV1(r)
if err != nil {
return nil, err
}
arr = append(arr, s)
default:
return nil, fmt.Errorf("invalid array type: %d", atype)
}
}
return
}
func (llm *ggufModel) readArray(r io.Reader) (arr []any, err error) {
atype := llm.readU32(r)
n := llm.readU64(r)
for i := 0; uint64(i) < n; i++ {
switch atype {
case ggufTypeUint8:
arr = append(arr, llm.readU8(r))
case ggufTypeInt8:
arr = append(arr, llm.readU8(r))
case ggufTypeUint16:
arr = append(arr, llm.readU16(r))
case ggufTypeInt16:
arr = append(arr, llm.readI16(r))
case ggufTypeUint32:
arr = append(arr, llm.readU32(r))
case ggufTypeInt32:
arr = append(arr, llm.readI32(r))
case ggufTypeUint64:
arr = append(arr, llm.readU64(r))
case ggufTypeInt64:
arr = append(arr, llm.readI64(r))
case ggufTypeFloat32:
arr = append(arr, llm.readF32(r))
case ggufTypeFloat64:
arr = append(arr, llm.readF64(r))
case ggufTypeBool:
arr = append(arr, llm.readBool(r))
case ggufTypeString:
s, err := llm.readString(r)
if err != nil {
return nil, err
}
arr = append(arr, s)
default:
return nil, fmt.Errorf("invalid array type: %d", atype)
}
}
return
}

View File

@@ -0,0 +1,16 @@
package llm
//go:generate git submodule init
//go:generate git submodule update --force ggml
//go:generate git -C ggml apply ../patches/0001-add-detokenize-endpoint.patch
//go:generate git -C ggml apply ../patches/0002-34B-model-support.patch
//go:generate git -C ggml apply ../patches/0003-metal-fix-synchronization-in-new-matrix-multiplicati.patch
//go:generate git -C ggml apply ../patches/0004-metal-add-missing-barriers-for-mul-mat-2699.patch
//go:generate cmake -S ggml -B ggml/build/cpu -DLLAMA_ACCELERATE=on -DLLAMA_K_QUANTS=on -DCMAKE_SYSTEM_PROCESSOR=x86_64 -DCMAKE_OSX_ARCHITECTURES=x86_64 -DCMAKE_OSX_DEPLOYMENT_TARGET=11.0
//go:generate cmake --build ggml/build/cpu --target server --config Release
//go:generate git submodule update --force gguf
//go:generate git -C gguf apply ../patches/0001-remove-warm-up-logging.patch
//go:generate cmake -S gguf -B gguf/build/cpu -DLLAMA_ACCELERATE=on -DLLAMA_K_QUANTS=on -DCMAKE_SYSTEM_PROCESSOR=x86_64 -DCMAKE_OSX_ARCHITECTURES=x86_64 -DCMAKE_OSX_DEPLOYMENT_TARGET=11.0
//go:generate cmake --build gguf/build/cpu --target server --config Release

View File

@@ -0,0 +1,16 @@
package llm
//go:generate git submodule init
//go:generate git submodule update --force ggml
//go:generate git -C ggml apply ../patches/0001-add-detokenize-endpoint.patch
//go:generate git -C ggml apply ../patches/0002-34B-model-support.patch
//go:generate git -C ggml apply ../patches/0003-metal-fix-synchronization-in-new-matrix-multiplicati.patch
//go:generate git -C ggml apply ../patches/0004-metal-add-missing-barriers-for-mul-mat-2699.patch
//go:generate cmake -S ggml -B ggml/build/metal -DLLAMA_METAL=on -DLLAMA_ACCELERATE=on -DLLAMA_K_QUANTS=on -DCMAKE_SYSTEM_PROCESSOR=arm64 -DCMAKE_OSX_ARCHITECTURES=arm64 -DCMAKE_OSX_DEPLOYMENT_TARGET=11.0
//go:generate cmake --build ggml/build/metal --target server --config Release
//go:generate git submodule update --force gguf
//go:generate git -C gguf apply ../patches/0001-remove-warm-up-logging.patch
//go:generate cmake -S gguf -B gguf/build/metal -DLLAMA_METAL=on -DLLAMA_ACCELERATE=on -DLLAMA_K_QUANTS=on -DCMAKE_SYSTEM_PROCESSOR=arm64 -DCMAKE_OSX_ARCHITECTURES=arm64 -DCMAKE_OSX_DEPLOYMENT_TARGET=11.0
//go:generate cmake --build gguf/build/metal --target server --config Release

View File

@@ -0,0 +1,22 @@
package llm
//go:generate git submodule init
//go:generate git submodule update --force ggml
//go:generate git -C ggml apply ../patches/0001-add-detokenize-endpoint.patch
//go:generate git -C ggml apply ../patches/0002-34B-model-support.patch
//go:generate git -C ggml apply ../patches/0005-ggml-support-CUDA-s-half-type-for-aarch64-1455-2670.patch
//go:generate git -C ggml apply ../patches/0001-copy-cuda-runtime-libraries.patch
//go:generate cmake -S ggml -B ggml/build/cpu -DLLAMA_K_QUANTS=on
//go:generate cmake --build ggml/build/cpu --target server --config Release
//go:generate git submodule update --force gguf
//go:generate git -C gguf apply ../patches/0001-copy-cuda-runtime-libraries.patch
//go:generate git -C gguf apply ../patches/0001-remove-warm-up-logging.patch
//go:generate cmake -S gguf -B gguf/build/cpu -DLLAMA_K_QUANTS=on
//go:generate cmake --build gguf/build/cpu --target server --config Release
//go:generate cmake -S ggml -B ggml/build/cuda -DLLAMA_CUBLAS=on -DLLAMA_ACCELERATE=on -DLLAMA_K_QUANTS=on
//go:generate cmake --build ggml/build/cuda --target server --config Release
//go:generate cmake -S gguf -B gguf/build/cuda -DLLAMA_CUBLAS=on -DLLAMA_ACCELERATE=on -DLLAMA_K_QUANTS=on
//go:generate cmake --build gguf/build/cuda --target server --config Release

View File

@@ -0,0 +1,14 @@
package llm
//go:generate git submodule init
//go:generate git submodule update --force ggml
//go:generate git -C ggml apply ../patches/0001-add-detokenize-endpoint.patch
//go:generate git -C ggml apply ../patches/0002-34B-model-support.patch
//go:generate cmake -S ggml -B ggml/build/cpu -DLLAMA_K_QUANTS=on
//go:generate cmake --build ggml/build/cpu --target server --config Release
//go:generate git submodule update --force gguf
//go:generate git -C gguf apply ../patches/0001-remove-warm-up-logging.patch
//go:generate cmake -S gguf -B gguf/build/cpu -DLLAMA_K_QUANTS=on
//go:generate cmake --build gguf/build/cpu --target server --config Release

1
llm/llama.cpp/ggml Submodule

Submodule llm/llama.cpp/ggml added at 9e232f0234

1
llm/llama.cpp/gguf Submodule

Submodule llm/llama.cpp/gguf added at bc9d3e3971

View File

@@ -0,0 +1,51 @@
From 032ef7ff2423f5117bb59d42fb71be9cebf0a2de Mon Sep 17 00:00:00 2001
From: Bruce MacDonald <brucewmacdonald@gmail.com>
Date: Mon, 28 Aug 2023 18:08:12 -0400
Subject: [PATCH] add detokenize endpoint
---
examples/server/server.cpp | 21 +++++++++++++++++++++
1 file changed, 21 insertions(+)
diff --git a/examples/server/server.cpp b/examples/server/server.cpp
index 9966045..5014691 100644
--- a/examples/server/server.cpp
+++ b/examples/server/server.cpp
@@ -1075,6 +1075,12 @@ static json format_tokenizer_response(const std::vector<llama_token> &tokens)
{"tokens", tokens}};
}
+static json format_detokenized_response(std::string content)
+{
+ return json{
+ {"content", content}};
+}
+
static void parse_options_completion(const json &body, llama_server_context &llama)
{
gpt_params default_params;
@@ -1361,6 +1367,21 @@ int main(int argc, char **argv)
const json data = format_tokenizer_response(tokens);
return res.set_content(data.dump(), "application/json"); });
+ svr.Post("/detokenize", [&llama](const Request &req, Response &res)
+ {
+ auto lock = llama.lock();
+
+ const json body = json::parse(req.body);
+ std::string content;
+ if (body.count("tokens") != 0)
+ {
+ const std::vector<llama_token> tokens = body["tokens"];
+ content = tokens_to_str(llama.ctx, tokens.cbegin(), tokens.cend());
+ }
+
+ const json data = format_detokenized_response(content);
+ return res.set_content(data.dump(), "application/json"); });
+
svr.Post("/embedding", [&llama](const Request &req, Response &res)
{
auto lock = llama.lock();
--
2.39.2 (Apple Git-143)

View File

@@ -0,0 +1,27 @@
From 5dd02993e8cc2ce309157736b95bb572f274a3fd Mon Sep 17 00:00:00 2001
From: Michael Yang <mxyng@pm.me>
Date: Wed, 20 Sep 2023 14:19:52 -0700
Subject: [PATCH] copy cuda runtime libraries
---
CMakeLists.txt | 4 ++++
1 file changed, 4 insertions(+)
diff --git a/CMakeLists.txt b/CMakeLists.txt
index 824d9f2..dd24137 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -274,6 +274,10 @@ if (LLAMA_CUBLAS)
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} CUDA::cudart CUDA::cublas CUDA::cublasLt)
endif()
+ configure_file(${CUDAToolkit_LIBRARY_DIR}/libcudart.so ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/libcudart.so.${CUDAToolkit_VERSION_MAJOR}.0 COPYONLY)
+ configure_file(${CUDAToolkit_LIBRARY_DIR}/libcublas.so ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/libcublas.so.${CUDAToolkit_VERSION_MAJOR} COPYONLY)
+ configure_file(${CUDAToolkit_LIBRARY_DIR}/libcublasLt.so ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/libcublasLt.so.${CUDAToolkit_VERSION_MAJOR} COPYONLY)
+
if (NOT DEFINED CMAKE_CUDA_ARCHITECTURES)
# 52 == lowest CUDA 12 standard
# 60 == f16 CUDA intrinsics
--
2.42.0

View File

@@ -0,0 +1,25 @@
From 07993bdc35345b67b27aa649a7c099ad42d80c4c Mon Sep 17 00:00:00 2001
From: Michael Yang <mxyng@pm.me>
Date: Thu, 21 Sep 2023 14:43:21 -0700
Subject: [PATCH] remove warm up logging
---
common/common.cpp | 2 --
1 file changed, 2 deletions(-)
diff --git a/common/common.cpp b/common/common.cpp
index 2597ba0..b56549b 100644
--- a/common/common.cpp
+++ b/common/common.cpp
@@ -780,8 +780,6 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
}
{
- LOG("warming up the model with an empty run\n");
-
const std::vector<llama_token> tmp = { llama_token_bos(lctx), llama_token_eos(lctx), };
llama_eval(lctx, tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, params.n_threads);
llama_reset_timings(lctx);
--
2.42.0

View File

@@ -0,0 +1,89 @@
From 6145068a6613c37bb43a7408b5496524bdcfc402 Mon Sep 17 00:00:00 2001
From: Bruce MacDonald <brucewmacdonald@gmail.com>
Date: Mon, 28 Aug 2023 18:08:53 -0400
Subject: [PATCH] 34B model support
---
llama.cpp | 10 ++++++++++
1 file changed, 10 insertions(+)
diff --git a/llama.cpp b/llama.cpp
index f2cbe76..62c5cdf 100644
--- a/llama.cpp
+++ b/llama.cpp
@@ -79,6 +79,7 @@ enum e_model {
MODEL_7B,
MODEL_13B,
MODEL_30B,
+ MODEL_34B,
MODEL_65B,
MODEL_70B,
};
@@ -122,6 +123,7 @@ static std::map<e_model, size_t> MEM_REQ_SCRATCH0(int n_ctx)
{ MODEL_7B, ((size_t) n_ctx / 16ull + 100ull) * MB },
{ MODEL_13B, ((size_t) n_ctx / 12ull + 120ull) * MB },
{ MODEL_30B, ((size_t) n_ctx / 9ull + 160ull) * MB },
+ { MODEL_34B, ((size_t) n_ctx / 9ull + 160ull) * MB },
{ MODEL_65B, ((size_t) n_ctx / 6ull + 256ull) * MB }, // guess
{ MODEL_70B, ((size_t) n_ctx / 7ull + 164ull) * MB },
};
@@ -135,6 +137,7 @@ static const std::map<e_model, size_t> & MEM_REQ_SCRATCH1()
{ MODEL_7B, 160ull * MB },
{ MODEL_13B, 192ull * MB },
{ MODEL_30B, 256ull * MB },
+ { MODEL_34B, 256ull * MB },
{ MODEL_65B, 384ull * MB }, // guess
{ MODEL_70B, 304ull * MB },
};
@@ -149,6 +152,7 @@ static const std::map<e_model, size_t> & MEM_REQ_EVAL()
{ MODEL_7B, 10ull * MB },
{ MODEL_13B, 12ull * MB },
{ MODEL_30B, 16ull * MB },
+ { MODEL_34B, 16ull * MB },
{ MODEL_65B, 24ull * MB }, // guess
{ MODEL_70B, 24ull * MB },
};
@@ -164,6 +168,7 @@ static const std::map<e_model, size_t> & VRAM_REQ_SCRATCH_BASE()
{ MODEL_7B, 512ull * kB },
{ MODEL_13B, 640ull * kB },
{ MODEL_30B, 768ull * kB },
+ { MODEL_34B, 768ull * kB },
{ MODEL_65B, 1280ull * kB },
{ MODEL_70B, 1280ull * kB },
};
@@ -179,6 +184,7 @@ static const std::map<e_model, size_t> & VRAM_REQ_SCRATCH_PER_CONTEXT()
{ MODEL_7B, 128ull },
{ MODEL_13B, 160ull },
{ MODEL_30B, 208ull },
+ { MODEL_34B, 208ull },
{ MODEL_65B, 256ull },
{ MODEL_70B, 256ull },
};
@@ -1027,6 +1033,7 @@ static const char * llama_model_type_name(e_model type) {
case MODEL_7B: return "7B";
case MODEL_13B: return "13B";
case MODEL_30B: return "30B";
+ case MODEL_34B: return "34B";
case MODEL_65B: return "65B";
case MODEL_70B: return "70B";
default: LLAMA_ASSERT(false);
@@ -1074,6 +1081,7 @@ static void llama_model_load_internal(
case 26: model.type = e_model::MODEL_3B; break;
case 32: model.type = e_model::MODEL_7B; break;
case 40: model.type = e_model::MODEL_13B; break;
+ case 48: model.type = e_model::MODEL_34B; break;
case 60: model.type = e_model::MODEL_30B; break;
case 80: model.type = e_model::MODEL_65B; break;
default:
@@ -1094,6 +1102,8 @@ static void llama_model_load_internal(
LLAMA_LOG_WARN("%s: warning: assuming 70B model based on GQA == %d\n", __func__, n_gqa);
model.type = e_model::MODEL_70B;
hparams.f_ffn_mult = 1.3f; // from the params.json of the 70B model
+ } else if (model.type == e_model::MODEL_34B && n_gqa == 8) {
+ hparams.f_ffn_mult = 1.0f; // from the params.json of the 34B model
}
hparams.rope_freq_base = rope_freq_base;
--
2.39.2 (Apple Git-143)

View File

@@ -0,0 +1,30 @@
From dadbed99e65252d79f81101a392d0d6497b86caa Mon Sep 17 00:00:00 2001
From: Shouzheng Liu <lshzh.hi@gmail.com>
Date: Mon, 21 Aug 2023 06:59:29 -0400
Subject: [PATCH] metal : fix synchronization in new matrix multiplication
kernel (#2686)
---
ggml-metal.metal | 3 ++-
1 file changed, 2 insertions(+), 1 deletion(-)
diff --git a/ggml-metal.metal b/ggml-metal.metal
index 3f31252..88d48f6 100644
--- a/ggml-metal.metal
+++ b/ggml-metal.metal
@@ -1898,10 +1898,11 @@ kernel void kernel_mul_mm(device const uchar * src0,
threadgroup float *temp_str = ((threadgroup float *)shared_memory) \
+ 32 * (sgitg&1) + (16 * (sgitg>>1)) * BLOCK_SIZE_M;
for (int i = 0; i < 8; i++) {
+ threadgroup_barrier(mem_flags::mem_device);
simdgroup_store(c_res[i], temp_str + 8 * (i%4) + 8 * BLOCK_SIZE_M * (i/4), BLOCK_SIZE_M);
}
- threadgroup_barrier(mem_flags::mem_threadgroup);
+ threadgroup_barrier(mem_flags::mem_device);
device float *C = dst + BLOCK_SIZE_M * r0 + (BLOCK_SIZE_N * r1) * ne0 + im*ne1*ne0;
if (sgitg==0) {
for (int i = 0; i < n_rows; i++) {
--
2.41.0

View File

@@ -0,0 +1,41 @@
From 14b1d7e6f720dee41ce5a826376df738096d9033 Mon Sep 17 00:00:00 2001
From: Shouzheng Liu <lshzh.hi@gmail.com>
Date: Tue, 22 Aug 2023 02:18:40 -0400
Subject: [PATCH] metal : add missing barriers for mul-mat (#2699)
---
ggml-metal.metal | 5 +++--
1 file changed, 3 insertions(+), 2 deletions(-)
diff --git a/ggml-metal.metal b/ggml-metal.metal
index 88d48f6..ce3541f 100644
--- a/ggml-metal.metal
+++ b/ggml-metal.metal
@@ -1850,6 +1850,7 @@ kernel void kernel_mul_mm(device const uchar * src0,
//load data and store to threadgroup memory
half4x4 temp_a;
dequantize_func(x, il, temp_a);
+ threadgroup_barrier(mem_flags::mem_threadgroup);
#pragma unroll(16)
for (int i = 0; i < 16; i++) {
*(sa + SG_MAT_SIZE * ((tiitg / THREAD_PER_ROW / 8) \
@@ -1895,14 +1896,14 @@ kernel void kernel_mul_mm(device const uchar * src0,
}
} else {
// block is smaller than 64x32, we should avoid writing data outside of the matrix
+ threadgroup_barrier(mem_flags::mem_threadgroup);
threadgroup float *temp_str = ((threadgroup float *)shared_memory) \
+ 32 * (sgitg&1) + (16 * (sgitg>>1)) * BLOCK_SIZE_M;
for (int i = 0; i < 8; i++) {
- threadgroup_barrier(mem_flags::mem_device);
simdgroup_store(c_res[i], temp_str + 8 * (i%4) + 8 * BLOCK_SIZE_M * (i/4), BLOCK_SIZE_M);
}
- threadgroup_barrier(mem_flags::mem_device);
+ threadgroup_barrier(mem_flags::mem_threadgroup);
device float *C = dst + BLOCK_SIZE_M * r0 + (BLOCK_SIZE_N * r1) * ne0 + im*ne1*ne0;
if (sgitg==0) {
for (int i = 0; i < n_rows; i++) {
--
2.41.0

View File

@@ -0,0 +1,32 @@
From 1e3bc523d8053a77df3ac7126a84d0297ee97ef6 Mon Sep 17 00:00:00 2001
From: Kylin <56434533+KyL0N@users.noreply.github.com>
Date: Tue, 22 Aug 2023 15:14:23 +0800
Subject: [PATCH] ggml : support CUDA's half type for aarch64(#1455) (#2670)
* ggml: support CUDA's half type for aarch64(#1455)
support CUDA's half type for aarch64 in ggml_fp16_t definition
* ggml: use __CUDACC__ to recognise nvcc compiler
---
ggml.h | 5 +++--
1 file changed, 3 insertions(+), 2 deletions(-)
diff --git a/ggml.h b/ggml.h
index 544ad2d..0ec7ec5 100644
--- a/ggml.h
+++ b/ggml.h
@@ -259,8 +259,9 @@
extern "C" {
#endif
-#ifdef __ARM_NEON
- // we use the built-in 16-bit float type
+#if defined(__ARM_NEON) && defined(__CUDACC__)
+ typedef half ggml_fp16_t;
+#elif defined(__ARM_NEON)
typedef __fp16 ggml_fp16_t;
#else
typedef uint16_t ggml_fp16_t;
--
2.39.2 (Apple Git-143)

Some files were not shown because too many files have changed in this diff Show More