Compare commits
25 Commits
v0.3.7-rc3
...
pdevine/im
Author | SHA1 | Date | |
---|---|---|---|
![]() |
cb576a6b23 | ||
![]() |
15b7ff3a89 | ||
![]() |
3ad243466b | ||
![]() |
a13e583c49 | ||
![]() |
3c1994d0ee | ||
![]() |
1b2da3829d | ||
![]() |
0f92b19bec | ||
![]() |
69be940bf6 | ||
![]() |
9638c24c58 | ||
![]() |
bb362caf88 | ||
![]() |
0c819e167b | ||
![]() |
7a1e1c1caf | ||
![]() |
0b03b9c32f | ||
![]() |
90ca84172c | ||
![]() |
6bd8a4b0a1 | ||
![]() |
77903ab8b4 | ||
![]() |
e22286c9e1 | ||
![]() |
107f695929 | ||
![]() |
4ecc70d3b4 | ||
![]() |
3546bbd08c | ||
![]() |
beb49eef65 | ||
![]() |
5a28b9cf5f | ||
![]() |
a017cf2fea | ||
![]() |
19e5a890f7 | ||
![]() |
bdc4308afb |
2
.github/workflows/release.yaml
vendored
2
.github/workflows/release.yaml
vendored
@@ -474,6 +474,8 @@ jobs:
|
||||
ls -lh dist/
|
||||
(cd dist; find . -type f | xargs sha256sum > ../sha256sum.txt)
|
||||
mv sha256sum.txt dist/
|
||||
mv dist/linux-???64 .
|
||||
mv dist/linux-amd64-rocm .
|
||||
cat dist/sha256sum.txt
|
||||
- name: Create or update Release
|
||||
run: |
|
||||
|
@@ -95,8 +95,8 @@ ARG AMDGPU_TARGETS
|
||||
ENV GOARCH amd64
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_SKIP_CPU_GENERATE=1 bash gen_linux.sh
|
||||
RUN mkdir -p ../../dist/linux-amd64/lib/ollama && \
|
||||
(cd /opt/rocm/lib && tar cf - rocblas/library) | (cd ../../dist/linux-amd64/lib/ollama && tar xf - )
|
||||
RUN mkdir -p ../../dist/linux-amd64-rocm/lib/ollama && \
|
||||
(cd /opt/rocm/lib && tar cf - rocblas/library) | (cd ../../dist/linux-amd64-rocm/lib/ollama && tar xf - )
|
||||
|
||||
FROM --platform=linux/amd64 centos:7 AS cpu-builder-amd64
|
||||
ARG CMAKE_VERSION
|
||||
|
19
cmd/cmd.go
19
cmd/cmd.go
@@ -204,6 +204,12 @@ func tempZipFiles(path string) (string, error) {
|
||||
// safetensors files might be unresolved git lfs references; skip if they are
|
||||
// covers model-x-of-y.safetensors, model.fp32-x-of-y.safetensors, model.safetensors
|
||||
files = append(files, st...)
|
||||
} else if st, _ := glob(filepath.Join(path, "adapters.safetensors"), "application/octet-stream"); len(st) > 0 {
|
||||
// covers adapters.safetensors
|
||||
files = append(files, st...)
|
||||
} else if st, _ := glob(filepath.Join(path, "adapter_model.safetensors"), "application/octet-stream"); len(st) > 0 {
|
||||
// covers adapter_model.safetensors
|
||||
files = append(files, st...)
|
||||
} else if pt, _ := glob(filepath.Join(path, "pytorch_model*.bin"), "application/zip"); len(pt) > 0 {
|
||||
// pytorch files might also be unresolved git lfs references; skip if they are
|
||||
// covers pytorch_model-x-of-y.bin, pytorch_model.fp32-x-of-y.bin, pytorch_model.bin
|
||||
@@ -223,6 +229,14 @@ func tempZipFiles(path string) (string, error) {
|
||||
}
|
||||
files = append(files, js...)
|
||||
|
||||
// bert models require a nested config.json
|
||||
// TODO(mxyng): merge this with the glob above
|
||||
js, err = glob(filepath.Join(path, "**/*.json"), "text/plain")
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
files = append(files, js...)
|
||||
|
||||
if tks, _ := glob(filepath.Join(path, "tokenizer.model"), "application/octet-stream"); len(tks) > 0 {
|
||||
// add tokenizer.model if it exists, tokenizer.json is automatically picked up by the previous glob
|
||||
// tokenizer.model might be a unresolved git lfs reference; error if it is
|
||||
@@ -252,6 +266,11 @@ func tempZipFiles(path string) (string, error) {
|
||||
return "", err
|
||||
}
|
||||
|
||||
zfi.Name, err = filepath.Rel(path, file)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
zf, err := zipfile.CreateHeader(zfi)
|
||||
if err != nil {
|
||||
return "", err
|
||||
|
@@ -7,16 +7,27 @@ import (
|
||||
"io"
|
||||
"io/fs"
|
||||
"log/slog"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
type Parameters struct {
|
||||
type ModelParameters struct {
|
||||
Architectures []string `json:"architectures"`
|
||||
VocabSize uint32 `json:"vocab_size"`
|
||||
}
|
||||
|
||||
func (Parameters) KV(t *Tokenizer) llm.KV {
|
||||
type AdapterParameters struct {
|
||||
Alpha uint32 `json:"lora_alpha"`
|
||||
LoraLayers uint32 `json:"lora_layers"`
|
||||
LoraParameters struct {
|
||||
Rank uint32 `json:"rank"`
|
||||
Alpha float32 `json:"alpha"`
|
||||
Scale float32 `json:"scale"`
|
||||
} `json:"lora_parameters"`
|
||||
}
|
||||
|
||||
func (ModelParameters) KV(t *Tokenizer) llm.KV {
|
||||
kv := llm.KV{
|
||||
"general.file_type": uint32(1),
|
||||
"general.quantization_version": uint32(2),
|
||||
@@ -43,40 +54,119 @@ func (Parameters) KV(t *Tokenizer) llm.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (Parameters) specialTokenTypes() []string {
|
||||
func (p AdapterParameters) KV() llm.KV {
|
||||
var alpha float32
|
||||
if p.LoraParameters.Alpha == 0 {
|
||||
alpha = float32(p.Alpha)
|
||||
} else {
|
||||
alpha = p.LoraParameters.Alpha
|
||||
}
|
||||
|
||||
kv := llm.KV{
|
||||
"adapter.lora.alpha": alpha,
|
||||
"adapter.type": "lora",
|
||||
"general.file_type": uint32(1),
|
||||
"general.type": "adapter",
|
||||
"general.version": "v0.2",
|
||||
}
|
||||
|
||||
return kv
|
||||
}
|
||||
|
||||
func (ModelParameters) specialTokenTypes() []string {
|
||||
return []string{
|
||||
"bos", "eos", "unk", "sep", "pad", "cls", "mask",
|
||||
}
|
||||
}
|
||||
|
||||
func (Parameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
|
||||
func (ModelParameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
|
||||
return llm.WriteGGUF(ws, kv, ts)
|
||||
}
|
||||
|
||||
type Converter interface {
|
||||
func (AdapterParameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
|
||||
return llm.WriteGGUF(ws, kv, ts)
|
||||
}
|
||||
|
||||
type ModelConverter interface {
|
||||
// KV maps parameters to LLM key-values
|
||||
KV(*Tokenizer) llm.KV
|
||||
// Tensors maps input tensors to LLM tensors. Model specific modifications can be done here.
|
||||
Tensors([]Tensor) []llm.Tensor
|
||||
// Replacements returns a list of string pairs to replace in tensor names.
|
||||
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
|
||||
Replacements() []string
|
||||
|
||||
// tensorName returns the LLM tensor name for a specific input name
|
||||
tensorName(string) string
|
||||
// specialTokenTypes returns any special token types the model uses
|
||||
specialTokenTypes() []string
|
||||
// writeFile writes the model to the provided io.WriteSeeker
|
||||
writeFile(io.WriteSeeker, llm.KV, []llm.Tensor) error
|
||||
}
|
||||
|
||||
type moreParser interface {
|
||||
parseMore(fs.FS) error
|
||||
}
|
||||
|
||||
type AdapterConverter interface {
|
||||
// KV maps parameters to LLM key-values
|
||||
KV(llm.KV) llm.KV
|
||||
// Tensors maps input tensors to LLM tensors. Adapter specific modifications can be done here.
|
||||
Tensors([]Tensor) []llm.Tensor
|
||||
// Replacements returns a list of string pairs to replace in tensor names.
|
||||
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
|
||||
Replacements() []string
|
||||
|
||||
writeFile(io.WriteSeeker, llm.KV, []llm.Tensor) error
|
||||
}
|
||||
|
||||
func ConvertAdapter(fsys fs.FS, ws io.WriteSeeker, baseKV llm.KV) error {
|
||||
bts, err := fs.ReadFile(fsys, "adapter_config.json")
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
var p AdapterParameters
|
||||
if err := json.Unmarshal(bts, &p); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
arch, ok := baseKV["general.architecture"]
|
||||
if !ok {
|
||||
return errors.New("architecture not set for the base model")
|
||||
}
|
||||
|
||||
var conv AdapterConverter
|
||||
switch arch {
|
||||
case "llama":
|
||||
conv = &llamaAdapter{}
|
||||
case "gemma2":
|
||||
conv = &gemma2Adapter{}
|
||||
default:
|
||||
return errors.New("unsupported architecture")
|
||||
}
|
||||
|
||||
ts, err := parseTensors(fsys, strings.NewReplacer(conv.Replacements()...))
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := json.Unmarshal(bts, conv); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
return conv.writeFile(ws, conv.KV(baseKV), conv.Tensors(ts))
|
||||
}
|
||||
|
||||
// Convert writes an Ollama compatible model to the provided io.WriteSeeker based on configurations
|
||||
// and files it finds in the input path.
|
||||
// Supported input model formats include safetensors.
|
||||
// Supported input tokenizers files include tokenizer.json (preferred) and tokenizer.model.
|
||||
func Convert(fsys fs.FS, ws io.WriteSeeker) error {
|
||||
func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
|
||||
bts, err := fs.ReadFile(fsys, "config.json")
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
var p Parameters
|
||||
var p ModelParameters
|
||||
if err := json.Unmarshal(bts, &p); err != nil {
|
||||
return err
|
||||
}
|
||||
@@ -85,16 +175,20 @@ func Convert(fsys fs.FS, ws io.WriteSeeker) error {
|
||||
return errors.New("unknown architecture")
|
||||
}
|
||||
|
||||
var conv Converter
|
||||
var conv ModelConverter
|
||||
switch p.Architectures[0] {
|
||||
case "LlamaForCausalLM", "MistralForCausalLM":
|
||||
conv = &llama{}
|
||||
conv = &llamaModel{}
|
||||
case "MixtralForCausalLM":
|
||||
conv = &mixtral{}
|
||||
conv = &mixtralModel{}
|
||||
case "GemmaForCausalLM":
|
||||
conv = &gemma{}
|
||||
conv = &gemmaModel{}
|
||||
case "Gemma2ForCausalLM":
|
||||
conv = &gemma2Model{}
|
||||
case "Phi3ForCausalLM":
|
||||
conv = &phi3{}
|
||||
conv = &phi3Model{}
|
||||
case "BertModel":
|
||||
conv = &bertModel{}
|
||||
default:
|
||||
return errors.New("unsupported architecture")
|
||||
}
|
||||
@@ -103,6 +197,12 @@ func Convert(fsys fs.FS, ws io.WriteSeeker) error {
|
||||
return err
|
||||
}
|
||||
|
||||
if t, ok := conv.(moreParser); ok {
|
||||
if err := t.parseMore(fsys); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
t, err := parseTokenizer(fsys, conv.specialTokenTypes())
|
||||
if err != nil {
|
||||
return err
|
||||
@@ -119,7 +219,7 @@ func Convert(fsys fs.FS, ws io.WriteSeeker) error {
|
||||
slog.Debug("vocabulary", "size", len(t.Vocabulary.Tokens))
|
||||
}
|
||||
|
||||
ts, err := parseTensors(fsys)
|
||||
ts, err := parseTensors(fsys, strings.NewReplacer(conv.Replacements()...))
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
174
convert/convert_bert.go
Normal file
174
convert/convert_bert.go
Normal file
@@ -0,0 +1,174 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
"encoding/json"
|
||||
"io/fs"
|
||||
"path/filepath"
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
type bertModel struct {
|
||||
ModelParameters
|
||||
NLayers uint32 `json:"n_layers"`
|
||||
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
NLayer uint32 `json:"n_layer"`
|
||||
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||
NCtx uint32 `json:"n_ctx"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
NEmbd uint32 `json:"n_embd"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
NInner uint32 `json:"n_inner"`
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||
NHead uint32 `json:"n_head"`
|
||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||
LayerNormEPS float32 `json:"layer_norm_eps"`
|
||||
LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
|
||||
NormEpsilon float32 `json:"norm_epsilon"`
|
||||
|
||||
PoolingType uint32
|
||||
}
|
||||
|
||||
var (
|
||||
_ ModelConverter = (*bertModel)(nil)
|
||||
_ moreParser = (*bertModel)(nil)
|
||||
)
|
||||
|
||||
func (p *bertModel) parseMore(fsys fs.FS) error {
|
||||
bts, err := fs.ReadFile(fsys, "modules.json")
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
var modules []struct {
|
||||
Type string `json:"type"`
|
||||
Path string `json:"path"`
|
||||
}
|
||||
|
||||
if err := json.Unmarshal(bts, &modules); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
var pooling string
|
||||
for _, m := range modules {
|
||||
if m.Type == "sentence_transformers.models.Pooling" {
|
||||
pooling = m.Path
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
if pooling != "" {
|
||||
bts, err := fs.ReadFile(fsys, filepath.Join(pooling, "config.json"))
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
var pc struct {
|
||||
PoolingModeCLSToken bool `json:"pooling_mode_cls_token"`
|
||||
PoolingModeMeanTokens bool `json:"pooling_mode_mean_tokens"`
|
||||
}
|
||||
|
||||
if err := json.Unmarshal(bts, &pc); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if pc.PoolingModeMeanTokens {
|
||||
p.PoolingType = 1
|
||||
} else if pc.PoolingModeCLSToken {
|
||||
p.PoolingType = 2
|
||||
}
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (p *bertModel) KV(t *Tokenizer) llm.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "bert"
|
||||
kv["bert.attention.causal"] = false
|
||||
kv["bert.pooling_type"] = p.PoolingType
|
||||
|
||||
kv["bert.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer)
|
||||
|
||||
if contextLength := cmp.Or(p.MaxPositionEmbeddings, p.NCtx); contextLength > 0 {
|
||||
kv["bert.context_length"] = contextLength
|
||||
}
|
||||
|
||||
if embeddingLength := cmp.Or(p.HiddenSize, p.NEmbd); embeddingLength > 0 {
|
||||
kv["bert.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd)
|
||||
}
|
||||
|
||||
if feedForwardLength := cmp.Or(p.IntermediateSize, p.NInner); feedForwardLength > 0 {
|
||||
kv["bert.feed_forward_length"] = cmp.Or(p.IntermediateSize, p.NInner)
|
||||
}
|
||||
|
||||
if headCount := cmp.Or(p.NumAttentionHeads, p.NHead); headCount > 0 {
|
||||
kv["bert.attention.head_count"] = cmp.Or(p.NumAttentionHeads, p.NHead)
|
||||
}
|
||||
|
||||
if layerNormEpsilon := cmp.Or(p.LayerNormEPS, p.LayerNormEpsilon, p.NormEpsilon); layerNormEpsilon > 0 {
|
||||
kv["bert.attention.layer_norm_epsilon"] = layerNormEpsilon
|
||||
}
|
||||
|
||||
kv["tokenizer.ggml.model"] = "bert"
|
||||
kv["tokenizer.ggml.token_type_count"] = uint32(2)
|
||||
|
||||
// convert to phantom space tokens
|
||||
for i, e := range t.Tokens {
|
||||
if strings.HasPrefix(e, "[") && strings.HasSuffix(e, "]") {
|
||||
// noop
|
||||
} else if strings.HasPrefix(e, "##") {
|
||||
t.Tokens[i] = e[2:]
|
||||
} else {
|
||||
t.Tokens[i] = "\u2581" + e
|
||||
}
|
||||
}
|
||||
|
||||
kv["tokenizer.ggml.tokens"] = t.Tokens
|
||||
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *bertModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||
var out []llm.Tensor
|
||||
for _, t := range ts {
|
||||
if slices.Contains([]string{
|
||||
"embeddings.position_ids",
|
||||
"pooler.dense.weight",
|
||||
"pooler.dense.bias",
|
||||
}, t.Name()) {
|
||||
continue
|
||||
}
|
||||
|
||||
out = append(out, llm.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
})
|
||||
}
|
||||
|
||||
return out
|
||||
}
|
||||
|
||||
func (bertModel) Replacements() []string {
|
||||
return []string{
|
||||
"encoder.layer", "blk",
|
||||
"encoder.layers", "blk",
|
||||
"embeddings.word_embeddings", "token_embd",
|
||||
"embeddings.token_type_embeddings", "token_types",
|
||||
"embeddings.LayerNorm", "token_embd_norm",
|
||||
"embeddings.position_embeddings", "position_embd",
|
||||
"attention.self.query", "attn_q",
|
||||
"attention.self.key", "attn_k",
|
||||
"attention.self.value", "attn_v",
|
||||
"attention.output.dense", "attn_output",
|
||||
"attention.output.LayerNorm", "attn_output_norm",
|
||||
"intermediate.dense", "ffn_up",
|
||||
"output.dense", "ffn_down",
|
||||
"output.LayerNorm", "layer_output_norm",
|
||||
}
|
||||
}
|
@@ -9,8 +9,8 @@ import (
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
type gemma struct {
|
||||
Parameters
|
||||
type gemmaModel struct {
|
||||
ModelParameters
|
||||
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
HiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
@@ -21,12 +21,11 @@ type gemma struct {
|
||||
HeadDim uint32 `json:"head_dim"`
|
||||
}
|
||||
|
||||
var _ Converter = (*gemma)(nil)
|
||||
var _ ModelConverter = (*gemmaModel)(nil)
|
||||
|
||||
func (p *gemma) KV(t *Tokenizer) llm.KV {
|
||||
kv := p.Parameters.KV(t)
|
||||
func (p *gemmaModel) KV(t *Tokenizer) llm.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "gemma"
|
||||
kv["general.name"] = "gemma"
|
||||
kv["gemma.context_length"] = p.MaxPositionEmbeddings
|
||||
kv["gemma.embedding_length"] = p.HiddenSize
|
||||
kv["gemma.block_count"] = p.HiddenLayers
|
||||
@@ -43,16 +42,15 @@ func (p *gemma) KV(t *Tokenizer) llm.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *gemma) Tensors(ts []Tensor) []llm.Tensor {
|
||||
func (p *gemmaModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||
var out []llm.Tensor
|
||||
for _, t := range ts {
|
||||
name := p.tensorName(t.Name())
|
||||
if strings.HasSuffix(name, "_norm.weight") {
|
||||
if strings.HasSuffix(t.Name(), "_norm.weight") {
|
||||
t.SetRepacker(p.addOne)
|
||||
}
|
||||
|
||||
out = append(out, llm.Tensor{
|
||||
Name: name,
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
@@ -62,8 +60,8 @@ func (p *gemma) Tensors(ts []Tensor) []llm.Tensor {
|
||||
return out
|
||||
}
|
||||
|
||||
func (p *gemma) tensorName(n string) string {
|
||||
return strings.NewReplacer(
|
||||
func (p *gemmaModel) Replacements() []string {
|
||||
return []string{
|
||||
"model.embed_tokens", "token_embd",
|
||||
"model.norm", "output_norm",
|
||||
"model.layers", "blk",
|
||||
@@ -76,11 +74,10 @@ func (p *gemma) tensorName(n string) string {
|
||||
"mlp.down_proj", "ffn_down",
|
||||
"mlp.up_proj", "ffn_up",
|
||||
"post_attention_layernorm", "ffn_norm",
|
||||
"block_sparse_moe.gate", "ffn_inp",
|
||||
).Replace(n)
|
||||
}
|
||||
}
|
||||
|
||||
func (*gemma) addOne(_ string, data []float32, shape []uint64) ([]float32, error) {
|
||||
func (*gemmaModel) addOne(_ string, data []float32, shape []uint64) ([]float32, error) {
|
||||
n := tensor.New(tensor.WithShape(int(shape[0])), tensor.WithBacking(data))
|
||||
ones := tensor.Ones(tensor.Float32, int(shape[0]))
|
||||
|
||||
|
43
convert/convert_gemma2.go
Normal file
43
convert/convert_gemma2.go
Normal file
@@ -0,0 +1,43 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
type gemma2Model struct {
|
||||
gemmaModel
|
||||
SlidingWindow uint32 `json:"sliding_window"`
|
||||
AttentionLogitSoftcap float32 `json:"attn_logit_softcapping"`
|
||||
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
|
||||
}
|
||||
|
||||
func (p *gemma2Model) KV(t *Tokenizer) llm.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "gemma2"
|
||||
kv["gemma2.context_length"] = p.MaxPositionEmbeddings
|
||||
kv["gemma2.embedding_length"] = p.HiddenSize
|
||||
kv["gemma2.block_count"] = p.HiddenLayers
|
||||
kv["gemma2.feed_forward_length"] = p.IntermediateSize
|
||||
kv["gemma2.attention.head_count"] = p.NumAttentionHeads
|
||||
kv["gemma2.attention.head_count_kv"] = p.NumKeyValueHeads
|
||||
kv["gemma2.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
|
||||
kv["gemma2.attention.key_length"] = p.HeadDim
|
||||
kv["gemma2.attention.value_length"] = p.HeadDim
|
||||
kv["gemma2.attention.sliding_window"] = p.SlidingWindow
|
||||
kv["gemma2.attn_logit_softcapping"] = p.AttentionLogitSoftcap
|
||||
kv["gemma2.final_logit_softcapping"] = p.FinalLogitSoftcap
|
||||
kv["tokenizer.ggml.eot_token_id"] = uint32(107)
|
||||
kv["tokenizer.ggml.middle_token_id"] = uint32(68)
|
||||
kv["tokenizer.ggml.prefix_token_id"] = uint32(67)
|
||||
kv["tokenizer.ggml.suffix_token_id"] = uint32(69)
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *gemma2Model) Replacements() []string {
|
||||
return append(
|
||||
p.gemmaModel.Replacements(),
|
||||
"post_attention_layernorm", "post_attention_norm",
|
||||
"pre_feedforward_layernorm", "ffn_norm",
|
||||
"post_feedforward_layernorm", "post_ffw_norm",
|
||||
)
|
||||
}
|
91
convert/convert_gemma2_adapter.go
Normal file
91
convert/convert_gemma2_adapter.go
Normal file
@@ -0,0 +1,91 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"strings"
|
||||
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
type gemma2Adapter struct {
|
||||
AdapterParameters
|
||||
}
|
||||
|
||||
var _ AdapterConverter = (*gemma2Adapter)(nil)
|
||||
|
||||
func (p *gemma2Adapter) KV(baseKV llm.KV) llm.KV {
|
||||
kv := p.AdapterParameters.KV()
|
||||
kv["general.architecture"] = "gemma2"
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *gemma2Adapter) Tensors(ts []Tensor) []llm.Tensor {
|
||||
var out []llm.Tensor
|
||||
for _, t := range ts {
|
||||
shape := t.Shape()
|
||||
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
|
||||
(strings.HasSuffix(t.Name(), "weight.lora_b") && shape[0] < shape[1]) {
|
||||
shape[0], shape[1] = shape[1], shape[0]
|
||||
t.SetRepacker(p.repack)
|
||||
}
|
||||
|
||||
out = append(out, llm.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
})
|
||||
}
|
||||
|
||||
return out
|
||||
}
|
||||
|
||||
func (p *gemma2Adapter) Replacements() []string {
|
||||
return []string{
|
||||
"base_model.model.", "",
|
||||
"model.layers", "blk",
|
||||
"self_attn.q_proj", "attn_q",
|
||||
"self_attn.k_proj", "attn_k",
|
||||
"self_attn.v_proj", "attn_v",
|
||||
"self_attn.o_proj", "attn_output",
|
||||
"mlp.gate_proj", "ffn_gate",
|
||||
"mlp.down_proj", "ffn_down",
|
||||
"mlp.up_proj", "ffn_up",
|
||||
"lora_A.weight", "weight.lora_a",
|
||||
"lora_B.weight", "weight.lora_b",
|
||||
"lora_a", "weight.lora_a",
|
||||
"lora_b", "weight.lora_b",
|
||||
}
|
||||
}
|
||||
|
||||
func (p *gemma2Adapter) repack(name string, data []float32, shape []uint64) ([]float32, error) {
|
||||
dims := []int{int(shape[1]), int(shape[0])}
|
||||
|
||||
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
||||
|
||||
if err := n.T(1, 0); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.Reshape(dims...); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.Transpose(); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
ts, err := native.SelectF32(n, 1)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var f32s []float32
|
||||
for _, t := range ts {
|
||||
f32s = append(f32s, t...)
|
||||
}
|
||||
|
||||
return f32s, nil
|
||||
}
|
@@ -3,6 +3,7 @@ package convert
|
||||
import (
|
||||
"cmp"
|
||||
"fmt"
|
||||
"math"
|
||||
"strings"
|
||||
|
||||
"github.com/pdevine/tensor"
|
||||
@@ -11,8 +12,8 @@ import (
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
type llama struct {
|
||||
Parameters
|
||||
type llamaModel struct {
|
||||
ModelParameters
|
||||
NLayers uint32 `json:"n_layers"`
|
||||
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
NLayer uint32 `json:"n_layer"`
|
||||
@@ -27,8 +28,14 @@ type llama struct {
|
||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||
RopeTheta float32 `json:"rope_theta"`
|
||||
RopeScaling struct {
|
||||
Type string `json:"type"`
|
||||
Factor float32 `json:"factor"`
|
||||
Type string `json:"type"`
|
||||
RopeType string `json:"rope_type"`
|
||||
Factor float32 `json:"factor"`
|
||||
LowFrequencyFactor float32 `json:"low_freq_factor"`
|
||||
HighFrequencyFactor float32 `json:"high_freq_factor"`
|
||||
OriginalMaxPositionalEmbeddings uint32 `json:"original_max_positional_embeddings"`
|
||||
|
||||
factors ropeFactor
|
||||
} `json:"rope_scaling"`
|
||||
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||
LayerNormEPS float32 `json:"layer_norm_eps"`
|
||||
@@ -37,12 +44,11 @@ type llama struct {
|
||||
HeadDim uint32 `json:"head_dim"`
|
||||
}
|
||||
|
||||
var _ Converter = (*llama)(nil)
|
||||
var _ ModelConverter = (*llamaModel)(nil)
|
||||
|
||||
func (p *llama) KV(t *Tokenizer) llm.KV {
|
||||
kv := p.Parameters.KV(t)
|
||||
func (p *llamaModel) KV(t *Tokenizer) llm.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "llama"
|
||||
kv["general.name"] = "llama"
|
||||
kv["llama.vocab_size"] = p.VocabSize
|
||||
|
||||
kv["llama.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer)
|
||||
@@ -71,6 +77,27 @@ func (p *llama) KV(t *Tokenizer) llm.KV {
|
||||
if p.RopeScaling.Type == "linear" {
|
||||
kv["llama.rope.scaling.type"] = p.RopeScaling.Type
|
||||
kv["llama.rope.scaling.factor"] = p.RopeScaling.Factor
|
||||
} else if p.RopeScaling.RopeType == "llama3" {
|
||||
dim := p.HiddenSize / p.NumAttentionHeads
|
||||
for i := uint32(0); i < dim; i += 2 {
|
||||
factor := cmp.Or(p.RopeScaling.Factor, 8.0)
|
||||
factorLow := cmp.Or(p.RopeScaling.LowFrequencyFactor, 1.0)
|
||||
factorHigh := cmp.Or(p.RopeScaling.HighFrequencyFactor, 4.0)
|
||||
|
||||
original := cmp.Or(p.RopeScaling.OriginalMaxPositionalEmbeddings, 8192)
|
||||
lambdaLow := float32(original) / factorLow
|
||||
lambdaHigh := float32(original) / factorHigh
|
||||
|
||||
lambda := 2 * math.Pi * math.Pow(float64(p.RopeTheta), float64(i)/float64(dim))
|
||||
if lambda < float64(lambdaHigh) {
|
||||
p.RopeScaling.factors = append(p.RopeScaling.factors, 1.0)
|
||||
} else if lambda > float64(lambdaLow) {
|
||||
p.RopeScaling.factors = append(p.RopeScaling.factors, factor)
|
||||
} else {
|
||||
smooth := (float32(original)/float32(lambda) - factorLow) / (factorHigh - factorLow)
|
||||
p.RopeScaling.factors = append(p.RopeScaling.factors, 1.0/((1-smooth)/factor+smooth))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if p.NumKeyValueHeads > 0 {
|
||||
@@ -93,17 +120,26 @@ func (p *llama) KV(t *Tokenizer) llm.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *llama) Tensors(ts []Tensor) []llm.Tensor {
|
||||
func (p *llamaModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||
var out []llm.Tensor
|
||||
|
||||
if p.RopeScaling.factors != nil {
|
||||
out = append(out, llm.Tensor{
|
||||
Name: "rope_freqs.weight",
|
||||
Kind: 0,
|
||||
Shape: []uint64{uint64(len(p.RopeScaling.factors))},
|
||||
WriterTo: p.RopeScaling.factors,
|
||||
})
|
||||
}
|
||||
|
||||
for _, t := range ts {
|
||||
name := p.tensorName(t.Name())
|
||||
if strings.HasSuffix(name, "attn_q.weight") ||
|
||||
strings.HasSuffix(name, "attn_k.weight") {
|
||||
if strings.HasSuffix(t.Name(), "attn_q.weight") ||
|
||||
strings.HasSuffix(t.Name(), "attn_k.weight") {
|
||||
t.SetRepacker(p.repack)
|
||||
}
|
||||
|
||||
out = append(out, llm.Tensor{
|
||||
Name: name,
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
@@ -113,8 +149,8 @@ func (p *llama) Tensors(ts []Tensor) []llm.Tensor {
|
||||
return out
|
||||
}
|
||||
|
||||
func (p *llama) tensorName(n string) string {
|
||||
return strings.NewReplacer(
|
||||
func (p *llamaModel) Replacements() []string {
|
||||
return []string{
|
||||
"lm_head", "output",
|
||||
"model.embed_tokens", "token_embd",
|
||||
"model.norm", "output_norm",
|
||||
@@ -128,21 +164,19 @@ func (p *llama) tensorName(n string) string {
|
||||
"mlp.down_proj", "ffn_down",
|
||||
"mlp.up_proj", "ffn_up",
|
||||
"post_attention_layernorm", "ffn_norm",
|
||||
// mixtral
|
||||
"block_sparse_moe.gate", "ffn_gate_inp",
|
||||
).Replace(n)
|
||||
}
|
||||
}
|
||||
|
||||
func (p *llama) repack(name string, data []float32, shape []uint64) ([]float32, error) {
|
||||
func (p *llamaModel) repack(name string, data []float32, shape []uint64) ([]float32, error) {
|
||||
var dims []int
|
||||
for _, dim := range shape {
|
||||
dims = append(dims, int(dim))
|
||||
}
|
||||
|
||||
var heads uint32
|
||||
if strings.HasSuffix(name, "q_proj.weight") {
|
||||
if strings.HasSuffix(name, "attn_q.weight") {
|
||||
heads = p.NumAttentionHeads
|
||||
} else if strings.HasSuffix(name, "k_proj.weight") {
|
||||
} else if strings.HasSuffix(name, "attn_k.weight") {
|
||||
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
|
||||
} else {
|
||||
return nil, fmt.Errorf("unknown tensor for repack: %s", name)
|
||||
|
169
convert/convert_llama_adapter.go
Normal file
169
convert/convert_llama_adapter.go
Normal file
@@ -0,0 +1,169 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
"strings"
|
||||
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
type llamaAdapter struct {
|
||||
AdapterParameters
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||
}
|
||||
|
||||
var _ AdapterConverter = (*llamaAdapter)(nil)
|
||||
|
||||
func (p *llamaAdapter) KV(baseKV llm.KV) llm.KV {
|
||||
kv := p.AdapterParameters.KV()
|
||||
kv["general.architecture"] = "llama"
|
||||
kv["llama.attention.head_count"] = baseKV["llama.attention.head_count"]
|
||||
kv["llama.attention.head_count_kv"] = baseKV["llama.attention.head_count_kv"]
|
||||
|
||||
p.NumAttentionHeads = baseKV["llama.attention.head_count"].(uint32)
|
||||
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *llamaAdapter) Tensors(ts []Tensor) []llm.Tensor {
|
||||
var out []llm.Tensor
|
||||
for _, t := range ts {
|
||||
shape := t.Shape()
|
||||
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
|
||||
(strings.HasSuffix(t.Name(), "weight.lora_b") && shape[0] < shape[1]) {
|
||||
shape[0], shape[1] = shape[1], shape[0]
|
||||
t.SetRepacker(p.repackAndTranspose)
|
||||
} else {
|
||||
t.SetRepacker(p.repack)
|
||||
}
|
||||
|
||||
out = append(out, llm.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: shape,
|
||||
WriterTo: t,
|
||||
})
|
||||
}
|
||||
|
||||
return out
|
||||
}
|
||||
|
||||
func (p *llamaAdapter) Replacements() []string {
|
||||
return []string{
|
||||
"base_model.model.", "",
|
||||
"model.layers", "blk",
|
||||
"self_attn.q_proj", "attn_q",
|
||||
"self_attn.k_proj", "attn_k",
|
||||
"self_attn.v_proj", "attn_v",
|
||||
"self_attn.o_proj", "attn_output",
|
||||
"mlp.gate_proj", "ffn_gate",
|
||||
"mlp.down_proj", "ffn_down",
|
||||
"mlp.up_proj", "ffn_up",
|
||||
"lora_A.weight", "weight.lora_a",
|
||||
"lora_B.weight", "weight.lora_b",
|
||||
"lora_a", "weight.lora_a",
|
||||
"lora_b", "weight.lora_b",
|
||||
}
|
||||
}
|
||||
|
||||
func (p *llamaAdapter) repack(name string, data []float32, shape []uint64) ([]float32, error) {
|
||||
dims := []int{int(shape[1]), int(shape[0])}
|
||||
|
||||
var heads uint32
|
||||
if strings.HasSuffix(name, "attn_q.weight.lora_a") {
|
||||
heads = p.NumAttentionHeads
|
||||
} else if strings.HasSuffix(name, "attn_k.weight.lora_a") {
|
||||
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
|
||||
} else {
|
||||
return data, nil
|
||||
}
|
||||
|
||||
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
||||
|
||||
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.T(0, 2, 1, 3); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.Reshape(dims...); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.Transpose(); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
ts, err := native.SelectF32(n, 1)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var f32s []float32
|
||||
for _, t := range ts {
|
||||
f32s = append(f32s, t...)
|
||||
}
|
||||
|
||||
return f32s, nil
|
||||
}
|
||||
|
||||
func (p *llamaAdapter) repackAndTranspose(name string, data []float32, shape []uint64) ([]float32, error) {
|
||||
dims := []int{int(shape[1]), int(shape[0])}
|
||||
|
||||
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
||||
|
||||
var heads uint32
|
||||
if strings.HasSuffix(name, "attn_q.weight.lora_a") {
|
||||
heads = p.NumAttentionHeads
|
||||
} else if strings.HasSuffix(name, "attn_k.weight.lora_a") {
|
||||
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
|
||||
}
|
||||
|
||||
if heads > 0 {
|
||||
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.T(0, 2, 1, 3); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.Reshape(dims...); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.Transpose(); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
|
||||
if err := n.T(1, 0); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.Reshape(dims...); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.Transpose(); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
ts, err := native.SelectF32(n, 1)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var f32s []float32
|
||||
for _, t := range ts {
|
||||
f32s = append(f32s, t...)
|
||||
}
|
||||
|
||||
return f32s, nil
|
||||
}
|
@@ -9,16 +9,14 @@ import (
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
type mixtral struct {
|
||||
llama
|
||||
type mixtralModel struct {
|
||||
llamaModel
|
||||
NumLocalExperts uint32 `json:"num_local_experts"`
|
||||
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
|
||||
}
|
||||
|
||||
var _ Converter = (*mixtral)(nil)
|
||||
|
||||
func (p *mixtral) KV(t *Tokenizer) llm.KV {
|
||||
kv := p.llama.KV(t)
|
||||
func (p *mixtralModel) KV(t *Tokenizer) llm.KV {
|
||||
kv := p.llamaModel.KV(t)
|
||||
|
||||
if p.NumLocalExperts > 0 {
|
||||
kv["llama.expert_count"] = p.NumLocalExperts
|
||||
@@ -31,7 +29,7 @@ func (p *mixtral) KV(t *Tokenizer) llm.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *mixtral) Tensors(ts []Tensor) []llm.Tensor {
|
||||
func (p *mixtralModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||
oldnew := []string{
|
||||
"model.layers", "blk",
|
||||
"w1", "ffn_gate_exps",
|
||||
@@ -69,7 +67,14 @@ func (p *mixtral) Tensors(ts []Tensor) []llm.Tensor {
|
||||
})
|
||||
}
|
||||
|
||||
return append(out, p.llama.Tensors(ts)...)
|
||||
return append(out, p.llamaModel.Tensors(ts)...)
|
||||
}
|
||||
|
||||
func (p *mixtralModel) Replacements() []string {
|
||||
return append(
|
||||
p.llamaModel.Replacements(),
|
||||
"block_sparse_moe.gate", "ffn_gate_inp",
|
||||
)
|
||||
}
|
||||
|
||||
type experts []Tensor
|
||||
|
@@ -11,8 +11,8 @@ import (
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
type phi3 struct {
|
||||
Parameters
|
||||
type phi3Model struct {
|
||||
ModelParameters
|
||||
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
NLayers uint32 `json:"n_layers"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
@@ -35,12 +35,11 @@ type phi3 struct {
|
||||
SlidingWindow uint32 `json:"sliding_window"`
|
||||
}
|
||||
|
||||
var _ Converter = (*phi3)(nil)
|
||||
var _ ModelConverter = (*phi3Model)(nil)
|
||||
|
||||
func (p *phi3) KV(t *Tokenizer) llm.KV {
|
||||
kv := p.Parameters.KV(t)
|
||||
func (p *phi3Model) KV(t *Tokenizer) llm.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "phi3"
|
||||
kv["general.name"] = "phi3"
|
||||
kv["phi3.context_length"] = p.MaxPositionEmbeddings
|
||||
kv["phi3.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd)
|
||||
kv["phi3.feed_forward_length"] = p.IntermediateSize
|
||||
@@ -69,13 +68,12 @@ func (p *phi3) KV(t *Tokenizer) llm.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *phi3) Tensors(ts []Tensor) []llm.Tensor {
|
||||
func (p *phi3Model) Tensors(ts []Tensor) []llm.Tensor {
|
||||
var addRopeFactors sync.Once
|
||||
|
||||
out := make([]llm.Tensor, 0, len(ts)+2)
|
||||
for _, t := range ts {
|
||||
name := p.tensorName(t.Name())
|
||||
if strings.HasPrefix(name, "blk.0.") {
|
||||
if strings.HasPrefix(t.Name(), "blk.0.") {
|
||||
addRopeFactors.Do(func() {
|
||||
out = append(out, llm.Tensor{
|
||||
Name: "rope_factors_long.weight",
|
||||
@@ -92,7 +90,7 @@ func (p *phi3) Tensors(ts []Tensor) []llm.Tensor {
|
||||
}
|
||||
|
||||
out = append(out, llm.Tensor{
|
||||
Name: name,
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
@@ -102,8 +100,8 @@ func (p *phi3) Tensors(ts []Tensor) []llm.Tensor {
|
||||
return out
|
||||
}
|
||||
|
||||
func (p *phi3) tensorName(n string) string {
|
||||
return strings.NewReplacer(
|
||||
func (p *phi3Model) Replacements() []string {
|
||||
return []string{
|
||||
"lm_head", "output",
|
||||
"model.embed_tokens", "token_embd",
|
||||
"model.norm", "output_norm",
|
||||
@@ -114,7 +112,7 @@ func (p *phi3) tensorName(n string) string {
|
||||
"mlp.down_proj", "ffn_down",
|
||||
"mlp.gate_up_proj", "ffn_up",
|
||||
"post_attention_layernorm", "ffn_norm",
|
||||
).Replace(n)
|
||||
}
|
||||
}
|
||||
|
||||
type ropeFactor []float32
|
||||
|
@@ -1,7 +1,9 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"crypto/sha256"
|
||||
"encoding/binary"
|
||||
"encoding/hex"
|
||||
"encoding/json"
|
||||
"flag"
|
||||
@@ -29,7 +31,7 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, llm.Tensors) {
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
if err := Convert(fsys, f); err != nil {
|
||||
if err := ConvertModel(fsys, f); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
@@ -51,6 +53,34 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, llm.Tensors) {
|
||||
return r, m.KV(), m.Tensors()
|
||||
}
|
||||
|
||||
func generateResultsJSON(t *testing.T, f *os.File, kv llm.KV, tensors llm.Tensors) map[string]string {
|
||||
actual := make(map[string]string)
|
||||
for k, v := range kv {
|
||||
if s, ok := v.(json.Marshaler); !ok {
|
||||
actual[k] = fmt.Sprintf("%v", v)
|
||||
} else {
|
||||
bts, err := json.Marshal(s)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
actual[k] = fmt.Sprintf("%x", sha256.Sum256(bts))
|
||||
}
|
||||
}
|
||||
|
||||
for _, tensor := range tensors.Items {
|
||||
sha256sum := sha256.New()
|
||||
sr := io.NewSectionReader(f, int64(tensors.Offset+tensor.Offset), int64(tensor.Size()))
|
||||
if _, err := io.Copy(sha256sum, sr); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
actual[tensor.Name] = hex.EncodeToString(sha256sum.Sum(nil))
|
||||
}
|
||||
|
||||
return actual
|
||||
}
|
||||
|
||||
func TestMain(m *testing.M) {
|
||||
var level slog.Level
|
||||
flag.TextVar(&level, "level", slog.LevelInfo, "log level")
|
||||
@@ -62,11 +92,14 @@ func TestMain(m *testing.M) {
|
||||
func TestConvertFull(t *testing.T) {
|
||||
cases := []string{
|
||||
"Meta-Llama-3-8B-Instruct",
|
||||
"Meta-Llama-3.1-8B-Instruct",
|
||||
"Mistral-7B-Instruct-v0.2",
|
||||
"Mixtral-8x7B-Instruct-v0.1",
|
||||
"gemma-2b-it",
|
||||
// microsoft/Phi-3-mini-128-instruct@d548c233192db00165d842bf8edff054bb3212f8
|
||||
"Phi-3-mini-128k-instruct",
|
||||
"all-MiniLM-L6-v2",
|
||||
"gemma-2-9b-it",
|
||||
}
|
||||
|
||||
for i := range cases {
|
||||
@@ -82,29 +115,7 @@ func TestConvertFull(t *testing.T) {
|
||||
}
|
||||
|
||||
f, kv, tensors := convertFull(t, os.DirFS(p))
|
||||
actual := make(map[string]string)
|
||||
for k, v := range kv {
|
||||
if s, ok := v.(json.Marshaler); !ok {
|
||||
actual[k] = fmt.Sprintf("%v", v)
|
||||
} else {
|
||||
bts, err := json.Marshal(s)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
actual[k] = fmt.Sprintf("%x", sha256.Sum256(bts))
|
||||
}
|
||||
}
|
||||
|
||||
for _, tensor := range tensors.Items {
|
||||
sha256sum := sha256.New()
|
||||
sr := io.NewSectionReader(f, int64(tensors.Offset+tensor.Offset), int64(tensor.Size()))
|
||||
if _, err := io.Copy(sha256sum, sr); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
actual[tensor.Name] = hex.EncodeToString(sha256sum.Sum(nil))
|
||||
}
|
||||
actual := generateResultsJSON(t, f, kv, tensors)
|
||||
|
||||
expectFile, err := os.Open(filepath.Join("testdata", fmt.Sprintf("%s.json", tt)))
|
||||
if err != nil {
|
||||
@@ -128,3 +139,209 @@ func TestConvertFull(t *testing.T) {
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestConvertAdapter(t *testing.T) {
|
||||
type AdapterCase struct {
|
||||
Name string
|
||||
BaseKV map[string]any
|
||||
Expected map[string]string
|
||||
}
|
||||
|
||||
cases := []AdapterCase{
|
||||
{
|
||||
Name: "discollama",
|
||||
BaseKV: map[string]any{
|
||||
"general.architecture": "llama",
|
||||
"llama.attention.head_count": uint32(32),
|
||||
"llama.attention.head_count_kv": uint32(8),
|
||||
},
|
||||
Expected: map[string]string{
|
||||
"general.architecture": "llama",
|
||||
"general.file_type": "1",
|
||||
"general.parameter_count": "106496",
|
||||
"general.type": "adapter",
|
||||
"general.version": "v0.2",
|
||||
"adapter.lora.alpha": "16",
|
||||
"adapter.type": "lora",
|
||||
"llama.attention.head_count": "32",
|
||||
"llama.attention.head_count_kv": "8",
|
||||
"blk.31.attn_q.weight.lora_a": "0eb3318b02cd313429bcc7621b539fdbb10240fea190c56c9e5f93fcd37a4e50",
|
||||
"blk.31.attn_q.weight.lora_b": "0eb3318b02cd313429bcc7621b539fdbb10240fea190c56c9e5f93fcd37a4e50",
|
||||
"blk.31.attn_v.weight.lora_a": "0eb3318b02cd313429bcc7621b539fdbb10240fea190c56c9e5f93fcd37a4e50",
|
||||
"blk.31.attn_v.weight.lora_b": "071dcafe89df065d6e1c935ecb8fdf6479b3c202eb912e7da938597673ff5857",
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
for _, c := range cases {
|
||||
t.Run(c.Name, func(t *testing.T) {
|
||||
t.Parallel()
|
||||
|
||||
f, err := os.CreateTemp(t.TempDir(), "f16")
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
tempDir := t.TempDir()
|
||||
generateLoraTestData(t, tempDir)
|
||||
|
||||
if err = ConvertAdapter(os.DirFS(tempDir), f, c.BaseKV); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
r, err := os.Open(f.Name())
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
defer r.Close()
|
||||
|
||||
m, _, err := llm.DecodeGGML(r, math.MaxInt)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if _, err := r.Seek(0, io.SeekStart); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
actual := generateResultsJSON(t, r, m.KV(), m.Tensors())
|
||||
|
||||
keys := maps.Keys(c.Expected)
|
||||
slices.Sort(keys)
|
||||
for _, k := range keys {
|
||||
if v, ok := actual[k]; !ok {
|
||||
t.Errorf("missing %s", k)
|
||||
} else if v != c.Expected[k] {
|
||||
t.Errorf("unexpected %s: want %s, got %s", k, c.Expected[k], v)
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func generateLoraTestData(t *testing.T, tempDir string) {
|
||||
type tensorData struct {
|
||||
Offsets []int `json:"data_offsets"`
|
||||
Type string `json:"dtype"`
|
||||
Shape []int `json:"shape"`
|
||||
}
|
||||
offset := 4096 * 8 * 4
|
||||
|
||||
td := map[string]*tensorData{"__metadata__": nil}
|
||||
td["model.layers.31.self_attn.q_proj.lora_a"] = &tensorData{
|
||||
Offsets: []int{0, offset},
|
||||
Type: "F32",
|
||||
Shape: []int{4096, 8},
|
||||
}
|
||||
td["model.layers.31.self_attn.q_proj.lora_b"] = &tensorData{
|
||||
Offsets: []int{offset, offset * 2},
|
||||
Type: "F32",
|
||||
Shape: []int{8, 4096},
|
||||
}
|
||||
td["model.layers.31.self_attn.v_proj.lora_a"] = &tensorData{
|
||||
Offsets: []int{offset * 2, offset * 3},
|
||||
Type: "F32",
|
||||
Shape: []int{4096, 8},
|
||||
}
|
||||
td["model.layers.31.self_attn.v_proj.lora_b"] = &tensorData{
|
||||
Offsets: []int{offset * 3, offset*3 + 8*1024*4},
|
||||
Type: "F32",
|
||||
Shape: []int{8, 1024},
|
||||
}
|
||||
|
||||
data, err := json.Marshal(td)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
var buf bytes.Buffer
|
||||
|
||||
l := int64(len(data))
|
||||
err = binary.Write(&buf, binary.LittleEndian, l)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
_, err = buf.Write(data)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
// write some data for the tensors
|
||||
|
||||
ones := make([]float32, 4096*8)
|
||||
for i := range ones {
|
||||
ones[i] = float32(1)
|
||||
}
|
||||
|
||||
for range 3 {
|
||||
err = binary.Write(&buf, binary.LittleEndian, ones)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
}
|
||||
|
||||
ones = make([]float32, 1024*8)
|
||||
for i := range ones {
|
||||
ones[i] = float32(1)
|
||||
}
|
||||
|
||||
err = binary.Write(&buf, binary.LittleEndian, ones)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
fdata, err := os.Create(filepath.Join(tempDir, "adapters.safetensors"))
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
defer fdata.Close()
|
||||
|
||||
_, err = fdata.Write(buf.Bytes())
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
configData := `
|
||||
{
|
||||
"adapter_path": "adapters-test",
|
||||
"batch_size": 8,
|
||||
"config": "config-tiny.json",
|
||||
"data": "../discollama-completion",
|
||||
"grad_checkpoint": null,
|
||||
"iters": 1000,
|
||||
"learning_rate": 1e-05,
|
||||
"lora_layers": 1,
|
||||
"lora_parameters": {
|
||||
"rank": 8,
|
||||
"alpha": 16,
|
||||
"dropout": 0.0,
|
||||
"scale": 2.0
|
||||
},
|
||||
"lr_schedule": null,
|
||||
"max_seq_length": 2048,
|
||||
"model": "/Users/pdevine/git/Meta-Llama-3-8B-Instruct",
|
||||
"resume_adapter_file": null,
|
||||
"save_every": 100,
|
||||
"seed": 0,
|
||||
"steps_per_eval": 200,
|
||||
"steps_per_report": 10,
|
||||
"test": false,
|
||||
"test_batches": 500,
|
||||
"train": true,
|
||||
"use_dora": false,
|
||||
"val_batches": 25
|
||||
}
|
||||
`
|
||||
f, err := os.Create(filepath.Join(tempDir, "adapter_config.json"))
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
_, err = f.WriteString(configData)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
}
|
||||
|
@@ -35,7 +35,9 @@ const (
|
||||
)
|
||||
|
||||
func (t tensorBase) Kind() uint32 {
|
||||
if strings.HasSuffix(t.name, ".block_sparse_moe.gate.weight") {
|
||||
if strings.HasSuffix(t.name, ".ffn_gate_inp.weight") ||
|
||||
t.name == "token_types.weight" {
|
||||
// these tensors are always F32
|
||||
return 0
|
||||
}
|
||||
|
||||
@@ -55,13 +57,15 @@ func (t *tensorBase) SetRepacker(fn repacker) {
|
||||
|
||||
type repacker func(string, []float32, []uint64) ([]float32, error)
|
||||
|
||||
func parseTensors(fsys fs.FS) ([]Tensor, error) {
|
||||
func parseTensors(fsys fs.FS, replacer *strings.Replacer) ([]Tensor, error) {
|
||||
patterns := []struct {
|
||||
Pattern string
|
||||
Func func(fs.FS, ...string) ([]Tensor, error)
|
||||
Func func(fs.FS, *strings.Replacer, ...string) ([]Tensor, error)
|
||||
}{
|
||||
{"model-*-of-*.safetensors", parseSafetensors},
|
||||
{"model.safetensors", parseSafetensors},
|
||||
{"adapters.safetensors", parseSafetensors},
|
||||
{"adapter_model.safetensors", parseSafetensors},
|
||||
{"pytorch_model-*-of-*.bin", parseTorch},
|
||||
{"pytorch_model.bin", parseTorch},
|
||||
{"consolidated.*.pth", parseTorch},
|
||||
@@ -74,7 +78,7 @@ func parseTensors(fsys fs.FS) ([]Tensor, error) {
|
||||
}
|
||||
|
||||
if len(matches) > 0 {
|
||||
return pattern.Func(fsys, matches...)
|
||||
return pattern.Func(fsys, replacer, matches...)
|
||||
}
|
||||
}
|
||||
|
||||
|
@@ -8,6 +8,7 @@ import (
|
||||
"io"
|
||||
"io/fs"
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"github.com/d4l3k/go-bfloat16"
|
||||
"github.com/x448/float16"
|
||||
@@ -20,7 +21,7 @@ type safetensorMetadata struct {
|
||||
Offsets []int64 `json:"data_offsets"`
|
||||
}
|
||||
|
||||
func parseSafetensors(fsys fs.FS, ps ...string) ([]Tensor, error) {
|
||||
func parseSafetensors(fsys fs.FS, replacer *strings.Replacer, ps ...string) ([]Tensor, error) {
|
||||
var ts []Tensor
|
||||
for _, p := range ps {
|
||||
f, err := fsys.Open(p)
|
||||
@@ -56,7 +57,7 @@ func parseSafetensors(fsys fs.FS, ps ...string) ([]Tensor, error) {
|
||||
offset: safetensorsPad(n, value.Offsets[0]),
|
||||
size: safetensorsPad(n, value.Offsets[1]) - safetensorsPad(n, value.Offsets[0]),
|
||||
tensorBase: &tensorBase{
|
||||
name: key,
|
||||
name: replacer.Replace(key),
|
||||
shape: value.Shape,
|
||||
},
|
||||
})
|
||||
|
@@ -3,12 +3,13 @@ package convert
|
||||
import (
|
||||
"io"
|
||||
"io/fs"
|
||||
"strings"
|
||||
|
||||
"github.com/nlpodyssey/gopickle/pytorch"
|
||||
"github.com/nlpodyssey/gopickle/types"
|
||||
)
|
||||
|
||||
func parseTorch(fsys fs.FS, ps ...string) ([]Tensor, error) {
|
||||
func parseTorch(fsys fs.FS, replacer *strings.Replacer, ps ...string) ([]Tensor, error) {
|
||||
var ts []Tensor
|
||||
for _, p := range ps {
|
||||
pt, err := pytorch.Load(p)
|
||||
@@ -27,7 +28,7 @@ func parseTorch(fsys fs.FS, ps ...string) ([]Tensor, error) {
|
||||
ts = append(ts, torch{
|
||||
storage: t.(*pytorch.Tensor).Source,
|
||||
tensorBase: &tensorBase{
|
||||
name: k.(string),
|
||||
name: replacer.Replace(k.(string)),
|
||||
shape: shape,
|
||||
},
|
||||
})
|
||||
|
3
convert/testdata/Meta-Llama-3.1-8B-Instruct.json
vendored
Normal file
3
convert/testdata/Meta-Llama-3.1-8B-Instruct.json
vendored
Normal file
@@ -0,0 +1,3 @@
|
||||
{
|
||||
"rope_freqs.weight": "80fd5efb2f729381785b293a091a268cfeceb0079167f6ece9b07070e662b222"
|
||||
}
|
124
convert/testdata/all-MiniLM-L6-v2.json
vendored
Normal file
124
convert/testdata/all-MiniLM-L6-v2.json
vendored
Normal file
@@ -0,0 +1,124 @@
|
||||
{
|
||||
"general.architecture": "bert",
|
||||
"general.file_type": "1",
|
||||
"general.quantization_version": "2",
|
||||
"bert.attention.causal": "false",
|
||||
"bert.attention.head_count": "12",
|
||||
"bert.attention.layer_norm_epsilon": "1e-12",
|
||||
"bert.block_count": "6",
|
||||
"bert.context_length": "512",
|
||||
"bert.embedding_length": "384",
|
||||
"bert.feed_forward_length": "1536",
|
||||
"bert.pooling_type": "1",
|
||||
"tokenizer.ggml.model": "bert",
|
||||
"tokenizer.ggml.padding_token_id": "0",
|
||||
"tokenizer.ggml.unknown_token_id": "100",
|
||||
"tokenizer.ggml.cls_token_id": "101",
|
||||
"tokenizer.ggml.seperator_token_id": "102",
|
||||
"tokenizer.ggml.mask_token_id": "103",
|
||||
"tokenizer.ggml.token_type_count": "2",
|
||||
"tokenizer.ggml.scores": "6db964fe67338aca57790481a390121ff3dd643eebe49f7dd308029ad99abb6f",
|
||||
"tokenizer.ggml.token_type": "98d247c5404b6b18f05f133b92dd56edf6efefefac326794b00d7b351f6c5aa1",
|
||||
"tokenizer.ggml.tokens": "9efe405e229a45ff9916f54c475d151d2200cd2ab0006f347abfb069cf096c86",
|
||||
"token_embd.weight": "8c1ee80a9ea4f65aa385ba30112010068af3d209bebc6e149d3d4589c2cd0a5a",
|
||||
"position_embd.weight": "6c516f0b1c4e2388ab90394dd80ad69e4e4509b890982fc3408108ae66210eb6",
|
||||
"token_types.weight": "f879f8e422ed211948f28b560d3c5e17aae7993f063b51196a28cf5c0fb3da21",
|
||||
"token_embd_norm.weight": "75076e095d717aab96f8b6beeee503c27940d9a76f2b891a0e3de72f8a6043e4",
|
||||
"token_embd_norm.bias": "298735285ffe944e1bf03e5d35c7280326b85cf121bde9874f1af5dc51ab939d",
|
||||
"blk.0.attn_q.weight": "ab0923ce4c1549175112dcdfcc860fe30137f991e03ea6857fb5993670adaf6c",
|
||||
"blk.0.attn_q.bias": "a3ec29551dabf976e1d34256b8ab5ab7b758f3ed9742c3cafdbd984d5441df62",
|
||||
"blk.0.attn_k.weight": "4c1038a6d035c3e9ffed7fa672b614627814752503755fbad0cfb76a41ad71ba",
|
||||
"blk.0.attn_k.bias": "e0363930eb588d91816aa3d230bb03b6e2551c165117b80b8d60397413819ef9",
|
||||
"blk.0.attn_v.weight": "425e2e53e3f00ce98d29c3e6a161eb55d3e6ae0d96fdb9f6242d1c4fd6eef4b3",
|
||||
"blk.0.attn_v.bias": "6579173a1e65ee124fbd0bd53cbdca4225515b4f2c5f18fb1bfd000f5978f9bb",
|
||||
"blk.0.attn_output.weight": "a6d70a08cd7164de5d12af65d86d657c3db35aaecde778b2b3fda9193c4c9802",
|
||||
"blk.0.attn_output.bias": "2b8d12c4f9a9c5bfaa29c597839568f6e0525cb41eeaf64ddeb6bd84dfeb9701",
|
||||
"blk.0.attn_output_norm.weight": "bbe6e502a473228b525aeed26cc31b7db123ad63bdc5a6eebac6ea70b8b51d62",
|
||||
"blk.0.attn_output_norm.bias": "36eaacaf0007c5c62daea97aab0115390c0682914f78482e37eb76885f4b7a50",
|
||||
"blk.0.ffn_up.weight": "24654561c76ce387d125759ba843f06b904ef721fcceaeff6ccc62180a48e874",
|
||||
"blk.0.ffn_up.bias": "fd3f0126aa1d95768fa60eb6f4ab8a2763cfcb7e5405f35b92353031d86f4d34",
|
||||
"blk.0.ffn_down.weight": "97a829763a6a5bf3329ceb4d39c424ba4787d61653a5b0bbd1f84782e4d4e0ca",
|
||||
"blk.0.ffn_down.bias": "7aa980c30ae8b4ee7f69df28808dbf5c431f56ccc4a80340f644a0419f16c054",
|
||||
"blk.0.layer_output_norm.weight": "ef30dad4c2a083ae1ff5039a2a6cda60ecc89bf1e486a6f8c0d15f50589603f8",
|
||||
"blk.0.layer_output_norm.bias": "8b1b77e67568b1bce43fc476de1b177c53ff688d66beb66995e8eb3dc290da8a",
|
||||
"blk.1.attn_q.weight": "284331622a1f6f9b87ccee4f652bd66a394ca493c4d93be4d1844e4f6159ad10",
|
||||
"blk.1.attn_q.bias": "e24ebd4860330e08f6bfdd077a82db0bee33f4c8846cf1db26327a34754c7069",
|
||||
"blk.1.attn_k.weight": "729dd0d555544b5bd0f7580b3c8b384256b974605f0e7487b95f295aa032997d",
|
||||
"blk.1.attn_k.bias": "2aa51a828a858f35473f54477583fea54ce2ccc34ea60fbd1d228fbe9bca827f",
|
||||
"blk.1.attn_v.weight": "6be304671cc311d5ca5c103f2b51467ee800c589bc5b8101e09ff5aed1f68c21",
|
||||
"blk.1.attn_v.bias": "43bcbab78a8819e07f723bc9e5b737b71e87a7594f15234e882b63e327a64199",
|
||||
"blk.1.attn_output.weight": "15ec8a1a12b26c9976445308a09f748ab0e4bef0f583d13ab08c3129f8738d73",
|
||||
"blk.1.attn_output.bias": "dac2146f4baa6ed16f6c0dc7443831fb7ec79bedcceafd80d1a4b628a1bb072d",
|
||||
"blk.1.attn_output_norm.weight": "d2151eb33bffac536787a4c9a5d2b31c7a80b17c4611877842a3cce2cd6e98d8",
|
||||
"blk.1.attn_output_norm.bias": "31e1b779716dafb855d2cf5631ee168a0ccf372eb9c6ea6091f66fa97a9b9d2d",
|
||||
"blk.1.ffn_up.weight": "a57547fc3fc3b77406f5cdcb0c87af9bc184701f175c39c1f35297826fce3cc7",
|
||||
"blk.1.ffn_up.bias": "123be6d541d086202913c75d878c54d59a749f3af7b58f7ef9eb9e7c62a24c9a",
|
||||
"blk.1.ffn_down.weight": "cfdb79788377e5cbded8790cd41b9e66c397ecab75474071fcd7cf32d30f9613",
|
||||
"blk.1.ffn_down.bias": "bcb58315519a573097960891c9ae41cf4c685ab78c3e0e77471471758a7eae88",
|
||||
"blk.1.layer_output_norm.weight": "819b554271452bfb1d84c2603b90377b2e41a0ac1e3aa8b417ccf9dce63375bd",
|
||||
"blk.1.layer_output_norm.bias": "47a3433ac27f5ce8947fb38dd491f3706df4ef6adb0ddf74612bf0f54b19e164",
|
||||
"blk.2.attn_q.weight": "1557a9ea852b1880551f7290e00aded4f35e6c4180fdcbed1b0039bf805f639e",
|
||||
"blk.2.attn_q.bias": "c3bfe5f3066f655fd36b055530997b59ff33ef013563aaeb3cb8ff07dabd59a9",
|
||||
"blk.2.attn_k.weight": "cfd08eb69c61ae2f9f14f9b7ff5c5394ca264b1a9f3d48156677f90dd1766289",
|
||||
"blk.2.attn_k.bias": "9b839bc0e79974a0b3f5d1895972bc6f5c9a1bc16052e1af786e6a530758152d",
|
||||
"blk.2.attn_v.weight": "02b26b1208480eaeeb00e7b4cf8b690006ca14759357fc44ed4a2a8924ead993",
|
||||
"blk.2.attn_v.bias": "e7e6f0089fded1659a867ab736c220d9653ea7da6b1b94baf5c8d30a748b63ab",
|
||||
"blk.2.attn_output.weight": "a1db121c7d33806b349cadd050300a57db49fdc91224fd07c9ac43bf4299dc79",
|
||||
"blk.2.attn_output.bias": "7675128b6a92555cd955c820311e91e9417d31f48848f45d047b4100c62148b3",
|
||||
"blk.2.attn_output_norm.weight": "5b4595e0fbcba67a700c4331adf746d2fba3546364a4db5607ae241947bb1a21",
|
||||
"blk.2.attn_output_norm.bias": "7b8e16826ea30e5a2ba0b02e0095a901775981a296e98819625320e983060d08",
|
||||
"blk.2.ffn_up.weight": "a0d815d946ac07a65095c4ae4df77b818845e6d97795c7d82f55e689d944db59",
|
||||
"blk.2.ffn_up.bias": "ce37c0a4174d6bf773ded7bd016ede627ad3bdb8bc99b9992a18dc8e8898f252",
|
||||
"blk.2.ffn_down.weight": "f6231d2a25426fbd45b9f1160aa484220eb227ceef0348c4a6a6de890606e5ef",
|
||||
"blk.2.ffn_down.bias": "429e00556e8dc63a785238b309b9d83738500c1ef6d736fe6526ad88ea496d27",
|
||||
"blk.2.layer_output_norm.weight": "651457a573adf3f7dd9ee5dfe1c8e89389e94443993aab77ec6a0b05aa621e35",
|
||||
"blk.2.layer_output_norm.bias": "41fbbeda7fd89b0cef5f945ae44011c316982390401d6f75ba8c6d365e185247",
|
||||
"blk.3.attn_q.weight": "95a43f32949d2cb8d22815bb27a44abfc6665ba96221af817dfe058cb6ca72c6",
|
||||
"blk.3.attn_q.bias": "f4e34385e75d8108b6b3bd336106e2133a8c9be0cc343dfe5dc48c32a823c7cb",
|
||||
"blk.3.attn_k.weight": "6b892da6a17d4d3265265a15f695864a31813ee8c8e710ae9bc9e1adbc6c9a18",
|
||||
"blk.3.attn_k.bias": "40b8067b641a56014cee42548240aa8930820958b1933004892b5f04fbaef39e",
|
||||
"blk.3.attn_v.weight": "9fcd5922319dd2a461082a5ce040c1dfe65d87d70ca6547dd0b46eeecc3eeb2b",
|
||||
"blk.3.attn_v.bias": "b528c56212e66931fdbe267ac327a9c2f87cd03baff3ea719e30afe681da15f1",
|
||||
"blk.3.attn_output.weight": "e3b178c1b03981e75510e0d277af23ea59cc404b5394e61bd32291825719b502",
|
||||
"blk.3.attn_output.bias": "712c84d39a6a5a9c06a09da8fd9939ba0d5525524a4bba61ea4de09b48f45cae",
|
||||
"blk.3.attn_output_norm.weight": "d1ffac88e675592ff72f8a617be32b4a381d443b2f8f2645dbe44a1e5745aac0",
|
||||
"blk.3.attn_output_norm.bias": "ea31a1c73146234c50e0e43f485c458413714867b8e2703af66482f7db2d6c40",
|
||||
"blk.3.ffn_up.weight": "4ef4f3b9a1ea6ab2ef2eb6e8b008e06a44790d099d97482a05a51e39a29afac0",
|
||||
"blk.3.ffn_up.bias": "06a4296dda16f452675c51f108079fe7722552d6521c737d97734943818b9a2b",
|
||||
"blk.3.ffn_down.weight": "f114b2bebe392c7d80433bb880c6730293aa4561b0b0370dcdaf7472daebd847",
|
||||
"blk.3.ffn_down.bias": "2c8e67831d28a3bf613fc7912ae3259b63d72abcaf4d30efd8800758400158de",
|
||||
"blk.3.layer_output_norm.weight": "a1dfeb7b5a51dd56447312ca41e2ad2f361a3ea12ddc355127f5f4219fb0a482",
|
||||
"blk.3.layer_output_norm.bias": "1ed630021b25c6c6fc93fd32988b9907df966d4982a93081f639aac3044618ab",
|
||||
"blk.4.attn_q.weight": "b5fae4c1f9a5f33a2a2e816ac0c01c25f422e4efdd59ef1ed93da2610e5370fc",
|
||||
"blk.4.attn_q.bias": "c2e376524ea98ac3b10d9eee19ecb1b1e261fa5149efe0232844c923dfb428fb",
|
||||
"blk.4.attn_k.weight": "a4632f5ebf9321d9d08f9112a4e5dda2efe5671df4a4e67fee24845f5b14af16",
|
||||
"blk.4.attn_k.bias": "a9a02ffb8b8b4f6dfe487a7e0341f1d5318c9d2b793a688f34cb1b22fc66ef60",
|
||||
"blk.4.attn_v.weight": "10ad8deb81d9fa093b1e5c0f24ea82aa7df43e6aca49e260fcbea56eab8cc86a",
|
||||
"blk.4.attn_v.bias": "7326813e181e021130bd33ac136293fcffccce2d1d8cb59041e5b13a8cceacf6",
|
||||
"blk.4.attn_output.weight": "c92573088c7437c2b3cda51490e152c27fb19e5468df591eabba5a49d5398d44",
|
||||
"blk.4.attn_output.bias": "14e10b419e5859af1eb685af5c330aee67048cd704dcead9217840c6f5393222",
|
||||
"blk.4.attn_output_norm.weight": "02b6831c0e0fb0edbc579a92812a1dd972cb15d14fcd382d4427c5a7b300ac44",
|
||||
"blk.4.attn_output_norm.bias": "7eed5cd503bb6bb6ceb1bc8b07cc077903a4f14fb8b9d6cdf39644815ecf1374",
|
||||
"blk.4.ffn_up.weight": "8d0c91d62e74d6431321116a37cf3339e630bd50ba164d3304fc4fe8dd831223",
|
||||
"blk.4.ffn_up.bias": "d325f07f73c005a273c484c7be8e7abb4d6e8a5c4fd093f5869133b97629d017",
|
||||
"blk.4.ffn_down.weight": "7ba7bd81143f40537b84f938e403e19f30e4928625eb371de052b9025beb4d21",
|
||||
"blk.4.ffn_down.bias": "2853d9c2a75288214a4bf4907dc19d04d01926f4913d302b1aa7bdbfcce0f7a1",
|
||||
"blk.4.layer_output_norm.weight": "a4ed1885fa77b90fed5300c355ef0aa0c876a8c747151d9d790939d464d57d4f",
|
||||
"blk.4.layer_output_norm.bias": "62142a81e813a9e636333b2b805d6bc3b17c5e7cd4b15adce1ada6bc9a32563c",
|
||||
"blk.5.attn_q.weight": "afc1dff080a72c3daad01384b1448d476aaf789871017c8ff8e144788887995d",
|
||||
"blk.5.attn_q.bias": "748a820371c1d4f872c84545b36358d239c35bf6c99e2812c237d88c3292763b",
|
||||
"blk.5.attn_k.weight": "59e30c1ed8acd2cbb01de5f62e7804015b9ecf98ba157d98cab016344639eda5",
|
||||
"blk.5.attn_k.bias": "f839520078f9e589496e982e86d0126c7aa14196047339abffcf49a696229f77",
|
||||
"blk.5.attn_v.weight": "3e21fb874e21b90308e1f46af034a3c32d3eba1628d62ae5f2246d6af5818923",
|
||||
"blk.5.attn_v.bias": "5cd4852bf95c1444d10d756750f6bf49f842c0b39e9953c7f408bb67c325ac8c",
|
||||
"blk.5.attn_output.weight": "636ce6a7752895f204b9d01ba0aedd9a294f908b42f372c22a16d9dd590d7471",
|
||||
"blk.5.attn_output.bias": "82d924d4b0d2b94f2bbff91619216d6967a3541ce9b1531a6a60457a67b5d219",
|
||||
"blk.5.attn_output_norm.weight": "5e7bd0a8d3396080f3360d7c4700bf094a06216431bd014c4479eef72ecf4271",
|
||||
"blk.5.attn_output_norm.bias": "66c6de5edda5466d029c6753780be81ccd4218bf8bc00680000e0f06856ab712",
|
||||
"blk.5.ffn_up.weight": "5bbf6e7ea380e216e33f8bee06d25f2265359d3876a300e92bc6e41d48e33430",
|
||||
"blk.5.ffn_up.bias": "9d795388bb36fb33ad3a37fea3ccb4937838e02800a608fb47d363cd06b47370",
|
||||
"blk.5.ffn_down.weight": "2fd628974e7f075479dd227b46fbd48ae8d3ca34d735b36f391ac06410730368",
|
||||
"blk.5.ffn_down.bias": "cd213ba9eaa75fa541648097fbe9c96e58077e6c3ad6ad2fb1f21f8350f44291",
|
||||
"blk.5.layer_output_norm.weight": "159a9df41d15b7022d136f86a2a2631c4635f9816e957472217077b522bcf52a",
|
||||
"blk.5.layer_output_norm.bias": "24c1f27ffd1eb4e5be7e3a2909943e6f0980635d761fa1efdd0c19645da23766"
|
||||
}
|
6
convert/testdata/gemma-2-9b-it.json
vendored
Normal file
6
convert/testdata/gemma-2-9b-it.json
vendored
Normal file
@@ -0,0 +1,6 @@
|
||||
{
|
||||
"general.architecture": "gemma2",
|
||||
"gemma2.attention.sliding_window": "4096",
|
||||
"gemma2.attn_logit_softcapping": "50",
|
||||
"gemma2.final_logit_softcapping": "30"
|
||||
}
|
@@ -1,7 +1,6 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
"crypto/sha256"
|
||||
"encoding/hex"
|
||||
"encoding/json"
|
||||
@@ -11,6 +10,8 @@ import (
|
||||
"log/slog"
|
||||
"os"
|
||||
"slices"
|
||||
|
||||
"golang.org/x/exp/maps"
|
||||
)
|
||||
|
||||
const (
|
||||
@@ -184,32 +185,32 @@ func parseVocabularyFromTokenizer(fsys fs.FS) (*Vocabulary, error) {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var tokens []token
|
||||
tokens := make(map[int]token, len(t.Model.Vocab))
|
||||
for k, v := range t.Model.Vocab {
|
||||
tokens = append(tokens, token{
|
||||
tokens[v] = token{
|
||||
ID: v,
|
||||
Content: k,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
for _, t := range t.AddedTokens {
|
||||
t.UserDefined = true
|
||||
tokens = append(tokens, t)
|
||||
for _, token := range t.AddedTokens {
|
||||
token.UserDefined = true
|
||||
tokens[token.ID] = token
|
||||
}
|
||||
|
||||
slices.SortFunc(tokens, func(i, j token) int {
|
||||
return cmp.Compare(i.ID, j.ID)
|
||||
})
|
||||
keys := maps.Keys(tokens)
|
||||
slices.Sort(keys)
|
||||
|
||||
v := Vocabulary{Model: "gpt2"}
|
||||
for _, t := range tokens {
|
||||
v.Tokens = append(v.Tokens, t.Content)
|
||||
v.Scores = append(v.Scores, float32(t.ID))
|
||||
for _, k := range keys {
|
||||
token := tokens[k]
|
||||
v.Tokens = append(v.Tokens, token.Content)
|
||||
v.Scores = append(v.Scores, float32(token.ID))
|
||||
|
||||
switch {
|
||||
case t.Special:
|
||||
case token.Special:
|
||||
v.Types = append(v.Types, tokenTypeControl)
|
||||
case t.UserDefined:
|
||||
case token.UserDefined:
|
||||
v.Types = append(v.Types, tokenTypeUserDefined)
|
||||
default:
|
||||
v.Types = append(v.Types, tokenTypeNormal)
|
||||
|
@@ -15,6 +15,11 @@ import (
|
||||
)
|
||||
|
||||
func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
|
||||
ast, err := parseAdditionalSpecialTokens(fsys)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
bts, err := fs.ReadFile(fsys, "tokenizer.model")
|
||||
if err != nil {
|
||||
return nil, err
|
||||
@@ -37,7 +42,12 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
|
||||
sentencepiece.ModelProto_SentencePiece_BYTE:
|
||||
v.Types = append(v.Types, int32(t))
|
||||
default:
|
||||
v.Types = append(v.Types, int32(sentencepiece.ModelProto_SentencePiece_NORMAL))
|
||||
tt := int32(sentencepiece.ModelProto_SentencePiece_NORMAL)
|
||||
if slices.Contains(ast, piece.GetPiece()) {
|
||||
tt = int32(sentencepiece.ModelProto_SentencePiece_CONTROL)
|
||||
}
|
||||
|
||||
v.Types = append(v.Types, tt)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -81,3 +91,23 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
|
||||
|
||||
return &v, nil
|
||||
}
|
||||
|
||||
func parseAdditionalSpecialTokens(fsys fs.FS) ([]string, error) {
|
||||
f, err := fsys.Open("special_tokens_map.json")
|
||||
if errors.Is(err, os.ErrNotExist) {
|
||||
return nil, nil
|
||||
} else if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
var m struct {
|
||||
AdditionalSpecialTokens []string `json:"additional_special_tokens"`
|
||||
}
|
||||
|
||||
if err := json.NewDecoder(f).Decode(&m); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return m.AdditionalSpecialTokens, nil
|
||||
}
|
||||
|
@@ -111,7 +111,10 @@ On Windows, Ollama inherits your user and system environment variables.
|
||||
|
||||
## How do I use Ollama behind a proxy?
|
||||
|
||||
Ollama is compatible with proxy servers if `HTTP_PROXY` or `HTTPS_PROXY` are configured. When using either variables, ensure it is set where `ollama serve` can access the values. When using `HTTPS_PROXY`, ensure the proxy certificate is installed as a system certificate. Refer to the section above for how to use environment variables on your platform.
|
||||
Ollama pulls models from the Internet and may require a proxy server to access the models. Use `HTTPS_PROXY` to redirect outbound requests through the proxy. Ensure the proxy certificate is installed as a system certificate. Refer to the section above for how to use environment variables on your platform.
|
||||
|
||||
> [!NOTE]
|
||||
> Avoid setting `HTTP_PROXY`. Ollama does not use HTTP for model pulls, only HTTPS. Setting `HTTP_PROXY` may interrupt client connections to the server.
|
||||
|
||||
### How do I use Ollama behind a proxy in Docker?
|
||||
|
||||
|
BIN
docs/images/ollama-keys.png
Normal file
BIN
docs/images/ollama-keys.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 141 KiB |
BIN
docs/images/signup.png
Normal file
BIN
docs/images/signup.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 80 KiB |
188
docs/import.md
188
docs/import.md
@@ -1,44 +1,129 @@
|
||||
# Import
|
||||
# Importing a model
|
||||
|
||||
GGUF models and select Safetensors models can be imported directly into Ollama.
|
||||
## Table of Contents
|
||||
|
||||
## Import GGUF
|
||||
* [Importing a Safetensors adapter](#Importing-a-fine-tuned-adapter-from-Safetensors-weights)
|
||||
* [Importing a Safetensors model](#Importing-a-model-from-Safetensors-weights)
|
||||
* [Importing a GGUF file](#Importing-a-GGUF-based-model-or-adapter)
|
||||
* [Sharing models on ollama.com](#Sharing-your-model-on-ollamacom)
|
||||
|
||||
A binary GGUF file can be imported directly into Ollama through a Modelfile.
|
||||
## Importing a fine tuned adapter from Safetensors weights
|
||||
|
||||
First, create a `Modelfile` with a `FROM` command pointing at the base model you used for fine tuning, and an `ADAPTER` command which points to the directory with your Safetensors adapter:
|
||||
|
||||
```dockerfile
|
||||
FROM /path/to/file.gguf
|
||||
FROM <base model name>
|
||||
ADAPTER /path/to/safetensors/adapter/directory
|
||||
```
|
||||
|
||||
## Import Safetensors
|
||||
Make sure that you use the same base model in the `FROM` command as you used to create the adapter otherwise you will get erratic results. Most frameworks use different quantization methods, so it's best to use non-quantized (i.e. non-QLoRA) adapters. If your adapter is in the same directory as your `Modelfile`, use `ADAPTER .` to specify the adapter path.
|
||||
|
||||
If the model being imported is one of these architectures, it can be imported directly into Ollama through a Modelfile:
|
||||
Now run `ollama create` from the directory where the `Modelfile` was created:
|
||||
|
||||
- LlamaForCausalLM
|
||||
- MistralForCausalLM
|
||||
- MixtralForCausalLM
|
||||
- GemmaForCausalLM
|
||||
- Phi3ForCausalLM
|
||||
```bash
|
||||
ollama create my-model
|
||||
```
|
||||
|
||||
Lastly, test the model:
|
||||
|
||||
```bash
|
||||
ollama run my-model
|
||||
```
|
||||
|
||||
Ollama supports importing adapters based on several different model architectures including:
|
||||
|
||||
* Llama (including Llama 2, Llama 3, and Llama 3.1);
|
||||
* Mistral (including Mistral 1, Mistral 2, and Mixtral); and
|
||||
* Gemma (including Gemma 1 and Gemma 2)
|
||||
|
||||
You can create the adapter using a fine tuning framework or tool which can output adapters in the Safetensors format, such as:
|
||||
|
||||
* Hugging Face [fine tuning framework] (https://huggingface.co/docs/transformers/en/training)
|
||||
* [Unsloth](https://github.com/unslothai/unsloth)
|
||||
* [MLX](https://github.com/ml-explore/mlx)
|
||||
|
||||
|
||||
## Importing a model from Safetensors weights
|
||||
|
||||
First, create a `Modelfile` with a `FROM` command which points to the directory containing your Safetensors weights:
|
||||
|
||||
```dockerfile
|
||||
FROM /path/to/safetensors/directory
|
||||
```
|
||||
|
||||
For architectures not directly convertable by Ollama, see llama.cpp's [guide](https://github.com/ggerganov/llama.cpp/blob/master/README.md#prepare-and-quantize) on conversion. After conversion, see [Import GGUF](#import-gguf).
|
||||
If you create the Modelfile in the same directory as the weights, you can use the command `FROM .`.
|
||||
|
||||
## Automatic Quantization
|
||||
Now run the `ollama create` command from the directory where you created the `Modelfile`:
|
||||
|
||||
> [!NOTE]
|
||||
> Automatic quantization requires v0.1.35 or higher.
|
||||
```shell
|
||||
ollama create my-model
|
||||
```
|
||||
|
||||
Ollama is capable of quantizing FP16 or FP32 models to any of the supported quantizations with the `-q/--quantize` flag in `ollama create`.
|
||||
Lastly, test the model:
|
||||
|
||||
```shell
|
||||
ollama run my-model
|
||||
```
|
||||
|
||||
Ollama supports importing models for several different architectures including:
|
||||
|
||||
* Llama (including Llama 2, Llama 3, and Llama 3.1);
|
||||
* Mistral (including Mistral 1, Mistral 2, and Mixtral);
|
||||
* Gemma (including Gemma 1 and Gemma 2); and
|
||||
* Phi3
|
||||
|
||||
This includes importing foundation models as well as any fine tuned models which which have been _fused_ with a foundation model.
|
||||
|
||||
|
||||
## Importing a GGUF based model or adapter
|
||||
|
||||
If you have a GGUF based model or adapter it is possible to import it into Ollama. You can obtain a GGUF model or adapter by:
|
||||
|
||||
* converting a Safetensors model with the `convert_hf_to_gguf.py` from Llama.cpp;
|
||||
* converting a Safetensors adapter with the `convert_lora_to_gguf.py` from Llama.cpp; or
|
||||
* downloading a model or adapter from a place such as HuggingFace
|
||||
|
||||
To import a GGUF model, create a `Modelfile` containg:
|
||||
|
||||
```dockerfile
|
||||
FROM /path/to/file.gguf
|
||||
```
|
||||
|
||||
For a GGUF adapter, create the `Modelfile` with:
|
||||
|
||||
```dockerfile
|
||||
FROM <model name>
|
||||
ADAPTER /path/to/file.gguf
|
||||
```
|
||||
|
||||
When importing a GGUF adapter, it's important to use the same base model as the base model that the adapter was created with. You can use:
|
||||
|
||||
* a model from Ollama
|
||||
* a GGUF file
|
||||
* a Safetensors based model
|
||||
|
||||
Once you have created your `Modelfile`, use the `ollama create` command to build the model.
|
||||
|
||||
```shell
|
||||
ollama create my-model
|
||||
```
|
||||
|
||||
## Quantizing a Model
|
||||
|
||||
Quantizing a model allows you to run models faster and with less memory consumption but at reduced accuracy. This allows you to run a model on more modest hardware.
|
||||
|
||||
Ollama can quantize FP16 and FP32 based models into different quantization levels using the `-q/--quantize` flag with the `ollama create` command.
|
||||
|
||||
First, create a Modelfile with the FP16 or FP32 based model you wish to quantize.
|
||||
|
||||
```dockerfile
|
||||
FROM /path/to/my/gemma/f16/model
|
||||
```
|
||||
|
||||
Use `ollama create` to then create the quantized model.
|
||||
|
||||
```shell
|
||||
$ ollama create -q Q4_K_M mymodel
|
||||
$ ollama create --quantize q4_K_M mymodel
|
||||
transferring model data
|
||||
quantizing F16 model to Q4_K_M
|
||||
creating new layer sha256:735e246cc1abfd06e9cdcf95504d6789a6cd1ad7577108a70d9902fef503c1bd
|
||||
@@ -49,42 +134,53 @@ success
|
||||
|
||||
### Supported Quantizations
|
||||
|
||||
- `Q4_0`
|
||||
- `Q4_1`
|
||||
- `Q5_0`
|
||||
- `Q5_1`
|
||||
- `Q8_0`
|
||||
- `q4_0`
|
||||
- `q4_1`
|
||||
- `q5_0`
|
||||
- `q5_1`
|
||||
- `q8_0`
|
||||
|
||||
#### K-means Quantizations
|
||||
|
||||
- `Q3_K_S`
|
||||
- `Q3_K_M`
|
||||
- `Q3_K_L`
|
||||
- `Q4_K_S`
|
||||
- `Q4_K_M`
|
||||
- `Q5_K_S`
|
||||
- `Q5_K_M`
|
||||
- `Q6_K`
|
||||
- `q3_K_S`
|
||||
- `q3_K_M`
|
||||
- `q3_K_L`
|
||||
- `q4_K_S`
|
||||
- `q4_K_M`
|
||||
- `q5_K_S`
|
||||
- `q5_K_M`
|
||||
- `q6_K`
|
||||
|
||||
## Template Detection
|
||||
|
||||
> [!NOTE]
|
||||
> Template detection requires v0.1.42 or higher.
|
||||
## Sharing your model on ollama.com
|
||||
|
||||
Ollama uses model metadata, specifically `tokenizer.chat_template`, to automatically create a template appropriate for the model you're importing.
|
||||
You can share any model you have created by pushing it to [ollama.com](https://ollama.com) so that other users can try it out.
|
||||
|
||||
```dockerfile
|
||||
FROM /path/to/my/gemma/model
|
||||
```
|
||||
First, use your browser to go to the [Ollama Sign-Up](https://ollama.com/signup) page. If you already have an account, you can skip this step.
|
||||
|
||||

|
||||
|
||||
The `Username` field will be used as part of your model's name (e.g. `jmorganca/mymodel`), so make sure you are comfortable with the username that you have selected.
|
||||
|
||||
Now that you have created an account and are signed-in, go to the [Ollama Keys Settings](https://ollama.com/settings/keys) page.
|
||||
|
||||
Follow the directions on the page to determine where your Ollama Public Key is located.
|
||||
|
||||

|
||||
|
||||
Click on the `Add Ollama Public Key` button, and copy and paste the contents of your Ollama Public Key into the text field.
|
||||
|
||||
To push a model to [ollama.com](https://ollama.com), first make sure that it is named correctly with your username. You may have to use the `ollama cp` command to copy
|
||||
your model to give it the correct name. Once you're happy with your model's name, use the `ollama push` command to push it to [ollama.com](https://ollama.com).
|
||||
|
||||
```shell
|
||||
$ ollama create mymodel
|
||||
transferring model data
|
||||
using autodetected template gemma-instruct
|
||||
creating new layer sha256:baa2a0edc27d19cc6b7537578a9a7ba1a4e3214dc185ed5ae43692b319af7b84
|
||||
creating new layer sha256:ba66c3309914dbef07e5149a648fd1877f030d337a4f240d444ea335008943cb
|
||||
writing manifest
|
||||
success
|
||||
ollama cp mymodel myuser/mymodel
|
||||
ollama push myuser/mymodel
|
||||
```
|
||||
|
||||
Once your model has been pushed, other users can pull and run it by using the command:
|
||||
|
||||
```shell
|
||||
ollama run myuser/mymodel
|
||||
```
|
||||
|
||||
Defining a template in the Modelfile will disable this feature which may be useful if you want to use a different template than the autodetected one.
|
||||
|
@@ -264,6 +264,8 @@ func GetGPUInfo() GpuInfoList {
|
||||
gpuInfo.computeMajor = int(memInfo.major)
|
||||
gpuInfo.computeMinor = int(memInfo.minor)
|
||||
gpuInfo.MinimumMemory = cudaMinimumMemory
|
||||
gpuInfo.DriverMajor = driverMajor
|
||||
gpuInfo.DriverMinor = driverMinor
|
||||
variant := cudaVariant(gpuInfo)
|
||||
if depPath != "" {
|
||||
gpuInfo.DependencyPath = depPath
|
||||
@@ -275,8 +277,6 @@ func GetGPUInfo() GpuInfoList {
|
||||
}
|
||||
}
|
||||
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
|
||||
gpuInfo.DriverMajor = driverMajor
|
||||
gpuInfo.DriverMinor = driverMinor
|
||||
gpuInfo.Variant = variant
|
||||
|
||||
// query the management library as well so we can record any skew between the two
|
||||
|
@@ -32,4 +32,29 @@ func TestCPUMemInfo(t *testing.T) {
|
||||
}
|
||||
}
|
||||
|
||||
func TestByLibrary(t *testing.T) {
|
||||
type testCase struct {
|
||||
input []GpuInfo
|
||||
expect int
|
||||
}
|
||||
|
||||
testCases := map[string]*testCase{
|
||||
"empty": {input: []GpuInfo{}, expect: 0},
|
||||
"cpu": {input: []GpuInfo{{Library: "cpu"}}, expect: 1},
|
||||
"cpu + GPU": {input: []GpuInfo{{Library: "cpu"}, {Library: "cuda"}}, expect: 2},
|
||||
"cpu + 2 GPU no variant": {input: []GpuInfo{{Library: "cpu"}, {Library: "cuda"}, {Library: "cuda"}}, expect: 2},
|
||||
"cpu + 2 GPU same variant": {input: []GpuInfo{{Library: "cpu"}, {Library: "cuda", Variant: "v11"}, {Library: "cuda", Variant: "v11"}}, expect: 2},
|
||||
"cpu + 2 GPU diff variant": {input: []GpuInfo{{Library: "cpu"}, {Library: "cuda", Variant: "v11"}, {Library: "cuda", Variant: "v12"}}, expect: 3},
|
||||
}
|
||||
|
||||
for k, v := range testCases {
|
||||
t.Run(k, func(t *testing.T) {
|
||||
resp := (GpuInfoList)(v.input).ByLibrary()
|
||||
if len(resp) != v.expect {
|
||||
t.Fatalf("expected length %d, got %d => %+v", v.expect, len(resp), resp)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
// TODO - add some logic to figure out card type through other means and actually verify we got back what we expected
|
||||
|
@@ -94,7 +94,7 @@ func (l GpuInfoList) ByLibrary() []GpuInfoList {
|
||||
}
|
||||
}
|
||||
if !found {
|
||||
libs = append(libs, info.Library)
|
||||
libs = append(libs, requested)
|
||||
resp = append(resp, []GpuInfo{info})
|
||||
}
|
||||
}
|
||||
|
@@ -70,8 +70,8 @@ func TestAllMiniLMEmbed(t *testing.T) {
|
||||
t.Fatalf("expected 0.010071031, got %.8f", res.Embeddings[0][0])
|
||||
}
|
||||
|
||||
if res.PromptEvalCount != 8 {
|
||||
t.Fatalf("expected 8 prompt tokens, got %d", res.PromptEvalCount)
|
||||
if res.PromptEvalCount != 6 {
|
||||
t.Fatalf("expected 6 prompt tokens, got %d", res.PromptEvalCount)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -102,8 +102,8 @@ func TestAllMiniLMBatchEmbed(t *testing.T) {
|
||||
t.Fatalf("expected 0.010071031 and -0.009802706, got %.8f and %.8f", res.Embeddings[0][0], res.Embeddings[1][0])
|
||||
}
|
||||
|
||||
if res.PromptEvalCount != 16 {
|
||||
t.Fatalf("expected 16 prompt tokens, got %d", res.PromptEvalCount)
|
||||
if res.PromptEvalCount != 12 {
|
||||
t.Fatalf("expected 12 prompt tokens, got %d", res.PromptEvalCount)
|
||||
}
|
||||
}
|
||||
|
||||
|
8
llm/ext_server/server.cpp
vendored
8
llm/ext_server/server.cpp
vendored
@@ -1429,7 +1429,13 @@ struct llama_server_context
|
||||
switch (task.type)
|
||||
{
|
||||
case TASK_TYPE_COMPLETION: {
|
||||
server_slot *slot = prefix_slot(task.data["prompt"]);
|
||||
server_slot *slot = nullptr;
|
||||
if (task.embedding_mode) {
|
||||
// Embedding seq_id (aka slot id) must always be <= token length, so always use slot 0
|
||||
slot = slots[0].available() ? &slots[0] : nullptr;
|
||||
} else {
|
||||
slot = prefix_slot(task.data["prompt"]);
|
||||
}
|
||||
if (slot == nullptr)
|
||||
{
|
||||
// if no slot is available, we defer this task for processing later
|
||||
|
@@ -252,7 +252,7 @@ if [ -z "${OLLAMA_SKIP_ROCM_GENERATE}" -a -d "${ROCM_PATH}" ]; then
|
||||
ROCM_VARIANT=_v$(ls ${ROCM_PATH}/lib/librocblas.so.*.*.????? | cut -f5 -d. || true)
|
||||
fi
|
||||
init_vars
|
||||
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} -DGGML_HIPBLAS=on -DLLAMA_CUDA_NO_PEER_COPY=on -DCMAKE_C_COMPILER=$ROCM_PATH/llvm/bin/clang -DCMAKE_CXX_COMPILER=$ROCM_PATH/llvm/bin/clang++ -DAMDGPU_TARGETS=$(amdGPUs) -DGPU_TARGETS=$(amdGPUs)"
|
||||
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} -DGGML_HIPBLAS=on -DGGML_CUDA_NO_PEER_COPY=on -DCMAKE_C_COMPILER=$ROCM_PATH/llvm/bin/clang -DCMAKE_CXX_COMPILER=$ROCM_PATH/llvm/bin/clang++ -DAMDGPU_TARGETS=$(amdGPUs) -DGPU_TARGETS=$(amdGPUs)"
|
||||
# Users building from source can tune the exact flags we pass to cmake for configuring llama.cpp
|
||||
if [ -n "${OLLAMA_CUSTOM_ROCM_DEFS}" ]; then
|
||||
echo "OLLAMA_CUSTOM_ROCM_DEFS=\"${OLLAMA_CUSTOM_ROCM_DEFS}\""
|
||||
@@ -260,7 +260,8 @@ if [ -z "${OLLAMA_SKIP_ROCM_GENERATE}" -a -d "${ROCM_PATH}" ]; then
|
||||
echo "Building custom ROCM GPU"
|
||||
fi
|
||||
BUILD_DIR="../build/linux/${ARCH}/rocm${ROCM_VARIANT}"
|
||||
ROCM_DIST_DIR="${DIST_BASE}/lib/ollama"
|
||||
# ROCm dependencies are too large to fit into a unified bundle
|
||||
ROCM_DIST_DIR="${DIST_BASE}/../linux-${GOARCH}-rocm/lib/ollama"
|
||||
# TODO figure out how to disable runpath (rpath)
|
||||
# export CMAKE_HIP_FLAGS="-fno-rtlib-add-rpath" # doesn't work
|
||||
export LLAMA_SERVER_LDFLAGS="-L${ROCM_PATH}/lib -L/opt/amdgpu/lib/x86_64-linux-gnu/ -lhipblas -lrocblas -lamdhip64 -lrocsolver -lamd_comgr -lhsa-runtime64 -lrocsparse -ldrm -ldrm_amdgpu"
|
||||
|
@@ -355,7 +355,7 @@ function build_rocm() {
|
||||
"-DCMAKE_C_COMPILER=clang.exe",
|
||||
"-DCMAKE_CXX_COMPILER=clang++.exe",
|
||||
"-DGGML_HIPBLAS=on",
|
||||
"-DLLAMA_CUDA_NO_PEER_COPY=on",
|
||||
"-DGGML_CUDA_NO_PEER_COPY=on",
|
||||
"-DHIP_PLATFORM=amd",
|
||||
"-DGGML_AVX=on",
|
||||
"-DGGML_AVX2=off",
|
||||
|
@@ -43,6 +43,14 @@ func (kv KV) Architecture() string {
|
||||
return "unknown"
|
||||
}
|
||||
|
||||
func (kv KV) Kind() string {
|
||||
if s, ok := kv["general.type"].(string); ok {
|
||||
return s
|
||||
}
|
||||
|
||||
return "unknown"
|
||||
}
|
||||
|
||||
func (kv KV) ParameterCount() uint64 {
|
||||
return kv.u64("general.parameter_count")
|
||||
}
|
||||
|
@@ -33,7 +33,6 @@ func TestEstimateGPULayers(t *testing.T) {
|
||||
assert.Len(t, tensors, inputLayerCount+1)
|
||||
err = WriteGGUF(f, KV{
|
||||
"general.architecture": "llama",
|
||||
"general.name": "name",
|
||||
"llama.context_length": uint32(32),
|
||||
"llama.embedding_length": uint32(4096),
|
||||
"llama.block_count": uint32(inputLayerCount),
|
||||
|
@@ -1,60 +0,0 @@
|
||||
diff --git a/src/llama.cpp b/src/llama.cpp
|
||||
index 721b8f4e..cfe7ac40 100644
|
||||
--- a/src/llama.cpp
|
||||
+++ b/src/llama.cpp
|
||||
@@ -8420,14 +8420,14 @@ struct llm_build_context {
|
||||
}
|
||||
|
||||
struct ggml_tensor * build_inp_mean() {
|
||||
- lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
|
||||
+ lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, cparams.n_seq_max);
|
||||
cb(lctx.inp_mean, "inp_mean", -1);
|
||||
ggml_set_input(lctx.inp_mean);
|
||||
return lctx.inp_mean;
|
||||
}
|
||||
|
||||
struct ggml_tensor * build_inp_cls() {
|
||||
- lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
|
||||
+ lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, cparams.n_seq_max);
|
||||
cb(lctx.inp_cls, "inp_cls", -1);
|
||||
ggml_set_input(lctx.inp_cls);
|
||||
return lctx.inp_cls;
|
||||
@@ -13847,19 +13847,16 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
|
||||
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
|
||||
|
||||
float * data = (float *) lctx.inp_mean->data;
|
||||
- memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
|
||||
+ memset(lctx.inp_mean->data, 0, n_tokens * cparams.n_seq_max * ggml_element_size(lctx.inp_mean));
|
||||
|
||||
std::vector<uint64_t> sum(n_tokens, 0);
|
||||
for (int i = 0; i < n_tokens; ++i) {
|
||||
const llama_seq_id seq_id = batch.seq_id[i][0];
|
||||
-
|
||||
- GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
|
||||
-
|
||||
sum[seq_id] += 1;
|
||||
}
|
||||
|
||||
- std::vector<float> div(n_tokens, 0.0f);
|
||||
- for (int i = 0; i < n_tokens; ++i) {
|
||||
+ std::vector<float> div(cparams.n_seq_max, 0.0f);
|
||||
+ for (uint32_t i = 0; i < cparams.n_seq_max; ++i) {
|
||||
const uint64_t s = sum[i];
|
||||
if (s > 0) {
|
||||
div[i] = 1.0f/float(s);
|
||||
@@ -13879,14 +13876,11 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
|
||||
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
|
||||
|
||||
uint32_t * data = (uint32_t *) lctx.inp_cls->data;
|
||||
- memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
|
||||
+ memset(lctx.inp_cls->data, 0, cparams.n_seq_max * ggml_element_size(lctx.inp_cls));
|
||||
|
||||
for (int i = 0; i < n_tokens; ++i) {
|
||||
const llama_seq_id seq_id = batch.seq_id[i][0];
|
||||
const llama_pos pos = batch.pos[i];
|
||||
-
|
||||
- GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");
|
||||
-
|
||||
if (pos == 0) {
|
||||
data[seq_id] = i;
|
||||
}
|
@@ -258,7 +258,7 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
|
||||
params = append(params, "--mlock")
|
||||
}
|
||||
|
||||
if gpu.IsNUMA() {
|
||||
if gpu.IsNUMA() && gpus[0].Library == "cpu" {
|
||||
numaMode := "distribute"
|
||||
if runtime.GOOS == "linux" {
|
||||
if _, err := exec.LookPath("numactl"); err == nil {
|
||||
|
@@ -24,8 +24,14 @@ for TARGETARCH in ${BUILD_ARCH}; do
|
||||
docker create --platform linux/$TARGETARCH --name builder-$TARGETARCH builder:$TARGETARCH
|
||||
rm -rf ./dist/linux-$TARGETARCH
|
||||
docker cp builder-$TARGETARCH:/go/src/github.com/ollama/ollama/dist/linux-$TARGETARCH ./dist
|
||||
if echo ${TARGETARCH} | grep "amd64" > /dev/null; then
|
||||
docker cp builder-$TARGETARCH:/go/src/github.com/ollama/ollama/dist/linux-$TARGETARCH-rocm ./dist
|
||||
fi
|
||||
docker rm builder-$TARGETARCH
|
||||
echo "Compressing final linux bundle..."
|
||||
rm -f ./dist/ollama-linux-$TARGETARCH.tgz
|
||||
(cd dist/linux-$TARGETARCH && tar cf - . | ${GZIP} --best > ../ollama-linux-$TARGETARCH.tgz )
|
||||
if [ -d dist/linux-$TARGETARCH-rocm ]; then
|
||||
(cd dist/linux-$TARGETARCH-rocm && tar cf - . | ${GZIP} --best > ../ollama-linux-$TARGETARCH-rocm.tgz )
|
||||
fi
|
||||
done
|
||||
|
@@ -199,6 +199,11 @@ fi
|
||||
|
||||
if check_gpu lspci amdgpu || check_gpu lshw amdgpu; then
|
||||
if [ $BUNDLE -ne 0 ]; then
|
||||
status "Downloading Linux ROCm ${ARCH} bundle"
|
||||
curl --fail --show-error --location --progress-bar \
|
||||
"https://ollama.com/download/ollama-linux-${ARCH}-rocm.tgz${VER_PARAM}" | \
|
||||
$SUDO tar -xzf - -C "$OLLAMA_INSTALL_DIR"
|
||||
|
||||
install_success
|
||||
status "AMD GPU ready."
|
||||
exit 0
|
||||
|
@@ -369,13 +369,14 @@ func CreateModel(ctx context.Context, name model.Name, modelFileDir, quantizatio
|
||||
parameters := make(map[string]any)
|
||||
|
||||
var layers []Layer
|
||||
var baseLayers []*layerGGML
|
||||
for _, c := range modelfile.Commands {
|
||||
mediatype := fmt.Sprintf("application/vnd.ollama.image.%s", c.Name)
|
||||
command := c.Name
|
||||
|
||||
switch c.Name {
|
||||
switch command {
|
||||
case "model", "adapter":
|
||||
var baseLayers []*layerGGML
|
||||
if name := model.ParseName(c.Args); name.IsValid() {
|
||||
if name := model.ParseName(c.Args); name.IsValid() && command == "model" {
|
||||
baseLayers, err = parseFromModel(ctx, name, fn)
|
||||
if err != nil {
|
||||
return err
|
||||
@@ -409,14 +410,14 @@ func CreateModel(ctx context.Context, name model.Name, modelFileDir, quantizatio
|
||||
}
|
||||
defer blob.Close()
|
||||
|
||||
baseLayers, err = parseFromFile(ctx, blob, digest, fn)
|
||||
baseLayers, err = parseFromFile(ctx, command, baseLayers, blob, digest, fn)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
} else if file, err := os.Open(realpath(modelFileDir, c.Args)); err == nil {
|
||||
defer file.Close()
|
||||
|
||||
baseLayers, err = parseFromFile(ctx, file, "", fn)
|
||||
baseLayers, err = parseFromFile(ctx, command, baseLayers, file, "", fn)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
@@ -51,6 +51,9 @@ func NewLayer(r io.Reader, mediatype string) (Layer, error) {
|
||||
if err := os.Rename(temp.Name(), blob); err != nil {
|
||||
return Layer{}, err
|
||||
}
|
||||
if err := os.Chmod(blob, 0o644); err != nil {
|
||||
return Layer{}, err
|
||||
}
|
||||
}
|
||||
|
||||
return Layer{
|
||||
|
@@ -81,7 +81,7 @@ func parseFromModel(ctx context.Context, name model.Name, fn func(api.ProgressRe
|
||||
return layers, nil
|
||||
}
|
||||
|
||||
func parseFromZipFile(_ context.Context, f *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) {
|
||||
func parseFromZipFile(_ context.Context, command string, baseLayers []*layerGGML, f *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) {
|
||||
fi, err := f.Stat()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
@@ -108,16 +108,38 @@ func parseFromZipFile(_ context.Context, f *os.File, digest string, fn func(api.
|
||||
defer t.Close()
|
||||
defer os.Remove(t.Name())
|
||||
|
||||
fn(api.ProgressResponse{Status: "converting model"})
|
||||
if err := convert.Convert(convert.NewZipReader(r, p, 32<<20), t); err != nil {
|
||||
return nil, err
|
||||
var layerType string
|
||||
|
||||
switch command {
|
||||
case "adapter":
|
||||
var baseModel *llm.GGML
|
||||
for _, l := range baseLayers {
|
||||
if l.GGML != nil {
|
||||
baseModel = l.GGML
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
if baseModel == nil {
|
||||
return nil, fmt.Errorf("no base model specified for the adapter")
|
||||
}
|
||||
|
||||
if err := convert.ConvertAdapter(convert.NewZipReader(r, p, 32<<20), t, baseModel.KV()); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
layerType = "application/vnd.ollama.image.adapter"
|
||||
case "model":
|
||||
if err := convert.ConvertModel(convert.NewZipReader(r, p, 32<<20), t); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
layerType = "application/vnd.ollama.image.model"
|
||||
}
|
||||
|
||||
if _, err := t.Seek(0, io.SeekStart); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
layer, err := NewLayer(t, "application/vnd.ollama.image.model")
|
||||
layer, err := NewLayer(t, layerType)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
@@ -139,7 +161,7 @@ func parseFromZipFile(_ context.Context, f *os.File, digest string, fn func(api.
|
||||
return detectChatTemplate(layers)
|
||||
}
|
||||
|
||||
func parseFromFile(ctx context.Context, file *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) {
|
||||
func parseFromFile(ctx context.Context, command string, baseLayers []*layerGGML, file *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) {
|
||||
sr := io.NewSectionReader(file, 0, 512)
|
||||
contentType, err := detectContentType(sr)
|
||||
if err != nil {
|
||||
@@ -150,7 +172,7 @@ func parseFromFile(ctx context.Context, file *os.File, digest string, fn func(ap
|
||||
case "gguf", "ggla":
|
||||
// noop
|
||||
case "application/zip":
|
||||
return parseFromZipFile(ctx, file, digest, fn)
|
||||
return parseFromZipFile(ctx, command, baseLayers, file, digest, fn)
|
||||
default:
|
||||
return nil, fmt.Errorf("unsupported content type: %s", contentType)
|
||||
}
|
||||
@@ -170,7 +192,7 @@ func parseFromFile(ctx context.Context, file *os.File, digest string, fn func(ap
|
||||
}
|
||||
|
||||
mediatype := "application/vnd.ollama.image.model"
|
||||
if ggml.Name() == "ggla" {
|
||||
if ggml.Name() == "ggla" || ggml.KV().Kind() == "adapter" {
|
||||
mediatype = "application/vnd.ollama.image.adapter"
|
||||
} else if ggml.KV().Architecture() == "clip" {
|
||||
mediatype = "application/vnd.ollama.image.projector"
|
||||
|
@@ -153,7 +153,7 @@ func TestParseFromFileFromLayer(t *testing.T) {
|
||||
t.Fatalf("failed to seek to start: %v", err)
|
||||
}
|
||||
|
||||
layers, err := parseFromFile(context.Background(), file, "", func(api.ProgressResponse) {})
|
||||
layers, err := parseFromFile(context.Background(), "model", []*layerGGML{}, file, "", func(api.ProgressResponse) {})
|
||||
if err != nil {
|
||||
t.Fatalf("failed to parse from file: %v", err)
|
||||
}
|
||||
@@ -166,7 +166,7 @@ func TestParseFromFileFromLayer(t *testing.T) {
|
||||
t.Fatalf("failed to seek to start: %v", err)
|
||||
}
|
||||
|
||||
layers2, err := parseFromFile(context.Background(), file, layers[0].Digest, func(api.ProgressResponse) {})
|
||||
layers2, err := parseFromFile(context.Background(), "model", []*layerGGML{}, file, layers[0].Digest, func(api.ProgressResponse) {})
|
||||
if err != nil {
|
||||
t.Fatalf("failed to parse from file: %v", err)
|
||||
}
|
||||
@@ -206,7 +206,7 @@ func TestParseLayerFromCopy(t *testing.T) {
|
||||
t.Fatalf("failed to seek to start: %v", err)
|
||||
}
|
||||
|
||||
layers, err := parseFromFile(context.Background(), file2, "", func(api.ProgressResponse) {})
|
||||
layers, err := parseFromFile(context.Background(), "model", []*layerGGML{}, file2, "", func(api.ProgressResponse) {})
|
||||
if err != nil {
|
||||
t.Fatalf("failed to parse from file: %v", err)
|
||||
}
|
||||
|
@@ -193,6 +193,11 @@ func (s *Scheduler) processPending(ctx context.Context) {
|
||||
break
|
||||
}
|
||||
|
||||
// Embedding models should always be loaded with parallel=1
|
||||
if pending.model.CheckCapabilities(CapabilityCompletion) != nil {
|
||||
numParallel = 1
|
||||
}
|
||||
|
||||
// Evaluate if the model will fit in the available system memory, or if we should unload a model first
|
||||
if len(gpus) == 1 && gpus[0].Library == "cpu" {
|
||||
// simplifying assumption of defaultParallel when in CPU mode
|
||||
|
@@ -117,7 +117,6 @@ func newScenarioRequest(t *testing.T, ctx context.Context, modelName string, est
|
||||
|
||||
require.NoError(t, llm.WriteGGUF(f, llm.KV{
|
||||
"general.architecture": "llama",
|
||||
"general.name": "name",
|
||||
"llama.context_length": uint32(32),
|
||||
"llama.embedding_length": uint32(4096),
|
||||
"llama.block_count": uint32(1),
|
||||
|
Reference in New Issue
Block a user