Files
ollama/llama/llama.cpp/src/llama-hparams.cpp
Michael Yang dcfb7a105c next build (#8539)
* add build to .dockerignore

* test: only build one arch

* add build to .gitignore

* fix ccache path

* filter amdgpu targets

* only filter if autodetecting

* Don't clobber gpu list for default runner

This ensures the GPU specific environment variables are set properly

* explicitly set CXX compiler for HIP

* Update build_windows.ps1

This isn't complete, but is close.  Dependencies are missing, and it only builds the "default" preset.

* build: add ollama subdir

* add .git to .dockerignore

* docs: update development.md

* update build_darwin.sh

* remove unused scripts

* llm: add cwd and build/lib/ollama to library paths

* default DYLD_LIBRARY_PATH to LD_LIBRARY_PATH in runner on macOS

* add additional cmake output vars for msvc

* interim edits to make server detection logic work with dll directories like lib/ollama/cuda_v12

* remove unncessary filepath.Dir, cleanup

* add hardware-specific directory to path

* use absolute server path

* build: linux arm

* cmake install targets

* remove unused files

* ml: visit each library path once

* build: skip cpu variants on arm

* build: install cpu targets

* build: fix workflow

* shorter names

* fix rocblas install

* docs: clean up development.md

* consistent build dir removal in development.md

* silence -Wimplicit-function-declaration build warnings in ggml-cpu

* update readme

* update development readme

* llm: update library lookup logic now that there is one runner (#8587)

* tweak development.md

* update docs

* add windows cuda/rocm tests

---------

Co-authored-by: jmorganca <jmorganca@gmail.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-01-29 15:03:38 -08:00

86 lines
2.0 KiB
C++
Vendored

#include "llama-hparams.h"
#include "ggml.h"
#include <algorithm>
uint32_t llama_hparams::n_head(uint32_t il) const {
if (il < n_layer) {
return n_head_arr[il];
}
GGML_ABORT("fatal error");
}
uint32_t llama_hparams::n_head_kv(uint32_t il) const {
if (il < n_layer) {
return n_head_kv_arr[il];
}
GGML_ABORT("fatal error");
}
uint32_t llama_hparams::n_ff(uint32_t il) const {
if (il < n_layer) {
return n_ff_arr[il];
}
GGML_ABORT("fatal error");
}
uint32_t llama_hparams::n_gqa(uint32_t il) const {
const uint32_t n_head = this->n_head(il);
const uint32_t n_head_kv = this->n_head_kv(il);
if (n_head_kv == 0) {
return 0;
}
return n_head/n_head_kv;
}
uint32_t llama_hparams::n_embd_k_gqa(uint32_t il) const {
const uint32_t n_head_kv = this->n_head_kv(il);
return n_embd_head_k * n_head_kv;
}
uint32_t llama_hparams::n_embd_v_gqa(uint32_t il) const {
const uint32_t n_head_kv = this->n_head_kv(il);
return n_embd_head_v * n_head_kv;
}
uint32_t llama_hparams::n_embd_k_s() const {
if (wkv_head_size != 0) {
// for RWKV models
return 2 * n_embd;
}
// TODO: maybe support other convolution strides than 1
// NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
}
uint32_t llama_hparams::n_embd_v_s() const {
if (wkv_head_size != 0) {
// corresponds to RWKV's wkv_states size
return n_embd * wkv_head_size;
}
// corresponds to Mamba's ssm_states size
return ssm_d_state * ssm_d_inner;
}
bool llama_hparams::n_bskcn(uint32_t n, uint32_t il) const {
if (il < n_layer) {
return n_bskcn_arr[n][il] > 0;
}
GGML_ABORT("fatal error");
}
bool llama_hparams::cross_attention_layers(uint32_t il) const {
return std::find(cross_attn_layers.begin(), cross_attn_layers.end(), il) != cross_attn_layers.end();
}