mirror of
https://github.com/arendst/Tasmota.git
synced 2025-07-24 11:16:34 +00:00
Prep Shelly Pro 4PM
This commit is contained in:
parent
0743b7d2b6
commit
c85003c67d
@ -405,7 +405,7 @@ enum XsnsFunctions { FUNC_SETTINGS_OVERRIDE, FUNC_I2C_INIT, FUNC_PRE_INIT, FUNC_
|
||||
FUNC_COMMAND, FUNC_COMMAND_SENSOR, FUNC_COMMAND_DRIVER,
|
||||
FUNC_RULES_PROCESS,
|
||||
FUNC_SET_CHANNELS,
|
||||
FUNC_last_function // Insert functions with return results before here
|
||||
FUNC_last_function // Insert functions WITH return results before here
|
||||
};
|
||||
|
||||
enum AddressConfigSteps { ADDR_IDLE, ADDR_RECEIVE, ADDR_SEND };
|
||||
|
@ -17,7 +17,7 @@
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#define BUTTON_V3
|
||||
//#define BUTTON_V3
|
||||
#ifdef BUTTON_V3
|
||||
/*********************************************************************************************\
|
||||
* Button support with input filter
|
||||
|
572
tasmota/tasmota_support/support_button_v4.ino
Normal file
572
tasmota/tasmota_support/support_button_v4.ino
Normal file
@ -0,0 +1,572 @@
|
||||
/*
|
||||
support_button.ino - button support for Tasmota
|
||||
|
||||
Copyright (C) 2022 Federico Leoni and Theo Arends
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#define BUTTON_V4
|
||||
#ifdef BUTTON_V4
|
||||
/*********************************************************************************************\
|
||||
* Button support with input filter
|
||||
*
|
||||
* Inspired by (https://github.com/OLIMEX/olimex-iot-firmware-esp8266/blob/master/olimex/user/user_switch2.c)
|
||||
\*********************************************************************************************/
|
||||
|
||||
#define MAX_RELAY_BUTTON1 5 // Max number of relay controlled by BUTTON1
|
||||
|
||||
const uint8_t BUTTON_PROBE_INTERVAL = 10; // Time in milliseconds between button input probe
|
||||
const uint8_t BUTTON_FAST_PROBE_INTERVAL = 2; // Time in milliseconds between button input probe for AC detection
|
||||
const uint8_t BUTTON_AC_PERIOD = (20 + BUTTON_FAST_PROBE_INTERVAL - 1) / BUTTON_FAST_PROBE_INTERVAL; // Duration of an AC wave in probe intervals
|
||||
|
||||
const char kMultiPress[] PROGMEM = "|SINGLE|DOUBLE|TRIPLE|QUAD|PENTA|CLEAR|";
|
||||
|
||||
#include <Ticker.h>
|
||||
|
||||
Ticker TickerButton;
|
||||
|
||||
struct BUTTON {
|
||||
uint32_t debounce = 0; // Button debounce timer
|
||||
uint32_t no_pullup_mask = 0; // key no pullup flag (1 = no pullup)
|
||||
uint32_t pulldown_mask = 0; // key pulldown flag (1 = pulldown)
|
||||
uint32_t inverted_mask = 0; // Key inverted flag (1 = inverted)
|
||||
uint32_t virtual_pin_used = 0; // Key used bitmask
|
||||
uint32_t virtual_pin = 0; // Key state bitmask
|
||||
uint16_t hold_timer[MAX_KEYS] = { 0 }; // Timer for button hold
|
||||
uint16_t dual_code = 0; // Sonoff dual received code
|
||||
uint8_t state[MAX_KEYS] = { 0 };
|
||||
uint8_t last_state[MAX_KEYS]; // Last button states
|
||||
uint8_t debounced_state[MAX_KEYS]; // Button debounced states
|
||||
uint8_t window_timer[MAX_KEYS] = { 0 }; // Max time between button presses to record press count
|
||||
uint8_t press_counter[MAX_KEYS] = { 0 }; // Number of button presses within Button.window_timer
|
||||
uint8_t dual_receive_count = 0; // Sonoff dual input flag
|
||||
uint8_t first_change = 0;
|
||||
uint8_t present = 0; // Number of buttons found flag
|
||||
bool probe_mutex;
|
||||
} Button;
|
||||
|
||||
#if defined(SOC_TOUCH_VERSION_1) || defined(SOC_TOUCH_VERSION_2)
|
||||
struct TOUCH_BUTTON {
|
||||
uint32_t touch_mask = 0; // Touch flag (1 = enabled)
|
||||
uint32_t calibration = 0; // Bitfield
|
||||
uint8_t hits[MAX_KEYS] = { 0 }; // Hits in a row to filter out noise
|
||||
} TouchButton;
|
||||
#endif // ESP32 SOC_TOUCH_VERSION_1 or SOC_TOUCH_VERSION_2
|
||||
|
||||
/********************************************************************************************/
|
||||
|
||||
void ButtonPullupFlag(uint32_t button_bit) {
|
||||
bitSet(Button.no_pullup_mask, button_bit);
|
||||
}
|
||||
|
||||
void ButtonPulldownFlag(uint32_t button_bit) {
|
||||
bitSet(Button.pulldown_mask, button_bit);
|
||||
}
|
||||
|
||||
void ButtonInvertFlag(uint32_t button_bit) {
|
||||
bitSet(Button.inverted_mask, button_bit);
|
||||
}
|
||||
|
||||
#if defined(SOC_TOUCH_VERSION_1) || defined(SOC_TOUCH_VERSION_2)
|
||||
void ButtonTouchFlag(uint32_t button_bit) {
|
||||
bitSet(TouchButton.touch_mask, button_bit);
|
||||
}
|
||||
#endif // ESP32 SOC_TOUCH_VERSION_1 or SOC_TOUCH_VERSION_2
|
||||
|
||||
|
||||
void ButtonSetVirtualPinState(uint32_t index, uint32_t state) {
|
||||
if (!Button.probe_mutex) {
|
||||
bitWrite(Button.virtual_pin, index, state);
|
||||
}
|
||||
}
|
||||
|
||||
/*********************************************************************************************/
|
||||
|
||||
void ButtonProbe(void) {
|
||||
if (Button.probe_mutex || (TasmotaGlobal.uptime < 4)) { return; } // Block GPIO for 4 seconds after poweron to workaround Wemos D1 / Obi RTS circuit
|
||||
Button.probe_mutex = true;
|
||||
|
||||
uint32_t state_filter;
|
||||
uint32_t first_change = Button.first_change;
|
||||
uint32_t debounce_flags = Settings->button_debounce % 10;
|
||||
bool force_high = (debounce_flags &1); // 51, 101, 151 etc
|
||||
bool force_low = (debounce_flags &2); // 52, 102, 152 etc
|
||||
bool ac_detect = (debounce_flags == 9); // 39, 49, 59 etc
|
||||
|
||||
if (ac_detect) {
|
||||
if (Settings->button_debounce < 2 * BUTTON_AC_PERIOD * BUTTON_FAST_PROBE_INTERVAL + 9) {
|
||||
state_filter = 2 * BUTTON_AC_PERIOD;
|
||||
} else if (Settings->button_debounce > (0x7f - 2 * BUTTON_AC_PERIOD) * BUTTON_FAST_PROBE_INTERVAL) {
|
||||
state_filter = 0x7f;
|
||||
} else {
|
||||
state_filter = (Settings->button_debounce - 9) / BUTTON_FAST_PROBE_INTERVAL;
|
||||
}
|
||||
} else {
|
||||
state_filter = Settings->button_debounce / BUTTON_PROBE_INTERVAL; // 5, 10, 15
|
||||
}
|
||||
|
||||
uint32_t not_activated;
|
||||
for (uint32_t i = 0; i < MAX_KEYS; i++) {
|
||||
if (PinUsed(GPIO_KEY1, i)) {
|
||||
#if defined(SOC_TOUCH_VERSION_1) || defined(SOC_TOUCH_VERSION_2)
|
||||
if (bitRead(TouchButton.touch_mask, i)) {
|
||||
if (ac_detect || bitRead(TouchButton.calibration, i +1)) { continue; } // Touch is slow. Takes 21mS to read
|
||||
uint32_t value = touchRead(Pin(GPIO_KEY1, i));
|
||||
#ifdef SOC_TOUCH_VERSION_2
|
||||
not_activated = (value < Settings->touch_threshold); // ESPS3 No touch = 24200, Touch > 40000
|
||||
#else
|
||||
not_activated = ((value == 0) || (value > Settings->touch_threshold)); // ESP32 No touch = 74, Touch < 40
|
||||
#endif
|
||||
} else
|
||||
#endif // ESP32 SOC_TOUCH_VERSION_1 or SOC_TOUCH_VERSION_2
|
||||
not_activated = (digitalRead(Pin(GPIO_KEY1, i)) != bitRead(Button.inverted_mask, i));
|
||||
}
|
||||
else if (bitRead(Button.virtual_pin_used, i)) {
|
||||
not_activated = bitRead(Button.virtual_pin, i);
|
||||
}
|
||||
else { continue; }
|
||||
|
||||
if (not_activated) {
|
||||
|
||||
if (ac_detect) { // Enabled with ButtonDebounce x9
|
||||
Button.state[i] |= 0x80;
|
||||
if (Button.state[i] > 0x80) {
|
||||
Button.state[i]--;
|
||||
if (0x80 == Button.state[i]) {
|
||||
Button.debounced_state[i] = 0;
|
||||
Button.first_change = false;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
||||
if (force_high) { // Enabled with ButtonDebounce x1
|
||||
if (1 == Button.debounced_state[i]) {
|
||||
Button.state[i] = state_filter; // With noisy input keep current state 1 unless constant 0
|
||||
}
|
||||
}
|
||||
|
||||
if (Button.state[i] < state_filter) {
|
||||
Button.state[i]++;
|
||||
if (state_filter == Button.state[i]) {
|
||||
Button.debounced_state[i] = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
||||
if (ac_detect) { // Enabled with ButtonDebounce x9
|
||||
/*
|
||||
* Moes MS-104B and similar devices using an AC detection circuitry
|
||||
* on their switch inputs generating an ~4 ms long low pulse every
|
||||
* AC wave. We start the time measurement on the falling edge.
|
||||
*
|
||||
* state: bit7: previous state, bit6..0: counter
|
||||
*/
|
||||
if (Button.state[i] & 0x80) {
|
||||
Button.state[i] &= 0x7f;
|
||||
if (Button.state[i] < state_filter - 2 * BUTTON_AC_PERIOD) {
|
||||
Button.state[i] += 2 * BUTTON_AC_PERIOD;
|
||||
} else {
|
||||
Button.state[i] = state_filter;
|
||||
Button.debounced_state[i] = 1;
|
||||
if (first_change) {
|
||||
Button.last_state[i] = 1;
|
||||
Button.first_change = false;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if (Button.state[i] > 0x00) {
|
||||
Button.state[i]--;
|
||||
if (0x00 == Button.state[i]) {
|
||||
Button.debounced_state[i] = 0;
|
||||
Button.first_change = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
||||
if (force_low) { // Enabled with ButtonDebounce x2
|
||||
if (0 == Button.debounced_state[i]) {
|
||||
Button.state[i] = 0; // With noisy input keep current state 0 unless constant 1
|
||||
}
|
||||
}
|
||||
|
||||
if (Button.state[i] > 0) {
|
||||
Button.state[i]--;
|
||||
if (0 == Button.state[i]) {
|
||||
Button.debounced_state[i] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Button.probe_mutex = false;
|
||||
}
|
||||
|
||||
void ButtonInit(void) {
|
||||
bool ac_detect = (Settings->button_debounce % 10 == 9);
|
||||
|
||||
Button.present = 0;
|
||||
Button.virtual_pin_used = 0;
|
||||
|
||||
#ifdef ESP8266
|
||||
if ((SONOFF_DUAL == TasmotaGlobal.module_type) || (CH4 == TasmotaGlobal.module_type)) {
|
||||
Button.present++;
|
||||
}
|
||||
#endif // ESP8266
|
||||
|
||||
for (uint32_t i = 0; i < MAX_KEYS; i++) {
|
||||
Button.last_state[i] = NOT_PRESSED;
|
||||
bool used = false;
|
||||
|
||||
if (PinUsed(GPIO_KEY1, i)) {
|
||||
Button.present++;
|
||||
#ifdef ESP8266
|
||||
pinMode(Pin(GPIO_KEY1, i), bitRead(Button.no_pullup_mask, i) ? INPUT : ((16 == Pin(GPIO_KEY1, i)) ? INPUT_PULLDOWN_16 : INPUT_PULLUP));
|
||||
#endif // ESP8266
|
||||
#ifdef ESP32
|
||||
pinMode(Pin(GPIO_KEY1, i), bitRead(Button.pulldown_mask, i) ? INPUT_PULLDOWN : bitRead(Button.no_pullup_mask, i) ? INPUT : INPUT_PULLUP);
|
||||
#endif // ESP32
|
||||
// Set global now so doesn't change the saved power state on first button check
|
||||
Button.last_state[i] = (digitalRead(Pin(GPIO_KEY1, i)) != bitRead(Button.inverted_mask, i));
|
||||
used = true;
|
||||
}
|
||||
#ifdef USE_ADC
|
||||
else if (PinUsed(GPIO_ADC_BUTTON, i) || PinUsed(GPIO_ADC_BUTTON_INV, i)) {
|
||||
Button.present++;
|
||||
}
|
||||
#endif // USE_ADC
|
||||
else {
|
||||
XdrvMailbox.index = i;
|
||||
if (XdrvCall(FUNC_ADD_BUTTON)) {
|
||||
|
||||
AddLog(LOG_LEVEL_DEBUG, PSTR("BTN: Add button %d"), i);
|
||||
|
||||
bitSet(Button.virtual_pin_used, i);
|
||||
Button.present++;
|
||||
Button.last_state[i] = XdrvMailbox.payload;
|
||||
used = true;
|
||||
}
|
||||
}
|
||||
|
||||
if (used && ac_detect) {
|
||||
Button.state[i] = 0x80 + 2 * BUTTON_AC_PERIOD;
|
||||
Button.last_state[i] = 0; // Will set later in the debouncing code
|
||||
}
|
||||
Button.debounced_state[i] = Button.last_state[i];
|
||||
}
|
||||
if (Button.present) {
|
||||
Button.first_change = true;
|
||||
TickerButton.attach_ms((ac_detect) ? BUTTON_FAST_PROBE_INTERVAL : BUTTON_PROBE_INTERVAL, ButtonProbe);
|
||||
}
|
||||
}
|
||||
|
||||
uint8_t ButtonSerial(uint8_t serial_in_byte) {
|
||||
if (Button.dual_receive_count) {
|
||||
Button.dual_receive_count--;
|
||||
if (Button.dual_receive_count) {
|
||||
Button.dual_code = (Button.dual_code << 8) | serial_in_byte;
|
||||
serial_in_byte = 0;
|
||||
} else {
|
||||
if (serial_in_byte != 0xA1) {
|
||||
Button.dual_code = 0; // 0xA1 - End of Sonoff dual button code
|
||||
}
|
||||
}
|
||||
}
|
||||
if (0xA0 == serial_in_byte) { // 0xA0 - Start of Sonoff dual button code
|
||||
serial_in_byte = 0;
|
||||
Button.dual_code = 0;
|
||||
Button.dual_receive_count = 3;
|
||||
}
|
||||
|
||||
return serial_in_byte;
|
||||
}
|
||||
|
||||
/*********************************************************************************************\
|
||||
* Button handler with single press only or multi-press and hold on all buttons
|
||||
*
|
||||
* ButtonDebounce (50) - Debounce time in mSec
|
||||
* SetOption1 (0) - If set do not execute commands WifiConfig and Reset
|
||||
* SetOption11 (0) - If set perform single press action on double press and reverse (on two relay devices only)
|
||||
* SetOption13 (0) - If set act on single press only
|
||||
* SetOption32 (40) - Button held for factor times longer
|
||||
* SetOption40 (0) - Do not ignore button hold
|
||||
* SetOption73 (0) - Decouple button from relay and send just mqtt topic
|
||||
\*********************************************************************************************/
|
||||
|
||||
void ButtonHandler(void) {
|
||||
if (TasmotaGlobal.uptime < 4) { return; } // Block GPIO for 4 seconds after poweron to workaround Wemos D1 / Obi RTS circuit
|
||||
|
||||
uint8_t hold_time_extent = IMMINENT_RESET_FACTOR; // Extent hold time factor in case of iminnent Reset command
|
||||
uint16_t loops_per_second = 1000 / Settings->button_debounce; // ButtonDebounce (50)
|
||||
char scmnd[20];
|
||||
|
||||
for (uint32_t button_index = 0; button_index < MAX_KEYS; button_index++) {
|
||||
uint8_t button = NOT_PRESSED;
|
||||
uint8_t button_present = 0;
|
||||
|
||||
#ifdef ESP8266
|
||||
if (!button_index && ((SONOFF_DUAL == TasmotaGlobal.module_type) || (CH4 == TasmotaGlobal.module_type))) {
|
||||
button_present = 1;
|
||||
if (Button.dual_code) {
|
||||
AddLog(LOG_LEVEL_DEBUG, PSTR("BTN: Code %04X"), Button.dual_code);
|
||||
button = PRESSED;
|
||||
if (0xF500 == Button.dual_code) { // Button hold
|
||||
Button.hold_timer[button_index] = (loops_per_second * Settings->param[P_HOLD_TIME] / 10) -1; // SetOption32 (40)
|
||||
hold_time_extent = 1;
|
||||
}
|
||||
Button.dual_code = 0;
|
||||
}
|
||||
} else
|
||||
#endif // ESP8266
|
||||
if (PinUsed(GPIO_KEY1, button_index)) {
|
||||
|
||||
#if defined(SOC_TOUCH_VERSION_1) || defined(SOC_TOUCH_VERSION_2)
|
||||
if (bitRead(TouchButton.touch_mask, button_index) && bitRead(TouchButton.calibration, button_index +1)) { // Touch
|
||||
uint32_t _value = touchRead(Pin(GPIO_KEY1, button_index));
|
||||
#ifdef SOC_TOUCH_VERSION_2
|
||||
if (_value > Settings->touch_threshold) { // ESPS3 No touch = 24200, Touch = 100000
|
||||
#else
|
||||
if ((_value > 0) && (_value < Settings->touch_threshold)) { // ESP32 No touch = 74, Touch = 20 (Probably read-error (0))
|
||||
#endif
|
||||
TouchButton.hits[button_index]++;
|
||||
} else {
|
||||
TouchButton.hits[button_index] = 0;
|
||||
}
|
||||
AddLog(LOG_LEVEL_INFO, PSTR("PLOT: %u, %u, %u,"), button_index +1, _value, TouchButton.hits[button_index]); // Button number (1..4), value, continuous hits under threshold
|
||||
continue;
|
||||
} else
|
||||
#endif // ESP32 SOC_TOUCH_VERSION_1 or SOC_TOUCH_VERSION_2
|
||||
|
||||
button_present = 1;
|
||||
button = Button.debounced_state[button_index];
|
||||
}
|
||||
#ifdef USE_ADC
|
||||
else if (PinUsed(GPIO_ADC_BUTTON, button_index)) {
|
||||
button_present = 1;
|
||||
button = AdcGetButton(Pin(GPIO_ADC_BUTTON, button_index));
|
||||
}
|
||||
else if (PinUsed(GPIO_ADC_BUTTON_INV, button_index)) {
|
||||
button_present = 1;
|
||||
button = AdcGetButton(Pin(GPIO_ADC_BUTTON_INV, button_index));
|
||||
}
|
||||
#endif // USE_ADC
|
||||
else if (bitRead(Button.virtual_pin_used, button_index)) {
|
||||
button_present = 1;
|
||||
button = Button.debounced_state[button_index];
|
||||
}
|
||||
|
||||
if (button_present) {
|
||||
XdrvMailbox.index = button_index;
|
||||
XdrvMailbox.payload = button;
|
||||
if (XdrvCall(FUNC_BUTTON_PRESSED)) {
|
||||
// Serviced
|
||||
}
|
||||
#ifdef ESP8266
|
||||
else if (SONOFF_4CHPRO == TasmotaGlobal.module_type) {
|
||||
if (Button.hold_timer[button_index]) { Button.hold_timer[button_index]--; }
|
||||
|
||||
bool button_pressed = false;
|
||||
if ((PRESSED == button) && (NOT_PRESSED == Button.last_state[button_index])) {
|
||||
AddLog(LOG_LEVEL_DEBUG, PSTR("BTN: Button%d level 1-0"), button_index +1);
|
||||
Button.hold_timer[button_index] = loops_per_second;
|
||||
button_pressed = true;
|
||||
}
|
||||
if ((NOT_PRESSED == button) && (PRESSED == Button.last_state[button_index])) {
|
||||
AddLog(LOG_LEVEL_DEBUG, PSTR("BTN: Button%d level 0-1"), button_index +1);
|
||||
if (!Button.hold_timer[button_index]) { button_pressed = true; } // Do not allow within 1 second
|
||||
}
|
||||
if (button_pressed) {
|
||||
if (!Settings->flag3.mqtt_buttons) { // SetOption73 (0) - Decouple button from relay and send just mqtt topic
|
||||
if (!SendKey(KEY_BUTTON, button_index +1, POWER_TOGGLE)) { // Execute Toggle command via MQTT if ButtonTopic is set
|
||||
ExecuteCommandPower(button_index +1, POWER_TOGGLE, SRC_BUTTON); // Execute Toggle command internally
|
||||
}
|
||||
} else {
|
||||
MqttButtonTopic(button_index +1, 1, 0); // SetOption73 (0) - Decouple button from relay and send just mqtt topic
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif // ESP8266
|
||||
else {
|
||||
if ((PRESSED == button) && (NOT_PRESSED == Button.last_state[button_index])) {
|
||||
|
||||
if (Settings->flag.button_single) { // SetOption13 (0) - Allow only single button press for immediate action,
|
||||
if (!Settings->flag3.mqtt_buttons) { // SetOption73 (0) - Decouple button from relay and send just mqtt topic
|
||||
AddLog(LOG_LEVEL_DEBUG, PSTR("BTN: Button%d immediate"), button_index +1);
|
||||
if (!SendKey(KEY_BUTTON, button_index +1, POWER_TOGGLE)) { // Execute Toggle command via MQTT if ButtonTopic is set
|
||||
ExecuteCommandPower(button_index +1, POWER_TOGGLE, SRC_BUTTON); // Execute Toggle command internally
|
||||
}
|
||||
} else {
|
||||
MqttButtonTopic(button_index +1, 1, 0); // SetOption73 1 - Decouple button from relay and send just mqtt topic
|
||||
}
|
||||
} else {
|
||||
Button.press_counter[button_index] = (Button.window_timer[button_index]) ? Button.press_counter[button_index] +1 : 1;
|
||||
AddLog(LOG_LEVEL_DEBUG, PSTR("BTN: Button%d multi-press %d"), button_index +1, Button.press_counter[button_index]);
|
||||
Button.window_timer[button_index] = loops_per_second / 2; // 0.5 second multi press window
|
||||
}
|
||||
TasmotaGlobal.blinks = 201;
|
||||
}
|
||||
|
||||
if (NOT_PRESSED == button) {
|
||||
Button.hold_timer[button_index] = 0;
|
||||
if (Settings->flag3.mqtt_buttons && (PRESSED == Button.last_state[button_index]) && !Button.press_counter[button_index]) { // SetOption73 (0) - Decouple button from relay and send just mqtt topic
|
||||
MqttButtonTopic(button_index +1, 6, 0);
|
||||
}
|
||||
} else {
|
||||
Button.hold_timer[button_index]++;
|
||||
if (Settings->flag.button_single) { // SetOption13 (0) - Allow only single button press for immediate action
|
||||
if (Button.hold_timer[button_index] == loops_per_second * hold_time_extent * Settings->param[P_HOLD_TIME] / 10) { // SetOption32 (40) - Button held for factor times longer
|
||||
snprintf_P(scmnd, sizeof(scmnd), PSTR(D_CMND_SETOPTION "13 0")); // Disable single press only
|
||||
ExecuteCommand(scmnd, SRC_BUTTON);
|
||||
}
|
||||
} else {
|
||||
if (Button.hold_timer[button_index] == loops_per_second * Settings->param[P_HOLD_TIME] / 10) { // SetOption32 (40) - Button hold
|
||||
Button.press_counter[button_index] = 0;
|
||||
if (Settings->flag3.mqtt_buttons) { // SetOption73 (0) - Decouple button from relay and send just mqtt topic
|
||||
MqttButtonTopic(button_index +1, 3, 1);
|
||||
} else {
|
||||
SendKey(KEY_BUTTON, button_index +1, POWER_HOLD); // Execute Hold command via MQTT if ButtonTopic is set
|
||||
}
|
||||
} else {
|
||||
if (Settings->flag.button_restrict) { // SetOption1 (0) - Control button multipress
|
||||
if (Settings->param[P_HOLD_IGNORE] > 0) { // SetOption40 (0) - Do not ignore button hold
|
||||
if (Button.hold_timer[button_index] > loops_per_second * Settings->param[P_HOLD_IGNORE] / 10) {
|
||||
Button.hold_timer[button_index] = 0; // Reset button hold counter to stay below hold trigger
|
||||
Button.press_counter[button_index] = 0; // Discard button press to disable functionality
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if ((Button.hold_timer[button_index] == loops_per_second * hold_time_extent * Settings->param[P_HOLD_TIME] / 10)) { // SetOption32 (40) - Button held for factor times longer
|
||||
Button.press_counter[button_index] = 0;
|
||||
snprintf_P(scmnd, sizeof(scmnd), PSTR(D_CMND_RESET " 1"));
|
||||
ExecuteCommand(scmnd, SRC_BUTTON);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (!Settings->flag.button_single) { // SetOption13 (0) - Allow multi-press
|
||||
if (Button.window_timer[button_index]) {
|
||||
Button.window_timer[button_index]--;
|
||||
} else {
|
||||
if (!TasmotaGlobal.restart_flag && !Button.hold_timer[button_index] && (Button.press_counter[button_index] > 0) && (Button.press_counter[button_index] < 7)) {
|
||||
|
||||
bool single_press = false;
|
||||
if (Button.press_counter[button_index] < 3) { // Single or Double press
|
||||
#ifdef ESP8266
|
||||
if ((SONOFF_DUAL_R2 == TasmotaGlobal.module_type) || (SONOFF_DUAL == TasmotaGlobal.module_type) || (CH4 == TasmotaGlobal.module_type)) {
|
||||
single_press = true;
|
||||
} else
|
||||
#endif // ESP8266
|
||||
{
|
||||
single_press = (Settings->flag.button_swap +1 == Button.press_counter[button_index]); // SetOption11 (0)
|
||||
if ((1 == Button.present) && (2 == TasmotaGlobal.devices_present)) { // Single Button with two devices only
|
||||
if (Settings->flag.button_swap) { // SetOption11 (0)
|
||||
Button.press_counter[button_index] = (single_press) ? 1 : 2;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
XdrvMailbox.index = button_index;
|
||||
XdrvMailbox.payload = Button.press_counter[button_index];
|
||||
if (XdrvCall(FUNC_BUTTON_MULTI_PRESSED)) {
|
||||
// Serviced
|
||||
} else
|
||||
|
||||
#ifdef ROTARY_V1
|
||||
if (!RotaryButtonPressed(button_index)) {
|
||||
#endif
|
||||
if (!Settings->flag3.mqtt_buttons && single_press && SendKey(KEY_BUTTON, button_index + Button.press_counter[button_index], POWER_TOGGLE)) { // Execute Toggle command via MQTT if ButtonTopic is set
|
||||
// Success
|
||||
} else {
|
||||
if (Button.press_counter[button_index] < 6) { // Single to Penta press
|
||||
// if (WifiState() > WIFI_RESTART) { // Wifimanager active
|
||||
// TasmotaGlobal.restart_flag = 1;
|
||||
// }
|
||||
if (!Settings->flag3.mqtt_buttons) { // SetOption73 - Detach buttons from relays and enable MQTT action state for multipress
|
||||
if (Button.press_counter[button_index] == 1) { // By default first press always send a TOGGLE (2)
|
||||
ExecuteCommandPower(button_index + Button.press_counter[button_index], POWER_TOGGLE, SRC_BUTTON);
|
||||
} else {
|
||||
SendKey(KEY_BUTTON, button_index +1, Button.press_counter[button_index] +9); // 2,3,4 and 5 press send just the key value (11,12,13 and 14) for rules
|
||||
if (0 == button_index) { // BUTTON1 can toggle up to 5 relays if present. If a relay is not present will send out the key value (2,11,12,13 and 14) for rules
|
||||
bool valid_relay = PinUsed(GPIO_REL1, Button.press_counter[button_index]-1);
|
||||
#ifdef ESP8266
|
||||
if ((SONOFF_DUAL == TasmotaGlobal.module_type) || (CH4 == TasmotaGlobal.module_type)) {
|
||||
valid_relay = (Button.press_counter[button_index] <= TasmotaGlobal.devices_present);
|
||||
}
|
||||
#endif // ESP8266
|
||||
#ifdef USE_SHELLY_PRO
|
||||
if (TasmotaGlobal.gpio_optiona.shelly_pro) {
|
||||
valid_relay = (Button.press_counter[button_index] <= TasmotaGlobal.devices_present);
|
||||
}
|
||||
#endif // USE_SHELLY_PRO
|
||||
if ((Button.press_counter[button_index] > 1) && valid_relay && (Button.press_counter[button_index] <= MAX_RELAY_BUTTON1)) {
|
||||
ExecuteCommandPower(button_index + Button.press_counter[button_index], POWER_TOGGLE, SRC_BUTTON); // Execute Toggle command internally
|
||||
// AddLog(LOG_LEVEL_DEBUG, PSTR("BTN: Relay%d found on GPIO%d"), Button.press_counter[button_index], Pin(GPIO_REL1, Button.press_counter[button_index]-1));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} else { // 6 press start wificonfig 2
|
||||
if (!Settings->flag.button_restrict) { // SetOption1 - Control button multipress
|
||||
snprintf_P(scmnd, sizeof(scmnd), PSTR(D_CMND_WIFICONFIG " 2"));
|
||||
ExecuteCommand(scmnd, SRC_BUTTON);
|
||||
}
|
||||
}
|
||||
if (Settings->flag3.mqtt_buttons) { // SetOption73 (0) - Decouple button from relay and send just mqtt topic
|
||||
if (Button.press_counter[button_index] >= 1 && Button.press_counter[button_index] <= 5) {
|
||||
MqttButtonTopic(button_index +1, Button.press_counter[button_index], 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
#ifdef ROTARY_V1
|
||||
}
|
||||
#endif
|
||||
Button.press_counter[button_index] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
Button.last_state[button_index] = button;
|
||||
}
|
||||
}
|
||||
|
||||
void MqttButtonTopic(uint32_t button_id, uint32_t action, uint32_t hold) {
|
||||
SendKey(KEY_BUTTON, button_id, (hold) ? 3 : action +9);
|
||||
|
||||
if (!Settings->flag.hass_discovery) { // SetOption19 - Control Home Assistant automatic discovery (See SetOption59)
|
||||
char scommand[10];
|
||||
snprintf_P(scommand, sizeof(scommand), PSTR(D_JSON_BUTTON "%d"), button_id);
|
||||
char mqttstate[7];
|
||||
Response_P(S_JSON_SVALUE_ACTION_SVALUE, scommand, (hold) ? SettingsText(SET_STATE_TXT4) : GetTextIndexed(mqttstate, sizeof(mqttstate), action, kMultiPress));
|
||||
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, scommand);
|
||||
}
|
||||
}
|
||||
|
||||
void ButtonLoop(void) {
|
||||
if (Button.present) {
|
||||
if (TimeReached(Button.debounce)) {
|
||||
SetNextTimeInterval(Button.debounce, Settings->button_debounce); // ButtonDebounce (50)
|
||||
ButtonHandler();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif // BUTTON_V3
|
@ -17,7 +17,7 @@
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#define SWITCH_V3
|
||||
//#define SWITCH_V3
|
||||
#ifdef SWITCH_V3
|
||||
/*********************************************************************************************\
|
||||
* Switch support with input filter
|
||||
|
490
tasmota/tasmota_support/support_switch_v4.ino
Normal file
490
tasmota/tasmota_support/support_switch_v4.ino
Normal file
@ -0,0 +1,490 @@
|
||||
/*
|
||||
support_switch.ino - switch support for Tasmota
|
||||
|
||||
Copyright (C) 2021 Theo Arends
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#define SWITCH_V4
|
||||
#ifdef SWITCH_V4
|
||||
/*********************************************************************************************\
|
||||
* Switch support with input filter
|
||||
*
|
||||
* Inspired by (https://github.com/OLIMEX/olimex-iot-firmware-esp8266/blob/master/olimex/user/user_switch2.c)
|
||||
\*********************************************************************************************/
|
||||
|
||||
const uint8_t SWITCH_PROBE_INTERVAL = 10; // Time in milliseconds between switch input probe
|
||||
const uint8_t SWITCH_FAST_PROBE_INTERVAL = 2; // Time in milliseconds between switch input probe for AC detection
|
||||
const uint8_t SWITCH_AC_PERIOD = (20 + SWITCH_FAST_PROBE_INTERVAL - 1) / SWITCH_FAST_PROBE_INTERVAL; // Duration of an AC wave in probe intervals
|
||||
|
||||
// Switch Mode definietions
|
||||
#define SM_TIMER_MASK 0x3F
|
||||
#define SM_NO_TIMER_MASK 0xFF
|
||||
#define SM_FIRST_PRESS 0x40
|
||||
#define SM_SECOND_PRESS 0x80
|
||||
#define POWER_NONE 99
|
||||
|
||||
const char kSwitchPressStates[] PROGMEM =
|
||||
"||||POWER_INCREMENT|POWER_INV|POWER_CLEAR|POWER_RELEASE|POWER_100||POWER_DELAYED";
|
||||
|
||||
#include <Ticker.h>
|
||||
|
||||
Ticker TickerSwitch;
|
||||
|
||||
struct SWITCH {
|
||||
uint32_t debounce = 0; // Switch debounce timer
|
||||
uint32_t no_pullup_mask = 0; // Switch pull-up bitmask flags
|
||||
uint32_t pulldown_mask = 0; // Switch pull-down bitmask flags
|
||||
uint32_t virtual_pin_used = 0; // Switch used bitmask
|
||||
uint32_t virtual_pin = 0; // Switch state bitmask
|
||||
uint8_t state[MAX_SWITCHES] = { 0 };
|
||||
uint8_t last_state[MAX_SWITCHES]; // Last wall switch states
|
||||
uint8_t hold_timer[MAX_SWITCHES] = { 0 }; // Timer for wallswitch push button hold
|
||||
uint8_t debounced_state[MAX_SWITCHES]; // Switch debounced states
|
||||
uint8_t first_change = 0;
|
||||
uint8_t present = 0;
|
||||
bool probe_mutex;
|
||||
} Switch;
|
||||
|
||||
/********************************************************************************************/
|
||||
|
||||
void SwitchPullupFlag(uint32 switch_bit) {
|
||||
bitSet(Switch.no_pullup_mask, switch_bit);
|
||||
}
|
||||
|
||||
void SwitchPulldownFlag(uint32 switch_bit) {
|
||||
bitSet(Switch.pulldown_mask, switch_bit);
|
||||
}
|
||||
|
||||
void SwitchSetVirtualPinState(uint32_t index, uint32_t state) {
|
||||
if (!Switch.probe_mutex) {
|
||||
bitWrite(Switch.virtual_pin, index, state);
|
||||
}
|
||||
}
|
||||
|
||||
void SwitchSetVirtual(uint32_t index, uint32_t state) {
|
||||
bitSet(Switch.virtual_pin_used, index);
|
||||
Switch.debounced_state[index] = state;
|
||||
}
|
||||
|
||||
uint8_t SwitchGetVirtual(uint32_t index) {
|
||||
return Switch.debounced_state[index];
|
||||
}
|
||||
|
||||
uint8_t SwitchLastState(uint32_t index) {
|
||||
return Switch.last_state[index];
|
||||
}
|
||||
|
||||
bool SwitchState(uint32_t index) {
|
||||
uint32_t switchmode = Settings->switchmode[index];
|
||||
return ((FOLLOW_INV == switchmode) ||
|
||||
(PUSHBUTTON_INV == switchmode) ||
|
||||
(PUSHBUTTONHOLD_INV == switchmode) ||
|
||||
(FOLLOWMULTI_INV == switchmode) ||
|
||||
(PUSHHOLDMULTI_INV == switchmode) ||
|
||||
(PUSHON_INV == switchmode) ||
|
||||
(PUSH_IGNORE_INV == switchmode)
|
||||
) ^ Switch.last_state[index];
|
||||
}
|
||||
|
||||
/*********************************************************************************************/
|
||||
|
||||
void SwitchProbe(void) {
|
||||
if (Switch.probe_mutex || (TasmotaGlobal.uptime < 4)) { return; } // Block GPIO for 4 seconds after poweron to workaround Wemos D1 / Obi RTS circuit
|
||||
Switch.probe_mutex = true;
|
||||
|
||||
uint32_t state_filter;
|
||||
uint32_t first_change = Switch.first_change;
|
||||
uint32_t debounce_flags = Settings->switch_debounce % 10;
|
||||
bool force_high = (debounce_flags &1); // 51, 101, 151 etc
|
||||
bool force_low = (debounce_flags &2); // 52, 102, 152 etc
|
||||
bool ac_detect = (debounce_flags == 9);
|
||||
|
||||
if (ac_detect) {
|
||||
if (Settings->switch_debounce < 2 * SWITCH_AC_PERIOD * SWITCH_FAST_PROBE_INTERVAL + 9) {
|
||||
state_filter = 2 * SWITCH_AC_PERIOD;
|
||||
} else if (Settings->switch_debounce > (0x7f - 2 * SWITCH_AC_PERIOD) * SWITCH_FAST_PROBE_INTERVAL) {
|
||||
state_filter = 0x7f;
|
||||
} else {
|
||||
state_filter = (Settings->switch_debounce - 9) / SWITCH_FAST_PROBE_INTERVAL;
|
||||
}
|
||||
} else {
|
||||
state_filter = Settings->switch_debounce / SWITCH_PROBE_INTERVAL; // 5, 10, 15
|
||||
}
|
||||
|
||||
uint32_t not_activated;
|
||||
for (uint32_t i = 0; i < MAX_SWITCHES; i++) {
|
||||
if (PinUsed(GPIO_SWT1, i)) {
|
||||
not_activated = digitalRead(Pin(GPIO_SWT1, i));
|
||||
}
|
||||
else if (bitRead(Switch.virtual_pin_used, i)) {
|
||||
not_activated = bitRead(Switch.virtual_pin, i);
|
||||
}
|
||||
else { continue; }
|
||||
|
||||
// Olimex user_switch2.c code to fix 50Hz induced pulses
|
||||
if (not_activated) {
|
||||
|
||||
if (ac_detect) { // Enabled with SwitchDebounce x9
|
||||
Switch.state[i] |= 0x80;
|
||||
if (Switch.state[i] > 0x80) {
|
||||
Switch.state[i]--;
|
||||
if (0x80 == Switch.state[i]) {
|
||||
Switch.debounced_state[i] = 0;
|
||||
Switch.first_change = false;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
||||
if (force_high) { // Enabled with SwitchDebounce x1
|
||||
if (1 == Switch.debounced_state[i]) {
|
||||
Switch.state[i] = state_filter; // With noisy input keep current state 1 unless constant 0
|
||||
}
|
||||
}
|
||||
|
||||
if (Switch.state[i] < state_filter) {
|
||||
Switch.state[i]++;
|
||||
if (state_filter == Switch.state[i]) {
|
||||
Switch.debounced_state[i] = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
||||
if (ac_detect) { // Enabled with SwitchDebounce x9
|
||||
/*
|
||||
* Moes MS-104B and similar devices using an AC detection circuitry
|
||||
* on their switch inputs generating an ~4 ms long low pulse every
|
||||
* AC wave. We start the time measurement on the falling edge.
|
||||
*
|
||||
* state: bit7: previous state, bit6..0: counter
|
||||
*/
|
||||
if (Switch.state[i] & 0x80) {
|
||||
Switch.state[i] &= 0x7f;
|
||||
if (Switch.state[i] < state_filter - 2 * SWITCH_AC_PERIOD) {
|
||||
Switch.state[i] += 2 * SWITCH_AC_PERIOD;
|
||||
} else {
|
||||
Switch.state[i] = state_filter;
|
||||
Switch.debounced_state[i] = 1;
|
||||
if (first_change) {
|
||||
Switch.last_state[i] = 1;
|
||||
Switch.first_change = false;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if (Switch.state[i] > 0x00) {
|
||||
Switch.state[i]--;
|
||||
if (0x00 == Switch.state[i]) {
|
||||
Switch.debounced_state[i] = 0;
|
||||
Switch.first_change = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
||||
if (force_low) { // Enabled with SwitchDebounce x2
|
||||
if (0 == Switch.debounced_state[i]) {
|
||||
Switch.state[i] = 0; // With noisy input keep current state 0 unless constant 1
|
||||
}
|
||||
}
|
||||
|
||||
if (Switch.state[i] > 0) {
|
||||
Switch.state[i]--;
|
||||
if (0 == Switch.state[i]) {
|
||||
Switch.debounced_state[i] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Switch.probe_mutex = false;
|
||||
}
|
||||
|
||||
void SwitchInit(void) {
|
||||
bool ac_detect = (Settings->switch_debounce % 10 == 9);
|
||||
|
||||
Switch.present = 0;
|
||||
Switch.virtual_pin_used = 0;
|
||||
for (uint32_t i = 0; i < MAX_SWITCHES; i++) {
|
||||
Switch.last_state[i] = NOT_PRESSED; // Init global to virtual switch state;
|
||||
bool used = false;
|
||||
|
||||
if (PinUsed(GPIO_SWT1, i)) {
|
||||
Switch.present++;
|
||||
#ifdef ESP8266
|
||||
pinMode(Pin(GPIO_SWT1, i), bitRead(Switch.no_pullup_mask, i) ? INPUT : ((16 == Pin(GPIO_SWT1, i)) ? INPUT_PULLDOWN_16 : INPUT_PULLUP));
|
||||
#endif // ESP8266
|
||||
#ifdef ESP32
|
||||
pinMode(Pin(GPIO_SWT1, i), bitRead(Switch.pulldown_mask, i) ? INPUT_PULLDOWN : bitRead(Switch.no_pullup_mask, i) ? INPUT : INPUT_PULLUP);
|
||||
#endif // ESP32
|
||||
Switch.last_state[i] = digitalRead(Pin(GPIO_SWT1, i)); // Set global now so doesn't change the saved power state on first switch check
|
||||
used = true;
|
||||
}
|
||||
else {
|
||||
XdrvMailbox.index = i;
|
||||
if (XdrvCall(FUNC_ADD_SWITCH)) {
|
||||
|
||||
AddLog(LOG_LEVEL_DEBUG, PSTR("SWT: Add switch %d"), i);
|
||||
|
||||
bitSet(Switch.virtual_pin_used, i);
|
||||
Switch.present++;
|
||||
Switch.last_state[i] = XdrvMailbox.payload;
|
||||
used = true;
|
||||
}
|
||||
}
|
||||
|
||||
if (used && ac_detect) {
|
||||
Switch.state[i] = 0x80 + 2 * SWITCH_AC_PERIOD;
|
||||
Switch.last_state[i] = 0; // Will set later in the debouncing code
|
||||
}
|
||||
Switch.debounced_state[i] = Switch.last_state[i];
|
||||
}
|
||||
if (Switch.present) {
|
||||
Switch.first_change = true;
|
||||
TickerSwitch.attach_ms((ac_detect) ? SWITCH_FAST_PROBE_INTERVAL : SWITCH_PROBE_INTERVAL, SwitchProbe);
|
||||
}
|
||||
}
|
||||
|
||||
/*********************************************************************************************\
|
||||
* Switch handler
|
||||
\*********************************************************************************************/
|
||||
|
||||
void SwitchHandler(uint32_t mode) {
|
||||
if (TasmotaGlobal.uptime < 4) { return; } // Block GPIO for 4 seconds after poweron to workaround Wemos D1 / Obi RTS circuit
|
||||
|
||||
uint32_t loops_per_second = 1000 / Settings->switch_debounce;
|
||||
|
||||
for (uint32_t i = 0; i < MAX_SWITCHES; i++) {
|
||||
if (PinUsed(GPIO_SWT1, i) || bitRead(Switch.virtual_pin_used, i)) {
|
||||
uint32_t button = Switch.debounced_state[i];
|
||||
uint32_t switchflag = POWER_TOGGLE +1;
|
||||
uint32_t mqtt_action = POWER_NONE;
|
||||
uint32_t switchmode = Settings->switchmode[i];
|
||||
|
||||
if (Switch.hold_timer[i] & (((switchmode == PUSHHOLDMULTI) | (switchmode == PUSHHOLDMULTI_INV)) ? SM_TIMER_MASK: SM_NO_TIMER_MASK)) {
|
||||
Switch.hold_timer[i]--;
|
||||
if ((Switch.hold_timer[i] & SM_TIMER_MASK) == loops_per_second * Settings->param[P_HOLD_TIME] / 25) {
|
||||
if ((switchmode == PUSHHOLDMULTI) | (switchmode == PUSHHOLDMULTI_INV)){
|
||||
if (((switchmode == PUSHHOLDMULTI) & (NOT_PRESSED == Switch.last_state[i])) | ((switchmode == PUSHHOLDMULTI_INV) & (PRESSED == Switch.last_state[i]))) {
|
||||
SendKey(KEY_SWITCH, i +1, POWER_INCREMENT); // Execute command via MQTT
|
||||
}
|
||||
else if ((Switch.hold_timer[i] & ~SM_TIMER_MASK) == SM_FIRST_PRESS) {
|
||||
SendKey(KEY_SWITCH, i +1, POWER_DELAYED); // Execute command via MQTT
|
||||
mqtt_action = POWER_DELAYED;
|
||||
Switch.hold_timer[i] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (0 == (Switch.hold_timer[i] & (((switchmode == PUSHHOLDMULTI) | (switchmode == PUSHHOLDMULTI_INV)) ? SM_TIMER_MASK: SM_NO_TIMER_MASK))) {
|
||||
switch (switchmode) {
|
||||
case TOGGLEMULTI:
|
||||
switchflag = POWER_TOGGLE; // Toggle after hold
|
||||
break;
|
||||
case FOLLOWMULTI:
|
||||
switchflag = button &1; // Follow wall switch state after hold
|
||||
break;
|
||||
case FOLLOWMULTI_INV:
|
||||
switchflag = ~button &1; // Follow inverted wall switch state after hold
|
||||
break;
|
||||
case PUSHHOLDMULTI:
|
||||
if (NOT_PRESSED == button) {
|
||||
Switch.hold_timer[i] = loops_per_second * Settings->param[P_HOLD_TIME] / 25;
|
||||
SendKey(KEY_SWITCH, i +1, POWER_INCREMENT); // Execute command via MQTT
|
||||
mqtt_action = POWER_INCREMENT;
|
||||
} else {
|
||||
Switch.hold_timer[i]= 0;
|
||||
SendKey(KEY_SWITCH, i +1, POWER_CLEAR); // Execute command via MQTT
|
||||
mqtt_action = POWER_CLEAR;
|
||||
}
|
||||
break;
|
||||
case PUSHHOLDMULTI_INV:
|
||||
if (PRESSED == button) {
|
||||
Switch.hold_timer[i] = loops_per_second * Settings->param[P_HOLD_TIME] / 25;
|
||||
SendKey(KEY_SWITCH, i +1, POWER_INCREMENT); // Execute command via MQTT
|
||||
mqtt_action = POWER_INCREMENT;
|
||||
} else {
|
||||
Switch.hold_timer[i]= 0;
|
||||
SendKey(KEY_SWITCH, i +1, POWER_CLEAR); // Execute command via MQTT
|
||||
mqtt_action = POWER_CLEAR;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
SendKey(KEY_SWITCH, i +1, POWER_HOLD); // Execute command via MQTT
|
||||
mqtt_action = POWER_HOLD;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (button != Switch.last_state[i]) { // This implies if ((PRESSED == button) then (NOT_PRESSED == Switch.last_state[i]))
|
||||
switch (switchmode) {
|
||||
case TOGGLE:
|
||||
case PUSHBUTTON_TOGGLE:
|
||||
switchflag = POWER_TOGGLE; // Toggle
|
||||
break;
|
||||
case FOLLOW:
|
||||
switchflag = button &1; // Follow wall switch state
|
||||
break;
|
||||
case FOLLOW_INV:
|
||||
switchflag = ~button &1; // Follow inverted wall switch state
|
||||
break;
|
||||
case PUSHBUTTON:
|
||||
if (PRESSED == button) {
|
||||
switchflag = POWER_TOGGLE; // Toggle with pushbutton to Gnd
|
||||
}
|
||||
break;
|
||||
case PUSHBUTTON_INV:
|
||||
if (NOT_PRESSED == button) {
|
||||
switchflag = POWER_TOGGLE; // Toggle with releasing pushbutton from Gnd
|
||||
}
|
||||
break;
|
||||
case PUSHBUTTONHOLD:
|
||||
if (PRESSED == button) {
|
||||
Switch.hold_timer[i] = loops_per_second * Settings->param[P_HOLD_TIME] / 10; // Start timer on button press
|
||||
}
|
||||
if ((NOT_PRESSED == button) && (Switch.hold_timer[i])) {
|
||||
Switch.hold_timer[i] = 0; // Button released and hold timer not expired : stop timer...
|
||||
switchflag = POWER_TOGGLE; // ...and Toggle
|
||||
}
|
||||
break;
|
||||
case PUSHBUTTONHOLD_INV:
|
||||
if (NOT_PRESSED == button) {
|
||||
Switch.hold_timer[i] = loops_per_second * Settings->param[P_HOLD_TIME] / 10; // Start timer on button press...
|
||||
}
|
||||
if ((PRESSED == button) && (Switch.hold_timer[i])) {
|
||||
Switch.hold_timer[i] = 0; // Button released and hold timer not expired : stop timer.
|
||||
switchflag = POWER_TOGGLE; // ...and Toggle
|
||||
}
|
||||
break;
|
||||
case TOGGLEMULTI:
|
||||
case FOLLOWMULTI:
|
||||
case FOLLOWMULTI_INV:
|
||||
if (Switch.hold_timer[i]) {
|
||||
Switch.hold_timer[i] = 0;
|
||||
SendKey(KEY_SWITCH, i +1, POWER_HOLD); // Execute command via MQTT
|
||||
mqtt_action = POWER_HOLD;
|
||||
} else {
|
||||
Switch.hold_timer[i] = loops_per_second / 2; // 0.5 second multi press window
|
||||
}
|
||||
break;
|
||||
case PUSHHOLDMULTI:
|
||||
if (NOT_PRESSED == button) {
|
||||
if ((Switch.hold_timer[i] & SM_TIMER_MASK) != 0) {
|
||||
Switch.hold_timer[i] = ((Switch.hold_timer[i] & ~SM_TIMER_MASK) == SM_FIRST_PRESS) ? SM_SECOND_PRESS : 0;
|
||||
SendKey(KEY_SWITCH, i +1, POWER_INV); // Execute command via MQTT
|
||||
mqtt_action = POWER_INV;
|
||||
}
|
||||
} else {
|
||||
if ((Switch.hold_timer[i] & SM_TIMER_MASK) > loops_per_second * Settings->param[P_HOLD_TIME] / 25) {
|
||||
if ((Switch.hold_timer[i] & ~SM_TIMER_MASK) != SM_SECOND_PRESS) {
|
||||
Switch.hold_timer[i]= SM_FIRST_PRESS;
|
||||
switchflag = POWER_TOGGLE; // Toggle with pushbutton
|
||||
}
|
||||
else{
|
||||
SendKey(KEY_SWITCH, i +1, POWER_100); // Execute command via MQTT
|
||||
mqtt_action = POWER_100;
|
||||
Switch.hold_timer[i]= 0;
|
||||
}
|
||||
} else {
|
||||
Switch.hold_timer[i]= 0;
|
||||
SendKey(KEY_SWITCH, i +1, POWER_RELEASE); // Execute command via MQTT
|
||||
mqtt_action = POWER_RELEASE;
|
||||
}
|
||||
}
|
||||
Switch.hold_timer[i] = (Switch.hold_timer[i] & ~SM_TIMER_MASK) | loops_per_second * Settings->param[P_HOLD_TIME] / 10;
|
||||
break;
|
||||
case PUSHHOLDMULTI_INV:
|
||||
if (PRESSED == button) {
|
||||
if ((Switch.hold_timer[i] & SM_TIMER_MASK) != 0) {
|
||||
Switch.hold_timer[i] = ((Switch.hold_timer[i] & ~SM_TIMER_MASK) == SM_FIRST_PRESS) ? SM_SECOND_PRESS : 0;
|
||||
SendKey(KEY_SWITCH, i +1, POWER_INV); // Execute command via MQTT
|
||||
mqtt_action = POWER_INV;
|
||||
}
|
||||
} else {
|
||||
if ((Switch.hold_timer[i] & SM_TIMER_MASK)> loops_per_second * Settings->param[P_HOLD_TIME] / 25) {
|
||||
if ((Switch.hold_timer[i] & ~SM_TIMER_MASK) != SM_SECOND_PRESS) {
|
||||
Switch.hold_timer[i]= SM_FIRST_PRESS;
|
||||
switchflag = POWER_TOGGLE; // Toggle with pushbutton
|
||||
}
|
||||
else{
|
||||
SendKey(KEY_SWITCH, i +1, POWER_100); // Execute command via MQTT
|
||||
mqtt_action = POWER_100;
|
||||
Switch.hold_timer[i]= 0;
|
||||
}
|
||||
} else {
|
||||
Switch.hold_timer[i]= 0;
|
||||
SendKey(KEY_SWITCH, i +1, POWER_RELEASE); // Execute command via MQTT
|
||||
mqtt_action = POWER_RELEASE;
|
||||
}
|
||||
}
|
||||
Switch.hold_timer[i] = (Switch.hold_timer[i] & ~SM_TIMER_MASK) | loops_per_second * Settings->param[P_HOLD_TIME] / 10;
|
||||
break;
|
||||
case PUSHON:
|
||||
if (PRESSED == button) {
|
||||
switchflag = POWER_ON; // Power ON with pushbutton to Gnd
|
||||
}
|
||||
break;
|
||||
case PUSHON_INV:
|
||||
if (NOT_PRESSED == button) {
|
||||
switchflag = POWER_ON; // Power ON with releasing pushbutton from Gnd
|
||||
}
|
||||
break;
|
||||
case PUSH_IGNORE:
|
||||
case PUSH_IGNORE_INV:
|
||||
Switch.last_state[i] = button; // Update switch state before publishing
|
||||
MqttPublishSensor();
|
||||
break;
|
||||
}
|
||||
Switch.last_state[i] = button;
|
||||
}
|
||||
if (switchflag <= POWER_TOGGLE) {
|
||||
if (!Settings->flag5.mqtt_switches) { // SetOption114 (0) - Detach Switches from relays and enable MQTT action state for all the SwitchModes
|
||||
if (!SendKey(KEY_SWITCH, i +1, switchflag)) { // Execute command via MQTT
|
||||
ExecuteCommandPower(i +1, switchflag, SRC_SWITCH); // Execute command internally (if i < TasmotaGlobal.devices_present)
|
||||
}
|
||||
} else { mqtt_action = switchflag; }
|
||||
}
|
||||
if ((mqtt_action != POWER_NONE) && Settings->flag5.mqtt_switches) { // SetOption114 (0) - Detach Switches from relays and enable MQTT action state for all the SwitchModes
|
||||
if (!Settings->flag.hass_discovery) { // SetOption19 - Control Home Assistant automatic discovery (See SetOption59)
|
||||
char mqtt_state_str[16];
|
||||
char *mqtt_state = mqtt_state_str;
|
||||
if (mqtt_action <= 3) {
|
||||
if (mqtt_action != 3) { SendKey(KEY_SWITCH, i +1, mqtt_action); }
|
||||
mqtt_state = SettingsText(SET_STATE_TXT1 + mqtt_action);
|
||||
} else {
|
||||
GetTextIndexed(mqtt_state_str, sizeof(mqtt_state_str), mqtt_action, kSwitchPressStates);
|
||||
}
|
||||
Response_P(S_JSON_SVALUE_ACTION_SVALUE, GetSwitchText(i).c_str(), mqtt_state);
|
||||
char scommand[10];
|
||||
snprintf_P(scommand, sizeof(scommand), PSTR(D_JSON_SWITCH "%d"), i +1);
|
||||
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, scommand);
|
||||
}
|
||||
mqtt_action = POWER_NONE;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void SwitchLoop(void) {
|
||||
if (Switch.present) {
|
||||
if (TimeReached(Switch.debounce)) {
|
||||
SetNextTimeInterval(Switch.debounce, Settings->switch_debounce);
|
||||
SwitchHandler(0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif // SWITCH_V3
|
@ -580,7 +580,7 @@ extern "C" {
|
||||
be_newobject(vm, "list");
|
||||
for (uint32_t i = 0; i < MAX_SWITCHES; i++) {
|
||||
if (PinUsed(GPIO_SWT1, i)) {
|
||||
be_pushbool(vm, Switch.virtual_state[i] == PRESSED);
|
||||
be_pushbool(vm, SwitchGetVirtual(i) == PRESSED);
|
||||
be_data_push(vm, -2);
|
||||
be_pop(vm, 1);
|
||||
}
|
||||
|
@ -19,7 +19,7 @@
|
||||
|
||||
#ifdef ESP32
|
||||
#ifdef USE_SPI
|
||||
#ifdef USE_SHELLY_PRO
|
||||
#ifdef USE_SHELLY_PRO_V1
|
||||
/*********************************************************************************************\
|
||||
* Shelly Pro support
|
||||
*
|
||||
|
501
tasmota/tasmota_xdrv_driver/xdrv_88_esp32_shelly_pro_v2.ino
Normal file
501
tasmota/tasmota_xdrv_driver/xdrv_88_esp32_shelly_pro_v2.ino
Normal file
@ -0,0 +1,501 @@
|
||||
/*
|
||||
xdrv_88_shelly_pro.ino - Shelly pro family support for Tasmota
|
||||
|
||||
Copyright (C) 2022 Theo Arends
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifdef ESP32
|
||||
#ifdef USE_SPI
|
||||
#ifdef USE_SHELLY_PRO
|
||||
/*********************************************************************************************\
|
||||
* Shelly Pro support
|
||||
*
|
||||
* {"NAME":"Shelly Pro 1","GPIO":[0,1,0,1,768,0,0,0,672,704,736,0,0,0,5600,6214,0,0,0,5568,0,0,0,0,0,0,0,0,0,0,0,32,4736,0,160,0],"FLAG":0,"BASE":1,"CMND":"AdcParam1 2,10000,10000,3350"}
|
||||
* {"NAME":"Shelly Pro 1PM","GPIO":[9568,1,9472,1,768,0,0,0,672,704,736,0,0,0,5600,6214,0,0,0,5568,0,0,0,0,0,0,0,0,3459,0,0,32,4736,0,160,0],"FLAG":0,"BASE":1,"CMND":"AdcParam1 2,10000,10000,3350"}
|
||||
* {"NAME":"Shelly Pro 2","GPIO":[0,1,0,1,768,0,0,0,672,704,736,0,0,0,5600,6214,0,0,0,5568,0,0,0,0,0,0,0,0,0,0,0,32,4736,4737,160,161],"FLAG":0,"BASE":1,"CMND":"AdcParam1 2,10000,10000,3350;AdcParam2 2,10000,10000,3350"}
|
||||
* {"NAME":"Shelly Pro 2PM","GPIO":[9568,1,9472,1,768,0,0,0,672,704,736,9569,0,0,5600,6214,0,0,0,5568,0,0,0,0,0,0,0,0,3460,0,0,32,4736,4737,160,161],"FLAG":0,"BASE":1,"CMND":"AdcParam1 2,10000,10000,3350;AdcParam2 2,10000,10000,3350"}
|
||||
*
|
||||
* {"NAME":"Shelly Pro 4PM","GPIO":[769,1,1,1,9568,0,0,0,1,705,9569,737,768,0,5600,0,0,0,0,5568,0,0,0,0,0,0,0,6214,736,704,3461,0,4736,1,0,672],"FLAG":0,"BASE":1,"CMND":"AdcParam1 2,5600,4700,3350"}
|
||||
* {"NAME":"Shelly Pro 4PM No display","GPIO":[1,1,1,1,9568,0,0,0,1,1,9569,1,768,0,5600,0,0,0,0,5568,0,0,0,0,0,0,0,6214,736,704,3461,0,4736,1,0,672],"FLAG":0,"BASE":1,"CMND":"AdcParam1 2,5600,4700,3350"}
|
||||
*
|
||||
* Shelly Pro 1/2 uses SPI to control one 74HC595 for relays/leds and one ADE7953 (1PM) or two ADE7953 (2PM) for energy monitoring
|
||||
* Shelly Pro 4 uses an SPI to control one MCP23S17 for buttons/switches/relays/leds and two ADE7953 for energy monitoring and a second SPI for the display
|
||||
\*********************************************************************************************/
|
||||
|
||||
#define XDRV_88 88
|
||||
|
||||
#define SHELLY_PRO_PIN_LAN8720_RESET 5
|
||||
#define SHELLY_PRO_4_PIN_SPI_CS 16
|
||||
#define SHELLY_PRO_4_PIN_MCP23S17_INT 35
|
||||
#define SHELLY_PRO_4_MCP23S17_ADDRESS 0x40
|
||||
|
||||
struct SPro {
|
||||
uint32_t last_update;
|
||||
uint32_t probe_pin;
|
||||
int switch_offset;
|
||||
int button_offset;
|
||||
uint8_t last_button[3];
|
||||
uint8_t pin_register_cs;
|
||||
uint8_t pin_mcp23s17_int;
|
||||
uint8_t ledlink;
|
||||
uint8_t power;
|
||||
uint8_t detected;
|
||||
} SPro;
|
||||
|
||||
/*********************************************************************************************\
|
||||
* Shelly Pro MCP23S17 support
|
||||
\*********************************************************************************************/
|
||||
|
||||
enum SP4MCP23X17GPIORegisters {
|
||||
// A side
|
||||
SP4_MCP23S17_IODIRA = 0x00,
|
||||
SP4_MCP23S17_IPOLA = 0x02,
|
||||
SP4_MCP23S17_GPINTENA = 0x04,
|
||||
SP4_MCP23S17_DEFVALA = 0x06,
|
||||
SP4_MCP23S17_INTCONA = 0x08,
|
||||
SP4_MCP23S17_IOCONA = 0x0A,
|
||||
SP4_MCP23S17_GPPUA = 0x0C,
|
||||
SP4_MCP23S17_INTFA = 0x0E,
|
||||
SP4_MCP23S17_INTCAPA = 0x10,
|
||||
SP4_MCP23S17_GPIOA = 0x12,
|
||||
SP4_MCP23S17_OLATA = 0x14,
|
||||
// B side
|
||||
SP4_MCP23S17_IODIRB = 0x01,
|
||||
SP4_MCP23S17_IPOLB = 0x03,
|
||||
SP4_MCP23S17_GPINTENB = 0x05,
|
||||
SP4_MCP23S17_DEFVALB = 0x07,
|
||||
SP4_MCP23S17_INTCONB = 0x09,
|
||||
SP4_MCP23S17_IOCONB = 0x0B,
|
||||
SP4_MCP23S17_GPPUB = 0x0D,
|
||||
SP4_MCP23S17_INTFB = 0x0F,
|
||||
SP4_MCP23S17_INTCAPB = 0x11,
|
||||
SP4_MCP23S17_GPIOB = 0x13,
|
||||
SP4_MCP23S17_OLATB = 0x15,
|
||||
};
|
||||
|
||||
uint8_t sp4_mcp23s17_olata = 0;
|
||||
uint8_t sp4_mcp23s17_olatb = 0;
|
||||
|
||||
void SP4Mcp23S17Enable(void) {
|
||||
SPI.beginTransaction(SPISettings(1000000, MSBFIRST, SPI_MODE0));
|
||||
digitalWrite(SPro.pin_register_cs, 0);
|
||||
}
|
||||
|
||||
void SP4Mcp23S17Disable(void) {
|
||||
SPI.endTransaction();
|
||||
digitalWrite(SPro.pin_register_cs, 1);
|
||||
}
|
||||
|
||||
uint32_t SP4Mcp23S17ReadGpio(void) {
|
||||
// Read 16-bit gpio registers: (gpiob << 8) | gpioa
|
||||
SP4Mcp23S17Enable();
|
||||
SPI.transfer(SHELLY_PRO_4_MCP23S17_ADDRESS | 1);
|
||||
SPI.transfer(SP4_MCP23S17_GPIOA);
|
||||
uint32_t gpio = SPI.transfer(0xFF); // SP4_MCP23S17_GPIOA
|
||||
gpio |= (SPI.transfer(0xFF) << 8); // SP4_MCP23S17_GPIOB
|
||||
SP4Mcp23S17Disable();
|
||||
return gpio;
|
||||
}
|
||||
|
||||
bool SP4Mcp23S17Read(uint8_t reg, uint8_t *value) {
|
||||
SP4Mcp23S17Enable();
|
||||
SPI.transfer(SHELLY_PRO_4_MCP23S17_ADDRESS | 1);
|
||||
SPI.transfer(reg);
|
||||
*value = SPI.transfer(0xFF);
|
||||
SP4Mcp23S17Disable();
|
||||
return true;
|
||||
}
|
||||
|
||||
bool SP4Mcp23S17Write(uint8_t reg, uint8_t value) {
|
||||
SP4Mcp23S17Enable();
|
||||
SPI.transfer(SHELLY_PRO_4_MCP23S17_ADDRESS);
|
||||
SPI.transfer(reg);
|
||||
SPI.transfer(value);
|
||||
SP4Mcp23S17Disable();
|
||||
return true;
|
||||
}
|
||||
|
||||
void SP4Mcp23S17Update(uint8_t pin, bool pin_value, uint8_t reg_addr) {
|
||||
uint8_t bit = pin % 8;
|
||||
uint8_t reg_value = 0;
|
||||
if (reg_addr == SP4_MCP23S17_OLATA) {
|
||||
reg_value = sp4_mcp23s17_olata;
|
||||
} else if (reg_addr == SP4_MCP23S17_OLATB) {
|
||||
reg_value = sp4_mcp23s17_olatb;
|
||||
} else {
|
||||
SP4Mcp23S17Read(reg_addr, ®_value);
|
||||
}
|
||||
if (pin_value) {
|
||||
reg_value |= 1 << bit;
|
||||
} else {
|
||||
reg_value &= ~(1 << bit);
|
||||
}
|
||||
SP4Mcp23S17Write(reg_addr, reg_value);
|
||||
if (reg_addr == SP4_MCP23S17_OLATA) {
|
||||
sp4_mcp23s17_olata = reg_value;
|
||||
} else if (reg_addr == SP4_MCP23S17_OLATB) {
|
||||
sp4_mcp23s17_olatb = reg_value;
|
||||
}
|
||||
}
|
||||
|
||||
void SP4Mcp23S17Setup(void) {
|
||||
SP4Mcp23S17Write(SP4_MCP23S17_IOCONA, 0b01011000); // Enable INT mirror, Slew rate disabled, HAEN pins for addressing
|
||||
SP4Mcp23S17Write(SP4_MCP23S17_GPINTENA, 0x6F); // Enable interrupt on change
|
||||
SP4Mcp23S17Write(SP4_MCP23S17_GPINTENB, 0x80); // Enable interrupt on change
|
||||
|
||||
// Read current output register state
|
||||
SP4Mcp23S17Read(SP4_MCP23S17_OLATA, &sp4_mcp23s17_olata);
|
||||
SP4Mcp23S17Read(SP4_MCP23S17_OLATB, &sp4_mcp23s17_olatb);
|
||||
}
|
||||
|
||||
void SP4Mcp23S17PinMode(uint8_t pin, uint8_t flags) {
|
||||
uint8_t iodir = pin < 8 ? SP4_MCP23S17_IODIRA : SP4_MCP23S17_IODIRB;
|
||||
uint8_t gppu = pin < 8 ? SP4_MCP23S17_GPPUA : SP4_MCP23S17_GPPUB;
|
||||
if (flags == INPUT) {
|
||||
SP4Mcp23S17Update(pin, true, iodir);
|
||||
SP4Mcp23S17Update(pin, false, gppu);
|
||||
} else if (flags == (INPUT | PULLUP)) {
|
||||
SP4Mcp23S17Update(pin, true, iodir);
|
||||
SP4Mcp23S17Update(pin, true, gppu);
|
||||
} else if (flags == OUTPUT) {
|
||||
SP4Mcp23S17Update(pin, false, iodir);
|
||||
}
|
||||
}
|
||||
|
||||
bool SP4Mcp23S17DigitalRead(uint8_t pin) {
|
||||
uint8_t bit = pin % 8;
|
||||
uint8_t reg_addr = pin < 8 ? SP4_MCP23S17_GPIOA : SP4_MCP23S17_GPIOB;
|
||||
uint8_t value = 0;
|
||||
SP4Mcp23S17Read(reg_addr, &value);
|
||||
return value & (1 << bit);
|
||||
}
|
||||
|
||||
void SP4Mcp23S17DigitalWrite(uint8_t pin, bool value) {
|
||||
uint8_t reg_addr = pin < 8 ? SP4_MCP23S17_OLATA : SP4_MCP23S17_OLATB;
|
||||
SP4Mcp23S17Update(pin, value, reg_addr);
|
||||
}
|
||||
|
||||
/*********************************************************************************************\
|
||||
* Shelly Pro 4
|
||||
\*********************************************************************************************/
|
||||
|
||||
const uint8_t sp4_relay_pin[] = { 8, 13, 14, 12 };
|
||||
const uint8_t sp4_switch_pin[] = { 6, 1, 0, 15 };
|
||||
const uint8_t sp4_button_pin[] = { 5, 2, 3 };
|
||||
|
||||
void ShellyPro4Init(void) {
|
||||
/*
|
||||
Shelly Pro 4PM MCP23S17 registers
|
||||
bit 0 = input - Switch3
|
||||
bit 1 = input - Switch2
|
||||
bit 2 = input, pullup, inverted - Button Down
|
||||
bit 3 = input, pullup, inverted - Button OK
|
||||
bit 4 = output - Reset, display, ADE7953
|
||||
bit 5 = input, pullup, inverted - Button Up
|
||||
bit 6 = input - Switch1
|
||||
bit 7
|
||||
bit 8 = output - Relay O1
|
||||
bit 9
|
||||
bit 10
|
||||
bit 11
|
||||
bit 12 = output - Relay O4
|
||||
bit 13 = output - Relay O2
|
||||
bit 14 = output - Relay O3
|
||||
bit 15 = input - Switch4
|
||||
*/
|
||||
SP4Mcp23S17Setup();
|
||||
|
||||
for (uint32_t i = 0; i < 4; i++) {
|
||||
SP4Mcp23S17PinMode(sp4_switch_pin[i], INPUT); // Switch1..4
|
||||
SP4Mcp23S17PinMode(sp4_relay_pin[i], OUTPUT); // Relay O1..O4
|
||||
}
|
||||
SPro.switch_offset = -1;
|
||||
|
||||
for (uint32_t i = 0; i < 3; i++) {
|
||||
SP4Mcp23S17PinMode(sp4_button_pin[i], PULLUP); // Button Up, Down, OK
|
||||
}
|
||||
SPro.button_offset = -1;
|
||||
|
||||
SP4Mcp23S17PinMode(4, OUTPUT); // Reset display, ADE7943
|
||||
SP4Mcp23S17DigitalWrite(4, 1);
|
||||
|
||||
}
|
||||
|
||||
void ShellyPro4Reset(void) {
|
||||
SP4Mcp23S17DigitalWrite(4, 0); // Reset pin display, ADE7953
|
||||
delay(1); // To initiate a hardware reset, this pin must be brought low for a minimum of 10 μs.
|
||||
SP4Mcp23S17DigitalWrite(4, 1);
|
||||
}
|
||||
|
||||
bool ShellyProAddButton(void) {
|
||||
if (SPro.detected != 4) { return false; }
|
||||
if (SPro.button_offset < 0) { SPro.button_offset = XdrvMailbox.index; }
|
||||
uint32_t index = XdrvMailbox.index - SPro.button_offset;
|
||||
if (index > 2) { return false; }
|
||||
XdrvMailbox.payload = SP4Mcp23S17DigitalRead(sp4_button_pin[index]);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool ShellyProAddSwitch(void) {
|
||||
if (SPro.detected != 4) { return false; }
|
||||
if (SPro.switch_offset < 0) { SPro.switch_offset = XdrvMailbox.index; }
|
||||
uint32_t index = XdrvMailbox.index - SPro.switch_offset;
|
||||
if (index > 3) { return false; }
|
||||
XdrvMailbox.payload = SP4Mcp23S17DigitalRead(sp4_switch_pin[index]);
|
||||
return true;
|
||||
}
|
||||
|
||||
void ShellyProUpdateSwitches(void) {
|
||||
if (SPro.detected != 4) { return; }
|
||||
if (digitalRead(SPro.pin_mcp23s17_int)) { return; }
|
||||
|
||||
uint32_t gpio = SP4Mcp23S17ReadGpio();
|
||||
|
||||
AddLog(LOG_LEVEL_DEBUG, PSTR("SHP: Input detected 0x%04X"), gpio);
|
||||
|
||||
// Propagate state
|
||||
uint32_t state;
|
||||
for (uint32_t i = 0; i < 4; i++) {
|
||||
state = (gpio >> sp4_switch_pin[i]) &1;
|
||||
SwitchSetVirtualPinState(SPro.switch_offset +i, state);
|
||||
}
|
||||
for (uint32_t i = 0; i < 3; i++) {
|
||||
state = (gpio >> sp4_button_pin[i]) &1;
|
||||
ButtonSetVirtualPinState(SPro.button_offset +i, state);
|
||||
}
|
||||
}
|
||||
|
||||
bool ShellyProButton(void) {
|
||||
if (SPro.detected != 4) { return false; }
|
||||
|
||||
uint32_t button_index = XdrvMailbox.index - SPro.button_offset;
|
||||
if (button_index > 2) { return false; } // We only support Up, Down, Ok
|
||||
|
||||
bool result = false;
|
||||
uint32_t button = XdrvMailbox.payload;
|
||||
if ((PRESSED == button) && (NOT_PRESSED == SPro.last_button[button_index])) { // Button pressed
|
||||
|
||||
AddLog(LOG_LEVEL_DEBUG, PSTR("SHP: Button %d pressed"), button_index +1);
|
||||
|
||||
// Do something with the Up,Down,Ok button
|
||||
switch (button_index) {
|
||||
case 0: // Up
|
||||
break;
|
||||
case 1: // Down
|
||||
break;
|
||||
case 2: // Ok
|
||||
break;
|
||||
}
|
||||
result = true; // Disable further button processing
|
||||
}
|
||||
SPro.last_button[button_index] = button;
|
||||
return result;
|
||||
}
|
||||
|
||||
/*********************************************************************************************\
|
||||
* Shelly Pro 1/2
|
||||
\*********************************************************************************************/
|
||||
|
||||
void ShellyProUpdate(void) {
|
||||
/*
|
||||
Shelly Pro 1/2/PM 74HC595 register
|
||||
bit 0 = relay/led 1
|
||||
bit 1 = relay/led 2
|
||||
bit 2 = wifi led blue
|
||||
bit 3 = wifi led green
|
||||
bit 4 = wifi led red
|
||||
bit 5 - 7 = nc
|
||||
OE is connected to Gnd with 470 ohm resistor R62 AND a capacitor C81 to 3V3
|
||||
- this inhibits output of signals (also relay state) during power on for a few seconds
|
||||
*/
|
||||
uint8_t val = SPro.power | SPro.ledlink;
|
||||
SPI.beginTransaction(SPISettings(1000000, MSBFIRST, SPI_MODE0));
|
||||
SPI.transfer(val); // Write 74HC595 shift register
|
||||
SPI.endTransaction();
|
||||
// delayMicroseconds(2); // Wait for SPI clock to stop
|
||||
digitalWrite(SPro.pin_register_cs, 1); // Latch data
|
||||
delayMicroseconds(1); // Shelly 10mS
|
||||
digitalWrite(SPro.pin_register_cs, 0);
|
||||
}
|
||||
|
||||
/*********************************************************************************************\
|
||||
* Shelly Pro
|
||||
\*********************************************************************************************/
|
||||
|
||||
void ShellyProPreInit(void) {
|
||||
if ((SPI_MOSI_MISO == TasmotaGlobal.spi_enabled) &&
|
||||
PinUsed(GPIO_SPI_CS) && // 74HC595 rclk / MCP23S17
|
||||
TasmotaGlobal.gpio_optiona.shelly_pro) { // Option_A7
|
||||
|
||||
if (PinUsed(GPIO_SWT1) || PinUsed(GPIO_KEY1)) {
|
||||
SPro.detected = 1; // Shelly Pro 1
|
||||
if (PinUsed(GPIO_SWT1, 1) || PinUsed(GPIO_KEY1, 1)) {
|
||||
SPro.detected = 2; // Shelly Pro 2
|
||||
}
|
||||
SPro.ledlink = 0x18; // Blue led on - set by first call ShellyProPower() - Shelly 1/2
|
||||
}
|
||||
if (SHELLY_PRO_4_PIN_SPI_CS == Pin(GPIO_SPI_CS)) {
|
||||
SPro.detected = 4; // Shelly Pro 4PM (No SWT or KEY)
|
||||
}
|
||||
|
||||
if (SPro.detected) {
|
||||
TasmotaGlobal.devices_present += SPro.detected;
|
||||
|
||||
SPro.pin_register_cs = Pin(GPIO_SPI_CS);
|
||||
pinMode(SPro.pin_register_cs, OUTPUT);
|
||||
// Does nothing if SPI is already initiated (by ADE7953) so no harm done
|
||||
SPI.begin(Pin(GPIO_SPI_CLK), Pin(GPIO_SPI_MISO), Pin(GPIO_SPI_MOSI), -1);
|
||||
|
||||
if (4 == SPro.detected) {
|
||||
digitalWrite(SPro.pin_register_cs, 1);
|
||||
SPro.pin_mcp23s17_int = SHELLY_PRO_4_PIN_MCP23S17_INT; // GPIO35 = MCP23S17 common interrupt
|
||||
pinMode(SPro.pin_mcp23s17_int, INPUT);
|
||||
// Init MCP23S17
|
||||
ShellyPro4Init();
|
||||
} else {
|
||||
digitalWrite(SPro.pin_register_cs, 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ShellyProInit(void) {
|
||||
int pin_lan_reset = SHELLY_PRO_PIN_LAN8720_RESET; // GPIO5 = LAN8720 nRST
|
||||
// delay(30); // (t-purstd) This pin must be brought low for a minimum of 25 mS after power on
|
||||
digitalWrite(pin_lan_reset, 0);
|
||||
pinMode(pin_lan_reset, OUTPUT);
|
||||
delay(1); // (t-rstia) This pin must be brought low for a minimum of 100 uS
|
||||
digitalWrite(pin_lan_reset, 1);
|
||||
|
||||
AddLog(LOG_LEVEL_INFO, PSTR("HDW: Shelly Pro %d%s initialized"), SPro.detected, (PinUsed(GPIO_ADE7953_CS))?"PM":"");
|
||||
}
|
||||
|
||||
void ShellyProPower(void) {
|
||||
if (4 == SPro.detected) {
|
||||
|
||||
AddLog(LOG_LEVEL_DEBUG, PSTR("SHP: Set Power 0x%08X"), XdrvMailbox.index);
|
||||
|
||||
power_t rpower = XdrvMailbox.index;
|
||||
for (uint32_t i = 0; i < 4; i++) {
|
||||
power_t state = rpower &1;
|
||||
SP4Mcp23S17DigitalWrite(sp4_relay_pin[i], state);
|
||||
rpower >>= 1; // Select next power
|
||||
}
|
||||
} else {
|
||||
SPro.power = XdrvMailbox.index &3;
|
||||
ShellyProUpdate();
|
||||
}
|
||||
}
|
||||
|
||||
void ShellyProUpdateLedLink(uint32_t ledlink) {
|
||||
if (4 == SPro.detected) {
|
||||
|
||||
|
||||
} else {
|
||||
if (ledlink != SPro.ledlink) {
|
||||
SPro.ledlink = ledlink;
|
||||
ShellyProUpdate();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ShellyProLedLink(void) {
|
||||
if (4 == SPro.detected) {
|
||||
|
||||
|
||||
} else {
|
||||
/*
|
||||
bit 2 = blue, 3 = green, 4 = red
|
||||
Shelly Pro documentation
|
||||
- Blue light indicator will be on if in AP mode.
|
||||
- Red light indicator will be on if in STA mode and not connected to a Wi-Fi network.
|
||||
- Yellow light indicator will be on if in STA mode and connected to a Wi-Fi network.
|
||||
- Green light indicator will be on if in STA mode and connected to a Wi-Fi network and to the Shelly Cloud.
|
||||
- The light indicator will be flashing Red/Blue if OTA update is in progress.
|
||||
Tasmota behaviour
|
||||
- Blue light indicator will blink if no wifi or mqtt.
|
||||
- Green light indicator will be on if in STA mode and connected to a Wi-Fi network.
|
||||
*/
|
||||
SPro.last_update = TasmotaGlobal.uptime;
|
||||
uint32_t ledlink = 0x1C; // All leds off
|
||||
if (XdrvMailbox.index) {
|
||||
ledlink &= 0xFB; // Blue blinks if wifi/mqtt lost
|
||||
}
|
||||
else if (!TasmotaGlobal.global_state.wifi_down) {
|
||||
ledlink &= 0xF7; // Green On
|
||||
}
|
||||
ShellyProUpdateLedLink(ledlink);
|
||||
}
|
||||
}
|
||||
|
||||
void ShellyProLedLinkWifiOff(void) {
|
||||
if (4 == SPro.detected) {
|
||||
|
||||
|
||||
} else {
|
||||
/*
|
||||
bit 2 = blue, 3 = green, 4 = red
|
||||
- Green light indicator will be on if in STA mode and connected to a Wi-Fi network.
|
||||
*/
|
||||
if (SPro.last_update +1 < TasmotaGlobal.uptime) {
|
||||
ShellyProUpdateLedLink((TasmotaGlobal.global_state.wifi_down) ? 0x1C : 0x14); // Green off if wifi OFF
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*********************************************************************************************\
|
||||
* Interface
|
||||
\*********************************************************************************************/
|
||||
|
||||
bool Xdrv88(uint32_t function) {
|
||||
bool result = false;
|
||||
|
||||
if (FUNC_MODULE_INIT == function) {
|
||||
ShellyProPreInit();
|
||||
} else if (SPro.detected) {
|
||||
switch (function) {
|
||||
case FUNC_EVERY_50_MSECOND:
|
||||
ShellyProUpdateSwitches();
|
||||
break;
|
||||
case FUNC_BUTTON_PRESSED:
|
||||
result = ShellyProButton();
|
||||
break;
|
||||
case FUNC_EVERY_SECOND:
|
||||
ShellyProLedLinkWifiOff();
|
||||
break;
|
||||
case FUNC_SET_DEVICE_POWER:
|
||||
ShellyProPower();
|
||||
return true;
|
||||
case FUNC_LED_LINK:
|
||||
ShellyProLedLink();
|
||||
break;
|
||||
case FUNC_INIT:
|
||||
ShellyProInit();
|
||||
break;
|
||||
case FUNC_ADD_BUTTON:
|
||||
result = ShellyProAddButton();
|
||||
break;
|
||||
case FUNC_ADD_SWITCH:
|
||||
result = ShellyProAddSwitch();
|
||||
break;
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
#endif // USE_SHELLY_PRO
|
||||
#endif // USE_SPI
|
||||
#endif // ESP32
|
@ -36,21 +36,21 @@
|
||||
* Based on datasheet from https://www.analog.com/en/products/ade7953.html
|
||||
*
|
||||
* Model differences:
|
||||
* Function Model1 Model2 Model3 Model4 Model5 Remark
|
||||
* ------------------------------ ------- ------- ------- ------ ------ -------------------------------------------------
|
||||
* Shelly 2.5 EM Plus2PM Pro1PM Pro2PM
|
||||
* Processor ESP8266 ESP8266 ESP32 ESP32 ESP32
|
||||
* Interface I2C I2C I2C SPI SPI Interface type used
|
||||
* Number of ADE9753 chips 1 1 1 1 2 Count of ADE9753 chips
|
||||
* ADE9753 IRQ 1 2 3 4 5 Index defines model number
|
||||
* Current measurement device shunt CT shunt shunt shunt CT = Current Transformer
|
||||
* Common voltage Yes Yes Yes No No Show common voltage in GUI/JSON
|
||||
* Common frequency Yes Yes Yes No No Show common frequency in GUI/JSON
|
||||
* Swapped channel A/B Yes No No No No Defined by hardware design - Fixed by Tasmota
|
||||
* Support Export Active No Yes No No No Only EM supports correct negative value detection
|
||||
* Show negative (reactive) power No Yes No No No Only EM supports correct negative value detection
|
||||
* Default phase calibration 0 200 0 0 0 CT needs different phase calibration than shunts
|
||||
* Default reset pin on ESP8266 - 16 - - - Legacy support. Replaced by GPIO ADE7953RST
|
||||
* Function Model1 Model2 Model3 Model4 Model5 Model6 Remark
|
||||
* ------------------------------ ------- ------- ------- ------ ------ ------ -------------------------------------------------
|
||||
* Shelly 2.5 EM Plus2PM Pro1PM Pro2PM Pro4PM
|
||||
* Processor ESP8266 ESP8266 ESP32 ESP32 ESP32 ESP32
|
||||
* Interface I2C I2C I2C SPI SPI SPI Interface type used
|
||||
* Number of ADE9753 chips 1 1 1 1 2 2 Count of ADE9753 chips
|
||||
* ADE9753 IRQ 1 2 3 4 5 6 Index defines model number
|
||||
* Current measurement device shunt CT shunt shunt shunt shunt CT = Current Transformer
|
||||
* Common voltage Yes Yes Yes No No No Show common voltage in GUI/JSON
|
||||
* Common frequency Yes Yes Yes No No No Show common frequency in GUI/JSON
|
||||
* Swapped channel A/B Yes No No No No No Defined by hardware design - Fixed by Tasmota
|
||||
* Support Export Active No Yes No No No No Only EM supports correct negative value detection
|
||||
* Show negative (reactive) power No Yes No No No No Only EM supports correct negative value detection
|
||||
* Default phase calibration 0 200 0 0 0 0 CT needs different phase calibration than shunts
|
||||
* Default reset pin on ESP8266 - 16 - - - - Legacy support. Replaced by GPIO ADE7953RST
|
||||
*
|
||||
* I2C Address: 0x38
|
||||
*********************************************************************************************
|
||||
@ -82,7 +82,7 @@
|
||||
#define ADE7953_PHCAL_DEFAULT 0 // = range -383 to 383 - Default phase calibration for Shunts
|
||||
#define ADE7953_PHCAL_DEFAULT_CT 200 // = range -383 to 383 - Default phase calibration for Current Transformers (Shelly EM)
|
||||
|
||||
enum Ade7953Models { ADE7953_SHELLY_25, ADE7953_SHELLY_EM, ADE7953_SHELLY_PLUS_2PM, ADE7953_SHELLY_PRO_1PM, ADE7953_SHELLY_PRO_2PM };
|
||||
enum Ade7953Models { ADE7953_SHELLY_25, ADE7953_SHELLY_EM, ADE7953_SHELLY_PLUS_2PM, ADE7953_SHELLY_PRO_1PM, ADE7953_SHELLY_PRO_2PM, ADE7953_SHELLY_PRO_4PM };
|
||||
|
||||
enum Ade7953_8BitRegisters {
|
||||
// Register Name Addres R/W Bt Ty Default Description
|
||||
@ -225,7 +225,7 @@ struct Ade7953 {
|
||||
uint32_t active_power[2] = { 0, 0 };
|
||||
int32_t calib_data[2][ADE7953_CALIBREGS];
|
||||
uint8_t init_step = 0;
|
||||
uint8_t model = 0; // 0 = Shelly 2.5, 1 = Shelly EM, 2 = Shelly Plus 2PM, 3 = Shelly Pro 1PM, 4 = Shelly Pro 2PM
|
||||
uint8_t model = 0; // 0 = Shelly 2.5, 1 = Shelly EM, 2 = Shelly Plus 2PM, 3 = Shelly Pro 1PM, 4 = Shelly Pro 2PM, 5 = Shelly Pro 4PM
|
||||
uint8_t cs_index;
|
||||
#ifdef USE_ESP32_SPI
|
||||
SPISettings spi_settings;
|
||||
@ -233,6 +233,8 @@ struct Ade7953 {
|
||||
#endif // USE_ESP32_SPI
|
||||
} Ade7953;
|
||||
|
||||
/*********************************************************************************************/
|
||||
|
||||
int Ade7953RegSize(uint16_t reg) {
|
||||
int size = 0;
|
||||
switch ((reg >> 8) & 0x0F) {
|
||||
@ -250,6 +252,18 @@ int Ade7953RegSize(uint16_t reg) {
|
||||
return size;
|
||||
}
|
||||
|
||||
void Ade7953SpiEnable(void) {
|
||||
digitalWrite(Ade7953.pin_cs[Ade7953.cs_index], 0);
|
||||
delayMicroseconds(1); // CS 1uS to SCLK edge
|
||||
SPI.beginTransaction(SPISettings(1000000, MSBFIRST, SPI_MODE0)); // Set up SPI at 1MHz, MSB first, Capture at rising edge
|
||||
}
|
||||
|
||||
void Ade7953SpiDisable(void) {
|
||||
SPI.endTransaction();
|
||||
delayMicroseconds(2); // CS high 1.2uS after SCLK edge (when writing to COMM_LOCK bit)
|
||||
digitalWrite(Ade7953.pin_cs[Ade7953.cs_index], 1);
|
||||
}
|
||||
|
||||
void Ade7953Write(uint16_t reg, uint32_t val) {
|
||||
int size = Ade7953RegSize(reg);
|
||||
if (size) {
|
||||
@ -258,6 +272,7 @@ void Ade7953Write(uint16_t reg, uint32_t val) {
|
||||
|
||||
#ifdef USE_ESP32_SPI
|
||||
if (Ade7953.pin_cs[0] >= 0) {
|
||||
/*
|
||||
digitalWrite(Ade7953.pin_cs[Ade7953.cs_index], 0);
|
||||
delayMicroseconds(1); // CS 1uS to SCLK edge
|
||||
SPI.beginTransaction(Ade7953.spi_settings);
|
||||
@ -269,6 +284,15 @@ void Ade7953Write(uint16_t reg, uint32_t val) {
|
||||
SPI.endTransaction();
|
||||
delayMicroseconds(2); // CS high 1.2uS after SCLK edge (when writing to COMM_LOCK bit)
|
||||
digitalWrite(Ade7953.pin_cs[Ade7953.cs_index], 1);
|
||||
*/
|
||||
Ade7953SpiEnable();
|
||||
SPI.transfer16(reg);
|
||||
SPI.transfer(0x00); // Write
|
||||
while (size--) {
|
||||
SPI.transfer((val >> (8 * size)) & 0xFF); // Write data, MSB first
|
||||
}
|
||||
Ade7953SpiDisable();
|
||||
|
||||
} else {
|
||||
#endif // USE_ESP32_SPI
|
||||
Wire.beginTransmission(ADE7953_ADDR);
|
||||
@ -292,6 +316,7 @@ int32_t Ade7953Read(uint16_t reg) {
|
||||
if (size) {
|
||||
#ifdef USE_ESP32_SPI
|
||||
if (Ade7953.pin_cs[0] >= 0) {
|
||||
/*
|
||||
digitalWrite(Ade7953.pin_cs[Ade7953.cs_index], 0);
|
||||
delayMicroseconds(1); // CS 1uS to SCLK edge
|
||||
SPI.beginTransaction(Ade7953.spi_settings);
|
||||
@ -302,6 +327,15 @@ int32_t Ade7953Read(uint16_t reg) {
|
||||
}
|
||||
SPI.endTransaction();
|
||||
digitalWrite(Ade7953.pin_cs[Ade7953.cs_index], 1);
|
||||
*/
|
||||
Ade7953SpiEnable();
|
||||
SPI.transfer16(reg);
|
||||
SPI.transfer(0x80); // Read
|
||||
while (size--) {
|
||||
response = response << 8 | SPI.transfer(0xFF); // receive DATA (MSB first)
|
||||
}
|
||||
Ade7953SpiDisable();
|
||||
|
||||
} else {
|
||||
#endif // USE_ESP32_SPI
|
||||
Wire.beginTransmission(ADE7953_ADDR);
|
||||
@ -449,9 +483,16 @@ void Ade7953GetData(void) {
|
||||
#ifdef USE_ESP32_SPI
|
||||
}
|
||||
#endif // USE_ESP32_SPI
|
||||
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("ADE: ACCMODE 0x%06X, VRMS %d, %d, Period %d, %d, IRMS %d, %d, WATT %d, %d, VA %d, %d, VAR %d, %d"),
|
||||
acc_mode, reg[0][4], reg[1][4], reg[0][5], reg[1][5],
|
||||
reg[0][0], reg[1][0], reg[0][1], reg[1][1], reg[0][2], reg[1][2], reg[0][3], reg[1][3]);
|
||||
|
||||
#ifdef USE_ESP32_SPI
|
||||
if (1 == Energy.phase_count) {
|
||||
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("ADE: ACCMODE 0x%06X, VRMS %d, Period %d, IRMS %d, WATT %d, VA %d, VAR %d"),
|
||||
acc_mode, reg[0][4], reg[0][5], reg[0][0], reg[0][1], reg[0][2], reg[0][3]);
|
||||
} else
|
||||
#endif // USE_ESP32_SPI
|
||||
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("ADE: ACCMODE 0x%06X, VRMS %d, %d, Period %d, %d, IRMS %d, %d, WATT %d, %d, VA %d, %d, VAR %d, %d"),
|
||||
acc_mode, reg[0][4], reg[1][4], reg[0][5], reg[1][5],
|
||||
reg[0][0], reg[1][0], reg[0][1], reg[1][1], reg[0][2], reg[1][2], reg[0][3], reg[1][3]);
|
||||
|
||||
// If the device is initializing, we read the energy registers to reset them, but don't report the values as the first read may be inaccurate
|
||||
if (Ade7953.init_step) { return; }
|
||||
@ -459,7 +500,7 @@ void Ade7953GetData(void) {
|
||||
uint32_t apparent_power[2] = { 0, 0 };
|
||||
uint32_t reactive_power[2] = { 0, 0 };
|
||||
|
||||
for (uint32_t channel = 0; channel < 2; channel++) {
|
||||
for (uint32_t channel = 0; channel < Energy.phase_count; channel++) {
|
||||
Ade7953.voltage_rms[channel] = reg[channel][4];
|
||||
Ade7953.current_rms[channel] = reg[channel][0];
|
||||
if (Ade7953.current_rms[channel] < 2000) { // No load threshold (20mA)
|
||||
@ -477,7 +518,7 @@ void Ade7953GetData(void) {
|
||||
|
||||
if (Energy.power_on) { // Powered on
|
||||
float divider;
|
||||
for (uint32_t channel = 0; channel < 2; channel++) {
|
||||
for (uint32_t channel = 0; channel < Energy.phase_count; channel++) {
|
||||
Energy.data_valid[channel] = 0;
|
||||
|
||||
float power_calibration = (float)EnergyGetCalibration(channel, ENERGY_POWER_CALIBRATION) / 10;
|
||||
@ -649,6 +690,11 @@ void Ade7953DrvInit(void) {
|
||||
pinMode(pin_reset, INPUT);
|
||||
}
|
||||
}
|
||||
#ifdef USE_SHELLY_PRO
|
||||
if (Ade7953.model == ADE7953_SHELLY_PRO_4PM) {
|
||||
ShellyPro4Reset();
|
||||
}
|
||||
#endif // USE_SHELLY_PRO
|
||||
delay(100); // Need 100mS to init ADE7953
|
||||
|
||||
#ifdef USE_ESP32_SPI
|
||||
|
Loading…
x
Reference in New Issue
Block a user