Merge branch 'main' into unlimited-bus

This commit is contained in:
Blaž Kristan 2025-02-25 13:54:42 +01:00
commit a66f5d660d
61 changed files with 6837 additions and 1006 deletions

View File

@ -80,7 +80,7 @@ body:
id: terms
attributes:
label: Code of Conduct
description: By submitting this issue, you agree to follow our [Code of Conduct](https://github.com/Aircoookie/WLED/blob/master/CODE_OF_CONDUCT.md)
description: By submitting this issue, you agree to follow our [Code of Conduct](https://github.com/wled-dev/WLED/blob/main/CODE_OF_CONDUCT.md)
options:
- label: I agree to follow this project's Code of Conduct
required: true

View File

@ -39,3 +39,9 @@ jobs:
files: |
*.bin
*.bin.gz
- name: Repository Dispatch
uses: peter-evans/repository-dispatch@v3
with:
repository: wled/WLED-WebInstaller
event-type: release-nightly
token: ${{ secrets.PAT_PUBLIC }}

13
.github/workflows/pr-merge.yaml vendored Normal file
View File

@ -0,0 +1,13 @@
name: Notify Discord on PR Merge
on:
pull_request:
types: [closed]
jobs:
notify:
runs-on: ubuntu-latest
steps:
- name: Send Discord notification
if: github.event.pull_request.merged == true
run: |
curl -H "Content-Type: application/json" -d '{"content": "Pull Request #{{ github.event.pull_request.number }} merged by {{ github.actor }}"}' ${{ secrets.DISCORD_WEBHOOK_BETA_TESTERS }}

View File

@ -18,9 +18,16 @@ jobs:
- uses: actions/download-artifact@v4
with:
merge-multiple: true
- name: "✏️ Generate release changelog"
id: changelog
uses: janheinrichmerker/action-github-changelog-generator@v2.3
with:
token: ${{ secrets.GITHUB_TOKEN }}
sinceTag: v0.15.0
- name: Create draft release
uses: softprops/action-gh-release@v1
with:
body: ${{ steps.changelog.outputs.changelog }}
draft: True
files: |
*.bin

13
.github/workflows/test.yaml vendored Normal file
View File

@ -0,0 +1,13 @@
on:
workflow_dispatch:
jobs:
dispatch:
runs-on: ubuntu-latest
steps:
- name: Repository Dispatch
uses: peter-evans/repository-dispatch@v3
with:
repository: wled/WLED-WebInstaller
event-type: release-nightly
token: ${{ secrets.PAT_PUBLIC }}

1
.gitignore vendored
View File

@ -15,6 +15,7 @@ wled-update.sh
/build_output/
/node_modules/
/logs/
/wled00/extLibs
/wled00/LittleFS

View File

@ -27,7 +27,7 @@ Github will pick up the changes so your PR stays up-to-date.
> For example, we regularly lost review comments when the PR author force-pushes code changes. So, pretty please, do not force-push.
You can find a collection of very useful tips and tricks here: https://github.com/Aircoookie/WLED/wiki/How-to-properly-submit-a-PR
You can find a collection of very useful tips and tricks here: https://github.com/wled-dev/WLED/wiki/How-to-properly-submit-a-PR
### Code style

View File

@ -14,14 +14,14 @@
},
"repository": {
"type": "git",
"url": "git+https://github.com/Aircoookie/WLED.git"
"url": "git+https://github.com/wled-dev/WLED.git"
},
"author": "",
"license": "ISC",
"bugs": {
"url": "https://github.com/Aircoookie/WLED/issues"
"url": "https://github.com/wled-dev/WLED/issues"
},
"homepage": "https://github.com/Aircoookie/WLED#readme",
"homepage": "https://github.com/wled-dev/WLED#readme",
"dependencies": {
"clean-css": "^5.3.3",
"html-minifier-terser": "^7.2.0",

View File

@ -1,3 +1,21 @@
Import('env')
Import("env")
import shutil
env.Execute("npm run build")
node_ex = shutil.which("node")
# Check if Node.js is installed and present in PATH if it failed, abort the build
if node_ex is None:
print('\x1b[0;31;43m' + 'Node.js is not installed or missing from PATH html css js will not be processed check https://kno.wled.ge/advanced/compiling-wled/' + '\x1b[0m')
exitCode = env.Execute("null")
exit(exitCode)
else:
# Install the necessary node packages for the pre-build asset bundling script
print('\x1b[6;33;42m' + 'Installing node packages' + '\x1b[0m')
env.Execute("npm ci")
# Call the bundling script
exitCode = env.Execute("npm run build")
# If it failed, abort the build
if (exitCode):
print('\x1b[0;31;43m' + 'npm run build fails check https://kno.wled.ge/advanced/compiling-wled/' + '\x1b[0m')
exit(exitCode)

View File

@ -138,7 +138,7 @@ lib_compat_mode = strict
lib_deps =
fastled/FastLED @ 3.6.0
IRremoteESP8266 @ 2.8.2
makuna/NeoPixelBus @ 2.8.0
makuna/NeoPixelBus @ 2.8.3
#https://github.com/makuna/NeoPixelBus.git#CoreShaderBeta
https://github.com/Aircoookie/ESPAsyncWebServer.git#v2.4.0
# for I2C interface
@ -367,6 +367,7 @@ platform_packages = ${common.platform_packages}
board_build.ldscript = ${common.ldscript_4m1m}
build_unflags = ${common.build_unflags}
build_flags = ${common.build_flags} ${esp8266.build_flags} -D WLED_RELEASE_NAME=\"ESP8266\" #-DWLED_DISABLE_2D
-D WLED_DISABLE_PARTICLESYSTEM2D
lib_deps = ${esp8266.lib_deps}
monitor_filters = esp8266_exception_decoder
@ -376,6 +377,7 @@ extends = env:nodemcuv2
platform = ${esp8266.platform_compat}
platform_packages = ${esp8266.platform_packages_compat}
build_flags = ${common.build_flags} ${esp8266.build_flags_compat} -D WLED_RELEASE_NAME=\"ESP8266_compat\" #-DWLED_DISABLE_2D
-D WLED_DISABLE_PARTICLESYSTEM2D
;; lib_deps = ${esp8266.lib_deps_compat} ;; experimental - use older NeoPixelBus 2.7.9
[env:nodemcuv2_160]
@ -383,6 +385,7 @@ extends = env:nodemcuv2
board_build.f_cpu = 160000000L
build_flags = ${common.build_flags} ${esp8266.build_flags} -D WLED_RELEASE_NAME=\"ESP8266_160\" #-DWLED_DISABLE_2D
-D USERMOD_AUDIOREACTIVE
-D WLED_DISABLE_PARTICLESYSTEM2D
[env:esp8266_2m]
board = esp_wroom_02
@ -391,6 +394,8 @@ platform_packages = ${common.platform_packages}
board_build.ldscript = ${common.ldscript_2m512k}
build_unflags = ${common.build_unflags}
build_flags = ${common.build_flags} ${esp8266.build_flags} -D WLED_RELEASE_NAME=\"ESP02\"
-D WLED_DISABLE_PARTICLESYSTEM2D
-D WLED_DISABLE_PARTICLESYSTEM1D
lib_deps = ${esp8266.lib_deps}
[env:esp8266_2m_compat]
@ -399,12 +404,16 @@ extends = env:esp8266_2m
platform = ${esp8266.platform_compat}
platform_packages = ${esp8266.platform_packages_compat}
build_flags = ${common.build_flags} ${esp8266.build_flags_compat} -D WLED_RELEASE_NAME=\"ESP02_compat\" #-DWLED_DISABLE_2D
-D WLED_DISABLE_PARTICLESYSTEM1D
-D WLED_DISABLE_PARTICLESYSTEM2D
[env:esp8266_2m_160]
extends = env:esp8266_2m
board_build.f_cpu = 160000000L
build_flags = ${common.build_flags} ${esp8266.build_flags} -D WLED_RELEASE_NAME=\"ESP02_160\"
-D USERMOD_AUDIOREACTIVE
-D WLED_DISABLE_PARTICLESYSTEM1D
-D WLED_DISABLE_PARTICLESYSTEM2D
[env:esp01_1m_full]
board = esp01_1m
@ -414,6 +423,8 @@ board_build.ldscript = ${common.ldscript_1m128k}
build_unflags = ${common.build_unflags}
build_flags = ${common.build_flags} ${esp8266.build_flags} -D WLED_RELEASE_NAME=\"ESP01\" -D WLED_DISABLE_OTA
; -D WLED_USE_REAL_MATH ;; may fix wrong sunset/sunrise times, at the cost of 7064 bytes FLASH and 975 bytes RAM
-D WLED_DISABLE_PARTICLESYSTEM1D
-D WLED_DISABLE_PARTICLESYSTEM2D
lib_deps = ${esp8266.lib_deps}
[env:esp01_1m_full_compat]
@ -422,6 +433,8 @@ extends = env:esp01_1m_full
platform = ${esp8266.platform_compat}
platform_packages = ${esp8266.platform_packages_compat}
build_flags = ${common.build_flags} ${esp8266.build_flags_compat} -D WLED_RELEASE_NAME=\"ESP01_compat\" -D WLED_DISABLE_OTA #-DWLED_DISABLE_2D
-D WLED_DISABLE_PARTICLESYSTEM1D
-D WLED_DISABLE_PARTICLESYSTEM2D
[env:esp01_1m_full_160]
extends = env:esp01_1m_full
@ -429,6 +442,8 @@ board_build.f_cpu = 160000000L
build_flags = ${common.build_flags} ${esp8266.build_flags} -D WLED_RELEASE_NAME=\"ESP01_160\" -D WLED_DISABLE_OTA
-D USERMOD_AUDIOREACTIVE
; -D WLED_USE_REAL_MATH ;; may fix wrong sunset/sunrise times, at the cost of 7064 bytes FLASH and 975 bytes RAM
-D WLED_DISABLE_PARTICLESYSTEM1D
-D WLED_DISABLE_PARTICLESYSTEM2D
[env:esp32dev]
board = esp32dev

View File

@ -280,7 +280,7 @@ lib_deps = ${esp32s2.lib_deps}
[env:esp32s3dev_8MB_PSRAM_qspi]
;; ESP32-TinyS3 development board, with 8MB FLASH and PSRAM (memory_type: qio_qspi)
extends = env:esp32s3dev_8MB_PSRAM_opi
;board = um_tinys3 ; -> needs workaround from https://github.com/Aircoookie/WLED/pull/2905#issuecomment-1328049860
;board = um_tinys3 ; -> needs workaround from https://github.com/wled-dev/WLED/pull/2905#issuecomment-1328049860
board = esp32-s3-devkitc-1 ;; generic dev board; the next line adds PSRAM support
board_build.arduino.memory_type = qio_qspi ;; use with PSRAM: 2MB or 4MB

View File

@ -1,12 +1,12 @@
<p align="center">
<img src="/images/wled_logo_akemi.png">
<a href="https://github.com/Aircoookie/WLED/releases"><img src="https://img.shields.io/github/release/Aircoookie/WLED.svg?style=flat-square"></a>
<a href="https://raw.githubusercontent.com/Aircoookie/WLED/master/LICENSE"><img src="https://img.shields.io/github/license/Aircoookie/wled?color=blue&style=flat-square"></a>
<a href="https://github.com/wled-dev/WLED/releases"><img src="https://img.shields.io/github/release/wled-dev/WLED.svg?style=flat-square"></a>
<a href="https://raw.githubusercontent.com/wled-dev/WLED/main/LICENSE"><img src="https://img.shields.io/github/license/wled-dev/wled?color=blue&style=flat-square"></a>
<a href="https://wled.discourse.group"><img src="https://img.shields.io/discourse/topics?colorB=blue&label=forum&server=https%3A%2F%2Fwled.discourse.group%2F&style=flat-square"></a>
<a href="https://discord.gg/QAh7wJHrRM"><img src="https://img.shields.io/discord/473448917040758787.svg?colorB=blue&label=discord&style=flat-square"></a>
<a href="https://kno.wled.ge"><img src="https://img.shields.io/badge/quick_start-wiki-blue.svg?style=flat-square"></a>
<a href="https://github.com/Aircoookie/WLED-App"><img src="https://img.shields.io/badge/app-wled-blue.svg?style=flat-square"></a>
<a href="https://gitpod.io/#https://github.com/Aircoookie/WLED"><img src="https://img.shields.io/badge/Gitpod-ready--to--code-blue?style=flat-square&logo=gitpod"></a>
<a href="https://gitpod.io/#https://github.com/wled-dev/WLED"><img src="https://img.shields.io/badge/Gitpod-ready--to--code-blue?style=flat-square&logo=gitpod"></a>
</p>

View File

@ -89,7 +89,7 @@ function adoptVersionAndRepo(html) {
repoUrl = repoUrl.replace(/^git\+/, "");
repoUrl = repoUrl.replace(/\.git$/, "");
html = html.replaceAll("https://github.com/atuline/WLED", repoUrl);
html = html.replaceAll("https://github.com/Aircoookie/WLED", repoUrl);
html = html.replaceAll("https://github.com/wled-dev/WLED", repoUrl);
}
let version = packageJson.version;
if (version) {

View File

@ -4,7 +4,7 @@
/*
* Usermods allow you to add own functionality to WLED more easily
* See: https://github.com/Aircoookie/WLED/wiki/Add-own-functionality
* See: https://github.com/wled-dev/WLED/wiki/Add-own-functionality
*
* This is an example for a v2 usermod.
* v2 usermods are class inheritance based and can (but don't have to) implement more functions, each of them is shown in this example.

View File

@ -16,7 +16,7 @@ class FixUnreachableNetServices : public Usermod
* By this procedure the net services of WLED remains accessible in some problematic WLAN environments.
*
* Usermods allow you to add own functionality to WLED more easily
* See: https://github.com/Aircoookie/WLED/wiki/Add-own-functionality
* See: https://github.com/wled-dev/WLED/wiki/Add-own-functionality
*
* v2 usermods are class inheritance based and can (but don't have to) implement more functions, each of them is shown in this example.
* Multiple v2 usermods can be added to one compilation easily.

View File

@ -42,7 +42,7 @@
*
*
* Usermods allow you to add own functionality to WLED more easily
* See: https://github.com/Aircoookie/WLED/wiki/Add-own-functionality
* See: https://github.com/wled-dev/WLED/wiki/Add-own-functionality
*
* v2 usermods are class inheritance based and can (but don't have to) implement more functions, each of them is shown in this example.
* Multiple v2 usermods can be added to one compilation easily.

View File

@ -5,7 +5,7 @@ This usermod-v2 modification allows the connection of a PIR sensor to switch on
_Story:_
I use the PIR Sensor to automatically turn on the WLED analog clock in my home office room when I am there.
The LED strip is switched [using a relay](https://github.com/Aircoookie/WLED/wiki/Control-a-relay-with-WLED) to keep the power consumption low when it is switched off.
The LED strip is switched [using a relay](https://kno.wled.ge/features/relay-control/) to keep the power consumption low when it is switched off.
## Web interface

View File

@ -26,7 +26,7 @@
* Maintained by: @blazoncek
*
* Usermods allow you to add own functionality to WLED more easily
* See: https://github.com/Aircoookie/WLED/wiki/Add-own-functionality
* See: https://github.com/wled-dev/WLED/wiki/Add-own-functionality
*
* v2 usermods are class inheritance based and can (but don't have to) implement more functions, each of them is shown in this example.
* Multiple v2 usermods can be added to one compilation easily.

View File

@ -1,7 +1,7 @@
/*
* This file allows you to add own functionality to WLED more easily
* See: https://github.com/Aircoookie/WLED/wiki/Add-own-functionality
* See: https://github.com/wled-dev/WLED/wiki/Add-own-functionality
* EEPROM bytes 2750+ are reserved for your custom use case. (if you extend #define EEPSIZE in const.h)
* bytes 2400+ are currently unused, but might be used for future wled features
*/

View File

@ -6,7 +6,7 @@ Version 1.0
## Installation
Just activate the usermod with `-D USERMOD_TETRISAI` and the effect will become available under the name 'Tetris AI'. If you are running out of flash memory, use a different memory layout (e.g. [WLED_ESP32_4MB_256KB_FS.csv](https://github.com/Aircoookie/WLED/blob/main/tools/WLED_ESP32_4MB_256KB_FS.csv)).
Just activate the usermod with `-D USERMOD_TETRISAI` and the effect will become available under the name 'Tetris AI'. If you are running out of flash memory, use a different memory layout (e.g. [WLED_ESP32_4MB_256KB_FS.csv](https://github.com/wled-dev/WLED/blob/main/tools/WLED_ESP32_4MB_256KB_FS.csv)).
If needed simply add to `platformio_override.ini` (or `platformio_override.ini`):

View File

@ -19,7 +19,7 @@
/*
* Usermods allow you to add own functionality to WLED more easily
* See: https://github.com/Aircoookie/WLED/wiki/Add-own-functionality
* See: https://github.com/wled-dev/WLED/wiki/Add-own-functionality
*
* This is an audioreactive v2 usermod.
* ....

View File

@ -12,7 +12,7 @@
/*
* Usermods allow you to add own functionality to WLED more easily
* See: https://github.com/Aircoookie/WLED/wiki/Add-own-functionality
* See: https://github.com/wled-dev/WLED/wiki/Add-own-functionality
*
* Using a usermod:
* 1. Copy the usermod into the sketch folder (same folder as wled00.ino)

View File

@ -1,7 +1,7 @@
#include "wled.h"
/*
* This v1 usermod file allows you to add own functionality to WLED more easily
* See: https://github.com/Aircoookie/WLED/wiki/Add-own-functionality
* See: https://github.com/wled-dev/WLED/wiki/Add-own-functionality
* EEPROM bytes 2750+ are reserved for your custom use case. (if you extend #define EEPSIZE in const.h)
* If you just need 8 bytes, use 2551-2559 (you do not need to increase EEPSIZE)
*

View File

@ -102,7 +102,7 @@ lib_deps = ${esp32s3.lib_deps}
# parallel. Also not clear exactly what difference between the ESP32 and the
# ESP32S3 would be causing this, though they do run different BLE versions.
# May be related to some of the issues discussed in:
# https://github.com/Aircoookie/WLED/issues/1382
# https://github.com/wled-dev/WLED/issues/1382
; [env:esp32dev_dice]
; extends = env:esp32dev
; build_flags = ${common.build_flags} ${esp32.build_flags} -D WLED_RELEASE_NAME=ESP32

View File

@ -2,7 +2,7 @@
/*
* Usermods allow you to add own functionality to WLED more easily
* See: https://github.com/Aircoookie/WLED/wiki/Add-own-functionality
* See: https://github.com/wled-dev/WLED/wiki/Add-own-functionality
*
* This is Stairway-Wipe as a v2 usermod.
*

View File

@ -0,0 +1,35 @@
# Update Brightness Follow Sun
This UserMod can set brightness by mapping [minimum-maximum-minimum] from [sunrise-suntop-sunset], I use this UserMod to adjust the brightness of my plant growth light (pwm led), and I think it will make my plants happy.
This UserMod will adjust brightness from sunrise to sunset, reaching maximum brightness at the zenith of the sun. It can also maintain the lowest brightness within 0-6 hours before sunrise and after sunset according to the settings.
## Installation
define `USERMOD_BRIGHTNESS_FOLLOW_SUN` e.g. `#define USERMOD_BRIGHTNESS_FOLLOW_SUN` in my_config.h
or add `-D USERMOD_BRIGHTNESS_FOLLOW_SUN` to `build_flags` in platformio_override.ini
### Options
Open Usermod Settings in WLED to change settings:
`Enable` - When checked `Enable`, turn on the `Brightness Follow Sun` Usermod, which will automatically turn on the lights, adjust the brightness, and turn off the lights. If you need to completely turn off the lights, please unchecked `Enable`.
`Update Interval Sec` - The unit is seconds, and the brightness will be automatically refreshed according to the set parameters.
`Min Brightness` - set brightness by map of min-max-min : sunrise-suntop-sunset
`Max Brightness` - It needs to be set to a value greater than `Min Brightness`, otherwise it will always remain at `Min Brightness`.
`Relax Hour` - The unit is in hours, with an effective range of 0-6. According to the settings, maintain the lowest brightness for 0-6 hours before sunrise and after sunset.
### PlatformIO requirements
No special requirements.
## Change Log
2025-01-02
* init

View File

@ -0,0 +1,130 @@
#pragma once
#include "wled.h"
//v2 usermod that allows to change brightness and color using a rotary encoder,
//change between modes by pressing a button (many encoders have one included)
class UsermodBrightnessFollowSun : public Usermod
{
private:
static const char _name[];
static const char _enabled[];
static const char _update_interval[];
static const char _min_bri[];
static const char _max_bri[];
static const char _relax_hour[];
private:
bool enabled = false; //WLEDMM
unsigned long update_interval = 60;
unsigned long update_interval_ms = 60000;
int min_bri = 1;
int max_bri = 255;
float relax_hour = 0;
int relaxSec = 0;
unsigned long lastUMRun = 0;
public:
void setup() {};
float mapFloat(float inputValue, float inMin, float inMax, float outMin, float outMax) {
if (inMax == inMin)
return outMin;
inputValue = constrain(inputValue, inMin, inMax);
return ((inputValue - inMin) * (outMax - outMin) / (inMax - inMin)) + outMin;
}
uint16_t getId() override
{
return USERMOD_ID_BRIGHTNESS_FOLLOW_SUN;
}
void update()
{
if (sunrise == 0 || sunset == 0 || localTime == 0)
return;
int curSec = elapsedSecsToday(localTime);
int sunriseSec = elapsedSecsToday(sunrise);
int sunsetSec = elapsedSecsToday(sunset);
int sunMiddleSec = sunriseSec + (sunsetSec-sunriseSec)/2;
int relaxSecH = sunriseSec-relaxSec;
int relaxSecE = sunsetSec+relaxSec;
int briSet = 0;
if (curSec >= relaxSecH && curSec <= relaxSecE) {
float timeMapToAngle = curSec < sunMiddleSec ?
mapFloat(curSec, sunriseSec, sunMiddleSec, 0, M_PI/2.0) :
mapFloat(curSec, sunMiddleSec, sunsetSec, M_PI/2.0, M_PI);
float sinValue = sin_t(timeMapToAngle);
briSet = min_bri + (max_bri-min_bri)*sinValue;
}
bri = briSet;
stateUpdated(CALL_MODE_DIRECT_CHANGE);
}
void loop() override
{
if (!enabled || strip.isUpdating())
return;
if (millis() - lastUMRun < update_interval_ms)
return;
lastUMRun = millis();
update();
}
void addToConfig(JsonObject& root)
{
JsonObject top = root.createNestedObject(FPSTR(_name)); // usermodname
top[FPSTR(_enabled)] = enabled;
top[FPSTR(_update_interval)] = update_interval;
top[FPSTR(_min_bri)] = min_bri;
top[FPSTR(_max_bri)] = max_bri;
top[FPSTR(_relax_hour)] = relax_hour;
}
bool readFromConfig(JsonObject& root)
{
JsonObject top = root[FPSTR(_name)];
if (top.isNull()) {
DEBUG_PRINTF("[%s] No config found. (Using defaults.)\n", _name);
return false;
}
bool configComplete = true;
configComplete &= getJsonValue(top[FPSTR(_enabled)], enabled, false);
configComplete &= getJsonValue(top[FPSTR(_update_interval)], update_interval, 60);
configComplete &= getJsonValue(top[FPSTR(_min_bri)], min_bri, 1);
configComplete &= getJsonValue(top[FPSTR(_max_bri)], max_bri, 255);
configComplete &= getJsonValue(top[FPSTR(_relax_hour)], relax_hour, 0);
update_interval = constrain(update_interval, 1, SECS_PER_HOUR);
min_bri = constrain(min_bri, 1, 255);
max_bri = constrain(max_bri, 1, 255);
relax_hour = constrain(relax_hour, 0, 6);
update_interval_ms = update_interval*1000;
relaxSec = SECS_PER_HOUR*relax_hour;
lastUMRun = 0;
update();
return configComplete;
}
};
const char UsermodBrightnessFollowSun::_name[] PROGMEM = "Brightness Follow Sun";
const char UsermodBrightnessFollowSun::_enabled[] PROGMEM = "Enabled";
const char UsermodBrightnessFollowSun::_update_interval[] PROGMEM = "Update Interval Sec";
const char UsermodBrightnessFollowSun::_min_bri[] PROGMEM = "Min Brightness";
const char UsermodBrightnessFollowSun::_max_bri[] PROGMEM = "Max Brightness";
const char UsermodBrightnessFollowSun::_relax_hour[] PROGMEM = "Relax Hour";

View File

@ -4,7 +4,7 @@
/*
* Usermods allow you to add own functionality to WLED more easily
* See: https://github.com/Aircoookie/WLED/wiki/Add-own-functionality
* See: https://github.com/wled-dev/WLED/wiki/Add-own-functionality
*
* This usermod can be used to drive a wordclock with a 11x10 pixel matrix with WLED. There are also 4 additional dots for the minutes.
* The visualisation is described in 4 mask with LED numbers (single dots for minutes, minutes, hours and "clock/Uhr").

File diff suppressed because it is too large Load Diff

View File

@ -1,3 +1,4 @@
#pragma once
/*
WS2812FX.h - Library for WS2812 LED effects.
Harm Aldick - 2016
@ -8,12 +9,15 @@
Adapted from code originally licensed under the MIT license
Modified for WLED
Segment class/struct (c) 2022 Blaz Kristan (@blazoncek)
*/
#ifndef WS2812FX_h
#define WS2812FX_h
#include <vector>
#include "wled.h"
#include "const.h"
#include "bus_manager.h"
@ -71,18 +75,15 @@ extern byte realtimeMode; // used in getMappedPixelIndex()
/* each segment uses 82 bytes of SRAM memory, so if you're application fails because of
insufficient memory, decreasing MAX_NUM_SEGMENTS may help */
#ifdef ESP8266
#define MAX_NUM_SEGMENTS 16
#define MAX_NUM_SEGMENTS 16
/* How much data bytes all segments combined may allocate */
#define MAX_SEGMENT_DATA 5120
#elif defined(CONFIG_IDF_TARGET_ESP32S2)
#define MAX_NUM_SEGMENTS 20
#define MAX_SEGMENT_DATA (MAX_NUM_SEGMENTS*512) // 10k by default (S2 is short on free RAM)
#else
#ifndef MAX_NUM_SEGMENTS
#define MAX_NUM_SEGMENTS 32
#endif
#if defined(ARDUINO_ARCH_ESP32S2)
#define MAX_SEGMENT_DATA (MAX_NUM_SEGMENTS*768) // 24k by default (S2 is short on free RAM)
#else
#define MAX_SEGMENT_DATA (MAX_NUM_SEGMENTS*1280) // 40k by default
#endif
#define MAX_NUM_SEGMENTS 32 // warning: going beyond 32 may consume too much RAM for stable operation
#define MAX_SEGMENT_DATA (MAX_NUM_SEGMENTS*1280) // 40k by default
#endif
/* How much data bytes each segment should max allocate to leave enough space for other segments,
@ -322,8 +323,35 @@ extern byte realtimeMode; // used in getMappedPixelIndex()
#define FX_MODE_WAVESINS 184
#define FX_MODE_ROCKTAVES 185
#define FX_MODE_2DAKEMI 186
#define MODE_COUNT 187
#define FX_MODE_PARTICLEVOLCANO 187
#define FX_MODE_PARTICLEFIRE 188
#define FX_MODE_PARTICLEFIREWORKS 189
#define FX_MODE_PARTICLEVORTEX 190
#define FX_MODE_PARTICLEPERLIN 191
#define FX_MODE_PARTICLEPIT 192
#define FX_MODE_PARTICLEBOX 193
#define FX_MODE_PARTICLEATTRACTOR 194
#define FX_MODE_PARTICLEIMPACT 195
#define FX_MODE_PARTICLEWATERFALL 196
#define FX_MODE_PARTICLESPRAY 197
#define FX_MODE_PARTICLESGEQ 198
#define FX_MODE_PARTICLECENTERGEQ 199
#define FX_MODE_PARTICLEGHOSTRIDER 200
#define FX_MODE_PARTICLEBLOBS 201
#define FX_MODE_PSDRIP 202
#define FX_MODE_PSPINBALL 203
#define FX_MODE_PSDANCINGSHADOWS 204
#define FX_MODE_PSFIREWORKS1D 205
#define FX_MODE_PSSPARKLER 206
#define FX_MODE_PSHOURGLASS 207
#define FX_MODE_PS1DSPRAY 208
#define FX_MODE_PSBALANCE 209
#define FX_MODE_PSCHASE 210
#define FX_MODE_PSSTARBURST 211
#define FX_MODE_PS1DGEQ 212
#define FX_MODE_PSFIRE1D 213
#define FX_MODE_PS1DSONICSTREAM 214
#define MODE_COUNT 215
#define BLEND_STYLE_FADE 0x00 // universal
@ -480,6 +508,7 @@ typedef struct Segment {
uint8_t _prevPaletteBlends; // number of previous palette blends (there are max 255 blends possible)
unsigned long _start; // must accommodate millis()
uint16_t _dur;
// -> here is one byte of padding
Transition(uint16_t dur=750)
: _palT(CRGBPalette16(CRGB::Black))
, _prevPaletteBlends(0)
@ -571,11 +600,14 @@ typedef struct Segment {
inline uint16_t groupLength() const { return grouping + spacing; }
inline uint8_t getLightCapabilities() const { return _capabilities; }
inline void deactivate() { setGeometry(0,0); }
inline Segment &clearName() { if (name) free(name); name = nullptr; return *this; }
inline Segment &setName(const String &name) { return setName(name.c_str()); }
inline static unsigned getUsedSegmentData() { return Segment::_usedSegmentData; }
inline static void addUsedSegmentData(int len) { Segment::_usedSegmentData += len; }
#ifndef WLED_DISABLE_MODE_BLEND
inline static void modeBlend(bool blend) { _modeBlend = blend; }
inline static bool getmodeBlend(void) { return _modeBlend; }
#endif
inline static unsigned vLength() { return Segment::_vLength; }
inline static unsigned vWidth() { return Segment::_vWidth; }
@ -593,6 +625,7 @@ typedef struct Segment {
Segment &setOption(uint8_t n, bool val);
Segment &setMode(uint8_t fx, bool loadDefaults = false);
Segment &setPalette(uint8_t pal);
Segment &setName(const char* name);
uint8_t differs(const Segment& b) const;
void refreshLightCapabilities();
@ -623,6 +656,7 @@ typedef struct Segment {
uint8_t currentMode() const; // currently active effect/mode (while in transition)
[[gnu::hot]] uint32_t currentColor(uint8_t slot) const; // currently active segment color (blended while in transition)
CRGBPalette16 &loadPalette(CRGBPalette16 &tgt, uint8_t pal);
void loadOldPalette(); // loads old FX palette into _currentPalette
// 1D strip
[[gnu::hot]] uint16_t virtualLength() const;
@ -674,7 +708,6 @@ typedef struct Segment {
}
#ifndef WLED_DISABLE_2D
inline bool is2D() const { return (width()>1 && height()>1); }
[[gnu::hot]] int XY(int x, int y) const; // support function to get relative index within segment
[[gnu::hot]] void setPixelColorXY(int x, int y, uint32_t c) const; // set relative pixel within segment with color
inline void setPixelColorXY(unsigned x, unsigned y, uint32_t c) const { setPixelColorXY(int(x), int(y), c); }
inline void setPixelColorXY(int x, int y, byte r, byte g, byte b, byte w = 0) const { setPixelColorXY(x, y, RGBW32(r,g,b,w)); }
@ -711,8 +744,7 @@ typedef struct Segment {
void wu_pixel(uint32_t x, uint32_t y, CRGB c);
inline void fill_solid(CRGB c) { fill(RGBW32(c.r,c.g,c.b,0)); }
#else
inline constexpr bool is2D() const { return false; }
inline int XY(int x, int y) const { return x; }
inline bool is2D() const { return false; }
inline void setPixelColorXY(int x, int y, uint32_t c) { setPixelColor(x, c); }
inline void setPixelColorXY(unsigned x, unsigned y, uint32_t c) { setPixelColor(int(x), c); }
inline void setPixelColorXY(int x, int y, byte r, byte g, byte b, byte w = 0) { setPixelColor(x, RGBW32(r,g,b,w)); }
@ -1007,4 +1039,4 @@ class WS2812FX { // 96 bytes
extern const char JSON_mode_names[];
extern const char JSON_palette_names[];
#endif
#endif

View File

@ -145,14 +145,6 @@ void WS2812FX::setUpMatrix() {
#ifndef WLED_DISABLE_2D
// XY(x,y) - gets pixel index within current segment (often used to reference leds[] array element)
int IRAM_ATTR_YN Segment::XY(int x, int y) const
{
const int vW = vWidth(); // segment width in logical pixels (can be 0 if segment is inactive)
const int vH = vHeight(); // segment height in logical pixels (is always >= 1)
return isActive() ? (x%vW) + (y%vH) * vW : 0;
}
// raw setColor function without checks (checks are done in setPixelColorXY())
void IRAM_ATTR_YN Segment::_setPixelColorXY_raw(const int& x, const int& y, uint32_t& col) const
{
@ -166,16 +158,11 @@ void IRAM_ATTR_YN Segment::_setPixelColorXY_raw(const int& x, const int& y, uint
// Apply mirroring
if (mirror || mirror_y) {
auto setMirroredPixel = [&](int mx, int my) {
strip.setPixelColorXY(mx, my, col);
};
const int mirrorX = start + width() - x - 1;
const int mirrorY = startY + height() - y - 1;
if (mirror) setMirroredPixel(transpose ? baseX : mirrorX, transpose ? mirrorY : baseY);
if (mirror_y) setMirroredPixel(transpose ? mirrorX : baseX, transpose ? baseY : mirrorY);
if (mirror && mirror_y) setMirroredPixel(mirrorX, mirrorY);
if (mirror) strip.setPixelColorXY(transpose ? baseX : mirrorX, transpose ? mirrorY : baseY, col);
if (mirror_y) strip.setPixelColorXY(transpose ? mirrorX : baseX, transpose ? baseY : mirrorY, col);
if (mirror && mirror_y) strip.setPixelColorXY(mirrorX, mirrorY, col);
}
}

View File

@ -11,6 +11,7 @@
*/
#include "wled.h"
#include "FX.h"
#include "FXparticleSystem.h" // TODO: better define the required function (mem service) in FX.h?
#include "palettes.h"
/*
@ -470,6 +471,12 @@ void Segment::beginDraw() {
}
}
// loads palette of the old FX during transitions (used by particle system)
void Segment::loadOldPalette(void) {
if(isInTransition())
loadPalette(_currentPalette, _t->_palTid);
}
// relies on WS2812FX::service() to call it for each frame
void Segment::handleRandomPalette() {
// is it time to generate a new palette?
@ -649,6 +656,20 @@ Segment &Segment::setPalette(uint8_t pal) {
return *this;
}
Segment &Segment::setName(const char *newName) {
if (newName) {
const int newLen = min(strlen(newName), (size_t)WLED_MAX_SEGNAME_LEN);
if (newLen) {
if (name) name = static_cast<char*>(realloc(name, newLen+1));
else name = static_cast<char*>(malloc(newLen+1));
if (name) strlcpy(name, newName, newLen+1);
name[newLen] = 0;
return *this;
}
}
return clearName();
}
// 2D matrix
unsigned Segment::virtualWidth() const {
unsigned groupLen = groupLength();
@ -754,7 +775,7 @@ bool IRAM_ATTR_YN Segment::isPixelClipped(int i) const {
//if (!invert && iInside) return _modeBlend;
//if ( invert && !iInside) return _modeBlend;
//return !_modeBlend;
return !iInside ^ invert ^ _modeBlend; // thanks @willmmiles (https://github.com/Aircoookie/WLED/pull/3877#discussion_r1554633876)
return !iInside ^ invert ^ _modeBlend; // thanks @willmmiles (https://github.com/wled-dev/WLED/pull/3877#discussion_r1554633876)
}
#endif
return false;
@ -1308,6 +1329,34 @@ void WS2812FX::finalizeInit() {
_hasWhiteChannel = _isOffRefreshRequired = false;
unsigned digitalCount = 0;
#if defined(ARDUINO_ARCH_ESP32) && !defined(CONFIG_IDF_TARGET_ESP32C3)
// determine if it is sensible to use parallel I2S outputs on ESP32 (i.e. more than 5 outputs = 1 I2S + 4 RMT)
unsigned maxLedsOnBus = 0;
for (const auto &bus : busConfigs) {
if (Bus::isDigital(bus.type) && !Bus::is2Pin(bus.type)) {
digitalCount++;
if (bus.count > maxLedsOnBus) maxLedsOnBus = bus.count;
}
}
DEBUG_PRINTF_P(PSTR("Maximum LEDs on a bus: %u\nDigital buses: %u\n"), maxLedsOnBus, digitalCount);
// we may remove 300 LEDs per bus limit when NeoPixelBus is updated beyond 2.9.0
if (maxLedsOnBus <= 300 && useParallelI2S) BusManager::useParallelOutput(); // must call before creating buses
else useParallelI2S = false; // enforce single I2S
#endif
// create buses/outputs
unsigned mem = 0;
digitalCount = 0;
for (const auto &bus : busConfigs) {
mem += bus.memUsage(Bus::isDigital(bus.type) && !Bus::is2Pin(bus.type) ? digitalCount++ : 0); // includes global buffer
if (mem <= MAX_LED_MEMORY) {
if (BusManager::add(bus) == -1) break;
} else DEBUG_PRINTF_P(PSTR("Out of LED memory! Bus %d (%d) #%u not created."), (int)bus.type, (int)bus.count, digitalCount);
}
busConfigs.clear();
busConfigs.shrink_to_fit();
//if busses failed to load, add default (fresh install, FS issue, ...)
if (BusManager::getNumBusses() == 0) {
DEBUG_PRINTLN(F("No busses, init default"));
@ -1323,6 +1372,7 @@ void WS2812FX::finalizeInit() {
unsigned prevLen = 0;
unsigned pinsIndex = 0;
digitalCount = 0;
for (unsigned i = 0; i < WLED_MAX_BUSSES+WLED_MIN_VIRTUAL_BUSSES; i++) {
uint8_t defPin[OUTPUT_MAX_PINS];
// if we have less types than requested outputs and they do not align, use last known type to set current type
@ -1387,9 +1437,11 @@ void WS2812FX::finalizeInit() {
if (Bus::isPWM(dataType) || Bus::isOnOff(dataType)) count = 1;
prevLen += count;
BusConfig defCfg = BusConfig(dataType, defPin, start, count, DEFAULT_LED_COLOR_ORDER, false, 0, RGBW_MODE_MANUAL_ONLY, 0, useGlobalLedBuffer);
mem += defCfg.memUsage(Bus::isDigital(dataType) && !Bus::is2Pin(dataType) ? digitalCount++ : 0);
if (BusManager::add(defCfg) == -1) break;
}
}
DEBUG_PRINTF_P(PSTR("LED buffer size: %uB/%uB\n"), mem, BusManager::memUsage());
_length = 0;
for (int i=0; i<BusManager::getNumBusses(); i++) {
@ -1406,6 +1458,7 @@ void WS2812FX::finalizeInit() {
bus->begin();
bus->setBrightness(bri);
}
DEBUG_PRINTF_P(PSTR("Heap after buses: %d\n"), ESP.getFreeHeap());
Segment::maxWidth = _length;
Segment::maxHeight = 1;
@ -1543,6 +1596,9 @@ void WS2812FX::service() {
_segment_index++;
}
Segment::setClippingRect(0, 0); // disable clipping for overlays
#if !(defined(WLED_DISABLE_PARTICLESYSTEM2D) && defined(WLED_DISABLE_PARTICLESYSTEM1D))
servicePSmem(); // handle segment particle system memory
#endif
_isServicing = false;
_triggered = false;
@ -1944,12 +2000,17 @@ bool WS2812FX::deserializeMap(unsigned n) {
if (!isFile || !requestJSONBufferLock(7)) return false;
if (!readObjectFromFile(fileName, nullptr, pDoc)) {
StaticJsonDocument<64> filter;
filter[F("width")] = true;
filter[F("height")] = true;
if (!readObjectFromFile(fileName, nullptr, pDoc, &filter)) {
DEBUG_PRINT(F("ERROR Invalid ledmap in ")); DEBUG_PRINTLN(fileName);
releaseJSONBufferLock();
return false; // if file does not load properly then exit
}
suspend();
JsonObject root = pDoc->as<JsonObject>();
// if we are loading default ledmap (at boot) set matrix width and height from the ledmap (compatible with WLED MM ledmaps)
if (isMatrix && n == 0 && (!root[F("width")].isNull() || !root[F("height")].isNull())) {
@ -1962,16 +2023,52 @@ bool WS2812FX::deserializeMap(unsigned n) {
if (customMappingTable) {
DEBUG_PRINT(F("Reading LED map from ")); DEBUG_PRINTLN(fileName);
File f = WLED_FS.open(fileName, "r");
f.find("\"map\":[");
while (f.available()) { // f.position() < f.size() - 1
char number[32];
size_t numRead = f.readBytesUntil(',', number, sizeof(number)-1); // read a single number (may include array terminating "]" but not number separator ',')
number[numRead] = 0;
if (numRead > 0) {
char *end = strchr(number,']'); // we encountered end of array so stop processing if no digit found
bool foundDigit = (end == nullptr);
int i = 0;
if (end != nullptr) do {
if (number[i] >= '0' && number[i] <= '9') foundDigit = true;
if (foundDigit || &number[i++] == end) break;
} while (i < 32);
if (!foundDigit) break;
int index = atoi(number);
if (index < 0 || index > 16384) index = 0xFFFF;
customMappingTable[customMappingSize++] = index;
if (customMappingSize > getLengthTotal()) break;
} else break; // there was nothing to read, stop
}
currentLedmap = n;
f.close();
#ifdef WLED_DEBUG
DEBUG_PRINT(F("Loaded ledmap:"));
for (unsigned i=0; i<customMappingSize; i++) {
if (!(i%Segment::maxWidth)) DEBUG_PRINTLN();
DEBUG_PRINTF_P(PSTR("%4d,"), customMappingTable[i]);
}
DEBUG_PRINTLN();
#endif
/*
JsonArray map = root[F("map")];
if (!map.isNull() && map.size()) { // not an empty map
customMappingSize = min((unsigned)map.size(), (unsigned)getLengthTotal());
for (unsigned i=0; i<customMappingSize; i++) customMappingTable[i] = (uint16_t) (map[i]<0 ? 0xFFFFU : map[i]);
currentLedmap = n;
}
*/
} else {
DEBUG_PRINTLN(F("ERROR LED map allocation error."));
}
resume();
releaseJSONBufferLock();
return (customMappingSize > 0);
}
@ -1989,4 +2086,4 @@ const char JSON_palette_names[] PROGMEM = R"=====([
"Aurora","Atlantica","C9 2","C9 New","Temperature","Aurora 2","Retro Clown","Candy","Toxy Reaf","Fairy Reaf",
"Semi Blue","Pink Candy","Red Reaf","Aqua Flash","Yelblu Hot","Lite Light","Red Flash","Blink Red","Red Shift","Red Tide",
"Candy2","Traffic Light"
])=====";
])=====";

2433
wled00/FXparticleSystem.cpp Normal file

File diff suppressed because it is too large Load Diff

418
wled00/FXparticleSystem.h Normal file
View File

@ -0,0 +1,418 @@
/*
FXparticleSystem.cpp
Particle system with functions for particle generation, particle movement and particle rendering to RGB matrix.
by DedeHai (Damian Schneider) 2013-2024
Copyright (c) 2024 Damian Schneider
Licensed under the EUPL v. 1.2 or later
*/
#ifdef WLED_DISABLE_2D
#define WLED_DISABLE_PARTICLESYSTEM2D
#endif
#if !(defined(WLED_DISABLE_PARTICLESYSTEM2D) && defined(WLED_DISABLE_PARTICLESYSTEM1D)) // not both disabled
#include <stdint.h>
#include "wled.h"
#define PS_P_MAXSPEED 120 // maximum speed a particle can have (vx/vy is int8)
#define MAX_MEMIDLE 10 // max idle time (in frames) before memory is deallocated (if deallocated during an effect, it will crash!)
//#define WLED_DEBUG_PS // note: enabling debug uses ~3k of flash
#ifdef WLED_DEBUG_PS
#define PSPRINT(x) Serial.print(x)
#define PSPRINTLN(x) Serial.println(x)
#else
#define PSPRINT(x)
#define PSPRINTLN(x)
#endif
// memory and transition manager
struct partMem {
void* particleMemPointer; // pointer to particle memory
uint32_t buffersize; // buffer size in bytes
uint8_t particleType; // type of particles currently in memory: 0 = none, particle struct size otherwise (required for 1D<->2D transitions)
uint8_t id; // ID of segment this memory belongs to
uint8_t watchdog; // counter to handle deallocation
uint8_t inTransition; // to track PS to PS FX transitions (is set to new FX ID during transitions), not set if not both FX are PS FX
uint8_t currentFX; // current FX ID, is set when transition is complete, used to detect back and forth transitions
bool finalTransfer; // used to update buffer in rendering function after transition has ended
bool transferParticles; // if set, particles in buffer are transferred to new FX
};
void* particleMemoryManager(const uint32_t requestedParticles, size_t structSize, uint32_t &availableToPS, uint32_t numParticlesUsed, const uint8_t effectID); // update particle memory pointer, handles memory transitions
void particleHandover(void *buffer, size_t structSize, int32_t numParticles);
void updateUsedParticles(const uint32_t allocated, const uint32_t available, const uint8_t percentage, uint32_t &used);
bool segmentIsOverlay(void); // check if segment is fully overlapping with at least one underlying segment
partMem* getPartMem(void); // returns pointer to memory struct for current segment or nullptr
void updateRenderingBuffer(uint32_t requiredpixels, bool isFramebuffer, bool initialize); // allocate CRGB rendering buffer, update size if needed
void transferBuffer(uint32_t width, uint32_t height, bool useAdditiveTransfer = false); // transfer the buffer to the segment (supports 1D and 2D)
void servicePSmem(); // increments watchdog, frees memory if idle too long
// limit speed of particles (used in 1D and 2D)
static inline int32_t limitSpeed(const int32_t speed) {
return speed > PS_P_MAXSPEED ? PS_P_MAXSPEED : (speed < -PS_P_MAXSPEED ? -PS_P_MAXSPEED : speed); // note: this is slightly faster than using min/max at the cost of 50bytes of flash
}
#endif
#ifndef WLED_DISABLE_PARTICLESYSTEM2D
// memory allocation
#define ESP8266_MAXPARTICLES 300 // enough up to 20x20 pixels
#define ESP8266_MAXSOURCES 24
#define ESP32S2_MAXPARTICLES 1024 // enough up to 32x32 pixels
#define ESP32S2_MAXSOURCES 64
#define ESP32_MAXPARTICLES 2048 // enough up to 64x32 pixels
#define ESP32_MAXSOURCES 128
// particle dimensions (subpixel division)
#define PS_P_RADIUS 64 // subpixel size, each pixel is divided by this for particle movement (must be a power of 2)
#define PS_P_HALFRADIUS (PS_P_RADIUS >> 1)
#define PS_P_RADIUS_SHIFT 6 // shift for RADIUS
#define PS_P_SURFACE 12 // shift: 2^PS_P_SURFACE = (PS_P_RADIUS)^2
#define PS_P_MINHARDRADIUS 64 // minimum hard surface radius for collisions
#define PS_P_MINSURFACEHARDNESS 128 // minimum hardness used in collision impulse calculation, below this hardness, particles become sticky
// struct for PS settings (shared for 1D and 2D class)
typedef union {
struct{ // one byte bit field for 2D settings
bool wrapX : 1;
bool wrapY : 1;
bool bounceX : 1;
bool bounceY : 1;
bool killoutofbounds : 1; // if set, out of bound particles are killed immediately
bool useGravity : 1; // set to 1 if gravity is used, disables bounceY at the top
bool useCollisions : 1;
bool colorByAge : 1; // if set, particle hue is set by ttl value in render function
};
byte asByte; // access as a byte, order is: LSB is first entry in the list above
} PSsettings2D;
//struct for a single particle
typedef struct { // 10 bytes
int16_t x; // x position in particle system
int16_t y; // y position in particle system
uint16_t ttl; // time to live in frames
int8_t vx; // horizontal velocity
int8_t vy; // vertical velocity
uint8_t hue; // color hue
uint8_t sat; // particle color saturation
} PSparticle;
//struct for particle flags note: this is separate from the particle struct to save memory (ram alignment)
typedef union {
struct { // 1 byte
bool outofbounds : 1; // out of bounds flag, set to true if particle is outside of display area
bool collide : 1; // if set, particle takes part in collisions
bool perpetual : 1; // if set, particle does not age (TTL is not decremented in move function, it still dies from killoutofbounds)
bool custom1 : 1; // unused custom flags, can be used by FX to track particle states
bool custom2 : 1;
bool custom3 : 1;
bool custom4 : 1;
bool custom5 : 1;
};
byte asByte; // access as a byte, order is: LSB is first entry in the list above
} PSparticleFlags;
// struct for additional particle settings (option)
typedef struct { // 2 bytes
uint8_t size; // particle size, 255 means 10 pixels in diameter
uint8_t forcecounter; // counter for applying forces to individual particles
} PSadvancedParticle;
// struct for advanced particle size control (option)
typedef struct { // 8 bytes
uint8_t asymmetry; // asymmetrical size (0=symmetrical, 255 fully asymmetric)
uint8_t asymdir; // direction of asymmetry, 64 is x, 192 is y (0 and 128 is symmetrical)
uint8_t maxsize; // target size for growing
uint8_t minsize; // target size for shrinking
uint8_t sizecounter : 4; // counters used for size contol (grow/shrink/wobble)
uint8_t wobblecounter : 4;
uint8_t growspeed : 4;
uint8_t shrinkspeed : 4;
uint8_t wobblespeed : 4;
bool grow : 1; // flags
bool shrink : 1;
bool pulsate : 1; // grows & shrinks & grows & ...
bool wobble : 1; // alternate x and y size
} PSsizeControl;
//struct for a particle source (20 bytes)
typedef struct {
uint16_t minLife; // minimum ttl of emittet particles
uint16_t maxLife; // maximum ttl of emitted particles
PSparticle source; // use a particle as the emitter source (speed, position, color)
PSparticleFlags sourceFlags; // flags for the source particle
int8_t var; // variation of emitted speed (adds random(+/- var) to speed)
int8_t vx; // emitting speed
int8_t vy;
uint8_t size; // particle size (advanced property)
} PSsource;
// class uses approximately 60 bytes
class ParticleSystem2D {
public:
ParticleSystem2D(const uint32_t width, const uint32_t height, const uint32_t numberofparticles, const uint32_t numberofsources, const bool isadvanced = false, const bool sizecontrol = false); // constructor
// note: memory is allcated in the FX function, no deconstructor needed
void update(void); //update the particles according to set options and render to the matrix
void updateFire(const uint8_t intensity, const bool renderonly); // update function for fire, if renderonly is set, particles are not updated (required to fix transitions with frameskips)
void updateSystem(void); // call at the beginning of every FX, updates pointers and dimensions
void particleMoveUpdate(PSparticle &part, PSparticleFlags &partFlags, PSsettings2D *options = NULL, PSadvancedParticle *advancedproperties = NULL); // move function
// particle emitters
int32_t sprayEmit(const PSsource &emitter);
void flameEmit(const PSsource &emitter);
int32_t angleEmit(PSsource& emitter, const uint16_t angle, const int32_t speed);
//particle physics
void applyGravity(PSparticle &part); // applies gravity to single particle (use this for sources)
[[gnu::hot]] void applyForce(PSparticle &part, const int8_t xforce, const int8_t yforce, uint8_t &counter);
[[gnu::hot]] void applyForce(const uint32_t particleindex, const int8_t xforce, const int8_t yforce); // use this for advanced property particles
void applyForce(const int8_t xforce, const int8_t yforce); // apply a force to all particles
void applyAngleForce(PSparticle &part, const int8_t force, const uint16_t angle, uint8_t &counter);
void applyAngleForce(const uint32_t particleindex, const int8_t force, const uint16_t angle); // use this for advanced property particles
void applyAngleForce(const int8_t force, const uint16_t angle); // apply angular force to all particles
void applyFriction(PSparticle &part, const int32_t coefficient); // apply friction to specific particle
void applyFriction(const int32_t coefficient); // apply friction to all used particles
void pointAttractor(const uint32_t particleindex, PSparticle &attractor, const uint8_t strength, const bool swallow);
// set options note: inlining the set function uses more flash so dont optimize
void setUsedParticles(const uint8_t percentage); // set the percentage of particles used in the system, 255=100%
inline uint32_t getAvailableParticles(void) { return availableParticles; } // available particles in the buffer, use this to check if buffer changed during FX init
void setCollisionHardness(const uint8_t hardness); // hardness for particle collisions (255 means full hard)
void setWallHardness(const uint8_t hardness); // hardness for bouncing on the wall if bounceXY is set
void setWallRoughness(const uint8_t roughness); // wall roughness randomizes wall collisions
void setMatrixSize(const uint32_t x, const uint32_t y);
void setWrapX(const bool enable);
void setWrapY(const bool enable);
void setBounceX(const bool enable);
void setBounceY(const bool enable);
void setKillOutOfBounds(const bool enable); // if enabled, particles outside of matrix instantly die
void setSaturation(const uint8_t sat); // set global color saturation
void setColorByAge(const bool enable);
void setMotionBlur(const uint8_t bluramount); // note: motion blur can only be used if 'particlesize' is set to zero
void setSmearBlur(const uint8_t bluramount); // enable 2D smeared blurring of full frame
void setParticleSize(const uint8_t size);
void setGravity(const int8_t force = 8);
void enableParticleCollisions(const bool enable, const uint8_t hardness = 255);
PSparticle *particles; // pointer to particle array
PSparticleFlags *particleFlags; // pointer to particle flags array
PSsource *sources; // pointer to sources
PSadvancedParticle *advPartProps; // pointer to advanced particle properties (can be NULL)
PSsizeControl *advPartSize; // pointer to advanced particle size control (can be NULL)
uint8_t* PSdataEnd; // points to first available byte after the PSmemory, is set in setPointers(). use this for FX custom data
int32_t maxX, maxY; // particle system size i.e. width-1 / height-1 in subpixels, Note: all "max" variables must be signed to compare to coordinates (which are signed)
int32_t maxXpixel, maxYpixel; // last physical pixel that can be drawn to (FX can read this to read segment size if required), equal to width-1 / height-1
uint32_t numSources; // number of sources
uint32_t usedParticles; // number of particles used in animation, is relative to 'numParticles'
//note: some variables are 32bit for speed and code size at the cost of ram
private:
//rendering functions
void ParticleSys_render();
[[gnu::hot]] void renderParticle(const uint32_t particleindex, const uint32_t brightness, const CRGB& color, const bool wrapX, const bool wrapY);
//paricle physics applied by system if flags are set
void applyGravity(); // applies gravity to all particles
void handleCollisions();
[[gnu::hot]] void collideParticles(PSparticle &particle1, PSparticle &particle2, const int32_t dx, const int32_t dy, const int32_t collDistSq);
void fireParticleupdate();
//utility functions
void updatePSpointers(const bool isadvanced, const bool sizecontrol); // update the data pointers to current segment data space
bool updateSize(PSadvancedParticle *advprops, PSsizeControl *advsize); // advanced size control
void getParticleXYsize(PSadvancedParticle *advprops, PSsizeControl *advsize, uint32_t &xsize, uint32_t &ysize);
[[gnu::hot]] void bounce(int8_t &incomingspeed, int8_t &parallelspeed, int32_t &position, const uint32_t maxposition); // bounce on a wall
// note: variables that are accessed often are 32bit for speed
PSsettings2D particlesettings; // settings used when updating particles (can also used by FX to move sources), do not edit properties directly, use functions above
uint32_t numParticles; // total number of particles allocated by this system note: during transitions, less are available, use availableParticles
uint32_t availableParticles; // number of particles available for use (can be more or less than numParticles, assigned by memory manager)
uint32_t emitIndex; // index to count through particles to emit so searching for dead pixels is faster
int32_t collisionHardness;
uint32_t wallHardness;
uint32_t wallRoughness; // randomizes wall collisions
uint32_t particleHardRadius; // hard surface radius of a particle, used for collision detection (32bit for speed)
uint16_t collisionStartIdx; // particle array start index for collision detection
uint8_t fireIntesity = 0; // fire intensity, used for fire mode (flash use optimization, better than passing an argument to render function)
uint8_t fractionOfParticlesUsed; // percentage of particles used in the system (255=100%), used during transition updates
uint8_t forcecounter; // counter for globally applied forces
uint8_t gforcecounter; // counter for global gravity
int8_t gforce; // gravity strength, default is 8 (negative is allowed, positive is downwards)
// global particle properties for basic particles
uint8_t particlesize; // global particle size, 0 = 1 pixel, 1 = 2 pixels, 255 = 10 pixels (note: this is also added to individual sized particles)
uint8_t motionBlur; // motion blur, values > 100 gives smoother animations. Note: motion blurring does not work if particlesize is > 0
uint8_t smearBlur; // 2D smeared blurring of full frame
uint8_t effectID; // ID of the effect that is using this particle system, used for transitions
uint32_t lastRender; // last time the particles were rendered, intermediate fix for speedup
};
void blur2D(CRGB *colorbuffer, const uint32_t xsize, uint32_t ysize, const uint32_t xblur, const uint32_t yblur, const uint32_t xstart = 0, uint32_t ystart = 0, const bool isparticle = false);
// initialization functions (not part of class)
bool initParticleSystem2D(ParticleSystem2D *&PartSys, const uint32_t requestedsources, const uint32_t additionalbytes = 0, const bool advanced = false, const bool sizecontrol = false);
uint32_t calculateNumberOfParticles2D(const uint32_t pixels, const bool advanced, const bool sizecontrol);
uint32_t calculateNumberOfSources2D(const uint32_t pixels, const uint32_t requestedsources);
bool allocateParticleSystemMemory2D(const uint32_t numparticles, const uint32_t numsources, const bool advanced, const bool sizecontrol, const uint32_t additionalbytes);
#endif // WLED_DISABLE_PARTICLESYSTEM2D
////////////////////////
// 1D Particle System //
////////////////////////
#ifndef WLED_DISABLE_PARTICLESYSTEM1D
// memory allocation
#define ESP8266_MAXPARTICLES_1D 450
#define ESP8266_MAXSOURCES_1D 16
#define ESP32S2_MAXPARTICLES_1D 1300
#define ESP32S2_MAXSOURCES_1D 32
#define ESP32_MAXPARTICLES_1D 2600
#define ESP32_MAXSOURCES_1D 64
// particle dimensions (subpixel division)
#define PS_P_RADIUS_1D 32 // subpixel size, each pixel is divided by this for particle movement, if this value is changed, also change the shift defines (next two lines)
#define PS_P_HALFRADIUS_1D (PS_P_RADIUS_1D >> 1)
#define PS_P_RADIUS_SHIFT_1D 5 // 1 << PS_P_RADIUS_SHIFT = PS_P_RADIUS
#define PS_P_SURFACE_1D 5 // shift: 2^PS_P_SURFACE = PS_P_RADIUS_1D
#define PS_P_MINHARDRADIUS_1D 32 // minimum hard surface radius note: do not change or hourglass effect will be broken
#define PS_P_MINSURFACEHARDNESS_1D 120 // minimum hardness used in collision impulse calculation
// struct for PS settings (shared for 1D and 2D class)
typedef union {
struct{
// one byte bit field for 1D settings
bool wrap : 1;
bool bounce : 1;
bool killoutofbounds : 1; // if set, out of bound particles are killed immediately
bool useGravity : 1; // set to 1 if gravity is used, disables bounceY at the top
bool useCollisions : 1;
bool colorByAge : 1; // if set, particle hue is set by ttl value in render function
bool colorByPosition : 1; // if set, particle hue is set by its position in the strip segment
bool unused : 1;
};
byte asByte; // access as a byte, order is: LSB is first entry in the list above
} PSsettings1D;
//struct for a single particle (8 bytes)
typedef struct {
int32_t x; // x position in particle system
uint16_t ttl; // time to live in frames
int8_t vx; // horizontal velocity
uint8_t hue; // color hue
} PSparticle1D;
//struct for particle flags
typedef union {
struct { // 1 byte
bool outofbounds : 1; // out of bounds flag, set to true if particle is outside of display area
bool collide : 1; // if set, particle takes part in collisions
bool perpetual : 1; // if set, particle does not age (TTL is not decremented in move function, it still dies from killoutofbounds)
bool reversegrav : 1; // if set, gravity is reversed on this particle
bool forcedirection : 1; // direction the force was applied, 1 is positive x-direction (used for collision stacking, similar to reversegrav) TODO: not used anymore, can be removed
bool fixed : 1; // if set, particle does not move (and collisions make other particles revert direction),
bool custom1 : 1; // unused custom flags, can be used by FX to track particle states
bool custom2 : 1;
};
byte asByte; // access as a byte, order is: LSB is first entry in the list above
} PSparticleFlags1D;
// struct for additional particle settings (optional)
typedef struct {
uint8_t sat; //color saturation
uint8_t size; // particle size, 255 means 10 pixels in diameter
uint8_t forcecounter;
} PSadvancedParticle1D;
//struct for a particle source (20 bytes)
typedef struct {
uint16_t minLife; // minimum ttl of emittet particles
uint16_t maxLife; // maximum ttl of emitted particles
PSparticle1D source; // use a particle as the emitter source (speed, position, color)
PSparticleFlags1D sourceFlags; // flags for the source particle
int8_t var; // variation of emitted speed (adds random(+/- var) to speed)
int8_t v; // emitting speed
uint8_t sat; // color saturation (advanced property)
uint8_t size; // particle size (advanced property)
// note: there is 3 bytes of padding added here
} PSsource1D;
class ParticleSystem1D
{
public:
ParticleSystem1D(const uint32_t length, const uint32_t numberofparticles, const uint32_t numberofsources, const bool isadvanced = false); // constructor
// note: memory is allcated in the FX function, no deconstructor needed
void update(void); //update the particles according to set options and render to the matrix
void updateSystem(void); // call at the beginning of every FX, updates pointers and dimensions
// particle emitters
int32_t sprayEmit(const PSsource1D &emitter);
void particleMoveUpdate(PSparticle1D &part, PSparticleFlags1D &partFlags, PSsettings1D *options = NULL, PSadvancedParticle1D *advancedproperties = NULL); // move function
//particle physics
[[gnu::hot]] void applyForce(PSparticle1D &part, const int8_t xforce, uint8_t &counter); //apply a force to a single particle
void applyForce(const int8_t xforce); // apply a force to all particles
void applyGravity(PSparticle1D &part, PSparticleFlags1D &partFlags); // applies gravity to single particle (use this for sources)
void applyFriction(const int32_t coefficient); // apply friction to all used particles
// set options
void setUsedParticles(const uint8_t percentage); // set the percentage of particles used in the system, 255=100%
inline uint32_t getAvailableParticles(void) { return availableParticles; } // available particles in the buffer, use this to check if buffer changed during FX init
void setWallHardness(const uint8_t hardness); // hardness for bouncing on the wall if bounceXY is set
void setSize(const uint32_t x); //set particle system size (= strip length)
void setWrap(const bool enable);
void setBounce(const bool enable);
void setKillOutOfBounds(const bool enable); // if enabled, particles outside of matrix instantly die
// void setSaturation(uint8_t sat); // set global color saturation
void setColorByAge(const bool enable);
void setColorByPosition(const bool enable);
void setMotionBlur(const uint8_t bluramount); // note: motion blur can only be used if 'particlesize' is set to zero
void setSmearBlur(const uint8_t bluramount); // enable 1D smeared blurring of full frame
void setParticleSize(const uint8_t size); //size 0 = 1 pixel, size 1 = 2 pixels, is overruled by advanced particle size
void setGravity(int8_t force = 8);
void enableParticleCollisions(bool enable, const uint8_t hardness = 255);
PSparticle1D *particles; // pointer to particle array
PSparticleFlags1D *particleFlags; // pointer to particle flags array
PSsource1D *sources; // pointer to sources
PSadvancedParticle1D *advPartProps; // pointer to advanced particle properties (can be NULL)
//PSsizeControl *advPartSize; // pointer to advanced particle size control (can be NULL)
uint8_t* PSdataEnd; // points to first available byte after the PSmemory, is set in setPointers(). use this for FX custom data
int32_t maxX; // particle system size i.e. width-1, Note: all "max" variables must be signed to compare to coordinates (which are signed)
int32_t maxXpixel; // last physical pixel that can be drawn to (FX can read this to read segment size if required), equal to width-1
uint32_t numSources; // number of sources
uint32_t usedParticles; // number of particles used in animation, is relative to 'numParticles'
private:
//rendering functions
void ParticleSys_render(void);
void renderParticle(const uint32_t particleindex, const uint32_t brightness, const CRGB &color, const bool wrap);
//paricle physics applied by system if flags are set
void applyGravity(); // applies gravity to all particles
void handleCollisions();
[[gnu::hot]] void collideParticles(PSparticle1D &particle1, const PSparticleFlags1D &particle1flags, PSparticle1D &particle2, const PSparticleFlags1D &particle2flags, int32_t dx, int32_t relativeVx, const int32_t collisiondistance);
//utility functions
void updatePSpointers(const bool isadvanced); // update the data pointers to current segment data space
//void updateSize(PSadvancedParticle *advprops, PSsizeControl *advsize); // advanced size control
[[gnu::hot]] void bounce(int8_t &incomingspeed, int8_t &parallelspeed, int32_t &position, const uint32_t maxposition); // bounce on a wall
// note: variables that are accessed often are 32bit for speed
PSsettings1D particlesettings; // settings used when updating particles
uint32_t numParticles; // total number of particles allocated by this system note: never use more than this, even if more are available (only this many advanced particles are allocated)
uint32_t availableParticles; // number of particles available for use (can be more or less than numParticles, assigned by memory manager)
uint8_t fractionOfParticlesUsed; // percentage of particles used in the system (255=100%), used during transition updates
uint32_t emitIndex; // index to count through particles to emit so searching for dead pixels is faster
int32_t collisionHardness;
uint32_t particleHardRadius; // hard surface radius of a particle, used for collision detection
uint32_t wallHardness;
uint8_t gforcecounter; // counter for global gravity
int8_t gforce; // gravity strength, default is 8 (negative is allowed, positive is downwards)
uint8_t forcecounter; // counter for globally applied forces
uint16_t collisionStartIdx; // particle array start index for collision detection
//global particle properties for basic particles
uint8_t particlesize; // global particle size, 0 = 1 pixel, 1 = 2 pixels
uint8_t motionBlur; // enable motion blur, values > 100 gives smoother animations
uint8_t smearBlur; // smeared blurring of full frame
uint8_t effectID; // ID of the effect that is using this particle system, used for transitions
uint32_t lastRender; // last time the particles were rendered, intermediate fix for speedup
};
bool initParticleSystem1D(ParticleSystem1D *&PartSys, const uint32_t requestedsources, const uint8_t fractionofparticles = 255, const uint32_t additionalbytes = 0, const bool advanced = false);
uint32_t calculateNumberOfParticles1D(const uint32_t fraction, const bool isadvanced);
uint32_t calculateNumberOfSources1D(const uint32_t requestedsources);
bool allocateParticleSystemMemory1D(const uint32_t numparticles, const uint32_t numsources, const bool isadvanced, const uint32_t additionalbytes);
void blur1D(CRGB *colorbuffer, uint32_t size, uint32_t blur, uint32_t start);
#endif // WLED_DISABLE_PARTICLESYSTEM1D

View File

@ -21,10 +21,12 @@
#endif
#include "const.h"
#include "pin_manager.h"
#include "bus_wrapper.h"
#include "bus_manager.h"
#include "bus_wrapper.h"
#include <bits/unique_ptr.h>
extern bool cctICused;
extern bool useParallelI2S;
//colors.cpp
uint32_t colorBalanceFromKelvin(uint16_t kelvin, uint32_t rgb);
@ -32,28 +34,6 @@ uint32_t colorBalanceFromKelvin(uint16_t kelvin, uint32_t rgb);
//udp.cpp
uint8_t realtimeBroadcast(uint8_t type, IPAddress client, uint16_t length, const uint8_t* buffer, uint8_t bri=255, bool isRGBW=false);
// enable additional debug output
#if defined(WLED_DEBUG_HOST)
#include "net_debug.h"
#define DEBUGOUT NetDebug
#else
#define DEBUGOUT Serial
#endif
#ifdef WLED_DEBUG
#ifndef ESP8266
#include <rom/rtc.h>
#endif
#define DEBUG_PRINT(x) DEBUGOUT.print(x)
#define DEBUG_PRINTLN(x) DEBUGOUT.println(x)
#define DEBUG_PRINTF(x...) DEBUGOUT.printf(x)
#define DEBUG_PRINTF_P(x...) DEBUGOUT.printf_P(x)
#else
#define DEBUG_PRINT(x)
#define DEBUG_PRINTLN(x)
#define DEBUG_PRINTF(x...)
#define DEBUG_PRINTF_P(x...)
#endif
//color mangling macros
#define RGBW32(r,g,b,w) (uint32_t((byte(w) << 24) | (byte(r) << 16) | (byte(g) << 8) | (byte(b))))
@ -68,6 +48,7 @@ static ColorOrderMap _colorOrderMap = {};
bool ColorOrderMap::add(uint16_t start, uint16_t len, uint8_t colorOrder) {
if (count() >= WLED_MAX_COLOR_ORDER_MAPPINGS || len == 0 || (colorOrder & 0x0F) > COL_ORDER_MAX) return false; // upper nibble contains W swap information
_mappings.push_back({start,len,colorOrder});
DEBUGBUS_PRINTF_P(PSTR("Bus: Add COM (%d,%d,%d)\n"), (int)start, (int)len, (int)colorOrder);
return true;
}
@ -127,32 +108,34 @@ BusDigital::BusDigital(const BusConfig &bc, uint8_t nr)
, _milliAmpsMax(bc.milliAmpsMax)
, _data(nullptr)
{
if (!isDigital(bc.type) || !bc.count) return;
if (!PinManager::allocatePin(bc.pins[0], true, PinOwner::BusDigital)) return;
DEBUGBUS_PRINTLN(F("Bus: Creating digital bus."));
if (!isDigital(bc.type) || !bc.count) { DEBUGBUS_PRINTLN(F("Not digial or empty bus!")); return; }
if (!PinManager::allocatePin(bc.pins[0], true, PinOwner::BusDigital)) { DEBUGBUS_PRINTLN(F("Pin 0 allocated!")); return; }
_frequencykHz = 0U;
_pins[0] = bc.pins[0];
if (is2Pin(bc.type)) {
if (!PinManager::allocatePin(bc.pins[1], true, PinOwner::BusDigital)) {
cleanup();
DEBUGBUS_PRINTLN(F("Pin 1 allocated!"));
return;
}
_pins[1] = bc.pins[1];
_frequencykHz = bc.frequency ? bc.frequency : 2000U; // 2MHz clock if undefined
}
_iType = PolyBus::getI(bc.type, _pins, nr);
if (_iType == I_NONE) return;
if (_iType == I_NONE) { DEBUGBUS_PRINTLN(F("Incorrect iType!")); return; }
_hasRgb = hasRGB(bc.type);
_hasWhite = hasWhite(bc.type);
_hasCCT = hasCCT(bc.type);
if (bc.doubleBuffer) {
_data = (uint8_t*)calloc(_len, Bus::getNumberOfChannels(_type));
if (!_data) DEBUG_PRINTLN(F("Bus: Buffer allocation failed!"));
if (!_data) DEBUGBUS_PRINTLN(F("Bus: Buffer allocation failed!"));
}
uint16_t lenToCreate = bc.count;
if (bc.type == TYPE_WS2812_1CH_X3) lenToCreate = NUM_ICS_WS2812_1CH_3X(bc.count); // only needs a third of "RGB" LEDs for NeoPixelBus
_busPtr = PolyBus::create(_iType, _pins, lenToCreate + _skip, nr);
_valid = (_busPtr != nullptr) && bc.count > 0;
DEBUG_PRINTF_P(PSTR("Bus: %successfully inited #%u (len:%u, type:%u (RGB:%d, W:%d, CCT:%d), pins:%u,%u [itype:%u] mA=%d/%d)\n"),
DEBUGBUS_PRINTF_P(PSTR("Bus: %successfully inited #%u (len:%u, type:%u (RGB:%d, W:%d, CCT:%d), pins:%u,%u [itype:%u] mA=%d/%d)\n"),
_valid?"S":"Uns",
(int)nr,
(int)bc.count,
@ -185,7 +168,7 @@ uint8_t BusDigital::estimateCurrentAndLimitBri() const {
actualMilliampsPerLed = 12; // from testing an actual strip
}
size_t powerBudget = (_milliAmpsMax - MA_FOR_ESP/BusManager::getNumBusses()); //80/120mA for ESP power
unsigned powerBudget = (_milliAmpsMax - MA_FOR_ESP/BusManager::getNumBusses()); //80/120mA for ESP power
if (powerBudget > getLength()) { //each LED uses about 1mA in standby, exclude that from power budget
powerBudget -= getLength();
} else {
@ -210,26 +193,25 @@ uint8_t BusDigital::estimateCurrentAndLimitBri() const {
}
// powerSum has all the values of channels summed (max would be getLength()*765 as white is excluded) so convert to milliAmps
busPowerSum = (busPowerSum * actualMilliampsPerLed) / 765;
_milliAmpsTotal = busPowerSum * _bri / 255;
BusDigital::_milliAmpsTotal = (busPowerSum * actualMilliampsPerLed * _bri) / (765*255);
uint8_t newBri = _bri;
if (busPowerSum * _bri / 255 > powerBudget) { //scale brightness down to stay in current limit
float scale = (float)(powerBudget * 255) / (float)(busPowerSum * _bri);
if (scale >= 1.0f) return _bri;
_milliAmpsTotal = ceilf((float)_milliAmpsTotal * scale);
uint8_t scaleB = min((int)(scale * 255), 255);
newBri = unsigned(_bri * scaleB) / 256 + 1;
if (BusDigital::_milliAmpsTotal > powerBudget) {
//scale brightness down to stay in current limit
unsigned scaleB = powerBudget * 255 / BusDigital::_milliAmpsTotal;
newBri = (_bri * scaleB) / 256 + 1;
BusDigital::_milliAmpsTotal = powerBudget;
//_milliAmpsTotal = (busPowerSum * actualMilliampsPerLed * newBri) / (765*255);
}
return newBri;
}
void BusDigital::show() {
_milliAmpsTotal = 0;
BusDigital::_milliAmpsTotal = 0;
if (!_valid) return;
uint8_t cctWW = 0, cctCW = 0;
unsigned newBri = estimateCurrentAndLimitBri(); // will fill _milliAmpsTotal
unsigned newBri = estimateCurrentAndLimitBri(); // will fill _milliAmpsTotal (TODO: could use PolyBus::CalcTotalMilliAmpere())
if (newBri < _bri) PolyBus::setBrightness(_busPtr, _iType, newBri); // limit brightness to stay within current limits
if (_data) {
@ -255,6 +237,7 @@ void BusDigital::show() {
// TODO: there is an issue if CCT is calculated from RGB value (_cct==-1), we cannot do that with double buffer
Bus::_cct = _data[offset+channels-1];
Bus::calculateCCT(c, cctWW, cctCW);
if (_type == TYPE_WS2812_WWA) c = RGBW32(cctWW, cctCW, 0, W(c)); // may need swapping
}
unsigned pix = i;
if (_reversed) pix = _len - pix -1;
@ -340,8 +323,8 @@ void IRAM_ATTR BusDigital::setPixelColor(unsigned pix, uint32_t c) {
uint8_t cctWW = 0, cctCW = 0;
Bus::calculateCCT(c, cctWW, cctCW);
wwcw = (cctCW<<8) | cctWW;
if (_type == TYPE_WS2812_WWA) c = RGBW32(cctWW, cctCW, 0, W(c)); // may need swapping
}
PolyBus::setPixelColor(_busPtr, _iType, pix, c, co, wwcw);
}
}
@ -373,17 +356,21 @@ uint32_t IRAM_ATTR BusDigital::getPixelColor(unsigned pix) const {
case 2: c = RGBW32(b, b, b, b); break;
}
}
if (_type == TYPE_WS2812_WWA) {
uint8_t w = R(c) | G(c);
c = RGBW32(w, w, 0, w);
}
return c;
}
}
size_t BusDigital::getPins(uint8_t* pinArray) const {
unsigned BusDigital::getPins(uint8_t* pinArray) const {
unsigned numPins = is2Pin(_type) + 1;
if (pinArray) for (unsigned i = 0; i < numPins; i++) pinArray[i] = _pins[i];
return numPins;
}
size_t BusDigital::getBusSize() const {
unsigned BusDigital::getBusSize() const {
return sizeof(BusDigital) + (isOk() ? PolyBus::getDataSize(_busPtr, _iType) + (_data ? _len * getNumberOfChannels() : 0) : 0);
}
@ -393,7 +380,7 @@ void BusDigital::setColorOrder(uint8_t colorOrder) {
_colorOrder = colorOrder;
}
// credit @willmmiles & @netmindz https://github.com/Aircoookie/WLED/pull/4056
// credit @willmmiles & @netmindz https://github.com/wled-dev/WLED/pull/4056
std::vector<LEDType> BusDigital::getLEDTypes() {
return {
{TYPE_WS2812_RGB, "D", PSTR("WS281x")},
@ -409,8 +396,8 @@ std::vector<LEDType> BusDigital::getLEDTypes() {
{TYPE_WS2805, "D", PSTR("WS2805 RGBCW")},
{TYPE_SM16825, "D", PSTR("SM16825 RGBCW")},
{TYPE_WS2812_1CH_X3, "D", PSTR("WS2811 White")},
//{TYPE_WS2812_2CH_X3, "D", PSTR("WS2811 CCT")}, // not implemented
//{TYPE_WS2812_WWA, "D", PSTR("WS2811 WWA")}, // not implemented
//{TYPE_WS2812_2CH_X3, "D", PSTR("WS281x CCT")}, // not implemented
{TYPE_WS2812_WWA, "D", PSTR("WS281x WWA")}, // amber ignored
{TYPE_WS2801, "2P", PSTR("WS2801")},
{TYPE_APA102, "2P", PSTR("APA102")},
{TYPE_LPD8806, "2P", PSTR("LPD8806")},
@ -425,7 +412,7 @@ void BusDigital::begin() {
}
void BusDigital::cleanup() {
DEBUG_PRINTLN(F("Digital Cleanup."));
DEBUGBUS_PRINTLN(F("Digital Cleanup."));
PolyBus::cleanup(_busPtr, _iType);
free(_data);
_data = nullptr;
@ -504,7 +491,7 @@ BusPwm::BusPwm(const BusConfig &bc)
_hasWhite = hasWhite(bc.type);
_hasCCT = hasCCT(bc.type);
_valid = true;
DEBUG_PRINTF_P(PSTR("%successfully inited PWM strip with type %u, frequency %u, bit depth %u and pins %u,%u,%u,%u,%u\n"), _valid?"S":"Uns", bc.type, _frequency, _depth, _pins[0], _pins[1], _pins[2], _pins[3], _pins[4]);
DEBUGBUS_PRINTF_P(PSTR("%successfully inited PWM strip with type %u, frequency %u, bit depth %u and pins %u,%u,%u,%u,%u\n"), _valid?"S":"Uns", bc.type, _frequency, _depth, _pins[0], _pins[1], _pins[2], _pins[3], _pins[4]);
}
void BusPwm::setPixelColor(unsigned pix, uint32_t c) {
@ -574,7 +561,7 @@ void BusPwm::show() {
constexpr unsigned bitShift = 8; // 256 clocks for dead time, ~3us at 80MHz
#else
// if _needsRefresh is true (UI hack) we are using dithering (credit @dedehai & @zalatnaicsongor)
// https://github.com/Aircoookie/WLED/pull/4115 and https://github.com/zalatnaicsongor/WLED/pull/1)
// https://github.com/wled-dev/WLED/pull/4115 and https://github.com/zalatnaicsongor/WLED/pull/1)
const bool dithering = _needsRefresh; // avoid working with bitfield
const unsigned maxBri = (1<<_depth); // possible values: 16384 (14), 8192 (13), 4096 (12), 2048 (11), 1024 (10), 512 (9) and 256 (8)
const unsigned bitShift = dithering * 4; // if dithering, _depth is 12 bit but LEDC channel is set to 8 bit (using 4 fractional bits)
@ -633,14 +620,14 @@ void BusPwm::show() {
}
}
size_t BusPwm::getPins(uint8_t* pinArray) const {
unsigned BusPwm::getPins(uint8_t* pinArray) const {
if (!_valid) return 0;
unsigned numPins = numPWMPins(_type);
if (pinArray) for (unsigned i = 0; i < numPins; i++) pinArray[i] = _pins[i];
return numPins;
}
// credit @willmmiles & @netmindz https://github.com/Aircoookie/WLED/pull/4056
// credit @willmmiles & @netmindz https://github.com/wled-dev/WLED/pull/4056
std::vector<LEDType> BusPwm::getLEDTypes() {
return {
{TYPE_ANALOG_1CH, "A", PSTR("PWM White")},
@ -685,7 +672,7 @@ BusOnOff::BusOnOff(const BusConfig &bc)
_hasWhite = false;
_hasCCT = false;
_valid = true;
DEBUG_PRINTF_P(PSTR("%successfully inited On/Off strip with pin %u\n"), _valid?"S":"Uns", _pin);
DEBUGBUS_PRINTF_P(PSTR("%successfully inited On/Off strip with pin %u\n"), _valid?"S":"Uns", _pin);
}
void BusOnOff::setPixelColor(unsigned pix, uint32_t c) {
@ -708,13 +695,13 @@ void BusOnOff::show() {
digitalWrite(_pin, _reversed ? !(bool)_data : (bool)_data);
}
size_t BusOnOff::getPins(uint8_t* pinArray) const {
unsigned BusOnOff::getPins(uint8_t* pinArray) const {
if (!_valid) return 0;
if (pinArray) pinArray[0] = _pin;
return 1;
}
// credit @willmmiles & @netmindz https://github.com/Aircoookie/WLED/pull/4056
// credit @willmmiles & @netmindz https://github.com/wled-dev/WLED/pull/4056
std::vector<LEDType> BusOnOff::getLEDTypes() {
return {
{TYPE_ONOFF, "", PSTR("On/Off")},
@ -746,7 +733,7 @@ BusNetwork::BusNetwork(const BusConfig &bc)
_client = IPAddress(bc.pins[0],bc.pins[1],bc.pins[2],bc.pins[3]);
_data = (uint8_t*)calloc(_len, _UDPchannels);
_valid = (_data != nullptr);
DEBUG_PRINTF_P(PSTR("%successfully inited virtual strip with type %u and IP %u.%u.%u.%u\n"), _valid?"S":"Uns", bc.type, bc.pins[0], bc.pins[1], bc.pins[2], bc.pins[3]);
DEBUGBUS_PRINTF_P(PSTR("%successfully inited virtual strip with type %u and IP %u.%u.%u.%u\n"), _valid?"S":"Uns", bc.type, bc.pins[0], bc.pins[1], bc.pins[2], bc.pins[3]);
}
void BusNetwork::setPixelColor(unsigned pix, uint32_t c) {
@ -773,12 +760,12 @@ void BusNetwork::show() {
_broadcastLock = false;
}
size_t BusNetwork::getPins(uint8_t* pinArray) const {
unsigned BusNetwork::getPins(uint8_t* pinArray) const {
if (pinArray) for (unsigned i = 0; i < 4; i++) pinArray[i] = _client[i];
return 4;
}
// credit @willmmiles & @netmindz https://github.com/Aircoookie/WLED/pull/4056
// credit @willmmiles & @netmindz https://github.com/wled-dev/WLED/pull/4056
std::vector<LEDType> BusNetwork::getLEDTypes() {
return {
{TYPE_NET_DDP_RGB, "N", PSTR("DDP RGB (network)")}, // should be "NNNN" to determine 4 "pin" fields
@ -789,12 +776,12 @@ std::vector<LEDType> BusNetwork::getLEDTypes() {
//{TYPE_VIRTUAL_I2C_W, "V", PSTR("I2C White (virtual)")}, // allows setting I2C address in _pin[0]
//{TYPE_VIRTUAL_I2C_CCT, "V", PSTR("I2C CCT (virtual)")}, // allows setting I2C address in _pin[0]
//{TYPE_VIRTUAL_I2C_RGB, "VVV", PSTR("I2C RGB (virtual)")}, // allows setting I2C address in _pin[0] and 2 additional values in _pin[1] & _pin[2]
//{TYPE_USERMOD, "VVVVV", PSTR("Usermod (virtual)")}, // 5 data fields (see https://github.com/Aircoookie/WLED/pull/4123)
//{TYPE_USERMOD, "VVVVV", PSTR("Usermod (virtual)")}, // 5 data fields (see https://github.com/wled-dev/WLED/pull/4123)
};
}
void BusNetwork::cleanup() {
DEBUG_PRINTLN(F("Virtual Cleanup."));
DEBUGBUS_PRINTLN(F("Virtual Cleanup."));
free(_data);
_data = nullptr;
_type = I_NONE;
@ -803,7 +790,7 @@ void BusNetwork::cleanup() {
//utility to get the approx. memory usage of a given BusConfig
size_t BusConfig::memUsage(unsigned nr) const {
unsigned BusConfig::memUsage(unsigned nr) const {
if (Bus::isVirtual(type)) {
return sizeof(BusNetwork) + (count * Bus::getNumberOfChannels(type));
} else if (Bus::isDigital(type)) {
@ -816,7 +803,7 @@ size_t BusConfig::memUsage(unsigned nr) const {
}
size_t BusManager::memUsage() {
unsigned BusManager::memUsage() {
// when ESP32, S2 & S3 use parallel I2S only the largest bus determines the total memory requirements for back buffers
// front buffers are always allocated per bus
unsigned size = 0;
@ -845,7 +832,7 @@ size_t BusManager::memUsage() {
}
int BusManager::add(const BusConfig &bc) {
DEBUG_PRINTF_P(PSTR("Bus: Adding bus (%d - %d >= %d)\n"), getNumBusses(), getNumVirtualBusses(), WLED_MAX_BUSSES);
DEBUGBUS_PRINTF_P(PSTR("Bus: Adding bus (%d - %d >= %d)\n"), getNumBusses(), getNumVirtualBusses(), WLED_MAX_BUSSES);
if (getNumBusses() - getNumVirtualBusses() >= WLED_MAX_BUSSES) return -1;
unsigned numDigital = 0;
for (const auto &bus : busses) if (bus->isDigital() && !bus->is2Pin()) numDigital++;
@ -878,7 +865,7 @@ static String LEDTypesToJson(const std::vector<LEDType>& types) {
return json;
}
// credit @willmmiles & @netmindz https://github.com/Aircoookie/WLED/pull/4056
// credit @willmmiles & @netmindz https://github.com/wled-dev/WLED/pull/4056
String BusManager::getLEDTypesJSONString() {
String json = "[";
json += LEDTypesToJson(BusDigital::getLEDTypes());
@ -891,7 +878,7 @@ String BusManager::getLEDTypesJSONString() {
}
void BusManager::useParallelOutput() {
DEBUG_PRINTLN(F("Bus: Enabling parallel I2S."));
DEBUGBUS_PRINTLN(F("Bus: Enabling parallel I2S."));
PolyBus::setParallelI2S1Output();
}
@ -901,7 +888,7 @@ bool BusManager::hasParallelOutput() {
//do not call this method from system context (network callback)
void BusManager::removeAll() {
DEBUG_PRINTLN(F("Removing all."));
DEBUGBUS_PRINTLN(F("Removing all."));
//prevents crashes due to deleting busses while in use.
while (!canAllShow()) yield();
//for (auto &bus : busses) delete bus; // needed when not using std::unique_ptr C++ >11
@ -955,8 +942,8 @@ void BusManager::on() {
uint8_t pins[2] = {255,255};
if (bus->isDigital() && bus->getPins(pins)) {
if (pins[0] == LED_BUILTIN || pins[1] == LED_BUILTIN) {
BusDigital &b = static_cast<BusDigital&>(*bus);
b.begin();
BusDigital *b = static_cast<BusDigital*>(bus);
b->begin();
break;
}
}
@ -1025,7 +1012,7 @@ bool BusManager::canAllShow() {
ColorOrderMap& BusManager::getColorOrderMap() { return _colorOrderMap; }
bool PolyBus::useParallelI2S = false;
bool PolyBus::_useParallelI2S = false;
// Bus static member definition
int16_t Bus::_cct = -1;

View File

@ -21,6 +21,28 @@ make_unique(Args&&... args)
{
return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
}
// enable additional debug output
#if defined(WLED_DEBUG_HOST)
#include "net_debug.h"
#define DEBUGOUT NetDebug
#else
#define DEBUGOUT Serial
#endif
#ifdef WLED_DEBUG_BUS
#ifndef ESP8266
#include <rom/rtc.h>
#endif
#define DEBUGBUS_PRINT(x) DEBUGOUT.print(x)
#define DEBUGBUS_PRINTLN(x) DEBUGOUT.println(x)
#define DEBUGBUS_PRINTF(x...) DEBUGOUT.printf(x)
#define DEBUGBUS_PRINTF_P(x...) DEBUGOUT.printf_P(x)
#else
#define DEBUGBUS_PRINT(x)
#define DEBUGBUS_PRINTLN(x)
#define DEBUGBUS_PRINTF(x...)
#define DEBUGBUS_PRINTF_P(x...)
#endif
//colors.cpp
@ -91,51 +113,51 @@ class Bus {
_autoWhiteMode = Bus::hasWhite(type) ? aw : RGBW_MODE_MANUAL_ONLY;
};
virtual ~Bus() {} //throw the bus under the bus
virtual ~Bus() {} //throw the bus under the bus (derived class needs to freeData())
virtual void begin() {};
virtual void begin() {};
virtual void show() = 0;
virtual bool canShow() const { return true; }
virtual void setStatusPixel(uint32_t c) {}
virtual bool canShow() const { return true; }
virtual void setStatusPixel(uint32_t c) {}
virtual void setPixelColor(unsigned pix, uint32_t c) = 0;
virtual void setBrightness(uint8_t b) { _bri = b; };
virtual void setColorOrder(uint8_t co) {}
virtual uint32_t getPixelColor(unsigned pix) const { return 0; }
virtual size_t getPins(uint8_t* pinArray = nullptr) const { return 0; }
virtual uint16_t getLength() const { return isOk() ? _len : 0; }
virtual uint8_t getColorOrder() const { return COL_ORDER_RGB; }
virtual unsigned skippedLeds() const { return 0; }
virtual uint16_t getFrequency() const { return 0U; }
virtual uint16_t getLEDCurrent() const { return 0; }
virtual uint16_t getUsedCurrent() const { return 0; }
virtual uint16_t getMaxCurrent() const { return 0; }
virtual size_t getBusSize() const { return sizeof(Bus); }
virtual void setBrightness(uint8_t b) { _bri = b; };
virtual void setColorOrder(uint8_t co) {}
virtual uint32_t getPixelColor(unsigned pix) const { return 0; }
virtual unsigned getPins(uint8_t* pinArray = nullptr) const { return 0; }
virtual uint16_t getLength() const { return isOk() ? _len : 0; }
virtual uint8_t getColorOrder() const { return COL_ORDER_RGB; }
virtual unsigned skippedLeds() const { return 0; }
virtual uint16_t getFrequency() const { return 0U; }
virtual uint16_t getLEDCurrent() const { return 0; }
virtual uint16_t getUsedCurrent() const { return 0; }
virtual uint16_t getMaxCurrent() const { return 0; }
virtual unsigned getBusSize() const { return sizeof(Bus); }
inline bool hasRGB() const { return _hasRgb; }
inline bool hasWhite() const { return _hasWhite; }
inline bool hasCCT() const { return _hasCCT; }
inline bool isDigital() const { return isDigital(_type); }
inline bool is2Pin() const { return is2Pin(_type); }
inline bool isOnOff() const { return isOnOff(_type); }
inline bool isPWM() const { return isPWM(_type); }
inline bool isVirtual() const { return isVirtual(_type); }
inline bool is16bit() const { return is16bit(_type); }
inline bool mustRefresh() const { return mustRefresh(_type); }
inline void setReversed(bool reversed) { _reversed = reversed; }
inline void setStart(uint16_t start) { _start = start; }
inline void setAutoWhiteMode(uint8_t m) { if (m < 5) _autoWhiteMode = m; }
inline uint8_t getAutoWhiteMode() const { return _autoWhiteMode; }
inline size_t getNumberOfChannels() const { return hasWhite() + 3*hasRGB() + hasCCT(); }
inline uint16_t getStart() const { return _start; }
inline uint8_t getType() const { return _type; }
inline bool isOk() const { return _valid; }
inline bool isReversed() const { return _reversed; }
inline bool isOffRefreshRequired() const { return _needsRefresh; }
inline bool containsPixel(uint16_t pix) const { return pix >= _start && pix < _start + _len; }
inline bool hasRGB() const { return _hasRgb; }
inline bool hasWhite() const { return _hasWhite; }
inline bool hasCCT() const { return _hasCCT; }
inline bool isDigital() const { return isDigital(_type); }
inline bool is2Pin() const { return is2Pin(_type); }
inline bool isOnOff() const { return isOnOff(_type); }
inline bool isPWM() const { return isPWM(_type); }
inline bool isVirtual() const { return isVirtual(_type); }
inline bool is16bit() const { return is16bit(_type); }
inline bool mustRefresh() const { return mustRefresh(_type); }
inline void setReversed(bool reversed) { _reversed = reversed; }
inline void setStart(uint16_t start) { _start = start; }
inline void setAutoWhiteMode(uint8_t m) { if (m < 5) _autoWhiteMode = m; }
inline uint8_t getAutoWhiteMode() const { return _autoWhiteMode; }
inline unsigned getNumberOfChannels() const { return hasWhite() + 3*hasRGB() + hasCCT(); }
inline uint16_t getStart() const { return _start; }
inline uint8_t getType() const { return _type; }
inline bool isOk() const { return _valid; }
inline bool isReversed() const { return _reversed; }
inline bool isOffRefreshRequired() const { return _needsRefresh; }
inline bool containsPixel(uint16_t pix) const { return pix >= _start && pix < _start + _len; }
static inline std::vector<LEDType> getLEDTypes() { return {{TYPE_NONE, "", PSTR("None")}}; } // not used. just for reference for derived classes
static constexpr size_t getNumberOfPins(uint8_t type) { return isVirtual(type) ? 4 : isPWM(type) ? numPWMPins(type) : is2Pin(type) + 1; } // credit @PaoloTK
static constexpr size_t getNumberOfChannels(uint8_t type) { return hasWhite(type) + 3*hasRGB(type) + hasCCT(type); }
static constexpr unsigned getNumberOfPins(uint8_t type) { return isVirtual(type) ? 4 : isPWM(type) ? numPWMPins(type) : is2Pin(type) + 1; } // credit @PaoloTK
static constexpr unsigned getNumberOfChannels(uint8_t type) { return hasWhite(type) + 3*hasRGB(type) + hasCCT(type); }
static constexpr bool hasRGB(uint8_t type) {
return !((type >= TYPE_WS2812_1CH && type <= TYPE_WS2812_WWA) || type == TYPE_ANALOG_1CH || type == TYPE_ANALOG_2CH || type == TYPE_ONOFF);
}
@ -220,13 +242,13 @@ class BusDigital : public Bus {
void setColorOrder(uint8_t colorOrder) override;
[[gnu::hot]] uint32_t getPixelColor(unsigned pix) const override;
uint8_t getColorOrder() const override { return _colorOrder; }
size_t getPins(uint8_t* pinArray = nullptr) const override;
unsigned getPins(uint8_t* pinArray = nullptr) const override;
unsigned skippedLeds() const override { return _skip; }
uint16_t getFrequency() const override { return _frequencykHz; }
uint16_t getLEDCurrent() const override { return _milliAmpsPerLed; }
uint16_t getUsedCurrent() const override { return _milliAmpsTotal; }
uint16_t getMaxCurrent() const override { return _milliAmpsMax; }
size_t getBusSize() const override;
unsigned getBusSize() const override;
void begin() override;
void cleanup();
@ -267,9 +289,9 @@ class BusPwm : public Bus {
void setPixelColor(unsigned pix, uint32_t c) override;
uint32_t getPixelColor(unsigned pix) const override; //does no index check
size_t getPins(uint8_t* pinArray = nullptr) const override;
unsigned getPins(uint8_t* pinArray = nullptr) const override;
uint16_t getFrequency() const override { return _frequency; }
size_t getBusSize() const override { return sizeof(BusPwm); }
unsigned getBusSize() const override { return sizeof(BusPwm); }
void show() override;
inline void cleanup() { deallocatePins(); }
@ -295,8 +317,8 @@ class BusOnOff : public Bus {
void setPixelColor(unsigned pix, uint32_t c) override;
uint32_t getPixelColor(unsigned pix) const override;
size_t getPins(uint8_t* pinArray) const override;
size_t getBusSize() const override { return sizeof(BusOnOff); }
unsigned getPins(uint8_t* pinArray) const override;
unsigned getBusSize() const override { return sizeof(BusOnOff); }
void show() override;
inline void cleanup() { PinManager::deallocatePin(_pin, PinOwner::BusOnOff); }
@ -316,10 +338,10 @@ class BusNetwork : public Bus {
bool canShow() const override { return !_broadcastLock; } // this should be a return value from UDP routine if it is still sending data out
[[gnu::hot]] void setPixelColor(unsigned pix, uint32_t c) override;
[[gnu::hot]] uint32_t getPixelColor(unsigned pix) const override;
size_t getPins(uint8_t* pinArray = nullptr) const override;
size_t getBusSize() const override { return sizeof(BusNetwork) + (isOk() ? _len * _UDPchannels : 0); }
void show() override;
void cleanup();
unsigned getPins(uint8_t* pinArray = nullptr) const override;
unsigned getBusSize() const override { return sizeof(BusNetwork) + (isOk() ? _len * _UDPchannels : 0); }
void show() override;
void cleanup();
static std::vector<LEDType> getLEDTypes();
@ -364,6 +386,16 @@ struct BusConfig {
type = busType & 0x7F; // bit 7 may be/is hacked to include refresh info (1=refresh in off state, 0=no refresh)
size_t nPins = Bus::getNumberOfPins(type);
for (size_t i = 0; i < nPins; i++) pins[i] = ppins[i];
DEBUGBUS_PRINTF_P(PSTR("Bus: Config (%d-%d, type:%d, CO:%d, rev:%d, skip:%d, AW:%d kHz:%d, mA:%d/%d)\n"),
(int)start, (int)(start+len),
(int)type,
(int)colorOrder,
(int)reversed,
(int)skipAmount,
(int)autoWhite,
(int)frequency,
(int)milliAmpsPerLed, (int)milliAmpsMax
);
}
//validates start and length and extends total if needed
@ -378,7 +410,7 @@ struct BusConfig {
return true;
}
size_t memUsage(unsigned nr = 0) const;
unsigned memUsage(unsigned nr = 0) const;
};

View File

@ -1,23 +1,9 @@
#pragma once
#ifndef BusWrapper_h
#define BusWrapper_h
//#define NPB_CONF_4STEP_CADENCE
#include "NeoPixelBusLg.h"
#include "bus_manager.h"
// temporary - these defines should actually be set in platformio.ini
// C3: I2S0 and I2S1 methods not supported (has one I2S bus)
// S2: I2S1 methods not supported (has one I2S bus)
// S3: I2S0 and I2S1 methods not supported yet (has two I2S buses)
// https://github.com/Makuna/NeoPixelBus/blob/b32f719e95ef3c35c46da5c99538017ef925c026/src/internal/Esp32_i2s.h#L4
// https://github.com/Makuna/NeoPixelBus/blob/b32f719e95ef3c35c46da5c99538017ef925c026/src/internal/NeoEsp32RmtMethod.h#L857
#if !defined(WLED_NO_I2S0_PIXELBUS) && (defined(CONFIG_IDF_TARGET_ESP32S3) || defined(CONFIG_IDF_TARGET_ESP32C3))
#define WLED_NO_I2S0_PIXELBUS
#endif
#if !defined(WLED_NO_I2S1_PIXELBUS) && (defined(CONFIG_IDF_TARGET_ESP32S3) || defined(CONFIG_IDF_TARGET_ESP32C3) || defined(CONFIG_IDF_TARGET_ESP32S2))
#define WLED_NO_I2S1_PIXELBUS
#endif
// temporary end
//Hardware SPI Pins
#define P_8266_HS_MOSI 13
@ -55,110 +41,98 @@
#define I_8266_DM_TM2_3 19
#define I_8266_BB_TM2_3 20
//UCS8903 (RGB)
#define I_8266_U0_UCS_3 49
#define I_8266_U1_UCS_3 50
#define I_8266_DM_UCS_3 51
#define I_8266_BB_UCS_3 52
#define I_8266_U0_UCS_3 21
#define I_8266_U1_UCS_3 22
#define I_8266_DM_UCS_3 23
#define I_8266_BB_UCS_3 24
//UCS8904 (RGBW)
#define I_8266_U0_UCS_4 53
#define I_8266_U1_UCS_4 54
#define I_8266_DM_UCS_4 55
#define I_8266_BB_UCS_4 56
#define I_8266_U0_UCS_4 25
#define I_8266_U1_UCS_4 26
#define I_8266_DM_UCS_4 27
#define I_8266_BB_UCS_4 28
//FW1906 GRBCW
#define I_8266_U0_FW6_5 66
#define I_8266_U1_FW6_5 67
#define I_8266_DM_FW6_5 68
#define I_8266_BB_FW6_5 69
#define I_8266_U0_FW6_5 29
#define I_8266_U1_FW6_5 30
#define I_8266_DM_FW6_5 31
#define I_8266_BB_FW6_5 32
//ESP8266 APA106
#define I_8266_U0_APA106_3 81
#define I_8266_U1_APA106_3 82
#define I_8266_DM_APA106_3 83
#define I_8266_BB_APA106_3 84
#define I_8266_U0_APA106_3 33
#define I_8266_U1_APA106_3 34
#define I_8266_DM_APA106_3 35
#define I_8266_BB_APA106_3 36
//WS2805 (RGBCW)
#define I_8266_U0_2805_5 89
#define I_8266_U1_2805_5 90
#define I_8266_DM_2805_5 91
#define I_8266_BB_2805_5 92
#define I_8266_U0_2805_5 37
#define I_8266_U1_2805_5 38
#define I_8266_DM_2805_5 39
#define I_8266_BB_2805_5 40
//TM1914 (RGB)
#define I_8266_U0_TM1914_3 99
#define I_8266_U1_TM1914_3 100
#define I_8266_DM_TM1914_3 101
#define I_8266_BB_TM1914_3 102
#define I_8266_U0_TM1914_3 41
#define I_8266_U1_TM1914_3 42
#define I_8266_DM_TM1914_3 43
#define I_8266_BB_TM1914_3 44
//SM16825 (RGBCW)
#define I_8266_U0_SM16825_5 103
#define I_8266_U1_SM16825_5 104
#define I_8266_DM_SM16825_5 105
#define I_8266_BB_SM16825_5 106
#define I_8266_U0_SM16825_5 45
#define I_8266_U1_SM16825_5 46
#define I_8266_DM_SM16825_5 47
#define I_8266_BB_SM16825_5 48
/*** ESP32 Neopixel methods ***/
//RGB
#define I_32_RN_NEO_3 21
#define I_32_I0_NEO_3 22
#define I_32_I1_NEO_3 23
#define I_32_RN_NEO_3 1
#define I_32_I2_NEO_3 2
//RGBW
#define I_32_RN_NEO_4 25
#define I_32_I0_NEO_4 26
#define I_32_I1_NEO_4 27
#define I_32_RN_NEO_4 5
#define I_32_I2_NEO_4 6
//400Kbps
#define I_32_RN_400_3 29
#define I_32_I0_400_3 30
#define I_32_I1_400_3 31
#define I_32_RN_400_3 9
#define I_32_I2_400_3 10
//TM1814 (RGBW)
#define I_32_RN_TM1_4 33
#define I_32_I0_TM1_4 34
#define I_32_I1_TM1_4 35
#define I_32_RN_TM1_4 13
#define I_32_I2_TM1_4 14
//TM1829 (RGB)
#define I_32_RN_TM2_3 36
#define I_32_I0_TM2_3 37
#define I_32_I1_TM2_3 38
#define I_32_RN_TM2_3 17
#define I_32_I2_TM2_3 18
//UCS8903 (RGB)
#define I_32_RN_UCS_3 57
#define I_32_I0_UCS_3 58
#define I_32_I1_UCS_3 59
#define I_32_RN_UCS_3 21
#define I_32_I2_UCS_3 22
//UCS8904 (RGBW)
#define I_32_RN_UCS_4 60
#define I_32_I0_UCS_4 61
#define I_32_I1_UCS_4 62
#define I_32_RN_UCS_4 25
#define I_32_I2_UCS_4 26
//FW1906 GRBCW
#define I_32_RN_FW6_5 63
#define I_32_I0_FW6_5 64
#define I_32_I1_FW6_5 65
#define I_32_RN_FW6_5 29
#define I_32_I2_FW6_5 30
//APA106
#define I_32_RN_APA106_3 85
#define I_32_I0_APA106_3 86
#define I_32_I1_APA106_3 87
#define I_32_RN_APA106_3 33
#define I_32_I2_APA106_3 34
//WS2805 (RGBCW)
#define I_32_RN_2805_5 93
#define I_32_I0_2805_5 94
#define I_32_I1_2805_5 95
#define I_32_RN_2805_5 37
#define I_32_I2_2805_5 38
//TM1914 (RGB)
#define I_32_RN_TM1914_3 96
#define I_32_I0_TM1914_3 97
#define I_32_I1_TM1914_3 98
#define I_32_RN_TM1914_3 41
#define I_32_I2_TM1914_3 42
//SM16825 (RGBCW)
#define I_32_RN_SM16825_5 107
#define I_32_I0_SM16825_5 108
#define I_32_I1_SM16825_5 109
#define I_32_RN_SM16825_5 45
#define I_32_I2_SM16825_5 46
//APA102
#define I_HS_DOT_3 39 //hardware SPI
#define I_SS_DOT_3 40 //soft SPI
#define I_HS_DOT_3 101 //hardware SPI
#define I_SS_DOT_3 102 //soft SPI
//LPD8806
#define I_HS_LPD_3 41
#define I_SS_LPD_3 42
#define I_HS_LPD_3 103
#define I_SS_LPD_3 104
//WS2801
#define I_HS_WS1_3 43
#define I_SS_WS1_3 44
#define I_HS_WS1_3 105
#define I_SS_WS1_3 106
//P9813
#define I_HS_P98_3 45
#define I_SS_P98_3 46
#define I_HS_P98_3 107
#define I_SS_P98_3 108
//LPD6803
#define I_HS_LPO_3 47
#define I_SS_LPO_3 48
#define I_HS_LPO_3 109
#define I_SS_LPO_3 110
// In the following NeoGammaNullMethod can be replaced with NeoGammaWLEDMethod to perform Gamma correction implicitly
@ -230,66 +204,95 @@
/*** ESP32 Neopixel methods ***/
#ifdef ARDUINO_ARCH_ESP32
// C3: I2S0 and I2S1 methods not supported (has one I2S bus)
// S2: I2S0 methods supported (single & parallel), I2S1 methods not supported (has one I2S bus)
// S3: I2S0 methods not supported, I2S1 supports LCD parallel methods (has two I2S buses)
// https://github.com/Makuna/NeoPixelBus/blob/b32f719e95ef3c35c46da5c99538017ef925c026/src/internal/Esp32_i2s.h#L4
// https://github.com/Makuna/NeoPixelBus/blob/b32f719e95ef3c35c46da5c99538017ef925c026/src/internal/NeoEsp32RmtMethod.h#L857
#if defined(CONFIG_IDF_TARGET_ESP32S3)
// S3 will always use LCD parallel output
typedef X8Ws2812xMethod X1Ws2812xMethod;
typedef X8Sk6812Method X1Sk6812Method;
typedef X8400KbpsMethod X1400KbpsMethod;
typedef X8800KbpsMethod X1800KbpsMethod;
typedef X8Tm1814Method X1Tm1814Method;
typedef X8Tm1829Method X1Tm1829Method;
typedef X8Apa106Method X1Apa106Method;
typedef X8Ws2805Method X1Ws2805Method;
typedef X8Tm1914Method X1Tm1914Method;
#elif defined(CONFIG_IDF_TARGET_ESP32S2)
// S2 will use I2S0
typedef NeoEsp32I2s0Ws2812xMethod X1Ws2812xMethod;
typedef NeoEsp32I2s0Sk6812Method X1Sk6812Method;
typedef NeoEsp32I2s0400KbpsMethod X1400KbpsMethod;
typedef NeoEsp32I2s0800KbpsMethod X1800KbpsMethod;
typedef NeoEsp32I2s0Tm1814Method X1Tm1814Method;
typedef NeoEsp32I2s0Tm1829Method X1Tm1829Method;
typedef NeoEsp32I2s0Apa106Method X1Apa106Method;
typedef NeoEsp32I2s0Ws2805Method X1Ws2805Method;
typedef NeoEsp32I2s0Tm1914Method X1Tm1914Method;
#elif !defined(CONFIG_IDF_TARGET_ESP32C3)
// regular ESP32 will use I2S1
typedef NeoEsp32I2s1Ws2812xMethod X1Ws2812xMethod;
typedef NeoEsp32I2s1Sk6812Method X1Sk6812Method;
typedef NeoEsp32I2s1400KbpsMethod X1400KbpsMethod;
typedef NeoEsp32I2s1800KbpsMethod X1800KbpsMethod;
typedef NeoEsp32I2s1Tm1814Method X1Tm1814Method;
typedef NeoEsp32I2s1Tm1829Method X1Tm1829Method;
typedef NeoEsp32I2s1Apa106Method X1Apa106Method;
typedef NeoEsp32I2s1Ws2805Method X1Ws2805Method;
typedef NeoEsp32I2s1Tm1914Method X1Tm1914Method;
#endif
//RGB
#define B_32_RN_NEO_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp32RmtNWs2812xMethod, NeoGammaNullMethod>
#define B_32_I0_NEO_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp32I2s0Ws2812xMethod, NeoGammaNullMethod>
#define B_32_I1_NEO_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp32I2s1Ws2812xMethod, NeoGammaNullMethod>
#define B_32_I1_NEO_3P NeoPixelBusLg<NeoGrbFeature, NeoEsp32I2s1X8Ws2812xMethod, NeoGammaNullMethod> // parallel I2S
#define B_32_RN_NEO_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp32RmtNWs2812xMethod, NeoGammaNullMethod> // ESP32, S2, S3, C3
//#define B_32_IN_NEO_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp32I2sNWs2812xMethod, NeoGammaNullMethod> // ESP32 (dynamic I2S selection)
#define B_32_I2_NEO_3 NeoPixelBusLg<NeoGrbFeature, X1Ws2812xMethod, NeoGammaNullMethod> // ESP32, S2, S3 (automatic I2S selection, see typedef above)
#define B_32_IP_NEO_3 NeoPixelBusLg<NeoGrbFeature, X8Ws2812xMethod, NeoGammaNullMethod> // parallel I2S (ESP32, S2, S3)
//RGBW
#define B_32_RN_NEO_4 NeoPixelBusLg<NeoGrbwFeature, NeoEsp32RmtNSk6812Method, NeoGammaNullMethod>
#define B_32_I0_NEO_4 NeoPixelBusLg<NeoGrbwFeature, NeoEsp32I2s0Sk6812Method, NeoGammaNullMethod>
#define B_32_I1_NEO_4 NeoPixelBusLg<NeoGrbwFeature, NeoEsp32I2s1Sk6812Method, NeoGammaNullMethod>
#define B_32_I1_NEO_4P NeoPixelBusLg<NeoGrbwFeature, NeoEsp32I2s1X8Sk6812Method, NeoGammaNullMethod> // parallel I2S
#define B_32_I2_NEO_4 NeoPixelBusLg<NeoGrbwFeature, X1Sk6812Method, NeoGammaNullMethod>
#define B_32_IP_NEO_4 NeoPixelBusLg<NeoGrbwFeature, X8Sk6812Method, NeoGammaNullMethod> // parallel I2S
//400Kbps
#define B_32_RN_400_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp32RmtN400KbpsMethod, NeoGammaNullMethod>
#define B_32_I0_400_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp32I2s0400KbpsMethod, NeoGammaNullMethod>
#define B_32_I1_400_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp32I2s1400KbpsMethod, NeoGammaNullMethod>
#define B_32_I1_400_3P NeoPixelBusLg<NeoGrbFeature, NeoEsp32I2s1X8400KbpsMethod, NeoGammaNullMethod> // parallel I2S
#define B_32_I2_400_3 NeoPixelBusLg<NeoGrbFeature, X1400KbpsMethod, NeoGammaNullMethod>
#define B_32_IP_400_3 NeoPixelBusLg<NeoGrbFeature, X8400KbpsMethod, NeoGammaNullMethod> // parallel I2S
//TM1814 (RGBW)
#define B_32_RN_TM1_4 NeoPixelBusLg<NeoWrgbTm1814Feature, NeoEsp32RmtNTm1814Method, NeoGammaNullMethod>
#define B_32_I0_TM1_4 NeoPixelBusLg<NeoWrgbTm1814Feature, NeoEsp32I2s0Tm1814Method, NeoGammaNullMethod>
#define B_32_I1_TM1_4 NeoPixelBusLg<NeoWrgbTm1814Feature, NeoEsp32I2s1Tm1814Method, NeoGammaNullMethod>
#define B_32_I1_TM1_4P NeoPixelBusLg<NeoWrgbTm1814Feature, NeoEsp32I2s1X8Tm1814Method, NeoGammaNullMethod> // parallel I2S
#define B_32_I2_TM1_4 NeoPixelBusLg<NeoWrgbTm1814Feature, X1Tm1814Method, NeoGammaNullMethod>
#define B_32_IP_TM1_4 NeoPixelBusLg<NeoWrgbTm1814Feature, X8Tm1814Method, NeoGammaNullMethod> // parallel I2S
//TM1829 (RGB)
#define B_32_RN_TM2_3 NeoPixelBusLg<NeoBrgFeature, NeoEsp32RmtNTm1829Method, NeoGammaNullMethod>
#define B_32_I0_TM2_3 NeoPixelBusLg<NeoBrgFeature, NeoEsp32I2s0Tm1829Method, NeoGammaNullMethod>
#define B_32_I1_TM2_3 NeoPixelBusLg<NeoBrgFeature, NeoEsp32I2s1Tm1829Method, NeoGammaNullMethod>
#define B_32_I1_TM2_3P NeoPixelBusLg<NeoBrgFeature, NeoEsp32I2s1X8Tm1829Method, NeoGammaNullMethod> // parallel I2S
#define B_32_I2_TM2_3 NeoPixelBusLg<NeoBrgFeature, X1Tm1829Method, NeoGammaNullMethod>
#define B_32_IP_TM2_3 NeoPixelBusLg<NeoBrgFeature, X8Tm1829Method, NeoGammaNullMethod> // parallel I2S
//UCS8903
#define B_32_RN_UCS_3 NeoPixelBusLg<NeoRgbUcs8903Feature, NeoEsp32RmtNWs2812xMethod, NeoGammaNullMethod>
#define B_32_I0_UCS_3 NeoPixelBusLg<NeoRgbUcs8903Feature, NeoEsp32I2s0800KbpsMethod, NeoGammaNullMethod>
#define B_32_I1_UCS_3 NeoPixelBusLg<NeoRgbUcs8903Feature, NeoEsp32I2s1800KbpsMethod, NeoGammaNullMethod>
#define B_32_I1_UCS_3P NeoPixelBusLg<NeoRgbUcs8903Feature, NeoEsp32I2s1X8800KbpsMethod, NeoGammaNullMethod> // parallel I2S
#define B_32_I2_UCS_3 NeoPixelBusLg<NeoRgbUcs8903Feature, X1800KbpsMethod, NeoGammaNullMethod>
#define B_32_IP_UCS_3 NeoPixelBusLg<NeoRgbUcs8903Feature, X8800KbpsMethod, NeoGammaNullMethod> // parallel I2S
//UCS8904
#define B_32_RN_UCS_4 NeoPixelBusLg<NeoRgbwUcs8904Feature, NeoEsp32RmtNWs2812xMethod, NeoGammaNullMethod>
#define B_32_I0_UCS_4 NeoPixelBusLg<NeoRgbwUcs8904Feature, NeoEsp32I2s0800KbpsMethod, NeoGammaNullMethod>
#define B_32_I1_UCS_4 NeoPixelBusLg<NeoRgbwUcs8904Feature, NeoEsp32I2s1800KbpsMethod, NeoGammaNullMethod>
#define B_32_I1_UCS_4P NeoPixelBusLg<NeoRgbwUcs8904Feature, NeoEsp32I2s1X8800KbpsMethod, NeoGammaNullMethod>// parallel I2S
#define B_32_I2_UCS_4 NeoPixelBusLg<NeoRgbwUcs8904Feature, X1800KbpsMethod, NeoGammaNullMethod>
#define B_32_IP_UCS_4 NeoPixelBusLg<NeoRgbwUcs8904Feature, X8800KbpsMethod, NeoGammaNullMethod>// parallel I2S
//APA106
#define B_32_RN_APA106_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp32RmtNApa106Method, NeoGammaNullMethod>
#define B_32_I0_APA106_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp32I2s0Apa106Method, NeoGammaNullMethod>
#define B_32_I1_APA106_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp32I2s1Apa106Method, NeoGammaNullMethod>
#define B_32_I1_APA106_3P NeoPixelBusLg<NeoGrbFeature, NeoEsp32I2s1X8Apa106Method, NeoGammaNullMethod> // parallel I2S
#define B_32_I2_APA106_3 NeoPixelBusLg<NeoGrbFeature, X1Apa106Method, NeoGammaNullMethod>
#define B_32_IP_APA106_3 NeoPixelBusLg<NeoGrbFeature, X8Apa106Method, NeoGammaNullMethod> // parallel I2S
//FW1906 GRBCW
#define B_32_RN_FW6_5 NeoPixelBusLg<NeoGrbcwxFeature, NeoEsp32RmtNWs2812xMethod, NeoGammaNullMethod>
#define B_32_I0_FW6_5 NeoPixelBusLg<NeoGrbcwxFeature, NeoEsp32I2s0800KbpsMethod, NeoGammaNullMethod>
#define B_32_I1_FW6_5 NeoPixelBusLg<NeoGrbcwxFeature, NeoEsp32I2s1800KbpsMethod, NeoGammaNullMethod>
#define B_32_I1_FW6_5P NeoPixelBusLg<NeoGrbcwxFeature, NeoEsp32I2s1X8800KbpsMethod, NeoGammaNullMethod> // parallel I2S
#define B_32_I2_FW6_5 NeoPixelBusLg<NeoGrbcwxFeature, X1800KbpsMethod, NeoGammaNullMethod>
#define B_32_IP_FW6_5 NeoPixelBusLg<NeoGrbcwxFeature, X8800KbpsMethod, NeoGammaNullMethod> // parallel I2S
//WS2805 RGBWC
#define B_32_RN_2805_5 NeoPixelBusLg<NeoGrbwwFeature, NeoEsp32RmtNWs2805Method, NeoGammaNullMethod>
#define B_32_I0_2805_5 NeoPixelBusLg<NeoGrbwwFeature, NeoEsp32I2s0Ws2805Method, NeoGammaNullMethod>
#define B_32_I1_2805_5 NeoPixelBusLg<NeoGrbwwFeature, NeoEsp32I2s1Ws2805Method, NeoGammaNullMethod>
#define B_32_I1_2805_5P NeoPixelBusLg<NeoGrbwwFeature, NeoEsp32I2s1X8Ws2805Method, NeoGammaNullMethod> // parallel I2S
#define B_32_I2_2805_5 NeoPixelBusLg<NeoGrbwwFeature, X1Ws2805Method, NeoGammaNullMethod>
#define B_32_IP_2805_5 NeoPixelBusLg<NeoGrbwwFeature, X8Ws2805Method, NeoGammaNullMethod> // parallel I2S
//TM1914 (RGB)
#define B_32_RN_TM1914_3 NeoPixelBusLg<NeoGrbTm1914Feature, NeoEsp32RmtNTm1914Method, NeoGammaNullMethod>
#define B_32_I0_TM1914_3 NeoPixelBusLg<NeoGrbTm1914Feature, NeoEsp32I2s0Tm1914Method, NeoGammaNullMethod>
#define B_32_I1_TM1914_3 NeoPixelBusLg<NeoGrbTm1914Feature, NeoEsp32I2s1Tm1914Method, NeoGammaNullMethod>
#define B_32_I1_TM1914_3P NeoPixelBusLg<NeoGrbTm1914Feature, NeoEsp32I2s1X8Tm1914Method, NeoGammaNullMethod> // parallel I2S
#define B_32_I2_TM1914_3 NeoPixelBusLg<NeoGrbTm1914Feature, X1Tm1914Method, NeoGammaNullMethod>
#define B_32_IP_TM1914_3 NeoPixelBusLg<NeoGrbTm1914Feature, X8Tm1914Method, NeoGammaNullMethod> // parallel I2S
//Sm16825 (RGBWC)
#define B_32_RN_SM16825_5 NeoPixelBusLg<NeoRgbcwSm16825eFeature, NeoEsp32RmtNWs2812xMethod, NeoGammaNullMethod>
#define B_32_I0_SM16825_5 NeoPixelBusLg<NeoRgbcwSm16825eFeature, NeoEsp32I2s0Ws2812xMethod, NeoGammaNullMethod>
#define B_32_I1_SM16825_5 NeoPixelBusLg<NeoRgbcwSm16825eFeature, NeoEsp32I2s1Ws2812xMethod, NeoGammaNullMethod>
#define B_32_I1_SM16825_5P NeoPixelBusLg<NeoRgbcwSm16825eFeature, NeoEsp32I2s1X8Ws2812xMethod, NeoGammaNullMethod> // parallel I2S
#define B_32_I2_SM16825_5 NeoPixelBusLg<NeoRgbcwSm16825eFeature, X1Ws2812xMethod, NeoGammaNullMethod>
#define B_32_IP_SM16825_5 NeoPixelBusLg<NeoRgbcwSm16825eFeature, X8Ws2812xMethod, NeoGammaNullMethod> // parallel I2S
#endif
//APA102
@ -328,11 +331,11 @@
//handles pointer type conversion for all possible bus types
class PolyBus {
private:
static bool useParallelI2S;
static bool _useParallelI2S;
public:
static inline void setParallelI2S1Output(bool b = true) { useParallelI2S = b; }
static inline bool isParallelI2S1Output(void) { return useParallelI2S; }
static inline void setParallelI2S1Output(bool b = true) { _useParallelI2S = b; }
static inline bool isParallelI2S1Output(void) { return _useParallelI2S; }
// initialize SPI bus speed for DotStar methods
template <class T>
@ -436,34 +439,19 @@ class PolyBus {
case I_32_RN_TM1914_3: beginTM1914<B_32_RN_TM1914_3*>(busPtr); break;
case I_32_RN_SM16825_5: (static_cast<B_32_RN_SM16825_5*>(busPtr))->Begin(); break;
// I2S1 bus or parellel buses
#ifndef WLED_NO_I2S1_PIXELBUS
case I_32_I1_NEO_3: if (useParallelI2S) (static_cast<B_32_I1_NEO_3P*>(busPtr))->Begin(); else (static_cast<B_32_I1_NEO_3*>(busPtr))->Begin(); break;
case I_32_I1_NEO_4: if (useParallelI2S) (static_cast<B_32_I1_NEO_4P*>(busPtr))->Begin(); else (static_cast<B_32_I1_NEO_4*>(busPtr))->Begin(); break;
case I_32_I1_400_3: if (useParallelI2S) (static_cast<B_32_I1_400_3P*>(busPtr))->Begin(); else (static_cast<B_32_I1_400_3*>(busPtr))->Begin(); break;
case I_32_I1_TM1_4: if (useParallelI2S) beginTM1814<B_32_I1_TM1_4P*>(busPtr); else beginTM1814<B_32_I1_TM1_4*>(busPtr); break;
case I_32_I1_TM2_3: if (useParallelI2S) (static_cast<B_32_I1_TM2_3P*>(busPtr))->Begin(); else (static_cast<B_32_I1_TM2_3*>(busPtr))->Begin(); break;
case I_32_I1_UCS_3: if (useParallelI2S) (static_cast<B_32_I1_UCS_3P*>(busPtr))->Begin(); else (static_cast<B_32_I1_UCS_3*>(busPtr))->Begin(); break;
case I_32_I1_UCS_4: if (useParallelI2S) (static_cast<B_32_I1_UCS_4P*>(busPtr))->Begin(); else (static_cast<B_32_I1_UCS_4*>(busPtr))->Begin(); break;
case I_32_I1_FW6_5: if (useParallelI2S) (static_cast<B_32_I1_FW6_5P*>(busPtr))->Begin(); else (static_cast<B_32_I1_FW6_5*>(busPtr))->Begin(); break;
case I_32_I1_APA106_3: if (useParallelI2S) (static_cast<B_32_I1_APA106_3P*>(busPtr))->Begin(); else (static_cast<B_32_I1_APA106_3*>(busPtr))->Begin(); break;
case I_32_I1_2805_5: if (useParallelI2S) (static_cast<B_32_I1_2805_5P*>(busPtr))->Begin(); else (static_cast<B_32_I1_2805_5*>(busPtr))->Begin(); break;
case I_32_I1_TM1914_3: if (useParallelI2S) beginTM1914<B_32_I1_TM1914_3P*>(busPtr); else beginTM1914<B_32_I1_TM1914_3*>(busPtr); break;
case I_32_I1_SM16825_5: if (useParallelI2S) (static_cast<B_32_I1_SM16825_5P*>(busPtr))->Begin(); else (static_cast<B_32_I1_SM16825_5*>(busPtr))->Begin(); break;
#endif
// I2S0 bus
#ifndef WLED_NO_I2S0_PIXELBUS
case I_32_I0_NEO_3: (static_cast<B_32_I0_NEO_3*>(busPtr))->Begin(); break;
case I_32_I0_NEO_4: (static_cast<B_32_I0_NEO_4*>(busPtr))->Begin(); break;
case I_32_I0_400_3: (static_cast<B_32_I0_400_3*>(busPtr))->Begin(); break;
case I_32_I0_TM1_4: beginTM1814<B_32_I0_TM1_4*>(busPtr); break;
case I_32_I0_TM2_3: (static_cast<B_32_I0_TM2_3*>(busPtr))->Begin(); break;
case I_32_I0_UCS_3: (static_cast<B_32_I0_UCS_3*>(busPtr))->Begin(); break;
case I_32_I0_UCS_4: (static_cast<B_32_I0_UCS_4*>(busPtr))->Begin(); break;
case I_32_I0_FW6_5: (static_cast<B_32_I0_FW6_5*>(busPtr))->Begin(); break;
case I_32_I0_APA106_3: (static_cast<B_32_I0_APA106_3*>(busPtr))->Begin(); break;
case I_32_I0_2805_5: (static_cast<B_32_I0_2805_5*>(busPtr))->Begin(); break;
case I_32_I0_TM1914_3: beginTM1914<B_32_I0_TM1914_3*>(busPtr); break;
case I_32_I0_SM16825_5: (static_cast<B_32_I0_SM16825_5*>(busPtr))->Begin(); break;
#ifndef CONFIG_IDF_TARGET_ESP32C3
case I_32_I2_NEO_3: if (_useParallelI2S) (static_cast<B_32_IP_NEO_3*>(busPtr))->Begin(); else (static_cast<B_32_I2_NEO_3*>(busPtr))->Begin(); break;
case I_32_I2_NEO_4: if (_useParallelI2S) (static_cast<B_32_IP_NEO_4*>(busPtr))->Begin(); else (static_cast<B_32_I2_NEO_4*>(busPtr))->Begin(); break;
case I_32_I2_400_3: if (_useParallelI2S) (static_cast<B_32_IP_400_3*>(busPtr))->Begin(); else (static_cast<B_32_I2_400_3*>(busPtr))->Begin(); break;
case I_32_I2_TM1_4: if (_useParallelI2S) beginTM1814<B_32_IP_TM1_4*>(busPtr); else beginTM1814<B_32_I2_TM1_4*>(busPtr); break;
case I_32_I2_TM2_3: if (_useParallelI2S) (static_cast<B_32_IP_TM2_3*>(busPtr))->Begin(); else (static_cast<B_32_I2_TM2_3*>(busPtr))->Begin(); break;
case I_32_I2_UCS_3: if (_useParallelI2S) (static_cast<B_32_IP_UCS_3*>(busPtr))->Begin(); else (static_cast<B_32_I2_UCS_3*>(busPtr))->Begin(); break;
case I_32_I2_UCS_4: if (_useParallelI2S) (static_cast<B_32_IP_UCS_4*>(busPtr))->Begin(); else (static_cast<B_32_I2_UCS_4*>(busPtr))->Begin(); break;
case I_32_I2_FW6_5: if (_useParallelI2S) (static_cast<B_32_IP_FW6_5*>(busPtr))->Begin(); else (static_cast<B_32_I2_FW6_5*>(busPtr))->Begin(); break;
case I_32_I2_APA106_3: if (_useParallelI2S) (static_cast<B_32_IP_APA106_3*>(busPtr))->Begin(); else (static_cast<B_32_I2_APA106_3*>(busPtr))->Begin(); break;
case I_32_I2_2805_5: if (_useParallelI2S) (static_cast<B_32_IP_2805_5*>(busPtr))->Begin(); else (static_cast<B_32_I2_2805_5*>(busPtr))->Begin(); break;
case I_32_I2_TM1914_3: if (_useParallelI2S) beginTM1914<B_32_IP_TM1914_3*>(busPtr); else beginTM1914<B_32_I2_TM1914_3*>(busPtr); break;
case I_32_I2_SM16825_5: if (_useParallelI2S) (static_cast<B_32_IP_SM16825_5*>(busPtr))->Begin(); else (static_cast<B_32_I2_SM16825_5*>(busPtr))->Begin(); break;
#endif
// ESP32 can (and should, to avoid inadvertantly driving the chip select signal) specify the pins used for SPI, but only in begin()
case I_HS_DOT_3: beginDotStar<B_HS_DOT_3*>(busPtr, pins[1], -1, pins[0], -1, clock_kHz); break;
@ -484,8 +472,8 @@ class PolyBus {
#if defined(ARDUINO_ARCH_ESP32) && !(defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32S3) || defined(CONFIG_IDF_TARGET_ESP32C3))
// NOTE: "channel" is only used on ESP32 (and its variants) for RMT channel allocation
// since 0.15.0-b3 I2S1 is favoured for classic ESP32 and moved to position 0 (channel 0) so we need to subtract 1 for correct RMT allocation
if (useParallelI2S && channel > 7) channel -= 8; // accommodate parallel I2S1 which is used 1st on classic ESP32
else if (channel > 0) channel--; // accommodate I2S1 which is used as 1st bus on classic ESP32
if (!_useParallelI2S && channel > 0) channel--; // accommodate I2S1 which is used as 1st bus on classic ESP32
// if user selected parallel I2S, RMT is used 1st (8 channels) followed by parallel I2S (8 channels)
#endif
void* busPtr = nullptr;
switch (busType) {
@ -555,34 +543,19 @@ class PolyBus {
case I_32_RN_TM1914_3: busPtr = new B_32_RN_TM1914_3(len, pins[0], (NeoBusChannel)channel); break;
case I_32_RN_SM16825_5: busPtr = new B_32_RN_SM16825_5(len, pins[0], (NeoBusChannel)channel); break;
// I2S1 bus or paralell buses
#ifndef WLED_NO_I2S1_PIXELBUS
case I_32_I1_NEO_3: if (useParallelI2S) busPtr = new B_32_I1_NEO_3P(len, pins[0]); else busPtr = new B_32_I1_NEO_3(len, pins[0]); break;
case I_32_I1_NEO_4: if (useParallelI2S) busPtr = new B_32_I1_NEO_4P(len, pins[0]); else busPtr = new B_32_I1_NEO_4(len, pins[0]); break;
case I_32_I1_400_3: if (useParallelI2S) busPtr = new B_32_I1_400_3P(len, pins[0]); else busPtr = new B_32_I1_400_3(len, pins[0]); break;
case I_32_I1_TM1_4: if (useParallelI2S) busPtr = new B_32_I1_TM1_4P(len, pins[0]); else busPtr = new B_32_I1_TM1_4(len, pins[0]); break;
case I_32_I1_TM2_3: if (useParallelI2S) busPtr = new B_32_I1_TM2_3P(len, pins[0]); else busPtr = new B_32_I1_TM2_3(len, pins[0]); break;
case I_32_I1_UCS_3: if (useParallelI2S) busPtr = new B_32_I1_UCS_3P(len, pins[0]); else busPtr = new B_32_I1_UCS_3(len, pins[0]); break;
case I_32_I1_UCS_4: if (useParallelI2S) busPtr = new B_32_I1_UCS_4P(len, pins[0]); else busPtr = new B_32_I1_UCS_4(len, pins[0]); break;
case I_32_I1_APA106_3: if (useParallelI2S) busPtr = new B_32_I1_APA106_3P(len, pins[0]); else busPtr = new B_32_I1_APA106_3(len, pins[0]); break;
case I_32_I1_FW6_5: if (useParallelI2S) busPtr = new B_32_I1_FW6_5P(len, pins[0]); else busPtr = new B_32_I1_FW6_5(len, pins[0]); break;
case I_32_I1_2805_5: if (useParallelI2S) busPtr = new B_32_I1_2805_5P(len, pins[0]); else busPtr = new B_32_I1_2805_5(len, pins[0]); break;
case I_32_I1_TM1914_3: if (useParallelI2S) busPtr = new B_32_I1_TM1914_3P(len, pins[0]); else busPtr = new B_32_I1_TM1914_3(len, pins[0]); break;
case I_32_I1_SM16825_5: if (useParallelI2S) busPtr = new B_32_I1_SM16825_5P(len, pins[0]); else busPtr = new B_32_I1_SM16825_5(len, pins[0]); break;
#endif
// I2S0 bus
#ifndef WLED_NO_I2S0_PIXELBUS
case I_32_I0_NEO_3: busPtr = new B_32_I0_NEO_3(len, pins[0]); break;
case I_32_I0_NEO_4: busPtr = new B_32_I0_NEO_4(len, pins[0]); break;
case I_32_I0_400_3: busPtr = new B_32_I0_400_3(len, pins[0]); break;
case I_32_I0_TM1_4: busPtr = new B_32_I0_TM1_4(len, pins[0]); break;
case I_32_I0_TM2_3: busPtr = new B_32_I0_TM2_3(len, pins[0]); break;
case I_32_I0_UCS_3: busPtr = new B_32_I0_UCS_3(len, pins[0]); break;
case I_32_I0_UCS_4: busPtr = new B_32_I0_UCS_4(len, pins[0]); break;
case I_32_I0_APA106_3: busPtr = new B_32_I0_APA106_3(len, pins[0]); break;
case I_32_I0_FW6_5: busPtr = new B_32_I0_FW6_5(len, pins[0]); break;
case I_32_I0_2805_5: busPtr = new B_32_I0_2805_5(len, pins[0]); break;
case I_32_I0_TM1914_3: busPtr = new B_32_I0_TM1914_3(len, pins[0]); break;
case I_32_I0_SM16825_5: busPtr = new B_32_I0_SM16825_5(len, pins[0]); break;
#ifndef CONFIG_IDF_TARGET_ESP32C3
case I_32_I2_NEO_3: if (_useParallelI2S) busPtr = new B_32_IP_NEO_3(len, pins[0]); else busPtr = new B_32_I2_NEO_3(len, pins[0]); break;
case I_32_I2_NEO_4: if (_useParallelI2S) busPtr = new B_32_IP_NEO_4(len, pins[0]); else busPtr = new B_32_I2_NEO_4(len, pins[0]); break;
case I_32_I2_400_3: if (_useParallelI2S) busPtr = new B_32_IP_400_3(len, pins[0]); else busPtr = new B_32_I2_400_3(len, pins[0]); break;
case I_32_I2_TM1_4: if (_useParallelI2S) busPtr = new B_32_IP_TM1_4(len, pins[0]); else busPtr = new B_32_I2_TM1_4(len, pins[0]); break;
case I_32_I2_TM2_3: if (_useParallelI2S) busPtr = new B_32_IP_TM2_3(len, pins[0]); else busPtr = new B_32_I2_TM2_3(len, pins[0]); break;
case I_32_I2_UCS_3: if (_useParallelI2S) busPtr = new B_32_IP_UCS_3(len, pins[0]); else busPtr = new B_32_I2_UCS_3(len, pins[0]); break;
case I_32_I2_UCS_4: if (_useParallelI2S) busPtr = new B_32_IP_UCS_4(len, pins[0]); else busPtr = new B_32_I2_UCS_4(len, pins[0]); break;
case I_32_I2_APA106_3: if (_useParallelI2S) busPtr = new B_32_IP_APA106_3(len, pins[0]); else busPtr = new B_32_I2_APA106_3(len, pins[0]); break;
case I_32_I2_FW6_5: if (_useParallelI2S) busPtr = new B_32_IP_FW6_5(len, pins[0]); else busPtr = new B_32_I2_FW6_5(len, pins[0]); break;
case I_32_I2_2805_5: if (_useParallelI2S) busPtr = new B_32_IP_2805_5(len, pins[0]); else busPtr = new B_32_I2_2805_5(len, pins[0]); break;
case I_32_I2_TM1914_3: if (_useParallelI2S) busPtr = new B_32_IP_TM1914_3(len, pins[0]); else busPtr = new B_32_I2_TM1914_3(len, pins[0]); break;
case I_32_I2_SM16825_5: if (_useParallelI2S) busPtr = new B_32_IP_SM16825_5(len, pins[0]); else busPtr = new B_32_I2_SM16825_5(len, pins[0]); break;
#endif
#endif
// for 2-wire: pins[1] is clk, pins[0] is dat. begin expects (len, clk, dat)
@ -669,34 +642,19 @@ class PolyBus {
case I_32_RN_TM1914_3: (static_cast<B_32_RN_TM1914_3*>(busPtr))->Show(consistent); break;
case I_32_RN_SM16825_5: (static_cast<B_32_RN_SM16825_5*>(busPtr))->Show(consistent); break;
// I2S1 bus or paralell buses
#ifndef WLED_NO_I2S1_PIXELBUS
case I_32_I1_NEO_3: if (useParallelI2S) (static_cast<B_32_I1_NEO_3P*>(busPtr))->Show(consistent); else (static_cast<B_32_I1_NEO_3*>(busPtr))->Show(consistent); break;
case I_32_I1_NEO_4: if (useParallelI2S) (static_cast<B_32_I1_NEO_4P*>(busPtr))->Show(consistent); else (static_cast<B_32_I1_NEO_4*>(busPtr))->Show(consistent); break;
case I_32_I1_400_3: if (useParallelI2S) (static_cast<B_32_I1_400_3P*>(busPtr))->Show(consistent); else (static_cast<B_32_I1_400_3*>(busPtr))->Show(consistent); break;
case I_32_I1_TM1_4: if (useParallelI2S) (static_cast<B_32_I1_TM1_4P*>(busPtr))->Show(consistent); else (static_cast<B_32_I1_TM1_4*>(busPtr))->Show(consistent); break;
case I_32_I1_TM2_3: if (useParallelI2S) (static_cast<B_32_I1_TM2_3P*>(busPtr))->Show(consistent); else (static_cast<B_32_I1_TM2_3*>(busPtr))->Show(consistent); break;
case I_32_I1_UCS_3: if (useParallelI2S) (static_cast<B_32_I1_UCS_3P*>(busPtr))->Show(consistent); else (static_cast<B_32_I1_UCS_3*>(busPtr))->Show(consistent); break;
case I_32_I1_UCS_4: if (useParallelI2S) (static_cast<B_32_I1_UCS_4P*>(busPtr))->Show(consistent); else (static_cast<B_32_I1_UCS_4*>(busPtr))->Show(consistent); break;
case I_32_I1_APA106_3: if (useParallelI2S) (static_cast<B_32_I1_APA106_3P*>(busPtr))->Show(consistent); else (static_cast<B_32_I1_APA106_3*>(busPtr))->Show(consistent); break;
case I_32_I1_FW6_5: if (useParallelI2S) (static_cast<B_32_I1_FW6_5P*>(busPtr))->Show(consistent); else (static_cast<B_32_I1_FW6_5*>(busPtr))->Show(consistent); break;
case I_32_I1_2805_5: if (useParallelI2S) (static_cast<B_32_I1_2805_5P*>(busPtr))->Show(consistent); else (static_cast<B_32_I1_2805_5*>(busPtr))->Show(consistent); break;
case I_32_I1_TM1914_3: if (useParallelI2S) (static_cast<B_32_I1_TM1914_3P*>(busPtr))->Show(consistent); else (static_cast<B_32_I1_TM1914_3*>(busPtr))->Show(consistent); break;
case I_32_I1_SM16825_5: if (useParallelI2S) (static_cast<B_32_I1_SM16825_5P*>(busPtr))->Show(consistent); else (static_cast<B_32_I1_SM16825_5*>(busPtr))->Show(consistent); break;
#endif
// I2S0 bus
#ifndef WLED_NO_I2S0_PIXELBUS
case I_32_I0_NEO_3: (static_cast<B_32_I0_NEO_3*>(busPtr))->Show(consistent); break;
case I_32_I0_NEO_4: (static_cast<B_32_I0_NEO_4*>(busPtr))->Show(consistent); break;
case I_32_I0_400_3: (static_cast<B_32_I0_400_3*>(busPtr))->Show(consistent); break;
case I_32_I0_TM1_4: (static_cast<B_32_I0_TM1_4*>(busPtr))->Show(consistent); break;
case I_32_I0_TM2_3: (static_cast<B_32_I0_TM2_3*>(busPtr))->Show(consistent); break;
case I_32_I0_UCS_3: (static_cast<B_32_I0_UCS_3*>(busPtr))->Show(consistent); break;
case I_32_I0_UCS_4: (static_cast<B_32_I0_UCS_4*>(busPtr))->Show(consistent); break;
case I_32_I0_APA106_3: (static_cast<B_32_I0_APA106_3*>(busPtr))->Show(consistent); break;
case I_32_I0_FW6_5: (static_cast<B_32_I0_FW6_5*>(busPtr))->Show(consistent); break;
case I_32_I0_2805_5: (static_cast<B_32_I0_2805_5*>(busPtr))->Show(consistent); break;
case I_32_I0_TM1914_3: (static_cast<B_32_I0_TM1914_3*>(busPtr))->Show(consistent); break;
case I_32_I0_SM16825_5: (static_cast<B_32_I0_SM16825_5*>(busPtr))->Show(consistent); break;
#ifndef CONFIG_IDF_TARGET_ESP32C3
case I_32_I2_NEO_3: if (_useParallelI2S) (static_cast<B_32_IP_NEO_3*>(busPtr))->Show(consistent); else (static_cast<B_32_I2_NEO_3*>(busPtr))->Show(consistent); break;
case I_32_I2_NEO_4: if (_useParallelI2S) (static_cast<B_32_IP_NEO_4*>(busPtr))->Show(consistent); else (static_cast<B_32_I2_NEO_4*>(busPtr))->Show(consistent); break;
case I_32_I2_400_3: if (_useParallelI2S) (static_cast<B_32_IP_400_3*>(busPtr))->Show(consistent); else (static_cast<B_32_I2_400_3*>(busPtr))->Show(consistent); break;
case I_32_I2_TM1_4: if (_useParallelI2S) (static_cast<B_32_IP_TM1_4*>(busPtr))->Show(consistent); else (static_cast<B_32_I2_TM1_4*>(busPtr))->Show(consistent); break;
case I_32_I2_TM2_3: if (_useParallelI2S) (static_cast<B_32_IP_TM2_3*>(busPtr))->Show(consistent); else (static_cast<B_32_I2_TM2_3*>(busPtr))->Show(consistent); break;
case I_32_I2_UCS_3: if (_useParallelI2S) (static_cast<B_32_IP_UCS_3*>(busPtr))->Show(consistent); else (static_cast<B_32_I2_UCS_3*>(busPtr))->Show(consistent); break;
case I_32_I2_UCS_4: if (_useParallelI2S) (static_cast<B_32_IP_UCS_4*>(busPtr))->Show(consistent); else (static_cast<B_32_I2_UCS_4*>(busPtr))->Show(consistent); break;
case I_32_I2_APA106_3: if (_useParallelI2S) (static_cast<B_32_IP_APA106_3*>(busPtr))->Show(consistent); else (static_cast<B_32_I2_APA106_3*>(busPtr))->Show(consistent); break;
case I_32_I2_FW6_5: if (_useParallelI2S) (static_cast<B_32_IP_FW6_5*>(busPtr))->Show(consistent); else (static_cast<B_32_I2_FW6_5*>(busPtr))->Show(consistent); break;
case I_32_I2_2805_5: if (_useParallelI2S) (static_cast<B_32_IP_2805_5*>(busPtr))->Show(consistent); else (static_cast<B_32_I2_2805_5*>(busPtr))->Show(consistent); break;
case I_32_I2_TM1914_3: if (_useParallelI2S) (static_cast<B_32_IP_TM1914_3*>(busPtr))->Show(consistent); else (static_cast<B_32_I2_TM1914_3*>(busPtr))->Show(consistent); break;
case I_32_I2_SM16825_5: if (_useParallelI2S) (static_cast<B_32_IP_SM16825_5*>(busPtr))->Show(consistent); else (static_cast<B_32_I2_SM16825_5*>(busPtr))->Show(consistent); break;
#endif
#endif
case I_HS_DOT_3: (static_cast<B_HS_DOT_3*>(busPtr))->Show(consistent); break;
@ -743,6 +701,7 @@ class PolyBus {
case I_8266_U0_UCS_4: return (static_cast<B_8266_U0_UCS_4*>(busPtr))->CanShow(); break;
case I_8266_U1_UCS_4: return (static_cast<B_8266_U1_UCS_4*>(busPtr))->CanShow(); break;
case I_8266_DM_UCS_4: return (static_cast<B_8266_DM_UCS_4*>(busPtr))->CanShow(); break;
case I_8266_BB_UCS_4: return (static_cast<B_8266_BB_UCS_4*>(busPtr))->CanShow(); break;
case I_8266_U0_APA106_3: return (static_cast<B_8266_U0_APA106_3*>(busPtr))->CanShow(); break;
case I_8266_U1_APA106_3: return (static_cast<B_8266_U1_APA106_3*>(busPtr))->CanShow(); break;
case I_8266_DM_APA106_3: return (static_cast<B_8266_DM_APA106_3*>(busPtr))->CanShow(); break;
@ -779,34 +738,19 @@ class PolyBus {
case I_32_RN_TM1914_3: return (static_cast<B_32_RN_TM1914_3*>(busPtr))->CanShow(); break;
case I_32_RN_SM16825_5: return (static_cast<B_32_RN_SM16825_5*>(busPtr))->CanShow(); break;
// I2S1 bus or paralell buses
#ifndef WLED_NO_I2S1_PIXELBUS
case I_32_I1_NEO_3: if (useParallelI2S) return (static_cast<B_32_I1_NEO_3P*>(busPtr))->CanShow(); else return (static_cast<B_32_I1_NEO_3*>(busPtr))->CanShow(); break;
case I_32_I1_NEO_4: if (useParallelI2S) return (static_cast<B_32_I1_NEO_4P*>(busPtr))->CanShow(); else return (static_cast<B_32_I1_NEO_4*>(busPtr))->CanShow(); break;
case I_32_I1_400_3: if (useParallelI2S) return (static_cast<B_32_I1_400_3P*>(busPtr))->CanShow(); else return (static_cast<B_32_I1_400_3*>(busPtr))->CanShow(); break;
case I_32_I1_TM1_4: if (useParallelI2S) return (static_cast<B_32_I1_TM1_4P*>(busPtr))->CanShow(); else return (static_cast<B_32_I1_TM1_4*>(busPtr))->CanShow(); break;
case I_32_I1_TM2_3: if (useParallelI2S) return (static_cast<B_32_I1_TM2_3P*>(busPtr))->CanShow(); else return (static_cast<B_32_I1_TM2_3*>(busPtr))->CanShow(); break;
case I_32_I1_UCS_3: if (useParallelI2S) return (static_cast<B_32_I1_UCS_3P*>(busPtr))->CanShow(); else return (static_cast<B_32_I1_UCS_3*>(busPtr))->CanShow(); break;
case I_32_I1_UCS_4: if (useParallelI2S) return (static_cast<B_32_I1_UCS_4P*>(busPtr))->CanShow(); else return (static_cast<B_32_I1_UCS_4*>(busPtr))->CanShow(); break;
case I_32_I1_APA106_3: if (useParallelI2S) return (static_cast<B_32_I1_APA106_3P*>(busPtr))->CanShow(); else return (static_cast<B_32_I1_APA106_3*>(busPtr))->CanShow(); break;
case I_32_I1_FW6_5: if (useParallelI2S) return (static_cast<B_32_I1_FW6_5P*>(busPtr))->CanShow(); else return (static_cast<B_32_I1_FW6_5*>(busPtr))->CanShow(); break;
case I_32_I1_2805_5: if (useParallelI2S) return (static_cast<B_32_I1_2805_5P*>(busPtr))->CanShow(); else return (static_cast<B_32_I1_2805_5*>(busPtr))->CanShow(); break;
case I_32_I1_TM1914_3: if (useParallelI2S) return (static_cast<B_32_I1_TM1914_3P*>(busPtr))->CanShow(); else return (static_cast<B_32_I1_TM1914_3*>(busPtr))->CanShow(); break;
case I_32_I1_SM16825_5: if (useParallelI2S) return (static_cast<B_32_I1_SM16825_5P*>(busPtr))->CanShow(); else return (static_cast<B_32_I1_SM16825_5*>(busPtr))->CanShow(); break;
#endif
// I2S0 bus
#ifndef WLED_NO_I2S0_PIXELBUS
case I_32_I0_NEO_3: return (static_cast<B_32_I0_NEO_3*>(busPtr))->CanShow(); break;
case I_32_I0_NEO_4: return (static_cast<B_32_I0_NEO_4*>(busPtr))->CanShow(); break;
case I_32_I0_400_3: return (static_cast<B_32_I0_400_3*>(busPtr))->CanShow(); break;
case I_32_I0_TM1_4: return (static_cast<B_32_I0_TM1_4*>(busPtr))->CanShow(); break;
case I_32_I0_TM2_3: return (static_cast<B_32_I0_TM2_3*>(busPtr))->CanShow(); break;
case I_32_I0_UCS_3: return (static_cast<B_32_I0_UCS_3*>(busPtr))->CanShow(); break;
case I_32_I0_UCS_4: return (static_cast<B_32_I0_UCS_4*>(busPtr))->CanShow(); break;
case I_32_I0_APA106_3: return (static_cast<B_32_I0_APA106_3*>(busPtr))->CanShow(); break;
case I_32_I0_FW6_5: return (static_cast<B_32_I0_FW6_5*>(busPtr))->CanShow(); break;
case I_32_I0_2805_5: return (static_cast<B_32_I0_2805_5*>(busPtr))->CanShow(); break;
case I_32_I0_TM1914_3: return (static_cast<B_32_I0_TM1914_3*>(busPtr))->CanShow(); break;
case I_32_I0_SM16825_5: return (static_cast<B_32_I0_SM16825_5*>(busPtr))->CanShow(); break;
#ifndef CONFIG_IDF_TARGET_ESP32C3
case I_32_I2_NEO_3: if (_useParallelI2S) return (static_cast<B_32_IP_NEO_3*>(busPtr))->CanShow(); else return (static_cast<B_32_I2_NEO_3*>(busPtr))->CanShow(); break;
case I_32_I2_NEO_4: if (_useParallelI2S) return (static_cast<B_32_IP_NEO_4*>(busPtr))->CanShow(); else return (static_cast<B_32_I2_NEO_4*>(busPtr))->CanShow(); break;
case I_32_I2_400_3: if (_useParallelI2S) return (static_cast<B_32_IP_400_3*>(busPtr))->CanShow(); else return (static_cast<B_32_I2_400_3*>(busPtr))->CanShow(); break;
case I_32_I2_TM1_4: if (_useParallelI2S) return (static_cast<B_32_IP_TM1_4*>(busPtr))->CanShow(); else return (static_cast<B_32_I2_TM1_4*>(busPtr))->CanShow(); break;
case I_32_I2_TM2_3: if (_useParallelI2S) return (static_cast<B_32_IP_TM2_3*>(busPtr))->CanShow(); else return (static_cast<B_32_I2_TM2_3*>(busPtr))->CanShow(); break;
case I_32_I2_UCS_3: if (_useParallelI2S) return (static_cast<B_32_IP_UCS_3*>(busPtr))->CanShow(); else return (static_cast<B_32_I2_UCS_3*>(busPtr))->CanShow(); break;
case I_32_I2_UCS_4: if (_useParallelI2S) return (static_cast<B_32_IP_UCS_4*>(busPtr))->CanShow(); else return (static_cast<B_32_I2_UCS_4*>(busPtr))->CanShow(); break;
case I_32_I2_APA106_3: if (_useParallelI2S) return (static_cast<B_32_IP_APA106_3*>(busPtr))->CanShow(); else return (static_cast<B_32_I2_APA106_3*>(busPtr))->CanShow(); break;
case I_32_I2_FW6_5: if (_useParallelI2S) return (static_cast<B_32_IP_FW6_5*>(busPtr))->CanShow(); else return (static_cast<B_32_I2_FW6_5*>(busPtr))->CanShow(); break;
case I_32_I2_2805_5: if (_useParallelI2S) return (static_cast<B_32_IP_2805_5*>(busPtr))->CanShow(); else return (static_cast<B_32_I2_2805_5*>(busPtr))->CanShow(); break;
case I_32_I2_TM1914_3: if (_useParallelI2S) return (static_cast<B_32_IP_TM1914_3*>(busPtr))->CanShow(); else return (static_cast<B_32_I2_TM1914_3*>(busPtr))->CanShow(); break;
case I_32_I2_SM16825_5: if (_useParallelI2S) return (static_cast<B_32_IP_SM16825_5*>(busPtr))->CanShow(); else return (static_cast<B_32_I2_SM16825_5*>(busPtr))->CanShow(); break;
#endif
#endif
case I_HS_DOT_3: return (static_cast<B_HS_DOT_3*>(busPtr))->CanShow(); break;
@ -823,7 +767,7 @@ class PolyBus {
return true;
}
static void setPixelColor(void* busPtr, uint8_t busType, uint16_t pix, uint32_t c, uint8_t co, uint16_t wwcw = 0) {
[[gnu::hot]] static void setPixelColor(void* busPtr, uint8_t busType, uint16_t pix, uint32_t c, uint8_t co, uint16_t wwcw = 0) {
uint8_t r = c >> 16;
uint8_t g = c >> 8;
uint8_t b = c >> 0;
@ -916,34 +860,19 @@ class PolyBus {
case I_32_RN_TM1914_3: (static_cast<B_32_RN_TM1914_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
case I_32_RN_SM16825_5: (static_cast<B_32_RN_SM16825_5*>(busPtr))->SetPixelColor(pix, Rgbww80Color(col.R*257, col.G*257, col.B*257, cctWW*257, cctCW*257)); break;
// I2S1 bus or paralell buses
#ifndef WLED_NO_I2S1_PIXELBUS
case I_32_I1_NEO_3: if (useParallelI2S) (static_cast<B_32_I1_NEO_3P*>(busPtr))->SetPixelColor(pix, RgbColor(col)); else (static_cast<B_32_I1_NEO_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
case I_32_I1_NEO_4: if (useParallelI2S) (static_cast<B_32_I1_NEO_4P*>(busPtr))->SetPixelColor(pix, RgbColor(col)); else (static_cast<B_32_I1_NEO_4*>(busPtr))->SetPixelColor(pix, col); break;
case I_32_I1_400_3: if (useParallelI2S) (static_cast<B_32_I1_400_3P*>(busPtr))->SetPixelColor(pix, RgbColor(col)); else (static_cast<B_32_I1_400_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
case I_32_I1_TM1_4: if (useParallelI2S) (static_cast<B_32_I1_TM1_4P*>(busPtr))->SetPixelColor(pix, RgbColor(col)); else (static_cast<B_32_I1_TM1_4*>(busPtr))->SetPixelColor(pix, col); break;
case I_32_I1_TM2_3: if (useParallelI2S) (static_cast<B_32_I1_TM2_3P*>(busPtr))->SetPixelColor(pix, RgbColor(col)); else (static_cast<B_32_I1_TM2_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
case I_32_I1_UCS_3: if (useParallelI2S) (static_cast<B_32_I1_UCS_3P*>(busPtr))->SetPixelColor(pix, RgbColor(col)); else (static_cast<B_32_I1_UCS_3*>(busPtr))->SetPixelColor(pix, Rgb48Color(RgbColor(col))); break;
case I_32_I1_UCS_4: if (useParallelI2S) (static_cast<B_32_I1_UCS_4P*>(busPtr))->SetPixelColor(pix, RgbColor(col)); else (static_cast<B_32_I1_UCS_4*>(busPtr))->SetPixelColor(pix, Rgbw64Color(col)); break;
case I_32_I1_APA106_3: if (useParallelI2S) (static_cast<B_32_I1_APA106_3P*>(busPtr))->SetPixelColor(pix, RgbColor(col)); else (static_cast<B_32_I1_APA106_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
case I_32_I1_FW6_5: if (useParallelI2S) (static_cast<B_32_I1_FW6_5P*>(busPtr))->SetPixelColor(pix, RgbwwColor(col.R, col.G, col.B, cctWW, cctCW)); else (static_cast<B_32_I1_FW6_5*>(busPtr))->SetPixelColor(pix, RgbwwColor(col.R, col.G, col.B, cctWW, cctCW)); break;
case I_32_I1_2805_5: if (useParallelI2S) (static_cast<B_32_I1_2805_5P*>(busPtr))->SetPixelColor(pix, RgbwwColor(col.R, col.G, col.B, cctWW, cctCW)); else (static_cast<B_32_I1_2805_5*>(busPtr))->SetPixelColor(pix, RgbwwColor(col.R, col.G, col.B, cctWW, cctCW)); break;
case I_32_I1_TM1914_3: if (useParallelI2S) (static_cast<B_32_I1_TM1914_3P*>(busPtr))->SetPixelColor(pix, RgbColor(col)); else (static_cast<B_32_I1_TM1914_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
case I_32_I1_SM16825_5: if (useParallelI2S) (static_cast<B_32_I1_SM16825_5P*>(busPtr))->SetPixelColor(pix, Rgbww80Color(col.R*257, col.G*257, col.B*257, cctWW*257, cctCW*257)); else (static_cast<B_32_I1_SM16825_5*>(busPtr))->SetPixelColor(pix, Rgbww80Color(col.R*257, col.G*257, col.B*257, cctWW*257, cctCW*257)); break;
#endif
// I2S0 bus
#ifndef WLED_NO_I2S0_PIXELBUS
case I_32_I0_NEO_3: (static_cast<B_32_I0_NEO_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
case I_32_I0_NEO_4: (static_cast<B_32_I0_NEO_4*>(busPtr))->SetPixelColor(pix, col); break;
case I_32_I0_400_3: (static_cast<B_32_I0_400_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
case I_32_I0_TM1_4: (static_cast<B_32_I0_TM1_4*>(busPtr))->SetPixelColor(pix, col); break;
case I_32_I0_TM2_3: (static_cast<B_32_I0_TM2_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
case I_32_I0_UCS_3: (static_cast<B_32_I0_UCS_3*>(busPtr))->SetPixelColor(pix, Rgb48Color(RgbColor(col))); break;
case I_32_I0_UCS_4: (static_cast<B_32_I0_UCS_4*>(busPtr))->SetPixelColor(pix, Rgbw64Color(col)); break;
case I_32_I0_APA106_3: (static_cast<B_32_I0_APA106_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
case I_32_I0_FW6_5: (static_cast<B_32_I0_FW6_5*>(busPtr))->SetPixelColor(pix, RgbwwColor(col.R, col.G, col.B, cctWW, cctCW)); break;
case I_32_I0_2805_5: (static_cast<B_32_I0_2805_5*>(busPtr))->SetPixelColor(pix, RgbwwColor(col.R, col.G, col.B, cctWW, cctCW)); break;
case I_32_I0_TM1914_3: (static_cast<B_32_I0_TM1914_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
case I_32_I0_SM16825_5: (static_cast<B_32_I0_SM16825_5*>(busPtr))->SetPixelColor(pix, Rgbww80Color(col.R*257, col.G*257, col.B*257, cctWW*257, cctCW*257)); break;
#ifndef CONFIG_IDF_TARGET_ESP32C3
case I_32_I2_NEO_3: if (_useParallelI2S) (static_cast<B_32_IP_NEO_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); else (static_cast<B_32_I2_NEO_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
case I_32_I2_NEO_4: if (_useParallelI2S) (static_cast<B_32_IP_NEO_4*>(busPtr))->SetPixelColor(pix, RgbColor(col)); else (static_cast<B_32_I2_NEO_4*>(busPtr))->SetPixelColor(pix, col); break;
case I_32_I2_400_3: if (_useParallelI2S) (static_cast<B_32_IP_400_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); else (static_cast<B_32_I2_400_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
case I_32_I2_TM1_4: if (_useParallelI2S) (static_cast<B_32_IP_TM1_4*>(busPtr))->SetPixelColor(pix, RgbColor(col)); else (static_cast<B_32_I2_TM1_4*>(busPtr))->SetPixelColor(pix, col); break;
case I_32_I2_TM2_3: if (_useParallelI2S) (static_cast<B_32_IP_TM2_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); else (static_cast<B_32_I2_TM2_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
case I_32_I2_UCS_3: if (_useParallelI2S) (static_cast<B_32_IP_UCS_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); else (static_cast<B_32_I2_UCS_3*>(busPtr))->SetPixelColor(pix, Rgb48Color(RgbColor(col))); break;
case I_32_I2_UCS_4: if (_useParallelI2S) (static_cast<B_32_IP_UCS_4*>(busPtr))->SetPixelColor(pix, RgbColor(col)); else (static_cast<B_32_I2_UCS_4*>(busPtr))->SetPixelColor(pix, Rgbw64Color(col)); break;
case I_32_I2_APA106_3: if (_useParallelI2S) (static_cast<B_32_IP_APA106_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); else (static_cast<B_32_I2_APA106_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
case I_32_I2_FW6_5: if (_useParallelI2S) (static_cast<B_32_IP_FW6_5*>(busPtr))->SetPixelColor(pix, RgbwwColor(col.R, col.G, col.B, cctWW, cctCW)); else (static_cast<B_32_I2_FW6_5*>(busPtr))->SetPixelColor(pix, RgbwwColor(col.R, col.G, col.B, cctWW, cctCW)); break;
case I_32_I2_2805_5: if (_useParallelI2S) (static_cast<B_32_IP_2805_5*>(busPtr))->SetPixelColor(pix, RgbwwColor(col.R, col.G, col.B, cctWW, cctCW)); else (static_cast<B_32_I2_2805_5*>(busPtr))->SetPixelColor(pix, RgbwwColor(col.R, col.G, col.B, cctWW, cctCW)); break;
case I_32_I2_TM1914_3: if (_useParallelI2S) (static_cast<B_32_IP_TM1914_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); else (static_cast<B_32_I2_TM1914_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
case I_32_I2_SM16825_5: if (_useParallelI2S) (static_cast<B_32_IP_SM16825_5*>(busPtr))->SetPixelColor(pix, Rgbww80Color(col.R*257, col.G*257, col.B*257, cctWW*257, cctCW*257)); else (static_cast<B_32_I2_SM16825_5*>(busPtr))->SetPixelColor(pix, Rgbww80Color(col.R*257, col.G*257, col.B*257, cctWW*257, cctCW*257)); break;
#endif
#endif
case I_HS_DOT_3: (static_cast<B_HS_DOT_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
@ -1027,34 +956,19 @@ class PolyBus {
case I_32_RN_TM1914_3: (static_cast<B_32_RN_TM1914_3*>(busPtr))->SetLuminance(b); break;
case I_32_RN_SM16825_5: (static_cast<B_32_RN_SM16825_5*>(busPtr))->SetLuminance(b); break;
// I2S1 bus or paralell buses
#ifndef WLED_NO_I2S1_PIXELBUS
case I_32_I1_NEO_3: if (useParallelI2S) (static_cast<B_32_I1_NEO_3P*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I1_NEO_3*>(busPtr))->SetLuminance(b); break;
case I_32_I1_NEO_4: if (useParallelI2S) (static_cast<B_32_I1_NEO_4P*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I1_NEO_4*>(busPtr))->SetLuminance(b); break;
case I_32_I1_400_3: if (useParallelI2S) (static_cast<B_32_I1_400_3P*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I1_400_3*>(busPtr))->SetLuminance(b); break;
case I_32_I1_TM1_4: if (useParallelI2S) (static_cast<B_32_I1_TM1_4P*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I1_TM1_4*>(busPtr))->SetLuminance(b); break;
case I_32_I1_TM2_3: if (useParallelI2S) (static_cast<B_32_I1_TM2_3P*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I1_TM2_3*>(busPtr))->SetLuminance(b); break;
case I_32_I1_UCS_3: if (useParallelI2S) (static_cast<B_32_I1_UCS_3P*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I1_UCS_3*>(busPtr))->SetLuminance(b); break;
case I_32_I1_UCS_4: if (useParallelI2S) (static_cast<B_32_I1_UCS_4P*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I1_UCS_4*>(busPtr))->SetLuminance(b); break;
case I_32_I1_APA106_3: if (useParallelI2S) (static_cast<B_32_I1_APA106_3P*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I1_APA106_3*>(busPtr))->SetLuminance(b); break;
case I_32_I1_FW6_5: if (useParallelI2S) (static_cast<B_32_I1_FW6_5P*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I1_FW6_5*>(busPtr))->SetLuminance(b); break;
case I_32_I1_2805_5: if (useParallelI2S) (static_cast<B_32_I1_2805_5P*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I1_2805_5*>(busPtr))->SetLuminance(b); break;
case I_32_I1_TM1914_3: if (useParallelI2S) (static_cast<B_32_I1_TM1914_3P*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I1_TM1914_3*>(busPtr))->SetLuminance(b); break;
case I_32_I1_SM16825_5: if (useParallelI2S) (static_cast<B_32_I1_SM16825_5P*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I1_SM16825_5*>(busPtr))->SetLuminance(b); break;
#endif
// I2S0 bus
#ifndef WLED_NO_I2S0_PIXELBUS
case I_32_I0_NEO_3: (static_cast<B_32_I0_NEO_3*>(busPtr))->SetLuminance(b); break;
case I_32_I0_NEO_4: (static_cast<B_32_I0_NEO_4*>(busPtr))->SetLuminance(b); break;
case I_32_I0_400_3: (static_cast<B_32_I0_400_3*>(busPtr))->SetLuminance(b); break;
case I_32_I0_TM1_4: (static_cast<B_32_I0_TM1_4*>(busPtr))->SetLuminance(b); break;
case I_32_I0_TM2_3: (static_cast<B_32_I0_TM2_3*>(busPtr))->SetLuminance(b); break;
case I_32_I0_UCS_3: (static_cast<B_32_I0_UCS_3*>(busPtr))->SetLuminance(b); break;
case I_32_I0_UCS_4: (static_cast<B_32_I0_UCS_4*>(busPtr))->SetLuminance(b); break;
case I_32_I0_APA106_3: (static_cast<B_32_I0_APA106_3*>(busPtr))->SetLuminance(b); break;
case I_32_I0_FW6_5: (static_cast<B_32_I0_FW6_5*>(busPtr))->SetLuminance(b); break;
case I_32_I0_2805_5: (static_cast<B_32_I0_2805_5*>(busPtr))->SetLuminance(b); break;
case I_32_I0_TM1914_3: (static_cast<B_32_I0_TM1914_3*>(busPtr))->SetLuminance(b); break;
case I_32_I0_SM16825_5: (static_cast<B_32_I0_SM16825_5*>(busPtr))->SetLuminance(b); break;
#ifndef CONFIG_IDF_TARGET_ESP32C3
case I_32_I2_NEO_3: if (_useParallelI2S) (static_cast<B_32_IP_NEO_3*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I2_NEO_3*>(busPtr))->SetLuminance(b); break;
case I_32_I2_NEO_4: if (_useParallelI2S) (static_cast<B_32_IP_NEO_4*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I2_NEO_4*>(busPtr))->SetLuminance(b); break;
case I_32_I2_400_3: if (_useParallelI2S) (static_cast<B_32_IP_400_3*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I2_400_3*>(busPtr))->SetLuminance(b); break;
case I_32_I2_TM1_4: if (_useParallelI2S) (static_cast<B_32_IP_TM1_4*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I2_TM1_4*>(busPtr))->SetLuminance(b); break;
case I_32_I2_TM2_3: if (_useParallelI2S) (static_cast<B_32_IP_TM2_3*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I2_TM2_3*>(busPtr))->SetLuminance(b); break;
case I_32_I2_UCS_3: if (_useParallelI2S) (static_cast<B_32_IP_UCS_3*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I2_UCS_3*>(busPtr))->SetLuminance(b); break;
case I_32_I2_UCS_4: if (_useParallelI2S) (static_cast<B_32_IP_UCS_4*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I2_UCS_4*>(busPtr))->SetLuminance(b); break;
case I_32_I2_APA106_3: if (_useParallelI2S) (static_cast<B_32_IP_APA106_3*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I2_APA106_3*>(busPtr))->SetLuminance(b); break;
case I_32_I2_FW6_5: if (_useParallelI2S) (static_cast<B_32_IP_FW6_5*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I2_FW6_5*>(busPtr))->SetLuminance(b); break;
case I_32_I2_2805_5: if (_useParallelI2S) (static_cast<B_32_IP_2805_5*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I2_2805_5*>(busPtr))->SetLuminance(b); break;
case I_32_I2_TM1914_3: if (_useParallelI2S) (static_cast<B_32_IP_TM1914_3*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I2_TM1914_3*>(busPtr))->SetLuminance(b); break;
case I_32_I2_SM16825_5: if (_useParallelI2S) (static_cast<B_32_IP_SM16825_5*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I2_SM16825_5*>(busPtr))->SetLuminance(b); break;
#endif
#endif
case I_HS_DOT_3: (static_cast<B_HS_DOT_3*>(busPtr))->SetLuminance(b); break;
@ -1070,7 +984,7 @@ class PolyBus {
}
}
static uint32_t getPixelColor(void* busPtr, uint8_t busType, uint16_t pix, uint8_t co) {
[[gnu::hot]] static uint32_t getPixelColor(void* busPtr, uint8_t busType, uint16_t pix, uint8_t co) {
RgbwColor col(0,0,0,0);
switch (busType) {
case I_NONE: break;
@ -1139,34 +1053,19 @@ class PolyBus {
case I_32_RN_TM1914_3: col = (static_cast<B_32_RN_TM1914_3*>(busPtr))->GetPixelColor(pix); break;
case I_32_RN_SM16825_5: { Rgbww80Color c = (static_cast<B_32_RN_SM16825_5*>(busPtr))->GetPixelColor(pix); col = RGBW32(c.R/257,c.G/257,c.B/257,max(c.WW,c.CW)/257); } break; // will not return original W
// I2S1 bus or paralell buses
#ifndef WLED_NO_I2S1_PIXELBUS
case I_32_I1_NEO_3: col = (useParallelI2S) ? (static_cast<B_32_I1_NEO_3P*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I1_NEO_3*>(busPtr))->GetPixelColor(pix); break;
case I_32_I1_NEO_4: col = (useParallelI2S) ? (static_cast<B_32_I1_NEO_4P*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I1_NEO_4*>(busPtr))->GetPixelColor(pix); break;
case I_32_I1_400_3: col = (useParallelI2S) ? (static_cast<B_32_I1_400_3P*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I1_400_3*>(busPtr))->GetPixelColor(pix); break;
case I_32_I1_TM1_4: col = (useParallelI2S) ? (static_cast<B_32_I1_TM1_4P*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I1_TM1_4*>(busPtr))->GetPixelColor(pix); break;
case I_32_I1_TM2_3: col = (useParallelI2S) ? (static_cast<B_32_I1_TM2_3P*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I1_TM2_3*>(busPtr))->GetPixelColor(pix); break;
case I_32_I1_UCS_3: { Rgb48Color c = (useParallelI2S) ? (static_cast<B_32_I1_UCS_3P*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I1_UCS_3*>(busPtr))->GetPixelColor(pix); col = RGBW32(c.R/257,c.G/257,c.B/257,0); } break;
case I_32_I1_UCS_4: { Rgbw64Color c = (useParallelI2S) ? (static_cast<B_32_I1_UCS_4P*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I1_UCS_4*>(busPtr))->GetPixelColor(pix); col = RGBW32(c.R/257,c.G/257,c.B/257,c.W/257); } break;
case I_32_I1_APA106_3: col = (useParallelI2S) ? (static_cast<B_32_I1_APA106_3P*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I1_APA106_3*>(busPtr))->GetPixelColor(pix); break;
case I_32_I1_FW6_5: { RgbwwColor c = (useParallelI2S) ? (static_cast<B_32_I1_FW6_5P*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I1_FW6_5*>(busPtr))->GetPixelColor(pix); col = RGBW32(c.R,c.G,c.B,max(c.WW,c.CW)); } break; // will not return original W
case I_32_I1_2805_5: { RgbwwColor c = (useParallelI2S) ? (static_cast<B_32_I1_2805_5P*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I1_2805_5*>(busPtr))->GetPixelColor(pix); col = RGBW32(c.R,c.G,c.B,max(c.WW,c.CW)); } break; // will not return original W
case I_32_I1_TM1914_3: col = (useParallelI2S) ? (static_cast<B_32_I1_TM1914_3P*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I1_TM1914_3*>(busPtr))->GetPixelColor(pix); break;
case I_32_I1_SM16825_5: { Rgbww80Color c = (useParallelI2S) ? (static_cast<B_32_I1_SM16825_5P*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I1_SM16825_5*>(busPtr))->GetPixelColor(pix); col = RGBW32(c.R/257,c.G/257,c.B/257,max(c.WW,c.CW)/257); } break; // will not return original W
#endif
// I2S0 bus
#ifndef WLED_NO_I2S0_PIXELBUS
case I_32_I0_NEO_3: col = (static_cast<B_32_I0_NEO_3*>(busPtr))->GetPixelColor(pix); break;
case I_32_I0_NEO_4: col = (static_cast<B_32_I0_NEO_4*>(busPtr))->GetPixelColor(pix); break;
case I_32_I0_400_3: col = (static_cast<B_32_I0_400_3*>(busPtr))->GetPixelColor(pix); break;
case I_32_I0_TM1_4: col = (static_cast<B_32_I0_TM1_4*>(busPtr))->GetPixelColor(pix); break;
case I_32_I0_TM2_3: col = (static_cast<B_32_I0_TM2_3*>(busPtr))->GetPixelColor(pix); break;
case I_32_I0_UCS_3: { Rgb48Color c = (static_cast<B_32_I0_UCS_3*>(busPtr))->GetPixelColor(pix); col = RGBW32(c.R/257,c.G/257,c.B/257,0); } break;
case I_32_I0_UCS_4: { Rgbw64Color c = (static_cast<B_32_I0_UCS_4*>(busPtr))->GetPixelColor(pix); col = RGBW32(c.R/257,c.G/257,c.B/257,c.W/257); } break;
case I_32_I0_APA106_3: col = (static_cast<B_32_I0_APA106_3*>(busPtr))->GetPixelColor(pix); break;
case I_32_I0_FW6_5: { RgbwwColor c = (static_cast<B_32_I0_FW6_5*>(busPtr))->GetPixelColor(pix); col = RGBW32(c.R,c.G,c.B,max(c.WW,c.CW)); } break; // will not return original W
case I_32_I0_2805_5: { RgbwwColor c = (static_cast<B_32_I0_2805_5*>(busPtr))->GetPixelColor(pix); col = RGBW32(c.R,c.G,c.B,max(c.WW,c.CW)); } break; // will not return original W
case I_32_I0_TM1914_3: col = (static_cast<B_32_I0_TM1914_3*>(busPtr))->GetPixelColor(pix); break;
case I_32_I0_SM16825_5: { Rgbww80Color c = (static_cast<B_32_I0_SM16825_5*>(busPtr))->GetPixelColor(pix); col = RGBW32(c.R/257,c.G/257,c.B/257,max(c.WW,c.CW)/257); } break; // will not return original W
#ifndef CONFIG_IDF_TARGET_ESP32C3
case I_32_I2_NEO_3: col = (_useParallelI2S) ? (static_cast<B_32_IP_NEO_3*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I2_NEO_3*>(busPtr))->GetPixelColor(pix); break;
case I_32_I2_NEO_4: col = (_useParallelI2S) ? (static_cast<B_32_IP_NEO_4*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I2_NEO_4*>(busPtr))->GetPixelColor(pix); break;
case I_32_I2_400_3: col = (_useParallelI2S) ? (static_cast<B_32_IP_400_3*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I2_400_3*>(busPtr))->GetPixelColor(pix); break;
case I_32_I2_TM1_4: col = (_useParallelI2S) ? (static_cast<B_32_IP_TM1_4*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I2_TM1_4*>(busPtr))->GetPixelColor(pix); break;
case I_32_I2_TM2_3: col = (_useParallelI2S) ? (static_cast<B_32_IP_TM2_3*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I2_TM2_3*>(busPtr))->GetPixelColor(pix); break;
case I_32_I2_UCS_3: { Rgb48Color c = (_useParallelI2S) ? (static_cast<B_32_IP_UCS_3*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I2_UCS_3*>(busPtr))->GetPixelColor(pix); col = RGBW32(c.R/257,c.G/257,c.B/257,0); } break;
case I_32_I2_UCS_4: { Rgbw64Color c = (_useParallelI2S) ? (static_cast<B_32_IP_UCS_4*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I2_UCS_4*>(busPtr))->GetPixelColor(pix); col = RGBW32(c.R/257,c.G/257,c.B/257,c.W/257); } break;
case I_32_I2_APA106_3: col = (_useParallelI2S) ? (static_cast<B_32_IP_APA106_3*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I2_APA106_3*>(busPtr))->GetPixelColor(pix); break;
case I_32_I2_FW6_5: { RgbwwColor c = (_useParallelI2S) ? (static_cast<B_32_IP_FW6_5*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I2_FW6_5*>(busPtr))->GetPixelColor(pix); col = RGBW32(c.R,c.G,c.B,max(c.WW,c.CW)); } break; // will not return original W
case I_32_I2_2805_5: { RgbwwColor c = (_useParallelI2S) ? (static_cast<B_32_IP_2805_5*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I2_2805_5*>(busPtr))->GetPixelColor(pix); col = RGBW32(c.R,c.G,c.B,max(c.WW,c.CW)); } break; // will not return original W
case I_32_I2_TM1914_3: col = (_useParallelI2S) ? (static_cast<B_32_IP_TM1914_3*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I2_TM1914_3*>(busPtr))->GetPixelColor(pix); break;
case I_32_I2_SM16825_5: { Rgbww80Color c = (_useParallelI2S) ? (static_cast<B_32_IP_SM16825_5*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I2_SM16825_5*>(busPtr))->GetPixelColor(pix); col = RGBW32(c.R/257,c.G/257,c.B/257,max(c.WW,c.CW)/257); } break; // will not return original W
#endif
#endif
case I_HS_DOT_3: col = (static_cast<B_HS_DOT_3*>(busPtr))->GetPixelColor(pix); break;
@ -1269,34 +1168,19 @@ class PolyBus {
case I_32_RN_TM1914_3: delete (static_cast<B_32_RN_TM1914_3*>(busPtr)); break;
case I_32_RN_SM16825_5: delete (static_cast<B_32_RN_SM16825_5*>(busPtr)); break;
// I2S1 bus or paralell buses
#ifndef WLED_NO_I2S1_PIXELBUS
case I_32_I1_NEO_3: if (useParallelI2S) delete (static_cast<B_32_I1_NEO_3P*>(busPtr)); else delete (static_cast<B_32_I1_NEO_3*>(busPtr)); break;
case I_32_I1_NEO_4: if (useParallelI2S) delete (static_cast<B_32_I1_NEO_4P*>(busPtr)); else delete (static_cast<B_32_I1_NEO_4*>(busPtr)); break;
case I_32_I1_400_3: if (useParallelI2S) delete (static_cast<B_32_I1_400_3P*>(busPtr)); else delete (static_cast<B_32_I1_400_3*>(busPtr)); break;
case I_32_I1_TM1_4: if (useParallelI2S) delete (static_cast<B_32_I1_TM1_4P*>(busPtr)); else delete (static_cast<B_32_I1_TM1_4*>(busPtr)); break;
case I_32_I1_TM2_3: if (useParallelI2S) delete (static_cast<B_32_I1_TM2_3P*>(busPtr)); else delete (static_cast<B_32_I1_TM2_3*>(busPtr)); break;
case I_32_I1_UCS_3: if (useParallelI2S) delete (static_cast<B_32_I1_UCS_3P*>(busPtr)); else delete (static_cast<B_32_I1_UCS_3*>(busPtr)); break;
case I_32_I1_UCS_4: if (useParallelI2S) delete (static_cast<B_32_I1_UCS_4P*>(busPtr)); else delete (static_cast<B_32_I1_UCS_4*>(busPtr)); break;
case I_32_I1_APA106_3: if (useParallelI2S) delete (static_cast<B_32_I1_APA106_3P*>(busPtr)); else delete (static_cast<B_32_I1_APA106_3*>(busPtr)); break;
case I_32_I1_FW6_5: if (useParallelI2S) delete (static_cast<B_32_I1_FW6_5P*>(busPtr)); else delete (static_cast<B_32_I1_FW6_5*>(busPtr)); break;
case I_32_I1_2805_5: if (useParallelI2S) delete (static_cast<B_32_I1_2805_5P*>(busPtr)); else delete (static_cast<B_32_I1_2805_5*>(busPtr)); break;
case I_32_I1_TM1914_3: if (useParallelI2S) delete (static_cast<B_32_I1_TM1914_3P*>(busPtr)); else delete (static_cast<B_32_I1_TM1914_3*>(busPtr)); break;
case I_32_I1_SM16825_5: if (useParallelI2S) delete (static_cast<B_32_I1_SM16825_5P*>(busPtr)); else delete (static_cast<B_32_I1_SM16825_5*>(busPtr)); break;
#endif
// I2S0 bus
#ifndef WLED_NO_I2S0_PIXELBUS
case I_32_I0_NEO_3: delete (static_cast<B_32_I0_NEO_3*>(busPtr)); break;
case I_32_I0_NEO_4: delete (static_cast<B_32_I0_NEO_4*>(busPtr)); break;
case I_32_I0_400_3: delete (static_cast<B_32_I0_400_3*>(busPtr)); break;
case I_32_I0_TM1_4: delete (static_cast<B_32_I0_TM1_4*>(busPtr)); break;
case I_32_I0_TM2_3: delete (static_cast<B_32_I0_TM2_3*>(busPtr)); break;
case I_32_I0_UCS_3: delete (static_cast<B_32_I0_UCS_3*>(busPtr)); break;
case I_32_I0_UCS_4: delete (static_cast<B_32_I0_UCS_4*>(busPtr)); break;
case I_32_I0_APA106_3: delete (static_cast<B_32_I0_APA106_3*>(busPtr)); break;
case I_32_I0_FW6_5: delete (static_cast<B_32_I0_FW6_5*>(busPtr)); break;
case I_32_I0_2805_5: delete (static_cast<B_32_I0_2805_5*>(busPtr)); break;
case I_32_I0_TM1914_3: delete (static_cast<B_32_I0_TM1914_3*>(busPtr)); break;
case I_32_I0_SM16825_5: delete (static_cast<B_32_I0_SM16825_5*>(busPtr)); break;
#ifndef CONFIG_IDF_TARGET_ESP32C3
case I_32_I2_NEO_3: if (_useParallelI2S) delete (static_cast<B_32_IP_NEO_3*>(busPtr)); else delete (static_cast<B_32_I2_NEO_3*>(busPtr)); break;
case I_32_I2_NEO_4: if (_useParallelI2S) delete (static_cast<B_32_IP_NEO_4*>(busPtr)); else delete (static_cast<B_32_I2_NEO_4*>(busPtr)); break;
case I_32_I2_400_3: if (_useParallelI2S) delete (static_cast<B_32_IP_400_3*>(busPtr)); else delete (static_cast<B_32_I2_400_3*>(busPtr)); break;
case I_32_I2_TM1_4: if (_useParallelI2S) delete (static_cast<B_32_IP_TM1_4*>(busPtr)); else delete (static_cast<B_32_I2_TM1_4*>(busPtr)); break;
case I_32_I2_TM2_3: if (_useParallelI2S) delete (static_cast<B_32_IP_TM2_3*>(busPtr)); else delete (static_cast<B_32_I2_TM2_3*>(busPtr)); break;
case I_32_I2_UCS_3: if (_useParallelI2S) delete (static_cast<B_32_IP_UCS_3*>(busPtr)); else delete (static_cast<B_32_I2_UCS_3*>(busPtr)); break;
case I_32_I2_UCS_4: if (_useParallelI2S) delete (static_cast<B_32_IP_UCS_4*>(busPtr)); else delete (static_cast<B_32_I2_UCS_4*>(busPtr)); break;
case I_32_I2_APA106_3: if (_useParallelI2S) delete (static_cast<B_32_IP_APA106_3*>(busPtr)); else delete (static_cast<B_32_I2_APA106_3*>(busPtr)); break;
case I_32_I2_FW6_5: if (_useParallelI2S) delete (static_cast<B_32_IP_FW6_5*>(busPtr)); else delete (static_cast<B_32_I2_FW6_5*>(busPtr)); break;
case I_32_I2_2805_5: if (_useParallelI2S) delete (static_cast<B_32_IP_2805_5*>(busPtr)); else delete (static_cast<B_32_I2_2805_5*>(busPtr)); break;
case I_32_I2_TM1914_3: if (_useParallelI2S) delete (static_cast<B_32_IP_TM1914_3*>(busPtr)); else delete (static_cast<B_32_I2_TM1914_3*>(busPtr)); break;
case I_32_I2_SM16825_5: if (_useParallelI2S) delete (static_cast<B_32_IP_SM16825_5*>(busPtr)); else delete (static_cast<B_32_I2_SM16825_5*>(busPtr)); break;
#endif
#endif
case I_HS_DOT_3: delete (static_cast<B_HS_DOT_3*>(busPtr)); break;
@ -1312,8 +1196,178 @@ class PolyBus {
}
}
static unsigned getDataSize(void* busPtr, uint8_t busType) {
unsigned size = 0;
switch (busType) {
case I_NONE: break;
#ifdef ESP8266
case I_8266_U0_NEO_3: size = (static_cast<B_8266_U0_NEO_3*>(busPtr))->PixelsSize()*2; break;
case I_8266_U1_NEO_3: size = (static_cast<B_8266_U1_NEO_3*>(busPtr))->PixelsSize()*2; break;
case I_8266_DM_NEO_3: size = (static_cast<B_8266_DM_NEO_3*>(busPtr))->PixelsSize()*5; break;
case I_8266_BB_NEO_3: size = (static_cast<B_8266_BB_NEO_3*>(busPtr))->PixelsSize()*2; break;
case I_8266_U0_NEO_4: size = (static_cast<B_8266_U0_NEO_4*>(busPtr))->PixelsSize()*2; break;
case I_8266_U1_NEO_4: size = (static_cast<B_8266_U1_NEO_4*>(busPtr))->PixelsSize()*2; break;
case I_8266_DM_NEO_4: size = (static_cast<B_8266_DM_NEO_4*>(busPtr))->PixelsSize()*5; break;
case I_8266_BB_NEO_4: size = (static_cast<B_8266_BB_NEO_4*>(busPtr))->PixelsSize()*2; break;
case I_8266_U0_400_3: size = (static_cast<B_8266_U0_400_3*>(busPtr))->PixelsSize()*2; break;
case I_8266_U1_400_3: size = (static_cast<B_8266_U1_400_3*>(busPtr))->PixelsSize()*2; break;
case I_8266_DM_400_3: size = (static_cast<B_8266_DM_400_3*>(busPtr))->PixelsSize()*5; break;
case I_8266_BB_400_3: size = (static_cast<B_8266_BB_400_3*>(busPtr))->PixelsSize()*2; break;
case I_8266_U0_TM1_4: size = (static_cast<B_8266_U0_TM1_4*>(busPtr))->PixelsSize()*2; break;
case I_8266_U1_TM1_4: size = (static_cast<B_8266_U1_TM1_4*>(busPtr))->PixelsSize()*2; break;
case I_8266_DM_TM1_4: size = (static_cast<B_8266_DM_TM1_4*>(busPtr))->PixelsSize()*5; break;
case I_8266_BB_TM1_4: size = (static_cast<B_8266_BB_TM1_4*>(busPtr))->PixelsSize()*2; break;
case I_8266_U0_TM2_3: size = (static_cast<B_8266_U0_TM2_3*>(busPtr))->PixelsSize()*2; break;
case I_8266_U1_TM2_3: size = (static_cast<B_8266_U1_TM2_3*>(busPtr))->PixelsSize()*2; break;
case I_8266_DM_TM2_3: size = (static_cast<B_8266_DM_TM2_3*>(busPtr))->PixelsSize()*5; break;
case I_8266_BB_TM2_3: size = (static_cast<B_8266_BB_TM2_3*>(busPtr))->PixelsSize()*2; break;
case I_8266_U0_UCS_3: size = (static_cast<B_8266_U0_UCS_3*>(busPtr))->PixelsSize()*2; break;
case I_8266_U1_UCS_3: size = (static_cast<B_8266_U1_UCS_3*>(busPtr))->PixelsSize()*2; break;
case I_8266_DM_UCS_3: size = (static_cast<B_8266_DM_UCS_3*>(busPtr))->PixelsSize()*5; break;
case I_8266_BB_UCS_3: size = (static_cast<B_8266_BB_UCS_3*>(busPtr))->PixelsSize()*2; break;
case I_8266_U0_UCS_4: size = (static_cast<B_8266_U0_UCS_4*>(busPtr))->PixelsSize()*2; break;
case I_8266_U1_UCS_4: size = (static_cast<B_8266_U1_UCS_4*>(busPtr))->PixelsSize()*2; break;
case I_8266_DM_UCS_4: size = (static_cast<B_8266_DM_UCS_4*>(busPtr))->PixelsSize()*5; break;
case I_8266_BB_UCS_4: size = (static_cast<B_8266_BB_UCS_4*>(busPtr))->PixelsSize()*2; break;
case I_8266_U0_APA106_3: size = (static_cast<B_8266_U0_APA106_3*>(busPtr))->PixelsSize()*2; break;
case I_8266_U1_APA106_3: size = (static_cast<B_8266_U1_APA106_3*>(busPtr))->PixelsSize()*2; break;
case I_8266_DM_APA106_3: size = (static_cast<B_8266_DM_APA106_3*>(busPtr))->PixelsSize()*5; break;
case I_8266_BB_APA106_3: size = (static_cast<B_8266_BB_APA106_3*>(busPtr))->PixelsSize()*2; break;
case I_8266_U0_FW6_5: size = (static_cast<B_8266_U0_FW6_5*>(busPtr))->PixelsSize()*2; break;
case I_8266_U1_FW6_5: size = (static_cast<B_8266_U1_FW6_5*>(busPtr))->PixelsSize()*2; break;
case I_8266_DM_FW6_5: size = (static_cast<B_8266_DM_FW6_5*>(busPtr))->PixelsSize()*5; break;
case I_8266_BB_FW6_5: size = (static_cast<B_8266_BB_FW6_5*>(busPtr))->PixelsSize()*2; break;
case I_8266_U0_2805_5: size = (static_cast<B_8266_U0_2805_5*>(busPtr))->PixelsSize()*2; break;
case I_8266_U1_2805_5: size = (static_cast<B_8266_U1_2805_5*>(busPtr))->PixelsSize()*2; break;
case I_8266_DM_2805_5: size = (static_cast<B_8266_DM_2805_5*>(busPtr))->PixelsSize()*5; break;
case I_8266_BB_2805_5: size = (static_cast<B_8266_BB_2805_5*>(busPtr))->PixelsSize()*2; break;
case I_8266_U0_TM1914_3: size = (static_cast<B_8266_U0_TM1914_3*>(busPtr))->PixelsSize()*2; break;
case I_8266_U1_TM1914_3: size = (static_cast<B_8266_U1_TM1914_3*>(busPtr))->PixelsSize()*2; break;
case I_8266_DM_TM1914_3: size = (static_cast<B_8266_DM_TM1914_3*>(busPtr))->PixelsSize()*5; break;
case I_8266_BB_TM1914_3: size = (static_cast<B_8266_BB_TM1914_3*>(busPtr))->PixelsSize()*2; break;
case I_8266_U0_SM16825_5: size = (static_cast<B_8266_U0_SM16825_5*>(busPtr))->PixelsSize()*2; break;
case I_8266_U1_SM16825_5: size = (static_cast<B_8266_U1_SM16825_5*>(busPtr))->PixelsSize()*2; break;
case I_8266_DM_SM16825_5: size = (static_cast<B_8266_DM_SM16825_5*>(busPtr))->PixelsSize()*5; break;
case I_8266_BB_SM16825_5: size = (static_cast<B_8266_BB_SM16825_5*>(busPtr))->PixelsSize()*2; break;
#endif
#ifdef ARDUINO_ARCH_ESP32
// RMT buses (front + back + small system managed RMT)
case I_32_RN_NEO_3: size = (static_cast<B_32_RN_NEO_3*>(busPtr))->PixelsSize()*2; break;
case I_32_RN_NEO_4: size = (static_cast<B_32_RN_NEO_4*>(busPtr))->PixelsSize()*2; break;
case I_32_RN_400_3: size = (static_cast<B_32_RN_400_3*>(busPtr))->PixelsSize()*2; break;
case I_32_RN_TM1_4: size = (static_cast<B_32_RN_TM1_4*>(busPtr))->PixelsSize()*2; break;
case I_32_RN_TM2_3: size = (static_cast<B_32_RN_TM2_3*>(busPtr))->PixelsSize()*2; break;
case I_32_RN_UCS_3: size = (static_cast<B_32_RN_UCS_3*>(busPtr))->PixelsSize()*2; break;
case I_32_RN_UCS_4: size = (static_cast<B_32_RN_UCS_4*>(busPtr))->PixelsSize()*2; break;
case I_32_RN_APA106_3: size = (static_cast<B_32_RN_APA106_3*>(busPtr))->PixelsSize()*2; break;
case I_32_RN_FW6_5: size = (static_cast<B_32_RN_FW6_5*>(busPtr))->PixelsSize()*2; break;
case I_32_RN_2805_5: size = (static_cast<B_32_RN_2805_5*>(busPtr))->PixelsSize()*2; break;
case I_32_RN_TM1914_3: size = (static_cast<B_32_RN_TM1914_3*>(busPtr))->PixelsSize()*2; break;
case I_32_RN_SM16825_5: size = (static_cast<B_32_RN_SM16825_5*>(busPtr))->PixelsSize()*2; break;
// I2S1 bus or paralell buses (front + DMA; DMA = front * cadence, aligned to 4 bytes)
#ifndef CONFIG_IDF_TARGET_ESP32C3
case I_32_I2_NEO_3: size = (_useParallelI2S) ? (static_cast<B_32_IP_NEO_3*>(busPtr))->PixelsSize()*4 : (static_cast<B_32_I2_NEO_3*>(busPtr))->PixelsSize()*4; break;
case I_32_I2_NEO_4: size = (_useParallelI2S) ? (static_cast<B_32_IP_NEO_4*>(busPtr))->PixelsSize()*4 : (static_cast<B_32_I2_NEO_4*>(busPtr))->PixelsSize()*4; break;
case I_32_I2_400_3: size = (_useParallelI2S) ? (static_cast<B_32_IP_400_3*>(busPtr))->PixelsSize()*4 : (static_cast<B_32_I2_400_3*>(busPtr))->PixelsSize()*4; break;
case I_32_I2_TM1_4: size = (_useParallelI2S) ? (static_cast<B_32_IP_TM1_4*>(busPtr))->PixelsSize()*4 : (static_cast<B_32_I2_TM1_4*>(busPtr))->PixelsSize()*4; break;
case I_32_I2_TM2_3: size = (_useParallelI2S) ? (static_cast<B_32_IP_TM2_3*>(busPtr))->PixelsSize()*4 : (static_cast<B_32_I2_TM2_3*>(busPtr))->PixelsSize()*4; break;
case I_32_I2_UCS_3: size = (_useParallelI2S) ? (static_cast<B_32_IP_UCS_3*>(busPtr))->PixelsSize()*4 : (static_cast<B_32_I2_UCS_3*>(busPtr))->PixelsSize()*4; break;
case I_32_I2_UCS_4: size = (_useParallelI2S) ? (static_cast<B_32_IP_UCS_4*>(busPtr))->PixelsSize()*4 : (static_cast<B_32_I2_UCS_4*>(busPtr))->PixelsSize()*4; break;
case I_32_I2_APA106_3: size = (_useParallelI2S) ? (static_cast<B_32_IP_APA106_3*>(busPtr))->PixelsSize()*4 : (static_cast<B_32_I2_APA106_3*>(busPtr))->PixelsSize()*4; break;
case I_32_I2_FW6_5: size = (_useParallelI2S) ? (static_cast<B_32_IP_FW6_5*>(busPtr))->PixelsSize()*4 : (static_cast<B_32_I2_FW6_5*>(busPtr))->PixelsSize()*4; break;
case I_32_I2_2805_5: size = (_useParallelI2S) ? (static_cast<B_32_IP_2805_5*>(busPtr))->PixelsSize()*4 : (static_cast<B_32_I2_2805_5*>(busPtr))->PixelsSize()*4; break;
case I_32_I2_TM1914_3: size = (_useParallelI2S) ? (static_cast<B_32_IP_TM1914_3*>(busPtr))->PixelsSize()*4 : (static_cast<B_32_I2_TM1914_3*>(busPtr))->PixelsSize()*4; break;
case I_32_I2_SM16825_5: size = (_useParallelI2S) ? (static_cast<B_32_IP_SM16825_5*>(busPtr))->PixelsSize()*4 : (static_cast<B_32_I2_SM16825_5*>(busPtr))->PixelsSize()*4; break;
#endif
#endif
case I_HS_DOT_3: size = (static_cast<B_HS_DOT_3*>(busPtr))->PixelsSize()*2; break;
case I_SS_DOT_3: size = (static_cast<B_SS_DOT_3*>(busPtr))->PixelsSize()*2; break;
case I_HS_LPD_3: size = (static_cast<B_HS_LPD_3*>(busPtr))->PixelsSize()*2; break;
case I_SS_LPD_3: size = (static_cast<B_SS_LPD_3*>(busPtr))->PixelsSize()*2; break;
case I_HS_LPO_3: size = (static_cast<B_HS_LPO_3*>(busPtr))->PixelsSize()*2; break;
case I_SS_LPO_3: size = (static_cast<B_SS_LPO_3*>(busPtr))->PixelsSize()*2; break;
case I_HS_WS1_3: size = (static_cast<B_HS_WS1_3*>(busPtr))->PixelsSize()*2; break;
case I_SS_WS1_3: size = (static_cast<B_SS_WS1_3*>(busPtr))->PixelsSize()*2; break;
case I_HS_P98_3: size = (static_cast<B_HS_P98_3*>(busPtr))->PixelsSize()*2; break;
case I_SS_P98_3: size = (static_cast<B_SS_P98_3*>(busPtr))->PixelsSize()*2; break;
}
return size;
}
static unsigned memUsage(unsigned count, unsigned busType) {
unsigned size = count*3; // let's assume 3 channels, we will add count or 2*count below for 4 channels or 5 channels
switch (busType) {
case I_NONE: size = 0; break;
#ifdef ESP8266
// UART methods have front + back buffers + small UART
case I_8266_U0_NEO_4: size = (size + count)*2; break; // 4 channels
case I_8266_U1_NEO_4: size = (size + count)*2; break; // 4 channels
case I_8266_BB_NEO_4: size = (size + count)*2; break; // 4 channels
case I_8266_U0_TM1_4: size = (size + count)*2; break; // 4 channels
case I_8266_U1_TM1_4: size = (size + count)*2; break; // 4 channels
case I_8266_BB_TM1_4: size = (size + count)*2; break; // 4 channels
case I_8266_U0_UCS_3: size *= 4; break; // 16 bit
case I_8266_U1_UCS_3: size *= 4; break; // 16 bit
case I_8266_BB_UCS_3: size *= 4; break; // 16 bit
case I_8266_U0_UCS_4: size = (size + count)*2*2; break; // 16 bit 4 channels
case I_8266_U1_UCS_4: size = (size + count)*2*2; break; // 16 bit 4 channels
case I_8266_BB_UCS_4: size = (size + count)*2*2; break; // 16 bit 4 channels
case I_8266_U0_FW6_5: size = (size + 2*count)*2; break; // 5 channels
case I_8266_U1_FW6_5: size = (size + 2*count)*2; break; // 5channels
case I_8266_BB_FW6_5: size = (size + 2*count)*2; break; // 5 channels
case I_8266_U0_2805_5: size = (size + 2*count)*2; break; // 5 channels
case I_8266_U1_2805_5: size = (size + 2*count)*2; break; // 5 channels
case I_8266_BB_2805_5: size = (size + 2*count)*2; break; // 5 channels
case I_8266_U0_SM16825_5: size = (size + 2*count)*2*2; break; // 16 bit 5 channels
case I_8266_U1_SM16825_5: size = (size + 2*count)*2*2; break; // 16 bit 5 channels
case I_8266_BB_SM16825_5: size = (size + 2*count)*2*2; break; // 16 bit 5 channels
// DMA methods have front + DMA buffer = ((1+(3+1)) * channels)
case I_8266_DM_NEO_3: size *= 5; break;
case I_8266_DM_NEO_4: size = (size + count)*5; break;
case I_8266_DM_400_3: size *= 5; break;
case I_8266_DM_TM1_4: size = (size + count)*5; break;
case I_8266_DM_TM2_3: size *= 5; break;
case I_8266_DM_UCS_3: size *= 2*5; break;
case I_8266_DM_UCS_4: size = (size + count)*2*5; break;
case I_8266_DM_APA106_3: size *= 5; break;
case I_8266_DM_FW6_5: size = (size + 2*count)*5; break;
case I_8266_DM_2805_5: size = (size + 2*count)*5; break;
case I_8266_DM_TM1914_3: size *= 5; break;
case I_8266_DM_SM16825_5: size = (size + 2*count)*2*5; break;
#endif
#ifdef ARDUINO_ARCH_ESP32
// RMT buses (1x front and 1x back buffer)
case I_32_RN_NEO_4: size = (size + count)*2; break;
case I_32_RN_TM1_4: size = (size + count)*2; break;
case I_32_RN_UCS_3: size *= 2*2; break;
case I_32_RN_UCS_4: size = (size + count)*2*2; break;
case I_32_RN_FW6_5: size = (size + 2*count)*2; break;
case I_32_RN_2805_5: size = (size + 2*count)*2; break;
case I_32_RN_SM16825_5: size = (size + 2*count)*2*2; break;
// I2S1 bus or paralell buses (individual 1x front and 1 DMA (3x or 4x pixel count) or common back DMA buffers)
#ifndef CONFIG_IDF_TARGET_ESP32C3
case I_32_I2_NEO_3: size *= 4; break;
case I_32_I2_NEO_4: size = (size + count)*4; break;
case I_32_I2_400_3: size *= 4; break;
case I_32_I2_TM1_4: size = (size + count)*4; break;
case I_32_I2_TM2_3: size *= 4; break;
case I_32_I2_UCS_3: size *= 2*4; break;
case I_32_I2_UCS_4: size = (size + count)*2*4; break;
case I_32_I2_APA106_3: size *= 4; break;
case I_32_I2_FW6_5: size = (size + 2*count)*4; break;
case I_32_I2_2805_5: size = (size + 2*count)*4; break;
case I_32_I2_TM1914_3: size *= 4; break;
case I_32_I2_SM16825_5: size = (size + 2*count)*2*4; break;
#endif
#endif
// everything else uses 2 buffers
default: size *= 2; break;
}
return size;
}
//gives back the internal type index (I_XX_XXX_X above) for the input
static uint8_t getI(uint8_t busType, uint8_t* pins, uint8_t num = 0) {
static uint8_t getI(uint8_t busType, const uint8_t* pins, uint8_t num = 0) {
if (!Bus::isDigital(busType)) return I_NONE;
if (Bus::is2Pin(busType)) { //SPI LED chips
bool isHSPI = false;
@ -1372,26 +1426,33 @@ class PolyBus {
uint8_t offset = 0; // 0 = RMT (num 1-8), 1 = I2S0 (used by Audioreactive), 2 = I2S1
#if defined(CONFIG_IDF_TARGET_ESP32S2)
// ESP32-S2 only has 4 RMT channels
if (num > 4) return I_NONE;
if (num > 3) offset = 1; // only one I2S (use last to allow Audioreactive)
if (_useParallelI2S) {
if (num > 11) return I_NONE;
if (num > 3) offset = 1; // use x8 parallel I2S0 channels (use last to allow Audioreactive)
} else {
if (num > 4) return I_NONE;
if (num > 3) offset = 1; // only one I2S0 (use last to allow Audioreactive)
}
#elif defined(CONFIG_IDF_TARGET_ESP32C3)
// On ESP32-C3 only the first 2 RMT channels are usable for transmitting
if (num > 1) return I_NONE;
//if (num > 1) offset = 1; // I2S not supported yet (only 1 I2S)
#elif defined(CONFIG_IDF_TARGET_ESP32S3)
// On ESP32-S3 only the first 4 RMT channels are usable for transmitting
if (num > 3) return I_NONE;
//if (num > 3) offset = num -4; // I2S not supported yet
if (_useParallelI2S) {
if (num > 11) return I_NONE;
if (num > 3) offset = 1; // use x8 parallel I2S LCD channels
} else {
if (num > 3) return I_NONE; // do not use single I2S (as it is not supported)
}
#else
// standard ESP32 has 8 RMT and 2 I2S channels
if (useParallelI2S) {
if (num > 16) return I_NONE;
if (num < 8) offset = 2; // prefer 8 parallel I2S1 channels
if (num == 16) offset = 1;
// standard ESP32 has 8 RMT and x1/x8 I2S1 channels
if (_useParallelI2S) {
if (num > 15) return I_NONE;
if (num > 7) offset = 1; // 8 RMT followed by 8 I2S
} else {
if (num > 9) return I_NONE;
if (num > 8) offset = 1;
if (num == 0) offset = 2; // prefer I2S1 for 1st bus (less flickering but more RAM needed)
if (num == 0) offset = 1; // prefer I2S1 for 1st bus (less flickering but more RAM needed)
}
#endif
switch (busType) {

View File

@ -20,11 +20,11 @@ bool deserializeConfig(JsonObject doc, bool fromFS) {
//long vid = doc[F("vid")]; // 2010020
#ifdef WLED_USE_ETHERNET
#if defined(ARDUINO_ARCH_ESP32) && defined(WLED_USE_ETHERNET)
JsonObject ethernet = doc[F("eth")];
CJSON(ethernetType, ethernet["type"]);
// NOTE: Ethernet configuration takes priority over other use of pins
WLED::instance().initEthernet();
initEthernet();
#endif
JsonObject id = doc["id"];
@ -53,9 +53,11 @@ bool deserializeConfig(JsonObject doc, bool fromFS) {
JsonArray sn = wifi["sn"];
char ssid[33] = "";
char pass[65] = "";
char bssid[13] = "";
IPAddress nIP = (uint32_t)0U, nGW = (uint32_t)0U, nSN = (uint32_t)0x00FFFFFF; // little endian
getStringFromJson(ssid, wifi[F("ssid")], 33);
getStringFromJson(pass, wifi["psk"], 65); // password is not normally present but if it is, use it
getStringFromJson(bssid, wifi[F("bssid")], 13);
for (size_t i = 0; i < 4; i++) {
CJSON(nIP[i], ip[i]);
CJSON(nGW[i], gw[i]);
@ -63,6 +65,7 @@ bool deserializeConfig(JsonObject doc, bool fromFS) {
}
if (strlen(ssid) > 0) strlcpy(multiWiFi[n].clientSSID, ssid, 33); // this will keep old SSID intact if not present in JSON
if (strlen(pass) > 0) strlcpy(multiWiFi[n].clientPass, pass, 65); // this will keep old password intact if not present in JSON
if (strlen(bssid) > 0) fillStr2MAC(multiWiFi[n].bssid, bssid);
multiWiFi[n].staticIP = nIP;
multiWiFi[n].staticGW = nGW;
multiWiFi[n].staticSN = nSN;
@ -118,6 +121,9 @@ bool deserializeConfig(JsonObject doc, bool fromFS) {
Bus::setCCTBlend(cctBlending);
strip.setTargetFps(hw_led["fps"]); //NOP if 0, default 42 FPS
CJSON(useGlobalLedBuffer, hw_led[F("ld")]);
#if defined(ARDUINO_ARCH_ESP32) && !defined(CONFIG_IDF_TARGET_ESP32C3)
CJSON(useParallelI2S, hw_led[F("prl")]);
#endif
#ifndef WLED_DISABLE_2D
// 2D Matrix Settings
@ -162,34 +168,6 @@ bool deserializeConfig(JsonObject doc, bool fromFS) {
DEBUG_PRINTF_P(PSTR("Heap before buses: %d\n"), ESP.getFreeHeap());
int s = 0; // bus iterator
if (fromFS) BusManager::removeAll(); // can't safely manipulate busses directly in network callback
unsigned mem = 0;
// determine if it is sensible to use parallel I2S outputs on ESP32 (i.e. more than 5 outputs = 1 I2S + 4 RMT)
bool useParallel = false;
#if defined(ARDUINO_ARCH_ESP32) && !defined(ARDUINO_ARCH_ESP32S2) && !defined(ARDUINO_ARCH_ESP32S3) && !defined(ARDUINO_ARCH_ESP32C3)
unsigned digitalCount = 0;
unsigned maxLedsOnBus = 0;
unsigned maxChannels = 0;
for (JsonObject elm : ins) {
unsigned type = elm["type"] | TYPE_WS2812_RGB;
unsigned len = elm["len"] | DEFAULT_LED_COUNT;
if (!Bus::isDigital(type)) continue;
if (!Bus::is2Pin(type)) {
digitalCount++;
unsigned channels = Bus::getNumberOfChannels(type);
if (len > maxLedsOnBus) maxLedsOnBus = len;
if (channels > maxChannels) maxChannels = channels;
}
}
DEBUG_PRINTF_P(PSTR("Maximum LEDs on a bus: %u\nDigital buses: %u\n"), maxLedsOnBus, digitalCount);
// we may remove 300 LEDs per bus limit when NeoPixelBus is updated beyond 2.9.0
if (maxLedsOnBus <= 300 && digitalCount > 5) {
DEBUG_PRINTLN(F("Switching to parallel I2S."));
useParallel = true;
BusManager::useParallelOutput();
mem = BusManager::memUsage(maxChannels, maxLedsOnBus, 8); // use alternate memory calculation
}
#endif
for (JsonObject elm : ins) {
if (s >= WLED_MAX_BUSSES) break;
@ -226,8 +204,6 @@ bool deserializeConfig(JsonObject doc, bool fromFS) {
doInitBusses = true; // finalization done in beginStrip()
if (!Bus::isVirtual(ledType)) s++; // have as many virtual buses as you want
}
DEBUG_PRINTF_P(PSTR("LED buffer size: %uB\n"), mem);
DEBUG_PRINTF_P(PSTR("Heap after buses: %d\n"), ESP.getFreeHeap());
}
if (hw_led["rev"] && BusManager::getNumBusses()) BusManager::getBus(0)->setReversed(true); //set 0.11 global reversed setting for first bus
@ -697,8 +673,8 @@ void deserializeConfigFromFS() {
UsermodManager::readFromConfig(empty);
serializeConfig();
// init Ethernet (in case default type is set at compile time)
#ifdef WLED_USE_ETHERNET
WLED::instance().initEthernet();
#if defined(ARDUINO_ARCH_ESP32) && defined(WLED_USE_ETHERNET)
initEthernet();
#endif
return;
}
@ -746,6 +722,9 @@ void serializeConfig() {
JsonObject wifi = nw_ins.createNestedObject();
wifi[F("ssid")] = multiWiFi[n].clientSSID;
wifi[F("pskl")] = strlen(multiWiFi[n].clientPass);
char bssid[13];
fillMAC2Str(bssid, multiWiFi[n].bssid);
wifi[F("bssid")] = bssid;
JsonArray wifi_ip = wifi.createNestedArray("ip");
JsonArray wifi_gw = wifi.createNestedArray("gw");
JsonArray wifi_sn = wifi.createNestedArray("sn");
@ -781,7 +760,7 @@ void serializeConfig() {
wifi[F("txpwr")] = txPower;
#endif
#ifdef WLED_USE_ETHERNET
#if defined(ARDUINO_ARCH_ESP32) && defined(WLED_USE_ETHERNET)
JsonObject ethernet = root.createNestedObject("eth");
ethernet["type"] = ethernetType;
if (ethernetType != WLED_ETH_NONE && ethernetType < WLED_NUM_ETH_TYPES) {
@ -818,6 +797,9 @@ void serializeConfig() {
hw_led["fps"] = strip.getTargetFps();
hw_led[F("rgbwm")] = Bus::getGlobalAWMode(); // global auto white mode override
hw_led[F("ld")] = useGlobalLedBuffer;
#if defined(ARDUINO_ARCH_ESP32) && !defined(CONFIG_IDF_TARGET_ESP32C3)
hw_led[F("prl")] = BusManager::hasParallelOutput();
#endif
#ifndef WLED_DISABLE_2D
// 2D Matrix Settings
@ -1234,4 +1216,4 @@ void serializeConfigSec() {
if (f) serializeJson(root, f);
f.close();
releaseJSONBufferLock();
}
}

View File

@ -21,7 +21,7 @@ uint32_t color_blend(uint32_t color1, uint32_t color2, uint8_t blend) {
/*
* color add function that preserves ratio
* original idea: https://github.com/Aircoookie/WLED/pull/2465 by https://github.com/Proto-molecule
* original idea: https://github.com/wled-dev/WLED/pull/2465 by https://github.com/Proto-molecule
* speed optimisations by @dedehai
*/
uint32_t color_add(uint32_t c1, uint32_t c2, bool preserveCR)
@ -87,25 +87,26 @@ uint32_t color_fade(uint32_t c1, uint8_t amount, bool video)
uint32_t ColorFromPaletteWLED(const CRGBPalette16& pal, unsigned index, uint8_t brightness, TBlendType blendType)
{
if (blendType == LINEARBLEND_NOWRAP) {
index = (index*240) >> 8; // Blend range is affected by lo4 blend of values, remap to avoid wrapping
index = (index * 0xF0) >> 8; // Blend range is affected by lo4 blend of values, remap to avoid wrapping
}
unsigned hi4 = byte(index) >> 4;
const CRGB* entry = (CRGB*)((uint8_t*)(&(pal[0])) + (hi4 * sizeof(CRGB)));
unsigned lo4 = (index & 0x0F);
const CRGB* entry = (CRGB*)&(pal[0]) + hi4;
unsigned red1 = entry->r;
unsigned green1 = entry->g;
unsigned blue1 = entry->b;
if (blendType != NOBLEND) {
if(lo4 && blendType != NOBLEND) {
if (hi4 == 15) entry = &(pal[0]);
else ++entry;
unsigned f2 = ((index & 0x0F) << 4) + 1; // +1 so we scale by 256 as a max value, then result can just be shifted by 8
unsigned f1 = (257 - f2); // f2 is 1 minimum, so this is 256 max
red1 = (red1 * f1 + (unsigned)entry->r * f2) >> 8;
unsigned f2 = (lo4 << 4);
unsigned f1 = 256 - f2;
red1 = (red1 * f1 + (unsigned)entry->r * f2) >> 8; // note: using color_blend() is 20% slower
green1 = (green1 * f1 + (unsigned)entry->g * f2) >> 8;
blue1 = (blue1 * f1 + (unsigned)entry->b * f2) >> 8;
}
if (brightness < 255) { // note: zero checking could be done to return black but that is hardly ever used so it is omitted
uint32_t scale = brightness + 1; // adjust for rounding (bitshift)
red1 = (red1 * scale) >> 8;
red1 = (red1 * scale) >> 8; // note: using color_fade() is 30% slower
green1 = (green1 * scale) >> 8;
blue1 = (blue1 * scale) >> 8;
}

View File

@ -37,7 +37,7 @@
#endif
#ifndef WLED_MAX_USERMODS
#ifdef ESP8266
#if defined(ESP8266) || defined(CONFIG_IDF_TARGET_ESP32S2)
#define WLED_MAX_USERMODS 4
#else
#define WLED_MAX_USERMODS 6
@ -70,8 +70,8 @@
#define WLED_MIN_VIRTUAL_BUSSES 6 // no longer used for bus creation but used to distinguish S2/S3 in UI
#else
// the last digital bus (I2S0) will prevent Audioreactive usermod from functioning
#define WLED_MAX_BUSSES 20 // will allow 17 digital & 3 analog RGB
#define WLED_MAX_DIGITAL_CHANNELS 17
#define WLED_MAX_BUSSES 19 // will allow 16 digital & 3 analog RGB
#define WLED_MAX_DIGITAL_CHANNELS 16 // x1/x8 I2S1 + x8 RMT
//#define WLED_MAX_ANALOG_CHANNELS 16
#define WLED_MIN_VIRTUAL_BUSSES 6 // no longer used for bus creation but used to distinguish S2/S3 in UI
#endif
@ -119,7 +119,7 @@
#endif
#endif
#ifdef ESP8266
#if defined(ESP8266) || defined(CONFIG_IDF_TARGET_ESP32S2)
#define WLED_MAX_COLOR_ORDER_MAPPINGS 5
#else
#define WLED_MAX_COLOR_ORDER_MAPPINGS 10
@ -129,7 +129,7 @@
#undef WLED_MAX_LEDMAPS
#endif
#ifndef WLED_MAX_LEDMAPS
#ifdef ESP8266
#if defined(ESP8266) || defined(CONFIG_IDF_TARGET_ESP32S2)
#define WLED_MAX_LEDMAPS 10
#else
#define WLED_MAX_LEDMAPS 16
@ -209,6 +209,7 @@
#define USERMOD_ID_PIXELS_DICE_TRAY 54 //Usermod "pixels_dice_tray.h"
#define USERMOD_ID_DEEP_SLEEP 55 //Usermod "usermod_deep_sleep.h"
#define USERMOD_ID_RF433 56 //Usermod "usermod_v2_RF433.h"
#define USERMOD_ID_BRIGHTNESS_FOLLOW_SUN 57 //Usermod "usermod_v2_brightness_follow_sun.h"
//Access point behavior
#define AP_BEHAVIOR_BOOT_NO_CONN 0 //Open AP when no connection after boot
@ -480,6 +481,8 @@
#ifndef MAX_LEDS
#ifdef ESP8266
#define MAX_LEDS 1664 //can't rely on memory limit to limit this to 1600 LEDs
#elif defined(CONFIG_IDF_TARGET_ESP32S2)
#define MAX_LEDS 2048 //due to memory constraints
#else
#define MAX_LEDS 8192
#endif
@ -489,7 +492,9 @@
#ifdef ESP8266
#define MAX_LED_MEMORY 4000
#else
#if defined(ARDUINO_ARCH_ESP32S2) || defined(ARDUINO_ARCH_ESP32C3)
#if defined(ARDUINO_ARCH_ESP32S2)
#define MAX_LED_MEMORY 16000
#elif defined(ARDUINO_ARCH_ESP32C3)
#define MAX_LED_MEMORY 32000
#else
#define MAX_LED_MEMORY 64000

View File

@ -2,7 +2,7 @@ var d=document;
var loc = false, locip, locproto = "http:";
function H(pg="") { window.open("https://kno.wled.ge/"+pg); }
function GH() { window.open("https://github.com/Aircoookie/WLED"); }
function GH() { window.open("https://github.com/wled-dev/WLED"); }
function gId(c) { return d.getElementById(c); } // getElementById
function cE(e) { return d.createElement(e); } // createElement
function gEBCN(c) { return d.getElementsByClassName(c); } // getElementsByClassName
@ -16,7 +16,7 @@ function isI(n) { return n === +n && n === (n|0); } // isInteger
function toggle(el) { gId(el).classList.toggle("hide"); gId('No'+el).classList.toggle("hide"); }
function tooltip(cont=null) {
d.querySelectorAll((cont?cont+" ":"")+"[title]").forEach((element)=>{
element.addEventListener("mouseover", ()=>{
element.addEventListener("pointerover", ()=>{
// save title
element.setAttribute("data-title", element.getAttribute("title"));
const tooltip = d.createElement("span");
@ -41,7 +41,7 @@ function tooltip(cont=null) {
tooltip.classList.add("visible");
});
element.addEventListener("mouseout", ()=>{
element.addEventListener("pointerout", ()=>{
d.querySelectorAll('.tooltip').forEach((tooltip)=>{
tooltip.classList.remove("visible");
d.body.removeChild(tooltip);

View File

@ -362,7 +362,7 @@
<!--
If you want to load iro.js and rangetouch.js as consecutive requests, you can do it like it was done in 0.14.0:
https://github.com/Aircoookie/WLED/blob/v0.14.0/wled00/data/index.htm
https://github.com/wled-dev/WLED/blob/v0.14.0/wled00/data/index.htm
-->
<script src="iro.js"></script>
<script src="rangetouch.js"></script>

View File

@ -807,6 +807,8 @@ function populateSegments(s)
`<div class="sel-p"><select class="sel-p" id="seg${i}si" onchange="setSi(${i})">`+
`<option value="0" ${inst.si==0?' selected':''}>BeatSin</option>`+
`<option value="1" ${inst.si==1?' selected':''}>WeWillRockYou</option>`+
`<option value="2" ${inst.si==2?' selected':''}>10/13</option>`+
`<option value="3" ${inst.si==3?' selected':''}>14/3</option>`+
`</select></div>`+
`</div>`;
cn += `<div class="seg lstI ${i==s.mainseg && !simplifiedUI ? 'selected' : ''} ${exp ? "expanded":""}" id="seg${i}" data-set="${inst.set}">`+
@ -1416,7 +1418,7 @@ function makeWS() {
ws = null;
}
ws.onopen = (e)=>{
//ws.send("{'v':true}"); // unnecessary (https://github.com/Aircoookie/WLED/blob/master/wled00/ws.cpp#L18)
//ws.send("{'v':true}"); // unnecessary (https://github.com/wled-dev/WLED/blob/main/wled00/ws.cpp#L18)
wsRpt = 0;
reqsLegal = true;
}
@ -2727,7 +2729,7 @@ setInterval(()=>{
gId('heart').style.color = `hsl(${hc}, 100%, 50%)`;
}, 910);
function openGH() { window.open("https://github.com/Aircoookie/WLED/wiki"); }
function openGH() { window.open("https://github.com/wled-dev/WLED/wiki"); }
var cnfr = false;
function cnfReset()
@ -3120,10 +3122,9 @@ function mergeDeep(target, ...sources)
return mergeDeep(target, ...sources);
}
function tooltip(cont=null)
{
function tooltip(cont=null) {
d.querySelectorAll((cont?cont+" ":"")+"[title]").forEach((element)=>{
element.addEventListener("mouseover", ()=>{
element.addEventListener("pointerover", ()=>{
// save title
element.setAttribute("data-title", element.getAttribute("title"));
const tooltip = d.createElement("span");
@ -3148,7 +3149,7 @@ function tooltip(cont=null)
tooltip.classList.add("visible");
});
element.addEventListener("mouseout", ()=>{
element.addEventListener("pointerout", ()=>{
d.querySelectorAll('.tooltip').forEach((tooltip)=>{
tooltip.classList.remove("visible");
d.body.removeChild(tooltip);

View File

@ -6,7 +6,7 @@
<title>DMX Settings</title>
<script src="common.js" async type="text/javascript"></script>
<script>
function HW(){window.open("https://github.com/Aircoookie/WLED/wiki/DMX");}
function HW(){window.open("https://kno.wled.ge/interfaces/dmx-output/");}
function GCH(num) {
gId('dmxchannels').innerHTML += "";
for (i=0;i<num;i++) {

View File

@ -250,6 +250,7 @@
}
// enable/disable LED fields
let dC = 0; // count of digital buses (for parallel I2S)
let LTs = d.Sf.querySelectorAll("#mLC select[name^=LT]");
LTs.forEach((s,i)=>{
if (i < LTs.length-1) s.disabled = true; // prevent changing type (as we can't update options)
@ -257,6 +258,7 @@
var n = s.name.substring(2);
var t = parseInt(s.value);
memu += getMem(t, n); // calc memory
dC += (isDig(t) && !isD2P(t));
setPinConfig(n,t);
gId("abl"+n).style.display = (!abl || !isDig(t)) ? "none" : "inline"; // show/hide individual ABL settings
if (change) { // did we change LED type?
@ -295,8 +297,7 @@
// do we have a led count field
if (nm=="LC") {
let c = parseInt(LC.value,10); //get LED count
if (c > 300 && i < 8) maxB = oMaxB - Math.max(maxD-7,0); //TODO: hard limit for buses when using ESP32 parallel I2S
if (!customStarts || !startsDirty[n]) gId("ls"+n).value=sLC; //update start value
if (!customStarts || !startsDirty[n]) gId("ls"+n).value = sLC; //update start value
gId("ls"+n).disabled = !customStarts; //enable/disable field editing
if (c) {
let s = parseInt(gId("ls"+n).value); //start value
@ -482,14 +483,13 @@ mA/LED: <select name="LAsel${s}" onchange="enLA(this,'${s}');UI();">
}
}
});
enLA(d.Sf["LAsel"+s],s); // update LED mA
// disable inappropriate LED types
let sel = d.getElementsByName("LT"+s)[0]
if (i >= maxB || digitalB >= maxD) disable(sel,'option[data-type="D"]'); // NOTE: see isDig()
if (i >= maxB || twopinB >= 1) disable(sel,'option[data-type="2P"]'); // NOTE: see isD2P()
disable(sel,`option[data-type^="${'A'.repeat(maxA-analogB+1)}"]`); // NOTE: see isPWM()
sel.selectedIndex = sel.querySelector('option:not(:disabled)').index;
// initialize current limiter
enLA(d.Sf["LAsel"+s],s);
}
if (n==-1) {
o[--i].remove();--i;
@ -817,6 +817,7 @@ Swap: <select id="xw${s}" name="XW${s}">
Use less than <span id="wreason">800 LEDs per output</span> for the best experience!<br>
</div>
<hr class="sml">
<div id="prl" class="hide">Use parallel I2S: <input type="checkbox" name="PR"><br></div>
Make a segment for each output: <input type="checkbox" name="MS"><br>
Custom bus start indices: <input type="checkbox" onchange="tglSi(this.checked)" id="si"><br>
Use global LED buffer: <input type="checkbox" name="LD" onchange="UI()"><br>

View File

@ -68,11 +68,11 @@
<div>Restore configuration<br><input type="file" name="data2" accept=".json"> <button type="button" onclick="uploadFile(d.Sf.data2,'/cfg.json');">Upload</button><br></div>
<hr>
<h3>About</h3>
<a href="https://github.com/Aircoookie/WLED/" target="_blank">WLED</a>&#32;version ##VERSION##<!-- Autoreplaced from package.json --><br><br>
<a href="https://github.com/Aircoookie/WLED/wiki/Contributors-and-credits" target="_blank">Contributors, dependencies and special thanks</a><br>
<a href="https://github.com/wled-dev/WLED/" target="_blank">WLED</a>&#32;version ##VERSION##<!-- Autoreplaced from package.json --><br><br>
<a href="https://kno.wled.ge/about/contributors/" target="_blank">Contributors, dependencies and special thanks</a><br>
A huge thank you to everyone who helped me create WLED!<br><br>
(c) 2016-2024 Christian Schwinne <br>
<i>Licensed under the <a href="https://github.com/Aircoookie/WLED/blob/master/LICENSE" target="_blank">EUPL v1.2 license</a></i><br><br>
<i>Licensed under the <a href="https://github.com/wled-dev/WLED/blob/main/LICENSE" target="_blank">EUPL v1.2 license</a></i><br><br>
Server message: <span class="sip"> Response error! </span><hr>
<div id="toast"></div>
<button type="button" onclick="B()">Back</button><button type="submit">Save</button>

View File

@ -47,7 +47,7 @@
scanLoops = 0;
if (networks.length > 0) {
let cs = d.querySelectorAll("#wifi_entries input[type=text]");
let cs = d.querySelectorAll("#wifi_entries input[type=text][name^=CS]");
for (let input of (cs||[])) {
let found = false;
let select = cE("select");
@ -64,7 +64,7 @@
const option = cE("option");
option.setAttribute("value", networks[i].ssid);
option.textContent = `${networks[i].ssid} (${networks[i].rssi} dBm)`;
option.textContent = `${networks[i].ssid} (${networks[i].rssi} dBm)`; // [${networks[i].bssid.replaceAll(':','')}]
if (networks[i].ssid === input.value) {
option.setAttribute("selected", "selected");
@ -109,12 +109,13 @@
gId("wifi_add").style.display = (i<maxNetworks) ? "inline":"none";
gId("wifi_rem").style.display = (i>1) ? "inline":"none";
}
function addWiFi(ssid="",pass="",ip=0,gw=0,sn=0x00ffffff) { // little endian
function addWiFi(ssid="",pass="",bssid="",ip=0,gw=0,sn=0x00ffffff) { // little endian
var i = gId("wifi_entries").childNodes.length;
if (i >= maxNetworks) return;
var b = `<div id="net${i}"><hr class="sml">
Network name (SSID${i==0?", empty to not connect":""}):<br><input type="text" id="CS${i}" name="CS${i}" maxlength="32" value="${ssid}" ${i>0?"required":""}><br>
Network password:<br><input type="password" name="PW${i}" maxlength="64" value="${pass}"><br>
BSSID (optional):<br><input type="text" id="BS${i}" name="BS${i}" maxlength="12" value="${bssid}"><br>
Static IP (leave at 0.0.0.0 for DHCP)${i==0?"<br>Also used by Ethernet":""}:<br>
<input name="IP${i}0" type="number" class="s" min="0" max="255" value="${ip&0xFF}" required>.<input name="IP${i}1" type="number" class="s" min="0" max="255" value="${(ip>>8)&0xFF}" required>.<input name="IP${i}2" type="number" class="s" min="0" max="255" value="${(ip>>16)&0xFF}" required>.<input name="IP${i}3" type="number" class="s" min="0" max="255" value="${(ip>>24)&0xFF}" required><br>
Static gateway:<br>

View File

@ -17,9 +17,9 @@
<h2>WLED Software Update</h2>
<form method='POST' action='./update' id='uf' enctype='multipart/form-data' onsubmit="U()">
Installed version: <span class="sip">##VERSION##</span><br>
Download the latest binary: <a href="https://github.com/Aircoookie/WLED/releases" target="_blank"
Download the latest binary: <a href="https://github.com/wled-dev/WLED/releases" target="_blank"
style="vertical-align: text-bottom; display: inline-flex;">
<img src="https://img.shields.io/github/release/Aircoookie/WLED.svg?style=flat-square"></a><br>
<img src="https://img.shields.io/github/release/wled-dev/WLED.svg?style=flat-square"></a><br>
<input type='file' name='update' required><br> <!--should have accept='.bin', but it prevents file upload from android app-->
<button type="submit">Update!</button><br>
<button type="button" onclick="B()">Back</button>

View File

@ -1,3 +1,4 @@
#pragma once
#ifndef WLED_FCN_DECLARE_H
#define WLED_FCN_DECLARE_H
@ -52,6 +53,7 @@ bool getJsonValue(const JsonVariant& element, DestType& destination, const Defau
typedef struct WiFiConfig {
char clientSSID[33];
char clientPass[65];
uint8_t bssid[6];
IPAddress staticIP;
IPAddress staticGW;
IPAddress staticSN;
@ -62,6 +64,7 @@ typedef struct WiFiConfig {
{
strncpy(clientSSID, ssid, 32); clientSSID[32] = 0;
strncpy(clientPass, pass, 64); clientPass[64] = 0;
memset(bssid, 0, sizeof(bssid));
}
} wifi_config;
@ -202,14 +205,14 @@ void sendArtnetPollReply(ArtPollReply* reply, IPAddress ipAddress, uint16_t port
bool handleFileRead(AsyncWebServerRequest*, String path);
bool writeObjectToFileUsingId(const char* file, uint16_t id, const JsonDocument* content);
bool writeObjectToFile(const char* file, const char* key, const JsonDocument* content);
bool readObjectFromFileUsingId(const char* file, uint16_t id, JsonDocument* dest);
bool readObjectFromFile(const char* file, const char* key, JsonDocument* dest);
bool readObjectFromFileUsingId(const char* file, uint16_t id, JsonDocument* dest, const JsonDocument* filter = nullptr);
bool readObjectFromFile(const char* file, const char* key, JsonDocument* dest, const JsonDocument* filter = nullptr);
void updateFSInfo();
void closeFile();
inline bool writeObjectToFileUsingId(const String &file, uint16_t id, const JsonDocument* content) { return writeObjectToFileUsingId(file.c_str(), id, content); };
inline bool writeObjectToFile(const String &file, const char* key, const JsonDocument* content) { return writeObjectToFile(file.c_str(), key, content); };
inline bool readObjectFromFileUsingId(const String &file, uint16_t id, JsonDocument* dest) { return readObjectFromFileUsingId(file.c_str(), id, dest); };
inline bool readObjectFromFile(const String &file, const char* key, JsonDocument* dest) { return readObjectFromFile(file.c_str(), key, dest); };
inline bool readObjectFromFileUsingId(const String &file, uint16_t id, JsonDocument* dest, const JsonDocument* filter = nullptr) { return readObjectFromFileUsingId(file.c_str(), id, dest); };
inline bool readObjectFromFile(const String &file, const char* key, JsonDocument* dest, const JsonDocument* filter = nullptr) { return readObjectFromFile(file.c_str(), key, dest); };
//hue.cpp
void handleHue();
@ -359,7 +362,12 @@ void espNowReceiveCB(uint8_t* address, uint8_t* data, uint8_t len, signed int rs
#endif
//network.cpp
int getSignalQuality(int rssi);
bool initEthernet(); // result is informational
int getSignalQuality(int rssi);
void fillMAC2Str(char *str, const uint8_t *mac);
void fillStr2MAC(uint8_t *mac, const char *str);
int findWiFi(bool doScan = false);
bool isWiFiConfigured();
void WiFiEvent(WiFiEvent_t event);
//um_manager.cpp
@ -480,6 +488,7 @@ void userLoop();
#include "soc/wdev_reg.h"
#define HW_RND_REGISTER REG_READ(WDEV_RND_REG)
#endif
#define hex2int(a) (((a)>='0' && (a)<='9') ? (a)-'0' : ((a)>='A' && (a)<='F') ? (a)-'A'+10 : ((a)>='a' && (a)<='f') ? (a)-'a'+10 : 0)
[[gnu::pure]] int getNumVal(const String* req, uint16_t pos);
void parseNumber(const char* str, byte* val, byte minv=0, byte maxv=255);
bool getVal(JsonVariant elem, byte* val, byte vmin=0, byte vmax=255); // getVal supports inc/decrementing and random ("X~Y(r|[w]~[-][Z])" form)

View File

@ -325,15 +325,15 @@ bool writeObjectToFile(const char* file, const char* key, const JsonDocument* co
return true;
}
bool readObjectFromFileUsingId(const char* file, uint16_t id, JsonDocument* dest)
bool readObjectFromFileUsingId(const char* file, uint16_t id, JsonDocument* dest, const JsonDocument* filter)
{
char objKey[10];
sprintf(objKey, "\"%d\":", id);
return readObjectFromFile(file, objKey, dest);
return readObjectFromFile(file, objKey, dest, filter);
}
//if the key is a nullptr, deserialize entire object
bool readObjectFromFile(const char* file, const char* key, JsonDocument* dest)
bool readObjectFromFile(const char* file, const char* key, JsonDocument* dest, const JsonDocument* filter)
{
if (doCloseFile) closeFile();
#ifdef WLED_DEBUG_FS
@ -352,7 +352,8 @@ bool readObjectFromFile(const char* file, const char* key, JsonDocument* dest)
return false;
}
deserializeJson(*dest, f);
if (filter) deserializeJson(*dest, f, DeserializationOption::Filter(*filter));
else deserializeJson(*dest, f);
f.close();
DEBUGFS_PRINTF("Read, took %d ms\n", millis() - s);

View File

@ -530,7 +530,7 @@ static void decodeIR9(uint32_t code)
/*
This allows users to customize IR actions without the need to edit C code and compile.
From the https://github.com/Aircoookie/WLED/wiki/Infrared-Control page, download the starter
From the https://github.com/wled-dev/WLED/wiki/Infrared-Control page, download the starter
ir.json file that corresponds to the number of buttons on your remote.
Many of the remotes with the same number of buttons emit the same codes, but will have
different labels or colors. Once you edit the ir.json file, upload it to your controller
@ -611,9 +611,15 @@ static void decodeIRJson(uint32_t code)
handleSet(nullptr, cmdStr, false); // no stateUpdated() call here
}
} else {
// command is JSON object (TODO: currently will not handle irApplyToAllSelected correctly)
if (jsonCmdObj[F("psave")].isNull()) deserializeState(jsonCmdObj, CALL_MODE_BUTTON_PRESET);
else {
// command is JSON object
if (jsonCmdObj[F("psave")].isNull()) {
if (irApplyToAllSelected && jsonCmdObj["seg"].is<JsonArray>()) {
JsonObject seg = jsonCmdObj["seg"][0]; // take 1st segment from array and use it to apply to all selected segments
seg.remove("id"); // remove segment ID if it exists
jsonCmdObj["seg"] = seg; // replace array with object
}
deserializeState(jsonCmdObj, CALL_MODE_BUTTON_PRESET); // **will call stateUpdated() with correct CALL_MODE**
} else {
uint8_t psave = jsonCmdObj[F("psave")].as<int>();
char pname[33];
sprintf_P(pname, PSTR("IR Preset %d"), psave);
@ -628,6 +634,7 @@ static void applyRepeatActions()
{
if (irEnabled == 8) {
decodeIRJson(lastValidCode);
stateUpdated(CALL_MODE_BUTTON_PRESET);
return;
} else switch (lastRepeatableAction) {
case ACTION_BRIGHT_UP : incBrightness(); stateUpdated(CALL_MODE_BUTTON); return;
@ -664,7 +671,7 @@ static void decodeIR(uint32_t code)
if (irEnabled == 8) { // any remote configurable with ir.json file
decodeIRJson(code);
stateUpdated(CALL_MODE_BUTTON);
stateUpdated(CALL_MODE_BUTTON_PRESET);
return;
}
if (code > 0xFFFFFF) return; //invalid code

View File

@ -338,7 +338,7 @@ bool deserializeState(JsonObject root, byte callMode, byte presetId)
#ifndef WLED_DISABLE_MODE_BLEND
blendingStyle = root[F("bs")] | blendingStyle;
blendingStyle = constrain(blendingStyle, 0, BLEND_STYLE_COUNT-1);
blendingStyle &= 0x1F;
#endif
// temporary transition (applies only once)

View File

@ -3,7 +3,7 @@
#include "wled_ethernet.h"
#ifdef WLED_USE_ETHERNET
#if defined(ARDUINO_ARCH_ESP32) && defined(WLED_USE_ETHERNET)
// The following six pins are neither configurable nor
// can they be re-assigned through IOMUX / GPIO matrix.
// See https://docs.espressif.com/projects/esp-idf/en/latest/esp32/hw-reference/esp32/get-started-ethernet-kit-v1.1.html#ip101gri-phy-interface
@ -146,6 +146,101 @@ const ethernet_settings ethernetBoards[] = {
ETH_CLOCK_GPIO0_OUT // eth_clk_mode
}
};
bool initEthernet()
{
static bool successfullyConfiguredEthernet = false;
if (successfullyConfiguredEthernet) {
// DEBUG_PRINTLN(F("initE: ETH already successfully configured, ignoring"));
return false;
}
if (ethernetType == WLED_ETH_NONE) {
return false;
}
if (ethernetType >= WLED_NUM_ETH_TYPES) {
DEBUG_PRINTF_P(PSTR("initE: Ignoring attempt for invalid ethernetType (%d)\n"), ethernetType);
return false;
}
DEBUG_PRINTF_P(PSTR("initE: Attempting ETH config: %d\n"), ethernetType);
// Ethernet initialization should only succeed once -- else reboot required
ethernet_settings es = ethernetBoards[ethernetType];
managed_pin_type pinsToAllocate[10] = {
// first six pins are non-configurable
esp32_nonconfigurable_ethernet_pins[0],
esp32_nonconfigurable_ethernet_pins[1],
esp32_nonconfigurable_ethernet_pins[2],
esp32_nonconfigurable_ethernet_pins[3],
esp32_nonconfigurable_ethernet_pins[4],
esp32_nonconfigurable_ethernet_pins[5],
{ (int8_t)es.eth_mdc, true }, // [6] = MDC is output and mandatory
{ (int8_t)es.eth_mdio, true }, // [7] = MDIO is bidirectional and mandatory
{ (int8_t)es.eth_power, true }, // [8] = optional pin, not all boards use
{ ((int8_t)0xFE), false }, // [9] = replaced with eth_clk_mode, mandatory
};
// update the clock pin....
if (es.eth_clk_mode == ETH_CLOCK_GPIO0_IN) {
pinsToAllocate[9].pin = 0;
pinsToAllocate[9].isOutput = false;
} else if (es.eth_clk_mode == ETH_CLOCK_GPIO0_OUT) {
pinsToAllocate[9].pin = 0;
pinsToAllocate[9].isOutput = true;
} else if (es.eth_clk_mode == ETH_CLOCK_GPIO16_OUT) {
pinsToAllocate[9].pin = 16;
pinsToAllocate[9].isOutput = true;
} else if (es.eth_clk_mode == ETH_CLOCK_GPIO17_OUT) {
pinsToAllocate[9].pin = 17;
pinsToAllocate[9].isOutput = true;
} else {
DEBUG_PRINTF_P(PSTR("initE: Failing due to invalid eth_clk_mode (%d)\n"), es.eth_clk_mode);
return false;
}
if (!PinManager::allocateMultiplePins(pinsToAllocate, 10, PinOwner::Ethernet)) {
DEBUG_PRINTLN(F("initE: Failed to allocate ethernet pins"));
return false;
}
/*
For LAN8720 the most correct way is to perform clean reset each time before init
applying LOW to power or nRST pin for at least 100 us (please refer to datasheet, page 59)
ESP_IDF > V4 implements it (150 us, lan87xx_reset_hw(esp_eth_phy_t *phy) function in
/components/esp_eth/src/esp_eth_phy_lan87xx.c, line 280)
but ESP_IDF < V4 does not. Lets do it:
[not always needed, might be relevant in some EMI situations at startup and for hot resets]
*/
#if ESP_IDF_VERSION_MAJOR==3
if(es.eth_power>0 && es.eth_type==ETH_PHY_LAN8720) {
pinMode(es.eth_power, OUTPUT);
digitalWrite(es.eth_power, 0);
delayMicroseconds(150);
digitalWrite(es.eth_power, 1);
delayMicroseconds(10);
}
#endif
if (!ETH.begin(
(uint8_t) es.eth_address,
(int) es.eth_power,
(int) es.eth_mdc,
(int) es.eth_mdio,
(eth_phy_type_t) es.eth_type,
(eth_clock_mode_t) es.eth_clk_mode
)) {
DEBUG_PRINTLN(F("initC: ETH.begin() failed"));
// de-allocate the allocated pins
for (managed_pin_type mpt : pinsToAllocate) {
PinManager::deallocatePin(mpt.pin, PinOwner::Ethernet);
}
return false;
}
successfullyConfiguredEthernet = true;
DEBUG_PRINTLN(F("initC: *** Ethernet successfully configured! ***"));
return true;
}
#endif
@ -170,19 +265,136 @@ int getSignalQuality(int rssi)
}
void fillMAC2Str(char *str, const uint8_t *mac) {
sprintf_P(str, PSTR("%02x%02x%02x%02x%02x%02x"), MAC2STR(mac));
byte nul = 0;
for (int i = 0; i < 6; i++) nul |= *mac++; // do we have 0
if (!nul) str[0] = '\0'; // empty string
}
void fillStr2MAC(uint8_t *mac, const char *str) {
for (int i = 0; i < 6; i++) *mac++ = 0; // clear
if (!str) return; // null string
uint64_t MAC = strtoull(str, nullptr, 16);
for (int i = 0; i < 6; i++) { *--mac = MAC & 0xFF; MAC >>= 8; }
}
// performs asynchronous scan for available networks (which may take couple of seconds to finish)
// returns configured WiFi ID with the strongest signal (or default if no configured networks available)
int findWiFi(bool doScan) {
if (multiWiFi.size() <= 1) {
DEBUG_PRINTF_P(PSTR("WiFi: Defaulf SSID (%s) used.\n"), multiWiFi[0].clientSSID);
return 0;
}
int status = WiFi.scanComplete(); // complete scan may take as much as several seconds (usually <6s with not very crowded air)
if (doScan || status == WIFI_SCAN_FAILED) {
DEBUG_PRINTF_P(PSTR("WiFi: Scan started. @ %lus\n"), millis()/1000);
WiFi.scanNetworks(true); // start scanning in asynchronous mode (will delete old scan)
} else if (status >= 0) { // status contains number of found networks (including duplicate SSIDs with different BSSID)
DEBUG_PRINTF_P(PSTR("WiFi: Found %d SSIDs. @ %lus\n"), status, millis()/1000);
int rssi = -9999;
int selected = selectedWiFi;
for (int o = 0; o < status; o++) {
DEBUG_PRINTF_P(PSTR(" SSID: %s (BSSID: %s) RSSI: %ddB\n"), WiFi.SSID(o).c_str(), WiFi.BSSIDstr(o).c_str(), WiFi.RSSI(o));
for (unsigned n = 0; n < multiWiFi.size(); n++)
if (!strcmp(WiFi.SSID(o).c_str(), multiWiFi[n].clientSSID)) {
bool foundBSSID = memcmp(multiWiFi[n].bssid, WiFi.BSSID(o), 6) == 0;
// find the WiFi with the strongest signal (but keep priority of entry if signal difference is not big)
if (foundBSSID || (n < selected && WiFi.RSSI(o) > rssi-10) || WiFi.RSSI(o) > rssi) {
rssi = foundBSSID ? 0 : WiFi.RSSI(o); // RSSI is only ever negative
selected = n;
}
break;
}
}
DEBUG_PRINTF_P(PSTR("WiFi: Selected SSID: %s RSSI: %ddB\n"), multiWiFi[selected].clientSSID, rssi);
return selected;
}
//DEBUG_PRINT(F("WiFi scan running."));
return status; // scan is still running or there was an error
}
bool isWiFiConfigured() {
return multiWiFi.size() > 1 || (strlen(multiWiFi[0].clientSSID) >= 1 && strcmp_P(multiWiFi[0].clientSSID, PSTR(DEFAULT_CLIENT_SSID)) != 0);
}
#if defined(ESP8266)
#define ARDUINO_EVENT_WIFI_AP_STADISCONNECTED WIFI_EVENT_SOFTAPMODE_STADISCONNECTED
#define ARDUINO_EVENT_WIFI_AP_STACONNECTED WIFI_EVENT_SOFTAPMODE_STACONNECTED
#define ARDUINO_EVENT_WIFI_STA_GOT_IP WIFI_EVENT_STAMODE_GOT_IP
#define ARDUINO_EVENT_WIFI_STA_CONNECTED WIFI_EVENT_STAMODE_CONNECTED
#define ARDUINO_EVENT_WIFI_STA_DISCONNECTED WIFI_EVENT_STAMODE_DISCONNECTED
#elif defined(ARDUINO_ARCH_ESP32) && !defined(ESP_ARDUINO_VERSION_MAJOR) //ESP_IDF_VERSION_MAJOR==3
// not strictly IDF v3 but Arduino core related
#define ARDUINO_EVENT_WIFI_AP_STADISCONNECTED SYSTEM_EVENT_AP_STADISCONNECTED
#define ARDUINO_EVENT_WIFI_AP_STACONNECTED SYSTEM_EVENT_AP_STACONNECTED
#define ARDUINO_EVENT_WIFI_STA_GOT_IP SYSTEM_EVENT_STA_GOT_IP
#define ARDUINO_EVENT_WIFI_STA_CONNECTED SYSTEM_EVENT_STA_CONNECTED
#define ARDUINO_EVENT_WIFI_STA_DISCONNECTED SYSTEM_EVENT_STA_DISCONNECTED
#define ARDUINO_EVENT_WIFI_AP_START SYSTEM_EVENT_AP_START
#define ARDUINO_EVENT_WIFI_AP_STOP SYSTEM_EVENT_AP_STOP
#define ARDUINO_EVENT_WIFI_SCAN_DONE SYSTEM_EVENT_SCAN_DONE
#define ARDUINO_EVENT_ETH_START SYSTEM_EVENT_ETH_START
#define ARDUINO_EVENT_ETH_CONNECTED SYSTEM_EVENT_ETH_CONNECTED
#define ARDUINO_EVENT_ETH_DISCONNECTED SYSTEM_EVENT_ETH_DISCONNECTED
#endif
//handle Ethernet connection event
void WiFiEvent(WiFiEvent_t event)
{
switch (event) {
#if defined(ARDUINO_ARCH_ESP32) && defined(WLED_USE_ETHERNET)
case SYSTEM_EVENT_ETH_START:
DEBUG_PRINTLN(F("ETH Started"));
case ARDUINO_EVENT_WIFI_AP_STADISCONNECTED:
// AP client disconnected
if (--apClients == 0 && isWiFiConfigured()) forceReconnect = true; // no clients reconnect WiFi if awailable
DEBUG_PRINTF_P(PSTR("WiFi-E: AP Client Disconnected (%d) @ %lus.\n"), (int)apClients, millis()/1000);
break;
case SYSTEM_EVENT_ETH_CONNECTED:
case ARDUINO_EVENT_WIFI_AP_STACONNECTED:
// AP client connected
apClients++;
DEBUG_PRINTF_P(PSTR("WiFi-E: AP Client Connected (%d) @ %lus.\n"), (int)apClients, millis()/1000);
break;
case ARDUINO_EVENT_WIFI_STA_GOT_IP:
DEBUG_PRINT(F("WiFi-E: IP address: ")); DEBUG_PRINTLN(Network.localIP());
break;
case ARDUINO_EVENT_WIFI_STA_CONNECTED:
// followed by IDLE and SCAN_DONE
DEBUG_PRINTF_P(PSTR("WiFi-E: Connected! @ %lus\n"), millis()/1000);
wasConnected = true;
break;
case ARDUINO_EVENT_WIFI_STA_DISCONNECTED:
if (wasConnected && interfacesInited) {
DEBUG_PRINTF_P(PSTR("WiFi-E: Disconnected! @ %lus\n"), millis()/1000);
if (interfacesInited && multiWiFi.size() > 1 && WiFi.scanComplete() >= 0) {
findWiFi(true); // reinit WiFi scan
forceReconnect = true;
}
interfacesInited = false;
}
break;
#ifdef ARDUINO_ARCH_ESP32
case ARDUINO_EVENT_WIFI_SCAN_DONE:
// also triggered when connected to selected SSID
DEBUG_PRINTLN(F("WiFi-E: SSID scan completed."));
break;
case ARDUINO_EVENT_WIFI_AP_START:
DEBUG_PRINTLN(F("WiFi-E: AP Started"));
break;
case ARDUINO_EVENT_WIFI_AP_STOP:
DEBUG_PRINTLN(F("WiFi-E: AP Stopped"));
break;
#if defined(WLED_USE_ETHERNET)
case ARDUINO_EVENT_ETH_START:
DEBUG_PRINTLN(F("ETH-E: Started"));
break;
case ARDUINO_EVENT_ETH_CONNECTED:
{
DEBUG_PRINTLN(F("ETH Connected"));
DEBUG_PRINTLN(F("ETH-E: Connected"));
if (!apActive) {
WiFi.disconnect(true);
WiFi.disconnect(true); // disable WiFi entirely
}
if (multiWiFi[0].staticIP != (uint32_t)0x00000000 && multiWiFi[0].staticGW != (uint32_t)0x00000000) {
ETH.config(multiWiFi[0].staticIP, multiWiFi[0].staticGW, multiWiFi[0].staticSN, dnsAddress);
@ -196,18 +408,20 @@ void WiFiEvent(WiFiEvent_t event)
showWelcomePage = false;
break;
}
case SYSTEM_EVENT_ETH_DISCONNECTED:
DEBUG_PRINTLN(F("ETH Disconnected"));
case ARDUINO_EVENT_ETH_DISCONNECTED:
DEBUG_PRINTLN(F("ETH-E: Disconnected"));
// This doesn't really affect ethernet per se,
// as it's only configured once. Rather, it
// may be necessary to reconnect the WiFi when
// ethernet disconnects, as a way to provide
// alternative access to the device.
if (interfacesInited && WiFi.scanComplete() >= 0) findWiFi(true); // reinit WiFi scan
forceReconnect = true;
break;
#endif
#endif
#endif
default:
DEBUG_PRINTF_P(PSTR("Network event: %d\n"), (int)event);
DEBUG_PRINTF_P(PSTR("WiFi-E: Event %d\n"), (int)event);
break;
}
}

View File

@ -23,6 +23,7 @@ void handleSettingsSet(AsyncWebServerRequest *request, byte subPage)
for (size_t n = 0; n < WLED_MAX_WIFI_COUNT; n++) {
char cs[4] = "CS"; cs[2] = 48+n; cs[3] = 0; //client SSID
char pw[4] = "PW"; pw[2] = 48+n; pw[3] = 0; //client password
char bs[4] = "BS"; bs[2] = 48+n; bs[3] = 0; //BSSID
char ip[5] = "IP"; ip[2] = 48+n; ip[4] = 0; //IP address
char gw[5] = "GW"; gw[2] = 48+n; gw[4] = 0; //GW address
char sn[5] = "SN"; sn[2] = 48+n; sn[4] = 0; //subnet mask
@ -39,6 +40,7 @@ void handleSettingsSet(AsyncWebServerRequest *request, byte subPage)
strlcpy(multiWiFi[n].clientPass, request->arg(pw).c_str(), 65);
forceReconnect = true;
}
fillStr2MAC(multiWiFi[n].bssid, request->arg(bs).c_str());
for (size_t i = 0; i < 4; i++) {
ip[3] = 48+i;
gw[3] = 48+i;
@ -93,9 +95,9 @@ void handleSettingsSet(AsyncWebServerRequest *request, byte subPage)
strlwr(linked_remote); //Normalize MAC format to lowercase
#endif
#ifdef WLED_USE_ETHERNET
#if defined(ARDUINO_ARCH_ESP32) && defined(WLED_USE_ETHERNET)
ethernetType = request->arg(F("ETH")).toInt();
WLED::instance().initEthernet();
initEthernet();
#endif
}
@ -134,11 +136,13 @@ void handleSettingsSet(AsyncWebServerRequest *request, byte subPage)
strip.correctWB = request->hasArg(F("CCT"));
strip.cctFromRgb = request->hasArg(F("CR"));
cctICused = request->hasArg(F("IC"));
uint8_t cctBlending = request->arg(F("CB")).toInt();
Bus::setCCTBlend(cctBlending);
Bus::setCCTBlend(request->arg(F("CB")).toInt());
Bus::setGlobalAWMode(request->arg(F("AW")).toInt());
strip.setTargetFps(request->arg(F("FR")).toInt());
useGlobalLedBuffer = request->hasArg(F("LD"));
#if defined(ARDUINO_ARCH_ESP32) && !defined(CONFIG_IDF_TARGET_ESP32C3)
useParallelI2S = request->hasArg(F("PR"));
#endif
bool busesChanged = false;
for (int s = 0; s < 36; s++) { // theoretical limit is 36 : "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"

View File

@ -1,7 +1,7 @@
#include "wled.h"
/*
* This v1 usermod file allows you to add own functionality to WLED more easily
* See: https://github.com/Aircoookie/WLED/wiki/Add-own-functionality
* See: https://github.com/wled-dev/WLED/wiki/Add-own-functionality
* EEPROM bytes 2750+ are reserved for your custom use case. (if you extend #define EEPSIZE in const.h)
* If you just need 8 bytes, use 2551-2559 (you do not need to increase EEPSIZE)
*

View File

@ -250,6 +250,10 @@
#include "../usermods/usermod_v2_RF433/usermod_v2_RF433.h"
#endif
#ifdef USERMOD_BRIGHTNESS_FOLLOW_SUN
#include "../usermods/usermod_v2_brightness_follow_sun/usermod_v2_brightness_follow_sun.h"
#endif
void registerUsermods()
{
/*
@ -486,4 +490,8 @@ void registerUsermods()
#ifdef USERMOD_RF433
UsermodManager::add(new RF433Usermod());
#endif
#ifdef USERMOD_BRIGHTNESS_FOLLOW_SUN
UsermodManager::add(new UsermodBrightnessFollowSun());
#endif
}

View File

@ -150,7 +150,7 @@ bool isAsterisksOnly(const char* str, byte maxLen)
}
//threading/network callback details: https://github.com/Aircoookie/WLED/pull/2336#discussion_r762276994
//threading/network callback details: https://github.com/wled-dev/WLED/pull/2336#discussion_r762276994
bool requestJSONBufferLock(uint8_t moduleID)
{
if (pDoc == nullptr) {
@ -530,6 +530,8 @@ um_data_t* simulateSound(uint8_t simulationId)
static const char s_ledmap_tmpl[] PROGMEM = "ledmap%d.json";
// enumerate all ledmapX.json files on FS and extract ledmap names if existing
void enumerateLedmaps() {
StaticJsonDocument<64> filter;
filter["n"] = true;
ledMaps = 1;
for (size_t i=1; i<WLED_MAX_LEDMAPS; i++) {
char fileName[33] = "/";
@ -548,7 +550,7 @@ void enumerateLedmaps() {
#ifndef ESP8266
if (requestJSONBufferLock(21)) {
if (readObjectFromFile(fileName, nullptr, pDoc)) {
if (readObjectFromFile(fileName, nullptr, pDoc, &filter)) {
size_t len = 0;
JsonObject root = pDoc->as<JsonObject>();
if (!root["n"].isNull()) {

View File

@ -185,46 +185,7 @@ void WLED::loop()
DEBUG_PRINTLN(F("Re-init busses."));
bool aligned = strip.checkSegmentAlignment(); //see if old segments match old bus(ses)
BusManager::removeAll();
unsigned mem = 0;
// determine if it is sensible to use parallel I2S outputs on ESP32 (i.e. more than 5 outputs = 1 I2S + 4 RMT)
bool useParallel = false;
#if defined(ARDUINO_ARCH_ESP32) && !defined(ARDUINO_ARCH_ESP32S2) && !defined(ARDUINO_ARCH_ESP32S3) && !defined(ARDUINO_ARCH_ESP32C3)
unsigned digitalCount = 0;
unsigned maxLedsOnBus = 0;
unsigned maxChannels = 0;
for (unsigned i = 0; i < WLED_MAX_BUSSES+WLED_MIN_VIRTUAL_BUSSES; i++) {
if (busConfigs[i] == nullptr) break;
if (!Bus::isDigital(busConfigs[i]->type)) continue;
if (!Bus::is2Pin(busConfigs[i]->type)) {
digitalCount++;
unsigned channels = Bus::getNumberOfChannels(busConfigs[i]->type);
if (busConfigs[i]->count > maxLedsOnBus) maxLedsOnBus = busConfigs[i]->count;
if (channels > maxChannels) maxChannels = channels;
}
}
DEBUG_PRINTF_P(PSTR("Maximum LEDs on a bus: %u\nDigital buses: %u\n"), maxLedsOnBus, digitalCount);
// we may remove 300 LEDs per bus limit when NeoPixelBus is updated beyond 2.9.0
if (maxLedsOnBus <= 300 && digitalCount > 5) {
DEBUG_PRINTF_P(PSTR("Switching to parallel I2S."));
useParallel = true;
BusManager::useParallelOutput();
mem = BusManager::memUsage(maxChannels, maxLedsOnBus, 8); // use alternate memory calculation (hse to be used *after* useParallelOutput())
}
#endif
// create buses/outputs
for (unsigned i = 0; i < WLED_MAX_BUSSES+WLED_MIN_VIRTUAL_BUSSES; i++) {
if (busConfigs[i] == nullptr || (!useParallel && i > 10)) break;
if (useParallel && i < 8) {
// if for some unexplained reason the above pre-calculation was wrong, update
unsigned memT = BusManager::memUsage(*busConfigs[i]); // includes x8 memory allocation for parallel I2S
if (memT > mem) mem = memT; // if we have unequal LED count use the largest
} else
mem += BusManager::memUsage(*busConfigs[i]); // includes global buffer
if (mem <= MAX_LED_MEMORY) BusManager::add(*busConfigs[i]);
delete busConfigs[i];
busConfigs[i] = nullptr;
}
strip.finalizeInit(); // also loads default ledmap if present
strip.finalizeInit(); // will create buses and also load default ledmap if present
BusManager::setBrightness(bri); // fix re-initialised bus' brightness #4005
if (aligned) strip.makeAutoSegments();
else strip.fixInvalidSegments();
@ -573,6 +534,7 @@ void WLED::beginStrip()
strip.makeAutoSegments();
strip.setBrightness(0);
strip.setShowCallback(handleOverlayDraw);
doInitBusses = false;
if (turnOnAtBoot) {
if (briS > 0) bri = briS;
@ -642,146 +604,6 @@ void WLED::initAP(bool resetAP)
apActive = true;
}
bool WLED::initEthernet()
{
#if defined(ARDUINO_ARCH_ESP32) && defined(WLED_USE_ETHERNET)
static bool successfullyConfiguredEthernet = false;
if (successfullyConfiguredEthernet) {
// DEBUG_PRINTLN(F("initE: ETH already successfully configured, ignoring"));
return false;
}
if (ethernetType == WLED_ETH_NONE) {
return false;
}
if (ethernetType >= WLED_NUM_ETH_TYPES) {
DEBUG_PRINTF_P(PSTR("initE: Ignoring attempt for invalid ethernetType (%d)\n"), ethernetType);
return false;
}
DEBUG_PRINTF_P(PSTR("initE: Attempting ETH config: %d\n"), ethernetType);
// Ethernet initialization should only succeed once -- else reboot required
ethernet_settings es = ethernetBoards[ethernetType];
managed_pin_type pinsToAllocate[10] = {
// first six pins are non-configurable
esp32_nonconfigurable_ethernet_pins[0],
esp32_nonconfigurable_ethernet_pins[1],
esp32_nonconfigurable_ethernet_pins[2],
esp32_nonconfigurable_ethernet_pins[3],
esp32_nonconfigurable_ethernet_pins[4],
esp32_nonconfigurable_ethernet_pins[5],
{ (int8_t)es.eth_mdc, true }, // [6] = MDC is output and mandatory
{ (int8_t)es.eth_mdio, true }, // [7] = MDIO is bidirectional and mandatory
{ (int8_t)es.eth_power, true }, // [8] = optional pin, not all boards use
{ ((int8_t)0xFE), false }, // [9] = replaced with eth_clk_mode, mandatory
};
// update the clock pin....
if (es.eth_clk_mode == ETH_CLOCK_GPIO0_IN) {
pinsToAllocate[9].pin = 0;
pinsToAllocate[9].isOutput = false;
} else if (es.eth_clk_mode == ETH_CLOCK_GPIO0_OUT) {
pinsToAllocate[9].pin = 0;
pinsToAllocate[9].isOutput = true;
} else if (es.eth_clk_mode == ETH_CLOCK_GPIO16_OUT) {
pinsToAllocate[9].pin = 16;
pinsToAllocate[9].isOutput = true;
} else if (es.eth_clk_mode == ETH_CLOCK_GPIO17_OUT) {
pinsToAllocate[9].pin = 17;
pinsToAllocate[9].isOutput = true;
} else {
DEBUG_PRINTF_P(PSTR("initE: Failing due to invalid eth_clk_mode (%d)\n"), es.eth_clk_mode);
return false;
}
if (!PinManager::allocateMultiplePins(pinsToAllocate, 10, PinOwner::Ethernet)) {
DEBUG_PRINTLN(F("initE: Failed to allocate ethernet pins"));
return false;
}
/*
For LAN8720 the most correct way is to perform clean reset each time before init
applying LOW to power or nRST pin for at least 100 us (please refer to datasheet, page 59)
ESP_IDF > V4 implements it (150 us, lan87xx_reset_hw(esp_eth_phy_t *phy) function in
/components/esp_eth/src/esp_eth_phy_lan87xx.c, line 280)
but ESP_IDF < V4 does not. Lets do it:
[not always needed, might be relevant in some EMI situations at startup and for hot resets]
*/
#if ESP_IDF_VERSION_MAJOR==3
if(es.eth_power>0 && es.eth_type==ETH_PHY_LAN8720) {
pinMode(es.eth_power, OUTPUT);
digitalWrite(es.eth_power, 0);
delayMicroseconds(150);
digitalWrite(es.eth_power, 1);
delayMicroseconds(10);
}
#endif
if (!ETH.begin(
(uint8_t) es.eth_address,
(int) es.eth_power,
(int) es.eth_mdc,
(int) es.eth_mdio,
(eth_phy_type_t) es.eth_type,
(eth_clock_mode_t) es.eth_clk_mode
)) {
DEBUG_PRINTLN(F("initC: ETH.begin() failed"));
// de-allocate the allocated pins
for (managed_pin_type mpt : pinsToAllocate) {
PinManager::deallocatePin(mpt.pin, PinOwner::Ethernet);
}
return false;
}
successfullyConfiguredEthernet = true;
DEBUG_PRINTLN(F("initC: *** Ethernet successfully configured! ***"));
return true;
#else
return false; // Ethernet not enabled for build
#endif
}
// performs asynchronous scan for available networks (which may take couple of seconds to finish)
// returns configured WiFi ID with the strongest signal (or default if no configured networks available)
int8_t WLED::findWiFi(bool doScan) {
if (multiWiFi.size() <= 1) {
DEBUG_PRINTLN(F("Defaulf WiFi used."));
return 0;
}
if (doScan) WiFi.scanDelete(); // restart scan
int status = WiFi.scanComplete(); // complete scan may take as much as several seconds (usually <3s with not very crowded air)
if (status == WIFI_SCAN_FAILED) {
DEBUG_PRINTLN(F("WiFi scan started."));
WiFi.scanNetworks(true); // start scanning in asynchronous mode
} else if (status >= 0) { // status contains number of found networks
DEBUG_PRINT(F("WiFi scan completed: ")); DEBUG_PRINTLN(status);
int rssi = -9999;
unsigned selected = selectedWiFi;
for (int o = 0; o < status; o++) {
DEBUG_PRINT(F(" WiFi available: ")); DEBUG_PRINT(WiFi.SSID(o));
DEBUG_PRINT(F(" RSSI: ")); DEBUG_PRINT(WiFi.RSSI(o)); DEBUG_PRINTLN(F("dB"));
for (unsigned n = 0; n < multiWiFi.size(); n++)
if (!strcmp(WiFi.SSID(o).c_str(), multiWiFi[n].clientSSID)) {
// find the WiFi with the strongest signal (but keep priority of entry if signal difference is not big)
if ((n < selected && WiFi.RSSI(o) > rssi-10) || WiFi.RSSI(o) > rssi) {
rssi = WiFi.RSSI(o);
selected = n;
}
break;
}
}
DEBUG_PRINT(F("Selected: ")); DEBUG_PRINT(multiWiFi[selected].clientSSID);
DEBUG_PRINT(F(" RSSI: ")); DEBUG_PRINT(rssi); DEBUG_PRINTLN(F("dB"));
return selected;
}
//DEBUG_PRINT(F("WiFi scan running."));
return status; // scan is still running or there was an error
}
void WLED::initConnection()
{
DEBUG_PRINTF_P(PSTR("initConnection() called @ %lus.\n"), millis()/1000);
@ -798,6 +620,7 @@ void WLED::initConnection()
#endif
WiFi.disconnect(true); // close old connections
delay(5); // wait for hardware to be ready
#ifdef ESP8266
WiFi.setPhyMode(force802_3g ? WIFI_PHY_MODE_11G : WIFI_PHY_MODE_11N);
#endif

View File

@ -15,7 +15,7 @@
// ESP8266-01 (blue) got too little storage space to work with WLED. 0.10.2 is the last release supporting this unit.
// ESP8266-01 (black) has 1MB flash and can thus fit the whole program, although OTA update is not possible. Use 1M(128K SPIFFS).
// 2-step OTA may still be possible: https://github.com/Aircoookie/WLED/issues/2040#issuecomment-981111096
// 2-step OTA may still be possible: https://github.com/wled-dev/WLED/issues/2040#issuecomment-981111096
// Uncomment some of the following lines to disable features:
// Alternatively, with platformio pass your chosen flags to your custom build target in platformio_override.ini
@ -359,7 +359,7 @@ WLED_GLOBAL wifi_options_t wifiOpt _INIT_N(({0, 1, false, AP_BEHAVIOR_BOOT_NO_CO
#define noWifiSleep wifiOpt.noWifiSleep
#define force802_3g wifiOpt.force802_3g
#else
WLED_GLOBAL uint8_t selectedWiFi _INIT(0);
WLED_GLOBAL int8_t selectedWiFi _INIT(0);
WLED_GLOBAL byte apChannel _INIT(1); // 2.4GHz WiFi AP channel (1-13)
WLED_GLOBAL byte apHide _INIT(0); // hidden AP SSID
WLED_GLOBAL byte apBehavior _INIT(AP_BEHAVIOR_BOOT_NO_CONN); // access point opens when no connection after boot by default
@ -371,15 +371,15 @@ WLED_GLOBAL bool noWifiSleep _INIT(false);
WLED_GLOBAL bool force802_3g _INIT(false);
#endif // WLED_SAVE_RAM
#ifdef ARDUINO_ARCH_ESP32
#if defined(LOLIN_WIFI_FIX) && (defined(ARDUINO_ARCH_ESP32C3) || defined(ARDUINO_ARCH_ESP32S2) || defined(ARDUINO_ARCH_ESP32S3))
#if defined(LOLIN_WIFI_FIX) && (defined(CONFIG_IDF_TARGET_ESP32C3) || defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32S3))
WLED_GLOBAL uint8_t txPower _INIT(WIFI_POWER_8_5dBm);
#else
WLED_GLOBAL uint8_t txPower _INIT(WIFI_POWER_19_5dBm);
#endif
#endif
#define WLED_WIFI_CONFIGURED (strlen(multiWiFi[0].clientSSID) >= 1 && strcmp(multiWiFi[0].clientSSID, DEFAULT_CLIENT_SSID) != 0)
#define WLED_WIFI_CONFIGURED isWiFiConfigured()
#ifdef WLED_USE_ETHERNET
#if defined(ARDUINO_ARCH_ESP32) && defined(WLED_USE_ETHERNET)
#ifdef WLED_ETH_DEFAULT // default ethernet board type if specified
WLED_GLOBAL int ethernetType _INIT(WLED_ETH_DEFAULT); // ethernet board type
#else
@ -398,6 +398,9 @@ WLED_GLOBAL byte bootPreset _INIT(0); // save preset to load
WLED_GLOBAL bool useGlobalLedBuffer _INIT(false); // double buffering disabled on ESP8266
#else
WLED_GLOBAL bool useGlobalLedBuffer _INIT(true); // double buffering enabled on ESP32
#ifndef CONFIG_IDF_TARGET_ESP32C3
WLED_GLOBAL bool useParallelI2S _INIT(false); // parallel I2S for ESP32
#endif
#endif
#ifdef WLED_USE_IC_CCT
WLED_GLOBAL bool cctICused _INIT(true); // CCT IC used (Athom 15W bulbs)
@ -579,6 +582,7 @@ WLED_GLOBAL uint16_t userVar0 _INIT(0), userVar1 _INIT(0); //available for use i
// internal global variable declarations
// wifi
WLED_GLOBAL bool apActive _INIT(false);
WLED_GLOBAL byte apClients _INIT(0);
WLED_GLOBAL bool forceReconnect _INIT(false);
WLED_GLOBAL unsigned long lastReconnectAttempt _INIT(0);
WLED_GLOBAL bool interfacesInited _INIT(false);
@ -1045,11 +1049,9 @@ public:
void beginStrip();
void handleConnection();
bool initEthernet(); // result is informational
void initAP(bool resetAP = false);
void initConnection();
void initInterfaces();
int8_t findWiFi(bool doScan = false);
#if defined(STATUSLED)
void handleStatusLED();
#endif

View File

@ -11,7 +11,7 @@
* Only used to restore config from pre-0.11 installations using the deEEP() methods
*
* Methods to handle saving and loading to non-volatile memory
* EEPROM Map: https://github.com/Aircoookie/WLED/wiki/EEPROM-Map
* EEPROM Map: https://github.com/wled-dev/WLED/wiki/EEPROM-Map
*/
//eeprom Version code, enables default settings instead of 0 init on update

View File

@ -110,7 +110,7 @@ void appendGPIOinfo(Print& settingsScript) {
settingsScript.print(hardwareTX); // debug output (TX) pin
firstPin = false;
#endif
#ifdef WLED_USE_ETHERNET
#if defined(ARDUINO_ARCH_ESP32) && defined(WLED_USE_ETHERNET)
if (ethernetType != WLED_ETH_NONE && ethernetType < WLED_NUM_ETH_TYPES) {
if (!firstPin) settingsScript.print(',');
for (unsigned p=0; p<WLED_ETH_RSVD_PINS_COUNT; p++) { settingsScript.printf("%d,",esp32_nonconfigurable_ethernet_pins[p].pin); }
@ -178,9 +178,12 @@ void getSettingsJS(byte subPage, Print& settingsScript)
char fpass[l+1]; //fill password field with ***
fpass[l] = 0;
memset(fpass,'*',l);
settingsScript.printf_P(PSTR("addWiFi(\"%s\",\"%s\",0x%X,0x%X,0x%X);"),
char bssid[13];
fillMAC2Str(bssid, multiWiFi[n].bssid);
settingsScript.printf_P(PSTR("addWiFi(\"%s\",\"%s\",\"%s\",0x%X,0x%X,0x%X);"),
multiWiFi[n].clientSSID,
fpass,
bssid,
(uint32_t) multiWiFi[n].staticIP, // explicit cast required as this is a struct
(uint32_t) multiWiFi[n].staticGW,
(uint32_t) multiWiFi[n].staticSN);
@ -219,7 +222,7 @@ void getSettingsJS(byte subPage, Print& settingsScript)
settingsScript.print(F("toggle('ESPNOW');")); // hide ESP-NOW setting
#endif
#ifdef WLED_USE_ETHERNET
#if defined(ARDUINO_ARCH_ESP32) && defined(WLED_USE_ETHERNET)
printSetFormValue(settingsScript,PSTR("ETH"),ethernetType);
#else
//hide ethernet setting if not compiled in
@ -289,6 +292,7 @@ void getSettingsJS(byte subPage, Print& settingsScript)
printSetFormValue(settingsScript,PSTR("FR"),strip.getTargetFps());
printSetFormValue(settingsScript,PSTR("AW"),Bus::getGlobalAWMode());
printSetFormCheckbox(settingsScript,PSTR("LD"),useGlobalLedBuffer);
printSetFormCheckbox(settingsScript,PSTR("PR"),BusManager::hasParallelOutput()); // get it from bus manager not global variable
unsigned sumMa = 0;
for (int s = 0; s < BusManager::getNumBusses(); s++) {