Compare commits

..

1 Commits

Author SHA1 Message Date
Will Tatam
0a21869362 Remove V1 usermod 2025-08-09 15:22:41 +01:00
83 changed files with 2714 additions and 1876 deletions

3
.github/FUNDING.yml vendored
View File

@@ -1,3 +1,2 @@
github: [Aircoookie,blazoncek,DedeHai,lost-hope,willmmiles]
github: [Aircoookie,blazoncek]
custom: ['https://paypal.me/Aircoookie','https://paypal.me/blazoncek']
thanks_dev: u/gh/netmindz

View File

@@ -1,138 +0,0 @@
# WLED - ESP32/ESP8266 LED Controller Firmware
WLED is a fast and feature-rich implementation of an ESP32 and ESP8266 webserver to control NeoPixel (WS2812B, WS2811, SK6812) LEDs and SPI-based chipsets. The project consists of C++ firmware for microcontrollers and a modern web interface.
Always reference these instructions first and fallback to search or bash commands only when you encounter unexpected information that does not match the info here.
## Working Effectively
### Initial Setup
- Install Node.js 20+ (specified in `.nvmrc`): Check your version with `node --version`
- Install dependencies: `npm ci` (takes ~5 seconds)
- Install PlatformIO for hardware builds: `pip install -r requirements.txt` (takes ~60 seconds)
### Build and Test Workflow
- **ALWAYS build web UI first**: `npm run build` -- takes 3 seconds. NEVER CANCEL.
- **Run tests**: `npm test` -- takes 40 seconds. NEVER CANCEL. Set timeout to 2+ minutes.
- **Development mode**: `npm run dev` -- monitors file changes and auto-rebuilds web UI
- **Hardware firmware build**: `pio run -e [environment]` -- takes 15+ minutes. NEVER CANCEL. Set timeout to 30+ minutes.
### Build Process Details
The build has two main phases:
1. **Web UI Generation** (`npm run build`):
- Processes files in `wled00/data/` (HTML, CSS, JS)
- Minifies and compresses web content
- Generates `wled00/html_*.h` files with embedded web content
- **CRITICAL**: Must be done before any hardware build
2. **Hardware Compilation** (`pio run`):
- Compiles C++ firmware for various ESP32/ESP8266 targets
- Common environments: `nodemcuv2`, `esp32dev`, `esp8266_2m`
- List all targets: `pio run --list-targets`
## Validation and Testing
### Web UI Testing
- **ALWAYS validate web UI changes manually**:
- Start local server: `cd wled00/data && python3 -m http.server 8080`
- Open `http://localhost:8080/index.htm` in browser
- Test basic functionality: color picker, effects, settings pages
- **Check for JavaScript errors** in browser console
### Code Validation
- **No automated linting configured** - follow existing code style in files you edit
- **Code style**: Use tabs for web files (.html/.css/.js), spaces (2 per level) for C++ files
- **C++ formatting available**: `clang-format` is installed but not in CI
- **Always run tests before finishing**: `npm test`
### Manual Testing Scenarios
After making changes to web UI, always test:
- **Load main interface**: Verify index.htm loads without errors
- **Navigation**: Test switching between main page and settings pages
- **Color controls**: Verify color picker and brightness controls work
- **Effects**: Test effect selection and parameter changes
- **Settings**: Test form submission and validation
## Common Tasks
### Repository Structure
```
wled00/ # Main firmware source (C++)
├── data/ # Web interface files
│ ├── index.htm # Main UI
│ ├── settings*.htm # Settings pages
│ └── *.js/*.css # Frontend resources
├── *.cpp/*.h # Firmware source files
└── html_*.h # Generated embedded web files (DO NOT EDIT)
tools/ # Build tools (Node.js)
├── cdata.js # Web UI build script
└── cdata-test.js # Test suite
platformio.ini # Hardware build configuration
package.json # Node.js dependencies and scripts
.github/workflows/ # CI/CD pipelines
```
### Key Files and Their Purpose
- `wled00/data/index.htm` - Main web interface
- `wled00/data/settings*.htm` - Configuration pages
- `tools/cdata.js` - Converts web files to C++ headers
- `wled00/wled.h` - Main firmware configuration
- `platformio.ini` - Hardware build targets and settings
### Development Workflow
1. **For web UI changes**:
- Edit files in `wled00/data/`
- Run `npm run build` to regenerate headers
- Test with local HTTP server
- Run `npm test` to validate build system
2. **For firmware changes**:
- Edit files in `wled00/` (but NOT `html_*.h` files)
- Ensure web UI is built first (`npm run build`)
- Build firmware: `pio run -e [target]`
- Flash to device: `pio run -e [target] --target upload`
3. **For both web and firmware**:
- Always build web UI first
- Test web interface manually
- Build and test firmware if making firmware changes
## Build Timing and Timeouts
- **Web UI build**: 3 seconds - Set timeout to 30 seconds minimum
- **Test suite**: 40 seconds - Set timeout to 2 minutes minimum
- **Hardware builds**: 15+ minutes - Set timeout to 30+ minutes minimum
- **NEVER CANCEL long-running builds** - PlatformIO downloads and compilation can take significant time
## Troubleshooting
### Common Issues
- **Build fails with missing html_*.h**: Run `npm run build` first
- **Web UI looks broken**: Check browser console for JavaScript errors
- **PlatformIO network errors**: Try again, downloads can be flaky
- **Node.js version issues**: Ensure Node.js 20+ is installed (check `.nvmrc`)
### When Things Go Wrong
- **Clear generated files**: `rm -f wled00/html_*.h` then rebuild
- **Force web UI rebuild**: `npm run build -- --force` or `npm run build -- -f`
- **Clean PlatformIO cache**: `pio run --target clean`
- **Reinstall dependencies**: `rm -rf node_modules && npm install`
## Important Notes
- **DO NOT edit `wled00/html_*.h` files** - they are auto-generated
- **Always commit both source files AND generated html_*.h files**
- **Web UI must be built before firmware compilation**
- **Test web interface manually after any web UI changes**
- **Use VS Code with PlatformIO extension for best development experience**
- **Hardware builds require appropriate ESP32/ESP8266 development board**
## CI/CD Pipeline
The GitHub Actions workflow:
1. Installs Node.js and Python dependencies
2. Runs `npm test` to validate build system
3. Builds web UI with `npm run build`
4. Compiles firmware for multiple hardware targets
5. Uploads build artifacts
Match this workflow in your local development to ensure CI success.

View File

@@ -40,10 +40,7 @@ jobs:
with:
node-version-file: '.nvmrc'
cache: 'npm'
- run: |
npm ci
VERSION=`date +%y%m%d0`
sed -i -r -e "s/define VERSION .+/define VERSION $VERSION/" wled00/wled.h
- run: npm ci
- name: Cache PlatformIO
uses: actions/cache@v4
with:

View File

@@ -27,8 +27,6 @@ jobs:
with:
token: ${{ secrets.GITHUB_TOKEN }}
sinceTag: v0.15.0
# Exclude issues that were closed without resolution from changelog
exclude-labels: 'stale,wontfix,duplicate,invalid'
- name: Update Nightly Release
uses: andelf/nightly-release@main
env:

View File

@@ -1,13 +1,12 @@
name: Notify Discord on PR Merge
on:
workflow_dispatch:
pull_request_target:
pull_request:
types: [closed]
jobs:
notify:
runs-on: ubuntu-latest
if: github.event.pull_request.merged == true
steps:
- name: Get User Permission
id: checkAccess
@@ -24,15 +23,11 @@
echo "Current permission level is ${{ steps.checkAccess.outputs.user-permission }}"
echo "Job originally triggered by ${{ github.actor }}"
exit 1
- name: Checkout code
uses: actions/checkout@v3
with:
ref: ${{ github.event.pull_request.head.sha }} # This is dangerous without the first access check
- name: Send Discord notification
env:
PR_NUMBER: ${{ github.event.pull_request.number }}
PR_TITLE: ${{ github.event.pull_request.title }}
PR_URL: ${{ github.event.pull_request.html_url }}
ACTOR: ${{ github.actor }}
# if: github.event.pull_request.merged == true
run: |
jq -n \
--arg content "Pull Request #${PR_NUMBER} \"${PR_TITLE}\" merged by ${ACTOR}
${PR_URL}. It will be included in the next nightly builds, please test" \
'{content: $content}' \
| curl -H "Content-Type: application/json" -d @- ${{ secrets.DISCORD_WEBHOOK_BETA_TESTERS }}
curl -H "Content-Type: application/json" -d '{"content": "Pull Request ${{ github.event.pull_request.number }} merged by ${{ github.actor }}"}' ${{ secrets.DISCORD_WEBHOOK_BETA_TESTERS }}

View File

@@ -24,9 +24,7 @@ jobs:
with:
token: ${{ secrets.GITHUB_TOKEN }}
sinceTag: v0.15.0
maxIssues: 500
# Exclude issues that were closed without resolution from changelog
exclude-labels: 'stale,wontfix,duplicate,invalid'
maxIssues: 500
- name: Create draft release
uses: softprops/action-gh-release@v1
with:

View File

@@ -5,9 +5,6 @@ on:
paths:
- usermods/**
- .github/workflows/usermods.yml
pull_request:
paths:
- usermods/**
jobs:

View File

@@ -10,7 +10,7 @@
# ------------------------------------------------------------------------------
# CI/release binaries
default_envs = nodemcuv2, esp8266_2m, esp01_1m_full, nodemcuv2_160, esp8266_2m_160, esp01_1m_full_160, nodemcuv2_compat, esp8266_2m_compat, esp01_1m_full_compat, esp32dev, esp32_eth, lolin_s2_mini, esp32c3dev, esp32s3dev_16MB_opi, esp32s3dev_8MB_opi, esp32s3_4M_qspi, esp32_wrover, usermods
default_envs = nodemcuv2, esp8266_2m, esp01_1m_full, nodemcuv2_160, esp8266_2m_160, esp01_1m_full_160, nodemcuv2_compat, esp8266_2m_compat, esp01_1m_full_compat, esp32dev, esp32dev_V4, esp32_eth, lolin_s2_mini, esp32c3dev, esp32s3dev_16MB_opi, esp32s3dev_8MB_opi, esp32s3_4M_qspi, esp32_wrover, usermods
src_dir = ./wled00
data_dir = ./wled00/data
@@ -142,8 +142,7 @@ lib_deps =
IRremoteESP8266 @ 2.8.2
makuna/NeoPixelBus @ 2.8.3
#https://github.com/makuna/NeoPixelBus.git#CoreShaderBeta
https://github.com/Aircoookie/ESPAsyncWebServer.git#v2.4.2
marvinroger/AsyncMqttClient @ 0.9.0
https://github.com/Aircoookie/ESPAsyncWebServer.git#v2.4.0
# for I2C interface
;Wire
# ESP-NOW library
@@ -235,20 +234,25 @@ lib_deps_compat =
[esp32_all_variants]
lib_deps =
esp32async/AsyncTCP @ 3.4.7
willmmiles/AsyncTCP @ 1.3.1
bitbank2/AnimatedGIF@^1.4.7
https://github.com/Aircoookie/GifDecoder#bc3af18
build_flags =
-D CONFIG_ASYNC_TCP_USE_WDT=0
-D CONFIG_ASYNC_TCP_STACK_SIZE=8192
-D WLED_ENABLE_GIF
[esp32]
platform = ${esp32_idf_V4.platform}
platform_packages =
#platform = https://github.com/tasmota/platform-espressif32/releases/download/v2.0.2.3/platform-espressif32-2.0.2.3.zip
platform = espressif32@3.5.0
platform_packages = framework-arduinoespressif32 @ https://github.com/Aircoookie/arduino-esp32.git#1.0.6.4
build_unflags = ${common.build_unflags}
build_flags = ${esp32_idf_V4.build_flags}
lib_deps = ${esp32_idf_V4.lib_deps}
build_flags = -g
-DARDUINO_ARCH_ESP32
#-DCONFIG_LITTLEFS_FOR_IDF_3_2
#use LITTLEFS library by lorol in ESP32 core 1.x.x instead of built-in in 2.x.x
-D LOROL_LITTLEFS
; -DARDUINO_USB_CDC_ON_BOOT=0 ;; this flag is mandatory for "classic ESP32" when building with arduino-esp32 >=2.0.3
${esp32_all_variants.build_flags}
tiny_partitions = tools/WLED_ESP32_2MB_noOTA.csv
default_partitions = tools/WLED_ESP32_4MB_1MB_FS.csv
@@ -256,7 +260,10 @@ extended_partitions = tools/WLED_ESP32_4MB_700k_FS.csv
big_partitions = tools/WLED_ESP32_4MB_256KB_FS.csv ;; 1.8MB firmware, 256KB filesystem, coredump support
large_partitions = tools/WLED_ESP32_8MB.csv
extreme_partitions = tools/WLED_ESP32_16MB_9MB_FS.csv
lib_deps =
https://github.com/lorol/LITTLEFS.git
${esp32_all_variants.lib_deps}
${env.lib_deps}
board_build.partitions = ${esp32.default_partitions} ;; default partioning for 4MB Flash - can be overridden in build envs
# additional build flags for audioreactive - must be applied globally
AR_build_flags = ;; -fsingle-precision-constant ;; forces ArduinoFFT to use float math (2x faster)
@@ -264,7 +271,8 @@ AR_lib_deps = ;; for pre-usermod-library platformio_override compatibility
[esp32_idf_V4]
;; build environment for ESP32 using ESP-IDF 4.4.x / arduino-esp32 v2.0.5
;; experimental build environment for ESP32 using ESP-IDF 4.4.x / arduino-esp32 v2.0.5
;; very similar to the normal ESP32 flags, but omitting Lorol LittleFS, as littlefs is included in the new framework already.
;;
;; please note that you can NOT update existing ESP32 installs with a "V4" build. Also updating by OTA will not work properly.
;; You need to completely erase your device (esptool erase_flash) first, then install the "V4" build from VSCode+platformio.
@@ -275,12 +283,14 @@ build_unflags = ${common.build_unflags}
build_flags = -g
-Wshadow=compatible-local ;; emit warning in case a local variable "shadows" another local one
-DARDUINO_ARCH_ESP32 -DESP32
-DARDUINO_USB_CDC_ON_BOOT=0 ;; this flag is mandatory for "classic ESP32" when building with arduino-esp32 >=2.0.3
${esp32_all_variants.build_flags}
-D WLED_ENABLE_DMX_INPUT
lib_deps =
${esp32_all_variants.lib_deps}
https://github.com/someweisguy/esp_dmx.git#47db25d
${env.lib_deps}
board_build.partitions = ${esp32.default_partitions} ;; default partioning for 4MB Flash - can be overridden in build envs
[esp32s2]
;; generic definitions for all ESP32-S2 boards
@@ -295,9 +305,10 @@ build_flags = -g
-DARDUINO_USB_MODE=0 ;; this flag is mandatory for ESP32-S2 !
;; please make sure that the following flags are properly set (to 0 or 1) by your board.json, or included in your custom platformio_override.ini entry:
;; ARDUINO_USB_CDC_ON_BOOT
${esp32_idf_V4.build_flags}
${esp32_all_variants.build_flags}
lib_deps =
${esp32_idf_V4.lib_deps}
${esp32_all_variants.lib_deps}
${env.lib_deps}
board_build.partitions = ${esp32.default_partitions} ;; default partioning for 4MB Flash - can be overridden in build envs
[esp32c3]
@@ -312,9 +323,10 @@ build_flags = -g
-DARDUINO_USB_MODE=1 ;; this flag is mandatory for ESP32-C3
;; please make sure that the following flags are properly set (to 0 or 1) by your board.json, or included in your custom platformio_override.ini entry:
;; ARDUINO_USB_CDC_ON_BOOT
${esp32_idf_V4.build_flags}
${esp32_all_variants.build_flags}
lib_deps =
${esp32_idf_V4.lib_deps}
${esp32_all_variants.lib_deps}
${env.lib_deps}
board_build.partitions = ${esp32.default_partitions} ;; default partioning for 4MB Flash - can be overridden in build envs
board_build.flash_mode = qio
@@ -331,9 +343,10 @@ build_flags = -g
-DCO
;; please make sure that the following flags are properly set (to 0 or 1) by your board.json, or included in your custom platformio_override.ini entry:
;; ARDUINO_USB_MODE, ARDUINO_USB_CDC_ON_BOOT
${esp32_idf_V4.build_flags}
${esp32_all_variants.build_flags}
lib_deps =
${esp32_idf_V4.lib_deps}
${esp32_all_variants.lib_deps}
${env.lib_deps}
board_build.partitions = ${esp32.large_partitions} ;; default partioning for 8MB flash - can be overridden in build envs
@@ -428,11 +441,21 @@ custom_usermods = audioreactive
[env:esp32dev]
board = esp32dev
platform = ${esp32.platform}
platform_packages = ${esp32.platform_packages}
custom_usermods = audioreactive
build_unflags = ${common.build_unflags}
build_flags = ${common.build_flags} ${esp32.build_flags} -D WLED_RELEASE_NAME=\"ESP32\" #-D WLED_DISABLE_BROWNOUT_DET
lib_deps = ${esp32.lib_deps}
monitor_filters = esp32_exception_decoder
board_build.partitions = ${esp32.default_partitions}
[env:esp32dev_V4]
board = esp32dev
platform = ${esp32_idf_V4.platform}
build_unflags = ${common.build_unflags}
custom_usermods = audioreactive
build_flags = ${common.build_flags} ${esp32_idf_V4.build_flags} -D WLED_RELEASE_NAME=\"ESP32_V4\" #-D WLED_DISABLE_BROWNOUT_DET
-DARDUINO_USB_CDC_ON_BOOT=0 ;; this flag is mandatory for "classic ESP32" when building with arduino-esp32 >=2.0.3
lib_deps = ${esp32_idf_V4.lib_deps}
monitor_filters = esp32_exception_decoder
board_build.partitions = ${esp32.default_partitions}
@@ -466,9 +489,23 @@ board_upload.maximum_size = 16777216
board_build.f_flash = 80000000L
board_build.flash_mode = dio
;[env:esp32dev_audioreactive]
;board = esp32dev
;platform = ${esp32.platform}
;platform_packages = ${esp32.platform_packages}
;custom_usermods = audioreactive
;build_unflags = ${common.build_unflags}
;build_flags = ${common.build_flags} ${esp32.build_flags} -D WLED_RELEASE_NAME=\"ESP32_audioreactive\" #-D WLED_DISABLE_BROWNOUT_DET
;lib_deps = ${esp32.lib_deps}
;monitor_filters = esp32_exception_decoder
;board_build.partitions = ${esp32.default_partitions}
;; board_build.f_flash = 80000000L
;; board_build.flash_mode = dio
[env:esp32_eth]
board = esp32-poe
platform = ${esp32_idf_V4.platform}
platform = ${esp32.platform}
platform_packages = ${esp32.platform_packages}
upload_speed = 921600
custom_usermods = audioreactive
build_unflags = ${common.build_unflags}
@@ -476,10 +513,10 @@ build_flags = ${common.build_flags} ${esp32.build_flags} -D WLED_RELEASE_NAME=\"
; -D WLED_DISABLE_ESPNOW ;; ESP-NOW requires wifi, may crash with ethernet only
lib_deps = ${esp32.lib_deps}
board_build.partitions = ${esp32.default_partitions}
board_build.flash_mode = dio
[env:esp32_wrover]
extends = esp32_idf_V4
platform = ${esp32_idf_V4.platform}
board = ttgo-t7-v14-mini32
board_build.f_flash = 80000000L
board_build.flash_mode = qio

View File

@@ -28,6 +28,7 @@ lib_deps = ${esp8266.lib_deps}
; robtillaart/SHT85@~0.3.3
; ;gmag11/QuickESPNow @ ~0.7.0 # will also load QuickDebug
; https://github.com/blazoncek/QuickESPNow.git#optional-debug ;; exludes debug library
; bitbank2/PNGdec@^1.0.1 ;; used for POV display uncomment following
; ${esp32.AR_lib_deps} ;; needed for USERMOD_AUDIOREACTIVE
build_unflags = ${common.build_unflags}

View File

@@ -10,12 +10,10 @@
</p>
# Welcome to WLED! ✨
# Welcome to my project WLED! ✨
A fast and feature-rich implementation of an ESP32 and ESP8266 webserver to control NeoPixel (WS2812B, WS2811, SK6812) LEDs or also SPI based chipsets like the WS2801 and APA102!
Originally created by [Aircoookie](https://github.com/Aircoookie)
## ⚙️ Features
- WS2812FX library with more than 100 special effects
- FastLED noise effects and 50 palettes
@@ -34,7 +32,7 @@ Originally created by [Aircoookie](https://github.com/Aircoookie)
- Filesystem-based config for easier backup of presets and settings
## 💡 Supported light control interfaces
- WLED app for [Android](https://play.google.com/store/apps/details?id=ca.cgagnier.wlednativeandroid) and [iOS](https://apps.apple.com/gb/app/wled-native/id6446207239)
- WLED app for [Android](https://play.google.com/store/apps/details?id=com.aircoookie.WLED) and [iOS](https://apps.apple.com/us/app/wled/id1475695033)
- JSON and HTTP request APIs
- MQTT
- E1.31, Art-Net, DDP and TPM2.net
@@ -65,7 +63,6 @@ See [here](https://kno.wled.ge/basics/compatible-hardware)!
Licensed under the EUPL v1.2 license
Credits [here](https://kno.wled.ge/about/contributors/)!
CORS proxy by [Corsfix](https://corsfix.com/)
Join the Discord server to discuss everything about WLED!

View File

@@ -126,20 +126,6 @@ async function minify(str, type = "plain") {
throw new Error("Unknown filter: " + type);
}
/**
* Inline-depends, minifies, gzip-compresses an HTML source and writes a C header array.
*
* Reads the HTML at sourceFile, inlines referenced resources, replaces repo/version placeholders,
* minifies the HTML, compresses it with gzip, converts the compressed bytes to a C-style hex array,
* and writes a header file to resultFile that defines:
* - const uint16_t PAGE_<page>_length = <length>;
* - const uint8_t PAGE_<page>[] PROGMEM = { ... };
*
* @param {string} sourceFile - Path to the source HTML file to inline and compress.
* @param {string} resultFile - Path where the generated C header file will be written.
* @param {string} page - Identifier used to name the generated symbols (e.g., "index", "pixart").
* @throws {Error} If inlining the HTML fails (propagates the inline error).
*/
async function writeHtmlGzipped(sourceFile, resultFile, page) {
console.info("Reading " + sourceFile);
inline.html({
@@ -157,7 +143,7 @@ async function writeHtmlGzipped(sourceFile, resultFile, page) {
console.info("Minified and compressed " + sourceFile + " from " + originalLength + " to " + result.length + " bytes");
const array = hexdump(result);
let src = singleHeader;
src += `const uint16_t PAGE_${page}_length = ${result.length};\n`;
src += `const uint16_t PAGE_${page}_L = ${result.length};\n`;
src += `const uint8_t PAGE_${page}[] PROGMEM = {\n${array}\n};\n\n`;
console.info("Writing " + resultFile);
fs.writeFileSync(resultFile, src);
@@ -258,22 +244,9 @@ if (isAlreadyBuilt("wled00/data") && process.argv[2] !== '--force' && process.ar
writeHtmlGzipped("wled00/data/index.htm", "wled00/html_ui.h", 'index');
writeHtmlGzipped("wled00/data/pixart/pixart.htm", "wled00/html_pixart.h", 'pixart');
//writeHtmlGzipped("wled00/data/cpal/cpal.htm", "wled00/html_cpal.h", 'cpal');
writeHtmlGzipped("wled00/data/cpal/cpal.htm", "wled00/html_cpal.h", 'cpal');
writeHtmlGzipped("wled00/data/pxmagic/pxmagic.htm", "wled00/html_pxmagic.h", 'pxmagic');
writeChunks(
"wled00/data/cpal",
[
{
file: "cpal.htm",
name: "PAGE_cpal",
method: "gzip",
filter: "html-minify"
}
],
"wled00/html_cpal.h"
);
writeChunks(
"wled00/data",
[

View File

@@ -2,7 +2,7 @@
default_envs = usermods_esp32, usermods_esp32c3, usermods_esp32s2, usermods_esp32s3
[env:usermods_esp32]
extends = env:esp32dev
extends = env:esp32dev_V4
custom_usermods = ${usermods.custom_usermods}
board_build.partitions = ${esp32.extreme_partitions} ; We're gonna need a bigger boat
@@ -28,4 +28,4 @@ board_build.partitions = ${esp32.extreme_partitions} ; We're gonna need a bigge
[usermods]
# Added in CI
# Added in CI

View File

@@ -1,48 +0,0 @@
## POV Display usermod
This usermod adds a new effect called “POV Image”.
![the usermod at work](pov_display.gif?raw=true)
###How does it work?
With proper configuration (see below) the main segment will display a single row of pixels from an image stored on the ESP.
It displays the image row by row at a high refresh rate.
If you move the pixel segment at the right speed, you will see the full image floating in the air thanks to the persistence of vision.
RGB LEDs only (no RGBW), with grouping set to 1 and spacing set to 0.
Best results with high-density strips (e.g., 144 LEDs/m).
To get it working:
- Resize your image. The height must match the number of LEDs in your strip/segment.
- Rotate your image 90° clockwise (height becomes width).
- Upload a BMP image (24-bit, uncompressed) to the ESP filesystem using the “/edit” URL.
- Select the “POV Image” effect.
- Set the segment name to the absolute filesystem path of the image (e.g., “/myimage.bmp”).
- The path is case-sensitive and must start with “/”.
- Rotate the pixel strip at approximately 20 RPM.
- Tune as needed so that one full revolution maps to the image width (if the image appears stretched or compressed, adjust RPM slightly).
- Enjoy the show!
Notes:
- Only 24-bit uncompressed BMP files are supported.
- The image must fit into ~64 KB of RAM (width × height × 3 bytes, plus row padding to a 4-byte boundary).
- Examples (approximate, excluding row padding):
- 128×128 (49,152 bytes) fits.
- 160×160 (76,800 bytes) does NOT fit.
- 96×192 (55,296 bytes) fits; padding may add a small overhead.
- If the rendered image appears mirrored or upsidedown, rotate 90° the other way or flip horizontally in your editor and try again.
- The path must be absolute.
### Requirements
- 1D rotating LED strip/segment (POV setup). Ensure the segment length equals the number of physical LEDs.
- BMP image saved as 24bit, uncompressed (no alpha, no palette).
- Sufficient free RAM (~64 KB) for the image buffer.
### Troubleshooting
- Nothing displays: verify the file exists at the exact absolute path (casesensitive) and is a 24bit uncompressed BMP.
- Garbled colors or wrong orientation: reexport as 24bit BMP and retry the rotation/flip guidance above.
- Image too large: reduce width and/or height until it fits within ~64 KB (see examples).
- Path issues: confirm you uploaded the file via the “/edit” URL and can see it in the filesystem browser.
### Safety
- Secure the rotating assembly and keep clear of moving parts.
- Balance the strip/hub to minimize vibration before running at speed.

View File

@@ -1,146 +0,0 @@
#include "bmpimage.h"
#define BUF_SIZE 64000
byte * _buffer = nullptr;
uint16_t read16(File &f) {
uint16_t result;
f.read((uint8_t *)&result,2);
return result;
}
uint32_t read32(File &f) {
uint32_t result;
f.read((uint8_t *)&result,4);
return result;
}
bool BMPimage::init(const char * fn) {
File bmpFile;
int bmpDepth;
//first, check if filename exists
if (!WLED_FS.exists(fn)) {
return false;
}
bmpFile = WLED_FS.open(fn);
if (!bmpFile) {
_valid=false;
return false;
}
//so, the file exists and is opened
// Parse BMP header
uint16_t header = read16(bmpFile);
if(header != 0x4D42) { // BMP signature
_valid=false;
bmpFile.close();
return false;
}
//read and ingnore file size
read32(bmpFile);
(void)read32(bmpFile); // Read & ignore creator bytes
_imageOffset = read32(bmpFile); // Start of image data
// Read DIB header
read32(bmpFile);
_width = read32(bmpFile);
_height = read32(bmpFile);
if(read16(bmpFile) != 1) { // # planes -- must be '1'
_valid=false;
bmpFile.close();
return false;
}
bmpDepth = read16(bmpFile); // bits per pixel
if((bmpDepth != 24) || (read32(bmpFile) != 0)) { // 0 = uncompressed {
_width=0;
_valid=false;
bmpFile.close();
return false;
}
// If _height is negative, image is in top-down order.
// This is not canon but has been observed in the wild.
if(_height < 0) {
_height = -_height;
}
//now, we have successfully got all the basics
// BMP rows are padded (if needed) to 4-byte boundary
_rowSize = (_width * 3 + 3) & ~3;
//check image size - if it is too large, it will be unusable
if (_rowSize*_height>BUF_SIZE) {
_valid=false;
bmpFile.close();
return false;
}
bmpFile.close();
// Ensure filename fits our buffer (segment name length constraint).
size_t len = strlen(fn);
if (len > WLED_MAX_SEGNAME_LEN) {
return false;
}
strncpy(filename, fn, sizeof(filename));
filename[sizeof(filename) - 1] = '\0';
_valid = true;
return true;
}
void BMPimage::clear(){
strcpy(filename, "");
_width=0;
_height=0;
_rowSize=0;
_imageOffset=0;
_loaded=false;
_valid=false;
}
bool BMPimage::load(){
const size_t size = (size_t)_rowSize * (size_t)_height;
if (size > BUF_SIZE) {
return false;
}
File bmpFile = WLED_FS.open(filename);
if (!bmpFile) {
return false;
}
if (_buffer != nullptr) free(_buffer);
_buffer = (byte*)malloc(size);
if (_buffer == nullptr) return false;
bmpFile.seek(_imageOffset);
const size_t readBytes = bmpFile.read(_buffer, size);
bmpFile.close();
if (readBytes != size) {
_loaded = false;
return false;
}
_loaded = true;
return true;
}
byte* BMPimage::line(uint16_t n){
if (_loaded) {
return (_buffer+n*_rowSize);
} else {
return NULL;
}
}
uint32_t BMPimage::pixelColor(uint16_t x, uint16_t y){
uint32_t pos;
byte b,g,r; //colors
if (! _loaded) {
return 0;
}
if ( (x>=_width) || (y>=_height) ) {
return 0;
}
pos=y*_rowSize + 3*x;
//get colors. Note that in BMP files, they go in BGR order
b= _buffer[pos++];
g= _buffer[pos++];
r= _buffer[pos];
return (r<<16|g<<8|b);
}

View File

@@ -1,50 +0,0 @@
#ifndef _BMPIMAGE_H
#define _BMPIMAGE_H
#include "Arduino.h"
#include "wled.h"
/*
* This class describes a bitmap image. Each object refers to a bmp file on
* filesystem fatfs.
* To initialize, call init(), passign to it name of a bitmap file
* at the root of fatfs filesystem:
*
* BMPimage myImage;
* myImage.init("logo.bmp");
*
* For performance reasons, before actually usign the image, you need to load
* it from filesystem to RAM:
* myImage.load();
* All load() operations use the same reserved buffer in RAM, so you can only
* have one file loaded at a time. Before loading a new file, always unload the
* previous one:
* myImage.unload();
*/
class BMPimage {
public:
int height() {return _height; }
int width() {return _width; }
int rowSize() {return _rowSize;}
bool isLoaded() {return _loaded; }
bool load();
void unload() {_loaded=false; }
byte * line(uint16_t n);
uint32_t pixelColor(uint16_t x,uint16_t y);
bool init(const char* fn);
void clear();
char * getFilename() {return filename;};
private:
char filename[WLED_MAX_SEGNAME_LEN+1]="";
int _width=0;
int _height=0;
int _rowSize=0;
int _imageOffset=0;
bool _loaded=false;
bool _valid=false;
};
extern byte * _buffer;
#endif

View File

@@ -1,5 +1,7 @@
{
"name:": "pov_display",
"build": { "libArchive": false},
"platforms": ["espressif32"]
"dependencies": {
"bitbank2/PNGdec":"^1.0.3"
}
}

View File

@@ -1,47 +0,0 @@
#include "pov.h"
POV::POV() {}
void POV::showLine(const byte * line, uint16_t size){
uint16_t i, pos;
uint8_t r, g, b;
if (!line) {
// All-black frame on null input
for (i = 0; i < SEGLEN; i++) {
SEGMENT.setPixelColor(i, CRGB::Black);
}
strip.show();
lastLineUpdate = micros();
return;
}
for (i = 0; i < SEGLEN; i++) {
if (i < size) {
pos = 3 * i;
// using bgr order
b = line[pos++];
g = line[pos++];
r = line[pos];
SEGMENT.setPixelColor(i, CRGB(r, g, b));
} else {
SEGMENT.setPixelColor(i, CRGB::Black);
}
}
strip.show();
lastLineUpdate = micros();
}
bool POV::loadImage(const char * filename){
if(!image.init(filename)) return false;
if(!image.load()) return false;
currentLine=0;
return true;
}
int16_t POV::showNextLine(){
if (!image.isLoaded()) return 0;
//move to next line
showLine(image.line(currentLine), image.width());
currentLine++;
if (currentLine == image.height()) {currentLine=0;}
return currentLine;
}

View File

@@ -1,42 +0,0 @@
#ifndef _POV_H
#define _POV_H
#include "bmpimage.h"
class POV {
public:
POV();
/* Shows one line. line should be pointer to array which holds pixel colors
* (3 bytes per pixel, in BGR order). Note: 3, not 4!!!
* size should be size of array (number of pixels, not number of bytes)
*/
void showLine(const byte * line, uint16_t size);
/* Reads from file an image and making it current image */
bool loadImage(const char * filename);
/* Show next line of active image
Retunrs the index of next line to be shown (not yet shown!)
If it retunrs 0, it means we have completed showing the image and
next call will start again
*/
int16_t showNextLine();
//time since strip was last updated, in micro sec
uint32_t timeSinceUpdate() {return (micros()-lastLineUpdate);}
BMPimage * currentImage() {return &image;}
char * getFilename() {return image.getFilename();}
private:
BMPimage image;
int16_t currentLine=0; //next line to be shown
uint32_t lastLineUpdate=0; //time in microseconds
};
#endif

View File

@@ -1,75 +1,88 @@
#include "wled.h"
#include "pov.h"
#include <PNGdec.h>
static const char _data_FX_MODE_POV_IMAGE[] PROGMEM = "POV Image@!;;;;";
static POV s_pov;
uint16_t mode_pov_image(void) {
Segment& mainseg = strip.getMainSegment();
const char* segName = mainseg.name;
if (!segName) {
return FRAMETIME;
}
// Only proceed for files ending with .bmp (case-insensitive)
size_t segLen = strlen(segName);
if (segLen < 4) return FRAMETIME;
const char* ext = segName + (segLen - 4);
// compare case-insensitive to ".bmp"
if (!((ext[0]=='.') &&
(ext[1]=='b' || ext[1]=='B') &&
(ext[2]=='m' || ext[2]=='M') &&
(ext[3]=='p' || ext[3]=='P'))) {
return FRAMETIME;
}
const char* current = s_pov.getFilename();
if (current && strcmp(segName, current) == 0) {
s_pov.showNextLine();
return FRAMETIME;
}
static unsigned long s_lastLoadAttemptMs = 0;
unsigned long nowMs = millis();
// Retry at most twice per second if the image is not yet loaded.
if (nowMs - s_lastLoadAttemptMs < 500) return FRAMETIME;
s_lastLoadAttemptMs = nowMs;
s_pov.loadImage(segName);
return FRAMETIME;
void * openFile(const char *filename, int32_t *size) {
f = WLED_FS.open(filename);
*size = f.size();
return &f;
}
class PovDisplayUsermod : public Usermod {
protected:
bool enabled = false; //WLEDMM
const char *_name; //WLEDMM
bool initDone = false; //WLEDMM
unsigned long lastTime = 0; //WLEDMM
public:
void closeFile(void *handle) {
if (f) f.close();
}
PovDisplayUsermod(const char *name, bool enabled)
: enabled(enabled) , _name(name) {}
void setup() override {
strip.addEffect(255, &mode_pov_image, _data_FX_MODE_POV_IMAGE);
//initDone removed (unused)
}
int32_t readFile(PNGFILE *pFile, uint8_t *pBuf, int32_t iLen)
{
int32_t iBytesRead;
iBytesRead = iLen;
File *f = static_cast<File *>(pFile->fHandle);
// Note: If you read a file all the way to the last byte, seek() stops working
if ((pFile->iSize - pFile->iPos) < iLen)
iBytesRead = pFile->iSize - pFile->iPos - 1; // <-- ugly work-around
if (iBytesRead <= 0)
return 0;
iBytesRead = (int32_t)f->read(pBuf, iBytesRead);
pFile->iPos = f->position();
return iBytesRead;
}
int32_t seekFile(PNGFILE *pFile, int32_t iPosition)
{
int i = micros();
File *f = static_cast<File *>(pFile->fHandle);
f->seek(iPosition);
pFile->iPos = (int32_t)f->position();
i = micros() - i;
return pFile->iPos;
}
void loop() override {
// if usermod is disabled or called during strip updating just exit
// NOTE: on very long strips strip.isUpdating() may always return true so update accordingly
if (!enabled || strip.isUpdating()) return;
// do your magic here
if (millis() - lastTime > 1000) {
lastTime = millis();
void draw(PNGDRAW *pDraw) {
uint16_t usPixels[SEGLEN];
png.getLineAsRGB565(pDraw, usPixels, PNG_RGB565_LITTLE_ENDIAN, 0xffffffff);
for(int x=0; x < SEGLEN; x++) {
uint16_t color = usPixels[x];
byte r = ((color >> 11) & 0x1F);
byte g = ((color >> 5) & 0x3F);
byte b = (color & 0x1F);
SEGMENT.setPixelColor(x, RGBW32(r,g,b,0));
}
}
strip.show();
}
uint16_t getId() override {
return USERMOD_ID_POV_DISPLAY;
}
uint16_t mode_pov_image(void) {
const char * filepath = SEGMENT.name;
int rc = png.open(filepath, openFile, closeFile, readFile, seekFile, draw);
if (rc == PNG_SUCCESS) {
rc = png.decode(NULL, 0);
png.close();
return FRAMETIME;
}
return FRAMETIME;
}
class PovDisplayUsermod : public Usermod
{
public:
static const char _data_FX_MODE_POV_IMAGE[] PROGMEM = "POV Image@!;;;1";
PNG png;
File f;
void setup() {
strip.addEffect(255, &mode_pov_image, _data_FX_MODE_POV_IMAGE);
}
void loop() {
}
uint16_t getId()
{
return USERMOD_ID_POV_DISPLAY;
}
void connected() {}
};
static PovDisplayUsermod pov_display("POV Display", false);
REGISTER_USERMOD(pov_display);
static PovDisplayUsermod pov_display;
REGISTER_USERMOD(pov_display);

Binary file not shown.

Before

Width:  |  Height:  |  Size: 988 KiB

View File

@@ -1,5 +0,0 @@
{
"name": "udp_name_sync",
"build": { "libArchive": false },
"dependencies": {}
}

View File

@@ -1,85 +0,0 @@
#include "wled.h"
class UdpNameSync : public Usermod {
private:
bool enabled = false;
char segmentName[WLED_MAX_SEGNAME_LEN] = {0};
static constexpr uint8_t kPacketType = 200; // custom usermod packet type
static const char _name[];
static const char _enabled[];
public:
/**
* Enable/Disable the usermod
*/
inline void enable(bool value) { enabled = value; }
/**
* Get usermod enabled/disabled state
*/
inline bool isEnabled() const { return enabled; }
void setup() override {
// Enabled when this usermod is compiled, set to false if you prefer runtime opt-in
enable(true);
}
void loop() override {
if (!enabled) return;
if (!WLED_CONNECTED) return;
if (!udpConnected) return;
Segment& mainseg = strip.getMainSegment();
if (segmentName[0] == '\0' && !mainseg.name) return; //name was never set, do nothing
const char* curName = mainseg.name ? mainseg.name : "";
if (strncmp(curName, segmentName, sizeof(segmentName)) == 0) return; // same name, do nothing
IPAddress broadcastIp = uint32_t(Network.localIP()) | ~uint32_t(Network.subnetMask());
byte udpOut[WLED_MAX_SEGNAME_LEN + 2];
udpOut[0] = kPacketType; // custom usermod packet type (avoid 0..5 used by core protocols)
if (segmentName[0] != '\0' && !mainseg.name) { // name cleared
notifierUdp.beginPacket(broadcastIp, udpPort);
segmentName[0] = '\0';
DEBUG_PRINTLN(F("UdpNameSync: sending empty name"));
udpOut[1] = 0; // explicit empty string
notifierUdp.write(udpOut, 2);
notifierUdp.endPacket();
return;
}
notifierUdp.beginPacket(broadcastIp, udpPort);
DEBUG_PRINT(F("UdpNameSync: saving segment name "));
DEBUG_PRINTLN(curName);
strlcpy(segmentName, curName, sizeof(segmentName));
strlcpy((char *)&udpOut[1], segmentName, sizeof(udpOut) - 1); // leave room for header byte
size_t nameLen = strnlen((char *)&udpOut[1], sizeof(udpOut) - 1);
notifierUdp.write(udpOut, 2 + nameLen);
notifierUdp.endPacket();
DEBUG_PRINT(F("UdpNameSync: Sent segment name : "));
DEBUG_PRINTLN(segmentName);
return;
}
bool onUdpPacket(uint8_t * payload, size_t len) override {
DEBUG_PRINT(F("UdpNameSync: Received packet"));
if (!enabled) return false;
if (receiveDirect) return false;
if (len < 2) return false; // need type + at least 1 byte for name (can be 0)
if (payload[0] != kPacketType) return false;
Segment& mainseg = strip.getMainSegment();
char tmp[WLED_MAX_SEGNAME_LEN] = {0};
size_t copyLen = len - 1;
if (copyLen > sizeof(tmp) - 1) copyLen = sizeof(tmp) - 1;
memcpy(tmp, &payload[1], copyLen);
tmp[copyLen] = '\0';
mainseg.setName(tmp);
DEBUG_PRINT(F("UdpNameSync: set segment name"));
return true;
}
};
static UdpNameSync udp_name_sync;
REGISTER_USERMOD(udp_name_sync);

View File

@@ -2328,7 +2328,7 @@ uint16_t mode_colortwinkle() {
}
if (cur == prev) { //fix "stuck" pixels
col = color_add(col, col);
color_add(col, col);
SEGMENT.setPixelColor(i, col);
}
else SEGMENT.setPixelColor(i, col);
@@ -3940,7 +3940,7 @@ uint16_t mode_percent(void) {
return FRAMETIME;
}
static const char _data_FX_MODE_PERCENT[] PROGMEM = "Percent@!,% of fill,,,,One color;!,!;!";
static const char _data_FX_MODE_PERCENT[] PROGMEM = "Percent@,% of fill,,,,One color;!,!;!";
/*
@@ -7528,9 +7528,9 @@ uint16_t mode_2Ddistortionwaves() {
byte valueG = gdistort + ((a2-( ((xoffs - cx1) * (xoffs - cx1) + (yoffs - cy1) * (yoffs - cy1))>>7 ))<<1);
byte valueB = bdistort + ((a3-( ((xoffs - cx2) * (xoffs - cx2) + (yoffs - cy2) * (yoffs - cy2))>>7 ))<<1);
valueR = cos8_t(valueR);
valueG = cos8_t(valueG);
valueB = cos8_t(valueB);
valueR = gamma8(cos8_t(valueR));
valueG = gamma8(cos8_t(valueG));
valueB = gamma8(cos8_t(valueB));
if(SEGMENT.palette == 0) {
// use RGB values (original color mode)

200
wled00/FX_fcn.cpp Normal file → Executable file
View File

@@ -11,6 +11,7 @@
*/
#include "wled.h"
#include "FXparticleSystem.h" // TODO: better define the required function (mem service) in FX.h?
#include "palettes.h"
/*
Custom per-LED mapping has moved!
@@ -199,15 +200,12 @@ void Segment::deallocateData() {
}
/**
* @brief Clear pending runtime state when a segment is marked for reset.
*
* If this segment's reset flag is set and the segment is active, zeroes the
* segment's runtime data buffer (to avoid heap fragmentation), clears the
* pixel buffer, resets timing/step/call/aux counters, clears the reset flag,
* and, when GIF playback support is enabled, ends any ongoing image playback.
*
* Note: this routine is safe to call only when no effect mode is currently
* running for the segment — effect code may access the data/pixel buffers. */
* If reset of this segment was requested, clears runtime
* settings of this segment.
* Must not be called while an effect mode function is running
* because it could access the data buffer and this method
* may free that data buffer.
*/
void Segment::resetIfRequired() {
if (!reset || !isActive()) return;
//DEBUG_PRINTF_P(PSTR("-- Segment reset: %p\n"), this);
@@ -220,31 +218,9 @@ void Segment::resetIfRequired() {
#endif
}
/**
* @brief Selects and loads a palette into the supplied CRGBPalette16.
*
* Loads a palette identified by the numeric index `pal` into `targetPalette`.
* Supported palette sources (by index):
* - 0: the effect/default palette (resolved from _default_palette)
* - 1: runtime-random palette
* - 25: palettes derived from this segment's color slots (primary/secondary/tertiary combinations)
* - fastLED and built-in gradient palettes: mapped from the next contiguous index range
* - custom palettes: addressed from the high end (255, 254, ...) and stored in customPalettes
*
* If `pal` is outside the valid range for built-in/gradient/fastled indices it will be treated as 0
* (the default palette). When a custom palette index is selected it is loaded from customPalettes.
*
* @param targetPalette Palette object to populate (returned by reference).
* @param pal Numeric palette index selecting the source and layout (see summary above).
* @return CRGBPalette16& Reference to the populated `targetPalette`.
*/
CRGBPalette16 &Segment::loadPalette(CRGBPalette16 &targetPalette, uint8_t pal) {
// there is one randomy generated palette (1) followed by 4 palettes created from segment colors (2-5)
// those are followed by 7 fastled palettes (6-12) and 59 gradient palettes (13-71)
// then come the custom palettes (255,254,...) growing downwards from 255 (255 being 1st custom palette)
// palette 0 is a varying palette depending on effect and may be replaced by segment's color if so
// instructed in color_from_palette()
if (pal > FIXED_PALETTE_COUNT && pal < 255-customPalettes.size()+1) pal = 0; // out of bounds palette
if (pal < 245 && pal > GRADIENT_PALETTE_COUNT+13) pal = 0;
if (pal > 245 && (customPalettes.size() == 0 || 255U-pal > customPalettes.size()-1)) pal = 0;
//default palette. Differs depending on effect
if (pal == 0) pal = _default_palette; // _default_palette is set in setMode()
switch (pal) {
@@ -280,13 +256,13 @@ CRGBPalette16 &Segment::loadPalette(CRGBPalette16 &targetPalette, uint8_t pal) {
}
break;}
default: //progmem palettes
if (pal > 255 - customPalettes.size()) {
if (pal>245) {
targetPalette = customPalettes[255-pal]; // we checked bounds above
} else if (pal < DYNAMIC_PALETTE_COUNT+FASTLED_PALETTE_COUNT+1) { // palette 6 - 12, fastled palettes
targetPalette = *fastledPalettes[pal-DYNAMIC_PALETTE_COUNT-1];
} else if (pal < 13) { // palette 6 - 12, fastled palettes
targetPalette = *fastledPalettes[pal-6];
} else {
byte tcp[72];
memcpy_P(tcp, (byte*)pgm_read_dword(&(gGradientPalettes[pal-(DYNAMIC_PALETTE_COUNT+FASTLED_PALETTE_COUNT)-1])), 72);
memcpy_P(tcp, (byte*)pgm_read_dword(&(gGradientPalettes[pal-13])), 72);
targetPalette.loadDynamicGradientPalette(tcp);
}
break;
@@ -306,7 +282,6 @@ void Segment::startTransition(uint16_t dur, bool segmentCopy) {
_t->_oldSegment = new(std::nothrow) Segment(*this); // store/copy current segment settings
_t->_start = millis(); // restart countdown
_t->_dur = dur;
_t->_prevPaletteBlends = 0;
if (_t->_oldSegment) {
_t->_oldSegment->palette = _t->_palette; // restore original palette and colors (from start of transition)
for (unsigned i = 0; i < NUM_COLORS; i++) _t->_oldSegment->colors[i] = _t->_colors[i];
@@ -393,7 +368,6 @@ void Segment::beginDraw(uint16_t prog) {
// minimum blend time is 100ms maximum is 65535ms
#ifndef WLED_SAVE_RAM
unsigned noOfBlends = ((255U * prog) / 0xFFFFU) - _t->_prevPaletteBlends;
if(noOfBlends > 255) noOfBlends = 255; // safety check
for (unsigned i = 0; i < noOfBlends; i++, _t->_prevPaletteBlends++) nblendPaletteTowardPalette(_t->_palT, Segment::_currentPalette, 48);
Segment::_currentPalette = _t->_palT; // copy transitioning/temporary palette
#else
@@ -553,24 +527,6 @@ Segment &Segment::setOption(uint8_t n, bool val) {
return *this;
}
/**
* @brief Set the effect (mode) for this segment.
*
* Sets the segment's mode to the first non-reserved effect at or after the
* provided index, optionally loading the effect's default parameters. If the
* new mode differs from the current one, a transition is started (a segment
* copy is created), the mode-specific defaults and palette are applied when
* requested, and the segment is marked for reset and state broadcast.
*
* @param fx Index of the desired effect/mode. If this index points to a
* reserved mode the next non-reserved mode is used. If the index is
* out of range the solid mode (index 0) is selected.
* @param loadDefaults When true, extract and apply the effect's default
* parameters (speed, intensity, custom values, mapping
* flags, sound simulation, mirror/reverse flags, etc.)
* and set the palette default when present.
* @return Segment& Reference to this segment (allows chaining).
*/
Segment &Segment::setMode(uint8_t fx, bool loadDefaults) {
// skip reserved
while (fx < strip.getModeCount() && strncmp_P("RSVD", strip.getModeData(fx), 4) == 0) fx++;
@@ -607,21 +563,9 @@ Segment &Segment::setMode(uint8_t fx, bool loadDefaults) {
return *this;
}
/**
* @brief Set the segment's palette by index.
*
* Validates the supplied palette index and, if it differs from the current
* palette, begins a palette transition and marks the segment's state as
* changed so the new palette is propagated to clients/hardware.
*
* If the provided index is outside the range of built-in or custom palettes,
* it is normalized to 0.
*
* @param pal Palette index (may be adjusted to a valid value).
* @return Segment& Reference to this segment (for chaining).
*/
Segment &Segment::setPalette(uint8_t pal) {
if (pal <= 255-customPalettes.size() && pal > FIXED_PALETTE_COUNT) pal = 0; // not built in palette or custom palette
if (pal < 245 && pal > GRADIENT_PALETTE_COUNT+13) pal = 0; // built in palettes
if (pal > 245 && (customPalettes.size() == 0 || 255U-pal > customPalettes.size()-1)) pal = 0; // custom palettes
if (pal != palette) {
//DEBUG_PRINTF_P(PSTR("- Starting palette transition: %d\n"), pal);
startTransition(strip.getTransition(), blendingStyle != BLEND_STYLE_FADE); // start transition prior to change (no need to copy segment)
@@ -1141,14 +1085,27 @@ void Segment::blur(uint8_t blur_amount, bool smear) const {
/*
* Put a value 0 to 255 in to get a color value.
* The colours are a transition r -> g -> b -> back to r
* Rotates the color in HSV space, where pos is H. (0=0deg, 256=360deg)
* Inspired by the Adafruit examples.
*/
uint32_t Segment::color_wheel(uint8_t pos) const {
if (palette) return color_from_palette(pos, false, false, 0); // only wrap if "always wrap" is set
if (palette) return color_from_palette(pos, false, false, 0); // never wrap palette
uint8_t w = W(getCurrentColor(0));
uint32_t rgb;
hsv2rgb(CHSV32(static_cast<uint16_t>(pos << 8), 255, 255), rgb);
return rgb | (w << 24); // add white channel
pos = 255 - pos;
if (useRainbowWheel) {
CRGB rgb;
hsv2rgb_rainbow(CHSV(pos, 255, 255), rgb);
return RGBW32(rgb.r, rgb.g, rgb.b, w);
} else {
if (pos < 85) {
return RGBW32((255 - pos * 3), 0, (pos * 3), w);
} else if (pos < 170) {
pos -= 85;
return RGBW32(0, (pos * 3), (255 - pos * 3), w);
} else {
pos -= 170;
return RGBW32((pos * 3), (255 - pos * 3), 0, w);
}
}
}
/*
@@ -1248,9 +1205,8 @@ void WS2812FX::finalizeInit() {
if (busEnd > _length) _length = busEnd;
// This must be done after all buses have been created, as some kinds (parallel I2S) interact
bus->begin();
bus->setBrightness(scaledBri(bri));
bus->setBrightness(bri);
}
BusManager::initializeABL(); // init brightness limiter
DEBUG_PRINTF_P(PSTR("Heap after buses: %d\n"), ESP.getFreeHeap());
Segment::maxWidth = _length;
@@ -1352,7 +1308,7 @@ static uint8_t _add (uint8_t a, uint8_t b) { unsigned t = a + b; return t
static uint8_t _subtract (uint8_t a, uint8_t b) { return b > a ? (b - a) : 0; }
static uint8_t _difference(uint8_t a, uint8_t b) { return b > a ? (b - a) : (a - b); }
static uint8_t _average (uint8_t a, uint8_t b) { return (a + b) >> 1; }
#if defined(ESP8266) || defined(CONFIG_IDF_TARGET_ESP32C3)
#ifdef CONFIG_IDF_TARGET_ESP32C3
static uint8_t _multiply (uint8_t a, uint8_t b) { return ((a * b) + 255) >> 8; } // faster than division on C3 but slightly less accurate
#else
static uint8_t _multiply (uint8_t a, uint8_t b) { return (a * b) / 255; } // origianl uses a & b in range [0,1]
@@ -1363,10 +1319,10 @@ static uint8_t _darken (uint8_t a, uint8_t b) { return a < b ? a : b; }
static uint8_t _screen (uint8_t a, uint8_t b) { return 255 - _multiply(~a,~b); } // 255 - (255-a)*(255-b)/255
static uint8_t _overlay (uint8_t a, uint8_t b) { return b < 128 ? 2 * _multiply(a,b) : (255 - 2 * _multiply(~a,~b)); }
static uint8_t _hardlight (uint8_t a, uint8_t b) { return a < 128 ? 2 * _multiply(a,b) : (255 - 2 * _multiply(~a,~b)); }
#if defined(ESP8266) || defined(CONFIG_IDF_TARGET_ESP32C3)
static uint8_t _softlight (uint8_t a, uint8_t b) { return (((b * b * (255 - 2 * a))) + ((2 * a * b + 256) << 8)) >> 16; } // Pegtop's formula (1 - 2a)b^2
#ifdef CONFIG_IDF_TARGET_ESP32C3
static uint8_t _softlight (uint8_t a, uint8_t b) { return (((b * b * (255 - 2 * a) + 255) >> 8) + 2 * a * b + 255) >> 8; } // Pegtop's formula (1 - 2a)b^2 + 2ab
#else
static uint8_t _softlight (uint8_t a, uint8_t b) { return (b * b * (255 - 2 * a) + 255 * 2 * a * b) / (255 * 255); } // Pegtop's formula (1 - 2a)b^2 + 2ab
static uint8_t _softlight (uint8_t a, uint8_t b) { return (b * b * (255 - 2 * a) / 255 + 2 * a * b) / 255; } // Pegtop's formula (1 - 2a)b^2 + 2ab
#endif
static uint8_t _dodge (uint8_t a, uint8_t b) { return _divide(~a,b); }
static uint8_t _burn (uint8_t a, uint8_t b) { return ~_divide(a,~b); }
@@ -1397,6 +1353,11 @@ void WS2812FX::blendSegment(const Segment &topSegment) const {
uint8_t opacity = topSegment.currentBri(); // returns transitioned opacity for style FADE
uint8_t cct = topSegment.currentCCT();
if (length == 1) {
// Can't blend only a single pixel, prevents crash when bus init fails
return;
}
Segment::setClippingRect(0, 0); // disable clipping by default
const unsigned dw = (blendingStyle==BLEND_STYLE_OUTSIDE_IN ? progInv : progress) * width / 0xFFFFU + 1;
@@ -1605,6 +1566,66 @@ void WS2812FX::blendSegment(const Segment &topSegment) const {
Segment::setClippingRect(0, 0); // disable clipping for overlays
}
// To disable brightness limiter we either set output max current to 0 or single LED current to 0
static uint8_t estimateCurrentAndLimitBri(uint8_t brightness, uint32_t *pixels) {
unsigned milliAmpsMax = BusManager::ablMilliampsMax();
if (milliAmpsMax > 0) {
unsigned milliAmpsTotal = 0;
unsigned avgMilliAmpsPerLED = 0;
unsigned lengthDigital = 0;
bool useWackyWS2815PowerModel = false;
for (size_t i = 0; i < BusManager::getNumBusses(); i++) {
const Bus *bus = BusManager::getBus(i);
if (!(bus && bus->isDigital() && bus->isOk())) continue;
unsigned maPL = bus->getLEDCurrent();
if (maPL == 0 || bus->getMaxCurrent() > 0) continue; // skip buses with 0 mA per LED or max current per bus defined (PP-ABL)
if (maPL == 255) {
useWackyWS2815PowerModel = true;
maPL = 12; // WS2815 uses 12mA per channel
}
avgMilliAmpsPerLED += maPL * bus->getLength();
lengthDigital += bus->getLength();
// sum up the usage of each LED on digital bus
uint32_t busPowerSum = 0;
for (unsigned j = 0; j < bus->getLength(); j++) {
uint32_t c = pixels[j + bus->getStart()];
byte r = R(c), g = G(c), b = B(c), w = W(c);
if (useWackyWS2815PowerModel) { //ignore white component on WS2815 power calculation
busPowerSum += (max(max(r,g),b)) * 3;
} else {
busPowerSum += (r + g + b + w);
}
}
// RGBW led total output with white LEDs enabled is still 50mA, so each channel uses less
if (bus->hasWhite()) {
busPowerSum *= 3;
busPowerSum >>= 2; //same as /= 4
}
// powerSum has all the values of channels summed (max would be getLength()*765 as white is excluded) so convert to milliAmps
milliAmpsTotal += (busPowerSum * maPL * brightness) / (765*255);
}
if (lengthDigital > 0) {
avgMilliAmpsPerLED /= lengthDigital;
if (milliAmpsMax > MA_FOR_ESP && avgMilliAmpsPerLED > 0) { //0 mA per LED and too low numbers turn off calculation
unsigned powerBudget = (milliAmpsMax - MA_FOR_ESP); //80/120mA for ESP power
if (powerBudget > lengthDigital) { //each LED uses about 1mA in standby, exclude that from power budget
powerBudget -= lengthDigital;
} else {
powerBudget = 0;
}
if (milliAmpsTotal > powerBudget) {
//scale brightness down to stay in current limit
unsigned scaleB = powerBudget * 255 / milliAmpsTotal;
brightness = ((brightness * scaleB) >> 8) + 1;
}
}
}
}
return brightness;
}
void WS2812FX::show() {
if (!_pixels) return; // no pixels allocated, nothing to show
@@ -1632,6 +1653,10 @@ void WS2812FX::show() {
show_callback callback = _callback;
if (callback) callback(); // will call setPixelColor or setRealtimePixelColor
// determine ABL brightness
uint8_t newBri = estimateCurrentAndLimitBri(_brightness, _pixels);
if (newBri != _brightness) BusManager::setBrightness(newBri);
// paint actual pixels
int oldCCT = Bus::getCCT(); // store original CCT value (since it is global)
// when cctFromRgb is true we implicitly calculate WW and CW from RGB values (cct==-1)
@@ -1642,11 +1667,7 @@ void WS2812FX::show() {
if (_pixelCCT) { // cctFromRgb already exluded at allocation
if (i == 0 || _pixelCCT[i-1] != _pixelCCT[i]) BusManager::setSegmentCCT(_pixelCCT[i], correctWB);
}
uint32_t c = _pixels[i]; // need a copy, do not modify _pixels directly (no byte access allowed on ESP32)
if(c > 0 && !(realtimeMode && arlsDisableGammaCorrection))
c = gamma32(c); // apply gamma correction if enabled note: applying gamma after brightness has too much color loss
BusManager::setPixelColor(getMappedPixelIndex(i), c);
BusManager::setPixelColor(getMappedPixelIndex(i), realtimeMode && arlsDisableGammaCorrection ? _pixels[i] : gamma32(_pixels[i]));
}
Bus::setCCT(oldCCT); // restore old CCT for ABL adjustments
@@ -1658,6 +1679,9 @@ void WS2812FX::show() {
// See https://github.com/Makuna/NeoPixelBus/wiki/ESP32-NeoMethods#neoesp32rmt-methods
BusManager::show();
// restore brightness for next frame
if (newBri != _brightness) BusManager::setBrightness(_brightness);
if (diff > 0) { // skip calculation if no time has passed
size_t fpsCurr = (1000 << FPS_CALC_SHIFT) / diff; // fixed point math
_cumulativeFps = (FPS_CALC_AVG * _cumulativeFps + fpsCurr + FPS_CALC_AVG / 2) / (FPS_CALC_AVG + 1); // "+FPS_CALC_AVG/2" for proper rounding
@@ -1722,7 +1746,7 @@ void WS2812FX::setBrightness(uint8_t b, bool direct) {
if (_brightness == 0) { //unfreeze all segments on power off
for (const Segment &seg : _segments) seg.freeze = false; // freeze is mutable
}
BusManager::setBrightness(scaledBri(b));
BusManager::setBrightness(b);
if (!direct) {
unsigned long t = millis();
if (_segments[0].next_time > t + 22 && t - _lastShow > MIN_SHOW_DELAY) trigger(); //apply brightness change immediately if no refresh soon

View File

@@ -1118,7 +1118,7 @@ bool initParticleSystem2D(ParticleSystem2D *&PartSys, uint32_t requestedsources,
allocsuccess = true;
break; // allocation succeeded
}
numparticles = ((numparticles / 2) + 3) & ~0x03; // cut number of particles in half and try again, must be 4 byte aligned
numparticles /= 2; // cut number of particles in half and try again
PSPRINTLN(F("PS 2D alloc failed, trying with less particles..."));
}
if (!allocsuccess) {
@@ -1815,7 +1815,7 @@ bool initParticleSystem1D(ParticleSystem1D *&PartSys, const uint32_t requestedso
allocsuccess = true;
break; // allocation succeeded
}
numparticles = ((numparticles / 2) + 3) & ~0x03; // cut number of particles in half and try again, must be 4 byte aligned
numparticles /= 2; // cut number of particles in half and try again
PSPRINTLN(F("PS 1D alloc failed, trying with less particles..."));
}
if (!allocsuccess) {

View File

@@ -22,7 +22,6 @@
#include "core_esp8266_waveform.h"
#endif
#include "const.h"
#include "colors.h"
#include "pin_manager.h"
#include "bus_manager.h"
#include "bus_wrapper.h"
@@ -145,7 +144,6 @@ BusDigital::BusDigital(const BusConfig &bc, uint8_t nr)
if (!isDigital(bc.type) || !bc.count) { DEBUGBUS_PRINTLN(F("Not digial or empty bus!")); return; }
if (!PinManager::allocatePin(bc.pins[0], true, PinOwner::BusDigital)) { DEBUGBUS_PRINTLN(F("Pin 0 allocated!")); return; }
_frequencykHz = 0U;
_colorSum = 0;
_pins[0] = bc.pins[0];
if (is2Pin(bc.type)) {
if (!PinManager::allocatePin(bc.pins[1], true, PinOwner::BusDigital)) {
@@ -188,62 +186,80 @@ BusDigital::BusDigital(const BusConfig &bc, uint8_t nr)
//Stay safe with high amperage and have a reasonable safety margin!
//I am NOT to be held liable for burned down garages or houses!
// note on ABL implementation:
// ABL is set up in finalizeInit()
// scaled color channels are summed in BusDigital::setPixelColor()
// the used current is estimated and limited in BusManager::show()
// if limit is set too low, brightness is limited to 1 to at least show some light
// to disable brightness limiter for a bus, set LED current to 0
// To disable brightness limiter we either set output max current to 0 or single LED current to 0
uint8_t BusDigital::estimateCurrentAndLimitBri() const {
bool useWackyWS2815PowerModel = false;
byte actualMilliampsPerLed = _milliAmpsPerLed;
if (_milliAmpsMax < MA_FOR_ESP/BusManager::getNumBusses() || actualMilliampsPerLed == 0) { //0 mA per LED and too low numbers turn off calculation
return _bri;
}
void BusDigital::estimateCurrent() {
uint32_t actualMilliampsPerLed = _milliAmpsPerLed;
if (_milliAmpsPerLed == 255) {
// use wacky WS2815 power model, see WLED issue #549
_colorSum *= 3; // sum is sum of max value for each color, need to multiply by three to account for clrUnitsPerChannel being 3*255
useWackyWS2815PowerModel = true;
actualMilliampsPerLed = 12; // from testing an actual strip
}
// _colorSum has all the values of color channels summed, max would be getLength()*(3*255 + (255 if hasWhite()): convert to milliAmps
uint32_t clrUnitsPerChannel = hasWhite() ? 4*255 : 3*255;
_milliAmpsTotal = ((uint64_t)_colorSum * actualMilliampsPerLed) / clrUnitsPerChannel + getLength(); // add 1mA standby current per LED to total (WS2812: ~0.7mA, WS2815: ~2mA)
}
void BusDigital::applyBriLimit(uint8_t newBri) {
// a newBri of 0 means calculate per-bus brightness limit
if (newBri == 0) {
if (_milliAmpsLimit == 0 || _milliAmpsTotal == 0) return; // ABL not used for this bus
newBri = 255;
unsigned powerBudget = (_milliAmpsMax - MA_FOR_ESP/BusManager::getNumBusses()); //80/120mA for ESP power
if (powerBudget > getLength()) { //each LED uses about 1mA in standby, exclude that from power budget
powerBudget -= getLength();
} else {
powerBudget = 0;
}
if (_milliAmpsLimit > getLength()) { // each LED uses about 1mA in standby
if (_milliAmpsTotal > _milliAmpsLimit) {
// scale brightness down to stay in current limit
newBri = ((uint32_t)_milliAmpsLimit * 255) / _milliAmpsTotal + 1; // +1 to avoid 0 brightness
_milliAmpsTotal = _milliAmpsLimit;
}
uint32_t busPowerSum = 0;
for (unsigned i = 0; i < getLength(); i++) { //sum up the usage of each LED
uint32_t c = getPixelColor(i); // always returns original or restored color without brightness scaling
byte r = R(c), g = G(c), b = B(c), w = W(c);
if (useWackyWS2815PowerModel) { //ignore white component on WS2815 power calculation
busPowerSum += (max(max(r,g),b)) * 3;
} else {
newBri = 1; // limit too low, set brightness to 1, this will dim down all colors to minimum since we use video scaling
_milliAmpsTotal = getLength(); // estimate bus current as minimum
busPowerSum += (r + g + b + w);
}
}
if (newBri < 255) {
uint8_t cctWW = 0, cctCW = 0;
unsigned hwLen = _len;
if (_type == TYPE_WS2812_1CH_X3) hwLen = NUM_ICS_WS2812_1CH_3X(_len); // only needs a third of "RGB" LEDs for NeoPixelBus
for (unsigned i = 0; i < hwLen; i++) {
uint8_t co = _colorOrderMap.getPixelColorOrder(i+_start, _colorOrder); // need to revert color order for correct color scaling and CCT calc in case white is swapped
uint32_t c = PolyBus::getPixelColor(_busPtr, _iType, i, co);
c = color_fade(c, newBri, true); // apply additional dimming note: using inline version is a bit faster but overhead of getPixelColor() dominates the speed impact by far
if (hasCCT()) Bus::calculateCCT(c, cctWW, cctCW);
PolyBus::setPixelColor(_busPtr, _iType, i, c, co, (cctCW<<8) | cctWW); // repaint all pixels with new brightness
}
if (hasWhite()) { //RGBW led total output with white LEDs enabled is still 50mA, so each channel uses less
busPowerSum *= 3;
busPowerSum >>= 2; //same as /= 4
}
_colorSum = 0; // reset for next frame
// powerSum has all the values of channels summed (max would be getLength()*765 as white is excluded) so convert to milliAmps
BusDigital::_milliAmpsTotal = (busPowerSum * actualMilliampsPerLed * _bri) / (765*255);
uint8_t newBri = _bri;
if (BusDigital::_milliAmpsTotal > powerBudget) {
//scale brightness down to stay in current limit
unsigned scaleB = powerBudget * 255 / BusDigital::_milliAmpsTotal;
newBri = (_bri * scaleB) / 256 + 1;
BusDigital::_milliAmpsTotal = powerBudget;
//_milliAmpsTotal = (busPowerSum * actualMilliampsPerLed * newBri) / (765*255);
}
return newBri;
}
void BusDigital::show() {
BusDigital::_milliAmpsTotal = 0;
if (!_valid) return;
uint8_t cctWW = 0, cctCW = 0;
unsigned newBri = estimateCurrentAndLimitBri(); // will fill _milliAmpsTotal (TODO: could use PolyBus::CalcTotalMilliAmpere())
if (newBri < _bri) {
PolyBus::setBrightness(_busPtr, _iType, newBri); // limit brightness to stay within current limits
unsigned hwLen = _len;
if (_type == TYPE_WS2812_1CH_X3) hwLen = NUM_ICS_WS2812_1CH_3X(_len); // only needs a third of "RGB" LEDs for NeoPixelBus
for (unsigned i = 0; i < hwLen; i++) {
// use 0 as color order, actual order does not matter here as we just update the channel values as-is
uint32_t c = restoreColorLossy(PolyBus::getPixelColor(_busPtr, _iType, i, 0), _bri);
if (hasCCT()) Bus::calculateCCT(c, cctWW, cctCW); // this will unfortunately corrupt (segment) CCT data on every bus
PolyBus::setPixelColor(_busPtr, _iType, i, c, 0, (cctCW<<8) | cctWW); // repaint all pixels with new brightness
}
}
PolyBus::show(_busPtr, _iType, _skip); // faster if buffer consistency is not important (no skipped LEDs)
// restore bus brightness to its original value
// this is done right after show, so this is only OK if LED updates are completed before show() returns
// or async show has a separate buffer (ESP32 RMT and I2S are ok)
if (newBri < _bri) PolyBus::setBrightness(_busPtr, _iType, _bri);
}
bool BusDigital::canShow() const {
@@ -251,6 +267,12 @@ bool BusDigital::canShow() const {
return PolyBus::canShow(_busPtr, _iType);
}
void BusDigital::setBrightness(uint8_t b) {
if (_bri == b) return;
Bus::setBrightness(b);
PolyBus::setBrightness(_busPtr, _iType, b);
}
//If LEDs are skipped, it is possible to use the first as a status LED.
//TODO only show if no new show due in the next 50ms
void BusDigital::setStatusPixel(uint32_t c) {
@@ -264,25 +286,13 @@ void IRAM_ATTR BusDigital::setPixelColor(unsigned pix, uint32_t c) {
if (!_valid) return;
if (hasWhite()) c = autoWhiteCalc(c);
if (Bus::_cct >= 1900) c = colorBalanceFromKelvin(Bus::_cct, c); //color correction from CCT
c = color_fade(c, _bri, true); // apply brightness
if (BusManager::_useABL) {
// if using ABL, sum all color channels to estimate current and limit brightness in show()
uint8_t r = R(c), g = G(c), b = B(c);
if (_milliAmpsPerLed < 255) { // normal ABL
_colorSum += r + g + b + W(c);
} else { // wacky WS2815 power model, ignore white channel, use max of RGB (issue #549)
_colorSum += ((r > g) ? ((r > b) ? r : b) : ((g > b) ? g : b));
}
}
if (_reversed) pix = _len - pix -1;
pix += _skip;
const uint8_t co = _colorOrderMap.getPixelColorOrder(pix+_start, _colorOrder);
unsigned co = _colorOrderMap.getPixelColorOrder(pix+_start, _colorOrder);
if (_type == TYPE_WS2812_1CH_X3) { // map to correct IC, each controls 3 LEDs
unsigned pOld = pix;
pix = IC_INDEX_WS2812_1CH_3X(pix);
uint32_t cOld = PolyBus::getPixelColor(_busPtr, _iType, pix, co);
uint32_t cOld = restoreColorLossy(PolyBus::getPixelColor(_busPtr, _iType, pix, co),_bri);
switch (pOld % 3) { // change only the single channel (TODO: this can cause loss because of get/set)
case 0: c = RGBW32(R(cOld), W(c) , B(cOld), 0); break;
case 1: c = RGBW32(W(c) , G(cOld), B(cOld), 0); break;
@@ -299,17 +309,17 @@ void IRAM_ATTR BusDigital::setPixelColor(unsigned pix, uint32_t c) {
PolyBus::setPixelColor(_busPtr, _iType, pix, c, co, wwcw);
}
// returns lossly restored color from bus
// returns original color if global buffering is enabled, else returns lossly restored color from bus
uint32_t IRAM_ATTR BusDigital::getPixelColor(unsigned pix) const {
if (!_valid) return 0;
if (_reversed) pix = _len - pix -1;
pix += _skip;
const uint8_t co = _colorOrderMap.getPixelColorOrder(pix+_start, _colorOrder);
const unsigned co = _colorOrderMap.getPixelColorOrder(pix+_start, _colorOrder);
uint32_t c = restoreColorLossy(PolyBus::getPixelColor(_busPtr, _iType, (_type==TYPE_WS2812_1CH_X3) ? IC_INDEX_WS2812_1CH_3X(pix) : pix, co),_bri);
if (_type == TYPE_WS2812_1CH_X3) { // map to correct IC, each controls 3 LEDs
uint8_t r = R(c);
uint8_t g = _reversed ? B(c) : G(c); // should G and B be switched if _reversed?
uint8_t b = _reversed ? G(c) : B(c);
unsigned r = R(c);
unsigned g = _reversed ? B(c) : G(c); // should G and B be switched if _reversed?
unsigned b = _reversed ? G(c) : B(c);
switch (pix % 3) { // get only the single channel
case 0: c = RGBW32(g, g, g, g); break;
case 1: c = RGBW32(r, r, r, r); break;
@@ -461,7 +471,10 @@ void BusPwm::setPixelColor(unsigned pix, uint32_t c) {
if (Bus::_cct >= 1900 && (_type == TYPE_ANALOG_3CH || _type == TYPE_ANALOG_4CH)) {
c = colorBalanceFromKelvin(Bus::_cct, c); //color correction from CCT
}
uint8_t r = R(c), g = G(c), b = B(c), w = W(c);
uint8_t r = R(c);
uint8_t g = G(c);
uint8_t b = B(c);
uint8_t w = W(c);
switch (_type) {
case TYPE_ANALOG_1CH: //one channel (white), relies on auto white calculation
@@ -636,7 +649,10 @@ BusOnOff::BusOnOff(const BusConfig &bc)
void BusOnOff::setPixelColor(unsigned pix, uint32_t c) {
if (pix != 0 || !_valid) return; //only react to first pixel
c = autoWhiteCalc(c);
uint8_t r = R(c), g = G(c), b = B(c), w = W(c);
uint8_t r = R(c);
uint8_t g = G(c);
uint8_t b = B(c);
uint8_t w = W(c);
_data = bool(r|g|b|w) && bool(_bri) ? 0xFF : 0;
}
@@ -948,13 +964,13 @@ void BusManager::off() {
#ifdef ESP32_DATA_IDLE_HIGH
esp32RMTInvertIdle();
#endif
_gMilliAmpsUsed = 0; // reset, assume no LED idle current if relay is off
}
void BusManager::show() {
applyABL(); // apply brightness limit, updates _gMilliAmpsUsed
_gMilliAmpsUsed = 0;
for (auto &bus : busses) {
bus->show();
_gMilliAmpsUsed += bus->getUsedCurrent();
}
}
@@ -987,85 +1003,6 @@ bool BusManager::canAllShow() {
return true;
}
void BusManager::initializeABL() {
_useABL = false; // reset
if (_gMilliAmpsMax > 0) {
// check global brightness limit
for (auto &bus : busses) {
if (bus->isDigital() && bus->getLEDCurrent() > 0) {
_useABL = true; // at least one bus has valid LED current
return;
}
}
} else {
// check per bus brightness limit
unsigned numABLbuses = 0;
for (auto &bus : busses) {
if (bus->isDigital() && bus->getLEDCurrent() > 0 && bus->getMaxCurrent() > 0)
numABLbuses++; // count ABL enabled buses
}
if (numABLbuses > 0) {
_useABL = true; // at least one bus has ABL set
uint32_t ESPshare = MA_FOR_ESP / numABLbuses; // share of ESP current per ABL bus
for (auto &bus : busses) {
if (bus->isDigital()) {
BusDigital &busd = static_cast<BusDigital&>(*bus);
uint32_t busLength = busd.getLength();
uint32_t busDemand = busLength * busd.getLEDCurrent();
uint32_t busMax = busd.getMaxCurrent();
if (busMax > ESPshare) busMax -= ESPshare;
if (busMax < busLength) busMax = busLength; // give each LED 1mA, ABL will dim down to minimum
if (busDemand == 0) busMax = 0; // no LED current set, disable ABL for this bus
busd.setCurrentLimit(busMax);
}
}
}
}
}
void BusManager::applyABL() {
if (_useABL) {
unsigned milliAmpsSum = 0; // use temporary variable to always return a valid _gMilliAmpsUsed to UI
unsigned totalLEDs = 0;
for (auto &bus : busses) {
if (bus->isDigital() && bus->isOk()) {
BusDigital &busd = static_cast<BusDigital&>(*bus);
busd.estimateCurrent(); // sets _milliAmpsTotal, current is estimated for all buses even if they have the limit set to 0
if (_gMilliAmpsMax == 0)
busd.applyBriLimit(0); // apply per bus ABL limit, updates _milliAmpsTotal if limit reached
milliAmpsSum += busd.getUsedCurrent();
totalLEDs += busd.getLength(); // sum total number of LEDs for global Limit
}
}
// check global current limit and apply global ABL limit, total current is summed above
if (_gMilliAmpsMax > 0) {
uint8_t newBri = 255;
uint32_t globalMax = _gMilliAmpsMax > MA_FOR_ESP ? _gMilliAmpsMax - MA_FOR_ESP : 1; // subtract ESP current consumption, fully limit if too low
if (globalMax > totalLEDs) { // check if budget is larger than standby current
if (milliAmpsSum > globalMax) {
newBri = globalMax * 255 / milliAmpsSum + 1; // scale brightness down to stay in current limit, +1 to avoid 0 brightness
milliAmpsSum = globalMax; // update total used current
}
} else {
newBri = 1; // limit too low, set brightness to minimum
milliAmpsSum = totalLEDs; // estimate total used current as minimum
}
// apply brightness limit to each bus, if its 255 it will only reset _colorSum
for (auto &bus : busses) {
if (bus->isDigital() && bus->isOk()) {
BusDigital &busd = static_cast<BusDigital&>(*bus);
if (busd.getLEDCurrent() > 0) // skip buses with LED current set to 0
busd.applyBriLimit(newBri);
}
}
}
_gMilliAmpsUsed = milliAmpsSum;
}
else
_gMilliAmpsUsed = 0; // reset, we have no current estimation without ABL
}
ColorOrderMap& BusManager::getColorOrderMap() { return _colorOrderMap; }
@@ -1081,4 +1018,3 @@ uint16_t BusDigital::_milliAmpsTotal = 0;
std::vector<std::unique_ptr<Bus>> BusManager::busses;
uint16_t BusManager::_gMilliAmpsUsed = 0;
uint16_t BusManager::_gMilliAmpsMax = ABL_MILLIAMPS_DEFAULT;
bool BusManager::_useABL = false;

View File

@@ -238,6 +238,7 @@ class BusDigital : public Bus {
void show() override;
bool canShow() const override;
void setBrightness(uint8_t b) override;
void setStatusPixel(uint32_t c) override;
[[gnu::hot]] void setPixelColor(unsigned pix, uint32_t c) override;
void setColorOrder(uint8_t colorOrder) override;
@@ -249,9 +250,6 @@ class BusDigital : public Bus {
uint16_t getLEDCurrent() const override { return _milliAmpsPerLed; }
uint16_t getUsedCurrent() const override { return _milliAmpsTotal; }
uint16_t getMaxCurrent() const override { return _milliAmpsMax; }
void setCurrentLimit(uint16_t milliAmps) { _milliAmpsLimit = milliAmps; }
void estimateCurrent(); // estimate used current from summed colors
void applyBriLimit(uint8_t newBri);
size_t getBusSize() const override;
void begin() override;
void cleanup();
@@ -264,10 +262,8 @@ class BusDigital : public Bus {
uint8_t _pins[2];
uint8_t _iType;
uint16_t _frequencykHz;
uint16_t _milliAmpsMax;
uint8_t _milliAmpsPerLed;
uint16_t _milliAmpsLimit;
uint32_t _colorSum; // total color value for the bus, updated in setPixelColor(), used to estimate current
uint16_t _milliAmpsMax;
void *_busPtr;
static uint16_t _milliAmpsTotal; // is overwitten/recalculated on each show()
@@ -282,6 +278,8 @@ class BusDigital : public Bus {
}
return c;
}
uint8_t estimateCurrentAndLimitBri() const;
};
@@ -424,8 +422,8 @@ struct BusConfig {
};
// milliamps used by ESP (for power estimation)
// you can set it to 0 if the ESP is powered by USB and the LEDs by external
//fine tune power estimation constants for your setup
//you can set it to 0 if the ESP is powered by USB and the LEDs by external
#ifndef MA_FOR_ESP
#ifdef ESP8266
#define MA_FOR_ESP 80 //how much mA does the ESP use (Wemos D1 about 80mA)
@@ -440,7 +438,6 @@ namespace BusManager {
//extern std::vector<Bus*> busses;
extern uint16_t _gMilliAmpsUsed;
extern uint16_t _gMilliAmpsMax;
extern bool _useABL;
#ifdef ESP32_DATA_IDLE_HIGH
void esp32RMTInvertIdle() ;
@@ -456,8 +453,6 @@ namespace BusManager {
//inline uint16_t ablMilliampsMax() { unsigned sum = 0; for (auto &bus : busses) sum += bus->getMaxCurrent(); return sum; }
inline uint16_t ablMilliampsMax() { return _gMilliAmpsMax; } // used for compatibility reasons (and enabling virtual global ABL)
inline void setMilliampsMax(uint16_t max) { _gMilliAmpsMax = max;}
void initializeABL(); // setup automatic brightness limiter parameters, call once after buses are initialized
void applyABL(); // apply automatic brightness limiter, global or per bus
void useParallelOutput(); // workaround for inaccessible PolyBus
bool hasParallelOutput(); // workaround for inaccessible PolyBus

View File

@@ -3,7 +3,7 @@
#define BusWrapper_h
//#define NPB_CONF_4STEP_CADENCE
#include "NeoPixelBus.h"
#include "NeoPixelBusLg.h"
//Hardware SPI Pins
#define P_8266_HS_MOSI 13
@@ -141,65 +141,65 @@
/*** ESP8266 Neopixel methods ***/
#ifdef ESP8266
//RGB
#define B_8266_U0_NEO_3 NeoPixelBus<NeoGrbFeature, NeoEsp8266Uart0Ws2813Method> //3 chan, esp8266, gpio1
#define B_8266_U1_NEO_3 NeoPixelBus<NeoGrbFeature, NeoEsp8266Uart1Ws2813Method> //3 chan, esp8266, gpio2
#define B_8266_DM_NEO_3 NeoPixelBus<NeoGrbFeature, NeoEsp8266Dma800KbpsMethod> //3 chan, esp8266, gpio3
#define B_8266_BB_NEO_3 NeoPixelBus<NeoGrbFeature, NeoEsp8266BitBang800KbpsMethod> //3 chan, esp8266, bb (any pin but 16)
#define B_8266_U0_NEO_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp8266Uart0Ws2813Method, NeoGammaNullMethod> //3 chan, esp8266, gpio1
#define B_8266_U1_NEO_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp8266Uart1Ws2813Method, NeoGammaNullMethod> //3 chan, esp8266, gpio2
#define B_8266_DM_NEO_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp8266Dma800KbpsMethod, NeoGammaNullMethod> //3 chan, esp8266, gpio3
#define B_8266_BB_NEO_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp8266BitBang800KbpsMethod, NeoGammaNullMethod> //3 chan, esp8266, bb (any pin but 16)
//RGBW
#define B_8266_U0_NEO_4 NeoPixelBus<NeoGrbwFeature, NeoEsp8266Uart0Ws2813Method> //4 chan, esp8266, gpio1
#define B_8266_U1_NEO_4 NeoPixelBus<NeoGrbwFeature, NeoEsp8266Uart1Ws2813Method> //4 chan, esp8266, gpio2
#define B_8266_DM_NEO_4 NeoPixelBus<NeoGrbwFeature, NeoEsp8266Dma800KbpsMethod> //4 chan, esp8266, gpio3
#define B_8266_BB_NEO_4 NeoPixelBus<NeoGrbwFeature, NeoEsp8266BitBang800KbpsMethod> //4 chan, esp8266, bb (any pin)
#define B_8266_U0_NEO_4 NeoPixelBusLg<NeoGrbwFeature, NeoEsp8266Uart0Ws2813Method, NeoGammaNullMethod> //4 chan, esp8266, gpio1
#define B_8266_U1_NEO_4 NeoPixelBusLg<NeoGrbwFeature, NeoEsp8266Uart1Ws2813Method, NeoGammaNullMethod> //4 chan, esp8266, gpio2
#define B_8266_DM_NEO_4 NeoPixelBusLg<NeoGrbwFeature, NeoEsp8266Dma800KbpsMethod, NeoGammaNullMethod> //4 chan, esp8266, gpio3
#define B_8266_BB_NEO_4 NeoPixelBusLg<NeoGrbwFeature, NeoEsp8266BitBang800KbpsMethod, NeoGammaNullMethod> //4 chan, esp8266, bb (any pin)
//400Kbps
#define B_8266_U0_400_3 NeoPixelBus<NeoGrbFeature, NeoEsp8266Uart0400KbpsMethod> //3 chan, esp8266, gpio1
#define B_8266_U1_400_3 NeoPixelBus<NeoGrbFeature, NeoEsp8266Uart1400KbpsMethod> //3 chan, esp8266, gpio2
#define B_8266_DM_400_3 NeoPixelBus<NeoGrbFeature, NeoEsp8266Dma400KbpsMethod> //3 chan, esp8266, gpio3
#define B_8266_BB_400_3 NeoPixelBus<NeoGrbFeature, NeoEsp8266BitBang400KbpsMethod> //3 chan, esp8266, bb (any pin)
#define B_8266_U0_400_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp8266Uart0400KbpsMethod, NeoGammaNullMethod> //3 chan, esp8266, gpio1
#define B_8266_U1_400_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp8266Uart1400KbpsMethod, NeoGammaNullMethod> //3 chan, esp8266, gpio2
#define B_8266_DM_400_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp8266Dma400KbpsMethod, NeoGammaNullMethod> //3 chan, esp8266, gpio3
#define B_8266_BB_400_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp8266BitBang400KbpsMethod, NeoGammaNullMethod> //3 chan, esp8266, bb (any pin)
//TM1814 (RGBW)
#define B_8266_U0_TM1_4 NeoPixelBus<NeoWrgbTm1814Feature, NeoEsp8266Uart0Tm1814Method>
#define B_8266_U1_TM1_4 NeoPixelBus<NeoWrgbTm1814Feature, NeoEsp8266Uart1Tm1814Method>
#define B_8266_DM_TM1_4 NeoPixelBus<NeoWrgbTm1814Feature, NeoEsp8266DmaTm1814Method>
#define B_8266_BB_TM1_4 NeoPixelBus<NeoWrgbTm1814Feature, NeoEsp8266BitBangTm1814Method>
#define B_8266_U0_TM1_4 NeoPixelBusLg<NeoWrgbTm1814Feature, NeoEsp8266Uart0Tm1814Method, NeoGammaNullMethod>
#define B_8266_U1_TM1_4 NeoPixelBusLg<NeoWrgbTm1814Feature, NeoEsp8266Uart1Tm1814Method, NeoGammaNullMethod>
#define B_8266_DM_TM1_4 NeoPixelBusLg<NeoWrgbTm1814Feature, NeoEsp8266DmaTm1814Method, NeoGammaNullMethod>
#define B_8266_BB_TM1_4 NeoPixelBusLg<NeoWrgbTm1814Feature, NeoEsp8266BitBangTm1814Method, NeoGammaNullMethod>
//TM1829 (RGB)
#define B_8266_U0_TM2_3 NeoPixelBus<NeoBrgFeature, NeoEsp8266Uart0Tm1829Method>
#define B_8266_U1_TM2_3 NeoPixelBus<NeoBrgFeature, NeoEsp8266Uart1Tm1829Method>
#define B_8266_DM_TM2_3 NeoPixelBus<NeoBrgFeature, NeoEsp8266DmaTm1829Method>
#define B_8266_BB_TM2_3 NeoPixelBus<NeoBrgFeature, NeoEsp8266BitBangTm1829Method>
#define B_8266_U0_TM2_3 NeoPixelBusLg<NeoBrgFeature, NeoEsp8266Uart0Tm1829Method, NeoGammaNullMethod>
#define B_8266_U1_TM2_3 NeoPixelBusLg<NeoBrgFeature, NeoEsp8266Uart1Tm1829Method, NeoGammaNullMethod>
#define B_8266_DM_TM2_3 NeoPixelBusLg<NeoBrgFeature, NeoEsp8266DmaTm1829Method, NeoGammaNullMethod>
#define B_8266_BB_TM2_3 NeoPixelBusLg<NeoBrgFeature, NeoEsp8266BitBangTm1829Method, NeoGammaNullMethod>
//UCS8903
#define B_8266_U0_UCS_3 NeoPixelBus<NeoRgbUcs8903Feature, NeoEsp8266Uart0Ws2813Method> //3 chan, esp8266, gpio1
#define B_8266_U1_UCS_3 NeoPixelBus<NeoRgbUcs8903Feature, NeoEsp8266Uart1Ws2813Method> //3 chan, esp8266, gpio2
#define B_8266_DM_UCS_3 NeoPixelBus<NeoRgbUcs8903Feature, NeoEsp8266Dma800KbpsMethod> //3 chan, esp8266, gpio3
#define B_8266_BB_UCS_3 NeoPixelBus<NeoRgbUcs8903Feature, NeoEsp8266BitBang800KbpsMethod> //3 chan, esp8266, bb (any pin but 16)
#define B_8266_U0_UCS_3 NeoPixelBusLg<NeoRgbUcs8903Feature, NeoEsp8266Uart0Ws2813Method, NeoGammaNullMethod> //3 chan, esp8266, gpio1
#define B_8266_U1_UCS_3 NeoPixelBusLg<NeoRgbUcs8903Feature, NeoEsp8266Uart1Ws2813Method, NeoGammaNullMethod> //3 chan, esp8266, gpio2
#define B_8266_DM_UCS_3 NeoPixelBusLg<NeoRgbUcs8903Feature, NeoEsp8266Dma800KbpsMethod, NeoGammaNullMethod> //3 chan, esp8266, gpio3
#define B_8266_BB_UCS_3 NeoPixelBusLg<NeoRgbUcs8903Feature, NeoEsp8266BitBang800KbpsMethod, NeoGammaNullMethod> //3 chan, esp8266, bb (any pin but 16)
//UCS8904 RGBW
#define B_8266_U0_UCS_4 NeoPixelBus<NeoRgbwUcs8904Feature, NeoEsp8266Uart0Ws2813Method> //4 chan, esp8266, gpio1
#define B_8266_U1_UCS_4 NeoPixelBus<NeoRgbwUcs8904Feature, NeoEsp8266Uart1Ws2813Method> //4 chan, esp8266, gpio2
#define B_8266_DM_UCS_4 NeoPixelBus<NeoRgbwUcs8904Feature, NeoEsp8266Dma800KbpsMethod> //4 chan, esp8266, gpio3
#define B_8266_BB_UCS_4 NeoPixelBus<NeoRgbwUcs8904Feature, NeoEsp8266BitBang800KbpsMethod> //4 chan, esp8266, bb (any pin)
#define B_8266_U0_UCS_4 NeoPixelBusLg<NeoRgbwUcs8904Feature, NeoEsp8266Uart0Ws2813Method, NeoGammaNullMethod> //4 chan, esp8266, gpio1
#define B_8266_U1_UCS_4 NeoPixelBusLg<NeoRgbwUcs8904Feature, NeoEsp8266Uart1Ws2813Method, NeoGammaNullMethod> //4 chan, esp8266, gpio2
#define B_8266_DM_UCS_4 NeoPixelBusLg<NeoRgbwUcs8904Feature, NeoEsp8266Dma800KbpsMethod, NeoGammaNullMethod> //4 chan, esp8266, gpio3
#define B_8266_BB_UCS_4 NeoPixelBusLg<NeoRgbwUcs8904Feature, NeoEsp8266BitBang800KbpsMethod, NeoGammaNullMethod> //4 chan, esp8266, bb (any pin)
//APA106
#define B_8266_U0_APA106_3 NeoPixelBus<NeoRbgFeature, NeoEsp8266Uart0Apa106Method> //3 chan, esp8266, gpio1
#define B_8266_U1_APA106_3 NeoPixelBus<NeoRbgFeature, NeoEsp8266Uart1Apa106Method> //3 chan, esp8266, gpio2
#define B_8266_DM_APA106_3 NeoPixelBus<NeoGrbFeature, NeoEsp8266DmaApa106Method> //3 chan, esp8266, gpio3
#define B_8266_BB_APA106_3 NeoPixelBus<NeoGrbFeature, NeoEsp8266BitBangApa106Method> //3 chan, esp8266, bb (any pin but 16)
#define B_8266_U0_APA106_3 NeoPixelBusLg<NeoRbgFeature, NeoEsp8266Uart0Apa106Method, NeoGammaNullMethod> //3 chan, esp8266, gpio1
#define B_8266_U1_APA106_3 NeoPixelBusLg<NeoRbgFeature, NeoEsp8266Uart1Apa106Method, NeoGammaNullMethod> //3 chan, esp8266, gpio2
#define B_8266_DM_APA106_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp8266DmaApa106Method, NeoGammaNullMethod> //3 chan, esp8266, gpio3
#define B_8266_BB_APA106_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp8266BitBangApa106Method, NeoGammaNullMethod> //3 chan, esp8266, bb (any pin but 16)
//FW1906 GRBCW
#define B_8266_U0_FW6_5 NeoPixelBus<NeoGrbcwxFeature, NeoEsp8266Uart0Ws2813Method> //esp8266, gpio1
#define B_8266_U1_FW6_5 NeoPixelBus<NeoGrbcwxFeature, NeoEsp8266Uart1Ws2813Method> //esp8266, gpio2
#define B_8266_DM_FW6_5 NeoPixelBus<NeoGrbcwxFeature, NeoEsp8266Dma800KbpsMethod> //esp8266, gpio3
#define B_8266_BB_FW6_5 NeoPixelBus<NeoGrbcwxFeature, NeoEsp8266BitBang800KbpsMethod> //esp8266, bb
#define B_8266_U0_FW6_5 NeoPixelBusLg<NeoGrbcwxFeature, NeoEsp8266Uart0Ws2813Method, NeoGammaNullMethod> //esp8266, gpio1
#define B_8266_U1_FW6_5 NeoPixelBusLg<NeoGrbcwxFeature, NeoEsp8266Uart1Ws2813Method, NeoGammaNullMethod> //esp8266, gpio2
#define B_8266_DM_FW6_5 NeoPixelBusLg<NeoGrbcwxFeature, NeoEsp8266Dma800KbpsMethod, NeoGammaNullMethod> //esp8266, gpio3
#define B_8266_BB_FW6_5 NeoPixelBusLg<NeoGrbcwxFeature, NeoEsp8266BitBang800KbpsMethod, NeoGammaNullMethod> //esp8266, bb
//WS2805 GRBCW
#define B_8266_U0_2805_5 NeoPixelBus<NeoGrbwwFeature, NeoEsp8266Uart0Ws2805Method> //esp8266, gpio1
#define B_8266_U1_2805_5 NeoPixelBus<NeoGrbwwFeature, NeoEsp8266Uart1Ws2805Method> //esp8266, gpio2
#define B_8266_DM_2805_5 NeoPixelBus<NeoGrbwwFeature, NeoEsp8266DmaWs2805Method> //esp8266, gpio3
#define B_8266_BB_2805_5 NeoPixelBus<NeoGrbwwFeature, NeoEsp8266BitBangWs2805Method> //esp8266, bb
#define B_8266_U0_2805_5 NeoPixelBusLg<NeoGrbwwFeature, NeoEsp8266Uart0Ws2805Method, NeoGammaNullMethod> //esp8266, gpio1
#define B_8266_U1_2805_5 NeoPixelBusLg<NeoGrbwwFeature, NeoEsp8266Uart1Ws2805Method, NeoGammaNullMethod> //esp8266, gpio2
#define B_8266_DM_2805_5 NeoPixelBusLg<NeoGrbwwFeature, NeoEsp8266DmaWs2805Method, NeoGammaNullMethod> //esp8266, gpio3
#define B_8266_BB_2805_5 NeoPixelBusLg<NeoGrbwwFeature, NeoEsp8266BitBangWs2805Method, NeoGammaNullMethod> //esp8266, bb
//TM1914 (RGB)
#define B_8266_U0_TM1914_3 NeoPixelBus<NeoRgbTm1914Feature, NeoEsp8266Uart0Tm1914Method>
#define B_8266_U1_TM1914_3 NeoPixelBus<NeoRgbTm1914Feature, NeoEsp8266Uart1Tm1914Method>
#define B_8266_DM_TM1914_3 NeoPixelBus<NeoRgbTm1914Feature, NeoEsp8266DmaTm1914Method>
#define B_8266_BB_TM1914_3 NeoPixelBus<NeoRgbTm1914Feature, NeoEsp8266BitBangTm1914Method>
#define B_8266_U0_TM1914_3 NeoPixelBusLg<NeoRgbTm1914Feature, NeoEsp8266Uart0Tm1914Method, NeoGammaNullMethod>
#define B_8266_U1_TM1914_3 NeoPixelBusLg<NeoRgbTm1914Feature, NeoEsp8266Uart1Tm1914Method, NeoGammaNullMethod>
#define B_8266_DM_TM1914_3 NeoPixelBusLg<NeoRgbTm1914Feature, NeoEsp8266DmaTm1914Method, NeoGammaNullMethod>
#define B_8266_BB_TM1914_3 NeoPixelBusLg<NeoRgbTm1914Feature, NeoEsp8266BitBangTm1914Method, NeoGammaNullMethod>
//Sm16825 (RGBWC)
#define B_8266_U0_SM16825_5 NeoPixelBus<NeoRgbwcSm16825eFeature, NeoEsp8266Uart0Ws2813Method>
#define B_8266_U1_SM16825_5 NeoPixelBus<NeoRgbwcSm16825eFeature, NeoEsp8266Uart1Ws2813Method>
#define B_8266_DM_SM16825_5 NeoPixelBus<NeoRgbwcSm16825eFeature, NeoEsp8266Dma800KbpsMethod>
#define B_8266_BB_SM16825_5 NeoPixelBus<NeoRgbwcSm16825eFeature, NeoEsp8266BitBangWs2813Method>
#define B_8266_U0_SM16825_5 NeoPixelBusLg<NeoRgbwcSm16825eFeature, NeoEsp8266Uart0Ws2813Method, NeoGammaNullMethod>
#define B_8266_U1_SM16825_5 NeoPixelBusLg<NeoRgbwcSm16825eFeature, NeoEsp8266Uart1Ws2813Method, NeoGammaNullMethod>
#define B_8266_DM_SM16825_5 NeoPixelBusLg<NeoRgbwcSm16825eFeature, NeoEsp8266Dma800KbpsMethod, NeoGammaNullMethod>
#define B_8266_BB_SM16825_5 NeoPixelBusLg<NeoRgbwcSm16825eFeature, NeoEsp8266BitBangWs2813Method, NeoGammaNullMethod>
#endif
/*** ESP32 Neopixel methods ***/
@@ -245,84 +245,84 @@
#endif
//RGB
#define B_32_RN_NEO_3 NeoPixelBus<NeoGrbFeature, NeoEsp32RmtNWs2812xMethod> // ESP32, S2, S3, C3
//#define B_32_IN_NEO_3 NeoPixelBus<NeoGrbFeature, NeoEsp32I2sNWs2812xMethod> // ESP32 (dynamic I2S selection)
#define B_32_I2_NEO_3 NeoPixelBus<NeoGrbFeature, X1Ws2812xMethod> // ESP32, S2, S3 (automatic I2S selection, see typedef above)
#define B_32_IP_NEO_3 NeoPixelBus<NeoGrbFeature, X8Ws2812xMethod> // parallel I2S (ESP32, S2, S3)
#define B_32_RN_NEO_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp32RmtNWs2812xMethod, NeoGammaNullMethod> // ESP32, S2, S3, C3
//#define B_32_IN_NEO_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp32I2sNWs2812xMethod, NeoGammaNullMethod> // ESP32 (dynamic I2S selection)
#define B_32_I2_NEO_3 NeoPixelBusLg<NeoGrbFeature, X1Ws2812xMethod, NeoGammaNullMethod> // ESP32, S2, S3 (automatic I2S selection, see typedef above)
#define B_32_IP_NEO_3 NeoPixelBusLg<NeoGrbFeature, X8Ws2812xMethod, NeoGammaNullMethod> // parallel I2S (ESP32, S2, S3)
//RGBW
#define B_32_RN_NEO_4 NeoPixelBus<NeoGrbwFeature, NeoEsp32RmtNSk6812Method>
#define B_32_I2_NEO_4 NeoPixelBus<NeoGrbwFeature, X1Sk6812Method>
#define B_32_IP_NEO_4 NeoPixelBus<NeoGrbwFeature, X8Sk6812Method> // parallel I2S
#define B_32_RN_NEO_4 NeoPixelBusLg<NeoGrbwFeature, NeoEsp32RmtNSk6812Method, NeoGammaNullMethod>
#define B_32_I2_NEO_4 NeoPixelBusLg<NeoGrbwFeature, X1Sk6812Method, NeoGammaNullMethod>
#define B_32_IP_NEO_4 NeoPixelBusLg<NeoGrbwFeature, X8Sk6812Method, NeoGammaNullMethod> // parallel I2S
//400Kbps
#define B_32_RN_400_3 NeoPixelBus<NeoGrbFeature, NeoEsp32RmtN400KbpsMethod>
#define B_32_I2_400_3 NeoPixelBus<NeoGrbFeature, X1400KbpsMethod>
#define B_32_IP_400_3 NeoPixelBus<NeoGrbFeature, X8400KbpsMethod> // parallel I2S
#define B_32_RN_400_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp32RmtN400KbpsMethod, NeoGammaNullMethod>
#define B_32_I2_400_3 NeoPixelBusLg<NeoGrbFeature, X1400KbpsMethod, NeoGammaNullMethod>
#define B_32_IP_400_3 NeoPixelBusLg<NeoGrbFeature, X8400KbpsMethod, NeoGammaNullMethod> // parallel I2S
//TM1814 (RGBW)
#define B_32_RN_TM1_4 NeoPixelBus<NeoWrgbTm1814Feature, NeoEsp32RmtNTm1814Method>
#define B_32_I2_TM1_4 NeoPixelBus<NeoWrgbTm1814Feature, X1Tm1814Method>
#define B_32_IP_TM1_4 NeoPixelBus<NeoWrgbTm1814Feature, X8Tm1814Method> // parallel I2S
#define B_32_RN_TM1_4 NeoPixelBusLg<NeoWrgbTm1814Feature, NeoEsp32RmtNTm1814Method, NeoGammaNullMethod>
#define B_32_I2_TM1_4 NeoPixelBusLg<NeoWrgbTm1814Feature, X1Tm1814Method, NeoGammaNullMethod>
#define B_32_IP_TM1_4 NeoPixelBusLg<NeoWrgbTm1814Feature, X8Tm1814Method, NeoGammaNullMethod> // parallel I2S
//TM1829 (RGB)
#define B_32_RN_TM2_3 NeoPixelBus<NeoBrgFeature, NeoEsp32RmtNTm1829Method>
#define B_32_I2_TM2_3 NeoPixelBus<NeoBrgFeature, X1Tm1829Method>
#define B_32_IP_TM2_3 NeoPixelBus<NeoBrgFeature, X8Tm1829Method> // parallel I2S
#define B_32_RN_TM2_3 NeoPixelBusLg<NeoBrgFeature, NeoEsp32RmtNTm1829Method, NeoGammaNullMethod>
#define B_32_I2_TM2_3 NeoPixelBusLg<NeoBrgFeature, X1Tm1829Method, NeoGammaNullMethod>
#define B_32_IP_TM2_3 NeoPixelBusLg<NeoBrgFeature, X8Tm1829Method, NeoGammaNullMethod> // parallel I2S
//UCS8903
#define B_32_RN_UCS_3 NeoPixelBus<NeoRgbUcs8903Feature, NeoEsp32RmtNWs2812xMethod>
#define B_32_I2_UCS_3 NeoPixelBus<NeoRgbUcs8903Feature, X1800KbpsMethod>
#define B_32_IP_UCS_3 NeoPixelBus<NeoRgbUcs8903Feature, X8800KbpsMethod> // parallel I2S
#define B_32_RN_UCS_3 NeoPixelBusLg<NeoRgbUcs8903Feature, NeoEsp32RmtNWs2812xMethod, NeoGammaNullMethod>
#define B_32_I2_UCS_3 NeoPixelBusLg<NeoRgbUcs8903Feature, X1800KbpsMethod, NeoGammaNullMethod>
#define B_32_IP_UCS_3 NeoPixelBusLg<NeoRgbUcs8903Feature, X8800KbpsMethod, NeoGammaNullMethod> // parallel I2S
//UCS8904
#define B_32_RN_UCS_4 NeoPixelBus<NeoRgbwUcs8904Feature, NeoEsp32RmtNWs2812xMethod>
#define B_32_I2_UCS_4 NeoPixelBus<NeoRgbwUcs8904Feature, X1800KbpsMethod>
#define B_32_IP_UCS_4 NeoPixelBus<NeoRgbwUcs8904Feature, X8800KbpsMethod>// parallel I2S
#define B_32_RN_UCS_4 NeoPixelBusLg<NeoRgbwUcs8904Feature, NeoEsp32RmtNWs2812xMethod, NeoGammaNullMethod>
#define B_32_I2_UCS_4 NeoPixelBusLg<NeoRgbwUcs8904Feature, X1800KbpsMethod, NeoGammaNullMethod>
#define B_32_IP_UCS_4 NeoPixelBusLg<NeoRgbwUcs8904Feature, X8800KbpsMethod, NeoGammaNullMethod>// parallel I2S
//APA106
#define B_32_RN_APA106_3 NeoPixelBus<NeoGrbFeature, NeoEsp32RmtNApa106Method>
#define B_32_I2_APA106_3 NeoPixelBus<NeoGrbFeature, X1Apa106Method>
#define B_32_IP_APA106_3 NeoPixelBus<NeoGrbFeature, X8Apa106Method> // parallel I2S
#define B_32_RN_APA106_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp32RmtNApa106Method, NeoGammaNullMethod>
#define B_32_I2_APA106_3 NeoPixelBusLg<NeoGrbFeature, X1Apa106Method, NeoGammaNullMethod>
#define B_32_IP_APA106_3 NeoPixelBusLg<NeoGrbFeature, X8Apa106Method, NeoGammaNullMethod> // parallel I2S
//FW1906 GRBCW
#define B_32_RN_FW6_5 NeoPixelBus<NeoGrbcwxFeature, NeoEsp32RmtNWs2812xMethod>
#define B_32_I2_FW6_5 NeoPixelBus<NeoGrbcwxFeature, X1800KbpsMethod>
#define B_32_IP_FW6_5 NeoPixelBus<NeoGrbcwxFeature, X8800KbpsMethod> // parallel I2S
#define B_32_RN_FW6_5 NeoPixelBusLg<NeoGrbcwxFeature, NeoEsp32RmtNWs2812xMethod, NeoGammaNullMethod>
#define B_32_I2_FW6_5 NeoPixelBusLg<NeoGrbcwxFeature, X1800KbpsMethod, NeoGammaNullMethod>
#define B_32_IP_FW6_5 NeoPixelBusLg<NeoGrbcwxFeature, X8800KbpsMethod, NeoGammaNullMethod> // parallel I2S
//WS2805 RGBWC
#define B_32_RN_2805_5 NeoPixelBus<NeoGrbwwFeature, NeoEsp32RmtNWs2805Method>
#define B_32_I2_2805_5 NeoPixelBus<NeoGrbwwFeature, X1Ws2805Method>
#define B_32_IP_2805_5 NeoPixelBus<NeoGrbwwFeature, X8Ws2805Method> // parallel I2S
#define B_32_RN_2805_5 NeoPixelBusLg<NeoGrbwwFeature, NeoEsp32RmtNWs2805Method, NeoGammaNullMethod>
#define B_32_I2_2805_5 NeoPixelBusLg<NeoGrbwwFeature, X1Ws2805Method, NeoGammaNullMethod>
#define B_32_IP_2805_5 NeoPixelBusLg<NeoGrbwwFeature, X8Ws2805Method, NeoGammaNullMethod> // parallel I2S
//TM1914 (RGB)
#define B_32_RN_TM1914_3 NeoPixelBus<NeoGrbTm1914Feature, NeoEsp32RmtNTm1914Method>
#define B_32_I2_TM1914_3 NeoPixelBus<NeoGrbTm1914Feature, X1Tm1914Method>
#define B_32_IP_TM1914_3 NeoPixelBus<NeoGrbTm1914Feature, X8Tm1914Method> // parallel I2S
#define B_32_RN_TM1914_3 NeoPixelBusLg<NeoGrbTm1914Feature, NeoEsp32RmtNTm1914Method, NeoGammaNullMethod>
#define B_32_I2_TM1914_3 NeoPixelBusLg<NeoGrbTm1914Feature, X1Tm1914Method, NeoGammaNullMethod>
#define B_32_IP_TM1914_3 NeoPixelBusLg<NeoGrbTm1914Feature, X8Tm1914Method, NeoGammaNullMethod> // parallel I2S
//Sm16825 (RGBWC)
#define B_32_RN_SM16825_5 NeoPixelBus<NeoRgbcwSm16825eFeature, NeoEsp32RmtNWs2812xMethod>
#define B_32_I2_SM16825_5 NeoPixelBus<NeoRgbcwSm16825eFeature, X1Ws2812xMethod>
#define B_32_IP_SM16825_5 NeoPixelBus<NeoRgbcwSm16825eFeature, X8Ws2812xMethod> // parallel I2S
#define B_32_RN_SM16825_5 NeoPixelBusLg<NeoRgbcwSm16825eFeature, NeoEsp32RmtNWs2812xMethod, NeoGammaNullMethod>
#define B_32_I2_SM16825_5 NeoPixelBusLg<NeoRgbcwSm16825eFeature, X1Ws2812xMethod, NeoGammaNullMethod>
#define B_32_IP_SM16825_5 NeoPixelBusLg<NeoRgbcwSm16825eFeature, X8Ws2812xMethod, NeoGammaNullMethod> // parallel I2S
#endif
//APA102
#ifdef WLED_USE_ETHERNET
// fix for #2542 (by @BlackBird77)
#define B_HS_DOT_3 NeoPixelBus<DotStarBgrFeature, DotStarEsp32HspiHzMethod> //hardware HSPI (was DotStarEsp32DmaHspi5MhzMethod in NPB @ 2.6.9)
#define B_HS_DOT_3 NeoPixelBusLg<DotStarBgrFeature, DotStarEsp32HspiHzMethod, NeoGammaNullMethod> //hardware HSPI (was DotStarEsp32DmaHspi5MhzMethod in NPB @ 2.6.9)
#else
#define B_HS_DOT_3 NeoPixelBus<DotStarBgrFeature, DotStarSpiHzMethod> //hardware VSPI
#define B_HS_DOT_3 NeoPixelBusLg<DotStarBgrFeature, DotStarSpiHzMethod, NeoGammaNullMethod> //hardware VSPI
#endif
#define B_SS_DOT_3 NeoPixelBus<DotStarBgrFeature, DotStarMethod> //soft SPI
#define B_SS_DOT_3 NeoPixelBusLg<DotStarBgrFeature, DotStarMethod, NeoGammaNullMethod> //soft SPI
//LPD8806
#define B_HS_LPD_3 NeoPixelBus<Lpd8806GrbFeature, Lpd8806SpiHzMethod>
#define B_SS_LPD_3 NeoPixelBus<Lpd8806GrbFeature, Lpd8806Method>
#define B_HS_LPD_3 NeoPixelBusLg<Lpd8806GrbFeature, Lpd8806SpiHzMethod, NeoGammaNullMethod>
#define B_SS_LPD_3 NeoPixelBusLg<Lpd8806GrbFeature, Lpd8806Method, NeoGammaNullMethod>
//LPD6803
#define B_HS_LPO_3 NeoPixelBus<Lpd6803GrbFeature, Lpd6803SpiHzMethod>
#define B_SS_LPO_3 NeoPixelBus<Lpd6803GrbFeature, Lpd6803Method>
#define B_HS_LPO_3 NeoPixelBusLg<Lpd6803GrbFeature, Lpd6803SpiHzMethod, NeoGammaNullMethod>
#define B_SS_LPO_3 NeoPixelBusLg<Lpd6803GrbFeature, Lpd6803Method, NeoGammaNullMethod>
//WS2801
#ifdef WLED_USE_ETHERNET
#define B_HS_WS1_3 NeoPixelBus<NeoRbgFeature, Ws2801MethodBase<TwoWireHspiImple<SpiSpeedHz>>>
#define B_HS_WS1_3 NeoPixelBusLg<NeoRbgFeature, Ws2801MethodBase<TwoWireHspiImple<SpiSpeedHz>>, NeoGammaNullMethod>
#else
#define B_HS_WS1_3 NeoPixelBus<NeoRbgFeature, Ws2801SpiHzMethod>
#define B_HS_WS1_3 NeoPixelBusLg<NeoRbgFeature, Ws2801SpiHzMethod, NeoGammaNullMethod>
#endif
#define B_SS_WS1_3 NeoPixelBus<NeoRbgFeature, Ws2801Method>
#define B_SS_WS1_3 NeoPixelBusLg<NeoRbgFeature, Ws2801Method, NeoGammaNullMethod>
//P9813
#define B_HS_P98_3 NeoPixelBus<P9813BgrFeature, P9813SpiHzMethod>
#define B_SS_P98_3 NeoPixelBus<P9813BgrFeature, P9813Method>
#define B_HS_P98_3 NeoPixelBusLg<P9813BgrFeature, P9813SpiHzMethod, NeoGammaNullMethod>
#define B_SS_P98_3 NeoPixelBusLg<P9813BgrFeature, P9813Method, NeoGammaNullMethod>
// 48bit & 64bit to 24bit & 32bit RGB(W) conversion
#define toRGBW32(c) (RGBW32((c>>40)&0xFF, (c>>24)&0xFF, (c>>8)&0xFF, (c>>56)&0xFF))
@@ -896,6 +896,102 @@ class PolyBus {
}
}
static void setBrightness(void* busPtr, uint8_t busType, uint8_t b) {
switch (busType) {
case I_NONE: break;
#ifdef ESP8266
case I_8266_U0_NEO_3: (static_cast<B_8266_U0_NEO_3*>(busPtr))->SetLuminance(b); break;
case I_8266_U1_NEO_3: (static_cast<B_8266_U1_NEO_3*>(busPtr))->SetLuminance(b); break;
case I_8266_DM_NEO_3: (static_cast<B_8266_DM_NEO_3*>(busPtr))->SetLuminance(b); break;
case I_8266_BB_NEO_3: (static_cast<B_8266_BB_NEO_3*>(busPtr))->SetLuminance(b); break;
case I_8266_U0_NEO_4: (static_cast<B_8266_U0_NEO_4*>(busPtr))->SetLuminance(b); break;
case I_8266_U1_NEO_4: (static_cast<B_8266_U1_NEO_4*>(busPtr))->SetLuminance(b); break;
case I_8266_DM_NEO_4: (static_cast<B_8266_DM_NEO_4*>(busPtr))->SetLuminance(b); break;
case I_8266_BB_NEO_4: (static_cast<B_8266_BB_NEO_4*>(busPtr))->SetLuminance(b); break;
case I_8266_U0_400_3: (static_cast<B_8266_U0_400_3*>(busPtr))->SetLuminance(b); break;
case I_8266_U1_400_3: (static_cast<B_8266_U1_400_3*>(busPtr))->SetLuminance(b); break;
case I_8266_DM_400_3: (static_cast<B_8266_DM_400_3*>(busPtr))->SetLuminance(b); break;
case I_8266_BB_400_3: (static_cast<B_8266_BB_400_3*>(busPtr))->SetLuminance(b); break;
case I_8266_U0_TM1_4: (static_cast<B_8266_U0_TM1_4*>(busPtr))->SetLuminance(b); break;
case I_8266_U1_TM1_4: (static_cast<B_8266_U1_TM1_4*>(busPtr))->SetLuminance(b); break;
case I_8266_DM_TM1_4: (static_cast<B_8266_DM_TM1_4*>(busPtr))->SetLuminance(b); break;
case I_8266_BB_TM1_4: (static_cast<B_8266_BB_TM1_4*>(busPtr))->SetLuminance(b); break;
case I_8266_U0_TM2_3: (static_cast<B_8266_U0_TM2_3*>(busPtr))->SetLuminance(b); break;
case I_8266_U1_TM2_3: (static_cast<B_8266_U1_TM2_3*>(busPtr))->SetLuminance(b); break;
case I_8266_DM_TM2_3: (static_cast<B_8266_DM_TM2_3*>(busPtr))->SetLuminance(b); break;
case I_8266_BB_TM2_3: (static_cast<B_8266_BB_TM2_3*>(busPtr))->SetLuminance(b); break;
case I_8266_U0_UCS_3: (static_cast<B_8266_U0_UCS_3*>(busPtr))->SetLuminance(b); break;
case I_8266_U1_UCS_3: (static_cast<B_8266_U1_UCS_3*>(busPtr))->SetLuminance(b); break;
case I_8266_DM_UCS_3: (static_cast<B_8266_DM_UCS_3*>(busPtr))->SetLuminance(b); break;
case I_8266_BB_UCS_3: (static_cast<B_8266_BB_UCS_3*>(busPtr))->SetLuminance(b); break;
case I_8266_U0_UCS_4: (static_cast<B_8266_U0_UCS_4*>(busPtr))->SetLuminance(b); break;
case I_8266_U1_UCS_4: (static_cast<B_8266_U1_UCS_4*>(busPtr))->SetLuminance(b); break;
case I_8266_DM_UCS_4: (static_cast<B_8266_DM_UCS_4*>(busPtr))->SetLuminance(b); break;
case I_8266_BB_UCS_4: (static_cast<B_8266_BB_UCS_4*>(busPtr))->SetLuminance(b); break;
case I_8266_U0_APA106_3: (static_cast<B_8266_U0_APA106_3*>(busPtr))->SetLuminance(b); break;
case I_8266_U1_APA106_3: (static_cast<B_8266_U1_APA106_3*>(busPtr))->SetLuminance(b); break;
case I_8266_DM_APA106_3: (static_cast<B_8266_DM_APA106_3*>(busPtr))->SetLuminance(b); break;
case I_8266_BB_APA106_3: (static_cast<B_8266_BB_APA106_3*>(busPtr))->SetLuminance(b); break;
case I_8266_U0_FW6_5: (static_cast<B_8266_U0_FW6_5*>(busPtr))->SetLuminance(b); break;
case I_8266_U1_FW6_5: (static_cast<B_8266_U1_FW6_5*>(busPtr))->SetLuminance(b); break;
case I_8266_DM_FW6_5: (static_cast<B_8266_DM_FW6_5*>(busPtr))->SetLuminance(b); break;
case I_8266_BB_FW6_5: (static_cast<B_8266_BB_FW6_5*>(busPtr))->SetLuminance(b); break;
case I_8266_U0_2805_5: (static_cast<B_8266_U0_2805_5*>(busPtr))->SetLuminance(b); break;
case I_8266_U1_2805_5: (static_cast<B_8266_U1_2805_5*>(busPtr))->SetLuminance(b); break;
case I_8266_DM_2805_5: (static_cast<B_8266_DM_2805_5*>(busPtr))->SetLuminance(b); break;
case I_8266_BB_2805_5: (static_cast<B_8266_BB_2805_5*>(busPtr))->SetLuminance(b); break;
case I_8266_U0_TM1914_3: (static_cast<B_8266_U0_TM1914_3*>(busPtr))->SetLuminance(b); break;
case I_8266_U1_TM1914_3: (static_cast<B_8266_U1_TM1914_3*>(busPtr))->SetLuminance(b); break;
case I_8266_DM_TM1914_3: (static_cast<B_8266_DM_TM1914_3*>(busPtr))->SetLuminance(b); break;
case I_8266_BB_TM1914_3: (static_cast<B_8266_BB_TM1914_3*>(busPtr))->SetLuminance(b); break;
case I_8266_U0_SM16825_5: (static_cast<B_8266_U0_SM16825_5*>(busPtr))->SetLuminance(b); break;
case I_8266_U1_SM16825_5: (static_cast<B_8266_U1_SM16825_5*>(busPtr))->SetLuminance(b); break;
case I_8266_DM_SM16825_5: (static_cast<B_8266_DM_SM16825_5*>(busPtr))->SetLuminance(b); break;
case I_8266_BB_SM16825_5: (static_cast<B_8266_BB_SM16825_5*>(busPtr))->SetLuminance(b); break;
#endif
#ifdef ARDUINO_ARCH_ESP32
// RMT buses
case I_32_RN_NEO_3: (static_cast<B_32_RN_NEO_3*>(busPtr))->SetLuminance(b); break;
case I_32_RN_NEO_4: (static_cast<B_32_RN_NEO_4*>(busPtr))->SetLuminance(b); break;
case I_32_RN_400_3: (static_cast<B_32_RN_400_3*>(busPtr))->SetLuminance(b); break;
case I_32_RN_TM1_4: (static_cast<B_32_RN_TM1_4*>(busPtr))->SetLuminance(b); break;
case I_32_RN_TM2_3: (static_cast<B_32_RN_TM2_3*>(busPtr))->SetLuminance(b); break;
case I_32_RN_UCS_3: (static_cast<B_32_RN_UCS_3*>(busPtr))->SetLuminance(b); break;
case I_32_RN_UCS_4: (static_cast<B_32_RN_UCS_4*>(busPtr))->SetLuminance(b); break;
case I_32_RN_APA106_3: (static_cast<B_32_RN_APA106_3*>(busPtr))->SetLuminance(b); break;
case I_32_RN_FW6_5: (static_cast<B_32_RN_FW6_5*>(busPtr))->SetLuminance(b); break;
case I_32_RN_2805_5: (static_cast<B_32_RN_2805_5*>(busPtr))->SetLuminance(b); break;
case I_32_RN_TM1914_3: (static_cast<B_32_RN_TM1914_3*>(busPtr))->SetLuminance(b); break;
case I_32_RN_SM16825_5: (static_cast<B_32_RN_SM16825_5*>(busPtr))->SetLuminance(b); break;
// I2S1 bus or paralell buses
#ifndef CONFIG_IDF_TARGET_ESP32C3
case I_32_I2_NEO_3: if (_useParallelI2S) (static_cast<B_32_IP_NEO_3*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I2_NEO_3*>(busPtr))->SetLuminance(b); break;
case I_32_I2_NEO_4: if (_useParallelI2S) (static_cast<B_32_IP_NEO_4*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I2_NEO_4*>(busPtr))->SetLuminance(b); break;
case I_32_I2_400_3: if (_useParallelI2S) (static_cast<B_32_IP_400_3*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I2_400_3*>(busPtr))->SetLuminance(b); break;
case I_32_I2_TM1_4: if (_useParallelI2S) (static_cast<B_32_IP_TM1_4*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I2_TM1_4*>(busPtr))->SetLuminance(b); break;
case I_32_I2_TM2_3: if (_useParallelI2S) (static_cast<B_32_IP_TM2_3*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I2_TM2_3*>(busPtr))->SetLuminance(b); break;
case I_32_I2_UCS_3: if (_useParallelI2S) (static_cast<B_32_IP_UCS_3*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I2_UCS_3*>(busPtr))->SetLuminance(b); break;
case I_32_I2_UCS_4: if (_useParallelI2S) (static_cast<B_32_IP_UCS_4*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I2_UCS_4*>(busPtr))->SetLuminance(b); break;
case I_32_I2_APA106_3: if (_useParallelI2S) (static_cast<B_32_IP_APA106_3*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I2_APA106_3*>(busPtr))->SetLuminance(b); break;
case I_32_I2_FW6_5: if (_useParallelI2S) (static_cast<B_32_IP_FW6_5*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I2_FW6_5*>(busPtr))->SetLuminance(b); break;
case I_32_I2_2805_5: if (_useParallelI2S) (static_cast<B_32_IP_2805_5*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I2_2805_5*>(busPtr))->SetLuminance(b); break;
case I_32_I2_TM1914_3: if (_useParallelI2S) (static_cast<B_32_IP_TM1914_3*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I2_TM1914_3*>(busPtr))->SetLuminance(b); break;
case I_32_I2_SM16825_5: if (_useParallelI2S) (static_cast<B_32_IP_SM16825_5*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I2_SM16825_5*>(busPtr))->SetLuminance(b); break;
#endif
#endif
case I_HS_DOT_3: (static_cast<B_HS_DOT_3*>(busPtr))->SetLuminance(b); break;
case I_SS_DOT_3: (static_cast<B_SS_DOT_3*>(busPtr))->SetLuminance(b); break;
case I_HS_LPD_3: (static_cast<B_HS_LPD_3*>(busPtr))->SetLuminance(b); break;
case I_SS_LPD_3: (static_cast<B_SS_LPD_3*>(busPtr))->SetLuminance(b); break;
case I_HS_LPO_3: (static_cast<B_HS_LPO_3*>(busPtr))->SetLuminance(b); break;
case I_SS_LPO_3: (static_cast<B_SS_LPO_3*>(busPtr))->SetLuminance(b); break;
case I_HS_WS1_3: (static_cast<B_HS_WS1_3*>(busPtr))->SetLuminance(b); break;
case I_SS_WS1_3: (static_cast<B_SS_WS1_3*>(busPtr))->SetLuminance(b); break;
case I_HS_P98_3: (static_cast<B_HS_P98_3*>(busPtr))->SetLuminance(b); break;
case I_SS_P98_3: (static_cast<B_SS_P98_3*>(busPtr))->SetLuminance(b); break;
}
}
[[gnu::hot]] static uint32_t getPixelColor(void* busPtr, uint8_t busType, uint16_t pix, uint8_t co) {
RgbwColor col(0,0,0,0);
switch (busType) {

View File

@@ -519,6 +519,7 @@ bool deserializeConfig(JsonObject doc, bool fromFS) {
CJSON(briMultiplier, light[F("scale-bri")]);
CJSON(paletteBlend, light[F("pal-mode")]);
CJSON(strip.autoSegments, light[F("aseg")]);
CJSON(useRainbowWheel, light[F("rw")]);
CJSON(gammaCorrectVal, light["gc"]["val"]); // default 2.2
float light_gc_bri = light["gc"]["bri"];
@@ -772,32 +773,9 @@ bool deserializeConfig(JsonObject doc, bool fromFS) {
return (doc["sv"] | true);
}
static const char s_cfg_json[] PROGMEM = "/cfg.json";
bool backupConfig() {
return backupFile(s_cfg_json);
}
bool restoreConfig() {
return restoreFile(s_cfg_json);
}
bool verifyConfig() {
return validateJsonFile(s_cfg_json);
}
// rename config file and reboot
// if the cfg file doesn't exist, such as after a reset, do nothing
void resetConfig() {
if (WLED_FS.exists(s_cfg_json)) {
DEBUG_PRINTLN(F("Reset config"));
char backupname[32];
snprintf_P(backupname, sizeof(backupname), PSTR("/rst.%s"), &s_cfg_json[1]);
WLED_FS.rename(s_cfg_json, backupname);
doReboot = true;
}
}
bool deserializeConfigFromFS() {
[[maybe_unused]] bool success = deserializeConfigSec();
#ifdef WLED_ADD_EEPROM_SUPPORT
@@ -823,7 +801,6 @@ bool deserializeConfigFromFS() {
void serializeConfigToFS() {
serializeConfigSec();
backupConfig(); // backup before writing new config
DEBUG_PRINTLN(F("Writing settings to /cfg.json..."));
@@ -1065,6 +1042,7 @@ void serializeConfig(JsonObject root) {
light[F("scale-bri")] = briMultiplier;
light[F("pal-mode")] = paletteBlend;
light[F("aseg")] = strip.autoSegments;
light[F("rw")] = useRainbowWheel;
JsonObject light_gc = light.createNestedObject("gc");
light_gc["bri"] = (gammaCorrectBri) ? gammaCorrectVal : 1.0f; // keep compatibility

View File

@@ -8,7 +8,7 @@
* color blend function, based on FastLED blend function
* the calculation for each color is: result = (A*(amountOfA) + A + B*(amountOfB) + B) / 256 with amountOfA = 255 - amountOfB
*/
uint32_t IRAM_ATTR color_blend(uint32_t color1, uint32_t color2, uint8_t blend) {
uint32_t color_blend(uint32_t color1, uint32_t color2, uint8_t blend) {
// min / max blend checking is omitted: calls with 0 or 255 are rare, checking lowers overall performance
const uint32_t TWO_CHANNEL_MASK = 0x00FF00FF; // mask for R and B channels or W and G if negated (poorman's SIMD; https://github.com/wled/WLED/pull/4568#discussion_r1986587221)
uint32_t rb1 = color1 & TWO_CHANNEL_MASK; // extract R & B channels from color1
@@ -64,26 +64,26 @@ uint32_t color_add(uint32_t c1, uint32_t c2, bool preserveCR)
* fades color toward black
* if using "video" method the resulting color will never become black unless it is already black
*/
uint32_t IRAM_ATTR color_fade(uint32_t c1, uint8_t amount, bool video) {
if (c1 == 0 || amount == 0) return 0; // black or no change
if (amount == 255) return c1;
uint32_t addRemains = 0;
if (!video) amount++; // add one for correct scaling using bitshifts
else {
// video scaling: make sure colors do not dim to zero if they started non-zero unless they distort the hue
uint8_t r = byte(c1>>16), g = byte(c1>>8), b = byte(c1), w = byte(c1>>24); // extract r, g, b, w channels
uint8_t maxc = (r > g) ? ((r > b) ? r : b) : ((g > b) ? g : b); // determine dominant channel for hue preservation
uint8_t quarterMax = maxc >> 2; // note: using half of max results in color artefacts
addRemains = r && r > quarterMax ? 0x00010000 : 0;
addRemains |= g && g > quarterMax ? 0x00000100 : 0;
addRemains |= b && b > quarterMax ? 0x00000001 : 0;
addRemains |= w ? 0x01000000 : 0;
uint32_t color_fade(uint32_t c1, uint8_t amount, bool video)
{
if (amount == 255) return c1;
if (c1 == BLACK || amount == 0) return BLACK;
uint32_t scaledcolor; // color order is: W R G B from MSB to LSB
uint32_t scale = amount; // 32bit for faster calculation
uint32_t addRemains = 0;
if (!video) scale++; // add one for correct scaling using bitshifts
else { // video scaling: make sure colors do not dim to zero if they started non-zero
addRemains = R(c1) ? 0x00010000 : 0;
addRemains |= G(c1) ? 0x00000100 : 0;
addRemains |= B(c1) ? 0x00000001 : 0;
addRemains |= W(c1) ? 0x01000000 : 0;
}
const uint32_t TWO_CHANNEL_MASK = 0x00FF00FF;
uint32_t rb = (((c1 & TWO_CHANNEL_MASK) * amount) >> 8) & TWO_CHANNEL_MASK; // scale red and blue
uint32_t wg = (((c1 >> 8) & TWO_CHANNEL_MASK) * amount) & ~TWO_CHANNEL_MASK; // scale white and green
return (rb | wg) + addRemains;
uint32_t rb = (((c1 & TWO_CHANNEL_MASK) * scale) >> 8) & TWO_CHANNEL_MASK; // scale red and blue
uint32_t wg = (((c1 >> 8) & TWO_CHANNEL_MASK) * scale) & ~TWO_CHANNEL_MASK; // scale white and green
scaledcolor = (rb | wg) + addRemains;
return scaledcolor;
}
/*
@@ -92,7 +92,7 @@ uint32_t IRAM_ATTR color_fade(uint32_t c1, uint8_t amount, bool video) {
note: inputs are 32bit to speed up the function, useful input value ranges are 0-255
*/
uint32_t adjust_color(uint32_t rgb, uint32_t hueShift, uint32_t lighten, uint32_t brighten) {
if (rgb == 0 | hueShift + lighten + brighten == 0) return rgb; // black or no change
if(rgb == 0 | hueShift + lighten + brighten == 0) return rgb; // black or no change
CHSV32 hsv;
rgb2hsv(rgb, hsv); //convert to HSV
hsv.h += (hueShift << 8); // shift hue (hue is 16 bits)
@@ -104,7 +104,8 @@ uint32_t adjust_color(uint32_t rgb, uint32_t hueShift, uint32_t lighten, uint32_
}
// 1:1 replacement of fastled function optimized for ESP, slightly faster, more accurate and uses less flash (~ -200bytes)
uint32_t ColorFromPaletteWLED(const CRGBPalette16& pal, unsigned index, uint8_t brightness, TBlendType blendType) {
uint32_t ColorFromPaletteWLED(const CRGBPalette16& pal, unsigned index, uint8_t brightness, TBlendType blendType)
{
if (blendType == LINEARBLEND_NOWRAP) {
index = (index * 0xF0) >> 8; // Blend range is affected by lo4 blend of values, remap to avoid wrapping
}
@@ -119,16 +120,16 @@ uint32_t ColorFromPaletteWLED(const CRGBPalette16& pal, unsigned index, uint8_t
else ++entry;
unsigned f2 = (lo4 << 4);
unsigned f1 = 256 - f2;
red1 = (red1 * f1 + (unsigned)entry->r * f2) >> 8; // note: using color_blend() is slower
red1 = (red1 * f1 + (unsigned)entry->r * f2) >> 8; // note: using color_blend() is 20% slower
green1 = (green1 * f1 + (unsigned)entry->g * f2) >> 8;
blue1 = (blue1 * f1 + (unsigned)entry->b * f2) >> 8;
blue1 = (blue1 * f1 + (unsigned)entry->b * f2) >> 8;
}
if (brightness < 255) { // note: zero checking could be done to return black but that is hardly ever used so it is omitted
// actually same as color_fade(), using color_fade() is slower
// actually color_fade(c1, brightness)
uint32_t scale = brightness + 1; // adjust for rounding (bitshift)
red1 = (red1 * scale) >> 8;
red1 = (red1 * scale) >> 8; // note: using color_fade() is 30% slower
green1 = (green1 * scale) >> 8;
blue1 = (blue1 * scale) >> 8;
blue1 = (blue1 * scale) >> 8;
}
return RGBW32(red1,green1,blue1,0);
}
@@ -248,29 +249,11 @@ CRGBPalette16 generateRandomPalette() // generate fully random palette
CHSV(hw_random8(), hw_random8(160, 255), hw_random8(128, 255)));
}
/**
* @brief Loads user-defined color palettes from filesystem into runtime storage.
*
* Scans for files named "/palette0.json", "/palette1.json", ... up to
* WLED_MAX_CUSTOM_PALETTES and builds dynamic gradient palettes from any valid
* JSON found. Existing in-memory custom palettes are cleared before loading.
*
* Supported JSON formats for the "palette" array:
* - Pairs of [index, hexString] (e.g. [0, "FF0000", 128, "00FF00", ...]) where
* each pair is an index (0255) followed by an RRGGBB or RRGGBBWW hex color.
* - Quads of [index, R, G, B] (e.g. [0, 255, 0, 0, 128, 0, 255, 0, ...]) where
* each group of four values is an index (0255) followed by red/green/blue bytes.
*
* For each palette file the function converts the supplied entries into a
* temporary gradient table (supporting up to 18 color stops) and appends the
* resulting CRGBPalette16 to customPalettes. The loader stops at the first
* missing palette file.
*/
void loadCustomPalettes() {
byte tcp[72]; //support gradient palettes with up to 18 entries
CRGBPalette16 targetPalette;
customPalettes.clear(); // start fresh
for (int index = 0; index < WLED_MAX_CUSTOM_PALETTES; index++) {
for (int index = 0; index<10; index++) {
char fileName[32];
sprintf_P(fileName, PSTR("/palette%d.json"), index);
@@ -606,13 +589,10 @@ uint8_t NeoGammaWLEDMethod::gammaT_inv[256];
void NeoGammaWLEDMethod::calcGammaTable(float gamma)
{
float gamma_inv = 1.0f / gamma; // inverse gamma
for (size_t i = 1; i < 256; i++) {
for (size_t i = 0; i < 256; i++) {
gammaT[i] = (int)(powf((float)i / 255.0f, gamma) * 255.0f + 0.5f);
gammaT_inv[i] = (int)(powf(((float)i - 0.5f) / 255.0f, gamma_inv) * 255.0f + 0.5f);
//DEBUG_PRINTF_P(PSTR("gammaT[%d] = %d gammaT_inv[%d] = %d\n"), i, gammaT[i], i, gammaT_inv[i]);
gammaT_inv[i] = (int)(powf((float)i / 255.0f, gamma_inv) * 255.0f + 0.5f);
}
gammaT[0] = 0;
gammaT_inv[0] = 0;
}
uint8_t IRAM_ATTR_YN NeoGammaWLEDMethod::Correct(uint8_t value)
@@ -621,6 +601,21 @@ uint8_t IRAM_ATTR_YN NeoGammaWLEDMethod::Correct(uint8_t value)
return gammaT[value];
}
// used for color gamma correction
uint32_t IRAM_ATTR_YN NeoGammaWLEDMethod::Correct32(uint32_t color)
{
if (!gammaCorrectCol) return color;
uint8_t w = W(color);
uint8_t r = R(color);
uint8_t g = G(color);
uint8_t b = B(color);
w = gammaT[w];
r = gammaT[r];
g = gammaT[g];
b = gammaT[b];
return RGBW32(r, g, b, w);
}
uint32_t IRAM_ATTR_YN NeoGammaWLEDMethod::inverseGamma32(uint32_t color)
{
if (!gammaCorrectCol) return color;

View File

@@ -1,162 +0,0 @@
#pragma once
#ifndef WLED_COLORS_H
#define WLED_COLORS_H
/*
* Color structs and color utility functions
*/
#include <vector>
#include "FastLED.h"
#define ColorFromPalette ColorFromPaletteWLED // override fastled version
// CRGBW can be used to manipulate 32bit colors faster. However: if it is passed to functions, it adds overhead compared to a uint32_t color
// use with caution and pay attention to flash size. Usually converting a uint32_t to CRGBW to extract r, g, b, w values is slower than using bitshifts
// it can be useful to avoid back and forth conversions between uint32_t and fastled CRGB
struct CRGBW {
union {
uint32_t color32; // Access as a 32-bit value (0xWWRRGGBB)
struct {
uint8_t b;
uint8_t g;
uint8_t r;
uint8_t w;
};
uint8_t raw[4]; // Access as an array in the order B, G, R, W
};
// Default constructor
inline CRGBW() __attribute__((always_inline)) = default;
// Constructor from a 32-bit color (0xWWRRGGBB)
constexpr CRGBW(uint32_t color) __attribute__((always_inline)) : color32(color) {}
// Constructor with r, g, b, w values
constexpr CRGBW(uint8_t red, uint8_t green, uint8_t blue, uint8_t white = 0) __attribute__((always_inline)) : b(blue), g(green), r(red), w(white) {}
// Constructor from CRGB
constexpr CRGBW(CRGB rgb) __attribute__((always_inline)) : b(rgb.b), g(rgb.g), r(rgb.r), w(0) {}
// Access as an array
inline const uint8_t& operator[] (uint8_t x) const __attribute__((always_inline)) { return raw[x]; }
// Assignment from 32-bit color
inline CRGBW& operator=(uint32_t color) __attribute__((always_inline)) { color32 = color; return *this; }
// Assignment from r, g, b, w
inline CRGBW& operator=(const CRGB& rgb) __attribute__((always_inline)) { b = rgb.b; g = rgb.g; r = rgb.r; w = 0; return *this; }
// Conversion operator to uint32_t
inline operator uint32_t() const __attribute__((always_inline)) {
return color32;
}
/*
// Conversion operator to CRGB
inline operator CRGB() const __attribute__((always_inline)) {
return CRGB(r, g, b);
}
CRGBW& scale32 (uint8_t scaledown) // 32bit math
{
if (color32 == 0) return *this; // 2 extra instructions, worth it if called a lot on black (which probably is true) adding check if scaledown is zero adds much more overhead as its 8bit
uint32_t scale = scaledown + 1;
uint32_t rb = (((color32 & 0x00FF00FF) * scale) >> 8) & 0x00FF00FF; // scale red and blue
uint32_t wg = (((color32 & 0xFF00FF00) >> 8) * scale) & 0xFF00FF00; // scale white and green
color32 = rb | wg;
return *this;
}*/
};
struct CHSV32 { // 32bit HSV color with 16bit hue for more accurate conversions
union {
struct {
uint16_t h; // hue
uint8_t s; // saturation
uint8_t v; // value
};
uint32_t raw; // 32bit access
};
inline CHSV32() __attribute__((always_inline)) = default; // default constructor
/// Allow construction from hue, saturation, and value
/// @param ih input hue
/// @param is input saturation
/// @param iv input value
inline CHSV32(uint16_t ih, uint8_t is, uint8_t iv) __attribute__((always_inline)) // constructor from 16bit h, s, v
: h(ih), s(is), v(iv) {}
inline CHSV32(uint8_t ih, uint8_t is, uint8_t iv) __attribute__((always_inline)) // constructor from 8bit h, s, v
: h((uint16_t)ih << 8), s(is), v(iv) {}
inline CHSV32(const CHSV& chsv) __attribute__((always_inline)) // constructor from CHSV
: h((uint16_t)chsv.h << 8), s(chsv.s), v(chsv.v) {}
inline operator CHSV() const { return CHSV((uint8_t)(h >> 8), s, v); } // typecast to CHSV
};
extern bool gammaCorrectCol;
// similar to NeoPixelBus NeoGammaTableMethod but allows dynamic changes (superseded by NPB::NeoGammaDynamicTableMethod)
class NeoGammaWLEDMethod {
public:
[[gnu::hot]] static uint8_t Correct(uint8_t value); // apply Gamma to single channel
[[gnu::hot]] static uint32_t inverseGamma32(uint32_t color); // apply inverse Gamma to RGBW32 color
static void calcGammaTable(float gamma); // re-calculates & fills gamma tables
static inline uint8_t rawGamma8(uint8_t val) { return gammaT[val]; } // get value from Gamma table (WLED specific, not used by NPB)
static inline uint8_t rawInverseGamma8(uint8_t val) { return gammaT_inv[val]; } // get value from inverse Gamma table (WLED specific, not used by NPB)
static inline uint32_t Correct32(uint32_t color) { // apply Gamma to RGBW32 color (WLED specific, not used by NPB)
if (!gammaCorrectCol) return color; // no gamma correction
uint8_t w = byte(color>>24), r = byte(color>>16), g = byte(color>>8), b = byte(color); // extract r, g, b, w channels
w = gammaT[w]; r = gammaT[r]; g = gammaT[g]; b = gammaT[b];
return (uint32_t(w) << 24) | (uint32_t(r) << 16) | (uint32_t(g) << 8) | uint32_t(b);
}
private:
static uint8_t gammaT[];
static uint8_t gammaT_inv[];
};
#define gamma32(c) NeoGammaWLEDMethod::Correct32(c)
#define gamma8(c) NeoGammaWLEDMethod::rawGamma8(c)
#define gamma32inv(c) NeoGammaWLEDMethod::inverseGamma32(c)
#define gamma8inv(c) NeoGammaWLEDMethod::rawInverseGamma8(c)
[[gnu::hot, gnu::pure]] uint32_t color_blend(uint32_t c1, uint32_t c2 , uint8_t blend);
inline uint32_t color_blend16(uint32_t c1, uint32_t c2, uint16_t b) { return color_blend(c1, c2, b >> 8); };
[[gnu::hot, gnu::pure]] uint32_t color_add(uint32_t, uint32_t, bool preserveCR = false);
[[gnu::hot, gnu::pure]] uint32_t adjust_color(uint32_t rgb, uint32_t hueShift, uint32_t lighten, uint32_t brighten);
[[gnu::hot, gnu::pure]] uint32_t ColorFromPaletteWLED(const CRGBPalette16 &pal, unsigned index, uint8_t brightness = (uint8_t)255U, TBlendType blendType = LINEARBLEND);
CRGBPalette16 generateHarmonicRandomPalette(const CRGBPalette16 &basepalette);
CRGBPalette16 generateRandomPalette();
void loadCustomPalettes();
extern std::vector<CRGBPalette16> customPalettes;
/**
* Get the total number of available palettes (built-in fixed palettes plus user-defined custom palettes).
*
* @return Total palette count (FIXED_PALETTE_COUNT + customPalettes.size()).
*/
inline size_t getPaletteCount() { return FIXED_PALETTE_COUNT + customPalettes.size(); }
/**
* Pack an RGBW byte array into a 32-bit color value.
*
* The input must point to at least four bytes in order: R, G, B, W.
* Returns a uint32_t with layout 0xWWRRGGBB (white in the highest byte).
*
* @param rgbw Pointer to 4 bytes: {R, G, B, W}.
* @return 32-bit packed color in 0xWWRRGGBB format.
*/
inline uint32_t colorFromRgbw(byte* rgbw) { return uint32_t((byte(rgbw[3]) << 24) | (byte(rgbw[0]) << 16) | (byte(rgbw[1]) << 8) | (byte(rgbw[2]))); }
void hsv2rgb(const CHSV32& hsv, uint32_t& rgb);
void colorHStoRGB(uint16_t hue, byte sat, byte* rgb);
void rgb2hsv(const uint32_t rgb, CHSV32& hsv);
inline CHSV rgb2hsv(const CRGB c) { CHSV32 hsv; rgb2hsv((uint32_t((byte(c.r) << 16) | (byte(c.g) << 8) | (byte(c.b)))), hsv); return CHSV(hsv); } // CRGB to hsv
void colorKtoRGB(uint16_t kelvin, byte* rgb);
void colorCTtoRGB(uint16_t mired, byte* rgb); //white spectrum to rgb
void colorXYtoRGB(float x, float y, byte* rgb); // only defined if huesync disabled TODO
void colorRGBtoXY(const byte* rgb, float* xy); // only defined if huesync disabled TODO
void colorFromDecOrHexString(byte* rgb, const char* in);
bool colorFromHexString(byte* rgb, const char* in);
uint32_t colorBalanceFromKelvin(uint16_t kelvin, uint32_t rgb);
uint16_t approximateKelvinFromRGB(uint32_t rgb);
void setRandomColor(byte* rgb);
[[gnu::hot, gnu::pure]] uint32_t color_fade(uint32_t c1, uint8_t amount, bool video = false);
// palettes
extern const TProgmemRGBPalette16* const fastledPalettes[];
extern const uint8_t* const gGradientPalettes[];
#endif

View File

@@ -1025,23 +1025,6 @@ function redrawPalPrev()
});
}
/**
* Generate a CSS background rule showing a horizontal gradient preview for a palette.
*
* Uses the global `palettesData` array for palette entries. Each palette entry may be:
* - an array [posByte, r, g, b] where `posByte` is 0..255 mapped to 0..100%,
* - the literal 'r' to insert a random RGB color, or
* - a reference value whose second character is treated as a 1-based index into the DOM color-slot list (element with id "csl") and reads its `data-r`, `data-g`, `data-b` attributes.
*
* Special cases:
* - If the palette contains a single color, the function duplicates it to produce a two-color gradient.
* - If `palettesData` is not defined the function returns undefined.
* - If the requested palette id is not found the function returns the string `'display: none'`.
*
* @param {number|string} id - Palette identifier (index or key) into `palettesData`.
* @return {string|undefined} CSS declaration for a left-to-right linear-gradient (e.g. `"background: linear-gradient(to right, ...);"`),
* `'display: none'` when the palette is missing, or `undefined` if `palettesData` is not available.
*/
function genPalPrevCss(id)
{
if (!palettesData) return;
@@ -1059,7 +1042,8 @@ function genPalPrevCss(id)
}
var gradient = [];
paletteData.forEach((e,j) => {
for (let j = 0; j < paletteData.length; j++) {
const e = paletteData[j];
let r, g, b;
let index = false;
if (Array.isArray(e)) {
@@ -1081,8 +1065,9 @@ function genPalPrevCss(id)
if (index === false) {
index = Math.round(j / paletteData.length * 100);
}
gradient.push(`rgb(${r},${g},${b}) ${index}%`);
});
}
return `background: linear-gradient(to right,${gradient.join()});`;
}
@@ -3101,29 +3086,15 @@ let iSlide = 0, x0 = null, scrollS = 0, locked = false;
function unify(e) { return e.changedTouches ? e.changedTouches[0] : e; }
/**
* Return true if any class name in the provided list starts with "Iro".
*
* @param {Iterable<string>} classList - An iterable of class name strings (e.g., Element.classList or an array).
* @returns {boolean} True when at least one class name begins with "Iro", otherwise false.
*/
function hasIroClass(classList)
{
let found = false;
classList.forEach((e)=>{ if (e.startsWith('Iro')) found = true; });
return found;
for (var i = 0; i < classList.length; i++) {
var element = classList[i];
if (element.startsWith('Iro')) return true;
}
return false;
}
/**
* Handle touch/drag start to lock page scrolling and initiate horizontal slide gestures.
*
* If the app is in PC mode or simplified UI, or the event target (or its parent) is marked
* to skip sliding (has class `noslide` or contains iro-related classes), the function returns
* without side effects. Otherwise it records the initial pointer X position and current
* scrollTop into globals used by the gesture handler, sets the global `locked` flag, and
* toggles the container's `smooth` class accordingly.
*
* @param {Event} e - Pointer/touch event from rangetouch (the originating target is inspected).
*/
//required by rangetouch.js
function lock(e)
{
if (pcMode || simplifiedUI) return;

View File

@@ -107,7 +107,6 @@ Y: <input name="P${i}Y" type="number" min="0" max="255" value="0" oninput="UI()"
Sf[`P${p}H`].value = ph;
}
}
UI(); // Update the preview after generating panels
}
function expand(o,i)

View File

@@ -908,6 +908,7 @@ Swap: <select id="xw${s}" name="XW${s}">
<option value="3">None (not recommended)</option>
</select><br>
Use harmonic <i>Random Cycle</i> palette: <input type="checkbox" name="TH"><br>
Use &quot;rainbow&quot; color wheel: <input type="checkbox" name="RW"><br>
Target refresh rate: <input type="number" class="s" min="0" max="250" name="FR" oninput="UI()" required> FPS
<div id="fpsNone" class="warn" style="display: none;">&#9888; Unlimited FPS Mode is experimental &#9888;<br></div>
<div id="fpsHigh" class="warn" style="display: none;">&#9888; High FPS Mode is experimental.<br></div>

View File

@@ -76,7 +76,7 @@
A huge thank you to everyone who helped me create WLED!<br><br>
(c) 2016-2024 Christian Schwinne <br>
<i>Licensed under the <a href="https://github.com/wled-dev/WLED/blob/main/LICENSE" target="_blank">EUPL v1.2 license</a></i><br><br>
Installed version: <span class="sip">WLED ##VERSION##</span><hr>
Server message: <span class="sip"> Response error! </span><hr>
<div id="toast"></div>
<button type="button" onclick="B()">Back</button><button type="submit">Save</button>
</form>

View File

@@ -258,10 +258,10 @@ Static subnet mask:<br>
<h3>Ethernet Type</h3>
<select name="ETH">
<option value="0">None</option>
<option value="6">IoTorero/ESP32Deux/RGB2Go</option>
<option value="9">ABC! WLED V43 & compatible</option>
<option value="2">ESP32-POE</option>
<option value="11">ESP32-POE-WROVER</option>
<option value="6">ESP32Deux/RGB2Go</option>
<option value="7">KIT-VE</option>
<option value="12">LILYGO T-POE Pro</option>
<option value="8">QuinLED-Dig-Octa & T-ETH-POE</option>

View File

@@ -27,7 +27,7 @@
<body onload="GetV()">
<h2>WLED Software Update</h2>
<form method='POST' action='./update' id='upd' enctype='multipart/form-data' onsubmit="toggle('upd')">
Installed version: <span class="sip">WLED ##VERSION##</span><br>
Installed version: <span class="sip">##VERSION##</span><br>
Download the latest binary: <a href="https://github.com/wled-dev/WLED/releases" target="_blank"
style="vertical-align: text-bottom; display: inline-flex;">
<img src="https://img.shields.io/github/release/wled-dev/WLED.svg?style=flat-square"></a><br>

View File

@@ -191,7 +191,7 @@ void handleDMXData(uint16_t uni, uint16_t dmxChannels, uint8_t* e131_data, uint8
// only change brightness if value changed
if (bri != e131_data[dataOffset]) {
bri = e131_data[dataOffset];
strip.setBrightness(bri, false);
strip.setBrightness(scaledBri(bri), false);
stateUpdated(CALL_MODE_WS_SEND);
}
return;

View File

@@ -24,10 +24,6 @@ void handleIO();
void IRAM_ATTR touchButtonISR();
//cfg.cpp
bool backupConfig();
bool restoreConfig();
bool verifyConfig();
void resetConfig();
bool deserializeConfig(JsonObject doc, bool fromFS = false);
bool deserializeConfigFromFS();
bool deserializeConfigSec();
@@ -73,6 +69,133 @@ typedef struct WiFiConfig {
}
} wifi_config;
//colors.cpp
#define ColorFromPalette ColorFromPaletteWLED // override fastled version
// CRGBW can be used to manipulate 32bit colors faster. However: if it is passed to functions, it adds overhead compared to a uint32_t color
// use with caution and pay attention to flash size. Usually converting a uint32_t to CRGBW to extract r, g, b, w values is slower than using bitshifts
// it can be useful to avoid back and forth conversions between uint32_t and fastled CRGB
struct CRGBW {
union {
uint32_t color32; // Access as a 32-bit value (0xWWRRGGBB)
struct {
uint8_t b;
uint8_t g;
uint8_t r;
uint8_t w;
};
uint8_t raw[4]; // Access as an array in the order B, G, R, W
};
// Default constructor
inline CRGBW() __attribute__((always_inline)) = default;
// Constructor from a 32-bit color (0xWWRRGGBB)
constexpr CRGBW(uint32_t color) __attribute__((always_inline)) : color32(color) {}
// Constructor with r, g, b, w values
constexpr CRGBW(uint8_t red, uint8_t green, uint8_t blue, uint8_t white = 0) __attribute__((always_inline)) : b(blue), g(green), r(red), w(white) {}
// Constructor from CRGB
constexpr CRGBW(CRGB rgb) __attribute__((always_inline)) : b(rgb.b), g(rgb.g), r(rgb.r), w(0) {}
// Access as an array
inline const uint8_t& operator[] (uint8_t x) const __attribute__((always_inline)) { return raw[x]; }
// Assignment from 32-bit color
inline CRGBW& operator=(uint32_t color) __attribute__((always_inline)) { color32 = color; return *this; }
// Assignment from r, g, b, w
inline CRGBW& operator=(const CRGB& rgb) __attribute__((always_inline)) { b = rgb.b; g = rgb.g; r = rgb.r; w = 0; return *this; }
// Conversion operator to uint32_t
inline operator uint32_t() const __attribute__((always_inline)) {
return color32;
}
/*
// Conversion operator to CRGB
inline operator CRGB() const __attribute__((always_inline)) {
return CRGB(r, g, b);
}
CRGBW& scale32 (uint8_t scaledown) // 32bit math
{
if (color32 == 0) return *this; // 2 extra instructions, worth it if called a lot on black (which probably is true) adding check if scaledown is zero adds much more overhead as its 8bit
uint32_t scale = scaledown + 1;
uint32_t rb = (((color32 & 0x00FF00FF) * scale) >> 8) & 0x00FF00FF; // scale red and blue
uint32_t wg = (((color32 & 0xFF00FF00) >> 8) * scale) & 0xFF00FF00; // scale white and green
color32 = rb | wg;
return *this;
}*/
};
struct CHSV32 { // 32bit HSV color with 16bit hue for more accurate conversions
union {
struct {
uint16_t h; // hue
uint8_t s; // saturation
uint8_t v; // value
};
uint32_t raw; // 32bit access
};
inline CHSV32() __attribute__((always_inline)) = default; // default constructor
/// Allow construction from hue, saturation, and value
/// @param ih input hue
/// @param is input saturation
/// @param iv input value
inline CHSV32(uint16_t ih, uint8_t is, uint8_t iv) __attribute__((always_inline)) // constructor from 16bit h, s, v
: h(ih), s(is), v(iv) {}
inline CHSV32(uint8_t ih, uint8_t is, uint8_t iv) __attribute__((always_inline)) // constructor from 8bit h, s, v
: h((uint16_t)ih << 8), s(is), v(iv) {}
inline CHSV32(const CHSV& chsv) __attribute__((always_inline)) // constructor from CHSV
: h((uint16_t)chsv.h << 8), s(chsv.s), v(chsv.v) {}
inline operator CHSV() const { return CHSV((uint8_t)(h >> 8), s, v); } // typecast to CHSV
};
// similar to NeoPixelBus NeoGammaTableMethod but allows dynamic changes (superseded by NPB::NeoGammaDynamicTableMethod)
class NeoGammaWLEDMethod {
public:
[[gnu::hot]] static uint8_t Correct(uint8_t value); // apply Gamma to single channel
[[gnu::hot]] static uint32_t Correct32(uint32_t color); // apply Gamma to RGBW32 color (WLED specific, not used by NPB)
[[gnu::hot]] static uint32_t inverseGamma32(uint32_t color); // apply inverse Gamma to RGBW32 color
static void calcGammaTable(float gamma); // re-calculates & fills gamma tables
static inline uint8_t rawGamma8(uint8_t val) { return gammaT[val]; } // get value from Gamma table (WLED specific, not used by NPB)
static inline uint8_t rawInverseGamma8(uint8_t val) { return gammaT_inv[val]; } // get value from inverse Gamma table (WLED specific, not used by NPB)
private:
static uint8_t gammaT[];
static uint8_t gammaT_inv[];
};
#define gamma32(c) NeoGammaWLEDMethod::Correct32(c)
#define gamma8(c) NeoGammaWLEDMethod::rawGamma8(c)
#define gamma32inv(c) NeoGammaWLEDMethod::inverseGamma32(c)
#define gamma8inv(c) NeoGammaWLEDMethod::rawInverseGamma8(c)
[[gnu::hot, gnu::pure]] uint32_t color_blend(uint32_t c1, uint32_t c2 , uint8_t blend);
inline uint32_t color_blend16(uint32_t c1, uint32_t c2, uint16_t b) { return color_blend(c1, c2, b >> 8); };
[[gnu::hot, gnu::pure]] uint32_t color_add(uint32_t, uint32_t, bool preserveCR = false);
[[gnu::hot, gnu::pure]] uint32_t color_fade(uint32_t c1, uint8_t amount, bool video=false);
[[gnu::hot, gnu::pure]] uint32_t adjust_color(uint32_t rgb, uint32_t hueShift, uint32_t lighten, uint32_t brighten);
[[gnu::hot, gnu::pure]] uint32_t ColorFromPaletteWLED(const CRGBPalette16 &pal, unsigned index, uint8_t brightness = (uint8_t)255U, TBlendType blendType = LINEARBLEND);
CRGBPalette16 generateHarmonicRandomPalette(const CRGBPalette16 &basepalette);
CRGBPalette16 generateRandomPalette();
void loadCustomPalettes();
extern std::vector<CRGBPalette16> customPalettes;
inline size_t getPaletteCount() { return 13 + GRADIENT_PALETTE_COUNT + customPalettes.size(); }
inline uint32_t colorFromRgbw(byte* rgbw) { return uint32_t((byte(rgbw[3]) << 24) | (byte(rgbw[0]) << 16) | (byte(rgbw[1]) << 8) | (byte(rgbw[2]))); }
void hsv2rgb(const CHSV32& hsv, uint32_t& rgb);
void colorHStoRGB(uint16_t hue, byte sat, byte* rgb);
void rgb2hsv(const uint32_t rgb, CHSV32& hsv);
inline CHSV rgb2hsv(const CRGB c) { CHSV32 hsv; rgb2hsv((uint32_t((byte(c.r) << 16) | (byte(c.g) << 8) | (byte(c.b)))), hsv); return CHSV(hsv); } // CRGB to hsv
void colorKtoRGB(uint16_t kelvin, byte* rgb);
void colorCTtoRGB(uint16_t mired, byte* rgb); //white spectrum to rgb
void colorXYtoRGB(float x, float y, byte* rgb); // only defined if huesync disabled TODO
void colorRGBtoXY(const byte* rgb, float* xy); // only defined if huesync disabled TODO
void colorFromDecOrHexString(byte* rgb, const char* in);
bool colorFromHexString(byte* rgb, const char* in);
uint32_t colorBalanceFromKelvin(uint16_t kelvin, uint32_t rgb);
uint16_t approximateKelvinFromRGB(uint32_t rgb);
void setRandomColor(byte* rgb);
//dmx_output.cpp
void initDMXOutput();
void handleDMXOutput();
@@ -100,11 +223,6 @@ inline bool writeObjectToFileUsingId(const String &file, uint16_t id, const Json
inline bool writeObjectToFile(const String &file, const char* key, const JsonDocument* content) { return writeObjectToFile(file.c_str(), key, content); };
inline bool readObjectFromFileUsingId(const String &file, uint16_t id, JsonDocument* dest, const JsonDocument* filter = nullptr) { return readObjectFromFileUsingId(file.c_str(), id, dest); };
inline bool readObjectFromFile(const String &file, const char* key, JsonDocument* dest, const JsonDocument* filter = nullptr) { return readObjectFromFile(file.c_str(), key, dest); };
bool copyFile(const char* src_path, const char* dst_path);
bool backupFile(const char* filename);
bool restoreFile(const char* filename);
bool validateJsonFile(const char* filename);
void dumpFilesToSerial();
//hue.cpp
void handleHue();
@@ -315,7 +433,6 @@ class Usermod {
virtual void onMqttConnect(bool sessionPresent) {} // fired when MQTT connection is established (so usermod can subscribe)
virtual bool onMqttMessage(char* topic, char* payload) { return false; } // fired upon MQTT message received (wled topic)
virtual bool onEspNowMessage(uint8_t* sender, uint8_t* payload, uint8_t len) { return false; } // fired upon ESP-NOW message received
virtual bool onUdpPacket(uint8_t* payload, size_t len) { return false; } //fired upon UDP packet received
virtual void onUpdateBegin(bool) {} // fired prior to and after unsuccessful firmware update
virtual void onStateChange(uint8_t mode) {} // fired upon WLED state change
virtual uint16_t getId() {return USERMOD_ID_UNSPECIFIED;}
@@ -355,7 +472,6 @@ namespace UsermodManager {
#ifndef WLED_DISABLE_ESPNOW
bool onEspNowMessage(uint8_t* sender, uint8_t* payload, uint8_t len);
#endif
bool onUdpPacket(uint8_t* payload, size_t len);
void onUpdateBegin(bool);
void onStateChange(uint8_t);
Usermod* lookup(uint16_t mod_id);
@@ -365,11 +481,6 @@ namespace UsermodManager {
// Register usermods by building a static list via a linker section
#define REGISTER_USERMOD(x) Usermod* const um_##x __attribute__((__section__(".dtors.tbl.usermods.1"), used)) = &x
//usermod.cpp
void userSetup();
void userConnected();
void userLoop();
//util.cpp
#ifdef ESP8266
#define HW_RND_REGISTER RANDOM_REG32
@@ -464,10 +575,6 @@ extern "C" {
#define d_free free
#endif
void handleBootLoop(); // detect and handle bootloops
#ifndef ESP8266
void bootloopCheckOTA(); // swap boot image if bootloop is detected instead of restoring config
#endif
// RAII guard class for the JSON Buffer lock
// Modeled after std::lock_guard
class JSONBufferGuard {

View File

@@ -439,156 +439,3 @@ bool handleFileRead(AsyncWebServerRequest* request, String path){
}
return false;
}
// copy a file, delete destination file if incomplete to prevent corrupted files
bool copyFile(const char* src_path, const char* dst_path) {
DEBUG_PRINTF("copyFile from %s to %s\n", src_path, dst_path);
if(!WLED_FS.exists(src_path)) {
DEBUG_PRINTLN(F("file not found"));
return false;
}
bool success = true; // is set to false on error
File src = WLED_FS.open(src_path, "r");
File dst = WLED_FS.open(dst_path, "w");
if (src && dst) {
uint8_t buf[128]; // copy file in 128-byte blocks
while (src.available() > 0) {
size_t bytesRead = src.read(buf, sizeof(buf));
if (bytesRead == 0) {
success = false;
break; // error, no data read
}
size_t bytesWritten = dst.write(buf, bytesRead);
if (bytesWritten != bytesRead) {
success = false;
break; // error, not all data written
}
}
} else {
success = false; // error, could not open files
}
if(src) src.close();
if(dst) dst.close();
if (!success) {
DEBUG_PRINTLN(F("copy failed"));
WLED_FS.remove(dst_path); // delete incomplete file
}
return success;
}
// compare two files, return true if identical
bool compareFiles(const char* path1, const char* path2) {
DEBUG_PRINTF("compareFile %s and %s\n", path1, path2);
if (!WLED_FS.exists(path1) || !WLED_FS.exists(path2)) {
DEBUG_PRINTLN(F("file not found"));
return false;
}
bool identical = true; // set to false on mismatch
File f1 = WLED_FS.open(path1, "r");
File f2 = WLED_FS.open(path2, "r");
if (f1 && f2) {
uint8_t buf1[128], buf2[128];
while (f1.available() > 0 || f2.available() > 0) {
size_t len1 = f1.read(buf1, sizeof(buf1));
size_t len2 = f2.read(buf2, sizeof(buf2));
if (len1 != len2) {
identical = false;
break; // files differ in size or read failed
}
if (memcmp(buf1, buf2, len1) != 0) {
identical = false;
break; // files differ in content
}
}
} else {
identical = false; // error opening files
}
if (f1) f1.close();
if (f2) f2.close();
return identical;
}
static const char s_backup_fmt[] PROGMEM = "/bkp.%s";
bool backupFile(const char* filename) {
DEBUG_PRINTF("backup %s \n", filename);
if (!validateJsonFile(filename)) {
DEBUG_PRINTLN(F("broken file"));
return false;
}
char backupname[32];
snprintf_P(backupname, sizeof(backupname), s_backup_fmt, filename + 1); // skip leading '/' in filename
if (copyFile(filename, backupname)) {
DEBUG_PRINTLN(F("backup ok"));
return true;
}
DEBUG_PRINTLN(F("backup failed"));
return false;
}
bool restoreFile(const char* filename) {
DEBUG_PRINTF("restore %s \n", filename);
char backupname[32];
snprintf_P(backupname, sizeof(backupname), s_backup_fmt, filename + 1); // skip leading '/' in filename
if (!WLED_FS.exists(backupname)) {
DEBUG_PRINTLN(F("no backup found"));
return false;
}
if (!validateJsonFile(backupname)) {
DEBUG_PRINTLN(F("broken backup"));
return false;
}
if (copyFile(backupname, filename)) {
DEBUG_PRINTLN(F("restore ok"));
return true;
}
DEBUG_PRINTLN(F("restore failed"));
return false;
}
bool validateJsonFile(const char* filename) {
if (!WLED_FS.exists(filename)) return false;
File file = WLED_FS.open(filename, "r");
if (!file) return false;
StaticJsonDocument<0> doc, filter; // https://arduinojson.org/v6/how-to/validate-json/
bool result = deserializeJson(doc, file, DeserializationOption::Filter(filter)) == DeserializationError::Ok;
file.close();
if (!result) {
DEBUG_PRINTF_P(PSTR("Invalid JSON file %s\n"), filename);
} else {
DEBUG_PRINTF_P(PSTR("Valid JSON file %s\n"), filename);
}
return result;
}
// print contents of all files in root dir to Serial except wsec files
void dumpFilesToSerial() {
File rootdir = WLED_FS.open("/", "r");
File rootfile = rootdir.openNextFile();
while (rootfile) {
size_t len = strlen(rootfile.name());
// skip files starting with "wsec" and dont end in .json
if (strncmp(rootfile.name(), "wsec", 4) != 0 && len >= 6 && strcmp(rootfile.name() + len - 5, ".json") == 0) {
Serial.println(rootfile.name());
while (rootfile.available()) {
Serial.write(rootfile.read());
}
Serial.println();
Serial.println();
}
rootfile.close();
rootfile = rootdir.openNextFile();
}
}

View File

@@ -58,7 +58,7 @@ void drawPixelCallback(int16_t x, int16_t y, uint8_t red, uint8_t green, uint8_t
// set multiple pixels if upscaling
for (int16_t i = 0; i < (activeSeg->width()+(gifWidth-1)) / gifWidth; i++) {
for (int16_t j = 0; j < (activeSeg->height()+(gifHeight-1)) / gifHeight; j++) {
activeSeg->setPixelColorXY(outX + i, outY + j, red, green, blue);
activeSeg->setPixelColorXY(outX + i, outY + j, gamma8(red), gamma8(green), gamma8(blue));
}
}
}

View File

@@ -1,5 +1,7 @@
#include "wled.h"
#include "palettes.h"
#define JSON_PATH_STATE 1
#define JSON_PATH_INFO 2
#define JSON_PATH_STATE_INFO 3
@@ -310,7 +312,7 @@ static bool deserializeSegment(JsonObject elem, byte it, byte presetId = 0)
jsonTransitionOnce = true;
if (seg.isInTransition()) seg.startTransition(0); // setting transition time to 0 will stop transition in next frame
strip.setTransition(0);
strip.setBrightness(bri, true);
strip.setBrightness(scaledBri(bri), true);
// freeze and init to black
if (!seg.freeze) {
@@ -687,20 +689,6 @@ void serializeState(JsonObject root, bool forPreset, bool includeBri, bool segme
}
}
/**
* @brief Populate a JSON object with device and runtime information.
*
* Fills the provided JsonObject with system, hardware, network, and LED subsystem
* metadata used by the JSON API (version, build, LED counts and capabilities,
* palettes and modes counts, WiFi and filesystem stats, uptime, time, and usermod
* additions).
*
* The function writes several nested objects and arrays (for example "leds",
* "wifi", "fs", "maps") and a set of top-level fields consumed by clients.
*
* @param root JsonObject to populate. Must be a valid writable JSON object;
* the function will create nested objects/arrays inside it.
*/
void serializeInfo(JsonObject root)
{
root[F("ver")] = versionString;
@@ -782,8 +770,7 @@ void serializeInfo(JsonObject root)
root[F("fxcount")] = strip.getModeCount();
root[F("palcount")] = getPaletteCount();
root[F("cpalcount")] = customPalettes.size(); // number of custom palettes
root[F("cpalmax")] = WLED_MAX_CUSTOM_PALETTES; // maximum number of custom palettes
root[F("cpalcount")] = customPalettes.size(); //number of custom palettes
JsonArray ledmaps = root.createNestedArray(F("maps"));
for (size_t i=0; i<WLED_MAX_LEDMAPS; i++) {

View File

@@ -57,7 +57,7 @@ void toggleOnOff()
//scales the brightness with the briMultiplier factor
byte scaledBri(byte in)
{
unsigned val = ((unsigned)in*briMultiplier)/100;
unsigned val = ((uint16_t)in*briMultiplier)/100;
if (val > 255) val = 255;
return (byte)val;
}
@@ -68,7 +68,7 @@ void applyBri() {
if (realtimeOverride || !(realtimeMode && arlsForceMaxBri))
{
//DEBUG_PRINTF_P(PSTR("Applying strip brightness: %d (%d,%d)\n"), (int)briT, (int)bri, (int)briOld);
strip.setBrightness(briT);
strip.setBrightness(scaledBri(briT));
}
}

View File

@@ -351,6 +351,7 @@ void handleSettingsSet(AsyncWebServerRequest *request, byte subPage)
t = request->arg(F("TP")).toInt();
randomPaletteChangeTime = MIN(255,MAX(1,t));
useHarmonicRandomPalette = request->hasArg(F("TH"));
useRainbowWheel = request->hasArg(F("RW"));
nightlightTargetBri = request->arg(F("TB")).toInt();
t = request->arg(F("TL")).toInt();

View File

@@ -0,0 +1,877 @@
#include "AsyncMqttClient.hpp"
AsyncMqttClient::AsyncMqttClient()
: _connected(false)
, _connectPacketNotEnoughSpace(false)
, _disconnectFlagged(false)
, _tlsBadFingerprint(false)
, _lastClientActivity(0)
, _lastServerActivity(0)
, _lastPingRequestTime(0)
, _host(nullptr)
, _useIp(false)
#if ASYNC_TCP_SSL_ENABLED
, _secure(false)
#endif
, _port(0)
, _keepAlive(15)
, _cleanSession(true)
, _clientId(nullptr)
, _username(nullptr)
, _password(nullptr)
, _willTopic(nullptr)
, _willPayload(nullptr)
, _willPayloadLength(0)
, _willQos(0)
, _willRetain(false)
, _parsingInformation { .bufferState = AsyncMqttClientInternals::BufferState::NONE }
, _currentParsedPacket(nullptr)
, _remainingLengthBufferPosition(0)
, _nextPacketId(1) {
_client.onConnect([](void* obj, AsyncClient* c) { (static_cast<AsyncMqttClient*>(obj))->_onConnect(c); }, this);
_client.onDisconnect([](void* obj, AsyncClient* c) { (static_cast<AsyncMqttClient*>(obj))->_onDisconnect(c); }, this);
_client.onError([](void* obj, AsyncClient* c, int8_t error) { (static_cast<AsyncMqttClient*>(obj))->_onError(c, error); }, this);
_client.onTimeout([](void* obj, AsyncClient* c, uint32_t time) { (static_cast<AsyncMqttClient*>(obj))->_onTimeout(c, time); }, this);
_client.onAck([](void* obj, AsyncClient* c, size_t len, uint32_t time) { (static_cast<AsyncMqttClient*>(obj))->_onAck(c, len, time); }, this);
_client.onData([](void* obj, AsyncClient* c, void* data, size_t len) { (static_cast<AsyncMqttClient*>(obj))->_onData(c, static_cast<char*>(data), len); }, this);
_client.onPoll([](void* obj, AsyncClient* c) { (static_cast<AsyncMqttClient*>(obj))->_onPoll(c); }, this);
#ifdef ESP32
sprintf(_generatedClientId, "esp32%06x", (uint32_t)ESP.getEfuseMac());
_xSemaphore = xSemaphoreCreateMutex();
#elif defined(ESP8266)
sprintf(_generatedClientId, "esp8266%06x", (uint32_t)ESP.getChipId());
#endif
_clientId = _generatedClientId;
setMaxTopicLength(128);
}
AsyncMqttClient::~AsyncMqttClient() {
delete _currentParsedPacket;
delete[] _parsingInformation.topicBuffer;
#ifdef ESP32
vSemaphoreDelete(_xSemaphore);
#endif
}
AsyncMqttClient& AsyncMqttClient::setKeepAlive(uint16_t keepAlive) {
_keepAlive = keepAlive;
return *this;
}
AsyncMqttClient& AsyncMqttClient::setClientId(const char* clientId) {
_clientId = clientId;
return *this;
}
AsyncMqttClient& AsyncMqttClient::setCleanSession(bool cleanSession) {
_cleanSession = cleanSession;
return *this;
}
AsyncMqttClient& AsyncMqttClient::setMaxTopicLength(uint16_t maxTopicLength) {
_parsingInformation.maxTopicLength = maxTopicLength;
delete[] _parsingInformation.topicBuffer;
_parsingInformation.topicBuffer = new char[maxTopicLength + 1];
return *this;
}
AsyncMqttClient& AsyncMqttClient::setCredentials(const char* username, const char* password) {
_username = username;
_password = password;
return *this;
}
AsyncMqttClient& AsyncMqttClient::setWill(const char* topic, uint8_t qos, bool retain, const char* payload, size_t length) {
_willTopic = topic;
_willQos = qos;
_willRetain = retain;
_willPayload = payload;
_willPayloadLength = length;
return *this;
}
AsyncMqttClient& AsyncMqttClient::setServer(IPAddress ip, uint16_t port) {
_useIp = true;
_ip = ip;
_port = port;
return *this;
}
AsyncMqttClient& AsyncMqttClient::setServer(const char* host, uint16_t port) {
_useIp = false;
_host = host;
_port = port;
return *this;
}
#if ASYNC_TCP_SSL_ENABLED
AsyncMqttClient& AsyncMqttClient::setSecure(bool secure) {
_secure = secure;
return *this;
}
AsyncMqttClient& AsyncMqttClient::addServerFingerprint(const uint8_t* fingerprint) {
std::array<uint8_t, SHA1_SIZE> newFingerprint;
memcpy(newFingerprint.data(), fingerprint, SHA1_SIZE);
_secureServerFingerprints.push_back(newFingerprint);
return *this;
}
#endif
AsyncMqttClient& AsyncMqttClient::onConnect(AsyncMqttClientInternals::OnConnectUserCallback callback) {
_onConnectUserCallbacks.push_back(callback);
return *this;
}
AsyncMqttClient& AsyncMqttClient::onDisconnect(AsyncMqttClientInternals::OnDisconnectUserCallback callback) {
_onDisconnectUserCallbacks.push_back(callback);
return *this;
}
AsyncMqttClient& AsyncMqttClient::onSubscribe(AsyncMqttClientInternals::OnSubscribeUserCallback callback) {
_onSubscribeUserCallbacks.push_back(callback);
return *this;
}
AsyncMqttClient& AsyncMqttClient::onUnsubscribe(AsyncMqttClientInternals::OnUnsubscribeUserCallback callback) {
_onUnsubscribeUserCallbacks.push_back(callback);
return *this;
}
AsyncMqttClient& AsyncMqttClient::onMessage(AsyncMqttClientInternals::OnMessageUserCallback callback) {
_onMessageUserCallbacks.push_back(callback);
return *this;
}
AsyncMqttClient& AsyncMqttClient::onPublish(AsyncMqttClientInternals::OnPublishUserCallback callback) {
_onPublishUserCallbacks.push_back(callback);
return *this;
}
void AsyncMqttClient::_freeCurrentParsedPacket() {
delete _currentParsedPacket;
_currentParsedPacket = nullptr;
}
void AsyncMqttClient::_clear() {
_lastPingRequestTime = 0;
_connected = false;
_disconnectFlagged = false;
_connectPacketNotEnoughSpace = false;
_tlsBadFingerprint = false;
_freeCurrentParsedPacket();
_pendingPubRels.clear();
_pendingPubRels.shrink_to_fit();
_toSendAcks.clear();
_toSendAcks.shrink_to_fit();
_nextPacketId = 1;
_parsingInformation.bufferState = AsyncMqttClientInternals::BufferState::NONE;
}
/* TCP */
void AsyncMqttClient::_onConnect(AsyncClient* client) {
(void)client;
#if ASYNC_TCP_SSL_ENABLED
if (_secure && _secureServerFingerprints.size() > 0) {
SSL* clientSsl = _client.getSSL();
bool sslFoundFingerprint = false;
for (std::array<uint8_t, SHA1_SIZE> fingerprint : _secureServerFingerprints) {
if (ssl_match_fingerprint(clientSsl, fingerprint.data()) == SSL_OK) {
sslFoundFingerprint = true;
break;
}
}
if (!sslFoundFingerprint) {
_tlsBadFingerprint = true;
_client.close(true);
return;
}
}
#endif
char fixedHeader[5];
fixedHeader[0] = AsyncMqttClientInternals::PacketType.CONNECT;
fixedHeader[0] = fixedHeader[0] << 4;
fixedHeader[0] = fixedHeader[0] | AsyncMqttClientInternals::HeaderFlag.CONNECT_RESERVED;
uint16_t protocolNameLength = 4;
char protocolNameLengthBytes[2];
protocolNameLengthBytes[0] = protocolNameLength >> 8;
protocolNameLengthBytes[1] = protocolNameLength & 0xFF;
char protocolLevel[1];
protocolLevel[0] = 0x04;
char connectFlags[1];
connectFlags[0] = 0;
if (_cleanSession) connectFlags[0] |= AsyncMqttClientInternals::ConnectFlag.CLEAN_SESSION;
if (_username != nullptr) connectFlags[0] |= AsyncMqttClientInternals::ConnectFlag.USERNAME;
if (_password != nullptr) connectFlags[0] |= AsyncMqttClientInternals::ConnectFlag.PASSWORD;
if (_willTopic != nullptr) {
connectFlags[0] |= AsyncMqttClientInternals::ConnectFlag.WILL;
if (_willRetain) connectFlags[0] |= AsyncMqttClientInternals::ConnectFlag.WILL_RETAIN;
switch (_willQos) {
case 0:
connectFlags[0] |= AsyncMqttClientInternals::ConnectFlag.WILL_QOS0;
break;
case 1:
connectFlags[0] |= AsyncMqttClientInternals::ConnectFlag.WILL_QOS1;
break;
case 2:
connectFlags[0] |= AsyncMqttClientInternals::ConnectFlag.WILL_QOS2;
break;
}
}
char keepAliveBytes[2];
keepAliveBytes[0] = _keepAlive >> 8;
keepAliveBytes[1] = _keepAlive & 0xFF;
uint16_t clientIdLength = strlen(_clientId);
char clientIdLengthBytes[2];
clientIdLengthBytes[0] = clientIdLength >> 8;
clientIdLengthBytes[1] = clientIdLength & 0xFF;
// Optional fields
uint16_t willTopicLength = 0;
char willTopicLengthBytes[2];
uint16_t willPayloadLength = _willPayloadLength;
char willPayloadLengthBytes[2];
if (_willTopic != nullptr) {
willTopicLength = strlen(_willTopic);
willTopicLengthBytes[0] = willTopicLength >> 8;
willTopicLengthBytes[1] = willTopicLength & 0xFF;
if (_willPayload != nullptr && willPayloadLength == 0) willPayloadLength = strlen(_willPayload);
willPayloadLengthBytes[0] = willPayloadLength >> 8;
willPayloadLengthBytes[1] = willPayloadLength & 0xFF;
}
uint16_t usernameLength = 0;
char usernameLengthBytes[2];
if (_username != nullptr) {
usernameLength = strlen(_username);
usernameLengthBytes[0] = usernameLength >> 8;
usernameLengthBytes[1] = usernameLength & 0xFF;
}
uint16_t passwordLength = 0;
char passwordLengthBytes[2];
if (_password != nullptr) {
passwordLength = strlen(_password);
passwordLengthBytes[0] = passwordLength >> 8;
passwordLengthBytes[1] = passwordLength & 0xFF;
}
uint32_t remainingLength = 2 + protocolNameLength + 1 + 1 + 2 + 2 + clientIdLength; // always present
if (_willTopic != nullptr) remainingLength += 2 + willTopicLength + 2 + willPayloadLength;
if (_username != nullptr) remainingLength += 2 + usernameLength;
if (_password != nullptr) remainingLength += 2 + passwordLength;
uint8_t remainingLengthLength = AsyncMqttClientInternals::Helpers::encodeRemainingLength(remainingLength, fixedHeader + 1);
uint32_t neededSpace = 1 + remainingLengthLength;
neededSpace += 2;
neededSpace += protocolNameLength;
neededSpace += 1;
neededSpace += 1;
neededSpace += 2;
neededSpace += 2;
neededSpace += clientIdLength;
if (_willTopic != nullptr) {
neededSpace += 2;
neededSpace += willTopicLength;
neededSpace += 2;
if (_willPayload != nullptr) neededSpace += willPayloadLength;
}
if (_username != nullptr) {
neededSpace += 2;
neededSpace += usernameLength;
}
if (_password != nullptr) {
neededSpace += 2;
neededSpace += passwordLength;
}
SEMAPHORE_TAKE();
if (_client.space() < neededSpace) {
_connectPacketNotEnoughSpace = true;
_client.close(true);
SEMAPHORE_GIVE();
return;
}
_client.add(fixedHeader, 1 + remainingLengthLength);
_client.add(protocolNameLengthBytes, 2);
_client.add("MQTT", protocolNameLength);
_client.add(protocolLevel, 1);
_client.add(connectFlags, 1);
_client.add(keepAliveBytes, 2);
_client.add(clientIdLengthBytes, 2);
_client.add(_clientId, clientIdLength);
if (_willTopic != nullptr) {
_client.add(willTopicLengthBytes, 2);
_client.add(_willTopic, willTopicLength);
_client.add(willPayloadLengthBytes, 2);
if (_willPayload != nullptr) _client.add(_willPayload, willPayloadLength);
}
if (_username != nullptr) {
_client.add(usernameLengthBytes, 2);
_client.add(_username, usernameLength);
}
if (_password != nullptr) {
_client.add(passwordLengthBytes, 2);
_client.add(_password, passwordLength);
}
_client.send();
_lastClientActivity = millis();
SEMAPHORE_GIVE();
}
void AsyncMqttClient::_onDisconnect(AsyncClient* client) {
(void)client;
if (!_disconnectFlagged) {
AsyncMqttClientDisconnectReason reason;
if (_connectPacketNotEnoughSpace) {
reason = AsyncMqttClientDisconnectReason::ESP8266_NOT_ENOUGH_SPACE;
} else if (_tlsBadFingerprint) {
reason = AsyncMqttClientDisconnectReason::TLS_BAD_FINGERPRINT;
} else {
reason = AsyncMqttClientDisconnectReason::TCP_DISCONNECTED;
}
for (auto callback : _onDisconnectUserCallbacks) callback(reason);
}
_clear();
}
void AsyncMqttClient::_onError(AsyncClient* client, int8_t error) {
(void)client;
(void)error;
// _onDisconnect called anyway
}
void AsyncMqttClient::_onTimeout(AsyncClient* client, uint32_t time) {
(void)client;
(void)time;
// disconnection will be handled by ping/pong management
}
void AsyncMqttClient::_onAck(AsyncClient* client, size_t len, uint32_t time) {
(void)client;
(void)len;
(void)time;
}
void AsyncMqttClient::_onData(AsyncClient* client, char* data, size_t len) {
(void)client;
size_t currentBytePosition = 0;
char currentByte;
do {
switch (_parsingInformation.bufferState) {
case AsyncMqttClientInternals::BufferState::NONE:
currentByte = data[currentBytePosition++];
_parsingInformation.packetType = currentByte >> 4;
_parsingInformation.packetFlags = (currentByte << 4) >> 4;
_parsingInformation.bufferState = AsyncMqttClientInternals::BufferState::REMAINING_LENGTH;
_lastServerActivity = millis();
switch (_parsingInformation.packetType) {
case AsyncMqttClientInternals::PacketType.CONNACK:
_currentParsedPacket = new AsyncMqttClientInternals::ConnAckPacket(&_parsingInformation, std::bind(&AsyncMqttClient::_onConnAck, this, std::placeholders::_1, std::placeholders::_2));
break;
case AsyncMqttClientInternals::PacketType.PINGRESP:
_currentParsedPacket = new AsyncMqttClientInternals::PingRespPacket(&_parsingInformation, std::bind(&AsyncMqttClient::_onPingResp, this));
break;
case AsyncMqttClientInternals::PacketType.SUBACK:
_currentParsedPacket = new AsyncMqttClientInternals::SubAckPacket(&_parsingInformation, std::bind(&AsyncMqttClient::_onSubAck, this, std::placeholders::_1, std::placeholders::_2));
break;
case AsyncMqttClientInternals::PacketType.UNSUBACK:
_currentParsedPacket = new AsyncMqttClientInternals::UnsubAckPacket(&_parsingInformation, std::bind(&AsyncMqttClient::_onUnsubAck, this, std::placeholders::_1));
break;
case AsyncMqttClientInternals::PacketType.PUBLISH:
_currentParsedPacket = new AsyncMqttClientInternals::PublishPacket(&_parsingInformation, std::bind(&AsyncMqttClient::_onMessage, this, std::placeholders::_1, std::placeholders::_2, std::placeholders::_3, std::placeholders::_4, std::placeholders::_5, std::placeholders::_6, std::placeholders::_7, std::placeholders::_8, std::placeholders::_9), std::bind(&AsyncMqttClient::_onPublish, this, std::placeholders::_1, std::placeholders::_2));
break;
case AsyncMqttClientInternals::PacketType.PUBREL:
_currentParsedPacket = new AsyncMqttClientInternals::PubRelPacket(&_parsingInformation, std::bind(&AsyncMqttClient::_onPubRel, this, std::placeholders::_1));
break;
case AsyncMqttClientInternals::PacketType.PUBACK:
_currentParsedPacket = new AsyncMqttClientInternals::PubAckPacket(&_parsingInformation, std::bind(&AsyncMqttClient::_onPubAck, this, std::placeholders::_1));
break;
case AsyncMqttClientInternals::PacketType.PUBREC:
_currentParsedPacket = new AsyncMqttClientInternals::PubRecPacket(&_parsingInformation, std::bind(&AsyncMqttClient::_onPubRec, this, std::placeholders::_1));
break;
case AsyncMqttClientInternals::PacketType.PUBCOMP:
_currentParsedPacket = new AsyncMqttClientInternals::PubCompPacket(&_parsingInformation, std::bind(&AsyncMqttClient::_onPubComp, this, std::placeholders::_1));
break;
default:
break;
}
break;
case AsyncMqttClientInternals::BufferState::REMAINING_LENGTH:
currentByte = data[currentBytePosition++];
_remainingLengthBuffer[_remainingLengthBufferPosition++] = currentByte;
if (currentByte >> 7 == 0) {
_parsingInformation.remainingLength = AsyncMqttClientInternals::Helpers::decodeRemainingLength(_remainingLengthBuffer);
_remainingLengthBufferPosition = 0;
if (_parsingInformation.remainingLength > 0) {
_parsingInformation.bufferState = AsyncMqttClientInternals::BufferState::VARIABLE_HEADER;
} else {
// PINGRESP is a special case where it has no variable header, so the packet ends right here
_parsingInformation.bufferState = AsyncMqttClientInternals::BufferState::NONE;
_onPingResp();
}
}
break;
case AsyncMqttClientInternals::BufferState::VARIABLE_HEADER:
_currentParsedPacket->parseVariableHeader(data, len, &currentBytePosition);
break;
case AsyncMqttClientInternals::BufferState::PAYLOAD:
_currentParsedPacket->parsePayload(data, len, &currentBytePosition);
break;
default:
currentBytePosition = len;
}
} while (currentBytePosition != len);
}
void AsyncMqttClient::_onPoll(AsyncClient* client) {
if (!_connected) return;
// if there is too much time the client has sent a ping request without a response, disconnect client to avoid half open connections
if (_lastPingRequestTime != 0 && (millis() - _lastPingRequestTime) >= (_keepAlive * 1000 * 2)) {
disconnect();
return;
// send ping to ensure the server will receive at least one message inside keepalive window
} else if (_lastPingRequestTime == 0 && (millis() - _lastClientActivity) >= (_keepAlive * 1000 * 0.7)) {
_sendPing();
// send ping to verify if the server is still there (ensure this is not a half connection)
} else if (_connected && _lastPingRequestTime == 0 && (millis() - _lastServerActivity) >= (_keepAlive * 1000 * 0.7)) {
_sendPing();
}
// handle to send ack packets
_sendAcks();
// handle disconnect
if (_disconnectFlagged) {
_sendDisconnect();
}
}
/* MQTT */
void AsyncMqttClient::_onPingResp() {
_freeCurrentParsedPacket();
_lastPingRequestTime = 0;
}
void AsyncMqttClient::_onConnAck(bool sessionPresent, uint8_t connectReturnCode) {
(void)sessionPresent;
_freeCurrentParsedPacket();
if (connectReturnCode == 0) {
_connected = true;
for (auto callback : _onConnectUserCallbacks) callback(sessionPresent);
} else {
for (auto callback : _onDisconnectUserCallbacks) callback(static_cast<AsyncMqttClientDisconnectReason>(connectReturnCode));
_disconnectFlagged = true;
}
}
void AsyncMqttClient::_onSubAck(uint16_t packetId, char status) {
_freeCurrentParsedPacket();
for (auto callback : _onSubscribeUserCallbacks) callback(packetId, status);
}
void AsyncMqttClient::_onUnsubAck(uint16_t packetId) {
_freeCurrentParsedPacket();
for (auto callback : _onUnsubscribeUserCallbacks) callback(packetId);
}
void AsyncMqttClient::_onMessage(char* topic, char* payload, uint8_t qos, bool dup, bool retain, size_t len, size_t index, size_t total, uint16_t packetId) {
bool notifyPublish = true;
if (qos == 2) {
for (AsyncMqttClientInternals::PendingPubRel pendingPubRel : _pendingPubRels) {
if (pendingPubRel.packetId == packetId) {
notifyPublish = false;
break;
}
}
}
if (notifyPublish) {
AsyncMqttClientMessageProperties properties;
properties.qos = qos;
properties.dup = dup;
properties.retain = retain;
for (auto callback : _onMessageUserCallbacks) callback(topic, payload, properties, len, index, total);
}
}
void AsyncMqttClient::_onPublish(uint16_t packetId, uint8_t qos) {
AsyncMqttClientInternals::PendingAck pendingAck;
if (qos == 1) {
pendingAck.packetType = AsyncMqttClientInternals::PacketType.PUBACK;
pendingAck.headerFlag = AsyncMqttClientInternals::HeaderFlag.PUBACK_RESERVED;
pendingAck.packetId = packetId;
_toSendAcks.push_back(pendingAck);
} else if (qos == 2) {
pendingAck.packetType = AsyncMqttClientInternals::PacketType.PUBREC;
pendingAck.headerFlag = AsyncMqttClientInternals::HeaderFlag.PUBREC_RESERVED;
pendingAck.packetId = packetId;
_toSendAcks.push_back(pendingAck);
bool pubRelAwaiting = false;
for (AsyncMqttClientInternals::PendingPubRel pendingPubRel : _pendingPubRels) {
if (pendingPubRel.packetId == packetId) {
pubRelAwaiting = true;
break;
}
}
if (!pubRelAwaiting) {
AsyncMqttClientInternals::PendingPubRel pendingPubRel;
pendingPubRel.packetId = packetId;
_pendingPubRels.push_back(pendingPubRel);
}
_sendAcks();
}
_freeCurrentParsedPacket();
}
void AsyncMqttClient::_onPubRel(uint16_t packetId) {
_freeCurrentParsedPacket();
AsyncMqttClientInternals::PendingAck pendingAck;
pendingAck.packetType = AsyncMqttClientInternals::PacketType.PUBCOMP;
pendingAck.headerFlag = AsyncMqttClientInternals::HeaderFlag.PUBCOMP_RESERVED;
pendingAck.packetId = packetId;
_toSendAcks.push_back(pendingAck);
for (size_t i = 0; i < _pendingPubRels.size(); i++) {
if (_pendingPubRels[i].packetId == packetId) {
_pendingPubRels.erase(_pendingPubRels.begin() + i);
_pendingPubRels.shrink_to_fit();
}
}
_sendAcks();
}
void AsyncMqttClient::_onPubAck(uint16_t packetId) {
_freeCurrentParsedPacket();
for (auto callback : _onPublishUserCallbacks) callback(packetId);
}
void AsyncMqttClient::_onPubRec(uint16_t packetId) {
_freeCurrentParsedPacket();
AsyncMqttClientInternals::PendingAck pendingAck;
pendingAck.packetType = AsyncMqttClientInternals::PacketType.PUBREL;
pendingAck.headerFlag = AsyncMqttClientInternals::HeaderFlag.PUBREL_RESERVED;
pendingAck.packetId = packetId;
_toSendAcks.push_back(pendingAck);
_sendAcks();
}
void AsyncMqttClient::_onPubComp(uint16_t packetId) {
_freeCurrentParsedPacket();
for (auto callback : _onPublishUserCallbacks) callback(packetId);
}
bool AsyncMqttClient::_sendPing() {
char fixedHeader[2];
fixedHeader[0] = AsyncMqttClientInternals::PacketType.PINGREQ;
fixedHeader[0] = fixedHeader[0] << 4;
fixedHeader[0] = fixedHeader[0] | AsyncMqttClientInternals::HeaderFlag.PINGREQ_RESERVED;
fixedHeader[1] = 0;
size_t neededSpace = 2;
SEMAPHORE_TAKE(false);
if (_client.space() < neededSpace) { SEMAPHORE_GIVE(); return false; }
_client.add(fixedHeader, 2);
_client.send();
_lastClientActivity = millis();
_lastPingRequestTime = millis();
SEMAPHORE_GIVE();
return true;
}
void AsyncMqttClient::_sendAcks() {
uint8_t neededAckSpace = 2 + 2;
SEMAPHORE_TAKE();
for (size_t i = 0; i < _toSendAcks.size(); i++) {
if (_client.space() < neededAckSpace) break;
AsyncMqttClientInternals::PendingAck pendingAck = _toSendAcks[i];
char fixedHeader[2];
fixedHeader[0] = pendingAck.packetType;
fixedHeader[0] = fixedHeader[0] << 4;
fixedHeader[0] = fixedHeader[0] | pendingAck.headerFlag;
fixedHeader[1] = 2;
char packetIdBytes[2];
packetIdBytes[0] = pendingAck.packetId >> 8;
packetIdBytes[1] = pendingAck.packetId & 0xFF;
_client.add(fixedHeader, 2);
_client.add(packetIdBytes, 2);
_client.send();
_toSendAcks.erase(_toSendAcks.begin() + i);
_toSendAcks.shrink_to_fit();
_lastClientActivity = millis();
}
SEMAPHORE_GIVE();
}
bool AsyncMqttClient::_sendDisconnect() {
if (!_connected) return true;
const uint8_t neededSpace = 2;
SEMAPHORE_TAKE(false);
if (_client.space() < neededSpace) { SEMAPHORE_GIVE(); return false; }
char fixedHeader[2];
fixedHeader[0] = AsyncMqttClientInternals::PacketType.DISCONNECT;
fixedHeader[0] = fixedHeader[0] << 4;
fixedHeader[0] = fixedHeader[0] | AsyncMqttClientInternals::HeaderFlag.DISCONNECT_RESERVED;
fixedHeader[1] = 0;
_client.add(fixedHeader, 2);
_client.send();
_client.close(true);
_disconnectFlagged = false;
SEMAPHORE_GIVE();
return true;
}
uint16_t AsyncMqttClient::_getNextPacketId() {
uint16_t nextPacketId = _nextPacketId;
if (_nextPacketId == 65535) _nextPacketId = 0; // 0 is forbidden
_nextPacketId++;
return nextPacketId;
}
bool AsyncMqttClient::connected() const {
return _connected;
}
void AsyncMqttClient::connect() {
if (_connected) return;
#if ASYNC_TCP_SSL_ENABLED
if (_useIp) {
_client.connect(_ip, _port, _secure);
} else {
_client.connect(_host, _port, _secure);
}
#else
if (_useIp) {
_client.connect(_ip, _port);
} else {
_client.connect(_host, _port);
}
#endif
}
void AsyncMqttClient::disconnect(bool force) {
if (!_connected) return;
if (force) {
_client.close(true);
} else {
_disconnectFlagged = true;
_sendDisconnect();
}
}
uint16_t AsyncMqttClient::subscribe(const char* topic, uint8_t qos) {
if (!_connected) return 0;
char fixedHeader[5];
fixedHeader[0] = AsyncMqttClientInternals::PacketType.SUBSCRIBE;
fixedHeader[0] = fixedHeader[0] << 4;
fixedHeader[0] = fixedHeader[0] | AsyncMqttClientInternals::HeaderFlag.SUBSCRIBE_RESERVED;
uint16_t topicLength = strlen(topic);
char topicLengthBytes[2];
topicLengthBytes[0] = topicLength >> 8;
topicLengthBytes[1] = topicLength & 0xFF;
char qosByte[1];
qosByte[0] = qos;
uint8_t remainingLengthLength = AsyncMqttClientInternals::Helpers::encodeRemainingLength(2 + 2 + topicLength + 1, fixedHeader + 1);
size_t neededSpace = 0;
neededSpace += 1 + remainingLengthLength;
neededSpace += 2;
neededSpace += 2;
neededSpace += topicLength;
neededSpace += 1;
SEMAPHORE_TAKE(0);
if (_client.space() < neededSpace) { SEMAPHORE_GIVE(); return 0; }
uint16_t packetId = _getNextPacketId();
char packetIdBytes[2];
packetIdBytes[0] = packetId >> 8;
packetIdBytes[1] = packetId & 0xFF;
_client.add(fixedHeader, 1 + remainingLengthLength);
_client.add(packetIdBytes, 2);
_client.add(topicLengthBytes, 2);
_client.add(topic, topicLength);
_client.add(qosByte, 1);
_client.send();
_lastClientActivity = millis();
SEMAPHORE_GIVE();
return packetId;
}
uint16_t AsyncMqttClient::unsubscribe(const char* topic) {
if (!_connected) return 0;
char fixedHeader[5];
fixedHeader[0] = AsyncMqttClientInternals::PacketType.UNSUBSCRIBE;
fixedHeader[0] = fixedHeader[0] << 4;
fixedHeader[0] = fixedHeader[0] | AsyncMqttClientInternals::HeaderFlag.UNSUBSCRIBE_RESERVED;
uint16_t topicLength = strlen(topic);
char topicLengthBytes[2];
topicLengthBytes[0] = topicLength >> 8;
topicLengthBytes[1] = topicLength & 0xFF;
uint8_t remainingLengthLength = AsyncMqttClientInternals::Helpers::encodeRemainingLength(2 + 2 + topicLength, fixedHeader + 1);
size_t neededSpace = 0;
neededSpace += 1 + remainingLengthLength;
neededSpace += 2;
neededSpace += 2;
neededSpace += topicLength;
SEMAPHORE_TAKE(0);
if (_client.space() < neededSpace) { SEMAPHORE_GIVE(); return 0; }
uint16_t packetId = _getNextPacketId();
char packetIdBytes[2];
packetIdBytes[0] = packetId >> 8;
packetIdBytes[1] = packetId & 0xFF;
_client.add(fixedHeader, 1 + remainingLengthLength);
_client.add(packetIdBytes, 2);
_client.add(topicLengthBytes, 2);
_client.add(topic, topicLength);
_client.send();
_lastClientActivity = millis();
SEMAPHORE_GIVE();
return packetId;
}
uint16_t AsyncMqttClient::publish(const char* topic, uint8_t qos, bool retain, const char* payload, size_t length, bool dup, uint16_t message_id) {
if (!_connected) return 0;
char fixedHeader[5];
fixedHeader[0] = AsyncMqttClientInternals::PacketType.PUBLISH;
fixedHeader[0] = fixedHeader[0] << 4;
if (dup) fixedHeader[0] |= AsyncMqttClientInternals::HeaderFlag.PUBLISH_DUP;
if (retain) fixedHeader[0] |= AsyncMqttClientInternals::HeaderFlag.PUBLISH_RETAIN;
switch (qos) {
case 0:
fixedHeader[0] |= AsyncMqttClientInternals::HeaderFlag.PUBLISH_QOS0;
break;
case 1:
fixedHeader[0] |= AsyncMqttClientInternals::HeaderFlag.PUBLISH_QOS1;
break;
case 2:
fixedHeader[0] |= AsyncMqttClientInternals::HeaderFlag.PUBLISH_QOS2;
break;
}
uint16_t topicLength = strlen(topic);
char topicLengthBytes[2];
topicLengthBytes[0] = topicLength >> 8;
topicLengthBytes[1] = topicLength & 0xFF;
uint32_t payloadLength = length;
if (payload != nullptr && payloadLength == 0) payloadLength = strlen(payload);
uint32_t remainingLength = 2 + topicLength + payloadLength;
if (qos != 0) remainingLength += 2;
uint8_t remainingLengthLength = AsyncMqttClientInternals::Helpers::encodeRemainingLength(remainingLength, fixedHeader + 1);
size_t neededSpace = 0;
neededSpace += 1 + remainingLengthLength;
neededSpace += 2;
neededSpace += topicLength;
if (qos != 0) neededSpace += 2;
if (payload != nullptr) neededSpace += payloadLength;
SEMAPHORE_TAKE(0);
if (_client.space() < neededSpace) { SEMAPHORE_GIVE(); return 0; }
uint16_t packetId = 0;
char packetIdBytes[2];
if (qos != 0) {
if (dup && message_id > 0) {
packetId = message_id;
} else {
packetId = _getNextPacketId();
}
packetIdBytes[0] = packetId >> 8;
packetIdBytes[1] = packetId & 0xFF;
}
_client.add(fixedHeader, 1 + remainingLengthLength);
_client.add(topicLengthBytes, 2);
_client.add(topic, topicLength);
if (qos != 0) _client.add(packetIdBytes, 2);
if (payload != nullptr) _client.add(payload, payloadLength);
_client.send();
_lastClientActivity = millis();
SEMAPHORE_GIVE();
if (qos != 0) {
return packetId;
} else {
return 1;
}
}

View File

@@ -0,0 +1,6 @@
#ifndef SRC_ASYNCMQTTCLIENT_H_
#define SRC_ASYNCMQTTCLIENT_H_
#include "AsyncMqttClient.hpp"
#endif // SRC_ASYNCMQTTCLIENT_H_

View File

@@ -0,0 +1,166 @@
#pragma once
#include <functional>
#include <vector>
#include "Arduino.h"
#ifdef ESP32
#include <AsyncTCP.h>
#include <freertos/semphr.h>
#elif defined(ESP8266)
#include <ESPAsyncTCP.h>
#else
#error Platform not supported
#endif
#if ASYNC_TCP_SSL_ENABLED
#include <tcp_axtls.h>
#define SHA1_SIZE 20
#endif
#include "AsyncMqttClient/Flags.hpp"
#include "AsyncMqttClient/ParsingInformation.hpp"
#include "AsyncMqttClient/MessageProperties.hpp"
#include "AsyncMqttClient/Helpers.hpp"
#include "AsyncMqttClient/Callbacks.hpp"
#include "AsyncMqttClient/DisconnectReasons.hpp"
#include "AsyncMqttClient/Storage.hpp"
#include "AsyncMqttClient/Packets/Packet.hpp"
#include "AsyncMqttClient/Packets/ConnAckPacket.hpp"
#include "AsyncMqttClient/Packets/PingRespPacket.hpp"
#include "AsyncMqttClient/Packets/SubAckPacket.hpp"
#include "AsyncMqttClient/Packets/UnsubAckPacket.hpp"
#include "AsyncMqttClient/Packets/PublishPacket.hpp"
#include "AsyncMqttClient/Packets/PubRelPacket.hpp"
#include "AsyncMqttClient/Packets/PubAckPacket.hpp"
#include "AsyncMqttClient/Packets/PubRecPacket.hpp"
#include "AsyncMqttClient/Packets/PubCompPacket.hpp"
#if ESP32
#define SEMAPHORE_TAKE(X) if (xSemaphoreTake(_xSemaphore, 1000 / portTICK_PERIOD_MS) != pdTRUE) { return X; } // Waits max 1000ms
#define SEMAPHORE_GIVE() xSemaphoreGive(_xSemaphore);
#elif defined(ESP8266)
#define SEMAPHORE_TAKE(X) void()
#define SEMAPHORE_GIVE() void()
#endif
class AsyncMqttClient {
public:
AsyncMqttClient();
~AsyncMqttClient();
AsyncMqttClient& setKeepAlive(uint16_t keepAlive);
AsyncMqttClient& setClientId(const char* clientId);
AsyncMqttClient& setCleanSession(bool cleanSession);
AsyncMqttClient& setMaxTopicLength(uint16_t maxTopicLength);
AsyncMqttClient& setCredentials(const char* username, const char* password = nullptr);
AsyncMqttClient& setWill(const char* topic, uint8_t qos, bool retain, const char* payload = nullptr, size_t length = 0);
AsyncMqttClient& setServer(IPAddress ip, uint16_t port);
AsyncMqttClient& setServer(const char* host, uint16_t port);
#if ASYNC_TCP_SSL_ENABLED
AsyncMqttClient& setSecure(bool secure);
AsyncMqttClient& addServerFingerprint(const uint8_t* fingerprint);
#endif
AsyncMqttClient& onConnect(AsyncMqttClientInternals::OnConnectUserCallback callback);
AsyncMqttClient& onDisconnect(AsyncMqttClientInternals::OnDisconnectUserCallback callback);
AsyncMqttClient& onSubscribe(AsyncMqttClientInternals::OnSubscribeUserCallback callback);
AsyncMqttClient& onUnsubscribe(AsyncMqttClientInternals::OnUnsubscribeUserCallback callback);
AsyncMqttClient& onMessage(AsyncMqttClientInternals::OnMessageUserCallback callback);
AsyncMqttClient& onPublish(AsyncMqttClientInternals::OnPublishUserCallback callback);
bool connected() const;
void connect();
void disconnect(bool force = false);
uint16_t subscribe(const char* topic, uint8_t qos);
uint16_t unsubscribe(const char* topic);
uint16_t publish(const char* topic, uint8_t qos, bool retain, const char* payload = nullptr, size_t length = 0, bool dup = false, uint16_t message_id = 0);
private:
AsyncClient _client;
bool _connected;
bool _connectPacketNotEnoughSpace;
bool _disconnectFlagged;
bool _tlsBadFingerprint;
uint32_t _lastClientActivity;
uint32_t _lastServerActivity;
uint32_t _lastPingRequestTime;
char _generatedClientId[13 + 1]; // esp8266abc123
IPAddress _ip;
const char* _host;
bool _useIp;
#if ASYNC_TCP_SSL_ENABLED
bool _secure;
#endif
uint16_t _port;
uint16_t _keepAlive;
bool _cleanSession;
const char* _clientId;
const char* _username;
const char* _password;
const char* _willTopic;
const char* _willPayload;
uint16_t _willPayloadLength;
uint8_t _willQos;
bool _willRetain;
#if ASYNC_TCP_SSL_ENABLED
std::vector<std::array<uint8_t, SHA1_SIZE>> _secureServerFingerprints;
#endif
std::vector<AsyncMqttClientInternals::OnConnectUserCallback> _onConnectUserCallbacks;
std::vector<AsyncMqttClientInternals::OnDisconnectUserCallback> _onDisconnectUserCallbacks;
std::vector<AsyncMqttClientInternals::OnSubscribeUserCallback> _onSubscribeUserCallbacks;
std::vector<AsyncMqttClientInternals::OnUnsubscribeUserCallback> _onUnsubscribeUserCallbacks;
std::vector<AsyncMqttClientInternals::OnMessageUserCallback> _onMessageUserCallbacks;
std::vector<AsyncMqttClientInternals::OnPublishUserCallback> _onPublishUserCallbacks;
AsyncMqttClientInternals::ParsingInformation _parsingInformation;
AsyncMqttClientInternals::Packet* _currentParsedPacket;
uint8_t _remainingLengthBufferPosition;
char _remainingLengthBuffer[4];
uint16_t _nextPacketId;
std::vector<AsyncMqttClientInternals::PendingPubRel> _pendingPubRels;
std::vector<AsyncMqttClientInternals::PendingAck> _toSendAcks;
#ifdef ESP32
SemaphoreHandle_t _xSemaphore = nullptr;
#endif
void _clear();
void _freeCurrentParsedPacket();
// TCP
void _onConnect(AsyncClient* client);
void _onDisconnect(AsyncClient* client);
static void _onError(AsyncClient* client, int8_t error);
void _onTimeout(AsyncClient* client, uint32_t time);
static void _onAck(AsyncClient* client, size_t len, uint32_t time);
void _onData(AsyncClient* client, char* data, size_t len);
void _onPoll(AsyncClient* client);
// MQTT
void _onPingResp();
void _onConnAck(bool sessionPresent, uint8_t connectReturnCode);
void _onSubAck(uint16_t packetId, char status);
void _onUnsubAck(uint16_t packetId);
void _onMessage(char* topic, char* payload, uint8_t qos, bool dup, bool retain, size_t len, size_t index, size_t total, uint16_t packetId);
void _onPublish(uint16_t packetId, uint8_t qos);
void _onPubRel(uint16_t packetId);
void _onPubAck(uint16_t packetId);
void _onPubRec(uint16_t packetId);
void _onPubComp(uint16_t packetId);
bool _sendPing();
void _sendAcks();
bool _sendDisconnect();
uint16_t _getNextPacketId();
};

View File

@@ -0,0 +1,28 @@
#pragma once
#include <functional>
#include "DisconnectReasons.hpp"
#include "MessageProperties.hpp"
namespace AsyncMqttClientInternals {
// user callbacks
typedef std::function<void(bool sessionPresent)> OnConnectUserCallback;
typedef std::function<void(AsyncMqttClientDisconnectReason reason)> OnDisconnectUserCallback;
typedef std::function<void(uint16_t packetId, uint8_t qos)> OnSubscribeUserCallback;
typedef std::function<void(uint16_t packetId)> OnUnsubscribeUserCallback;
typedef std::function<void(char* topic, char* payload, AsyncMqttClientMessageProperties properties, size_t len, size_t index, size_t total)> OnMessageUserCallback;
typedef std::function<void(uint16_t packetId)> OnPublishUserCallback;
// internal callbacks
typedef std::function<void(bool sessionPresent, uint8_t connectReturnCode)> OnConnAckInternalCallback;
typedef std::function<void()> OnPingRespInternalCallback;
typedef std::function<void(uint16_t packetId, char status)> OnSubAckInternalCallback;
typedef std::function<void(uint16_t packetId)> OnUnsubAckInternalCallback;
typedef std::function<void(char* topic, char* payload, uint8_t qos, bool dup, bool retain, size_t len, size_t index, size_t total, uint16_t packetId)> OnMessageInternalCallback;
typedef std::function<void(uint16_t packetId, uint8_t qos)> OnPublishInternalCallback;
typedef std::function<void(uint16_t packetId)> OnPubRelInternalCallback;
typedef std::function<void(uint16_t packetId)> OnPubAckInternalCallback;
typedef std::function<void(uint16_t packetId)> OnPubRecInternalCallback;
typedef std::function<void(uint16_t packetId)> OnPubCompInternalCallback;
} // namespace AsyncMqttClientInternals

View File

@@ -0,0 +1,15 @@
#pragma once
enum class AsyncMqttClientDisconnectReason : int8_t {
TCP_DISCONNECTED = 0,
MQTT_UNACCEPTABLE_PROTOCOL_VERSION = 1,
MQTT_IDENTIFIER_REJECTED = 2,
MQTT_SERVER_UNAVAILABLE = 3,
MQTT_MALFORMED_CREDENTIALS = 4,
MQTT_NOT_AUTHORIZED = 5,
ESP8266_NOT_ENOUGH_SPACE = 6,
TLS_BAD_FINGERPRINT = 7
};

View File

@@ -0,0 +1,57 @@
#pragma once
namespace AsyncMqttClientInternals {
constexpr struct {
const uint8_t RESERVED = 0;
const uint8_t CONNECT = 1;
const uint8_t CONNACK = 2;
const uint8_t PUBLISH = 3;
const uint8_t PUBACK = 4;
const uint8_t PUBREC = 5;
const uint8_t PUBREL = 6;
const uint8_t PUBCOMP = 7;
const uint8_t SUBSCRIBE = 8;
const uint8_t SUBACK = 9;
const uint8_t UNSUBSCRIBE = 10;
const uint8_t UNSUBACK = 11;
const uint8_t PINGREQ = 12;
const uint8_t PINGRESP = 13;
const uint8_t DISCONNECT = 14;
const uint8_t RESERVED2 = 1;
} PacketType;
constexpr struct {
const uint8_t CONNECT_RESERVED = 0x00;
const uint8_t CONNACK_RESERVED = 0x00;
const uint8_t PUBLISH_DUP = 0x08;
const uint8_t PUBLISH_QOS0 = 0x00;
const uint8_t PUBLISH_QOS1 = 0x02;
const uint8_t PUBLISH_QOS2 = 0x04;
const uint8_t PUBLISH_QOSRESERVED = 0x06;
const uint8_t PUBLISH_RETAIN = 0x01;
const uint8_t PUBACK_RESERVED = 0x00;
const uint8_t PUBREC_RESERVED = 0x00;
const uint8_t PUBREL_RESERVED = 0x02;
const uint8_t PUBCOMP_RESERVED = 0x00;
const uint8_t SUBSCRIBE_RESERVED = 0x02;
const uint8_t SUBACK_RESERVED = 0x00;
const uint8_t UNSUBSCRIBE_RESERVED = 0x02;
const uint8_t UNSUBACK_RESERVED = 0x00;
const uint8_t PINGREQ_RESERVED = 0x00;
const uint8_t PINGRESP_RESERVED = 0x00;
const uint8_t DISCONNECT_RESERVED = 0x00;
const uint8_t RESERVED2_RESERVED = 0x00;
} HeaderFlag;
constexpr struct {
const uint8_t USERNAME = 0x80;
const uint8_t PASSWORD = 0x40;
const uint8_t WILL_RETAIN = 0x20;
const uint8_t WILL_QOS0 = 0x00;
const uint8_t WILL_QOS1 = 0x08;
const uint8_t WILL_QOS2 = 0x10;
const uint8_t WILL = 0x04;
const uint8_t CLEAN_SESSION = 0x02;
const uint8_t RESERVED = 0x00;
} ConnectFlag;
} // namespace AsyncMqttClientInternals

View File

@@ -0,0 +1,38 @@
#pragma once
namespace AsyncMqttClientInternals {
class Helpers {
public:
static uint32_t decodeRemainingLength(char* bytes) {
uint32_t multiplier = 1;
uint32_t value = 0;
uint8_t currentByte = 0;
uint8_t encodedByte;
do {
encodedByte = bytes[currentByte++];
value += (encodedByte & 127) * multiplier;
multiplier *= 128;
} while ((encodedByte & 128) != 0);
return value;
}
static uint8_t encodeRemainingLength(uint32_t remainingLength, char* destination) {
uint8_t currentByte = 0;
uint8_t bytesNeeded = 0;
do {
uint8_t encodedByte = remainingLength % 128;
remainingLength /= 128;
if (remainingLength > 0) {
encodedByte = encodedByte | 128;
}
destination[currentByte++] = encodedByte;
bytesNeeded++;
} while (remainingLength > 0);
return bytesNeeded;
}
};
} // namespace AsyncMqttClientInternals

View File

@@ -0,0 +1,7 @@
#pragma once
struct AsyncMqttClientMessageProperties {
uint8_t qos;
bool dup;
bool retain;
};

View File

@@ -0,0 +1,30 @@
#include "ConnAckPacket.hpp"
using AsyncMqttClientInternals::ConnAckPacket;
ConnAckPacket::ConnAckPacket(ParsingInformation* parsingInformation, OnConnAckInternalCallback callback)
: _parsingInformation(parsingInformation)
, _callback(callback)
, _bytePosition(0)
, _sessionPresent(false)
, _connectReturnCode(0) {
}
ConnAckPacket::~ConnAckPacket() {
}
void ConnAckPacket::parseVariableHeader(char* data, size_t len, size_t* currentBytePosition) {
char currentByte = data[(*currentBytePosition)++];
if (_bytePosition++ == 0) {
_sessionPresent = (currentByte << 7) >> 7;
} else {
_connectReturnCode = currentByte;
_parsingInformation->bufferState = BufferState::NONE;
_callback(_sessionPresent, _connectReturnCode);
}
}
void ConnAckPacket::parsePayload(char* data, size_t len, size_t* currentBytePosition) {
(void)data;
(void)currentBytePosition;
}

View File

@@ -0,0 +1,25 @@
#pragma once
#include "Arduino.h"
#include "Packet.hpp"
#include "../ParsingInformation.hpp"
#include "../Callbacks.hpp"
namespace AsyncMqttClientInternals {
class ConnAckPacket : public Packet {
public:
explicit ConnAckPacket(ParsingInformation* parsingInformation, OnConnAckInternalCallback callback);
~ConnAckPacket();
void parseVariableHeader(char* data, size_t len, size_t* currentBytePosition);
void parsePayload(char* data, size_t len, size_t* currentBytePosition);
private:
ParsingInformation* _parsingInformation;
OnConnAckInternalCallback _callback;
uint8_t _bytePosition;
bool _sessionPresent;
uint8_t _connectReturnCode;
};
} // namespace AsyncMqttClientInternals

View File

@@ -0,0 +1,11 @@
#pragma once
namespace AsyncMqttClientInternals {
class Packet {
public:
virtual ~Packet() {}
virtual void parseVariableHeader(char* data, size_t len, size_t* currentBytePosition) = 0;
virtual void parsePayload(char* data, size_t len, size_t* currentBytePosition) = 0;
};
} // namespace AsyncMqttClientInternals

View File

@@ -0,0 +1,21 @@
#include "PingRespPacket.hpp"
using AsyncMqttClientInternals::PingRespPacket;
PingRespPacket::PingRespPacket(ParsingInformation* parsingInformation, OnPingRespInternalCallback callback)
: _parsingInformation(parsingInformation)
, _callback(callback) {
}
PingRespPacket::~PingRespPacket() {
}
void PingRespPacket::parseVariableHeader(char* data, size_t len, size_t* currentBytePosition) {
(void)data;
(void)currentBytePosition;
}
void PingRespPacket::parsePayload(char* data, size_t len, size_t* currentBytePosition) {
(void)data;
(void)currentBytePosition;
}

View File

@@ -0,0 +1,21 @@
#pragma once
#include "Arduino.h"
#include "Packet.hpp"
#include "../ParsingInformation.hpp"
#include "../Callbacks.hpp"
namespace AsyncMqttClientInternals {
class PingRespPacket : public Packet {
public:
explicit PingRespPacket(ParsingInformation* parsingInformation, OnPingRespInternalCallback callback);
~PingRespPacket();
void parseVariableHeader(char* data, size_t len, size_t* currentBytePosition);
void parsePayload(char* data, size_t len, size_t* currentBytePosition);
private:
ParsingInformation* _parsingInformation;
OnPingRespInternalCallback _callback;
};
} // namespace AsyncMqttClientInternals

View File

@@ -0,0 +1,30 @@
#include "PubAckPacket.hpp"
using AsyncMqttClientInternals::PubAckPacket;
PubAckPacket::PubAckPacket(ParsingInformation* parsingInformation, OnPubAckInternalCallback callback)
: _parsingInformation(parsingInformation)
, _callback(callback)
, _bytePosition(0)
, _packetIdMsb(0)
, _packetId(0) {
}
PubAckPacket::~PubAckPacket() {
}
void PubAckPacket::parseVariableHeader(char* data, size_t len, size_t* currentBytePosition) {
char currentByte = data[(*currentBytePosition)++];
if (_bytePosition++ == 0) {
_packetIdMsb = currentByte;
} else {
_packetId = currentByte | _packetIdMsb << 8;
_parsingInformation->bufferState = BufferState::NONE;
_callback(_packetId);
}
}
void PubAckPacket::parsePayload(char* data, size_t len, size_t* currentBytePosition) {
(void)data;
(void)currentBytePosition;
}

View File

@@ -0,0 +1,25 @@
#pragma once
#include "Arduino.h"
#include "Packet.hpp"
#include "../ParsingInformation.hpp"
#include "../Callbacks.hpp"
namespace AsyncMqttClientInternals {
class PubAckPacket : public Packet {
public:
explicit PubAckPacket(ParsingInformation* parsingInformation, OnPubAckInternalCallback callback);
~PubAckPacket();
void parseVariableHeader(char* data, size_t len, size_t* currentBytePosition);
void parsePayload(char* data, size_t len, size_t* currentBytePosition);
private:
ParsingInformation* _parsingInformation;
OnPubAckInternalCallback _callback;
uint8_t _bytePosition;
char _packetIdMsb;
uint16_t _packetId;
};
} // namespace AsyncMqttClientInternals

View File

@@ -0,0 +1,30 @@
#include "PubCompPacket.hpp"
using AsyncMqttClientInternals::PubCompPacket;
PubCompPacket::PubCompPacket(ParsingInformation* parsingInformation, OnPubCompInternalCallback callback)
: _parsingInformation(parsingInformation)
, _callback(callback)
, _bytePosition(0)
, _packetIdMsb(0)
, _packetId(0) {
}
PubCompPacket::~PubCompPacket() {
}
void PubCompPacket::parseVariableHeader(char* data, size_t len, size_t* currentBytePosition) {
char currentByte = data[(*currentBytePosition)++];
if (_bytePosition++ == 0) {
_packetIdMsb = currentByte;
} else {
_packetId = currentByte | _packetIdMsb << 8;
_parsingInformation->bufferState = BufferState::NONE;
_callback(_packetId);
}
}
void PubCompPacket::parsePayload(char* data, size_t len, size_t* currentBytePosition) {
(void)data;
(void)currentBytePosition;
}

View File

@@ -0,0 +1,25 @@
#pragma once
#include "Arduino.h"
#include "Packet.hpp"
#include "../ParsingInformation.hpp"
#include "../Callbacks.hpp"
namespace AsyncMqttClientInternals {
class PubCompPacket : public Packet {
public:
explicit PubCompPacket(ParsingInformation* parsingInformation, OnPubCompInternalCallback callback);
~PubCompPacket();
void parseVariableHeader(char* data, size_t len, size_t* currentBytePosition);
void parsePayload(char* data, size_t len, size_t* currentBytePosition);
private:
ParsingInformation* _parsingInformation;
OnPubCompInternalCallback _callback;
uint8_t _bytePosition;
char _packetIdMsb;
uint16_t _packetId;
};
} // namespace AsyncMqttClientInternals

View File

@@ -0,0 +1,30 @@
#include "PubRecPacket.hpp"
using AsyncMqttClientInternals::PubRecPacket;
PubRecPacket::PubRecPacket(ParsingInformation* parsingInformation, OnPubRecInternalCallback callback)
: _parsingInformation(parsingInformation)
, _callback(callback)
, _bytePosition(0)
, _packetIdMsb(0)
, _packetId(0) {
}
PubRecPacket::~PubRecPacket() {
}
void PubRecPacket::parseVariableHeader(char* data, size_t len, size_t* currentBytePosition) {
char currentByte = data[(*currentBytePosition)++];
if (_bytePosition++ == 0) {
_packetIdMsb = currentByte;
} else {
_packetId = currentByte | _packetIdMsb << 8;
_parsingInformation->bufferState = BufferState::NONE;
_callback(_packetId);
}
}
void PubRecPacket::parsePayload(char* data, size_t len, size_t* currentBytePosition) {
(void)data;
(void)currentBytePosition;
}

View File

@@ -0,0 +1,25 @@
#pragma once
#include "Arduino.h"
#include "Packet.hpp"
#include "../ParsingInformation.hpp"
#include "../Callbacks.hpp"
namespace AsyncMqttClientInternals {
class PubRecPacket : public Packet {
public:
explicit PubRecPacket(ParsingInformation* parsingInformation, OnPubRecInternalCallback callback);
~PubRecPacket();
void parseVariableHeader(char* data, size_t len, size_t* currentBytePosition);
void parsePayload(char* data, size_t len, size_t* currentBytePosition);
private:
ParsingInformation* _parsingInformation;
OnPubRecInternalCallback _callback;
uint8_t _bytePosition;
char _packetIdMsb;
uint16_t _packetId;
};
} // namespace AsyncMqttClientInternals

View File

@@ -0,0 +1,30 @@
#include "PubRelPacket.hpp"
using AsyncMqttClientInternals::PubRelPacket;
PubRelPacket::PubRelPacket(ParsingInformation* parsingInformation, OnPubRelInternalCallback callback)
: _parsingInformation(parsingInformation)
, _callback(callback)
, _bytePosition(0)
, _packetIdMsb(0)
, _packetId(0) {
}
PubRelPacket::~PubRelPacket() {
}
void PubRelPacket::parseVariableHeader(char* data, size_t len, size_t* currentBytePosition) {
char currentByte = data[(*currentBytePosition)++];
if (_bytePosition++ == 0) {
_packetIdMsb = currentByte;
} else {
_packetId = currentByte | _packetIdMsb << 8;
_parsingInformation->bufferState = BufferState::NONE;
_callback(_packetId);
}
}
void PubRelPacket::parsePayload(char* data, size_t len, size_t* currentBytePosition) {
(void)data;
(void)currentBytePosition;
}

View File

@@ -0,0 +1,25 @@
#pragma once
#include "Arduino.h"
#include "Packet.hpp"
#include "../ParsingInformation.hpp"
#include "../Callbacks.hpp"
namespace AsyncMqttClientInternals {
class PubRelPacket : public Packet {
public:
explicit PubRelPacket(ParsingInformation* parsingInformation, OnPubRelInternalCallback callback);
~PubRelPacket();
void parseVariableHeader(char* data, size_t len, size_t* currentBytePosition);
void parsePayload(char* data, size_t len, size_t* currentBytePosition);
private:
ParsingInformation* _parsingInformation;
OnPubRelInternalCallback _callback;
uint8_t _bytePosition;
char _packetIdMsb;
uint16_t _packetId;
};
} // namespace AsyncMqttClientInternals

View File

@@ -0,0 +1,91 @@
#include "PublishPacket.hpp"
using AsyncMqttClientInternals::PublishPacket;
PublishPacket::PublishPacket(ParsingInformation* parsingInformation, OnMessageInternalCallback dataCallback, OnPublishInternalCallback completeCallback)
: _parsingInformation(parsingInformation)
, _dataCallback(dataCallback)
, _completeCallback(completeCallback)
, _dup(false)
, _qos(0)
, _retain(0)
, _bytePosition(0)
, _topicLengthMsb(0)
, _topicLength(0)
, _ignore(false)
, _packetIdMsb(0)
, _packetId(0)
, _payloadLength(0)
, _payloadBytesRead(0) {
_dup = _parsingInformation->packetFlags & HeaderFlag.PUBLISH_DUP;
_retain = _parsingInformation->packetFlags & HeaderFlag.PUBLISH_RETAIN;
char qosMasked = _parsingInformation->packetFlags & 0x06;
switch (qosMasked) {
case HeaderFlag.PUBLISH_QOS0:
_qos = 0;
break;
case HeaderFlag.PUBLISH_QOS1:
_qos = 1;
break;
case HeaderFlag.PUBLISH_QOS2:
_qos = 2;
break;
}
}
PublishPacket::~PublishPacket() {
}
void PublishPacket::parseVariableHeader(char* data, size_t len, size_t* currentBytePosition) {
char currentByte = data[(*currentBytePosition)++];
if (_bytePosition == 0) {
_topicLengthMsb = currentByte;
} else if (_bytePosition == 1) {
_topicLength = currentByte | _topicLengthMsb << 8;
if (_topicLength > _parsingInformation->maxTopicLength) {
_ignore = true;
} else {
_parsingInformation->topicBuffer[_topicLength] = '\0';
}
} else if (_bytePosition >= 2 && _bytePosition < 2 + _topicLength) {
// Starting from here, _ignore might be true
if (!_ignore) _parsingInformation->topicBuffer[_bytePosition - 2] = currentByte;
if (_bytePosition == 2 + _topicLength - 1 && _qos == 0) {
_preparePayloadHandling(_parsingInformation->remainingLength - (_bytePosition + 1));
return;
}
} else if (_bytePosition == 2 + _topicLength) {
_packetIdMsb = currentByte;
} else {
_packetId = currentByte | _packetIdMsb << 8;
_preparePayloadHandling(_parsingInformation->remainingLength - (_bytePosition + 1));
}
_bytePosition++;
}
void PublishPacket::_preparePayloadHandling(uint32_t payloadLength) {
_payloadLength = payloadLength;
if (payloadLength == 0) {
_parsingInformation->bufferState = BufferState::NONE;
if (!_ignore) {
_dataCallback(_parsingInformation->topicBuffer, nullptr, _qos, _dup, _retain, 0, 0, 0, _packetId);
_completeCallback(_packetId, _qos);
}
} else {
_parsingInformation->bufferState = BufferState::PAYLOAD;
}
}
void PublishPacket::parsePayload(char* data, size_t len, size_t* currentBytePosition) {
size_t remainToRead = len - (*currentBytePosition);
if (_payloadBytesRead + remainToRead > _payloadLength) remainToRead = _payloadLength - _payloadBytesRead;
if (!_ignore) _dataCallback(_parsingInformation->topicBuffer, data + (*currentBytePosition), _qos, _dup, _retain, remainToRead, _payloadBytesRead, _payloadLength, _packetId);
_payloadBytesRead += remainToRead;
(*currentBytePosition) += remainToRead;
if (_payloadBytesRead == _payloadLength) {
_parsingInformation->bufferState = BufferState::NONE;
if (!_ignore) _completeCallback(_packetId, _qos);
}
}

View File

@@ -0,0 +1,38 @@
#pragma once
#include "Arduino.h"
#include "Packet.hpp"
#include "../Flags.hpp"
#include "../ParsingInformation.hpp"
#include "../Callbacks.hpp"
namespace AsyncMqttClientInternals {
class PublishPacket : public Packet {
public:
explicit PublishPacket(ParsingInformation* parsingInformation, OnMessageInternalCallback dataCallback, OnPublishInternalCallback completeCallback);
~PublishPacket();
void parseVariableHeader(char* data, size_t len, size_t* currentBytePosition);
void parsePayload(char* data, size_t len, size_t* currentBytePosition);
private:
ParsingInformation* _parsingInformation;
OnMessageInternalCallback _dataCallback;
OnPublishInternalCallback _completeCallback;
void _preparePayloadHandling(uint32_t payloadLength);
bool _dup;
uint8_t _qos;
bool _retain;
uint8_t _bytePosition;
char _topicLengthMsb;
uint16_t _topicLength;
bool _ignore;
char _packetIdMsb;
uint16_t _packetId;
uint32_t _payloadLength;
uint32_t _payloadBytesRead;
};
} // namespace AsyncMqttClientInternals

View File

@@ -0,0 +1,46 @@
#include "SubAckPacket.hpp"
using AsyncMqttClientInternals::SubAckPacket;
SubAckPacket::SubAckPacket(ParsingInformation* parsingInformation, OnSubAckInternalCallback callback)
: _parsingInformation(parsingInformation)
, _callback(callback)
, _bytePosition(0)
, _packetIdMsb(0)
, _packetId(0) {
}
SubAckPacket::~SubAckPacket() {
}
void SubAckPacket::parseVariableHeader(char* data, size_t len, size_t* currentBytePosition) {
char currentByte = data[(*currentBytePosition)++];
if (_bytePosition++ == 0) {
_packetIdMsb = currentByte;
} else {
_packetId = currentByte | _packetIdMsb << 8;
_parsingInformation->bufferState = BufferState::PAYLOAD;
}
}
void SubAckPacket::parsePayload(char* data, size_t len, size_t* currentBytePosition) {
char status = data[(*currentBytePosition)++];
/* switch (status) {
case 0:
Serial.println("Success QoS 0");
break;
case 1:
Serial.println("Success QoS 1");
break;
case 2:
Serial.println("Success QoS 2");
break;
case 0x80:
Serial.println("Failure");
break;
} */
_parsingInformation->bufferState = BufferState::NONE;
_callback(_packetId, status);
}

View File

@@ -0,0 +1,25 @@
#pragma once
#include "Arduino.h"
#include "Packet.hpp"
#include "../ParsingInformation.hpp"
#include "../Callbacks.hpp"
namespace AsyncMqttClientInternals {
class SubAckPacket : public Packet {
public:
explicit SubAckPacket(ParsingInformation* parsingInformation, OnSubAckInternalCallback callback);
~SubAckPacket();
void parseVariableHeader(char* data, size_t len, size_t* currentBytePosition);
void parsePayload(char* data, size_t len, size_t* currentBytePosition);
private:
ParsingInformation* _parsingInformation;
OnSubAckInternalCallback _callback;
uint8_t _bytePosition;
char _packetIdMsb;
uint16_t _packetId;
};
} // namespace AsyncMqttClientInternals

View File

@@ -0,0 +1,30 @@
#include "UnsubAckPacket.hpp"
using AsyncMqttClientInternals::UnsubAckPacket;
UnsubAckPacket::UnsubAckPacket(ParsingInformation* parsingInformation, OnUnsubAckInternalCallback callback)
: _parsingInformation(parsingInformation)
, _callback(callback)
, _bytePosition(0)
, _packetIdMsb(0)
, _packetId(0) {
}
UnsubAckPacket::~UnsubAckPacket() {
}
void UnsubAckPacket::parseVariableHeader(char* data, size_t len, size_t* currentBytePosition) {
char currentByte = data[(*currentBytePosition)++];
if (_bytePosition++ == 0) {
_packetIdMsb = currentByte;
} else {
_packetId = currentByte | _packetIdMsb << 8;
_parsingInformation->bufferState = BufferState::NONE;
_callback(_packetId);
}
}
void UnsubAckPacket::parsePayload(char* data, size_t len, size_t* currentBytePosition) {
(void)data;
(void)currentBytePosition;
}

View File

@@ -0,0 +1,25 @@
#pragma once
#include "Arduino.h"
#include "Packet.hpp"
#include "../ParsingInformation.hpp"
#include "../Callbacks.hpp"
namespace AsyncMqttClientInternals {
class UnsubAckPacket : public Packet {
public:
explicit UnsubAckPacket(ParsingInformation* parsingInformation, OnUnsubAckInternalCallback callback);
~UnsubAckPacket();
void parseVariableHeader(char* data, size_t len, size_t* currentBytePosition);
void parsePayload(char* data, size_t len, size_t* currentBytePosition);
private:
ParsingInformation* _parsingInformation;
OnUnsubAckInternalCallback _callback;
uint8_t _bytePosition;
char _packetIdMsb;
uint16_t _packetId;
};
} // namespace AsyncMqttClientInternals

View File

@@ -0,0 +1,21 @@
#pragma once
namespace AsyncMqttClientInternals {
enum class BufferState : uint8_t {
NONE = 0,
REMAINING_LENGTH = 2,
VARIABLE_HEADER = 3,
PAYLOAD = 4
};
struct ParsingInformation {
BufferState bufferState;
uint16_t maxTopicLength;
char* topicBuffer;
uint8_t packetType;
uint16_t packetFlags;
uint32_t remainingLength;
};
} // namespace AsyncMqttClientInternals

View File

@@ -0,0 +1,13 @@
#pragma once
namespace AsyncMqttClientInternals {
struct PendingPubRel {
uint16_t packetId;
};
struct PendingAck {
uint8_t packetType;
uint8_t headerFlag;
uint16_t packetId;
};
} // namespace AsyncMqttClientInternals

View File

@@ -0,0 +1,21 @@
The MIT License (MIT)
Copyright (c) 2015 Marvin Roger
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@@ -0,0 +1,18 @@
Async MQTT client for ESP8266 and ESP32 (Github: https://github.com/marvinroger/async-mqtt-client)
=============================
[![Build Status](https://img.shields.io/travis/marvinroger/async-mqtt-client/master.svg?style=flat-square)](https://travis-ci.org/marvinroger/async-mqtt-client)
An Arduino for ESP8266 and ESP32 asynchronous [MQTT](http://mqtt.org/) client implementation, built on [me-no-dev/ESPAsyncTCP (ESP8266)](https://github.com/me-no-dev/ESPAsyncTCP) | [me-no-dev/AsyncTCP (ESP32)](https://github.com/me-no-dev/AsyncTCP) .
## Features
* Compliant with the 3.1.1 version of the protocol
* Fully asynchronous
* Subscribe at QoS 0, 1 and 2
* Publish at QoS 0, 1 and 2
* SSL/TLS support
* Available in the [PlatformIO registry](http://platformio.org/lib/show/346/AsyncMqttClient)
## Requirements, installation and usage
The project is documented in the [/docs folder](docs).

View File

@@ -424,7 +424,7 @@ void realtimeLock(uint32_t timeoutMs, byte md)
}
// if strip is off (bri==0) and not already in RTM
if (briT == 0) {
strip.setBrightness(briLast, true);
strip.setBrightness(scaledBri(briLast), true);
}
}
@@ -434,14 +434,14 @@ void realtimeLock(uint32_t timeoutMs, byte md)
realtimeMode = md;
if (realtimeOverride) return;
if (arlsForceMaxBri) strip.setBrightness(255, true);
if (arlsForceMaxBri) strip.setBrightness(scaledBri(255), true);
if (briT > 0 && md == REALTIME_MODE_GENERIC) strip.show();
}
void exitRealtime() {
if (!realtimeMode) return;
if (realtimeOverride == REALTIME_OVERRIDE_ONCE) realtimeOverride = REALTIME_OVERRIDE_NONE;
strip.setBrightness(bri, true);
strip.setBrightness(scaledBri(bri), true);
realtimeTimeout = 0; // cancel realtime mode immediately
realtimeMode = REALTIME_MODE_INACTIVE; // inform UI immediately
realtimeIP[0] = 0;
@@ -565,82 +565,93 @@ void handleNotifications()
return;
}
if (receiveDirect) {
//TPM2.NET
if (udpIn[0] == 0x9c) {
//WARNING: this code assumes that the final TMP2.NET payload is evenly distributed if using multiple packets (ie. frame size is constant)
//if the number of LEDs in your installation doesn't allow that, please include padding bytes at the end of the last packet
byte tpmType = udpIn[1];
if (tpmType == 0xaa) { //TPM2.NET polling, expect answer
sendTPM2Ack(); return;
}
if (tpmType != 0xda) return; //return if notTPM2.NET data
if (!receiveDirect) return;
realtimeIP = (isSupp) ? notifier2Udp.remoteIP() : notifierUdp.remoteIP();
realtimeLock(realtimeTimeoutMs, REALTIME_MODE_TPM2NET);
if (realtimeOverride) return;
tpmPacketCount++; //increment the packet count
if (tpmPacketCount == 1) tpmPayloadFrameSize = (udpIn[2] << 8) + udpIn[3]; //save frame size for the whole payload if this is the first packet
byte packetNum = udpIn[4]; //starts with 1!
byte numPackets = udpIn[5];
unsigned id = (tpmPayloadFrameSize/3)*(packetNum-1); //start LED
unsigned totalLen = strip.getLengthTotal();
for (size_t i = 6; i < tpmPayloadFrameSize + 4U && id < totalLen; i += 3, id++) {
setRealtimePixel(id, udpIn[i], udpIn[i+1], udpIn[i+2], 0);
}
if (tpmPacketCount == numPackets) { //reset packet count and show if all packets were received
tpmPacketCount = 0;
if (useMainSegmentOnly) strip.trigger();
else strip.show();
}
return;
//TPM2.NET
if (udpIn[0] == 0x9c)
{
//WARNING: this code assumes that the final TMP2.NET payload is evenly distributed if using multiple packets (ie. frame size is constant)
//if the number of LEDs in your installation doesn't allow that, please include padding bytes at the end of the last packet
byte tpmType = udpIn[1];
if (tpmType == 0xaa) { //TPM2.NET polling, expect answer
sendTPM2Ack(); return;
}
if (tpmType != 0xda) return; //return if notTPM2.NET data
//UDP realtime: 1 warls 2 drgb 3 drgbw 4 dnrgb 5 dnrgbw
if (udpIn[0] > 0 && udpIn[0] < 6) {
realtimeIP = (isSupp) ? notifier2Udp.remoteIP() : notifierUdp.remoteIP();
DEBUG_PRINTLN(realtimeIP);
if (packetSize < 2) return;
realtimeIP = (isSupp) ? notifier2Udp.remoteIP() : notifierUdp.remoteIP();
realtimeLock(realtimeTimeoutMs, REALTIME_MODE_TPM2NET);
if (realtimeOverride) return;
if (udpIn[1] == 0) {
realtimeTimeout = 0; // cancel realtime mode immediately
return;
} else {
realtimeLock(udpIn[1]*1000 +1, REALTIME_MODE_UDP);
}
if (realtimeOverride) return;
tpmPacketCount++; //increment the packet count
if (tpmPacketCount == 1) tpmPayloadFrameSize = (udpIn[2] << 8) + udpIn[3]; //save frame size for the whole payload if this is the first packet
byte packetNum = udpIn[4]; //starts with 1!
byte numPackets = udpIn[5];
unsigned totalLen = strip.getLengthTotal();
if (udpIn[0] == 1 && packetSize > 5) { //warls
for (size_t i = 2; i < packetSize -3; i += 4) {
setRealtimePixel(udpIn[i], udpIn[i+1], udpIn[i+2], udpIn[i+3], 0);
}
} else if (udpIn[0] == 2 && packetSize > 4) { //drgb
for (size_t i = 2, id = 0; i < packetSize -2 && id < totalLen; i += 3, id++)
{
setRealtimePixel(id, udpIn[i], udpIn[i+1], udpIn[i+2], 0);
}
} else if (udpIn[0] == 3 && packetSize > 6) { //drgbw
for (size_t i = 2, id = 0; i < packetSize -3 && id < totalLen; i += 4, id++) {
setRealtimePixel(id, udpIn[i], udpIn[i+1], udpIn[i+2], udpIn[i+3]);
}
} else if (udpIn[0] == 4 && packetSize > 7) { //dnrgb
unsigned id = ((udpIn[3] << 0) & 0xFF) + ((udpIn[2] << 8) & 0xFF00);
for (size_t i = 4; i < packetSize -2 && id < totalLen; i += 3, id++) {
setRealtimePixel(id, udpIn[i], udpIn[i+1], udpIn[i+2], 0);
}
} else if (udpIn[0] == 5 && packetSize > 8) { //dnrgbw
unsigned id = ((udpIn[3] << 0) & 0xFF) + ((udpIn[2] << 8) & 0xFF00);
for (size_t i = 4; i < packetSize -2 && id < totalLen; i += 4, id++) {
setRealtimePixel(id, udpIn[i], udpIn[i+1], udpIn[i+2], udpIn[i+3]);
}
}
unsigned id = (tpmPayloadFrameSize/3)*(packetNum-1); //start LED
unsigned totalLen = strip.getLengthTotal();
for (size_t i = 6; i < tpmPayloadFrameSize + 4U && id < totalLen; i += 3, id++) {
setRealtimePixel(id, udpIn[i], udpIn[i+1], udpIn[i+2], 0);
}
if (tpmPacketCount == numPackets) { //reset packet count and show if all packets were received
tpmPacketCount = 0;
if (useMainSegmentOnly) strip.trigger();
else strip.show();
return;
}
return;
}
//UDP realtime: 1 warls 2 drgb 3 drgbw 4 dnrgb 5 dnrgbw
if (udpIn[0] > 0 && udpIn[0] < 6)
{
realtimeIP = (isSupp) ? notifier2Udp.remoteIP() : notifierUdp.remoteIP();
DEBUG_PRINTLN(realtimeIP);
if (packetSize < 2) return;
if (udpIn[1] == 0) {
realtimeTimeout = 0; // cancel realtime mode immediately
return;
} else {
realtimeLock(udpIn[1]*1000 +1, REALTIME_MODE_UDP);
}
if (realtimeOverride) return;
unsigned totalLen = strip.getLengthTotal();
if (udpIn[0] == 1 && packetSize > 5) //warls
{
for (size_t i = 2; i < packetSize -3; i += 4)
{
setRealtimePixel(udpIn[i], udpIn[i+1], udpIn[i+2], udpIn[i+3], 0);
}
} else if (udpIn[0] == 2 && packetSize > 4) //drgb
{
for (size_t i = 2, id = 0; i < packetSize -2 && id < totalLen; i += 3, id++)
{
setRealtimePixel(id, udpIn[i], udpIn[i+1], udpIn[i+2], 0);
}
} else if (udpIn[0] == 3 && packetSize > 6) //drgbw
{
for (size_t i = 2, id = 0; i < packetSize -3 && id < totalLen; i += 4, id++)
{
setRealtimePixel(id, udpIn[i], udpIn[i+1], udpIn[i+2], udpIn[i+3]);
}
} else if (udpIn[0] == 4 && packetSize > 7) //dnrgb
{
unsigned id = ((udpIn[3] << 0) & 0xFF) + ((udpIn[2] << 8) & 0xFF00);
for (size_t i = 4; i < packetSize -2 && id < totalLen; i += 3, id++)
{
setRealtimePixel(id, udpIn[i], udpIn[i+1], udpIn[i+2], 0);
}
} else if (udpIn[0] == 5 && packetSize > 8) //dnrgbw
{
unsigned id = ((udpIn[3] << 0) & 0xFF) + ((udpIn[2] << 8) & 0xFF00);
for (size_t i = 4; i < packetSize -2 && id < totalLen; i += 4, id++)
{
setRealtimePixel(id, udpIn[i], udpIn[i+1], udpIn[i+2], udpIn[i+3]);
}
}
if (useMainSegmentOnly) strip.trigger();
else strip.show();
return;
}
// API over UDP
@@ -658,8 +669,6 @@ void handleNotifications()
}
releaseJSONBufferLock();
}
UsermodManager::onUdpPacket(udpIn, packetSize);
}

View File

@@ -68,10 +68,6 @@ bool UsermodManager::onEspNowMessage(uint8_t* sender, uint8_t* payload, uint8_t
return false;
}
#endif
bool UsermodManager::onUdpPacket(uint8_t* payload, size_t len) {
for (auto mod = _usermod_table_begin; mod < _usermod_table_end; ++mod) if ((*mod)->onUdpPacket(payload, len)) return true;
return false;
}
void UsermodManager::onUpdateBegin(bool init) { for (auto mod = _usermod_table_begin; mod < _usermod_table_end; ++mod) (*mod)->onUpdateBegin(init); } // notify usermods that update is to begin
void UsermodManager::onStateChange(uint8_t mode) { for (auto mod = _usermod_table_begin; mod < _usermod_table_end; ++mod) (*mod)->onStateChange(mode); } // notify usermods that WLED state changed

View File

@@ -1,29 +0,0 @@
#include "wled.h"
/*
* This v1 usermod file allows you to add own functionality to WLED more easily
* See: https://github.com/wled-dev/WLED/wiki/Add-own-functionality
* EEPROM bytes 2750+ are reserved for your custom use case. (if you extend #define EEPSIZE in const.h)
* If you just need 8 bytes, use 2551-2559 (you do not need to increase EEPSIZE)
*
* Consider the v2 usermod API if you need a more advanced feature set!
*/
//Use userVar0 and userVar1 (API calls &U0=,&U1=, uint16_t)
//gets called once at boot. Do all initialization that doesn't depend on network here
void userSetup()
{
}
//gets called every time WiFi is (re-)connected. Initialize own network interfaces here
void userConnected()
{
}
//loop. You can use "if (WLED_CONNECTED)" to check for successful connection
void userLoop()
{
}

View File

@@ -1,16 +1,6 @@
#include "wled.h"
#include "fcn_declare.h"
#include "const.h"
#ifdef ESP8266
#include "user_interface.h" // for bootloop detection
#else
#include <Update.h>
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(4, 4, 0)
#include "esp32/rtc.h" // for bootloop detection
#elif ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(3, 3, 0)
#include "soc/rtc.h"
#endif
#endif
//helper to get int value at a position in string
@@ -210,24 +200,7 @@ void releaseJSONBufferLock()
// extracts effect mode (or palette) name from names serialized string
/**
* @brief Extracts the display name for a mode or palette into a caller-provided buffer.
*
* When src is JSON_mode_names or nullptr, the name is read from the built-in mode data
* (strip.getModeData). When src is JSON_palette_names and the mode index refers to a
* custom palette (mode > 255 - customPalettes.size()), a formatted "~ Custom N ~"
* name is written. Otherwise, the function parses a PROGMEM JSON-like string pointed
* to by src to locate the mode's quoted name (handles commas and quoted fields) and
* stops if an SR-extension marker '@' is encountered for that mode.
*
* The function always NUL-terminates dest and will truncate the name to fit maxLen.
*
* @param mode Index of the mode or palette to extract.
* @param src PROGMEM string source to parse, or JSON_mode_names / JSON_palette_names / nullptr.
* @param dest Caller-provided buffer to receive the NUL-terminated name (must be large enough).
* @param maxLen Maximum number of bytes to write into dest (including the terminating NUL).
* @return uint8_t Length of the resulting string written into dest (excluding the terminating NUL).
*/
// caller must provide large enough buffer for name (including SR extensions)!
uint8_t extractModeName(uint8_t mode, const char *src, char *dest, uint8_t maxLen)
{
if (src == JSON_mode_names || src == nullptr) {
@@ -247,7 +220,7 @@ uint8_t extractModeName(uint8_t mode, const char *src, char *dest, uint8_t maxLe
} else return 0;
}
if (src == JSON_palette_names && mode > 255-customPalettes.size()) {
if (src == JSON_palette_names && mode > (GRADIENT_PALETTE_COUNT + 13)) {
snprintf_P(dest, maxLen, PSTR("~ Custom %d ~"), 255-mode);
dest[maxLen-1] = '\0';
return strlen(dest);
@@ -733,147 +706,6 @@ void *realloc_malloc(void *ptr, size_t size) {
}
#endif
// bootloop detection and handling
// checks if the ESP reboots multiple times due to a crash or watchdog timeout
// if a bootloop is detected: restore settings from backup, then reset settings, then switch boot image (and repeat)
#define BOOTLOOP_INTERVAL_MILLIS 120000 // time limit between crashes: 120 seconds (2 minutes)
#define BOOTLOOP_THRESHOLD 5 // number of consecutive crashes to trigger bootloop detection
#define BOOTLOOP_ACTION_RESTORE 0 // default action: restore config from /bkp.cfg.json
#define BOOTLOOP_ACTION_RESET 1 // if restore does not work, reset config (rename /cfg.json to /rst.cfg.json)
#define BOOTLOOP_ACTION_OTA 2 // swap the boot partition
#define BOOTLOOP_ACTION_DUMP 3 // nothing seems to help, dump files to serial and reboot (until hardware reset)
// Platform-agnostic abstraction
enum class ResetReason {
Power,
Software,
Crash,
Brownout
};
#ifdef ESP8266
// Place variables in RTC memory via references, since RTC memory is not exposed via the linker in the Non-OS SDK
// Use an offset of 32 as there's some hints that the first 128 bytes of "user" memory are used by the OTA system
// Ref: https://github.com/esp8266/Arduino/blob/78d0d0aceacc1553f45ad8154592b0af22d1eede/cores/esp8266/Esp.cpp#L168
static volatile uint32_t& bl_last_boottime = *(RTC_USER_MEM + 32);
static volatile uint32_t& bl_crashcounter = *(RTC_USER_MEM + 33);
static volatile uint32_t& bl_actiontracker = *(RTC_USER_MEM + 34);
static inline ResetReason rebootReason() {
uint32_t resetReason = system_get_rst_info()->reason;
if (resetReason == REASON_EXCEPTION_RST
|| resetReason == REASON_WDT_RST
|| resetReason == REASON_SOFT_WDT_RST)
return ResetReason::Crash;
if (resetReason == REASON_SOFT_RESTART)
return ResetReason::Software;
return ResetReason::Power;
}
static inline uint32_t getRtcMillis() { return system_get_rtc_time() / 160; }; // rtc ticks ~160000Hz
#else
// variables in RTC_NOINIT memory persist between reboots (but not on hardware reset)
RTC_NOINIT_ATTR static uint32_t bl_last_boottime;
RTC_NOINIT_ATTR static uint32_t bl_crashcounter;
RTC_NOINIT_ATTR static uint32_t bl_actiontracker;
static inline ResetReason rebootReason() {
esp_reset_reason_t reason = esp_reset_reason();
if (reason == ESP_RST_BROWNOUT) return ResetReason::Brownout;
if (reason == ESP_RST_SW) return ResetReason::Software;
if (reason == ESP_RST_PANIC || reason == ESP_RST_WDT || reason == ESP_RST_INT_WDT || reason == ESP_RST_TASK_WDT) return ResetReason::Crash;
return ResetReason::Power;
}
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(4, 4, 0)
static inline uint32_t getRtcMillis() { return esp_rtc_get_time_us() / 1000; }
#elif ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(3, 3, 0)
static inline uint32_t getRtcMillis() { return rtc_time_slowclk_to_us(rtc_time_get(), rtc_clk_slow_freq_get_hz()) / 1000; }
#endif
void bootloopCheckOTA() { bl_actiontracker = BOOTLOOP_ACTION_OTA; } // swap boot image if bootloop is detected instead of restoring config
#endif
// detect bootloop by checking the reset reason and the time since last boot
static bool detectBootLoop() {
uint32_t rtctime = getRtcMillis();
bool result = false;
switch(rebootReason()) {
case ResetReason::Power:
bl_actiontracker = BOOTLOOP_ACTION_RESTORE; // init action tracker if not an intentional reboot (e.g. from OTA or bootloop handler)
// fall through
case ResetReason::Software:
// no crash detected, reset counter
bl_crashcounter = 0;
break;
case ResetReason::Crash:
{
DEBUG_PRINTLN(F("crash detected!"));
uint32_t rebootinterval = rtctime - bl_last_boottime;
if (rebootinterval < BOOTLOOP_INTERVAL_MILLIS) {
bl_crashcounter++;
if (bl_crashcounter >= BOOTLOOP_THRESHOLD) {
DEBUG_PRINTLN(F("!BOOTLOOP DETECTED!"));
bl_crashcounter = 0;
result = true;
}
} else {
// Reset counter on long intervals to track only consecutive short-interval crashes
bl_crashcounter = 0;
// TODO: crash reporting goes here
}
break;
}
case ResetReason::Brownout:
// crash due to brownout can't be detected unless using flash memory to store bootloop variables
DEBUG_PRINTLN(F("brownout detected"));
//restoreConfig(); // TODO: blindly restoring config if brownout detected is a bad idea, need a better way (if at all)
break;
}
bl_last_boottime = rtctime; // store current runtime for next reboot
return result;
}
void handleBootLoop() {
DEBUG_PRINTF_P(PSTR("checking for bootloop: time %d, counter %d, action %d\n"), bl_last_boottime, bl_crashcounter, bl_actiontracker);
if (!detectBootLoop()) return; // no bootloop detected
switch(bl_actiontracker) {
case BOOTLOOP_ACTION_RESTORE:
restoreConfig();
++bl_actiontracker;
break;
case BOOTLOOP_ACTION_RESET:
resetConfig();
++bl_actiontracker;
break;
case BOOTLOOP_ACTION_OTA:
#ifndef ESP8266
if(Update.canRollBack()) {
DEBUG_PRINTLN(F("Swapping boot partition..."));
Update.rollBack(); // swap boot partition
}
++bl_actiontracker;
break;
#else
// fall through
#endif
case BOOTLOOP_ACTION_DUMP:
dumpFilesToSerial();
break;
}
ESP.restart(); // restart cleanly and don't wait for another crash
}
/*
* Fixed point integer based Perlin noise functions by @dedehai
* Note: optimized for speed and to mimic fastled inoise functions, not for accuracy or best randomness

View File

@@ -77,7 +77,6 @@ void WLED::loop()
#ifdef WLED_DEBUG
unsigned long usermodMillis = millis();
#endif
userLoop();
UsermodManager::loop();
#ifdef WLED_DEBUG
usermodMillis = millis() - usermodMillis;
@@ -190,10 +189,12 @@ void WLED::loop()
doInitBusses = false;
DEBUG_PRINTLN(F("Re-init busses."));
bool aligned = strip.checkSegmentAlignment(); //see if old segments match old bus(ses)
BusManager::removeAll();
strip.finalizeInit(); // will create buses and also load default ledmap if present
BusManager::setBrightness(bri); // fix re-initialised bus' brightness #4005
if (aligned) strip.makeAutoSegments();
else strip.fixInvalidSegments();
BusManager::setBrightness(scaledBri(bri)); // fix re-initialised bus' brightness #4005 and #4824
BusManager::setBrightness(bri); // fix re-initialised bus' brightness
configNeedsWrite = true;
}
if (loadLedmap >= 0) {
@@ -408,9 +409,6 @@ void WLED::setup()
DEBUGFS_PRINTLN(F("FS failed!"));
errorFlag = ERR_FS_BEGIN;
}
handleBootLoop(); // check for bootloop and take action (requires WLED_FS)
#ifdef WLED_ADD_EEPROM_SUPPORT
else deEEP();
#else
@@ -426,11 +424,6 @@ void WLED::setup()
WLED_SET_AP_SSID(); // otherwise it is empty on first boot until config is saved
multiWiFi.push_back(WiFiConfig(CLIENT_SSID,CLIENT_PASS)); // initialise vector with default WiFi
if(!verifyConfig()) {
if(!restoreConfig()) {
resetConfig();
}
}
DEBUG_PRINTLN(F("Reading config"));
bool needsCfgSave = deserializeConfigFromFS();
DEBUG_PRINTF_P(PSTR("heap %u\n"), ESP.getFreeHeap());
@@ -448,7 +441,6 @@ void WLED::setup()
DEBUG_PRINTF_P(PSTR("heap %u\n"), ESP.getFreeHeap());
DEBUG_PRINTLN(F("Usermods setup"));
userSetup();
UsermodManager::setup();
DEBUG_PRINTF_P(PSTR("heap %u\n"), ESP.getFreeHeap());
@@ -852,7 +844,6 @@ void WLED::handleConnection()
if (improvActive > 1) sendImprovIPRPCResult(ImprovRPCType::Command_Wifi);
}
initInterfaces();
userConnected();
UsermodManager::connected();
lastMqttReconnectAttempt = 0; // force immediate update

View File

@@ -155,7 +155,7 @@
#include "src/dependencies/e131/ESPAsyncE131.h"
#ifndef WLED_DISABLE_MQTT
#include <AsyncMqttClient.h>
#include "src/dependencies/async-mqtt-client/AsyncMqttClient.h"
#endif
#define ARDUINOJSON_DECODE_UNICODE 0
@@ -194,7 +194,6 @@ using PSRAMDynamicJsonDocument = BasicJsonDocument<PSRAM_Allocator>;
#include "fcn_declare.h"
#include "NodeStruct.h"
#include "pin_manager.h"
#include "colors.h"
#include "bus_manager.h"
#include "FX.h"
@@ -626,6 +625,7 @@ WLED_GLOBAL unsigned long transitionStartTime;
WLED_GLOBAL bool jsonTransitionOnce _INIT(false); // flag to override transitionDelay (playlist, JSON API: "live" & "seg":{"i"} & "tt")
WLED_GLOBAL uint8_t randomPaletteChangeTime _INIT(5); // amount of time [s] between random palette changes (min: 1s, max: 255s)
WLED_GLOBAL bool useHarmonicRandomPalette _INIT(true); // use *harmonic* random palette generation (nicer looking) or truly random
WLED_GLOBAL bool useRainbowWheel _INIT(false); // use "rainbow" color wheel instead of "spectrum" color wheel
// nightlight
WLED_GLOBAL bool nightlightActive _INIT(false);
@@ -734,10 +734,10 @@ WLED_GLOBAL bool receiveNotificationPalette _INIT(true); // apply palet
WLED_GLOBAL bool receiveSegmentOptions _INIT(false); // apply segment options
WLED_GLOBAL bool receiveSegmentBounds _INIT(false); // apply segment bounds (start, stop, offset)
WLED_GLOBAL bool receiveDirect _INIT(true); // receive UDP/Hyperion realtime
WLED_GLOBAL bool notifyDirect _INIT(true); // send notification if change via UI or HTTP API
WLED_GLOBAL bool notifyButton _INIT(true); // send if updated by button or infrared remote
WLED_GLOBAL bool notifyDirect _INIT(false); // send notification if change via UI or HTTP API
WLED_GLOBAL bool notifyButton _INIT(false); // send if updated by button or infrared remote
WLED_GLOBAL bool notifyAlexa _INIT(false); // send notification if updated via Alexa
WLED_GLOBAL bool notifyHue _INIT(false); // send notification if Hue light changes
WLED_GLOBAL bool notifyHue _INIT(true); // send notification if Hue light changes
#endif
// effects

View File

@@ -244,24 +244,6 @@ static bool captivePortal(AsyncWebServerRequest *request)
return false;
}
/**
* @brief Initialize and configure the HTTP server routes and handlers.
*
* Registers CORS/default headers and all web endpoints used by the device web UI and API,
* including static content routes, settings UI, JSON API (/json), file upload (/upload),
* OTA update endpoints (/update), optional pages (DMX, PixArt, PxMagic, CPAL, live views),
* WebSocket attachment, captive portal handling and a NotFound handler that routes API calls
* or serves a 404 page. Also installs the filesystem editor route (or an Access Denied
* stub) via createEditHandler and attaches an AsyncJsonWebHandler for JSON POSTs.
*
* Side effects:
* - Adds default HTTP headers (CORS).
* - Registers many server routes and their callbacks with global state handlers.
* - May set flags such as doReboot and configNeedsWrite from request handlers.
* - Enforces PIN/OTA lock and subnet restrictions inside sensitive endpoints (OTA, settings, cfg).
*
* This function does not return a value.
*/
void initServer()
{
//CORS compatiblity
@@ -429,9 +411,6 @@ void initServer()
serveMessage(request, 500, F("Update failed!"), F("Please check your file and retry!"), 254);
} else {
serveMessage(request, 200, F("Update successful!"), FPSTR(s_rebooting), 131);
#ifndef ESP8266
bootloopCheckOTA(); // let the bootloop-checker know there was an OTA update
#endif
doReboot = true;
}
},[](AsyncWebServerRequest *request, String filename, size_t index, uint8_t *data, size_t len, bool isFinal){
@@ -450,9 +429,8 @@ void initServer()
UsermodManager::onUpdateBegin(true); // notify usermods that update is about to begin (some may require task de-init)
lastEditTime = millis(); // make sure PIN does not lock during update
strip.suspend();
backupConfig(); // backup current config in case the update ends badly
strip.resetSegments(); // free as much memory as you can
#ifdef ESP8266
strip.resetSegments(); // free as much memory as you can
Update.runAsync(true);
#endif
Update.begin((ESP.getFreeSketchSpace() - 0x1000) & 0xFFFFF000);
@@ -488,31 +466,29 @@ void initServer()
server.on("/", HTTP_GET, [](AsyncWebServerRequest *request) {
if (captivePortal(request)) return;
if (!showWelcomePage || request->hasArg(F("sliders"))) {
handleStaticContent(request, F("/index.htm"), 200, FPSTR(CONTENT_TYPE_HTML), PAGE_index, PAGE_index_length);
handleStaticContent(request, F("/index.htm"), 200, FPSTR(CONTENT_TYPE_HTML), PAGE_index, PAGE_index_L);
} else {
serveSettings(request);
}
});
#ifndef WLED_DISABLE_2D
#ifdef WLED_ENABLE_PIXART
#ifdef WLED_ENABLE_PIXART
static const char _pixart_htm[] PROGMEM = "/pixart.htm";
server.on(_pixart_htm, HTTP_GET, [](AsyncWebServerRequest *request) {
handleStaticContent(request, FPSTR(_pixart_htm), 200, FPSTR(CONTENT_TYPE_HTML), PAGE_pixart, PAGE_pixart_length);
handleStaticContent(request, FPSTR(_pixart_htm), 200, FPSTR(CONTENT_TYPE_HTML), PAGE_pixart, PAGE_pixart_L);
});
#endif
#endif
#ifndef WLED_DISABLE_PXMAGIC
#ifndef WLED_DISABLE_PXMAGIC
static const char _pxmagic_htm[] PROGMEM = "/pxmagic.htm";
server.on(_pxmagic_htm, HTTP_GET, [](AsyncWebServerRequest *request) {
handleStaticContent(request, FPSTR(_pxmagic_htm), 200, FPSTR(CONTENT_TYPE_HTML), PAGE_pxmagic, PAGE_pxmagic_length);
handleStaticContent(request, FPSTR(_pxmagic_htm), 200, FPSTR(CONTENT_TYPE_HTML), PAGE_pxmagic, PAGE_pxmagic_L);
});
#endif
#endif
static const char _cpal_htm[] PROGMEM = "/cpal.htm";
server.on(_cpal_htm, HTTP_GET, [](AsyncWebServerRequest *request) {
handleStaticContent(request, FPSTR(_cpal_htm), 200, FPSTR(CONTENT_TYPE_HTML), PAGE_cpal, PAGE_cpal_length);
handleStaticContent(request, FPSTR(_cpal_htm), 200, FPSTR(CONTENT_TYPE_HTML), PAGE_cpal, PAGE_cpal_L);
});
#ifdef WLED_ENABLE_WEBSOCKETS

View File

@@ -26,8 +26,7 @@ void XML_response(Print& dest)
);
}
static void extractPin(Print& settingsScript, const JsonObject &obj, const char *key)
{
static void extractPin(Print& settingsScript, const JsonObject &obj, const char *key) {
if (obj[key].is<JsonArray>()) {
JsonArray pins = obj[key].as<JsonArray>();
for (JsonVariant pv : pins) {
@@ -38,22 +37,6 @@ static void extractPin(Print& settingsScript, const JsonObject &obj, const char
}
}
void fillWLEDVersion(char *buf, size_t len)
{
if (!buf || len == 0) return;
snprintf_P(buf,len,PSTR("WLED %s (%d)<br>\\\"%s\\\"<br>(Processor: %s)"),
versionString,
VERSION,
releaseString,
#if defined(ARDUINO_ARCH_ESP32)
ESP.getChipModel()
#else
"ESP8266"
#endif
);
}
// print used pins by scanning JsonObject (1 level deep)
static void fillUMPins(Print& settingsScript, const JsonObject &mods)
{
@@ -89,8 +72,7 @@ static void fillUMPins(Print& settingsScript, const JsonObject &mods)
}
}
void appendGPIOinfo(Print& settingsScript)
{
void appendGPIOinfo(Print& settingsScript) {
settingsScript.print(F("d.um_p=[-1")); // has to have 1 element
if (i2c_sda > -1 && i2c_scl > -1) {
settingsScript.printf_P(PSTR(",%d,%d"), i2c_sda, i2c_scl);
@@ -400,6 +382,7 @@ void getSettingsJS(byte subPage, Print& settingsScript)
printSetFormValue(settingsScript,PSTR("TL"),nightlightDelayMinsDefault);
printSetFormValue(settingsScript,PSTR("TW"),nightlightMode);
printSetFormIndex(settingsScript,PSTR("PB"),paletteBlend);
printSetFormCheckbox(settingsScript,PSTR("RW"),useRainbowWheel);
printSetFormValue(settingsScript,PSTR("RL"),rlyPin);
printSetFormCheckbox(settingsScript,PSTR("RM"),rlyMde);
printSetFormCheckbox(settingsScript,PSTR("RO"),rlyOpenDrain);
@@ -612,7 +595,7 @@ void getSettingsJS(byte subPage, Print& settingsScript)
printSetFormCheckbox(settingsScript,PSTR("AO"),aOtaEnabled);
printSetFormCheckbox(settingsScript,PSTR("SU"),otaSameSubnet);
char tmp_buf[128];
fillWLEDVersion(tmp_buf,sizeof(tmp_buf));
snprintf_P(tmp_buf,sizeof(tmp_buf),PSTR("WLED %s (build %d)"),versionString,VERSION);
printSetClassElementHTML(settingsScript,PSTR("sip"),0,tmp_buf);
settingsScript.printf_P(PSTR("sd=\"%s\";"), serverDescription);
//hide settings if not compiled
@@ -674,7 +657,16 @@ void getSettingsJS(byte subPage, Print& settingsScript)
if (subPage == SUBPAGE_UPDATE) // update
{
char tmp_buf[128];
fillWLEDVersion(tmp_buf,sizeof(tmp_buf));
snprintf_P(tmp_buf,sizeof(tmp_buf),PSTR("WLED %s<br>%s<br>(%s build %d)"),
versionString,
releaseString,
#if defined(ARDUINO_ARCH_ESP32)
ESP.getChipModel(),
#else
"esp8266",
#endif
VERSION);
printSetClassElementHTML(settingsScript,PSTR("sip"),0,tmp_buf);
#ifndef ARDUINO_ARCH_ESP32
settingsScript.print(F("toggle('rev');")); // hide revert button on ESP8266