Compare commits

..

2 Commits

Author SHA1 Message Date
Damian Schneider
f1f067e93a bugfix in particle collision binning 2025-12-27 09:37:09 +01:00
nename0
8a2a7054ab Usermod Temperature: use full 12-bit precision (#4916)
* Usermod Temperature: use full 12-bit precision

* Temperature Usermod: fix DS1822 and DS18B20 family code

* Add Dropdown to select 9 or 12 bit resolution

* Add 10 and 11 bit resolution, Correct rounding towards negativ inf
2025-12-26 15:32:24 -05:00
4 changed files with 30 additions and 19 deletions

View File

@@ -20,17 +20,19 @@ float UsermodTemperature::readDallas() {
}
#endif
switch(sensorFound) {
case 0x10: // DS18S20 has 9-bit precision
case 0x10: // DS18S20 has 9-bit precision - 1-bit fraction part
result = (data[1] << 8) | data[0];
retVal = float(result) * 0.5f;
break;
case 0x22: // DS18B20
case 0x28: // DS1822
case 0x22: // DS1822
case 0x28: // DS18B20
case 0x3B: // DS1825
case 0x42: // DS28EA00
result = (data[1]<<4) | (data[0]>>4); // we only need whole part, we will add fraction when returning
if (data[1] & 0x80) result |= 0xF000; // fix negative value
retVal = float(result) + ((data[0] & 0x08) ? 0.5f : 0.0f);
// 12-bit precision - 4-bit fraction part
result = (data[1] << 8) | data[0];
// Clear LSBs to match desired precision (9/10/11-bit) rounding towards negative infinity
result &= 0xFFFF << (3 - (resolution & 3));
retVal = float(result) * 0.0625f; // 2^(-4)
break;
}
}
@@ -69,8 +71,8 @@ bool UsermodTemperature::findSensor() {
if (oneWire->crc8(deviceAddress, 7) == deviceAddress[7]) {
switch (deviceAddress[0]) {
case 0x10: // DS18S20
case 0x22: // DS18B20
case 0x28: // DS1822
case 0x22: // DS1822
case 0x28: // DS18B20
case 0x3B: // DS1825
case 0x42: // DS28EA00
DEBUG_PRINTLN(F("Sensor found."));
@@ -277,6 +279,7 @@ void UsermodTemperature::addToConfig(JsonObject &root) {
top[FPSTR(_parasite)] = parasite;
top[FPSTR(_parasitePin)] = parasitePin;
top[FPSTR(_domoticzIDX)] = idx;
top[FPSTR(_resolution)] = resolution;
DEBUG_PRINTLN(F("Temperature config saved."));
}
@@ -304,6 +307,7 @@ bool UsermodTemperature::readFromConfig(JsonObject &root) {
parasite = top[FPSTR(_parasite)] | parasite;
parasitePin = top[FPSTR(_parasitePin)] | parasitePin;
idx = top[FPSTR(_domoticzIDX)] | idx;
resolution = top[FPSTR(_resolution)] | resolution;
if (!initDone) {
// first run: reading from cfg.json
@@ -324,7 +328,7 @@ bool UsermodTemperature::readFromConfig(JsonObject &root) {
}
}
// use "return !top["newestParameter"].isNull();" when updating Usermod with new features
return !top[FPSTR(_domoticzIDX)].isNull();
return !top[FPSTR(_resolution)].isNull();
}
void UsermodTemperature::appendConfigData() {
@@ -332,6 +336,14 @@ void UsermodTemperature::appendConfigData() {
oappend(F("',1,'<i>(if no Vcc connected)</i>');")); // 0 is field type, 1 is actual field
oappend(F("addInfo('")); oappend(String(FPSTR(_name)).c_str()); oappend(F(":")); oappend(String(FPSTR(_parasitePin)).c_str());
oappend(F("',1,'<i>(for external MOSFET)</i>');")); // 0 is field type, 1 is actual field
oappend(F("dd=addDD('")); oappend(String(FPSTR(_name)).c_str());
oappend(F("','")); oappend(String(FPSTR(_resolution)).c_str()); oappend(F("');"));
oappend(F("addO(dd,'0.5 °C (9-bit)',0);"));
oappend(F("addO(dd,'0.25°C (10-bit)',1);"));
oappend(F("addO(dd,'0.125°C (11-bit)',2);"));
oappend(F("addO(dd,'0.0625°C (12-bit)',3);"));
oappend(F("addInfo('")); oappend(String(FPSTR(_name)).c_str()); oappend(F(":")); oappend(String(FPSTR(_resolution)).c_str());
oappend(F("',1,'<i>(ignored on DS18S20)</i>');")); // 0 is field type, 1 is actual field
}
float UsermodTemperature::getTemperature() {
@@ -351,6 +363,7 @@ const char UsermodTemperature::_readInterval[] PROGMEM = "read-interval-s";
const char UsermodTemperature::_parasite[] PROGMEM = "parasite-pwr";
const char UsermodTemperature::_parasitePin[] PROGMEM = "parasite-pwr-pin";
const char UsermodTemperature::_domoticzIDX[] PROGMEM = "domoticz-idx";
const char UsermodTemperature::_resolution[] PROGMEM = "resolution";
const char UsermodTemperature::_sensor[] PROGMEM = "sensor";
const char UsermodTemperature::_temperature[] PROGMEM = "temperature";
const char UsermodTemperature::_Temperature[] PROGMEM = "/temperature";

View File

@@ -48,6 +48,7 @@ class UsermodTemperature : public Usermod {
bool HApublished = false;
int16_t idx = -1; // Domoticz virtual sensor idx
uint8_t resolution = 0; // 9bits=0, 10bits=1, 11bits=2, 12bits=3
// strings to reduce flash memory usage (used more than twice)
static const char _name[];
@@ -56,6 +57,7 @@ class UsermodTemperature : public Usermod {
static const char _parasite[];
static const char _parasitePin[];
static const char _domoticzIDX[];
static const char _resolution[];
static const char _sensor[];
static const char _temperature[];
static const char _Temperature[];

View File

@@ -156,7 +156,7 @@ void ParticleSystem2D::setParticleSize(uint8_t size) {
particleHardRadius = PS_P_MINHARDRADIUS + ((particlesize * 52) >> 6); // use 1 pixel + 80% of size for hard radius (slight overlap with boarders so they do not "float" and nicer stacking)
}
else if (particlesize == 0)
particleHardRadius = particleHardRadius >> 1; // single pixel particles have half the radius (i.e. 1/2 pixel)
particleHardRadius = PS_P_MINHARDRADIUS >> 1; // single pixel particles have half the radius (i.e. 1/2 pixel)
}
// enable/disable gravity, optionally, set the force (force=8 is default) can be -127 to +127, 0 is disable
@@ -595,7 +595,7 @@ void ParticleSystem2D::render() {
if (fireIntesity) { // fire mode
brightness = (uint32_t)particles[i].ttl * (3 + (fireIntesity >> 5)) + 5;
brightness = min(brightness, (uint32_t)255);
baseRGB = ColorFromPaletteWLED(SEGPALETTE, brightness, 255, LINEARBLEND_NOWRAP);
baseRGB = ColorFromPaletteWLED(SEGPALETTE, brightness, 255, LINEARBLEND_NOWRAP); // map hue to brightness for fire effect
}
else {
brightness = min((particles[i].ttl << 1), (int)255);
@@ -842,7 +842,7 @@ void ParticleSystem2D::handleCollisions() {
for (uint32_t bin = 0; bin < numBins; bin++) {
binParticleCount = 0; // reset for this bin
int32_t binStart = bin * binWidth - overlap; // note: first bin will extend to negative, but that is ok as out of bounds particles are ignored
int32_t binEnd = binStart + binWidth + overlap; // note: last bin can be out of bounds, see above;
int32_t binEnd = binStart + binWidth + (overlap << 1); // add twice the overlap as start is start-overlap, note: last bin can be out of bounds, see above;
// fill the binIndices array for this bin
for (uint32_t i = 0; i < usedParticles; i++) {
@@ -879,7 +879,7 @@ void ParticleSystem2D::handleCollisions() {
massratio1 = (mass2 << 8) / totalmass; // massratio 1 depends on mass of particle 2, i.e. if 2 is heavier -> higher velocity impact on 1
massratio2 = (mass1 << 8) / totalmass;
}
// note: using the same logic as in 1D is much slower though it would be more accurate but it is not really needed in 2D
// note: using the same logic as in 1D is much slower though it would be more accurate but it is not really needed in 2D: particles slipping through each other is much less visible
int32_t dx = (particles[idx_j].x + particles[idx_j].vx) - (particles[idx_i].x + particles[idx_i].vx); // distance with lookahead
if (dx * dx < collDistSq) { // check x direction, if close, check y direction (squaring is faster than abs() or dual compare)
int32_t dy = (particles[idx_j].y + particles[idx_j].vy) - (particles[idx_i].y + particles[idx_i].vy); // distance with lookahead
@@ -1247,7 +1247,7 @@ void ParticleSystem1D::setParticleSize(const uint8_t size) {
particleHardRadius = PS_P_MINHARDRADIUS_1D + ((particlesize * 52) >> 6); // use 1 pixel + 80% of size for hard radius (slight overlap with boarders so they do not "float" and nicer stacking)
}
else if (particlesize == 0)
particleHardRadius = particleHardRadius >> 1; // single pixel particles have half the radius (i.e. 1/2 pixel)
particleHardRadius = PS_P_MINHARDRADIUS_1D >> 1; // single pixel particles have half the radius (i.e. 1/2 pixel)
}
// enable/disable gravity, optionally, set the force (force=8 is default) can be -127 to +127, 0 is disable
@@ -1632,7 +1632,7 @@ void ParticleSystem1D::handleCollisions() {
for (uint32_t bin = 0; bin < numBins; bin++) {
binParticleCount = 0; // reset for this bin
int32_t binStart = bin * binWidth - overlap; // note: first bin will extend to negative, but that is ok as out of bounds particles are ignored
int32_t binEnd = binStart + binWidth + overlap; // note: last bin can be out of bounds, see above
int32_t binEnd = binStart + binWidth + (overlap << 1); // add twice the overlap as start is start-overlap, note: last bin can be out of bounds, see above
// fill the binIndices array for this bin
for (uint32_t i = 0; i < usedParticles; i++) {

View File

@@ -615,10 +615,6 @@ void handleSettingsSet(AsyncWebServerRequest *request, byte subPage)
aOtaEnabled = request->hasArg(F("AO"));
#endif
otaSameSubnet = request->hasArg(F("SU"));
} else if (otaLock) {
// If OTA is locked and password is incorrect, return error immediately
serveMessage(request, 401, F("Error"), F("Password incorrect"), 254);
return;
}
}