Compare commits

..

2 Commits

Author SHA1 Message Date
Blaž Kristan
a18b133942 Bugfix
Reordering did not enable editing last bus' type.
2025-10-20 20:33:23 +02:00
Blaž Kristan
00fab2e86d Drag and drop LED output reordering 2025-10-13 08:19:48 +02:00
7 changed files with 183 additions and 255 deletions

View File

@@ -678,7 +678,7 @@ uint16_t mode_twinkle(void) {
SEGENV.step = it;
}
uint16_t PRNG16 = SEGENV.aux1;
unsigned PRNG16 = SEGENV.aux1;
for (unsigned i = 0; i < SEGENV.aux0; i++)
{
@@ -5196,162 +5196,112 @@ static const char _data_FX_MODE_2DFRIZZLES[] PROGMEM = "Frizzles@X frequency,Y f
///////////////////////////////////////////
// 2D Cellular Automata Game of life //
///////////////////////////////////////////
typedef struct Cell {
uint8_t alive : 1, faded : 1, toggleStatus : 1, edgeCell: 1, oscillatorCheck : 1, spaceshipCheck : 1, unused : 2;
} Cell;
typedef struct ColorCount {
CRGB color;
int8_t count;
} colorCount;
uint16_t mode_2Dgameoflife(void) { // Written by Ewoud Wijma, inspired by https://natureofcode.com/book/chapter-7-cellular-automata/
// and https://github.com/DougHaber/nlife-color , Modified By: Brandon Butler
uint16_t mode_2Dgameoflife(void) { // Written by Ewoud Wijma, inspired by https://natureofcode.com/book/chapter-7-cellular-automata/ and https://github.com/DougHaber/nlife-color
if (!strip.isMatrix || !SEGMENT.is2D()) return mode_static(); // not a 2D set-up
const int cols = SEG_W, rows = SEG_H;
const unsigned maxIndex = cols * rows;
if (!SEGENV.allocateData(SEGMENT.length() * sizeof(Cell))) return mode_static(); // allocation failed
const int cols = SEG_W;
const int rows = SEG_H;
const auto XY = [&](int x, int y) { return (x%cols) + (y%rows) * cols; };
const unsigned dataSize = sizeof(CRGB) * SEGMENT.length(); // using width*height prevents reallocation if mirroring is enabled
const int crcBufferLen = 2; //(SEGMENT.width() + SEGMENT.height())*71/100; // roughly sqrt(2)/2 for better repetition detection (Ewowi)
Cell *cells = reinterpret_cast<Cell*> (SEGENV.data);
if (!SEGENV.allocateData(dataSize + sizeof(uint16_t)*crcBufferLen)) return mode_static(); //allocation failed
CRGB *prevLeds = reinterpret_cast<CRGB*>(SEGENV.data);
uint16_t *crcBuffer = reinterpret_cast<uint16_t*>(SEGENV.data + dataSize);
uint16_t& generation = SEGENV.aux0, &gliderLength = SEGENV.aux1; // rename aux variables for clarity
bool mutate = SEGMENT.check3;
uint8_t blur = map(SEGMENT.custom1, 0, 255, 255, 4);
CRGB backgroundColor = SEGCOLOR(1);
uint32_t bgColor = SEGCOLOR(1);
uint32_t birthColor = SEGMENT.color_from_palette(128, false, PALETTE_SOLID_WRAP, 255);
if (SEGENV.call == 0 || strip.now - SEGMENT.step > 3000) {
SEGENV.step = strip.now;
SEGENV.aux0 = 0;
bool setup = SEGENV.call == 0;
if (setup) {
// Calculate glider length LCM(rows,cols)*4 once
unsigned a = rows, b = cols;
while (b) { unsigned t = b; b = a % b; a = t; }
gliderLength = (cols * rows / a) << 2;
}
if (abs(long(strip.now) - long(SEGENV.step)) > 2000) SEGENV.step = 0; // Timebase jump fix
bool paused = SEGENV.step > strip.now;
// Setup New Game of Life
if ((!paused && generation == 0) || setup) {
SEGENV.step = strip.now + 1280; // show initial state for 1.28 seconds
generation = 1;
paused = true;
//Setup Grid
memset(cells, 0, maxIndex * sizeof(Cell));
for (unsigned i = 0; i < maxIndex; i++) {
bool isAlive = !hw_random8(3); // ~33%
cells[i].alive = isAlive;
cells[i].faded = !isAlive;
unsigned x = i % cols, y = i / cols;
cells[i].edgeCell = (x == 0 || x == cols-1 || y == 0 || y == rows-1);
SEGMENT.setPixelColor(i, isAlive ? SEGMENT.color_from_palette(hw_random8(), false, PALETTE_SOLID_WRAP, 0) : bgColor);
//give the leds random state and colors (based on intensity, colors from palette or all posible colors are chosen)
for (int x = 0; x < cols; x++) for (int y = 0; y < rows; y++) {
unsigned state = hw_random8()%2;
if (state == 0)
SEGMENT.setPixelColorXY(x,y, backgroundColor);
else
SEGMENT.setPixelColorXY(x,y, SEGMENT.color_from_palette(hw_random8(), false, PALETTE_SOLID_WRAP, 255));
}
}
if (paused || (strip.now - SEGENV.step < 1000 / map(SEGMENT.speed,0,255,1,42))) {
// Redraw if paused or between updates to remove blur
for (unsigned i = maxIndex; i--; ) {
if (!cells[i].alive) {
uint32_t cellColor = SEGMENT.getPixelColor(i);
if (cellColor != bgColor) {
uint32_t newColor;
bool needsColor = false;
if (cells[i].faded) { newColor = bgColor; needsColor = true; }
else {
uint32_t blended = color_blend(cellColor, bgColor, 2);
if (blended == cellColor) { blended = bgColor; cells[i].faded = 1; }
newColor = blended; needsColor = true;
}
if (needsColor) SEGMENT.setPixelColor(i, newColor);
}
}
}
for (int y = 0; y < rows; y++) for (int x = 0; x < cols; x++) prevLeds[XY(x,y)] = CRGB::Black;
memset(crcBuffer, 0, sizeof(uint16_t)*crcBufferLen);
} else if (strip.now - SEGENV.step < FRAMETIME_FIXED * (uint32_t)map(SEGMENT.speed,0,255,64,4)) {
// update only when appropriate time passes (in 42 FPS slots)
return FRAMETIME;
}
// Repeat detection
bool updateOscillator = generation % 16 == 0;
bool updateSpaceship = gliderLength && generation % gliderLength == 0;
bool repeatingOscillator = true, repeatingSpaceship = true, emptyGrid = true;
//copy previous leds (save previous generation)
//NOTE: using lossy getPixelColor() is a benefit as endlessly repeating patterns will eventually fade out causing a reset
for (int x = 0; x < cols; x++) for (int y = 0; y < rows; y++) prevLeds[XY(x,y)] = SEGMENT.getPixelColorXY(x,y);
unsigned cIndex = maxIndex-1;
for (unsigned y = rows; y--; ) for (unsigned x = cols; x--; cIndex--) {
Cell& cell = cells[cIndex];
//calculate new leds
for (int x = 0; x < cols; x++) for (int y = 0; y < rows; y++) {
if (cell.alive) emptyGrid = false;
if (cell.oscillatorCheck != cell.alive) repeatingOscillator = false;
if (cell.spaceshipCheck != cell.alive) repeatingSpaceship = false;
if (updateOscillator) cell.oscillatorCheck = cell.alive;
if (updateSpaceship) cell.spaceshipCheck = cell.alive;
colorCount colorsCount[9]; // count the different colors in the 3*3 matrix
for (int i=0; i<9; i++) colorsCount[i] = {backgroundColor, 0}; // init colorsCount
unsigned neighbors = 0, aliveParents = 0, parentIdx[3];
// Count alive neighbors
for (int i = -1; i <= 1; i++) for (int j = -1; j <= 1; j++) if (i || j) {
int nX = x + j, nY = y + i;
if (cell.edgeCell) {
nX = (nX + cols) % cols;
nY = (nY + rows) % rows;
}
unsigned nIndex = nX + nY * cols;
Cell& neighbor = cells[nIndex];
if (neighbor.alive) {
// iterate through neighbors and count them and their different colors
int neighbors = 0;
for (int i = -1; i <= 1; i++) for (int j = -1; j <= 1; j++) { // iterate through 3*3 matrix
if (i==0 && j==0) continue; // ignore itself
// wrap around segment
int xx = x+i, yy = y+j;
if (x+i < 0) xx = cols-1; else if (x+i >= cols) xx = 0;
if (y+j < 0) yy = rows-1; else if (y+j >= rows) yy = 0;
unsigned xy = XY(xx, yy); // previous cell xy to check
// count different neighbours and colors
if (prevLeds[xy] != backgroundColor) {
neighbors++;
if (!neighbor.toggleStatus && neighbors < 4) { // Alive and not dying
parentIdx[aliveParents++] = nIndex;
}
bool colorFound = false;
int k;
for (k=0; k<9 && colorsCount[k].count != 0; k++)
if (colorsCount[k].color == prevLeds[xy]) {
colorsCount[k].count++;
colorFound = true;
}
if (!colorFound) colorsCount[k] = {prevLeds[xy], 1}; //add new color found in the array
}
} // i,j
// Rules of Life
uint32_t col = uint32_t(prevLeds[XY(x,y)]) & 0x00FFFFFF; // uint32_t operator returns RGBA, we want RGBW -> cut off "alpha" byte
uint32_t bgc = RGBW32(backgroundColor.r, backgroundColor.g, backgroundColor.b, 0);
if ((col != bgc) && (neighbors < 2)) SEGMENT.setPixelColorXY(x,y, bgc); // Loneliness
else if ((col != bgc) && (neighbors > 3)) SEGMENT.setPixelColorXY(x,y, bgc); // Overpopulation
else if ((col == bgc) && (neighbors == 3)) { // Reproduction
// find dominant color and assign it to a cell
colorCount dominantColorCount = {backgroundColor, 0};
for (int i=0; i<9 && colorsCount[i].count != 0; i++)
if (colorsCount[i].count > dominantColorCount.count) dominantColorCount = colorsCount[i];
// assign the dominant color w/ a bit of randomness to avoid "gliders"
if (dominantColorCount.count > 0 && hw_random8(128)) SEGMENT.setPixelColorXY(x,y, dominantColorCount.color);
} else if ((col == bgc) && (neighbors == 2) && !hw_random8(128)) { // Mutation
SEGMENT.setPixelColorXY(x,y, SEGMENT.color_from_palette(hw_random8(), false, PALETTE_SOLID_WRAP, 255));
}
// else do nothing!
} //x,y
uint32_t newColor;
bool needsColor = false;
// calculate CRC16 of leds
uint16_t crc = crc16((const unsigned char*)prevLeds, dataSize);
// check if we had same CRC and reset if needed
bool repetition = false;
for (int i=0; i<crcBufferLen && !repetition; i++) repetition = (crc == crcBuffer[i]); // (Ewowi)
// same CRC would mean image did not change or was repeating itself
if (!repetition) SEGENV.step = strip.now; //if no repetition avoid reset
// remember CRCs across frames
crcBuffer[SEGENV.aux0] = crc;
++SEGENV.aux0 %= crcBufferLen;
if (cell.alive && (neighbors < 2 || neighbors > 3)) { // Loneliness or Overpopulation
cell.toggleStatus = 1;
if (blur == 255) cell.faded = 1;
newColor = cell.faded ? bgColor : color_blend(SEGMENT.getPixelColor(cIndex), bgColor, blur);
needsColor = true;
}
else if (!cell.alive) {
byte mutationRoll = mutate ? hw_random8(128) : 1; // if 0: 3 neighbor births fail and 2 neighbor births mutate
if ((neighbors == 3 && mutationRoll) || (mutate && neighbors == 2 && !mutationRoll)) { // Reproduction or Mutation
cell.toggleStatus = 1;
cell.faded = 0;
if (aliveParents) {
// Set color based on random neighbor
unsigned parentIndex = parentIdx[random8(aliveParents)];
birthColor = SEGMENT.getPixelColor(parentIndex);
}
newColor = birthColor;
needsColor = true;
}
else if (!cell.faded) {// No change, fade dead cells
uint32_t cellColor = SEGMENT.getPixelColor(cIndex);
uint32_t blended = color_blend(cellColor, bgColor, blur);
if (blended == cellColor) { blended = bgColor; cell.faded = 1; }
newColor = blended;
needsColor = true;
}
}
if (needsColor) SEGMENT.setPixelColor(cIndex, newColor);
}
// Loop through cells, if toggle, swap alive status
for (unsigned i = maxIndex; i--; ) {
cells[i].alive ^= cells[i].toggleStatus;
cells[i].toggleStatus = 0;
}
if (repeatingOscillator || repeatingSpaceship || emptyGrid) {
generation = 0; // reset on next call
SEGENV.step += 1024; // pause final generation for ~1 second
}
else {
++generation;
SEGENV.step = strip.now;
}
return FRAMETIME;
} // mode_2Dgameoflife()
static const char _data_FX_MODE_2DGAMEOFLIFE[] PROGMEM = "Game Of Life@!,,Blur,,,,,Mutation;!,!;!;2;pal=11,sx=128";
static const char _data_FX_MODE_2DGAMEOFLIFE[] PROGMEM = "Game Of Life@!;!,!;!;2";
/////////////////////////

View File

@@ -116,62 +116,3 @@ function uploadFile(fileObj, name) {
fileObj.value = '';
return false;
}
// connect to WebSocket, use parent WS or open new
function connectWs(onOpen) {
try {
if (top.window.ws && top.window.ws.readyState === WebSocket.OPEN) {
if (onOpen) onOpen();
return top.window.ws;
}
} catch (e) {}
getLoc(); // ensure globals (loc, locip, locproto) are up to date
let url = loc ? getURL('/ws').replace("http","ws") : "ws://"+window.location.hostname+"/ws";
let ws = new WebSocket(url);
ws.binaryType = "arraybuffer";
if (onOpen) { ws.onopen = onOpen; }
try { top.window.ws = ws; } catch (e) {} // store in parent for reuse
return ws;
}
// send LED colors to ESP using WebSocket and DDP protocol (RGB)
// ws: WebSocket object
// start: start pixel index
// len: number of pixels to send
// colors: Uint8Array with RGB values (3*len bytes)
function sendDDP(ws, start, len, colors) {
if (!colors || colors.length < len * 3) return false; // not enough color data
let maxDDPpx = 472; // must fit into one WebSocket frame of 1428 bytes, DDP header is 10+1 bytes -> 472 RGB pixels
//let maxDDPpx = 172; // ESP8266: must fit into one WebSocket frame of 528 bytes -> 172 RGB pixels TODO: add support for ESP8266?
if (!ws || ws.readyState !== WebSocket.OPEN) return false;
// send in chunks of maxDDPpx
for (let i = 0; i < len; i += maxDDPpx) {
let cnt = Math.min(maxDDPpx, len - i);
let off = (start + i) * 3; // DDP pixel offset in bytes
let dLen = cnt * 3;
let cOff = i * 3; // offset in color buffer
let pkt = new Uint8Array(11 + dLen); // DDP header is 10 bytes, plus 1 byte for WLED websocket protocol indicator
pkt[0] = 0x02; // DDP protocol indicator for WLED websocket. Note: below DDP protocol bytes are offset by 1
pkt[1] = 0x40; // flags: 0x40 = no push, 0x41 = push (i.e. render), note: this is DDP protocol byte 0
pkt[2] = 0x00; // reserved
pkt[3] = 0x01; // 1 = RGB (currently only supported mode)
pkt[4] = 0x01; // destination id (not used but 0x01 is default output)
pkt[5] = (off >> 24) & 255; // DDP protocol 4-7 is offset
pkt[6] = (off >> 16) & 255;
pkt[7] = (off >> 8) & 255;
pkt[8] = off & 255;
pkt[9] = (dLen >> 8) & 255; // DDP protocol 8-9 is data length
pkt[10] = dLen & 255;
pkt.set(colors.subarray(cOff, cOff + dLen), 11);
if(i + cnt >= len) {
pkt[1] = 0x41; //if this is last packet, set the "push" flag to render the frame
}
try {
ws.send(pkt.buffer);
} catch (e) {
console.error(e);
return false;
}
}
return true;
}

View File

@@ -17,8 +17,8 @@
position: absolute;
}
</style>
<script src="common.js"></script>
<script>
var d = document;
var ws;
var tmout = null;
var c;
@@ -62,14 +62,32 @@
if (window.location.href.indexOf("?ws") == -1) {update(); return;}
// Initialize WebSocket connection
ws = connectWs(function () {
//console.info("Peek WS open");
ws.send('{"lv":true}');
});
try {
ws = top.window.ws;
} catch (e) {}
if (ws && ws.readyState === WebSocket.OPEN) {
//console.info("Peek uses top WS");
ws.send("{'lv':true}");
} else {
//console.info("Peek WS opening");
let l = window.location;
let pathn = l.pathname;
let paths = pathn.slice(1,pathn.endsWith('/')?-1:undefined).split("/");
let url = l.origin.replace("http","ws");
if (paths.length > 1) {
url += "/" + paths[0];
}
ws = new WebSocket(url+"/ws");
ws.onopen = function () {
//console.info("Peek WS open");
ws.send("{'lv':true}");
}
}
ws.binaryType = "arraybuffer";
ws.addEventListener('message', (e) => {
try {
if (toString.call(e.data) === '[object ArrayBuffer]') {
let leds = new Uint8Array(e.data);
let leds = new Uint8Array(event.data);
if (leds[0] != 76) return; //'L'
// leds[1] = 1: 1D; leds[1] = 2: 1D/2D (leds[2]=w, leds[3]=h)
draw(leds[1]==2 ? 4 : 2, 3, leds, (a,i) => `rgb(${a[i]},${a[i+1]},${a[i+2]})`);
@@ -84,4 +102,4 @@
<body onload="S()">
<canvas id="canv"></canvas>
</body>
</html>
</html>

View File

@@ -10,7 +10,6 @@
margin: 0;
}
</style>
<script src="common.js"></script>
</head>
<body>
<canvas id="canv"></canvas>
@@ -27,13 +26,30 @@
var ctx = c.getContext('2d');
if (ctx) { // Access the rendering context
// use parent WS or open new
var ws = connectWs(()=>{
ws.send('{"lv":true}');
});
var ws;
try {
ws = top.window.ws;
} catch (e) {}
if (ws && ws.readyState === WebSocket.OPEN) {
ws.send("{'lv':true}");
} else {
let l = window.location;
let pathn = l.pathname;
let paths = pathn.slice(1,pathn.endsWith('/')?-1:undefined).split("/");
let url = l.origin.replace("http","ws");
if (paths.length > 1) {
url += "/" + paths[0];
}
ws = new WebSocket(url+"/ws");
ws.onopen = ()=>{
ws.send("{'lv':true}");
}
}
ws.binaryType = "arraybuffer";
ws.addEventListener('message',(e)=>{
try {
if (toString.call(e.data) === '[object ArrayBuffer]') {
let leds = new Uint8Array(e.data);
let leds = new Uint8Array(event.data);
if (leds[0] != 76 || leds[1] != 2 || !ctx) return; //'L', set in ws.cpp
let mW = leds[2]; // matrix width
let mH = leds[3]; // matrix height

View File

@@ -1,4 +1,4 @@
<!DOCTYPE html>
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
@@ -131,7 +131,7 @@
if (!en) {
// limiter disabled
d.Sf.PPL.checked = false;
// d.Sf.querySelectorAll("#mLC select[name^=LAsel]").forEach((e)=>{e.selectedIndex = 0;}); // select default LED mA
// d.Sf.querySelectorAll("#mLC select[name^=LL]").forEach((e)=>{e.selectedIndex = 0;}); // select default LED mA
// d.Sf.querySelectorAll("#mLC input[name^=LA]").forEach((e)=>{e.min = 0; e.value = 0;}); // set min & value to 0
}
UI();
@@ -160,9 +160,10 @@
if (ppl) d.Sf.MA.value = sumMA; // populate UI ABL value if PPL used
}
// enable and update LED Amps
function enLA(s,n)
function enLA(s)
{
const abl = d.Sf.ABL.checked;
const n = s.name.substring(2); // bus number (0-Z)
const t = parseInt(d.Sf["LT"+n].value); // LED type SELECT
gId('LAdis'+n).style.display = s.selectedIndex==5 ? "inline" : "none"; // show/hide custom mA field
if (s.value!=="0") d.Sf["LA"+n].value = s.value; // set value from select object
@@ -177,9 +178,9 @@
});
d.Sf.ABL.checked = en;
// select appropriate LED current
d.Sf.querySelectorAll("#mLC select[name^=LAsel]").forEach((sel,x)=>{
d.Sf.querySelectorAll("#mLC select[name^=LL]").forEach((sel)=>{
sel.value = 0; // set custom
var n = chrID(x);
var n = sel.name.substring(2); // bus number (0-Z)
if (en)
switch (parseInt(d.Sf["LA"+n].value)) {
case 0: break; // disable ABL
@@ -190,7 +191,7 @@
case 255: sel.value = 255; break;
}
else sel.value = 0;
enLA(sel,n); // configure individual limiter
enLA(sel); // configure individual limiter
});
enABL();
gId('m1').innerHTML = maxM;
@@ -270,7 +271,7 @@
let dC = 0; // count of digital buses (for parallel I2S)
let LTs = d.Sf.querySelectorAll("#mLC select[name^=LT]");
LTs.forEach((s,i)=>{
if (i < LTs.length-1) s.disabled = true; // prevent changing type (as we can't update options)
s.disabled = (i < LTs.length-1); // prevent changing type (as we can't update options)
// is the field a LED type?
var n = s.name.substring(2,3); // bus number (0-Z)
var t = parseInt(s.value);
@@ -464,12 +465,12 @@
if (n==1) {
// npm run build has trouble minimizing spaces inside string
var cn = `<div class="iST">
var cn = `<div class="iST" draggable="true" ondragstart="hDS(event)" id="l${s}" style="cursor:grab;">
<hr class="sml">
${i+1}:
<span id="n${s}">${i+1}</span>:
<select name="LT${s}" onchange="UI(true)"></select><br>
<div id="abl${s}">
mA/LED: <select name="LAsel${s}" onchange="enLA(this,'${s}');UI();">
mA/LED: <select name="LL${s}" onchange="enLA(this);UI();">
<option value="55" selected>55mA (typ. 5V WS281x)</option>
<option value="35">35mA (eco WS2812)</option>
<option value="30">30mA (typ. 12V)</option>
@@ -521,7 +522,7 @@ mA/LED: <select name="LAsel${s}" onchange="enLA(this,'${s}');UI();">
}
}
});
enLA(d.Sf["LAsel"+s],s); // update LED mA
enLA(gN("LL"+s)); // update LED mA
// disable inappropriate LED types
let sel = d.getElementsByName("LT"+s)[0];
// 32 & S2 supports mono I2S as well as parallel so we need to take that into account; S3 only supports parallel
@@ -617,6 +618,43 @@ Swap: <select id="xw${s}" name="XW${s}">
c += `<span style="cursor: pointer;" onclick="off('BT${s}')">&nbsp;&#x2715;</span><br>`;
gId("btns").innerHTML = c;
}
function hDS(e) {
e.dataTransfer.setData('text', e.currentTarget.id);
}
function hDO(e) {
e.preventDefault();
}
function hDrop(e) {
e.preventDefault();
let t = e.target;
if (t.id === "mLC") t = t.children[0]; // dropped on a container, not on an element
else while (t && !t.classList.contains("iST")) t = t.parentNode; // find target element
if (!t || t.id === "") return false; // not dropping on a valid target
const id = e.dataTransfer.getData("text");
t.parentNode.insertBefore(gId(id), t);
recalcIds();
UI();
}
function recalcIds() {
gId("mLC").querySelectorAll(".iST").forEach((e,i)=>{
let sOld = e.id.substring(1);
let sNew = chrID(i);
// update all element IDs and names
e.id = "l"+sNew;
e.querySelector("#n"+sOld).innerText = (i+1);
// names: LT,LL,LA,MA,CO,WO,SP,LS,LC,L0,L1,L2,L3,L4,HS,CV,SL,RF,AW
["LT","LL","LA","MA","CO","WO","SP","LS","LC","L0","L1","L2","L3","L4","HS","CV","SL","RF","AW"].forEach((n)=>{
let el = e.querySelector("[name^="+n+"]");
if (el) el.name = n + sNew;
});
// IDs: l,n,abl,LAdis,PSU,co,ls,dig?w,dig?l,psd,dig?c,p0d,p1d,p2d,p3d,p4d,net?h,dig?r,dig?s,dig?f,dig?a
["l","n","abl","LAdis","PSU","co","ls","dig?w","dig?l","psd","dig?c","p0d","p1d","p2d","p3d","p4d","net?h","dig?r","dig?s","dig?f","dig?a"].forEach((n)=>{
if (n.indexOf("?") < 0) n += "?";
let el = e.querySelector("#"+n.replace("?", sOld));
if (el) el.id = n.replace("?", sNew);
});
});
}
function tglSi(cs) {
customStarts = cs;
if (!customStarts) startsDirty = []; //set all starts to clean
@@ -847,7 +885,7 @@ Swap: <select id="xw${s}" name="XW${s}">
</div>
</div>
<h3>Hardware setup</h3>
<div id="mLC">LED outputs:</div>
<div id="mLC" ondragover="hDO(event)" ondrop="hDrop(event)">LED outputs:</div>
<hr class="sml">
<button type="button" id="+" onclick="addLEDs(1,false)">+</button>
<button type="button" id="-" onclick="addLEDs(-1,false)">-</button><br>

View File

@@ -30,19 +30,11 @@ void handleDDPPacket(e131_packet_t* p) {
uint32_t start = htonl(p->channelOffset) / ddpChannelsPerLed;
start += DMXAddress / ddpChannelsPerLed;
uint16_t dataLen = htons(p->dataLen);
unsigned stop = start + dataLen / ddpChannelsPerLed;
unsigned stop = start + htons(p->dataLen) / ddpChannelsPerLed;
uint8_t* data = p->data;
unsigned c = 0;
if (p->flags & DDP_TIMECODE_FLAG) c = 4; //packet has timecode flag, we do not support it, but data starts 4 bytes later
unsigned numLeds = stop - start; // stop >= start is guaranteed
unsigned maxDataIndex = c + numLeds * ddpChannelsPerLed; // validate bounds before accessing data array
if (maxDataIndex > dataLen) {
DEBUG_PRINTLN(F("DDP packet data bounds exceeded, rejecting."));
return;
}
if (realtimeMode != REALTIME_MODE_DDP) ddpSeenPush = false; // just starting, no push yet
realtimeLock(realtimeTimeoutMs, REALTIME_MODE_DDP);

View File

@@ -5,12 +5,6 @@
*/
#ifdef WLED_ENABLE_WEBSOCKETS
// define some constants for binary protocols, dont use defines but C++ style constexpr
constexpr uint8_t BINARY_PROTOCOL_GENERIC = 0xFF; // generic / auto detect NOT IMPLEMENTED
constexpr uint8_t BINARY_PROTOCOL_E131 = P_E131; // = 0, untested!
constexpr uint8_t BINARY_PROTOCOL_ARTNET = P_ARTNET; // = 1, untested!
constexpr uint8_t BINARY_PROTOCOL_DDP = P_DDP; // = 2
uint16_t wsLiveClientId = 0;
unsigned long wsLastLiveTime = 0;
//uint8_t* wsFrameBuffer = nullptr;
@@ -31,7 +25,7 @@ void wsEvent(AsyncWebSocket * server, AsyncWebSocketClient * client, AwsEventTyp
// data packet
AwsFrameInfo * info = (AwsFrameInfo*)arg;
if(info->final && info->index == 0 && info->len == len){
// the whole message is in a single frame and we got all of its data (max. 1428 bytes / ESP8266: 528 bytes)
// the whole message is in a single frame and we got all of its data (max. 1450 bytes)
if(info->opcode == WS_TEXT)
{
if (len > 0 && len < 10 && data[0] == 'p') {
@@ -77,29 +71,8 @@ void wsEvent(AsyncWebSocket * server, AsyncWebSocketClient * client, AwsEventTyp
// force broadcast in 500ms after updating client
//lastInterfaceUpdate = millis() - (INTERFACE_UPDATE_COOLDOWN -500); // ESP8266 does not like this
}
}else if (info->opcode == WS_BINARY) {
// first byte determines protocol. Note: since e131_packet_t is "packed", the compiler handles alignment issues
//DEBUG_PRINTF_P(PSTR("WS binary message: len %u, byte0: %u\n"), len, data[0]);
int offset = 1; // offset to skip protocol byte
switch (data[0]) {
case BINARY_PROTOCOL_E131:
handleE131Packet((e131_packet_t*)&data[offset], client->remoteIP(), P_E131);
break;
case BINARY_PROTOCOL_ARTNET:
handleE131Packet((e131_packet_t*)&data[offset], client->remoteIP(), P_ARTNET);
break;
case BINARY_PROTOCOL_DDP:
if (len < 10 + offset) return; // DDP header is 10 bytes (+1 protocol byte)
size_t ddpDataLen = (data[8+offset] << 8) | data[9+offset]; // data length in bytes from DDP header
uint8_t flags = data[0+offset];
if ((flags & DDP_TIMECODE_FLAG) ) ddpDataLen += 4; // timecode flag adds 4 bytes to data length
if (len < (10 + offset + ddpDataLen)) return; // not enough data, prevent out of bounds read
// could be a valid DDP packet, forward to handler
handleE131Packet((e131_packet_t*)&data[offset], client->remoteIP(), P_DDP);
}
}
} else {
DEBUG_PRINTF_P(PSTR("WS multipart message: final %u index %u len %u total %u\n"), info->final, info->index, len, (uint32_t)info->len);
//message is comprised of multiple frames or the frame is split into multiple packets
//if(info->index == 0){
//if (!wsFrameBuffer && len < 4096) wsFrameBuffer = new uint8_t[4096];