WLED/wled00/fcn_declare.h
Will Miles 204e72e9eb
Merge pull request #4213 from willmmiles/static-class-to-namespace
Complete transition of UsermodManager and PinManager away from classes
2025-01-08 21:38:10 -05:00

586 lines
24 KiB
C++

#ifndef WLED_FCN_DECLARE_H
#define WLED_FCN_DECLARE_H
/*
* All globally accessible functions are declared here
*/
//alexa.cpp
#ifndef WLED_DISABLE_ALEXA
void onAlexaChange(EspalexaDevice* dev);
void alexaInit();
void handleAlexa();
void onAlexaChange(EspalexaDevice* dev);
#endif
//button.cpp
void shortPressAction(uint8_t b=0);
void longPressAction(uint8_t b=0);
void doublePressAction(uint8_t b=0);
bool isButtonPressed(uint8_t b=0);
void handleButton();
void handleIO();
void IRAM_ATTR touchButtonISR();
//cfg.cpp
bool deserializeConfig(JsonObject doc, bool fromFS = false);
void deserializeConfigFromFS();
bool deserializeConfigSec();
void serializeConfig();
void serializeConfigSec();
template<typename DestType>
bool getJsonValue(const JsonVariant& element, DestType& destination) {
if (element.isNull()) {
return false;
}
destination = element.as<DestType>();
return true;
}
template<typename DestType, typename DefaultType>
bool getJsonValue(const JsonVariant& element, DestType& destination, const DefaultType defaultValue) {
if(!getJsonValue(element, destination)) {
destination = defaultValue;
return false;
}
return true;
}
typedef struct WiFiConfig {
char clientSSID[33];
char clientPass[65];
IPAddress staticIP;
IPAddress staticGW;
IPAddress staticSN;
WiFiConfig(const char *ssid="", const char *pass="", uint32_t ip=0, uint32_t gw=0, uint32_t subnet=0x00FFFFFF) // little endian
: staticIP(ip)
, staticGW(gw)
, staticSN(subnet)
{
strncpy(clientSSID, ssid, 32); clientSSID[32] = 0;
strncpy(clientPass, pass, 64); clientPass[64] = 0;
}
} wifi_config;
//colors.cpp
#define ColorFromPalette ColorFromPaletteWLED // override fastled version
// CRGBW can be used to manipulate 32bit colors faster. However: if it is passed to functions, it adds overhead compared to a uint32_t color
// use with caution and pay attention to flash size. Usually converting a uint32_t to CRGBW to extract r, g, b, w values is slower than using bitshifts
// it can be useful to avoid back and forth conversions between uint32_t and fastled CRGB
struct CRGBW {
union {
uint32_t color32; // Access as a 32-bit value (0xWWRRGGBB)
struct {
uint8_t b;
uint8_t g;
uint8_t r;
uint8_t w;
};
uint8_t raw[4]; // Access as an array in the order B, G, R, W
};
// Default constructor
inline CRGBW() __attribute__((always_inline)) = default;
// Constructor from a 32-bit color (0xWWRRGGBB)
constexpr CRGBW(uint32_t color) __attribute__((always_inline)) : color32(color) {}
// Constructor with r, g, b, w values
constexpr CRGBW(uint8_t red, uint8_t green, uint8_t blue, uint8_t white = 0) __attribute__((always_inline)) : b(blue), g(green), r(red), w(white) {}
// Constructor from CRGB
constexpr CRGBW(CRGB rgb) __attribute__((always_inline)) : b(rgb.b), g(rgb.g), r(rgb.r), w(0) {}
// Access as an array
inline const uint8_t& operator[] (uint8_t x) const __attribute__((always_inline)) { return raw[x]; }
// Assignment from 32-bit color
inline CRGBW& operator=(uint32_t color) __attribute__((always_inline)) { color32 = color; return *this; }
// Assignment from r, g, b, w
inline CRGBW& operator=(const CRGB& rgb) __attribute__((always_inline)) { b = rgb.b; g = rgb.g; r = rgb.r; w = 0; return *this; }
// Conversion operator to uint32_t
inline operator uint32_t() const __attribute__((always_inline)) {
return color32;
}
/*
// Conversion operator to CRGB
inline operator CRGB() const __attribute__((always_inline)) {
return CRGB(r, g, b);
}
CRGBW& scale32 (uint8_t scaledown) // 32bit math
{
if (color32 == 0) return *this; // 2 extra instructions, worth it if called a lot on black (which probably is true) adding check if scaledown is zero adds much more overhead as its 8bit
uint32_t scale = scaledown + 1;
uint32_t rb = (((color32 & 0x00FF00FF) * scale) >> 8) & 0x00FF00FF; // scale red and blue
uint32_t wg = (((color32 & 0xFF00FF00) >> 8) * scale) & 0xFF00FF00; // scale white and green
color32 = rb | wg;
return *this;
}*/
};
struct CHSV32 { // 32bit HSV color with 16bit hue for more accurate conversions
union {
struct {
uint16_t h; // hue
uint8_t s; // saturation
uint8_t v; // value
};
uint32_t raw; // 32bit access
};
inline CHSV32() __attribute__((always_inline)) = default; // default constructor
/// Allow construction from hue, saturation, and value
/// @param ih input hue
/// @param is input saturation
/// @param iv input value
inline CHSV32(uint16_t ih, uint8_t is, uint8_t iv) __attribute__((always_inline)) // constructor from 16bit h, s, v
: h(ih), s(is), v(iv) {}
inline CHSV32(uint8_t ih, uint8_t is, uint8_t iv) __attribute__((always_inline)) // constructor from 8bit h, s, v
: h((uint16_t)ih << 8), s(is), v(iv) {}
inline CHSV32(const CHSV& chsv) __attribute__((always_inline)) // constructor from CHSV
: h((uint16_t)chsv.h << 8), s(chsv.s), v(chsv.v) {}
inline operator CHSV() const { return CHSV((uint8_t)(h >> 8), s, v); } // typecast to CHSV
};
// similar to NeoPixelBus NeoGammaTableMethod but allows dynamic changes (superseded by NPB::NeoGammaDynamicTableMethod)
class NeoGammaWLEDMethod {
public:
[[gnu::hot]] static uint8_t Correct(uint8_t value); // apply Gamma to single channel
[[gnu::hot]] static uint32_t Correct32(uint32_t color); // apply Gamma to RGBW32 color (WLED specific, not used by NPB)
static void calcGammaTable(float gamma); // re-calculates & fills gamma table
static inline uint8_t rawGamma8(uint8_t val) { return gammaT[val]; } // get value from Gamma table (WLED specific, not used by NPB)
private:
static uint8_t gammaT[];
};
#define gamma32(c) NeoGammaWLEDMethod::Correct32(c)
#define gamma8(c) NeoGammaWLEDMethod::rawGamma8(c)
[[gnu::hot]] uint32_t color_blend(uint32_t c1, uint32_t c2 , uint8_t blend);
inline uint32_t color_blend16(uint32_t c1, uint32_t c2, uint16_t b) { return color_blend(c1, c2, b >> 8); };
[[gnu::hot]] uint32_t color_add(uint32_t, uint32_t, bool preserveCR = false);
[[gnu::hot]] uint32_t color_fade(uint32_t c1, uint8_t amount, bool video=false);
[[gnu::hot]] uint32_t ColorFromPaletteWLED(const CRGBPalette16 &pal, unsigned index, uint8_t brightness = (uint8_t)255U, TBlendType blendType = LINEARBLEND);
CRGBPalette16 generateHarmonicRandomPalette(CRGBPalette16 &basepalette);
CRGBPalette16 generateRandomPalette();
inline uint32_t colorFromRgbw(byte* rgbw) { return uint32_t((byte(rgbw[3]) << 24) | (byte(rgbw[0]) << 16) | (byte(rgbw[1]) << 8) | (byte(rgbw[2]))); }
void hsv2rgb(const CHSV32& hsv, uint32_t& rgb);
void colorHStoRGB(uint16_t hue, byte sat, byte* rgb);
void rgb2hsv(const uint32_t rgb, CHSV32& hsv);
inline CHSV rgb2hsv(const CRGB c) { CHSV32 hsv; rgb2hsv((uint32_t((byte(c.r) << 16) | (byte(c.g) << 8) | (byte(c.b)))), hsv); return CHSV(hsv); } // CRGB to hsv
void colorKtoRGB(uint16_t kelvin, byte* rgb);
void colorCTtoRGB(uint16_t mired, byte* rgb); //white spectrum to rgb
void colorXYtoRGB(float x, float y, byte* rgb); // only defined if huesync disabled TODO
void colorRGBtoXY(byte* rgb, float* xy); // only defined if huesync disabled TODO
void colorFromDecOrHexString(byte* rgb, char* in);
bool colorFromHexString(byte* rgb, const char* in);
uint32_t colorBalanceFromKelvin(uint16_t kelvin, uint32_t rgb);
uint16_t approximateKelvinFromRGB(uint32_t rgb);
void setRandomColor(byte* rgb);
//dmx.cpp
void initDMX();
void handleDMX();
//e131.cpp
void handleE131Packet(e131_packet_t* p, IPAddress clientIP, byte protocol);
void handleArtnetPollReply(IPAddress ipAddress);
void prepareArtnetPollReply(ArtPollReply* reply);
void sendArtnetPollReply(ArtPollReply* reply, IPAddress ipAddress, uint16_t portAddress);
//file.cpp
bool handleFileRead(AsyncWebServerRequest*, String path);
bool writeObjectToFileUsingId(const char* file, uint16_t id, JsonDocument* content);
bool writeObjectToFile(const char* file, const char* key, JsonDocument* content);
bool readObjectFromFileUsingId(const char* file, uint16_t id, JsonDocument* dest);
bool readObjectFromFile(const char* file, const char* key, JsonDocument* dest);
void updateFSInfo();
void closeFile();
inline bool writeObjectToFileUsingId(const String &file, uint16_t id, JsonDocument* content) { return writeObjectToFileUsingId(file.c_str(), id, content); };
inline bool writeObjectToFile(const String &file, const char* key, JsonDocument* content) { return writeObjectToFile(file.c_str(), key, content); };
inline bool readObjectFromFileUsingId(const String &file, uint16_t id, JsonDocument* dest) { return readObjectFromFileUsingId(file.c_str(), id, dest); };
inline bool readObjectFromFile(const String &file, const char* key, JsonDocument* dest) { return readObjectFromFile(file.c_str(), key, dest); };
//hue.cpp
void handleHue();
void reconnectHue();
void onHueError(void* arg, AsyncClient* client, int8_t error);
void onHueConnect(void* arg, AsyncClient* client);
void sendHuePoll();
void onHueData(void* arg, AsyncClient* client, void *data, size_t len);
//improv.cpp
enum ImprovRPCType {
Command_Wifi = 0x01,
Request_State = 0x02,
Request_Info = 0x03,
Request_Scan = 0x04
};
void handleImprovPacket();
void sendImprovRPCResult(ImprovRPCType type, uint8_t n_strings = 0, const char **strings = nullptr);
void sendImprovStateResponse(uint8_t state, bool error = false);
void sendImprovInfoResponse();
void startImprovWifiScan();
void handleImprovWifiScan();
void sendImprovIPRPCResult(ImprovRPCType type);
//ir.cpp
void initIR();
void deInitIR();
void handleIR();
//json.cpp
#include "ESPAsyncWebServer.h"
#include "src/dependencies/json/ArduinoJson-v6.h"
#include "src/dependencies/json/AsyncJson-v6.h"
#include "FX.h"
bool deserializeSegment(JsonObject elem, byte it, byte presetId = 0);
bool deserializeState(JsonObject root, byte callMode = CALL_MODE_DIRECT_CHANGE, byte presetId = 0);
void serializeSegment(JsonObject& root, Segment& seg, byte id, bool forPreset = false, bool segmentBounds = true);
void serializeState(JsonObject root, bool forPreset = false, bool includeBri = true, bool segmentBounds = true, bool selectedSegmentsOnly = false);
void serializeInfo(JsonObject root);
void serializeModeNames(JsonArray root);
void serializeModeData(JsonArray root);
void serveJson(AsyncWebServerRequest* request);
#ifdef WLED_ENABLE_JSONLIVE
bool serveLiveLeds(AsyncWebServerRequest* request, uint32_t wsClient = 0);
#endif
//led.cpp
void setValuesFromSegment(uint8_t s);
void setValuesFromMainSeg();
void setValuesFromFirstSelectedSeg();
void toggleOnOff();
void applyBri();
void applyFinalBri();
void applyValuesToSelectedSegs();
void colorUpdated(byte callMode);
void stateUpdated(byte callMode);
void updateInterfaces(uint8_t callMode);
void handleTransitions();
void handleNightlight();
byte scaledBri(byte in);
#ifdef WLED_ENABLE_LOXONE
//lx_parser.cpp
bool parseLx(int lxValue, byte* rgbw);
void parseLxJson(int lxValue, byte segId, bool secondary);
#endif
//mqtt.cpp
bool initMqtt();
void publishMqtt();
//ntp.cpp
void handleTime();
void handleNetworkTime();
void sendNTPPacket();
bool checkNTPResponse();
void updateLocalTime();
void getTimeString(char* out);
bool checkCountdown();
void setCountdown();
byte weekdayMondayFirst();
void checkTimers();
void calculateSunriseAndSunset();
void setTimeFromAPI(uint32_t timein);
//overlay.cpp
void handleOverlayDraw();
void _overlayAnalogCountdown();
void _overlayAnalogClock();
//playlist.cpp
void shufflePlaylist();
void unloadPlaylist();
int16_t loadPlaylist(JsonObject playlistObject, byte presetId = 0);
void handlePlaylist();
void serializePlaylist(JsonObject obj);
//presets.cpp
const char *getPresetsFileName(bool persistent = true);
void initPresetsFile();
void handlePresets();
bool applyPreset(byte index, byte callMode = CALL_MODE_DIRECT_CHANGE);
bool applyPresetFromPlaylist(byte index);
void applyPresetWithFallback(uint8_t presetID, uint8_t callMode, uint8_t effectID = 0, uint8_t paletteID = 0);
inline bool applyTemporaryPreset() {return applyPreset(255);};
void savePreset(byte index, const char* pname = nullptr, JsonObject saveobj = JsonObject());
inline void saveTemporaryPreset() {savePreset(255);};
void deletePreset(byte index);
bool getPresetName(byte index, String& name);
//remote.cpp
void handleRemote(uint8_t *data, size_t len);
//set.cpp
bool isAsterisksOnly(const char* str, byte maxLen);
void handleSettingsSet(AsyncWebServerRequest *request, byte subPage);
bool handleSet(AsyncWebServerRequest *request, const String& req, bool apply=true);
//udp.cpp
void notify(byte callMode, bool followUp=false);
uint8_t realtimeBroadcast(uint8_t type, IPAddress client, uint16_t length, uint8_t *buffer, uint8_t bri=255, bool isRGBW=false);
void realtimeLock(uint32_t timeoutMs, byte md = REALTIME_MODE_GENERIC);
void exitRealtime();
void handleNotifications();
void setRealtimePixel(uint16_t i, byte r, byte g, byte b, byte w);
void refreshNodeList();
void sendSysInfoUDP();
#ifndef WLED_DISABLE_ESPNOW
void espNowSentCB(uint8_t* address, uint8_t status);
void espNowReceiveCB(uint8_t* address, uint8_t* data, uint8_t len, signed int rssi, bool broadcast);
#endif
//network.cpp
int getSignalQuality(int rssi);
void WiFiEvent(WiFiEvent_t event);
//um_manager.cpp
typedef enum UM_Data_Types {
UMT_BYTE = 0,
UMT_UINT16,
UMT_INT16,
UMT_UINT32,
UMT_INT32,
UMT_FLOAT,
UMT_DOUBLE,
UMT_BYTE_ARR,
UMT_UINT16_ARR,
UMT_INT16_ARR,
UMT_UINT32_ARR,
UMT_INT32_ARR,
UMT_FLOAT_ARR,
UMT_DOUBLE_ARR
} um_types_t;
typedef struct UM_Exchange_Data {
// should just use: size_t arr_size, void **arr_ptr, byte *ptr_type
size_t u_size; // size of u_data array
um_types_t *u_type; // array of data types
void **u_data; // array of pointers to data
UM_Exchange_Data() {
u_size = 0;
u_type = nullptr;
u_data = nullptr;
}
~UM_Exchange_Data() {
if (u_type) delete[] u_type;
if (u_data) delete[] u_data;
}
} um_data_t;
const unsigned int um_data_size = sizeof(um_data_t); // 12 bytes
class Usermod {
protected:
um_data_t *um_data; // um_data should be allocated using new in (derived) Usermod's setup() or constructor
public:
Usermod() { um_data = nullptr; }
virtual ~Usermod() { if (um_data) delete um_data; }
virtual void setup() = 0; // pure virtual, has to be overriden
virtual void loop() = 0; // pure virtual, has to be overriden
virtual void handleOverlayDraw() {} // called after all effects have been processed, just before strip.show()
virtual bool handleButton(uint8_t b) { return false; } // button overrides are possible here
virtual bool getUMData(um_data_t **data) { if (data) *data = nullptr; return false; }; // usermod data exchange [see examples for audio effects]
virtual void connected() {} // called when WiFi is (re)connected
virtual void appendConfigData(Print& settingsScript); // helper function called from usermod settings page to add metadata for entry fields
virtual void addToJsonState(JsonObject& obj) {} // add JSON objects for WLED state
virtual void addToJsonInfo(JsonObject& obj) {} // add JSON objects for UI Info page
virtual void readFromJsonState(JsonObject& obj) {} // process JSON messages received from web server
virtual void addToConfig(JsonObject& obj) {} // add JSON entries that go to cfg.json
virtual bool readFromConfig(JsonObject& obj) { return true; } // Note as of 2021-06 readFromConfig() now needs to return a bool, see usermod_v2_example.h
virtual void onMqttConnect(bool sessionPresent) {} // fired when MQTT connection is established (so usermod can subscribe)
virtual bool onMqttMessage(char* topic, char* payload) { return false; } // fired upon MQTT message received (wled topic)
virtual bool onEspNowMessage(uint8_t* sender, uint8_t* payload, uint8_t len) { return false; } // fired upon ESP-NOW message received
virtual void onUpdateBegin(bool) {} // fired prior to and after unsuccessful firmware update
virtual void onStateChange(uint8_t mode) {} // fired upon WLED state change
virtual uint16_t getId() {return USERMOD_ID_UNSPECIFIED;}
// API shims
private:
static Print* oappend_shim;
// old form of appendConfigData; called by default appendConfigData(Print&) with oappend_shim set up
// private so it is not accidentally invoked except via Usermod::appendConfigData(Print&)
virtual void appendConfigData() {}
protected:
// Shim for oappend(), which used to exist in utils.cpp
template<typename T> static inline void oappend(const T& t) { oappend_shim->print(t); };
#ifdef ESP8266
// Handle print(PSTR()) without crashing by detecting PROGMEM strings
static void oappend(const char* c) { if ((intptr_t) c >= 0x40000000) oappend_shim->print(FPSTR(c)); else oappend_shim->print(c); };
#endif
};
namespace UsermodManager {
extern byte numMods;
void loop();
void handleOverlayDraw();
bool handleButton(uint8_t b);
bool getUMData(um_data_t **um_data, uint8_t mod_id = USERMOD_ID_RESERVED); // USERMOD_ID_RESERVED will poll all usermods
void setup();
void connected();
void appendConfigData(Print&);
void addToJsonState(JsonObject& obj);
void addToJsonInfo(JsonObject& obj);
void readFromJsonState(JsonObject& obj);
void addToConfig(JsonObject& obj);
bool readFromConfig(JsonObject& obj);
#ifndef WLED_DISABLE_MQTT
void onMqttConnect(bool sessionPresent);
bool onMqttMessage(char* topic, char* payload);
#endif
#ifndef WLED_DISABLE_ESPNOW
bool onEspNowMessage(uint8_t* sender, uint8_t* payload, uint8_t len);
#endif
void onUpdateBegin(bool);
void onStateChange(uint8_t);
bool add(Usermod* um);
Usermod* lookup(uint16_t mod_id);
inline byte getModCount() {return numMods;};
};
//usermods_list.cpp
void registerUsermods();
//usermod.cpp
void userSetup();
void userConnected();
void userLoop();
//util.cpp
#ifdef ESP8266
#define HW_RND_REGISTER RANDOM_REG32
#else // ESP32 family
#include "soc/wdev_reg.h"
#define HW_RND_REGISTER REG_READ(WDEV_RND_REG)
#endif
int getNumVal(const String* req, uint16_t pos);
void parseNumber(const char* str, byte* val, byte minv=0, byte maxv=255);
bool getVal(JsonVariant elem, byte* val, byte minv=0, byte maxv=255); // getVal supports inc/decrementing and random ("X~Y(r|~[w][-][Z])" form)
bool getBoolVal(JsonVariant elem, bool dflt);
bool updateVal(const char* req, const char* key, byte* val, byte minv=0, byte maxv=255);
size_t printSetFormCheckbox(Print& settingsScript, const char* key, int val);
size_t printSetFormValue(Print& settingsScript, const char* key, int val);
size_t printSetFormValue(Print& settingsScript, const char* key, const char* val);
size_t printSetFormIndex(Print& settingsScript, const char* key, int index);
size_t printSetClassElementHTML(Print& settingsScript, const char* key, const int index, const char* val);
void prepareHostname(char* hostname);
bool isAsterisksOnly(const char* str, byte maxLen);
bool requestJSONBufferLock(uint8_t module=255);
void releaseJSONBufferLock();
uint8_t extractModeName(uint8_t mode, const char *src, char *dest, uint8_t maxLen);
uint8_t extractModeSlider(uint8_t mode, uint8_t slider, char *dest, uint8_t maxLen, uint8_t *var = nullptr);
int16_t extractModeDefaults(uint8_t mode, const char *segVar);
void checkSettingsPIN(const char *pin);
uint16_t crc16(const unsigned char* data_p, size_t length);
uint16_t beatsin88_t(accum88 beats_per_minute_88, uint16_t lowest = 0, uint16_t highest = 65535, uint32_t timebase = 0, uint16_t phase_offset = 0);
uint16_t beatsin16_t(accum88 beats_per_minute, uint16_t lowest = 0, uint16_t highest = 65535, uint32_t timebase = 0, uint16_t phase_offset = 0);
uint8_t beatsin8_t(accum88 beats_per_minute, uint8_t lowest = 0, uint8_t highest = 255, uint32_t timebase = 0, uint8_t phase_offset = 0);
um_data_t* simulateSound(uint8_t simulationId);
void enumerateLedmaps();
uint8_t get_random_wheel_index(uint8_t pos);
float mapf(float x, float in_min, float in_max, float out_min, float out_max);
// fast (true) random numbers using hardware RNG, all functions return values in the range lowerlimit to upperlimit-1
// note: for true random numbers with high entropy, do not call faster than every 200ns (5MHz)
// tests show it is still highly random reading it quickly in a loop (better than fastled PRNG)
// for 8bit and 16bit random functions: no limit check is done for best speed
// 32bit inputs are used for speed and code size, limits don't work if inverted or out of range
// inlining does save code size except for random(a,b) and 32bit random with limits
#define random hw_random // replace arduino random()
inline uint32_t hw_random() { return HW_RND_REGISTER; };
uint32_t hw_random(uint32_t upperlimit); // not inlined for code size
int32_t hw_random(int32_t lowerlimit, int32_t upperlimit);
inline uint16_t hw_random16() { return HW_RND_REGISTER; };
inline uint16_t hw_random16(uint32_t upperlimit) { return (hw_random16() * upperlimit) >> 16; }; // input range 0-65535 (uint16_t)
inline int16_t hw_random16(int32_t lowerlimit, int32_t upperlimit) { int32_t range = upperlimit - lowerlimit; return lowerlimit + hw_random16(range); }; // signed limits, use int16_t ranges
inline uint8_t hw_random8() { return HW_RND_REGISTER; };
inline uint8_t hw_random8(uint32_t upperlimit) { return (hw_random8() * upperlimit) >> 8; }; // input range 0-255
inline uint8_t hw_random8(uint32_t lowerlimit, uint32_t upperlimit) { uint32_t range = upperlimit - lowerlimit; return lowerlimit + hw_random8(range); }; // input range 0-255
// RAII guard class for the JSON Buffer lock
// Modeled after std::lock_guard
class JSONBufferGuard {
bool holding_lock;
public:
inline JSONBufferGuard(uint8_t module=255) : holding_lock(requestJSONBufferLock(module)) {};
inline ~JSONBufferGuard() { if (holding_lock) releaseJSONBufferLock(); };
inline JSONBufferGuard(const JSONBufferGuard&) = delete; // Noncopyable
inline JSONBufferGuard& operator=(const JSONBufferGuard&) = delete;
inline JSONBufferGuard(JSONBufferGuard&& r) : holding_lock(r.holding_lock) { r.holding_lock = false; }; // but movable
inline JSONBufferGuard& operator=(JSONBufferGuard&& r) { holding_lock |= r.holding_lock; r.holding_lock = false; return *this; };
inline bool owns_lock() const { return holding_lock; }
explicit inline operator bool() const { return owns_lock(); };
inline void release() { if (holding_lock) releaseJSONBufferLock(); holding_lock = false; }
};
#ifdef WLED_ADD_EEPROM_SUPPORT
//wled_eeprom.cpp
void applyMacro(byte index);
void deEEP();
void deEEPSettings();
void clearEEPROM();
#endif
//wled_math.cpp
//float cos_t(float phi); // use float math
//float sin_t(float phi);
//float tan_t(float x);
int16_t sin16_t(uint16_t theta);
int16_t cos16_t(uint16_t theta);
uint8_t sin8_t(uint8_t theta);
uint8_t cos8_t(uint8_t theta);
float sin_approx(float theta); // uses integer math (converted to float), accuracy +/-0.0015 (compared to sinf())
float cos_approx(float theta);
float tan_approx(float x);
float atan2_t(float y, float x);
float acos_t(float x);
float asin_t(float x);
template <typename T> T atan_t(T x);
float floor_t(float x);
float fmod_t(float num, float denom);
#define sin_t sin_approx
#define cos_t cos_approx
#define tan_t tan_approx
/*
#include <math.h> // standard math functions. use a lot of flash
#define sin_t sinf
#define cos_t cosf
#define tan_t tanf
#define asin_t asinf
#define acos_t acosf
#define atan_t atanf
#define fmod_t fmodf
#define floor_t floorf
*/
//wled_serial.cpp
void handleSerial();
void updateBaudRate(uint32_t rate);
//wled_server.cpp
void createEditHandler(bool enable);
void initServer();
void serveMessage(AsyncWebServerRequest* request, uint16_t code, const String& headl, const String& subl="", byte optionT=255);
void serveJsonError(AsyncWebServerRequest* request, uint16_t code, uint16_t error);
void serveSettings(AsyncWebServerRequest* request, bool post = false);
void serveSettingsJS(AsyncWebServerRequest* request);
//ws.cpp
void handleWs();
void wsEvent(AsyncWebSocket * server, AsyncWebSocketClient * client, AwsEventType type, void * arg, uint8_t *data, size_t len);
void sendDataWs(AsyncWebSocketClient * client = nullptr);
//xml.cpp
void XML_response(Print& dest);
void getSettingsJS(byte subPage, Print& dest);
#endif