mirror of
https://github.com/esphome/esphome.git
synced 2025-08-09 11:57:46 +00:00
Merge branch 'dev' into scheduler_copy
This commit is contained in:
commit
1296165fce
@ -94,6 +94,19 @@ APIConnection::~APIConnection() {
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef HAS_PROTO_MESSAGE_DUMP
|
||||
void APIConnection::log_batch_item_(const DeferredBatch::BatchItem &item) {
|
||||
// Set log-only mode
|
||||
this->log_only_mode_ = true;
|
||||
|
||||
// Call the creator - it will create the message and log it via encode_message_to_buffer
|
||||
item.creator(item.entity, this, std::numeric_limits<uint16_t>::max(), true, item.message_type);
|
||||
|
||||
// Clear log-only mode
|
||||
this->log_only_mode_ = false;
|
||||
}
|
||||
#endif
|
||||
|
||||
void APIConnection::loop() {
|
||||
if (this->next_close_) {
|
||||
// requested a disconnect
|
||||
@ -249,6 +262,14 @@ void APIConnection::on_disconnect_response(const DisconnectResponse &value) {
|
||||
// including header and footer overhead. Returns 0 if the message doesn't fit.
|
||||
uint16_t APIConnection::encode_message_to_buffer(ProtoMessage &msg, uint16_t message_type, APIConnection *conn,
|
||||
uint32_t remaining_size, bool is_single) {
|
||||
#ifdef HAS_PROTO_MESSAGE_DUMP
|
||||
// If in log-only mode, just log and return
|
||||
if (conn->log_only_mode_) {
|
||||
conn->log_send_message_(msg.message_name(), msg.dump());
|
||||
return 1; // Return non-zero to indicate "success" for logging
|
||||
}
|
||||
#endif
|
||||
|
||||
// Calculate size
|
||||
uint32_t calculated_size = 0;
|
||||
msg.calculate_size(calculated_size);
|
||||
@ -276,11 +297,6 @@ uint16_t APIConnection::encode_message_to_buffer(ProtoMessage &msg, uint16_t mes
|
||||
// Encode directly into buffer
|
||||
msg.encode(buffer);
|
||||
|
||||
#ifdef HAS_PROTO_MESSAGE_DUMP
|
||||
// Log the message for VV debugging
|
||||
conn->log_send_message_(msg.message_name(), msg.dump());
|
||||
#endif
|
||||
|
||||
// Calculate actual encoded size (not including header that was already added)
|
||||
size_t actual_payload_size = shared_buf.size() - size_before_encode;
|
||||
|
||||
@ -1891,6 +1907,15 @@ void APIConnection::process_batch_() {
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef HAS_PROTO_MESSAGE_DUMP
|
||||
// Log messages after send attempt for VV debugging
|
||||
// It's safe to use the buffer for logging at this point regardless of send result
|
||||
for (size_t i = 0; i < items_processed; i++) {
|
||||
const auto &item = this->deferred_batch_.items[i];
|
||||
this->log_batch_item_(item);
|
||||
}
|
||||
#endif
|
||||
|
||||
// Handle remaining items more efficiently
|
||||
if (items_processed < this->deferred_batch_.items.size()) {
|
||||
// Remove processed items from the beginning
|
||||
|
@ -470,6 +470,10 @@ class APIConnection : public APIServerConnection {
|
||||
bool sent_ping_{false};
|
||||
bool service_call_subscription_{false};
|
||||
bool next_close_ = false;
|
||||
#ifdef HAS_PROTO_MESSAGE_DUMP
|
||||
// When true, encode_message_to_buffer will only log, not encode
|
||||
bool log_only_mode_{false};
|
||||
#endif
|
||||
uint8_t ping_retries_{0};
|
||||
// 8 bytes used, no padding needed
|
||||
|
||||
@ -627,6 +631,10 @@ class APIConnection : public APIServerConnection {
|
||||
// State for batch buffer allocation
|
||||
bool batch_first_message_{false};
|
||||
|
||||
#ifdef HAS_PROTO_MESSAGE_DUMP
|
||||
void log_batch_item_(const DeferredBatch::BatchItem &item);
|
||||
#endif
|
||||
|
||||
// Helper function to schedule a deferred message with known message type
|
||||
bool schedule_message_(EntityBase *entity, MessageCreator creator, uint16_t message_type) {
|
||||
this->deferred_batch_.add_item(entity, std::move(creator), message_type);
|
||||
|
@ -1,7 +1,6 @@
|
||||
#ifdef USE_ESP32
|
||||
|
||||
#include "ble.h"
|
||||
#include "ble_event_pool.h"
|
||||
|
||||
#include "esphome/core/application.h"
|
||||
#include "esphome/core/helpers.h"
|
||||
|
@ -12,8 +12,8 @@
|
||||
#include "esphome/core/helpers.h"
|
||||
|
||||
#include "ble_event.h"
|
||||
#include "ble_event_pool.h"
|
||||
#include "queue.h"
|
||||
#include "esphome/core/lock_free_queue.h"
|
||||
#include "esphome/core/event_pool.h"
|
||||
|
||||
#ifdef USE_ESP32
|
||||
|
||||
@ -148,8 +148,8 @@ class ESP32BLE : public Component {
|
||||
std::vector<BLEStatusEventHandler *> ble_status_event_handlers_;
|
||||
BLEComponentState state_{BLE_COMPONENT_STATE_OFF};
|
||||
|
||||
LockFreeQueue<BLEEvent, MAX_BLE_QUEUE_SIZE> ble_events_;
|
||||
BLEEventPool<MAX_BLE_QUEUE_SIZE> ble_event_pool_;
|
||||
esphome::LockFreeQueue<BLEEvent, MAX_BLE_QUEUE_SIZE> ble_events_;
|
||||
esphome::EventPool<BLEEvent, MAX_BLE_QUEUE_SIZE> ble_event_pool_;
|
||||
BLEAdvertising *advertising_{};
|
||||
esp_ble_io_cap_t io_cap_{ESP_IO_CAP_NONE};
|
||||
uint32_t advertising_cycle_time_{};
|
||||
|
@ -134,13 +134,13 @@ class BLEEvent {
|
||||
}
|
||||
|
||||
// Destructor to clean up heap allocations
|
||||
~BLEEvent() { this->cleanup_heap_data(); }
|
||||
~BLEEvent() { this->release(); }
|
||||
|
||||
// Default constructor for pre-allocation in pool
|
||||
BLEEvent() : type_(GAP) {}
|
||||
|
||||
// Clean up any heap-allocated data
|
||||
void cleanup_heap_data() {
|
||||
// Invoked on return to EventPool - clean up any heap-allocated data
|
||||
void release() {
|
||||
if (this->type_ == GAP) {
|
||||
return;
|
||||
}
|
||||
@ -161,19 +161,19 @@ class BLEEvent {
|
||||
|
||||
// Load new event data for reuse (replaces previous event data)
|
||||
void load_gap_event(esp_gap_ble_cb_event_t e, esp_ble_gap_cb_param_t *p) {
|
||||
this->cleanup_heap_data();
|
||||
this->release();
|
||||
this->type_ = GAP;
|
||||
this->init_gap_data_(e, p);
|
||||
}
|
||||
|
||||
void load_gattc_event(esp_gattc_cb_event_t e, esp_gatt_if_t i, esp_ble_gattc_cb_param_t *p) {
|
||||
this->cleanup_heap_data();
|
||||
this->release();
|
||||
this->type_ = GATTC;
|
||||
this->init_gattc_data_(e, i, p);
|
||||
}
|
||||
|
||||
void load_gatts_event(esp_gatts_cb_event_t e, esp_gatt_if_t i, esp_ble_gatts_cb_param_t *p) {
|
||||
this->cleanup_heap_data();
|
||||
this->release();
|
||||
this->type_ = GATTS;
|
||||
this->init_gatts_data_(e, i, p);
|
||||
}
|
||||
|
@ -1,72 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#ifdef USE_ESP32
|
||||
|
||||
#include <atomic>
|
||||
#include <cstddef>
|
||||
#include "ble_event.h"
|
||||
#include "queue.h"
|
||||
#include "esphome/core/helpers.h"
|
||||
|
||||
namespace esphome {
|
||||
namespace esp32_ble {
|
||||
|
||||
// BLE Event Pool - On-demand pool of BLEEvent objects to avoid heap fragmentation
|
||||
// Events are allocated on first use and reused thereafter, growing to peak usage
|
||||
template<uint8_t SIZE> class BLEEventPool {
|
||||
public:
|
||||
BLEEventPool() : total_created_(0) {}
|
||||
|
||||
~BLEEventPool() {
|
||||
// Clean up any remaining events in the free list
|
||||
BLEEvent *event;
|
||||
while ((event = this->free_list_.pop()) != nullptr) {
|
||||
delete event;
|
||||
}
|
||||
}
|
||||
|
||||
// Allocate an event from the pool
|
||||
// Returns nullptr if pool is full
|
||||
BLEEvent *allocate() {
|
||||
// Try to get from free list first
|
||||
BLEEvent *event = this->free_list_.pop();
|
||||
if (event != nullptr)
|
||||
return event;
|
||||
|
||||
// Need to create a new event
|
||||
if (this->total_created_ >= SIZE) {
|
||||
// Pool is at capacity
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// Use internal RAM for better performance
|
||||
RAMAllocator<BLEEvent> allocator(RAMAllocator<BLEEvent>::ALLOC_INTERNAL);
|
||||
event = allocator.allocate(1);
|
||||
|
||||
if (event == nullptr) {
|
||||
// Memory allocation failed
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// Placement new to construct the object
|
||||
new (event) BLEEvent();
|
||||
this->total_created_++;
|
||||
return event;
|
||||
}
|
||||
|
||||
// Return an event to the pool for reuse
|
||||
void release(BLEEvent *event) {
|
||||
if (event != nullptr) {
|
||||
this->free_list_.push(event);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
LockFreeQueue<BLEEvent, SIZE> free_list_; // Free events ready for reuse
|
||||
uint8_t total_created_; // Total events created (high water mark)
|
||||
};
|
||||
|
||||
} // namespace esp32_ble
|
||||
} // namespace esphome
|
||||
|
||||
#endif
|
@ -1,85 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#ifdef USE_ESP32
|
||||
|
||||
#include <atomic>
|
||||
#include <cstddef>
|
||||
|
||||
/*
|
||||
* BLE events come in from a separate Task (thread) in the ESP32 stack. Rather
|
||||
* than using mutex-based locking, this lock-free queue allows the BLE
|
||||
* task to enqueue events without blocking. The main loop() then processes
|
||||
* these events at a safer time.
|
||||
*
|
||||
* This is a Single-Producer Single-Consumer (SPSC) lock-free ring buffer.
|
||||
* The BLE task is the only producer, and the main loop() is the only consumer.
|
||||
*/
|
||||
|
||||
namespace esphome {
|
||||
namespace esp32_ble {
|
||||
|
||||
template<class T, uint8_t SIZE> class LockFreeQueue {
|
||||
public:
|
||||
LockFreeQueue() : head_(0), tail_(0), dropped_count_(0) {}
|
||||
|
||||
bool push(T *element) {
|
||||
if (element == nullptr)
|
||||
return false;
|
||||
|
||||
uint8_t current_tail = tail_.load(std::memory_order_relaxed);
|
||||
uint8_t next_tail = (current_tail + 1) % SIZE;
|
||||
|
||||
if (next_tail == head_.load(std::memory_order_acquire)) {
|
||||
// Buffer full
|
||||
dropped_count_.fetch_add(1, std::memory_order_relaxed);
|
||||
return false;
|
||||
}
|
||||
|
||||
buffer_[current_tail] = element;
|
||||
tail_.store(next_tail, std::memory_order_release);
|
||||
return true;
|
||||
}
|
||||
|
||||
T *pop() {
|
||||
uint8_t current_head = head_.load(std::memory_order_relaxed);
|
||||
|
||||
if (current_head == tail_.load(std::memory_order_acquire)) {
|
||||
return nullptr; // Empty
|
||||
}
|
||||
|
||||
T *element = buffer_[current_head];
|
||||
head_.store((current_head + 1) % SIZE, std::memory_order_release);
|
||||
return element;
|
||||
}
|
||||
|
||||
size_t size() const {
|
||||
uint8_t tail = tail_.load(std::memory_order_acquire);
|
||||
uint8_t head = head_.load(std::memory_order_acquire);
|
||||
return (tail - head + SIZE) % SIZE;
|
||||
}
|
||||
|
||||
uint16_t get_and_reset_dropped_count() { return dropped_count_.exchange(0, std::memory_order_relaxed); }
|
||||
|
||||
void increment_dropped_count() { dropped_count_.fetch_add(1, std::memory_order_relaxed); }
|
||||
|
||||
bool empty() const { return head_.load(std::memory_order_acquire) == tail_.load(std::memory_order_acquire); }
|
||||
|
||||
bool full() const {
|
||||
uint8_t next_tail = (tail_.load(std::memory_order_relaxed) + 1) % SIZE;
|
||||
return next_tail == head_.load(std::memory_order_acquire);
|
||||
}
|
||||
|
||||
protected:
|
||||
T *buffer_[SIZE];
|
||||
// Atomic: written by producer (push/increment), read+reset by consumer (get_and_reset)
|
||||
std::atomic<uint16_t> dropped_count_; // 65535 max - more than enough for drop tracking
|
||||
// Atomic: written by consumer (pop), read by producer (push) to check if full
|
||||
std::atomic<uint8_t> head_;
|
||||
// Atomic: written by producer (push), read by consumer (pop) to check if empty
|
||||
std::atomic<uint8_t> tail_;
|
||||
};
|
||||
|
||||
} // namespace esp32_ble
|
||||
} // namespace esphome
|
||||
|
||||
#endif
|
@ -11,7 +11,7 @@ namespace internal {
|
||||
/// Wrapper class for memory using big endian data layout, transparently converting it to native order.
|
||||
template<typename T> class BigEndianLayout {
|
||||
public:
|
||||
constexpr14 operator T() { return convert_big_endian(val_); }
|
||||
constexpr operator T() { return convert_big_endian(val_); }
|
||||
|
||||
private:
|
||||
T val_;
|
||||
@ -20,7 +20,7 @@ template<typename T> class BigEndianLayout {
|
||||
/// Wrapper class for memory using big endian data layout, transparently converting it to native order.
|
||||
template<typename T> class LittleEndianLayout {
|
||||
public:
|
||||
constexpr14 operator T() { return convert_little_endian(val_); }
|
||||
constexpr operator T() { return convert_little_endian(val_); }
|
||||
|
||||
private:
|
||||
T val_;
|
||||
|
81
esphome/core/event_pool.h
Normal file
81
esphome/core/event_pool.h
Normal file
@ -0,0 +1,81 @@
|
||||
#pragma once
|
||||
|
||||
#if defined(USE_ESP32) || defined(USE_LIBRETINY)
|
||||
|
||||
#include <atomic>
|
||||
#include <cstddef>
|
||||
#include "esphome/core/helpers.h"
|
||||
#include "esphome/core/lock_free_queue.h"
|
||||
|
||||
namespace esphome {
|
||||
|
||||
// Event Pool - On-demand pool of objects to avoid heap fragmentation
|
||||
// Events are allocated on first use and reused thereafter, growing to peak usage
|
||||
// @tparam T The type of objects managed by the pool (must have a release() method)
|
||||
// @tparam SIZE The maximum number of objects in the pool (1-255, limited by uint8_t)
|
||||
template<class T, uint8_t SIZE> class EventPool {
|
||||
public:
|
||||
EventPool() : total_created_(0) {}
|
||||
|
||||
~EventPool() {
|
||||
// Clean up any remaining events in the free list
|
||||
// IMPORTANT: This destructor assumes no concurrent access. The EventPool must not
|
||||
// be destroyed while any thread might still call allocate() or release().
|
||||
// In practice, this is typically ensured by destroying the pool only during
|
||||
// component shutdown when all producer/consumer threads have been stopped.
|
||||
T *event;
|
||||
RAMAllocator<T> allocator(RAMAllocator<T>::ALLOC_INTERNAL);
|
||||
while ((event = this->free_list_.pop()) != nullptr) {
|
||||
// Call destructor
|
||||
event->~T();
|
||||
// Deallocate using RAMAllocator
|
||||
allocator.deallocate(event, 1);
|
||||
}
|
||||
}
|
||||
|
||||
// Allocate an event from the pool
|
||||
// Returns nullptr if pool is full
|
||||
T *allocate() {
|
||||
// Try to get from free list first
|
||||
T *event = this->free_list_.pop();
|
||||
if (event != nullptr)
|
||||
return event;
|
||||
|
||||
// Need to create a new event
|
||||
if (this->total_created_ >= SIZE) {
|
||||
// Pool is at capacity
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// Use internal RAM for better performance
|
||||
RAMAllocator<T> allocator(RAMAllocator<T>::ALLOC_INTERNAL);
|
||||
event = allocator.allocate(1);
|
||||
|
||||
if (event == nullptr) {
|
||||
// Memory allocation failed
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// Placement new to construct the object
|
||||
new (event) T();
|
||||
this->total_created_++;
|
||||
return event;
|
||||
}
|
||||
|
||||
// Return an event to the pool for reuse
|
||||
void release(T *event) {
|
||||
if (event != nullptr) {
|
||||
// Clean up the event's allocated memory
|
||||
event->release();
|
||||
this->free_list_.push(event);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
LockFreeQueue<T, SIZE> free_list_; // Free events ready for reuse
|
||||
uint8_t total_created_; // Total events created (high water mark, max 255)
|
||||
};
|
||||
|
||||
} // namespace esphome
|
||||
|
||||
#endif // defined(USE_ESP32) || defined(USE_LIBRETINY)
|
@ -76,23 +76,8 @@ static const uint16_t CRC16_1021_BE_LUT_H[] = {0x0000, 0x1231, 0x2462, 0x3653, 0
|
||||
0x9188, 0x83b9, 0xb5ea, 0xa7db, 0xd94c, 0xcb7d, 0xfd2e, 0xef1f};
|
||||
#endif
|
||||
|
||||
// STL backports
|
||||
|
||||
#if _GLIBCXX_RELEASE < 8
|
||||
std::string to_string(int value) { return str_snprintf("%d", 32, value); } // NOLINT
|
||||
std::string to_string(long value) { return str_snprintf("%ld", 32, value); } // NOLINT
|
||||
std::string to_string(long long value) { return str_snprintf("%lld", 32, value); } // NOLINT
|
||||
std::string to_string(unsigned value) { return str_snprintf("%u", 32, value); } // NOLINT
|
||||
std::string to_string(unsigned long value) { return str_snprintf("%lu", 32, value); } // NOLINT
|
||||
std::string to_string(unsigned long long value) { return str_snprintf("%llu", 32, value); } // NOLINT
|
||||
std::string to_string(float value) { return str_snprintf("%f", 32, value); }
|
||||
std::string to_string(double value) { return str_snprintf("%f", 32, value); }
|
||||
std::string to_string(long double value) { return str_snprintf("%Lf", 32, value); }
|
||||
#endif
|
||||
|
||||
// Mathematics
|
||||
|
||||
float lerp(float completion, float start, float end) { return start + (end - start) * completion; }
|
||||
uint8_t crc8(const uint8_t *data, uint8_t len) {
|
||||
uint8_t crc = 0;
|
||||
|
||||
|
@ -37,89 +37,18 @@
|
||||
#define ESPHOME_ALWAYS_INLINE __attribute__((always_inline))
|
||||
#define PACKED __attribute__((packed))
|
||||
|
||||
// Various functions can be constexpr in C++14, but not in C++11 (because their body isn't just a return statement).
|
||||
// Define a substitute constexpr keyword for those functions, until we can drop C++11 support.
|
||||
#if __cplusplus >= 201402L
|
||||
#define constexpr14 constexpr
|
||||
#else
|
||||
#define constexpr14 inline // constexpr implies inline
|
||||
#endif
|
||||
|
||||
namespace esphome {
|
||||
|
||||
/// @name STL backports
|
||||
///@{
|
||||
|
||||
// Backports for various STL features we like to use. Pull in the STL implementation wherever available, to avoid
|
||||
// ambiguity and to provide a uniform API.
|
||||
|
||||
// std::to_string() from C++11, available from libstdc++/g++ 8
|
||||
// See https://github.com/espressif/esp-idf/issues/1445
|
||||
#if _GLIBCXX_RELEASE >= 8
|
||||
// Keep "using" even after the removal of our backports, to avoid breaking existing code.
|
||||
using std::to_string;
|
||||
#else
|
||||
std::string to_string(int value); // NOLINT
|
||||
std::string to_string(long value); // NOLINT
|
||||
std::string to_string(long long value); // NOLINT
|
||||
std::string to_string(unsigned value); // NOLINT
|
||||
std::string to_string(unsigned long value); // NOLINT
|
||||
std::string to_string(unsigned long long value); // NOLINT
|
||||
std::string to_string(float value);
|
||||
std::string to_string(double value);
|
||||
std::string to_string(long double value);
|
||||
#endif
|
||||
|
||||
// std::is_trivially_copyable from C++11, implemented in libstdc++/g++ 5.1 (but minor releases can't be detected)
|
||||
#if _GLIBCXX_RELEASE >= 6
|
||||
using std::is_trivially_copyable;
|
||||
#else
|
||||
// Implementing this is impossible without compiler intrinsics, so don't bother. Invalid usage will be detected on
|
||||
// other variants that use a newer compiler anyway.
|
||||
// NOLINTNEXTLINE(readability-identifier-naming)
|
||||
template<typename T> struct is_trivially_copyable : public std::integral_constant<bool, true> {};
|
||||
#endif
|
||||
|
||||
// std::make_unique() from C++14
|
||||
#if __cpp_lib_make_unique >= 201304
|
||||
using std::make_unique;
|
||||
#else
|
||||
template<typename T, typename... Args> std::unique_ptr<T> make_unique(Args &&...args) {
|
||||
return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
|
||||
}
|
||||
#endif
|
||||
|
||||
// std::enable_if_t from C++14
|
||||
#if __cplusplus >= 201402L
|
||||
using std::enable_if_t;
|
||||
#else
|
||||
template<bool B, class T = void> using enable_if_t = typename std::enable_if<B, T>::type;
|
||||
#endif
|
||||
|
||||
// std::clamp from C++17
|
||||
#if __cpp_lib_clamp >= 201603
|
||||
using std::clamp;
|
||||
#else
|
||||
template<typename T, typename Compare> constexpr const T &clamp(const T &v, const T &lo, const T &hi, Compare comp) {
|
||||
return comp(v, lo) ? lo : comp(hi, v) ? hi : v;
|
||||
}
|
||||
template<typename T> constexpr const T &clamp(const T &v, const T &lo, const T &hi) {
|
||||
return clamp(v, lo, hi, std::less<T>{});
|
||||
}
|
||||
#endif
|
||||
|
||||
// std::is_invocable from C++17
|
||||
#if __cpp_lib_is_invocable >= 201703
|
||||
using std::is_invocable;
|
||||
#else
|
||||
// https://stackoverflow.com/a/37161919/8924614
|
||||
template<class T, class... Args> struct is_invocable { // NOLINT(readability-identifier-naming)
|
||||
template<class U> static auto test(U *p) -> decltype((*p)(std::declval<Args>()...), void(), std::true_type());
|
||||
template<class U> static auto test(...) -> decltype(std::false_type());
|
||||
static constexpr auto value = decltype(test<T>(nullptr))::value; // NOLINT
|
||||
};
|
||||
#endif
|
||||
|
||||
// std::bit_cast from C++20
|
||||
#if __cpp_lib_bit_cast >= 201806
|
||||
using std::bit_cast;
|
||||
#else
|
||||
@ -134,31 +63,29 @@ To bit_cast(const From &src) {
|
||||
return dst;
|
||||
}
|
||||
#endif
|
||||
using std::lerp;
|
||||
|
||||
// std::byteswap from C++23
|
||||
template<typename T> constexpr14 T byteswap(T n) {
|
||||
template<typename T> constexpr T byteswap(T n) {
|
||||
T m;
|
||||
for (size_t i = 0; i < sizeof(T); i++)
|
||||
reinterpret_cast<uint8_t *>(&m)[i] = reinterpret_cast<uint8_t *>(&n)[sizeof(T) - 1 - i];
|
||||
return m;
|
||||
}
|
||||
template<> constexpr14 uint8_t byteswap(uint8_t n) { return n; }
|
||||
template<> constexpr14 uint16_t byteswap(uint16_t n) { return __builtin_bswap16(n); }
|
||||
template<> constexpr14 uint32_t byteswap(uint32_t n) { return __builtin_bswap32(n); }
|
||||
template<> constexpr14 uint64_t byteswap(uint64_t n) { return __builtin_bswap64(n); }
|
||||
template<> constexpr14 int8_t byteswap(int8_t n) { return n; }
|
||||
template<> constexpr14 int16_t byteswap(int16_t n) { return __builtin_bswap16(n); }
|
||||
template<> constexpr14 int32_t byteswap(int32_t n) { return __builtin_bswap32(n); }
|
||||
template<> constexpr14 int64_t byteswap(int64_t n) { return __builtin_bswap64(n); }
|
||||
template<> constexpr uint8_t byteswap(uint8_t n) { return n; }
|
||||
template<> constexpr uint16_t byteswap(uint16_t n) { return __builtin_bswap16(n); }
|
||||
template<> constexpr uint32_t byteswap(uint32_t n) { return __builtin_bswap32(n); }
|
||||
template<> constexpr uint64_t byteswap(uint64_t n) { return __builtin_bswap64(n); }
|
||||
template<> constexpr int8_t byteswap(int8_t n) { return n; }
|
||||
template<> constexpr int16_t byteswap(int16_t n) { return __builtin_bswap16(n); }
|
||||
template<> constexpr int32_t byteswap(int32_t n) { return __builtin_bswap32(n); }
|
||||
template<> constexpr int64_t byteswap(int64_t n) { return __builtin_bswap64(n); }
|
||||
|
||||
///@}
|
||||
|
||||
/// @name Mathematics
|
||||
///@{
|
||||
|
||||
/// Linearly interpolate between \p start and \p end by \p completion (between 0 and 1).
|
||||
float lerp(float completion, float start, float end);
|
||||
|
||||
/// Remap \p value from the range (\p min, \p max) to (\p min_out, \p max_out).
|
||||
template<typename T, typename U> T remap(U value, U min, U max, T min_out, T max_out) {
|
||||
return (value - min) * (max_out - min_out) / (max - min) + min_out;
|
||||
@ -203,8 +130,7 @@ constexpr uint32_t encode_uint32(uint8_t byte1, uint8_t byte2, uint8_t byte3, ui
|
||||
}
|
||||
|
||||
/// Encode a value from its constituent bytes (from most to least significant) in an array with length sizeof(T).
|
||||
template<typename T, enable_if_t<std::is_unsigned<T>::value, int> = 0>
|
||||
constexpr14 T encode_value(const uint8_t *bytes) {
|
||||
template<typename T, enable_if_t<std::is_unsigned<T>::value, int> = 0> constexpr T encode_value(const uint8_t *bytes) {
|
||||
T val = 0;
|
||||
for (size_t i = 0; i < sizeof(T); i++) {
|
||||
val <<= 8;
|
||||
@ -214,12 +140,12 @@ constexpr14 T encode_value(const uint8_t *bytes) {
|
||||
}
|
||||
/// Encode a value from its constituent bytes (from most to least significant) in an std::array with length sizeof(T).
|
||||
template<typename T, enable_if_t<std::is_unsigned<T>::value, int> = 0>
|
||||
constexpr14 T encode_value(const std::array<uint8_t, sizeof(T)> bytes) {
|
||||
constexpr T encode_value(const std::array<uint8_t, sizeof(T)> bytes) {
|
||||
return encode_value<T>(bytes.data());
|
||||
}
|
||||
/// Decode a value into its constituent bytes (from most to least significant).
|
||||
template<typename T, enable_if_t<std::is_unsigned<T>::value, int> = 0>
|
||||
constexpr14 std::array<uint8_t, sizeof(T)> decode_value(T val) {
|
||||
constexpr std::array<uint8_t, sizeof(T)> decode_value(T val) {
|
||||
std::array<uint8_t, sizeof(T)> ret{};
|
||||
for (size_t i = sizeof(T); i > 0; i--) {
|
||||
ret[i - 1] = val & 0xFF;
|
||||
@ -246,7 +172,7 @@ inline uint32_t reverse_bits(uint32_t x) {
|
||||
}
|
||||
|
||||
/// Convert a value between host byte order and big endian (most significant byte first) order.
|
||||
template<typename T> constexpr14 T convert_big_endian(T val) {
|
||||
template<typename T> constexpr T convert_big_endian(T val) {
|
||||
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
|
||||
return byteswap(val);
|
||||
#else
|
||||
@ -255,7 +181,7 @@ template<typename T> constexpr14 T convert_big_endian(T val) {
|
||||
}
|
||||
|
||||
/// Convert a value between host byte order and little endian (least significant byte first) order.
|
||||
template<typename T> constexpr14 T convert_little_endian(T val) {
|
||||
template<typename T> constexpr T convert_little_endian(T val) {
|
||||
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
|
||||
return val;
|
||||
#else
|
||||
@ -276,9 +202,6 @@ bool str_startswith(const std::string &str, const std::string &start);
|
||||
/// Check whether a string ends with a value.
|
||||
bool str_endswith(const std::string &str, const std::string &end);
|
||||
|
||||
/// Convert the value to a string (added as extra overload so that to_string() can be used on all stringifiable types).
|
||||
inline std::string to_string(const std::string &val) { return val; }
|
||||
|
||||
/// Truncate a string to a specific length.
|
||||
std::string str_truncate(const std::string &str, size_t length);
|
||||
|
||||
|
132
esphome/core/lock_free_queue.h
Normal file
132
esphome/core/lock_free_queue.h
Normal file
@ -0,0 +1,132 @@
|
||||
#pragma once
|
||||
|
||||
#if defined(USE_ESP32) || defined(USE_LIBRETINY)
|
||||
|
||||
#include <atomic>
|
||||
#include <cstddef>
|
||||
|
||||
#if defined(USE_ESP32)
|
||||
#include <freertos/FreeRTOS.h>
|
||||
#include <freertos/task.h>
|
||||
#elif defined(USE_LIBRETINY)
|
||||
#include <FreeRTOS.h>
|
||||
#include <task.h>
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Lock-free queue for single-producer single-consumer scenarios.
|
||||
* This allows one thread to push items and another to pop them without
|
||||
* blocking each other.
|
||||
*
|
||||
* This is a Single-Producer Single-Consumer (SPSC) lock-free ring buffer.
|
||||
* Available on platforms with FreeRTOS support (ESP32, LibreTiny).
|
||||
*
|
||||
* Common use cases:
|
||||
* - BLE events: BLE task produces, main loop consumes
|
||||
* - MQTT messages: main task produces, MQTT thread consumes
|
||||
*
|
||||
* @tparam T The type of elements stored in the queue (must be a pointer type)
|
||||
* @tparam SIZE The maximum number of elements (1-255, limited by uint8_t indices)
|
||||
*/
|
||||
|
||||
namespace esphome {
|
||||
|
||||
template<class T, uint8_t SIZE> class LockFreeQueue {
|
||||
public:
|
||||
LockFreeQueue() : head_(0), tail_(0), dropped_count_(0), task_to_notify_(nullptr) {}
|
||||
|
||||
bool push(T *element) {
|
||||
if (element == nullptr)
|
||||
return false;
|
||||
|
||||
uint8_t current_tail = tail_.load(std::memory_order_relaxed);
|
||||
uint8_t next_tail = (current_tail + 1) % SIZE;
|
||||
|
||||
// Read head before incrementing tail
|
||||
uint8_t head_before = head_.load(std::memory_order_acquire);
|
||||
|
||||
if (next_tail == head_before) {
|
||||
// Buffer full
|
||||
dropped_count_.fetch_add(1, std::memory_order_relaxed);
|
||||
return false;
|
||||
}
|
||||
|
||||
// Check if queue was empty before push
|
||||
bool was_empty = (current_tail == head_before);
|
||||
|
||||
buffer_[current_tail] = element;
|
||||
tail_.store(next_tail, std::memory_order_release);
|
||||
|
||||
// Notify optimization: only notify if we need to
|
||||
if (task_to_notify_ != nullptr) {
|
||||
if (was_empty) {
|
||||
// Queue was empty - consumer might be going to sleep, must notify
|
||||
xTaskNotifyGive(task_to_notify_);
|
||||
} else {
|
||||
// Queue wasn't empty - check if consumer has caught up to previous tail
|
||||
uint8_t head_after = head_.load(std::memory_order_acquire);
|
||||
if (head_after == current_tail) {
|
||||
// Consumer just caught up to where tail was - might go to sleep, must notify
|
||||
// Note: There's a benign race here - between reading head_after and calling
|
||||
// xTaskNotifyGive(), the consumer could advance further. This would result
|
||||
// in an unnecessary wake-up, but is harmless and extremely rare in practice.
|
||||
xTaskNotifyGive(task_to_notify_);
|
||||
}
|
||||
// Otherwise: consumer is still behind, no need to notify
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
T *pop() {
|
||||
uint8_t current_head = head_.load(std::memory_order_relaxed);
|
||||
|
||||
if (current_head == tail_.load(std::memory_order_acquire)) {
|
||||
return nullptr; // Empty
|
||||
}
|
||||
|
||||
T *element = buffer_[current_head];
|
||||
head_.store((current_head + 1) % SIZE, std::memory_order_release);
|
||||
return element;
|
||||
}
|
||||
|
||||
size_t size() const {
|
||||
uint8_t tail = tail_.load(std::memory_order_acquire);
|
||||
uint8_t head = head_.load(std::memory_order_acquire);
|
||||
return (tail - head + SIZE) % SIZE;
|
||||
}
|
||||
|
||||
uint16_t get_and_reset_dropped_count() { return dropped_count_.exchange(0, std::memory_order_relaxed); }
|
||||
|
||||
void increment_dropped_count() { dropped_count_.fetch_add(1, std::memory_order_relaxed); }
|
||||
|
||||
bool empty() const { return head_.load(std::memory_order_acquire) == tail_.load(std::memory_order_acquire); }
|
||||
|
||||
bool full() const {
|
||||
uint8_t next_tail = (tail_.load(std::memory_order_relaxed) + 1) % SIZE;
|
||||
return next_tail == head_.load(std::memory_order_acquire);
|
||||
}
|
||||
|
||||
// Set the FreeRTOS task handle to notify when items are pushed to the queue
|
||||
// This enables efficient wake-up of a consumer task that's waiting for data
|
||||
// @param task The FreeRTOS task handle to notify, or nullptr to disable notifications
|
||||
void set_task_to_notify(TaskHandle_t task) { task_to_notify_ = task; }
|
||||
|
||||
protected:
|
||||
T *buffer_[SIZE];
|
||||
// Atomic: written by producer (push/increment), read+reset by consumer (get_and_reset)
|
||||
std::atomic<uint16_t> dropped_count_; // 65535 max - more than enough for drop tracking
|
||||
// Atomic: written by consumer (pop), read by producer (push) to check if full
|
||||
// Using uint8_t limits queue size to 255 elements but saves memory and ensures
|
||||
// atomic operations are efficient on all platforms
|
||||
std::atomic<uint8_t> head_;
|
||||
// Atomic: written by producer (push), read by consumer (pop) to check if empty
|
||||
std::atomic<uint8_t> tail_;
|
||||
// Task handle for notification (optional)
|
||||
TaskHandle_t task_to_notify_;
|
||||
};
|
||||
|
||||
} // namespace esphome
|
||||
|
||||
#endif // defined(USE_ESP32) || defined(USE_LIBRETINY)
|
89
tests/integration/fixtures/api_vv_logging.yaml
Normal file
89
tests/integration/fixtures/api_vv_logging.yaml
Normal file
@ -0,0 +1,89 @@
|
||||
esphome:
|
||||
name: vv-logging-test
|
||||
|
||||
host:
|
||||
|
||||
api:
|
||||
|
||||
logger:
|
||||
level: VERY_VERBOSE
|
||||
# Enable VV logging for API components where the issue occurs
|
||||
logs:
|
||||
api.connection: VERY_VERBOSE
|
||||
api.service: VERY_VERBOSE
|
||||
api.proto: VERY_VERBOSE
|
||||
sensor: VERY_VERBOSE
|
||||
|
||||
# Create many sensors that update frequently to generate API traffic
|
||||
# This will cause many messages to be batched and sent, triggering the
|
||||
# code path where VV logging could cause buffer corruption
|
||||
sensor:
|
||||
- platform: template
|
||||
name: "Test Sensor 1"
|
||||
lambda: 'return millis() / 1000.0;'
|
||||
update_interval: 50ms
|
||||
unit_of_measurement: "s"
|
||||
|
||||
- platform: template
|
||||
name: "Test Sensor 2"
|
||||
lambda: 'return (millis() / 1000.0) + 10;'
|
||||
update_interval: 50ms
|
||||
unit_of_measurement: "s"
|
||||
|
||||
- platform: template
|
||||
name: "Test Sensor 3"
|
||||
lambda: 'return (millis() / 1000.0) + 20;'
|
||||
update_interval: 50ms
|
||||
unit_of_measurement: "s"
|
||||
|
||||
- platform: template
|
||||
name: "Test Sensor 4"
|
||||
lambda: 'return (millis() / 1000.0) + 30;'
|
||||
update_interval: 50ms
|
||||
unit_of_measurement: "s"
|
||||
|
||||
- platform: template
|
||||
name: "Test Sensor 5"
|
||||
lambda: 'return (millis() / 1000.0) + 40;'
|
||||
update_interval: 50ms
|
||||
unit_of_measurement: "s"
|
||||
|
||||
- platform: template
|
||||
name: "Test Sensor 6"
|
||||
lambda: 'return (millis() / 1000.0) + 50;'
|
||||
update_interval: 50ms
|
||||
unit_of_measurement: "s"
|
||||
|
||||
- platform: template
|
||||
name: "Test Sensor 7"
|
||||
lambda: 'return (millis() / 1000.0) + 60;'
|
||||
update_interval: 50ms
|
||||
unit_of_measurement: "s"
|
||||
|
||||
- platform: template
|
||||
name: "Test Sensor 8"
|
||||
lambda: 'return (millis() / 1000.0) + 70;'
|
||||
update_interval: 50ms
|
||||
unit_of_measurement: "s"
|
||||
|
||||
- platform: template
|
||||
name: "Test Sensor 9"
|
||||
lambda: 'return (millis() / 1000.0) + 80;'
|
||||
update_interval: 50ms
|
||||
unit_of_measurement: "s"
|
||||
|
||||
- platform: template
|
||||
name: "Test Sensor 10"
|
||||
lambda: 'return (millis() / 1000.0) + 90;'
|
||||
update_interval: 50ms
|
||||
unit_of_measurement: "s"
|
||||
|
||||
# Add some binary sensors too for variety
|
||||
binary_sensor:
|
||||
- platform: template
|
||||
name: "Test Binary 1"
|
||||
lambda: 'return (millis() / 1000) % 2 == 0;'
|
||||
|
||||
- platform: template
|
||||
name: "Test Binary 2"
|
||||
lambda: 'return (millis() / 1000) % 3 == 0;'
|
83
tests/integration/test_api_vv_logging.py
Normal file
83
tests/integration/test_api_vv_logging.py
Normal file
@ -0,0 +1,83 @@
|
||||
"""Integration test for API with VERY_VERBOSE logging to verify no buffer corruption."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import asyncio
|
||||
from typing import Any
|
||||
|
||||
from aioesphomeapi import LogLevel
|
||||
import pytest
|
||||
|
||||
from .types import APIClientConnectedFactory, RunCompiledFunction
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_api_vv_logging(
|
||||
yaml_config: str,
|
||||
run_compiled: RunCompiledFunction,
|
||||
api_client_connected: APIClientConnectedFactory,
|
||||
) -> None:
|
||||
"""Test that VERY_VERBOSE logging doesn't cause buffer corruption with API messages."""
|
||||
|
||||
# Track that we're receiving VV log messages and sensor updates
|
||||
vv_logs_received = 0
|
||||
sensor_updates_received = 0
|
||||
errors_detected = []
|
||||
|
||||
def on_log(msg: Any) -> None:
|
||||
"""Capture log messages."""
|
||||
nonlocal vv_logs_received
|
||||
# msg is a SubscribeLogsResponse object with 'message' attribute
|
||||
# The message field is always bytes
|
||||
message_text = msg.message.decode("utf-8", errors="replace")
|
||||
|
||||
# Only count VV logs specifically
|
||||
if "[VV]" in message_text:
|
||||
vv_logs_received += 1
|
||||
|
||||
# Check for assertion or error messages
|
||||
if "assert" in message_text.lower() or "error" in message_text.lower():
|
||||
errors_detected.append(message_text)
|
||||
|
||||
# Write, compile and run the ESPHome device
|
||||
async with run_compiled(yaml_config), api_client_connected() as client:
|
||||
# Subscribe to VERY_VERBOSE logs - this enables the code path that could cause corruption
|
||||
client.subscribe_logs(on_log, log_level=LogLevel.LOG_LEVEL_VERY_VERBOSE)
|
||||
|
||||
# Wait for device to be ready
|
||||
device_info = await client.device_info()
|
||||
assert device_info is not None
|
||||
assert device_info.name == "vv-logging-test"
|
||||
|
||||
# Subscribe to sensor states
|
||||
states = {}
|
||||
|
||||
def on_state(state):
|
||||
nonlocal sensor_updates_received
|
||||
sensor_updates_received += 1
|
||||
states[state.key] = state
|
||||
|
||||
client.subscribe_states(on_state)
|
||||
|
||||
# List entities to find our test sensors
|
||||
entity_info, _ = await client.list_entities_services()
|
||||
|
||||
# Count sensors
|
||||
sensor_count = sum(1 for e in entity_info if hasattr(e, "unit_of_measurement"))
|
||||
assert sensor_count >= 10, f"Expected at least 10 sensors, got {sensor_count}"
|
||||
|
||||
# Wait for sensor updates to flow with VV logging active
|
||||
# The sensors update every 50ms, so we should get many updates
|
||||
await asyncio.sleep(0.25)
|
||||
|
||||
# Verify we received both VV logs and sensor updates
|
||||
assert vv_logs_received > 0, "Expected to receive VERY_VERBOSE log messages"
|
||||
assert sensor_updates_received > 10, (
|
||||
f"Expected many sensor updates, got {sensor_updates_received}"
|
||||
)
|
||||
|
||||
# Check for any errors
|
||||
if errors_detected:
|
||||
pytest.fail(f"Errors detected during test: {errors_detected}")
|
||||
|
||||
# The test passes if we didn't hit any assertions or buffer corruption
|
Loading…
x
Reference in New Issue
Block a user