home-assistant.io/source/_posts/2016-08-31-esp8266-and-micropython-part2.markdown
2016-08-30 11:48:38 +02:00

107 lines
4.0 KiB
Markdown

---
layout: post
title: "ESP8266 and MicroPython - Part 2"
description: "Using MicroPython and MQTT on ESP8266 based devices and Home Assistant."
date: 2016-08-31 06:17:25 +0200
date_formatted: "August 31, 2016"
author: Fabian Affolter
comments: true
categories: How-To MQTT ESP8266 Micropython
og_image: /images/blog/2016-07-micropython/social.png
---
<img src='/images/blog/2016-07-micropython/micropython.png' style='clear: right; border:none; box-shadow: none; float: right; margin-bottom: 12px;' width='200' />
So, part 1 of [ESP8266 and MicroPython](/blog/2016/07/28/esp8266-and-micropython-part1/) was pretty lame, right? Instead of getting information out of Home Assistant we are going a step forward and create our own sensor which is sending details about its state to a Home Assistant instance.
<!--more-->
Beside [HTTP POST](https://en.wikipedia.org/wiki/POST_(HTTP)) requests, MQTT is the quickest way (from the author's point of view) to publish information with DIY devices.
You have to make a decision: Do you want to pull or to poll? For slowly changing values like temperature it's perfectly fine to wait a couple of seconds to retrieve the value. If it's a motion detector the state change should be available instantly. This means the sensor must take initiative.
An example for pulling is [aREST](/components/sensor.arest/). This is a great way to work with the ESP8266 based units and the Ardunio IDE.
### {% linkable_title MQTT %}
You can find a simple examples for publishing and subscribing with MQTT in the [MicroPython](https://github.com/micropython/micropython-lib) library overview in the section for [umqtt](https://github.com/micropython/micropython-lib/tree/master/umqtt.simple).
The example below is adopted from the work of [@davea](https://github.com/davea) as we don't want to re-invent the wheel. The configuration feature is crafty and simplyfies the code with the usage of a file called `/config.json` which stores the configuration details. The ESP8266 device will send the value of a pin every 5 seconds.
```python
import machine
import time
import ubinascii
import webrepl
from umqtt.simple import MQTTClient
# These defaults are overwritten with the contents of /config.json by load_config()
CONFIG = {
"broker": "192.168.1.19",
"sensor_pin": 0,
"client_id": b"esp8266_" + ubinascii.hexlify(machine.unique_id()),
"topic": b"home",
}
client = None
sensor_pin = None
def setup_pins():
global sensor_pin
sensor_pin = machine.ADC(CONFIG['sensor_pin'])
def load_config():
import ujson as json
try:
with open("/config.json") as f:
config = json.loads(f.read())
except (OSError, ValueError):
print("Couldn't load /config.json")
save_config()
else:
CONFIG.update(config)
print("Loaded config from /config.json")
def save_config():
import ujson as json
try:
with open("/config.json", "w") as f:
f.write(json.dumps(CONFIG))
except OSError:
print("Couldn't save /config.json")
def main():
client = MQTTClient(CONFIG['client_id'], CONFIG['broker'])
client.connect()
print("Connected to {}".format(CONFIG['broker']))
while True:
data = sensor_pin.read()
client.publish('{}/{}'.format(CONFIG['topic'],
CONFIG['client_id']),
bytes(str(data), 'utf-8'))
print('Sensor state: {}'.format(data))
time.sleep(5)
if __name__ == '__main__':
load_config()
setup_pins()
main()
```
Subscribe to the topic `home/#` or create a [MQTT sensor](/components/sensor.mqtt/) to check if the sensor values are published.
```bash
$ mosquitto_sub -h 192.168.1.19 -v -t "home/#"
```
```yaml
sensor:
- platform: mqtt
state_topic: "home/esp8266_[last part of the MAC address]"
name: "MicroPython"
```
[@davea](https://github.com/davea) created [sonoff-mqtt](https://github.com/davea/sonoff-mqtt). This code will work on ESP8622 based devices too and shows how to use a button to control a relay.