model: add Qwen2.5-VL support (#10385)
This commit is contained in:
parent
23125648b8
commit
0aa8b371dd
@ -191,6 +191,8 @@ func ConvertModel(fsys fs.FS, f *os.File) error {
|
||||
conv = &phi3Model{}
|
||||
case "Qwen2ForCausalLM":
|
||||
conv = &qwen2Model{}
|
||||
case "Qwen2_5_VLForConditionalGeneration":
|
||||
conv = &qwen25VLModel{}
|
||||
case "BertModel":
|
||||
conv = &bertModel{}
|
||||
case "CohereForCausalLM":
|
||||
|
@ -15,6 +15,7 @@ type qwen2Model struct {
|
||||
Type string `json:"type"`
|
||||
Factor ropeFactor `json:"factor"`
|
||||
OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
|
||||
MropeSection []int32 `json:"mrope_section"`
|
||||
} `json:"rope_scaling"`
|
||||
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||
}
|
||||
@ -39,6 +40,8 @@ func (q *qwen2Model) KV(t *Tokenizer) ggml.KV {
|
||||
case "yarn":
|
||||
kv["qwen2.rope.scaling.type"] = q.RopeScaling.Type
|
||||
kv["qwen2.rope.scaling.factor"] = q.RopeScaling.Factor
|
||||
case "mrope", "default":
|
||||
kv["qwen2.rope.mrope_section"] = q.RopeScaling.MropeSection
|
||||
default:
|
||||
panic("unknown rope scaling type")
|
||||
}
|
||||
|
102
convert/convert_qwen25vl.go
Normal file
102
convert/convert_qwen25vl.go
Normal file
@ -0,0 +1,102 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type qwen25VLModel struct {
|
||||
qwen2Model
|
||||
|
||||
VisionModel struct {
|
||||
Depth uint32 `json:"depth"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
NumHeads uint32 `json:"num_heads"`
|
||||
InChannels uint32 `json:"in_chans"`
|
||||
PatchSize uint32 `json:"patch_size"`
|
||||
SpatialMergeSize uint32 `json:"spatial_merge_size"`
|
||||
SpatialPatchSize uint32 `json:"spatial_patch_size"`
|
||||
WindowSize uint32 `json:"window_size"`
|
||||
RMSNormEps float32 `json:"layer_norm_epsilon"`
|
||||
RopeTheta float32 `json:"rope_theta"`
|
||||
FullAttentionBlocks []int32 `json:"fullatt_block_indexes"`
|
||||
TemporalPatchSize uint32 `json:"temporal_patch_size"`
|
||||
} `json:"vision_config"`
|
||||
}
|
||||
|
||||
var _ ModelConverter = (*qwen25VLModel)(nil)
|
||||
|
||||
func (q *qwen25VLModel) KV(t *Tokenizer) ggml.KV {
|
||||
kv := q.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "qwen25vl"
|
||||
|
||||
for k, v := range q.qwen2Model.KV(t) {
|
||||
if strings.HasPrefix(k, "qwen2.") {
|
||||
kv[strings.Replace(k, "qwen2.", "qwen25vl.", 1)] = v
|
||||
}
|
||||
}
|
||||
|
||||
if q.VisionModel.FullAttentionBlocks == nil {
|
||||
kv["qwen25vl.vision.fullatt_block_indexes"] = []int32{7, 15, 23, 31}
|
||||
}
|
||||
|
||||
kv["qwen25vl.vision.block_count"] = cmp.Or(q.VisionModel.Depth, 32)
|
||||
kv["qwen25vl.vision.embedding_length"] = q.VisionModel.HiddenSize
|
||||
kv["qwen25vl.vision.attention.head_count"] = cmp.Or(q.VisionModel.NumHeads, 16)
|
||||
kv["qwen25vl.vision.num_channels"] = q.VisionModel.InChannels
|
||||
kv["qwen25vl.vision.patch_size"] = cmp.Or(q.VisionModel.PatchSize, 14)
|
||||
kv["qwen25vl.vision.spatial_merge_size"] = cmp.Or(q.VisionModel.SpatialMergeSize, 2)
|
||||
kv["qwen25vl.vision.spatial_patch_size"] = q.VisionModel.SpatialPatchSize
|
||||
kv["qwen25vl.vision.window_size"] = cmp.Or(q.VisionModel.WindowSize, 112)
|
||||
kv["qwen25vl.vision.attention.layer_norm_epsilon"] = cmp.Or(q.VisionModel.RMSNormEps, 1e-6)
|
||||
kv["qwen25vl.vision.rope.freq_base"] = cmp.Or(q.VisionModel.RopeTheta, 1e4)
|
||||
kv["qwen25vl.vision.fullatt_block_indexes"] = q.VisionModel.FullAttentionBlocks
|
||||
kv["qwen25vl.vision.temporal_patch_size"] = cmp.Or(q.VisionModel.TemporalPatchSize, 2)
|
||||
|
||||
return kv
|
||||
}
|
||||
|
||||
func (q *qwen25VLModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
var out []*ggml.Tensor
|
||||
|
||||
for _, t := range ts {
|
||||
if strings.Contains(t.Name(), "patch_embed.proj") {
|
||||
for t := range splitDim(t, 2,
|
||||
strings.NewReplacer("patch_embed.proj", "patch_embd_0"),
|
||||
strings.NewReplacer("patch_embed.proj", "patch_embd_1"),
|
||||
) {
|
||||
t.Shape = slices.DeleteFunc(t.Shape, func(i uint64) bool { return i == 1 })
|
||||
out = append(out, t)
|
||||
}
|
||||
} else if strings.Contains(t.Name(), "attn.qkv") {
|
||||
out = append(out, slices.Collect(splitDim(t, 0,
|
||||
strings.NewReplacer("attn.qkv", "attn_q"),
|
||||
strings.NewReplacer("attn.qkv", "attn_k"),
|
||||
strings.NewReplacer("attn.qkv", "attn_v"),
|
||||
))...)
|
||||
} else {
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
return out
|
||||
}
|
||||
|
||||
func (p *qwen25VLModel) Replacements() []string {
|
||||
return append(
|
||||
p.qwen2Model.Replacements(),
|
||||
"visual", "v",
|
||||
"blocks", "blk",
|
||||
"attn.proj", "attn_out",
|
||||
"norm1", "ln1",
|
||||
"norm2", "ln2",
|
||||
)
|
||||
}
|
56
convert/tensor.go
Normal file
56
convert/tensor.go
Normal file
@ -0,0 +1,56 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"iter"
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
)
|
||||
|
||||
// splitDim splits a tensor along a specified dimension into multiple tensors. The dimension
|
||||
// is split evenly based on the number of replacers provided.
|
||||
func splitDim(t Tensor, dim int, replacers ...*strings.Replacer) iter.Seq[*ggml.Tensor] {
|
||||
return func(yield func(*ggml.Tensor) bool) {
|
||||
for i, replacer := range replacers {
|
||||
shape := slices.Clone(t.Shape())
|
||||
shape[dim] = shape[dim] / uint64(len(replacers))
|
||||
|
||||
slice := slices.Repeat([]tensor.Slice{nil}, len(shape))
|
||||
slice[dim] = tensor.S(i*int(shape[dim]), (i+1)*int(shape[dim]))
|
||||
|
||||
tt := t.Clone()
|
||||
tt.SetRepacker(func(_ string, data []float32, shape []uint64) ([]float32, error) {
|
||||
dims := make([]int, len(shape))
|
||||
for i := range shape {
|
||||
dims[i] = int(shape[i])
|
||||
}
|
||||
|
||||
var t tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
||||
t, err := t.Slice(slice...)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
t = tensor.Materialize(t)
|
||||
// flatten tensor so it can be written as a vector
|
||||
if err := t.Reshape(t.Shape().TotalSize()); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return native.VectorF32(t.(*tensor.Dense))
|
||||
})
|
||||
|
||||
if !yield(&ggml.Tensor{
|
||||
Name: replacer.Replace(t.Name()),
|
||||
Kind: t.Kind(),
|
||||
Shape: shape,
|
||||
WriterTo: tt,
|
||||
}) {
|
||||
break
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
@ -6,6 +6,7 @@ import (
|
||||
"fmt"
|
||||
"io"
|
||||
"log/slog"
|
||||
"math"
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
@ -126,6 +127,7 @@ func (kv KV) OllamaEngineRequired() bool {
|
||||
"mistral3",
|
||||
"llama4",
|
||||
"mllama",
|
||||
"qwen25vl",
|
||||
}, kv.Architecture())
|
||||
}
|
||||
|
||||
@ -649,6 +651,29 @@ func (llm GGML) VisionGraphSize() (weights, graphSize uint64) {
|
||||
graphSize = 4 * (imageSize*imageSize*numChannels +
|
||||
embeddingLength*patchSize +
|
||||
numPatches*numPatches*headCount)
|
||||
case "qwen25vl":
|
||||
maxPixels := uint64(llm.KV().Uint("vision.max_pixels", 28*28*1280))
|
||||
mergeSize := uint64(llm.KV().Uint("vision.spatial_merge_size", 2))
|
||||
temporalPatchSize := uint64(2)
|
||||
|
||||
// Calculate max possible patches based on max_pixels
|
||||
maxHeight := uint64(math.Sqrt(float64(maxPixels)))
|
||||
maxWidth := maxPixels / maxHeight
|
||||
maxGridHeight := maxHeight / patchSize
|
||||
maxGridWidth := maxWidth / patchSize
|
||||
// Account for merged patches (2x2 grid)
|
||||
numPatches := (maxGridHeight * maxGridWidth) / (mergeSize * mergeSize)
|
||||
|
||||
// Calculate graph size based on typical operations in ProcessImage and createPatches
|
||||
graphSize = 4 * (maxPixels*numChannels + // Original image storage
|
||||
// Normalized pixels
|
||||
maxPixels*numChannels +
|
||||
// Patches storage (numPatches * channels * temporalPatchSize * patchSize^2)
|
||||
numPatches*numChannels*temporalPatchSize*patchSize*patchSize +
|
||||
// Self-attention calculations (similar to other architectures)
|
||||
numPatches*numPatches*headCount +
|
||||
// Additional buffer for processing
|
||||
embeddingLength*numPatches)
|
||||
case "llama4":
|
||||
// vision graph is computed independently in the same schedule
|
||||
// and is negligible compared to the worst case text graph
|
||||
|
277
llama/patches/0015-add-argsort-and-cuda-copy-for-i32.patch
Normal file
277
llama/patches/0015-add-argsort-and-cuda-copy-for-i32.patch
Normal file
@ -0,0 +1,277 @@
|
||||
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
||||
From: Michael Yang <git@mxy.ng>
|
||||
Date: Thu, 1 May 2025 13:45:12 -0700
|
||||
Subject: [PATCH] add argsort and cuda copy for i32
|
||||
|
||||
---
|
||||
ggml/src/ggml-cpu/ops.cpp | 43 ++++++++++++++
|
||||
ggml/src/ggml-cuda/argsort.cu | 102 +++++++++++++++++++++++++++++++++-
|
||||
ggml/src/ggml-cuda/cpy.cu | 49 ++++++++++++++++
|
||||
3 files changed, 192 insertions(+), 2 deletions(-)
|
||||
|
||||
diff --git a/ggml/src/ggml-cpu/ops.cpp b/ggml/src/ggml-cpu/ops.cpp
|
||||
index becdae07..7a44b6cf 100644
|
||||
--- a/ggml/src/ggml-cpu/ops.cpp
|
||||
+++ b/ggml/src/ggml-cpu/ops.cpp
|
||||
@@ -6890,6 +6890,45 @@ static void ggml_compute_forward_argsort_f32(
|
||||
}
|
||||
}
|
||||
|
||||
+static void ggml_compute_forward_argsort_i32(
|
||||
+ const ggml_compute_params * params,
|
||||
+ ggml_tensor * dst) {
|
||||
+
|
||||
+ const ggml_tensor * src0 = dst->src[0];
|
||||
+
|
||||
+ GGML_TENSOR_UNARY_OP_LOCALS
|
||||
+
|
||||
+ GGML_ASSERT(nb0 == sizeof(int32_t));
|
||||
+
|
||||
+ const int ith = params->ith;
|
||||
+ const int nth = params->nth;
|
||||
+
|
||||
+ const int64_t nr = ggml_nrows(src0);
|
||||
+
|
||||
+ ggml_sort_order order = (ggml_sort_order) ggml_get_op_params_i32(dst, 0);
|
||||
+
|
||||
+ for (int64_t i = ith; i < nr; i += nth) {
|
||||
+ int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
|
||||
+ const int32_t * src_data = (int32_t *)((char *) src0->data + i*nb01);
|
||||
+
|
||||
+ for (int64_t j = 0; j < ne0; j++) {
|
||||
+ dst_data[j] = j;
|
||||
+ }
|
||||
+
|
||||
+ // C doesn't have a functional sort, so we do a bubble sort instead
|
||||
+ for (int64_t j = 0; j < ne0; j++) {
|
||||
+ for (int64_t k = j + 1; k < ne0; k++) {
|
||||
+ if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
|
||||
+ (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
|
||||
+ int32_t tmp = dst_data[j];
|
||||
+ dst_data[j] = dst_data[k];
|
||||
+ dst_data[k] = tmp;
|
||||
+ }
|
||||
+ }
|
||||
+ }
|
||||
+ }
|
||||
+}
|
||||
+
|
||||
void ggml_compute_forward_argsort(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
@@ -6901,6 +6940,10 @@ void ggml_compute_forward_argsort(
|
||||
{
|
||||
ggml_compute_forward_argsort_f32(params, dst);
|
||||
} break;
|
||||
+ case GGML_TYPE_I32:
|
||||
+ {
|
||||
+ ggml_compute_forward_argsort_i32(params, dst);
|
||||
+ } break;
|
||||
default:
|
||||
{
|
||||
GGML_ABORT("fatal error");
|
||||
diff --git a/ggml/src/ggml-cuda/argsort.cu b/ggml/src/ggml-cuda/argsort.cu
|
||||
index 607ded85..53b02634 100644
|
||||
--- a/ggml/src/ggml-cuda/argsort.cu
|
||||
+++ b/ggml/src/ggml-cuda/argsort.cu
|
||||
@@ -85,13 +85,107 @@ static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, co
|
||||
}
|
||||
}
|
||||
|
||||
+
|
||||
+template<ggml_sort_order order>
|
||||
+static __global__ void k_argsort_i32_i32(const int32_t * x, int * dst, const int ncols, const int ncols_pad) {
|
||||
+ extern __shared__ int shared_mem[];
|
||||
+ int * indices = shared_mem;
|
||||
+
|
||||
+ const int tid = threadIdx.x;
|
||||
+ const int row = blockIdx.y;
|
||||
+
|
||||
+ // Initialize all indices, handling the case where threads < ncols_pad
|
||||
+ for (int i = tid; i < ncols_pad; i += blockDim.x) {
|
||||
+ indices[i] = i < ncols ? i : 0; // Use 0 for padding indices
|
||||
+ }
|
||||
+ __syncthreads();
|
||||
+
|
||||
+ // Bitonic sort
|
||||
+ for (int k = 2; k <= ncols_pad; k *= 2) {
|
||||
+ for (int j = k/2; j > 0; j /= 2) {
|
||||
+ for (int i = tid; i < ncols_pad; i += blockDim.x) {
|
||||
+ const int ij = i ^ j;
|
||||
+ if (ij > i) {
|
||||
+ // Only compare values within the actual data range
|
||||
+ if (i < ncols && ij < ncols) {
|
||||
+ if ((i & k) == 0) {
|
||||
+ if (order == GGML_SORT_ORDER_ASC) {
|
||||
+ if (x[row * ncols + indices[i]] > x[row * ncols + indices[ij]]) {
|
||||
+ int tmp = indices[i];
|
||||
+ indices[i] = indices[ij];
|
||||
+ indices[ij] = tmp;
|
||||
+ }
|
||||
+ } else {
|
||||
+ if (x[row * ncols + indices[i]] < x[row * ncols + indices[ij]]) {
|
||||
+ int tmp = indices[i];
|
||||
+ indices[i] = indices[ij];
|
||||
+ indices[ij] = tmp;
|
||||
+ }
|
||||
+ }
|
||||
+ } else {
|
||||
+ if (order == GGML_SORT_ORDER_ASC) {
|
||||
+ if (x[row * ncols + indices[i]] < x[row * ncols + indices[ij]]) {
|
||||
+ int tmp = indices[i];
|
||||
+ indices[i] = indices[ij];
|
||||
+ indices[ij] = tmp;
|
||||
+ }
|
||||
+ } else {
|
||||
+ if (x[row * ncols + indices[i]] > x[row * ncols + indices[ij]]) {
|
||||
+ int tmp = indices[i];
|
||||
+ indices[i] = indices[ij];
|
||||
+ indices[ij] = tmp;
|
||||
+ }
|
||||
+ }
|
||||
+ }
|
||||
+ }
|
||||
+ }
|
||||
+ }
|
||||
+ __syncthreads();
|
||||
+ }
|
||||
+ }
|
||||
+
|
||||
+ // Write sorted indices to output, only threads handling valid data
|
||||
+ for (int i = tid; i < ncols; i += blockDim.x) {
|
||||
+ dst[row * ncols + i] = indices[i];
|
||||
+ }
|
||||
+}
|
||||
+
|
||||
+static void argsort_i32_i32_cuda(const int32_t * x, int * dst, const int ncols, const int nrows, ggml_sort_order order, cudaStream_t stream) {
|
||||
+ // Bitonic sort requires ncols to be power of 2
|
||||
+ const int ncols_pad = next_power_of_2(ncols);
|
||||
+
|
||||
+ // Ensure thread count doesn't exceed maximum (typically 1024)
|
||||
+ const int max_threads = 1024; // This is the typical max for most GPUs
|
||||
+ const int threads_per_block = ncols_pad > max_threads ? max_threads : ncols_pad;
|
||||
+
|
||||
+ const dim3 block_dims(threads_per_block, 1, 1);
|
||||
+ const dim3 block_nums(1, nrows, 1);
|
||||
+ const size_t shared_mem = ncols_pad * sizeof(int);
|
||||
+
|
||||
+ // Check if shared memory size is within limits
|
||||
+ const size_t max_shared_mem = ggml_cuda_info().devices[ggml_cuda_get_device()].smpb;
|
||||
+
|
||||
+ // Instead of logging an error, use GGML_ASSERT with a descriptive message
|
||||
+ GGML_ASSERT(shared_mem <= max_shared_mem && "argsort: required shared memory exceeds device limit");
|
||||
+
|
||||
+ // Launch kernels with the updated thread configuration
|
||||
+ if (order == GGML_SORT_ORDER_ASC) {
|
||||
+ k_argsort_i32_i32<GGML_SORT_ORDER_ASC><<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
|
||||
+ } else if (order == GGML_SORT_ORDER_DESC) {
|
||||
+ k_argsort_i32_i32<GGML_SORT_ORDER_DESC><<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
|
||||
+ } else {
|
||||
+ GGML_ABORT("fatal error");
|
||||
+ }
|
||||
+}
|
||||
+
|
||||
+
|
||||
void ggml_cuda_op_argsort(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
float * dst_d = (float *)dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
+ GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_I32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_I32);
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
|
||||
@@ -100,5 +194,9 @@ void ggml_cuda_op_argsort(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
|
||||
enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
|
||||
|
||||
- argsort_f32_i32_cuda(src0_d, (int *)dst_d, ncols, nrows, order, stream);
|
||||
+ if (src0->type == GGML_TYPE_I32) {
|
||||
+ argsort_i32_i32_cuda((const int32_t *)src0_d, (int *)dst_d, ncols, nrows, order, stream);
|
||||
+ } else {
|
||||
+ argsort_f32_i32_cuda(src0_d, (int *)dst_d, ncols, nrows, order, stream);
|
||||
+ }
|
||||
}
|
||||
diff --git a/ggml/src/ggml-cuda/cpy.cu b/ggml/src/ggml-cuda/cpy.cu
|
||||
index 2d46176e..47383486 100644
|
||||
--- a/ggml/src/ggml-cuda/cpy.cu
|
||||
+++ b/ggml/src/ggml-cuda/cpy.cu
|
||||
@@ -38,6 +38,13 @@ static __device__ void cpy_1_f16_f32(const char * cxi, char * cdsti) {
|
||||
*dsti = *xi;
|
||||
}
|
||||
|
||||
+static __device__ void cpy_1_i32_i32(const char * cxi, char * cdsti) {
|
||||
+ const int32_t * xi = (const int32_t *) cxi;
|
||||
+ int32_t * dsti = (int32_t *) cdsti;
|
||||
+
|
||||
+ *dsti = *xi;
|
||||
+}
|
||||
+
|
||||
template <cpy_kernel_t cpy_1>
|
||||
static __global__ void cpy_f32_f16(const char * cx, char * cdst_direct, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
@@ -68,6 +75,44 @@ static __global__ void cpy_f32_f16(const char * cx, char * cdst_direct, const in
|
||||
cpy_1(cx + x_offset, cdst + dst_offset);
|
||||
}
|
||||
|
||||
+// First, add this template function after the other template functions
|
||||
+template <cpy_kernel_t cpy_1>
|
||||
+static __global__ void cpy_i32_i32(const char * cx, char * cdst, const int ne,
|
||||
+ const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
|
||||
+ const int nb12, const int nb13) {
|
||||
+ const int64_t i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
+
|
||||
+ if (i >= ne) {
|
||||
+ return;
|
||||
+ }
|
||||
+
|
||||
+ const int64_t i03 = i/(ne00 * ne01 * ne02);
|
||||
+ const int64_t i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
|
||||
+ const int64_t i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
|
||||
+ const int64_t i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
|
||||
+ const int64_t x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
|
||||
+
|
||||
+ const int64_t i13 = i/(ne10 * ne11 * ne12);
|
||||
+ const int64_t i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
|
||||
+ const int64_t i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
|
||||
+ const int64_t i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
|
||||
+ const int64_t dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13 * nb13;
|
||||
+
|
||||
+ cpy_1(cx + x_offset, cdst + dst_offset);
|
||||
+}
|
||||
+
|
||||
+// Then modify the ggml_cpy_i32_i32_cuda function to use the new template
|
||||
+static void ggml_cpy_i32_i32_cuda(
|
||||
+ const char * cx, char * cdst, const int ne,
|
||||
+ const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int graph_cpynode_index) {
|
||||
+
|
||||
+ const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
||||
+ cpy_i32_i32<cpy_1_i32_i32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
||||
+ (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
+}
|
||||
+
|
||||
static __device__ void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) {
|
||||
const float * xi = (const float *) cxi;
|
||||
block_q8_0 * dsti = (block_q8_0 *) cdsti;
|
||||
@@ -631,6 +676,8 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
|
||||
ggml_cpy_f16_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
|
||||
ggml_cpy_f16_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
+ } else if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_I32) {
|
||||
+ ggml_cpy_i32_i32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
} else {
|
||||
GGML_ABORT("%s: unsupported type combination (%s to %s)\n", __func__,
|
||||
ggml_type_name(src0->type), ggml_type_name(src1->type));
|
||||
@@ -686,6 +733,8 @@ void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1) {
|
||||
return (void*) cpy_f32_f16<cpy_1_f32_f16>;
|
||||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
|
||||
return (void*) cpy_f32_f16<cpy_1_f16_f32>;
|
||||
+ } else if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_I32) {
|
||||
+ return (void*) cpy_i32_i32<cpy_1_i32_i32>;
|
||||
} else {
|
||||
GGML_ABORT("%s: unsupported type combination (%s to %s)\n", __func__,
|
||||
ggml_type_name(src0->type), ggml_type_name(src1->type));
|
@ -119,6 +119,21 @@ type Context interface {
|
||||
Layer(int) Context
|
||||
}
|
||||
|
||||
// RopeOptions contains optional parameters for RoPE function
|
||||
type RopeOptions struct {
|
||||
OriginalContextLen uint32
|
||||
}
|
||||
|
||||
// RopeOption defines a function that modifies RopeOpts
|
||||
type RopeOption func(*RopeOptions)
|
||||
|
||||
// WithContextLen sets a custom context length
|
||||
func WithContextLen(len uint32) RopeOption {
|
||||
return func(opts *RopeOptions) {
|
||||
opts.OriginalContextLen = len
|
||||
}
|
||||
}
|
||||
|
||||
type Tensor interface {
|
||||
Dim(n int) int
|
||||
Stride(n int) int
|
||||
@ -144,7 +159,7 @@ type Tensor interface {
|
||||
AvgPool2D(ctx Context, k, s int, p float32) Tensor
|
||||
Conv2D(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
|
||||
|
||||
RoPE(ctx Context, positionIDs, ropeFactors Tensor, dim, ropeType uint32, base, scale float32) Tensor
|
||||
RoPE(ctx Context, positionIDs, ropeFactors Tensor, dim, ropeType uint32, base, scale float32, options ...RopeOption) Tensor
|
||||
IM2Col(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
|
||||
|
||||
Sin(ctx Context) Tensor
|
||||
@ -172,6 +187,7 @@ type Tensor interface {
|
||||
Duplicate(ctx Context) Tensor
|
||||
|
||||
TopK(ctx Context, k int) Tensor
|
||||
Argsort(ctx Context) Tensor
|
||||
}
|
||||
|
||||
// ScaledDotProductAttention implements a fused attention
|
||||
|
@ -1060,7 +1060,17 @@ const (
|
||||
ropeTypeVision C.int = 24
|
||||
)
|
||||
|
||||
func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDim, ropeType uint32, ropeBase, ropeScale float32) ml.Tensor {
|
||||
func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDim, ropeType uint32, ropeBase, ropeScale float32, options ...ml.RopeOption) ml.Tensor {
|
||||
// Default options
|
||||
opts := &ml.RopeOptions{
|
||||
OriginalContextLen: 131072,
|
||||
}
|
||||
|
||||
// Apply any provided options
|
||||
for _, option := range options {
|
||||
option(opts)
|
||||
}
|
||||
|
||||
if ropeFactors == nil {
|
||||
ropeFactors = &Tensor{b: t.b}
|
||||
}
|
||||
@ -1073,16 +1083,19 @@ func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDi
|
||||
return &Tensor{
|
||||
b: t.b,
|
||||
t: C.ggml_rope_ext(
|
||||
ctx.(*Context).ctx, dequant, positionIDs.(*Tensor).t, ropeFactors.(*Tensor).t,
|
||||
ctx.(*Context).ctx,
|
||||
dequant,
|
||||
positionIDs.(*Tensor).t,
|
||||
ropeFactors.(*Tensor).t,
|
||||
C.int(ropeDim),
|
||||
C.int(ropeType),
|
||||
131072, // YaRN n_ctx_train
|
||||
C.int(opts.OriginalContextLen),
|
||||
C.float(ropeBase),
|
||||
C.float(ropeScale),
|
||||
0., // YaRN ext_factor
|
||||
1., // YaRN attn_factor
|
||||
32., // YaRN beta_fast
|
||||
1., // YaRN beta_slow
|
||||
C.float(0.0),
|
||||
C.float(1.0),
|
||||
C.float(32.0),
|
||||
C.float(1.0),
|
||||
),
|
||||
}
|
||||
}
|
||||
@ -1176,3 +1189,10 @@ func (t *Tensor) TopK(ctx ml.Context, k int) ml.Tensor {
|
||||
t: C.ggml_top_k(ctx.(*Context).ctx, t.t, C.int(k)),
|
||||
}
|
||||
}
|
||||
|
||||
func (t *Tensor) Argsort(ctx ml.Context) ml.Tensor {
|
||||
return &Tensor{
|
||||
b: t.b,
|
||||
t: C.ggml_argsort(ctx.(*Context).ctx, t.t, C.GGML_SORT_ORDER_ASC),
|
||||
}
|
||||
}
|
||||
|
43
ml/backend/ggml/ggml/src/ggml-cpu/ops.cpp
vendored
43
ml/backend/ggml/ggml/src/ggml-cpu/ops.cpp
vendored
@ -6822,6 +6822,45 @@ static void ggml_compute_forward_argsort_f32(
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_compute_forward_argsort_i32(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
GGML_TENSOR_UNARY_OP_LOCALS
|
||||
|
||||
GGML_ASSERT(nb0 == sizeof(int32_t));
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
const int64_t nr = ggml_nrows(src0);
|
||||
|
||||
ggml_sort_order order = (ggml_sort_order) ggml_get_op_params_i32(dst, 0);
|
||||
|
||||
for (int64_t i = ith; i < nr; i += nth) {
|
||||
int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
|
||||
const int32_t * src_data = (int32_t *)((char *) src0->data + i*nb01);
|
||||
|
||||
for (int64_t j = 0; j < ne0; j++) {
|
||||
dst_data[j] = j;
|
||||
}
|
||||
|
||||
// C doesn't have a functional sort, so we do a bubble sort instead
|
||||
for (int64_t j = 0; j < ne0; j++) {
|
||||
for (int64_t k = j + 1; k < ne0; k++) {
|
||||
if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
|
||||
(order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
|
||||
int32_t tmp = dst_data[j];
|
||||
dst_data[j] = dst_data[k];
|
||||
dst_data[k] = tmp;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_compute_forward_argsort(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
@ -6833,6 +6872,10 @@ void ggml_compute_forward_argsort(
|
||||
{
|
||||
ggml_compute_forward_argsort_f32(params, dst);
|
||||
} break;
|
||||
case GGML_TYPE_I32:
|
||||
{
|
||||
ggml_compute_forward_argsort_i32(params, dst);
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_ABORT("fatal error");
|
||||
|
100
ml/backend/ggml/ggml/src/ggml-cuda/argsort.cu
vendored
100
ml/backend/ggml/ggml/src/ggml-cuda/argsort.cu
vendored
@ -85,13 +85,107 @@ static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, co
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template<ggml_sort_order order>
|
||||
static __global__ void k_argsort_i32_i32(const int32_t * x, int * dst, const int ncols, const int ncols_pad) {
|
||||
extern __shared__ int shared_mem[];
|
||||
int * indices = shared_mem;
|
||||
|
||||
const int tid = threadIdx.x;
|
||||
const int row = blockIdx.y;
|
||||
|
||||
// Initialize all indices, handling the case where threads < ncols_pad
|
||||
for (int i = tid; i < ncols_pad; i += blockDim.x) {
|
||||
indices[i] = i < ncols ? i : 0; // Use 0 for padding indices
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
// Bitonic sort
|
||||
for (int k = 2; k <= ncols_pad; k *= 2) {
|
||||
for (int j = k/2; j > 0; j /= 2) {
|
||||
for (int i = tid; i < ncols_pad; i += blockDim.x) {
|
||||
const int ij = i ^ j;
|
||||
if (ij > i) {
|
||||
// Only compare values within the actual data range
|
||||
if (i < ncols && ij < ncols) {
|
||||
if ((i & k) == 0) {
|
||||
if (order == GGML_SORT_ORDER_ASC) {
|
||||
if (x[row * ncols + indices[i]] > x[row * ncols + indices[ij]]) {
|
||||
int tmp = indices[i];
|
||||
indices[i] = indices[ij];
|
||||
indices[ij] = tmp;
|
||||
}
|
||||
} else {
|
||||
if (x[row * ncols + indices[i]] < x[row * ncols + indices[ij]]) {
|
||||
int tmp = indices[i];
|
||||
indices[i] = indices[ij];
|
||||
indices[ij] = tmp;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if (order == GGML_SORT_ORDER_ASC) {
|
||||
if (x[row * ncols + indices[i]] < x[row * ncols + indices[ij]]) {
|
||||
int tmp = indices[i];
|
||||
indices[i] = indices[ij];
|
||||
indices[ij] = tmp;
|
||||
}
|
||||
} else {
|
||||
if (x[row * ncols + indices[i]] > x[row * ncols + indices[ij]]) {
|
||||
int tmp = indices[i];
|
||||
indices[i] = indices[ij];
|
||||
indices[ij] = tmp;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
}
|
||||
|
||||
// Write sorted indices to output, only threads handling valid data
|
||||
for (int i = tid; i < ncols; i += blockDim.x) {
|
||||
dst[row * ncols + i] = indices[i];
|
||||
}
|
||||
}
|
||||
|
||||
static void argsort_i32_i32_cuda(const int32_t * x, int * dst, const int ncols, const int nrows, ggml_sort_order order, cudaStream_t stream) {
|
||||
// Bitonic sort requires ncols to be power of 2
|
||||
const int ncols_pad = next_power_of_2(ncols);
|
||||
|
||||
// Ensure thread count doesn't exceed maximum (typically 1024)
|
||||
const int max_threads = 1024; // This is the typical max for most GPUs
|
||||
const int threads_per_block = ncols_pad > max_threads ? max_threads : ncols_pad;
|
||||
|
||||
const dim3 block_dims(threads_per_block, 1, 1);
|
||||
const dim3 block_nums(1, nrows, 1);
|
||||
const size_t shared_mem = ncols_pad * sizeof(int);
|
||||
|
||||
// Check if shared memory size is within limits
|
||||
const size_t max_shared_mem = ggml_cuda_info().devices[ggml_cuda_get_device()].smpb;
|
||||
|
||||
// Instead of logging an error, use GGML_ASSERT with a descriptive message
|
||||
GGML_ASSERT(shared_mem <= max_shared_mem && "argsort: required shared memory exceeds device limit");
|
||||
|
||||
// Launch kernels with the updated thread configuration
|
||||
if (order == GGML_SORT_ORDER_ASC) {
|
||||
k_argsort_i32_i32<GGML_SORT_ORDER_ASC><<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
|
||||
} else if (order == GGML_SORT_ORDER_DESC) {
|
||||
k_argsort_i32_i32<GGML_SORT_ORDER_DESC><<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
|
||||
} else {
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void ggml_cuda_op_argsort(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
float * dst_d = (float *)dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_I32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_I32);
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
|
||||
@ -100,5 +194,9 @@ void ggml_cuda_op_argsort(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
|
||||
enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
|
||||
|
||||
if (src0->type == GGML_TYPE_I32) {
|
||||
argsort_i32_i32_cuda((const int32_t *)src0_d, (int *)dst_d, ncols, nrows, order, stream);
|
||||
} else {
|
||||
argsort_f32_i32_cuda(src0_d, (int *)dst_d, ncols, nrows, order, stream);
|
||||
}
|
||||
}
|
||||
|
49
ml/backend/ggml/ggml/src/ggml-cuda/cpy.cu
vendored
49
ml/backend/ggml/ggml/src/ggml-cuda/cpy.cu
vendored
@ -38,6 +38,13 @@ static __device__ void cpy_1_f16_f32(const char * cxi, char * cdsti) {
|
||||
*dsti = *xi;
|
||||
}
|
||||
|
||||
static __device__ void cpy_1_i32_i32(const char * cxi, char * cdsti) {
|
||||
const int32_t * xi = (const int32_t *) cxi;
|
||||
int32_t * dsti = (int32_t *) cdsti;
|
||||
|
||||
*dsti = *xi;
|
||||
}
|
||||
|
||||
template <cpy_kernel_t cpy_1>
|
||||
static __global__ void cpy_f32_f16(const char * cx, char * cdst_direct, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
@ -68,6 +75,44 @@ static __global__ void cpy_f32_f16(const char * cx, char * cdst_direct, const in
|
||||
cpy_1(cx + x_offset, cdst + dst_offset);
|
||||
}
|
||||
|
||||
// First, add this template function after the other template functions
|
||||
template <cpy_kernel_t cpy_1>
|
||||
static __global__ void cpy_i32_i32(const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
|
||||
const int nb12, const int nb13) {
|
||||
const int64_t i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i >= ne) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int64_t i03 = i/(ne00 * ne01 * ne02);
|
||||
const int64_t i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
|
||||
const int64_t i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
|
||||
const int64_t i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
|
||||
const int64_t x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
|
||||
|
||||
const int64_t i13 = i/(ne10 * ne11 * ne12);
|
||||
const int64_t i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
|
||||
const int64_t i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
|
||||
const int64_t i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
|
||||
const int64_t dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13 * nb13;
|
||||
|
||||
cpy_1(cx + x_offset, cdst + dst_offset);
|
||||
}
|
||||
|
||||
// Then modify the ggml_cpy_i32_i32_cuda function to use the new template
|
||||
static void ggml_cpy_i32_i32_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int graph_cpynode_index) {
|
||||
|
||||
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
||||
cpy_i32_i32<cpy_1_i32_i32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static __device__ void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) {
|
||||
const float * xi = (const float *) cxi;
|
||||
block_q8_0 * dsti = (block_q8_0 *) cdsti;
|
||||
@ -633,6 +678,8 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
|
||||
ggml_cpy_f16_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
|
||||
ggml_cpy_f16_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
} else if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_I32) {
|
||||
ggml_cpy_i32_i32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
} else {
|
||||
GGML_ABORT("%s: unsupported type combination (%s to %s)\n", __func__,
|
||||
ggml_type_name(src0->type), ggml_type_name(src1->type));
|
||||
@ -688,6 +735,8 @@ void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1) {
|
||||
return (void*) cpy_f32_f16<cpy_1_f32_f16>;
|
||||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
|
||||
return (void*) cpy_f32_f16<cpy_1_f16_f32>;
|
||||
} else if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_I32) {
|
||||
return (void*) cpy_i32_i32<cpy_1_i32_i32>;
|
||||
} else {
|
||||
GGML_ABORT("%s: unsupported type combination (%s to %s)\n", __func__,
|
||||
ggml_type_name(src0->type), ggml_type_name(src1->type));
|
||||
|
@ -7,4 +7,5 @@ import (
|
||||
_ "github.com/ollama/ollama/model/models/llama4"
|
||||
_ "github.com/ollama/ollama/model/models/mistral3"
|
||||
_ "github.com/ollama/ollama/model/models/mllama"
|
||||
_ "github.com/ollama/ollama/model/models/qwen25vl"
|
||||
)
|
||||
|
187
model/models/qwen25vl/model.go
Normal file
187
model/models/qwen25vl/model.go
Normal file
@ -0,0 +1,187 @@
|
||||
package qwen25vl
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"fmt"
|
||||
"image"
|
||||
"slices"
|
||||
"sync"
|
||||
|
||||
"github.com/ollama/ollama/fs"
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/model"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
type Model struct {
|
||||
model.Base
|
||||
model.BytePairEncoding
|
||||
|
||||
*TextModel
|
||||
*VisionModel `gguf:"v,vision"`
|
||||
|
||||
ImageProcessor
|
||||
}
|
||||
|
||||
// Implement MultimodalProcessor interface
|
||||
var _ model.MultimodalProcessor = (*Model)(nil)
|
||||
|
||||
func New(c fs.Config) (model.Model, error) {
|
||||
m := &Model{
|
||||
BytePairEncoding: model.NewBytePairEncoding(
|
||||
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
|
||||
&model.Vocabulary{
|
||||
Values: c.Strings("tokenizer.ggml.tokens"),
|
||||
Types: c.Ints("tokenizer.ggml.token_type"),
|
||||
Merges: c.Strings("tokenizer.ggml.merges"),
|
||||
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
|
||||
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", false),
|
||||
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
|
||||
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
|
||||
EOT: int32(c.Uint("tokenizer.ggml.eos_token_id")),
|
||||
AddEOT: c.Bool("tokenizer.ggml.add_eos_token", false),
|
||||
},
|
||||
),
|
||||
TextModel: NewTextModel(c),
|
||||
VisionModel: newVisionModel(c),
|
||||
ImageProcessor: newImageProcessor(c),
|
||||
}
|
||||
|
||||
m.Cache = kvcache.NewCausalCache(m.TextModel.Shift)
|
||||
|
||||
return m, nil
|
||||
}
|
||||
|
||||
func (m *Model) PixelValues(ctx ml.Context, multimodalData []byte) (ml.Tensor, *Grid, error) {
|
||||
image, _, err := image.Decode(bytes.NewReader(multimodalData))
|
||||
if err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
|
||||
f32s, grid, err := m.ImageProcessor.ProcessImage(image)
|
||||
if err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
|
||||
// Calculate tensor dimensions
|
||||
patchDim := m.ImageProcessor.numChannels * m.ImageProcessor.temporalPatchSize *
|
||||
m.ImageProcessor.patchSize * m.ImageProcessor.patchSize
|
||||
numPatches := grid.Temporal * grid.Height * grid.Width
|
||||
|
||||
pixelValues, err := ctx.Input().FromFloatSlice(f32s, patchDim, numPatches)
|
||||
if err != nil {
|
||||
return nil, nil, fmt.Errorf("failed to create tensor from image: %w", err)
|
||||
}
|
||||
|
||||
return pixelValues, grid, nil
|
||||
}
|
||||
|
||||
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, error) {
|
||||
if len(m.VisionModel.Layers) == 0 {
|
||||
return nil, model.ErrNoVisionModel
|
||||
}
|
||||
|
||||
pixels, grid, err := m.PixelValues(ctx, multimodalData)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
visionOutputs := m.VisionModel.Forward(ctx, pixels, grid)
|
||||
return &chunks{Model: m, Tensor: visionOutputs}, nil
|
||||
}
|
||||
|
||||
type chunks struct {
|
||||
*Model
|
||||
ml.Tensor
|
||||
|
||||
dataOnce sync.Once
|
||||
data []float32
|
||||
}
|
||||
|
||||
type chunk struct {
|
||||
*chunks
|
||||
s, n int
|
||||
}
|
||||
|
||||
func (r *chunk) floats() []float32 {
|
||||
r.dataOnce.Do(func() {
|
||||
temp := r.Backend().NewContext()
|
||||
defer temp.Close()
|
||||
temp.Forward(r.Tensor).Compute(r.Tensor)
|
||||
r.data = r.Floats()
|
||||
})
|
||||
|
||||
return r.data[r.s*r.Dim(0) : (r.s+r.n)*r.Dim(0)]
|
||||
}
|
||||
|
||||
// PostTokenize arranges Qwen-2.5-VL's inputs for the forward pass
|
||||
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
|
||||
var result []input.Input
|
||||
|
||||
var (
|
||||
imageToken int32 = 151655
|
||||
visionStartToken int32 = 151652
|
||||
visionEndToken int32 = 151653
|
||||
)
|
||||
|
||||
nImg := 0
|
||||
for _, inp := range inputs {
|
||||
if inp.Multimodal == nil {
|
||||
// If not a multimodal input, add it to the result unchanged
|
||||
result = append(result, inp)
|
||||
} else {
|
||||
// Adding the 'Picture' prefix is a hack, at the time of writing there is no way to prefix
|
||||
// the image tokens with a prompt, so we add a prefix here
|
||||
nImg++
|
||||
pre, err := m.Encode(fmt.Sprintf(" Picture %d: ", nImg), true)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("failed to encode image prompt: %w", err)
|
||||
}
|
||||
for i := range pre {
|
||||
result = append(result, input.Input{Token: pre[i]})
|
||||
}
|
||||
|
||||
// This is an image token with multimodal data
|
||||
chunksData := inp.Multimodal.(*chunks)
|
||||
patchesPerChunk := chunksData.Dim(1)
|
||||
|
||||
// First add the vision start token
|
||||
result = append(result, input.Input{Token: visionStartToken, SameBatch: patchesPerChunk + 2})
|
||||
|
||||
// Add the image token with the multimodal tensor data at the first position
|
||||
// Create a chunk with proper s and n values
|
||||
result = append(result, input.Input{
|
||||
Token: imageToken,
|
||||
Multimodal: &chunk{chunks: chunksData, s: 0, n: patchesPerChunk},
|
||||
MultimodalHash: inp.MultimodalHash,
|
||||
SameBatch: patchesPerChunk,
|
||||
})
|
||||
|
||||
// Add the placeholder tokens for the remaining positions (tokensPerGrid-1)
|
||||
result = append(result, slices.Repeat([]input.Input{{Token: imageToken}}, patchesPerChunk-1)...)
|
||||
|
||||
result = append(result, input.Input{Token: visionEndToken})
|
||||
}
|
||||
}
|
||||
|
||||
return result, nil
|
||||
}
|
||||
|
||||
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||||
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache)
|
||||
}
|
||||
|
||||
func init() {
|
||||
model.Register("qwen25vl", New)
|
||||
}
|
155
model/models/qwen25vl/model_text.go
Normal file
155
model/models/qwen25vl/model_text.go
Normal file
@ -0,0 +1,155 @@
|
||||
package qwen25vl
|
||||
|
||||
import (
|
||||
"math"
|
||||
|
||||
"github.com/ollama/ollama/fs"
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
type TextOptions struct {
|
||||
ctxLen, hiddenSize, numHeads, numKVHeads int
|
||||
eps, ropeBase, ropeScale float32
|
||||
ropeDim, defaultContextLen uint32
|
||||
}
|
||||
|
||||
type TextModel struct {
|
||||
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
|
||||
Layers []Layer `gguf:"blk"`
|
||||
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
|
||||
Output *nn.Linear `gguf:"output,alt:token_embd"`
|
||||
|
||||
*TextOptions
|
||||
}
|
||||
|
||||
func NewTextModel(c fs.Config) *TextModel {
|
||||
m := TextModel{
|
||||
Layers: make([]Layer, c.Uint("block_count")),
|
||||
TextOptions: &TextOptions{
|
||||
ctxLen: int(c.Uint("context_length")),
|
||||
hiddenSize: int(c.Uint("embedding_length")),
|
||||
numHeads: int(c.Uint("attention.head_count")),
|
||||
numKVHeads: int(c.Uint("attention.head_count_kv")),
|
||||
eps: c.Float("attention.layer_norm_rms_epsilon"),
|
||||
ropeBase: c.Float("rope.freq_base"),
|
||||
ropeScale: c.Float("rope.freq_scale", 1),
|
||||
ropeDim: c.Uint("rope.dimension_count", 128),
|
||||
defaultContextLen: c.Uint("context_length", 128000),
|
||||
},
|
||||
}
|
||||
|
||||
return &m
|
||||
}
|
||||
|
||||
// SelfAttention implements the multi-head self-attention mechanism
|
||||
// with separate projections for query, key, value and output transformations
|
||||
type SelfAttention struct {
|
||||
Query *nn.Linear `gguf:"attn_q"`
|
||||
Key *nn.Linear `gguf:"attn_k"`
|
||||
Value *nn.Linear `gguf:"attn_v"`
|
||||
Output *nn.Linear `gguf:"attn_output"`
|
||||
}
|
||||
|
||||
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
|
||||
batchSize := hiddenState.Dim(1)
|
||||
headDim := opts.hiddenSize / opts.numHeads
|
||||
|
||||
q := sa.Query.Forward(ctx, hiddenState)
|
||||
q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
|
||||
q = q.RoPE(ctx, positionIDs, nil, opts.ropeDim, 2, opts.ropeBase, opts.ropeScale, ml.WithContextLen(opts.defaultContextLen))
|
||||
|
||||
k := sa.Key.Forward(ctx, hiddenState)
|
||||
k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
k = k.RoPE(ctx, positionIDs, nil, opts.ropeDim, 2, opts.ropeBase, opts.ropeScale, ml.WithContextLen(opts.defaultContextLen))
|
||||
|
||||
v := sa.Value.Forward(ctx, hiddenState)
|
||||
v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
|
||||
scaleFactor := 1.0 / math.Sqrt(float64(headDim))
|
||||
kqv := nn.Attention(ctx, q, k, v, scaleFactor, cache)
|
||||
kqv = kqv.Reshape(ctx, opts.hiddenSize, batchSize)
|
||||
|
||||
return sa.Output.Forward(ctx, kqv)
|
||||
}
|
||||
|
||||
// Shift applies rotary position embeddings to the key tensor for causal attention caching
|
||||
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||
return key.RoPE(ctx, shift, nil, m.ropeDim, 2, m.ropeBase, m.ropeScale, ml.WithContextLen(m.defaultContextLen)), nil
|
||||
}
|
||||
|
||||
// MLP implements the feed-forward network component with SwiGLU activation
|
||||
type MLP struct {
|
||||
Up *nn.Linear `gguf:"ffn_up"`
|
||||
Down *nn.Linear `gguf:"ffn_down"`
|
||||
Gate *nn.Linear `gguf:"ffn_gate"`
|
||||
}
|
||||
|
||||
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextOptions) ml.Tensor {
|
||||
// Apply SwiGLU activation gating
|
||||
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
|
||||
// Project back to hidden dimension
|
||||
return mlp.Down.Forward(ctx, hiddenState)
|
||||
}
|
||||
|
||||
// Layer represents a single transformer layer combining self-attention and feed-forward components
|
||||
type Layer struct {
|
||||
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
|
||||
SelfAttention *SelfAttention
|
||||
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
|
||||
MLP *MLP
|
||||
}
|
||||
|
||||
func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
|
||||
// Self-attention branch with residual connection
|
||||
residual := hiddenState
|
||||
|
||||
hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
|
||||
hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)
|
||||
|
||||
// In the final layer (outputs != nil), optimize by pruning to just the token positions
|
||||
// we need logits for.
|
||||
if outputs != nil {
|
||||
hiddenState = hiddenState.Rows(ctx, outputs)
|
||||
residual = residual.Rows(ctx, outputs)
|
||||
}
|
||||
|
||||
hiddenState = hiddenState.Add(ctx, residual)
|
||||
// Feed-forward branch with residual connection
|
||||
residual = hiddenState
|
||||
hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
|
||||
hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
|
||||
return hiddenState.Add(ctx, residual)
|
||||
}
|
||||
|
||||
func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor, batch input.Batch, cache kvcache.Cache) (ml.Tensor, error) {
|
||||
// Initial token embedding
|
||||
hiddenStates := m.TokenEmbedding.Forward(ctx, inputs).Duplicate(ctx)
|
||||
|
||||
for _, mi := range batch.Multimodal {
|
||||
f32s := mi.Multimodal.(*chunk).floats()
|
||||
img, err := ctx.Input().FromFloatSlice(f32s, len(f32s)/m.hiddenSize, m.hiddenSize)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
ctx.Forward(img.Copy(ctx, hiddenStates.View(ctx, mi.Index*hiddenStates.Stride(1), img.Dim(0)*img.Dim(1))))
|
||||
}
|
||||
|
||||
// Process through transformer layers
|
||||
for i, layer := range m.Layers {
|
||||
cache.SetLayer(i)
|
||||
|
||||
var lastLayerOutputs ml.Tensor
|
||||
if i == len(m.Layers)-1 {
|
||||
lastLayerOutputs = outputs
|
||||
}
|
||||
|
||||
hiddenStates = layer.Forward(ctx, hiddenStates, positions, lastLayerOutputs, cache, m.TextOptions)
|
||||
}
|
||||
|
||||
hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps)
|
||||
return m.Output.Forward(ctx, hiddenStates), nil
|
||||
}
|
391
model/models/qwen25vl/model_vision.go
Normal file
391
model/models/qwen25vl/model_vision.go
Normal file
@ -0,0 +1,391 @@
|
||||
package qwen25vl
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"math"
|
||||
"slices"
|
||||
|
||||
"github.com/ollama/ollama/fs"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
)
|
||||
|
||||
// We only support batch size of 1
|
||||
var batchSize int = 1
|
||||
|
||||
func rotateHalf(ctx ml.Context, t ml.Tensor) ml.Tensor {
|
||||
x1 := t.View(ctx, 0, t.Dim(0)/2, t.Stride(1), t.Dim(1), t.Stride(2), t.Dim(2), t.Stride(3), t.Dim(3))
|
||||
x2 := t.View(ctx, t.Stride(0)*t.Dim(0)/2, t.Dim(0)/2, t.Stride(1), t.Dim(1), t.Stride(2), t.Dim(2), t.Stride(3), t.Dim(3)).Contiguous(ctx)
|
||||
return x2.Neg(ctx).Concat(ctx, x1, 0)
|
||||
}
|
||||
|
||||
func applyRotaryPositionalEmbedding(ctx ml.Context, t, cos, sin ml.Tensor) ml.Tensor {
|
||||
return t.Mul(ctx, cos).Add(ctx, rotateHalf(ctx, t).Mul(ctx, sin))
|
||||
}
|
||||
|
||||
func blockDiagonalMask(ctx ml.Context, seqLength int, bounds []int, numHeads int) ml.Tensor {
|
||||
// Create a flat slice for the mask (all -inf initially to block all attention)
|
||||
flat := make([]float32, seqLength*seqLength)
|
||||
for i := range flat {
|
||||
flat[i] = float32(math.Inf(-1)) // Negative infinity to block attention
|
||||
}
|
||||
|
||||
// Fill in the mask with zeros for tokens that CAN attend to each other
|
||||
for i := 1; i < len(bounds); i++ {
|
||||
start := bounds[i-1]
|
||||
end := bounds[i]
|
||||
|
||||
// Enable attention within this sequence block by setting values to 0
|
||||
for row := start; row < end; row++ {
|
||||
for col := start; col < end; col++ {
|
||||
idx := row*seqLength + col
|
||||
flat[idx] = 0.0 // 0 allows attention, -inf blocks it
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
mask, err := ctx.Input().FromFloatSlice(flat, seqLength, seqLength)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
// Reshape to match [seqLength, seqLength, 1] for broadcasting
|
||||
mask = mask.Reshape(ctx, seqLength, seqLength, 1)
|
||||
|
||||
return mask
|
||||
}
|
||||
|
||||
type VisionSelfAttention struct {
|
||||
Query *nn.Linear `gguf:"attn_q"`
|
||||
Key *nn.Linear `gguf:"attn_k"`
|
||||
Value *nn.Linear `gguf:"attn_v"`
|
||||
Output *nn.Linear `gguf:"attn_out"`
|
||||
}
|
||||
|
||||
func (sa *VisionSelfAttention) Forward(ctx ml.Context, hiddenStates, cos, sin, mask ml.Tensor, opts *VisionModelOptions) ml.Tensor {
|
||||
query := sa.Query.Forward(ctx, hiddenStates)
|
||||
key := sa.Key.Forward(ctx, hiddenStates)
|
||||
value := sa.Value.Forward(ctx, hiddenStates)
|
||||
|
||||
query = query.Reshape(ctx, opts.headDim, opts.numHeads, query.Dim(1), batchSize)
|
||||
key = key.Reshape(ctx, opts.headDim, opts.numHeads, key.Dim(1), batchSize)
|
||||
value = value.Reshape(ctx, opts.headDim, opts.numHeads, value.Dim(1), batchSize)
|
||||
|
||||
query = applyRotaryPositionalEmbedding(ctx, query, cos, sin)
|
||||
key = applyRotaryPositionalEmbedding(ctx, key, cos, sin)
|
||||
|
||||
// Scale factor for scaled dot-product attention
|
||||
scale := 1.0 / math.Sqrt(float64(opts.headDim))
|
||||
|
||||
// Scaled dot-product attention
|
||||
query = query.Permute(ctx, 0, 2, 1, 3)
|
||||
key = key.Permute(ctx, 0, 2, 1, 3)
|
||||
value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
|
||||
kq := key.MulmatFullPrec(ctx, query)
|
||||
kq = kq.Scale(ctx, scale)
|
||||
if mask != nil {
|
||||
kq = kq.Add(ctx, mask)
|
||||
}
|
||||
kq = kq.Softmax(ctx)
|
||||
kqv := value.Mulmat(ctx, kq)
|
||||
attention := kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
||||
attention = attention.Reshape(ctx, opts.hiddenSize, attention.Dim(2), batchSize)
|
||||
|
||||
return sa.Output.Forward(ctx, attention)
|
||||
}
|
||||
|
||||
// VisionMLP implements the multi-layer perceptron
|
||||
type VisionMLP struct {
|
||||
Gate *nn.Linear `gguf:"ffn_gate"`
|
||||
Up *nn.Linear `gguf:"ffn_up"`
|
||||
Down *nn.Linear `gguf:"ffn_down"`
|
||||
}
|
||||
|
||||
func (mlp *VisionMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *VisionModelOptions) ml.Tensor {
|
||||
// Using activation as specified in config (likely GELU or SiLU/Swish)
|
||||
gateOutput := mlp.Gate.Forward(ctx, hiddenStates)
|
||||
upOutput := mlp.Up.Forward(ctx, hiddenStates)
|
||||
hiddenStates = gateOutput.SILU(ctx).Mul(ctx, upOutput)
|
||||
|
||||
return mlp.Down.Forward(ctx, hiddenStates)
|
||||
}
|
||||
|
||||
type VisionEncoderLayer struct {
|
||||
Norm1 *nn.RMSNorm `gguf:"ln1"`
|
||||
SelfAttention *VisionSelfAttention
|
||||
Norm2 *nn.RMSNorm `gguf:"ln2"`
|
||||
MLP *VisionMLP
|
||||
}
|
||||
|
||||
func (e *VisionEncoderLayer) Forward(ctx ml.Context, hiddenStates, cos, sin, mask ml.Tensor, opts *VisionModelOptions) ml.Tensor {
|
||||
residual := hiddenStates
|
||||
hiddenStates = e.Norm1.Forward(ctx, hiddenStates, opts.eps)
|
||||
hiddenStates = e.SelfAttention.Forward(ctx, hiddenStates, cos, sin, mask, opts)
|
||||
hiddenStates = hiddenStates.Add(ctx, residual)
|
||||
|
||||
residual = hiddenStates
|
||||
hiddenStates = e.Norm2.Forward(ctx, hiddenStates, opts.eps)
|
||||
hiddenStates = e.MLP.Forward(ctx, hiddenStates, opts)
|
||||
return hiddenStates.Add(ctx, residual)
|
||||
}
|
||||
|
||||
// VisionModelOptions contains configuration options
|
||||
type VisionModelOptions struct {
|
||||
hiddenSize int
|
||||
numHeads int
|
||||
headDim int
|
||||
patchSize int
|
||||
numChannels int
|
||||
eps float32
|
||||
ropeTheta float32
|
||||
spatialMergeSize int
|
||||
windowSize int
|
||||
fullAttnBlocks []int32
|
||||
temporalPatchSize int
|
||||
}
|
||||
|
||||
type PatchEmbedding struct {
|
||||
PatchConv0 *nn.Conv2D `gguf:"patch_embd_0"`
|
||||
PatchConv1 *nn.Conv2D `gguf:"patch_embd_1"`
|
||||
}
|
||||
|
||||
func (pe *PatchEmbedding) Forward(ctx ml.Context, pixelValues ml.Tensor, opts *VisionModelOptions) ml.Tensor {
|
||||
numPatches := pixelValues.Shape()[1]
|
||||
|
||||
// Reshape the input tensor to match the expected dimensions
|
||||
pixelValues = pixelValues.Reshape(ctx, opts.patchSize*opts.patchSize, opts.temporalPatchSize, opts.numChannels, numPatches)
|
||||
|
||||
// Permute the tensor to bring the temporal dimension to the front
|
||||
pixelValues = pixelValues.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
|
||||
|
||||
// Split the tensor into parts for the temporal convolutions
|
||||
in0 := pixelValues.View(ctx, 0, 1, pixelValues.Stride(1), pixelValues.Dim(1), pixelValues.Stride(2), pixelValues.Dim(2), pixelValues.Stride(3), pixelValues.Dim(3)).Contiguous(ctx)
|
||||
in0 = in0.Reshape(ctx, opts.patchSize, opts.patchSize, opts.numChannels, numPatches)
|
||||
in1 := pixelValues.View(ctx, pixelValues.Stride(0), 1, pixelValues.Stride(1), pixelValues.Dim(1), pixelValues.Stride(2), pixelValues.Dim(2), pixelValues.Stride(3), pixelValues.Dim(3)).Contiguous(ctx)
|
||||
in1 = in1.Reshape(ctx, opts.patchSize, opts.patchSize, opts.numChannels, numPatches)
|
||||
|
||||
s0, s1 := opts.patchSize, opts.patchSize // Use full stride
|
||||
p0, p1 := 0, 0 // padding
|
||||
d0, d1 := 1, 1 // dilation
|
||||
out0 := pe.PatchConv0.Forward(ctx, in0, s0, s1, p0, p1, d0, d1)
|
||||
out1 := pe.PatchConv1.Forward(ctx, in1, s0, s1, p0, p1, d0, d1)
|
||||
|
||||
// Add the outputs from the two temporal convolutions
|
||||
out := out0.Add(ctx, out1)
|
||||
|
||||
// Reshape the output tensor to match the expected dimensions
|
||||
return out.Reshape(ctx, opts.hiddenSize, numPatches)
|
||||
}
|
||||
|
||||
// VisionPatchMerger implements patch merging for the Qwen vision model
|
||||
type VisionPatchMerger struct {
|
||||
LNQ *nn.RMSNorm `gguf:"ln_q"`
|
||||
MLP0 *nn.Linear `gguf:"mlp.0"`
|
||||
MLP2 *nn.Linear `gguf:"mlp.2"`
|
||||
}
|
||||
|
||||
// Forward computes patch merging for the vision model
|
||||
func (pm *VisionPatchMerger) Forward(ctx ml.Context, visionOutputs ml.Tensor, opts *VisionModelOptions) ml.Tensor {
|
||||
normalized := pm.LNQ.Forward(ctx, visionOutputs, opts.eps)
|
||||
|
||||
hiddenSize := visionOutputs.Dim(0) * (opts.spatialMergeSize * opts.spatialMergeSize)
|
||||
|
||||
// Reshape the normalized output to view the hidden size dimension
|
||||
reshaped := normalized.Reshape(ctx, hiddenSize, normalized.Dim(1)/(opts.spatialMergeSize*opts.spatialMergeSize), batchSize)
|
||||
hidden := pm.MLP0.Forward(ctx, reshaped)
|
||||
activated := hidden.GELU(ctx)
|
||||
|
||||
output := pm.MLP2.Forward(ctx, activated)
|
||||
|
||||
return output
|
||||
}
|
||||
|
||||
// VisionModel implements the Qwen vision model
|
||||
type VisionModel struct {
|
||||
PatchEmbedding *PatchEmbedding
|
||||
Layers []VisionEncoderLayer `gguf:"blk"`
|
||||
PatchMerger *VisionPatchMerger `gguf:"merger"`
|
||||
|
||||
*VisionModelOptions
|
||||
}
|
||||
|
||||
// Forward computes the vision model for an input tensor
|
||||
func (m *VisionModel) Forward(ctx ml.Context, pixelValues ml.Tensor, grid *Grid) ml.Tensor {
|
||||
// Extract patch embeddings
|
||||
hiddenStates := m.PatchEmbedding.Forward(ctx, pixelValues, m.VisionModelOptions)
|
||||
|
||||
positionEmbedding := m.PositionalEmbedding(ctx, grid)
|
||||
|
||||
windowIndex, bounds := m.WindowIndex(ctx, grid)
|
||||
|
||||
spatialMergeUnit := m.spatialMergeSize * m.spatialMergeSize
|
||||
|
||||
hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0)*spatialMergeUnit, hiddenStates.Dim(1)/spatialMergeUnit)
|
||||
hiddenStates = hiddenStates.Rows(ctx, windowIndex)
|
||||
hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0)/spatialMergeUnit, hiddenStates.Dim(1)*spatialMergeUnit)
|
||||
|
||||
positionEmbedding = positionEmbedding.Reshape(ctx, positionEmbedding.Dim(0)*spatialMergeUnit, positionEmbedding.Dim(1)/spatialMergeUnit)
|
||||
positionEmbedding = positionEmbedding.Rows(ctx, windowIndex)
|
||||
positionEmbedding = positionEmbedding.Reshape(ctx, positionEmbedding.Dim(0)/spatialMergeUnit, positionEmbedding.Dim(1)*spatialMergeUnit)
|
||||
positionEmbedding = positionEmbedding.Concat(ctx, positionEmbedding, 0)
|
||||
|
||||
cos, sin := positionEmbedding.Cos(ctx), positionEmbedding.Sin(ctx)
|
||||
cos = cos.Reshape(ctx, cos.Dim(0), 1, cos.Dim(1))
|
||||
sin = sin.Reshape(ctx, sin.Dim(0), 1, sin.Dim(1))
|
||||
|
||||
mask := blockDiagonalMask(ctx, hiddenStates.Dim(1), bounds, m.VisionModelOptions.numHeads)
|
||||
// Apply encoder layers
|
||||
for i, layer := range m.Layers {
|
||||
if slices.Contains(m.fullAttnBlocks, int32(i)) {
|
||||
hiddenStates = layer.Forward(ctx, hiddenStates, cos, sin, nil, m.VisionModelOptions)
|
||||
} else {
|
||||
hiddenStates = layer.Forward(
|
||||
ctx,
|
||||
hiddenStates,
|
||||
cos,
|
||||
sin,
|
||||
mask,
|
||||
m.VisionModelOptions,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
hiddenStates = m.PatchMerger.Forward(ctx, hiddenStates, m.VisionModelOptions)
|
||||
reverseWindowIndex := windowIndex.Argsort(ctx)
|
||||
return hiddenStates.Rows(ctx, reverseWindowIndex)
|
||||
}
|
||||
|
||||
// WindowIndex divides the grid into windows and returns:
|
||||
// 1. A tensor containing flattened indices of all grid points organized by windows
|
||||
// 2. A slice of boundaries that mark where each window's data begins and ends
|
||||
// in the flattened representation, scaled by spatialMergeSize squared
|
||||
//
|
||||
// The boundaries slice always starts with 0 and contains cumulative ending
|
||||
// positions for each window, allowing downstream processing to identify
|
||||
// window boundaries in the tensor data.
|
||||
func (m *VisionModel) WindowIndex(ctx ml.Context, grid *Grid) (ml.Tensor, []int) {
|
||||
vitMergerWindowSize := m.windowSize / m.spatialMergeSize / m.patchSize
|
||||
|
||||
llmGridH := grid.Height / m.spatialMergeSize
|
||||
llmGridW := grid.Width / m.spatialMergeSize
|
||||
|
||||
// Calculate window parameters
|
||||
numWindowsH := int(math.Ceil(float64(llmGridH) / float64(vitMergerWindowSize)))
|
||||
numWindowsW := int(math.Ceil(float64(llmGridW) / float64(vitMergerWindowSize)))
|
||||
|
||||
// Initialize index_new slice
|
||||
var index []int32
|
||||
|
||||
// Initialize bounds with the first element as 0
|
||||
bounds := []int{0}
|
||||
totalSeqLen := 0
|
||||
|
||||
// Process each window without padding
|
||||
for wh := range numWindowsH {
|
||||
for ww := range numWindowsW {
|
||||
// Calculate window boundaries
|
||||
hStart := wh * vitMergerWindowSize
|
||||
wStart := ww * vitMergerWindowSize
|
||||
hEnd := min(hStart+vitMergerWindowSize, llmGridH)
|
||||
wEnd := min(wStart+vitMergerWindowSize, llmGridW)
|
||||
|
||||
// Calculate sequence length for this window
|
||||
seqLen := (hEnd - hStart) * (wEnd - wStart)
|
||||
|
||||
// Collect indices for this window
|
||||
for h := hStart; h < hEnd; h++ {
|
||||
for w := wStart; w < wEnd; w++ {
|
||||
index = append(index, int32(h*llmGridW+w))
|
||||
}
|
||||
}
|
||||
|
||||
totalSeqLen += seqLen
|
||||
bounds = append(bounds, totalSeqLen*(m.spatialMergeSize*m.spatialMergeSize)+bounds[0])
|
||||
}
|
||||
}
|
||||
|
||||
t, err := ctx.Input().FromIntSlice(index, len(index))
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
return t, bounds
|
||||
}
|
||||
|
||||
// PositionalEmbedding generates rotary position embeddings for attention mechanisms
|
||||
func (m *VisionModel) PositionalEmbedding(ctx ml.Context, grid *Grid) ml.Tensor {
|
||||
dim := m.headDim / 2
|
||||
freq := dim / 2
|
||||
theta := float64(m.ropeTheta)
|
||||
merge := m.spatialMergeSize
|
||||
|
||||
// Create frequency patterns for position encoding
|
||||
maxGridSize := max(grid.Height, grid.Width)
|
||||
freqVals := make([]float32, freq*maxGridSize)
|
||||
for i := range maxGridSize {
|
||||
for j := range freq {
|
||||
freqVals[i*freq+j] = float32(i) / float32(math.Pow(theta, float64(j*2)/float64(dim)))
|
||||
}
|
||||
}
|
||||
freqs, err := ctx.Input().FromFloatSlice(freqVals, freq, maxGridSize)
|
||||
if err != nil {
|
||||
panic(fmt.Errorf("failed to create tensor from frequencies: %w", err))
|
||||
}
|
||||
|
||||
// Create position coordinates (y,x pairs) for the grid
|
||||
// In PyTorch: Equivalent to generating position ids with torch.arange()
|
||||
coords := make([]int32, 0, grid.Height*grid.Width*2)
|
||||
for y := range grid.Height {
|
||||
for x := range grid.Width {
|
||||
coords = append(coords, int32(y), int32(x))
|
||||
}
|
||||
}
|
||||
pos, err := ctx.Input().FromIntSlice(coords, 2, grid.Width, grid.Height)
|
||||
if err != nil {
|
||||
panic(fmt.Errorf("failed to create tensor from positions: %w", err))
|
||||
}
|
||||
|
||||
// Reshape and permute positions to match spatial merging pattern
|
||||
pos = pos.Reshape(ctx, 2, grid.Width, merge, grid.Height/merge)
|
||||
pos = pos.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
||||
pos = pos.Reshape(ctx, 2, merge, merge, grid.Width/merge*grid.Height/merge)
|
||||
pos = pos.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
||||
pos = pos.Reshape(ctx, 2*merge*merge*grid.Width/merge*grid.Height/merge)
|
||||
|
||||
// Use position indices to look up corresponding frequency values
|
||||
positionalEmbedding := freqs.Rows(ctx, pos)
|
||||
positionalEmbedding = positionalEmbedding.Reshape(ctx, positionalEmbedding.Dim(0)*2, positionalEmbedding.Dim(1)/2)
|
||||
return positionalEmbedding
|
||||
}
|
||||
|
||||
// newVisionModel creates a new instance of the Qwen vision model
|
||||
func newVisionModel(c fs.Config) *VisionModel {
|
||||
patchSize := int(c.Uint("vision.patch_size", 14))
|
||||
hiddenSize := int(c.Uint("vision.embedding_length", 1280))
|
||||
numHeads := int(c.Uint("vision.attention.head_count", 16))
|
||||
numChannels := int(c.Uint("vision.num_channels", 3))
|
||||
eps := c.Float("vision.attention.layer_norm_epsilon", 1e-6)
|
||||
ropeTheta := c.Float("vision.rope.freq_base", 10000.0)
|
||||
spatialMergeSize := int(c.Uint("vision.spatial_merge_size", 2))
|
||||
windowSize := int(c.Uint("vision.window_size", 112))
|
||||
fullAttnBlocks := c.Ints("qwen25vl.vision.fullatt_block_indexes", []int32{7, 15, 23, 31})
|
||||
temporalPatchSize := int(c.Uint("vision.temporal_patch_size", 2))
|
||||
|
||||
model := &VisionModel{
|
||||
Layers: make([]VisionEncoderLayer, c.Uint("vision.block_count", 32)),
|
||||
VisionModelOptions: &VisionModelOptions{
|
||||
hiddenSize: hiddenSize,
|
||||
numHeads: numHeads,
|
||||
headDim: hiddenSize / numHeads,
|
||||
patchSize: patchSize,
|
||||
numChannels: numChannels,
|
||||
eps: eps,
|
||||
ropeTheta: ropeTheta,
|
||||
spatialMergeSize: spatialMergeSize,
|
||||
windowSize: windowSize,
|
||||
temporalPatchSize: temporalPatchSize,
|
||||
fullAttnBlocks: fullAttnBlocks,
|
||||
},
|
||||
}
|
||||
|
||||
return model
|
||||
}
|
184
model/models/qwen25vl/process_image.go
Normal file
184
model/models/qwen25vl/process_image.go
Normal file
@ -0,0 +1,184 @@
|
||||
package qwen25vl
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"image"
|
||||
"math"
|
||||
|
||||
"github.com/ollama/ollama/fs"
|
||||
"github.com/ollama/ollama/model/imageproc"
|
||||
)
|
||||
|
||||
// ImageProcessor contains configuration for the Qwen 2.5 VL image processing
|
||||
type ImageProcessor struct {
|
||||
numChannels int
|
||||
patchSize int
|
||||
temporalPatchSize int
|
||||
mergeSize int
|
||||
minPixels int
|
||||
maxPixels int
|
||||
factor int
|
||||
rescaleFactor float32
|
||||
imageMean []float32
|
||||
imageStd []float32
|
||||
}
|
||||
|
||||
// newImageProcessor creates a new image processor with default values
|
||||
func newImageProcessor(c fs.Config) ImageProcessor {
|
||||
patchSize := int(c.Uint("vision.patch_size", 14))
|
||||
mergeSize := int(c.Uint("vision.spatial_merge_size", 2))
|
||||
|
||||
return ImageProcessor{
|
||||
numChannels: int(c.Uint("vision.num_channels", 3)), // not set
|
||||
patchSize: patchSize,
|
||||
temporalPatchSize: 2,
|
||||
mergeSize: mergeSize,
|
||||
minPixels: 56 * 56,
|
||||
maxPixels: int(c.Uint("vision.max_pixels", 28*28*1280)), // 1MP limit
|
||||
factor: patchSize * mergeSize,
|
||||
rescaleFactor: 1.0 / 255.0,
|
||||
imageMean: imageproc.ClipDefaultMean[:],
|
||||
imageStd: imageproc.ClipDefaultSTD[:],
|
||||
}
|
||||
}
|
||||
|
||||
// SmartResize implements the smart resize algorithm
|
||||
func (p *ImageProcessor) SmartResize(height, width int) (int, int) {
|
||||
factor := p.factor
|
||||
|
||||
if height < factor || width < factor {
|
||||
panic(fmt.Sprintf("height:%d or width:%d must be larger than factor:%d", height, width, factor))
|
||||
} else if aspectRatio := max(height, width) / min(height, width); aspectRatio > 200 {
|
||||
panic(fmt.Sprintf("absolute aspect ratio must be smaller than 200, got %v", aspectRatio))
|
||||
}
|
||||
|
||||
round := func(x float64) int { return int(math.RoundToEven(x)) }
|
||||
|
||||
hBar := round(float64(height)/float64(factor)) * factor
|
||||
wBar := round(float64(width)/float64(factor)) * factor
|
||||
|
||||
if hBar*wBar > p.maxPixels {
|
||||
beta := math.Sqrt(float64(height*width) / float64(p.maxPixels))
|
||||
|
||||
hBar = int(math.Floor(float64(height)/beta/float64(factor))) * factor
|
||||
wBar = int(math.Floor(float64(width)/beta/float64(factor))) * factor
|
||||
} else if hBar*wBar < p.minPixels {
|
||||
beta := math.Sqrt(float64(p.minPixels) / float64(height*width))
|
||||
|
||||
hBar = int(math.Ceil(float64(height)*beta/float64(factor))) * factor
|
||||
wBar = int(math.Ceil(float64(width)*beta/float64(factor))) * factor
|
||||
}
|
||||
|
||||
return hBar, wBar
|
||||
}
|
||||
|
||||
type Grid struct {
|
||||
Height int
|
||||
Width int
|
||||
Temporal int
|
||||
}
|
||||
|
||||
func (p *ImageProcessor) ProcessImage(img image.Image) ([]float32, *Grid, error) {
|
||||
origWidth := img.Bounds().Dx()
|
||||
origHeight := img.Bounds().Dy()
|
||||
|
||||
// Calculate smart resize dimensions
|
||||
resizedHeight, resizedWidth := p.SmartResize(origHeight, origWidth)
|
||||
|
||||
// Resize image using existing functions
|
||||
resizedImg := imageproc.Resize(img, image.Point{X: resizedWidth, Y: resizedHeight}, imageproc.ResizeBilinear)
|
||||
|
||||
normalizedPixels := imageproc.Normalize(
|
||||
resizedImg,
|
||||
[3]float32{p.imageMean[0], p.imageMean[1], p.imageMean[2]},
|
||||
[3]float32{p.imageStd[0], p.imageStd[1], p.imageStd[2]},
|
||||
true, // rescale
|
||||
true, // channelFirst
|
||||
)
|
||||
|
||||
// Calculate grid dimensions
|
||||
grid := &Grid{
|
||||
Height: resizedHeight / p.patchSize,
|
||||
Width: resizedWidth / p.patchSize,
|
||||
Temporal: 1, // For single images, temporal dimension is 1
|
||||
}
|
||||
|
||||
patches, err := p.createPatches(normalizedPixels, resizedHeight, resizedWidth, grid)
|
||||
if err != nil {
|
||||
return nil, nil, fmt.Errorf("failed to create patches: %v", err)
|
||||
}
|
||||
|
||||
// Return patches and grid dimensions
|
||||
return patches, grid, nil
|
||||
}
|
||||
|
||||
func (p *ImageProcessor) createPatches(pixels []float32, height, width int, grid *Grid) ([]float32, error) {
|
||||
channels := p.numChannels
|
||||
patchSize := p.patchSize
|
||||
mergeSize := p.mergeSize
|
||||
temporalPatchSize := p.temporalPatchSize
|
||||
|
||||
// Calculate output dimensions
|
||||
numPatches := grid.Temporal * grid.Height * grid.Width
|
||||
patchDim := channels * temporalPatchSize * patchSize * patchSize
|
||||
|
||||
result := make([]float32, numPatches*patchDim)
|
||||
patchIndex := 0
|
||||
|
||||
// Single temporal frame handling (copies to all frames)
|
||||
for range grid.Temporal {
|
||||
for h := 0; h < grid.Height; h += mergeSize {
|
||||
for w := 0; w < grid.Width; w += mergeSize {
|
||||
// Handle the 2x2 merged patches
|
||||
for mh := range mergeSize {
|
||||
for mw := range mergeSize {
|
||||
baseOffset := patchIndex * patchDim
|
||||
|
||||
// Extract patch data for first temporal frame
|
||||
for c := range channels {
|
||||
channelOffset := baseOffset + (c * temporalPatchSize * patchSize * patchSize)
|
||||
|
||||
for py := range patchSize {
|
||||
for px := range patchSize {
|
||||
// Calculate source pixel coordinates
|
||||
y := (h+mh)*patchSize + py
|
||||
x := (w+mw)*patchSize + px
|
||||
|
||||
// Source index in input tensor (CHW format)
|
||||
srcIdx := c*height*width + y*width + x
|
||||
|
||||
// Destination index in first temporal frame
|
||||
dstIdx := channelOffset + (py * patchSize) + px
|
||||
|
||||
if srcIdx < len(pixels) && dstIdx < len(result) {
|
||||
result[dstIdx] = pixels[srcIdx]
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Copy first temporal frame to all other frames
|
||||
if temporalPatchSize > 1 {
|
||||
for c := range channels {
|
||||
channelOffset := baseOffset + (c * temporalPatchSize * patchSize * patchSize)
|
||||
firstFrameOffset := channelOffset
|
||||
frameSize := patchSize * patchSize
|
||||
|
||||
// Copy first frame to all other frames
|
||||
for tp := 1; tp < temporalPatchSize; tp++ {
|
||||
currentFrameOffset := channelOffset + (tp * frameSize)
|
||||
copy(result[currentFrameOffset:currentFrameOffset+frameSize],
|
||||
result[firstFrameOffset:firstFrameOffset+frameSize])
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
patchIndex++
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return result, nil
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user