Compare commits

...

56 Commits

Author SHA1 Message Date
Bruce MacDonald
0aa8b371dd
model: add Qwen2.5-VL support (#10385) 2025-05-13 20:58:02 -07:00
Michael Yang
23125648b8
chore: update mllama to use ollama engine (#10637) 2025-05-13 17:36:02 -07:00
tej
0478d440f0
Fixed over vram allcation dure to small initial layer sizes.
Co-authored-by: Tej Kiran <kiran.tej@amd.com>
Co-authored-by: Michael Yang <mxyng@pm.me>
Co-authored-by: Tej Kiran <itej89@gmailcom>
2025-05-13 16:42:39 -07:00
Parth Sareen
8cc33f4c2b
llama: fix memory leak for grammar (#10696) 2025-05-13 15:39:27 -07:00
Jeffrey Morgan
f46df4e5d2
llama: fix defrag patch to defragment when no slots are available (#10695) 2025-05-13 14:02:08 -07:00
Daniel Hiltgen
c6bcdc4223
Revert "remove cuda v11 (#10569)" (#10692)
Bring back v11 until we can better warn users that their driver
is too old.

This reverts commit fa393554b927f154145488c852297a2330cb5f13.
2025-05-13 13:12:54 -07:00
Jeffrey Morgan
4b903f088a
llama: fix crash on snowflake embedding model (#10690) 2025-05-13 13:11:11 -07:00
Jeffrey Morgan
c7f4ae7b9c
server: add webp image input support (#10653) 2025-05-12 20:41:42 -07:00
Michael Yang
526b2ed102
fix vocabulary (#10679) 2025-05-12 17:29:46 -07:00
Bruce MacDonald
a7240c6d63
models: remove unused qwen2vl processing (#10677) 2025-05-12 16:08:42 -07:00
Daniel Hiltgen
9d6df90805
Follow up to #10363 (#10647)
The quantization PR didn't block all unsupported file types,
which this PR fixes.  It also updates the API docs to reflect
the now reduced set of supported types.
2025-05-12 15:23:31 -07:00
Jeffrey Morgan
0cefd46f23
llama: update to commit de4c07f93 (#10655) 2025-05-12 12:17:26 -07:00
Bruce MacDonald
ad035ad595
convert: quantize from safetensors needs kv (#10675)
When creating a quantized model from safetensors we
need the array KV values to be loaded.Changing this
value to -1 loads the KV values on the returned
layer to be used and saved during quantization.
2025-05-12 12:04:20 -07:00
Michael Yang
f95a1f2bef
feat: add trace log level (#10650)
reduce prompt log to trace level
2025-05-12 11:43:00 -07:00
HardCodeDev
82a9e9462a
readme: add UnityCodeLama to community integrations (#10665) 2025-05-11 13:44:51 -07:00
HardCodeDev
76724e2f29
readme: add OllamaPlusPlus C++ library to community integrations (#10664) 2025-05-11 13:40:41 -07:00
frob
ecf14a220f
llama: allocate grammar buffer based on schema length (#10649) 2025-05-10 11:57:30 -07:00
frob
69ce44b33c
envconfig: Remove no longer supported max vram var (#10623)
Co-authored-by: Richard Lyons <frob@cloudstaff.com>
2025-05-10 11:31:04 -07:00
Michael Yang
5969674cf1
feat: add threshold to dump options (#10639)
ml.Dump will preserve default values if not specified
2025-05-10 11:27:15 -07:00
AliAhmedNada
867d75b21e
readme: add ojira to community integrations (#10648) 2025-05-10 10:36:40 -07:00
Bruce MacDonald
3fa78598a1
cmd: strip single quotes from image page (#10636) 2025-05-09 18:05:43 -07:00
Michael Yang
0d6e35d3c6
fix: stream accumulator exits early (#10593)
the stream accumulator exits as soon as it sees `api.ProgressResponse(status="success")` which isn't strictly correctly
since some requests may have multiple successes, e.g. `/api/create` when the source model needs to be pulled.
2025-05-08 13:17:30 -07:00
Michael Yang
6e9a7a2568
lint: enable usetesting, disable tenv (#10594) 2025-05-08 11:42:14 -07:00
Michael Yang
b585a58121
chore: remove unused ZipReader type (#10621) 2025-05-08 11:17:41 -07:00
Jeffrey Morgan
fa9973cd7f
api: remove unused sampling parameters (#10581) 2025-05-08 08:31:08 -07:00
Jesse Gross
3d9498a425 ollamarunner: Use correct constant to remove cache entries
The correct constant to remove all entries to the end of the sequence
for the Ollama engine is math.MaxInt32. -1 is used by the old engine.

The impact of this is currently minimal because it would only occur
in situations that are not supported by the implemented models or
rarely used options.
2025-05-07 17:26:15 -07:00
Daniel Hiltgen
3098c8b29b
CI: trigger downstream release process (#10508) 2025-05-07 10:35:12 -07:00
Daniel Hiltgen
5e380c3b42
sched: fix race leading to orphaned runners (#10599)
If a model is loading, and the request context is canceled during the load
by a client closing the connection, and another request is inbound for the
same model with a different configuration (context size, etc.) thus requiring
a reload, two unload events can be in flight.  The first shuts down the
original model load, but the second one caused the loss of the new
reloading runner reference, thus triggering the leak.

The primary fix is detecting the duplicate unload and ignoring the second
instance.  The load routine is also hardened to ensure we detect
clobbering an already present runner and unload it with a warning.
2025-05-07 09:38:17 -07:00
Jeffrey Morgan
392de84031
api: remove unused RetrieveModelResponse type (#10603) 2025-05-06 23:08:03 -07:00
Daniel Hiltgen
af31ccefc0
fix data race in WriteGGUF (#10598)
err in the go routine should not be shared with the outer scope
2025-05-06 17:36:38 -07:00
Daniel Hiltgen
fa393554b9
remove cuda v11 (#10569)
This reduces the size of our Windows installer payloads by ~256M by dropping
support for nvidia drivers older than Feb 2023.  Hardware support is unchanged.

Linux default bundle sizes are reduced by ~600M to 1G.
2025-05-06 17:33:19 -07:00
Aharon Bensadoun
307e3b3e1d
readme: add Flufy to community integrations (#9719) 2025-05-06 14:47:35 -07:00
Devon Rifkin
4090aca97b
server: send 405 instead of 404 for unallowed methods (#10275)
Fixes: #5483
2025-05-06 14:45:37 -07:00
Michael Yang
92ce438de0
server: remove internal cmd (#10595) 2025-05-06 13:05:01 -07:00
Daniel Hiltgen
424810450f
Move quantization to new backend (#10363)
* Move quantization logic to GGML via new backend

This moves the model aware logic to Go code and calls GGMLs quantization code for model creation.

* Remove "add model quantizations"

This is no longer needed now that quantization is implemented in Go+GGML code directly.
2025-05-06 11:20:48 -07:00
Michael Yang
95e744beeb
discover: fix compiler warnings (#10572) 2025-05-06 10:49:22 -07:00
Jeffrey Morgan
3b2d2c8326
api: remove unused or unsupported api options (#10574)
Some options listed in api/types.go are not supported in
newer models, or have been deprecated in the past. This is
the first of a series of PRs to clean up the API options
2025-05-05 14:54:40 -07:00
Michael Yang
d931ee8f22
create blobs in parallel (#10135)
* default max term height
* error on out of tree files
2025-05-05 11:59:26 -07:00
Jesse Gross
7073600797 ggml: Reduce log level of "key not found"
Most of the time this is not an error.
2025-05-05 11:17:32 -07:00
Daniel Hiltgen
b1c40138da
win: lint fix (#10571) 2025-05-05 11:08:12 -07:00
Ashok Gelal
17466217e5
Hide empty terminal window (#8668)
This hides the LlamaServer blank window when chatting outside of the terminal (say like with an app like Msty). This has no other side effects when invoking it the regular way.
2025-05-05 09:06:46 -07:00
Jeffrey Morgan
1703d1472e
server: fix panic when runner.Options is nil (#10566) 2025-05-05 09:01:33 -07:00
Jeffrey Morgan
913905028b
all: fix cgo compiler warnings on windows (#10563) 2025-05-05 08:02:39 -07:00
湛露先生
7e5c8eee5c
file close check and close. (#10554)
Signed-off-by: zhanluxianshen <zhanluxianshen@163.com>
2025-05-04 15:37:59 -07:00
Daniel Hiltgen
6a74bba7e7
win: ensure ollama paths come first (#10549)
For all search path env vars make sure our dirs are first
to avoid potentially finding other incompatible libraries
on the users system.

Also fixes a minor build script glitch for windows rocm
2025-05-03 13:11:48 -07:00
Daniel Hiltgen
76ea735aaf
sched: logging improvements (#10550)
This enhances our logging in the scheduler.  The initial "waiting for server" log
no longer claims an initial error state (now "not responding" which better reflects
the actual state).  Runners now have slog wiring to report more details about the
runner, including PID.
2025-05-03 12:01:56 -07:00
aritra saha
dd1d4e99e7
readme: add llama 4 models (#10530) 2025-05-02 19:45:02 -07:00
Jesse Gross
a6ef73f4f2 ggml: Fix race that resulted in "context canceled" when loading
Successfully completing processing with an errgroup cancels the
associated context. However, we also have a goroutine that is checking
for cancelation of the context. As a result, there is a race where
the goroutine can pick up the cancelation and report an error,
replacing the sucessful error message.

To avoid that, this replaces the goroutine with a cancelation check
when we are reading files. This also has the advantage of stopping
all reads relatively quickly on error and also ensuring that there are
no outstanding I/O operations when we return in this case.

The downside is that if a file read blocks forever (for example, over
the network) then cancelation of the context effectively won't be
honored. However, this is also true for other smaller files we read
and the tensors are read in small chunks (128K), so it's consistent
and better on balance overall.
2025-05-02 13:43:25 -07:00
Jesse Gross
c2f5d6662b ollamarunner: Re-enable worst case graph preallocation.
Worst case graph preallocation was disabled by a27462b
"ollamarunner: Temporarily disable worst case graph preallocation"
since it caused crashes with large batches when not using the GPU.

This backports upstream llama.cpp commit f057808
"ggml: Don't assert fail when tensor data changes (#13222)", which
fixes the underlying bug and allows reverting the previous workaround.
2025-05-02 12:22:47 -07:00
Harsh Nevse
57fb759f3c
readme: update link to langchain in community integrations (#10465) 2025-05-01 23:08:51 -07:00
Jeffrey Morgan
8dd12c873d
llama: update to commit e1e8e099 (#10513) 2025-05-01 18:24:09 -07:00
frob
e6d2d04121
image: add vision capability for projector-based models (#10509)
Co-authored-by: Richard Lyons <frob@cloudstaff.com>
2025-05-01 16:50:20 -07:00
Jesse Gross
074bac8447 kvcache: Log batch size if we can't find a slot
In some cases, we can't find a cache slot when using sliding window
attention. It would be helpful in this (and other cases) to know what
the batch size is.

Bug #10127
2025-05-01 16:26:36 -07:00
Jesse Gross
8e8f2c6d67 ollamarunner: Fix memory leak when processing images
The context (and therefore associated input tensors) was not being
properly closed when images were being processed. We were trying to
close them but in reality we were closing over an empty list, preventing
anything from actually being freed.

Fixes #10434
2025-05-01 15:15:24 -07:00
AliAhmedNada
938e8447e8
readme: add Jirapt project to community integrations (#10522) 2025-05-01 14:49:47 -07:00
aritra saha
d5d5f0c445
readme: change granite3.2 to granite3.3 (#10525)
Update the list for readme
2025-05-01 14:46:09 -07:00
252 changed files with 17601 additions and 13155 deletions

View File

@ -432,6 +432,22 @@ jobs:
docker buildx imagetools inspect ollama/ollama:${{ steps.metadata.outputs.version }}
working-directory: ${{ runner.temp }}
# Trigger downstream release process
trigger:
runs-on: ubuntu-latest
environment: release
needs: [darwin-build, windows-build, windows-depends]
steps:
- name: Trigger downstream release process
run: |
curl -L \
-X POST \
-H "Accept: application/vnd.github+json" \
-H "Authorization: Bearer ${{ secrets.RELEASE_TOKEN }}" \
-H "X-GitHub-Api-Version: 2022-11-28" \
https://api.github.com/repos/ollama/${{ vars.RELEASE_REPO }}/dispatches \
-d "{\"event_type\": \"trigger-workflow\", \"client_payload\": {\"run_id\": \"${GITHUB_RUN_ID}\", \"version\": \"${GITHUB_REF_NAME#v}\"}}"
# Aggregate all the assets and ship a release
release:
needs: [darwin-sign, windows-sign, linux-build]

View File

@ -19,8 +19,8 @@ linters:
- nolintlint
- nosprintfhostport
- staticcheck
- tenv
- unconvert
- usetesting
- wastedassign
- whitespace
disable:

View File

@ -1,6 +1,6 @@
UPSTREAM=https://github.com/ggerganov/llama.cpp.git
WORKDIR=llama/vendor
FETCH_HEAD=2016f07bd106c73699ecbaace80f55db5ed95dac
FETCH_HEAD=de4c07f93783a1a96456a44dc16b9db538ee1618
.PHONY: help
help:
@ -15,11 +15,13 @@ help:
@echo " make -f $(lastword $(MAKEFILE_LIST)) clean sync"
.PHONY: sync
sync: llama/build-info.cpp llama/llama.cpp ml/backend/ggml/ggml
sync: llama/build-info.cpp ml/backend/ggml/ggml/src/ggml-metal/ggml-metal-embed.metal
.PHONY: llama/build-info.cpp
llama/build-info.cpp: llama/build-info.cpp.in
sed -e 's|@FETCH_HEAD@|$(FETCH_HEAD)|' $< > $@
llama/build-info.cpp: llama/build-info.cpp.in llama/llama.cpp
sed -e 's|@FETCH_HEAD@|$(FETCH_HEAD)|' <$< >$@
ml/backend/ggml/ggml/src/ggml-metal/ggml-metal-embed.metal: ml/backend/ggml/ggml
go generate ./$(@D)
.PHONY: llama/llama.cpp
llama/llama.cpp: llama/vendor/
@ -30,12 +32,13 @@ ml/backend/ggml/ggml: llama/vendor/ggml/
rsync -arvzc -f "merge $@/.rsync-filter" $< $@
PATCHES=$(wildcard llama/patches/*.patch)
PATCHED=$(join $(dir $(PATCHES)), $(addsuffix ed, $(addprefix ., $(notdir $(PATCHES)))))
.PHONY: apply-patches
.NOTPARALLEL:
apply-patches: $(addsuffix ed, $(PATCHES))
apply-patches: $(PATCHED)
%.patched: %.patch
llama/patches/.%.patched: llama/patches/%.patch
@if git -c user.name=nobody -c 'user.email=<>' -C $(WORKDIR) am -3 $(realpath $<); then touch $@; else git -C $(WORKDIR) am --abort; exit 1; fi
.PHONY: checkout
@ -57,4 +60,4 @@ format-patches: llama/patches
.PHONE: clean
clean: checkout
$(RM) $(addsuffix ed, $(PATCHES))
$(RM) llama/patches/.*.patched

View File

@ -61,6 +61,8 @@ Here are some example models that can be downloaded:
| QwQ | 32B | 20GB | `ollama run qwq` |
| DeepSeek-R1 | 7B | 4.7GB | `ollama run deepseek-r1` |
| DeepSeek-R1 | 671B | 404GB | `ollama run deepseek-r1:671b` |
| Llama 4 | 109B | 67GB | `ollama run llama4:scout` |
| Llama 4 | 400B | 245GB | `ollama run llama4:maverick` |
| Llama 3.3 | 70B | 43GB | `ollama run llama3.3` |
| Llama 3.2 | 3B | 2.0GB | `ollama run llama3.2` |
| Llama 3.2 | 1B | 1.3GB | `ollama run llama3.2:1b` |
@ -77,7 +79,7 @@ Here are some example models that can be downloaded:
| Code Llama | 7B | 3.8GB | `ollama run codellama` |
| Llama 2 Uncensored | 7B | 3.8GB | `ollama run llama2-uncensored` |
| LLaVA | 7B | 4.5GB | `ollama run llava` |
| Granite-3.2 | 8B | 4.9GB | `ollama run granite3.2` |
| Granite-3.3 | 8B | 4.9GB | `ollama run granite3.3` |
> [!NOTE]
> You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
@ -312,6 +314,8 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Ollama Basic Chat: Uses HyperDiv Reactive UI](https://github.com/rapidarchitect/ollama_basic_chat)
- [Ollama-chats RPG](https://github.com/drazdra/ollama-chats)
- [IntelliBar](https://intellibar.app/) (AI-powered assistant for macOS)
- [Jirapt](https://github.com/AliAhmedNada/jirapt) (Jira Integration to generate issues, tasks, epics)
- [ojira](https://github.com/AliAhmedNada/ojira) (Jira chrome plugin to easily generate descriptions for tasks)
- [QA-Pilot](https://github.com/reid41/QA-Pilot) (Interactive chat tool that can leverage Ollama models for rapid understanding and navigation of GitHub code repositories)
- [ChatOllama](https://github.com/sugarforever/chat-ollama) (Open Source Chatbot based on Ollama with Knowledge Bases)
- [CRAG Ollama Chat](https://github.com/Nagi-ovo/CRAG-Ollama-Chat) (Simple Web Search with Corrective RAG)
@ -394,6 +398,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [1Panel](https://github.com/1Panel-dev/1Panel/) (Web-based Linux Server Management Tool)
- [AstrBot](https://github.com/Soulter/AstrBot/) (User-friendly LLM-based multi-platform chatbot with a WebUI, supporting RAG, LLM agents, and plugins integration)
- [Reins](https://github.com/ibrahimcetin/reins) (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)
- [Flufy](https://github.com/Aharon-Bensadoun/Flufy) (A beautiful chat interface for interacting with Ollama's API. Built with React, TypeScript, and Material-UI.)
- [Ellama](https://github.com/zeozeozeo/ellama) (Friendly native app to chat with an Ollama instance)
- [screenpipe](https://github.com/mediar-ai/screenpipe) Build agents powered by your screen history
- [Ollamb](https://github.com/hengkysteen/ollamb) (Simple yet rich in features, cross-platform built with Flutter and designed for Ollama. Try the [web demo](https://hengkysteen.github.io/demo/ollamb/).)
@ -469,7 +474,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
### Libraries
- [LangChain](https://python.langchain.com/docs/integrations/llms/ollama) and [LangChain.js](https://js.langchain.com/docs/integrations/chat/ollama/) with [example](https://js.langchain.com/docs/tutorials/local_rag/)
- [LangChain](https://python.langchain.com/docs/integrations/chat/ollama/) and [LangChain.js](https://js.langchain.com/docs/integrations/chat/ollama/) with [example](https://js.langchain.com/docs/tutorials/local_rag/)
- [Firebase Genkit](https://firebase.google.com/docs/genkit/plugins/ollama)
- [crewAI](https://github.com/crewAIInc/crewAI)
- [Yacana](https://remembersoftwares.github.io/yacana/) (User-friendly multi-agent framework for brainstorming and executing predetermined flows with built-in tool integration)
@ -522,6 +527,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Abso](https://github.com/lunary-ai/abso) (OpenAI-compatible TypeScript SDK for any LLM provider)
- [Nichey](https://github.com/goodreasonai/nichey) is a Python package for generating custom wikis for your research topic
- [Ollama for D](https://github.com/kassane/ollama-d)
- [OllamaPlusPlus](https://github.com/HardCodeDev777/OllamaPlusPlus) (Very simple C++ library for Ollama)
### Mobile
@ -578,6 +584,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Simple-Discord-AI](https://github.com/zyphixor/simple-discord-ai)
- [LLM Telegram Bot](https://github.com/innightwolfsleep/llm_telegram_bot) (telegram bot, primary for RP. Oobabooga-like buttons, [A1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui) API integration e.t.c)
- [mcp-llm](https://github.com/sammcj/mcp-llm) (MCP Server to allow LLMs to call other LLMs)
- [UnityCodeLama](https://github.com/HardCodeDev777/UnityCodeLama) (Unity Edtior tool to analyze scripts via Ollama)
### Supported backends

View File

@ -1,7 +1,6 @@
package api
import (
"context"
"encoding/json"
"fmt"
"net/http"
@ -137,7 +136,7 @@ func TestClientStream(t *testing.T) {
client := NewClient(&url.URL{Scheme: "http", Host: ts.Listener.Addr().String()}, http.DefaultClient)
var receivedChunks []ChatResponse
err := client.stream(context.Background(), http.MethodPost, "/v1/chat", nil, func(chunk []byte) error {
err := client.stream(t.Context(), http.MethodPost, "/v1/chat", nil, func(chunk []byte) error {
var resp ChatResponse
if err := json.Unmarshal(chunk, &resp); err != nil {
return fmt.Errorf("failed to unmarshal chunk: %w", err)
@ -223,7 +222,7 @@ func TestClientDo(t *testing.T) {
ID string `json:"id"`
Success bool `json:"success"`
}
err := client.do(context.Background(), http.MethodPost, "/v1/messages", nil, &resp)
err := client.do(t.Context(), http.MethodPost, "/v1/messages", nil, &resp)
if tc.wantErr != "" {
if err == nil {

View File

@ -271,9 +271,6 @@ type Options struct {
RepeatPenalty float32 `json:"repeat_penalty,omitempty"`
PresencePenalty float32 `json:"presence_penalty,omitempty"`
FrequencyPenalty float32 `json:"frequency_penalty,omitempty"`
Mirostat int `json:"mirostat,omitempty"`
MirostatTau float32 `json:"mirostat_tau,omitempty"`
MirostatEta float32 `json:"mirostat_eta,omitempty"`
Stop []string `json:"stop,omitempty"`
}
@ -283,12 +280,7 @@ type Runner struct {
NumBatch int `json:"num_batch,omitempty"`
NumGPU int `json:"num_gpu,omitempty"`
MainGPU int `json:"main_gpu,omitempty"`
LowVRAM bool `json:"low_vram,omitempty"`
F16KV bool `json:"f16_kv,omitempty"` // Deprecated: This option is ignored
LogitsAll bool `json:"logits_all,omitempty"`
VocabOnly bool `json:"vocab_only,omitempty"`
UseMMap *bool `json:"use_mmap,omitempty"`
UseMLock bool `json:"use_mlock,omitempty"`
NumThread int `json:"num_thread,omitempty"`
}
@ -471,13 +463,6 @@ type ProcessModelResponse struct {
SizeVRAM int64 `json:"size_vram"`
}
type RetrieveModelResponse struct {
Id string `json:"id"`
Object string `json:"object"`
Created int64 `json:"created"`
OwnedBy string `json:"owned_by"`
}
type TokenResponse struct {
Token string `json:"token"`
}
@ -660,9 +645,6 @@ func DefaultOptions() Options {
RepeatPenalty: 1.1,
PresencePenalty: 0.0,
FrequencyPenalty: 0.0,
Mirostat: 0,
MirostatTau: 5.0,
MirostatEta: 0.1,
Seed: -1,
Runner: Runner{
@ -671,8 +653,6 @@ func DefaultOptions() Options {
NumBatch: 512,
NumGPU: -1, // -1 here indicates that NumGPU should be set dynamically
NumThread: 0, // let the runtime decide
LowVRAM: false,
UseMLock: false,
UseMMap: nil,
},
}

View File

@ -4,20 +4,14 @@ import (
"fmt"
"log/slog"
"os"
"path/filepath"
"strconv"
"strings"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/logutil"
)
func InitLogging() {
level := slog.LevelInfo
if envconfig.Debug() {
level = slog.LevelDebug
}
var logFile *os.File
var err error
// Detect if we're a GUI app on windows, and if not, send logs to console
@ -33,20 +27,8 @@ func InitLogging() {
return
}
}
handler := slog.NewTextHandler(logFile, &slog.HandlerOptions{
Level: level,
AddSource: true,
ReplaceAttr: func(_ []string, attr slog.Attr) slog.Attr {
if attr.Key == slog.SourceKey {
source := attr.Value.Any().(*slog.Source)
source.File = filepath.Base(source.File)
}
return attr
},
})
slog.SetDefault(slog.New(handler))
slog.SetDefault(logutil.NewLogger(logFile, envconfig.LogLevel()))
slog.Info("ollama app started")
}

View File

@ -78,7 +78,7 @@ func BenchmarkColdStart(b *testing.B) {
for _, tt := range tests {
b.Run(fmt.Sprintf("%s/cold/%s", m, tt.name), func(b *testing.B) {
ctx := context.Background()
ctx := b.Context()
// Set number of tokens as our throughput metric
b.SetBytes(int64(tt.maxTokens))
@ -113,7 +113,7 @@ func BenchmarkWarmStart(b *testing.B) {
for _, tt := range tests {
b.Run(fmt.Sprintf("%s/warm/%s", m, tt.name), func(b *testing.B) {
ctx := context.Background()
ctx := b.Context()
// Pre-warm the model
warmup(client, m, tt.prompt, b)
@ -140,7 +140,7 @@ func setup(b *testing.B) *api.Client {
if err != nil {
b.Fatal(err)
}
if _, err := client.Show(context.Background(), &api.ShowRequest{Model: modelName(b)}); err != nil {
if _, err := client.Show(b.Context(), &api.ShowRequest{Model: modelName(b)}); err != nil {
b.Fatalf("Model unavailable: %v", err)
}

View File

@ -31,6 +31,7 @@ import (
"github.com/olekukonko/tablewriter"
"github.com/spf13/cobra"
"golang.org/x/crypto/ssh"
"golang.org/x/sync/errgroup"
"golang.org/x/term"
"github.com/ollama/ollama/api"
@ -41,6 +42,7 @@ import (
"github.com/ollama/ollama/runner"
"github.com/ollama/ollama/server"
"github.com/ollama/ollama/types/model"
"github.com/ollama/ollama/types/syncmap"
"github.com/ollama/ollama/version"
)
@ -106,7 +108,7 @@ func CreateHandler(cmd *cobra.Command, args []string) error {
}
spinner.Stop()
req.Name = args[0]
req.Model = args[0]
quantize, _ := cmd.Flags().GetString("quantize")
if quantize != "" {
req.Quantize = quantize
@ -117,34 +119,54 @@ func CreateHandler(cmd *cobra.Command, args []string) error {
return err
}
if len(req.Files) > 0 {
fileMap := map[string]string{}
for f, digest := range req.Files {
var g errgroup.Group
g.SetLimit(max(runtime.GOMAXPROCS(0)-1, 1))
files := syncmap.NewSyncMap[string, string]()
for f, digest := range req.Files {
g.Go(func() error {
if _, err := createBlob(cmd, client, f, digest, p); err != nil {
return err
}
fileMap[filepath.Base(f)] = digest
}
req.Files = fileMap
// TODO: this is incorrect since the file might be in a subdirectory
// instead this should take the path relative to the model directory
// but the current implementation does not allow this
files.Store(filepath.Base(f), digest)
return nil
})
}
if len(req.Adapters) > 0 {
fileMap := map[string]string{}
for f, digest := range req.Adapters {
adapters := syncmap.NewSyncMap[string, string]()
for f, digest := range req.Adapters {
g.Go(func() error {
if _, err := createBlob(cmd, client, f, digest, p); err != nil {
return err
}
fileMap[filepath.Base(f)] = digest
}
req.Adapters = fileMap
// TODO: same here
adapters.Store(filepath.Base(f), digest)
return nil
})
}
if err := g.Wait(); err != nil {
return err
}
req.Files = files.Items()
req.Adapters = adapters.Items()
bars := make(map[string]*progress.Bar)
fn := func(resp api.ProgressResponse) error {
if resp.Digest != "" {
bar, ok := bars[resp.Digest]
if !ok {
bar = progress.NewBar(fmt.Sprintf("pulling %s...", resp.Digest[7:19]), resp.Total, resp.Completed)
msg := resp.Status
if msg == "" {
msg = fmt.Sprintf("pulling %s...", resp.Digest[7:19])
}
bar = progress.NewBar(msg, resp.Total, resp.Completed)
bars[resp.Digest] = bar
p.Add(resp.Digest, bar)
}
@ -213,7 +235,7 @@ func createBlob(cmd *cobra.Command, client *api.Client, path string, digest stri
}
}()
if err = client.CreateBlob(cmd.Context(), digest, io.TeeReader(bin, &pw)); err != nil {
if err := client.CreateBlob(cmd.Context(), digest, io.TeeReader(bin, &pw)); err != nil {
return "", err
}
return digest, nil

View File

@ -2,7 +2,6 @@ package cmd
import (
"bytes"
"context"
"encoding/json"
"io"
"net/http"
@ -337,7 +336,7 @@ func TestDeleteHandler(t *testing.T) {
t.Cleanup(mockServer.Close)
cmd := &cobra.Command{}
cmd.SetContext(context.TODO())
cmd.SetContext(t.Context())
if err := DeleteHandler(cmd, []string{"test-model"}); err != nil {
t.Fatalf("DeleteHandler failed: %v", err)
}
@ -399,11 +398,6 @@ func TestGetModelfileName(t *testing.T) {
var expectedFilename string
if tt.fileExists {
tempDir, err := os.MkdirTemp("", "modelfiledir")
defer os.RemoveAll(tempDir)
if err != nil {
t.Fatalf("temp modelfile dir creation failed: %v", err)
}
var fn string
if tt.modelfileName != "" {
fn = tt.modelfileName
@ -411,7 +405,7 @@ func TestGetModelfileName(t *testing.T) {
fn = "Modelfile"
}
tempFile, err := os.CreateTemp(tempDir, fn)
tempFile, err := os.CreateTemp(t.TempDir(), fn)
if err != nil {
t.Fatalf("temp modelfile creation failed: %v", err)
}
@ -530,7 +524,7 @@ func TestPushHandler(t *testing.T) {
cmd := &cobra.Command{}
cmd.Flags().Bool("insecure", false, "")
cmd.SetContext(context.TODO())
cmd.SetContext(t.Context())
// Redirect stderr to capture progress output
oldStderr := os.Stderr
@ -635,7 +629,7 @@ func TestListHandler(t *testing.T) {
t.Setenv("OLLAMA_HOST", mockServer.URL)
cmd := &cobra.Command{}
cmd.SetContext(context.TODO())
cmd.SetContext(t.Context())
// Capture stdout
oldStdout := os.Stdout
@ -690,7 +684,7 @@ func TestCreateHandler(t *testing.T) {
return
}
if req.Name != "test-model" {
if req.Model != "test-model" {
t.Errorf("expected model name 'test-model', got %s", req.Name)
}
@ -730,7 +724,7 @@ func TestCreateHandler(t *testing.T) {
}))
t.Setenv("OLLAMA_HOST", mockServer.URL)
t.Cleanup(mockServer.Close)
tempFile, err := os.CreateTemp("", "modelfile")
tempFile, err := os.CreateTemp(t.TempDir(), "modelfile")
if err != nil {
t.Fatal(err)
}
@ -750,7 +744,7 @@ func TestCreateHandler(t *testing.T) {
}
cmd.Flags().Bool("insecure", false, "")
cmd.SetContext(context.TODO())
cmd.SetContext(t.Context())
// Redirect stderr to capture progress output
oldStderr := os.Stderr

View File

@ -44,7 +44,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
fmt.Fprintln(os.Stderr, "Use \"\"\" to begin a multi-line message.")
if opts.MultiModal {
fmt.Fprintf(os.Stderr, "Use %s to include .jpg or .png images.\n", filepath.FromSlash("/path/to/file"))
fmt.Fprintf(os.Stderr, "Use %s to include .jpg, .png, or .webp images.\n", filepath.FromSlash("/path/to/file"))
}
fmt.Fprintln(os.Stderr, "")
@ -511,7 +511,7 @@ func extractFileNames(input string) []string {
// Regex to match file paths starting with optional drive letter, / ./ \ or .\ and include escaped or unescaped spaces (\ or %20)
// and followed by more characters and a file extension
// This will capture non filename strings, but we'll check for file existence to remove mismatches
regexPattern := `(?:[a-zA-Z]:)?(?:\./|/|\\)[\S\\ ]+?\.(?i:jpg|jpeg|png)\b`
regexPattern := `(?:[a-zA-Z]:)?(?:\./|/|\\)[\S\\ ]+?\.(?i:jpg|jpeg|png|webp)\b`
re := regexp.MustCompile(regexPattern)
return re.FindAllString(input, -1)
@ -531,6 +531,8 @@ func extractFileData(input string) (string, []api.ImageData, error) {
return "", imgs, err
}
fmt.Fprintf(os.Stderr, "Added image '%s'\n", nfp)
input = strings.ReplaceAll(input, "'"+nfp+"'", "")
input = strings.ReplaceAll(input, "'"+fp+"'", "")
input = strings.ReplaceAll(input, fp, "")
imgs = append(imgs, data)
}
@ -551,7 +553,7 @@ func getImageData(filePath string) ([]byte, error) {
}
contentType := http.DetectContentType(buf)
allowedTypes := []string{"image/jpeg", "image/jpg", "image/png"}
allowedTypes := []string{"image/jpeg", "image/jpg", "image/png", "image/webp"}
if !slices.Contains(allowedTypes, contentType) {
return nil, fmt.Errorf("invalid image type: %s", contentType)
}

View File

@ -1,6 +1,8 @@
package cmd
import (
"os"
"path/filepath"
"testing"
"github.com/stretchr/testify/assert"
@ -10,14 +12,17 @@ func TestExtractFilenames(t *testing.T) {
// Unix style paths
input := ` some preamble
./relative\ path/one.png inbetween1 ./not a valid two.jpg inbetween2 ./1.svg
/unescaped space /three.jpeg inbetween3 /valid\ path/dir/four.png "./quoted with spaces/five.JPG`
/unescaped space /three.jpeg inbetween3 /valid\ path/dir/four.png "./quoted with spaces/five.JPG
/unescaped space /six.webp inbetween6 /valid\ path/dir/seven.WEBP`
res := extractFileNames(input)
assert.Len(t, res, 5)
assert.Len(t, res, 7)
assert.Contains(t, res[0], "one.png")
assert.Contains(t, res[1], "two.jpg")
assert.Contains(t, res[2], "three.jpeg")
assert.Contains(t, res[3], "four.png")
assert.Contains(t, res[4], "five.JPG")
assert.Contains(t, res[5], "six.webp")
assert.Contains(t, res[6], "seven.WEBP")
assert.NotContains(t, res[4], '"')
assert.NotContains(t, res, "inbetween1")
assert.NotContains(t, res, "./1.svg")
@ -28,10 +33,12 @@ func TestExtractFilenames(t *testing.T) {
/absolute/nospace/three.jpeg inbetween3 /absolute/with space/four.png inbetween4
./relative\ path/five.JPG inbetween5 "./relative with/spaces/six.png inbetween6
d:\path with\spaces\seven.JPEG inbetween7 c:\users\jdoe\eight.png inbetween8
d:\program files\someplace\nine.png inbetween9 "E:\program files\someplace\ten.PNG some ending
d:\program files\someplace\nine.png inbetween9 "E:\program files\someplace\ten.PNG
c:/users/jdoe/eleven.webp inbetween11 c:/program files/someplace/twelve.WebP inbetween12
d:\path with\spaces\thirteen.WEBP some ending
`
res = extractFileNames(input)
assert.Len(t, res, 10)
assert.Len(t, res, 13)
assert.NotContains(t, res, "inbetween2")
assert.Contains(t, res[0], "one.png")
assert.Contains(t, res[0], "c:")
@ -49,4 +56,31 @@ d:\path with\spaces\seven.JPEG inbetween7 c:\users\jdoe\eight.png inbetween8
assert.Contains(t, res[8], "d:")
assert.Contains(t, res[9], "ten.PNG")
assert.Contains(t, res[9], "E:")
assert.Contains(t, res[10], "eleven.webp")
assert.Contains(t, res[10], "c:")
assert.Contains(t, res[11], "twelve.WebP")
assert.Contains(t, res[11], "c:")
assert.Contains(t, res[12], "thirteen.WEBP")
assert.Contains(t, res[12], "d:")
}
// Ensure that file paths wrapped in single quotes are removed with the quotes.
func TestExtractFileDataRemovesQuotedFilepath(t *testing.T) {
dir := t.TempDir()
fp := filepath.Join(dir, "img.jpg")
data := make([]byte, 600)
copy(data, []byte{
0xff, 0xd8, 0xff, 0xe0, 0x00, 0x10, 'J', 'F', 'I', 'F',
0x00, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0xff, 0xd9,
})
if err := os.WriteFile(fp, data, 0o600); err != nil {
t.Fatalf("failed to write test image: %v", err)
}
input := "before '" + fp + "' after"
cleaned, imgs, err := extractFileData(input)
assert.NoError(t, err)
assert.Len(t, imgs, 1)
assert.Equal(t, cleaned, "before after")
}

View File

@ -1,12 +1,13 @@
package convert
import (
"cmp"
"encoding/json"
"errors"
"fmt"
"io"
"io/fs"
"log/slog"
"os"
"slices"
"strings"
@ -14,13 +15,12 @@ import (
)
type ModelParameters struct {
Architectures []string `json:"architectures"`
VocabSize uint32 `json:"vocab_size"`
TextModel TextParameters `json:"text_config"`
}
Architectures []string `json:"architectures"`
VocabSize uint32 `json:"vocab_size"`
type TextParameters struct {
VocabSize uint32 `json:"vocab_size"`
TextModel struct {
VocabSize uint32 `json:"vocab_size"`
} `json:"text_config"`
}
type AdapterParameters struct {
@ -89,7 +89,7 @@ type ModelConverter interface {
// KV maps parameters to LLM key-values
KV(*Tokenizer) ggml.KV
// Tensors maps input tensors to LLM tensors. Model specific modifications can be done here.
Tensors([]Tensor) []ggml.Tensor
Tensors([]Tensor) []*ggml.Tensor
// Replacements returns a list of string pairs to replace in tensor names.
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
Replacements() []string
@ -106,13 +106,13 @@ type AdapterConverter interface {
// KV maps parameters to LLM key-values
KV(ggml.KV) ggml.KV
// Tensors maps input tensors to LLM tensors. Adapter specific modifications can be done here.
Tensors([]Tensor) []ggml.Tensor
Tensors([]Tensor) []*ggml.Tensor
// Replacements returns a list of string pairs to replace in tensor names.
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
Replacements() []string
}
func ConvertAdapter(fsys fs.FS, ws io.WriteSeeker, baseKV ggml.KV) error {
func ConvertAdapter(fsys fs.FS, f *os.File, baseKV ggml.KV) error {
bts, err := fs.ReadFile(fsys, "adapter_config.json")
if err != nil {
return err
@ -147,14 +147,14 @@ func ConvertAdapter(fsys fs.FS, ws io.WriteSeeker, baseKV ggml.KV) error {
return err
}
return writeFile(ws, conv.KV(baseKV), conv.Tensors(ts))
return writeFile(f, conv.KV(baseKV), conv.Tensors(ts))
}
// Convert writes an Ollama compatible model to the provided io.WriteSeeker based on configurations
// and files it finds in the input path.
// Supported input model formats include safetensors.
// Supported input tokenizers files include tokenizer.json (preferred) and tokenizer.model.
func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
func ConvertModel(fsys fs.FS, f *os.File) error {
bts, err := fs.ReadFile(fsys, "config.json")
if err != nil {
return err
@ -173,6 +173,8 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
switch p.Architectures[0] {
case "LlamaForCausalLM":
conv = &llamaModel{}
case "MllamaForConditionalGeneration":
conv = &mllamaModel{}
case "Llama4ForConditionalGeneration":
conv = &llama4Model{}
case "Mistral3ForConditionalGeneration":
@ -189,6 +191,8 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
conv = &phi3Model{}
case "Qwen2ForCausalLM":
conv = &qwen2Model{}
case "Qwen2_5_VLForConditionalGeneration":
conv = &qwen25VLModel{}
case "BertModel":
conv = &bertModel{}
case "CohereForCausalLM":
@ -212,24 +216,22 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
return err
}
vocabSize := int(p.VocabSize)
if vocabSize == 0 {
tVocabSize := int(p.TextModel.VocabSize)
vocabSize = tVocabSize
}
vocabSize := int(cmp.Or(p.VocabSize, p.TextModel.VocabSize))
switch {
case vocabSize == 0:
slog.Warn("vocabulary size was not explicitly set by the model", "default size", len(t.Vocabulary.Tokens))
slog.Debug("vocabulary size was not explicitly set by the model", "default size", len(t.Vocabulary.Tokens))
case vocabSize > len(t.Vocabulary.Tokens):
slog.Warn("vocabulary is smaller than expected, padding with dummy tokens", "expect", vocabSize, "actual", len(t.Vocabulary.Tokens))
slog.Debug("vocabulary is smaller than expected, padding with dummy tokens", "expect", vocabSize, "actual", len(t.Vocabulary.Tokens))
for i := range vocabSize - len(t.Vocabulary.Tokens) {
t.Vocabulary.Tokens = append(t.Vocabulary.Tokens, fmt.Sprintf("[PAD%d]", i))
t.Vocabulary.Scores = append(t.Vocabulary.Scores, -1)
t.Vocabulary.Types = append(t.Vocabulary.Types, tokenTypeUserDefined)
}
case vocabSize < len(t.Vocabulary.Tokens):
return fmt.Errorf("vocabulary is larger than expected '%d' instead of '%d'", len(t.Vocabulary.Tokens), vocabSize)
slog.Debug("vocabulary is larger than expected", "want", vocabSize, "got", len(t.Vocabulary.Tokens))
p.VocabSize = uint32(len(t.Vocabulary.Tokens))
p.TextModel.VocabSize = uint32(len(t.Vocabulary.Tokens))
default:
slog.Debug("vocabulary", "size", len(t.Vocabulary.Tokens))
}
@ -239,13 +241,13 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
return err
}
return writeFile(ws, conv.KV(t), conv.Tensors(ts))
return writeFile(f, conv.KV(t), conv.Tensors(ts))
}
func writeFile(ws io.WriteSeeker, kv ggml.KV, ts []ggml.Tensor) error {
func writeFile(f *os.File, kv ggml.KV, ts []*ggml.Tensor) error {
for i := range ts {
ts[i].Shape = slices.Clone(ts[i].Shape)
slices.Reverse(ts[i].Shape)
}
return ggml.WriteGGUF(ws, kv, ts)
return ggml.WriteGGUF(f, kv, ts)
}

View File

@ -132,8 +132,8 @@ func (p *bertModel) KV(t *Tokenizer) ggml.KV {
return kv
}
func (p *bertModel) Tensors(ts []Tensor) []ggml.Tensor {
var out []ggml.Tensor
func (p *bertModel) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
for _, t := range ts {
if slices.Contains([]string{
"embeddings.position_ids",
@ -143,7 +143,7 @@ func (p *bertModel) Tensors(ts []Tensor) []ggml.Tensor {
continue
}
out = append(out, ggml.Tensor{
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),

View File

@ -43,10 +43,10 @@ func (p *commandrModel) KV(t *Tokenizer) ggml.KV {
return kv
}
func (p *commandrModel) Tensors(ts []Tensor) []ggml.Tensor {
var out []ggml.Tensor
func (p *commandrModel) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
for _, t := range ts {
out = append(out, ggml.Tensor{
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),

View File

@ -42,14 +42,14 @@ func (p *gemmaModel) KV(t *Tokenizer) ggml.KV {
return kv
}
func (p *gemmaModel) Tensors(ts []Tensor) []ggml.Tensor {
var out []ggml.Tensor
func (p *gemmaModel) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
for _, t := range ts {
if !strings.HasPrefix(t.Name(), "v.") && strings.HasSuffix(t.Name(), "_norm.weight") {
t.SetRepacker(p.addOne)
}
out = append(out, ggml.Tensor{
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),

View File

@ -21,8 +21,8 @@ func (p *gemma2Adapter) KV(baseKV ggml.KV) ggml.KV {
return kv
}
func (p *gemma2Adapter) Tensors(ts []Tensor) []ggml.Tensor {
var out []ggml.Tensor
func (p *gemma2Adapter) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
for _, t := range ts {
shape := t.Shape()
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
@ -31,7 +31,7 @@ func (p *gemma2Adapter) Tensors(ts []Tensor) []ggml.Tensor {
t.SetRepacker(p.repack)
}
out = append(out, ggml.Tensor{
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),

View File

@ -126,11 +126,11 @@ func (p *llamaModel) KV(t *Tokenizer) ggml.KV {
return kv
}
func (p *llamaModel) Tensors(ts []Tensor) []ggml.Tensor {
var out []ggml.Tensor
func (p *llamaModel) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
if p.RopeScaling.factors != nil {
out = append(out, ggml.Tensor{
out = append(out, &ggml.Tensor{
Name: "rope_freqs.weight",
Kind: 0,
Shape: []uint64{uint64(len(p.RopeScaling.factors))},
@ -145,7 +145,7 @@ func (p *llamaModel) Tensors(ts []Tensor) []ggml.Tensor {
}
}
out = append(out, ggml.Tensor{
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),

View File

@ -88,13 +88,13 @@ func (p *llama4Model) Replacements() []string {
}
// Tensors implements ModelConverter.
func (p *llama4Model) Tensors(ts []Tensor) []ggml.Tensor {
var out []ggml.Tensor
func (p *llama4Model) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
var textTensors []Tensor
for _, t := range ts {
if strings.HasPrefix(t.Name(), "v.") || strings.HasPrefix(t.Name(), "mm.") {
out = append(out, ggml.Tensor{
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
@ -112,7 +112,7 @@ func (p *llama4Model) Tensors(ts []Tensor) []ggml.Tensor {
// clone tensor since we need separate repackers
tt := t.Clone()
tt.SetRepacker(p.repack(nil, nil, tensor.S(i*halfDim, (i+1)*halfDim)))
out = append(out, ggml.Tensor{
out = append(out, &ggml.Tensor{
Name: strings.ReplaceAll(tt.Name(), "ffn_gate_up_exps", name),
Kind: tt.Kind(),
Shape: newShape,
@ -125,7 +125,7 @@ func (p *llama4Model) Tensors(ts []Tensor) []ggml.Tensor {
t.SetRepacker(p.repack())
newShape := slices.Clone(t.Shape())
newShape[1], newShape[2] = newShape[2], newShape[1]
out = append(out, ggml.Tensor{
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: newShape,

View File

@ -29,8 +29,8 @@ func (p *llamaAdapter) KV(baseKV ggml.KV) ggml.KV {
return kv
}
func (p *llamaAdapter) Tensors(ts []Tensor) []ggml.Tensor {
var out []ggml.Tensor
func (p *llamaAdapter) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
for _, t := range ts {
shape := t.Shape()
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
@ -41,7 +41,7 @@ func (p *llamaAdapter) Tensors(ts []Tensor) []ggml.Tensor {
t.SetRepacker(p.repack)
}
out = append(out, ggml.Tensor{
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: shape,

View File

@ -89,8 +89,8 @@ func (p *mistral3Model) KV(t *Tokenizer) ggml.KV {
return kv
}
func (p *mistral3Model) Tensors(ts []Tensor) []ggml.Tensor {
var out []ggml.Tensor
func (p *mistral3Model) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
for _, t := range ts {
if !strings.HasPrefix(t.Name(), "v.") {
@ -100,7 +100,7 @@ func (p *mistral3Model) Tensors(ts []Tensor) []ggml.Tensor {
}
}
out = append(out, ggml.Tensor{
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),

View File

@ -29,7 +29,7 @@ func (p *mixtralModel) KV(t *Tokenizer) ggml.KV {
return kv
}
func (p *mixtralModel) Tensors(ts []Tensor) []ggml.Tensor {
func (p *mixtralModel) Tensors(ts []Tensor) []*ggml.Tensor {
oldnew := []string{
"model.layers", "blk",
"w1", "ffn_gate_exps",
@ -56,10 +56,10 @@ func (p *mixtralModel) Tensors(ts []Tensor) []ggml.Tensor {
return true
})
var out []ggml.Tensor
var out []*ggml.Tensor
for n, e := range experts {
// TODO(mxyng): sanity check experts
out = append(out, ggml.Tensor{
out = append(out, &ggml.Tensor{
Name: n,
Kind: e[0].Kind(),
Shape: append([]uint64{uint64(len(e))}, e[0].Shape()...),

160
convert/convert_mllama.go Normal file
View File

@ -0,0 +1,160 @@
package convert
import (
"strings"
"github.com/ollama/ollama/fs/ggml"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
)
type mllamaModel struct {
ModelParameters
TextModel struct {
llamaModel
CrossAttentionLayers []int32 `json:"cross_attention_layers"`
} `json:"text_config"`
VisionModel struct {
NumHiddenLayers uint32 `json:"num_hidden_layers"`
NumGlobalLayers uint32 `json:"num_global_layers"`
IntermediateLayersIndices []int32 `json:"intermediate_layers_indices"`
HiddenSize uint32 `json:"hidden_size"`
IntermediateSize uint32 `json:"intermediate_size"`
AttentionHeads uint32 `json:"attention_heads"`
ImageSize uint32 `json:"image_size"`
PatchSize uint32 `json:"patch_size"`
NumChannels uint32 `json:"num_channels"`
MaxNumTiles uint32 `json:"max_num_tiles"`
NormEpsilon float32 `json:"norm_eps"`
RopeTheta float32 `json:"rope.freq_base"`
} `json:"vision_config"`
}
func (m *mllamaModel) KV(t *Tokenizer) ggml.KV {
kv := m.ModelParameters.KV(t)
kv["general.architecture"] = "mllama"
for k, v := range m.TextModel.KV(t) {
if strings.HasPrefix(k, "llama.") {
kv[strings.ReplaceAll(k, "llama.", "mllama.")] = v
}
}
kv["mllama.attention.cross_attention_layers"] = m.TextModel.CrossAttentionLayers
kv["mllama.vision.block_count"] = m.VisionModel.NumHiddenLayers
kv["mllama.vision.global.block_count"] = m.VisionModel.NumGlobalLayers
kv["mllama.vision.intermediate_layers_indices"] = m.VisionModel.IntermediateLayersIndices
kv["mllama.vision.embedding_length"] = m.VisionModel.HiddenSize
kv["mllama.vision.feed_forward_length"] = m.VisionModel.IntermediateSize
kv["mllama.vision.attention.head_count"] = m.VisionModel.AttentionHeads
kv["mllama.vision.attention.layer_norm_epsilon"] = m.VisionModel.NormEpsilon
kv["mllama.vision.image_size"] = m.VisionModel.ImageSize
kv["mllama.vision.patch_size"] = m.VisionModel.PatchSize
kv["mllama.vision.max_num_tiles"] = m.VisionModel.MaxNumTiles
kv["mllama.vision.num_channels"] = m.VisionModel.NumChannels
return kv
}
func (m *mllamaModel) Replacements() []string {
return append(
m.TextModel.Replacements(),
"language_model.", "",
"gate_attn", "attn_gate",
"gate_ffn", "ffn_gate",
"cross_attn.", "cross_attn_",
"vision_model", "v",
"class_embedding", "class_embd",
"patch_embedding", "patch_embd",
"gated_positional_embedding.tile_embedding", "tile_position_embd",
"gated_positional_embedding.embedding", "position_embd.weight",
"gated_positional_embedding", "position_embd",
"embedding.weight", "weight",
"pre_tile_positional_embedding", "pre_tile_position_embd",
"post_tile_positional_embedding", "post_tile_position_embd",
"layernorm_pre", "pre_ln",
"layernorm_post", "post_ln",
"global_transformer.layers", "global.blk",
"transformer.layers", "blk",
"mlp.fc1", "ffn_up",
"mlp.fc2", "ffn_down",
"multi_modal_projector", "mm.0",
)
}
func (m *mllamaModel) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
var text []Tensor
for _, t := range ts {
if t.Name() == "v.position_embd.gate" {
for _, name := range []string{"v.position_embd.gate", "v.tile_position_embd.gate"} {
tt := t.Clone()
tt.SetRepacker(m.repack(name))
out = append(out, &ggml.Tensor{
Name: name,
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: tt,
})
}
} else if t.Name() == "v.pre_tile_position_embd.gate" || t.Name() == "v.post_tile_position_embd.gate" {
t.SetRepacker(m.repack(t.Name()))
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
} else if strings.HasPrefix(t.Name(), "v.") || strings.HasPrefix(t.Name(), "mm.") {
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
} else {
text = append(text, t)
}
}
return append(out, m.TextModel.Tensors(text)...)
}
func (m *mllamaModel) repack(name string) Repacker {
return func(_ string, data []float32, shape []uint64) (_ []float32, err error) {
dims := make([]int, len(shape))
for i, dim := range shape {
dims[i] = int(dim)
}
var t tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
t, err = tensor.Tanh(t)
if err != nil {
return nil, err
}
if name == "v.position_embd.gate" {
t, err = tensor.Sub(float32(1), t)
if err != nil {
return nil, err
}
}
t = tensor.Materialize(t)
// flatten tensor so it can be return as a vector
if err := t.Reshape(t.Shape().TotalSize()); err != nil {
return nil, err
}
return native.VectorF32(t.(*tensor.Dense))
}
}

View File

@ -68,19 +68,19 @@ func (p *phi3Model) KV(t *Tokenizer) ggml.KV {
return kv
}
func (p *phi3Model) Tensors(ts []Tensor) []ggml.Tensor {
func (p *phi3Model) Tensors(ts []Tensor) []*ggml.Tensor {
var addRopeFactors sync.Once
out := make([]ggml.Tensor, 0, len(ts)+2)
out := make([]*ggml.Tensor, 0, len(ts)+2)
for _, t := range ts {
if strings.HasPrefix(t.Name(), "blk.0.") {
addRopeFactors.Do(func() {
out = append(out, ggml.Tensor{
out = append(out, &ggml.Tensor{
Name: "rope_factors_long.weight",
Kind: 0,
Shape: []uint64{uint64(len(p.RopeScaling.LongFactor))},
WriterTo: p.RopeScaling.LongFactor,
}, ggml.Tensor{
}, &ggml.Tensor{
Name: "rope_factors_short.weight",
Kind: 0,
Shape: []uint64{uint64(len(p.RopeScaling.ShortFactor))},
@ -89,7 +89,7 @@ func (p *phi3Model) Tensors(ts []Tensor) []ggml.Tensor {
})
}
out = append(out, ggml.Tensor{
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),

View File

@ -15,6 +15,7 @@ type qwen2Model struct {
Type string `json:"type"`
Factor ropeFactor `json:"factor"`
OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
MropeSection []int32 `json:"mrope_section"`
} `json:"rope_scaling"`
RMSNormEPS float32 `json:"rms_norm_eps"`
}
@ -39,16 +40,18 @@ func (q *qwen2Model) KV(t *Tokenizer) ggml.KV {
case "yarn":
kv["qwen2.rope.scaling.type"] = q.RopeScaling.Type
kv["qwen2.rope.scaling.factor"] = q.RopeScaling.Factor
case "mrope", "default":
kv["qwen2.rope.mrope_section"] = q.RopeScaling.MropeSection
default:
panic("unknown rope scaling type")
}
return kv
}
func (q *qwen2Model) Tensors(ts []Tensor) []ggml.Tensor {
var out []ggml.Tensor
func (q *qwen2Model) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
for _, t := range ts {
out = append(out, ggml.Tensor{
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),

102
convert/convert_qwen25vl.go Normal file
View File

@ -0,0 +1,102 @@
package convert
import (
"cmp"
"slices"
"strings"
"github.com/ollama/ollama/fs/ggml"
)
type qwen25VLModel struct {
qwen2Model
VisionModel struct {
Depth uint32 `json:"depth"`
HiddenSize uint32 `json:"hidden_size"`
NumHeads uint32 `json:"num_heads"`
InChannels uint32 `json:"in_chans"`
PatchSize uint32 `json:"patch_size"`
SpatialMergeSize uint32 `json:"spatial_merge_size"`
SpatialPatchSize uint32 `json:"spatial_patch_size"`
WindowSize uint32 `json:"window_size"`
RMSNormEps float32 `json:"layer_norm_epsilon"`
RopeTheta float32 `json:"rope_theta"`
FullAttentionBlocks []int32 `json:"fullatt_block_indexes"`
TemporalPatchSize uint32 `json:"temporal_patch_size"`
} `json:"vision_config"`
}
var _ ModelConverter = (*qwen25VLModel)(nil)
func (q *qwen25VLModel) KV(t *Tokenizer) ggml.KV {
kv := q.ModelParameters.KV(t)
kv["general.architecture"] = "qwen25vl"
for k, v := range q.qwen2Model.KV(t) {
if strings.HasPrefix(k, "qwen2.") {
kv[strings.Replace(k, "qwen2.", "qwen25vl.", 1)] = v
}
}
if q.VisionModel.FullAttentionBlocks == nil {
kv["qwen25vl.vision.fullatt_block_indexes"] = []int32{7, 15, 23, 31}
}
kv["qwen25vl.vision.block_count"] = cmp.Or(q.VisionModel.Depth, 32)
kv["qwen25vl.vision.embedding_length"] = q.VisionModel.HiddenSize
kv["qwen25vl.vision.attention.head_count"] = cmp.Or(q.VisionModel.NumHeads, 16)
kv["qwen25vl.vision.num_channels"] = q.VisionModel.InChannels
kv["qwen25vl.vision.patch_size"] = cmp.Or(q.VisionModel.PatchSize, 14)
kv["qwen25vl.vision.spatial_merge_size"] = cmp.Or(q.VisionModel.SpatialMergeSize, 2)
kv["qwen25vl.vision.spatial_patch_size"] = q.VisionModel.SpatialPatchSize
kv["qwen25vl.vision.window_size"] = cmp.Or(q.VisionModel.WindowSize, 112)
kv["qwen25vl.vision.attention.layer_norm_epsilon"] = cmp.Or(q.VisionModel.RMSNormEps, 1e-6)
kv["qwen25vl.vision.rope.freq_base"] = cmp.Or(q.VisionModel.RopeTheta, 1e4)
kv["qwen25vl.vision.fullatt_block_indexes"] = q.VisionModel.FullAttentionBlocks
kv["qwen25vl.vision.temporal_patch_size"] = cmp.Or(q.VisionModel.TemporalPatchSize, 2)
return kv
}
func (q *qwen25VLModel) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
for _, t := range ts {
if strings.Contains(t.Name(), "patch_embed.proj") {
for t := range splitDim(t, 2,
strings.NewReplacer("patch_embed.proj", "patch_embd_0"),
strings.NewReplacer("patch_embed.proj", "patch_embd_1"),
) {
t.Shape = slices.DeleteFunc(t.Shape, func(i uint64) bool { return i == 1 })
out = append(out, t)
}
} else if strings.Contains(t.Name(), "attn.qkv") {
out = append(out, slices.Collect(splitDim(t, 0,
strings.NewReplacer("attn.qkv", "attn_q"),
strings.NewReplacer("attn.qkv", "attn_k"),
strings.NewReplacer("attn.qkv", "attn_v"),
))...)
} else {
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
}
return out
}
func (p *qwen25VLModel) Replacements() []string {
return append(
p.qwen2Model.Replacements(),
"visual", "v",
"blocks", "blk",
"attn.proj", "attn_out",
"norm1", "ln1",
"norm2", "ln2",
)
}

View File

@ -130,6 +130,7 @@ func TestConvertModel(t *testing.T) {
if err != nil {
t.Fatal(err)
}
defer expectFile.Close()
var expect map[string]string
if err := json.NewDecoder(expectFile).Decode(&expect); err != nil {

View File

@ -1,58 +0,0 @@
package convert
import (
"archive/zip"
"errors"
"io"
"io/fs"
"os"
"path/filepath"
)
type ZipReader struct {
r *zip.Reader
p string
// limit is the maximum size of a file that can be read directly
// from the zip archive. Files larger than this size will be extracted
limit int64
}
func NewZipReader(r *zip.Reader, p string, limit int64) fs.FS {
return &ZipReader{r, p, limit}
}
func (z *ZipReader) Open(name string) (fs.File, error) {
r, err := z.r.Open(name)
if err != nil {
return nil, err
}
defer r.Close()
if fi, err := r.Stat(); err != nil {
return nil, err
} else if fi.Size() < z.limit {
return r, nil
}
if !filepath.IsLocal(name) {
return nil, zip.ErrInsecurePath
}
n := filepath.Join(z.p, name)
if _, err := os.Stat(n); errors.Is(err, os.ErrNotExist) {
w, err := os.Create(n)
if err != nil {
return nil, err
}
defer w.Close()
if _, err := io.Copy(w, r); err != nil {
return nil, err
}
} else if err != nil {
return nil, err
}
return os.Open(n)
}

View File

@ -38,7 +38,10 @@ const (
func (t tensorBase) Kind() uint32 {
if strings.HasSuffix(t.name, ".ffn_gate_inp.weight") ||
t.name == "token_types.weight" ||
t.name == "v.positional_embedding_vlm" {
t.name == "v.positional_embedding_vlm" ||
t.name == "v.tile_position_embd.weight" ||
t.name == "v.pre_tile_position_embd.weight" ||
t.name == "v.post_tile_position_embd.weight" {
// these tensors are always F32
return 0
}

56
convert/tensor.go Normal file
View File

@ -0,0 +1,56 @@
package convert
import (
"iter"
"slices"
"strings"
"github.com/ollama/ollama/fs/ggml"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
)
// splitDim splits a tensor along a specified dimension into multiple tensors. The dimension
// is split evenly based on the number of replacers provided.
func splitDim(t Tensor, dim int, replacers ...*strings.Replacer) iter.Seq[*ggml.Tensor] {
return func(yield func(*ggml.Tensor) bool) {
for i, replacer := range replacers {
shape := slices.Clone(t.Shape())
shape[dim] = shape[dim] / uint64(len(replacers))
slice := slices.Repeat([]tensor.Slice{nil}, len(shape))
slice[dim] = tensor.S(i*int(shape[dim]), (i+1)*int(shape[dim]))
tt := t.Clone()
tt.SetRepacker(func(_ string, data []float32, shape []uint64) ([]float32, error) {
dims := make([]int, len(shape))
for i := range shape {
dims[i] = int(shape[i])
}
var t tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
t, err := t.Slice(slice...)
if err != nil {
return nil, err
}
t = tensor.Materialize(t)
// flatten tensor so it can be written as a vector
if err := t.Reshape(t.Shape().TotalSize()); err != nil {
return nil, err
}
return native.VectorF32(t.(*tensor.Dense))
})
if !yield(&ggml.Tensor{
Name: replacer.Replace(t.Name()),
Kind: t.Kind(),
Shape: shape,
WriterTo: tt,
}) {
break
}
}
}
}

View File

@ -670,7 +670,7 @@ func loadOneapiMgmt(oneapiLibPaths []string) (int, *C.oneapi_handle_t, string, e
}
func getVerboseState() C.uint16_t {
if envconfig.Debug() {
if envconfig.LogLevel() < slog.LevelInfo {
return C.uint16_t(1)
}
return C.uint16_t(0)

View File

@ -27,12 +27,14 @@
#endif
#ifndef LOG
#define LOG(verbose, ...) \
do { \
if (verbose) { \
fprintf(stderr, __VA_ARGS__); \
} \
} while (0)
#endif
#ifdef __cplusplus
extern "C" {

View File

@ -1,6 +1,7 @@
#ifndef __APPLE__ // TODO - maybe consider nvidia support on intel macs?
#include <string.h>
#include <inttypes.h>
#include "gpu_info_cudart.h"
void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp) {
@ -58,7 +59,7 @@ void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp) {
LOG(resp->ch.verbose, "cudaSetDevice err: %d\n", ret);
UNLOAD_LIBRARY(resp->ch.handle);
resp->ch.handle = NULL;
if (ret == CUDA_ERROR_INSUFFICIENT_DRIVER) {
if (ret == CUDART_ERROR_INSUFFICIENT_DRIVER) {
resp->err = strdup("your nvidia driver is too old or missing. If you have a CUDA GPU please upgrade to run ollama");
return;
}
@ -168,9 +169,9 @@ void cudart_bootstrap(cudart_handle_t h, int i, mem_info_t *resp) {
resp->free = memInfo.free;
resp->used = memInfo.used;
LOG(h.verbose, "[%s] CUDA totalMem %lu\n", resp->gpu_id, resp->total);
LOG(h.verbose, "[%s] CUDA freeMem %lu\n", resp->gpu_id, resp->free);
LOG(h.verbose, "[%s] CUDA usedMem %lu\n", resp->gpu_id, resp->used);
LOG(h.verbose, "[%s] CUDA totalMem %" PRId64 "\n", resp->gpu_id, resp->total);
LOG(h.verbose, "[%s] CUDA freeMem %" PRId64 "\n", resp->gpu_id, resp->free);
LOG(h.verbose, "[%s] CUDA usedMem %" PRId64 "\n", resp->gpu_id, resp->used);
LOG(h.verbose, "[%s] Compute Capability %d.%d\n", resp->gpu_id, resp->major, resp->minor);
}
@ -180,4 +181,4 @@ void cudart_release(cudart_handle_t h) {
h.handle = NULL;
}
#endif // __APPLE__
#endif // __APPLE__

View File

@ -1,6 +1,7 @@
#ifndef __APPLE__ // TODO - maybe consider nvidia support on intel macs?
#include <string.h>
#include <inttypes.h>
#include "gpu_info_nvcuda.h"
void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
@ -193,8 +194,8 @@ void nvcuda_bootstrap(nvcuda_handle_t h, int i, mem_info_t *resp) {
resp->total = memInfo.total;
resp->free = memInfo.free;
LOG(h.verbose, "[%s] CUDA totalMem %lu mb\n", resp->gpu_id, resp->total / 1024 / 1024);
LOG(h.verbose, "[%s] CUDA freeMem %lu mb\n", resp->gpu_id, resp->free / 1024 / 1024);
LOG(h.verbose, "[%s] CUDA totalMem %" PRId64 "mb\n", resp->gpu_id, resp->total / 1024 / 1024);
LOG(h.verbose, "[%s] CUDA freeMem %" PRId64 "mb\n", resp->gpu_id, resp->free / 1024 / 1024);
LOG(h.verbose, "[%s] Compute Capability %d.%d\n", resp->gpu_id, resp->major, resp->minor);
@ -247,4 +248,4 @@ void nvcuda_release(nvcuda_handle_t h) {
h.handle = NULL;
}
#endif // __APPLE__
#endif // __APPLE__

View File

@ -19,7 +19,7 @@
### Model names
Model names follow a `model:tag` format, where `model` can have an optional namespace such as `example/model`. Some examples are `orca-mini:3b-q4_1` and `llama3:70b`. The tag is optional and, if not provided, will default to `latest`. The tag is used to identify a specific version.
Model names follow a `model:tag` format, where `model` can have an optional namespace such as `example/model`. Some examples are `orca-mini:3b-q8_0` and `llama3:70b`. The tag is optional and, if not provided, will default to `latest`. The tag is used to identify a specific version.
### Durations
@ -394,9 +394,6 @@ curl http://localhost:11434/api/generate -d '{
"repeat_penalty": 1.2,
"presence_penalty": 1.5,
"frequency_penalty": 1.0,
"mirostat": 1,
"mirostat_tau": 0.8,
"mirostat_eta": 0.6,
"penalize_newline": true,
"stop": ["\n", "user:"],
"numa": false,
@ -404,10 +401,7 @@ curl http://localhost:11434/api/generate -d '{
"num_batch": 2,
"num_gpu": 1,
"main_gpu": 0,
"low_vram": false,
"vocab_only": false,
"use_mmap": true,
"use_mlock": false,
"num_thread": 8
}
}'
@ -958,19 +952,8 @@ If you are creating a model from a safetensors directory or from a GGUF file, yo
| Type | Recommended |
| --- | :-: |
| q2_K | |
| q3_K_L | |
| q3_K_M | |
| q3_K_S | |
| q4_0 | |
| q4_1 | |
| q4_K_M | * |
| q4_K_S | |
| q5_0 | |
| q5_1 | |
| q5_K_M | |
| q5_K_S | |
| q6_K | |
| q8_0 | * |
### Examples
@ -1015,8 +998,8 @@ Quantize a non-quantized model.
```shell
curl http://localhost:11434/api/create -d '{
"model": "llama3.1:quantized",
"from": "llama3.1:8b-instruct-fp16",
"model": "llama3.2:quantized",
"from": "llama3.2:3b-instruct-fp16",
"quantize": "q4_K_M"
}'
```
@ -1026,12 +1009,14 @@ curl http://localhost:11434/api/create -d '{
A stream of JSON objects is returned:
```json
{"status":"quantizing F16 model to Q4_K_M"}
{"status":"creating new layer sha256:667b0c1932bc6ffc593ed1d03f895bf2dc8dc6df21db3042284a6f4416b06a29"}
{"status":"using existing layer sha256:11ce4ee3e170f6adebac9a991c22e22ab3f8530e154ee669954c4bc73061c258"}
{"status":"using existing layer sha256:0ba8f0e314b4264dfd19df045cde9d4c394a52474bf92ed6a3de22a4ca31a177"}
{"status":"quantizing F16 model to Q4_K_M","digest":"0","total":6433687776,"completed":12302}
{"status":"quantizing F16 model to Q4_K_M","digest":"0","total":6433687776,"completed":6433687552}
{"status":"verifying conversion"}
{"status":"creating new layer sha256:fb7f4f211b89c6c4928ff4ddb73db9f9c0cfca3e000c3e40d6cf27ddc6ca72eb"}
{"status":"using existing layer sha256:966de95ca8a62200913e3f8bfbf84c8494536f1b94b49166851e76644e966396"}
{"status":"using existing layer sha256:fcc5a6bec9daf9b561a68827b67ab6088e1dba9d1fa2a50d7bbcc8384e0a265d"}
{"status":"using existing layer sha256:a70ff7e570d97baaf4e62ac6e6ad9975e04caa6d900d3742d37698494479e0cd"}
{"status":"using existing layer sha256:56bb8bd477a519ffa694fc449c2413c6f0e1d3b1c88fa7e3c9d88d3ae49d4dcb"}
{"status":"creating new layer sha256:455f34728c9b5dd3376378bfb809ee166c145b0b4c1f1a6feca069055066ef9a"}
{"status":"writing manifest"}
{"status":"success"}
```
@ -1169,29 +1154,37 @@ A single JSON object will be returned.
{
"models": [
{
"name": "codellama:13b",
"modified_at": "2023-11-04T14:56:49.277302595-07:00",
"size": 7365960935,
"digest": "9f438cb9cd581fc025612d27f7c1a6669ff83a8bb0ed86c94fcf4c5440555697",
"name": "deepseek-r1:latest",
"model": "deepseek-r1:latest",
"modified_at": "2025-05-10T08:06:48.639712648-07:00",
"size": 4683075271,
"digest": "0a8c266910232fd3291e71e5ba1e058cc5af9d411192cf88b6d30e92b6e73163",
"details": {
"parent_model": "",
"format": "gguf",
"family": "llama",
"families": null,
"parameter_size": "13B",
"quantization_level": "Q4_0"
"family": "qwen2",
"families": [
"qwen2"
],
"parameter_size": "7.6B",
"quantization_level": "Q4_K_M"
}
},
{
"name": "llama3:latest",
"modified_at": "2023-12-07T09:32:18.757212583-08:00",
"size": 3825819519,
"digest": "fe938a131f40e6f6d40083c9f0f430a515233eb2edaa6d72eb85c50d64f2300e",
"name": "llama3.2:latest",
"model": "llama3.2:latest",
"modified_at": "2025-05-04T17:37:44.706015396-07:00",
"size": 2019393189,
"digest": "a80c4f17acd55265feec403c7aef86be0c25983ab279d83f3bcd3abbcb5b8b72",
"details": {
"parent_model": "",
"format": "gguf",
"family": "llama",
"families": null,
"parameter_size": "7B",
"quantization_level": "Q4_0"
"families": [
"llama"
],
"parameter_size": "3.2B",
"quantization_level": "Q4_K_M"
}
}
]

View File

@ -150,9 +150,6 @@ PARAMETER <parameter> <parametervalue>
| Parameter | Description | Value Type | Example Usage |
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------- | -------------------- |
| mirostat | Enable Mirostat sampling for controlling perplexity. (default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0) | int | mirostat 0 |
| mirostat_eta | Influences how quickly the algorithm responds to feedback from the generated text. A lower learning rate will result in slower adjustments, while a higher learning rate will make the algorithm more responsive. (Default: 0.1) | float | mirostat_eta 0.1 |
| mirostat_tau | Controls the balance between coherence and diversity of the output. A lower value will result in more focused and coherent text. (Default: 5.0) | float | mirostat_tau 5.0 |
| num_ctx | Sets the size of the context window used to generate the next token. (Default: 2048) | int | num_ctx 4096 |
| repeat_last_n | Sets how far back for the model to look back to prevent repetition. (Default: 64, 0 = disabled, -1 = num_ctx) | int | repeat_last_n 64 |
| repeat_penalty | Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1) | float | repeat_penalty 1.1 |

View File

@ -149,9 +149,22 @@ func Bool(k string) func() bool {
}
}
// LogLevel returns the log level for the application.
// Values are 0 or false INFO (Default), 1 or true DEBUG, 2 TRACE
func LogLevel() slog.Level {
level := slog.LevelInfo
if s := Var("OLLAMA_DEBUG"); s != "" {
if b, _ := strconv.ParseBool(s); b {
level = slog.LevelDebug
} else if i, _ := strconv.ParseInt(s, 10, 64); i != 0 {
level = slog.Level(i * -4)
}
}
return level
}
var (
// Debug enabled additional debug information.
Debug = Bool("OLLAMA_DEBUG")
// FlashAttention enables the experimental flash attention feature.
FlashAttention = Bool("OLLAMA_FLASH_ATTENTION")
// KvCacheType is the quantization type for the K/V cache.
@ -209,8 +222,6 @@ var (
MaxRunners = Uint("OLLAMA_MAX_LOADED_MODELS", 0)
// MaxQueue sets the maximum number of queued requests. MaxQueue can be configured via the OLLAMA_MAX_QUEUE environment variable.
MaxQueue = Uint("OLLAMA_MAX_QUEUE", 512)
// MaxVRAM sets a maximum VRAM override in bytes. MaxVRAM can be configured via the OLLAMA_MAX_VRAM environment variable.
MaxVRAM = Uint("OLLAMA_MAX_VRAM", 0)
)
func Uint64(key string, defaultValue uint64) func() uint64 {
@ -238,7 +249,7 @@ type EnvVar struct {
func AsMap() map[string]EnvVar {
ret := map[string]EnvVar{
"OLLAMA_DEBUG": {"OLLAMA_DEBUG", Debug(), "Show additional debug information (e.g. OLLAMA_DEBUG=1)"},
"OLLAMA_DEBUG": {"OLLAMA_DEBUG", LogLevel(), "Show additional debug information (e.g. OLLAMA_DEBUG=1)"},
"OLLAMA_FLASH_ATTENTION": {"OLLAMA_FLASH_ATTENTION", FlashAttention(), "Enabled flash attention"},
"OLLAMA_KV_CACHE_TYPE": {"OLLAMA_KV_CACHE_TYPE", KvCacheType(), "Quantization type for the K/V cache (default: f16)"},
"OLLAMA_GPU_OVERHEAD": {"OLLAMA_GPU_OVERHEAD", GpuOverhead(), "Reserve a portion of VRAM per GPU (bytes)"},

View File

@ -1,11 +1,13 @@
package envconfig
import (
"log/slog"
"math"
"testing"
"time"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/logutil"
)
func TestHost(t *testing.T) {
@ -292,3 +294,34 @@ func TestContextLength(t *testing.T) {
})
}
}
func TestLogLevel(t *testing.T) {
cases := map[string]slog.Level{
// Default to INFO
"": slog.LevelInfo,
"false": slog.LevelInfo,
"f": slog.LevelInfo,
"0": slog.LevelInfo,
// True values enable Debug
"true": slog.LevelDebug,
"t": slog.LevelDebug,
// Positive values increase verbosity
"1": slog.LevelDebug,
"2": logutil.LevelTrace,
// Negative values decrease verbosity
"-1": slog.LevelWarn,
"-2": slog.LevelError,
}
for k, v := range cases {
t.Run(k, func(t *testing.T) {
t.Setenv("OLLAMA_DEBUG", k)
if i := LogLevel(); i != v {
t.Errorf("%s: expected %d, got %d", k, v, i)
}
})
}
}

View File

@ -6,6 +6,7 @@ import (
"fmt"
"io"
"log/slog"
"math"
"slices"
"strings"
@ -36,12 +37,12 @@ func (kv KV) ParameterCount() uint64 {
return keyValue(kv, "general.parameter_count", uint64(0))
}
func (kv KV) FileType() fileType {
func (kv KV) FileType() FileType {
if t := kv.Uint("general.file_type"); t > 0 {
return fileType(t)
return FileType(t)
}
return fileTypeUnknown
return FileTypeUnknown
}
func (kv KV) BlockCount() uint64 {
@ -125,6 +126,8 @@ func (kv KV) OllamaEngineRequired() bool {
"gemma3",
"mistral3",
"llama4",
"mllama",
"qwen25vl",
}, kv.Architecture())
}
@ -149,7 +152,7 @@ func keyValue[T valueTypes | arrayValueTypes](kv KV, key string, defaultValue ..
return val.(T)
}
slog.Warn("key not found", "key", key, "default", defaultValue[0])
slog.Debug("key not found", "key", key, "default", defaultValue[0])
return defaultValue[0]
}
@ -226,7 +229,11 @@ func (t Tensor) block() (n int) {
}
func (t Tensor) blockSize() uint64 {
switch t.Kind {
return (TensorType)(t.Kind).BlockSize()
}
func (t TensorType) BlockSize() uint64 {
switch t {
case
0, // F32
1, // F16
@ -252,73 +259,77 @@ func (t Tensor) blockSize() uint64 {
}
func (t Tensor) typeSize() uint64 {
blockSize := t.blockSize()
return TensorType(t.Kind).TypeSize()
}
switch t.Kind {
case 0: // FP32
func (t TensorType) TypeSize() uint64 {
blockSize := t.BlockSize()
switch t {
case TensorTypeF32:
return 4
case 1: // FP16
case TensorTypeF16:
return 2
case 2: // Q4_0
case TensorTypeQ4_0:
return 2 + blockSize/2
case 3: // Q4_1
case TensorTypeQ4_1:
return 2 + 2 + blockSize/2
case 6: // Q5_0
case TensorTypeQ5_0:
return 2 + 4 + blockSize/2
case 7: // Q5_1
case TensorTypeQ5_1:
return 2 + 2 + 4 + blockSize/2
case 8: // Q8_0
case TensorTypeQ8_0:
return 2 + blockSize
case 9: // Q8_1
case TensorTypeQ8_1:
return 2 + 2 + blockSize
case 10: // Q2_K
case TensorTypeQ2_K:
return blockSize/16 + blockSize/4 + 2 + 2
case 11: // Q3_K
case TensorTypeQ3_K:
return blockSize/8 + blockSize/4 + 12 + 2
case 12: // Q4_K
case TensorTypeQ4_K:
return 2 + 2 + 12 + blockSize/2
case 13: // Q5_K
case TensorTypeQ5_K:
return 2 + 2 + 12 + blockSize/8 + blockSize/2
case 14: // Q6_K
case TensorTypeQ6_K:
return blockSize/2 + blockSize/4 + blockSize/16 + 2
case 15: // Q8_K
case TensorTypeQ8_K:
return 4 + blockSize + 2*blockSize/16
case 16: // IQ2_XXS
case tensorTypeIQ2_XXS:
return 2 + 2*blockSize/8
case 17: // IQ2_XS
case tensorTypeIQ2_XS:
return 2 + 2*blockSize/8 + blockSize/32
case 18: // IQ3_XXS
case tensorTypeIQ3_XXS:
return 2 + blockSize/4 + blockSize/8
case 19: // IQ1_S
case tensorTypeIQ1_S:
return 2 + blockSize/8 + blockSize/16
case 20: // IQ4_NL
case tensorTypeIQ4_NL:
return 2 + blockSize/2
case 21: // IQ3_S
case tensorTypeIQ3_S:
return 2 + blockSize/4 + blockSize/8 + blockSize/32 + 4
case 22: // IQ2_S
case tensorTypeIQ2_S:
return 2 + blockSize/4 + blockSize/16
case 23: // IQ4_XS
case tensorTypeIQ4_XS:
return 2 + 2 + blockSize/2 + blockSize/64
case 24: // I8
case TensorTypeI8:
return 1
case 25: // I16
case TensorTypeI16:
return 2
case 26: // I32
case TensorTypeI32:
return 4
case 27: // I64
case TensorTypeI64:
return 8
case 28: // F64
case TensorTypeF64:
return 8
case 29: // IQ1_M
case tensorTypeIQ1_M:
return blockSize/8 + blockSize/16 + blockSize/32
case 30: // BF16
case TensorTypeBF16:
return 2
default:
return 0
}
}
func (t Tensor) parameters() uint64 {
func (t Tensor) Elements() uint64 {
var count uint64 = 1
for _, n := range t.Shape {
count *= n
@ -327,11 +338,11 @@ func (t Tensor) parameters() uint64 {
}
func (t Tensor) Size() uint64 {
return t.parameters() * t.typeSize() / t.blockSize()
return t.Elements() * t.typeSize() / t.blockSize()
}
func (t Tensor) Type() string {
return fileType(t.Kind).String()
return TensorType(t.Kind).String()
}
type container interface {
@ -480,7 +491,7 @@ func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType stri
var ropeFreqsCount uint64
if ropeFreqs, ok := f.Tensors().GroupLayers()["rope_freqs"]; ok {
if ropeFreqsWeights, ok := ropeFreqs["weights"]; ok {
ropeFreqsCount = ropeFreqsWeights.parameters()
ropeFreqsCount = ropeFreqsWeights.Elements()
}
}
@ -640,6 +651,29 @@ func (llm GGML) VisionGraphSize() (weights, graphSize uint64) {
graphSize = 4 * (imageSize*imageSize*numChannels +
embeddingLength*patchSize +
numPatches*numPatches*headCount)
case "qwen25vl":
maxPixels := uint64(llm.KV().Uint("vision.max_pixels", 28*28*1280))
mergeSize := uint64(llm.KV().Uint("vision.spatial_merge_size", 2))
temporalPatchSize := uint64(2)
// Calculate max possible patches based on max_pixels
maxHeight := uint64(math.Sqrt(float64(maxPixels)))
maxWidth := maxPixels / maxHeight
maxGridHeight := maxHeight / patchSize
maxGridWidth := maxWidth / patchSize
// Account for merged patches (2x2 grid)
numPatches := (maxGridHeight * maxGridWidth) / (mergeSize * mergeSize)
// Calculate graph size based on typical operations in ProcessImage and createPatches
graphSize = 4 * (maxPixels*numChannels + // Original image storage
// Normalized pixels
maxPixels*numChannels +
// Patches storage (numPatches * channels * temporalPatchSize * patchSize^2)
numPatches*numChannels*temporalPatchSize*patchSize*patchSize +
// Self-attention calculations (similar to other architectures)
numPatches*numPatches*headCount +
// Additional buffer for processing
embeddingLength*numPatches)
case "llama4":
// vision graph is computed independently in the same schedule
// and is negligible compared to the worst case text graph

View File

@ -9,8 +9,12 @@ import (
"io"
"log/slog"
"maps"
"os"
"runtime"
"slices"
"strings"
"golang.org/x/sync/errgroup"
)
type containerGGUF struct {
@ -225,7 +229,7 @@ func (llm *gguf) Decode(rs io.ReadSeeker) error {
}
llm.tensors = append(llm.tensors, &tensor)
llm.parameters += tensor.parameters()
llm.parameters += tensor.Elements()
}
// patch KV with parameter count
@ -488,25 +492,38 @@ func writeGGUFArray[S ~[]E, E any](w io.Writer, t uint32, s S) error {
return err
}
if t == ggufTypeString {
for _, e := range any(s).([]string) {
if err := binary.Write(w, binary.LittleEndian, uint64(len(e))); err != nil {
return err
}
if err := binary.Write(w, binary.LittleEndian, []byte(e)); err != nil {
return err
}
}
return nil
}
return binary.Write(w, binary.LittleEndian, s)
}
func WriteGGUF(ws io.WriteSeeker, kv KV, ts []Tensor) error {
func WriteGGUF(f *os.File, kv KV, ts []*Tensor) error {
alignment := kv.Uint("general.alignment", 32)
if err := binary.Write(ws, binary.LittleEndian, []byte("GGUF")); err != nil {
if err := binary.Write(f, binary.LittleEndian, []byte("GGUF")); err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, uint32(3)); err != nil {
if err := binary.Write(f, binary.LittleEndian, uint32(3)); err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, uint64(len(ts))); err != nil {
if err := binary.Write(f, binary.LittleEndian, uint64(len(ts))); err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, uint64(len(kv))); err != nil {
if err := binary.Write(f, binary.LittleEndian, uint64(len(kv))); err != nil {
return err
}
@ -514,12 +531,12 @@ func WriteGGUF(ws io.WriteSeeker, kv KV, ts []Tensor) error {
slices.Sort(keys)
for _, key := range keys {
if err := ggufWriteKV(ws, key, kv[key]); err != nil {
if err := ggufWriteKV(f, key, kv[key]); err != nil {
return err
}
}
slices.SortStableFunc(ts, func(a, b Tensor) int {
slices.SortStableFunc(ts, func(a, b *Tensor) int {
if i, j := a.block(), b.block(); i < 0 && j > 0 {
return 1
} else if i > 0 && j < 0 {
@ -530,22 +547,34 @@ func WriteGGUF(ws io.WriteSeeker, kv KV, ts []Tensor) error {
})
var s uint64
for _, t := range ts {
t.Offset = s
if err := ggufWriteTensorInfo(ws, t); err != nil {
for i := range ts {
ts[i].Offset = s
if err := ggufWriteTensorInfo(f, ts[i]); err != nil {
return err
}
s += t.Size()
s += ts[i].Size()
s += uint64(ggufPadding(int64(s), int64(alignment)))
}
offset, err := f.Seek(0, io.SeekCurrent)
if err != nil {
return err
}
offset += ggufPadding(offset, int64(alignment))
var g errgroup.Group
g.SetLimit(runtime.GOMAXPROCS(0))
// TODO consider reducing if tensors size * gomaxprocs is larger than free memory
for _, t := range ts {
if err := ggufWriteTensor(ws, t, int64(alignment)); err != nil {
t := t
w := io.NewOffsetWriter(f, offset+int64(t.Offset))
g.Go(func() error {
_, err := t.WriteTo(w)
return err
}
})
}
return nil
return g.Wait()
}
func ggufWriteKV(ws io.WriteSeeker, k string, v any) error {
@ -560,8 +589,10 @@ func ggufWriteKV(ws io.WriteSeeker, k string, v any) error {
var err error
switch v := v.(type) {
case uint32:
case uint32, FileType:
err = writeGGUF(ws, ggufTypeUint32, v)
case uint64:
err = writeGGUF(ws, ggufTypeUint64, v)
case float32:
err = writeGGUF(ws, ggufTypeFloat32, v)
case bool:
@ -570,32 +601,20 @@ func ggufWriteKV(ws io.WriteSeeker, k string, v any) error {
err = writeGGUFString(ws, v)
case []int32:
err = writeGGUFArray(ws, ggufTypeInt32, v)
case *array[int32]:
err = writeGGUFArray(ws, ggufTypeInt32, v.values)
case []uint32:
err = writeGGUFArray(ws, ggufTypeUint32, v)
case *array[uint32]:
err = writeGGUFArray(ws, ggufTypeUint32, v.values)
case []float32:
err = writeGGUFArray(ws, ggufTypeFloat32, v)
case *array[float32]:
err = writeGGUFArray(ws, ggufTypeFloat32, v.values)
case []string:
if err := binary.Write(ws, binary.LittleEndian, ggufTypeArray); err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, ggufTypeString); err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, uint64(len(v))); err != nil {
return err
}
for _, e := range v {
if err := binary.Write(ws, binary.LittleEndian, uint64(len(e))); err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, []byte(e)); err != nil {
return err
}
}
err = writeGGUFArray(ws, ggufTypeString, v)
case *array[string]:
err = writeGGUFArray(ws, ggufTypeString, v.values)
default:
return fmt.Errorf("improper type for '%s'", k)
}
@ -603,7 +622,7 @@ func ggufWriteKV(ws io.WriteSeeker, k string, v any) error {
return err
}
func ggufWriteTensorInfo(ws io.WriteSeeker, t Tensor) error {
func ggufWriteTensorInfo(ws io.WriteSeeker, t *Tensor) error {
slog.Debug(t.Name, "kind", t.Kind, "shape", t.Shape, "offset", t.Offset)
if err := binary.Write(ws, binary.LittleEndian, uint64(len(t.Name))); err != nil {
return err
@ -630,20 +649,6 @@ func ggufWriteTensorInfo(ws io.WriteSeeker, t Tensor) error {
return binary.Write(ws, binary.LittleEndian, t.Offset)
}
func ggufWriteTensor(ws io.WriteSeeker, t Tensor, alignment int64) error {
offset, err := ws.Seek(0, io.SeekCurrent)
if err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, bytes.Repeat([]byte{0}, int(ggufPadding(offset, alignment)))); err != nil {
return err
}
_, err = t.WriteTo(ws)
return err
}
func ggufPadding(offset, align int64) int64 {
return (align - offset%align) % align
}

View File

@ -18,7 +18,7 @@ func TestWriteGGUF(t *testing.T) {
if err := WriteGGUF(w, KV{
"general.alignment": uint32(16),
}, []Tensor{
}, []*Tensor{
{Name: "test.0", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(slices.Repeat([]byte{0}, 2*3*4))},
{Name: "test.1", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(slices.Repeat([]byte{0}, 2*3*4))},
{Name: "test.2", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(slices.Repeat([]byte{0}, 2*3*4))},

View File

@ -1,26 +1,31 @@
package ggml
import "fmt"
import (
"fmt"
"log/slog"
"strings"
)
type fileType uint32
// FileType is the Go equivalent to llama_ftype used for gguf file typing
type FileType uint32
const (
fileTypeF32 fileType = iota
fileTypeF16
FileTypeF32 FileType = iota
FileTypeF16
fileTypeQ4_0
fileTypeQ4_1
fileTypeQ4_1_F16
fileTypeQ4_2 // unused
fileTypeQ4_3 // unused
fileTypeQ8_0
fileTypeQ4_1_F16 // unused by GGML
fileTypeQ4_2 // unused by GGML
fileTypeQ4_3 // unused by GGML
FileTypeQ8_0
fileTypeQ5_0
fileTypeQ5_1
fileTypeQ2_K
fileTypeQ3_K_S
fileTypeQ3_K_M
fileTypeQ3_K_L
fileTypeQ4_K_S
fileTypeQ4_K_M
FileTypeQ4_K_S
FileTypeQ4_K_M
fileTypeQ5_K_S
fileTypeQ5_K_M
fileTypeQ6_K
@ -37,93 +42,62 @@ const (
fileTypeIQ2_M
fileTypeIQ4_XS
fileTypeIQ1_M
fileTypeBF16
FileTypeBF16
fileTypeQ4_0_4_4 // unused by GGML
fileTypeQ4_0_4_8 // unused by GGML
fileTypeQ4_0_8_8 // unused by GGML
fileTypeTQ1_0
fileTypeTQ2_0
fileTypeUnknown
FileTypeUnknown = 1024
)
func ParseFileType(s string) (fileType, error) {
// ParseFileType parses the provided GGUF file type
// Only Ollama supported types are considered valid
func ParseFileType(s string) (FileType, error) {
switch s {
case "F32":
return fileTypeF32, nil
return FileTypeF32, nil
case "F16":
return fileTypeF16, nil
case "Q4_0":
return fileTypeQ4_0, nil
case "Q4_1":
return fileTypeQ4_1, nil
case "Q4_1_F16":
return fileTypeQ4_1_F16, nil
return FileTypeF16, nil
case "Q8_0":
return fileTypeQ8_0, nil
case "Q5_0":
return fileTypeQ5_0, nil
case "Q5_1":
return fileTypeQ5_1, nil
case "Q2_K":
return fileTypeQ2_K, nil
case "Q3_K_S":
return fileTypeQ3_K_S, nil
case "Q3_K_M":
return fileTypeQ3_K_M, nil
case "Q3_K_L":
return fileTypeQ3_K_L, nil
return FileTypeQ8_0, nil
case "Q4_K_S":
return fileTypeQ4_K_S, nil
case "Q4_K_M":
return fileTypeQ4_K_M, nil
case "Q5_K_S":
return fileTypeQ5_K_S, nil
case "Q5_K_M":
return fileTypeQ5_K_M, nil
case "Q6_K":
return fileTypeQ6_K, nil
case "IQ2_XXS":
return fileTypeIQ2_XXS, nil
case "IQ2_XS":
return fileTypeIQ2_XS, nil
case "Q2_K_S":
return fileTypeQ2_K_S, nil
case "IQ3_XS":
return fileTypeIQ3_XS, nil
case "IQ3_XXS":
return fileTypeIQ3_XXS, nil
case "IQ1_S":
return fileTypeIQ1_S, nil
case "IQ4_NL":
return fileTypeIQ4_NL, nil
case "IQ3_S":
return fileTypeIQ3_S, nil
case "IQ3_M":
return fileTypeIQ3_M, nil
case "IQ2_S":
return fileTypeIQ2_S, nil
case "IQ2_M":
return fileTypeIQ2_M, nil
case "IQ4_XS":
return fileTypeIQ4_XS, nil
case "IQ1_M":
return fileTypeIQ1_M, nil
return FileTypeQ4_K_S, nil
case "Q4_K_M", "Q4_K":
return FileTypeQ4_K_M, nil
case "BF16":
return fileTypeBF16, nil
return FileTypeBF16, nil
default:
return fileTypeUnknown, fmt.Errorf("unknown fileType: %s", s)
supportedFileTypes := []FileType{
FileTypeF32,
FileTypeF16,
FileTypeQ4_K_S,
FileTypeQ4_K_M,
FileTypeQ8_0,
// fsggml.FileTypeBF16, // TODO
}
strs := make([]string, len(supportedFileTypes))
for i := range supportedFileTypes {
strs[i] = supportedFileTypes[i].String()
}
return FileTypeUnknown, fmt.Errorf("unsupported quantization type %s - supported types are %s", s, strings.Join(strs, ", "))
}
}
func (t fileType) String() string {
func (t FileType) String() string {
// Note: this routine will return a broader set of file types for existing models
switch t {
case fileTypeF32:
case FileTypeF32:
return "F32"
case fileTypeF16:
case FileTypeF16:
return "F16"
case fileTypeQ4_0:
return "Q4_0"
case fileTypeQ4_1:
return "Q4_1"
case fileTypeQ4_1_F16:
return "Q4_1_F16"
case fileTypeQ8_0:
case FileTypeQ8_0:
return "Q8_0"
case fileTypeQ5_0:
return "Q5_0"
@ -137,9 +111,9 @@ func (t fileType) String() string {
return "Q3_K_M"
case fileTypeQ3_K_L:
return "Q3_K_L"
case fileTypeQ4_K_S:
case FileTypeQ4_K_S:
return "Q4_K_S"
case fileTypeQ4_K_M:
case FileTypeQ4_K_M:
return "Q4_K_M"
case fileTypeQ5_K_S:
return "Q5_K_S"
@ -147,39 +121,198 @@ func (t fileType) String() string {
return "Q5_K_M"
case fileTypeQ6_K:
return "Q6_K"
case fileTypeIQ2_XXS:
return "IQ2_XXS"
case fileTypeIQ2_XS:
return "IQ2_XS"
case fileTypeQ2_K_S:
return "Q2_K_S"
case fileTypeIQ3_XS:
return "IQ3_XS"
case fileTypeIQ3_XXS:
return "IQ3_XXS"
case fileTypeIQ1_S:
return "IQ1_S"
case fileTypeIQ4_NL:
return "IQ4_NL"
case fileTypeIQ3_S:
return "IQ3_S"
case fileTypeIQ3_M:
return "IQ3_M"
case fileTypeIQ2_S:
return "IQ2_S"
case fileTypeIQ4_XS:
return "IQ4_XS"
case fileTypeIQ2_M:
return "IQ2_M"
case fileTypeIQ1_M:
return "IQ1_M"
case fileTypeBF16:
case FileTypeBF16:
return "BF16"
default:
return "unknown"
}
}
func (t fileType) Value() uint32 {
func (t FileType) Value() uint32 {
return uint32(t)
}
func (ftype FileType) ToTensorType() TensorType {
switch ftype {
case FileTypeF32:
return TensorTypeF32
case FileTypeF16:
return TensorTypeF16
case fileTypeQ4_0:
return TensorTypeQ4_0
case fileTypeQ4_1:
return TensorTypeQ4_1
case FileTypeQ8_0:
return TensorTypeQ8_0
case fileTypeQ5_0:
return TensorTypeQ5_0
case fileTypeQ5_1:
return TensorTypeQ5_1
case fileTypeQ2_K:
return TensorTypeQ2_K
case fileTypeQ3_K_S:
return TensorTypeQ3_K
case fileTypeQ3_K_M:
return TensorTypeQ3_K
case fileTypeQ3_K_L:
return TensorTypeQ3_K
case FileTypeQ4_K_S:
return TensorTypeQ4_K
case FileTypeQ4_K_M:
return TensorTypeQ4_K
case fileTypeQ5_K_S:
return TensorTypeQ5_K
case fileTypeQ5_K_M:
return TensorTypeQ5_K
case fileTypeQ6_K:
return TensorTypeQ6_K
case fileTypeQ2_K_S:
return TensorTypeQ2_K
case FileTypeBF16:
return TensorTypeBF16
default:
slog.Warn("unsupported file type", "type", ftype)
return 0 // F32
}
}
// TensorType is equivalent to ggml_type for individual tensor types
// Note: these are not the same as FileType
type TensorType uint32
const (
TensorTypeF32 TensorType = iota
TensorTypeF16
TensorTypeQ4_0
TensorTypeQ4_1
tensorTypeQ4_2 // unused by GGML
tensorTypeQ4_3 // unused by GGML
TensorTypeQ5_0
TensorTypeQ5_1
TensorTypeQ8_0
TensorTypeQ8_1
TensorTypeQ2_K
TensorTypeQ3_K
TensorTypeQ4_K
TensorTypeQ5_K
TensorTypeQ6_K
TensorTypeQ8_K
tensorTypeIQ2_XXS // not supported by ollama
tensorTypeIQ2_XS // not supported by ollama
tensorTypeIQ3_XXS // not supported by ollama
tensorTypeIQ1_S // not supported by ollama
tensorTypeIQ4_NL // not supported by ollama
tensorTypeIQ3_S // not supported by ollama
tensorTypeIQ2_S // not supported by ollama
tensorTypeIQ4_XS // not supported by ollama
TensorTypeI8
TensorTypeI16
TensorTypeI32
TensorTypeI64
TensorTypeF64
tensorTypeIQ1_M // not supported by ollama
TensorTypeBF16
tensorTypeQ4_0_4_4 // unused by GGML
tensorTypeQ4_0_4_8 // unused by GGML
tensorTypeQ4_0_8_8 // unused by GGML
tensorTypeTQ1_0 // not supported by ollama
tensorTypeTQ2_0 // not supported by ollama
tensorTypeIQ4_NL_4_4 // unused by GGML
tensorTypeIQ4_NL_4_8 // unused by GGML
tensorTypeIQ4_NL_8_8 // unused by GGML
)
// ParseFileType parses the provided GGUF file type
// Only Ollama supported types are considered valid
func ParseTensorType(s string) (TensorType, error) {
switch s {
case "F32":
return TensorTypeF32, nil
case "F16":
return TensorTypeF16, nil
case "Q4_0":
return TensorTypeQ4_0, nil
case "Q4_1":
return TensorTypeQ4_1, nil
case "Q5_0":
return TensorTypeQ5_0, nil
case "Q5_1":
return TensorTypeQ5_1, nil
case "Q8_0":
return TensorTypeQ8_0, nil
case "Q8_1":
return TensorTypeQ8_1, nil
case "Q2_K":
return TensorTypeQ2_K, nil
case "Q3_K":
return TensorTypeQ3_K, nil
case "Q4_K":
return TensorTypeQ4_K, nil
case "Q5_K":
return TensorTypeQ5_K, nil
case "Q6_K":
return TensorTypeQ6_K, nil
case "Q8_K":
return TensorTypeQ8_K, nil
case "F64":
return TensorTypeF64, nil
case "BF16":
return TensorTypeBF16, nil
default:
return 0, fmt.Errorf("unsupported quantization type %s", s)
}
}
func (t TensorType) IsQuantized() bool {
switch t {
case TensorTypeF32, TensorTypeF16, TensorTypeBF16:
return false
default:
return true
}
}
func (t TensorType) RowSize(ne uint64) uint64 {
return t.TypeSize() * ne / t.BlockSize()
}
func (t TensorType) String() string {
switch t {
case TensorTypeF32:
return "F32"
case TensorTypeF16:
return "F16"
case TensorTypeQ4_0:
return "Q4_0"
case TensorTypeQ4_1:
return "Q4_1"
case TensorTypeQ5_0:
return "Q5_0"
case TensorTypeQ5_1:
return "Q5_1"
case TensorTypeQ8_0:
return "Q8_0"
case TensorTypeQ8_1:
return "Q8_1"
case TensorTypeQ2_K:
return "Q2_K"
case TensorTypeQ3_K:
return "Q3_K"
case TensorTypeQ4_K:
return "Q4_K"
case TensorTypeQ5_K:
return "Q5_K"
case TensorTypeQ6_K:
return "Q6_K"
case TensorTypeQ8_K:
return "Q8_K"
case TensorTypeF64:
return "F64"
case TensorTypeBF16:
return "BF16"
default:
return "unknown"
}
}

View File

@ -48,17 +48,6 @@ var (
}
)
func getTimeouts(t *testing.T) (soft time.Duration, hard time.Duration) {
deadline, hasDeadline := t.Deadline()
if !hasDeadline {
return 8 * time.Minute, 10 * time.Minute
} else if deadline.Compare(time.Now().Add(2*time.Minute)) <= 0 {
t.Skip("too little time")
return time.Duration(0), time.Duration(0)
}
return -time.Since(deadline.Add(-2 * time.Minute)), -time.Since(deadline.Add(-20 * time.Second))
}
func TestModelsGenerate(t *testing.T) {
softTimeout, hardTimeout := getTimeouts(t)
slog.Info("Setting timeouts", "soft", softTimeout, "hard", hardTimeout)

View File

@ -0,0 +1,130 @@
//go:build integration && models
package integration
import (
"bytes"
"context"
"fmt"
"log/slog"
"strings"
"testing"
"time"
"github.com/ollama/ollama/api"
)
func TestQuantization(t *testing.T) {
sourceModels := []string{
"qwen2.5:0.5b-instruct-fp16",
}
quantizations := []string{
"Q8_0",
"Q4_K_S",
"Q4_K_M",
"Q4_K",
}
softTimeout, hardTimeout := getTimeouts(t)
started := time.Now()
slog.Info("Setting timeouts", "soft", softTimeout, "hard", hardTimeout)
ctx, cancel := context.WithTimeout(context.Background(), hardTimeout)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
for _, base := range sourceModels {
if err := PullIfMissing(ctx, client, base); err != nil {
t.Fatalf("pull failed %s", err)
}
for _, quant := range quantizations {
newName := fmt.Sprintf("%s__%s", base, quant)
t.Run(newName, func(t *testing.T) {
if time.Now().Sub(started) > softTimeout {
t.Skip("skipping remaining tests to avoid excessive runtime")
}
req := &api.CreateRequest{
Model: newName,
Quantization: quant,
From: base,
}
fn := func(resp api.ProgressResponse) error {
// fmt.Print(".")
return nil
}
t.Logf("quantizing: %s -> %s", base, quant)
if err := client.Create(ctx, req, fn); err != nil {
t.Fatalf("create failed %s", err)
}
defer func() {
req := &api.DeleteRequest{
Model: newName,
}
t.Logf("deleting: %s -> %s", base, quant)
if err := client.Delete(ctx, req); err != nil {
t.Logf("failed to clean up %s: %s", req.Model, err)
}
}()
// Check metadata on the model
resp, err := client.Show(ctx, &api.ShowRequest{Name: newName})
if err != nil {
t.Fatalf("unable to show model: %s", err)
}
if !strings.Contains(resp.Details.QuantizationLevel, quant) {
t.Fatalf("unexpected quantization for %s:\ngot: %s", newName, resp.Details.QuantizationLevel)
}
stream := true
genReq := api.GenerateRequest{
Model: newName,
Prompt: "why is the sky blue?",
KeepAlive: &api.Duration{Duration: 3 * time.Second},
Options: map[string]any{
"seed": 42,
"temperature": 0.0,
},
Stream: &stream,
}
t.Logf("verifying: %s -> %s", base, quant)
// Some smaller quantizations can cause models to have poor quality
// or get stuck in repetition loops, so we stop as soon as we have any matches
anyResp := []string{"rayleigh", "scattering", "day", "sun", "moon", "color", "nitrogen", "oxygen"}
reqCtx, reqCancel := context.WithCancel(ctx)
atLeastOne := false
var buf bytes.Buffer
genfn := func(response api.GenerateResponse) error {
buf.Write([]byte(response.Response))
fullResp := strings.ToLower(buf.String())
for _, resp := range anyResp {
if strings.Contains(fullResp, resp) {
atLeastOne = true
t.Log(fullResp)
reqCancel()
break
}
}
return nil
}
done := make(chan int)
var genErr error
go func() {
genErr = client.Generate(reqCtx, &genReq, genfn)
done <- 0
}()
select {
case <-done:
if genErr != nil && !atLeastOne {
t.Fatalf("failed with %s request prompt %s ", genReq.Model, genReq.Prompt)
}
case <-ctx.Done():
t.Error("outer test context done while waiting for generate")
}
t.Logf("passed")
})
}
}
}

View File

@ -217,6 +217,7 @@ func InitServerConnection(ctx context.Context, t *testing.T) (*api.Client, strin
slog.Error("failed to open server log", "logfile", lifecycle.ServerLogFile, "error", err)
return
}
defer fp.Close()
data, err := io.ReadAll(fp)
if err != nil {
slog.Error("failed to read server log", "logfile", lifecycle.ServerLogFile, "error", err)
@ -358,3 +359,14 @@ func skipUnderMinVRAM(t *testing.T, gb uint64) {
}
}
}
func getTimeouts(t *testing.T) (soft time.Duration, hard time.Duration) {
deadline, hasDeadline := t.Deadline()
if !hasDeadline {
return 8 * time.Minute, 10 * time.Minute
} else if deadline.Compare(time.Now().Add(2*time.Minute)) <= 0 {
t.Skip("too little time")
return time.Duration(0), time.Duration(0)
}
return -time.Since(deadline.Add(-2 * time.Minute)), -time.Since(deadline.Add(-20 * time.Second))
}

View File

@ -239,7 +239,7 @@ func (c *Causal) findStartLoc() (int, error) {
}
}
return 0, fmt.Errorf("%w (length: %v)", ErrKvCacheFull, len(c.cells))
return 0, fmt.Errorf("%w (cache: %v batch: %v)", ErrKvCacheFull, len(c.cells), c.curBatchSize)
}
func (c *Causal) updateSlidingWindow() {

2
llama/build-info.cpp generated vendored
View File

@ -1,4 +1,4 @@
int LLAMA_BUILD_NUMBER = 0;
char const *LLAMA_COMMIT = "2016f07bd106c73699ecbaace80f55db5ed95dac";
char const *LLAMA_COMMIT = "de4c07f93783a1a96456a44dc16b9db538ee1618";
char const *LLAMA_COMPILER = "";
char const *LLAMA_BUILD_TARGET = "";

View File

@ -10,11 +10,11 @@ include common/stb_image.*
include include/
include include/llama.*
include include/llama-*.*
include examples/
include examples/llava/
include examples/llava/clip.*
include examples/llava/clip-impl.*
include examples/llava/llava.*
include tools/
include tools/mtmd/
include tools/mtmd/clip.*
include tools/mtmd/clip-impl.*
include tools/mtmd/llava.*
include src/
include src/llama.*
include src/llama-*.*

View File

@ -1096,7 +1096,6 @@ struct llama_context_params common_context_params_to_llama(const common_params &
cparams.n_threads = params.cpuparams.n_threads;
cparams.n_threads_batch = params.cpuparams_batch.n_threads == -1 ?
params.cpuparams.n_threads : params.cpuparams_batch.n_threads;
cparams.logits_all = params.logits_all;
cparams.embeddings = params.embedding;
cparams.rope_scaling_type = params.rope_scaling_type;
cparams.rope_freq_base = params.rope_freq_base;
@ -1114,6 +1113,7 @@ struct llama_context_params common_context_params_to_llama(const common_params &
cparams.offload_kqv = !params.no_kv_offload;
cparams.flash_attn = params.flash_attn;
cparams.no_perf = params.no_perf;
cparams.op_offload = !params.no_op_offload;
if (params.reranking) {
cparams.embeddings = true;
@ -1565,3 +1565,20 @@ common_control_vector_data common_control_vector_load(const std::vector<common_c
return result;
}
ggml_opt_dataset_t common_opt_dataset_init(struct llama_context * ctx, const std::vector<llama_token> & tokens, int64_t stride) {
const int64_t ne_datapoint = llama_n_ctx(ctx);
const int64_t ndata = (tokens.size() - ne_datapoint - 1) / stride;
ggml_opt_dataset_t result = ggml_opt_dataset_init(
GGML_TYPE_I32, GGML_TYPE_I32, ne_datapoint, ne_datapoint, ndata, /*ndata_shard =*/ 1);
llama_token * data = (llama_token *) ggml_opt_dataset_data(result)->data;
llama_token * labels = (llama_token *) ggml_opt_dataset_labels(result)->data;
for (int64_t idata = 0; idata < ndata; ++idata) {
memcpy(data + idata*ne_datapoint, tokens.data() + idata*stride + 0, ne_datapoint*sizeof(llama_token));
memcpy(labels + idata*ne_datapoint, tokens.data() + idata*stride + 1, ne_datapoint*sizeof(llama_token));
}
return result;
}

View File

@ -66,7 +66,6 @@ enum llama_example {
LLAMA_EXAMPLE_COMMON,
LLAMA_EXAMPLE_SPECULATIVE,
LLAMA_EXAMPLE_MAIN,
LLAMA_EXAMPLE_INFILL,
LLAMA_EXAMPLE_EMBEDDING,
LLAMA_EXAMPLE_PERPLEXITY,
LLAMA_EXAMPLE_RETRIEVAL,
@ -96,6 +95,7 @@ enum common_sampler_type {
COMMON_SAMPLER_TYPE_XTC = 8,
COMMON_SAMPLER_TYPE_INFILL = 9,
COMMON_SAMPLER_TYPE_PENALTIES = 10,
COMMON_SAMPLER_TYPE_TOP_N_SIGMA = 11,
};
// dimensionality reduction methods, used by cvector-generator
@ -161,6 +161,7 @@ struct common_params_sampling {
std::vector<enum common_sampler_type> samplers = {
COMMON_SAMPLER_TYPE_PENALTIES,
COMMON_SAMPLER_TYPE_DRY,
COMMON_SAMPLER_TYPE_TOP_N_SIGMA,
COMMON_SAMPLER_TYPE_TOP_K,
COMMON_SAMPLER_TYPE_TYPICAL_P,
COMMON_SAMPLER_TYPE_TOP_P,
@ -323,7 +324,6 @@ struct common_params {
bool ctx_shift = true; // context shift on inifinite text generation
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
bool logits_all = false; // return logits for all tokens in the batch
bool use_mmap = true; // use mmap for faster loads
bool use_mlock = false; // use mlock to keep model in memory
bool verbose_prompt = false; // print prompt tokens before generation
@ -332,6 +332,7 @@ struct common_params {
bool no_kv_offload = false; // disable KV offloading
bool warmup = true; // warmup run
bool check_tensors = false; // validate tensor data
bool no_op_offload = false; // globally disable offload host tensor operations to device
bool single_turn = false; // single turn chat conversation
@ -340,8 +341,10 @@ struct common_params {
common_conversation_mode conversation_mode = COMMON_CONVERSATION_MODE_AUTO;
// multimodal models (see examples/llava)
// multimodal models (see tools/mtmd)
struct common_params_model mmproj;
bool mmproj_use_gpu = true; // use GPU for multimodal model
bool no_mmproj = false; // explicitly disable multimodal model
std::vector<std::string> image; // path to image file(s)
// embedding
@ -407,13 +410,14 @@ struct common_params {
bool process_output = false; // collect data for the output tensor
bool compute_ppl = true; // whether to compute perplexity
bool parse_special = false; // whether to parse special tokens during imatrix tokenization
// cvector-generator params
int n_pca_batch = 100;
int n_pca_iterations = 1000;
dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
std::string cvector_positive_file = "tools/cvector-generator/positive.txt";
std::string cvector_negative_file = "tools/cvector-generator/negative.txt";
bool spm_infill = false; // suffix/prefix/middle pattern for infill
@ -662,3 +666,9 @@ const char * const LLM_KV_SPLIT_COUNT = "split.count";
const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
}
//
// training utils
//
ggml_opt_dataset_t common_opt_dataset_init(struct llama_context * ctx, const std::vector<llama_token> & tokens, int64_t stride);

View File

@ -16,6 +16,9 @@ using json = nlohmann::ordered_json;
static std::string build_repetition(const std::string & item_rule, int min_items, int max_items, const std::string & separator_rule = "") {
auto has_max = max_items != std::numeric_limits<int>::max();
if (max_items == 0) {
return "";
}
if (min_items == 0 && max_items == 1) {
return item_rule + "?";
}

View File

@ -1,6 +1,7 @@
#include "sampling.h"
#include "common.h"
#include "log.h"
#include <cmath>
#include <unordered_map>
@ -229,51 +230,48 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
params.logit_bias.data()));
if (params.mirostat == 0) {
if (params.top_n_sigma >= 0) {
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
llama_sampler_chain_add(result->chain, llama_sampler_init_temp (params.temp));
llama_sampler_chain_add(result->chain, llama_sampler_init_top_n_sigma (params.top_n_sigma));
} else {
for (const auto & cnstr : params.samplers) {
switch (cnstr) {
case COMMON_SAMPLER_TYPE_DRY:
{
std::vector<const char *> c_breakers;
c_breakers.reserve(params.dry_sequence_breakers.size());
for (const auto & str : params.dry_sequence_breakers) {
c_breakers.push_back(str.c_str());
}
llama_sampler_chain_add(result->chain, llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
for (const auto & cnstr : params.samplers) {
switch (cnstr) {
case COMMON_SAMPLER_TYPE_DRY:
{
std::vector<const char *> c_breakers;
c_breakers.reserve(params.dry_sequence_breakers.size());
for (const auto & str : params.dry_sequence_breakers) {
c_breakers.push_back(str.c_str());
}
break;
case COMMON_SAMPLER_TYPE_TOP_K:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
break;
case COMMON_SAMPLER_TYPE_TOP_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_MIN_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_XTC:
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
break;
case COMMON_SAMPLER_TYPE_TYPICAL_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_TEMPERATURE:
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
break;
case COMMON_SAMPLER_TYPE_INFILL:
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (vocab));
break;
case COMMON_SAMPLER_TYPE_PENALTIES:
llama_sampler_chain_add(result->chain, llama_sampler_init_penalties(params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
break;
default:
GGML_ASSERT(false && "unknown sampler type");
}
llama_sampler_chain_add(result->chain, llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
}
break;
case COMMON_SAMPLER_TYPE_TOP_K:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
break;
case COMMON_SAMPLER_TYPE_TOP_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_TOP_N_SIGMA:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_n_sigma (params.top_n_sigma));
break;
case COMMON_SAMPLER_TYPE_MIN_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_XTC:
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
break;
case COMMON_SAMPLER_TYPE_TYPICAL_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_TEMPERATURE:
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
break;
case COMMON_SAMPLER_TYPE_INFILL:
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (vocab));
break;
case COMMON_SAMPLER_TYPE_PENALTIES:
llama_sampler_chain_add(result->chain, llama_sampler_init_penalties (params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
break;
default:
GGML_ASSERT(false && "unknown sampler type");
}
}
llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
@ -475,6 +473,7 @@ char common_sampler_type_to_chr(enum common_sampler_type cnstr) {
case COMMON_SAMPLER_TYPE_TOP_K: return 'k';
case COMMON_SAMPLER_TYPE_TYPICAL_P: return 'y';
case COMMON_SAMPLER_TYPE_TOP_P: return 'p';
case COMMON_SAMPLER_TYPE_TOP_N_SIGMA: return 's';
case COMMON_SAMPLER_TYPE_MIN_P: return 'm';
case COMMON_SAMPLER_TYPE_TEMPERATURE: return 't';
case COMMON_SAMPLER_TYPE_XTC: return 'x';
@ -490,6 +489,7 @@ std::string common_sampler_type_to_str(enum common_sampler_type cnstr) {
case COMMON_SAMPLER_TYPE_TOP_K: return "top_k";
case COMMON_SAMPLER_TYPE_TYPICAL_P: return "typ_p";
case COMMON_SAMPLER_TYPE_TOP_P: return "top_p";
case COMMON_SAMPLER_TYPE_TOP_N_SIGMA: return "top_n_sigma";
case COMMON_SAMPLER_TYPE_MIN_P: return "min_p";
case COMMON_SAMPLER_TYPE_TEMPERATURE: return "temperature";
case COMMON_SAMPLER_TYPE_XTC: return "xtc";
@ -504,6 +504,7 @@ std::vector<common_sampler_type> common_sampler_types_from_names(const std::vect
{ "dry", COMMON_SAMPLER_TYPE_DRY },
{ "top_k", COMMON_SAMPLER_TYPE_TOP_K },
{ "top_p", COMMON_SAMPLER_TYPE_TOP_P },
{ "top_n_sigma", COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
{ "typ_p", COMMON_SAMPLER_TYPE_TYPICAL_P },
{ "min_p", COMMON_SAMPLER_TYPE_MIN_P },
{ "temperature", COMMON_SAMPLER_TYPE_TEMPERATURE },
@ -517,6 +518,7 @@ std::vector<common_sampler_type> common_sampler_types_from_names(const std::vect
std::unordered_map<std::string, common_sampler_type> sampler_alt_name_map {
{ "top-k", COMMON_SAMPLER_TYPE_TOP_K },
{ "top-p", COMMON_SAMPLER_TYPE_TOP_P },
{ "top-n-sigma", COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
{ "nucleus", COMMON_SAMPLER_TYPE_TOP_P },
{ "typical-p", COMMON_SAMPLER_TYPE_TYPICAL_P },
{ "typical", COMMON_SAMPLER_TYPE_TYPICAL_P },
@ -533,14 +535,16 @@ std::vector<common_sampler_type> common_sampler_types_from_names(const std::vect
auto sampler = sampler_canonical_name_map.find(name);
if (sampler != sampler_canonical_name_map.end()) {
samplers.push_back(sampler->second);
} else {
if (allow_alt_names) {
sampler = sampler_alt_name_map.find(name);
if (sampler != sampler_alt_name_map.end()) {
samplers.push_back(sampler->second);
}
continue;
}
if (allow_alt_names) {
sampler = sampler_alt_name_map.find(name);
if (sampler != sampler_alt_name_map.end()) {
samplers.push_back(sampler->second);
continue;
}
}
LOG_WRN("%s: unable to match sampler by name '%s'\n", __func__, name.c_str());
}
return samplers;
@ -552,6 +556,7 @@ std::vector<common_sampler_type> common_sampler_types_from_chars(const std::stri
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_K), COMMON_SAMPLER_TYPE_TOP_K },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TYPICAL_P), COMMON_SAMPLER_TYPE_TYPICAL_P },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_P), COMMON_SAMPLER_TYPE_TOP_P },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_N_SIGMA), COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_MIN_P), COMMON_SAMPLER_TYPE_MIN_P },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TEMPERATURE), COMMON_SAMPLER_TYPE_TEMPERATURE },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_XTC), COMMON_SAMPLER_TYPE_XTC },
@ -566,6 +571,8 @@ std::vector<common_sampler_type> common_sampler_types_from_chars(const std::stri
const auto sampler = sampler_name_map.find(c);
if (sampler != sampler_name_map.end()) {
samplers.push_back(sampler->second);
} else {
LOG_WRN("%s: unable to match sampler by char '%c'\n", __func__, c);
}
}

File diff suppressed because it is too large Load Diff

View File

@ -4,6 +4,7 @@
#include "ggml.h"
#include "ggml-cpu.h"
#include "ggml-backend.h"
#include "ggml-opt.h"
#include <stddef.h>
#include <stdint.h>
@ -111,6 +112,8 @@ extern "C" {
LLAMA_VOCAB_PRE_TYPE_TRILLION = 31,
LLAMA_VOCAB_PRE_TYPE_BAILINGMOE = 32,
LLAMA_VOCAB_PRE_TYPE_LLAMA4 = 33,
LLAMA_VOCAB_PRE_TYPE_PIXTRAL = 34,
LLAMA_VOCAB_PRE_TYPE_SEED_CODER = 35,
};
enum llama_rope_type {
@ -255,7 +258,6 @@ extern "C" {
llama_token * token;
float * embd;
int32_t n_embd;
llama_pos * pos;
int32_t * n_seq_id;
llama_seq_id ** seq_id;
@ -351,20 +353,18 @@ extern "C" {
enum ggml_type type_k; // data type for K cache [EXPERIMENTAL]
enum ggml_type type_v; // data type for V cache [EXPERIMENTAL]
// Keep the booleans together and at the end of the struct to avoid misalignment during copy-by-value.
// TODO: move at the end of the struct
bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
bool embeddings; // if true, extract embeddings (together with logits)
bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
bool flash_attn; // whether to use flash attention [EXPERIMENTAL]
bool no_perf; // whether to measure performance timings
bool cross_attn; // whether to use cross attention
// Abort callback
// if it returns true, execution of llama_decode() will be aborted
// currently works only with CPU execution
ggml_abort_callback abort_callback;
void * abort_callback_data;
// Keep the booleans together and at the end of the struct to avoid misalignment during copy-by-value.
bool embeddings; // if true, extract embeddings (together with logits)
bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
bool flash_attn; // whether to use flash attention [EXPERIMENTAL]
bool no_perf; // whether to measure performance timings
bool op_offload; // whether to offload host tensor operations to device
};
// model quantization parameters
@ -446,6 +446,10 @@ extern "C" {
size_t n_paths,
struct llama_model_params params);
LLAMA_API void llama_model_save_to_file(
const struct llama_model * model,
const char * path_model);
DEPRECATED(LLAMA_API void llama_free_model(struct llama_model * model),
"use llama_model_free instead");
@ -460,10 +464,6 @@ extern "C" {
struct llama_context_params params),
"use llama_init_from_model instead");
// TODO (jmorganca): this should most likely be passed in as part of a batch
// and not set on the context for all batches.
LLAMA_API void llama_set_cross_attention(struct llama_context * ctx, bool cross_attn_state);
// Frees all allocated memory
LLAMA_API void llama_free(struct llama_context * ctx);
@ -929,14 +929,19 @@ extern "C" {
// Frees a batch of tokens allocated with llama_batch_init()
LLAMA_API void llama_batch_free(struct llama_batch batch);
// Processes a batch of tokens with the ecoder part of the encoder-decoder model.
// Stores the encoder output internally for later use by the decoder cross-attention layers.
// Process a batch of tokens.
// In contrast to llama_decode() - this call does not use KV cache.
// For encode-decoder contexts, processes the batch using the encoder.
// Can store the encoder output internally for later use by the decoder's cross-attention layers.
// 0 - success
// < 0 - error. the KV cache state is restored to the state before this call
LLAMA_API int32_t llama_encode(
struct llama_context * ctx,
struct llama_batch batch);
// Process a batch of tokens.
// Requires KV cache.
// For encode-decoder contexts, processes the batch using the decoder.
// Positive return values does not mean a fatal error, but rather a warning.
// 0 - success
// 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
@ -1237,6 +1242,7 @@ extern "C" {
"will be removed in the future (see https://github.com/ggml-org/llama.cpp/pull/9896#discussion_r1800920915)");
/// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
/// Setting k <= 0 makes this a noop
LLAMA_API struct llama_sampler * llama_sampler_init_top_k (int32_t k);
/// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
@ -1432,6 +1438,37 @@ extern "C" {
LLAMA_API void llama_perf_sampler_print(const struct llama_sampler * chain);
LLAMA_API void llama_perf_sampler_reset( struct llama_sampler * chain);
//
// training
//
// function that returns whether or not a given tensor contains trainable parameters
typedef bool (*llama_opt_param_filter)(const struct ggml_tensor * tensor, void * userdata);
// always returns true
LLAMA_API bool llama_opt_param_filter_all(const struct ggml_tensor * tensor, void * userdata);
struct llama_opt_params {
uint32_t n_ctx_train; // assumed context size post training, use context size specified in llama_context if 0
llama_opt_param_filter param_filter; // callback for determining which tensors contain trainable parameters
void * param_filter_ud; // userdata for determining which tensors contain trainable parameters
ggml_opt_get_optimizer_params get_opt_pars; // callback for calculating optimizer parameters
void * get_opt_pars_ud; // userdata for calculating optimizer parameters
};
LLAMA_API void llama_opt_init(struct llama_context * lctx, struct llama_model * model, struct llama_opt_params lopt_params);
LLAMA_API void llama_opt_epoch(
struct llama_context * lctx,
ggml_opt_dataset_t dataset,
ggml_opt_result_t result_train,
ggml_opt_result_t result_eval,
int64_t idata_split,
ggml_opt_epoch_callback callback_train,
ggml_opt_epoch_callback callback_eval);
#ifdef __cplusplus
}
#endif

View File

@ -253,6 +253,9 @@ static void llama_adapter_lora_init_impl(llama_model & model, const char * path_
std::vector<ggml_backend_buffer_type_t> buft_extra;
{
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
if (!cpu_dev) {
throw std::runtime_error(format("%s: no CPU backend found", __func__));
}
auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
@ -291,6 +294,9 @@ static void llama_adapter_lora_init_impl(llama_model & model, const char * path_
LLAMA_LOG_WARN("%s: lora for '%s' cannot use buft '%s', fallback to CPU\n", __func__, model_tensor->name, ggml_backend_buft_name(buft));
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
if (!cpu_dev) {
throw std::runtime_error(format("%s: no CPU backend found", __func__));
}
buft = ggml_backend_dev_buffer_type(cpu_dev);
break;

View File

@ -6,7 +6,6 @@
static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_LLAMA, "llama" },
{ LLM_ARCH_MLLAMA, "mllama" },
{ LLM_ARCH_LLAMA4, "llama4" },
{ LLM_ARCH_DECI, "deci" },
{ LLM_ARCH_FALCON, "falcon" },
@ -20,6 +19,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_REFACT, "refact" },
{ LLM_ARCH_BERT, "bert" },
{ LLM_ARCH_NOMIC_BERT, "nomic-bert" },
{ LLM_ARCH_NOMIC_BERT_MOE, "nomic-bert-moe" },
{ LLM_ARCH_JINA_BERT_V2, "jina-bert-v2" },
{ LLM_ARCH_BLOOM, "bloom" },
{ LLM_ARCH_STABLELM, "stablelm" },
@ -73,7 +73,6 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_WAVTOKENIZER_DEC, "wavtokenizer-dec" },
{ LLM_ARCH_PLM, "plm" },
{ LLM_ARCH_BAILINGMOE, "bailingmoe" },
{ LLM_ARCH_MISTRAL3, "mistral3" },
{ LLM_ARCH_UNKNOWN, "(unknown)" },
};
@ -109,6 +108,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_EXPERT_WEIGHTS_SCALE, "%s.expert_weights_scale" },
{ LLM_KV_EXPERT_WEIGHTS_NORM, "%s.expert_weights_norm" },
{ LLM_KV_EXPERT_GATING_FUNC, "%s.expert_gating_func" },
{ LLM_KV_MOE_EVERY_N_LAYERS, "%s.moe_every_n_layers" },
{ LLM_KV_POOLING_TYPE, "%s.pooling_type" },
{ LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
{ LLM_KV_DECODER_START_TOKEN_ID, "%s.decoder_start_token_id" },
@ -144,7 +144,6 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
{ LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
{ LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION, "%s.attention.block_skip_connection" },
{ LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS, "%s.attention.cross_attention_layers" },
{ LLM_KV_ATTENTION_KEY_LENGTH_MLA, "%s.attention.key_length_mla" },
{ LLM_KV_ATTENTION_VALUE_LENGTH_MLA, "%s.attention.value_length_mla" },
@ -274,40 +273,6 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
},
},
{
LLM_ARCH_MLLAMA,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
{ LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
{ LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
{ LLM_TENSOR_CROSS_ATTN_K_NORM, "blk.%d.cross_attn_k_norm" },
{ LLM_TENSOR_CROSS_ATTN_K_PROJ, "blk.%d.cross_attn_k_proj" },
{ LLM_TENSOR_CROSS_ATTN_O_PROJ, "blk.%d.cross_attn_o_proj" },
{ LLM_TENSOR_CROSS_ATTN_Q_NORM, "blk.%d.cross_attn_q_norm" },
{ LLM_TENSOR_CROSS_ATTN_Q_PROJ, "blk.%d.cross_attn_q_proj" },
{ LLM_TENSOR_CROSS_ATTN_V_PROJ, "blk.%d.cross_attn_v_proj" },
{ LLM_TENSOR_CROSS_ATTN_ATTN_GATE, "blk.%d.cross_attn_attn_gate" },
{ LLM_TENSOR_CROSS_ATTN_MLP_GATE, "blk.%d.cross_attn_mlp_gate" },
},
},
{
LLM_ARCH_DECI,
{
@ -511,6 +476,24 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_NOMIC_BERT_MOE,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
{ LLM_TENSOR_TOKEN_TYPES, "token_types" },
{ LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
},
},
{
LLM_ARCH_JINA_BERT_V2,
{
@ -1587,22 +1570,6 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
},
},
{
LLM_ARCH_MISTRAL3,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
}
},
{
LLM_ARCH_UNKNOWN,
{
@ -1734,14 +1701,6 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
// this tensor is loaded for T5, but never used
{LLM_TENSOR_DEC_CROSS_ATTN_REL_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_NONE}},
{LLM_TENSOR_BSKCN_TV, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_CROSS_ATTN_K_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_CROSS_ATTN_K_PROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_CROSS_ATTN_O_PROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_CROSS_ATTN_Q_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_CROSS_ATTN_Q_PROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_CROSS_ATTN_V_PROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_CROSS_ATTN_ATTN_GATE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_CROSS_ATTN_MLP_GATE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_CONV1D, {LLM_TENSOR_LAYER_INPUT, GGML_OP_IM2COL}},
{LLM_TENSOR_POS_NET_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_POS_NET_NORM1, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},

View File

@ -11,7 +11,6 @@
enum llm_arch {
LLM_ARCH_LLAMA,
LLM_ARCH_LLAMA4,
LLM_ARCH_MLLAMA,
LLM_ARCH_DECI,
LLM_ARCH_FALCON,
LLM_ARCH_BAICHUAN,
@ -24,6 +23,7 @@ enum llm_arch {
LLM_ARCH_REFACT,
LLM_ARCH_BERT,
LLM_ARCH_NOMIC_BERT,
LLM_ARCH_NOMIC_BERT_MOE,
LLM_ARCH_JINA_BERT_V2,
LLM_ARCH_BLOOM,
LLM_ARCH_STABLELM,
@ -75,7 +75,6 @@ enum llm_arch {
LLM_ARCH_CHAMELEON,
LLM_ARCH_SOLAR,
LLM_ARCH_WAVTOKENIZER_DEC,
LLM_ARCH_MISTRAL3,
LLM_ARCH_PLM,
LLM_ARCH_BAILINGMOE,
LLM_ARCH_UNKNOWN,
@ -113,6 +112,7 @@ enum llm_kv {
LLM_KV_EXPERT_WEIGHTS_SCALE,
LLM_KV_EXPERT_WEIGHTS_NORM,
LLM_KV_EXPERT_GATING_FUNC,
LLM_KV_MOE_EVERY_N_LAYERS,
LLM_KV_POOLING_TYPE,
LLM_KV_LOGIT_SCALE,
LLM_KV_DECODER_START_TOKEN_ID,
@ -148,7 +148,6 @@ enum llm_kv {
LLM_KV_ATTENTION_SLIDING_WINDOW,
LLM_KV_ATTENTION_SCALE,
LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION,
LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS,
LLM_KV_ATTENTION_KEY_LENGTH_MLA,
LLM_KV_ATTENTION_VALUE_LENGTH_MLA,
@ -350,14 +349,6 @@ enum llm_tensor {
LLM_TENSOR_CLS,
LLM_TENSOR_CLS_OUT,
LLM_TENSOR_BSKCN_TV,
LLM_TENSOR_CROSS_ATTN_K_NORM,
LLM_TENSOR_CROSS_ATTN_K_PROJ,
LLM_TENSOR_CROSS_ATTN_O_PROJ,
LLM_TENSOR_CROSS_ATTN_Q_NORM,
LLM_TENSOR_CROSS_ATTN_Q_PROJ,
LLM_TENSOR_CROSS_ATTN_V_PROJ,
LLM_TENSOR_CROSS_ATTN_ATTN_GATE,
LLM_TENSOR_CROSS_ATTN_MLP_GATE,
LLM_TENSOR_CONV1D,
LLM_TENSOR_CONVNEXT_DW,
LLM_TENSOR_CONVNEXT_NORM,

View File

@ -189,7 +189,7 @@ llama_ubatch llama_sbatch::split_seq(size_t n_ubatch) {
return ubatch;
}
void llama_sbatch::from_batch(const llama_batch & batch, size_t n_embd, bool simple_split, bool logits_all) {
llama_sbatch::llama_sbatch(const llama_batch & batch, size_t n_embd, bool simple_split, bool logits_all) {
GGML_ASSERT(batch.n_tokens >= 0);
this->batch = &batch;
this->n_embd = n_embd;
@ -203,6 +203,7 @@ void llama_sbatch::from_batch(const llama_batch & batch, size_t n_embd, bool sim
for (size_t i = 0; i < n_tokens; ++i) {
ids[i] = i;
}
if (simple_split) {
seq.resize(1);
llama_sbatch_seq & s = seq[0];
@ -212,6 +213,7 @@ void llama_sbatch::from_batch(const llama_batch & batch, size_t n_embd, bool sim
s.length = n_tokens;
return;
}
std::sort(ids.begin(), ids.end(),
[&batch](size_t a, size_t b) {
int32_t n_seq_a = batch.n_seq_id ? batch.n_seq_id[a] : 1;
@ -239,6 +241,7 @@ void llama_sbatch::from_batch(const llama_batch & batch, size_t n_embd, bool sim
return n_seq_a > n_seq_b;
}
);
// init seq
llama_sbatch_seq * last_seq = nullptr;
@ -262,6 +265,7 @@ void llama_sbatch::from_batch(const llama_batch & batch, size_t n_embd, bool sim
seq.push_back(new_seq);
last_seq = &seq.back();
}
// keep shared prompts first at the end, then sort by length descending.
std::sort(seq.begin(), seq.end(),
[](llama_sbatch_seq & a, llama_sbatch_seq & b) {
@ -316,7 +320,6 @@ struct llama_batch llama_batch_get_one(
/*n_tokens =*/ n_tokens,
/*tokens =*/ tokens,
/*embd =*/ nullptr,
/*n_embd =*/ 0,
/*pos =*/ nullptr,
/*n_seq_id =*/ nullptr,
/*seq_id =*/ nullptr,
@ -329,7 +332,6 @@ struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_
/*n_tokens =*/ 0,
/*tokens =*/ nullptr,
/*embd =*/ nullptr,
/*n_embd =*/ 0,
/*pos =*/ nullptr,
/*n_seq_id =*/ nullptr,
/*seq_id =*/ nullptr,
@ -338,7 +340,6 @@ struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_
if (embd) {
batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
batch.n_embd = embd;
} else {
batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
}

View File

@ -70,7 +70,8 @@ struct llama_sbatch {
// sequence-wise split
llama_ubatch split_seq(size_t n_ubatch);
void from_batch(const llama_batch & batch, size_t n_embd, bool simple_split = false, bool logits_all = false);
llama_sbatch() = default;
llama_sbatch(const llama_batch & batch, size_t n_embd, bool simple_split = false, bool logits_all = false);
};
// temporary allocate memory for the input batch if needed

View File

@ -35,6 +35,7 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
{ "mistral-v3", LLM_CHAT_TEMPLATE_MISTRAL_V3 },
{ "mistral-v3-tekken", LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN },
{ "mistral-v7", LLM_CHAT_TEMPLATE_MISTRAL_V7 },
{ "mistral-v7-tekken", LLM_CHAT_TEMPLATE_MISTRAL_V7_TEKKEN },
{ "phi3", LLM_CHAT_TEMPLATE_PHI_3 },
{ "phi4", LLM_CHAT_TEMPLATE_PHI_4 },
{ "falcon3", LLM_CHAT_TEMPLATE_FALCON_3 },
@ -50,8 +51,8 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
{ "deepseek3", LLM_CHAT_TEMPLATE_DEEPSEEK_3 },
{ "command-r", LLM_CHAT_TEMPLATE_COMMAND_R },
{ "llama3", LLM_CHAT_TEMPLATE_LLAMA_3 },
{ "chatglm3", LLM_CHAT_TEMPLATE_CHATGML_3 },
{ "chatglm4", LLM_CHAT_TEMPLATE_CHATGML_4 },
{ "chatglm3", LLM_CHAT_TEMPLATE_CHATGLM_3 },
{ "chatglm4", LLM_CHAT_TEMPLATE_CHATGLM_4 },
{ "glmedge", LLM_CHAT_TEMPLATE_GLMEDGE },
{ "minicpm", LLM_CHAT_TEMPLATE_MINICPM },
{ "exaone3", LLM_CHAT_TEMPLATE_EXAONE_3 },
@ -62,6 +63,7 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
{ "yandex", LLM_CHAT_TEMPLATE_YANDEX },
{ "bailing", LLM_CHAT_TEMPLATE_BAILING },
{ "llama4", LLM_CHAT_TEMPLATE_LLAMA4 },
{ "smolvlm", LLM_CHAT_TEMPLATE_SMOLVLM },
};
llm_chat_template llm_chat_template_from_str(const std::string & name) {
@ -81,7 +83,9 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
if (tmpl_contains("<|im_start|>")) {
return tmpl_contains("<|im_sep|>")
? LLM_CHAT_TEMPLATE_PHI_4
: LLM_CHAT_TEMPLATE_CHATML;
: tmpl_contains("<end_of_utterance>")
? LLM_CHAT_TEMPLATE_SMOLVLM // SmolVLM uses <|im_start|> as BOS, but it is NOT chatml
: LLM_CHAT_TEMPLATE_CHATML;
} else if (tmpl.find("mistral") == 0 || tmpl_contains("[INST]")) {
if (tmpl_contains("[SYSTEM_PROMPT]")) {
return LLM_CHAT_TEMPLATE_MISTRAL_V7;
@ -119,8 +123,12 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
}
} else if (tmpl_contains("<|assistant|>") && tmpl_contains("<|end|>")) {
return LLM_CHAT_TEMPLATE_PHI_3;
} else if (tmpl_contains("[gMASK]<sop>")) {
return LLM_CHAT_TEMPLATE_CHATGLM_4;
} else if (tmpl_contains("<|assistant|>") && tmpl_contains("<|user|>")) {
return tmpl_contains("</s>") ? LLM_CHAT_TEMPLATE_FALCON_3 : LLM_CHAT_TEMPLATE_GLMEDGE;
} else if (tmpl_contains("<|{{ item['role'] }}|>") && tmpl_contains("<|begin_of_image|>")) {
return LLM_CHAT_TEMPLATE_GLMEDGE;
} else if (tmpl_contains("<|user|>") && tmpl_contains("<|endoftext|>")) {
return LLM_CHAT_TEMPLATE_ZEPHYR;
} else if (tmpl_contains("bos_token + message['role']")) {
@ -149,9 +157,7 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
return LLM_CHAT_TEMPLATE_LLAMA_3;
} else if (tmpl_contains("[gMASK]sop")) {
// chatglm3-6b
return LLM_CHAT_TEMPLATE_CHATGML_3;
} else if (tmpl_contains("[gMASK]<sop>")) {
return LLM_CHAT_TEMPLATE_CHATGML_4;
return LLM_CHAT_TEMPLATE_CHATGLM_3;
} else if (tmpl_contains(LU8("<用户>"))) {
// MiniCPM-3B-OpenHermes-2.5-v2-GGUF
return LLM_CHAT_TEMPLATE_MINICPM;
@ -197,19 +203,20 @@ int32_t llm_chat_apply_template(
if (add_ass) {
ss << "<|im_start|>assistant\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V7) {
} else if (tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V7 || tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V7_TEKKEN) {
// Official mistral 'v7' template
// See: https://huggingface.co/mistralai/Mistral-Large-Instruct-2411#basic-instruct-template-v7
// https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503#basic-instruct-template-v7-tekken
const char * trailing_space = tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V7 ? " " : "";
for (auto message : chat) {
std::string role(message->role);
std::string content(message->content);
if (role == "system") {
ss << "[SYSTEM_PROMPT] " << content << "[/SYSTEM_PROMPT]";
ss << "[SYSTEM_PROMPT]" << trailing_space << content << "[/SYSTEM_PROMPT]";
} else if (role == "user") {
ss << "[INST] " << content << "[/INST]";
}
else {
ss << " " << content << "</s>";
ss << "[INST]" << trailing_space << content << "[/INST]";
} else {
ss << trailing_space << content << "</s>";
}
}
} else if (tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V1
@ -432,7 +439,7 @@ int32_t llm_chat_apply_template(
if (add_ass) {
ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_CHATGML_3) {
} else if (tmpl == LLM_CHAT_TEMPLATE_CHATGLM_3) {
// chatglm3-6b
ss << "[gMASK]" << "sop";
for (auto message : chat) {
@ -442,14 +449,14 @@ int32_t llm_chat_apply_template(
if (add_ass) {
ss << "<|assistant|>";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_CHATGML_4) {
} else if (tmpl == LLM_CHAT_TEMPLATE_CHATGLM_4) {
ss << "[gMASK]" << "<sop>";
for (auto message : chat) {
std::string role(message->role);
ss << "<|" << role << "|>" << "\n" << message->content;
}
if (add_ass) {
ss << "<|assistant|>";
ss << "<|assistant|>\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_GLMEDGE) {
for (auto message : chat) {
@ -620,7 +627,23 @@ int32_t llm_chat_apply_template(
if (add_ass) {
ss << "<|header_start|>assistant<|header_end|>\n\n";
}
} else {
} else if (tmpl == LLM_CHAT_TEMPLATE_SMOLVLM) {
// SmolVLM
ss << "<|im_start|>"; // uses <|im_start|> as BOS, but the actual content is NOT chatml
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
ss << message->content << "\n\n";
} else if (role == "user") {
ss << "User: " << message->content << "<end_of_utterance>\n";
} else {
ss << "Assistant: " << message->content << "<end_of_utterance>\n";
}
}
if (add_ass) {
ss << "Assistant:";
}
} else {
// template not supported
return -1;
}

View File

@ -14,6 +14,7 @@ enum llm_chat_template {
LLM_CHAT_TEMPLATE_MISTRAL_V3,
LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN,
LLM_CHAT_TEMPLATE_MISTRAL_V7,
LLM_CHAT_TEMPLATE_MISTRAL_V7_TEKKEN,
LLM_CHAT_TEMPLATE_PHI_3,
LLM_CHAT_TEMPLATE_PHI_4,
LLM_CHAT_TEMPLATE_FALCON_3,
@ -29,8 +30,8 @@ enum llm_chat_template {
LLM_CHAT_TEMPLATE_DEEPSEEK_3,
LLM_CHAT_TEMPLATE_COMMAND_R,
LLM_CHAT_TEMPLATE_LLAMA_3,
LLM_CHAT_TEMPLATE_CHATGML_3,
LLM_CHAT_TEMPLATE_CHATGML_4,
LLM_CHAT_TEMPLATE_CHATGLM_3,
LLM_CHAT_TEMPLATE_CHATGLM_4,
LLM_CHAT_TEMPLATE_GLMEDGE,
LLM_CHAT_TEMPLATE_MINICPM,
LLM_CHAT_TEMPLATE_EXAONE_3,
@ -41,6 +42,7 @@ enum llm_chat_template {
LLM_CHAT_TEMPLATE_YANDEX,
LLM_CHAT_TEMPLATE_BAILING,
LLM_CHAT_TEMPLATE_LLAMA4,
LLM_CHAT_TEMPLATE_SMOLVLM,
LLM_CHAT_TEMPLATE_UNKNOWN,
};

File diff suppressed because it is too large Load Diff

View File

@ -8,6 +8,7 @@
#include "llama-kv-cache.h"
#include "ggml-cpp.h"
#include "ggml-opt.h"
#include <map>
#include <vector>
@ -28,7 +29,12 @@ struct llama_context {
void synchronize();
const llama_model & get_model() const;
const llama_model & get_model() const;
const llama_cparams & get_cparams() const;
ggml_backend_sched_t get_sched() const;
ggml_context * get_ctx_compute() const;
uint32_t n_ctx() const;
uint32_t n_ctx_per_seq() const;
@ -66,7 +72,6 @@ struct llama_context {
void set_embeddings (bool value);
void set_causal_attn(bool value);
void set_warmup(bool value);
void set_cross_attn(bool value);
void set_adapter_lora(
llama_adapter_lora * adapter,
@ -130,6 +135,32 @@ struct llama_context {
llama_perf_context_data perf_get_data() const;
void perf_reset();
//
// training
//
void opt_init(struct llama_model * model, struct llama_opt_params lopt_params);
void opt_epoch(
ggml_opt_dataset_t dataset,
ggml_opt_result_t result_train,
ggml_opt_result_t result_eval,
int64_t idata_split,
ggml_opt_epoch_callback callback_train,
ggml_opt_epoch_callback callback_eval);
void opt_epoch_iter(
ggml_opt_dataset_t dataset,
ggml_opt_result_t result,
const std::vector<llama_token> & tokens,
const std::vector<llama_token> & labels_sparse,
llama_batch & batch,
ggml_opt_epoch_callback callback,
bool train,
int64_t idata_in_loop,
int64_t ndata_in_loop,
int64_t t_loop_start);
private:
//
// output
@ -139,51 +170,30 @@ private:
// Returns max number of outputs for which space was reserved.
int32_t output_reserve(int32_t n_outputs);
// make the outputs have the same order they had in the user-provided batch
// TODO: maybe remove this
void output_reorder();
//
// graph
//
public:
int32_t graph_max_nodes() const;
// zero-out inputs and create the ctx_compute for the compute graph
ggml_cgraph * graph_init();
llm_graph_result_ptr graph_build(
ggml_context * ctx,
ggml_cgraph * gf,
const llama_ubatch & ubatch,
llm_graph_type gtype);
// returns the result of ggml_backend_sched_graph_compute_async execution
ggml_status graph_compute(
ggml_cgraph * gf,
bool batched);
private:
llm_graph_result_ptr graph_build(
ggml_context * ctx,
ggml_cgraph * gf,
const llama_ubatch & ubatch,
llm_graph_type gtype);
llm_graph_cb graph_get_cb() const;
// used by kv_self_update()
ggml_tensor * build_rope_shift(
ggml_context * ctx0,
ggml_tensor * cur,
ggml_tensor * shift,
ggml_tensor * factors,
float freq_base,
float freq_scale,
ggml_backend_buffer * bbuf) const;
llm_graph_result_ptr build_kv_self_shift(
ggml_context * ctx0,
ggml_cgraph * gf) const;
llm_graph_result_ptr build_kv_self_defrag(
ggml_context * ctx0,
ggml_cgraph * gf,
const std::vector<struct llama_kv_defrag_move> & moves) const;
// TODO: read/write lora adapters and cvec
size_t state_write_data(llama_io_write_i & io);
size_t state_read_data (llama_io_read_i & io);
@ -200,14 +210,10 @@ private:
llama_cparams cparams;
llama_adapter_cvec cvec;
llama_adapter_loras loras;
llama_sbatch sbatch;
llama_cross cross; // TODO: tmp for handling cross-attention - need something better probably
std::unique_ptr<llama_kv_cache_unified> kv_self;
// TODO: remove
bool logits_all = false;
std::unique_ptr<llama_memory_i> memory;
// decode output (2-dimensional array: [n_outputs][n_vocab])
size_t logits_size = 0; // capacity (of floats) for logits
@ -234,6 +240,9 @@ private:
ggml_context_ptr ctx_compute;
// training
ggml_opt_context_t opt_ctx = nullptr;
ggml_threadpool_t threadpool = nullptr;
ggml_threadpool_t threadpool_batch = nullptr;

View File

@ -29,8 +29,8 @@ struct llama_cparams {
bool offload_kqv;
bool flash_attn;
bool no_perf;
bool cross_attn;
bool warmup;
bool op_offload;
enum llama_pooling_type pooling_type;

View File

@ -55,7 +55,21 @@ void llm_graph_input_pos::set_input(const llama_ubatch * ubatch) {
if (ubatch->pos && pos) {
const int64_t n_tokens = ubatch->n_tokens;
ggml_backend_tensor_set(pos, ubatch->pos, 0, n_tokens*n_pos_per_token*ggml_element_size(pos));
if (ubatch->token && n_pos_per_embd == 4) {
// in case we're using M-RoPE with text tokens, convert the 1D positions to 4D
// the 3 first dims are the same, and 4th dim is all 0
std::vector<llama_pos> pos_data(n_tokens*n_pos_per_embd);
// copy the first dimension
for (int i = 0; i < n_tokens; ++i) {
pos_data[ i] = ubatch->pos[i];
pos_data[ n_tokens + i] = ubatch->pos[i];
pos_data[2 * n_tokens + i] = ubatch->pos[i];
pos_data[3 * n_tokens + i] = 0; // 4th dim is 0
}
ggml_backend_tensor_set(pos, pos_data.data(), 0, pos_data.size()*ggml_element_size(pos));
} else {
ggml_backend_tensor_set(pos, ubatch->pos, 0, n_tokens*n_pos_per_embd*ggml_element_size(pos));
}
}
}
@ -71,7 +85,7 @@ void llm_graph_input_attn_temp::set_input(const llama_ubatch * ubatch) {
) * f_attn_temp_scale + 1.0;
}
ggml_backend_tensor_set(attn_scale, attn_scale_data.data(), 0, n_tokens*n_pos_per_token*ggml_element_size(attn_scale));
ggml_backend_tensor_set(attn_scale, attn_scale_data.data(), 0, n_tokens*ggml_element_size(attn_scale));
}
}
@ -270,24 +284,7 @@ void llm_graph_input_s_copy::set_input(const llama_ubatch * ubatch) {
// assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n
for (uint32_t i = 0; i < n_kv; ++i) {
const uint32_t cell_id = i + kv_self->head;
//////////////////////////////////////////////
// TODO: this should not mutate the KV cache !
llama_kv_cell & kv_cell = const_cast<class llama_kv_cache_unified *>(kv_self)->cells[i];
// prevent out-of-bound sources
if (kv_cell.src < 0 || (uint32_t) kv_cell.src >= kv_self->size) {
kv_cell.src = cell_id;
}
data[i] = kv_cell.src;
// TODO: do not mutate the KV cache
// ensure copy only happens once
if (kv_cell.src != (int32_t) cell_id) {
kv_cell.src = cell_id;
}
data[i] = kv_self->s_copy(i);
}
}
}
@ -303,18 +300,7 @@ void llm_graph_input_s_mask::set_input(const llama_ubatch * ubatch) {
// clear unused states
for (int i = 0; i < n_kv; ++i) {
const uint32_t cell_id = i + kv_self->head;
//////////////////////////////////////////////
// TODO: this should not mutate the KV cache !
llama_kv_cell & kv_cell = const_cast<class llama_kv_cache_unified *>(kv_self)->cells[i];
data[i] = (float) (kv_cell.src >= 0);
// only clear once
if (kv_cell.src < 0) {
kv_cell.src = cell_id;
}
data[i] = kv_self->s_mask(i);
}
}
}
@ -546,12 +532,6 @@ void llm_graph_input_attn_cross::set_input(const llama_ubatch * ubatch) {
}
}
void llm_graph_input_cross_attn_state::set_input(const llama_ubatch * ubatch) {
if (ubatch->embd) {
ggml_backend_tensor_set(cross_attn_state, ubatch->embd, 0, ggml_nbytes(cross_attn_state));
}
}
//
// llm_graph_context
//
@ -598,7 +578,7 @@ llm_graph_context::llm_graph_context(const llm_graph_params & params) :
res (std::make_unique<llm_graph_result>()) {
}
int64_t llm_graph_context::n_pos_per_token() const {
int64_t llm_graph_context::n_pos_per_embd() const {
return arch == LLM_ARCH_QWEN2VL ? 4 : 1;
}
@ -802,13 +782,17 @@ ggml_tensor * llm_graph_context::build_ffn(
} break;
}
if (type_gate == LLM_FFN_PAR) {
if (gate && type_gate == LLM_FFN_PAR) {
cur = ggml_mul(ctx0, cur, tmp);
cb(cur, "ffn_gate_par", il);
}
if (down) {
cur = build_lora_mm(down, cur);
if (arch == LLM_ARCH_GLM4) {
// GLM4 seems to have numerical issues with half-precision accumulators
ggml_mul_mat_set_prec(cur, GGML_PREC_F32);
}
}
if (down_b) {
@ -916,28 +900,35 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
ggml_tensor * up = build_lora_mm_id(up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
cb(up, "ffn_moe_up", il);
ggml_tensor * gate = build_lora_mm_id(gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
cb(gate, "ffn_moe_gate", il);
ggml_tensor * experts = nullptr;
if (gate_exps) {
cur = build_lora_mm_id(gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
cb(cur, "ffn_moe_gate", il);
} else {
cur = up;
}
switch (type_op) {
case LLM_FFN_SILU:
{
gate = ggml_silu(ctx0, gate);
cb(gate, "ffn_moe_silu", il);
cur = ggml_silu(ctx0, cur);
cb(cur, "ffn_moe_silu", il);
} break;
case LLM_FFN_GELU:
{
gate = ggml_gelu(ctx0, gate);
cb(gate, "ffn_moe_gelu", il);
cur = ggml_gelu(ctx0, cur);
cb(cur, "ffn_moe_gelu", il);
} break;
default:
GGML_ABORT("fatal error");
}
ggml_tensor * par = ggml_mul(ctx0, up, gate); // [n_ff, n_expert_used, n_tokens]
cb(par, "ffn_moe_gate_par", il);
if (gate_exps) {
cur = ggml_mul(ctx0, cur, up); // [n_ff, n_expert_used, n_tokens]
cb(cur, "ffn_moe_gate_par", il);
}
ggml_tensor * experts = build_lora_mm_id(down_exps, par, selected_experts); // [n_embd, n_expert_used, n_tokens]
experts = build_lora_mm_id(down_exps, cur, selected_experts); // [n_embd, n_expert_used, n_tokens]
cb(experts, "ffn_moe_down", il);
if (!weight_before_ffn) {
@ -980,6 +971,7 @@ ggml_tensor * llm_graph_context::build_inp_embd(ggml_tensor * tok_embd) const {
inp->tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_tokens);
//cb(inp->tokens, "inp_tokens", -1);
ggml_set_input(inp->tokens);
res->t_tokens = inp->tokens;
cur = ggml_get_rows(ctx0, tok_embd, inp->tokens);
@ -1020,11 +1012,11 @@ ggml_tensor * llm_graph_context::build_inp_embd(ggml_tensor * tok_embd) const {
}
ggml_tensor * llm_graph_context::build_inp_pos() const {
auto inp = std::make_unique<llm_graph_input_pos>(n_pos_per_token());
auto inp = std::make_unique<llm_graph_input_pos>(n_pos_per_embd());
auto & cur = inp->pos;
cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens*n_pos_per_token());
cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens*n_pos_per_embd());
ggml_set_input(cur);
res->add_input(std::move(inp));
@ -1033,11 +1025,12 @@ ggml_tensor * llm_graph_context::build_inp_pos() const {
}
ggml_tensor * llm_graph_context::build_inp_attn_scale() const {
auto inp = std::make_unique<llm_graph_input_attn_temp>(n_pos_per_token(), hparams.n_attn_temp_floor_scale, hparams.f_attn_temp_scale);
auto inp = std::make_unique<llm_graph_input_attn_temp>(hparams.n_attn_temp_floor_scale, hparams.f_attn_temp_scale);
auto & cur = inp->attn_scale;
cur = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 1, 1, n_tokens*n_pos_per_token());
// this need to be 1x1xN for broadcasting
cur = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 1, 1, n_tokens);
ggml_set_input(cur);
res->add_input(std::move(inp));
@ -1085,7 +1078,7 @@ ggml_tensor * llm_graph_context::build_inp_cls() const {
}
ggml_tensor * llm_graph_context::build_inp_s_copy() const {
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
auto inp = std::make_unique<llm_graph_input_s_copy>(kv_self);
@ -1102,7 +1095,7 @@ ggml_tensor * llm_graph_context::build_inp_s_copy() const {
}
ggml_tensor * llm_graph_context::build_inp_s_mask() const {
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
auto inp = std::make_unique<llm_graph_input_s_mask>(kv_self);
@ -1235,8 +1228,19 @@ ggml_tensor * llm_graph_context::build_attn_mha(
ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
if (v_mla) {
#if 0
// v_mla can be applied as a matrix-vector multiplication with broadcasting across dimension 3 == n_tokens.
// However, the code is optimized for dimensions 0 and 1 being large, so this is ineffient.
cur = ggml_reshape_4d(ctx0, cur, v_mla->ne[0], 1, n_head, n_tokens);
cur = ggml_mul_mat(ctx0, v_mla, cur);
#else
// It's preferable to do the calculation as a matrix-matrix multiplication with n_tokens in dimension 1.
// The permutations are noops and only change how the tensor data is interpreted.
cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
cur = ggml_mul_mat(ctx0, v_mla, cur);
cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
cur = ggml_cont(ctx0, cur); // Needed because ggml_reshape_2d expects contiguous inputs.
#endif
}
cur = ggml_reshape_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
@ -1416,8 +1420,6 @@ ggml_tensor * llm_graph_context::build_attn(
// store to KV cache
{
GGML_ASSERT(!kv_self->recurrent);
const auto kv_head = kv_self->head;
GGML_ASSERT(kv_self->size == n_ctx);
@ -1512,25 +1514,6 @@ llm_graph_input_attn_cross * llm_graph_context::build_attn_inp_cross() const {
return (llm_graph_input_attn_cross *) res->add_input(std::move(inp));
}
ggml_tensor * llm_graph_context::build_inp_cross_attn_state() const {
const int64_t n_embd = hparams.n_embd;
auto inp = std::make_unique<llm_graph_input_cross_attn_state>();
ggml_tensor * cur = nullptr;
inp->cross_attn_state = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd, 1601, 4);
ggml_set_input(inp->cross_attn_state);
cur = inp->cross_attn_state;
cb(cur, "inp_cross_attn_state", -1);
res->add_input(std::move(inp));
return cur;
}
ggml_tensor * llm_graph_context::build_attn(
llm_graph_input_attn_cross * inp,
ggml_cgraph * gf,
@ -1586,7 +1569,7 @@ ggml_tensor * llm_graph_context::build_copy_mask_state(
ggml_tensor * state_mask,
int32_t n_state,
int32_t n_seqs) const {
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
const auto n_kv = kv_self->n;
const auto kv_head = kv_self->head;
@ -1618,7 +1601,7 @@ ggml_tensor * llm_graph_context::build_rwkv_token_shift_load(
ggml_tensor * state_mask,
const llama_ubatch & ubatch,
int il) const {
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
const auto token_shift_count = hparams.token_shift_count;
@ -1639,7 +1622,7 @@ ggml_tensor * llm_graph_context::build_rwkv_token_shift_store(
ggml_tensor * token_shift,
const llama_ubatch & ubatch,
int il) const {
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
const auto token_shift_count = hparams.token_shift_count;
const auto n_embd = hparams.n_embd;

View File

@ -19,6 +19,7 @@ struct llama_cparams;
class llama_memory_i;
class llama_kv_cache_unified;
class llama_kv_cache_recurrent;
// certain models (typically multi-modal) can produce different types of graphs
enum llm_graph_type {
@ -86,34 +87,31 @@ public:
ggml_tensor * tokens = nullptr; // I32 [n_batch]
ggml_tensor * embd = nullptr; // F32 [n_embd, n_batch]
ggml_tensor * cross_attn_state; // F32 [4, n_embd, 1061]
};
class llm_graph_input_pos : public llm_graph_input_i {
public:
llm_graph_input_pos(int64_t n_pos_per_token) : n_pos_per_token(n_pos_per_token) {}
llm_graph_input_pos(int64_t n_pos_per_embd) : n_pos_per_embd(n_pos_per_embd) {}
virtual ~llm_graph_input_pos() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * pos = nullptr; // I32 [n_batch]
const int64_t n_pos_per_token = 1;
const int64_t n_pos_per_embd = 1;
};
// temperature tuning, used by llama4
class llm_graph_input_attn_temp : public llm_graph_input_i {
public:
llm_graph_input_attn_temp(int64_t n_pos_per_token, uint32_t n_attn_temp_floor_scale, float f_attn_temp_scale)
: n_pos_per_token(n_pos_per_token), n_attn_temp_floor_scale(n_attn_temp_floor_scale), f_attn_temp_scale(f_attn_temp_scale) {}
llm_graph_input_attn_temp(uint32_t n_attn_temp_floor_scale, float f_attn_temp_scale)
: n_attn_temp_floor_scale(n_attn_temp_floor_scale), f_attn_temp_scale(f_attn_temp_scale) {}
virtual ~llm_graph_input_attn_temp() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * attn_scale = nullptr; // F32 [n_batch]
const int64_t n_pos_per_token = 1;
const uint32_t n_attn_temp_floor_scale;
const float f_attn_temp_scale;
};
@ -189,26 +187,26 @@ public:
class llm_graph_input_s_copy : public llm_graph_input_i {
public:
llm_graph_input_s_copy(const llama_kv_cache_unified * kv_self) : kv_self(kv_self) {}
llm_graph_input_s_copy(const llama_kv_cache_recurrent * kv_self) : kv_self(kv_self) {}
virtual ~llm_graph_input_s_copy() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * s_copy; // I32 [kv_size]
const llama_kv_cache_unified * kv_self;
const llama_kv_cache_recurrent * kv_self;
};
class llm_graph_input_s_mask : public llm_graph_input_i {
public:
llm_graph_input_s_mask(const llama_kv_cache_unified * kv_self) : kv_self(kv_self) {}
llm_graph_input_s_mask(const llama_kv_cache_recurrent * kv_self) : kv_self(kv_self) {}
virtual ~llm_graph_input_s_mask() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * s_mask; // F32 [1, n_kv]
const llama_kv_cache_unified * kv_self;
const llama_kv_cache_recurrent * kv_self;
};
class llm_graph_input_cross_embd : public llm_graph_input_i {
@ -286,16 +284,6 @@ public:
const llama_cross * cross = nullptr;
};
class llm_graph_input_cross_attn_state : public llm_graph_input_i {
public:
llm_graph_input_cross_attn_state() = default;
virtual ~llm_graph_input_cross_attn_state() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * cross_attn_state; // F32 [4, n_embd, 1061]
};
//
// llm_graph_result
//
@ -310,6 +298,7 @@ class llm_graph_result_i {
public:
virtual ~llm_graph_result_i() = default;
virtual ggml_tensor * get_tokens() = 0;
virtual ggml_tensor * get_logits() = 0;
virtual ggml_tensor * get_embd() = 0;
virtual ggml_tensor * get_embd_pooled() = 0;
@ -324,6 +313,7 @@ class llm_graph_result : public llm_graph_result_i {
public:
virtual ~llm_graph_result() = default;
ggml_tensor * get_tokens() override { return t_tokens; }
ggml_tensor * get_logits() override { return t_logits; }
ggml_tensor * get_embd() override { return t_embd; }
ggml_tensor * get_embd_pooled() override { return t_embd_pooled; }
@ -340,6 +330,7 @@ public:
}
// important graph nodes
ggml_tensor * t_tokens = nullptr;
ggml_tensor * t_logits = nullptr;
ggml_tensor * t_embd = nullptr;
ggml_tensor * t_embd_pooled = nullptr;
@ -363,8 +354,8 @@ struct llm_graph_params {
const llama_cparams & cparams;
const llama_ubatch & ubatch;
ggml_backend_sched * sched;
ggml_backend * backend_cpu;
ggml_backend_sched_t sched;
ggml_backend_t backend_cpu;
const llama_adapter_cvec * cvec;
const llama_adapter_loras * loras;
@ -415,9 +406,9 @@ struct llm_graph_context {
ggml_context * ctx0 = nullptr;
ggml_backend_sched * sched;
ggml_backend_sched_t sched;
ggml_backend * backend_cpu; // TODO: needed by build_attn_mha, figure out a way to remove?
ggml_backend_t backend_cpu; // TODO: needed by build_attn_mha, figure out a way to remove?
const llama_adapter_cvec * cvec;
const llama_adapter_loras * loras;
@ -430,7 +421,7 @@ struct llm_graph_context {
llm_graph_context(const llm_graph_params & params);
int64_t n_pos_per_token() const;
int64_t n_pos_per_embd() const;
void cb(ggml_tensor * cur, const char * name, int il) const;
@ -504,7 +495,6 @@ struct llm_graph_context {
ggml_tensor * build_inp_cls() const;
ggml_tensor * build_inp_s_copy() const;
ggml_tensor * build_inp_s_mask() const;
ggml_tensor * build_inp_cross_attn_state() const;
ggml_tensor * build_inp_cross_embd() const;
ggml_tensor * build_inp_pos_bucket_enc() const;

View File

@ -85,7 +85,3 @@ bool llama_hparams::is_swa(uint32_t il) const {
GGML_ABORT("fatal error");
}
bool llama_hparams::cross_attention_layers(uint32_t il) const {
return std::find(cross_attn_layers.begin(), cross_attn_layers.end(), il) != cross_attn_layers.end();
}

View File

@ -2,8 +2,6 @@
#include "llama.h"
#include <algorithm>
#include <array>
// bump if necessary
@ -44,7 +42,6 @@ struct llama_hparams {
uint32_t n_expert = 0;
uint32_t n_expert_used = 0;
uint32_t n_rel_attn_bkts = 0;
uint32_t n_vocab = 0;
// note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
uint32_t n_embd_head_k_mla = 0;
@ -59,7 +56,6 @@ struct llama_hparams {
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
std::array<std::array<uint32_t, LLAMA_MAX_LAYERS>, 4> n_bskcn_arr = {};
std::array<uint32_t, LLAMA_MAX_LAYERS> cross_attn_layers;
uint32_t n_layer_dense_lead = 0;
uint32_t n_lora_q = 0;
@ -72,6 +68,7 @@ struct llama_hparams {
float expert_weights_scale = 0.0;
bool expert_weights_norm = false;
uint32_t expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_NONE;
uint32_t moe_every_n_layers = 0;
float f_norm_eps;
float f_norm_rms_eps;
@ -162,9 +159,6 @@ struct llama_hparams {
// Block skip connection
bool n_bskcn(uint32_t n, uint32_t il) const;
// cross attention layers
bool cross_attention_layers(uint32_t il) const;
bool is_swa(uint32_t il) const;
};

File diff suppressed because it is too large Load Diff

View File

@ -2,32 +2,72 @@
#include "llama.h"
#include "llama-io.h"
#include "llama-graph.h"
#include "llama-memory.h"
#include "ggml-cpp.h"
#include <functional>
#include <set>
#include <vector>
struct llama_cparams;
struct llama_hparams;
struct llama_ubatch;
struct llama_sbatch;
struct llama_model;
struct llama_context;
struct llama_kv_cache : public llama_memory_i {
using llama_memory_i::llama_memory_i;
virtual ~llama_kv_cache() = default;
virtual void restore() = 0; // call if batch processing fails - restores the cache state
virtual void commit() = 0; // call after successful batch processing - clears any pending state
// call if batch processing fails - restores the cache state
virtual void restore() = 0;
virtual int32_t get_n_tokens() const = 0;
virtual int32_t get_used_cells() const = 0; // TODO: remove, this is too-specific to the unified cache
// call after successful batch processing - clears any pending state
virtual void commit() = 0;
virtual bool get_can_shift() const = 0;
// process any pending defrag/shift/etc. operations
// optionally call once before processing a new batch
virtual bool update(llama_context & lctx) = 0;
// schedule a defrag if the fragmentation threshold is exceeded. otherwise, do nothing
virtual void defrag_sched(float thold) = 0;
// simulate full cache, used for allocating worst-case compute buffers
virtual void set_full() = 0;
//
// batch processing
//
virtual llama_sbatch sbatch_init(const llama_batch & batch, bool logits_all) = 0;
// different KV caches require different batch splitting strategies
virtual llama_ubatch ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const = 0;
// find an empty slot of size "n_tokens" in the cache
virtual bool find_slot(const llama_ubatch & batch) = 0;
// getters
virtual int32_t get_n_tokens() const = 0;
virtual int32_t get_used_cells() const = 0; // TODO: remove, this is too-specific to the unified cache
virtual llama_pos get_pos_max() const = 0;
virtual bool get_can_shift() const = 0;
bool get_can_edit() const override { return get_can_shift(); }
//
// state write/read
//
virtual void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const = 0;
virtual void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) = 0;
};
//
// llama_kv_cache_guard
//
struct llama_kv_cache_guard {
llama_kv_cache_guard(llama_kv_cache * kv) : kv(kv) {}
@ -42,7 +82,7 @@ struct llama_kv_cache_guard {
private:
llama_kv_cache * kv;
};
// block of KV slots to move when defragging
struct llama_kv_defrag_move {
uint32_t src;
@ -50,65 +90,50 @@ struct llama_kv_defrag_move {
uint32_t len;
};
struct llama_kv_cell {
llama_pos pos = -1;
llama_pos delta = 0;
int32_t src = -1; // used by recurrent state models to copy states
int32_t tail = -1;
//
// llama_kv_cache_unified
//
std::set<llama_seq_id> seq_id;
bool has_seq_id(const llama_seq_id & id) const {
return seq_id.find(id) != seq_id.end();
}
bool is_empty() const {
return seq_id.empty();
}
bool is_same_seq(const llama_kv_cell & other) const {
return seq_id == other.seq_id;
}
};
// ring-buffer of cached KV data
// TODO: pimpl
// TODO: add notion of max sequences
class llama_kv_cache_unified : public llama_kv_cache {
public:
// can be used to query data from the model if needed
struct callbacks {
std::function<ggml_tensor * (uint32_t n_ctx_per_seq, int il)> get_rope_factors;
struct kv_cell {
llama_pos pos = -1;
llama_pos delta = 0;
std::set<llama_seq_id> seq_id;
bool has_seq_id(const llama_seq_id & id) const {
return seq_id.find(id) != seq_id.end();
}
bool is_empty() const {
return seq_id.empty();
}
bool is_same_seq(const kv_cell & other) const {
return seq_id == other.seq_id;
}
};
static uint32_t get_padding(const llama_cparams & cparams);
llama_kv_cache_unified(
const llama_hparams & hparams,
callbacks cbs);
virtual ~llama_kv_cache_unified() = default;
// TODO: become constructor
bool init(
const llama_model & model, // TODO: do not reference the model
const llama_cparams & cparams,
const llama_model & model,
ggml_type type_k,
ggml_type type_v,
bool v_trans,
bool offload,
uint32_t kv_size,
bool offload);
uint32_t padding);
int32_t get_n_tokens() const override;
int32_t get_used_cells() const override;
~llama_kv_cache_unified() = default;
size_t total_size() const;
// TODO: better data structures to reduce the cost of this operation
llama_pos pos_max() const;
//
// llama_memory_i
//
void clear() override;
void defrag() override;
virtual void restore() override;
virtual void commit() override;
bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override;
void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override;
@ -118,63 +143,40 @@ public:
llama_pos seq_pos_max(llama_seq_id seq_id) const override;
bool get_can_shift() const override;
//
// llama_kv_cache
//
void restore() override;
void commit() override;
bool update(llama_context & ctx) override;
void defrag_sched(float thold) override;
void set_full() override;
llama_sbatch sbatch_init(const llama_batch & batch, bool logits_all) override;
llama_ubatch ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const override;
// find an empty slot of size "n_tokens" in the cache
// updates the cache head
// Note: On success, it's important that cache.head points
// to the first cell of the slot.
bool find_slot(const llama_ubatch & batch);
bool find_slot(const llama_ubatch & batch) override;
// TODO: maybe not needed
uint32_t get_padding(const llama_cparams & cparams) const;
int32_t get_n_tokens() const override;
int32_t get_used_cells() const override;
// find how many cells are currently in use
uint32_t cell_max() const;
// TODO: better data structures to reduce the cost of this operation
llama_pos get_pos_max() const override;
size_t size_k_bytes() const;
size_t size_v_bytes() const;
// defrag
struct {
std::vector<llama_kv_defrag_move> moves;
} defrag_info;
// return true if cells have been moved
bool defrag_prepare(int32_t n_max_nodes);
// commit/restore cache
struct slot_range {
uint32_t c0 = 0; // note: these are cell indices, not sequence positions
uint32_t c1 = 0;
};
// pending cell updates that are not yet committed
struct {
std::vector<slot_range> ranges;
} pending;
bool get_can_shift() const override;
// state write/load
void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const;
void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1);
// members
const llama_hparams & hparams;
callbacks cbs;
bool has_shift = false;
bool do_defrag = false;
// TODO: remove this and implement llama_kv_cache_recurrent instead
bool recurrent = false; // with recurrent state models, a cell can hold the state for more than one past token
bool v_trans = true; // the value tensor is transposed
bool can_shift = false;
void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const override;
void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) override;
// Note: The value of head isn't only used to optimize searching
// for a free KV slot. llama_decode_impl also uses it, so it
@ -186,18 +188,214 @@ public:
// computed before each graph build
uint32_t n = 0;
std::vector<llama_kv_cell> cells;
std::vector<kv_cell> cells;
std::vector<ggml_tensor *> k_l; // per layer
std::vector<ggml_tensor *> v_l;
private:
const llama_model & model;
const llama_hparams & hparams;
bool has_shift = false;
bool do_defrag = false;
bool v_trans = true; // the value tensor is transposed
bool can_shift = false;
// required padding
uint32_t padding = 1;
ggml_type type_k = GGML_TYPE_F16;
ggml_type type_v = GGML_TYPE_F16;
std::vector<ggml_context_ptr> ctxs;
std::vector<ggml_backend_buffer_ptr> bufs;
// defrag
struct {
std::vector<llama_kv_defrag_move> moves;
} defrag_info;
// return true if cells have been moved
bool defrag_prepare(int32_t n_max_nodes);
// commit/restore cache
struct slot_range {
uint32_t c0 = 0; // note: these are cell indices, not sequence positions
uint32_t c1 = 0;
};
// pending cell updates that are not yet committed
struct {
std::vector<slot_range> ranges;
} pending;
// find how many cells are currently in use
uint32_t cell_max() const;
size_t total_size() const;
size_t size_k_bytes() const;
size_t size_v_bytes() const;
ggml_tensor * build_rope_shift(
const llama_cparams & cparams,
ggml_context * ctx,
ggml_tensor * cur,
ggml_tensor * shift,
ggml_tensor * factors,
float freq_base,
float freq_scale) const;
llm_graph_result_ptr build_graph_shift(
const llama_cparams & cparams,
ggml_context * ctx,
ggml_cgraph * gf) const;
llm_graph_result_ptr build_graph_defrag(
const llama_cparams & cparams,
ggml_context * ctx,
ggml_cgraph * gf,
const std::vector<llama_kv_defrag_move> & moves) const;
void state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id = -1) const;
void state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const;
bool state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id = -1);
bool state_read_data(llama_io_read_i & io, uint32_t cell_count);
};
//
// llama_kv_cache_recurrent
//
class llama_kv_cache_recurrent : public llama_kv_cache {
public:
struct kv_cell {
llama_pos pos = -1;
int32_t src = -1; // used to copy states
int32_t tail = -1;
std::set<llama_seq_id> seq_id;
bool has_seq_id(const llama_seq_id & id) const {
return seq_id.find(id) != seq_id.end();
}
bool is_empty() const {
return seq_id.empty();
}
bool is_same_seq(const kv_cell & other) const {
return seq_id == other.seq_id;
}
};
llama_kv_cache_recurrent(
const llama_model & model,
ggml_type type_k,
ggml_type type_v,
bool offload,
uint32_t kv_size);
~llama_kv_cache_recurrent() = default;
//
// llama_memory_i
//
void clear() override;
bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override;
void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override;
void seq_keep(llama_seq_id seq_id) override;
void seq_add (llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) override;
void seq_div (llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) override;
llama_pos seq_pos_max(llama_seq_id seq_id) const override;
//
// llama_kv_cache
//
void restore() override;
void commit() override;
bool update(llama_context & lctx) override;
void defrag_sched(float thold) override;
void set_full() override;
llama_sbatch sbatch_init(const llama_batch & batch, bool logits_all) override;
llama_ubatch ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const override;
bool find_slot(const llama_ubatch & batch) override;
int32_t get_n_tokens() const override;
int32_t get_used_cells() const override;
// TODO: better data structures to reduce the cost of this operation
llama_pos get_pos_max() const override;
bool get_can_shift() const override;
// TODO: temporary methods - they are not really const as they do const_cast<>, fix this
int32_t s_copy(int i) const;
float s_mask(int i) const;
// state write/load
void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const override;
void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) override;
// Note: The value of head isn't only used to optimize searching
// for a free KV slot. llama_decode_impl also uses it, so it
// cannot be freely changed after a slot has been allocated.
uint32_t head = 0;
uint32_t size = 0;
uint32_t used = 0; // used cells (i.e. at least one seq_id)
// computed before each graph build
uint32_t n = 0;
std::vector<kv_cell> cells;
std::vector<ggml_tensor *> k_l; // per layer
std::vector<ggml_tensor *> v_l;
private:
//const llama_model & model;
const llama_hparams & hparams;
// commit/restore cache
// TODO: rework for recurrent cache
struct slot_range {
uint32_t c0 = 0; // note: these are cell indices, not sequence positions
uint32_t c1 = 0;
};
// pending cell updates that are not yet committed
struct {
std::vector<slot_range> ranges;
} pending;
ggml_type type_k = GGML_TYPE_F16;
ggml_type type_v = GGML_TYPE_F16;
std::vector<ggml_context_ptr> ctxs;
std::vector<ggml_backend_buffer_ptr> bufs;
// find how many cells are currently in use
uint32_t cell_max() const;
size_t total_size() const;
size_t size_k_bytes() const;
size_t size_v_bytes() const;
void state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id = -1) const;
void state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const;
@ -205,11 +403,6 @@ private:
bool state_read_data(llama_io_read_i & io, uint32_t cell_count);
};
// TODO: temporary reusing llama_kv_cache_unified -- implement recurrent cache and simplify llama_kv_cache_unified
//class llama_kv_cache_recurrent : public llama_kv_cache_unified {
//public:
// using llama_kv_cache_unified::llama_kv_cache_unified;
//};
//
// kv cache view

View File

@ -2,12 +2,22 @@
#include "llama.h"
struct llama_memory_params {
// kv cache
ggml_type type_k;
ggml_type type_v;
// parameters for other types of memory
// ...
};
// general concept of LLM memory
// the KV cache is a type of LLM memory, but there can be other types
class llama_memory_i {
public:
virtual ~llama_memory_i() = default;
virtual void clear() = 0;
virtual void defrag() = 0;
virtual bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) = 0;
virtual void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) = 0;

View File

@ -301,12 +301,12 @@ namespace GGUFMeta {
GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta.get(), kid);
switch (arr_info.gt) {
case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same<T, float>::value)); break;
case GGUF_TYPE_INT32: GGML_ASSERT(
(std::is_same<T, int32_t>::value) ||
(std::is_same<T, uint32_t>::value)); break;
case GGUF_TYPE_UINT32:
case GGUF_TYPE_INT32: GGML_ASSERT((std::is_same<T, int32_t>::value) ||
(std::is_same<T, uint32_t>::value)); break;
case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same<T, float>::value)); break;
default:
throw std::runtime_error(format("%s is not a float32, int32 array", key.c_str()));
throw std::runtime_error(format("%s is not a float32/uint32/int32 array", key.c_str()));
}
result.resize(arr_info.length);
@ -315,8 +315,6 @@ namespace GGUFMeta {
return true;
}
template bool llama_model_loader::get_arr<std::array<unsigned int, 512>>(enum llm_kv kid, std::array<unsigned int, 512>& result, bool required);
template<typename T, size_t N_MAX>
bool llama_model_loader::get_arr(const std::string & key, std::array<T, N_MAX> & result, bool required) {
const int kid = gguf_find_key(meta.get(), key.c_str());
@ -332,12 +330,12 @@ namespace GGUFMeta {
GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta.get(), kid);
switch (arr_info.gt) {
case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same<T, float>::value)); break;
case GGUF_TYPE_INT32: GGML_ASSERT(
(std::is_same<T, int32_t>::value) ||
(std::is_same<T, uint32_t>::value)); break;
case GGUF_TYPE_UINT32:
case GGUF_TYPE_INT32: GGML_ASSERT((std::is_same<T, int32_t>::value) ||
(std::is_same<T, uint32_t>::value)); break;
case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same<T, float>::value)); break;
default:
throw std::runtime_error(format("%s is not a float32, int32 array", key.c_str()));
throw std::runtime_error(format("%s is not a float32/uint32/int32 array", key.c_str()));
}
if (arr_info.length > N_MAX) {
@ -826,6 +824,10 @@ void llama_model_loader::init_mappings(bool prefetch, llama_mlocks * mlock_mmaps
mmaps_used.reserve(files.size());
for (const auto & file : files) {
auto * reg = ggml_backend_dev_backend_reg(ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU));
if (!reg) {
throw std::runtime_error(format("%s: no CPU backend found", __func__));
}
auto * is_numa_fn = (decltype(ggml_is_numa) *) ggml_backend_reg_get_proc_address(reg, "ggml_backend_cpu_is_numa");
std::unique_ptr<llama_mmap> mapping = std::make_unique<llama_mmap>(file.get(), prefetch ? -1 : 0, is_numa_fn());
mmaps_used.emplace_back(mapping->size(), 0);

View File

@ -0,0 +1,281 @@
#include "llama-model-saver.h"
#include "gguf.h"
#include "llama.h"
#include "llama-hparams.h"
#include "llama-model.h"
#include "llama-vocab.h"
#include <string>
llama_model_saver::llama_model_saver(const struct llama_model & model) : model(model), llm_kv(model.arch) {
gguf_ctx = gguf_init_empty();
}
llama_model_saver::~llama_model_saver() {
gguf_free(gguf_ctx);
}
void llama_model_saver::add_kv(const enum llm_kv key, const uint32_t value) {
gguf_set_val_u32(gguf_ctx, llm_kv(key).c_str(), value);
}
void llama_model_saver::add_kv(const enum llm_kv key, const int32_t value) {
gguf_set_val_i32(gguf_ctx, llm_kv(key).c_str(), value);
}
void llama_model_saver::add_kv(const enum llm_kv key, const float value) {
gguf_set_val_f32(gguf_ctx, llm_kv(key).c_str(), value);
}
void llama_model_saver::add_kv(const enum llm_kv key, const bool value) {
gguf_set_val_bool(gguf_ctx, llm_kv(key).c_str(), value);
}
void llama_model_saver::add_kv(const enum llm_kv key, const char * value) {
gguf_set_val_str(gguf_ctx, llm_kv(key).c_str(), value);
}
[[noreturn]]
void llama_model_saver::add_kv(const enum llm_kv key, const char value) {
GGML_UNUSED(key);
GGML_UNUSED(value);
GGML_ABORT("fatal error"); // this should never be called, only needed to make the template below compile
}
template <typename Container>
void llama_model_saver::add_kv(const enum llm_kv key, const Container & value, const bool per_layer) {
const size_t n_values = per_layer ? size_t(model.hparams.n_layer) : value.size();
GGML_ASSERT(n_values <= value.size());
if (n_values == 0) {
return;
}
if (per_layer) {
bool all_values_the_same = true;
for (size_t i = 1; i < n_values; ++i) {
if (value[i] != value[0]) {
all_values_the_same = false;
break;
}
}
if (all_values_the_same) {
add_kv(key, value[0]);
return;
}
}
if (std::is_same<typename Container::value_type, uint8_t>::value) {
gguf_set_arr_data(gguf_ctx, llm_kv(key).c_str(), GGUF_TYPE_UINT8, value.data(), n_values);
} else if (std::is_same<typename Container::value_type, int8_t>::value) {
gguf_set_arr_data(gguf_ctx, llm_kv(key).c_str(), GGUF_TYPE_INT8, value.data(), n_values);
} else if (std::is_same<typename Container::value_type, uint32_t>::value) {
gguf_set_arr_data(gguf_ctx, llm_kv(key).c_str(), GGUF_TYPE_UINT32, value.data(), n_values);
} else if (std::is_same<typename Container::value_type, int32_t>::value) {
gguf_set_arr_data(gguf_ctx, llm_kv(key).c_str(), GGUF_TYPE_INT32, value.data(), n_values);
} else if (std::is_same<typename Container::value_type, float>::value) {
gguf_set_arr_data(gguf_ctx, llm_kv(key).c_str(), GGUF_TYPE_FLOAT32, value.data(), n_values);
} else if (std::is_same<Container, std::string>::value) {
gguf_set_val_str(gguf_ctx, llm_kv(key).c_str(), reinterpret_cast<const char *>(value.data()));
} else {
GGML_ABORT("fatal error");
}
}
void llama_model_saver::add_kv(const enum llm_kv key, const std::vector<std::string> & value) {
std::vector<const char *> tmp(value.size());
for (size_t i = 0; i < value.size(); ++i) {
tmp[i] = value[i].c_str();
}
gguf_set_arr_str(gguf_ctx, llm_kv(key).c_str(), tmp.data(), tmp.size());
}
void llama_model_saver::add_tensor(const struct ggml_tensor * tensor) {
if (!tensor) {
return;
}
if (gguf_find_tensor(gguf_ctx, tensor->name) >= 0) {
GGML_ASSERT(std::string(tensor->name) == "rope_freqs.weight"); // FIXME
return;
}
gguf_add_tensor(gguf_ctx, tensor);
}
void llama_model_saver::add_kv_from_model() {
const llama_hparams & hparams = model.hparams;
const llama_vocab & vocab = model.vocab;
const int32_t n_vocab = vocab.n_tokens();
std::vector<std::string> tokens(n_vocab);
std::vector<float> scores(n_vocab);
std::vector<int32_t> token_types(n_vocab);
for (int32_t id = 0; id < n_vocab; ++id) {
const llama_vocab::token_data & token_data = vocab.get_token_data(id);
tokens[id] = token_data.text;
scores[id] = token_data.score;
switch(token_data.attr) {
case LLAMA_TOKEN_ATTR_UNKNOWN: token_types[id] = LLAMA_TOKEN_TYPE_UNKNOWN; break;
case LLAMA_TOKEN_ATTR_UNUSED: token_types[id] = LLAMA_TOKEN_TYPE_UNUSED; break;
case LLAMA_TOKEN_ATTR_NORMAL: token_types[id] = LLAMA_TOKEN_TYPE_NORMAL; break;
case LLAMA_TOKEN_ATTR_CONTROL: token_types[id] = LLAMA_TOKEN_TYPE_CONTROL; break;
case LLAMA_TOKEN_ATTR_USER_DEFINED: token_types[id] = LLAMA_TOKEN_TYPE_USER_DEFINED; break;
case LLAMA_TOKEN_ATTR_BYTE: token_types[id] = LLAMA_TOKEN_TYPE_BYTE; break;
case LLAMA_TOKEN_ATTR_UNDEFINED:
default: token_types[id] = LLAMA_TOKEN_TYPE_UNDEFINED; break;
}
}
// add_kv(LLM_KV_GENERAL_TYPE, ???);
add_kv(LLM_KV_GENERAL_ARCHITECTURE, model.arch_name());
// add_kv(LLM_KV_GENERAL_QUANTIZATION_VERSION, ???);
// add_kv(LLM_KV_GENERAL_ALIGNMENT, ???);
add_kv(LLM_KV_GENERAL_NAME, model.name);
// add_kv(LLM_KV_GENERAL_AUTHOR, ???);
// add_kv(LLM_KV_GENERAL_VERSION, ???);
// add_kv(LLM_KV_GENERAL_URL, ???);
// add_kv(LLM_KV_GENERAL_DESCRIPTION, ???);
// add_kv(LLM_KV_GENERAL_LICENSE, ???);
// add_kv(LLM_KV_GENERAL_SOURCE_URL, ???);
// add_kv(LLM_KV_GENERAL_SOURCE_HF_REPO, ???);
add_kv(LLM_KV_VOCAB_SIZE, vocab.n_tokens());
add_kv(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
add_kv(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
add_kv(LLM_KV_BLOCK_COUNT, hparams.n_layer);
add_kv(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
add_kv(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, true);
add_kv(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
add_kv(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
add_kv(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res);
// add_kv(LLM_KV_TENSOR_DATA_LAYOUT, ???);
add_kv(LLM_KV_EXPERT_COUNT, hparams.n_expert);
add_kv(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used);
add_kv(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
add_kv(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
add_kv(LLM_KV_POOLING_TYPE, uint32_t(hparams.pooling_type));
add_kv(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
add_kv(LLM_KV_DECODER_START_TOKEN_ID, hparams.dec_start_token_id);
add_kv(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping);
add_kv(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping);
add_kv(LLM_KV_SWIN_NORM, hparams.swin_norm);
add_kv(LLM_KV_RESCALE_EVERY_N_LAYERS, hparams.rescale_every_n_layers);
add_kv(LLM_KV_TIME_MIX_EXTRA_DIM, hparams.time_mix_extra_dim);
add_kv(LLM_KV_TIME_DECAY_EXTRA_DIM, hparams.time_decay_extra_dim);
add_kv(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
add_kv(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
add_kv(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, true);
add_kv(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv_arr, true);
add_kv(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
add_kv(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
add_kv(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k);
add_kv(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v);
add_kv(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
add_kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
add_kv(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
add_kv(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
add_kv(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
add_kv(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
add_kv(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
add_kv(LLM_KV_ATTENTION_SCALE, hparams.f_attention_scale);
const float rope_scaling_factor = hparams.rope_freq_scale_train == 1.0f ? 0.0f : 1.0f/hparams.rope_freq_scale_train;
add_kv(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot);
add_kv(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train);
// add_kv(LLM_KV_ROPE_SCALE_LINEAR, rope_scaling_factor); // old name
add_kv(LLM_KV_ROPE_SCALING_TYPE, llama_rope_scaling_type_name(hparams.rope_scaling_type_train));
add_kv(LLM_KV_ROPE_SCALING_FACTOR, rope_scaling_factor);
add_kv(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor);
add_kv(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn);
add_kv(LLM_KV_ROPE_SCALING_FINETUNED, hparams.rope_finetuned);
add_kv(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul);
// TODO: implement split file support
// add_kv(LLM_KV_SPLIT_NO, ???);
// add_kv(LLM_KV_SPLIT_COUNT, ???);
// add_kv(LLM_KV_SPLIT_TENSORS_COUNT, ???);
add_kv(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
add_kv(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
add_kv(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
add_kv(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
add_kv(LLM_KV_SSM_DT_B_C_RMS, hparams.ssm_dt_b_c_rms);
add_kv(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size);
add_kv(LLM_KV_TOKENIZER_MODEL, vocab.get_tokenizer_model());
add_kv(LLM_KV_TOKENIZER_PRE, vocab.get_tokenizer_pre());
add_kv(LLM_KV_TOKENIZER_LIST, tokens);
add_kv(LLM_KV_TOKENIZER_TOKEN_TYPE, token_types);
add_kv(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, vocab.n_token_types());
add_kv(LLM_KV_TOKENIZER_SCORES, scores);
add_kv(LLM_KV_TOKENIZER_MERGES, vocab.get_bpe_merges());
// FIXME llama_token is type i32 but when reading in a GGUF file u32 is expected, not an issue for writing though
add_kv(LLM_KV_TOKENIZER_BOS_ID, uint32_t(vocab.token_bos()));
add_kv(LLM_KV_TOKENIZER_EOS_ID, uint32_t(vocab.token_eos()));
add_kv(LLM_KV_TOKENIZER_EOT_ID, uint32_t(vocab.token_eot()));
add_kv(LLM_KV_TOKENIZER_EOM_ID, uint32_t(vocab.token_eom()));
add_kv(LLM_KV_TOKENIZER_UNK_ID, uint32_t(vocab.token_unk()));
add_kv(LLM_KV_TOKENIZER_SEP_ID, uint32_t(vocab.token_sep()));
add_kv(LLM_KV_TOKENIZER_PAD_ID, uint32_t(vocab.token_pad()));
// add_kv(LLM_KV_TOKENIZER_CLS_ID, uint32_t(vocab.token_bos())); // deprecated
// add_kv(LLM_KV_TOKENIZER_MASK_ID, ???);
add_kv(LLM_KV_TOKENIZER_ADD_BOS, vocab.get_add_bos());
add_kv(LLM_KV_TOKENIZER_ADD_EOS, vocab.get_add_eos());
add_kv(LLM_KV_TOKENIZER_ADD_PREFIX, vocab.get_add_space_prefix());
add_kv(LLM_KV_TOKENIZER_REMOVE_EXTRA_WS, vocab.get_remove_extra_whitespaces());
add_kv(LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP, vocab.get_precompiled_charsmap());
// add_kv(LLM_KV_TOKENIZER_HF_JSON, ???);
// add_kv(LLM_KV_TOKENIZER_RWKV, ???);
add_kv(LLM_KV_TOKENIZER_FIM_PRE_ID, uint32_t(vocab.token_fim_pre()));
add_kv(LLM_KV_TOKENIZER_FIM_SUF_ID, uint32_t(vocab.token_fim_suf()));
add_kv(LLM_KV_TOKENIZER_FIM_MID_ID, uint32_t(vocab.token_fim_mid()));
add_kv(LLM_KV_TOKENIZER_FIM_PAD_ID, uint32_t(vocab.token_fim_pad()));
add_kv(LLM_KV_TOKENIZER_FIM_REP_ID, uint32_t(vocab.token_fim_rep()));
add_kv(LLM_KV_TOKENIZER_FIM_SEP_ID, uint32_t(vocab.token_fim_sep()));
// TODO: implement LoRA support
// add_kv(LLM_KV_ADAPTER_TYPE, ???);
// add_kv(LLM_KV_ADAPTER_LORA_ALPHA, ???);
// deprecated
// add_kv(LLM_KV_TOKENIZER_PREFIX_ID, ???);
// add_kv(LLM_KV_TOKENIZER_SUFFIX_ID, ???);
// add_kv(LLM_KV_TOKENIZER_MIDDLE_ID, ???);
}
void llama_model_saver::add_tensors_from_model() {
if (std::string(model.output->name) != std::string(model.tok_embd->name)) {
add_tensor(model.tok_embd); // some models use the same tensor for tok_embd and output
}
add_tensor(model.type_embd);
add_tensor(model.pos_embd);
add_tensor(model.tok_norm);
add_tensor(model.tok_norm_b);
add_tensor(model.output_norm);
add_tensor(model.output_norm_b);
add_tensor(model.output);
add_tensor(model.output_b);
add_tensor(model.output_norm_enc);
add_tensor(model.cls);
add_tensor(model.cls_b);
add_tensor(model.cls_out);
add_tensor(model.cls_out_b);
for (const struct llama_layer & layer : model.layers) {
for (size_t i = 0; i < sizeof(layer)/sizeof(struct ggml_tensor *); ++i) {
add_tensor(reinterpret_cast<const struct ggml_tensor * const *>(&layer)[i]);
}
}
}
void llama_model_saver::save(const std::string & path_model) {
gguf_write_to_file(gguf_ctx, path_model.c_str(), false);
}

37
llama/llama.cpp/src/llama-model-saver.h vendored Normal file
View File

@ -0,0 +1,37 @@
#pragma once
#include "llama.h"
#include "llama-arch.h"
#include <vector>
struct llama_model_saver {
struct gguf_context * gguf_ctx = nullptr;
const struct llama_model & model;
const struct LLM_KV llm_kv;
llama_model_saver(const struct llama_model & model);
~llama_model_saver();
void add_kv(enum llm_kv key, uint32_t value);
void add_kv(enum llm_kv key, int32_t value);
void add_kv(enum llm_kv key, float value);
void add_kv(enum llm_kv key, bool value);
void add_kv(enum llm_kv key, const char * value);
[[noreturn]]
void add_kv(enum llm_kv key, char value); // needed to make the template below compile
template <typename Container>
void add_kv(enum llm_kv key, const Container & value, bool per_layer = false);
void add_kv(enum llm_kv key, const std::vector<std::string> & value);
void add_tensor(const struct ggml_tensor * tensor);
void add_kv_from_model();
void add_tensors_from_model();
void save(const std::string & path_model);
};

View File

@ -40,14 +40,17 @@ const char * llm_type_name(llm_type type) {
case LLM_TYPE_335M: return "335M";
case LLM_TYPE_410M: return "410M";
case LLM_TYPE_450M: return "450M";
case LLM_TYPE_475M: return "475M";
case LLM_TYPE_770M: return "770M";
case LLM_TYPE_780M: return "780M";
case LLM_TYPE_0_5B: return "0.5B";
case LLM_TYPE_0_6B: return "0.6B";
case LLM_TYPE_1B: return "1B";
case LLM_TYPE_1_3B: return "1.3B";
case LLM_TYPE_1_4B: return "1.4B";
case LLM_TYPE_1_5B: return "1.5B";
case LLM_TYPE_1_6B: return "1.6B";
case LLM_TYPE_1_7B: return "1.7B";
case LLM_TYPE_1_8B: return "1.8B";
case LLM_TYPE_2B: return "2B";
case LLM_TYPE_2_8B: return "2.8B";
@ -66,6 +69,7 @@ const char * llm_type_name(llm_type type) {
case LLM_TYPE_15B: return "15B";
case LLM_TYPE_16B: return "16B";
case LLM_TYPE_20B: return "20B";
case LLM_TYPE_27B: return "27B";
case LLM_TYPE_30B: return "30B";
case LLM_TYPE_32B: return "32B";
case LLM_TYPE_34B: return "34B";
@ -74,7 +78,9 @@ const char * llm_type_name(llm_type type) {
case LLM_TYPE_65B: return "65B";
case LLM_TYPE_70B: return "70B";
case LLM_TYPE_236B: return "236B";
case LLM_TYPE_290B: return "290B";
case LLM_TYPE_314B: return "314B";
case LLM_TYPE_405B: return "405B";
case LLM_TYPE_671B: return "671B";
case LLM_TYPE_SMALL: return "0.1B";
case LLM_TYPE_MEDIUM: return "0.4B";
@ -88,10 +94,10 @@ const char * llm_type_name(llm_type type) {
case LLM_TYPE_16x3_8B: return "16x3.8B";
case LLM_TYPE_10B_128x3_66B: return "10B+128x3.66B";
case LLM_TYPE_57B_A14B: return "57B.A14B";
case LLM_TYPE_27B: return "27B";
case LLM_TYPE_290B: return "290B";
case LLM_TYPE_17B_16E: return "17Bx16E (Scout)";
case LLM_TYPE_17B_128E: return "17Bx128E (Maverick)";
case LLM_TYPE_30B_A3B: return "30B.A3B";
case LLM_TYPE_235B_A22B: return "235B.A22B";
default: return "?B";
}
}
@ -111,6 +117,10 @@ static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_
{ LLAMA_ROPE_SCALING_TYPE_LONGROPE, "longrope" },
};
std::string llama_rope_scaling_type_name(llama_rope_scaling_type rope_scaling_type) {
return LLAMA_ROPE_SCALING_TYPES.at(rope_scaling_type);
}
static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
if (kv.second == name) {
@ -293,6 +303,10 @@ static buft_list_t make_cpu_buft_list(const std::vector<ggml_backend_dev_t> & de
// add extra buffer types, only if no GPU device is present
// ref: https://github.com/ggml-org/llama.cpp/issues/12481#issuecomment-2743136094
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
if (cpu_dev == nullptr) {
throw std::runtime_error(format("%s: no CPU backend found", __func__));
}
auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
ggml_backend_reg_get_proc_address(cpu_reg, "ggml_backend_dev_get_extra_bufts");
@ -419,7 +433,6 @@ void llama_model::load_hparams(llama_model_loader & ml) {
// get general kv
ml.get_key(LLM_KV_GENERAL_NAME, name, false);
ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab, false);
// everything past this point is not vocab-related
if (hparams.vocab_only) {
@ -431,7 +444,6 @@ void llama_model::load_hparams(llama_model_loader & ml) {
ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false);
if (arch == LLM_ARCH_WAVTOKENIZER_DEC) {
ml.get_key(LLM_KV_FEATURES_LENGTH, hparams.n_embd_features);
@ -455,11 +467,9 @@ void llama_model::load_hparams(llama_model_loader & ml) {
std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0);
std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0);
std::fill(hparams.cross_attn_layers.begin(), hparams.cross_attn_layers.end(), -1);
ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer, false);
ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer, false);
ml.get_arr(LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS, hparams.cross_attn_layers, false);
// n_head_kv is optional, default to n_head
hparams.n_head_kv_arr = hparams.n_head_arr;
@ -512,7 +522,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
if (arch == LLM_ARCH_LLAMA || arch == LLM_ARCH_MLLAMA || arch == LLM_ARCH_DECI || arch == LLM_ARCH_FALCON) {
if (arch == LLM_ARCH_LLAMA || arch == LLM_ARCH_DECI || arch == LLM_ARCH_FALCON) {
if (hparams.n_rot != hparams.n_embd_head_k) {
throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
}
@ -575,22 +585,13 @@ void llama_model::load_hparams(llama_model_loader & ml) {
hparams.use_kq_norm = false;
}
} break;
case LLM_ARCH_MLLAMA:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 40: type = LLM_TYPE_11B; break;
case 100: type = LLM_TYPE_90B; break;
default: type = LLM_TYPE_UNKNOWN;
}
} break;
case LLM_ARCH_DECI:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 32: type = LLM_TYPE_7B; break;
case 80: type = LLM_TYPE_70B; break;
case 162: type = LLM_TYPE_405B; break;
default: type = LLM_TYPE_UNKNOWN;
}
} break;
@ -709,13 +710,19 @@ void llama_model::load_hparams(llama_model_loader & ml) {
}
} break;
case LLM_ARCH_NOMIC_BERT:
case LLM_ARCH_NOMIC_BERT_MOE:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
ml.get_key(LLM_KV_MOE_EVERY_N_LAYERS, hparams.moe_every_n_layers, 0);
if (hparams.n_layer == 12 && hparams.n_embd == 768) {
type = LLM_TYPE_137M;
if (arch == LLM_ARCH_NOMIC_BERT) {
type = LLM_TYPE_137M;
} else if (arch == LLM_ARCH_NOMIC_BERT_MOE && hparams.moe_every_n_layers == 2) {
type = LLM_TYPE_475M;
}
}
} break;
case LLM_ARCH_BLOOM:
@ -776,6 +783,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
// fall through
case LLM_ARCH_QWEN2:
{
ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 24: type = hparams.n_embd == 1024 ? LLM_TYPE_0_5B : LLM_TYPE_1B; break;
@ -805,6 +813,10 @@ void llama_model::load_hparams(llama_model_loader & ml) {
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 28: type = hparams.n_embd == 1024 ? LLM_TYPE_0_6B : LLM_TYPE_1_7B; break;
case 36: type = hparams.n_embd == 2560 ? LLM_TYPE_4B : LLM_TYPE_8B; break;
case 40: type = LLM_TYPE_14B; break;
case 64: type = LLM_TYPE_32B; break;
default: type = LLM_TYPE_UNKNOWN;
}
} break;
@ -814,6 +826,8 @@ void llama_model::load_hparams(llama_model_loader & ml) {
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 48: type = LLM_TYPE_30B_A3B; break;
case 94: type = LLM_TYPE_235B_A22B; break;
default: type = LLM_TYPE_UNKNOWN;
}
} break;
@ -1425,7 +1439,6 @@ void llama_model::load_hparams(llama_model_loader & ml) {
default: type = LLM_TYPE_UNKNOWN;
}
} break;
case LLM_ARCH_MISTRAL3: break;
default: throw std::runtime_error("unsupported model architecture");
}
@ -1494,6 +1507,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
}
ggml_backend_dev_t cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
if (cpu_dev == nullptr) {
throw std::runtime_error(format("%s: no CPU backend found", __func__));
}
const int i_gpu_start = std::max((int) hparams.n_layer - n_gpu_layers, (int) 0);
const int act_gpu_layers = devices.empty() ? 0 : std::min(n_gpu_layers, (int)n_layer + 1);
auto get_layer_buft_list = [&](int il) -> llama_model::impl::layer_dev {
@ -1565,7 +1581,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
const int64_t n_embd_head_v = hparams.n_embd_head_v;
const int64_t n_ff = hparams.n_ff();
const int64_t n_embd_gqa = n_embd_v_gqa;
const int64_t n_vocab = hparams.n_vocab;
const int64_t n_vocab = vocab.n_tokens();
const int64_t n_token_types = vocab.n_token_types();
const int64_t n_rot = hparams.n_rot;
const int64_t n_expert = hparams.n_expert;
@ -1661,8 +1677,11 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
for (const auto * overrides = ml.tensor_buft_overrides; overrides->pattern != nullptr; ++overrides) {
std::regex pattern(overrides->pattern);
if (std::regex_search(tensor_name, pattern)) {
LLAMA_LOG_DEBUG("tensor %s buffer type overriden to %s\n", tensor_name.c_str(), ggml_backend_buft_name(overrides->buft));
buft = overrides->buft;
LLAMA_LOG_DEBUG("tensor %s (%zu MiB %s) buffer type overridden to %s\n",
tensor_name.c_str(),
ggml_nbytes(t_meta) / 1024 / 1024, ggml_type_name(t_meta->type),
ggml_backend_buft_name(buft));
break;
}
}
@ -1679,6 +1698,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
auto * buft_dev = ggml_backend_buft_get_device(buft);
if (ml.use_mmap && buft_dev && buft == ggml_backend_dev_host_buffer_type(buft_dev)) {
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
if (!cpu_dev) {
throw std::runtime_error("no CPU backend found");
}
buft = ggml_backend_dev_buffer_type(cpu_dev);
}
@ -1818,52 +1840,6 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
}
}
} break;
case LLM_ARCH_MLLAMA:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab+8}, 0);
// output
{
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
// if output is NULL, init from the input tok embed
if (output == NULL) {
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
}
}
for (int i = 0; i < n_layer; ++i) {
auto & layer = layers[i];
if (hparams.cross_attention_layers(i)) {
layer.cross_attn_k_norm = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_K_NORM, "weight", i), {128}, 0);
layer.cross_attn_k_proj = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_K_PROJ, "weight", i), {n_embd, 1024}, 0);
layer.cross_attn_o_proj = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_O_PROJ, "weight", i), {n_embd, n_embd}, 0);
layer.cross_attn_q_norm = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_Q_NORM, "weight", i), {128}, 0);
layer.cross_attn_q_proj = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_Q_PROJ, "weight", i), {n_embd, n_embd}, 0);
layer.cross_attn_v_proj = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_V_PROJ, "weight", i), {n_embd, 1024}, 0);
layer.cross_attn_attn_gate = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_ATTN_GATE, i), {1}, 0);
layer.cross_attn_mlp_gate = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_MLP_GATE, i), {1}, 0);
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
} else {
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
}
}
} break;
case LLM_ARCH_DECI:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@ -1906,7 +1882,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
if (n_ff > 0) {
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
}
if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
@ -1916,9 +1894,11 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
}
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
if (n_ff > 0) {
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
}
// optional MLP bias
layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
@ -2133,6 +2113,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
} break;
case LLM_ARCH_BERT:
case LLM_ARCH_NOMIC_BERT:
case LLM_ARCH_NOMIC_BERT_MOE:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, 0);
@ -2166,20 +2147,31 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
}
if (arch == LLM_ARCH_NOMIC_BERT_MOE) {
layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
}
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
if (arch == LLM_ARCH_BERT) {
if (hparams.moe_every_n_layers > 0 && i % hparams.moe_every_n_layers == 1) {
layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff, n_expert}, 0);
layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
} else {
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
if (arch == LLM_ARCH_BERT || arch == LLM_ARCH_NOMIC_BERT_MOE) {
layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
} else {
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
}
}
layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
@ -3550,7 +3542,11 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
// output
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
// if output is NULL, init from the input tok embed
if (output == NULL) {
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
}
for (int i = 0; i < n_layer; ++i) {
auto & layer = layers[i];
@ -4183,6 +4179,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
if (!dev) {
// FIXME: workaround for CPU backend buft having a NULL device
dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
if (!dev) {
throw std::runtime_error(format("%s: no CPU backend found", __func__));
}
}
ggml_backend_dev_props props;
ggml_backend_dev_get_props(dev, &props);
@ -4312,7 +4311,7 @@ uint64_t llama_model::n_elements() const {
}
void llama_model::print_info() const {
const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
const std::string rope_scaling_type = llama_rope_scaling_type_name(hparams.rope_scaling_type_train);
auto print_f = [](const std::function<uint32_t(uint32_t)> & f, uint32_t n) {
bool is_var = false;
@ -4373,7 +4372,7 @@ void llama_model::print_info() const {
LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type.c_str());
LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn);
@ -4520,6 +4519,19 @@ const ggml_tensor * llama_model::get_tensor(const char * name) const {
return it->second;
}
ggml_tensor * llama_model::get_rope_factors(uint32_t n_ctx_per_seq, int il) const {
// choose long/short freq factors based on the context size
if (layers[il].rope_freqs != nullptr) {
return layers[il].rope_freqs;
}
if (n_ctx_per_seq > hparams.n_ctx_orig_yarn) {
return layers[il].rope_long;
}
return layers[il].rope_short;
}
struct llm_build_llama : public llm_graph_context {
llm_build_llama(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
@ -4560,7 +4572,7 @@ struct llm_build_llama : public llm_graph_context {
// self-attention
{
// rope freq factors for llama3; may return nullptr for llama2 and other models
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
@ -4744,246 +4756,6 @@ struct llm_build_llama : public llm_graph_context {
}
};
struct llm_build_mllama: public llm_graph_context {
llm_build_mllama(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
// mutable variable, needed during the last layer of the computation to skip unused tokens
int32_t n_tokens = this->n_tokens;
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
ggml_tensor * inpCAS;
inpL = build_inp_embd(model.tok_embd);
inpCAS = build_inp_cross_attn_state();
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv_unified();
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
if (hparams.cross_attention_layers(il)) {
if (!ubatch.embd && !cparams.cross_attn) {
continue;
}
// cross attention layer
ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_q_proj, cur);
cb(Qcur, "Qcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
cb(Qcur, "Qcur", il);
Qcur = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 0, 2, 1, 3));
cb(Qcur, "Qcur", il);
Qcur = build_norm(Qcur, model.layers[il].cross_attn_q_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur, * Vcur;
if (ubatch.embd) {
Kcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_k_proj, inpCAS);
cb(Kcur, "Kcur", il);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, 6404);
cb(Kcur, "Kcur", il);
Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
cb(Kcur, "Kcur", il);
Kcur = build_norm(Kcur, model.layers[il].cross_attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(Kcur, "Kcur", il);
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, kv_self->k_l[il]));
Vcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_v_proj, inpCAS);
cb(Vcur, "Vcur", il);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, 6404);
cb(Vcur, "Vcur", il);
Vcur = ggml_permute(ctx0, Vcur, 0, 2, 1, 3);
cb(Vcur, "Vcur", il);
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, kv_self->v_l[il]));
} else {
Kcur = ggml_view_tensor(ctx0, kv_self->k_l[il]);
cb(Kcur, "Kcur (view)", il);
Vcur = ggml_view_tensor(ctx0, kv_self->v_l[il]);
cb(Vcur, "Vcur (view)", il);
}
struct ggml_tensor * kq = ggml_mul_mat(ctx0, Kcur, Qcur);
cb(kq, "kq", il);
// TODO: apply causal masks
struct ggml_tensor * kq_soft_max = ggml_soft_max_ext(ctx0, kq, nullptr, 1.f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
cb(kq_soft_max, "kq_soft_max", il);
Vcur = ggml_cont(ctx0, ggml_transpose(ctx0, Vcur));
cb(Vcur, "Vcur", il);
struct ggml_tensor * kqv = ggml_mul_mat(ctx0, Vcur, kq_soft_max);
cb(kqv, "kqv", il);
struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
cb(kqv_merged, "kqv_merged", il);
cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_head_v*n_head, n_tokens);
cb(cur, "kqv_merged_cont", il);
cur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_o_proj, cur);
cb(cur, "cur", il);
// TODO: do this in place once?
cur = ggml_mul(ctx0, cur, ggml_tanh(ctx0, model.layers[il].cross_attn_attn_gate));
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
// TODO: do this inplace once?
cur = ggml_add_inplace(ctx0, ggml_mul_inplace(ctx0, cur, ggml_tanh(ctx0, model.layers[il].cross_attn_mlp_gate)), ffn_inp);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
} else {
// self attention layer
// rope freq factors for llama3; may return nullptr for llama2 and other models
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
n_tokens = n_outputs;
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}
};
struct llm_build_deci : public llm_graph_context {
llm_build_deci(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
@ -5006,6 +4778,7 @@ struct llm_build_deci : public llm_graph_context {
ggml_tensor * inpSA = inpL;
const int64_t n_head_kv = hparams.n_head_kv(il);
const int64_t n_head = hparams.n_head(il);
const int64_t n_ff = hparams.n_ff(il);
if (n_head == 0) {
// attention-free layer of Llama-3_1-Nemotron-51B
@ -5025,7 +4798,7 @@ struct llm_build_deci : public llm_graph_context {
} else if (n_head > 0) {
// self-attention
// rope freq factors for llama3; may return nullptr for llama2 and other models
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
@ -5081,6 +4854,11 @@ struct llm_build_deci : public llm_graph_context {
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
// FFN-free layer of Llama-3_1-Nemotron-Ultra-253B
if (n_ff == 0) {
continue;
}
// For Granite architecture
if (hparams.f_residual_scale) {
cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
@ -6074,6 +5852,11 @@ struct llm_build_bert : public llm_graph_context {
cur = build_lora_mm(model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
if (model.arch == LLM_ARCH_NOMIC_BERT_MOE) {
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);
}
Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
@ -6126,13 +5909,29 @@ struct llm_build_bert : public llm_graph_context {
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
if (model.arch == LLM_ARCH_BERT) {
if (hparams.moe_every_n_layers > 0 && il % hparams.moe_every_n_layers == 1) {
// MoE branch
cur = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
nullptr,
model.layers[il].ffn_down_exps,
nullptr,
hparams.n_expert,
hparams.n_expert_used,
LLM_FFN_GELU,
false, false,
0.0f,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, il);
cb(cur, "ffn_moe_out", il);
} else if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_NOMIC_BERT_MOE) {
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_GELU, LLM_FFN_SEQ, il);
cb(cur, "ffn_out", il);
} else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
@ -6140,6 +5939,7 @@ struct llm_build_bert : public llm_graph_context {
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_GELU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
} else {
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
@ -6147,8 +5947,8 @@ struct llm_build_bert : public llm_graph_context {
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
}
cb(cur, "ffn_out", il);
// attentions bypass the intermediate layer
cur = ggml_add(ctx0, cur, ffn_inp);
@ -7485,7 +7285,7 @@ struct llm_build_phi3 : public llm_graph_context {
// self-attention
{
// rope freq factors for 128k context
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
ggml_tensor* attn_norm_output = build_norm(inpL,
model.layers[il].attn_norm,
@ -8237,7 +8037,7 @@ struct llm_build_minicpm3 : public llm_graph_context {
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
// norm
cur = build_norm(inpL,
@ -9004,7 +8804,7 @@ struct llm_build_mamba : public llm_graph_context {
ggml_tensor * state_mask,
const llama_ubatch & ubatch,
int il) const {
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
const auto kv_head = kv_self->head;
@ -9305,7 +9105,7 @@ struct llm_build_cohere2 : public llm_graph_context {
// self-attention
{
// rope freq factors for 128k context
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
@ -10243,7 +10043,7 @@ struct llm_build_deepseek : public llm_graph_context {
// self-attention
{
// rope freq factors for llama3; may return nullptr for llama2 and other models
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
@ -11607,7 +11407,7 @@ struct llm_build_exaone : public llm_graph_context {
// self-attention
{
// rope freq factors for llama3; may return nullptr for llama2 and other models
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
@ -11752,7 +11552,7 @@ struct llm_build_rwkv6_base : public llm_graph_context {
ggml_tensor * state_mask,
const llama_ubatch & ubatch,
int il) const {
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
const auto n_tokens = ubatch.n_tokens;
const auto n_seqs = ubatch.n_seqs;
@ -12148,7 +11948,7 @@ struct llm_build_rwkv7_base : public llm_graph_context {
ggml_tensor *& first_layer_value,
const llama_ubatch & ubatch,
int il) const {
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
const auto n_tokens = ubatch.n_tokens;
const auto n_seqs = ubatch.n_seqs;
@ -12696,7 +12496,7 @@ struct llm_build_solar : public llm_graph_context {
// self-attention
{
// rope freq factors for llama3; may return nullptr for llama2 and other models
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
@ -13147,7 +12947,7 @@ struct llm_build_bailingmoe : public llm_graph_context {
// self-attention
{
// rope freq factors for llama3; may return nullptr for llama2 and other models
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
@ -13267,36 +13067,46 @@ struct llm_build_bailingmoe : public llm_graph_context {
}
};
llama_memory_i * llama_model::create_memory() const {
llama_memory_i * llama_model::create_memory(const llama_memory_params & params, llama_cparams & cparams) const {
llama_memory_i * res;
switch (arch) {
case LLM_ARCH_BERT:
case LLM_ARCH_JINA_BERT_V2:
case LLM_ARCH_NOMIC_BERT:
case LLM_ARCH_NOMIC_BERT_MOE:
{
res = nullptr;
} break;
case LLM_ARCH_MAMBA:
case LLM_ARCH_RWKV6:
case LLM_ARCH_RWKV6QWEN2:
case LLM_ARCH_RWKV7:
case LLM_ARCH_ARWKV7:
{
res = new llama_kv_cache_unified(hparams, {
/*.get_rope_factors =*/ nullptr
});
res = new llama_kv_cache_recurrent(
*this,
GGML_TYPE_F32,
GGML_TYPE_F32,
cparams.offload_kqv,
std::max((uint32_t) 1, cparams.n_seq_max));
} break;
default:
{
res = new llama_kv_cache_unified(hparams, {
/*.get_rope_factors =*/ [this](uint32_t n_ctx_per_seq, int il) {
// choose long/short freq factors based on the context size
if (layers[il].rope_freqs != nullptr) {
return layers[il].rope_freqs;
}
const auto padding = llama_kv_cache_unified::get_padding(cparams);
if (n_ctx_per_seq > hparams.n_ctx_orig_yarn) {
return layers[il].rope_long;
}
cparams.n_ctx = GGML_PAD(cparams.n_ctx, padding);
return layers[il].rope_short;
}
});
LLAMA_LOG_DEBUG("%s: n_ctx = %u (padded)\n", __func__, cparams.n_ctx);
res = new llama_kv_cache_unified(
*this,
params.type_k,
params.type_v,
!cparams.flash_attn,
cparams.offload_kqv,
cparams.n_ctx,
padding);
}
}
@ -13318,10 +13128,6 @@ llm_graph_result_ptr llama_model::build_graph(
{
llm = std::make_unique<llm_build_llama>(*this, params, gf);
} break;
case LLM_ARCH_MLLAMA:
{
llm = std::make_unique<llm_build_mllama>(*this, params, gf);
} break;
case LLM_ARCH_DECI:
{
llm = std::make_unique<llm_build_deci>(*this, params, gf);
@ -13349,6 +13155,7 @@ llm_graph_result_ptr llama_model::build_graph(
case LLM_ARCH_BERT:
case LLM_ARCH_JINA_BERT_V2:
case LLM_ARCH_NOMIC_BERT:
case LLM_ARCH_NOMIC_BERT_MOE:
{
llm = std::make_unique<llm_build_bert>(*this, params, gf);
} break;
@ -13682,12 +13489,9 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
// use what we call a normal RoPE, operating on pairs of consecutive head values
case LLM_ARCH_LLAMA:
case LLM_ARCH_LLAMA4:
case LLM_ARCH_MLLAMA:
case LLM_ARCH_DECI:
case LLM_ARCH_BAICHUAN:
case LLM_ARCH_STARCODER:
case LLM_ARCH_PLAMO:
case LLM_ARCH_ORION:
case LLM_ARCH_INTERNLM2:
case LLM_ARCH_MINICPM:
case LLM_ARCH_XVERSE:
@ -13705,7 +13509,6 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_CHAMELEON:
case LLM_ARCH_SOLAR:
case LLM_ARCH_BAILINGMOE:
case LLM_ARCH_MISTRAL3:
return LLAMA_ROPE_TYPE_NORM;
// the pairs of head values are offset by n_rot/2
@ -13714,6 +13517,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_DBRX:
case LLM_ARCH_BERT:
case LLM_ARCH_NOMIC_BERT:
case LLM_ARCH_NOMIC_BERT_MOE:
case LLM_ARCH_STABLELM:
case LLM_ARCH_BITNET:
case LLM_ARCH_QWEN:
@ -13726,6 +13530,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_PHI2:
case LLM_ARCH_PHI3:
case LLM_ARCH_PHIMOE:
case LLM_ARCH_PLAMO:
case LLM_ARCH_GEMMA:
case LLM_ARCH_GEMMA2:
case LLM_ARCH_GEMMA3:
@ -13733,6 +13538,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_OPENELM:
case LLM_ARCH_GPTNEOX:
case LLM_ARCH_CODESHELL:
case LLM_ARCH_ORION:
case LLM_ARCH_NEMOTRON:
case LLM_ARCH_EXAONE:
case LLM_ARCH_MINICPM3:
@ -13805,6 +13611,14 @@ const char * llama_model_chat_template(const llama_model * model, const char * n
: LLM_KV(model->arch)(LLM_KV_TOKENIZER_CHAT_TEMPLATE);
const auto & it = model->gguf_kv.find(key);
if (it == model->gguf_kv.end()) {
// one-off fix for very popular models (so we are not flooded with issues)
// do not extend this list unless absolutely necessary
// Mistral-Small-2503 does not have built-in chat template
llama_vocab_pre_type pre_type = model->vocab.get_pre_type();
if (pre_type == LLAMA_VOCAB_PRE_TYPE_TEKKEN && model->layers.size() == 40) {
return "mistral-v7-tekken";
}
return nullptr;
}

View File

@ -11,7 +11,6 @@
#include <string>
#include <unordered_map>
#include <vector>
#include <stdexcept>
struct llama_cparams;
struct llama_ubatch;
@ -37,14 +36,17 @@ enum llm_type {
LLM_TYPE_335M,
LLM_TYPE_410M,
LLM_TYPE_450M,
LLM_TYPE_475M,
LLM_TYPE_770M,
LLM_TYPE_780M,
LLM_TYPE_0_5B,
LLM_TYPE_0_6B,
LLM_TYPE_1B,
LLM_TYPE_1_3B,
LLM_TYPE_1_4B,
LLM_TYPE_1_5B,
LLM_TYPE_1_6B,
LLM_TYPE_1_7B,
LLM_TYPE_1_8B,
LLM_TYPE_2B,
LLM_TYPE_2_8B,
@ -64,6 +66,7 @@ enum llm_type {
LLM_TYPE_16B,
LLM_TYPE_20B,
LLM_TYPE_22B,
LLM_TYPE_27B,
LLM_TYPE_30B,
LLM_TYPE_32B,
LLM_TYPE_34B,
@ -71,9 +74,10 @@ enum llm_type {
LLM_TYPE_40B,
LLM_TYPE_65B,
LLM_TYPE_70B,
LLM_TYPE_90B,
LLM_TYPE_236B,
LLM_TYPE_290B,
LLM_TYPE_314B,
LLM_TYPE_405B,
LLM_TYPE_671B,
LLM_TYPE_SMALL,
LLM_TYPE_MEDIUM,
@ -87,12 +91,14 @@ enum llm_type {
LLM_TYPE_16x3_8B,
LLM_TYPE_10B_128x3_66B,
LLM_TYPE_57B_A14B,
LLM_TYPE_27B,
LLM_TYPE_290B,
LLM_TYPE_17B_16E, // llama4 Scout
LLM_TYPE_17B_128E, // llama4 Maverick
LLM_TYPE_30B_A3B,
LLM_TYPE_235B_A22B,
};
std::string llama_rope_scaling_type_name(llama_rope_scaling_type rope_scaling_type);
struct llama_layer_posnet {
// resnet
struct ggml_tensor * norm1 = nullptr;
@ -312,16 +318,6 @@ struct llama_layer {
struct ggml_tensor * bskcn_tv = nullptr;
// cross attention
struct ggml_tensor * cross_attn_k_norm = nullptr;
struct ggml_tensor * cross_attn_k_proj = nullptr;
struct ggml_tensor * cross_attn_o_proj = nullptr;
struct ggml_tensor * cross_attn_q_norm = nullptr;
struct ggml_tensor * cross_attn_q_proj = nullptr;
struct ggml_tensor * cross_attn_v_proj = nullptr;
struct ggml_tensor * cross_attn_attn_gate = nullptr;
struct ggml_tensor * cross_attn_mlp_gate = nullptr;
struct llama_layer_posnet posnet;
struct llama_layer_convnext convnext;
@ -405,8 +401,11 @@ struct llama_model {
const struct ggml_tensor * get_tensor(const char * name) const;
ggml_tensor * get_rope_factors(uint32_t n_ctx_per_seq, int il) const;
// note: can mutate `cparams`
// TODO: move this to new llm_arch_model_i interface
llama_memory_i * create_memory() const; // TODO: params
llama_memory_i * create_memory(const llama_memory_params & params, llama_cparams & cparams) const;
// TODO: move this to new llm_arch_model_i interface
llm_graph_result_ptr build_graph(

View File

@ -519,7 +519,7 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
nthread = std::thread::hardware_concurrency();
}
// mmap consistently increases speed Linux, and also increases speed on Windows with
// mmap consistently increases speed on Linux, and also increases speed on Windows with
// hot cache. It may cause a slowdown on macOS, possibly related to free memory.
#if defined(__linux__) || defined(_WIN32)
constexpr bool use_mmap = true;
@ -529,7 +529,7 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
llama_model_kv_override * kv_overrides = nullptr;
if (params->kv_overrides) {
auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
auto * v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
kv_overrides = v->data();
}
@ -639,9 +639,7 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
if (llama_model_has_encoder(&model)) {
n_attn_layer *= 3;
}
if (qs.n_attention_wv != n_attn_layer) {
LLAMA_LOG_WARN("%s: n_attention_wv is unexpected, expected: %d, found: %d\n", __func__, n_attn_layer, qs.n_attention_wv);
}
GGML_ASSERT((qs.n_attention_wv == n_attn_layer) && "n_attention_wv is unexpected");
}
size_t total_size_org = 0;
@ -744,10 +742,6 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
// This used to be a regex, but <regex> has an extreme cost to compile times.
bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
// don't quantize vision stuff
quantize &= name.find("v.") == std::string::npos;
quantize &= name.find("mm.") == std::string::npos;
// quantize only 2D and 3D tensors (experts)
quantize &= (ggml_n_dims(tensor) >= 2);

View File

@ -232,7 +232,7 @@ static void llama_sampler_top_k_impl(llama_token_data_array * cur_p, int32_t k)
// }
if (k <= 0) {
k = cur_p->size;
return;
}
k = std::min(k, (int) cur_p->size);
@ -298,6 +298,7 @@ static void llama_sampler_top_k_impl(llama_token_data_array * cur_p, int32_t k)
}
cur_p->sorted = true;
}
cur_p->size = k;
}
@ -1749,23 +1750,35 @@ static const char * llama_sampler_top_n_sigma_name(const struct llama_sampler *
static void llama_sampler_top_n_sigma_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
const auto * ctx = (llama_sampler_top_n_sigma *) smpl->ctx;
if (ctx->n <= 0.0f || cur_p->size <= 1) {
return;
}
// find max logit and calculate mean
float max = cur_p->data[0].logit;
float logits_sum = 0;
size_t valid_count = 0;
for (size_t i = 0; i < cur_p->size; ++i) {
if (cur_p->data[i].logit > max) {
max = cur_p->data[i].logit;
// Only count non-negative infinity values
if (cur_p->data[i].logit != -INFINITY) {
if (cur_p->data[i].logit > max) {
max = cur_p->data[i].logit;
}
logits_sum += cur_p->data[i].logit;
valid_count++;
}
logits_sum += cur_p->data[i].logit;
}
float mean = logits_sum/cur_p->size;
float mean = valid_count > 0 ? logits_sum/valid_count : 0;
// calculate standard deviation
float acc = 0;
for (size_t i = 0; i < cur_p->size; ++i) {
acc += pow(cur_p->data[i].logit - mean, 2);
// Skip -infinity in std calculation
if (cur_p->data[i].logit != -INFINITY) {
acc += pow(cur_p->data[i].logit - mean, 2);
}
}
float std = sqrt(acc/cur_p->size);
float std = valid_count > 0 ? sqrt(acc/valid_count) : 0;
//apply mask
for (size_t i = 0; i < cur_p->size; ++i) {

View File

@ -1,5 +1,7 @@
#include "llama-vocab.h"
#include "ggml.h"
#include "gguf.h"
#include "llama-impl.h"
#include "llama-model-loader.h"
@ -415,6 +417,13 @@ struct llm_tokenizer_bpe : llm_tokenizer {
"'(?:[sSdDmMtT]|[lL][lL]|[vV][eE]|[rR][eE])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]|\\s+(?!\\S)|\\s+",
};
break;
case LLAMA_VOCAB_PRE_TYPE_SEED_CODER:
regex_exprs = {
// original regex from tokenizer.json
// "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1}| ?[^\\s\\p{L}\\p{N}\r\n]+|\\s*[\r\n]+|\\s+(?!\\S)|\\s+"
"(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1}| ?[^\\s\\p{L}\\p{N}\\r\\n]+|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
};
break;
default:
// default regex for BPE tokenization pre-processing
regex_exprs = {
@ -1227,6 +1236,9 @@ struct fragment_buffer_variant {
struct llama_vocab::impl {
uint32_t n_token_types = 0; // for BERT-style token types
std::string tokenizer_model;
std::string tokenizer_pre;
enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
enum llama_vocab_pre_type pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
@ -1362,9 +1374,6 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
// determine vocab type
{
std::string tokenizer_model;
std::string tokenizer_pre;
ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_model);
ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
@ -1459,7 +1468,8 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
const int precompiled_charsmap_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP).c_str());
if (precompiled_charsmap_keyidx != -1) {
size_t n_precompiled_charsmap = gguf_get_arr_data_n(ctx, precompiled_charsmap_keyidx);
const gguf_type pc_type = gguf_get_arr_type(ctx, precompiled_charsmap_keyidx);
const size_t n_precompiled_charsmap = gguf_get_arr_data_n(ctx, precompiled_charsmap_keyidx);
const char * pc = (const char *) gguf_get_arr_data(ctx, precompiled_charsmap_keyidx);
precompiled_charsmap.assign(pc, pc + n_precompiled_charsmap);
#ifdef IS_BIG_ENDIAN
@ -1497,7 +1507,8 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
tokenizer_pre == "llama3" ||
tokenizer_pre == "llama-v3" ||
tokenizer_pre == "llama-bpe"||
tokenizer_pre == "falcon3") {
tokenizer_pre == "falcon3" ||
tokenizer_pre == "pixtral") {
pre_type = LLAMA_VOCAB_PRE_TYPE_LLAMA3;
ignore_merges = true;
add_bos = true;
@ -1624,6 +1635,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
tokenizer_pre == "bailingmoe") {
pre_type = LLAMA_VOCAB_PRE_TYPE_BAILINGMOE;
clean_spaces = false;
} else if (
tokenizer_pre == "seed-coder") {
pre_type = LLAMA_VOCAB_PRE_TYPE_SEED_CODER;
clean_spaces = false;
} else {
LLAMA_LOG_WARN("%s: missing or unrecognized pre-tokenizer type, using: 'default'\n", __func__);
pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
@ -2769,6 +2784,14 @@ void llama_vocab::load(llama_model_loader & ml, const LLM_KV & kv) {
pimpl->load(ml, kv);
}
std::string llama_vocab::get_tokenizer_model() const {
return pimpl->tokenizer_model;
}
std::string llama_vocab::get_tokenizer_pre() const {
return pimpl->tokenizer_pre;
}
enum llama_vocab_type llama_vocab::get_type() const {
return pimpl->type;
}
@ -2991,6 +3014,20 @@ int llama_vocab::find_bpe_rank(const std::string & token_left, const std::string
return it->second;
}
std::vector<std::string> llama_vocab::get_bpe_merges() const {
std::vector<std::string> result(pimpl->bpe_ranks.size());
for (const auto & pair : pimpl->bpe_ranks) {
result[pair.second] = pair.first.first + " " + pair.first.second;
}
return result;
}
std::vector<char> llama_vocab::get_precompiled_charsmap() const {
return pimpl->precompiled_charsmap;
}
int32_t llama_vocab::tokenize(
const char * text,
int32_t text_len,

View File

@ -21,6 +21,9 @@ struct llama_vocab {
void load(llama_model_loader & ml, const LLM_KV & kv);
std::string get_tokenizer_model() const;
std::string get_tokenizer_pre() const;
enum llama_vocab_type get_type() const;
enum llama_vocab_pre_type get_pre_type() const;
@ -80,6 +83,9 @@ struct llama_vocab {
int max_token_len() const;
int find_bpe_rank(const std::string & token_left, const std::string & token_right) const;
std::vector<std::string> get_bpe_merges() const;
std::vector<char> get_precompiled_charsmap() const;
int32_t tokenize(
const char * text,

View File

@ -4,6 +4,7 @@
#include "llama-mmap.h"
#include "llama-vocab.h"
#include "llama-model-loader.h"
#include "llama-model-saver.h"
#include "llama-model.h"
#include "ggml.h"
@ -253,6 +254,13 @@ struct llama_model * llama_model_load_from_splits(
return llama_model_load_from_file_impl(splits.front(), splits, params);
}
void llama_model_save_to_file(const struct llama_model * model, const char * path_model) {
llama_model_saver ms(*model);
ms.add_kv_from_model();
ms.add_tensors_from_model();
ms.save(path_model);
}
//
// chat templates
//
@ -338,3 +346,4 @@ const char * llama_print_system_info(void) {
return s.c_str();
}

View File

@ -2,8 +2,6 @@
#include "gguf.h"
#include "clip.h"
#include "clip.h"
#include <climits>
#include <cstdarg>
#include <string>
@ -17,33 +15,29 @@
#define KEY_FTYPE "general.file_type"
#define KEY_NAME "general.name"
#define KEY_DESCRIPTION "general.description"
#define KEY_HAS_TEXT_ENC "clip.has_text_encoder"
#define KEY_HAS_VIS_ENC "clip.has_vision_encoder"
#define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector"
#define KEY_HAS_MINICPMV_PROJ "clip.has_minicpmv_projector"
#define KEY_HAS_GLM_PROJ "clip.has_glm_projector"
#define KEY_MINICPMV_VERSION "clip.minicpmv_version"
#define KEY_HAS_QWEN2VL_MERGER "clip.has_qwen2vl_merger"
#define KEY_USE_GELU "clip.use_gelu"
#define KEY_USE_SILU "clip.use_silu"
#define KEY_N_EMBD "clip.%s.embedding_length"
#define KEY_N_FF "clip.%s.feed_forward_length"
#define KEY_N_BLOCK "clip.%s.block_count"
#define KEY_N_HEAD "clip.%s.attention.head_count"
#define KEY_LAYER_NORM_EPS "clip.%s.attention.layer_norm_epsilon"
#define KEY_PROJ_DIM "clip.%s.projection_dim"
#define KEY_TOKENS "tokenizer.ggml.tokens"
#define KEY_N_POSITIONS "clip.text.context_length"
#define KEY_N_EMBD "clip.vision.embedding_length"
#define KEY_N_FF "clip.vision.feed_forward_length"
#define KEY_N_BLOCK "clip.vision.block_count"
#define KEY_N_HEAD "clip.vision.attention.head_count"
#define KEY_LAYER_NORM_EPS "clip.vision.attention.layer_norm_epsilon"
#define KEY_PROJ_DIM "clip.vision.projection_dim"
#define KEY_IMAGE_SIZE "clip.vision.image_size"
#define KEY_PATCH_SIZE "clip.vision.patch_size"
#define KEY_IMAGE_MEAN "clip.vision.image_mean"
#define KEY_IMAGE_STD "clip.vision.image_std"
#define KEY_PROJ_TYPE "clip.projector_type"
#define KEY_FEATURE_LAYER "clip.vision.feature_layer"
#define KEY_PROJ_SCALE_FACTOR "clip.vision.projector.scale_factor"
#define KEY_PROJ_TYPE "clip.projector_type"
#define KEY_SPATIAL_MERGE_SIZE "clip.vision.spatial_merge_size"
#define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type"
#define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints"
#define KEY_IMAGE_CROP_RESOLUTION "clip.vision.image_crop_resolution"
#define KEY_WIN_ATTN_PATTERN "clip.vision.n_wa_pattern"
#define KEY_ATTN_WINDOW_SIZE "clip.vision.window_size"
//
@ -59,10 +53,16 @@
#define TN_ATTN_Q "%s.blk.%d.attn_q.%s"
#define TN_ATTN_V "%s.blk.%d.attn_v.%s"
#define TN_ATTN_OUTPUT "%s.blk.%d.attn_out.%s"
#define TN_ATTN_K_NORM "%s.blk.%d.attn_k_norm.%s"
#define TN_ATTN_Q_NORM "%s.blk.%d.attn_q_norm.%s"
#define TN_FFN_DOWN "%s.blk.%d.ffn_down.%s"
#define TN_FFN_GATE "%s.blk.%d.ffn_gate.%s"
#define TN_FFN_UP "%s.blk.%d.ffn_up.%s"
#define TN_LN_1 "%s.blk.%d.ln1.%s"
#define TN_LN_2 "%s.blk.%d.ln2.%s"
#define TN_FFN_GATE "%s.blk.%d.ffn_gate.%s"
#define TN_LN_1 "%s.blk.%d.ln1.%s" // layer norm
#define TN_LN_2 "%s.blk.%d.ln2.%s" // layer norm
#define TN_LS_1 "%s.blk.%d.ls1.%s" // layer scale
#define TN_LS_2 "%s.blk.%d.ls2.%s" // layer scale
#define TN_LN_PRE "%s.pre_ln.%s"
#define TN_LN_POST "%s.post_ln.%s"
#define TN_LLAVA_PROJ "mm.%d.%s"
@ -70,8 +70,14 @@
#define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s"
#define TN_MVLM_PROJ_PEG "mm.model.peg.%d.%s"
#define TN_IMAGE_NEWLINE "model.image_newline"
#define TN_MM_INP_NORM "mm.input_norm.weight"
#define TN_MM_INP_PROJ "mm.input_projection.weight" // gemma3
#define TN_MM_SOFT_EMB_N "mm.soft_emb_norm.weight" // gemma3
#define TN_MM_PROJECTOR "mm.model.fc.weight" // idefics3
#define TN_MM_PATCH_MERGER "mm.patch_merger.weight" // mistral small 3.1
#define TN_TOK_IMG_BREAK "v.token_embd.img_break" // pixtral
#define TN_TOK_GLM_BOI "adapter.boi" // glm-edge (these embeddings are not in text model)
#define TN_TOK_GLM_EOI "adapter.eoi" // glm-edge (these embeddings are not in text model)
// mimicpmv
#define TN_MINICPMV_POS_EMBD_K "resampler.pos_embed_k"
@ -87,18 +93,23 @@
#define TN_GLM_ADAPTER_D_H_2_4H "adapter.linear.dense_h_to_4h.%s"
#define TN_GLM_ADAPTER_GATE "adapter.linear.gate.%s"
#define TN_GLM_ADAPTER_D_4H_2_H "adapter.linear.dense_4h_to_h.%s"
#define TN_GLM_BOI_W "adapter.boi"
#define TN_GLM_EOI_W "adapter.eoi"
// align x to upper multiple of n
#define CLIP_ALIGN(x, n) ((((x) + (n) - 1) / (n)) * (n))
enum projector_type {
PROJECTOR_TYPE_MLP,
PROJECTOR_TYPE_MLP_NORM,
PROJECTOR_TYPE_LDP,
PROJECTOR_TYPE_LDPV2,
PROJECTOR_TYPE_RESAMPLER,
PROJECTOR_TYPE_MINICPMV,
PROJECTOR_TYPE_GLM_EDGE,
PROJECTOR_TYPE_MERGER,
PROJECTOR_TYPE_QWEN2VL,
PROJECTOR_TYPE_GEMMA3,
PROJECTOR_TYPE_IDEFICS3,
PROJECTOR_TYPE_PIXTRAL,
PROJECTOR_TYPE_QWEN25VL,
PROJECTOR_TYPE_INTERNVL,
PROJECTOR_TYPE_UNKNOWN,
};
@ -106,10 +117,14 @@ static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
{ PROJECTOR_TYPE_MLP, "mlp" },
{ PROJECTOR_TYPE_LDP, "ldp" },
{ PROJECTOR_TYPE_LDPV2, "ldpv2"},
{ PROJECTOR_TYPE_RESAMPLER, "resampler"},
{ PROJECTOR_TYPE_MINICPMV, "resampler"},
{ PROJECTOR_TYPE_GLM_EDGE, "adapter"},
{ PROJECTOR_TYPE_MERGER, "qwen2vl_merger"},
{ PROJECTOR_TYPE_QWEN2VL, "qwen2vl_merger"},
{ PROJECTOR_TYPE_QWEN25VL, "qwen2.5vl_merger"},
{ PROJECTOR_TYPE_GEMMA3, "gemma3"},
{ PROJECTOR_TYPE_IDEFICS3, "idefics3"},
{ PROJECTOR_TYPE_PIXTRAL, "pixtral"},
{ PROJECTOR_TYPE_INTERNVL, "internvl"},
};
static projector_type clip_projector_type_from_string(const std::string & str) {
@ -224,6 +239,15 @@ struct clip_image_u8_batch {
struct clip_image_f32_batch {
std::vector<clip_image_f32_ptr> entries;
clip_image_f32_batch clone() const {
clip_image_f32_batch new_batch;
new_batch.entries.reserve(entries.size());
for (const auto & entry : entries) {
new_batch.entries.emplace_back(new clip_image_f32(*entry));
}
return new_batch;
}
};
//

3841
llama/llama.cpp/tools/mtmd/clip.cpp vendored Normal file

File diff suppressed because it is too large Load Diff

View File

@ -47,7 +47,7 @@ CLIP_API struct clip_ctx * clip_init(const char * fname, struct clip_context_par
CLIP_API void clip_free(struct clip_ctx * ctx);
CLIP_API size_t clip_embd_nbytes(const struct clip_ctx * ctx);
CLIP_API size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_h, int img_w);
CLIP_API size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_w, int img_h);
CLIP_API int32_t clip_get_image_size (const struct clip_ctx * ctx);
CLIP_API int32_t clip_get_patch_size (const struct clip_ctx * ctx);
@ -59,18 +59,29 @@ CLIP_API const char * clip_patch_merge_type(const struct clip_ctx * ctx);
CLIP_API const int32_t * clip_image_grid(const struct clip_ctx * ctx);
CLIP_API size_t get_clip_image_grid_size(const struct clip_ctx * ctx);
CLIP_API int clip_n_patches (const struct clip_ctx * ctx);
CLIP_API int clip_n_patches_by_img (const struct clip_ctx * ctx, struct clip_image_f32 * img);
CLIP_API int clip_n_mmproj_embd (const struct clip_ctx * ctx);
GGML_DEPRECATED(CLIP_API int clip_n_patches(const struct clip_ctx * ctx),
"use clip_n_output_tokens instead");
GGML_DEPRECATED(CLIP_API int clip_n_patches_by_img(const struct clip_ctx * ctx, struct clip_image_f32 * img),
"use clip_n_output_tokens instead");
CLIP_API int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * img);
// for M-RoPE, this will be the number of token positions in X and Y directions
// for other models, X will be the total number of tokens and Y will be 1
CLIP_API int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 * img);
CLIP_API int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 * img);
// this should be equal to the embedding dimension of the text model
CLIP_API int clip_n_mmproj_embd(const struct clip_ctx * ctx);
CLIP_API int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip);
CLIP_API void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size);
CLIP_API struct clip_image_size * clip_get_load_image_size(struct clip_ctx * ctx_clip);
CLIP_API struct clip_image_size * clip_image_size_init();
CLIP_API struct clip_image_u8 * clip_image_u8_init ();
CLIP_API struct clip_image_f32 * clip_image_f32_init();
CLIP_API struct clip_image_f32_batch * clip_image_f32_batch_init(); // only used by libllava
CLIP_API struct clip_image_size * clip_image_size_init(void);
CLIP_API struct clip_image_u8 * clip_image_u8_init (void);
CLIP_API struct clip_image_f32 * clip_image_f32_init(void);
CLIP_API struct clip_image_f32_batch * clip_image_f32_batch_init(void); // only used by libllava
// nx, ny are the output image dimensions
CLIP_API unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny);
@ -114,8 +125,6 @@ CLIP_API bool clip_is_qwen2vl(const struct clip_ctx * ctx);
CLIP_API bool clip_is_llava(const struct clip_ctx * ctx);
CLIP_API bool clip_is_gemma3(const struct clip_ctx * ctx);
CLIP_API int get_deepest_feature_layer(const struct clip_ctx * ctx);
CLIP_API bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec);

View File

@ -2,6 +2,7 @@
#include "llava.h"
#include "llama.h"
#include "ggml-cpp.h"
#include <algorithm>
#include <cerrno>
@ -112,7 +113,7 @@ static struct clip_image_grid_shape get_anyres_image_grid_shape(const std::pair<
}
// Take the image segments in a grid configuration and return the embeddings and the number of embeddings into preallocated memory (image_embd_out)
static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *> & image_embd_v, struct clip_image_grid_shape grid_shape, float * image_embd_out, int * n_img_pos_out) {
static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *> & image_embd_v, struct clip_image_grid_shape grid_shape, float * image_embd_out, int * n_img_pos_out, clip_image_f32 * img_input) {
struct {
struct ggml_context * ctx;
} model;
@ -175,7 +176,7 @@ static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *>
model.ctx = ggml_init(params);
struct ggml_tensor * image_features = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, clip_n_mmproj_embd(ctx_clip), clip_n_patches(ctx_clip), num_images - 1); // example: 4096 x 576 x 4
struct ggml_tensor * image_features = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, clip_n_mmproj_embd(ctx_clip), clip_n_output_tokens(ctx_clip, img_input), num_images - 1); // example: 4096 x 576 x 4
// ggml_tensor_printf(image_features,"image_features",__LINE__,false,false);
// fill it with the image embeddings, ignoring the base
for (size_t i = 1; i < num_images; i++) {
@ -209,13 +210,17 @@ static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *>
struct ggml_tensor *flatten = ggml_view_2d(model.ctx, permuted_cont, clip_n_mmproj_embd(ctx_clip), num_patches_height * num_patches_width * num_patches_per_side * num_patches_per_side, size_ele * clip_n_mmproj_embd(ctx_clip), 0);
// ggml_tensor_printf(flatten,"flatten",__LINE__,false,false);
ggml_build_forward_expand(gf, flatten);
ggml_graph_compute_with_ctx(model.ctx, gf, 1);
ggml_backend_ptr backend { ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr) };
GGML_ASSERT(backend != nullptr && "failed to initialize CPU backend");
ggml_backend_graph_compute(backend.get(), gf);
struct ggml_tensor* result = ggml_graph_node(gf, -1);
memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as global context
// append without newline tokens (default behavior in llava_arch when not using unpad ):
memcpy(image_embd_out + clip_n_patches(ctx_clip) * clip_n_mmproj_embd(ctx_clip), (float*)result->data, clip_embd_nbytes(ctx_clip) * (num_images-1)); // grid patches
*n_img_pos_out = static_cast<int>(result->ne[1]+clip_n_patches(ctx_clip));
memcpy(image_embd_out + clip_n_output_tokens(ctx_clip, img_input) * clip_n_mmproj_embd(ctx_clip), (float*)result->data, clip_embd_nbytes(ctx_clip) * (num_images-1)); // grid patches
*n_img_pos_out = static_cast<int>(result->ne[1]+clip_n_output_tokens(ctx_clip, img_input));
// Debug: Test single segments
// Current findings: sending base image, sending a segment embedding all works similar to python
@ -313,7 +318,7 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
image_embd + n_img_pos_out * clip_n_mmproj_embd(ctx_clip),
image_embd_v[i],
clip_embd_nbytes_by_img(ctx_clip, nx, ny));
n_img_pos_out += clip_n_patches_by_img(ctx_clip, img_res);
n_img_pos_out += clip_n_output_tokens(ctx_clip, img_res);
}
*n_img_pos = n_img_pos_out;
for (size_t i = 0; i < image_embd_v.size(); i++) {
@ -342,8 +347,8 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
}
else if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) {
// flat / default llava-1.5 type embedding
*n_img_pos = clip_n_patches(ctx_clip);
clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), 0);
*n_img_pos = clip_n_output_tokens(ctx_clip, img_res);
bool encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd); // image_embd shape is 576 x 4096
if (!encoded) {
LOG_ERR("Unable to encode image\n");
@ -381,7 +386,8 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
struct clip_image_grid_shape grid_shape = get_anyres_image_grid_shape({img->nx,img->ny}, grid_pinpoints, image_size);
int n_img_pos_out;
clip_llava_handle_patches(ctx_clip, image_embd_v, grid_shape, image_embd, &n_img_pos_out);
clip_image_f32 * img_input = clip_image_f32_get_img(img_res_v.get(), 0);
clip_llava_handle_patches(ctx_clip, image_embd_v, grid_shape, image_embd, &n_img_pos_out, img_input);
*n_img_pos = n_img_pos_out;
for (size_t i = 0; i < image_embd_v.size(); i++) {
@ -456,7 +462,7 @@ struct llava_embd_batch {
std::vector<llama_seq_id *> seq_ids;
std::vector<int8_t> logits;
llama_batch batch;
llava_embd_batch(float * embd, int32_t n_embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
llava_embd_batch(float * embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
pos .resize(n_tokens);
n_seq_id.resize(n_tokens);
seq_ids .resize(n_tokens + 1);
@ -468,7 +474,6 @@ struct llava_embd_batch {
/*n_tokens =*/ n_tokens,
/*tokens =*/ nullptr,
/*embd =*/ embd,
/*n_embd =*/ n_embd,
/*pos =*/ pos.data(),
/*n_seq_id =*/ n_seq_id.data(),
/*seq_id =*/ seq_ids.data(),
@ -492,7 +497,7 @@ bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_
n_eval = n_batch;
}
float * embd = image_embed->embed+i*n_embd;
llava_embd_batch llava_batch = llava_embd_batch(embd, n_embd, n_eval, *n_past, 0);
llava_embd_batch llava_batch = llava_embd_batch(embd, n_eval, *n_past, 0);
if (llama_decode(ctx_llama, llava_batch.batch)) {
LOG_ERR("%s : failed to eval\n", __func__);
return false;

View File

@ -1,4 +1,4 @@
package llava
package mtmd
// #cgo CXXFLAGS: -std=c++11
// #cgo CPPFLAGS: -I${SRCDIR}/../../include -I${SRCDIR}/../../common

View File

@ -2,10 +2,11 @@ package llama
/*
#cgo CFLAGS: -std=c11
#cgo windows CFLAGS: -Wno-dll-attribute-on-redeclaration
#cgo CXXFLAGS: -std=c++17
#cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/include
#cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/common
#cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/examples/llava
#cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/tools/mtmd
#cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/src
#cgo CPPFLAGS: -I${SRCDIR}/../ml/backend/ggml/ggml/include
@ -16,7 +17,6 @@ package llama
#include "llava.h"
#include "gguf.h"
#include "mllama.h"
#include "sampling_ext.h"
extern bool llamaProgressCallback(float progress, void *user_data);
@ -39,8 +39,8 @@ import (
"unsafe"
_ "github.com/ollama/ollama/llama/llama.cpp/common"
_ "github.com/ollama/ollama/llama/llama.cpp/examples/llava"
_ "github.com/ollama/ollama/llama/llama.cpp/src"
_ "github.com/ollama/ollama/llama/llama.cpp/tools/mtmd"
ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
)
@ -198,7 +198,6 @@ type ModelParams struct {
NumGpuLayers int
MainGpu int
UseMmap bool
UseMlock bool
TensorSplit []float32
Progress func(float32)
VocabOnly bool
@ -217,7 +216,6 @@ func LoadModelFromFile(modelPath string, params ModelParams) (*Model, error) {
cparams.n_gpu_layers = C.int(params.NumGpuLayers)
cparams.main_gpu = C.int32_t(params.MainGpu)
cparams.use_mmap = C.bool(params.UseMmap)
cparams.use_mlock = C.bool(params.UseMlock)
cparams.vocab_only = C.bool(params.VocabOnly)
if len(params.TensorSplit) > 0 {
@ -461,24 +459,6 @@ func (m *Model) NEmbd() int {
return int(C.llama_model_n_embd(m.c))
}
func Quantize(infile, outfile string, ftype uint32) error {
cinfile := C.CString(infile)
defer C.free(unsafe.Pointer(cinfile))
coutfile := C.CString(outfile)
defer C.free(unsafe.Pointer(coutfile))
params := C.llama_model_quantize_default_params()
params.nthread = -1
params.ftype = ftype
if rc := C.llama_model_quantize(cinfile, coutfile, &params); rc != 0 {
return fmt.Errorf("llama_model_quantize: %d", rc)
}
return nil
}
// vision processing
type ClipContext struct {
c *C.struct_clip_ctx
@ -529,63 +509,6 @@ func (c *ClipContext) NewEmbed(llamaContext *Context, data []byte) ([][]float32,
return embed, nil
}
type MllamaContext struct {
c *C.struct_mllama_ctx
}
func NewMllamaContext(llamaContext *Context, modelPath string) (*MllamaContext, error) {
mp := C.CString(modelPath)
defer C.free(unsafe.Pointer(mp))
c := C.mllama_model_load(mp, 1)
if c == nil {
return nil, fmt.Errorf("unable to load mllama model: %v", modelPath)
}
projEmbedSize := int(C.mllama_n_embd(c))
modelEmbedSize := llamaContext.Model().NEmbd()
if projEmbedSize != modelEmbedSize {
return nil, fmt.Errorf("projector embedding size (%d) does not match model (%d)", projEmbedSize, modelEmbedSize)
}
return &MllamaContext{c: c}, nil
}
func (m *MllamaContext) Free() {
C.mllama_free(m.c)
}
func (m *MllamaContext) NewEmbed(llamaContext *Context, data []byte, aspectRatioId int) ([][]float32, error) {
img := C.mllama_image_init()
defer C.mllama_image_free(img)
ok := bool(C.mllama_image_load_from_data(unsafe.Pointer(&data[0]), C.int(len(data)), 560, 560, 3, 4, C.int(aspectRatioId), img))
if !ok {
return nil, errors.New("unable to load mllama image data")
}
rows := make([]float32, m.EmbedSize(llamaContext))
ok = bool(C.mllama_image_encode(m.c, C.int(llamaContext.numThreads), img, (*C.float)(unsafe.Pointer(&rows[0]))))
if !ok {
return nil, errors.New("unable to make mllama embedding from image")
}
embed := make([][]float32, 1)
embed[0] = rows
return embed, nil
}
func (m *MllamaContext) EmbedSize(llamaContext *Context) int {
numTokens := int(C.mllama_n_positions(m.c) * C.mllama_n_tiles(m.c))
numEmbed := llamaContext.Model().NEmbd()
return numTokens * numEmbed
}
func (c *Context) SetCrossAttention(state bool) {
C.llama_set_cross_attention(c.c, C.bool(state))
}
func (c *Context) Synchronize() {
C.llama_synchronize(c.c)
}
@ -606,9 +529,6 @@ type SamplingParams struct {
PenaltyRepeat float32
PenaltyFreq float32
PenaltyPresent float32
Mirostat int
MirostatTau float32
MirostatEta float32
PenalizeNl bool
Seed uint32
Grammar string
@ -625,9 +545,6 @@ func NewSamplingContext(model *Model, params SamplingParams) (*SamplingContext,
cparams.penalty_repeat = C.float(params.PenaltyRepeat)
cparams.penalty_freq = C.float(params.PenaltyFreq)
cparams.penalty_present = C.float(params.PenaltyFreq)
cparams.mirostat = C.int32_t(params.Mirostat)
cparams.mirostat_tau = C.float(params.MirostatTau)
cparams.mirostat_eta = C.float(params.MirostatEta)
cparams.seed = C.uint32_t(params.Seed)
grammar := C.CString(params.Grammar)
@ -662,8 +579,8 @@ func SchemaToGrammar(schema []byte) []byte {
cStr := C.CString(string(schema))
defer C.free(unsafe.Pointer(cStr))
// Allocate buffer for grammar output with reasonable size
const maxLen = 32768 // 32KB
// Allocate buffer for grammar based on schema length but with upper bound
maxLen := min(1024*1024, len(schema)*4)
buf := make([]byte, maxLen)
// Call C function to convert schema to grammar

887
llama/mllama.cpp vendored
View File

@ -1,887 +0,0 @@
// NOTE: This is modified from clip.cpp for Mllama only
#include "mllama.h"
#include "ggml-alloc.h"
#include "ggml-backend.h"
#include "ggml-cpu.h"
#include "ggml.h"
#include "gguf.h"
#ifdef GGML_USE_CUDA
#include "ggml-cuda.h"
#endif
#ifdef GGML_USE_METAL
#include "ggml-metal.h"
#endif
#ifdef GGML_USE_CANN
#include "ggml-cann.h"
#endif
#ifdef GGML_USE_VULKAN
#include "ggml-vulkan.h"
#endif
#include <algorithm>
#include <cmath>
#include <cstdarg>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <stdexcept>
#include <vector>
#define REQUIRE(x) \
do { \
if (!(x)) { \
throw std::runtime_error("REQUIRE failed: " #x); \
} \
} while (0)
#define LOG(fmt, ...) fprintf(stderr, "%s: " fmt "\n", __func__, ##__VA_ARGS__)
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#if __GLIBCXX__
#include <cstdio>
#include <ext/stdio_filebuf.h>
#include <fcntl.h>
#endif
#endif
struct mllama_image {
int width;
int height;
int num_channels = 3;
int num_tiles = 4;
int aspect_ratio_id;
std::vector<float> data;
};
static std::string format(const char *fmt, ...) {
va_list args;
va_start(args, fmt);
std::vector<char> b(128);
int n = vsnprintf(b.data(), b.size(), fmt, args);
REQUIRE(n >= 0 && n < b.size());
va_end(args);
return std::string(b.data(), b.size());
}
//
// utilities to get data from a gguf file
//
static int get_key_index(const gguf_context *ctx, const char *key) {
int key_index = gguf_find_key(ctx, key);
REQUIRE(key_index != -1);
return key_index;
}
static std::vector<uint32_t> get_u32_array(const gguf_context *ctx, const std::string &key) {
const int i = get_key_index(ctx, key.c_str());
const int n = gguf_get_arr_n(ctx, i);
const uint32_t *data = (uint32_t *)gguf_get_arr_data(ctx, i);
std::vector<uint32_t> s(n);
for (size_t j = 0; j < s.size(); j++) {
s[j] = data[j];
}
return s;
}
static uint32_t get_u32(const gguf_context *ctx, const std::string &key) {
return gguf_get_val_u32(ctx, get_key_index(ctx, key.c_str()));
}
static float get_f32(const gguf_context *ctx, const std::string &key) {
return gguf_get_val_f32(ctx, get_key_index(ctx, key.c_str()));
}
static std::string get_ftype(int ftype) {
return ggml_type_name(static_cast<ggml_type>(ftype));
}
//
// mllama layers
//
struct mllama_hparams {
uint32_t image_size;
uint32_t patch_size;
uint32_t hidden_size;
uint32_t n_intermediate;
uint32_t projection_dim;
uint32_t n_head;
uint32_t n_layer;
uint32_t n_global_layer;
uint32_t n_tiles;
float eps;
std::vector<bool> intermediate_layers;
};
struct mllama_layer {
// attention
struct ggml_tensor *k_w;
struct ggml_tensor *k_b;
struct ggml_tensor *q_w;
struct ggml_tensor *q_b;
struct ggml_tensor *v_w;
struct ggml_tensor *v_b;
struct ggml_tensor *o_w;
struct ggml_tensor *o_b;
struct ggml_tensor *attn_gate;
// layernorm 1
struct ggml_tensor *ln_1_w;
struct ggml_tensor *ln_1_b;
// ff
struct ggml_tensor *ff_i_w;
struct ggml_tensor *ff_i_b;
struct ggml_tensor *ff_o_w;
struct ggml_tensor *ff_o_b;
struct ggml_tensor *ff_gate;
// layernorm 2
struct ggml_tensor *ln_2_w;
struct ggml_tensor *ln_2_b;
};
struct mllama_vision_model {
struct mllama_hparams hparams;
// embeddings
struct ggml_tensor *class_embedding;
struct ggml_tensor *patch_embeddings;
struct ggml_tensor *position_embeddings;
struct ggml_tensor *position_embeddings_gate;
struct ggml_tensor *tile_position_embeddings;
struct ggml_tensor *tile_position_embeddings_gate;
struct ggml_tensor *pre_tile_position_embeddings;
struct ggml_tensor *pre_tile_position_embeddings_gate;
struct ggml_tensor *post_tile_position_embeddings;
struct ggml_tensor *post_tile_position_embeddings_gate;
struct ggml_tensor *pre_ln_w;
struct ggml_tensor *pre_ln_b;
std::vector<mllama_layer> layers;
std::vector<mllama_layer> global_layers;
struct ggml_tensor *post_ln_w;
struct ggml_tensor *post_ln_b;
struct ggml_tensor *mm_0_w;
struct ggml_tensor *mm_0_b;
};
struct mllama_ctx {
struct mllama_vision_model vision_model;
uint32_t ftype = 1;
struct gguf_context *ctx_gguf;
struct ggml_context *ctx_data;
std::vector<uint8_t> buf_compute_meta;
// memory buffers to evaluate the model
ggml_backend_buffer_t params_buffer = nullptr;
ggml_backend_t backend = nullptr;
ggml_gallocr_t compute_alloc = nullptr;
};
static ggml_tensor *mllama_image_build_encoder_layer(
struct ggml_context *ctx0, const size_t il, const struct mllama_layer &layer, struct ggml_tensor *embeddings,
const float eps, const int hidden_size, const int batch_size, const int n_head, const int d_head) {
struct ggml_tensor *cur = embeddings;
{
// layernorm1
cur = ggml_norm(ctx0, cur, eps);
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.ln_1_w), layer.ln_1_b);
ggml_set_name(cur, format("%d pre layernorm", il).c_str());
}
{
// self-attention
struct ggml_tensor *Q = ggml_mul_mat(ctx0, layer.q_w, cur);
if (layer.q_b != nullptr) {
Q = ggml_add(ctx0, Q, layer.q_b);
}
Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, Q->ne[1], batch_size);
Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
ggml_set_name(Q, format("%d query", il).c_str());
struct ggml_tensor *K = ggml_mul_mat(ctx0, layer.k_w, cur);
if (layer.k_b != nullptr) {
K = ggml_add(ctx0, K, layer.k_b);
}
K = ggml_reshape_4d(ctx0, K, d_head, n_head, K->ne[1], batch_size);
K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
ggml_set_name(K, format("%d key", il).c_str());
struct ggml_tensor *V = ggml_mul_mat(ctx0, layer.v_w, cur);
if (layer.v_b != nullptr) {
V = ggml_add(ctx0, V, layer.v_b);
}
V = ggml_reshape_4d(ctx0, V, d_head, n_head, V->ne[1], batch_size);
V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
ggml_set_name(V, format("%d value", il).c_str());
struct ggml_tensor *KQ = ggml_mul_mat(ctx0, K, Q);
KQ = ggml_scale_inplace(ctx0, KQ, 1.0f / sqrtf((float)d_head));
KQ = ggml_soft_max_inplace(ctx0, KQ);
ggml_set_name(KQ, format("%d KQ", il).c_str());
struct ggml_tensor *KQV = ggml_mul_mat(ctx0, V, KQ);
KQV = ggml_reshape_4d(ctx0, KQV, d_head, KQV->ne[1], n_head, batch_size);
KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
KQV = ggml_cont_3d(ctx0, KQV, hidden_size, KQV->ne[2], batch_size);
ggml_set_name(KQV, format("%d KQV", il).c_str());
cur = ggml_mul_mat(ctx0, layer.o_w, KQV);
if (layer.o_b != nullptr) {
cur = ggml_add(ctx0, cur, layer.o_b);
}
ggml_set_name(cur, format("%d self attention", il).c_str());
if (layer.attn_gate != nullptr) {
cur = ggml_mul_inplace(ctx0, cur, layer.attn_gate);
ggml_set_name(cur, format("%d self attention gate", il).c_str());
}
}
cur = ggml_add(ctx0, cur, embeddings);
ggml_set_name(cur, format("%d residual", il).c_str());
embeddings = cur;
{
// layernorm2
cur = ggml_norm(ctx0, cur, eps);
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.ln_2_w), layer.ln_2_b);
ggml_set_name(cur, format("%d post layernorm", il).c_str());
}
{
// feed forward
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, layer.ff_i_w, cur), layer.ff_i_b);
cur = ggml_gelu_inplace(ctx0, cur);
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, layer.ff_o_w, cur), layer.ff_o_b);
ggml_set_name(cur, format("%d feed forward", il).c_str());
if (layer.ff_gate != nullptr) {
cur = ggml_mul_inplace(ctx0, cur, layer.ff_gate);
ggml_set_name(cur, format("%d feed forward gate", il).c_str());
}
}
// residual 2
cur = ggml_add(ctx0, cur, embeddings);
ggml_set_name(cur, format("%d residual", il).c_str());
embeddings = cur;
return embeddings;
}
static ggml_cgraph *mllama_image_build_graph(mllama_ctx *ctx, const mllama_image_batch *imgs) {
const auto &model = ctx->vision_model;
const auto &hparams = model.hparams;
const int image_size = hparams.image_size;
const int image_size_width = image_size;
const int image_size_height = image_size;
const int patch_size = hparams.patch_size;
const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
const int num_positions = num_patches + (model.class_embedding == nullptr ? 0 : 1);
const int hidden_size = hparams.hidden_size;
const int n_head = hparams.n_head;
const int d_head = hidden_size / n_head;
const int batch_size = imgs->size;
REQUIRE(batch_size == 1);
int num_tiles = 4;
int num_channels = 3;
if (imgs->data != nullptr) {
num_tiles = imgs->data[0].num_tiles > 0 ? imgs->data[0].num_tiles : num_tiles;
num_channels = imgs->data[0].num_channels > 0 ? imgs->data[0].num_channels : num_channels;
}
struct ggml_init_params params = {
ctx->buf_compute_meta.size(), // mem_size
ctx->buf_compute_meta.data(), // mem_buffer
true, // no_alloc
};
struct ggml_context *ctx0 = ggml_init(params);
struct ggml_cgraph *gf = ggml_new_graph(ctx0);
struct ggml_tensor *inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, num_channels, num_tiles);
ggml_set_name(inp_raw, "inp_raw");
ggml_set_input(inp_raw);
struct ggml_tensor *inp = ggml_conv_2d(ctx0, model.patch_embeddings, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, num_tiles);
inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
struct ggml_tensor *aspect_ratios = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, imgs->size);
ggml_set_name(aspect_ratios, "aspect_ratios");
ggml_set_input(aspect_ratios);
if (model.pre_tile_position_embeddings != nullptr) {
struct ggml_tensor *pre_tile_position_embeddings = ggml_get_rows(ctx0, model.pre_tile_position_embeddings, aspect_ratios);
ggml_set_name(pre_tile_position_embeddings, "pre_tile_position_embeddings");
pre_tile_position_embeddings = ggml_reshape_3d(ctx0, pre_tile_position_embeddings, hidden_size, 1, num_tiles);
if (model.pre_tile_position_embeddings_gate != nullptr) {
pre_tile_position_embeddings = ggml_mul_inplace(ctx0, pre_tile_position_embeddings, model.pre_tile_position_embeddings_gate);
}
inp = ggml_add(ctx0, inp, pre_tile_position_embeddings);
}
struct ggml_tensor *embeddings = inp;
if (model.class_embedding != nullptr) {
// concat class_embeddings and patch_embeddings
embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, num_tiles);
ggml_set_name(embeddings, "embeddings");
ggml_set_input(embeddings);
for (int i = 0; i < num_tiles; ++i) {
// repeat class embeddings for each tile
embeddings = ggml_acc_inplace(ctx0, embeddings, model.class_embedding, embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], i * embeddings->nb[2]);
}
embeddings = ggml_acc_inplace(ctx0, embeddings, inp, embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
}
struct ggml_tensor *positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions);
ggml_set_name(positions, "positions");
ggml_set_input(positions);
struct ggml_tensor *position_embd = ggml_get_rows(ctx0, model.position_embeddings, positions);
if (model.position_embeddings_gate != nullptr) {
position_embd = ggml_mul_inplace(ctx0, position_embd, model.position_embeddings_gate);
}
embeddings = ggml_add(ctx0, embeddings, position_embd);
if (model.tile_position_embeddings != nullptr) {
struct ggml_tensor *tile_position_embeddings = ggml_get_rows(ctx0, model.tile_position_embeddings, aspect_ratios);
ggml_set_name(tile_position_embeddings, "tile_position_embeddings");
tile_position_embeddings = ggml_reshape_3d(ctx0, tile_position_embeddings, hidden_size, num_positions, num_tiles);
if (model.tile_position_embeddings_gate != nullptr) {
tile_position_embeddings = ggml_mul_inplace(ctx0, tile_position_embeddings, model.tile_position_embeddings_gate);
}
embeddings = ggml_add(ctx0, embeddings, tile_position_embeddings);
}
// pre-layernorm
if (model.pre_ln_w != nullptr) {
embeddings = ggml_mul(ctx0, ggml_norm(ctx0, embeddings, hparams.eps), model.pre_ln_w);
if (model.pre_ln_b != nullptr) {
embeddings = ggml_add(ctx0, embeddings, model.pre_ln_b);
}
ggml_set_name(embeddings, "pre layernorm");
}
const int num_padding_patches = 8 - (embeddings->ne[1] % 8) % 8;
embeddings = ggml_pad(ctx0, embeddings, 0, num_padding_patches, 0, 0);
embeddings = ggml_view_3d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1] * embeddings->ne[2], batch_size, embeddings->nb[1], embeddings->nb[2] * embeddings->ne[3], 0);
std::vector<struct ggml_tensor *> intermediate_embeddings;
// encoder
for (size_t il = 0; il < model.layers.size(); il++) {
if (hparams.intermediate_layers[il]) {
intermediate_embeddings.push_back(embeddings);
}
embeddings = mllama_image_build_encoder_layer(
ctx0, il, model.layers[il], embeddings,
hparams.eps, hidden_size, batch_size, n_head, d_head);
}
// post-layernorm
if (model.post_ln_w != nullptr) {
embeddings = ggml_mul(ctx0, ggml_norm(ctx0, embeddings, hparams.eps), model.post_ln_w);
if (model.post_ln_b != nullptr) {
embeddings = ggml_add(ctx0, embeddings, model.post_ln_b);
}
ggml_set_name(embeddings, "post layernorm");
}
embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size, num_positions + num_padding_patches, num_tiles);
if (model.post_tile_position_embeddings != nullptr) {
struct ggml_tensor *post_tile_position_embeddings = ggml_get_rows(ctx0, model.post_tile_position_embeddings, aspect_ratios);
ggml_set_name(post_tile_position_embeddings, "post_tile_position_embeddings");
post_tile_position_embeddings = ggml_reshape_3d(ctx0, post_tile_position_embeddings, hidden_size, 1, num_tiles);
if (model.post_tile_position_embeddings_gate != nullptr) {
post_tile_position_embeddings = ggml_mul(ctx0, post_tile_position_embeddings, model.post_tile_position_embeddings_gate);
}
embeddings = ggml_add(ctx0, embeddings, post_tile_position_embeddings);
}
embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size, num_tiles * (num_positions + num_padding_patches), 1);
// global encoder
for (size_t il = 0; il < model.global_layers.size(); il++) {
embeddings = mllama_image_build_encoder_layer(
ctx0, il, model.global_layers[il], embeddings,
hparams.eps, hidden_size, batch_size, n_head, d_head);
}
struct ggml_tensor *stacked_embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 0, hidden_size, (num_positions + num_padding_patches) * num_tiles);
for (size_t i = 0; i < intermediate_embeddings.size(); ++i) {
stacked_embeddings = ggml_concat(ctx0, stacked_embeddings, ggml_reshape_3d(ctx0, intermediate_embeddings[i], 1, intermediate_embeddings[i]->ne[0], intermediate_embeddings[i]->ne[1]), 0);
}
stacked_embeddings = ggml_reshape_4d(ctx0, stacked_embeddings, intermediate_embeddings.size() * hidden_size, num_positions + num_padding_patches, num_tiles, batch_size);
stacked_embeddings = ggml_unpad(ctx0, stacked_embeddings, 0, num_padding_patches, 0, 0);
embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size, num_positions + num_padding_patches, num_tiles);
embeddings = ggml_unpad(ctx0, embeddings, 0, num_padding_patches, 0, 0);
embeddings = ggml_concat(ctx0, embeddings, stacked_embeddings, 0);
// mllama projector
embeddings = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_0_w, embeddings), model.mm_0_b);
ggml_set_name(embeddings, "multi modal projector");
// build the graph
ggml_build_forward_expand(gf, embeddings);
ggml_free(ctx0);
return gf;
}
static struct ggml_tensor *mllama_tensor_load(struct ggml_context *ctx, const char *name, const bool optional) {
struct ggml_tensor *cur = ggml_get_tensor(ctx, name);
REQUIRE(cur != nullptr || optional);
return cur;
}
static std::vector<struct mllama_layer> mllama_layers_load(struct ggml_context *ctx, const char *prefix, const int n) {
std::vector<struct mllama_layer> layers(n);
for (size_t i = 0; i < layers.size(); i++) {
auto &layer = layers[i];
layer.ln_1_w = mllama_tensor_load(ctx, format("%s.blk.%d.ln1.weight", prefix, i).c_str(), false);
layer.ln_1_b = mllama_tensor_load(ctx, format("%s.blk.%d.ln1.bias", prefix, i).c_str(), false);
layer.ln_2_w = mllama_tensor_load(ctx, format("%s.blk.%d.ln2.weight", prefix, i).c_str(), false);
layer.ln_2_b = mllama_tensor_load(ctx, format("%s.blk.%d.ln2.bias", prefix, i).c_str(), false);
layer.k_w = mllama_tensor_load(ctx, format("%s.blk.%d.attn_k.weight", prefix, i).c_str(), false);
layer.k_b = mllama_tensor_load(ctx, format("%s.blk.%d.attn_k.bias", prefix, i).c_str(), true);
layer.q_w = mllama_tensor_load(ctx, format("%s.blk.%d.attn_q.weight", prefix, i).c_str(), false);
layer.q_b = mllama_tensor_load(ctx, format("%s.blk.%d.attn_q.bias", prefix, i).c_str(), true);
layer.v_w = mllama_tensor_load(ctx, format("%s.blk.%d.attn_v.weight", prefix, i).c_str(), false);
layer.v_b = mllama_tensor_load(ctx, format("%s.blk.%d.attn_v.bias", prefix, i).c_str(), true);
layer.o_w = mllama_tensor_load(ctx, format("%s.blk.%d.attn_out.weight", prefix, i).c_str(), false);
layer.o_b = mllama_tensor_load(ctx, format("%s.blk.%d.attn_out.bias", prefix, i).c_str(), true);
layer.ff_i_w = mllama_tensor_load(ctx, format("%s.blk.%d.ffn_down.weight", prefix, i).c_str(), false);
layer.ff_i_b = mllama_tensor_load(ctx, format("%s.blk.%d.ffn_down.bias", prefix, i).c_str(), false);
layer.ff_o_w = mllama_tensor_load(ctx, format("%s.blk.%d.ffn_up.weight", prefix, i).c_str(), false);
layer.ff_o_b = mllama_tensor_load(ctx, format("%s.blk.%d.ffn_up.bias", prefix, i).c_str(), false);
layer.attn_gate = mllama_tensor_load(ctx, format("%s.blk.%d.attn_gate", prefix, i).c_str(), true);
layer.ff_gate = mllama_tensor_load(ctx, format("%s.blk.%d.ffn_gate", prefix, i).c_str(), true);
}
return layers;
}
// read and create ggml_context containing the tensors and their data
struct mllama_ctx *mllama_model_load(const char *fname, const int verbosity = 1) {
struct ggml_context *meta = nullptr;
struct gguf_init_params params = {
true, // no_alloc
&meta, // ctx
};
struct gguf_context *ctx = gguf_init_from_file(fname, params);
REQUIRE(ctx != nullptr);
if (verbosity >= 1) {
const int n_tensors = gguf_get_n_tensors(ctx);
const int n_kv = gguf_get_n_kv(ctx);
const std::string ftype = get_ftype(get_u32(ctx, "general.file_type"));
const int idx_desc = get_key_index(ctx, "general.description");
const std::string description = gguf_get_val_str(ctx, idx_desc);
const int idx_name = gguf_find_key(ctx, "general.name");
if (idx_name != -1) { // make name optional temporarily as some of the uploaded models missing it due to a bug
const std::string name = gguf_get_val_str(ctx, idx_name);
LOG("model name: %s", name.c_str());
}
LOG("description: %s", description.c_str());
LOG("GGUF version: %d", gguf_get_version(ctx));
LOG("alignment: %zu", gguf_get_alignment(ctx));
LOG("n_tensors: %d", n_tensors);
LOG("n_kv: %d", n_kv);
LOG("ftype: %s", ftype.c_str());
LOG("");
}
const int n_tensors = gguf_get_n_tensors(ctx);
mllama_ctx *new_mllama = new mllama_ctx{};
ggml_backend_t backend = ggml_backend_init_best();
if (backend == nullptr) {
LOG("%s: failed to initialize backend\n", __func__);
mllama_free(new_mllama);
gguf_free(ctx);
return nullptr;
}
LOG("%s: using %s backend\n", __func__, ggml_backend_name(backend));
new_mllama->backend = backend;
// load tensors
{
std::vector<uint8_t> read_buf;
struct ggml_init_params params = {
(n_tensors + 1) * ggml_tensor_overhead(), // mem_size
nullptr, // mem_buffer
true, // no_alloc
};
new_mllama->ctx_data = ggml_init(params);
if (!new_mllama->ctx_data) {
LOG("ggml_init() failed");
mllama_free(new_mllama);
gguf_free(ctx);
return nullptr;
}
#ifdef _WIN32
int wlen = MultiByteToWideChar(CP_UTF8, 0, fname, -1, NULL, 0);
if (!wlen) {
return NULL;
}
wchar_t * wbuf = (wchar_t *) malloc(wlen * sizeof(wchar_t));
wlen = MultiByteToWideChar(CP_UTF8, 0, fname, -1, wbuf, wlen);
if (!wlen) {
free(wbuf);
return NULL;
}
#if __GLIBCXX__
int fd = _wopen(wbuf, _O_RDONLY | _O_BINARY);
__gnu_cxx::stdio_filebuf<char> buffer(fd, std::ios_base::in);
std::istream fin(&buffer);
#else // MSVC
// unused in our current build
auto fin = std::ifstream(wbuf, std::ios::binary);
#endif
free(wbuf);
#else
auto fin = std::ifstream(fname, std::ios::binary);
#endif
if (!fin) {
LOG("cannot open model file for loading tensors\n");
mllama_free(new_mllama);
gguf_free(ctx);
return nullptr;
}
// add tensors to context
for (int i = 0; i < n_tensors; ++i) {
const char *name = gguf_get_tensor_name(ctx, i);
struct ggml_tensor *t = ggml_get_tensor(meta, name);
struct ggml_tensor *cur = ggml_dup_tensor(new_mllama->ctx_data, t);
ggml_set_name(cur, name);
}
// alloc memory and offload data
new_mllama->params_buffer = ggml_backend_alloc_ctx_tensors(new_mllama->ctx_data, new_mllama->backend);
for (int i = 0; i < n_tensors; ++i) {
const char *name = gguf_get_tensor_name(ctx, i);
struct ggml_tensor *cur = ggml_get_tensor(new_mllama->ctx_data, name);
const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i);
fin.seekg(offset, std::ios::beg);
if (!fin) {
LOG("failed to seek for tensor %s\n", name);
mllama_free(new_mllama);
gguf_free(ctx);
return nullptr;
}
int num_bytes = ggml_nbytes(cur);
if (ggml_backend_buffer_is_host(new_mllama->params_buffer)) {
// for the CPU and Metal backend, we can read directly into the tensor
fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
} else {
// read into a temporary buffer first, then copy to device memory
read_buf.resize(num_bytes);
fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
}
}
#if defined(_WIN32) && defined(__GLIBCXX__)
close(fd);
#else
fin.close();
#endif
}
// vision model
// load vision model
auto &vision_model = new_mllama->vision_model;
auto &hparams = vision_model.hparams;
hparams.hidden_size = get_u32(ctx, "mllama.vision.embedding_length");
hparams.n_head = get_u32(ctx, "mllama.vision.attention.head_count");
hparams.n_intermediate = get_u32(ctx, "mllama.vision.feed_forward_length");
hparams.n_layer = get_u32(ctx, "mllama.vision.block_count");
hparams.n_global_layer = get_u32(ctx, "mllama.vision.global.block_count");
hparams.n_tiles = get_u32(ctx, "mllama.vision.max_num_tiles");
hparams.image_size = get_u32(ctx, "mllama.vision.image_size");
hparams.patch_size = get_u32(ctx, "mllama.vision.patch_size");
hparams.projection_dim = get_u32(ctx, "mllama.vision.projection_dim");
hparams.eps = get_f32(ctx, "mllama.vision.attention.layer_norm_epsilon");
std::vector<uint32_t> intermediate_layers_indices = get_u32_array(ctx, "mllama.vision.intermediate_layers_indices");
hparams.intermediate_layers.resize(hparams.n_layer);
for (size_t i = 0; i < intermediate_layers_indices.size(); i++) {
hparams.intermediate_layers[intermediate_layers_indices[i]] = true;
}
if (verbosity >= 2) {
LOG("");
LOG("vision model hparams");
LOG("image_size %d", hparams.image_size);
LOG("patch_size %d", hparams.patch_size);
LOG("v_hidden_size %d", hparams.hidden_size);
LOG("v_n_intermediate %d", hparams.n_intermediate);
LOG("v_projection_dim %d", hparams.projection_dim);
LOG("v_n_head %d", hparams.n_head);
LOG("v_n_layer %d", hparams.n_layer);
LOG("v_n_global_layer %d", hparams.n_global_layer);
LOG("v_eps %f", hparams.eps);
}
vision_model.class_embedding = mllama_tensor_load(new_mllama->ctx_data, "v.class_embd", true);
vision_model.patch_embeddings = mllama_tensor_load(new_mllama->ctx_data, "v.patch_embd.weight", true);
vision_model.position_embeddings = mllama_tensor_load(new_mllama->ctx_data, "v.position_embd.weight", true);
vision_model.position_embeddings_gate = mllama_tensor_load(new_mllama->ctx_data, "v.position_embd.gate", true);
vision_model.pre_ln_w = mllama_tensor_load(new_mllama->ctx_data, "v.pre_ln.weight", true);
vision_model.pre_ln_b = mllama_tensor_load(new_mllama->ctx_data, "v.pre_ln.bias", true);
vision_model.post_ln_w = mllama_tensor_load(new_mllama->ctx_data, "v.post_ln.weight", true);
vision_model.post_ln_b = mllama_tensor_load(new_mllama->ctx_data, "v.post_ln.bias", true);
vision_model.tile_position_embeddings = mllama_tensor_load(new_mllama->ctx_data, "v.tile_position_embd.weight", true);
vision_model.tile_position_embeddings_gate = mllama_tensor_load(new_mllama->ctx_data, "v.tile_position_embd.gate", true);
vision_model.pre_tile_position_embeddings = mllama_tensor_load(new_mllama->ctx_data, "v.pre_tile_position_embd.weight", true);
vision_model.pre_tile_position_embeddings_gate = mllama_tensor_load(new_mllama->ctx_data, "v.pre_tile_position_embd.gate", true);
vision_model.post_tile_position_embeddings = mllama_tensor_load(new_mllama->ctx_data, "v.post_tile_position_embd.weight", true);
vision_model.post_tile_position_embeddings_gate = mllama_tensor_load(new_mllama->ctx_data, "v.post_tile_position_embd.gate", true);
vision_model.mm_0_w = mllama_tensor_load(new_mllama->ctx_data, "mm.0.weight", false);
vision_model.mm_0_b = mllama_tensor_load(new_mllama->ctx_data, "mm.0.bias", false);
vision_model.layers = mllama_layers_load(new_mllama->ctx_data, "v", hparams.n_layer);
vision_model.global_layers = mllama_layers_load(new_mllama->ctx_data, "v.global", hparams.n_global_layer);
ggml_free(meta);
new_mllama->ctx_gguf = ctx;
{
// measure mem requirement and allocate
new_mllama->buf_compute_meta.resize(GGML_DEFAULT_GRAPH_SIZE * ggml_tensor_overhead() + ggml_graph_overhead());
new_mllama->compute_alloc = ggml_gallocr_new(ggml_backend_get_default_buffer_type(new_mllama->backend));
struct mllama_image_batch batch;
batch.size = 1;
ggml_cgraph *gf = mllama_image_build_graph(new_mllama, &batch);
ggml_gallocr_reserve(new_mllama->compute_alloc, gf);
size_t compute_memory_buffer_size = ggml_gallocr_get_buffer_size(new_mllama->compute_alloc, 0);
LOG("compute allocated memory: %.2f MB", compute_memory_buffer_size / 1024.0 / 1024.0);
}
return new_mllama;
}
struct mllama_image *mllama_image_init() {
return new mllama_image();
}
void mllama_image_free(struct mllama_image *img) { delete img; }
void mllama_image_batch_free(struct mllama_image_batch *batch) {
if (batch->size > 0) {
delete[] batch->data;
batch->size = 0;
}
}
bool mllama_image_load_from_data(const void *data, const int n, const int width, const int height, const int num_channels, const int num_tiles, const int aspect_ratio_id, struct mllama_image *img) {
img->width = width;
img->height = height;
img->num_channels = num_channels;
img->num_tiles = num_tiles;
img->aspect_ratio_id = aspect_ratio_id;
img->data.resize(n);
memcpy(img->data.data(), data, n);
return true;
}
inline int mllama(int x, int lower, int upper) {
return std::max(lower, std::min(x, upper));
}
void mllama_free(mllama_ctx *ctx) {
ggml_free(ctx->ctx_data);
gguf_free(ctx->ctx_gguf);
ggml_backend_buffer_free(ctx->params_buffer);
ggml_backend_free(ctx->backend);
ggml_gallocr_free(ctx->compute_alloc);
delete ctx;
}
bool mllama_image_encode(struct mllama_ctx *ctx, const int n_threads, mllama_image *img, float *vec) {
mllama_image_batch imgs{};
imgs.size = 1;
imgs.data = img;
return mllama_image_batch_encode(ctx, n_threads, &imgs, vec);
}
bool mllama_image_batch_encode(mllama_ctx *ctx, const int n_threads, const mllama_image_batch *imgs, float *vec) {
int batch_size = imgs->size;
REQUIRE(batch_size == 1);
// build the inference graph
ggml_cgraph *gf = mllama_image_build_graph(ctx, imgs);
ggml_gallocr_alloc_graph(ctx->compute_alloc, gf);
// set inputs
const auto &model = ctx->vision_model;
const auto &hparams = model.hparams;
const int image_size = hparams.image_size;
int image_size_width = image_size;
int image_size_height = image_size;
const int patch_size = hparams.patch_size;
const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
const int num_positions = num_patches + (model.class_embedding == nullptr ? 0 : 1);
{
struct ggml_tensor *inp_raw = ggml_graph_get_tensor(gf, "inp_raw");
ggml_backend_tensor_set(inp_raw, imgs->data[0].data.data(), 0, ggml_nbytes(inp_raw));
}
{
struct ggml_tensor *embeddings = ggml_graph_get_tensor(gf, "embeddings");
if (embeddings != nullptr) {
void *zeros = malloc(ggml_nbytes(embeddings));
memset(zeros, 0, ggml_nbytes(embeddings));
ggml_backend_tensor_set(embeddings, zeros, 0, ggml_nbytes(embeddings));
free(zeros);
}
}
{
struct ggml_tensor *positions = ggml_graph_get_tensor(gf, "positions");
if (positions != nullptr) {
int *positions_data = (int *)malloc(ggml_nbytes(positions));
for (int i = 0; i < num_positions; i++) {
positions_data[i] = i;
}
ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
free(positions_data);
}
}
{
struct ggml_tensor *aspect_ratios = ggml_graph_get_tensor(gf, "aspect_ratios");
if (aspect_ratios != nullptr) {
int *aspect_ratios_data = (int *)malloc(ggml_nbytes(aspect_ratios));
aspect_ratios_data[0] = imgs->data[0].aspect_ratio_id;
ggml_backend_tensor_set(aspect_ratios, aspect_ratios_data, 0, ggml_nbytes(aspect_ratios));
free(aspect_ratios_data);
}
}
if (ggml_backend_is_cpu(ctx->backend)) {
ggml_backend_cpu_set_n_threads(ctx->backend, n_threads);
}
ggml_backend_graph_compute(ctx->backend, gf);
// the last node is the embedding tensor
struct ggml_tensor *embeddings = ggml_graph_node(gf, ggml_graph_n_nodes(gf) - 1);
// copy the embeddings to the location passed by the user
ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
return true;
}
int32_t mllama_image_size(const struct mllama_ctx *ctx) {
return ctx->vision_model.hparams.image_size;
}
int32_t mllama_patch_size(const struct mllama_ctx *ctx) {
return ctx->vision_model.hparams.patch_size;
}
int32_t mllama_hidden_size(const struct mllama_ctx *ctx) {
return ctx->vision_model.hparams.hidden_size;
}
int mllama_n_patches(const struct mllama_ctx *ctx) {
const auto &hparams = ctx->vision_model.hparams;
return (hparams.image_size / hparams.patch_size) * (hparams.image_size / hparams.patch_size);
}
int mllama_n_positions(const struct mllama_ctx *ctx) {
return mllama_n_patches(ctx) + (ctx->vision_model.class_embedding == nullptr ? 0 : 1);
}
int mllama_n_tiles(const struct mllama_ctx *ctx) {
return ctx->vision_model.hparams.n_tiles;
}
int mllama_n_embd(const struct mllama_ctx *ctx) {
return ctx->vision_model.hparams.projection_dim;
}
size_t mllama_n_embd_bytes(const struct mllama_ctx *ctx) {
return mllama_n_positions(ctx) * mllama_n_embd(ctx) * mllama_n_tiles(ctx) * sizeof(float);
}

61
llama/mllama.h vendored
View File

@ -1,61 +0,0 @@
#ifndef MLLAMA_H
#define MLLAMA_H
#include <stddef.h>
#include <stdint.h>
#ifdef LLAMA_SHARED
#if defined(_WIN32) && !defined(__MINGW32__)
#ifdef LLAMA_BUILD
#define MLLAMA_API __declspec(dllexport)
#else
#define MLLAMA_API __declspec(dllimport)
#endif
#else
#define MLLAMA_API __attribute__((visibility("default")))
#endif
#else
#define MLLAMA_API
#endif
#ifdef __cplusplus
extern "C" {
#endif
struct mllama_ctx;
struct mllama_image_batch {
struct mllama_image *data;
size_t size;
};
MLLAMA_API struct mllama_ctx *mllama_model_load(const char *fname, int verbosity);
MLLAMA_API struct mllama_ctx *mllama_model_load_cpu(const char *fname, int verbosity);
MLLAMA_API void mllama_free(struct mllama_ctx *ctx);
MLLAMA_API int32_t mllama_image_size(const struct mllama_ctx *ctx);
MLLAMA_API int32_t mllama_patch_size(const struct mllama_ctx *ctx);
MLLAMA_API int32_t mllama_hidden_size(const struct mllama_ctx *ctx);
MLLAMA_API int mllama_n_patches(const struct mllama_ctx *ctx);
MLLAMA_API int mllama_n_positions(const struct mllama_ctx *ctx);
MLLAMA_API int mllama_n_tiles(const struct mllama_ctx *ctx);
MLLAMA_API int mllama_n_embd(const struct mllama_ctx *ctx);
MLLAMA_API size_t mllama_n_embd_bytes(const struct mllama_ctx *ctx);
MLLAMA_API struct mllama_image *mllama_image_init();
MLLAMA_API void mllama_image_free(struct mllama_image *img);
MLLAMA_API void mllama_image_batch_free(struct mllama_image_batch *batch);
MLLAMA_API bool mllama_image_load_from_data(const void *data, const int n, const int nx, const int ny, const int nc, const int nt, const int aspect_ratio_id, struct mllama_image *img);
MLLAMA_API bool mllama_image_encode(struct mllama_ctx *ctx, int n_threads, struct mllama_image *img, float *vec);
MLLAMA_API bool mllama_image_batch_encode(struct mllama_ctx *ctx, int n_threads, const struct mllama_image_batch *imgs, float *vec);
#ifdef __cplusplus
}
#endif
#endif // MLLAMA_H

View File

@ -24,7 +24,7 @@ problem.
9 files changed, 21 insertions(+), 2 deletions(-)
diff --git a/ggml/src/ggml-backend.cpp b/ggml/src/ggml-backend.cpp
index 273075f4..dd11f304 100644
index b30b4cb3..0ce73a99 100644
--- a/ggml/src/ggml-backend.cpp
+++ b/ggml/src/ggml-backend.cpp
@@ -107,7 +107,6 @@ void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
@ -43,7 +43,7 @@ index 273075f4..dd11f304 100644
}
static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
@@ -1867,6 +1867,11 @@ static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
@@ -1871,6 +1871,11 @@ static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_aligned_free(buffer->context, buffer->size);
@ -55,7 +55,7 @@ index 273075f4..dd11f304 100644
}
static void ggml_backend_cpu_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
@@ -1914,7 +1919,7 @@ static const struct ggml_backend_buffer_i ggml_backend_cpu_buffer_i = {
@@ -1918,7 +1923,7 @@ static const struct ggml_backend_buffer_i ggml_backend_cpu_buffer_i = {
};
static const struct ggml_backend_buffer_i ggml_backend_cpu_buffer_from_ptr_i = {
@ -85,7 +85,7 @@ index e2617b06..242e50a7 100644
/**
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
index a7febef7..31750b6f 100644
index b4b85abc..cb0d8528 100644
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
@@ -534,6 +534,7 @@ struct ggml_backend_cuda_buffer_context {
@ -96,7 +96,7 @@ index a7febef7..31750b6f 100644
}
static bool ggml_backend_buffer_is_cuda(ggml_backend_buffer_t buffer) {
@@ -789,6 +790,7 @@ struct ggml_backend_cuda_split_buffer_context {
@@ -790,6 +791,7 @@ struct ggml_backend_cuda_split_buffer_context {
static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
delete ctx;
@ -104,7 +104,7 @@ index a7febef7..31750b6f 100644
}
static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buffer) {
@@ -1062,6 +1064,7 @@ static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_
@@ -1067,6 +1069,7 @@ static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_
static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
CUDA_CHECK(cudaFreeHost(buffer->context));
@ -125,10 +125,10 @@ index 50579227..2799a0a5 100644
static void * ggml_backend_kompute_buffer_get_base(ggml_backend_buffer_t buffer) {
diff --git a/ggml/src/ggml-metal/ggml-metal.m b/ggml/src/ggml-metal/ggml-metal.m
index 266d8af4..12886cd3 100644
index 576f9581..1b56f858 100644
--- a/ggml/src/ggml-metal/ggml-metal.m
+++ b/ggml/src/ggml-metal/ggml-metal.m
@@ -4759,6 +4759,7 @@ static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer)
@@ -5214,6 +5214,7 @@ static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer)
}
free(ctx);
@ -149,10 +149,10 @@ index 05a2f4e6..392cc18d 100644
static void * ggml_backend_opencl_buffer_get_base(ggml_backend_buffer_t buffer) {
diff --git a/ggml/src/ggml-rpc/ggml-rpc.cpp b/ggml/src/ggml-rpc/ggml-rpc.cpp
index a0667b7d..bd83adc5 100644
index 4f0abb5a..de1ec184 100644
--- a/ggml/src/ggml-rpc/ggml-rpc.cpp
+++ b/ggml/src/ggml-rpc/ggml-rpc.cpp
@@ -468,6 +468,7 @@ static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t buffer) {
@@ -483,6 +483,7 @@ static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t buffer) {
bool status = send_rpc_cmd(ctx->sock, RPC_CMD_FREE_BUFFER, &request, sizeof(request), nullptr, 0);
GGML_ASSERT(status);
delete ctx;
@ -161,10 +161,10 @@ index a0667b7d..bd83adc5 100644
static void * ggml_backend_rpc_buffer_get_base(ggml_backend_buffer_t buffer) {
diff --git a/ggml/src/ggml-sycl/ggml-sycl.cpp b/ggml/src/ggml-sycl/ggml-sycl.cpp
index 1de34c96..4600f61e 100644
index 0ea72994..ae3a3c33 100644
--- a/ggml/src/ggml-sycl/ggml-sycl.cpp
+++ b/ggml/src/ggml-sycl/ggml-sycl.cpp
@@ -316,6 +316,7 @@ ggml_backend_sycl_buffer_free_buffer(ggml_backend_buffer_t buffer) try {
@@ -320,6 +320,7 @@ ggml_backend_sycl_buffer_free_buffer(ggml_backend_buffer_t buffer) try {
ggml_sycl_set_device(ctx->device);
delete ctx;
@ -172,7 +172,7 @@ index 1de34c96..4600f61e 100644
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
@@ -761,6 +762,7 @@ struct ggml_backend_sycl_split_buffer_context {
@@ -765,6 +766,7 @@ struct ggml_backend_sycl_split_buffer_context {
static void ggml_backend_sycl_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_sycl_split_buffer_context * ctx = (ggml_backend_sycl_split_buffer_context *)buffer->context;
delete ctx;
@ -180,7 +180,7 @@ index 1de34c96..4600f61e 100644
}
static void * ggml_backend_sycl_split_buffer_get_base(ggml_backend_buffer_t buffer) {
@@ -1095,6 +1097,7 @@ static const char * ggml_backend_sycl_host_buffer_type_name(ggml_backend_buffer_
@@ -1099,6 +1101,7 @@ static const char * ggml_backend_sycl_host_buffer_type_name(ggml_backend_buffer_
static void ggml_backend_sycl_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_sycl_host_free(buffer->context);
@ -189,10 +189,10 @@ index 1de34c96..4600f61e 100644
static ggml_backend_buffer_t ggml_backend_sycl_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
diff --git a/ggml/src/ggml-vulkan/ggml-vulkan.cpp b/ggml/src/ggml-vulkan/ggml-vulkan.cpp
index 39f3cd34..c569a8a5 100644
index e2b357fd..68768029 100644
--- a/ggml/src/ggml-vulkan/ggml-vulkan.cpp
+++ b/ggml/src/ggml-vulkan/ggml-vulkan.cpp
@@ -8653,6 +8653,7 @@ static void ggml_backend_vk_buffer_free_buffer(ggml_backend_buffer_t buffer) {
@@ -8962,6 +8962,7 @@ static void ggml_backend_vk_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
ggml_vk_destroy_buffer(ctx->dev_buffer);
delete ctx;
@ -200,7 +200,7 @@ index 39f3cd34..c569a8a5 100644
}
static void * ggml_backend_vk_buffer_get_base(ggml_backend_buffer_t buffer) {
@@ -8796,6 +8797,7 @@ static const char * ggml_backend_vk_host_buffer_name(ggml_backend_buffer_t buffe
@@ -9105,6 +9106,7 @@ static const char * ggml_backend_vk_host_buffer_name(ggml_backend_buffer_t buffe
static void ggml_backend_vk_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
VK_LOG_MEMORY("ggml_backend_vk_host_buffer_free_buffer()");
ggml_vk_host_free(vk_instance.devices[0], buffer->context);

View File

@ -10,10 +10,10 @@ logs instead of throwing an error
1 file changed, 3 insertions(+), 11 deletions(-)
diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp
index 48060517..a35b498c 100644
index 9389ca80..806c1b3d 100644
--- a/src/llama-vocab.cpp
+++ b/src/llama-vocab.cpp
@@ -1491,16 +1491,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
@@ -1503,16 +1503,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
if (type == LLAMA_VOCAB_TYPE_BPE) {
add_space_prefix = false;
clean_spaces = true;
@ -31,8 +31,8 @@ index 48060517..a35b498c 100644
pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
} else if (
tokenizer_pre == "llama3" ||
@@ -1634,7 +1625,8 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
pre_type = LLAMA_VOCAB_PRE_TYPE_BAILINGMOE;
@@ -1651,7 +1642,8 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
pre_type = LLAMA_VOCAB_PRE_TYPE_SEED_CODER;
clean_spaces = false;
} else {
- throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));

View File

@ -11,10 +11,10 @@ instead of forcing one or the error
1 file changed, 3 insertions(+), 3 deletions(-)
diff --git a/src/llama-context.cpp b/src/llama-context.cpp
index 983385f8..32f59819 100644
index 62246c10..dca22d8b 100644
--- a/src/llama-context.cpp
+++ b/src/llama-context.cpp
@@ -1236,7 +1236,7 @@ int llama_context::decode(llama_batch & inp_batch) {
@@ -901,7 +901,7 @@ int llama_context::decode(llama_batch & inp_batch) {
int64_t n_outputs_all = 0;
// count outputs
@ -23,7 +23,7 @@ index 983385f8..32f59819 100644
for (uint32_t i = 0; i < n_tokens_all; ++i) {
n_outputs_all += batch.logits[i] != 0;
}
@@ -1348,7 +1348,7 @@ int llama_context::decode(llama_batch & inp_batch) {
@@ -982,7 +982,7 @@ int llama_context::decode(llama_batch & inp_batch) {
// ggml_graph_dump_dot(gf, NULL, "llama.dot");
//}
@ -32,7 +32,7 @@ index 983385f8..32f59819 100644
auto * t_embd = cparams.embeddings ? res->get_embd() : nullptr;
if (t_embd && res->get_embd_pooled()) {
@@ -1492,7 +1492,7 @@ int32_t llama_context::output_reserve(int32_t n_outputs) {
@@ -1151,7 +1151,7 @@ int32_t llama_context::output_reserve(int32_t n_outputs) {
const auto n_embd = hparams.n_embd;
// TODO: use a per-batch flag for logits presence instead

View File

@ -6,16 +6,16 @@ Subject: [PATCH] clip-unicode
fixes loading vision models in llama.cpp on windows
filesystems for paths that include wide characters
---
examples/llava/clip.cpp | 39 +++++++++++++++++++++++++++++++++++++++
tools/mtmd/clip.cpp | 39 +++++++++++++++++++++++++++++++++++++++
1 file changed, 39 insertions(+)
diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp
index 75970615..d57b4bd6 100644
--- a/examples/llava/clip.cpp
+++ b/examples/llava/clip.cpp
@@ -29,6 +29,19 @@
#include <limits>
#include <array>
diff --git a/tools/mtmd/clip.cpp b/tools/mtmd/clip.cpp
index 41ba45a7..cdd8ca44 100644
--- a/tools/mtmd/clip.cpp
+++ b/tools/mtmd/clip.cpp
@@ -31,6 +31,19 @@
#include <numeric>
#include <functional>
+#if defined(_WIN32)
+#define WIN32_LEAN_AND_MEAN
@ -32,8 +32,8 @@ index 75970615..d57b4bd6 100644
+
struct clip_logger_state g_logger_state = {GGML_LOG_LEVEL_CONT, clip_log_callback_default, NULL};
//#define CLIP_DEBUG_FUNCTIONS
@@ -1430,7 +1443,29 @@ struct clip_model_loader {
enum ffn_op_type {
@@ -2190,7 +2203,29 @@ struct clip_model_loader {
{
std::vector<uint8_t> read_buf;
@ -63,7 +63,7 @@ index 75970615..d57b4bd6 100644
if (!fin) {
throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str()));
}
@@ -1457,7 +1492,11 @@ struct clip_model_loader {
@@ -2217,7 +2252,11 @@ struct clip_model_loader {
ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
}
}

View File

@ -15,10 +15,10 @@ adds support for the Solar Pro architecture
7 files changed, 248 insertions(+)
diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp
index 62e1480b..f754bc8f 100644
index f2bc8ca7..5ab3f572 100644
--- a/src/llama-arch.cpp
+++ b/src/llama-arch.cpp
@@ -68,6 +68,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
@@ -69,6 +69,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_GRANITE, "granite" },
{ LLM_ARCH_GRANITE_MOE, "granitemoe" },
{ LLM_ARCH_CHAMELEON, "chameleon" },
@ -26,7 +26,7 @@ index 62e1480b..f754bc8f 100644
{ LLM_ARCH_WAVTOKENIZER_DEC, "wavtokenizer-dec" },
{ LLM_ARCH_PLM, "plm" },
{ LLM_ARCH_BAILINGMOE, "bailingmoe" },
@@ -140,6 +141,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
@@ -142,6 +143,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count" },
{ LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
{ LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
@ -34,7 +34,7 @@ index 62e1480b..f754bc8f 100644
{ LLM_KV_ATTENTION_KEY_LENGTH_MLA, "%s.attention.key_length_mla" },
{ LLM_KV_ATTENTION_VALUE_LENGTH_MLA, "%s.attention.value_length_mla" },
@@ -1482,6 +1484,24 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
@@ -1502,6 +1504,24 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
},
},
@ -59,7 +59,7 @@ index 62e1480b..f754bc8f 100644
{
LLM_ARCH_WAVTOKENIZER_DEC,
{
@@ -1660,6 +1680,7 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
@@ -1680,6 +1700,7 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
{LLM_TENSOR_FFN_EXP_PROBS_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}},
// this tensor is loaded for T5, but never used
{LLM_TENSOR_DEC_CROSS_ATTN_REL_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_NONE}},
@ -68,10 +68,10 @@ index 62e1480b..f754bc8f 100644
{LLM_TENSOR_POS_NET_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_POS_NET_NORM1, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
diff --git a/src/llama-arch.h b/src/llama-arch.h
index 98ca00a1..439aaeab 100644
index 41a023da..525c1b7d 100644
--- a/src/llama-arch.h
+++ b/src/llama-arch.h
@@ -72,6 +72,7 @@ enum llm_arch {
@@ -73,6 +73,7 @@ enum llm_arch {
LLM_ARCH_GRANITE,
LLM_ARCH_GRANITE_MOE,
LLM_ARCH_CHAMELEON,
@ -79,7 +79,7 @@ index 98ca00a1..439aaeab 100644
LLM_ARCH_WAVTOKENIZER_DEC,
LLM_ARCH_PLM,
LLM_ARCH_BAILINGMOE,
@@ -144,6 +145,7 @@ enum llm_kv {
@@ -146,6 +147,7 @@ enum llm_kv {
LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT,
LLM_KV_ATTENTION_SLIDING_WINDOW,
LLM_KV_ATTENTION_SCALE,
@ -87,7 +87,7 @@ index 98ca00a1..439aaeab 100644
LLM_KV_ATTENTION_KEY_LENGTH_MLA,
LLM_KV_ATTENTION_VALUE_LENGTH_MLA,
@@ -344,6 +346,7 @@ enum llm_tensor {
@@ -346,6 +348,7 @@ enum llm_tensor {
LLM_TENSOR_ENC_OUTPUT_NORM,
LLM_TENSOR_CLS,
LLM_TENSOR_CLS_OUT,
@ -115,7 +115,7 @@ index 90dfe7a7..8a667960 100644
if (il < n_layer) {
return n_swa > 0 && n_swa_pattern > 0 && il % n_swa_pattern < (n_swa_pattern - 1);
diff --git a/src/llama-hparams.h b/src/llama-hparams.h
index 80fcd65d..6e278945 100644
index 7ee6a5b7..48dce407 100644
--- a/src/llama-hparams.h
+++ b/src/llama-hparams.h
@@ -55,6 +55,8 @@ struct llama_hparams {
@ -127,7 +127,7 @@ index 80fcd65d..6e278945 100644
uint32_t n_layer_dense_lead = 0;
uint32_t n_lora_q = 0;
uint32_t n_lora_kv = 0;
@@ -153,6 +155,9 @@ struct llama_hparams {
@@ -154,6 +156,9 @@ struct llama_hparams {
// dimension of the recurrent state embeddings
uint32_t n_embd_v_s() const;
@ -138,7 +138,7 @@ index 80fcd65d..6e278945 100644
};
diff --git a/src/llama-model-loader.cpp b/src/llama-model-loader.cpp
index ea73a8a7..a012aeae 100644
index 4cce5166..7f6617fa 100644
--- a/src/llama-model-loader.cpp
+++ b/src/llama-model-loader.cpp
@@ -439,6 +439,7 @@ namespace GGUFMeta {
@ -150,10 +150,10 @@ index ea73a8a7..a012aeae 100644
llama_model_loader::llama_model_loader(
const std::string & fname,
diff --git a/src/llama-model.cpp b/src/llama-model.cpp
index 6b7bfecf..aba42819 100644
index 3a4e72a3..831b68c0 100644
--- a/src/llama-model.cpp
+++ b/src/llama-model.cpp
@@ -1374,6 +1374,21 @@ void llama_model::load_hparams(llama_model_loader & ml) {
@@ -1402,6 +1402,21 @@ void llama_model::load_hparams(llama_model_loader & ml) {
default: type = LLM_TYPE_UNKNOWN;
}
} break;
@ -175,7 +175,7 @@ index 6b7bfecf..aba42819 100644
case LLM_ARCH_WAVTOKENIZER_DEC:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
@@ -3717,6 +3732,34 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
@@ -3774,6 +3789,34 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
@ -210,7 +210,7 @@ index 6b7bfecf..aba42819 100644
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
@@ -12296,6 +12339,165 @@ struct llm_build_chameleon : public llm_graph_context {
@@ -12397,6 +12440,165 @@ struct llm_build_chameleon : public llm_graph_context {
}
};
@ -270,7 +270,7 @@ index 6b7bfecf..aba42819 100644
+ // self-attention
+ {
+ // rope freq factors for llama3; may return nullptr for llama2 and other models
+ ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
+ ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
+
+ // compute Q and K and RoPE them
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
@ -376,7 +376,7 @@ index 6b7bfecf..aba42819 100644
struct llm_build_wavtokenizer_dec : public llm_graph_context {
llm_build_wavtokenizer_dec(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
ggml_tensor * cur;
@@ -13045,6 +13247,10 @@ llm_graph_result_ptr llama_model::build_graph(
@@ -13157,6 +13359,10 @@ llm_graph_result_ptr llama_model::build_graph(
{
llm = std::make_unique<llm_build_chameleon>(*this, params, gf);
} break;
@ -387,7 +387,7 @@ index 6b7bfecf..aba42819 100644
case LLM_ARCH_WAVTOKENIZER_DEC:
{
llm = std::make_unique<llm_build_wavtokenizer_dec>(*this, params, gf);
@@ -13191,6 +13397,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
@@ -13301,6 +13507,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_GRANITE:
case LLM_ARCH_GRANITE_MOE:
case LLM_ARCH_CHAMELEON:
@ -396,18 +396,18 @@ index 6b7bfecf..aba42819 100644
return LLAMA_ROPE_TYPE_NORM;
diff --git a/src/llama-model.h b/src/llama-model.h
index fd82d106..5865d5e9 100644
index 6bdec263..43746c7d 100644
--- a/src/llama-model.h
+++ b/src/llama-model.h
@@ -62,6 +62,7 @@ enum llm_type {
@@ -65,6 +65,7 @@ enum llm_type {
LLM_TYPE_15B,
LLM_TYPE_16B,
LLM_TYPE_20B,
+ LLM_TYPE_22B,
LLM_TYPE_27B,
LLM_TYPE_30B,
LLM_TYPE_32B,
LLM_TYPE_34B,
@@ -307,6 +308,8 @@ struct llama_layer {
@@ -315,6 +316,8 @@ struct llama_layer {
struct ggml_tensor * ffn_up_scale = nullptr;
struct ggml_tensor * ffn_down_scale = nullptr;

File diff suppressed because it is too large Load Diff

View File

@ -12,10 +12,10 @@ regex
2 files changed, 22 insertions(+), 1 deletion(-)
diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp
index a35b498c..032019c9 100644
index 806c1b3d..10f34d33 100644
--- a/src/llama-vocab.cpp
+++ b/src/llama-vocab.cpp
@@ -296,7 +296,7 @@ struct llm_tokenizer_bpe : llm_tokenizer {
@@ -298,7 +298,7 @@ struct llm_tokenizer_bpe : llm_tokenizer {
case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM:
regex_exprs = {
"[\r\n]",

View File

@ -1,419 +0,0 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: jmorganca <jmorganca@gmail.com>
Date: Sun, 13 Apr 2025 22:10:06 -0400
Subject: [PATCH] add unpad operator
adds the unpad operator to GGML
---
ggml/include/ggml.h | 10 +++++
ggml/src/ggml-cpu/ggml-cpu.c | 5 +++
ggml/src/ggml-cpu/ops.cpp | 55 ++++++++++++++++++++++++++++
ggml/src/ggml-cpu/ops.h | 1 +
ggml/src/ggml-cuda/ggml-cuda.cu | 4 ++
ggml/src/ggml-cuda/pad.cu | 46 +++++++++++++++++++++++
ggml/src/ggml-cuda/pad.cuh | 1 +
ggml/src/ggml-metal/ggml-metal.m | 33 +++++++++++++++++
ggml/src/ggml-metal/ggml-metal.metal | 45 +++++++++++++++++++++++
ggml/src/ggml.c | 25 ++++++++++++-
10 files changed, 223 insertions(+), 2 deletions(-)
diff --git a/ggml/include/ggml.h b/ggml/include/ggml.h
index 8fcc16df..d19fc167 100644
--- a/ggml/include/ggml.h
+++ b/ggml/include/ggml.h
@@ -488,6 +488,7 @@ extern "C" {
GGML_OP_UPSCALE, // nearest interpolate
GGML_OP_PAD,
GGML_OP_PAD_REFLECT_1D,
+ GGML_OP_UNPAD,
GGML_OP_ARANGE,
GGML_OP_TIMESTEP_EMBEDDING,
GGML_OP_ARGSORT,
@@ -1757,6 +1758,15 @@ extern "C" {
int p0,
int p1);
+ // unpad each dimension: [x, ..., x, y, ..., y] -> [x, ..., x]
+ GGML_API struct ggml_tensor * ggml_unpad(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int p0,
+ int p1,
+ int p2,
+ int p3);
+
// Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
// timesteps: [N,]
// return: [N, dim]
diff --git a/ggml/src/ggml-cpu/ggml-cpu.c b/ggml/src/ggml-cpu/ggml-cpu.c
index 50400328..432942bf 100644
--- a/ggml/src/ggml-cpu/ggml-cpu.c
+++ b/ggml/src/ggml-cpu/ggml-cpu.c
@@ -1960,6 +1960,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
{
ggml_compute_forward_pad_reflect_1d(params, tensor);
} break;
+ case GGML_OP_UNPAD:
+ {
+ ggml_compute_forward_unpad(params, tensor);
+ } break;
case GGML_OP_ARANGE:
{
ggml_compute_forward_arange(params, tensor);
@@ -2282,6 +2286,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
case GGML_OP_UPSCALE:
case GGML_OP_PAD:
case GGML_OP_PAD_REFLECT_1D:
+ case GGML_OP_UNPAD:
case GGML_OP_ARANGE:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_ARGSORT:
diff --git a/ggml/src/ggml-cpu/ops.cpp b/ggml/src/ggml-cpu/ops.cpp
index 6050147b..66b8da68 100644
--- a/ggml/src/ggml-cpu/ops.cpp
+++ b/ggml/src/ggml-cpu/ops.cpp
@@ -6531,6 +6531,61 @@ void ggml_compute_forward_pad_reflect_1d(
}
}
+// ggml_compute_forward_unpad
+
+static void ggml_compute_forward_unpad_f32(
+ const struct ggml_compute_params *params,
+ struct ggml_tensor *dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ GGML_ASSERT(src0->nb[0] == sizeof(float));
+ GGML_ASSERT( dst->nb[0] == sizeof(float));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ float * dst_ptr = (float *) dst->data;
+
+ // TODO: optimize
+
+ for (int64_t i2 = 0; i2 < ne2; ++i2) {
+ for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
+ for (int64_t i0 = 0; i0 < ne0; ++i0) {
+ for (int64_t i3 = 0; i3 < ne3; ++i3) {
+ const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
+
+ const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
+
+ if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
+ dst_ptr[dst_idx] = *src_ptr;
+ }
+ }
+ }
+ }
+ }
+}
+
+void ggml_compute_forward_unpad(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_unpad_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
// ggml_compute_forward_arange
static void ggml_compute_forward_arange_f32(
diff --git a/ggml/src/ggml-cpu/ops.h b/ggml/src/ggml-cpu/ops.h
index 410a3720..3eca1cf8 100644
--- a/ggml/src/ggml-cpu/ops.h
+++ b/ggml/src/ggml-cpu/ops.h
@@ -71,6 +71,7 @@ void ggml_compute_forward_pool_2d_back(const struct ggml_compute_params * params
void ggml_compute_forward_upscale(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_pad(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_pad_reflect_1d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
+void ggml_compute_forward_unpad(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_arange(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_timestep_embedding(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_argsort(const struct ggml_compute_params * params, struct ggml_tensor * dst);
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
index 31750b6f..0fef9522 100644
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
@@ -2246,6 +2246,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_PAD:
ggml_cuda_op_pad(ctx, dst);
break;
+ case GGML_OP_UNPAD:
+ ggml_cuda_op_unpad(ctx, dst);
+ break;
case GGML_OP_ARANGE:
ggml_cuda_op_arange(ctx, dst);
break;
@@ -3222,6 +3225,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_UPSCALE:
return op->src[0]->type == GGML_TYPE_F32 && op->op_params[0] == GGML_SCALE_MODE_NEAREST;
case GGML_OP_PAD:
+ case GGML_OP_UNPAD:
case GGML_OP_ARANGE:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_LEAKY_RELU:
diff --git a/ggml/src/ggml-cuda/pad.cu b/ggml/src/ggml-cuda/pad.cu
index 77432b04..7d45a7e1 100644
--- a/ggml/src/ggml-cuda/pad.cu
+++ b/ggml/src/ggml-cuda/pad.cu
@@ -47,3 +47,49 @@ void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream);
}
+
+static __global__ void unpad_f32(const float * x, float * dst, const int ne0, const int ne00, const int ne01, const int ne02, const int ne03) {
+ // blockIdx.z: idx of ne2*ne3, aka ne02*ne03
+ // blockIdx.y: idx of ne1
+ // blockIDx.x: idx of ne0 / BLOCK_SIZE
+ int nidx = threadIdx.x + blockIdx.x * blockDim.x;
+ if (nidx >= ne0) {
+ return;
+ }
+
+ // operation
+ int offset_dst =
+ nidx +
+ blockIdx.y * ne0 +
+ blockIdx.z * ne0 * gridDim.y;
+ if (nidx < ne00 && blockIdx.y < ne01 && blockIdx.z < ne02*ne03) {
+ int offset_src =
+ nidx +
+ blockIdx.y * ne00 +
+ blockIdx.z * ne00 * ne01;
+ dst[offset_dst] = x[offset_src];
+ }
+}
+
+static void unpad_f32_cuda(const float * x, float * dst,
+ const int ne00, const int ne01, const int ne02, const int ne03,
+ const int ne0, const int ne1, const int ne2, const int ne3, cudaStream_t stream) {
+ int num_blocks = (ne0 + CUDA_PAD_BLOCK_SIZE - 1) / CUDA_PAD_BLOCK_SIZE;
+ dim3 gridDim(num_blocks, ne1, ne2*ne3);
+ unpad_f32<<<gridDim, CUDA_PAD_BLOCK_SIZE, 0, stream>>>(x, dst, ne0, ne00, ne01, ne02, ne03);
+}
+
+void ggml_cuda_op_unpad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * src0 = dst->src[0];
+ const float * src0_d = (const float *)src0->data;
+ float * dst_d = (float *)dst->data;
+ cudaStream_t stream = ctx.stream();
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT(dst->type == GGML_TYPE_F32);
+ GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
+
+ unpad_f32_cuda(src0_d, dst_d,
+ src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
+ dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream);
+}
\ No newline at end of file
diff --git a/ggml/src/ggml-cuda/pad.cuh b/ggml/src/ggml-cuda/pad.cuh
index 8fd386b0..e2ededc3 100644
--- a/ggml/src/ggml-cuda/pad.cuh
+++ b/ggml/src/ggml-cuda/pad.cuh
@@ -3,3 +3,4 @@
#define CUDA_PAD_BLOCK_SIZE 256
void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
+void ggml_cuda_op_unpad(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
diff --git a/ggml/src/ggml-metal/ggml-metal.m b/ggml/src/ggml-metal/ggml-metal.m
index 12886cd3..b2e95a66 100644
--- a/ggml/src/ggml-metal/ggml-metal.m
+++ b/ggml/src/ggml-metal/ggml-metal.m
@@ -341,6 +341,7 @@ static void ggml_backend_metal_device_rel(struct ggml_backend_metal_device_conte
GGML_METAL_KERNEL_TYPE_UPSCALE_F32,
GGML_METAL_KERNEL_TYPE_PAD_F32,
GGML_METAL_KERNEL_TYPE_PAD_REFLECT_1D_F32,
+ GGML_METAL_KERNEL_TYPE_UNPAD_F32,
GGML_METAL_KERNEL_TYPE_ARANGE_F32,
GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32,
GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC,
@@ -1020,6 +1021,7 @@ @implementation GGMLMetalClass
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UPSCALE_F32, upscale_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_F32, pad_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_REFLECT_1D_F32, pad_reflect_1d_f32, true);
+ GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UNPAD_F32, unpad_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32, timestep_embedding_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARANGE_F32, arange_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, argsort_f32_i32_asc, true);
@@ -1384,6 +1386,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
case GGML_OP_POOL_2D:
case GGML_OP_PAD:
case GGML_OP_PAD_REFLECT_1D:
+ case GGML_OP_UNPAD:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_ARGSORT:
case GGML_OP_LEAKY_RELU:
@@ -3731,6 +3734,36 @@ static void ggml_metal_encode_node(
const int nth = MIN(1024, ne0);
+ [encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
+ } break;
+ case GGML_OP_UNPAD:
+ {
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+
+ id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_UNPAD_F32].pipeline;
+
+ [encoder setComputePipelineState:pipeline];
+ [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
+ [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
+ [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
+ [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
+ [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
+ [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5];
+ [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
+ [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
+ [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
+ [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9];
+ [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:10];
+ [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:11];
+ [encoder setBytes:&ne2 length:sizeof(ne2) atIndex:12];
+ [encoder setBytes:&ne3 length:sizeof(ne3) atIndex:13];
+ [encoder setBytes:&nb0 length:sizeof(nb0) atIndex:14];
+ [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15];
+ [encoder setBytes:&nb2 length:sizeof(nb2) atIndex:16];
+ [encoder setBytes:&nb3 length:sizeof(nb3) atIndex:17];
+
+ const int nth = MIN(1024, ne0);
+
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_ARANGE:
diff --git a/ggml/src/ggml-metal/ggml-metal.metal b/ggml/src/ggml-metal/ggml-metal.metal
index 8d6e99e6..71f0f97f 100644
--- a/ggml/src/ggml-metal/ggml-metal.metal
+++ b/ggml/src/ggml-metal/ggml-metal.metal
@@ -2975,6 +2975,51 @@ kernel void kernel_pad_reflect_1d_f32(
}
}
+kernel void kernel_unpad_f32(
+ device const char * src0,
+ device char * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant int64_t & ne03,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant uint64_t & nb03,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant int64_t & ne2,
+ constant int64_t & ne3,
+ constant uint64_t & nb0,
+ constant uint64_t & nb1,
+ constant uint64_t & nb2,
+ constant uint64_t & nb3,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint3 tpitg[[thread_position_in_threadgroup]],
+ uint3 ntg[[threads_per_threadgroup]]) {
+
+ const int64_t i3 = tgpig.z;
+ const int64_t i2 = tgpig.y;
+ const int64_t i1 = tgpig.x;
+
+ const int64_t i03 = i3;
+ const int64_t i02 = i2;
+ const int64_t i01 = i1;
+
+ device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01);
+ device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1);
+
+ if (i1 < ne01 && i2 < ne02 && i3 < ne03) {
+ for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
+ if (i0 < ne00) {
+ dst_ptr[i0] = src0_ptr[i0];
+ }
+ }
+
+ return;
+ }
+}
+
kernel void kernel_arange_f32(
device char * dst,
constant ggml_metal_kargs_arange & args,
diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c
index 950772c7..2276b631 100644
--- a/ggml/src/ggml.c
+++ b/ggml/src/ggml.c
@@ -963,6 +963,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"UPSCALE",
"PAD",
"PAD_REFLECT_1D",
+ "UNPAD",
"ARANGE",
"TIMESTEP_EMBEDDING",
"ARGSORT",
@@ -993,7 +994,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"OPT_STEP_ADAMW",
};
-static_assert(GGML_OP_COUNT == 81, "GGML_OP_COUNT != 81");
+static_assert(GGML_OP_COUNT == 82, "GGML_OP_COUNT != 82");
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"none",
@@ -1057,6 +1058,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"upscale(x)",
"pad(x)",
"pad_reflect_1d(x)",
+ "unpad(x)",
"arange(start, stop, step)",
"timestep_embedding(timesteps, dim, max_period)",
"argsort(x)",
@@ -1087,7 +1089,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"adamw(x)",
};
-static_assert(GGML_OP_COUNT == 81, "GGML_OP_COUNT != 81");
+static_assert(GGML_OP_COUNT == 82, "GGML_OP_COUNT != 82");
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
@@ -4262,6 +4264,25 @@ struct ggml_tensor * ggml_pad_reflect_1d(
return result;
}
+// ggml_unpad
+
+struct ggml_tensor * ggml_unpad(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int p0, int p1, int p2, int p3) {
+
+ struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
+ a->ne[0] - p0,
+ a->ne[1] - p1,
+ a->ne[2] - p2,
+ a->ne[3] - p3);
+
+ result->op = GGML_OP_UNPAD;
+ result->src[0] = a;
+
+ return result;
+}
+
// ggml_arange
struct ggml_tensor * ggml_arange(

View File

@ -8,10 +8,10 @@ Subject: [PATCH] maintain ordering for rules for grammar
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/common/json-schema-to-grammar.cpp b/common/json-schema-to-grammar.cpp
index 90679822..56043678 100644
index 5b3059c2..656b3eca 100644
--- a/common/json-schema-to-grammar.cpp
+++ b/common/json-schema-to-grammar.cpp
@@ -346,7 +346,7 @@ private:
@@ -349,7 +349,7 @@ private:
friend std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options);
std::function<json(const std::string &)> _fetch_json;
bool _dotall;

View File

@ -0,0 +1,352 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: jmorganca <jmorganca@gmail.com>
Date: Tue, 15 Apr 2025 14:27:40 -0400
Subject: [PATCH] ensure KV cache is fully defragmented
Sometimes the KV cache requires defragmentation even without
triggering the threshold heuristic. In this case, decoding
will not being able to find a KV cache slot. This is particularly
difficult for the caller to handle if it happens in between
ubatches. To avoid this, we should immediately trigger a defrag.
In addition, a heavily fragmented cache can require more than
max_moves to defragment. Currently, we stop when we hit the limit
but this can leave a cache that still does not have adequate space
even after defragmentation is triggered. Instead, we should do
multiple batches of processing until everything is complete.
---
src/llama-context.cpp | 18 ++++---
src/llama-context.h | 1 +
src/llama-kv-cache.cpp | 107 ++++++++++++++---------------------------
src/llama-kv-cache.h | 12 ++++-
4 files changed, 59 insertions(+), 79 deletions(-)
diff --git a/src/llama-context.cpp b/src/llama-context.cpp
index c22687e4..c5948e8f 100644
--- a/src/llama-context.cpp
+++ b/src/llama-context.cpp
@@ -950,9 +950,12 @@ int llama_context::decode(llama_batch & inp_batch) {
// find KV slot
if (!kv_self->find_slot(ubatch)) {
- LLAMA_LOG_WARN("%s: failed to find KV cache slot for ubatch of size %d\n", __func__, ubatch.n_tokens);
-
- return 1;
+ kv_self->defrag_sched(-1.0f);
+ kv_self->update(*this);
+ if (!kv_self->find_slot(ubatch)) {
+ LLAMA_LOG_WARN("%s: failed to find KV cache slot for ubatch of size %d\n", __func__, ubatch.n_tokens);
+ return 1;
+ }
}
ggml_backend_sched_reset(sched.get());
@@ -1967,9 +1970,12 @@ void llama_context::opt_epoch_iter(
// TODO: not sure if this is needed
if (!kv_self->find_slot(ubatch)) {
- LLAMA_LOG_WARN("%s: failed to find KV cache slot for ubatch of size %d\n", __func__, ubatch.n_tokens);
-
- GGML_ABORT("TODO: handle this error");
+ kv_self->defrag_sched(-1.0f);
+ kv_self->update(*this);
+ if (!kv_self->find_slot(ubatch)) {
+ LLAMA_LOG_WARN("%s: failed to find KV cache slot for ubatch of size %d\n", __func__, ubatch.n_tokens);
+ GGML_ABORT("TODO: handle this error");
+ }
}
auto * gf = graph_init();
diff --git a/src/llama-context.h b/src/llama-context.h
index c0ceacb1..0264e937 100644
--- a/src/llama-context.h
+++ b/src/llama-context.h
@@ -5,6 +5,7 @@
#include "llama-cparams.h"
#include "llama-graph.h"
#include "llama-adapter.h"
+#include "llama-kv-cache.h"
#include "ggml-cpp.h"
#include "ggml-opt.h"
diff --git a/src/llama-kv-cache.cpp b/src/llama-kv-cache.cpp
index 3dcad65b..60e67b03 100644
--- a/src/llama-kv-cache.cpp
+++ b/src/llama-kv-cache.cpp
@@ -364,8 +364,6 @@ void llama_kv_cache_unified::commit() {
}
bool llama_kv_cache_unified::update(llama_context & lctx) {
- bool need_reserve = false;
-
auto * sched = lctx.get_sched();
if (has_shift) {
@@ -388,8 +386,6 @@ bool llama_kv_cache_unified::update(llama_context & lctx) {
res->set_inputs(nullptr);
lctx.graph_compute(gf, false);
-
- need_reserve = true;
}
{
@@ -403,27 +399,36 @@ bool llama_kv_cache_unified::update(llama_context & lctx) {
if (do_defrag) {
LLAMA_LOG_DEBUG("%s: defragmenting KV cache\n", __func__);
+ const uint32_t n_max_nodes = lctx.graph_max_nodes();
+ const uint32_t max_moves = (n_max_nodes - 2*model.hparams.n_layer)/(6*model.hparams.n_layer);
+ if (!defrag_prepare(n_max_nodes)) {
+ LLAMA_LOG_ERROR("%s: failed to prepare defragmentation\n", __func__);
+ return false;
+ }
+
+ for (std::size_t i = 0; i < defrag_info.moves.size(); i += max_moves) {
+ std::vector<struct llama_kv_defrag_move> chunk;
+ auto end = std::min(i + max_moves, defrag_info.moves.size());
+ chunk.assign(defrag_info.moves.begin() + i, defrag_info.moves.begin() + end);
- if (defrag_prepare(lctx.graph_max_nodes())) {
ggml_backend_sched_reset(sched);
auto * gf = lctx.graph_init();
- auto res = build_graph_defrag(lctx.get_cparams(), lctx.get_ctx_compute(), gf);
+ auto res = build_graph_defrag(lctx.get_cparams(), lctx.get_ctx_compute(), gf, chunk);
ggml_backend_sched_alloc_graph(sched, gf);
res->set_inputs(nullptr);
lctx.graph_compute(gf, false);
-
- need_reserve = true;
}
do_defrag = false;
}
- return need_reserve;
+ // we never need to reserve a worst case graph
+ return false;
}
void llama_kv_cache_unified::defrag_sched(float thold) {
@@ -707,11 +712,10 @@ llm_graph_result_ptr llama_kv_cache_unified::build_graph_shift(
llm_graph_result_ptr llama_kv_cache_unified::build_graph_defrag(
const llama_cparams & cparams,
ggml_context * ctx,
- ggml_cgraph * gf) const {
+ ggml_cgraph * gf,
+ const std::vector<struct llama_kv_defrag_move> & moves) const {
auto res = std::make_unique<llm_graph_result>();
- const auto & ids = defrag_info.ids;
-
#if 0
// CPU defrag
//
@@ -783,32 +787,20 @@ llm_graph_result_ptr llama_kv_cache_unified::build_graph_defrag(
ggml_backend_tensor_set(v_l[il], buf_v.data(), 0, buf_v.size());
}
#else
- for (uint32_t i = 0; i < ids.size(); ++i) {
- const uint32_t id = ids[i];
-
- if (i == id || id == ids.size()) {
- continue;
- }
-
- uint32_t nm = 1;
-
- while (i + nm < ids.size() && ids[i + nm] == id + nm) {
- nm++;
- }
-
+ for (const auto & move : moves) {
for (uint32_t il = 0; il < hparams.n_layer; ++il) { // NOLINT
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
ggml_tensor * view_k_src = ggml_view_2d(ctx, k_l[il],
- n_embd_k_gqa, nm,
+ n_embd_k_gqa, move.len,
ggml_row_size(k_l[il]->type, n_embd_k_gqa),
- ggml_row_size(k_l[il]->type, n_embd_k_gqa*i));
+ ggml_row_size(k_l[il]->type, n_embd_k_gqa*move.src));
ggml_tensor * view_k_dst = ggml_view_2d(ctx, k_l[il],
- n_embd_k_gqa, nm,
+ n_embd_k_gqa, move.len,
ggml_row_size(k_l[il]->type, n_embd_k_gqa),
- ggml_row_size(k_l[il]->type, n_embd_k_gqa*id));
+ ggml_row_size(k_l[il]->type, n_embd_k_gqa*move.dst));
ggml_tensor * view_v_src;
ggml_tensor * view_v_dst;
@@ -816,31 +808,29 @@ llm_graph_result_ptr llama_kv_cache_unified::build_graph_defrag(
if (cparams.flash_attn) {
// NOTE: the V cache is not transposed when using flash attention
view_v_src = ggml_view_2d(ctx, v_l[il],
- n_embd_v_gqa, nm,
+ n_embd_v_gqa, move.len,
ggml_row_size(v_l[il]->type, n_embd_v_gqa),
- ggml_row_size(v_l[il]->type, n_embd_v_gqa*i));
+ ggml_row_size(v_l[il]->type, n_embd_v_gqa*move.dst));
view_v_dst = ggml_view_2d(ctx, v_l[il],
- n_embd_v_gqa, nm,
+ move.len, n_embd_v_gqa,
ggml_row_size(v_l[il]->type, n_embd_v_gqa),
- ggml_row_size(v_l[il]->type, n_embd_v_gqa*id));
+ ggml_row_size(v_l[il]->type, move.src));
} else {
view_v_src = ggml_view_2d(ctx, v_l[il],
- nm, n_embd_v_gqa,
+ move.len, n_embd_v_gqa,
ggml_row_size(v_l[il]->type, size),
- ggml_row_size(v_l[il]->type, i));
+ ggml_row_size(v_l[il]->type, move.src));
view_v_dst = ggml_view_2d(ctx, v_l[il],
- nm, n_embd_v_gqa,
+ move.len, n_embd_v_gqa,
ggml_row_size(v_l[il]->type, size),
- ggml_row_size(v_l[il]->type, id));
+ ggml_row_size(v_l[il]->type, move.dst));
}
ggml_build_forward_expand(gf, ggml_cpy(ctx, view_k_src, view_k_dst));
ggml_build_forward_expand(gf, ggml_cpy(ctx, view_v_src, view_v_dst));
}
-
- i += nm - 1;
}
//LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
@@ -857,17 +847,7 @@ bool llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) {
assert(n_used <= n_kv);
- //const int64_t t_start = ggml_time_us();
-
- // number of cells moved
- uint32_t n_moves = 0;
-
- // each move requires 6*n_layer tensors (see graph_build_kv_self_defrag)
- // - source view, destination view, copy operation
- // - x2 for keys and values
- //const uint32_t max_moves = max_nodes()/(6*n_layer);
- // TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
- const uint32_t max_moves = (n_max_nodes - 2*n_layer)/(6*n_layer);
+ defrag_info.moves.clear();
// determine which KV cells to move where
//
@@ -875,10 +855,7 @@ bool llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) {
//
// if ids[i] == i || ids[i] == n_kv, then cell i is not moved
//
- auto & ids = defrag_info.ids;
-
- ids.clear();
- ids.resize(n_kv, n_kv);
+ std::vector<uint32_t> ids(n_kv, n_kv);
for (uint32_t i0 = 0; i0 < n_used; ++i0) {
const auto & cell0 = cells[i0];
@@ -927,19 +904,11 @@ bool llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) {
// are we moving a continuous block of memory?
bool cont = false;
- // should we stop searching for the next move?
- bool stop = false;
-
// go back and move the nf cells to the hole
for (; i1 < n_kv; ++i1) {
auto & cell1 = cells[i1];
if (cell1.is_empty() || ids[i1] != n_kv) {
- if (n_moves == max_moves) {
- stop = true;
- break;
- }
-
cont = false;
continue;
}
@@ -955,8 +924,10 @@ bool llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) {
head = n_used;
if (!cont) {
- n_moves++;
+ defrag_info.moves.push_back({i1, i0 + nf, 1});
cont = true;
+ } else {
+ defrag_info.moves.back().len++;
}
nf++;
@@ -966,22 +937,16 @@ bool llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) {
}
}
- if (stop || n_moves == max_moves) {
- break;
- }
-
//LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
i0 += nh - 1;
}
- if (n_moves == 0) {
+ if (defrag_info.moves.size() == 0) {
return false;
}
- LLAMA_LOG_DEBUG("%s: (tmp log) KV defrag cell moves: %u\n", __func__, n_moves);
-
- LLAMA_LOG_DEBUG("%s: expected gf nodes: %u\n", __func__, 6*n_moves*n_layer);
+ // LLAMA_LOG_DEBUG("(tmp log) KV defrag cell moves: %u\n", n_moves);
return true;
}
diff --git a/src/llama-kv-cache.h b/src/llama-kv-cache.h
index bf3b4b6a..928b9712 100644
--- a/src/llama-kv-cache.h
+++ b/src/llama-kv-cache.h
@@ -82,6 +82,13 @@ struct llama_kv_cache_guard {
private:
llama_kv_cache * kv;
};
+
+// block of KV slots to move when defragging
+struct llama_kv_defrag_move {
+ uint32_t src;
+ uint32_t dst;
+ uint32_t len;
+};
//
// llama_kv_cache_unified
@@ -207,7 +214,7 @@ private:
// defrag
struct {
- std::vector<uint32_t> ids;
+ std::vector<llama_kv_defrag_move> moves;
} defrag_info;
// return true if cells have been moved
@@ -249,7 +256,8 @@ private:
llm_graph_result_ptr build_graph_defrag(
const llama_cparams & cparams,
ggml_context * ctx,
- ggml_cgraph * gf) const;
+ ggml_cgraph * gf,
+ const std::vector<llama_kv_defrag_move> & moves) const;
void state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id = -1) const;
void state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const;

Some files were not shown because too many files have changed in this diff Show More