Compare commits
242 Commits
mxyng/crea
...
v0.3.2
Author | SHA1 | Date | |
---|---|---|---|
![]() |
4c14855ad7 | ||
![]() |
dc77bbcfa4 | ||
![]() |
0f3271db88 | ||
![]() |
c4c84b7a0d | ||
![]() |
5c1912769e | ||
![]() |
71399aa682 | ||
![]() |
463a8aa273 | ||
![]() |
3579b4966a | ||
![]() |
5d66578356 | ||
![]() |
afa8d6e9d5 | ||
![]() |
1b44d873e7 | ||
![]() |
cef2c6054d | ||
![]() |
345420998e | ||
![]() |
0be8baad2b | ||
![]() |
1a83581a8e | ||
![]() |
37926eb991 | ||
![]() |
3d4634fdff | ||
![]() |
365431d406 | ||
![]() |
161e12cecf | ||
![]() |
46e6327e0f | ||
![]() |
68ee42f995 | ||
![]() |
f26aef9a8b | ||
![]() |
38d9036b59 | ||
![]() |
6f26e9322f | ||
![]() |
0e4d653687 | ||
![]() |
2c01610616 | ||
![]() |
f3d7a481b7 | ||
![]() |
f2a96c7d77 | ||
![]() |
e8a66680d1 | ||
![]() |
079b2c3b03 | ||
![]() |
750c1c55f7 | ||
![]() |
a622c47bd3 | ||
![]() |
ec4c35fe99 | ||
![]() |
a250c2cb13 | ||
![]() |
3d9de805b7 | ||
![]() |
15af558423 | ||
![]() |
f5e3939220 | ||
![]() |
ae27d9dcfd | ||
![]() |
37096790a7 | ||
![]() |
997c903884 | ||
![]() |
c8af3c2d96 | ||
![]() |
455e61170d | ||
![]() |
4de1370a9d | ||
![]() |
bbf8f102ee | ||
![]() |
ce3c93b08f | ||
![]() |
6c2129d5d0 | ||
![]() |
7c2a157ca4 | ||
![]() |
bb46bbcf5e | ||
![]() |
ac33aa7d37 | ||
![]() |
830fdd2715 | ||
![]() |
a6cd8f6169 | ||
![]() |
c78089263a | ||
![]() |
3e5ea035d5 | ||
![]() |
5d604eec5b | ||
![]() |
db0968f30c | ||
![]() |
e12fff8810 | ||
![]() |
9b60a038e5 | ||
![]() |
83a0cb8d88 | ||
![]() |
c0648233f2 | ||
![]() |
d835368eb8 | ||
![]() |
85d9d73a72 | ||
![]() |
78140a712c | ||
![]() |
1954ec5917 | ||
![]() |
0f1910129f | ||
![]() |
e2c3f6b3e2 | ||
![]() |
8570c1c0ef | ||
![]() |
55cd3ddcca | ||
![]() |
66fe77f084 | ||
![]() |
d1a5227cad | ||
![]() |
4f1afd575d | ||
![]() |
35b89b2eab | ||
![]() |
5784c05397 | ||
![]() |
f14aa5435d | ||
![]() |
f8fedbda20 | ||
![]() |
b3e5491e41 | ||
![]() |
cc269ba094 | ||
![]() |
a3c20e3f18 | ||
![]() |
80ee9b5e47 | ||
![]() |
5534f2cc6a | ||
![]() |
d321297d8a | ||
![]() |
06e5d74e34 | ||
![]() |
5d707e6fd5 | ||
![]() |
283948c83b | ||
![]() |
1475eab95f | ||
![]() |
20090f3172 | ||
![]() |
69a2d4ccff | ||
![]() |
e8b954c646 | ||
![]() |
c57317cbf0 | ||
![]() |
51b2fd299c | ||
![]() |
d0634b1596 | ||
![]() |
43606d6d6a | ||
![]() |
70b1010fa5 | ||
![]() |
84e5721f3a | ||
![]() |
319fb1ce03 | ||
![]() |
b255445557 | ||
![]() |
f02f83660c | ||
![]() |
b23424bb3c | ||
![]() |
5fd6988126 | ||
![]() |
5b82960df8 | ||
![]() |
cc9a252d8c | ||
![]() |
d281a6e603 | ||
![]() |
154f6f45d4 | ||
![]() |
0d41623b52 | ||
![]() |
c279f96371 | ||
![]() |
499e87c9ba | ||
![]() |
cd0853f2d5 | ||
![]() |
d290e87513 | ||
![]() |
97c20ede33 | ||
![]() |
5a83f79afd | ||
![]() |
987dbab0b0 | ||
![]() |
a8388beb94 | ||
![]() |
5afbb60fc4 | ||
![]() |
4cb5d7decc | ||
![]() |
8eac50dd4f | ||
![]() |
4a565cbf94 | ||
![]() |
64039df6d7 | ||
![]() |
7ac6d462ec | ||
![]() |
ef5136a745 | ||
![]() |
8288ec8824 | ||
![]() |
d02bbebb11 | ||
![]() |
224337b32f | ||
![]() |
9e35d9bbee | ||
![]() |
b9f5e16c80 | ||
![]() |
e9f7f36029 | ||
![]() |
057d31861e | ||
![]() |
f7ee012300 | ||
![]() |
1ed0aa8fea | ||
![]() |
ef98803d63 | ||
![]() |
02fea420e5 | ||
![]() |
22c5451fc2 | ||
![]() |
ebc529cbb3 | ||
![]() |
23ebbaa46e | ||
![]() |
9ac0a7a50b | ||
![]() |
e5c65a85df | ||
![]() |
33627331a3 | ||
![]() |
36c87c433b | ||
![]() |
179737feb7 | ||
![]() |
47353f5ee4 | ||
![]() |
10e768826c | ||
![]() |
5056bb9c01 | ||
![]() |
c4cf8ad559 | ||
![]() |
57ec6901eb | ||
![]() |
e64f9ebb44 | ||
![]() |
791650ddef | ||
![]() |
efbf41ed81 | ||
![]() |
cf15589851 | ||
![]() |
19753c18c0 | ||
![]() |
41be28096a | ||
![]() |
37a570f962 | ||
![]() |
5a739ff4cb | ||
![]() |
4e262eb2a8 | ||
![]() |
4cfcbc328f | ||
![]() |
79292ff3e0 | ||
![]() |
8ea500441d | ||
![]() |
b50c818623 | ||
![]() |
b99e750b62 | ||
![]() |
1f50356e8e | ||
![]() |
22c81f62ec | ||
![]() |
73e2c8f68f | ||
![]() |
f4408219e9 | ||
![]() |
2d1e3c3229 | ||
![]() |
4918fae535 | ||
![]() |
0aff67877e | ||
![]() |
f6f759fc5f | ||
![]() |
9544a57ee4 | ||
![]() |
b51e3b63ac | ||
![]() |
6bbbc50f10 | ||
![]() |
9bbddc37a7 | ||
![]() |
e4ff73297d | ||
![]() |
b44320db13 | ||
![]() |
0bacb30007 | ||
![]() |
53da2c6965 | ||
![]() |
d8def1ff94 | ||
![]() |
571dc61955 | ||
![]() |
0e09c380fc | ||
![]() |
0ee87615c7 | ||
![]() |
f8241bfba3 | ||
![]() |
4607c70641 | ||
![]() |
c12f1c5b99 | ||
![]() |
a08f20d910 | ||
![]() |
6cea036027 | ||
![]() |
5796bfc401 | ||
![]() |
f1a379aa56 | ||
![]() |
9ae146993e | ||
![]() |
e0348d3fe8 | ||
![]() |
2cc854f8cb | ||
![]() |
5304b765b2 | ||
![]() |
fb6cbc02fb | ||
![]() |
4fd5f3526a | ||
![]() |
842f85f758 | ||
![]() |
9d30f9f8b3 | ||
![]() |
631cfd9e62 | ||
![]() |
326363b3a7 | ||
![]() |
ac7a842e55 | ||
![]() |
2c3fe1fd97 | ||
![]() |
269ed6e6a2 | ||
![]() |
78fb33dd07 | ||
![]() |
8f8e736b13 | ||
![]() |
d89454de80 | ||
![]() |
af28b94533 | ||
![]() |
e9188e971a | ||
![]() |
78eddfc068 | ||
![]() |
02c24d3d01 | ||
![]() |
52abc8acb7 | ||
![]() |
4d71c559b2 | ||
![]() |
0d16eb310e | ||
![]() |
8072e205ff | ||
![]() |
955f2a4e03 | ||
![]() |
3c75113e37 | ||
![]() |
ccd7785859 | ||
![]() |
3b5a4a77f3 | ||
![]() |
daed0634a9 | ||
![]() |
0d4dd707bc | ||
![]() |
0e982bc1f4 | ||
![]() |
6298f49816 | ||
![]() |
ef757da2c9 | ||
![]() |
e5352297d9 | ||
![]() |
65a5040e09 | ||
![]() |
d626b99b54 | ||
![]() |
dddb58a38b | ||
![]() |
400056e154 | ||
![]() |
d2f19024d0 | ||
![]() |
69c04eecc4 | ||
![]() |
996bb1b85e | ||
![]() |
422dcc3856 | ||
![]() |
020bd60ab2 | ||
![]() |
8e277b72bb | ||
![]() |
4f67b39d26 | ||
![]() |
2425281317 | ||
![]() |
0403e9860e | ||
![]() |
33a65e3ba3 | ||
![]() |
88bcd79bb9 | ||
![]() |
7e571f95f0 | ||
![]() |
da8e2a0447 | ||
![]() |
a30915bde1 | ||
![]() |
58e3fff311 | ||
![]() |
3f0b309ad4 | ||
![]() |
26e4e66faf | ||
![]() |
97c9e11768 | ||
![]() |
9bd00041fa | ||
![]() |
4e986a823c | ||
![]() |
784bf88b0d |
12
.github/workflows/release.yaml
vendored
12
.github/workflows/release.yaml
vendored
@@ -31,7 +31,7 @@ jobs:
|
||||
security set-keychain-settings -lut 3600 build.keychain
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version-file: go.mod
|
||||
go-version: "stable"
|
||||
cache: true
|
||||
- name: Build Darwin
|
||||
env:
|
||||
@@ -87,7 +87,7 @@ jobs:
|
||||
write-host "plugin installed"
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version-file: go.mod
|
||||
go-version: "stable"
|
||||
cache: true
|
||||
- run: go get ./...
|
||||
- run: |
|
||||
@@ -141,13 +141,13 @@ jobs:
|
||||
write-host "plugin installed"
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version-file: go.mod
|
||||
go-version: "stable"
|
||||
cache: true
|
||||
- name: 'Install ROCm'
|
||||
run: |
|
||||
$ErrorActionPreference = "Stop"
|
||||
write-host "downloading AMD HIP Installer"
|
||||
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-23.Q4-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
|
||||
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
|
||||
write-host "Installing AMD HIP"
|
||||
Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
|
||||
write-host "Completed AMD HIP"
|
||||
@@ -218,7 +218,7 @@ jobs:
|
||||
write-host "plugin installed"
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version-file: go.mod
|
||||
go-version: "stable"
|
||||
cache: true
|
||||
- name: 'Install CUDA'
|
||||
run: |
|
||||
@@ -306,7 +306,7 @@ jobs:
|
||||
write-host "plugin installed"
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version-file: go.mod
|
||||
go-version: "stable"
|
||||
cache: true
|
||||
- run: go get
|
||||
- uses: actions/download-artifact@v4
|
||||
|
16
.github/workflows/test.yaml
vendored
16
.github/workflows/test.yaml
vendored
@@ -58,11 +58,12 @@ jobs:
|
||||
runs-on: ${{ matrix.os }}
|
||||
env:
|
||||
GOARCH: ${{ matrix.arch }}
|
||||
CGO_ENABLED: '1'
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version-file: go.mod
|
||||
go-version: "stable"
|
||||
cache: true
|
||||
- run: go get ./...
|
||||
- run: |
|
||||
@@ -79,6 +80,7 @@ jobs:
|
||||
- run: go generate -x ./...
|
||||
if: ${{ ! startsWith(matrix.os, 'windows-') }}
|
||||
name: 'Unix Go Generate'
|
||||
- run: go build .
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ matrix.os }}-${{ matrix.arch }}-libraries
|
||||
@@ -124,7 +126,7 @@ jobs:
|
||||
strategy:
|
||||
matrix:
|
||||
rocm-version:
|
||||
- '6.1.1'
|
||||
- '6.1.2'
|
||||
runs-on: linux
|
||||
container: rocm/dev-ubuntu-20.04:${{ matrix.rocm-version }}
|
||||
steps:
|
||||
@@ -161,13 +163,13 @@ jobs:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version-file: go.mod
|
||||
go-version: "stable"
|
||||
cache: true
|
||||
- name: 'Install ROCm'
|
||||
run: |
|
||||
$ErrorActionPreference = "Stop"
|
||||
write-host "downloading AMD HIP Installer"
|
||||
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-23.Q4-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
|
||||
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
|
||||
write-host "Installing AMD HIP"
|
||||
Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
|
||||
write-host "Completed AMD HIP"
|
||||
@@ -198,7 +200,7 @@ jobs:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version-file: go.mod
|
||||
go-version: "stable"
|
||||
cache: true
|
||||
- name: 'Install CUDA'
|
||||
run: |
|
||||
@@ -253,7 +255,7 @@ jobs:
|
||||
submodules: recursive
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version-file: go.mod
|
||||
go-version: "stable"
|
||||
cache: false
|
||||
- run: |
|
||||
case ${{ matrix.arch }} in
|
||||
@@ -295,7 +297,7 @@ jobs:
|
||||
submodules: recursive
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version-file: go.mod
|
||||
go-version: "stable"
|
||||
cache: true
|
||||
- run: |
|
||||
case ${{ matrix.arch }} in
|
||||
|
@@ -1,8 +1,8 @@
|
||||
ARG GOLANG_VERSION=1.22.1
|
||||
ARG GOLANG_VERSION=1.22.5
|
||||
ARG CMAKE_VERSION=3.22.1
|
||||
# this CUDA_VERSION corresponds with the one specified in docs/gpu.md
|
||||
ARG CUDA_VERSION=11.3.1
|
||||
ARG ROCM_VERSION=6.1.1
|
||||
ARG ROCM_VERSION=6.1.2
|
||||
|
||||
# Copy the minimal context we need to run the generate scripts
|
||||
FROM scratch AS llm-code
|
||||
@@ -70,12 +70,12 @@ RUN OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu_avx" sh gen_linux.sh
|
||||
FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu_avx2-build-amd64
|
||||
RUN OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu_avx2" sh gen_linux.sh
|
||||
|
||||
FROM --platform=linux/arm64 centos:7 AS cpu-builder-arm64
|
||||
FROM --platform=linux/arm64 rockylinux:8 AS cpu-builder-arm64
|
||||
ARG CMAKE_VERSION
|
||||
ARG GOLANG_VERSION
|
||||
COPY ./scripts/rh_linux_deps.sh /
|
||||
RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
|
||||
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
|
||||
ENV PATH /opt/rh/gcc-toolset-10/root/usr/bin:$PATH
|
||||
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
|
||||
ARG OLLAMA_CUSTOM_CPU_DEFS
|
||||
ARG CGO_CFLAGS
|
||||
|
44
README.md
44
README.md
@@ -35,10 +35,10 @@ The official [Ollama Docker image](https://hub.docker.com/r/ollama/ollama) `olla
|
||||
|
||||
## Quickstart
|
||||
|
||||
To run and chat with [Llama 3](https://ollama.com/library/llama3):
|
||||
To run and chat with [Llama 3.1](https://ollama.com/library/llama3.1):
|
||||
|
||||
```
|
||||
ollama run llama3
|
||||
ollama run llama3.1
|
||||
```
|
||||
|
||||
## Model library
|
||||
@@ -49,8 +49,9 @@ Here are some example models that can be downloaded:
|
||||
|
||||
| Model | Parameters | Size | Download |
|
||||
| ------------------ | ---------- | ----- | ------------------------------ |
|
||||
| Llama 3 | 8B | 4.7GB | `ollama run llama3` |
|
||||
| Llama 3 | 70B | 40GB | `ollama run llama3:70b` |
|
||||
| Llama 3.1 | 8B | 4.7GB | `ollama run llama3.1` |
|
||||
| Llama 3.1 | 70B | 40GB | `ollama run llama3.1:70b` |
|
||||
| Llama 3.1 | 405B | 231GB | `ollama run llama3.1:405b` |
|
||||
| Phi 3 Mini | 3.8B | 2.3GB | `ollama run phi3` |
|
||||
| Phi 3 Medium | 14B | 7.9GB | `ollama run phi3:medium` |
|
||||
| Gemma 2 | 9B | 5.5GB | `ollama run gemma2` |
|
||||
@@ -64,7 +65,8 @@ Here are some example models that can be downloaded:
|
||||
| LLaVA | 7B | 4.5GB | `ollama run llava` |
|
||||
| Solar | 10.7B | 6.1GB | `ollama run solar` |
|
||||
|
||||
> Note: You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
|
||||
> [!NOTE]
|
||||
> You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
|
||||
|
||||
## Customize a model
|
||||
|
||||
@@ -96,16 +98,16 @@ See the [guide](docs/import.md) on importing models for more information.
|
||||
|
||||
### Customize a prompt
|
||||
|
||||
Models from the Ollama library can be customized with a prompt. For example, to customize the `llama3` model:
|
||||
Models from the Ollama library can be customized with a prompt. For example, to customize the `llama3.1` model:
|
||||
|
||||
```
|
||||
ollama pull llama3
|
||||
ollama pull llama3.1
|
||||
```
|
||||
|
||||
Create a `Modelfile`:
|
||||
|
||||
```
|
||||
FROM llama3
|
||||
FROM llama3.1
|
||||
|
||||
# set the temperature to 1 [higher is more creative, lower is more coherent]
|
||||
PARAMETER temperature 1
|
||||
@@ -140,7 +142,7 @@ ollama create mymodel -f ./Modelfile
|
||||
### Pull a model
|
||||
|
||||
```
|
||||
ollama pull llama3
|
||||
ollama pull llama3.1
|
||||
```
|
||||
|
||||
> This command can also be used to update a local model. Only the diff will be pulled.
|
||||
@@ -148,13 +150,13 @@ ollama pull llama3
|
||||
### Remove a model
|
||||
|
||||
```
|
||||
ollama rm llama3
|
||||
ollama rm llama3.1
|
||||
```
|
||||
|
||||
### Copy a model
|
||||
|
||||
```
|
||||
ollama cp llama3 my-model
|
||||
ollama cp llama3.1 my-model
|
||||
```
|
||||
|
||||
### Multiline input
|
||||
@@ -171,21 +173,21 @@ I'm a basic program that prints the famous "Hello, world!" message to the consol
|
||||
### Multimodal models
|
||||
|
||||
```
|
||||
>>> What's in this image? /Users/jmorgan/Desktop/smile.png
|
||||
ollama run llava "What's in this image? /Users/jmorgan/Desktop/smile.png"
|
||||
The image features a yellow smiley face, which is likely the central focus of the picture.
|
||||
```
|
||||
|
||||
### Pass the prompt as an argument
|
||||
|
||||
```
|
||||
$ ollama run llama3 "Summarize this file: $(cat README.md)"
|
||||
$ ollama run llama3.1 "Summarize this file: $(cat README.md)"
|
||||
Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.
|
||||
```
|
||||
|
||||
### Show model information
|
||||
|
||||
```
|
||||
ollama show llama3
|
||||
ollama show llama3.1
|
||||
```
|
||||
|
||||
### List models on your computer
|
||||
@@ -213,7 +215,7 @@ Next, start the server:
|
||||
Finally, in a separate shell, run a model:
|
||||
|
||||
```
|
||||
./ollama run llama3
|
||||
./ollama run llama3.1
|
||||
```
|
||||
|
||||
## REST API
|
||||
@@ -224,7 +226,7 @@ Ollama has a REST API for running and managing models.
|
||||
|
||||
```
|
||||
curl http://localhost:11434/api/generate -d '{
|
||||
"model": "llama3",
|
||||
"model": "llama3.1",
|
||||
"prompt":"Why is the sky blue?"
|
||||
}'
|
||||
```
|
||||
@@ -233,7 +235,7 @@ curl http://localhost:11434/api/generate -d '{
|
||||
|
||||
```
|
||||
curl http://localhost:11434/api/chat -d '{
|
||||
"model": "llama3",
|
||||
"model": "llama3.1",
|
||||
"messages": [
|
||||
{ "role": "user", "content": "why is the sky blue?" }
|
||||
]
|
||||
@@ -293,6 +295,11 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [OllamaSpring](https://github.com/CrazyNeil/OllamaSpring) (Ollama Client for macOS)
|
||||
- [LLocal.in](https://github.com/kartikm7/llocal) (Easy to use Electron Desktop Client for Ollama)
|
||||
- [Ollama with Google Mesop](https://github.com/rapidarchitect/ollama_mesop/) (Mesop Chat Client implementation with Ollama)
|
||||
- [Kerlig AI](https://www.kerlig.com/) (AI writing assistant for macOS)
|
||||
- [AI Studio](https://github.com/MindWorkAI/AI-Studio)
|
||||
- [Sidellama](https://github.com/gyopak/sidellama) (browser-based LLM client)
|
||||
- [LLMStack](https://github.com/trypromptly/LLMStack) (No-code multi-agent framework to build LLM agents and workflows)
|
||||
- [BoltAI for Mac](https://boltai.com) (AI Chat Client for Mac)
|
||||
|
||||
### Terminal
|
||||
|
||||
@@ -331,6 +338,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
### Libraries
|
||||
|
||||
- [LangChain](https://python.langchain.com/docs/integrations/llms/ollama) and [LangChain.js](https://js.langchain.com/docs/modules/model_io/models/llms/integrations/ollama) with [example](https://js.langchain.com/docs/use_cases/question_answering/local_retrieval_qa)
|
||||
- [Firebase Genkit](https://firebase.google.com/docs/genkit/plugins/ollama)
|
||||
- [LangChainGo](https://github.com/tmc/langchaingo/) with [example](https://github.com/tmc/langchaingo/tree/main/examples/ollama-completion-example)
|
||||
- [LangChain4j](https://github.com/langchain4j/langchain4j) with [example](https://github.com/langchain4j/langchain4j-examples/tree/main/ollama-examples/src/main/java)
|
||||
- [LangChainRust](https://github.com/Abraxas-365/langchain-rust) with [example](https://github.com/Abraxas-365/langchain-rust/blob/main/examples/llm_ollama.rs)
|
||||
@@ -384,7 +392,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [Llama Coder](https://github.com/ex3ndr/llama-coder) (Copilot alternative using Ollama)
|
||||
- [Ollama Copilot](https://github.com/bernardo-bruning/ollama-copilot) (Proxy that allows you to use ollama as a copilot like Github copilot)
|
||||
- [twinny](https://github.com/rjmacarthy/twinny) (Copilot and Copilot chat alternative using Ollama)
|
||||
- [Wingman-AI](https://github.com/RussellCanfield/wingman-ai) (Copilot code and chat alternative using Ollama and HuggingFace)
|
||||
- [Wingman-AI](https://github.com/RussellCanfield/wingman-ai) (Copilot code and chat alternative using Ollama and Hugging Face)
|
||||
- [Page Assist](https://github.com/n4ze3m/page-assist) (Chrome Extension)
|
||||
- [AI Telegram Bot](https://github.com/tusharhero/aitelegrambot) (Telegram bot using Ollama in backend)
|
||||
- [AI ST Completion](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) (Sublime Text 4 AI assistant plugin with Ollama support)
|
||||
|
25
SECURITY.md
Normal file
25
SECURITY.md
Normal file
@@ -0,0 +1,25 @@
|
||||
# Security
|
||||
|
||||
The Ollama maintainer team takes security seriously and will actively work to resolve security issues.
|
||||
|
||||
## Reporting a vulnerability
|
||||
|
||||
If you discover a security vulnerability, please do not open a public issue. Instead, please report it by emailing hello@ollama.com. We ask that you give us sufficient time to investigate and address the vulnerability before disclosing it publicly.
|
||||
|
||||
Please include the following details in your report:
|
||||
- A description of the vulnerability
|
||||
- Steps to reproduce the issue
|
||||
- Your assessment of the potential impact
|
||||
- Any possible mitigations
|
||||
|
||||
## Security best practices
|
||||
|
||||
While the maintainer team does their best to secure Ollama, users are encouraged to implement their own security best practices, such as:
|
||||
|
||||
- Regularly updating to the latest version of Ollama
|
||||
- Securing access to hosted instances of Ollama
|
||||
- Monitoring systems for unusual activity
|
||||
|
||||
## Contact
|
||||
|
||||
For any other questions or concerns related to security, please contact us at hello@ollama.com
|
@@ -20,7 +20,6 @@ import (
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"io"
|
||||
"net"
|
||||
"net/http"
|
||||
"net/url"
|
||||
"runtime"
|
||||
@@ -63,13 +62,8 @@ func checkError(resp *http.Response, body []byte) error {
|
||||
// If the variable is not specified, a default ollama host and port will be
|
||||
// used.
|
||||
func ClientFromEnvironment() (*Client, error) {
|
||||
ollamaHost := envconfig.Host
|
||||
|
||||
return &Client{
|
||||
base: &url.URL{
|
||||
Scheme: ollamaHost.Scheme,
|
||||
Host: net.JoinHostPort(ollamaHost.Host, ollamaHost.Port),
|
||||
},
|
||||
base: envconfig.Host(),
|
||||
http: http.DefaultClient,
|
||||
}, nil
|
||||
}
|
||||
@@ -347,7 +341,16 @@ func (c *Client) Heartbeat(ctx context.Context) error {
|
||||
return nil
|
||||
}
|
||||
|
||||
// Embeddings generates embeddings from a model.
|
||||
// Embed generates embeddings from a model.
|
||||
func (c *Client) Embed(ctx context.Context, req *EmbedRequest) (*EmbedResponse, error) {
|
||||
var resp EmbedResponse
|
||||
if err := c.do(ctx, http.MethodPost, "/api/embed", req, &resp); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return &resp, nil
|
||||
}
|
||||
|
||||
// Embeddings generates an embedding from a model.
|
||||
func (c *Client) Embeddings(ctx context.Context, req *EmbeddingRequest) (*EmbeddingResponse, error) {
|
||||
var resp EmbeddingResponse
|
||||
if err := c.do(ctx, http.MethodPost, "/api/embeddings", req, &resp); err != nil {
|
||||
|
@@ -2,8 +2,6 @@ package api
|
||||
|
||||
import (
|
||||
"testing"
|
||||
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
)
|
||||
|
||||
func TestClientFromEnvironment(t *testing.T) {
|
||||
@@ -33,7 +31,6 @@ func TestClientFromEnvironment(t *testing.T) {
|
||||
for k, v := range testCases {
|
||||
t.Run(k, func(t *testing.T) {
|
||||
t.Setenv("OLLAMA_HOST", v.value)
|
||||
envconfig.LoadConfig()
|
||||
|
||||
client, err := ClientFromEnvironment()
|
||||
if err != v.err {
|
||||
|
212
api/types.go
212
api/types.go
@@ -47,6 +47,9 @@ type GenerateRequest struct {
|
||||
// Prompt is the textual prompt to send to the model.
|
||||
Prompt string `json:"prompt"`
|
||||
|
||||
// Suffix is the text that comes after the inserted text.
|
||||
Suffix string `json:"suffix"`
|
||||
|
||||
// System overrides the model's default system message/prompt.
|
||||
System string `json:"system"`
|
||||
|
||||
@@ -97,17 +100,85 @@ type ChatRequest struct {
|
||||
// followin the request.
|
||||
KeepAlive *Duration `json:"keep_alive,omitempty"`
|
||||
|
||||
// Tools is an optional list of tools the model has access to.
|
||||
Tools `json:"tools,omitempty"`
|
||||
|
||||
// Options lists model-specific options.
|
||||
Options map[string]interface{} `json:"options"`
|
||||
}
|
||||
|
||||
type Tools []Tool
|
||||
|
||||
func (t Tools) String() string {
|
||||
bts, _ := json.Marshal(t)
|
||||
return string(bts)
|
||||
}
|
||||
|
||||
func (t Tool) String() string {
|
||||
bts, _ := json.Marshal(t)
|
||||
return string(bts)
|
||||
}
|
||||
|
||||
// Message is a single message in a chat sequence. The message contains the
|
||||
// role ("system", "user", or "assistant"), the content and an optional list
|
||||
// of images.
|
||||
type Message struct {
|
||||
Role string `json:"role"`
|
||||
Content string `json:"content"`
|
||||
Images []ImageData `json:"images,omitempty"`
|
||||
Role string `json:"role"`
|
||||
Content string `json:"content"`
|
||||
Images []ImageData `json:"images,omitempty"`
|
||||
ToolCalls []ToolCall `json:"tool_calls,omitempty"`
|
||||
}
|
||||
|
||||
func (m *Message) UnmarshalJSON(b []byte) error {
|
||||
type Alias Message
|
||||
var a Alias
|
||||
if err := json.Unmarshal(b, &a); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
*m = Message(a)
|
||||
m.Role = strings.ToLower(m.Role)
|
||||
return nil
|
||||
}
|
||||
|
||||
type ToolCall struct {
|
||||
Function ToolCallFunction `json:"function"`
|
||||
}
|
||||
|
||||
type ToolCallFunction struct {
|
||||
Name string `json:"name"`
|
||||
Arguments ToolCallFunctionArguments `json:"arguments"`
|
||||
}
|
||||
|
||||
type ToolCallFunctionArguments map[string]any
|
||||
|
||||
func (t *ToolCallFunctionArguments) String() string {
|
||||
bts, _ := json.Marshal(t)
|
||||
return string(bts)
|
||||
}
|
||||
|
||||
type Tool struct {
|
||||
Type string `json:"type"`
|
||||
Function ToolFunction `json:"function"`
|
||||
}
|
||||
|
||||
type ToolFunction struct {
|
||||
Name string `json:"name"`
|
||||
Description string `json:"description"`
|
||||
Parameters struct {
|
||||
Type string `json:"type"`
|
||||
Required []string `json:"required"`
|
||||
Properties map[string]struct {
|
||||
Type string `json:"type"`
|
||||
Description string `json:"description"`
|
||||
Enum []string `json:"enum,omitempty"`
|
||||
} `json:"properties"`
|
||||
} `json:"parameters"`
|
||||
}
|
||||
|
||||
func (t *ToolFunction) String() string {
|
||||
bts, _ := json.Marshal(t)
|
||||
return string(bts)
|
||||
}
|
||||
|
||||
// ChatResponse is the response returned by [Client.Chat]. Its fields are
|
||||
@@ -143,6 +214,7 @@ type Options struct {
|
||||
NumPredict int `json:"num_predict,omitempty"`
|
||||
TopK int `json:"top_k,omitempty"`
|
||||
TopP float32 `json:"top_p,omitempty"`
|
||||
MinP float32 `json:"min_p,omitempty"`
|
||||
TFSZ float32 `json:"tfs_z,omitempty"`
|
||||
TypicalP float32 `json:"typical_p,omitempty"`
|
||||
RepeatLastN int `json:"repeat_last_n,omitempty"`
|
||||
@@ -159,49 +231,46 @@ type Options struct {
|
||||
|
||||
// Runner options which must be set when the model is loaded into memory
|
||||
type Runner struct {
|
||||
UseNUMA bool `json:"numa,omitempty"`
|
||||
NumCtx int `json:"num_ctx,omitempty"`
|
||||
NumBatch int `json:"num_batch,omitempty"`
|
||||
NumGPU int `json:"num_gpu,omitempty"`
|
||||
MainGPU int `json:"main_gpu,omitempty"`
|
||||
LowVRAM bool `json:"low_vram,omitempty"`
|
||||
F16KV bool `json:"f16_kv,omitempty"`
|
||||
LogitsAll bool `json:"logits_all,omitempty"`
|
||||
VocabOnly bool `json:"vocab_only,omitempty"`
|
||||
UseMMap TriState `json:"use_mmap,omitempty"`
|
||||
UseMLock bool `json:"use_mlock,omitempty"`
|
||||
NumThread int `json:"num_thread,omitempty"`
|
||||
UseNUMA bool `json:"numa,omitempty"`
|
||||
NumCtx int `json:"num_ctx,omitempty"`
|
||||
NumBatch int `json:"num_batch,omitempty"`
|
||||
NumGPU int `json:"num_gpu,omitempty"`
|
||||
MainGPU int `json:"main_gpu,omitempty"`
|
||||
LowVRAM bool `json:"low_vram,omitempty"`
|
||||
F16KV bool `json:"f16_kv,omitempty"`
|
||||
LogitsAll bool `json:"logits_all,omitempty"`
|
||||
VocabOnly bool `json:"vocab_only,omitempty"`
|
||||
UseMMap *bool `json:"use_mmap,omitempty"`
|
||||
UseMLock bool `json:"use_mlock,omitempty"`
|
||||
NumThread int `json:"num_thread,omitempty"`
|
||||
}
|
||||
|
||||
type TriState int
|
||||
// EmbedRequest is the request passed to [Client.Embed].
|
||||
type EmbedRequest struct {
|
||||
// Model is the model name.
|
||||
Model string `json:"model"`
|
||||
|
||||
const (
|
||||
TriStateUndefined TriState = -1
|
||||
TriStateFalse TriState = 0
|
||||
TriStateTrue TriState = 1
|
||||
)
|
||||
// Input is the input to embed.
|
||||
Input any `json:"input"`
|
||||
|
||||
func (b *TriState) UnmarshalJSON(data []byte) error {
|
||||
var v bool
|
||||
if err := json.Unmarshal(data, &v); err != nil {
|
||||
return err
|
||||
}
|
||||
if v {
|
||||
*b = TriStateTrue
|
||||
}
|
||||
*b = TriStateFalse
|
||||
return nil
|
||||
// KeepAlive controls how long the model will stay loaded in memory following
|
||||
// this request.
|
||||
KeepAlive *Duration `json:"keep_alive,omitempty"`
|
||||
|
||||
Truncate *bool `json:"truncate,omitempty"`
|
||||
|
||||
// Options lists model-specific options.
|
||||
Options map[string]interface{} `json:"options"`
|
||||
}
|
||||
|
||||
func (b *TriState) MarshalJSON() ([]byte, error) {
|
||||
if *b == TriStateUndefined {
|
||||
return nil, nil
|
||||
}
|
||||
var v bool
|
||||
if *b == TriStateTrue {
|
||||
v = true
|
||||
}
|
||||
return json.Marshal(v)
|
||||
// EmbedResponse is the response from [Client.Embed].
|
||||
type EmbedResponse struct {
|
||||
Model string `json:"model"`
|
||||
Embeddings [][]float32 `json:"embeddings"`
|
||||
|
||||
TotalDuration time.Duration `json:"total_duration,omitempty"`
|
||||
LoadDuration time.Duration `json:"load_duration,omitempty"`
|
||||
PromptEvalCount int `json:"prompt_eval_count,omitempty"`
|
||||
}
|
||||
|
||||
// EmbeddingRequest is the request passed to [Client.Embeddings].
|
||||
@@ -250,8 +319,10 @@ type DeleteRequest struct {
|
||||
|
||||
// ShowRequest is the request passed to [Client.Show].
|
||||
type ShowRequest struct {
|
||||
Model string `json:"model"`
|
||||
System string `json:"system"`
|
||||
Model string `json:"model"`
|
||||
System string `json:"system"`
|
||||
|
||||
// Template is deprecated
|
||||
Template string `json:"template"`
|
||||
Verbose bool `json:"verbose"`
|
||||
|
||||
@@ -345,6 +416,13 @@ type ProcessModelResponse struct {
|
||||
SizeVRAM int64 `json:"size_vram"`
|
||||
}
|
||||
|
||||
type RetrieveModelResponse struct {
|
||||
Id string `json:"id"`
|
||||
Object string `json:"object"`
|
||||
Created int64 `json:"created"`
|
||||
OwnedBy string `json:"owned_by"`
|
||||
}
|
||||
|
||||
type TokenResponse struct {
|
||||
Token string `json:"token"`
|
||||
}
|
||||
@@ -437,19 +515,6 @@ func (opts *Options) FromMap(m map[string]interface{}) error {
|
||||
continue
|
||||
}
|
||||
|
||||
if reflect.PointerTo(field.Type()) == reflect.TypeOf((*TriState)(nil)) {
|
||||
val, ok := val.(bool)
|
||||
if !ok {
|
||||
return fmt.Errorf("option %q must be of type boolean", key)
|
||||
}
|
||||
if val {
|
||||
field.SetInt(int64(TriStateTrue))
|
||||
} else {
|
||||
field.SetInt(int64(TriStateFalse))
|
||||
}
|
||||
continue
|
||||
}
|
||||
|
||||
switch field.Kind() {
|
||||
case reflect.Int:
|
||||
switch t := val.(type) {
|
||||
@@ -496,6 +561,17 @@ func (opts *Options) FromMap(m map[string]interface{}) error {
|
||||
slice[i] = str
|
||||
}
|
||||
field.Set(reflect.ValueOf(slice))
|
||||
case reflect.Pointer:
|
||||
var b bool
|
||||
if field.Type() == reflect.TypeOf(&b) {
|
||||
val, ok := val.(bool)
|
||||
if !ok {
|
||||
return fmt.Errorf("option %q must be of type boolean", key)
|
||||
}
|
||||
field.Set(reflect.ValueOf(&val))
|
||||
} else {
|
||||
return fmt.Errorf("unknown type loading config params: %v %v", field.Kind(), field.Type())
|
||||
}
|
||||
default:
|
||||
return fmt.Errorf("unknown type loading config params: %v", field.Kind())
|
||||
}
|
||||
@@ -538,7 +614,7 @@ func DefaultOptions() Options {
|
||||
LowVRAM: false,
|
||||
F16KV: true,
|
||||
UseMLock: false,
|
||||
UseMMap: TriStateUndefined,
|
||||
UseMMap: nil,
|
||||
UseNUMA: false,
|
||||
},
|
||||
}
|
||||
@@ -608,19 +684,6 @@ func FormatParams(params map[string][]string) (map[string]interface{}, error) {
|
||||
} else {
|
||||
field := valueOpts.FieldByName(opt.Name)
|
||||
if field.IsValid() && field.CanSet() {
|
||||
if reflect.PointerTo(field.Type()) == reflect.TypeOf((*TriState)(nil)) {
|
||||
boolVal, err := strconv.ParseBool(vals[0])
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("invalid bool value %s", vals)
|
||||
}
|
||||
if boolVal {
|
||||
out[key] = TriStateTrue
|
||||
} else {
|
||||
out[key] = TriStateFalse
|
||||
}
|
||||
continue
|
||||
}
|
||||
|
||||
switch field.Kind() {
|
||||
case reflect.Float32:
|
||||
floatVal, err := strconv.ParseFloat(vals[0], 32)
|
||||
@@ -648,6 +711,17 @@ func FormatParams(params map[string][]string) (map[string]interface{}, error) {
|
||||
case reflect.Slice:
|
||||
// TODO: only string slices are supported right now
|
||||
out[key] = vals
|
||||
case reflect.Pointer:
|
||||
var b bool
|
||||
if field.Type() == reflect.TypeOf(&b) {
|
||||
boolVal, err := strconv.ParseBool(vals[0])
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("invalid bool value %s", vals)
|
||||
}
|
||||
out[key] = &boolVal
|
||||
} else {
|
||||
return nil, fmt.Errorf("unknown type %s for %s", field.Kind(), key)
|
||||
}
|
||||
default:
|
||||
return nil, fmt.Errorf("unknown type %s for %s", field.Kind(), key)
|
||||
}
|
||||
|
@@ -108,25 +108,27 @@ func TestDurationMarshalUnmarshal(t *testing.T) {
|
||||
}
|
||||
|
||||
func TestUseMmapParsingFromJSON(t *testing.T) {
|
||||
tr := true
|
||||
fa := false
|
||||
tests := []struct {
|
||||
name string
|
||||
req string
|
||||
exp TriState
|
||||
exp *bool
|
||||
}{
|
||||
{
|
||||
name: "Undefined",
|
||||
req: `{ }`,
|
||||
exp: TriStateUndefined,
|
||||
exp: nil,
|
||||
},
|
||||
{
|
||||
name: "True",
|
||||
req: `{ "use_mmap": true }`,
|
||||
exp: TriStateTrue,
|
||||
exp: &tr,
|
||||
},
|
||||
{
|
||||
name: "False",
|
||||
req: `{ "use_mmap": false }`,
|
||||
exp: TriStateFalse,
|
||||
exp: &fa,
|
||||
},
|
||||
}
|
||||
|
||||
@@ -144,50 +146,52 @@ func TestUseMmapParsingFromJSON(t *testing.T) {
|
||||
}
|
||||
|
||||
func TestUseMmapFormatParams(t *testing.T) {
|
||||
tr := true
|
||||
fa := false
|
||||
tests := []struct {
|
||||
name string
|
||||
req map[string][]string
|
||||
exp TriState
|
||||
exp *bool
|
||||
err error
|
||||
}{
|
||||
{
|
||||
name: "True",
|
||||
req: map[string][]string{
|
||||
"use_mmap": []string{"true"},
|
||||
"use_mmap": {"true"},
|
||||
},
|
||||
exp: TriStateTrue,
|
||||
exp: &tr,
|
||||
err: nil,
|
||||
},
|
||||
{
|
||||
name: "False",
|
||||
req: map[string][]string{
|
||||
"use_mmap": []string{"false"},
|
||||
"use_mmap": {"false"},
|
||||
},
|
||||
exp: TriStateFalse,
|
||||
exp: &fa,
|
||||
err: nil,
|
||||
},
|
||||
{
|
||||
name: "Numeric True",
|
||||
req: map[string][]string{
|
||||
"use_mmap": []string{"1"},
|
||||
"use_mmap": {"1"},
|
||||
},
|
||||
exp: TriStateTrue,
|
||||
exp: &tr,
|
||||
err: nil,
|
||||
},
|
||||
{
|
||||
name: "Numeric False",
|
||||
req: map[string][]string{
|
||||
"use_mmap": []string{"0"},
|
||||
"use_mmap": {"0"},
|
||||
},
|
||||
exp: TriStateFalse,
|
||||
exp: &fa,
|
||||
err: nil,
|
||||
},
|
||||
{
|
||||
name: "invalid string",
|
||||
req: map[string][]string{
|
||||
"use_mmap": []string{"foo"},
|
||||
"use_mmap": {"foo"},
|
||||
},
|
||||
exp: TriStateUndefined,
|
||||
exp: nil,
|
||||
err: fmt.Errorf("invalid bool value [foo]"),
|
||||
},
|
||||
}
|
||||
@@ -195,12 +199,35 @@ func TestUseMmapFormatParams(t *testing.T) {
|
||||
for _, test := range tests {
|
||||
t.Run(test.name, func(t *testing.T) {
|
||||
resp, err := FormatParams(test.req)
|
||||
require.Equal(t, err, test.err)
|
||||
require.Equal(t, test.err, err)
|
||||
respVal, ok := resp["use_mmap"]
|
||||
if test.exp != TriStateUndefined {
|
||||
if test.exp != nil {
|
||||
assert.True(t, ok, "resp: %v", resp)
|
||||
assert.Equal(t, test.exp, respVal)
|
||||
assert.Equal(t, *test.exp, *respVal.(*bool))
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestMessage_UnmarshalJSON(t *testing.T) {
|
||||
tests := []struct {
|
||||
input string
|
||||
expected string
|
||||
}{
|
||||
{`{"role": "USER", "content": "Hello!"}`, "user"},
|
||||
{`{"role": "System", "content": "Initialization complete."}`, "system"},
|
||||
{`{"role": "assistant", "content": "How can I help you?"}`, "assistant"},
|
||||
{`{"role": "TOOl", "content": "Access granted."}`, "tool"},
|
||||
}
|
||||
|
||||
for _, test := range tests {
|
||||
var msg Message
|
||||
if err := json.Unmarshal([]byte(test.input), &msg); err != nil {
|
||||
t.Errorf("Unexpected error: %v", err)
|
||||
}
|
||||
|
||||
if msg.Role != test.expected {
|
||||
t.Errorf("role not lowercased: got %v, expected %v", msg.Role, test.expected)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@@ -14,7 +14,7 @@ import (
|
||||
func InitLogging() {
|
||||
level := slog.LevelInfo
|
||||
|
||||
if envconfig.Debug {
|
||||
if envconfig.Debug() {
|
||||
level = slog.LevelDebug
|
||||
}
|
||||
|
||||
|
@@ -127,6 +127,10 @@ Type: filesandordirs; Name: "{%USERPROFILE}\.ollama\models"
|
||||
Type: filesandordirs; Name: "{%USERPROFILE}\.ollama\history"
|
||||
; NOTE: if the user has a custom OLLAMA_MODELS it will be preserved
|
||||
|
||||
[InstallDelete]
|
||||
Type: filesandordirs; Name: "{%TEMP}\ollama*"
|
||||
Type: filesandordirs; Name: "{%LOCALAPPDATA}\Programs\Ollama"
|
||||
|
||||
[Messages]
|
||||
WizardReady=Ollama Windows Preview
|
||||
ReadyLabel1=%nLet's get you up and running with your own large language models.
|
||||
@@ -134,7 +138,7 @@ SetupAppRunningError=Another Ollama installer is running.%n%nPlease cancel or fi
|
||||
|
||||
|
||||
;FinishedHeadingLabel=Run your first model
|
||||
;FinishedLabel=%nRun this command in a PowerShell or cmd terminal.%n%n%n ollama run llama3
|
||||
;FinishedLabel=%nRun this command in a PowerShell or cmd terminal.%n%n%n ollama run llama3.1
|
||||
;ClickFinish=%n
|
||||
|
||||
[Registry]
|
||||
|
@@ -4,5 +4,5 @@ write-host "Welcome to Ollama!"
|
||||
write-host ""
|
||||
write-host "Run your first model:"
|
||||
write-host ""
|
||||
write-host "`tollama run llama3"
|
||||
write-host "`tollama run llama3.1"
|
||||
write-host ""
|
23
cmd/cmd.go
23
cmd/cmd.go
@@ -362,9 +362,24 @@ func RunHandler(cmd *cobra.Command, args []string) error {
|
||||
|
||||
opts.MultiModal = slices.Contains(info.Details.Families, "clip")
|
||||
opts.ParentModel = info.Details.ParentModel
|
||||
opts.Messages = append(opts.Messages, info.Messages...)
|
||||
|
||||
if interactive {
|
||||
if err := loadModel(cmd, &opts); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
for _, msg := range info.Messages {
|
||||
switch msg.Role {
|
||||
case "user":
|
||||
fmt.Printf(">>> %s\n", msg.Content)
|
||||
case "assistant":
|
||||
state := &displayResponseState{}
|
||||
displayResponse(msg.Content, opts.WordWrap, state)
|
||||
fmt.Println()
|
||||
fmt.Println()
|
||||
}
|
||||
}
|
||||
|
||||
return generateInteractive(cmd, opts)
|
||||
}
|
||||
return generate(cmd, opts)
|
||||
@@ -843,7 +858,6 @@ type runOptions struct {
|
||||
WordWrap bool
|
||||
Format string
|
||||
System string
|
||||
Template string
|
||||
Images []api.ImageData
|
||||
Options map[string]interface{}
|
||||
MultiModal bool
|
||||
@@ -1037,7 +1051,6 @@ func generate(cmd *cobra.Command, opts runOptions) error {
|
||||
Images: opts.Images,
|
||||
Format: opts.Format,
|
||||
System: opts.System,
|
||||
Template: opts.Template,
|
||||
Options: opts.Options,
|
||||
KeepAlive: opts.KeepAlive,
|
||||
}
|
||||
@@ -1078,7 +1091,7 @@ func RunServer(cmd *cobra.Command, _ []string) error {
|
||||
return err
|
||||
}
|
||||
|
||||
ln, err := net.Listen("tcp", net.JoinHostPort(envconfig.Host.Host, envconfig.Host.Port))
|
||||
ln, err := net.Listen("tcp", envconfig.Host().Host)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
@@ -1343,10 +1356,10 @@ func NewCLI() *cobra.Command {
|
||||
envVars["OLLAMA_NUM_PARALLEL"],
|
||||
envVars["OLLAMA_NOPRUNE"],
|
||||
envVars["OLLAMA_ORIGINS"],
|
||||
envVars["OLLAMA_SCHED_SPREAD"],
|
||||
envVars["OLLAMA_TMPDIR"],
|
||||
envVars["OLLAMA_FLASH_ATTENTION"],
|
||||
envVars["OLLAMA_LLM_LIBRARY"],
|
||||
envVars["OLLAMA_MAX_VRAM"],
|
||||
})
|
||||
default:
|
||||
appendEnvDocs(cmd, envs)
|
||||
|
@@ -1,6 +1,7 @@
|
||||
package cmd
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
@@ -9,13 +10,14 @@ import (
|
||||
"path/filepath"
|
||||
"regexp"
|
||||
"slices"
|
||||
"sort"
|
||||
"strings"
|
||||
|
||||
"github.com/spf13/cobra"
|
||||
"golang.org/x/exp/maps"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/parser"
|
||||
"github.com/ollama/ollama/progress"
|
||||
"github.com/ollama/ollama/readline"
|
||||
"github.com/ollama/ollama/types/errtypes"
|
||||
@@ -27,7 +29,6 @@ const (
|
||||
MultilineNone MultilineState = iota
|
||||
MultilinePrompt
|
||||
MultilineSystem
|
||||
MultilineTemplate
|
||||
)
|
||||
|
||||
func loadModel(cmd *cobra.Command, opts *runOptions) error {
|
||||
@@ -47,29 +48,10 @@ func loadModel(cmd *cobra.Command, opts *runOptions) error {
|
||||
KeepAlive: opts.KeepAlive,
|
||||
}
|
||||
|
||||
return client.Chat(cmd.Context(), chatReq, func(resp api.ChatResponse) error {
|
||||
p.StopAndClear()
|
||||
for _, msg := range opts.Messages {
|
||||
switch msg.Role {
|
||||
case "user":
|
||||
fmt.Printf(">>> %s\n", msg.Content)
|
||||
case "assistant":
|
||||
state := &displayResponseState{}
|
||||
displayResponse(msg.Content, opts.WordWrap, state)
|
||||
fmt.Println()
|
||||
fmt.Println()
|
||||
}
|
||||
}
|
||||
return nil
|
||||
})
|
||||
return client.Chat(cmd.Context(), chatReq, func(api.ChatResponse) error { return nil })
|
||||
}
|
||||
|
||||
func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
err := loadModel(cmd, &opts)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
usage := func() {
|
||||
fmt.Fprintln(os.Stderr, "Available Commands:")
|
||||
fmt.Fprintln(os.Stderr, " /set Set session variables")
|
||||
@@ -94,7 +76,6 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
fmt.Fprintln(os.Stderr, "Available Commands:")
|
||||
fmt.Fprintln(os.Stderr, " /set parameter ... Set a parameter")
|
||||
fmt.Fprintln(os.Stderr, " /set system <string> Set system message")
|
||||
fmt.Fprintln(os.Stderr, " /set template <string> Set prompt template")
|
||||
fmt.Fprintln(os.Stderr, " /set history Enable history")
|
||||
fmt.Fprintln(os.Stderr, " /set nohistory Disable history")
|
||||
fmt.Fprintln(os.Stderr, " /set wordwrap Enable wordwrap")
|
||||
@@ -140,6 +121,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
fmt.Fprintln(os.Stderr, " /set parameter num_predict <int> Max number of tokens to predict")
|
||||
fmt.Fprintln(os.Stderr, " /set parameter top_k <int> Pick from top k num of tokens")
|
||||
fmt.Fprintln(os.Stderr, " /set parameter top_p <float> Pick token based on sum of probabilities")
|
||||
fmt.Fprintln(os.Stderr, " /set parameter min_p <float> Pick token based on top token probability * min_p")
|
||||
fmt.Fprintln(os.Stderr, " /set parameter num_ctx <int> Set the context size")
|
||||
fmt.Fprintln(os.Stderr, " /set parameter temperature <float> Set creativity level")
|
||||
fmt.Fprintln(os.Stderr, " /set parameter repeat_penalty <float> How strongly to penalize repetitions")
|
||||
@@ -159,7 +141,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
return err
|
||||
}
|
||||
|
||||
if envconfig.NoHistory {
|
||||
if envconfig.NoHistory() {
|
||||
scanner.HistoryDisable()
|
||||
}
|
||||
|
||||
@@ -204,10 +186,6 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
opts.Messages = append(opts.Messages, api.Message{Role: "system", Content: opts.System})
|
||||
fmt.Println("Set system message.")
|
||||
sb.Reset()
|
||||
case MultilineTemplate:
|
||||
opts.Template = sb.String()
|
||||
fmt.Println("Set prompt template.")
|
||||
sb.Reset()
|
||||
}
|
||||
|
||||
multiline = MultilineNone
|
||||
@@ -326,17 +304,13 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
}
|
||||
fmt.Printf("Set parameter '%s' to '%s'\n", args[2], strings.Join(params, ", "))
|
||||
opts.Options[args[2]] = fp[args[2]]
|
||||
case "system", "template":
|
||||
case "system":
|
||||
if len(args) < 3 {
|
||||
usageSet()
|
||||
continue
|
||||
}
|
||||
|
||||
if args[1] == "system" {
|
||||
multiline = MultilineSystem
|
||||
} else if args[1] == "template" {
|
||||
multiline = MultilineTemplate
|
||||
}
|
||||
multiline = MultilineSystem
|
||||
|
||||
line := strings.Join(args[2:], " ")
|
||||
line, ok := strings.CutPrefix(line, `"""`)
|
||||
@@ -356,23 +330,17 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
continue
|
||||
}
|
||||
|
||||
if args[1] == "system" {
|
||||
opts.System = sb.String() // for display in modelfile
|
||||
newMessage := api.Message{Role: "system", Content: sb.String()}
|
||||
// Check if the slice is not empty and the last message is from 'system'
|
||||
if len(opts.Messages) > 0 && opts.Messages[len(opts.Messages)-1].Role == "system" {
|
||||
// Replace the last message
|
||||
opts.Messages[len(opts.Messages)-1] = newMessage
|
||||
} else {
|
||||
opts.Messages = append(opts.Messages, newMessage)
|
||||
}
|
||||
fmt.Println("Set system message.")
|
||||
sb.Reset()
|
||||
} else if args[1] == "template" {
|
||||
opts.Template = sb.String()
|
||||
fmt.Println("Set prompt template.")
|
||||
sb.Reset()
|
||||
opts.System = sb.String() // for display in modelfile
|
||||
newMessage := api.Message{Role: "system", Content: sb.String()}
|
||||
// Check if the slice is not empty and the last message is from 'system'
|
||||
if len(opts.Messages) > 0 && opts.Messages[len(opts.Messages)-1].Role == "system" {
|
||||
// Replace the last message
|
||||
opts.Messages[len(opts.Messages)-1] = newMessage
|
||||
} else {
|
||||
opts.Messages = append(opts.Messages, newMessage)
|
||||
}
|
||||
fmt.Println("Set system message.")
|
||||
sb.Reset()
|
||||
|
||||
sb.Reset()
|
||||
continue
|
||||
@@ -391,10 +359,9 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
return err
|
||||
}
|
||||
req := &api.ShowRequest{
|
||||
Name: opts.Model,
|
||||
System: opts.System,
|
||||
Template: opts.Template,
|
||||
Options: opts.Options,
|
||||
Name: opts.Model,
|
||||
System: opts.System,
|
||||
Options: opts.Options,
|
||||
}
|
||||
resp, err := client.Show(cmd.Context(), req)
|
||||
if err != nil {
|
||||
@@ -437,12 +404,9 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
fmt.Println("No system message was specified for this model.")
|
||||
}
|
||||
case "template":
|
||||
switch {
|
||||
case opts.Template != "":
|
||||
fmt.Println(opts.Template + "\n")
|
||||
case resp.Template != "":
|
||||
if resp.Template != "" {
|
||||
fmt.Println(resp.Template)
|
||||
default:
|
||||
} else {
|
||||
fmt.Println("No prompt template was specified for this model.")
|
||||
}
|
||||
default:
|
||||
@@ -526,35 +490,35 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
}
|
||||
|
||||
func buildModelfile(opts runOptions) string {
|
||||
var mf strings.Builder
|
||||
model := opts.ParentModel
|
||||
if model == "" {
|
||||
model = opts.Model
|
||||
}
|
||||
fmt.Fprintf(&mf, "FROM %s\n", model)
|
||||
var f parser.File
|
||||
f.Commands = append(f.Commands, parser.Command{Name: "model", Args: cmp.Or(opts.ParentModel, opts.Model)})
|
||||
|
||||
if opts.System != "" {
|
||||
fmt.Fprintf(&mf, "SYSTEM \"\"\"%s\"\"\"\n", opts.System)
|
||||
f.Commands = append(f.Commands, parser.Command{Name: "system", Args: opts.System})
|
||||
}
|
||||
|
||||
if opts.Template != "" {
|
||||
fmt.Fprintf(&mf, "TEMPLATE \"\"\"%s\"\"\"\n", opts.Template)
|
||||
}
|
||||
|
||||
keys := make([]string, 0)
|
||||
for k := range opts.Options {
|
||||
keys = append(keys, k)
|
||||
}
|
||||
sort.Strings(keys)
|
||||
keys := maps.Keys(opts.Options)
|
||||
slices.Sort(keys)
|
||||
for _, k := range keys {
|
||||
fmt.Fprintf(&mf, "PARAMETER %s %v\n", k, opts.Options[k])
|
||||
v := opts.Options[k]
|
||||
var cmds []parser.Command
|
||||
switch t := v.(type) {
|
||||
case []string:
|
||||
for _, s := range t {
|
||||
cmds = append(cmds, parser.Command{Name: k, Args: s})
|
||||
}
|
||||
default:
|
||||
cmds = append(cmds, parser.Command{Name: k, Args: fmt.Sprintf("%v", t)})
|
||||
}
|
||||
|
||||
f.Commands = append(f.Commands, cmds...)
|
||||
}
|
||||
fmt.Fprintln(&mf)
|
||||
|
||||
for _, msg := range opts.Messages {
|
||||
fmt.Fprintf(&mf, "MESSAGE %s \"\"\"%s\"\"\"\n", msg.Role, msg.Content)
|
||||
f.Commands = append(f.Commands, parser.Command{Name: "message", Args: fmt.Sprintf("%s: %s", msg.Role, msg.Content)})
|
||||
}
|
||||
|
||||
return mf.String()
|
||||
return f.String()
|
||||
}
|
||||
|
||||
func normalizeFilePath(fp string) string {
|
||||
|
@@ -1,12 +1,10 @@
|
||||
package cmd
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"testing"
|
||||
"text/template"
|
||||
|
||||
"github.com/google/go-cmp/cmp"
|
||||
"github.com/stretchr/testify/assert"
|
||||
"github.com/stretchr/testify/require"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
)
|
||||
@@ -57,61 +55,53 @@ d:\path with\spaces\seven.svg inbetween7 c:\users\jdoe\eight.png inbetween8
|
||||
|
||||
func TestModelfileBuilder(t *testing.T) {
|
||||
opts := runOptions{
|
||||
Model: "hork",
|
||||
System: "You are part horse and part shark, but all hork. Do horklike things",
|
||||
Template: "This is a template.",
|
||||
Model: "hork",
|
||||
System: "You are part horse and part shark, but all hork. Do horklike things",
|
||||
Messages: []api.Message{
|
||||
{Role: "user", Content: "Hey there hork!"},
|
||||
{Role: "assistant", Content: "Yes it is true, I am half horse, half shark."},
|
||||
},
|
||||
Options: map[string]interface{}{},
|
||||
Options: map[string]any{
|
||||
"temperature": 0.9,
|
||||
"seed": 42,
|
||||
"penalize_newline": false,
|
||||
"stop": []string{"hi", "there"},
|
||||
},
|
||||
}
|
||||
|
||||
opts.Options["temperature"] = 0.9
|
||||
opts.Options["seed"] = 42
|
||||
opts.Options["penalize_newline"] = false
|
||||
opts.Options["stop"] = []string{"hi", "there"}
|
||||
|
||||
mf := buildModelfile(opts)
|
||||
expectedModelfile := `FROM {{.Model}}
|
||||
SYSTEM """{{.System}}"""
|
||||
TEMPLATE """{{.Template}}"""
|
||||
t.Run("model", func(t *testing.T) {
|
||||
expect := `FROM hork
|
||||
SYSTEM You are part horse and part shark, but all hork. Do horklike things
|
||||
PARAMETER penalize_newline false
|
||||
PARAMETER seed 42
|
||||
PARAMETER stop [hi there]
|
||||
PARAMETER stop hi
|
||||
PARAMETER stop there
|
||||
PARAMETER temperature 0.9
|
||||
|
||||
MESSAGE user """Hey there hork!"""
|
||||
MESSAGE assistant """Yes it is true, I am half horse, half shark."""
|
||||
MESSAGE user Hey there hork!
|
||||
MESSAGE assistant Yes it is true, I am half horse, half shark.
|
||||
`
|
||||
|
||||
tmpl, err := template.New("").Parse(expectedModelfile)
|
||||
require.NoError(t, err)
|
||||
actual := buildModelfile(opts)
|
||||
if diff := cmp.Diff(expect, actual); diff != "" {
|
||||
t.Errorf("mismatch (-want +got):\n%s", diff)
|
||||
}
|
||||
})
|
||||
|
||||
var buf bytes.Buffer
|
||||
err = tmpl.Execute(&buf, opts)
|
||||
require.NoError(t, err)
|
||||
assert.Equal(t, buf.String(), mf)
|
||||
|
||||
opts.ParentModel = "horseshark"
|
||||
mf = buildModelfile(opts)
|
||||
expectedModelfile = `FROM {{.ParentModel}}
|
||||
SYSTEM """{{.System}}"""
|
||||
TEMPLATE """{{.Template}}"""
|
||||
t.Run("parent model", func(t *testing.T) {
|
||||
opts.ParentModel = "horseshark"
|
||||
expect := `FROM horseshark
|
||||
SYSTEM You are part horse and part shark, but all hork. Do horklike things
|
||||
PARAMETER penalize_newline false
|
||||
PARAMETER seed 42
|
||||
PARAMETER stop [hi there]
|
||||
PARAMETER stop hi
|
||||
PARAMETER stop there
|
||||
PARAMETER temperature 0.9
|
||||
|
||||
MESSAGE user """Hey there hork!"""
|
||||
MESSAGE assistant """Yes it is true, I am half horse, half shark."""
|
||||
MESSAGE user Hey there hork!
|
||||
MESSAGE assistant Yes it is true, I am half horse, half shark.
|
||||
`
|
||||
|
||||
tmpl, err = template.New("").Parse(expectedModelfile)
|
||||
require.NoError(t, err)
|
||||
|
||||
var parentBuf bytes.Buffer
|
||||
err = tmpl.Execute(&parentBuf, opts)
|
||||
require.NoError(t, err)
|
||||
assert.Equal(t, parentBuf.String(), mf)
|
||||
actual := buildModelfile(opts)
|
||||
if diff := cmp.Diff(expect, actual); diff != "" {
|
||||
t.Errorf("mismatch (-want +got):\n%s", diff)
|
||||
}
|
||||
})
|
||||
}
|
||||
|
@@ -71,6 +71,11 @@ func (m *MistralModel) WriteGGUF(ws io.WriteSeeker) error {
|
||||
"tokenizer.ggml.unknown_token_id": uint32(0),
|
||||
}
|
||||
|
||||
if m.Params.HeadDimension > 0 {
|
||||
kv["llama.attention.key_length"] = uint32(m.Params.HeadDimension)
|
||||
kv["llama.attention.value_length"] = uint32(m.Params.HeadDimension)
|
||||
}
|
||||
|
||||
return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors)
|
||||
}
|
||||
|
||||
|
204
docs/api.md
204
docs/api.md
@@ -40,6 +40,7 @@ Generate a response for a given prompt with a provided model. This is a streamin
|
||||
|
||||
- `model`: (required) the [model name](#model-names)
|
||||
- `prompt`: the prompt to generate a response for
|
||||
- `suffix`: the text after the model response
|
||||
- `images`: (optional) a list of base64-encoded images (for multimodal models such as `llava`)
|
||||
|
||||
Advanced parameters (optional):
|
||||
@@ -57,7 +58,8 @@ Advanced parameters (optional):
|
||||
|
||||
Enable JSON mode by setting the `format` parameter to `json`. This will structure the response as a valid JSON object. See the JSON mode [example](#request-json-mode) below.
|
||||
|
||||
> Note: it's important to instruct the model to use JSON in the `prompt`. Otherwise, the model may generate large amounts whitespace.
|
||||
> [!IMPORTANT]
|
||||
> It's important to instruct the model to use JSON in the `prompt`. Otherwise, the model may generate large amounts whitespace.
|
||||
|
||||
### Examples
|
||||
|
||||
@@ -148,8 +150,44 @@ If `stream` is set to `false`, the response will be a single JSON object:
|
||||
}
|
||||
```
|
||||
|
||||
#### Request (with suffix)
|
||||
|
||||
##### Request
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/generate -d '{
|
||||
"model": "codellama:code",
|
||||
"prompt": "def compute_gcd(a, b):",
|
||||
"suffix": " return result",
|
||||
"options": {
|
||||
"temperature": 0
|
||||
},
|
||||
"stream": false
|
||||
}'
|
||||
```
|
||||
|
||||
##### Response
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "codellama:code",
|
||||
"created_at": "2024-07-22T20:47:51.147561Z",
|
||||
"response": "\n if a == 0:\n return b\n else:\n return compute_gcd(b % a, a)\n\ndef compute_lcm(a, b):\n result = (a * b) / compute_gcd(a, b)\n",
|
||||
"done": true,
|
||||
"done_reason": "stop",
|
||||
"context": [...],
|
||||
"total_duration": 1162761250,
|
||||
"load_duration": 6683708,
|
||||
"prompt_eval_count": 17,
|
||||
"prompt_eval_duration": 201222000,
|
||||
"eval_count": 63,
|
||||
"eval_duration": 953997000
|
||||
}
|
||||
```
|
||||
|
||||
#### Request (JSON mode)
|
||||
|
||||
> [!IMPORTANT]
|
||||
> When `format` is set to `json`, the output will always be a well-formed JSON object. It's important to also instruct the model to respond in JSON.
|
||||
|
||||
##### Request
|
||||
@@ -298,6 +336,7 @@ curl http://localhost:11434/api/generate -d '{
|
||||
"num_predict": 100,
|
||||
"top_k": 20,
|
||||
"top_p": 0.9,
|
||||
"min_p": 0.0,
|
||||
"tfs_z": 0.5,
|
||||
"typical_p": 0.7,
|
||||
"repeat_last_n": 33,
|
||||
@@ -380,12 +419,14 @@ Generate the next message in a chat with a provided model. This is a streaming e
|
||||
|
||||
- `model`: (required) the [model name](#model-names)
|
||||
- `messages`: the messages of the chat, this can be used to keep a chat memory
|
||||
- `tools`: tools for the model to use if supported. Requires `stream` to be set to `false`
|
||||
|
||||
The `message` object has the following fields:
|
||||
|
||||
- `role`: the role of the message, either `system`, `user` or `assistant`
|
||||
- `role`: the role of the message, either `system`, `user`, `assistant`, or `tool`
|
||||
- `content`: the content of the message
|
||||
- `images` (optional): a list of images to include in the message (for multimodal models such as `llava`)
|
||||
- `tool_calls` (optional): a list of tools the model wants to use
|
||||
|
||||
Advanced parameters (optional):
|
||||
|
||||
@@ -546,7 +587,7 @@ Final response:
|
||||
|
||||
##### Request
|
||||
|
||||
Send a chat message with a conversation history.
|
||||
Send a chat message with images. The images should be provided as an array, with the individual images encoded in Base64.
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/chat -d '{
|
||||
@@ -622,6 +663,79 @@ curl http://localhost:11434/api/chat -d '{
|
||||
}
|
||||
```
|
||||
|
||||
#### Chat request (with tools)
|
||||
|
||||
##### Request
|
||||
|
||||
```
|
||||
curl http://localhost:11434/api/chat -d '{
|
||||
"model": "mistral",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "What is the weather today in Paris?"
|
||||
}
|
||||
],
|
||||
"stream": false,
|
||||
"tools": [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_current_weather",
|
||||
"description": "Get the current weather for a location",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"location": {
|
||||
"type": "string",
|
||||
"description": "The location to get the weather for, e.g. San Francisco, CA"
|
||||
},
|
||||
"format": {
|
||||
"type": "string",
|
||||
"description": "The format to return the weather in, e.g. 'celsius' or 'fahrenheit'",
|
||||
"enum": ["celsius", "fahrenheit"]
|
||||
}
|
||||
},
|
||||
"required": ["location", "format"]
|
||||
}
|
||||
}
|
||||
}
|
||||
]
|
||||
}'
|
||||
```
|
||||
|
||||
##### Response
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "mistral:7b-instruct-v0.3-q4_K_M",
|
||||
"created_at": "2024-07-22T20:33:28.123648Z",
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": "",
|
||||
"tool_calls": [
|
||||
{
|
||||
"function": {
|
||||
"name": "get_current_weather",
|
||||
"arguments": {
|
||||
"format": "celsius",
|
||||
"location": "Paris, FR"
|
||||
}
|
||||
}
|
||||
}
|
||||
]
|
||||
},
|
||||
"done_reason": "stop",
|
||||
"done": true,
|
||||
"total_duration": 885095291,
|
||||
"load_duration": 3753500,
|
||||
"prompt_eval_count": 122,
|
||||
"prompt_eval_duration": 328493000,
|
||||
"eval_count": 33,
|
||||
"eval_duration": 552222000
|
||||
}
|
||||
```
|
||||
|
||||
## Create a Model
|
||||
|
||||
```shell
|
||||
@@ -1026,7 +1140,7 @@ If `stream` is set to `false`, then the response is a single JSON object:
|
||||
## Generate Embeddings
|
||||
|
||||
```shell
|
||||
POST /api/embeddings
|
||||
POST /api/embed
|
||||
```
|
||||
|
||||
Generate embeddings from a model
|
||||
@@ -1034,10 +1148,11 @@ Generate embeddings from a model
|
||||
### Parameters
|
||||
|
||||
- `model`: name of model to generate embeddings from
|
||||
- `prompt`: text to generate embeddings for
|
||||
- `input`: text or list of text to generate embeddings for
|
||||
|
||||
Advanced parameters:
|
||||
|
||||
- `truncate`: truncates the end of each input to fit within context length. Returns error if `false` and context length is exceeded. Defaults to `true`
|
||||
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
|
||||
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
|
||||
|
||||
@@ -1046,9 +1161,9 @@ Advanced parameters:
|
||||
#### Request
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/embeddings -d '{
|
||||
curl http://localhost:11434/api/embed -d '{
|
||||
"model": "all-minilm",
|
||||
"prompt": "Here is an article about llamas..."
|
||||
"input": "Why is the sky blue?"
|
||||
}'
|
||||
```
|
||||
|
||||
@@ -1056,10 +1171,35 @@ curl http://localhost:11434/api/embeddings -d '{
|
||||
|
||||
```json
|
||||
{
|
||||
"embedding": [
|
||||
0.5670403838157654, 0.009260174818336964, 0.23178744316101074, -0.2916173040866852, -0.8924556970596313,
|
||||
0.8785552978515625, -0.34576427936553955, 0.5742510557174683, -0.04222835972905159, -0.137906014919281
|
||||
]
|
||||
"model": "all-minilm",
|
||||
"embeddings": [[
|
||||
0.010071029, -0.0017594862, 0.05007221, 0.04692972, 0.054916814,
|
||||
0.008599704, 0.105441414, -0.025878139, 0.12958129, 0.031952348
|
||||
]]
|
||||
}
|
||||
```
|
||||
|
||||
#### Request (Multiple input)
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/embed -d '{
|
||||
"model": "all-minilm",
|
||||
"input": ["Why is the sky blue?", "Why is the grass green?"]
|
||||
}'
|
||||
```
|
||||
|
||||
#### Response
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "all-minilm",
|
||||
"embeddings": [[
|
||||
0.010071029, -0.0017594862, 0.05007221, 0.04692972, 0.054916814,
|
||||
0.008599704, 0.105441414, -0.025878139, 0.12958129, 0.031952348
|
||||
],[
|
||||
-0.0098027075, 0.06042469, 0.025257962, -0.006364387, 0.07272725,
|
||||
0.017194884, 0.09032035, -0.051705178, 0.09951512, 0.09072481
|
||||
]]
|
||||
}
|
||||
```
|
||||
|
||||
@@ -1106,3 +1246,45 @@ A single JSON object will be returned.
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
## Generate Embedding
|
||||
|
||||
> Note: this endpoint has been superseded by `/api/embed`
|
||||
|
||||
```shell
|
||||
POST /api/embeddings
|
||||
```
|
||||
|
||||
Generate embeddings from a model
|
||||
|
||||
### Parameters
|
||||
|
||||
- `model`: name of model to generate embeddings from
|
||||
- `prompt`: text to generate embeddings for
|
||||
|
||||
Advanced parameters:
|
||||
|
||||
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
|
||||
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
|
||||
|
||||
### Examples
|
||||
|
||||
#### Request
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/embeddings -d '{
|
||||
"model": "all-minilm",
|
||||
"prompt": "Here is an article about llamas..."
|
||||
}'
|
||||
```
|
||||
|
||||
#### Response
|
||||
|
||||
```json
|
||||
{
|
||||
"embedding": [
|
||||
0.5670403838157654, 0.009260174818336964, 0.23178744316101074, -0.2916173040866852, -0.8924556970596313,
|
||||
0.8785552978515625, -0.34576427936553955, 0.5742510557174683, -0.04222835972905159, -0.137906014919281
|
||||
]
|
||||
}
|
||||
```
|
||||
|
@@ -104,7 +104,7 @@ like to use. For example, to compile an optimized binary for an Intel i9-9880H,
|
||||
you might use:
|
||||
|
||||
```
|
||||
OLLAMA_CUSTOM_CPU_DEFS="-DLLAMA_AVX=on -DLLAMA_AVX2=on -DLLAMA_F16C=on -DLLAMA_FMA=on" go generate ./...
|
||||
OLLAMA_CUSTOM_CPU_DEFS="-DGGML_AVX=on -DGGML_AVX2=on -DGGML_F16C=on -DGGML_FMA=on" go generate ./...
|
||||
go build .
|
||||
```
|
||||
|
||||
|
@@ -63,7 +63,7 @@ docker run -d --device /dev/kfd --device /dev/dri -v ollama:/root/.ollama -p 114
|
||||
Now you can run a model:
|
||||
|
||||
```
|
||||
docker exec -it ollama ollama run llama3
|
||||
docker exec -it ollama ollama run llama3.1
|
||||
```
|
||||
|
||||
### Try different models
|
||||
|
10
docs/faq.md
10
docs/faq.md
@@ -227,7 +227,7 @@ curl http://localhost:11434/api/chat -d '{"model": "mistral"}'
|
||||
|
||||
To preload a model using the CLI, use the command:
|
||||
```shell
|
||||
ollama run llama3 ""
|
||||
ollama run llama3.1 ""
|
||||
```
|
||||
|
||||
## How do I keep a model loaded in memory or make it unload immediately?
|
||||
@@ -266,8 +266,14 @@ If there is insufficient available memory to load a new model request while one
|
||||
|
||||
Parallel request processing for a given model results in increasing the context size by the number of parallel requests. For example, a 2K context with 4 parallel requests will result in an 8K context and additional memory allocation.
|
||||
|
||||
The following server settings may be used to adjust how Ollama handles concurrent requests:
|
||||
The following server settings may be used to adjust how Ollama handles concurrent requests on most platforms:
|
||||
|
||||
- `OLLAMA_MAX_LOADED_MODELS` - The maximum number of models that can be loaded concurrently provided they fit in available memory. The default is 3 * the number of GPUs or 3 for CPU inference.
|
||||
- `OLLAMA_NUM_PARALLEL` - The maximum number of parallel requests each model will process at the same time. The default will auto-select either 4 or 1 based on available memory.
|
||||
- `OLLAMA_MAX_QUEUE` - The maximum number of requests Ollama will queue when busy before rejecting additional requests. The default is 512
|
||||
|
||||
Note: Windows with Radeon GPUs currently default to 1 model maximum due to limitations in ROCm v5.7 for available VRAM reporting. Once ROCm v6.2 is available, Windows Radeon will follow the defaults above. You may enable concurrent model loads on Radeon on Windows, but ensure you don't load more models than will fit into your GPUs VRAM.
|
||||
|
||||
## How does Ollama load models on multiple GPUs?
|
||||
|
||||
Installing multiple GPUs of the same brand can be a great way to increase your available VRAM to load larger models. When you load a new model, Ollama evaluates the required VRAM for the model against what is currently available. If the model will entirely fit on any single GPU, Ollama will load the model on that GPU. This typically provides the best performance as it reduces the amount of data transfering across the PCI bus during inference. If the model does not fit entirely on one GPU, then it will be spread across all the available GPUs.
|
15
docs/gpu.md
15
docs/gpu.md
@@ -46,13 +46,24 @@ sudo modprobe nvidia_uvm`
|
||||
|
||||
## AMD Radeon
|
||||
Ollama supports the following AMD GPUs:
|
||||
|
||||
### Linux Support
|
||||
| Family | Cards and accelerators |
|
||||
| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| AMD Radeon RX | `7900 XTX` `7900 XT` `7900 GRE` `7800 XT` `7700 XT` `7600 XT` `7600` `6950 XT` `6900 XTX` `6900XT` `6800 XT` `6800` `Vega 64` `Vega 56` |
|
||||
| AMD Radeon PRO | `W7900` `W7800` `W7700` `W7600` `W7500` `W6900X` `W6800X Duo` `W6800X` `W6800` `V620` `V420` `V340` `V320` `Vega II Duo` `Vega II` `VII` `SSG` |
|
||||
| AMD Instinct | `MI300X` `MI300A` `MI300` `MI250X` `MI250` `MI210` `MI200` `MI100` `MI60` `MI50` |
|
||||
|
||||
### Overrides
|
||||
### Windows Support
|
||||
With ROCm v6.1, the following GPUs are supported on Windows.
|
||||
|
||||
| Family | Cards and accelerators |
|
||||
| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| AMD Radeon RX | `7900 XTX` `7900 XT` `7900 GRE` `7800 XT` `7700 XT` `7600 XT` `7600` `6950 XT` `6900 XTX` `6900XT` `6800 XT` `6800` |
|
||||
| AMD Radeon PRO | `W7900` `W7800` `W7700` `W7600` `W7500` `W6900X` `W6800X Duo` `W6800X` `W6800` `V620` |
|
||||
|
||||
|
||||
### Overrides on Linux
|
||||
Ollama leverages the AMD ROCm library, which does not support all AMD GPUs. In
|
||||
some cases you can force the system to try to use a similar LLVM target that is
|
||||
close. For example The Radeon RX 5400 is `gfx1034` (also known as 10.3.4)
|
||||
@@ -63,7 +74,7 @@ would set `HSA_OVERRIDE_GFX_VERSION="10.3.0"` as an environment variable for the
|
||||
server. If you have an unsupported AMD GPU you can experiment using the list of
|
||||
supported types below.
|
||||
|
||||
At this time, the known supported GPU types are the following LLVM Targets.
|
||||
At this time, the known supported GPU types on linux are the following LLVM Targets.
|
||||
This table shows some example GPUs that map to these LLVM targets:
|
||||
| **LLVM Target** | **An Example GPU** |
|
||||
|-----------------|---------------------|
|
||||
|
@@ -1,6 +1,7 @@
|
||||
# Ollama Model File
|
||||
|
||||
> Note: `Modelfile` syntax is in development
|
||||
> [!NOTE]
|
||||
> `Modelfile` syntax is in development
|
||||
|
||||
A model file is the blueprint to create and share models with Ollama.
|
||||
|
||||
@@ -140,6 +141,7 @@ PARAMETER <parameter> <parametervalue>
|
||||
| num_predict | Maximum number of tokens to predict when generating text. (Default: 128, -1 = infinite generation, -2 = fill context) | int | num_predict 42 |
|
||||
| top_k | Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40) | int | top_k 40 |
|
||||
| top_p | Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9) | float | top_p 0.9 |
|
||||
| min_p | Alternative to the top_p, and aims to ensure a balance of quality and variety. The parameter *p* represents the minimum probability for a token to be considered, relative to the probability of the most likely token. For example, with *p*=0.05 and the most likely token having a probability of 0.9, logits with a value less than 0.045 are filtered out. (Default: 0.0) | float | min_p 0.05 |
|
||||
|
||||
### TEMPLATE
|
||||
|
||||
|
@@ -65,6 +65,7 @@ curl http://localhost:11434/v1/chat/completions \
|
||||
}
|
||||
]
|
||||
}'
|
||||
|
||||
```
|
||||
|
||||
## Endpoints
|
||||
@@ -77,8 +78,8 @@ curl http://localhost:11434/v1/chat/completions \
|
||||
- [x] Streaming
|
||||
- [x] JSON mode
|
||||
- [x] Reproducible outputs
|
||||
- [x] Tools (streaming support coming soon)
|
||||
- [ ] Vision
|
||||
- [ ] Function calling
|
||||
- [ ] Logprobs
|
||||
|
||||
#### Supported request fields
|
||||
@@ -96,16 +97,12 @@ curl http://localhost:11434/v1/chat/completions \
|
||||
- [x] `temperature`
|
||||
- [x] `top_p`
|
||||
- [x] `max_tokens`
|
||||
- [ ] `logit_bias`
|
||||
- [ ] `tools`
|
||||
- [x] `tools`
|
||||
- [ ] `tool_choice`
|
||||
- [ ] `logit_bias`
|
||||
- [ ] `user`
|
||||
- [ ] `n`
|
||||
|
||||
#### Notes
|
||||
|
||||
- `usage.prompt_tokens` will be 0 for completions where prompt evaluation is cached
|
||||
|
||||
## Models
|
||||
|
||||
Before using a model, pull it locally `ollama pull`:
|
||||
|
173
docs/template.md
Normal file
173
docs/template.md
Normal file
@@ -0,0 +1,173 @@
|
||||
# Template
|
||||
|
||||
Ollama provides a powerful templating engine backed by Go's built-in templating engine to construct prompts for your large language model. This feature is a valuable tool to get the most out of your models.
|
||||
|
||||
## Basic Template Structure
|
||||
|
||||
A basic Go template consists of three main parts:
|
||||
|
||||
* **Layout**: The overall structure of the template.
|
||||
* **Variables**: Placeholders for dynamic data that will be replaced with actual values when the template is rendered.
|
||||
* **Functions**: Custom functions or logic that can be used to manipulate the template's content.
|
||||
|
||||
Here's an example of a simple chat template:
|
||||
|
||||
```gotmpl
|
||||
{{- range .Messages }}
|
||||
{{ .Role }}: {{ .Content }}
|
||||
{{- end }}
|
||||
```
|
||||
|
||||
In this example, we have:
|
||||
|
||||
* A basic messages structure (layout)
|
||||
* Three variables: `Messages`, `Role`, and `Content` (variables)
|
||||
* A custom function (action) that iterates over an array of items (`range .Messages`) and displays each item
|
||||
|
||||
## Adding templates to your model
|
||||
|
||||
By default, models imported into Ollama have a default template of `{{ .Prompt }}`, i.e. user inputs are sent verbatim to the LLM. This is appropriate for text or code completion models but lacks essential markers for chat or instruction models.
|
||||
|
||||
Omitting a template in these models puts the responsibility of correctly templating input onto the user. Adding a template allows users to easily get the best results from the model.
|
||||
|
||||
To add templates in your model, you'll need to add a `TEMPLATE` command to the Modelfile. Here's an example using Meta's Llama 3.
|
||||
|
||||
```dockerfile
|
||||
FROM llama3
|
||||
|
||||
TEMPLATE """{{- if .System }}<|start_header_id|>system<|end_header_id|>
|
||||
|
||||
{{ .System }}<|eot_id|>
|
||||
{{- end }}
|
||||
{{- range .Messages }}<|start_header_id|>{{ .Role }}<|end_header_id|>
|
||||
|
||||
{{ .Content }}<|eot_id|>
|
||||
{{- end }}<|start_header_id|>assistant<|end_header_id|>
|
||||
|
||||
"""
|
||||
```
|
||||
|
||||
## Variables
|
||||
|
||||
`System` (string): system prompt
|
||||
|
||||
`Prompt` (string): user prompt
|
||||
|
||||
`Response` (string): assistant response
|
||||
|
||||
`Suffix` (string): text inserted after the assistant's response
|
||||
|
||||
`Messages` (list): list of messages
|
||||
|
||||
`Messages[].Role` (string): role which can be one of `system`, `user`, `assistant`, or `tool`
|
||||
|
||||
`Messages[].Content` (string): message content
|
||||
|
||||
`Messages[].ToolCalls` (list): list of tools the model wants to call
|
||||
|
||||
`Messages[].ToolCalls[].Function` (object): function to call
|
||||
|
||||
`Messages[].ToolCalls[].Function.Name` (string): function name
|
||||
|
||||
`Messages[].ToolCalls[].Function.Arguments` (map): mapping of argument name to argument value
|
||||
|
||||
`Tools` (list): list of tools the model can access
|
||||
|
||||
`Tools[].Type` (string): schema type. `type` is always `function`
|
||||
|
||||
`Tools[].Function` (object): function definition
|
||||
|
||||
`Tools[].Function.Name` (string): function name
|
||||
|
||||
`Tools[].Function.Description` (string): function description
|
||||
|
||||
`Tools[].Function.Parameters` (object): function parameters
|
||||
|
||||
`Tools[].Function.Parameters.Type` (string): schema type. `type` is always `object`
|
||||
|
||||
`Tools[].Function.Parameters.Required` (list): list of required properties
|
||||
|
||||
`Tools[].Function.Parameters.Properties` (map): mapping of property name to property definition
|
||||
|
||||
`Tools[].Function.Parameters.Properties[].Type` (string): property type
|
||||
|
||||
`Tools[].Function.Parameters.Properties[].Description` (string): property description
|
||||
|
||||
`Tools[].Function.Parameters.Properties[].Enum` (list): list of valid values
|
||||
|
||||
## Tips and Best Practices
|
||||
|
||||
Keep the following tips and best practices in mind when working with Go templates:
|
||||
|
||||
* **Be mindful of dot**: Control flow structures like `range` and `with` changes the value `.`
|
||||
* **Out-of-scope variables**: Use `$.` to reference variables not currently in scope, starting from the root
|
||||
* **Whitespace control**: Use `-` to trim leading (`{{-`) and trailing (`-}}`) whitespace
|
||||
|
||||
## Examples
|
||||
|
||||
### Example Messages
|
||||
|
||||
#### ChatML
|
||||
|
||||
ChatML is a popular template format. It can be used for models such as Databrick's DBRX, Intel's Neural Chat, and Microsoft's Orca 2.
|
||||
|
||||
```gotmpl
|
||||
{{- if .System }}<|im_start|>system
|
||||
{{ .System }}<|im_end|>
|
||||
{{ end }}
|
||||
{{- range .Messages }}<|im_start|>{{ .Role }}
|
||||
{{ .Content }}<|im_end|>
|
||||
{{ end }}<|im_start|>assistant
|
||||
{{ else }}
|
||||
{{ if .System }}<|im_start|>system
|
||||
{{ .System }}<|im_end|>
|
||||
```
|
||||
|
||||
### Example Tools
|
||||
|
||||
Tools support can be added to a model by adding a `{{ .Tools }}` node to the template. This feature is useful for models trained to call external tools and can a powerful tool for retrieving real-time data or performing complex tasks.
|
||||
|
||||
#### Mistral
|
||||
|
||||
Mistral v0.3 and Mixtral 8x22B supports tool calling.
|
||||
|
||||
```gotmpl
|
||||
{{- range $index, $_ := .Messages }}
|
||||
{{- if eq .Role "user" }}
|
||||
{{- if and (le (len (slice $.Messages $index)) 2) $.Tools }}[AVAILABLE_TOOLS] {{ json $.Tools }}[/AVAILABLE_TOOLS]
|
||||
{{- end }}[INST] {{ if and (eq (len (slice $.Messages $index)) 1) $.System }}{{ $.System }}
|
||||
|
||||
{{ end }}{{ .Content }}[/INST]
|
||||
{{- else if eq .Role "assistant" }}
|
||||
{{- if .Content }} {{ .Content }}</s>
|
||||
{{- else if .ToolCalls }}[TOOL_CALLS] [
|
||||
{{- range .ToolCalls }}{"name": "{{ .Function.Name }}", "arguments": {{ json .Function.Arguments }}}
|
||||
{{- end }}]</s>
|
||||
{{- end }}
|
||||
{{- else if eq .Role "tool" }}[TOOL_RESULTS] {"content": {{ .Content }}}[/TOOL_RESULTS]
|
||||
{{- end }}
|
||||
{{- end }}
|
||||
```
|
||||
|
||||
### Example Fill-in-Middle
|
||||
|
||||
Fill-in-middle support can be added to a model by adding a `{{ .Suffix }}` node to the template. This feature is useful for models that are trained to generate text in the middle of user input, such as code completion models.
|
||||
|
||||
#### CodeLlama
|
||||
|
||||
CodeLlama [7B](https://ollama.com/library/codellama:7b-code) and [13B](https://ollama.com/library/codellama:13b-code) code completion models support fill-in-middle.
|
||||
|
||||
```gotmpl
|
||||
<PRE> {{ .Prompt }} <SUF>{{ .Suffix }} <MID>
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> CodeLlama 34B and 70B code completion and all instruct and Python fine-tuned models do not support fill-in-middle.
|
||||
|
||||
#### Codestral
|
||||
|
||||
Codestral [22B](https://ollama.com/library/codestral:22b) supports fill-in-middle.
|
||||
|
||||
```gotmpl
|
||||
[SUFFIX]{{ .Suffix }}[PREFIX] {{ .Prompt }}
|
||||
```
|
@@ -70,14 +70,18 @@ curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION="0.1.29" sh
|
||||
|
||||
If your system is configured with the "noexec" flag where Ollama stores its temporary executable files, you can specify an alternate location by setting OLLAMA_TMPDIR to a location writable by the user ollama runs as. For example OLLAMA_TMPDIR=/usr/share/ollama/
|
||||
|
||||
## Container fails to run on NVIDIA GPU
|
||||
## NVIDIA GPU Discovery
|
||||
|
||||
Make sure you've set up the container runtime first as described in [docker.md](./docker.md)
|
||||
When Ollama starts up, it takes inventory of the GPUs present in the system to determine compatibility and how much VRAM is available. Sometimes this discovery can fail to find your GPUs. In general, running the latest driver will yield the best results.
|
||||
|
||||
Sometimes the container runtime can have difficulties initializing the GPU. When you check the server logs, this can show up as various error codes, such as "3" (not initialized), "46" (device unavailable), "100" (no device), "999" (unknown), or others. The following troubleshooting techniques may help resolve the problem
|
||||
### Linux NVIDIA Troubleshooting
|
||||
|
||||
- Is the container runtime working? Try `docker run --gpus all ubuntu nvidia-smi` - if this doesn't work, Ollama wont be able to see your NVIDIA GPU.
|
||||
- Is the uvm driver not loaded? `sudo nvidia-modprobe -u`
|
||||
If you are using a container to run Ollama, make sure you've set up the container runtime first as described in [docker.md](./docker.md)
|
||||
|
||||
Sometimes the Ollama can have difficulties initializing the GPU. When you check the server logs, this can show up as various error codes, such as "3" (not initialized), "46" (device unavailable), "100" (no device), "999" (unknown), or others. The following troubleshooting techniques may help resolve the problem
|
||||
|
||||
- If you are using a container, is the container runtime working? Try `docker run --gpus all ubuntu nvidia-smi` - if this doesn't work, Ollama wont be able to see your NVIDIA GPU.
|
||||
- Is the uvm driver loaded? `sudo nvidia-modprobe -u`
|
||||
- Try reloading the nvidia_uvm driver - `sudo rmmod nvidia_uvm` then `sudo modprobe nvidia_uvm`
|
||||
- Try rebooting
|
||||
- Make sure you're running the latest nvidia drivers
|
||||
@@ -85,3 +89,8 @@ Sometimes the container runtime can have difficulties initializing the GPU. When
|
||||
If none of those resolve the problem, gather additional information and file an issue:
|
||||
- Set `CUDA_ERROR_LEVEL=50` and try again to get more diagnostic logs
|
||||
- Check dmesg for any errors `sudo dmesg | grep -i nvrm` and `sudo dmesg | grep -i nvidia`
|
||||
|
||||
|
||||
## Windows Terminal Errors
|
||||
|
||||
Older versions of Windows 10 (e.g., 21H1) are known to have a bug where the standard terminal program does not display control characters correctly. This can result in a long string of strings like `←[?25h←[?25l` being displayed, sometimes erroring with `The parameter is incorrect` To resolve this problem, please update to Win 10 22H1 or newer.
|
||||
|
@@ -15,7 +15,7 @@ import { Ollama } from "@langchain/community/llms/ollama";
|
||||
|
||||
const ollama = new Ollama({
|
||||
baseUrl: "http://localhost:11434",
|
||||
model: "llama3",
|
||||
model: "llama3.1",
|
||||
});
|
||||
|
||||
const answer = await ollama.invoke(`why is the sky blue?`);
|
||||
@@ -23,7 +23,7 @@ const answer = await ollama.invoke(`why is the sky blue?`);
|
||||
console.log(answer);
|
||||
```
|
||||
|
||||
That will get us the same thing as if we ran `ollama run llama3 "why is the sky blue"` in the terminal. But we want to load a document from the web to ask a question against. **Cheerio** is a great library for ingesting a webpage, and **LangChain** uses it in their **CheerioWebBaseLoader**. So let's install **Cheerio** and build that part of the app.
|
||||
That will get us the same thing as if we ran `ollama run llama3.1 "why is the sky blue"` in the terminal. But we want to load a document from the web to ask a question against. **Cheerio** is a great library for ingesting a webpage, and **LangChain** uses it in their **CheerioWebBaseLoader**. So let's install **Cheerio** and build that part of the app.
|
||||
|
||||
```bash
|
||||
npm install cheerio
|
||||
|
@@ -19,10 +19,12 @@ Logs will often be helpful in diagnosing the problem (see
|
||||
|
||||
## System Requirements
|
||||
|
||||
* Windows 10 or newer, Home or Pro
|
||||
* Windows 10 22H2 or newer, Home or Pro
|
||||
* NVIDIA 452.39 or newer Drivers if you have an NVIDIA card
|
||||
* AMD Radeon Driver https://www.amd.com/en/support if you have a Radeon card
|
||||
|
||||
Ollama uses unicode characters for progress indication, which may render as unknown squares in some older terminal fonts in Windows 10. If you see this, try changing your terminal font settings.
|
||||
|
||||
## API Access
|
||||
|
||||
Here's a quick example showing API access from `powershell`
|
||||
|
@@ -1,316 +1,29 @@
|
||||
package envconfig
|
||||
|
||||
import (
|
||||
"errors"
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"math"
|
||||
"net"
|
||||
"net/url"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"runtime"
|
||||
"strconv"
|
||||
"strings"
|
||||
"time"
|
||||
)
|
||||
|
||||
type OllamaHost struct {
|
||||
Scheme string
|
||||
Host string
|
||||
Port string
|
||||
}
|
||||
|
||||
func (o OllamaHost) String() string {
|
||||
return fmt.Sprintf("%s://%s:%s", o.Scheme, o.Host, o.Port)
|
||||
}
|
||||
|
||||
var ErrInvalidHostPort = errors.New("invalid port specified in OLLAMA_HOST")
|
||||
|
||||
var (
|
||||
// Set via OLLAMA_ORIGINS in the environment
|
||||
AllowOrigins []string
|
||||
// Set via OLLAMA_DEBUG in the environment
|
||||
Debug bool
|
||||
// Experimental flash attention
|
||||
FlashAttention bool
|
||||
// Set via OLLAMA_HOST in the environment
|
||||
Host *OllamaHost
|
||||
// Set via OLLAMA_KEEP_ALIVE in the environment
|
||||
KeepAlive string
|
||||
// Set via OLLAMA_LLM_LIBRARY in the environment
|
||||
LLMLibrary string
|
||||
// Set via OLLAMA_MAX_LOADED_MODELS in the environment
|
||||
MaxRunners int
|
||||
// Set via OLLAMA_MAX_QUEUE in the environment
|
||||
MaxQueuedRequests int
|
||||
// Set via OLLAMA_MODELS in the environment
|
||||
ModelsDir string
|
||||
// Set via OLLAMA_MAX_VRAM in the environment
|
||||
MaxVRAM uint64
|
||||
// Set via OLLAMA_NOHISTORY in the environment
|
||||
NoHistory bool
|
||||
// Set via OLLAMA_NOPRUNE in the environment
|
||||
NoPrune bool
|
||||
// Set via OLLAMA_NUM_PARALLEL in the environment
|
||||
NumParallel int
|
||||
// Set via OLLAMA_RUNNERS_DIR in the environment
|
||||
RunnersDir string
|
||||
// Set via OLLAMA_SCHED_SPREAD in the environment
|
||||
SchedSpread bool
|
||||
// Set via OLLAMA_TMPDIR in the environment
|
||||
TmpDir string
|
||||
// Set via OLLAMA_INTEL_GPU in the environment
|
||||
IntelGpu bool
|
||||
|
||||
// Set via CUDA_VISIBLE_DEVICES in the environment
|
||||
CudaVisibleDevices string
|
||||
// Set via HIP_VISIBLE_DEVICES in the environment
|
||||
HipVisibleDevices string
|
||||
// Set via ROCR_VISIBLE_DEVICES in the environment
|
||||
RocrVisibleDevices string
|
||||
// Set via GPU_DEVICE_ORDINAL in the environment
|
||||
GpuDeviceOrdinal string
|
||||
// Set via HSA_OVERRIDE_GFX_VERSION in the environment
|
||||
HsaOverrideGfxVersion string
|
||||
)
|
||||
|
||||
type EnvVar struct {
|
||||
Name string
|
||||
Value any
|
||||
Description string
|
||||
}
|
||||
|
||||
func AsMap() map[string]EnvVar {
|
||||
ret := map[string]EnvVar{
|
||||
"OLLAMA_DEBUG": {"OLLAMA_DEBUG", Debug, "Show additional debug information (e.g. OLLAMA_DEBUG=1)"},
|
||||
"OLLAMA_FLASH_ATTENTION": {"OLLAMA_FLASH_ATTENTION", FlashAttention, "Enabled flash attention"},
|
||||
"OLLAMA_HOST": {"OLLAMA_HOST", Host, "IP Address for the ollama server (default 127.0.0.1:11434)"},
|
||||
"OLLAMA_KEEP_ALIVE": {"OLLAMA_KEEP_ALIVE", KeepAlive, "The duration that models stay loaded in memory (default \"5m\")"},
|
||||
"OLLAMA_LLM_LIBRARY": {"OLLAMA_LLM_LIBRARY", LLMLibrary, "Set LLM library to bypass autodetection"},
|
||||
"OLLAMA_MAX_LOADED_MODELS": {"OLLAMA_MAX_LOADED_MODELS", MaxRunners, "Maximum number of loaded models per GPU"},
|
||||
"OLLAMA_MAX_QUEUE": {"OLLAMA_MAX_QUEUE", MaxQueuedRequests, "Maximum number of queued requests"},
|
||||
"OLLAMA_MAX_VRAM": {"OLLAMA_MAX_VRAM", MaxVRAM, "Maximum VRAM"},
|
||||
"OLLAMA_MODELS": {"OLLAMA_MODELS", ModelsDir, "The path to the models directory"},
|
||||
"OLLAMA_NOHISTORY": {"OLLAMA_NOHISTORY", NoHistory, "Do not preserve readline history"},
|
||||
"OLLAMA_NOPRUNE": {"OLLAMA_NOPRUNE", NoPrune, "Do not prune model blobs on startup"},
|
||||
"OLLAMA_NUM_PARALLEL": {"OLLAMA_NUM_PARALLEL", NumParallel, "Maximum number of parallel requests"},
|
||||
"OLLAMA_ORIGINS": {"OLLAMA_ORIGINS", AllowOrigins, "A comma separated list of allowed origins"},
|
||||
"OLLAMA_RUNNERS_DIR": {"OLLAMA_RUNNERS_DIR", RunnersDir, "Location for runners"},
|
||||
"OLLAMA_SCHED_SPREAD": {"OLLAMA_SCHED_SPREAD", SchedSpread, "Always schedule model across all GPUs"},
|
||||
"OLLAMA_TMPDIR": {"OLLAMA_TMPDIR", TmpDir, "Location for temporary files"},
|
||||
}
|
||||
if runtime.GOOS != "darwin" {
|
||||
ret["CUDA_VISIBLE_DEVICES"] = EnvVar{"CUDA_VISIBLE_DEVICES", CudaVisibleDevices, "Set which NVIDIA devices are visible"}
|
||||
ret["HIP_VISIBLE_DEVICES"] = EnvVar{"HIP_VISIBLE_DEVICES", HipVisibleDevices, "Set which AMD devices are visible"}
|
||||
ret["ROCR_VISIBLE_DEVICES"] = EnvVar{"ROCR_VISIBLE_DEVICES", RocrVisibleDevices, "Set which AMD devices are visible"}
|
||||
ret["GPU_DEVICE_ORDINAL"] = EnvVar{"GPU_DEVICE_ORDINAL", GpuDeviceOrdinal, "Set which AMD devices are visible"}
|
||||
ret["HSA_OVERRIDE_GFX_VERSION"] = EnvVar{"HSA_OVERRIDE_GFX_VERSION", HsaOverrideGfxVersion, "Override the gfx used for all detected AMD GPUs"}
|
||||
ret["OLLAMA_INTEL_GPU"] = EnvVar{"OLLAMA_INTEL_GPU", IntelGpu, "Enable experimental Intel GPU detection"}
|
||||
}
|
||||
return ret
|
||||
}
|
||||
|
||||
func Values() map[string]string {
|
||||
vals := make(map[string]string)
|
||||
for k, v := range AsMap() {
|
||||
vals[k] = fmt.Sprintf("%v", v.Value)
|
||||
}
|
||||
return vals
|
||||
}
|
||||
|
||||
var defaultAllowOrigins = []string{
|
||||
"localhost",
|
||||
"127.0.0.1",
|
||||
"0.0.0.0",
|
||||
}
|
||||
|
||||
// Clean quotes and spaces from the value
|
||||
func clean(key string) string {
|
||||
return strings.Trim(os.Getenv(key), "\"' ")
|
||||
}
|
||||
|
||||
func init() {
|
||||
// default values
|
||||
NumParallel = 0 // Autoselect
|
||||
MaxRunners = 0 // Autoselect
|
||||
MaxQueuedRequests = 512
|
||||
|
||||
LoadConfig()
|
||||
}
|
||||
|
||||
func LoadConfig() {
|
||||
if debug := clean("OLLAMA_DEBUG"); debug != "" {
|
||||
d, err := strconv.ParseBool(debug)
|
||||
if err == nil {
|
||||
Debug = d
|
||||
} else {
|
||||
Debug = true
|
||||
}
|
||||
}
|
||||
|
||||
if fa := clean("OLLAMA_FLASH_ATTENTION"); fa != "" {
|
||||
d, err := strconv.ParseBool(fa)
|
||||
if err == nil {
|
||||
FlashAttention = d
|
||||
}
|
||||
}
|
||||
|
||||
RunnersDir = clean("OLLAMA_RUNNERS_DIR")
|
||||
if runtime.GOOS == "windows" && RunnersDir == "" {
|
||||
// On Windows we do not carry the payloads inside the main executable
|
||||
appExe, err := os.Executable()
|
||||
if err != nil {
|
||||
slog.Error("failed to lookup executable path", "error", err)
|
||||
}
|
||||
|
||||
cwd, err := os.Getwd()
|
||||
if err != nil {
|
||||
slog.Error("failed to lookup working directory", "error", err)
|
||||
}
|
||||
|
||||
var paths []string
|
||||
for _, root := range []string{filepath.Dir(appExe), cwd} {
|
||||
paths = append(paths,
|
||||
root,
|
||||
filepath.Join(root, "windows-"+runtime.GOARCH),
|
||||
filepath.Join(root, "dist", "windows-"+runtime.GOARCH),
|
||||
)
|
||||
}
|
||||
|
||||
// Try a few variations to improve developer experience when building from source in the local tree
|
||||
for _, p := range paths {
|
||||
candidate := filepath.Join(p, "ollama_runners")
|
||||
_, err := os.Stat(candidate)
|
||||
if err == nil {
|
||||
RunnersDir = candidate
|
||||
break
|
||||
}
|
||||
}
|
||||
if RunnersDir == "" {
|
||||
slog.Error("unable to locate llm runner directory. Set OLLAMA_RUNNERS_DIR to the location of 'ollama_runners'")
|
||||
}
|
||||
}
|
||||
|
||||
TmpDir = clean("OLLAMA_TMPDIR")
|
||||
|
||||
userLimit := clean("OLLAMA_MAX_VRAM")
|
||||
if userLimit != "" {
|
||||
avail, err := strconv.ParseUint(userLimit, 10, 64)
|
||||
if err != nil {
|
||||
slog.Error("invalid setting, ignoring", "OLLAMA_MAX_VRAM", userLimit, "error", err)
|
||||
} else {
|
||||
MaxVRAM = avail
|
||||
}
|
||||
}
|
||||
|
||||
LLMLibrary = clean("OLLAMA_LLM_LIBRARY")
|
||||
|
||||
if onp := clean("OLLAMA_NUM_PARALLEL"); onp != "" {
|
||||
val, err := strconv.Atoi(onp)
|
||||
if err != nil {
|
||||
slog.Error("invalid setting, ignoring", "OLLAMA_NUM_PARALLEL", onp, "error", err)
|
||||
} else {
|
||||
NumParallel = val
|
||||
}
|
||||
}
|
||||
|
||||
if nohistory := clean("OLLAMA_NOHISTORY"); nohistory != "" {
|
||||
NoHistory = true
|
||||
}
|
||||
|
||||
if spread := clean("OLLAMA_SCHED_SPREAD"); spread != "" {
|
||||
s, err := strconv.ParseBool(spread)
|
||||
if err == nil {
|
||||
SchedSpread = s
|
||||
} else {
|
||||
SchedSpread = true
|
||||
}
|
||||
}
|
||||
|
||||
if noprune := clean("OLLAMA_NOPRUNE"); noprune != "" {
|
||||
NoPrune = true
|
||||
}
|
||||
|
||||
if origins := clean("OLLAMA_ORIGINS"); origins != "" {
|
||||
AllowOrigins = strings.Split(origins, ",")
|
||||
}
|
||||
for _, allowOrigin := range defaultAllowOrigins {
|
||||
AllowOrigins = append(AllowOrigins,
|
||||
fmt.Sprintf("http://%s", allowOrigin),
|
||||
fmt.Sprintf("https://%s", allowOrigin),
|
||||
fmt.Sprintf("http://%s", net.JoinHostPort(allowOrigin, "*")),
|
||||
fmt.Sprintf("https://%s", net.JoinHostPort(allowOrigin, "*")),
|
||||
)
|
||||
}
|
||||
|
||||
AllowOrigins = append(AllowOrigins,
|
||||
"app://*",
|
||||
"file://*",
|
||||
"tauri://*",
|
||||
)
|
||||
|
||||
maxRunners := clean("OLLAMA_MAX_LOADED_MODELS")
|
||||
if maxRunners != "" {
|
||||
m, err := strconv.Atoi(maxRunners)
|
||||
if err != nil {
|
||||
slog.Error("invalid setting, ignoring", "OLLAMA_MAX_LOADED_MODELS", maxRunners, "error", err)
|
||||
} else {
|
||||
MaxRunners = m
|
||||
}
|
||||
}
|
||||
|
||||
if onp := os.Getenv("OLLAMA_MAX_QUEUE"); onp != "" {
|
||||
p, err := strconv.Atoi(onp)
|
||||
if err != nil || p <= 0 {
|
||||
slog.Error("invalid setting, ignoring", "OLLAMA_MAX_QUEUE", onp, "error", err)
|
||||
} else {
|
||||
MaxQueuedRequests = p
|
||||
}
|
||||
}
|
||||
|
||||
KeepAlive = clean("OLLAMA_KEEP_ALIVE")
|
||||
|
||||
var err error
|
||||
ModelsDir, err = getModelsDir()
|
||||
if err != nil {
|
||||
slog.Error("invalid setting", "OLLAMA_MODELS", ModelsDir, "error", err)
|
||||
}
|
||||
|
||||
Host, err = getOllamaHost()
|
||||
if err != nil {
|
||||
slog.Error("invalid setting", "OLLAMA_HOST", Host, "error", err, "using default port", Host.Port)
|
||||
}
|
||||
|
||||
if set, err := strconv.ParseBool(clean("OLLAMA_INTEL_GPU")); err == nil {
|
||||
IntelGpu = set
|
||||
}
|
||||
|
||||
CudaVisibleDevices = clean("CUDA_VISIBLE_DEVICES")
|
||||
HipVisibleDevices = clean("HIP_VISIBLE_DEVICES")
|
||||
RocrVisibleDevices = clean("ROCR_VISIBLE_DEVICES")
|
||||
GpuDeviceOrdinal = clean("GPU_DEVICE_ORDINAL")
|
||||
HsaOverrideGfxVersion = clean("HSA_OVERRIDE_GFX_VERSION")
|
||||
}
|
||||
|
||||
func getModelsDir() (string, error) {
|
||||
if models, exists := os.LookupEnv("OLLAMA_MODELS"); exists {
|
||||
return models, nil
|
||||
}
|
||||
home, err := os.UserHomeDir()
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
return filepath.Join(home, ".ollama", "models"), nil
|
||||
}
|
||||
|
||||
func getOllamaHost() (*OllamaHost, error) {
|
||||
// Host returns the scheme and host. Host can be configured via the OLLAMA_HOST environment variable.
|
||||
// Default is scheme "http" and host "127.0.0.1:11434"
|
||||
func Host() *url.URL {
|
||||
defaultPort := "11434"
|
||||
|
||||
hostVar := os.Getenv("OLLAMA_HOST")
|
||||
hostVar = strings.TrimSpace(strings.Trim(strings.TrimSpace(hostVar), "\"'"))
|
||||
|
||||
scheme, hostport, ok := strings.Cut(hostVar, "://")
|
||||
s := strings.TrimSpace(Var("OLLAMA_HOST"))
|
||||
scheme, hostport, ok := strings.Cut(s, "://")
|
||||
switch {
|
||||
case !ok:
|
||||
scheme, hostport = "http", hostVar
|
||||
scheme, hostport = "http", s
|
||||
case scheme == "http":
|
||||
defaultPort = "80"
|
||||
case scheme == "https":
|
||||
@@ -330,17 +43,242 @@ func getOllamaHost() (*OllamaHost, error) {
|
||||
}
|
||||
}
|
||||
|
||||
if portNum, err := strconv.ParseInt(port, 10, 32); err != nil || portNum > 65535 || portNum < 0 {
|
||||
return &OllamaHost{
|
||||
if n, err := strconv.ParseInt(port, 10, 32); err != nil || n > 65535 || n < 0 {
|
||||
slog.Warn("invalid port, using default", "port", port, "default", defaultPort)
|
||||
return &url.URL{
|
||||
Scheme: scheme,
|
||||
Host: host,
|
||||
Port: defaultPort,
|
||||
}, ErrInvalidHostPort
|
||||
Host: net.JoinHostPort(host, defaultPort),
|
||||
}
|
||||
}
|
||||
|
||||
return &OllamaHost{
|
||||
return &url.URL{
|
||||
Scheme: scheme,
|
||||
Host: host,
|
||||
Port: port,
|
||||
}, nil
|
||||
Host: net.JoinHostPort(host, port),
|
||||
}
|
||||
}
|
||||
|
||||
// Origins returns a list of allowed origins. Origins can be configured via the OLLAMA_ORIGINS environment variable.
|
||||
func Origins() (origins []string) {
|
||||
if s := Var("OLLAMA_ORIGINS"); s != "" {
|
||||
origins = strings.Split(s, ",")
|
||||
}
|
||||
|
||||
for _, origin := range []string{"localhost", "127.0.0.1", "0.0.0.0"} {
|
||||
origins = append(origins,
|
||||
fmt.Sprintf("http://%s", origin),
|
||||
fmt.Sprintf("https://%s", origin),
|
||||
fmt.Sprintf("http://%s", net.JoinHostPort(origin, "*")),
|
||||
fmt.Sprintf("https://%s", net.JoinHostPort(origin, "*")),
|
||||
)
|
||||
}
|
||||
|
||||
origins = append(origins,
|
||||
"app://*",
|
||||
"file://*",
|
||||
"tauri://*",
|
||||
)
|
||||
|
||||
return origins
|
||||
}
|
||||
|
||||
// Models returns the path to the models directory. Models directory can be configured via the OLLAMA_MODELS environment variable.
|
||||
// Default is $HOME/.ollama/models
|
||||
func Models() string {
|
||||
if s := Var("OLLAMA_MODELS"); s != "" {
|
||||
return s
|
||||
}
|
||||
|
||||
home, err := os.UserHomeDir()
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
return filepath.Join(home, ".ollama", "models")
|
||||
}
|
||||
|
||||
// KeepAlive returns the duration that models stay loaded in memory. KeepAlive can be configured via the OLLAMA_KEEP_ALIVE environment variable.
|
||||
// Negative values are treated as infinite. Zero is treated as no keep alive.
|
||||
// Default is 5 minutes.
|
||||
func KeepAlive() (keepAlive time.Duration) {
|
||||
keepAlive = 5 * time.Minute
|
||||
if s := Var("OLLAMA_KEEP_ALIVE"); s != "" {
|
||||
if d, err := time.ParseDuration(s); err == nil {
|
||||
keepAlive = d
|
||||
} else if n, err := strconv.ParseInt(s, 10, 64); err == nil {
|
||||
keepAlive = time.Duration(n) * time.Second
|
||||
}
|
||||
}
|
||||
|
||||
if keepAlive < 0 {
|
||||
return time.Duration(math.MaxInt64)
|
||||
}
|
||||
|
||||
return keepAlive
|
||||
}
|
||||
|
||||
func Bool(k string) func() bool {
|
||||
return func() bool {
|
||||
if s := Var(k); s != "" {
|
||||
b, err := strconv.ParseBool(s)
|
||||
if err != nil {
|
||||
return true
|
||||
}
|
||||
|
||||
return b
|
||||
}
|
||||
|
||||
return false
|
||||
}
|
||||
}
|
||||
|
||||
var (
|
||||
// Debug enabled additional debug information.
|
||||
Debug = Bool("OLLAMA_DEBUG")
|
||||
// FlashAttention enables the experimental flash attention feature.
|
||||
FlashAttention = Bool("OLLAMA_FLASH_ATTENTION")
|
||||
// NoHistory disables readline history.
|
||||
NoHistory = Bool("OLLAMA_NOHISTORY")
|
||||
// NoPrune disables pruning of model blobs on startup.
|
||||
NoPrune = Bool("OLLAMA_NOPRUNE")
|
||||
// SchedSpread allows scheduling models across all GPUs.
|
||||
SchedSpread = Bool("OLLAMA_SCHED_SPREAD")
|
||||
// IntelGPU enables experimental Intel GPU detection.
|
||||
IntelGPU = Bool("OLLAMA_INTEL_GPU")
|
||||
)
|
||||
|
||||
func String(s string) func() string {
|
||||
return func() string {
|
||||
return Var(s)
|
||||
}
|
||||
}
|
||||
|
||||
var (
|
||||
LLMLibrary = String("OLLAMA_LLM_LIBRARY")
|
||||
TmpDir = String("OLLAMA_TMPDIR")
|
||||
|
||||
CudaVisibleDevices = String("CUDA_VISIBLE_DEVICES")
|
||||
HipVisibleDevices = String("HIP_VISIBLE_DEVICES")
|
||||
RocrVisibleDevices = String("ROCR_VISIBLE_DEVICES")
|
||||
GpuDeviceOrdinal = String("GPU_DEVICE_ORDINAL")
|
||||
HsaOverrideGfxVersion = String("HSA_OVERRIDE_GFX_VERSION")
|
||||
)
|
||||
|
||||
func RunnersDir() (p string) {
|
||||
if p := Var("OLLAMA_RUNNERS_DIR"); p != "" {
|
||||
return p
|
||||
}
|
||||
|
||||
if runtime.GOOS != "windows" {
|
||||
return
|
||||
}
|
||||
|
||||
defer func() {
|
||||
if p == "" {
|
||||
slog.Error("unable to locate llm runner directory. Set OLLAMA_RUNNERS_DIR to the location of 'ollama_runners'")
|
||||
}
|
||||
}()
|
||||
|
||||
// On Windows we do not carry the payloads inside the main executable
|
||||
exe, err := os.Executable()
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
|
||||
cwd, err := os.Getwd()
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
|
||||
var paths []string
|
||||
for _, root := range []string{filepath.Dir(exe), cwd} {
|
||||
paths = append(paths,
|
||||
root,
|
||||
filepath.Join(root, "windows-"+runtime.GOARCH),
|
||||
filepath.Join(root, "dist", "windows-"+runtime.GOARCH),
|
||||
)
|
||||
}
|
||||
|
||||
// Try a few variations to improve developer experience when building from source in the local tree
|
||||
for _, path := range paths {
|
||||
candidate := filepath.Join(path, "ollama_runners")
|
||||
if _, err := os.Stat(candidate); err == nil {
|
||||
p = candidate
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
return p
|
||||
}
|
||||
|
||||
func Uint(key string, defaultValue uint) func() uint {
|
||||
return func() uint {
|
||||
if s := Var(key); s != "" {
|
||||
if n, err := strconv.ParseUint(s, 10, 64); err != nil {
|
||||
slog.Warn("invalid environment variable, using default", "key", key, "value", s, "default", defaultValue)
|
||||
} else {
|
||||
return uint(n)
|
||||
}
|
||||
}
|
||||
|
||||
return defaultValue
|
||||
}
|
||||
}
|
||||
|
||||
var (
|
||||
// NumParallel sets the number of parallel model requests. NumParallel can be configured via the OLLAMA_NUM_PARALLEL environment variable.
|
||||
NumParallel = Uint("OLLAMA_NUM_PARALLEL", 0)
|
||||
// MaxRunners sets the maximum number of loaded models. MaxRunners can be configured via the OLLAMA_MAX_LOADED_MODELS environment variable.
|
||||
MaxRunners = Uint("OLLAMA_MAX_LOADED_MODELS", 0)
|
||||
// MaxQueue sets the maximum number of queued requests. MaxQueue can be configured via the OLLAMA_MAX_QUEUE environment variable.
|
||||
MaxQueue = Uint("OLLAMA_MAX_QUEUE", 512)
|
||||
// MaxVRAM sets a maximum VRAM override in bytes. MaxVRAM can be configured via the OLLAMA_MAX_VRAM environment variable.
|
||||
MaxVRAM = Uint("OLLAMA_MAX_VRAM", 0)
|
||||
)
|
||||
|
||||
type EnvVar struct {
|
||||
Name string
|
||||
Value any
|
||||
Description string
|
||||
}
|
||||
|
||||
func AsMap() map[string]EnvVar {
|
||||
ret := map[string]EnvVar{
|
||||
"OLLAMA_DEBUG": {"OLLAMA_DEBUG", Debug(), "Show additional debug information (e.g. OLLAMA_DEBUG=1)"},
|
||||
"OLLAMA_FLASH_ATTENTION": {"OLLAMA_FLASH_ATTENTION", FlashAttention(), "Enabled flash attention"},
|
||||
"OLLAMA_HOST": {"OLLAMA_HOST", Host(), "IP Address for the ollama server (default 127.0.0.1:11434)"},
|
||||
"OLLAMA_KEEP_ALIVE": {"OLLAMA_KEEP_ALIVE", KeepAlive(), "The duration that models stay loaded in memory (default \"5m\")"},
|
||||
"OLLAMA_LLM_LIBRARY": {"OLLAMA_LLM_LIBRARY", LLMLibrary(), "Set LLM library to bypass autodetection"},
|
||||
"OLLAMA_MAX_LOADED_MODELS": {"OLLAMA_MAX_LOADED_MODELS", MaxRunners(), "Maximum number of loaded models per GPU"},
|
||||
"OLLAMA_MAX_QUEUE": {"OLLAMA_MAX_QUEUE", MaxQueue(), "Maximum number of queued requests"},
|
||||
"OLLAMA_MODELS": {"OLLAMA_MODELS", Models(), "The path to the models directory"},
|
||||
"OLLAMA_NOHISTORY": {"OLLAMA_NOHISTORY", NoHistory(), "Do not preserve readline history"},
|
||||
"OLLAMA_NOPRUNE": {"OLLAMA_NOPRUNE", NoPrune(), "Do not prune model blobs on startup"},
|
||||
"OLLAMA_NUM_PARALLEL": {"OLLAMA_NUM_PARALLEL", NumParallel(), "Maximum number of parallel requests"},
|
||||
"OLLAMA_ORIGINS": {"OLLAMA_ORIGINS", Origins(), "A comma separated list of allowed origins"},
|
||||
"OLLAMA_RUNNERS_DIR": {"OLLAMA_RUNNERS_DIR", RunnersDir(), "Location for runners"},
|
||||
"OLLAMA_SCHED_SPREAD": {"OLLAMA_SCHED_SPREAD", SchedSpread(), "Always schedule model across all GPUs"},
|
||||
"OLLAMA_TMPDIR": {"OLLAMA_TMPDIR", TmpDir(), "Location for temporary files"},
|
||||
}
|
||||
if runtime.GOOS != "darwin" {
|
||||
ret["CUDA_VISIBLE_DEVICES"] = EnvVar{"CUDA_VISIBLE_DEVICES", CudaVisibleDevices(), "Set which NVIDIA devices are visible"}
|
||||
ret["HIP_VISIBLE_DEVICES"] = EnvVar{"HIP_VISIBLE_DEVICES", HipVisibleDevices(), "Set which AMD devices are visible"}
|
||||
ret["ROCR_VISIBLE_DEVICES"] = EnvVar{"ROCR_VISIBLE_DEVICES", RocrVisibleDevices(), "Set which AMD devices are visible"}
|
||||
ret["GPU_DEVICE_ORDINAL"] = EnvVar{"GPU_DEVICE_ORDINAL", GpuDeviceOrdinal(), "Set which AMD devices are visible"}
|
||||
ret["HSA_OVERRIDE_GFX_VERSION"] = EnvVar{"HSA_OVERRIDE_GFX_VERSION", HsaOverrideGfxVersion(), "Override the gfx used for all detected AMD GPUs"}
|
||||
ret["OLLAMA_INTEL_GPU"] = EnvVar{"OLLAMA_INTEL_GPU", IntelGPU(), "Enable experimental Intel GPU detection"}
|
||||
}
|
||||
return ret
|
||||
}
|
||||
|
||||
func Values() map[string]string {
|
||||
vals := make(map[string]string)
|
||||
for k, v := range AsMap() {
|
||||
vals[k] = fmt.Sprintf("%v", v.Value)
|
||||
}
|
||||
return vals
|
||||
}
|
||||
|
||||
// Var returns an environment variable stripped of leading and trailing quotes or spaces
|
||||
func Var(key string) string {
|
||||
return strings.Trim(strings.TrimSpace(os.Getenv(key)), "\"'")
|
||||
}
|
||||
|
@@ -1,70 +1,234 @@
|
||||
package envconfig
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"net"
|
||||
"math"
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
"github.com/stretchr/testify/assert"
|
||||
"github.com/stretchr/testify/require"
|
||||
"github.com/google/go-cmp/cmp"
|
||||
)
|
||||
|
||||
func TestConfig(t *testing.T) {
|
||||
Debug = false // Reset whatever was loaded in init()
|
||||
t.Setenv("OLLAMA_DEBUG", "")
|
||||
LoadConfig()
|
||||
require.False(t, Debug)
|
||||
t.Setenv("OLLAMA_DEBUG", "false")
|
||||
LoadConfig()
|
||||
require.False(t, Debug)
|
||||
t.Setenv("OLLAMA_DEBUG", "1")
|
||||
LoadConfig()
|
||||
require.True(t, Debug)
|
||||
t.Setenv("OLLAMA_FLASH_ATTENTION", "1")
|
||||
LoadConfig()
|
||||
require.True(t, FlashAttention)
|
||||
}
|
||||
|
||||
func TestClientFromEnvironment(t *testing.T) {
|
||||
type testCase struct {
|
||||
func TestHost(t *testing.T) {
|
||||
cases := map[string]struct {
|
||||
value string
|
||||
expect string
|
||||
err error
|
||||
}{
|
||||
"empty": {"", "127.0.0.1:11434"},
|
||||
"only address": {"1.2.3.4", "1.2.3.4:11434"},
|
||||
"only port": {":1234", ":1234"},
|
||||
"address and port": {"1.2.3.4:1234", "1.2.3.4:1234"},
|
||||
"hostname": {"example.com", "example.com:11434"},
|
||||
"hostname and port": {"example.com:1234", "example.com:1234"},
|
||||
"zero port": {":0", ":0"},
|
||||
"too large port": {":66000", ":11434"},
|
||||
"too small port": {":-1", ":11434"},
|
||||
"ipv6 localhost": {"[::1]", "[::1]:11434"},
|
||||
"ipv6 world open": {"[::]", "[::]:11434"},
|
||||
"ipv6 no brackets": {"::1", "[::1]:11434"},
|
||||
"ipv6 + port": {"[::1]:1337", "[::1]:1337"},
|
||||
"extra space": {" 1.2.3.4 ", "1.2.3.4:11434"},
|
||||
"extra quotes": {"\"1.2.3.4\"", "1.2.3.4:11434"},
|
||||
"extra space+quotes": {" \" 1.2.3.4 \" ", "1.2.3.4:11434"},
|
||||
"extra single quotes": {"'1.2.3.4'", "1.2.3.4:11434"},
|
||||
"http": {"http://1.2.3.4", "1.2.3.4:80"},
|
||||
"http port": {"http://1.2.3.4:4321", "1.2.3.4:4321"},
|
||||
"https": {"https://1.2.3.4", "1.2.3.4:443"},
|
||||
"https port": {"https://1.2.3.4:4321", "1.2.3.4:4321"},
|
||||
}
|
||||
|
||||
hostTestCases := map[string]*testCase{
|
||||
"empty": {value: "", expect: "127.0.0.1:11434"},
|
||||
"only address": {value: "1.2.3.4", expect: "1.2.3.4:11434"},
|
||||
"only port": {value: ":1234", expect: ":1234"},
|
||||
"address and port": {value: "1.2.3.4:1234", expect: "1.2.3.4:1234"},
|
||||
"hostname": {value: "example.com", expect: "example.com:11434"},
|
||||
"hostname and port": {value: "example.com:1234", expect: "example.com:1234"},
|
||||
"zero port": {value: ":0", expect: ":0"},
|
||||
"too large port": {value: ":66000", err: ErrInvalidHostPort},
|
||||
"too small port": {value: ":-1", err: ErrInvalidHostPort},
|
||||
"ipv6 localhost": {value: "[::1]", expect: "[::1]:11434"},
|
||||
"ipv6 world open": {value: "[::]", expect: "[::]:11434"},
|
||||
"ipv6 no brackets": {value: "::1", expect: "[::1]:11434"},
|
||||
"ipv6 + port": {value: "[::1]:1337", expect: "[::1]:1337"},
|
||||
"extra space": {value: " 1.2.3.4 ", expect: "1.2.3.4:11434"},
|
||||
"extra quotes": {value: "\"1.2.3.4\"", expect: "1.2.3.4:11434"},
|
||||
"extra space+quotes": {value: " \" 1.2.3.4 \" ", expect: "1.2.3.4:11434"},
|
||||
"extra single quotes": {value: "'1.2.3.4'", expect: "1.2.3.4:11434"},
|
||||
}
|
||||
|
||||
for k, v := range hostTestCases {
|
||||
t.Run(k, func(t *testing.T) {
|
||||
t.Setenv("OLLAMA_HOST", v.value)
|
||||
LoadConfig()
|
||||
|
||||
oh, err := getOllamaHost()
|
||||
if err != v.err {
|
||||
t.Fatalf("expected %s, got %s", v.err, err)
|
||||
}
|
||||
|
||||
if err == nil {
|
||||
host := net.JoinHostPort(oh.Host, oh.Port)
|
||||
assert.Equal(t, v.expect, host, fmt.Sprintf("%s: expected %s, got %s", k, v.expect, host))
|
||||
for name, tt := range cases {
|
||||
t.Run(name, func(t *testing.T) {
|
||||
t.Setenv("OLLAMA_HOST", tt.value)
|
||||
if host := Host(); host.Host != tt.expect {
|
||||
t.Errorf("%s: expected %s, got %s", name, tt.expect, host.Host)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestOrigins(t *testing.T) {
|
||||
cases := []struct {
|
||||
value string
|
||||
expect []string
|
||||
}{
|
||||
{"", []string{
|
||||
"http://localhost",
|
||||
"https://localhost",
|
||||
"http://localhost:*",
|
||||
"https://localhost:*",
|
||||
"http://127.0.0.1",
|
||||
"https://127.0.0.1",
|
||||
"http://127.0.0.1:*",
|
||||
"https://127.0.0.1:*",
|
||||
"http://0.0.0.0",
|
||||
"https://0.0.0.0",
|
||||
"http://0.0.0.0:*",
|
||||
"https://0.0.0.0:*",
|
||||
"app://*",
|
||||
"file://*",
|
||||
"tauri://*",
|
||||
}},
|
||||
{"http://10.0.0.1", []string{
|
||||
"http://10.0.0.1",
|
||||
"http://localhost",
|
||||
"https://localhost",
|
||||
"http://localhost:*",
|
||||
"https://localhost:*",
|
||||
"http://127.0.0.1",
|
||||
"https://127.0.0.1",
|
||||
"http://127.0.0.1:*",
|
||||
"https://127.0.0.1:*",
|
||||
"http://0.0.0.0",
|
||||
"https://0.0.0.0",
|
||||
"http://0.0.0.0:*",
|
||||
"https://0.0.0.0:*",
|
||||
"app://*",
|
||||
"file://*",
|
||||
"tauri://*",
|
||||
}},
|
||||
{"http://172.16.0.1,https://192.168.0.1", []string{
|
||||
"http://172.16.0.1",
|
||||
"https://192.168.0.1",
|
||||
"http://localhost",
|
||||
"https://localhost",
|
||||
"http://localhost:*",
|
||||
"https://localhost:*",
|
||||
"http://127.0.0.1",
|
||||
"https://127.0.0.1",
|
||||
"http://127.0.0.1:*",
|
||||
"https://127.0.0.1:*",
|
||||
"http://0.0.0.0",
|
||||
"https://0.0.0.0",
|
||||
"http://0.0.0.0:*",
|
||||
"https://0.0.0.0:*",
|
||||
"app://*",
|
||||
"file://*",
|
||||
"tauri://*",
|
||||
}},
|
||||
{"http://totally.safe,http://definitely.legit", []string{
|
||||
"http://totally.safe",
|
||||
"http://definitely.legit",
|
||||
"http://localhost",
|
||||
"https://localhost",
|
||||
"http://localhost:*",
|
||||
"https://localhost:*",
|
||||
"http://127.0.0.1",
|
||||
"https://127.0.0.1",
|
||||
"http://127.0.0.1:*",
|
||||
"https://127.0.0.1:*",
|
||||
"http://0.0.0.0",
|
||||
"https://0.0.0.0",
|
||||
"http://0.0.0.0:*",
|
||||
"https://0.0.0.0:*",
|
||||
"app://*",
|
||||
"file://*",
|
||||
"tauri://*",
|
||||
}},
|
||||
}
|
||||
for _, tt := range cases {
|
||||
t.Run(tt.value, func(t *testing.T) {
|
||||
t.Setenv("OLLAMA_ORIGINS", tt.value)
|
||||
|
||||
if diff := cmp.Diff(Origins(), tt.expect); diff != "" {
|
||||
t.Errorf("%s: mismatch (-want +got):\n%s", tt.value, diff)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestBool(t *testing.T) {
|
||||
cases := map[string]bool{
|
||||
"": false,
|
||||
"true": true,
|
||||
"false": false,
|
||||
"1": true,
|
||||
"0": false,
|
||||
// invalid values
|
||||
"random": true,
|
||||
"something": true,
|
||||
}
|
||||
|
||||
for k, v := range cases {
|
||||
t.Run(k, func(t *testing.T) {
|
||||
t.Setenv("OLLAMA_BOOL", k)
|
||||
if b := Bool("OLLAMA_BOOL")(); b != v {
|
||||
t.Errorf("%s: expected %t, got %t", k, v, b)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestUint(t *testing.T) {
|
||||
cases := map[string]uint{
|
||||
"0": 0,
|
||||
"1": 1,
|
||||
"1337": 1337,
|
||||
// default values
|
||||
"": 11434,
|
||||
"-1": 11434,
|
||||
"0o10": 11434,
|
||||
"0x10": 11434,
|
||||
"string": 11434,
|
||||
}
|
||||
|
||||
for k, v := range cases {
|
||||
t.Run(k, func(t *testing.T) {
|
||||
t.Setenv("OLLAMA_UINT", k)
|
||||
if i := Uint("OLLAMA_UINT", 11434)(); i != v {
|
||||
t.Errorf("%s: expected %d, got %d", k, v, i)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestKeepAlive(t *testing.T) {
|
||||
cases := map[string]time.Duration{
|
||||
"": 5 * time.Minute,
|
||||
"1s": time.Second,
|
||||
"1m": time.Minute,
|
||||
"1h": time.Hour,
|
||||
"5m0s": 5 * time.Minute,
|
||||
"1h2m3s": 1*time.Hour + 2*time.Minute + 3*time.Second,
|
||||
"0": time.Duration(0),
|
||||
"60": 60 * time.Second,
|
||||
"120": 2 * time.Minute,
|
||||
"3600": time.Hour,
|
||||
"-0": time.Duration(0),
|
||||
"-1": time.Duration(math.MaxInt64),
|
||||
"-1m": time.Duration(math.MaxInt64),
|
||||
// invalid values
|
||||
" ": 5 * time.Minute,
|
||||
"???": 5 * time.Minute,
|
||||
"1d": 5 * time.Minute,
|
||||
"1y": 5 * time.Minute,
|
||||
"1w": 5 * time.Minute,
|
||||
}
|
||||
|
||||
for tt, expect := range cases {
|
||||
t.Run(tt, func(t *testing.T) {
|
||||
t.Setenv("OLLAMA_KEEP_ALIVE", tt)
|
||||
if actual := KeepAlive(); actual != expect {
|
||||
t.Errorf("%s: expected %s, got %s", tt, expect, actual)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestVar(t *testing.T) {
|
||||
cases := map[string]string{
|
||||
"value": "value",
|
||||
" value ": "value",
|
||||
" 'value' ": "value",
|
||||
` "value" `: "value",
|
||||
" ' value ' ": " value ",
|
||||
` " value " `: " value ",
|
||||
}
|
||||
|
||||
for k, v := range cases {
|
||||
t.Run(k, func(t *testing.T) {
|
||||
t.Setenv("OLLAMA_VAR", k)
|
||||
if s := Var("OLLAMA_VAR"); s != v {
|
||||
t.Errorf("%s: expected %q, got %q", k, v, s)
|
||||
}
|
||||
})
|
||||
}
|
||||
|
@@ -35,7 +35,7 @@ func main() {
|
||||
|
||||
ctx := context.Background()
|
||||
req := &api.ChatRequest{
|
||||
Model: "llama3",
|
||||
Model: "llama3.1",
|
||||
Messages: messages,
|
||||
}
|
||||
|
||||
|
@@ -16,7 +16,7 @@ func main() {
|
||||
|
||||
// By default, GenerateRequest is streaming.
|
||||
req := &api.GenerateRequest{
|
||||
Model: "gemma",
|
||||
Model: "gemma2",
|
||||
Prompt: "how many planets are there?",
|
||||
}
|
||||
|
||||
|
@@ -15,7 +15,7 @@ func main() {
|
||||
}
|
||||
|
||||
req := &api.GenerateRequest{
|
||||
Model: "gemma",
|
||||
Model: "gemma2",
|
||||
Prompt: "how many planets are there?",
|
||||
|
||||
// set streaming to false
|
||||
|
@@ -4,6 +4,14 @@ This example provides an interface for asking questions to a PDF document.
|
||||
|
||||
## Setup
|
||||
|
||||
1. Ensure you have the `llama3.1` model installed:
|
||||
|
||||
```
|
||||
ollama pull llama3.1
|
||||
```
|
||||
|
||||
2. Install the Python Requirements.
|
||||
|
||||
```
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
@@ -51,7 +51,7 @@ while True:
|
||||
template=template,
|
||||
)
|
||||
|
||||
llm = Ollama(model="llama3:8b", callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]))
|
||||
llm = Ollama(model="llama3.1", callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]))
|
||||
qa_chain = RetrievalQA.from_chain_type(
|
||||
llm,
|
||||
retriever=vectorstore.as_retriever(),
|
||||
|
@@ -4,10 +4,10 @@ This example summarizes the website, [https://ollama.com/blog/run-llama2-uncenso
|
||||
|
||||
## Running the Example
|
||||
|
||||
1. Ensure you have the `llama2` model installed:
|
||||
1. Ensure you have the `llama3.1` model installed:
|
||||
|
||||
```bash
|
||||
ollama pull llama2
|
||||
ollama pull llama3.1
|
||||
```
|
||||
|
||||
2. Install the Python Requirements.
|
||||
|
@@ -5,8 +5,8 @@ from langchain.chains.summarize import load_summarize_chain
|
||||
loader = WebBaseLoader("https://ollama.com/blog/run-llama2-uncensored-locally")
|
||||
docs = loader.load()
|
||||
|
||||
llm = Ollama(model="llama3")
|
||||
llm = Ollama(model="llama3.1")
|
||||
chain = load_summarize_chain(llm, chain_type="stuff")
|
||||
|
||||
result = chain.invoke(docs)
|
||||
result = chain.invoke(docs)
|
||||
print(result)
|
||||
|
@@ -4,10 +4,10 @@ This example is a basic "hello world" of using LangChain with Ollama.
|
||||
|
||||
## Running the Example
|
||||
|
||||
1. Ensure you have the `llama3` model installed:
|
||||
1. Ensure you have the `llama3.1` model installed:
|
||||
|
||||
```bash
|
||||
ollama pull llama3
|
||||
ollama pull llama3.1
|
||||
```
|
||||
|
||||
2. Install the Python Requirements.
|
||||
|
@@ -1,6 +1,6 @@
|
||||
from langchain.llms import Ollama
|
||||
|
||||
input = input("What is your question?")
|
||||
llm = Ollama(model="llama3")
|
||||
llm = Ollama(model="llama3.1")
|
||||
res = llm.predict(input)
|
||||
print (res)
|
||||
|
@@ -1,4 +1,4 @@
|
||||
FROM llama3
|
||||
FROM llama3.1
|
||||
PARAMETER temperature 1
|
||||
SYSTEM """
|
||||
You are Mario from super mario bros, acting as an assistant.
|
||||
|
@@ -2,12 +2,12 @@
|
||||
|
||||
# Example character: Mario
|
||||
|
||||
This example shows how to create a basic character using Llama3 as the base model.
|
||||
This example shows how to create a basic character using Llama3.1 as the base model.
|
||||
|
||||
To run this example:
|
||||
|
||||
1. Download the Modelfile
|
||||
2. `ollama pull llama3` to get the base model used in the model file.
|
||||
2. `ollama pull llama3.1` to get the base model used in the model file.
|
||||
3. `ollama create NAME -f ./Modelfile`
|
||||
4. `ollama run NAME`
|
||||
|
||||
@@ -18,7 +18,7 @@ Ask it some questions like "Who are you?" or "Is Peach in trouble again?"
|
||||
What the model file looks like:
|
||||
|
||||
```
|
||||
FROM llama3
|
||||
FROM llama3.1
|
||||
PARAMETER temperature 1
|
||||
SYSTEM """
|
||||
You are Mario from Super Mario Bros, acting as an assistant.
|
||||
|
@@ -4,7 +4,7 @@ imageName = input("Enter the name of the image: ")
|
||||
client = docker.from_env()
|
||||
s = requests.Session()
|
||||
output=""
|
||||
with s.post('http://localhost:11434/api/generate', json={'model': 'dockerit', 'prompt': inputDescription}, stream=True) as r:
|
||||
with s.post('http://localhost:11434/api/generate', json={'model': 'mattw/dockerit', 'prompt': inputDescription}, stream=True) as r:
|
||||
for line in r.iter_lines():
|
||||
if line:
|
||||
j = json.loads(line)
|
||||
|
@@ -2,7 +2,7 @@ import requests
|
||||
import json
|
||||
import random
|
||||
|
||||
model = "llama3"
|
||||
model = "llama3.1"
|
||||
template = {
|
||||
"firstName": "",
|
||||
"lastName": "",
|
||||
|
@@ -12,7 +12,7 @@ countries = [
|
||||
"France",
|
||||
]
|
||||
country = random.choice(countries)
|
||||
model = "llama3"
|
||||
model = "llama3.1"
|
||||
|
||||
prompt = f"generate one realistically believable sample data set of a persons first name, last name, address in {country}, and phone number. Do not use common names. Respond using JSON. Key names should have no backslashes, values should use plain ascii with no special characters."
|
||||
|
||||
|
@@ -6,10 +6,10 @@ There are two python scripts in this example. `randomaddresses.py` generates ran
|
||||
|
||||
## Running the Example
|
||||
|
||||
1. Ensure you have the `llama3` model installed:
|
||||
1. Ensure you have the `llama3.1` model installed:
|
||||
|
||||
```bash
|
||||
ollama pull llama3
|
||||
ollama pull llama3.1
|
||||
```
|
||||
|
||||
2. Install the Python Requirements.
|
||||
|
@@ -2,7 +2,7 @@ import json
|
||||
import requests
|
||||
|
||||
# NOTE: ollama must be running for this to work, start the ollama app or run `ollama serve`
|
||||
model = "llama3" # TODO: update this for whatever model you wish to use
|
||||
model = "llama3.1" # TODO: update this for whatever model you wish to use
|
||||
|
||||
|
||||
def chat(messages):
|
||||
|
@@ -4,10 +4,10 @@ The **chat** endpoint is one of two ways to generate text from an LLM with Ollam
|
||||
|
||||
## Running the Example
|
||||
|
||||
1. Ensure you have the `llama3` model installed:
|
||||
1. Ensure you have the `llama3.1` model installed:
|
||||
|
||||
```bash
|
||||
ollama pull llama3
|
||||
ollama pull llama3.1
|
||||
```
|
||||
|
||||
2. Install the Python Requirements.
|
||||
|
@@ -1,6 +1,6 @@
|
||||
import * as readline from "readline";
|
||||
|
||||
const model = "llama3";
|
||||
const model = "llama3.1";
|
||||
type Message = {
|
||||
role: "assistant" | "user" | "system";
|
||||
content: string;
|
||||
|
3
go.mod
3
go.mod
@@ -18,6 +18,7 @@ require (
|
||||
require (
|
||||
github.com/agnivade/levenshtein v1.1.1
|
||||
github.com/d4l3k/go-bfloat16 v0.0.0-20211005043715-690c3bdd05f1
|
||||
github.com/google/go-cmp v0.6.0
|
||||
github.com/mattn/go-runewidth v0.0.14
|
||||
github.com/nlpodyssey/gopickle v0.3.0
|
||||
github.com/pdevine/tensor v0.0.0-20240510204454-f88f4562727c
|
||||
@@ -71,7 +72,7 @@ require (
|
||||
golang.org/x/net v0.25.0 // indirect
|
||||
golang.org/x/sys v0.20.0
|
||||
golang.org/x/term v0.20.0
|
||||
golang.org/x/text v0.15.0 // indirect
|
||||
golang.org/x/text v0.15.0
|
||||
google.golang.org/protobuf v1.34.1
|
||||
gopkg.in/yaml.v3 v3.0.1 // indirect
|
||||
)
|
||||
|
@@ -49,9 +49,17 @@ func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
|
||||
}
|
||||
|
||||
func commonAMDValidateLibDir() (string, error) {
|
||||
// We try to favor system paths first, so that we can wire up the subprocess to use
|
||||
// the system version. Only use our bundled version if the system version doesn't work
|
||||
// This gives users a more recovery options if versions have subtle problems at runtime
|
||||
// Favor our bundled version
|
||||
|
||||
// Installer payload location if we're running the installed binary
|
||||
exe, err := os.Executable()
|
||||
if err == nil {
|
||||
rocmTargetDir := filepath.Join(filepath.Dir(exe), "rocm")
|
||||
if rocmLibUsable(rocmTargetDir) {
|
||||
slog.Debug("detected ROCM next to ollama executable " + rocmTargetDir)
|
||||
return rocmTargetDir, nil
|
||||
}
|
||||
}
|
||||
|
||||
// Prefer explicit HIP env var
|
||||
hipPath := os.Getenv("HIP_PATH")
|
||||
@@ -87,14 +95,5 @@ func commonAMDValidateLibDir() (string, error) {
|
||||
}
|
||||
}
|
||||
|
||||
// Installer payload location if we're running the installed binary
|
||||
exe, err := os.Executable()
|
||||
if err == nil {
|
||||
rocmTargetDir := filepath.Join(filepath.Dir(exe), "rocm")
|
||||
if rocmLibUsable(rocmTargetDir) {
|
||||
slog.Debug("detected ROCM next to ollama executable " + rocmTargetDir)
|
||||
return rocmTargetDir, nil
|
||||
}
|
||||
}
|
||||
return "", fmt.Errorf("no suitable rocm found, falling back to CPU")
|
||||
}
|
||||
|
@@ -33,9 +33,10 @@ type HipLib struct {
|
||||
}
|
||||
|
||||
func NewHipLib() (*HipLib, error) {
|
||||
h, err := windows.LoadLibrary("amdhip64.dll")
|
||||
// At runtime we depend on v6, so discover GPUs with the same library for a consistent set of GPUs
|
||||
h, err := windows.LoadLibrary("amdhip64_6.dll")
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("unable to load amdhip64.dll: %w", err)
|
||||
return nil, fmt.Errorf("unable to load amdhip64_6.dll, please make sure to upgrade to the latest amd driver: %w", err)
|
||||
}
|
||||
hl := &HipLib{}
|
||||
hl.dll = h
|
||||
@@ -84,9 +85,8 @@ func (hl *HipLib) AMDDriverVersion() (driverMajor, driverMinor int, err error) {
|
||||
}
|
||||
|
||||
slog.Debug("hipDriverGetVersion", "version", version)
|
||||
// TODO - this isn't actually right, but the docs claim hipDriverGetVersion isn't accurate anyway...
|
||||
driverMajor = version / 1000
|
||||
driverMinor = (version - (driverMajor * 1000)) / 10
|
||||
driverMajor = version / 10000000
|
||||
driverMinor = (version - (driverMajor * 10000000)) / 100000
|
||||
|
||||
return driverMajor, driverMinor, nil
|
||||
}
|
||||
|
@@ -10,6 +10,7 @@ import (
|
||||
"path/filepath"
|
||||
"regexp"
|
||||
"slices"
|
||||
"sort"
|
||||
"strconv"
|
||||
"strings"
|
||||
|
||||
@@ -60,9 +61,9 @@ func AMDGetGPUInfo() []RocmGPUInfo {
|
||||
|
||||
// Determine if the user has already pre-selected which GPUs to look at, then ignore the others
|
||||
var visibleDevices []string
|
||||
hipVD := envconfig.HipVisibleDevices // zero based index only
|
||||
rocrVD := envconfig.RocrVisibleDevices // zero based index or UUID, but consumer cards seem to not support UUID
|
||||
gpuDO := envconfig.GpuDeviceOrdinal // zero based index
|
||||
hipVD := envconfig.HipVisibleDevices() // zero based index only
|
||||
rocrVD := envconfig.RocrVisibleDevices() // zero based index or UUID, but consumer cards seem to not support UUID
|
||||
gpuDO := envconfig.GpuDeviceOrdinal() // zero based index
|
||||
switch {
|
||||
// TODO is this priorty order right?
|
||||
case hipVD != "":
|
||||
@@ -75,13 +76,27 @@ func AMDGetGPUInfo() []RocmGPUInfo {
|
||||
visibleDevices = strings.Split(gpuDO, ",")
|
||||
}
|
||||
|
||||
gfxOverride := envconfig.HsaOverrideGfxVersion
|
||||
gfxOverride := envconfig.HsaOverrideGfxVersion()
|
||||
var supported []string
|
||||
libDir := ""
|
||||
|
||||
// The amdgpu driver always exposes the host CPU(s) first, but we have to skip them and subtract
|
||||
// from the other IDs to get alignment with the HIP libraries expectations (zero is the first GPU, not the CPU)
|
||||
matches, _ := filepath.Glob(GPUPropertiesFileGlob)
|
||||
sort.Slice(matches, func(i, j int) bool {
|
||||
// /sys/class/kfd/kfd/topology/nodes/<number>/properties
|
||||
a, err := strconv.ParseInt(filepath.Base(filepath.Dir(matches[i])), 10, 64)
|
||||
if err != nil {
|
||||
slog.Debug("parse err", "error", err, "match", matches[i])
|
||||
return false
|
||||
}
|
||||
b, err := strconv.ParseInt(filepath.Base(filepath.Dir(matches[j])), 10, 64)
|
||||
if err != nil {
|
||||
slog.Debug("parse err", "error", err, "match", matches[i])
|
||||
return false
|
||||
}
|
||||
return a < b
|
||||
})
|
||||
cpuCount := 0
|
||||
for _, match := range matches {
|
||||
slog.Debug("evaluating amdgpu node " + match)
|
||||
|
@@ -22,8 +22,8 @@ const (
|
||||
|
||||
var (
|
||||
// Used to validate if the given ROCm lib is usable
|
||||
ROCmLibGlobs = []string{"hipblas.dll", "rocblas"} // TODO - probably include more coverage of files here...
|
||||
RocmStandardLocations = []string{"C:\\Program Files\\AMD\\ROCm\\5.7\\bin"} // TODO glob?
|
||||
ROCmLibGlobs = []string{"hipblas.dll", "rocblas"} // This is not sufficient to discern v5 vs v6
|
||||
RocmStandardLocations = []string{"C:\\Program Files\\AMD\\ROCm\\6.1\\bin"} // TODO glob?
|
||||
)
|
||||
|
||||
func AMDGetGPUInfo() []RocmGPUInfo {
|
||||
@@ -35,12 +35,11 @@ func AMDGetGPUInfo() []RocmGPUInfo {
|
||||
}
|
||||
defer hl.Release()
|
||||
|
||||
// TODO - this reports incorrect version information, so omitting for now
|
||||
// driverMajor, driverMinor, err := hl.AMDDriverVersion()
|
||||
// if err != nil {
|
||||
// // For now this is benign, but we may eventually need to fail compatibility checks
|
||||
// slog.Debug("error looking up amd driver version", "error", err)
|
||||
// }
|
||||
driverMajor, driverMinor, err := hl.AMDDriverVersion()
|
||||
if err != nil {
|
||||
// For now this is benign, but we may eventually need to fail compatibility checks
|
||||
slog.Debug("error looking up amd driver version", "error", err)
|
||||
}
|
||||
|
||||
// Note: the HIP library automatically handles subsetting to any HIP_VISIBLE_DEVICES the user specified
|
||||
count := hl.HipGetDeviceCount()
|
||||
@@ -54,7 +53,7 @@ func AMDGetGPUInfo() []RocmGPUInfo {
|
||||
}
|
||||
|
||||
var supported []string
|
||||
gfxOverride := envconfig.HsaOverrideGfxVersion
|
||||
gfxOverride := envconfig.HsaOverrideGfxVersion()
|
||||
if gfxOverride == "" {
|
||||
supported, err = GetSupportedGFX(libDir)
|
||||
if err != nil {
|
||||
@@ -93,7 +92,8 @@ func AMDGetGPUInfo() []RocmGPUInfo {
|
||||
continue
|
||||
}
|
||||
if gfxOverride == "" {
|
||||
if !slices.Contains[[]string, string](supported, gfx) {
|
||||
// Strip off Target Features when comparing
|
||||
if !slices.Contains[[]string, string](supported, strings.Split(gfx, ":")[0]) {
|
||||
slog.Warn("amdgpu is not supported", "gpu", i, "gpu_type", gfx, "library", libDir, "supported_types", supported)
|
||||
// TODO - consider discrete markdown just for ROCM troubleshooting?
|
||||
slog.Warn("See https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md for HSA_OVERRIDE_GFX_VERSION usage")
|
||||
@@ -132,10 +132,8 @@ func AMDGetGPUInfo() []RocmGPUInfo {
|
||||
MinimumMemory: rocmMinimumMemory,
|
||||
Name: name,
|
||||
Compute: gfx,
|
||||
|
||||
// TODO - this information isn't accurate on windows, so don't report it until we find the right way to retrieve
|
||||
// DriverMajor: driverMajor,
|
||||
// DriverMinor: driverMinor,
|
||||
DriverMajor: driverMajor,
|
||||
DriverMinor: driverMinor,
|
||||
},
|
||||
index: i,
|
||||
}
|
||||
|
@@ -26,7 +26,7 @@ func PayloadsDir() (string, error) {
|
||||
defer lock.Unlock()
|
||||
var err error
|
||||
if payloadsDir == "" {
|
||||
runnersDir := envconfig.RunnersDir
|
||||
runnersDir := envconfig.RunnersDir()
|
||||
|
||||
if runnersDir != "" {
|
||||
payloadsDir = runnersDir
|
||||
@@ -35,7 +35,7 @@ func PayloadsDir() (string, error) {
|
||||
|
||||
// The remainder only applies on non-windows where we still carry payloads in the main executable
|
||||
cleanupTmpDirs()
|
||||
tmpDir := envconfig.TmpDir
|
||||
tmpDir := envconfig.TmpDir()
|
||||
if tmpDir == "" {
|
||||
tmpDir, err = os.MkdirTemp("", "ollama")
|
||||
if err != nil {
|
||||
@@ -105,7 +105,7 @@ func cleanupTmpDirs() {
|
||||
func Cleanup() {
|
||||
lock.Lock()
|
||||
defer lock.Unlock()
|
||||
runnersDir := envconfig.RunnersDir
|
||||
runnersDir := envconfig.RunnersDir()
|
||||
if payloadsDir != "" && runnersDir == "" && runtime.GOOS != "windows" {
|
||||
// We want to fully clean up the tmpdir parent of the payloads dir
|
||||
tmpDir := filepath.Clean(filepath.Join(payloadsDir, ".."))
|
||||
|
65
gpu/gpu.go
65
gpu/gpu.go
@@ -202,7 +202,7 @@ func GetGPUInfo() GpuInfoList {
|
||||
}()
|
||||
|
||||
if !bootstrapped {
|
||||
slog.Debug("Detecting GPUs")
|
||||
slog.Info("looking for compatible GPUs")
|
||||
needRefresh = false
|
||||
cpuCapability = GetCPUCapability()
|
||||
var memInfo C.mem_info_t
|
||||
@@ -230,8 +230,8 @@ func GetGPUInfo() GpuInfoList {
|
||||
|
||||
// On windows we bundle the nvidia library one level above the runner dir
|
||||
depPath := ""
|
||||
if runtime.GOOS == "windows" && envconfig.RunnersDir != "" {
|
||||
depPath = filepath.Join(filepath.Dir(envconfig.RunnersDir), "cuda")
|
||||
if runtime.GOOS == "windows" && envconfig.RunnersDir() != "" {
|
||||
depPath = filepath.Join(filepath.Dir(envconfig.RunnersDir()), "cuda")
|
||||
}
|
||||
|
||||
// Load ALL libraries
|
||||
@@ -274,18 +274,40 @@ func GetGPUInfo() GpuInfoList {
|
||||
gpuInfo.DriverMajor = driverMajor
|
||||
gpuInfo.DriverMinor = driverMinor
|
||||
|
||||
// query the management library as well so we can record any skew between the two
|
||||
// which represents overhead on the GPU we must set aside on subsequent updates
|
||||
if cHandles.nvml != nil {
|
||||
C.nvml_get_free(*cHandles.nvml, C.int(gpuInfo.index), &memInfo.free, &memInfo.total, &memInfo.used)
|
||||
if memInfo.err != nil {
|
||||
slog.Warn("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
|
||||
C.free(unsafe.Pointer(memInfo.err))
|
||||
} else {
|
||||
if memInfo.free != 0 && uint64(memInfo.free) > gpuInfo.FreeMemory {
|
||||
gpuInfo.OSOverhead = uint64(memInfo.free) - gpuInfo.FreeMemory
|
||||
slog.Info("detected OS VRAM overhead",
|
||||
"id", gpuInfo.ID,
|
||||
"library", gpuInfo.Library,
|
||||
"compute", gpuInfo.Compute,
|
||||
"driver", fmt.Sprintf("%d.%d", gpuInfo.DriverMajor, gpuInfo.DriverMinor),
|
||||
"name", gpuInfo.Name,
|
||||
"overhead", format.HumanBytes2(gpuInfo.OSOverhead),
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TODO potentially sort on our own algorithm instead of what the underlying GPU library does...
|
||||
cudaGPUs = append(cudaGPUs, gpuInfo)
|
||||
}
|
||||
}
|
||||
|
||||
// Intel
|
||||
if envconfig.IntelGpu {
|
||||
if envconfig.IntelGPU() {
|
||||
oHandles = initOneAPIHandles()
|
||||
// On windows we bundle the oneapi library one level above the runner dir
|
||||
depPath = ""
|
||||
if runtime.GOOS == "windows" && envconfig.RunnersDir != "" {
|
||||
depPath = filepath.Join(filepath.Dir(envconfig.RunnersDir), "oneapi")
|
||||
if runtime.GOOS == "windows" && envconfig.RunnersDir() != "" {
|
||||
depPath = filepath.Join(filepath.Dir(envconfig.RunnersDir()), "oneapi")
|
||||
}
|
||||
|
||||
for d := range oHandles.oneapi.num_drivers {
|
||||
@@ -320,6 +342,9 @@ func GetGPUInfo() GpuInfoList {
|
||||
|
||||
rocmGPUs = AMDGetGPUInfo()
|
||||
bootstrapped = true
|
||||
if len(cudaGPUs) == 0 && len(rocmGPUs) == 0 && len(oneapiGPUs) == 0 {
|
||||
slog.Info("no compatible GPUs were discovered")
|
||||
}
|
||||
}
|
||||
|
||||
// For detected GPUs, load library if not loaded
|
||||
@@ -335,14 +360,17 @@ func GetGPUInfo() GpuInfoList {
|
||||
"before",
|
||||
"total", format.HumanBytes2(cpus[0].TotalMemory),
|
||||
"free", format.HumanBytes2(cpus[0].FreeMemory),
|
||||
"free_swap", format.HumanBytes2(cpus[0].FreeSwap),
|
||||
),
|
||||
slog.Group(
|
||||
"now",
|
||||
"total", format.HumanBytes2(mem.TotalMemory),
|
||||
"free", format.HumanBytes2(mem.FreeMemory),
|
||||
"free_swap", format.HumanBytes2(mem.FreeSwap),
|
||||
),
|
||||
)
|
||||
cpus[0].FreeMemory = mem.FreeMemory
|
||||
cpus[0].FreeSwap = mem.FreeSwap
|
||||
}
|
||||
|
||||
var memInfo C.mem_info_t
|
||||
@@ -371,9 +399,14 @@ func GetGPUInfo() GpuInfoList {
|
||||
slog.Warn("error looking up nvidia GPU memory")
|
||||
continue
|
||||
}
|
||||
if cHandles.nvml != nil && gpu.OSOverhead > 0 {
|
||||
// When using the management library update based on recorded overhead
|
||||
memInfo.free -= C.uint64_t(gpu.OSOverhead)
|
||||
}
|
||||
slog.Debug("updating cuda memory data",
|
||||
"gpu", gpu.ID,
|
||||
"name", gpu.Name,
|
||||
"overhead", format.HumanBytes2(gpu.OSOverhead),
|
||||
slog.Group(
|
||||
"before",
|
||||
"total", format.HumanBytes2(gpu.TotalMemory),
|
||||
@@ -514,7 +547,23 @@ func LoadNVCUDAMgmt(nvcudaLibPaths []string) (int, *C.nvcuda_handle_t, string) {
|
||||
defer C.free(unsafe.Pointer(lib))
|
||||
C.nvcuda_init(lib, &resp)
|
||||
if resp.err != nil {
|
||||
slog.Debug("Unable to load nvcuda", "library", libPath, "error", C.GoString(resp.err))
|
||||
// Decide what log level based on the type of error message to help users understand why
|
||||
msg := C.GoString(resp.err)
|
||||
switch resp.cudaErr {
|
||||
case C.CUDA_ERROR_INSUFFICIENT_DRIVER, C.CUDA_ERROR_SYSTEM_DRIVER_MISMATCH:
|
||||
slog.Warn("version mismatch between driver and cuda driver library - reboot or upgrade may be required", "library", libPath, "error", msg)
|
||||
case C.CUDA_ERROR_NO_DEVICE:
|
||||
slog.Info("no nvidia devices detected", "library", libPath)
|
||||
case C.CUDA_ERROR_UNKNOWN:
|
||||
slog.Warn("unknown error initializing cuda driver library", "library", libPath, "error", msg)
|
||||
slog.Warn("see https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md for more information")
|
||||
default:
|
||||
if strings.Contains(msg, "wrong ELF class") {
|
||||
slog.Debug("skipping 32bit library", "library", libPath)
|
||||
} else {
|
||||
slog.Info("unable to load cuda driver library", "library", libPath, "error", msg)
|
||||
}
|
||||
}
|
||||
C.free(unsafe.Pointer(resp.err))
|
||||
} else {
|
||||
return int(resp.num_devices), &resp.ch, libPath
|
||||
@@ -562,7 +611,7 @@ func LoadOneapiMgmt(oneapiLibPaths []string) (int, *C.oneapi_handle_t, string) {
|
||||
}
|
||||
|
||||
func getVerboseState() C.uint16_t {
|
||||
if envconfig.Debug {
|
||||
if envconfig.Debug() {
|
||||
return C.uint16_t(1)
|
||||
}
|
||||
return C.uint16_t(0)
|
||||
|
@@ -56,7 +56,8 @@ func GetCPUInfo() GpuInfoList {
|
||||
func GetCPUMem() (memInfo, error) {
|
||||
return memInfo{
|
||||
TotalMemory: uint64(C.getPhysicalMemory()),
|
||||
FreeMemory: 0,
|
||||
FreeMemory: uint64(C.getFreeMemory()),
|
||||
// FreeSwap omitted as Darwin uses dynamic paging
|
||||
}, nil
|
||||
}
|
||||
|
||||
|
@@ -2,3 +2,4 @@
|
||||
#include <stdint.h>
|
||||
uint64_t getRecommendedMaxVRAM();
|
||||
uint64_t getPhysicalMemory();
|
||||
uint64_t getFreeMemory();
|
||||
|
@@ -1,4 +1,5 @@
|
||||
// go:build darwin
|
||||
#import <Foundation/Foundation.h>
|
||||
#import <mach/mach.h>
|
||||
#include "gpu_info_darwin.h"
|
||||
|
||||
uint64_t getRecommendedMaxVRAM() {
|
||||
@@ -8,6 +9,27 @@ uint64_t getRecommendedMaxVRAM() {
|
||||
return result;
|
||||
}
|
||||
|
||||
// getPhysicalMemory returns the total physical memory in bytes
|
||||
uint64_t getPhysicalMemory() {
|
||||
return [[NSProcessInfo processInfo] physicalMemory];
|
||||
return [NSProcessInfo processInfo].physicalMemory;
|
||||
}
|
||||
|
||||
// getFreeMemory returns the total free memory in bytes, including inactive
|
||||
// memory that can be reclaimed by the system.
|
||||
uint64_t getFreeMemory() {
|
||||
mach_port_t host_port = mach_host_self();
|
||||
mach_msg_type_number_t host_size = sizeof(vm_statistics64_data_t) / sizeof(integer_t);
|
||||
vm_size_t pagesize;
|
||||
vm_statistics64_data_t vm_stat;
|
||||
|
||||
host_page_size(host_port, &pagesize);
|
||||
if (host_statistics64(host_port, HOST_VM_INFO64, (host_info64_t)&vm_stat, &host_size) != KERN_SUCCESS) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
uint64_t free_memory = (uint64_t)vm_stat.free_count * pagesize;
|
||||
free_memory += (uint64_t)vm_stat.speculative_count * pagesize;
|
||||
free_memory += (uint64_t)vm_stat.inactive_count * pagesize;
|
||||
|
||||
return free_memory;
|
||||
}
|
||||
|
@@ -7,6 +7,7 @@ void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
|
||||
CUresult ret;
|
||||
resp->err = NULL;
|
||||
resp->num_devices = 0;
|
||||
resp->cudaErr = CUDA_SUCCESS;
|
||||
const int buflen = 256;
|
||||
char buf[buflen + 1];
|
||||
int i;
|
||||
@@ -38,6 +39,7 @@ void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
|
||||
nvcuda_lib_path, msg);
|
||||
free(msg);
|
||||
resp->err = strdup(buf);
|
||||
resp->cudaErr = -1;
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -52,6 +54,7 @@ void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
|
||||
msg);
|
||||
free(msg);
|
||||
resp->err = strdup(buf);
|
||||
resp->cudaErr = -1;
|
||||
return;
|
||||
}
|
||||
}
|
||||
@@ -61,12 +64,9 @@ void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
|
||||
LOG(resp->ch.verbose, "cuInit err: %d\n", ret);
|
||||
UNLOAD_LIBRARY(resp->ch.handle);
|
||||
resp->ch.handle = NULL;
|
||||
if (ret == CUDA_ERROR_INSUFFICIENT_DRIVER) {
|
||||
resp->err = strdup("your nvidia driver is too old or missing. If you have a CUDA GPU please upgrade to run ollama");
|
||||
return;
|
||||
}
|
||||
snprintf(buf, buflen, "nvcuda init failure: %d", ret);
|
||||
snprintf(buf, buflen, "cuda driver library init failure: %d", ret);
|
||||
resp->err = strdup(buf);
|
||||
resp->cudaErr = ret;
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -91,6 +91,7 @@ void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
|
||||
resp->ch.handle = NULL;
|
||||
snprintf(buf, buflen, "unable to get device count: %d", ret);
|
||||
resp->err = strdup(buf);
|
||||
resp->cudaErr = ret;
|
||||
return;
|
||||
}
|
||||
}
|
||||
@@ -106,13 +107,13 @@ void nvcuda_bootstrap(nvcuda_handle_t h, int i, mem_info_t *resp) {
|
||||
CUuuid uuid = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
|
||||
|
||||
if (h.handle == NULL) {
|
||||
resp->err = strdup("nvcuda handle isn't initialized");
|
||||
resp->err = strdup("cuda driver library handle isn't initialized");
|
||||
return;
|
||||
}
|
||||
|
||||
ret = (*h.cuDeviceGet)(&device, i);
|
||||
if (ret != CUDA_SUCCESS) {
|
||||
snprintf(buf, buflen, "nvcuda device failed to initialize");
|
||||
snprintf(buf, buflen, "cuda driver library device failed to initialize");
|
||||
resp->err = strdup(buf);
|
||||
return;
|
||||
}
|
||||
@@ -168,14 +169,14 @@ void nvcuda_bootstrap(nvcuda_handle_t h, int i, mem_info_t *resp) {
|
||||
// To get memory we have to set (and release) a context
|
||||
ret = (*h.cuCtxCreate_v3)(&ctx, NULL, 0, 0, device);
|
||||
if (ret != CUDA_SUCCESS) {
|
||||
snprintf(buf, buflen, "nvcuda failed to get device context %d", ret);
|
||||
snprintf(buf, buflen, "cuda driver library failed to get device context %d", ret);
|
||||
resp->err = strdup(buf);
|
||||
return;
|
||||
}
|
||||
|
||||
ret = (*h.cuMemGetInfo_v2)(&memInfo.free, &memInfo.total);
|
||||
if (ret != CUDA_SUCCESS) {
|
||||
snprintf(buf, buflen, "nvcuda device memory info lookup failure %d", ret);
|
||||
snprintf(buf, buflen, "cuda driver library device memory info lookup failure %d", ret);
|
||||
resp->err = strdup(buf);
|
||||
// Best effort on failure...
|
||||
(*h.cuCtxDestroy)(ctx);
|
||||
@@ -193,7 +194,7 @@ void nvcuda_bootstrap(nvcuda_handle_t h, int i, mem_info_t *resp) {
|
||||
|
||||
ret = (*h.cuCtxDestroy)(ctx);
|
||||
if (ret != CUDA_SUCCESS) {
|
||||
LOG(1, "nvcuda failed to release device context %d", ret);
|
||||
LOG(1, "cuda driver library failed to release device context %d", ret);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -206,7 +207,7 @@ void nvcuda_get_free(nvcuda_handle_t h, int i, uint64_t *free, uint64_t *total)
|
||||
|
||||
ret = (*h.cuDeviceGet)(&device, i);
|
||||
if (ret != CUDA_SUCCESS) {
|
||||
LOG(1, "nvcuda device failed to initialize");
|
||||
LOG(1, "cuda driver library device failed to initialize");
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -214,13 +215,13 @@ void nvcuda_get_free(nvcuda_handle_t h, int i, uint64_t *free, uint64_t *total)
|
||||
// To get memory we have to set (and release) a context
|
||||
ret = (*h.cuCtxCreate_v3)(&ctx, NULL, 0, 0, device);
|
||||
if (ret != CUDA_SUCCESS) {
|
||||
LOG(1, "nvcuda failed to get device context %d", ret);
|
||||
LOG(1, "cuda driver library failed to get device context %d", ret);
|
||||
return;
|
||||
}
|
||||
|
||||
ret = (*h.cuMemGetInfo_v2)(free, total);
|
||||
if (ret != CUDA_SUCCESS) {
|
||||
LOG(1, "nvcuda device memory info lookup failure %d", ret);
|
||||
LOG(1, "cuda driver library device memory info lookup failure %d", ret);
|
||||
// Best effort on failure...
|
||||
(*h.cuCtxDestroy)(ctx);
|
||||
return;
|
||||
@@ -228,12 +229,12 @@ void nvcuda_get_free(nvcuda_handle_t h, int i, uint64_t *free, uint64_t *total)
|
||||
|
||||
ret = (*h.cuCtxDestroy)(ctx);
|
||||
if (ret != CUDA_SUCCESS) {
|
||||
LOG(1, "nvcuda failed to release device context %d", ret);
|
||||
LOG(1, "cuda driver library failed to release device context %d", ret);
|
||||
}
|
||||
}
|
||||
|
||||
void nvcuda_release(nvcuda_handle_t h) {
|
||||
LOG(h.verbose, "releasing nvcuda library\n");
|
||||
LOG(h.verbose, "releasing cuda driver library\n");
|
||||
UNLOAD_LIBRARY(h.handle);
|
||||
// TODO and other context release logic?
|
||||
h.handle = NULL;
|
||||
|
@@ -7,9 +7,12 @@
|
||||
typedef enum cudaError_enum {
|
||||
CUDA_SUCCESS = 0,
|
||||
CUDA_ERROR_INVALID_VALUE = 1,
|
||||
CUDA_ERROR_MEMORY_ALLOCATION = 2,
|
||||
CUDA_ERROR_OUT_OF_MEMORY = 2,
|
||||
CUDA_ERROR_NOT_INITIALIZED = 3,
|
||||
CUDA_ERROR_INSUFFICIENT_DRIVER = 35,
|
||||
CUDA_ERROR_NO_DEVICE = 100,
|
||||
CUDA_ERROR_SYSTEM_DRIVER_MISMATCH = 803,
|
||||
CUDA_ERROR_UNKNOWN = 999,
|
||||
// Other values omitted for now...
|
||||
} CUresult;
|
||||
|
||||
@@ -64,6 +67,7 @@ typedef struct nvcuda_init_resp {
|
||||
char *err; // If err is non-null handle is invalid
|
||||
nvcuda_handle_t ch;
|
||||
int num_devices;
|
||||
CUresult cudaErr;
|
||||
} nvcuda_init_resp_t;
|
||||
|
||||
void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp);
|
||||
|
@@ -50,7 +50,7 @@ var OneapiMgmtName = "libze_intel_gpu.so"
|
||||
|
||||
func GetCPUMem() (memInfo, error) {
|
||||
var mem memInfo
|
||||
var total, available, free, buffers, cached uint64
|
||||
var total, available, free, buffers, cached, freeSwap uint64
|
||||
f, err := os.Open("/proc/meminfo")
|
||||
if err != nil {
|
||||
return mem, err
|
||||
@@ -70,20 +70,21 @@ func GetCPUMem() (memInfo, error) {
|
||||
_, err = fmt.Sscanf(line, "Buffers:%d", &buffers)
|
||||
case strings.HasPrefix(line, "Cached:"):
|
||||
_, err = fmt.Sscanf(line, "Cached:%d", &cached)
|
||||
case strings.HasPrefix(line, "SwapFree:"):
|
||||
_, err = fmt.Sscanf(line, "SwapFree:%d", &freeSwap)
|
||||
default:
|
||||
continue
|
||||
}
|
||||
if err != nil {
|
||||
return mem, err
|
||||
}
|
||||
|
||||
if total > 0 && available > 0 {
|
||||
mem.TotalMemory = total * format.KibiByte
|
||||
mem.FreeMemory = available * format.KibiByte
|
||||
return mem, nil
|
||||
}
|
||||
}
|
||||
mem.TotalMemory = total * format.KibiByte
|
||||
mem.FreeMemory = (free + buffers + cached) * format.KibiByte
|
||||
mem.FreeSwap = freeSwap * format.KibiByte
|
||||
if available > 0 {
|
||||
mem.FreeMemory = available * format.KibiByte
|
||||
} else {
|
||||
mem.FreeMemory = (free + buffers + cached) * format.KibiByte
|
||||
}
|
||||
return mem, nil
|
||||
}
|
||||
|
@@ -51,5 +51,5 @@ func GetCPUMem() (memInfo, error) {
|
||||
if r1 == 0 {
|
||||
return memInfo{}, fmt.Errorf("GlobalMemoryStatusEx failed: %w", err)
|
||||
}
|
||||
return memInfo{TotalMemory: memStatus.TotalPhys, FreeMemory: memStatus.AvailPhys}, nil
|
||||
return memInfo{TotalMemory: memStatus.TotalPhys, FreeMemory: memStatus.AvailPhys, FreeSwap: memStatus.AvailPageFile}, nil
|
||||
}
|
||||
|
@@ -10,6 +10,7 @@ import (
|
||||
type memInfo struct {
|
||||
TotalMemory uint64 `json:"total_memory,omitempty"`
|
||||
FreeMemory uint64 `json:"free_memory,omitempty"`
|
||||
FreeSwap uint64 `json:"free_swap,omitempty"`
|
||||
}
|
||||
|
||||
// Beginning of an `ollama info` command
|
||||
@@ -52,7 +53,8 @@ type CPUInfo struct {
|
||||
|
||||
type CudaGPUInfo struct {
|
||||
GpuInfo
|
||||
index int //nolint:unused,nolintlint
|
||||
OSOverhead uint64 // Memory overhead between the driver library and management library
|
||||
index int //nolint:unused,nolintlint
|
||||
}
|
||||
type CudaGPUInfoList []CudaGPUInfo
|
||||
|
||||
|
@@ -45,14 +45,7 @@ func TestUnicodeModelDir(t *testing.T) {
|
||||
defer os.RemoveAll(modelDir)
|
||||
slog.Info("unicode", "OLLAMA_MODELS", modelDir)
|
||||
|
||||
oldModelsDir := os.Getenv("OLLAMA_MODELS")
|
||||
if oldModelsDir == "" {
|
||||
defer os.Unsetenv("OLLAMA_MODELS")
|
||||
} else {
|
||||
defer os.Setenv("OLLAMA_MODELS", oldModelsDir)
|
||||
}
|
||||
err = os.Setenv("OLLAMA_MODELS", modelDir)
|
||||
require.NoError(t, err)
|
||||
t.Setenv("OLLAMA_MODELS", modelDir)
|
||||
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
|
||||
defer cancel()
|
||||
|
@@ -5,14 +5,16 @@ package integration
|
||||
import (
|
||||
"context"
|
||||
"log/slog"
|
||||
"os"
|
||||
"strconv"
|
||||
"sync"
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/stretchr/testify/require"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/format"
|
||||
)
|
||||
|
||||
func TestMultiModelConcurrency(t *testing.T) {
|
||||
@@ -69,7 +71,7 @@ func TestIntegrationConcurrentPredictOrcaMini(t *testing.T) {
|
||||
reqLimit := len(req)
|
||||
iterLimit := 5
|
||||
|
||||
vram := os.Getenv("OLLAMA_MAX_VRAM")
|
||||
vram := os.Getenv("OLLAMA_MAX_VRAM") // TODO - discover actual VRAM
|
||||
if vram != "" {
|
||||
max, err := strconv.ParseUint(vram, 10, 64)
|
||||
require.NoError(t, err)
|
||||
@@ -106,13 +108,16 @@ func TestIntegrationConcurrentPredictOrcaMini(t *testing.T) {
|
||||
|
||||
// Stress the system if we know how much VRAM it has, and attempt to load more models than will fit
|
||||
func TestMultiModelStress(t *testing.T) {
|
||||
vram := os.Getenv("OLLAMA_MAX_VRAM")
|
||||
if vram == "" {
|
||||
s := os.Getenv("OLLAMA_MAX_VRAM") // TODO - discover actual VRAM
|
||||
if s == "" {
|
||||
t.Skip("OLLAMA_MAX_VRAM not specified, can't pick the right models for the stress test")
|
||||
}
|
||||
max, err := strconv.ParseUint(vram, 10, 64)
|
||||
require.NoError(t, err)
|
||||
const MB = uint64(1024 * 1024)
|
||||
|
||||
maxVram, err := strconv.ParseUint(s, 10, 64)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
type model struct {
|
||||
name string
|
||||
size uint64 // Approximate amount of VRAM they typically use when fully loaded in VRAM
|
||||
@@ -121,83 +126,82 @@ func TestMultiModelStress(t *testing.T) {
|
||||
smallModels := []model{
|
||||
{
|
||||
name: "orca-mini",
|
||||
size: 2992 * MB,
|
||||
size: 2992 * format.MebiByte,
|
||||
},
|
||||
{
|
||||
name: "phi",
|
||||
size: 2616 * MB,
|
||||
size: 2616 * format.MebiByte,
|
||||
},
|
||||
{
|
||||
name: "gemma:2b",
|
||||
size: 2364 * MB,
|
||||
size: 2364 * format.MebiByte,
|
||||
},
|
||||
{
|
||||
name: "stable-code:3b",
|
||||
size: 2608 * MB,
|
||||
size: 2608 * format.MebiByte,
|
||||
},
|
||||
{
|
||||
name: "starcoder2:3b",
|
||||
size: 2166 * MB,
|
||||
size: 2166 * format.MebiByte,
|
||||
},
|
||||
}
|
||||
mediumModels := []model{
|
||||
{
|
||||
name: "llama2",
|
||||
size: 5118 * MB,
|
||||
size: 5118 * format.MebiByte,
|
||||
},
|
||||
{
|
||||
name: "mistral",
|
||||
size: 4620 * MB,
|
||||
size: 4620 * format.MebiByte,
|
||||
},
|
||||
{
|
||||
name: "orca-mini:7b",
|
||||
size: 5118 * MB,
|
||||
size: 5118 * format.MebiByte,
|
||||
},
|
||||
{
|
||||
name: "dolphin-mistral",
|
||||
size: 4620 * MB,
|
||||
size: 4620 * format.MebiByte,
|
||||
},
|
||||
{
|
||||
name: "gemma:7b",
|
||||
size: 5000 * MB,
|
||||
size: 5000 * format.MebiByte,
|
||||
},
|
||||
{
|
||||
name: "codellama:7b",
|
||||
size: 5118 * format.MebiByte,
|
||||
},
|
||||
// TODO - uncomment this once #3565 is merged and this is rebased on it
|
||||
// {
|
||||
// name: "codellama:7b",
|
||||
// size: 5118 * MB,
|
||||
// },
|
||||
}
|
||||
|
||||
// These seem to be too slow to be useful...
|
||||
// largeModels := []model{
|
||||
// {
|
||||
// name: "llama2:13b",
|
||||
// size: 7400 * MB,
|
||||
// size: 7400 * format.MebiByte,
|
||||
// },
|
||||
// {
|
||||
// name: "codellama:13b",
|
||||
// size: 7400 * MB,
|
||||
// size: 7400 * format.MebiByte,
|
||||
// },
|
||||
// {
|
||||
// name: "orca-mini:13b",
|
||||
// size: 7400 * MB,
|
||||
// size: 7400 * format.MebiByte,
|
||||
// },
|
||||
// {
|
||||
// name: "gemma:7b",
|
||||
// size: 5000 * MB,
|
||||
// size: 5000 * format.MebiByte,
|
||||
// },
|
||||
// {
|
||||
// name: "starcoder2:15b",
|
||||
// size: 9100 * MB,
|
||||
// size: 9100 * format.MebiByte,
|
||||
// },
|
||||
// }
|
||||
|
||||
var chosenModels []model
|
||||
switch {
|
||||
case max < 10000*MB:
|
||||
case maxVram < 10000*format.MebiByte:
|
||||
slog.Info("selecting small models")
|
||||
chosenModels = smallModels
|
||||
// case max < 30000*MB:
|
||||
// case maxVram < 30000*format.MebiByte:
|
||||
default:
|
||||
slog.Info("selecting medium models")
|
||||
chosenModels = mediumModels
|
||||
@@ -226,15 +230,15 @@ func TestMultiModelStress(t *testing.T) {
|
||||
}
|
||||
|
||||
var wg sync.WaitGroup
|
||||
consumed := uint64(256 * MB) // Assume some baseline usage
|
||||
consumed := uint64(256 * format.MebiByte) // Assume some baseline usage
|
||||
for i := 0; i < len(req); i++ {
|
||||
// Always get at least 2 models, but dont' overshoot VRAM too much or we'll take too long
|
||||
if i > 1 && consumed > max {
|
||||
slog.Info("achieved target vram exhaustion", "count", i, "vramMB", max/1024/1024, "modelsMB", consumed/1024/1024)
|
||||
if i > 1 && consumed > vram {
|
||||
slog.Info("achieved target vram exhaustion", "count", i, "vram", format.HumanBytes2(vram), "models", format.HumanBytes2(consumed))
|
||||
break
|
||||
}
|
||||
consumed += chosenModels[i].size
|
||||
slog.Info("target vram", "count", i, "vramMB", max/1024/1024, "modelsMB", consumed/1024/1024)
|
||||
slog.Info("target vram", "count", i, "vram", format.HumanBytes2(vram), "models", format.HumanBytes2(consumed))
|
||||
|
||||
wg.Add(1)
|
||||
go func(i int) {
|
||||
|
@@ -12,7 +12,7 @@ import (
|
||||
|
||||
func TestContextExhaustion(t *testing.T) {
|
||||
// Longer needed for small footprint GPUs
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 6*time.Minute)
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Minute)
|
||||
defer cancel()
|
||||
// Set up the test data
|
||||
req := api.GenerateRequest{
|
||||
@@ -25,5 +25,10 @@ func TestContextExhaustion(t *testing.T) {
|
||||
"num_ctx": 128,
|
||||
},
|
||||
}
|
||||
GenerateTestHelper(ctx, t, req, []string{"once", "upon", "lived"})
|
||||
client, _, cleanup := InitServerConnection(ctx, t)
|
||||
defer cleanup()
|
||||
if err := PullIfMissing(ctx, client, req.Model); err != nil {
|
||||
t.Fatalf("PullIfMissing failed: %v", err)
|
||||
}
|
||||
DoGenerate(ctx, t, client, req, []string{"once", "upon", "lived"}, 120*time.Second, 10*time.Second)
|
||||
}
|
||||
|
209
integration/embed_test.go
Normal file
209
integration/embed_test.go
Normal file
@@ -0,0 +1,209 @@
|
||||
//go:build integration
|
||||
|
||||
package integration
|
||||
|
||||
import (
|
||||
"context"
|
||||
"math"
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
)
|
||||
|
||||
func floatsEqual32(a, b float32) bool {
|
||||
return math.Abs(float64(a-b)) <= 1e-4
|
||||
}
|
||||
|
||||
func floatsEqual64(a, b float64) bool {
|
||||
return math.Abs(a-b) <= 1e-4
|
||||
}
|
||||
|
||||
func TestAllMiniLMEmbeddings(t *testing.T) {
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
|
||||
defer cancel()
|
||||
|
||||
req := api.EmbeddingRequest{
|
||||
Model: "all-minilm",
|
||||
Prompt: "why is the sky blue?",
|
||||
}
|
||||
|
||||
res, err := embeddingTestHelper(ctx, t, req)
|
||||
|
||||
if err != nil {
|
||||
t.Fatalf("error: %v", err)
|
||||
}
|
||||
|
||||
if len(res.Embedding) != 384 {
|
||||
t.Fatalf("expected 384 floats, got %d", len(res.Embedding))
|
||||
}
|
||||
|
||||
if !floatsEqual64(res.Embedding[0], 0.06642947345972061) {
|
||||
t.Fatalf("expected 0.06642947345972061, got %.16f", res.Embedding[0])
|
||||
}
|
||||
}
|
||||
|
||||
func TestAllMiniLMEmbed(t *testing.T) {
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
|
||||
defer cancel()
|
||||
|
||||
req := api.EmbedRequest{
|
||||
Model: "all-minilm",
|
||||
Input: "why is the sky blue?",
|
||||
}
|
||||
|
||||
res, err := embedTestHelper(ctx, t, req)
|
||||
|
||||
if err != nil {
|
||||
t.Fatalf("error: %v", err)
|
||||
}
|
||||
|
||||
if len(res.Embeddings) != 1 {
|
||||
t.Fatalf("expected 1 embedding, got %d", len(res.Embeddings))
|
||||
}
|
||||
|
||||
if len(res.Embeddings[0]) != 384 {
|
||||
t.Fatalf("expected 384 floats, got %d", len(res.Embeddings[0]))
|
||||
}
|
||||
|
||||
if !floatsEqual32(res.Embeddings[0][0], 0.010071031) {
|
||||
t.Fatalf("expected 0.010071031, got %.8f", res.Embeddings[0][0])
|
||||
}
|
||||
|
||||
if res.PromptEvalCount != 8 {
|
||||
t.Fatalf("expected 8 prompt tokens, got %d", res.PromptEvalCount)
|
||||
}
|
||||
}
|
||||
|
||||
func TestAllMiniLMBatchEmbed(t *testing.T) {
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
|
||||
defer cancel()
|
||||
|
||||
req := api.EmbedRequest{
|
||||
Model: "all-minilm",
|
||||
Input: []string{"why is the sky blue?", "why is the grass green?"},
|
||||
}
|
||||
|
||||
res, err := embedTestHelper(ctx, t, req)
|
||||
|
||||
if err != nil {
|
||||
t.Fatalf("error: %v", err)
|
||||
}
|
||||
|
||||
if len(res.Embeddings) != 2 {
|
||||
t.Fatalf("expected 2 embeddings, got %d", len(res.Embeddings))
|
||||
}
|
||||
|
||||
if len(res.Embeddings[0]) != 384 {
|
||||
t.Fatalf("expected 384 floats, got %d", len(res.Embeddings[0]))
|
||||
}
|
||||
|
||||
if !floatsEqual32(res.Embeddings[0][0], 0.010071031) || !floatsEqual32(res.Embeddings[1][0], -0.009802706) {
|
||||
t.Fatalf("expected 0.010071031 and -0.009802706, got %.8f and %.8f", res.Embeddings[0][0], res.Embeddings[1][0])
|
||||
}
|
||||
|
||||
if res.PromptEvalCount != 16 {
|
||||
t.Fatalf("expected 16 prompt tokens, got %d", res.PromptEvalCount)
|
||||
}
|
||||
}
|
||||
|
||||
func TestAllMiniLMEmbedTruncate(t *testing.T) {
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
|
||||
defer cancel()
|
||||
|
||||
truncTrue, truncFalse := true, false
|
||||
|
||||
type testReq struct {
|
||||
Name string
|
||||
Request api.EmbedRequest
|
||||
}
|
||||
|
||||
reqs := []testReq{
|
||||
{
|
||||
Name: "Target Truncation",
|
||||
Request: api.EmbedRequest{
|
||||
Model: "all-minilm",
|
||||
Input: "why",
|
||||
},
|
||||
},
|
||||
{
|
||||
Name: "Default Truncate",
|
||||
Request: api.EmbedRequest{
|
||||
Model: "all-minilm",
|
||||
Input: "why is the sky blue?",
|
||||
Options: map[string]any{"num_ctx": 1},
|
||||
},
|
||||
},
|
||||
{
|
||||
Name: "Explicit Truncate",
|
||||
Request: api.EmbedRequest{
|
||||
Model: "all-minilm",
|
||||
Input: "why is the sky blue?",
|
||||
Truncate: &truncTrue,
|
||||
Options: map[string]any{"num_ctx": 1},
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
res := make(map[string]*api.EmbedResponse)
|
||||
|
||||
for _, req := range reqs {
|
||||
response, err := embedTestHelper(ctx, t, req.Request)
|
||||
if err != nil {
|
||||
t.Fatalf("error: %v", err)
|
||||
}
|
||||
res[req.Name] = response
|
||||
}
|
||||
|
||||
if res["Target Truncation"].Embeddings[0][0] != res["Default Truncate"].Embeddings[0][0] {
|
||||
t.Fatal("expected default request to truncate correctly")
|
||||
}
|
||||
|
||||
if res["Default Truncate"].Embeddings[0][0] != res["Explicit Truncate"].Embeddings[0][0] {
|
||||
t.Fatal("expected default request and truncate true request to be the same")
|
||||
}
|
||||
|
||||
// check that truncate set to false returns an error if context length is exceeded
|
||||
_, err := embedTestHelper(ctx, t, api.EmbedRequest{
|
||||
Model: "all-minilm",
|
||||
Input: "why is the sky blue?",
|
||||
Truncate: &truncFalse,
|
||||
Options: map[string]any{"num_ctx": 1},
|
||||
})
|
||||
|
||||
if err == nil {
|
||||
t.Fatal("expected error, got nil")
|
||||
}
|
||||
}
|
||||
|
||||
func embeddingTestHelper(ctx context.Context, t *testing.T, req api.EmbeddingRequest) (*api.EmbeddingResponse, error) {
|
||||
client, _, cleanup := InitServerConnection(ctx, t)
|
||||
defer cleanup()
|
||||
if err := PullIfMissing(ctx, client, req.Model); err != nil {
|
||||
t.Fatalf("failed to pull model %s: %v", req.Model, err)
|
||||
}
|
||||
|
||||
response, err := client.Embeddings(ctx, &req)
|
||||
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return response, nil
|
||||
}
|
||||
|
||||
func embedTestHelper(ctx context.Context, t *testing.T, req api.EmbedRequest) (*api.EmbedResponse, error) {
|
||||
client, _, cleanup := InitServerConnection(ctx, t)
|
||||
defer cleanup()
|
||||
if err := PullIfMissing(ctx, client, req.Model); err != nil {
|
||||
t.Fatalf("failed to pull model %s: %v", req.Model, err)
|
||||
}
|
||||
|
||||
response, err := client.Embed(ctx, &req)
|
||||
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return response, nil
|
||||
}
|
@@ -5,7 +5,6 @@ package integration
|
||||
import (
|
||||
"context"
|
||||
"errors"
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"os"
|
||||
"strconv"
|
||||
@@ -14,8 +13,10 @@ import (
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/stretchr/testify/require"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
)
|
||||
|
||||
func TestMaxQueue(t *testing.T) {
|
||||
@@ -27,13 +28,10 @@ func TestMaxQueue(t *testing.T) {
|
||||
// Note: This test can be quite slow when running in CPU mode, so keep the threadCount low unless your on GPU
|
||||
// Also note that by default Darwin can't sustain > ~128 connections without adjusting limits
|
||||
threadCount := 32
|
||||
mq := os.Getenv("OLLAMA_MAX_QUEUE")
|
||||
if mq != "" {
|
||||
var err error
|
||||
threadCount, err = strconv.Atoi(mq)
|
||||
require.NoError(t, err)
|
||||
if maxQueue := envconfig.MaxQueue(); maxQueue != 0 {
|
||||
threadCount = maxQueue
|
||||
} else {
|
||||
os.Setenv("OLLAMA_MAX_QUEUE", fmt.Sprintf("%d", threadCount))
|
||||
t.Setenv("OLLAMA_MAX_QUEUE", strconv.Itoa(threadCount))
|
||||
}
|
||||
|
||||
req := api.GenerateRequest{
|
||||
|
25
llm/ext_server/CMakeLists.txt
vendored
25
llm/ext_server/CMakeLists.txt
vendored
@@ -1,14 +1,13 @@
|
||||
|
||||
set(TARGET ollama_llama_server)
|
||||
option(LLAMA_SERVER_VERBOSE "Build verbose logging option for Server" ON)
|
||||
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
|
||||
add_executable(${TARGET} server.cpp utils.hpp json.hpp httplib.h)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_compile_definitions(${TARGET} PRIVATE
|
||||
SERVER_VERBOSE=$<BOOL:${LLAMA_SERVER_VERBOSE}>
|
||||
)
|
||||
target_link_libraries(${TARGET} PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT})
|
||||
if (WIN32)
|
||||
TARGET_LINK_LIBRARIES(${TARGET} PRIVATE ws2_32)
|
||||
endif()
|
||||
set(TARGET ollama_llama_server)
|
||||
option(LLAMA_SERVER_VERBOSE "Build verbose logging option for Server" ON)
|
||||
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
|
||||
add_executable(${TARGET} server.cpp utils.hpp json.hpp httplib.h)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_compile_definitions(${TARGET} PRIVATE
|
||||
SERVER_VERBOSE=$<BOOL:${LLAMA_SERVER_VERBOSE}>
|
||||
)
|
||||
target_link_libraries(${TARGET} PRIVATE ggml llama common llava ${CMAKE_THREAD_LIBS_INIT})
|
||||
if (WIN32)
|
||||
TARGET_LINK_LIBRARIES(${TARGET} PRIVATE ws2_32)
|
||||
endif()
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
126
llm/ext_server/server.cpp
vendored
126
llm/ext_server/server.cpp
vendored
@@ -41,6 +41,7 @@
|
||||
|
||||
#if defined(_WIN32)
|
||||
#include <windows.h>
|
||||
#include <errhandlingapi.h>
|
||||
#endif
|
||||
|
||||
#include <cstddef>
|
||||
@@ -1220,6 +1221,7 @@ struct llama_server_context
|
||||
res.result_json = json
|
||||
{
|
||||
{"embedding", std::vector<float>(embd, embd + n_embd)},
|
||||
{"timings", slot.get_formated_timings()},
|
||||
};
|
||||
}
|
||||
}
|
||||
@@ -1382,12 +1384,50 @@ struct llama_server_context
|
||||
}
|
||||
}
|
||||
|
||||
std::string common_prefix(const std::string& str1, const std::string& str2) {
|
||||
auto mismatch_pair = std::mismatch(str1.begin(), str1.end(), str2.begin());
|
||||
return std::string(str1.begin(), mismatch_pair.first);
|
||||
}
|
||||
|
||||
// Find the slot that has the greatest common prefix
|
||||
server_slot *prefix_slot(const json &prompt) {
|
||||
if (!prompt.is_string()) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
std::string prompt_str = prompt.get<std::string>();
|
||||
server_slot *slot = nullptr;
|
||||
size_t longest = 0;
|
||||
|
||||
for (server_slot &s : slots) {
|
||||
if (s.available() && s.prompt.is_string()) {
|
||||
std::string s_prompt = s.prompt.get<std::string>();
|
||||
std::string prefix = common_prefix(s_prompt, prompt_str);
|
||||
|
||||
if (prefix.size() > longest) {
|
||||
slot = &s;
|
||||
longest = prefix.size();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (!slot) {
|
||||
return get_slot(-1);
|
||||
}
|
||||
|
||||
LOG_DEBUG("slot with common prefix found", {{
|
||||
"slot_id", slot->id,
|
||||
"characters", longest
|
||||
}});
|
||||
return slot;
|
||||
}
|
||||
|
||||
void process_single_task(task_server& task)
|
||||
{
|
||||
switch (task.type)
|
||||
{
|
||||
case TASK_TYPE_COMPLETION: {
|
||||
server_slot *slot = get_slot(json_value(task.data, "slot_id", -1));
|
||||
server_slot *slot = prefix_slot(task.data["prompt"]);
|
||||
if (slot == nullptr)
|
||||
{
|
||||
// if no slot is available, we defer this task for processing later
|
||||
@@ -1650,22 +1690,8 @@ struct llama_server_context
|
||||
}
|
||||
slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
|
||||
|
||||
char buf[256];
|
||||
llama_model_meta_val_str(model, "general.architecture", buf, 256);
|
||||
bool gemma2 = strcmp(buf, "gemma2") == 0;
|
||||
|
||||
int32_t truncate_at = slot.n_ctx;
|
||||
|
||||
// truncate at 2/3 of the context length for gemma2 models
|
||||
// as they do not support context shifts (from the sliding window implementation).
|
||||
// this way, prompts that almost fit the context length can still generate a full
|
||||
// response without a sudden stop from hitting the context limit
|
||||
if (gemma2) {
|
||||
truncate_at = 2 * slot.n_ctx / 3;
|
||||
}
|
||||
|
||||
// if input prompt is too big, truncate it, if group attention self-extend is disabled
|
||||
if (slot.ga_n == 1 && slot.n_prompt_tokens >= truncate_at)
|
||||
if (slot.ga_n == 1 && slot.n_prompt_tokens >= slot.n_ctx)
|
||||
{
|
||||
const int n_left = slot.n_ctx - slot.params.n_keep;
|
||||
const int n_shift = n_left / 2;
|
||||
@@ -1693,19 +1719,6 @@ struct llama_server_context
|
||||
GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
|
||||
}
|
||||
|
||||
// Models with sliding window attention do not work with context shifts, so
|
||||
// limit their prediction to the context length
|
||||
if (gemma2) {
|
||||
int32_t limit = slot.n_ctx - slot.n_prompt_tokens;
|
||||
slot.n_predict = limit;
|
||||
slot.params.n_predict = limit;
|
||||
LOG_INFO("model does not support sliding window, limiting generation", {
|
||||
{"n_ctx", slot.n_ctx},
|
||||
{"n_prompt_tokens", slot.n_prompt_tokens},
|
||||
{"n_predict", slot.n_predict}
|
||||
});
|
||||
}
|
||||
|
||||
if (!slot.params.cache_prompt)
|
||||
{
|
||||
llama_sampling_reset(slot.ctx_sampling);
|
||||
@@ -1732,7 +1745,7 @@ struct llama_server_context
|
||||
slot.n_past -= 1;
|
||||
}
|
||||
|
||||
slot.n_prompt_tokens_processed = slot.n_prompt_tokens - slot.n_past;
|
||||
slot.n_prompt_tokens_processed = slot.n_prompt_tokens;
|
||||
|
||||
if (slot.ga_n != 1)
|
||||
{
|
||||
@@ -2426,15 +2439,6 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, g
|
||||
params.lora_adapter.emplace_back(lora_adapter, std::stof(argv[i]));
|
||||
params.use_mmap = false;
|
||||
}
|
||||
else if (arg == "--lora-base")
|
||||
{
|
||||
if (++i >= argc)
|
||||
{
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.lora_base = argv[i];
|
||||
}
|
||||
else if (arg == "-v" || arg == "--verbose")
|
||||
{
|
||||
server_verbose = true;
|
||||
@@ -2726,6 +2730,9 @@ int wmain(int argc, wchar_t **wargv) {
|
||||
for (int i = 0; i < argc; ++i) {
|
||||
argv[i] = wchar_to_char(wargv[i]);
|
||||
}
|
||||
|
||||
// Adjust error mode to avoid error dialog after we start.
|
||||
SetErrorMode(SEM_FAILCRITICALERRORS);
|
||||
#else
|
||||
int main(int argc, char **argv) {
|
||||
#endif
|
||||
@@ -3177,26 +3184,37 @@ int main(int argc, char **argv) {
|
||||
prompt = "";
|
||||
}
|
||||
|
||||
json image_data;
|
||||
if (body.count("image_data") != 0) {
|
||||
image_data = body["image_data"];
|
||||
}
|
||||
else
|
||||
{
|
||||
image_data = "";
|
||||
if (prompt.size() == 1) {
|
||||
prompt = prompt[0];
|
||||
}
|
||||
|
||||
// create and queue the task
|
||||
const int task_id = llama.queue_tasks.get_new_id();
|
||||
llama.queue_results.add_waiting_task_id(task_id);
|
||||
llama.request_completion(task_id, { {"prompt", prompt}, { "n_predict", 0}, {"image_data", image_data} }, true, -1);
|
||||
json responses;
|
||||
{
|
||||
const int id_task = llama.queue_tasks.get_new_id();
|
||||
llama.queue_results.add_waiting_task_id(id_task);
|
||||
llama.request_completion(id_task, {{"prompt", prompt}}, true, -1);
|
||||
|
||||
// get the result
|
||||
task_result result = llama.queue_results.recv(task_id);
|
||||
llama.queue_results.remove_waiting_task_id(task_id);
|
||||
// get the result
|
||||
task_result result = llama.queue_results.recv(id_task);
|
||||
llama.queue_results.remove_waiting_task_id(id_task);
|
||||
if (result.error) {
|
||||
return res.set_content(result.result_json.dump(), "application/json; charset=utf-8");
|
||||
}
|
||||
|
||||
// send the result
|
||||
return res.set_content(result.result_json.dump(), "application/json; charset=utf-8");
|
||||
responses = result.result_json.value("results", std::vector<json>{result.result_json});
|
||||
json embeddings = json::array();
|
||||
|
||||
int prompt_n = 0;
|
||||
for (auto & elem : responses) {
|
||||
embeddings.push_back(elem.at("embedding"));
|
||||
prompt_n += elem.at("timings").at("prompt_n").get<int>();
|
||||
}
|
||||
|
||||
// send the result
|
||||
json embedding_res = json{{"embedding", embeddings}, {"prompt_n", prompt_n}};
|
||||
return res.set_content(embedding_res.dump(), "application/json; charset=utf-8");
|
||||
}
|
||||
});
|
||||
|
||||
// GG: if I put the main loop inside a thread, it crashes on the first request when build in Debug!?
|
||||
|
@@ -18,16 +18,16 @@ sign() {
|
||||
fi
|
||||
}
|
||||
|
||||
COMMON_DARWIN_DEFS="-DCMAKE_OSX_DEPLOYMENT_TARGET=11.3 -DLLAMA_METAL_MACOSX_VERSION_MIN=11.3 -DCMAKE_SYSTEM_NAME=Darwin -DLLAMA_METAL_EMBED_LIBRARY=on -DLLAMA_OPENMP=off"
|
||||
COMMON_DARWIN_DEFS="-DBUILD_SHARED_LIBS=off -DCMAKE_OSX_DEPLOYMENT_TARGET=11.3 -DLLAMA_METAL_MACOSX_VERSION_MIN=11.3 -DCMAKE_SYSTEM_NAME=Darwin -DGGML_METAL_EMBED_LIBRARY=on -DGGML_OPENMP=off"
|
||||
|
||||
case "${GOARCH}" in
|
||||
"amd64")
|
||||
COMMON_CPU_DEFS="${COMMON_DARWIN_DEFS} -DCMAKE_SYSTEM_PROCESSOR=${ARCH} -DCMAKE_OSX_ARCHITECTURES=${ARCH} -DLLAMA_METAL=off -DLLAMA_NATIVE=off"
|
||||
COMMON_CPU_DEFS="${COMMON_DARWIN_DEFS} -DCMAKE_SYSTEM_PROCESSOR=${ARCH} -DCMAKE_OSX_ARCHITECTURES=${ARCH} -DGGML_METAL=off -DGGML_NATIVE=off"
|
||||
|
||||
# Static build for linking into the Go binary
|
||||
init_vars
|
||||
CMAKE_TARGETS="--target llama --target ggml"
|
||||
CMAKE_DEFS="${COMMON_CPU_DEFS} -DBUILD_SHARED_LIBS=off -DLLAMA_BLAS=off -DLLAMA_ACCELERATE=off -DLLAMA_AVX=off -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}"
|
||||
CMAKE_DEFS="${COMMON_CPU_DEFS} -DGGML_BLAS=off -DGGML_ACCELERATE=off -DGGML_AVX=off -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off ${CMAKE_DEFS}"
|
||||
BUILD_DIR="../build/darwin/${ARCH}_static"
|
||||
echo "Building static library"
|
||||
build
|
||||
@@ -37,7 +37,7 @@ case "${GOARCH}" in
|
||||
# CPU first for the default library, set up as lowest common denominator for maximum compatibility (including Rosetta)
|
||||
#
|
||||
init_vars
|
||||
CMAKE_DEFS="${COMMON_CPU_DEFS} -DLLAMA_ACCELERATE=off -DLLAMA_BLAS=off -DLLAMA_AVX=off -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}"
|
||||
CMAKE_DEFS="${COMMON_CPU_DEFS} -DGGML_ACCELERATE=off -DGGML_BLAS=off -DGGML_AVX=off -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off ${CMAKE_DEFS}"
|
||||
BUILD_DIR="../build/darwin/${ARCH}/cpu"
|
||||
echo "Building LCD CPU"
|
||||
build
|
||||
@@ -49,7 +49,7 @@ case "${GOARCH}" in
|
||||
# Approximately 400% faster than LCD on same CPU
|
||||
#
|
||||
init_vars
|
||||
CMAKE_DEFS="${COMMON_CPU_DEFS} -DLLAMA_ACCELERATE=off -DLLAMA_BLAS=off -DLLAMA_AVX=on -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}"
|
||||
CMAKE_DEFS="${COMMON_CPU_DEFS} -DGGML_ACCELERATE=off -DGGML_BLAS=off -DGGML_AVX=on -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off ${CMAKE_DEFS}"
|
||||
BUILD_DIR="../build/darwin/${ARCH}/cpu_avx"
|
||||
echo "Building AVX CPU"
|
||||
build
|
||||
@@ -61,7 +61,7 @@ case "${GOARCH}" in
|
||||
# Approximately 10% faster than AVX on same CPU
|
||||
#
|
||||
init_vars
|
||||
CMAKE_DEFS="${COMMON_CPU_DEFS} -DLLAMA_ACCELERATE=on -DLLAMA_BLAS=off -DLLAMA_AVX=on -DLLAMA_AVX2=on -DLLAMA_AVX512=off -DLLAMA_FMA=on -DLLAMA_F16C=on ${CMAKE_DEFS}"
|
||||
CMAKE_DEFS="${COMMON_CPU_DEFS} -DGGML_ACCELERATE=on -DGGML_BLAS=off -DGGML_AVX=on -DGGML_AVX2=on -DGGML_AVX512=off -DGGML_FMA=on -DGGML_F16C=on ${CMAKE_DEFS}"
|
||||
BUILD_DIR="../build/darwin/${ARCH}/cpu_avx2"
|
||||
echo "Building AVX2 CPU"
|
||||
EXTRA_LIBS="${EXTRA_LIBS} -framework Accelerate -framework Foundation"
|
||||
@@ -75,14 +75,14 @@ case "${GOARCH}" in
|
||||
# Static build for linking into the Go binary
|
||||
init_vars
|
||||
CMAKE_TARGETS="--target llama --target ggml"
|
||||
CMAKE_DEFS="-DCMAKE_OSX_DEPLOYMENT_TARGET=11.3 -DLLAMA_BLAS=off -DCMAKE_SYSTEM_NAME=Darwin -DBUILD_SHARED_LIBS=off -DCMAKE_SYSTEM_PROCESSOR=${ARCH} -DCMAKE_OSX_ARCHITECTURES=${ARCH} -DLLAMA_METAL=off -DLLAMA_ACCELERATE=off -DLLAMA_AVX=off -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}"
|
||||
CMAKE_DEFS="${COMMON_DARWIN_DEFS} -DCMAKE_OSX_DEPLOYMENT_TARGET=11.3 -DCMAKE_SYSTEM_NAME=Darwin -DCMAKE_SYSTEM_PROCESSOR=${ARCH} -DCMAKE_OSX_ARCHITECTURES=${ARCH} ${CMAKE_DEFS}"
|
||||
BUILD_DIR="../build/darwin/${ARCH}_static"
|
||||
echo "Building static library"
|
||||
build
|
||||
|
||||
if [ -z "$OLLAMA_SKIP_METAL_GENERATE" ]; then
|
||||
init_vars
|
||||
CMAKE_DEFS="${COMMON_DARWIN_DEFS} -DLLAMA_ACCELERATE=on -DCMAKE_SYSTEM_PROCESSOR=${ARCH} -DCMAKE_OSX_ARCHITECTURES=${ARCH} -DLLAMA_METAL=on ${CMAKE_DEFS}"
|
||||
CMAKE_DEFS="${COMMON_DARWIN_DEFS} -DCMAKE_SYSTEM_PROCESSOR=${ARCH} -DCMAKE_OSX_ARCHITECTURES=${ARCH} ${CMAKE_DEFS}"
|
||||
BUILD_DIR="../build/darwin/${ARCH}/metal"
|
||||
EXTRA_LIBS="${EXTRA_LIBS} -framework Accelerate -framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders"
|
||||
build
|
||||
|
@@ -51,7 +51,7 @@ if [ -z "${CUDACXX}" ]; then
|
||||
export CUDACXX=$(command -v nvcc)
|
||||
fi
|
||||
fi
|
||||
COMMON_CMAKE_DEFS="-DCMAKE_POSITION_INDEPENDENT_CODE=on -DLLAMA_NATIVE=off -DLLAMA_AVX=on -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off -DLLAMA_OPENMP=off"
|
||||
COMMON_CMAKE_DEFS="-DBUILD_SHARED_LIBS=off -DCMAKE_POSITION_INDEPENDENT_CODE=on -DGGML_NATIVE=off -DGGML_AVX=on -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off -DGGML_OPENMP=off"
|
||||
source $(dirname $0)/gen_common.sh
|
||||
init_vars
|
||||
git_module_setup
|
||||
@@ -64,7 +64,7 @@ if [ -z "${OLLAMA_SKIP_STATIC_GENERATE}" -o "${OLLAMA_CPU_TARGET}" = "static" ];
|
||||
# Static build for linking into the Go binary
|
||||
init_vars
|
||||
CMAKE_TARGETS="--target llama --target ggml"
|
||||
CMAKE_DEFS="-DBUILD_SHARED_LIBS=off -DLLAMA_NATIVE=off -DLLAMA_AVX=off -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off -DLLAMA_OPENMP=off ${CMAKE_DEFS}"
|
||||
CMAKE_DEFS="-DBUILD_SHARED_LIBS=off -DGGML_NATIVE=off -DGGML_AVX=off -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off -DGGML_OPENMP=off ${CMAKE_DEFS}"
|
||||
BUILD_DIR="../build/linux/${ARCH}_static"
|
||||
echo "Building static library"
|
||||
build
|
||||
@@ -77,29 +77,29 @@ if [ -z "${OLLAMA_SKIP_CPU_GENERATE}" ]; then
|
||||
if [ -n "${OLLAMA_CUSTOM_CPU_DEFS}" ]; then
|
||||
init_vars
|
||||
echo "OLLAMA_CUSTOM_CPU_DEFS=\"${OLLAMA_CUSTOM_CPU_DEFS}\""
|
||||
CMAKE_DEFS="${OLLAMA_CUSTOM_CPU_DEFS} -DCMAKE_POSITION_INDEPENDENT_CODE=on ${CMAKE_DEFS}"
|
||||
CMAKE_DEFS="${OLLAMA_CUSTOM_CPU_DEFS} -DBUILD_SHARED_LIBS=off -DCMAKE_POSITION_INDEPENDENT_CODE=on ${CMAKE_DEFS}"
|
||||
BUILD_DIR="../build/linux/${ARCH}/cpu"
|
||||
echo "Building custom CPU"
|
||||
build
|
||||
compress
|
||||
else
|
||||
# Darwin Rosetta x86 emulation does NOT support AVX, AVX2, AVX512
|
||||
# -DLLAMA_AVX -- 2011 Intel Sandy Bridge & AMD Bulldozer
|
||||
# -DLLAMA_F16C -- 2012 Intel Ivy Bridge & AMD 2011 Bulldozer (No significant improvement over just AVX)
|
||||
# -DLLAMA_AVX2 -- 2013 Intel Haswell & 2015 AMD Excavator / 2017 AMD Zen
|
||||
# -DLLAMA_FMA (FMA3) -- 2013 Intel Haswell & 2012 AMD Piledriver
|
||||
# -DGGML_AVX -- 2011 Intel Sandy Bridge & AMD Bulldozer
|
||||
# -DGGML_F16C -- 2012 Intel Ivy Bridge & AMD 2011 Bulldozer (No significant improvement over just AVX)
|
||||
# -DGGML_AVX2 -- 2013 Intel Haswell & 2015 AMD Excavator / 2017 AMD Zen
|
||||
# -DGGML_FMA (FMA3) -- 2013 Intel Haswell & 2012 AMD Piledriver
|
||||
# Note: the following seem to yield slower results than AVX2 - ymmv
|
||||
# -DLLAMA_AVX512 -- 2017 Intel Skylake and High End DeskTop (HEDT)
|
||||
# -DLLAMA_AVX512_VBMI -- 2018 Intel Cannon Lake
|
||||
# -DLLAMA_AVX512_VNNI -- 2021 Intel Alder Lake
|
||||
# -DGGML_AVX512 -- 2017 Intel Skylake and High End DeskTop (HEDT)
|
||||
# -DGGML_AVX512_VBMI -- 2018 Intel Cannon Lake
|
||||
# -DGGML_AVX512_VNNI -- 2021 Intel Alder Lake
|
||||
|
||||
COMMON_CPU_DEFS="-DCMAKE_POSITION_INDEPENDENT_CODE=on -DLLAMA_NATIVE=off -DLLAMA_OPENMP=off"
|
||||
COMMON_CPU_DEFS="-DBUILD_SHARED_LIBS=off -DCMAKE_POSITION_INDEPENDENT_CODE=on -DGGML_NATIVE=off -DGGML_OPENMP=off"
|
||||
if [ -z "${OLLAMA_CPU_TARGET}" -o "${OLLAMA_CPU_TARGET}" = "cpu" ]; then
|
||||
#
|
||||
# CPU first for the default library, set up as lowest common denominator for maximum compatibility (including Rosetta)
|
||||
#
|
||||
init_vars
|
||||
CMAKE_DEFS="${COMMON_CPU_DEFS} -DLLAMA_AVX=off -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}"
|
||||
CMAKE_DEFS="${COMMON_CPU_DEFS} -DGGML_AVX=off -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off ${CMAKE_DEFS}"
|
||||
BUILD_DIR="../build/linux/${ARCH}/cpu"
|
||||
echo "Building LCD CPU"
|
||||
build
|
||||
@@ -116,7 +116,7 @@ if [ -z "${OLLAMA_SKIP_CPU_GENERATE}" ]; then
|
||||
# Approximately 400% faster than LCD on same CPU
|
||||
#
|
||||
init_vars
|
||||
CMAKE_DEFS="${COMMON_CPU_DEFS} -DLLAMA_AVX=on -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}"
|
||||
CMAKE_DEFS="${COMMON_CPU_DEFS} -DGGML_AVX=on -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off ${CMAKE_DEFS}"
|
||||
BUILD_DIR="../build/linux/${ARCH}/cpu_avx"
|
||||
echo "Building AVX CPU"
|
||||
build
|
||||
@@ -129,7 +129,7 @@ if [ -z "${OLLAMA_SKIP_CPU_GENERATE}" ]; then
|
||||
# Approximately 10% faster than AVX on same CPU
|
||||
#
|
||||
init_vars
|
||||
CMAKE_DEFS="${COMMON_CPU_DEFS} -DLLAMA_AVX=on -DLLAMA_AVX2=on -DLLAMA_AVX512=off -DLLAMA_FMA=on -DLLAMA_F16C=on ${CMAKE_DEFS}"
|
||||
CMAKE_DEFS="${COMMON_CPU_DEFS} -DGGML_AVX=on -DGGML_AVX2=on -DGGML_AVX512=off -DGGML_FMA=on -DGGML_F16C=on ${CMAKE_DEFS}"
|
||||
BUILD_DIR="../build/linux/${ARCH}/cpu_avx2"
|
||||
echo "Building AVX2 CPU"
|
||||
build
|
||||
@@ -170,15 +170,15 @@ if [ -z "${OLLAMA_SKIP_CUDA_GENERATE}" -a -d "${CUDA_LIB_DIR}" ]; then
|
||||
#
|
||||
# CUDA compute < 6.0 lacks proper FP16 support on ARM.
|
||||
# Disabling has minimal performance effect while maintaining compatibility.
|
||||
ARM64_DEFS="-DLLAMA_AVX=off -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_CUDA_F16=off"
|
||||
ARM64_DEFS="-DGGML_AVX=off -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_CUDA_F16=off"
|
||||
fi
|
||||
# Users building from source can tune the exact flags we pass to cmake for configuring llama.cpp
|
||||
if [ -n "${OLLAMA_CUSTOM_CUDA_DEFS}" ]; then
|
||||
echo "OLLAMA_CUSTOM_CUDA_DEFS=\"${OLLAMA_CUSTOM_CUDA_DEFS}\""
|
||||
CMAKE_CUDA_DEFS="-DLLAMA_CUDA=on -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES} ${OLLAMA_CUSTOM_CUDA_DEFS}"
|
||||
CMAKE_CUDA_DEFS="-DGGML_CUDA=on -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES} ${OLLAMA_CUSTOM_CUDA_DEFS}"
|
||||
echo "Building custom CUDA GPU"
|
||||
else
|
||||
CMAKE_CUDA_DEFS="-DLLAMA_CUDA=on -DCMAKE_CUDA_FLAGS=-t8 -DLLAMA_CUDA_FORCE_MMQ=on -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES}"
|
||||
CMAKE_CUDA_DEFS="-DGGML_CUDA=on -DCMAKE_CUDA_FLAGS=-t8 -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES}"
|
||||
fi
|
||||
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} ${ARM64_DEFS} ${CMAKE_CUDA_DEFS}"
|
||||
BUILD_DIR="../build/linux/${ARCH}/cuda${CUDA_VARIANT}"
|
||||
@@ -216,7 +216,7 @@ if [ -z "${OLLAMA_SKIP_ONEAPI_GENERATE}" -a -d "${ONEAPI_ROOT}" ]; then
|
||||
init_vars
|
||||
source ${ONEAPI_ROOT}/setvars.sh --force # set up environment variables for oneAPI
|
||||
CC=icx
|
||||
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL=ON -DLLAMA_SYCL_F16=OFF"
|
||||
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL=ON -DGGML_SYCL_F16=OFF"
|
||||
BUILD_DIR="../build/linux/${ARCH}/oneapi"
|
||||
EXTRA_LIBS="-fsycl -Wl,-rpath,${ONEAPI_ROOT}/compiler/latest/lib,-rpath,${ONEAPI_ROOT}/mkl/latest/lib,-rpath,${ONEAPI_ROOT}/tbb/latest/lib,-rpath,${ONEAPI_ROOT}/compiler/latest/opt/oclfpga/linux64/lib -lOpenCL -lmkl_core -lmkl_sycl_blas -lmkl_intel_ilp64 -lmkl_tbb_thread -ltbb"
|
||||
DEBUG_FLAGS="" # icx compiles with -O0 if we pass -g, so we must remove it
|
||||
@@ -254,7 +254,7 @@ if [ -z "${OLLAMA_SKIP_ROCM_GENERATE}" -a -d "${ROCM_PATH}" ]; then
|
||||
ROCM_VARIANT=_v$(ls ${ROCM_PATH}/lib/librocblas.so.*.*.????? | cut -f5 -d. || true)
|
||||
fi
|
||||
init_vars
|
||||
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} -DLLAMA_HIPBLAS=on -DCMAKE_C_COMPILER=$ROCM_PATH/llvm/bin/clang -DCMAKE_CXX_COMPILER=$ROCM_PATH/llvm/bin/clang++ -DAMDGPU_TARGETS=$(amdGPUs) -DGPU_TARGETS=$(amdGPUs)"
|
||||
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} -DGGML_HIPBLAS=on -DLLAMA_CUDA_NO_PEER_COPY=on -DCMAKE_C_COMPILER=$ROCM_PATH/llvm/bin/clang -DCMAKE_CXX_COMPILER=$ROCM_PATH/llvm/bin/clang++ -DAMDGPU_TARGETS=$(amdGPUs) -DGPU_TARGETS=$(amdGPUs)"
|
||||
# Users building from source can tune the exact flags we pass to cmake for configuring llama.cpp
|
||||
if [ -n "${OLLAMA_CUSTOM_ROCM_DEFS}" ]; then
|
||||
echo "OLLAMA_CUSTOM_ROCM_DEFS=\"${OLLAMA_CUSTOM_ROCM_DEFS}\""
|
||||
|
@@ -6,18 +6,9 @@ function amdGPUs {
|
||||
if ($env:AMDGPU_TARGETS) {
|
||||
return $env:AMDGPU_TARGETS
|
||||
}
|
||||
# TODO - load from some common data file for linux + windows build consistency
|
||||
# Current supported rocblas list from ROCm v6.1.2 on windows
|
||||
# https://rocm.docs.amd.com/projects/install-on-windows/en/latest/reference/system-requirements.html#windows-supported-gpus
|
||||
$GPU_LIST = @(
|
||||
"gfx900"
|
||||
"gfx906:xnack-"
|
||||
"gfx908:xnack-"
|
||||
"gfx90a:xnack+"
|
||||
"gfx90a:xnack-"
|
||||
"gfx940"
|
||||
"gfx941"
|
||||
"gfx942"
|
||||
"gfx1010"
|
||||
"gfx1012"
|
||||
"gfx1030"
|
||||
"gfx1100"
|
||||
"gfx1101"
|
||||
@@ -39,8 +30,8 @@ function init_vars {
|
||||
}
|
||||
$script:cmakeDefs = @(
|
||||
"-DBUILD_SHARED_LIBS=on",
|
||||
"-DLLAMA_NATIVE=off",
|
||||
"-DLLAMA_OPENMP=off"
|
||||
"-DGGML_NATIVE=off",
|
||||
"-DGGML_OPENMP=off"
|
||||
)
|
||||
$script:commonCpuDefs = @("-DCMAKE_POSITION_INDEPENDENT_CODE=on")
|
||||
$script:ARCH = $Env:PROCESSOR_ARCHITECTURE.ToLower()
|
||||
@@ -182,9 +173,9 @@ function cleanup {
|
||||
}
|
||||
|
||||
|
||||
# -DLLAMA_AVX -- 2011 Intel Sandy Bridge & AMD Bulldozer
|
||||
# -DLLAMA_AVX2 -- 2013 Intel Haswell & 2015 AMD Excavator / 2017 AMD Zen
|
||||
# -DLLAMA_FMA (FMA3) -- 2013 Intel Haswell & 2012 AMD Piledriver
|
||||
# -DGGML_AVX -- 2011 Intel Sandy Bridge & AMD Bulldozer
|
||||
# -DGGML_AVX2 -- 2013 Intel Haswell & 2015 AMD Excavator / 2017 AMD Zen
|
||||
# -DGGML_FMA (FMA3) -- 2013 Intel Haswell & 2012 AMD Piledriver
|
||||
|
||||
|
||||
function build_static() {
|
||||
@@ -204,13 +195,13 @@ function build_static() {
|
||||
"-DCMAKE_C_COMPILER=gcc.exe",
|
||||
"-DCMAKE_CXX_COMPILER=g++.exe",
|
||||
"-DBUILD_SHARED_LIBS=off",
|
||||
"-DLLAMA_NATIVE=off",
|
||||
"-DLLAMA_AVX=off",
|
||||
"-DLLAMA_AVX2=off",
|
||||
"-DLLAMA_AVX512=off",
|
||||
"-DLLAMA_F16C=off",
|
||||
"-DLLAMA_FMA=off",
|
||||
"-DLLAMA_OPENMP=off")
|
||||
"-DGGML_NATIVE=off",
|
||||
"-DGGML_AVX=off",
|
||||
"-DGGML_AVX2=off",
|
||||
"-DGGML_AVX512=off",
|
||||
"-DGGML_F16C=off",
|
||||
"-DGGML_FMA=off",
|
||||
"-DGGML_OPENMP=off")
|
||||
$script:buildDir="../build/windows/${script:ARCH}_static"
|
||||
write-host "Building static library"
|
||||
build
|
||||
@@ -224,7 +215,7 @@ function build_cpu($gen_arch) {
|
||||
if ((-not "${env:OLLAMA_SKIP_CPU_GENERATE}" ) -and ((-not "${env:OLLAMA_CPU_TARGET}") -or ("${env:OLLAMA_CPU_TARGET}" -eq "cpu"))) {
|
||||
# remaining llama.cpp builds use MSVC
|
||||
init_vars
|
||||
$script:cmakeDefs = $script:commonCpuDefs + @("-A", $gen_arch, "-DLLAMA_AVX=off", "-DLLAMA_AVX2=off", "-DLLAMA_AVX512=off", "-DLLAMA_FMA=off", "-DLLAMA_F16C=off") + $script:cmakeDefs
|
||||
$script:cmakeDefs = $script:commonCpuDefs + @("-A", $gen_arch, "-DGGML_AVX=off", "-DGGML_AVX2=off", "-DGGML_AVX512=off", "-DGGML_FMA=off", "-DGGML_F16C=off") + $script:cmakeDefs
|
||||
$script:buildDir="../build/windows/${script:ARCH}/cpu"
|
||||
$script:distDir="$script:DIST_BASE\cpu"
|
||||
write-host "Building LCD CPU"
|
||||
@@ -239,7 +230,7 @@ function build_cpu($gen_arch) {
|
||||
function build_cpu_avx() {
|
||||
if ((-not "${env:OLLAMA_SKIP_CPU_GENERATE}" ) -and ((-not "${env:OLLAMA_CPU_TARGET}") -or ("${env:OLLAMA_CPU_TARGET}" -eq "cpu_avx"))) {
|
||||
init_vars
|
||||
$script:cmakeDefs = $script:commonCpuDefs + @("-A", "x64", "-DLLAMA_AVX=on", "-DLLAMA_AVX2=off", "-DLLAMA_AVX512=off", "-DLLAMA_FMA=off", "-DLLAMA_F16C=off") + $script:cmakeDefs
|
||||
$script:cmakeDefs = $script:commonCpuDefs + @("-A", "x64", "-DGGML_AVX=on", "-DGGML_AVX2=off", "-DGGML_AVX512=off", "-DGGML_FMA=off", "-DGGML_F16C=off") + $script:cmakeDefs
|
||||
$script:buildDir="../build/windows/${script:ARCH}/cpu_avx"
|
||||
$script:distDir="$script:DIST_BASE\cpu_avx"
|
||||
write-host "Building AVX CPU"
|
||||
@@ -254,7 +245,7 @@ function build_cpu_avx() {
|
||||
function build_cpu_avx2() {
|
||||
if ((-not "${env:OLLAMA_SKIP_CPU_GENERATE}" ) -and ((-not "${env:OLLAMA_CPU_TARGET}") -or ("${env:OLLAMA_CPU_TARGET}" -eq "cpu_avx2"))) {
|
||||
init_vars
|
||||
$script:cmakeDefs = $script:commonCpuDefs + @("-A", "x64", "-DLLAMA_AVX=on", "-DLLAMA_AVX2=on", "-DLLAMA_AVX512=off", "-DLLAMA_FMA=on", "-DLLAMA_F16C=on") + $script:cmakeDefs
|
||||
$script:cmakeDefs = $script:commonCpuDefs + @("-A", "x64", "-DGGML_AVX=on", "-DGGML_AVX2=on", "-DGGML_AVX512=off", "-DGGML_FMA=on", "-DGGML_F16C=on") + $script:cmakeDefs
|
||||
$script:buildDir="../build/windows/${script:ARCH}/cpu_avx2"
|
||||
$script:distDir="$script:DIST_BASE\cpu_avx2"
|
||||
write-host "Building AVX2 CPU"
|
||||
@@ -279,9 +270,9 @@ function build_cuda() {
|
||||
$script:distDir="$script:DIST_BASE\cuda$script:CUDA_VARIANT"
|
||||
$script:cmakeDefs += @(
|
||||
"-A", "x64",
|
||||
"-DLLAMA_CUDA=ON",
|
||||
"-DLLAMA_AVX=on",
|
||||
"-DLLAMA_AVX2=off",
|
||||
"-DGGML_CUDA=ON",
|
||||
"-DGGML_AVX=on",
|
||||
"-DGGML_AVX2=off",
|
||||
"-DCUDAToolkit_INCLUDE_DIR=$script:CUDA_INCLUDE_DIR",
|
||||
"-DCMAKE_CUDA_FLAGS=-t8",
|
||||
"-DCMAKE_CUDA_ARCHITECTURES=${script:CMAKE_CUDA_ARCHITECTURES}"
|
||||
@@ -319,7 +310,7 @@ function build_oneapi() {
|
||||
$script:distDir ="$script:DIST_BASE\oneapi$script:ONEAPI_VARIANT"
|
||||
$script:cmakeDefs += @(
|
||||
"-G", "MinGW Makefiles",
|
||||
"-DLLAMA_SYCL=ON",
|
||||
"-DGGML_SYCL=ON",
|
||||
"-DCMAKE_C_COMPILER=icx",
|
||||
"-DCMAKE_CXX_COMPILER=icx",
|
||||
"-DCMAKE_BUILD_TYPE=Release"
|
||||
@@ -365,10 +356,11 @@ function build_rocm() {
|
||||
"-G", "Ninja",
|
||||
"-DCMAKE_C_COMPILER=clang.exe",
|
||||
"-DCMAKE_CXX_COMPILER=clang++.exe",
|
||||
"-DLLAMA_HIPBLAS=on",
|
||||
"-DGGML_HIPBLAS=on",
|
||||
"-DLLAMA_CUDA_NO_PEER_COPY=on",
|
||||
"-DHIP_PLATFORM=amd",
|
||||
"-DLLAMA_AVX=on",
|
||||
"-DLLAMA_AVX2=off",
|
||||
"-DGGML_AVX=on",
|
||||
"-DGGML_AVX2=off",
|
||||
"-DCMAKE_POSITION_INDEPENDENT_CODE=on",
|
||||
"-DAMDGPU_TARGETS=$(amdGPUs)",
|
||||
"-DGPU_TARGETS=$(amdGPUs)"
|
||||
@@ -394,7 +386,6 @@ function build_rocm() {
|
||||
sign
|
||||
install
|
||||
|
||||
# Assumes v5.7, may need adjustments for v6
|
||||
rm -ea 0 -recurse -force -path "${script:SRC_DIR}\dist\windows-${script:ARCH}\rocm\"
|
||||
md "${script:SRC_DIR}\dist\windows-${script:ARCH}\rocm\rocblas\library\" -ea 0 > $null
|
||||
cp "${env:HIP_PATH}\bin\hipblas.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\rocm\"
|
||||
|
26
llm/ggml.go
26
llm/ggml.go
@@ -424,6 +424,32 @@ func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload ui
|
||||
4*batch*(3*embedding+vocab)+embedding*vocab*105/128,
|
||||
4*batch*(2*embedding+1+2*embeddingHeadsK*headsKV+context+context*headsKV)+4*embeddingHeadsK*context*headsKV+embedding*embeddingHeadsK*headsKV*9/16,
|
||||
)
|
||||
case "chatglm":
|
||||
fullOffload = 4 * batch * (embedding + vocab)
|
||||
partialOffload = 4*batch*(embedding+vocab) + embedding*vocab*105/128
|
||||
if qkvBias, ok := layers["blk.0"]["attn_qkv.bias"]; ok {
|
||||
fullOffload = max(
|
||||
fullOffload,
|
||||
4*batch*(2+
|
||||
2*embedding+
|
||||
context+
|
||||
context*heads+
|
||||
embeddingHeadsK*heads+
|
||||
qkvBias.Shape[0]),
|
||||
)
|
||||
|
||||
partialOffload = max(
|
||||
partialOffload,
|
||||
4*batch*(1+
|
||||
2*embedding+
|
||||
embeddingHeadsK*heads+
|
||||
context+
|
||||
context*heads)+
|
||||
4*embeddingHeadsK*context+
|
||||
4*context*embeddingHeadsK+
|
||||
4*qkvBias.Shape[0],
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
return
|
||||
|
@@ -537,6 +537,7 @@ var ggufKVOrder = map[string][]string{
|
||||
"tokenizer.ggml.add_bos_token",
|
||||
"tokenizer.ggml.add_eos_token",
|
||||
"tokenizer.chat_template",
|
||||
"bert.pooling_type",
|
||||
},
|
||||
}
|
||||
|
||||
|
Submodule llm/llama.cpp updated: 7c26775adb...6eeaeba126
17
llm/llm.go
17
llm/llm.go
@@ -1,12 +1,13 @@
|
||||
package llm
|
||||
|
||||
// #cgo CFLAGS: -Illama.cpp
|
||||
// #cgo darwin,arm64 LDFLAGS: ${SRCDIR}/build/darwin/arm64_static/libllama.a -lstdc++
|
||||
// #cgo darwin,amd64 LDFLAGS: ${SRCDIR}/build/darwin/x86_64_static/libllama.a -lstdc++
|
||||
// #cgo windows,amd64 LDFLAGS: ${SRCDIR}/build/windows/amd64_static/libllama.a -static -lstdc++
|
||||
// #cgo windows,arm64 LDFLAGS: ${SRCDIR}/build/windows/arm64_static/libllama.a -static -lstdc++
|
||||
// #cgo linux,amd64 LDFLAGS: ${SRCDIR}/build/linux/x86_64_static/libllama.a -lstdc++
|
||||
// #cgo linux,arm64 LDFLAGS: ${SRCDIR}/build/linux/arm64_static/libllama.a -lstdc++
|
||||
// #cgo CFLAGS: -Illama.cpp -Illama.cpp/include -Illama.cpp/ggml/include
|
||||
// #cgo LDFLAGS: -lllama -lggml -lstdc++ -lpthread
|
||||
// #cgo darwin,arm64 LDFLAGS: -L${SRCDIR}/build/darwin/arm64_static -L${SRCDIR}/build/darwin/arm64_static/src -L${SRCDIR}/build/darwin/arm64_static/ggml/src -framework Accelerate -framework Metal
|
||||
// #cgo darwin,amd64 LDFLAGS: -L${SRCDIR}/build/darwin/x86_64_static -L${SRCDIR}/build/darwin/x86_64_static/src -L${SRCDIR}/build/darwin/x86_64_static/ggml/src
|
||||
// #cgo windows,amd64 LDFLAGS: -static-libstdc++ -static-libgcc -static -L${SRCDIR}/build/windows/amd64_static -L${SRCDIR}/build/windows/amd64_static/src -L${SRCDIR}/build/windows/amd64_static/ggml/src
|
||||
// #cgo windows,arm64 LDFLAGS: -static-libstdc++ -static-libgcc -static -L${SRCDIR}/build/windows/arm64_static -L${SRCDIR}/build/windows/arm64_static/src -L${SRCDIR}/build/windows/arm64_static/ggml/src
|
||||
// #cgo linux,amd64 LDFLAGS: -L${SRCDIR}/build/linux/x86_64_static -L${SRCDIR}/build/linux/x86_64_static/src -L${SRCDIR}/build/linux/x86_64_static/ggml/src
|
||||
// #cgo linux,arm64 LDFLAGS: -L${SRCDIR}/build/linux/arm64_static -L${SRCDIR}/build/linux/arm64_static/src -L${SRCDIR}/build/linux/arm64_static/ggml/src
|
||||
// #include <stdlib.h>
|
||||
// #include "llama.h"
|
||||
import "C"
|
||||
@@ -32,7 +33,7 @@ func Quantize(infile, outfile string, ftype fileType) error {
|
||||
params.ftype = ftype.Value()
|
||||
|
||||
if rc := C.llama_model_quantize(cinfile, coutfile, ¶ms); rc != 0 {
|
||||
return fmt.Errorf("llama_model_quantize: %d", rc)
|
||||
return fmt.Errorf("failed to quantize model. This model architecture may not be supported, or you may need to upgrade Ollama to the latest version")
|
||||
}
|
||||
|
||||
return nil
|
||||
|
@@ -2,7 +2,10 @@ package llm
|
||||
|
||||
import (
|
||||
"embed"
|
||||
"syscall"
|
||||
)
|
||||
|
||||
//go:embed build/darwin/x86_64/*/bin/*
|
||||
var libEmbed embed.FS
|
||||
|
||||
var LlamaServerSysProcAttr = &syscall.SysProcAttr{}
|
||||
|
@@ -2,7 +2,10 @@ package llm
|
||||
|
||||
import (
|
||||
"embed"
|
||||
"syscall"
|
||||
)
|
||||
|
||||
//go:embed build/darwin/arm64/*/bin/*
|
||||
var libEmbed embed.FS
|
||||
|
||||
var LlamaServerSysProcAttr = &syscall.SysProcAttr{}
|
||||
|
@@ -1,6 +1,11 @@
|
||||
package llm
|
||||
|
||||
import "embed"
|
||||
import (
|
||||
"embed"
|
||||
"syscall"
|
||||
)
|
||||
|
||||
//go:embed build/linux/*/*/bin/*
|
||||
var libEmbed embed.FS
|
||||
|
||||
var LlamaServerSysProcAttr = &syscall.SysProcAttr{}
|
||||
|
@@ -1,6 +1,20 @@
|
||||
package llm
|
||||
|
||||
import "embed"
|
||||
import (
|
||||
"embed"
|
||||
"syscall"
|
||||
)
|
||||
|
||||
// unused on windows
|
||||
var libEmbed embed.FS
|
||||
|
||||
const CREATE_DEFAULT_ERROR_MODE = 0x04000000
|
||||
|
||||
var LlamaServerSysProcAttr = &syscall.SysProcAttr{
|
||||
// Wire up the default error handling logic If for some reason a DLL is
|
||||
// missing in the path this will pop up a GUI Dialog explaining the fault so
|
||||
// the user can either fix their PATH, or report a bug. Without this
|
||||
// setting, the process exits immediately with a generic exit status but no
|
||||
// way to (easily) figure out what the actual missing DLL was.
|
||||
CreationFlags: CREATE_DEFAULT_ERROR_MODE,
|
||||
}
|
||||
|
@@ -8,14 +8,14 @@ import (
|
||||
"testing"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/gpu"
|
||||
"github.com/stretchr/testify/assert"
|
||||
"github.com/stretchr/testify/require"
|
||||
)
|
||||
|
||||
func TestEstimateGPULayers(t *testing.T) {
|
||||
envconfig.Debug = true
|
||||
t.Setenv("OLLAMA_DEBUG", "1")
|
||||
|
||||
modelName := "dummy"
|
||||
f, err := os.CreateTemp(t.TempDir(), modelName)
|
||||
require.NoError(t, err)
|
||||
|
@@ -1,8 +1,8 @@
|
||||
diff --git a/common/common.cpp b/common/common.cpp
|
||||
index 73ff0e85..6adb1a92 100644
|
||||
index 2c05a4d4..927f0e3d 100644
|
||||
--- a/common/common.cpp
|
||||
+++ b/common/common.cpp
|
||||
@@ -2447,6 +2447,8 @@ struct llama_model_params llama_model_params_from_gpt_params(const gpt_params &
|
||||
@@ -2093,6 +2093,8 @@ struct llama_model_params llama_model_params_from_gpt_params(const gpt_params &
|
||||
mparams.use_mmap = params.use_mmap;
|
||||
mparams.use_mlock = params.use_mlock;
|
||||
mparams.check_tensors = params.check_tensors;
|
||||
@@ -12,10 +12,10 @@ index 73ff0e85..6adb1a92 100644
|
||||
mparams.kv_overrides = NULL;
|
||||
} else {
|
||||
diff --git a/common/common.h b/common/common.h
|
||||
index 58ed72f4..0bb2605e 100644
|
||||
index 65c0ef81..ebca2c77 100644
|
||||
--- a/common/common.h
|
||||
+++ b/common/common.h
|
||||
@@ -180,6 +180,13 @@ struct gpt_params {
|
||||
@@ -184,6 +184,13 @@ struct gpt_params {
|
||||
std::string mmproj = ""; // path to multimodal projector
|
||||
std::vector<std::string> image; // path to image file(s)
|
||||
|
||||
@@ -26,6 +26,6 @@ index 58ed72f4..0bb2605e 100644
|
||||
+ // context pointer passed to the progress callback
|
||||
+ void * progress_callback_user_data;
|
||||
+
|
||||
// server params
|
||||
int32_t port = 8080; // server listens on this network port
|
||||
int32_t timeout_read = 600; // http read timeout in seconds
|
||||
// embedding
|
||||
bool embedding = false; // get only sentence embedding
|
||||
int32_t embd_normalize = 2; // normalisation for embendings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
|
||||
|
@@ -1,17 +1,8 @@
|
||||
From 544a2d2e646d39e878d87dfbb3398a356bc560ab Mon Sep 17 00:00:00 2001
|
||||
From: Michael Yang <mxyng@pm.me>
|
||||
Date: Thu, 23 May 2024 11:18:45 -0700
|
||||
Subject: [PATCH] throw exception on load errors
|
||||
|
||||
---
|
||||
llama.cpp | 25 ++++++++++++++++---------
|
||||
1 file changed, 16 insertions(+), 9 deletions(-)
|
||||
|
||||
diff --git a/llama.cpp b/llama.cpp
|
||||
index 15c66077..8ba90b6a 100644
|
||||
--- a/llama.cpp
|
||||
+++ b/llama.cpp
|
||||
@@ -6346,7 +6346,7 @@ static int llama_model_load(const std::string & fname, llama_model & model, llam
|
||||
diff --git a/src/llama.cpp b/src/llama.cpp
|
||||
index 73f52435..58a00fb1 100644
|
||||
--- a/src/llama.cpp
|
||||
+++ b/src/llama.cpp
|
||||
@@ -7241,7 +7241,7 @@ static int llama_model_load(const std::string & fname, llama_model & model, llam
|
||||
}
|
||||
} catch (const std::exception & err) {
|
||||
LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
|
||||
@@ -20,7 +11,7 @@ index 15c66077..8ba90b6a 100644
|
||||
}
|
||||
|
||||
return 0;
|
||||
@@ -15600,16 +15600,23 @@ struct llama_model * llama_load_model_from_file(
|
||||
@@ -17564,16 +17564,23 @@ struct llama_model * llama_load_model_from_file(
|
||||
}
|
||||
model->rpc_servers.push_back(servers);
|
||||
}
|
||||
@@ -52,6 +43,3 @@ index 15c66077..8ba90b6a 100644
|
||||
}
|
||||
|
||||
return model;
|
||||
--
|
||||
2.45.1
|
||||
|
||||
|
@@ -1,7 +1,7 @@
|
||||
diff --git a/ggml-metal.m b/ggml-metal.m
|
||||
diff --git a/ggml/src/ggml-metal.m b/ggml/src/ggml-metal.m
|
||||
index 0207b787..b5e9884b 100644
|
||||
--- a/ggml-metal.m
|
||||
+++ b/ggml-metal.m
|
||||
--- a/ggml/src/ggml-metal.m
|
||||
+++ b/ggml/src/ggml-metal.m
|
||||
@@ -1396,27 +1396,23 @@ static enum ggml_status ggml_metal_graph_compute(
|
||||
// to the matrix-vector kernel
|
||||
int ne11_mm_min = 1;
|
||||
|
@@ -1,11 +1,11 @@
|
||||
diff --git a/llama.cpp b/llama.cpp
|
||||
index 61948751..4b72a293 100644
|
||||
--- a/llama.cpp
|
||||
+++ b/llama.cpp
|
||||
@@ -4824,16 +4824,7 @@ static void llm_load_vocab(
|
||||
|
||||
// for now, only BPE models have pre-tokenizers
|
||||
diff --git a/src/llama.cpp b/src/llama.cpp
|
||||
index a207451f..2ddf431d 100644
|
||||
--- a/src/llama.cpp
|
||||
+++ b/src/llama.cpp
|
||||
@@ -5347,16 +5347,7 @@ static void llm_load_vocab(
|
||||
if (vocab.type == LLAMA_VOCAB_TYPE_BPE) {
|
||||
vocab.tokenizer_add_space_prefix = false;
|
||||
vocab.tokenizer_clean_spaces = true;
|
||||
- if (tokenizer_pre.empty()) {
|
||||
- LLAMA_LOG_WARN("%s: missing pre-tokenizer type, using: 'default'\n", __func__);
|
||||
- LLAMA_LOG_WARN("%s: \n", __func__);
|
||||
@@ -20,13 +20,13 @@ index 61948751..4b72a293 100644
|
||||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
||||
} else if (
|
||||
tokenizer_pre == "llama3" ||
|
||||
@@ -4888,7 +4879,8 @@ static void llm_load_vocab(
|
||||
tokenizer_pre == "poro-chat") {
|
||||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_PORO;
|
||||
@@ -5443,7 +5434,8 @@ static void llm_load_vocab(
|
||||
tokenizer_pre == "codeshell") {
|
||||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_CODESHELL;
|
||||
} else {
|
||||
- throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
|
||||
+ LLAMA_LOG_WARN("%s: missing or unrecognized pre-tokenizer type, using: 'default'\n", __func__);
|
||||
+ vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
||||
}
|
||||
} else {
|
||||
} else if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
|
||||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
||||
|
45
llm/patches/06-embeddings.diff
Normal file
45
llm/patches/06-embeddings.diff
Normal file
@@ -0,0 +1,45 @@
|
||||
diff --git a/src/llama.cpp b/src/llama.cpp
|
||||
index 1fe2b9f7..a43312a7 100644
|
||||
--- a/src/llama.cpp
|
||||
+++ b/src/llama.cpp
|
||||
@@ -13689,7 +13689,7 @@ static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
|
||||
const auto n_embd = hparams.n_embd;
|
||||
|
||||
// TODO: use a per-batch flag for logits presence instead
|
||||
- const bool has_logits = !cparams.embeddings;
|
||||
+ const bool has_logits = cparams.causal_attn;
|
||||
const bool has_embd = lctx.is_encoding || (cparams.embeddings && (cparams.pooling_type == LLAMA_POOLING_TYPE_NONE));
|
||||
|
||||
const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
|
||||
@@ -13959,17 +13959,25 @@ static int llama_decode_internal(
|
||||
// no output
|
||||
res = nullptr;
|
||||
embd = nullptr;
|
||||
- } else if (cparams.embeddings) {
|
||||
- res = nullptr; // do not extract logits for embedding case
|
||||
- embd = gf->nodes[gf->n_nodes - 1];
|
||||
- if (strcmp(embd->name, "result_embd_pooled") != 0) {
|
||||
- embd = gf->nodes[gf->n_nodes - 2];
|
||||
+ }
|
||||
+
|
||||
+ if (cparams.embeddings) {
|
||||
+ for (int i = gf->n_nodes - 1; i >= 0; --i) {
|
||||
+ embd = gf->nodes[i];
|
||||
+ if (strcmp(embd->name, "result_embd_pooled") == 0) {
|
||||
+ break;
|
||||
+ }
|
||||
}
|
||||
GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0 && "missing embeddings tensor");
|
||||
- } else {
|
||||
+ } else {
|
||||
embd = nullptr; // do not extract embeddings when not needed
|
||||
GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
|
||||
}
|
||||
+
|
||||
+ if (!cparams.causal_attn) {
|
||||
+ res = nullptr; // do not extract logits when not needed
|
||||
+ }
|
||||
+
|
||||
// LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
|
||||
|
||||
ggml_backend_sched_alloc_graph(lctx.sched, gf);
|
@@ -1,13 +0,0 @@
|
||||
diff --git a/llama.cpp b/llama.cpp
|
||||
index 40d2ec2c..f34eb79a 100644
|
||||
--- a/llama.cpp
|
||||
+++ b/llama.cpp
|
||||
@@ -6943,7 +6943,7 @@ static struct ggml_tensor * llm_build_kqv(
|
||||
struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
|
||||
cb(kq, "kq", il);
|
||||
|
||||
- if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX) {
|
||||
+ if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX || model.arch == LLM_ARCH_QWEN2) {
|
||||
// for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
|
||||
// ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
|
||||
ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
|
42
llm/patches/07-clip-unicode.diff
Normal file
42
llm/patches/07-clip-unicode.diff
Normal file
@@ -0,0 +1,42 @@
|
||||
diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp
|
||||
index 95fbe3d0..5a02a6ec 100644
|
||||
--- a/examples/llava/clip.cpp
|
||||
+++ b/examples/llava/clip.cpp
|
||||
@@ -32,6 +33,14 @@
|
||||
#include <cinttypes>
|
||||
#include <limits>
|
||||
|
||||
+#if defined(_WIN32)
|
||||
+#define WIN32_LEAN_AND_MEAN
|
||||
+#ifndef NOMINMAX
|
||||
+ #define NOMINMAX
|
||||
+#endif
|
||||
+#include <windows.h>
|
||||
+#endif
|
||||
+
|
||||
//#define CLIP_DEBUG_FUNCTIONS
|
||||
|
||||
// RGB uint8 image
|
||||
@@ -1055,7 +1064,22 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
+#ifdef _WIN32
|
||||
+ int wlen = MultiByteToWideChar(CP_UTF8, 0, fname, -1, NULL, 0);
|
||||
+ if (!wlen) {
|
||||
+ return NULL;
|
||||
+ }
|
||||
+ wchar_t * wbuf = (wchar_t *) malloc(wlen * sizeof(wchar_t));
|
||||
+ wlen = MultiByteToWideChar(CP_UTF8, 0, fname, -1, wbuf, wlen);
|
||||
+ if (!wlen) {
|
||||
+ free(wbuf);
|
||||
+ return NULL;
|
||||
+ }
|
||||
+ auto fin = std::ifstream(wbuf, std::ios::binary);
|
||||
+ free(wbuf);
|
||||
+#else
|
||||
auto fin = std::ifstream(fname, std::ios::binary);
|
||||
+#endif
|
||||
if (!fin) {
|
||||
LOG_TEE("cannot open model file for loading tensors\n");
|
||||
clip_free(new_clip);
|
@@ -1,305 +0,0 @@
|
||||
From 5cadb45f39d001ffbad95b690d6cf0abcb4a6d96 Mon Sep 17 00:00:00 2001
|
||||
From: Ollama maintainers <hello@ollama.com>
|
||||
Date: Wed, 26 Jun 2024 16:18:09 -0700
|
||||
Subject: [PATCH] Architecture support
|
||||
|
||||
---
|
||||
llama.cpp | 194 +++++++++++++++++++++++++++++++++++++++++++++++++++++-
|
||||
1 file changed, 193 insertions(+), 1 deletion(-)
|
||||
|
||||
diff --git a/llama.cpp b/llama.cpp
|
||||
index 61948751..3b4196f5 100644
|
||||
--- a/llama.cpp
|
||||
+++ b/llama.cpp
|
||||
@@ -217,6 +217,7 @@ enum llm_arch {
|
||||
LLM_ARCH_INTERNLM2,
|
||||
LLM_ARCH_MINICPM,
|
||||
LLM_ARCH_GEMMA,
|
||||
+ LLM_ARCH_GEMMA2,
|
||||
LLM_ARCH_STARCODER2,
|
||||
LLM_ARCH_MAMBA,
|
||||
LLM_ARCH_XVERSE,
|
||||
@@ -255,6 +256,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_INTERNLM2, "internlm2" },
|
||||
{ LLM_ARCH_MINICPM, "minicpm" },
|
||||
{ LLM_ARCH_GEMMA, "gemma" },
|
||||
+ { LLM_ARCH_GEMMA2, "gemma2" },
|
||||
{ LLM_ARCH_STARCODER2, "starcoder2" },
|
||||
{ LLM_ARCH_MAMBA, "mamba" },
|
||||
{ LLM_ARCH_XVERSE, "xverse" },
|
||||
@@ -464,10 +466,12 @@ enum llm_tensor {
|
||||
LLM_TENSOR_ATTN_NORM,
|
||||
LLM_TENSOR_ATTN_NORM_2,
|
||||
LLM_TENSOR_ATTN_OUT_NORM,
|
||||
+ LLM_TENSOR_ATTN_POST_NORM,
|
||||
LLM_TENSOR_ATTN_ROT_EMBD,
|
||||
LLM_TENSOR_FFN_GATE_INP,
|
||||
LLM_TENSOR_FFN_GATE_INP_SHEXP,
|
||||
LLM_TENSOR_FFN_NORM,
|
||||
+ LLM_TENSOR_FFN_POST_NORM,
|
||||
LLM_TENSOR_FFN_GATE,
|
||||
LLM_TENSOR_FFN_DOWN,
|
||||
LLM_TENSOR_FFN_UP,
|
||||
@@ -960,6 +964,24 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
},
|
||||
},
|
||||
+ {
|
||||
+ LLM_ARCH_GEMMA2,
|
||||
+ {
|
||||
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
+ { LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
|
||||
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
+ { LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
|
||||
+ },
|
||||
+ },
|
||||
{
|
||||
LLM_ARCH_STARCODER2,
|
||||
{
|
||||
@@ -1941,6 +1963,8 @@ enum e_model {
|
||||
MODEL_8x22B,
|
||||
MODEL_16x12B,
|
||||
MODEL_10B_128x3_66B,
|
||||
+ MODEL_9B,
|
||||
+ MODEL_27B,
|
||||
};
|
||||
|
||||
static const size_t kiB = 1024;
|
||||
@@ -2114,6 +2138,7 @@ struct llama_layer {
|
||||
struct ggml_tensor * attn_out_norm_b;
|
||||
struct ggml_tensor * attn_q_a_norm;
|
||||
struct ggml_tensor * attn_kv_a_norm;
|
||||
+ struct ggml_tensor * attn_post_norm;
|
||||
|
||||
// attention
|
||||
struct ggml_tensor * wq;
|
||||
@@ -2136,6 +2161,7 @@ struct llama_layer {
|
||||
// normalization
|
||||
struct ggml_tensor * ffn_norm;
|
||||
struct ggml_tensor * ffn_norm_b;
|
||||
+ struct ggml_tensor * ffn_post_norm;
|
||||
struct ggml_tensor * layer_out_norm;
|
||||
struct ggml_tensor * layer_out_norm_b;
|
||||
struct ggml_tensor * ffn_norm_exps;
|
||||
@@ -4529,6 +4555,16 @@ static void llm_load_hparams(
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_GEMMA:
|
||||
+ {
|
||||
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
+
|
||||
+ switch (hparams.n_layer) {
|
||||
+ case 18: model.type = e_model::MODEL_9B; break;
|
||||
+ case 28: model.type = e_model::MODEL_27B; break;
|
||||
+ default: model.type = e_model::MODEL_UNKNOWN;
|
||||
+ }
|
||||
+ } break;
|
||||
+ case LLM_ARCH_GEMMA2:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
|
||||
@@ -6305,6 +6341,40 @@ static bool llm_load_tensors(
|
||||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
||||
}
|
||||
} break;
|
||||
+ case LLM_ARCH_GEMMA2:
|
||||
+ {
|
||||
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||||
+
|
||||
+ // output
|
||||
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||||
+ model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
|
||||
+
|
||||
+ const int64_t n_ff = hparams.n_ff;
|
||||
+ const int64_t n_embd_head_k = hparams.n_embd_head_k;
|
||||
+ const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
|
||||
+ const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
|
||||
+
|
||||
+ for (uint32_t i = 0; i < n_layer; ++i) {
|
||||
+ ggml_context * ctx_layer = ctx_for_layer(i);
|
||||
+ ggml_context * ctx_split = ctx_for_layer_split(i);
|
||||
+
|
||||
+ auto & layer = model.layers[i];
|
||||
+
|
||||
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||||
+
|
||||
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
|
||||
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
|
||||
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
|
||||
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});
|
||||
+ layer.attn_post_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd});
|
||||
+
|
||||
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||||
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||||
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||||
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
||||
+ layer.ffn_post_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd});
|
||||
+ }
|
||||
+ } break;
|
||||
case LLM_ARCH_STARCODER2:
|
||||
{
|
||||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||||
@@ -10614,6 +10684,123 @@ struct llm_build_context {
|
||||
return gf;
|
||||
}
|
||||
|
||||
+ struct ggml_cgraph * build_gemma2() {
|
||||
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
+
|
||||
+ const int64_t n_embd_head_k = hparams.n_embd_head_k;
|
||||
+
|
||||
+ struct ggml_tensor * cur;
|
||||
+ struct ggml_tensor * inpL;
|
||||
+
|
||||
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||||
+
|
||||
+ inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
|
||||
+ cb(inpL, "inp_scaled", -1);
|
||||
+
|
||||
+ // inp_pos - contains the positions
|
||||
+ struct ggml_tensor * inp_pos = build_inp_pos();
|
||||
+
|
||||
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||||
+
|
||||
+ for (int il = 0; il < n_layer; ++il) {
|
||||
+ // norm
|
||||
+ cur = llm_build_norm(ctx0, inpL, hparams,
|
||||
+ model.layers[il].attn_norm, NULL,
|
||||
+ LLM_NORM_RMS, cb, il);
|
||||
+ cb(cur, "attn_norm", il);
|
||||
+
|
||||
+ // self-attention
|
||||
+ {
|
||||
+ // compute Q and K and RoPE them
|
||||
+ struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
|
||||
+ cb(Qcur, "Qcur", il);
|
||||
+
|
||||
+ struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
|
||||
+ cb(Kcur, "Kcur", il);
|
||||
+
|
||||
+ struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
|
||||
+ cb(Vcur, "Vcur", il);
|
||||
+
|
||||
+ Qcur = ggml_rope_ext(
|
||||
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos, nullptr,
|
||||
+ n_embd_head_k, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
+ ext_factor, attn_factor, beta_fast, beta_slow);
|
||||
+ cb(Qcur, "Qcur", il);
|
||||
+
|
||||
+ Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
|
||||
+ cb(Qcur, "Qcur_scaled", il);
|
||||
+
|
||||
+ Kcur = ggml_rope_ext(
|
||||
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, nullptr,
|
||||
+ n_embd_head_k, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
+ ext_factor, attn_factor, beta_fast, beta_slow);
|
||||
+ cb(Kcur, "Kcur", il);
|
||||
+
|
||||
+ cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
|
||||
+ model.layers[il].wo, NULL,
|
||||
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
|
||||
+ }
|
||||
+
|
||||
+ if (il == n_layer - 1) {
|
||||
+ // skip computing output for unused tokens
|
||||
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
|
||||
+ }
|
||||
+
|
||||
+ cur = llm_build_norm(ctx0, cur, hparams,
|
||||
+ model.layers[il].attn_post_norm, NULL,
|
||||
+ LLM_NORM_RMS, cb, il);
|
||||
+ cb(cur, "attn_post_norm", il);
|
||||
+
|
||||
+ struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
|
||||
+ cb(sa_out, "sa_out", il);
|
||||
+
|
||||
+ cur = llm_build_norm(ctx0, sa_out, hparams,
|
||||
+ model.layers[il].ffn_norm, NULL,
|
||||
+ LLM_NORM_RMS, cb, il);
|
||||
+ cb(cur, "ffn_norm", il);
|
||||
+
|
||||
+ // feed-forward network
|
||||
+ {
|
||||
+ cur = llm_build_ffn(ctx0, cur,
|
||||
+ model.layers[il].ffn_up, NULL,
|
||||
+ model.layers[il].ffn_gate, NULL,
|
||||
+ model.layers[il].ffn_down, NULL,
|
||||
+ NULL,
|
||||
+ LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
|
||||
+ cb(cur, "ffn_out", il);
|
||||
+ }
|
||||
+
|
||||
+ cur = llm_build_norm(ctx0, cur, hparams,
|
||||
+ model.layers[il].ffn_post_norm, NULL,
|
||||
+ LLM_NORM_RMS, cb, -1);
|
||||
+ cb(cur, "ffn_post_norm", -1);
|
||||
+
|
||||
+ cur = ggml_add(ctx0, cur, sa_out);
|
||||
+ cb(cur, "l_out", il);
|
||||
+
|
||||
+ // input for next layer
|
||||
+ inpL = cur;
|
||||
+ }
|
||||
+
|
||||
+ cur = inpL;
|
||||
+
|
||||
+ cur = llm_build_norm(ctx0, cur, hparams,
|
||||
+ model.output_norm, NULL,
|
||||
+ LLM_NORM_RMS, cb, -1);
|
||||
+ cb(cur, "result_norm", -1);
|
||||
+
|
||||
+ // lm_head
|
||||
+ cur = ggml_mul_mat(ctx0, model.output, cur);
|
||||
+ cb(cur, "result_output", -1);
|
||||
+
|
||||
+ ggml_build_forward_expand(gf, cur);
|
||||
+
|
||||
+ return gf;
|
||||
+ }
|
||||
+
|
||||
struct ggml_cgraph * build_starcoder2() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
|
||||
@@ -11847,6 +12034,10 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
{
|
||||
result = llm.build_gemma();
|
||||
} break;
|
||||
+ case LLM_ARCH_GEMMA2:
|
||||
+ {
|
||||
+ result = llm.build_gemma2();
|
||||
+ } break;
|
||||
case LLM_ARCH_STARCODER2:
|
||||
{
|
||||
result = llm.build_starcoder2();
|
||||
@@ -16671,6 +16862,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
||||
case LLM_ARCH_PHI2:
|
||||
case LLM_ARCH_PHI3:
|
||||
case LLM_ARCH_GEMMA:
|
||||
+ case LLM_ARCH_GEMMA2:
|
||||
case LLM_ARCH_STARCODER2:
|
||||
case LLM_ARCH_GPTNEOX:
|
||||
return LLAMA_ROPE_TYPE_NEOX;
|
||||
@@ -18551,7 +18743,7 @@ static int32_t llama_chat_apply_template_internal(
|
||||
if (add_ass) {
|
||||
ss << "<s>assistant\n";
|
||||
}
|
||||
- } else if (tmpl == "gemma" || tmpl.find("<start_of_turn>") != std::string::npos) {
|
||||
+ } else if (tmpl == "gemma" || tmpl == "gemma2" || tmpl.find("<start_of_turn>") != std::string::npos) {
|
||||
// google/gemma-7b-it
|
||||
std::string system_prompt = "";
|
||||
for (auto message : chat) {
|
||||
--
|
||||
2.45.2
|
||||
|
60
llm/patches/08-pooling.diff
Normal file
60
llm/patches/08-pooling.diff
Normal file
@@ -0,0 +1,60 @@
|
||||
diff --git a/src/llama.cpp b/src/llama.cpp
|
||||
index 721b8f4e..cfe7ac40 100644
|
||||
--- a/src/llama.cpp
|
||||
+++ b/src/llama.cpp
|
||||
@@ -8420,14 +8420,14 @@ struct llm_build_context {
|
||||
}
|
||||
|
||||
struct ggml_tensor * build_inp_mean() {
|
||||
- lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
|
||||
+ lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, cparams.n_seq_max);
|
||||
cb(lctx.inp_mean, "inp_mean", -1);
|
||||
ggml_set_input(lctx.inp_mean);
|
||||
return lctx.inp_mean;
|
||||
}
|
||||
|
||||
struct ggml_tensor * build_inp_cls() {
|
||||
- lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
|
||||
+ lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, cparams.n_seq_max);
|
||||
cb(lctx.inp_cls, "inp_cls", -1);
|
||||
ggml_set_input(lctx.inp_cls);
|
||||
return lctx.inp_cls;
|
||||
@@ -13847,19 +13847,16 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
|
||||
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
|
||||
|
||||
float * data = (float *) lctx.inp_mean->data;
|
||||
- memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
|
||||
+ memset(lctx.inp_mean->data, 0, n_tokens * cparams.n_seq_max * ggml_element_size(lctx.inp_mean));
|
||||
|
||||
std::vector<uint64_t> sum(n_tokens, 0);
|
||||
for (int i = 0; i < n_tokens; ++i) {
|
||||
const llama_seq_id seq_id = batch.seq_id[i][0];
|
||||
-
|
||||
- GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
|
||||
-
|
||||
sum[seq_id] += 1;
|
||||
}
|
||||
|
||||
- std::vector<float> div(n_tokens, 0.0f);
|
||||
- for (int i = 0; i < n_tokens; ++i) {
|
||||
+ std::vector<float> div(cparams.n_seq_max, 0.0f);
|
||||
+ for (uint32_t i = 0; i < cparams.n_seq_max; ++i) {
|
||||
const uint64_t s = sum[i];
|
||||
if (s > 0) {
|
||||
div[i] = 1.0f/float(s);
|
||||
@@ -13879,14 +13876,11 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
|
||||
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
|
||||
|
||||
uint32_t * data = (uint32_t *) lctx.inp_cls->data;
|
||||
- memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
|
||||
+ memset(lctx.inp_cls->data, 0, cparams.n_seq_max * ggml_element_size(lctx.inp_cls));
|
||||
|
||||
for (int i = 0; i < n_tokens; ++i) {
|
||||
const llama_seq_id seq_id = batch.seq_id[i][0];
|
||||
const llama_pos pos = batch.pos[i];
|
||||
-
|
||||
- GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");
|
||||
-
|
||||
if (pos == 0) {
|
||||
data[seq_id] = i;
|
||||
}
|
358
llm/patches/09-lora.diff
Normal file
358
llm/patches/09-lora.diff
Normal file
@@ -0,0 +1,358 @@
|
||||
diff --git a/common/common.cpp b/common/common.cpp
|
||||
index dbb724fb..c26fe6ee 100644
|
||||
--- a/common/common.cpp
|
||||
+++ b/common/common.cpp
|
||||
@@ -2087,14 +2087,27 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
|
||||
for (unsigned int i = 0; i < params.lora_adapter.size(); ++i) {
|
||||
const std::string & lora_adapter = std::get<0>(params.lora_adapter[i]);
|
||||
float lora_scale = std::get<1>(params.lora_adapter[i]);
|
||||
+
|
||||
+ // try to load as gguf
|
||||
auto adapter = llama_lora_adapter_init(model, lora_adapter.c_str());
|
||||
if (adapter == nullptr) {
|
||||
- fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
|
||||
- llama_free(lctx);
|
||||
- llama_free_model(model);
|
||||
- return std::make_tuple(nullptr, nullptr);
|
||||
+ fprintf(stderr, "%s: error: failed to apply lora adapter, trying ggla\n", __func__);
|
||||
+
|
||||
+ // if that fails, try loading as ggla for compatibility
|
||||
+ int err = llama_model_apply_lora_from_file(model,
|
||||
+ lora_adapter.c_str(),
|
||||
+ lora_scale,
|
||||
+ nullptr,
|
||||
+ params.n_threads);
|
||||
+ if (err != 0) {
|
||||
+ fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
|
||||
+ llama_free(lctx);
|
||||
+ llama_free_model(model);
|
||||
+ return std::make_tuple(nullptr, nullptr);
|
||||
+ }
|
||||
+ } else {
|
||||
+ llama_lora_adapter_set(lctx, adapter, lora_scale);
|
||||
}
|
||||
- llama_lora_adapter_set(lctx, adapter, lora_scale);
|
||||
}
|
||||
|
||||
if (params.ignore_eos) {
|
||||
diff --git a/include/llama.h b/include/llama.h
|
||||
index 93fd77ca..b0fb37a6 100644
|
||||
--- a/include/llama.h
|
||||
+++ b/include/llama.h
|
||||
@@ -1160,6 +1160,20 @@ extern "C" {
|
||||
|
||||
LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx);
|
||||
|
||||
+ // Apply a LoRA adapter to a loaded model
|
||||
+ // path_base_model is the path to a higher quality model to use as a base for
|
||||
+ // the layers modified by the adapter. Can be NULL to use the current loaded model.
|
||||
+ // The model needs to be reloaded before applying a new adapter, otherwise the adapter
|
||||
+ // will be applied on top of the previous one
|
||||
+ // Returns 0 on success
|
||||
+ LLAMA_API int32_t llama_model_apply_lora_from_file(
|
||||
+ const struct llama_model * model,
|
||||
+ const char * path_lora,
|
||||
+ float scale,
|
||||
+ const char * path_base_model,
|
||||
+ int32_t n_threads);
|
||||
+
|
||||
+
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
diff --git a/src/llama.cpp b/src/llama.cpp
|
||||
index 80a0dd0f..9d7b0e17 100644
|
||||
--- a/src/llama.cpp
|
||||
+++ b/src/llama.cpp
|
||||
@@ -21880,3 +21880,290 @@ static void llama_log_callback_default(ggml_log_level level, const char * text,
|
||||
fputs(text, stderr);
|
||||
fflush(stderr);
|
||||
}
|
||||
+
|
||||
+static int llama_apply_lora_from_file_internal(
|
||||
+ const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
|
||||
+) {
|
||||
+ LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
|
||||
+
|
||||
+ const int64_t t_start_lora_us = ggml_time_us();
|
||||
+
|
||||
+ llama_file fin(path_lora, "rb");
|
||||
+
|
||||
+ // verify magic and version
|
||||
+ {
|
||||
+ uint32_t magic = fin.read_u32();
|
||||
+ if (magic != LLAMA_FILE_MAGIC_GGLA) {
|
||||
+ LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
|
||||
+ return 1;
|
||||
+ }
|
||||
+
|
||||
+ uint32_t format_version = fin.read_u32();
|
||||
+ if (format_version != 1) {
|
||||
+ LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
|
||||
+ return 1;
|
||||
+ }
|
||||
+ }
|
||||
+
|
||||
+ int32_t lora_r = fin.read_u32();
|
||||
+ int32_t lora_alpha = fin.read_u32();
|
||||
+ float scaling = scale * (float)lora_alpha / (float)lora_r;
|
||||
+
|
||||
+ LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
|
||||
+
|
||||
+ // load base model
|
||||
+ std::unique_ptr<llama_model_loader> ml;
|
||||
+ if (path_base_model) {
|
||||
+ LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
|
||||
+ ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*check_tensors*/ false, /*kv_overrides*/ nullptr));
|
||||
+ ml->init_mappings(/*prefetch*/ false); // no prefetching
|
||||
+ }
|
||||
+
|
||||
+ struct tensor_meta {
|
||||
+ std::string name;
|
||||
+ ggml_type type;
|
||||
+ int32_t ne[2];
|
||||
+ size_t offset;
|
||||
+ };
|
||||
+ std::map<std::string, tensor_meta> tensor_meta_map;
|
||||
+
|
||||
+ // load all tensor meta
|
||||
+ while (true) {
|
||||
+ if (fin.tell() == fin.size) {
|
||||
+ // eof
|
||||
+ break;
|
||||
+ }
|
||||
+
|
||||
+ int32_t n_dims;
|
||||
+ int32_t name_len;
|
||||
+ int32_t ftype;
|
||||
+
|
||||
+ fin.read_raw(&n_dims, sizeof(n_dims));
|
||||
+ fin.read_raw(&name_len, sizeof(name_len));
|
||||
+ fin.read_raw(&ftype, sizeof(ftype));
|
||||
+
|
||||
+ if (n_dims != 1 && n_dims != 2) {
|
||||
+ LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
|
||||
+ return 1;
|
||||
+ }
|
||||
+
|
||||
+ int32_t ne[2] = { 1, 1 };
|
||||
+ for (int i = 0; i < n_dims; ++i) {
|
||||
+ fin.read_raw(&ne[i], sizeof(ne[i]));
|
||||
+ }
|
||||
+
|
||||
+ std::string name;
|
||||
+ {
|
||||
+ GGML_ASSERT(name_len < GGML_MAX_NAME);
|
||||
+ char buf[GGML_MAX_NAME];
|
||||
+ fin.read_raw(buf, name_len);
|
||||
+ name = std::string(buf, name_len);
|
||||
+ }
|
||||
+
|
||||
+ // check for lora suffix
|
||||
+ std::string lora_suffix;
|
||||
+ if (name.length() > 6) {
|
||||
+ lora_suffix = name.substr(name.length() - 6);
|
||||
+ }
|
||||
+ if (lora_suffix != ".loraA" && lora_suffix != ".loraB") {
|
||||
+ LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
|
||||
+ return 1;
|
||||
+ }
|
||||
+
|
||||
+ // tensor type
|
||||
+ ggml_type wtype;
|
||||
+ switch (ftype) {
|
||||
+ case 0: wtype = GGML_TYPE_F32; break;
|
||||
+ case 1: wtype = GGML_TYPE_F16; break;
|
||||
+ default:
|
||||
+ {
|
||||
+ LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
|
||||
+ __func__, ftype);
|
||||
+ return 1;
|
||||
+ }
|
||||
+ }
|
||||
+
|
||||
+ // data offset
|
||||
+ size_t offset = fin.tell();
|
||||
+ offset = (offset + 31) & -32;
|
||||
+
|
||||
+ // skip tensor data
|
||||
+ fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET);
|
||||
+
|
||||
+ tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset });
|
||||
+ }
|
||||
+
|
||||
+ bool warned = false;
|
||||
+ int n_tensors = 0;
|
||||
+
|
||||
+ // apply
|
||||
+ ggml_backend_t backend_cpu = ggml_backend_cpu_init();
|
||||
+ if (backend_cpu == nullptr) {
|
||||
+ LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__);
|
||||
+ return 1;
|
||||
+ }
|
||||
+ ggml_backend_cpu_set_n_threads(backend_cpu, n_threads);
|
||||
+
|
||||
+ std::vector<no_init<uint8_t>> read_buf;
|
||||
+ for (const auto & it : model.tensors_by_name) {
|
||||
+ const std::string & base_name = it.first;
|
||||
+ ggml_tensor * model_t = it.second;
|
||||
+
|
||||
+ if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() ||
|
||||
+ tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) {
|
||||
+ continue;
|
||||
+ }
|
||||
+
|
||||
+ tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA");
|
||||
+ tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB");
|
||||
+
|
||||
+ ggml_init_params lora_init_params = {
|
||||
+ /* .mem_size */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
|
||||
+ /* .mem_buffer */ nullptr,
|
||||
+ /* .no_alloc */ true,
|
||||
+ };
|
||||
+ ggml_context * lora_ctx = ggml_init(lora_init_params);
|
||||
+ if (lora_ctx == nullptr) {
|
||||
+ LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__);
|
||||
+ ggml_backend_free(backend_cpu);
|
||||
+ return 1;
|
||||
+ }
|
||||
+
|
||||
+ // create tensors
|
||||
+ ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]);
|
||||
+ ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]);
|
||||
+ ggml_set_name(loraA, metaA.name.c_str());
|
||||
+ ggml_set_name(loraB, metaB.name.c_str());
|
||||
+
|
||||
+ ggml_tensor * base_t;
|
||||
+ if (ml) {
|
||||
+ if (!ml->get_tensor_meta(base_name.c_str())) {
|
||||
+ LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
|
||||
+ return 1;
|
||||
+ }
|
||||
+ base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str()));
|
||||
+ } else {
|
||||
+ base_t = ggml_dup_tensor(lora_ctx, model_t);
|
||||
+ }
|
||||
+ ggml_set_name(base_t, base_name.c_str());
|
||||
+
|
||||
+ // allocate in backend buffer
|
||||
+ ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
|
||||
+ if (lora_buf == nullptr) {
|
||||
+ LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__);
|
||||
+ return 1;
|
||||
+ }
|
||||
+
|
||||
+ // load tensor data
|
||||
+ auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
|
||||
+ read_buf.resize(ggml_nbytes(tensor));
|
||||
+ fin.seek(tensor_meta.offset, SEEK_SET);
|
||||
+ fin.read_raw(read_buf.data(), ggml_nbytes(tensor));
|
||||
+ ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size());
|
||||
+ };
|
||||
+ load_tensor(metaA, loraA);
|
||||
+ load_tensor(metaB, loraB);
|
||||
+
|
||||
+ // load base model tensor data
|
||||
+ if (ml) {
|
||||
+ ml->load_data_for(base_t);
|
||||
+ } else {
|
||||
+ ggml_backend_tensor_copy(model_t, base_t);
|
||||
+ }
|
||||
+
|
||||
+ if (ggml_is_quantized(base_t->type) && !warned) {
|
||||
+ LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
|
||||
+ "use a f16 or f32 base model with --lora-base\n", __func__);
|
||||
+ warned = true;
|
||||
+ }
|
||||
+
|
||||
+ if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
|
||||
+ LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
|
||||
+ " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
|
||||
+ ggml_free(lora_ctx);
|
||||
+ ggml_backend_buffer_free(lora_buf);
|
||||
+ ggml_backend_free(backend_cpu);
|
||||
+ return 1;
|
||||
+ }
|
||||
+
|
||||
+ auto build_lora_graph = [&]() {
|
||||
+ // w = w + BA*s
|
||||
+ ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
|
||||
+ ggml_set_name(BA, "BA");
|
||||
+
|
||||
+ if (scaling != 1.0f) {
|
||||
+ BA = ggml_scale(lora_ctx, BA, scaling);
|
||||
+ ggml_set_name(BA, "BA_scaled");
|
||||
+ }
|
||||
+
|
||||
+ ggml_tensor * r;
|
||||
+ r = ggml_add_inplace(lora_ctx, base_t, BA);
|
||||
+ ggml_set_name(r, "r_add");
|
||||
+
|
||||
+ if (base_t->type != model_t->type) {
|
||||
+ // convert the result to the model type
|
||||
+ r = ggml_cast(lora_ctx, r, model_t->type);
|
||||
+ ggml_set_name(r, "r_cast");
|
||||
+ }
|
||||
+
|
||||
+ return r;
|
||||
+ };
|
||||
+
|
||||
+ ggml_cgraph * gf = ggml_new_graph(lora_ctx);
|
||||
+ ggml_tensor * r = build_lora_graph();
|
||||
+ ggml_build_forward_expand(gf, r);
|
||||
+
|
||||
+ ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
|
||||
+ if (graph_buf == nullptr) {
|
||||
+ LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__);
|
||||
+ ggml_free(lora_ctx);
|
||||
+ ggml_backend_buffer_free(lora_buf);
|
||||
+ ggml_backend_free(backend_cpu);
|
||||
+ return 1;
|
||||
+ }
|
||||
+
|
||||
+ ggml_backend_graph_compute(backend_cpu, gf);
|
||||
+
|
||||
+ ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r));
|
||||
+
|
||||
+#if 0
|
||||
+ // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU
|
||||
+ //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE);
|
||||
+
|
||||
+ // sched compute
|
||||
+ ggml_build_forward_expand(gf, build_graph());
|
||||
+ ggml_backend_sched_init_measure(sched, gf);
|
||||
+
|
||||
+ // create the graph again, since the previous one was destroyed by the measure
|
||||
+ ggml_graph_clear(gf);
|
||||
+ ggml_build_forward_expand(gf, build_graph());
|
||||
+ ggml_backend_sched_graph_compute(sched, gf);
|
||||
+ ggml_backend_sched_free(sched);
|
||||
+#endif
|
||||
+
|
||||
+ ggml_backend_buffer_free(lora_buf);
|
||||
+ ggml_backend_buffer_free(graph_buf);
|
||||
+ ggml_free(lora_ctx);
|
||||
+
|
||||
+ n_tensors++;
|
||||
+ if (n_tensors % 4 == 0) {
|
||||
+ LLAMA_LOG_INFO(".");
|
||||
+ }
|
||||
+ }
|
||||
+
|
||||
+ ggml_backend_free(backend_cpu);
|
||||
+
|
||||
+ const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
|
||||
+ LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
|
||||
+
|
||||
+ return 0;
|
||||
+}
|
||||
+
|
||||
+int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
|
||||
+ try {
|
||||
+ return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
|
||||
+ } catch (const std::exception & err) {
|
||||
+ LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
|
||||
+ return 1;
|
||||
+ }
|
||||
+}
|
||||
\ No newline at end of file
|
20
llm/patches/10-params.diff
Normal file
20
llm/patches/10-params.diff
Normal file
@@ -0,0 +1,20 @@
|
||||
diff --git a/src/llama.cpp b/src/llama.cpp
|
||||
index a207451f..fba6b175 100644
|
||||
--- a/src/llama.cpp
|
||||
+++ b/src/llama.cpp
|
||||
@@ -4969,6 +4969,7 @@ static void llm_load_hparams(
|
||||
hparams.attn_soft_cap = true;
|
||||
|
||||
switch (hparams.n_layer) {
|
||||
+ case 26: model.type = e_model::MODEL_2B; break;
|
||||
case 42: model.type = e_model::MODEL_9B; break;
|
||||
case 46: model.type = e_model::MODEL_27B; break;
|
||||
default: model.type = e_model::MODEL_UNKNOWN;
|
||||
@@ -11736,6 +11737,7 @@ struct llm_build_context {
|
||||
|
||||
// ref: https://github.com/google/gemma_pytorch/commit/03e657582d17cb5a8617ebf333c1c16f3694670e
|
||||
switch (model.type) {
|
||||
+ case e_model::MODEL_2B: Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k))); break;
|
||||
case e_model::MODEL_9B: Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k))); break;
|
||||
case e_model::MODEL_27B: Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd / n_head))); break;
|
||||
default: GGML_ABORT("fatal error");
|
43
llm/patches/11-phi3-sliding-window.diff
Normal file
43
llm/patches/11-phi3-sliding-window.diff
Normal file
@@ -0,0 +1,43 @@
|
||||
From 6eedae4cf2fcc8015dac79cb3f28f61fcabacab2 Mon Sep 17 00:00:00 2001
|
||||
From: Michael Yang <mxyng@pm.me>
|
||||
Date: Wed, 31 Jul 2024 14:57:04 -0700
|
||||
Subject: [PATCH] phi3 sliding window
|
||||
|
||||
---
|
||||
src/llama.cpp | 6 +++---
|
||||
1 file changed, 3 insertions(+), 3 deletions(-)
|
||||
|
||||
diff --git a/src/llama.cpp b/src/llama.cpp
|
||||
index a207451f..f2872d4e 100644
|
||||
--- a/src/llama.cpp
|
||||
+++ b/src/llama.cpp
|
||||
@@ -4893,7 +4893,7 @@ static void llm_load_hparams(
|
||||
} break;
|
||||
case LLM_ARCH_PHI3:
|
||||
{
|
||||
- ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
|
||||
+ ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
|
||||
switch (hparams.n_layer) {
|
||||
@@ -10762,7 +10762,7 @@ struct llm_build_context {
|
||||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||||
|
||||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||
- struct ggml_tensor * KQ_mask_swa = build_inp_KQ_mask_swa();
|
||||
+ struct ggml_tensor * KQ_mask = hparams.n_swa > 0 ? build_inp_KQ_mask_swa() : build_inp_KQ_mask();
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
auto residual = inpL;
|
||||
@@ -10820,7 +10820,7 @@ struct llm_build_context {
|
||||
|
||||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||||
model.layers[il].wo, model.layers[il].bo,
|
||||
- Kcur, Vcur, Qcur, KQ_mask_swa, n_tokens, kv_head, n_kv, 1.0f, cb, il);
|
||||
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
|
||||
}
|
||||
|
||||
if (il == n_layer - 1) {
|
||||
--
|
||||
2.45.2
|
||||
|
@@ -38,7 +38,7 @@ func Init() error {
|
||||
}
|
||||
|
||||
var variants []string
|
||||
for v := range availableServers() {
|
||||
for v := range getAvailableServers() {
|
||||
variants = append(variants, v)
|
||||
}
|
||||
slog.Info(fmt.Sprintf("Dynamic LLM libraries %v", variants))
|
||||
@@ -50,7 +50,7 @@ func Init() error {
|
||||
// binary names may contain an optional variant separated by '_'
|
||||
// For example, "ollama_rocm_v6" and "ollama_rocm_v5" or "ollama_cpu" and "ollama_cpu_avx2"
|
||||
// Any library without a variant is the lowest common denominator
|
||||
func availableServers() map[string]string {
|
||||
func getAvailableServers() map[string]string {
|
||||
payloadsDir, err := gpu.PayloadsDir()
|
||||
if err != nil {
|
||||
slog.Error("payload lookup error", "error", err)
|
||||
@@ -80,7 +80,7 @@ func availableServers() map[string]string {
|
||||
// TODO - switch to metadata based mapping
|
||||
func serversForGpu(info gpu.GpuInfo) []string {
|
||||
// glob workDir for files that start with ollama_
|
||||
availableServers := availableServers()
|
||||
availableServers := getAvailableServers()
|
||||
requested := info.Library
|
||||
if info.Variant != gpu.CPUCapabilityNone {
|
||||
requested += "_" + info.Variant.String()
|
||||
@@ -115,27 +115,29 @@ func serversForGpu(info gpu.GpuInfo) []string {
|
||||
servers = append(servers, alt...)
|
||||
}
|
||||
|
||||
// Load up the best CPU variant if not primary requested
|
||||
if info.Library != "cpu" {
|
||||
variant := gpu.GetCPUCapability()
|
||||
// If no variant, then we fall back to default
|
||||
// If we have a variant, try that if we find an exact match
|
||||
// Attempting to run the wrong CPU instructions will panic the
|
||||
// process
|
||||
if variant != gpu.CPUCapabilityNone {
|
||||
for cmp := range availableServers {
|
||||
if cmp == "cpu_"+variant.String() {
|
||||
servers = append(servers, cmp)
|
||||
break
|
||||
if !(runtime.GOOS == "darwin" && runtime.GOARCH == "arm64") {
|
||||
// Load up the best CPU variant if not primary requested
|
||||
if info.Library != "cpu" {
|
||||
variant := gpu.GetCPUCapability()
|
||||
// If no variant, then we fall back to default
|
||||
// If we have a variant, try that if we find an exact match
|
||||
// Attempting to run the wrong CPU instructions will panic the
|
||||
// process
|
||||
if variant != gpu.CPUCapabilityNone {
|
||||
for cmp := range availableServers {
|
||||
if cmp == "cpu_"+variant.String() {
|
||||
servers = append(servers, cmp)
|
||||
break
|
||||
}
|
||||
}
|
||||
} else {
|
||||
servers = append(servers, "cpu")
|
||||
}
|
||||
} else {
|
||||
servers = append(servers, "cpu")
|
||||
}
|
||||
}
|
||||
|
||||
if len(servers) == 0 {
|
||||
servers = []string{"cpu"}
|
||||
if len(servers) == 0 {
|
||||
servers = []string{"cpu"}
|
||||
}
|
||||
}
|
||||
|
||||
return servers
|
||||
@@ -147,7 +149,7 @@ func serverForCpu() string {
|
||||
return "metal"
|
||||
}
|
||||
variant := gpu.GetCPUCapability()
|
||||
availableServers := availableServers()
|
||||
availableServers := getAvailableServers()
|
||||
if variant != gpu.CPUCapabilityNone {
|
||||
for cmp := range availableServers {
|
||||
if cmp == "cpu_"+variant.String() {
|
||||
|
100
llm/server.go
100
llm/server.go
@@ -33,7 +33,7 @@ type LlamaServer interface {
|
||||
Ping(ctx context.Context) error
|
||||
WaitUntilRunning(ctx context.Context) error
|
||||
Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error
|
||||
Embedding(ctx context.Context, prompt string) ([]float64, error)
|
||||
Embed(ctx context.Context, input []string) (*EmbedResponse, error)
|
||||
Tokenize(ctx context.Context, content string) ([]int, error)
|
||||
Detokenize(ctx context.Context, tokens []int) (string, error)
|
||||
Close() error
|
||||
@@ -88,6 +88,7 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
|
||||
var estimate MemoryEstimate
|
||||
var systemTotalMemory uint64
|
||||
var systemFreeMemory uint64
|
||||
var systemSwapFreeMemory uint64
|
||||
|
||||
systemMemInfo, err := gpu.GetCPUMem()
|
||||
if err != nil {
|
||||
@@ -95,7 +96,8 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
|
||||
} else {
|
||||
systemTotalMemory = systemMemInfo.TotalMemory
|
||||
systemFreeMemory = systemMemInfo.FreeMemory
|
||||
slog.Debug("system memory", "total", format.HumanBytes2(systemTotalMemory), "free", systemFreeMemory)
|
||||
systemSwapFreeMemory = systemMemInfo.FreeSwap
|
||||
slog.Debug("system memory", "total", format.HumanBytes2(systemTotalMemory), "free", format.HumanBytes2(systemFreeMemory), "free_swap", format.HumanBytes2(systemSwapFreeMemory))
|
||||
}
|
||||
|
||||
// If the user wants zero GPU layers, reset the gpu list to be CPU/system ram info
|
||||
@@ -122,6 +124,16 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
|
||||
}
|
||||
}
|
||||
|
||||
// On linux, over-allocating CPU memory will almost always result in an error
|
||||
if runtime.GOOS == "linux" {
|
||||
systemMemoryRequired := estimate.TotalSize - estimate.VRAMSize
|
||||
available := systemFreeMemory + systemSwapFreeMemory
|
||||
if systemMemoryRequired > available {
|
||||
slog.Warn("model request too large for system", "requested", format.HumanBytes2(systemMemoryRequired), "available", available, "total", format.HumanBytes2(systemTotalMemory), "free", format.HumanBytes2(systemFreeMemory), "swap", format.HumanBytes2(systemSwapFreeMemory))
|
||||
return nil, fmt.Errorf("model requires more system memory (%s) than is available (%s)", format.HumanBytes2(systemMemoryRequired), format.HumanBytes2(available))
|
||||
}
|
||||
}
|
||||
|
||||
estimate.log()
|
||||
|
||||
// Loop through potential servers
|
||||
@@ -131,14 +143,27 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
|
||||
return nil, errors.New("ollama supports only one lora adapter, but multiple were provided")
|
||||
}
|
||||
|
||||
availableServers := availableServers()
|
||||
availableServers := getAvailableServers()
|
||||
if len(availableServers) == 0 {
|
||||
if runtime.GOOS != "windows" {
|
||||
slog.Warn("llama server binary disappeared, reinitializing payloads")
|
||||
err = Init()
|
||||
if err != nil {
|
||||
slog.Warn("failed to reinitialize payloads", "error", err)
|
||||
return nil, err
|
||||
}
|
||||
availableServers = getAvailableServers()
|
||||
} else {
|
||||
return nil, finalErr
|
||||
}
|
||||
}
|
||||
var servers []string
|
||||
if cpuRunner != "" {
|
||||
servers = []string{cpuRunner}
|
||||
} else {
|
||||
servers = serversForGpu(gpus[0]) // All GPUs in the list are matching Library and Variant
|
||||
}
|
||||
demandLib := envconfig.LLMLibrary
|
||||
demandLib := envconfig.LLMLibrary()
|
||||
if demandLib != "" {
|
||||
serverPath := availableServers[demandLib]
|
||||
if serverPath == "" {
|
||||
@@ -170,7 +195,7 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
|
||||
params = append(params, "--n-gpu-layers", fmt.Sprintf("%d", opts.NumGPU))
|
||||
}
|
||||
|
||||
if envconfig.Debug {
|
||||
if envconfig.Debug() {
|
||||
params = append(params, "--verbose")
|
||||
}
|
||||
|
||||
@@ -196,7 +221,7 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
|
||||
params = append(params, "--memory-f32")
|
||||
}
|
||||
|
||||
flashAttnEnabled := envconfig.FlashAttention
|
||||
flashAttnEnabled := envconfig.FlashAttention()
|
||||
|
||||
for _, g := range gpus {
|
||||
// only cuda (compute capability 7+) and metal support flash attention
|
||||
@@ -208,7 +233,8 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
|
||||
if g.Library == "metal" &&
|
||||
uint64(opts.NumGPU) > 0 &&
|
||||
uint64(opts.NumGPU) < ggml.KV().BlockCount()+1 {
|
||||
opts.UseMMap = api.TriStateFalse
|
||||
opts.UseMMap = new(bool)
|
||||
*opts.UseMMap = false
|
||||
}
|
||||
}
|
||||
|
||||
@@ -219,10 +245,10 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
|
||||
// Windows CUDA should not use mmap for best performance
|
||||
// Linux with a model larger than free space, mmap leads to thrashing
|
||||
// For CPU loads we want the memory to be allocated, not FS cache
|
||||
if (runtime.GOOS == "windows" && gpus[0].Library == "cuda" && opts.UseMMap == api.TriStateUndefined) ||
|
||||
(runtime.GOOS == "linux" && systemFreeMemory < estimate.TotalSize && opts.UseMMap == api.TriStateUndefined) ||
|
||||
(gpus[0].Library == "cpu" && opts.UseMMap == api.TriStateUndefined) ||
|
||||
opts.UseMMap == api.TriStateFalse {
|
||||
if (runtime.GOOS == "windows" && gpus[0].Library == "cuda" && opts.UseMMap == nil) ||
|
||||
(runtime.GOOS == "linux" && systemFreeMemory < estimate.TotalSize && opts.UseMMap == nil) ||
|
||||
(gpus[0].Library == "cpu" && opts.UseMMap == nil) ||
|
||||
(opts.UseMMap != nil && !*opts.UseMMap) {
|
||||
params = append(params, "--no-mmap")
|
||||
}
|
||||
|
||||
@@ -240,10 +266,6 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
|
||||
params = append(params, "--tensor-split", estimate.TensorSplit)
|
||||
}
|
||||
|
||||
if estimate.TensorSplit != "" {
|
||||
params = append(params, "--tensor-split", estimate.TensorSplit)
|
||||
}
|
||||
|
||||
for i := range len(servers) {
|
||||
dir := availableServers[servers[i]]
|
||||
if dir == "" {
|
||||
@@ -324,6 +346,7 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
|
||||
s.cmd.Env = os.Environ()
|
||||
s.cmd.Stdout = os.Stdout
|
||||
s.cmd.Stderr = s.status
|
||||
s.cmd.SysProcAttr = LlamaServerSysProcAttr
|
||||
|
||||
envWorkarounds := [][2]string{}
|
||||
for _, gpu := range gpus {
|
||||
@@ -359,12 +382,14 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
|
||||
}
|
||||
|
||||
slog.Info("starting llama server", "cmd", s.cmd.String())
|
||||
if envconfig.Debug {
|
||||
if envconfig.Debug() {
|
||||
filteredEnv := []string{}
|
||||
for _, ev := range s.cmd.Env {
|
||||
if strings.HasPrefix(ev, "CUDA_") ||
|
||||
strings.HasPrefix(ev, "ROCR_") ||
|
||||
strings.HasPrefix(ev, "ROCM_") ||
|
||||
strings.HasPrefix(ev, "HIP_") ||
|
||||
strings.HasPrefix(ev, "GPU_") ||
|
||||
strings.HasPrefix(ev, "HSA_") ||
|
||||
strings.HasPrefix(ev, "GGML_") ||
|
||||
strings.HasPrefix(ev, "PATH=") ||
|
||||
@@ -393,7 +418,17 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
|
||||
|
||||
// reap subprocess when it exits
|
||||
go func() {
|
||||
s.done <- s.cmd.Wait()
|
||||
err := s.cmd.Wait()
|
||||
// Favor a more detailed message over the process exit status
|
||||
if err != nil && s.status != nil && s.status.LastErrMsg != "" {
|
||||
slog.Debug("llama runner terminated", "error", err)
|
||||
if strings.Contains(s.status.LastErrMsg, "unknown model") {
|
||||
s.status.LastErrMsg = "this model is not supported by your version of Ollama. You may need to upgrade"
|
||||
}
|
||||
s.done <- fmt.Errorf(s.status.LastErrMsg)
|
||||
} else {
|
||||
s.done <- err
|
||||
}
|
||||
}()
|
||||
|
||||
return s, nil
|
||||
@@ -556,11 +591,7 @@ func (s *llmServer) WaitUntilRunning(ctx context.Context) error {
|
||||
slog.Warn("client connection closed before server finished loading, aborting load")
|
||||
return fmt.Errorf("timed out waiting for llama runner to start: %w", ctx.Err())
|
||||
case err := <-s.done:
|
||||
msg := ""
|
||||
if s.status != nil && s.status.LastErrMsg != "" {
|
||||
msg = s.status.LastErrMsg
|
||||
}
|
||||
return fmt.Errorf("llama runner process has terminated: %v %s", err, msg)
|
||||
return fmt.Errorf("llama runner process has terminated: %w", err)
|
||||
default:
|
||||
}
|
||||
if time.Now().After(stallTimer) {
|
||||
@@ -662,7 +693,7 @@ type CompletionRequest struct {
|
||||
Prompt string
|
||||
Format string
|
||||
Images []ImageData
|
||||
Options api.Options
|
||||
Options *api.Options
|
||||
}
|
||||
|
||||
type CompletionResponse struct {
|
||||
@@ -682,10 +713,9 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
|
||||
}
|
||||
defer s.sem.Release(1)
|
||||
|
||||
// only allow maximum 10 "context shifts" to avoid infinite generation
|
||||
// put an upper limit on num_predict to avoid the model running on forever
|
||||
if req.Options.NumPredict < 0 || req.Options.NumPredict > 10*s.options.NumCtx {
|
||||
req.Options.NumPredict = 10 * s.options.NumCtx
|
||||
slog.Debug("setting token limit to 10x num_ctx", "num_ctx", s.options.NumCtx, "num_predict", req.Options.NumPredict)
|
||||
}
|
||||
|
||||
request := map[string]any{
|
||||
@@ -697,6 +727,7 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
|
||||
"temperature": req.Options.Temperature,
|
||||
"top_k": req.Options.TopK,
|
||||
"top_p": req.Options.TopP,
|
||||
"min_p": req.Options.MinP,
|
||||
"tfs_z": req.Options.TFSZ,
|
||||
"typical_p": req.Options.TypicalP,
|
||||
"repeat_last_n": req.Options.RepeatLastN,
|
||||
@@ -843,15 +874,16 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
|
||||
return nil
|
||||
}
|
||||
|
||||
type EmbeddingRequest struct {
|
||||
Content string `json:"content"`
|
||||
type EmbedRequest struct {
|
||||
Content []string `json:"content"`
|
||||
}
|
||||
|
||||
type EmbeddingResponse struct {
|
||||
Embedding []float64 `json:"embedding"`
|
||||
type EmbedResponse struct {
|
||||
Embedding [][]float32 `json:"embedding"`
|
||||
PromptEvalCount int `json:"prompt_n"`
|
||||
}
|
||||
|
||||
func (s *llmServer) Embedding(ctx context.Context, prompt string) ([]float64, error) {
|
||||
func (s *llmServer) Embed(ctx context.Context, input []string) (*EmbedResponse, error) {
|
||||
if err := s.sem.Acquire(ctx, 1); err != nil {
|
||||
slog.Error("Failed to acquire semaphore", "error", err)
|
||||
return nil, err
|
||||
@@ -866,7 +898,7 @@ func (s *llmServer) Embedding(ctx context.Context, prompt string) ([]float64, er
|
||||
return nil, fmt.Errorf("unexpected server status: %s", status.ToString())
|
||||
}
|
||||
|
||||
data, err := json.Marshal(TokenizeRequest{Content: prompt})
|
||||
data, err := json.Marshal(EmbedRequest{Content: input})
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("error marshaling embed data: %w", err)
|
||||
}
|
||||
@@ -893,12 +925,12 @@ func (s *llmServer) Embedding(ctx context.Context, prompt string) ([]float64, er
|
||||
return nil, fmt.Errorf("%s", body)
|
||||
}
|
||||
|
||||
var embedding EmbeddingResponse
|
||||
if err := json.Unmarshal(body, &embedding); err != nil {
|
||||
var e EmbedResponse
|
||||
if err := json.Unmarshal(body, &e); err != nil {
|
||||
return nil, fmt.Errorf("unmarshal tokenize response: %w", err)
|
||||
}
|
||||
|
||||
return embedding.Embedding, nil
|
||||
return &e, nil
|
||||
}
|
||||
|
||||
type TokenizeRequest struct {
|
||||
|
@@ -25,6 +25,7 @@ var errorPrefixes = []string{
|
||||
"CUDA error",
|
||||
"cudaMalloc failed",
|
||||
"\"ERR\"",
|
||||
"error loading model",
|
||||
}
|
||||
|
||||
func (w *StatusWriter) Write(b []byte) (int, error) {
|
||||
|
@@ -19,7 +19,7 @@ export default function () {
|
||||
const [step, setStep] = useState<Step>(Step.WELCOME)
|
||||
const [commandCopied, setCommandCopied] = useState<boolean>(false)
|
||||
|
||||
const command = 'ollama run llama3'
|
||||
const command = 'ollama run llama3.1'
|
||||
|
||||
return (
|
||||
<div className='drag'>
|
||||
|
631
openai/openai.go
631
openai/openai.go
@@ -3,15 +3,19 @@ package openai
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/base64"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"io"
|
||||
"log/slog"
|
||||
"math/rand"
|
||||
"net/http"
|
||||
"strings"
|
||||
"time"
|
||||
|
||||
"github.com/gin-gonic/gin"
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/types/model"
|
||||
)
|
||||
|
||||
type Error struct {
|
||||
@@ -26,8 +30,9 @@ type ErrorResponse struct {
|
||||
}
|
||||
|
||||
type Message struct {
|
||||
Role string `json:"role"`
|
||||
Content string `json:"content"`
|
||||
Role string `json:"role"`
|
||||
Content any `json:"content"`
|
||||
ToolCalls []ToolCall `json:"tool_calls,omitempty"`
|
||||
}
|
||||
|
||||
type Choice struct {
|
||||
@@ -42,6 +47,12 @@ type ChunkChoice struct {
|
||||
FinishReason *string `json:"finish_reason"`
|
||||
}
|
||||
|
||||
type CompleteChunkChoice struct {
|
||||
Text string `json:"text"`
|
||||
Index int `json:"index"`
|
||||
FinishReason *string `json:"finish_reason"`
|
||||
}
|
||||
|
||||
type Usage struct {
|
||||
PromptTokens int `json:"prompt_tokens"`
|
||||
CompletionTokens int `json:"completion_tokens"`
|
||||
@@ -52,6 +63,11 @@ type ResponseFormat struct {
|
||||
Type string `json:"type"`
|
||||
}
|
||||
|
||||
type EmbedRequest struct {
|
||||
Input any `json:"input"`
|
||||
Model string `json:"model"`
|
||||
}
|
||||
|
||||
type ChatCompletionRequest struct {
|
||||
Model string `json:"model"`
|
||||
Messages []Message `json:"messages"`
|
||||
@@ -64,6 +80,7 @@ type ChatCompletionRequest struct {
|
||||
PresencePenalty *float64 `json:"presence_penalty_penalty"`
|
||||
TopP *float64 `json:"top_p"`
|
||||
ResponseFormat *ResponseFormat `json:"response_format"`
|
||||
Tools []api.Tool `json:"tools"`
|
||||
}
|
||||
|
||||
type ChatCompletion struct {
|
||||
@@ -85,6 +102,73 @@ type ChatCompletionChunk struct {
|
||||
Choices []ChunkChoice `json:"choices"`
|
||||
}
|
||||
|
||||
// TODO (https://github.com/ollama/ollama/issues/5259): support []string, []int and [][]int
|
||||
type CompletionRequest struct {
|
||||
Model string `json:"model"`
|
||||
Prompt string `json:"prompt"`
|
||||
FrequencyPenalty float32 `json:"frequency_penalty"`
|
||||
MaxTokens *int `json:"max_tokens"`
|
||||
PresencePenalty float32 `json:"presence_penalty"`
|
||||
Seed *int `json:"seed"`
|
||||
Stop any `json:"stop"`
|
||||
Stream bool `json:"stream"`
|
||||
Temperature *float32 `json:"temperature"`
|
||||
TopP float32 `json:"top_p"`
|
||||
Suffix string `json:"suffix"`
|
||||
}
|
||||
|
||||
type Completion struct {
|
||||
Id string `json:"id"`
|
||||
Object string `json:"object"`
|
||||
Created int64 `json:"created"`
|
||||
Model string `json:"model"`
|
||||
SystemFingerprint string `json:"system_fingerprint"`
|
||||
Choices []CompleteChunkChoice `json:"choices"`
|
||||
Usage Usage `json:"usage,omitempty"`
|
||||
}
|
||||
|
||||
type CompletionChunk struct {
|
||||
Id string `json:"id"`
|
||||
Object string `json:"object"`
|
||||
Created int64 `json:"created"`
|
||||
Choices []CompleteChunkChoice `json:"choices"`
|
||||
Model string `json:"model"`
|
||||
SystemFingerprint string `json:"system_fingerprint"`
|
||||
}
|
||||
|
||||
type ToolCall struct {
|
||||
ID string `json:"id"`
|
||||
Type string `json:"type"`
|
||||
Function struct {
|
||||
Name string `json:"name"`
|
||||
Arguments string `json:"arguments"`
|
||||
} `json:"function"`
|
||||
}
|
||||
|
||||
type Model struct {
|
||||
Id string `json:"id"`
|
||||
Object string `json:"object"`
|
||||
Created int64 `json:"created"`
|
||||
OwnedBy string `json:"owned_by"`
|
||||
}
|
||||
|
||||
type Embedding struct {
|
||||
Object string `json:"object"`
|
||||
Embedding []float32 `json:"embedding"`
|
||||
Index int `json:"index"`
|
||||
}
|
||||
|
||||
type ListCompletion struct {
|
||||
Object string `json:"object"`
|
||||
Data []Model `json:"data"`
|
||||
}
|
||||
|
||||
type EmbeddingList struct {
|
||||
Object string `json:"object"`
|
||||
Data []Embedding `json:"data"`
|
||||
Model string `json:"model"`
|
||||
}
|
||||
|
||||
func NewError(code int, message string) ErrorResponse {
|
||||
var etype string
|
||||
switch code {
|
||||
@@ -99,7 +183,31 @@ func NewError(code int, message string) ErrorResponse {
|
||||
return ErrorResponse{Error{Type: etype, Message: message}}
|
||||
}
|
||||
|
||||
func toolCallId() string {
|
||||
const letterBytes = "abcdefghijklmnopqrstuvwxyz0123456789"
|
||||
b := make([]byte, 8)
|
||||
for i := range b {
|
||||
b[i] = letterBytes[rand.Intn(len(letterBytes))]
|
||||
}
|
||||
return "call_" + strings.ToLower(string(b))
|
||||
}
|
||||
|
||||
func toChatCompletion(id string, r api.ChatResponse) ChatCompletion {
|
||||
toolCalls := make([]ToolCall, len(r.Message.ToolCalls))
|
||||
for i, tc := range r.Message.ToolCalls {
|
||||
toolCalls[i].ID = toolCallId()
|
||||
toolCalls[i].Type = "function"
|
||||
toolCalls[i].Function.Name = tc.Function.Name
|
||||
|
||||
args, err := json.Marshal(tc.Function.Arguments)
|
||||
if err != nil {
|
||||
slog.Error("could not marshall function arguments to json", "error", err)
|
||||
continue
|
||||
}
|
||||
|
||||
toolCalls[i].Function.Arguments = string(args)
|
||||
}
|
||||
|
||||
return ChatCompletion{
|
||||
Id: id,
|
||||
Object: "chat.completion",
|
||||
@@ -108,8 +216,11 @@ func toChatCompletion(id string, r api.ChatResponse) ChatCompletion {
|
||||
SystemFingerprint: "fp_ollama",
|
||||
Choices: []Choice{{
|
||||
Index: 0,
|
||||
Message: Message{Role: r.Message.Role, Content: r.Message.Content},
|
||||
Message: Message{Role: r.Message.Role, Content: r.Message.Content, ToolCalls: toolCalls},
|
||||
FinishReason: func(reason string) *string {
|
||||
if len(toolCalls) > 0 {
|
||||
reason = "tool_calls"
|
||||
}
|
||||
if len(reason) > 0 {
|
||||
return &reason
|
||||
}
|
||||
@@ -117,7 +228,6 @@ func toChatCompletion(id string, r api.ChatResponse) ChatCompletion {
|
||||
}(r.DoneReason),
|
||||
}},
|
||||
Usage: Usage{
|
||||
// TODO: ollama returns 0 for prompt eval if the prompt was cached, but openai returns the actual count
|
||||
PromptTokens: r.PromptEvalCount,
|
||||
CompletionTokens: r.EvalCount,
|
||||
TotalTokens: r.PromptEvalCount + r.EvalCount,
|
||||
@@ -145,10 +255,169 @@ func toChunk(id string, r api.ChatResponse) ChatCompletionChunk {
|
||||
}
|
||||
}
|
||||
|
||||
func fromRequest(r ChatCompletionRequest) api.ChatRequest {
|
||||
func toCompletion(id string, r api.GenerateResponse) Completion {
|
||||
return Completion{
|
||||
Id: id,
|
||||
Object: "text_completion",
|
||||
Created: r.CreatedAt.Unix(),
|
||||
Model: r.Model,
|
||||
SystemFingerprint: "fp_ollama",
|
||||
Choices: []CompleteChunkChoice{{
|
||||
Text: r.Response,
|
||||
Index: 0,
|
||||
FinishReason: func(reason string) *string {
|
||||
if len(reason) > 0 {
|
||||
return &reason
|
||||
}
|
||||
return nil
|
||||
}(r.DoneReason),
|
||||
}},
|
||||
Usage: Usage{
|
||||
PromptTokens: r.PromptEvalCount,
|
||||
CompletionTokens: r.EvalCount,
|
||||
TotalTokens: r.PromptEvalCount + r.EvalCount,
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
func toCompleteChunk(id string, r api.GenerateResponse) CompletionChunk {
|
||||
return CompletionChunk{
|
||||
Id: id,
|
||||
Object: "text_completion",
|
||||
Created: time.Now().Unix(),
|
||||
Model: r.Model,
|
||||
SystemFingerprint: "fp_ollama",
|
||||
Choices: []CompleteChunkChoice{{
|
||||
Text: r.Response,
|
||||
Index: 0,
|
||||
FinishReason: func(reason string) *string {
|
||||
if len(reason) > 0 {
|
||||
return &reason
|
||||
}
|
||||
return nil
|
||||
}(r.DoneReason),
|
||||
}},
|
||||
}
|
||||
}
|
||||
|
||||
func toListCompletion(r api.ListResponse) ListCompletion {
|
||||
var data []Model
|
||||
for _, m := range r.Models {
|
||||
data = append(data, Model{
|
||||
Id: m.Name,
|
||||
Object: "model",
|
||||
Created: m.ModifiedAt.Unix(),
|
||||
OwnedBy: model.ParseName(m.Name).Namespace,
|
||||
})
|
||||
}
|
||||
|
||||
return ListCompletion{
|
||||
Object: "list",
|
||||
Data: data,
|
||||
}
|
||||
}
|
||||
|
||||
func toEmbeddingList(model string, r api.EmbedResponse) EmbeddingList {
|
||||
if r.Embeddings != nil {
|
||||
var data []Embedding
|
||||
for i, e := range r.Embeddings {
|
||||
data = append(data, Embedding{
|
||||
Object: "embedding",
|
||||
Embedding: e,
|
||||
Index: i,
|
||||
})
|
||||
}
|
||||
|
||||
return EmbeddingList{
|
||||
Object: "list",
|
||||
Data: data,
|
||||
Model: model,
|
||||
}
|
||||
}
|
||||
|
||||
return EmbeddingList{}
|
||||
}
|
||||
|
||||
func toModel(r api.ShowResponse, m string) Model {
|
||||
return Model{
|
||||
Id: m,
|
||||
Object: "model",
|
||||
Created: r.ModifiedAt.Unix(),
|
||||
OwnedBy: model.ParseName(m).Namespace,
|
||||
}
|
||||
}
|
||||
|
||||
func fromChatRequest(r ChatCompletionRequest) (*api.ChatRequest, error) {
|
||||
var messages []api.Message
|
||||
for _, msg := range r.Messages {
|
||||
messages = append(messages, api.Message{Role: msg.Role, Content: msg.Content})
|
||||
switch content := msg.Content.(type) {
|
||||
case string:
|
||||
messages = append(messages, api.Message{Role: msg.Role, Content: content})
|
||||
case []any:
|
||||
for _, c := range content {
|
||||
data, ok := c.(map[string]any)
|
||||
if !ok {
|
||||
return nil, fmt.Errorf("invalid message format")
|
||||
}
|
||||
switch data["type"] {
|
||||
case "text":
|
||||
text, ok := data["text"].(string)
|
||||
if !ok {
|
||||
return nil, fmt.Errorf("invalid message format")
|
||||
}
|
||||
messages = append(messages, api.Message{Role: msg.Role, Content: text})
|
||||
case "image_url":
|
||||
var url string
|
||||
if urlMap, ok := data["image_url"].(map[string]any); ok {
|
||||
if url, ok = urlMap["url"].(string); !ok {
|
||||
return nil, fmt.Errorf("invalid message format")
|
||||
}
|
||||
} else {
|
||||
if url, ok = data["image_url"].(string); !ok {
|
||||
return nil, fmt.Errorf("invalid message format")
|
||||
}
|
||||
}
|
||||
|
||||
types := []string{"jpeg", "jpg", "png"}
|
||||
valid := false
|
||||
for _, t := range types {
|
||||
prefix := "data:image/" + t + ";base64,"
|
||||
if strings.HasPrefix(url, prefix) {
|
||||
url = strings.TrimPrefix(url, prefix)
|
||||
valid = true
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
if !valid {
|
||||
return nil, fmt.Errorf("invalid image input")
|
||||
}
|
||||
|
||||
img, err := base64.StdEncoding.DecodeString(url)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("invalid message format")
|
||||
}
|
||||
|
||||
messages = append(messages, api.Message{Role: msg.Role, Images: []api.ImageData{img}})
|
||||
default:
|
||||
return nil, fmt.Errorf("invalid message format")
|
||||
}
|
||||
}
|
||||
default:
|
||||
if msg.ToolCalls == nil {
|
||||
return nil, fmt.Errorf("invalid message content type: %T", content)
|
||||
}
|
||||
|
||||
toolCalls := make([]api.ToolCall, len(msg.ToolCalls))
|
||||
for i, tc := range msg.ToolCalls {
|
||||
toolCalls[i].Function.Name = tc.Function.Name
|
||||
err := json.Unmarshal([]byte(tc.Function.Arguments), &toolCalls[i].Function.Arguments)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("invalid tool call arguments")
|
||||
}
|
||||
}
|
||||
messages = append(messages, api.Message{Role: msg.Role, ToolCalls: toolCalls})
|
||||
}
|
||||
}
|
||||
|
||||
options := make(map[string]interface{})
|
||||
@@ -156,7 +425,7 @@ func fromRequest(r ChatCompletionRequest) api.ChatRequest {
|
||||
switch stop := r.Stop.(type) {
|
||||
case string:
|
||||
options["stop"] = []string{stop}
|
||||
case []interface{}:
|
||||
case []any:
|
||||
var stops []string
|
||||
for _, s := range stop {
|
||||
if str, ok := s.(string); ok {
|
||||
@@ -199,22 +468,98 @@ func fromRequest(r ChatCompletionRequest) api.ChatRequest {
|
||||
format = "json"
|
||||
}
|
||||
|
||||
return api.ChatRequest{
|
||||
return &api.ChatRequest{
|
||||
Model: r.Model,
|
||||
Messages: messages,
|
||||
Format: format,
|
||||
Options: options,
|
||||
Stream: &r.Stream,
|
||||
}
|
||||
Tools: r.Tools,
|
||||
}, nil
|
||||
}
|
||||
|
||||
type writer struct {
|
||||
stream bool
|
||||
id string
|
||||
func fromCompleteRequest(r CompletionRequest) (api.GenerateRequest, error) {
|
||||
options := make(map[string]any)
|
||||
|
||||
switch stop := r.Stop.(type) {
|
||||
case string:
|
||||
options["stop"] = []string{stop}
|
||||
case []any:
|
||||
var stops []string
|
||||
for _, s := range stop {
|
||||
if str, ok := s.(string); ok {
|
||||
stops = append(stops, str)
|
||||
} else {
|
||||
return api.GenerateRequest{}, fmt.Errorf("invalid type for 'stop' field: %T", s)
|
||||
}
|
||||
}
|
||||
options["stop"] = stops
|
||||
}
|
||||
|
||||
if r.MaxTokens != nil {
|
||||
options["num_predict"] = *r.MaxTokens
|
||||
}
|
||||
|
||||
if r.Temperature != nil {
|
||||
options["temperature"] = *r.Temperature * 2.0
|
||||
} else {
|
||||
options["temperature"] = 1.0
|
||||
}
|
||||
|
||||
if r.Seed != nil {
|
||||
options["seed"] = *r.Seed
|
||||
}
|
||||
|
||||
options["frequency_penalty"] = r.FrequencyPenalty * 2.0
|
||||
|
||||
options["presence_penalty"] = r.PresencePenalty * 2.0
|
||||
|
||||
if r.TopP != 0.0 {
|
||||
options["top_p"] = r.TopP
|
||||
} else {
|
||||
options["top_p"] = 1.0
|
||||
}
|
||||
|
||||
return api.GenerateRequest{
|
||||
Model: r.Model,
|
||||
Prompt: r.Prompt,
|
||||
Options: options,
|
||||
Stream: &r.Stream,
|
||||
Suffix: r.Suffix,
|
||||
}, nil
|
||||
}
|
||||
|
||||
type BaseWriter struct {
|
||||
gin.ResponseWriter
|
||||
}
|
||||
|
||||
func (w *writer) writeError(code int, data []byte) (int, error) {
|
||||
type ChatWriter struct {
|
||||
stream bool
|
||||
id string
|
||||
BaseWriter
|
||||
}
|
||||
|
||||
type CompleteWriter struct {
|
||||
stream bool
|
||||
id string
|
||||
BaseWriter
|
||||
}
|
||||
|
||||
type ListWriter struct {
|
||||
BaseWriter
|
||||
}
|
||||
|
||||
type RetrieveWriter struct {
|
||||
BaseWriter
|
||||
model string
|
||||
}
|
||||
|
||||
type EmbedWriter struct {
|
||||
BaseWriter
|
||||
model string
|
||||
}
|
||||
|
||||
func (w *BaseWriter) writeError(code int, data []byte) (int, error) {
|
||||
var serr api.StatusError
|
||||
err := json.Unmarshal(data, &serr)
|
||||
if err != nil {
|
||||
@@ -230,7 +575,7 @@ func (w *writer) writeError(code int, data []byte) (int, error) {
|
||||
return len(data), nil
|
||||
}
|
||||
|
||||
func (w *writer) writeResponse(data []byte) (int, error) {
|
||||
func (w *ChatWriter) writeResponse(data []byte) (int, error) {
|
||||
var chatResponse api.ChatResponse
|
||||
err := json.Unmarshal(data, &chatResponse)
|
||||
if err != nil {
|
||||
@@ -270,7 +615,7 @@ func (w *writer) writeResponse(data []byte) (int, error) {
|
||||
return len(data), nil
|
||||
}
|
||||
|
||||
func (w *writer) Write(data []byte) (int, error) {
|
||||
func (w *ChatWriter) Write(data []byte) (int, error) {
|
||||
code := w.ResponseWriter.Status()
|
||||
if code != http.StatusOK {
|
||||
return w.writeError(code, data)
|
||||
@@ -279,7 +624,244 @@ func (w *writer) Write(data []byte) (int, error) {
|
||||
return w.writeResponse(data)
|
||||
}
|
||||
|
||||
func Middleware() gin.HandlerFunc {
|
||||
func (w *CompleteWriter) writeResponse(data []byte) (int, error) {
|
||||
var generateResponse api.GenerateResponse
|
||||
err := json.Unmarshal(data, &generateResponse)
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
// completion chunk
|
||||
if w.stream {
|
||||
d, err := json.Marshal(toCompleteChunk(w.id, generateResponse))
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
w.ResponseWriter.Header().Set("Content-Type", "text/event-stream")
|
||||
_, err = w.ResponseWriter.Write([]byte(fmt.Sprintf("data: %s\n\n", d)))
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
if generateResponse.Done {
|
||||
_, err = w.ResponseWriter.Write([]byte("data: [DONE]\n\n"))
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
}
|
||||
|
||||
return len(data), nil
|
||||
}
|
||||
|
||||
// completion
|
||||
w.ResponseWriter.Header().Set("Content-Type", "application/json")
|
||||
err = json.NewEncoder(w.ResponseWriter).Encode(toCompletion(w.id, generateResponse))
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
return len(data), nil
|
||||
}
|
||||
|
||||
func (w *CompleteWriter) Write(data []byte) (int, error) {
|
||||
code := w.ResponseWriter.Status()
|
||||
if code != http.StatusOK {
|
||||
return w.writeError(code, data)
|
||||
}
|
||||
|
||||
return w.writeResponse(data)
|
||||
}
|
||||
|
||||
func (w *ListWriter) writeResponse(data []byte) (int, error) {
|
||||
var listResponse api.ListResponse
|
||||
err := json.Unmarshal(data, &listResponse)
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
w.ResponseWriter.Header().Set("Content-Type", "application/json")
|
||||
err = json.NewEncoder(w.ResponseWriter).Encode(toListCompletion(listResponse))
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
return len(data), nil
|
||||
}
|
||||
|
||||
func (w *ListWriter) Write(data []byte) (int, error) {
|
||||
code := w.ResponseWriter.Status()
|
||||
if code != http.StatusOK {
|
||||
return w.writeError(code, data)
|
||||
}
|
||||
|
||||
return w.writeResponse(data)
|
||||
}
|
||||
|
||||
func (w *RetrieveWriter) writeResponse(data []byte) (int, error) {
|
||||
var showResponse api.ShowResponse
|
||||
err := json.Unmarshal(data, &showResponse)
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
// retrieve completion
|
||||
w.ResponseWriter.Header().Set("Content-Type", "application/json")
|
||||
err = json.NewEncoder(w.ResponseWriter).Encode(toModel(showResponse, w.model))
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
return len(data), nil
|
||||
}
|
||||
|
||||
func (w *RetrieveWriter) Write(data []byte) (int, error) {
|
||||
code := w.ResponseWriter.Status()
|
||||
if code != http.StatusOK {
|
||||
return w.writeError(code, data)
|
||||
}
|
||||
|
||||
return w.writeResponse(data)
|
||||
}
|
||||
|
||||
func (w *EmbedWriter) writeResponse(data []byte) (int, error) {
|
||||
var embedResponse api.EmbedResponse
|
||||
err := json.Unmarshal(data, &embedResponse)
|
||||
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
w.ResponseWriter.Header().Set("Content-Type", "application/json")
|
||||
err = json.NewEncoder(w.ResponseWriter).Encode(toEmbeddingList(w.model, embedResponse))
|
||||
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
return len(data), nil
|
||||
}
|
||||
|
||||
func (w *EmbedWriter) Write(data []byte) (int, error) {
|
||||
code := w.ResponseWriter.Status()
|
||||
if code != http.StatusOK {
|
||||
return w.writeError(code, data)
|
||||
}
|
||||
|
||||
return w.writeResponse(data)
|
||||
}
|
||||
|
||||
func ListMiddleware() gin.HandlerFunc {
|
||||
return func(c *gin.Context) {
|
||||
w := &ListWriter{
|
||||
BaseWriter: BaseWriter{ResponseWriter: c.Writer},
|
||||
}
|
||||
|
||||
c.Writer = w
|
||||
|
||||
c.Next()
|
||||
}
|
||||
}
|
||||
|
||||
func RetrieveMiddleware() gin.HandlerFunc {
|
||||
return func(c *gin.Context) {
|
||||
var b bytes.Buffer
|
||||
if err := json.NewEncoder(&b).Encode(api.ShowRequest{Name: c.Param("model")}); err != nil {
|
||||
c.AbortWithStatusJSON(http.StatusInternalServerError, NewError(http.StatusInternalServerError, err.Error()))
|
||||
return
|
||||
}
|
||||
|
||||
c.Request.Body = io.NopCloser(&b)
|
||||
|
||||
// response writer
|
||||
w := &RetrieveWriter{
|
||||
BaseWriter: BaseWriter{ResponseWriter: c.Writer},
|
||||
model: c.Param("model"),
|
||||
}
|
||||
|
||||
c.Writer = w
|
||||
|
||||
c.Next()
|
||||
}
|
||||
}
|
||||
|
||||
func CompletionsMiddleware() gin.HandlerFunc {
|
||||
return func(c *gin.Context) {
|
||||
var req CompletionRequest
|
||||
err := c.ShouldBindJSON(&req)
|
||||
if err != nil {
|
||||
c.AbortWithStatusJSON(http.StatusBadRequest, NewError(http.StatusBadRequest, err.Error()))
|
||||
return
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
genReq, err := fromCompleteRequest(req)
|
||||
if err != nil {
|
||||
c.AbortWithStatusJSON(http.StatusBadRequest, NewError(http.StatusBadRequest, err.Error()))
|
||||
return
|
||||
}
|
||||
|
||||
if err := json.NewEncoder(&b).Encode(genReq); err != nil {
|
||||
c.AbortWithStatusJSON(http.StatusInternalServerError, NewError(http.StatusInternalServerError, err.Error()))
|
||||
return
|
||||
}
|
||||
|
||||
c.Request.Body = io.NopCloser(&b)
|
||||
|
||||
w := &CompleteWriter{
|
||||
BaseWriter: BaseWriter{ResponseWriter: c.Writer},
|
||||
stream: req.Stream,
|
||||
id: fmt.Sprintf("cmpl-%d", rand.Intn(999)),
|
||||
}
|
||||
|
||||
c.Writer = w
|
||||
c.Next()
|
||||
}
|
||||
}
|
||||
|
||||
func EmbeddingsMiddleware() gin.HandlerFunc {
|
||||
return func(c *gin.Context) {
|
||||
var req EmbedRequest
|
||||
err := c.ShouldBindJSON(&req)
|
||||
if err != nil {
|
||||
c.AbortWithStatusJSON(http.StatusBadRequest, NewError(http.StatusBadRequest, err.Error()))
|
||||
return
|
||||
}
|
||||
|
||||
if req.Input == "" {
|
||||
req.Input = []string{""}
|
||||
}
|
||||
|
||||
if req.Input == nil {
|
||||
c.AbortWithStatusJSON(http.StatusBadRequest, NewError(http.StatusBadRequest, "invalid input"))
|
||||
return
|
||||
}
|
||||
|
||||
if v, ok := req.Input.([]any); ok && len(v) == 0 {
|
||||
c.AbortWithStatusJSON(http.StatusBadRequest, NewError(http.StatusBadRequest, "invalid input"))
|
||||
return
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if err := json.NewEncoder(&b).Encode(api.EmbedRequest{Model: req.Model, Input: req.Input}); err != nil {
|
||||
c.AbortWithStatusJSON(http.StatusInternalServerError, NewError(http.StatusInternalServerError, err.Error()))
|
||||
return
|
||||
}
|
||||
|
||||
c.Request.Body = io.NopCloser(&b)
|
||||
|
||||
w := &EmbedWriter{
|
||||
BaseWriter: BaseWriter{ResponseWriter: c.Writer},
|
||||
model: req.Model,
|
||||
}
|
||||
|
||||
c.Writer = w
|
||||
|
||||
c.Next()
|
||||
}
|
||||
}
|
||||
|
||||
func ChatMiddleware() gin.HandlerFunc {
|
||||
return func(c *gin.Context) {
|
||||
var req ChatCompletionRequest
|
||||
err := c.ShouldBindJSON(&req)
|
||||
@@ -294,17 +876,24 @@ func Middleware() gin.HandlerFunc {
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if err := json.NewEncoder(&b).Encode(fromRequest(req)); err != nil {
|
||||
|
||||
chatReq, err := fromChatRequest(req)
|
||||
if err != nil {
|
||||
c.AbortWithStatusJSON(http.StatusBadRequest, NewError(http.StatusBadRequest, err.Error()))
|
||||
return
|
||||
}
|
||||
|
||||
if err := json.NewEncoder(&b).Encode(chatReq); err != nil {
|
||||
c.AbortWithStatusJSON(http.StatusInternalServerError, NewError(http.StatusInternalServerError, err.Error()))
|
||||
return
|
||||
}
|
||||
|
||||
c.Request.Body = io.NopCloser(&b)
|
||||
|
||||
w := &writer{
|
||||
ResponseWriter: c.Writer,
|
||||
stream: req.Stream,
|
||||
id: fmt.Sprintf("chatcmpl-%d", rand.Intn(999)),
|
||||
w := &ChatWriter{
|
||||
BaseWriter: BaseWriter{ResponseWriter: c.Writer},
|
||||
stream: req.Stream,
|
||||
id: fmt.Sprintf("chatcmpl-%d", rand.Intn(999)),
|
||||
}
|
||||
|
||||
c.Writer = w
|
||||
|
496
openai/openai_test.go
Normal file
496
openai/openai_test.go
Normal file
@@ -0,0 +1,496 @@
|
||||
package openai
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/base64"
|
||||
"encoding/json"
|
||||
"io"
|
||||
"net/http"
|
||||
"net/http/httptest"
|
||||
"strings"
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
"github.com/gin-gonic/gin"
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
const prefix = `data:image/jpeg;base64,`
|
||||
const image = `iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR42mNk+A8AAQUBAScY42YAAAAASUVORK5CYII=`
|
||||
const imageURL = prefix + image
|
||||
|
||||
func prepareRequest(req *http.Request, body any) {
|
||||
bodyBytes, _ := json.Marshal(body)
|
||||
req.Body = io.NopCloser(bytes.NewReader(bodyBytes))
|
||||
req.Header.Set("Content-Type", "application/json")
|
||||
}
|
||||
|
||||
func captureRequestMiddleware(capturedRequest any) gin.HandlerFunc {
|
||||
return func(c *gin.Context) {
|
||||
bodyBytes, _ := io.ReadAll(c.Request.Body)
|
||||
c.Request.Body = io.NopCloser(bytes.NewReader(bodyBytes))
|
||||
err := json.Unmarshal(bodyBytes, capturedRequest)
|
||||
if err != nil {
|
||||
c.AbortWithStatusJSON(http.StatusInternalServerError, "failed to unmarshal request")
|
||||
}
|
||||
c.Next()
|
||||
}
|
||||
}
|
||||
|
||||
func TestChatMiddleware(t *testing.T) {
|
||||
type testCase struct {
|
||||
Name string
|
||||
Setup func(t *testing.T, req *http.Request)
|
||||
Expected func(t *testing.T, req *api.ChatRequest, resp *httptest.ResponseRecorder)
|
||||
}
|
||||
|
||||
var capturedRequest *api.ChatRequest
|
||||
|
||||
testCases := []testCase{
|
||||
{
|
||||
Name: "chat handler",
|
||||
Setup: func(t *testing.T, req *http.Request) {
|
||||
body := ChatCompletionRequest{
|
||||
Model: "test-model",
|
||||
Messages: []Message{{Role: "user", Content: "Hello"}},
|
||||
}
|
||||
prepareRequest(req, body)
|
||||
},
|
||||
Expected: func(t *testing.T, req *api.ChatRequest, resp *httptest.ResponseRecorder) {
|
||||
if resp.Code != http.StatusOK {
|
||||
t.Fatalf("expected 200, got %d", resp.Code)
|
||||
}
|
||||
|
||||
if req.Messages[0].Role != "user" {
|
||||
t.Fatalf("expected 'user', got %s", req.Messages[0].Role)
|
||||
}
|
||||
|
||||
if req.Messages[0].Content != "Hello" {
|
||||
t.Fatalf("expected 'Hello', got %s", req.Messages[0].Content)
|
||||
}
|
||||
},
|
||||
},
|
||||
{
|
||||
Name: "chat handler with image content",
|
||||
Setup: func(t *testing.T, req *http.Request) {
|
||||
body := ChatCompletionRequest{
|
||||
Model: "test-model",
|
||||
Messages: []Message{
|
||||
{
|
||||
Role: "user", Content: []map[string]any{
|
||||
{"type": "text", "text": "Hello"},
|
||||
{"type": "image_url", "image_url": map[string]string{"url": imageURL}},
|
||||
},
|
||||
},
|
||||
},
|
||||
}
|
||||
prepareRequest(req, body)
|
||||
},
|
||||
Expected: func(t *testing.T, req *api.ChatRequest, resp *httptest.ResponseRecorder) {
|
||||
if resp.Code != http.StatusOK {
|
||||
t.Fatalf("expected 200, got %d", resp.Code)
|
||||
}
|
||||
|
||||
if req.Messages[0].Role != "user" {
|
||||
t.Fatalf("expected 'user', got %s", req.Messages[0].Role)
|
||||
}
|
||||
|
||||
if req.Messages[0].Content != "Hello" {
|
||||
t.Fatalf("expected 'Hello', got %s", req.Messages[0].Content)
|
||||
}
|
||||
|
||||
img, _ := base64.StdEncoding.DecodeString(imageURL[len(prefix):])
|
||||
|
||||
if req.Messages[1].Role != "user" {
|
||||
t.Fatalf("expected 'user', got %s", req.Messages[1].Role)
|
||||
}
|
||||
|
||||
if !bytes.Equal(req.Messages[1].Images[0], img) {
|
||||
t.Fatalf("expected image encoding, got %s", req.Messages[1].Images[0])
|
||||
}
|
||||
},
|
||||
},
|
||||
{
|
||||
Name: "chat handler with tools",
|
||||
Setup: func(t *testing.T, req *http.Request) {
|
||||
body := ChatCompletionRequest{
|
||||
Model: "test-model",
|
||||
Messages: []Message{
|
||||
{Role: "user", Content: "What's the weather like in Paris Today?"},
|
||||
{Role: "assistant", ToolCalls: []ToolCall{{
|
||||
ID: "id",
|
||||
Type: "function",
|
||||
Function: struct {
|
||||
Name string `json:"name"`
|
||||
Arguments string `json:"arguments"`
|
||||
}{
|
||||
Name: "get_current_weather",
|
||||
Arguments: "{\"location\": \"Paris, France\", \"format\": \"celsius\"}",
|
||||
},
|
||||
}}},
|
||||
},
|
||||
}
|
||||
prepareRequest(req, body)
|
||||
},
|
||||
Expected: func(t *testing.T, req *api.ChatRequest, resp *httptest.ResponseRecorder) {
|
||||
if resp.Code != 200 {
|
||||
t.Fatalf("expected 200, got %d", resp.Code)
|
||||
}
|
||||
|
||||
if req.Messages[0].Content != "What's the weather like in Paris Today?" {
|
||||
t.Fatalf("expected What's the weather like in Paris Today?, got %s", req.Messages[0].Content)
|
||||
}
|
||||
|
||||
if req.Messages[1].ToolCalls[0].Function.Arguments["location"] != "Paris, France" {
|
||||
t.Fatalf("expected 'Paris, France', got %v", req.Messages[1].ToolCalls[0].Function.Arguments["location"])
|
||||
}
|
||||
|
||||
if req.Messages[1].ToolCalls[0].Function.Arguments["format"] != "celsius" {
|
||||
t.Fatalf("expected celsius, got %v", req.Messages[1].ToolCalls[0].Function.Arguments["format"])
|
||||
}
|
||||
},
|
||||
},
|
||||
{
|
||||
Name: "chat handler error forwarding",
|
||||
Setup: func(t *testing.T, req *http.Request) {
|
||||
body := ChatCompletionRequest{
|
||||
Model: "test-model",
|
||||
Messages: []Message{{Role: "user", Content: 2}},
|
||||
}
|
||||
prepareRequest(req, body)
|
||||
},
|
||||
Expected: func(t *testing.T, req *api.ChatRequest, resp *httptest.ResponseRecorder) {
|
||||
if resp.Code != http.StatusBadRequest {
|
||||
t.Fatalf("expected 400, got %d", resp.Code)
|
||||
}
|
||||
|
||||
if !strings.Contains(resp.Body.String(), "invalid message content type") {
|
||||
t.Fatalf("error was not forwarded")
|
||||
}
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
endpoint := func(c *gin.Context) {
|
||||
c.Status(http.StatusOK)
|
||||
}
|
||||
|
||||
gin.SetMode(gin.TestMode)
|
||||
router := gin.New()
|
||||
router.Use(ChatMiddleware(), captureRequestMiddleware(&capturedRequest))
|
||||
router.Handle(http.MethodPost, "/api/chat", endpoint)
|
||||
|
||||
for _, tc := range testCases {
|
||||
t.Run(tc.Name, func(t *testing.T) {
|
||||
req, _ := http.NewRequest(http.MethodPost, "/api/chat", nil)
|
||||
|
||||
tc.Setup(t, req)
|
||||
|
||||
resp := httptest.NewRecorder()
|
||||
router.ServeHTTP(resp, req)
|
||||
|
||||
tc.Expected(t, capturedRequest, resp)
|
||||
|
||||
capturedRequest = nil
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestCompletionsMiddleware(t *testing.T) {
|
||||
type testCase struct {
|
||||
Name string
|
||||
Setup func(t *testing.T, req *http.Request)
|
||||
Expected func(t *testing.T, req *api.GenerateRequest, resp *httptest.ResponseRecorder)
|
||||
}
|
||||
|
||||
var capturedRequest *api.GenerateRequest
|
||||
|
||||
testCases := []testCase{
|
||||
{
|
||||
Name: "completions handler",
|
||||
Setup: func(t *testing.T, req *http.Request) {
|
||||
temp := float32(0.8)
|
||||
body := CompletionRequest{
|
||||
Model: "test-model",
|
||||
Prompt: "Hello",
|
||||
Temperature: &temp,
|
||||
Stop: []string{"\n", "stop"},
|
||||
Suffix: "suffix",
|
||||
}
|
||||
prepareRequest(req, body)
|
||||
},
|
||||
Expected: func(t *testing.T, req *api.GenerateRequest, resp *httptest.ResponseRecorder) {
|
||||
if req.Prompt != "Hello" {
|
||||
t.Fatalf("expected 'Hello', got %s", req.Prompt)
|
||||
}
|
||||
|
||||
if req.Options["temperature"] != 1.6 {
|
||||
t.Fatalf("expected 1.6, got %f", req.Options["temperature"])
|
||||
}
|
||||
|
||||
stopTokens, ok := req.Options["stop"].([]any)
|
||||
|
||||
if !ok {
|
||||
t.Fatalf("expected stop tokens to be a list")
|
||||
}
|
||||
|
||||
if stopTokens[0] != "\n" || stopTokens[1] != "stop" {
|
||||
t.Fatalf("expected ['\\n', 'stop'], got %v", stopTokens)
|
||||
}
|
||||
|
||||
if req.Suffix != "suffix" {
|
||||
t.Fatalf("expected 'suffix', got %s", req.Suffix)
|
||||
}
|
||||
},
|
||||
},
|
||||
{
|
||||
Name: "completions handler error forwarding",
|
||||
Setup: func(t *testing.T, req *http.Request) {
|
||||
body := CompletionRequest{
|
||||
Model: "test-model",
|
||||
Prompt: "Hello",
|
||||
Temperature: nil,
|
||||
Stop: []int{1, 2},
|
||||
Suffix: "suffix",
|
||||
}
|
||||
prepareRequest(req, body)
|
||||
},
|
||||
Expected: func(t *testing.T, req *api.GenerateRequest, resp *httptest.ResponseRecorder) {
|
||||
if resp.Code != http.StatusBadRequest {
|
||||
t.Fatalf("expected 400, got %d", resp.Code)
|
||||
}
|
||||
|
||||
if !strings.Contains(resp.Body.String(), "invalid type for 'stop' field") {
|
||||
t.Fatalf("error was not forwarded")
|
||||
}
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
endpoint := func(c *gin.Context) {
|
||||
c.Status(http.StatusOK)
|
||||
}
|
||||
|
||||
gin.SetMode(gin.TestMode)
|
||||
router := gin.New()
|
||||
router.Use(CompletionsMiddleware(), captureRequestMiddleware(&capturedRequest))
|
||||
router.Handle(http.MethodPost, "/api/generate", endpoint)
|
||||
|
||||
for _, tc := range testCases {
|
||||
t.Run(tc.Name, func(t *testing.T) {
|
||||
req, _ := http.NewRequest(http.MethodPost, "/api/generate", nil)
|
||||
|
||||
tc.Setup(t, req)
|
||||
|
||||
resp := httptest.NewRecorder()
|
||||
router.ServeHTTP(resp, req)
|
||||
|
||||
tc.Expected(t, capturedRequest, resp)
|
||||
|
||||
capturedRequest = nil
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestEmbeddingsMiddleware(t *testing.T) {
|
||||
type testCase struct {
|
||||
Name string
|
||||
Setup func(t *testing.T, req *http.Request)
|
||||
Expected func(t *testing.T, req *api.EmbedRequest, resp *httptest.ResponseRecorder)
|
||||
}
|
||||
|
||||
var capturedRequest *api.EmbedRequest
|
||||
|
||||
testCases := []testCase{
|
||||
{
|
||||
Name: "embed handler single input",
|
||||
Setup: func(t *testing.T, req *http.Request) {
|
||||
body := EmbedRequest{
|
||||
Input: "Hello",
|
||||
Model: "test-model",
|
||||
}
|
||||
prepareRequest(req, body)
|
||||
},
|
||||
Expected: func(t *testing.T, req *api.EmbedRequest, resp *httptest.ResponseRecorder) {
|
||||
if req.Input != "Hello" {
|
||||
t.Fatalf("expected 'Hello', got %s", req.Input)
|
||||
}
|
||||
|
||||
if req.Model != "test-model" {
|
||||
t.Fatalf("expected 'test-model', got %s", req.Model)
|
||||
}
|
||||
},
|
||||
},
|
||||
{
|
||||
Name: "embed handler batch input",
|
||||
Setup: func(t *testing.T, req *http.Request) {
|
||||
body := EmbedRequest{
|
||||
Input: []string{"Hello", "World"},
|
||||
Model: "test-model",
|
||||
}
|
||||
prepareRequest(req, body)
|
||||
},
|
||||
Expected: func(t *testing.T, req *api.EmbedRequest, resp *httptest.ResponseRecorder) {
|
||||
input, ok := req.Input.([]any)
|
||||
|
||||
if !ok {
|
||||
t.Fatalf("expected input to be a list")
|
||||
}
|
||||
|
||||
if input[0].(string) != "Hello" {
|
||||
t.Fatalf("expected 'Hello', got %s", input[0])
|
||||
}
|
||||
|
||||
if input[1].(string) != "World" {
|
||||
t.Fatalf("expected 'World', got %s", input[1])
|
||||
}
|
||||
|
||||
if req.Model != "test-model" {
|
||||
t.Fatalf("expected 'test-model', got %s", req.Model)
|
||||
}
|
||||
},
|
||||
},
|
||||
{
|
||||
Name: "embed handler error forwarding",
|
||||
Setup: func(t *testing.T, req *http.Request) {
|
||||
body := EmbedRequest{
|
||||
Model: "test-model",
|
||||
}
|
||||
prepareRequest(req, body)
|
||||
},
|
||||
Expected: func(t *testing.T, req *api.EmbedRequest, resp *httptest.ResponseRecorder) {
|
||||
if resp.Code != http.StatusBadRequest {
|
||||
t.Fatalf("expected 400, got %d", resp.Code)
|
||||
}
|
||||
|
||||
if !strings.Contains(resp.Body.String(), "invalid input") {
|
||||
t.Fatalf("error was not forwarded")
|
||||
}
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
endpoint := func(c *gin.Context) {
|
||||
c.Status(http.StatusOK)
|
||||
}
|
||||
|
||||
gin.SetMode(gin.TestMode)
|
||||
router := gin.New()
|
||||
router.Use(EmbeddingsMiddleware(), captureRequestMiddleware(&capturedRequest))
|
||||
router.Handle(http.MethodPost, "/api/embed", endpoint)
|
||||
|
||||
for _, tc := range testCases {
|
||||
t.Run(tc.Name, func(t *testing.T) {
|
||||
req, _ := http.NewRequest(http.MethodPost, "/api/embed", nil)
|
||||
|
||||
tc.Setup(t, req)
|
||||
|
||||
resp := httptest.NewRecorder()
|
||||
router.ServeHTTP(resp, req)
|
||||
|
||||
tc.Expected(t, capturedRequest, resp)
|
||||
|
||||
capturedRequest = nil
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestMiddlewareResponses(t *testing.T) {
|
||||
type testCase struct {
|
||||
Name string
|
||||
Method string
|
||||
Path string
|
||||
TestPath string
|
||||
Handler func() gin.HandlerFunc
|
||||
Endpoint func(c *gin.Context)
|
||||
Setup func(t *testing.T, req *http.Request)
|
||||
Expected func(t *testing.T, resp *httptest.ResponseRecorder)
|
||||
}
|
||||
|
||||
testCases := []testCase{
|
||||
{
|
||||
Name: "list handler",
|
||||
Method: http.MethodGet,
|
||||
Path: "/api/tags",
|
||||
TestPath: "/api/tags",
|
||||
Handler: ListMiddleware,
|
||||
Endpoint: func(c *gin.Context) {
|
||||
c.JSON(http.StatusOK, api.ListResponse{
|
||||
Models: []api.ListModelResponse{
|
||||
{
|
||||
Name: "Test Model",
|
||||
},
|
||||
},
|
||||
})
|
||||
},
|
||||
Expected: func(t *testing.T, resp *httptest.ResponseRecorder) {
|
||||
var listResp ListCompletion
|
||||
if err := json.NewDecoder(resp.Body).Decode(&listResp); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if listResp.Object != "list" {
|
||||
t.Fatalf("expected list, got %s", listResp.Object)
|
||||
}
|
||||
|
||||
if len(listResp.Data) != 1 {
|
||||
t.Fatalf("expected 1, got %d", len(listResp.Data))
|
||||
}
|
||||
|
||||
if listResp.Data[0].Id != "Test Model" {
|
||||
t.Fatalf("expected Test Model, got %s", listResp.Data[0].Id)
|
||||
}
|
||||
},
|
||||
},
|
||||
{
|
||||
Name: "retrieve model",
|
||||
Method: http.MethodGet,
|
||||
Path: "/api/show/:model",
|
||||
TestPath: "/api/show/test-model",
|
||||
Handler: RetrieveMiddleware,
|
||||
Endpoint: func(c *gin.Context) {
|
||||
c.JSON(http.StatusOK, api.ShowResponse{
|
||||
ModifiedAt: time.Date(2024, 6, 17, 13, 45, 0, 0, time.UTC),
|
||||
})
|
||||
},
|
||||
Expected: func(t *testing.T, resp *httptest.ResponseRecorder) {
|
||||
var retrieveResp Model
|
||||
if err := json.NewDecoder(resp.Body).Decode(&retrieveResp); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if retrieveResp.Object != "model" {
|
||||
t.Fatalf("Expected object to be model, got %s", retrieveResp.Object)
|
||||
}
|
||||
|
||||
if retrieveResp.Id != "test-model" {
|
||||
t.Fatalf("Expected id to be test-model, got %s", retrieveResp.Id)
|
||||
}
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
gin.SetMode(gin.TestMode)
|
||||
router := gin.New()
|
||||
|
||||
for _, tc := range testCases {
|
||||
t.Run(tc.Name, func(t *testing.T) {
|
||||
router = gin.New()
|
||||
router.Use(tc.Handler())
|
||||
router.Handle(tc.Method, tc.Path, tc.Endpoint)
|
||||
req, _ := http.NewRequest(tc.Method, tc.TestPath, nil)
|
||||
|
||||
if tc.Setup != nil {
|
||||
tc.Setup(t, req)
|
||||
}
|
||||
|
||||
resp := httptest.NewRecorder()
|
||||
router.ServeHTTP(resp, req)
|
||||
|
||||
assert.Equal(t, http.StatusOK, resp.Code)
|
||||
|
||||
tc.Expected(t, resp)
|
||||
})
|
||||
}
|
||||
}
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user