Compare commits
4 Commits
mxyng/serv
...
timeout
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
d77a174eb4 | ||
|
|
2cc7d05012 | ||
|
|
123a722a6f | ||
|
|
4d311eb731 |
@@ -53,8 +53,8 @@ Here are some example models that can be downloaded:
|
||||
| Llama 3 | 70B | 40GB | `ollama run llama3:70b` |
|
||||
| Phi 3 Mini | 3.8B | 2.3GB | `ollama run phi3` |
|
||||
| Phi 3 Medium | 14B | 7.9GB | `ollama run phi3:medium` |
|
||||
| Gemma | 2B | 1.4GB | `ollama run gemma:2b` |
|
||||
| Gemma | 7B | 4.8GB | `ollama run gemma:7b` |
|
||||
| Gemma 2 | 9B | 5.5GB | `ollama run gemma2` |
|
||||
| Gemma 2 | 27B | 16GB | `ollama run gemma2:27b` |
|
||||
| Mistral | 7B | 4.1GB | `ollama run mistral` |
|
||||
| Moondream 2 | 1.4B | 829MB | `ollama run moondream` |
|
||||
| Neural Chat | 7B | 4.1GB | `ollama run neural-chat` |
|
||||
|
||||
@@ -162,9 +162,6 @@ func tempZipFiles(path string) (string, error) {
|
||||
}
|
||||
defer tempfile.Close()
|
||||
|
||||
zipfile := zip.NewWriter(tempfile)
|
||||
defer zipfile.Close()
|
||||
|
||||
detectContentType := func(path string) (string, error) {
|
||||
f, err := os.Open(path)
|
||||
if err != nil {
|
||||
@@ -233,6 +230,9 @@ func tempZipFiles(path string) (string, error) {
|
||||
files = append(files, tks...)
|
||||
}
|
||||
|
||||
zipfile := zip.NewWriter(tempfile)
|
||||
defer zipfile.Close()
|
||||
|
||||
for _, file := range files {
|
||||
f, err := os.Open(file)
|
||||
if err != nil {
|
||||
|
||||
305
llm/patches/07-gemma.diff
Normal file
305
llm/patches/07-gemma.diff
Normal file
@@ -0,0 +1,305 @@
|
||||
From 5cadb45f39d001ffbad95b690d6cf0abcb4a6d96 Mon Sep 17 00:00:00 2001
|
||||
From: Ollama maintainers <hello@ollama.com>
|
||||
Date: Wed, 26 Jun 2024 16:18:09 -0700
|
||||
Subject: [PATCH] Architecture support
|
||||
|
||||
---
|
||||
llama.cpp | 194 +++++++++++++++++++++++++++++++++++++++++++++++++++++-
|
||||
1 file changed, 193 insertions(+), 1 deletion(-)
|
||||
|
||||
diff --git a/llama.cpp b/llama.cpp
|
||||
index 61948751..3b4196f5 100644
|
||||
--- a/llama.cpp
|
||||
+++ b/llama.cpp
|
||||
@@ -217,6 +217,7 @@ enum llm_arch {
|
||||
LLM_ARCH_INTERNLM2,
|
||||
LLM_ARCH_MINICPM,
|
||||
LLM_ARCH_GEMMA,
|
||||
+ LLM_ARCH_GEMMA2,
|
||||
LLM_ARCH_STARCODER2,
|
||||
LLM_ARCH_MAMBA,
|
||||
LLM_ARCH_XVERSE,
|
||||
@@ -255,6 +256,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_INTERNLM2, "internlm2" },
|
||||
{ LLM_ARCH_MINICPM, "minicpm" },
|
||||
{ LLM_ARCH_GEMMA, "gemma" },
|
||||
+ { LLM_ARCH_GEMMA2, "gemma2" },
|
||||
{ LLM_ARCH_STARCODER2, "starcoder2" },
|
||||
{ LLM_ARCH_MAMBA, "mamba" },
|
||||
{ LLM_ARCH_XVERSE, "xverse" },
|
||||
@@ -464,10 +466,12 @@ enum llm_tensor {
|
||||
LLM_TENSOR_ATTN_NORM,
|
||||
LLM_TENSOR_ATTN_NORM_2,
|
||||
LLM_TENSOR_ATTN_OUT_NORM,
|
||||
+ LLM_TENSOR_ATTN_POST_NORM,
|
||||
LLM_TENSOR_ATTN_ROT_EMBD,
|
||||
LLM_TENSOR_FFN_GATE_INP,
|
||||
LLM_TENSOR_FFN_GATE_INP_SHEXP,
|
||||
LLM_TENSOR_FFN_NORM,
|
||||
+ LLM_TENSOR_FFN_POST_NORM,
|
||||
LLM_TENSOR_FFN_GATE,
|
||||
LLM_TENSOR_FFN_DOWN,
|
||||
LLM_TENSOR_FFN_UP,
|
||||
@@ -960,6 +964,24 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
},
|
||||
},
|
||||
+ {
|
||||
+ LLM_ARCH_GEMMA2,
|
||||
+ {
|
||||
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
+ { LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
|
||||
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
+ { LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
|
||||
+ },
|
||||
+ },
|
||||
{
|
||||
LLM_ARCH_STARCODER2,
|
||||
{
|
||||
@@ -1941,6 +1963,8 @@ enum e_model {
|
||||
MODEL_8x22B,
|
||||
MODEL_16x12B,
|
||||
MODEL_10B_128x3_66B,
|
||||
+ MODEL_9B,
|
||||
+ MODEL_27B,
|
||||
};
|
||||
|
||||
static const size_t kiB = 1024;
|
||||
@@ -2114,6 +2138,7 @@ struct llama_layer {
|
||||
struct ggml_tensor * attn_out_norm_b;
|
||||
struct ggml_tensor * attn_q_a_norm;
|
||||
struct ggml_tensor * attn_kv_a_norm;
|
||||
+ struct ggml_tensor * attn_post_norm;
|
||||
|
||||
// attention
|
||||
struct ggml_tensor * wq;
|
||||
@@ -2136,6 +2161,7 @@ struct llama_layer {
|
||||
// normalization
|
||||
struct ggml_tensor * ffn_norm;
|
||||
struct ggml_tensor * ffn_norm_b;
|
||||
+ struct ggml_tensor * ffn_post_norm;
|
||||
struct ggml_tensor * layer_out_norm;
|
||||
struct ggml_tensor * layer_out_norm_b;
|
||||
struct ggml_tensor * ffn_norm_exps;
|
||||
@@ -4529,6 +4555,16 @@ static void llm_load_hparams(
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_GEMMA:
|
||||
+ {
|
||||
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
+
|
||||
+ switch (hparams.n_layer) {
|
||||
+ case 18: model.type = e_model::MODEL_9B; break;
|
||||
+ case 28: model.type = e_model::MODEL_27B; break;
|
||||
+ default: model.type = e_model::MODEL_UNKNOWN;
|
||||
+ }
|
||||
+ } break;
|
||||
+ case LLM_ARCH_GEMMA2:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
|
||||
@@ -6305,6 +6341,40 @@ static bool llm_load_tensors(
|
||||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
||||
}
|
||||
} break;
|
||||
+ case LLM_ARCH_GEMMA2:
|
||||
+ {
|
||||
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||||
+
|
||||
+ // output
|
||||
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||||
+ model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
|
||||
+
|
||||
+ const int64_t n_ff = hparams.n_ff;
|
||||
+ const int64_t n_embd_head_k = hparams.n_embd_head_k;
|
||||
+ const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
|
||||
+ const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
|
||||
+
|
||||
+ for (uint32_t i = 0; i < n_layer; ++i) {
|
||||
+ ggml_context * ctx_layer = ctx_for_layer(i);
|
||||
+ ggml_context * ctx_split = ctx_for_layer_split(i);
|
||||
+
|
||||
+ auto & layer = model.layers[i];
|
||||
+
|
||||
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||||
+
|
||||
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
|
||||
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
|
||||
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
|
||||
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});
|
||||
+ layer.attn_post_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd});
|
||||
+
|
||||
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||||
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||||
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||||
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
||||
+ layer.ffn_post_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd});
|
||||
+ }
|
||||
+ } break;
|
||||
case LLM_ARCH_STARCODER2:
|
||||
{
|
||||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||||
@@ -10614,6 +10684,123 @@ struct llm_build_context {
|
||||
return gf;
|
||||
}
|
||||
|
||||
+ struct ggml_cgraph * build_gemma2() {
|
||||
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
+
|
||||
+ const int64_t n_embd_head_k = hparams.n_embd_head_k;
|
||||
+
|
||||
+ struct ggml_tensor * cur;
|
||||
+ struct ggml_tensor * inpL;
|
||||
+
|
||||
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||||
+
|
||||
+ inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
|
||||
+ cb(inpL, "inp_scaled", -1);
|
||||
+
|
||||
+ // inp_pos - contains the positions
|
||||
+ struct ggml_tensor * inp_pos = build_inp_pos();
|
||||
+
|
||||
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||||
+
|
||||
+ for (int il = 0; il < n_layer; ++il) {
|
||||
+ // norm
|
||||
+ cur = llm_build_norm(ctx0, inpL, hparams,
|
||||
+ model.layers[il].attn_norm, NULL,
|
||||
+ LLM_NORM_RMS, cb, il);
|
||||
+ cb(cur, "attn_norm", il);
|
||||
+
|
||||
+ // self-attention
|
||||
+ {
|
||||
+ // compute Q and K and RoPE them
|
||||
+ struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
|
||||
+ cb(Qcur, "Qcur", il);
|
||||
+
|
||||
+ struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
|
||||
+ cb(Kcur, "Kcur", il);
|
||||
+
|
||||
+ struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
|
||||
+ cb(Vcur, "Vcur", il);
|
||||
+
|
||||
+ Qcur = ggml_rope_ext(
|
||||
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos, nullptr,
|
||||
+ n_embd_head_k, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
+ ext_factor, attn_factor, beta_fast, beta_slow);
|
||||
+ cb(Qcur, "Qcur", il);
|
||||
+
|
||||
+ Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
|
||||
+ cb(Qcur, "Qcur_scaled", il);
|
||||
+
|
||||
+ Kcur = ggml_rope_ext(
|
||||
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, nullptr,
|
||||
+ n_embd_head_k, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
+ ext_factor, attn_factor, beta_fast, beta_slow);
|
||||
+ cb(Kcur, "Kcur", il);
|
||||
+
|
||||
+ cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
|
||||
+ model.layers[il].wo, NULL,
|
||||
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
|
||||
+ }
|
||||
+
|
||||
+ if (il == n_layer - 1) {
|
||||
+ // skip computing output for unused tokens
|
||||
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
|
||||
+ }
|
||||
+
|
||||
+ cur = llm_build_norm(ctx0, cur, hparams,
|
||||
+ model.layers[il].attn_post_norm, NULL,
|
||||
+ LLM_NORM_RMS, cb, il);
|
||||
+ cb(cur, "attn_post_norm", il);
|
||||
+
|
||||
+ struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
|
||||
+ cb(sa_out, "sa_out", il);
|
||||
+
|
||||
+ cur = llm_build_norm(ctx0, sa_out, hparams,
|
||||
+ model.layers[il].ffn_norm, NULL,
|
||||
+ LLM_NORM_RMS, cb, il);
|
||||
+ cb(cur, "ffn_norm", il);
|
||||
+
|
||||
+ // feed-forward network
|
||||
+ {
|
||||
+ cur = llm_build_ffn(ctx0, cur,
|
||||
+ model.layers[il].ffn_up, NULL,
|
||||
+ model.layers[il].ffn_gate, NULL,
|
||||
+ model.layers[il].ffn_down, NULL,
|
||||
+ NULL,
|
||||
+ LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
|
||||
+ cb(cur, "ffn_out", il);
|
||||
+ }
|
||||
+
|
||||
+ cur = llm_build_norm(ctx0, cur, hparams,
|
||||
+ model.layers[il].ffn_post_norm, NULL,
|
||||
+ LLM_NORM_RMS, cb, -1);
|
||||
+ cb(cur, "ffn_post_norm", -1);
|
||||
+
|
||||
+ cur = ggml_add(ctx0, cur, sa_out);
|
||||
+ cb(cur, "l_out", il);
|
||||
+
|
||||
+ // input for next layer
|
||||
+ inpL = cur;
|
||||
+ }
|
||||
+
|
||||
+ cur = inpL;
|
||||
+
|
||||
+ cur = llm_build_norm(ctx0, cur, hparams,
|
||||
+ model.output_norm, NULL,
|
||||
+ LLM_NORM_RMS, cb, -1);
|
||||
+ cb(cur, "result_norm", -1);
|
||||
+
|
||||
+ // lm_head
|
||||
+ cur = ggml_mul_mat(ctx0, model.output, cur);
|
||||
+ cb(cur, "result_output", -1);
|
||||
+
|
||||
+ ggml_build_forward_expand(gf, cur);
|
||||
+
|
||||
+ return gf;
|
||||
+ }
|
||||
+
|
||||
struct ggml_cgraph * build_starcoder2() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
|
||||
@@ -11847,6 +12034,10 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
{
|
||||
result = llm.build_gemma();
|
||||
} break;
|
||||
+ case LLM_ARCH_GEMMA2:
|
||||
+ {
|
||||
+ result = llm.build_gemma2();
|
||||
+ } break;
|
||||
case LLM_ARCH_STARCODER2:
|
||||
{
|
||||
result = llm.build_starcoder2();
|
||||
@@ -16671,6 +16862,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
||||
case LLM_ARCH_PHI2:
|
||||
case LLM_ARCH_PHI3:
|
||||
case LLM_ARCH_GEMMA:
|
||||
+ case LLM_ARCH_GEMMA2:
|
||||
case LLM_ARCH_STARCODER2:
|
||||
case LLM_ARCH_GPTNEOX:
|
||||
return LLAMA_ROPE_TYPE_NEOX;
|
||||
@@ -18551,7 +18743,7 @@ static int32_t llama_chat_apply_template_internal(
|
||||
if (add_ass) {
|
||||
ss << "<s>assistant\n";
|
||||
}
|
||||
- } else if (tmpl == "gemma" || tmpl.find("<start_of_turn>") != std::string::npos) {
|
||||
+ } else if (tmpl == "gemma" || tmpl == "gemma2" || tmpl.find("<start_of_turn>") != std::string::npos) {
|
||||
// google/gemma-7b-it
|
||||
std::string system_prompt = "";
|
||||
for (auto message : chat) {
|
||||
--
|
||||
2.45.2
|
||||
|
||||
@@ -166,6 +166,8 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
|
||||
|
||||
params = append(params, "--log-disable")
|
||||
|
||||
params = append(params, "--timeout", fmt.Sprintf("%d", 600))
|
||||
|
||||
if opts.NumGPU >= 0 {
|
||||
params = append(params, "--n-gpu-layers", fmt.Sprintf("%d", opts.NumGPU))
|
||||
}
|
||||
|
||||
@@ -11,6 +11,7 @@ import (
|
||||
"net/http"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/convert"
|
||||
@@ -77,62 +78,80 @@ func parseFromModel(ctx context.Context, name model.Name, fn func(api.ProgressRe
|
||||
return layers, nil
|
||||
}
|
||||
|
||||
func parseFromZipFile(_ context.Context, file *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) {
|
||||
func extractFromZipFile(p string, file *os.File, fn func(api.ProgressResponse)) error {
|
||||
stat, err := file.Stat()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
return err
|
||||
}
|
||||
|
||||
r, err := zip.NewReader(file, stat.Size())
|
||||
if err != nil {
|
||||
return nil, err
|
||||
return err
|
||||
}
|
||||
|
||||
tempdir, err := os.MkdirTemp(filepath.Dir(file.Name()), "")
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
defer os.RemoveAll(tempdir)
|
||||
|
||||
fn(api.ProgressResponse{Status: "unpacking model metadata"})
|
||||
for _, f := range r.File {
|
||||
n := filepath.Join(p, f.Name)
|
||||
if !strings.HasPrefix(n, p) {
|
||||
slog.Warn("skipped extracting file outside of context", "name", f.Name)
|
||||
continue
|
||||
}
|
||||
|
||||
if err := os.MkdirAll(filepath.Dir(n), 0o750); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
// TODO(mxyng): this should not write out all files to disk
|
||||
outfile, err := os.Create(filepath.Join(tempdir, f.Name))
|
||||
outfile, err := os.Create(n)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
return err
|
||||
}
|
||||
defer outfile.Close()
|
||||
|
||||
infile, err := f.Open()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
return err
|
||||
}
|
||||
defer infile.Close()
|
||||
|
||||
if _, err = io.Copy(outfile, infile); err != nil {
|
||||
return nil, err
|
||||
return err
|
||||
}
|
||||
|
||||
if err := outfile.Close(); err != nil {
|
||||
return nil, err
|
||||
return err
|
||||
}
|
||||
|
||||
if err := infile.Close(); err != nil {
|
||||
return nil, err
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
mf, err := convert.GetModelFormat(tempdir)
|
||||
return nil
|
||||
}
|
||||
|
||||
func parseFromZipFile(_ context.Context, file *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) {
|
||||
tempDir, err := os.MkdirTemp(filepath.Dir(file.Name()), "")
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
defer os.RemoveAll(tempDir)
|
||||
|
||||
if err := extractFromZipFile(tempDir, file, fn); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
mf, err := convert.GetModelFormat(tempDir)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
params, err := mf.GetParams(tempdir)
|
||||
params, err := mf.GetParams(tempDir)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
mArch, err := mf.GetModelArch("", tempdir, params)
|
||||
mArch, err := mf.GetModelArch("", tempDir, params)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
@@ -150,7 +169,7 @@ func parseFromZipFile(_ context.Context, file *os.File, digest string, fn func(a
|
||||
|
||||
// TODO(mxyng): this should write directly into a layer
|
||||
// e.g. NewLayer(arch.Reader(), "application/vnd.ollama.image.model")
|
||||
temp, err := os.CreateTemp(tempdir, "fp16")
|
||||
temp, err := os.CreateTemp(tempDir, "fp16")
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
92
server/model_test.go
Normal file
92
server/model_test.go
Normal file
@@ -0,0 +1,92 @@
|
||||
package server
|
||||
|
||||
import (
|
||||
"archive/zip"
|
||||
"bytes"
|
||||
"io"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"slices"
|
||||
"testing"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
)
|
||||
|
||||
func createZipFile(t *testing.T, name string) *os.File {
|
||||
t.Helper()
|
||||
|
||||
f, err := os.CreateTemp(t.TempDir(), "")
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
zf := zip.NewWriter(f)
|
||||
defer zf.Close()
|
||||
|
||||
zh, err := zf.CreateHeader(&zip.FileHeader{Name: name})
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if _, err := io.Copy(zh, bytes.NewReader([]byte(""))); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
return f
|
||||
}
|
||||
|
||||
func TestExtractFromZipFile(t *testing.T) {
|
||||
cases := []struct {
|
||||
name string
|
||||
expect []string
|
||||
}{
|
||||
{
|
||||
name: "good",
|
||||
expect: []string{"good"},
|
||||
},
|
||||
{
|
||||
name: filepath.Join("..", "..", "..", "..", "..", "..", "..", "..", "..", "..", "..", "..", "..", "..", "..", "..", "bad"),
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range cases {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
f := createZipFile(t, tt.name)
|
||||
defer f.Close()
|
||||
|
||||
tempDir := t.TempDir()
|
||||
if err := extractFromZipFile(tempDir, f, func(api.ProgressResponse) {}); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
var matches []string
|
||||
if err := filepath.Walk(tempDir, func(p string, fi os.FileInfo, err error) error {
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if !fi.IsDir() {
|
||||
matches = append(matches, p)
|
||||
}
|
||||
|
||||
return nil
|
||||
}); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
var actual []string
|
||||
for _, match := range matches {
|
||||
rel, err := filepath.Rel(tempDir, match)
|
||||
if err != nil {
|
||||
t.Error(err)
|
||||
}
|
||||
|
||||
actual = append(actual, rel)
|
||||
}
|
||||
|
||||
if !slices.Equal(actual, tt.expect) {
|
||||
t.Fatalf("expected %d files, got %d", len(tt.expect), len(matches))
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user