Compare commits
	
		
			2 Commits
		
	
	
		
			parth/pyth
			...
			language_s
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
|   | c79fd5c168 | ||
|   | 73fb9ea36e | 
| @@ -3,9 +3,7 @@ ollama | ||||
| app | ||||
| macapp | ||||
| dist | ||||
| build | ||||
| llm/llama.cpp | ||||
| .env | ||||
| .cache | ||||
| test_data | ||||
| .git | ||||
|  | ||||
|   | ||||
							
								
								
									
										25
									
								
								.gitattributes
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										25
									
								
								.gitattributes
									
									
									
									
										vendored
									
									
								
							| @@ -1,24 +1 @@ | ||||
| llama/**/*.cpp linguist-vendored | ||||
| llama/**/*.hpp linguist-vendored | ||||
| llama/**/*.h linguist-vendored | ||||
| llama/**/*.c linguist-vendored | ||||
| llama/**/*.cu linguist-vendored | ||||
| llama/**/*.cuh linguist-vendored | ||||
| llama/**/*.m linguist-vendored | ||||
| llama/**/*.metal linguist-vendored | ||||
|  | ||||
| ml/backend/**/*.c linguist-vendored | ||||
| ml/backend/**/*.h linguist-vendored | ||||
| ml/backend/**/*.cpp linguist-vendored | ||||
| ml/backend/**/*.hpp linguist-vendored | ||||
| ml/backend/**/*.cu linguist-vendored | ||||
| ml/backend/**/*.cuh linguist-vendored | ||||
| ml/backend/**/*.m linguist-vendored | ||||
| ml/backend/**/*.metal linguist-vendored | ||||
| ml/backend/**/CMakeLists.txt linguist-vendored | ||||
|  | ||||
| llama/build-info.cpp linguist-generated | ||||
| ml/backend/ggml/ggml/src/ggml-metal/ggml-metal-embed.s linguist-generated | ||||
|  | ||||
| * text=auto | ||||
| *.go text eol=lf | ||||
| llm/ext_server/* linguist-vendored | ||||
|   | ||||
							
								
								
									
										8
									
								
								.github/ISSUE_TEMPLATE/10_bug_report.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										8
									
								
								.github/ISSUE_TEMPLATE/10_bug_report.yml
									
									
									
									
										vendored
									
									
								
							| @@ -9,14 +9,6 @@ body: | ||||
|       description: What happened? What did you expect to happen? | ||||
|     validations: | ||||
|       required: true | ||||
|   - type: textarea | ||||
|     id: logs | ||||
|     attributes: | ||||
|       label: Relevant log output | ||||
|       description: Please copy and paste any relevant log output. See [Troubleshooting Guide](https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md#how-to-troubleshoot-issues) for details. | ||||
|       render: shell | ||||
|     validations: | ||||
|       required: false | ||||
|   - type: dropdown | ||||
|     id: os | ||||
|     attributes: | ||||
|   | ||||
							
								
								
									
										795
									
								
								.github/workflows/release.yaml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										795
									
								
								.github/workflows/release.yaml
									
									
									
									
										vendored
									
									
								
							| @@ -5,62 +5,23 @@ on: | ||||
|     tags: | ||||
|       - 'v*' | ||||
|  | ||||
| env: | ||||
|   CGO_CFLAGS: '-O3' | ||||
|   CGO_CXXFLAGS: '-O3' | ||||
|  | ||||
| jobs: | ||||
|   setup-environment: | ||||
|     runs-on: ubuntu-latest | ||||
|   # Full build of the Mac assets | ||||
|   build-darwin: | ||||
|     runs-on: macos-12 | ||||
|     environment: release | ||||
|     outputs: | ||||
|       GOFLAGS: ${{ steps.goflags.outputs.GOFLAGS }} | ||||
|     steps: | ||||
|       - uses: actions/checkout@v4 | ||||
|       - name: Set environment | ||||
|         id: goflags | ||||
|       - name: Set Version | ||||
|         shell: bash | ||||
|         run: | | ||||
|           echo GOFLAGS="'-ldflags=-w -s \"-X=github.com/ollama/ollama/version.Version=${GITHUB_REF_NAME#v}\" \"-X=github.com/ollama/ollama/server.mode=release\"'" >>$GITHUB_OUTPUT | ||||
|  | ||||
|   darwin-build: | ||||
|     runs-on: macos-13 | ||||
|     environment: release | ||||
|     needs: setup-environment | ||||
|     strategy: | ||||
|       matrix: | ||||
|         os: [darwin] | ||||
|         arch: [amd64, arm64] | ||||
|     env: | ||||
|       GOFLAGS: ${{ needs.setup-environment.outputs.GOFLAGS }} | ||||
|     steps: | ||||
|       - uses: actions/checkout@v4 | ||||
|       - uses: actions/setup-go@v5 | ||||
|         with: | ||||
|           go-version-file: go.mod | ||||
|       - run: | | ||||
|           go build -o dist/ . | ||||
|           echo "VERSION=${GITHUB_REF_NAME#v}" >> $GITHUB_ENV | ||||
|           echo "RELEASE_VERSION=$(echo ${GITHUB_REF_NAME} | cut -f1 -d-)" >> $GITHUB_ENV | ||||
|       - name: key | ||||
|         env: | ||||
|           GOOS: ${{ matrix.os }} | ||||
|           GOARCH: ${{ matrix.arch }} | ||||
|           CGO_ENABLED: 1 | ||||
|           CGO_CPPFLAGS: '-mmacosx-version-min=11.3' | ||||
|       - if: matrix.arch == 'amd64' | ||||
|           MACOS_SIGNING_KEY: ${{ secrets.MACOS_SIGNING_KEY }} | ||||
|           MACOS_SIGNING_KEY_PASSWORD: ${{ secrets.MACOS_SIGNING_KEY_PASSWORD }} | ||||
|         run: | | ||||
|           cmake --preset CPU -DCMAKE_OSX_DEPLOYMENT_TARGET=11.3 -DCMAKE_SYSTEM_PROCESSOR=x86_64 -DCMAKE_OSX_ARCHITECTURES=x86_64 | ||||
|           cmake --build --parallel --preset CPU | ||||
|           cmake --install build --component CPU --strip --parallel 8 | ||||
|       - uses: actions/upload-artifact@v4 | ||||
|         with: | ||||
|           name: build-${{ matrix.os }}-${{ matrix.arch }} | ||||
|           path: dist/* | ||||
|  | ||||
|   darwin-sign: | ||||
|     runs-on: macos-13 | ||||
|     environment: release | ||||
|     needs: darwin-build | ||||
|     steps: | ||||
|       - uses: actions/checkout@v4 | ||||
|       - run: | | ||||
|           echo $MACOS_SIGNING_KEY | base64 --decode > certificate.p12 | ||||
|           security create-keychain -p password build.keychain | ||||
|           security default-keychain -s build.keychain | ||||
| @@ -68,412 +29,446 @@ jobs: | ||||
|           security import certificate.p12 -k build.keychain -P $MACOS_SIGNING_KEY_PASSWORD -T /usr/bin/codesign | ||||
|           security set-key-partition-list -S apple-tool:,apple:,codesign: -s -k password build.keychain | ||||
|           security set-keychain-settings -lut 3600 build.keychain | ||||
|         env: | ||||
|           MACOS_SIGNING_KEY: ${{ secrets.MACOS_SIGNING_KEY }} | ||||
|           MACOS_SIGNING_KEY_PASSWORD: ${{ secrets.MACOS_SIGNING_KEY_PASSWORD }} | ||||
|       - uses: actions/download-artifact@v4 | ||||
|       - uses: actions/setup-go@v5 | ||||
|         with: | ||||
|           name: build-darwin-amd64 | ||||
|           path: dist/darwin-amd64 | ||||
|       - uses: actions/download-artifact@v4 | ||||
|         with: | ||||
|           name: build-darwin-arm64 | ||||
|           path: dist/darwin-arm64 | ||||
|       - run: | | ||||
|           export VERSION=${GITHUB_REF_NAME#v} | ||||
|           ./scripts/build_darwin.sh sign macapp | ||||
|           go-version-file: go.mod | ||||
|           cache: true | ||||
|       - name: Build Darwin | ||||
|         env: | ||||
|           APPLE_IDENTITY: ${{ secrets.APPLE_IDENTITY }} | ||||
|           APPLE_PASSWORD: ${{ secrets.APPLE_PASSWORD }} | ||||
|           APPLE_TEAM_ID: ${{ vars.APPLE_TEAM_ID }} | ||||
|           APPLE_ID: ${{ vars.APPLE_ID }} | ||||
|           SDKROOT: /Applications/Xcode_14.1.0.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk | ||||
|           DEVELOPER_DIR: /Applications/Xcode_14.1.0.app/Contents/Developer | ||||
|           SDKROOT: /Applications/Xcode_13.4.1.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk | ||||
|           DEVELOPER_DIR: /Applications/Xcode_13.4.1.app/Contents/Developer | ||||
|         run: | | ||||
|           ./scripts/build_darwin.sh | ||||
|  | ||||
|       - uses: actions/upload-artifact@v4 | ||||
|         with: | ||||
|           name: dist-darwin | ||||
|           path: | | ||||
|             dist/Ollama-darwin.zip | ||||
|             dist/ollama-darwin.tgz | ||||
|             dist/*arwin* | ||||
|             !dist/*-cov | ||||
|  | ||||
|   windows-depends: | ||||
|     strategy: | ||||
|       matrix: | ||||
|         os: [windows] | ||||
|         arch: [amd64] | ||||
|         preset: ['CPU'] | ||||
|         include: | ||||
|           - os: windows | ||||
|             arch: amd64 | ||||
|             preset: 'CUDA 11' | ||||
|             install: https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe | ||||
|             cuda-version: '11.3' | ||||
|           - os: windows | ||||
|             arch: amd64 | ||||
|             preset: 'CUDA 12' | ||||
|             install: https://developer.download.nvidia.com/compute/cuda/12.8.0/local_installers/cuda_12.8.0_571.96_windows.exe | ||||
|             cuda-version: '12.8' | ||||
|           - os: windows | ||||
|             arch: amd64 | ||||
|             preset: 'ROCm 6' | ||||
|             install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q4-WinSvr2022-For-HIP.exe | ||||
|             rocm-version: '6.2' | ||||
|     runs-on: ${{ matrix.arch == 'arm64' && format('{0}-{1}', matrix.os, matrix.arch) || matrix.os }} | ||||
|   # Windows builds take a long time to both install the dependencies and build, so parallelize | ||||
|   # CPU generation step | ||||
|   generate-windows-cpu: | ||||
|     environment: release | ||||
|     runs-on: windows | ||||
|     env: | ||||
|       GOFLAGS: ${{ needs.setup-environment.outputs.GOFLAGS }} | ||||
|       KEY_CONTAINER: ${{ vars.KEY_CONTAINER }} | ||||
|     steps: | ||||
|       - name: Install system dependencies | ||||
|         run: | | ||||
|           choco install -y --no-progress ccache ninja | ||||
|           ccache -o cache_dir=${{ github.workspace }}\.ccache | ||||
|       - if: startsWith(matrix.preset, 'CUDA ') || startsWith(matrix.preset, 'ROCm ') | ||||
|         id: cache-install | ||||
|         uses: actions/cache/restore@v4 | ||||
|         with: | ||||
|           path: | | ||||
|             C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA | ||||
|             C:\Program Files\AMD\ROCm | ||||
|           key: ${{ matrix.install }} | ||||
|       - if: startsWith(matrix.preset, 'CUDA ') | ||||
|         name: Install CUDA ${{ matrix.cuda-version }} | ||||
|         run: | | ||||
|           $ErrorActionPreference = "Stop" | ||||
|           if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') { | ||||
|             Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe" | ||||
|             $subpackages = @("cudart", "nvcc", "cublas", "cublas_dev") | Foreach-Object {"${_}_${{ matrix.cuda-version }}"} | ||||
|             Start-Process -FilePath .\install.exe -ArgumentList (@("-s") + $subpackages) -NoNewWindow -Wait | ||||
|           } | ||||
|  | ||||
|           $cudaPath = (Resolve-Path "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\*").path | ||||
|           echo "$cudaPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append | ||||
|       - if: startsWith(matrix.preset, 'ROCm') | ||||
|         name: Install ROCm ${{ matrix.rocm-version }} | ||||
|         run: | | ||||
|           $ErrorActionPreference = "Stop" | ||||
|           if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') { | ||||
|             Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe" | ||||
|             Start-Process -FilePath .\install.exe -ArgumentList '-install' -NoNewWindow -Wait | ||||
|           } | ||||
|  | ||||
|           $hipPath = (Resolve-Path "C:\Program Files\AMD\ROCm\*").path | ||||
|           echo "$hipPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append | ||||
|           echo "CC=$hipPath\bin\clang.exe" | Out-File -FilePath $env:GITHUB_ENV -Append | ||||
|           echo "CXX=$hipPath\bin\clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append | ||||
|       - if: matrix.preset == 'CPU' | ||||
|         run: | | ||||
|           echo "CC=clang.exe" | Out-File -FilePath $env:GITHUB_ENV -Append | ||||
|           echo "CXX=clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append | ||||
|       - if: ${{ !cancelled() && steps.cache-install.outputs.cache-hit != 'true' }} | ||||
|         uses: actions/cache/save@v4 | ||||
|         with: | ||||
|           path: | | ||||
|             C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA | ||||
|             C:\Program Files\AMD\ROCm | ||||
|           key: ${{ matrix.install }} | ||||
|       - uses: actions/checkout@v4 | ||||
|       - uses: actions/cache@v4 | ||||
|       - name: Set Version | ||||
|         shell: bash | ||||
|         run: echo "VERSION=${GITHUB_REF_NAME#v}" >> $GITHUB_ENV | ||||
|       - uses: 'google-github-actions/auth@v2' | ||||
|         with: | ||||
|           path: ${{ github.workspace }}\.ccache | ||||
|           key: ccache-${{ matrix.os }}-${{ matrix.arch }}-${{ matrix.preset }} | ||||
|       - name: Build target "${{ matrix.preset }}" | ||||
|         run: | | ||||
|           Import-Module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll' | ||||
|           Enter-VsDevShell -VsInstallPath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -SkipAutomaticLocation  -DevCmdArguments '-arch=x64 -no_logo' | ||||
|           cmake --preset "${{ matrix.preset }}" | ||||
|           cmake --build --parallel --preset "${{ matrix.preset }}" | ||||
|           cmake --install build --component "${{ startsWith(matrix.preset, 'CUDA ') && 'CUDA' || startsWith(matrix.preset, 'ROCm ') && 'HIP' || 'CPU' }}" --strip --parallel 8 | ||||
|         env: | ||||
|           CMAKE_GENERATOR: Ninja | ||||
|       - uses: actions/upload-artifact@v4 | ||||
|         with: | ||||
|           name: depends-${{ matrix.os }}-${{ matrix.arch }}-${{ matrix.preset }} | ||||
|           path: dist\* | ||||
|  | ||||
|   windows-build: | ||||
|     strategy: | ||||
|       matrix: | ||||
|         os: [windows] | ||||
|         arch: [amd64, arm64] | ||||
|     runs-on: ${{ matrix.arch == 'arm64' && format('{0}-{1}', matrix.os, matrix.arch) || matrix.os }} | ||||
|     environment: release | ||||
|     needs: [setup-environment] | ||||
|     env: | ||||
|       GOFLAGS: ${{ needs.setup-environment.outputs.GOFLAGS }} | ||||
|     steps: | ||||
|       - name: Install AMD64 system dependencies | ||||
|         if: matrix.arch == 'amd64' | ||||
|           project_id: 'ollama' | ||||
|           credentials_json: '${{ secrets.GOOGLE_SIGNING_CREDENTIALS }}' | ||||
|       - run: echo "${{ vars.OLLAMA_CERT }}" > ollama_inc.crt | ||||
|       - name: install Windows SDK 8.1 to get signtool | ||||
|         run: | | ||||
|           $ErrorActionPreference = "Stop" | ||||
|           Start-Process "C:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang") -NoNewWindow -Wait | ||||
|           echo "C:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append | ||||
|           echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append | ||||
|       - name: Install ARM64 system dependencies | ||||
|         if: matrix.arch == 'arm64' | ||||
|           write-host "downloading SDK" | ||||
|           Invoke-WebRequest -Uri "https://go.microsoft.com/fwlink/p/?LinkId=323507" -OutFile "${env:RUNNER_TEMP}\sdksetup.exe" | ||||
|           Start-Process "${env:RUNNER_TEMP}\sdksetup.exe" -ArgumentList @("/q") -NoNewWindow -Wait | ||||
|           write-host "Win SDK 8.1 installed" | ||||
|           gci -path 'C:\Program Files (x86)\Windows Kits\' -r -fi 'signtool.exe' | ||||
|       - name: install signing plugin | ||||
|         run: | | ||||
|           $ErrorActionPreference = "Stop" | ||||
|           Set-ExecutionPolicy Bypass -Scope Process -Force | ||||
|           [System.Net.ServicePointManager]::SecurityProtocol = [System.Net.ServicePointManager]::SecurityProtocol -bor 3072 | ||||
|           iex ((New-Object System.Net.WebClient).DownloadString('https://community.chocolatey.org/install.ps1')) | ||||
|           echo "C:\ProgramData\chocolatey\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append | ||||
|  | ||||
|           choco install -y --no-progress git gzip | ||||
|           echo "C:\Program Files\Git\cmd" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append | ||||
|  | ||||
|           Invoke-WebRequest -Uri "https://github.com/mstorsjo/llvm-mingw/releases/download/20240619/llvm-mingw-20240619-ucrt-aarch64.zip" -OutFile "${{ runner.temp }}\llvm-mingw-ucrt-aarch64.zip" | ||||
|           Expand-Archive -Path ${{ runner.temp }}\llvm-mingw-ucrt-aarch64.zip -DestinationPath "C:\Program Files\" | ||||
|           $installPath=(Resolve-Path -Path "C:\Program Files\llvm-mingw-*-ucrt-aarch64").path | ||||
|           echo $installPath\bin | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append | ||||
|       - uses: actions/checkout@v4 | ||||
|           write-host "downloading plugin" | ||||
|           Invoke-WebRequest -Uri "https://github.com/GoogleCloudPlatform/kms-integrations/releases/download/cng-v1.0/kmscng-1.0-windows-amd64.zip" -OutFile "${env:RUNNER_TEMP}\plugin.zip" | ||||
|           Expand-Archive -Path "${env:RUNNER_TEMP}\plugin.zip" -DestinationPath ${env:RUNNER_TEMP}\plugin\ | ||||
|           write-host "Installing plugin" | ||||
|           & "${env:RUNNER_TEMP}\plugin\*\kmscng.msi" /quiet | ||||
|           write-host "plugin installed" | ||||
|       - uses: actions/setup-go@v5 | ||||
|         with: | ||||
|           go-version-file: go.mod | ||||
|           cache: true | ||||
|       - run: go get ./... | ||||
|       - run: | | ||||
|           go build -o dist/${{ matrix.os }}-${{ matrix.arch }}/ . | ||||
|       - if: matrix.arch == 'arm64' | ||||
|         run: | | ||||
|           Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vc_redist.arm64.exe" -OutFile "dist\windows-arm64\vc_redist.arm64.exe" | ||||
|       - run: | | ||||
|           $env:VERSION='${{ github.ref_name }}' -Replace "v(.*)", '$1' | ||||
|           & .\scripts\build_windows.ps1 buildApp | ||||
|         env: | ||||
|           VCToolsRedistDir: stub | ||||
|           $gopath=(get-command go).source | split-path -parent | ||||
|           & "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1" | ||||
|           cd $env:GITHUB_WORKSPACE | ||||
|           $env:CMAKE_SYSTEM_VERSION="10.0.22621.0" | ||||
|           $env:PATH="$gopath;$env:PATH" | ||||
|           go generate -x ./... | ||||
|         name: go generate | ||||
|       - uses: actions/upload-artifact@v4 | ||||
|         with: | ||||
|           name: build-${{ matrix.os }}-${{ matrix.arch }} | ||||
|           name: generate-windows-cpu | ||||
|           path: | | ||||
|             dist\${{ matrix.os }}-${{ matrix.arch }}\*.exe | ||||
|             dist\${{ matrix.os }}-${{ matrix.arch }}-app.exe | ||||
|             llm/build/**/bin/* | ||||
|             llm/build/**/*.a | ||||
|             dist/windows-amd64/** | ||||
|  | ||||
|   windows-sign: | ||||
|     runs-on: windows-2022 | ||||
|   # ROCm generation step | ||||
|   generate-windows-rocm: | ||||
|     environment: release | ||||
|     needs: [windows-depends, windows-build] | ||||
|     runs-on: windows | ||||
|     env: | ||||
|       KEY_CONTAINER: ${{ vars.KEY_CONTAINER }} | ||||
|     steps: | ||||
|       - uses: actions/checkout@v4 | ||||
|       - uses: google-github-actions/auth@v2 | ||||
|       - name: Set Version | ||||
|         shell: bash | ||||
|         run: echo "VERSION=${GITHUB_REF_NAME#v}" >> $GITHUB_ENV | ||||
|       - uses: 'google-github-actions/auth@v2' | ||||
|         with: | ||||
|           project_id: ollama | ||||
|           credentials_json: ${{ secrets.GOOGLE_SIGNING_CREDENTIALS }} | ||||
|       - run: | | ||||
|           project_id: 'ollama' | ||||
|           credentials_json: '${{ secrets.GOOGLE_SIGNING_CREDENTIALS }}' | ||||
|       - run: echo "${{ vars.OLLAMA_CERT }}" > ollama_inc.crt | ||||
|       - name: install Windows SDK 8.1 to get signtool | ||||
|         run: | | ||||
|           $ErrorActionPreference = "Stop" | ||||
|           Invoke-WebRequest -Uri "https://go.microsoft.com/fwlink/p/?LinkId=323507" -OutFile "${{ runner.temp }}\sdksetup.exe" | ||||
|           Start-Process "${{ runner.temp }}\sdksetup.exe" -ArgumentList @("/q") -NoNewWindow -Wait | ||||
|  | ||||
|           Invoke-WebRequest -Uri "https://github.com/GoogleCloudPlatform/kms-integrations/releases/download/cng-v1.0/kmscng-1.0-windows-amd64.zip" -OutFile "${{ runner.temp }}\plugin.zip" | ||||
|           Expand-Archive -Path "${{ runner.temp }}\plugin.zip" -DestinationPath "${{ runner.temp }}\plugin\" | ||||
|           & "${{ runner.temp }}\plugin\*\kmscng.msi" /quiet | ||||
|  | ||||
|           echo "${{ vars.OLLAMA_CERT }}" >ollama_inc.crt | ||||
|       - uses: actions/download-artifact@v4 | ||||
|           write-host "downloading SDK" | ||||
|           Invoke-WebRequest -Uri "https://go.microsoft.com/fwlink/p/?LinkId=323507" -OutFile "${env:RUNNER_TEMP}\sdksetup.exe" | ||||
|           Start-Process "${env:RUNNER_TEMP}\sdksetup.exe" -ArgumentList @("/q") -NoNewWindow -Wait | ||||
|           write-host "Win SDK 8.1 installed" | ||||
|           gci -path 'C:\Program Files (x86)\Windows Kits\' -r -fi 'signtool.exe' | ||||
|       - name: install signing plugin | ||||
|         run: | | ||||
|           $ErrorActionPreference = "Stop" | ||||
|           write-host "downloading plugin" | ||||
|           Invoke-WebRequest -Uri "https://github.com/GoogleCloudPlatform/kms-integrations/releases/download/cng-v1.0/kmscng-1.0-windows-amd64.zip" -OutFile "${env:RUNNER_TEMP}\plugin.zip" | ||||
|           Expand-Archive -Path "${env:RUNNER_TEMP}\plugin.zip" -DestinationPath ${env:RUNNER_TEMP}\plugin\ | ||||
|           write-host "Installing plugin" | ||||
|           & "${env:RUNNER_TEMP}\plugin\*\kmscng.msi" /quiet | ||||
|           write-host "plugin installed" | ||||
|       - uses: actions/setup-go@v5 | ||||
|         with: | ||||
|           pattern: build-windows-* | ||||
|           path: dist\ | ||||
|           merge-multiple: true | ||||
|       - uses: actions/download-artifact@v4 | ||||
|         with: | ||||
|           pattern: depends-windows-amd64-* | ||||
|           path: dist\windows-amd64\ | ||||
|           merge-multiple: true | ||||
|           go-version-file: go.mod | ||||
|           cache: true | ||||
|       - name: 'Install ROCm' | ||||
|         run: | | ||||
|           $ErrorActionPreference = "Stop" | ||||
|           write-host "downloading AMD HIP Installer" | ||||
|           Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-23.Q4-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe" | ||||
|           write-host "Installing AMD HIP" | ||||
|           Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait | ||||
|           write-host "Completed AMD HIP" | ||||
|       - name: 'Verify ROCm' | ||||
|         run: | | ||||
|           & 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' --version | ||||
|       - run: go get ./... | ||||
|       - run: | | ||||
|           & .\scripts\build_windows.ps1 gatherDependencies sign buildInstaller distZip | ||||
|         env: | ||||
|           KEY_CONTAINER: ${{ vars.KEY_CONTAINER }} | ||||
|           $gopath=(get-command go).source | split-path -parent | ||||
|           & "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1" | ||||
|           cd $env:GITHUB_WORKSPACE | ||||
|           $env:CMAKE_SYSTEM_VERSION="10.0.22621.0" | ||||
|           $env:PATH="$gopath;$env:PATH" | ||||
|           $env:OLLAMA_SKIP_CPU_GENERATE="1" | ||||
|           $env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path) | ||||
|           go generate -x ./... | ||||
|         name: go generate | ||||
|       - name: 'gather rocm dependencies' | ||||
|         run: | | ||||
|           $HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path) | ||||
|           md "dist\deps\bin\rocblas\library" | ||||
|           cp "${HIP_PATH}\bin\hipblas.dll" "dist\deps\bin\" | ||||
|           cp "${HIP_PATH}\bin\rocblas.dll" "dist\deps\bin\" | ||||
|           cp "${HIP_PATH}\bin\rocblas\library\*" "dist\deps\bin\rocblas\library\" | ||||
|       - uses: actions/upload-artifact@v4 | ||||
|         with: | ||||
|           name: generate-windows-rocm | ||||
|           path: | | ||||
|             llm/build/**/bin/* | ||||
|             dist/windows-amd64/** | ||||
|       - uses: actions/upload-artifact@v4 | ||||
|         with: | ||||
|           name: windows-rocm-deps | ||||
|           path: dist/deps/* | ||||
|  | ||||
|   # CUDA generation step | ||||
|   generate-windows-cuda: | ||||
|     environment: release | ||||
|     runs-on: windows | ||||
|     env: | ||||
|       KEY_CONTAINER: ${{ vars.KEY_CONTAINER }} | ||||
|     steps: | ||||
|       - uses: actions/checkout@v4 | ||||
|       - name: Set Version | ||||
|         shell: bash | ||||
|         run: echo "VERSION=${GITHUB_REF_NAME#v}" >> $GITHUB_ENV | ||||
|       - uses: 'google-github-actions/auth@v2' | ||||
|         with: | ||||
|           project_id: 'ollama' | ||||
|           credentials_json: '${{ secrets.GOOGLE_SIGNING_CREDENTIALS }}' | ||||
|       - run: echo "${{ vars.OLLAMA_CERT }}" > ollama_inc.crt | ||||
|       - name: install Windows SDK 8.1 to get signtool | ||||
|         run: | | ||||
|           $ErrorActionPreference = "Stop" | ||||
|           write-host "downloading SDK" | ||||
|           Invoke-WebRequest -Uri "https://go.microsoft.com/fwlink/p/?LinkId=323507" -OutFile "${env:RUNNER_TEMP}\sdksetup.exe" | ||||
|           Start-Process "${env:RUNNER_TEMP}\sdksetup.exe" -ArgumentList @("/q") -NoNewWindow -Wait | ||||
|           write-host "Win SDK 8.1 installed" | ||||
|           gci -path 'C:\Program Files (x86)\Windows Kits\' -r -fi 'signtool.exe' | ||||
|       - name: install signing plugin | ||||
|         run: | | ||||
|           $ErrorActionPreference = "Stop" | ||||
|           write-host "downloading plugin" | ||||
|           Invoke-WebRequest -Uri "https://github.com/GoogleCloudPlatform/kms-integrations/releases/download/cng-v1.0/kmscng-1.0-windows-amd64.zip" -OutFile "${env:RUNNER_TEMP}\plugin.zip" | ||||
|           Expand-Archive -Path "${env:RUNNER_TEMP}\plugin.zip" -DestinationPath ${env:RUNNER_TEMP}\plugin\ | ||||
|           write-host "Installing plugin" | ||||
|           & "${env:RUNNER_TEMP}\plugin\*\kmscng.msi" /quiet | ||||
|           write-host "plugin installed" | ||||
|       - uses: actions/setup-go@v5 | ||||
|         with: | ||||
|           go-version-file: go.mod | ||||
|           cache: true | ||||
|       - name: 'Install CUDA' | ||||
|         run: | | ||||
|           $ErrorActionPreference = "Stop" | ||||
|           write-host "downloading CUDA Installer" | ||||
|           Invoke-WebRequest -Uri "https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe" -OutFile "${env:RUNNER_TEMP}\cuda-install.exe" | ||||
|           write-host "Installing CUDA" | ||||
|           Start-Process "${env:RUNNER_TEMP}\cuda-install.exe" -ArgumentList '-s' -NoNewWindow -Wait | ||||
|           write-host "Completed CUDA" | ||||
|           $cudaPath=((resolve-path "c:\Program Files\NVIDIA*\CUDA\v*\bin\nvcc.exe")[0].path | split-path | split-path) | ||||
|           $cudaVer=($cudaPath | split-path -leaf ) -replace 'v(\d+).(\d+)', '$1_$2'  | ||||
|           echo "$cudaPath\bin" >> $env:GITHUB_PATH | ||||
|           echo "CUDA_PATH=$cudaPath" >> $env:GITHUB_ENV | ||||
|           echo "CUDA_PATH_V${cudaVer}=$cudaPath" >> $env:GITHUB_ENV | ||||
|           echo "CUDA_PATH_VX_Y=CUDA_PATH_V${cudaVer}" >> $env:GITHUB_ENV | ||||
|       - name: 'Verify CUDA' | ||||
|         run: nvcc -V | ||||
|       - run: go get ./... | ||||
|       - name: go generate | ||||
|         run: | | ||||
|           $gopath=(get-command go).source | split-path -parent | ||||
|           $cudabin=(get-command nvcc).source | split-path | ||||
|           & "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1" | ||||
|           cd $env:GITHUB_WORKSPACE | ||||
|           $env:CMAKE_SYSTEM_VERSION="10.0.22621.0" | ||||
|           $env:PATH="$gopath;$cudabin;$env:PATH" | ||||
|           $env:OLLAMA_SKIP_CPU_GENERATE="1" | ||||
|           go generate -x ./... | ||||
|       - name: 'gather cuda dependencies' | ||||
|         run: | | ||||
|           $NVIDIA_DIR=(resolve-path 'C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\*\bin\')[0] | ||||
|           md "dist\deps" | ||||
|           cp "${NVIDIA_DIR}\cudart64_*.dll" "dist\deps\" | ||||
|           cp "${NVIDIA_DIR}\cublas64_*.dll" "dist\deps\" | ||||
|           cp "${NVIDIA_DIR}\cublasLt64_*.dll" "dist\deps\" | ||||
|       - uses: actions/upload-artifact@v4 | ||||
|         with: | ||||
|           name: generate-windows-cuda | ||||
|           path: | | ||||
|             llm/build/**/bin/* | ||||
|             dist/windows-amd64/** | ||||
|       - uses: actions/upload-artifact@v4 | ||||
|         with: | ||||
|           name: windows-cuda-deps | ||||
|           path: dist/deps/* | ||||
|  | ||||
|   # Import the prior generation steps and build the final windows assets | ||||
|   build-windows: | ||||
|     environment: release | ||||
|     runs-on: windows | ||||
|     needs: | ||||
|       - generate-windows-cuda | ||||
|       - generate-windows-rocm | ||||
|       - generate-windows-cpu | ||||
|     env: | ||||
|       KEY_CONTAINER: ${{ vars.KEY_CONTAINER }} | ||||
|     steps: | ||||
|       - uses: actions/checkout@v4 | ||||
|         with: | ||||
|           submodules: recursive | ||||
|       - name: Set Version | ||||
|         shell: bash | ||||
|         run: echo "VERSION=${GITHUB_REF_NAME#v}" >> $GITHUB_ENV | ||||
|       - uses: 'google-github-actions/auth@v2' | ||||
|         with: | ||||
|           project_id: 'ollama' | ||||
|           credentials_json: '${{ secrets.GOOGLE_SIGNING_CREDENTIALS }}' | ||||
|       - run: echo "${{ vars.OLLAMA_CERT }}" > ollama_inc.crt | ||||
|       - name: install Windows SDK 8.1 to get signtool | ||||
|         run: | | ||||
|           $ErrorActionPreference = "Stop" | ||||
|           write-host "downloading SDK" | ||||
|           Invoke-WebRequest -Uri "https://go.microsoft.com/fwlink/p/?LinkId=323507" -OutFile "${env:RUNNER_TEMP}\sdksetup.exe" | ||||
|           Start-Process "${env:RUNNER_TEMP}\sdksetup.exe" -ArgumentList @("/q") -NoNewWindow -Wait | ||||
|           write-host "Win SDK 8.1 installed" | ||||
|           gci -path 'C:\Program Files (x86)\Windows Kits\' -r -fi 'signtool.exe' | ||||
|       - name: install signing plugin | ||||
|         run: | | ||||
|           $ErrorActionPreference = "Stop" | ||||
|           write-host "downloading plugin" | ||||
|           Invoke-WebRequest -Uri "https://github.com/GoogleCloudPlatform/kms-integrations/releases/download/cng-v1.0/kmscng-1.0-windows-amd64.zip" -OutFile "${env:RUNNER_TEMP}\plugin.zip" | ||||
|           Expand-Archive -Path "${env:RUNNER_TEMP}\plugin.zip" -DestinationPath ${env:RUNNER_TEMP}\plugin\ | ||||
|           write-host "Installing plugin" | ||||
|           & "${env:RUNNER_TEMP}\plugin\*\kmscng.msi" /quiet | ||||
|           write-host "plugin installed" | ||||
|       - uses: actions/setup-go@v5 | ||||
|         with: | ||||
|           go-version-file: go.mod | ||||
|           cache: true | ||||
|       - run: go get | ||||
|       - uses: actions/download-artifact@v4 | ||||
|         with: | ||||
|           name: generate-windows-cpu | ||||
|       - uses: actions/download-artifact@v4 | ||||
|         with: | ||||
|           name: generate-windows-cuda | ||||
|       - uses: actions/download-artifact@v4 | ||||
|         with: | ||||
|           name: windows-cuda-deps | ||||
|       - uses: actions/download-artifact@v4 | ||||
|         with: | ||||
|           name: windows-rocm-deps | ||||
|       - uses: actions/download-artifact@v4 | ||||
|         with: | ||||
|           name: generate-windows-rocm | ||||
|       - run: dir llm/build | ||||
|       - run: | | ||||
|           $gopath=(get-command go).source | split-path -parent | ||||
|           & "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1" | ||||
|           cd $env:GITHUB_WORKSPACE | ||||
|           $env:CMAKE_SYSTEM_VERSION="10.0.22621.0" | ||||
|           $env:PATH="$gopath;$env:PATH" | ||||
|           $env:OLLAMA_SKIP_GENERATE="1" | ||||
|           & .\scripts\build_windows.ps1 | ||||
|       - uses: actions/upload-artifact@v4 | ||||
|         with: | ||||
|           name: dist-windows | ||||
|           path: | | ||||
|             dist\OllamaSetup.exe | ||||
|             dist\ollama-windows-*.zip | ||||
|             dist/OllamaSetup.exe | ||||
|             dist/ollama-windows-*.zip | ||||
|  | ||||
|   linux-build: | ||||
|     strategy: | ||||
|       matrix: | ||||
|         include: | ||||
|           - os: linux | ||||
|             arch: amd64 | ||||
|             target: archive | ||||
|           - os: linux | ||||
|             arch: amd64 | ||||
|             target: rocm | ||||
|           - os: linux | ||||
|             arch: arm64 | ||||
|             target: archive | ||||
|     runs-on: ${{ matrix.arch == 'arm64' && format('{0}-{1}', matrix.os, matrix.arch) || matrix.os }} | ||||
|   # Linux x86 assets built using the container based build | ||||
|   build-linux-amd64: | ||||
|     environment: release | ||||
|     needs: setup-environment | ||||
|     env: | ||||
|       GOFLAGS: ${{ needs.setup-environment.outputs.GOFLAGS }} | ||||
|     steps: | ||||
|       - uses: actions/checkout@v4 | ||||
|       - uses: docker/setup-buildx-action@v3 | ||||
|       - uses: docker/build-push-action@v6 | ||||
|         with: | ||||
|           context: . | ||||
|           platforms: ${{ matrix.os }}/${{ matrix.arch }} | ||||
|           target: ${{ matrix.target }} | ||||
|           build-args: | | ||||
|             GOFLAGS=${{ env.GOFLAGS }} | ||||
|             CGO_CFLAGS=${{ env.CGO_CFLAGS }} | ||||
|             CGO_CXXFLAGS=${{ env.CGO_CXXFLAGS }} | ||||
|           outputs: type=local,dest=dist/${{ matrix.os }}-${{ matrix.arch }} | ||||
|           cache-from: type=registry,ref=ollama/ollama:latest | ||||
|           cache-to: type=inline | ||||
|       - run: | | ||||
|           for COMPONENT in bin/* lib/ollama/*; do | ||||
|             case "$COMPONENT" in | ||||
|               bin/ollama)               echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;; | ||||
|               lib/ollama/*.so)          echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;; | ||||
|               lib/ollama/cuda_v11)      echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;; | ||||
|               lib/ollama/cuda_v12)      echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;; | ||||
|               lib/ollama/cuda_jetpack5) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack5.tar.in ;; | ||||
|               lib/ollama/cuda_jetpack6) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack6.tar.in ;; | ||||
|               lib/ollama/rocm)          echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-rocm.tar.in ;; | ||||
|             esac | ||||
|           done | ||||
|         working-directory: dist/${{ matrix.os }}-${{ matrix.arch }} | ||||
|       - run: | | ||||
|           for ARCHIVE in dist/${{ matrix.os }}-${{ matrix.arch }}/*.tar.in; do | ||||
|             tar c -C dist/${{ matrix.os }}-${{ matrix.arch }} -T $ARCHIVE --owner 0 --group 0 | pigz -9vc >$(basename ${ARCHIVE//.*/}.tgz); | ||||
|           done | ||||
|       - uses: actions/upload-artifact@v4 | ||||
|         with: | ||||
|           name: dist-${{ matrix.os }}-${{ matrix.arch }}-${{ matrix.target }} | ||||
|           path: | | ||||
|             *.tgz | ||||
|  | ||||
|   # Build each Docker variant (OS, arch, and flavor) separately. Using QEMU is unreliable and slower. | ||||
|   docker-build-push: | ||||
|     strategy: | ||||
|       matrix: | ||||
|         include: | ||||
|           - os: linux | ||||
|             arch: arm64 | ||||
|             build-args: | | ||||
|               CGO_CFLAGS | ||||
|               CGO_CXXFLAGS | ||||
|               GOFLAGS | ||||
|           - os: linux | ||||
|             arch: amd64 | ||||
|             build-args: | | ||||
|               CGO_CFLAGS | ||||
|               CGO_CXXFLAGS | ||||
|               GOFLAGS | ||||
|           - os: linux | ||||
|             arch: amd64 | ||||
|             suffix: '-rocm' | ||||
|             build-args: | | ||||
|               CGO_CFLAGS | ||||
|               CGO_CXXFLAGS | ||||
|               GOFLAGS | ||||
|               FLAVOR=rocm | ||||
|     runs-on: ${{ matrix.arch == 'arm64' && format('{0}-{1}', matrix.os, matrix.arch) || matrix.os }} | ||||
|     environment: release | ||||
|     needs: setup-environment | ||||
|     env: | ||||
|       GOFLAGS: ${{ needs.setup-environment.outputs.GOFLAGS }} | ||||
|     steps: | ||||
|       - uses: actions/checkout@v4 | ||||
|       - uses: docker/setup-buildx-action@v3 | ||||
|       - uses: docker/login-action@v3 | ||||
|         with: | ||||
|           username: ${{ vars.DOCKER_USER }} | ||||
|           password: ${{ secrets.DOCKER_ACCESS_TOKEN }} | ||||
|       - id: build-push | ||||
|         uses: docker/build-push-action@v6 | ||||
|         with: | ||||
|           context: . | ||||
|           platforms: ${{ matrix.os }}/${{ matrix.arch }} | ||||
|           build-args: ${{ matrix.build-args }} | ||||
|           outputs: type=image,name=ollama/ollama,push-by-digest=true,name-canonical=true,push=true | ||||
|           cache-from: type=registry,ref=ollama/ollama:latest | ||||
|           cache-to: type=inline | ||||
|       - run: | | ||||
|           mkdir -p ${{ matrix.os }}-${{ matrix.arch }} | ||||
|           echo "${{ steps.build-push.outputs.digest }}" >${{ matrix.os }}-${{ matrix.arch }}-${{ matrix.suffix }}.txt | ||||
|         working-directory: ${{ runner.temp }} | ||||
|       - uses: actions/upload-artifact@v4 | ||||
|         with: | ||||
|           name: digest-${{ matrix.os }}-${{ matrix.arch }}-${{ matrix.suffix }} | ||||
|           path: | | ||||
|             ${{ runner.temp }}/${{ matrix.os }}-${{ matrix.arch }}-${{ matrix.suffix }}.txt | ||||
|  | ||||
|   # Merge Docker images for the same flavor into a single multi-arch manifest | ||||
|   docker-merge-push: | ||||
|     strategy: | ||||
|       matrix: | ||||
|         suffix: ['', '-rocm'] | ||||
|     runs-on: linux | ||||
|     environment: release | ||||
|     needs: [docker-build-push] | ||||
|     env: | ||||
|       OLLAMA_SKIP_MANIFEST_CREATE: '1' | ||||
|       BUILD_ARCH: amd64 | ||||
|       PUSH: '1' | ||||
|     steps: | ||||
|       - uses: docker/login-action@v3 | ||||
|       - uses: actions/checkout@v4 | ||||
|         with: | ||||
|           submodules: recursive | ||||
|       - name: Set Version | ||||
|         shell: bash | ||||
|         run: echo "VERSION=${GITHUB_REF_NAME#v}" >> $GITHUB_ENV | ||||
|       - name: Login to Docker Hub | ||||
|         uses: docker/login-action@v3 | ||||
|         with: | ||||
|           username: ${{ vars.DOCKER_USER }} | ||||
|           password: ${{ secrets.DOCKER_ACCESS_TOKEN }} | ||||
|       - id: metadata | ||||
|         uses: docker/metadata-action@v4 | ||||
|         with: | ||||
|           flavor: | | ||||
|             latest=false | ||||
|             suffix=${{ matrix.suffix }} | ||||
|           images: | | ||||
|             ollama/ollama | ||||
|           tags: | | ||||
|             type=ref,enable=true,priority=600,prefix=pr-,event=pr | ||||
|             type=semver,pattern={{version}} | ||||
|       - uses: actions/download-artifact@v4 | ||||
|         with: | ||||
|           pattern: digest-* | ||||
|           path: ${{ runner.temp }} | ||||
|           merge-multiple: true | ||||
|       - run: | | ||||
|           docker buildx imagetools create $(echo '${{ steps.metadata.outputs.json }}' | jq -cr '.tags | map("-t", .) | join(" ")') $(cat *-${{ matrix.suffix }}.txt | xargs printf 'ollama/ollama@%s ') | ||||
|           docker buildx imagetools inspect ollama/ollama:${{ steps.metadata.outputs.version }} | ||||
|         working-directory: ${{ runner.temp }} | ||||
|           ./scripts/build_linux.sh | ||||
|           ./scripts/build_docker.sh | ||||
|           mv dist/deps/* dist/ | ||||
|       - uses: actions/upload-artifact@v4 | ||||
|         with: | ||||
|           name: dist-linux-amd64 | ||||
|           path: | | ||||
|             dist/*linux* | ||||
|             !dist/*-cov | ||||
|  | ||||
|   # Linux ARM assets built using the container based build | ||||
|   # (at present, docker isn't pre-installed on arm ubunutu images) | ||||
|   build-linux-arm64: | ||||
|     environment: release | ||||
|     runs-on: linux-arm64 | ||||
|     env: | ||||
|       OLLAMA_SKIP_MANIFEST_CREATE: '1' | ||||
|       BUILD_ARCH: arm64 | ||||
|       PUSH: '1' | ||||
|     steps: | ||||
|       - uses: actions/checkout@v4 | ||||
|         with: | ||||
|           submodules: recursive | ||||
|       - name: Set Version | ||||
|         shell: bash | ||||
|         run: echo "VERSION=${GITHUB_REF_NAME#v}" >> $GITHUB_ENV | ||||
|       - name: 'Install Docker' | ||||
|         run: | | ||||
|           # Add Docker's official GPG key: | ||||
|           env | ||||
|           uname -a | ||||
|           sudo apt-get update | ||||
|           sudo apt-get install -y ca-certificates curl | ||||
|           sudo install -m 0755 -d /etc/apt/keyrings | ||||
|           sudo curl -fsSL https://download.docker.com/linux/ubuntu/gpg -o /etc/apt/keyrings/docker.asc | ||||
|           sudo chmod a+r /etc/apt/keyrings/docker.asc | ||||
|  | ||||
|           # Add the repository to Apt sources: | ||||
|           echo \ | ||||
|             "deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.asc] https://download.docker.com/linux/ubuntu \ | ||||
|             $(. /etc/os-release && echo "$VERSION_CODENAME") stable" | \ | ||||
|             sudo tee /etc/apt/sources.list.d/docker.list > /dev/null | ||||
|           sudo apt-get update | ||||
|           sudo apt-get install -y docker-ce docker-ce-cli containerd.io | ||||
|           sudo usermod -aG docker $USER | ||||
|           sudo apt-get install acl | ||||
|           sudo setfacl --modify user:$USER:rw /var/run/docker.sock | ||||
|       - name: Login to Docker Hub | ||||
|         uses: docker/login-action@v3 | ||||
|         with: | ||||
|           username: ${{ vars.DOCKER_USER }} | ||||
|           password: ${{ secrets.DOCKER_ACCESS_TOKEN }} | ||||
|       - run: | | ||||
|           ./scripts/build_linux.sh | ||||
|           ./scripts/build_docker.sh | ||||
|       - uses: actions/upload-artifact@v4 | ||||
|         with: | ||||
|           name: dist-linux-arm64 | ||||
|           path: | | ||||
|             dist/*linux* | ||||
|             !dist/*-cov | ||||
|  | ||||
|   # Aggregate all the assets and ship a release | ||||
|   release: | ||||
|     needs: [darwin-sign, windows-sign, linux-build] | ||||
|     needs: | ||||
|       - build-darwin | ||||
|       - build-windows | ||||
|       - build-linux-amd64 | ||||
|       - build-linux-arm64 | ||||
|     runs-on: linux | ||||
|     environment: release | ||||
|     permissions: | ||||
|       contents: write | ||||
|     env: | ||||
|       GH_TOKEN: ${{ github.token }} | ||||
|       OLLAMA_SKIP_IMAGE_BUILD: '1' | ||||
|       PUSH: '1' | ||||
|     steps: | ||||
|       - uses: actions/checkout@v4 | ||||
|       - uses: actions/download-artifact@v4 | ||||
|         with: | ||||
|           name: dist-darwin | ||||
|           path: dist | ||||
|       - uses: actions/download-artifact@v4 | ||||
|         with: | ||||
|           name: dist-windows | ||||
|           path: dist | ||||
|       - uses: actions/download-artifact@v4 | ||||
|         with: | ||||
|           pattern: dist-linux-* | ||||
|           path: dist | ||||
|           merge-multiple: true | ||||
|       - run: find . -type f -not -name 'sha256sum.txt' | xargs sha256sum | tee sha256sum.txt | ||||
|         working-directory: dist | ||||
|       - name: Create or update Release | ||||
|       - name: Set Version | ||||
|         shell: bash | ||||
|         run: | | ||||
|           RELEASE_VERSION="$(echo ${GITHUB_REF_NAME} | cut -f1 -d-)" | ||||
|  | ||||
|           echo "Looking for existing release for ${RELEASE_VERSION}" | ||||
|           OLD_TAG=$(gh release ls --json name,tagName | jq -r ".[] | select(.name == \"${RELEASE_VERSION}\") | .tagName") | ||||
|           if [ -n "$OLD_TAG" ]; then | ||||
|             echo "Updating release ${RELEASE_VERSION} to point to new tag ${GITHUB_REF_NAME}" | ||||
|             gh release edit ${OLD_TAG} --tag ${GITHUB_REF_NAME} | ||||
|           else | ||||
|             echo "Creating new release ${RELEASE_VERSION} pointing to tag ${GITHUB_REF_NAME}" | ||||
|             gh release create ${GITHUB_REF_NAME} \ | ||||
|               --title ${RELEASE_VERSION} \ | ||||
|               --draft \ | ||||
|               --generate-notes \ | ||||
|               --prerelease | ||||
|           fi | ||||
|           echo "Uploading artifacts for tag ${GITHUB_REF_NAME}" | ||||
|           gh release upload ${GITHUB_REF_NAME} dist/* --clobber | ||||
|           echo "VERSION=${GITHUB_REF_NAME#v}" >> $GITHUB_ENV | ||||
|           echo "RELEASE_VERSION=$(echo ${GITHUB_REF_NAME} | cut -f1 -d-)" >> $GITHUB_ENV | ||||
|       - name: Login to Docker Hub | ||||
|         uses: docker/login-action@v3 | ||||
|         with: | ||||
|           username: ${{ vars.DOCKER_USER }} | ||||
|           password: ${{ secrets.DOCKER_ACCESS_TOKEN }} | ||||
|       - run: ./scripts/build_docker.sh | ||||
|       - name: Retrieve built artifact | ||||
|         uses: actions/download-artifact@v4 | ||||
|         with: | ||||
|           path: dist | ||||
|           pattern: dist-* | ||||
|           merge-multiple: true | ||||
|       - run: | | ||||
|           ls -lh dist/ | ||||
|           (cd dist; sha256sum * > sha256sum.txt) | ||||
|           cat dist/sha256sum.txt | ||||
|       - uses: ncipollo/release-action@v1 | ||||
|         with: | ||||
|           name: ${{ env.RELEASE_VERSION }} | ||||
|           allowUpdates: true | ||||
|           artifacts: 'dist/*' | ||||
|           draft: true | ||||
|           prerelease: true | ||||
|           omitBodyDuringUpdate: true | ||||
|           generateReleaseNotes: true | ||||
|           omitDraftDuringUpdate: true | ||||
|           omitPrereleaseDuringUpdate: true | ||||
|           replacesArtifacts: true | ||||
|   | ||||
							
								
								
									
										432
									
								
								.github/workflows/test.yaml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										432
									
								
								.github/workflows/test.yaml
									
									
									
									
										vendored
									
									
								
							| @@ -21,7 +21,9 @@ jobs: | ||||
|   changes: | ||||
|     runs-on: ubuntu-latest | ||||
|     outputs: | ||||
|       changed: ${{ steps.changes.outputs.changed }} | ||||
|       GENERATE: ${{ steps.changes.outputs.GENERATE }} | ||||
|       GENERATE_CUDA: ${{ steps.changes.outputs.GENERATE_CUDA }} | ||||
|       GENERATE_ROCM: ${{ steps.changes.outputs.GENERATE_ROCM }} | ||||
|     steps: | ||||
|       - uses: actions/checkout@v4 | ||||
|         with: | ||||
| @@ -29,213 +31,289 @@ jobs: | ||||
|       - id: changes | ||||
|         run: | | ||||
|           changed() { | ||||
|             local BASE=${{ github.event.pull_request.base.sha }} | ||||
|             local HEAD=${{ github.event.pull_request.head.sha }} | ||||
|             local MERGE_BASE=$(git merge-base $BASE $HEAD) | ||||
|             git diff-tree -r --no-commit-id --name-only "$MERGE_BASE" "$HEAD" \ | ||||
|               | xargs python3 -c "import sys; from pathlib import Path; print(any(Path(x).match(glob) for x in sys.argv[1:] for glob in '$*'.split(' ')))" | ||||
|             git diff-tree -r --no-commit-id --name-only \ | ||||
|               $(git merge-base ${{ github.event.pull_request.base.sha }} ${{ github.event.pull_request.head.sha }}) \ | ||||
|               ${{ github.event.pull_request.head.sha }} \ | ||||
|               | xargs python3 -c "import sys; print(any([x.startswith('$1') for x in sys.argv[1:]]))" | ||||
|           } | ||||
|  | ||||
|           echo changed=$(changed 'llama/llama.cpp/**' 'ml/backend/ggml/ggml/**') | tee -a $GITHUB_OUTPUT | ||||
|           { | ||||
|             echo GENERATE=$(changed llm/) | ||||
|             echo GENERATE_CUDA=$(changed llm/) | ||||
|             echo GENERATE_ROCM=$(changed llm/) | ||||
|           } >>$GITHUB_OUTPUT | ||||
|  | ||||
|   linux: | ||||
|   generate: | ||||
|     needs: [changes] | ||||
|     if: needs.changes.outputs.changed == 'True' | ||||
|     if: ${{ needs.changes.outputs.GENERATE == 'True' }} | ||||
|     strategy: | ||||
|       matrix: | ||||
|         include: | ||||
|           - preset: CPU | ||||
|           - preset: CUDA | ||||
|             container: nvidia/cuda:11.8.0-devel-ubuntu22.04 | ||||
|             flags: '-DCMAKE_CUDA_ARCHITECTURES=87' | ||||
|           - preset: ROCm | ||||
|             container: rocm/dev-ubuntu-22.04:6.1.2 | ||||
|             extra-packages: rocm-libs | ||||
|             flags: '-DAMDGPU_TARGETS=gfx1010 -DCMAKE_PREFIX_PATH=/opt/rocm' | ||||
|     runs-on: linux | ||||
|     container: ${{ matrix.container }} | ||||
|         os: [ubuntu-latest, macos-latest, windows-2019] | ||||
|         arch: [amd64, arm64] | ||||
|         exclude: | ||||
|           - os: ubuntu-latest | ||||
|             arch: arm64 | ||||
|           - os: windows-2019 | ||||
|             arch: arm64 | ||||
|     runs-on: ${{ matrix.os }} | ||||
|     env: | ||||
|       GOARCH: ${{ matrix.arch }} | ||||
|     steps: | ||||
|       - uses: actions/checkout@v4 | ||||
|       - uses: actions/setup-go@v5 | ||||
|         with: | ||||
|           go-version-file: go.mod | ||||
|           cache: true | ||||
|       - run: go get ./... | ||||
|       - run: | | ||||
|           [ -n "${{ matrix.container }}" ] || sudo=sudo | ||||
|           $sudo apt-get update | ||||
|           $sudo apt-get install -y cmake ccache ${{ matrix.extra-packages }} | ||||
|           $gopath=(get-command go).source | split-path -parent | ||||
|           $gccpath=(get-command gcc).source | split-path -parent | ||||
|           & "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1" | ||||
|           cd $env:GITHUB_WORKSPACE | ||||
|           $env:CMAKE_SYSTEM_VERSION="10.0.22621.0" | ||||
|           $env:PATH="$gopath;$gccpath;$env:PATH" | ||||
|           echo $env:PATH | ||||
|           go generate -x ./... | ||||
|         if: ${{ startsWith(matrix.os, 'windows-') }} | ||||
|         name: 'Windows Go Generate' | ||||
|       - run: go generate -x ./... | ||||
|         if: ${{ ! startsWith(matrix.os, 'windows-') }} | ||||
|         name: 'Unix Go Generate' | ||||
|       - uses: actions/upload-artifact@v4 | ||||
|         with: | ||||
|           name: ${{ matrix.os }}-${{ matrix.arch }}-libraries | ||||
|           path: | | ||||
|             llm/build/**/bin/* | ||||
|             llm/build/**/*.a | ||||
|   generate-cuda: | ||||
|     needs: [changes] | ||||
|     if: ${{ needs.changes.outputs.GENERATE_CUDA == 'True' }} | ||||
|     strategy: | ||||
|       matrix: | ||||
|         cuda-version: | ||||
|           - '11.8.0' | ||||
|     runs-on: linux | ||||
|     container: nvidia/cuda:${{ matrix.cuda-version }}-devel-ubuntu20.04 | ||||
|     steps: | ||||
|       - run: | | ||||
|           apt-get update && apt-get install -y git build-essential curl | ||||
|           curl -fsSL https://github.com/Kitware/CMake/releases/download/v3.28.1/cmake-3.28.1-linux-x86_64.tar.gz \ | ||||
|             | tar -zx -C /usr --strip-components 1 | ||||
|         env: | ||||
|           DEBIAN_FRONTEND: noninteractive | ||||
|       - uses: actions/cache@v4 | ||||
|       - uses: actions/checkout@v4 | ||||
|       - uses: actions/setup-go@v4 | ||||
|         with: | ||||
|           path: /github/home/.cache/ccache | ||||
|           key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }} | ||||
|           go-version-file: go.mod | ||||
|           cache: true | ||||
|       - run: go get ./... | ||||
|       - run: | | ||||
|           cmake --preset ${{ matrix.preset }} ${{ matrix.flags }} | ||||
|           cmake --build --preset ${{ matrix.preset }} --parallel | ||||
|  | ||||
|   windows: | ||||
|           git config --global --add safe.directory /__w/ollama/ollama | ||||
|           go generate -x ./... | ||||
|         env: | ||||
|           OLLAMA_SKIP_CPU_GENERATE: '1' | ||||
|       - uses: actions/upload-artifact@v4 | ||||
|         with: | ||||
|           name: cuda-${{ matrix.cuda-version }}-libraries | ||||
|           path: | | ||||
|             llm/build/**/bin/* | ||||
|             dist/windows-amd64/** | ||||
|   generate-rocm: | ||||
|     needs: [changes] | ||||
|     if: needs.changes.outputs.changed == 'True' | ||||
|     if: ${{ needs.changes.outputs.GENERATE_ROCM == 'True' }} | ||||
|     strategy: | ||||
|       matrix: | ||||
|         include: | ||||
|           - preset: CPU | ||||
|           - preset: CUDA | ||||
|             install: https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe | ||||
|             flags: '-DCMAKE_CUDA_ARCHITECTURES=80' | ||||
|           - preset: ROCm | ||||
|             install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q4-WinSvr2022-For-HIP.exe | ||||
|             flags: '-DAMDGPU_TARGETS=gfx1010' | ||||
|         rocm-version: | ||||
|           - '6.0.2' | ||||
|     runs-on: linux | ||||
|     container: rocm/dev-ubuntu-20.04:${{ matrix.rocm-version }} | ||||
|     steps: | ||||
|       - run: | | ||||
|           apt-get update && apt-get install -y git build-essential curl rocm-libs | ||||
|           curl -fsSL https://github.com/Kitware/CMake/releases/download/v3.28.1/cmake-3.28.1-linux-x86_64.tar.gz \ | ||||
|             | tar -zx -C /usr --strip-components 1 | ||||
|         env: | ||||
|           DEBIAN_FRONTEND: noninteractive | ||||
|       - uses: actions/checkout@v4 | ||||
|       - uses: actions/setup-go@v4 | ||||
|         with: | ||||
|           go-version-file: go.mod | ||||
|           cache: true | ||||
|       - run: go get ./... | ||||
|       - run: | | ||||
|           git config --global --add safe.directory /__w/ollama/ollama | ||||
|           go generate -x ./... | ||||
|         env: | ||||
|           OLLAMA_SKIP_CPU_GENERATE: '1' | ||||
|       - uses: actions/upload-artifact@v4 | ||||
|         with: | ||||
|           name: rocm-${{ matrix.rocm-version }}-libraries | ||||
|           path: | | ||||
|             llm/build/**/bin/* | ||||
|             dist/windows-amd64/** | ||||
|  | ||||
|   # ROCm generation step | ||||
|   generate-windows-rocm: | ||||
|     needs: [changes] | ||||
|     if: ${{ needs.changes.outputs.GENERATE_ROCM == 'True' }} | ||||
|     runs-on: windows | ||||
|     steps: | ||||
|       - run: | | ||||
|           choco install -y --no-progress ccache ninja | ||||
|           ccache -o cache_dir=${{ github.workspace }}\.ccache | ||||
|       - if: matrix.preset == 'CUDA' || matrix.preset == 'ROCm' | ||||
|         id: cache-install | ||||
|         uses: actions/cache/restore@v4 | ||||
|         with: | ||||
|           path: | | ||||
|             C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA | ||||
|             C:\Program Files\AMD\ROCm | ||||
|           key: ${{ matrix.install }} | ||||
|       - if: matrix.preset == 'CUDA' | ||||
|         name: Install CUDA ${{ matrix.cuda-version }} | ||||
|         run: | | ||||
|           $ErrorActionPreference = "Stop" | ||||
|           if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') { | ||||
|             Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe" | ||||
|             Start-Process -FilePath .\install.exe -ArgumentList (@("-s", "cudart_11.3", "nvcc_11.3", "cublas_11.3", "cublas_dev_11.3")) -NoNewWindow -Wait | ||||
|           } | ||||
|  | ||||
|           $cudaPath = (Resolve-Path "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\*").path | ||||
|           echo "$cudaPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append | ||||
|       - if: matrix.preset == 'ROCm' | ||||
|         name: Install ROCm ${{ matrix.rocm-version }} | ||||
|         run: | | ||||
|           $ErrorActionPreference = "Stop" | ||||
|           if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') { | ||||
|             Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe" | ||||
|             Start-Process -FilePath .\install.exe -ArgumentList '-install' -NoNewWindow -Wait | ||||
|           } | ||||
|  | ||||
|           $hipPath = (Resolve-Path "C:\Program Files\AMD\ROCm\*").path | ||||
|           echo "$hipPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append | ||||
|           echo "CC=$hipPath\bin\clang.exe" | Out-File -FilePath $env:GITHUB_ENV -Append | ||||
|           echo "CXX=$hipPath\bin\clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append | ||||
|       - if: ${{ !cancelled() && steps.cache-install.outputs.cache-hit != 'true' }} | ||||
|         uses: actions/cache/save@v4 | ||||
|         with: | ||||
|           path: | | ||||
|             C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA | ||||
|             C:\Program Files\AMD\ROCm | ||||
|           key: ${{ matrix.install }} | ||||
|       - uses: actions/checkout@v4 | ||||
|       - uses: actions/cache@v4 | ||||
|       - uses: actions/setup-go@v5 | ||||
|         with: | ||||
|           path: ${{ github.workspace }}\.ccache | ||||
|           key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }} | ||||
|           go-version-file: go.mod | ||||
|           cache: true | ||||
|       - name: 'Install ROCm' | ||||
|         run: | | ||||
|           $ErrorActionPreference = "Stop" | ||||
|           write-host "downloading AMD HIP Installer" | ||||
|           Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-23.Q4-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe" | ||||
|           write-host "Installing AMD HIP" | ||||
|           Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait | ||||
|           write-host "Completed AMD HIP" | ||||
|       - name: 'Verify ROCm' | ||||
|         run: | | ||||
|           & 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' --version | ||||
|       - run: go get ./... | ||||
|       - run: | | ||||
|           Import-Module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll' | ||||
|           Enter-VsDevShell -VsInstallPath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -SkipAutomaticLocation  -DevCmdArguments '-arch=x64 -no_logo' | ||||
|           cmake --preset "${{ matrix.preset }}" ${{ matrix.flags }} | ||||
|           cmake --build --parallel --preset "${{ matrix.preset }}" | ||||
|           $gopath=(get-command go).source | split-path -parent | ||||
|           & "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1" | ||||
|           cd $env:GITHUB_WORKSPACE | ||||
|           $env:CMAKE_SYSTEM_VERSION="10.0.22621.0" | ||||
|           $env:PATH="$gopath;$env:PATH" | ||||
|           $env:OLLAMA_SKIP_CPU_GENERATE="1" | ||||
|           $env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path) | ||||
|           go generate -x ./... | ||||
|         name: go generate | ||||
|         env: | ||||
|           CMAKE_GENERATOR: Ninja | ||||
|           OLLAMA_SKIP_CPU_GENERATE: '1' | ||||
|       # TODO - do we need any artifacts? | ||||
|  | ||||
|   go_mod_tidy: | ||||
|     runs-on: ubuntu-latest | ||||
|   # CUDA generation step | ||||
|   generate-windows-cuda: | ||||
|     needs: [changes] | ||||
|     if: ${{ needs.changes.outputs.GENERATE_CUDA == 'True' }} | ||||
|     runs-on: windows | ||||
|     steps: | ||||
|       - uses: actions/checkout@v4 | ||||
|       - name: check that 'go mod tidy' is clean | ||||
|         run: go mod tidy --diff || (echo "Please run 'go mod tidy'." && exit 1) | ||||
|       - uses: actions/setup-go@v5 | ||||
|         with: | ||||
|           go-version-file: go.mod | ||||
|           cache: true | ||||
|       - name: 'Install CUDA' | ||||
|         run: | | ||||
|           $ErrorActionPreference = "Stop" | ||||
|           write-host "downloading CUDA Installer" | ||||
|           Invoke-WebRequest -Uri "https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe" -OutFile "${env:RUNNER_TEMP}\cuda-install.exe" | ||||
|           write-host "Installing CUDA" | ||||
|           Start-Process "${env:RUNNER_TEMP}\cuda-install.exe" -ArgumentList '-s' -NoNewWindow -Wait | ||||
|           write-host "Completed CUDA" | ||||
|           $cudaPath=((resolve-path "c:\Program Files\NVIDIA*\CUDA\v*\bin\nvcc.exe")[0].path | split-path | split-path) | ||||
|           $cudaVer=($cudaPath | split-path -leaf ) -replace 'v(\d+).(\d+)', '$1_$2'  | ||||
|           echo "$cudaPath\bin" >> $env:GITHUB_PATH | ||||
|           echo "CUDA_PATH=$cudaPath" >> $env:GITHUB_ENV | ||||
|           echo "CUDA_PATH_V${cudaVer}=$cudaPath" >> $env:GITHUB_ENV | ||||
|           echo "CUDA_PATH_VX_Y=CUDA_PATH_V${cudaVer}" >> $env:GITHUB_ENV | ||||
|       - name: 'Verify CUDA' | ||||
|         run: nvcc -V | ||||
|       - run: go get ./... | ||||
|       - name: go generate | ||||
|         run: | | ||||
|           $gopath=(get-command go).source | split-path -parent | ||||
|           $cudabin=(get-command nvcc).source | split-path | ||||
|           & "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1" | ||||
|           cd $env:GITHUB_WORKSPACE | ||||
|           $env:CMAKE_SYSTEM_VERSION="10.0.22621.0" | ||||
|           $env:PATH="$gopath;$cudabin;$env:PATH" | ||||
|           $env:OLLAMA_SKIP_CPU_GENERATE="1" | ||||
|           go generate -x ./... | ||||
|         env: | ||||
|           OLLAMA_SKIP_CPU_GENERATE: '1' | ||||
|       # TODO - do we need any artifacts? | ||||
|  | ||||
|   lint: | ||||
|     strategy: | ||||
|       matrix: | ||||
|         os: [ubuntu-latest, macos-latest, windows-2019] | ||||
|         arch: [amd64, arm64] | ||||
|         exclude: | ||||
|           - os: ubuntu-latest | ||||
|             arch: arm64 | ||||
|           - os: windows-2019 | ||||
|             arch: arm64 | ||||
|           - os: macos-latest | ||||
|             arch: amd64 | ||||
|     runs-on: ${{ matrix.os }} | ||||
|     env: | ||||
|       GOARCH: ${{ matrix.arch }} | ||||
|       CGO_ENABLED: '1' | ||||
|     steps: | ||||
|       - uses: actions/checkout@v4 | ||||
|         with: | ||||
|           submodules: recursive | ||||
|       - uses: actions/setup-go@v5 | ||||
|         with: | ||||
|           go-version-file: go.mod | ||||
|           cache: false | ||||
|       - run: | | ||||
|           case ${{ matrix.arch }} in | ||||
|             amd64) echo ARCH=x86_64 ;; | ||||
|             arm64) echo ARCH=arm64 ;; | ||||
|           esac >>$GITHUB_ENV | ||||
|         shell: bash | ||||
|       - run: | | ||||
|           mkdir -p llm/build/linux/$ARCH/stub/bin | ||||
|           touch llm/build/linux/$ARCH/stub/bin/ollama_llama_server | ||||
|         if: ${{ startsWith(matrix.os, 'ubuntu-') }} | ||||
|       - run: | | ||||
|           mkdir -p llm/build/darwin/$ARCH/stub/bin | ||||
|           touch llm/build/darwin/$ARCH/stub/bin/ollama_llama_server | ||||
|         if: ${{ startsWith(matrix.os, 'macos-') }} | ||||
|       - uses: golangci/golangci-lint-action@v4 | ||||
|         with: | ||||
|           args: --timeout 8m0s -v | ||||
|   test: | ||||
|     strategy: | ||||
|       matrix: | ||||
|         os: [ubuntu-latest, macos-latest, windows-latest] | ||||
|         os: [ubuntu-latest, macos-latest, windows-2019] | ||||
|         arch: [amd64] | ||||
|         exclude: | ||||
|           - os: ubuntu-latest | ||||
|             arch: arm64 | ||||
|           - os: windows-2019 | ||||
|             arch: arm64 | ||||
|     runs-on: ${{ matrix.os }} | ||||
|     env: | ||||
|       GOARCH: ${{ matrix.arch }} | ||||
|       CGO_ENABLED: '1' | ||||
|       GOEXPERIMENT: 'synctest' | ||||
|     steps: | ||||
|       - name: checkout | ||||
|         uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # 4.2.2 | ||||
|  | ||||
|       - name: cache restore | ||||
|         uses: actions/cache/restore@1bd1e32a3bdc45362d1e726936510720a7c30a57 # v4.2.0 | ||||
|         with: | ||||
|           # Note: unlike the other setups, this is only grabbing the mod download | ||||
|           # cache, rather than the whole mod directory, as the download cache | ||||
|           # contains zips that can be unpacked in parallel faster than they can be | ||||
|           # fetched and extracted by tar | ||||
|           path: | | ||||
|             ~/.cache/go-build | ||||
|             ~/go/pkg/mod/cache | ||||
|             ~\AppData\Local\go-build | ||||
|           # NOTE: The -3- here should be incremented when the scheme of data to be | ||||
|           # cached changes (e.g. path above changes). | ||||
|           key: ${{ github.job }}-${{ runner.os }}-${{ matrix.goarch }}-${{ matrix.buildflags }}-go-3-${{ hashFiles('**/go.sum') }}-${{ github.run_id }} | ||||
|           restore-keys: | | ||||
|             ${{ github.job }}-${{ runner.os }}-${{ matrix.goarch }}-${{ matrix.buildflags }}-go-3-${{ hashFiles('**/go.sum') }} | ||||
|             ${{ github.job }}-${{ runner.os }}-${{ matrix.goarch }}-${{ matrix.buildflags }}-go-3- | ||||
|  | ||||
|       - name: Setup Go | ||||
|         uses: actions/setup-go@v5 | ||||
|         with: | ||||
|           # The caching strategy of setup-go is less than ideal, and wastes | ||||
|           # time by not saving artifacts due to small failures like the linter | ||||
|           # complaining, etc. This means subsequent have to rebuild their world | ||||
|           # again until all checks pass. For instance, if you mispell a word, | ||||
|           # you're punished until you fix it. This is more hostile than | ||||
|           # helpful. | ||||
|           cache: false | ||||
|  | ||||
|           go-version-file: go.mod | ||||
|  | ||||
|       # It is tempting to run this in a platform independent way, but the past | ||||
|       # shows this codebase will see introductions of platform specific code | ||||
|       # generation, and so we need to check this per platform to ensure we | ||||
|       # don't abuse go generate on specific platforms. | ||||
|       - name: check that 'go generate' is clean | ||||
|         if: always() | ||||
|         run: | | ||||
|           go generate ./... | ||||
|           git diff --name-only --exit-code || (echo "Please run 'go generate ./...'." && exit 1) | ||||
|  | ||||
|       - name: go test | ||||
|         if: always() | ||||
|         run: go test -count=1 -benchtime=1x ./... | ||||
|  | ||||
|       # TODO(bmizerany): replace this heavy tool with just the | ||||
|       # tools/checks/binaries we want and then make them all run in parallel | ||||
|       # across jobs, not on a single tiny vm on Github Actions. | ||||
|       - uses: golangci/golangci-lint-action@v6 | ||||
|         with: | ||||
|           args: --timeout 10m0s -v | ||||
|  | ||||
|       - name: cache save | ||||
|         # Always save the cache, even if the job fails. The artifacts produced | ||||
|         # during the building of test binaries are not all for naught. They can | ||||
|         # be used to speed up subsequent runs. | ||||
|         if: always() | ||||
|  | ||||
|         uses: actions/cache/save@1bd1e32a3bdc45362d1e726936510720a7c30a57 # v4.2.0 | ||||
|         with: | ||||
|           # Note: unlike the other setups, this is only grabbing the mod download | ||||
|           # cache, rather than the whole mod directory, as the download cache | ||||
|           # contains zips that can be unpacked in parallel faster than they can be | ||||
|           # fetched and extracted by tar | ||||
|           path: | | ||||
|             ~/.cache/go-build | ||||
|             ~/go/pkg/mod/cache | ||||
|             ~\AppData\Local\go-build | ||||
|           # NOTE: The -3- here should be incremented when the scheme of data to be | ||||
|           # cached changes (e.g. path above changes). | ||||
|           key: ${{ github.job }}-${{ runner.os }}-${{ matrix.goarch }}-${{ matrix.buildflags }}-go-3-${{ hashFiles('**/go.sum') }}-${{ github.run_id }} | ||||
|  | ||||
|   patches: | ||||
|     runs-on: ubuntu-latest | ||||
|       OLLAMA_CPU_TARGET: 'static' | ||||
|     steps: | ||||
|       - uses: actions/checkout@v4 | ||||
|       - name: Verify patches apply cleanly and do not change files | ||||
|         run: | | ||||
|           make -f Makefile.sync clean checkout apply-patches sync | ||||
|           git diff --compact-summary --exit-code | ||||
|         with: | ||||
|           submodules: recursive | ||||
|       - uses: actions/setup-go@v5 | ||||
|         with: | ||||
|           go-version-file: go.mod | ||||
|           cache: true | ||||
|       - run: | | ||||
|           case ${{ matrix.arch }} in | ||||
|             amd64) echo ARCH=x86_64 ;; | ||||
|             arm64) echo ARCH=arm64 ;; | ||||
|           esac >>$GITHUB_ENV | ||||
|         shell: bash | ||||
|       - run: | | ||||
|           mkdir -p llm/build/linux/$ARCH/stub/bin | ||||
|           touch llm/build/linux/$ARCH/stub/bin/ollama_llama_server | ||||
|         if: ${{ startsWith(matrix.os, 'ubuntu-') }} | ||||
|       - run: | | ||||
|           mkdir -p llm/build/darwin/$ARCH/stub/bin | ||||
|           touch llm/build/darwin/$ARCH/stub/bin/ollama_llama_server | ||||
|         if: ${{ startsWith(matrix.os, 'macos-') }} | ||||
|         shell: bash | ||||
|       - run: go generate ./... | ||||
|       - run: go build | ||||
|       - run: go test -v ./... | ||||
|       - uses: actions/upload-artifact@v4 | ||||
|         with: | ||||
|           name: ${{ matrix.os }}-binaries | ||||
|           path: ollama | ||||
|   | ||||
							
								
								
									
										9
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										9
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							| @@ -4,13 +4,12 @@ | ||||
| .venv | ||||
| .swp | ||||
| dist | ||||
| build | ||||
| ollama | ||||
| ggml-metal.metal | ||||
| .cache | ||||
| *.exe | ||||
| .idea | ||||
| test_data | ||||
| *.crt | ||||
| __debug_bin* | ||||
| llama/build | ||||
| llama/vendor | ||||
| /ollama | ||||
| llm/build | ||||
| __debug_bin* | ||||
							
								
								
									
										4
									
								
								.gitmodules
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										4
									
								
								.gitmodules
									
									
									
									
										vendored
									
									
										Normal file
									
								
							| @@ -0,0 +1,4 @@ | ||||
| [submodule "llama.cpp"] | ||||
| 	path = llm/llama.cpp | ||||
| 	url = https://github.com/ggerganov/llama.cpp.git | ||||
| 	shallow = true | ||||
| @@ -6,36 +6,12 @@ linters: | ||||
|     - bidichk | ||||
|     - bodyclose | ||||
|     - containedctx | ||||
|     - contextcheck | ||||
|     - exportloopref | ||||
|     - gocheckcompilerdirectives | ||||
|     - gofmt | ||||
|     - gofumpt | ||||
|     - gosimple | ||||
|     - govet | ||||
|     - ineffassign | ||||
|     - intrange | ||||
|     - makezero | ||||
|     # FIXME: for some reason this errors on windows | ||||
|     # - gofmt | ||||
|     # - goimports | ||||
|     - misspell | ||||
|     - nilerr | ||||
|     - nolintlint | ||||
|     - nosprintfhostport | ||||
|     - staticcheck | ||||
|     - tenv | ||||
|     - unconvert | ||||
|     - wastedassign | ||||
|     - whitespace | ||||
|   disable: | ||||
|     - usestdlibvars | ||||
|     - errcheck | ||||
| linters-settings: | ||||
|   staticcheck: | ||||
|     checks: | ||||
|       - all | ||||
|       - -SA1019 # omit Deprecated check | ||||
| severity: | ||||
|   default-severity: error | ||||
|   rules: | ||||
|     - linters: | ||||
|         - gofmt | ||||
|         - goimports | ||||
|         - intrange | ||||
|       severity: info | ||||
|     - unused | ||||
|   | ||||
							
								
								
									
										10
									
								
								.prettierrc.json
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										10
									
								
								.prettierrc.json
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,10 @@ | ||||
| { | ||||
|   "trailingComma": "es5", | ||||
|   "tabWidth": 2, | ||||
|   "useTabs": false, | ||||
|   "semi": false, | ||||
|   "singleQuote": true, | ||||
|   "jsxSingleQuote": true, | ||||
|   "printWidth": 120, | ||||
|   "arrowParens": "avoid" | ||||
| } | ||||
							
								
								
									
										133
									
								
								CMakeLists.txt
									
									
									
									
									
								
							
							
						
						
									
										133
									
								
								CMakeLists.txt
									
									
									
									
									
								
							| @@ -1,133 +0,0 @@ | ||||
| cmake_minimum_required(VERSION 3.21) | ||||
|  | ||||
| project(Ollama C CXX) | ||||
|  | ||||
| include(CheckLanguage) | ||||
|  | ||||
| find_package(Threads REQUIRED) | ||||
|  | ||||
| set(CMAKE_BUILD_TYPE Release) | ||||
| set(BUILD_SHARED_LIBS ON) | ||||
|  | ||||
| set(CMAKE_CXX_STANDARD 17) | ||||
| set(CMAKE_CXX_STANDARD_REQUIRED ON) | ||||
| set(CMAKE_CXX_EXTENSIONS OFF) | ||||
|  | ||||
| set(GGML_BUILD ON) | ||||
| set(GGML_SHARED ON) | ||||
| set(GGML_CCACHE ON) | ||||
| set(GGML_BACKEND_DL ON) | ||||
| set(GGML_BACKEND_SHARED ON) | ||||
| set(GGML_SCHED_MAX_COPIES 4) | ||||
|  | ||||
| set(GGML_LLAMAFILE ON) | ||||
| set(GGML_CUDA_PEER_MAX_BATCH_SIZE 128) | ||||
| set(GGML_CUDA_GRAPHS ON) | ||||
| set(GGML_CUDA_FA ON) | ||||
| set(GGML_CUDA_COMPRESSION_MODE default) | ||||
|  | ||||
| if((CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_OSX_ARCHITECTURES MATCHES "arm64") | ||||
|     OR (NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_SYSTEM_PROCESSOR MATCHES "arm|aarch64|ARM64|ARMv[0-9]+")) | ||||
|     set(GGML_CPU_ALL_VARIANTS ON) | ||||
| endif() | ||||
|  | ||||
| if (CMAKE_OSX_ARCHITECTURES MATCHES "x86_64") | ||||
|     set(CMAKE_BUILD_RPATH "@loader_path") | ||||
|     set(CMAKE_INSTALL_RPATH "@loader_path") | ||||
| endif() | ||||
|  | ||||
| set(OLLAMA_BUILD_DIR ${CMAKE_BINARY_DIR}/lib/ollama) | ||||
| set(OLLAMA_INSTALL_DIR ${CMAKE_INSTALL_PREFIX}/lib/ollama) | ||||
|  | ||||
| set(CMAKE_RUNTIME_OUTPUT_DIRECTORY         ${OLLAMA_BUILD_DIR}) | ||||
| set(CMAKE_RUNTIME_OUTPUT_DIRECTORY_DEBUG   ${OLLAMA_BUILD_DIR}) | ||||
| set(CMAKE_RUNTIME_OUTPUT_DIRECTORY_RELEASE ${OLLAMA_BUILD_DIR}) | ||||
| set(CMAKE_LIBRARY_OUTPUT_DIRECTORY         ${OLLAMA_BUILD_DIR}) | ||||
| set(CMAKE_LIBRARY_OUTPUT_DIRECTORY_DEBUG   ${OLLAMA_BUILD_DIR}) | ||||
| set(CMAKE_LIBRARY_OUTPUT_DIRECTORY_RELEASE ${OLLAMA_BUILD_DIR}) | ||||
|  | ||||
| include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src) | ||||
| include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/include) | ||||
| include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cpu) | ||||
| include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cpu/amx) | ||||
|  | ||||
| set(GGML_CPU ON) | ||||
| add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src) | ||||
| set_property(TARGET ggml PROPERTY EXCLUDE_FROM_ALL TRUE) | ||||
|  | ||||
| get_target_property(CPU_VARIANTS ggml-cpu MANUALLY_ADDED_DEPENDENCIES) | ||||
| if(NOT CPU_VARIANTS) | ||||
|     set(CPU_VARIANTS "ggml-cpu") | ||||
| endif() | ||||
|  | ||||
| install(TARGETS ggml-base ${CPU_VARIANTS} | ||||
|     RUNTIME_DEPENDENCIES | ||||
|         PRE_EXCLUDE_REGEXES ".*" | ||||
|     RUNTIME DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT CPU | ||||
|     LIBRARY DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT CPU | ||||
|     FRAMEWORK DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT CPU | ||||
| ) | ||||
|  | ||||
| check_language(CUDA) | ||||
| if(CMAKE_CUDA_COMPILER) | ||||
|     if(CMAKE_VERSION VERSION_GREATER_EQUAL "3.24" AND NOT CMAKE_CUDA_ARCHITECTURES) | ||||
|         set(CMAKE_CUDA_ARCHITECTURES "native") | ||||
|     endif() | ||||
|  | ||||
|     find_package(CUDAToolkit) | ||||
|     add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cuda) | ||||
|     set(OLLAMA_CUDA_INSTALL_DIR ${OLLAMA_INSTALL_DIR}/cuda_v${CUDAToolkit_VERSION_MAJOR}) | ||||
|     install(TARGETS ggml-cuda | ||||
|         RUNTIME_DEPENDENCIES | ||||
|             DIRECTORIES ${CUDAToolkit_BIN_DIR} ${CUDAToolkit_LIBRARY_DIR} | ||||
|             PRE_INCLUDE_REGEXES cublas cublasLt cudart | ||||
|             PRE_EXCLUDE_REGEXES ".*" | ||||
|         RUNTIME DESTINATION ${OLLAMA_CUDA_INSTALL_DIR} COMPONENT CUDA | ||||
|         LIBRARY DESTINATION ${OLLAMA_CUDA_INSTALL_DIR} COMPONENT CUDA | ||||
|     ) | ||||
| endif() | ||||
|  | ||||
| set(WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX "^gfx(906|908|90a|1200|1201):xnack[+-]$" | ||||
|     CACHE STRING | ||||
|     "Regular expression describing AMDGPU_TARGETS not supported on Windows. Override to force building these targets. Default \"^gfx(906|908|90a|1200|1201):xnack[+-]$\"." | ||||
| ) | ||||
|  | ||||
| check_language(HIP) | ||||
| if(CMAKE_HIP_COMPILER) | ||||
|     set(HIP_PLATFORM "amd") | ||||
|  | ||||
|     find_package(hip REQUIRED) | ||||
|     if(NOT AMDGPU_TARGETS) | ||||
|         list(FILTER AMDGPU_TARGETS INCLUDE REGEX "^gfx(900|94[012]|101[02]|1030|110[012]|120[01])$") | ||||
|     elseif(WIN32 AND WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX) | ||||
|         list(FILTER AMDGPU_TARGETS EXCLUDE REGEX ${WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX}) | ||||
|     endif() | ||||
|  | ||||
|     if(AMDGPU_TARGETS) | ||||
|         add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-hip) | ||||
|  | ||||
|         if (WIN32) | ||||
|             target_compile_definitions(ggml-hip PRIVATE GGML_CUDA_NO_PEER_COPY) | ||||
|         endif() | ||||
|  | ||||
|         target_compile_definitions(ggml-hip PRIVATE GGML_HIP_NO_VMM) | ||||
|  | ||||
|         set(OLLAMA_HIP_INSTALL_DIR ${OLLAMA_INSTALL_DIR}/rocm) | ||||
|         install(TARGETS ggml-hip | ||||
|             RUNTIME_DEPENDENCIES | ||||
|                 DIRECTORIES ${HIP_BIN_INSTALL_DIR} ${HIP_LIB_INSTALL_DIR} | ||||
|                 PRE_INCLUDE_REGEXES hipblas rocblas amdhip64 rocsolver amd_comgr hsa-runtime64 rocsparse tinfo rocprofiler-register drm drm_amdgpu numa elf | ||||
|                 PRE_EXCLUDE_REGEXES ".*" | ||||
|                 POST_EXCLUDE_REGEXES "system32" | ||||
|             RUNTIME DESTINATION ${OLLAMA_HIP_INSTALL_DIR} COMPONENT HIP | ||||
|             LIBRARY DESTINATION ${OLLAMA_HIP_INSTALL_DIR} COMPONENT HIP | ||||
|         ) | ||||
|  | ||||
|         foreach(HIP_LIB_BIN_INSTALL_DIR IN ITEMS ${HIP_BIN_INSTALL_DIR} ${HIP_LIB_INSTALL_DIR}) | ||||
|             if(EXISTS ${HIP_LIB_BIN_INSTALL_DIR}/rocblas) | ||||
|                 install(DIRECTORY ${HIP_LIB_BIN_INSTALL_DIR}/rocblas DESTINATION ${OLLAMA_HIP_INSTALL_DIR} COMPONENT HIP) | ||||
|                 break() | ||||
|             endif() | ||||
|         endforeach() | ||||
|     endif() | ||||
| endif() | ||||
| @@ -1,112 +0,0 @@ | ||||
| { | ||||
|   "version": 3, | ||||
|   "configurePresets": [ | ||||
|     { | ||||
|       "name": "Default", | ||||
|       "binaryDir": "${sourceDir}/build", | ||||
|       "installDir": "${sourceDir}/dist", | ||||
|       "cacheVariables": { | ||||
|         "CMAKE_BUILD_TYPE": "Release" | ||||
|       } | ||||
|     }, | ||||
|     { | ||||
|       "name": "CPU", | ||||
|       "inherits": [ "Default" ] | ||||
|     }, | ||||
|     { | ||||
|       "name": "CUDA", | ||||
|       "inherits": [ "Default" ] | ||||
|     }, | ||||
|     { | ||||
|       "name": "CUDA 11", | ||||
|       "inherits": [ "CUDA" ], | ||||
|       "cacheVariables": { | ||||
|         "CMAKE_CUDA_ARCHITECTURES": "50;52;53;60;61;70;75;80;86", | ||||
|         "CMAKE_CUDA_FLAGS": "-Wno-deprecated-gpu-targets" | ||||
|       } | ||||
|     }, | ||||
|     { | ||||
|       "name": "CUDA 12", | ||||
|       "inherits": [ "CUDA" ], | ||||
|       "cacheVariables": { | ||||
|         "CMAKE_CUDA_ARCHITECTURES": "50;60;61;70;75;80;86;87;89;90;90a;120", | ||||
|         "CMAKE_CUDA_FLAGS": "-Wno-deprecated-gpu-targets" | ||||
|       } | ||||
|     }, | ||||
|     { | ||||
|       "name": "JetPack 5", | ||||
|       "inherits": [ "CUDA" ], | ||||
|       "cacheVariables": { | ||||
|         "CMAKE_CUDA_ARCHITECTURES": "72;87" | ||||
|       } | ||||
|     }, | ||||
|     { | ||||
|       "name": "JetPack 6", | ||||
|       "inherits": [ "CUDA" ], | ||||
|       "cacheVariables": { | ||||
|         "CMAKE_CUDA_ARCHITECTURES": "87" | ||||
|       } | ||||
|     }, | ||||
|     { | ||||
|       "name": "ROCm", | ||||
|       "inherits": [ "Default" ], | ||||
|       "cacheVariables": { | ||||
|         "CMAKE_HIP_PLATFORM": "amd" | ||||
|       } | ||||
|     }, | ||||
|     { | ||||
|       "name": "ROCm 6", | ||||
|       "inherits": [ "ROCm" ], | ||||
|       "cacheVariables": { | ||||
|         "AMDGPU_TARGETS": "gfx900;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102;gfx1151;gfx1200;gfx1201;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-" | ||||
|       } | ||||
|     } | ||||
|   ], | ||||
|   "buildPresets": [ | ||||
|     { | ||||
|       "name": "Default", | ||||
|       "configurePreset": "Default", | ||||
|       "configuration": "Release" | ||||
|     }, | ||||
|     { | ||||
|       "name": "CPU", | ||||
|       "configurePreset": "Default", | ||||
|       "targets": [ "ggml-cpu" ] | ||||
|     }, | ||||
|     { | ||||
|       "name": "CUDA", | ||||
|       "configurePreset": "CUDA", | ||||
|       "targets": [ "ggml-cuda" ] | ||||
|     }, | ||||
|     { | ||||
|       "name": "CUDA 11", | ||||
|       "inherits": [ "CUDA" ], | ||||
|       "configurePreset": "CUDA 11" | ||||
|     }, | ||||
|     { | ||||
|       "name": "CUDA 12", | ||||
|       "inherits": [ "CUDA" ], | ||||
|       "configurePreset": "CUDA 12" | ||||
|     }, | ||||
|     { | ||||
|       "name": "JetPack 5", | ||||
|       "inherits": [ "CUDA" ], | ||||
|       "configurePreset": "JetPack 5" | ||||
|     }, | ||||
|     { | ||||
|       "name": "JetPack 6", | ||||
|       "inherits": [ "CUDA" ], | ||||
|       "configurePreset": "JetPack 6" | ||||
|     }, | ||||
|     { | ||||
|       "name": "ROCm", | ||||
|       "configurePreset": "ROCm", | ||||
|       "targets": [ "ggml-hip" ] | ||||
|     }, | ||||
|     { | ||||
|       "name": "ROCm 6", | ||||
|       "inherits": [ "ROCm" ], | ||||
|       "configurePreset": "ROCm 6" | ||||
|     } | ||||
|   ] | ||||
| } | ||||
| @@ -1,88 +0,0 @@ | ||||
| # Contributing to Ollama | ||||
|  | ||||
| Thank you for your interest in contributing to Ollama! Here are a few guidelines to help get you started. | ||||
|  | ||||
| ## Set up | ||||
|  | ||||
| See the [development documentation](./docs/development.md) for instructions on how to build and run Ollama locally. | ||||
|  | ||||
| ### Ideal issues | ||||
|  | ||||
| * [Bugs](https://github.com/ollama/ollama/issues?q=is%3Aissue+is%3Aopen+label%3Abug): issues where Ollama stops working or where it results in an unexpected error. | ||||
| * [Performance](https://github.com/ollama/ollama/issues?q=is%3Aissue+is%3Aopen+label%3Aperformance): issues to make Ollama faster at model inference, downloading or uploading. | ||||
| * [Security](https://github.com/ollama/ollama/blob/main/SECURITY.md): issues that could lead to a security vulnerability. As mentioned in [SECURITY.md](https://github.com/ollama/ollama/blob/main/SECURITY.md), please do not disclose security vulnerabilities publicly. | ||||
|  | ||||
| ### Issues that are harder to review | ||||
|  | ||||
| * New features: new features (e.g. API fields, environment variables) add surface area to Ollama and make it harder to maintain in the long run as they cannot be removed without potentially breaking users in the future. | ||||
| * Refactoring: large code improvements are important, but can be harder or take longer to review and merge. | ||||
| * Documentation: small updates to fill in or correct missing documentation is helpful, however large documentation additions can be hard to maintain over time. | ||||
|  | ||||
| ### Issues that may not be accepted | ||||
|  | ||||
| * Changes that break backwards compatibility in Ollama's API (including the OpenAI-compatible API) | ||||
| * Changes that add significant friction to the user experience | ||||
| * Changes that create a large future maintenance burden for maintainers and contributors | ||||
|  | ||||
| ## Proposing a (non-trivial) change | ||||
|  | ||||
| > By "non-trivial", we mean a change that is not a bug fix or small | ||||
| > documentation update. If you are unsure, please ask us on our [Discord | ||||
| > server](https://discord.gg/ollama). | ||||
|  | ||||
| Before opening a non-trivial Pull Request, please open an issue to discuss the change and | ||||
| get feedback from the maintainers. This helps us understand the context of the | ||||
| change and how it fits into Ollama's roadmap and prevents us from duplicating | ||||
| work or you from spending time on a change that we may not be able to accept. | ||||
|  | ||||
| Tips for proposals: | ||||
|  | ||||
| * Explain the problem you are trying to solve, not what you are trying to do. | ||||
| * Explain why the change is important. | ||||
| * Explain how the change will be used. | ||||
| * Explain how the change will be tested. | ||||
|  | ||||
| Additionally, for bonus points: Provide draft documentation you would expect to | ||||
| see if the change were accepted. | ||||
|  | ||||
| ## Pull requests | ||||
|  | ||||
| **Commit messages** | ||||
|  | ||||
| The title should look like: | ||||
|  | ||||
|     <package>: <short description> | ||||
|  | ||||
| The package is the most affected Go package. If the change does not affect Go | ||||
| code, then use the directory name instead. Changes to a single well-known | ||||
| file in the root directory may use the file name. | ||||
|  | ||||
| The short description should start with a lowercase letter and be a | ||||
| continuation of the sentence: | ||||
|  | ||||
|       "This changes Ollama to..." | ||||
|  | ||||
| Examples: | ||||
|  | ||||
|       llm/backend/mlx: support the llama architecture | ||||
|       CONTRIBUTING: provide clairity on good commit messages, and bad | ||||
|  | ||||
| Bad Examples: | ||||
|  | ||||
|       feat: add more emoji | ||||
|       fix: was not using famous web framework | ||||
|       chore: generify code | ||||
|  | ||||
| **Tests** | ||||
|  | ||||
| Please include tests. Strive to test behavior, not implementation. | ||||
|  | ||||
| **New dependencies** | ||||
|  | ||||
| Dependencies should be added sparingly. If you are adding a new dependency, | ||||
| please explain why it is necessary and what other ways you attempted that | ||||
| did not work without it. | ||||
|  | ||||
| ## Need help? | ||||
|  | ||||
| If you need help with anything, feel free to reach out to us on our [Discord server](https://discord.gg/ollama). | ||||
							
								
								
									
										227
									
								
								Dockerfile
									
									
									
									
									
								
							
							
						
						
									
										227
									
								
								Dockerfile
									
									
									
									
									
								
							| @@ -1,131 +1,144 @@ | ||||
| # vim: filetype=dockerfile | ||||
| ARG GOLANG_VERSION=1.22.1 | ||||
| ARG CMAKE_VERSION=3.22.1 | ||||
| # this CUDA_VERSION corresponds with the one specified in docs/gpu.md | ||||
| ARG CUDA_VERSION=11.3.1 | ||||
| ARG ROCM_VERSION=6.0.2 | ||||
|  | ||||
| ARG FLAVOR=${TARGETARCH} | ||||
| # Copy the minimal context we need to run the generate scripts | ||||
| FROM scratch AS llm-code | ||||
| COPY .git .git | ||||
| COPY .gitmodules .gitmodules | ||||
| COPY llm llm | ||||
|  | ||||
| ARG ROCMVERSION=6.3.3 | ||||
| ARG JETPACK5VERSION=r35.4.1 | ||||
| ARG JETPACK6VERSION=r36.4.0 | ||||
| ARG CMAKEVERSION=3.31.2 | ||||
| FROM --platform=linux/amd64 nvidia/cuda:$CUDA_VERSION-devel-centos7 AS cuda-build-amd64 | ||||
| ARG CMAKE_VERSION | ||||
| COPY ./scripts/rh_linux_deps.sh / | ||||
| RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh | ||||
| ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH | ||||
| COPY --from=llm-code / /go/src/github.com/ollama/ollama/ | ||||
| WORKDIR /go/src/github.com/ollama/ollama/llm/generate | ||||
| ARG CGO_CFLAGS | ||||
| RUN OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_SKIP_CPU_GENERATE=1 sh gen_linux.sh | ||||
|  | ||||
| # CUDA v11 requires gcc v10.  v10.3 has regressions, so the rockylinux 8.5 AppStream has the latest compatible version | ||||
| FROM --platform=linux/amd64 rocm/dev-almalinux-8:${ROCMVERSION}-complete AS base-amd64 | ||||
| RUN yum install -y yum-utils \ | ||||
|     && yum-config-manager --add-repo https://dl.rockylinux.org/vault/rocky/8.5/AppStream/\$basearch/os/ \ | ||||
|     && rpm --import https://dl.rockylinux.org/pub/rocky/RPM-GPG-KEY-Rocky-8 \ | ||||
|     && dnf install -y yum-utils ccache gcc-toolset-10-gcc-10.2.1-8.2.el8 gcc-toolset-10-gcc-c++-10.2.1-8.2.el8 gcc-toolset-10-binutils-2.35-11.el8 \ | ||||
|     && yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/x86_64/cuda-rhel8.repo | ||||
| ENV PATH=/opt/rh/gcc-toolset-10/root/usr/bin:$PATH | ||||
| FROM --platform=linux/arm64 nvidia/cuda:$CUDA_VERSION-devel-rockylinux8 AS cuda-build-arm64 | ||||
| ARG CMAKE_VERSION | ||||
| COPY ./scripts/rh_linux_deps.sh / | ||||
| RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh | ||||
| ENV PATH /opt/rh/gcc-toolset-10/root/usr/bin:$PATH | ||||
| COPY --from=llm-code / /go/src/github.com/ollama/ollama/ | ||||
| WORKDIR /go/src/github.com/ollama/ollama/llm/generate | ||||
| ARG CGO_CFLAGS | ||||
| RUN OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_SKIP_CPU_GENERATE=1 sh gen_linux.sh | ||||
|  | ||||
| FROM --platform=linux/arm64 almalinux:8 AS base-arm64 | ||||
| # install epel-release for ccache | ||||
| RUN yum install -y yum-utils epel-release \ | ||||
|     && dnf install -y clang ccache \ | ||||
|     && yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/sbsa/cuda-rhel8.repo | ||||
| ENV CC=clang CXX=clang++ | ||||
| FROM --platform=linux/amd64 rocm/dev-centos-7:${ROCM_VERSION}-complete AS rocm-build-amd64 | ||||
| ARG CMAKE_VERSION | ||||
| COPY ./scripts/rh_linux_deps.sh / | ||||
| RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh | ||||
| ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH | ||||
| ENV LIBRARY_PATH /opt/amdgpu/lib64 | ||||
| COPY --from=llm-code / /go/src/github.com/ollama/ollama/ | ||||
| WORKDIR /go/src/github.com/ollama/ollama/llm/generate | ||||
| ARG CGO_CFLAGS | ||||
| ARG AMDGPU_TARGETS | ||||
| RUN OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_SKIP_CPU_GENERATE=1 sh gen_linux.sh | ||||
| RUN mkdir /tmp/scratch && \ | ||||
|     for dep in $(zcat /go/src/github.com/ollama/ollama/llm/build/linux/x86_64/rocm*/bin/deps.txt.gz) ; do \ | ||||
|         cp ${dep} /tmp/scratch/ || exit 1 ; \ | ||||
|     done && \ | ||||
|     (cd /opt/rocm/lib && tar cf - rocblas/library) | (cd /tmp/scratch/ && tar xf - ) && \ | ||||
|     mkdir -p /go/src/github.com/ollama/ollama/dist/deps/ && \ | ||||
|     (cd /tmp/scratch/ && tar czvf /go/src/github.com/ollama/ollama/dist/deps/ollama-linux-amd64-rocm.tgz . ) | ||||
|  | ||||
| FROM base-${TARGETARCH} AS base | ||||
| ARG CMAKEVERSION | ||||
| RUN curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKEVERSION}/cmake-${CMAKEVERSION}-linux-$(uname -m).tar.gz | tar xz -C /usr/local --strip-components 1 | ||||
| COPY CMakeLists.txt CMakePresets.json . | ||||
| COPY ml/backend/ggml/ggml ml/backend/ggml/ggml | ||||
| ENV LDFLAGS=-s | ||||
|  | ||||
| FROM base AS cpu | ||||
| RUN dnf install -y gcc-toolset-11-gcc gcc-toolset-11-gcc-c++ | ||||
| ENV PATH=/opt/rh/gcc-toolset-11/root/usr/bin:$PATH | ||||
| RUN --mount=type=cache,target=/root/.ccache \ | ||||
|     cmake --preset 'CPU' \ | ||||
|         && cmake --build --parallel --preset 'CPU' \ | ||||
|         && cmake --install build --component CPU --strip --parallel 8 | ||||
| FROM --platform=linux/amd64 centos:7 AS cpu-builder-amd64 | ||||
| ARG CMAKE_VERSION | ||||
| ARG GOLANG_VERSION | ||||
| COPY ./scripts/rh_linux_deps.sh / | ||||
| RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh | ||||
| ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH | ||||
| COPY --from=llm-code / /go/src/github.com/ollama/ollama/ | ||||
| ARG OLLAMA_CUSTOM_CPU_DEFS | ||||
| ARG CGO_CFLAGS | ||||
| WORKDIR /go/src/github.com/ollama/ollama/llm/generate | ||||
|  | ||||
| FROM base AS cuda-11 | ||||
| ARG CUDA11VERSION=11.3 | ||||
| RUN dnf install -y cuda-toolkit-${CUDA11VERSION//./-} | ||||
| ENV PATH=/usr/local/cuda-11/bin:$PATH | ||||
| RUN --mount=type=cache,target=/root/.ccache \ | ||||
|     cmake --preset 'CUDA 11' \ | ||||
|         && cmake --build --parallel --preset 'CUDA 11' \ | ||||
|         && cmake --install build --component CUDA --strip --parallel 8 | ||||
| FROM --platform=linux/amd64 cpu-builder-amd64 AS static-build-amd64 | ||||
| RUN OLLAMA_CPU_TARGET="static" sh gen_linux.sh | ||||
| FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu-build-amd64 | ||||
| RUN OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu" sh gen_linux.sh | ||||
| FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu_avx-build-amd64 | ||||
| RUN OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu_avx" sh gen_linux.sh | ||||
| FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu_avx2-build-amd64 | ||||
| RUN OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu_avx2" sh gen_linux.sh | ||||
|  | ||||
| FROM base AS cuda-12 | ||||
| ARG CUDA12VERSION=12.8 | ||||
| RUN dnf install -y cuda-toolkit-${CUDA12VERSION//./-} | ||||
| ENV PATH=/usr/local/cuda-12/bin:$PATH | ||||
| RUN --mount=type=cache,target=/root/.ccache \ | ||||
|     cmake --preset 'CUDA 12' \ | ||||
|         && cmake --build --parallel --preset 'CUDA 12' \ | ||||
|         && cmake --install build --component CUDA --strip --parallel 8 | ||||
| FROM --platform=linux/arm64 centos:7 AS cpu-builder-arm64 | ||||
| ARG CMAKE_VERSION | ||||
| ARG GOLANG_VERSION | ||||
| COPY ./scripts/rh_linux_deps.sh / | ||||
| RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh | ||||
| ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH | ||||
| COPY --from=llm-code / /go/src/github.com/ollama/ollama/ | ||||
| ARG OLLAMA_CUSTOM_CPU_DEFS | ||||
| ARG CGO_CFLAGS | ||||
| WORKDIR /go/src/github.com/ollama/ollama/llm/generate | ||||
|  | ||||
| FROM base AS rocm-6 | ||||
| ENV PATH=/opt/rocm/hcc/bin:/opt/rocm/hip/bin:/opt/rocm/bin:/opt/rocm/hcc/bin:$PATH | ||||
| RUN --mount=type=cache,target=/root/.ccache \ | ||||
|     cmake --preset 'ROCm 6' \ | ||||
|         && cmake --build --parallel --preset 'ROCm 6' \ | ||||
|         && cmake --install build --component HIP --strip --parallel 8 | ||||
| FROM --platform=linux/arm64 cpu-builder-arm64 AS static-build-arm64 | ||||
| RUN OLLAMA_CPU_TARGET="static" sh gen_linux.sh | ||||
| FROM --platform=linux/arm64 cpu-builder-arm64 AS cpu-build-arm64 | ||||
| RUN OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu" sh gen_linux.sh | ||||
|  | ||||
| FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK5VERSION} AS jetpack-5 | ||||
| ARG CMAKEVERSION | ||||
| RUN apt-get update && apt-get install -y curl ccache \ | ||||
|     && curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKEVERSION}/cmake-${CMAKEVERSION}-linux-$(uname -m).tar.gz | tar xz -C /usr/local --strip-components 1 | ||||
| COPY CMakeLists.txt CMakePresets.json . | ||||
| COPY ml/backend/ggml/ggml ml/backend/ggml/ggml | ||||
| RUN --mount=type=cache,target=/root/.ccache \ | ||||
|     cmake --preset 'JetPack 5' \ | ||||
|         && cmake --build --parallel --preset 'JetPack 5' \ | ||||
|         && cmake --install build --component CUDA --strip --parallel 8 | ||||
|  | ||||
| FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK6VERSION} AS jetpack-6 | ||||
| ARG CMAKEVERSION | ||||
| RUN apt-get update && apt-get install -y curl ccache \ | ||||
|     && curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKEVERSION}/cmake-${CMAKEVERSION}-linux-$(uname -m).tar.gz | tar xz -C /usr/local --strip-components 1 | ||||
| COPY CMakeLists.txt CMakePresets.json . | ||||
| COPY ml/backend/ggml/ggml ml/backend/ggml/ggml | ||||
| RUN --mount=type=cache,target=/root/.ccache \ | ||||
|     cmake --preset 'JetPack 6' \ | ||||
|         && cmake --build --parallel --preset 'JetPack 6' \ | ||||
|         && cmake --install build --component CUDA --strip --parallel 8 | ||||
|  | ||||
| FROM base AS build | ||||
| # Intermediate stage used for ./scripts/build_linux.sh | ||||
| FROM --platform=linux/amd64 cpu-build-amd64 AS build-amd64 | ||||
| ENV CGO_ENABLED 1 | ||||
| WORKDIR /go/src/github.com/ollama/ollama | ||||
| COPY go.mod go.sum . | ||||
| RUN curl -fsSL https://golang.org/dl/go$(awk '/^go/ { print $2 }' go.mod).linux-$(case $(uname -m) in x86_64) echo amd64 ;; aarch64) echo arm64 ;; esac).tar.gz | tar xz -C /usr/local | ||||
| ENV PATH=/usr/local/go/bin:$PATH | ||||
| RUN go mod download | ||||
| COPY . . | ||||
| ARG GOFLAGS="'-ldflags=-w -s'" | ||||
| ENV CGO_ENABLED=1 | ||||
| RUN --mount=type=cache,target=/root/.cache/go-build \ | ||||
|     go build -trimpath -buildmode=pie -o /bin/ollama . | ||||
| COPY --from=static-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/ | ||||
| COPY --from=cpu_avx-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/ | ||||
| COPY --from=cpu_avx2-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/ | ||||
| COPY --from=cuda-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/ | ||||
| COPY --from=rocm-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/ | ||||
| COPY --from=rocm-build-amd64 /go/src/github.com/ollama/ollama/dist/deps/ ./dist/deps/ | ||||
| ARG GOFLAGS | ||||
| ARG CGO_CFLAGS | ||||
| RUN go build -trimpath . | ||||
|  | ||||
| FROM --platform=linux/amd64 scratch AS amd64 | ||||
| COPY --from=cuda-11 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_v11 | ||||
| COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12 | ||||
| # Intermediate stage used for ./scripts/build_linux.sh | ||||
| FROM --platform=linux/arm64 cpu-build-arm64 AS build-arm64 | ||||
| ENV CGO_ENABLED 1 | ||||
| ARG GOLANG_VERSION | ||||
| WORKDIR /go/src/github.com/ollama/ollama | ||||
| COPY . . | ||||
| COPY --from=static-build-arm64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/ | ||||
| COPY --from=cuda-build-arm64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/ | ||||
| ARG GOFLAGS | ||||
| ARG CGO_CFLAGS | ||||
| RUN go build -trimpath . | ||||
|  | ||||
| FROM --platform=linux/arm64 scratch AS arm64 | ||||
| COPY --from=cuda-11 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_v11 | ||||
| COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12 | ||||
| COPY --from=jetpack-5 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_jetpack5 | ||||
| COPY --from=jetpack-6 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_jetpack6 | ||||
| # Runtime stages | ||||
| FROM --platform=linux/amd64 ubuntu:22.04 as runtime-amd64 | ||||
| RUN apt-get update && apt-get install -y ca-certificates | ||||
| COPY --from=build-amd64 /go/src/github.com/ollama/ollama/ollama /bin/ollama | ||||
| FROM --platform=linux/arm64 ubuntu:22.04 as runtime-arm64 | ||||
| RUN apt-get update && apt-get install -y ca-certificates | ||||
| COPY --from=build-arm64 /go/src/github.com/ollama/ollama/ollama /bin/ollama | ||||
|  | ||||
| FROM scratch AS rocm | ||||
| COPY --from=rocm-6 dist/lib/ollama/rocm /lib/ollama/rocm | ||||
| # Radeon images are much larger so we keep it distinct from the CPU/CUDA image | ||||
| FROM --platform=linux/amd64 rocm/dev-centos-7:${ROCM_VERSION}-complete as runtime-rocm | ||||
| RUN update-pciids | ||||
| COPY --from=build-amd64 /go/src/github.com/ollama/ollama/ollama /bin/ollama | ||||
| EXPOSE 11434 | ||||
| ENV OLLAMA_HOST 0.0.0.0 | ||||
|  | ||||
| FROM ${FLAVOR} AS archive | ||||
| COPY --from=cpu dist/lib/ollama /lib/ollama | ||||
| COPY --from=build /bin/ollama /bin/ollama | ||||
| ENTRYPOINT ["/bin/ollama"] | ||||
| CMD ["serve"] | ||||
|  | ||||
| FROM ubuntu:20.04 | ||||
| RUN apt-get update \ | ||||
|     && apt-get install -y ca-certificates \ | ||||
|     && apt-get clean \ | ||||
|     && rm -rf /var/lib/apt/lists/* | ||||
| COPY --from=archive /bin /usr/bin | ||||
| FROM runtime-$TARGETARCH | ||||
| EXPOSE 11434 | ||||
| ENV OLLAMA_HOST 0.0.0.0 | ||||
| ENV PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin | ||||
| COPY --from=archive /lib/ollama /usr/lib/ollama | ||||
| ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64 | ||||
| ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility | ||||
| ENV NVIDIA_VISIBLE_DEVICES=all | ||||
| ENV OLLAMA_HOST=0.0.0.0:11434 | ||||
| EXPOSE 11434 | ||||
|  | ||||
| ENTRYPOINT ["/bin/ollama"] | ||||
| CMD ["serve"] | ||||
|   | ||||
| @@ -1,60 +0,0 @@ | ||||
| UPSTREAM=https://github.com/ggerganov/llama.cpp.git | ||||
| WORKDIR=llama/vendor | ||||
| FETCH_HEAD=2016f07bd106c73699ecbaace80f55db5ed95dac | ||||
|  | ||||
| .PHONY: help | ||||
| help: | ||||
| 	@echo "Available targets:" | ||||
| 	@echo "    sync                 Sync with upstream repositories" | ||||
| 	@echo "    checkout             Checkout upstream repository" | ||||
| 	@echo "    apply-patches        Apply patches to local repository" | ||||
| 	@echo "    format-patches       Format patches from local repository" | ||||
| 	@echo "    clean                Clean local repository" | ||||
| 	@echo | ||||
| 	@echo "Example:" | ||||
| 	@echo "    make -f $(lastword $(MAKEFILE_LIST)) clean sync" | ||||
|  | ||||
| .PHONY: sync | ||||
| sync: llama/build-info.cpp llama/llama.cpp ml/backend/ggml/ggml | ||||
|  | ||||
| .PHONY: llama/build-info.cpp | ||||
| llama/build-info.cpp: llama/build-info.cpp.in | ||||
| 	sed -e 's|@FETCH_HEAD@|$(FETCH_HEAD)|' $< > $@ | ||||
|  | ||||
| .PHONY: llama/llama.cpp | ||||
| llama/llama.cpp: llama/vendor/ | ||||
| 	rsync -arvzc -f "merge $@/.rsync-filter" $< $@ | ||||
|  | ||||
| .PHONY: ml/backend/ggml/ggml | ||||
| ml/backend/ggml/ggml: llama/vendor/ggml/ | ||||
| 	rsync -arvzc -f "merge $@/.rsync-filter" $< $@ | ||||
|  | ||||
| PATCHES=$(wildcard llama/patches/*.patch) | ||||
|  | ||||
| .PHONY: apply-patches | ||||
| .NOTPARALLEL: | ||||
| apply-patches: $(addsuffix ed, $(PATCHES)) | ||||
|  | ||||
| %.patched: %.patch | ||||
| 	@if git -c user.name=nobody -c 'user.email=<>' -C $(WORKDIR) am -3 $(realpath $<); then touch $@; else git -C $(WORKDIR) am --abort; exit 1; fi | ||||
|  | ||||
| .PHONY: checkout | ||||
| checkout: $(WORKDIR) | ||||
| 	git -C $(WORKDIR) fetch | ||||
| 	git -C $(WORKDIR) checkout -f $(FETCH_HEAD) | ||||
|  | ||||
| $(WORKDIR): | ||||
| 	git clone $(UPSTREAM) $(WORKDIR) | ||||
|  | ||||
| .PHONE: format-patches | ||||
| format-patches: llama/patches | ||||
| 	git -C $(WORKDIR) format-patch \ | ||||
| 		--no-signature \ | ||||
| 		--no-numbered \ | ||||
| 		--zero-commit \ | ||||
| 		-o $(realpath $<) \ | ||||
| 		$(FETCH_HEAD) | ||||
|  | ||||
| .PHONE: clean | ||||
| clean: checkout | ||||
| 	$(RM) $(addsuffix ed, $(PATCHES)) | ||||
							
								
								
									
										329
									
								
								README.md
									
									
									
									
									
								
							
							
						
						
									
										329
									
								
								README.md
									
									
									
									
									
								
							| @@ -1,24 +1,24 @@ | ||||
| <div align="center"> | ||||
|   <a href="https://ollama.com"> | ||||
|     <img alt="ollama" height="200px" src="https://github.com/ollama/ollama/assets/3325447/0d0b44e2-8f4a-4e99-9b52-a5c1c741c8f7"> | ||||
|   </a> | ||||
|  <img alt="ollama" height="200px" src="https://github.com/ollama/ollama/assets/3325447/0d0b44e2-8f4a-4e99-9b52-a5c1c741c8f7"> | ||||
| </div> | ||||
|  | ||||
| # Ollama | ||||
|  | ||||
| Get up and running with large language models. | ||||
| [](https://discord.gg/ollama) | ||||
|  | ||||
| Get up and running with large language models locally. | ||||
|  | ||||
| ### macOS | ||||
|  | ||||
| [Download](https://ollama.com/download/Ollama-darwin.zip) | ||||
|  | ||||
| ### Windows | ||||
| ### Windows preview | ||||
|  | ||||
| [Download](https://ollama.com/download/OllamaSetup.exe) | ||||
|  | ||||
| ### Linux | ||||
|  | ||||
| ```shell | ||||
| ``` | ||||
| curl -fsSL https://ollama.com/install.sh | sh | ||||
| ``` | ||||
|  | ||||
| @@ -33,17 +33,12 @@ The official [Ollama Docker image](https://hub.docker.com/r/ollama/ollama) `olla | ||||
| - [ollama-python](https://github.com/ollama/ollama-python) | ||||
| - [ollama-js](https://github.com/ollama/ollama-js) | ||||
|  | ||||
| ### Community | ||||
|  | ||||
| - [Discord](https://discord.gg/ollama) | ||||
| - [Reddit](https://reddit.com/r/ollama) | ||||
|  | ||||
| ## Quickstart | ||||
|  | ||||
| To run and chat with [Llama 3.2](https://ollama.com/library/llama3.2): | ||||
| To run and chat with [Llama 3](https://ollama.com/library/llama3): | ||||
|  | ||||
| ```shell | ||||
| ollama run llama3.2 | ||||
| ``` | ||||
| ollama run llama3 | ||||
| ``` | ||||
|  | ||||
| ## Model library | ||||
| @@ -52,35 +47,24 @@ Ollama supports a list of models available on [ollama.com/library](https://ollam | ||||
|  | ||||
| Here are some example models that can be downloaded: | ||||
|  | ||||
| | Model              | Parameters | Size  | Download                         | | ||||
| | ------------------ | ---------- | ----- | -------------------------------- | | ||||
| | Gemma 3            | 1B         | 815MB | `ollama run gemma3:1b`           | | ||||
| | Gemma 3            | 4B         | 3.3GB | `ollama run gemma3`              | | ||||
| | Gemma 3            | 12B        | 8.1GB | `ollama run gemma3:12b`          | | ||||
| | Gemma 3            | 27B        | 17GB  | `ollama run gemma3:27b`          | | ||||
| | QwQ                | 32B        | 20GB  | `ollama run qwq`                 | | ||||
| | DeepSeek-R1        | 7B         | 4.7GB | `ollama run deepseek-r1`         | | ||||
| | DeepSeek-R1        | 671B       | 404GB | `ollama run deepseek-r1:671b`    | | ||||
| | Llama 3.3          | 70B        | 43GB  | `ollama run llama3.3`            | | ||||
| | Llama 3.2          | 3B         | 2.0GB | `ollama run llama3.2`            | | ||||
| | Llama 3.2          | 1B         | 1.3GB | `ollama run llama3.2:1b`         | | ||||
| | Llama 3.2 Vision   | 11B        | 7.9GB | `ollama run llama3.2-vision`     | | ||||
| | Llama 3.2 Vision   | 90B        | 55GB  | `ollama run llama3.2-vision:90b` | | ||||
| | Llama 3.1          | 8B         | 4.7GB | `ollama run llama3.1`            | | ||||
| | Llama 3.1          | 405B       | 231GB | `ollama run llama3.1:405b`       | | ||||
| | Phi 4              | 14B        | 9.1GB | `ollama run phi4`                | | ||||
| | Phi 4 Mini         | 3.8B       | 2.5GB | `ollama run phi4-mini`           | | ||||
| | Mistral            | 7B         | 4.1GB | `ollama run mistral`             | | ||||
| | Moondream 2        | 1.4B       | 829MB | `ollama run moondream`           | | ||||
| | Neural Chat        | 7B         | 4.1GB | `ollama run neural-chat`         | | ||||
| | Starling           | 7B         | 4.1GB | `ollama run starling-lm`         | | ||||
| | Code Llama         | 7B         | 3.8GB | `ollama run codellama`           | | ||||
| | Llama 2 Uncensored | 7B         | 3.8GB | `ollama run llama2-uncensored`   | | ||||
| | LLaVA              | 7B         | 4.5GB | `ollama run llava`               | | ||||
| | Granite-3.2         | 8B         | 4.9GB | `ollama run granite3.2`          | | ||||
| | Model              | Parameters | Size  | Download                       | | ||||
| | ------------------ | ---------- | ----- | ------------------------------ | | ||||
| | Llama 3            | 8B         | 4.7GB | `ollama run llama3`            | | ||||
| | Llama 3            | 70B        | 40GB  | `ollama run llama3:70b`        | | ||||
| | Phi 3 Mini         | 3.8B       | 2.3GB | `ollama run phi3`              | | ||||
| | Phi 3 Medium       | 14B        | 7.9GB | `ollama run phi3:medium`       | | ||||
| | Gemma              | 2B         | 1.4GB | `ollama run gemma:2b`          | | ||||
| | Gemma              | 7B         | 4.8GB | `ollama run gemma:7b`          | | ||||
| | Mistral            | 7B         | 4.1GB | `ollama run mistral`           | | ||||
| | Moondream 2        | 1.4B       | 829MB | `ollama run moondream`         | | ||||
| | Neural Chat        | 7B         | 4.1GB | `ollama run neural-chat`       | | ||||
| | Starling           | 7B         | 4.1GB | `ollama run starling-lm`       | | ||||
| | Code Llama         | 7B         | 3.8GB | `ollama run codellama`         | | ||||
| | Llama 2 Uncensored | 7B         | 3.8GB | `ollama run llama2-uncensored` | | ||||
| | LLaVA              | 7B         | 4.5GB | `ollama run llava`             | | ||||
| | Solar              | 10.7B      | 6.1GB | `ollama run solar`             | | ||||
|  | ||||
| > [!NOTE] | ||||
| > You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models. | ||||
| > Note: You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models. | ||||
|  | ||||
| ## Customize a model | ||||
|  | ||||
| @@ -96,32 +80,32 @@ Ollama supports importing GGUF models in the Modelfile: | ||||
|  | ||||
| 2. Create the model in Ollama | ||||
|  | ||||
|    ```shell | ||||
|    ``` | ||||
|    ollama create example -f Modelfile | ||||
|    ``` | ||||
|  | ||||
| 3. Run the model | ||||
|  | ||||
|    ```shell | ||||
|    ``` | ||||
|    ollama run example | ||||
|    ``` | ||||
|  | ||||
| ### Import from Safetensors | ||||
| ### Import from PyTorch or Safetensors | ||||
|  | ||||
| See the [guide](docs/import.md) on importing models for more information. | ||||
|  | ||||
| ### Customize a prompt | ||||
|  | ||||
| Models from the Ollama library can be customized with a prompt. For example, to customize the `llama3.2` model: | ||||
| Models from the Ollama library can be customized with a prompt. For example, to customize the `llama3` model: | ||||
|  | ||||
| ```shell | ||||
| ollama pull llama3.2 | ||||
| ``` | ||||
| ollama pull llama3 | ||||
| ``` | ||||
|  | ||||
| Create a `Modelfile`: | ||||
|  | ||||
| ``` | ||||
| FROM llama3.2 | ||||
| FROM llama3 | ||||
|  | ||||
| # set the temperature to 1 [higher is more creative, lower is more coherent] | ||||
| PARAMETER temperature 1 | ||||
| @@ -141,7 +125,7 @@ ollama run mario | ||||
| Hello! It's your friend Mario. | ||||
| ``` | ||||
|  | ||||
| For more information on working with a Modelfile, see the [Modelfile](docs/modelfile.md) documentation. | ||||
| For more examples, see the [examples](examples) directory. For more information on working with a Modelfile, see the [Modelfile](docs/modelfile.md) documentation. | ||||
|  | ||||
| ## CLI Reference | ||||
|  | ||||
| @@ -149,28 +133,28 @@ For more information on working with a Modelfile, see the [Modelfile](docs/model | ||||
|  | ||||
| `ollama create` is used to create a model from a Modelfile. | ||||
|  | ||||
| ```shell | ||||
| ``` | ||||
| ollama create mymodel -f ./Modelfile | ||||
| ``` | ||||
|  | ||||
| ### Pull a model | ||||
|  | ||||
| ```shell | ||||
| ollama pull llama3.2 | ||||
| ``` | ||||
| ollama pull llama3 | ||||
| ``` | ||||
|  | ||||
| > This command can also be used to update a local model. Only the diff will be pulled. | ||||
|  | ||||
| ### Remove a model | ||||
|  | ||||
| ```shell | ||||
| ollama rm llama3.2 | ||||
| ``` | ||||
| ollama rm llama3 | ||||
| ``` | ||||
|  | ||||
| ### Copy a model | ||||
|  | ||||
| ```shell | ||||
| ollama cp llama3.2 my-model | ||||
| ``` | ||||
| ollama cp llama3 my-model | ||||
| ``` | ||||
|  | ||||
| ### Multiline input | ||||
| @@ -187,43 +171,23 @@ I'm a basic program that prints the famous "Hello, world!" message to the consol | ||||
| ### Multimodal models | ||||
|  | ||||
| ``` | ||||
| ollama run llava "What's in this image? /Users/jmorgan/Desktop/smile.png" | ||||
| >>> What's in this image? /Users/jmorgan/Desktop/smile.png | ||||
| The image features a yellow smiley face, which is likely the central focus of the picture. | ||||
| ``` | ||||
|  | ||||
| > **Output**: The image features a yellow smiley face, which is likely the central focus of the picture. | ||||
|  | ||||
| ### Pass the prompt as an argument | ||||
|  | ||||
| ```shell | ||||
| ollama run llama3.2 "Summarize this file: $(cat README.md)" | ||||
| ``` | ||||
|  | ||||
| > **Output**: Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications. | ||||
|  | ||||
| ### Show model information | ||||
|  | ||||
| ```shell | ||||
| ollama show llama3.2 | ||||
| $ ollama run llama3 "Summarize this file: $(cat README.md)" | ||||
|  Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications. | ||||
| ``` | ||||
|  | ||||
| ### List models on your computer | ||||
|  | ||||
| ```shell | ||||
| ``` | ||||
| ollama list | ||||
| ``` | ||||
|  | ||||
| ### List which models are currently loaded | ||||
|  | ||||
| ```shell | ||||
| ollama ps | ||||
| ``` | ||||
|  | ||||
| ### Stop a model which is currently running | ||||
|  | ||||
| ```shell | ||||
| ollama stop llama3.2 | ||||
| ``` | ||||
|  | ||||
| ### Start Ollama | ||||
|  | ||||
| `ollama serve` is used when you want to start ollama without running the desktop application. | ||||
| @@ -236,14 +200,14 @@ See the [developer guide](https://github.com/ollama/ollama/blob/main/docs/develo | ||||
|  | ||||
| Next, start the server: | ||||
|  | ||||
| ```shell | ||||
| ``` | ||||
| ./ollama serve | ||||
| ``` | ||||
|  | ||||
| Finally, in a separate shell, run a model: | ||||
|  | ||||
| ```shell | ||||
| ./ollama run llama3.2 | ||||
| ``` | ||||
| ./ollama run llama3 | ||||
| ``` | ||||
|  | ||||
| ## REST API | ||||
| @@ -252,18 +216,18 @@ Ollama has a REST API for running and managing models. | ||||
|  | ||||
| ### Generate a response | ||||
|  | ||||
| ```shell | ||||
| ``` | ||||
| curl http://localhost:11434/api/generate -d '{ | ||||
|   "model": "llama3.2", | ||||
|   "model": "llama3", | ||||
|   "prompt":"Why is the sky blue?" | ||||
| }' | ||||
| ``` | ||||
|  | ||||
| ### Chat with a model | ||||
|  | ||||
| ```shell | ||||
| ``` | ||||
| curl http://localhost:11434/api/chat -d '{ | ||||
|   "model": "llama3.2", | ||||
|   "model": "llama3", | ||||
|   "messages": [ | ||||
|     { "role": "user", "content": "why is the sky blue?" } | ||||
|   ] | ||||
| @@ -277,7 +241,6 @@ See the [API documentation](./docs/api.md) for all endpoints. | ||||
| ### Web & Desktop | ||||
|  | ||||
| - [Open WebUI](https://github.com/open-webui/open-webui) | ||||
| - [SwiftChat (macOS with ReactNative)](https://github.com/aws-samples/swift-chat) | ||||
| - [Enchanted (macOS native)](https://github.com/AugustDev/enchanted) | ||||
| - [Hollama](https://github.com/fmaclen/hollama) | ||||
| - [Lollms-Webui](https://github.com/ParisNeo/lollms-webui) | ||||
| @@ -285,13 +248,12 @@ See the [API documentation](./docs/api.md) for all endpoints. | ||||
| - [Bionic GPT](https://github.com/bionic-gpt/bionic-gpt) | ||||
| - [HTML UI](https://github.com/rtcfirefly/ollama-ui) | ||||
| - [Saddle](https://github.com/jikkuatwork/saddle) | ||||
| - [TagSpaces](https://www.tagspaces.org) (A platform for file based apps, [utilizing Ollama](https://docs.tagspaces.org/ai/) for the generation of tags and descriptions) | ||||
| - [Chatbot UI](https://github.com/ivanfioravanti/chatbot-ollama) | ||||
| - [Chatbot UI v2](https://github.com/mckaywrigley/chatbot-ui) | ||||
| - [Typescript UI](https://github.com/ollama-interface/Ollama-Gui?tab=readme-ov-file) | ||||
| - [Minimalistic React UI for Ollama Models](https://github.com/richawo/minimal-llm-ui) | ||||
| - [Ollamac](https://github.com/kevinhermawan/Ollamac) | ||||
| - [big-AGI](https://github.com/enricoros/big-AGI) | ||||
| - [big-AGI](https://github.com/enricoros/big-AGI/blob/main/docs/config-local-ollama.md) | ||||
| - [Cheshire Cat assistant framework](https://github.com/cheshire-cat-ai/core) | ||||
| - [Amica](https://github.com/semperai/amica) | ||||
| - [chatd](https://github.com/BruceMacD/chatd) | ||||
| @@ -311,8 +273,7 @@ See the [API documentation](./docs/api.md) for all endpoints. | ||||
| - [AnythingLLM (Docker + MacOs/Windows/Linux native app)](https://github.com/Mintplex-Labs/anything-llm) | ||||
| - [Ollama Basic Chat: Uses HyperDiv Reactive UI](https://github.com/rapidarchitect/ollama_basic_chat) | ||||
| - [Ollama-chats RPG](https://github.com/drazdra/ollama-chats) | ||||
| - [IntelliBar](https://intellibar.app/) (AI-powered assistant for macOS) | ||||
| - [QA-Pilot](https://github.com/reid41/QA-Pilot) (Interactive chat tool that can leverage Ollama models for rapid understanding and navigation of GitHub code repositories) | ||||
| - [QA-Pilot](https://github.com/reid41/QA-Pilot) (Chat with Code Repository) | ||||
| - [ChatOllama](https://github.com/sugarforever/chat-ollama) (Open Source Chatbot based on Ollama with Knowledge Bases) | ||||
| - [CRAG Ollama Chat](https://github.com/Nagi-ovo/CRAG-Ollama-Chat) (Simple Web Search with Corrective RAG) | ||||
| - [RAGFlow](https://github.com/infiniflow/ragflow) (Open-source Retrieval-Augmented Generation engine based on deep document understanding) | ||||
| @@ -322,96 +283,14 @@ See the [API documentation](./docs/api.md) for all endpoints. | ||||
| - [Ollama RAG Chatbot](https://github.com/datvodinh/rag-chatbot.git) (Local Chat with multiple PDFs using Ollama and RAG) | ||||
| - [BrainSoup](https://www.nurgo-software.com/products/brainsoup) (Flexible native client with RAG & multi-agent automation) | ||||
| - [macai](https://github.com/Renset/macai) (macOS client for Ollama, ChatGPT, and other compatible API back-ends) | ||||
| - [RWKV-Runner](https://github.com/josStorer/RWKV-Runner) (RWKV offline LLM deployment tool, also usable as a client for ChatGPT and Ollama) | ||||
| - [Ollama Grid Search](https://github.com/dezoito/ollama-grid-search) (app to evaluate and compare models) | ||||
| - [Olpaka](https://github.com/Otacon/olpaka) (User-friendly Flutter Web App for Ollama) | ||||
| - [Casibase](https://casibase.org) (An open source AI knowledge base and dialogue system combining the latest RAG, SSO, ollama support and multiple large language models.) | ||||
| - [OllamaSpring](https://github.com/CrazyNeil/OllamaSpring) (Ollama Client for macOS) | ||||
| - [LLocal.in](https://github.com/kartikm7/llocal) (Easy to use Electron Desktop Client for Ollama) | ||||
| - [Shinkai Desktop](https://github.com/dcSpark/shinkai-apps) (Two click install Local AI using Ollama + Files + RAG) | ||||
| - [AiLama](https://github.com/zeyoyt/ailama) (A Discord User App that allows you to interact with Ollama anywhere in discord ) | ||||
| - [Ollama with Google Mesop](https://github.com/rapidarchitect/ollama_mesop/) (Mesop Chat Client implementation with Ollama) | ||||
| - [R2R](https://github.com/SciPhi-AI/R2R) (Open-source RAG engine) | ||||
| - [Ollama-Kis](https://github.com/elearningshow/ollama-kis) (A simple easy to use GUI with sample custom LLM for Drivers Education) | ||||
| - [OpenGPA](https://opengpa.org) (Open-source offline-first Enterprise Agentic Application) | ||||
| - [Painting Droid](https://github.com/mateuszmigas/painting-droid) (Painting app with AI integrations) | ||||
| - [Kerlig AI](https://www.kerlig.com/) (AI writing assistant for macOS) | ||||
| - [AI Studio](https://github.com/MindWorkAI/AI-Studio) | ||||
| - [Sidellama](https://github.com/gyopak/sidellama) (browser-based LLM client) | ||||
| - [LLMStack](https://github.com/trypromptly/LLMStack) (No-code multi-agent framework to build LLM agents and workflows) | ||||
| - [BoltAI for Mac](https://boltai.com) (AI Chat Client for Mac) | ||||
| - [Harbor](https://github.com/av/harbor) (Containerized LLM Toolkit with Ollama as default backend) | ||||
| - [PyGPT](https://github.com/szczyglis-dev/py-gpt) (AI desktop assistant for Linux, Windows and Mac) | ||||
| - [Alpaca](https://github.com/Jeffser/Alpaca) (An Ollama client application for linux and macos made with GTK4 and Adwaita) | ||||
| - [AutoGPT](https://github.com/Significant-Gravitas/AutoGPT/blob/master/docs/content/platform/ollama.md) (AutoGPT Ollama integration) | ||||
| - [Go-CREW](https://www.jonathanhecl.com/go-crew/) (Powerful Offline RAG in Golang) | ||||
| - [PartCAD](https://github.com/openvmp/partcad/) (CAD model generation with OpenSCAD and CadQuery) | ||||
| - [Ollama4j Web UI](https://github.com/ollama4j/ollama4j-web-ui) - Java-based Web UI for Ollama built with Vaadin, Spring Boot and Ollama4j | ||||
| - [PyOllaMx](https://github.com/kspviswa/pyOllaMx) - macOS application capable of chatting with both Ollama and Apple MLX models. | ||||
| - [Cline](https://github.com/cline/cline) - Formerly known as Claude Dev is a VSCode extension for multi-file/whole-repo coding | ||||
| - [Cherry Studio](https://github.com/kangfenmao/cherry-studio) (Desktop client with Ollama support) | ||||
| - [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption) | ||||
| - [Archyve](https://github.com/nickthecook/archyve) (RAG-enabling document library) | ||||
| - [crewAI with Mesop](https://github.com/rapidarchitect/ollama-crew-mesop) (Mesop Web Interface to run crewAI with Ollama) | ||||
| - [Tkinter-based client](https://github.com/chyok/ollama-gui) (Python tkinter-based Client for Ollama) | ||||
| - [LLMChat](https://github.com/trendy-design/llmchat) (Privacy focused, 100% local, intuitive all-in-one chat interface) | ||||
| - [Local Multimodal AI Chat](https://github.com/Leon-Sander/Local-Multimodal-AI-Chat) (Ollama-based LLM Chat with support for multiple features, including PDF RAG, voice chat, image-based interactions, and integration with OpenAI.) | ||||
| - [ARGO](https://github.com/xark-argo/argo) (Locally download and run Ollama and Huggingface models with RAG on Mac/Windows/Linux) | ||||
| - [OrionChat](https://github.com/EliasPereirah/OrionChat) - OrionChat is a web interface for chatting with different AI providers | ||||
| - [G1](https://github.com/bklieger-groq/g1) (Prototype of using prompting strategies to improve the LLM's reasoning through o1-like reasoning chains.) | ||||
| - [Web management](https://github.com/lemonit-eric-mao/ollama-web-management) (Web management page) | ||||
| - [Promptery](https://github.com/promptery/promptery) (desktop client for Ollama.) | ||||
| - [Ollama App](https://github.com/JHubi1/ollama-app) (Modern and easy-to-use multi-platform client for Ollama) | ||||
| - [chat-ollama](https://github.com/annilq/chat-ollama) (a React Native client for Ollama) | ||||
| - [SpaceLlama](https://github.com/tcsenpai/spacellama) (Firefox and Chrome extension to quickly summarize web pages with ollama in a sidebar) | ||||
| - [YouLama](https://github.com/tcsenpai/youlama) (Webapp to quickly summarize any YouTube video, supporting Invidious as well) | ||||
| - [DualMind](https://github.com/tcsenpai/dualmind) (Experimental app allowing two models to talk to each other in the terminal or in a web interface) | ||||
| - [ollamarama-matrix](https://github.com/h1ddenpr0cess20/ollamarama-matrix) (Ollama chatbot for the Matrix chat protocol) | ||||
| - [ollama-chat-app](https://github.com/anan1213095357/ollama-chat-app) (Flutter-based chat app) | ||||
| - [Perfect Memory AI](https://www.perfectmemory.ai/) (Productivity AI assists personalized by what you have seen on your screen, heard and said in the meetings) | ||||
| - [Hexabot](https://github.com/hexastack/hexabot) (A conversational AI builder) | ||||
| - [Reddit Rate](https://github.com/rapidarchitect/reddit_analyzer) (Search and Rate Reddit topics with a weighted summation) | ||||
| - [OpenTalkGpt](https://github.com/adarshM84/OpenTalkGpt) (Chrome Extension to manage open-source models supported by Ollama, create custom models, and chat with models from a user-friendly UI) | ||||
| - [VT](https://github.com/vinhnx/vt.ai) (A minimal multimodal AI chat app, with dynamic conversation routing. Supports local models via Ollama) | ||||
| - [Nosia](https://github.com/nosia-ai/nosia) (Easy to install and use RAG platform based on Ollama) | ||||
| - [Witsy](https://github.com/nbonamy/witsy) (An AI Desktop application available for Mac/Windows/Linux) | ||||
| - [Abbey](https://github.com/US-Artificial-Intelligence/abbey) (A configurable AI interface server with notebooks, document storage, and YouTube support) | ||||
| - [Minima](https://github.com/dmayboroda/minima) (RAG with on-premises or fully local workflow) | ||||
| - [aidful-ollama-model-delete](https://github.com/AidfulAI/aidful-ollama-model-delete) (User interface for simplified model cleanup) | ||||
| - [Perplexica](https://github.com/ItzCrazyKns/Perplexica) (An AI-powered search engine & an open-source alternative to Perplexity AI) | ||||
| - [Ollama Chat WebUI for Docker ](https://github.com/oslook/ollama-webui) (Support for local docker deployment, lightweight ollama webui) | ||||
| - [AI Toolkit for Visual Studio Code](https://aka.ms/ai-tooklit/ollama-docs) (Microsoft-official VSCode extension to chat, test, evaluate models with Ollama support, and use them in your AI applications.) | ||||
| - [MinimalNextOllamaChat](https://github.com/anilkay/MinimalNextOllamaChat) (Minimal Web UI for Chat and Model Control) | ||||
| - [Chipper](https://github.com/TilmanGriesel/chipper) AI interface for tinkerers (Ollama, Haystack RAG, Python) | ||||
| - [ChibiChat](https://github.com/CosmicEventHorizon/ChibiChat) (Kotlin-based Android app to chat with Ollama and Koboldcpp API endpoints) | ||||
| - [LocalLLM](https://github.com/qusaismael/localllm) (Minimal Web-App to run ollama models on it with a GUI) | ||||
| - [Ollamazing](https://github.com/buiducnhat/ollamazing) (Web extension to run Ollama models) | ||||
| - [OpenDeepResearcher-via-searxng](https://github.com/benhaotang/OpenDeepResearcher-via-searxng) (A Deep Research equivent endpoint with Ollama support for running locally) | ||||
| - [AntSK](https://github.com/AIDotNet/AntSK) (Out-of-the-box & Adaptable RAG Chatbot) | ||||
| - [MaxKB](https://github.com/1Panel-dev/MaxKB/) (Ready-to-use & flexible RAG Chatbot) | ||||
| - [yla](https://github.com/danielekp/yla) (Web interface to freely interact with your customized models) | ||||
| - [LangBot](https://github.com/RockChinQ/LangBot) (LLM-based instant messaging bots platform, with Agents, RAG features, supports multiple platforms) | ||||
| - [1Panel](https://github.com/1Panel-dev/1Panel/) (Web-based Linux Server Management Tool) | ||||
| - [AstrBot](https://github.com/Soulter/AstrBot/) (User-friendly LLM-based multi-platform chatbot with a WebUI, supporting RAG, LLM agents, and plugins integration) | ||||
| - [Reins](https://github.com/ibrahimcetin/reins) (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.) | ||||
| - [Ellama](https://github.com/zeozeozeo/ellama) (Friendly native app to chat with an Ollama instance) | ||||
| - [screenpipe](https://github.com/mediar-ai/screenpipe) Build agents powered by your screen history | ||||
| - [Ollamb](https://github.com/hengkysteen/ollamb) (Simple yet rich in features, cross-platform built with Flutter and designed for Ollama. Try the [web demo](https://hengkysteen.github.io/demo/ollamb/).) | ||||
| - [Writeopia](https://github.com/Writeopia/Writeopia) (Text editor with integration with Ollama) | ||||
| - [AppFlowy](https://github.com/AppFlowy-IO/AppFlowy) (AI collaborative workspace with Ollama, cross-platform and self-hostable) | ||||
|  | ||||
| ### Cloud | ||||
|  | ||||
| - [Google Cloud](https://cloud.google.com/run/docs/tutorials/gpu-gemma2-with-ollama) | ||||
| - [Fly.io](https://fly.io/docs/python/do-more/add-ollama/) | ||||
| - [Koyeb](https://www.koyeb.com/deploy/ollama) | ||||
|  | ||||
| ### Terminal | ||||
|  | ||||
| - [oterm](https://github.com/ggozad/oterm) | ||||
| - [Ellama Emacs client](https://github.com/s-kostyaev/ellama) | ||||
| - [Emacs client](https://github.com/zweifisch/ollama) | ||||
| - [neollama](https://github.com/paradoxical-dev/neollama) UI client for interacting with models from within Neovim | ||||
| - [gen.nvim](https://github.com/David-Kunz/gen.nvim) | ||||
| - [ollama.nvim](https://github.com/nomnivore/ollama.nvim) | ||||
| - [ollero.nvim](https://github.com/marco-souza/ollero.nvim) | ||||
| @@ -421,71 +300,36 @@ See the [API documentation](./docs/api.md) for all endpoints. | ||||
| - [Oatmeal](https://github.com/dustinblackman/oatmeal) | ||||
| - [cmdh](https://github.com/pgibler/cmdh) | ||||
| - [ooo](https://github.com/npahlfer/ooo) | ||||
| - [shell-pilot](https://github.com/reid41/shell-pilot)(Interact with models via pure shell scripts on Linux or macOS) | ||||
| - [shell-pilot](https://github.com/reid41/shell-pilot) | ||||
| - [tenere](https://github.com/pythops/tenere) | ||||
| - [llm-ollama](https://github.com/taketwo/llm-ollama) for [Datasette's LLM CLI](https://llm.datasette.io/en/stable/). | ||||
| - [typechat-cli](https://github.com/anaisbetts/typechat-cli) | ||||
| - [ShellOracle](https://github.com/djcopley/ShellOracle) | ||||
| - [tlm](https://github.com/yusufcanb/tlm) | ||||
| - [podman-ollama](https://github.com/ericcurtin/podman-ollama) | ||||
| - [gollama](https://github.com/sammcj/gollama) | ||||
| - [ParLlama](https://github.com/paulrobello/parllama) | ||||
| - [Ollama eBook Summary](https://github.com/cognitivetech/ollama-ebook-summary/) | ||||
| - [Ollama Mixture of Experts (MOE) in 50 lines of code](https://github.com/rapidarchitect/ollama_moe) | ||||
| - [vim-intelligence-bridge](https://github.com/pepo-ec/vim-intelligence-bridge) Simple interaction of "Ollama" with the Vim editor | ||||
| - [x-cmd ollama](https://x-cmd.com/mod/ollama) | ||||
| - [bb7](https://github.com/drunkwcodes/bb7) | ||||
| - [SwollamaCLI](https://github.com/marcusziade/Swollama) bundled with the Swollama Swift package. [Demo](https://github.com/marcusziade/Swollama?tab=readme-ov-file#cli-usage) | ||||
| - [aichat](https://github.com/sigoden/aichat) All-in-one LLM CLI tool featuring Shell Assistant, Chat-REPL, RAG, AI tools & agents, with access to OpenAI, Claude, Gemini, Ollama, Groq, and more. | ||||
| - [PowershAI](https://github.com/rrg92/powershai) PowerShell module that brings AI to terminal on Windows, including support for Ollama | ||||
| - [DeepShell](https://github.com/Abyss-c0re/deepshell) Your self-hosted AI assistant. Interactive Shell, Files and Folders analysis. | ||||
| - [orbiton](https://github.com/xyproto/orbiton) Configuration-free text editor and IDE with support for tab completion with Ollama. | ||||
| - [orca-cli](https://github.com/molbal/orca-cli) Ollama Registry CLI Application - Browse, pull and download models from Ollama Registry in your terminal. | ||||
| - [GGUF-to-Ollama](https://github.com/jonathanhecl/gguf-to-ollama) - Importing GGUF to Ollama made easy (multiplatform) | ||||
|  | ||||
| ### Apple Vision Pro | ||||
|  | ||||
| - [SwiftChat](https://github.com/aws-samples/swift-chat) (Cross-platform AI chat app supporting Apple Vision Pro via "Designed for iPad") | ||||
| - [Enchanted](https://github.com/AugustDev/enchanted) | ||||
|  | ||||
| ### Database | ||||
|  | ||||
| - [pgai](https://github.com/timescale/pgai) - PostgreSQL as a vector database (Create and search embeddings from Ollama models using pgvector) | ||||
|    - [Get started guide](https://github.com/timescale/pgai/blob/main/docs/vectorizer-quick-start.md) | ||||
| - [MindsDB](https://github.com/mindsdb/mindsdb/blob/staging/mindsdb/integrations/handlers/ollama_handler/README.md) (Connects Ollama models with nearly 200 data platforms and apps) | ||||
| - [chromem-go](https://github.com/philippgille/chromem-go/blob/v0.5.0/embed_ollama.go) with [example](https://github.com/philippgille/chromem-go/tree/v0.5.0/examples/rag-wikipedia-ollama) | ||||
| - [Kangaroo](https://github.com/dbkangaroo/kangaroo) (AI-powered SQL client and admin tool for popular databases) | ||||
|  | ||||
| ### Package managers | ||||
|  | ||||
| - [Pacman](https://archlinux.org/packages/extra/x86_64/ollama/) | ||||
| - [Gentoo](https://github.com/gentoo/guru/tree/master/app-misc/ollama) | ||||
| - [Homebrew](https://formulae.brew.sh/formula/ollama) | ||||
| - [Helm Chart](https://artifacthub.io/packages/helm/ollama-helm/ollama) | ||||
| - [Guix channel](https://codeberg.org/tusharhero/ollama-guix) | ||||
| - [Nix package](https://search.nixos.org/packages?show=ollama&from=0&size=50&sort=relevance&type=packages&query=ollama) | ||||
| - [Flox](https://flox.dev/blog/ollama-part-one) | ||||
|  | ||||
| ### Libraries | ||||
|  | ||||
| - [LangChain](https://python.langchain.com/docs/integrations/llms/ollama) and [LangChain.js](https://js.langchain.com/docs/integrations/chat/ollama/) with [example](https://js.langchain.com/docs/tutorials/local_rag/) | ||||
| - [Firebase Genkit](https://firebase.google.com/docs/genkit/plugins/ollama) | ||||
| - [crewAI](https://github.com/crewAIInc/crewAI) | ||||
| - [Yacana](https://remembersoftwares.github.io/yacana/) (User-friendly multi-agent framework for brainstorming and executing predetermined flows with built-in tool integration) | ||||
| - [Spring AI](https://github.com/spring-projects/spring-ai) with [reference](https://docs.spring.io/spring-ai/reference/api/chat/ollama-chat.html) and [example](https://github.com/tzolov/ollama-tools) | ||||
| - [LangChain](https://python.langchain.com/docs/integrations/llms/ollama) and [LangChain.js](https://js.langchain.com/docs/modules/model_io/models/llms/integrations/ollama) with [example](https://js.langchain.com/docs/use_cases/question_answering/local_retrieval_qa) | ||||
| - [LangChainGo](https://github.com/tmc/langchaingo/) with [example](https://github.com/tmc/langchaingo/tree/main/examples/ollama-completion-example) | ||||
| - [LangChain4j](https://github.com/langchain4j/langchain4j) with [example](https://github.com/langchain4j/langchain4j-examples/tree/main/ollama-examples/src/main/java) | ||||
| - [LangChainRust](https://github.com/Abraxas-365/langchain-rust) with [example](https://github.com/Abraxas-365/langchain-rust/blob/main/examples/llm_ollama.rs) | ||||
| - [LangChain for .NET](https://github.com/tryAGI/LangChain) with [example](https://github.com/tryAGI/LangChain/blob/main/examples/LangChain.Samples.OpenAI/Program.cs) | ||||
| - [LLPhant](https://github.com/theodo-group/LLPhant?tab=readme-ov-file#ollama) | ||||
| - [LlamaIndex](https://docs.llamaindex.ai/en/stable/examples/llm/ollama/) and [LlamaIndexTS](https://ts.llamaindex.ai/modules/llms/available_llms/ollama) | ||||
| - [LlamaIndex](https://gpt-index.readthedocs.io/en/stable/examples/llm/ollama.html) | ||||
| - [LiteLLM](https://github.com/BerriAI/litellm) | ||||
| - [OllamaFarm for Go](https://github.com/presbrey/ollamafarm) | ||||
| - [OllamaSharp for .NET](https://github.com/awaescher/OllamaSharp) | ||||
| - [Ollama for Ruby](https://github.com/gbaptista/ollama-ai) | ||||
| - [Ollama-rs for Rust](https://github.com/pepperoni21/ollama-rs) | ||||
| - [Ollama-hpp for C++](https://github.com/jmont-dev/ollama-hpp) | ||||
| - [Ollama4j for Java](https://github.com/ollama4j/ollama4j) | ||||
| - [Ollama4j for Java](https://github.com/amithkoujalgi/ollama4j) | ||||
| - [ModelFusion Typescript Library](https://modelfusion.dev/integration/model-provider/ollama) | ||||
| - [OllamaKit for Swift](https://github.com/kevinhermawan/OllamaKit) | ||||
| - [Ollama for Dart](https://github.com/breitburg/dart-ollama) | ||||
| @@ -502,42 +346,16 @@ See the [API documentation](./docs/api.md) for all endpoints. | ||||
| - [Portkey](https://portkey.ai/docs/welcome/integration-guides/ollama) | ||||
| - [PromptingTools.jl](https://github.com/svilupp/PromptingTools.jl) with an [example](https://svilupp.github.io/PromptingTools.jl/dev/examples/working_with_ollama) | ||||
| - [LlamaScript](https://github.com/Project-Llama/llamascript) | ||||
| - [llm-axe](https://github.com/emirsahin1/llm-axe) (Python Toolkit for Building LLM Powered Apps) | ||||
| - [Gollm](https://docs.gollm.co/examples/ollama-example) | ||||
| - [Gollama for Golang](https://github.com/jonathanhecl/gollama) | ||||
| - [Ollamaclient for Golang](https://github.com/xyproto/ollamaclient) | ||||
| - [High-level function abstraction in Go](https://gitlab.com/tozd/go/fun) | ||||
| - [Ollama PHP](https://github.com/ArdaGnsrn/ollama-php) | ||||
| - [Agents-Flex for Java](https://github.com/agents-flex/agents-flex) with [example](https://github.com/agents-flex/agents-flex/tree/main/agents-flex-llm/agents-flex-llm-ollama/src/test/java/com/agentsflex/llm/ollama) | ||||
| - [Parakeet](https://github.com/parakeet-nest/parakeet) is a GoLang library, made to simplify the development of small generative AI applications with Ollama. | ||||
| - [Haverscript](https://github.com/andygill/haverscript) with [examples](https://github.com/andygill/haverscript/tree/main/examples) | ||||
| - [Ollama for Swift](https://github.com/mattt/ollama-swift) | ||||
| - [Swollama for Swift](https://github.com/marcusziade/Swollama) with [DocC](https://marcusziade.github.io/Swollama/documentation/swollama/) | ||||
| - [GoLamify](https://github.com/prasad89/golamify) | ||||
| - [Ollama for Haskell](https://github.com/tusharad/ollama-haskell) | ||||
| - [multi-llm-ts](https://github.com/nbonamy/multi-llm-ts) (A Typescript/JavaScript library allowing access to different LLM in unified API) | ||||
| - [LlmTornado](https://github.com/lofcz/llmtornado) (C# library providing a unified interface for major FOSS & Commercial inference APIs) | ||||
| - [Ollama for Zig](https://github.com/dravenk/ollama-zig) | ||||
| - [Abso](https://github.com/lunary-ai/abso) (OpenAI-compatible TypeScript SDK for any LLM provider) | ||||
| - [Nichey](https://github.com/goodreasonai/nichey) is a Python package for generating custom wikis for your research topic | ||||
| - [Ollama for D](https://github.com/kassane/ollama-d) | ||||
|  | ||||
| ### Mobile | ||||
|  | ||||
| - [SwiftChat](https://github.com/aws-samples/swift-chat) (Lightning-fast Cross-platform AI chat app with native UI for Android, iOS and iPad) | ||||
| - [Enchanted](https://github.com/AugustDev/enchanted) | ||||
| - [Maid](https://github.com/Mobile-Artificial-Intelligence/maid) | ||||
| - [Ollama App](https://github.com/JHubi1/ollama-app) (Modern and easy-to-use multi-platform client for Ollama) | ||||
| - [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption) | ||||
| - [Ollama Android Chat](https://github.com/sunshine0523/OllamaServer) (No need for Termux, start the Ollama service with one click on an Android device) | ||||
| - [Reins](https://github.com/ibrahimcetin/reins) (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.) | ||||
|  | ||||
| ### Extensions & Plugins | ||||
|  | ||||
| - [Raycast extension](https://github.com/MassimilianoPasquini97/raycast_ollama) | ||||
| - [Discollama](https://github.com/mxyng/discollama) (Discord bot inside the Ollama discord channel) | ||||
| - [Continue](https://github.com/continuedev/continue) | ||||
| - [Vibe](https://github.com/thewh1teagle/vibe) (Transcribe and analyze meetings with Ollama) | ||||
| - [Obsidian Ollama plugin](https://github.com/hinterdupfinger/obsidian-ollama) | ||||
| - [Logseq Ollama plugin](https://github.com/omagdy7/ollama-logseq) | ||||
| - [NotesOllama](https://github.com/andersrex/notesollama) (Apple Notes Ollama plugin) | ||||
| @@ -554,38 +372,13 @@ See the [API documentation](./docs/api.md) for all endpoints. | ||||
| - [Llama Coder](https://github.com/ex3ndr/llama-coder) (Copilot alternative using Ollama) | ||||
| - [Ollama Copilot](https://github.com/bernardo-bruning/ollama-copilot) (Proxy that allows you to use ollama as a copilot like Github copilot) | ||||
| - [twinny](https://github.com/rjmacarthy/twinny) (Copilot and Copilot chat alternative using Ollama) | ||||
| - [Wingman-AI](https://github.com/RussellCanfield/wingman-ai) (Copilot code and chat alternative using Ollama and Hugging Face) | ||||
| - [Wingman-AI](https://github.com/RussellCanfield/wingman-ai) (Copilot code and chat alternative using Ollama and HuggingFace) | ||||
| - [Page Assist](https://github.com/n4ze3m/page-assist) (Chrome Extension) | ||||
| - [Plasmoid Ollama Control](https://github.com/imoize/plasmoid-ollamacontrol) (KDE Plasma extension that allows you to quickly manage/control Ollama model) | ||||
| - [AI Telegram Bot](https://github.com/tusharhero/aitelegrambot) (Telegram bot using Ollama in backend) | ||||
| - [AI ST Completion](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) (Sublime Text 4 AI assistant plugin with Ollama support) | ||||
| - [Discord-Ollama Chat Bot](https://github.com/kevinthedang/discord-ollama) (Generalized TypeScript Discord Bot w/ Tuning Documentation) | ||||
| - [ChatGPTBox: All in one browser extension](https://github.com/josStorer/chatGPTBox) with [Integrating Tutorial](https://github.com/josStorer/chatGPTBox/issues/616#issuecomment-1975186467) | ||||
| - [Discord AI chat/moderation bot](https://github.com/rapmd73/Companion) Chat/moderation bot written in python. Uses Ollama to create personalities. | ||||
| - [Headless Ollama](https://github.com/nischalj10/headless-ollama) (Scripts to automatically install ollama client & models on any OS for apps that depends on ollama server) | ||||
| - [Terraform AWS Ollama & Open WebUI](https://github.com/xuyangbocn/terraform-aws-self-host-llm) (A Terraform module to deploy on AWS a ready-to-use Ollama service, together with its front end Open WebUI service.) | ||||
| - [node-red-contrib-ollama](https://github.com/jakubburkiewicz/node-red-contrib-ollama) | ||||
| - [Local AI Helper](https://github.com/ivostoykov/localAI) (Chrome and Firefox extensions that enable interactions with the active tab and customisable API endpoints. Includes secure storage for user prompts.) | ||||
| - [vnc-lm](https://github.com/jake83741/vnc-lm) (Discord bot for messaging with LLMs through Ollama and LiteLLM. Seamlessly move between local and flagship models.) | ||||
| - [LSP-AI](https://github.com/SilasMarvin/lsp-ai) (Open-source language server for AI-powered functionality) | ||||
| - [QodeAssist](https://github.com/Palm1r/QodeAssist) (AI-powered coding assistant plugin for Qt Creator) | ||||
| - [Obsidian Quiz Generator plugin](https://github.com/ECuiDev/obsidian-quiz-generator) | ||||
| - [AI Summmary Helper plugin](https://github.com/philffm/ai-summary-helper) | ||||
| - [TextCraft](https://github.com/suncloudsmoon/TextCraft) (Copilot in Word alternative using Ollama) | ||||
| - [Alfred Ollama](https://github.com/zeitlings/alfred-ollama) (Alfred Workflow) | ||||
| - [TextLLaMA](https://github.com/adarshM84/TextLLaMA) A Chrome Extension that helps you write emails, correct grammar, and translate into any language | ||||
| - [Simple-Discord-AI](https://github.com/zyphixor/simple-discord-ai) | ||||
| - [LLM Telegram Bot](https://github.com/innightwolfsleep/llm_telegram_bot) (telegram bot, primary for RP. Oobabooga-like buttons, [A1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui) API integration e.t.c) | ||||
| - [mcp-llm](https://github.com/sammcj/mcp-llm) (MCP Server to allow LLMs to call other LLMs) | ||||
|  | ||||
| ### Supported backends | ||||
|  | ||||
| ### Supported backends  | ||||
| - [llama.cpp](https://github.com/ggerganov/llama.cpp) project founded by Georgi Gerganov. | ||||
|  | ||||
| ### Observability | ||||
| - [Opik](https://www.comet.com/docs/opik/cookbook/ollama) is an open-source platform to debug, evaluate, and monitor your LLM applications, RAG systems, and agentic workflows with comprehensive tracing, automated evaluations, and production-ready dashboards. Opik supports native intergration to Ollama. | ||||
| - [Lunary](https://lunary.ai/docs/integrations/ollama) is the leading open-source LLM observability platform. It provides a variety of enterprise-grade features such as real-time analytics, prompt templates management, PII masking, and comprehensive agent tracing. | ||||
| - [OpenLIT](https://github.com/openlit/openlit) is an OpenTelemetry-native tool for monitoring Ollama Applications & GPUs using traces and metrics. | ||||
| - [HoneyHive](https://docs.honeyhive.ai/integrations/ollama) is an AI observability and evaluation platform for AI agents. Use HoneyHive to evaluate agent performance, interrogate failures, and monitor quality in production. | ||||
| - [Langfuse](https://langfuse.com/docs/integrations/ollama) is an open source LLM observability platform that enables teams to collaboratively monitor, evaluate and debug AI applications. | ||||
| - [MLflow Tracing](https://mlflow.org/docs/latest/llms/tracing/index.html#automatic-tracing) is an open source LLM observability tool with a convenient API to log and visualize traces, making it easy to debug and evaluate GenAI applications. | ||||
|   | ||||
							
								
								
									
										25
									
								
								SECURITY.md
									
									
									
									
									
								
							
							
						
						
									
										25
									
								
								SECURITY.md
									
									
									
									
									
								
							| @@ -1,25 +0,0 @@ | ||||
| # Security | ||||
|  | ||||
| The Ollama maintainer team takes security seriously and will actively work to resolve security issues. | ||||
|  | ||||
| ## Reporting a vulnerability | ||||
|  | ||||
| If you discover a security vulnerability, please do not open a public issue. Instead, please report it by emailing hello@ollama.com. We ask that you give us sufficient time to investigate and address the vulnerability before disclosing it publicly. | ||||
|  | ||||
| Please include the following details in your report: | ||||
| - A description of the vulnerability | ||||
| - Steps to reproduce the issue | ||||
| - Your assessment of the potential impact | ||||
| - Any possible mitigations | ||||
|  | ||||
| ## Security best practices | ||||
|  | ||||
| While the maintainer team does their best to secure Ollama, users are encouraged to implement their own security best practices, such as: | ||||
|  | ||||
| - Regularly updating to the latest version of Ollama | ||||
| - Securing access to hosted instances of Ollama | ||||
| - Monitoring systems for unusual activity | ||||
|  | ||||
| ## Contact | ||||
|  | ||||
| For any other questions or concerns related to security, please contact us at hello@ollama.com | ||||
| @@ -10,7 +10,7 @@ | ||||
| // repository]. | ||||
| // | ||||
| // [the API documentation]: https://github.com/ollama/ollama/blob/main/docs/api.md | ||||
| // [in the GitHub repository]: https://github.com/ollama/ollama/tree/main/api/examples | ||||
| // [in the GitHub repository]: https://github.com/ollama/ollama/tree/main/examples | ||||
| package api | ||||
|  | ||||
| import ( | ||||
| @@ -18,14 +18,16 @@ import ( | ||||
| 	"bytes" | ||||
| 	"context" | ||||
| 	"encoding/json" | ||||
| 	"errors" | ||||
| 	"fmt" | ||||
| 	"io" | ||||
| 	"net" | ||||
| 	"net/http" | ||||
| 	"net/url" | ||||
| 	"os" | ||||
| 	"runtime" | ||||
| 	"strconv" | ||||
| 	"strings" | ||||
|  | ||||
| 	"github.com/ollama/ollama/envconfig" | ||||
| 	"github.com/ollama/ollama/format" | ||||
| 	"github.com/ollama/ollama/version" | ||||
| ) | ||||
| @@ -55,7 +57,7 @@ func checkError(resp *http.Response, body []byte) error { | ||||
|  | ||||
| // ClientFromEnvironment creates a new [Client] using configuration from the | ||||
| // environment variable OLLAMA_HOST, which points to the network host and | ||||
| // port on which the ollama service is listening. The format of this variable | ||||
| // port on which the ollama service is listenting. The format of this variable | ||||
| // is: | ||||
| // | ||||
| //	<scheme>://<host>:<port> | ||||
| @@ -63,12 +65,66 @@ func checkError(resp *http.Response, body []byte) error { | ||||
| // If the variable is not specified, a default ollama host and port will be | ||||
| // used. | ||||
| func ClientFromEnvironment() (*Client, error) { | ||||
| 	ollamaHost, err := GetOllamaHost() | ||||
| 	if err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	return &Client{ | ||||
| 		base: envconfig.Host(), | ||||
| 		base: &url.URL{ | ||||
| 			Scheme: ollamaHost.Scheme, | ||||
| 			Host:   net.JoinHostPort(ollamaHost.Host, ollamaHost.Port), | ||||
| 		}, | ||||
| 		http: http.DefaultClient, | ||||
| 	}, nil | ||||
| } | ||||
|  | ||||
| type OllamaHost struct { | ||||
| 	Scheme string | ||||
| 	Host   string | ||||
| 	Port   string | ||||
| } | ||||
|  | ||||
| func GetOllamaHost() (OllamaHost, error) { | ||||
| 	defaultPort := "11434" | ||||
|  | ||||
| 	hostVar := os.Getenv("OLLAMA_HOST") | ||||
| 	hostVar = strings.TrimSpace(strings.Trim(strings.TrimSpace(hostVar), "\"'")) | ||||
|  | ||||
| 	scheme, hostport, ok := strings.Cut(hostVar, "://") | ||||
| 	switch { | ||||
| 	case !ok: | ||||
| 		scheme, hostport = "http", hostVar | ||||
| 	case scheme == "http": | ||||
| 		defaultPort = "80" | ||||
| 	case scheme == "https": | ||||
| 		defaultPort = "443" | ||||
| 	} | ||||
|  | ||||
| 	// trim trailing slashes | ||||
| 	hostport = strings.TrimRight(hostport, "/") | ||||
|  | ||||
| 	host, port, err := net.SplitHostPort(hostport) | ||||
| 	if err != nil { | ||||
| 		host, port = "127.0.0.1", defaultPort | ||||
| 		if ip := net.ParseIP(strings.Trim(hostport, "[]")); ip != nil { | ||||
| 			host = ip.String() | ||||
| 		} else if hostport != "" { | ||||
| 			host = hostport | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	if portNum, err := strconv.ParseInt(port, 10, 32); err != nil || portNum > 65535 || portNum < 0 { | ||||
| 		return OllamaHost{}, ErrInvalidHostPort | ||||
| 	} | ||||
|  | ||||
| 	return OllamaHost{ | ||||
| 		Scheme: scheme, | ||||
| 		Host:   host, | ||||
| 		Port:   port, | ||||
| 	}, nil | ||||
| } | ||||
|  | ||||
| func NewClient(base *url.URL, http *http.Client) *Client { | ||||
| 	return &Client{ | ||||
| 		base: base, | ||||
| @@ -132,7 +188,7 @@ func (c *Client) do(ctx context.Context, method, path string, reqData, respData | ||||
| const maxBufferSize = 512 * format.KiloByte | ||||
|  | ||||
| func (c *Client) stream(ctx context.Context, method, path string, data any, fn func([]byte) error) error { | ||||
| 	var buf io.Reader | ||||
| 	var buf *bytes.Buffer | ||||
| 	if data != nil { | ||||
| 		bts, err := json.Marshal(data) | ||||
| 		if err != nil { | ||||
| @@ -173,7 +229,7 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f | ||||
| 		} | ||||
|  | ||||
| 		if errorResponse.Error != "" { | ||||
| 			return errors.New(errorResponse.Error) | ||||
| 			return fmt.Errorf(errorResponse.Error) | ||||
| 		} | ||||
|  | ||||
| 		if response.StatusCode >= http.StatusBadRequest { | ||||
| @@ -298,9 +354,9 @@ func (c *Client) List(ctx context.Context) (*ListResponse, error) { | ||||
| 	return &lr, nil | ||||
| } | ||||
|  | ||||
| // ListRunning lists running models. | ||||
| func (c *Client) ListRunning(ctx context.Context) (*ProcessResponse, error) { | ||||
| 	var lr ProcessResponse | ||||
| // List running models. | ||||
| func (c *Client) ListRunning(ctx context.Context) (*ListResponse, error) { | ||||
| 	var lr ListResponse | ||||
| 	if err := c.do(ctx, http.MethodGet, "/api/ps", nil, &lr); err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
| @@ -333,7 +389,7 @@ func (c *Client) Show(ctx context.Context, req *ShowRequest) (*ShowResponse, err | ||||
| 	return &resp, nil | ||||
| } | ||||
|  | ||||
| // Heartbeat checks if the server has started and is responsive; if yes, it | ||||
| // Hearbeat checks if the server has started and is responsive; if yes, it | ||||
| // returns nil, otherwise an error. | ||||
| func (c *Client) Heartbeat(ctx context.Context) error { | ||||
| 	if err := c.do(ctx, http.MethodHead, "/", nil, nil); err != nil { | ||||
| @@ -342,16 +398,7 @@ func (c *Client) Heartbeat(ctx context.Context) error { | ||||
| 	return nil | ||||
| } | ||||
|  | ||||
| // Embed generates embeddings from a model. | ||||
| func (c *Client) Embed(ctx context.Context, req *EmbedRequest) (*EmbedResponse, error) { | ||||
| 	var resp EmbedResponse | ||||
| 	if err := c.do(ctx, http.MethodPost, "/api/embed", req, &resp); err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
| 	return &resp, nil | ||||
| } | ||||
|  | ||||
| // Embeddings generates an embedding from a model. | ||||
| // Embeddings generates embeddings from a model. | ||||
| func (c *Client) Embeddings(ctx context.Context, req *EmbeddingRequest) (*EmbeddingResponse, error) { | ||||
| 	var resp EmbeddingResponse | ||||
| 	if err := c.do(ctx, http.MethodPost, "/api/embeddings", req, &resp); err != nil { | ||||
|   | ||||
| @@ -1,14 +1,11 @@ | ||||
| package api | ||||
|  | ||||
| import ( | ||||
| 	"context" | ||||
| 	"encoding/json" | ||||
| 	"fmt" | ||||
| 	"net/http" | ||||
| 	"net/http/httptest" | ||||
| 	"net/url" | ||||
| 	"strings" | ||||
| 	"net" | ||||
| 	"testing" | ||||
|  | ||||
| 	"github.com/stretchr/testify/assert" | ||||
| ) | ||||
|  | ||||
| func TestClientFromEnvironment(t *testing.T) { | ||||
| @@ -49,206 +46,39 @@ func TestClientFromEnvironment(t *testing.T) { | ||||
| 			} | ||||
| 		}) | ||||
| 	} | ||||
| } | ||||
|  | ||||
| // testError represents an internal error type with status code and message | ||||
| // this is used since the error response from the server is not a standard error struct | ||||
| type testError struct { | ||||
| 	message    string | ||||
| 	statusCode int | ||||
| } | ||||
|  | ||||
| func (e testError) Error() string { | ||||
| 	return e.message | ||||
| } | ||||
|  | ||||
| func TestClientStream(t *testing.T) { | ||||
| 	testCases := []struct { | ||||
| 		name      string | ||||
| 		responses []any | ||||
| 		wantErr   string | ||||
| 	}{ | ||||
| 		{ | ||||
| 			name: "immediate error response", | ||||
| 			responses: []any{ | ||||
| 				testError{ | ||||
| 					message:    "test error message", | ||||
| 					statusCode: http.StatusBadRequest, | ||||
| 				}, | ||||
| 			}, | ||||
| 			wantErr: "test error message", | ||||
| 		}, | ||||
| 		{ | ||||
| 			name: "error after successful chunks, ok response", | ||||
| 			responses: []any{ | ||||
| 				ChatResponse{Message: Message{Content: "partial response 1"}}, | ||||
| 				ChatResponse{Message: Message{Content: "partial response 2"}}, | ||||
| 				testError{ | ||||
| 					message:    "mid-stream error", | ||||
| 					statusCode: http.StatusOK, | ||||
| 				}, | ||||
| 			}, | ||||
| 			wantErr: "mid-stream error", | ||||
| 		}, | ||||
| 		{ | ||||
| 			name: "successful stream completion", | ||||
| 			responses: []any{ | ||||
| 				ChatResponse{Message: Message{Content: "chunk 1"}}, | ||||
| 				ChatResponse{Message: Message{Content: "chunk 2"}}, | ||||
| 				ChatResponse{ | ||||
| 					Message:    Message{Content: "final chunk"}, | ||||
| 					Done:       true, | ||||
| 					DoneReason: "stop", | ||||
| 				}, | ||||
| 			}, | ||||
| 		}, | ||||
| 	hostTestCases := map[string]*testCase{ | ||||
| 		"empty":               {value: "", expect: "127.0.0.1:11434"}, | ||||
| 		"only address":        {value: "1.2.3.4", expect: "1.2.3.4:11434"}, | ||||
| 		"only port":           {value: ":1234", expect: ":1234"}, | ||||
| 		"address and port":    {value: "1.2.3.4:1234", expect: "1.2.3.4:1234"}, | ||||
| 		"hostname":            {value: "example.com", expect: "example.com:11434"}, | ||||
| 		"hostname and port":   {value: "example.com:1234", expect: "example.com:1234"}, | ||||
| 		"zero port":           {value: ":0", expect: ":0"}, | ||||
| 		"too large port":      {value: ":66000", err: ErrInvalidHostPort}, | ||||
| 		"too small port":      {value: ":-1", err: ErrInvalidHostPort}, | ||||
| 		"ipv6 localhost":      {value: "[::1]", expect: "[::1]:11434"}, | ||||
| 		"ipv6 world open":     {value: "[::]", expect: "[::]:11434"}, | ||||
| 		"ipv6 no brackets":    {value: "::1", expect: "[::1]:11434"}, | ||||
| 		"ipv6 + port":         {value: "[::1]:1337", expect: "[::1]:1337"}, | ||||
| 		"extra space":         {value: " 1.2.3.4 ", expect: "1.2.3.4:11434"}, | ||||
| 		"extra quotes":        {value: "\"1.2.3.4\"", expect: "1.2.3.4:11434"}, | ||||
| 		"extra space+quotes":  {value: " \" 1.2.3.4 \" ", expect: "1.2.3.4:11434"}, | ||||
| 		"extra single quotes": {value: "'1.2.3.4'", expect: "1.2.3.4:11434"}, | ||||
| 	} | ||||
|  | ||||
| 	for _, tc := range testCases { | ||||
| 		t.Run(tc.name, func(t *testing.T) { | ||||
| 			ts := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) { | ||||
| 				flusher, ok := w.(http.Flusher) | ||||
| 				if !ok { | ||||
| 					t.Fatal("expected http.Flusher") | ||||
| 				} | ||||
| 	for k, v := range hostTestCases { | ||||
| 		t.Run(k, func(t *testing.T) { | ||||
| 			t.Setenv("OLLAMA_HOST", v.value) | ||||
|  | ||||
| 				w.Header().Set("Content-Type", "application/x-ndjson") | ||||
|  | ||||
| 				for _, resp := range tc.responses { | ||||
| 					if errResp, ok := resp.(testError); ok { | ||||
| 						w.WriteHeader(errResp.statusCode) | ||||
| 						err := json.NewEncoder(w).Encode(map[string]string{ | ||||
| 							"error": errResp.message, | ||||
| 						}) | ||||
| 						if err != nil { | ||||
| 							t.Fatal("failed to encode error response:", err) | ||||
| 						} | ||||
| 						return | ||||
| 					} | ||||
|  | ||||
| 					if err := json.NewEncoder(w).Encode(resp); err != nil { | ||||
| 						t.Fatalf("failed to encode response: %v", err) | ||||
| 					} | ||||
| 					flusher.Flush() | ||||
| 				} | ||||
| 			})) | ||||
| 			defer ts.Close() | ||||
|  | ||||
| 			client := NewClient(&url.URL{Scheme: "http", Host: ts.Listener.Addr().String()}, http.DefaultClient) | ||||
|  | ||||
| 			var receivedChunks []ChatResponse | ||||
| 			err := client.stream(context.Background(), http.MethodPost, "/v1/chat", nil, func(chunk []byte) error { | ||||
| 				var resp ChatResponse | ||||
| 				if err := json.Unmarshal(chunk, &resp); err != nil { | ||||
| 					return fmt.Errorf("failed to unmarshal chunk: %w", err) | ||||
| 				} | ||||
| 				receivedChunks = append(receivedChunks, resp) | ||||
| 				return nil | ||||
| 			}) | ||||
|  | ||||
| 			if tc.wantErr != "" { | ||||
| 				if err == nil { | ||||
| 					t.Fatal("expected error but got nil") | ||||
| 				} | ||||
| 				if !strings.Contains(err.Error(), tc.wantErr) { | ||||
| 					t.Errorf("expected error containing %q, got %v", tc.wantErr, err) | ||||
| 				} | ||||
| 				return | ||||
| 			oh, err := GetOllamaHost() | ||||
| 			if err != v.err { | ||||
| 				t.Fatalf("expected %s, got %s", v.err, err) | ||||
| 			} | ||||
| 			if err != nil { | ||||
| 				t.Errorf("unexpected error: %v", err) | ||||
| 			} | ||||
| 		}) | ||||
| 	} | ||||
| } | ||||
|  | ||||
| func TestClientDo(t *testing.T) { | ||||
| 	testCases := []struct { | ||||
| 		name     string | ||||
| 		response any | ||||
| 		wantErr  string | ||||
| 	}{ | ||||
| 		{ | ||||
| 			name: "immediate error response", | ||||
| 			response: testError{ | ||||
| 				message:    "test error message", | ||||
| 				statusCode: http.StatusBadRequest, | ||||
| 			}, | ||||
| 			wantErr: "test error message", | ||||
| 		}, | ||||
| 		{ | ||||
| 			name: "server error response", | ||||
| 			response: testError{ | ||||
| 				message:    "internal error", | ||||
| 				statusCode: http.StatusInternalServerError, | ||||
| 			}, | ||||
| 			wantErr: "internal error", | ||||
| 		}, | ||||
| 		{ | ||||
| 			name: "successful response", | ||||
| 			response: struct { | ||||
| 				ID      string `json:"id"` | ||||
| 				Success bool   `json:"success"` | ||||
| 			}{ | ||||
| 				ID:      "msg_123", | ||||
| 				Success: true, | ||||
| 			}, | ||||
| 		}, | ||||
| 	} | ||||
|  | ||||
| 	for _, tc := range testCases { | ||||
| 		t.Run(tc.name, func(t *testing.T) { | ||||
| 			ts := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) { | ||||
| 				if errResp, ok := tc.response.(testError); ok { | ||||
| 					w.WriteHeader(errResp.statusCode) | ||||
| 					err := json.NewEncoder(w).Encode(map[string]string{ | ||||
| 						"error": errResp.message, | ||||
| 					}) | ||||
| 					if err != nil { | ||||
| 						t.Fatal("failed to encode error response:", err) | ||||
| 					} | ||||
| 					return | ||||
| 				} | ||||
|  | ||||
| 				w.Header().Set("Content-Type", "application/json") | ||||
| 				if err := json.NewEncoder(w).Encode(tc.response); err != nil { | ||||
| 					t.Fatalf("failed to encode response: %v", err) | ||||
| 				} | ||||
| 			})) | ||||
| 			defer ts.Close() | ||||
|  | ||||
| 			client := NewClient(&url.URL{Scheme: "http", Host: ts.Listener.Addr().String()}, http.DefaultClient) | ||||
|  | ||||
| 			var resp struct { | ||||
| 				ID      string `json:"id"` | ||||
| 				Success bool   `json:"success"` | ||||
| 			} | ||||
| 			err := client.do(context.Background(), http.MethodPost, "/v1/messages", nil, &resp) | ||||
|  | ||||
| 			if tc.wantErr != "" { | ||||
| 				if err == nil { | ||||
| 					t.Fatalf("got nil, want error %q", tc.wantErr) | ||||
| 				} | ||||
| 				if err.Error() != tc.wantErr { | ||||
| 					t.Errorf("error message mismatch: got %q, want %q", err.Error(), tc.wantErr) | ||||
| 				} | ||||
| 				return | ||||
| 			} | ||||
|  | ||||
| 			if err != nil { | ||||
| 				t.Fatalf("got error %q, want nil", err) | ||||
| 			} | ||||
|  | ||||
| 			if expectedResp, ok := tc.response.(struct { | ||||
| 				ID      string `json:"id"` | ||||
| 				Success bool   `json:"success"` | ||||
| 			}); ok { | ||||
| 				if resp.ID != expectedResp.ID { | ||||
| 					t.Errorf("response ID mismatch: got %q, want %q", resp.ID, expectedResp.ID) | ||||
| 				} | ||||
| 				if resp.Success != expectedResp.Success { | ||||
| 					t.Errorf("response Success mismatch: got %v, want %v", resp.Success, expectedResp.Success) | ||||
| 				} | ||||
|  | ||||
| 			if err == nil { | ||||
| 				host := net.JoinHostPort(oh.Host, oh.Port) | ||||
| 				assert.Equal(t, v.expect, host, fmt.Sprintf("%s: expected %s, got %s", k, v.expect, host)) | ||||
| 			} | ||||
| 		}) | ||||
| 	} | ||||
|   | ||||
| @@ -1,18 +0,0 @@ | ||||
| # Ollama API Examples | ||||
|  | ||||
| Run the examples in this directory with: | ||||
|  | ||||
| ```shell | ||||
| go run example_name/main.go | ||||
| ``` | ||||
|  | ||||
| ## Chat - Chat with a model | ||||
| - [chat/main.go](chat/main.go) | ||||
|  | ||||
| ## Generate - Generate text from a model | ||||
| - [generate/main.go](generate/main.go) | ||||
| - [generate-streaming/main.go](generate-streaming/main.go) | ||||
|  | ||||
| ## Pull - Pull a model | ||||
| - [pull-progress/main.go](pull-progress/main.go) | ||||
|  | ||||
							
								
								
									
										358
									
								
								api/types.go
									
									
									
									
									
								
							
							
						
						
									
										358
									
								
								api/types.go
									
									
									
									
									
								
							| @@ -2,6 +2,7 @@ package api | ||||
|  | ||||
| import ( | ||||
| 	"encoding/json" | ||||
| 	"errors" | ||||
| 	"fmt" | ||||
| 	"log/slog" | ||||
| 	"math" | ||||
| @@ -10,12 +11,9 @@ import ( | ||||
| 	"strconv" | ||||
| 	"strings" | ||||
| 	"time" | ||||
|  | ||||
| 	"github.com/ollama/ollama/envconfig" | ||||
| 	"github.com/ollama/ollama/types/model" | ||||
| ) | ||||
|  | ||||
| // StatusError is an error with an HTTP status code and message. | ||||
| // StatusError is an error with and HTTP status code. | ||||
| type StatusError struct { | ||||
| 	StatusCode   int | ||||
| 	Status       string | ||||
| @@ -50,9 +48,6 @@ type GenerateRequest struct { | ||||
| 	// Prompt is the textual prompt to send to the model. | ||||
| 	Prompt string `json:"prompt"` | ||||
|  | ||||
| 	// Suffix is the text that comes after the inserted text. | ||||
| 	Suffix string `json:"suffix"` | ||||
|  | ||||
| 	// System overrides the model's default system message/prompt. | ||||
| 	System string `json:"system"` | ||||
|  | ||||
| @@ -60,7 +55,7 @@ type GenerateRequest struct { | ||||
| 	Template string `json:"template"` | ||||
|  | ||||
| 	// Context is the context parameter returned from a previous call to | ||||
| 	// [Client.Generate]. It can be used to keep a short conversational memory. | ||||
| 	// Generate call. It can be used to keep a short conversational memory. | ||||
| 	Context []int `json:"context,omitempty"` | ||||
|  | ||||
| 	// Stream specifies whether the response is streaming; it is true by default. | ||||
| @@ -70,19 +65,19 @@ type GenerateRequest struct { | ||||
| 	Raw bool `json:"raw,omitempty"` | ||||
|  | ||||
| 	// Format specifies the format to return a response in. | ||||
| 	Format json.RawMessage `json:"format,omitempty"` | ||||
| 	Format string `json:"format"` | ||||
|  | ||||
| 	// KeepAlive controls how long the model will stay loaded in memory following | ||||
| 	// this request. | ||||
| 	KeepAlive *Duration `json:"keep_alive,omitempty"` | ||||
|  | ||||
| 	// Images is an optional list of raw image bytes accompanying this | ||||
| 	// Images is an optional list of base64-encoded images accompanying this | ||||
| 	// request, for multimodal models. | ||||
| 	Images []ImageData `json:"images,omitempty"` | ||||
|  | ||||
| 	// Options lists model-specific options. For example, temperature can be | ||||
| 	// set through this field, if the model supports it. | ||||
| 	Options map[string]any `json:"options"` | ||||
| 	Options map[string]interface{} `json:"options"` | ||||
| } | ||||
|  | ||||
| // ChatRequest describes a request sent by [Client.Chat]. | ||||
| @@ -93,142 +88,27 @@ type ChatRequest struct { | ||||
| 	// Messages is the messages of the chat - can be used to keep a chat memory. | ||||
| 	Messages []Message `json:"messages"` | ||||
|  | ||||
| 	// Stream enables streaming of returned responses; true by default. | ||||
| 	// Stream enable streaming of returned response; true by default. | ||||
| 	Stream *bool `json:"stream,omitempty"` | ||||
|  | ||||
| 	// Format is the format to return the response in (e.g. "json"). | ||||
| 	Format json.RawMessage `json:"format,omitempty"` | ||||
| 	Format string `json:"format"` | ||||
|  | ||||
| 	// KeepAlive controls how long the model will stay loaded into memory | ||||
| 	// following the request. | ||||
| 	// followin the request. | ||||
| 	KeepAlive *Duration `json:"keep_alive,omitempty"` | ||||
|  | ||||
| 	// Tools is an optional list of tools the model has access to. | ||||
| 	Tools `json:"tools,omitempty"` | ||||
|  | ||||
| 	// Options lists model-specific options. | ||||
| 	Options map[string]any `json:"options"` | ||||
| } | ||||
|  | ||||
| type Tools []Tool | ||||
|  | ||||
| func (t Tools) String() string { | ||||
| 	bts, _ := json.Marshal(t) | ||||
| 	return string(bts) | ||||
| } | ||||
|  | ||||
| func (t Tool) String() string { | ||||
| 	bts, _ := json.Marshal(t) | ||||
| 	return string(bts) | ||||
| 	Options map[string]interface{} `json:"options"` | ||||
| } | ||||
|  | ||||
| // Message is a single message in a chat sequence. The message contains the | ||||
| // role ("system", "user", or "assistant"), the content and an optional list | ||||
| // of images. | ||||
| type Message struct { | ||||
| 	Role      string      `json:"role"` | ||||
| 	Content   string      `json:"content"` | ||||
| 	Images    []ImageData `json:"images,omitempty"` | ||||
| 	ToolCalls []ToolCall  `json:"tool_calls,omitempty"` | ||||
| } | ||||
|  | ||||
| func (m *Message) UnmarshalJSON(b []byte) error { | ||||
| 	type Alias Message | ||||
| 	var a Alias | ||||
| 	if err := json.Unmarshal(b, &a); err != nil { | ||||
| 		return err | ||||
| 	} | ||||
|  | ||||
| 	*m = Message(a) | ||||
| 	m.Role = strings.ToLower(m.Role) | ||||
| 	return nil | ||||
| } | ||||
|  | ||||
| type ToolCall struct { | ||||
| 	Function ToolCallFunction `json:"function"` | ||||
| } | ||||
|  | ||||
| type ToolCallFunction struct { | ||||
| 	Index     int                       `json:"index,omitempty"` | ||||
| 	Name      string                    `json:"name"` | ||||
| 	Arguments ToolCallFunctionArguments `json:"arguments"` | ||||
| } | ||||
|  | ||||
| type ToolCallFunctionArguments map[string]any | ||||
|  | ||||
| func (t *ToolCallFunctionArguments) String() string { | ||||
| 	bts, _ := json.Marshal(t) | ||||
| 	return string(bts) | ||||
| } | ||||
|  | ||||
| type Tool struct { | ||||
| 	Type     string       `json:"type"` | ||||
| 	Items    any          `json:"items,omitempty"` | ||||
| 	Function ToolFunction `json:"function"` | ||||
| } | ||||
|  | ||||
| // PropertyType can be either a string or an array of strings | ||||
| type PropertyType []string | ||||
|  | ||||
| // UnmarshalJSON implements the json.Unmarshaler interface | ||||
| func (pt *PropertyType) UnmarshalJSON(data []byte) error { | ||||
| 	// Try to unmarshal as a string first | ||||
| 	var s string | ||||
| 	if err := json.Unmarshal(data, &s); err == nil { | ||||
| 		*pt = []string{s} | ||||
| 		return nil | ||||
| 	} | ||||
|  | ||||
| 	// If that fails, try to unmarshal as an array of strings | ||||
| 	var a []string | ||||
| 	if err := json.Unmarshal(data, &a); err != nil { | ||||
| 		return err | ||||
| 	} | ||||
| 	*pt = a | ||||
| 	return nil | ||||
| } | ||||
|  | ||||
| // MarshalJSON implements the json.Marshaler interface | ||||
| func (pt PropertyType) MarshalJSON() ([]byte, error) { | ||||
| 	if len(pt) == 1 { | ||||
| 		// If there's only one type, marshal as a string | ||||
| 		return json.Marshal(pt[0]) | ||||
| 	} | ||||
| 	// Otherwise marshal as an array | ||||
| 	return json.Marshal([]string(pt)) | ||||
| } | ||||
|  | ||||
| // String returns a string representation of the PropertyType | ||||
| func (pt PropertyType) String() string { | ||||
| 	if len(pt) == 0 { | ||||
| 		return "" | ||||
| 	} | ||||
| 	if len(pt) == 1 { | ||||
| 		return pt[0] | ||||
| 	} | ||||
| 	return fmt.Sprintf("%v", []string(pt)) | ||||
| } | ||||
|  | ||||
| type ToolFunction struct { | ||||
| 	Name        string `json:"name"` | ||||
| 	Description string `json:"description"` | ||||
| 	Parameters  struct { | ||||
| 		Type       string   `json:"type"` | ||||
| 		Defs       any      `json:"$defs,omitempty"` | ||||
| 		Items      any      `json:"items,omitempty"` | ||||
| 		Required   []string `json:"required"` | ||||
| 		Properties map[string]struct { | ||||
| 			Type        PropertyType `json:"type"` | ||||
| 			Items       any          `json:"items,omitempty"` | ||||
| 			Description string       `json:"description"` | ||||
| 			Enum        []any        `json:"enum,omitempty"` | ||||
| 		} `json:"properties"` | ||||
| 	} `json:"parameters"` | ||||
| } | ||||
|  | ||||
| func (t *ToolFunction) String() string { | ||||
| 	bts, _ := json.Marshal(t) | ||||
| 	return string(bts) | ||||
| 	Role    string      `json:"role"` | ||||
| 	Content string      `json:"content"` | ||||
| 	Images  []ImageData `json:"images,omitempty"` | ||||
| } | ||||
|  | ||||
| // ChatResponse is the response returned by [Client.Chat]. Its fields are | ||||
| @@ -253,8 +133,8 @@ type Metrics struct { | ||||
| 	EvalDuration       time.Duration `json:"eval_duration,omitempty"` | ||||
| } | ||||
|  | ||||
| // Options specified in [GenerateRequest].  If you add a new option here, also | ||||
| // add it to the API docs. | ||||
| // Options specified in [GenerateRequest], if you add a new option here add it | ||||
| // to the API docs also. | ||||
| type Options struct { | ||||
| 	Runner | ||||
|  | ||||
| @@ -264,7 +144,7 @@ type Options struct { | ||||
| 	NumPredict       int      `json:"num_predict,omitempty"` | ||||
| 	TopK             int      `json:"top_k,omitempty"` | ||||
| 	TopP             float32  `json:"top_p,omitempty"` | ||||
| 	MinP             float32  `json:"min_p,omitempty"` | ||||
| 	TFSZ             float32  `json:"tfs_z,omitempty"` | ||||
| 	TypicalP         float32  `json:"typical_p,omitempty"` | ||||
| 	RepeatLastN      int      `json:"repeat_last_n,omitempty"` | ||||
| 	Temperature      float32  `json:"temperature,omitempty"` | ||||
| @@ -274,50 +154,24 @@ type Options struct { | ||||
| 	Mirostat         int      `json:"mirostat,omitempty"` | ||||
| 	MirostatTau      float32  `json:"mirostat_tau,omitempty"` | ||||
| 	MirostatEta      float32  `json:"mirostat_eta,omitempty"` | ||||
| 	PenalizeNewline  bool     `json:"penalize_newline,omitempty"` | ||||
| 	Stop             []string `json:"stop,omitempty"` | ||||
| } | ||||
|  | ||||
| // Runner options which must be set when the model is loaded into memory | ||||
| type Runner struct { | ||||
| 	NumCtx    int   `json:"num_ctx,omitempty"` | ||||
| 	NumBatch  int   `json:"num_batch,omitempty"` | ||||
| 	NumGPU    int   `json:"num_gpu,omitempty"` | ||||
| 	MainGPU   int   `json:"main_gpu,omitempty"` | ||||
| 	LowVRAM   bool  `json:"low_vram,omitempty"` | ||||
| 	F16KV     bool  `json:"f16_kv,omitempty"` // Deprecated: This option is ignored | ||||
| 	LogitsAll bool  `json:"logits_all,omitempty"` | ||||
| 	VocabOnly bool  `json:"vocab_only,omitempty"` | ||||
| 	UseMMap   *bool `json:"use_mmap,omitempty"` | ||||
| 	UseMLock  bool  `json:"use_mlock,omitempty"` | ||||
| 	NumThread int   `json:"num_thread,omitempty"` | ||||
| } | ||||
|  | ||||
| // EmbedRequest is the request passed to [Client.Embed]. | ||||
| type EmbedRequest struct { | ||||
| 	// Model is the model name. | ||||
| 	Model string `json:"model"` | ||||
|  | ||||
| 	// Input is the input to embed. | ||||
| 	Input any `json:"input"` | ||||
|  | ||||
| 	// KeepAlive controls how long the model will stay loaded in memory following | ||||
| 	// this request. | ||||
| 	KeepAlive *Duration `json:"keep_alive,omitempty"` | ||||
|  | ||||
| 	Truncate *bool `json:"truncate,omitempty"` | ||||
|  | ||||
| 	// Options lists model-specific options. | ||||
| 	Options map[string]any `json:"options"` | ||||
| } | ||||
|  | ||||
| // EmbedResponse is the response from [Client.Embed]. | ||||
| type EmbedResponse struct { | ||||
| 	Model      string      `json:"model"` | ||||
| 	Embeddings [][]float32 `json:"embeddings"` | ||||
|  | ||||
| 	TotalDuration   time.Duration `json:"total_duration,omitempty"` | ||||
| 	LoadDuration    time.Duration `json:"load_duration,omitempty"` | ||||
| 	PromptEvalCount int           `json:"prompt_eval_count,omitempty"` | ||||
| 	UseNUMA   bool `json:"numa,omitempty"` | ||||
| 	NumCtx    int  `json:"num_ctx,omitempty"` | ||||
| 	NumBatch  int  `json:"num_batch,omitempty"` | ||||
| 	NumGPU    int  `json:"num_gpu,omitempty"` | ||||
| 	MainGPU   int  `json:"main_gpu,omitempty"` | ||||
| 	LowVRAM   bool `json:"low_vram,omitempty"` | ||||
| 	F16KV     bool `json:"f16_kv,omitempty"` | ||||
| 	LogitsAll bool `json:"logits_all,omitempty"` | ||||
| 	VocabOnly bool `json:"vocab_only,omitempty"` | ||||
| 	UseMMap   bool `json:"use_mmap,omitempty"` | ||||
| 	UseMLock  bool `json:"use_mlock,omitempty"` | ||||
| 	NumThread int  `json:"num_thread,omitempty"` | ||||
| } | ||||
|  | ||||
| // EmbeddingRequest is the request passed to [Client.Embeddings]. | ||||
| @@ -333,7 +187,7 @@ type EmbeddingRequest struct { | ||||
| 	KeepAlive *Duration `json:"keep_alive,omitempty"` | ||||
|  | ||||
| 	// Options lists model-specific options. | ||||
| 	Options map[string]any `json:"options"` | ||||
| 	Options map[string]interface{} `json:"options"` | ||||
| } | ||||
|  | ||||
| // EmbeddingResponse is the response from [Client.Embeddings]. | ||||
| @@ -343,22 +197,16 @@ type EmbeddingResponse struct { | ||||
|  | ||||
| // CreateRequest is the request passed to [Client.Create]. | ||||
| type CreateRequest struct { | ||||
| 	Model    string `json:"model"` | ||||
| 	Stream   *bool  `json:"stream,omitempty"` | ||||
| 	Quantize string `json:"quantize,omitempty"` | ||||
| 	Model     string `json:"model"` | ||||
| 	Path      string `json:"path"` | ||||
| 	Modelfile string `json:"modelfile"` | ||||
| 	Stream    *bool  `json:"stream,omitempty"` | ||||
| 	Quantize  string `json:"quantize,omitempty"` | ||||
|  | ||||
| 	From       string            `json:"from,omitempty"` | ||||
| 	Files      map[string]string `json:"files,omitempty"` | ||||
| 	Adapters   map[string]string `json:"adapters,omitempty"` | ||||
| 	Template   string            `json:"template,omitempty"` | ||||
| 	License    any               `json:"license,omitempty"` | ||||
| 	System     string            `json:"system,omitempty"` | ||||
| 	Parameters map[string]any    `json:"parameters,omitempty"` | ||||
| 	Messages   []Message         `json:"messages,omitempty"` | ||||
|  | ||||
| 	// Deprecated: set the model name with Model instead | ||||
| 	// Name is deprecated, see Model | ||||
| 	Name string `json:"name"` | ||||
| 	// Deprecated: use Quantize instead | ||||
|  | ||||
| 	// Quantization is deprecated, see Quantize | ||||
| 	Quantization string `json:"quantization,omitempty"` | ||||
| } | ||||
|  | ||||
| @@ -366,39 +214,31 @@ type CreateRequest struct { | ||||
| type DeleteRequest struct { | ||||
| 	Model string `json:"model"` | ||||
|  | ||||
| 	// Deprecated: set the model name with Model instead | ||||
| 	// Name is deprecated, see Model | ||||
| 	Name string `json:"name"` | ||||
| } | ||||
|  | ||||
| // ShowRequest is the request passed to [Client.Show]. | ||||
| type ShowRequest struct { | ||||
| 	Model  string `json:"model"` | ||||
| 	System string `json:"system"` | ||||
|  | ||||
| 	// Template is deprecated | ||||
| 	Model    string `json:"model"` | ||||
| 	System   string `json:"system"` | ||||
| 	Template string `json:"template"` | ||||
| 	Verbose  bool   `json:"verbose"` | ||||
|  | ||||
| 	Options map[string]any `json:"options"` | ||||
| 	Options map[string]interface{} `json:"options"` | ||||
|  | ||||
| 	// Deprecated: set the model name with Model instead | ||||
| 	// Name is deprecated, see Model | ||||
| 	Name string `json:"name"` | ||||
| } | ||||
|  | ||||
| // ShowResponse is the response returned from [Client.Show]. | ||||
| type ShowResponse struct { | ||||
| 	License       string             `json:"license,omitempty"` | ||||
| 	Modelfile     string             `json:"modelfile,omitempty"` | ||||
| 	Parameters    string             `json:"parameters,omitempty"` | ||||
| 	Template      string             `json:"template,omitempty"` | ||||
| 	System        string             `json:"system,omitempty"` | ||||
| 	Details       ModelDetails       `json:"details,omitempty"` | ||||
| 	Messages      []Message          `json:"messages,omitempty"` | ||||
| 	ModelInfo     map[string]any     `json:"model_info,omitempty"` | ||||
| 	ProjectorInfo map[string]any     `json:"projector_info,omitempty"` | ||||
| 	Tensors       []Tensor           `json:"tensors,omitempty"` | ||||
| 	Capabilities  []model.Capability `json:"capabilities,omitempty"` | ||||
| 	ModifiedAt    time.Time          `json:"modified_at,omitempty"` | ||||
| 	License    string       `json:"license,omitempty"` | ||||
| 	Modelfile  string       `json:"modelfile,omitempty"` | ||||
| 	Parameters string       `json:"parameters,omitempty"` | ||||
| 	Template   string       `json:"template,omitempty"` | ||||
| 	System     string       `json:"system,omitempty"` | ||||
| 	Details    ModelDetails `json:"details,omitempty"` | ||||
| 	Messages   []Message    `json:"messages,omitempty"` | ||||
| } | ||||
|  | ||||
| // CopyRequest is the request passed to [Client.Copy]. | ||||
| @@ -410,12 +250,12 @@ type CopyRequest struct { | ||||
| // PullRequest is the request passed to [Client.Pull]. | ||||
| type PullRequest struct { | ||||
| 	Model    string `json:"model"` | ||||
| 	Insecure bool   `json:"insecure,omitempty"` // Deprecated: ignored | ||||
| 	Username string `json:"username"`           // Deprecated: ignored | ||||
| 	Password string `json:"password"`           // Deprecated: ignored | ||||
| 	Insecure bool   `json:"insecure,omitempty"` | ||||
| 	Username string `json:"username"` | ||||
| 	Password string `json:"password"` | ||||
| 	Stream   *bool  `json:"stream,omitempty"` | ||||
|  | ||||
| 	// Deprecated: set the model name with Model instead | ||||
| 	// Name is deprecated, see Model | ||||
| 	Name string `json:"name"` | ||||
| } | ||||
|  | ||||
| @@ -436,46 +276,25 @@ type PushRequest struct { | ||||
| 	Password string `json:"password"` | ||||
| 	Stream   *bool  `json:"stream,omitempty"` | ||||
|  | ||||
| 	// Deprecated: set the model name with Model instead | ||||
| 	// Name is deprecated, see Model | ||||
| 	Name string `json:"name"` | ||||
| } | ||||
|  | ||||
| // ListResponse is the response from [Client.List]. | ||||
| type ListResponse struct { | ||||
| 	Models []ListModelResponse `json:"models"` | ||||
| 	Models []ModelResponse `json:"models"` | ||||
| } | ||||
|  | ||||
| // ProcessResponse is the response from [Client.Process]. | ||||
| type ProcessResponse struct { | ||||
| 	Models []ProcessModelResponse `json:"models"` | ||||
| } | ||||
|  | ||||
| // ListModelResponse is a single model description in [ListResponse]. | ||||
| type ListModelResponse struct { | ||||
| // ModelResponse is a single model description in [ListResponse]. | ||||
| type ModelResponse struct { | ||||
| 	Name       string       `json:"name"` | ||||
| 	Model      string       `json:"model"` | ||||
| 	ModifiedAt time.Time    `json:"modified_at"` | ||||
| 	ModifiedAt time.Time    `json:"modified_at,omitempty"` | ||||
| 	Size       int64        `json:"size"` | ||||
| 	Digest     string       `json:"digest"` | ||||
| 	Details    ModelDetails `json:"details,omitempty"` | ||||
| } | ||||
|  | ||||
| // ProcessModelResponse is a single model description in [ProcessResponse]. | ||||
| type ProcessModelResponse struct { | ||||
| 	Name      string       `json:"name"` | ||||
| 	Model     string       `json:"model"` | ||||
| 	Size      int64        `json:"size"` | ||||
| 	Digest    string       `json:"digest"` | ||||
| 	Details   ModelDetails `json:"details,omitempty"` | ||||
| 	ExpiresAt time.Time    `json:"expires_at"` | ||||
| 	SizeVRAM  int64        `json:"size_vram"` | ||||
| } | ||||
|  | ||||
| type RetrieveModelResponse struct { | ||||
| 	Id      string `json:"id"` | ||||
| 	Object  string `json:"object"` | ||||
| 	Created int64  `json:"created"` | ||||
| 	OwnedBy string `json:"owned_by"` | ||||
| 	ExpiresAt  time.Time    `json:"expires_at,omitempty"` | ||||
| 	SizeVRAM   int64        `json:"size_vram,omitempty"` | ||||
| } | ||||
|  | ||||
| type TokenResponse struct { | ||||
| @@ -487,7 +306,7 @@ type GenerateResponse struct { | ||||
| 	// Model is the model name that generated the response. | ||||
| 	Model string `json:"model"` | ||||
|  | ||||
| 	// CreatedAt is the timestamp of the response. | ||||
| 	//CreatedAt is the timestamp of the response. | ||||
| 	CreatedAt time.Time `json:"created_at"` | ||||
|  | ||||
| 	// Response is the textual response itself. | ||||
| @@ -516,13 +335,6 @@ type ModelDetails struct { | ||||
| 	QuantizationLevel string   `json:"quantization_level"` | ||||
| } | ||||
|  | ||||
| // Tensor describes the metadata for a given tensor. | ||||
| type Tensor struct { | ||||
| 	Name  string   `json:"name"` | ||||
| 	Type  string   `json:"type"` | ||||
| 	Shape []uint64 `json:"shape"` | ||||
| } | ||||
|  | ||||
| func (m *Metrics) Summary() { | ||||
| 	if m.TotalDuration > 0 { | ||||
| 		fmt.Fprintf(os.Stderr, "total duration:       %v\n", m.TotalDuration) | ||||
| @@ -551,7 +363,9 @@ func (m *Metrics) Summary() { | ||||
| 	} | ||||
| } | ||||
|  | ||||
| func (opts *Options) FromMap(m map[string]any) error { | ||||
| var ErrInvalidHostPort = errors.New("invalid port specified in OLLAMA_HOST") | ||||
|  | ||||
| func (opts *Options) FromMap(m map[string]interface{}) error { | ||||
| 	valueOpts := reflect.ValueOf(opts).Elem() // names of the fields in the options struct | ||||
| 	typeOpts := reflect.TypeOf(opts).Elem()   // types of the fields in the options struct | ||||
|  | ||||
| @@ -567,7 +381,7 @@ func (opts *Options) FromMap(m map[string]any) error { | ||||
| 	for key, val := range m { | ||||
| 		opt, ok := jsonOpts[key] | ||||
| 		if !ok { | ||||
| 			slog.Warn("invalid option provided", "option", key) | ||||
| 			slog.Warn("invalid option provided", "option", opt.Name) | ||||
| 			continue | ||||
| 		} | ||||
|  | ||||
| @@ -608,12 +422,12 @@ func (opts *Options) FromMap(m map[string]any) error { | ||||
| 				} | ||||
| 				field.SetString(val) | ||||
| 			case reflect.Slice: | ||||
| 				// JSON unmarshals to []any, not []string | ||||
| 				val, ok := val.([]any) | ||||
| 				// JSON unmarshals to []interface{}, not []string | ||||
| 				val, ok := val.([]interface{}) | ||||
| 				if !ok { | ||||
| 					return fmt.Errorf("option %q must be of type array", key) | ||||
| 				} | ||||
| 				// convert []any to []string | ||||
| 				// convert []interface{} to []string | ||||
| 				slice := make([]string, len(val)) | ||||
| 				for i, item := range val { | ||||
| 					str, ok := item.(string) | ||||
| @@ -623,17 +437,6 @@ func (opts *Options) FromMap(m map[string]any) error { | ||||
| 					slice[i] = str | ||||
| 				} | ||||
| 				field.Set(reflect.ValueOf(slice)) | ||||
| 			case reflect.Pointer: | ||||
| 				var b bool | ||||
| 				if field.Type() == reflect.TypeOf(&b) { | ||||
| 					val, ok := val.(bool) | ||||
| 					if !ok { | ||||
| 						return fmt.Errorf("option %q must be of type boolean", key) | ||||
| 					} | ||||
| 					field.Set(reflect.ValueOf(&val)) | ||||
| 				} else { | ||||
| 					return fmt.Errorf("unknown type loading config params: %v %v", field.Kind(), field.Type()) | ||||
| 				} | ||||
| 			default: | ||||
| 				return fmt.Errorf("unknown type loading config params: %v", field.Kind()) | ||||
| 			} | ||||
| @@ -655,6 +458,7 @@ func DefaultOptions() Options { | ||||
| 		Temperature:      0.8, | ||||
| 		TopK:             40, | ||||
| 		TopP:             0.9, | ||||
| 		TFSZ:             1.0, | ||||
| 		TypicalP:         1.0, | ||||
| 		RepeatLastN:      64, | ||||
| 		RepeatPenalty:    1.1, | ||||
| @@ -663,17 +467,20 @@ func DefaultOptions() Options { | ||||
| 		Mirostat:         0, | ||||
| 		MirostatTau:      5.0, | ||||
| 		MirostatEta:      0.1, | ||||
| 		PenalizeNewline:  true, | ||||
| 		Seed:             -1, | ||||
|  | ||||
| 		Runner: Runner{ | ||||
| 			// options set when the model is loaded | ||||
| 			NumCtx:    int(envconfig.ContextLength()), | ||||
| 			NumCtx:    2048, | ||||
| 			NumBatch:  512, | ||||
| 			NumGPU:    -1, // -1 here indicates that NumGPU should be set dynamically | ||||
| 			NumThread: 0,  // let the runtime decide | ||||
| 			LowVRAM:   false, | ||||
| 			F16KV:     true, | ||||
| 			UseMLock:  false, | ||||
| 			UseMMap:   nil, | ||||
| 			UseMMap:   true, | ||||
| 			UseNUMA:   false, | ||||
| 		}, | ||||
| 	} | ||||
| } | ||||
| @@ -720,7 +527,7 @@ func (d *Duration) UnmarshalJSON(b []byte) (err error) { | ||||
| } | ||||
|  | ||||
| // FormatParams converts specified parameter options to their correct types | ||||
| func FormatParams(params map[string][]string) (map[string]any, error) { | ||||
| func FormatParams(params map[string][]string) (map[string]interface{}, error) { | ||||
| 	opts := Options{} | ||||
| 	valueOpts := reflect.ValueOf(&opts).Elem() // names of the fields in the options struct | ||||
| 	typeOpts := reflect.TypeOf(opts)           // types of the fields in the options struct | ||||
| @@ -734,7 +541,7 @@ func FormatParams(params map[string][]string) (map[string]any, error) { | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	out := make(map[string]any) | ||||
| 	out := make(map[string]interface{}) | ||||
| 	// iterate params and set values based on json struct tags | ||||
| 	for key, vals := range params { | ||||
| 		if opt, ok := jsonOpts[key]; !ok { | ||||
| @@ -769,17 +576,6 @@ func FormatParams(params map[string][]string) (map[string]any, error) { | ||||
| 				case reflect.Slice: | ||||
| 					// TODO: only string slices are supported right now | ||||
| 					out[key] = vals | ||||
| 				case reflect.Pointer: | ||||
| 					var b bool | ||||
| 					if field.Type() == reflect.TypeOf(&b) { | ||||
| 						boolVal, err := strconv.ParseBool(vals[0]) | ||||
| 						if err != nil { | ||||
| 							return nil, fmt.Errorf("invalid bool value %s", vals) | ||||
| 						} | ||||
| 						out[key] = &boolVal | ||||
| 					} else { | ||||
| 						return nil, fmt.Errorf("unknown type %s for %s", field.Kind(), key) | ||||
| 					} | ||||
| 				default: | ||||
| 					return nil, fmt.Errorf("unknown type %s for %s", field.Kind(), key) | ||||
| 				} | ||||
|   | ||||
| @@ -2,7 +2,6 @@ package api | ||||
|  | ||||
| import ( | ||||
| 	"encoding/json" | ||||
| 	"errors" | ||||
| 	"math" | ||||
| 	"testing" | ||||
| 	"time" | ||||
| @@ -73,13 +72,13 @@ func TestDurationMarshalUnmarshal(t *testing.T) { | ||||
| 		}, | ||||
| 		{ | ||||
| 			"positive duration", | ||||
| 			42 * time.Second, | ||||
| 			42 * time.Second, | ||||
| 			time.Duration(42 * time.Second), | ||||
| 			time.Duration(42 * time.Second), | ||||
| 		}, | ||||
| 		{ | ||||
| 			"another positive duration", | ||||
| 			42 * time.Minute, | ||||
| 			42 * time.Minute, | ||||
| 			time.Duration(42 * time.Minute), | ||||
| 			time.Duration(42 * time.Minute), | ||||
| 		}, | ||||
| 		{ | ||||
| 			"zero duration", | ||||
| @@ -106,269 +105,3 @@ func TestDurationMarshalUnmarshal(t *testing.T) { | ||||
| 		}) | ||||
| 	} | ||||
| } | ||||
|  | ||||
| func TestUseMmapParsingFromJSON(t *testing.T) { | ||||
| 	tr := true | ||||
| 	fa := false | ||||
| 	tests := []struct { | ||||
| 		name string | ||||
| 		req  string | ||||
| 		exp  *bool | ||||
| 	}{ | ||||
| 		{ | ||||
| 			name: "Undefined", | ||||
| 			req:  `{ }`, | ||||
| 			exp:  nil, | ||||
| 		}, | ||||
| 		{ | ||||
| 			name: "True", | ||||
| 			req:  `{ "use_mmap": true }`, | ||||
| 			exp:  &tr, | ||||
| 		}, | ||||
| 		{ | ||||
| 			name: "False", | ||||
| 			req:  `{ "use_mmap": false }`, | ||||
| 			exp:  &fa, | ||||
| 		}, | ||||
| 	} | ||||
|  | ||||
| 	for _, test := range tests { | ||||
| 		t.Run(test.name, func(t *testing.T) { | ||||
| 			var oMap map[string]any | ||||
| 			err := json.Unmarshal([]byte(test.req), &oMap) | ||||
| 			require.NoError(t, err) | ||||
| 			opts := DefaultOptions() | ||||
| 			err = opts.FromMap(oMap) | ||||
| 			require.NoError(t, err) | ||||
| 			assert.Equal(t, test.exp, opts.UseMMap) | ||||
| 		}) | ||||
| 	} | ||||
| } | ||||
|  | ||||
| func TestUseMmapFormatParams(t *testing.T) { | ||||
| 	tr := true | ||||
| 	fa := false | ||||
| 	tests := []struct { | ||||
| 		name string | ||||
| 		req  map[string][]string | ||||
| 		exp  *bool | ||||
| 		err  error | ||||
| 	}{ | ||||
| 		{ | ||||
| 			name: "True", | ||||
| 			req: map[string][]string{ | ||||
| 				"use_mmap": {"true"}, | ||||
| 			}, | ||||
| 			exp: &tr, | ||||
| 			err: nil, | ||||
| 		}, | ||||
| 		{ | ||||
| 			name: "False", | ||||
| 			req: map[string][]string{ | ||||
| 				"use_mmap": {"false"}, | ||||
| 			}, | ||||
| 			exp: &fa, | ||||
| 			err: nil, | ||||
| 		}, | ||||
| 		{ | ||||
| 			name: "Numeric True", | ||||
| 			req: map[string][]string{ | ||||
| 				"use_mmap": {"1"}, | ||||
| 			}, | ||||
| 			exp: &tr, | ||||
| 			err: nil, | ||||
| 		}, | ||||
| 		{ | ||||
| 			name: "Numeric False", | ||||
| 			req: map[string][]string{ | ||||
| 				"use_mmap": {"0"}, | ||||
| 			}, | ||||
| 			exp: &fa, | ||||
| 			err: nil, | ||||
| 		}, | ||||
| 		{ | ||||
| 			name: "invalid string", | ||||
| 			req: map[string][]string{ | ||||
| 				"use_mmap": {"foo"}, | ||||
| 			}, | ||||
| 			exp: nil, | ||||
| 			err: errors.New("invalid bool value [foo]"), | ||||
| 		}, | ||||
| 	} | ||||
|  | ||||
| 	for _, test := range tests { | ||||
| 		t.Run(test.name, func(t *testing.T) { | ||||
| 			resp, err := FormatParams(test.req) | ||||
| 			require.Equal(t, test.err, err) | ||||
| 			respVal, ok := resp["use_mmap"] | ||||
| 			if test.exp != nil { | ||||
| 				assert.True(t, ok, "resp: %v", resp) | ||||
| 				assert.Equal(t, *test.exp, *respVal.(*bool)) | ||||
| 			} | ||||
| 		}) | ||||
| 	} | ||||
| } | ||||
|  | ||||
| func TestMessage_UnmarshalJSON(t *testing.T) { | ||||
| 	tests := []struct { | ||||
| 		input    string | ||||
| 		expected string | ||||
| 	}{ | ||||
| 		{`{"role": "USER", "content": "Hello!"}`, "user"}, | ||||
| 		{`{"role": "System", "content": "Initialization complete."}`, "system"}, | ||||
| 		{`{"role": "assistant", "content": "How can I help you?"}`, "assistant"}, | ||||
| 		{`{"role": "TOOl", "content": "Access granted."}`, "tool"}, | ||||
| 	} | ||||
|  | ||||
| 	for _, test := range tests { | ||||
| 		var msg Message | ||||
| 		if err := json.Unmarshal([]byte(test.input), &msg); err != nil { | ||||
| 			t.Errorf("Unexpected error: %v", err) | ||||
| 		} | ||||
|  | ||||
| 		if msg.Role != test.expected { | ||||
| 			t.Errorf("role not lowercased: got %v, expected %v", msg.Role, test.expected) | ||||
| 		} | ||||
| 	} | ||||
| } | ||||
|  | ||||
| func TestToolFunction_UnmarshalJSON(t *testing.T) { | ||||
| 	tests := []struct { | ||||
| 		name    string | ||||
| 		input   string | ||||
| 		wantErr string | ||||
| 	}{ | ||||
| 		{ | ||||
| 			name: "valid enum with same types", | ||||
| 			input: `{ | ||||
| 				"name": "test", | ||||
| 				"description": "test function", | ||||
| 				"parameters": { | ||||
| 					"type": "object", | ||||
| 					"required": ["test"], | ||||
| 					"properties": { | ||||
| 						"test": { | ||||
| 							"type": "string", | ||||
| 							"description": "test prop", | ||||
| 							"enum": ["a", "b", "c"] | ||||
| 						} | ||||
| 					} | ||||
| 				} | ||||
| 			}`, | ||||
| 			wantErr: "", | ||||
| 		}, | ||||
| 		{ | ||||
| 			name: "empty enum array", | ||||
| 			input: `{ | ||||
| 				"name": "test", | ||||
| 				"description": "test function", | ||||
| 				"parameters": { | ||||
| 					"type": "object", | ||||
| 					"required": ["test"], | ||||
| 					"properties": { | ||||
| 						"test": { | ||||
| 							"type": "string", | ||||
| 							"description": "test prop", | ||||
| 							"enum": [] | ||||
| 						} | ||||
| 					} | ||||
| 				} | ||||
| 			}`, | ||||
| 			wantErr: "", | ||||
| 		}, | ||||
| 	} | ||||
|  | ||||
| 	for _, tt := range tests { | ||||
| 		t.Run(tt.name, func(t *testing.T) { | ||||
| 			var tf ToolFunction | ||||
| 			err := json.Unmarshal([]byte(tt.input), &tf) | ||||
|  | ||||
| 			if tt.wantErr != "" { | ||||
| 				require.Error(t, err) | ||||
| 				assert.Contains(t, err.Error(), tt.wantErr) | ||||
| 			} else { | ||||
| 				require.NoError(t, err) | ||||
| 			} | ||||
| 		}) | ||||
| 	} | ||||
| } | ||||
|  | ||||
| func TestPropertyType_UnmarshalJSON(t *testing.T) { | ||||
| 	tests := []struct { | ||||
| 		name     string | ||||
| 		input    string | ||||
| 		expected PropertyType | ||||
| 	}{ | ||||
| 		{ | ||||
| 			name:     "string type", | ||||
| 			input:    `"string"`, | ||||
| 			expected: PropertyType{"string"}, | ||||
| 		}, | ||||
| 		{ | ||||
| 			name:     "array of types", | ||||
| 			input:    `["string", "number"]`, | ||||
| 			expected: PropertyType{"string", "number"}, | ||||
| 		}, | ||||
| 		{ | ||||
| 			name:     "array with single type", | ||||
| 			input:    `["string"]`, | ||||
| 			expected: PropertyType{"string"}, | ||||
| 		}, | ||||
| 	} | ||||
|  | ||||
| 	for _, test := range tests { | ||||
| 		t.Run(test.name, func(t *testing.T) { | ||||
| 			var pt PropertyType | ||||
| 			if err := json.Unmarshal([]byte(test.input), &pt); err != nil { | ||||
| 				t.Errorf("Unexpected error: %v", err) | ||||
| 			} | ||||
|  | ||||
| 			if len(pt) != len(test.expected) { | ||||
| 				t.Errorf("Length mismatch: got %v, expected %v", len(pt), len(test.expected)) | ||||
| 			} | ||||
|  | ||||
| 			for i, v := range pt { | ||||
| 				if v != test.expected[i] { | ||||
| 					t.Errorf("Value mismatch at index %d: got %v, expected %v", i, v, test.expected[i]) | ||||
| 				} | ||||
| 			} | ||||
| 		}) | ||||
| 	} | ||||
| } | ||||
|  | ||||
| func TestPropertyType_MarshalJSON(t *testing.T) { | ||||
| 	tests := []struct { | ||||
| 		name     string | ||||
| 		input    PropertyType | ||||
| 		expected string | ||||
| 	}{ | ||||
| 		{ | ||||
| 			name:     "single type", | ||||
| 			input:    PropertyType{"string"}, | ||||
| 			expected: `"string"`, | ||||
| 		}, | ||||
| 		{ | ||||
| 			name:     "multiple types", | ||||
| 			input:    PropertyType{"string", "number"}, | ||||
| 			expected: `["string","number"]`, | ||||
| 		}, | ||||
| 		{ | ||||
| 			name:     "empty type", | ||||
| 			input:    PropertyType{}, | ||||
| 			expected: `[]`, | ||||
| 		}, | ||||
| 	} | ||||
|  | ||||
| 	for _, test := range tests { | ||||
| 		t.Run(test.name, func(t *testing.T) { | ||||
| 			data, err := json.Marshal(test.input) | ||||
| 			if err != nil { | ||||
| 				t.Errorf("Unexpected error: %v", err) | ||||
| 			} | ||||
|  | ||||
| 			if string(data) != test.expected { | ||||
| 				t.Errorf("Marshaled data mismatch: got %v, expected %v", string(data), test.expected) | ||||
| 			} | ||||
| 		}) | ||||
| 	} | ||||
| } | ||||
|   | ||||
| @@ -17,6 +17,6 @@ If you want to build the installer, youll need to install | ||||
| In the top directory of this repo, run the following powershell script | ||||
| to build the ollama CLI, ollama app, and ollama installer. | ||||
|  | ||||
| ```powershell | ||||
| ``` | ||||
| powershell -ExecutionPolicy Bypass -File .\scripts\build_windows.ps1 | ||||
| ``` | ||||
|   | ||||
| @@ -2,8 +2,8 @@ | ||||
|  | ||||
| package lifecycle | ||||
|  | ||||
| import "errors" | ||||
| import "fmt" | ||||
|  | ||||
| func GetStarted() error { | ||||
| 	return errors.New("not implemented") | ||||
| 	return fmt.Errorf("GetStarted not implemented") | ||||
| } | ||||
|   | ||||
| @@ -34,6 +34,7 @@ func GetStarted() error { | ||||
| 		Sys:   &syscall.SysProcAttr{CreationFlags: CREATE_NEW_CONSOLE, HideWindow: false}, | ||||
| 	} | ||||
| 	proc, err := os.StartProcess(args[0], args, attrs) | ||||
|  | ||||
| 	if err != nil { | ||||
| 		return fmt.Errorf("unable to start getting started shell %w", err) | ||||
| 	} | ||||
|   | ||||
| @@ -11,12 +11,10 @@ import ( | ||||
|  | ||||
| 	"github.com/ollama/ollama/app/store" | ||||
| 	"github.com/ollama/ollama/app/tray" | ||||
| 	"github.com/ollama/ollama/envconfig" | ||||
| ) | ||||
|  | ||||
| func Run() { | ||||
| 	InitLogging() | ||||
| 	slog.Info("app config", "env", envconfig.Values()) | ||||
|  | ||||
| 	ctx, cancel := context.WithCancel(context.Background()) | ||||
| 	var done chan int | ||||
|   | ||||
| @@ -5,8 +5,6 @@ import ( | ||||
| 	"log/slog" | ||||
| 	"os" | ||||
| 	"path/filepath" | ||||
| 	"strconv" | ||||
| 	"strings" | ||||
|  | ||||
| 	"github.com/ollama/ollama/envconfig" | ||||
| ) | ||||
| @@ -14,7 +12,7 @@ import ( | ||||
| func InitLogging() { | ||||
| 	level := slog.LevelInfo | ||||
|  | ||||
| 	if envconfig.Debug() { | ||||
| 	if envconfig.Debug { | ||||
| 		level = slog.LevelDebug | ||||
| 	} | ||||
|  | ||||
| @@ -26,8 +24,7 @@ func InitLogging() { | ||||
| 		logFile = os.Stderr | ||||
| 		// TODO - write one-line to the app.log file saying we're running in console mode to help avoid confusion | ||||
| 	} else { | ||||
| 		rotateLogs(AppLogFile) | ||||
| 		logFile, err = os.OpenFile(AppLogFile, os.O_APPEND|os.O_WRONLY|os.O_CREATE, 0o755) | ||||
| 		logFile, err = os.OpenFile(AppLogFile, os.O_APPEND|os.O_WRONLY|os.O_CREATE, 0755) | ||||
| 		if err != nil { | ||||
| 			slog.Error(fmt.Sprintf("failed to create server log %v", err)) | ||||
| 			return | ||||
| @@ -49,32 +46,3 @@ func InitLogging() { | ||||
|  | ||||
| 	slog.Info("ollama app started") | ||||
| } | ||||
|  | ||||
| func rotateLogs(logFile string) { | ||||
| 	if _, err := os.Stat(logFile); os.IsNotExist(err) { | ||||
| 		return | ||||
| 	} | ||||
| 	index := strings.LastIndex(logFile, ".") | ||||
| 	pre := logFile[:index] | ||||
| 	post := "." + logFile[index+1:] | ||||
| 	for i := LogRotationCount; i > 0; i-- { | ||||
| 		older := pre + "-" + strconv.Itoa(i) + post | ||||
| 		newer := pre + "-" + strconv.Itoa(i-1) + post | ||||
| 		if i == 1 { | ||||
| 			newer = pre + post | ||||
| 		} | ||||
| 		if _, err := os.Stat(newer); err == nil { | ||||
| 			if _, err := os.Stat(older); err == nil { | ||||
| 				err := os.Remove(older) | ||||
| 				if err != nil { | ||||
| 					slog.Warn("Failed to remove older log", "older", older, "error", err) | ||||
| 					continue | ||||
| 				} | ||||
| 			} | ||||
| 			err := os.Rename(newer, older) | ||||
| 			if err != nil { | ||||
| 				slog.Warn("Failed to rotate log", "older", older, "newer", newer, "error", err) | ||||
| 			} | ||||
| 		} | ||||
| 	} | ||||
| } | ||||
|   | ||||
| @@ -5,5 +5,5 @@ package lifecycle | ||||
| import "log/slog" | ||||
|  | ||||
| func ShowLogs() { | ||||
| 	slog.Warn("not implemented") | ||||
| 	slog.Warn("ShowLogs not yet implemented") | ||||
| } | ||||
|   | ||||
| @@ -1,44 +0,0 @@ | ||||
| package lifecycle | ||||
|  | ||||
| import ( | ||||
| 	"os" | ||||
| 	"path/filepath" | ||||
| 	"strconv" | ||||
| 	"testing" | ||||
|  | ||||
| 	"github.com/stretchr/testify/assert" | ||||
| 	"github.com/stretchr/testify/require" | ||||
| ) | ||||
|  | ||||
| func TestRotateLogs(t *testing.T) { | ||||
| 	logDir := t.TempDir() | ||||
| 	logFile := filepath.Join(logDir, "testlog.log") | ||||
|  | ||||
| 	// No log exists | ||||
| 	rotateLogs(logFile) | ||||
|  | ||||
| 	require.NoError(t, os.WriteFile(logFile, []byte("1"), 0o644)) | ||||
| 	assert.FileExists(t, logFile) | ||||
| 	// First rotation | ||||
| 	rotateLogs(logFile) | ||||
| 	assert.FileExists(t, filepath.Join(logDir, "testlog-1.log")) | ||||
| 	assert.NoFileExists(t, filepath.Join(logDir, "testlog-2.log")) | ||||
| 	assert.NoFileExists(t, logFile) | ||||
|  | ||||
| 	// Should be a no-op without a new log | ||||
| 	rotateLogs(logFile) | ||||
| 	assert.FileExists(t, filepath.Join(logDir, "testlog-1.log")) | ||||
| 	assert.NoFileExists(t, filepath.Join(logDir, "testlog-2.log")) | ||||
| 	assert.NoFileExists(t, logFile) | ||||
|  | ||||
| 	for i := 2; i <= LogRotationCount+1; i++ { | ||||
| 		require.NoError(t, os.WriteFile(logFile, []byte(strconv.Itoa(i)), 0o644)) | ||||
| 		assert.FileExists(t, logFile) | ||||
| 		rotateLogs(logFile) | ||||
| 		assert.NoFileExists(t, logFile) | ||||
| 		for j := 1; j < i; j++ { | ||||
| 			assert.FileExists(t, filepath.Join(logDir, "testlog-"+strconv.Itoa(j)+".log")) | ||||
| 		} | ||||
| 		assert.NoFileExists(t, filepath.Join(logDir, "testlog-"+strconv.Itoa(i+1)+".log")) | ||||
| 	} | ||||
| } | ||||
| @@ -16,12 +16,11 @@ var ( | ||||
| 	AppDir     = "/opt/Ollama" | ||||
| 	AppDataDir = "/opt/Ollama" | ||||
| 	// TODO - should there be a distinct log dir? | ||||
| 	UpdateStageDir   = "/tmp" | ||||
| 	AppLogFile       = "/tmp/ollama_app.log" | ||||
| 	ServerLogFile    = "/tmp/ollama.log" | ||||
| 	UpgradeLogFile   = "/tmp/ollama_update.log" | ||||
| 	Installer        = "OllamaSetup.exe" | ||||
| 	LogRotationCount = 5 | ||||
| 	UpdateStageDir = "/tmp" | ||||
| 	AppLogFile     = "/tmp/ollama_app.log" | ||||
| 	ServerLogFile  = "/tmp/ollama.log" | ||||
| 	UpgradeLogFile = "/tmp/ollama_update.log" | ||||
| 	Installer      = "OllamaSetup.exe" | ||||
| ) | ||||
|  | ||||
| func init() { | ||||
| @@ -36,13 +35,8 @@ func init() { | ||||
| 		ServerLogFile = filepath.Join(AppDataDir, "server.log") | ||||
| 		UpgradeLogFile = filepath.Join(AppDataDir, "upgrade.log") | ||||
|  | ||||
| 		exe, err := os.Executable() | ||||
| 		if err != nil { | ||||
| 			slog.Warn("error discovering executable directory", "error", err) | ||||
| 			AppDir = filepath.Join(localAppData, "Programs", "Ollama") | ||||
| 		} else { | ||||
| 			AppDir = filepath.Dir(exe) | ||||
| 		} | ||||
| 		// Executables are stored in APPDATA | ||||
| 		AppDir = filepath.Join(localAppData, "Programs", "Ollama") | ||||
|  | ||||
| 		// Make sure we have PATH set correctly for any spawned children | ||||
| 		paths := strings.Split(os.Getenv("PATH"), ";") | ||||
| @@ -69,12 +63,13 @@ func init() { | ||||
| 		} | ||||
|  | ||||
| 		// Make sure our logging dir exists | ||||
| 		_, err = os.Stat(AppDataDir) | ||||
| 		_, err := os.Stat(AppDataDir) | ||||
| 		if errors.Is(err, os.ErrNotExist) { | ||||
| 			if err := os.MkdirAll(AppDataDir, 0o755); err != nil { | ||||
| 				slog.Error(fmt.Sprintf("create ollama dir %s: %v", AppDataDir, err)) | ||||
| 			} | ||||
| 		} | ||||
|  | ||||
| 	} else if runtime.GOOS == "darwin" { | ||||
| 		// TODO | ||||
| 		AppName += ".app" | ||||
|   | ||||
| @@ -15,20 +15,14 @@ import ( | ||||
| ) | ||||
|  | ||||
| func getCLIFullPath(command string) string { | ||||
| 	var cmdPath string | ||||
| 	cmdPath := "" | ||||
| 	appExe, err := os.Executable() | ||||
| 	if err == nil { | ||||
| 		// Check both the same location as the tray app, as well as ./bin | ||||
| 		cmdPath = filepath.Join(filepath.Dir(appExe), command) | ||||
| 		_, err := os.Stat(cmdPath) | ||||
| 		if err == nil { | ||||
| 			return cmdPath | ||||
| 		} | ||||
| 		cmdPath = filepath.Join(filepath.Dir(appExe), "bin", command) | ||||
| 		_, err = os.Stat(cmdPath) | ||||
| 		if err == nil { | ||||
| 			return cmdPath | ||||
| 		} | ||||
| 	} | ||||
| 	cmdPath, err = exec.LookPath(command) | ||||
| 	if err == nil { | ||||
| @@ -60,8 +54,8 @@ func start(ctx context.Context, command string) (*exec.Cmd, error) { | ||||
| 		return nil, fmt.Errorf("failed to spawn server stderr pipe: %w", err) | ||||
| 	} | ||||
|  | ||||
| 	rotateLogs(ServerLogFile) | ||||
| 	logFile, err := os.OpenFile(ServerLogFile, os.O_APPEND|os.O_WRONLY|os.O_CREATE, 0o755) | ||||
| 	// TODO - rotation | ||||
| 	logFile, err := os.OpenFile(ServerLogFile, os.O_APPEND|os.O_WRONLY|os.O_CREATE, 0755) | ||||
| 	if err != nil { | ||||
| 		return nil, fmt.Errorf("failed to create server log: %w", err) | ||||
| 	} | ||||
| @@ -71,6 +65,7 @@ func start(ctx context.Context, command string) (*exec.Cmd, error) { | ||||
| 	if err != nil { | ||||
| 		if !errors.Is(err, os.ErrNotExist) { | ||||
| 			return nil, fmt.Errorf("stat ollama server log dir %s: %v", logDir, err) | ||||
|  | ||||
| 		} | ||||
|  | ||||
| 		if err := os.MkdirAll(logDir, 0o755); err != nil { | ||||
|   | ||||
| @@ -24,8 +24,7 @@ func terminate(cmd *exec.Cmd) error { | ||||
| 	if err != nil { | ||||
| 		return err | ||||
| 	} | ||||
| 	//nolint:errcheck | ||||
| 	defer dll.Release() | ||||
| 	defer dll.Release() // nolint: errcheck | ||||
|  | ||||
| 	pid := cmd.Process.Pid | ||||
|  | ||||
| @@ -74,8 +73,7 @@ func isProcessExited(pid int) (bool, error) { | ||||
| 	if err != nil { | ||||
| 		return false, fmt.Errorf("failed to open process: %v", err) | ||||
| 	} | ||||
| 	//nolint:errcheck | ||||
| 	defer windows.CloseHandle(hProcess) | ||||
| 	defer windows.CloseHandle(hProcess) // nolint: errcheck | ||||
|  | ||||
| 	var exitCode uint32 | ||||
| 	err = windows.GetExitCodeProcess(hProcess, &exitCode) | ||||
|   | ||||
| @@ -15,7 +15,6 @@ import ( | ||||
| 	"path" | ||||
| 	"path/filepath" | ||||
| 	"runtime" | ||||
| 	"strconv" | ||||
| 	"strings" | ||||
| 	"time" | ||||
|  | ||||
| @@ -47,7 +46,7 @@ func IsNewReleaseAvailable(ctx context.Context) (bool, UpdateResponse) { | ||||
| 	query.Add("os", runtime.GOOS) | ||||
| 	query.Add("arch", runtime.GOARCH) | ||||
| 	query.Add("version", version.Version) | ||||
| 	query.Add("ts", strconv.FormatInt(time.Now().Unix(), 10)) | ||||
| 	query.Add("ts", fmt.Sprintf("%d", time.Now().Unix())) | ||||
|  | ||||
| 	nonce, err := auth.NewNonce(rand.Reader, 16) | ||||
| 	if err != nil { | ||||
| @@ -79,7 +78,7 @@ func IsNewReleaseAvailable(ctx context.Context) (bool, UpdateResponse) { | ||||
| 	} | ||||
| 	defer resp.Body.Close() | ||||
|  | ||||
| 	if resp.StatusCode == http.StatusNoContent { | ||||
| 	if resp.StatusCode == 204 { | ||||
| 		slog.Debug("check update response 204 (current version is up to date)") | ||||
| 		return false, updateResp | ||||
| 	} | ||||
| @@ -88,7 +87,7 @@ func IsNewReleaseAvailable(ctx context.Context) (bool, UpdateResponse) { | ||||
| 		slog.Warn(fmt.Sprintf("failed to read body response: %s", err)) | ||||
| 	} | ||||
|  | ||||
| 	if resp.StatusCode != http.StatusOK { | ||||
| 	if resp.StatusCode != 200 { | ||||
| 		slog.Info(fmt.Sprintf("check update error %d - %.96s", resp.StatusCode, string(body))) | ||||
| 		return false, updateResp | ||||
| 	} | ||||
| @@ -115,7 +114,7 @@ func DownloadNewRelease(ctx context.Context, updateResp UpdateResponse) error { | ||||
| 	if err != nil { | ||||
| 		return fmt.Errorf("error checking update: %w", err) | ||||
| 	} | ||||
| 	if resp.StatusCode != http.StatusOK { | ||||
| 	if resp.StatusCode != 200 { | ||||
| 		return fmt.Errorf("unexpected status attempting to download update %d", resp.StatusCode) | ||||
| 	} | ||||
| 	resp.Body.Close() | ||||
|   | ||||
| @@ -4,9 +4,9 @@ package lifecycle | ||||
|  | ||||
| import ( | ||||
| 	"context" | ||||
| 	"errors" | ||||
| 	"fmt" | ||||
| ) | ||||
|  | ||||
| func DoUpgrade(cancel context.CancelFunc, done chan int) error { | ||||
| 	return errors.New("not implemented") | ||||
| 	return fmt.Errorf("DoUpgrade not yet implemented") | ||||
| } | ||||
|   | ||||
| @@ -2,7 +2,6 @@ package lifecycle | ||||
|  | ||||
| import ( | ||||
| 	"context" | ||||
| 	"errors" | ||||
| 	"fmt" | ||||
| 	"log/slog" | ||||
| 	"os" | ||||
| @@ -16,7 +15,7 @@ func DoUpgrade(cancel context.CancelFunc, done chan int) error { | ||||
| 		return fmt.Errorf("failed to lookup downloads: %s", err) | ||||
| 	} | ||||
| 	if len(files) == 0 { | ||||
| 		return errors.New("no update downloads found") | ||||
| 		return fmt.Errorf("no update downloads found") | ||||
| 	} else if len(files) > 1 { | ||||
| 		// Shouldn't happen | ||||
| 		slog.Warn(fmt.Sprintf("multiple downloads found, using first one %v", files)) | ||||
| @@ -26,15 +25,19 @@ func DoUpgrade(cancel context.CancelFunc, done chan int) error { | ||||
| 	slog.Info("starting upgrade with " + installerExe) | ||||
| 	slog.Info("upgrade log file " + UpgradeLogFile) | ||||
|  | ||||
| 	// make the upgrade show progress, but non interactive | ||||
| 	// When running in debug mode, we'll be "verbose" and let the installer pop up and prompt | ||||
| 	installArgs := []string{ | ||||
| 		"/CLOSEAPPLICATIONS",                    // Quit the tray app if it's still running | ||||
| 		"/LOG=" + filepath.Base(UpgradeLogFile), // Only relative seems reliable, so set pwd | ||||
| 		"/FORCECLOSEAPPLICATIONS",               // Force close the tray app - might be needed | ||||
| 		"/SP",                                   // Skip the "This will install... Do you wish to continue" prompt | ||||
| 		"/NOCANCEL",                             // Disable the ability to cancel upgrade mid-flight to avoid partially installed upgrades | ||||
| 		"/SILENT", | ||||
| 	} | ||||
| 	// make the upgrade as quiet as possible (no GUI, no prompts) | ||||
| 	installArgs = append(installArgs, | ||||
| 		"/SP", // Skip the "This will install... Do you wish to continue" prompt | ||||
| 		"/SUPPRESSMSGBOXES", | ||||
| 		"/SILENT", | ||||
| 		"/VERYSILENT", | ||||
| 	) | ||||
|  | ||||
| 	// Safeguard in case we have requests in flight that need to drain... | ||||
| 	slog.Info("Waiting for server to shutdown") | ||||
| @@ -61,7 +64,7 @@ func DoUpgrade(cancel context.CancelFunc, done chan int) error { | ||||
| 		} | ||||
| 	} else { | ||||
| 		// TODO - some details about why it didn't start, or is this a pedantic error case? | ||||
| 		return errors.New("installer process did not start") | ||||
| 		return fmt.Errorf("installer process did not start") | ||||
| 	} | ||||
|  | ||||
| 	// TODO should we linger for a moment and check to make sure it's actually running by checking the pid? | ||||
|   | ||||
| @@ -28,8 +28,8 @@ AppPublisher={#MyAppPublisher} | ||||
| AppPublisherURL={#MyAppURL} | ||||
| AppSupportURL={#MyAppURL} | ||||
| AppUpdatesURL={#MyAppURL} | ||||
| ArchitecturesAllowed=x64compatible arm64 | ||||
| ArchitecturesInstallIn64BitMode=x64compatible arm64 | ||||
| ArchitecturesAllowed=x64 arm64 | ||||
| ArchitecturesInstallIn64BitMode=x64 arm64 | ||||
| DefaultDirName={localappdata}\Programs\{#MyAppName} | ||||
| DefaultGroupName={#MyAppName} | ||||
| DisableProgramGroupPage=yes | ||||
| @@ -48,13 +48,12 @@ OutputDir=..\dist\ | ||||
| SetupLogging=yes | ||||
| CloseApplications=yes | ||||
| RestartApplications=no | ||||
| RestartIfNeededByRun=no | ||||
|  | ||||
| ; https://jrsoftware.org/ishelp/index.php?topic=setup_wizardimagefile | ||||
| WizardSmallImageFile=.\assets\setup.bmp | ||||
|  | ||||
| ; Ollama requires Windows 10 22H2 or newer for proper unicode rendering | ||||
| ; TODO: consider setting this to 10.0.19045 | ||||
| ; TODO verifty actual min windows version... | ||||
| ; OG Win 10 | ||||
| MinVersion=10.0.10240 | ||||
|  | ||||
| ; First release that supports WinRT UI Composition for win32 apps | ||||
| @@ -87,20 +86,16 @@ Name: "english"; MessagesFile: "compiler:Default.isl" | ||||
| DialogFontSize=12 | ||||
|  | ||||
| [Files] | ||||
| #if DirExists("..\dist\windows-amd64") | ||||
| Source: "..\dist\windows-amd64-app.exe"; DestDir: "{app}"; DestName: "{#MyAppExeName}" ;Check: not IsArm64();  Flags: ignoreversion 64bit | ||||
| Source: "..\dist\windows-amd64\ollama.exe"; DestDir: "{app}"; Check: not IsArm64(); Flags: ignoreversion 64bit | ||||
| Source: "..\dist\windows-amd64\lib\ollama\*"; DestDir: "{app}\lib\ollama\"; Check: not IsArm64(); Flags: ignoreversion 64bit recursesubdirs | ||||
| #endif | ||||
|  | ||||
| #if DirExists("..\dist\windows-arm64") | ||||
| Source: "..\dist\windows-arm64\vc_redist.arm64.exe"; DestDir: "{tmp}"; Check: IsArm64() and vc_redist_needed(); Flags: deleteafterinstall | ||||
| Source: "..\dist\windows-arm64-app.exe"; DestDir: "{app}"; DestName: "{#MyAppExeName}" ;Check: IsArm64();  Flags: ignoreversion 64bit | ||||
| Source: "..\dist\windows-arm64\ollama.exe"; DestDir: "{app}"; Check: IsArm64(); Flags: ignoreversion 64bit | ||||
| #endif | ||||
|  | ||||
| Source: ".\app.exe"; DestDir: "{app}"; DestName: "{#MyAppExeName}" ; Flags: ignoreversion 64bit | ||||
| Source: "..\ollama.exe"; DestDir: "{app}"; Flags: ignoreversion 64bit | ||||
| Source: "..\dist\windows-{#ARCH}\*.dll"; DestDir: "{app}"; Flags: ignoreversion 64bit | ||||
| Source: "..\dist\windows-{#ARCH}\ollama_runners\*"; DestDir: "{app}\ollama_runners"; Flags: ignoreversion 64bit recursesubdirs | ||||
| Source: "..\dist\ollama_welcome.ps1"; DestDir: "{app}"; Flags: ignoreversion | ||||
| Source: ".\assets\app.ico"; DestDir: "{app}"; Flags: ignoreversion | ||||
| #if DirExists("..\dist\windows-amd64\rocm") | ||||
|   Source: "..\dist\windows-amd64\rocm\*"; DestDir: "{app}\rocm\"; Flags: ignoreversion recursesubdirs | ||||
| #endif | ||||
|  | ||||
|  | ||||
| [Icons] | ||||
| Name: "{group}\{#MyAppName}"; Filename: "{app}\{#MyAppExeName}"; IconFilename: "{app}\app.ico" | ||||
| @@ -108,9 +103,6 @@ Name: "{userstartup}\{#MyAppName}"; Filename: "{app}\{#MyAppExeName}"; IconFilen | ||||
| Name: "{userprograms}\{#MyAppName}"; Filename: "{app}\{#MyAppExeName}"; IconFilename: "{app}\app.ico" | ||||
|  | ||||
| [Run] | ||||
| #if DirExists("..\dist\windows-arm64") | ||||
| Filename: "{tmp}\vc_redist.arm64.exe"; Parameters: "/install /passive /norestart"; Check: IsArm64() and vc_redist_needed(); StatusMsg: "Installing VC++ Redistributables..."; Flags: waituntilterminated | ||||
| #endif | ||||
| Filename: "{cmd}"; Parameters: "/C set PATH={app};%PATH% & ""{app}\{#MyAppExeName}"""; Flags: postinstall nowait runhidden | ||||
|  | ||||
| [UninstallRun] | ||||
| @@ -130,18 +122,14 @@ Type: filesandordirs; Name: "{%USERPROFILE}\.ollama\models" | ||||
| Type: filesandordirs; Name: "{%USERPROFILE}\.ollama\history" | ||||
| ; NOTE: if the user has a custom OLLAMA_MODELS it will be preserved | ||||
|  | ||||
| [InstallDelete] | ||||
| Type: filesandordirs; Name: "{%TEMP}\ollama*" | ||||
| Type: filesandordirs; Name: "{%LOCALAPPDATA}\Programs\Ollama" | ||||
|  | ||||
| [Messages] | ||||
| WizardReady=Ollama | ||||
| WizardReady=Ollama Windows Preview | ||||
| ReadyLabel1=%nLet's get you up and running with your own large language models. | ||||
| SetupAppRunningError=Another Ollama installer is running.%n%nPlease cancel or finish the other installer, then click OK to continue with this install, or Cancel to exit. | ||||
|  | ||||
|  | ||||
| ;FinishedHeadingLabel=Run your first model | ||||
| ;FinishedLabel=%nRun this command in a PowerShell or cmd terminal.%n%n%n    ollama run llama3.2 | ||||
| ;FinishedLabel=%nRun this command in a PowerShell or cmd terminal.%n%n%n    ollama run llama3 | ||||
| ;ClickFinish=%n | ||||
|  | ||||
| [Registry] | ||||
| @@ -166,39 +154,3 @@ begin | ||||
|   { Pos() returns 0 if not found } | ||||
|   Result := Pos(';' + ExpandConstant(Param) + ';', ';' + OrigPath + ';') = 0; | ||||
| end; | ||||
|  | ||||
| { --- VC Runtime libraries discovery code - Only install vc_redist if it isn't already installed ----- } | ||||
| const VCRTL_MIN_V1 = 14; | ||||
| const VCRTL_MIN_V2 = 40; | ||||
| const VCRTL_MIN_V3 = 33807; | ||||
| const VCRTL_MIN_V4 = 0; | ||||
|  | ||||
|  // check if the minimum required vc redist is installed (by looking the registry) | ||||
| function vc_redist_needed (): Boolean; | ||||
| var | ||||
|   sRegKey: string; | ||||
|   v1: Cardinal; | ||||
|   v2: Cardinal; | ||||
|   v3: Cardinal; | ||||
|   v4: Cardinal; | ||||
| begin | ||||
|   sRegKey := 'SOFTWARE\WOW6432Node\Microsoft\VisualStudio\14.0\VC\Runtimes\arm64'; | ||||
|   if (RegQueryDWordValue (HKEY_LOCAL_MACHINE, sRegKey, 'Major', v1)  and | ||||
|       RegQueryDWordValue (HKEY_LOCAL_MACHINE, sRegKey, 'Minor', v2) and | ||||
|       RegQueryDWordValue (HKEY_LOCAL_MACHINE, sRegKey, 'Bld', v3) and | ||||
|       RegQueryDWordValue (HKEY_LOCAL_MACHINE, sRegKey, 'RBld', v4)) then | ||||
|   begin | ||||
|     Log ('VC Redist version: ' + IntToStr (v1) + | ||||
|         '.' + IntToStr (v2) + '.' + IntToStr (v3) + | ||||
|         '.' + IntToStr (v4)); | ||||
|     { Version info was found. Return true if later or equal to our | ||||
|        minimal required version RTL_MIN_Vx } | ||||
|     Result := not ( | ||||
|         (v1 > VCRTL_MIN_V1) or ((v1 = VCRTL_MIN_V1) and | ||||
|          ((v2 > VCRTL_MIN_V2) or ((v2 = VCRTL_MIN_V2) and | ||||
|           ((v3 > VCRTL_MIN_V3) or ((v3 = VCRTL_MIN_V3) and | ||||
|            (v4 >= VCRTL_MIN_V4))))))); | ||||
|   end | ||||
|   else | ||||
|     Result := TRUE; | ||||
| end; | ||||
|   | ||||
| @@ -4,5 +4,5 @@ write-host "Welcome to Ollama!" | ||||
| write-host "" | ||||
| write-host "Run your first model:" | ||||
| write-host "" | ||||
| write-host "`tollama run llama3.2" | ||||
| write-host "`tollama run llama2" | ||||
| write-host "" | ||||
| @@ -29,6 +29,7 @@ func GetID() string { | ||||
| 		initStore() | ||||
| 	} | ||||
| 	return store.ID | ||||
|  | ||||
| } | ||||
|  | ||||
| func GetFirstTimeRun() bool { | ||||
| @@ -64,7 +65,7 @@ func initStore() { | ||||
| 		slog.Debug(fmt.Sprintf("unexpected error searching for store: %s", err)) | ||||
| 	} | ||||
| 	slog.Debug("initializing new store") | ||||
| 	store.ID = uuid.NewString() | ||||
| 	store.ID = uuid.New().String() | ||||
| 	writeStore(getStorePath()) | ||||
| } | ||||
|  | ||||
|   | ||||
| @@ -3,11 +3,11 @@ | ||||
| package tray | ||||
|  | ||||
| import ( | ||||
| 	"errors" | ||||
| 	"fmt" | ||||
|  | ||||
| 	"github.com/ollama/ollama/app/tray/commontray" | ||||
| ) | ||||
|  | ||||
| func InitPlatformTray(icon, updateIcon []byte) (commontray.OllamaTray, error) { | ||||
| 	return nil, errors.New("not implemented") | ||||
| 	return nil, fmt.Errorf("NOT IMPLEMENTED YET") | ||||
| } | ||||
|   | ||||
| @@ -11,7 +11,9 @@ import ( | ||||
| 	"golang.org/x/sys/windows" | ||||
| ) | ||||
|  | ||||
| var quitOnce sync.Once | ||||
| var ( | ||||
| 	quitOnce sync.Once | ||||
| ) | ||||
|  | ||||
| func (t *winTray) Run() { | ||||
| 	nativeLoop() | ||||
| @@ -45,6 +47,7 @@ func nativeLoop() { | ||||
| 		default: | ||||
| 			pTranslateMessage.Call(uintptr(unsafe.Pointer(m))) //nolint:errcheck | ||||
| 			pDispatchMessage.Call(uintptr(unsafe.Pointer(m)))  //nolint:errcheck | ||||
|  | ||||
| 		} | ||||
| 	} | ||||
| } | ||||
| @@ -98,7 +101,7 @@ func (t *winTray) wndProc(hWnd windows.Handle, message uint32, wParam, lParam ui | ||||
| 		} | ||||
| 		err = t.wcex.unregister() | ||||
| 		if err != nil { | ||||
| 			slog.Error(fmt.Sprintf("failed to unregister window %s", err)) | ||||
| 			slog.Error(fmt.Sprintf("failed to uregister windo %s", err)) | ||||
| 		} | ||||
| 	case WM_DESTROY: | ||||
| 		// same as WM_ENDSESSION, but throws 0 exit code after all | ||||
| @@ -157,8 +160,8 @@ func (t *winTray) wndProc(hWnd windows.Handle, message uint32, wParam, lParam ui | ||||
| 		lResult, _, _ = pDefWindowProc.Call( | ||||
| 			uintptr(hWnd), | ||||
| 			uintptr(message), | ||||
| 			wParam, | ||||
| 			lParam, | ||||
| 			uintptr(wParam), | ||||
| 			uintptr(lParam), | ||||
| 		) | ||||
| 	} | ||||
| 	return | ||||
|   | ||||
| @@ -11,13 +11,12 @@ import ( | ||||
| ) | ||||
|  | ||||
| const ( | ||||
| 	_ = iota | ||||
| 	updateAvailableMenuID | ||||
| 	updateMenuID | ||||
| 	separatorMenuID | ||||
| 	diagLogsMenuID | ||||
| 	diagSeparatorMenuID | ||||
| 	quitMenuID | ||||
| 	updatAvailableMenuID = 1 | ||||
| 	updateMenuID         = updatAvailableMenuID + 1 | ||||
| 	separatorMenuID      = updateMenuID + 1 | ||||
| 	diagLogsMenuID       = separatorMenuID + 1 | ||||
| 	diagSeparatorMenuID  = diagLogsMenuID + 1 | ||||
| 	quitMenuID           = diagSeparatorMenuID + 1 | ||||
| ) | ||||
|  | ||||
| func (t *winTray) initMenus() error { | ||||
| @@ -36,10 +35,10 @@ func (t *winTray) initMenus() error { | ||||
| func (t *winTray) UpdateAvailable(ver string) error { | ||||
| 	if !t.updateNotified { | ||||
| 		slog.Debug("updating menu and sending notification for new update") | ||||
| 		if err := t.addOrUpdateMenuItem(updateAvailableMenuID, 0, updateAvailableMenuTitle, true); err != nil { | ||||
| 		if err := t.addOrUpdateMenuItem(updatAvailableMenuID, 0, updateAvailableMenuTitle, true); err != nil { | ||||
| 			return fmt.Errorf("unable to create menu entries %w", err) | ||||
| 		} | ||||
| 		if err := t.addOrUpdateMenuItem(updateMenuID, 0, updateMenuTitle, false); err != nil { | ||||
| 		if err := t.addOrUpdateMenuItem(updateMenuID, 0, updateMenutTitle, false); err != nil { | ||||
| 			return fmt.Errorf("unable to create menu entries %w", err) | ||||
| 		} | ||||
| 		if err := t.addSeparatorMenuItem(separatorMenuID, 0); err != nil { | ||||
|   | ||||
| @@ -10,6 +10,6 @@ const ( | ||||
|  | ||||
| 	quitMenuTitle            = "Quit Ollama" | ||||
| 	updateAvailableMenuTitle = "An update is available" | ||||
| 	updateMenuTitle          = "Restart to update" | ||||
| 	updateMenutTitle         = "Restart to update" | ||||
| 	diagLogsMenuTitle        = "View logs" | ||||
| ) | ||||
|   | ||||
| @@ -11,12 +11,10 @@ import ( | ||||
| 	"path/filepath" | ||||
| 	"sort" | ||||
| 	"sync" | ||||
| 	"syscall" | ||||
| 	"unsafe" | ||||
|  | ||||
| 	"golang.org/x/sys/windows" | ||||
|  | ||||
| 	"github.com/ollama/ollama/app/tray/commontray" | ||||
| 	"golang.org/x/sys/windows" | ||||
| ) | ||||
|  | ||||
| // Helpful sources: https://github.com/golang/exp/blob/master/shiny/driver/internal/win32 | ||||
| @@ -188,7 +186,7 @@ func (t *winTray) initInstance() error { | ||||
| 	t.muNID.Lock() | ||||
| 	defer t.muNID.Unlock() | ||||
| 	t.nid = ¬ifyIconData{ | ||||
| 		Wnd:             t.window, | ||||
| 		Wnd:             windows.Handle(t.window), | ||||
| 		ID:              100, | ||||
| 		Flags:           NIF_MESSAGE, | ||||
| 		CallbackMessage: t.wmSystrayMessage, | ||||
| @@ -199,6 +197,7 @@ func (t *winTray) initInstance() error { | ||||
| } | ||||
|  | ||||
| func (t *winTray) createMenu() error { | ||||
|  | ||||
| 	menuHandle, _, err := pCreatePopupMenu.Call() | ||||
| 	if menuHandle == 0 { | ||||
| 		return err | ||||
| @@ -247,7 +246,7 @@ func (t *winTray) addOrUpdateMenuItem(menuItemId uint32, parentId uint32, title | ||||
| 	mi := menuItemInfo{ | ||||
| 		Mask:     MIIM_FTYPE | MIIM_STRING | MIIM_ID | MIIM_STATE, | ||||
| 		Type:     MFT_STRING, | ||||
| 		ID:       menuItemId, | ||||
| 		ID:       uint32(menuItemId), | ||||
| 		TypeData: titlePtr, | ||||
| 		Cch:      uint32(len(title)), | ||||
| 	} | ||||
| @@ -303,10 +302,11 @@ func (t *winTray) addOrUpdateMenuItem(menuItemId uint32, parentId uint32, title | ||||
| } | ||||
|  | ||||
| func (t *winTray) addSeparatorMenuItem(menuItemId, parentId uint32) error { | ||||
|  | ||||
| 	mi := menuItemInfo{ | ||||
| 		Mask: MIIM_FTYPE | MIIM_ID | MIIM_STATE, | ||||
| 		Type: MFT_SEPARATOR, | ||||
| 		ID:   menuItemId, | ||||
| 		ID:   uint32(menuItemId), | ||||
| 	} | ||||
|  | ||||
| 	mi.Size = uint32(unsafe.Sizeof(mi)) | ||||
| @@ -361,7 +361,7 @@ func (t *winTray) showMenu() error { | ||||
|  | ||||
| 	boolRet, _, err = pTrackPopupMenu.Call( | ||||
| 		uintptr(t.menus[0]), | ||||
| 		TPM_BOTTOMALIGN|TPM_LEFTALIGN|TPM_RIGHTBUTTON, | ||||
| 		TPM_BOTTOMALIGN|TPM_LEFTALIGN, | ||||
| 		uintptr(p.X), | ||||
| 		uintptr(p.Y), | ||||
| 		0, | ||||
| @@ -416,7 +416,7 @@ func iconBytesToFilePath(iconBytes []byte) (string, error) { | ||||
| 	iconFilePath := filepath.Join(os.TempDir(), "ollama_temp_icon_"+dataHash) | ||||
|  | ||||
| 	if _, err := os.Stat(iconFilePath); os.IsNotExist(err) { | ||||
| 		if err := os.WriteFile(iconFilePath, iconBytes, 0o644); err != nil { | ||||
| 		if err := os.WriteFile(iconFilePath, iconBytes, 0644); err != nil { | ||||
| 			return "", err | ||||
| 		} | ||||
| 	} | ||||
| @@ -426,6 +426,7 @@ func iconBytesToFilePath(iconBytes []byte) (string, error) { | ||||
| // Loads an image from file and shows it in tray. | ||||
| // Shell_NotifyIcon: https://msdn.microsoft.com/en-us/library/windows/desktop/bb762159(v=vs.85).aspx | ||||
| func (t *winTray) setIcon(src string) error { | ||||
|  | ||||
| 	h, err := t.loadIconFrom(src) | ||||
| 	if err != nil { | ||||
| 		return err | ||||
| @@ -434,12 +435,7 @@ func (t *winTray) setIcon(src string) error { | ||||
| 	t.muNID.Lock() | ||||
| 	defer t.muNID.Unlock() | ||||
| 	t.nid.Icon = h | ||||
| 	t.nid.Flags |= NIF_ICON | NIF_TIP | ||||
| 	if toolTipUTF16, err := syscall.UTF16FromString(commontray.ToolTip); err == nil { | ||||
| 		copy(t.nid.Tip[:], toolTipUTF16) | ||||
| 	} else { | ||||
| 		return err | ||||
| 	} | ||||
| 	t.nid.Flags |= NIF_ICON | ||||
| 	t.nid.Size = uint32(unsafe.Sizeof(*t.nid)) | ||||
|  | ||||
| 	return t.nid.modify() | ||||
| @@ -448,6 +444,7 @@ func (t *winTray) setIcon(src string) error { | ||||
| // Loads an image from file to be shown in tray or menu item. | ||||
| // LoadImage: https://msdn.microsoft.com/en-us/library/windows/desktop/ms648045(v=vs.85).aspx | ||||
| func (t *winTray) loadIconFrom(src string) (windows.Handle, error) { | ||||
|  | ||||
| 	// Save and reuse handles of loaded images | ||||
| 	t.muLoadedImages.RLock() | ||||
| 	h, ok := t.loadedImages[src] | ||||
|   | ||||
| @@ -61,13 +61,11 @@ const ( | ||||
| 	MIIM_SUBMENU        = 0x00000004 | ||||
| 	MIM_APPLYTOSUBMENUS = 0x80000000 | ||||
| 	NIF_ICON            = 0x00000002 | ||||
| 	NIF_TIP             = 0x00000004 | ||||
| 	NIF_INFO            = 0x00000010 | ||||
| 	NIF_MESSAGE         = 0x00000001 | ||||
| 	SW_HIDE             = 0 | ||||
| 	TPM_BOTTOMALIGN     = 0x0020 | ||||
| 	TPM_LEFTALIGN       = 0x0000 | ||||
| 	TPM_RIGHTBUTTON     = 0x0002 | ||||
| 	WM_CLOSE            = 0x0010 | ||||
| 	WM_USER             = 0x0400 | ||||
| 	WS_CAPTION          = 0x00C00000 | ||||
|   | ||||
| @@ -5,7 +5,6 @@ import ( | ||||
| 	"context" | ||||
| 	"crypto/rand" | ||||
| 	"encoding/base64" | ||||
| 	"errors" | ||||
| 	"fmt" | ||||
| 	"io" | ||||
| 	"log/slog" | ||||
| @@ -79,7 +78,7 @@ func Sign(ctx context.Context, bts []byte) (string, error) { | ||||
| 	publicKey := ssh.MarshalAuthorizedKey(privateKey.PublicKey()) | ||||
| 	parts := bytes.Split(publicKey, []byte(" ")) | ||||
| 	if len(parts) < 2 { | ||||
| 		return "", errors.New("malformed public key") | ||||
| 		return "", fmt.Errorf("malformed public key") | ||||
| 	} | ||||
|  | ||||
| 	signedData, err := privateKey.Sign(rand.Reader, bts) | ||||
|   | ||||
| @@ -1,178 +0,0 @@ | ||||
| package benchmark | ||||
|  | ||||
| import ( | ||||
| 	"context" | ||||
| 	"flag" | ||||
| 	"fmt" | ||||
| 	"testing" | ||||
| 	"time" | ||||
|  | ||||
| 	"github.com/ollama/ollama/api" | ||||
| ) | ||||
|  | ||||
| // Command line flags | ||||
| var modelFlag string | ||||
|  | ||||
| func init() { | ||||
| 	flag.StringVar(&modelFlag, "m", "", "Name of the model to benchmark") | ||||
| 	flag.Lookup("m").DefValue = "model" | ||||
| } | ||||
|  | ||||
| // modelName returns the model name from flags, failing the test if not set | ||||
| func modelName(b *testing.B) string { | ||||
| 	if modelFlag == "" { | ||||
| 		b.Fatal("Error: -m flag is required for benchmark tests") | ||||
| 	} | ||||
| 	return modelFlag | ||||
| } | ||||
|  | ||||
| type TestCase struct { | ||||
| 	name      string | ||||
| 	prompt    string | ||||
| 	maxTokens int | ||||
| } | ||||
|  | ||||
| // runGenerateBenchmark contains the common generate and metrics logic | ||||
| func runGenerateBenchmark(b *testing.B, ctx context.Context, client *api.Client, req *api.GenerateRequest) { | ||||
| 	start := time.Now() | ||||
| 	var ttft time.Duration | ||||
| 	var metrics api.Metrics | ||||
|  | ||||
| 	err := client.Generate(ctx, req, func(resp api.GenerateResponse) error { | ||||
| 		if ttft == 0 && resp.Response != "" { | ||||
| 			ttft = time.Since(start) | ||||
| 		} | ||||
| 		if resp.Done { | ||||
| 			metrics = resp.Metrics | ||||
| 		} | ||||
| 		return nil | ||||
| 	}) | ||||
|  | ||||
| 	// Report custom metrics as part of the benchmark results | ||||
| 	b.ReportMetric(float64(ttft.Milliseconds()), "ttft_ms") | ||||
| 	b.ReportMetric(float64(metrics.LoadDuration.Milliseconds()), "load_ms") | ||||
|  | ||||
| 	// Token throughput metrics | ||||
| 	promptThroughput := float64(metrics.PromptEvalCount) / metrics.PromptEvalDuration.Seconds() | ||||
| 	genThroughput := float64(metrics.EvalCount) / metrics.EvalDuration.Seconds() | ||||
| 	b.ReportMetric(promptThroughput, "prompt_tok/s") | ||||
| 	b.ReportMetric(genThroughput, "gen_tok/s") | ||||
|  | ||||
| 	// Token counts | ||||
| 	b.ReportMetric(float64(metrics.PromptEvalCount), "prompt_tokens") | ||||
| 	b.ReportMetric(float64(metrics.EvalCount), "gen_tokens") | ||||
| 	if err != nil { | ||||
| 		b.Fatal(err) | ||||
| 	} | ||||
| } | ||||
|  | ||||
| // BenchmarkColdStart runs benchmarks with model loading from cold state | ||||
| func BenchmarkColdStart(b *testing.B) { | ||||
| 	client := setup(b) | ||||
| 	tests := []TestCase{ | ||||
| 		{"short_prompt", "Write a long story", 100}, | ||||
| 		{"medium_prompt", "Write a detailed economic analysis", 500}, | ||||
| 		{"long_prompt", "Write a comprehensive AI research paper", 1000}, | ||||
| 	} | ||||
| 	m := modelName(b) | ||||
|  | ||||
| 	for _, tt := range tests { | ||||
| 		b.Run(fmt.Sprintf("%s/cold/%s", m, tt.name), func(b *testing.B) { | ||||
| 			ctx := context.Background() | ||||
|  | ||||
| 			// Set number of tokens as our throughput metric | ||||
| 			b.SetBytes(int64(tt.maxTokens)) | ||||
|  | ||||
| 			for b.Loop() { | ||||
| 				b.StopTimer() | ||||
| 				// Ensure model is unloaded before each iteration | ||||
| 				unload(client, m, b) | ||||
| 				b.StartTimer() | ||||
|  | ||||
| 				req := &api.GenerateRequest{ | ||||
| 					Model:   m, | ||||
| 					Prompt:  tt.prompt, | ||||
| 					Options: map[string]any{"num_predict": tt.maxTokens, "temperature": 0.1}, | ||||
| 				} | ||||
|  | ||||
| 				runGenerateBenchmark(b, ctx, client, req) | ||||
| 			} | ||||
| 		}) | ||||
| 	} | ||||
| } | ||||
|  | ||||
| // BenchmarkWarmStart runs benchmarks with pre-loaded model | ||||
| func BenchmarkWarmStart(b *testing.B) { | ||||
| 	client := setup(b) | ||||
| 	tests := []TestCase{ | ||||
| 		{"short_prompt", "Write a long story", 100}, | ||||
| 		{"medium_prompt", "Write a detailed economic analysis", 500}, | ||||
| 		{"long_prompt", "Write a comprehensive AI research paper", 1000}, | ||||
| 	} | ||||
| 	m := modelName(b) | ||||
|  | ||||
| 	for _, tt := range tests { | ||||
| 		b.Run(fmt.Sprintf("%s/warm/%s", m, tt.name), func(b *testing.B) { | ||||
| 			ctx := context.Background() | ||||
|  | ||||
| 			// Pre-warm the model | ||||
| 			warmup(client, m, tt.prompt, b) | ||||
|  | ||||
| 			// Set number of tokens as our throughput metric | ||||
| 			b.SetBytes(int64(tt.maxTokens)) | ||||
|  | ||||
| 			for b.Loop() { | ||||
| 				req := &api.GenerateRequest{ | ||||
| 					Model:   m, | ||||
| 					Prompt:  tt.prompt, | ||||
| 					Options: map[string]any{"num_predict": tt.maxTokens, "temperature": 0.1}, | ||||
| 				} | ||||
|  | ||||
| 				runGenerateBenchmark(b, ctx, client, req) | ||||
| 			} | ||||
| 		}) | ||||
| 	} | ||||
| } | ||||
|  | ||||
| // setup verifies server and model availability | ||||
| func setup(b *testing.B) *api.Client { | ||||
| 	client, err := api.ClientFromEnvironment() | ||||
| 	if err != nil { | ||||
| 		b.Fatal(err) | ||||
| 	} | ||||
| 	if _, err := client.Show(context.Background(), &api.ShowRequest{Model: modelName(b)}); err != nil { | ||||
| 		b.Fatalf("Model unavailable: %v", err) | ||||
| 	} | ||||
|  | ||||
| 	return client | ||||
| } | ||||
|  | ||||
| // warmup ensures the model is loaded and warmed up | ||||
| func warmup(client *api.Client, model string, prompt string, b *testing.B) { | ||||
| 	for range 3 { | ||||
| 		err := client.Generate( | ||||
| 			context.Background(), | ||||
| 			&api.GenerateRequest{ | ||||
| 				Model:   model, | ||||
| 				Prompt:  prompt, | ||||
| 				Options: map[string]any{"num_predict": 50, "temperature": 0.1}, | ||||
| 			}, | ||||
| 			func(api.GenerateResponse) error { return nil }, | ||||
| 		) | ||||
| 		if err != nil { | ||||
| 			b.Logf("Error during model warm-up: %v", err) | ||||
| 		} | ||||
| 	} | ||||
| } | ||||
|  | ||||
| // unload forces model unloading using KeepAlive: 0 parameter | ||||
| func unload(client *api.Client, model string, b *testing.B) { | ||||
| 	req := &api.GenerateRequest{ | ||||
| 		Model:     model, | ||||
| 		KeepAlive: &api.Duration{Duration: 0}, | ||||
| 	} | ||||
| 	if err := client.Generate(context.Background(), req, func(api.GenerateResponse) error { return nil }); err != nil { | ||||
| 		b.Logf("Unload error: %v", err) | ||||
| 	} | ||||
| 	time.Sleep(1 * time.Second) | ||||
| } | ||||
							
								
								
									
										795
									
								
								cmd/cmd.go
									
									
									
									
									
								
							
							
						
						
									
										795
									
								
								cmd/cmd.go
									
									
									
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										922
									
								
								cmd/cmd_test.go
									
									
									
									
									
								
							
							
						
						
									
										922
									
								
								cmd/cmd_test.go
									
									
									
									
									
								
							| @@ -1,922 +0,0 @@ | ||||
| package cmd | ||||
|  | ||||
| import ( | ||||
| 	"bytes" | ||||
| 	"context" | ||||
| 	"encoding/json" | ||||
| 	"io" | ||||
| 	"net/http" | ||||
| 	"net/http/httptest" | ||||
| 	"os" | ||||
| 	"strings" | ||||
| 	"testing" | ||||
| 	"time" | ||||
|  | ||||
| 	"github.com/google/go-cmp/cmp" | ||||
| 	"github.com/spf13/cobra" | ||||
|  | ||||
| 	"github.com/ollama/ollama/api" | ||||
| 	"github.com/ollama/ollama/types/model" | ||||
| ) | ||||
|  | ||||
| func TestShowInfo(t *testing.T) { | ||||
| 	t.Run("bare details", func(t *testing.T) { | ||||
| 		var b bytes.Buffer | ||||
| 		if err := showInfo(&api.ShowResponse{ | ||||
| 			Details: api.ModelDetails{ | ||||
| 				Family:            "test", | ||||
| 				ParameterSize:     "7B", | ||||
| 				QuantizationLevel: "FP16", | ||||
| 			}, | ||||
| 		}, false, &b); err != nil { | ||||
| 			t.Fatal(err) | ||||
| 		} | ||||
|  | ||||
| 		expect := `  Model | ||||
|     architecture    test     | ||||
|     parameters      7B       | ||||
|     quantization    FP16     | ||||
|  | ||||
| ` | ||||
|  | ||||
| 		if diff := cmp.Diff(expect, b.String()); diff != "" { | ||||
| 			t.Errorf("unexpected output (-want +got):\n%s", diff) | ||||
| 		} | ||||
| 	}) | ||||
|  | ||||
| 	t.Run("bare model info", func(t *testing.T) { | ||||
| 		var b bytes.Buffer | ||||
| 		if err := showInfo(&api.ShowResponse{ | ||||
| 			ModelInfo: map[string]any{ | ||||
| 				"general.architecture":    "test", | ||||
| 				"general.parameter_count": float64(7_000_000_000), | ||||
| 				"test.context_length":     float64(0), | ||||
| 				"test.embedding_length":   float64(0), | ||||
| 			}, | ||||
| 			Details: api.ModelDetails{ | ||||
| 				Family:            "test", | ||||
| 				ParameterSize:     "7B", | ||||
| 				QuantizationLevel: "FP16", | ||||
| 			}, | ||||
| 		}, false, &b); err != nil { | ||||
| 			t.Fatal(err) | ||||
| 		} | ||||
|  | ||||
| 		expect := `  Model | ||||
|     architecture        test     | ||||
|     parameters          7B       | ||||
|     context length      0        | ||||
|     embedding length    0        | ||||
|     quantization        FP16     | ||||
|  | ||||
| ` | ||||
| 		if diff := cmp.Diff(expect, b.String()); diff != "" { | ||||
| 			t.Errorf("unexpected output (-want +got):\n%s", diff) | ||||
| 		} | ||||
| 	}) | ||||
|  | ||||
| 	t.Run("verbose model", func(t *testing.T) { | ||||
| 		var b bytes.Buffer | ||||
| 		if err := showInfo(&api.ShowResponse{ | ||||
| 			Details: api.ModelDetails{ | ||||
| 				Family:            "test", | ||||
| 				ParameterSize:     "8B", | ||||
| 				QuantizationLevel: "FP16", | ||||
| 			}, | ||||
| 			Parameters: ` | ||||
| 			stop up`, | ||||
| 			ModelInfo: map[string]any{ | ||||
| 				"general.architecture":    "test", | ||||
| 				"general.parameter_count": float64(8_000_000_000), | ||||
| 				"some.true_bool":          true, | ||||
| 				"some.false_bool":         false, | ||||
| 				"test.context_length":     float64(1000), | ||||
| 				"test.embedding_length":   float64(11434), | ||||
| 			}, | ||||
| 			Tensors: []api.Tensor{ | ||||
| 				{Name: "blk.0.attn_k.weight", Type: "BF16", Shape: []uint64{42, 3117}}, | ||||
| 				{Name: "blk.0.attn_q.weight", Type: "FP16", Shape: []uint64{3117, 42}}, | ||||
| 			}, | ||||
| 		}, true, &b); err != nil { | ||||
| 			t.Fatal(err) | ||||
| 		} | ||||
|  | ||||
| 		expect := `  Model | ||||
|     architecture        test      | ||||
|     parameters          8B        | ||||
|     context length      1000      | ||||
|     embedding length    11434     | ||||
|     quantization        FP16      | ||||
|  | ||||
|   Parameters | ||||
|     stop    up     | ||||
|  | ||||
|   Metadata | ||||
|     general.architecture       test      | ||||
|     general.parameter_count    8e+09     | ||||
|     some.false_bool            false     | ||||
|     some.true_bool             true      | ||||
|     test.context_length        1000      | ||||
|     test.embedding_length      11434     | ||||
|  | ||||
|   Tensors | ||||
|     blk.0.attn_k.weight    BF16    [42 3117]     | ||||
|     blk.0.attn_q.weight    FP16    [3117 42]     | ||||
|  | ||||
| ` | ||||
| 		if diff := cmp.Diff(expect, b.String()); diff != "" { | ||||
| 			t.Errorf("unexpected output (-want +got):\n%s", diff) | ||||
| 		} | ||||
| 	}) | ||||
|  | ||||
| 	t.Run("parameters", func(t *testing.T) { | ||||
| 		var b bytes.Buffer | ||||
| 		if err := showInfo(&api.ShowResponse{ | ||||
| 			Details: api.ModelDetails{ | ||||
| 				Family:            "test", | ||||
| 				ParameterSize:     "7B", | ||||
| 				QuantizationLevel: "FP16", | ||||
| 			}, | ||||
| 			Parameters: ` | ||||
| 			stop never | ||||
| 			stop gonna | ||||
| 			stop give | ||||
| 			stop you | ||||
| 			stop up | ||||
| 			temperature 99`, | ||||
| 		}, false, &b); err != nil { | ||||
| 			t.Fatal(err) | ||||
| 		} | ||||
|  | ||||
| 		expect := `  Model | ||||
|     architecture    test     | ||||
|     parameters      7B       | ||||
|     quantization    FP16     | ||||
|  | ||||
|   Parameters | ||||
|     stop           never     | ||||
|     stop           gonna     | ||||
|     stop           give      | ||||
|     stop           you       | ||||
|     stop           up        | ||||
|     temperature    99        | ||||
|  | ||||
| ` | ||||
| 		if diff := cmp.Diff(expect, b.String()); diff != "" { | ||||
| 			t.Errorf("unexpected output (-want +got):\n%s", diff) | ||||
| 		} | ||||
| 	}) | ||||
|  | ||||
| 	t.Run("project info", func(t *testing.T) { | ||||
| 		var b bytes.Buffer | ||||
| 		if err := showInfo(&api.ShowResponse{ | ||||
| 			Details: api.ModelDetails{ | ||||
| 				Family:            "test", | ||||
| 				ParameterSize:     "7B", | ||||
| 				QuantizationLevel: "FP16", | ||||
| 			}, | ||||
| 			ProjectorInfo: map[string]any{ | ||||
| 				"general.architecture":         "clip", | ||||
| 				"general.parameter_count":      float64(133_700_000), | ||||
| 				"clip.vision.embedding_length": float64(0), | ||||
| 				"clip.vision.projection_dim":   float64(0), | ||||
| 			}, | ||||
| 		}, false, &b); err != nil { | ||||
| 			t.Fatal(err) | ||||
| 		} | ||||
|  | ||||
| 		expect := `  Model | ||||
|     architecture    test     | ||||
|     parameters      7B       | ||||
|     quantization    FP16     | ||||
|  | ||||
|   Projector | ||||
|     architecture        clip        | ||||
|     parameters          133.70M     | ||||
|     embedding length    0           | ||||
|     dimensions          0           | ||||
|  | ||||
| ` | ||||
| 		if diff := cmp.Diff(expect, b.String()); diff != "" { | ||||
| 			t.Errorf("unexpected output (-want +got):\n%s", diff) | ||||
| 		} | ||||
| 	}) | ||||
|  | ||||
| 	t.Run("system", func(t *testing.T) { | ||||
| 		var b bytes.Buffer | ||||
| 		if err := showInfo(&api.ShowResponse{ | ||||
| 			Details: api.ModelDetails{ | ||||
| 				Family:            "test", | ||||
| 				ParameterSize:     "7B", | ||||
| 				QuantizationLevel: "FP16", | ||||
| 			}, | ||||
| 			System: `You are a pirate! | ||||
| Ahoy, matey! | ||||
| Weigh anchor! | ||||
| 			`, | ||||
| 		}, false, &b); err != nil { | ||||
| 			t.Fatal(err) | ||||
| 		} | ||||
|  | ||||
| 		expect := `  Model | ||||
|     architecture    test     | ||||
|     parameters      7B       | ||||
|     quantization    FP16     | ||||
|  | ||||
|   System | ||||
|     You are a pirate!     | ||||
|     Ahoy, matey!          | ||||
|  | ||||
| ` | ||||
| 		if diff := cmp.Diff(expect, b.String()); diff != "" { | ||||
| 			t.Errorf("unexpected output (-want +got):\n%s", diff) | ||||
| 		} | ||||
| 	}) | ||||
|  | ||||
| 	t.Run("license", func(t *testing.T) { | ||||
| 		var b bytes.Buffer | ||||
| 		license := "MIT License\nCopyright (c) Ollama\n" | ||||
| 		if err := showInfo(&api.ShowResponse{ | ||||
| 			Details: api.ModelDetails{ | ||||
| 				Family:            "test", | ||||
| 				ParameterSize:     "7B", | ||||
| 				QuantizationLevel: "FP16", | ||||
| 			}, | ||||
| 			License: license, | ||||
| 		}, false, &b); err != nil { | ||||
| 			t.Fatal(err) | ||||
| 		} | ||||
|  | ||||
| 		expect := `  Model | ||||
|     architecture    test     | ||||
|     parameters      7B       | ||||
|     quantization    FP16     | ||||
|  | ||||
|   License | ||||
|     MIT License              | ||||
|     Copyright (c) Ollama     | ||||
|  | ||||
| ` | ||||
| 		if diff := cmp.Diff(expect, b.String()); diff != "" { | ||||
| 			t.Errorf("unexpected output (-want +got):\n%s", diff) | ||||
| 		} | ||||
| 	}) | ||||
|  | ||||
| 	t.Run("capabilities", func(t *testing.T) { | ||||
| 		var b bytes.Buffer | ||||
| 		if err := showInfo(&api.ShowResponse{ | ||||
| 			Details: api.ModelDetails{ | ||||
| 				Family:            "test", | ||||
| 				ParameterSize:     "7B", | ||||
| 				QuantizationLevel: "FP16", | ||||
| 			}, | ||||
| 			Capabilities: []model.Capability{model.CapabilityVision, model.CapabilityTools}, | ||||
| 		}, false, &b); err != nil { | ||||
| 			t.Fatal(err) | ||||
| 		} | ||||
|  | ||||
| 		expect := "  Model\n" + | ||||
| 			"    architecture    test    \n" + | ||||
| 			"    parameters      7B      \n" + | ||||
| 			"    quantization    FP16    \n" + | ||||
| 			"\n" + | ||||
| 			"  Capabilities\n" + | ||||
| 			"    vision    \n" + | ||||
| 			"    tools     \n" + | ||||
| 			"\n" | ||||
|  | ||||
| 		if diff := cmp.Diff(expect, b.String()); diff != "" { | ||||
| 			t.Errorf("unexpected output (-want +got):\n%s", diff) | ||||
| 		} | ||||
| 	}) | ||||
| } | ||||
|  | ||||
| func TestDeleteHandler(t *testing.T) { | ||||
| 	stopped := false | ||||
| 	mockServer := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) { | ||||
| 		if r.URL.Path == "/api/delete" && r.Method == http.MethodDelete { | ||||
| 			var req api.DeleteRequest | ||||
| 			if err := json.NewDecoder(r.Body).Decode(&req); err != nil { | ||||
| 				http.Error(w, err.Error(), http.StatusBadRequest) | ||||
| 				return | ||||
| 			} | ||||
| 			if req.Name == "test-model" { | ||||
| 				w.WriteHeader(http.StatusOK) | ||||
| 			} else { | ||||
| 				w.WriteHeader(http.StatusNotFound) | ||||
| 			} | ||||
| 			return | ||||
| 		} | ||||
| 		if r.URL.Path == "/api/generate" && r.Method == http.MethodPost { | ||||
| 			var req api.GenerateRequest | ||||
| 			if err := json.NewDecoder(r.Body).Decode(&req); err != nil { | ||||
| 				http.Error(w, err.Error(), http.StatusBadRequest) | ||||
| 				return | ||||
| 			} | ||||
| 			if req.Model == "test-model" { | ||||
| 				w.WriteHeader(http.StatusOK) | ||||
| 				if err := json.NewEncoder(w).Encode(api.GenerateResponse{ | ||||
| 					Done: true, | ||||
| 				}); err != nil { | ||||
| 					http.Error(w, err.Error(), http.StatusInternalServerError) | ||||
| 				} | ||||
| 				stopped = true | ||||
| 				return | ||||
| 			} else { | ||||
| 				w.WriteHeader(http.StatusNotFound) | ||||
| 				if err := json.NewEncoder(w).Encode(api.GenerateResponse{ | ||||
| 					Done: false, | ||||
| 				}); err != nil { | ||||
| 					http.Error(w, err.Error(), http.StatusInternalServerError) | ||||
| 				} | ||||
| 			} | ||||
| 		} | ||||
| 	})) | ||||
|  | ||||
| 	t.Setenv("OLLAMA_HOST", mockServer.URL) | ||||
| 	t.Cleanup(mockServer.Close) | ||||
|  | ||||
| 	cmd := &cobra.Command{} | ||||
| 	cmd.SetContext(context.TODO()) | ||||
| 	if err := DeleteHandler(cmd, []string{"test-model"}); err != nil { | ||||
| 		t.Fatalf("DeleteHandler failed: %v", err) | ||||
| 	} | ||||
| 	if !stopped { | ||||
| 		t.Fatal("Model was not stopped before deletion") | ||||
| 	} | ||||
|  | ||||
| 	err := DeleteHandler(cmd, []string{"test-model-not-found"}) | ||||
| 	if err == nil || !strings.Contains(err.Error(), "unable to stop existing running model \"test-model-not-found\"") { | ||||
| 		t.Fatalf("DeleteHandler failed: expected error about stopping non-existent model, got %v", err) | ||||
| 	} | ||||
| } | ||||
|  | ||||
| func TestGetModelfileName(t *testing.T) { | ||||
| 	tests := []struct { | ||||
| 		name          string | ||||
| 		modelfileName string | ||||
| 		fileExists    bool | ||||
| 		expectedName  string | ||||
| 		expectedErr   error | ||||
| 	}{ | ||||
| 		{ | ||||
| 			name:          "no modelfile specified, no modelfile exists", | ||||
| 			modelfileName: "", | ||||
| 			fileExists:    false, | ||||
| 			expectedName:  "", | ||||
| 			expectedErr:   os.ErrNotExist, | ||||
| 		}, | ||||
| 		{ | ||||
| 			name:          "no modelfile specified, modelfile exists", | ||||
| 			modelfileName: "", | ||||
| 			fileExists:    true, | ||||
| 			expectedName:  "Modelfile", | ||||
| 			expectedErr:   nil, | ||||
| 		}, | ||||
| 		{ | ||||
| 			name:          "modelfile specified, no modelfile exists", | ||||
| 			modelfileName: "crazyfile", | ||||
| 			fileExists:    false, | ||||
| 			expectedName:  "", | ||||
| 			expectedErr:   os.ErrNotExist, | ||||
| 		}, | ||||
| 		{ | ||||
| 			name:          "modelfile specified, modelfile exists", | ||||
| 			modelfileName: "anotherfile", | ||||
| 			fileExists:    true, | ||||
| 			expectedName:  "anotherfile", | ||||
| 			expectedErr:   nil, | ||||
| 		}, | ||||
| 	} | ||||
|  | ||||
| 	for _, tt := range tests { | ||||
| 		t.Run(tt.name, func(t *testing.T) { | ||||
| 			cmd := &cobra.Command{ | ||||
| 				Use: "fakecmd", | ||||
| 			} | ||||
| 			cmd.Flags().String("file", "", "path to modelfile") | ||||
|  | ||||
| 			var expectedFilename string | ||||
|  | ||||
| 			if tt.fileExists { | ||||
| 				tempDir, err := os.MkdirTemp("", "modelfiledir") | ||||
| 				defer os.RemoveAll(tempDir) | ||||
| 				if err != nil { | ||||
| 					t.Fatalf("temp modelfile dir creation failed: %v", err) | ||||
| 				} | ||||
| 				var fn string | ||||
| 				if tt.modelfileName != "" { | ||||
| 					fn = tt.modelfileName | ||||
| 				} else { | ||||
| 					fn = "Modelfile" | ||||
| 				} | ||||
|  | ||||
| 				tempFile, err := os.CreateTemp(tempDir, fn) | ||||
| 				if err != nil { | ||||
| 					t.Fatalf("temp modelfile creation failed: %v", err) | ||||
| 				} | ||||
| 				defer tempFile.Close() | ||||
|  | ||||
| 				expectedFilename = tempFile.Name() | ||||
| 				err = cmd.Flags().Set("file", expectedFilename) | ||||
| 				if err != nil { | ||||
| 					t.Fatalf("couldn't set file flag: %v", err) | ||||
| 				} | ||||
| 			} else { | ||||
| 				expectedFilename = tt.expectedName | ||||
| 				if tt.modelfileName != "" { | ||||
| 					err := cmd.Flags().Set("file", tt.modelfileName) | ||||
| 					if err != nil { | ||||
| 						t.Fatalf("couldn't set file flag: %v", err) | ||||
| 					} | ||||
| 				} | ||||
| 			} | ||||
|  | ||||
| 			actualFilename, actualErr := getModelfileName(cmd) | ||||
|  | ||||
| 			if actualFilename != expectedFilename { | ||||
| 				t.Errorf("expected filename: '%s' actual filename: '%s'", expectedFilename, actualFilename) | ||||
| 			} | ||||
|  | ||||
| 			if tt.expectedErr != os.ErrNotExist { | ||||
| 				if actualErr != tt.expectedErr { | ||||
| 					t.Errorf("expected err: %v actual err: %v", tt.expectedErr, actualErr) | ||||
| 				} | ||||
| 			} else { | ||||
| 				if !os.IsNotExist(actualErr) { | ||||
| 					t.Errorf("expected err: %v actual err: %v", tt.expectedErr, actualErr) | ||||
| 				} | ||||
| 			} | ||||
| 		}) | ||||
| 	} | ||||
| } | ||||
|  | ||||
| func TestPushHandler(t *testing.T) { | ||||
| 	tests := []struct { | ||||
| 		name           string | ||||
| 		modelName      string | ||||
| 		serverResponse map[string]func(w http.ResponseWriter, r *http.Request) | ||||
| 		expectedError  string | ||||
| 		expectedOutput string | ||||
| 	}{ | ||||
| 		{ | ||||
| 			name:      "successful push", | ||||
| 			modelName: "test-model", | ||||
| 			serverResponse: map[string]func(w http.ResponseWriter, r *http.Request){ | ||||
| 				"/api/push": func(w http.ResponseWriter, r *http.Request) { | ||||
| 					if r.Method != http.MethodPost { | ||||
| 						t.Errorf("expected POST request, got %s", r.Method) | ||||
| 					} | ||||
|  | ||||
| 					var req api.PushRequest | ||||
| 					if err := json.NewDecoder(r.Body).Decode(&req); err != nil { | ||||
| 						http.Error(w, err.Error(), http.StatusBadRequest) | ||||
| 						return | ||||
| 					} | ||||
|  | ||||
| 					if req.Name != "test-model" { | ||||
| 						t.Errorf("expected model name 'test-model', got %s", req.Name) | ||||
| 					} | ||||
|  | ||||
| 					// Simulate progress updates | ||||
| 					responses := []api.ProgressResponse{ | ||||
| 						{Status: "preparing manifest"}, | ||||
| 						{Digest: "sha256:abc123456789", Total: 100, Completed: 50}, | ||||
| 						{Digest: "sha256:abc123456789", Total: 100, Completed: 100}, | ||||
| 					} | ||||
|  | ||||
| 					for _, resp := range responses { | ||||
| 						if err := json.NewEncoder(w).Encode(resp); err != nil { | ||||
| 							http.Error(w, err.Error(), http.StatusInternalServerError) | ||||
| 							return | ||||
| 						} | ||||
| 						w.(http.Flusher).Flush() | ||||
| 					} | ||||
| 				}, | ||||
| 			}, | ||||
| 			expectedOutput: "\nYou can find your model at:\n\n\thttps://ollama.com/test-model\n", | ||||
| 		}, | ||||
| 		{ | ||||
| 			name:      "unauthorized push", | ||||
| 			modelName: "unauthorized-model", | ||||
| 			serverResponse: map[string]func(w http.ResponseWriter, r *http.Request){ | ||||
| 				"/api/push": func(w http.ResponseWriter, r *http.Request) { | ||||
| 					w.Header().Set("Content-Type", "application/json") | ||||
| 					w.WriteHeader(http.StatusUnauthorized) | ||||
| 					err := json.NewEncoder(w).Encode(map[string]string{ | ||||
| 						"error": "access denied", | ||||
| 					}) | ||||
| 					if err != nil { | ||||
| 						t.Fatal(err) | ||||
| 					} | ||||
| 				}, | ||||
| 			}, | ||||
| 			expectedError: "you are not authorized to push to this namespace, create the model under a namespace you own", | ||||
| 		}, | ||||
| 	} | ||||
|  | ||||
| 	for _, tt := range tests { | ||||
| 		t.Run(tt.name, func(t *testing.T) { | ||||
| 			mockServer := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) { | ||||
| 				if handler, ok := tt.serverResponse[r.URL.Path]; ok { | ||||
| 					handler(w, r) | ||||
| 					return | ||||
| 				} | ||||
| 				http.Error(w, "not found", http.StatusNotFound) | ||||
| 			})) | ||||
| 			defer mockServer.Close() | ||||
|  | ||||
| 			t.Setenv("OLLAMA_HOST", mockServer.URL) | ||||
|  | ||||
| 			cmd := &cobra.Command{} | ||||
| 			cmd.Flags().Bool("insecure", false, "") | ||||
| 			cmd.SetContext(context.TODO()) | ||||
|  | ||||
| 			// Redirect stderr to capture progress output | ||||
| 			oldStderr := os.Stderr | ||||
| 			r, w, _ := os.Pipe() | ||||
| 			os.Stderr = w | ||||
|  | ||||
| 			// Capture stdout for the "Model pushed" message | ||||
| 			oldStdout := os.Stdout | ||||
| 			outR, outW, _ := os.Pipe() | ||||
| 			os.Stdout = outW | ||||
|  | ||||
| 			err := PushHandler(cmd, []string{tt.modelName}) | ||||
|  | ||||
| 			// Restore stderr | ||||
| 			w.Close() | ||||
| 			os.Stderr = oldStderr | ||||
| 			// drain the pipe | ||||
| 			if _, err := io.ReadAll(r); err != nil { | ||||
| 				t.Fatal(err) | ||||
| 			} | ||||
|  | ||||
| 			// Restore stdout and get output | ||||
| 			outW.Close() | ||||
| 			os.Stdout = oldStdout | ||||
| 			stdout, _ := io.ReadAll(outR) | ||||
|  | ||||
| 			if tt.expectedError == "" { | ||||
| 				if err != nil { | ||||
| 					t.Errorf("expected no error, got %v", err) | ||||
| 				} | ||||
| 				if tt.expectedOutput != "" { | ||||
| 					if got := string(stdout); got != tt.expectedOutput { | ||||
| 						t.Errorf("expected output %q, got %q", tt.expectedOutput, got) | ||||
| 					} | ||||
| 				} | ||||
| 			} else { | ||||
| 				if err == nil || !strings.Contains(err.Error(), tt.expectedError) { | ||||
| 					t.Errorf("expected error containing %q, got %v", tt.expectedError, err) | ||||
| 				} | ||||
| 			} | ||||
| 		}) | ||||
| 	} | ||||
| } | ||||
|  | ||||
| func TestListHandler(t *testing.T) { | ||||
| 	tests := []struct { | ||||
| 		name           string | ||||
| 		args           []string | ||||
| 		serverResponse []api.ListModelResponse | ||||
| 		expectedError  string | ||||
| 		expectedOutput string | ||||
| 	}{ | ||||
| 		{ | ||||
| 			name: "list all models", | ||||
| 			args: []string{}, | ||||
| 			serverResponse: []api.ListModelResponse{ | ||||
| 				{Name: "model1", Digest: "sha256:abc123", Size: 1024, ModifiedAt: time.Now().Add(-24 * time.Hour)}, | ||||
| 				{Name: "model2", Digest: "sha256:def456", Size: 2048, ModifiedAt: time.Now().Add(-48 * time.Hour)}, | ||||
| 			}, | ||||
| 			expectedOutput: "NAME      ID              SIZE      MODIFIED     \n" + | ||||
| 				"model1    sha256:abc12    1.0 KB    24 hours ago    \n" + | ||||
| 				"model2    sha256:def45    2.0 KB    2 days ago      \n", | ||||
| 		}, | ||||
| 		{ | ||||
| 			name: "filter models by prefix", | ||||
| 			args: []string{"model1"}, | ||||
| 			serverResponse: []api.ListModelResponse{ | ||||
| 				{Name: "model1", Digest: "sha256:abc123", Size: 1024, ModifiedAt: time.Now().Add(-24 * time.Hour)}, | ||||
| 				{Name: "model2", Digest: "sha256:def456", Size: 2048, ModifiedAt: time.Now().Add(-24 * time.Hour)}, | ||||
| 			}, | ||||
| 			expectedOutput: "NAME      ID              SIZE      MODIFIED     \n" + | ||||
| 				"model1    sha256:abc12    1.0 KB    24 hours ago    \n", | ||||
| 		}, | ||||
| 		{ | ||||
| 			name:          "server error", | ||||
| 			args:          []string{}, | ||||
| 			expectedError: "server error", | ||||
| 		}, | ||||
| 	} | ||||
|  | ||||
| 	for _, tt := range tests { | ||||
| 		t.Run(tt.name, func(t *testing.T) { | ||||
| 			mockServer := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) { | ||||
| 				if r.URL.Path != "/api/tags" || r.Method != http.MethodGet { | ||||
| 					t.Errorf("unexpected request to %s %s", r.Method, r.URL.Path) | ||||
| 					http.Error(w, "not found", http.StatusNotFound) | ||||
| 					return | ||||
| 				} | ||||
|  | ||||
| 				if tt.expectedError != "" { | ||||
| 					http.Error(w, tt.expectedError, http.StatusInternalServerError) | ||||
| 					return | ||||
| 				} | ||||
|  | ||||
| 				response := api.ListResponse{Models: tt.serverResponse} | ||||
| 				if err := json.NewEncoder(w).Encode(response); err != nil { | ||||
| 					t.Fatal(err) | ||||
| 				} | ||||
| 			})) | ||||
| 			defer mockServer.Close() | ||||
|  | ||||
| 			t.Setenv("OLLAMA_HOST", mockServer.URL) | ||||
|  | ||||
| 			cmd := &cobra.Command{} | ||||
| 			cmd.SetContext(context.TODO()) | ||||
|  | ||||
| 			// Capture stdout | ||||
| 			oldStdout := os.Stdout | ||||
| 			r, w, _ := os.Pipe() | ||||
| 			os.Stdout = w | ||||
|  | ||||
| 			err := ListHandler(cmd, tt.args) | ||||
|  | ||||
| 			// Restore stdout and get output | ||||
| 			w.Close() | ||||
| 			os.Stdout = oldStdout | ||||
| 			output, _ := io.ReadAll(r) | ||||
|  | ||||
| 			if tt.expectedError == "" { | ||||
| 				if err != nil { | ||||
| 					t.Errorf("expected no error, got %v", err) | ||||
| 				} | ||||
| 				if got := string(output); got != tt.expectedOutput { | ||||
| 					t.Errorf("expected output:\n%s\ngot:\n%s", tt.expectedOutput, got) | ||||
| 				} | ||||
| 			} else { | ||||
| 				if err == nil || !strings.Contains(err.Error(), tt.expectedError) { | ||||
| 					t.Errorf("expected error containing %q, got %v", tt.expectedError, err) | ||||
| 				} | ||||
| 			} | ||||
| 		}) | ||||
| 	} | ||||
| } | ||||
|  | ||||
| func TestCreateHandler(t *testing.T) { | ||||
| 	tests := []struct { | ||||
| 		name           string | ||||
| 		modelName      string | ||||
| 		modelFile      string | ||||
| 		serverResponse map[string]func(w http.ResponseWriter, r *http.Request) | ||||
| 		expectedError  string | ||||
| 		expectedOutput string | ||||
| 	}{ | ||||
| 		{ | ||||
| 			name:      "successful create", | ||||
| 			modelName: "test-model", | ||||
| 			modelFile: "FROM foo", | ||||
| 			serverResponse: map[string]func(w http.ResponseWriter, r *http.Request){ | ||||
| 				"/api/create": func(w http.ResponseWriter, r *http.Request) { | ||||
| 					if r.Method != http.MethodPost { | ||||
| 						t.Errorf("expected POST request, got %s", r.Method) | ||||
| 					} | ||||
|  | ||||
| 					req := api.CreateRequest{} | ||||
| 					if err := json.NewDecoder(r.Body).Decode(&req); err != nil { | ||||
| 						http.Error(w, err.Error(), http.StatusBadRequest) | ||||
| 						return | ||||
| 					} | ||||
|  | ||||
| 					if req.Name != "test-model" { | ||||
| 						t.Errorf("expected model name 'test-model', got %s", req.Name) | ||||
| 					} | ||||
|  | ||||
| 					if req.From != "foo" { | ||||
| 						t.Errorf("expected from 'foo', got %s", req.From) | ||||
| 					} | ||||
|  | ||||
| 					responses := []api.ProgressResponse{ | ||||
| 						{Status: "using existing layer sha256:56bb8bd477a519ffa694fc449c2413c6f0e1d3b1c88fa7e3c9d88d3ae49d4dcb"}, | ||||
| 						{Status: "writing manifest"}, | ||||
| 						{Status: "success"}, | ||||
| 					} | ||||
|  | ||||
| 					for _, resp := range responses { | ||||
| 						if err := json.NewEncoder(w).Encode(resp); err != nil { | ||||
| 							http.Error(w, err.Error(), http.StatusInternalServerError) | ||||
| 							return | ||||
| 						} | ||||
| 						w.(http.Flusher).Flush() | ||||
| 					} | ||||
| 				}, | ||||
| 			}, | ||||
| 			expectedOutput: "", | ||||
| 		}, | ||||
| 	} | ||||
|  | ||||
| 	for _, tt := range tests { | ||||
| 		t.Run(tt.name, func(t *testing.T) { | ||||
| 			mockServer := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) { | ||||
| 				handler, ok := tt.serverResponse[r.URL.Path] | ||||
| 				if !ok { | ||||
| 					t.Errorf("unexpected request to %s", r.URL.Path) | ||||
| 					http.Error(w, "not found", http.StatusNotFound) | ||||
| 					return | ||||
| 				} | ||||
| 				handler(w, r) | ||||
| 			})) | ||||
| 			t.Setenv("OLLAMA_HOST", mockServer.URL) | ||||
| 			t.Cleanup(mockServer.Close) | ||||
| 			tempFile, err := os.CreateTemp("", "modelfile") | ||||
| 			if err != nil { | ||||
| 				t.Fatal(err) | ||||
| 			} | ||||
| 			defer os.Remove(tempFile.Name()) | ||||
|  | ||||
| 			if _, err := tempFile.WriteString(tt.modelFile); err != nil { | ||||
| 				t.Fatal(err) | ||||
| 			} | ||||
| 			if err := tempFile.Close(); err != nil { | ||||
| 				t.Fatal(err) | ||||
| 			} | ||||
|  | ||||
| 			cmd := &cobra.Command{} | ||||
| 			cmd.Flags().String("file", "", "") | ||||
| 			if err := cmd.Flags().Set("file", tempFile.Name()); err != nil { | ||||
| 				t.Fatal(err) | ||||
| 			} | ||||
|  | ||||
| 			cmd.Flags().Bool("insecure", false, "") | ||||
| 			cmd.SetContext(context.TODO()) | ||||
|  | ||||
| 			// Redirect stderr to capture progress output | ||||
| 			oldStderr := os.Stderr | ||||
| 			r, w, _ := os.Pipe() | ||||
| 			os.Stderr = w | ||||
|  | ||||
| 			// Capture stdout for the "Model pushed" message | ||||
| 			oldStdout := os.Stdout | ||||
| 			outR, outW, _ := os.Pipe() | ||||
| 			os.Stdout = outW | ||||
|  | ||||
| 			err = CreateHandler(cmd, []string{tt.modelName}) | ||||
|  | ||||
| 			// Restore stderr | ||||
| 			w.Close() | ||||
| 			os.Stderr = oldStderr | ||||
| 			// drain the pipe | ||||
| 			if _, err := io.ReadAll(r); err != nil { | ||||
| 				t.Fatal(err) | ||||
| 			} | ||||
|  | ||||
| 			// Restore stdout and get output | ||||
| 			outW.Close() | ||||
| 			os.Stdout = oldStdout | ||||
| 			stdout, _ := io.ReadAll(outR) | ||||
|  | ||||
| 			if tt.expectedError == "" { | ||||
| 				if err != nil { | ||||
| 					t.Errorf("expected no error, got %v", err) | ||||
| 				} | ||||
|  | ||||
| 				if tt.expectedOutput != "" { | ||||
| 					if got := string(stdout); got != tt.expectedOutput { | ||||
| 						t.Errorf("expected output %q, got %q", tt.expectedOutput, got) | ||||
| 					} | ||||
| 				} | ||||
| 			} | ||||
| 		}) | ||||
| 	} | ||||
| } | ||||
|  | ||||
| func TestNewCreateRequest(t *testing.T) { | ||||
| 	tests := []struct { | ||||
| 		name     string | ||||
| 		from     string | ||||
| 		opts     runOptions | ||||
| 		expected *api.CreateRequest | ||||
| 	}{ | ||||
| 		{ | ||||
| 			"basic test", | ||||
| 			"newmodel", | ||||
| 			runOptions{ | ||||
| 				Model:       "mymodel", | ||||
| 				ParentModel: "", | ||||
| 				Prompt:      "You are a fun AI agent", | ||||
| 				Messages:    []api.Message{}, | ||||
| 				WordWrap:    true, | ||||
| 			}, | ||||
| 			&api.CreateRequest{ | ||||
| 				From:  "mymodel", | ||||
| 				Model: "newmodel", | ||||
| 			}, | ||||
| 		}, | ||||
| 		{ | ||||
| 			"parent model test", | ||||
| 			"newmodel", | ||||
| 			runOptions{ | ||||
| 				Model:       "mymodel", | ||||
| 				ParentModel: "parentmodel", | ||||
| 				Messages:    []api.Message{}, | ||||
| 				WordWrap:    true, | ||||
| 			}, | ||||
| 			&api.CreateRequest{ | ||||
| 				From:  "parentmodel", | ||||
| 				Model: "newmodel", | ||||
| 			}, | ||||
| 		}, | ||||
| 		{ | ||||
| 			"parent model as filepath test", | ||||
| 			"newmodel", | ||||
| 			runOptions{ | ||||
| 				Model:       "mymodel", | ||||
| 				ParentModel: "/some/file/like/etc/passwd", | ||||
| 				Messages:    []api.Message{}, | ||||
| 				WordWrap:    true, | ||||
| 			}, | ||||
| 			&api.CreateRequest{ | ||||
| 				From:  "mymodel", | ||||
| 				Model: "newmodel", | ||||
| 			}, | ||||
| 		}, | ||||
| 		{ | ||||
| 			"parent model as windows filepath test", | ||||
| 			"newmodel", | ||||
| 			runOptions{ | ||||
| 				Model:       "mymodel", | ||||
| 				ParentModel: "D:\\some\\file\\like\\etc\\passwd", | ||||
| 				Messages:    []api.Message{}, | ||||
| 				WordWrap:    true, | ||||
| 			}, | ||||
| 			&api.CreateRequest{ | ||||
| 				From:  "mymodel", | ||||
| 				Model: "newmodel", | ||||
| 			}, | ||||
| 		}, | ||||
| 		{ | ||||
| 			"options test", | ||||
| 			"newmodel", | ||||
| 			runOptions{ | ||||
| 				Model:       "mymodel", | ||||
| 				ParentModel: "parentmodel", | ||||
| 				Options: map[string]any{ | ||||
| 					"temperature": 1.0, | ||||
| 				}, | ||||
| 			}, | ||||
| 			&api.CreateRequest{ | ||||
| 				From:  "parentmodel", | ||||
| 				Model: "newmodel", | ||||
| 				Parameters: map[string]any{ | ||||
| 					"temperature": 1.0, | ||||
| 				}, | ||||
| 			}, | ||||
| 		}, | ||||
| 		{ | ||||
| 			"messages test", | ||||
| 			"newmodel", | ||||
| 			runOptions{ | ||||
| 				Model:       "mymodel", | ||||
| 				ParentModel: "parentmodel", | ||||
| 				System:      "You are a fun AI agent", | ||||
| 				Messages: []api.Message{ | ||||
| 					{ | ||||
| 						Role:    "user", | ||||
| 						Content: "hello there!", | ||||
| 					}, | ||||
| 					{ | ||||
| 						Role:    "assistant", | ||||
| 						Content: "hello to you!", | ||||
| 					}, | ||||
| 				}, | ||||
| 				WordWrap: true, | ||||
| 			}, | ||||
| 			&api.CreateRequest{ | ||||
| 				From:   "parentmodel", | ||||
| 				Model:  "newmodel", | ||||
| 				System: "You are a fun AI agent", | ||||
| 				Messages: []api.Message{ | ||||
| 					{ | ||||
| 						Role:    "user", | ||||
| 						Content: "hello there!", | ||||
| 					}, | ||||
| 					{ | ||||
| 						Role:    "assistant", | ||||
| 						Content: "hello to you!", | ||||
| 					}, | ||||
| 				}, | ||||
| 			}, | ||||
| 		}, | ||||
| 	} | ||||
|  | ||||
| 	for _, tt := range tests { | ||||
| 		t.Run(tt.name, func(t *testing.T) { | ||||
| 			actual := NewCreateRequest(tt.from, tt.opts) | ||||
| 			if !cmp.Equal(actual, tt.expected) { | ||||
| 				t.Errorf("expected output %#v, got %#v", tt.expected, actual) | ||||
| 			} | ||||
| 		}) | ||||
| 	} | ||||
| } | ||||
| @@ -1,7 +1,6 @@ | ||||
| package cmd | ||||
|  | ||||
| import ( | ||||
| 	"cmp" | ||||
| 	"errors" | ||||
| 	"fmt" | ||||
| 	"io" | ||||
| @@ -9,16 +8,17 @@ import ( | ||||
| 	"os" | ||||
| 	"path/filepath" | ||||
| 	"regexp" | ||||
| 	"slices" | ||||
| 	"sort" | ||||
| 	"strings" | ||||
|  | ||||
| 	"github.com/spf13/cobra" | ||||
| 	"golang.org/x/exp/slices" | ||||
|  | ||||
| 	"github.com/ollama/ollama/api" | ||||
| 	"github.com/ollama/ollama/envconfig" | ||||
| 	"github.com/ollama/ollama/progress" | ||||
| 	"github.com/ollama/ollama/readline" | ||||
| 	"github.com/ollama/ollama/types/errtypes" | ||||
| 	"github.com/ollama/ollama/types/model" | ||||
| ) | ||||
|  | ||||
| type MultilineState int | ||||
| @@ -27,9 +27,74 @@ const ( | ||||
| 	MultilineNone MultilineState = iota | ||||
| 	MultilinePrompt | ||||
| 	MultilineSystem | ||||
| 	MultilineTemplate | ||||
| ) | ||||
|  | ||||
| func loadModel(cmd *cobra.Command, opts *runOptions) error { | ||||
| 	client, err := api.ClientFromEnvironment() | ||||
| 	if err != nil { | ||||
| 		return err | ||||
| 	} | ||||
|  | ||||
| 	p := progress.NewProgress(os.Stderr) | ||||
| 	defer p.StopAndClear() | ||||
|  | ||||
| 	spinner := progress.NewSpinner("") | ||||
| 	p.Add("", spinner) | ||||
|  | ||||
| 	showReq := api.ShowRequest{Name: opts.Model} | ||||
| 	showResp, err := client.Show(cmd.Context(), &showReq) | ||||
| 	if err != nil { | ||||
| 		return err | ||||
| 	} | ||||
| 	opts.MultiModal = slices.Contains(showResp.Details.Families, "clip") | ||||
| 	opts.ParentModel = showResp.Details.ParentModel | ||||
|  | ||||
| 	if len(showResp.Messages) > 0 { | ||||
| 		opts.Messages = append(opts.Messages, showResp.Messages...) | ||||
| 	} | ||||
|  | ||||
| 	chatReq := &api.ChatRequest{ | ||||
| 		Model:    opts.Model, | ||||
| 		Messages: []api.Message{}, | ||||
| 	} | ||||
|  | ||||
| 	if opts.KeepAlive != nil { | ||||
| 		chatReq.KeepAlive = opts.KeepAlive | ||||
| 	} | ||||
|  | ||||
| 	err = client.Chat(cmd.Context(), chatReq, func(resp api.ChatResponse) error { | ||||
| 		p.StopAndClear() | ||||
| 		if len(opts.Messages) > 0 { | ||||
| 			for _, msg := range opts.Messages { | ||||
| 				switch msg.Role { | ||||
| 				case "user": | ||||
| 					fmt.Printf(">>> %s\n", msg.Content) | ||||
| 				case "assistant": | ||||
| 					state := &displayResponseState{} | ||||
| 					displayResponse(msg.Content, opts.WordWrap, state) | ||||
| 					fmt.Println() | ||||
| 					fmt.Println() | ||||
| 				} | ||||
| 			} | ||||
| 		} | ||||
| 		return nil | ||||
| 	}) | ||||
| 	if err != nil { | ||||
| 		return err | ||||
| 	} | ||||
|  | ||||
| 	return nil | ||||
| } | ||||
|  | ||||
| func generateInteractive(cmd *cobra.Command, opts runOptions) error { | ||||
| 	opts.Messages = make([]api.Message, 0) | ||||
|  | ||||
| 	err := loadModel(cmd, &opts) | ||||
| 	if err != nil { | ||||
| 		return err | ||||
| 	} | ||||
|  | ||||
| 	usage := func() { | ||||
| 		fmt.Fprintln(os.Stderr, "Available Commands:") | ||||
| 		fmt.Fprintln(os.Stderr, "  /set            Set session variables") | ||||
| @@ -54,6 +119,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error { | ||||
| 		fmt.Fprintln(os.Stderr, "Available Commands:") | ||||
| 		fmt.Fprintln(os.Stderr, "  /set parameter ...     Set a parameter") | ||||
| 		fmt.Fprintln(os.Stderr, "  /set system <string>   Set system message") | ||||
| 		fmt.Fprintln(os.Stderr, "  /set template <string> Set prompt template") | ||||
| 		fmt.Fprintln(os.Stderr, "  /set history           Enable history") | ||||
| 		fmt.Fprintln(os.Stderr, "  /set nohistory         Disable history") | ||||
| 		fmt.Fprintln(os.Stderr, "  /set wordwrap          Enable wordwrap") | ||||
| @@ -99,7 +165,6 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error { | ||||
| 		fmt.Fprintln(os.Stderr, "  /set parameter num_predict <int>      Max number of tokens to predict") | ||||
| 		fmt.Fprintln(os.Stderr, "  /set parameter top_k <int>            Pick from top k num of tokens") | ||||
| 		fmt.Fprintln(os.Stderr, "  /set parameter top_p <float>          Pick token based on sum of probabilities") | ||||
| 		fmt.Fprintln(os.Stderr, "  /set parameter min_p <float>          Pick token based on top token probability * min_p") | ||||
| 		fmt.Fprintln(os.Stderr, "  /set parameter num_ctx <int>          Set the context size") | ||||
| 		fmt.Fprintln(os.Stderr, "  /set parameter temperature <float>    Set creativity level") | ||||
| 		fmt.Fprintln(os.Stderr, "  /set parameter repeat_penalty <float> How strongly to penalize repetitions") | ||||
| @@ -119,7 +184,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error { | ||||
| 		return err | ||||
| 	} | ||||
|  | ||||
| 	if envconfig.NoHistory() { | ||||
| 	if envconfig.NoHistory { | ||||
| 		scanner.HistoryDisable() | ||||
| 	} | ||||
|  | ||||
| @@ -164,6 +229,10 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error { | ||||
| 				opts.Messages = append(opts.Messages, api.Message{Role: "system", Content: opts.System}) | ||||
| 				fmt.Println("Set system message.") | ||||
| 				sb.Reset() | ||||
| 			case MultilineTemplate: | ||||
| 				opts.Template = sb.String() | ||||
| 				fmt.Println("Set prompt template.") | ||||
| 				sb.Reset() | ||||
| 			} | ||||
|  | ||||
| 			multiline = MultilineNone | ||||
| @@ -195,11 +264,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error { | ||||
| 			opts.Model = args[1] | ||||
| 			opts.Messages = []api.Message{} | ||||
| 			fmt.Printf("Loading model '%s'\n", opts.Model) | ||||
| 			if err := loadOrUnloadModel(cmd, &opts); err != nil { | ||||
| 				if strings.Contains(err.Error(), "not found") { | ||||
| 					fmt.Printf("error: %v\n", err) | ||||
| 					continue | ||||
| 				} | ||||
| 			if err := loadModel(cmd, &opts); err != nil { | ||||
| 				return err | ||||
| 			} | ||||
| 			continue | ||||
| @@ -216,7 +281,10 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error { | ||||
| 				return err | ||||
| 			} | ||||
|  | ||||
| 			req := NewCreateRequest(args[1], opts) | ||||
| 			req := &api.CreateRequest{ | ||||
| 				Name:      args[1], | ||||
| 				Modelfile: buildModelfile(opts), | ||||
| 			} | ||||
| 			fn := func(resp api.ProgressResponse) error { return nil } | ||||
| 			err = client.Create(cmd.Context(), req, fn) | ||||
| 			if err != nil { | ||||
| @@ -283,13 +351,17 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error { | ||||
| 					} | ||||
| 					fmt.Printf("Set parameter '%s' to '%s'\n", args[2], strings.Join(params, ", ")) | ||||
| 					opts.Options[args[2]] = fp[args[2]] | ||||
| 				case "system": | ||||
| 				case "system", "template": | ||||
| 					if len(args) < 3 { | ||||
| 						usageSet() | ||||
| 						continue | ||||
| 					} | ||||
|  | ||||
| 					multiline = MultilineSystem | ||||
| 					if args[1] == "system" { | ||||
| 						multiline = MultilineSystem | ||||
| 					} else if args[1] == "template" { | ||||
| 						multiline = MultilineTemplate | ||||
| 					} | ||||
|  | ||||
| 					line := strings.Join(args[2:], " ") | ||||
| 					line, ok := strings.CutPrefix(line, `"""`) | ||||
| @@ -309,16 +381,24 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error { | ||||
| 						continue | ||||
| 					} | ||||
|  | ||||
| 					opts.System = sb.String() // for display in modelfile | ||||
| 					newMessage := api.Message{Role: "system", Content: sb.String()} | ||||
| 					// Check if the slice is not empty and the last message is from 'system' | ||||
| 					if len(opts.Messages) > 0 && opts.Messages[len(opts.Messages)-1].Role == "system" { | ||||
| 						// Replace the last message | ||||
| 						opts.Messages[len(opts.Messages)-1] = newMessage | ||||
| 					} else { | ||||
| 						opts.Messages = append(opts.Messages, newMessage) | ||||
| 					if args[1] == "system" { | ||||
| 						opts.System = sb.String() // for display in modelfile | ||||
| 						newMessage := api.Message{Role: "system", Content: sb.String()} | ||||
| 						// Check if the slice is not empty and the last message is from 'system' | ||||
| 						if len(opts.Messages) > 0 && opts.Messages[len(opts.Messages)-1].Role == "system" { | ||||
| 							// Replace the last message | ||||
| 							opts.Messages[len(opts.Messages)-1] = newMessage | ||||
| 						} else { | ||||
| 							opts.Messages = append(opts.Messages, newMessage) | ||||
| 						} | ||||
| 						fmt.Println("Set system message.") | ||||
| 						sb.Reset() | ||||
| 					} else if args[1] == "template" { | ||||
| 						opts.Template = sb.String() | ||||
| 						fmt.Println("Set prompt template.") | ||||
| 						sb.Reset() | ||||
| 					} | ||||
| 					fmt.Println("Set system message.") | ||||
|  | ||||
| 					sb.Reset() | ||||
| 					continue | ||||
| 				default: | ||||
| @@ -336,9 +416,10 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error { | ||||
| 					return err | ||||
| 				} | ||||
| 				req := &api.ShowRequest{ | ||||
| 					Name:    opts.Model, | ||||
| 					System:  opts.System, | ||||
| 					Options: opts.Options, | ||||
| 					Name:     opts.Model, | ||||
| 					System:   opts.System, | ||||
| 					Template: opts.Template, | ||||
| 					Options:  opts.Options, | ||||
| 				} | ||||
| 				resp, err := client.Show(cmd.Context(), req) | ||||
| 				if err != nil { | ||||
| @@ -348,7 +429,15 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error { | ||||
|  | ||||
| 				switch args[1] { | ||||
| 				case "info": | ||||
| 					_ = showInfo(resp, false, os.Stderr) | ||||
| 					fmt.Println("Model details:") | ||||
| 					if len(resp.Details.Families) > 0 { | ||||
| 						fmt.Printf("Family              %s\n", strings.Join(resp.Details.Families, ", ")) | ||||
| 					} else if resp.Details.Family != "" { | ||||
| 						fmt.Printf("Family              %s\n", resp.Details.Family) | ||||
| 					} | ||||
| 					fmt.Printf("Parameter Size      %s\n", resp.Details.ParameterSize) | ||||
| 					fmt.Printf("Quantization Level  %s\n", resp.Details.QuantizationLevel) | ||||
| 					fmt.Println("") | ||||
| 				case "license": | ||||
| 					if resp.License == "" { | ||||
| 						fmt.Println("No license was specified for this model.") | ||||
| @@ -381,9 +470,12 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error { | ||||
| 						fmt.Println("No system message was specified for this model.") | ||||
| 					} | ||||
| 				case "template": | ||||
| 					if resp.Template != "" { | ||||
| 					switch { | ||||
| 					case opts.Template != "": | ||||
| 						fmt.Println(opts.Template + "\n") | ||||
| 					case resp.Template != "": | ||||
| 						fmt.Println(resp.Template) | ||||
| 					} else { | ||||
| 					default: | ||||
| 						fmt.Println("No prompt template was specified for this model.") | ||||
| 					} | ||||
| 				default: | ||||
| @@ -440,6 +532,13 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error { | ||||
| 					return err | ||||
| 				} | ||||
|  | ||||
| 				// clear all previous images for better responses | ||||
| 				if len(images) > 0 { | ||||
| 					for i := range opts.Messages { | ||||
| 						opts.Messages[i].Images = nil | ||||
| 					} | ||||
| 				} | ||||
|  | ||||
| 				newMessage.Content = msg | ||||
| 				newMessage.Images = images | ||||
| 			} | ||||
| @@ -459,59 +558,68 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error { | ||||
| 	} | ||||
| } | ||||
|  | ||||
| func NewCreateRequest(name string, opts runOptions) *api.CreateRequest { | ||||
| 	parentModel := opts.ParentModel | ||||
|  | ||||
| 	modelName := model.ParseName(parentModel) | ||||
| 	if !modelName.IsValid() { | ||||
| 		parentModel = "" | ||||
| func buildModelfile(opts runOptions) string { | ||||
| 	var mf strings.Builder | ||||
| 	model := opts.ParentModel | ||||
| 	if model == "" { | ||||
| 		model = opts.Model | ||||
| 	} | ||||
|  | ||||
| 	req := &api.CreateRequest{ | ||||
| 		Model: name, | ||||
| 		From:  cmp.Or(parentModel, opts.Model), | ||||
| 	} | ||||
|  | ||||
| 	fmt.Fprintf(&mf, "FROM %s\n", model) | ||||
| 	if opts.System != "" { | ||||
| 		req.System = opts.System | ||||
| 		fmt.Fprintf(&mf, "SYSTEM \"\"\"%s\"\"\"\n", opts.System) | ||||
| 	} | ||||
|  | ||||
| 	if len(opts.Options) > 0 { | ||||
| 		req.Parameters = opts.Options | ||||
| 	if opts.Template != "" { | ||||
| 		fmt.Fprintf(&mf, "TEMPLATE \"\"\"%s\"\"\"\n", opts.Template) | ||||
| 	} | ||||
|  | ||||
| 	if len(opts.Messages) > 0 { | ||||
| 		req.Messages = opts.Messages | ||||
| 	keys := make([]string, 0) | ||||
| 	for k := range opts.Options { | ||||
| 		keys = append(keys, k) | ||||
| 	} | ||||
| 	sort.Strings(keys) | ||||
| 	for _, k := range keys { | ||||
| 		fmt.Fprintf(&mf, "PARAMETER %s %v\n", k, opts.Options[k]) | ||||
| 	} | ||||
| 	fmt.Fprintln(&mf) | ||||
|  | ||||
| 	for _, msg := range opts.Messages { | ||||
| 		fmt.Fprintf(&mf, "MESSAGE %s \"\"\"%s\"\"\"\n", msg.Role, msg.Content) | ||||
| 	} | ||||
|  | ||||
| 	return req | ||||
| 	return mf.String() | ||||
| } | ||||
|  | ||||
| func normalizeFilePath(fp string) string { | ||||
| 	return strings.NewReplacer( | ||||
| 		"\\ ", " ", // Escaped space | ||||
| 		"\\(", "(", // Escaped left parenthesis | ||||
| 		"\\)", ")", // Escaped right parenthesis | ||||
| 		"\\[", "[", // Escaped left square bracket | ||||
| 		"\\]", "]", // Escaped right square bracket | ||||
| 		"\\{", "{", // Escaped left curly brace | ||||
| 		"\\}", "}", // Escaped right curly brace | ||||
| 		"\\$", "$", // Escaped dollar sign | ||||
| 		"\\&", "&", // Escaped ampersand | ||||
| 		"\\;", ";", // Escaped semicolon | ||||
| 		"\\'", "'", // Escaped single quote | ||||
| 		"\\\\", "\\", // Escaped backslash | ||||
| 		"\\*", "*", // Escaped asterisk | ||||
| 		"\\?", "?", // Escaped question mark | ||||
| 		"\\~", "~", // Escaped tilde | ||||
| 	).Replace(fp) | ||||
| 	// Define a map of escaped characters and their replacements | ||||
| 	replacements := map[string]string{ | ||||
| 		"\\ ":  " ",  // Escaped space | ||||
| 		"\\(":  "(",  // Escaped left parenthesis | ||||
| 		"\\)":  ")",  // Escaped right parenthesis | ||||
| 		"\\[":  "[",  // Escaped left square bracket | ||||
| 		"\\]":  "]",  // Escaped right square bracket | ||||
| 		"\\{":  "{",  // Escaped left curly brace | ||||
| 		"\\}":  "}",  // Escaped right curly brace | ||||
| 		"\\$":  "$",  // Escaped dollar sign | ||||
| 		"\\&":  "&",  // Escaped ampersand | ||||
| 		"\\;":  ";",  // Escaped semicolon | ||||
| 		"\\'":  "'",  // Escaped single quote | ||||
| 		"\\\\": "\\", // Escaped backslash | ||||
| 		"\\*":  "*",  // Escaped asterisk | ||||
| 		"\\?":  "?",  // Escaped question mark | ||||
| 	} | ||||
|  | ||||
| 	for escaped, actual := range replacements { | ||||
| 		fp = strings.ReplaceAll(fp, escaped, actual) | ||||
| 	} | ||||
| 	return fp | ||||
| } | ||||
|  | ||||
| func extractFileNames(input string) []string { | ||||
| 	// Regex to match file paths starting with optional drive letter, / ./ \ or .\ and include escaped or unescaped spaces (\ or %20) | ||||
| 	// and followed by more characters and a file extension | ||||
| 	// This will capture non filename strings, but we'll check for file existence to remove mismatches | ||||
| 	regexPattern := `(?:[a-zA-Z]:)?(?:\./|/|\\)[\S\\ ]+?\.(?i:jpg|jpeg|png)\b` | ||||
| 	regexPattern := `(?:[a-zA-Z]:)?(?:\./|/|\\)[\S\\ ]+?\.(?i:jpg|jpeg|png|svg)\b` | ||||
| 	re := regexp.MustCompile(regexPattern) | ||||
|  | ||||
| 	return re.FindAllString(input, -1) | ||||
| @@ -524,9 +632,10 @@ func extractFileData(input string) (string, []api.ImageData, error) { | ||||
| 	for _, fp := range filePaths { | ||||
| 		nfp := normalizeFilePath(fp) | ||||
| 		data, err := getImageData(nfp) | ||||
| 		if errors.Is(err, os.ErrNotExist) { | ||||
| 			continue | ||||
| 		} else if err != nil { | ||||
| 		if err != nil { | ||||
| 			if os.IsNotExist(err) { | ||||
| 				continue | ||||
| 			} | ||||
| 			fmt.Fprintf(os.Stderr, "Couldn't process image: %q\n", err) | ||||
| 			return "", imgs, err | ||||
| 		} | ||||
| @@ -534,7 +643,7 @@ func extractFileData(input string) (string, []api.ImageData, error) { | ||||
| 		input = strings.ReplaceAll(input, fp, "") | ||||
| 		imgs = append(imgs, data) | ||||
| 	} | ||||
| 	return strings.TrimSpace(input), imgs, nil | ||||
| 	return input, imgs, nil | ||||
| } | ||||
|  | ||||
| func getImageData(filePath string) ([]byte, error) { | ||||
| @@ -564,7 +673,7 @@ func getImageData(filePath string) ([]byte, error) { | ||||
| 	// Check if the file size exceeds 100MB | ||||
| 	var maxSize int64 = 100 * 1024 * 1024 // 100MB in bytes | ||||
| 	if info.Size() > maxSize { | ||||
| 		return nil, errors.New("file size exceeds maximum limit (100MB)") | ||||
| 		return nil, fmt.Errorf("file size exceeds maximum limit (100MB)") | ||||
| 	} | ||||
|  | ||||
| 	buf = make([]byte, info.Size()) | ||||
|   | ||||
| @@ -1,52 +1,116 @@ | ||||
| package cmd | ||||
|  | ||||
| import ( | ||||
| 	"bytes" | ||||
| 	"testing" | ||||
| 	"text/template" | ||||
|  | ||||
| 	"github.com/stretchr/testify/assert" | ||||
|  | ||||
| 	"github.com/ollama/ollama/api" | ||||
| ) | ||||
|  | ||||
| func TestExtractFilenames(t *testing.T) { | ||||
| 	// Unix style paths | ||||
| 	input := ` some preamble  | ||||
|  ./relative\ path/one.png inbetween1 ./not a valid two.jpg inbetween2 ./1.svg | ||||
| /unescaped space /three.jpeg inbetween3 /valid\ path/dir/four.png "./quoted with spaces/five.JPG` | ||||
|  ./relative\ path/one.png inbetween1 ./not a valid two.jpg inbetween2 | ||||
| /unescaped space /three.jpeg inbetween3 /valid\ path/dir/four.png "./quoted with spaces/five.svg` | ||||
| 	res := extractFileNames(input) | ||||
| 	assert.Len(t, res, 5) | ||||
| 	assert.Contains(t, res[0], "one.png") | ||||
| 	assert.Contains(t, res[1], "two.jpg") | ||||
| 	assert.Contains(t, res[2], "three.jpeg") | ||||
| 	assert.Contains(t, res[3], "four.png") | ||||
| 	assert.Contains(t, res[4], "five.JPG") | ||||
| 	assert.Contains(t, res[4], "five.svg") | ||||
| 	assert.NotContains(t, res[4], '"') | ||||
| 	assert.NotContains(t, res, "inbetween1") | ||||
| 	assert.NotContains(t, res, "./1.svg") | ||||
| 	assert.NotContains(t, res, "inbtween") | ||||
|  | ||||
| 	// Windows style paths | ||||
| 	input = ` some preamble | ||||
|  c:/users/jdoe/one.png inbetween1 c:/program files/someplace/two.jpg inbetween2  | ||||
|  /absolute/nospace/three.jpeg inbetween3 /absolute/with space/four.png inbetween4 | ||||
| ./relative\ path/five.JPG inbetween5 "./relative with/spaces/six.png inbetween6 | ||||
| d:\path with\spaces\seven.JPEG inbetween7 c:\users\jdoe\eight.png inbetween8  | ||||
|  d:\program files\someplace\nine.png inbetween9 "E:\program files\someplace\ten.PNG some ending | ||||
| ./relative\ path/five.svg inbetween5 "./relative with/spaces/six.png inbetween6 | ||||
| d:\path with\spaces\seven.svg inbetween7 c:\users\jdoe\eight.png inbetween8  | ||||
|  d:\program files\someplace\nine.png inbetween9 "E:\program files\someplace\ten.svg some ending | ||||
| ` | ||||
| 	res = extractFileNames(input) | ||||
| 	assert.Len(t, res, 10) | ||||
| 	assert.NotContains(t, res, "inbetween2") | ||||
| 	assert.NotContains(t, res, "inbtween") | ||||
| 	assert.Contains(t, res[0], "one.png") | ||||
| 	assert.Contains(t, res[0], "c:") | ||||
| 	assert.Contains(t, res[1], "two.jpg") | ||||
| 	assert.Contains(t, res[1], "c:") | ||||
| 	assert.Contains(t, res[2], "three.jpeg") | ||||
| 	assert.Contains(t, res[3], "four.png") | ||||
| 	assert.Contains(t, res[4], "five.JPG") | ||||
| 	assert.Contains(t, res[4], "five.svg") | ||||
| 	assert.Contains(t, res[5], "six.png") | ||||
| 	assert.Contains(t, res[6], "seven.JPEG") | ||||
| 	assert.Contains(t, res[6], "seven.svg") | ||||
| 	assert.Contains(t, res[6], "d:") | ||||
| 	assert.Contains(t, res[7], "eight.png") | ||||
| 	assert.Contains(t, res[7], "c:") | ||||
| 	assert.Contains(t, res[8], "nine.png") | ||||
| 	assert.Contains(t, res[8], "d:") | ||||
| 	assert.Contains(t, res[9], "ten.PNG") | ||||
| 	assert.Contains(t, res[9], "ten.svg") | ||||
| 	assert.Contains(t, res[9], "E:") | ||||
| } | ||||
|  | ||||
| func TestModelfileBuilder(t *testing.T) { | ||||
| 	opts := runOptions{ | ||||
| 		Model:    "hork", | ||||
| 		System:   "You are part horse and part shark, but all hork. Do horklike things", | ||||
| 		Template: "This is a template.", | ||||
| 		Messages: []api.Message{ | ||||
| 			{Role: "user", Content: "Hey there hork!"}, | ||||
| 			{Role: "assistant", Content: "Yes it is true, I am half horse, half shark."}, | ||||
| 		}, | ||||
| 		Options: map[string]interface{}{}, | ||||
| 	} | ||||
|  | ||||
| 	opts.Options["temperature"] = 0.9 | ||||
| 	opts.Options["seed"] = 42 | ||||
| 	opts.Options["penalize_newline"] = false | ||||
| 	opts.Options["stop"] = []string{"hi", "there"} | ||||
|  | ||||
| 	mf := buildModelfile(opts) | ||||
| 	expectedModelfile := `FROM {{.Model}} | ||||
| SYSTEM """{{.System}}""" | ||||
| TEMPLATE """{{.Template}}""" | ||||
| PARAMETER penalize_newline false | ||||
| PARAMETER seed 42 | ||||
| PARAMETER stop [hi there] | ||||
| PARAMETER temperature 0.9 | ||||
|  | ||||
| MESSAGE user """Hey there hork!""" | ||||
| MESSAGE assistant """Yes it is true, I am half horse, half shark.""" | ||||
| ` | ||||
|  | ||||
| 	tmpl, err := template.New("").Parse(expectedModelfile) | ||||
| 	assert.Nil(t, err) | ||||
|  | ||||
| 	var buf bytes.Buffer | ||||
| 	err = tmpl.Execute(&buf, opts) | ||||
| 	assert.Nil(t, err) | ||||
| 	assert.Equal(t, buf.String(), mf) | ||||
|  | ||||
| 	opts.ParentModel = "horseshark" | ||||
| 	mf = buildModelfile(opts) | ||||
| 	expectedModelfile = `FROM {{.ParentModel}} | ||||
| SYSTEM """{{.System}}""" | ||||
| TEMPLATE """{{.Template}}""" | ||||
| PARAMETER penalize_newline false | ||||
| PARAMETER seed 42 | ||||
| PARAMETER stop [hi there] | ||||
| PARAMETER temperature 0.9 | ||||
|  | ||||
| MESSAGE user """Hey there hork!""" | ||||
| MESSAGE assistant """Yes it is true, I am half horse, half shark.""" | ||||
| ` | ||||
|  | ||||
| 	tmpl, err = template.New("").Parse(expectedModelfile) | ||||
| 	assert.Nil(t, err) | ||||
|  | ||||
| 	var parentBuf bytes.Buffer | ||||
| 	err = tmpl.Execute(&parentBuf, opts) | ||||
| 	assert.Nil(t, err) | ||||
| 	assert.Equal(t, parentBuf.String(), mf) | ||||
| } | ||||
|   | ||||
| @@ -1,15 +0,0 @@ | ||||
| package main | ||||
|  | ||||
| import ( | ||||
| 	"fmt" | ||||
| 	"os" | ||||
|  | ||||
| 	"github.com/ollama/ollama/runner" | ||||
| ) | ||||
|  | ||||
| func main() { | ||||
| 	if err := runner.Execute(os.Args[1:]); err != nil { | ||||
| 		fmt.Fprintf(os.Stderr, "error: %s\n", err) | ||||
| 		os.Exit(1) | ||||
| 	} | ||||
| } | ||||
							
								
								
									
										27
									
								
								cmd/start.go
									
									
									
									
									
								
							
							
						
						
									
										27
									
								
								cmd/start.go
									
									
									
									
									
								
							| @@ -1,27 +0,0 @@ | ||||
| //go:build darwin || windows | ||||
|  | ||||
| package cmd | ||||
|  | ||||
| import ( | ||||
| 	"context" | ||||
| 	"errors" | ||||
| 	"time" | ||||
|  | ||||
| 	"github.com/ollama/ollama/api" | ||||
| ) | ||||
|  | ||||
| func waitForServer(ctx context.Context, client *api.Client) error { | ||||
| 	// wait for the server to start | ||||
| 	timeout := time.After(5 * time.Second) | ||||
| 	tick := time.Tick(500 * time.Millisecond) | ||||
| 	for { | ||||
| 		select { | ||||
| 		case <-timeout: | ||||
| 			return errors.New("timed out waiting for server to start") | ||||
| 		case <-tick: | ||||
| 			if err := client.Heartbeat(ctx); err == nil { | ||||
| 				return nil // server has started | ||||
| 			} | ||||
| 		} | ||||
| 	} | ||||
| } | ||||
| @@ -2,7 +2,7 @@ package cmd | ||||
|  | ||||
| import ( | ||||
| 	"context" | ||||
| 	"errors" | ||||
| 	"fmt" | ||||
| 	"os" | ||||
| 	"os/exec" | ||||
| 	"strings" | ||||
| @@ -20,7 +20,7 @@ func startApp(ctx context.Context, client *api.Client) error { | ||||
| 		return err | ||||
| 	} | ||||
| 	if !strings.Contains(link, "Ollama.app") { | ||||
| 		return errors.New("could not find ollama app") | ||||
| 		return fmt.Errorf("could not find ollama app") | ||||
| 	} | ||||
| 	path := strings.Split(link, "Ollama.app") | ||||
| 	if err := exec.Command("/usr/bin/open", "-a", path[0]+"Ollama.app").Run(); err != nil { | ||||
|   | ||||
| @@ -4,11 +4,11 @@ package cmd | ||||
|  | ||||
| import ( | ||||
| 	"context" | ||||
| 	"errors" | ||||
| 	"fmt" | ||||
|  | ||||
| 	"github.com/ollama/ollama/api" | ||||
| ) | ||||
|  | ||||
| func startApp(ctx context.Context, client *api.Client) error { | ||||
| 	return errors.New("could not connect to ollama server, run 'ollama serve' to start it") | ||||
| 	return fmt.Errorf("could not connect to ollama server, run 'ollama serve' to start it") | ||||
| } | ||||
|   | ||||
| @@ -31,7 +31,7 @@ func startApp(ctx context.Context, client *api.Client) error { | ||||
| 			// Finally look in the path | ||||
| 			appExe, err = exec.LookPath(AppName) | ||||
| 			if err != nil { | ||||
| 				return errors.New("could not locate ollama app") | ||||
| 				return fmt.Errorf("could not locate ollama app") | ||||
| 			} | ||||
| 		} | ||||
| 	} | ||||
|   | ||||
| @@ -1,251 +1,200 @@ | ||||
| package convert | ||||
|  | ||||
| import ( | ||||
| 	"cmp" | ||||
| 	"encoding/binary" | ||||
| 	"encoding/json" | ||||
| 	"errors" | ||||
| 	"fmt" | ||||
| 	"io" | ||||
| 	"io/fs" | ||||
| 	"log/slog" | ||||
| 	"os" | ||||
| 	"path/filepath" | ||||
| 	"slices" | ||||
| 	"strings" | ||||
|  | ||||
| 	"github.com/ollama/ollama/fs/ggml" | ||||
| 	"google.golang.org/protobuf/proto" | ||||
|  | ||||
| 	"github.com/ollama/ollama/convert/sentencepiece" | ||||
| 	"github.com/ollama/ollama/llm" | ||||
| ) | ||||
|  | ||||
| type ModelParameters struct { | ||||
| 	Architectures []string       `json:"architectures"` | ||||
| 	VocabSize     uint32         `json:"vocab_size"` | ||||
| 	TextModel     TextParameters `json:"text_config"` | ||||
| const ( | ||||
| 	_ int32 = iota | ||||
| 	tokenTypeNormal | ||||
| 	tokenTypeUnknown | ||||
| 	tokenTypeControl | ||||
| 	tokenTypeUserDefined | ||||
| 	tokenTypeUnused | ||||
| 	tokenTypeByte | ||||
| ) | ||||
|  | ||||
| type Params struct { | ||||
| 	Architectures     []string `json:"architectures"` | ||||
| 	VocabSize         int      `json:"vocab_size"` | ||||
| 	HiddenSize        int      `json:"hidden_size"`       // n_embd | ||||
| 	HiddenLayers      int      `json:"num_hidden_layers"` // n_layer | ||||
| 	ContextSize       int      `json:"max_position_embeddings"` | ||||
| 	IntermediateSize  int      `json:"intermediate_size"` | ||||
| 	AttentionHeads    int      `json:"num_attention_heads"` // n_head | ||||
| 	KeyValHeads       int      `json:"num_key_value_heads"` | ||||
| 	NormEPS           float64  `json:"rms_norm_eps"` | ||||
| 	BoSTokenID        int      `json:"bos_token_id"` | ||||
| 	EoSTokenID        int      `json:"eos_token_id"` | ||||
| 	HeadDimension     int      `json:"head_dim"` | ||||
| 	PaddingTokenID    int      `json:"pad_token_id"` | ||||
| 	RopeFrequencyBase float64  `json:"rope_theta"` | ||||
|  | ||||
| 	Experts     int `json:"num_local_experts"` | ||||
| 	ExpertsUsed int `json:"num_experts_per_tok"` | ||||
|  | ||||
| 	PreTokenizer string | ||||
|  | ||||
| 	ByteOrder | ||||
| } | ||||
|  | ||||
| type TextParameters struct { | ||||
| 	VocabSize uint32 `json:"vocab_size"` | ||||
| type ByteOrder interface { | ||||
| 	binary.ByteOrder | ||||
| 	binary.AppendByteOrder | ||||
| } | ||||
|  | ||||
| type AdapterParameters struct { | ||||
| 	Alpha          uint32 `json:"lora_alpha"` | ||||
| 	LoraLayers     uint32 `json:"lora_layers"` | ||||
| 	LoraParameters struct { | ||||
| 		Rank  uint32  `json:"rank"` | ||||
| 		Alpha float32 `json:"alpha"` | ||||
| 		Scale float32 `json:"scale"` | ||||
| 	} `json:"lora_parameters"` | ||||
| type ModelArch interface { | ||||
| 	GetTensors() error | ||||
| 	LoadVocab() error | ||||
| 	WriteGGUF(io.WriteSeeker) error | ||||
| } | ||||
|  | ||||
| func (ModelParameters) KV(t *Tokenizer) ggml.KV { | ||||
| 	kv := ggml.KV{ | ||||
| 		"general.file_type":            uint32(1), | ||||
| 		"general.quantization_version": uint32(2), | ||||
| 		"tokenizer.ggml.pre":           t.Pre, | ||||
| 		"tokenizer.ggml.model":         t.Vocabulary.Model, | ||||
| 		"tokenizer.ggml.tokens":        t.Vocabulary.Tokens, | ||||
| 		"tokenizer.ggml.scores":        t.Vocabulary.Scores, | ||||
| 		"tokenizer.ggml.token_type":    t.Vocabulary.Types, | ||||
| 	} | ||||
|  | ||||
| 	if len(t.Merges) > 0 { | ||||
| 		kv["tokenizer.ggml.merges"] = t.Merges | ||||
| 	} | ||||
|  | ||||
| 	if t.Template != "" { | ||||
| 		kv["tokenizer.chat_template"] = t.Template | ||||
| 	} | ||||
|  | ||||
| 	for _, sv := range t.SpecialVocabulary { | ||||
| 		kv[fmt.Sprintf("tokenizer.ggml.%s_token_id", sv.Key())] = uint32(sv.ID) | ||||
| 		kv[fmt.Sprintf("tokenizer.ggml.add_%s_token", sv.Key())] = sv.AddToken | ||||
| 	} | ||||
|  | ||||
| 	return kv | ||||
| type ModelFormat interface { | ||||
| 	GetLayerName(string) (string, error) | ||||
| 	GetTensors(string, *Params) ([]llm.Tensor, error) | ||||
| 	GetParams(string) (*Params, error) | ||||
| 	GetModelArch(string, string, *Params) (ModelArch, error) | ||||
| } | ||||
|  | ||||
| func (p AdapterParameters) KV() ggml.KV { | ||||
| 	var alpha float32 | ||||
| 	if p.LoraParameters.Alpha == 0 { | ||||
| 		alpha = float32(p.Alpha) | ||||
| 	} else { | ||||
| 		alpha = p.LoraParameters.Alpha | ||||
| 	} | ||||
|  | ||||
| 	kv := ggml.KV{ | ||||
| 		"adapter.lora.alpha": alpha, | ||||
| 		"adapter.type":       "lora", | ||||
| 		"general.file_type":  uint32(1), | ||||
| 		"general.type":       "adapter", | ||||
| 		"general.version":    "v0.2", | ||||
| 	} | ||||
|  | ||||
| 	return kv | ||||
| type ModelData struct { | ||||
| 	Path    string | ||||
| 	Name    string | ||||
| 	Params  *Params | ||||
| 	Vocab   *Vocab | ||||
| 	Tensors []llm.Tensor | ||||
| 	Format  ModelFormat | ||||
| } | ||||
|  | ||||
| func (ModelParameters) specialTokenTypes() []string { | ||||
| 	return []string{ | ||||
| 		"bos", "eos", "unk", "sep", "pad", "cls", "mask", | ||||
| 	} | ||||
| } | ||||
|  | ||||
| type ModelConverter interface { | ||||
| 	// KV maps parameters to LLM key-values | ||||
| 	KV(*Tokenizer) ggml.KV | ||||
| 	// Tensors maps input tensors to LLM tensors. Model specific modifications can be done here. | ||||
| 	Tensors([]Tensor) []ggml.Tensor | ||||
| 	// Replacements returns a list of string pairs to replace in tensor names. | ||||
| 	// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details | ||||
| 	Replacements() []string | ||||
|  | ||||
| 	// specialTokenTypes returns any special token types the model uses | ||||
| 	specialTokenTypes() []string | ||||
| } | ||||
|  | ||||
| type moreParser interface { | ||||
| 	parseMore(fs.FS) error | ||||
| } | ||||
|  | ||||
| type AdapterConverter interface { | ||||
| 	// KV maps parameters to LLM key-values | ||||
| 	KV(ggml.KV) ggml.KV | ||||
| 	// Tensors maps input tensors to LLM tensors. Adapter specific modifications can be done here. | ||||
| 	Tensors([]Tensor) []ggml.Tensor | ||||
| 	// Replacements returns a list of string pairs to replace in tensor names. | ||||
| 	// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details | ||||
| 	Replacements() []string | ||||
| } | ||||
|  | ||||
| func ConvertAdapter(fsys fs.FS, ws io.WriteSeeker, baseKV ggml.KV) error { | ||||
| 	bts, err := fs.ReadFile(fsys, "adapter_config.json") | ||||
| func GetModelFormat(dirname string) (ModelFormat, error) { | ||||
| 	files, err := filepath.Glob(filepath.Join(dirname, "*")) | ||||
| 	if err != nil { | ||||
| 		return err | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	var p AdapterParameters | ||||
| 	if err := json.Unmarshal(bts, &p); err != nil { | ||||
| 		return err | ||||
| 	} | ||||
|  | ||||
| 	arch, ok := baseKV["general.architecture"] | ||||
| 	if !ok { | ||||
| 		return errors.New("architecture not set for the base model") | ||||
| 	} | ||||
|  | ||||
| 	var conv AdapterConverter | ||||
| 	switch arch { | ||||
| 	case "llama": | ||||
| 		conv = &llamaAdapter{} | ||||
| 	case "gemma2": | ||||
| 		conv = &gemma2Adapter{} | ||||
| 	default: | ||||
| 		return errors.New("unsupported architecture") | ||||
| 	} | ||||
|  | ||||
| 	ts, err := parseTensors(fsys, strings.NewReplacer(conv.Replacements()...)) | ||||
| 	if err != nil { | ||||
| 		return err | ||||
| 	} | ||||
|  | ||||
| 	if err := json.Unmarshal(bts, conv); err != nil { | ||||
| 		return err | ||||
| 	} | ||||
|  | ||||
| 	return writeFile(ws, conv.KV(baseKV), conv.Tensors(ts)) | ||||
| } | ||||
|  | ||||
| // Convert writes an Ollama compatible model to the provided io.WriteSeeker based on configurations | ||||
| // and files it finds in the input path. | ||||
| // Supported input model formats include safetensors. | ||||
| // Supported input tokenizers files include tokenizer.json (preferred) and tokenizer.model. | ||||
| func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error { | ||||
| 	bts, err := fs.ReadFile(fsys, "config.json") | ||||
| 	if err != nil { | ||||
| 		return err | ||||
| 	} | ||||
|  | ||||
| 	var p ModelParameters | ||||
| 	if err := json.Unmarshal(bts, &p); err != nil { | ||||
| 		return err | ||||
| 	} | ||||
|  | ||||
| 	if len(p.Architectures) < 1 { | ||||
| 		return errors.New("unknown architecture") | ||||
| 	} | ||||
|  | ||||
| 	var conv ModelConverter | ||||
| 	switch p.Architectures[0] { | ||||
| 	case "LlamaForCausalLM": | ||||
| 		conv = &llamaModel{} | ||||
| 	case "Llama4ForConditionalGeneration": | ||||
| 		conv = &llama4Model{} | ||||
| 	case "Mistral3ForConditionalGeneration": | ||||
| 		conv = &mistral3Model{} | ||||
| 	case "MixtralForCausalLM": | ||||
| 		conv = &mixtralModel{} | ||||
| 	case "GemmaForCausalLM": | ||||
| 		conv = &gemmaModel{} | ||||
| 	case "Gemma2ForCausalLM": | ||||
| 		conv = &gemma2Model{} | ||||
| 	case "Gemma3ForCausalLM", "Gemma3ForConditionalGeneration": | ||||
| 		conv = &gemma3Model{Architecture: p.Architectures[0]} | ||||
| 	case "Phi3ForCausalLM": | ||||
| 		conv = &phi3Model{} | ||||
| 	case "Qwen2ForCausalLM": | ||||
| 		conv = &qwen2Model{} | ||||
| 	case "BertModel": | ||||
| 		conv = &bertModel{} | ||||
| 	case "CohereForCausalLM": | ||||
| 		conv = &commandrModel{} | ||||
| 	default: | ||||
| 		return fmt.Errorf("unsupported architecture %q", p.Architectures[0]) | ||||
| 	} | ||||
|  | ||||
| 	if err := json.Unmarshal(bts, conv); err != nil { | ||||
| 		return err | ||||
| 	} | ||||
|  | ||||
| 	if t, ok := conv.(moreParser); ok { | ||||
| 		if err := t.parseMore(fsys); err != nil { | ||||
| 			return err | ||||
| 	for _, fn := range files { | ||||
| 		if strings.HasSuffix(fn, ".safetensors") { | ||||
| 			return &SafetensorFormat{}, nil | ||||
| 		} else if strings.HasSuffix(fn, ".bin") || strings.HasSuffix(fn, ".pth") { | ||||
| 			slog.Debug("model is torch") | ||||
| 			return &TorchFormat{}, nil | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	t, err := parseTokenizer(fsys, conv.specialTokenTypes()) | ||||
| 	return nil, fmt.Errorf("couldn't determine model format") | ||||
| } | ||||
|  | ||||
| // Details on gguf's tokenizer can be found at: | ||||
| // https://github.com/ggerganov/ggml/blob/master/docs/gguf.md#tokenizer | ||||
| type Vocab struct { | ||||
| 	Tokens []string | ||||
| 	Scores []float32 | ||||
| 	Types  []int32 | ||||
| 	Merges []string | ||||
| } | ||||
|  | ||||
| func LoadSentencePieceTokens(dirpath string, params *Params) (*Vocab, error) { | ||||
| 	slog.Info(fmt.Sprintf("reading vocab from %s", filepath.Join(dirpath, "tokenizer.model"))) | ||||
| 	in, err := os.ReadFile(filepath.Join(dirpath, "tokenizer.model")) | ||||
| 	if err != nil { | ||||
| 		return err | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	vocabSize := int(p.VocabSize) | ||||
| 	if vocabSize == 0 { | ||||
| 		tVocabSize := int(p.TextModel.VocabSize) | ||||
| 		vocabSize = tVocabSize | ||||
| 	// To regenerate sentencepiece from the protobufs use: | ||||
| 	// protoc -I=./ --go_out=./ sentencepiece_model.proto | ||||
| 	modelProto := &sentencepiece.ModelProto{} | ||||
| 	if err := proto.Unmarshal(in, modelProto); err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	switch { | ||||
| 	case vocabSize == 0: | ||||
| 		slog.Warn("vocabulary size was not explicitly set by the model", "default size", len(t.Vocabulary.Tokens)) | ||||
| 	case vocabSize > len(t.Vocabulary.Tokens): | ||||
| 		slog.Warn("vocabulary is smaller than expected, padding with dummy tokens", "expect", vocabSize, "actual", len(t.Vocabulary.Tokens)) | ||||
| 		for i := range vocabSize - len(t.Vocabulary.Tokens) { | ||||
| 			t.Vocabulary.Tokens = append(t.Vocabulary.Tokens, fmt.Sprintf("[PAD%d]", i)) | ||||
| 			t.Vocabulary.Scores = append(t.Vocabulary.Scores, -1) | ||||
| 			t.Vocabulary.Types = append(t.Vocabulary.Types, tokenTypeUserDefined) | ||||
| 	v := &Vocab{ | ||||
| 		Tokens: make([]string, 0), | ||||
| 		Scores: make([]float32, 0), | ||||
| 		Types:  make([]int32, 0), | ||||
| 	} | ||||
|  | ||||
| 	pieces := modelProto.GetPieces() | ||||
| 	for _, p := range pieces { | ||||
| 		v.Tokens = append(v.Tokens, p.GetPiece()) | ||||
| 		v.Scores = append(v.Scores, p.GetScore()) | ||||
| 		t := p.GetType() | ||||
| 		switch t { | ||||
| 		case sentencepiece.ModelProto_SentencePiece_UNKNOWN: | ||||
| 		case sentencepiece.ModelProto_SentencePiece_CONTROL: | ||||
| 		case sentencepiece.ModelProto_SentencePiece_UNUSED: | ||||
| 		case sentencepiece.ModelProto_SentencePiece_BYTE: | ||||
| 		default: | ||||
| 			t = sentencepiece.ModelProto_SentencePiece_NORMAL | ||||
| 		} | ||||
| 	case vocabSize < len(t.Vocabulary.Tokens): | ||||
| 		return fmt.Errorf("vocabulary is larger than expected '%d' instead of '%d'", len(t.Vocabulary.Tokens), vocabSize) | ||||
| 	default: | ||||
| 		slog.Debug("vocabulary", "size", len(t.Vocabulary.Tokens)) | ||||
| 		v.Types = append(v.Types, int32(t)) | ||||
| 	} | ||||
|  | ||||
| 	ts, err := parseTensors(fsys, strings.NewReplacer(conv.Replacements()...)) | ||||
| 	if err != nil { | ||||
| 		return err | ||||
| 	slog.Info(fmt.Sprintf("vocab size: %d", len(v.Tokens))) | ||||
|  | ||||
| 	// add any additional tokens | ||||
| 	addIn, err := os.ReadFile(filepath.Join(dirpath, "added_tokens.json")) | ||||
| 	if os.IsNotExist(err) { | ||||
| 		return v, nil | ||||
| 	} else if err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	return writeFile(ws, conv.KV(t), conv.Tensors(ts)) | ||||
| } | ||||
|  | ||||
| func writeFile(ws io.WriteSeeker, kv ggml.KV, ts []ggml.Tensor) error { | ||||
| 	for i := range ts { | ||||
| 		ts[i].Shape = slices.Clone(ts[i].Shape) | ||||
| 		slices.Reverse(ts[i].Shape) | ||||
| 	} | ||||
| 	return ggml.WriteGGUF(ws, kv, ts) | ||||
| 	slog.Info("reading user defined tokens") | ||||
|  | ||||
| 	var extraTokenData map[string]int | ||||
| 	if err := json.Unmarshal(addIn, &extraTokenData); err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	type token struct { | ||||
| 		key string | ||||
| 		pos int | ||||
| 	} | ||||
|  | ||||
| 	extraTokens := make([]token, 0) | ||||
| 	for k, id := range extraTokenData { | ||||
| 		extraTokens = append(extraTokens, token{k, id}) | ||||
| 	} | ||||
|  | ||||
| 	slices.SortFunc(extraTokens, func(a, b token) int { | ||||
| 		return cmp.Compare(a.pos, b.pos) | ||||
| 	}) | ||||
|  | ||||
| 	numToks := len(v.Tokens) | ||||
|  | ||||
| 	for cnt, t := range extraTokens { | ||||
| 		// the token id should match the specific index for the total number of tokens | ||||
| 		if t.pos != cnt+numToks { | ||||
| 			return nil, fmt.Errorf("token ID '%d' for '%s' doesn't match total token size", t.pos, t.key) | ||||
| 		} | ||||
| 		v.Tokens = append(v.Tokens, t.key) | ||||
| 		v.Scores = append(v.Scores, -1000.0) | ||||
| 		v.Types = append(v.Types, tokenTypeUserDefined) | ||||
| 	} | ||||
| 	slog.Info(fmt.Sprintf("vocab size w/ extra tokens: %d", len(v.Tokens))) | ||||
|  | ||||
| 	if params.VocabSize > len(v.Tokens) { | ||||
| 		missingTokens := params.VocabSize - len(v.Tokens) | ||||
| 		slog.Warn(fmt.Sprintf("vocab is missing %d tokens", missingTokens)) | ||||
| 		for cnt := 0; cnt < missingTokens; cnt++ { | ||||
| 			v.Tokens = append(v.Tokens, fmt.Sprintf("<dummy%05d>", cnt+1)) | ||||
| 			v.Scores = append(v.Scores, -1) | ||||
| 			v.Types = append(v.Types, tokenTypeUserDefined) | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	return v, nil | ||||
| } | ||||
|   | ||||
| @@ -1,174 +0,0 @@ | ||||
| package convert | ||||
|  | ||||
| import ( | ||||
| 	"cmp" | ||||
| 	"encoding/json" | ||||
| 	"io/fs" | ||||
| 	"path/filepath" | ||||
| 	"slices" | ||||
| 	"strings" | ||||
|  | ||||
| 	"github.com/ollama/ollama/fs/ggml" | ||||
| ) | ||||
|  | ||||
| type bertModel struct { | ||||
| 	ModelParameters | ||||
| 	NLayers               uint32  `json:"n_layers"` | ||||
| 	NumHiddenLayers       uint32  `json:"num_hidden_layers"` | ||||
| 	NLayer                uint32  `json:"n_layer"` | ||||
| 	MaxPositionEmbeddings uint32  `json:"max_position_embeddings"` | ||||
| 	NCtx                  uint32  `json:"n_ctx"` | ||||
| 	HiddenSize            uint32  `json:"hidden_size"` | ||||
| 	NEmbd                 uint32  `json:"n_embd"` | ||||
| 	IntermediateSize      uint32  `json:"intermediate_size"` | ||||
| 	NInner                uint32  `json:"n_inner"` | ||||
| 	NumAttentionHeads     uint32  `json:"num_attention_heads"` | ||||
| 	NHead                 uint32  `json:"n_head"` | ||||
| 	NumKeyValueHeads      uint32  `json:"num_key_value_heads"` | ||||
| 	LayerNormEPS          float32 `json:"layer_norm_eps"` | ||||
| 	LayerNormEpsilon      float32 `json:"layer_norm_epsilon"` | ||||
| 	NormEpsilon           float32 `json:"norm_epsilon"` | ||||
|  | ||||
| 	PoolingType uint32 | ||||
| } | ||||
|  | ||||
| var ( | ||||
| 	_ ModelConverter = (*bertModel)(nil) | ||||
| 	_ moreParser     = (*bertModel)(nil) | ||||
| ) | ||||
|  | ||||
| func (p *bertModel) parseMore(fsys fs.FS) error { | ||||
| 	bts, err := fs.ReadFile(fsys, "modules.json") | ||||
| 	if err != nil { | ||||
| 		return err | ||||
| 	} | ||||
|  | ||||
| 	var modules []struct { | ||||
| 		Type string `json:"type"` | ||||
| 		Path string `json:"path"` | ||||
| 	} | ||||
|  | ||||
| 	if err := json.Unmarshal(bts, &modules); err != nil { | ||||
| 		return err | ||||
| 	} | ||||
|  | ||||
| 	var pooling string | ||||
| 	for _, m := range modules { | ||||
| 		if m.Type == "sentence_transformers.models.Pooling" { | ||||
| 			pooling = m.Path | ||||
| 			break | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	if pooling != "" { | ||||
| 		bts, err := fs.ReadFile(fsys, filepath.Join(pooling, "config.json")) | ||||
| 		if err != nil { | ||||
| 			return err | ||||
| 		} | ||||
|  | ||||
| 		var pc struct { | ||||
| 			PoolingModeCLSToken   bool `json:"pooling_mode_cls_token"` | ||||
| 			PoolingModeMeanTokens bool `json:"pooling_mode_mean_tokens"` | ||||
| 		} | ||||
|  | ||||
| 		if err := json.Unmarshal(bts, &pc); err != nil { | ||||
| 			return err | ||||
| 		} | ||||
|  | ||||
| 		if pc.PoolingModeMeanTokens { | ||||
| 			p.PoolingType = 1 | ||||
| 		} else if pc.PoolingModeCLSToken { | ||||
| 			p.PoolingType = 2 | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	return nil | ||||
| } | ||||
|  | ||||
| func (p *bertModel) KV(t *Tokenizer) ggml.KV { | ||||
| 	kv := p.ModelParameters.KV(t) | ||||
| 	kv["general.architecture"] = "bert" | ||||
| 	kv["bert.attention.causal"] = false | ||||
| 	kv["bert.pooling_type"] = p.PoolingType | ||||
|  | ||||
| 	kv["bert.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer) | ||||
|  | ||||
| 	if contextLength := cmp.Or(p.MaxPositionEmbeddings, p.NCtx); contextLength > 0 { | ||||
| 		kv["bert.context_length"] = contextLength | ||||
| 	} | ||||
|  | ||||
| 	if embeddingLength := cmp.Or(p.HiddenSize, p.NEmbd); embeddingLength > 0 { | ||||
| 		kv["bert.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd) | ||||
| 	} | ||||
|  | ||||
| 	if feedForwardLength := cmp.Or(p.IntermediateSize, p.NInner); feedForwardLength > 0 { | ||||
| 		kv["bert.feed_forward_length"] = cmp.Or(p.IntermediateSize, p.NInner) | ||||
| 	} | ||||
|  | ||||
| 	if headCount := cmp.Or(p.NumAttentionHeads, p.NHead); headCount > 0 { | ||||
| 		kv["bert.attention.head_count"] = cmp.Or(p.NumAttentionHeads, p.NHead) | ||||
| 	} | ||||
|  | ||||
| 	if layerNormEpsilon := cmp.Or(p.LayerNormEPS, p.LayerNormEpsilon, p.NormEpsilon); layerNormEpsilon > 0 { | ||||
| 		kv["bert.attention.layer_norm_epsilon"] = layerNormEpsilon | ||||
| 	} | ||||
|  | ||||
| 	kv["tokenizer.ggml.model"] = "bert" | ||||
| 	kv["tokenizer.ggml.token_type_count"] = uint32(2) | ||||
|  | ||||
| 	// convert to phantom space tokens | ||||
| 	for i, e := range t.Tokens { | ||||
| 		if strings.HasPrefix(e, "[") && strings.HasSuffix(e, "]") { | ||||
| 			// noop | ||||
| 		} else if strings.HasPrefix(e, "##") { | ||||
| 			t.Tokens[i] = e[2:] | ||||
| 		} else { | ||||
| 			t.Tokens[i] = "\u2581" + e | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	kv["tokenizer.ggml.tokens"] = t.Tokens | ||||
|  | ||||
| 	return kv | ||||
| } | ||||
|  | ||||
| func (p *bertModel) Tensors(ts []Tensor) []ggml.Tensor { | ||||
| 	var out []ggml.Tensor | ||||
| 	for _, t := range ts { | ||||
| 		if slices.Contains([]string{ | ||||
| 			"embeddings.position_ids", | ||||
| 			"pooler.dense.weight", | ||||
| 			"pooler.dense.bias", | ||||
| 		}, t.Name()) { | ||||
| 			continue | ||||
| 		} | ||||
|  | ||||
| 		out = append(out, ggml.Tensor{ | ||||
| 			Name:     t.Name(), | ||||
| 			Kind:     t.Kind(), | ||||
| 			Shape:    t.Shape(), | ||||
| 			WriterTo: t, | ||||
| 		}) | ||||
| 	} | ||||
|  | ||||
| 	return out | ||||
| } | ||||
|  | ||||
| func (bertModel) Replacements() []string { | ||||
| 	return []string{ | ||||
| 		"encoder.layer", "blk", | ||||
| 		"encoder.layers", "blk", | ||||
| 		"embeddings.word_embeddings", "token_embd", | ||||
| 		"embeddings.token_type_embeddings", "token_types", | ||||
| 		"embeddings.LayerNorm", "token_embd_norm", | ||||
| 		"embeddings.position_embeddings", "position_embd", | ||||
| 		"attention.self.query", "attn_q", | ||||
| 		"attention.self.key", "attn_k", | ||||
| 		"attention.self.value", "attn_v", | ||||
| 		"attention.output.dense", "attn_output", | ||||
| 		"attention.output.LayerNorm", "attn_output_norm", | ||||
| 		"intermediate.dense", "ffn_up", | ||||
| 		"output.dense", "ffn_down", | ||||
| 		"output.LayerNorm", "layer_output_norm", | ||||
| 	} | ||||
| } | ||||
| @@ -1,76 +0,0 @@ | ||||
| package convert | ||||
|  | ||||
| import ( | ||||
| 	"cmp" | ||||
|  | ||||
| 	"github.com/ollama/ollama/fs/ggml" | ||||
| ) | ||||
|  | ||||
| type commandrModel struct { | ||||
| 	ModelParameters | ||||
| 	MaxPositionEmbeddings uint32  `json:"max_position_embeddings"` | ||||
| 	HiddenSize            uint32  `json:"hidden_size"` | ||||
| 	HiddenLayers          uint32  `json:"num_hidden_layers"` | ||||
| 	IntermediateSize      uint32  `json:"intermediate_size"` | ||||
| 	NumAttentionHeads     uint32  `json:"num_attention_heads"` | ||||
| 	NumKeyValueHeads      uint32  `json:"num_key_value_heads"` | ||||
| 	LayerNormEPS          float32 `json:"layer_norm_eps"` | ||||
| 	RopeTheta             float32 `json:"rope_theta"` | ||||
| 	UseQKNorm             bool    `json:"use_qk_norm"` | ||||
| 	MaxLength             uint32  `json:"model_max_length"` | ||||
| 	LogitScale            float32 `json:"logit_scale"` | ||||
| 	NCtx                  uint32  `json:"n_ctx"` | ||||
| } | ||||
|  | ||||
| var _ ModelConverter = (*commandrModel)(nil) | ||||
|  | ||||
| func (p *commandrModel) KV(t *Tokenizer) ggml.KV { | ||||
| 	kv := p.ModelParameters.KV(t) | ||||
| 	kv["general.architecture"] = "command-r" | ||||
| 	kv["general.name"] = "command-r" | ||||
| 	kv["command-r.context_length"] = cmp.Or(p.MaxLength, p.MaxPositionEmbeddings, p.NCtx) | ||||
| 	kv["command-r.embedding_length"] = p.HiddenSize | ||||
| 	kv["command-r.block_count"] = p.HiddenLayers | ||||
| 	kv["command-r.feed_forward_length"] = p.IntermediateSize | ||||
| 	kv["command-r.attention.head_count"] = p.NumAttentionHeads | ||||
| 	kv["command-r.attention.head_count_kv"] = p.NumKeyValueHeads | ||||
| 	kv["command-r.attention.layer_norm_epsilon"] = p.LayerNormEPS | ||||
| 	kv["command-r.rope.freq_base"] = p.RopeTheta | ||||
| 	kv["command-r.max_position_embeddings"] = cmp.Or(p.MaxLength, p.MaxPositionEmbeddings) | ||||
| 	kv["command-r.logit_scale"] = p.LogitScale | ||||
| 	kv["command-r.rope.scaling.type"] = "none" | ||||
|  | ||||
| 	return kv | ||||
| } | ||||
|  | ||||
| func (p *commandrModel) Tensors(ts []Tensor) []ggml.Tensor { | ||||
| 	var out []ggml.Tensor | ||||
| 	for _, t := range ts { | ||||
| 		out = append(out, ggml.Tensor{ | ||||
| 			Name:     t.Name(), | ||||
| 			Kind:     t.Kind(), | ||||
| 			Shape:    t.Shape(), | ||||
| 			WriterTo: t, | ||||
| 		}) | ||||
| 	} | ||||
|  | ||||
| 	return out | ||||
| } | ||||
|  | ||||
| func (p *commandrModel) Replacements() []string { | ||||
| 	return []string{ | ||||
| 		"self_attn.q_norm", "attn_q_norm", | ||||
| 		"self_attn.k_norm", "attn_k_norm", | ||||
| 		"model.layers", "blk", | ||||
| 		"input_layernorm", "attn_norm", | ||||
| 		"mlp.down_proj", "ffn_down", | ||||
| 		"mlp.gate_proj", "ffn_gate", | ||||
| 		"mlp.up_proj", "ffn_up", | ||||
| 		"self_attn.k_proj", "attn_k", | ||||
| 		"self_attn.o_proj", "attn_output", | ||||
| 		"self_attn.q_proj", "attn_q", | ||||
| 		"self_attn.v_proj", "attn_v", | ||||
| 		"model.norm", "output_norm", | ||||
| 		"model.embed_tokens", "token_embd", | ||||
| 	} | ||||
| } | ||||
| @@ -1,100 +0,0 @@ | ||||
| package convert | ||||
|  | ||||
| import ( | ||||
| 	"strings" | ||||
|  | ||||
| 	"github.com/pdevine/tensor" | ||||
| 	"github.com/pdevine/tensor/native" | ||||
|  | ||||
| 	"github.com/ollama/ollama/fs/ggml" | ||||
| ) | ||||
|  | ||||
| type gemmaModel struct { | ||||
| 	ModelParameters | ||||
| 	MaxPositionEmbeddings uint32  `json:"max_position_embeddings"` | ||||
| 	HiddenSize            uint32  `json:"hidden_size"` | ||||
| 	HiddenLayers          uint32  `json:"num_hidden_layers"` | ||||
| 	IntermediateSize      uint32  `json:"intermediate_size"` | ||||
| 	NumAttentionHeads     uint32  `json:"num_attention_heads"` | ||||
| 	NumKeyValueHeads      uint32  `json:"num_key_value_heads"` | ||||
| 	RMSNormEPS            float32 `json:"rms_norm_eps"` | ||||
| 	HeadDim               uint32  `json:"head_dim"` | ||||
| } | ||||
|  | ||||
| var _ ModelConverter = (*gemmaModel)(nil) | ||||
|  | ||||
| func (p *gemmaModel) KV(t *Tokenizer) ggml.KV { | ||||
| 	kv := p.ModelParameters.KV(t) | ||||
| 	kv["general.architecture"] = "gemma" | ||||
| 	kv["gemma.context_length"] = p.MaxPositionEmbeddings | ||||
| 	kv["gemma.embedding_length"] = p.HiddenSize | ||||
| 	kv["gemma.block_count"] = p.HiddenLayers | ||||
| 	kv["gemma.feed_forward_length"] = p.IntermediateSize | ||||
| 	kv["gemma.attention.head_count"] = p.NumAttentionHeads | ||||
| 	kv["gemma.attention.head_count_kv"] = p.NumKeyValueHeads | ||||
| 	kv["gemma.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS | ||||
| 	kv["gemma.attention.key_length"] = p.HeadDim | ||||
| 	kv["gemma.attention.value_length"] = p.HeadDim | ||||
| 	kv["tokenizer.ggml.eot_token_id"] = uint32(107) | ||||
| 	kv["tokenizer.ggml.middle_token_id"] = uint32(68) | ||||
| 	kv["tokenizer.ggml.prefix_token_id"] = uint32(67) | ||||
| 	kv["tokenizer.ggml.suffix_token_id"] = uint32(69) | ||||
| 	return kv | ||||
| } | ||||
|  | ||||
| func (p *gemmaModel) Tensors(ts []Tensor) []ggml.Tensor { | ||||
| 	var out []ggml.Tensor | ||||
| 	for _, t := range ts { | ||||
| 		if !strings.HasPrefix(t.Name(), "v.") && strings.HasSuffix(t.Name(), "_norm.weight") { | ||||
| 			t.SetRepacker(p.addOne) | ||||
| 		} | ||||
|  | ||||
| 		out = append(out, ggml.Tensor{ | ||||
| 			Name:     t.Name(), | ||||
| 			Kind:     t.Kind(), | ||||
| 			Shape:    t.Shape(), | ||||
| 			WriterTo: t, | ||||
| 		}) | ||||
| 	} | ||||
|  | ||||
| 	return out | ||||
| } | ||||
|  | ||||
| func (p *gemmaModel) Replacements() []string { | ||||
| 	return []string{ | ||||
| 		"model.embed_tokens", "token_embd", | ||||
| 		"model.norm", "output_norm", | ||||
| 		"model.layers", "blk", | ||||
| 		"input_layernorm", "attn_norm", | ||||
| 		"self_attn.q_proj", "attn_q", | ||||
| 		"self_attn.k_proj", "attn_k", | ||||
| 		"self_attn.v_proj", "attn_v", | ||||
| 		"self_attn.o_proj", "attn_output", | ||||
| 		"mlp.gate_proj", "ffn_gate", | ||||
| 		"mlp.down_proj", "ffn_down", | ||||
| 		"mlp.up_proj", "ffn_up", | ||||
| 		"post_attention_layernorm", "ffn_norm", | ||||
| 	} | ||||
| } | ||||
|  | ||||
| func (*gemmaModel) addOne(_ string, data []float32, shape []uint64) ([]float32, error) { | ||||
| 	n := tensor.New(tensor.WithShape(int(shape[0])), tensor.WithBacking(data)) | ||||
| 	ones := tensor.Ones(tensor.Float32, int(shape[0])) | ||||
|  | ||||
| 	n, err := n.Add(ones) | ||||
| 	if err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	ts, err := native.SelectF32(n, 0) | ||||
| 	if err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	var f32s []float32 | ||||
| 	for _, t := range ts { | ||||
| 		f32s = append(f32s, t...) | ||||
| 	} | ||||
|  | ||||
| 	return f32s, nil | ||||
| } | ||||
| @@ -1,51 +0,0 @@ | ||||
| package convert | ||||
|  | ||||
| import "github.com/ollama/ollama/fs/ggml" | ||||
|  | ||||
| type gemma2Model struct { | ||||
| 	gemmaModel | ||||
| 	SlidingWindow         uint32  `json:"sliding_window"` | ||||
| 	AttentionLogitSoftcap float32 `json:"attn_logit_softcapping"` | ||||
| 	FinalLogitSoftcap     float32 `json:"final_logit_softcapping"` | ||||
| } | ||||
|  | ||||
| func (p *gemma2Model) KV(t *Tokenizer) ggml.KV { | ||||
| 	kv := p.ModelParameters.KV(t) | ||||
| 	kv["general.architecture"] = "gemma2" | ||||
| 	kv["gemma2.context_length"] = p.MaxPositionEmbeddings | ||||
| 	kv["gemma2.embedding_length"] = p.HiddenSize | ||||
| 	kv["gemma2.block_count"] = p.HiddenLayers | ||||
| 	kv["gemma2.feed_forward_length"] = p.IntermediateSize | ||||
| 	kv["gemma2.attention.head_count"] = p.NumAttentionHeads | ||||
| 	kv["gemma2.attention.head_count_kv"] = p.NumKeyValueHeads | ||||
| 	kv["gemma2.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS | ||||
| 	kv["gemma2.attention.key_length"] = p.HeadDim | ||||
| 	kv["gemma2.attention.value_length"] = p.HeadDim | ||||
| 	kv["gemma2.attention.sliding_window"] = p.SlidingWindow | ||||
| 	kv["gemma2.attn_logit_softcapping"] = p.AttentionLogitSoftcap | ||||
| 	kv["gemma2.final_logit_softcapping"] = p.FinalLogitSoftcap | ||||
| 	kv["tokenizer.ggml.eot_token_id"] = uint32(107) | ||||
| 	kv["tokenizer.ggml.middle_token_id"] = uint32(68) | ||||
| 	kv["tokenizer.ggml.prefix_token_id"] = uint32(67) | ||||
| 	kv["tokenizer.ggml.suffix_token_id"] = uint32(69) | ||||
| 	return kv | ||||
| } | ||||
|  | ||||
| func (p *gemma2Model) Replacements() []string { | ||||
| 	return []string{ | ||||
| 		"model.embed_tokens", "token_embd", | ||||
| 		"model.norm", "output_norm", | ||||
| 		"model.layers", "blk", | ||||
| 		"input_layernorm", "attn_norm", | ||||
| 		"self_attn.q_proj", "attn_q", | ||||
| 		"self_attn.k_proj", "attn_k", | ||||
| 		"self_attn.v_proj", "attn_v", | ||||
| 		"self_attn.o_proj", "attn_output", | ||||
| 		"mlp.gate_proj", "ffn_gate", | ||||
| 		"mlp.down_proj", "ffn_down", | ||||
| 		"mlp.up_proj", "ffn_up", | ||||
| 		"post_attention_layernorm", "post_attention_norm", | ||||
| 		"pre_feedforward_layernorm", "ffn_norm", | ||||
| 		"post_feedforward_layernorm", "post_ffw_norm", | ||||
| 	} | ||||
| } | ||||
| @@ -1,91 +0,0 @@ | ||||
| package convert | ||||
|  | ||||
| import ( | ||||
| 	"strings" | ||||
|  | ||||
| 	"github.com/pdevine/tensor" | ||||
| 	"github.com/pdevine/tensor/native" | ||||
|  | ||||
| 	"github.com/ollama/ollama/fs/ggml" | ||||
| ) | ||||
|  | ||||
| type gemma2Adapter struct { | ||||
| 	AdapterParameters | ||||
| } | ||||
|  | ||||
| var _ AdapterConverter = (*gemma2Adapter)(nil) | ||||
|  | ||||
| func (p *gemma2Adapter) KV(baseKV ggml.KV) ggml.KV { | ||||
| 	kv := p.AdapterParameters.KV() | ||||
| 	kv["general.architecture"] = "gemma2" | ||||
| 	return kv | ||||
| } | ||||
|  | ||||
| func (p *gemma2Adapter) Tensors(ts []Tensor) []ggml.Tensor { | ||||
| 	var out []ggml.Tensor | ||||
| 	for _, t := range ts { | ||||
| 		shape := t.Shape() | ||||
| 		if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) || | ||||
| 			(strings.HasSuffix(t.Name(), "weight.lora_b") && shape[0] < shape[1]) { | ||||
| 			shape[0], shape[1] = shape[1], shape[0] | ||||
| 			t.SetRepacker(p.repack) | ||||
| 		} | ||||
|  | ||||
| 		out = append(out, ggml.Tensor{ | ||||
| 			Name:     t.Name(), | ||||
| 			Kind:     t.Kind(), | ||||
| 			Shape:    t.Shape(), | ||||
| 			WriterTo: t, | ||||
| 		}) | ||||
| 	} | ||||
|  | ||||
| 	return out | ||||
| } | ||||
|  | ||||
| func (p *gemma2Adapter) Replacements() []string { | ||||
| 	return []string{ | ||||
| 		"base_model.model.", "", | ||||
| 		"model.layers", "blk", | ||||
| 		"self_attn.q_proj", "attn_q", | ||||
| 		"self_attn.k_proj", "attn_k", | ||||
| 		"self_attn.v_proj", "attn_v", | ||||
| 		"self_attn.o_proj", "attn_output", | ||||
| 		"mlp.gate_proj", "ffn_gate", | ||||
| 		"mlp.down_proj", "ffn_down", | ||||
| 		"mlp.up_proj", "ffn_up", | ||||
| 		"lora_A.weight", "weight.lora_a", | ||||
| 		"lora_B.weight", "weight.lora_b", | ||||
| 		"lora_a", "weight.lora_a", | ||||
| 		"lora_b", "weight.lora_b", | ||||
| 	} | ||||
| } | ||||
|  | ||||
| func (p *gemma2Adapter) repack(name string, data []float32, shape []uint64) ([]float32, error) { | ||||
| 	dims := []int{int(shape[1]), int(shape[0])} | ||||
|  | ||||
| 	n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data)) | ||||
|  | ||||
| 	if err := n.T(1, 0); err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	if err := n.Reshape(dims...); err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	if err := n.Transpose(); err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	ts, err := native.SelectF32(n, 1) | ||||
| 	if err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	var f32s []float32 | ||||
| 	for _, t := range ts { | ||||
| 		f32s = append(f32s, t...) | ||||
| 	} | ||||
|  | ||||
| 	return f32s, nil | ||||
| } | ||||
| @@ -1,142 +0,0 @@ | ||||
| package convert | ||||
|  | ||||
| import ( | ||||
| 	"cmp" | ||||
|  | ||||
| 	"github.com/ollama/ollama/fs/ggml" | ||||
| ) | ||||
|  | ||||
| type gemma3Model struct { | ||||
| 	gemmaModel | ||||
| 	Architecture string | ||||
| 	TextModel    struct { | ||||
| 		HeadDim          uint32 `json:"head_dim"` | ||||
| 		HiddenSize       uint32 `json:"hidden_size"` | ||||
| 		HiddenLayers     uint32 `json:"num_hidden_layers"` | ||||
| 		IntermediateSize uint32 `json:"intermediate_size"` | ||||
| 		SlidingWindow    uint32 `json:"sliding_window"` | ||||
| 	} `json:"text_config"` | ||||
| 	VisionModel struct { | ||||
| 		NumAttentionHeads uint32  `json:"num_attention_heads"` // attention.head_count 16 | ||||
| 		LayerNormEpsilon  float32 `json:"layer_norm_eps"`      // attention.layer_norm_epsilon 1e-05 | ||||
| 		NumHiddenLayers   uint32  `json:"num_hidden_layers"`   // block_count 32 | ||||
| 		HiddenSize        uint32  `json:"hidden_size"`         // embedding_length 1280 | ||||
| 		IntermediateSize  uint32  `json:"intermediate_size"`   // feed_forward_length 5120 | ||||
| 		ImageSize         uint32  `json:"image_size"`          // image_size 560 | ||||
| 		NumChannels       uint32  `json:"num_channels"`        // num_channels 3 | ||||
| 		PatchSize         uint32  `json:"patch_size"`          // patch_size 14 | ||||
| 	} `json:"vision_config"` | ||||
| 	MaxPositionEmbeddings    uint32  `json:"max_position_embeddings"` | ||||
| 	NumAttentionHeads        uint32  `json:"num_attention_heads"` | ||||
| 	NumKeyValueHeads         uint32  `json:"num_key_value_heads"` | ||||
| 	RMSNormEPS               float32 `json:"rms_norm_eps"` | ||||
| 	HeadDim                  uint32  `json:"head_dim"` | ||||
| 	FinalLogitSoftcap        float32 `json:"final_logit_softcapping"` | ||||
| 	RopeLocalTheta           float32 `json:"rope_local_base_freq"` | ||||
| 	RopeGlobalTheta          float32 `json:"rope_global_base_freq"` | ||||
| 	SlidingWindow            uint32  `json:"sliding_window"` | ||||
| 	MultiModalTokensPerImage uint32  `json:"mm_tokens_per_image"` | ||||
| } | ||||
|  | ||||
| const ( | ||||
| 	gemma4BLayerCount  = 34 | ||||
| 	gemma12BLayerCount = 48 | ||||
| 	gemma27BLayerCount = 62 | ||||
| ) | ||||
|  | ||||
| func (p *gemma3Model) KV(t *Tokenizer) ggml.KV { | ||||
| 	kv := p.ModelParameters.KV(t) | ||||
| 	kv["general.architecture"] = "gemma3" | ||||
|  | ||||
| 	numBlocks := cmp.Or(p.HiddenLayers, p.TextModel.HiddenLayers) | ||||
| 	kv["gemma3.block_count"] = numBlocks | ||||
|  | ||||
| 	var ( | ||||
| 		numHeads   uint32 | ||||
| 		numKVHeads uint32 | ||||
| 	) | ||||
|  | ||||
| 	switch numBlocks { | ||||
| 	case gemma4BLayerCount: | ||||
| 		numHeads = 8 | ||||
| 		numKVHeads = 4 | ||||
| 	case gemma12BLayerCount: | ||||
| 		numHeads = 16 | ||||
| 		numKVHeads = 8 | ||||
| 	case gemma27BLayerCount: | ||||
| 		numHeads = 32 | ||||
| 		numKVHeads = 16 | ||||
| 	default: | ||||
| 		numHeads = p.NumAttentionHeads | ||||
| 		numKVHeads = p.NumKeyValueHeads | ||||
| 	} | ||||
|  | ||||
| 	kv["gemma3.attention.head_count"] = numHeads | ||||
| 	kv["gemma3.attention.head_count_kv"] = numKVHeads | ||||
|  | ||||
| 	switch p.Architecture { | ||||
| 	case "Gemma3ForCausalLM": | ||||
| 		kv["gemma3.context_length"] = p.MaxPositionEmbeddings | ||||
| 		kv["gemma3.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS | ||||
| 		kv["gemma3.attention.key_length"] = p.HeadDim | ||||
| 		kv["gemma3.attention.value_length"] = p.HeadDim | ||||
| 		kv["gemma3.attention.sliding_window"] = p.SlidingWindow | ||||
| 		kv["gemma3.final_logit_softcapping"] = cmp.Or(p.FinalLogitSoftcap, 30) | ||||
| 		kv["gemma3.rope.local.freq_base"] = cmp.Or(p.RopeLocalTheta, 10000.0) | ||||
| 		kv["gemma3.rope.global.freq_base"] = cmp.Or(p.RopeGlobalTheta, 1000000.0) | ||||
| 		kv["gemma3.embedding_length"] = p.HiddenSize | ||||
| 		kv["gemma3.feed_forward_length"] = p.IntermediateSize | ||||
| 	default: | ||||
| 		kv["gemma3.context_length"] = cmp.Or(p.MaxPositionEmbeddings, 131072) | ||||
| 		kv["gemma3.embedding_length"] = p.TextModel.HiddenSize | ||||
| 		kv["gemma3.feed_forward_length"] = p.TextModel.IntermediateSize | ||||
| 		kv["gemma3.attention.sliding_window"] = p.TextModel.SlidingWindow | ||||
| 		kv["gemma3.vision.block_count"] = p.VisionModel.NumHiddenLayers | ||||
| 		kv["gemma3.vision.embedding_length"] = p.VisionModel.HiddenSize | ||||
| 		kv["gemma3.vision.feed_forward_length"] = p.VisionModel.IntermediateSize | ||||
| 		kv["gemma3.vision.image_size"] = p.VisionModel.ImageSize | ||||
| 		kv["gemma3.vision.patch_size"] = p.VisionModel.PatchSize | ||||
| 		kv["gemma3.vision.num_channels"] = cmp.Or(p.VisionModel.NumChannels, 3) | ||||
| 		kv["gemma3.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads | ||||
| 		kv["gemma3.vision.attention.layer_norm_epsilon"] = cmp.Or(p.VisionModel.LayerNormEpsilon, 1e-6) | ||||
| 		kv["gemma3.attention.key_length"] = cmp.Or(p.TextModel.HeadDim, 256) | ||||
| 		kv["gemma3.attention.value_length"] = cmp.Or(p.TextModel.HeadDim, 256) | ||||
| 	} | ||||
|  | ||||
| 	if p.MultiModalTokensPerImage > 0 { | ||||
| 		kv["gemma3.mm.tokens_per_image"] = p.MultiModalTokensPerImage | ||||
| 	} | ||||
|  | ||||
| 	return kv | ||||
| } | ||||
|  | ||||
| func (p *gemma3Model) Replacements() []string { | ||||
| 	return []string{ | ||||
| 		"lm_head", "output", | ||||
| 		"model.embed_tokens", "token_embd", | ||||
| 		"model.norm", "output_norm", | ||||
| 		"vision_tower.vision_model.embeddings", "v", | ||||
| 		"vision_tower.vision_model", "v", | ||||
| 		"vision_model.vision_model.embeddings", "v", | ||||
| 		"vision_model.vision_model", "v", | ||||
| 		"language_model.", "", | ||||
| 		"model.layers", "blk", | ||||
| 		"encoder.layers", "blk", | ||||
| 		"input_layernorm", "attn_norm", | ||||
| 		"self_attn.q_proj", "attn_q", | ||||
| 		"self_attn.q_norm", "attn_q_norm", | ||||
| 		"self_attn.k_proj", "attn_k", | ||||
| 		"self_attn.k_norm", "attn_k_norm", | ||||
| 		"self_attn.v_proj", "attn_v", | ||||
| 		"self_attn.o_proj", "attn_output", | ||||
| 		"self_attn.out_proj", "attn_output", | ||||
| 		"mlp.gate_proj", "ffn_gate", | ||||
| 		"mlp.down_proj", "ffn_down", | ||||
| 		"mlp.up_proj", "ffn_up", | ||||
| 		"post_attention_layernorm", "post_attention_norm", | ||||
| 		"pre_feedforward_layernorm", "ffn_norm", | ||||
| 		"post_feedforward_layernorm", "post_ffw_norm", | ||||
| 		"input_projection_weight", "input_projection.weight", | ||||
| 		"multi_modal_projector", "mm", | ||||
| 	} | ||||
| } | ||||
| @@ -1,220 +0,0 @@ | ||||
| package convert | ||||
|  | ||||
| import ( | ||||
| 	"cmp" | ||||
| 	"fmt" | ||||
| 	"math" | ||||
| 	"strings" | ||||
|  | ||||
| 	"github.com/pdevine/tensor" | ||||
| 	"github.com/pdevine/tensor/native" | ||||
|  | ||||
| 	"github.com/ollama/ollama/fs/ggml" | ||||
| ) | ||||
|  | ||||
| type llamaModel struct { | ||||
| 	ModelParameters | ||||
| 	NLayers               uint32  `json:"n_layers"` | ||||
| 	NumHiddenLayers       uint32  `json:"num_hidden_layers"` | ||||
| 	NLayer                uint32  `json:"n_layer"` | ||||
| 	MaxPositionEmbeddings uint32  `json:"max_position_embeddings"` | ||||
| 	NCtx                  uint32  `json:"n_ctx"` | ||||
| 	HiddenSize            uint32  `json:"hidden_size"` | ||||
| 	NEmbd                 uint32  `json:"n_embd"` | ||||
| 	IntermediateSize      uint32  `json:"intermediate_size"` | ||||
| 	NInner                uint32  `json:"n_inner"` | ||||
| 	NumAttentionHeads     uint32  `json:"num_attention_heads"` | ||||
| 	NHead                 uint32  `json:"n_head"` | ||||
| 	NumKeyValueHeads      uint32  `json:"num_key_value_heads"` | ||||
| 	RopeTheta             float32 `json:"rope_theta"` | ||||
| 	RopeScaling           struct { | ||||
| 		Type                          string  `json:"type"` | ||||
| 		RopeType                      string  `json:"rope_type"` | ||||
| 		Factor                        float32 `json:"factor"` | ||||
| 		LowFrequencyFactor            float32 `json:"low_freq_factor"` | ||||
| 		HighFrequencyFactor           float32 `json:"high_freq_factor"` | ||||
| 		OriginalMaxPositionEmbeddings uint32  `json:"original_max_position_embeddings"` | ||||
|  | ||||
| 		factors ropeFactor | ||||
| 	} `json:"rope_scaling"` | ||||
| 	RMSNormEPS       float32 `json:"rms_norm_eps"` | ||||
| 	LayerNormEPS     float32 `json:"layer_norm_eps"` | ||||
| 	LayerNormEpsilon float32 `json:"layer_norm_epsilon"` | ||||
| 	NormEpsilon      float32 `json:"norm_epsilon"` | ||||
| 	HeadDim          uint32  `json:"head_dim"` | ||||
|  | ||||
| 	skipRepack bool | ||||
| } | ||||
|  | ||||
| var _ ModelConverter = (*llamaModel)(nil) | ||||
|  | ||||
| func (p *llamaModel) KV(t *Tokenizer) ggml.KV { | ||||
| 	kv := p.ModelParameters.KV(t) | ||||
| 	kv["general.architecture"] = "llama" | ||||
| 	kv["llama.vocab_size"] = p.VocabSize | ||||
|  | ||||
| 	kv["llama.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer) | ||||
|  | ||||
| 	if contextLength := cmp.Or(p.MaxPositionEmbeddings, p.NCtx); contextLength > 0 { | ||||
| 		kv["llama.context_length"] = contextLength | ||||
| 	} | ||||
|  | ||||
| 	if embeddingLength := cmp.Or(p.HiddenSize, p.NEmbd); embeddingLength > 0 { | ||||
| 		kv["llama.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd) | ||||
| 	} | ||||
|  | ||||
| 	if feedForwardLength := cmp.Or(p.IntermediateSize, p.NInner); feedForwardLength > 0 { | ||||
| 		kv["llama.feed_forward_length"] = cmp.Or(p.IntermediateSize, p.NInner) | ||||
| 	} | ||||
|  | ||||
| 	if headCount := cmp.Or(p.NumAttentionHeads, p.NHead); headCount > 0 { | ||||
| 		kv["llama.attention.head_count"] = cmp.Or(p.NumAttentionHeads, p.NHead) | ||||
| 		kv["llama.rope.dimension_count"] = p.HiddenSize / headCount | ||||
| 	} | ||||
|  | ||||
| 	if p.HeadDim > 0 { | ||||
| 		kv["llama.attention.head_dim"] = p.HeadDim | ||||
| 	} | ||||
|  | ||||
| 	if p.RopeTheta > 0 { | ||||
| 		kv["llama.rope.freq_base"] = p.RopeTheta | ||||
| 	} | ||||
|  | ||||
| 	if p.RopeScaling.Type == "linear" { | ||||
| 		kv["llama.rope.scaling.type"] = p.RopeScaling.Type | ||||
| 		kv["llama.rope.scaling.factor"] = p.RopeScaling.Factor | ||||
| 	} else if p.RopeScaling.RopeType == "llama3" { | ||||
| 		dim := p.HiddenSize / p.NumAttentionHeads | ||||
| 		for i := uint32(0); i < dim; i += 2 { | ||||
| 			factor := cmp.Or(p.RopeScaling.Factor, 8.0) | ||||
| 			factorLow := cmp.Or(p.RopeScaling.LowFrequencyFactor, 1.0) | ||||
| 			factorHigh := cmp.Or(p.RopeScaling.HighFrequencyFactor, 4.0) | ||||
|  | ||||
| 			original := cmp.Or(p.RopeScaling.OriginalMaxPositionEmbeddings, 8192) | ||||
| 			lambdaLow := float32(original) / factorLow | ||||
| 			lambdaHigh := float32(original) / factorHigh | ||||
|  | ||||
| 			lambda := 2 * math.Pi * math.Pow(float64(p.RopeTheta), float64(i)/float64(dim)) | ||||
| 			if lambda < float64(lambdaHigh) { | ||||
| 				p.RopeScaling.factors = append(p.RopeScaling.factors, 1.0) | ||||
| 			} else if lambda > float64(lambdaLow) { | ||||
| 				p.RopeScaling.factors = append(p.RopeScaling.factors, factor) | ||||
| 			} else { | ||||
| 				smooth := (float32(original)/float32(lambda) - factorLow) / (factorHigh - factorLow) | ||||
| 				p.RopeScaling.factors = append(p.RopeScaling.factors, 1.0/((1-smooth)/factor+smooth)) | ||||
| 			} | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	if p.NumKeyValueHeads > 0 { | ||||
| 		kv["llama.attention.head_count_kv"] = p.NumKeyValueHeads | ||||
| 	} | ||||
|  | ||||
| 	if p.RMSNormEPS > 0 { | ||||
| 		kv["llama.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS | ||||
| 	} | ||||
|  | ||||
| 	if layerNormEpsilon := cmp.Or(p.LayerNormEPS, p.LayerNormEpsilon, p.NormEpsilon); layerNormEpsilon > 0 { | ||||
| 		kv["llama.attention.layer_norm_epsilon"] = layerNormEpsilon | ||||
| 	} | ||||
|  | ||||
| 	if p.HeadDim > 0 { | ||||
| 		kv["llama.attention.key_length"] = p.HeadDim | ||||
| 		kv["llama.attention.value_length"] = p.HeadDim | ||||
| 	} | ||||
|  | ||||
| 	return kv | ||||
| } | ||||
|  | ||||
| func (p *llamaModel) Tensors(ts []Tensor) []ggml.Tensor { | ||||
| 	var out []ggml.Tensor | ||||
|  | ||||
| 	if p.RopeScaling.factors != nil { | ||||
| 		out = append(out, ggml.Tensor{ | ||||
| 			Name:     "rope_freqs.weight", | ||||
| 			Kind:     0, | ||||
| 			Shape:    []uint64{uint64(len(p.RopeScaling.factors))}, | ||||
| 			WriterTo: p.RopeScaling.factors, | ||||
| 		}) | ||||
| 	} | ||||
|  | ||||
| 	for _, t := range ts { | ||||
| 		if strings.HasSuffix(t.Name(), "attn_q.weight") || strings.HasSuffix(t.Name(), "attn_k.weight") { | ||||
| 			if !p.skipRepack { | ||||
| 				t.SetRepacker(p.repack) | ||||
| 			} | ||||
| 		} | ||||
|  | ||||
| 		out = append(out, ggml.Tensor{ | ||||
| 			Name:     t.Name(), | ||||
| 			Kind:     t.Kind(), | ||||
| 			Shape:    t.Shape(), | ||||
| 			WriterTo: t, | ||||
| 		}) | ||||
| 	} | ||||
|  | ||||
| 	return out | ||||
| } | ||||
|  | ||||
| func (p *llamaModel) Replacements() []string { | ||||
| 	return []string{ | ||||
| 		"lm_head", "output", | ||||
| 		"model.embed_tokens", "token_embd", | ||||
| 		"model.norm", "output_norm", | ||||
| 		"model.layers", "blk", | ||||
| 		"input_layernorm", "attn_norm", | ||||
| 		"self_attn.q_proj", "attn_q", | ||||
| 		"self_attn.k_proj", "attn_k", | ||||
| 		"self_attn.v_proj", "attn_v", | ||||
| 		"self_attn.o_proj", "attn_output", | ||||
| 		"mlp.gate_proj", "ffn_gate", | ||||
| 		"mlp.down_proj", "ffn_down", | ||||
| 		"mlp.up_proj", "ffn_up", | ||||
| 		"post_attention_layernorm", "ffn_norm", | ||||
| 	} | ||||
| } | ||||
|  | ||||
| func (p *llamaModel) repack(name string, data []float32, shape []uint64) ([]float32, error) { | ||||
| 	var dims []int | ||||
| 	for _, dim := range shape { | ||||
| 		dims = append(dims, int(dim)) | ||||
| 	} | ||||
|  | ||||
| 	var heads uint32 | ||||
| 	if strings.HasSuffix(name, "attn_q.weight") { | ||||
| 		heads = p.NumAttentionHeads | ||||
| 	} else if strings.HasSuffix(name, "attn_k.weight") { | ||||
| 		heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads) | ||||
| 	} else { | ||||
| 		return nil, fmt.Errorf("unknown tensor for repack: %s", name) | ||||
| 	} | ||||
|  | ||||
| 	n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data)) | ||||
| 	if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	if err := n.T(0, 2, 1, 3); err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	if err := n.Reshape(dims...); err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	if err := n.Transpose(); err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	ts, err := native.SelectF32(n, 1) | ||||
| 	if err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	var f32s []float32 | ||||
| 	for _, t := range ts { | ||||
| 		f32s = append(f32s, t...) | ||||
| 	} | ||||
|  | ||||
| 	return f32s, nil | ||||
| } | ||||
| @@ -1,169 +0,0 @@ | ||||
| package convert | ||||
|  | ||||
| import ( | ||||
| 	"slices" | ||||
| 	"strings" | ||||
|  | ||||
| 	"github.com/pdevine/tensor" | ||||
| 	"github.com/pdevine/tensor/native" | ||||
|  | ||||
| 	"github.com/ollama/ollama/fs/ggml" | ||||
| ) | ||||
|  | ||||
| type llama4Model struct { | ||||
| 	ModelParameters | ||||
| 	TextModel struct { | ||||
| 		llamaModel | ||||
| 		NumExpertsPerToken     uint32 `json:"num_experts_per_tok"` | ||||
| 		NumLocalExperts        uint32 `json:"num_local_experts"` | ||||
| 		InterleaveMOELayerStep uint32 `json:"interleave_moe_layer_step"` | ||||
| 		UseQKNorm              bool   `json:"use_qk_norm"` | ||||
| 		IntermediateSizeMLP    uint32 `json:"intermediate_size_mlp"` | ||||
| 		AttentionChunkSize     uint32 `json:"attention_chunk_size"` | ||||
| 	} `json:"text_config"` | ||||
| 	VisionModel struct { | ||||
| 		NumHiddenLayers   uint32  `json:"num_hidden_layers"` | ||||
| 		HiddenSize        uint32  `json:"hidden_size"` | ||||
| 		IntermediateSize  uint32  `json:"intermediate_size"` | ||||
| 		NumAttentionHeads uint32  `json:"num_attention_heads"` | ||||
| 		ImageSize         uint32  `json:"image_size"` | ||||
| 		PatchSize         uint32  `json:"patch_size"` | ||||
| 		RopeTheta         float32 `json:"rope_theta"` | ||||
| 		NormEpsilon       float32 `json:"norm_eps"` | ||||
| 		PixelShuffleRatio float32 `json:"pixel_shuffle_ratio"` | ||||
| 	} `json:"vision_config"` | ||||
| } | ||||
|  | ||||
| // KV implements ModelConverter. | ||||
| func (p *llama4Model) KV(t *Tokenizer) ggml.KV { | ||||
| 	kv := p.ModelParameters.KV(t) | ||||
| 	kv["general.architecture"] = "llama4" | ||||
|  | ||||
| 	for k, v := range p.TextModel.KV(t) { | ||||
| 		if strings.HasPrefix(k, "llama.") { | ||||
| 			kv[strings.ReplaceAll(k, "llama.", "llama4.")] = v | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	kv["llama4.feed_forward_length"] = p.TextModel.IntermediateSizeMLP | ||||
| 	kv["llama4.expert_feed_forward_length"] = p.TextModel.IntermediateSize | ||||
|  | ||||
| 	kv["llama4.expert_count"] = p.TextModel.NumLocalExperts | ||||
| 	kv["llama4.expert_used_count"] = p.TextModel.NumExpertsPerToken | ||||
| 	kv["llama4.interleave_moe_layer_step"] = p.TextModel.InterleaveMOELayerStep | ||||
| 	kv["llama4.use_qk_norm"] = p.TextModel.UseQKNorm | ||||
| 	kv["llama4.attention.chunk_size"] = p.TextModel.AttentionChunkSize | ||||
|  | ||||
| 	kv["llama4.vision.block_count"] = p.VisionModel.NumHiddenLayers | ||||
| 	kv["llama4.vision.embedding_length"] = p.VisionModel.HiddenSize | ||||
| 	kv["llama4.vision.feed_forward_length"] = p.VisionModel.IntermediateSize | ||||
| 	kv["llama4.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads | ||||
| 	kv["llama4.vision.image_size"] = p.VisionModel.ImageSize | ||||
| 	kv["llama4.vision.patch_size"] = p.VisionModel.PatchSize | ||||
| 	kv["llama4.vision.rope.freq_base"] = p.VisionModel.RopeTheta | ||||
| 	kv["llama4.vision.layer_norm_epsilon"] = p.VisionModel.NormEpsilon | ||||
| 	kv["llama4.vision.pixel_shuffle_ratio"] = p.VisionModel.PixelShuffleRatio | ||||
| 	return kv | ||||
| } | ||||
|  | ||||
| // Replacements implements ModelConverter. | ||||
| func (p *llama4Model) Replacements() []string { | ||||
| 	return append( | ||||
| 		p.TextModel.Replacements(), | ||||
| 		"language_model.", "", | ||||
| 		"vision_model", "v", | ||||
| 		"multi_modal_projector", "mm", | ||||
| 		"feed_forward.down_proj", "ffn_down", | ||||
| 		"feed_forward.up_proj", "ffn_up", | ||||
| 		"feed_forward.gate_proj", "ffn_gate", | ||||
| 		"feed_forward.", "ffn_", | ||||
| 		"shared_expert.down_proj", "down_shexp", | ||||
| 		"shared_expert.gate_proj", "gate_shexp", | ||||
| 		"shared_expert.up_proj", "up_shexp", | ||||
| 		"experts.down_proj", "down_exps.weight", | ||||
| 		"experts.gate_up_proj", "gate_up_exps.weight", | ||||
| 		"router", "gate_inp", | ||||
| 		"patch_embedding.linear", "patch_embedding", | ||||
| 	) | ||||
| } | ||||
|  | ||||
| // Tensors implements ModelConverter. | ||||
| func (p *llama4Model) Tensors(ts []Tensor) []ggml.Tensor { | ||||
| 	var out []ggml.Tensor | ||||
|  | ||||
| 	var textTensors []Tensor | ||||
| 	for _, t := range ts { | ||||
| 		if strings.HasPrefix(t.Name(), "v.") || strings.HasPrefix(t.Name(), "mm.") { | ||||
| 			out = append(out, ggml.Tensor{ | ||||
| 				Name:     t.Name(), | ||||
| 				Kind:     t.Kind(), | ||||
| 				Shape:    t.Shape(), | ||||
| 				WriterTo: t, | ||||
| 			}) | ||||
| 		} else if strings.Contains(t.Name(), "ffn_gate_up_exps") { | ||||
| 			// gate and up projectors are fused | ||||
| 			// dims[1], dims[2] must be swapped | ||||
| 			// [experts, hidden_size, intermediate_size * 2] --> [experts, intermediate_size, hidden_size] | ||||
| 			halfDim := int(t.Shape()[2]) / 2 | ||||
|  | ||||
| 			newShape := slices.Clone(t.Shape()) | ||||
| 			newShape[1], newShape[2] = newShape[2]/2, newShape[1] | ||||
| 			for i, name := range []string{"ffn_gate_exps", "ffn_up_exps"} { | ||||
| 				// clone tensor since we need separate repackers | ||||
| 				tt := t.Clone() | ||||
| 				tt.SetRepacker(p.repack(nil, nil, tensor.S(i*halfDim, (i+1)*halfDim))) | ||||
| 				out = append(out, ggml.Tensor{ | ||||
| 					Name:     strings.ReplaceAll(tt.Name(), "ffn_gate_up_exps", name), | ||||
| 					Kind:     tt.Kind(), | ||||
| 					Shape:    newShape, | ||||
| 					WriterTo: tt, | ||||
| 				}) | ||||
| 			} | ||||
| 		} else if strings.Contains(t.Name(), "ffn_down_exps") { | ||||
| 			// dims[1], dims[2] must be swapped | ||||
| 			// [experts, intermediate_size, hidden_size] --> [experts, hidden_size, intermediate_size] | ||||
| 			t.SetRepacker(p.repack()) | ||||
| 			newShape := slices.Clone(t.Shape()) | ||||
| 			newShape[1], newShape[2] = newShape[2], newShape[1] | ||||
| 			out = append(out, ggml.Tensor{ | ||||
| 				Name:     t.Name(), | ||||
| 				Kind:     t.Kind(), | ||||
| 				Shape:    newShape, | ||||
| 				WriterTo: t, | ||||
| 			}) | ||||
| 		} else { | ||||
| 			textTensors = append(textTensors, t) | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	p.TextModel.skipRepack = true | ||||
| 	out = append(out, p.TextModel.Tensors(textTensors)...) | ||||
| 	return out | ||||
| } | ||||
|  | ||||
| func (p *llama4Model) repack(slice ...tensor.Slice) Repacker { | ||||
| 	return func(name string, data []float32, shape []uint64) ([]float32, error) { | ||||
| 		dims := make([]int, len(shape)) | ||||
| 		for i, dim := range shape { | ||||
| 			dims[i] = int(dim) | ||||
| 		} | ||||
|  | ||||
| 		var t tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data)) | ||||
| 		t, err := t.Slice(slice...) | ||||
| 		if err != nil { | ||||
| 			return nil, err | ||||
| 		} | ||||
|  | ||||
| 		if err := t.T(0, 2, 1); err != nil { | ||||
| 			return nil, err | ||||
| 		} | ||||
|  | ||||
| 		t = tensor.Materialize(t) | ||||
| 		// flatten tensor so it can be return as a vector | ||||
| 		if err := t.Reshape(t.Shape().TotalSize()); err != nil { | ||||
| 			return nil, err | ||||
| 		} | ||||
|  | ||||
| 		return native.VectorF32(t.(*tensor.Dense)) | ||||
| 	} | ||||
| } | ||||
| @@ -1,169 +0,0 @@ | ||||
| package convert | ||||
|  | ||||
| import ( | ||||
| 	"cmp" | ||||
| 	"strings" | ||||
|  | ||||
| 	"github.com/pdevine/tensor" | ||||
| 	"github.com/pdevine/tensor/native" | ||||
|  | ||||
| 	"github.com/ollama/ollama/fs/ggml" | ||||
| ) | ||||
|  | ||||
| type llamaAdapter struct { | ||||
| 	AdapterParameters | ||||
| 	NumAttentionHeads uint32 `json:"num_attention_heads"` | ||||
| 	NumKeyValueHeads  uint32 `json:"num_key_value_heads"` | ||||
| } | ||||
|  | ||||
| var _ AdapterConverter = (*llamaAdapter)(nil) | ||||
|  | ||||
| func (p *llamaAdapter) KV(baseKV ggml.KV) ggml.KV { | ||||
| 	kv := p.AdapterParameters.KV() | ||||
| 	kv["general.architecture"] = "llama" | ||||
| 	kv["llama.attention.head_count"] = baseKV["llama.attention.head_count"] | ||||
| 	kv["llama.attention.head_count_kv"] = baseKV["llama.attention.head_count_kv"] | ||||
|  | ||||
| 	p.NumAttentionHeads = baseKV["llama.attention.head_count"].(uint32) | ||||
|  | ||||
| 	return kv | ||||
| } | ||||
|  | ||||
| func (p *llamaAdapter) Tensors(ts []Tensor) []ggml.Tensor { | ||||
| 	var out []ggml.Tensor | ||||
| 	for _, t := range ts { | ||||
| 		shape := t.Shape() | ||||
| 		if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) || | ||||
| 			(strings.HasSuffix(t.Name(), "weight.lora_b") && shape[0] < shape[1]) { | ||||
| 			shape[0], shape[1] = shape[1], shape[0] | ||||
| 			t.SetRepacker(p.repackAndTranspose) | ||||
| 		} else { | ||||
| 			t.SetRepacker(p.repack) | ||||
| 		} | ||||
|  | ||||
| 		out = append(out, ggml.Tensor{ | ||||
| 			Name:     t.Name(), | ||||
| 			Kind:     t.Kind(), | ||||
| 			Shape:    shape, | ||||
| 			WriterTo: t, | ||||
| 		}) | ||||
| 	} | ||||
|  | ||||
| 	return out | ||||
| } | ||||
|  | ||||
| func (p *llamaAdapter) Replacements() []string { | ||||
| 	return []string{ | ||||
| 		"base_model.model.", "", | ||||
| 		"model.layers", "blk", | ||||
| 		"self_attn.q_proj", "attn_q", | ||||
| 		"self_attn.k_proj", "attn_k", | ||||
| 		"self_attn.v_proj", "attn_v", | ||||
| 		"self_attn.o_proj", "attn_output", | ||||
| 		"mlp.gate_proj", "ffn_gate", | ||||
| 		"mlp.down_proj", "ffn_down", | ||||
| 		"mlp.up_proj", "ffn_up", | ||||
| 		"lora_A.weight", "weight.lora_a", | ||||
| 		"lora_B.weight", "weight.lora_b", | ||||
| 		"lora_a", "weight.lora_a", | ||||
| 		"lora_b", "weight.lora_b", | ||||
| 	} | ||||
| } | ||||
|  | ||||
| func (p *llamaAdapter) repack(name string, data []float32, shape []uint64) ([]float32, error) { | ||||
| 	dims := []int{int(shape[1]), int(shape[0])} | ||||
|  | ||||
| 	var heads uint32 | ||||
| 	if strings.HasSuffix(name, "attn_q.weight.lora_a") { | ||||
| 		heads = p.NumAttentionHeads | ||||
| 	} else if strings.HasSuffix(name, "attn_k.weight.lora_a") { | ||||
| 		heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads) | ||||
| 	} else { | ||||
| 		return data, nil | ||||
| 	} | ||||
|  | ||||
| 	n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data)) | ||||
|  | ||||
| 	if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	if err := n.T(0, 2, 1, 3); err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	if err := n.Reshape(dims...); err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	if err := n.Transpose(); err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	ts, err := native.SelectF32(n, 1) | ||||
| 	if err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	var f32s []float32 | ||||
| 	for _, t := range ts { | ||||
| 		f32s = append(f32s, t...) | ||||
| 	} | ||||
|  | ||||
| 	return f32s, nil | ||||
| } | ||||
|  | ||||
| func (p *llamaAdapter) repackAndTranspose(name string, data []float32, shape []uint64) ([]float32, error) { | ||||
| 	dims := []int{int(shape[1]), int(shape[0])} | ||||
|  | ||||
| 	n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data)) | ||||
|  | ||||
| 	var heads uint32 | ||||
| 	if strings.HasSuffix(name, "attn_q.weight.lora_a") { | ||||
| 		heads = p.NumAttentionHeads | ||||
| 	} else if strings.HasSuffix(name, "attn_k.weight.lora_a") { | ||||
| 		heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads) | ||||
| 	} | ||||
|  | ||||
| 	if heads > 0 { | ||||
| 		if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil { | ||||
| 			return nil, err | ||||
| 		} | ||||
|  | ||||
| 		if err := n.T(0, 2, 1, 3); err != nil { | ||||
| 			return nil, err | ||||
| 		} | ||||
|  | ||||
| 		if err := n.Reshape(dims...); err != nil { | ||||
| 			return nil, err | ||||
| 		} | ||||
|  | ||||
| 		if err := n.Transpose(); err != nil { | ||||
| 			return nil, err | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	if err := n.T(1, 0); err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	if err := n.Reshape(dims...); err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	if err := n.Transpose(); err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	ts, err := native.SelectF32(n, 1) | ||||
| 	if err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	var f32s []float32 | ||||
| 	for _, t := range ts { | ||||
| 		f32s = append(f32s, t...) | ||||
| 	} | ||||
|  | ||||
| 	return f32s, nil | ||||
| } | ||||
| @@ -1,190 +0,0 @@ | ||||
| package convert | ||||
|  | ||||
| import ( | ||||
| 	"cmp" | ||||
| 	"fmt" | ||||
| 	"strings" | ||||
|  | ||||
| 	"github.com/pdevine/tensor" | ||||
| 	"github.com/pdevine/tensor/native" | ||||
|  | ||||
| 	"github.com/ollama/ollama/fs/ggml" | ||||
| ) | ||||
|  | ||||
| type mistral3Model struct { | ||||
| 	ModelParameters | ||||
| 	ImageTokenIndex    uint32 `json:"image_token_index"` | ||||
| 	SpatialMergeSize   uint32 `json:"spatial_merge_size"` | ||||
| 	VisionFeatureLayer int32  `json:"vision_feature_layer"` | ||||
| 	TextModel          struct { | ||||
| 		NumHiddenLayers       uint32  `json:"num_hidden_layers"` | ||||
| 		MaxPositionEmbeddings uint32  `json:"max_position_embeddings"` | ||||
| 		HiddenSize            uint32  `json:"hidden_size"` | ||||
| 		IntermediateSize      uint32  `json:"intermediate_size"` | ||||
| 		NumAttentionHeads     uint32  `json:"num_attention_heads"` | ||||
| 		NumKeyValueHeads      uint32  `json:"num_key_value_heads"` | ||||
| 		RopeTheta             float32 `json:"rope_theta"` | ||||
| 		RMSNormEPS            float32 `json:"rms_norm_eps"` | ||||
| 		HeadDim               uint32  `json:"head_dim"` | ||||
| 		SlidingWindow         *uint32 `json:"sliding_window"` | ||||
| 		HiddenAct             string  `json:"hidden_act"` | ||||
| 		VocabSize             uint32  `json:"vocab_size"` | ||||
| 	} `json:"text_config"` | ||||
| 	VisionModel struct { | ||||
| 		NumAttentionHeads uint32  `json:"num_attention_heads"` | ||||
| 		NumHiddenLayers   uint32  `json:"num_hidden_layers"` | ||||
| 		HiddenSize        uint32  `json:"hidden_size"` | ||||
| 		IntermediateSize  uint32  `json:"intermediate_size"` | ||||
| 		ImageSize         uint32  `json:"image_size"` | ||||
| 		NumChannels       uint32  `json:"num_channels"` | ||||
| 		PatchSize         uint32  `json:"patch_size"` | ||||
| 		HeadDim           uint32  `json:"head_dim"` | ||||
| 		HiddenAct         string  `json:"hidden_act"` | ||||
| 		RopeTheta         float32 `json:"rope_theta"` | ||||
| 	} `json:"vision_config"` | ||||
| 	MultiModalProjectorBias bool   `json:"multimodal_projector_bias"` | ||||
| 	ProjectorHiddenAct      string `json:"projector_hidden_act"` | ||||
| } | ||||
|  | ||||
| func (p *mistral3Model) KV(t *Tokenizer) ggml.KV { | ||||
| 	kv := p.ModelParameters.KV(t) | ||||
| 	kv["general.architecture"] = "mistral3" | ||||
| 	kv["mistral3.vocab_size"] = p.TextModel.VocabSize | ||||
|  | ||||
| 	// Text configuration | ||||
| 	kv["mistral3.block_count"] = p.TextModel.NumHiddenLayers | ||||
| 	kv["mistral3.context_length"] = p.TextModel.MaxPositionEmbeddings | ||||
| 	kv["mistral3.embedding_length"] = p.TextModel.HiddenSize | ||||
| 	kv["mistral3.feed_forward_length"] = p.TextModel.IntermediateSize | ||||
| 	kv["mistral3.attention.head_count"] = p.TextModel.NumAttentionHeads | ||||
| 	kv["mistral3.attention.head_count_kv"] = p.TextModel.NumKeyValueHeads | ||||
| 	kv["mistral3.attention.layer_norm_rms_epsilon"] = p.TextModel.RMSNormEPS | ||||
| 	kv["mistral3.attention.key_length"] = p.TextModel.HeadDim | ||||
| 	kv["mistral3.attention.value_length"] = p.TextModel.HeadDim | ||||
| 	kv["mistral3.rope.dimension_count"] = p.TextModel.HiddenSize / p.TextModel.NumHiddenLayers | ||||
| 	kv["mistral3.rope.freq_base"] = p.TextModel.RopeTheta | ||||
|  | ||||
| 	// Vision configuration | ||||
| 	kv["mistral3.vision.block_count"] = p.VisionModel.NumHiddenLayers | ||||
| 	kv["mistral3.vision.embedding_length"] = p.VisionModel.HiddenSize | ||||
| 	kv["mistral3.vision.feed_forward_length"] = p.VisionModel.IntermediateSize | ||||
| 	kv["mistral3.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads | ||||
| 	kv["mistral3.vision.attention.key_length"] = p.VisionModel.HeadDim | ||||
| 	kv["mistral3.vision.image_size"] = p.VisionModel.ImageSize | ||||
| 	kv["mistral3.vision.patch_size"] = p.VisionModel.PatchSize | ||||
| 	kv["mistral3.vision.num_channels"] = p.VisionModel.NumChannels | ||||
| 	// kv["mistral3.vision.attention.layer_norm_epsilon"] = 1e-05 // Default value | ||||
| 	kv["mistral3.vision.rope.freq_base"] = p.VisionModel.RopeTheta | ||||
|  | ||||
| 	// Multimodal configuration | ||||
| 	kv["mistral3.image_token_index"] = p.ImageTokenIndex | ||||
| 	kv["mistral3.spatial_merge_size"] = p.SpatialMergeSize | ||||
|  | ||||
| 	kv["mistral3.mm.projector_bias"] = p.MultiModalProjectorBias | ||||
|  | ||||
| 	if p.ProjectorHiddenAct != "" { | ||||
| 		kv["mistral3.mm.projector_hidden_act"] = p.ProjectorHiddenAct | ||||
| 	} | ||||
|  | ||||
| 	return kv | ||||
| } | ||||
|  | ||||
| func (p *mistral3Model) Tensors(ts []Tensor) []ggml.Tensor { | ||||
| 	var out []ggml.Tensor | ||||
|  | ||||
| 	for _, t := range ts { | ||||
| 		if !strings.HasPrefix(t.Name(), "v.") { | ||||
| 			if strings.HasSuffix(t.Name(), ".attn_q.weight") || | ||||
| 				strings.HasSuffix(t.Name(), ".attn_k.weight") { | ||||
| 				t.SetRepacker(p.repack) | ||||
| 			} | ||||
| 		} | ||||
|  | ||||
| 		out = append(out, ggml.Tensor{ | ||||
| 			Name:     t.Name(), | ||||
| 			Kind:     t.Kind(), | ||||
| 			Shape:    t.Shape(), | ||||
| 			WriterTo: t, | ||||
| 		}) | ||||
| 	} | ||||
|  | ||||
| 	return out | ||||
| } | ||||
|  | ||||
| func (p *mistral3Model) Replacements() []string { | ||||
| 	return []string{ | ||||
| 		"language_model.model.norm", "output_norm", | ||||
| 		"language_model.model.", "", | ||||
| 		"language_model.", "", | ||||
| 		"layers", "blk", | ||||
| 		"transformer.layers", "blk", | ||||
| 		"vision_tower", "v", | ||||
| 		"ln_pre", "encoder_norm", | ||||
| 		"input_layernorm", "attn_norm", | ||||
| 		"post_attention_layernorm", "ffn_norm", | ||||
| 		"embed_tokens", "token_embd", | ||||
| 		"self_attn.q_proj", "attn_q", | ||||
| 		"self_attn.k_proj", "attn_k", | ||||
| 		"self_attn.v_proj", "attn_v", | ||||
| 		"self_attn.o_proj", "attn_output", | ||||
| 		"mlp.down_proj", "ffn_down", | ||||
| 		"mlp.gate_proj", "ffn_gate", | ||||
| 		"mlp.up_proj", "ffn_up", | ||||
| 		"attention.q_proj", "attn_q", | ||||
| 		"attention.k_proj", "attn_k", | ||||
| 		"attention.v_proj", "attn_v", | ||||
| 		"attention.o_proj", "attn_output", | ||||
| 		"attention_norm", "attn_norm", | ||||
| 		"feed_forward.gate_proj", "ffn_gate", | ||||
| 		"feed_forward.down_proj", "ffn_down", | ||||
| 		"feed_forward.up_proj", "ffn_up", | ||||
| 		"multi_modal_projector", "mm", | ||||
| 		"ffn_norm", "ffn_norm", | ||||
| 		"lm_head", "output", | ||||
| 	} | ||||
| } | ||||
|  | ||||
| func (p *mistral3Model) repack(name string, data []float32, shape []uint64) ([]float32, error) { | ||||
| 	var dims []int | ||||
| 	for _, dim := range shape { | ||||
| 		dims = append(dims, int(dim)) | ||||
| 	} | ||||
|  | ||||
| 	var heads uint32 | ||||
| 	if strings.HasSuffix(name, ".attn_q.weight") { | ||||
| 		heads = p.TextModel.NumAttentionHeads | ||||
| 	} else if strings.HasSuffix(name, ".attn_k.weight") { | ||||
| 		heads = cmp.Or(p.TextModel.NumKeyValueHeads, p.TextModel.NumAttentionHeads) | ||||
| 	} else { | ||||
| 		return nil, fmt.Errorf("unknown tensor for repack: %s", name) | ||||
| 	} | ||||
|  | ||||
| 	n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data)) | ||||
| 	if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	if err := n.T(0, 2, 1, 3); err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	if err := n.Reshape(dims...); err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	if err := n.Transpose(); err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	ts, err := native.SelectF32(n, 1) | ||||
| 	if err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	var f32s []float32 | ||||
| 	for _, t := range ts { | ||||
| 		f32s = append(f32s, t...) | ||||
| 	} | ||||
|  | ||||
| 	return f32s, nil | ||||
| } | ||||
| @@ -1,94 +0,0 @@ | ||||
| package convert | ||||
|  | ||||
| import ( | ||||
| 	"fmt" | ||||
| 	"io" | ||||
| 	"slices" | ||||
| 	"strings" | ||||
|  | ||||
| 	"github.com/ollama/ollama/fs/ggml" | ||||
| ) | ||||
|  | ||||
| type mixtralModel struct { | ||||
| 	llamaModel | ||||
| 	NumLocalExperts    uint32 `json:"num_local_experts"` | ||||
| 	NumExpertsPerToken uint32 `json:"num_experts_per_tok"` | ||||
| } | ||||
|  | ||||
| func (p *mixtralModel) KV(t *Tokenizer) ggml.KV { | ||||
| 	kv := p.llamaModel.KV(t) | ||||
|  | ||||
| 	if p.NumLocalExperts > 0 { | ||||
| 		kv["llama.expert_count"] = p.NumLocalExperts | ||||
| 	} | ||||
|  | ||||
| 	if p.NumExpertsPerToken > 0 { | ||||
| 		kv["llama.expert_used_count"] = p.NumExpertsPerToken | ||||
| 	} | ||||
|  | ||||
| 	return kv | ||||
| } | ||||
|  | ||||
| func (p *mixtralModel) Tensors(ts []Tensor) []ggml.Tensor { | ||||
| 	oldnew := []string{ | ||||
| 		"model.layers", "blk", | ||||
| 		"w1", "ffn_gate_exps", | ||||
| 		"w2", "ffn_down_exps", | ||||
| 		"w3", "ffn_up_exps", | ||||
| 	} | ||||
|  | ||||
| 	for i := range p.NumLocalExperts { | ||||
| 		oldnew = append(oldnew, fmt.Sprintf(".block_sparse_moe.experts.%d.", i), ".") | ||||
| 	} | ||||
|  | ||||
| 	// group experts of the same layer (model.layers.%d) and type (w[123]) into a single tensor | ||||
| 	namer := strings.NewReplacer(oldnew...) | ||||
| 	experts := make(map[string]experts) | ||||
|  | ||||
| 	// merge experts into a single tensor while removing them from ts | ||||
| 	ts = slices.DeleteFunc(ts, func(t Tensor) bool { | ||||
| 		if !strings.Contains(t.Name(), ".block_sparse_moe.experts.") { | ||||
| 			return false | ||||
| 		} | ||||
|  | ||||
| 		name := namer.Replace(t.Name()) | ||||
| 		experts[name] = append(experts[name], t) | ||||
| 		return true | ||||
| 	}) | ||||
|  | ||||
| 	var out []ggml.Tensor | ||||
| 	for n, e := range experts { | ||||
| 		// TODO(mxyng): sanity check experts | ||||
| 		out = append(out, ggml.Tensor{ | ||||
| 			Name:     n, | ||||
| 			Kind:     e[0].Kind(), | ||||
| 			Shape:    append([]uint64{uint64(len(e))}, e[0].Shape()...), | ||||
| 			WriterTo: e, | ||||
| 		}) | ||||
| 	} | ||||
|  | ||||
| 	return append(out, p.llamaModel.Tensors(ts)...) | ||||
| } | ||||
|  | ||||
| func (p *mixtralModel) Replacements() []string { | ||||
| 	return append( | ||||
| 		p.llamaModel.Replacements(), | ||||
| 		"block_sparse_moe.gate", "ffn_gate_inp", | ||||
| 	) | ||||
| } | ||||
|  | ||||
| type experts []Tensor | ||||
|  | ||||
| func (e experts) WriteTo(w io.Writer) (int64, error) { | ||||
| 	// TODO(mxyng): experts _should_ be numerically sorted by expert but this should check | ||||
| 	for _, t := range e { | ||||
| 		// the canonical merged experts tensor stacks all experts along a new, 0 axis, | ||||
| 		// e.g. `tensor.Stack(0, e[0], e[1:]...)`, which requires allocating temporary buffers | ||||
| 		// this accomplishes the same thing by writing each expert tensor in sequence | ||||
| 		if _, err := t.WriteTo(w); err != nil { | ||||
| 			return 0, err | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	return 0, nil | ||||
| } | ||||
| @@ -1,122 +0,0 @@ | ||||
| package convert | ||||
|  | ||||
| import ( | ||||
| 	"cmp" | ||||
| 	"encoding/binary" | ||||
| 	"io" | ||||
| 	"math" | ||||
| 	"strings" | ||||
| 	"sync" | ||||
|  | ||||
| 	"github.com/ollama/ollama/fs/ggml" | ||||
| ) | ||||
|  | ||||
| type phi3Model struct { | ||||
| 	ModelParameters | ||||
| 	NumHiddenLayers   uint32  `json:"num_hidden_layers"` | ||||
| 	NLayers           uint32  `json:"n_layers"` | ||||
| 	HiddenSize        uint32  `json:"hidden_size"` | ||||
| 	NEmbd             uint32  `json:"n_embd"` | ||||
| 	IntermediateSize  uint32  `json:"intermediate_size"` | ||||
| 	NumAttentionHeads uint32  `json:"num_attention_heads"` | ||||
| 	NHead             uint32  `json:"n_head"` | ||||
| 	NumKeyValueHeads  uint32  `json:"num_key_value_heads"` | ||||
| 	NHeadKV           uint32  `json:"n_head_kv"` | ||||
| 	RopeTheta         float32 `json:"rope_theta"` | ||||
| 	RopeScaling       struct { | ||||
| 		Type        string     `json:"type"` | ||||
| 		LongFactor  ropeFactor `json:"long_factor"` | ||||
| 		ShortFactor ropeFactor `json:"short_factor"` | ||||
| 	} `json:"rope_scaling"` | ||||
| 	RMSNormEPS                    float32 `json:"rms_norm_eps"` | ||||
| 	NPositions                    uint32  `json:"n_positions"` | ||||
| 	MaxPositionEmbeddings         uint32  `json:"max_position_embeddings"` | ||||
| 	OriginalMaxPositionEmbeddings uint32  `json:"original_max_position_embeddings"` | ||||
| 	SlidingWindow                 uint32  `json:"sliding_window"` | ||||
| } | ||||
|  | ||||
| var _ ModelConverter = (*phi3Model)(nil) | ||||
|  | ||||
| func (p *phi3Model) KV(t *Tokenizer) ggml.KV { | ||||
| 	kv := p.ModelParameters.KV(t) | ||||
| 	kv["general.architecture"] = "phi3" | ||||
| 	kv["phi3.context_length"] = p.MaxPositionEmbeddings | ||||
| 	kv["phi3.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd) | ||||
| 	kv["phi3.feed_forward_length"] = p.IntermediateSize | ||||
| 	kv["phi3.block_count"] = cmp.Or(p.NumHiddenLayers, p.NLayers) | ||||
| 	kv["phi3.attention.head_count"] = cmp.Or(p.NumAttentionHeads, p.NHead) | ||||
| 	kv["phi3.attention.head_count_kv"] = cmp.Or(p.NumKeyValueHeads, p.NHeadKV) | ||||
| 	kv["phi3.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS | ||||
| 	kv["phi3.rope.dimension_count"] = p.HiddenSize / cmp.Or(p.NumAttentionHeads, p.NHead) | ||||
| 	kv["phi3.rope.freq_base"] = p.RopeTheta | ||||
| 	kv["phi3.rope.scaling.original_context_length"] = p.OriginalMaxPositionEmbeddings | ||||
| 	kv["phi3.attention.sliding_window"] = p.SlidingWindow | ||||
|  | ||||
| 	scale := float64(p.MaxPositionEmbeddings) / float64(p.OriginalMaxPositionEmbeddings) | ||||
|  | ||||
| 	switch p.RopeScaling.Type { | ||||
| 	case "": | ||||
| 		// no scaling | ||||
| 	case "su", "longrope": | ||||
| 		kv["phi3.rope.scaling.attn_factor"] = float32(max(math.Sqrt(1+math.Log(scale)/math.Log(float64(p.OriginalMaxPositionEmbeddings))), 1.0)) | ||||
| 	case "yarn": | ||||
| 		kv["phi3.rope.scaling.attn_factor"] = float32(max(0.1*math.Log(scale)+1.0, 1.0)) | ||||
| 	default: | ||||
| 		panic("unknown rope scaling type") | ||||
| 	} | ||||
|  | ||||
| 	return kv | ||||
| } | ||||
|  | ||||
| func (p *phi3Model) Tensors(ts []Tensor) []ggml.Tensor { | ||||
| 	var addRopeFactors sync.Once | ||||
|  | ||||
| 	out := make([]ggml.Tensor, 0, len(ts)+2) | ||||
| 	for _, t := range ts { | ||||
| 		if strings.HasPrefix(t.Name(), "blk.0.") { | ||||
| 			addRopeFactors.Do(func() { | ||||
| 				out = append(out, ggml.Tensor{ | ||||
| 					Name:     "rope_factors_long.weight", | ||||
| 					Kind:     0, | ||||
| 					Shape:    []uint64{uint64(len(p.RopeScaling.LongFactor))}, | ||||
| 					WriterTo: p.RopeScaling.LongFactor, | ||||
| 				}, ggml.Tensor{ | ||||
| 					Name:     "rope_factors_short.weight", | ||||
| 					Kind:     0, | ||||
| 					Shape:    []uint64{uint64(len(p.RopeScaling.ShortFactor))}, | ||||
| 					WriterTo: p.RopeScaling.ShortFactor, | ||||
| 				}) | ||||
| 			}) | ||||
| 		} | ||||
|  | ||||
| 		out = append(out, ggml.Tensor{ | ||||
| 			Name:     t.Name(), | ||||
| 			Kind:     t.Kind(), | ||||
| 			Shape:    t.Shape(), | ||||
| 			WriterTo: t, | ||||
| 		}) | ||||
| 	} | ||||
|  | ||||
| 	return out | ||||
| } | ||||
|  | ||||
| func (p *phi3Model) Replacements() []string { | ||||
| 	return []string{ | ||||
| 		"lm_head", "output", | ||||
| 		"model.embed_tokens", "token_embd", | ||||
| 		"model.norm", "output_norm", | ||||
| 		"model.layers", "blk", | ||||
| 		"input_layernorm", "attn_norm", | ||||
| 		"self_attn.qkv_proj", "attn_qkv", | ||||
| 		"self_attn.o_proj", "attn_output", | ||||
| 		"mlp.down_proj", "ffn_down", | ||||
| 		"mlp.gate_up_proj", "ffn_up", | ||||
| 		"post_attention_layernorm", "ffn_norm", | ||||
| 	} | ||||
| } | ||||
|  | ||||
| type ropeFactor []float32 | ||||
|  | ||||
| func (r ropeFactor) WriteTo(w io.Writer) (int64, error) { | ||||
| 	return 0, binary.Write(w, binary.LittleEndian, r) | ||||
| } | ||||
| @@ -1,78 +0,0 @@ | ||||
| package convert | ||||
|  | ||||
| import "github.com/ollama/ollama/fs/ggml" | ||||
|  | ||||
| type qwen2Model struct { | ||||
| 	ModelParameters | ||||
| 	MaxPositionEmbeddings uint32  `json:"max_position_embeddings"` | ||||
| 	HiddenSize            uint32  `json:"hidden_size"` | ||||
| 	HiddenLayers          uint32  `json:"num_hidden_layers"` | ||||
| 	IntermediateSize      uint32  `json:"intermediate_size"` | ||||
| 	NumAttentionHeads     uint32  `json:"num_attention_heads"` | ||||
| 	NumKeyValueHeads      uint32  `json:"num_key_value_heads"` | ||||
| 	RopeTheta             float32 `json:"rope_theta"` | ||||
| 	RopeScaling           struct { | ||||
| 		Type                          string     `json:"type"` | ||||
| 		Factor                        ropeFactor `json:"factor"` | ||||
| 		OriginalMaxPositionEmbeddings uint32     `json:"original_max_position_embeddings"` | ||||
| 	} `json:"rope_scaling"` | ||||
| 	RMSNormEPS float32 `json:"rms_norm_eps"` | ||||
| } | ||||
|  | ||||
| var _ ModelConverter = (*qwen2Model)(nil) | ||||
|  | ||||
| func (q *qwen2Model) KV(t *Tokenizer) ggml.KV { | ||||
| 	kv := q.ModelParameters.KV(t) | ||||
| 	kv["general.architecture"] = "qwen2" | ||||
| 	kv["qwen2.block_count"] = q.HiddenLayers | ||||
| 	kv["qwen2.context_length"] = q.MaxPositionEmbeddings | ||||
| 	kv["qwen2.embedding_length"] = q.HiddenSize | ||||
| 	kv["qwen2.feed_forward_length"] = q.IntermediateSize | ||||
| 	kv["qwen2.attention.head_count"] = q.NumAttentionHeads | ||||
| 	kv["qwen2.attention.head_count_kv"] = q.NumKeyValueHeads | ||||
| 	kv["qwen2.rope.freq_base"] = q.RopeTheta | ||||
| 	kv["qwen2.attention.layer_norm_rms_epsilon"] = q.RMSNormEPS | ||||
|  | ||||
| 	switch q.RopeScaling.Type { | ||||
| 	case "": | ||||
| 		// no scaling | ||||
| 	case "yarn": | ||||
| 		kv["qwen2.rope.scaling.type"] = q.RopeScaling.Type | ||||
| 		kv["qwen2.rope.scaling.factor"] = q.RopeScaling.Factor | ||||
| 	default: | ||||
| 		panic("unknown rope scaling type") | ||||
| 	} | ||||
| 	return kv | ||||
| } | ||||
|  | ||||
| func (q *qwen2Model) Tensors(ts []Tensor) []ggml.Tensor { | ||||
| 	var out []ggml.Tensor | ||||
| 	for _, t := range ts { | ||||
| 		out = append(out, ggml.Tensor{ | ||||
| 			Name:     t.Name(), | ||||
| 			Kind:     t.Kind(), | ||||
| 			Shape:    t.Shape(), | ||||
| 			WriterTo: t, | ||||
| 		}) | ||||
| 	} | ||||
|  | ||||
| 	return out | ||||
| } | ||||
|  | ||||
| func (p *qwen2Model) Replacements() []string { | ||||
| 	return []string{ | ||||
| 		"lm_head", "output", | ||||
| 		"model.embed_tokens", "token_embd", | ||||
| 		"model.layers", "blk", | ||||
| 		"input_layernorm", "attn_norm", | ||||
| 		"self_attn.k_proj", "attn_k", | ||||
| 		"self_attn.v_proj", "attn_v", | ||||
| 		"self_attn.q_proj", "attn_q", | ||||
| 		"self_attn.o_proj", "attn_output", | ||||
| 		"mlp.down_proj", "ffn_down", | ||||
| 		"mlp.gate_proj", "ffn_gate", | ||||
| 		"mlp.up_proj", "ffn_up", | ||||
| 		"post_attention_layernorm", "ffn_norm", | ||||
| 		"model.norm", "output_norm", | ||||
| 	} | ||||
| } | ||||
| @@ -1,43 +1,48 @@ | ||||
| //go:build slow | ||||
|  | ||||
| package convert | ||||
|  | ||||
| import ( | ||||
| 	"bytes" | ||||
| 	"crypto/sha256" | ||||
| 	"encoding/binary" | ||||
| 	"encoding/hex" | ||||
| 	"encoding/json" | ||||
| 	"flag" | ||||
| 	"fmt" | ||||
| 	"io" | ||||
| 	"io/fs" | ||||
| 	"log/slog" | ||||
| 	"os" | ||||
| 	"path/filepath" | ||||
| 	"slices" | ||||
| 	"strings" | ||||
| 	"testing" | ||||
|  | ||||
| 	"golang.org/x/exp/maps" | ||||
|  | ||||
| 	"github.com/ollama/ollama/fs/ggml" | ||||
| 	"github.com/ollama/ollama/llm" | ||||
| ) | ||||
|  | ||||
| type tensorData struct { | ||||
| 	Offsets []int  `json:"data_offsets"` | ||||
| 	Type    string `json:"dtype"` | ||||
| 	Shape   []int  `json:"shape"` | ||||
| } | ||||
|  | ||||
| func convertFull(t *testing.T, fsys fs.FS) (*os.File, ggml.KV, ggml.Tensors) { | ||||
| func convertFull(t *testing.T, p string) (llm.KV, llm.Tensors) { | ||||
| 	t.Helper() | ||||
|  | ||||
| 	mf, err := GetModelFormat(p) | ||||
| 	if err != nil { | ||||
| 		t.Fatal(err) | ||||
| 	} | ||||
|  | ||||
| 	params, err := mf.GetParams(p) | ||||
| 	if err != nil { | ||||
| 		t.Fatal(err) | ||||
| 	} | ||||
|  | ||||
| 	arch, err := mf.GetModelArch("", p, params) | ||||
| 	if err != nil { | ||||
| 		t.Fatal(err) | ||||
| 	} | ||||
|  | ||||
| 	if err := arch.LoadVocab(); err != nil { | ||||
| 		t.Fatal(err) | ||||
| 	} | ||||
|  | ||||
| 	if err := arch.GetTensors(); err != nil { | ||||
| 		t.Fatal(err) | ||||
| 	} | ||||
|  | ||||
| 	f, err := os.CreateTemp(t.TempDir(), "f16") | ||||
| 	if err != nil { | ||||
| 		t.Fatal(err) | ||||
| 	} | ||||
| 	defer f.Close() | ||||
|  | ||||
| 	if err := ConvertModel(fsys, f); err != nil { | ||||
| 	if err := arch.WriteGGUF(f); err != nil { | ||||
| 		t.Fatal(err) | ||||
| 	} | ||||
|  | ||||
| @@ -45,433 +50,54 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, ggml.KV, ggml.Tensors) { | ||||
| 	if err != nil { | ||||
| 		t.Fatal(err) | ||||
| 	} | ||||
| 	t.Cleanup(func() { r.Close() }) | ||||
| 	defer r.Close() | ||||
|  | ||||
| 	m, _, err := ggml.Decode(r, -1) | ||||
| 	m, _, err := llm.DecodeGGML(r) | ||||
| 	if err != nil { | ||||
| 		t.Fatal(err) | ||||
| 	} | ||||
|  | ||||
| 	if _, err := r.Seek(0, io.SeekStart); err != nil { | ||||
| 		t.Fatal(err) | ||||
| 	} | ||||
|  | ||||
| 	return r, m.KV(), m.Tensors() | ||||
| 	return m.KV(), m.Tensors() | ||||
| } | ||||
|  | ||||
| func generateResultsJSON(t *testing.T, f *os.File, kv ggml.KV, tensors ggml.Tensors) map[string]string { | ||||
| 	actual := make(map[string]string) | ||||
| 	for k, v := range kv { | ||||
| 		if s, ok := v.(json.Marshaler); !ok { | ||||
| 			actual[k] = fmt.Sprintf("%v", v) | ||||
| 		} else { | ||||
| 			bts, err := json.Marshal(s) | ||||
| 			if err != nil { | ||||
| 				t.Fatal(err) | ||||
| 			} | ||||
|  | ||||
| 			actual[k] = fmt.Sprintf("%x", sha256.Sum256(bts)) | ||||
| 		} | ||||
| func TestConvertFull(t *testing.T) { | ||||
| 	cases := []struct { | ||||
| 		path    string | ||||
| 		arch    string | ||||
| 		tensors int | ||||
| 		layers  int | ||||
| 	}{ | ||||
| 		{"Meta-Llama-3-8B-Instruct", "llama", 291, 35}, | ||||
| 		{"Mistral-7B-Instruct-v0.2", "llama", 291, 35}, | ||||
| 		{"Mixtral-8x7B-Instruct-v0.1", "llama", 291, 35}, | ||||
| 		{"gemma-2b-it", "gemma", 164, 20}, | ||||
| 	} | ||||
|  | ||||
| 	for _, tensor := range tensors.Items() { | ||||
| 		sha256sum := sha256.New() | ||||
| 		sr := io.NewSectionReader(f, int64(tensors.Offset+tensor.Offset), int64(tensor.Size())) | ||||
| 		if _, err := io.Copy(sha256sum, sr); err != nil { | ||||
| 			t.Fatal(err) | ||||
| 		} | ||||
|  | ||||
| 		actual[tensor.Name] = hex.EncodeToString(sha256sum.Sum(nil)) | ||||
| 	} | ||||
|  | ||||
| 	return actual | ||||
| } | ||||
|  | ||||
| func TestMain(m *testing.M) { | ||||
| 	var level slog.Level | ||||
| 	flag.TextVar(&level, "level", slog.LevelInfo, "log level") | ||||
| 	flag.Parse() | ||||
| 	slog.SetLogLoggerLevel(level) | ||||
| 	os.Exit(m.Run()) | ||||
| } | ||||
|  | ||||
| func TestConvertModel(t *testing.T) { | ||||
| 	cases := []string{ | ||||
| 		"Meta-Llama-3-8B-Instruct", | ||||
| 		"Meta-Llama-3.1-8B-Instruct", | ||||
| 		"Mistral-7B-Instruct-v0.2", | ||||
| 		"Mixtral-8x7B-Instruct-v0.1", | ||||
| 		"gemma-2b-it", | ||||
| 		"gemma-2-2b-it", | ||||
| 		// microsoft/Phi-3-mini-128-instruct@d548c233192db00165d842bf8edff054bb3212f8 | ||||
| 		"Phi-3-mini-128k-instruct", | ||||
| 		"all-MiniLM-L6-v2", | ||||
| 		"gemma-2-9b-it", | ||||
| 		"Qwen2.5-0.5B-Instruct", | ||||
| 		"c4ai-command-r-v01", | ||||
| 	} | ||||
|  | ||||
| 	for i := range cases { | ||||
| 		tt := cases[i] | ||||
| 		t.Run(tt, func(t *testing.T) { | ||||
| 			t.Parallel() | ||||
|  | ||||
| 			p := filepath.Join("testdata", tt) | ||||
| 			if testing.Short() { | ||||
| 				t.Skip("skipping in short mode") | ||||
| 			} else if _, err := os.Stat(p); err != nil { | ||||
| 	for _, tt := range cases { | ||||
| 		t.Run(tt.path, func(t *testing.T) { | ||||
| 			p := filepath.Join("testdata", tt.path) | ||||
| 			if _, err := os.Stat(p); err != nil { | ||||
| 				t.Skipf("%s not found", p) | ||||
| 			} | ||||
|  | ||||
| 			f, kv, tensors := convertFull(t, os.DirFS(p)) | ||||
| 			actual := generateResultsJSON(t, f, kv, tensors) | ||||
| 			kv, tensors := convertFull(t, p) | ||||
|  | ||||
| 			expectFile, err := os.Open(filepath.Join("testdata", fmt.Sprintf("%s.json", tt))) | ||||
| 			if err != nil { | ||||
| 				t.Fatal(err) | ||||
| 			if kv.Architecture() != tt.arch { | ||||
| 				t.Fatalf("expected llama, got %s", kv.Architecture()) | ||||
| 			} | ||||
|  | ||||
| 			var expect map[string]string | ||||
| 			if err := json.NewDecoder(expectFile).Decode(&expect); err != nil { | ||||
| 				t.Fatal(err) | ||||
| 			if kv.FileType().String() != "F16" { | ||||
| 				t.Fatalf("expected F16, got %s", kv.FileType()) | ||||
| 			} | ||||
|  | ||||
| 			keys := maps.Keys(expect) | ||||
| 			slices.Sort(keys) | ||||
| 			for _, k := range keys { | ||||
| 				if v, ok := actual[k]; !ok { | ||||
| 					t.Errorf("missing %s", k) | ||||
| 				} else if v != expect[k] { | ||||
| 					t.Errorf("unexpected %s: want %s, got %s", k, expect[k], v) | ||||
| 				} | ||||
| 			if len(tensors) != tt.tensors { | ||||
| 				t.Fatalf("expected %d tensors, got %d", tt.tensors, len(tensors)) | ||||
| 			} | ||||
|  | ||||
| 			layers := tensors.Layers() | ||||
| 			if len(layers) != tt.layers { | ||||
| 				t.Fatalf("expected %d layers, got %d", tt.layers, len(layers)) | ||||
| 			} | ||||
| 		}) | ||||
| 	} | ||||
| } | ||||
|  | ||||
| func TestConvertInvalidTensorNames(t *testing.T) { | ||||
| 	f, err := os.CreateTemp(t.TempDir(), "testmodel") | ||||
| 	if err != nil { | ||||
| 		t.Fatal(err) | ||||
| 	} | ||||
| 	defer f.Close() | ||||
|  | ||||
| 	tempDir := t.TempDir() | ||||
|  | ||||
| 	td := map[string]*tensorData{} | ||||
| 	offset := 4096 | ||||
|  | ||||
| 	td["model.layers.0.self_attn.q_proj.weight"] = &tensorData{ | ||||
| 		Offsets: []int{0, offset}, | ||||
| 		Type:    "F32", | ||||
| 		Shape:   []int{4096, 4096}, | ||||
| 	} | ||||
| 	td["blk.0.attn_q.weight"] = &tensorData{ | ||||
| 		Offsets: []int{offset, offset * 2}, | ||||
| 		Type:    "F32", | ||||
| 		Shape:   []int{4096, 4096}, | ||||
| 	} | ||||
| 	generateSafetensorTestData(t, tempDir, td) | ||||
|  | ||||
| 	err = ConvertModel(os.DirFS(tempDir), f) | ||||
| 	if err == nil || !strings.HasPrefix(err.Error(), "duplicate tensor name") { | ||||
| 		t.Errorf("expected error but didn't get one") | ||||
| 	} | ||||
| } | ||||
|  | ||||
| func TestConvertInvalidDatatype(t *testing.T) { | ||||
| 	f, err := os.CreateTemp(t.TempDir(), "testmodel") | ||||
| 	if err != nil { | ||||
| 		t.Fatal(err) | ||||
| 	} | ||||
| 	defer f.Close() | ||||
|  | ||||
| 	tempDir := t.TempDir() | ||||
|  | ||||
| 	td := map[string]*tensorData{} | ||||
| 	offset := 4096 * 14336 | ||||
|  | ||||
| 	td["model.layers.0.mlp.down_proj.weight"] = &tensorData{ | ||||
| 		Offsets: []int{0, offset}, | ||||
| 		Type:    "I8", | ||||
| 		Shape:   []int{4096, 14336}, | ||||
| 	} | ||||
| 	td["model.layers.0.mlp.down_proj.weight_format"] = &tensorData{ | ||||
| 		Offsets: []int{offset, offset}, | ||||
| 		Type:    "U8", | ||||
| 		Shape:   []int{}, | ||||
| 	} | ||||
| 	generateSafetensorTestData(t, tempDir, td) | ||||
|  | ||||
| 	err = ConvertModel(os.DirFS(tempDir), f) | ||||
| 	if err == nil || err.Error() != "unsupported safetensors model" { | ||||
| 		t.Errorf("expected error but didn't get one") | ||||
| 	} | ||||
| } | ||||
|  | ||||
| func generateSafetensorTestData(t *testing.T, tempDir string, tensorData map[string]*tensorData) { | ||||
| 	data, err := json.Marshal(tensorData) | ||||
| 	if err != nil { | ||||
| 		t.Fatal(err) | ||||
| 	} | ||||
|  | ||||
| 	var buf bytes.Buffer | ||||
|  | ||||
| 	l := int64(len(data)) | ||||
| 	err = binary.Write(&buf, binary.LittleEndian, l) | ||||
| 	if err != nil { | ||||
| 		t.Fatal(err) | ||||
| 	} | ||||
|  | ||||
| 	_, err = buf.Write(data) | ||||
| 	if err != nil { | ||||
| 		t.Fatal(err) | ||||
| 	} | ||||
|  | ||||
| 	fdata, err := os.Create(filepath.Join(tempDir, "model-00001-of-00001.safetensors")) | ||||
| 	if err != nil { | ||||
| 		t.Fatal(err) | ||||
| 	} | ||||
| 	defer fdata.Close() | ||||
|  | ||||
| 	_, err = fdata.Write(buf.Bytes()) | ||||
| 	if err != nil { | ||||
| 		t.Fatal(err) | ||||
| 	} | ||||
|  | ||||
| 	configData := ` | ||||
| { | ||||
|   "architectures": [ | ||||
|     "LlamaForCausalLM" | ||||
|   ] | ||||
| } | ||||
| ` | ||||
|  | ||||
| 	f, err := os.Create(filepath.Join(tempDir, "config.json")) | ||||
| 	if err != nil { | ||||
| 		t.Fatal(err) | ||||
| 	} | ||||
| 	defer f.Close() | ||||
|  | ||||
| 	_, err = f.WriteString(configData) | ||||
| 	if err != nil { | ||||
| 		t.Fatal(err) | ||||
| 	} | ||||
|  | ||||
| 	tokenizerData := ` | ||||
| { | ||||
| } | ||||
| ` | ||||
|  | ||||
| 	f, err = os.Create(filepath.Join(tempDir, "tokenizer.json")) | ||||
| 	if err != nil { | ||||
| 		t.Fatal(err) | ||||
| 	} | ||||
| 	defer f.Close() | ||||
|  | ||||
| 	_, err = f.WriteString(tokenizerData) | ||||
| 	if err != nil { | ||||
| 		t.Fatal(err) | ||||
| 	} | ||||
| } | ||||
|  | ||||
| func TestConvertAdapter(t *testing.T) { | ||||
| 	type AdapterCase struct { | ||||
| 		Name     string | ||||
| 		BaseKV   map[string]any | ||||
| 		Expected map[string]string | ||||
| 	} | ||||
|  | ||||
| 	cases := []AdapterCase{ | ||||
| 		{ | ||||
| 			Name: "discollama", | ||||
| 			BaseKV: map[string]any{ | ||||
| 				"general.architecture":          "llama", | ||||
| 				"llama.attention.head_count":    uint32(32), | ||||
| 				"llama.attention.head_count_kv": uint32(8), | ||||
| 			}, | ||||
| 			Expected: map[string]string{ | ||||
| 				"general.architecture":          "llama", | ||||
| 				"general.file_type":             "1", | ||||
| 				"general.parameter_count":       "106496", | ||||
| 				"general.type":                  "adapter", | ||||
| 				"general.version":               "v0.2", | ||||
| 				"adapter.lora.alpha":            "16", | ||||
| 				"adapter.type":                  "lora", | ||||
| 				"llama.attention.head_count":    "32", | ||||
| 				"llama.attention.head_count_kv": "8", | ||||
| 				"blk.31.attn_q.weight.lora_a":   "0eb3318b02cd313429bcc7621b539fdbb10240fea190c56c9e5f93fcd37a4e50", | ||||
| 				"blk.31.attn_q.weight.lora_b":   "0eb3318b02cd313429bcc7621b539fdbb10240fea190c56c9e5f93fcd37a4e50", | ||||
| 				"blk.31.attn_v.weight.lora_a":   "0eb3318b02cd313429bcc7621b539fdbb10240fea190c56c9e5f93fcd37a4e50", | ||||
| 				"blk.31.attn_v.weight.lora_b":   "071dcafe89df065d6e1c935ecb8fdf6479b3c202eb912e7da938597673ff5857", | ||||
| 			}, | ||||
| 		}, | ||||
| 	} | ||||
|  | ||||
| 	for _, c := range cases { | ||||
| 		t.Run(c.Name, func(t *testing.T) { | ||||
| 			t.Parallel() | ||||
|  | ||||
| 			f, err := os.CreateTemp(t.TempDir(), "f16") | ||||
| 			if err != nil { | ||||
| 				t.Fatal(err) | ||||
| 			} | ||||
| 			defer f.Close() | ||||
|  | ||||
| 			tempDir := t.TempDir() | ||||
| 			generateLoraTestData(t, tempDir) | ||||
|  | ||||
| 			if err = ConvertAdapter(os.DirFS(tempDir), f, c.BaseKV); err != nil { | ||||
| 				t.Fatal(err) | ||||
| 			} | ||||
|  | ||||
| 			r, err := os.Open(f.Name()) | ||||
| 			if err != nil { | ||||
| 				t.Fatal(err) | ||||
| 			} | ||||
| 			defer r.Close() | ||||
|  | ||||
| 			m, _, err := ggml.Decode(r, -1) | ||||
| 			if err != nil { | ||||
| 				t.Fatal(err) | ||||
| 			} | ||||
|  | ||||
| 			if _, err := r.Seek(0, io.SeekStart); err != nil { | ||||
| 				t.Fatal(err) | ||||
| 			} | ||||
|  | ||||
| 			actual := generateResultsJSON(t, r, m.KV(), m.Tensors()) | ||||
|  | ||||
| 			keys := maps.Keys(c.Expected) | ||||
| 			slices.Sort(keys) | ||||
| 			for _, k := range keys { | ||||
| 				if v, ok := actual[k]; !ok { | ||||
| 					t.Errorf("missing %s", k) | ||||
| 				} else if v != c.Expected[k] { | ||||
| 					t.Errorf("unexpected %s: want %s, got %s", k, c.Expected[k], v) | ||||
| 				} | ||||
| 			} | ||||
| 		}) | ||||
| 	} | ||||
| } | ||||
|  | ||||
| func generateLoraTestData(t *testing.T, tempDir string) { | ||||
| 	offset := 4096 * 8 * 4 | ||||
|  | ||||
| 	td := map[string]*tensorData{"__metadata__": nil} | ||||
| 	td["model.layers.31.self_attn.q_proj.lora_a"] = &tensorData{ | ||||
| 		Offsets: []int{0, offset}, | ||||
| 		Type:    "F32", | ||||
| 		Shape:   []int{4096, 8}, | ||||
| 	} | ||||
| 	td["model.layers.31.self_attn.q_proj.lora_b"] = &tensorData{ | ||||
| 		Offsets: []int{offset, offset * 2}, | ||||
| 		Type:    "F32", | ||||
| 		Shape:   []int{8, 4096}, | ||||
| 	} | ||||
| 	td["model.layers.31.self_attn.v_proj.lora_a"] = &tensorData{ | ||||
| 		Offsets: []int{offset * 2, offset * 3}, | ||||
| 		Type:    "F32", | ||||
| 		Shape:   []int{4096, 8}, | ||||
| 	} | ||||
| 	td["model.layers.31.self_attn.v_proj.lora_b"] = &tensorData{ | ||||
| 		Offsets: []int{offset * 3, offset*3 + 8*1024*4}, | ||||
| 		Type:    "F32", | ||||
| 		Shape:   []int{8, 1024}, | ||||
| 	} | ||||
|  | ||||
| 	data, err := json.Marshal(td) | ||||
| 	if err != nil { | ||||
| 		t.Fatal(err) | ||||
| 	} | ||||
|  | ||||
| 	var buf bytes.Buffer | ||||
|  | ||||
| 	l := int64(len(data)) | ||||
| 	err = binary.Write(&buf, binary.LittleEndian, l) | ||||
| 	if err != nil { | ||||
| 		t.Fatal(err) | ||||
| 	} | ||||
|  | ||||
| 	_, err = buf.Write(data) | ||||
| 	if err != nil { | ||||
| 		t.Fatal(err) | ||||
| 	} | ||||
|  | ||||
| 	// write some data for the tensors | ||||
|  | ||||
| 	ones := make([]float32, 4096*8) | ||||
| 	for i := range ones { | ||||
| 		ones[i] = float32(1) | ||||
| 	} | ||||
|  | ||||
| 	for range 3 { | ||||
| 		err = binary.Write(&buf, binary.LittleEndian, ones) | ||||
| 		if err != nil { | ||||
| 			t.Fatal(err) | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	ones = make([]float32, 1024*8) | ||||
| 	for i := range ones { | ||||
| 		ones[i] = float32(1) | ||||
| 	} | ||||
|  | ||||
| 	err = binary.Write(&buf, binary.LittleEndian, ones) | ||||
| 	if err != nil { | ||||
| 		t.Fatal(err) | ||||
| 	} | ||||
|  | ||||
| 	fdata, err := os.Create(filepath.Join(tempDir, "adapters.safetensors")) | ||||
| 	if err != nil { | ||||
| 		t.Fatal(err) | ||||
| 	} | ||||
| 	defer fdata.Close() | ||||
|  | ||||
| 	_, err = fdata.Write(buf.Bytes()) | ||||
| 	if err != nil { | ||||
| 		t.Fatal(err) | ||||
| 	} | ||||
|  | ||||
| 	configData := ` | ||||
| { | ||||
|     "adapter_path": "adapters-test", | ||||
|     "batch_size": 8, | ||||
|     "config": "config-tiny.json", | ||||
|     "data": "../discollama-completion", | ||||
|     "grad_checkpoint": null, | ||||
|     "iters": 1000, | ||||
|     "learning_rate": 1e-05, | ||||
|     "lora_layers": 1, | ||||
|     "lora_parameters": { | ||||
|         "rank": 8, | ||||
|         "alpha": 16, | ||||
|         "dropout": 0.0, | ||||
|         "scale": 2.0 | ||||
|     }, | ||||
|     "lr_schedule": null, | ||||
|     "max_seq_length": 2048, | ||||
|     "model": "/Users/pdevine/git/Meta-Llama-3-8B-Instruct", | ||||
|     "resume_adapter_file": null, | ||||
|     "save_every": 100, | ||||
|     "seed": 0, | ||||
|     "steps_per_eval": 200, | ||||
|     "steps_per_report": 10, | ||||
|     "test": false, | ||||
|     "test_batches": 500, | ||||
|     "train": true, | ||||
|     "use_dora": false, | ||||
|     "val_batches": 25 | ||||
| } | ||||
| ` | ||||
| 	f, err := os.Create(filepath.Join(tempDir, "adapter_config.json")) | ||||
| 	if err != nil { | ||||
| 		t.Fatal(err) | ||||
| 	} | ||||
| 	defer f.Close() | ||||
|  | ||||
| 	_, err = f.WriteString(configData) | ||||
| 	if err != nil { | ||||
| 		t.Fatal(err) | ||||
| 	} | ||||
| } | ||||
|   | ||||
| @@ -1,58 +0,0 @@ | ||||
| package convert | ||||
|  | ||||
| import ( | ||||
| 	"archive/zip" | ||||
| 	"errors" | ||||
| 	"io" | ||||
| 	"io/fs" | ||||
| 	"os" | ||||
| 	"path/filepath" | ||||
| ) | ||||
|  | ||||
| type ZipReader struct { | ||||
| 	r *zip.Reader | ||||
| 	p string | ||||
|  | ||||
| 	// limit is the maximum size of a file that can be read directly | ||||
| 	// from the zip archive. Files larger than this size will be extracted | ||||
| 	limit int64 | ||||
| } | ||||
|  | ||||
| func NewZipReader(r *zip.Reader, p string, limit int64) fs.FS { | ||||
| 	return &ZipReader{r, p, limit} | ||||
| } | ||||
|  | ||||
| func (z *ZipReader) Open(name string) (fs.File, error) { | ||||
| 	r, err := z.r.Open(name) | ||||
| 	if err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
| 	defer r.Close() | ||||
|  | ||||
| 	if fi, err := r.Stat(); err != nil { | ||||
| 		return nil, err | ||||
| 	} else if fi.Size() < z.limit { | ||||
| 		return r, nil | ||||
| 	} | ||||
|  | ||||
| 	if !filepath.IsLocal(name) { | ||||
| 		return nil, zip.ErrInsecurePath | ||||
| 	} | ||||
|  | ||||
| 	n := filepath.Join(z.p, name) | ||||
| 	if _, err := os.Stat(n); errors.Is(err, os.ErrNotExist) { | ||||
| 		w, err := os.Create(n) | ||||
| 		if err != nil { | ||||
| 			return nil, err | ||||
| 		} | ||||
| 		defer w.Close() | ||||
|  | ||||
| 		if _, err := io.Copy(w, r); err != nil { | ||||
| 			return nil, err | ||||
| 		} | ||||
| 	} else if err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	return os.Open(n) | ||||
| } | ||||
							
								
								
									
										103
									
								
								convert/gemma.go
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										103
									
								
								convert/gemma.go
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,103 @@ | ||||
| package convert | ||||
|  | ||||
| import ( | ||||
| 	"fmt" | ||||
| 	"io" | ||||
| 	"log/slog" | ||||
| 	"strings" | ||||
|  | ||||
| 	"github.com/pdevine/tensor" | ||||
| 	"github.com/pdevine/tensor/native" | ||||
|  | ||||
| 	"github.com/ollama/ollama/llm" | ||||
| ) | ||||
|  | ||||
| type GemmaModel struct { | ||||
| 	ModelData | ||||
| } | ||||
|  | ||||
| func addOnes(data []float32, vectorSize int) ([]float32, error) { | ||||
| 	n := tensor.New(tensor.WithShape(vectorSize), tensor.WithBacking(data)) | ||||
| 	ones := tensor.Ones(tensor.Float32, vectorSize) | ||||
|  | ||||
| 	n, err := n.Add(ones) | ||||
| 	if err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	ts, err := native.SelectF32(n, 0) | ||||
| 	if err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	var f32s []float32 | ||||
| 	for _, t := range ts { | ||||
| 		f32s = append(f32s, t...) | ||||
| 	} | ||||
|  | ||||
|  | ||||
| 	return f32s, nil | ||||
| } | ||||
|  | ||||
| func (m *GemmaModel) GetTensors() error { | ||||
| 	t, err := m.Format.GetTensors(m.Path, m.Params) | ||||
| 	if err != nil { | ||||
| 		return err | ||||
| 	} | ||||
|  | ||||
| 	slog.Debug(fmt.Sprintf("Total tensors: %d", len(t))) | ||||
| 	for _, l := range t { | ||||
| 		if strings.HasSuffix(l.Name, "norm.weight") { | ||||
| 			wt := l.WriterTo.(safetensorWriterTo) | ||||
| 			wt.repacker = m.Repack | ||||
| 			l.WriterTo = wt | ||||
| 		} | ||||
| 		m.Tensors = append(m.Tensors, l) | ||||
| 	} | ||||
|  | ||||
| 	return nil | ||||
| } | ||||
|  | ||||
| func (m *GemmaModel) LoadVocab() error { | ||||
| 	v, err := LoadSentencePieceTokens(m.Path, m.Params) | ||||
| 	if err != nil { | ||||
| 		return err | ||||
| 	} | ||||
| 	m.Vocab = v | ||||
| 	return nil | ||||
| } | ||||
|  | ||||
| func (m *GemmaModel) Repack(_ string, data []float32, shape []uint64) ([]float32, error) { | ||||
| 	return addOnes(data, int(shape[0])) | ||||
| } | ||||
|  | ||||
| func (m *GemmaModel) WriteGGUF(ws io.WriteSeeker) error { | ||||
| 	kv := llm.KV{ | ||||
| 		"general.architecture":                   "gemma", | ||||
| 		"general.name":                           m.Name, | ||||
| 		"gemma.context_length":                   uint32(m.Params.ContextSize), | ||||
| 		"gemma.embedding_length":                 uint32(m.Params.HiddenSize), | ||||
| 		"gemma.block_count":                      uint32(m.Params.HiddenLayers), | ||||
| 		"gemma.feed_forward_length":              uint32(m.Params.IntermediateSize), | ||||
| 		"gemma.attention.head_count":             uint32(m.Params.AttentionHeads), | ||||
| 		"gemma.attention.head_count_kv":          uint32(m.Params.KeyValHeads), | ||||
| 		"gemma.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS), | ||||
| 		"gemma.attention.key_length":             uint32(m.Params.HeadDimension), | ||||
| 		"gemma.attention.value_length":           uint32(m.Params.HeadDimension), | ||||
| 		"general.file_type":                      uint32(1), | ||||
| 		"tokenizer.ggml.model":                   "llama", | ||||
|  | ||||
| 		"tokenizer.ggml.tokens":     m.Vocab.Tokens, | ||||
| 		"tokenizer.ggml.scores":     m.Vocab.Scores, | ||||
| 		"tokenizer.ggml.token_type": m.Vocab.Types, | ||||
|  | ||||
| 		"tokenizer.ggml.bos_token_id":     uint32(m.Params.BoSTokenID), | ||||
| 		"tokenizer.ggml.eos_token_id":     uint32(m.Params.EoSTokenID), | ||||
| 		"tokenizer.ggml.padding_token_id": uint32(m.Params.PaddingTokenID), | ||||
| 		"tokenizer.ggml.unknown_token_id": uint32(3), | ||||
| 		"tokenizer.ggml.add_bos_token":    true, | ||||
| 		"tokenizer.ggml.add_eos_token":    false, | ||||
| 	} | ||||
|  | ||||
| 	return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors) | ||||
| } | ||||
							
								
								
									
										158
									
								
								convert/llama.go
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										158
									
								
								convert/llama.go
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,158 @@ | ||||
| package convert | ||||
|  | ||||
| import ( | ||||
| 	"cmp" | ||||
| 	"errors" | ||||
| 	"fmt" | ||||
| 	"io" | ||||
| 	"os" | ||||
| 	"path/filepath" | ||||
| 	"regexp" | ||||
| 	"strings" | ||||
|  | ||||
| 	"github.com/pdevine/tensor" | ||||
| 	"github.com/pdevine/tensor/native" | ||||
|  | ||||
| 	"github.com/ollama/ollama/llm" | ||||
| ) | ||||
|  | ||||
| type LlamaModel struct { | ||||
| 	ModelData | ||||
| } | ||||
|  | ||||
| func (m *LlamaModel) GetTensors() error { | ||||
| 	t, err := m.Format.GetTensors(m.Path, m.Params) | ||||
| 	if err != nil { | ||||
| 		return err | ||||
| 	} | ||||
|  | ||||
| 	pattern := `^blk\.[0-9]+\.attn_(?P<layer>q|k)\.weight$` | ||||
| 	re, err := regexp.Compile(pattern) | ||||
| 	if err != nil { | ||||
| 		return err | ||||
| 	} | ||||
|  | ||||
| 	for _, l := range t { | ||||
| 		matches := re.FindAllStringSubmatch(l.Name, -1) | ||||
| 		if len(matches) > 0 { | ||||
| 			switch m.Format.(type) { | ||||
| 			case *TorchFormat: | ||||
| 				wt := l.WriterTo.(torchWriterTo) | ||||
| 				wt.repacker = m.Repack | ||||
| 				l.WriterTo = wt | ||||
| 			case *SafetensorFormat: | ||||
| 				wt := l.WriterTo.(safetensorWriterTo) | ||||
| 				wt.repacker = m.Repack | ||||
| 				l.WriterTo = wt | ||||
| 			} | ||||
| 		} | ||||
| 		m.Tensors = append(m.Tensors, l) | ||||
| 	} | ||||
|  | ||||
| 	return nil | ||||
| } | ||||
|  | ||||
| func (m *LlamaModel) LoadVocab() (err error) { | ||||
| 	pre, ts, merges, err := parseTokens(filepath.Join(m.Path, "tokenizer.json")) | ||||
| 	if errors.Is(err, os.ErrNotExist) { | ||||
| 		return nil | ||||
| 	} else if err != nil { | ||||
| 		return err | ||||
| 	} | ||||
|  | ||||
| 	m.Vocab = &Vocab{} | ||||
| 	for _, t := range ts { | ||||
| 		m.Vocab.Tokens = append(m.Vocab.Tokens, t.Content) | ||||
| 		m.Vocab.Types = append(m.Vocab.Types, t.Type()) | ||||
| 	} | ||||
|  | ||||
| 	m.Vocab.Merges = merges | ||||
| 	m.Params.PreTokenizer = pre | ||||
| 	return nil | ||||
| } | ||||
|  | ||||
| func (m *LlamaModel) WriteGGUF(ws io.WriteSeeker) error { | ||||
| 	kv := llm.KV{ | ||||
| 		"general.architecture":                   "llama", | ||||
| 		"general.name":                           m.Name, | ||||
| 		"llama.vocab_size":                       uint32(len(m.Vocab.Tokens)), | ||||
| 		"llama.context_length":                   uint32(m.Params.ContextSize), | ||||
| 		"llama.embedding_length":                 uint32(m.Params.HiddenSize), | ||||
| 		"llama.block_count":                      uint32(m.Params.HiddenLayers), | ||||
| 		"llama.feed_forward_length":              uint32(m.Params.IntermediateSize), | ||||
| 		"llama.rope.freq_base":                   float32(m.Params.RopeFrequencyBase), | ||||
| 		"llama.rope.dimension_count":             uint32(m.Params.HiddenSize / m.Params.AttentionHeads), | ||||
| 		"llama.attention.head_count":             uint32(m.Params.AttentionHeads), | ||||
| 		"llama.attention.head_count_kv":          uint32(m.Params.KeyValHeads), | ||||
| 		"llama.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS), | ||||
| 		"general.file_type":                      uint32(1), | ||||
| 		"tokenizer.ggml.model":                   "gpt2", | ||||
|  | ||||
| 		"tokenizer.ggml.pre":        m.Params.PreTokenizer, | ||||
| 		"tokenizer.ggml.tokens":     m.Vocab.Tokens, | ||||
| 		"tokenizer.ggml.token_type": m.Vocab.Types, | ||||
|  | ||||
| 		"tokenizer.ggml.bos_token_id":     uint32(m.Params.BoSTokenID), | ||||
| 		"tokenizer.ggml.eos_token_id":     uint32(m.Params.EoSTokenID), | ||||
| 		"tokenizer.ggml.unknown_token_id": uint32(0), | ||||
| 	} | ||||
|  | ||||
| 	if len(m.Vocab.Merges) > 0 { | ||||
| 		kv["tokenizer.ggml.merges"] = m.Vocab.Merges | ||||
| 	} else { | ||||
| 		kv["tokenizer.ggml.scores"] = m.Vocab.Scores | ||||
| 	} | ||||
|  | ||||
| 	return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors) | ||||
| } | ||||
|  | ||||
| func (m *LlamaModel) Repack(name string, data []float32, shape []uint64) ([]float32, error) { | ||||
| 	return llamaRepack(name, m.Params, data, shape) | ||||
| } | ||||
|  | ||||
| func llamaRepack(name string, params *Params, data []float32, shape []uint64) ([]float32, error) { | ||||
| 	var dims []int | ||||
| 	for _, dim := range shape { | ||||
| 		if dim != 0 { | ||||
| 			dims = append(dims, int(dim)) | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	var heads int | ||||
| 	if strings.HasSuffix(name, "attn_q.weight") { | ||||
| 		heads = params.AttentionHeads | ||||
| 	} else if strings.HasSuffix(name, "attn_k.weight") { | ||||
| 		heads = cmp.Or(params.KeyValHeads, params.AttentionHeads) | ||||
| 	} else { | ||||
| 		return nil, fmt.Errorf("unknown tensor name: %s", name) | ||||
| 	} | ||||
|  | ||||
| 	n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data)) | ||||
| 	if err := n.Reshape(append([]int{heads, 2, dims[0] / heads / 2}, dims[1:]...)...); err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	if err := n.T(0, 2, 1, 3); err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	if err := n.Reshape(dims...); err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	if err := n.Transpose(); err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	ts, err := native.SelectF32(n, 1) | ||||
| 	if err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	var f32s []float32 | ||||
| 	for _, t := range ts { | ||||
| 		f32s = append(f32s, t...) | ||||
| 	} | ||||
|  | ||||
| 	return f32s, nil | ||||
| } | ||||
							
								
								
									
										79
									
								
								convert/mistral.go
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										79
									
								
								convert/mistral.go
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,79 @@ | ||||
| package convert | ||||
|  | ||||
| import ( | ||||
| 	"io" | ||||
| 	"regexp" | ||||
|  | ||||
| 	"github.com/ollama/ollama/llm" | ||||
| ) | ||||
|  | ||||
| type MistralModel struct { | ||||
| 	ModelData | ||||
| } | ||||
|  | ||||
| func (m *MistralModel) GetTensors() error { | ||||
| 	t, err := m.Format.GetTensors(m.Path, m.Params) | ||||
| 	if err != nil { | ||||
| 		return err | ||||
| 	} | ||||
|  | ||||
| 	pattern := `^blk\.[0-9]+\.attn_(?P<layer>q|k)\.weight$` | ||||
| 	re, err := regexp.Compile(pattern) | ||||
| 	if err != nil { | ||||
| 		return err | ||||
| 	} | ||||
|  | ||||
| 	for _, l := range t { | ||||
| 		matches := re.FindAllStringSubmatch(l.Name, -1) | ||||
| 		if len(matches) > 0 { | ||||
| 			wt := l.WriterTo.(safetensorWriterTo) | ||||
| 			wt.repacker = m.Repack | ||||
| 			l.WriterTo = wt | ||||
| 		} | ||||
| 		m.Tensors = append(m.Tensors, l) | ||||
| 	} | ||||
|  | ||||
| 	return nil | ||||
| } | ||||
|  | ||||
| func (m *MistralModel) LoadVocab() error { | ||||
| 	v, err := LoadSentencePieceTokens(m.Path, m.Params) | ||||
| 	if err != nil { | ||||
| 		return err | ||||
| 	} | ||||
| 	m.Vocab = v | ||||
| 	return nil | ||||
| } | ||||
|  | ||||
| func (m *MistralModel) WriteGGUF(ws io.WriteSeeker) error { | ||||
| 	kv := llm.KV{ | ||||
| 		"general.architecture":                   "llama", | ||||
| 		"general.name":                           m.Name, | ||||
| 		"llama.context_length":                   uint32(m.Params.ContextSize), | ||||
| 		"llama.embedding_length":                 uint32(m.Params.HiddenSize), | ||||
| 		"llama.block_count":                      uint32(m.Params.HiddenLayers), | ||||
| 		"llama.feed_forward_length":              uint32(m.Params.IntermediateSize), | ||||
| 		"llama.rope.dimension_count":             uint32(m.Params.HiddenSize / m.Params.AttentionHeads), | ||||
| 		"llama.attention.head_count":             uint32(m.Params.AttentionHeads), | ||||
| 		"llama.attention.head_count_kv":          uint32(m.Params.KeyValHeads), | ||||
| 		"llama.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS), | ||||
| 		"general.file_type":                      uint32(1), | ||||
| 		"tokenizer.ggml.model":                   "llama", | ||||
|  | ||||
| 		"tokenizer.ggml.tokens":     m.Vocab.Tokens, | ||||
| 		"tokenizer.ggml.scores":     m.Vocab.Scores, | ||||
| 		"tokenizer.ggml.token_type": m.Vocab.Types, | ||||
|  | ||||
| 		"tokenizer.ggml.bos_token_id":     uint32(m.Params.BoSTokenID), | ||||
| 		"tokenizer.ggml.eos_token_id":     uint32(m.Params.EoSTokenID), | ||||
| 		"tokenizer.ggml.add_bos_token":    true, | ||||
| 		"tokenizer.ggml.add_eos_token":    false, | ||||
| 		"tokenizer.ggml.unknown_token_id": uint32(0), | ||||
| 	} | ||||
|  | ||||
| 	return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors) | ||||
| } | ||||
|  | ||||
| func (m *MistralModel) Repack(name string, data []float32, shape []uint64) ([]float32, error) { | ||||
| 	return llamaRepack(name, m.Params, data, shape) | ||||
| } | ||||
							
								
								
									
										87
									
								
								convert/mixtral.go
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										87
									
								
								convert/mixtral.go
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,87 @@ | ||||
| package convert | ||||
|  | ||||
| import ( | ||||
| 	"io" | ||||
| 	"regexp" | ||||
|  | ||||
| 	"github.com/ollama/ollama/llm" | ||||
| ) | ||||
|  | ||||
| type MixtralModel struct { | ||||
| 	ModelData | ||||
| } | ||||
|  | ||||
| func (m *MixtralModel) GetTensors() error { | ||||
| 	t, err := m.Format.GetTensors(m.Path, m.Params) | ||||
| 	if err != nil { | ||||
| 		return err | ||||
| 	} | ||||
|  | ||||
| 	pattern := `^blk\.[0-9]+\.attn_(?P<layer>q|k)\.weight$` | ||||
| 	re, err := regexp.Compile(pattern) | ||||
| 	if err != nil { | ||||
| 		return err | ||||
| 	} | ||||
|  | ||||
| 	for _, l := range t { | ||||
| 		matches := re.FindAllStringSubmatch(l.Name, -1) | ||||
| 		if len(matches) > 0 { | ||||
| 			wt := l.WriterTo.(safetensorWriterTo) | ||||
| 			wt.repacker = m.Repack | ||||
| 			l.WriterTo = wt | ||||
| 		} | ||||
| 		m.Tensors = append(m.Tensors, l) | ||||
| 	} | ||||
|  | ||||
| 	return nil | ||||
| } | ||||
|  | ||||
| func (m *MixtralModel) LoadVocab() error { | ||||
| 	v, err := LoadSentencePieceTokens(m.Path, m.Params) | ||||
| 	if err != nil { | ||||
| 		return err | ||||
| 	} | ||||
| 	m.Vocab = v | ||||
| 	return nil | ||||
| } | ||||
|  | ||||
| func (m *MixtralModel) WriteGGUF(ws io.WriteSeeker) error { | ||||
| 	kv := llm.KV{ | ||||
| 		"general.architecture":          "llama", | ||||
| 		"general.name":                  m.Name, | ||||
| 		"llama.block_count":             uint32(m.Params.HiddenLayers), | ||||
| 		"llama.context_length":          uint32(m.Params.ContextSize), | ||||
| 		"llama.embedding_length":        uint32(m.Params.HiddenSize), | ||||
| 		"llama.feed_forward_length":     uint32(m.Params.IntermediateSize), | ||||
| 		"llama.attention.head_count":    uint32(m.Params.AttentionHeads), | ||||
| 		"llama.attention.head_count_kv": uint32(m.Params.KeyValHeads), | ||||
|  | ||||
| 		"llama.rope.freq_base":                   float32(m.Params.RopeFrequencyBase), | ||||
| 		"llama.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS), | ||||
|  | ||||
| 		"llama.expert_count":      uint32(m.Params.Experts), | ||||
| 		"llama.expert_used_count": uint32(m.Params.ExpertsUsed), | ||||
|  | ||||
| 		"llama.vocab_size":           uint32(len(m.Vocab.Tokens)), | ||||
| 		"llama.rope.dimension_count": uint32(m.Params.HiddenSize / m.Params.AttentionHeads), | ||||
|  | ||||
| 		"general.file_type":    uint32(1), | ||||
| 		"tokenizer.ggml.model": "llama", | ||||
|  | ||||
| 		"tokenizer.ggml.tokens":     m.Vocab.Tokens, | ||||
| 		"tokenizer.ggml.scores":     m.Vocab.Scores, | ||||
| 		"tokenizer.ggml.token_type": m.Vocab.Types, | ||||
|  | ||||
| 		"tokenizer.ggml.bos_token_id":     uint32(m.Params.BoSTokenID), | ||||
| 		"tokenizer.ggml.eos_token_id":     uint32(m.Params.EoSTokenID), | ||||
| 		"tokenizer.ggml.unknown_token_id": uint32(0), | ||||
| 		"tokenizer.ggml.add_bos_token":    true, | ||||
| 		"tokenizer.ggml.add_eos_token":    false, | ||||
| 	} | ||||
|  | ||||
| 	return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors) | ||||
| } | ||||
|  | ||||
| func (m *MixtralModel) Repack(name string, data []float32, shape []uint64) ([]float32, error) { | ||||
| 	return llamaRepack(name, m.Params, data, shape) | ||||
| } | ||||
| @@ -1,85 +0,0 @@ | ||||
| package convert | ||||
|  | ||||
| import ( | ||||
| 	"errors" | ||||
| 	"io" | ||||
| 	"io/fs" | ||||
| 	"strings" | ||||
| ) | ||||
|  | ||||
| type Tensor interface { | ||||
| 	Name() string | ||||
| 	Shape() []uint64 | ||||
| 	Kind() uint32 | ||||
| 	SetRepacker(Repacker) | ||||
| 	WriteTo(io.Writer) (int64, error) | ||||
| 	Clone() Tensor | ||||
| } | ||||
|  | ||||
| type tensorBase struct { | ||||
| 	name     string | ||||
| 	shape    []uint64 | ||||
| 	repacker Repacker | ||||
| } | ||||
|  | ||||
| func (t tensorBase) Name() string { | ||||
| 	return t.name | ||||
| } | ||||
|  | ||||
| func (t tensorBase) Shape() []uint64 { | ||||
| 	return t.shape | ||||
| } | ||||
|  | ||||
| const ( | ||||
| 	tensorKindF32 uint32 = iota | ||||
| 	tensorKindF16 | ||||
| ) | ||||
|  | ||||
| func (t tensorBase) Kind() uint32 { | ||||
| 	if strings.HasSuffix(t.name, ".ffn_gate_inp.weight") || | ||||
| 		t.name == "token_types.weight" || | ||||
| 		t.name == "v.positional_embedding_vlm" { | ||||
| 		// these tensors are always F32 | ||||
| 		return 0 | ||||
| 	} | ||||
|  | ||||
| 	switch len(t.shape) { | ||||
| 	case 0: | ||||
| 		panic("invalid tensor shape") | ||||
| 	case 1: | ||||
| 		return tensorKindF32 | ||||
| 	default: | ||||
| 		return tensorKindF16 | ||||
| 	} | ||||
| } | ||||
|  | ||||
| func (t *tensorBase) SetRepacker(fn Repacker) { | ||||
| 	t.repacker = fn | ||||
| } | ||||
|  | ||||
| type Repacker func(string, []float32, []uint64) ([]float32, error) | ||||
|  | ||||
| func parseTensors(fsys fs.FS, replacer *strings.Replacer) ([]Tensor, error) { | ||||
| 	patterns := []struct { | ||||
| 		Pattern string | ||||
| 		Func    func(fs.FS, *strings.Replacer, ...string) ([]Tensor, error) | ||||
| 	}{ | ||||
| 		{"*.safetensors", parseSafetensors}, | ||||
| 		{"pytorch_model-*-of-*.bin", parseTorch}, | ||||
| 		{"pytorch_model.bin", parseTorch}, | ||||
| 		{"consolidated.*.pth", parseTorch}, | ||||
| 	} | ||||
|  | ||||
| 	for _, pattern := range patterns { | ||||
| 		matches, err := fs.Glob(fsys, pattern.Pattern) | ||||
| 		if err != nil { | ||||
| 			return nil, err | ||||
| 		} | ||||
|  | ||||
| 		if len(matches) > 0 { | ||||
| 			return pattern.Func(fsys, replacer, matches...) | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	return nil, errors.New("unknown tensor format") | ||||
| } | ||||
| @@ -1,178 +0,0 @@ | ||||
| package convert | ||||
|  | ||||
| import ( | ||||
| 	"bytes" | ||||
| 	"encoding/binary" | ||||
| 	"encoding/json" | ||||
| 	"errors" | ||||
| 	"fmt" | ||||
| 	"io" | ||||
| 	"io/fs" | ||||
| 	"slices" | ||||
| 	"strings" | ||||
|  | ||||
| 	"github.com/d4l3k/go-bfloat16" | ||||
| 	"github.com/x448/float16" | ||||
| 	"golang.org/x/exp/maps" | ||||
| ) | ||||
|  | ||||
| type safetensorMetadata struct { | ||||
| 	Type    string   `json:"dtype"` | ||||
| 	Shape   []uint64 `json:"shape"` | ||||
| 	Offsets []int64  `json:"data_offsets"` | ||||
| } | ||||
|  | ||||
| func parseSafetensors(fsys fs.FS, replacer *strings.Replacer, ps ...string) ([]Tensor, error) { | ||||
| 	var ts []Tensor | ||||
| 	for _, p := range ps { | ||||
| 		f, err := fsys.Open(p) | ||||
| 		if err != nil { | ||||
| 			return nil, err | ||||
| 		} | ||||
| 		defer f.Close() | ||||
|  | ||||
| 		var n int64 | ||||
| 		if err := binary.Read(f, binary.LittleEndian, &n); err != nil { | ||||
| 			return nil, err | ||||
| 		} | ||||
|  | ||||
| 		b := bytes.NewBuffer(make([]byte, 0, n)) | ||||
| 		if _, err = io.CopyN(b, f, n); err != nil { | ||||
| 			return nil, err | ||||
| 		} | ||||
|  | ||||
| 		var headers map[string]safetensorMetadata | ||||
| 		if err := json.NewDecoder(b).Decode(&headers); err != nil { | ||||
| 			return nil, err | ||||
| 		} | ||||
|  | ||||
| 		keys := maps.Keys(headers) | ||||
| 		slices.Sort(keys) | ||||
|  | ||||
| 		names := make(map[string]struct{}, len(keys)) | ||||
|  | ||||
| 		for _, key := range keys { | ||||
| 			if value := headers[key]; value.Type != "" { | ||||
| 				// bitsandbytes quantized models are unsupported | ||||
| 				if len(value.Shape) == 0 { | ||||
| 					return nil, errors.New("unsupported safetensors model") | ||||
| 				} | ||||
| 				ggufName := replacer.Replace(key) | ||||
| 				if _, ok := names[ggufName]; ok { | ||||
| 					return nil, fmt.Errorf("duplicate tensor name '%s' was found for this model", ggufName) | ||||
| 				} | ||||
| 				names[ggufName] = struct{}{} | ||||
| 				ts = append(ts, safetensor{ | ||||
| 					fs:     fsys, | ||||
| 					path:   p, | ||||
| 					dtype:  value.Type, | ||||
| 					offset: safetensorsPad(n, value.Offsets[0]), | ||||
| 					size:   safetensorsPad(n, value.Offsets[1]) - safetensorsPad(n, value.Offsets[0]), | ||||
| 					tensorBase: &tensorBase{ | ||||
| 						name:  ggufName, | ||||
| 						shape: value.Shape, | ||||
| 					}, | ||||
| 				}) | ||||
| 			} | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	return ts, nil | ||||
| } | ||||
|  | ||||
| // safetensorsPad returns the padded size of the safetensors file given a length n and offset s | ||||
| func safetensorsPad(n, offset int64) int64 { | ||||
| 	return 8 + n + offset | ||||
| } | ||||
|  | ||||
| type safetensor struct { | ||||
| 	fs     fs.FS | ||||
| 	path   string | ||||
| 	dtype  string | ||||
| 	offset int64 | ||||
| 	size   int64 | ||||
| 	*tensorBase | ||||
| } | ||||
|  | ||||
| func (st safetensor) Clone() Tensor { | ||||
| 	return &safetensor{ | ||||
| 		fs:     st.fs, | ||||
| 		path:   st.path, | ||||
| 		dtype:  st.dtype, | ||||
| 		offset: st.offset, | ||||
| 		size:   st.size, | ||||
| 		tensorBase: &tensorBase{ | ||||
| 			name:     st.name, | ||||
| 			repacker: st.repacker, | ||||
| 			shape:    slices.Clone(st.shape), | ||||
| 		}, | ||||
| 	} | ||||
| } | ||||
|  | ||||
| func (st safetensor) WriteTo(w io.Writer) (int64, error) { | ||||
| 	f, err := st.fs.Open(st.path) | ||||
| 	if err != nil { | ||||
| 		return 0, err | ||||
| 	} | ||||
| 	defer f.Close() | ||||
|  | ||||
| 	if seeker, ok := f.(io.Seeker); ok { | ||||
| 		if _, err := seeker.Seek(st.offset, io.SeekStart); err != nil { | ||||
| 			return 0, err | ||||
| 		} | ||||
| 	} else { | ||||
| 		if _, err := io.CopyN(io.Discard, f, st.offset); err != nil { | ||||
| 			return 0, err | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	var f32s []float32 | ||||
| 	switch st.dtype { | ||||
| 	case "F32": | ||||
| 		f32s = make([]float32, st.size/4) | ||||
| 		if err = binary.Read(f, binary.LittleEndian, f32s); err != nil { | ||||
| 			return 0, err | ||||
| 		} | ||||
| 	case "F16": | ||||
| 		u16s := make([]uint16, st.size/2) | ||||
| 		if err = binary.Read(f, binary.LittleEndian, u16s); err != nil { | ||||
| 			return 0, err | ||||
| 		} | ||||
|  | ||||
| 		f32s = make([]float32, len(u16s)) | ||||
| 		for i := range u16s { | ||||
| 			f32s[i] = float16.Frombits(u16s[i]).Float32() | ||||
| 		} | ||||
|  | ||||
| 	case "BF16": | ||||
| 		u8s := make([]uint8, st.size) | ||||
| 		if err = binary.Read(f, binary.LittleEndian, u8s); err != nil { | ||||
| 			return 0, err | ||||
| 		} | ||||
|  | ||||
| 		f32s = bfloat16.DecodeFloat32(u8s) | ||||
| 	default: | ||||
| 		return 0, fmt.Errorf("unknown data type: %s", st.dtype) | ||||
| 	} | ||||
|  | ||||
| 	if st.repacker != nil { | ||||
| 		f32s, err = st.repacker(st.Name(), f32s, st.Shape()) | ||||
| 		if err != nil { | ||||
| 			return 0, err | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	switch st.Kind() { | ||||
| 	case tensorKindF32: | ||||
| 		return 0, binary.Write(w, binary.LittleEndian, f32s) | ||||
| 	case tensorKindF16: | ||||
| 		f16s := make([]uint16, len(f32s)) | ||||
| 		for i := range f32s { | ||||
| 			f16s[i] = float16.Fromfloat32(f32s[i]).Bits() | ||||
| 		} | ||||
|  | ||||
| 		return 0, binary.Write(w, binary.LittleEndian, f16s) | ||||
| 	default: | ||||
| 		return 0, fmt.Errorf("unknown storage type: %d", st.Kind()) | ||||
| 	} | ||||
| } | ||||
| @@ -1,59 +0,0 @@ | ||||
| package convert | ||||
|  | ||||
| import ( | ||||
| 	"io" | ||||
| 	"io/fs" | ||||
| 	"strings" | ||||
|  | ||||
| 	"github.com/nlpodyssey/gopickle/pytorch" | ||||
| 	"github.com/nlpodyssey/gopickle/types" | ||||
| ) | ||||
|  | ||||
| func parseTorch(fsys fs.FS, replacer *strings.Replacer, ps ...string) ([]Tensor, error) { | ||||
| 	var ts []Tensor | ||||
| 	for _, p := range ps { | ||||
| 		pt, err := pytorch.Load(p) | ||||
| 		if err != nil { | ||||
| 			return nil, err | ||||
| 		} | ||||
|  | ||||
| 		for _, k := range pt.(*types.Dict).Keys() { | ||||
| 			t := pt.(*types.Dict).MustGet(k) | ||||
|  | ||||
| 			var shape []uint64 | ||||
| 			for dim := range t.(*pytorch.Tensor).Size { | ||||
| 				shape = append(shape, uint64(dim)) | ||||
| 			} | ||||
|  | ||||
| 			ts = append(ts, torch{ | ||||
| 				storage: t.(*pytorch.Tensor).Source, | ||||
| 				tensorBase: &tensorBase{ | ||||
| 					name:  replacer.Replace(k.(string)), | ||||
| 					shape: shape, | ||||
| 				}, | ||||
| 			}) | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	return ts, nil | ||||
| } | ||||
|  | ||||
| type torch struct { | ||||
| 	storage pytorch.StorageInterface | ||||
| 	*tensorBase | ||||
| } | ||||
|  | ||||
| func (t torch) Clone() Tensor { | ||||
| 	return torch{ | ||||
| 		storage: t.storage, | ||||
| 		tensorBase: &tensorBase{ | ||||
| 			name:     t.name, | ||||
| 			shape:    t.shape, | ||||
| 			repacker: t.repacker, | ||||
| 		}, | ||||
| 	} | ||||
| } | ||||
|  | ||||
| func (pt torch) WriteTo(w io.Writer) (int64, error) { | ||||
| 	return 0, nil | ||||
| } | ||||
							
								
								
									
										309
									
								
								convert/safetensors.go
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										309
									
								
								convert/safetensors.go
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,309 @@ | ||||
| package convert | ||||
|  | ||||
| import ( | ||||
| 	"bytes" | ||||
| 	"encoding/binary" | ||||
| 	"encoding/json" | ||||
| 	"fmt" | ||||
| 	"io" | ||||
| 	"os" | ||||
| 	"path/filepath" | ||||
| 	"regexp" | ||||
| 	"slices" | ||||
| 	"strings" | ||||
|  | ||||
| 	"github.com/d4l3k/go-bfloat16" | ||||
| 	"github.com/x448/float16" | ||||
|  | ||||
| 	"github.com/ollama/ollama/llm" | ||||
| ) | ||||
|  | ||||
| type safetensorWriterTo struct { | ||||
| 	t *llm.Tensor | ||||
|  | ||||
| 	params *Params | ||||
| 	bo     ByteOrder | ||||
|  | ||||
| 	filename string | ||||
| 	dtype    string | ||||
|  | ||||
| 	offset, size int64 | ||||
| 	repacker     func(string, []float32, []uint64) ([]float32, error) | ||||
| } | ||||
|  | ||||
| type safetensorMetadata struct { | ||||
| 	Type    string   `json:"dtype"` | ||||
| 	Shape   []uint64 `json:"shape"` | ||||
| 	Offsets []int64  `json:"data_offsets"` | ||||
| } | ||||
|  | ||||
| type SafetensorFormat struct{} | ||||
|  | ||||
| func (m *SafetensorFormat) GetTensors(dirpath string, params *Params) ([]llm.Tensor, error) { | ||||
| 	var tensors []llm.Tensor | ||||
| 	matches, err := filepath.Glob(filepath.Join(dirpath, "*.safetensors")) | ||||
| 	if err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	var offset uint64 | ||||
| 	for _, f := range matches { | ||||
| 		var t []llm.Tensor | ||||
| 		var err error | ||||
| 		t, offset, err = m.readTensors(f, offset, params) | ||||
| 		if err != nil { | ||||
| 			return nil, err | ||||
| 		} | ||||
|  | ||||
| 		tensors = append(tensors, t...) | ||||
| 	} | ||||
| 	return tensors, nil | ||||
| } | ||||
|  | ||||
| func (m *SafetensorFormat) readTensors(fn string, offset uint64, params *Params) ([]llm.Tensor, uint64, error) { | ||||
| 	f, err := os.Open(fn) | ||||
| 	if err != nil { | ||||
| 		return nil, 0, err | ||||
| 	} | ||||
| 	defer f.Close() | ||||
|  | ||||
| 	var n int64 | ||||
| 	if err := binary.Read(f, binary.LittleEndian, &n); err != nil { | ||||
| 		return nil, 0, err | ||||
| 	} | ||||
|  | ||||
| 	b := bytes.NewBuffer(make([]byte, 0, n)) | ||||
| 	if _, err = io.CopyN(b, f, n); err != nil { | ||||
| 		return nil, 0, err | ||||
| 	} | ||||
|  | ||||
| 	var headers map[string]safetensorMetadata | ||||
| 	if err := json.NewDecoder(b).Decode(&headers); err != nil { | ||||
| 		return nil, 0, err | ||||
| 	} | ||||
|  | ||||
| 	var keys []string | ||||
| 	for key := range headers { | ||||
| 		if !strings.HasSuffix(key, "self_attn.rotary_embd.inv_freq") { | ||||
| 			keys = append(keys, key) | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	slices.Sort(keys) | ||||
|  | ||||
| 	var tensors []llm.Tensor | ||||
| 	for _, key := range keys { | ||||
| 		value := headers[key] | ||||
|  | ||||
| 		var kind uint32 | ||||
| 		switch len(value.Shape) { | ||||
| 		case 0: | ||||
| 			// valuedata | ||||
| 			continue | ||||
| 		case 2: | ||||
| 			kind = 1 | ||||
| 		} | ||||
|  | ||||
| 		name, err := m.GetLayerName(key) | ||||
| 		if err != nil { | ||||
| 			return nil, 0, err | ||||
| 		} | ||||
|  | ||||
| 		shape := make([]uint64, len(value.Shape)) | ||||
| 		copy(shape, value.Shape) | ||||
|  | ||||
| 		pad := func(s int64) int64 { | ||||
| 			return 8 + n + s | ||||
| 		} | ||||
|  | ||||
| 		t := llm.Tensor{ | ||||
| 			Name:   name, | ||||
| 			Kind:   kind, | ||||
| 			Offset: offset, | ||||
| 			Shape:  shape[:], | ||||
| 		} | ||||
|  | ||||
| 		t.WriterTo = safetensorWriterTo{ | ||||
| 			t:        &t, | ||||
| 			params:   params, | ||||
| 			bo:       params.ByteOrder, | ||||
| 			filename: fn, | ||||
| 			dtype:    value.Type, | ||||
| 			offset:   pad(value.Offsets[0]), | ||||
| 			size:     pad(value.Offsets[1]) - pad(value.Offsets[0]), | ||||
| 		} | ||||
|  | ||||
| 		offset += t.Size() | ||||
| 		tensors = append(tensors, t) | ||||
| 	} | ||||
|  | ||||
| 	return tensors, offset, nil | ||||
| } | ||||
|  | ||||
| func (m *SafetensorFormat) GetParams(dirpath string) (*Params, error) { | ||||
| 	f, err := os.Open(filepath.Join(dirpath, "config.json")) | ||||
| 	if err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
| 	defer f.Close() | ||||
|  | ||||
| 	var params Params | ||||
|  | ||||
| 	if err := json.NewDecoder(f).Decode(¶ms); err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	params.ByteOrder = binary.LittleEndian | ||||
| 	return ¶ms, nil | ||||
| } | ||||
|  | ||||
| func (m *SafetensorFormat) GetLayerName(n string) (string, error) { | ||||
| 	directMap := map[string]string{ | ||||
| 		"model.embed_tokens.weight": "token_embd.weight", | ||||
| 		"lm_head.weight":            "output.weight", | ||||
| 		"model.norm.weight":         "output_norm.weight", | ||||
| 	} | ||||
|  | ||||
| 	tMap := map[string]string{ | ||||
| 		"model.layers.(\\d+).input_layernorm.weight":                    "blk.$1.attn_norm.weight", | ||||
| 		"model.layers.(\\d+).mlp.down_proj.weight":                      "blk.$1.ffn_down.weight", | ||||
| 		"model.layers.(\\d+).mlp.gate_proj.weight":                      "blk.$1.ffn_gate.weight", | ||||
| 		"model.layers.(\\d+).mlp.up_proj.weight":                        "blk.$1.ffn_up.weight", | ||||
| 		"model.layers.(\\d+).post_attention_layernorm.weight":           "blk.$1.ffn_norm.weight", | ||||
| 		"model.layers.(\\d+).self_attn.k_proj.weight":                   "blk.$1.attn_k.weight", | ||||
| 		"model.layers.(\\d+).self_attn.o_proj.weight":                   "blk.$1.attn_output.weight", | ||||
| 		"model.layers.(\\d+).self_attn.q_proj.weight":                   "blk.$1.attn_q.weight", | ||||
| 		"model.layers.(\\d+).self_attn.v_proj.weight":                   "blk.$1.attn_v.weight", | ||||
| 		"model.layers.(\\d+).block_sparse_moe.gate.weight":              "blk.$1.ffn_gate_inp.weight", | ||||
| 		"model.layers.(\\d+).block_sparse_moe.experts.(\\d+).w1.weight": "blk.$1.ffn_gate.$2.weight", | ||||
| 		"model.layers.(\\d+).block_sparse_moe.experts.(\\d+).w2.weight": "blk.$1.ffn_down.$2.weight", | ||||
| 		"model.layers.(\\d+).block_sparse_moe.experts.(\\d+).w3.weight": "blk.$1.ffn_up.$2.weight", | ||||
| 	} | ||||
|  | ||||
| 	v, ok := directMap[n] | ||||
| 	if ok { | ||||
| 		return v, nil | ||||
| 	} | ||||
|  | ||||
| 	// quick hack to rename the layers to gguf format | ||||
| 	for k, v := range tMap { | ||||
| 		re := regexp.MustCompile(k) | ||||
| 		newName := re.ReplaceAllString(n, v) | ||||
| 		if newName != n { | ||||
| 			return newName, nil | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	return "", fmt.Errorf("couldn't find a layer name for '%s'", n) | ||||
| } | ||||
|  | ||||
| func (r safetensorWriterTo) WriteTo(w io.Writer) (n int64, err error) { | ||||
| 	f, err := os.Open(r.filename) | ||||
| 	if err != nil { | ||||
| 		return 0, err | ||||
| 	} | ||||
| 	defer f.Close() | ||||
|  | ||||
| 	if _, err = f.Seek(r.offset, io.SeekStart); err != nil { | ||||
| 		return 0, err | ||||
| 	} | ||||
|  | ||||
| 	var f32s []float32 | ||||
| 	switch r.dtype { | ||||
| 	case "F32": | ||||
| 		f32s = make([]float32, r.size/4) | ||||
| 		if err = binary.Read(f, r.bo, f32s); err != nil { | ||||
| 			return 0, err | ||||
| 		} | ||||
| 	case "F16": | ||||
| 		u16s := make([]uint16, r.size/2) | ||||
| 		if err = binary.Read(f, r.bo, u16s); err != nil { | ||||
| 			return 0, err | ||||
| 		} | ||||
|  | ||||
| 		for _, b := range u16s { | ||||
| 			f32s = append(f32s, float16.Frombits(b).Float32()) | ||||
| 		} | ||||
|  | ||||
| 	case "BF16": | ||||
| 		u8s := make([]uint8, r.size) | ||||
| 		if err = binary.Read(f, r.bo, u8s); err != nil { | ||||
| 			return 0, err | ||||
| 		} | ||||
|  | ||||
| 		f32s = bfloat16.DecodeFloat32(u8s) | ||||
| 	default: | ||||
| 		return 0, fmt.Errorf("unknown data type: %s", r.dtype) | ||||
| 	} | ||||
|  | ||||
| 	if r.repacker != nil { | ||||
| 		f32s, err = r.repacker(r.t.Name, f32s, r.t.Shape) | ||||
| 		if err != nil { | ||||
| 			return 0, err | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	switch r.t.Kind { | ||||
| 	case 0: | ||||
| 		return 0, binary.Write(w, r.bo, f32s) | ||||
| 	case 1: | ||||
| 		f16s := make([]uint16, len(f32s)) | ||||
| 		for i := range f32s { | ||||
| 			f16s[i] = float16.Fromfloat32(f32s[i]).Bits() | ||||
| 		} | ||||
|  | ||||
| 		return 0, binary.Write(w, r.bo, f16s) | ||||
| 	default: | ||||
| 		return 0, fmt.Errorf("unknown storage type: %d", r.t.Kind) | ||||
| 	} | ||||
| } | ||||
|  | ||||
| func (m *SafetensorFormat) GetModelArch(name, dirPath string, params *Params) (ModelArch, error) { | ||||
| 	switch len(params.Architectures) { | ||||
| 	case 0: | ||||
| 		return nil, fmt.Errorf("No architecture specified to convert") | ||||
| 	case 1: | ||||
| 		switch params.Architectures[0] { | ||||
| 		case "LlamaForCausalLM": | ||||
| 			return &LlamaModel{ | ||||
| 				ModelData{ | ||||
| 					Name:   name, | ||||
| 					Path:   dirPath, | ||||
| 					Params: params, | ||||
| 					Format: m, | ||||
| 				}, | ||||
| 			}, nil | ||||
| 		case "MistralForCausalLM": | ||||
| 			return &MistralModel{ | ||||
| 				ModelData{ | ||||
| 					Name:   name, | ||||
| 					Path:   dirPath, | ||||
| 					Params: params, | ||||
| 					Format: m, | ||||
| 				}, | ||||
| 			}, nil | ||||
| 		case "MixtralForCausalLM": | ||||
| 			return &MixtralModel{ | ||||
| 				ModelData{ | ||||
| 					Name:   name, | ||||
| 					Path:   dirPath, | ||||
| 					Params: params, | ||||
| 					Format: m, | ||||
| 				}, | ||||
| 			}, nil | ||||
| 		case "GemmaForCausalLM": | ||||
| 			return &GemmaModel{ | ||||
| 				ModelData{ | ||||
| 					Name:   name, | ||||
| 					Path:   dirPath, | ||||
| 					Params: params, | ||||
| 					Format: m, | ||||
| 				}, | ||||
| 			}, nil | ||||
| 		default: | ||||
| 			return nil, fmt.Errorf("Models based on '%s' are not yet supported", params.Architectures[0]) | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	return nil, fmt.Errorf("Unknown error") | ||||
| } | ||||
| @@ -331,7 +331,7 @@ type TrainerSpec struct { | ||||
| 	// Reserved special meta tokens. | ||||
| 	// * -1 is not used. | ||||
| 	// * unk_id must not be -1. | ||||
| 	// Id must start with 0 and be contiguous. | ||||
| 	// Id must starts with 0 and be contigous. | ||||
| 	UnkId    *int32  `protobuf:"varint,40,opt,name=unk_id,json=unkId,def=0" json:"unk_id,omitempty"`  // <unk> | ||||
| 	BosId    *int32  `protobuf:"varint,41,opt,name=bos_id,json=bosId,def=1" json:"bos_id,omitempty"`  // <s> | ||||
| 	EosId    *int32  `protobuf:"varint,42,opt,name=eos_id,json=eosId,def=2" json:"eos_id,omitempty"`  // </s> | ||||
| @@ -1360,7 +1360,7 @@ func file_sentencepiece_model_proto_rawDescGZIP() []byte { | ||||
|  | ||||
| var file_sentencepiece_model_proto_enumTypes = make([]protoimpl.EnumInfo, 2) | ||||
| var file_sentencepiece_model_proto_msgTypes = make([]protoimpl.MessageInfo, 6) | ||||
| var file_sentencepiece_model_proto_goTypes = []any{ | ||||
| var file_sentencepiece_model_proto_goTypes = []interface{}{ | ||||
| 	(TrainerSpec_ModelType)(0),         // 0: sentencepiece.TrainerSpec.ModelType | ||||
| 	(ModelProto_SentencePiece_Type)(0), // 1: sentencepiece.ModelProto.SentencePiece.Type | ||||
| 	(*TrainerSpec)(nil),                // 2: sentencepiece.TrainerSpec | ||||
| @@ -1392,7 +1392,7 @@ func file_sentencepiece_model_proto_init() { | ||||
| 		return | ||||
| 	} | ||||
| 	if !protoimpl.UnsafeEnabled { | ||||
| 		file_sentencepiece_model_proto_msgTypes[0].Exporter = func(v any, i int) any { | ||||
| 		file_sentencepiece_model_proto_msgTypes[0].Exporter = func(v interface{}, i int) interface{} { | ||||
| 			switch v := v.(*TrainerSpec); i { | ||||
| 			case 0: | ||||
| 				return &v.state | ||||
| @@ -1406,7 +1406,7 @@ func file_sentencepiece_model_proto_init() { | ||||
| 				return nil | ||||
| 			} | ||||
| 		} | ||||
| 		file_sentencepiece_model_proto_msgTypes[1].Exporter = func(v any, i int) any { | ||||
| 		file_sentencepiece_model_proto_msgTypes[1].Exporter = func(v interface{}, i int) interface{} { | ||||
| 			switch v := v.(*NormalizerSpec); i { | ||||
| 			case 0: | ||||
| 				return &v.state | ||||
| @@ -1420,7 +1420,7 @@ func file_sentencepiece_model_proto_init() { | ||||
| 				return nil | ||||
| 			} | ||||
| 		} | ||||
| 		file_sentencepiece_model_proto_msgTypes[2].Exporter = func(v any, i int) any { | ||||
| 		file_sentencepiece_model_proto_msgTypes[2].Exporter = func(v interface{}, i int) interface{} { | ||||
| 			switch v := v.(*SelfTestData); i { | ||||
| 			case 0: | ||||
| 				return &v.state | ||||
| @@ -1434,7 +1434,7 @@ func file_sentencepiece_model_proto_init() { | ||||
| 				return nil | ||||
| 			} | ||||
| 		} | ||||
| 		file_sentencepiece_model_proto_msgTypes[3].Exporter = func(v any, i int) any { | ||||
| 		file_sentencepiece_model_proto_msgTypes[3].Exporter = func(v interface{}, i int) interface{} { | ||||
| 			switch v := v.(*ModelProto); i { | ||||
| 			case 0: | ||||
| 				return &v.state | ||||
| @@ -1448,7 +1448,7 @@ func file_sentencepiece_model_proto_init() { | ||||
| 				return nil | ||||
| 			} | ||||
| 		} | ||||
| 		file_sentencepiece_model_proto_msgTypes[4].Exporter = func(v any, i int) any { | ||||
| 		file_sentencepiece_model_proto_msgTypes[4].Exporter = func(v interface{}, i int) interface{} { | ||||
| 			switch v := v.(*SelfTestData_Sample); i { | ||||
| 			case 0: | ||||
| 				return &v.state | ||||
| @@ -1460,7 +1460,7 @@ func file_sentencepiece_model_proto_init() { | ||||
| 				return nil | ||||
| 			} | ||||
| 		} | ||||
| 		file_sentencepiece_model_proto_msgTypes[5].Exporter = func(v any, i int) any { | ||||
| 		file_sentencepiece_model_proto_msgTypes[5].Exporter = func(v interface{}, i int) interface{} { | ||||
| 			switch v := v.(*ModelProto_SentencePiece); i { | ||||
| 			case 0: | ||||
| 				return &v.state | ||||
|   | ||||
| @@ -213,7 +213,7 @@ message TrainerSpec { | ||||
|   // Reserved special meta tokens. | ||||
|   // * -1 is not used. | ||||
|   // * unk_id must not be -1. | ||||
|   // Id must start with 0 and be contiguous. | ||||
|   // Id must starts with 0 and be contigous. | ||||
|   optional int32 unk_id = 40 [default = 0];   // <unk> | ||||
|   optional int32 bos_id = 41 [default = 1];   // <s> | ||||
|   optional int32 eos_id = 42 [default = 2];   // </s> | ||||
|   | ||||
							
								
								
									
										313
									
								
								convert/testdata/Meta-Llama-3-8B-Instruct.json
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										313
									
								
								convert/testdata/Meta-Llama-3-8B-Instruct.json
									
									
									
									
										vendored
									
									
								
							| @@ -1,313 +0,0 @@ | ||||
| { | ||||
|   "general.architecture": "llama", | ||||
|   "general.file_type": "1", | ||||
|   "general.quantization_version": "2", | ||||
|   "llama.block_count": "32", | ||||
|   "llama.context_length": "8192", | ||||
|   "llama.embedding_length": "4096", | ||||
|   "llama.feed_forward_length": "14336", | ||||
|   "llama.rope.dimension_count": "128", | ||||
|   "llama.rope.freq_base": "500000", | ||||
|   "llama.vocab_size": "128256", | ||||
|   "llama.attention.head_count": "32", | ||||
|   "llama.attention.head_count_kv": "8", | ||||
|   "llama.attention.layer_norm_rms_epsilon": "1e-05", | ||||
|   "tokenizer.ggml.model": "gpt2", | ||||
|   "tokenizer.ggml.pre": "llama-bpe", | ||||
|   "tokenizer.ggml.bos_token_id": "128000", | ||||
|   "tokenizer.ggml.eos_token_id": "128009", | ||||
|   "tokenizer.ggml.merges": "d0cbac1fcc9dcf03724b8db5c9bfb593ae1cf68fb9bc72eb1d15274dcbbf618b", | ||||
|   "tokenizer.ggml.token_type": "d70a88809fd7da6f1f028622685cd64268a7a922c5d343c96f25b66327358978", | ||||
|   "tokenizer.ggml.tokens": "765b529dbcbc42dd202ce657341c63807b51f3b07e09898f6aa6196326865d5a", | ||||
|   "token_embd.weight": "b53102a11d9064bbd404833e3464b1b13e08ce73300b442312cccde2f19b2698", | ||||
|   "blk.0.attn_norm.weight": "7318df3cca9e8d153ff0a503026a1265e63d20b2a8c1dd7a2769585082b5d1ee", | ||||
|   "blk.0.ffn_down.weight": "b950806a1fc722c9fad7fd0b20c3c0a7fb50f14395e1e7663a590bfd62e20900", | ||||
|   "blk.0.ffn_gate.weight": "e73e580af6d4f08e060a74a3c25efdf5d3bed99e183d95a5a85ae859014839fd", | ||||
|   "blk.0.ffn_up.weight": "c8158af679ef99746da1befb67eebb19489e0bbe6ce7d97e13e348508244e516", | ||||
|   "blk.0.ffn_norm.weight": "7ec69c3c31e95e49a3359003b0033f6b9e85561a3e3fd83e7476661ecdd756bb", | ||||
|   "blk.0.attn_k.weight": "2732303257bac969b4964e0e32ec08b5a7f5c031bb02bf6ac4467b3ea0ebcf1e", | ||||
|   "blk.0.attn_output.weight": "ecda1d43b4ccc91cd5b366d7e7a275353990ac78561a07c83d9c77031aba12dc", | ||||
|   "blk.0.attn_q.weight": "569b1f5faf92b6f00910cf7effb2d5862f91038ce5c3b0019fc10e5d79fbd5e1", | ||||
|   "blk.0.attn_v.weight": "aa8416c5ef7e32fb54a1f20d6ac651656845d4af240564b397c39bd83e06e3b8", | ||||
|   "blk.1.attn_norm.weight": "03327e02862908c2a44b2f52decdb924bf4201f400b46f8037a9cb2e1d7a61ff", | ||||
|   "blk.1.ffn_down.weight": "5a83a87603f38c99f8e1e370a2d5f967bb45ac51d881a609304a7811027321e0", | ||||
|   "blk.1.ffn_gate.weight": "31da0572c79e655186c721c231376f85e56cdcc6257c28d08c8c5b40d5c22b40", | ||||
|   "blk.1.ffn_up.weight": "e0c811d64ca155c8de10a868e72015d43888834804614ee1aa2953129ffbc90f", | ||||
|   "blk.1.ffn_norm.weight": "5861f313d6137d6f0f904d423df47fffc6069e224ff746e1b637ac9c7f0af862", | ||||
|   "blk.1.attn_k.weight": "5fbbec0acca6457b9416ebdcd90e526885d0224537b7628f6be376a7f275313d", | ||||
|   "blk.1.attn_output.weight": "b237c9763fa3f75166a6f70b70f1566e77d0d89dfa164ed1b3137393e90575c3", | ||||
|   "blk.1.attn_q.weight": "c0a9cf4a98b4882b16f3eb2b49d933793dcc5357abb246fd3fe3134ed2b12e1c", | ||||
|   "blk.1.attn_v.weight": "96867111727200cac1af7865189dd41fd62b47584e5e5f33a91f1d34509cbd40", | ||||
|   "blk.2.attn_norm.weight": "f392f8a88ee3a95b1cc19c40dd4ef66317037b0faaa1800f610779e129ee0539", | ||||
|   "blk.2.ffn_down.weight": "73823eef46632aedcc8c1cb08a736b6aa97ca97842cd1fdfc5567d8dec459662", | ||||
|   "blk.2.ffn_gate.weight": "f4909ae19fc3848b00bb8b9050122e74f8e903b89e22937036f4cc9fea20a718", | ||||
|   "blk.2.ffn_up.weight": "16f4904a3d814ea68f00519724fc4943e48444a84c786bda39aa5efc298a7d84", | ||||
|   "blk.2.ffn_norm.weight": "e3ccdf56e75cb969f6f69c39caf6daf7c4e70e89e25df0f4d2e4bc60e159aafe", | ||||
|   "blk.2.attn_k.weight": "c3beb1e0a11bcf007ef0f0d8f6bdd3082d8b29090cd29597846b5d51e308a8e5", | ||||
|   "blk.2.attn_output.weight": "bb9f66c32cff51154fea92933c2cd62549236f8cb1a767f9ef28d3f99809b343", | ||||
|   "blk.2.attn_q.weight": "8eba394132eef2a05c5a92d62d2376000f7948448d7a2dc74e6b608203add20d", | ||||
|   "blk.2.attn_v.weight": "88f61f77c53567c617db3eef8f30621109a750e679f6784f7911739bd42c2f02", | ||||
|   "blk.3.attn_norm.weight": "7b996675b7ca75fa24107b3ebe0788653ede0f49ac83b8659d71ff54d591f81a", | ||||
|   "blk.3.ffn_down.weight": "2cb332bc05e4821962fdc9dcbcc7cc12630f32117711b687d18fb53c0bc4fbf4", | ||||
|   "blk.3.ffn_gate.weight": "340b387c7f208c8f0a6db904ef8d87c1e84b7d6ad57177abd32d86c8d18b760f", | ||||
|   "blk.3.ffn_up.weight": "07484433f8a7ee061c55aa0de2ecc009f769b0617c9c0ec096e9bb2946df9f0e", | ||||
|   "blk.3.ffn_norm.weight": "4f1a4ade36b393af341240bc894a2aab09cff7e4d56dc4658445deb107f9371b", | ||||
|   "blk.3.attn_k.weight": "483dcd96acb4528df84b9842970994630dbd82b8715ace394aa8b39fcf8d6291", | ||||
|   "blk.3.attn_output.weight": "beaff0810687923585642ee11d929cbf3b43dc6f87f30ddb552c222ab57bdbb3", | ||||
|   "blk.3.attn_q.weight": "0739355002f6fce520863add697e0ff25fc88215322dc3f993be7bb68dcce7e8", | ||||
|   "blk.3.attn_v.weight": "c216d17b6d90ee3e07f82598b8161fae34de2f392dbb0f745b682b578c324767", | ||||
|   "blk.4.attn_norm.weight": "91ab405bc4ba15bf63af233f266aa43aaab43789a9e6596e14a357c2ac7df217", | ||||
|   "blk.4.ffn_down.weight": "620f34ee75cdc73aecb8949af5fbb0d2437fd81422b6d8eb7acfc52addb9fc68", | ||||
|   "blk.4.ffn_gate.weight": "f6feec7bc9acadf35ec22532f8998d8e50f31afedabb19263590dcf8b9a92eee", | ||||
|   "blk.4.ffn_up.weight": "4a72af7cd28fd07b038f6cc4406678d120517280236ea85d9e76eff40ab2cc22", | ||||
|   "blk.4.ffn_norm.weight": "1805b37b44d5d682bdbd2fadeafb763ee001617d7870848cc487079ee34b21f9", | ||||
|   "blk.4.attn_k.weight": "a1e4f9d97cdf4c1b0d177cf00c4e32d1be30c1984a239b3c9bd73f8848888853", | ||||
|   "blk.4.attn_output.weight": "a1547e2497c423b0aff0eee71d9300d6fdf4e4986679418b6e637b69a9a6720b", | ||||
|   "blk.4.attn_q.weight": "0677483a9264ea6803d03d304d87a54632242cb516e8b76b6e3e8284c2f4de04", | ||||
|   "blk.4.attn_v.weight": "02691ba3af344fcc1969428ab0df811ac94aaa2fd91b0dc4ec1ac0a58806980d", | ||||
|   "blk.5.attn_norm.weight": "ba9c028335e5c895b87a5bd1448ca429248f9746ed97bdcb8679923206117156", | ||||
|   "blk.5.ffn_down.weight": "ccfdc9006acad1940a6bc05042a3947f1066acd671e0bb53b7684e9eea9ef5c9", | ||||
|   "blk.5.ffn_gate.weight": "623157679f1e742ccc3807c0b0153ddc8450104de75ec62f1370ec3807c09cf4", | ||||
|   "blk.5.ffn_up.weight": "05748804c65091f963729b58b085f58351891cac8a2861f5eae26b06aa60b2a0", | ||||
|   "blk.5.ffn_norm.weight": "84bae55af2efc8b8429f09056c8c04990c466dae31cb3f9356038b8957f1b406", | ||||
|   "blk.5.attn_k.weight": "8c766180c726b037d587fc52371de6e3307140c52409011609d1225624b6a3eb", | ||||
|   "blk.5.attn_output.weight": "490b582b3b1dc151ae55aee8b6743dad6c01fb49e43afefb6e68394b74be3d73", | ||||
|   "blk.5.attn_q.weight": "6f7b8ca4d9025ec836a44bbcca46be30c66b471a9fb62943ddff8288b3731409", | ||||
|   "blk.5.attn_v.weight": "9f70df3ba00c9e723214b3da83ff435a2163fff5915f75515c9664c05c866c27", | ||||
|   "blk.6.attn_norm.weight": "1a4a66613a682df6f061fc7c4d986f9f7e9175b62f0c42fc1ef31db536bd5942", | ||||
|   "blk.6.ffn_down.weight": "c56f25e4e49b443dbc82d88311ee63bc1f5002cc67e52f4787fd5f003aedeac1", | ||||
|   "blk.6.ffn_gate.weight": "31a5cf1aa9b831a81588d508550f51fc425f9517c43254d4ef7096d38029cf04", | ||||
|   "blk.6.ffn_up.weight": "ce135f3a1163e0c9297a615bdbe68a67ead21edce8debbfa9f6e15e6af8d4c94", | ||||
|   "blk.6.ffn_norm.weight": "4e328ce0648c94e732bc40501858ef6262ad1161e2e407b0cdcf4813fa9d45d8", | ||||
|   "blk.6.attn_k.weight": "1eb1c4c9f9c4c7ff7f5429075e0dc6a7782bed55109fa88df209a817dd8ef960", | ||||
|   "blk.6.attn_output.weight": "3d32986b56873b88655ee1edabdd413fdd9ab18b82108c9ce90bdbc2d3a6f3a3", | ||||
|   "blk.6.attn_q.weight": "8432f583b3a2809c99c393f9beb077cb0534dd5d247c17108f2986cadc6651f6", | ||||
|   "blk.6.attn_v.weight": "5045381513815bb91839dbac8335ffe49bbc7b0008369de7ea97eb676c5e2b36", | ||||
|   "blk.7.attn_norm.weight": "3dabd003638ec2499bfc8a48c49eef34276caab4fe76894eb963207848c2fdaf", | ||||
|   "blk.7.ffn_down.weight": "194fae858608bdcffd235be59ab119d0b91c8549f864ea06dae69249e099935f", | ||||
|   "blk.7.ffn_gate.weight": "00b24c29c30246892bce0791be804a89701d4c1332777e0bcdad5d9d5666604f", | ||||
|   "blk.7.ffn_up.weight": "44d7082a5280080c90cef9e19d410391de34f212ca0736377769b8ddd0c82d5e", | ||||
|   "blk.7.ffn_norm.weight": "21fe8a7fd6911c64e0d15a788b3b4cb6d71dd6ec51de65f760ee89afbb6ae53e", | ||||
|   "blk.7.attn_k.weight": "57a149eec5f6744a9526cd3925ac073f9d12db0fbcb5afe042ef4dc846458c44", | ||||
|   "blk.7.attn_output.weight": "0e9c28a3e81a2880251ce5eed77bcb8be8aaa1a51c9cb6de820b47ed83849fc2", | ||||
|   "blk.7.attn_q.weight": "15ee75263ee4e2a43eb322bc159ae004bb7d77e3a7e63ee4ddab700430693fff", | ||||
|   "blk.7.attn_v.weight": "440aa970bba4bff429fd7b7b1de21f2ad14fb2952b776cfa4acee68d7c6e9b8f", | ||||
|   "blk.8.attn_norm.weight": "af5b44825633c42c1ae964c82bb2be6a242d3a751f0a91f1bae4f593e8f5b6ec", | ||||
|   "blk.8.ffn_down.weight": "b11c14c76adca94fa200496dd2c10743becb23aab6642443ef1ae6d8710edbc1", | ||||
|   "blk.8.ffn_gate.weight": "7bb03d3325bf8637ae2fa1296b0651356515578d46a7c5ca65c7a923d7de27bc", | ||||
|   "blk.8.ffn_up.weight": "b956ef0a0669b5a9c9bf3a8da2d1c24f52d331cfb7354f6d7c51bd65be355e30", | ||||
|   "blk.8.ffn_norm.weight": "c78c3d748302edfef76f71ea5cb2055c94352122eee8b9b1173779a1814d224e", | ||||
|   "blk.8.attn_k.weight": "c0fba6a596ed9c1c32a7055c31a935a8b31e42b77282ee47c1f03ee3bde736b5", | ||||
|   "blk.8.attn_output.weight": "83cf9947080c5d8d571f04a842bc3dcfe7bbb0195fb25b346e22635e8649f2d4", | ||||
|   "blk.8.attn_q.weight": "47409350a576b333d97b7c877d69f47f46df504f3765102dfc0be9e521c7ecd6", | ||||
|   "blk.8.attn_v.weight": "1999dff91404fdcf1ecb34d9eaaaa9244ec7658a74dec8feb7cfd1fddba0347e", | ||||
|   "blk.9.attn_norm.weight": "1e6e29d5c3889ab4e1b0a5b9998cba60179b0f1fca133515df49cbc19d092593", | ||||
|   "blk.9.ffn_down.weight": "acb898a6490adff592e10b4c62d70edc5941661ee6da44658500e9205357c8e9", | ||||
|   "blk.9.ffn_gate.weight": "4cff63013593aadc3ffbaaa6ed70ffdba1224cd43c3644bf6f4162b5ac1ab542", | ||||
|   "blk.9.ffn_up.weight": "f985b5a2d6cf4fe32c7256301c3c89b8ad22b59e516342c52da42d8110766a4e", | ||||
|   "blk.9.ffn_norm.weight": "0d659c538bc6b21ed0018f107ab674a7424a00a42946c80e07208b479b21918f", | ||||
|   "blk.9.attn_k.weight": "f67611d888780d1b38c1c146b361c65310c8183bdf64fd73e2259985c6e8517f", | ||||
|   "blk.9.attn_output.weight": "f12ca1fa62a02ddc3f77f798bfb5707e0c50bf18ee0eaa67025521a98355f26b", | ||||
|   "blk.9.attn_q.weight": "3865185f4361a645b086ad47b72904c095313fb1c624e511647bf1a7dfc1c476", | ||||
|   "blk.9.attn_v.weight": "92125bbfed63544ab56052bd1e4aa453bbf34c795249ee54cde54907c8c6d1d3", | ||||
|   "blk.10.attn_norm.weight": "5d6bfbe545bcc2fcb2fc75c68f64b1f4c918badaf53e0156fe2d88aa977b2f94", | ||||
|   "blk.10.ffn_down.weight": "1dd9da8b0d2696ab5531fbca8a29c7d67567620a9d3e5fc2a19ec5d7e4c6cc8a", | ||||
|   "blk.10.ffn_gate.weight": "6e55e7f014edaebda0ac6819a426221d3b025c27312a2e18cc5806f31e3db226", | ||||
|   "blk.10.ffn_up.weight": "d80dde54af5db51241345ee8d64c1972608644f4deeac1e8195dc423bf27474a", | ||||
|   "blk.10.ffn_norm.weight": "f6ca65951d58ae3379eee8247bec34ebd0db05674cc9295593573841b8a55df3", | ||||
|   "blk.10.attn_k.weight": "b58e350bd6b49aba0fba4e4dd6865de3a2a0651ab865dbf2419b627b53ffc187", | ||||
|   "blk.10.attn_output.weight": "6b26a986e12fe66ec286a21d7d5af5eaa1bfe6f2bf502165d270e4497235a54a", | ||||
|   "blk.10.attn_q.weight": "3440e0e5b7e0d1e426424ae5a33f4e057be623249e9035ea12e57dbe5d3893c4", | ||||
|   "blk.10.attn_v.weight": "ebfadcfe14bcd6dee933053df0a67e12e7a196d5cc45728c1ffb2a2daedd5ca2", | ||||
|   "blk.11.attn_norm.weight": "3ed057b9576cd2de84507ef64c7646dc478c651efca4c2024cbe91a4f3fbf0bc", | ||||
|   "blk.11.ffn_down.weight": "8ff1c2487d22f5c499761e4eb721418f141f960160d0bab779595a34e4d68898", | ||||
|   "blk.11.ffn_gate.weight": "9c74e4507c7e45bf39b7cc7402198cd1dd77e3fff8c625b0413acaeb16efeb9f", | ||||
|   "blk.11.ffn_up.weight": "4367158007161d29939e00a322bb6776016e43f648a94f9b08a96a477aae75be", | ||||
|   "blk.11.ffn_norm.weight": "1cc0288c1491072121f4c9a0af20be0e13af49895696a3320e4fcac608768de3", | ||||
|   "blk.11.attn_k.weight": "066f5b3c144fce1366835e1ebf376f768b333b8ae29f5b478c42d1d0c809c855", | ||||
|   "blk.11.attn_output.weight": "e0d9f3d3f2c54aed59c02713ea4fb562799ddbacbe67ca3998dfc887bc44e47b", | ||||
|   "blk.11.attn_q.weight": "28d3ecc8a88cb3815e89a7f7a7d043da7a71f702b337a126e4d3a2ac1cd6370f", | ||||
|   "blk.11.attn_v.weight": "7c5cdef10ee73bca0a3b9f6ece5f0a0155664e0ce3d8de90ccdccfab5545e5e7", | ||||
|   "blk.12.attn_norm.weight": "973b133301a1af760cd7b3a7955371ea0a750808b442deb6adaf7b98482bd0c6", | ||||
|   "blk.12.ffn_down.weight": "d6c87b4b4ca03f75546ddd6a9e7fca720585a309188723c1ace8122438d4b200", | ||||
|   "blk.12.ffn_gate.weight": "2189a6e0cab1540bd05d6089b922aa8fd694be51255654933c165f302a0c955f", | ||||
|   "blk.12.ffn_up.weight": "5affbec19b58d092b9305721e3552481fe2eff51269ea3ed91cda3b9ef84d4df", | ||||
|   "blk.12.ffn_norm.weight": "f650fd42a34e950f758b4a130e7b8b1a712b1dcbede0291bb8edde47aaed0ef6", | ||||
|   "blk.12.attn_k.weight": "59b1e86f10450a7cc188beefc0856d2dcf44e8d7fdd9cd8859c30ec1ebaf24b6", | ||||
|   "blk.12.attn_output.weight": "446b0d36b2f66bd72a2323f4f4e9d85a0f621e9a58872e89a27248d6b1123238", | ||||
|   "blk.12.attn_q.weight": "3ed6bfd39f040301ed99fad882d3e569769d594259f9948445bef0e44ec881fb", | ||||
|   "blk.12.attn_v.weight": "e73652cd5d0029b1931be3ba9d82508f6696dce5a29d085476a54fb7a2ddbabc", | ||||
|   "blk.13.attn_norm.weight": "491b85278c0bd67bd31b9b8a9720902c244bd067e53a4a03641b7c0994782e82", | ||||
|   "blk.13.ffn_down.weight": "ad71cc248a85e9ced49307a24a9bfae01d387e979a7689c82ff59998e09741f3", | ||||
|   "blk.13.ffn_gate.weight": "0a55984d53971fab97575ee0ef5882013be7fdecfa76e3fbebb5dc85a07a14d4", | ||||
|   "blk.13.ffn_up.weight": "378b697b35e2e53c0de98e8e29b73d42ae3ec112ec16129aa5997a9e2f3b5943", | ||||
|   "blk.13.ffn_norm.weight": "f8aff2f69ab286210fad45a62b03f8d10b38f96a420d7baadf6b95d7b0b0bcd2", | ||||
|   "blk.13.attn_k.weight": "25ceb841afb1034831bea7f4d6a6c578def2ce4d4c412c780ef147dc9a598360", | ||||
|   "blk.13.attn_output.weight": "a242b322889c6bdaa14b67a7bab593db39df8eea3721638ef639abbb74d482e3", | ||||
|   "blk.13.attn_q.weight": "d80be9945a369439e835c55cfb0e97828b8a66bb7ced534d9059c92487bf20a9", | ||||
|   "blk.13.attn_v.weight": "ac33274cf9b67979d9ecdc967a55175afe0c9c4aeeff6391433cd9840c818706", | ||||
|   "blk.14.attn_norm.weight": "12a1e1091de5b2da12c9e7c0b1c8e6f09ce2a749733cf7d5240445b8e21cd093", | ||||
|   "blk.14.ffn_down.weight": "cfd41965c88266e32bc2dcdadda512499c35519e8686fefb9a7f249ab2291eb5", | ||||
|   "blk.14.ffn_gate.weight": "8dcfe774f07a095c7c6cf0a901c9df70d938bad7b5ba347fbc8f694e7603c0d1", | ||||
|   "blk.14.ffn_up.weight": "c7995577fe4a72ea0fb17c4a7b6b87b959072bbfdd5edacc6c367d43465809ae", | ||||
|   "blk.14.ffn_norm.weight": "81c41ebde41739e7016ffec31d2256217b825dc3cae049a935f5f61a60d22003", | ||||
|   "blk.14.attn_k.weight": "fb708bdebe4384f5c4b479c110028554f4d122f166b8091eda7d8d65e6780eb8", | ||||
|   "blk.14.attn_output.weight": "f5295caf2dfdc60553dcabe17537a80577e8b153c902247daac058df23542514", | ||||
|   "blk.14.attn_q.weight": "c12b7a3601c68c63ab5dc9d2599ebf3f3a10abc2c59d3a2126fffd5818f2763b", | ||||
|   "blk.14.attn_v.weight": "1ce968d9149bf0d5e237d52cc6d6433565b4bbf03252a736262bb00a2b34a687", | ||||
|   "blk.15.attn_norm.weight": "266fd2c36d7dcefc6b6bb7f1c9374c41f2bab5d6c84a063b6f91c4f682dad3c4", | ||||
|   "blk.15.ffn_down.weight": "6154886e9ef0a6cc08ab0d264a35f497e6f0987efdac992ed04e87088bea7801", | ||||
|   "blk.15.ffn_gate.weight": "183d9fd3c1b5657840099053d2fd3f72ad953b1de523296159b7761f20491a76", | ||||
|   "blk.15.ffn_up.weight": "51546d4498842ae2340ee226a0888d5f61e7d2ca4d052dfa06a77b0451242d3d", | ||||
|   "blk.15.ffn_norm.weight": "ef7378091a41a25a5f58bf1bf9d3bc64ea562e7f421e1c232b1f177c30fd3500", | ||||
|   "blk.15.attn_k.weight": "8d556ab8d9639324141774999b6eed0e91d7ee645bf3e7a3dcd200b2e7a00751", | ||||
|   "blk.15.attn_output.weight": "54aa6ba87def7cbe18b0c6ab3aff5c351cb3b6ca4a0d7b2cd5f75a1312991429", | ||||
|   "blk.15.attn_q.weight": "10731b0dc031ea8e0ef37bd7f010e0a78518a10a6df05a8bae48e3148b73ef3e", | ||||
|   "blk.15.attn_v.weight": "cbbe50c2ed7224866d3cf9b489c599f3ec41a4ea1aa3181e9f4e87e1fa0cefec", | ||||
|   "blk.16.attn_norm.weight": "387058eb39d4b28c04cf1368247417f1faeae8ae79d894c9f293457e0eaa00b0", | ||||
|   "blk.16.ffn_down.weight": "2cb26ccee585e933401ad5c82ed36ddacb3289efa0b28f8cf91b020ffbd9c333", | ||||
|   "blk.16.ffn_gate.weight": "d745985efb5bab42304e5d509024631efe35f92f2b2ec4931ead6db97ca9727e", | ||||
|   "blk.16.ffn_up.weight": "7a67bd195e0642828ca36eb7818149bb70c2c25f82de07e2b5807c520daf540e", | ||||
|   "blk.16.ffn_norm.weight": "7cefd061c8182482a89272f8a4e88a954b12609a62716923ca1cb3593b1c1651", | ||||
|   "blk.16.attn_k.weight": "d7968a2de67e755b4533e061aaad1cb62f8882af92dcad67f99d6d5112513439", | ||||
|   "blk.16.attn_output.weight": "9e9ab5788272ca3394ea89eadbce8c86ecc3fd75b7899184d6191c134ad9aae0", | ||||
|   "blk.16.attn_q.weight": "ef81c261b536c1a3a093b33f44cf2d42b86e5aa2d821674f07a0c80e992ed925", | ||||
|   "blk.16.attn_v.weight": "aef38e7958301b4a437cbdd2fbae6197f677b09269ec1eaf63188cd5da428d25", | ||||
|   "blk.17.attn_norm.weight": "28f6b289f1bc3131041e9f791b7a2a3a48baee0dfea27bf7051ebbb7ed364d80", | ||||
|   "blk.17.ffn_down.weight": "1a502829aafc6a9bd6bc81f12573bf8632d5c8c659f0dfb13c8b2411f3b1ec05", | ||||
|   "blk.17.ffn_gate.weight": "ddfd8aa0eb98846ebc9afe31366249159f46ae9815199dd70161527ed241ac4d", | ||||
|   "blk.17.ffn_up.weight": "4211a3cc247071bd361b30de2131d02382f552855062bf3b3e004c17992e5d09", | ||||
|   "blk.17.ffn_norm.weight": "647e5fa99a5b0d232af36d15816539f4d27e60a50a341b00aa88bb6e4474f8b9", | ||||
|   "blk.17.attn_k.weight": "d9125ff33a19c502c0f8846433ffc24395048582fc2f463d34a0301a82156f02", | ||||
|   "blk.17.attn_output.weight": "3d64fbb1cfef04444827f37c35fd9ad3413eb2165094d339ef89f00503f09de4", | ||||
|   "blk.17.attn_q.weight": "e5b29424028f578beca385fd82e29f37adedf3037cd51e5889d5a1ffb0428ca7", | ||||
|   "blk.17.attn_v.weight": "1809c5aaf2ac04c5d65539097564ad62796e87d24bb8b9ce5b095561a61d908a", | ||||
|   "blk.18.attn_norm.weight": "99daca58d001c627523d3adfbca1d95f04e590382a326866544d57989d5f4835", | ||||
|   "blk.18.ffn_down.weight": "84f30231ce6ca0f10227541dfc602d6418c1a210386b0c4926ef1656e7d4635c", | ||||
|   "blk.18.ffn_gate.weight": "ca5bbe4468b541740e54f69b9e08fcc8e478c344b70551dab21b1206acfbaadb", | ||||
|   "blk.18.ffn_up.weight": "0b3067b9dded31686dcfdc1e247eae3974a28a61ac59e9862758dbfaad64e8f7", | ||||
|   "blk.18.ffn_norm.weight": "8154a102232dbc0f90ce77ae5c1ff8f26f8b6e4dcf326e9ec1645749669e7960", | ||||
|   "blk.18.attn_k.weight": "25abb26021ccc481471a30e0d4cbeb7e1db29828417ec5136edeb93fecf09ac4", | ||||
|   "blk.18.attn_output.weight": "d87d481d9b046b68efa06ccdd4ed8cbf61e692d61114b75b7fad5ed75f5d87b2", | ||||
|   "blk.18.attn_q.weight": "cc6400379e15766992ff1293be79dc67682c28e9e15155a78109f4b64653b164", | ||||
|   "blk.18.attn_v.weight": "45c75cb1dd496aea3173aafe2575b841dd1d02cbe010b3198099731eb98f531c", | ||||
|   "blk.19.attn_norm.weight": "65389efc75297684773284ef8e5f8789a4504b636c9f33b8a32e0ee42499fa72", | ||||
|   "blk.19.ffn_down.weight": "4eefab7e939f64a17e4a214ca3c77a6fa110d94f677e2d6401086f70fc538b04", | ||||
|   "blk.19.ffn_gate.weight": "f1c0a59cafda66f466ab585b0b8b4861b58abe87a67cea1f6a488492242edfdf", | ||||
|   "blk.19.ffn_up.weight": "c42d045eef588db4a0e56960a57e110e1ff92eb8041107d19899165fd3b90f17", | ||||
|   "blk.19.ffn_norm.weight": "a8f33eda6d5d62ff5f333ad9771783caff556641f4e7df713451385676f441fa", | ||||
|   "blk.19.attn_k.weight": "0bab5d9e9083492bfb05a5a3bb23b79c0e7b99ef6a6644817b4d57d5c453b8a5", | ||||
|   "blk.19.attn_output.weight": "c99c551d70eafad0f7aea98fb6f9251635897168eb3895f76abf0d4ea3b3aa6f", | ||||
|   "blk.19.attn_q.weight": "c98bde95627c3b54c9443813ca50b4e14f518319681db6bbf7b2332ba26e9a60", | ||||
|   "blk.19.attn_v.weight": "ff3a490518cf64904db89ce0dc7d6eb89e870f1440e41883c6b55a221f82de84", | ||||
|   "blk.20.ffn_gate.weight": "761f0e317229cafe9d3754048ab038a0a84e9a287b196ab65f633139f2d29aba", | ||||
|   "blk.20.attn_k.weight": "45d13439b41066d282e8490a726785abf513605f46c79bd0c840f6419d27e790", | ||||
|   "blk.20.attn_output.weight": "a3b958d84b4a097844179b7d55c18fd0e4f319cb15e918c6fde33b68de1bcac6", | ||||
|   "blk.20.attn_q.weight": "127ab8e7d8c3f882874904196a02712bab42e6744fde45871b67350609d19f5e", | ||||
|   "blk.20.attn_v.weight": "5f0ad2d14a8ae42dd3bbeccfb33295687a14055fa92c54bc946249373c1c9f17", | ||||
|   "blk.20.attn_norm.weight": "77300b1755edc8c70089e0f45efa646056b9add7d8568b2324d2f3e62b64971a", | ||||
|   "blk.20.ffn_down.weight": "ab93d0e075b42e9017b701a070d561e698050d90aac4b4b9919256fbe50c3204", | ||||
|   "blk.20.ffn_up.weight": "4fd6628a07acc57a48d1ef83f81b7d7aa0bce569c1160a99d307284f8821322c", | ||||
|   "blk.20.ffn_norm.weight": "2a9e46b9e48e8e55215de56592e1f189530037c1c94a1428e3d6f106c7f26fb2", | ||||
|   "blk.21.attn_norm.weight": "4b3b5912c7bc61eb9da8e47d4651f896e85d9e59c4ecaa65df7acf3c21737298", | ||||
|   "blk.21.ffn_down.weight": "7146f931663d93b8771cd84405cd4802ea6560d0729b0d6d44588203c095bc53", | ||||
|   "blk.21.ffn_gate.weight": "b44ec5d64388fa40b90b3e9976d97a8b6800fa3b97584f32e64b03daffb8601f", | ||||
|   "blk.21.ffn_up.weight": "0cf3643fd23c685e17062cd11e116e17ce57a405e5e78953bab94cd62fe48789", | ||||
|   "blk.21.ffn_norm.weight": "4ef2cdb53da166df70b39f3e6b17af51848cfa5ea3c27ad6a1ae2a1bb1da1ce9", | ||||
|   "blk.21.attn_k.weight": "5d40f32a706f670c19972b14176bf660d5b045e3637b110dbf8d7de4ff32101a", | ||||
|   "blk.21.attn_output.weight": "18afaa916752ce16c9653ec0ec7e2fe60be55faa2aa5025d147be184adb75cac", | ||||
|   "blk.21.attn_q.weight": "2621daa5f858931514a4b2f0fe8d81cf9b96f541e6af99bfa7539e9bde8e34ee", | ||||
|   "blk.21.attn_v.weight": "63226dafc54c899bbce4aa49efceeedd8908e94faa613450fdda91f332b62864", | ||||
|   "blk.22.attn_norm.weight": "cf3058daab4d2c04387e7d169d1553bb8e7358eea66285ec067703f6ce62043a", | ||||
|   "blk.22.ffn_down.weight": "6a58d5fd220abdbac6cee7ba048abab794731af318f04982c2506df59413d0b3", | ||||
|   "blk.22.ffn_gate.weight": "d5614535324b03c7b91727a903b2a72f8d07ad17f7aa8b61ea173cf9b895069e", | ||||
|   "blk.22.ffn_up.weight": "ec20da3949566e93f66cabb67f8cd7eab399047ec6ebf5d43edfaf3669b82296", | ||||
|   "blk.22.ffn_norm.weight": "84c82f38f53a649972a44466fc476bf764e064ce18de870291edc302f3700e28", | ||||
|   "blk.22.attn_k.weight": "a3d2ecc37fde7c201176bb8abadf27f0d8ede9679a6034913e03d9db924fda12", | ||||
|   "blk.22.attn_output.weight": "5a3b8bb433f43a387df43dd371bdf80ddfac986dfeaf38e9bac1d7a0ec6628de", | ||||
|   "blk.22.attn_q.weight": "3a875cec661b4859f30a8fd2c866811184b25b68c9e36fe2663d299caf8b59c6", | ||||
|   "blk.22.attn_v.weight": "8717a83b79035058dcfd3ef6f8e5b36e71d77379e5a239e1899eef8766fb7703", | ||||
|   "blk.23.attn_norm.weight": "2b4a68a0a2f023dd646e4755c9bef17c2f631901154afd839edac7ac006ec99c", | ||||
|   "blk.23.ffn_down.weight": "29499b1586c6fc4883c9b7a9c8cf388035146b5aecf90c5c4c8c8e082c71e7d7", | ||||
|   "blk.23.ffn_gate.weight": "7d6554036d21c587b9b556428054f9c15cbef96d24b257f906fcef4ae38bd9c8", | ||||
|   "blk.23.ffn_up.weight": "19761ecb288d6ebd44b681c4535661583b1e19dc29e96d0c007333cd8f00aacf", | ||||
|   "blk.23.ffn_norm.weight": "37dc35500790a4ca33807b39cf7af65065e535dc25b9e94f3ed2759f61887ac9", | ||||
|   "blk.23.attn_k.weight": "717547d00323817b0cb40a72ec5f8cf42ecd1f9e3e42715c2cc5e38f07fffffe", | ||||
|   "blk.23.attn_output.weight": "a24786feb6a905fdf166d7500133757cbe494779d4ebcba9eb03046b319557df", | ||||
|   "blk.23.attn_q.weight": "6a2c4a98f138b928d22136efa163562691d3b4ed526d52d46a2fa2694a8f3965", | ||||
|   "blk.23.attn_v.weight": "c6e6081eb9c38a7fda023085957b460e9ea321e1fff408b38c2b58595c39979c", | ||||
|   "blk.24.attn_norm.weight": "5e6283f891e538670425f3e244b08dc6f96f33dfa4aefa913f8eb17212421850", | ||||
|   "blk.24.ffn_down.weight": "e09eb170f389deea0a4a1cbfdb52c12490768a2c60491b7bef8a4c445e2a08f5", | ||||
|   "blk.24.ffn_gate.weight": "af29d815cf49a38fc2ebd0bf9b2dd9933d023a29f2d766981acb9a1b53f09117", | ||||
|   "blk.24.ffn_up.weight": "36ccd9333426666de9d3088bd4dcdf5b624b09dca9e3a83a22fc0383f2d950fa", | ||||
|   "blk.24.ffn_norm.weight": "a88e1692318826db6ac42582d182e51a3c698c655d0e21e04fa086318832d07b", | ||||
|   "blk.24.attn_k.weight": "f7d61d6d1225289bcc502e3bbb0168b4584add0253218c1b77ac92ccef9a1c2e", | ||||
|   "blk.24.attn_output.weight": "85a1363b3ccc87312094c2195022687c16b0dad7fafb9e80bb4ec474d53c29ac", | ||||
|   "blk.24.attn_q.weight": "53482a2c008f42f4fad779ca323addc3712040149dfc12f782417756388a72bb", | ||||
|   "blk.24.attn_v.weight": "67498272369af7dd10097c73b07f731b565cfc9a559e711cc0d526389e7b44e2", | ||||
|   "blk.25.attn_norm.weight": "98dd617def5cb7825ee4833132ca2da2121245921585e1d9e36b93344adc321b", | ||||
|   "blk.25.ffn_down.weight": "7fd477d6c50aed5f424a878dd284343379cffbee8a34c0b6e55100c8305fa13f", | ||||
|   "blk.25.ffn_gate.weight": "f892c9806c8ec22e8aa746734ac9213428c534921cf161239e1d249fdb5d1ec0", | ||||
|   "blk.25.ffn_up.weight": "528bed14c9bf9762f790525ee40412545221f4321d2a2323fa8e73c58b7643c5", | ||||
|   "blk.25.ffn_norm.weight": "ca5831966672e7be6a578feeb631ec3570d3b5afe12860819ccb96e896ffc346", | ||||
|   "blk.25.attn_k.weight": "610d3068cc9b20401f0c3a0efea39a279dd9f564fde19baf3403b2ec2319e4c4", | ||||
|   "blk.25.attn_output.weight": "798aaf702e53b657265ac3b5e6caf3a0ab515bdadfeb1a3a156b4f3bfba76666", | ||||
|   "blk.25.attn_q.weight": "8a7fa25248de83029fb97b51d036a01baebe31fcb4be121ab00dd8b7de209b10", | ||||
|   "blk.25.attn_v.weight": "2a53d5e9f8a1218c66958c6388d3b37400a9af7956c785024ca44bfbc3c7d371", | ||||
|   "blk.26.attn_norm.weight": "5f44fc043481eb0771f3e6d2420bcbcf73140afb9a9feb8eddb6575452acebee", | ||||
|   "blk.26.ffn_down.weight": "944a60a409d0d5b6a851e33c69aca152454b691711a8b96f5bcc488772ab2833", | ||||
|   "blk.26.ffn_gate.weight": "2a0ca4abb3de5593e6693d8be69b63d6d1a639855ac8332a75f520353f030c62", | ||||
|   "blk.26.ffn_up.weight": "0b1df496163f9ac07bf89375d3eb441b51a81d41b47d769a04a61efc18dbe35b", | ||||
|   "blk.26.ffn_norm.weight": "56b8dd046e9be6ea71f7efd80dbd14e7fb1aa020d3cd38e063275f3873fd12f8", | ||||
|   "blk.26.attn_k.weight": "b1dabfabb970e6971c7ea6e53c63cf7ef56341e6a2edd9cf177785cad9af2f9a", | ||||
|   "blk.26.attn_output.weight": "39532c7e836baad164a655fb97ec5114ea4da37ffba9fdea2684f6e4450e6f84", | ||||
|   "blk.26.attn_q.weight": "8f48bf6aaa1252bc149e98af2be1777a5c0d2c3274c6d314171ea9344a41b604", | ||||
|   "blk.26.attn_v.weight": "02fb145f7fd905133750e90571effacadddfd3f4966552dc59982ac3900ab8c4", | ||||
|   "blk.27.attn_norm.weight": "654d168fc3cab716d91261f5719f180b7d697218401633b4878a759f1b5283f2", | ||||
|   "blk.27.ffn_down.weight": "2823272bec3a1c12f02cc4cb24aa4031abd7e9dbe0b02676e2305b21671818f0", | ||||
|   "blk.27.ffn_gate.weight": "b1a1d40cd02f97182cac17a79971d1934ee0daf3aa0bf11303568c636e208a64", | ||||
|   "blk.27.ffn_up.weight": "ed62ec72a020d070e64eb7b50237b32213944727b5b2427f45d989f50df5fb2a", | ||||
|   "blk.27.ffn_norm.weight": "c69649ac65d694b306a905dee8b03b89eec1ed188b1eaaf38f8e29d4b12e38a0", | ||||
|   "blk.27.attn_k.weight": "cc57bbf413f1fd227128dc66efc8590c73634cbd6f96d01ec4878b5e7ca6a925", | ||||
|   "blk.27.attn_output.weight": "cac407ad02361d53207b3c7e25ceab84dcb4347b8087055162e2efe14d11d84a", | ||||
|   "blk.27.attn_q.weight": "0af18e07cee12015761c07c94407024f4f4d77d97bdb24163db0e16669e2cef3", | ||||
|   "blk.27.attn_v.weight": "a1d08fbdfa40af773c5adcf93bd68b78a44ed144e3fc6bbeb8af02e937527eb6", | ||||
|   "blk.28.attn_norm.weight": "f39a51f814512b040a1082143150e4a49ff730f85cef49d7f77fc79d83e91f40", | ||||
|   "blk.28.ffn_down.weight": "74f29ed51055d1c1adb8f0660bbe538a27e016c65650f2d67efc6f1c84fa1b45", | ||||
|   "blk.28.ffn_gate.weight": "ae48bb16487ded6781c60aafc0bf738fb4ae15729952906f247d216592ce249a", | ||||
|   "blk.28.ffn_up.weight": "543009727718ac22f11ee4b17815f68ea6f15ba1f3e7ed5ecdb755cf6417565b", | ||||
|   "blk.28.ffn_norm.weight": "b8f9e54c322079ff20a82b88948cdc2916c22c7db40b9a9ed6d3cbe89efb727e", | ||||
|   "blk.28.attn_k.weight": "55d055ba653b728d6e784f9e013786fed07115c9fdf23367e3941386d5e77db8", | ||||
|   "blk.28.attn_output.weight": "155101c03ddbf18f4fd0694bfc982f33c7bae25c9b087d6f5273c2bfbffcf2c9", | ||||
|   "blk.28.attn_q.weight": "1ed19bfdd22e9c14eca014739982492e9516d411515a8585f65cf754d849e53f", | ||||
|   "blk.28.attn_v.weight": "11ba854dd575c025d37256eee9041f6d1bd2b549a083d6409a09bfc1542913f3", | ||||
|   "blk.29.attn_norm.weight": "02b0bf5e2fcefd11a153cc988c81ba672682e4844fcf6442423e21a0e10d566d", | ||||
|   "blk.29.ffn_down.weight": "594bb692ec2779938721ff4748666ca8370e0e4fe85229503f616438b8884f5f", | ||||
|   "blk.29.ffn_gate.weight": "8bedcf47e91dcb2cf4093de56b048ee411faab6ff472f89ab2c9c113a08e6967", | ||||
|   "blk.29.ffn_up.weight": "e241a547b5fd6dfca8200b8141e21c1c487a96cbc4e5855f181a7ed1be91b642", | ||||
|   "blk.29.ffn_norm.weight": "e63eba5e4c6b288bfd9f15e46e236086456c8b7f1f9c732c0b5de84962a2e7cc", | ||||
|   "blk.29.attn_k.weight": "afe5979d5bcf211aebb526620f5974bcb0a2c39c8be71e815575c55d6385e3aa", | ||||
|   "blk.29.attn_output.weight": "9c944ed44b124b014906fc240afd3b90aed56bbd9567f2eddfd5b7a685b3cb48", | ||||
|   "blk.29.attn_q.weight": "e234e08e5c1bd9245a2edc8d63e9933b6b879f97c01392209cad4f55f05f3ada", | ||||
|   "blk.29.attn_v.weight": "5cb8e3e5f954e775c5a5e4de7a9a62b17e9c6931bb0ff0e2f82c4126fd3e1a1c", | ||||
|   "blk.30.attn_norm.weight": "a65483ee51a0b214144ec8a14f28ea5437586e9e12ebe342a57d1f8627ee12af", | ||||
|   "blk.30.ffn_down.weight": "417959da77ceb33ead4271cbb9428b195196173a893c44e52880a7ec61b4856b", | ||||
|   "blk.30.ffn_gate.weight": "a0d503ffcbe45dc927600bb98c9f6082487e65cb577ab545add400d666a87638", | ||||
|   "blk.30.ffn_up.weight": "f8ab957b82ffcd10b21303cb5e866209b6fe95f827b1b94e9a949207952d12c0", | ||||
|   "blk.30.ffn_norm.weight": "210c7ceb0514a9ef27b5d4d1b3aff6dde43f1af0345a050d71097940e0e73e03", | ||||
|   "blk.30.attn_k.weight": "16861b9abcf5a3fe73c93d977ca45a1e6daa65be0fd85c2cff53486ce2033afa", | ||||
|   "blk.30.attn_output.weight": "ca541fb2e57e2257118c35784845b0c731278af8db3036ac53d71aa1681fdbdc", | ||||
|   "blk.30.attn_q.weight": "f7834917748e26bb456b945e230bc926c228e93696bc01fbc2b134bdeeac71a1", | ||||
|   "blk.30.attn_v.weight": "9292783171dbe5eb689d17c9bda11e537f0e9b328fced6986c938d61ed590e81", | ||||
|   "blk.31.ffn_gate.weight": "e4766a04bcd8f937ba883c6a144101e546747804ca66c35c97281d6ccb47b566", | ||||
|   "blk.31.ffn_up.weight": "cc1e666116f7e6b06736db4aa4b81003c583f54f4d9200bfa48842249940e16a", | ||||
|   "blk.31.attn_k.weight": "fc80b57557687504efae7d24265cb7dc39b8f826bb3d897a11783012dbedc44f", | ||||
|   "blk.31.attn_output.weight": "215617f50a1f5d9b2250b82f3652b35a9e9aa0ad9ef2b485d73965a14b2b872a", | ||||
|   "blk.31.attn_q.weight": "274b4f1dfb0bdec28632705677049fb3e327ce6d9e1f3baaad1560439039982f", | ||||
|   "blk.31.attn_v.weight": "e641b8b926f9dfcbbf6b6da1c02555525ac4b1c306d96f20cfbba7d6662c4e56", | ||||
|   "blk.31.attn_norm.weight": "b3243c361d4041ddb892ce6862dd5091f57d87357e3c67e177451b85d8baf34d", | ||||
|   "blk.31.ffn_down.weight": "0a00cd3ecd5e91624a27f9e239b1de425d5ba3cfff82c256a11a4ad434abf3c2", | ||||
|   "blk.31.ffn_norm.weight": "2a0d67ea2bb1303975712243f07273c92fce83baa11b1cd6d8e42e74ea3c810b", | ||||
|   "output.weight": "768615f077fb797967844571c58b94d7c399d884d115be3ab4b0154504cae892", | ||||
|   "output_norm.weight": "7cc5b7ce10e5082000fa00bfa68af8c7c5da218e59e2c41cf2f1499d40ca229e" | ||||
| } | ||||
| @@ -1,3 +0,0 @@ | ||||
| { | ||||
|   "rope_freqs.weight": "80fd5efb2f729381785b293a091a268cfeceb0079167f6ece9b07070e662b222" | ||||
| } | ||||
							
								
								
									
										313
									
								
								convert/testdata/Mistral-7B-Instruct-v0.2.json
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										313
									
								
								convert/testdata/Mistral-7B-Instruct-v0.2.json
									
									
									
									
										vendored
									
									
								
							| @@ -1,313 +0,0 @@ | ||||
| { | ||||
|   "general.architecture": "llama", | ||||
|   "general.file_type": "1", | ||||
|   "general.quantization_version": "2", | ||||
|   "llama.block_count": "32", | ||||
|   "llama.context_length": "32768", | ||||
|   "llama.embedding_length": "4096", | ||||
|   "llama.feed_forward_length": "14336", | ||||
|   "llama.attention.head_count": "32", | ||||
|   "llama.attention.head_count_kv": "8", | ||||
|   "llama.attention.layer_norm_rms_epsilon": "1e-05", | ||||
|   "llama.rope.dimension_count": "128", | ||||
|   "tokenizer.ggml.model": "llama", | ||||
|   "tokenizer.ggml.add_bos_token": "true", | ||||
|   "tokenizer.ggml.add_eos_token": "false", | ||||
|   "tokenizer.ggml.bos_token_id": "1", | ||||
|   "tokenizer.ggml.eos_token_id": "2", | ||||
|   "tokenizer.ggml.unknown_token_id": "0", | ||||
|   "tokenizer.ggml.scores": "e3d3eea80bb41a1213f2d0aa3e8a38581d1f19323be77dbd779c9c7e3b72e676", | ||||
|   "tokenizer.ggml.token_type": "6040635e6bd38d98af06698feb75c1802bad35180ee6ae0a503e38c0f60fd71e", | ||||
|   "tokenizer.ggml.tokens": "604ac4bfbd019e430d7b6cdf18c6c0cd5b967900601f0307f714ec7773aa5ca6", | ||||
|   "token_embd.weight": "cde834ccac5e94324b25cb81b02d27312cac0c551b55a7e1d555d90bf6cb6e81", | ||||
|   "blk.0.attn_k.weight": "458bfdd9715c66e017c2447b1ed3c582963a3111479314e664faad8c914f42be", | ||||
|   "blk.0.attn_norm.weight": "e1fd60b95f713bae7b7e3ca933c64ae6c9cd1e8d808000204bbfdc19f0ba635b", | ||||
|   "blk.0.attn_output.weight": "df13b6a157d9d4f96c53b012b3b9bcd207d0c94144cbd22ae3ec13bb07d6c373", | ||||
|   "blk.0.attn_q.weight": "13b4126b4245bf06c915a93317c42b8174e05053535ec99dc576541e4cec7c25", | ||||
|   "blk.0.attn_v.weight": "5b1781d3a341214511b27eb4e268674ea3ea829dbdf8ae5a6bb89b3c0b33fafd", | ||||
|   "blk.0.ffn_down.weight": "49186f5d8148d316b07458841d13a2e66587f4af69b776188a809591ed9c070d", | ||||
|   "blk.0.ffn_gate.weight": "4397e30ece09136f00f4ff84ff49e5241b765a374deb8c5a12e897e2bf73473e", | ||||
|   "blk.0.ffn_norm.weight": "43260589aac3850a779bca3f9649f793bbfbe5db538361cb743b3830217f8287", | ||||
|   "blk.0.ffn_up.weight": "fd7ac918240a07566f6967527ffca58fcf433a30b78fdd6d84b2136d4ebd9987", | ||||
|   "blk.1.attn_k.weight": "209839566c7d235bdc20565a4766378b6ee8553133a5a3315abe8a85baa80712", | ||||
|   "blk.1.attn_norm.weight": "58c52986f7c69784ba327cb7f350923420782bee17fa39b1fbd13839d4005357", | ||||
|   "blk.1.attn_output.weight": "5067cc628449682665dfcf59b16e58fe2a9d2a81cb099f0fcd42f4f8670c6740", | ||||
|   "blk.1.attn_q.weight": "f410f9f0dd5edc09401af597d02e2a4c727f1502ec3ec3898321617b36c6df6b", | ||||
|   "blk.1.attn_v.weight": "d40fa49e07c102c0644e130e7909eaa93ed0d54e2edddc0759e721d58a4e4f5e", | ||||
|   "blk.1.ffn_down.weight": "594b1eff6ed4defbdd819fabbe2d48764984f08878a860bdb808511d5a25b8db", | ||||
|   "blk.1.ffn_gate.weight": "4cda97541e388a5bb607ce4cc8b3db1da7045830a630e7ba4d17807befcff346", | ||||
|   "blk.1.ffn_norm.weight": "66c13d7481be65b97aa474735ddc9674f33d512ddda76fa6fb45c7464b09f1ed", | ||||
|   "blk.1.ffn_up.weight": "1adc6de288ba4cc1237833ca8b4eb81107149842e38bc452e18e5cfe284338a2", | ||||
|   "blk.2.attn_k.weight": "5420423559f236ab22d85a00849f31e0cc6e9c7dd879de724393d8cd2b379153", | ||||
|   "blk.2.attn_norm.weight": "495fe1ab40cc52aa054ddd4f0c2d2790f4326c8d103296b1b38f3b1060db2a24", | ||||
|   "blk.2.attn_output.weight": "ccb83e7085381f558bfd65588c525ad2671feddcbc3887afb4038ad9c7aac348", | ||||
|   "blk.2.attn_q.weight": "2e8f77478392bc93c2a391f2e0f4a173a952bbab88a7aca099c6ee909726409a", | ||||
|   "blk.2.attn_v.weight": "d64512590f3b7ebbb9e77c2eb97fbda90b00d45c944f2b174f03a2cb11007567", | ||||
|   "blk.2.ffn_down.weight": "1de5084a05dcaa6b1bd926e83517dbe9ebe7fde79235fe56018b3028b1aa6397", | ||||
|   "blk.2.ffn_gate.weight": "cbea526b557f49aad8c976973cf367fcd12175b900f551984f498b9e07e4b7fd", | ||||
|   "blk.2.ffn_norm.weight": "530aa49b10c7eae08899d143409240deb95dae4e1d5bf78cea3b26393cff3ba1", | ||||
|   "blk.2.ffn_up.weight": "13a5fc19b96b4dcc1e9bd01998c8272ebe52034c1933ed123a506b711fae9a5c", | ||||
|   "blk.3.attn_k.weight": "1913b63a73305941d8cdc472e7f101c633d3357a78602eac0a4b49a744261075", | ||||
|   "blk.3.attn_norm.weight": "9c11bed5ab41f4adbfdae4ead65b525c8f19443e656a8c61ba412a4e1ad1193b", | ||||
|   "blk.3.attn_output.weight": "bb0b42c1d34779c5943272ed71f1dbb31ad8edd75f8bcd5c868f88505ac3a610", | ||||
|   "blk.3.attn_q.weight": "3461a1fe4e49f5319ea047cae98ccdb46528a3ec23831183fe87610b48c94948", | ||||
|   "blk.3.attn_v.weight": "82aa30be6a61526a41fb79bb28a2617416f5909f0477aa9e95e16be9370fcb38", | ||||
|   "blk.3.ffn_down.weight": "68521011ae03f5e3b0966127111afa8ee9f2eaeeef8d3a0b86b633e0332e9fbf", | ||||
|   "blk.3.ffn_gate.weight": "1e89e26338fd364bb679695968c65106382f15ad55c95cbb5ec9bdfeb766f432", | ||||
|   "blk.3.ffn_norm.weight": "c81932529a5a8c417c27b888dbe95fff8b447c2ea5f6f560444ec5d50b93832c", | ||||
|   "blk.3.ffn_up.weight": "305021735afd8669afefd713f56137248d5e817e60471a112ad06b7fa07ffe88", | ||||
|   "blk.4.attn_k.weight": "cc26ba5c5c28082a79e6abfe61186029e80b145252ca6a7924c437f0bcf2d51b", | ||||
|   "blk.4.attn_norm.weight": "302d251fdcc91f7468cf33f80b49484251d8917d7018ad264ab3a85c8ecf9ddd", | ||||
|   "blk.4.attn_output.weight": "a012f5bee3520cd4ce51f0076c132ebc3653309f304032ad051aa308f55f36de", | ||||
|   "blk.4.attn_q.weight": "3c8d607e447f5ef21e73af71e3c0d32fae16f91f31faae34ff06912cf9cb68fa", | ||||
|   "blk.4.attn_v.weight": "49f6c81a634ce46d71c2350206ecbd231b1732af96e4e4e67693c41a07e007d8", | ||||
|   "blk.4.ffn_down.weight": "e89504f311a4a34dc819a67b761022f14d71c43df3ead4f892c87aaa8e9f0adf", | ||||
|   "blk.4.ffn_gate.weight": "18b22f079a2fbaefe3572eec61fdcd996fd747724e2f0ff4f08cfcb43eb7bfb6", | ||||
|   "blk.4.ffn_norm.weight": "22415a492c168a0878912b05c854a631228b01c3ea8842e1d75989ec46c18a65", | ||||
|   "blk.4.ffn_up.weight": "f57379eae2874d8853f14ddf0f0fcc4ff1338574d5ed5d7e88331d5fb84f5642", | ||||
|   "blk.5.attn_k.weight": "d627af853c40bddf9762ce3988008c1ff17f2686fa8f73a0b5da38010147c316", | ||||
|   "blk.5.attn_norm.weight": "9ce01092c7f7f1c3ef72d6b794da12d77aa1f6a24fb96ba1b9bd5a0bcc3e2443", | ||||
|   "blk.5.attn_output.weight": "0388da8064c4b6b795ce2d8079e8a36535e82b2c9cf794e38ce8ae460aae726d", | ||||
|   "blk.5.attn_q.weight": "039b7ce1c909761fdf475c06cf14cabe5a90199282c89e4dcf460e95a4b6275d", | ||||
|   "blk.5.attn_v.weight": "c47bfd8d2496bdb6e00e03b903e15fd0ee806a515094ec257e43cc433147ab7e", | ||||
|   "blk.5.ffn_down.weight": "1d62e6708974bae318cbf00a8bf621d9ba0537e549ce4710a536520a8d14168e", | ||||
|   "blk.5.ffn_gate.weight": "8b42b1b11c92db19985094cbb50434e3a7c9cfea71ee6f21ea79eae7c49284a5", | ||||
|   "blk.5.ffn_norm.weight": "e0bc520f1505e687ec391d632a381d38d8ebcdec19f614a11a2000ab573e8b7b", | ||||
|   "blk.5.ffn_up.weight": "8cdcd17d2ea89bb9ab902dbc6bf3f827fa4ee029c6bf19eecbdefd146d8b6f2f", | ||||
|   "blk.6.attn_k.weight": "5dc6bcff89794d1756bf57ec665b58622d9352130d31082a6c66e1a079f99932", | ||||
|   "blk.6.attn_norm.weight": "13b26008abe0f119b5104b9d78ebd5e797d3cdd68122b93d73a3b4831a54d085", | ||||
|   "blk.6.attn_output.weight": "f5a49917ea70c3fb311ccfffbfafa63ab18416a5d55e5429b70ce8bfba57c075", | ||||
|   "blk.6.attn_q.weight": "d9c2f652c87dbd09ec3822e12876648fa32e86553ac25afab723b1cd9f8cef90", | ||||
|   "blk.6.attn_v.weight": "5ecc5fe67609a35151011cb526f45c56fc0a999079ae0ff37c755ca03c68c555", | ||||
|   "blk.6.ffn_down.weight": "0ec125ae0ecb2d9277fdb1b04f17efee94e37d0ae37311057c212ca2db3fe6d1", | ||||
|   "blk.6.ffn_gate.weight": "fa4d6d38355ee8aa3b80b476d65ae7e343c9b7770d7b097fc848ee8a6e091d1f", | ||||
|   "blk.6.ffn_norm.weight": "30e8f7defc627532e1739dc76d31223d45767391a431f925b63dabe334b0f392", | ||||
|   "blk.6.ffn_up.weight": "6b97cc32b290fa9087806b5d65aa6dc1760737730c8c71394cc4f30c2157f9ab", | ||||
|   "blk.7.attn_k.weight": "0231cb127cb7c3714cd72b8f39343891d7715a9bab2237ade9e7bc5f4ed2e68a", | ||||
|   "blk.7.attn_norm.weight": "7c3187f07eead7d219d98ab2daf87905e88d5f1ace109b6f5fa55dce3914981f", | ||||
|   "blk.7.attn_output.weight": "2f30ad972c284ae7c8eb0482053433495ebe8fe9c5ee2c28b4bc4ed1f33050fe", | ||||
|   "blk.7.attn_q.weight": "3a2b4b8d61cc9956d304fa9f82a9e65b4bb9fda2196670b16df7e0d8c43eff2c", | ||||
|   "blk.7.attn_v.weight": "d2aab97d0dcf0f61dd2f32848f7a8a99c423a4948a660a660a03a546972b8db8", | ||||
|   "blk.7.ffn_down.weight": "2270d520468c5549cd30023ff9c452a277058310104c4239a616373fc5a94387", | ||||
|   "blk.7.ffn_gate.weight": "4134a3ef71b3eac8f76b6f1a2e58625b3bae48081f175994bc3ed7d8b0d4f2d0", | ||||
|   "blk.7.ffn_norm.weight": "42df4abd4b8769b16f3930068f96960af1b061f1aeb7505384f272233b2badff", | ||||
|   "blk.7.ffn_up.weight": "c920549054ec16ff8c73a72f5d837cf4e11885e44db57c1c1c584c18fbd7a9a5", | ||||
|   "blk.8.attn_k.weight": "01c609bd3bf31ce65688f1f640ee413740e821330134d4ed1877a3065d1527d5", | ||||
|   "blk.8.attn_norm.weight": "48857411f769b00290f4e4f2e593e092781fdc2503f80c1e3eeda1b85a20f74d", | ||||
|   "blk.8.attn_output.weight": "90fb273f8df83744554bd59236515c16c5a5a698ca3fbedc17cc89ddcee354ff", | ||||
|   "blk.8.attn_q.weight": "ade617ac4653c7f00593dbb51837a468afef20a14eaab3780fb96ac3d6714369", | ||||
|   "blk.8.attn_v.weight": "c2c37496494864fee5c527d1fe1f88529d31c73f9cbd02ef9b2e9b23611ea50f", | ||||
|   "blk.8.ffn_down.weight": "2da58572e9ad79087c03cbb0c23c9ef69f93ec221fd5fe4ed92fb93871d23ffa", | ||||
|   "blk.8.ffn_gate.weight": "4483294e628edaa4901708e73e92c917bdd93b780fa01aa74aed57166f2bbf0a", | ||||
|   "blk.8.ffn_norm.weight": "c0cbb7a4f8123b62f0c4652a687f3b394802bc32870dc446eefb709e42043a7f", | ||||
|   "blk.8.ffn_up.weight": "9eaf8a2060cb9224cd585997cd671866c4051ad885c2c6d9fdc7056c2a5c0d89", | ||||
|   "blk.9.attn_k.weight": "5dd36c45fbc9c50fd35c36cd75576288506971eac5c5311d4f5c16ef60099645", | ||||
|   "blk.9.attn_norm.weight": "3c8ca64f2f75ed7c8fc1da010c23be787648139a96ca0ef3ad10be7b14942b8d", | ||||
|   "blk.9.attn_output.weight": "6277e1f833024f53c409be919ec76d34464a78b278c8f9dbf79e777746e3b995", | ||||
|   "blk.9.attn_q.weight": "87352b70d9e328c2d51d59090cf5ea5a046529864a890d0bc8986447a0a5c006", | ||||
|   "blk.9.attn_v.weight": "2efdf01161d7a82a9117cc2d87d37dba5ffefcf730781cb94fcc95130e48ff9e", | ||||
|   "blk.9.ffn_down.weight": "e7658a2ca984961c7ace16acb679387bedb1fef656b5330bbbf588db19673a75", | ||||
|   "blk.9.ffn_gate.weight": "773cd330d4ff5d64be8af00adf2e2722fae4e33fc26bb9d03549f6f4b3b0fe57", | ||||
|   "blk.9.ffn_norm.weight": "c8b86cd5c43b332f72060b807091c33a258e5dac01358ff4733b916cd34c9c97", | ||||
|   "blk.9.ffn_up.weight": "d8cc3bcff18bd46124ba2aa7caacc71220b44eeef6fccb993b4c6cb53e8f2c3a", | ||||
|   "blk.10.attn_k.weight": "964bdf3b4e77b915a216f750ff7b0f2eb1dd6bfa071358aef21010b90111044d", | ||||
|   "blk.10.attn_norm.weight": "59ed411d91d14775764eb514acb0895a75a10cbbfbc1c15d453bc50f8046cb7f", | ||||
|   "blk.10.attn_output.weight": "4d35a2a44cfe4ac0a83fd3ab0dcf1f5a0bf54cdb3b7be9fc353ed32c8a3eb81c", | ||||
|   "blk.10.attn_q.weight": "defff5339450dd881ac352f5c459293f39e07b9619ebd10ed632d79a3f310278", | ||||
|   "blk.10.attn_v.weight": "b9803e8d6a54acea58f662d4c0a5c8ebdf986676de7dfe12d4b288937881ce93", | ||||
|   "blk.10.ffn_down.weight": "eba856be64e4be20b92fb4639a783454dd92427250759df92a337e39f1971c08", | ||||
|   "blk.10.ffn_gate.weight": "2d5c509b066584db4de3632b01234e86edcde35409c5ebce18957dc80fe465e3", | ||||
|   "blk.10.ffn_norm.weight": "ecb9a8679945ff0273856624ce435dd250ffe5a440ea0861a5c84f0e4c44d2c6", | ||||
|   "blk.10.ffn_up.weight": "e76ec7e993f399af02958778c643aa78368e3067846714165eb5aba9d5f547f5", | ||||
|   "blk.11.attn_k.weight": "29c6d1f34bd3ba2f0904e57b32a5bf8dcb2834d439159a33edf234ce0b775677", | ||||
|   "blk.11.attn_norm.weight": "b5817b275149cd2abe18a6a10e19854605fc58fd364666744362ceee8cfe49f4", | ||||
|   "blk.11.attn_output.weight": "1e05653220e237cbe0cc770033e183c9a0eed5680510997409b16186c6691950", | ||||
|   "blk.11.attn_q.weight": "03db725ae669151e4d536e50285b3b047ad097f52475df208ed3e790e31a44be", | ||||
|   "blk.11.attn_v.weight": "27cdf1d4e971326c451a4615a0b79a8c7fe9508f9b76c0d52fa01971fc7eb403", | ||||
|   "blk.11.ffn_down.weight": "176938cd7c2966094f614cace8ba568b10532e45a0d438f80eccd19b6c2a7f87", | ||||
|   "blk.11.ffn_gate.weight": "9782339915dd6fa70013628a01524ee1d01ad8beab04068da7ac6a5ee7603a60", | ||||
|   "blk.11.ffn_norm.weight": "8245f6391e3be97811c0ff27f0d8f484ecc82a468a837c893f059745bfcd95eb", | ||||
|   "blk.11.ffn_up.weight": "15616ddde096d0d25e906375c548b6de4bd5576d1f6b68eefdc29f14e183af42", | ||||
|   "blk.12.attn_k.weight": "66dd21604993edd1b1fe547bcaa06f5bb7e31c9204902d147a227e4badf7feec", | ||||
|   "blk.12.attn_norm.weight": "23a69f85dd8a0904b9839cc5d0afcda299b74e82ae2642106224a1c820f2b761", | ||||
|   "blk.12.attn_output.weight": "4a98d132e376beb274a39d4ea9b6a1b870ad5c66625439d7ff6f45c229c3ca04", | ||||
|   "blk.12.attn_q.weight": "1c6c309d63afcfde32fe37257e300a78e25d01117e33490801107c0e75d1ea66", | ||||
|   "blk.12.attn_v.weight": "723d9e4ebe4e2b1974afa01d8f512b52933698fa36717dd47b37b07760c50a10", | ||||
|   "blk.12.ffn_down.weight": "00e0fb09e1f1fbbf3803f1dee373eaae7a93756b6e13063ab77f9927bc6f996a", | ||||
|   "blk.12.ffn_gate.weight": "89159f7f97aefb1e100107e3ac2d694e1008ad873f79bb953d60c2c1bb22724d", | ||||
|   "blk.12.ffn_norm.weight": "5f70aebd0e43a39d6373d8658cc670c13aadd7818831d3d84f761d5f688442f0", | ||||
|   "blk.12.ffn_up.weight": "faec21b446f061eb4dca561a3180712724347b77a71eb312e7afe9be9e89fa04", | ||||
|   "blk.13.attn_k.weight": "3d440825d19eac3b1753b34d94fee2b3a3cb6636c10b2703ffcf688d3c1eded3", | ||||
|   "blk.13.attn_norm.weight": "47b575e57e410738ad13fd3c74bb49c06b3d31030910834ece509cd1a5c6d9be", | ||||
|   "blk.13.attn_output.weight": "05436d8e613f4475741c1798a7c371b53d61b229507fa04fe23c504ba1f0e12a", | ||||
|   "blk.13.attn_q.weight": "002b5024ce520da41256e3ded5cdc60e5ae07ad9b202cb19d76ab511efd02b1b", | ||||
|   "blk.13.attn_v.weight": "c1f2d6763587c50312cee0d7140fa2c7ee326f5b172bc99b2d8946e08329cabd", | ||||
|   "blk.13.ffn_down.weight": "b5c4e0d8a3ff96cd76a135e415b89f02d28c28f7f3c16a36af31ef0ab8773da5", | ||||
|   "blk.13.ffn_gate.weight": "ae06e9e3d2e1f64c7ad23a4009dc904c2eccd7241f9f91c4974ab2504f116be0", | ||||
|   "blk.13.ffn_norm.weight": "e44a22321bcbcb4a3c345b504e939e8071370f54a8cd702fabdb40b97e0d7683", | ||||
|   "blk.13.ffn_up.weight": "7e6f366d538e21ad431264b12c011892d0be9dfe4c4da9f730af677f920641ba", | ||||
|   "blk.14.attn_k.weight": "95492d6417952ec24b2cab87bceb750fc7e95ac6b1944fc328a3852d980164be", | ||||
|   "blk.14.attn_norm.weight": "6b7b09e1c51addcdbb160ea59edf032531421c520ec5645fe1ff9ca4180cef54", | ||||
|   "blk.14.attn_output.weight": "75887474e4d72c218e6ab0f69f1bf3ec3dc414d51b36fc59df00cdb23421bb6a", | ||||
|   "blk.14.attn_q.weight": "940e33f76e48c21215d19e8a21234c8246d4d084381a7d9806aecb24b071d5bd", | ||||
|   "blk.14.attn_v.weight": "c58601cf5a9833f80f7f9a5b2656e8eab5eb133211446ebd48f8be15fed4ebb9", | ||||
|   "blk.14.ffn_down.weight": "f9f886e7f9b2a54d717b08947a25a0a93e8c2a5b8bcd5a907c06817c8ee3ac11", | ||||
|   "blk.14.ffn_gate.weight": "727ed0ee68594a3f59d704ed3240b6929f083b9c36650fb848d182315737245c", | ||||
|   "blk.14.ffn_norm.weight": "bd2471008ff1b2bae9aa26bea019393fb2bbc5b9493b8cec3ebd2c280fca24ca", | ||||
|   "blk.14.ffn_up.weight": "b006446769f51e4f93b503c4727deae897bc1fc7f4fad49f85024b63c4548d38", | ||||
|   "blk.15.attn_k.weight": "23bb70f9035356624039547a603e46be7d1e4403616eafc2451cc09c5373d522", | ||||
|   "blk.15.attn_norm.weight": "718cb371ca052eeb3bfac6ac506abb887df125271821fd171797a7f2d8dd6313", | ||||
|   "blk.15.attn_output.weight": "c76a2695a204b43a8e5acfa5720590b5d449a9ad9e082cbe3e80fab5903ea16a", | ||||
|   "blk.15.attn_q.weight": "2b3e4037b9e91bdd26d6e8d904cf39f948192dcf09bb6445cb55ca058d4f4626", | ||||
|   "blk.15.attn_v.weight": "7c15e89b6acafc8619e86aa9d412f5893ab17843ff2cfaf40eea9637b24910c6", | ||||
|   "blk.15.ffn_down.weight": "e16fd4bdc6d1c1209c6b633454df4992870c8cefb2cb0e8c92a7e489e9fb5d19", | ||||
|   "blk.15.ffn_gate.weight": "95a46bea366c260337c537fde06b4cbeaeec52484a69c3390bb1d178eb0525c9", | ||||
|   "blk.15.ffn_norm.weight": "37730293f704da265dc6d1896b3be00c39c0a41dab07f573af39dc30a481d623", | ||||
|   "blk.15.ffn_up.weight": "ba74a199da2d0875d7410824238c4ffafbda3993568812284a72b8800df91f15", | ||||
|   "blk.16.attn_k.weight": "f58f79a2a91c9a763adefce0c53a71eb5ce6bd8442f4af554b04b58083bff27e", | ||||
|   "blk.16.attn_norm.weight": "0c16e41b95e81978e0e0e3b338e2afe2d297426578cacee94de15df74e94eaad", | ||||
|   "blk.16.attn_output.weight": "ead22fc337514e4add49aee19720008558e52090466866e849671953a1fccba4", | ||||
|   "blk.16.attn_q.weight": "ef59c4e8fe8918c1add43d7e9c6fb3ef799dd3e1bdd731ec7b6a4a6f97c86048", | ||||
|   "blk.16.attn_v.weight": "902e6b84c2b64241470b13e6f412f859f66b4b223bcfb9c15d5cb1106b07ef3b", | ||||
|   "blk.16.ffn_down.weight": "2ad6e9eb4d8372c32a554395d460d17cfb02d6dbcb757cc962b6bfa36db4f5ee", | ||||
|   "blk.16.ffn_gate.weight": "825b2d50fcce3dbe6a5d8d8a50a95466f83ca4a10343efe67894c20b4628fb15", | ||||
|   "blk.16.ffn_norm.weight": "3bf6ac90befb0e17e077c8ea9454a8485a30f89f2d761ec7751b60c90aed1af9", | ||||
|   "blk.16.ffn_up.weight": "9fbdd08739b32411f5ab0252174d386bab19eb0b17884862f760429b7d41d78c", | ||||
|   "blk.17.attn_k.weight": "4033398718bf3674830ed1b73071ed8482b6dd4ef27f31a6c5fbb998321b6c07", | ||||
|   "blk.17.attn_norm.weight": "714f2e8ac9592966a0f1c02ee979eee8f84586405b992e8ee9543e840199ffa1", | ||||
|   "blk.17.attn_output.weight": "b6bbb618597d767b8f535117be68f92911e4a71d4eb4d8b5d943444151445ece", | ||||
|   "blk.17.attn_q.weight": "b84a0dc00ceb515faa2628125dcec502eed923077b21cfe900a4ff16c2e5f9ed", | ||||
|   "blk.17.attn_v.weight": "4387c7d6a17da9cc7a6bca8f4a75618b20407d570792056283a8e93b6ec65f18", | ||||
|   "blk.17.ffn_down.weight": "47db95c6f1e12b399c3eaf9ddba261782dd71173dd163b52af96541cf87b5196", | ||||
|   "blk.17.ffn_gate.weight": "59abaded0aedfd12f01df81f7a811e84db6a227f51b60abe9a247ca726e87392", | ||||
|   "blk.17.ffn_norm.weight": "b7e86445be5c7b722e01ddb98d5c7527ca86cb827ce0354f2c269e0f2558751e", | ||||
|   "blk.17.ffn_up.weight": "8e31c293bac649d2f60da4b3fc4a3acdce1111ec6058d8805eeeb242443011de", | ||||
|   "blk.18.attn_k.weight": "5ce762ab7b032511c131df81093b587871718c7097f79d8e07d707571f18a47b", | ||||
|   "blk.18.attn_norm.weight": "1f52cdc7af1f4dc1f0ef6ad1ad02e18cda32133654e57cfa9c72ada9c0b1d995", | ||||
|   "blk.18.attn_output.weight": "6486957f30bf8a88516e25772c6650f98b13923f490a2865a8752e36439d1cfa", | ||||
|   "blk.18.attn_q.weight": "93621c8abf69d2ca29c5207180eb628fb2b544d89de6c4a7fb0699be95534899", | ||||
|   "blk.18.attn_v.weight": "11604083b5a74828ac1d226af015ad5dc0215a1fdca44fa7131c2163c02d8156", | ||||
|   "blk.18.ffn_down.weight": "8f9997feb94385f106915df810239c9753b31efda2bf14bdf18a9fbbeec8233d", | ||||
|   "blk.18.ffn_gate.weight": "427c213b3a4e94af703429daf2f65766f70424d8230c123e7e712a18bceb5ecb", | ||||
|   "blk.18.ffn_norm.weight": "c45d305c4ea6a54013ba112f12dafaade064a32cf01317373464a3618d8ba44a", | ||||
|   "blk.18.ffn_up.weight": "a2811f2e73ac9eb9cce91a21a454e84e230a155244e2cd73f2c12aad3c9b8cfd", | ||||
|   "blk.19.attn_k.weight": "b2daed159925eac58c291e2f1e2000beed21002b03c9e1bc7e7a52e22240666c", | ||||
|   "blk.19.attn_norm.weight": "6307306ede2ab5bffa1bcac3f8b139354678c0376b1d9f5530c1fcb4268cfeb4", | ||||
|   "blk.19.attn_output.weight": "ebb98218b2a9c84d3fb6baeb02c5df264b7ab80d994d1098ba1cd47aa398effe", | ||||
|   "blk.19.attn_q.weight": "4f10df2ad09177e7528e9456039b670d07db22940a49417101b725d239c16724", | ||||
|   "blk.19.attn_v.weight": "30f1efc5114badaeaafa91fa466dc7fa14b1616db433c6f563ab851f7333a5dd", | ||||
|   "blk.19.ffn_down.weight": "be5ec7fe6b48855cd0015b0e430d1b70c620de87a7ff188c7c1afef546d7b6bd", | ||||
|   "blk.19.ffn_gate.weight": "10dffea4213881f8a9b583ee0fd370e033756d32255ed15053f794375b9400e9", | ||||
|   "blk.19.ffn_norm.weight": "e75cd24ade45dca78fdb0cbcaaa2d4a17d83a5a73dcc94ce0ec2d68fbdb2a881", | ||||
|   "blk.19.ffn_up.weight": "63e81bdb951410ffa81bcfba1b94a679ec9ebae59cd1623ce2651ed5d4c78bfd", | ||||
|   "blk.20.attn_k.weight": "c2fc5ad39e9bdd45e73c6e54aecc474388d944c4be1ee1921b7fcd035bad02e0", | ||||
|   "blk.20.attn_norm.weight": "aaa9169171937bdce20c1f057e94e9252f221cabacf1ced12e11b9586f23d308", | ||||
|   "blk.20.attn_output.weight": "a9f4fb496e4bc053e3f6cf2e72e22d4cd2b545ef6c32f7e782c2ef6ebcc21d4b", | ||||
|   "blk.20.attn_q.weight": "5a07ac619ed251494170b213921ef3fcc4c2712839da262516d9d5b8ea1ff185", | ||||
|   "blk.20.attn_v.weight": "d6689473105d241eacb17f09f06000ee237336916cf5ec4f48271c5b41bcb8e7", | ||||
|   "blk.20.ffn_down.weight": "74be38db51df736f26ede7c6b52ea787e385f181cb66231e2cced4556a25c9b8", | ||||
|   "blk.20.ffn_gate.weight": "ea91e06dc3d051c0ba0243b5a8bb40edbf254eadfb54fda7247e05cfdd88cbe2", | ||||
|   "blk.20.ffn_norm.weight": "5fbd357b3d6f44a7a91e8a4fc246b24303891b7957e0f3c32818ae5dc16ddd8d", | ||||
|   "blk.20.ffn_up.weight": "fe3290333e056af4ed12942ac72aeba97a6b562e2db05e79cd35dd07eab5b101", | ||||
|   "blk.21.attn_k.weight": "201ec6ee95f06ea5eb80fe86fd07bd016d3ae9ab6abd25d631834414e14a010e", | ||||
|   "blk.21.attn_norm.weight": "ea8154f93e06485828475a00b98cc397ac84768dd70e06ecc0c075b5712d7276", | ||||
|   "blk.21.attn_output.weight": "9f8af74d531478fd304723fd8e4e01578db598441b80dc7c960cb801dbbc501e", | ||||
|   "blk.21.attn_q.weight": "277de9953a8d3cff894ffd06c15ad0ee1407e319df0c1a693d4f45fa9c74ac7f", | ||||
|   "blk.21.attn_v.weight": "6bfdc16cfb898909b7788ddd39dd04b928f31d6732772195d53c558004638dca", | ||||
|   "blk.21.ffn_down.weight": "173877146cb94801157796ee9e5eecf3f46acb3b5e797f90b83a3fc22395eb30", | ||||
|   "blk.21.ffn_gate.weight": "53146713e2ca1be80496024077a028f6b6d749b02e71003c349e113b436f48f4", | ||||
|   "blk.21.ffn_norm.weight": "b28b97e18ab20a5c553ba422f7d7f6014f5902f1d62a69abd20d9fe19a5f9462", | ||||
|   "blk.21.ffn_up.weight": "5c39d0ac4d602b8ec8909dade93b2efcd6b6d9d84a19b252d76bb66dcfaab87c", | ||||
|   "blk.22.attn_k.weight": "01f26272c82917a87a3ccf922fa1d521a952b05de878241b7efe3525b617ac87", | ||||
|   "blk.22.attn_norm.weight": "5ffc96249d8873b506e9eb7158bdfd07fa1429e53c1951430ca7505d25f11c76", | ||||
|   "blk.22.attn_output.weight": "9c2201569358f720244b9c9497e4da02585a167b1414c8a506b85ad75ba990d0", | ||||
|   "blk.22.attn_q.weight": "906036eb4ddf027f6d920f9356a6a2a5e529b96f4e1231a0496d46b4434a5842", | ||||
|   "blk.22.attn_v.weight": "30ede8b0d166003a4b8a81fc99437f557719fc36e5c4dd510c9f161f36a47e73", | ||||
|   "blk.22.ffn_down.weight": "d04c164beabab30e1837b843e18852260efccfbb9d96a34ddd816e6fb3ba23c5", | ||||
|   "blk.22.ffn_gate.weight": "19c889db6b19179f0a62d5981a1506592c65de83760d67afbe00d202202750a8", | ||||
|   "blk.22.ffn_norm.weight": "4885eff2d851b32dbd306bd632c725857e6d164f0fa8b3d5857e572e6ef98ee9", | ||||
|   "blk.22.ffn_up.weight": "365594d8db8e95cf87cc33ac23947942dc326110175cc8ec5a07b5c7059089a7", | ||||
|   "blk.23.attn_k.weight": "badfea1569da0fc6ab817c5727ca3a69b07d9cfd622fb8be5e66678d5b3f7ae2", | ||||
|   "blk.23.attn_norm.weight": "8968f78a379ac3ca5458b4ed4251e8d9112aca6d6dd1ef6440b4bb0b380375a4", | ||||
|   "blk.23.attn_output.weight": "93e43393c03956287b1fe31e9735ff1cfe84f4ae56b83dbaebe96275e4e11831", | ||||
|   "blk.23.attn_q.weight": "aaff73c725a8700ae66bf26ac8869dfe96738eff23a8ff340de2ab53400a5795", | ||||
|   "blk.23.attn_v.weight": "3a86a8dcf14a746ed1411f5a7e634064bc4dfd6511c24cfeccfb2c9ebb6b4101", | ||||
|   "blk.23.ffn_down.weight": "d4da6f37bd7ef69bb203f7b0dd59f50bce37432c70627e6cf274ab81548af5cf", | ||||
|   "blk.23.ffn_gate.weight": "5b6072936c4a693923bb4e3d1473fd45545cb02fc07799aca458ef0449a04061", | ||||
|   "blk.23.ffn_norm.weight": "cd76e37025f84773180298ddb15e0d4ba9cfc7d832e19c791049daa47c6d9c10", | ||||
|   "blk.23.ffn_up.weight": "cde43b99b83124a13b2e4753d12674b3a61dfb34c04703007ced3e8e2aee1801", | ||||
|   "blk.24.attn_k.weight": "457379edc4cce4cbbe107385079019bc922264fdfc7bd1d1ae84343a81460c66", | ||||
|   "blk.24.attn_norm.weight": "0ce0dfab2edeede5da419fa7833db78e36222cf25c358d08f3ec664310f031fb", | ||||
|   "blk.24.attn_output.weight": "0cf91c2fd40c204d2fd4b9c85b69281e5ad4ea8442972fcd44b5fc8e835ffdf8", | ||||
|   "blk.24.attn_q.weight": "87ede30c09eafec6a4e6285674c1bc4637140b168b2da4ed34f36fdb6e176cc9", | ||||
|   "blk.24.attn_v.weight": "4c0b078b2798ca35d6d2c2258fe499820d2bc88700654ba4016e4b028f563590", | ||||
|   "blk.24.ffn_down.weight": "cdb8540c32b1ab988f984484928d39f6841f2131c1cebe90ad9456737fccbcaf", | ||||
|   "blk.24.ffn_gate.weight": "da2e0e913648b5526bd2bbb344038dd067639343aed3b413662b064b0db7556e", | ||||
|   "blk.24.ffn_norm.weight": "8940bd781c610d75eb2be63cfc8d869a3af05e53c963dc7fd4c6f653df5a80ab", | ||||
|   "blk.24.ffn_up.weight": "90cbac2a58801abe11ed6c24560aa4acb949f79429f2aa8ff129ac05868bb87d", | ||||
|   "blk.25.attn_k.weight": "90607131e36998e990ce718ad05cbecd1bcaed010931401ce6baa3b0d93ebce6", | ||||
|   "blk.25.attn_norm.weight": "fbf679c85656c04a6cf8fedd5412c1ace22960e6c2d47f2d43997827811fbb97", | ||||
|   "blk.25.attn_output.weight": "08412724ee7a2086514406e6f68fb9f622e10bac25b0c373b294709f4b09bd2b", | ||||
|   "blk.25.attn_q.weight": "9c1238e98a2747654a0d4371d3e7ea8b979867f609dc42482544f25591e85c7f", | ||||
|   "blk.25.attn_v.weight": "a57796a535c6cb09581cbafd6a91dc14adc8cca2a2465a7ffd0aec546cd84074", | ||||
|   "blk.25.ffn_down.weight": "f7e34e8a6391b480da08b52640613ccadce268373934b409759743a1735b74d6", | ||||
|   "blk.25.ffn_gate.weight": "b8d0b2f4612678b5ce42bd4a683f8024514b75fb5ebf6b22c600811e95582ee4", | ||||
|   "blk.25.ffn_norm.weight": "cde1fdba2369d315f3c6940a997c471ec891924e642505db580d732763bd7b75", | ||||
|   "blk.25.ffn_up.weight": "72e700c32ac8b9c47559c2222e45888a480b527ea512075423c5dc01678e2bb3", | ||||
|   "blk.26.attn_k.weight": "6ac83b3414ae75bf3a9055c32e49d2c40fe611ab21f8444f03d2f465d18122c9", | ||||
|   "blk.26.attn_norm.weight": "55f9d6dc9d75973dc75136ecb9d991b4398097ac133070873fb96ec76a6f60bc", | ||||
|   "blk.26.attn_output.weight": "ebc4fcbd15b33263e50ed2ad45740867cce15bc90e1216623babcb1820734509", | ||||
|   "blk.26.attn_q.weight": "080f057521073e412936fe3fee64fd574c8128fa4a148b879d3e598fe4954581", | ||||
|   "blk.26.attn_v.weight": "0fa2830d6746487ac91b243716e4302361f891e4e008eddd14abec47c7809d5e", | ||||
|   "blk.26.ffn_down.weight": "cb2ab8af1653adc57111ada49d2825c6995e338c8208455b92de10e580f60f31", | ||||
|   "blk.26.ffn_gate.weight": "231ce30966086bce2dc0e0afd34a22a1958cfda7a57c41b3b8e9444c5dfde8a6", | ||||
|   "blk.26.ffn_norm.weight": "35d959d25d17b00617590f5d5831bf705c385c51e46297a14375a700effca6af", | ||||
|   "blk.26.ffn_up.weight": "367680c8d332538b467d1ef87cfeb36cc5c6af564c5023c5fb50e728e3438287", | ||||
|   "blk.27.attn_k.weight": "0bfcb351c6d17aeac5b55a915074fbdf00f11c4bda98babb196ac8804805746b", | ||||
|   "blk.27.attn_norm.weight": "5d598a88c2e75ba59dd7ba4fee940bdec92d72038f1286536d2dfb71d008a09c", | ||||
|   "blk.27.attn_output.weight": "23a9da7347336479f6a10ded14cb3f46e06b5bd56dc4b0fbc526c688552ec840", | ||||
|   "blk.27.attn_q.weight": "b83319dba9055f069208e9c9d66da08bc6874f23e575288fcd81697d1777aa54", | ||||
|   "blk.27.attn_v.weight": "36ed34ccb2f36fdf16b2c2dd225a98ea6b7b0e376e7791191136ccd7bd7a4add", | ||||
|   "blk.27.ffn_down.weight": "5488e1d3a58c71b5e9ddda430540b4776b268cfe1457cbc1c2622dedd9e4526e", | ||||
|   "blk.27.ffn_gate.weight": "4ff48011ee0bac39af704849d9132a2410392c87a509c684f2062f6b76b498fb", | ||||
|   "blk.27.ffn_norm.weight": "32afe99675983da3de2961d1b5ca41c98970a356823597fe29e91f6e86abf0e8", | ||||
|   "blk.27.ffn_up.weight": "1eae3088a75629571fdbf6a20f141bc2bb2ed3f5ba2b9fd1d949f80695e442a1", | ||||
|   "blk.28.attn_k.weight": "c4e80af714962d6f9040d2c09f316f4a1cbc3a2e994e19902d7c653cf3c73dba", | ||||
|   "blk.28.attn_norm.weight": "c1ecf85dedc1c83d5d402bb7c94fb8b9c11f1a3e5f64e7680f80912d4a560794", | ||||
|   "blk.28.attn_output.weight": "72ba47c061b21f5ebc5213a455eaf6fc49c8f8e04ff9ce37e6ed4921b629161d", | ||||
|   "blk.28.attn_q.weight": "c4abc47234307f44b8ca789aa6668e298158fa4b459b2c1e84bd581806591cc1", | ||||
|   "blk.28.attn_v.weight": "aeba950799d4950e491ad0fcbe30334e39b8975177990a2cb339031c45ac153c", | ||||
|   "blk.28.ffn_down.weight": "4e84ce382a37b994fb8608df451a60040559e3f4f3241c3b3cb8989a3ed50d83", | ||||
|   "blk.28.ffn_gate.weight": "04df157acdc8e8534ad60acc2d2a4dd3a7a6610f6382535ec728994fa6f83f83", | ||||
|   "blk.28.ffn_norm.weight": "4d0386dae2bd1c1a9d0f9730718333e3a486c3bc6a5c5d482193c75d39832c80", | ||||
|   "blk.28.ffn_up.weight": "fec60bb0a3daf182a14bd8311fe6dd1e3fd020c5fc273e2549cdb1a2d6b79b05", | ||||
|   "blk.29.attn_k.weight": "b0532a263aa5a4e2a7a80adc83fc5dec974493bd18da7f953e7ebfc3f3a19aae", | ||||
|   "blk.29.attn_norm.weight": "593fc3b4000c35b7a59dace09ca1756c08be0105b2edd354a0e1c16c82898859", | ||||
|   "blk.29.attn_output.weight": "315b896f9f0cbacd0ca8937384c3a3a227efa908cb8c3a9125ec00c480e32b9b", | ||||
|   "blk.29.attn_q.weight": "d482d45386d4ad3394f08e9dff233ee3a70d0427d65c0b8fa05905da7e25ca53", | ||||
|   "blk.29.attn_v.weight": "cd3b5a6e2852da796902930a6a84bc87fc6a7c7bf51f8fc23758d12a39013b36", | ||||
|   "blk.29.ffn_down.weight": "5b3dba6f9753bd1b1ebcba65ef5373dd62c38e755c44b7231b95d93d45761f89", | ||||
|   "blk.29.ffn_gate.weight": "8610d9d2db15c256243ffcca3ffd31786d0ada0af0e7c7aa3fd20524370ab036", | ||||
|   "blk.29.ffn_norm.weight": "1a2ef2d38b7ac3e51190b9ccb8b6552ba83ab290e523356a7f851ddb35dedca2", | ||||
|   "blk.29.ffn_up.weight": "a5fdd15811bde16dc27677cf1a4c97daab4c28cb12a9530f1a0e573134fdb69c", | ||||
|   "blk.30.attn_k.weight": "1efeb0b5f4b45a85cdf47300f892ac77ac1f38000ec3653565d1303d1fb8c743", | ||||
|   "blk.30.attn_norm.weight": "c73934c182c7fe80838ec1d0b92f50a583f75f7a3d78d822f009b58ad2c80e65", | ||||
|   "blk.30.attn_output.weight": "3a0fd89de2d274614750345d827a9c886a4f97b343a13cdf680390505df596a3", | ||||
|   "blk.30.attn_q.weight": "711e113362bdb067db843c66236704eb1cd3fc5f40e3767143e96d510686ef4e", | ||||
|   "blk.30.attn_v.weight": "82b12a9a74fd3d91b73cc2e841e2b3f0a5197ccd2998afa17020995f880d2267", | ||||
|   "blk.30.ffn_down.weight": "af9f4b1287c0d824ae22d6e335d19e04a70135b835be7caa2435f1d85e931993", | ||||
|   "blk.30.ffn_gate.weight": "e2ab3e6f15f5c50fca66c084cb6a57a2b6b82406d65150e82ea0437b93dd9a46", | ||||
|   "blk.30.ffn_norm.weight": "c1b9c325c83f00e177386a4d7e769945f2995e60950c4a576c0a2c4ab9703d04", | ||||
|   "blk.30.ffn_up.weight": "9b94a21efd419715d82071b490d3b635cf1e8da080620dcc39e5bde976d7e9a6", | ||||
|   "blk.31.attn_k.weight": "0db0d82e3ddcc2c06209f5f013e1d72a84a996c40bf00186be485b909cc268e8", | ||||
|   "blk.31.attn_norm.weight": "2b8b7239471f57140c5cdfe06bd224a4f6326282f99736e44fba4c7b120ac101", | ||||
|   "blk.31.attn_output.weight": "a310b048840cc3ff2be4b84796340e8e2cdf05ec89d14bd3655c109b2bfa9fcd", | ||||
|   "blk.31.attn_q.weight": "f45e0cd95645175ea82813455356d171838539bc3f7676d877c698f2af0a0eda", | ||||
|   "blk.31.attn_v.weight": "8bde008e809112aa7e7c23e9c3099087bcc557313b01306c87efa0a4a30805ba", | ||||
|   "blk.31.ffn_down.weight": "8266fec7e203fbfad7033120861e44984581ff8b6851d01dfb7b81c5d8fa90ec", | ||||
|   "blk.31.ffn_gate.weight": "b73bc0aa5baf006d9ef6403104891b8133671b0992398fe038380b67e0d7e2cf", | ||||
|   "blk.31.ffn_norm.weight": "9c62cc27a7b6017c1df8ad49bff249a8245e8895c6754f402cd44623fda83268", | ||||
|   "blk.31.ffn_up.weight": "5b970a4694ea3171a0167f6e1636d9f00268bc1c9640430ffc35218494884adb", | ||||
|   "output.weight": "74fa0ef08c57a30e633e7117b1e9c805f833e2e5e21434bc79ddf9c92c6d7330", | ||||
|   "output_norm.weight": "59b8a59fd3fbf39353506116e43e5e76edd0cbf2a2873d869da4cf27a04997c3" | ||||
| } | ||||
							
								
								
									
										348
									
								
								convert/testdata/Mixtral-8x7B-Instruct-v0.1.json
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										348
									
								
								convert/testdata/Mixtral-8x7B-Instruct-v0.1.json
									
									
									
									
										vendored
									
									
								
							| @@ -1,348 +0,0 @@ | ||||
| { | ||||
|   "general.architecture": "llama", | ||||
|   "general.file_type": "1", | ||||
|   "general.quantization_version": "2", | ||||
|   "llama.block_count": "32", | ||||
|   "llama.context_length": "32768", | ||||
|   "llama.embedding_length": "4096", | ||||
|   "llama.feed_forward_length": "14336", | ||||
|   "llama.rope.dimension_count": "128", | ||||
|   "llama.rope.freq_base": "1e+06", | ||||
|   "llama.attention.head_count": "32", | ||||
|   "llama.attention.head_count_kv": "8", | ||||
|   "llama.attention.layer_norm_rms_epsilon": "1e-05", | ||||
|   "llama.expert_count": "8", | ||||
|   "llama.expert_used_count": "2", | ||||
|   "tokenizer.ggml.model": "llama", | ||||
|   "tokenizer.ggml.add_bos_token": "true", | ||||
|   "tokenizer.ggml.add_eos_token": "false", | ||||
|   "tokenizer.ggml.bos_token_id": "1", | ||||
|   "tokenizer.ggml.eos_token_id": "2", | ||||
|   "tokenizer.ggml.unknown_token_id": "0", | ||||
|   "tokenizer.ggml.scores": "e3d3eea80bb41a1213f2d0aa3e8a38581d1f19323be77dbd779c9c7e3b72e676", | ||||
|   "tokenizer.ggml.token_type": "6040635e6bd38d98af06698feb75c1802bad35180ee6ae0a503e38c0f60fd71e", | ||||
|   "tokenizer.ggml.tokens": "604ac4bfbd019e430d7b6cdf18c6c0cd5b967900601f0307f714ec7773aa5ca6", | ||||
|   "token_embd.weight": "1d1d1d39a867d5a4bfb32792a47247d2638c10c95a6259391d02843583505cc4", | ||||
|   "blk.0.ffn_gate_exps.weight": "2e5cd43ac3f26c44f071926ff6c3f239ecc52a34bc9a5b5906d3d4c1bf2fbbfa", | ||||
|   "blk.0.ffn_down_exps.weight": "a4dfc7e7c96e7402eb70279601675b956bb7331da8101e63fe5c0a611b6972e5", | ||||
|   "blk.0.ffn_up_exps.weight": "2d5d87b378b2319c344ed2c642598b6f7cb6beeb582a8ea51abc9ae690d473c3", | ||||
|   "blk.0.ffn_gate_inp.weight": "a46aaf5aba7401ce6e41f158242b4879d34901661f3ede85496cbd0ce79d6314", | ||||
|   "blk.0.attn_norm.weight": "3fe37d913bdd2b65076bcdd6efe64a37b0b03cacbb1b80b9f7089068aa35f38c", | ||||
|   "blk.0.ffn_norm.weight": "5e14308a3c894734eb204c8f558bdc817e94bbd5b4e9cb4094e91ba388c8f7f2", | ||||
|   "blk.0.attn_k.weight": "73d943dcac0911e87bd771f4aa1c901e1bfe1aed293af06e1a67812159859f67", | ||||
|   "blk.0.attn_output.weight": "4c5f754c855e262e8d4c94c6fbbb57af06399dc0e170d7d99a1a17fc9aab9227", | ||||
|   "blk.0.attn_q.weight": "d6fd7403c873d49c05f6f03208f30d99ad34cb3b71c9990c47334d502a8e4c7b", | ||||
|   "blk.0.attn_v.weight": "cf17cf64b2d683bd9de6cebaf60e5c264df6fdc38fe719dde9d54c80334f6366", | ||||
|   "blk.1.ffn_gate_inp.weight": "0d524de81cd915816b4e714bf595ad6946a9130b3de731cd89428b2781230809", | ||||
|   "blk.1.attn_k.weight": "2ea47f412992b374c70674730fe84700e0c8cce177086ce9b6635e42408964bd", | ||||
|   "blk.1.attn_output.weight": "b4b2520794d54113e86c8ff678eacfc62e35be4395a594a6c8c22b4383ebcc0c", | ||||
|   "blk.1.attn_q.weight": "5db930c98c4f91f6eab57eb974c72210b158e366d23d6d2890b2759c053bee33", | ||||
|   "blk.1.attn_v.weight": "079bdde09668394bf7af9f8bc175017b4f48f0ab64e6dd855a4d7561d1693c0f", | ||||
|   "blk.1.ffn_gate_exps.weight": "146a62de19f9ab093deb101f9640534ffc3dc40d69f508be12fc0475d01b0c7a", | ||||
|   "blk.1.ffn_down_exps.weight": "949da94a3c0f375160672a979e85f7def284264b10d48d038238aad5f5ece793", | ||||
|   "blk.1.ffn_up_exps.weight": "7016a3f467d9e3f2f4b4019579ed86b757469cd367f2b225483305376b4bb3c1", | ||||
|   "blk.1.attn_norm.weight": "1614d1e6ed537737275eb888666c7bac533f4eefbe73dec92b591045ca9e1afd", | ||||
|   "blk.1.ffn_norm.weight": "405a455fa7d1ec36894652ceb554bbcb09a07fd6405f42741e66dc4a4665c19c", | ||||
|   "blk.2.ffn_gate_exps.weight": "90d5003fc7421f44220c0842d43128955e91488f6f785fe570b62d81b719e964", | ||||
|   "blk.2.ffn_down_exps.weight": "ecdc2b5a8b504ef0a7833acff47d69b0c1fa9c22126de1bb120ff5e48c3d6e2c", | ||||
|   "blk.2.ffn_up_exps.weight": "2cbd9485a32460d315eb50a2f3b00863fd77245bfe885b7565efac1cdb1f191e", | ||||
|   "blk.2.ffn_gate_inp.weight": "0d0a17a1a2c7a61f2cca49ecbb479154dc93a870873257bc4f225e7607f2e2c2", | ||||
|   "blk.2.attn_norm.weight": "b2e4c5a977f87a6f880896bd73596234c9b83622fa0d7add5892501e3155913c", | ||||
|   "blk.2.ffn_norm.weight": "0ab875b4280afa922376cfc7b9aa3f7071c9432ea1254091ce7de3749df0e8e6", | ||||
|   "blk.2.attn_k.weight": "bb884af51fb51550acfef54ccf1b58ce8284e587806e6a2f88c8265e1ad05a5e", | ||||
|   "blk.2.attn_output.weight": "0f03099ba1ef342ea61af9cd71d028123bbd8b1dd7d7fd9b509aef77815427d9", | ||||
|   "blk.2.attn_q.weight": "8fad0d29eb4c9d24e564774ee3316b9eb7a4c4985e4567111d2c836c830f6cf3", | ||||
|   "blk.2.attn_v.weight": "fe04c847ff677632401a94e7b6b6fdca60391ab21cb23bd791533115de6303a1", | ||||
|   "blk.3.ffn_gate_inp.weight": "29e3aaa724590c070e614af8288939603d2641b0ef11e8c0f476bebb2776673c", | ||||
|   "blk.3.attn_k.weight": "231cc5631def10f7f292d8862d6125ff555164cd70480ac76362149fad204497", | ||||
|   "blk.3.attn_output.weight": "86467a605c62852e05fda1a7ef43150df2cf715fe59785dbcba09f1c27cfa086", | ||||
|   "blk.3.attn_q.weight": "901822402453922225c2d6ac79616691d48217635d5ff7338daa971d5ddee210", | ||||
|   "blk.3.attn_v.weight": "27030784f44375720df2f090933645a31a022d3fb3b14573e5ca0b78f44070c1", | ||||
|   "blk.3.ffn_gate_exps.weight": "231ba59cc0b988d125d77bf627aa3f04636684870af88f081f3944b48a160d86", | ||||
|   "blk.3.ffn_down_exps.weight": "530c3ab44ae4d66e8afa4d10c153ba5dfcdfb7321989a988e62e9d12e7234625", | ||||
|   "blk.3.ffn_up_exps.weight": "b85c2d4d9d11332e702b3c0a6610d4f525f9a93e5d12f5c7c55c592c40755e75", | ||||
|   "blk.3.attn_norm.weight": "05dbb6d88cfa6b199f9d705ccbda97c0ef13f9ec875c595398a1a42d009a4555", | ||||
|   "blk.3.ffn_norm.weight": "6880b1c27d46969ce36fac049c05dc8b89e4bb47dc89df357e32df7e18fc512e", | ||||
|   "blk.4.ffn_gate_exps.weight": "a883b4f225b760c5a2f6605dc5e2167ab85bb398c70bf64ceb539fcbd6128dcd", | ||||
|   "blk.4.ffn_down_exps.weight": "d291bb656aae77947d4b525e2819bf4112afece53ff31de9dab999af1f65f9c4", | ||||
|   "blk.4.ffn_up_exps.weight": "38592afb8ba3dcfb26970f906174f7d3fa62da44fa4be4fc6912a19030ea9164", | ||||
|   "blk.4.ffn_gate_inp.weight": "1596cb74e8fd6c3080b937b06468bb397b0dbb661e6d180a6bcbdc43e8bfd0c6", | ||||
|   "blk.4.attn_norm.weight": "f90c83c5ff4366281d283384efc941620542b9cfdea160d678dc54a75e33f758", | ||||
|   "blk.4.ffn_norm.weight": "d28d8c49d1746b7cc085562d1074905fd14023844de823dc4fb22202bb280790", | ||||
|   "blk.4.attn_k.weight": "792bbf412cc357140fdaba543e547a9b2f7582919e307bbd9a80c7d6d8f5f1f9", | ||||
|   "blk.4.attn_output.weight": "d98e4a062d2631d9c315f1990d5f6ca9a88e7e0e46387f611ccb0353f876aa12", | ||||
|   "blk.4.attn_q.weight": "1a11a55a91d9f748a72176ff6b1c174844df406e00d1b66b9aa64dc6ee4bcd1d", | ||||
|   "blk.4.attn_v.weight": "04cb3c02b12a6313c7ac7044513441083d534fb4c5a3f63bbaa58f7edbd2fadb", | ||||
|   "blk.5.ffn_gate_inp.weight": "cbd5cdf015d33a2da6703eb74c22fcb97581fb9175435173b6dc4f9e8364320d", | ||||
|   "blk.5.attn_k.weight": "4fdf3405e4d657403f5647b51233521310ee984b4b81bbcd901cb3e6ab76b7ff", | ||||
|   "blk.5.attn_output.weight": "4a25662c46979a29600ed77e1907cf81fb16ef30e724c155444e54ccb76af481", | ||||
|   "blk.5.attn_q.weight": "e2acb30e30b97300039bb20ad0878f05159d5657fa811748a51d5b6fb35d631e", | ||||
|   "blk.5.attn_v.weight": "306504b6a26aa123c63dbbed3f4ced0ed2ee8fb6a30bf0093539b817539f5ece", | ||||
|   "blk.5.ffn_gate_exps.weight": "7e34df9b9944dbeea5e8565786d3aa6937314a4b87acd4d0874687877c5a39fd", | ||||
|   "blk.5.ffn_down_exps.weight": "c4b7a57a42b5ac0a8ae27dcd5cb2646d7a7cc7123126d44a56ab128e85f60b13", | ||||
|   "blk.5.ffn_up_exps.weight": "09d47593b6dd6c664a9155bff02fc2eb7ac4a70219a88162d05c802a01d3c6ba", | ||||
|   "blk.5.attn_norm.weight": "58804a036d6ac4c1fe357b8b6a97a5c37cae1c2f06ee0086c041d449c1c6ef6a", | ||||
|   "blk.5.ffn_norm.weight": "d872dee6789f0826211aa46ca9d0869e3e96bcace9e77d6559a7b6f3e524f3ca", | ||||
|   "blk.6.ffn_gate_inp.weight": "fb1eae732e974d6c1d020a5b4ef98c5f33016f984701bcea656f999a99daad66", | ||||
|   "blk.6.attn_k.weight": "55e9c59c5051ab5519b3a7962e1b5fa96a3c0251cb6200dc2f177885ad2de470", | ||||
|   "blk.6.attn_output.weight": "f3c834a8d0027370350e2b6294d95434d31432e57be6313b013c15a56303d61c", | ||||
|   "blk.6.attn_q.weight": "efaefe5f11c2140dc7cb532b0832c2a0b363a165cbda21f00fadae77efca377b", | ||||
|   "blk.6.attn_v.weight": "900bd734d75616d846a90a121c97e081c956a3d1ab012f66dd0bc62c43e1ec3c", | ||||
|   "blk.6.ffn_gate_exps.weight": "312a99661b1468fcaed2474621116f1681432755e973f3ee79d01912974fd424", | ||||
|   "blk.6.ffn_down_exps.weight": "ac9cd7db67a2ef0d2b5def86873673d05e48d49d147dd944469dbb8e2d4c46f6", | ||||
|   "blk.6.ffn_up_exps.weight": "57613e7e09579400a1a09fee4445acfbfe83f2f327fdf317877787d96ada6b84", | ||||
|   "blk.6.attn_norm.weight": "0e8801e09885c633bc01a9a5b85d4e878d30158a4eb41a937dc5b760ebd044cb", | ||||
|   "blk.6.ffn_norm.weight": "b8c58062ac93072f878446b0e7f958c737aa47fb769fc3a8f593133d12db2dd1", | ||||
|   "blk.7.ffn_gate_exps.weight": "1ef611732ff13edfa8d30981ed9dac00c15ceba9fc012ed0b199e9280a849948", | ||||
|   "blk.7.ffn_down_exps.weight": "856c6811945c7b0fa461ca17811cfa43436b4cdf5326bad23cbc30883486d7cc", | ||||
|   "blk.7.ffn_up_exps.weight": "6725e3e33994302ee13fa5ec163631ce2dcaa08aadde8fc166c2265d4561c5c5", | ||||
|   "blk.7.ffn_gate_inp.weight": "36b49d7f80c1003dc392b2c1b9960cd49889dd69e77b26b9e4b13d01f3d0a32a", | ||||
|   "blk.7.attn_norm.weight": "7a0ec49acc5e20ee71c6f80ca02f4f1e564c485e0ae0621309e7c2eb0c616cf0", | ||||
|   "blk.7.ffn_norm.weight": "eeae035c39ab6e64bc06a4baa1bf6e50d4c8b8797cb0ad8abd48be86974802c0", | ||||
|   "blk.7.attn_k.weight": "e8f78c1def01a7a38d2d9bf7becb17755e28fefe4927856f7890fbee52840187", | ||||
|   "blk.7.attn_output.weight": "5367f05ac3bb49ef8745ba5902e1bdd4442415a3ebff2c7e1a3918d7be6fe948", | ||||
|   "blk.7.attn_q.weight": "37c95fc5acc55a4f6e5f02cab9be60e4fe54c08b65f98f4455741b4aa542ff4e", | ||||
|   "blk.7.attn_v.weight": "c89f1343486ba55814233511e94090f7365662a8a4214aa4c278cdadc79196c2", | ||||
|   "blk.8.ffn_gate_inp.weight": "4e239afe8c7afb8de3a005757c887cf14b1622ca2d224227591cb0e5301f4c17", | ||||
|   "blk.8.attn_k.weight": "2ad0229f30fdcc1e85ce64e00d8f75902238294844a81d5af43e14ba75c02983", | ||||
|   "blk.8.attn_output.weight": "2e44a4722acb3b521b81d0b910f8ca2f6c286d874a92ddd02150566454061699", | ||||
|   "blk.8.attn_q.weight": "1cd2b09cb2f43e08de776b5f7eac197a5a6d4ffdfd52b21baa36319450147bd0", | ||||
|   "blk.8.attn_v.weight": "5a22c57ebfd33ac500cbcfd321d5b5b1783f8728801db6f3f8bed51c7183e4db", | ||||
|   "blk.8.ffn_gate_exps.weight": "91063fe56cb4f3ff3b41052bb5046fcf8ef61516a603ee90aab893a9d68c15a7", | ||||
|   "blk.8.ffn_down_exps.weight": "d4c3abc8f1d1b462f67f70bd8f404b3fcf45dceeaa8527fa120527254c383c90", | ||||
|   "blk.8.ffn_up_exps.weight": "76a1a1f08ec577716a2e7027b45293e9205751126424f1bebe1de89c78f087d5", | ||||
|   "blk.8.attn_norm.weight": "f980d774da39eb76c52358afac3e38cb4c81cb323deaabbe5c41822e3f17a98e", | ||||
|   "blk.8.ffn_norm.weight": "1c937658cf90f1a85db9a5f26e077730fdd4b694607dbeeb825c5fb2bc407e0b", | ||||
|   "blk.9.ffn_gate_exps.weight": "a2532471ecb7896d5c78e5a34e10cfaf4125265e1595166c8d0d0dfbe2a3187f", | ||||
|   "blk.9.ffn_down_exps.weight": "b47921a28412d48fee450b8b9d97cee42344a2e69f06d407fd9523d7adf13333", | ||||
|   "blk.9.ffn_up_exps.weight": "7c461bd1b2a73b439cff6a10d94afa01e8b06f7e6f09d9a6f28e3876aef48bce", | ||||
|   "blk.9.ffn_gate_inp.weight": "1648dfb08b5c06d7953a5a97ecb764995fae9487fb729a1c867023b2538149d0", | ||||
|   "blk.9.attn_norm.weight": "8635db0f299882a63b7cfcd1d4259c9e53fab22c31d3d054de36b1001380b31b", | ||||
|   "blk.9.ffn_norm.weight": "f9309aa323062d174c463613afef9b0a33501b510bfaa58a8e0e866d12ffef3c", | ||||
|   "blk.9.attn_k.weight": "dfe62030441e947a588512d18d9c6e4ed72c2f71c227d622c095e4263b23dadf", | ||||
|   "blk.9.attn_output.weight": "1977beb75c6349c50ba7dd3865d7c0a9c5c5ddc854413147b0eec98ac4fda351", | ||||
|   "blk.9.attn_q.weight": "eb132596719605cd6bd1782487f121994629e115190edd69240b12af66e734f5", | ||||
|   "blk.9.attn_v.weight": "9e708f15d332d7c5187b0693b1a977eb30a2fa10bf7df48ed9d7537c0aa6ed99", | ||||
|   "blk.10.ffn_gate_inp.weight": "97503a5d166c1925f9b65c0eed980753d411714d66896f3d0fad5286c7aba702", | ||||
|   "blk.10.attn_k.weight": "1ebdd222336bd25b48df1b138cdbe09021c4a5562ea7cb78cadd1255d2be3a39", | ||||
|   "blk.10.attn_output.weight": "5e98faa38e9d514b9057e1c8342c509cbe1083defd518e506f6bad89117d1f5a", | ||||
|   "blk.10.attn_q.weight": "3323a26c87d936d1dd87c577d0b763459fced726679612c874b3de5fc6d969c5", | ||||
|   "blk.10.attn_v.weight": "d5fa73cb56aca388e205f44455e4b4f676fdc12ed7fac4542fbb3b41ecea59ad", | ||||
|   "blk.10.ffn_gate_exps.weight": "225021b53782800906cd13b70be3a4161e8b300b97f984a959ccad6a6e8adcbd", | ||||
|   "blk.10.ffn_down_exps.weight": "f08eb91526bd22f5fd0402fe925d6141cdbb308a1ced0330858d0c85c71f5ef3", | ||||
|   "blk.10.ffn_up_exps.weight": "a9f688350c3b53eaada5103b5848bd9a3d7d6b327a70fa16c24bf28ece933eac", | ||||
|   "blk.10.attn_norm.weight": "5ba426c9dfc79805015ccd76cd1068b0ad3bb7a8453e14bb1d35486f122d8f95", | ||||
|   "blk.10.ffn_norm.weight": "98891d6acbc3986b2581b7a3af9f5946a392d9188972c6a8b15d4e745a4f2482", | ||||
|   "blk.11.ffn_gate_inp.weight": "b2365a60566e7dace892e1cb0e62eb73ce387352601723e847052b34874feaa6", | ||||
|   "blk.11.attn_k.weight": "0efbc1d1430505543ff71532a4fcda821aeac616ef6c1dca40e00d4f2ff70bea", | ||||
|   "blk.11.attn_output.weight": "3d5bd4d9a41236f30d4293edb9ae27beaa113ffb31b4fbfadff3a4c370dfd3e6", | ||||
|   "blk.11.attn_q.weight": "aa11e9db14dd9c77951511443077c2a1a78070753d7bd3d9811038473f69e325", | ||||
|   "blk.11.attn_v.weight": "5adc567f377aa11d1763d35f50e53fb2896a8b03b623ac36acc45efa2486d512", | ||||
|   "blk.11.ffn_gate_exps.weight": "71d07d982aabfab9eed3c733d49c20f023bf475368fc71db5084d91beadc4b47", | ||||
|   "blk.11.ffn_down_exps.weight": "9a06e61461e48b3925a9f7d9cca634d048c8b62163d7bc5c43e35899f959319e", | ||||
|   "blk.11.ffn_up_exps.weight": "bc05494d0dcec61021b3ac0c5bc1bf502736cadf48224e213bc139d562699a89", | ||||
|   "blk.11.attn_norm.weight": "a5758a10bdd0404ae1470e8e9db903985d4d07f60553c5001a5e7b660d4f7ada", | ||||
|   "blk.11.ffn_norm.weight": "814ae037563aad3771787316bec4806c95bf6f5991dd6474b4b1e5cc13dc18ee", | ||||
|   "blk.12.ffn_gate_exps.weight": "3a68b831ba1606fb9ef6dffed4732032447ecef23ea563ff4e79317586c7eb49", | ||||
|   "blk.12.ffn_down_exps.weight": "268b25e13f4b7beab08686e83705a41b21d15251809ee4784526f78a580da829", | ||||
|   "blk.12.ffn_up_exps.weight": "9105751a5b5b42ca2614d0456f24f779d2e2ac8cdff0f96842aa7ae2b70f341e", | ||||
|   "blk.12.ffn_gate_inp.weight": "d0de1558cc1d458c5c504f63ddc59785c323df7330474bb0644c346104b40a3a", | ||||
|   "blk.12.attn_norm.weight": "859a4c8113678e2e202d10299850e0cfb52eb11ea50bcbf4fe3ff39bdd394154", | ||||
|   "blk.12.ffn_norm.weight": "7fbf4c459c1760218877e9ee3f5ad49e960956a4369bcfe96c143f04ff9ddf97", | ||||
|   "blk.12.attn_k.weight": "0a7e254fdf3730a57372b6ff421a613eabaea68cdefd64800857941411318374", | ||||
|   "blk.12.attn_output.weight": "ceb763fc15d88af149d8fb78e82db2b7dab3aeae584af8cf7611a12356a397e5", | ||||
|   "blk.12.attn_q.weight": "a43402d23c46cb2d3cb3c2a98c81b19d10026b7e6742370fed6b2880b6e049b5", | ||||
|   "blk.12.attn_v.weight": "3bc24f2c0480ce91ef72993ee8f1cf962f7359e12183424583ffa1246bf3db52", | ||||
|   "blk.13.ffn_gate_inp.weight": "a6d68c82bfe66d8bab68f980f5f18268a9e2c0cd6b8832ed39010e0de198ae05", | ||||
|   "blk.13.attn_k.weight": "0166c39546b37dc2e01b2b396ba43e183f797dd04eaa51a6d103d8b58ee4bace", | ||||
|   "blk.13.attn_output.weight": "2ce5eb198deab9557475a58b69b11e9874b547e05c23f223c6e42fa35ddca069", | ||||
|   "blk.13.attn_q.weight": "745c1bbdf434284a7fae98f45e821c076dd9c2a2467dba6a9d8cf0041e419dbc", | ||||
|   "blk.13.attn_v.weight": "9ece68d5ac64d1421ea7aa32e1cff9cc1fecf5175f4c4da858dd31d8633e3337", | ||||
|   "blk.13.ffn_gate_exps.weight": "ccfdcb4670b131689de12d396a010b5ea737795cf5c15a14a304d720b3c7c899", | ||||
|   "blk.13.ffn_down_exps.weight": "8b8fb328664764f1aaa5cbdec336d5654e981e965a02ef622bde5f07ea1c164d", | ||||
|   "blk.13.ffn_up_exps.weight": "d2ace0236c2fb3365fdc85499d676a7f65813c48e5085348b1df1799922766ec", | ||||
|   "blk.13.attn_norm.weight": "1ed29d7d89ce52d7cb4d57e895ff7115430466e917136c049c385c030ed44e9c", | ||||
|   "blk.13.ffn_norm.weight": "a194fc542597a4dcfdfaec5e3cba2a2b2b21b21edfc87c39c0d7f7651355bc4d", | ||||
|   "blk.14.ffn_gate_exps.weight": "a625e3574e5e740e7f8e2f9c40390f2f382c720aab5b10534e298002dd8d1fb9", | ||||
|   "blk.14.ffn_down_exps.weight": "bc366f015b83c865946afd74c8a884943e0ea2c671314a0b7bb72f21a44d2f78", | ||||
|   "blk.14.ffn_up_exps.weight": "ee3199bf2086de77b49f57f487676be8ee70e102a2fb5a5ef8ddbbc28a9eff41", | ||||
|   "blk.14.ffn_gate_inp.weight": "2b437870c850fa2e2044d032bb02908af634356e37466fdae260b933e48ee8b4", | ||||
|   "blk.14.attn_norm.weight": "cd8344d193a1cbd42bd898e17f4bcb1ca0b2918420fbdafa9249a6f2b7f4ae06", | ||||
|   "blk.14.ffn_norm.weight": "70eec40374e558fed5b07257283cf36342b6b0129285a00007deb59c32c9f7c8", | ||||
|   "blk.14.attn_k.weight": "4053bdb507e0543d724b632570bac86b31707696d90a0db44c49b2a082e0d599", | ||||
|   "blk.14.attn_output.weight": "0182632cb0e06a07241b8293d25d109fbc1862e1e337d435f908e8681e2eb1ab", | ||||
|   "blk.14.attn_q.weight": "ffc7794a4c1b6f793c842dba969435330a7a80b9212e457b4b2ac33e68b41241", | ||||
|   "blk.14.attn_v.weight": "6411805292d528e61bbaad8f9aab9dd073529a17946c057fb06864fad9cf3211", | ||||
|   "blk.15.ffn_gate_inp.weight": "77d0744567c76e6abb67f81ba9c715b2b544841186d5b948309571eff213bafb", | ||||
|   "blk.15.attn_k.weight": "1f7957954ea4c6521c257b35a360e868ffa02bdb3de91f146d5e06bb4a545c98", | ||||
|   "blk.15.attn_output.weight": "d7809d36bd8d3342240c46fd87bcc7f9821a222f48d9a95e45ae50460265d3cf", | ||||
|   "blk.15.attn_q.weight": "25f509313ae4d8401b871904059f472a26f5714e7c791c725de77a1a522c976e", | ||||
|   "blk.15.attn_v.weight": "96fedf5a591fc0f020e6de10fd72ff12b3ef9cf70cd21dabaa0d3e7b06f54e73", | ||||
|   "blk.15.ffn_gate_exps.weight": "8f950d976b2fd9a3d213b84123cf114c1377efde9352767fb2ddee89e177c8ef", | ||||
|   "blk.15.ffn_down_exps.weight": "6fd09d1557bb94b06efbd4f6a1ca4be532a202ba290e9315bc8da3d12a5c4c4a", | ||||
|   "blk.15.ffn_up_exps.weight": "cbeb59ae7b0266a928dc7e3a6e70a9330b92f9ee1b17ee1ed91022108204a33c", | ||||
|   "blk.15.attn_norm.weight": "2005330911ac2edc7b6d27aca021c67d30d16eb632e49b1a13f30fdb2717aed0", | ||||
|   "blk.15.ffn_norm.weight": "0e9198f3b548eb78acc8961f2b3350d238d26cec110933ba753a8cf0035c501c", | ||||
|   "blk.16.ffn_gate_inp.weight": "a41d1f99d739c8b150c3945b6949763988d0c6a4c5a2b5855592ca1a48ed23d5", | ||||
|   "blk.16.attn_k.weight": "b624e2ec88c2d3047f60530fb87e72cb4a5e655a9663f6f3e9b09e5ad32cddaa", | ||||
|   "blk.16.attn_output.weight": "687759ea75e45108526ffc1573d6fdf084728079bfc2dc89b9979e76280f43c4", | ||||
|   "blk.16.attn_q.weight": "beff3a45c7e9ec82ffc6d3c701126be28654d10aabd747d03441210491fd31b6", | ||||
|   "blk.16.attn_v.weight": "43a349b13f0b9d040cacecd942bcb168c030fef8c75c987d59a4fce6c14e855b", | ||||
|   "blk.16.ffn_gate_exps.weight": "793406d6c13d727c82bb7b692ca98d65ca975baee69fc57be5378d77c5a19b62", | ||||
|   "blk.16.ffn_down_exps.weight": "9bad3dd150d0230404b7f886ac7ff8803225757e813f195cdb26bad245243b4d", | ||||
|   "blk.16.ffn_up_exps.weight": "7449d663023fea3496475bf0a9c1de7272ad0ce9adcb3265e8e424badaa674dc", | ||||
|   "blk.16.attn_norm.weight": "a424ce34c195a401df1ce37ac4f2794e8a6720b1ee8acb21428e2b68c65e0125", | ||||
|   "blk.16.ffn_norm.weight": "405a68bb8e16e1064df2de55ca3cd9ceddda1d9fc0af007a9bd7cad4b2676248", | ||||
|   "blk.17.ffn_gate_exps.weight": "97c6e5321491ca5dc039ee88da0eb0e78f347372785411809af84b3298cb19dd", | ||||
|   "blk.17.ffn_down_exps.weight": "1617ac19788a1be19bac69277408761e6bdf5719d63a8c7fea14d41cc27641b5", | ||||
|   "blk.17.ffn_up_exps.weight": "4ead1c365f112581c10610ea3f63d2a1474311d2503d2060fed4b458ef337f5d", | ||||
|   "blk.17.ffn_gate_inp.weight": "ed4b3393f2523f2b5e0fc7680a1caa2842e605728a529b5af68a7fa8d7abf940", | ||||
|   "blk.17.attn_norm.weight": "beac17ef86a7fb2b5840cc72f7a95a5e3d6bd24e7fa698e0b0ebb9bdac45c561", | ||||
|   "blk.17.ffn_norm.weight": "81cb58ec6d6dc02a0b4ede10adc336dc865fa76f982d4eab0e4a37b40f5b0fac", | ||||
|   "blk.17.attn_k.weight": "eab569e5ea8c8b05e5a6a209fba031129453c2e28181eee3e736b3b04b36bbec", | ||||
|   "blk.17.attn_output.weight": "f85b70f01438ce8fe5d10599b113f30bf18dee2bbae0657d3eba295870001db3", | ||||
|   "blk.17.attn_q.weight": "887ceebfbf6a2b94b43d2df4439ac3a5bbc29311d4b28addc04d525546032047", | ||||
|   "blk.17.attn_v.weight": "2df9414d65014c06a93da22ba3a668be7b83e2e8008e98d7771f7dfebed98298", | ||||
|   "blk.18.ffn_gate_inp.weight": "9b07741a0950fc667e5fd25937e33bc22e1f764f80eb4ff3119f005327ae0f6e", | ||||
|   "blk.18.attn_k.weight": "8649598dbb63938744c39bcda5ce8c31773e29c573be8d4d2c114f5030f8d3e8", | ||||
|   "blk.18.attn_output.weight": "f8e391adb92622298ca834d5d1eda48b69c3b1c51c5a584ef6c54a725c298d75", | ||||
|   "blk.18.attn_q.weight": "84bf8708a2eed618f48f69c178ed7dd11fa4c468102376e72e910ebd037d131f", | ||||
|   "blk.18.attn_v.weight": "31db3cd773f09548c2c1b1eac2718e46364a7810970fe9c433fad9d8de5397eb", | ||||
|   "blk.18.ffn_gate_exps.weight": "be2a2ba378002f1b61f86c273a69eede9b93786d5ce96b4fee1861f730dca4c4", | ||||
|   "blk.18.ffn_down_exps.weight": "d35196159e37705db50a5343e3989f7335477f1a4add67ef42ad64a638cd07ae", | ||||
|   "blk.18.ffn_up_exps.weight": "c6ceedd86e97913a6dcadc838e7abb762d629fb8dd55f15cf02fd9bd66d2ba78", | ||||
|   "blk.18.attn_norm.weight": "41f0b1ad83d6e3cb9fbe0d27878c2e7ad4a351b9f554a6bc9117c01745cdf6e5", | ||||
|   "blk.18.ffn_norm.weight": "96646204bd0d82f25dc77faba4dbd86b1332e449313e6684e00122da8be99057", | ||||
|   "blk.19.ffn_gate_exps.weight": "c6eb7f61e7938bda0492dbc05e51e8f631c99224fe18e99861fc4fc53ba9e9ff", | ||||
|   "blk.19.ffn_down_exps.weight": "4384803da3a3a3d44120d7dd192fe2c9bbd9a1a0cb492dbec1fdd7565230f1e8", | ||||
|   "blk.19.ffn_up_exps.weight": "22d73de2fbb8bb0f1bd2caf17fad8a355c47d914143f7f6e6d0128f66f074a60", | ||||
|   "blk.19.ffn_gate_inp.weight": "9a0cc4a2301a5634022fbce41189021bf0d1a961792d2d9330fd35556d18e5bd", | ||||
|   "blk.19.attn_norm.weight": "c5cc56ec5df9a1f7d5ad71fbda49f1433132e58895d45cb44c73420bd61ebd6b", | ||||
|   "blk.19.ffn_norm.weight": "77e17de741742ef2482fc7872fd423c8e3c1454dc4d2be89ee939084b6d78bc0", | ||||
|   "blk.19.attn_k.weight": "a92ea36ce2e3569656306aeefb835ccd5d1b03b33a86e0d3d030644cc923b813", | ||||
|   "blk.19.attn_output.weight": "5e2a912b37855f84ea964907a1a86d609cbdd79efa0c93c3e8e2fc07caf7c226", | ||||
|   "blk.19.attn_q.weight": "4ef3a5913292ac3c1a6fd3e9e53d011021f2b41d0276cf849706d1ca925cf7a7", | ||||
|   "blk.19.attn_v.weight": "42981b75b68ae852cee638b5433605c147da4392aaa6d7a06e756115b0171f39", | ||||
|   "blk.20.ffn_gate_inp.weight": "71381b9879a7c80b9f7b475abc0aa31b8cd71ccc00856ebe89764a2acb9df2dc", | ||||
|   "blk.20.attn_k.weight": "1928b7ebc054eb3967929ed6fb446314d5352f4aaf8b475ce55c6345019f2ea4", | ||||
|   "blk.20.attn_output.weight": "6071ecd9ca91af0d2ba93fef4a1a56f3b243dd70f862a21a2d164d56f386043b", | ||||
|   "blk.20.attn_q.weight": "002e95042a40f36ceed5829e3d0c8072e5f5e4ee86a089e2902b2348fed24dd5", | ||||
|   "blk.20.attn_v.weight": "42f509cdb1c0e298f89f896e349be86952c5168e49b3f83bb17badbcb7596d57", | ||||
|   "blk.20.ffn_gate_exps.weight": "a684a3ffe4b0a57c819a5fa9cb3521de223f392732927271e97ce925b6e33765", | ||||
|   "blk.20.ffn_down_exps.weight": "e3081a7bc7ba750d8a4886bc8ca4f231b55db4ca082b54b4106c7531964725cb", | ||||
|   "blk.20.ffn_up_exps.weight": "fad0fd5eca36ab154788da28be8ec25bb5d6db06c9d133db89e96df358a2f6a2", | ||||
|   "blk.20.attn_norm.weight": "c3e3f2429715ae95e884ef1246b0b461b23c5cc0ed08beecf70a14cddd184820", | ||||
|   "blk.20.ffn_norm.weight": "ff31f609dda65ca496b0584fabea6550e42edd05ebf229812aa6b7bb5ede15e6", | ||||
|   "blk.21.ffn_gate_exps.weight": "366f09ef0ecfb86808eb3296cc9abdb957951d27f6533c03f1422b54061da660", | ||||
|   "blk.21.ffn_down_exps.weight": "3fc495947d27fcca7fc0893c8a96e5d48ba27b2c8c58f8fcfb8dcfcd5539741c", | ||||
|   "blk.21.ffn_up_exps.weight": "6713ed51410bcc8283cbb001c4ad784098f25701e8021f4fa4f411e186859c4a", | ||||
|   "blk.21.ffn_gate_inp.weight": "6d4c92c01ec801647134d907bf1108878156df266a6107abc10526332b328b93", | ||||
|   "blk.21.attn_norm.weight": "27605719ae2df24f4f2e85a730927cab20367631612cb501631f6bbf38eb1209", | ||||
|   "blk.21.ffn_norm.weight": "ca80ee8177db185b15a4a378c1cb6f7143c76546a7f1726bda23f329323d4ffa", | ||||
|   "blk.21.attn_k.weight": "9e49f743d4a5bda9b4bd9c40c2ca37cdae5aec7e54cb193897ac8b4945ada14d", | ||||
|   "blk.21.attn_output.weight": "ab923540879753feaed152f5950f69cdd83d8f2413ca873f5f038b63ab0aea12", | ||||
|   "blk.21.attn_q.weight": "62617fc3f1c9d2aa672a4d91a121c7a91b92d145b65e75f0b06b4bb7c825dc36", | ||||
|   "blk.21.attn_v.weight": "15f8b2e72f8e8e992f2f6b3e93238a9d7be7bd6136f91c9d04b4b4cd0cd60369", | ||||
|   "blk.22.ffn_gate_inp.weight": "3ddb1773d9257b68add7a2a4e94dad25ed926803e02707863dd742ab9b2dc179", | ||||
|   "blk.22.attn_k.weight": "680e45a9e8d5feddee5266e119dc053bf80718fa9af1cf6803e6f493b265f1eb", | ||||
|   "blk.22.attn_output.weight": "0d5fae3402fb2c5aa3a860010e3973fc8e3168d1015f7a76b7b2964681693206", | ||||
|   "blk.22.attn_q.weight": "eee7e3d426ab533bd18d62c9aa142eedbde394bed07db58313e0fccc82a23237", | ||||
|   "blk.22.attn_v.weight": "26b5be1fe3c2b6824c5a648a3e4bdf17691904526fca158fbc3ebb627b67e2f4", | ||||
|   "blk.22.ffn_gate_exps.weight": "32ab7a7735313d60f6a75229b1aeee940b6aee176c9648536bf5921b0dc2929a", | ||||
|   "blk.22.ffn_down_exps.weight": "67590808f6a67777d3eb7976c31fe616d388b98fecbb12253b72d1241d70753f", | ||||
|   "blk.22.ffn_up_exps.weight": "fc245c0183e6d90829ff5e71a4ec93e4860b3d4c1a17b9dda2fb64f5f5c9ed32", | ||||
|   "blk.22.attn_norm.weight": "128e99d206d4d6724758ec97468af767fa0aea592149c324b731659c1e74a1a8", | ||||
|   "blk.22.ffn_norm.weight": "e45f498033f0cffa15da0eff2c47b4472e43fcf8921729fc4eeb2e3a6b3c78e2", | ||||
|   "blk.23.ffn_gate_inp.weight": "d63e686f5325fbc89fa242c2c52a3b8ff54f867dca914c9ae6eea13e9d6f46e5", | ||||
|   "blk.23.attn_k.weight": "f71f5a577f46ea12b1818f3a5ff4b85ddc45f9a2afb0fa2e041d71a3e31c6779", | ||||
|   "blk.23.attn_output.weight": "92b13563c1e0eac0d748fb67b235dfd7a64c8f16e2dafb316885744582e23b4b", | ||||
|   "blk.23.attn_q.weight": "2f9b9c35dc4f912f3f51c06e2d68f417b51a0de0a84aac530a64f9d3d7b0a2dd", | ||||
|   "blk.23.attn_v.weight": "268e40813806e74a5c364b19556d087bf8374e76e7b6fcf55c381eb7da13ccd1", | ||||
|   "blk.23.ffn_gate_exps.weight": "12f857e7a7ce228afac34d99b602c8d6fe96984f2a21118f459a58cb767ee65e", | ||||
|   "blk.23.ffn_down_exps.weight": "cdb082c16599c3bb36a28066dcc122d9529b54fa91b6cf0153437ec960a5e16d", | ||||
|   "blk.23.ffn_up_exps.weight": "f4b99f6f44d7b8b5a305894e88633bf5938fc1f6303a2b2092399da9c8b64d7c", | ||||
|   "blk.23.attn_norm.weight": "a691392210383915916b4d3886d5e4d56e7855e27e37e414fbd73bf66b3712e6", | ||||
|   "blk.23.ffn_norm.weight": "0c3dc72f667e5ae19b69bfa9f2bd2a01a57681f89ef9527bad4eb0d8c7b70da8", | ||||
|   "blk.24.ffn_gate_exps.weight": "86baca2a3157994df7fd8ced5e08436d5c1810dc29c0715637c36de723e0e7d1", | ||||
|   "blk.24.ffn_down_exps.weight": "ac5d559562b35c34993e34b071f66d15c65be5907797078c2d2a49aba54e3192", | ||||
|   "blk.24.ffn_up_exps.weight": "fce0a099cf09777f44fbab3606ceb75f7fae6f0b80725f9e871654b8cdf9262a", | ||||
|   "blk.24.ffn_gate_inp.weight": "e7c6800c0cfc56b565b2d35ad6f1dbfdb70dd0b05b338bc8da2286ffc3678d79", | ||||
|   "blk.24.attn_norm.weight": "dc6cc18ec52d102d015153c4a1132f9d7a504e29cbdec81c5edbf3b9e65815e1", | ||||
|   "blk.24.ffn_norm.weight": "480d5a1397af5e0e657f1e67d20ec0cdef5724e71246a326843321b87ffabd33", | ||||
|   "blk.24.attn_k.weight": "338c0597954a9b95a782545b2fe36469553e73f86ae2d2b5697767b28e1c7daa", | ||||
|   "blk.24.attn_output.weight": "a77d23b79933c67e52f1eef7f83a3dff4f767ce0bbcc39572f8cec4acd457643", | ||||
|   "blk.24.attn_q.weight": "45c9478593002be1998e96e70668aafa2dd3972380fbc1df12fb05c24ba959e0", | ||||
|   "blk.24.attn_v.weight": "515729420885408a6a9614bc27cda393ed907521318d14d21335d39a3eff0b61", | ||||
|   "blk.25.ffn_gate_inp.weight": "aae4ac40e9ab3925241f9d784b54b38851d9bc999a6c3bc03fc3f17c9b28a67c", | ||||
|   "blk.25.attn_k.weight": "4ab4808d02396c35b00b426f536015673b71c17ae6cd55bbc2e6bfe7a4c59d0c", | ||||
|   "blk.25.attn_output.weight": "1990bb982b77e0c947cd1a8ef0b36227ee1259e6dbbc2829e5c136edf88675eb", | ||||
|   "blk.25.attn_q.weight": "a1490f3048e8c0ec8784f8550c43adf5cc8d0f2f90131c934713fe4b1b015bd7", | ||||
|   "blk.25.attn_v.weight": "f15e53c6d45b3b6f58808fa968425d65e0b26b7f9b268127a77abb1227c67431", | ||||
|   "blk.25.ffn_gate_exps.weight": "656662447ff54f56ee80f78a1b9483f7efdc40f7375d0cd8a9c72ccf21f77e7b", | ||||
|   "blk.25.ffn_down_exps.weight": "db06f101bccbaef19cced0f6c185166e18202465f4a42cddfd535fbe5cbabb4a", | ||||
|   "blk.25.ffn_up_exps.weight": "584a7b02456f27fe1d8d3c7ccd21d426b6ea887795a3ed77f704596a1e3841d7", | ||||
|   "blk.25.attn_norm.weight": "8f0f3597982930fd237e9d609776c64f2b909a455b21678f83a7ebd4bbb83e64", | ||||
|   "blk.25.ffn_norm.weight": "3e7079c32582afba0c55e032f254adc18d2997705eec860185e9a6dd3d82f07e", | ||||
|   "blk.26.ffn_gate_exps.weight": "e70341691b583b86489812b29b77aa41eb658b1865733d6118da54c66e3bfcc6", | ||||
|   "blk.26.ffn_down_exps.weight": "5c1b812d11dfb064af816ced5ab6463bf9722eefdfc341b8a93705d5038fd781", | ||||
|   "blk.26.ffn_up_exps.weight": "e18118362ae54ef7432781c83884f9fb230a9d934e342aabeda8822ea5f71fb6", | ||||
|   "blk.26.ffn_gate_inp.weight": "cd1c5f6710166b9567c6b74c97b2348b191c60aa860958c6bc264ab095261dff", | ||||
|   "blk.26.attn_norm.weight": "71d087531af2520bda2e676c489e8529cef5db8aeea1eec0a937a8b4f2fa2e54", | ||||
|   "blk.26.ffn_norm.weight": "7f704e936fda28eb5c2cc339f0f6a5f78170b5aa43c01265b21668870d819c82", | ||||
|   "blk.26.attn_k.weight": "1cc62a0ce0ae251275d898c52c4a9fba5995fca10955d2011d10dd1a59e1afb8", | ||||
|   "blk.26.attn_output.weight": "636e881b1505f9cef656a4be98bec6a4765321d51f9bf1dac8933397cf44b765", | ||||
|   "blk.26.attn_q.weight": "89a3c4d202d7d6adebb9e0c1bcfd8b775f6456386f1be25e86e43acc949c1e16", | ||||
|   "blk.26.attn_v.weight": "ff2cc963b597cdf1a21703f3e7022af3bb4c65a34a19e19d9309a7c5e198b5bd", | ||||
|   "blk.27.ffn_gate_inp.weight": "6150139498fefe380bb99d11e72028da47a15ecb73dfc5b2774f726f4bed8f9e", | ||||
|   "blk.27.attn_k.weight": "f286eb9e5c56c7b801a497aedc40158c2a27877d7f9fb59b3fc67834798902d2", | ||||
|   "blk.27.attn_output.weight": "5dc3d3a05f9f7729509147fd09c16fb53f85f520cdab5cb69abf4bae3fd460c7", | ||||
|   "blk.27.attn_q.weight": "8462e40f86b24251960d6f35a9ea99b8793a01937faf1aec2859f2e5395dbb61", | ||||
|   "blk.27.attn_v.weight": "bac1a99e38e25953f8315f7212eb9777dc216cadb09b959977885ae62724ceca", | ||||
|   "blk.27.ffn_gate_exps.weight": "6a15eca7f0f6ecfd93db2e55c63875348ec4a78c4ff643ec46df9e958c0101e4", | ||||
|   "blk.27.ffn_down_exps.weight": "2e1c91247c4359e2073a8e5f26fd7f6426da7be3ed5bc65dcfff701f0a5022b2", | ||||
|   "blk.27.ffn_up_exps.weight": "65d6f5c553c9332085eae4aeadf25090b5d7768212ea7b08ed698102c21b29a1", | ||||
|   "blk.27.attn_norm.weight": "7fab8ae63ec8e91ce625cd130ab96d8427dad3a7413bb21b25ec5f408c5b9f5a", | ||||
|   "blk.27.ffn_norm.weight": "532720546b0fdcd423a02ca6e3e9d8aacb84b1b3e8269968f88a47fe2a69bab4", | ||||
|   "blk.28.ffn_gate_inp.weight": "a305ea58d98962d9dcf0c53ad2389b7acc8936fb35a0e3fc9410e7767cd49dea", | ||||
|   "blk.28.attn_k.weight": "8315e8a2e4f78dfdf36d4fc18fffc74bc95fe42c3ae4f9af2b6c874612c0f71b", | ||||
|   "blk.28.attn_output.weight": "9b5fdedd32d39ef46a22cca7cd5355d7b93bd07ea305f466a8aad6ca5a4f3778", | ||||
|   "blk.28.attn_q.weight": "4e8fb96997c30e231c437130f410d7c91d541a816f6c568b5f3bfdb4b8dece74", | ||||
|   "blk.28.attn_v.weight": "1fec739cf3bd7b4913f72ca358d4cf31391c304de44ac0ae31ecb825beaa7cfd", | ||||
|   "blk.28.ffn_gate_exps.weight": "9f259789d535e09268266b9a8020f32d6a6779966c909d91d3a10574f06238a2", | ||||
|   "blk.28.ffn_down_exps.weight": "516d3f8abaedb01b9916a4b67d4672159769138ef2850158bc1b32c41e31f0e8", | ||||
|   "blk.28.ffn_up_exps.weight": "f2f1d88d2c31ed588806fb5ad981d68f5134d7284c4fc022fd018de2eef437fc", | ||||
|   "blk.28.attn_norm.weight": "960fd005598deadaebd969996f4367a9dbfad90539a863674fe95730935acc64", | ||||
|   "blk.28.ffn_norm.weight": "e1993b37ced93d4049e9af2c47b0d9207d8f7e6f2cc3a52f57bef30bc806d805", | ||||
|   "blk.29.ffn_gate_exps.weight": "58927146338f443513337476b3cd30e6341742f096c2beb5890d400f10121298", | ||||
|   "blk.29.ffn_down_exps.weight": "03a3386e4f0b75a28c5608e23b2de8f0de25f21954e4aa7fc343431bde9db07e", | ||||
|   "blk.29.ffn_up_exps.weight": "6916b7490a7ae7b04a5d81cc1e7ac9b20c483434f3b186b12d87fe176bf1567b", | ||||
|   "blk.29.ffn_gate_inp.weight": "98e710e467a3d567abe4ce29d78b8e8dc033148762290c0c5e1ae4d78efd8c78", | ||||
|   "blk.29.attn_norm.weight": "4e64cb307d37be20d55f38c94faf7e451d11df5e60df347906cbaf9c5441be71", | ||||
|   "blk.29.ffn_norm.weight": "696c23a52f742679bd44440d687a4c44b4302d57f1e9dc5610d23374336187e7", | ||||
|   "blk.29.attn_k.weight": "e85253652fd6120c623634ba66b725bf7cd491318b54ccdad2c7df8851d64c0a", | ||||
|   "blk.29.attn_output.weight": "4f650a71efb150d1f24cd4d114d4187bf570ac424da3b92ea6455abdf1aea705", | ||||
|   "blk.29.attn_q.weight": "69fa7da901026ebcbbbc848455b425458b7e3295007d7fc093acf4b38e2166ea", | ||||
|   "blk.29.attn_v.weight": "17e2e7590b317b21f106de546aafd955579703d1e95d6aea044ee72ec3a514c9", | ||||
|   "blk.30.ffn_gate_inp.weight": "3a03284b4aa60d59d4a2ec86253469b61fc656372afca427cb77a5332fbcc62c", | ||||
|   "blk.30.attn_k.weight": "d518cfd0db9708e769eb1399e87ee49357dc54d5afdbac3d4c0ca46c64e789eb", | ||||
|   "blk.30.attn_output.weight": "9b44378714d784c5ef9ab604359091baca4e0ec222afa139b7f840eaefb371fd", | ||||
|   "blk.30.attn_q.weight": "cbb95365bbfbcad0c9cd99b4eebb5a5d32de68ce08e4063b5ec3e792b7548044", | ||||
|   "blk.30.attn_v.weight": "e7985c04fe1740e35a9598f43b67b0922b4fc2d00b68a92a9f917b82c3248de1", | ||||
|   "blk.30.ffn_gate_exps.weight": "8ac4bbd07935d98f895ba94dc174e5ad5046c3c222b53729d60f987c05e7eb70", | ||||
|   "blk.30.ffn_down_exps.weight": "dd672cc71e82abf05064a18121b8e55fe1a4f19bc1d7cb9a142f4add54bc336e", | ||||
|   "blk.30.ffn_up_exps.weight": "12282f664a2a12aa25e2deac58946108715ebb978bafed5274cef24569107646", | ||||
|   "blk.30.attn_norm.weight": "1a33458fee054c6c9c896a4bb0a4e1fbfa0293b2408c7dd2b81d692e966e7273", | ||||
|   "blk.30.ffn_norm.weight": "311e33b68051f507f1478ed8f2693fddb846170ddb7285a91be43f795c2ce31e", | ||||
|   "blk.31.ffn_gate_exps.weight": "8af43d9867a51cd8392fb48b981b0ceee0ae979c491c07d711b3b56b5162c786", | ||||
|   "blk.31.ffn_down_exps.weight": "5579cb7758c1600b19d1f540deffe081b575962e37437b3b2efb2fb0a2924e40", | ||||
|   "blk.31.ffn_up_exps.weight": "f2e7c005276b3a001fb40753f027fa10b4d5a346f43cf4b4bbdeec6e74e1cf6a", | ||||
|   "blk.31.ffn_gate_inp.weight": "89885dc0e30b6b16a90c0331d7fa3174671e941364e8102d934f02132237e61b", | ||||
|   "blk.31.attn_norm.weight": "99e4e9bf86a9edf8c404153a7e8a82324ba79da462622196e2faba161bd95172", | ||||
|   "blk.31.ffn_norm.weight": "55335997cf6de781bf332b943de96ff4646966b05d9fee86b76ea897e27b6ca7", | ||||
|   "blk.31.attn_k.weight": "cee570762b78da6316b637892cc4b080e40f57af5551ffb1866b9a8e80e96628", | ||||
|   "blk.31.attn_output.weight": "fa321ff55ec7819ead7b819fd45215262f39744569765ba2113c989c03588802", | ||||
|   "blk.31.attn_q.weight": "9e2c409b878f8a2a1436874abf428fceb1c534b21f9ad4dd6f532b8a469007f0", | ||||
|   "blk.31.attn_v.weight": "a845d0be68ba537b4a775bfba4d897faf7c82a811a2612b0b7420cc4f3574cb8", | ||||
|   "output.weight": "16101cbb74b54cda9ebc07ca3c762e3263a56efb3cc011156184b95807d7cf13", | ||||
|   "output_norm.weight": "d7aa61585baedd60157aafe157930785742c55989c288573566a971b02423564" | ||||
| } | ||||
							
								
								
									
										225
									
								
								convert/testdata/Phi-3-mini-128k-instruct.json
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										225
									
								
								convert/testdata/Phi-3-mini-128k-instruct.json
									
									
									
									
										vendored
									
									
								
							| @@ -1,225 +0,0 @@ | ||||
| { | ||||
|   "general.architecture": "phi3", | ||||
|   "general.file_type": "1", | ||||
|   "general.quantization_version": "2", | ||||
|   "phi3.block_count": "32", | ||||
|   "phi3.context_length": "131072", | ||||
|   "phi3.embedding_length": "3072", | ||||
|   "phi3.feed_forward_length": "8192", | ||||
|   "phi3.rope.scaling.original_context_length": "4096", | ||||
|   "phi3.rope.dimension_count": "96", | ||||
|   "phi3.rope.freq_base": "10000", | ||||
|   "phi3.rope.scaling.attn_factor": "1.1902381", | ||||
|   "phi3.attention.head_count": "32", | ||||
|   "phi3.attention.head_count_kv": "32", | ||||
|   "phi3.attention.layer_norm_rms_epsilon": "1e-05", | ||||
|   "phi3.attention.sliding_window": "262144", | ||||
|   "tokenizer.ggml.model": "llama", | ||||
|   "tokenizer.ggml.pre": "default", | ||||
|   "tokenizer.ggml.add_bos_token": "false", | ||||
|   "tokenizer.ggml.add_eos_token": "false", | ||||
|   "tokenizer.ggml.bos_token_id": "1", | ||||
|   "tokenizer.ggml.eos_token_id": "32000", | ||||
|   "tokenizer.ggml.unknown_token_id": "0", | ||||
|   "tokenizer.ggml.padding_token_id": "32000", | ||||
|   "tokenizer.ggml.scores": "6e37bcde2adc7e350e87c496eddd7a2124329c1dc66c5bf3ad3997253e4f7a62", | ||||
|   "tokenizer.ggml.token_type": "b6ecf55ec64ee67d87750bdb8d757a2c58bf78377e9f4219f5689a6c4dea57ce", | ||||
|   "tokenizer.ggml.tokens": "d168da3ddd3eee820916945fcb9baf24dd3cde42f606cffa2d19e7c8a8743918", | ||||
|   "blk.0.attn_norm.weight": "216aeb2c9e0c271f899e1ef2a63cceeb8f41e97642e84fada54b1d3c1c11cf25", | ||||
|   "blk.0.attn_output.weight": "b597d56f7188ffc1fafc273fadc59d41738cffd677ae98c61a62c3285b3a3099", | ||||
|   "blk.0.attn_qkv.weight": "d28a6b44e13f59be5483e4be2bedb544e346168d720aca27f47d1a5a722be91e", | ||||
|   "blk.0.ffn_down.weight": "4a691370e5a61fcbbf540fbcbf4c0f1d15dec0364528c0e916d0744f6262b63b", | ||||
|   "blk.0.ffn_norm.weight": "0c00af2b4a3128bec64a0cbb1084b042fdbe13d9ad0d03bd577f9449dfead338", | ||||
|   "blk.0.ffn_up.weight": "b32b52f790c1c083bfb8a3126dc1111cfeeb28dc8c584a930a1e5334cb176bf4", | ||||
|   "blk.1.attn_norm.weight": "68748011503c6c029e8e69a84a8e5a89338f378769627b6dbf7f93d715c292e1", | ||||
|   "blk.1.attn_output.weight": "2267344add13b048ca59e4377c86dc512be8046a57156901fa32a20fa74e4ee0", | ||||
|   "blk.1.attn_qkv.weight": "9109d2e3d7a2eacfda5226587b8be124a3bf44b972da7ebb17aa15795897eacc", | ||||
|   "blk.1.ffn_down.weight": "d675df4df4dd039c0c339ad6445d39eddd2004db6bf35bed6314c7497245a633", | ||||
|   "blk.1.ffn_norm.weight": "3b5767ae977bc8baaa06b06efdbea193b6b3ba605ce76d77a76ce317e935500c", | ||||
|   "blk.1.ffn_up.weight": "80dfd6d9d234b00334c89b8e0a02f81899c2efd377321c34ba5ba51a5f61b5ff", | ||||
|   "blk.2.attn_norm.weight": "6a6743b057e5088f145bc179e92c9bfb41163e7295d7b81c62e23dd89d2b59c4", | ||||
|   "blk.2.attn_output.weight": "bc5491ea54e0db81462d7d9b7d25cbdda380c2db8de041bd1c4ab7b76a1d19c3", | ||||
|   "blk.2.attn_qkv.weight": "a61287a9852e2f5aca9c100b471d98398b2913a3497c743de3c70ec9ddd7087f", | ||||
|   "blk.2.ffn_down.weight": "4fddcc382c8dceeab027fe43d8d44e67edb5e8ce4b9a1b7f773c87770380ade1", | ||||
|   "blk.2.ffn_norm.weight": "07e05f82b3f63f711db3b684ca79aed25c0657917e66f88af47348a82065c227", | ||||
|   "blk.2.ffn_up.weight": "4835a682ef1826c12df01ae7663fc45f9c82bc8e64b665f13fb7da8e201ec0fb", | ||||
|   "blk.3.attn_norm.weight": "f22aba7c03999ba7136f39cda747a39715e498699dc1716cd97fc5dfc58d1b1c", | ||||
|   "blk.3.attn_output.weight": "53b579855366fd786c5126b2b30aac4d583ca7bda56833c4865f5cadb5c18c6d", | ||||
|   "blk.3.attn_qkv.weight": "bb56aba78158123140fcea59c69ac562ca208f6d3086819417cdad8c50f333ad", | ||||
|   "blk.3.ffn_down.weight": "97280897a7cd86db2830c004bccc5bc094f50e293baded0189159a2019145a6e", | ||||
|   "blk.3.ffn_norm.weight": "10a8c99f8b57a960e8e0a1133c4a26f9148403d1b9bff2eff114917de996f3b5", | ||||
|   "blk.3.ffn_up.weight": "7324046c915e75d621b2043597a245a428d8eea31869135e6257a861491d8dcc", | ||||
|   "blk.4.attn_norm.weight": "507d8e164de94646edbfe33def8e8fbf7c9a6ee3fbaedb5000f72d9f51ec5e36", | ||||
|   "blk.4.attn_output.weight": "bbb3429e6efa98c150e0fdbf48c16180cbf0d0cbc1b3c253c6c319d78f4593a2", | ||||
|   "blk.4.attn_qkv.weight": "b95ee5be0786d3901273d806c339fe6c20e6bfffd2a20672a9f56af80921e8ab", | ||||
|   "blk.4.ffn_down.weight": "806bbf91df92a5a22bd5aa1ffb7fc2869f7293ffc7704771c290ecc583b27975", | ||||
|   "blk.4.ffn_norm.weight": "cfc2930a81df7aee3a5e7f726a15c1182233e868bf0d9d37f6b6ae6d8c15c234", | ||||
|   "blk.4.ffn_up.weight": "c3390c69533de2c8424e8069323ccc5d0c4543111535da04cf2c7d26745576aa", | ||||
|   "blk.5.attn_norm.weight": "0d71c4fbcefabbd021569442853d2fe90668b19409ae2805a718a829ca60beab", | ||||
|   "blk.5.attn_output.weight": "10ebd93629112bf2df5c30dd0953a4a5e9020306768283181ed426934d47e14f", | ||||
|   "blk.5.attn_qkv.weight": "5cb05633369f12d4b00e0ff787736bd846856682115720ebc6cce05270c334f6", | ||||
|   "blk.5.ffn_down.weight": "e28bcc5094212eafc7476dbc5b7a520d25b79578cbf4229d698e2655956a80ad", | ||||
|   "blk.5.ffn_norm.weight": "b6f2c4cf9f34bb4d59989f96165c14a67dc1e266ad0a6d0fcc49f1add929e6ff", | ||||
|   "blk.5.ffn_up.weight": "0f9ef99423cc07ebedc0e9cfa95809f2d7108d910bb4ef97ebc0b0309c440750", | ||||
|   "blk.6.attn_norm.weight": "b3edcc47a42218234f7564d7470611b49401a41ae8cd42123f86557c69f5d7f2", | ||||
|   "blk.6.attn_output.weight": "eb9b7d257b388bb5b8fe0515e5c6873317239cb94cda236e4b6ada2a6c57c65c", | ||||
|   "blk.6.attn_qkv.weight": "eb968081f478c52f07bd9c2761741e982dba33cc4eeadeea3557d391b9ac2106", | ||||
|   "blk.6.ffn_down.weight": "1b8588bb7463206290322695577dcfced300895d6e6f4b26966c53a9ae2f0f84", | ||||
|   "blk.6.ffn_norm.weight": "1219c04b7770983c77814200eefe743f46d15328ea2b12711e44f8103eab08d3", | ||||
|   "blk.6.ffn_up.weight": "197ef287239fec47c55677f0fbb66eaf0644f775bc382de843971730721394f6", | ||||
|   "blk.7.attn_norm.weight": "b630ad08c80d564ed1c024384818e9fd3f22a36cd7a14aa96e7e2759a8285099", | ||||
|   "blk.7.attn_output.weight": "970255aa750828a47d6b9d399f9612b5bf25aefe7dadbcba41fc416d0d4067c1", | ||||
|   "blk.7.attn_qkv.weight": "ebb157c880293e6de8d629f263ba8853ed1dbdc02c311d43432bb8cfbb310739", | ||||
|   "blk.7.ffn_down.weight": "24bcd4db4cba844c89f878b81843c373dbbc0675e889d32c5b12e63384a7b670", | ||||
|   "blk.7.ffn_norm.weight": "b9c6f71001808ee873ce7db8056e4b53fb4cccec8b7f0f312899b575fae39d39", | ||||
|   "blk.7.ffn_up.weight": "979f1828d227455c26015a2a11afe9dd05f2bb97a8ba6b38c8dab3f50e627401", | ||||
|   "blk.8.attn_norm.weight": "4e8e347e3775010b7112ee630f2f4f2383be7ff64e6ca6154b9b22566552eaa6", | ||||
|   "blk.8.attn_output.weight": "65a44babf44a435a1829945211b3168f9ec78ac3cb7a049a733e93d11f0d6659", | ||||
|   "blk.8.attn_qkv.weight": "343ed07671da400b040812a4058482fa38284b5d9af9becfed07417fe26ce747", | ||||
|   "blk.8.ffn_down.weight": "7fb7e073e3c2c503c4e9d60efa0988fed7398d900cc003695fe3fffd3e188b82", | ||||
|   "blk.8.ffn_norm.weight": "b07c1f655d8593e3892a2cf73f8a0c19ce8e5cb613fafbe7cbd430da8ce4c57d", | ||||
|   "blk.8.ffn_up.weight": "8b26e14de54b3fdc2e2d3ea41720f9d9c236a93688c3b7fd7bf43f5fbb327c9b", | ||||
|   "blk.9.attn_norm.weight": "46394d408a8e316916177e6aa261de32e137a82d729c0b1800b072f0c38c39b6", | ||||
|   "blk.9.attn_output.weight": "d57f3d46107947a7073373a0b35d6ecf7759b5df15406f4a3590a60666af6b16", | ||||
|   "blk.9.attn_qkv.weight": "14bb8ace8c5453148f4b536e9f4279c813f31136716947256f5cca333448639c", | ||||
|   "blk.9.ffn_down.weight": "2b8d98e2b5ed68338f6e4de43bf7de0c4858cc69103cd5177725f7444eec7694", | ||||
|   "blk.9.ffn_norm.weight": "41a499dfd418cc4c6b8c12313f673f7e2cd4a3f9c4065eb6c4feb5eed02fb542", | ||||
|   "blk.9.ffn_up.weight": "143aab7533a64b17fbe201490a6f674bc7f0bd370c094500b2e100419073d1c2", | ||||
|   "blk.10.attn_norm.weight": "ebb670aafd36816a794347287269d8f1a5b19c1e3c0a1e38023bc19fdba9b073", | ||||
|   "blk.10.attn_output.weight": "b5d65bbc0ed5e49fdd9d754bc18163cd042a285024d0cf6f954c503bc8c877cb", | ||||
|   "blk.10.attn_qkv.weight": "f06b15bac88da798fa34a62b03eaac0dbe8b846020516603c387541f2d8dd672", | ||||
|   "blk.10.ffn_down.weight": "fb091fcd1b4de25d1bea94d1755e255cb02914a030d23e3a234e57b8d46bde6e", | ||||
|   "blk.10.ffn_norm.weight": "eb347bdf9c40414af87e13a8e72e40b31f004b50f7cb366f1a219ced60a61355", | ||||
|   "blk.10.ffn_up.weight": "ed2d52fc881a173f404fe8a1067862c9856d6c3e0d2e90a330a7aa394e3f84d1", | ||||
|   "blk.11.attn_norm.weight": "64e252603cf010a0e502ca39fdf8d0a196a79aec67c0d2bb9213fc0cb80c47d4", | ||||
|   "blk.11.attn_output.weight": "228e33e21c69f52efc74fdfc831bc9af271e44b2a29a3dced1d64e667ce36eb5", | ||||
|   "blk.11.attn_qkv.weight": "ab9ce6d4ef9e42ee0da3f20a7708a3bbc5e79e967b05fa86ba946a05e2eb63eb", | ||||
|   "blk.11.ffn_down.weight": "0ca133b7835c98dc77c25d64e4eb7873778bdb5e4d22d8b80f920f46865b43bd", | ||||
|   "blk.11.ffn_norm.weight": "02455741a0dfd161c79aa1ecc381901721f229fdcda5615622a629631fb61cfd", | ||||
|   "blk.11.ffn_up.weight": "9fecdcc099fbb8e23c6b1ea9294702a027f4a58d265543ec5e7be79b8f63b354", | ||||
|   "blk.12.attn_norm.weight": "783bb459911b1b3609a9b2bdfe272f1670add73b5471da738e07ac47e2e07dfd", | ||||
|   "blk.12.attn_output.weight": "1e1a914c9e48b857206ac5a1f7cead994bc1ea91d5d4fff8c834d73f2e38ef5d", | ||||
|   "blk.12.attn_qkv.weight": "5953e7185ccb87fb4dae8f9426ec86315d4c7794326e8ab59b3a95d4af2189f0", | ||||
|   "blk.12.ffn_down.weight": "a3eecf0f394f86e2cfb48a5940a5c50ca86d71883b2f79fcc642a935fabce0d4", | ||||
|   "blk.12.ffn_norm.weight": "0a4272e41373c23bd72f10d2d82930aa3a1480aac75832bfbf01cebf0b86b6a4", | ||||
|   "blk.12.ffn_up.weight": "06f42776de3a7ceac3025f26a7a8bd20e062233cce2bdaa2183470dc4b30b87d", | ||||
|   "blk.13.attn_norm.weight": "5915da60fb03e201fa649faba780e5fdf1c761c262b206e5415cf83181f65780", | ||||
|   "blk.13.attn_output.weight": "4dbf6eab074fa3835fd32bd631a8208e511037d5056d2fd3015735cca7674ef7", | ||||
|   "blk.13.attn_qkv.weight": "d3d8339a1c4782d9e73d77fdebe154d3c5b83ac40c9175b3e91a4977d08f876b", | ||||
|   "blk.13.ffn_down.weight": "de6772b46a55e1fd42b007637dfbf68b6598e5d5b61622da0935002e1e192d3a", | ||||
|   "blk.13.ffn_norm.weight": "5a640ea3b8c7be49c95a58a2327e10d8e8d9d142504bde5c8091613e5b961d7a", | ||||
|   "blk.13.ffn_up.weight": "f35e3545e4bd3531b2e843b5efd31dee0c13c807ee6386e65473ba67bbec30d0", | ||||
|   "blk.14.attn_norm.weight": "9b34986450b7c98b4927e81e61a816f9e84b1addc7c14926402100037aad6678", | ||||
|   "blk.14.attn_output.weight": "155d52efb23d366016d861a251d4d1f4a0c13699188c50d50dba016a0d8bfcd9", | ||||
|   "blk.14.attn_qkv.weight": "8e1415084e1f33c73a777f19e752489f4dd312cca047733e5ea643cd4a955e04", | ||||
|   "blk.14.ffn_down.weight": "a2a142226b94baa01ccb65bdea2b7418e49085c1d9c3c63e544e3112c58a25da", | ||||
|   "blk.14.ffn_norm.weight": "8aecfd9b0ae6affaea31a80c5c9a4a14b31deaa0db7bd8f6da2a64d23447921c", | ||||
|   "blk.14.ffn_up.weight": "0c1407237b8c1bd02f193346b5681926fe698a5055eac6a7450451b0f991707c", | ||||
|   "blk.15.attn_norm.weight": "e037bd19880bfa83d983200fb0c7866f8ad16c3ff5cc4b4f3a37ca7373870ff6", | ||||
|   "blk.15.attn_output.weight": "045fe4fc95cc129a1b92771b179c11b12845c4c088786c607f17bd98857e68e1", | ||||
|   "blk.15.attn_qkv.weight": "7621b7559705cab1d4dea1c69f76dbf9dc1c8837a203b656f484703b9c1b70ce", | ||||
|   "blk.15.ffn_down.weight": "7e5ac20e290bc60761e1cd972354fde225b7fa861048d44d9a0dd9b046d55f58", | ||||
|   "blk.15.ffn_norm.weight": "b6d830d88f1db1825687973c8c2b1a24c6fa84f07af8d0e3ef9c86009baca0b2", | ||||
|   "blk.15.ffn_up.weight": "dcda0957cd04fc45476774dba2bbf9aa89d6b05d5ca7b10ae6f73ad2c49b1cd3", | ||||
|   "blk.16.attn_norm.weight": "4ee9b70ba15cb2a08240f93990e90f5068c48fceb481f8e2186bec8b7214eb3f", | ||||
|   "blk.16.attn_output.weight": "315cfe5536658d2498192b2980eade15b2c9a4ff220e4011911457b1727fa103", | ||||
|   "blk.16.attn_qkv.weight": "3c8122e3ad637583b9dcde8ff3a323267d3014bb1f0f9771e5322260ca9ecc8d", | ||||
|   "blk.16.ffn_down.weight": "3b5fbebd5ee2b86cad96fb8a9b45a8770d08f82c1c8b74d7061e866f7020a18d", | ||||
|   "blk.16.ffn_norm.weight": "ffab69f20bda372de6e5878f0539163e2fc6ba113621ded95705fc3b1465c9f0", | ||||
|   "blk.16.ffn_up.weight": "0935ea3d258da42d6258406365f39f58ddaabfe97ea5977580db3635188f24a1", | ||||
|   "blk.17.attn_norm.weight": "f030441733f3d147b4a06a1eb4aeb8465c7c24d9c53bf4c48fe7e134d3629803", | ||||
|   "blk.17.attn_output.weight": "07a955ef09e8dc766ac0df647d0b2c69f23c4c69a7137654b4aad80303ed0eda", | ||||
|   "blk.17.attn_qkv.weight": "1c10688061e21e2fe12ad0cb54bf03895c1f83c3b0df743a42f548b52cbca1b2", | ||||
|   "blk.17.ffn_down.weight": "ebb9cc9836f41d88fdae2aa9a4355514e4edaec8d1577ffeb947a35204e77f52", | ||||
|   "blk.17.ffn_norm.weight": "50aff44f6528b13db5389f2ddcdb7676244947610bd7ffbff3f881c968c2a0d4", | ||||
|   "blk.17.ffn_up.weight": "d716537949582be33bde6b02e38f5a70081c9642a9fb05a61312126718b8d148", | ||||
|   "blk.18.attn_norm.weight": "0ea695c4e53d637902f46663a6ee42adc493c36794476acc7dbddaa05b13840d", | ||||
|   "blk.18.attn_output.weight": "5fd35b500221a612eb4f4bddf0e9b6b7db4d7733032a75f8802fb2d884647c2e", | ||||
|   "blk.18.attn_qkv.weight": "b0da37fd030fe69581f990bf23bfd35467a1bbe558af6de7c0924f6b72e92317", | ||||
|   "blk.18.ffn_down.weight": "b355c33f44b328f4bb977567de8f7544db4b005d7a8fbded658518ecf3c5a153", | ||||
|   "blk.18.ffn_norm.weight": "58b3fe9094079989a86e0387143259e1cc35952d24dc3df290c4ba6df44f5c51", | ||||
|   "blk.18.ffn_up.weight": "2ce530954c342c30ed2ead5353f931960bfae1d278868504c0efb973560fabbe", | ||||
|   "blk.19.attn_norm.weight": "533e9aed66feea8f0392aa81f9e293240e1f009a5334253915fb60c2749b615d", | ||||
|   "blk.19.attn_output.weight": "84f2d00f98a4113a779d3b5d1c3e7c914eb47784d3ab13b290367c124c2994aa", | ||||
|   "blk.19.attn_qkv.weight": "fbe6b9f53b07fa7537d3b3d452d20a9bc666f9fd41ec2091dd28bc2f70fc668f", | ||||
|   "blk.19.ffn_down.weight": "b30199e098c8bb3f890183d8b18471e80b62b604729b277ad62488dd71e1206b", | ||||
|   "blk.19.ffn_norm.weight": "c81373e41cd340b7badb19f9517c77c4250b4eb9a02dc758b8b49b652487d7ff", | ||||
|   "blk.19.ffn_up.weight": "5a5cb083ca7725720e3a890f7fa46354760e8007a8188849a092e305694a75e3", | ||||
|   "blk.20.attn_norm.weight": "4953091b4477e354357a8e743ba0a1900633e52f1599ee082a0c9b0b2b5cd978", | ||||
|   "blk.20.attn_output.weight": "62d54f7749cd6856097b2632066a322b0296df915fe66f382c5b5981be0d4f23", | ||||
|   "blk.20.attn_qkv.weight": "406de9e35b0729ebe902d7a47905cc7fb29a921431ed35dbef0c03e5690a1329", | ||||
|   "blk.20.ffn_down.weight": "62fb678b0d1261e19a4903a2b347d67afcc8acff01feb33a687a35a2d1e6f9a5", | ||||
|   "blk.20.ffn_norm.weight": "cd9d36b7e71e55c8925b97bb09c28219f182626bcff094878ae39c3db887a14b", | ||||
|   "blk.20.ffn_up.weight": "b9276771d79d3e932e73ccc520c3f8476342b9ef312ed2ee1e0da822e6e3ad18", | ||||
|   "blk.21.attn_norm.weight": "66d8c8a35e13ce9c2a0e75b670150e2c31484a55c2316df46075312196178ed3", | ||||
|   "blk.21.attn_output.weight": "12ab46c9382648f9b3350fdd92a6be6352743d62d6b520d7e2024e0c838588f5", | ||||
|   "blk.21.attn_qkv.weight": "a7909676ee1675ca23cd29a5fdd226df8dd9d68f94c6c9bbb51dd9fd38504008", | ||||
|   "blk.21.ffn_down.weight": "6fb317279c6542e82f97d5a12a60fac1bd0fa0405154f9fbe265e2fe39bd49cc", | ||||
|   "blk.21.ffn_norm.weight": "c0f703eb3ff161b5ba4490d87d8684b8a6c47a8f433e12f418333b9db439010a", | ||||
|   "blk.21.ffn_up.weight": "6dbdb80ef0c35e364bbce12d40d5e74c7963c7b55d58d9579567a07ffce7b863", | ||||
|   "blk.22.attn_norm.weight": "f94237433bf03d675cb2f655b81ca91a1ce2447bc6b00b13d6b0ccfe2d411eff", | ||||
|   "blk.22.attn_output.weight": "e821f95995ce497c01e63ca64f737713b1b65f11df1903e51d444aa516f33f71", | ||||
|   "blk.22.attn_qkv.weight": "1b0f717c73afb5eb4c82a1708c4e85c969e8a2a8770d9ddb78b1870a2d8a781e", | ||||
|   "blk.22.ffn_down.weight": "0f33f7a3cdc685484be99aa0c03642b0b20850a27d1fddbe054b13a9382f3ccb", | ||||
|   "blk.22.ffn_norm.weight": "9df285cf211ddd7df2b36a50489af574755c7d4d98b29a05cd04566ae613c8dc", | ||||
|   "blk.22.ffn_up.weight": "63ac300e1efb34041dd0136cf43ea622fac6f0caccce1cd9262f5e08d2cf179c", | ||||
|   "blk.23.attn_norm.weight": "5f72d9e88689b4027b28f5f8f26cd3abb03635ceea7ec98a4c91a9fc691f6707", | ||||
|   "blk.23.attn_output.weight": "6ecf04ff61125c5fc768f8656497152149373daf321ee9c957e8f7245a1184d1", | ||||
|   "blk.23.attn_qkv.weight": "a9d9978806724c2959f2cf386c233831f08e1e933dbf2b32665e788d9d512ea4", | ||||
|   "blk.23.ffn_down.weight": "72c7d17886a3da17fa0daa456aa5e877b2ef5b8b403182b870d9ca5ca9c70347", | ||||
|   "blk.23.ffn_norm.weight": "971e4b712e3025a13419b5b57d674b5e4ab7f18f74b57b9afc4671623da90c4b", | ||||
|   "blk.23.ffn_up.weight": "df2b5c7dbd5834545b815073af0c7355b065124e6d6f0fee78d8fa5b2076dc3e", | ||||
|   "blk.24.attn_norm.weight": "c41957c4a79ad3b16f6e11daec1c7f530b9f3f4b618e1e4367c3b67787ac4ab6", | ||||
|   "blk.24.attn_output.weight": "ef7d61f5fc88ac6f31bf60cb5f4d2d6b8df42d38825807112361a7224b0dee3b", | ||||
|   "blk.24.attn_qkv.weight": "3e6a58fe7d49c90bb6971efbad3371c32256881173ea5aee4b0c296cb206490f", | ||||
|   "blk.24.ffn_down.weight": "f43619144047de42fed81dfa495f1815d3cb771330e574043e2b67620819292c", | ||||
|   "blk.24.ffn_norm.weight": "5501d4a2a98c8ca6b42e77b53b221dbc08f530f6a067256d787534ec6fe028bd", | ||||
|   "blk.24.ffn_up.weight": "d64c8b0e509e2b1118f6000176f8956cacecdbb200c7e95ed93fb78b6e26c84a", | ||||
|   "blk.25.attn_norm.weight": "502fa3c302d371f61c5791f4615b73018ffb1daa09b6499b227116581244c5d4", | ||||
|   "blk.25.attn_output.weight": "ad8391d4e9c980856f2547aa945b2b6a407a6382158dc1ddd4f08d94ecc24be6", | ||||
|   "blk.25.attn_qkv.weight": "42e8983780d4a01a02c54ad23d4df21eea437f119a10af5a9c12a76a42d308c1", | ||||
|   "blk.25.ffn_down.weight": "302dd010d4e0ab4eeaee89090409ea0dddeeeed3236415eb8f97c942497eea91", | ||||
|   "blk.25.ffn_norm.weight": "fb34c1ee5bca96986c08834df0a0c047ba041c1123ac1f563e9d64312bf82d6a", | ||||
|   "blk.25.ffn_up.weight": "10739a8de156816d93c92b935386540bfa976bdbef204f0312960f6fc657582f", | ||||
|   "blk.26.attn_norm.weight": "7036c711609128c4e55968ff3681d3043338879a5737efd6c2ac9e1a2a61f1a0", | ||||
|   "blk.26.attn_output.weight": "db5db45dead5cb911fa01da59832f121b7c18b2d167bf53741c40819f24d346c", | ||||
|   "blk.26.attn_qkv.weight": "cae34c6b7f82ed14348d5ed30a79919c383737c1694a9cb9c0de609d3b0c1d0a", | ||||
|   "blk.26.ffn_down.weight": "491ec3a4da9b4f49f8ebc6be658ce397a9b801ae9fb35e82177e47808c65e5d0", | ||||
|   "blk.26.ffn_norm.weight": "fd7059d75d7f0e5288511ddeeb0f772eb3cae3ccfe4226b877015834edc3c386", | ||||
|   "blk.26.ffn_up.weight": "ea1ee1274c56458ce056d2205e5bb6e5422ce4cb0ad58006b8141749b97a0c39", | ||||
|   "blk.27.attn_norm.weight": "cc362c9a937609265052cd38544af17a1a7448cea086d4c801139e1fc865832d", | ||||
|   "blk.27.attn_output.weight": "ba757a81dabde9cb1b069d1bb616fe79649a1724f756567ec61caed1304fe6cf", | ||||
|   "blk.27.attn_qkv.weight": "1ab8d7d02d87756c12c2275636823aa5ede3d683178225c4cac4bd892c319bd4", | ||||
|   "blk.27.ffn_down.weight": "deb1c711c8a66acf4dcd2d088e1548f8e08f296f755e4067d6557fa55afde88c", | ||||
|   "blk.27.ffn_norm.weight": "fc6242d8cb8a4a37a8ddb7e41e7e60a63d4a89edf36acb35df052f10b9c91ece", | ||||
|   "blk.27.ffn_up.weight": "8df39b09c4801f343aca78f2918a1f6db78c8c55e591eda4c69eadb74c26e180", | ||||
|   "blk.28.attn_norm.weight": "75b539308f77e3cefdc6d98484d8b5cbf0538f0c2869a77b7373a145a18bc850", | ||||
|   "blk.28.attn_output.weight": "ae128940eb60a6d2e121762ef4b3e9dcf9eb3e105b249507fa7f12de0e19822c", | ||||
|   "blk.28.attn_qkv.weight": "bdda781c288e9326c240e33905f8e621b6a2ad902e620739d34f93fcd6f933de", | ||||
|   "blk.28.ffn_down.weight": "f1d6e6d1c286b1138bfd7e53fe477f399ae93bc2c04e35416f84218ed7247965", | ||||
|   "blk.28.ffn_norm.weight": "3f837ce82c8b9bde0d61d08b6f5fe5574886ea5328dbdc53f2929f18da8b4087", | ||||
|   "blk.28.ffn_up.weight": "2af027002e31d1b6cfedbdb30a2b9d7213f3aa691167c353913adfd48fda31e4", | ||||
|   "blk.29.attn_norm.weight": "61e8003b5329462ffe0fe172f2b160260de006aed858332d49d75504b6b6aa7a", | ||||
|   "blk.29.attn_output.weight": "ca44542a72a37476dc73dbdcc01f5b7497cb3ebc4ea230a55c9634ccd8e56ad4", | ||||
|   "blk.29.attn_qkv.weight": "abb3d9d6abe57872ae3daa51935d43264093ded5ce63b49d1e280ee5758be0e4", | ||||
|   "blk.29.ffn_down.weight": "6764b895fce881df097489c263446f0106de36217997660c15984b3ee22a5a06", | ||||
|   "blk.29.ffn_norm.weight": "89e03e9a33fc0e6e31ba9f0c2bd7c5734a118c5602bb90148793e08a80e8d0ae", | ||||
|   "blk.29.ffn_up.weight": "fa7ad57a84954f4121653152efed1a871d8adb20a1ea9086e3e849ce359d7d2e", | ||||
|   "blk.30.attn_norm.weight": "91a697aca1e42af54f806a20211031c3369e8d0bd58df1b0147fe24954e1f5a4", | ||||
|   "blk.30.attn_output.weight": "36063fcf766c89ac75be56f688cc63cefe5f2c733fbf4378ea9956ad386fa148", | ||||
|   "blk.30.attn_qkv.weight": "2cacd1161f1121a2c0b979930134f4666f73fb8d7237b3b0659ae091b15955a6", | ||||
|   "blk.30.ffn_down.weight": "9f3fcb6217100595850c05dc98f9ab2a263afdb6ab28df2fcb08aeff512057d7", | ||||
|   "blk.30.ffn_norm.weight": "6c600bc1fc7de39d4f8917b81fc7d1d5ed2a9b56492234c13a4bd6028c30d880", | ||||
|   "blk.30.ffn_up.weight": "73cabd1bb011956b2689ea3338bb76642ef3a57c197377d666d2ab5f56317668", | ||||
|   "blk.31.attn_norm.weight": "72d3e1cc771380645fa75a899858c95f39857a4f3f1ed60fe1578df383b8bc53", | ||||
|   "blk.31.attn_output.weight": "40089cdd29994dc19a1d89fa15902a89cfeca3540f12dc9bf4d00ef82506e456", | ||||
|   "blk.31.attn_qkv.weight": "1d0bb40e9258071ae14290a53c619a8e331dda07354d2a02ef45766c029ae5e4", | ||||
|   "blk.31.ffn_down.weight": "8defa0e06335b793fa8be03883f0a322d6c5b33f52c69c943c35c60d16e42c0a", | ||||
|   "blk.31.ffn_norm.weight": "33c55d9d0c496ccfb130361fe131649346e098abaaac39c0519507e5d846721d", | ||||
|   "blk.31.ffn_up.weight": "599f6503f61c692c1f82001973d35119f9688db5e6be9d9c298411491c93f09b", | ||||
|   "output.weight": "14b8dc662bfa3308ebb2e102c562d8e52c15670e538f20f3216a9c310ca9dd41", | ||||
|   "output_norm.weight": "7f2294ba94ce65681df6c7ddd8698799199b9d77dc83c10bdad5c3999f0fdb82", | ||||
|   "rope_factors_long.weight": "e34d378664e354652c38f47d10dafb0498ccc2fb042d39ff7fef768146fff22b", | ||||
|   "rope_factors_short.weight": "9379146a4988f373d362fe47b06c75e7fe7c54aa4dc9558758df79b7a87471fd", | ||||
|   "token_embd.weight": "19a03c1fb5ac0baee93b0a7d8b0f26e9a9b011e229b694afc50ebfc13d84f8bf" | ||||
| } | ||||
							
								
								
									
										314
									
								
								convert/testdata/Qwen2.5-0.5B-Instruct.json
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										314
									
								
								convert/testdata/Qwen2.5-0.5B-Instruct.json
									
									
									
									
										vendored
									
									
								
							| @@ -1,314 +0,0 @@ | ||||
| { | ||||
|     "general.architecture": "qwen2", | ||||
|     "general.file_type": "1", | ||||
|     "general.parameter_count": "494032768", | ||||
|     "general.quantization_version": "2", | ||||
|     "output_norm.weight": "93a01a6db3419e85320a244bbf8ae81c43033b1d10c342bea3797ff2ce348390", | ||||
|     "qwen2.attention.head_count": "14", | ||||
|     "qwen2.attention.head_count_kv": "2", | ||||
|     "qwen2.attention.layer_norm_rms_epsilon": "1e-06", | ||||
|     "qwen2.block_count": "24", | ||||
|     "qwen2.context_length": "32768", | ||||
|     "qwen2.embedding_length": "896", | ||||
|     "qwen2.feed_forward_length": "4864", | ||||
|     "qwen2.rope.freq_base": "1e+06", | ||||
|     "token_embd.weight": "d74257dc547b48be5ae7b93f1c9af072c0c42dbbb85503078e25c59cd09e68d0", | ||||
|     "tokenizer.ggml.add_eos_token": "false", | ||||
|     "tokenizer.ggml.add_padding_token": "false", | ||||
|     "tokenizer.ggml.eos_token_id": "151645", | ||||
|     "tokenizer.ggml.merges": "6b1b1c58f1223d74f9095929d3e6416cdd74784440221a5507b87b8197f2bfd2", | ||||
|     "tokenizer.ggml.model": "gpt2", | ||||
|     "tokenizer.ggml.padding_token_id": "151643", | ||||
|     "tokenizer.ggml.pre": "qwen2", | ||||
|     "tokenizer.ggml.scores": "94e247e531e8b0fa3d248f3de09c9beae0c87da8106208a8edfaac0b8ec4b53d", | ||||
|     "tokenizer.ggml.token_type": "b178dbc9d1b2e08f84d02918e00fc2de2619a250e6c188c91a6605f701860055", | ||||
|     "tokenizer.ggml.tokens": "1d93f6679b23a1152b725f7f473792d54d53c1040c5250d3e46b42f81e0a1a34", | ||||
|     "blk.0.attn_k.bias": "5ce6617845f66c34515978d23d52e729c298d8bffa28c356a0428bef17142cf1", | ||||
|     "blk.0.attn_k.weight": "a960832a9e0e83e4d95402e5d1a01cc74300fcca0c381237162126330e1a7af8", | ||||
|     "blk.0.attn_norm.weight": "32c7d51cd0958f1f1771174192db341f9770516d7595a2f0fd18a4d78bd5aba3", | ||||
|     "blk.0.attn_output.weight": "c67e6e7e868354a11bf9121c70ee56c140b20eec611a8955e7dfe54a21d40a98", | ||||
|     "blk.0.attn_q.bias": "3e9e994eb1f03bccfc82f8bb3c324c920d42d547e07de5be83be12c428645063", | ||||
|     "blk.0.attn_q.weight": "dc12132f789b97cfa1e3f5775ceb835247fa67aa47400fd09c8f9f3769208583", | ||||
|     "blk.0.attn_v.bias": "a3fd0757b31fdc78af5ec320332d239c1a79d34e8804df06c5454e86955e8cc9", | ||||
|     "blk.0.attn_v.weight": "f43094a2134c7ee2dcc52aac3c8b7d9d64fb0295a8adb94cabfd49213f017b84", | ||||
|     "blk.0.ffn_down.weight": "18c2aec92db14f21976838a8c35d5575f80d0e4b1e05ccc0d8388d5877e80147", | ||||
|     "blk.0.ffn_gate.weight": "a3a1c4ef38f8f750eabadfe3d83bbb0f77941eec1cc1a388e51852e99c8691f6", | ||||
|     "blk.0.ffn_norm.weight": "b59b779c42d44b5c4cec41e39b4eb61e0491a07c1b3e946ccb5b8d5c657eda3f", | ||||
|     "blk.0.ffn_up.weight": "db64f09987ea59449e90abae5a2ffcc20efd9203f0eebec77a6aacb5809d6cff", | ||||
|     "blk.1.attn_k.bias": "a5c8c5671703ec0aa0143ff70a20ffdd67b5d5790ca1dfa5bba4e87e4071ed9f", | ||||
|     "blk.1.attn_k.weight": "835c7c7cc95b3cb2e55bd9cac585aa0760a033896621d3e06421f3378c540f7d", | ||||
|     "blk.1.attn_norm.weight": "f4c36fb6c14fce721fab0de78cc118d6f66e3a3d3ea0017bb14aade24c3c5434", | ||||
|     "blk.1.attn_output.weight": "cc1e80310c97cef068e48e40b7096f32fa2138519d6209c6a1a9994985999016", | ||||
|     "blk.1.attn_q.bias": "bc332780e66b0aac80ec5e63ac32344919a840db2fcc8f87bcef16a43a54138e", | ||||
|     "blk.1.attn_q.weight": "d766f06c925cce38d4b31b2165b3448e1fb49a7d561985f95d9cd2fcba52367a", | ||||
|     "blk.1.attn_v.bias": "9f486626fb6ed9ac84970a71e9b9818dd2758501fd3f61bb1c08540dcc7a8631", | ||||
|     "blk.1.attn_v.weight": "e873d1e5bd4f4d6abfd47c0f55119c2c111105838753ee273a03c5ccea25ce5c", | ||||
|     "blk.1.ffn_down.weight": "b3ce82b093f187344de04284b1783a452de1b72640914609b8f830dc81580521", | ||||
|     "blk.1.ffn_gate.weight": "5cd44ad237edaca525a28a3ac13975d1b565f576d6a8003237a341ae0d156f2e", | ||||
|     "blk.1.ffn_norm.weight": "4ac774ee8afaee119610c46aa1ff89fc6c9084a29d226075bc4aa4d2f15f746c", | ||||
|     "blk.1.ffn_up.weight": "042d81ab5f1983d85c81213232f3bfc05a9302d9dfaa98d931ebba326b6058b8", | ||||
|     "blk.10.attn_k.bias": "767ecfeacd60a2c2221ac4d76c357190849dd9cdf64ced418d9d0c7949101401", | ||||
|     "blk.10.attn_k.weight": "a9f3df343227537636be8202303453086375091944e498bad11e0b91e45e8c71", | ||||
|     "blk.10.attn_norm.weight": "01acd0e7b3e363f873dbfde6f0995ffcce83f5aaa10ff91c31dbf775035f6d5a", | ||||
|     "blk.10.attn_output.weight": "a531fe660769604ab869f01b203eb115e025cad4c0baeacdd1bcca99cf6d0264", | ||||
|     "blk.10.attn_q.bias": "356a02c9163dd660c1340fbe1e049b335ac6178891e00996131bba9ab4cb3e59", | ||||
|     "blk.10.attn_q.weight": "81be0cfb227339d83f954cd8dcf35828441211c6e1d184060e3eb76085041e2f", | ||||
|     "blk.10.attn_v.bias": "ed0450653284b62f8bf2c2db19c0ff7a6cf3cda1324d0a044c5e3db7bb692bd3", | ||||
|     "blk.10.attn_v.weight": "c1247ff7092babd2ed979883095b9aa022b2996cab1c77fb9e6176ddc1498d16", | ||||
|     "blk.10.ffn_down.weight": "fda7544965dc9af874f1062c22151c6cefc8ba08cbe15dc67aa89979e77b2de4", | ||||
|     "blk.10.ffn_gate.weight": "9f2632b1dee7304d10c70bd38d85bb1f148a628a8468f894f57975b8a2f1d945", | ||||
|     "blk.10.ffn_norm.weight": "94f8cbd6b17a4d5aabd93fa32930a687db3b11f086142f1cd71c535c11adcad4", | ||||
|     "blk.10.ffn_up.weight": "8dc2f8db0474939a277a3d89db34c3bcc3381cfea57bd05a8426a164634d9112", | ||||
|     "blk.11.attn_k.bias": "3b8e5a662b19411e3f6530714b766aad2ee41eebc8161bec9db0bc82d383a6e0", | ||||
|     "blk.11.attn_k.weight": "2c29f1ed1ce53ce9604e9ea3663c2c373157e909a0d6064a8920005f6d15dad9", | ||||
|     "blk.11.attn_norm.weight": "48f68a99c3da4ab4c9e492677b606d1b8e0e3de1fdbf6a977523f97b8c21ec31", | ||||
|     "blk.11.attn_output.weight": "5859f3838a94898b020c23040941ed88f4fcb132db400d0849f30a01f62c0f1c", | ||||
|     "blk.11.attn_q.bias": "c5ad89a5628f2bd81252ef44ef6bbcbff15c33ad16fba66435509b959c2af6d3", | ||||
|     "blk.11.attn_q.weight": "d102104e5d61c1e3219564f1d0149fd593db6c6daa9f3872460c84403323cfef", | ||||
|     "blk.11.attn_v.bias": "8653f7d48c5f75a5b55630819f99ecf01c932f12d33fd1a3ee634613e70edde8", | ||||
|     "blk.11.attn_v.weight": "e0a7c7d89b9f2d0d781ce85330022229126e130a8600a09d4a5f920f0bbd50b2", | ||||
|     "blk.11.ffn_down.weight": "4a22b3361eba8bbe1d9a6fda1812618e894c49f13bcacb505defa9badb6b96a6", | ||||
|     "blk.11.ffn_gate.weight": "484698b206760d3fd8df68b252a3c5bae65c8bf6392fb53a5261b021b6f39144", | ||||
|     "blk.11.ffn_norm.weight": "da69e96338cbe30882cf5a9544004387f5bbc0bcb6038e61ba2baabbd2623bac", | ||||
|     "blk.11.ffn_up.weight": "26ec74f1f504d1281715680dfbcc321db4e9900c53932fa40955daceb891b9aa", | ||||
|     "blk.12.attn_k.bias": "f94b49ec3e498f14f6bc3ebefe1f82018935bbe594df03253bfffae36bc20751", | ||||
|     "blk.12.attn_k.weight": "ae6323d0bbcfcea01f598d308993d1a7530317e78c1f64923e36d4b1649e9e73", | ||||
|     "blk.12.attn_norm.weight": "3784536a7611a839a42a29a5cc538c74ee4f9793092e5efe1b227b48f8c4d37f", | ||||
|     "blk.12.attn_output.weight": "46826c00b066829355db78293ab216e890f5eaaed3a70499ee68785189a6b0d9", | ||||
|     "blk.12.attn_q.bias": "b14db2d327ce0deec97beda7d3965a56c43e1e63dc9181840fb176b114cf643a", | ||||
|     "blk.12.attn_q.weight": "30f67df52ced06f76b6c85531657584276a454d6ec9bb7d0c7d2ca8f067f5551", | ||||
|     "blk.12.attn_v.bias": "57ab4b7e43f4fc5853bca7bfbb2702f8c2c391a49252a760abbb7b26330dc4aa", | ||||
|     "blk.12.attn_v.weight": "3ccd9da0cfe241cd33a63310f3ca6d81c5bc5a50d200bfea6612ac376166aca2", | ||||
|     "blk.12.ffn_down.weight": "a095774413198a83c549ce132d7c9684c0baef33145eaa889be370ef9c881c81", | ||||
|     "blk.12.ffn_gate.weight": "bb3b2bbdfb065d2a0a795909c53beec327781a4a7e974bf9f99c436cea459991", | ||||
|     "blk.12.ffn_norm.weight": "3b486c6cd97eb4b17967d9d6c0cc3821a1a6ad73d96b4d8fbf980101b32b8dab", | ||||
|     "blk.12.ffn_up.weight": "d020b82dd39a5d5a9d3881397bf53a567790a07f395284e6eb0f5fe0fef53de3", | ||||
|     "blk.13.attn_k.bias": "69381f8254586eba3623eceb18697fe79f9b4d8f2c30136acb10d5926e3ba1d0", | ||||
|     "blk.13.attn_k.weight": "c4d7a31495d71269f81b586203a50abea3a9e2985667faf258c9306ec6030f1d", | ||||
|     "blk.13.attn_norm.weight": "907da11075d16eda668dabe548af3cfd794df26b8ab53939af1344d91bec6fba", | ||||
|     "blk.13.attn_output.weight": "ca01cf6d2b8ece2fb3b0f56f1eb76194471ac27b54fe264f99c909f5eb7fef4a", | ||||
|     "blk.13.attn_q.bias": "2f5ecebafe03b1d485b93c41cff756ca57fb65b02e9d8336f14a3d26ab5d159a", | ||||
|     "blk.13.attn_q.weight": "f557f8acad7f0fa62da06b5da134182fe04a5bed8bdb269e316f970c9cc440fb", | ||||
|     "blk.13.attn_v.bias": "a492a88ae131e95714b092545a8752eaea7c7d2f9cb77852628ca8296c415525", | ||||
|     "blk.13.attn_v.weight": "d1220b1fe9f1cc0a5a88ee239d65fec900f5eaf6c448b6c2cbe74c81e15ed333", | ||||
|     "blk.13.ffn_down.weight": "53184e33440b49848a896304eb16a983efbc6b8bee0b93de8c8de716e1585fcb", | ||||
|     "blk.13.ffn_gate.weight": "684bf8896f148c851506c62717e45c426921b93c10d536ecdeb0fb28259a106d", | ||||
|     "blk.13.ffn_norm.weight": "6cb4e547ad8665eb7c174855c08afe1e5490fece66122522c1e9e8132d9064eb", | ||||
|     "blk.13.ffn_up.weight": "c64107897e38c06727075aba4ea7940b2cdd0e278b5c555dffb2790ef553bb57", | ||||
|     "blk.14.attn_k.bias": "2814ca9b160b16ae39557c9b629482fbe3a7592d372c1e1bf1ac59a2d578fde1", | ||||
|     "blk.14.attn_k.weight": "3377177396463afba667742972920ebb45dfdc37e9950e1f0e1d60a2f936b27d", | ||||
|     "blk.14.attn_norm.weight": "5cae870477d51dd35a6d22aaeacfce4dff218ffba693820ede6a4e11f02afd6d", | ||||
|     "blk.14.attn_output.weight": "3cfe9ccf3d48ae9e95b93a132a1c6240189a277d764f58590fb36fdbb714cad0", | ||||
|     "blk.14.attn_q.bias": "6a75acc2f090b2e67bfc26f7fca080ae8bd7c7aa090ec252e694be66b8b8f038", | ||||
|     "blk.14.attn_q.weight": "5ef45c86d7dda1df585aa1b827b89823adf679a6bb9c164bd0f97b2aa6eb96f1", | ||||
|     "blk.14.attn_v.bias": "5534480443e10ed72c31a917f3d104b0f49df5e6dbfa58d0eb5e7318120e3aee", | ||||
|     "blk.14.attn_v.weight": "58f45cf3240c4623626ec415c7d5441eaa8d2fb184f101aba973f222989422d1", | ||||
|     "blk.14.ffn_down.weight": "2dc82a0f20c05b77512458738130d8d05ce150cc078680ae7ee6dd7ed68d955d", | ||||
|     "blk.14.ffn_gate.weight": "d4a6c6f0fcccddfd1fcaa074846622f4a74cb22b9a654ab497abdc1d0dde9450", | ||||
|     "blk.14.ffn_norm.weight": "777e444932a0212ff3feac98442444e17bd8a98cb758ea3356697d0846d12c56", | ||||
|     "blk.14.ffn_up.weight": "6b75f6bd00195198447b69a417ed9d98f8ca28b3cb8be82f4bad908be0777d57", | ||||
|     "blk.15.attn_k.bias": "2d07211a58e6c2f23aa3a6dc03c80a7d135dfb28726b60b0e0fdd0f35ea5c37b", | ||||
|     "blk.15.attn_k.weight": "e77f3c0075a1810e70df956cc51fd08612f576cc09b6de8708dcae5daedb0739", | ||||
|     "blk.15.attn_norm.weight": "379a10d90609a5d5ba67d633803eda1424fc61ba5cca8d3bffe70c8b18b58ebf", | ||||
|     "blk.15.attn_output.weight": "402751c12ee9dbc9db5e3bf66a7b23ebe7d36c0500e0be67be4c8b1c4357fa62", | ||||
|     "blk.15.attn_q.bias": "acb37fc409ee725ceedf7a3a41b40106086abc47b76780728f781942c5120208", | ||||
|     "blk.15.attn_q.weight": "89cd3047a09b46ed2bb57c69dd687f67a1f0235149b30376fa31b525898e4a55", | ||||
|     "blk.15.attn_v.bias": "f081a37289cbe811978feb4da3ef543bdeb7355414d476f44e09b498da10cb2c", | ||||
|     "blk.15.attn_v.weight": "8404f242a11e6d512c9ead9b2f083cda031e9b269f8a0a83f57ee4c56934764e", | ||||
|     "blk.15.ffn_down.weight": "93438f43ee8cc4f1a7fd3840a6afdd5f02123e76db4f0d9474430c0100d148fc", | ||||
|     "blk.15.ffn_gate.weight": "ff935a2698843e87fad9dbf7125f53e460190ec71ee128b650b3fc027fe37bfc", | ||||
|     "blk.15.ffn_norm.weight": "4be80f199841cba831982e988451e1833c3c938a4d6ca1169319087bf0bd723e", | ||||
|     "blk.15.ffn_up.weight": "ee9ba63c66d71053e33551ddd519878bb30b88eeb03cfe047119c5c4000fb0a6", | ||||
|     "blk.16.attn_k.bias": "3f5fbabed4510c620b99d9d542739295fa6a262a7157f3a00a4889253f8341b8", | ||||
|     "blk.16.attn_k.weight": "8ca6eb139b281c257324cddea97a8e9aa7c048b53075cf00153123b967c27ee5", | ||||
|     "blk.16.attn_norm.weight": "290157f005e5aa7dddf4bd60100e7ee7b0baa7f11ec5c2cea5e0ead2aad3a4c6", | ||||
|     "blk.16.attn_output.weight": "b1f4d80a7447f08f1c331712527f750d00147f35c042442ade96fd029dadc5a1", | ||||
|     "blk.16.attn_q.bias": "e3e4e442ad4416791b468cad8de0d0d2d68c7e7df8d06002f4d49b4da9cb25e4", | ||||
|     "blk.16.attn_q.weight": "cc7392fa5bb1107d3816e7e7363de252d37efd4165d065e258806291ce0a147b", | ||||
|     "blk.16.attn_v.bias": "a7629830f2f6293e018916849614636d40b1bcd11245f75dbc34d38abae8f324", | ||||
|     "blk.16.attn_v.weight": "b6c7856c7d594437630929c8cf3b31d476e817875daf1095334ec08e40c5e355", | ||||
|     "blk.16.ffn_down.weight": "f9c0a777a00170990a4982d5a06717511bf9b0dd08aeaab64d9040d59bcbebba", | ||||
|     "blk.16.ffn_gate.weight": "ed88f11bc3176c9f22004e3559ccb9830a278b75edd05e11971d51c014bd5cd2", | ||||
|     "blk.16.ffn_norm.weight": "ab24abdcc4957895e434c6bb3a5237a71ff5044efb9f76c1a9e76e280c128410", | ||||
|     "blk.16.ffn_up.weight": "99f594dc8db37f554efa606e71d215fbc3907aa464a54038d6e40e9229a547ff", | ||||
|     "blk.17.attn_k.bias": "f236625676f9b2faa6781c7184d12d84c089c130d2a9350a6cf70210990f6bf1", | ||||
|     "blk.17.attn_k.weight": "c2a4f20cd3e98538308a13afe9cc5880bdd90d543449c6072dedd694b511ee1a", | ||||
|     "blk.17.attn_norm.weight": "5a9da4ee168311f487a79fc9d065a035432c6cafa8adb963a84954cf32f57a2a", | ||||
|     "blk.17.attn_output.weight": "d5df7031e354186ce65dc09d6f8a92eb721c0319816f8596b0c8a5d148ed0a2a", | ||||
|     "blk.17.attn_q.bias": "3212d5eeaa7ed7fac93cc99e16544de93c01bb681ae9391256ed4a8671fc6b00", | ||||
|     "blk.17.attn_q.weight": "d18cd9aa7ee10c551cb705549fa1ae974aea233f86471c9a19022dc29b63d0d5", | ||||
|     "blk.17.attn_v.bias": "a74ad11a1f8357742f80e2a0c0b3a2578fc8bbaf14c8223000767e07a5d79703", | ||||
|     "blk.17.attn_v.weight": "da18ac0e90884436a1cb0ad6a067f97a37f321b03c70b8b03bf481339fef5c80", | ||||
|     "blk.17.ffn_down.weight": "81a8a5d7a194fb53d976558e0347efbe9fdb1effffde9634c70162e1a20eff51", | ||||
|     "blk.17.ffn_gate.weight": "72870d83ab62f2dcd45f593924e291a45e4ae1b87f804b5b88aa34cfd76dd15e", | ||||
|     "blk.17.ffn_norm.weight": "cae39ac69b9bdaeefab7533796fdf11dbb7a4bdbdeed601e20f209503aafe008", | ||||
|     "blk.17.ffn_up.weight": "e7cb40b0842468507cec0e502bbed8a86428b51d439e3466bc12f44b2754e28f", | ||||
|     "blk.18.attn_k.bias": "8bfc02b94f9587aa125e2d8bbc2b15f0a5eb8f378d8b3e64a8150ae0a8ca3df2", | ||||
|     "blk.18.attn_k.weight": "434bc3b3332ea48afee890aa689eb458a75c50bc783492b0cbf64d42db40e8ad", | ||||
|     "blk.18.attn_norm.weight": "d6ffc09396c42a70d1f0e97d81113eee704d3bfc9eeae2bed022075a5dd08075", | ||||
|     "blk.18.attn_output.weight": "133f001f81f3b082468a7de67cb2e7a76508fce34bcc4dee7f0858e06eee082c", | ||||
|     "blk.18.attn_q.bias": "758d0e28bf5e660b3090aafb70e2a3191b4f3bb218d65e9139a086ceacaf599f", | ||||
|     "blk.18.attn_q.weight": "12d7b86fc1b09b9fa7f8b7ed43d8a410892cec8672d0c752f8346f6193343696", | ||||
|     "blk.18.attn_v.bias": "9efd15bab0519462431d6c6e8a5b7dd4e151dc449468097ee0ddca369c0ecc2e", | ||||
|     "blk.18.attn_v.weight": "f631231a79d4a2e9730fb2e386d8c18621eb3fb7900fbfdff5e6d52cc42db122", | ||||
|     "blk.18.ffn_down.weight": "874a2dddf456f3ab56b958b0860d71c8c680a6f89322c9bf6b2f32a113592300", | ||||
|     "blk.18.ffn_gate.weight": "4549ef8976c345a511df4a7133bdaf6fe387335f52dfd8a4605a8ae3f728c403", | ||||
|     "blk.18.ffn_norm.weight": "80c258a2536a860e19bfcbd9f29afa13214fbb4c34bde0d4da51287d354e9a59", | ||||
|     "blk.18.ffn_up.weight": "8b03308a581457a3c038b7a086f3cdf14941d7ad4107c4bd6d9d6b062fd00d73", | ||||
|     "blk.19.attn_k.bias": "e77f7b0c8e3e0a9b0d61918cd88371047752a1b02b1576936f4ec807d4d870ee", | ||||
|     "blk.19.attn_k.weight": "a2a318e93355230c0d0f95c441b080bf9c4914507255f363fb67a5e771d4d1e6", | ||||
|     "blk.19.attn_norm.weight": "9a4bdeb3970be21ac74a94c2c81eb36986533db81b78db6edec48d9802910d59", | ||||
|     "blk.19.attn_output.weight": "2369b103dd3947e2cef02b2669b405af5957fb3a7f9d0ff40646078c4b4317ad", | ||||
|     "blk.19.attn_q.bias": "e20bf427bef69059ae84a5d9f98f7d688489627f198fb6153def018ff9fd2e34", | ||||
|     "blk.19.attn_q.weight": "45a3bb3bdfd2f29dd76e5f78ddae73678b9a2a85dfaf609e460240ef5b7be2ad", | ||||
|     "blk.19.attn_v.bias": "a441f58a3e02ed86ee1819eefc9bd4e8b70d11b864a929d58a2c2ac0aeb8203d", | ||||
|     "blk.19.attn_v.weight": "30b0b04480c510450a7abb2ce9fa05c65b150a3cc4dc76f8916bf8d013f1b6be", | ||||
|     "blk.19.ffn_down.weight": "eebb9ab8fdb6a6efcfff8cf383adac9ec2d64aeeff703d16ed60d3621f86c395", | ||||
|     "blk.19.ffn_gate.weight": "3fef1493029298378886586478410b3d2e4e879f6aa83c07e210a7ce6481817f", | ||||
|     "blk.19.ffn_norm.weight": "e1be99ea1e8fb9678f7b8ba200f3f37e03878f3574d65d57bcd3a9fd796e2112", | ||||
|     "blk.19.ffn_up.weight": "f07cf25e09394fb69fe3ef324bdc0df9a4cecf3dc53070b8acc39e6d1689bf82", | ||||
|     "blk.2.attn_k.bias": "b29baa8221f125eff6b8ac1a950fa1d7cfc1bce7bdc636bf3df7d4065ab6466c", | ||||
|     "blk.2.attn_k.weight": "4bd0c179bced8bc37a09f5748c394e0cf50273942fb38a866e5cf50b6c96c437", | ||||
|     "blk.2.attn_norm.weight": "07b3edc6a6325c3428aa12f29bcae0be0de363ce61a6af487bc5c93fb8c468d9", | ||||
|     "blk.2.attn_output.weight": "056b5b31dbc81087c81b9d41c25960aa66c7190004c842ba343979644d7f4d88", | ||||
|     "blk.2.attn_q.bias": "479b6212401e097767c9d52b12a1adb8961c0fce9fcaaab81f202a9d85744376", | ||||
|     "blk.2.attn_q.weight": "f89196076f446a6dd8a9eee017f303504f9c03094c326449cee5a7fc0a97fade", | ||||
|     "blk.2.attn_v.bias": "ef9b1b986dbd9d7291027a88b67dc31434435b20e76e4f1e9d6273ebd31224f0", | ||||
|     "blk.2.attn_v.weight": "9322f4f00e85f8c0936845c51ca64b202a93df104f36886986a8452a8e4967a5", | ||||
|     "blk.2.ffn_down.weight": "7beac0d2440dc49af33ededb85a6cc3ba23ab33ad3ffa5760714b2ef84d94f6e", | ||||
|     "blk.2.ffn_gate.weight": "818a93864a5890c1f4dc66429004fad07645a50142350e9bff9a68fe24608a52", | ||||
|     "blk.2.ffn_norm.weight": "152c924d5514942ad274aafb8cc91b35c1db3627c3d973d92f60ff75f3daf9ba", | ||||
|     "blk.2.ffn_up.weight": "9c9579e600f209546db6015c9acfeda4f51b6d3cca6e8db4d20a04285fe61a37", | ||||
|     "blk.20.attn_k.bias": "fd22bfeffb63d818ce2ff1ea2ace0db5d940f7a9489b6bfc1ec4a5398848d7fe", | ||||
|     "blk.20.attn_k.weight": "f74439bc74c2f9252130c9c28384fd7352368b58bb7ce3f2444cf0288dfff861", | ||||
|     "blk.20.attn_norm.weight": "5c15d2613df87be6495fb7546b7dcedd2801d12fa5ecc02c877df889330e8f37", | ||||
|     "blk.20.attn_output.weight": "6731a39286a67f6859832f96695732e579e14e0c36956eccd1edce3db11595b8", | ||||
|     "blk.20.attn_q.bias": "04466e5a3f454a19b9b433fc2585396feac780027ece7ccb4e4bb3e406fc14d8", | ||||
|     "blk.20.attn_q.weight": "ead4c71daaeb17bf20d014a34c88b97f238456488e815ae0f281a5daf6fc99b8", | ||||
|     "blk.20.attn_v.bias": "adcc848e043025de9bd55ccb14dd8fb6343e8b5185ed07e12964be41d0faf99f", | ||||
|     "blk.20.attn_v.weight": "81bfc23f83526386a4761c2c16b6a93cd0bbf9d846c1a51b82c71f1474a465f1", | ||||
|     "blk.20.ffn_down.weight": "9bf660af3bafad919d03173c89a65fc9c89440a76c42c9e55e4d171076f3c17f", | ||||
|     "blk.20.ffn_gate.weight": "c04b4f3ccce44917ee228b998e2c19dd702aef10a43413afb152e808b5ac5c42", | ||||
|     "blk.20.ffn_norm.weight": "3d5b555d7746a71220143c6b8fff5ce4eb63283d9d9c772f1233d848f69f4ff4", | ||||
|     "blk.20.ffn_up.weight": "d7a196505c39e5469dfc7c6958bdbb54e93629ac1a047a6663ed96b318753094", | ||||
|     "blk.21.attn_k.bias": "4db1f48e5c6a3bc5720a5da813bbef08283e6269e12d83f8a9c54e52715d8011", | ||||
|     "blk.21.attn_k.weight": "c687b2f0e132a5e220a2a059b61aa2a537f37d8a674d7709f87880637b263b31", | ||||
|     "blk.21.attn_norm.weight": "ec23b0ff847a4b45585ab8e04f10fc20bb1637c5f1fbcdc4d73f336bcb5d1bd0", | ||||
|     "blk.21.attn_output.weight": "01255390576316c1731ef201e32c6e934eba356c28438cd06d9027ac6a3ff84f", | ||||
|     "blk.21.attn_q.bias": "3098f37205a15418e1681e407c82b7ce7c6fda6c6826b0590a13e1b68a38a1ea", | ||||
|     "blk.21.attn_q.weight": "30ea62cbb702a5359229dc96819df17ee535e2e9988d044b005c73ea536e1005", | ||||
|     "blk.21.attn_v.bias": "7bbedb2c22a04737f21993115701d4a06b985b7ca3b64681f53cd1be8d7ea39e", | ||||
|     "blk.21.attn_v.weight": "e11905e63579e36fbee978062af7599339ae29633765a4835628d79a795ec8df", | ||||
|     "blk.21.ffn_down.weight": "84def2ffd8aca766f9ce12ed9ac76919ab81eb34bdeae44fa4224417c38af527", | ||||
|     "blk.21.ffn_gate.weight": "4e99f05377b4a0b8d875045530a5c59dee6a46ac8a45597f6579f6fdfa800787", | ||||
|     "blk.21.ffn_norm.weight": "af48f13d03fba38ff8794a5f5005e666e501f971ca2e30bbded2777a8096f37d", | ||||
|     "blk.21.ffn_up.weight": "a29541c39a6acbc364be86994632a5bf55d701027cb7f23320f8c6d55ee42c91", | ||||
|     "blk.22.attn_k.bias": "c97f84db6c75422df6ef5768676d4e9abefaa3b8337aa2730ff260f8fc350480", | ||||
|     "blk.22.attn_k.weight": "af9a0c56f68779513e95be11611b7be6175ddae27d48bee9dd72fdbf05f6cbfa", | ||||
|     "blk.22.attn_norm.weight": "1c7518eb5bcff4a202c6f4a2827f14abd76f9bcc64ce75fe9db60b69437a5c9c", | ||||
|     "blk.22.attn_output.weight": "1abcf1f3caa2f59dd018646b93f9cf8fd30d49e98a473e6a8704419a751be46f", | ||||
|     "blk.22.attn_q.bias": "7221e01cb692faf2f7f8c2eb6e2fac38a1b751a9c9fdb6a21a0a936eb0bf4b96", | ||||
|     "blk.22.attn_q.weight": "faaf8fb7b6c19f343d47f3ea6b57151fb46c787e0b3bd2c292fd327d3d4d8e35", | ||||
|     "blk.22.attn_v.bias": "3ec05942e82d735de99dfd0d8228d8425e63e2fc584da98b3326bdef89ecb2e5", | ||||
|     "blk.22.attn_v.weight": "42e7b0ad06db76227837da9d4e74b2db97f3df4050ecb3a87cb9b55e08dfcb42", | ||||
|     "blk.22.ffn_down.weight": "87ef98ad2d0e824b0fa5ad8aa18787162922e527c9b1b721a99bc07d3bf97c82", | ||||
|     "blk.22.ffn_gate.weight": "562d6e5a1654b03aaa0e33864d23c10297fd4bcaa72d30fac69fb771ee1df9d6", | ||||
|     "blk.22.ffn_norm.weight": "f8a405dee467749d59427ce05cdd4b9c11bb18934a89258ea461f013b7d251f5", | ||||
|     "blk.22.ffn_up.weight": "90e1f4ae4062649d4d838399eb353e8bb8d56a49982b6a7f64aa3945377f7187", | ||||
|     "blk.23.attn_k.bias": "9ad22178a85f3be7e25f5aff462f31627466364f2f5e92f265cc91db0da9a8a8", | ||||
|     "blk.23.attn_k.weight": "d813beffb10f03278f5b58eea0f9d73cdcb7b5b4045ae025c379592e854f7dfd", | ||||
|     "blk.23.attn_norm.weight": "f583c9836044bdb056d6f8911088ac28add68e500043ae1f97b5d9158fe3d769", | ||||
|     "blk.23.attn_output.weight": "02789911ac3b97f6b761e958b7dd6dc7da61a46a1be92bd0b346039ca7ecd2b2", | ||||
|     "blk.23.attn_q.bias": "38c4970fb9b4f7e4a139258a45639d848653814b4bc89ea9849709b13f16414b", | ||||
|     "blk.23.attn_q.weight": "eb694be9a5ab5858b8dab064ee4cce247dc757424e65282989bd4d015b8580ce", | ||||
|     "blk.23.attn_v.bias": "0a25f6533aa7e7a152a4b198cf6c411c2408a34afa4f161bb4d5ffba2f74e33f", | ||||
|     "blk.23.attn_v.weight": "187e1bac6b70f74e6364de226565aa8275ee2854d09cbe5895451a689596049e", | ||||
|     "blk.23.ffn_down.weight": "88880dd9ba7ee80ade972927f810b5d2c30a69520c615190b27f9daabc0a8c5a", | ||||
|     "blk.23.ffn_gate.weight": "5abec63197935ab3eb8e6de0a5307396ec46cdb1cc5de25d87c845f3c4a3e887", | ||||
|     "blk.23.ffn_norm.weight": "60e1f5e6310c3a531c554a6bb7cd883aed58db1e51853f739436ea461c1843d7", | ||||
|     "blk.23.ffn_up.weight": "3d7f502771743f4a634188dfcd8b8a384fb07467ca8528366aee59ddb25b7bce", | ||||
|     "blk.3.attn_k.bias": "0b6b442ebbac29c8c4b67e8e3876d0382dd2dc52efdf4ab0ebbc6f71b6252393", | ||||
|     "blk.3.attn_k.weight": "480f40584fbda692c26f2cee45f5923780b236f8b4e8ec7bbee0237777a0918d", | ||||
|     "blk.3.attn_norm.weight": "39872be2af31bc9cd6b583ebba6fb759f621d586d66e5a2fc0b85991615a8923", | ||||
|     "blk.3.attn_output.weight": "924b2c80d8513bf637f8ebb3756a340d9cf2243de723fd08d7f5dccd46b3f8b6", | ||||
|     "blk.3.attn_q.bias": "863c9d848156847a3fe9bbc44415a4395245b5d13e95673c014fdb71e494ab0a", | ||||
|     "blk.3.attn_q.weight": "bff73ee5de92fba8f6c089bbb19ce57e17ab3c9c29295712804bb752711b882e", | ||||
|     "blk.3.attn_v.bias": "e1b6fea126e86189112fcdfee79ffc66a087461527bc9c2dc52dc80f3b7de95e", | ||||
|     "blk.3.attn_v.weight": "7812b7f5133636f06cdbb4dcc48ef7803206538641b6c960777b37f60a8e6752", | ||||
|     "blk.3.ffn_down.weight": "00b393d6a7e3ad9b5224211ccdbc54a96aae151f24ed631764ac224972a6bc82", | ||||
|     "blk.3.ffn_gate.weight": "cfd63fa3a038af05dc53c6eeb3c192f1602f26ff24cb840bcf1510fcb37b5513", | ||||
|     "blk.3.ffn_norm.weight": "7389fc240a282949580ea2f5b0d7973ac79f32f76dc0155b537bb6b751f8e27a", | ||||
|     "blk.3.ffn_up.weight": "2a945f47090df9cb16f92f1f06c520f156f8e232182eaaed09f257b8947a2a62", | ||||
|     "blk.4.attn_k.bias": "62533c31f0de498187593f238c6597503fef2a92e920cd540a96bc5311b3b2a0", | ||||
|     "blk.4.attn_k.weight": "93e829868bffd980a8e589b9c4566cd81e6ce4296a5f357a2ae93febe1284156", | ||||
|     "blk.4.attn_norm.weight": "9e0aaa4bbdd1389890f8abec20533f3ab16d61b872b1a8dbd623023921c660a9", | ||||
|     "blk.4.attn_output.weight": "74467d6f44357d67f452ac49da861468b38e98057017bd38bc9a449f9d3538e6", | ||||
|     "blk.4.attn_q.bias": "8e6d9026fd69b314c1773c5946be2e11daf806ef22a5d91d744344fd30c58c59", | ||||
|     "blk.4.attn_q.weight": "e5bfbafd94a4d530f3769f5edbba8cc08d9b5bee8f66ebf4cb54e69bc0b7f63b", | ||||
|     "blk.4.attn_v.bias": "20c570f92022d9905eb85c0e41d1fdb30db22007a9628b51f512f8268d6c34a2", | ||||
|     "blk.4.attn_v.weight": "9638d459d61da03c9dd34dad985e03c43b4f8a5bc9701a82153478329b0517e0", | ||||
|     "blk.4.ffn_down.weight": "9d91b06e89d52f4365dece7eaeec50f81e52cb2407b333248a81e6e2f84c05b8", | ||||
|     "blk.4.ffn_gate.weight": "bf6350a79c6a6ee9146edfd788b88d4a4c2b54db1aa0adcc1464dbba8a84b646", | ||||
|     "blk.4.ffn_norm.weight": "11a70a6b9f7ce336292f4e3a2c6c92d366d4ee4306ad4fdb1870fde107e9cc31", | ||||
|     "blk.4.ffn_up.weight": "64f23f493d02b147a72a59605e6b7dd1c4c74f6813a38a2a60818bd66f697347", | ||||
|     "blk.5.attn_k.bias": "f6c2c279c0ed686f298ad1e5514b5cd882199341f896abbb2c2129d4c64ce9c5", | ||||
|     "blk.5.attn_k.weight": "0e682f75870abf9efaca10dac5f04c580f42820ecf4e234d43af967019acb86f", | ||||
|     "blk.5.attn_norm.weight": "01efae7653705e741932fcd79dff3be643d7e97f4b5719b887835dffe44b3a82", | ||||
|     "blk.5.attn_output.weight": "69e841d00d196acc489cd70bc5ffbbb63530ac5fabb169d40c4fb3a32ebb8ed8", | ||||
|     "blk.5.attn_q.bias": "f3304d76ccd44fed887565857c8e513b1211d89a5d3e81782de507ab3f6fc045", | ||||
|     "blk.5.attn_q.weight": "98612a6b7920a247853ada95c240807d4ca8e43604279e7a2fc9bb265ae40469", | ||||
|     "blk.5.attn_v.bias": "39940a9b353ceed3edfd4a39b985c9520490aa1b9f11749c94fdf6d879d1a259", | ||||
|     "blk.5.attn_v.weight": "839f84b828cf83aecf479a0dc7bc86cce05145ef77dcf29916dc3e0680f5b665", | ||||
|     "blk.5.ffn_down.weight": "1f48cbb0960f15e06ab8a3754ade792995a655856389ddbca629c07e89d1b114", | ||||
|     "blk.5.ffn_gate.weight": "33d8219fce3189e1aab376039896eebd4ad36ebd26a8278cd19b26e4357e4f81", | ||||
|     "blk.5.ffn_norm.weight": "0f4a0f83d37127fa4483f2905cb4f38ef6ddc71584b6cb05632c62a9af313dda", | ||||
|     "blk.5.ffn_up.weight": "22a64a11e5f0a1ff45ca327bf9e1efa258f085ff6a96edc398b7474f725b4514", | ||||
|     "blk.6.attn_k.bias": "baa91df99d4df2d25e8d590bca4e334b97f2d9aa3df8e748fedc8a6188499111", | ||||
|     "blk.6.attn_k.weight": "121f3b9f4b9491996499392e2688a929cafe102a67920b4cb2a039349c43d8eb", | ||||
|     "blk.6.attn_norm.weight": "b4cf987e923d71f2f84c58d20ea8af7576b225bf61952145b489fdd395e3d411", | ||||
|     "blk.6.attn_output.weight": "a112642150a138d54b2a4038042fd33619035a35694771e966f3575856c635d6", | ||||
|     "blk.6.attn_q.bias": "a97ea10469cdfa3fdddf8bad6de683ef99f6170eb8d29d15dcf6bf4bce37c5a3", | ||||
|     "blk.6.attn_q.weight": "d80c787019317a87361de6bbc7df6701357216bdd9b404522cede34a719a5500", | ||||
|     "blk.6.attn_v.bias": "d846269db9cd77ae28da26ba0914cace1b6754bd5301af9c44607085dfcbd2d7", | ||||
|     "blk.6.attn_v.weight": "06567c433e8a391647633291b50828a076ad7c2436106bb9278c60a3f8fccb3b", | ||||
|     "blk.6.ffn_down.weight": "f15f66f56b3c474eac8c6315c5fff07c3e29c6e483d7efd4d303c7f43814be91", | ||||
|     "blk.6.ffn_gate.weight": "47768f89c6da8eefb29adb766ff4eb38c9dfd79320bbc1386248319fcbcf567f", | ||||
|     "blk.6.ffn_norm.weight": "7f8195e6b148212967145fc9d86ce36b699cff0de026042245c2d344f1ef8510", | ||||
|     "blk.6.ffn_up.weight": "53d7707ae4347aadb445289f9f87a008b72df5cb855b00080a605442fdd8edf3", | ||||
|     "blk.7.attn_k.bias": "63e274df3217dde25b8369a383e480fe4f6b403a74385f15ac0b5db71dce2744", | ||||
|     "blk.7.attn_k.weight": "f6fce88602f5945eee09767acbcad387d132614e6da39ae359f2bbf380d94b1f", | ||||
|     "blk.7.attn_norm.weight": "bbf5dc7336c0f9a511afef6bf5efeffd78f1b83940850c3eb7eb20c621b75656", | ||||
|     "blk.7.attn_output.weight": "d9fb907a138396a859cecbfcb377927308dc93c24c7fb52dba5eb59265feadec", | ||||
|     "blk.7.attn_q.bias": "f02ba1318346af77e309f40aee716e2de7ee8cab67e67b17636db9bf40894fb0", | ||||
|     "blk.7.attn_q.weight": "54a691e824be287a61c35c172edc01922ed792d2addeee029afc17ba6c7e11b9", | ||||
|     "blk.7.attn_v.bias": "3a4f182f51e84ce862d558fb2751b91802b65d74596bb14d624808513a8a83ec", | ||||
|     "blk.7.attn_v.weight": "a142fe6e106d3ab484e2dc6f9c72b8fc0a385279dde08deb1ad1fd05ac25deb1", | ||||
|     "blk.7.ffn_down.weight": "8daf7e8c430d183a4d6ab3eb575fafa4b5e31689f68b290c8b370411ad9d0f12", | ||||
|     "blk.7.ffn_gate.weight": "a2a786b45eb660994254b48e2aaf22f3e9821cfb383dee0ba04cc4350a2f8e72", | ||||
|     "blk.7.ffn_norm.weight": "73828bbc8c9610cc139fcf03e96272648cdc291263251fe3a67367408deb69e1", | ||||
|     "blk.7.ffn_up.weight": "e85dd0f63fed449ce16893c5795ea6a050a2d7a66d9534410a227e22c905dafa", | ||||
|     "blk.8.attn_k.bias": "91a752a6e2c364e5ee6a015770fe289aece4911ae6c6bbfe74ac52f465465f93", | ||||
|     "blk.8.attn_k.weight": "99c069e92c43a2efb74e23188256b3cabbbe06399878e681ce203a05d5da378a", | ||||
|     "blk.8.attn_norm.weight": "c76d36d3cc06aa2a9edb1abf9f602bb7ed61ac9d61f8ef7ed736a1e619abe717", | ||||
|     "blk.8.attn_output.weight": "ee5ff156a2625e1f203f65e69b514f9df04bd9a5e82b28e3876e16cf1c6f65c5", | ||||
|     "blk.8.attn_q.bias": "8fbd868a93b330c8b0418b488c5301f42a7eb0c58445a4e515d56777f1d96ed5", | ||||
|     "blk.8.attn_q.weight": "9f20ef86e80098ba52a3a31ebcc315bea3a614dac9cba7ac1db02f156db9b577", | ||||
|     "blk.8.attn_v.bias": "c4813571d5d618742183a7890c0b89cd7f18e210c758f63aad564659bc38a26d", | ||||
|     "blk.8.attn_v.weight": "ea88e1a4cf8bd56e9a88ada427d2b0cd352234827640757ee2a9ed594fb67a53", | ||||
|     "blk.8.ffn_down.weight": "b0d1a7495811580b189aaa3e20ea871d6d01ed7b6c23e59825078ef786944ff2", | ||||
|     "blk.8.ffn_gate.weight": "0a17c0caa0b06721c49b59b2a63a5dcbf744dd1cffa55962b404ba910c658a62", | ||||
|     "blk.8.ffn_norm.weight": "f15f109d4a8e9d1ff7c71fa5bc6373df7ee80c5f7d1de3fa0d4849d747e36bcb", | ||||
|     "blk.8.ffn_up.weight": "bbf4c5c4c5c8a0f9ae8b88e3cc8b86f81b98148722d5a350995af176c0b774f2", | ||||
|     "blk.9.attn_k.bias": "a7f60d962686b8ca60f69643e0e0fa8614688be738fb0b1c6bd54de35c2beb5e", | ||||
|     "blk.9.attn_k.weight": "dd80ce4adb00e338fc04b307e4c18a27071f4ba4397184a24d765e6e4a268ef4", | ||||
|     "blk.9.attn_norm.weight": "721e6487547e2b3986ab4b4e2500ceade59d908bccf4436e1e8031f246deb2bd", | ||||
|     "blk.9.attn_output.weight": "5a800af39107b363861e5f5173483cdcd644d8ac3b0c8a443b9c759d71285db8", | ||||
|     "blk.9.attn_q.bias": "0a19b4925ea8ca8067acc909b058adc327de3874cfc94cc9eb4a106d3f370123", | ||||
|     "blk.9.attn_q.weight": "93e84906684c0c7ede79967236d9fc8344da84a9f1daa04e8295c2c9b6b26a24", | ||||
|     "blk.9.attn_v.bias": "615421f812f821e230ecde4e6da35d868823248355ce7e4e51e2d650ead565f9", | ||||
|     "blk.9.attn_v.weight": "7f4913e289aefd9ceecbdaf9767b1e95303f5d59dd67ecb2cc15768477f4d08e", | ||||
|     "blk.9.ffn_down.weight": "95d1b3933221e87dc4af70dd566daec9498bf358070b8d26f1fc70766a84a152", | ||||
|     "blk.9.ffn_gate.weight": "530f2d04f6a1fbffaaa5f2fbc3a328ebed7b330e3af14b4fc7d8a51b13ad8d42", | ||||
|     "blk.9.ffn_norm.weight": "28077de416217ea1df94b96017bef4cc562ab62e51b1a03a671c70abc29ce52a", | ||||
|     "blk.9.ffn_up.weight": "b87b6190778aaee4695938e24ac6c90dbbee6dce7c5c2ab5bc26ba4564581822" | ||||
|   } | ||||
							
								
								
									
										124
									
								
								convert/testdata/all-MiniLM-L6-v2.json
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										124
									
								
								convert/testdata/all-MiniLM-L6-v2.json
									
									
									
									
										vendored
									
									
								
							| @@ -1,124 +0,0 @@ | ||||
| { | ||||
|   "general.architecture": "bert", | ||||
|   "general.file_type": "1", | ||||
|   "general.quantization_version": "2", | ||||
|   "bert.attention.causal": "false", | ||||
|   "bert.attention.head_count": "12", | ||||
|   "bert.attention.layer_norm_epsilon": "1e-12", | ||||
|   "bert.block_count": "6", | ||||
|   "bert.context_length": "512", | ||||
|   "bert.embedding_length": "384", | ||||
|   "bert.feed_forward_length": "1536", | ||||
|   "bert.pooling_type": "1", | ||||
|   "tokenizer.ggml.model": "bert", | ||||
|   "tokenizer.ggml.padding_token_id": "0", | ||||
|   "tokenizer.ggml.unknown_token_id": "100", | ||||
|   "tokenizer.ggml.cls_token_id": "101", | ||||
|   "tokenizer.ggml.seperator_token_id": "102", | ||||
|   "tokenizer.ggml.mask_token_id": "103", | ||||
|   "tokenizer.ggml.token_type_count": "2", | ||||
|   "tokenizer.ggml.scores": "6db964fe67338aca57790481a390121ff3dd643eebe49f7dd308029ad99abb6f", | ||||
|   "tokenizer.ggml.token_type": "98d247c5404b6b18f05f133b92dd56edf6efefefac326794b00d7b351f6c5aa1", | ||||
|   "tokenizer.ggml.tokens": "9efe405e229a45ff9916f54c475d151d2200cd2ab0006f347abfb069cf096c86", | ||||
|   "token_embd.weight": "8c1ee80a9ea4f65aa385ba30112010068af3d209bebc6e149d3d4589c2cd0a5a", | ||||
|   "position_embd.weight": "6c516f0b1c4e2388ab90394dd80ad69e4e4509b890982fc3408108ae66210eb6", | ||||
|   "token_types.weight": "f879f8e422ed211948f28b560d3c5e17aae7993f063b51196a28cf5c0fb3da21", | ||||
|   "token_embd_norm.weight": "75076e095d717aab96f8b6beeee503c27940d9a76f2b891a0e3de72f8a6043e4", | ||||
|   "token_embd_norm.bias": "298735285ffe944e1bf03e5d35c7280326b85cf121bde9874f1af5dc51ab939d", | ||||
|   "blk.0.attn_q.weight": "ab0923ce4c1549175112dcdfcc860fe30137f991e03ea6857fb5993670adaf6c", | ||||
|   "blk.0.attn_q.bias": "a3ec29551dabf976e1d34256b8ab5ab7b758f3ed9742c3cafdbd984d5441df62", | ||||
|   "blk.0.attn_k.weight": "4c1038a6d035c3e9ffed7fa672b614627814752503755fbad0cfb76a41ad71ba", | ||||
|   "blk.0.attn_k.bias": "e0363930eb588d91816aa3d230bb03b6e2551c165117b80b8d60397413819ef9", | ||||
|   "blk.0.attn_v.weight": "425e2e53e3f00ce98d29c3e6a161eb55d3e6ae0d96fdb9f6242d1c4fd6eef4b3", | ||||
|   "blk.0.attn_v.bias": "6579173a1e65ee124fbd0bd53cbdca4225515b4f2c5f18fb1bfd000f5978f9bb", | ||||
|   "blk.0.attn_output.weight": "a6d70a08cd7164de5d12af65d86d657c3db35aaecde778b2b3fda9193c4c9802", | ||||
|   "blk.0.attn_output.bias": "2b8d12c4f9a9c5bfaa29c597839568f6e0525cb41eeaf64ddeb6bd84dfeb9701", | ||||
|   "blk.0.attn_output_norm.weight": "bbe6e502a473228b525aeed26cc31b7db123ad63bdc5a6eebac6ea70b8b51d62", | ||||
|   "blk.0.attn_output_norm.bias": "36eaacaf0007c5c62daea97aab0115390c0682914f78482e37eb76885f4b7a50", | ||||
|   "blk.0.ffn_up.weight": "24654561c76ce387d125759ba843f06b904ef721fcceaeff6ccc62180a48e874", | ||||
|   "blk.0.ffn_up.bias": "fd3f0126aa1d95768fa60eb6f4ab8a2763cfcb7e5405f35b92353031d86f4d34", | ||||
|   "blk.0.ffn_down.weight": "97a829763a6a5bf3329ceb4d39c424ba4787d61653a5b0bbd1f84782e4d4e0ca", | ||||
|   "blk.0.ffn_down.bias": "7aa980c30ae8b4ee7f69df28808dbf5c431f56ccc4a80340f644a0419f16c054", | ||||
|   "blk.0.layer_output_norm.weight": "ef30dad4c2a083ae1ff5039a2a6cda60ecc89bf1e486a6f8c0d15f50589603f8", | ||||
|   "blk.0.layer_output_norm.bias": "8b1b77e67568b1bce43fc476de1b177c53ff688d66beb66995e8eb3dc290da8a", | ||||
|   "blk.1.attn_q.weight": "284331622a1f6f9b87ccee4f652bd66a394ca493c4d93be4d1844e4f6159ad10", | ||||
|   "blk.1.attn_q.bias": "e24ebd4860330e08f6bfdd077a82db0bee33f4c8846cf1db26327a34754c7069", | ||||
|   "blk.1.attn_k.weight": "729dd0d555544b5bd0f7580b3c8b384256b974605f0e7487b95f295aa032997d", | ||||
|   "blk.1.attn_k.bias": "2aa51a828a858f35473f54477583fea54ce2ccc34ea60fbd1d228fbe9bca827f", | ||||
|   "blk.1.attn_v.weight": "6be304671cc311d5ca5c103f2b51467ee800c589bc5b8101e09ff5aed1f68c21", | ||||
|   "blk.1.attn_v.bias": "43bcbab78a8819e07f723bc9e5b737b71e87a7594f15234e882b63e327a64199", | ||||
|   "blk.1.attn_output.weight": "15ec8a1a12b26c9976445308a09f748ab0e4bef0f583d13ab08c3129f8738d73", | ||||
|   "blk.1.attn_output.bias": "dac2146f4baa6ed16f6c0dc7443831fb7ec79bedcceafd80d1a4b628a1bb072d", | ||||
|   "blk.1.attn_output_norm.weight": "d2151eb33bffac536787a4c9a5d2b31c7a80b17c4611877842a3cce2cd6e98d8", | ||||
|   "blk.1.attn_output_norm.bias": "31e1b779716dafb855d2cf5631ee168a0ccf372eb9c6ea6091f66fa97a9b9d2d", | ||||
|   "blk.1.ffn_up.weight": "a57547fc3fc3b77406f5cdcb0c87af9bc184701f175c39c1f35297826fce3cc7", | ||||
|   "blk.1.ffn_up.bias": "123be6d541d086202913c75d878c54d59a749f3af7b58f7ef9eb9e7c62a24c9a", | ||||
|   "blk.1.ffn_down.weight": "cfdb79788377e5cbded8790cd41b9e66c397ecab75474071fcd7cf32d30f9613", | ||||
|   "blk.1.ffn_down.bias": "bcb58315519a573097960891c9ae41cf4c685ab78c3e0e77471471758a7eae88", | ||||
|   "blk.1.layer_output_norm.weight": "819b554271452bfb1d84c2603b90377b2e41a0ac1e3aa8b417ccf9dce63375bd", | ||||
|   "blk.1.layer_output_norm.bias": "47a3433ac27f5ce8947fb38dd491f3706df4ef6adb0ddf74612bf0f54b19e164", | ||||
|   "blk.2.attn_q.weight": "1557a9ea852b1880551f7290e00aded4f35e6c4180fdcbed1b0039bf805f639e", | ||||
|   "blk.2.attn_q.bias": "c3bfe5f3066f655fd36b055530997b59ff33ef013563aaeb3cb8ff07dabd59a9", | ||||
|   "blk.2.attn_k.weight": "cfd08eb69c61ae2f9f14f9b7ff5c5394ca264b1a9f3d48156677f90dd1766289", | ||||
|   "blk.2.attn_k.bias": "9b839bc0e79974a0b3f5d1895972bc6f5c9a1bc16052e1af786e6a530758152d", | ||||
|   "blk.2.attn_v.weight": "02b26b1208480eaeeb00e7b4cf8b690006ca14759357fc44ed4a2a8924ead993", | ||||
|   "blk.2.attn_v.bias": "e7e6f0089fded1659a867ab736c220d9653ea7da6b1b94baf5c8d30a748b63ab", | ||||
|   "blk.2.attn_output.weight": "a1db121c7d33806b349cadd050300a57db49fdc91224fd07c9ac43bf4299dc79", | ||||
|   "blk.2.attn_output.bias": "7675128b6a92555cd955c820311e91e9417d31f48848f45d047b4100c62148b3", | ||||
|   "blk.2.attn_output_norm.weight": "5b4595e0fbcba67a700c4331adf746d2fba3546364a4db5607ae241947bb1a21", | ||||
|   "blk.2.attn_output_norm.bias": "7b8e16826ea30e5a2ba0b02e0095a901775981a296e98819625320e983060d08", | ||||
|   "blk.2.ffn_up.weight": "a0d815d946ac07a65095c4ae4df77b818845e6d97795c7d82f55e689d944db59", | ||||
|   "blk.2.ffn_up.bias": "ce37c0a4174d6bf773ded7bd016ede627ad3bdb8bc99b9992a18dc8e8898f252", | ||||
|   "blk.2.ffn_down.weight": "f6231d2a25426fbd45b9f1160aa484220eb227ceef0348c4a6a6de890606e5ef", | ||||
|   "blk.2.ffn_down.bias": "429e00556e8dc63a785238b309b9d83738500c1ef6d736fe6526ad88ea496d27", | ||||
|   "blk.2.layer_output_norm.weight": "651457a573adf3f7dd9ee5dfe1c8e89389e94443993aab77ec6a0b05aa621e35", | ||||
|   "blk.2.layer_output_norm.bias": "41fbbeda7fd89b0cef5f945ae44011c316982390401d6f75ba8c6d365e185247", | ||||
|   "blk.3.attn_q.weight": "95a43f32949d2cb8d22815bb27a44abfc6665ba96221af817dfe058cb6ca72c6", | ||||
|   "blk.3.attn_q.bias": "f4e34385e75d8108b6b3bd336106e2133a8c9be0cc343dfe5dc48c32a823c7cb", | ||||
|   "blk.3.attn_k.weight": "6b892da6a17d4d3265265a15f695864a31813ee8c8e710ae9bc9e1adbc6c9a18", | ||||
|   "blk.3.attn_k.bias": "40b8067b641a56014cee42548240aa8930820958b1933004892b5f04fbaef39e", | ||||
|   "blk.3.attn_v.weight": "9fcd5922319dd2a461082a5ce040c1dfe65d87d70ca6547dd0b46eeecc3eeb2b", | ||||
|   "blk.3.attn_v.bias": "b528c56212e66931fdbe267ac327a9c2f87cd03baff3ea719e30afe681da15f1", | ||||
|   "blk.3.attn_output.weight": "e3b178c1b03981e75510e0d277af23ea59cc404b5394e61bd32291825719b502", | ||||
|   "blk.3.attn_output.bias": "712c84d39a6a5a9c06a09da8fd9939ba0d5525524a4bba61ea4de09b48f45cae", | ||||
|   "blk.3.attn_output_norm.weight": "d1ffac88e675592ff72f8a617be32b4a381d443b2f8f2645dbe44a1e5745aac0", | ||||
|   "blk.3.attn_output_norm.bias": "ea31a1c73146234c50e0e43f485c458413714867b8e2703af66482f7db2d6c40", | ||||
|   "blk.3.ffn_up.weight": "4ef4f3b9a1ea6ab2ef2eb6e8b008e06a44790d099d97482a05a51e39a29afac0", | ||||
|   "blk.3.ffn_up.bias": "06a4296dda16f452675c51f108079fe7722552d6521c737d97734943818b9a2b", | ||||
|   "blk.3.ffn_down.weight": "f114b2bebe392c7d80433bb880c6730293aa4561b0b0370dcdaf7472daebd847", | ||||
|   "blk.3.ffn_down.bias": "2c8e67831d28a3bf613fc7912ae3259b63d72abcaf4d30efd8800758400158de", | ||||
|   "blk.3.layer_output_norm.weight": "a1dfeb7b5a51dd56447312ca41e2ad2f361a3ea12ddc355127f5f4219fb0a482", | ||||
|   "blk.3.layer_output_norm.bias": "1ed630021b25c6c6fc93fd32988b9907df966d4982a93081f639aac3044618ab", | ||||
|   "blk.4.attn_q.weight": "b5fae4c1f9a5f33a2a2e816ac0c01c25f422e4efdd59ef1ed93da2610e5370fc", | ||||
|   "blk.4.attn_q.bias": "c2e376524ea98ac3b10d9eee19ecb1b1e261fa5149efe0232844c923dfb428fb", | ||||
|   "blk.4.attn_k.weight": "a4632f5ebf9321d9d08f9112a4e5dda2efe5671df4a4e67fee24845f5b14af16", | ||||
|   "blk.4.attn_k.bias": "a9a02ffb8b8b4f6dfe487a7e0341f1d5318c9d2b793a688f34cb1b22fc66ef60", | ||||
|   "blk.4.attn_v.weight": "10ad8deb81d9fa093b1e5c0f24ea82aa7df43e6aca49e260fcbea56eab8cc86a", | ||||
|   "blk.4.attn_v.bias": "7326813e181e021130bd33ac136293fcffccce2d1d8cb59041e5b13a8cceacf6", | ||||
|   "blk.4.attn_output.weight": "c92573088c7437c2b3cda51490e152c27fb19e5468df591eabba5a49d5398d44", | ||||
|   "blk.4.attn_output.bias": "14e10b419e5859af1eb685af5c330aee67048cd704dcead9217840c6f5393222", | ||||
|   "blk.4.attn_output_norm.weight": "02b6831c0e0fb0edbc579a92812a1dd972cb15d14fcd382d4427c5a7b300ac44", | ||||
|   "blk.4.attn_output_norm.bias": "7eed5cd503bb6bb6ceb1bc8b07cc077903a4f14fb8b9d6cdf39644815ecf1374", | ||||
|   "blk.4.ffn_up.weight": "8d0c91d62e74d6431321116a37cf3339e630bd50ba164d3304fc4fe8dd831223", | ||||
|   "blk.4.ffn_up.bias": "d325f07f73c005a273c484c7be8e7abb4d6e8a5c4fd093f5869133b97629d017", | ||||
|   "blk.4.ffn_down.weight": "7ba7bd81143f40537b84f938e403e19f30e4928625eb371de052b9025beb4d21", | ||||
|   "blk.4.ffn_down.bias": "2853d9c2a75288214a4bf4907dc19d04d01926f4913d302b1aa7bdbfcce0f7a1", | ||||
|   "blk.4.layer_output_norm.weight": "a4ed1885fa77b90fed5300c355ef0aa0c876a8c747151d9d790939d464d57d4f", | ||||
|   "blk.4.layer_output_norm.bias": "62142a81e813a9e636333b2b805d6bc3b17c5e7cd4b15adce1ada6bc9a32563c", | ||||
|   "blk.5.attn_q.weight": "afc1dff080a72c3daad01384b1448d476aaf789871017c8ff8e144788887995d", | ||||
|   "blk.5.attn_q.bias": "748a820371c1d4f872c84545b36358d239c35bf6c99e2812c237d88c3292763b", | ||||
|   "blk.5.attn_k.weight": "59e30c1ed8acd2cbb01de5f62e7804015b9ecf98ba157d98cab016344639eda5", | ||||
|   "blk.5.attn_k.bias": "f839520078f9e589496e982e86d0126c7aa14196047339abffcf49a696229f77", | ||||
|   "blk.5.attn_v.weight": "3e21fb874e21b90308e1f46af034a3c32d3eba1628d62ae5f2246d6af5818923", | ||||
|   "blk.5.attn_v.bias": "5cd4852bf95c1444d10d756750f6bf49f842c0b39e9953c7f408bb67c325ac8c", | ||||
|   "blk.5.attn_output.weight": "636ce6a7752895f204b9d01ba0aedd9a294f908b42f372c22a16d9dd590d7471", | ||||
|   "blk.5.attn_output.bias": "82d924d4b0d2b94f2bbff91619216d6967a3541ce9b1531a6a60457a67b5d219", | ||||
|   "blk.5.attn_output_norm.weight": "5e7bd0a8d3396080f3360d7c4700bf094a06216431bd014c4479eef72ecf4271", | ||||
|   "blk.5.attn_output_norm.bias": "66c6de5edda5466d029c6753780be81ccd4218bf8bc00680000e0f06856ab712", | ||||
|   "blk.5.ffn_up.weight": "5bbf6e7ea380e216e33f8bee06d25f2265359d3876a300e92bc6e41d48e33430", | ||||
|   "blk.5.ffn_up.bias": "9d795388bb36fb33ad3a37fea3ccb4937838e02800a608fb47d363cd06b47370", | ||||
|   "blk.5.ffn_down.weight": "2fd628974e7f075479dd227b46fbd48ae8d3ca34d735b36f391ac06410730368", | ||||
|   "blk.5.ffn_down.bias": "cd213ba9eaa75fa541648097fbe9c96e58077e6c3ad6ad2fb1f21f8350f44291", | ||||
|   "blk.5.layer_output_norm.weight": "159a9df41d15b7022d136f86a2a2631c4635f9816e957472217077b522bcf52a", | ||||
|   "blk.5.layer_output_norm.bias": "24c1f27ffd1eb4e5be7e3a2909943e6f0980635d761fa1efdd0c19645da23766" | ||||
| } | ||||
							
								
								
									
										344
									
								
								convert/testdata/c4ai-command-r-v01.json
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										344
									
								
								convert/testdata/c4ai-command-r-v01.json
									
									
									
									
										vendored
									
									
								
							| @@ -1,344 +0,0 @@ | ||||
| { | ||||
|     "general.architecture": "command-r", | ||||
|     "general.name": "command-r", | ||||
|     "command-r.attention.head_count": "64", | ||||
|     "command-r.attention.head_count_kv": "64", | ||||
|     "command-r.attention.layer_norm_epsilon": "1e-05", | ||||
|     "command-r.block_count": "40", | ||||
|     "command-r.context_length": "131072", | ||||
|     "command-r.embedding_length": "8192", | ||||
|     "command-r.feed_forward_length": "22528", | ||||
|     "command-r.logit_scale": "0.0625", | ||||
|     "command-r.rope.freq_base": "8e+06", | ||||
|     "command-r.rope.scaling.type": "none", | ||||
|     "tokenizer.ggml.add_bos_token": "true", | ||||
|     "tokenizer.ggml.add_eos_token": "false", | ||||
|     "tokenizer.ggml.bos_token_id": "5", | ||||
|     "tokenizer.ggml.eos_token_id": "255001", | ||||
|     "tokenizer.ggml.merges": "902a060cac8884a5793d2a857dd2e53a259de46c8d08c4deb243c239671e1350", | ||||
|     "tokenizer.ggml.model": "gpt2", | ||||
|     "tokenizer.ggml.padding_token_id": "0", | ||||
|     "tokenizer.ggml.token_type": "b7a352ccd1c99d4413bcf452c2db707b0526d0e1216616b865560fab80296462", | ||||
|     "tokenizer.ggml.tokens": "815ac90ff23565081522d7258f46648c8a0619eb847a9c7c31b238a9b984e4ae", | ||||
|     "blk.0.attn_k.weight": "6fcfdb466f9ceb1229404ce4ec4e480751b8d00da12707a11783dad7256cb864", | ||||
|     "blk.0.attn_norm.weight": "6063317f731371864049c7704a70772f1eb632194201ebdc2ed0f8e483507c72", | ||||
|     "blk.0.attn_output.weight": "920f49716a1e2fc73b6794ec777947f1c122701e63ed302422ac89e90f06e9da", | ||||
|     "blk.0.attn_q.weight": "ddbcd7cde197e632564ac58e4f25d9e3a8ca52917329eeb6081eb41a797932ab", | ||||
|     "blk.0.attn_v.weight": "318fc02a189d87420f0cbf57f47f11e00c21ec1ed472ce0a2a895b44f7fa0fca", | ||||
|     "blk.0.ffn_down.weight": "aa71975b6eb1f4c77b03d2ac4a194cf8d95718efac741bb12f0f3ff79a27f9bc", | ||||
|     "blk.0.ffn_gate.weight": "42967702fa0bc738b88dc50007ace26dbe74a5a9e0978124dd093f818241a9e1", | ||||
|     "blk.0.ffn_up.weight": "5282c8788b086bd30f46525e7995a17464882a72703fd27165491afdd8bfd4af", | ||||
|     "blk.1.attn_k.weight": "cd248882e64fd2c3402c44790ebe12440133dc671b6893fdad0564c461973adc", | ||||
|     "blk.1.attn_norm.weight": "ba84e1c8fd30af6ec94208db4078befac8c921aad3acb887812887f3282ea2be", | ||||
|     "blk.1.attn_output.weight": "2efa3ef7c5666ccceb05e339b83ad680cc0d2c3ec78203f5da5959f23a80e14f", | ||||
|     "blk.1.attn_q.weight": "5106f2e255358a1303c22e8b5f0ec044852bb30a866c52cabefd30017a7a6b7d", | ||||
|     "blk.1.attn_v.weight": "a211a634a1a5df1d5f973645438be0461dd922210f9747c6b04e386c7f1ebe95", | ||||
|     "blk.1.ffn_down.weight": "37093afe48d32c578ec956c9ed85242cd000d6aa979e60526aafa10c822dbb10", | ||||
|     "blk.1.ffn_gate.weight": "469860819e9159caefb1aad0bc66db790f3393f05fd87b08e52256a7ed256543", | ||||
|     "blk.1.ffn_up.weight": "736742c97d35d1a011f9cafd3c0ce947ad559bb2fba6da73c816f6bfd0fa9aeb", | ||||
|     "blk.2.attn_k.weight": "92c219d92804d832ab404bd6dc7339c90877bb7cf405dd030c121f8b27757739", | ||||
|     "blk.2.attn_norm.weight": "61e4466069474b76b6d1e702566420eb669faf3556b00ff7b824784aca13a2d6", | ||||
|     "blk.2.attn_output.weight": "d2fb38a2b2171fd91caf037faa585a62225819aa232d86fd4f7f9d2c3c8a45e9", | ||||
|     "blk.2.attn_q.weight": "f6faf5cc6844e3daa4f9f68d90f5458c64879de68a7728860e38374e30c3429d", | ||||
|     "blk.2.attn_v.weight": "f340ef8f7341d987a6f37c0e9afe0aef5be67be00c0ce5f57612daf73319cce1", | ||||
|     "blk.2.ffn_down.weight": "c7be61a701d779860b621b143fb6365b607bf99ec7c0f153b07908ac8120885a", | ||||
|     "blk.2.ffn_gate.weight": "b64f0878187bd3392abfa4c3e8ad2f8b4c133903e54246747ff8f3b4639ad83e", | ||||
|     "blk.2.ffn_up.weight": "50b11c712652e90ee7428dbb45cffebb80662ac982bc72bd9eafff361b5eb5a8", | ||||
|     "blk.3.attn_k.weight": "2b7bcbe9ee5c9c630c8c8d7483887e78b73581016f4cbb6933db2a147a25f431", | ||||
|     "blk.3.attn_norm.weight": "0181dac7f4eee7252980323e8032cf339bef2046ce0a16c0fd72af7c98a8a37b", | ||||
|     "blk.3.attn_output.weight": "aef8843b636ce231da9e7c9acbee197883cc15df0e2887709324c6a50f16da7b", | ||||
|     "blk.3.attn_q.weight": "55404130fa10e81322d33eb378aa0de31a92990ce7730f1338c0ace0406bb1b1", | ||||
|     "blk.3.attn_v.weight": "76f7fb8040d82b957d689ce34fea2302a6640ad5bbaa0052ad2b7ebce270c33d", | ||||
|     "blk.3.ffn_down.weight": "648628933eff3b357c3729c33c5b1ae51c28e59b9c19acd1601a2ff7c5d5d9a5", | ||||
|     "blk.3.ffn_gate.weight": "6a588885d16e98d5f50ebed05af089154f680085ca9c97691e5b489088630a4a", | ||||
|     "blk.3.ffn_up.weight": "e12455a1d702f4986e1a663493e3d5102b367af74d45557522002a35d63ecac2", | ||||
|     "blk.4.attn_k.weight": "40d943380a8a85e4eab147934bf6e16f23cc8ab753f6636526382c074d182288", | ||||
|     "blk.4.attn_norm.weight": "4ab2c098983d4599fe540eef624c4df954adb7473faebda7471ef0ba4134814c", | ||||
|     "blk.4.attn_output.weight": "d14b91e40f58bf4a3c8c2eca0b12bb541de406574af39027d56f6c588a147082", | ||||
|     "blk.4.attn_q.weight": "e1224960a3562107488589f883fa32414bae41712fa8dbd47c5f3e3a7801452f", | ||||
|     "blk.4.attn_v.weight": "063f297bc4aa6e709fc32c4c32e35af7d07d80e83cb939b76adbba858006c03d", | ||||
|     "blk.4.ffn_down.weight": "f88a18020c5e1caaa29596895eb348e76ee5bfad27ed57651a86cd8cd1f9b5aa", | ||||
|     "blk.4.ffn_gate.weight": "48e7e1eed3fb52e92e61d3557dd0ec002418327090e034ce4322fd68542266f8", | ||||
|     "blk.4.ffn_up.weight": "1ca8a7aa17355b6ce0d9ad5539fdad3899fa47fd359c285fbfb31f19f47bf073", | ||||
|     "blk.5.attn_k.weight": "2bdf15f8e73d068d972380f25d207004cf0bf3b5bfa46946803ba6fba07d9175", | ||||
|     "blk.5.attn_norm.weight": "60448d7cde6e1b6467aa31bdea012e39cdb08c88081cee7d102dca4f93f766ef", | ||||
|     "blk.5.attn_output.weight": "f9f687d7c457537f9fca8a4087a59f1c3bebfaf5537b94e42c831a13224f7799", | ||||
|     "blk.5.attn_q.weight": "987db7a2ad68657a92625e1980effbb1f79697c2183f2b9f3b3a0570c51b0ab9", | ||||
|     "blk.5.attn_v.weight": "cf696891148f3e4783ad1d20f93462ae091eb8651c656bba9b662253b6263e02", | ||||
|     "blk.5.ffn_down.weight": "c0662b0bd0929136005fb9d691fdd9b2c33867d9ce9622339a6a456b720b059a", | ||||
|     "blk.5.ffn_gate.weight": "200bbdfab615d7a3a84719b6ced7751e3ce52757ef212d96f87798bc1de5e987", | ||||
|     "blk.5.ffn_up.weight": "df5d23e7e035fb1b9d163da7ddfdfe38da6a37e86e96534dc02ad20f011b55b3", | ||||
|     "blk.6.attn_k.weight": "c0dae2d272a7c5a2fa004bbb8475dbab362fc1f6d008e73d5a4434a9382ac6ba", | ||||
|     "blk.6.attn_norm.weight": "51c57ac8b55e04354d5dca6bb9c0cf4177639d3b038e80209e33036209688f64", | ||||
|     "blk.6.attn_output.weight": "229d97892c62f85bcdf431675250e01c976ad69ffa450b01fb543bf88f14a2fb", | ||||
|     "blk.6.attn_q.weight": "c20e49621821bd46ed156e6823864a5bda4f317750e71ab8dc54e44eb48cf7c2", | ||||
|     "blk.6.attn_v.weight": "53ceb1a2ee43fce3c7b5b33c58a9fc5ee7f44dc1c6f29bc9dbefc37582102dc9", | ||||
|     "blk.6.ffn_down.weight": "7923c943b7629d560a032d1efa210d1d75c6692140f1be94464ee7ed24f44ed0", | ||||
|     "blk.6.ffn_gate.weight": "57593d350361af753a6a39f53b066282634c0fb44f396f6f2966a574b01d8f8c", | ||||
|     "blk.6.ffn_up.weight": "327b6a7a387098b8899d3ded04a4d4e7c658ca61b80d4e7b17594be232721602", | ||||
|     "blk.7.attn_k.weight": "9ca48b87a10116fd8868e62b76f211d4bb91f166096be9061439ee2e1c3a5c20", | ||||
|     "blk.7.attn_norm.weight": "cd56cfcc4e2ad6b96e23ea7b0d32b4caf236107d99a0b22c56760b62e63c8cfd", | ||||
|     "blk.7.attn_output.weight": "7352b509a03cae2491ffc060e577d189341a0f861233f18c96f9d275dc4234bf", | ||||
|     "blk.7.attn_q.weight": "2b3791c8c008c33ddbe12bedba8191322ceea2dcce5cf0eb7a93d40ad254e672", | ||||
|     "blk.7.attn_v.weight": "3ae721d52466487a3d48150581e57f6d64ea1e83ab929f23b28c3d777422eeb6", | ||||
|     "blk.7.ffn_down.weight": "3b6fa8ececdb3c34af3a5363863d6f94289c1c95bf47fce3a3ddcf184c5f0848", | ||||
|     "blk.7.ffn_gate.weight": "dbd7df6c5ae5eb4adb859f0d36453813a4e289a359a1ba8f72d67fcbf21c3e22", | ||||
|     "blk.7.ffn_up.weight": "de68380a334b4c5cfd4c318b0e9854aec59bd79aa0f0c30af3f56414f83482b0", | ||||
|     "blk.8.attn_k.weight": "7303c4e4480abc72a7ee271811311199245fb5c2ea27a2bd3b8cad3a53a03c27", | ||||
|     "blk.8.attn_norm.weight": "2e3d1921898d1b943ce1a1b6818546c8b471d6d542da24f51a8b514b8c3dd4ef", | ||||
|     "blk.8.attn_output.weight": "30421520887b66bf97a18dbcdc283bc8d0b60590b612fd638a319a6eae923227", | ||||
|     "blk.8.attn_q.weight": "73e064d5433c9b500068a1c31744dbd53f4ade298fb450a0e8c97f62cf1f8a8d", | ||||
|     "blk.8.attn_v.weight": "27e21f8b9a9a8533e8178ca34a72aa1d786393d57302b7806dcdf3e51de511a8", | ||||
|     "blk.8.ffn_down.weight": "bf694bd8e00047982108000e7b3dee7b225db8b19abc595e5697b6bbefd92e7c", | ||||
|     "blk.8.ffn_gate.weight": "d55fdbf8606d9141b774b0500c58944fd1253b9e69d1f765eaa9a680b9f2ca40", | ||||
|     "blk.8.ffn_up.weight": "1ae3f580655e7c8e8dd6c34fa4ac574fdfc5e3f1a8536da0c5442d3a2976f0e7", | ||||
|     "blk.9.attn_k.weight": "b18080626012d8aabcf78542d6c7bf31c712bf55a70172fbfe173fcf34481036", | ||||
|     "blk.9.attn_norm.weight": "2e3620620dc09998c6d3063a7d5de5433fbbae8c11e5b00d13f145d39140e162", | ||||
|     "blk.9.attn_output.weight": "69c3c0e27ef1c0fc933eeb7b612b70909f18cde238873c0d576a2ba9714ef174", | ||||
|     "blk.9.attn_q.weight": "68330e5aa28a28873c9a6e67f032186ef651df2df5844e0f27094ba349fbe4ab", | ||||
|     "blk.9.attn_v.weight": "3df8d45a102be082d0793a51cb82aa62a43cd0e9d047ba4115ca0f2414b39325", | ||||
|     "blk.9.ffn_down.weight": "1d6cc162b73745b135b4f040a0aac3c06d5135a3dc5b2421e7ee2af48662fd7f", | ||||
|     "blk.9.ffn_gate.weight": "034a9d40fb1e32b534b45f4bccd65cbe43c4a6a3f5d01132bd245ca0005de5fc", | ||||
|     "blk.9.ffn_up.weight": "c838c38d0e1a0ac0da17eb2a66023ed31929f07d8fcfe1cc546df26096c91f0c", | ||||
|     "blk.10.attn_k.weight": "a78507cb72f744b86ceaa032596e74e5571c822d0226d334881169addb32cbd5", | ||||
|     "blk.10.attn_norm.weight": "35f48d0b28ee0e6b4cad4e983925737562d64824be5b168b3e26df3d6b260cf1", | ||||
|     "blk.10.attn_output.weight": "53712db06796de39b131323e7abf9a58551b6d52da6db66a471580386d396252", | ||||
|     "blk.10.attn_q.weight": "efe08429ba196026b81cd1c471e1c7418afd9e966659feb3936b674aa0803b58", | ||||
|     "blk.10.attn_v.weight": "7ec6055e134f89da0cbe79ec9f13ef2e442ac584b1f03c3e13e7d0cdad0078bd", | ||||
|     "blk.10.ffn_down.weight": "37e66af4bcd1f3079e841e892255b8255070655901864ea3a8c602a7f681a640", | ||||
|     "blk.10.ffn_gate.weight": "1825282bc34830d371c6edcc3c1e73e6ecc1e10f4aea0122dbb7acc1d6f7b1bc", | ||||
|     "blk.10.ffn_up.weight": "819b3b276a4d4c14a35ed6682d5ef18a5e8ed468e5ce3f12e8c75ec18ac20ec4", | ||||
|     "blk.11.attn_k.weight": "5327e6a2af82dfff0619a14971f5864a15553c36fead84e1af42c7630f2729c6", | ||||
|     "blk.11.attn_norm.weight": "fec363b3c4a43036d2c635fb8aa9e122dd87ee79811839f2f6cd955be3373e7b", | ||||
|     "blk.11.attn_output.weight": "ccf7b38f18ee8798b8a6a35018e2df3eb3e007de62876befb68025dd66c79763", | ||||
|     "blk.11.attn_q.weight": "da8c4a1c824ffe174e39f126cd72f7ef83c56aff1259d452a1212de80f98f5e9", | ||||
|     "blk.11.attn_v.weight": "d17ae6bb77f03982b55d341eb67acb5969e9ad3da5994b96eafc09793dcfe3a0", | ||||
|     "blk.11.ffn_down.weight": "a6bac521e2791345f22c57205fa1c2f2f687794dfd24d0e98d50ae0d0eb6088a", | ||||
|     "blk.11.ffn_gate.weight": "5ed902c488cb51ba5635f3df08258c5f84f31a679a00211ea5f9d8b824ef6d9d", | ||||
|     "blk.11.ffn_up.weight": "ee9f1437eb890d2cf9df2574afa1cecf20aafdd847cd75b152d7eb74419afd34", | ||||
|     "blk.12.attn_k.weight": "5a069c06e1019b0f889088e67458f7a11ec77fa190ada6069e46211f62219947", | ||||
|     "blk.12.attn_norm.weight": "194d7e5fcc8c49aea62daf1940532419cf3c505afdce6be377286b677db5db8f", | ||||
|     "blk.12.attn_output.weight": "6534995fd4d6fecb55e317add4b1723aba4d825e1e9471d0b08813dfdc247176", | ||||
|     "blk.12.attn_q.weight": "4ab51ca519b5995581fa34f846276feca3b907ef2b51f192f6cc0b3263c3f5a2", | ||||
|     "blk.12.attn_v.weight": "5652ca3fa81ef9a1ac1543d71fc6813f8517f8ec54b25c701f6f98061614830f", | ||||
|     "blk.12.ffn_down.weight": "4b2c263f54c88516b8eb273bb8d9615b01c5c8b484dc70358adb91b50b300edd", | ||||
|     "blk.12.ffn_gate.weight": "8f50c3c3e3e8568991d6c1b0e74b500cf4f208e7700bbb8e87c3f6a6d359b6b5", | ||||
|     "blk.12.ffn_up.weight": "1c1a581fec1fbe959e1427fa513f400100b5e1ee9d83932630be9905fb49c231", | ||||
|     "blk.13.attn_k.weight": "efd7a38c46f08d8376d82974f33c644e3a02220e142d63b1704718699a8a884c", | ||||
|     "blk.13.attn_norm.weight": "d28fa4f1bd75abbd063b0e622e08f579c89cd0c0c5ce63c1952ec9f944f8ee13", | ||||
|     "blk.13.attn_output.weight": "71e0068a639288718bdb70a6cfdefd50bc8b3ec3993347a65129e70001ca5827", | ||||
|     "blk.13.attn_q.weight": "b97077adc92cff07a2e07d80ee38f214ad8713571c69cd5c70ebd43dc501ac87", | ||||
|     "blk.13.attn_v.weight": "79b3e2749ab4b459c81e96e322b215f1e8af645eb346e176c326bd00cf6ed2fd", | ||||
|     "blk.13.ffn_down.weight": "9f8687d11effa1db7cfecf7bec5631734bcf2962aad74a9f519144491e08ec85", | ||||
|     "blk.13.ffn_gate.weight": "7d14dfa0543852e7777fe8fff29ca533744cbcf1ebcf10067e5adfc4eb345e65", | ||||
|     "blk.13.ffn_up.weight": "852b9527b97fdab211ff3f832a660ee1d93ccb56906144c50f01319a6e8ee615", | ||||
|     "blk.14.attn_k.weight": "79e926b20f36f66d58226cb358881f2f68ae7b468787d33cafae5110287a14a0", | ||||
|     "blk.14.attn_norm.weight": "97d481b63deb0df6142c2c6cd23043720c62eb609e390f47a7113751c79974ec", | ||||
|     "blk.14.attn_output.weight": "aa6e94d7176d5c79fbb89b96e5f13ce75702ce3dd23ee52986446da436a6c3d6", | ||||
|     "blk.14.attn_q.weight": "214becb6d1bb460da9fb8ace0f99b9a5afa9edf7aa7acc19606c7401b11d6305", | ||||
|     "blk.14.attn_v.weight": "488b0e6d7f1a7a2ed0972aaa6d10ef9c775ee5373460324efcf5b3e3da9311df", | ||||
|     "blk.14.ffn_down.weight": "29c7ad16cf9542e30996a1a01ab95b844533b28051f04cc7949c371afb796471", | ||||
|     "blk.14.ffn_gate.weight": "b7ef208f2b054803665b377f5a5980c122c026841809cf855c6ba06d1c3a885a", | ||||
|     "blk.14.ffn_up.weight": "76a5cc28100748d79c4398ce7b9176aab4d661548b6293a82f99144812e5b70e", | ||||
|     "blk.15.attn_k.weight": "a6b8f9e98ab878fa7ebc5d080978ebf2d050acc2ab2fa8ea9188eb10e27702c8", | ||||
|     "blk.15.attn_norm.weight": "a26d07a9752d6dccb68e3a8a2a49fd0752cdd0a415e05547819bc37d9ba63d5e", | ||||
|     "blk.15.attn_output.weight": "c63616c69048ccbee801e05be4f56d21fda21aa0cc470f41d57c31b4d9283a4d", | ||||
|     "blk.15.attn_q.weight": "fd595a67bf96c6ba16eb148a9d02fa52fa3c1d33ed10be28a08f851409fd6e64", | ||||
|     "blk.15.attn_v.weight": "1c5c9d33fa07c05d5f4ed0032c6c4aa83d863f0d31c94a66109d239dcd03cea3", | ||||
|     "blk.15.ffn_down.weight": "585ea62ab8aff7d7d212ea5c1a03226fda6b68370c890b776834af70c948dcbc", | ||||
|     "blk.15.ffn_gate.weight": "a13c63f86f879b03a573d5dd2a25cfd1f4dc73e8132e6454ecc23e538b4cdf6f", | ||||
|     "blk.15.ffn_up.weight": "f7112450f57c12fcd511f049e0dc0b541625a107a7901c3261ed9e984299f65c", | ||||
|     "blk.16.attn_k.weight": "2d2c8b11dd71fba6d1c106aa1673c113a5448653cca7eab897c8739212ed5003", | ||||
|     "blk.16.attn_norm.weight": "95c2ec7be9469690e18a9a1779684acb3e9da44b13e263a0da840305646fbf8a", | ||||
|     "blk.16.attn_output.weight": "31a65046e677f54dae654ded4e733479fcc0f7283d83076b7dc7cbcae8528230", | ||||
|     "blk.16.attn_q.weight": "bfc6292b9c6d49b7118d08060242a138182eb182d136ba5dfaf469437c16081d", | ||||
|     "blk.16.attn_v.weight": "68f81d037340217d87c7853ff4d6edfbc46d9e827ee6d5bff7c3f6238e3a95ad", | ||||
|     "blk.16.ffn_down.weight": "bbd6629691950cef4d5113e1c6670e91b216a9b872cb92cee02dfda4d6c4f7b8", | ||||
|     "blk.16.ffn_gate.weight": "63cb56f282b7401ed6c76e5bb6fdf1bf68a64f9af0c82c014209b55bcb5191d0", | ||||
|     "blk.16.ffn_up.weight": "b54f39a2541063cbfb6f713aa81c3b69a04100e999aa2ebbeec195dc382eceec", | ||||
|     "blk.17.attn_k.weight": "3d9ba49799cc56664ec30a002bcad61eb651294212a68c3ddb573eb042aef5a4", | ||||
|     "blk.17.attn_norm.weight": "42ee0db4b9d63257bca0012a30b12737ead1caafeb5ed3d93c8f48ffec4b46de", | ||||
|     "blk.17.attn_output.weight": "a38fd100f05c9041c592bc739e287de0b10d08ef2bda41a879225bdca9002f71", | ||||
|     "blk.17.attn_q.weight": "8a3bee285b0180a9eb35662e449ee4cbe16d992bdd48fb3a94bc4a347728cfa2", | ||||
|     "blk.17.attn_v.weight": "d7f8f1b8b863494ed4392a1656775912e9b264ad36016547b12e832a1d6757d6", | ||||
|     "blk.17.ffn_down.weight": "bb7ee58f61da8630972e25b621996fbe8ec06f4dc9ab1e268ab5b120c526ca28", | ||||
|     "blk.17.ffn_gate.weight": "6b652dbf167fee09a45ebfd78d500ff6548fb2756dbe5343ffec3f7e6207179f", | ||||
|     "blk.17.ffn_up.weight": "3b67f727e55e742715de978fab80457781e7a3762bc48f79d13b45dcb8de664c", | ||||
|     "blk.18.attn_k.weight": "ff7fe57c57b90c6fcc0aefc39ec24593c3a7d1ea1c23770480075a015450e0f5", | ||||
|     "blk.18.attn_norm.weight": "1d40faca082d2633ef0ccf19e121870dd6c7c3e2154607c7f3543fa96e99cb2d", | ||||
|     "blk.18.attn_output.weight": "9adfecaaa397a92db4687efd5fcabfa0daef9e6b0493763b7ff5ebc185c43a6c", | ||||
|     "blk.18.attn_q.weight": "ad1803eb9b291948639277afe981e666b07167eb3fcae903ba5b73bf86d8f50b", | ||||
|     "blk.18.attn_v.weight": "308cf23399adccf27401a4ab60d74dac6fb9d4cd4b9c5940d9145118d1881b34", | ||||
|     "blk.18.ffn_down.weight": "7de4ac9a561fb580619b745687dfd7ca8a69ef70471dee978741b80e9ff7bead", | ||||
|     "blk.18.ffn_gate.weight": "0c66970f696b33bd5ee8f1f2fbcb41fd78fa5ccabdc927e11a4d5a4089f19c69", | ||||
|     "blk.18.ffn_up.weight": "66a42e988e8a1f468fabf976c48e9e4bb045eaac6916ef16555ac101cd674abc", | ||||
|     "blk.19.attn_k.weight": "a928ab50390bacbcebe2e4b66922498134ce22d7b93beaa87d6cf4ab52eb7174", | ||||
|     "blk.19.attn_norm.weight": "b4a02c55b46c2a96aec9c64a254087cf48e6c1d4b6f31782c77a46fc4daebad1", | ||||
|     "blk.19.attn_output.weight": "b768319c641dff1eac5d1f8ceb960c9899c795bf2b24c1d6bf70aa24fda45f77", | ||||
|     "blk.19.attn_q.weight": "79ef3f57d187d3954a26362096e1b6c222d76f537dff73e034d6e9999935b8bc", | ||||
|     "blk.19.attn_v.weight": "ce13d6b13e24fcb2d5bc6a2662e5bd295b31b12db10a6d0307f86cf29b8d5001", | ||||
|     "blk.19.ffn_down.weight": "cf90d7e2137482cfd50934a8223ad774621d08554969da80a9712df5e6227eb0", | ||||
|     "blk.19.ffn_gate.weight": "71ce30150f003b6eeb3bf7464e05b6ae615f135110d8e47f0a47fd973e537c0f", | ||||
|     "blk.19.ffn_up.weight": "7f92aca0cc29866633feec701ec01a85a8ee2fd4e2b9630173a6cffb1d9d50ee", | ||||
|     "blk.20.attn_k.weight": "a2df23159d6fb74ef28e14b61028fe8b00a693a2fc9234a980be74f20b958682", | ||||
|     "blk.20.attn_norm.weight": "c6cd5f1b096fc5efa4eb59ca1c8c4bd28730f3dcedd59a63601663eccc6724ed", | ||||
|     "blk.20.attn_output.weight": "896a8a166d0f006d4b09867ae4345426303cbc3fb13a18d3d4e1bde00f16dbdf", | ||||
|     "blk.20.attn_q.weight": "01eb79588fe61baea0da43e99f4dc5939590e1bafd01e12dadb8326f102bfea2", | ||||
|     "blk.20.attn_v.weight": "bd39630fdd5a7c859ac1addaf53e63faf524c3f32f5f4896d86b6e746b1d5c06", | ||||
|     "blk.20.ffn_down.weight": "0304a5d39957a0e3f031c4bcc4549a135d396c8d97c8d276fd1c823ce86560c2", | ||||
|     "blk.20.ffn_gate.weight": "117b79d595b1dca0c8b37586beaecc4d84411507276212dc286cde7fc36c9bef", | ||||
|     "blk.20.ffn_up.weight": "6e799346db145c125f01783539749d3828fcc451cd4f10c5352f047a47e28714", | ||||
|     "blk.21.attn_k.weight": "1c37e4c0664147e775bb006b226b9553e3421140cd96288ea755f81731ab80ba", | ||||
|     "blk.21.attn_norm.weight": "00ae783a29000ccda5e4bdbff03df0752fb82805dc3f9b987500ebd80714476e", | ||||
|     "blk.21.attn_output.weight": "7588b84f9fb19f15095b5265c60b4a4e7ae74bcc47d4607dfa5d0bfab6f136cb", | ||||
|     "blk.21.attn_q.weight": "a65f1c0dd06d45bb97532d3e932689c1eecfe7359089b39174a96a149335cbc1", | ||||
|     "blk.21.attn_v.weight": "4220b77e7d5e8709b4eef33a679b5dad11f297085ef44c9977f9e54ef08f7a2d", | ||||
|     "blk.21.ffn_down.weight": "b8c082a0530d4b5328e67db0df84c5498f2af956de23c639fa0198ffea853950", | ||||
|     "blk.21.ffn_gate.weight": "cd1b656ee72d00e9835ef667c19ef89a88de261eb8eb7c0e936e0f9ddf83ef9f", | ||||
|     "blk.21.ffn_up.weight": "dc445f73e36ec7a3bd86884186b728f8e0187f32848c3b8b69d4d41f8571bf31", | ||||
|     "blk.22.attn_k.weight": "e37cf0b893ec8b9ee8c78dd139b8d9c45cb997a3bc0c3d93a70ca1c3f6af8859", | ||||
|     "blk.22.attn_norm.weight": "248a27838d3c46cc03a5c312facc84e2e0e2c990ef8401e93da25918497f88d1", | ||||
|     "blk.22.attn_output.weight": "fc191a18f6d18332c66761f7ab28008bfe295dd1f5c8741a2488442f9e00d0f5", | ||||
|     "blk.22.attn_q.weight": "4b193a2ab8bc2b085db18f2bf3eeba26e02b537b2cdd738160c8f14b165d0f5a", | ||||
|     "blk.22.attn_v.weight": "7a60ce5ccac7e045e55ba1e1e85bd2a0f93f8c781daee96c5223665e22f0c666", | ||||
|     "blk.22.ffn_down.weight": "e0a34fb4244e2c7168f3dbaa1904c15d339ec39999cdf27128bbaf619ee0a237", | ||||
|     "blk.22.ffn_gate.weight": "8bac872d4b8549c8812f927efa309f1792b524f33601095fff61b826de5a5615", | ||||
|     "blk.22.ffn_up.weight": "b67fa2b94dd901b6ec64c0853ce8ca2d86fe9cb1cc6d2f15fbbbe0e691c0c648", | ||||
|     "blk.23.attn_k.weight": "2c32e66ad01942b819ac09a197c71579fe66f02226a264fdd72ad1e02c67a27e", | ||||
|     "blk.23.attn_norm.weight": "825fdc94deb439cb93c713eeb077c1052b90ed658d6d464fc4ad3d611e911d48", | ||||
|     "blk.23.attn_output.weight": "95ca6707a95b8750b0c7c5d379d368f0f2e7ebef631954e7d4d8ec0f41f13a3a", | ||||
|     "blk.23.attn_q.weight": "6eccc84faca5fac015d1b26e2854501edcfd292a302228fe14cf99f5eb59a34b", | ||||
|     "blk.23.attn_v.weight": "b343ac3d226040f1033ee049668aa1d89b1774bc18431965682e5dbdce78ccdc", | ||||
|     "blk.23.ffn_down.weight": "9fc599befea8d3b1e342d564a110074f66d2542df406c4b90b6bdc5828fbb2b2", | ||||
|     "blk.23.ffn_gate.weight": "488556c1b0c9f0b20b0c99b4bac2e0f4046b81edb601d7b91e7e5b3bab47d667", | ||||
|     "blk.23.ffn_up.weight": "1088e291d7008dd9c7c2dd6830af686a8a84b724d123a016209bd5156d6898f1", | ||||
|     "blk.24.attn_k.weight": "a923fbe35e61e009a53927d7828818e0592bb737d6a1106c4b0b5a1efc367e07", | ||||
|     "blk.24.attn_norm.weight": "9b51aaaa939cefafdd9b13a7e5b74ac7fa2d603427e55a16a909d6f3f353750a", | ||||
|     "blk.24.attn_output.weight": "1beb2baba56f8409466434b037771248c2f620ec5f53e15f44c271d5a2d9ecf4", | ||||
|     "blk.24.attn_q.weight": "4b0194fe5bfae0c6bf6131dcf8cb6e2b994f6ea10b27cb03574f0f4f8cc0c950", | ||||
|     "blk.24.attn_v.weight": "6ac34b1ab0f66226d85bca1194a7c212cd93d384ecbc8b8395de48aec0970a61", | ||||
|     "blk.24.ffn_down.weight": "5508f74cb732a662c2936b32ac5e90742d172b9f961a747b0e5cba0e5906a89d", | ||||
|     "blk.24.ffn_gate.weight": "095e39b8584403835f9bb1ac33e0e81f54175575e4800273d281b845bff381e7", | ||||
|     "blk.24.ffn_up.weight": "2d43ec21637dda12973de367b0113ee9840b0d815bf6fce042f7c3f270b0b530", | ||||
|     "blk.25.attn_k.weight": "9e2aee029f3d2c7f67dfc7926e72c8228fb978382c8e5a4701bbf82c93801419", | ||||
|     "blk.25.attn_norm.weight": "220cd7164fb4cdbe22d26058e4153b26c27c7b5ce2bec8e95bf2c0ea08d23103", | ||||
|     "blk.25.attn_output.weight": "a17f4a5dc6aa51f03dbd75602d98e9491767c205cdc2c3a5f8667fc54bbf7c64", | ||||
|     "blk.25.attn_q.weight": "f60827496835c440c794bf57ce9780704d10a59d8229886bf75ebb18900ba4ef", | ||||
|     "blk.25.attn_v.weight": "9cac217e9e9f4f4c85f14ee51165a77c580165bd4a34b202389169bbe61a1ced", | ||||
|     "blk.25.ffn_down.weight": "a0f36949b663e80849581dfb71e7babcc73580793bbcb0c80ab26d5a6e000359", | ||||
|     "blk.25.ffn_gate.weight": "df4d1be4d50d6afe5ad3ef0d0e0fac76a33e85c963dea769641d612dd53e7d13", | ||||
|     "blk.25.ffn_up.weight": "992da76be762632e25ebc5ef4d03728eece1b43f7c4e31827df19ca724aea694", | ||||
|     "blk.26.attn_k.weight": "34199ff856ac32a500c754539d070258574192a34ecba87a182897cb59fdff52", | ||||
|     "blk.26.attn_norm.weight": "a8e9dfb2dae5d22b5c0aec5f3675991c0e3c3e6a44153db2579136b73f456e00", | ||||
|     "blk.26.attn_output.weight": "1c4f257ffb0d7db0f11cfb275e38b4af736917b43ad82de1badce3f1d227da4d", | ||||
|     "blk.26.attn_q.weight": "33d55786274c2e718cf61e8fbecf3dfa5ee0c208f0b716d42b061f55459acb3c", | ||||
|     "blk.26.attn_v.weight": "684b636939cd4ffcfec5a6238a0790ffa43d853c95783af9b9e8275e74071a7a", | ||||
|     "blk.26.ffn_down.weight": "89d0bf066db154e6d312b5433aed1714f6a28b40f4c52e3e1530ee07703303c8", | ||||
|     "blk.26.ffn_gate.weight": "393d649bebe5e2940e1b043649f6c860b4b8b9f380f30e9da1744a830f358156", | ||||
|     "blk.26.ffn_up.weight": "179edc85ababd9d8440cc6093eecd1004290aa1cb96434b26ecf7585b6cca17b", | ||||
|     "blk.27.attn_k.weight": "334841445a7f1e14731b08f56eb0b1f0938c63823d28bc6d078c4c5f05b36f19", | ||||
|     "blk.27.attn_norm.weight": "57344471bbda2e9deffdfdb2dd05a07aa47f8761e24de53525588639145bf551", | ||||
|     "blk.27.attn_output.weight": "506126af9ee54b535d49f97e36f630e74834f480329f098d6d62e96246d8d65a", | ||||
|     "blk.27.attn_q.weight": "dd984df1acb4783849e25ba7ae378bfd385cd9efc540fb798cd5bdd873f0118f", | ||||
|     "blk.27.attn_v.weight": "b4b3fe9a4455d34c297ff20a2f537b647cef424741d840a747b265f23d320ac0", | ||||
|     "blk.27.ffn_down.weight": "621fdb185ba0d35ba5476dae73d2c81ec1482a0e878d5bfd5c3b29fe837af013", | ||||
|     "blk.27.ffn_gate.weight": "e4fbab45f2ec506fa374103251a0bdb7baa6f576080bdd796f3e9db92098e08f", | ||||
|     "blk.27.ffn_up.weight": "a0c57e463e988002bbd6a6c6792baa21a65e6f89ae303a2c301951b0ae6e4bbe", | ||||
|     "blk.28.attn_k.weight": "bac36cbd52ec5056841663865e1291ddab4b47ef9a2544dd285d4503bfb0e4a0", | ||||
|     "blk.28.attn_norm.weight": "5774a9df2bbb2e86d1f70179c7b92d81e1f401160148b3328fb64db6646a5425", | ||||
|     "blk.28.attn_output.weight": "e8712622d1569557000c75f26c3f55fad267fd300463c2c2cfe3afbfa1c8f908", | ||||
|     "blk.28.attn_q.weight": "11677751fddee52cc739699c02836f7be54d96038be4240be5d4f53d00161608", | ||||
|     "blk.28.attn_v.weight": "e5ee459b8958d65e1445997b9aa1e90e2f5d17761ebcf5357313119a45322507", | ||||
|     "blk.28.ffn_down.weight": "3934518f9f85292da8475fe38a8edcbfc4e24ac56c351b472d6351f98750871e", | ||||
|     "blk.28.ffn_gate.weight": "6ba735d57e98d0847e487f25ffaa25256deaa8abec76f428cb70bd9774279d83", | ||||
|     "blk.28.ffn_up.weight": "977fae6e1e5353114fc645dd98429464749758765cbc6e6457593d596e57850c", | ||||
|     "blk.29.attn_k.weight": "8122a457307d580ad6f1e0acea09a2f593d97f595ba0d6737f5fea16d2433642", | ||||
|     "blk.29.attn_norm.weight": "d626f721e05aa1202439b01027031d4caf1adace61ed37870a277cb6297c77cc", | ||||
|     "blk.29.attn_output.weight": "7fb7122ab1b6b1e6615ca746897da27bc52c92cb70d3147183cdde61795b72b3", | ||||
|     "blk.29.attn_q.weight": "be43e94ff6b6e391024dc824101efa0ddf4005d5b002ac26cb03765c0c73c2fa", | ||||
|     "blk.29.attn_v.weight": "af93c85ebff908f74f9935b81bde0516ca487c84139868a1ce079c3ae20036b1", | ||||
|     "blk.29.ffn_down.weight": "39dae12340ed3120bd19c495fe0872b559613641e41fde69d02d8631900b84c0", | ||||
|     "blk.29.ffn_gate.weight": "36fd482439840ef197c9f3b8905d86acfcea49bcf018544106ca465d4bf8d5c7", | ||||
|     "blk.29.ffn_up.weight": "5243fbdfdc1e2a1dd84b6210a9869d18a014db9088897e345240cdc99990bd5d", | ||||
|     "blk.30.attn_k.weight": "948f263616bd3788b2b968baafd69b9c5bd1b77578665f096c4b7e247b4cea42", | ||||
|     "blk.30.attn_norm.weight": "e168df981e744874ff303faf2eb470e5f6868c2040ba5f383f6c5148669975e7", | ||||
|     "blk.30.attn_output.weight": "4cf0ccca04b792573b756655a24fc89cfb1f272da8305633f0bc66ef14990b93", | ||||
|     "blk.30.attn_q.weight": "21e07d6cba6c50d65350289258209717174a13c42be57e8141d69712cbaf32c1", | ||||
|     "blk.30.attn_v.weight": "65a8ca29c7237b3182ccf03e2fc94e84f9a53d0e160fb679ab401c853170dd9c", | ||||
|     "blk.30.ffn_down.weight": "8b00500a6d00d84058f6658ee1d6f06fb4fcae2f90d4341792259362923b3c13", | ||||
|     "blk.30.ffn_gate.weight": "5bc0e19ab7a31b50ac2118ad1b36e31055271a322cd8ff661d47c3ac0210703c", | ||||
|     "blk.30.ffn_up.weight": "f37a0561955725bd59ee2d064fa9f4e00a12a1b620b624db3bc3add5330bc321", | ||||
|     "blk.31.attn_k.weight": "9a5663edda227f5d87533897146764f8e8a7481b9e71fae197c39204f8463221", | ||||
|     "blk.31.attn_norm.weight": "060a4f438a1ee5e220b5b5278ad2f5c085a428bf38c515766781815597c87529", | ||||
|     "blk.31.attn_output.weight": "6ada5d3cad9dea4780ffbb43302bb6ccc2f24eddd0fc4f5f84c9ce0fc0c6e5dd", | ||||
|     "blk.31.attn_q.weight": "bb5d08c08603907981ad388d5d8b70fcc9b98034ba264b8474c8890cc0297af0", | ||||
|     "blk.31.attn_v.weight": "e01b4252ea9c6a889c32b21144b441a347464d04536ef4f6572425be55759796", | ||||
|     "blk.31.ffn_down.weight": "8ba4d679c36e93ba65ba03180385ef35ea86b3b7cdf2fded9df59369f1c09630", | ||||
|     "blk.31.ffn_gate.weight": "e5b41dc93645f8b5e8eebae3ada3ea43a18f97ce2654228655170b07b463ccb0", | ||||
|     "blk.31.ffn_up.weight": "25b88cdddc8b547af294ed107d3d1312e90b983cae87936fa6062ecd8ea02539", | ||||
|     "blk.32.attn_k.weight": "4bcf86dc0858c8ca2fbdf6aa76674d43eb698f78979fdc1a38f556a7af1facc4", | ||||
|     "blk.32.attn_norm.weight": "cdcc12f3b8b9773c6722736bfb748a2729230b21478cbcc4104859d3148df815", | ||||
|     "blk.32.attn_output.weight": "d43f1196822995ed89a9365c97054753a8b30ce20b6e273c8edcc42673a1e141", | ||||
|     "blk.32.attn_q.weight": "ebf2972bb3865cbc5be4840113a322089752038344beab2a0122c7cb4fb399b6", | ||||
|     "blk.32.attn_v.weight": "714db81704ff34fa137512903c1013acee7877467473e46600728b9240582eb7", | ||||
|     "blk.32.ffn_down.weight": "2cde3da1258bb170a79d5d3cdfe10c86a71eb34b77da46b74c5ed71e7f4fe274", | ||||
|     "blk.32.ffn_gate.weight": "c7e1ed792532613ff9d4e5834b6536e2e0f47df2303bc0fdaa90aac0c1f4e8db", | ||||
|     "blk.32.ffn_up.weight": "d8d6f13fe66a716e28f79101a29817f0c0d6f99969a6f017d51bafd1a16c600c", | ||||
|     "blk.33.attn_k.weight": "a0a28f6cbca88da00cab2ca37094d9b0503bf9defdae77b91895b911c408cbb6", | ||||
|     "blk.33.attn_norm.weight": "0251200c24cc8445607ace6dc8c5aa0566567997262b7cca53a11ac23cc564b2", | ||||
|     "blk.33.attn_output.weight": "b2423205bdf6a1096d43c44d8d12f1a84fcd4e1bb70fcf6dc8542b8b8a71a13c", | ||||
|     "blk.33.attn_q.weight": "00b425c3ef71065ce5e0234e702bf38143b4952da78a85f52ab2c2e3073d97ab", | ||||
|     "blk.33.attn_v.weight": "035edd2335df816c42c765a5e66b9d9b9e15a822a8dc1863508145499c942c14", | ||||
|     "blk.33.ffn_down.weight": "4894a923a3db75bae4496ba3ce5f28796ad31fe33996a066271fb8654964310e", | ||||
|     "blk.33.ffn_gate.weight": "8f6c819b8bbfbe3357fae89e1ac5a3d58be85b3b04be3bacf7b62775869046ff", | ||||
|     "blk.33.ffn_up.weight": "257c3544b5b544fd5d839665bf5caf107a329b59dbc3751efcaa24ae63c56179", | ||||
|     "blk.34.attn_k.weight": "b6cd8bba892e38dac4a2ebc3ba1bce49e71b967fc436fde30c6d76f54a18935f", | ||||
|     "blk.34.attn_norm.weight": "2b3c8e60a064cba9955752bbbbdd92c71ba5c2f1bd721097bdbe88b5abc68787", | ||||
|     "blk.34.attn_output.weight": "8cc272551c9aaca9db5a660c6927bab94a0243d74a30b2bc165f06bd577714ea", | ||||
|     "blk.34.attn_q.weight": "74b561eb4792484e6a94b58fe2583848c3ae28ff2f1bf3d02939a0cfdfa49990", | ||||
|     "blk.34.attn_v.weight": "dba19e24ff05154dc5a1f55c023729303a583d13d68732ce22ea74d4410dc8f0", | ||||
|     "blk.34.ffn_down.weight": "76eca5dfeb274c35774e0bf9f22ee420ed9085c8e99aa2cd5a236e4918b44c61", | ||||
|     "blk.34.ffn_gate.weight": "9af0862d5fcbc24732846488e653db8242a467765c0cdbc00332b3a40256b4a6", | ||||
|     "blk.34.ffn_up.weight": "2a03126bf73587eaba99ece2066103d12e47bcd4ce30ff6c17b2f383b81d40df", | ||||
|     "blk.35.attn_k.weight": "52513fc0cd4e997a842729af7d21dd09399bce0a339558374738be266d0fa2f0", | ||||
|     "blk.35.attn_norm.weight": "e5281fa911964263ccf1630b14762edbd41d0b9472d6ec695fc600fed4892c35", | ||||
|     "blk.35.attn_output.weight": "b391d6705d5dc6f48326b5fd16573f679edf64109d86fb729a498819676590ca", | ||||
|     "blk.35.attn_q.weight": "d16446921966db9b0e0539626ad22a2511ace780e59379d6a4162d8c5441440b", | ||||
|     "blk.35.attn_v.weight": "9d8cdf23ffdb0c5c74106843390b94b24c9f33ef0eb9998d39f78c73390101ea", | ||||
|     "blk.35.ffn_down.weight": "938eb6301f7bbf162d7dd965682a5ed11d0a4a530c6fedd7e5469ce80012fc17", | ||||
|     "blk.35.ffn_gate.weight": "5ad84f5a0c8edcfea1ecf1a3e3d21d85ceda0c4ad9e3c6ca68885eeff8ed3c2f", | ||||
|     "blk.35.ffn_up.weight": "1c4330d9dc71bf4c98812c34356c51f520f47610a534152aa6d29284b758090d", | ||||
|     "blk.36.attn_k.weight": "ef720655e5ca2465f13db2dfc4732fb4ef2c9d53acde52f514fd4f301e974081", | ||||
|     "blk.36.attn_norm.weight": "88f4b9310b3c8c2644e3029160cd35678c79dfa59280430e03f5c29a6fe84a58", | ||||
|     "blk.36.attn_output.weight": "aec6f915fffd7bb72cd783273e871b4f09605950089d45e72059d1316b6c4b01", | ||||
|     "blk.36.attn_q.weight": "72f9408a2405d42f8db6ce5fcf1d26a3660b6f225fc60e77d0277109cfcb82ed", | ||||
|     "blk.36.attn_v.weight": "0f3b3d851dc44b3893ef53f6cca5b4acc9658bacfe1cc2d13c3d704ddd409b67", | ||||
|     "blk.36.ffn_down.weight": "470aec48ce8c5129a6654d9fd26fcae72776f9fc1429a8bb05818072a876475d", | ||||
|     "blk.36.ffn_gate.weight": "7f5f296d09cf55679767b5d15de3eff489c456782119f25204be4b1647f18dcf", | ||||
|     "blk.36.ffn_up.weight": "b7ef74a1f7ffb4982711d93f1787be3a70edc3d2358d5203c41d8900508037d4", | ||||
|     "blk.37.attn_k.weight": "c4ffa5412e4ff2dcfe1aed991c1f54169fd171a4c7638e4b9f21a1ca64c5e1d6", | ||||
|     "blk.37.attn_norm.weight": "4eb6c888d841cccfacf5b963f8611120f6ff24b84af0b5714fd9ab36dcda422f", | ||||
|     "blk.37.attn_output.weight": "db2a7bbf9682f9f6eea672dae8e150738f1bf74dbc80edc7022017a3f040c8ac", | ||||
|     "blk.37.attn_q.weight": "e38c0462aff139afcbab289189823527e453abc9e541154adde5e7af88cacf0b", | ||||
|     "blk.37.attn_v.weight": "952eb2492ed452a72f96bcc12d4b2affad9dfdf46ee39ce4a5d7b57a5dc301e5", | ||||
|     "blk.37.ffn_down.weight": "25f23a8fbc44febf6dc4848fd7fe03a580e2822bd3b3b5a51f4990826bfe3e4e", | ||||
|     "blk.37.ffn_gate.weight": "707da5eb40118b035305d3262444382351f170a20a537386a70e90c5a83a7817", | ||||
|     "blk.37.ffn_up.weight": "d2d2ba5cfc4ef47338dd7384219e22bf030a5a2209e0354d88f5bbaaafd20e87", | ||||
|     "blk.38.attn_k.weight": "abc4bb189dedf7ce661e79028427623a4f91ac091c2cd60e31b58bc62b1cda71", | ||||
|     "blk.38.attn_norm.weight": "9f4803a7d03fd40fcb83d85f84eb1d5682ea4e5bb084f210c02850675d804c3d", | ||||
|     "blk.38.attn_output.weight": "77cb66007f1a41df7135d0e7f900ceb499c2f667dfc3f1a6ac01a3203bbd3ccf", | ||||
|     "blk.38.attn_q.weight": "d94a8b26cd375bf2bcaa76597e314aa8268ee50a479d00931e5e0e021feadb5d", | ||||
|     "blk.38.attn_v.weight": "660c907888bc5016dc69b7d35fe6f55c7ded697c93be0e2d332a2f17aff88758", | ||||
|     "blk.38.ffn_down.weight": "6f06173bae5b00ffaf88ef383619a8b9c6a8d0d5c6494695d17f6c1de1a68a13", | ||||
|     "blk.38.ffn_gate.weight": "89f99be149d03f116527bfcabe073c50001c874de40fb6e817f6619027f3cd05", | ||||
|     "blk.38.ffn_up.weight": "8d57557c8d5e2d2688b73f01dddf1ce8d5194990cda6358153320aea88aac7f8", | ||||
|     "blk.39.attn_k.weight": "21be09c988b46c8393e6c2ec9230f3b5136eb7607dd1953ba92d0811c2f0dd75", | ||||
|     "blk.39.attn_norm.weight": "ba7c1912dd1c4e2d16917201f62396fd0600e4a451137eaddff255548c209abd", | ||||
|     "blk.39.attn_output.weight": "acfaf4abb3fd27fd899b5563c3877f176b597d8f6cdb2f2fd3f3a0bd4da15ed6", | ||||
|     "blk.39.attn_q.weight": "e8adbc140d4c8f0db2a27ca584c5531d5b1e080555fe627e34d80d0814a92bed", | ||||
|     "blk.39.attn_v.weight": "92f96b0e1f724e73a0f90a76c145654418844c04a6d4b14c05eb5af8a62bf8dc", | ||||
|     "blk.39.ffn_down.weight": "4d9ee7c65fc16fe95d10c47b79ac6a525741947600a64b5fcea5d300a82c50de", | ||||
|     "blk.39.ffn_gate.weight": "7e18507989f39b32191133d2657c2ee3b74f42f070579204d727eb72215793d1", | ||||
|     "blk.39.ffn_up.weight": "22cda752269c9757ba918abede1df95bb0f83a5c772dea13c8deea3d5f2723d9", | ||||
|     "output_norm.weight": "2858cf0e39d32caf52b7861378ace076000241e147f10b9eb21d8a5cd149e3cb" | ||||
| } | ||||
							
								
								
									
										312
									
								
								convert/testdata/gemma-2-2b-it.json
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										312
									
								
								convert/testdata/gemma-2-2b-it.json
									
									
									
									
										vendored
									
									
								
							| @@ -1,312 +0,0 @@ | ||||
| { | ||||
|   "general.architecture": "gemma2", | ||||
|   "general.file_type": "1", | ||||
|   "general.quantization_version": "2", | ||||
|   "gemma2.block_count": "26", | ||||
|   "gemma2.context_length": "8192", | ||||
|   "gemma2.embedding_length": "2304", | ||||
|   "gemma2.feed_forward_length": "9216", | ||||
|   "gemma2.attention.head_count": "8", | ||||
|   "gemma2.attention.head_count_kv": "4", | ||||
|   "gemma2.attention.key_length": "256", | ||||
|   "gemma2.attention.value_length": "256", | ||||
|   "gemma2.attention.layer_norm_rms_epsilon": "1e-06", | ||||
|   "tokenizer.ggml.model": "llama", | ||||
|   "tokenizer.ggml.add_bos_token": "true", | ||||
|   "tokenizer.ggml.add_eos_token": "false", | ||||
|   "tokenizer.ggml.bos_token_id": "2", | ||||
|   "tokenizer.ggml.eos_token_id": "1", | ||||
|   "tokenizer.ggml.padding_token_id": "0", | ||||
|   "tokenizer.ggml.unknown_token_id": "3", | ||||
|   "tokenizer.ggml.scores": "0872465d173867d755d3ee728f882b9dc2057a0bfd596fe1e3d131522f1250d8", | ||||
|   "tokenizer.ggml.token_type": "8d40143b3477df77beea4139420335ede458bf5e14102f01b0170197b55da8d8", | ||||
|   "tokenizer.ggml.tokens": "c6e66de1841f04de8b8d236d461ab720a4c9b9b5414dc293a09c6e10eab45fda", | ||||
|   "token_embd.weight": "64a9d30707e659e2e673656d71f5aef7a9fb9fd83bb9a77558dfc5abbe218a05", | ||||
|   "blk.0.attn_k.weight": "d8b4437c5edb3cddf6af9987038e1bb2b191c4f0fce0e160d2abace717f5d5d7", | ||||
|   "blk.0.attn_norm.weight": "1eb73e3f7aa8e502f6ca31cd19efbb8e4fd9a89692e13e48ac8205545a7fa7e8", | ||||
|   "blk.0.attn_output.weight": "39e7b78e57d356a22dd89ce1c4d7163b970712ba756545e1703f97866cd2192e", | ||||
|   "blk.0.attn_q.weight": "795058e23b6109febd9d55c89e1eebe6af0714ec8c56fd86a160876a6135ffe8", | ||||
|   "blk.0.attn_v.weight": "0cd6e583d1887c020472e961bbb113fe5a0d23ae2f1c2c876fc366cdb7692b52", | ||||
|   "blk.0.ffn_down.weight": "51eb4d962189e945a84e94e0dc1aad3f8f90cc1a11e18029670afcd0ea0acb1b", | ||||
|   "blk.0.ffn_gate.weight": "9811a29b8ad48432925897ab21dfcb13c5cbd372aeccbbefca9b7866883b4ce3", | ||||
|   "blk.0.ffn_norm.weight": "92cbf4652ef503c1de5b10f2be00b3fcf00100980cb3baa8f3013a8d8bf3d851", | ||||
|   "blk.0.ffn_up.weight": "af87de21746879483ed1b374cdd76b19ba11ca2b6dbb1beba98efdf3be3e8077", | ||||
|   "blk.0.post_attention_norm.weight": "32e135f1f258ffe407018899e39af1725d59d66d60022b9a21575ba160e0357a", | ||||
|   "blk.0.post_ffw_norm.weight": "ba286f5ac11b07fbc986173708c66f1920427be5a6d108af38fa0a837c1c8eb6", | ||||
|   "blk.1.attn_k.weight": "51584435552051f7fade76beca582b3f7190cf7fc07adcf527c2774d4b1c3901", | ||||
|   "blk.1.attn_norm.weight": "6833104c7fbf35a7e799ae56c262b97fffa14789642aee14381b25acd21ed80a", | ||||
|   "blk.1.attn_output.weight": "14c39481369087bf292ac9a3ab2ef166f9fe376a9f90c246653213ef264febdc", | ||||
|   "blk.1.attn_q.weight": "443f64ae2229f857c69d6bebb7800b685786cb77884c3ae19d4286aeed081325", | ||||
|   "blk.1.attn_v.weight": "0df482de2038f1e4c8a7733ac0ddb69ad90759dab5968b942af0155588de4c4a", | ||||
|   "blk.1.ffn_down.weight": "66f30763a8bbbcaea609a0087ed75fadb5e771c06378dd2cea94cf17e492e8cf", | ||||
|   "blk.1.ffn_gate.weight": "a7151bff00a545fa18b2c92dcd2a14572ccf9beb957a6c494f1374e8ebe174c9", | ||||
|   "blk.1.ffn_norm.weight": "e197d71ea11b5276bc0167d2663b88089b3ff42b47ba91e85f6c5d95f6306435", | ||||
|   "blk.1.ffn_up.weight": "57c182e0b14cccd1350d388f0c616991702e74281db54637451b70f4ccc24f9b", | ||||
|   "blk.1.post_attention_norm.weight": "3c56f837168d784c2d8bac247c130bdca6610c095c8da4558c536ccad7605609", | ||||
|   "blk.1.post_ffw_norm.weight": "d2a51d320fd01069dd7ccaa7082f16a7faeb671885607d7900b10a89c354d0fa", | ||||
|   "blk.2.attn_k.weight": "bc103c818192de7ce36caaf89dc117be4df13fb902e0bd9a23c64edace5df9b6", | ||||
|   "blk.2.attn_norm.weight": "0f2503aa126083a5d6ac72481be1ef66c6014705b573682b35bd864e4749a3d5", | ||||
|   "blk.2.attn_output.weight": "05fcd4a1226e482f91803a266f72caca887a93e63c2d2ba5611ab3c68d38743a", | ||||
|   "blk.2.attn_q.weight": "6a10b5c2fd423d1e4c4fd60fa8c154a0159b6b2501ea79cae2ef19f45a674e5e", | ||||
|   "blk.2.attn_v.weight": "3cf891945a1f8ae7cc908a5c6b729ff5b70f4436c5ffdbf245cc0ed4cc19cd1b", | ||||
|   "blk.2.ffn_down.weight": "ea204fd04e0d2fc728a9861a459216bbfec629c152004ba625f52cd8837bd51e", | ||||
|   "blk.2.ffn_gate.weight": "3a3518729f1b8b64a82b8792f33987db5418fdb094be0263c68f146a5c38de54", | ||||
|   "blk.2.ffn_norm.weight": "754ede678b725de41a34b82f0edf7688b5c065be7c0d46df6f7ad9430d986884", | ||||
|   "blk.2.ffn_up.weight": "ffdcb88439f5828ffbd9fc844b03ff91637b790b9838097258cc3ae75935720c", | ||||
|   "blk.2.post_attention_norm.weight": "4b3f53b7ba26e8c36b2dfda3b7e5fc4b1065257cefdea235fc7df9af130ac2fd", | ||||
|   "blk.2.post_ffw_norm.weight": "e550369e26b8485e2b54ad34b34bc98af5494287dcc513c2c39cf1eaa5b89d07", | ||||
|   "blk.3.attn_k.weight": "89f24ea450e37d9e95757651a83205c085d81b354ee9489dd6310a391d8409f3", | ||||
|   "blk.3.attn_norm.weight": "24e2ea662b7cb822b4ca5cd61bc17f2709f406d990ec3b4a0dac1cc112db45cf", | ||||
|   "blk.3.attn_output.weight": "ac4dad69473c6e3fac56669212cadd8c34ecc5973d945972e974d94805334967", | ||||
|   "blk.3.attn_q.weight": "b6a9c9a7d4722b9096631c65de62228dfddca6e26edfe6af7fce01e116ef0f4c", | ||||
|   "blk.3.attn_v.weight": "f272a960a40093942309bc342a379984cbacec2d7bc64428db3f64e6b1887ed4", | ||||
|   "blk.3.ffn_down.weight": "c0188ba50d8228805982029c277fc0e87aa57473b8363037c648f6d006ff828a", | ||||
|   "blk.3.ffn_gate.weight": "a04aec1561ee6c0fbb18c3db49dc62fb533619cf697fd548cbf2279761aaec3b", | ||||
|   "blk.3.ffn_norm.weight": "bc053837d44087ec05eb5d9458357b2a5be787789b19cdbbdc694b57697f99a6", | ||||
|   "blk.3.ffn_up.weight": "b3ce8b274f20796d3b1a7c08ba27a919066f9de89a782faa544c4a8d6bea1382", | ||||
|   "blk.3.post_attention_norm.weight": "9c922dee7a7df5667289e2788e60170238239cee2dfdbbd9e435763f9f416718", | ||||
|   "blk.3.post_ffw_norm.weight": "b682544ac953ad2e0b49027ed8916f2e9d1aba5d1587bb4127ac703570c7a03a", | ||||
|   "blk.4.attn_k.weight": "143b0cbb4b787b95c2b6212374410e32173ccef2adb914908a2f89a7916de512", | ||||
|   "blk.4.attn_norm.weight": "5668f60491b780273745192662d02c9a92a4f692b29d16aa0bbc7413fec4f85b", | ||||
|   "blk.4.attn_output.weight": "b9f2bdb68be1e0cf66dd19f8fa2afb105910ad2ef394864cb32cea8f8944e0d5", | ||||
|   "blk.4.attn_q.weight": "ddcf1343dafbc2dfcd0b8741225af22fe4b54b2becce29240bd01c34265d126c", | ||||
|   "blk.4.attn_v.weight": "6dc7074366e7ed52d9f48c594dcc85bef738e096276cb99d28228c89eecc5b9c", | ||||
|   "blk.4.ffn_down.weight": "30334ffc59ce343cf2a1b973174acb7722823463adc07e19a99bd0f404bc9906", | ||||
|   "blk.4.ffn_gate.weight": "890f7c8af208d63b28db52c4b8c16c2288a382d87ff5a6a6d6b0a5b3bf27e6cd", | ||||
|   "blk.4.ffn_norm.weight": "ff0316cc7847221eb86a90c1ab441d4ee61553d410c66414a7755021b3b12448", | ||||
|   "blk.4.ffn_up.weight": "6af97d113f91564c636734f215e25ee602d48eb045458f300b3ec7582be0f41d", | ||||
|   "blk.4.post_attention_norm.weight": "69438f231e105e68216b078bdeb35a7cdc8b12c4e2845e18ecf4c8d361d6a321", | ||||
|   "blk.4.post_ffw_norm.weight": "0fd535da78bcf2b32c95b05b2b83dc49817393765be90d8cc1ed3d56f47b68ec", | ||||
|   "blk.5.attn_k.weight": "0166eb3c6d20dcf3d3c169e94caa8dee057535bb525e29f698fb6f8844f18a6c", | ||||
|   "blk.5.attn_norm.weight": "a7808f27f164023d5cde2be00fc23cac6c71aa0ddeb60bc23e12411b80087672", | ||||
|   "blk.5.attn_output.weight": "8b65b2027a0842b68c5308f91d6a31de9599d794157d77df8418b19f9e0d9334", | ||||
|   "blk.5.attn_q.weight": "966bc626ef2c2394d872087a41c126bb1b67d1d5f6de920204ef5e5b16c34003", | ||||
|   "blk.5.attn_v.weight": "9a362aef3f4437fbf0ef6e1ba785f3329c3db2960f93fe36547d2795e9c254ea", | ||||
|   "blk.5.ffn_down.weight": "63e53541d34197720c06f297aa8142ac6b6eec002c7987b296f26e8b1400f931", | ||||
|   "blk.5.ffn_gate.weight": "d9591fdd32f783e0fc26e20d5d587ee8971ac8ae2e4c818c6eac1c125c7c7f37", | ||||
|   "blk.5.ffn_norm.weight": "677334cc60ecce3a7f4ab3acda15d359353d7358872f614ad8914e3780e9fc6e", | ||||
|   "blk.5.ffn_up.weight": "a63764110e1c655ffbd55af0669b2dfe4cc29d0e198d33a8e5426461b08a85f7", | ||||
|   "blk.5.post_attention_norm.weight": "c55499f859b2c0a7f5cabceaae47309a5ad38bc29d0f4a8db81f1357023162a9", | ||||
|   "blk.5.post_ffw_norm.weight": "82752754665f842418f3e302cb5f43d1e0504dcd124c4b8ddb77018b2c793837", | ||||
|   "blk.6.attn_k.weight": "e20a5f0d6c807273c8d491439566b428497ac02097cf0aa55e33748c28e14be6", | ||||
|   "blk.6.attn_norm.weight": "2c6ba42fd3c73d72073ced03a32dd28d70a89ed9bbbc8fea1ba03a7ade951e6c", | ||||
|   "blk.6.attn_output.weight": "4de7c5c2f4a133a266e17ed8c14c52959466b54cc7ab9e19f789a33b4850f284", | ||||
|   "blk.6.attn_q.weight": "56462d921800e6b8cd2213fef04c4ff16d728905cb2f4c58e966d0a053a3b0ae", | ||||
|   "blk.6.attn_v.weight": "b758dcbff769d6240c2245ede1dbc62c4170a67c77458e866312589220fe29af", | ||||
|   "blk.6.ffn_down.weight": "582247fb3c2bf687cbe9413fe18d18ad47bef4b65df7d78905e10335c6134764", | ||||
|   "blk.6.ffn_gate.weight": "3035444d5286aefb7a6d04e55bc27e1fac7cf895cd5be02319a431b8e047b4ae", | ||||
|   "blk.6.ffn_norm.weight": "e582d24c66e01b96faa20ce6adfda3d8583b11e809bff89969927398175e369a", | ||||
|   "blk.6.ffn_up.weight": "6f4b7bbfedeacf61a4866ae0616c4ba6c9e856662e8f00ae6aaec7f52c53e7b4", | ||||
|   "blk.6.post_attention_norm.weight": "8fe51b50bd677d21586aecab0b565c4bf9fa68ad50bfe366f45e8fea3c657ca8", | ||||
|   "blk.6.post_ffw_norm.weight": "81ba3cb4c2bf5c546b86855b7a885d3fafededc67eb3a35cd3598b03c9e26e65", | ||||
|   "blk.7.attn_k.weight": "2e044179cdcae0946708c86bfea7aa0391e1f7e2a09b33fca035d384cc3ca758", | ||||
|   "blk.7.attn_norm.weight": "94b48c546b046803c60e75a3acb17a356b710735989938021b565f68df9b4985", | ||||
|   "blk.7.attn_output.weight": "65709b4ad7a581f4d75793d39d4032a359f6bcc0c3835205242a0b99e5b66824", | ||||
|   "blk.7.attn_q.weight": "8ded993c95d1f7caf201ceb6fa035cd6ed6d351b50b999fa9355dfee9486cb5b", | ||||
|   "blk.7.attn_v.weight": "c92d5e2d2d48397542bc03bea25bf39154075e66c5bb1ead85188505aa04ae91", | ||||
|   "blk.7.ffn_down.weight": "e8ba8fb57208805ef1dc23cd7c86e9a2d1fb7c52c3940d292cd5bb2eb24b3fac", | ||||
|   "blk.7.ffn_gate.weight": "f0f06d6a2e06c5ac252083bc61d05c814e6289d3f4e4a87d2f06918254c02c36", | ||||
|   "blk.7.ffn_norm.weight": "ebf8ef775f72624148e09d68a4332187a7a5020c521fe0623da1cd3485ad33e0", | ||||
|   "blk.7.ffn_up.weight": "a554adc4fc7122c247c77670e169916ba1794c787b5be30a2b36705138f1f746", | ||||
|   "blk.7.post_attention_norm.weight": "3aa6bc21d85c3a0c12b964e82b12feaedfdd13130c3cd2229228e24e0967ebdf", | ||||
|   "blk.7.post_ffw_norm.weight": "508bc7b19ee8ff08f0007c890133a462fc57c7e72b16ee8f6dd64def264ef876", | ||||
|   "blk.8.attn_k.weight": "363c8e74056642fe9e7c2f3f9769d57319cd3fa0a6022810189ab8d894322885", | ||||
|   "blk.8.attn_norm.weight": "685b49a1f1acb169f4df0bdd8e3de6943f3033cebad14b898a72000595610d92", | ||||
|   "blk.8.attn_output.weight": "7bde571e4efef1c6a6143f0526721dfb59e0a0ea0e1a3616a322b2eb937efa48", | ||||
|   "blk.8.attn_q.weight": "fc993dbc1074c28a0e1d85e5ab2f4ea6a9c6c1affe7ee56027000a275daed9b6", | ||||
|   "blk.8.attn_v.weight": "281e8791d3aef9b3864f1cb054da0ae0c2fef4ce0a58b1bad8bc136b2fa0f62b", | ||||
|   "blk.8.ffn_down.weight": "b1164a2578a7f87ed99c2bbc76c5dfbbbc6a1a803605391acc3f320fc989ffd7", | ||||
|   "blk.8.ffn_gate.weight": "6b39a3b3aaaa79aee61416b54d62160b9258042650e61c6b47bc77c2dd17daf3", | ||||
|   "blk.8.ffn_norm.weight": "17ea1362c72da27f12bc936500492035bdef3fd8f940cb12b57f37d42ba8ecb1", | ||||
|   "blk.8.ffn_up.weight": "bc3a7c47afc440d2bdf8fbe9ddf2c9220467472c60c8b4ded8c0f181470ec96c", | ||||
|   "blk.8.post_attention_norm.weight": "5c506204e00411ef9c8b4134d40eedcc19fffe68dd0af7d7cc49dcabf2dfac7e", | ||||
|   "blk.8.post_ffw_norm.weight": "002faec235c3678864e2901eed275ce4e9dc229164a91c9cd4c965142ba62305", | ||||
|   "blk.9.attn_k.weight": "0bab39d8c237f1b6d0010db40467142625a9e6f2e0e4c49a56c12b41e4e0b1fa", | ||||
|   "blk.9.attn_norm.weight": "de5f38e873b17f07aa7598831b89cc1cae2c9bc3eb2e042ee9af059d2563e84e", | ||||
|   "blk.9.attn_output.weight": "8a8184702c25a62df9ff309c0c7badc8587208523b2be3e8fa90ce7080573e6f", | ||||
|   "blk.9.attn_q.weight": "7c961b2431b09ddf95377acd07201cb91bf13d9cd3ae0f2c25c7d6a0358d9f50", | ||||
|   "blk.9.attn_v.weight": "e22d240cb4743067033e659cbf210ebe2ebbab3e1dea6ccbe5eaa982382ca038", | ||||
|   "blk.9.ffn_down.weight": "a426f81210f03d6ad53277416e1fdcdf37d8065e4817613edaf6c67a343426be", | ||||
|   "blk.9.ffn_gate.weight": "a82eba825cb77b8e64f85ff99ede2fc71bc9b01751eeb17e9e6c246ee12ea62e", | ||||
|   "blk.9.ffn_norm.weight": "1a97f9b1302a3a326d534c5c3fed2db6db0ae45fd0edd381a3e4fc1c75d81030", | ||||
|   "blk.9.ffn_up.weight": "5f20bac2bbf03bb42adb92fbf99561651e1edda57e0b61935ac7f6c08c0ed7cb", | ||||
|   "blk.9.post_attention_norm.weight": "9f9866d13988e1946b1e1c80d9374a92a6e3be33748f8eaed3e126d1e1a4c796", | ||||
|   "blk.9.post_ffw_norm.weight": "a6896dbf698db4dbbe5dbf12417d4fd80e9cad0c539c858892ec0aa5b046bb58", | ||||
|   "blk.10.attn_k.weight": "ca8446e5d21ecd4e6a70dca8d321be480be4fba94d70cba065205436feb44270", | ||||
|   "blk.10.attn_norm.weight": "4f41fe290e8f21f63b82151b6cce94bf7318d121468816b0c58af0ff7c1658ab", | ||||
|   "blk.10.attn_output.weight": "c626d2e9681c5c941bbde43dddfae1a8d4986bf2be4470857bc8e8bd7f869044", | ||||
|   "blk.10.attn_q.weight": "1e61b210a13a429977325cf15d781ab77d604cfa862f4270329cbd94237d5835", | ||||
|   "blk.10.attn_v.weight": "8ff8d3e3f058ec3b35ada1057f2ed59c06494d0e0be6a8dc3ff9edf9f0e1a115", | ||||
|   "blk.10.ffn_down.weight": "bcebc04219f8081a5f483e58103c0ddbbbc631a0a54fd6dd9d55778e041f70ee", | ||||
|   "blk.10.ffn_gate.weight": "7a23a1e620ef871384ddf9611ccdcfb893fbf013cc203ac8e72f745420f1eea0", | ||||
|   "blk.10.ffn_norm.weight": "e3a375e43c349a1c6c66c22328e513cc1af3137fe839e43dc8e9be2f65914fd7", | ||||
|   "blk.10.ffn_up.weight": "5d182e7c94369194fca5f19cbbe668a999911e57f3d363bc7fb6088428700cb9", | ||||
|   "blk.10.post_attention_norm.weight": "b841c6308296e8984f3c5f549c6e3a242f4b3e19141e1f54cc08de9c46759c09", | ||||
|   "blk.10.post_ffw_norm.weight": "9d66fa05b5c940208f634f5053d809094c99a2a10a1d1e8847c8281fbd99fb49", | ||||
|   "blk.11.attn_k.weight": "14adf24ebb2bb17b336ca81cec3e690fd854782f4440ca6c66cc1d7e7bf1c850", | ||||
|   "blk.11.attn_norm.weight": "2d2213f311f50414702b5b34f22aafb9d9a0b6787243e7578562583dc40ad195", | ||||
|   "blk.11.attn_output.weight": "de1f14cc2a7fff00cf11b229f0576999205f17b9536e97abc9d6de3cc79a7884", | ||||
|   "blk.11.attn_q.weight": "2bcc5c147524003109ece0be08b89ac8b25baa71416ffa76573c6c052ffc6eea", | ||||
|   "blk.11.attn_v.weight": "2e6ab8573070c22dc1e0d7aebe4d52123226dacf7822dcce06fadbb38fb036a4", | ||||
|   "blk.11.ffn_down.weight": "1b86902f4e36868421e5228b9445051f8290b292df22a6d1af836dcecc1f25c3", | ||||
|   "blk.11.ffn_gate.weight": "e756e8081bd0a16aea4a9ef5076ad102113524f7a3d50a3a77aaa7f7938b63e8", | ||||
|   "blk.11.ffn_norm.weight": "6913887267be227cf9d1991a3dd8db2e7e74bb9b5fbdfcb9ac954fd7d7b95b3b", | ||||
|   "blk.11.ffn_up.weight": "619a3ac0609ebdf42c3fb2b6e4b1db48df79e6dd8418d7ab8f1bbff13d8a6a50", | ||||
|   "blk.11.post_attention_norm.weight": "e4b4ba92cef7b6a78407e8ab1b0307d47dac6c3df7b6817e28038317ff662d7e", | ||||
|   "blk.11.post_ffw_norm.weight": "40aceeec58cb855f0c158c9cc217168fcd5d0e735567d587217b1d78df17bc5f", | ||||
|   "blk.12.attn_k.weight": "c54c5a4d4892522022d1aa2204cfc624f0b4042caa536e678967316293fe5cb1", | ||||
|   "blk.12.attn_norm.weight": "7cd2ef58298569ffdf244d9b390f3917245276c8206e5780af5f96d8c0bbb446", | ||||
|   "blk.12.attn_output.weight": "85495ef9cc8b3deb21f741bde463ff6493acae2be51f02ecdeef952cbdec3375", | ||||
|   "blk.12.attn_q.weight": "d19383f83fd119bfb8c0280c9515705c11d8e7d502019fcf8f49efeef0d106d0", | ||||
|   "blk.12.attn_v.weight": "869ac669ba49531d9128892a0e27cef15de508ff40cdf80cc1681dde50d09204", | ||||
|   "blk.12.ffn_down.weight": "578f39f8f9fc2f09138afc884a952d7cc3a9a31de4216acd10e88e19e0b75f8c", | ||||
|   "blk.12.ffn_gate.weight": "e29a0186bc6c4a0720246306e922d3a83f777dadcf4ac80bad468287031cc8b5", | ||||
|   "blk.12.ffn_norm.weight": "e1ee95c6584b5cb57fcf1db8ce2bcc03aff91eb389238c094a61c00dde93d1f2", | ||||
|   "blk.12.ffn_up.weight": "2a826f06d7cdfb3edc6ae250ff44363ef77a2a9cdf96313e23a331b99ebfa17d", | ||||
|   "blk.12.post_attention_norm.weight": "4bafc7699b948d5cbc0d3e09b418b06c6abc4651a61ada9609d9a2f21c7e5607", | ||||
|   "blk.12.post_ffw_norm.weight": "bbb8c34a7176bb1a49f9fe2bacca0bd26b673d52c0835b2e90fa11f2962f077f", | ||||
|   "blk.13.attn_k.weight": "ffeefccfe8255d1b694382012ff4134eee5fec9d9491c8d0ff0a13832d1a37e8", | ||||
|   "blk.13.attn_norm.weight": "35713726529e3887c4135a88e86e8a4d7270ba5b9f2d1ab462622fbf40a7cdce", | ||||
|   "blk.13.attn_output.weight": "0d60b7c5cd71190a9ef4b873b0f516be15447c32d83914db2794b14592b0b460", | ||||
|   "blk.13.attn_q.weight": "8296069e65bef794cefc61257fc65789b3cb22955e30f3df129205e5041b2222", | ||||
|   "blk.13.attn_v.weight": "ca0f4ab9d16a748fc643a5c0c7a19826a811bf2a4e7316a8c935d4bf0ce8abc6", | ||||
|   "blk.13.ffn_down.weight": "d5514e0c8e7b3ed1cbcc1605eb5be1733b6ab3514cf8a0508fc72f7d05ed8bcb", | ||||
|   "blk.13.ffn_gate.weight": "8108e517a82e08a3aefbbd267bfa50a1668f92a76273280ce8a6bc1f6dd61521", | ||||
|   "blk.13.ffn_norm.weight": "5fcb6132d2134bf1f835b904a99820fa501dbc57d2224129f7098bf3cabc1d36", | ||||
|   "blk.13.ffn_up.weight": "6d744b7cd390a3cae3aa350dd379b81246acd056a2259996b6aaadece8465ccc", | ||||
|   "blk.13.post_attention_norm.weight": "e08b14698912509790e9575b8676971fbb0a4d82d719367e3756c0d0c4ab8cc0", | ||||
|   "blk.13.post_ffw_norm.weight": "2b196e4450fc5f1e7367b2cf7fe33a15fe919fbcdd861d11002346f16e980535", | ||||
|   "blk.14.attn_k.weight": "120e5f48d7268dfd9ab5f4bc9cc57a7cec63ea9635f56b80d435eb22936e9483", | ||||
|   "blk.14.attn_norm.weight": "146367bcce4db72cc894419a2e0145a6f533507dd68e4739c10ee480308c401f", | ||||
|   "blk.14.attn_output.weight": "720fa0165e756876c5cb6ad9e2780dd910390933f3f8849e5add5da04266650b", | ||||
|   "blk.14.attn_q.weight": "f5183466f56219ca1aca52d8b82c2d966a4198fea40fdd6b39f4d8b06ca2a6dd", | ||||
|   "blk.14.attn_v.weight": "24f8ea3d5512cd37c43c8329cb0da0c90d1895aef763ac2dcee3fe5157ec50a2", | ||||
|   "blk.14.ffn_down.weight": "e29960965b384ae5ab3d898a4dbaa8fddd28fa0e477ac28bcac49dec12a5ac67", | ||||
|   "blk.14.ffn_gate.weight": "6d0d6a74bfe9692e8f8eedff0fc34fc4fa1c8687794f35f2e2b033ab2d7510b8", | ||||
|   "blk.14.ffn_norm.weight": "f7036c1a9a71e046c9d2af16e9218fda5dbb0f7241ab44747abed1f0f9d602ca", | ||||
|   "blk.14.ffn_up.weight": "7d69ea1424007ffc9c12247dd0308c616e93ac02a59ec341cfa48f92d6ce3b10", | ||||
|   "blk.14.post_attention_norm.weight": "65b9712834d9445d4236bec362f3fb795c20d60c541b3dc6dbb7914d9b493e41", | ||||
|   "blk.14.post_ffw_norm.weight": "9c6a8da2e4e437d5cfdf3b9097e9f8b64bf07946a048badec20f4d374613f38f", | ||||
|   "blk.15.attn_k.weight": "864bc618303a0e4ee67fb1d5e751de61e936cd51e96669dd86f8cd08f2305045", | ||||
|   "blk.15.attn_norm.weight": "f9f4187da6eeadc2fc5921d8fe669741697d16c13d71e4aaeb73b82f50dc577e", | ||||
|   "blk.15.attn_output.weight": "ce2419a0b097036b2a31f2f4ad731d5814bcc2ef4c511786e24471e5eefd273b", | ||||
|   "blk.15.attn_q.weight": "9539db5a970d11ebe99722d1e13fcd635e250033630811efe583d2f97778e4a9", | ||||
|   "blk.15.attn_v.weight": "1c834b48ccd88adaeabb7d8bcb6be0bcd6d5ac1354ce88fc28f19a1a96b81ab3", | ||||
|   "blk.15.ffn_down.weight": "bc1f97a65dde6fa2c1e5397afb612266944b343f2eaa868b635ddd25829f8a42", | ||||
|   "blk.15.ffn_gate.weight": "1b14529d57056b79037f6cb5008132e62cc35992353b38dda59572274623103b", | ||||
|   "blk.15.ffn_norm.weight": "9af77458de9ee55c66f93865759f9c2c398557f94f3fa8fa6af30543d7339cde", | ||||
|   "blk.15.ffn_up.weight": "41d524a26b61a9595816b4fd53cf57ef50a702e4ef32933ff6136dca9136a267", | ||||
|   "blk.15.post_attention_norm.weight": "c60a03cd0e63a7db5c80015e58e9b97ba2208caa19f66a6fef5c4447eca900ce", | ||||
|   "blk.15.post_ffw_norm.weight": "34f7f9f96769215bbc3d17084df091864aef96a6645b7d0b3b7d9bd92f1a4b0b", | ||||
|   "blk.16.attn_k.weight": "7e27240d9f3a8c6cf0f4a980113d43234f514eadc3e3e1792b86efb29ffb1a6d", | ||||
|   "blk.16.attn_norm.weight": "af798acc0899282a30448edec48223b3e8efda177090273e612d8eca5e377301", | ||||
|   "blk.16.attn_output.weight": "79df39a3709d3d53e84146291e0944a7a653d06705293d9ccb5648dceadb432c", | ||||
|   "blk.16.attn_q.weight": "db58a1c3b83ad294804e5fd7321005719e200659173466df5a52a182b80b7165", | ||||
|   "blk.16.attn_v.weight": "2af6d48cbaeb225b5c1a704f76abd89c8ab1521417695b112b4dcc2cbd39b74d", | ||||
|   "blk.16.ffn_down.weight": "fc1c813eb5e7da3d6194569d6cb21602fc6eff2dc8e1b0eb753f2d5df148189c", | ||||
|   "blk.16.ffn_gate.weight": "7a80bcbc42464bd55df4814a6edbd7b5c153e0428323bbe49de55e2d2add33e7", | ||||
|   "blk.16.ffn_norm.weight": "2041685ee926d30f3f2ae4ec35b5688f1cd834167a6359a7d4057eac804c58b2", | ||||
|   "blk.16.ffn_up.weight": "8da4b718973ac1d43b928829bc45e062fd101984d6c98dd825bd7c5d08ebfbe3", | ||||
|   "blk.16.post_attention_norm.weight": "975c48fe680a6167438a106140a8872eee7765191f152d80e3b8ddf47693e095", | ||||
|   "blk.16.post_ffw_norm.weight": "4de2d4d483acfe4fc77860ea929025df2f4e15c10729413f36a18c94eaa6d689", | ||||
|   "blk.17.attn_k.weight": "f937e61f0af8c4cd98ee742648eb60e02e579683e21d421071295a3b70aebaad", | ||||
|   "blk.17.attn_norm.weight": "c3270583ed28b7e423f5b170c59113234f258169b93a867d9274f4c10b7cb115", | ||||
|   "blk.17.attn_output.weight": "b8c1150e81e685e539a5dcf2c19047a24eba2b281fabe166674b1d71ef4612ea", | ||||
|   "blk.17.attn_q.weight": "c255100ae2011e7dc7e3bf3bc3ccd96d859fbb98581cae993d7b82c1ba8e8b39", | ||||
|   "blk.17.attn_v.weight": "5830bb0a555984c6485348067f70b5d22ae337c011aa9248dac2ff4c95944551", | ||||
|   "blk.17.ffn_down.weight": "8ff9a7cccaa3776434a9d895aae4fb5c36c736bf2ec98784226b4c234940fbb0", | ||||
|   "blk.17.ffn_gate.weight": "1b52876739712831c272911533da206f407b46034a1a4ae8a88c1f96b6bd5747", | ||||
|   "blk.17.ffn_norm.weight": "d0e16ba5e87c91b545334e022058c7d03849665c3b1a6298771b656531366b66", | ||||
|   "blk.17.ffn_up.weight": "4dd6211d01dbebbe21052708eddc242b082a58b5f18ed16479e17987c1d3432e", | ||||
|   "blk.17.post_attention_norm.weight": "6f49c775c7417dade77ba8268a0f8441c1e5ec28b5d7e4dc5ed07a04d04600c8", | ||||
|   "blk.17.post_ffw_norm.weight": "b91a0bb2e6679e9c9be06ad323adae441d00a3d673efb19d7c4954be2aa84b27", | ||||
|   "blk.18.attn_k.weight": "22b565ace1b4da8b33865a58625be1d90beea9891f29686a69fa9cf7c93217db", | ||||
|   "blk.18.attn_norm.weight": "3e0160d7063c8753de65d2356a66648e47d921efdc5c917efb8209892120f8db", | ||||
|   "blk.18.attn_output.weight": "e3180f0bb4ca90b31e9b08158db38e332de62dfbaefe34aa94cc316409331e09", | ||||
|   "blk.18.attn_q.weight": "f3a5a83614c3ba7ea41cdd5b1b0819a241ee2a951a381ce4a9e001d3f700ed8f", | ||||
|   "blk.18.attn_v.weight": "f3350a5984fb951fc738adcf78147e6d812ff1c576670c460cafc99c253c1654", | ||||
|   "blk.18.ffn_down.weight": "9e9d09b13a33525e14bdaee6efc65c551ac7cf7680e534b940ab122a3a7c1ac9", | ||||
|   "blk.18.ffn_gate.weight": "ebaec8b4b578a2e8d815baac12f1675c208f80c68074d5a18288a2e1a60680ee", | ||||
|   "blk.18.ffn_norm.weight": "33e7687c53a242f2f8dc7093a491c97b18d4a5a8c14d183f02bd586a770f05aa", | ||||
|   "blk.18.ffn_up.weight": "78a1816662378ce56cc870e705174492781897b3afd2d4d97a51f10f2f2987c1", | ||||
|   "blk.18.post_attention_norm.weight": "a58dde3f12df3e94cbc27d87c8ea86f89af8a388a506446ff6758f05399b05fc", | ||||
|   "blk.18.post_ffw_norm.weight": "cebf90cc143577d483cca27b032dfd82031ee59bdf17c0e2cf60a0a3ad5bf996", | ||||
|   "blk.19.attn_k.weight": "4683375d0599ac9e2232196aae1e90af13a14cae26e865465de5c8e257bb2055", | ||||
|   "blk.19.attn_norm.weight": "f3eba936bfb1814bbcb0a1d62739eb66daac839df8c9c836fe0e94860df88525", | ||||
|   "blk.19.attn_output.weight": "51c0f01d38a9dcfe9bdbc4643576fab164c1d9e4b7168b7695c0ee55e6965667", | ||||
|   "blk.19.attn_q.weight": "28d15b69b8416f2e7ddc88fe381cb1e2ef2ad705fb1c268139ba96498cc74848", | ||||
|   "blk.19.attn_v.weight": "6860f1cd720638e63a981fa2c0b4db900129826bcb9823c9ddf9fb8b1b9f3383", | ||||
|   "blk.19.ffn_down.weight": "bc7f2d7827ee01c2dd41401c7b3b1700ad3a4ff620e8bb734f92630d342dcc7f", | ||||
|   "blk.19.ffn_gate.weight": "54d03ef69ba373fc410fbca8f1e34a565d58e4296d9a035ff7e48340b9c848e7", | ||||
|   "blk.19.ffn_norm.weight": "9178fc796a340ee6e8128ca74c0cb6203d1adbed6927af4e5ac7863da57affc7", | ||||
|   "blk.19.ffn_up.weight": "a77bd708026c6e83ad5c79c223278e74621bcf74a9641c7818d96b595daaad20", | ||||
|   "blk.19.post_attention_norm.weight": "ae94aa26f4c411bf9496a6fd4a6df64ee589ee1ae9a04b531d45acc95721e582", | ||||
|   "blk.19.post_ffw_norm.weight": "9ad210700edeef12133bdcff04bf1c7f62b49f6f4a9ba483c7cdc59857c24a5c", | ||||
|   "blk.20.attn_k.weight": "e35bce1e9f4a7a09ef34721f57ea38cfca68c272f52d923fe50af8308f66cfaa", | ||||
|   "blk.20.attn_norm.weight": "644800f6926fd34f233795c4dec1151a295d2138ca8cac33e3e48167d26f8b41", | ||||
|   "blk.20.attn_output.weight": "8d3758cd236471741e1ad66c0710cb79077dc8c7a3a292d35bc551c0c5abe627", | ||||
|   "blk.20.attn_q.weight": "c333b1f0f6f956b5d73891df10b1a0321e55fc31c40d623a24e1f52caa6a998b", | ||||
|   "blk.20.attn_v.weight": "8562b418d0c4868a050fb19fa3fcaf50a8cf1c669f537d666c80c7b3a04714e1", | ||||
|   "blk.20.ffn_down.weight": "97efb608ac44cc804198faec3ee66eafe56ced6b7ca5359700c6f1df75b7205e", | ||||
|   "blk.20.ffn_gate.weight": "5c61151d86f28415c73c73d90ec088c646cbe5c1640197caf58eb501ba7db293", | ||||
|   "blk.20.ffn_norm.weight": "24bbe0a701afd4bbeea65b3edde712b3cbb2281043bbc43dbf250582453116ed", | ||||
|   "blk.20.ffn_up.weight": "e170cf68e249566aa99eb6f6b265679bf9a5a6b76830ba24e7e130c2515910c4", | ||||
|   "blk.20.post_attention_norm.weight": "e092d751cfe20dbf2d348358f3b38397bd83e4ed94d6bbaa6bbaddcd902b2ac4", | ||||
|   "blk.20.post_ffw_norm.weight": "219a18a47dcba76e669e4322223a5a9227bd3db1de3fbd3d3cfb22e54a783c5a", | ||||
|   "blk.21.attn_k.weight": "c3a095ebddb42c63824f1c98da65263dc88e4d790a26aa1632840b44f5cc7cb1", | ||||
|   "blk.21.attn_norm.weight": "ef8bbaded5fbc45ad9cf3985ae02174524e7090fe6362811124f942ef643bec7", | ||||
|   "blk.21.attn_output.weight": "668f018aba72baac6252aa3ad58569ddd55ab751a0dd8d7bcc9fb9b6efb4bf53", | ||||
|   "blk.21.attn_q.weight": "e759c65663089f3bbbd51847934c185e680c82f1249065d5d487da638e519e6d", | ||||
|   "blk.21.attn_v.weight": "2ff57762686cf9ba1f5a6be76503454b97556ce67f4ac98254bd0562231197ba", | ||||
|   "blk.21.ffn_down.weight": "3fd106556fb721b1c28ae3f4026bc83eb1b08ed910f2ba5f466c6b5f327d91cb", | ||||
|   "blk.21.ffn_gate.weight": "338022d882f4b6619e8054a6fb909696fa3eef3013cf69b65c3cacdfc5b9e42c", | ||||
|   "blk.21.ffn_norm.weight": "1e77660c23a3f9653ee721a863d1960f773d87437cabc4dc0a6e17ee3d4e5e44", | ||||
|   "blk.21.ffn_up.weight": "7d31b20fbc2e6eba8f350f170069dc36f0cb12f68fbc4206ec5022a74085ebcb", | ||||
|   "blk.21.post_attention_norm.weight": "9638bae8d8bdcd7ed68da282979cd84a07c41ff9cabcaea94ebc846a1803db23", | ||||
|   "blk.21.post_ffw_norm.weight": "d622ef11115fe0cbe04b727d5a3b6371e7f39bf08c8d5eb9bc6da52e3f3cfb9d", | ||||
|   "blk.22.attn_k.weight": "5c321cb29deffbe57de200dd206a62005f1e80acb86c4fd2349dd44c8d3594fd", | ||||
|   "blk.22.attn_norm.weight": "198d949705d7170a331d75889d8c7500c3635254dac2cc6aa4dc35d556584536", | ||||
|   "blk.22.attn_output.weight": "19805cd5d7025b457e5d41d70db8b3fd63c2dd0e4a94d3ef1704d50ef4e749e8", | ||||
|   "blk.22.attn_q.weight": "177836cd583fc87405975ddc21ebfebdaa090a0363799664c72caa3da851ae2c", | ||||
|   "blk.22.attn_v.weight": "fea255692483e30d0108f9e4e250eb3ed7dbda8d83f499b06519b8c223ae6096", | ||||
|   "blk.22.ffn_down.weight": "00cb8939f03e5817d6d412de8cf2c923c9568d5493e382cec7faf5718fb034eb", | ||||
|   "blk.22.ffn_gate.weight": "b0591065b91281b2fbd8a9567f3568d40479f680e1f0a29e27ae213f37642489", | ||||
|   "blk.22.ffn_norm.weight": "96b5c5d0737c2ceb8fc869f54adb9e5f46e28cb7b177c40f49fa926b923c00f8", | ||||
|   "blk.22.ffn_up.weight": "81f472185b24344ab0594ea8246cc6e200e0dc1cab4943e74fbe4ca19d5a9701", | ||||
|   "blk.22.post_attention_norm.weight": "27fa9aa6260aa3071e0391e1a1d49322dcb6e8072315b8a9b7064087108dbd06", | ||||
|   "blk.22.post_ffw_norm.weight": "f37e1dcd7f643d9545675ffe9dc527a11eba86eb204989c2f44f636b266d896a", | ||||
|   "blk.23.attn_k.weight": "5d82f36658a56c3f94d0bb2d61f65509c966fa6568f81812e0d3e338b380ef8c", | ||||
|   "blk.23.attn_norm.weight": "b7983f88d9cad88bc88a528923e6da592ad20e699965b223ebc10840fe1f4fec", | ||||
|   "blk.23.attn_output.weight": "59f97f80f430d71606aab0158a195aed29ccd3405e6c0a5c41c809be8eb01898", | ||||
|   "blk.23.attn_q.weight": "53ac4789fe958919cc02ea4222bcd64c0ea1b4baa54304bff46635bdf42f7490", | ||||
|   "blk.23.attn_v.weight": "ec8abe09b9e84dbb52c7a068094657c6d3c62fe551ba8d7c3a3f23da622e9756", | ||||
|   "blk.23.ffn_down.weight": "3cf547eccb1b82aa64f208cee9682d7f558ca84e0aead7d9d3d1420d90f3d992", | ||||
|   "blk.23.ffn_gate.weight": "366aa2486d911ba81eb519119e13807deacf7e9908bc1975a2a63e00d6b10124", | ||||
|   "blk.23.ffn_norm.weight": "6d1d4a4af34bb7dc090ac87d6457d398c3e0fb68bd2e2b60b099dc318b6cfac3", | ||||
|   "blk.23.ffn_up.weight": "53f76692e253f5d2420b3f200c731b9f3b7a83e379920b4a067c729b4674aa4d", | ||||
|   "blk.23.post_attention_norm.weight": "7c952fa0efa76b3f048c8c4c9e8dcb5e3724d231327eda6423a34d3f3d3367de", | ||||
|   "blk.23.post_ffw_norm.weight": "7ab188cfe61f0a91b40309a0ab6bfa99f19d0ff2a37b6ac10e5f0c7f44eb5270", | ||||
|   "blk.24.attn_k.weight": "225798792f9bfdd10eff0505ebe61e0aad0209c17b431f6044ee7968ffe8c198", | ||||
|   "blk.24.attn_norm.weight": "635e3c1ebf5219bbebfc40ef164bc32d2b726ef595a94da64ac524ae878e2915", | ||||
|   "blk.24.attn_output.weight": "482f5bb2db8d9ed22b253d9a3296333b239efe698e5992e5d77e7e12dc2a5cf5", | ||||
|   "blk.24.attn_q.weight": "43805bbccddb65d58fffc4be9b5c374d4e1df1395ec1e1ffb4bcff03e98d5adb", | ||||
|   "blk.24.attn_v.weight": "fa741af54b4a3b1775d32f59134756090c5df2e7345a12a2d8db94fe289667a7", | ||||
|   "blk.24.ffn_down.weight": "83c6351e3162626b276f524a57836144625c2556dbe321b57cbd8fd486a68fab", | ||||
|   "blk.24.ffn_gate.weight": "fbe66be0d84d12cea5176cc7eaef64382ffc7324cd9d6266a3342dc43442f2ac", | ||||
|   "blk.24.ffn_norm.weight": "77c1445a8639ad24938bdf0280233eea2362d47391421833dfa72ec756dfc1e8", | ||||
|   "blk.24.ffn_up.weight": "78235ac729ee23c1cf1ae543751e3af32776d8808cee6e529c2a625a1f027654", | ||||
|   "blk.24.post_attention_norm.weight": "161f71b6d07628d43e4ae51a4c9088ec6ca2db123a17986a14505d83fdd04dad", | ||||
|   "blk.24.post_ffw_norm.weight": "cf1ba692aa683368b02ac413e69b2521b98c69a5274eacbb54165b53bf38a8b2", | ||||
|   "blk.25.attn_k.weight": "057a56bd8c8d2b41608d1f71faa3052902152ddf85e47669ad950c1c3e77c33f", | ||||
|   "blk.25.attn_norm.weight": "b7179fe02c334da556ddcf6c1b502245639a728c4cbba8b552d8e1df4565ee9d", | ||||
|   "blk.25.attn_output.weight": "4fed8b05b08a0ff75ffd022701bbeb52f17b23d09332a1ddcba737244bd0d3b0", | ||||
|   "blk.25.attn_q.weight": "c52e99f5d38bf7538d6106a0bbf38ac6dc6296bca9a3f849afa384ea67b4af01", | ||||
|   "blk.25.attn_v.weight": "c49c23d8e1cfa6a8eb971eb69942204890c6d7d830dc8774c84b108a80598912", | ||||
|   "blk.25.ffn_down.weight": "c08d4dc8412b19fdc870c164b83c341b236ec6fe7bb4a9bcfe0dc100faa20286", | ||||
|   "blk.25.ffn_gate.weight": "1a4cb3f36735d59181721471452807903006539e5e1b5ceb4f72d1d7ae134127", | ||||
|   "blk.25.ffn_norm.weight": "8fd6bd0dcec5198761525a36992a57c9ec5e9da60a22092839a84ae8c4e87f26", | ||||
|   "blk.25.ffn_up.weight": "3a00f39bdd5f31dc5e3b281d2002e1ac4f2475d49a0ac1d7720a25b377dcd04a", | ||||
|   "blk.25.post_attention_norm.weight": "e5f31a648612c859b6d21c9ee426e87a86cb1973dfdd86276c767371d9cef5ad", | ||||
|   "blk.25.post_ffw_norm.weight": "553c3bd774922c99c2384380a142d019881d30dbf0fe3bf9430dabfb3f6cbd33", | ||||
|   "output_norm.weight": "49445c4585ab0a8135717a0bdb1cda4a062a030177d0119561d91542aec5744b" | ||||
| } | ||||
							
								
								
									
										6
									
								
								convert/testdata/gemma-2-9b-it.json
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										6
									
								
								convert/testdata/gemma-2-9b-it.json
									
									
									
									
										vendored
									
									
								
							| @@ -1,6 +0,0 @@ | ||||
| { | ||||
|   "general.architecture": "gemma2", | ||||
|   "gemma2.attention.sliding_window": "4096", | ||||
|   "gemma2.attn_logit_softcapping": "50", | ||||
|   "gemma2.final_logit_softcapping": "30" | ||||
| } | ||||
							
								
								
									
										188
									
								
								convert/testdata/gemma-2b-it.json
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										188
									
								
								convert/testdata/gemma-2b-it.json
									
									
									
									
										vendored
									
									
								
							| @@ -1,188 +0,0 @@ | ||||
| { | ||||
|   "general.architecture": "gemma", | ||||
|   "general.file_type": "1", | ||||
|   "general.quantization_version": "2", | ||||
|   "gemma.block_count": "18", | ||||
|   "gemma.context_length": "8192", | ||||
|   "gemma.embedding_length": "2048", | ||||
|   "gemma.feed_forward_length": "16384", | ||||
|   "gemma.attention.head_count": "8", | ||||
|   "gemma.attention.head_count_kv": "1", | ||||
|   "gemma.attention.key_length": "256", | ||||
|   "gemma.attention.value_length": "256", | ||||
|   "gemma.attention.layer_norm_rms_epsilon": "1e-06", | ||||
|   "tokenizer.ggml.model": "llama", | ||||
|   "tokenizer.ggml.add_bos_token": "true", | ||||
|   "tokenizer.ggml.add_eos_token": "false", | ||||
|   "tokenizer.ggml.bos_token_id": "2", | ||||
|   "tokenizer.ggml.eos_token_id": "1", | ||||
|   "tokenizer.ggml.padding_token_id": "0", | ||||
|   "tokenizer.ggml.unknown_token_id": "3", | ||||
|   "tokenizer.ggml.scores": "0872465d173867d755d3ee728f882b9dc2057a0bfd596fe1e3d131522f1250d8", | ||||
|   "tokenizer.ggml.token_type": "485e40bf3d715a4764818fc097d6a2a41db872d82ee714bc500872a3437ff48d", | ||||
|   "tokenizer.ggml.tokens": "c6e66de1841f04de8b8d236d461ab720a4c9b9b5414dc293a09c6e10eab45fda", | ||||
|   "token_embd.weight": "17b87ab2c01c80657855a5413d0457b4a041afaeda0cc785080e44e2f04acf07", | ||||
|   "blk.0.attn_k.weight": "28ac0da05754ad2714ae95da28a5ad191192140b30b8fd22d108d4700c9d989f", | ||||
|   "blk.0.attn_norm.weight": "3f9d5675d1ab0eb8a816719dac9fab81f2e95c52be02c34263339acbc087febb", | ||||
|   "blk.0.attn_output.weight": "703295c2c63990ff896778685c678f145298886f680f3ed5dc2a7ad54c293265", | ||||
|   "blk.0.attn_q.weight": "69c2d0e4870e9d722a190d356203c9605575a16863466c3d1747966ef1cf5791", | ||||
|   "blk.0.attn_v.weight": "95219c9c07b5ffe9a9a01e456d845eef2b11f4fc12c93dbbba479db395444c13", | ||||
|   "blk.0.ffn_down.weight": "a2feb5eb3d572c57c5bafbf0ab506862df1160fe40965dcfe4b9fd855c08bed7", | ||||
|   "blk.0.ffn_gate.weight": "fcca072c445c31f4dc4d5dfaa785b1bdf7271342442099b74fd17268b5829fbf", | ||||
|   "blk.0.ffn_norm.weight": "7621f95dbd245cade6fffd6b08797d69d8e3954e960f0b5551b90d967ab95448", | ||||
|   "blk.0.ffn_up.weight": "14a9bcdd451403c67136391e1b6e53b3b1830f00199bd911dbcc56d8749c14f4", | ||||
|   "blk.1.attn_k.weight": "c70f73c5df20579cb44d971164b48b5f0d8d5abdb38b381e7a8b880ba12aa406", | ||||
|   "blk.1.attn_norm.weight": "88b6b91f93a1ef83425a7c7dc2a2fbd3b22704a04c64a80061df376ac8c33626", | ||||
|   "blk.1.attn_output.weight": "f031a537490c452be3b3bb51e6b7949a636405756e160976a1c070a792ea00ee", | ||||
|   "blk.1.attn_q.weight": "bdb23214b1cf9cfd30f863a0a5868e52c6809d93b7e8f44df096a94204d9896a", | ||||
|   "blk.1.attn_v.weight": "e9bbc0b05f2c872fb1403f8f938cd1612b502229ee401f12593b1164c61acc00", | ||||
|   "blk.1.ffn_down.weight": "5ff53811038b661a7b8f2bfdf213bebfb185ec1a6060b662f063714f33584d79", | ||||
|   "blk.1.ffn_gate.weight": "205085c8c951a5c7543b1495183cd96028fb49f67464b3e9862a2693a6077a33", | ||||
|   "blk.1.ffn_norm.weight": "798f354fc85afce9625f5d10093a585a966831698a0560e6c9b97ce659eb4b22", | ||||
|   "blk.1.ffn_up.weight": "db92dc5684cb6e90940e13f4d1da555ed20ba4f8cab1e990ddfd7553e2e91315", | ||||
|   "blk.2.attn_k.weight": "ef5ce360c4eed6d00d03ca4761e0f8e4b0af4509978468314be14f3d46621044", | ||||
|   "blk.2.attn_norm.weight": "6dadbc05dbd0d3fabb4216affa60a3de1378a82d2859dc90b338cbe70f50d455", | ||||
|   "blk.2.attn_output.weight": "6bbf87a966f691bbfd7c8d25629aa4e6710107bd431a667434861febb391edc5", | ||||
|   "blk.2.attn_q.weight": "4e575c09ae2de417ce9057ce8b073680e860a24aae13a472b68f101b760752e5", | ||||
|   "blk.2.attn_v.weight": "cd33f7f01141e9439afdaf2ea1aaced9feaa335e32a58daa136ebd555d4d96f4", | ||||
|   "blk.2.ffn_down.weight": "b970ff1b0b6494165defe2fbfa1d31425766ed71e64de9ec4e66ac3955c8bc5f", | ||||
|   "blk.2.ffn_gate.weight": "dbb3e1360402e0e369b101995bb686b73f95d4a7673f061be85d64d15dfb0061", | ||||
|   "blk.2.ffn_norm.weight": "bfb7980105d8ac9647710454f57a5cdac50598a0f6f4884e16f1d94b00844687", | ||||
|   "blk.2.ffn_up.weight": "50ef89339b275a438b664686f6227dd9b6e43853ed6856ec9e33ef4bbd90bda1", | ||||
|   "blk.3.attn_k.weight": "be942ea98151434eebcd2c1da4b00e0146152fe524a530689b1fd491cb833d21", | ||||
|   "blk.3.attn_norm.weight": "0df2f218daf609c289fb7c60c5f375fa99c0d4e04381ad5a494a19144edd8e20", | ||||
|   "blk.3.attn_output.weight": "c2184aaf86aa2cb8f47be49f60b165834e97205f39c6ee1dfd19fd4411a156ce", | ||||
|   "blk.3.attn_q.weight": "4f86e2a0a4221c1c84ff9c409ac89893cb95d7208cf65bf1e98e24e01125f991", | ||||
|   "blk.3.attn_v.weight": "abfdb8a60c349dadde641d1afc9542025e24fbf41a3238bfa9675e0b1f1e4b68", | ||||
|   "blk.3.ffn_down.weight": "58821a8d87008d47d122427911c6fad5272aca70c448bbae223256a74bacd07e", | ||||
|   "blk.3.ffn_gate.weight": "776e051f1a0ddd5c4934e69186683a75ca9a3c8c0f61911bba321fed1dd287d2", | ||||
|   "blk.3.ffn_norm.weight": "7f380f29335e28be90bfcfae6f6d69fdf5751211b36d2dd62aa5541ed113e4f2", | ||||
|   "blk.3.ffn_up.weight": "fc5ae8d488894cbd4951059675468d227da27871d26e925c9941863841c097ee", | ||||
|   "blk.4.attn_k.weight": "14833b078cc4c5137bdd5fdc0538047974ca147a99b0282e1b144440c78bc1db", | ||||
|   "blk.4.attn_norm.weight": "0a69957d4a15599fb80ad4753558020804925221457d9a5052926754d3768065", | ||||
|   "blk.4.attn_output.weight": "887a49b6130fb6297cf10767207c3dd97191b2cf63723449af9c27bca8dbeda0", | ||||
|   "blk.4.attn_q.weight": "51fd577b76764824dd6f0d4891c137ebe4736f591b5ca2793c5fff2be49abbde", | ||||
|   "blk.4.attn_v.weight": "1a623c43cf9c509d1b7ea0d1a5c04d0af4809665f9f9e93b7d6dba8c5df178fa", | ||||
|   "blk.4.ffn_down.weight": "5d61e8856d8941d2b1fd138116d015f63840d0fa1e31e20e20a5ceca1536ceec", | ||||
|   "blk.4.ffn_gate.weight": "06640f7273764f8ca5df7e386547417916b6cd7d565a8343153113239a94b0a1", | ||||
|   "blk.4.ffn_norm.weight": "91a6c6c41b894228e361435ecbc5058dca34d4911a23da5b56de219299c964d3", | ||||
|   "blk.4.ffn_up.weight": "d016dac1055e36d6a10b6317e57f98a904709ea892ef3194342f4d2f6326561e", | ||||
|   "blk.5.attn_k.weight": "987146afe124131500808cc0da33c06d207433656d41df6e6d8c99118a83bac5", | ||||
|   "blk.5.attn_norm.weight": "6b354938966f2608a2fb8d0f5b363ed0d8b0967c2ec8d0abd5c625b413042ded", | ||||
|   "blk.5.attn_output.weight": "cdcbfe02c6ff79d5326882b017a02099f5af71beedf6b1b3eb4de01e3a844536", | ||||
|   "blk.5.attn_q.weight": "b910d0cff781d3efb42eab0a302f46f286b2de717079175680d5b42bf8c309c8", | ||||
|   "blk.5.attn_v.weight": "66d3a279f747412f9f4b0e8abad44540c122ab2e811a7ee74c1f33bc36caade9", | ||||
|   "blk.5.ffn_down.weight": "c9b0efd2212981f16d956d8571f054b68780ad01f4917033647e359b557a4653", | ||||
|   "blk.5.ffn_gate.weight": "fe96b94109ca141c01f6a04788e20783019ca6ec334aa1f3134810bdb499e557", | ||||
|   "blk.5.ffn_norm.weight": "aa7b016e832e7055a36c6e20de58ea1936f995f390401fff1c5fc65906064e49", | ||||
|   "blk.5.ffn_up.weight": "555ce27c4873d3375394f38ad3b45e3d8848f9d5642dc1602383d0f0a33c2a14", | ||||
|   "blk.6.attn_k.weight": "88280d461db324c4f36475ce396793063e61a27283ec64511b0480890fb5b3b4", | ||||
|   "blk.6.attn_norm.weight": "af8f460c411f660d33196286d208f1845fd5a2b45f7b56549a4df31e7515447a", | ||||
|   "blk.6.attn_output.weight": "dd9996fb0a256e8375ad3917705258a33fce006bcea0f536caae420a77974d8b", | ||||
|   "blk.6.attn_q.weight": "7a4841541191e037cfb9b07930c4d8cab451809658b182f0ada6ccde9615c003", | ||||
|   "blk.6.attn_v.weight": "ae81e6a592b64d701a9d40233e986039a56cba8d8d24f61aea93c6393cf3078a", | ||||
|   "blk.6.ffn_down.weight": "622dd1ce1706355cbc659a8ab2c4509678ffe0f3ad34258e5e25ed2a5d951bcd", | ||||
|   "blk.6.ffn_gate.weight": "8389a735c0bd5591010f8ced9805a2a12c749f6df0d3c18ad4d05c2a302e7168", | ||||
|   "blk.6.ffn_norm.weight": "621f5346400382474d61358397bd58fb1459b07c53e376e4bca15e08b3f9b3fb", | ||||
|   "blk.6.ffn_up.weight": "8d834e4c42f13c251dfee36cf89e12f1bd400680d00d5c2e6cac0459e9ce2f7f", | ||||
|   "blk.7.attn_k.weight": "8bd0412de65a3e64901ef8fe6a28c95e116bf39dc9aa22f0126b9d36688e5ea7", | ||||
|   "blk.7.attn_norm.weight": "056d8e56be4e87d6dc6f900762f0dc6fde07bfdc50dd85bfc510415e2bba3f3d", | ||||
|   "blk.7.attn_output.weight": "27972eda51da53d416ff95aed78149a2c5a287b47d2cd46f2f544ca692ecb3bb", | ||||
|   "blk.7.attn_q.weight": "41eca977b9371f7932800c11a9c45b931310196919e2a0651b847703b180fc7f", | ||||
|   "blk.7.attn_v.weight": "13c74fd7e07f08883a09fb070a1fe5bbdd2341b4cb8d1cac07c4b637049b5774", | ||||
|   "blk.7.ffn_down.weight": "9e75db42468800849a9a7da603d0072c5e86c8ed2b4d8b20a312a51fb86a7a10", | ||||
|   "blk.7.ffn_gate.weight": "db6bdc3117f910088aaf7db51f2da63ea5bd933de36af5599c215bfb26f7db2b", | ||||
|   "blk.7.ffn_norm.weight": "48bb82b49bfc8679a1e77f282ee182d952db7a3c11be7ef9a102ee2ddd8011e2", | ||||
|   "blk.7.ffn_up.weight": "feebea87175817a0f3585ec0af09dc873d94c203581ae97a712eb356d3b49efe", | ||||
|   "blk.8.attn_k.weight": "d5640ad71b6af68d88e17bf8e7fc26c907d2262605457a84247dd9afc2884d69", | ||||
|   "blk.8.attn_norm.weight": "75b850c481a69083ae09d0207ba7317b37c735a39fcf5fef5400e6c84fb1257f", | ||||
|   "blk.8.attn_output.weight": "cbd669dbdea2bdd90f9f0cc97566b3dffff3c56cecb4f47290ceef30da83b2d6", | ||||
|   "blk.8.attn_q.weight": "9edcb63087a431bac361822497e6ecdaa06d9ea4a1a754e36da7ba9f8db81c7c", | ||||
|   "blk.8.attn_v.weight": "3fb72c2c4f95a83626aa3e30062f9450b09ab37c7871e229f18bbc5cf744633c", | ||||
|   "blk.8.ffn_down.weight": "bd69d2c9172974fff154441b237b4787fb53b2d185325442d5048130ef5bc4ef", | ||||
|   "blk.8.ffn_gate.weight": "d04689c80553edd011d1cbaa5d570fffa7fa91e88b66cf1352d89ab60b72f908", | ||||
|   "blk.8.ffn_norm.weight": "e49984183b735b7f2c4e4730c289eed9394056d2e283a00fd83ea0915df31a73", | ||||
|   "blk.8.ffn_up.weight": "8fe62a1ce8e847e567add6c6f6bf2922bc467495b5eb4c116b3cb85b85b3b211", | ||||
|   "blk.9.attn_k.weight": "d90904959e5004cf0d6e729c6bff18cc33c094798b802473c1ec55ab8d276183", | ||||
|   "blk.9.attn_norm.weight": "79277f290cc07411115d8fa138045edf4a17b3416ab2145409cbe8ab829fd4ee", | ||||
|   "blk.9.attn_output.weight": "5a21bf2e1f09a81405025f96d4153ffb630158e17269cff8ffff935c38ceb1a7", | ||||
|   "blk.9.attn_q.weight": "51b1d0febc3b350945be4504f55afa4347517bde0f710e1a4b88e6b17e71e7c7", | ||||
|   "blk.9.attn_v.weight": "aab7e1db0a8b50a03036356791ffce736ab010d15674c96eaef8049d80076054", | ||||
|   "blk.9.ffn_down.weight": "cbf43ec84becb40c9359a181ab0e641fd7faae7d34b549501f7cfb7afdc3d764", | ||||
|   "blk.9.ffn_gate.weight": "dce0e8661c778327bed7f03b6790d26710764188aed9dc746e6e05863891fa57", | ||||
|   "blk.9.ffn_norm.weight": "6d41642104f995c77bf31122b13237caebda3e7fcccb1367ce91db36b015e923", | ||||
|   "blk.9.ffn_up.weight": "82fe4c67bf24e7b2d6f6e05f7b1234c2bf90c3932951091a9066211b8e15ecbb", | ||||
|   "blk.10.attn_k.weight": "f6a9ed8fd8d3229b5d03175c413ffc56a07f2ce7236271986361dd3d8993f9aa", | ||||
|   "blk.10.attn_norm.weight": "cebbef89f0326ca8e02df3867a571e4d61c20c2a12f295f98ae590d62bc86010", | ||||
|   "blk.10.attn_output.weight": "34f5efb86accb4f06347d83a32558ea8eab3039d128969161a741ebacbb656ff", | ||||
|   "blk.10.attn_q.weight": "1e0efe27df2d5d50f7157253ba2cfd436d6781c3dc78ca176d0c16a210b5b763", | ||||
|   "blk.10.attn_v.weight": "8f085bf50a2b0f83cd6cdda3c8ef5a9e204a36348ed95871aac725d1f68640cf", | ||||
|   "blk.10.ffn_down.weight": "bf3b3cb4cace435809ac7b4cc933f20853af12f1f272d3dcefe7f19c0f203b8b", | ||||
|   "blk.10.ffn_gate.weight": "d3df7a1413b1c5adf1a1dcda9e5225a15c89874bae53bb6137ad1ea42fca2d34", | ||||
|   "blk.10.ffn_norm.weight": "a1da603b0480471b5ed8e862148cecd5fed918f8304d6933ab0bdb25b8d2fb8f", | ||||
|   "blk.10.ffn_up.weight": "bffbba605922e972dc47dda88a0b4659aa52236c76e5fe861a949e6d9a367492", | ||||
|   "blk.11.attn_k.weight": "9f31c63d66cd32c29b1eb8bb829d0c8525ce2ae936e0eefdaab6335a2d12a3df", | ||||
|   "blk.11.attn_norm.weight": "0bde1a266d8b2e8f202bb7e2e88b19147ca83021901f6d3cae77a4df5548c754", | ||||
|   "blk.11.attn_output.weight": "e10725c7cf746ed4a7e472cf7aea6cb564e5db6a1d5197adc980d650a387ccea", | ||||
|   "blk.11.attn_q.weight": "05ee758a7d065802630f8c65dca424364c1c8825e389aa33f9405c45e8a50cce", | ||||
|   "blk.11.attn_v.weight": "0c3ae7090f11775d24c51120db6e305db6aff706493e7ee123dcab74485ba789", | ||||
|   "blk.11.ffn_down.weight": "7ba40b8e12c09c5fb2006b77a771cb01ce894e88a3b3e1877f927a5b89c91709", | ||||
|   "blk.11.ffn_gate.weight": "db76388a023b98097972d354ba1c6a5e26efdeb1c596b9c28bf2cd8f6596975e", | ||||
|   "blk.11.ffn_norm.weight": "a38c3ae1b89a68ddc7b72c99c5b28be7fe3787c4fad9904d0c43d64eaf00c474", | ||||
|   "blk.11.ffn_up.weight": "13c8142f9cf1eddc658babf978daf3515c4ccc45f849f3e7e3930aa18a8480a0", | ||||
|   "blk.12.attn_k.weight": "f03241c36ac87cb57429a2ef22186b8d7d0b590a8b173beb01fa13d93772f3b1", | ||||
|   "blk.12.attn_norm.weight": "4568f654e6d65104d586e7c16ba960c83428698ce103022b7e0be15e2884e13b", | ||||
|   "blk.12.attn_output.weight": "04867603f82f91e41306e09b33ecda0104b3ee4834061f2c0bbdc8da33c72509", | ||||
|   "blk.12.attn_q.weight": "70fe04b9a8e08b6100cc8d6b58bf4cbbad15ca1de82d63baca5d352ba6c4cbae", | ||||
|   "blk.12.attn_v.weight": "15cb28db61a86c98687991d7e611bc92a1fcc6007f3432149cfb5fe518a4f65e", | ||||
|   "blk.12.ffn_down.weight": "6d10c790a4e3dc44c2dc36d96251ae97cdf30a4fa04d4c43e31bfbd038e6a7b7", | ||||
|   "blk.12.ffn_gate.weight": "3462a2d8f6b4743b25e24da51b90018ac2858d05ac7e582bcb69063cfdac1104", | ||||
|   "blk.12.ffn_norm.weight": "1f96392c1faa34e34ae5dea55a6a86c5aa4c79758952075d53d28de89dd88456", | ||||
|   "blk.12.ffn_up.weight": "d22eacc612a7411953d948483c5fb201e11722955ee0754da866e7bec578ac6d", | ||||
|   "blk.13.attn_k.weight": "5864977e6b733ea942647d6feed5c76156c48c200649c22e4e11b9e5860e57f3", | ||||
|   "blk.13.attn_norm.weight": "87e053535144723db4145aa5402acc54331b7696752d852bb9fc542ff33f0fb5", | ||||
|   "blk.13.attn_output.weight": "078145f5ad83f8b14f97a869346f7fd1583b24d1e3edadaa95d3da4242973f8f", | ||||
|   "blk.13.attn_q.weight": "3b8caf35504cbc4d1a7dd6e011a95760703b7f71e2218b030b1254f811362dd7", | ||||
|   "blk.13.attn_v.weight": "4fdf8365a603e043e5b40c4a21c84ac167f9be62794178f9d8a608dfe5653bf9", | ||||
|   "blk.13.ffn_down.weight": "a07d3abbfcacf48ba028df2cab895be32cc15022d23389a745286e79c1b1d1fd", | ||||
|   "blk.13.ffn_gate.weight": "1d2ab39666aa2909acc96787432a3ed13b19d25170f74665fadff9b17bbaffb1", | ||||
|   "blk.13.ffn_norm.weight": "4f2e809fda5f3eadf52578ee50e0ba36e53be91e55dce418c12dfe595f5f18e7", | ||||
|   "blk.13.ffn_up.weight": "8783d2720c2c37ca176a5801e0b3ef1f9cc9cf3ef1cd37af423aaf6b2a27e2bd", | ||||
|   "blk.14.attn_k.weight": "ce9428e2b55d43ae0c6690dbd56182f99adc427694ba8236b405cc8ea5035e86", | ||||
|   "blk.14.attn_norm.weight": "6abb35f9db8251d6ae954bda147c6ada2371b0574d11702e828f3c6ac99b7cc0", | ||||
|   "blk.14.attn_output.weight": "fe3880916d0ceb5bff672c88bbefb7060a545be609bf049beb2024b38221836d", | ||||
|   "blk.14.attn_q.weight": "7c8ad81be6f4a350931fd108b5f7c9e366e8c26ef62d1d85ffef5dca8fd893f8", | ||||
|   "blk.14.attn_v.weight": "e4bdedffacbebe38567a0734dfd67db90e911d9a9669fcde9a7c4ad8a0066c52", | ||||
|   "blk.14.ffn_down.weight": "ef6694dff1e05820aac0cd2b22f39ac7788b4967afc9250775575554c66aab2c", | ||||
|   "blk.14.ffn_gate.weight": "db63c4179e2db704bc505e2b4696e055b593e295a1b7c4c586fc793bdd5aab19", | ||||
|   "blk.14.ffn_norm.weight": "2796a62d832a9710148f95d533320492a33e712b2e5218659c548705bd11684d", | ||||
|   "blk.14.ffn_up.weight": "3f78c78d8c2d54df45f799d4ff902316628af296834afe4ceed63d4a324ff03e", | ||||
|   "blk.15.attn_k.weight": "6e810ee3859e07695645ee0c9a5efc7962668984a5f0a9325f47e462743b447c", | ||||
|   "blk.15.attn_norm.weight": "0956b576ae96db0b28cb09f761f801cfd9281432284664f0fe181c8d9c55d1ec", | ||||
|   "blk.15.attn_output.weight": "03a17f7e94208177aace5cc41b7f54670ba57873b7274ff6e23caf58cce110ca", | ||||
|   "blk.15.attn_q.weight": "b8edafe7d2216a6f8b4ae4905a906475490e6ea418f6e1d3cec563dbdc6fab91", | ||||
|   "blk.15.attn_v.weight": "f8ae8cae0f4cfa34a459824eba57350c3c248104ba5607e7d9dc7d7c39aaf4a6", | ||||
|   "blk.15.ffn_down.weight": "8d02eb439da852246d2ca67e9b7b6de0b090b80744355e64728a23e41926505b", | ||||
|   "blk.15.ffn_gate.weight": "ed5bf361c67db8731f186b775826f21c33bdb521111fd2d922539719a770239f", | ||||
|   "blk.15.ffn_norm.weight": "5942ca3c73209ac9a0c8bfd9b4aab7f7be7aee9aa12d9c35833493b44af76767", | ||||
|   "blk.15.ffn_up.weight": "f4bebf4ad99ec5f911327dec347be6c595814885309c7bc5647ce28c7f4d1cf5", | ||||
|   "blk.16.attn_k.weight": "756a534c19364448e0958b8948fe33891c6ccda0fbb4dfa2024e1f532a87804b", | ||||
|   "blk.16.attn_norm.weight": "386b7b9e4e6509f6af9c022d942b6c6c6cc136aeed8751ecb037c74d7c4bfb93", | ||||
|   "blk.16.attn_output.weight": "3ba1a766a25830b84d7c22178203635f9c5624caad290bc5e5d73da5d5e7a2ec", | ||||
|   "blk.16.attn_q.weight": "d39b0c91e1fda7685d50a0f7cc8d18c44b5bdc90a142c7fda0bc329cca1afa74", | ||||
|   "blk.16.attn_v.weight": "98b33fcb0ee3483cff1b06ecb44d7b7ffb4d34c268248e4d73dfdf82b2065b2f", | ||||
|   "blk.16.ffn_down.weight": "14006f5e4acb2f9416271ae562e299359cd2585739c7fc77ccbca54495563948", | ||||
|   "blk.16.ffn_gate.weight": "12f8abae2d301d8f88bedb6af98b1daecc7b0b8d05148594f931f30958d77aca", | ||||
|   "blk.16.ffn_norm.weight": "129a15a046ee96d06de288bd43c80f77a6b0fb3a159c7367154c6e4aaf362672", | ||||
|   "blk.16.ffn_up.weight": "b4a5911a45f3871ef1d4efb7dc7108645a564b70f818eccf45beebef2e844ee9", | ||||
|   "blk.17.attn_k.weight": "5e1bfcff0146ebdde3817b656952892eb671e14e75afc92fa53f84f8eecbec4c", | ||||
|   "blk.17.attn_norm.weight": "60bc988fab7c4b29ee9de599df41a8de00caa94fcd74677da011fac82f60f465", | ||||
|   "blk.17.attn_output.weight": "ba49b40d6a0b5685f749c24b0edbed3adc44dbe13b5d5e5fa1e56169fc746555", | ||||
|   "blk.17.attn_q.weight": "82bb415d24efcd14d03ace03f907bb70db6a204c76a0bdd1892e0fba165db87d", | ||||
|   "blk.17.attn_v.weight": "73dbe54beb91a899884e275ea81ffc5187a20cb7d5b68d5c299b783096999d94", | ||||
|   "blk.17.ffn_down.weight": "7c086166241e0664f8963fd1ca4ed74c737abfb2525ec20f8435821ff50158f3", | ||||
|   "blk.17.ffn_gate.weight": "51a32f78244d42a539f619c5ce661db9e6cf41636280a826d439b5444edcd28c", | ||||
|   "blk.17.ffn_norm.weight": "c4bb247fccd1ecc84875028af63dd20aaf5cbd17eb94a9bc36679c09285dccab", | ||||
|   "blk.17.ffn_up.weight": "b5886182790bc6fbadd63de9bc4ffee416f3b69a66280d197ab8c18edf769abf", | ||||
|   "output_norm.weight": "481f3097d0a20412e35b3a739b1b958487bcd41ff67744baa3c9acbddd2ee4d4" | ||||
| } | ||||
| @@ -1,186 +1,21 @@ | ||||
| package convert | ||||
|  | ||||
| import ( | ||||
| 	"cmp" | ||||
| 	"crypto/sha256" | ||||
| 	"encoding/hex" | ||||
| 	"encoding/json" | ||||
| 	"errors" | ||||
| 	"fmt" | ||||
| 	"io/fs" | ||||
| 	"log/slog" | ||||
| 	"os" | ||||
| 	"slices" | ||||
| 	"strings" | ||||
|  | ||||
| 	"golang.org/x/exp/maps" | ||||
| ) | ||||
|  | ||||
| const ( | ||||
| 	_ int32 = iota | ||||
| 	tokenTypeNormal | ||||
| 	tokenTypeUnknown | ||||
| 	tokenTypeControl | ||||
| 	tokenTypeUserDefined | ||||
| 	tokenTypeUnused | ||||
| 	tokenTypeByte | ||||
| ) | ||||
|  | ||||
| type Tokenizer struct { | ||||
| 	*Vocabulary | ||||
| 	SpecialVocabulary []*SpecialVocabulary | ||||
| 	Merges            []string | ||||
|  | ||||
| 	Pre      string | ||||
| 	Template string | ||||
| } | ||||
|  | ||||
| func parseTokenizer(fsys fs.FS, specialTokenTypes []string) (*Tokenizer, error) { | ||||
| 	v, err := parseVocabulary(fsys) | ||||
| 	if err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	t := &Tokenizer{ | ||||
| 		Vocabulary: v, | ||||
| 		Pre:        "default", | ||||
| 	} | ||||
|  | ||||
| 	addedTokens := make(map[string]token) | ||||
| 	if f, err := fsys.Open("tokenizer.json"); errors.Is(err, os.ErrNotExist) { | ||||
| 	} else if err != nil { | ||||
| 		return nil, err | ||||
| 	} else { | ||||
| 		defer f.Close() | ||||
|  | ||||
| 		var tt tokenizer | ||||
| 		if err := json.NewDecoder(f).Decode(&tt); err != nil { | ||||
| 			return nil, err | ||||
| 		} | ||||
|  | ||||
| 		for _, t := range tt.AddedTokens { | ||||
| 			addedTokens[t.Content] = t | ||||
| 		} | ||||
|  | ||||
| 		if len(tt.Model.Merges) == 0 { | ||||
| 			// noop; merges is empty | ||||
| 		} else if err := json.Unmarshal(tt.Model.Merges, &t.Merges); err == nil { | ||||
| 			// noop; merges is []string | ||||
| 		} else if merges, err := func() ([][]string, error) { | ||||
| 			var merges [][]string | ||||
| 			if err := json.Unmarshal(tt.Model.Merges, &merges); err != nil { | ||||
| 				return nil, err | ||||
| 			} | ||||
|  | ||||
| 			return merges, nil | ||||
| 		}(); err == nil { | ||||
| 			t.Merges = make([]string, len(merges)) | ||||
| 			for i := range merges { | ||||
| 				t.Merges[i] = strings.Join(merges[i], " ") | ||||
| 			} | ||||
| 		} else { | ||||
| 			return nil, fmt.Errorf("could not parse tokenizer merges. expected []string or [][]string: %w", err) | ||||
| 		} | ||||
|  | ||||
| 		sha256sum := sha256.New() | ||||
| 		for _, pt := range tt.PreTokenizer.PreTokenizers { | ||||
| 			switch pt.Type { | ||||
| 			case "Split": | ||||
| 				if pt.Pattern.Regex != "" { | ||||
| 					// create a checksum of all Split pretokenizers which should be sufficient | ||||
| 					// to identify the pretokenizer | ||||
| 					sha256sum.Write([]byte(pt.Pattern.Regex)) | ||||
| 				} | ||||
| 			} | ||||
| 		} | ||||
|  | ||||
| 		switch digest := hex.EncodeToString(sha256sum.Sum(nil)); digest { | ||||
| 		case "d98f9631be1e9607a9848c26c1f9eac1aa9fc21ac6ba82a2fc0741af9780a48f": | ||||
| 			t.Pre = "llama-bpe" | ||||
| 		case "03df5c5863ad70781dcfdef491ead25140f895fe8010964be0daefe27be32b02": | ||||
| 			t.Pre = "deepseek-llm" | ||||
| 		case "21cde974d587f0d54dc8d56b183cc1e6239600172035c68fbd6d4b9f8da0576e": | ||||
| 			t.Pre = "deepseek-coder" | ||||
| 		case "1ff7f41064896984db5d1bb6ff64fa4bc29007d08c1b439e505b7392777a319e": | ||||
| 			t.Pre = "qwen2" | ||||
| 		case "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855": | ||||
| 			// noop, empty pretokenizer | ||||
| 		default: | ||||
| 			slog.Warn("unknown pretokenizer, using default", "digest", digest) | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	if f, err := fsys.Open("tokenizer_config.json"); errors.Is(err, os.ErrNotExist) { | ||||
| 	} else if err != nil { | ||||
| 		return nil, err | ||||
| 	} else { | ||||
| 		defer f.Close() | ||||
|  | ||||
| 		var p map[string]json.RawMessage | ||||
| 		if err := json.NewDecoder(f).Decode(&p); err != nil { | ||||
| 			return nil, err | ||||
| 		} | ||||
|  | ||||
| 		if template, ok := p["chat_template"]; ok { | ||||
| 			var s []struct { | ||||
| 				Name     string `json:"name"` | ||||
| 				Template string `json:"template"` | ||||
| 			} | ||||
| 			if err := json.Unmarshal(template, &t.Template); err == nil { | ||||
| 				// noop | ||||
| 			} else if err := json.Unmarshal(template, &s); err == nil { | ||||
| 				for _, e := range s { | ||||
| 					if e.Name == "default" { | ||||
| 						t.Template = e.Template | ||||
| 						break | ||||
| 					} | ||||
| 				} | ||||
| 			} else { | ||||
| 				return nil, fmt.Errorf("invalid chat_template: %w", err) | ||||
| 			} | ||||
| 		} | ||||
|  | ||||
| 		for _, st := range specialTokenTypes { | ||||
| 			sv := SpecialVocabulary{Type: st} | ||||
| 			if bts, ok := p[fmt.Sprintf("add_%s_token", st)]; ok { | ||||
| 				if err := json.Unmarshal(bts, &sv.AddToken); err != nil { | ||||
| 					return nil, err | ||||
| 				} | ||||
| 			} | ||||
|  | ||||
| 			if bts, ok := p[fmt.Sprintf("%s_token", st)]; ok { | ||||
| 				var content string | ||||
| 				if err := json.Unmarshal(bts, &content); err != nil { | ||||
| 					var mm map[string]any | ||||
| 					if err := json.Unmarshal(bts, &mm); err != nil { | ||||
| 						continue | ||||
| 					} | ||||
|  | ||||
| 					content, ok = mm["content"].(string) | ||||
| 					if !ok { | ||||
| 						continue | ||||
| 					} | ||||
| 				} | ||||
|  | ||||
| 				sv.Content = content | ||||
| 			} | ||||
|  | ||||
| 			if id, ok := addedTokens[sv.Content]; ok { | ||||
| 				sv.ID = id.ID | ||||
| 				t.SpecialVocabulary = append(t.SpecialVocabulary, &sv) | ||||
| 			} | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	return t, nil | ||||
| } | ||||
|  | ||||
| type tokenizer struct { | ||||
| 	AddedTokens []token `json:"added_tokens"` | ||||
| 	Model       struct { | ||||
| 		Type   string          `json:"type"` | ||||
| 		Vocab  map[string]int  `json:"vocab"` | ||||
| 		Merges json.RawMessage `json:"merges"` | ||||
| 	} `json:"model"` | ||||
| 	Version     string         `json:"version"` | ||||
| 	AddedTokens []Token        `json:"added_tokens"` | ||||
| 	Model       TokenizerModel `json:"model"` | ||||
|  | ||||
| 	PreTokenizer struct { | ||||
| 		PreTokenizers []struct { | ||||
| @@ -192,108 +27,83 @@ type tokenizer struct { | ||||
| 	} `json:"pre_tokenizer"` | ||||
| } | ||||
|  | ||||
| type token struct { | ||||
| type TokenizerModel struct { | ||||
| 	Type   string         `json:"type"` | ||||
| 	Vocab  map[string]int `json:"vocab"` | ||||
| 	Merges []string       `json:"merges"` | ||||
| 	Tokens []Token | ||||
| } | ||||
|  | ||||
| type Token struct { | ||||
| 	ID          int    `json:"id"` | ||||
| 	Content     string `json:"content"` | ||||
| 	Special     bool   `json:"special"` | ||||
| 	UserDefined bool | ||||
| } | ||||
|  | ||||
| type Vocabulary struct { | ||||
| 	Model  string | ||||
| 	Tokens []string | ||||
| 	Scores []float32 | ||||
| 	Types  []int32 | ||||
| func (t *Token) Type() int32 { | ||||
| 	switch { | ||||
| 	case t.Special: | ||||
| 		return tokenTypeControl | ||||
| 	case t.UserDefined: | ||||
| 		return tokenTypeUserDefined | ||||
| 	default: | ||||
| 		return tokenTypeNormal | ||||
| 	} | ||||
| } | ||||
|  | ||||
| func parseVocabularyFromTokenizer(fsys fs.FS) (*Vocabulary, error) { | ||||
| 	f, err := fsys.Open("tokenizer.json") | ||||
| func (t *Tokenizer) maxID() int { | ||||
| 	return max( | ||||
| 		slices.Max(maps.Values(t.Model.Vocab)), | ||||
| 		slices.MaxFunc(t.AddedTokens, func(a, b Token) int { | ||||
| 			return cmp.Compare(a.ID, b.ID) | ||||
| 		}).ID, | ||||
| 	) | ||||
| } | ||||
|  | ||||
| func parseTokens(dirpath string) (pre string, tokens []Token, merges []string, err error) { | ||||
| 	f, err := os.Open(dirpath) | ||||
| 	if err != nil { | ||||
| 		return nil, err | ||||
| 		panic(err) | ||||
| 	} | ||||
| 	defer f.Close() | ||||
|  | ||||
| 	var t tokenizer | ||||
| 	var t Tokenizer | ||||
| 	if err := json.NewDecoder(f).Decode(&t); err != nil { | ||||
| 		return nil, err | ||||
| 		return "", nil, nil, err | ||||
| 	} | ||||
|  | ||||
| 	tokens := make(map[int]token, len(t.Model.Vocab)) | ||||
| 	tokens = make([]Token, t.maxID()+1) | ||||
| 	for k, v := range t.Model.Vocab { | ||||
| 		tokens[v] = token{ | ||||
| 			ID:      v, | ||||
| 			Content: k, | ||||
| 		tokens[v] = Token{ID: v, Content: k, Special: false, UserDefined: false} | ||||
| 	} | ||||
|  | ||||
| 	for _, v := range t.AddedTokens { | ||||
| 		v.UserDefined = true | ||||
| 		tokens[v.ID] = v | ||||
| 	} | ||||
|  | ||||
| 	sha256sum := sha256.New() | ||||
| 	for _, pt := range t.PreTokenizer.PreTokenizers { | ||||
| 		switch pt.Type { | ||||
| 		case "Split": | ||||
| 			if pt.Pattern.Regex != "" { | ||||
| 				sha256sum.Write([]byte(pt.Pattern.Regex)) | ||||
| 			} | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	for _, token := range t.AddedTokens { | ||||
| 		token.UserDefined = true | ||||
| 		tokens[token.ID] = token | ||||
| 	switch digest := fmt.Sprintf("%x", sha256sum.Sum(nil)); digest { | ||||
| 	case "d98f9631be1e9607a9848c26c1f9eac1aa9fc21ac6ba82a2fc0741af9780a48f": | ||||
| 		pre = "llama-bpe" | ||||
| 	case "03df5c5863ad70781dcfdef491ead25140f895fe8010964be0daefe27be32b02": | ||||
| 		pre = "deepseek-llm" | ||||
| 	case "21cde974d587f0d54dc8d56b183cc1e6239600172035c68fbd6d4b9f8da0576e": | ||||
| 		pre = "deepseek-coder" | ||||
| 	default: | ||||
| 		slog.Warn("unknown pretokenizer, using default", "digest", digest) | ||||
| 		pre = "default" | ||||
| 	} | ||||
|  | ||||
| 	keys := maps.Keys(tokens) | ||||
| 	slices.Sort(keys) | ||||
|  | ||||
| 	v := Vocabulary{Model: "gpt2"} | ||||
| 	for _, k := range keys { | ||||
| 		token := tokens[k] | ||||
| 		v.Tokens = append(v.Tokens, token.Content) | ||||
| 		v.Scores = append(v.Scores, float32(token.ID)) | ||||
|  | ||||
| 		switch { | ||||
| 		case token.Special: | ||||
| 			v.Types = append(v.Types, tokenTypeControl) | ||||
| 		case token.UserDefined: | ||||
| 			v.Types = append(v.Types, tokenTypeUserDefined) | ||||
| 		default: | ||||
| 			v.Types = append(v.Types, tokenTypeNormal) | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	return &v, nil | ||||
| } | ||||
|  | ||||
| func parseVocabulary(fsys fs.FS) (*Vocabulary, error) { | ||||
| 	patterns := []struct { | ||||
| 		Pattern string | ||||
| 		Func    func(fs.FS) (*Vocabulary, error) | ||||
| 	}{ | ||||
| 		{"tokenizer.model", parseSentencePiece}, | ||||
| 		{"tokenizer.json", parseVocabularyFromTokenizer}, | ||||
| 	} | ||||
|  | ||||
| 	for _, pattern := range patterns { | ||||
| 		if _, err := fs.Stat(fsys, pattern.Pattern); errors.Is(err, os.ErrNotExist) { | ||||
| 			continue | ||||
| 		} else if err != nil { | ||||
| 			return nil, err | ||||
| 		} | ||||
|  | ||||
| 		return pattern.Func(fsys) | ||||
| 	} | ||||
|  | ||||
| 	return nil, errors.New("unknown tokenizer format") | ||||
| } | ||||
|  | ||||
| type SpecialVocabulary struct { | ||||
| 	Type     string | ||||
| 	ID       int | ||||
| 	Content  string | ||||
| 	AddToken bool | ||||
| } | ||||
|  | ||||
| func (sv SpecialVocabulary) Key() string { | ||||
| 	switch t := sv.Type; t { | ||||
| 	case "bos", "eos", "cls", "mask": | ||||
| 		return t | ||||
| 	case "unk": | ||||
| 		return "unknown" | ||||
| 	case "sep": | ||||
| 		//nolint:misspell // this is an upstream typo | ||||
| 		return "seperator" | ||||
| 	case "pad": | ||||
| 		return "padding" | ||||
| 	} | ||||
|  | ||||
| 	panic("unknown special vocabulary type") | ||||
| 	return pre, tokens, t.Model.Merges, nil | ||||
| } | ||||
|   | ||||
| @@ -1,171 +0,0 @@ | ||||
| package convert | ||||
|  | ||||
| import ( | ||||
| 	"cmp" | ||||
| 	"encoding/json" | ||||
| 	"errors" | ||||
| 	"fmt" | ||||
| 	"io/fs" | ||||
| 	"log/slog" | ||||
| 	"os" | ||||
| 	"reflect" | ||||
| 	"slices" | ||||
|  | ||||
| 	"google.golang.org/protobuf/proto" | ||||
|  | ||||
| 	"github.com/ollama/ollama/convert/sentencepiece" | ||||
| ) | ||||
|  | ||||
| func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) { | ||||
| 	slog.Debug("using spm vocabulary") | ||||
|  | ||||
| 	ast, err := parseAdditionalSpecialTokens(fsys) | ||||
| 	if err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	bts, err := fs.ReadFile(fsys, "tokenizer.model") | ||||
| 	if err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	var spm sentencepiece.ModelProto | ||||
| 	if err := proto.Unmarshal(bts, &spm); err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	v := Vocabulary{Model: "llama"} | ||||
| 	for _, piece := range spm.GetPieces() { | ||||
| 		v.Tokens = append(v.Tokens, piece.GetPiece()) | ||||
| 		v.Scores = append(v.Scores, piece.GetScore()) | ||||
|  | ||||
| 		switch t := piece.GetType(); t { | ||||
| 		case sentencepiece.ModelProto_SentencePiece_UNKNOWN, | ||||
| 			sentencepiece.ModelProto_SentencePiece_CONTROL, | ||||
| 			sentencepiece.ModelProto_SentencePiece_UNUSED, | ||||
| 			sentencepiece.ModelProto_SentencePiece_BYTE: | ||||
| 			v.Types = append(v.Types, int32(t)) | ||||
| 		default: | ||||
| 			tt := int32(sentencepiece.ModelProto_SentencePiece_NORMAL) | ||||
|  | ||||
| 			// temporary fix to handle gemma3 broken configs | ||||
| 			if slices.Contains([]string{"<end_of_turn>", "<start_of_turn>"}, piece.GetPiece()) { | ||||
| 				tt = int32(sentencepiece.ModelProto_SentencePiece_CONTROL) | ||||
| 			} | ||||
|  | ||||
| 			for _, t := range ast { | ||||
| 				if t.Content == piece.GetPiece() { | ||||
| 					tt = int32(sentencepiece.ModelProto_SentencePiece_CONTROL) | ||||
| 					break | ||||
| 				} | ||||
| 			} | ||||
|  | ||||
| 			v.Types = append(v.Types, tt) | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	f, err := fsys.Open("added_tokens.json") | ||||
| 	if errors.Is(err, os.ErrNotExist) { | ||||
| 		return &v, nil | ||||
| 	} else if err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
| 	defer f.Close() | ||||
|  | ||||
| 	var atm map[string]int | ||||
| 	if err := json.NewDecoder(f).Decode(&atm); err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	type t struct { | ||||
| 		id      int | ||||
| 		content string | ||||
| 	} | ||||
|  | ||||
| 	var ts []t | ||||
| 	for content, id := range atm { | ||||
| 		ts = append(ts, t{id, content}) | ||||
| 	} | ||||
|  | ||||
| 	slices.SortFunc(ts, func(i, j t) int { | ||||
| 		return cmp.Compare(i.id, j.id) | ||||
| 	}) | ||||
|  | ||||
| 	for _, t := range ts { | ||||
| 		if t.id < len(v.Tokens) { | ||||
| 			if v.Tokens[t.id] == t.content { | ||||
| 				slog.Warn("tokenizer", "duplicate token", t.content, "id", t.id) | ||||
| 				continue | ||||
| 			} | ||||
| 			return nil, fmt.Errorf("token mismatch: %s != %s at pos [%d]", t.content, v.Tokens[t.id], t.id) | ||||
| 		} | ||||
| 		if t.id != len(v.Tokens) { | ||||
| 			return nil, fmt.Errorf("invalid token id: [%d] as pos [%d]", t.id, len(v.Tokens)) | ||||
| 		} | ||||
|  | ||||
| 		v.Tokens = append(v.Tokens, t.content) | ||||
| 		v.Scores = append(v.Scores, -1000.0) | ||||
| 		v.Types = append(v.Types, tokenTypeUserDefined) | ||||
| 	} | ||||
|  | ||||
| 	return &v, nil | ||||
| } | ||||
|  | ||||
| type specialToken struct { | ||||
| 	Content    string `json:"content"` | ||||
| 	Lstrip     bool   `json:"lstrip"` | ||||
| 	Normalized bool   `json:"normalized"` | ||||
| 	Rstrip     bool   `json:"rstrip"` | ||||
| 	SingleWord bool   `json:"single_word"` | ||||
| } | ||||
|  | ||||
| func parseAdditionalSpecialTokens(fsys fs.FS) ([]specialToken, error) { | ||||
| 	f, err := fsys.Open("special_tokens_map.json") | ||||
| 	if errors.Is(err, os.ErrNotExist) { | ||||
| 		return nil, nil | ||||
| 	} else if err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
| 	defer f.Close() | ||||
|  | ||||
| 	var m struct { | ||||
| 		AdditionalSpecialTokens any `json:"additional_special_tokens"` | ||||
| 	} | ||||
|  | ||||
| 	if err := json.NewDecoder(f).Decode(&m); err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	var ast []specialToken | ||||
|  | ||||
| 	switch st := m.AdditionalSpecialTokens.(type) { | ||||
| 	case []string: | ||||
| 		for _, s := range st { | ||||
| 			ast = append(ast, specialToken{Content: s}) | ||||
| 		} | ||||
| 	case []any: | ||||
| 		for _, s := range st { | ||||
| 			// marshal and unmarshal the object to get the special token | ||||
| 			tMap := s.(map[string]any) | ||||
| 			data, err := json.Marshal(tMap) | ||||
| 			if err != nil { | ||||
| 				return nil, err | ||||
| 			} | ||||
|  | ||||
| 			var token specialToken | ||||
| 			err = json.Unmarshal(data, &token) | ||||
| 			if err != nil { | ||||
| 				return nil, err | ||||
| 			} | ||||
|  | ||||
| 			ast = append(ast, token) | ||||
| 		} | ||||
|  | ||||
| 	default: | ||||
| 		slog.Warn("special token", "unknown token", reflect.TypeOf(st)) | ||||
| 	} | ||||
|  | ||||
| 	slog.Debug("spm tokenizer", "additional tokens", ast) | ||||
|  | ||||
| 	return ast, nil | ||||
| } | ||||
| @@ -1,264 +0,0 @@ | ||||
| package convert | ||||
|  | ||||
| import ( | ||||
| 	"io" | ||||
| 	"io/fs" | ||||
| 	"os" | ||||
| 	"path/filepath" | ||||
| 	"strings" | ||||
| 	"testing" | ||||
|  | ||||
| 	"github.com/google/go-cmp/cmp" | ||||
| ) | ||||
|  | ||||
| func createTokenizerFS(t *testing.T, dir string, files map[string]io.Reader) fs.FS { | ||||
| 	t.Helper() | ||||
|  | ||||
| 	for k, v := range files { | ||||
| 		if err := func() error { | ||||
| 			f, err := os.Create(filepath.Join(dir, k)) | ||||
| 			if err != nil { | ||||
| 				return err | ||||
| 			} | ||||
| 			defer f.Close() | ||||
|  | ||||
| 			if _, err := io.Copy(f, v); err != nil { | ||||
| 				return err | ||||
| 			} | ||||
|  | ||||
| 			return nil | ||||
| 		}(); err != nil { | ||||
| 			t.Fatalf("unexpected error: %v", err) | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	return os.DirFS(dir) | ||||
| } | ||||
|  | ||||
| func TestParseTokenizer(t *testing.T) { | ||||
| 	cases := []struct { | ||||
| 		name              string | ||||
| 		fsys              fs.FS | ||||
| 		specialTokenTypes []string | ||||
| 		want              *Tokenizer | ||||
| 	}{ | ||||
| 		{ | ||||
| 			name: "string chat template", | ||||
| 			fsys: createTokenizerFS(t, t.TempDir(), map[string]io.Reader{ | ||||
| 				"tokenizer.json": strings.NewReader(`{}`), | ||||
| 				"tokenizer_config.json": strings.NewReader(`{ | ||||
| 					"chat_template": "<default template>" | ||||
| 				}`), | ||||
| 			}), | ||||
| 			want: &Tokenizer{ | ||||
| 				Vocabulary: &Vocabulary{Model: "gpt2"}, | ||||
| 				Pre:        "default", | ||||
| 				Template:   "<default template>", | ||||
| 			}, | ||||
| 		}, | ||||
| 		{ | ||||
| 			name: "list chat template", | ||||
| 			fsys: createTokenizerFS(t, t.TempDir(), map[string]io.Reader{ | ||||
| 				"tokenizer.json": strings.NewReader(`{}`), | ||||
| 				"tokenizer_config.json": strings.NewReader(`{ | ||||
| 					"chat_template": [ | ||||
| 						{ | ||||
| 							"name": "default", | ||||
| 							"template": "<default template>" | ||||
| 						}, | ||||
| 						{ | ||||
| 							"name": "tools", | ||||
| 							"template": "<tools template>" | ||||
| 						} | ||||
| 					] | ||||
| 				}`), | ||||
| 			}), | ||||
| 			want: &Tokenizer{ | ||||
| 				Vocabulary: &Vocabulary{Model: "gpt2"}, | ||||
| 				Pre:        "default", | ||||
| 				Template:   "<default template>", | ||||
| 			}, | ||||
| 		}, | ||||
| 		{ | ||||
| 			name: "added tokens", | ||||
| 			fsys: createTokenizerFS(t, t.TempDir(), map[string]io.Reader{ | ||||
| 				"tokenizer.json": strings.NewReader(`{ | ||||
| 					"added_tokens": [ | ||||
| 						{ | ||||
| 							"id": 999, | ||||
| 							"content": "<unused999>", | ||||
| 							"special": false | ||||
| 						} | ||||
| 					] | ||||
| 				}`), | ||||
| 			}), | ||||
| 			want: &Tokenizer{ | ||||
| 				Vocabulary: &Vocabulary{ | ||||
| 					Model:  "gpt2", | ||||
| 					Tokens: []string{"<unused999>"}, | ||||
| 					Scores: []float32{999}, | ||||
| 					Types:  []int32{4}, | ||||
| 				}, | ||||
| 				Pre: "default", | ||||
| 			}, | ||||
| 		}, | ||||
| 		{ | ||||
| 			name: "added tokens overlap vocab", | ||||
| 			fsys: createTokenizerFS(t, t.TempDir(), map[string]io.Reader{ | ||||
| 				"tokenizer.json": strings.NewReader(`{ | ||||
| 					"added_tokens": [ | ||||
| 						{ | ||||
| 							"id": 0, | ||||
| 							"content": "<pad>", | ||||
| 							"special": true | ||||
| 						} | ||||
| 					], | ||||
| 					"model": { | ||||
| 						"vocab": { | ||||
| 							"<pad>": 0 | ||||
| 						} | ||||
| 					} | ||||
| 				}`), | ||||
| 			}), | ||||
| 			want: &Tokenizer{ | ||||
| 				Vocabulary: &Vocabulary{ | ||||
| 					Model:  "gpt2", | ||||
| 					Tokens: []string{"<pad>"}, | ||||
| 					Scores: []float32{0}, | ||||
| 					Types:  []int32{3}, | ||||
| 				}, | ||||
| 				Pre: "default", | ||||
| 			}, | ||||
| 		}, | ||||
| 		{ | ||||
| 			name: "special token types", | ||||
| 			fsys: createTokenizerFS(t, t.TempDir(), map[string]io.Reader{ | ||||
| 				"tokenizer.json": strings.NewReader(`{ | ||||
| 					"added_tokens": [ | ||||
| 						{ | ||||
| 							"id": 0, | ||||
| 							"content": "<pad>", | ||||
| 							"special": true | ||||
| 						}, | ||||
| 						{ | ||||
| 							"id": 1, | ||||
| 							"content": "<eos>", | ||||
| 							"special": true | ||||
| 						}, | ||||
| 						{ | ||||
| 							"id": 2, | ||||
| 							"content": "<bos>", | ||||
| 							"special": true | ||||
| 						}, | ||||
| 						{ | ||||
| 							"id": 3, | ||||
| 							"content": "<unk>", | ||||
| 							"special": true | ||||
| 						} | ||||
| 					], | ||||
| 					"model": { | ||||
| 						"vocab": { | ||||
| 							"<pad>": 0, | ||||
| 							"<eos>": 1, | ||||
| 							"<bos>": 2, | ||||
| 							"<unk>": 3 | ||||
| 						} | ||||
| 					} | ||||
| 				}`), | ||||
| 				"tokenizer_config.json": strings.NewReader(`{ | ||||
| 					"add_bos_token": true, | ||||
| 					"add_eos_token": false, | ||||
| 					"bos_token": "<bos>", | ||||
| 					"eos_token": "<eos>", | ||||
| 					"pad_token": "<pad>", | ||||
| 					"unk_token": "<unk>" | ||||
| 				}`), | ||||
| 			}), | ||||
| 			specialTokenTypes: []string{"pad", "eos", "bos", "unk"}, | ||||
| 			want: &Tokenizer{ | ||||
| 				Vocabulary: &Vocabulary{ | ||||
| 					Model:  "gpt2", | ||||
| 					Tokens: []string{"<pad>", "<eos>", "<bos>", "<unk>"}, | ||||
| 					Scores: []float32{0, 1, 2, 3}, | ||||
| 					Types:  []int32{3, 3, 3, 3}, | ||||
| 				}, | ||||
| 				SpecialVocabulary: []*SpecialVocabulary{ | ||||
| 					{Type: "pad", Content: "<pad>", ID: 0, AddToken: false}, | ||||
| 					{Type: "eos", Content: "<eos>", ID: 1, AddToken: false}, | ||||
| 					{Type: "bos", Content: "<bos>", ID: 2, AddToken: true}, | ||||
| 					{Type: "unk", Content: "<unk>", ID: 3, AddToken: false}, | ||||
| 				}, | ||||
| 				Pre: "default", | ||||
| 			}, | ||||
| 		}, | ||||
| 		{ | ||||
| 			name: "list string merges", | ||||
| 			fsys: createTokenizerFS(t, t.TempDir(), map[string]io.Reader{ | ||||
| 				"tokenizer.json": strings.NewReader(`{ | ||||
| 					"model": { | ||||
| 						"merges": [ | ||||
| 							"a b", | ||||
| 							"c d", | ||||
| 							"e f" | ||||
| 						] | ||||
| 					} | ||||
| 				}`), | ||||
| 			}), | ||||
| 			want: &Tokenizer{ | ||||
| 				Vocabulary: &Vocabulary{ | ||||
| 					Model: "gpt2", | ||||
| 				}, | ||||
| 				Merges: []string{ | ||||
| 					"a b", | ||||
| 					"c d", | ||||
| 					"e f", | ||||
| 				}, | ||||
| 				Pre: "default", | ||||
| 			}, | ||||
| 		}, | ||||
| 		{ | ||||
| 			name: "list list string merges", | ||||
| 			fsys: createTokenizerFS(t, t.TempDir(), map[string]io.Reader{ | ||||
| 				"tokenizer.json": strings.NewReader(`{ | ||||
| 					"model": { | ||||
| 						"merges": [ | ||||
| 							[ | ||||
| 								"a", "b" | ||||
| 							], | ||||
| 							[ | ||||
| 								"c", "d" | ||||
| 							], | ||||
| 							[ | ||||
| 								"e", "f" | ||||
| 							] | ||||
| 						] | ||||
| 					} | ||||
| 				}`), | ||||
| 			}), | ||||
| 			want: &Tokenizer{ | ||||
| 				Vocabulary: &Vocabulary{ | ||||
| 					Model: "gpt2", | ||||
| 				}, | ||||
| 				Merges: []string{ | ||||
| 					"a b", | ||||
| 					"c d", | ||||
| 					"e f", | ||||
| 				}, | ||||
| 				Pre: "default", | ||||
| 			}, | ||||
| 		}, | ||||
| 	} | ||||
|  | ||||
| 	for _, tt := range cases { | ||||
| 		t.Run(tt.name, func(t *testing.T) { | ||||
| 			tokenizer, err := parseTokenizer(tt.fsys, tt.specialTokenTypes) | ||||
| 			if err != nil { | ||||
| 				t.Fatalf("unexpected error: %v", err) | ||||
| 			} | ||||
|  | ||||
| 			if diff := cmp.Diff(tt.want, tokenizer); diff != "" { | ||||
| 				t.Errorf("unexpected tokenizer (-want +got):\n%s", diff) | ||||
| 			} | ||||
| 		}) | ||||
| 	} | ||||
| } | ||||
							
								
								
									
										288
									
								
								convert/torch.go
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										288
									
								
								convert/torch.go
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,288 @@ | ||||
| package convert | ||||
|  | ||||
| import ( | ||||
| 	"encoding/binary" | ||||
| 	"encoding/json" | ||||
| 	"fmt" | ||||
| 	"io" | ||||
| 	"log/slog" | ||||
| 	"os" | ||||
| 	"path/filepath" | ||||
| 	"regexp" | ||||
| 	"strings" | ||||
|  | ||||
| 	"github.com/nlpodyssey/gopickle/pytorch" | ||||
| 	"github.com/nlpodyssey/gopickle/types" | ||||
| 	"github.com/x448/float16" | ||||
|  | ||||
| 	"github.com/ollama/ollama/llm" | ||||
| ) | ||||
|  | ||||
| type torchWriterTo struct { | ||||
| 	t *llm.Tensor | ||||
|  | ||||
| 	params *Params | ||||
| 	bo     ByteOrder | ||||
|  | ||||
| 	storage  pytorch.StorageInterface | ||||
| 	repacker func(string, []float32, []uint64) ([]float32, error) | ||||
| } | ||||
|  | ||||
| type TorchFormat struct{} | ||||
|  | ||||
| func (tf *TorchFormat) GetTensors(dirpath string, params *Params) ([]llm.Tensor, error) { | ||||
| 	slog.Debug("getting torch tensors") | ||||
|  | ||||
| 	var files []string | ||||
| 	if pt, _ := filepath.Glob(filepath.Join(dirpath, "consolidated*.pth")); len(pt) > 0 { | ||||
| 		files = append(files, pt...) | ||||
| 	} else if pt, _ := filepath.Glob(filepath.Join(dirpath, "pytorch_model*.pth")); len(pt) > 0 { | ||||
| 		files = append(files, pt...) | ||||
| 	} | ||||
|  | ||||
| 	var offset uint64 | ||||
| 	var tensors []llm.Tensor | ||||
| 	for _, fn := range files { | ||||
| 		m, err := pytorch.Load(fn) | ||||
| 		if err != nil { | ||||
| 			slog.Error(fmt.Sprintf("error unpickling: %q", err)) | ||||
| 			return []llm.Tensor{}, err | ||||
| 		} | ||||
|  | ||||
| 		for _, k := range m.(*types.Dict).Keys() { | ||||
| 			if strings.HasSuffix(k.(string), "self_attn.rotary_emb.inv_freq") { | ||||
| 				continue | ||||
| 			} | ||||
|  | ||||
| 			t, _ := m.(*types.Dict).Get(k) | ||||
| 			tshape := t.(*pytorch.Tensor).Size | ||||
|  | ||||
| 			var size uint64 | ||||
| 			var kind uint32 | ||||
| 			switch len(tshape) { | ||||
| 			case 0: | ||||
| 				continue | ||||
| 			case 1: | ||||
| 				// convert to float32 | ||||
| 				kind = 0 | ||||
| 				size = uint64(tshape[0] * 4) | ||||
| 			case 2: | ||||
| 				// convert to float16 | ||||
| 				kind = 1 | ||||
| 				size = uint64(tshape[0] * tshape[1] * 2) | ||||
| 			} | ||||
|  | ||||
| 			ggufName, err := tf.GetLayerName(k.(string)) | ||||
| 			if err != nil { | ||||
| 				slog.Error(err.Error()) | ||||
| 				return nil, err | ||||
| 			} | ||||
| 			slog.Debug(fmt.Sprintf("'%35s': '%30s' %10d [%#v]", k.(string), ggufName, size, tshape)) | ||||
|  | ||||
| 			shape := []uint64{0, 0, 0, 0} | ||||
| 			for i := range tshape { | ||||
| 				shape[i] = uint64(tshape[i]) | ||||
| 			} | ||||
|  | ||||
| 			tensor := llm.Tensor{ | ||||
| 				Name:   ggufName, | ||||
| 				Kind:   kind, | ||||
| 				Offset: offset, // calculate the offset | ||||
| 				Shape:  shape[:], | ||||
| 			} | ||||
|  | ||||
| 			tensor.WriterTo = torchWriterTo{ | ||||
| 				t:       &tensor, | ||||
| 				params:  params, | ||||
| 				bo:      params.ByteOrder, | ||||
| 				storage: t.(*pytorch.Tensor).Source, | ||||
| 			} | ||||
|  | ||||
| 			tensors = append(tensors, tensor) | ||||
| 			offset += size | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	return tensors, nil | ||||
|  | ||||
| } | ||||
|  | ||||
| func getAltParams(dirpath string) (*Params, error) { | ||||
| 	f, err := os.Open(filepath.Join(dirpath, "params.json")) | ||||
| 	if err != nil { | ||||
| 		slog.Error("no params.json") | ||||
| 		return nil, err | ||||
| 	} | ||||
| 	defer f.Close() | ||||
|  | ||||
| 	type TorchParams struct { | ||||
| 		HiddenSize     int     `json:"dim"` | ||||
| 		AttentionHeads int     `json:"n_heads"` | ||||
| 		KeyValHeads    int     `json:"n_kv_heads"` | ||||
| 		HiddenLayers   int     `json:"n_layers"` | ||||
| 		RopeTheta      float64 `json:"rope_theta"` | ||||
| 		NormEPS        float64 `json:"norm_eps"` | ||||
| 	} | ||||
|  | ||||
| 	var tparams TorchParams | ||||
|  | ||||
| 	d := json.NewDecoder(f) | ||||
| 	err = d.Decode(&tparams) | ||||
| 	if err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	params := &Params{ | ||||
| 		Architectures:  []string{"LlamaForCausalLM"}, | ||||
| 		HiddenSize:     tparams.HiddenSize, | ||||
| 		AttentionHeads: tparams.AttentionHeads, | ||||
| 		KeyValHeads:    tparams.KeyValHeads, | ||||
| 		HiddenLayers:   tparams.HiddenLayers, | ||||
| 		NormEPS:        tparams.NormEPS, | ||||
| 	} | ||||
|  | ||||
| 	switch { | ||||
| 	case tparams.RopeTheta == 1000000: | ||||
| 		// Codellama | ||||
| 		params.ContextSize = 16384 | ||||
| 	case tparams.NormEPS == 1e-06: | ||||
| 		// llama2 | ||||
| 		slog.Debug("Found llama2 - setting context size to 4096") | ||||
| 		params.ContextSize = 4096 | ||||
| 	default: | ||||
| 		params.ContextSize = 2048 | ||||
| 	} | ||||
|  | ||||
| 	params.ByteOrder = binary.LittleEndian | ||||
| 	return params, nil | ||||
| } | ||||
|  | ||||
| func (m *TorchFormat) GetParams(dirpath string) (*Params, error) { | ||||
| 	f, err := os.Open(filepath.Join(dirpath, "config.json")) | ||||
| 	if err != nil { | ||||
| 		if os.IsNotExist(err) { | ||||
| 			// try params.json instead | ||||
| 			return getAltParams(dirpath) | ||||
| 		} else { | ||||
| 			return nil, err | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	var params Params | ||||
| 	d := json.NewDecoder(f) | ||||
| 	err = d.Decode(¶ms) | ||||
| 	if err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	params.ByteOrder = binary.LittleEndian | ||||
| 	return ¶ms, nil | ||||
| } | ||||
|  | ||||
| func (m *TorchFormat) GetLayerName(n string) (string, error) { | ||||
| 	directMap := map[string]string{ | ||||
| 		"tok_embeddings.weight":     "token_embd.weight", | ||||
| 		"output.weight":             "output.weight", | ||||
| 		"norm.weight":               "output_norm.weight", | ||||
| 		"rope.freqs":                "rope_freqs.weight", | ||||
| 		"model.embed_tokens.weight": "token_embd.weight", | ||||
| 		"lm_head.weight":            "output.weight", | ||||
| 		"model.norm.weight":         "output_norm.weight", | ||||
| 	} | ||||
|  | ||||
| 	lMap := map[string]string{ | ||||
| 		"layers.(\\d+).attention_norm.weight":                 "blk.$1.attn_norm.weight", | ||||
| 		"layers.(\\d+).attention_output_norm.weight":          "blk.$1.attn_norm.weight", | ||||
| 		"layers.(\\d+).feed_forward.w2.weight":                "blk.$1.ffn_down.weight", | ||||
| 		"layers.(\\d+).feed_forward.w1.weight":                "blk.$1.ffn_gate.weight", | ||||
| 		"layers.(\\d+).feed_forward.w3.weight":                "blk.$1.ffn_up.weight", | ||||
| 		"layers.(\\d+).ffn_norm.weight":                       "blk.$1.ffn_norm.weight", | ||||
| 		"layers.(\\d+).attention.wk.weight":                   "blk.$1.attn_k.weight", | ||||
| 		"layers.(\\d+).attention.wo.weight":                   "blk.$1.attn_output.weight", | ||||
| 		"layers.(\\d+).attention.wq.weight":                   "blk.$1.attn_q.weight", | ||||
| 		"layers.(\\d+).attention.wv.weight":                   "blk.$1.attn_v.weight", | ||||
| 		"model.layers.(\\d+).input_layernorm.weight":          "blk.$1.attn_norm.weight", | ||||
| 		"model.layers.(\\d+).mlp.down_proj.weight":            "blk.$1.ffn_down.weight", | ||||
| 		"model.layers.(\\d+).mlp.gate_proj.weight":            "blk.$1.ffn_gate.weight", | ||||
| 		"model.layers.(\\d+).mlp.up_proj.weight":              "blk.$1.ffn_up.weight", | ||||
| 		"model.layers.(\\d+).post_attention_layernorm.weight": "blk.$1.ffn_norm.weight", | ||||
| 		"model.layers.(\\d+).self_attn.k_proj.weight":         "blk.$1.attn_k.weight", | ||||
| 		"model.layers.(\\d+).self_attn.o_proj.weight":         "blk.$1.attn_output.weight", | ||||
| 		"model.layers.(\\d+).self_attn.q_proj.weight":         "blk.$1.attn_q.weight", | ||||
| 		"model.layers.(\\d+).self_attn.v_proj.weight":         "blk.$1.attn_v.weight", | ||||
| 	} | ||||
|  | ||||
| 	v, ok := directMap[n] | ||||
| 	if ok { | ||||
| 		return v, nil | ||||
| 	} | ||||
|  | ||||
| 	// quick hack to rename the layers to gguf format | ||||
| 	for k, v := range lMap { | ||||
| 		re := regexp.MustCompile(k) | ||||
| 		newName := re.ReplaceAllString(n, v) | ||||
| 		if newName != n { | ||||
| 			return newName, nil | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	return "", fmt.Errorf("couldn't find a layer name for '%s'", n) | ||||
| } | ||||
|  | ||||
| func (r torchWriterTo) WriteTo(w io.Writer) (n int64, err error) { | ||||
| 	var f32s []float32 | ||||
| 	switch s := r.storage.(type) { | ||||
| 	case *pytorch.FloatStorage: | ||||
| 		f32s = s.Data | ||||
| 	case *pytorch.HalfStorage: | ||||
| 		f32s = s.Data | ||||
| 	case *pytorch.BFloat16Storage: | ||||
| 		f32s = s.Data | ||||
| 	default: | ||||
| 		return 0, fmt.Errorf("unknown data type: %T", s) | ||||
| 	} | ||||
|  | ||||
| 	if r.repacker != nil { | ||||
| 		f32s, err = r.repacker(r.t.Name, f32s, r.t.Shape) | ||||
| 		if err != nil { | ||||
| 			return 0, err | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	switch r.t.Kind { | ||||
| 	case 0: | ||||
| 		return 0, binary.Write(w, r.bo, f32s) | ||||
| 	case 1: | ||||
| 		f16s := make([]uint16, len(f32s)) | ||||
| 		for i := range f32s { | ||||
| 			f16s[i] = float16.Fromfloat32(f32s[i]).Bits() | ||||
| 		} | ||||
|  | ||||
| 		return 0, binary.Write(w, r.bo, f16s) | ||||
| 	default: | ||||
| 		return 0, fmt.Errorf("unknown storage type: %d", r.t.Kind) | ||||
| 	} | ||||
| } | ||||
|  | ||||
| func (m *TorchFormat) GetModelArch(name, dirPath string, params *Params) (ModelArch, error) { | ||||
| 	switch len(params.Architectures) { | ||||
| 	case 0: | ||||
| 		return nil, fmt.Errorf("No architecture specified to convert") | ||||
| 	case 1: | ||||
| 		switch params.Architectures[0] { | ||||
| 		case "LlamaForCausalLM": | ||||
| 			return &LlamaModel{ | ||||
| 				ModelData{ | ||||
| 					Name:   name, | ||||
| 					Path:   dirPath, | ||||
| 					Params: params, | ||||
| 					Format: m, | ||||
| 				}, | ||||
| 			}, nil | ||||
| 		default: | ||||
| 			return nil, fmt.Errorf("Models based on '%s' are not yet supported", params.Architectures[0]) | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	return nil, fmt.Errorf("Unknown error") | ||||
| } | ||||
| @@ -1,538 +0,0 @@ | ||||
| package discover | ||||
|  | ||||
| import ( | ||||
| 	"bufio" | ||||
| 	"errors" | ||||
| 	"fmt" | ||||
| 	"io" | ||||
| 	"io/fs" | ||||
| 	"log/slog" | ||||
| 	"os" | ||||
| 	"path/filepath" | ||||
| 	"regexp" | ||||
| 	"slices" | ||||
| 	"sort" | ||||
| 	"strconv" | ||||
| 	"strings" | ||||
|  | ||||
| 	"github.com/ollama/ollama/envconfig" | ||||
| 	"github.com/ollama/ollama/format" | ||||
| ) | ||||
|  | ||||
| // Discovery logic for AMD/ROCm GPUs | ||||
|  | ||||
| const ( | ||||
| 	DriverVersionFile     = "/sys/module/amdgpu/version" | ||||
| 	AMDNodesSysfsDir      = "/sys/class/kfd/kfd/topology/nodes/" | ||||
| 	GPUPropertiesFileGlob = AMDNodesSysfsDir + "*/properties" | ||||
|  | ||||
| 	// Prefix with the node dir | ||||
| 	GPUTotalMemoryFileGlob = "mem_banks/*/properties" // size_in_bytes line | ||||
|  | ||||
| 	// Direct Rendering Manager sysfs location | ||||
| 	DRMDeviceDirGlob   = "/sys/class/drm/card*/device" | ||||
| 	DRMTotalMemoryFile = "mem_info_vram_total" | ||||
| 	DRMUsedMemoryFile  = "mem_info_vram_used" | ||||
|  | ||||
| 	// In hex; properties file is in decimal | ||||
| 	DRMUniqueIDFile = "unique_id" | ||||
| 	DRMVendorFile   = "vendor" | ||||
| 	DRMDeviceFile   = "device" | ||||
| ) | ||||
|  | ||||
| var ( | ||||
| 	// Used to validate if the given ROCm lib is usable | ||||
| 	ROCmLibGlobs          = []string{"libhipblas.so.2*", "rocblas"} // TODO - probably include more coverage of files here... | ||||
| 	RocmStandardLocations = []string{"/opt/rocm/lib", "/usr/lib64"} | ||||
| ) | ||||
|  | ||||
| // Gather GPU information from the amdgpu driver if any supported GPUs are detected | ||||
| // Only called once during bootstrap | ||||
| func AMDGetGPUInfo() ([]RocmGPUInfo, error) { | ||||
| 	resp := []RocmGPUInfo{} | ||||
| 	if !AMDDetected() { | ||||
| 		return resp, fmt.Errorf("AMD GPUs not detected") | ||||
| 	} | ||||
|  | ||||
| 	// Opportunistic logging of driver version to aid in troubleshooting | ||||
| 	driverMajor, driverMinor, err := AMDDriverVersion() | ||||
| 	if err != nil { | ||||
| 		// TODO - if we see users crash and burn with the upstreamed kernel this can be adjusted to hard-fail rocm support and fallback to CPU | ||||
| 		slog.Warn("ollama recommends running the https://www.amd.com/en/support/linux-drivers", "error", err) | ||||
| 	} | ||||
|  | ||||
| 	// Determine if the user has already pre-selected which GPUs to look at, then ignore the others | ||||
| 	var visibleDevices []string | ||||
| 	hipVD := envconfig.HipVisibleDevices()   // zero based index only | ||||
| 	rocrVD := envconfig.RocrVisibleDevices() // zero based index or UUID | ||||
| 	gpuDO := envconfig.GpuDeviceOrdinal()    // zero based index | ||||
| 	switch { | ||||
| 	case rocrVD != "": | ||||
| 		visibleDevices = strings.Split(rocrVD, ",") | ||||
| 	case hipVD != "": | ||||
| 		visibleDevices = strings.Split(hipVD, ",") | ||||
| 	case gpuDO != "": | ||||
| 		visibleDevices = strings.Split(gpuDO, ",") | ||||
| 	} | ||||
|  | ||||
| 	gfxOverride := envconfig.HsaOverrideGfxVersion() | ||||
| 	var supported []string | ||||
| 	var libDir string | ||||
|  | ||||
| 	// The amdgpu driver always exposes the host CPU(s) first, but we have to skip them and subtract | ||||
| 	// from the other IDs to get alignment with the HIP libraries expectations (zero is the first GPU, not the CPU) | ||||
| 	matches, _ := filepath.Glob(GPUPropertiesFileGlob) | ||||
| 	sort.Slice(matches, func(i, j int) bool { | ||||
| 		// /sys/class/kfd/kfd/topology/nodes/<number>/properties | ||||
| 		a, err := strconv.ParseInt(filepath.Base(filepath.Dir(matches[i])), 10, 64) | ||||
| 		if err != nil { | ||||
| 			slog.Debug("parse err", "error", err, "match", matches[i]) | ||||
| 			return false | ||||
| 		} | ||||
| 		b, err := strconv.ParseInt(filepath.Base(filepath.Dir(matches[j])), 10, 64) | ||||
| 		if err != nil { | ||||
| 			slog.Debug("parse err", "error", err, "match", matches[i]) | ||||
| 			return false | ||||
| 		} | ||||
| 		return a < b | ||||
| 	}) | ||||
| 	gpuCount := 0 | ||||
| 	for _, match := range matches { | ||||
| 		slog.Debug("evaluating amdgpu node " + match) | ||||
| 		fp, err := os.Open(match) | ||||
| 		if err != nil { | ||||
| 			slog.Debug("failed to open sysfs node", "file", match, "error", err) | ||||
| 			continue | ||||
| 		} | ||||
| 		defer fp.Close() | ||||
|  | ||||
| 		scanner := bufio.NewScanner(fp) | ||||
| 		isCPU := false | ||||
| 		var major, minor, patch uint64 | ||||
| 		var vendor, device, uniqueID uint64 | ||||
| 		for scanner.Scan() { | ||||
| 			line := strings.TrimSpace(scanner.Text()) | ||||
| 			// Note: we could also use "cpu_cores_count X" where X is greater than zero to detect CPUs | ||||
| 			if strings.HasPrefix(line, "gfx_target_version") { | ||||
| 				ver := strings.Fields(line) | ||||
|  | ||||
| 				// Detect CPUs | ||||
| 				if len(ver) == 2 && ver[1] == "0" { | ||||
| 					slog.Debug("detected CPU " + match) | ||||
| 					isCPU = true | ||||
| 					break | ||||
| 				} | ||||
|  | ||||
| 				if len(ver) != 2 || len(ver[1]) < 5 { | ||||
| 					slog.Warn("malformed "+match, "gfx_target_version", line) | ||||
| 					// If this winds up being a CPU, our offsets may be wrong | ||||
| 					continue | ||||
| 				} | ||||
| 				l := len(ver[1]) | ||||
| 				var err1, err2, err3 error | ||||
| 				patch, err1 = strconv.ParseUint(ver[1][l-2:l], 10, 32) | ||||
| 				minor, err2 = strconv.ParseUint(ver[1][l-4:l-2], 10, 32) | ||||
| 				major, err3 = strconv.ParseUint(ver[1][:l-4], 10, 32) | ||||
| 				if err1 != nil || err2 != nil || err3 != nil { | ||||
| 					slog.Debug("malformed int " + line) | ||||
| 					continue | ||||
| 				} | ||||
| 			} else if strings.HasPrefix(line, "vendor_id") { | ||||
| 				ver := strings.Fields(line) | ||||
| 				if len(ver) != 2 { | ||||
| 					slog.Debug("malformed", "vendor_id", line) | ||||
| 					continue | ||||
| 				} | ||||
| 				vendor, err = strconv.ParseUint(ver[1], 10, 64) | ||||
| 				if err != nil { | ||||
| 					slog.Debug("malformed", "vendor_id", line, "error", err) | ||||
| 				} | ||||
| 			} else if strings.HasPrefix(line, "device_id") { | ||||
| 				ver := strings.Fields(line) | ||||
| 				if len(ver) != 2 { | ||||
| 					slog.Debug("malformed", "device_id", line) | ||||
| 					continue | ||||
| 				} | ||||
| 				device, err = strconv.ParseUint(ver[1], 10, 64) | ||||
| 				if err != nil { | ||||
| 					slog.Debug("malformed", "device_id", line, "error", err) | ||||
| 				} | ||||
| 			} else if strings.HasPrefix(line, "unique_id") { | ||||
| 				ver := strings.Fields(line) | ||||
| 				if len(ver) != 2 { | ||||
| 					slog.Debug("malformed", "unique_id", line) | ||||
| 					continue | ||||
| 				} | ||||
| 				uniqueID, err = strconv.ParseUint(ver[1], 10, 64) | ||||
| 				if err != nil { | ||||
| 					slog.Debug("malformed", "unique_id", line, "error", err) | ||||
| 				} | ||||
| 			} | ||||
| 			// TODO - any other properties we want to extract and record? | ||||
| 			// vendor_id + device_id -> pci lookup for "Name" | ||||
| 			// Other metrics that may help us understand relative performance between multiple GPUs | ||||
| 		} | ||||
|  | ||||
| 		// Note: while ./mem_banks/*/used_memory exists, it doesn't appear to take other VRAM consumers | ||||
| 		// into consideration, so we instead map the device over to the DRM driver sysfs nodes which | ||||
| 		// do reliably report VRAM usage. | ||||
|  | ||||
| 		if isCPU { | ||||
| 			continue | ||||
| 		} | ||||
|  | ||||
| 		// Skip over any GPUs that are masked | ||||
| 		if major == 0 && minor == 0 && patch == 0 { | ||||
| 			slog.Debug("skipping gpu with gfx000") | ||||
| 			continue | ||||
| 		} | ||||
|  | ||||
| 		// Keep track of numeric IDs based on valid GPUs | ||||
| 		gpuID := gpuCount | ||||
| 		gpuCount += 1 | ||||
|  | ||||
| 		// Look up the memory for the current node | ||||
| 		totalMemory := uint64(0) | ||||
| 		usedMemory := uint64(0) | ||||
| 		var usedFile string | ||||
| 		mapping := []struct { | ||||
| 			id       uint64 | ||||
| 			filename string | ||||
| 		}{ | ||||
| 			{vendor, DRMVendorFile}, | ||||
| 			{device, DRMDeviceFile}, | ||||
| 			{uniqueID, DRMUniqueIDFile}, // Not all devices will report this | ||||
| 		} | ||||
| 		slog.Debug("mapping amdgpu to drm sysfs nodes", "amdgpu", match, "vendor", vendor, "device", device, "unique_id", uniqueID) | ||||
| 		// Map over to DRM location to find the total/free memory | ||||
| 		drmMatches, _ := filepath.Glob(DRMDeviceDirGlob) | ||||
| 		for _, devDir := range drmMatches { | ||||
| 			matched := true | ||||
| 			for _, m := range mapping { | ||||
| 				if m.id == 0 { | ||||
| 					// Null ID means it didn't populate, so we can't use it to match | ||||
| 					continue | ||||
| 				} | ||||
| 				filename := filepath.Join(devDir, m.filename) | ||||
| 				buf, err := os.ReadFile(filename) | ||||
| 				if err != nil { | ||||
| 					slog.Debug("failed to read sysfs node", "file", filename, "error", err) | ||||
| 					matched = false | ||||
| 					break | ||||
| 				} | ||||
| 				// values here are in hex, strip off the lead 0x and parse so we can compare the numeric (decimal) values in amdgpu | ||||
| 				cmp, err := strconv.ParseUint(strings.TrimPrefix(strings.TrimSpace(string(buf)), "0x"), 16, 64) | ||||
| 				if err != nil { | ||||
| 					slog.Debug("failed to parse sysfs node", "file", filename, "error", err) | ||||
| 					matched = false | ||||
| 					break | ||||
| 				} | ||||
| 				if cmp != m.id { | ||||
| 					matched = false | ||||
| 					break | ||||
| 				} | ||||
| 			} | ||||
| 			if !matched { | ||||
| 				continue | ||||
| 			} | ||||
|  | ||||
| 			// Found the matching DRM directory | ||||
| 			slog.Debug("matched", "amdgpu", match, "drm", devDir) | ||||
| 			totalFile := filepath.Join(devDir, DRMTotalMemoryFile) | ||||
| 			buf, err := os.ReadFile(totalFile) | ||||
| 			if err != nil { | ||||
| 				slog.Debug("failed to read sysfs node", "file", totalFile, "error", err) | ||||
| 				break | ||||
| 			} | ||||
| 			totalMemory, err = strconv.ParseUint(strings.TrimSpace(string(buf)), 10, 64) | ||||
| 			if err != nil { | ||||
| 				slog.Debug("failed to parse sysfs node", "file", totalFile, "error", err) | ||||
| 				break | ||||
| 			} | ||||
|  | ||||
| 			usedFile = filepath.Join(devDir, DRMUsedMemoryFile) | ||||
| 			usedMemory, err = getFreeMemory(usedFile) | ||||
| 			if err != nil { | ||||
| 				slog.Debug("failed to update used memory", "error", err) | ||||
| 			} | ||||
| 			break | ||||
| 		} | ||||
|  | ||||
| 		var name string | ||||
| 		// TODO - PCI ID lookup | ||||
| 		if vendor > 0 && device > 0 { | ||||
| 			name = fmt.Sprintf("%04x:%04x", vendor, device) | ||||
| 		} | ||||
|  | ||||
| 		// Favor UUIDs if available to reduce possibility of getting the numeric IDs wrong | ||||
| 		var ID string | ||||
| 		if uniqueID != 0 { | ||||
| 			ID = fmt.Sprintf("GPU-%016x", uniqueID) | ||||
| 		} else { | ||||
| 			ID = strconv.Itoa(gpuID) | ||||
| 		} | ||||
|  | ||||
| 		gpuInfo := RocmGPUInfo{ | ||||
| 			GpuInfo: GpuInfo{ | ||||
| 				Library: "rocm", | ||||
| 				memInfo: memInfo{ | ||||
| 					TotalMemory: totalMemory, | ||||
| 					FreeMemory:  (totalMemory - usedMemory), | ||||
| 				}, | ||||
| 				ID:            ID, | ||||
| 				Name:          name, | ||||
| 				Compute:       fmt.Sprintf("gfx%d%x%x", major, minor, patch), | ||||
| 				MinimumMemory: rocmMinimumMemory, | ||||
| 				DriverMajor:   driverMajor, | ||||
| 				DriverMinor:   driverMinor, | ||||
| 			}, | ||||
| 			usedFilepath: usedFile, | ||||
| 			index:        gpuID, | ||||
| 		} | ||||
|  | ||||
| 		// iGPU detection, remove this check once we can support an iGPU variant of the rocm library | ||||
| 		if totalMemory < IGPUMemLimit { | ||||
| 			reason := "unsupported Radeon iGPU detected skipping" | ||||
| 			slog.Info(reason, "id", gpuID, "total", format.HumanBytes2(totalMemory)) | ||||
| 			unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{ | ||||
| 				GpuInfo: gpuInfo.GpuInfo, | ||||
| 				Reason:  reason, | ||||
| 			}) | ||||
| 			continue | ||||
| 		} | ||||
| 		minVer, err := strconv.Atoi(RocmComputeMajorMin) | ||||
| 		if err != nil { | ||||
| 			slog.Error("invalid RocmComputeMajorMin setting", "value", RocmComputeMajorMin, "error", err) | ||||
| 		} | ||||
| 		if int(major) < minVer { | ||||
| 			reason := fmt.Sprintf("amdgpu too old gfx%d%x%x", major, minor, patch) | ||||
| 			slog.Warn(reason, "gpu", gpuID) | ||||
| 			unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{ | ||||
| 				GpuInfo: gpuInfo.GpuInfo, | ||||
| 				Reason:  reason, | ||||
| 			}) | ||||
|  | ||||
| 			continue | ||||
| 		} | ||||
|  | ||||
| 		slog.Debug("amdgpu memory", "gpu", gpuID, "total", format.HumanBytes2(totalMemory)) | ||||
| 		slog.Debug("amdgpu memory", "gpu", gpuID, "available", format.HumanBytes2(totalMemory-usedMemory)) | ||||
|  | ||||
| 		// If the user wants to filter to a subset of devices, filter out if we aren't a match | ||||
| 		if len(visibleDevices) > 0 { | ||||
| 			include := false | ||||
| 			for _, visible := range visibleDevices { | ||||
| 				if visible == gpuInfo.ID || visible == strconv.Itoa(gpuInfo.index) { | ||||
| 					include = true | ||||
| 					break | ||||
| 				} | ||||
| 			} | ||||
| 			if !include { | ||||
| 				reason := "filtering out device per user request" | ||||
| 				slog.Info(reason, "id", gpuInfo.ID, "visible_devices", visibleDevices) | ||||
| 				unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{ | ||||
| 					GpuInfo: gpuInfo.GpuInfo, | ||||
| 					Reason:  reason, | ||||
| 				}) | ||||
|  | ||||
| 				continue | ||||
| 			} | ||||
| 		} | ||||
|  | ||||
| 		// Final validation is gfx compatibility - load the library if we haven't already loaded it | ||||
| 		// even if the user overrides, we still need to validate the library | ||||
| 		if libDir == "" { | ||||
| 			libDir, err = AMDValidateLibDir() | ||||
| 			if err != nil { | ||||
| 				err = fmt.Errorf("unable to verify rocm library: %w", err) | ||||
| 				slog.Warn(err.Error()) | ||||
| 				unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{ | ||||
| 					GpuInfo: gpuInfo.GpuInfo, | ||||
| 					Reason:  err.Error(), | ||||
| 				}) | ||||
| 				return nil, err | ||||
| 			} | ||||
| 		} | ||||
| 		gpuInfo.DependencyPath = []string{libDir} | ||||
|  | ||||
| 		if gfxOverride == "" { | ||||
| 			// Only load supported list once | ||||
| 			if len(supported) == 0 { | ||||
| 				supported, err = GetSupportedGFX(libDir) | ||||
| 				if err != nil { | ||||
| 					err = fmt.Errorf("failed to lookup supported GFX types: %w", err) | ||||
| 					slog.Warn(err.Error()) | ||||
| 					unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{ | ||||
| 						GpuInfo: gpuInfo.GpuInfo, | ||||
| 						Reason:  err.Error(), | ||||
| 					}) | ||||
| 					return nil, err | ||||
| 				} | ||||
| 				slog.Debug("rocm supported GPUs", "types", supported) | ||||
| 			} | ||||
| 			gfx := gpuInfo.Compute | ||||
| 			if !slices.Contains[[]string, string](supported, gfx) { | ||||
| 				reason := fmt.Sprintf("amdgpu is not supported (supported types:%s)", supported) | ||||
| 				slog.Warn(reason, "gpu_type", gfx, "gpu", gpuInfo.ID, "library", libDir) | ||||
| 				unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{ | ||||
| 					GpuInfo: gpuInfo.GpuInfo, | ||||
| 					Reason:  reason, | ||||
| 				}) | ||||
|  | ||||
| 				// TODO - consider discrete markdown just for ROCM troubleshooting? | ||||
| 				slog.Warn("See https://github.com/ollama/ollama/blob/main/docs/gpu.md#overrides for HSA_OVERRIDE_GFX_VERSION usage") | ||||
| 				continue | ||||
| 			} else { | ||||
| 				slog.Info("amdgpu is supported", "gpu", gpuInfo.ID, "gpu_type", gfx) | ||||
| 			} | ||||
| 		} else { | ||||
| 			slog.Info("skipping rocm gfx compatibility check", "HSA_OVERRIDE_GFX_VERSION", gfxOverride) | ||||
| 		} | ||||
|  | ||||
| 		// Check for env var workarounds | ||||
| 		if name == "1002:687f" { // Vega RX 56 | ||||
| 			gpuInfo.EnvWorkarounds = append(gpuInfo.EnvWorkarounds, [2]string{"HSA_ENABLE_SDMA", "0"}) | ||||
| 		} | ||||
|  | ||||
| 		// The GPU has passed all the verification steps and is supported | ||||
| 		resp = append(resp, gpuInfo) | ||||
| 	} | ||||
| 	if len(resp) == 0 { | ||||
| 		err := fmt.Errorf("no compatible amdgpu devices detected") | ||||
| 		slog.Info(err.Error()) | ||||
| 		return nil, err | ||||
| 	} | ||||
| 	if err := verifyKFDDriverAccess(); err != nil { | ||||
| 		err = fmt.Errorf("amdgpu devices detected but permission problems block access: %w", err) | ||||
| 		slog.Error(err.Error()) | ||||
| 		return nil, err | ||||
| 	} | ||||
| 	return resp, nil | ||||
| } | ||||
|  | ||||
| // Quick check for AMD driver so we can skip amdgpu discovery if not present | ||||
| func AMDDetected() bool { | ||||
| 	// Some driver versions (older?) don't have a version file, so just lookup the parent dir | ||||
| 	sysfsDir := filepath.Dir(DriverVersionFile) | ||||
| 	_, err := os.Stat(sysfsDir) | ||||
| 	if errors.Is(err, os.ErrNotExist) { | ||||
| 		slog.Debug("amdgpu driver not detected " + sysfsDir) | ||||
| 		return false | ||||
| 	} else if err != nil { | ||||
| 		slog.Debug("error looking up amd driver", "path", sysfsDir, "error", err) | ||||
| 		return false | ||||
| 	} | ||||
| 	return true | ||||
| } | ||||
|  | ||||
| // Prefer to use host installed ROCm, as long as it meets our minimum requirements | ||||
| // failing that, tell the user how to download it on their own | ||||
| func AMDValidateLibDir() (string, error) { | ||||
| 	libDir, err := commonAMDValidateLibDir() | ||||
| 	if err == nil { | ||||
| 		return libDir, nil | ||||
| 	} | ||||
|  | ||||
| 	// Well known ollama installer path | ||||
| 	installedRocmDir := "/usr/share/ollama/lib/rocm" | ||||
| 	if rocmLibUsable(installedRocmDir) { | ||||
| 		return installedRocmDir, nil | ||||
| 	} | ||||
|  | ||||
| 	// If we still haven't found a usable rocm, the user will have to install it on their own | ||||
| 	slog.Warn("amdgpu detected, but no compatible rocm library found.  Either install rocm v6, or follow manual install instructions at https://github.com/ollama/ollama/blob/main/docs/linux.md#manual-install") | ||||
| 	return "", errors.New("no suitable rocm found, falling back to CPU") | ||||
| } | ||||
|  | ||||
| func AMDDriverVersion() (driverMajor, driverMinor int, err error) { | ||||
| 	_, err = os.Stat(DriverVersionFile) | ||||
| 	if err != nil { | ||||
| 		return 0, 0, fmt.Errorf("amdgpu version file missing: %s %w", DriverVersionFile, err) | ||||
| 	} | ||||
| 	fp, err := os.Open(DriverVersionFile) | ||||
| 	if err != nil { | ||||
| 		return 0, 0, err | ||||
| 	} | ||||
| 	defer fp.Close() | ||||
| 	verString, err := io.ReadAll(fp) | ||||
| 	if err != nil { | ||||
| 		return 0, 0, err | ||||
| 	} | ||||
|  | ||||
| 	pattern := `\A(\d+)\.(\d+).*` | ||||
| 	regex := regexp.MustCompile(pattern) | ||||
| 	match := regex.FindStringSubmatch(string(verString)) | ||||
| 	if len(match) < 2 { | ||||
| 		return 0, 0, fmt.Errorf("malformed version string %s", string(verString)) | ||||
| 	} | ||||
| 	driverMajor, err = strconv.Atoi(match[1]) | ||||
| 	if err != nil { | ||||
| 		return 0, 0, err | ||||
| 	} | ||||
| 	driverMinor, err = strconv.Atoi(match[2]) | ||||
| 	if err != nil { | ||||
| 		return 0, 0, err | ||||
| 	} | ||||
| 	return driverMajor, driverMinor, nil | ||||
| } | ||||
|  | ||||
| func (gpus RocmGPUInfoList) RefreshFreeMemory() error { | ||||
| 	if len(gpus) == 0 { | ||||
| 		return nil | ||||
| 	} | ||||
| 	for i := range gpus { | ||||
| 		usedMemory, err := getFreeMemory(gpus[i].usedFilepath) | ||||
| 		if err != nil { | ||||
| 			return err | ||||
| 		} | ||||
| 		slog.Debug("updating rocm free memory", "gpu", gpus[i].ID, "name", gpus[i].Name, "before", format.HumanBytes2(gpus[i].FreeMemory), "now", format.HumanBytes2(gpus[i].TotalMemory-usedMemory)) | ||||
| 		gpus[i].FreeMemory = gpus[i].TotalMemory - usedMemory | ||||
| 	} | ||||
| 	return nil | ||||
| } | ||||
|  | ||||
| func getFreeMemory(usedFile string) (uint64, error) { | ||||
| 	buf, err := os.ReadFile(usedFile) | ||||
| 	if err != nil { | ||||
| 		return 0, fmt.Errorf("failed to read sysfs node %s %w", usedFile, err) | ||||
| 	} | ||||
| 	usedMemory, err := strconv.ParseUint(strings.TrimSpace(string(buf)), 10, 64) | ||||
| 	if err != nil { | ||||
| 		slog.Debug("failed to parse sysfs node", "file", usedFile, "error", err) | ||||
| 		return 0, fmt.Errorf("failed to parse sysfs node %s %w", usedFile, err) | ||||
| 	} | ||||
| 	return usedMemory, nil | ||||
| } | ||||
|  | ||||
| func verifyKFDDriverAccess() error { | ||||
| 	// Verify we have permissions - either running as root, or we have group access to the driver | ||||
| 	fd, err := os.OpenFile("/dev/kfd", os.O_RDWR, 0o666) | ||||
| 	if err != nil { | ||||
| 		if errors.Is(err, fs.ErrPermission) { | ||||
| 			return fmt.Errorf("permissions not set up properly.  Either run ollama as root, or add you user account to the render group. %w", err) | ||||
| 		} else if errors.Is(err, fs.ErrNotExist) { | ||||
| 			// Container runtime failure? | ||||
| 			return fmt.Errorf("kfd driver not loaded.  If running in a container, remember to include '--device /dev/kfd --device /dev/dri'") | ||||
| 		} | ||||
| 		return fmt.Errorf("failed to check permission on /dev/kfd: %w", err) | ||||
| 	} | ||||
| 	fd.Close() | ||||
| 	return nil | ||||
| } | ||||
|  | ||||
| func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) { | ||||
| 	ids := []string{} | ||||
| 	for _, info := range gpuInfo { | ||||
| 		if info.Library != "rocm" { | ||||
| 			// TODO shouldn't happen if things are wired correctly... | ||||
| 			slog.Debug("rocmGetVisibleDevicesEnv skipping over non-rocm device", "library", info.Library) | ||||
| 			continue | ||||
| 		} | ||||
| 		ids = append(ids, info.ID) | ||||
| 	} | ||||
| 	// There are 3 potential env vars to use to select GPUs. | ||||
| 	// ROCR_VISIBLE_DEVICES supports UUID or numeric so is our preferred on linux | ||||
| 	// GPU_DEVICE_ORDINAL supports numeric IDs only | ||||
| 	// HIP_VISIBLE_DEVICES supports numeric IDs only | ||||
| 	return "ROCR_VISIBLE_DEVICES", strings.Join(ids, ",") | ||||
| } | ||||
| @@ -1,218 +0,0 @@ | ||||
| package discover | ||||
|  | ||||
| import ( | ||||
| 	"bytes" | ||||
| 	"errors" | ||||
| 	"fmt" | ||||
| 	"log/slog" | ||||
| 	"path/filepath" | ||||
| 	"slices" | ||||
| 	"strconv" | ||||
| 	"strings" | ||||
|  | ||||
| 	"github.com/ollama/ollama/envconfig" | ||||
| 	"github.com/ollama/ollama/format" | ||||
| ) | ||||
|  | ||||
| const ( | ||||
|  | ||||
| 	// TODO  We're lookinng for this exact name to detect iGPUs since hipGetDeviceProperties never reports integrated==true | ||||
| 	iGPUName = "AMD Radeon(TM) Graphics" | ||||
| ) | ||||
|  | ||||
| var ( | ||||
| 	// Used to validate if the given ROCm lib is usable | ||||
| 	ROCmLibGlobs          = []string{"hipblas.dll", "rocblas"}                 // This is not sufficient to discern v5 vs v6 | ||||
| 	RocmStandardLocations = []string{"C:\\Program Files\\AMD\\ROCm\\6.1\\bin"} // TODO glob? | ||||
| ) | ||||
|  | ||||
| // Only called once during bootstrap | ||||
| func AMDGetGPUInfo() ([]RocmGPUInfo, error) { | ||||
| 	resp := []RocmGPUInfo{} | ||||
| 	hl, err := NewHipLib() | ||||
| 	if err != nil { | ||||
| 		slog.Debug(err.Error()) | ||||
| 		return nil, err | ||||
| 	} | ||||
| 	defer hl.Release() | ||||
|  | ||||
| 	driverMajor, driverMinor, err := hl.AMDDriverVersion() | ||||
| 	if err != nil { | ||||
| 		// For now this is benign, but we may eventually need to fail compatibility checks | ||||
| 		slog.Debug("error looking up amd driver version", "error", err) | ||||
| 	} | ||||
|  | ||||
| 	// Note: the HIP library automatically handles subsetting to any *_VISIBLE_DEVICES the user specified | ||||
| 	count := hl.HipGetDeviceCount() | ||||
| 	if count == 0 { | ||||
| 		err := fmt.Errorf("no compatible amdgpu devices detected") | ||||
| 		slog.Info(err.Error()) | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	libDir, err := AMDValidateLibDir() | ||||
| 	if err != nil { | ||||
| 		err = fmt.Errorf("unable to verify rocm library: %w", err) | ||||
| 		slog.Warn(err.Error()) | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	var supported []string | ||||
| 	gfxOverride := envconfig.HsaOverrideGfxVersion() | ||||
| 	if gfxOverride == "" { | ||||
| 		supported, err = GetSupportedGFX(libDir) | ||||
| 		if err != nil { | ||||
| 			err = fmt.Errorf("failed to lookup supported GFX types: %w", err) | ||||
| 			slog.Warn(err.Error()) | ||||
| 			return nil, err | ||||
| 		} | ||||
| 	} else { | ||||
| 		slog.Info("skipping rocm gfx compatibility check", "HSA_OVERRIDE_GFX_VERSION", gfxOverride) | ||||
| 	} | ||||
|  | ||||
| 	slog.Debug("detected hip devices", "count", count) | ||||
| 	// TODO how to determine the underlying device ID when visible devices is causing this to subset? | ||||
| 	for i := range count { | ||||
| 		err = hl.HipSetDevice(i) | ||||
| 		if err != nil { | ||||
| 			slog.Warn("set device", "id", i, "error", err) | ||||
| 			continue | ||||
| 		} | ||||
|  | ||||
| 		props, err := hl.HipGetDeviceProperties(i) | ||||
| 		if err != nil { | ||||
| 			slog.Warn("get properties", "id", i, "error", err) | ||||
| 			continue | ||||
| 		} | ||||
| 		n := bytes.IndexByte(props.Name[:], 0) | ||||
| 		name := string(props.Name[:n]) | ||||
| 		// TODO is UUID actually populated on windows? | ||||
| 		// Can luid be used on windows for setting visible devices (and is it actually set?) | ||||
| 		n = bytes.IndexByte(props.GcnArchName[:], 0) | ||||
| 		gfx := string(props.GcnArchName[:n]) | ||||
| 		slog.Debug("hip device", "id", i, "name", name, "gfx", gfx) | ||||
| 		// slog.Info(fmt.Sprintf("[%d] Integrated: %d", i, props.iGPU)) // DOESN'T REPORT CORRECTLY!  Always 0 | ||||
| 		// TODO  Why isn't props.iGPU accurate!? | ||||
|  | ||||
| 		freeMemory, totalMemory, err := hl.HipMemGetInfo() | ||||
| 		if err != nil { | ||||
| 			slog.Warn("get mem info", "id", i, "error", err) | ||||
| 			continue | ||||
| 		} | ||||
|  | ||||
| 		gpuInfo := RocmGPUInfo{ | ||||
| 			GpuInfo: GpuInfo{ | ||||
| 				Library: "rocm", | ||||
| 				memInfo: memInfo{ | ||||
| 					TotalMemory: totalMemory, | ||||
| 					FreeMemory:  freeMemory, | ||||
| 				}, | ||||
| 				// Free memory reporting on Windows is not reliable until we bump to ROCm v6.2 | ||||
| 				UnreliableFreeMemory: true, | ||||
|  | ||||
| 				ID:             strconv.Itoa(i), // TODO this is probably wrong if we specify visible devices | ||||
| 				DependencyPath: []string{libDir}, | ||||
| 				MinimumMemory:  rocmMinimumMemory, | ||||
| 				Name:           name, | ||||
| 				Compute:        gfx, | ||||
| 				DriverMajor:    driverMajor, | ||||
| 				DriverMinor:    driverMinor, | ||||
| 			}, | ||||
| 			index: i, | ||||
| 		} | ||||
|  | ||||
| 		// iGPU detection, remove this check once we can support an iGPU variant of the rocm library | ||||
| 		if strings.EqualFold(name, iGPUName) || totalMemory < IGPUMemLimit { | ||||
| 			reason := "unsupported Radeon iGPU detected skipping" | ||||
| 			slog.Info(reason, "id", gpuInfo.ID, "total", format.HumanBytes2(totalMemory)) | ||||
| 			unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{ | ||||
| 				GpuInfo: gpuInfo.GpuInfo, | ||||
| 				Reason:  reason, | ||||
| 			}) | ||||
| 			continue | ||||
| 		} | ||||
|  | ||||
| 		// Strip off Target Features when comparing | ||||
| 		if !slices.Contains[[]string, string](supported, strings.Split(gfx, ":")[0]) { | ||||
| 			reason := fmt.Sprintf("amdgpu is not supported (supported types:%s)", supported) | ||||
| 			slog.Warn(reason, "gpu_type", gfx, "gpu", gpuInfo.ID, "library", libDir) | ||||
| 			unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{ | ||||
| 				GpuInfo: gpuInfo.GpuInfo, | ||||
| 				Reason:  reason, | ||||
| 			}) | ||||
| 			// HSA_OVERRIDE_GFX_VERSION not supported on windows | ||||
| 			continue | ||||
| 		} else { | ||||
| 			slog.Debug("amdgpu is supported", "gpu", i, "gpu_type", gfx) | ||||
| 		} | ||||
|  | ||||
| 		slog.Debug("amdgpu memory", "gpu", i, "total", format.HumanBytes2(totalMemory)) | ||||
| 		slog.Debug("amdgpu memory", "gpu", i, "available", format.HumanBytes2(freeMemory)) | ||||
|  | ||||
| 		resp = append(resp, gpuInfo) | ||||
| 	} | ||||
|  | ||||
| 	return resp, nil | ||||
| } | ||||
|  | ||||
| func AMDValidateLibDir() (string, error) { | ||||
| 	libDir, err := commonAMDValidateLibDir() | ||||
| 	if err == nil { | ||||
| 		return libDir, nil | ||||
| 	} | ||||
|  | ||||
| 	// Installer payload (if we're running from some other location) | ||||
| 	rocmTargetDir := filepath.Join(LibOllamaPath, "rocm") | ||||
| 	if rocmLibUsable(rocmTargetDir) { | ||||
| 		slog.Debug("detected ollama installed ROCm at " + rocmTargetDir) | ||||
| 		return rocmTargetDir, nil | ||||
| 	} | ||||
|  | ||||
| 	// Should not happen on windows since we include it in the installer, but stand-alone binary might hit this | ||||
| 	slog.Warn("amdgpu detected, but no compatible rocm library found.  Please install ROCm") | ||||
| 	return "", errors.New("no suitable rocm found, falling back to CPU") | ||||
| } | ||||
|  | ||||
| func (gpus RocmGPUInfoList) RefreshFreeMemory() error { | ||||
| 	if len(gpus) == 0 { | ||||
| 		return nil | ||||
| 	} | ||||
| 	hl, err := NewHipLib() | ||||
| 	if err != nil { | ||||
| 		slog.Debug(err.Error()) | ||||
| 		return err | ||||
| 	} | ||||
| 	defer hl.Release() | ||||
|  | ||||
| 	for i := range gpus { | ||||
| 		err := hl.HipSetDevice(gpus[i].index) | ||||
| 		if err != nil { | ||||
| 			return err | ||||
| 		} | ||||
| 		freeMemory, _, err := hl.HipMemGetInfo() | ||||
| 		if err != nil { | ||||
| 			slog.Warn("get mem info", "id", i, "error", err) | ||||
| 			continue | ||||
| 		} | ||||
| 		slog.Debug("updating rocm free memory", "gpu", gpus[i].ID, "name", gpus[i].Name, "before", format.HumanBytes2(gpus[i].FreeMemory), "now", format.HumanBytes2(freeMemory)) | ||||
| 		gpus[i].FreeMemory = freeMemory | ||||
| 	} | ||||
| 	return nil | ||||
| } | ||||
|  | ||||
| func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) { | ||||
| 	ids := []string{} | ||||
| 	for _, info := range gpuInfo { | ||||
| 		if info.Library != "rocm" { | ||||
| 			// TODO shouldn't happen if things are wired correctly... | ||||
| 			slog.Debug("rocmGetVisibleDevicesEnv skipping over non-rocm device", "library", info.Library) | ||||
| 			continue | ||||
| 		} | ||||
| 		ids = append(ids, info.ID) | ||||
| 	} | ||||
| 	// There are 3 potential env vars to use to select GPUs. | ||||
| 	// ROCR_VISIBLE_DEVICES supports UUID or numeric but does not work on Windows | ||||
| 	// HIP_VISIBLE_DEVICES supports numeric IDs only | ||||
| 	// GPU_DEVICE_ORDINAL supports numeric IDs only | ||||
| 	return "HIP_VISIBLE_DEVICES", strings.Join(ids, ",") | ||||
| } | ||||
| @@ -1,24 +0,0 @@ | ||||
| package discover | ||||
|  | ||||
| import ( | ||||
| 	"os" | ||||
| 	"path/filepath" | ||||
| 	"runtime" | ||||
| 	"strings" | ||||
| ) | ||||
|  | ||||
| func IsNUMA() bool { | ||||
| 	if runtime.GOOS != "linux" { | ||||
| 		// numa support in llama.cpp is linux only | ||||
| 		return false | ||||
| 	} | ||||
| 	ids := map[string]any{} | ||||
| 	packageIds, _ := filepath.Glob("/sys/devices/system/cpu/cpu*/topology/physical_package_id") | ||||
| 	for _, packageId := range packageIds { | ||||
| 		id, err := os.ReadFile(packageId) | ||||
| 		if err == nil { | ||||
| 			ids[strings.TrimSpace(string(id))] = struct{}{} | ||||
| 		} | ||||
| 	} | ||||
| 	return len(ids) > 1 | ||||
| } | ||||
| @@ -1,65 +0,0 @@ | ||||
| //go:build linux || windows | ||||
|  | ||||
| package discover | ||||
|  | ||||
| import ( | ||||
| 	"log/slog" | ||||
| 	"os" | ||||
| 	"regexp" | ||||
| 	"runtime" | ||||
| 	"strconv" | ||||
| 	"strings" | ||||
| ) | ||||
|  | ||||
| // Jetson devices have JETSON_JETPACK="x.y.z" factory set to the Jetpack version installed. | ||||
| // Included to drive logic for reducing Ollama-allocated overhead on L4T/Jetson devices. | ||||
| var CudaTegra string = os.Getenv("JETSON_JETPACK") | ||||
|  | ||||
| func cudaGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) { | ||||
| 	ids := []string{} | ||||
| 	for _, info := range gpuInfo { | ||||
| 		if info.Library != "cuda" { | ||||
| 			// TODO shouldn't happen if things are wired correctly... | ||||
| 			slog.Debug("cudaGetVisibleDevicesEnv skipping over non-cuda device", "library", info.Library) | ||||
| 			continue | ||||
| 		} | ||||
| 		ids = append(ids, info.ID) | ||||
| 	} | ||||
| 	return "CUDA_VISIBLE_DEVICES", strings.Join(ids, ",") | ||||
| } | ||||
|  | ||||
| func cudaVariant(gpuInfo CudaGPUInfo) string { | ||||
| 	if runtime.GOARCH == "arm64" && runtime.GOOS == "linux" { | ||||
| 		if CudaTegra != "" { | ||||
| 			ver := strings.Split(CudaTegra, ".") | ||||
| 			if len(ver) > 0 { | ||||
| 				return "jetpack" + ver[0] | ||||
| 			} | ||||
| 		} else if data, err := os.ReadFile("/etc/nv_tegra_release"); err == nil { | ||||
| 			r := regexp.MustCompile(` R(\d+) `) | ||||
| 			m := r.FindSubmatch(data) | ||||
| 			if len(m) != 2 { | ||||
| 				slog.Info("Unexpected format for /etc/nv_tegra_release.  Set JETSON_JETPACK to select version") | ||||
| 			} else { | ||||
| 				if l4t, err := strconv.Atoi(string(m[1])); err == nil { | ||||
| 					// Note: mapping from L4t -> JP is inconsistent (can't just subtract 30) | ||||
| 					// https://developer.nvidia.com/embedded/jetpack-archive | ||||
| 					switch l4t { | ||||
| 					case 35: | ||||
| 						return "jetpack5" | ||||
| 					case 36: | ||||
| 						return "jetpack6" | ||||
| 					default: | ||||
| 						slog.Info("unsupported L4T version", "nv_tegra_release", string(data)) | ||||
| 					} | ||||
| 				} | ||||
| 			} | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	// driver 12.0 has problems with the cuda v12 library, so run v11 on those older drivers | ||||
| 	if gpuInfo.DriverMajor < 12 || (gpuInfo.DriverMajor == 12 && gpuInfo.DriverMinor == 0) { | ||||
| 		return "v11" | ||||
| 	} | ||||
| 	return "v12" | ||||
| } | ||||
							
								
								
									
										718
									
								
								discover/gpu.go
									
									
									
									
									
								
							
							
						
						
									
										718
									
								
								discover/gpu.go
									
									
									
									
									
								
							| @@ -1,718 +0,0 @@ | ||||
| //go:build linux || windows | ||||
|  | ||||
| package discover | ||||
|  | ||||
| /* | ||||
| #cgo linux LDFLAGS: -lrt -lpthread -ldl -lstdc++ -lm | ||||
| #cgo windows LDFLAGS: -lpthread | ||||
|  | ||||
| #include "gpu_info.h" | ||||
| */ | ||||
| import "C" | ||||
|  | ||||
| import ( | ||||
| 	"fmt" | ||||
| 	"log/slog" | ||||
| 	"os" | ||||
| 	"path/filepath" | ||||
| 	"runtime" | ||||
| 	"strconv" | ||||
| 	"strings" | ||||
| 	"sync" | ||||
| 	"unsafe" | ||||
|  | ||||
| 	"github.com/ollama/ollama/envconfig" | ||||
| 	"github.com/ollama/ollama/format" | ||||
| ) | ||||
|  | ||||
| type cudaHandles struct { | ||||
| 	deviceCount int | ||||
| 	cudart      *C.cudart_handle_t | ||||
| 	nvcuda      *C.nvcuda_handle_t | ||||
| 	nvml        *C.nvml_handle_t | ||||
| } | ||||
|  | ||||
| type oneapiHandles struct { | ||||
| 	oneapi      *C.oneapi_handle_t | ||||
| 	deviceCount int | ||||
| } | ||||
|  | ||||
| const ( | ||||
| 	cudaMinimumMemory = 457 * format.MebiByte | ||||
| 	rocmMinimumMemory = 457 * format.MebiByte | ||||
| 	// TODO OneAPI minimum memory | ||||
| ) | ||||
|  | ||||
| var ( | ||||
| 	gpuMutex      sync.Mutex | ||||
| 	bootstrapped  bool | ||||
| 	cpus          []CPUInfo | ||||
| 	cudaGPUs      []CudaGPUInfo | ||||
| 	nvcudaLibPath string | ||||
| 	cudartLibPath string | ||||
| 	oneapiLibPath string | ||||
| 	nvmlLibPath   string | ||||
| 	rocmGPUs      []RocmGPUInfo | ||||
| 	oneapiGPUs    []OneapiGPUInfo | ||||
|  | ||||
| 	// If any discovered GPUs are incompatible, report why | ||||
| 	unsupportedGPUs []UnsupportedGPUInfo | ||||
|  | ||||
| 	// Keep track of errors during bootstrapping so that if GPUs are missing | ||||
| 	// they expected to be present this may explain why | ||||
| 	bootstrapErrors []error | ||||
| ) | ||||
|  | ||||
| // With our current CUDA compile flags, older than 5.0 will not work properly | ||||
| // (string values used to allow ldflags overrides at build time) | ||||
| var ( | ||||
| 	CudaComputeMajorMin = "5" | ||||
| 	CudaComputeMinorMin = "0" | ||||
| ) | ||||
|  | ||||
| var RocmComputeMajorMin = "9" | ||||
|  | ||||
| // TODO find a better way to detect iGPU instead of minimum memory | ||||
| const IGPUMemLimit = 1 * format.GibiByte // 512G is what they typically report, so anything less than 1G must be iGPU | ||||
|  | ||||
| // Note: gpuMutex must already be held | ||||
| func initCudaHandles() *cudaHandles { | ||||
| 	// TODO - if the ollama build is CPU only, don't do these checks as they're irrelevant and confusing | ||||
|  | ||||
| 	cHandles := &cudaHandles{} | ||||
| 	// Short Circuit if we already know which library to use | ||||
| 	// ignore bootstrap errors in this case since we already recorded them | ||||
| 	if nvmlLibPath != "" { | ||||
| 		cHandles.nvml, _, _ = loadNVMLMgmt([]string{nvmlLibPath}) | ||||
| 		return cHandles | ||||
| 	} | ||||
| 	if nvcudaLibPath != "" { | ||||
| 		cHandles.deviceCount, cHandles.nvcuda, _, _ = loadNVCUDAMgmt([]string{nvcudaLibPath}) | ||||
| 		return cHandles | ||||
| 	} | ||||
| 	if cudartLibPath != "" { | ||||
| 		cHandles.deviceCount, cHandles.cudart, _, _ = loadCUDARTMgmt([]string{cudartLibPath}) | ||||
| 		return cHandles | ||||
| 	} | ||||
|  | ||||
| 	slog.Debug("searching for GPU discovery libraries for NVIDIA") | ||||
| 	var cudartMgmtPatterns []string | ||||
|  | ||||
| 	// Aligned with driver, we can't carry as payloads | ||||
| 	nvcudaMgmtPatterns := NvcudaGlobs | ||||
| 	cudartMgmtPatterns = append(cudartMgmtPatterns, filepath.Join(LibOllamaPath, "cuda_v*", CudartMgmtName)) | ||||
| 	cudartMgmtPatterns = append(cudartMgmtPatterns, CudartGlobs...) | ||||
|  | ||||
| 	if len(NvmlGlobs) > 0 { | ||||
| 		nvmlLibPaths := FindGPULibs(NvmlMgmtName, NvmlGlobs) | ||||
| 		if len(nvmlLibPaths) > 0 { | ||||
| 			nvml, libPath, err := loadNVMLMgmt(nvmlLibPaths) | ||||
| 			if nvml != nil { | ||||
| 				slog.Debug("nvidia-ml loaded", "library", libPath) | ||||
| 				cHandles.nvml = nvml | ||||
| 				nvmlLibPath = libPath | ||||
| 			} | ||||
| 			if err != nil { | ||||
| 				bootstrapErrors = append(bootstrapErrors, err) | ||||
| 			} | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	nvcudaLibPaths := FindGPULibs(NvcudaMgmtName, nvcudaMgmtPatterns) | ||||
| 	if len(nvcudaLibPaths) > 0 { | ||||
| 		deviceCount, nvcuda, libPath, err := loadNVCUDAMgmt(nvcudaLibPaths) | ||||
| 		if nvcuda != nil { | ||||
| 			slog.Debug("detected GPUs", "count", deviceCount, "library", libPath) | ||||
| 			cHandles.nvcuda = nvcuda | ||||
| 			cHandles.deviceCount = deviceCount | ||||
| 			nvcudaLibPath = libPath | ||||
| 			return cHandles | ||||
| 		} | ||||
| 		if err != nil { | ||||
| 			bootstrapErrors = append(bootstrapErrors, err) | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	cudartLibPaths := FindGPULibs(CudartMgmtName, cudartMgmtPatterns) | ||||
| 	if len(cudartLibPaths) > 0 { | ||||
| 		deviceCount, cudart, libPath, err := loadCUDARTMgmt(cudartLibPaths) | ||||
| 		if cudart != nil { | ||||
| 			slog.Debug("detected GPUs", "library", libPath, "count", deviceCount) | ||||
| 			cHandles.cudart = cudart | ||||
| 			cHandles.deviceCount = deviceCount | ||||
| 			cudartLibPath = libPath | ||||
| 			return cHandles | ||||
| 		} | ||||
| 		if err != nil { | ||||
| 			bootstrapErrors = append(bootstrapErrors, err) | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	return cHandles | ||||
| } | ||||
|  | ||||
| // Note: gpuMutex must already be held | ||||
| func initOneAPIHandles() *oneapiHandles { | ||||
| 	oHandles := &oneapiHandles{} | ||||
|  | ||||
| 	// Short Circuit if we already know which library to use | ||||
| 	// ignore bootstrap errors in this case since we already recorded them | ||||
| 	if oneapiLibPath != "" { | ||||
| 		oHandles.deviceCount, oHandles.oneapi, _, _ = loadOneapiMgmt([]string{oneapiLibPath}) | ||||
| 		return oHandles | ||||
| 	} | ||||
|  | ||||
| 	oneapiLibPaths := FindGPULibs(OneapiMgmtName, OneapiGlobs) | ||||
| 	if len(oneapiLibPaths) > 0 { | ||||
| 		var err error | ||||
| 		oHandles.deviceCount, oHandles.oneapi, oneapiLibPath, err = loadOneapiMgmt(oneapiLibPaths) | ||||
| 		if err != nil { | ||||
| 			bootstrapErrors = append(bootstrapErrors, err) | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	return oHandles | ||||
| } | ||||
|  | ||||
| func GetCPUInfo() GpuInfoList { | ||||
| 	gpuMutex.Lock() | ||||
| 	if !bootstrapped { | ||||
| 		gpuMutex.Unlock() | ||||
| 		GetGPUInfo() | ||||
| 	} else { | ||||
| 		gpuMutex.Unlock() | ||||
| 	} | ||||
| 	return GpuInfoList{cpus[0].GpuInfo} | ||||
| } | ||||
|  | ||||
| func GetGPUInfo() GpuInfoList { | ||||
| 	// TODO - consider exploring lspci (and equivalent on windows) to check for | ||||
| 	// GPUs so we can report warnings if we see Nvidia/AMD but fail to load the libraries | ||||
| 	gpuMutex.Lock() | ||||
| 	defer gpuMutex.Unlock() | ||||
| 	needRefresh := true | ||||
| 	var cHandles *cudaHandles | ||||
| 	var oHandles *oneapiHandles | ||||
| 	defer func() { | ||||
| 		if cHandles != nil { | ||||
| 			if cHandles.cudart != nil { | ||||
| 				C.cudart_release(*cHandles.cudart) | ||||
| 			} | ||||
| 			if cHandles.nvcuda != nil { | ||||
| 				C.nvcuda_release(*cHandles.nvcuda) | ||||
| 			} | ||||
| 			if cHandles.nvml != nil { | ||||
| 				C.nvml_release(*cHandles.nvml) | ||||
| 			} | ||||
| 		} | ||||
| 		if oHandles != nil { | ||||
| 			if oHandles.oneapi != nil { | ||||
| 				// TODO - is this needed? | ||||
| 				C.oneapi_release(*oHandles.oneapi) | ||||
| 			} | ||||
| 		} | ||||
| 	}() | ||||
|  | ||||
| 	if !bootstrapped { | ||||
| 		slog.Info("looking for compatible GPUs") | ||||
| 		cudaComputeMajorMin, err := strconv.Atoi(CudaComputeMajorMin) | ||||
| 		if err != nil { | ||||
| 			slog.Error("invalid CudaComputeMajorMin setting", "value", CudaComputeMajorMin, "error", err) | ||||
| 		} | ||||
| 		cudaComputeMinorMin, err := strconv.Atoi(CudaComputeMinorMin) | ||||
| 		if err != nil { | ||||
| 			slog.Error("invalid CudaComputeMinorMin setting", "value", CudaComputeMinorMin, "error", err) | ||||
| 		} | ||||
| 		bootstrapErrors = []error{} | ||||
| 		needRefresh = false | ||||
| 		var memInfo C.mem_info_t | ||||
|  | ||||
| 		mem, err := GetCPUMem() | ||||
| 		if err != nil { | ||||
| 			slog.Warn("error looking up system memory", "error", err) | ||||
| 		} | ||||
|  | ||||
| 		details, err := GetCPUDetails() | ||||
| 		if err != nil { | ||||
| 			slog.Warn("failed to lookup CPU details", "error", err) | ||||
| 		} | ||||
| 		cpus = []CPUInfo{ | ||||
| 			{ | ||||
| 				GpuInfo: GpuInfo{ | ||||
| 					memInfo: mem, | ||||
| 					Library: "cpu", | ||||
| 					ID:      "0", | ||||
| 				}, | ||||
| 				CPUs: details, | ||||
| 			}, | ||||
| 		} | ||||
|  | ||||
| 		// Load ALL libraries | ||||
| 		cHandles = initCudaHandles() | ||||
|  | ||||
| 		// NVIDIA | ||||
| 		for i := range cHandles.deviceCount { | ||||
| 			if cHandles.cudart != nil || cHandles.nvcuda != nil { | ||||
| 				gpuInfo := CudaGPUInfo{ | ||||
| 					GpuInfo: GpuInfo{ | ||||
| 						Library: "cuda", | ||||
| 					}, | ||||
| 					index: i, | ||||
| 				} | ||||
| 				var driverMajor int | ||||
| 				var driverMinor int | ||||
| 				if cHandles.cudart != nil { | ||||
| 					C.cudart_bootstrap(*cHandles.cudart, C.int(i), &memInfo) | ||||
| 				} else { | ||||
| 					C.nvcuda_bootstrap(*cHandles.nvcuda, C.int(i), &memInfo) | ||||
| 					driverMajor = int(cHandles.nvcuda.driver_major) | ||||
| 					driverMinor = int(cHandles.nvcuda.driver_minor) | ||||
| 				} | ||||
| 				if memInfo.err != nil { | ||||
| 					slog.Info("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err)) | ||||
| 					C.free(unsafe.Pointer(memInfo.err)) | ||||
| 					continue | ||||
| 				} | ||||
| 				gpuInfo.TotalMemory = uint64(memInfo.total) | ||||
| 				gpuInfo.FreeMemory = uint64(memInfo.free) | ||||
| 				gpuInfo.ID = C.GoString(&memInfo.gpu_id[0]) | ||||
| 				gpuInfo.Compute = fmt.Sprintf("%d.%d", memInfo.major, memInfo.minor) | ||||
| 				gpuInfo.computeMajor = int(memInfo.major) | ||||
| 				gpuInfo.computeMinor = int(memInfo.minor) | ||||
| 				gpuInfo.MinimumMemory = cudaMinimumMemory | ||||
| 				gpuInfo.DriverMajor = driverMajor | ||||
| 				gpuInfo.DriverMinor = driverMinor | ||||
| 				variant := cudaVariant(gpuInfo) | ||||
|  | ||||
| 				// Start with our bundled libraries | ||||
| 				if variant != "" { | ||||
| 					variantPath := filepath.Join(LibOllamaPath, "cuda_"+variant) | ||||
| 					if _, err := os.Stat(variantPath); err == nil { | ||||
| 						// Put the variant directory first in the search path to avoid runtime linking to the wrong library | ||||
| 						gpuInfo.DependencyPath = append([]string{variantPath}, gpuInfo.DependencyPath...) | ||||
| 					} | ||||
| 				} | ||||
| 				gpuInfo.Name = C.GoString(&memInfo.gpu_name[0]) | ||||
| 				gpuInfo.Variant = variant | ||||
|  | ||||
| 				if int(memInfo.major) < cudaComputeMajorMin || (int(memInfo.major) == cudaComputeMajorMin && int(memInfo.minor) < cudaComputeMinorMin) { | ||||
| 					unsupportedGPUs = append(unsupportedGPUs, | ||||
| 						UnsupportedGPUInfo{ | ||||
| 							GpuInfo: gpuInfo.GpuInfo, | ||||
| 						}) | ||||
| 					slog.Info(fmt.Sprintf("[%d] CUDA GPU is too old. Compute Capability detected: %d.%d", i, memInfo.major, memInfo.minor)) | ||||
| 					continue | ||||
| 				} | ||||
|  | ||||
| 				// query the management library as well so we can record any skew between the two | ||||
| 				// which represents overhead on the GPU we must set aside on subsequent updates | ||||
| 				if cHandles.nvml != nil { | ||||
| 					uuid := C.CString(gpuInfo.ID) | ||||
| 					defer C.free(unsafe.Pointer(uuid)) | ||||
| 					C.nvml_get_free(*cHandles.nvml, uuid, &memInfo.free, &memInfo.total, &memInfo.used) | ||||
| 					if memInfo.err != nil { | ||||
| 						slog.Warn("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err)) | ||||
| 						C.free(unsafe.Pointer(memInfo.err)) | ||||
| 					} else { | ||||
| 						if memInfo.free != 0 && uint64(memInfo.free) > gpuInfo.FreeMemory { | ||||
| 							gpuInfo.OSOverhead = uint64(memInfo.free) - gpuInfo.FreeMemory | ||||
| 							slog.Info("detected OS VRAM overhead", | ||||
| 								"id", gpuInfo.ID, | ||||
| 								"library", gpuInfo.Library, | ||||
| 								"compute", gpuInfo.Compute, | ||||
| 								"driver", fmt.Sprintf("%d.%d", gpuInfo.DriverMajor, gpuInfo.DriverMinor), | ||||
| 								"name", gpuInfo.Name, | ||||
| 								"overhead", format.HumanBytes2(gpuInfo.OSOverhead), | ||||
| 							) | ||||
| 						} | ||||
| 					} | ||||
| 				} | ||||
|  | ||||
| 				// TODO potentially sort on our own algorithm instead of what the underlying GPU library does... | ||||
| 				cudaGPUs = append(cudaGPUs, gpuInfo) | ||||
| 			} | ||||
| 		} | ||||
|  | ||||
| 		// Intel | ||||
| 		if envconfig.IntelGPU() { | ||||
| 			oHandles = initOneAPIHandles() | ||||
| 			if oHandles != nil && oHandles.oneapi != nil { | ||||
| 				for d := range oHandles.oneapi.num_drivers { | ||||
| 					if oHandles.oneapi == nil { | ||||
| 						// shouldn't happen | ||||
| 						slog.Warn("nil oneapi handle with driver count", "count", int(oHandles.oneapi.num_drivers)) | ||||
| 						continue | ||||
| 					} | ||||
| 					devCount := C.oneapi_get_device_count(*oHandles.oneapi, C.int(d)) | ||||
| 					for i := range devCount { | ||||
| 						gpuInfo := OneapiGPUInfo{ | ||||
| 							GpuInfo: GpuInfo{ | ||||
| 								Library: "oneapi", | ||||
| 							}, | ||||
| 							driverIndex: int(d), | ||||
| 							gpuIndex:    int(i), | ||||
| 						} | ||||
| 						// TODO - split bootstrapping from updating free memory | ||||
| 						C.oneapi_check_vram(*oHandles.oneapi, C.int(d), i, &memInfo) | ||||
| 						// TODO - convert this to MinimumMemory based on testing... | ||||
| 						var totalFreeMem float64 = float64(memInfo.free) * 0.95 // work-around: leave some reserve vram for mkl lib used in ggml-sycl backend. | ||||
| 						memInfo.free = C.uint64_t(totalFreeMem) | ||||
| 						gpuInfo.TotalMemory = uint64(memInfo.total) | ||||
| 						gpuInfo.FreeMemory = uint64(memInfo.free) | ||||
| 						gpuInfo.ID = C.GoString(&memInfo.gpu_id[0]) | ||||
| 						gpuInfo.Name = C.GoString(&memInfo.gpu_name[0]) | ||||
| 						gpuInfo.DependencyPath = []string{LibOllamaPath} | ||||
| 						oneapiGPUs = append(oneapiGPUs, gpuInfo) | ||||
| 					} | ||||
| 				} | ||||
| 			} | ||||
| 		} | ||||
|  | ||||
| 		rocmGPUs, err = AMDGetGPUInfo() | ||||
| 		if err != nil { | ||||
| 			bootstrapErrors = append(bootstrapErrors, err) | ||||
| 		} | ||||
| 		bootstrapped = true | ||||
| 		if len(cudaGPUs) == 0 && len(rocmGPUs) == 0 && len(oneapiGPUs) == 0 { | ||||
| 			slog.Info("no compatible GPUs were discovered") | ||||
| 		} | ||||
|  | ||||
| 		// TODO verify we have runners for the discovered GPUs, filter out any that aren't supported with good error messages | ||||
| 	} | ||||
|  | ||||
| 	// For detected GPUs, load library if not loaded | ||||
|  | ||||
| 	// Refresh free memory usage | ||||
| 	if needRefresh { | ||||
| 		mem, err := GetCPUMem() | ||||
| 		if err != nil { | ||||
| 			slog.Warn("error looking up system memory", "error", err) | ||||
| 		} else { | ||||
| 			slog.Debug("updating system memory data", | ||||
| 				slog.Group( | ||||
| 					"before", | ||||
| 					"total", format.HumanBytes2(cpus[0].TotalMemory), | ||||
| 					"free", format.HumanBytes2(cpus[0].FreeMemory), | ||||
| 					"free_swap", format.HumanBytes2(cpus[0].FreeSwap), | ||||
| 				), | ||||
| 				slog.Group( | ||||
| 					"now", | ||||
| 					"total", format.HumanBytes2(mem.TotalMemory), | ||||
| 					"free", format.HumanBytes2(mem.FreeMemory), | ||||
| 					"free_swap", format.HumanBytes2(mem.FreeSwap), | ||||
| 				), | ||||
| 			) | ||||
| 			cpus[0].FreeMemory = mem.FreeMemory | ||||
| 			cpus[0].FreeSwap = mem.FreeSwap | ||||
| 		} | ||||
|  | ||||
| 		var memInfo C.mem_info_t | ||||
| 		if cHandles == nil && len(cudaGPUs) > 0 { | ||||
| 			cHandles = initCudaHandles() | ||||
| 		} | ||||
| 		for i, gpu := range cudaGPUs { | ||||
| 			if cHandles.nvml != nil { | ||||
| 				uuid := C.CString(gpu.ID) | ||||
| 				defer C.free(unsafe.Pointer(uuid)) | ||||
| 				C.nvml_get_free(*cHandles.nvml, uuid, &memInfo.free, &memInfo.total, &memInfo.used) | ||||
| 			} else if cHandles.cudart != nil { | ||||
| 				C.cudart_bootstrap(*cHandles.cudart, C.int(gpu.index), &memInfo) | ||||
| 			} else if cHandles.nvcuda != nil { | ||||
| 				C.nvcuda_get_free(*cHandles.nvcuda, C.int(gpu.index), &memInfo.free, &memInfo.total) | ||||
| 				memInfo.used = memInfo.total - memInfo.free | ||||
| 			} else { | ||||
| 				// shouldn't happen | ||||
| 				slog.Warn("no valid cuda library loaded to refresh vram usage") | ||||
| 				break | ||||
| 			} | ||||
| 			if memInfo.err != nil { | ||||
| 				slog.Warn("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err)) | ||||
| 				C.free(unsafe.Pointer(memInfo.err)) | ||||
| 				continue | ||||
| 			} | ||||
| 			if memInfo.free == 0 { | ||||
| 				slog.Warn("error looking up nvidia GPU memory") | ||||
| 				continue | ||||
| 			} | ||||
| 			if cHandles.nvml != nil && gpu.OSOverhead > 0 { | ||||
| 				// When using the management library update based on recorded overhead | ||||
| 				memInfo.free -= C.uint64_t(gpu.OSOverhead) | ||||
| 			} | ||||
| 			slog.Debug("updating cuda memory data", | ||||
| 				"gpu", gpu.ID, | ||||
| 				"name", gpu.Name, | ||||
| 				"overhead", format.HumanBytes2(gpu.OSOverhead), | ||||
| 				slog.Group( | ||||
| 					"before", | ||||
| 					"total", format.HumanBytes2(gpu.TotalMemory), | ||||
| 					"free", format.HumanBytes2(gpu.FreeMemory), | ||||
| 				), | ||||
| 				slog.Group( | ||||
| 					"now", | ||||
| 					"total", format.HumanBytes2(uint64(memInfo.total)), | ||||
| 					"free", format.HumanBytes2(uint64(memInfo.free)), | ||||
| 					"used", format.HumanBytes2(uint64(memInfo.used)), | ||||
| 				), | ||||
| 			) | ||||
| 			cudaGPUs[i].FreeMemory = uint64(memInfo.free) | ||||
| 		} | ||||
|  | ||||
| 		if oHandles == nil && len(oneapiGPUs) > 0 { | ||||
| 			oHandles = initOneAPIHandles() | ||||
| 		} | ||||
| 		for i, gpu := range oneapiGPUs { | ||||
| 			if oHandles.oneapi == nil { | ||||
| 				// shouldn't happen | ||||
| 				slog.Warn("nil oneapi handle with device count", "count", oHandles.deviceCount) | ||||
| 				continue | ||||
| 			} | ||||
| 			C.oneapi_check_vram(*oHandles.oneapi, C.int(gpu.driverIndex), C.int(gpu.gpuIndex), &memInfo) | ||||
| 			// TODO - convert this to MinimumMemory based on testing... | ||||
| 			var totalFreeMem float64 = float64(memInfo.free) * 0.95 // work-around: leave some reserve vram for mkl lib used in ggml-sycl backend. | ||||
| 			memInfo.free = C.uint64_t(totalFreeMem) | ||||
| 			oneapiGPUs[i].FreeMemory = uint64(memInfo.free) | ||||
| 		} | ||||
|  | ||||
| 		err = RocmGPUInfoList(rocmGPUs).RefreshFreeMemory() | ||||
| 		if err != nil { | ||||
| 			slog.Debug("problem refreshing ROCm free memory", "error", err) | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	resp := []GpuInfo{} | ||||
| 	for _, gpu := range cudaGPUs { | ||||
| 		resp = append(resp, gpu.GpuInfo) | ||||
| 	} | ||||
| 	for _, gpu := range rocmGPUs { | ||||
| 		resp = append(resp, gpu.GpuInfo) | ||||
| 	} | ||||
| 	for _, gpu := range oneapiGPUs { | ||||
| 		resp = append(resp, gpu.GpuInfo) | ||||
| 	} | ||||
| 	if len(resp) == 0 { | ||||
| 		resp = append(resp, cpus[0].GpuInfo) | ||||
| 	} | ||||
| 	return resp | ||||
| } | ||||
|  | ||||
| func FindGPULibs(baseLibName string, defaultPatterns []string) []string { | ||||
| 	// Multiple GPU libraries may exist, and some may not work, so keep trying until we exhaust them | ||||
| 	gpuLibPaths := []string{} | ||||
| 	slog.Debug("Searching for GPU library", "name", baseLibName) | ||||
|  | ||||
| 	// search our bundled libraries first | ||||
| 	patterns := []string{filepath.Join(LibOllamaPath, baseLibName)} | ||||
|  | ||||
| 	var ldPaths []string | ||||
| 	switch runtime.GOOS { | ||||
| 	case "windows": | ||||
| 		ldPaths = strings.Split(os.Getenv("PATH"), string(os.PathListSeparator)) | ||||
| 	case "linux": | ||||
| 		ldPaths = strings.Split(os.Getenv("LD_LIBRARY_PATH"), string(os.PathListSeparator)) | ||||
| 	} | ||||
|  | ||||
| 	// then search the system's LD_LIBRARY_PATH | ||||
| 	for _, p := range ldPaths { | ||||
| 		p, err := filepath.Abs(p) | ||||
| 		if err != nil { | ||||
| 			continue | ||||
| 		} | ||||
| 		patterns = append(patterns, filepath.Join(p, baseLibName)) | ||||
| 	} | ||||
|  | ||||
| 	// finally, search the default patterns provided by the caller | ||||
| 	patterns = append(patterns, defaultPatterns...) | ||||
| 	slog.Debug("gpu library search", "globs", patterns) | ||||
| 	for _, pattern := range patterns { | ||||
| 		// Nvidia PhysX known to return bogus results | ||||
| 		if strings.Contains(pattern, "PhysX") { | ||||
| 			slog.Debug("skipping PhysX cuda library path", "path", pattern) | ||||
| 			continue | ||||
| 		} | ||||
| 		// Ignore glob discovery errors | ||||
| 		matches, _ := filepath.Glob(pattern) | ||||
| 		for _, match := range matches { | ||||
| 			// Resolve any links so we don't try the same lib multiple times | ||||
| 			// and weed out any dups across globs | ||||
| 			libPath := match | ||||
| 			tmp := match | ||||
| 			var err error | ||||
| 			for ; err == nil; tmp, err = os.Readlink(libPath) { | ||||
| 				if !filepath.IsAbs(tmp) { | ||||
| 					tmp = filepath.Join(filepath.Dir(libPath), tmp) | ||||
| 				} | ||||
| 				libPath = tmp | ||||
| 			} | ||||
| 			new := true | ||||
| 			for _, cmp := range gpuLibPaths { | ||||
| 				if cmp == libPath { | ||||
| 					new = false | ||||
| 					break | ||||
| 				} | ||||
| 			} | ||||
| 			if new { | ||||
| 				gpuLibPaths = append(gpuLibPaths, libPath) | ||||
| 			} | ||||
| 		} | ||||
| 	} | ||||
| 	slog.Debug("discovered GPU libraries", "paths", gpuLibPaths) | ||||
| 	return gpuLibPaths | ||||
| } | ||||
|  | ||||
| // Bootstrap the runtime library | ||||
| // Returns: num devices, handle, libPath, error | ||||
| func loadCUDARTMgmt(cudartLibPaths []string) (int, *C.cudart_handle_t, string, error) { | ||||
| 	var resp C.cudart_init_resp_t | ||||
| 	resp.ch.verbose = getVerboseState() | ||||
| 	var err error | ||||
| 	for _, libPath := range cudartLibPaths { | ||||
| 		lib := C.CString(libPath) | ||||
| 		defer C.free(unsafe.Pointer(lib)) | ||||
| 		C.cudart_init(lib, &resp) | ||||
| 		if resp.err != nil { | ||||
| 			err = fmt.Errorf("Unable to load cudart library %s: %s", libPath, C.GoString(resp.err)) | ||||
| 			slog.Debug(err.Error()) | ||||
| 			C.free(unsafe.Pointer(resp.err)) | ||||
| 		} else { | ||||
| 			err = nil | ||||
| 			return int(resp.num_devices), &resp.ch, libPath, err | ||||
| 		} | ||||
| 	} | ||||
| 	return 0, nil, "", err | ||||
| } | ||||
|  | ||||
| // Bootstrap the driver library | ||||
| // Returns: num devices, handle, libPath, error | ||||
| func loadNVCUDAMgmt(nvcudaLibPaths []string) (int, *C.nvcuda_handle_t, string, error) { | ||||
| 	var resp C.nvcuda_init_resp_t | ||||
| 	resp.ch.verbose = getVerboseState() | ||||
| 	var err error | ||||
| 	for _, libPath := range nvcudaLibPaths { | ||||
| 		lib := C.CString(libPath) | ||||
| 		defer C.free(unsafe.Pointer(lib)) | ||||
| 		C.nvcuda_init(lib, &resp) | ||||
| 		if resp.err != nil { | ||||
| 			// Decide what log level based on the type of error message to help users understand why | ||||
| 			switch resp.cudaErr { | ||||
| 			case C.CUDA_ERROR_INSUFFICIENT_DRIVER, C.CUDA_ERROR_SYSTEM_DRIVER_MISMATCH: | ||||
| 				err = fmt.Errorf("version mismatch between driver and cuda driver library - reboot or upgrade may be required: library %s", libPath) | ||||
| 				slog.Warn(err.Error()) | ||||
| 			case C.CUDA_ERROR_NO_DEVICE: | ||||
| 				err = fmt.Errorf("no nvidia devices detected by library %s", libPath) | ||||
| 				slog.Info(err.Error()) | ||||
| 			case C.CUDA_ERROR_UNKNOWN: | ||||
| 				err = fmt.Errorf("unknown error initializing cuda driver library %s: %s. see https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md for more information", libPath, C.GoString(resp.err)) | ||||
| 				slog.Warn(err.Error()) | ||||
| 			default: | ||||
| 				msg := C.GoString(resp.err) | ||||
| 				if strings.Contains(msg, "wrong ELF class") { | ||||
| 					slog.Debug("skipping 32bit library", "library", libPath) | ||||
| 				} else { | ||||
| 					err = fmt.Errorf("Unable to load cudart library %s: %s", libPath, C.GoString(resp.err)) | ||||
| 					slog.Info(err.Error()) | ||||
| 				} | ||||
| 			} | ||||
| 			C.free(unsafe.Pointer(resp.err)) | ||||
| 		} else { | ||||
| 			err = nil | ||||
| 			return int(resp.num_devices), &resp.ch, libPath, err | ||||
| 		} | ||||
| 	} | ||||
| 	return 0, nil, "", err | ||||
| } | ||||
|  | ||||
| // Bootstrap the management library | ||||
| // Returns: handle, libPath, error | ||||
| func loadNVMLMgmt(nvmlLibPaths []string) (*C.nvml_handle_t, string, error) { | ||||
| 	var resp C.nvml_init_resp_t | ||||
| 	resp.ch.verbose = getVerboseState() | ||||
| 	var err error | ||||
| 	for _, libPath := range nvmlLibPaths { | ||||
| 		lib := C.CString(libPath) | ||||
| 		defer C.free(unsafe.Pointer(lib)) | ||||
| 		C.nvml_init(lib, &resp) | ||||
| 		if resp.err != nil { | ||||
| 			err = fmt.Errorf("Unable to load NVML management library %s: %s", libPath, C.GoString(resp.err)) | ||||
| 			slog.Info(err.Error()) | ||||
| 			C.free(unsafe.Pointer(resp.err)) | ||||
| 		} else { | ||||
| 			err = nil | ||||
| 			return &resp.ch, libPath, err | ||||
| 		} | ||||
| 	} | ||||
| 	return nil, "", err | ||||
| } | ||||
|  | ||||
| // bootstrap the Intel GPU library | ||||
| // Returns: num devices, handle, libPath, error | ||||
| func loadOneapiMgmt(oneapiLibPaths []string) (int, *C.oneapi_handle_t, string, error) { | ||||
| 	var resp C.oneapi_init_resp_t | ||||
| 	num_devices := 0 | ||||
| 	resp.oh.verbose = getVerboseState() | ||||
| 	var err error | ||||
| 	for _, libPath := range oneapiLibPaths { | ||||
| 		lib := C.CString(libPath) | ||||
| 		defer C.free(unsafe.Pointer(lib)) | ||||
| 		C.oneapi_init(lib, &resp) | ||||
| 		if resp.err != nil { | ||||
| 			err = fmt.Errorf("Unable to load oneAPI management library %s: %s", libPath, C.GoString(resp.err)) | ||||
| 			slog.Debug(err.Error()) | ||||
| 			C.free(unsafe.Pointer(resp.err)) | ||||
| 		} else { | ||||
| 			err = nil | ||||
| 			for i := range resp.oh.num_drivers { | ||||
| 				num_devices += int(C.oneapi_get_device_count(resp.oh, C.int(i))) | ||||
| 			} | ||||
| 			return num_devices, &resp.oh, libPath, err | ||||
| 		} | ||||
| 	} | ||||
| 	return 0, nil, "", err | ||||
| } | ||||
|  | ||||
| func getVerboseState() C.uint16_t { | ||||
| 	if envconfig.Debug() { | ||||
| 		return C.uint16_t(1) | ||||
| 	} | ||||
| 	return C.uint16_t(0) | ||||
| } | ||||
|  | ||||
| // Given the list of GPUs this instantiation is targeted for, | ||||
| // figure out the visible devices environment variable | ||||
| // | ||||
| // If different libraries are detected, the first one is what we use | ||||
| func (l GpuInfoList) GetVisibleDevicesEnv() (string, string) { | ||||
| 	if len(l) == 0 { | ||||
| 		return "", "" | ||||
| 	} | ||||
| 	switch l[0].Library { | ||||
| 	case "cuda": | ||||
| 		return cudaGetVisibleDevicesEnv(l) | ||||
| 	case "rocm": | ||||
| 		return rocmGetVisibleDevicesEnv(l) | ||||
| 	case "oneapi": | ||||
| 		return oneapiGetVisibleDevicesEnv(l) | ||||
| 	default: | ||||
| 		slog.Debug("no filter required for library " + l[0].Library) | ||||
| 		return "", "" | ||||
| 	} | ||||
| } | ||||
|  | ||||
| func GetSystemInfo() SystemInfo { | ||||
| 	gpus := GetGPUInfo() | ||||
| 	gpuMutex.Lock() | ||||
| 	defer gpuMutex.Unlock() | ||||
| 	discoveryErrors := []string{} | ||||
| 	for _, err := range bootstrapErrors { | ||||
| 		discoveryErrors = append(discoveryErrors, err.Error()) | ||||
| 	} | ||||
| 	if len(gpus) == 1 && gpus[0].Library == "cpu" { | ||||
| 		gpus = []GpuInfo{} | ||||
| 	} | ||||
|  | ||||
| 	return SystemInfo{ | ||||
| 		System:          cpus[0], | ||||
| 		GPUs:            gpus, | ||||
| 		UnsupportedGPUs: unsupportedGPUs, | ||||
| 		DiscoveryErrors: discoveryErrors, | ||||
| 	} | ||||
| } | ||||
Some files were not shown because too many files have changed in this diff Show More
		Reference in New Issue
	
	Block a user