Compare commits

...

118 Commits

Author SHA1 Message Date
Daniel Hiltgen
e9e9bdb8d9 CI: Fix win arm version defect (#6940)
write-host in powershell writes directly to the console and will not be picked
up by a pipe.  Echo, or write-output will.
2024-09-24 15:18:10 -07:00
Alex Yang
35bb6d32b3 readme: update llamaindex links (#6939) 2024-09-24 12:15:43 -07:00
Deep Lakhani
98701b58b3 readme: add LLMChat to community integrations (#6919) 2024-09-23 17:49:46 -07:00
Mahesh Sathiamoorthy
ad935f45ac examples: use punkt_tab instead of punkt (#6907)
This was causing an error since we depend on punkt_tab.
2024-09-21 18:55:28 -07:00
Daniel Hiltgen
dbba73469d runner: Set windows above normal priority (#6905)
When running the subprocess as a background service windows may
throttle, which can lead to thrashing and very poor token rate.
2024-09-21 16:54:49 -07:00
Daniel Hiltgen
6c2eb73a70 Fix missing dep path on windows CPU runners (#6884)
GPUs handled the dependency path properly, but CPU runners didn't which
results in missing vc redist libraries on systems where the user didn't
already have it installed from some other app.
2024-09-21 16:28:29 -07:00
Daniel Hiltgen
2a038c1d7e CI: win arm artifact dist dir (#6900)
The upload artifact is missing the dist prefix since all
payloads are in the same directory, so restore the prefix
on download.
2024-09-20 19:16:18 -07:00
Daniel Hiltgen
616c5eafee CI: win arm adjustments (#6898) 2024-09-20 16:58:56 -07:00
Daniel Hiltgen
f5ff917b1d CI: adjust step ordering for win arm to match x64 (#6895) 2024-09-20 14:20:57 -07:00
Daniel Hiltgen
d632e23fba Add Windows arm64 support to official builds (#5712)
* Unified arm/x86 windows installer

This adjusts the installer payloads to be architecture aware so we can cary
both amd64 and arm64 binaries in the installer, and install only the applicable
architecture at install time.

* Include arm64 in official windows build

* Harden schedule test for slow windows timers

This test seems to be a bit flaky on windows, so give it more time to converge
2024-09-20 13:09:38 -07:00
Patrick Devine
5804cf1723 documentation for stopping a model (#6766) 2024-09-18 16:26:42 -07:00
Ryan Marten
bf7ee0f4d4 examples: add python examples for bespoke-minicheck (#6841) 2024-09-18 09:35:25 -07:00
Michael Yang
504a410f02 llm: add solar pro (preview) (#6846) 2024-09-17 18:11:26 -07:00
Jeffrey Morgan
d05da29912 server: add tool parsing support for nemotron-mini (#6849) 2024-09-17 18:06:16 -07:00
Michael Yang
72962c6e08 Merge pull request #6833 from ollama/mxyng/git-am
make patches git am-able
2024-09-17 16:33:23 -07:00
Michael Yang
7bd7b02712 make patches git am-able
raw diffs can be applied using `git apply` but not with `git am`. git
patches, e.g. through `git format-patch` are both apply-able and am-able
2024-09-17 15:26:40 -07:00
Daniel Hiltgen
8f9ab5e14d CI: dist directories no longer present (#6834)
The new buildx based build no longer leaves the dist/linux-* directories
around, so we don't have to clean them up before uploading.
2024-09-16 17:31:37 -07:00
Daniel Hiltgen
7717bb6a84 CI: clean up naming, fix tagging latest (#6832)
The rocm CI step for RCs was incorrectly tagging them as the latest rocm build.
The multiarch manifest was incorrectly tagged twice (with and without the
prefix "v").  Static windows artifacts weren't being carried between build
jobs.  This also fixes the latest tagging script.
2024-09-16 16:18:41 -07:00
Daniel Hiltgen
0ec2915ea7 CI: set platform build build_linux script to keep buildx happy (#6829)
The runners don't have emulation set up so the default multi-platform build
wont work.
2024-09-16 14:07:29 -07:00
Michael Yang
c9a7541b9c readme: add Agents-Flex to community integrations (#6788) 2024-09-16 13:42:52 -07:00
Patrick Devine
d81cfd7d6f fix typo in import docs (#6828) 2024-09-16 11:48:14 -07:00
Pepo
b330c830d3 readme: add vim-intelligence-bridge to Terminal section (#6818) 2024-09-15 21:20:36 -04:00
Edward Cui
d889c6fd07 readme: add Obsidian Quiz Generator plugin to community integrations (#6789) 2024-09-14 23:52:37 -04:00
Daniel Hiltgen
56b9af336a Fix incremental builds on linux (#6780)
scripts: fix incremental builds on linux or similar
2024-09-13 08:24:08 -07:00
Daniel Hiltgen
fda0d3be52 Use GOARCH for build dirs (#6779)
Corrects x86_64 vs amd64 discrepancy
2024-09-12 16:38:05 -07:00
Daniel Hiltgen
cd5c8f6471 Optimize container images for startup (#6547)
* Optimize container images for startup

This change adjusts how to handle runner payloads to support
container builds where we keep them extracted in the filesystem.
This makes it easier to optimize the cpu/cuda vs cpu/rocm images for
size, and should result in faster startup times for container images.

* Refactor payload logic and add buildx support for faster builds

* Move payloads around

* Review comments

* Converge to buildx based helper scripts

* Use docker buildx action for release
2024-09-12 12:10:30 -07:00
dcasota
fef257c5c5 examples: updated requirements.txt for privategpt example 2024-09-11 18:56:56 -07:00
Adrian Cole
d066d9b8e0 examples: polish loganalyzer example (#6744) 2024-09-11 18:37:37 -07:00
RAPID ARCHITECT
5a00dc9fc9 readme: add ollama_moe to community integrations (#6752) 2024-09-11 18:36:26 -07:00
Jesse Gross
c354e87809 Merge pull request #6767 from ollama/jessegross/bug_6707
runner: Flush pending responses before returning
2024-09-11 17:20:22 -07:00
Jesse Gross
93ac3760cb runner: Flush pending responses before returning
If there are any pending reponses (such as from potential stop
tokens) then we should send them back before ending the sequence.
Otherwise, we can be missing tokens at the end of a response.

Fixes #6707
2024-09-11 16:39:32 -07:00
Patrick Devine
abed273de3 add "stop" command (#6739) 2024-09-11 16:36:21 -07:00
Michael Yang
034392624c Merge pull request #6762 from ollama/mxyng/show-output
refactor show ouput
2024-09-11 14:58:40 -07:00
Michael Yang
ecab6f1cc5 refactor show ouput
fixes line wrapping on long texts
2024-09-11 14:23:09 -07:00
Petr Mironychev
7d6900827d readme: add QodeAssist to community integrations (#6754) 2024-09-11 13:19:49 -07:00
Daniel Hiltgen
9246e6dd15 Verify permissions for AMD GPU (#6736)
This adds back a check which was lost many releases back to verify /dev/kfd permissions
which when lacking, can lead to confusing failure modes of:
  "rocBLAS error: Could not initialize Tensile host: No devices found"

This implementation does not hard fail the serve command but instead will fall back to CPU
with an error log.  In the future we can include this in the GPU discovery UX to show
detected but unsupported devices we discovered.
2024-09-11 11:38:25 -07:00
Michael Yang
735a0ca2e4 Merge pull request #6732 from ollama/mxyng/debug-proxy
add *_proxy to env map for debugging
2024-09-10 16:13:25 -07:00
Michael Yang
dddb72e084 add *_proxy for debugging 2024-09-10 09:43:35 -07:00
Jeffrey Morgan
83a9b5271a docs: update examples to use llama3.1 (#6718) 2024-09-09 22:47:16 -07:00
Daniel Hiltgen
4a8069f9c4 Quiet down dockers new lint warnings (#6716)
* Quiet down dockers new lint warnings

Docker has recently added lint warnings to build.  This cleans up those warnings.

* Fix go lint regression
2024-09-09 17:22:20 -07:00
Patrick Devine
84b84ce2db catch when model vocab size is set correctly (#6714) 2024-09-09 17:18:54 -07:00
Jeffrey Morgan
bb6a086d63 readme: add crewAI to community integrations (#6699) 2024-09-08 00:36:24 -07:00
RAPID ARCHITECT
30c8f201cc readme: add crewAI with mesop to community integrations 2024-09-08 00:35:59 -07:00
frob
06d4fba851 openai: align chat temperature and frequency_penalty options with completion (#6688) 2024-09-07 09:08:08 -07:00
Jeffrey Morgan
108fb6c1d1 docs: improve linux install documentation (#6683)
Includes small improvements to document layout and code blocks
2024-09-06 22:05:37 -07:00
Yaroslav
da915345d1 openai: don't scale temperature or frequency_penalty (#6514) 2024-09-06 17:45:45 -07:00
nickthecook
8a027bc401 readme: add Archyve to community integrations (#6680) 2024-09-06 14:06:01 -07:00
imoize
5446903fbd readme: add Plasmoid Ollama Control to community integrations (#6681) 2024-09-06 14:04:12 -07:00
Daniel Hiltgen
56318fb365 Improve logging on GPU too small (#6666)
When we determine a GPU is too small for any layers, it's not always clear why.
This will help troubleshoot those scenarios.
2024-09-06 08:29:36 -07:00
frob
fe91d7fff1 openai: fix "presence_penalty" typo and add test (#6665) 2024-09-06 01:16:28 -07:00
Patrick Devine
608e87bf87 Fix gemma2 2b conversion (#6645) 2024-09-05 17:02:28 -07:00
Daniel Hiltgen
48685c6ed0 Document uninstall on windows (#6663) 2024-09-05 15:57:38 -07:00
Daniel Hiltgen
9565fa64a8 Revert "Detect running in a container (#6495)" (#6662)
This reverts commit a60d9b89ce.
2024-09-05 14:26:00 -07:00
Daniel Hiltgen
6719097649 llm: make load time stall duration configurable via OLLAMA_LOAD_TIMEOUT
With the new very large parameter models, some users are willing to wait for
a very long time for models to load.
2024-09-05 14:00:08 -07:00
Daniel Hiltgen
b05c9e83d9 Introduce GPU Overhead env var (#5922)
Provide a mechanism for users to set aside an amount of VRAM on each GPU
to make room for other applications they want to start after Ollama, or workaround
memory prediction bugs
2024-09-05 13:46:35 -07:00
Daniel Hiltgen
a60d9b89ce Detect running in a container (#6495) 2024-09-05 13:24:51 -07:00
Michael Yang
bf612cd608 Merge pull request #6260 from ollama/mxyng/mem
llama3.1 memory
2024-09-05 13:22:08 -07:00
Zeyo
ef98e56122 readme: add AiLama to the list of community integrations (#4957) 2024-09-05 13:10:44 -07:00
Michael
5f944baac7 Update gpu.md: Add RTX 3050 Ti and RTX 3050 Ti (#5888)
* Update gpu.md

    Seems strange that the laptop versions of 3050 and 3050 Ti would be supported but not the non-notebook, but this is what the page (https://developer.nvidia.com/cuda-gpus) says.

Signed-off-by: bean5 <2052646+bean5@users.noreply.github.com>

* Update gpu.md

Remove notebook reference

---------

Signed-off-by: bean5 <2052646+bean5@users.noreply.github.com>
2024-09-05 11:24:26 -07:00
Tobias Heinze
6fc9d22707 server: fix blob download when receiving a 200 response (#6656) 2024-09-05 10:48:26 -07:00
Vitaly Zdanevich
f27c00d8c5 readme: add Gentoo package manager entry to community integrations (#5714) 2024-09-05 09:58:14 -07:00
王卿
c7c845ec52 Update install.sh:Replace "command -v" with encapsulated functionality (#6035)
Replace "command -v" with encapsulated functionality
2024-09-05 09:49:48 -07:00
Augustinas Malinauskas
cf48603943 readme: include Enchanted for Apple Vision Pro (#4949)
Added Enchanted with Apple Vision Pro support
2024-09-05 01:30:19 -04:00
Silas Marvin
6e67be09b6 readme: add lsp-ai to community integrations (#5063) 2024-09-05 01:17:34 -04:00
Arda Günsüren
0f5f060d2b readme: add ollama-php library to community integrations (#6361) 2024-09-05 01:01:14 -04:00
jk011ru
b3554778bd readme: add vnc-lm discord bot community integration (#6644) 2024-09-04 19:46:02 -04:00
Pascal Patry
bbe7b96ded llm: use json.hpp from common (#6642) 2024-09-04 19:34:42 -04:00
Rune Berg
c18ff18b2c readme: add confichat to community integrations (#6378) 2024-09-04 17:26:02 -04:00
Tomoya Fujita
133770a548 docs: add group to manual Linux isntructions and verify service is running (#6430) 2024-09-04 14:45:09 -04:00
Teïlo M
f36ebfb478 readme: add gollm to the list of community libraries (#6099) 2024-09-04 14:19:41 -04:00
亢奋猫
5b55379651 readme: add Cherry Studio to community integrations (#6633) 2024-09-04 10:53:36 -04:00
Mitar
93eb43d020 readme: add Go fun package (#6421) 2024-09-04 10:52:46 -04:00
Carter
369479cc30 docs: fix spelling error (#6391)
change "dorrect" to "correct"
2024-09-04 09:42:33 -04:00
Erkin Alp Güney
7d89e48f5c install.sh: update instructions to use WSL2 (#6450) 2024-09-04 09:34:53 -04:00
Sam
27bcce6d9f readme: add claude-dev to community integrations (#6630) 2024-09-04 09:32:26 -04:00
Viz
491fc312ae readme: add PyOllaMx project (#6624) 2024-09-03 23:10:53 -04:00
Jeffrey Morgan
5e2653f9fe llm: update llama.cpp commit to 8962422 (#6618) 2024-09-03 21:12:39 -04:00
Daniel Hiltgen
f29b167e1a Use cuda v11 for driver 525 and older (#6620)
It looks like driver 525 (aka, cuda driver 12.0) has problems with the cuda v12 library
we compile against, so run v11 on those older drivers if detected.
2024-09-03 17:15:31 -07:00
Daniel Hiltgen
037a4d103e Log system memory at info (#6617)
On systems with low system memory, we can hit allocation failures that are difficult to diagnose
without debug logs.  This will make it easier to spot.
2024-09-03 14:55:20 -07:00
Mateusz Migas
50c05d57e0 readme: add Painting Droid community integration (#5514) 2024-09-03 16:15:54 -04:00
Amith Koujalgi
35159de18a readme: update Ollama4j link and add link to Ollama4j Web UI (#6608) 2024-09-03 16:08:50 -04:00
FellowTraveler
94fff5805f Fix sprintf to snprintf (#5664)
/Users/au/src/ollama/llm/ext_server/server.cpp:289:9: warning: 'sprintf' is deprecated: This function is provided for compatibility reasons only. Due to security concerns inherent in the design of sprintf(3), it is highly recommended that you use snprintf(3) instead.
2024-09-03 09:32:59 -07:00
OpenVMP
14d5093cd0 readme: add PartCAD tool to readme for generating 3D CAD models using Ollama (#6605) 2024-09-03 12:28:01 -04:00
R0CKSTAR
9df5f0e8e4 Reduce docker image size (#5847)
Signed-off-by: Xiaodong Ye <yeahdongcn@gmail.com>
2024-09-03 09:25:31 -07:00
presbrey
ad3eb00bee readme: add OllamaFarm project (#6508) 2024-09-02 16:05:36 -04:00
Jonathan Hecl
bfc2d61549 readme: add go-crew and Ollamaclient projects (#6583) 2024-09-02 15:34:26 -04:00
SnoopyTlion
741affdfd6 docs: update faq.md for OLLAMA_MODELS env var permissions (#6587) 2024-09-02 15:31:29 -04:00
Vimal Kumar
5f7b4a5e30 fix(cmd): show info may have nil ModelInfo (#6579) 2024-08-31 21:12:17 -07:00
rayfiyo
1aad838707 docs: update GGUF examples and references (#6577) 2024-08-31 19:34:25 -07:00
Daniel Hiltgen
a1cef4d0a5 Add findutils to base images (#6581)
This caused missing internal files
2024-08-31 10:40:05 -07:00
Michael Yang
c41f0b9e6c Merge pull request #6562 from ollama/mxyng/build-artifacts
remove any unneeded build artifacts
2024-08-30 09:40:50 -07:00
Michael Yang
142cbb722d Merge pull request #6482 from ollama/mxyng/client-path
passthrough OLLAMA_HOST path to client
2024-08-30 09:40:34 -07:00
Michael Yang
9468c6824a Merge pull request #6534 from ollama/mxyng/messages
update templates to use messages
2024-08-30 09:39:59 -07:00
Michael Yang
11018196e0 remove any unneeded build artifacts 2024-08-29 13:40:47 -07:00
Bryan Honof
56346ccfa3 doc: Add Nix and Flox to package manager listing (#6074) 2024-08-29 12:45:35 -04:00
Patrick Devine
8e4e509fa4 update the openai docs to explain how to set the context size (#6548) 2024-08-28 17:11:46 -07:00
Michael Yang
47c2b947a9 Merge pull request #6546 from ollama/mxyng/fix-test
fix(test): do not clobber models directory
2024-08-28 15:37:47 -07:00
Michael Yang
5eb77bf976 Merge pull request #6539 from ollama/mxyng/validate-modelpath
fix: validate modelpath
2024-08-28 14:38:27 -07:00
Michael Yang
e4d0a9c325 fix(test): do not clobber models directory 2024-08-28 14:07:48 -07:00
Patrick Devine
7416ced70f add llama3.1 chat template (#6545) 2024-08-28 14:03:20 -07:00
Michael Yang
9cfd2dd3e3 Merge pull request #6522 from ollama/mxyng/detect-chat
detect chat template from configs that contain lists
2024-08-28 11:04:18 -07:00
Michael Yang
8e6da3cbc5 update deprecated warnings 2024-08-28 09:55:11 -07:00
Michael Yang
d9d50c43cc validate model path 2024-08-28 09:32:57 -07:00
Patrick Devine
6c1c1ad6a9 throw an error when encountering unsupport tensor sizes (#6538) 2024-08-27 17:54:04 -07:00
Daniel Hiltgen
93ea9240ae Move ollama executable out of bin dir (#6535) 2024-08-27 16:19:00 -07:00
Michael Yang
413ae39f3c update templates to use messages 2024-08-27 15:44:04 -07:00
Michael Yang
60e47573a6 more tokenizer tests 2024-08-27 14:51:10 -07:00
Patrick Devine
d13c3daa0b add safetensors to the modelfile docs (#6532) 2024-08-27 14:46:47 -07:00
Patrick Devine
1713eddcd0 Fix import image width (#6528) 2024-08-27 14:19:47 -07:00
Daniel Hiltgen
4e1c4f6e0b Update manual instructions with discrete ROCm bundle (#6445) 2024-08-27 13:42:28 -07:00
Sean Khatiri
397cae7962 llm: fix typo in comment (#6530) 2024-08-27 13:28:29 -07:00
Patrick Devine
1c70a00f71 adjust image sizes 2024-08-27 11:15:25 -07:00
Michael Yang
eae3af6807 clean up convert tokenizer 2024-08-27 11:11:43 -07:00
Michael Yang
3eb08377f8 detect chat template from configs that contain lists 2024-08-27 10:49:33 -07:00
Patrick Devine
ac80010db8 update the import docs (#6104) 2024-08-26 19:57:26 -07:00
Jeffrey Morgan
47fa0839b9 server: clean up route names for consistency (#6524) 2024-08-26 19:36:11 -07:00
Michael Yang
386af6c1a0 passthrough OLLAMA_HOST path to client 2024-08-23 13:23:28 -07:00
Michael Yang
2003d60159 llama3.1 memory 2024-08-08 11:18:13 -07:00
133 changed files with 4440 additions and 26458 deletions

View File

@@ -7,3 +7,5 @@ llm/llama.cpp
.env
.cache
test_data
llm/build
llama/build

View File

@@ -102,7 +102,8 @@ jobs:
with:
name: generate-windows-cpu
path: |
llm/build/**/bin/*
build/**/*
build/**/*.a
llm/build/**/*.a
dist/windows-amd64/**
@@ -176,7 +177,7 @@ jobs:
with:
name: generate-windows-rocm
path: |
llm/build/**/bin/*
build/**/*
dist/windows-amd64/**
- uses: actions/upload-artifact@v4
with:
@@ -265,7 +266,7 @@ jobs:
with:
name: generate-windows-cuda-${{ matrix.cuda.version }}
path: |
llm/build/**/bin/*
build/**/*
dist/windows-amd64/**
- uses: actions/upload-artifact@v4
with:
@@ -273,7 +274,134 @@ jobs:
path: dist/deps/*
# Import the prior generation steps and build the final windows assets
# windows arm64 generate, go build, and zip file (no installer)
# Output of this build is aggregated into the final x86 build
# for a unified windows installer
windows-arm64:
runs-on: windows-arm64
environment: release
env:
KEY_CONTAINER: ${{ vars.KEY_CONTAINER }}
steps:
# The current Windows arm64 beta image has effectively zero dev tools installed...
- name: Install git and gzip
run: |
Set-ExecutionPolicy Bypass -Scope Process -Force
[System.Net.ServicePointManager]::SecurityProtocol = [System.Net.ServicePointManager]::SecurityProtocol -bor 3072
iex ((New-Object System.Net.WebClient).DownloadString('https://community.chocolatey.org/install.ps1'))
choco install -y --no-progress git gzip
echo "C:\Program Files\Git\cmd" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "C:\ProgramData\chocolatey\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- name: Install Visual Studio 2022
run: |
$components = @(
"Microsoft.VisualStudio.Component.CoreEditor",
"Microsoft.VisualStudio.Workload.CoreEditor",
"Microsoft.VisualStudio.Component.Roslyn.Compiler",
"Microsoft.Component.MSBuild",
"Microsoft.VisualStudio.Component.TextTemplating",
"Microsoft.VisualStudio.Component.Debugger.JustInTime",
"Microsoft.VisualStudio.Component.VC.CoreIde",
"Microsoft.VisualStudio.Component.VC.Tools.x86.x64",
"Microsoft.VisualStudio.Component.Windows11SDK.22621",
"Microsoft.VisualStudio.Component.VC.Tools.ARM64EC",
"Microsoft.VisualStudio.Component.VC.Tools.ARM64",
"Microsoft.VisualStudio.Component.VC.ATL",
"Microsoft.VisualStudio.Component.VC.ATL.ARM64",
"Microsoft.VisualStudio.Component.Graphics",
"Microsoft.VisualStudio.Component.VC.Redist.14.Latest",
"Microsoft.VisualStudio.ComponentGroup.NativeDesktop.Core",
"Microsoft.VisualStudio.Component.Windows11Sdk.WindowsPerformanceToolkit",
"Microsoft.VisualStudio.Component.CppBuildInsights",
"Microsoft.VisualStudio.Component.VC.DiagnosticTools",
"Microsoft.VisualStudio.ComponentGroup.WebToolsExtensions.CMake",
"Microsoft.VisualStudio.Component.VC.CMake.Project",
"Microsoft.VisualStudio.Component.VC.ASAN",
"Microsoft.VisualStudio.Component.Vcpkg",
"Microsoft.VisualStudio.Workload.NativeDesktop"
)
$config = @{
"version" = "1.0"
"components" = $components
"extensions" = @()
}
$configPath = "${env:RUNNER_TEMP}\vsconfig"
$config | ConvertTo-Json | Out-File -FilePath $configPath
$bootstrapperFilePath = "${env:RUNNER_TEMP}\vs_community.exe"
write-host "Downloading Visual Studio 2022"
Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vs_community.exe" -outfile $bootstrapperFilePath
$bootstrapperArgumentList = ('/c', $bootstrapperFilePath, '--config', $configPath, '--quiet', '--wait' )
write-host "Installing Visual Studio 2022"
$process = Start-Process -FilePath cmd.exe -ArgumentList $bootstrapperArgumentList -Wait -PassThru
$exitCode = $process.ExitCode
write-host $exitCode
# pacman in mingw/msys2 is ~broken on windows arm right now - hangs consistently during attempts to install
# so we'll use this alternative GCC binary
- name: Install llvm-mingw GCC
run: |
$gcc_url="https://github.com/mstorsjo/llvm-mingw/releases/download/20240619/llvm-mingw-20240619-ucrt-aarch64.zip"
write-host "Downloading llvm-mingw"
Invoke-WebRequest -Uri "${gcc_url}" -OutFile "${env:RUNNER_TEMP}\gcc.zip"
write-host "Unpacking llvm-mingw"
expand-archive -path "${env:RUNNER_TEMP}\gcc.zip" -destinationpath "c:\"
mv c:\llvm-mingw-* c:\llvm-mingw
echo "c:\llvm-mingw\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- name: Verify GCC
run: |
echo $env:PATH
gcc --version
- uses: actions/checkout@v4
- name: Set Version
run: |
$ver=${env:GITHUB_REF_NAME}.trim("v")
echo VERSION=$ver | Out-File -FilePath ${env:GITHUB_ENV} -Encoding utf8 -Append
- uses: 'google-github-actions/auth@v2'
with:
project_id: 'ollama'
credentials_json: '${{ secrets.GOOGLE_SIGNING_CREDENTIALS }}'
- run: echo "${{ vars.OLLAMA_CERT }}" | Out-File -FilePath ollama_inc.crt -Encoding utf8
- name: install Windows SDK 8.1 to get signtool
run: |
$ErrorActionPreference = "Stop"
write-host "downloading SDK"
Invoke-WebRequest -Uri "https://go.microsoft.com/fwlink/p/?LinkId=323507" -OutFile "${env:RUNNER_TEMP}\sdksetup.exe"
Start-Process "${env:RUNNER_TEMP}\sdksetup.exe" -ArgumentList @("/q") -NoNewWindow -Wait
write-host "Win SDK 8.1 installed"
gci -path 'C:\Program Files (x86)\Windows Kits\' -r -fi 'signtool.exe'
- name: install signing plugin
run: |
$ErrorActionPreference = "Stop"
write-host "downloading plugin"
Invoke-WebRequest -Uri "https://github.com/GoogleCloudPlatform/kms-integrations/releases/download/cng-v1.0/kmscng-1.0-windows-amd64.zip" -OutFile "${env:RUNNER_TEMP}\plugin.zip"
Expand-Archive -Path "${env:RUNNER_TEMP}\plugin.zip" -DestinationPath ${env:RUNNER_TEMP}\plugin\
write-host "Installing plugin"
& "${env:RUNNER_TEMP}\plugin\*\kmscng.msi" /quiet
write-host "plugin installed"
- uses: actions/setup-go@v5
with:
go-version-file: go.mod
cache: true
- run: go get ./...
- run: |
$gopath=(get-command go).source | split-path -parent
$gccpath=(get-command gcc).source | split-path -parent
& "C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\Tools\Launch-VsDevShell.ps1"
cd $env:GITHUB_WORKSPACE
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
$env:PATH="$gopath;$gccpath;$env:PATH;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\CMake\CMake\bin"
echo $env:PATH
$env:ARCH="arm64"
.\scripts\build_windows.ps1 buildOllama buildApp gatherDependencies distZip
name: 'Windows Build'
- uses: actions/upload-artifact@v4
with:
name: windows-arm64
path: |
dist/windows-arm64/**
dist/windows-arm64-app.exe
dist/ollama-windows-arm64.zip
# Import the prior generation steps plus the full arm64 build, and build the final windows assets
build-windows:
environment: release
runs-on: windows
@@ -281,6 +409,7 @@ jobs:
- generate-windows-cuda
- generate-windows-rocm
- generate-windows-cpu
- windows-arm64
env:
KEY_CONTAINER: ${{ vars.KEY_CONTAINER }}
steps:
@@ -338,7 +467,11 @@ jobs:
- uses: actions/download-artifact@v4
with:
name: generate-windows-rocm
- run: dir llm/build
- uses: actions/download-artifact@v4
with:
name: windows-arm64
path: dist
- run: dir build
- run: |
$gopath=(get-command go).source | split-path -parent
& "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1"
@@ -359,9 +492,7 @@ jobs:
environment: release
runs-on: linux
env:
OLLAMA_SKIP_MANIFEST_CREATE: '1'
BUILD_ARCH: amd64
PUSH: '1'
PLATFORM: linux/amd64
steps:
- uses: actions/checkout@v4
with:
@@ -369,14 +500,8 @@ jobs:
- name: Set Version
shell: bash
run: echo "VERSION=${GITHUB_REF_NAME#v}" >> $GITHUB_ENV
- name: Login to Docker Hub
uses: docker/login-action@v3
with:
username: ${{ vars.DOCKER_USER }}
password: ${{ secrets.DOCKER_ACCESS_TOKEN }}
- run: |
./scripts/build_linux.sh
./scripts/build_docker.sh
- uses: actions/upload-artifact@v4
with:
name: dist-linux-amd64
@@ -390,9 +515,7 @@ jobs:
environment: release
runs-on: linux-arm64
env:
OLLAMA_SKIP_MANIFEST_CREATE: '1'
BUILD_ARCH: arm64
PUSH: '1'
PLATFORM: linux/arm64
steps:
- uses: actions/checkout@v4
with:
@@ -421,14 +544,8 @@ jobs:
sudo usermod -aG docker $USER
sudo apt-get install acl
sudo setfacl --modify user:$USER:rw /var/run/docker.sock
- name: Login to Docker Hub
uses: docker/login-action@v3
with:
username: ${{ vars.DOCKER_USER }}
password: ${{ secrets.DOCKER_ACCESS_TOKEN }}
- run: |
./scripts/build_linux.sh
./scripts/build_docker.sh
- uses: actions/upload-artifact@v4
with:
name: dist-linux-arm64
@@ -436,6 +553,178 @@ jobs:
dist/*linux*
!dist/*-cov
# Container image build
build-container-image:
environment: release
strategy:
matrix:
runner:
- linux
- linux-arm64
runs-on: ${{ matrix.runner }}
env:
FINAL_IMAGE_REPO: ollama/ollama
steps:
- uses: actions/checkout@v4
with:
submodules: recursive
- name: 'Install Docker'
if: ${{ startsWith(matrix.runner, 'linux-arm64') }}
run: |
sudo apt-get update
sudo apt-get install -y ca-certificates curl
sudo install -m 0755 -d /etc/apt/keyrings
sudo curl -fsSL https://download.docker.com/linux/ubuntu/gpg -o /etc/apt/keyrings/docker.asc
sudo chmod a+r /etc/apt/keyrings/docker.asc
echo "deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.asc] https://download.docker.com/linux/ubuntu \
$(. /etc/os-release && echo "$VERSION_CODENAME") stable" | \
sudo tee /etc/apt/sources.list.d/docker.list > /dev/null
sudo apt-get update
sudo apt-get install -y docker-ce docker-ce-cli containerd.io
sudo usermod -aG docker $USER
sudo apt-get install acl
sudo setfacl --modify user:$USER:rw /var/run/docker.sock
- name: Docker meta
id: meta
uses: docker/metadata-action@v5
with:
images: ${{ env.FINAL_IMAGE_REPO }}
flavor: |
latest=false
tags: |
type=ref,enable=true,priority=600,prefix=0.0.0-pr,suffix=,event=pr
type=semver,pattern={{version}}
- name: Set Version
shell: bash
run: |
machine=$(uname -m)
case ${machine} in
x86_64) echo ARCH=amd64; echo PLATFORM_PAIR=linux-amd64 ;;
aarch64) echo ARCH=arm64; echo PLATFORM_PAIR=linux-arm64 ;;
esac >>$GITHUB_ENV
echo GOFLAGS="'-ldflags=-w -s \"-X=github.com/ollama/ollama/version.Version=${{ env.DOCKER_METADATA_OUTPUT_VERSION }}\" \"-X=github.com/ollama/ollama/server.mode=release\"'" >>$GITHUB_ENV
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Login to Docker Hub
uses: docker/login-action@v3
with:
username: ${{ vars.DOCKER_USER }}
password: ${{ secrets.DOCKER_ACCESS_TOKEN }}
- name: Build and push by digest
id: build
uses: docker/build-push-action@v6
with:
context: "."
platforms: linux/${{ env.ARCH }}
build-args: |
GOFLAGS
outputs: type=image,name=${{ env.FINAL_IMAGE_REPO }},push-by-digest=true,name-canonical=true,push=true
- name: Export digest
run: |
mkdir -p /tmp/digests
digest="${{ steps.build.outputs.digest }}"
touch "/tmp/digests/${digest#sha256:}"
- name: Upload digest
uses: actions/upload-artifact@v4
with:
name: digests-${{ env.PLATFORM_PAIR }}
path: /tmp/digests/*
if-no-files-found: error
retention-days: 1
merge:
environment: release
runs-on: linux
needs:
- build-container-image
env:
FINAL_IMAGE_REPO: ollama/ollama
steps:
- uses: actions/checkout@v4
with:
submodules: recursive
- name: Download digests
uses: actions/download-artifact@v4
with:
path: /tmp/digests
pattern: digests-*
merge-multiple: true
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Docker meta
id: meta
uses: docker/metadata-action@v5
with:
images: ${{ env.FINAL_IMAGE_REPO }}
flavor: |
latest=false
tags: |
type=ref,enable=true,priority=600,prefix=0.0.0-pr,suffix=,event=pr
type=semver,pattern={{version}}
- name: Set Version
shell: bash
run: |
machine=$(uname -m)
case ${machine} in
x86_64) echo ARCH=amd64; echo PLATFORM_PAIR=linux-amd64 ;;
aarch64) echo ARCH=arm64; echo PLATFORM_PAIR=linux-arm64 ;;
esac >>$GITHUB_ENV
echo GOFLAGS="'-ldflags=-w -s \"-X=github.com/ollama/ollama/version.Version=${{ env.DOCKER_METADATA_OUTPUT_VERSION }}\" \"-X=github.com/ollama/ollama/server.mode=release\"'" >>$GITHUB_ENV
- name: Login to Docker Hub
uses: docker/login-action@v3
with:
username: ${{ vars.DOCKER_USER }}
password: ${{ secrets.DOCKER_ACCESS_TOKEN }}
- name: Create manifest list and push
working-directory: /tmp/digests
run: |
docker buildx imagetools create $(jq -cr '.tags | map("-t " + .) | join(" ")' <<< "$DOCKER_METADATA_OUTPUT_JSON") \
$(printf '${{ env.FINAL_IMAGE_REPO }}@sha256:%s ' *)
- name: Inspect image
run: |
docker buildx imagetools inspect ${{ env.FINAL_IMAGE_REPO }}:${{ steps.meta.outputs.version }}
build-container-image-rocm:
environment: release
runs-on: linux
env:
FINAL_IMAGE_REPO: ollama/ollama
ARCH: amd64
PLATFORM_PAIR: linux-amd64
steps:
- uses: actions/checkout@v4
with:
submodules: recursive
- name: Docker meta
id: meta
uses: docker/metadata-action@v5
with:
images: ${{ env.FINAL_IMAGE_REPO }}
flavor: |
latest=false
tags: |
type=ref,enable=true,priority=600,prefix=0.0.0-pr,suffix=,event=pr
type=semver,pattern={{version}}
- name: Set Version
shell: bash
run: |
echo GOFLAGS="'-ldflags=-w -s \"-X=github.com/ollama/ollama/version.Version=${{ env.DOCKER_METADATA_OUTPUT_VERSION }}\" \"-X=github.com/ollama/ollama/server.mode=release\"'" >>$GITHUB_ENV
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Login to Docker Hub
uses: docker/login-action@v3
with:
username: ${{ vars.DOCKER_USER }}
password: ${{ secrets.DOCKER_ACCESS_TOKEN }}
- name: Build and push by digest
id: build
uses: docker/build-push-action@v6
with:
context: "."
target: runtime-rocm
build-args: |
GOFLAGS
tags: ${{ env.FINAL_IMAGE_REPO }}:${{ env.DOCKER_METADATA_OUTPUT_VERSION}}-rocm
push: true
# Aggregate all the assets and ship a release
release:
needs:
@@ -448,8 +737,6 @@ jobs:
permissions:
contents: write
env:
OLLAMA_SKIP_IMAGE_BUILD: '1'
PUSH: '1'
GH_TOKEN: ${{ github.token }}
steps:
- uses: actions/checkout@v4
@@ -458,12 +745,6 @@ jobs:
run: |
echo "VERSION=${GITHUB_REF_NAME#v}" >> $GITHUB_ENV
echo "RELEASE_VERSION=$(echo ${GITHUB_REF_NAME} | cut -f1 -d-)" >> $GITHUB_ENV
- name: Login to Docker Hub
uses: docker/login-action@v3
with:
username: ${{ vars.DOCKER_USER }}
password: ${{ secrets.DOCKER_ACCESS_TOKEN }}
- run: ./scripts/build_docker.sh
- name: Retrieve built artifact
uses: actions/download-artifact@v4
with:
@@ -474,8 +755,6 @@ jobs:
ls -lh dist/
(cd dist; find . -type f | xargs sha256sum > ../sha256sum.txt)
mv sha256sum.txt dist/
mv dist/linux-???64 .
mv dist/linux-amd64-rocm .
cat dist/sha256sum.txt
- name: Create or update Release
run: |

View File

@@ -81,12 +81,6 @@ jobs:
if: ${{ ! startsWith(matrix.os, 'windows-') }}
name: 'Unix Go Generate'
- run: go build .
- uses: actions/upload-artifact@v4
with:
name: ${{ matrix.os }}-${{ matrix.arch }}-libraries
path: |
llm/build/**/bin/*
llm/build/**/*.a
generate-cuda:
needs: [changes]
if: ${{ needs.changes.outputs.GENERATE_CUDA == 'True' }}
@@ -114,12 +108,6 @@ jobs:
go generate -x ./...
env:
OLLAMA_SKIP_CPU_GENERATE: '1'
- uses: actions/upload-artifact@v4
with:
name: cuda-${{ matrix.cuda-version }}-libraries
path: |
llm/build/**/bin/*
dist/windows-amd64/**
generate-rocm:
needs: [changes]
if: ${{ needs.changes.outputs.GENERATE_ROCM == 'True' }}
@@ -147,12 +135,6 @@ jobs:
go generate -x ./...
env:
OLLAMA_SKIP_CPU_GENERATE: '1'
- uses: actions/upload-artifact@v4
with:
name: rocm-${{ matrix.rocm-version }}-libraries
path: |
llm/build/**/bin/*
dist/windows-amd64/**
# ROCm generation step
generate-windows-rocm:
@@ -189,7 +171,6 @@ jobs:
name: go generate
env:
OLLAMA_SKIP_CPU_GENERATE: '1'
# TODO - do we need any artifacts?
# CUDA generation step
generate-windows-cuda:
@@ -231,7 +212,6 @@ jobs:
go generate -x ./...
env:
OLLAMA_SKIP_CPU_GENERATE: '1'
# TODO - do we need any artifacts?
lint:
strategy:
@@ -263,14 +243,6 @@ jobs:
arm64) echo ARCH=arm64 ;;
esac >>$GITHUB_ENV
shell: bash
- run: |
mkdir -p llm/build/linux/$ARCH/stub/bin
touch llm/build/linux/$ARCH/stub/bin/ollama_llama_server
if: ${{ startsWith(matrix.os, 'ubuntu-') }}
- run: |
mkdir -p llm/build/darwin/$ARCH/stub/bin
touch llm/build/darwin/$ARCH/stub/bin/ollama_llama_server
if: ${{ startsWith(matrix.os, 'macos-') }}
- uses: golangci/golangci-lint-action@v6
with:
args: --timeout 8m0s -v
@@ -301,23 +273,10 @@ jobs:
cache: true
- run: |
case ${{ matrix.arch }} in
amd64) echo ARCH=x86_64 ;;
amd64) echo ARCH=amd64 ;;
arm64) echo ARCH=arm64 ;;
esac >>$GITHUB_ENV
shell: bash
- run: |
mkdir -p llm/build/linux/$ARCH/stub/bin
touch llm/build/linux/$ARCH/stub/bin/ollama_llama_server
if: ${{ startsWith(matrix.os, 'ubuntu-') }}
- run: |
mkdir -p llm/build/darwin/$ARCH/stub/bin
touch llm/build/darwin/$ARCH/stub/bin/ollama_llama_server
if: ${{ startsWith(matrix.os, 'macos-') }}
shell: bash
- run: go generate ./...
- run: go build
- run: go test -v ./...
- uses: actions/upload-artifact@v4
with:
name: ${{ matrix.os }}-binaries
path: ollama

3
.gitignore vendored
View File

@@ -12,4 +12,7 @@ ggml-metal.metal
test_data
*.crt
llm/build
build/*/*/*
!build/**/placeholder
llama/build
__debug_bin*

View File

@@ -32,6 +32,10 @@ linters:
linters-settings:
gci:
sections: [standard, default, localmodule]
staticcheck:
checks:
- all
- -SA1019 # omit Deprecated check
severity:
default-severity: error
rules:

View File

@@ -18,7 +18,7 @@ See the [development documentation](./docs/development.md) for instructions on h
* New features: new features (e.g. API fields, environment variables) add surface area to Ollama and make it harder to maintain in the long run as they cannot be removed without potentially breaking users in the future.
* Refactoring: large code improvements are important, but can be harder or take longer to review and merge.
* Documentation: small updates to fill in or dorrect missing documentation is helpful, however large documentation additions can be hard to maintain over time.
* Documentation: small updates to fill in or correct missing documentation is helpful, however large documentation additions can be hard to maintain over time.
### Issues that may not be accepted

View File

@@ -16,12 +16,12 @@ FROM --platform=linux/amd64 nvidia/cuda:$CUDA_VERSION_11-devel-centos7 AS cuda-1
ARG CMAKE_VERSION
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
ENV PATH=/opt/rh/devtoolset-10/root/usr/bin:$PATH
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
ARG CGO_CFLAGS
ARG CUDA_V11_ARCHITECTURES
ENV GOARCH amd64
ENV GOARCH=amd64
RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_SKIP_STATIC_GENERATE=1 \
OLLAMA_SKIP_CPU_GENERATE=1 \
@@ -33,12 +33,12 @@ FROM --platform=linux/amd64 nvidia/cuda:$CUDA_VERSION_12-devel-centos7 AS cuda-1
ARG CMAKE_VERSION
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
ENV PATH=/opt/rh/devtoolset-10/root/usr/bin:$PATH
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
ARG CGO_CFLAGS
ARG CUDA_V12_ARCHITECTURES
ENV GOARCH amd64
ENV GOARCH=amd64
RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_SKIP_STATIC_GENERATE=1 \
OLLAMA_SKIP_CPU_GENERATE=1 \
@@ -47,32 +47,32 @@ RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_CUSTOM_CUDA_DEFS="-DGGML_CUDA_USE_GRAPHS=on" \
bash gen_linux.sh
FROM --platform=linux/arm64 nvidia/cuda:$CUDA_VERSION_11-devel-rockylinux8 AS cuda-11-build-server-arm64
FROM --platform=linux/arm64 nvidia/cuda:$CUDA_VERSION_11-devel-rockylinux8 AS cuda-11-build-runner-arm64
ARG CMAKE_VERSION
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
ENV PATH /opt/rh/gcc-toolset-10/root/usr/bin:$PATH
ENV PATH=/opt/rh/gcc-toolset-10/root/usr/bin:$PATH
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
ARG CGO_CFLAGS
ARG CUDA_V11_ARCHITECTURES
ENV GOARCH arm64
ENV GOARCH=arm64
RUN OLLAMA_SKIP_STATIC_GENERATE=1 \
OLLAMA_SKIP_CPU_GENERATE=1 \
CMAKE_CUDA_ARCHITECTURES="${CUDA_V11_ARCHITECTURES}" \
CUDA_VARIANT="_v11" \
bash gen_linux.sh
FROM --platform=linux/arm64 nvidia/cuda:$CUDA_VERSION_12-devel-rockylinux8 AS cuda-12-build-server-arm64
FROM --platform=linux/arm64 nvidia/cuda:$CUDA_VERSION_12-devel-rockylinux8 AS cuda-12-build-runner-arm64
ARG CMAKE_VERSION
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
ENV PATH /opt/rh/gcc-toolset-10/root/usr/bin:$PATH
ENV PATH=/opt/rh/gcc-toolset-10/root/usr/bin:$PATH
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
ARG CGO_CFLAGS
ARG CUDA_V12_ARCHITECTURES
ENV GOARCH arm64
ENV GOARCH=arm64
RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_SKIP_STATIC_GENERATE=1 \
OLLAMA_SKIP_CPU_GENERATE=1 \
@@ -86,13 +86,13 @@ FROM --platform=linux/amd64 rocm/dev-centos-7:${ROCM_VERSION}-complete AS rocm-b
ARG CMAKE_VERSION
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
ENV LIBRARY_PATH /opt/amdgpu/lib64
ENV PATH=/opt/rh/devtoolset-10/root/usr/bin:$PATH
ENV LIBRARY_PATH=/opt/amdgpu/lib64
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
ARG CGO_CFLAGS
ARG AMDGPU_TARGETS
ENV GOARCH amd64
ENV GOARCH=amd64
RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_SKIP_CPU_GENERATE=1 bash gen_linux.sh
RUN mkdir -p ../../dist/linux-amd64-rocm/lib/ollama && \
@@ -103,11 +103,11 @@ ARG CMAKE_VERSION
ARG GOLANG_VERSION
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
ENV PATH=/opt/rh/devtoolset-10/root/usr/bin:$PATH
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
ARG OLLAMA_CUSTOM_CPU_DEFS
ARG CGO_CFLAGS
ENV GOARCH amd64
ENV GOARCH=amd64
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
FROM --platform=linux/amd64 cpu-builder-amd64 AS static-build-amd64
@@ -128,11 +128,11 @@ ARG CMAKE_VERSION
ARG GOLANG_VERSION
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
ENV PATH /opt/rh/gcc-toolset-10/root/usr/bin:$PATH
ENV PATH=/opt/rh/gcc-toolset-10/root/usr/bin:$PATH
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
ARG OLLAMA_CUSTOM_CPU_DEFS
ARG CGO_CFLAGS
ENV GOARCH arm64
ENV GOARCH=arm64
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
FROM --platform=linux/arm64 cpu-builder-arm64 AS static-build-arm64
@@ -143,71 +143,112 @@ RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu" bash gen_linux.sh
# Intermediate stage used for ./scripts/build_linux.sh
# Intermediate stages used for ./scripts/build_linux.sh
FROM --platform=linux/amd64 cpu-build-amd64 AS build-amd64
ENV CGO_ENABLED 1
ENV CGO_ENABLED=1
WORKDIR /go/src/github.com/ollama/ollama
COPY . .
COPY --from=static-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
COPY --from=cpu_avx-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
COPY --from=cpu_avx2-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
COPY --from=static-build-amd64 /go/src/github.com/ollama/ollama/llm/build/ llm/build/
COPY --from=cpu_avx-build-amd64 /go/src/github.com/ollama/ollama/build/ build/
COPY --from=cpu_avx2-build-amd64 /go/src/github.com/ollama/ollama/build/ build/
COPY --from=cuda-11-build-amd64 /go/src/github.com/ollama/ollama/dist/ dist/
COPY --from=cuda-11-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
COPY --from=cuda-11-build-amd64 /go/src/github.com/ollama/ollama/build/ build/
COPY --from=cuda-12-build-amd64 /go/src/github.com/ollama/ollama/dist/ dist/
COPY --from=cuda-12-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
COPY --from=cuda-12-build-amd64 /go/src/github.com/ollama/ollama/build/ build/
COPY --from=rocm-build-amd64 /go/src/github.com/ollama/ollama/dist/ dist/
COPY --from=rocm-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
COPY --from=rocm-build-amd64 /go/src/github.com/ollama/ollama/build/ build/
ARG GOFLAGS
ARG CGO_CFLAGS
RUN --mount=type=cache,target=/root/.ccache \
go build -trimpath -o dist/linux-amd64/bin/ollama .
RUN cd dist/linux-$GOARCH && \
tar --exclude runners -cf - . | pigz --best > ../ollama-linux-$GOARCH.tgz
RUN cd dist/linux-$GOARCH-rocm && \
tar -cf - . | pigz --best > ../ollama-linux-$GOARCH-rocm.tgz
FROM --platform=linux/arm64 cpu-build-arm64 AS build-arm64
ENV CGO_ENABLED=1
ARG GOLANG_VERSION
WORKDIR /go/src/github.com/ollama/ollama
COPY . .
COPY --from=static-build-arm64 /go/src/github.com/ollama/ollama/llm/build/ llm/build/
COPY --from=cuda-11-build-runner-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
COPY --from=cuda-11-build-runner-arm64 /go/src/github.com/ollama/ollama/build/ build/
COPY --from=cuda-12-build-runner-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
COPY --from=cuda-12-build-runner-arm64 /go/src/github.com/ollama/ollama/build/ build/
ARG GOFLAGS
ARG CGO_CFLAGS
RUN --mount=type=cache,target=/root/.ccache \
go build -trimpath -o dist/linux-arm64/bin/ollama .
RUN cd dist/linux-$GOARCH && \
tar --exclude runners -cf - . | pigz --best > ../ollama-linux-$GOARCH.tgz
FROM --platform=linux/amd64 scratch AS dist-amd64
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/ollama-linux-*.tgz /
FROM --platform=linux/arm64 scratch AS dist-arm64
COPY --from=build-arm64 /go/src/github.com/ollama/ollama/dist/ollama-linux-*.tgz /
FROM dist-$TARGETARCH as dist
# Optimized container images do not cary nested payloads
FROM --platform=linux/amd64 static-build-amd64 AS container-build-amd64
WORKDIR /go/src/github.com/ollama/ollama
COPY . .
ARG GOFLAGS
ARG CGO_CFLAGS
RUN --mount=type=cache,target=/root/.ccache \
go build -trimpath -o dist/linux-amd64/bin/ollama .
# Intermediate stage used for ./scripts/build_linux.sh
FROM --platform=linux/arm64 cpu-build-arm64 AS build-arm64
ENV CGO_ENABLED 1
ARG GOLANG_VERSION
FROM --platform=linux/arm64 static-build-arm64 AS container-build-arm64
WORKDIR /go/src/github.com/ollama/ollama
COPY . .
COPY --from=static-build-arm64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
COPY --from=cuda-11-build-server-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
COPY --from=cuda-11-build-server-arm64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
COPY --from=cuda-12-build-server-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
COPY --from=cuda-12-build-server-arm64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
ARG GOFLAGS
ARG CGO_CFLAGS
RUN --mount=type=cache,target=/root/.ccache \
go build -trimpath -o dist/linux-arm64/bin/ollama .
# Strip out ROCm dependencies to keep the primary image lean
FROM --platform=linux/amd64 ubuntu:22.04 as amd64-libs-without-rocm
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /scratch/
RUN cd /scratch/ollama/ && rm -rf rocblas libamd* libdrm* libroc* libhip* libhsa*
FROM --platform=linux/amd64 ubuntu:22.04 AS runtime-amd64
RUN apt-get update && \
apt-get install -y ca-certificates && \
apt-get clean && rm -rf /var/lib/apt/lists/*
COPY --from=container-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/bin/ /bin/
COPY --from=cpu-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
COPY --from=cpu_avx-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
COPY --from=cpu_avx2-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
COPY --from=cuda-11-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
COPY --from=cuda-12-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
# Runtime stages
FROM --platform=linux/amd64 ubuntu:22.04 as runtime-amd64
COPY --from=amd64-libs-without-rocm /scratch/ /lib/
RUN apt-get update && apt-get install -y ca-certificates
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/bin/ /bin/
FROM --platform=linux/arm64 ubuntu:22.04 AS runtime-arm64
RUN apt-get update && \
apt-get install -y ca-certificates && \
apt-get clean && rm -rf /var/lib/apt/lists/*
COPY --from=container-build-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/bin/ /bin/
COPY --from=cpu-build-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
COPY --from=cuda-11-build-runner-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
COPY --from=cuda-12-build-runner-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
FROM --platform=linux/arm64 ubuntu:22.04 as runtime-arm64
COPY --from=build-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
RUN apt-get update && apt-get install -y ca-certificates
COPY --from=build-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/bin/ /bin/
# Radeon images are much larger so we keep it distinct from the CPU/CUDA image
FROM --platform=linux/amd64 rocm/dev-centos-7:${ROCM_VERSION}-complete as runtime-rocm
RUN update-pciids
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/bin/ /bin/
RUN ln -s /opt/rocm/lib /lib/ollama
# ROCm libraries larger so we keep it distinct from the CPU/CUDA image
FROM --platform=linux/amd64 ubuntu:22.04 AS runtime-rocm
# Frontload the rocm libraries which are large, and rarely change to increase chance of a common layer
# across releases
COPY --from=rocm-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64-rocm/lib/ /lib/
RUN apt-get update && \
apt-get install -y ca-certificates && \
apt-get clean && rm -rf /var/lib/apt/lists/*
COPY --from=container-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/bin/ /bin/
COPY --from=cpu-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
COPY --from=cpu_avx-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
COPY --from=cpu_avx2-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
COPY --from=rocm-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
EXPOSE 11434
ENV OLLAMA_HOST 0.0.0.0
ENV OLLAMA_HOST=0.0.0.0
ENTRYPOINT ["/bin/ollama"]
CMD ["serve"]
FROM runtime-$TARGETARCH
EXPOSE 11434
ENV OLLAMA_HOST 0.0.0.0
ENV OLLAMA_HOST=0.0.0.0
ENV PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility

View File

@@ -197,6 +197,18 @@ ollama show llama3.1
ollama list
```
### List which models are currently loaded
```
ollama ps
```
### Stop a model which is currently running
```
ollama stop llama3.1
```
### Start Ollama
`ollama serve` is used when you want to start ollama without running the desktop application.
@@ -295,13 +307,25 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Olpaka](https://github.com/Otacon/olpaka) (User-friendly Flutter Web App for Ollama)
- [OllamaSpring](https://github.com/CrazyNeil/OllamaSpring) (Ollama Client for macOS)
- [LLocal.in](https://github.com/kartikm7/llocal) (Easy to use Electron Desktop Client for Ollama)
- [AiLama](https://github.com/zeyoyt/ailama) (A Discord User App that allows you to interact with Ollama anywhere in discord )
- [Ollama with Google Mesop](https://github.com/rapidarchitect/ollama_mesop/) (Mesop Chat Client implementation with Ollama)
- [Painting Droid](https://github.com/mateuszmigas/painting-droid) (Painting app with AI integrations)
- [Kerlig AI](https://www.kerlig.com/) (AI writing assistant for macOS)
- [AI Studio](https://github.com/MindWorkAI/AI-Studio)
- [Sidellama](https://github.com/gyopak/sidellama) (browser-based LLM client)
- [LLMStack](https://github.com/trypromptly/LLMStack) (No-code multi-agent framework to build LLM agents and workflows)
- [BoltAI for Mac](https://boltai.com) (AI Chat Client for Mac)
- [Harbor](https://github.com/av/harbor) (Containerized LLM Toolkit with Ollama as default backend)
- [Go-CREW](https://www.jonathanhecl.com/go-crew/) (Powerful Offline RAG in Golang)
- [PartCAD](https://github.com/openvmp/partcad/) (CAD model generation with OpenSCAD and CadQuery)
- [Ollama4j Web UI](https://github.com/ollama4j/ollama4j-web-ui) - Java-based Web UI for Ollama built with Vaadin, Spring Boot and Ollama4j
- [PyOllaMx](https://github.com/kspviswa/pyOllaMx) - macOS application capable of chatting with both Ollama and Apple MLX models.
- [Claude Dev](https://github.com/saoudrizwan/claude-dev) - VSCode extension for multi-file/whole-repo coding
- [Cherry Studio](https://github.com/kangfenmao/cherry-studio) (Desktop client with Ollama support)
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)
- [Archyve](https://github.com/nickthecook/archyve) (RAG-enabling document library)
- [crewAI with Mesop](https://github.com/rapidarchitect/ollama-crew-mesop) (Mesop Web Interface to run crewAI with Ollama)
- [LLMChat](https://github.com/trendy-design/llmchat) (Privacy focused, 100% local, intuitive all-in-one chat interface)
### Terminal
@@ -326,6 +350,11 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [podman-ollama](https://github.com/ericcurtin/podman-ollama)
- [gollama](https://github.com/sammcj/gollama)
- [Ollama eBook Summary](https://github.com/cognitivetech/ollama-ebook-summary/)
- [Ollama Mixture of Experts (MOE) in 50 lines of code](https://github.com/rapidarchitect/ollama_moe)
- [vim-intelligence-bridge](https://github.com/pepo-ec/vim-intelligence-bridge) Simple interaction of "Ollama" with the Vim editor
### Apple Vision Pro
- [Enchanted](https://github.com/AugustDev/enchanted)
### Database
@@ -335,23 +364,28 @@ See the [API documentation](./docs/api.md) for all endpoints.
### Package managers
- [Pacman](https://archlinux.org/packages/extra/x86_64/ollama/)
- [Gentoo](https://github.com/gentoo/guru/tree/master/app-misc/ollama)
- [Helm Chart](https://artifacthub.io/packages/helm/ollama-helm/ollama)
- [Guix channel](https://codeberg.org/tusharhero/ollama-guix)
- [Nix package](https://search.nixos.org/packages?channel=24.05&show=ollama&from=0&size=50&sort=relevance&type=packages&query=ollama)
- [Flox](https://flox.dev/blog/ollama-part-one)
### Libraries
- [LangChain](https://python.langchain.com/docs/integrations/llms/ollama) and [LangChain.js](https://js.langchain.com/docs/modules/model_io/models/llms/integrations/ollama) with [example](https://js.langchain.com/docs/use_cases/question_answering/local_retrieval_qa)
- [Firebase Genkit](https://firebase.google.com/docs/genkit/plugins/ollama)
- [crewAI](https://github.com/crewAIInc/crewAI)
- [LangChainGo](https://github.com/tmc/langchaingo/) with [example](https://github.com/tmc/langchaingo/tree/main/examples/ollama-completion-example)
- [LangChain4j](https://github.com/langchain4j/langchain4j) with [example](https://github.com/langchain4j/langchain4j-examples/tree/main/ollama-examples/src/main/java)
- [LangChainRust](https://github.com/Abraxas-365/langchain-rust) with [example](https://github.com/Abraxas-365/langchain-rust/blob/main/examples/llm_ollama.rs)
- [LlamaIndex](https://gpt-index.readthedocs.io/en/stable/examples/llm/ollama.html)
- [LlamaIndex](https://docs.llamaindex.ai/en/stable/examples/llm/ollama/) and [LlamaIndexTS](https://ts.llamaindex.ai/modules/llms/available_llms/ollama)
- [LiteLLM](https://github.com/BerriAI/litellm)
- [OllamaFarm for Go](https://github.com/presbrey/ollamafarm)
- [OllamaSharp for .NET](https://github.com/awaescher/OllamaSharp)
- [Ollama for Ruby](https://github.com/gbaptista/ollama-ai)
- [Ollama-rs for Rust](https://github.com/pepperoni21/ollama-rs)
- [Ollama-hpp for C++](https://github.com/jmont-dev/ollama-hpp)
- [Ollama4j for Java](https://github.com/amithkoujalgi/ollama4j)
- [Ollama4j for Java](https://github.com/ollama4j/ollama4j)
- [ModelFusion Typescript Library](https://modelfusion.dev/integration/model-provider/ollama)
- [OllamaKit for Swift](https://github.com/kevinhermawan/OllamaKit)
- [Ollama for Dart](https://github.com/breitburg/dart-ollama)
@@ -368,11 +402,17 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Portkey](https://portkey.ai/docs/welcome/integration-guides/ollama)
- [PromptingTools.jl](https://github.com/svilupp/PromptingTools.jl) with an [example](https://svilupp.github.io/PromptingTools.jl/dev/examples/working_with_ollama)
- [LlamaScript](https://github.com/Project-Llama/llamascript)
- [Gollm](https://docs.gollm.co/examples/ollama-example)
- [Ollamaclient for Golang](https://github.com/xyproto/ollamaclient)
- [High-level function abstraction in Go](https://gitlab.com/tozd/go/fun)
- [Ollama PHP](https://github.com/ArdaGnsrn/ollama-php)
- [Agents-Flex for Java](https://github.com/agents-flex/agents-flex) with [example](https://github.com/agents-flex/agents-flex/tree/main/agents-flex-llm/agents-flex-llm-ollama/src/test/java/com/agentsflex/llm/ollama)
### Mobile
- [Enchanted](https://github.com/AugustDev/enchanted)
- [Maid](https://github.com/Mobile-Artificial-Intelligence/maid)
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)
### Extensions & Plugins
@@ -397,11 +437,16 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [twinny](https://github.com/rjmacarthy/twinny) (Copilot and Copilot chat alternative using Ollama)
- [Wingman-AI](https://github.com/RussellCanfield/wingman-ai) (Copilot code and chat alternative using Ollama and Hugging Face)
- [Page Assist](https://github.com/n4ze3m/page-assist) (Chrome Extension)
- [Plasmoid Ollama Control](https://github.com/imoize/plasmoid-ollamacontrol) (KDE Plasma extension that allows you to quickly manage/control Ollama model)
- [AI Telegram Bot](https://github.com/tusharhero/aitelegrambot) (Telegram bot using Ollama in backend)
- [AI ST Completion](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) (Sublime Text 4 AI assistant plugin with Ollama support)
- [Discord-Ollama Chat Bot](https://github.com/kevinthedang/discord-ollama) (Generalized TypeScript Discord Bot w/ Tuning Documentation)
- [Discord AI chat/moderation bot](https://github.com/rapmd73/Companion) Chat/moderation bot written in python. Uses Ollama to create personalities.
- [Headless Ollama](https://github.com/nischalj10/headless-ollama) (Scripts to automatically install ollama client & models on any OS for apps that depends on ollama server)
- [vnc-lm](https://github.com/jk011ru/vnc-lm) (A containerized Discord bot with support for attachments and web links)
- [LSP-AI](https://github.com/SilasMarvin/lsp-ai) (Open-source language server for AI-powered functionality)
- [QodeAssist](https://github.com/Palm1r/QodeAssist) (AI-powered coding assistant plugin for Qt Creator)
- [Obsidian Quiz Generator plugin](https://github.com/ECuiDev/obsidian-quiz-generator)
### Supported backends

View File

@@ -296,15 +296,17 @@ type EmbeddingResponse struct {
// CreateRequest is the request passed to [Client.Create].
type CreateRequest struct {
Model string `json:"model"`
Path string `json:"path"`
Modelfile string `json:"modelfile"`
Stream *bool `json:"stream,omitempty"`
Quantize string `json:"quantize,omitempty"`
// Name is deprecated, see Model
// Deprecated: set the model name with Model instead
Name string `json:"name"`
// Quantization is deprecated, see Quantize
// Deprecated: set the file content with Modelfile instead
Path string `json:"path"`
// Deprecated: use Quantize instead
Quantization string `json:"quantization,omitempty"`
}
@@ -312,7 +314,7 @@ type CreateRequest struct {
type DeleteRequest struct {
Model string `json:"model"`
// Name is deprecated, see Model
// Deprecated: set the model name with Model instead
Name string `json:"name"`
}
@@ -327,7 +329,7 @@ type ShowRequest struct {
Options map[string]interface{} `json:"options"`
// Name is deprecated, see Model
// Deprecated: set the model name with Model instead
Name string `json:"name"`
}
@@ -359,7 +361,7 @@ type PullRequest struct {
Password string `json:"password"`
Stream *bool `json:"stream,omitempty"`
// Name is deprecated, see Model
// Deprecated: set the model name with Model instead
Name string `json:"name"`
}
@@ -380,7 +382,7 @@ type PushRequest struct {
Password string `json:"password"`
Stream *bool `json:"stream,omitempty"`
// Name is deprecated, see Model
// Deprecated: set the model name with Model instead
Name string `json:"name"`
}

View File

@@ -28,8 +28,8 @@ AppPublisher={#MyAppPublisher}
AppPublisherURL={#MyAppURL}
AppSupportURL={#MyAppURL}
AppUpdatesURL={#MyAppURL}
ArchitecturesAllowed=x64 arm64
ArchitecturesInstallIn64BitMode=x64 arm64
ArchitecturesAllowed=x64compatible arm64
ArchitecturesInstallIn64BitMode=x64compatible arm64
DefaultDirName={localappdata}\Programs\{#MyAppName}
DefaultGroupName={#MyAppName}
DisableProgramGroupPage=yes
@@ -48,6 +48,7 @@ OutputDir=..\dist\
SetupLogging=yes
CloseApplications=yes
RestartApplications=no
RestartIfNeededByRun=no
; https://jrsoftware.org/ishelp/index.php?topic=setup_wizardimagefile
WizardSmallImageFile=.\assets\setup.bmp
@@ -86,12 +87,21 @@ Name: "english"; MessagesFile: "compiler:Default.isl"
DialogFontSize=12
[Files]
Source: ".\app.exe"; DestDir: "{app}"; DestName: "{#MyAppExeName}" ; Flags: ignoreversion 64bit
Source: "..\ollama.exe"; DestDir: "{app}\bin"; Flags: ignoreversion 64bit
Source: "..\dist\windows-{#ARCH}\lib\ollama\runners\*"; DestDir: "{app}\lib\ollama\runners"; Flags: ignoreversion 64bit recursesubdirs
#if DirExists("..\dist\windows-amd64")
Source: "..\dist\windows-amd64-app.exe"; DestDir: "{app}"; DestName: "{#MyAppExeName}" ;Check: not IsArm64(); Flags: ignoreversion 64bit
Source: "..\dist\windows-amd64\ollama.exe"; DestDir: "{app}"; Check: not IsArm64(); Flags: ignoreversion 64bit
Source: "..\dist\windows-amd64\lib\ollama\*"; DestDir: "{app}\lib\ollama\"; Check: not IsArm64(); Flags: ignoreversion 64bit recursesubdirs
#endif
#if DirExists("..\dist\windows-arm64")
Source: "..\dist\windows-arm64\vc_redist.arm64.exe"; DestDir: "{tmp}"; Check: IsArm64() and vc_redist_needed(); Flags: deleteafterinstall
Source: "..\dist\windows-arm64-app.exe"; DestDir: "{app}"; DestName: "{#MyAppExeName}" ;Check: IsArm64(); Flags: ignoreversion 64bit
Source: "..\dist\windows-arm64\ollama.exe"; DestDir: "{app}"; Check: IsArm64(); Flags: ignoreversion 64bit
Source: "..\dist\windows-arm64\lib\ollama\*"; DestDir: "{app}\lib\ollama\"; Check: IsArm64(); Flags: ignoreversion 64bit recursesubdirs
#endif
Source: "..\dist\ollama_welcome.ps1"; DestDir: "{app}"; Flags: ignoreversion
Source: ".\assets\app.ico"; DestDir: "{app}"; Flags: ignoreversion
Source: "..\dist\windows-amd64\lib\ollama\*"; DestDir: "{app}\lib\ollama\"; Flags: ignoreversion recursesubdirs
[Icons]
Name: "{group}\{#MyAppName}"; Filename: "{app}\{#MyAppExeName}"; IconFilename: "{app}\app.ico"
@@ -99,7 +109,10 @@ Name: "{userstartup}\{#MyAppName}"; Filename: "{app}\{#MyAppExeName}"; IconFilen
Name: "{userprograms}\{#MyAppName}"; Filename: "{app}\{#MyAppExeName}"; IconFilename: "{app}\app.ico"
[Run]
Filename: "{cmd}"; Parameters: "/C set PATH={app}\bin;%PATH% & ""{app}\{#MyAppExeName}"""; Flags: postinstall nowait runhidden
#if DirExists("..\dist\windows-arm64")
Filename: "{tmp}\vc_redist.arm64.exe"; Parameters: "/install /passive /norestart"; Check: IsArm64() and vc_redist_needed(); StatusMsg: "Installing VC++ Redistributables..."; Flags: waituntilterminated
#endif
Filename: "{cmd}"; Parameters: "/C set PATH={app};%PATH% & ""{app}\{#MyAppExeName}"""; Flags: postinstall nowait runhidden
[UninstallRun]
; Filename: "{cmd}"; Parameters: "/C ""taskkill /im ''{#MyAppExeName}'' /f /t"; Flags: runhidden
@@ -134,8 +147,8 @@ SetupAppRunningError=Another Ollama installer is running.%n%nPlease cancel or fi
[Registry]
Root: HKCU; Subkey: "Environment"; \
ValueType: expandsz; ValueName: "Path"; ValueData: "{olddata};{app}\bin"; \
Check: NeedsAddPath('{app}\bin')
ValueType: expandsz; ValueName: "Path"; ValueData: "{olddata};{app}"; \
Check: NeedsAddPath('{app}')
[Code]
@@ -154,3 +167,39 @@ begin
{ Pos() returns 0 if not found }
Result := Pos(';' + ExpandConstant(Param) + ';', ';' + OrigPath + ';') = 0;
end;
{ --- VC Runtime libraries discovery code - Only install vc_redist if it isn't already installed ----- }
const VCRTL_MIN_V1 = 14;
const VCRTL_MIN_V2 = 40;
const VCRTL_MIN_V3 = 33807;
const VCRTL_MIN_V4 = 0;
// check if the minimum required vc redist is installed (by looking the registry)
function vc_redist_needed (): Boolean;
var
sRegKey: string;
v1: Cardinal;
v2: Cardinal;
v3: Cardinal;
v4: Cardinal;
begin
sRegKey := 'SOFTWARE\WOW6432Node\Microsoft\VisualStudio\14.0\VC\Runtimes\arm64';
if (RegQueryDWordValue (HKEY_LOCAL_MACHINE, sRegKey, 'Major', v1) and
RegQueryDWordValue (HKEY_LOCAL_MACHINE, sRegKey, 'Minor', v2) and
RegQueryDWordValue (HKEY_LOCAL_MACHINE, sRegKey, 'Bld', v3) and
RegQueryDWordValue (HKEY_LOCAL_MACHINE, sRegKey, 'RBld', v4)) then
begin
Log ('VC Redist version: ' + IntToStr (v1) +
'.' + IntToStr (v2) + '.' + IntToStr (v3) +
'.' + IntToStr (v4));
{ Version info was found. Return true if later or equal to our
minimal required version RTL_MIN_Vx }
Result := not (
(v1 > VCRTL_MIN_V1) or ((v1 = VCRTL_MIN_V1) and
((v2 > VCRTL_MIN_V2) or ((v2 = VCRTL_MIN_V2) and
((v3 > VCRTL_MIN_V3) or ((v3 = VCRTL_MIN_V3) and
(v4 >= VCRTL_MIN_V4)))))));
end
else
Result := TRUE;
end;

View File

@@ -0,0 +1 @@
This is here to make sure the build/ directory exists for the go:embed command

View File

@@ -0,0 +1 @@
This is here to make sure the build/ directory exists for the go:embed command

View File

@@ -0,0 +1,8 @@
package build
import "embed"
// Darwin payloads separated by architecture to avoid duplicate payloads when cross compiling
//go:embed darwin/amd64/*
var EmbedFS embed.FS

View File

@@ -0,0 +1,8 @@
package build
import "embed"
// Darwin payloads separated by architecture to avoid duplicate payloads when cross compiling
//go:embed darwin/arm64/*
var EmbedFS embed.FS

6
build/embed_linux.go Normal file
View File

@@ -0,0 +1,6 @@
package build
import "embed"
//go:embed linux/*
var EmbedFS embed.FS

8
build/embed_unused.go Normal file
View File

@@ -0,0 +1,8 @@
//go:build !linux && !darwin
package build
import "embed"
// unused on windows
var EmbedFS embed.FS

View File

@@ -0,0 +1 @@
This is here to make sure the build/ directory exists for the go:embed command

View File

@@ -0,0 +1 @@
This is here to make sure the build/ directory exists for the go:embed command

View File

@@ -2,6 +2,7 @@ package cmd
import (
"archive/zip"
"bufio"
"bytes"
"context"
"crypto/ed25519"
@@ -21,6 +22,7 @@ import (
"regexp"
"runtime"
"slices"
"strconv"
"strings"
"sync/atomic"
"syscall"
@@ -344,6 +346,39 @@ func (w *progressWriter) Write(p []byte) (n int, err error) {
return len(p), nil
}
func loadOrUnloadModel(cmd *cobra.Command, opts *runOptions) error {
p := progress.NewProgress(os.Stderr)
defer p.StopAndClear()
spinner := progress.NewSpinner("")
p.Add("", spinner)
client, err := api.ClientFromEnvironment()
if err != nil {
return err
}
req := &api.GenerateRequest{
Model: opts.Model,
KeepAlive: opts.KeepAlive,
}
return client.Generate(cmd.Context(), req, func(api.GenerateResponse) error { return nil })
}
func StopHandler(cmd *cobra.Command, args []string) error {
opts := &runOptions{
Model: args[0],
KeepAlive: &api.Duration{Duration: 0},
}
if err := loadOrUnloadModel(cmd, opts); err != nil {
if strings.Contains(err.Error(), "not found") {
return fmt.Errorf("couldn't find model \"%s\" to stop", args[0])
}
}
return nil
}
func RunHandler(cmd *cobra.Command, args []string) error {
interactive := true
@@ -422,7 +457,7 @@ func RunHandler(cmd *cobra.Command, args []string) error {
opts.ParentModel = info.Details.ParentModel
if interactive {
if err := loadModel(cmd, &opts); err != nil {
if err := loadOrUnloadModel(cmd, &opts); err != nil {
return err
}
@@ -578,7 +613,7 @@ func ListHandler(cmd *cobra.Command, args []string) error {
table.SetHeaderLine(false)
table.SetBorder(false)
table.SetNoWhiteSpace(true)
table.SetTablePadding("\t")
table.SetTablePadding(" ")
table.AppendBulk(data)
table.Render()
@@ -613,7 +648,15 @@ func ListRunningHandler(cmd *cobra.Command, args []string) error {
cpuPercent := math.Round(float64(sizeCPU) / float64(m.Size) * 100)
procStr = fmt.Sprintf("%d%%/%d%% CPU/GPU", int(cpuPercent), int(100-cpuPercent))
}
data = append(data, []string{m.Name, m.Digest[:12], format.HumanBytes(m.Size), procStr, format.HumanTime(m.ExpiresAt, "Never")})
var until string
delta := time.Since(m.ExpiresAt)
if delta > 0 {
until = "Stopping..."
} else {
until = format.HumanTime(m.ExpiresAt, "Never")
}
data = append(data, []string{m.Name, m.Digest[:12], format.HumanBytes(m.Size), procStr, until})
}
}
@@ -624,7 +667,7 @@ func ListRunningHandler(cmd *cobra.Command, args []string) error {
table.SetHeaderLine(false)
table.SetBorder(false)
table.SetNoWhiteSpace(true)
table.SetTablePadding("\t")
table.SetTablePadding(" ")
table.AppendBulk(data)
table.Render()
@@ -720,122 +763,89 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
return nil
}
showInfo(resp)
return nil
return showInfo(resp, os.Stdout)
}
func showInfo(resp *api.ShowResponse) {
arch := resp.ModelInfo["general.architecture"].(string)
func showInfo(resp *api.ShowResponse, w io.Writer) error {
tableRender := func(header string, rows func() [][]string) {
fmt.Fprintln(w, " ", header)
table := tablewriter.NewWriter(w)
table.SetAlignment(tablewriter.ALIGN_LEFT)
table.SetBorder(false)
table.SetNoWhiteSpace(true)
table.SetTablePadding(" ")
modelData := [][]string{
{"arch", arch},
{"parameters", resp.Details.ParameterSize},
{"quantization", resp.Details.QuantizationLevel},
{"context length", fmt.Sprintf("%v", resp.ModelInfo[fmt.Sprintf("%s.context_length", arch)].(float64))},
{"embedding length", fmt.Sprintf("%v", resp.ModelInfo[fmt.Sprintf("%s.embedding_length", arch)].(float64))},
switch header {
case "Template", "System", "License":
table.SetColWidth(100)
}
table.AppendBulk(rows())
table.Render()
fmt.Fprintln(w)
}
mainTableData := [][]string{
{"Model"},
{renderSubTable(modelData, false)},
}
tableRender("Model", func() (rows [][]string) {
if resp.ModelInfo != nil {
arch := resp.ModelInfo["general.architecture"].(string)
rows = append(rows, []string{"", "architecture", arch})
rows = append(rows, []string{"", "parameters", format.HumanNumber(uint64(resp.ModelInfo["general.parameter_count"].(float64)))})
rows = append(rows, []string{"", "context length", strconv.FormatFloat(resp.ModelInfo[fmt.Sprintf("%s.context_length", arch)].(float64), 'f', -1, 64)})
rows = append(rows, []string{"", "embedding length", strconv.FormatFloat(resp.ModelInfo[fmt.Sprintf("%s.embedding_length", arch)].(float64), 'f', -1, 64)})
} else {
rows = append(rows, []string{"", "architecture", resp.Details.Family})
rows = append(rows, []string{"", "parameters", resp.Details.ParameterSize})
}
rows = append(rows, []string{"", "quantization", resp.Details.QuantizationLevel})
return
})
if resp.ProjectorInfo != nil {
projectorData := [][]string{
{"arch", "clip"},
{"parameters", format.HumanNumber(uint64(resp.ProjectorInfo["general.parameter_count"].(float64)))},
}
if projectorType, ok := resp.ProjectorInfo["clip.projector_type"]; ok {
projectorData = append(projectorData, []string{"projector type", projectorType.(string)})
}
projectorData = append(projectorData,
[]string{"embedding length", fmt.Sprintf("%v", resp.ProjectorInfo["clip.vision.embedding_length"].(float64))},
[]string{"projection dimensionality", fmt.Sprintf("%v", resp.ProjectorInfo["clip.vision.projection_dim"].(float64))},
)
mainTableData = append(mainTableData,
[]string{"Projector"},
[]string{renderSubTable(projectorData, false)},
)
tableRender("Projector", func() (rows [][]string) {
arch := resp.ProjectorInfo["general.architecture"].(string)
rows = append(rows, []string{"", "architecture", arch})
rows = append(rows, []string{"", "parameters", format.HumanNumber(uint64(resp.ProjectorInfo["general.parameter_count"].(float64)))})
rows = append(rows, []string{"", "embedding length", strconv.FormatFloat(resp.ProjectorInfo[fmt.Sprintf("%s.vision.embedding_length", arch)].(float64), 'f', -1, 64)})
rows = append(rows, []string{"", "dimensions", strconv.FormatFloat(resp.ProjectorInfo[fmt.Sprintf("%s.vision.projection_dim", arch)].(float64), 'f', -1, 64)})
return
})
}
if resp.Parameters != "" {
mainTableData = append(mainTableData, []string{"Parameters"}, []string{formatParams(resp.Parameters)})
tableRender("Parameters", func() (rows [][]string) {
scanner := bufio.NewScanner(strings.NewReader(resp.Parameters))
for scanner.Scan() {
if text := scanner.Text(); text != "" {
rows = append(rows, append([]string{""}, strings.Fields(text)...))
}
}
return
})
}
head := func(s string, n int) (rows [][]string) {
scanner := bufio.NewScanner(strings.NewReader(s))
for scanner.Scan() && (len(rows) < n || n < 0) {
if text := scanner.Text(); text != "" {
rows = append(rows, []string{"", strings.TrimSpace(text)})
}
}
return
}
if resp.System != "" {
mainTableData = append(mainTableData, []string{"System"}, []string{renderSubTable(twoLines(resp.System), true)})
tableRender("System", func() [][]string {
return head(resp.System, 2)
})
}
if resp.License != "" {
mainTableData = append(mainTableData, []string{"License"}, []string{renderSubTable(twoLines(resp.License), true)})
tableRender("License", func() [][]string {
return head(resp.License, 2)
})
}
table := tablewriter.NewWriter(os.Stdout)
table.SetAutoWrapText(false)
table.SetBorder(false)
table.SetAlignment(tablewriter.ALIGN_LEFT)
for _, v := range mainTableData {
table.Append(v)
}
table.Render()
}
func renderSubTable(data [][]string, file bool) string {
var buf bytes.Buffer
table := tablewriter.NewWriter(&buf)
table.SetAutoWrapText(!file)
table.SetBorder(false)
table.SetNoWhiteSpace(true)
table.SetTablePadding("\t")
table.SetAlignment(tablewriter.ALIGN_LEFT)
for _, v := range data {
table.Append(v)
}
table.Render()
renderedTable := buf.String()
lines := strings.Split(renderedTable, "\n")
for i, line := range lines {
lines[i] = "\t" + line
}
return strings.Join(lines, "\n")
}
func twoLines(s string) [][]string {
lines := strings.Split(s, "\n")
res := [][]string{}
count := 0
for _, line := range lines {
line = strings.TrimSpace(line)
if line != "" {
count++
res = append(res, []string{line})
if count == 2 {
return res
}
}
}
return res
}
func formatParams(s string) string {
lines := strings.Split(s, "\n")
table := [][]string{}
for _, line := range lines {
table = append(table, strings.Fields(line))
}
return renderSubTable(table, false)
return nil
}
func CopyHandler(cmd *cobra.Command, args []string) error {
@@ -1325,6 +1335,15 @@ func NewCLI() *cobra.Command {
runCmd.Flags().Bool("insecure", false, "Use an insecure registry")
runCmd.Flags().Bool("nowordwrap", false, "Don't wrap words to the next line automatically")
runCmd.Flags().String("format", "", "Response format (e.g. json)")
stopCmd := &cobra.Command{
Use: "stop MODEL",
Short: "Stop a running model",
Args: cobra.ExactArgs(1),
PreRunE: checkServerHeartbeat,
RunE: StopHandler,
}
serveCmd := &cobra.Command{
Use: "serve",
Aliases: []string{"start"},
@@ -1392,6 +1411,7 @@ func NewCLI() *cobra.Command {
createCmd,
showCmd,
runCmd,
stopCmd,
pullCmd,
pushCmd,
listCmd,
@@ -1418,6 +1438,8 @@ func NewCLI() *cobra.Command {
envVars["OLLAMA_TMPDIR"],
envVars["OLLAMA_FLASH_ATTENTION"],
envVars["OLLAMA_LLM_LIBRARY"],
envVars["OLLAMA_GPU_OVERHEAD"],
envVars["OLLAMA_LOAD_TIMEOUT"],
})
default:
appendEnvDocs(cmd, envs)
@@ -1429,6 +1451,7 @@ func NewCLI() *cobra.Command {
createCmd,
showCmd,
runCmd,
stopCmd,
pullCmd,
pushCmd,
listCmd,

206
cmd/cmd_test.go Normal file
View File

@@ -0,0 +1,206 @@
package cmd
import (
"bytes"
"os"
"path/filepath"
"testing"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/api"
)
func TestShowInfo(t *testing.T) {
t.Run("bare details", func(t *testing.T) {
var b bytes.Buffer
if err := showInfo(&api.ShowResponse{
Details: api.ModelDetails{
Family: "test",
ParameterSize: "7B",
QuantizationLevel: "FP16",
},
}, &b); err != nil {
t.Fatal(err)
}
expect := ` Model
architecture test
parameters 7B
quantization FP16
`
if diff := cmp.Diff(expect, b.String()); diff != "" {
t.Errorf("unexpected output (-want +got):\n%s", diff)
}
})
t.Run("bare model info", func(t *testing.T) {
var b bytes.Buffer
if err := showInfo(&api.ShowResponse{
ModelInfo: map[string]any{
"general.architecture": "test",
"general.parameter_count": float64(7_000_000_000),
"test.context_length": float64(0),
"test.embedding_length": float64(0),
},
Details: api.ModelDetails{
Family: "test",
ParameterSize: "7B",
QuantizationLevel: "FP16",
},
}, &b); err != nil {
t.Fatal(err)
}
expect := ` Model
architecture test
parameters 7B
context length 0
embedding length 0
quantization FP16
`
if diff := cmp.Diff(expect, b.String()); diff != "" {
t.Errorf("unexpected output (-want +got):\n%s", diff)
}
})
t.Run("parameters", func(t *testing.T) {
var b bytes.Buffer
if err := showInfo(&api.ShowResponse{
Details: api.ModelDetails{
Family: "test",
ParameterSize: "7B",
QuantizationLevel: "FP16",
},
Parameters: `
stop never
stop gonna
stop give
stop you
stop up
temperature 99`,
}, &b); err != nil {
t.Fatal(err)
}
expect := ` Model
architecture test
parameters 7B
quantization FP16
Parameters
stop never
stop gonna
stop give
stop you
stop up
temperature 99
`
if diff := cmp.Diff(expect, b.String()); diff != "" {
t.Errorf("unexpected output (-want +got):\n%s", diff)
}
})
t.Run("project info", func(t *testing.T) {
var b bytes.Buffer
if err := showInfo(&api.ShowResponse{
Details: api.ModelDetails{
Family: "test",
ParameterSize: "7B",
QuantizationLevel: "FP16",
},
ProjectorInfo: map[string]any{
"general.architecture": "clip",
"general.parameter_count": float64(133_700_000),
"clip.vision.embedding_length": float64(0),
"clip.vision.projection_dim": float64(0),
},
}, &b); err != nil {
t.Fatal(err)
}
expect := ` Model
architecture test
parameters 7B
quantization FP16
Projector
architecture clip
parameters 133.70M
embedding length 0
dimensions 0
`
if diff := cmp.Diff(expect, b.String()); diff != "" {
t.Errorf("unexpected output (-want +got):\n%s", diff)
}
})
t.Run("system", func(t *testing.T) {
var b bytes.Buffer
if err := showInfo(&api.ShowResponse{
Details: api.ModelDetails{
Family: "test",
ParameterSize: "7B",
QuantizationLevel: "FP16",
},
System: `You are a pirate!
Ahoy, matey!
Weigh anchor!
`,
}, &b); err != nil {
t.Fatal(err)
}
expect := ` Model
architecture test
parameters 7B
quantization FP16
System
You are a pirate!
Ahoy, matey!
`
if diff := cmp.Diff(expect, b.String()); diff != "" {
t.Errorf("unexpected output (-want +got):\n%s", diff)
}
})
t.Run("license", func(t *testing.T) {
var b bytes.Buffer
license, err := os.ReadFile(filepath.Join("..", "LICENSE"))
if err != nil {
t.Fatal(err)
}
if err := showInfo(&api.ShowResponse{
Details: api.ModelDetails{
Family: "test",
ParameterSize: "7B",
QuantizationLevel: "FP16",
},
License: string(license),
}, &b); err != nil {
t.Fatal(err)
}
expect := ` Model
architecture test
parameters 7B
quantization FP16
License
MIT License
Copyright (c) Ollama
`
if diff := cmp.Diff(expect, b.String()); diff != "" {
t.Errorf("unexpected output (-want +got):\n%s", diff)
}
})
}

View File

@@ -18,7 +18,6 @@ import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/parser"
"github.com/ollama/ollama/progress"
"github.com/ollama/ollama/readline"
"github.com/ollama/ollama/types/errtypes"
)
@@ -31,26 +30,6 @@ const (
MultilineSystem
)
func loadModel(cmd *cobra.Command, opts *runOptions) error {
p := progress.NewProgress(os.Stderr)
defer p.StopAndClear()
spinner := progress.NewSpinner("")
p.Add("", spinner)
client, err := api.ClientFromEnvironment()
if err != nil {
return err
}
chatReq := &api.ChatRequest{
Model: opts.Model,
KeepAlive: opts.KeepAlive,
}
return client.Chat(cmd.Context(), chatReq, func(api.ChatResponse) error { return nil })
}
func generateInteractive(cmd *cobra.Command, opts runOptions) error {
usage := func() {
fmt.Fprintln(os.Stderr, "Available Commands:")
@@ -217,7 +196,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
opts.Model = args[1]
opts.Messages = []api.Message{}
fmt.Printf("Loading model '%s'\n", opts.Model)
if err := loadModel(cmd, &opts); err != nil {
if err := loadOrUnloadModel(cmd, &opts); err != nil {
return err
}
continue
@@ -371,7 +350,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
switch args[1] {
case "info":
showInfo(resp)
_ = showInfo(resp, os.Stderr)
case "license":
if resp.License == "" {
fmt.Println("No license was specified for this model.")

View File

@@ -208,14 +208,18 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
return err
}
if vocabSize := int(p.VocabSize); vocabSize > len(t.Vocabulary.Tokens) {
slog.Warn("vocabulary is smaller than expected, padding with dummy tokens", "expect", p.VocabSize, "actual", len(t.Vocabulary.Tokens))
vocabSize := int(p.VocabSize)
switch {
case vocabSize > len(t.Vocabulary.Tokens):
slog.Warn("vocabulary is smaller than expected, padding with dummy tokens", "expect", vocabSize, "actual", len(t.Vocabulary.Tokens))
for i := range vocabSize - len(t.Vocabulary.Tokens) {
t.Vocabulary.Tokens = append(t.Vocabulary.Tokens, fmt.Sprintf("[PAD%d]", i))
t.Vocabulary.Scores = append(t.Vocabulary.Scores, -1)
t.Vocabulary.Types = append(t.Vocabulary.Types, tokenTypeUserDefined)
}
} else {
case vocabSize < len(t.Vocabulary.Tokens):
return fmt.Errorf("vocabulary is larger than expected '%d' instead of '%d'", len(t.Vocabulary.Tokens), vocabSize)
default:
slog.Debug("vocabulary", "size", len(t.Vocabulary.Tokens))
}

View File

@@ -34,10 +34,20 @@ func (p *gemma2Model) KV(t *Tokenizer) llm.KV {
}
func (p *gemma2Model) Replacements() []string {
return append(
p.gemmaModel.Replacements(),
return []string{
"model.embed_tokens", "token_embd",
"model.norm", "output_norm",
"model.layers", "blk",
"input_layernorm", "attn_norm",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"mlp.gate_proj", "ffn_gate",
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
"post_attention_layernorm", "post_attention_norm",
"pre_feedforward_layernorm", "ffn_norm",
"post_feedforward_layernorm", "post_ffw_norm",
)
}
}

View File

@@ -15,6 +15,7 @@ import (
"os"
"path/filepath"
"slices"
"strings"
"testing"
"golang.org/x/exp/maps"
@@ -22,6 +23,12 @@ import (
"github.com/ollama/ollama/llm"
)
type tensorData struct {
Offsets []int `json:"data_offsets"`
Type string `json:"dtype"`
Shape []int `json:"shape"`
}
func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, llm.Tensors) {
t.Helper()
@@ -89,13 +96,14 @@ func TestMain(m *testing.M) {
os.Exit(m.Run())
}
func TestConvertFull(t *testing.T) {
func TestConvertModel(t *testing.T) {
cases := []string{
"Meta-Llama-3-8B-Instruct",
"Meta-Llama-3.1-8B-Instruct",
"Mistral-7B-Instruct-v0.2",
"Mixtral-8x7B-Instruct-v0.1",
"gemma-2b-it",
"gemma-2-2b-it",
// microsoft/Phi-3-mini-128-instruct@d548c233192db00165d842bf8edff054bb3212f8
"Phi-3-mini-128k-instruct",
"all-MiniLM-L6-v2",
@@ -140,6 +148,132 @@ func TestConvertFull(t *testing.T) {
}
}
func TestConvertInvalidTensorNames(t *testing.T) {
f, err := os.CreateTemp(t.TempDir(), "testmodel")
if err != nil {
t.Fatal(err)
}
defer f.Close()
tempDir := t.TempDir()
td := map[string]*tensorData{}
offset := 4096
td["model.layers.0.self_attn.q_proj.weight"] = &tensorData{
Offsets: []int{0, offset},
Type: "F32",
Shape: []int{4096, 4096},
}
td["blk.0.attn_q.weight"] = &tensorData{
Offsets: []int{offset, offset * 2},
Type: "F32",
Shape: []int{4096, 4096},
}
generateSafetensorTestData(t, tempDir, td)
err = ConvertModel(os.DirFS(tempDir), f)
if err == nil || !strings.HasPrefix(err.Error(), "duplicate tensor name") {
t.Errorf("expected error but didn't get one")
}
}
func TestConvertInvalidDatatype(t *testing.T) {
f, err := os.CreateTemp(t.TempDir(), "testmodel")
if err != nil {
t.Fatal(err)
}
defer f.Close()
tempDir := t.TempDir()
td := map[string]*tensorData{}
offset := 4096 * 14336
td["model.layers.0.mlp.down_proj.weight"] = &tensorData{
Offsets: []int{0, offset},
Type: "I8",
Shape: []int{4096, 14336},
}
td["model.layers.0.mlp.down_proj.weight_format"] = &tensorData{
Offsets: []int{offset, offset},
Type: "U8",
Shape: []int{},
}
generateSafetensorTestData(t, tempDir, td)
err = ConvertModel(os.DirFS(tempDir), f)
if err == nil || err.Error() != "unsupported safetensors model" {
t.Errorf("expected error but didn't get one")
}
}
func generateSafetensorTestData(t *testing.T, tempDir string, tensorData map[string]*tensorData) {
data, err := json.Marshal(tensorData)
if err != nil {
t.Fatal(err)
}
var buf bytes.Buffer
l := int64(len(data))
err = binary.Write(&buf, binary.LittleEndian, l)
if err != nil {
t.Fatal(err)
}
_, err = buf.Write(data)
if err != nil {
t.Fatal(err)
}
fdata, err := os.Create(filepath.Join(tempDir, "model-00001-of-00001.safetensors"))
if err != nil {
t.Fatal(err)
}
defer fdata.Close()
_, err = fdata.Write(buf.Bytes())
if err != nil {
t.Fatal(err)
}
configData := `
{
"architectures": [
"LlamaForCausalLM"
]
}
`
f, err := os.Create(filepath.Join(tempDir, "config.json"))
if err != nil {
t.Fatal(err)
}
defer f.Close()
_, err = f.WriteString(configData)
if err != nil {
t.Fatal(err)
}
tokenizerData := `
{
}
`
f, err = os.Create(filepath.Join(tempDir, "tokenizer.json"))
if err != nil {
t.Fatal(err)
}
defer f.Close()
_, err = f.WriteString(tokenizerData)
if err != nil {
t.Fatal(err)
}
}
func TestConvertAdapter(t *testing.T) {
type AdapterCase struct {
Name string
@@ -221,11 +355,6 @@ func TestConvertAdapter(t *testing.T) {
}
func generateLoraTestData(t *testing.T, tempDir string) {
type tensorData struct {
Offsets []int `json:"data_offsets"`
Type string `json:"dtype"`
Shape []int `json:"shape"`
}
offset := 4096 * 8 * 4
td := map[string]*tensorData{"__metadata__": nil}

View File

@@ -4,6 +4,7 @@ import (
"bytes"
"encoding/binary"
"encoding/json"
"errors"
"fmt"
"io"
"io/fs"
@@ -48,8 +49,19 @@ func parseSafetensors(fsys fs.FS, replacer *strings.Replacer, ps ...string) ([]T
keys := maps.Keys(headers)
slices.Sort(keys)
names := make(map[string]struct{}, len(keys))
for _, key := range keys {
if value := headers[key]; value.Type != "" {
// bitsandbytes quantized models are unsupported
if len(value.Shape) == 0 {
return nil, errors.New("unsupported safetensors model")
}
ggufName := replacer.Replace(key)
if _, ok := names[ggufName]; ok {
return nil, fmt.Errorf("duplicate tensor name '%s' was found for this model", ggufName)
}
names[ggufName] = struct{}{}
ts = append(ts, safetensor{
fs: fsys,
path: p,
@@ -57,7 +69,7 @@ func parseSafetensors(fsys fs.FS, replacer *strings.Replacer, ps ...string) ([]T
offset: safetensorsPad(n, value.Offsets[0]),
size: safetensorsPad(n, value.Offsets[1]) - safetensorsPad(n, value.Offsets[0]),
tensorBase: &tensorBase{
name: replacer.Replace(key),
name: ggufName,
shape: value.Shape,
},
})

312
convert/testdata/gemma-2-2b-it.json vendored Normal file
View File

@@ -0,0 +1,312 @@
{
"general.architecture": "gemma2",
"general.file_type": "1",
"general.quantization_version": "2",
"gemma2.block_count": "26",
"gemma2.context_length": "8192",
"gemma2.embedding_length": "2304",
"gemma2.feed_forward_length": "9216",
"gemma2.attention.head_count": "8",
"gemma2.attention.head_count_kv": "4",
"gemma2.attention.key_length": "256",
"gemma2.attention.value_length": "256",
"gemma2.attention.layer_norm_rms_epsilon": "1e-06",
"tokenizer.ggml.model": "llama",
"tokenizer.ggml.add_bos_token": "true",
"tokenizer.ggml.add_eos_token": "false",
"tokenizer.ggml.bos_token_id": "2",
"tokenizer.ggml.eos_token_id": "1",
"tokenizer.ggml.padding_token_id": "0",
"tokenizer.ggml.unknown_token_id": "3",
"tokenizer.ggml.scores": "0872465d173867d755d3ee728f882b9dc2057a0bfd596fe1e3d131522f1250d8",
"tokenizer.ggml.token_type": "8d40143b3477df77beea4139420335ede458bf5e14102f01b0170197b55da8d8",
"tokenizer.ggml.tokens": "c6e66de1841f04de8b8d236d461ab720a4c9b9b5414dc293a09c6e10eab45fda",
"token_embd.weight": "64a9d30707e659e2e673656d71f5aef7a9fb9fd83bb9a77558dfc5abbe218a05",
"blk.0.attn_k.weight": "d8b4437c5edb3cddf6af9987038e1bb2b191c4f0fce0e160d2abace717f5d5d7",
"blk.0.attn_norm.weight": "1eb73e3f7aa8e502f6ca31cd19efbb8e4fd9a89692e13e48ac8205545a7fa7e8",
"blk.0.attn_output.weight": "39e7b78e57d356a22dd89ce1c4d7163b970712ba756545e1703f97866cd2192e",
"blk.0.attn_q.weight": "795058e23b6109febd9d55c89e1eebe6af0714ec8c56fd86a160876a6135ffe8",
"blk.0.attn_v.weight": "0cd6e583d1887c020472e961bbb113fe5a0d23ae2f1c2c876fc366cdb7692b52",
"blk.0.ffn_down.weight": "51eb4d962189e945a84e94e0dc1aad3f8f90cc1a11e18029670afcd0ea0acb1b",
"blk.0.ffn_gate.weight": "9811a29b8ad48432925897ab21dfcb13c5cbd372aeccbbefca9b7866883b4ce3",
"blk.0.ffn_norm.weight": "92cbf4652ef503c1de5b10f2be00b3fcf00100980cb3baa8f3013a8d8bf3d851",
"blk.0.ffn_up.weight": "af87de21746879483ed1b374cdd76b19ba11ca2b6dbb1beba98efdf3be3e8077",
"blk.0.post_attention_norm.weight": "32e135f1f258ffe407018899e39af1725d59d66d60022b9a21575ba160e0357a",
"blk.0.post_ffw_norm.weight": "ba286f5ac11b07fbc986173708c66f1920427be5a6d108af38fa0a837c1c8eb6",
"blk.1.attn_k.weight": "51584435552051f7fade76beca582b3f7190cf7fc07adcf527c2774d4b1c3901",
"blk.1.attn_norm.weight": "6833104c7fbf35a7e799ae56c262b97fffa14789642aee14381b25acd21ed80a",
"blk.1.attn_output.weight": "14c39481369087bf292ac9a3ab2ef166f9fe376a9f90c246653213ef264febdc",
"blk.1.attn_q.weight": "443f64ae2229f857c69d6bebb7800b685786cb77884c3ae19d4286aeed081325",
"blk.1.attn_v.weight": "0df482de2038f1e4c8a7733ac0ddb69ad90759dab5968b942af0155588de4c4a",
"blk.1.ffn_down.weight": "66f30763a8bbbcaea609a0087ed75fadb5e771c06378dd2cea94cf17e492e8cf",
"blk.1.ffn_gate.weight": "a7151bff00a545fa18b2c92dcd2a14572ccf9beb957a6c494f1374e8ebe174c9",
"blk.1.ffn_norm.weight": "e197d71ea11b5276bc0167d2663b88089b3ff42b47ba91e85f6c5d95f6306435",
"blk.1.ffn_up.weight": "57c182e0b14cccd1350d388f0c616991702e74281db54637451b70f4ccc24f9b",
"blk.1.post_attention_norm.weight": "3c56f837168d784c2d8bac247c130bdca6610c095c8da4558c536ccad7605609",
"blk.1.post_ffw_norm.weight": "d2a51d320fd01069dd7ccaa7082f16a7faeb671885607d7900b10a89c354d0fa",
"blk.2.attn_k.weight": "bc103c818192de7ce36caaf89dc117be4df13fb902e0bd9a23c64edace5df9b6",
"blk.2.attn_norm.weight": "0f2503aa126083a5d6ac72481be1ef66c6014705b573682b35bd864e4749a3d5",
"blk.2.attn_output.weight": "05fcd4a1226e482f91803a266f72caca887a93e63c2d2ba5611ab3c68d38743a",
"blk.2.attn_q.weight": "6a10b5c2fd423d1e4c4fd60fa8c154a0159b6b2501ea79cae2ef19f45a674e5e",
"blk.2.attn_v.weight": "3cf891945a1f8ae7cc908a5c6b729ff5b70f4436c5ffdbf245cc0ed4cc19cd1b",
"blk.2.ffn_down.weight": "ea204fd04e0d2fc728a9861a459216bbfec629c152004ba625f52cd8837bd51e",
"blk.2.ffn_gate.weight": "3a3518729f1b8b64a82b8792f33987db5418fdb094be0263c68f146a5c38de54",
"blk.2.ffn_norm.weight": "754ede678b725de41a34b82f0edf7688b5c065be7c0d46df6f7ad9430d986884",
"blk.2.ffn_up.weight": "ffdcb88439f5828ffbd9fc844b03ff91637b790b9838097258cc3ae75935720c",
"blk.2.post_attention_norm.weight": "4b3f53b7ba26e8c36b2dfda3b7e5fc4b1065257cefdea235fc7df9af130ac2fd",
"blk.2.post_ffw_norm.weight": "e550369e26b8485e2b54ad34b34bc98af5494287dcc513c2c39cf1eaa5b89d07",
"blk.3.attn_k.weight": "89f24ea450e37d9e95757651a83205c085d81b354ee9489dd6310a391d8409f3",
"blk.3.attn_norm.weight": "24e2ea662b7cb822b4ca5cd61bc17f2709f406d990ec3b4a0dac1cc112db45cf",
"blk.3.attn_output.weight": "ac4dad69473c6e3fac56669212cadd8c34ecc5973d945972e974d94805334967",
"blk.3.attn_q.weight": "b6a9c9a7d4722b9096631c65de62228dfddca6e26edfe6af7fce01e116ef0f4c",
"blk.3.attn_v.weight": "f272a960a40093942309bc342a379984cbacec2d7bc64428db3f64e6b1887ed4",
"blk.3.ffn_down.weight": "c0188ba50d8228805982029c277fc0e87aa57473b8363037c648f6d006ff828a",
"blk.3.ffn_gate.weight": "a04aec1561ee6c0fbb18c3db49dc62fb533619cf697fd548cbf2279761aaec3b",
"blk.3.ffn_norm.weight": "bc053837d44087ec05eb5d9458357b2a5be787789b19cdbbdc694b57697f99a6",
"blk.3.ffn_up.weight": "b3ce8b274f20796d3b1a7c08ba27a919066f9de89a782faa544c4a8d6bea1382",
"blk.3.post_attention_norm.weight": "9c922dee7a7df5667289e2788e60170238239cee2dfdbbd9e435763f9f416718",
"blk.3.post_ffw_norm.weight": "b682544ac953ad2e0b49027ed8916f2e9d1aba5d1587bb4127ac703570c7a03a",
"blk.4.attn_k.weight": "143b0cbb4b787b95c2b6212374410e32173ccef2adb914908a2f89a7916de512",
"blk.4.attn_norm.weight": "5668f60491b780273745192662d02c9a92a4f692b29d16aa0bbc7413fec4f85b",
"blk.4.attn_output.weight": "b9f2bdb68be1e0cf66dd19f8fa2afb105910ad2ef394864cb32cea8f8944e0d5",
"blk.4.attn_q.weight": "ddcf1343dafbc2dfcd0b8741225af22fe4b54b2becce29240bd01c34265d126c",
"blk.4.attn_v.weight": "6dc7074366e7ed52d9f48c594dcc85bef738e096276cb99d28228c89eecc5b9c",
"blk.4.ffn_down.weight": "30334ffc59ce343cf2a1b973174acb7722823463adc07e19a99bd0f404bc9906",
"blk.4.ffn_gate.weight": "890f7c8af208d63b28db52c4b8c16c2288a382d87ff5a6a6d6b0a5b3bf27e6cd",
"blk.4.ffn_norm.weight": "ff0316cc7847221eb86a90c1ab441d4ee61553d410c66414a7755021b3b12448",
"blk.4.ffn_up.weight": "6af97d113f91564c636734f215e25ee602d48eb045458f300b3ec7582be0f41d",
"blk.4.post_attention_norm.weight": "69438f231e105e68216b078bdeb35a7cdc8b12c4e2845e18ecf4c8d361d6a321",
"blk.4.post_ffw_norm.weight": "0fd535da78bcf2b32c95b05b2b83dc49817393765be90d8cc1ed3d56f47b68ec",
"blk.5.attn_k.weight": "0166eb3c6d20dcf3d3c169e94caa8dee057535bb525e29f698fb6f8844f18a6c",
"blk.5.attn_norm.weight": "a7808f27f164023d5cde2be00fc23cac6c71aa0ddeb60bc23e12411b80087672",
"blk.5.attn_output.weight": "8b65b2027a0842b68c5308f91d6a31de9599d794157d77df8418b19f9e0d9334",
"blk.5.attn_q.weight": "966bc626ef2c2394d872087a41c126bb1b67d1d5f6de920204ef5e5b16c34003",
"blk.5.attn_v.weight": "9a362aef3f4437fbf0ef6e1ba785f3329c3db2960f93fe36547d2795e9c254ea",
"blk.5.ffn_down.weight": "63e53541d34197720c06f297aa8142ac6b6eec002c7987b296f26e8b1400f931",
"blk.5.ffn_gate.weight": "d9591fdd32f783e0fc26e20d5d587ee8971ac8ae2e4c818c6eac1c125c7c7f37",
"blk.5.ffn_norm.weight": "677334cc60ecce3a7f4ab3acda15d359353d7358872f614ad8914e3780e9fc6e",
"blk.5.ffn_up.weight": "a63764110e1c655ffbd55af0669b2dfe4cc29d0e198d33a8e5426461b08a85f7",
"blk.5.post_attention_norm.weight": "c55499f859b2c0a7f5cabceaae47309a5ad38bc29d0f4a8db81f1357023162a9",
"blk.5.post_ffw_norm.weight": "82752754665f842418f3e302cb5f43d1e0504dcd124c4b8ddb77018b2c793837",
"blk.6.attn_k.weight": "e20a5f0d6c807273c8d491439566b428497ac02097cf0aa55e33748c28e14be6",
"blk.6.attn_norm.weight": "2c6ba42fd3c73d72073ced03a32dd28d70a89ed9bbbc8fea1ba03a7ade951e6c",
"blk.6.attn_output.weight": "4de7c5c2f4a133a266e17ed8c14c52959466b54cc7ab9e19f789a33b4850f284",
"blk.6.attn_q.weight": "56462d921800e6b8cd2213fef04c4ff16d728905cb2f4c58e966d0a053a3b0ae",
"blk.6.attn_v.weight": "b758dcbff769d6240c2245ede1dbc62c4170a67c77458e866312589220fe29af",
"blk.6.ffn_down.weight": "582247fb3c2bf687cbe9413fe18d18ad47bef4b65df7d78905e10335c6134764",
"blk.6.ffn_gate.weight": "3035444d5286aefb7a6d04e55bc27e1fac7cf895cd5be02319a431b8e047b4ae",
"blk.6.ffn_norm.weight": "e582d24c66e01b96faa20ce6adfda3d8583b11e809bff89969927398175e369a",
"blk.6.ffn_up.weight": "6f4b7bbfedeacf61a4866ae0616c4ba6c9e856662e8f00ae6aaec7f52c53e7b4",
"blk.6.post_attention_norm.weight": "8fe51b50bd677d21586aecab0b565c4bf9fa68ad50bfe366f45e8fea3c657ca8",
"blk.6.post_ffw_norm.weight": "81ba3cb4c2bf5c546b86855b7a885d3fafededc67eb3a35cd3598b03c9e26e65",
"blk.7.attn_k.weight": "2e044179cdcae0946708c86bfea7aa0391e1f7e2a09b33fca035d384cc3ca758",
"blk.7.attn_norm.weight": "94b48c546b046803c60e75a3acb17a356b710735989938021b565f68df9b4985",
"blk.7.attn_output.weight": "65709b4ad7a581f4d75793d39d4032a359f6bcc0c3835205242a0b99e5b66824",
"blk.7.attn_q.weight": "8ded993c95d1f7caf201ceb6fa035cd6ed6d351b50b999fa9355dfee9486cb5b",
"blk.7.attn_v.weight": "c92d5e2d2d48397542bc03bea25bf39154075e66c5bb1ead85188505aa04ae91",
"blk.7.ffn_down.weight": "e8ba8fb57208805ef1dc23cd7c86e9a2d1fb7c52c3940d292cd5bb2eb24b3fac",
"blk.7.ffn_gate.weight": "f0f06d6a2e06c5ac252083bc61d05c814e6289d3f4e4a87d2f06918254c02c36",
"blk.7.ffn_norm.weight": "ebf8ef775f72624148e09d68a4332187a7a5020c521fe0623da1cd3485ad33e0",
"blk.7.ffn_up.weight": "a554adc4fc7122c247c77670e169916ba1794c787b5be30a2b36705138f1f746",
"blk.7.post_attention_norm.weight": "3aa6bc21d85c3a0c12b964e82b12feaedfdd13130c3cd2229228e24e0967ebdf",
"blk.7.post_ffw_norm.weight": "508bc7b19ee8ff08f0007c890133a462fc57c7e72b16ee8f6dd64def264ef876",
"blk.8.attn_k.weight": "363c8e74056642fe9e7c2f3f9769d57319cd3fa0a6022810189ab8d894322885",
"blk.8.attn_norm.weight": "685b49a1f1acb169f4df0bdd8e3de6943f3033cebad14b898a72000595610d92",
"blk.8.attn_output.weight": "7bde571e4efef1c6a6143f0526721dfb59e0a0ea0e1a3616a322b2eb937efa48",
"blk.8.attn_q.weight": "fc993dbc1074c28a0e1d85e5ab2f4ea6a9c6c1affe7ee56027000a275daed9b6",
"blk.8.attn_v.weight": "281e8791d3aef9b3864f1cb054da0ae0c2fef4ce0a58b1bad8bc136b2fa0f62b",
"blk.8.ffn_down.weight": "b1164a2578a7f87ed99c2bbc76c5dfbbbc6a1a803605391acc3f320fc989ffd7",
"blk.8.ffn_gate.weight": "6b39a3b3aaaa79aee61416b54d62160b9258042650e61c6b47bc77c2dd17daf3",
"blk.8.ffn_norm.weight": "17ea1362c72da27f12bc936500492035bdef3fd8f940cb12b57f37d42ba8ecb1",
"blk.8.ffn_up.weight": "bc3a7c47afc440d2bdf8fbe9ddf2c9220467472c60c8b4ded8c0f181470ec96c",
"blk.8.post_attention_norm.weight": "5c506204e00411ef9c8b4134d40eedcc19fffe68dd0af7d7cc49dcabf2dfac7e",
"blk.8.post_ffw_norm.weight": "002faec235c3678864e2901eed275ce4e9dc229164a91c9cd4c965142ba62305",
"blk.9.attn_k.weight": "0bab39d8c237f1b6d0010db40467142625a9e6f2e0e4c49a56c12b41e4e0b1fa",
"blk.9.attn_norm.weight": "de5f38e873b17f07aa7598831b89cc1cae2c9bc3eb2e042ee9af059d2563e84e",
"blk.9.attn_output.weight": "8a8184702c25a62df9ff309c0c7badc8587208523b2be3e8fa90ce7080573e6f",
"blk.9.attn_q.weight": "7c961b2431b09ddf95377acd07201cb91bf13d9cd3ae0f2c25c7d6a0358d9f50",
"blk.9.attn_v.weight": "e22d240cb4743067033e659cbf210ebe2ebbab3e1dea6ccbe5eaa982382ca038",
"blk.9.ffn_down.weight": "a426f81210f03d6ad53277416e1fdcdf37d8065e4817613edaf6c67a343426be",
"blk.9.ffn_gate.weight": "a82eba825cb77b8e64f85ff99ede2fc71bc9b01751eeb17e9e6c246ee12ea62e",
"blk.9.ffn_norm.weight": "1a97f9b1302a3a326d534c5c3fed2db6db0ae45fd0edd381a3e4fc1c75d81030",
"blk.9.ffn_up.weight": "5f20bac2bbf03bb42adb92fbf99561651e1edda57e0b61935ac7f6c08c0ed7cb",
"blk.9.post_attention_norm.weight": "9f9866d13988e1946b1e1c80d9374a92a6e3be33748f8eaed3e126d1e1a4c796",
"blk.9.post_ffw_norm.weight": "a6896dbf698db4dbbe5dbf12417d4fd80e9cad0c539c858892ec0aa5b046bb58",
"blk.10.attn_k.weight": "ca8446e5d21ecd4e6a70dca8d321be480be4fba94d70cba065205436feb44270",
"blk.10.attn_norm.weight": "4f41fe290e8f21f63b82151b6cce94bf7318d121468816b0c58af0ff7c1658ab",
"blk.10.attn_output.weight": "c626d2e9681c5c941bbde43dddfae1a8d4986bf2be4470857bc8e8bd7f869044",
"blk.10.attn_q.weight": "1e61b210a13a429977325cf15d781ab77d604cfa862f4270329cbd94237d5835",
"blk.10.attn_v.weight": "8ff8d3e3f058ec3b35ada1057f2ed59c06494d0e0be6a8dc3ff9edf9f0e1a115",
"blk.10.ffn_down.weight": "bcebc04219f8081a5f483e58103c0ddbbbc631a0a54fd6dd9d55778e041f70ee",
"blk.10.ffn_gate.weight": "7a23a1e620ef871384ddf9611ccdcfb893fbf013cc203ac8e72f745420f1eea0",
"blk.10.ffn_norm.weight": "e3a375e43c349a1c6c66c22328e513cc1af3137fe839e43dc8e9be2f65914fd7",
"blk.10.ffn_up.weight": "5d182e7c94369194fca5f19cbbe668a999911e57f3d363bc7fb6088428700cb9",
"blk.10.post_attention_norm.weight": "b841c6308296e8984f3c5f549c6e3a242f4b3e19141e1f54cc08de9c46759c09",
"blk.10.post_ffw_norm.weight": "9d66fa05b5c940208f634f5053d809094c99a2a10a1d1e8847c8281fbd99fb49",
"blk.11.attn_k.weight": "14adf24ebb2bb17b336ca81cec3e690fd854782f4440ca6c66cc1d7e7bf1c850",
"blk.11.attn_norm.weight": "2d2213f311f50414702b5b34f22aafb9d9a0b6787243e7578562583dc40ad195",
"blk.11.attn_output.weight": "de1f14cc2a7fff00cf11b229f0576999205f17b9536e97abc9d6de3cc79a7884",
"blk.11.attn_q.weight": "2bcc5c147524003109ece0be08b89ac8b25baa71416ffa76573c6c052ffc6eea",
"blk.11.attn_v.weight": "2e6ab8573070c22dc1e0d7aebe4d52123226dacf7822dcce06fadbb38fb036a4",
"blk.11.ffn_down.weight": "1b86902f4e36868421e5228b9445051f8290b292df22a6d1af836dcecc1f25c3",
"blk.11.ffn_gate.weight": "e756e8081bd0a16aea4a9ef5076ad102113524f7a3d50a3a77aaa7f7938b63e8",
"blk.11.ffn_norm.weight": "6913887267be227cf9d1991a3dd8db2e7e74bb9b5fbdfcb9ac954fd7d7b95b3b",
"blk.11.ffn_up.weight": "619a3ac0609ebdf42c3fb2b6e4b1db48df79e6dd8418d7ab8f1bbff13d8a6a50",
"blk.11.post_attention_norm.weight": "e4b4ba92cef7b6a78407e8ab1b0307d47dac6c3df7b6817e28038317ff662d7e",
"blk.11.post_ffw_norm.weight": "40aceeec58cb855f0c158c9cc217168fcd5d0e735567d587217b1d78df17bc5f",
"blk.12.attn_k.weight": "c54c5a4d4892522022d1aa2204cfc624f0b4042caa536e678967316293fe5cb1",
"blk.12.attn_norm.weight": "7cd2ef58298569ffdf244d9b390f3917245276c8206e5780af5f96d8c0bbb446",
"blk.12.attn_output.weight": "85495ef9cc8b3deb21f741bde463ff6493acae2be51f02ecdeef952cbdec3375",
"blk.12.attn_q.weight": "d19383f83fd119bfb8c0280c9515705c11d8e7d502019fcf8f49efeef0d106d0",
"blk.12.attn_v.weight": "869ac669ba49531d9128892a0e27cef15de508ff40cdf80cc1681dde50d09204",
"blk.12.ffn_down.weight": "578f39f8f9fc2f09138afc884a952d7cc3a9a31de4216acd10e88e19e0b75f8c",
"blk.12.ffn_gate.weight": "e29a0186bc6c4a0720246306e922d3a83f777dadcf4ac80bad468287031cc8b5",
"blk.12.ffn_norm.weight": "e1ee95c6584b5cb57fcf1db8ce2bcc03aff91eb389238c094a61c00dde93d1f2",
"blk.12.ffn_up.weight": "2a826f06d7cdfb3edc6ae250ff44363ef77a2a9cdf96313e23a331b99ebfa17d",
"blk.12.post_attention_norm.weight": "4bafc7699b948d5cbc0d3e09b418b06c6abc4651a61ada9609d9a2f21c7e5607",
"blk.12.post_ffw_norm.weight": "bbb8c34a7176bb1a49f9fe2bacca0bd26b673d52c0835b2e90fa11f2962f077f",
"blk.13.attn_k.weight": "ffeefccfe8255d1b694382012ff4134eee5fec9d9491c8d0ff0a13832d1a37e8",
"blk.13.attn_norm.weight": "35713726529e3887c4135a88e86e8a4d7270ba5b9f2d1ab462622fbf40a7cdce",
"blk.13.attn_output.weight": "0d60b7c5cd71190a9ef4b873b0f516be15447c32d83914db2794b14592b0b460",
"blk.13.attn_q.weight": "8296069e65bef794cefc61257fc65789b3cb22955e30f3df129205e5041b2222",
"blk.13.attn_v.weight": "ca0f4ab9d16a748fc643a5c0c7a19826a811bf2a4e7316a8c935d4bf0ce8abc6",
"blk.13.ffn_down.weight": "d5514e0c8e7b3ed1cbcc1605eb5be1733b6ab3514cf8a0508fc72f7d05ed8bcb",
"blk.13.ffn_gate.weight": "8108e517a82e08a3aefbbd267bfa50a1668f92a76273280ce8a6bc1f6dd61521",
"blk.13.ffn_norm.weight": "5fcb6132d2134bf1f835b904a99820fa501dbc57d2224129f7098bf3cabc1d36",
"blk.13.ffn_up.weight": "6d744b7cd390a3cae3aa350dd379b81246acd056a2259996b6aaadece8465ccc",
"blk.13.post_attention_norm.weight": "e08b14698912509790e9575b8676971fbb0a4d82d719367e3756c0d0c4ab8cc0",
"blk.13.post_ffw_norm.weight": "2b196e4450fc5f1e7367b2cf7fe33a15fe919fbcdd861d11002346f16e980535",
"blk.14.attn_k.weight": "120e5f48d7268dfd9ab5f4bc9cc57a7cec63ea9635f56b80d435eb22936e9483",
"blk.14.attn_norm.weight": "146367bcce4db72cc894419a2e0145a6f533507dd68e4739c10ee480308c401f",
"blk.14.attn_output.weight": "720fa0165e756876c5cb6ad9e2780dd910390933f3f8849e5add5da04266650b",
"blk.14.attn_q.weight": "f5183466f56219ca1aca52d8b82c2d966a4198fea40fdd6b39f4d8b06ca2a6dd",
"blk.14.attn_v.weight": "24f8ea3d5512cd37c43c8329cb0da0c90d1895aef763ac2dcee3fe5157ec50a2",
"blk.14.ffn_down.weight": "e29960965b384ae5ab3d898a4dbaa8fddd28fa0e477ac28bcac49dec12a5ac67",
"blk.14.ffn_gate.weight": "6d0d6a74bfe9692e8f8eedff0fc34fc4fa1c8687794f35f2e2b033ab2d7510b8",
"blk.14.ffn_norm.weight": "f7036c1a9a71e046c9d2af16e9218fda5dbb0f7241ab44747abed1f0f9d602ca",
"blk.14.ffn_up.weight": "7d69ea1424007ffc9c12247dd0308c616e93ac02a59ec341cfa48f92d6ce3b10",
"blk.14.post_attention_norm.weight": "65b9712834d9445d4236bec362f3fb795c20d60c541b3dc6dbb7914d9b493e41",
"blk.14.post_ffw_norm.weight": "9c6a8da2e4e437d5cfdf3b9097e9f8b64bf07946a048badec20f4d374613f38f",
"blk.15.attn_k.weight": "864bc618303a0e4ee67fb1d5e751de61e936cd51e96669dd86f8cd08f2305045",
"blk.15.attn_norm.weight": "f9f4187da6eeadc2fc5921d8fe669741697d16c13d71e4aaeb73b82f50dc577e",
"blk.15.attn_output.weight": "ce2419a0b097036b2a31f2f4ad731d5814bcc2ef4c511786e24471e5eefd273b",
"blk.15.attn_q.weight": "9539db5a970d11ebe99722d1e13fcd635e250033630811efe583d2f97778e4a9",
"blk.15.attn_v.weight": "1c834b48ccd88adaeabb7d8bcb6be0bcd6d5ac1354ce88fc28f19a1a96b81ab3",
"blk.15.ffn_down.weight": "bc1f97a65dde6fa2c1e5397afb612266944b343f2eaa868b635ddd25829f8a42",
"blk.15.ffn_gate.weight": "1b14529d57056b79037f6cb5008132e62cc35992353b38dda59572274623103b",
"blk.15.ffn_norm.weight": "9af77458de9ee55c66f93865759f9c2c398557f94f3fa8fa6af30543d7339cde",
"blk.15.ffn_up.weight": "41d524a26b61a9595816b4fd53cf57ef50a702e4ef32933ff6136dca9136a267",
"blk.15.post_attention_norm.weight": "c60a03cd0e63a7db5c80015e58e9b97ba2208caa19f66a6fef5c4447eca900ce",
"blk.15.post_ffw_norm.weight": "34f7f9f96769215bbc3d17084df091864aef96a6645b7d0b3b7d9bd92f1a4b0b",
"blk.16.attn_k.weight": "7e27240d9f3a8c6cf0f4a980113d43234f514eadc3e3e1792b86efb29ffb1a6d",
"blk.16.attn_norm.weight": "af798acc0899282a30448edec48223b3e8efda177090273e612d8eca5e377301",
"blk.16.attn_output.weight": "79df39a3709d3d53e84146291e0944a7a653d06705293d9ccb5648dceadb432c",
"blk.16.attn_q.weight": "db58a1c3b83ad294804e5fd7321005719e200659173466df5a52a182b80b7165",
"blk.16.attn_v.weight": "2af6d48cbaeb225b5c1a704f76abd89c8ab1521417695b112b4dcc2cbd39b74d",
"blk.16.ffn_down.weight": "fc1c813eb5e7da3d6194569d6cb21602fc6eff2dc8e1b0eb753f2d5df148189c",
"blk.16.ffn_gate.weight": "7a80bcbc42464bd55df4814a6edbd7b5c153e0428323bbe49de55e2d2add33e7",
"blk.16.ffn_norm.weight": "2041685ee926d30f3f2ae4ec35b5688f1cd834167a6359a7d4057eac804c58b2",
"blk.16.ffn_up.weight": "8da4b718973ac1d43b928829bc45e062fd101984d6c98dd825bd7c5d08ebfbe3",
"blk.16.post_attention_norm.weight": "975c48fe680a6167438a106140a8872eee7765191f152d80e3b8ddf47693e095",
"blk.16.post_ffw_norm.weight": "4de2d4d483acfe4fc77860ea929025df2f4e15c10729413f36a18c94eaa6d689",
"blk.17.attn_k.weight": "f937e61f0af8c4cd98ee742648eb60e02e579683e21d421071295a3b70aebaad",
"blk.17.attn_norm.weight": "c3270583ed28b7e423f5b170c59113234f258169b93a867d9274f4c10b7cb115",
"blk.17.attn_output.weight": "b8c1150e81e685e539a5dcf2c19047a24eba2b281fabe166674b1d71ef4612ea",
"blk.17.attn_q.weight": "c255100ae2011e7dc7e3bf3bc3ccd96d859fbb98581cae993d7b82c1ba8e8b39",
"blk.17.attn_v.weight": "5830bb0a555984c6485348067f70b5d22ae337c011aa9248dac2ff4c95944551",
"blk.17.ffn_down.weight": "8ff9a7cccaa3776434a9d895aae4fb5c36c736bf2ec98784226b4c234940fbb0",
"blk.17.ffn_gate.weight": "1b52876739712831c272911533da206f407b46034a1a4ae8a88c1f96b6bd5747",
"blk.17.ffn_norm.weight": "d0e16ba5e87c91b545334e022058c7d03849665c3b1a6298771b656531366b66",
"blk.17.ffn_up.weight": "4dd6211d01dbebbe21052708eddc242b082a58b5f18ed16479e17987c1d3432e",
"blk.17.post_attention_norm.weight": "6f49c775c7417dade77ba8268a0f8441c1e5ec28b5d7e4dc5ed07a04d04600c8",
"blk.17.post_ffw_norm.weight": "b91a0bb2e6679e9c9be06ad323adae441d00a3d673efb19d7c4954be2aa84b27",
"blk.18.attn_k.weight": "22b565ace1b4da8b33865a58625be1d90beea9891f29686a69fa9cf7c93217db",
"blk.18.attn_norm.weight": "3e0160d7063c8753de65d2356a66648e47d921efdc5c917efb8209892120f8db",
"blk.18.attn_output.weight": "e3180f0bb4ca90b31e9b08158db38e332de62dfbaefe34aa94cc316409331e09",
"blk.18.attn_q.weight": "f3a5a83614c3ba7ea41cdd5b1b0819a241ee2a951a381ce4a9e001d3f700ed8f",
"blk.18.attn_v.weight": "f3350a5984fb951fc738adcf78147e6d812ff1c576670c460cafc99c253c1654",
"blk.18.ffn_down.weight": "9e9d09b13a33525e14bdaee6efc65c551ac7cf7680e534b940ab122a3a7c1ac9",
"blk.18.ffn_gate.weight": "ebaec8b4b578a2e8d815baac12f1675c208f80c68074d5a18288a2e1a60680ee",
"blk.18.ffn_norm.weight": "33e7687c53a242f2f8dc7093a491c97b18d4a5a8c14d183f02bd586a770f05aa",
"blk.18.ffn_up.weight": "78a1816662378ce56cc870e705174492781897b3afd2d4d97a51f10f2f2987c1",
"blk.18.post_attention_norm.weight": "a58dde3f12df3e94cbc27d87c8ea86f89af8a388a506446ff6758f05399b05fc",
"blk.18.post_ffw_norm.weight": "cebf90cc143577d483cca27b032dfd82031ee59bdf17c0e2cf60a0a3ad5bf996",
"blk.19.attn_k.weight": "4683375d0599ac9e2232196aae1e90af13a14cae26e865465de5c8e257bb2055",
"blk.19.attn_norm.weight": "f3eba936bfb1814bbcb0a1d62739eb66daac839df8c9c836fe0e94860df88525",
"blk.19.attn_output.weight": "51c0f01d38a9dcfe9bdbc4643576fab164c1d9e4b7168b7695c0ee55e6965667",
"blk.19.attn_q.weight": "28d15b69b8416f2e7ddc88fe381cb1e2ef2ad705fb1c268139ba96498cc74848",
"blk.19.attn_v.weight": "6860f1cd720638e63a981fa2c0b4db900129826bcb9823c9ddf9fb8b1b9f3383",
"blk.19.ffn_down.weight": "bc7f2d7827ee01c2dd41401c7b3b1700ad3a4ff620e8bb734f92630d342dcc7f",
"blk.19.ffn_gate.weight": "54d03ef69ba373fc410fbca8f1e34a565d58e4296d9a035ff7e48340b9c848e7",
"blk.19.ffn_norm.weight": "9178fc796a340ee6e8128ca74c0cb6203d1adbed6927af4e5ac7863da57affc7",
"blk.19.ffn_up.weight": "a77bd708026c6e83ad5c79c223278e74621bcf74a9641c7818d96b595daaad20",
"blk.19.post_attention_norm.weight": "ae94aa26f4c411bf9496a6fd4a6df64ee589ee1ae9a04b531d45acc95721e582",
"blk.19.post_ffw_norm.weight": "9ad210700edeef12133bdcff04bf1c7f62b49f6f4a9ba483c7cdc59857c24a5c",
"blk.20.attn_k.weight": "e35bce1e9f4a7a09ef34721f57ea38cfca68c272f52d923fe50af8308f66cfaa",
"blk.20.attn_norm.weight": "644800f6926fd34f233795c4dec1151a295d2138ca8cac33e3e48167d26f8b41",
"blk.20.attn_output.weight": "8d3758cd236471741e1ad66c0710cb79077dc8c7a3a292d35bc551c0c5abe627",
"blk.20.attn_q.weight": "c333b1f0f6f956b5d73891df10b1a0321e55fc31c40d623a24e1f52caa6a998b",
"blk.20.attn_v.weight": "8562b418d0c4868a050fb19fa3fcaf50a8cf1c669f537d666c80c7b3a04714e1",
"blk.20.ffn_down.weight": "97efb608ac44cc804198faec3ee66eafe56ced6b7ca5359700c6f1df75b7205e",
"blk.20.ffn_gate.weight": "5c61151d86f28415c73c73d90ec088c646cbe5c1640197caf58eb501ba7db293",
"blk.20.ffn_norm.weight": "24bbe0a701afd4bbeea65b3edde712b3cbb2281043bbc43dbf250582453116ed",
"blk.20.ffn_up.weight": "e170cf68e249566aa99eb6f6b265679bf9a5a6b76830ba24e7e130c2515910c4",
"blk.20.post_attention_norm.weight": "e092d751cfe20dbf2d348358f3b38397bd83e4ed94d6bbaa6bbaddcd902b2ac4",
"blk.20.post_ffw_norm.weight": "219a18a47dcba76e669e4322223a5a9227bd3db1de3fbd3d3cfb22e54a783c5a",
"blk.21.attn_k.weight": "c3a095ebddb42c63824f1c98da65263dc88e4d790a26aa1632840b44f5cc7cb1",
"blk.21.attn_norm.weight": "ef8bbaded5fbc45ad9cf3985ae02174524e7090fe6362811124f942ef643bec7",
"blk.21.attn_output.weight": "668f018aba72baac6252aa3ad58569ddd55ab751a0dd8d7bcc9fb9b6efb4bf53",
"blk.21.attn_q.weight": "e759c65663089f3bbbd51847934c185e680c82f1249065d5d487da638e519e6d",
"blk.21.attn_v.weight": "2ff57762686cf9ba1f5a6be76503454b97556ce67f4ac98254bd0562231197ba",
"blk.21.ffn_down.weight": "3fd106556fb721b1c28ae3f4026bc83eb1b08ed910f2ba5f466c6b5f327d91cb",
"blk.21.ffn_gate.weight": "338022d882f4b6619e8054a6fb909696fa3eef3013cf69b65c3cacdfc5b9e42c",
"blk.21.ffn_norm.weight": "1e77660c23a3f9653ee721a863d1960f773d87437cabc4dc0a6e17ee3d4e5e44",
"blk.21.ffn_up.weight": "7d31b20fbc2e6eba8f350f170069dc36f0cb12f68fbc4206ec5022a74085ebcb",
"blk.21.post_attention_norm.weight": "9638bae8d8bdcd7ed68da282979cd84a07c41ff9cabcaea94ebc846a1803db23",
"blk.21.post_ffw_norm.weight": "d622ef11115fe0cbe04b727d5a3b6371e7f39bf08c8d5eb9bc6da52e3f3cfb9d",
"blk.22.attn_k.weight": "5c321cb29deffbe57de200dd206a62005f1e80acb86c4fd2349dd44c8d3594fd",
"blk.22.attn_norm.weight": "198d949705d7170a331d75889d8c7500c3635254dac2cc6aa4dc35d556584536",
"blk.22.attn_output.weight": "19805cd5d7025b457e5d41d70db8b3fd63c2dd0e4a94d3ef1704d50ef4e749e8",
"blk.22.attn_q.weight": "177836cd583fc87405975ddc21ebfebdaa090a0363799664c72caa3da851ae2c",
"blk.22.attn_v.weight": "fea255692483e30d0108f9e4e250eb3ed7dbda8d83f499b06519b8c223ae6096",
"blk.22.ffn_down.weight": "00cb8939f03e5817d6d412de8cf2c923c9568d5493e382cec7faf5718fb034eb",
"blk.22.ffn_gate.weight": "b0591065b91281b2fbd8a9567f3568d40479f680e1f0a29e27ae213f37642489",
"blk.22.ffn_norm.weight": "96b5c5d0737c2ceb8fc869f54adb9e5f46e28cb7b177c40f49fa926b923c00f8",
"blk.22.ffn_up.weight": "81f472185b24344ab0594ea8246cc6e200e0dc1cab4943e74fbe4ca19d5a9701",
"blk.22.post_attention_norm.weight": "27fa9aa6260aa3071e0391e1a1d49322dcb6e8072315b8a9b7064087108dbd06",
"blk.22.post_ffw_norm.weight": "f37e1dcd7f643d9545675ffe9dc527a11eba86eb204989c2f44f636b266d896a",
"blk.23.attn_k.weight": "5d82f36658a56c3f94d0bb2d61f65509c966fa6568f81812e0d3e338b380ef8c",
"blk.23.attn_norm.weight": "b7983f88d9cad88bc88a528923e6da592ad20e699965b223ebc10840fe1f4fec",
"blk.23.attn_output.weight": "59f97f80f430d71606aab0158a195aed29ccd3405e6c0a5c41c809be8eb01898",
"blk.23.attn_q.weight": "53ac4789fe958919cc02ea4222bcd64c0ea1b4baa54304bff46635bdf42f7490",
"blk.23.attn_v.weight": "ec8abe09b9e84dbb52c7a068094657c6d3c62fe551ba8d7c3a3f23da622e9756",
"blk.23.ffn_down.weight": "3cf547eccb1b82aa64f208cee9682d7f558ca84e0aead7d9d3d1420d90f3d992",
"blk.23.ffn_gate.weight": "366aa2486d911ba81eb519119e13807deacf7e9908bc1975a2a63e00d6b10124",
"blk.23.ffn_norm.weight": "6d1d4a4af34bb7dc090ac87d6457d398c3e0fb68bd2e2b60b099dc318b6cfac3",
"blk.23.ffn_up.weight": "53f76692e253f5d2420b3f200c731b9f3b7a83e379920b4a067c729b4674aa4d",
"blk.23.post_attention_norm.weight": "7c952fa0efa76b3f048c8c4c9e8dcb5e3724d231327eda6423a34d3f3d3367de",
"blk.23.post_ffw_norm.weight": "7ab188cfe61f0a91b40309a0ab6bfa99f19d0ff2a37b6ac10e5f0c7f44eb5270",
"blk.24.attn_k.weight": "225798792f9bfdd10eff0505ebe61e0aad0209c17b431f6044ee7968ffe8c198",
"blk.24.attn_norm.weight": "635e3c1ebf5219bbebfc40ef164bc32d2b726ef595a94da64ac524ae878e2915",
"blk.24.attn_output.weight": "482f5bb2db8d9ed22b253d9a3296333b239efe698e5992e5d77e7e12dc2a5cf5",
"blk.24.attn_q.weight": "43805bbccddb65d58fffc4be9b5c374d4e1df1395ec1e1ffb4bcff03e98d5adb",
"blk.24.attn_v.weight": "fa741af54b4a3b1775d32f59134756090c5df2e7345a12a2d8db94fe289667a7",
"blk.24.ffn_down.weight": "83c6351e3162626b276f524a57836144625c2556dbe321b57cbd8fd486a68fab",
"blk.24.ffn_gate.weight": "fbe66be0d84d12cea5176cc7eaef64382ffc7324cd9d6266a3342dc43442f2ac",
"blk.24.ffn_norm.weight": "77c1445a8639ad24938bdf0280233eea2362d47391421833dfa72ec756dfc1e8",
"blk.24.ffn_up.weight": "78235ac729ee23c1cf1ae543751e3af32776d8808cee6e529c2a625a1f027654",
"blk.24.post_attention_norm.weight": "161f71b6d07628d43e4ae51a4c9088ec6ca2db123a17986a14505d83fdd04dad",
"blk.24.post_ffw_norm.weight": "cf1ba692aa683368b02ac413e69b2521b98c69a5274eacbb54165b53bf38a8b2",
"blk.25.attn_k.weight": "057a56bd8c8d2b41608d1f71faa3052902152ddf85e47669ad950c1c3e77c33f",
"blk.25.attn_norm.weight": "b7179fe02c334da556ddcf6c1b502245639a728c4cbba8b552d8e1df4565ee9d",
"blk.25.attn_output.weight": "4fed8b05b08a0ff75ffd022701bbeb52f17b23d09332a1ddcba737244bd0d3b0",
"blk.25.attn_q.weight": "c52e99f5d38bf7538d6106a0bbf38ac6dc6296bca9a3f849afa384ea67b4af01",
"blk.25.attn_v.weight": "c49c23d8e1cfa6a8eb971eb69942204890c6d7d830dc8774c84b108a80598912",
"blk.25.ffn_down.weight": "c08d4dc8412b19fdc870c164b83c341b236ec6fe7bb4a9bcfe0dc100faa20286",
"blk.25.ffn_gate.weight": "1a4cb3f36735d59181721471452807903006539e5e1b5ceb4f72d1d7ae134127",
"blk.25.ffn_norm.weight": "8fd6bd0dcec5198761525a36992a57c9ec5e9da60a22092839a84ae8c4e87f26",
"blk.25.ffn_up.weight": "3a00f39bdd5f31dc5e3b281d2002e1ac4f2475d49a0ac1d7720a25b377dcd04a",
"blk.25.post_attention_norm.weight": "e5f31a648612c859b6d21c9ee426e87a86cb1973dfdd86276c767371d9cef5ad",
"blk.25.post_ffw_norm.weight": "553c3bd774922c99c2384380a142d019881d30dbf0fe3bf9430dabfb3f6cbd33",
"output_norm.weight": "49445c4585ab0a8135717a0bdb1cda4a062a030177d0119561d91542aec5744b"
}

View File

@@ -100,8 +100,21 @@ func parseTokenizer(fsys fs.FS, specialTokenTypes []string) (*Tokenizer, error)
}
if template, ok := p["chat_template"]; ok {
if err := json.Unmarshal(template, &t.Template); err != nil {
return nil, err
var s []struct {
Name string `json:"name"`
Template string `json:"template"`
}
if err := json.Unmarshal(template, &t.Template); err == nil {
// noop
} else if err := json.Unmarshal(template, &s); err == nil {
for _, e := range s {
if e.Name == "default" {
t.Template = e.Template
break
}
}
} else {
return nil, fmt.Errorf("invalid chat_template: %w", err)
}
}
@@ -141,7 +154,6 @@ func parseTokenizer(fsys fs.FS, specialTokenTypes []string) (*Tokenizer, error)
}
type tokenizer struct {
Version string `json:"version"`
AddedTokens []token `json:"added_tokens"`
Model struct {
Type string `json:"type"`
@@ -239,7 +251,7 @@ func parseVocabulary(fsys fs.FS) (*Vocabulary, error) {
return pattern.Func(fsys)
}
return nil, errors.New("unknown tensor format")
return nil, errors.New("unknown tokenizer format")
}
type SpecialVocabulary struct {

208
convert/tokenizer_test.go Normal file
View File

@@ -0,0 +1,208 @@
package convert
import (
"io"
"io/fs"
"os"
"path/filepath"
"strings"
"testing"
"github.com/google/go-cmp/cmp"
)
func createTokenizerFS(t *testing.T, dir string, files map[string]io.Reader) fs.FS {
t.Helper()
for k, v := range files {
if err := func() error {
f, err := os.Create(filepath.Join(dir, k))
if err != nil {
return err
}
defer f.Close()
if _, err := io.Copy(f, v); err != nil {
return err
}
return nil
}(); err != nil {
t.Fatalf("unexpected error: %v", err)
}
}
return os.DirFS(dir)
}
func TestParseTokenizer(t *testing.T) {
cases := []struct {
name string
fsys fs.FS
specialTokenTypes []string
want *Tokenizer
}{
{
name: "string chat template",
fsys: createTokenizerFS(t, t.TempDir(), map[string]io.Reader{
"tokenizer.json": strings.NewReader(`{}`),
"tokenizer_config.json": strings.NewReader(`{
"chat_template": "<default template>"
}`),
}),
want: &Tokenizer{
Vocabulary: &Vocabulary{Model: "gpt2"},
Pre: "default",
Template: "<default template>",
},
},
{
name: "list chat template",
fsys: createTokenizerFS(t, t.TempDir(), map[string]io.Reader{
"tokenizer.json": strings.NewReader(`{}`),
"tokenizer_config.json": strings.NewReader(`{
"chat_template": [
{
"name": "default",
"template": "<default template>"
},
{
"name": "tools",
"template": "<tools template>"
}
]
}`),
}),
want: &Tokenizer{
Vocabulary: &Vocabulary{Model: "gpt2"},
Pre: "default",
Template: "<default template>",
},
},
{
name: "added tokens",
fsys: createTokenizerFS(t, t.TempDir(), map[string]io.Reader{
"tokenizer.json": strings.NewReader(`{
"added_tokens": [
{
"id": 999,
"content": "<unused999>",
"special": false
}
]
}`),
}),
want: &Tokenizer{
Vocabulary: &Vocabulary{
Model: "gpt2",
Tokens: []string{"<unused999>"},
Scores: []float32{999},
Types: []int32{4},
},
Pre: "default",
},
},
{
name: "added tokens overlap vocab",
fsys: createTokenizerFS(t, t.TempDir(), map[string]io.Reader{
"tokenizer.json": strings.NewReader(`{
"added_tokens": [
{
"id": 0,
"content": "<pad>",
"special": true
}
],
"model": {
"vocab": {
"<pad>": 0
}
}
}`),
}),
want: &Tokenizer{
Vocabulary: &Vocabulary{
Model: "gpt2",
Tokens: []string{"<pad>"},
Scores: []float32{0},
Types: []int32{3},
},
Pre: "default",
},
},
{
name: "special token types",
fsys: createTokenizerFS(t, t.TempDir(), map[string]io.Reader{
"tokenizer.json": strings.NewReader(`{
"added_tokens": [
{
"id": 0,
"content": "<pad>",
"special": true
},
{
"id": 1,
"content": "<eos>",
"special": true
},
{
"id": 2,
"content": "<bos>",
"special": true
},
{
"id": 3,
"content": "<unk>",
"special": true
}
],
"model": {
"vocab": {
"<pad>": 0,
"<eos>": 1,
"<bos>": 2,
"<unk>": 3
}
}
}`),
"tokenizer_config.json": strings.NewReader(`{
"add_bos_token": true,
"add_eos_token": false,
"bos_token": "<bos>",
"eos_token": "<eos>",
"pad_token": "<pad>",
"unk_token": "<unk>"
}`),
}),
specialTokenTypes: []string{"pad", "eos", "bos", "unk"},
want: &Tokenizer{
Vocabulary: &Vocabulary{
Model: "gpt2",
Tokens: []string{"<pad>", "<eos>", "<bos>", "<unk>"},
Scores: []float32{0, 1, 2, 3},
Types: []int32{3, 3, 3, 3},
},
SpecialVocabulary: []*SpecialVocabulary{
{Type: "pad", Content: "<pad>", ID: 0, AddToken: false},
{Type: "eos", Content: "<eos>", ID: 1, AddToken: false},
{Type: "bos", Content: "<bos>", ID: 2, AddToken: true},
{Type: "unk", Content: "<unk>", ID: 3, AddToken: false},
},
Pre: "default",
},
},
}
for _, tt := range cases {
t.Run(tt.name, func(t *testing.T) {
tokenizer, err := parseTokenizer(tt.fsys, tt.specialTokenTypes)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if diff := cmp.Diff(tt.want, tokenizer); diff != "" {
t.Errorf("unexpected tokenizer (-want +got):\n%s", diff)
}
})
}
}

View File

@@ -69,7 +69,7 @@ Enable JSON mode by setting the `format` parameter to `json`. This will structur
```shell
curl http://localhost:11434/api/generate -d '{
"model": "llama3",
"model": "llama3.1",
"prompt": "Why is the sky blue?"
}'
```
@@ -80,7 +80,7 @@ A stream of JSON objects is returned:
```json
{
"model": "llama3",
"model": "llama3.1",
"created_at": "2023-08-04T08:52:19.385406455-07:00",
"response": "The",
"done": false
@@ -102,7 +102,7 @@ To calculate how fast the response is generated in tokens per second (token/s),
```json
{
"model": "llama3",
"model": "llama3.1",
"created_at": "2023-08-04T19:22:45.499127Z",
"response": "",
"done": true,
@@ -124,7 +124,7 @@ A response can be received in one reply when streaming is off.
```shell
curl http://localhost:11434/api/generate -d '{
"model": "llama3",
"model": "llama3.1",
"prompt": "Why is the sky blue?",
"stream": false
}'
@@ -136,7 +136,7 @@ If `stream` is set to `false`, the response will be a single JSON object:
```json
{
"model": "llama3",
"model": "llama3.1",
"created_at": "2023-08-04T19:22:45.499127Z",
"response": "The sky is blue because it is the color of the sky.",
"done": true,
@@ -194,7 +194,7 @@ curl http://localhost:11434/api/generate -d '{
```shell
curl http://localhost:11434/api/generate -d '{
"model": "llama3",
"model": "llama3.1",
"prompt": "What color is the sky at different times of the day? Respond using JSON",
"format": "json",
"stream": false
@@ -205,7 +205,7 @@ curl http://localhost:11434/api/generate -d '{
```json
{
"model": "llama3",
"model": "llama3.1",
"created_at": "2023-11-09T21:07:55.186497Z",
"response": "{\n\"morning\": {\n\"color\": \"blue\"\n},\n\"noon\": {\n\"color\": \"blue-gray\"\n},\n\"afternoon\": {\n\"color\": \"warm gray\"\n},\n\"evening\": {\n\"color\": \"orange\"\n}\n}\n",
"done": true,
@@ -327,7 +327,7 @@ If you want to set custom options for the model at runtime rather than in the Mo
```shell
curl http://localhost:11434/api/generate -d '{
"model": "llama3",
"model": "llama3.1",
"prompt": "Why is the sky blue?",
"stream": false,
"options": {
@@ -368,7 +368,7 @@ curl http://localhost:11434/api/generate -d '{
```json
{
"model": "llama3",
"model": "llama3.1",
"created_at": "2023-08-04T19:22:45.499127Z",
"response": "The sky is blue because it is the color of the sky.",
"done": true,
@@ -390,7 +390,7 @@ If an empty prompt is provided, the model will be loaded into memory.
```shell
curl http://localhost:11434/api/generate -d '{
"model": "llama3"
"model": "llama3.1"
}'
```
@@ -400,13 +400,40 @@ A single JSON object is returned:
```json
{
"model": "llama3",
"model": "llama3.1",
"created_at": "2023-12-18T19:52:07.071755Z",
"response": "",
"done": true
}
```
#### Unload a model
If an empty prompt is provided and the `keep_alive` parameter is set to `0`, a model will be unloaded from memory.
##### Request
```shell
curl http://localhost:11434/api/generate -d '{
"model": "llama3.1",
"keep_alive": 0
}'
```
##### Response
A single JSON object is returned:
```json
{
"model": "llama3.1",
"created_at": "2024-09-12T03:54:03.516566Z",
"response": "",
"done": true,
"done_reason": "unload"
}
```
## Generate a chat completion
```shell
@@ -445,7 +472,7 @@ Send a chat message with a streaming response.
```shell
curl http://localhost:11434/api/chat -d '{
"model": "llama3",
"model": "llama3.1",
"messages": [
{
"role": "user",
@@ -461,7 +488,7 @@ A stream of JSON objects is returned:
```json
{
"model": "llama3",
"model": "llama3.1",
"created_at": "2023-08-04T08:52:19.385406455-07:00",
"message": {
"role": "assistant",
@@ -476,7 +503,7 @@ Final response:
```json
{
"model": "llama3",
"model": "llama3.1",
"created_at": "2023-08-04T19:22:45.499127Z",
"done": true,
"total_duration": 4883583458,
@@ -494,7 +521,7 @@ Final response:
```shell
curl http://localhost:11434/api/chat -d '{
"model": "llama3",
"model": "llama3.1",
"messages": [
{
"role": "user",
@@ -509,7 +536,7 @@ curl http://localhost:11434/api/chat -d '{
```json
{
"model": "registry.ollama.ai/library/llama3:latest",
"model": "llama3.1",
"created_at": "2023-12-12T14:13:43.416799Z",
"message": {
"role": "assistant",
@@ -533,7 +560,7 @@ Send a chat message with a conversation history. You can use this same approach
```shell
curl http://localhost:11434/api/chat -d '{
"model": "llama3",
"model": "llama3.1",
"messages": [
{
"role": "user",
@@ -557,7 +584,7 @@ A stream of JSON objects is returned:
```json
{
"model": "llama3",
"model": "llama3.1",
"created_at": "2023-08-04T08:52:19.385406455-07:00",
"message": {
"role": "assistant",
@@ -571,7 +598,7 @@ Final response:
```json
{
"model": "llama3",
"model": "llama3.1",
"created_at": "2023-08-04T19:22:45.499127Z",
"done": true,
"total_duration": 8113331500,
@@ -629,7 +656,7 @@ curl http://localhost:11434/api/chat -d '{
```shell
curl http://localhost:11434/api/chat -d '{
"model": "llama3",
"model": "llama3.1",
"messages": [
{
"role": "user",
@@ -647,7 +674,7 @@ curl http://localhost:11434/api/chat -d '{
```json
{
"model": "registry.ollama.ai/library/llama3:latest",
"model": "llama3.1",
"created_at": "2023-12-12T14:13:43.416799Z",
"message": {
"role": "assistant",
@@ -736,6 +763,64 @@ curl http://localhost:11434/api/chat -d '{
}
```
#### Load a model
If the messages array is empty, the model will be loaded into memory.
##### Request
```
curl http://localhost:11434/api/chat -d '{
"model": "llama3.1",
"messages": []
}'
```
##### Response
```json
{
"model": "llama3.1",
"created_at":"2024-09-12T21:17:29.110811Z",
"message": {
"role": "assistant",
"content": ""
},
"done_reason": "load",
"done": true
}
```
#### Unload a model
If the messages array is empty and the `keep_alive` parameter is set to `0`, a model will be unloaded from memory.
##### Request
```
curl http://localhost:11434/api/chat -d '{
"model": "llama3.1",
"messages": [],
"keep_alive": 0
}'
```
##### Response
A single JSON object is returned:
```json
{
"model": "llama3.1",
"created_at":"2024-09-12T21:33:17.547535Z",
"message": {
"role": "assistant",
"content": ""
},
"done_reason": "unload",
"done": true
}
```
## Create a Model
```shell
@@ -904,7 +989,7 @@ Show information about a model including details, modelfile, template, parameter
```shell
curl http://localhost:11434/api/show -d '{
"name": "llama3"
"name": "llama3.1"
}'
```
@@ -965,7 +1050,7 @@ Copy a model. Creates a model with another name from an existing model.
```shell
curl http://localhost:11434/api/copy -d '{
"source": "llama3",
"source": "llama3.1",
"destination": "llama3-backup"
}'
```
@@ -1020,7 +1105,7 @@ Download a model from the ollama library. Cancelled pulls are resumed from where
```shell
curl http://localhost:11434/api/pull -d '{
"name": "llama3"
"name": "llama3.1"
}'
```

View File

@@ -148,3 +148,22 @@ In addition to the common Windows development tools described above, install AMD
- [Strawberry Perl](https://strawberryperl.com/)
Lastly, add `ninja.exe` included with MSVC to the system path (e.g. `C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\Common7\IDE\CommonExtensions\Microsoft\CMake\Ninja`).
#### Windows arm64
The default `Developer PowerShell for VS 2022` may default to x86 which is not what you want. To ensure you get an arm64 development environment, start a plain PowerShell terminal and run:
```powershell
import-module 'C:\\Program Files\\Microsoft Visual Studio\\2022\\Community\\Common7\\Tools\\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -Arch arm64 -vsinstallpath 'C:\\Program Files\\Microsoft Visual Studio\\2022\\Community' -skipautomaticlocation
```
You can confirm with `write-host $env:VSCMD_ARG_TGT_ARCH`
Follow the instructions at https://www.msys2.org/wiki/arm64/ to set up an arm64 msys2 environment. Ollama requires gcc and mingw32-make to compile, which is not currently available on Windows arm64, but a gcc compatibility adapter is available via `mingw-w64-clang-aarch64-gcc-compat`. At a minimum you will need to install the following:
```
pacman -S mingw-w64-clang-aarch64-clang mingw-w64-clang-aarch64-gcc-compat mingw-w64-clang-aarch64-make make
```
You will need to ensure your PATH includes go, cmake, gcc and clang mingw32-make to build ollama from source. (typically `C:\msys64\clangarm64\bin\`)

View File

@@ -32,7 +32,7 @@ When using the API, specify the `num_ctx` parameter:
```shell
curl http://localhost:11434/api/generate -d '{
"model": "llama3",
"model": "llama3.1",
"prompt": "Why is the sky blue?",
"options": {
"num_ctx": 4096
@@ -194,6 +194,8 @@ Refer to the section [above](#how-do-i-configure-ollama-server) for how to set e
If a different directory needs to be used, set the environment variable `OLLAMA_MODELS` to the chosen directory.
> Note: on Linux using the standard installer, the `ollama` user needs read and write access to the specified directory. To assign the directory to the `ollama` user run `sudo chown -R ollama:ollama <directory>`.
Refer to the section [above](#how-do-i-configure-ollama-server) for how to set environment variables on your platform.
## How can I use Ollama in Visual Studio Code?
@@ -235,9 +237,13 @@ ollama run llama3.1 ""
## How do I keep a model loaded in memory or make it unload immediately?
By default models are kept in memory for 5 minutes before being unloaded. This allows for quicker response times if you are making numerous requests to the LLM. You may, however, want to free up the memory before the 5 minutes have elapsed or keep the model loaded indefinitely. Use the `keep_alive` parameter with either the `/api/generate` and `/api/chat` API endpoints to control how long the model is left in memory.
By default models are kept in memory for 5 minutes before being unloaded. This allows for quicker response times if you're making numerous requests to the LLM. If you want to immediately unload a model from memory, use the `ollama stop` command:
The `keep_alive` parameter can be set to:
```shell
ollama stop llama3.1
```
If you're using the API, use the `keep_alive` parameter with the `/api/generate` and `/api/chat` endpoints to set the amount of time that a model stays in memory. The `keep_alive` parameter can be set to:
* a duration string (such as "10m" or "24h")
* a number in seconds (such as 3600)
* any negative number which will keep the model loaded in memory (e.g. -1 or "-1m")
@@ -245,17 +251,17 @@ The `keep_alive` parameter can be set to:
For example, to preload a model and leave it in memory use:
```shell
curl http://localhost:11434/api/generate -d '{"model": "llama3", "keep_alive": -1}'
curl http://localhost:11434/api/generate -d '{"model": "llama3.1", "keep_alive": -1}'
```
To unload the model and free up memory use:
```shell
curl http://localhost:11434/api/generate -d '{"model": "llama3", "keep_alive": 0}'
curl http://localhost:11434/api/generate -d '{"model": "llama3.1", "keep_alive": 0}'
```
Alternatively, you can change the amount of time all models are loaded into memory by setting the `OLLAMA_KEEP_ALIVE` environment variable when starting the Ollama server. The `OLLAMA_KEEP_ALIVE` variable uses the same parameter types as the `keep_alive` parameter types mentioned above. Refer to section explaining [how to configure the Ollama server](#how-do-i-configure-ollama-server) to correctly set the environment variable.
Alternatively, you can change the amount of time all models are loaded into memory by setting the `OLLAMA_KEEP_ALIVE` environment variable when starting the Ollama server. The `OLLAMA_KEEP_ALIVE` variable uses the same parameter types as the `keep_alive` parameter types mentioned above. Refer to the section explaining [how to configure the Ollama server](#how-do-i-configure-ollama-server) to correctly set the environment variable.
If you wish to override the `OLLAMA_KEEP_ALIVE` setting, use the `keep_alive` API parameter with the `/api/generate` or `/api/chat` API endpoints.
The `keep_alive` API parameter with the `/api/generate` and `/api/chat` API endpoints will override the `OLLAMA_KEEP_ALIVE` setting.
## How do I manage the maximum number of requests the Ollama server can queue?

View File

@@ -10,7 +10,7 @@ Check your compute compatibility to see if your card is supported:
| 9.0 | NVIDIA | `H100` |
| 8.9 | GeForce RTX 40xx | `RTX 4090` `RTX 4080 SUPER` `RTX 4080` `RTX 4070 Ti SUPER` `RTX 4070 Ti` `RTX 4070 SUPER` `RTX 4070` `RTX 4060 Ti` `RTX 4060` |
| | NVIDIA Professional | `L4` `L40` `RTX 6000` |
| 8.6 | GeForce RTX 30xx | `RTX 3090 Ti` `RTX 3090` `RTX 3080 Ti` `RTX 3080` `RTX 3070 Ti` `RTX 3070` `RTX 3060 Ti` `RTX 3060` |
| 8.6 | GeForce RTX 30xx | `RTX 3090 Ti` `RTX 3090` `RTX 3080 Ti` `RTX 3080` `RTX 3070 Ti` `RTX 3070` `RTX 3060 Ti` `RTX 3060` `RTX 3050 Ti` `RTX 3050` |
| | NVIDIA Professional | `A40` `RTX A6000` `RTX A5000` `RTX A4000` `RTX A3000` `RTX A2000` `A10` `A16` `A2` |
| 8.0 | NVIDIA | `A100` `A30` |
| 7.5 | GeForce GTX/RTX | `GTX 1650 Ti` `TITAN RTX` `RTX 2080 Ti` `RTX 2080` `RTX 2070` `RTX 2060` |

BIN
docs/images/ollama-keys.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 150 KiB

BIN
docs/images/signup.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 80 KiB

View File

@@ -1,44 +1,129 @@
# Import
# Importing a model
GGUF models and select Safetensors models can be imported directly into Ollama.
## Table of Contents
## Import GGUF
* [Importing a Safetensors adapter](#Importing-a-fine-tuned-adapter-from-Safetensors-weights)
* [Importing a Safetensors model](#Importing-a-model-from-Safetensors-weights)
* [Importing a GGUF file](#Importing-a-GGUF-based-model-or-adapter)
* [Sharing models on ollama.com](#Sharing-your-model-on-ollamacom)
A binary GGUF file can be imported directly into Ollama through a Modelfile.
## Importing a fine tuned adapter from Safetensors weights
First, create a `Modelfile` with a `FROM` command pointing at the base model you used for fine tuning, and an `ADAPTER` command which points to the directory with your Safetensors adapter:
```dockerfile
FROM /path/to/file.gguf
FROM <base model name>
ADAPTER /path/to/safetensors/adapter/directory
```
## Import Safetensors
Make sure that you use the same base model in the `FROM` command as you used to create the adapter otherwise you will get erratic results. Most frameworks use different quantization methods, so it's best to use non-quantized (i.e. non-QLoRA) adapters. If your adapter is in the same directory as your `Modelfile`, use `ADAPTER .` to specify the adapter path.
If the model being imported is one of these architectures, it can be imported directly into Ollama through a Modelfile:
Now run `ollama create` from the directory where the `Modelfile` was created:
- LlamaForCausalLM
- MistralForCausalLM
- MixtralForCausalLM
- GemmaForCausalLM
- Phi3ForCausalLM
```bash
ollama create my-model
```
Lastly, test the model:
```bash
ollama run my-model
```
Ollama supports importing adapters based on several different model architectures including:
* Llama (including Llama 2, Llama 3, and Llama 3.1);
* Mistral (including Mistral 1, Mistral 2, and Mixtral); and
* Gemma (including Gemma 1 and Gemma 2)
You can create the adapter using a fine tuning framework or tool which can output adapters in the Safetensors format, such as:
* Hugging Face [fine tuning framework](https://huggingface.co/docs/transformers/en/training)
* [Unsloth](https://github.com/unslothai/unsloth)
* [MLX](https://github.com/ml-explore/mlx)
## Importing a model from Safetensors weights
First, create a `Modelfile` with a `FROM` command which points to the directory containing your Safetensors weights:
```dockerfile
FROM /path/to/safetensors/directory
```
For architectures not directly convertable by Ollama, see llama.cpp's [guide](https://github.com/ggerganov/llama.cpp/blob/master/README.md#prepare-and-quantize) on conversion. After conversion, see [Import GGUF](#import-gguf).
If you create the Modelfile in the same directory as the weights, you can use the command `FROM .`.
## Automatic Quantization
Now run the `ollama create` command from the directory where you created the `Modelfile`:
> [!NOTE]
> Automatic quantization requires v0.1.35 or higher.
```shell
ollama create my-model
```
Ollama is capable of quantizing FP16 or FP32 models to any of the supported quantizations with the `-q/--quantize` flag in `ollama create`.
Lastly, test the model:
```shell
ollama run my-model
```
Ollama supports importing models for several different architectures including:
* Llama (including Llama 2, Llama 3, and Llama 3.1);
* Mistral (including Mistral 1, Mistral 2, and Mixtral);
* Gemma (including Gemma 1 and Gemma 2); and
* Phi3
This includes importing foundation models as well as any fine tuned models which which have been _fused_ with a foundation model.
## Importing a GGUF based model or adapter
If you have a GGUF based model or adapter it is possible to import it into Ollama. You can obtain a GGUF model or adapter by:
* converting a Safetensors model with the `convert_hf_to_gguf.py` from Llama.cpp;
* converting a Safetensors adapter with the `convert_lora_to_gguf.py` from Llama.cpp; or
* downloading a model or adapter from a place such as HuggingFace
To import a GGUF model, create a `Modelfile` containg:
```dockerfile
FROM /path/to/file.gguf
```
For a GGUF adapter, create the `Modelfile` with:
```dockerfile
FROM <model name>
ADAPTER /path/to/file.gguf
```
When importing a GGUF adapter, it's important to use the same base model as the base model that the adapter was created with. You can use:
* a model from Ollama
* a GGUF file
* a Safetensors based model
Once you have created your `Modelfile`, use the `ollama create` command to build the model.
```shell
ollama create my-model
```
## Quantizing a Model
Quantizing a model allows you to run models faster and with less memory consumption but at reduced accuracy. This allows you to run a model on more modest hardware.
Ollama can quantize FP16 and FP32 based models into different quantization levels using the `-q/--quantize` flag with the `ollama create` command.
First, create a Modelfile with the FP16 or FP32 based model you wish to quantize.
```dockerfile
FROM /path/to/my/gemma/f16/model
```
Use `ollama create` to then create the quantized model.
```shell
$ ollama create -q Q4_K_M mymodel
$ ollama create --quantize q4_K_M mymodel
transferring model data
quantizing F16 model to Q4_K_M
creating new layer sha256:735e246cc1abfd06e9cdcf95504d6789a6cd1ad7577108a70d9902fef503c1bd
@@ -49,42 +134,53 @@ success
### Supported Quantizations
- `Q4_0`
- `Q4_1`
- `Q5_0`
- `Q5_1`
- `Q8_0`
- `q4_0`
- `q4_1`
- `q5_0`
- `q5_1`
- `q8_0`
#### K-means Quantizations
- `Q3_K_S`
- `Q3_K_M`
- `Q3_K_L`
- `Q4_K_S`
- `Q4_K_M`
- `Q5_K_S`
- `Q5_K_M`
- `Q6_K`
- `q3_K_S`
- `q3_K_M`
- `q3_K_L`
- `q4_K_S`
- `q4_K_M`
- `q5_K_S`
- `q5_K_M`
- `q6_K`
## Template Detection
> [!NOTE]
> Template detection requires v0.1.42 or higher.
## Sharing your model on ollama.com
Ollama uses model metadata, specifically `tokenizer.chat_template`, to automatically create a template appropriate for the model you're importing.
You can share any model you have created by pushing it to [ollama.com](https://ollama.com) so that other users can try it out.
```dockerfile
FROM /path/to/my/gemma/model
```
First, use your browser to go to the [Ollama Sign-Up](https://ollama.com/signup) page. If you already have an account, you can skip this step.
<img src="images/signup.png" alt="Sign-Up" width="40%">
The `Username` field will be used as part of your model's name (e.g. `jmorganca/mymodel`), so make sure you are comfortable with the username that you have selected.
Now that you have created an account and are signed-in, go to the [Ollama Keys Settings](https://ollama.com/settings/keys) page.
Follow the directions on the page to determine where your Ollama Public Key is located.
<img src="images/ollama-keys.png" alt="Ollama Keys" width="80%">
Click on the `Add Ollama Public Key` button, and copy and paste the contents of your Ollama Public Key into the text field.
To push a model to [ollama.com](https://ollama.com), first make sure that it is named correctly with your username. You may have to use the `ollama cp` command to copy
your model to give it the correct name. Once you're happy with your model's name, use the `ollama push` command to push it to [ollama.com](https://ollama.com).
```shell
$ ollama create mymodel
transferring model data
using autodetected template gemma-instruct
creating new layer sha256:baa2a0edc27d19cc6b7537578a9a7ba1a4e3214dc185ed5ae43692b319af7b84
creating new layer sha256:ba66c3309914dbef07e5149a648fd1877f030d337a4f240d444ea335008943cb
writing manifest
success
ollama cp mymodel myuser/mymodel
ollama push myuser/mymodel
```
Once your model has been pushed, other users can pull and run it by using the command:
```shell
ollama run myuser/mymodel
```
Defining a template in the Modelfile will disable this feature which may be useful if you want to use a different template than the autodetected one.

View File

@@ -1,39 +1,59 @@
# Ollama on Linux
# Linux
## Install
Install Ollama running this one-liner:
To install Ollama, run the following command:
>
```bash
```shell
curl -fsSL https://ollama.com/install.sh | sh
```
## AMD Radeon GPU support
While AMD has contributed the `amdgpu` driver upstream to the official linux
kernel source, the version is older and may not support all ROCm features. We
recommend you install the latest driver from
https://www.amd.com/en/support/linux-drivers for best support of your Radeon
GPU.
## Manual install
### Download `ollama`
Download and extract the package:
Download and extract the Linux package:
```shell
curl -L https://ollama.com/download/ollama-linux-amd64.tgz -o ollama-linux-amd64.tgz
sudo tar -C /usr -xzf ollama-linux-amd64.tgz
```
```bash
curl -fsSL https://ollama.com/download/ollama-linux-amd64.tgz | sudo tar zx -C /usr
Start Ollama:
```shell
ollama serve
```
In another terminal, verify that Ollama is running:
```shell
ollama -v
```
### AMD GPU install
If you have an AMD GPU, also download and extract the additional ROCm package:
```shell
curl -L https://ollama.com/download/ollama-linux-amd64-rocm.tgz -o ollama-linux-amd64-rocm.tgz
sudo tar -C /usr -xzf ollama-linux-amd64-rocm.tgz
```
### ARM64 install
Download and extract the ARM64-specific package:
```shell
curl -L https://ollama.com/download/ollama-linux-arm64.tgz -o ollama-linux-arm64.tgz
sudo tar -C /usr -xzf ollama-linux-arm64.tgz
```
### Adding Ollama as a startup service (recommended)
Create a user for Ollama:
Create a user and group for Ollama:
```bash
sudo useradd -r -s /bin/false -m -d /usr/share/ollama ollama
```shell
sudo useradd -r -s /bin/false -U -m -d /usr/share/ollama ollama
sudo usermod -a -G ollama $(whoami)
```
Create a service file in `/etc/systemd/system/ollama.service`:
@@ -49,6 +69,7 @@ User=ollama
Group=ollama
Restart=always
RestartSec=3
Environment="PATH=$PATH"
[Install]
WantedBy=default.target
@@ -56,46 +77,54 @@ WantedBy=default.target
Then start the service:
```bash
```shell
sudo systemctl daemon-reload
sudo systemctl enable ollama
```
### Install CUDA drivers (optional for Nvidia GPUs)
### Install CUDA drivers (optional)
[Download and install](https://developer.nvidia.com/cuda-downloads) CUDA.
Verify that the drivers are installed by running the following command, which should print details about your GPU:
```bash
```shell
nvidia-smi
```
### Install ROCm (optional - for Radeon GPUs)
[Download and Install](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/tutorial/quick-start.html)
### Install AMD ROCm drivers (optional)
Make sure to install ROCm v6
[Download and Install](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/tutorial/quick-start.html) ROCm v6.
### Start Ollama
Start Ollama using `systemd`:
Start Ollama and verify it is running:
```bash
```shell
sudo systemctl start ollama
sudo systemctl status ollama
```
## Update
> [!NOTE]
> While AMD has contributed the `amdgpu` driver upstream to the official linux
> kernel source, the version is older and may not support all ROCm features. We
> recommend you install the latest driver from
> https://www.amd.com/en/support/linux-drivers for best support of your Radeon
> GPU.
Update ollama by running the install script again:
## Updating
```bash
Update Ollama by running the install script again:
```shell
curl -fsSL https://ollama.com/install.sh | sh
```
Or by downloading the ollama binary:
Or by re-downloading Ollama:
```bash
curl -fsSL https://ollama.com/download/ollama-linux-amd64.tgz | sudo tar zx -C /usr
```shell
curl -L https://ollama.com/download/ollama-linux-amd64.tgz -o ollama-linux-amd64.tgz
sudo tar -C /usr -xzf ollama-linux-amd64.tgz
```
## Installing specific versions
@@ -104,15 +133,15 @@ Use `OLLAMA_VERSION` environment variable with the install script to install a s
For example:
```
curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION=0.1.32 sh
```shell
curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION=0.3.9 sh
```
## Viewing logs
To view logs of Ollama running as a startup service, run:
```bash
```shell
journalctl -e -u ollama
```
@@ -120,7 +149,7 @@ journalctl -e -u ollama
Remove the ollama service:
```bash
```shell
sudo systemctl stop ollama
sudo systemctl disable ollama
sudo rm /etc/systemd/system/ollama.service
@@ -128,13 +157,13 @@ sudo rm /etc/systemd/system/ollama.service
Remove the ollama binary from your bin directory (either `/usr/local/bin`, `/usr/bin`, or `/bin`):
```bash
```shell
sudo rm $(which ollama)
```
Remove the downloaded models and Ollama service user and group:
```bash
```shell
sudo rm -r /usr/share/ollama
sudo userdel ollama
sudo groupdel ollama

View File

@@ -11,8 +11,9 @@ A model file is the blueprint to create and share models with Ollama.
- [Examples](#examples)
- [Instructions](#instructions)
- [FROM (Required)](#from-required)
- [Build from llama3](#build-from-llama3)
- [Build from a bin file](#build-from-a-bin-file)
- [Build from existing model](#build-from-existing-model)
- [Build from a Safetensors model](#build-from-a-safetensors-model)
- [Build from a GGUF file](#build-from-a-gguf-file)
- [PARAMETER](#parameter)
- [Valid Parameters and Values](#valid-parameters-and-values)
- [TEMPLATE](#template)
@@ -49,7 +50,7 @@ INSTRUCTION arguments
An example of a `Modelfile` creating a mario blueprint:
```modelfile
FROM llama3
FROM llama3.1
# sets the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1
# sets the context window size to 4096, this controls how many tokens the LLM can use as context to generate the next token
@@ -71,10 +72,10 @@ More examples are available in the [examples directory](../examples).
To view the Modelfile of a given model, use the `ollama show --modelfile` command.
```bash
> ollama show --modelfile llama3
> ollama show --modelfile llama3.1
# Modelfile generated by "ollama show"
# To build a new Modelfile based on this one, replace the FROM line with:
# FROM llama3:latest
# FROM llama3.1:latest
FROM /Users/pdevine/.ollama/models/blobs/sha256-00e1317cbf74d901080d7100f57580ba8dd8de57203072dc6f668324ba545f29
TEMPLATE """{{ if .System }}<|start_header_id|>system<|end_header_id|>
@@ -99,22 +100,39 @@ The `FROM` instruction defines the base model to use when creating a model.
FROM <model name>:<tag>
```
#### Build from llama3
#### Build from existing model
```modelfile
FROM llama3
FROM llama3.1
```
A list of available base models:
<https://github.com/ollama/ollama#model-library>
Additional models can be found at:
<https://ollama.com/library>
#### Build from a `bin` file
#### Build from a Safetensors model
```modelfile
FROM ./ollama-model.bin
FROM <model directory>
```
This bin file location should be specified as an absolute path or relative to the `Modelfile` location.
The model directory should contain the Safetensors weights for a supported architecture.
Currently supported model architectures:
* Llama (including Llama 2, Llama 3, and Llama 3.1)
* Mistral (including Mistral 1, Mistral 2, and Mixtral)
* Gemma (including Gemma 1 and Gemma 2)
* Phi3
#### Build from a GGUF file
```modelfile
FROM ./ollama-model.gguf
```
The GGUF file location should be specified as an absolute path or relative to the `Modelfile` location.
### PARAMETER
@@ -174,10 +192,23 @@ SYSTEM """<system message>"""
### ADAPTER
The `ADAPTER` instruction is an optional instruction that specifies any LoRA adapter that should apply to the base model. The value of this instruction should be an absolute path or a path relative to the Modelfile and the file must be in a GGML file format. The adapter should be tuned from the base model otherwise the behaviour is undefined.
The `ADAPTER` instruction specifies a fine tuned LoRA adapter that should apply to the base model. The value of the adapter should be an absolute path or a path relative to the Modelfile. The base model should be specified with a `FROM` instruction. If the base model is not the same as the base model that the adapter was tuned from the behaviour will be erratic.
#### Safetensor adapter
```modelfile
ADAPTER ./ollama-lora.bin
ADAPTER <path to safetensor adapter>
```
Currently supported Safetensor adapters:
* Llama (including Llama 2, Llama 3, and Llama 3.1)
* Mistral (including Mistral 1, Mistral 2, and Mixtral)
* Gemma (including Gemma 1 and Gemma 2)
#### GGUF adapter
```modelfile
ADAPTER ./ollama-lora.gguf
```
### LICENSE

View File

@@ -25,7 +25,7 @@ chat_completion = client.chat.completions.create(
'content': 'Say this is a test',
}
],
model='llama3',
model='llama3.1',
)
response = client.chat.completions.create(
@@ -46,13 +46,13 @@ response = client.chat.completions.create(
)
completion = client.completions.create(
model="llama3",
model="llama3.1",
prompt="Say this is a test",
)
list_completion = client.models.list()
model = client.models.retrieve("llama3")
model = client.models.retrieve("llama3.1")
embeddings = client.embeddings.create(
model="all-minilm",
@@ -74,7 +74,7 @@ const openai = new OpenAI({
const chatCompletion = await openai.chat.completions.create({
messages: [{ role: 'user', content: 'Say this is a test' }],
model: 'llama3',
model: 'llama3.1',
})
const response = await openai.chat.completions.create({
@@ -94,13 +94,13 @@ const response = await openai.chat.completions.create({
})
const completion = await openai.completions.create({
model: "llama3",
model: "llama3.1",
prompt: "Say this is a test.",
})
const listCompletion = await openai.models.list()
const model = await openai.models.retrieve("llama3")
const model = await openai.models.retrieve("llama3.1")
const embedding = await openai.embeddings.create({
model: "all-minilm",
@@ -114,7 +114,7 @@ const embedding = await openai.embeddings.create({
curl http://localhost:11434/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "llama3",
"model": "llama3.1",
"messages": [
{
"role": "system",
@@ -154,13 +154,13 @@ curl http://localhost:11434/v1/chat/completions \
curl http://localhost:11434/v1/completions \
-H "Content-Type: application/json" \
-d '{
"model": "llama3",
"model": "llama3.1",
"prompt": "Say this is a test"
}'
curl http://localhost:11434/v1/models
curl http://localhost:11434/v1/models/llama3
curl http://localhost:11434/v1/models/llama3.1
curl http://localhost:11434/v1/embeddings \
-H "Content-Type: application/json" \
@@ -274,7 +274,7 @@ curl http://localhost:11434/v1/embeddings \
Before using a model, pull it locally `ollama pull`:
```shell
ollama pull llama3
ollama pull llama3.1
```
### Default model names
@@ -282,7 +282,7 @@ ollama pull llama3
For tooling that relies on default OpenAI model names such as `gpt-3.5-turbo`, use `ollama cp` to copy an existing model name to a temporary name:
```
ollama cp llama3 gpt-3.5-turbo
ollama cp llama3.1 gpt-3.5-turbo
```
Afterwards, this new model name can be specified the `model` field:
@@ -300,3 +300,28 @@ curl http://localhost:11434/v1/chat/completions \
]
}'
```
### Setting the context size
The OpenAI API does not have a way of setting the context size for a model. If you need to change the context size, create a `Modelfile` which looks like:
```modelfile
FROM <some model>
PARAMETER num_ctx <context size>
```
Use the `ollama create mymodel` command to create a new model with the updated context size. Call the API with the updated model name:
```shell
curl http://localhost:11434/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "mymodel",
"messages": [
{
"role": "user",
"content": "Hello!"
}
]
}'
```

View File

@@ -33,7 +33,7 @@ Omitting a template in these models puts the responsibility of correctly templat
To add templates in your model, you'll need to add a `TEMPLATE` command to the Modelfile. Here's an example using Meta's Llama 3.
```dockerfile
FROM llama3
FROM llama3.1
TEMPLATE """{{- if .System }}<|start_header_id|>system<|end_header_id|>

View File

@@ -91,6 +91,17 @@ If none of those resolve the problem, gather additional information and file an
- Check dmesg for any errors `sudo dmesg | grep -i nvrm` and `sudo dmesg | grep -i nvidia`
## AMD GPU Discovery
On linux, AMD GPU access typically requires `video` and/or `render` group membership to access the `/dev/kfd` device. If permissions are not set up correctly, Ollama will detect this and report an error in the server log.
When running in a container, in some Linux distributions and container runtimes, the ollama process may be unable to access the GPU. Use `ls -ld /dev/kfd /dev/dri /dev/dri/*` on the host system to determine the group assignments on your system, and pass additional `--group-add ...` arguments to the container so it can access the required devices.
If you are experiencing problems getting Ollama to correctly discover or use your GPU for inference, the following may help isolate the failure.
- `AMD_LOG_LEVEL=3` Enable info log levels in the AMD HIP/ROCm libraries. This can help show more detailed error codes that can help troubleshoot problems
- `OLLAMA_DEBUG=1` During GPU discovery additional information will be reported
- Check dmesg for any errors from amdgpu or kfd drivers `sudo dmesg | grep -i amdgpu` and `sudo dmesg | grep -i kfd`
## Windows Terminal Errors
Older versions of Windows 10 (e.g., 21H1) are known to have a bug where the standard terminal program does not display control characters correctly. This can result in a long string of strings like `←[?25h←[?25l` being displayed, sometimes erroring with `The parameter is incorrect` To resolve this problem, please update to Win 10 22H1 or newer.

View File

@@ -29,7 +29,7 @@ Ollama uses unicode characters for progress indication, which may render as unkn
Here's a quick example showing API access from `powershell`
```powershell
(Invoke-WebRequest -method POST -Body '{"model":"llama3", "prompt":"Why is the sky blue?", "stream": false}' -uri http://localhost:11434/api/generate ).Content | ConvertFrom-json
(Invoke-WebRequest -method POST -Body '{"model":"llama3.1", "prompt":"Why is the sky blue?", "stream": false}' -uri http://localhost:11434/api/generate ).Content | ConvertFrom-json
```
## Troubleshooting
@@ -48,6 +48,9 @@ the explorer window by hitting `<cmd>+R` and type in:
- `explorer %HOMEPATH%\.ollama` contains models and configuration
- `explorer %TEMP%` contains temporary executable files in one or more `ollama*` directories
## Uninstall
The Ollama Windows installer registers an Uninstaller application. Under `Add or remove programs` in Windows Settings, you can uninstall Ollama.
## Standalone CLI

View File

@@ -30,9 +30,7 @@ func Host() *url.URL {
defaultPort = "443"
}
// trim trailing slashes
hostport = strings.TrimRight(hostport, "/")
hostport, path, _ := strings.Cut(hostport, "/")
host, port, err := net.SplitHostPort(hostport)
if err != nil {
host, port = "127.0.0.1", defaultPort
@@ -45,15 +43,13 @@ func Host() *url.URL {
if n, err := strconv.ParseInt(port, 10, 32); err != nil || n > 65535 || n < 0 {
slog.Warn("invalid port, using default", "port", port, "default", defaultPort)
return &url.URL{
Scheme: scheme,
Host: net.JoinHostPort(host, defaultPort),
}
port = defaultPort
}
return &url.URL{
Scheme: scheme,
Host: net.JoinHostPort(host, port),
Path: path,
}
}
@@ -116,6 +112,26 @@ func KeepAlive() (keepAlive time.Duration) {
return keepAlive
}
// LoadTimeout returns the duration for stall detection during model loads. LoadTimeout can be configured via the OLLAMA_LOAD_TIMEOUT environment variable.
// Zero or Negative values are treated as infinite.
// Default is 5 minutes.
func LoadTimeout() (loadTimeout time.Duration) {
loadTimeout = 5 * time.Minute
if s := Var("OLLAMA_LOAD_TIMEOUT"); s != "" {
if d, err := time.ParseDuration(s); err == nil {
loadTimeout = d
} else if n, err := strconv.ParseInt(s, 10, 64); err == nil {
loadTimeout = time.Duration(n) * time.Second
}
}
if loadTimeout <= 0 {
return time.Duration(math.MaxInt64)
}
return loadTimeout
}
func Bool(k string) func() bool {
return func() bool {
if s := Var(k); s != "" {
@@ -163,53 +179,6 @@ var (
HsaOverrideGfxVersion = String("HSA_OVERRIDE_GFX_VERSION")
)
func RunnersDir() (p string) {
if p := Var("OLLAMA_RUNNERS_DIR"); p != "" {
return p
}
if runtime.GOOS != "windows" {
return
}
defer func() {
if p == "" {
slog.Error("unable to locate llm runner directory. Set OLLAMA_RUNNERS_DIR to the location of 'ollama/runners'")
}
}()
// On Windows we do not carry the payloads inside the main executable
exe, err := os.Executable()
if err != nil {
return
}
cwd, err := os.Getwd()
if err != nil {
return
}
var paths []string
for _, root := range []string{filepath.Dir(exe), filepath.Join(filepath.Dir(exe), ".."), cwd} {
paths = append(paths,
root,
filepath.Join(root, runtime.GOOS+"-"+runtime.GOARCH),
filepath.Join(root, "dist", runtime.GOOS+"-"+runtime.GOARCH),
)
}
// Try a few variations to improve developer experience when building from source in the local tree
for _, path := range paths {
candidate := filepath.Join(path, "lib", "ollama", "runners")
if _, err := os.Stat(candidate); err == nil {
p = candidate
break
}
}
return p
}
func Uint(key string, defaultValue uint) func() uint {
return func() uint {
if s := Var(key); s != "" {
@@ -235,6 +204,23 @@ var (
MaxVRAM = Uint("OLLAMA_MAX_VRAM", 0)
)
func Uint64(key string, defaultValue uint64) func() uint64 {
return func() uint64 {
if s := Var(key); s != "" {
if n, err := strconv.ParseUint(s, 10, 64); err != nil {
slog.Warn("invalid environment variable, using default", "key", key, "value", s, "default", defaultValue)
} else {
return n
}
}
return defaultValue
}
}
// Set aside VRAM per GPU
var GpuOverhead = Uint64("OLLAMA_GPU_OVERHEAD", 0)
type EnvVar struct {
Name string
Value any
@@ -245,9 +231,11 @@ func AsMap() map[string]EnvVar {
ret := map[string]EnvVar{
"OLLAMA_DEBUG": {"OLLAMA_DEBUG", Debug(), "Show additional debug information (e.g. OLLAMA_DEBUG=1)"},
"OLLAMA_FLASH_ATTENTION": {"OLLAMA_FLASH_ATTENTION", FlashAttention(), "Enabled flash attention"},
"OLLAMA_GPU_OVERHEAD": {"OLLAMA_GPU_OVERHEAD", GpuOverhead(), "Reserve a portion of VRAM per GPU (bytes)"},
"OLLAMA_HOST": {"OLLAMA_HOST", Host(), "IP Address for the ollama server (default 127.0.0.1:11434)"},
"OLLAMA_KEEP_ALIVE": {"OLLAMA_KEEP_ALIVE", KeepAlive(), "The duration that models stay loaded in memory (default \"5m\")"},
"OLLAMA_LLM_LIBRARY": {"OLLAMA_LLM_LIBRARY", LLMLibrary(), "Set LLM library to bypass autodetection"},
"OLLAMA_LOAD_TIMEOUT": {"OLLAMA_LOAD_TIMEOUT", LoadTimeout(), "How long to allow model loads to stall before giving up (default \"5m\")"},
"OLLAMA_MAX_LOADED_MODELS": {"OLLAMA_MAX_LOADED_MODELS", MaxRunners(), "Maximum number of loaded models per GPU"},
"OLLAMA_MAX_QUEUE": {"OLLAMA_MAX_QUEUE", MaxQueue(), "Maximum number of queued requests"},
"OLLAMA_MODELS": {"OLLAMA_MODELS", Models(), "The path to the models directory"},
@@ -255,10 +243,22 @@ func AsMap() map[string]EnvVar {
"OLLAMA_NOPRUNE": {"OLLAMA_NOPRUNE", NoPrune(), "Do not prune model blobs on startup"},
"OLLAMA_NUM_PARALLEL": {"OLLAMA_NUM_PARALLEL", NumParallel(), "Maximum number of parallel requests"},
"OLLAMA_ORIGINS": {"OLLAMA_ORIGINS", Origins(), "A comma separated list of allowed origins"},
"OLLAMA_RUNNERS_DIR": {"OLLAMA_RUNNERS_DIR", RunnersDir(), "Location for runners"},
"OLLAMA_SCHED_SPREAD": {"OLLAMA_SCHED_SPREAD", SchedSpread(), "Always schedule model across all GPUs"},
"OLLAMA_TMPDIR": {"OLLAMA_TMPDIR", TmpDir(), "Location for temporary files"},
// Informational
"HTTP_PROXY": {"HTTP_PROXY", String("HTTP_PROXY")(), "HTTP proxy"},
"HTTPS_PROXY": {"HTTPS_PROXY", String("HTTPS_PROXY")(), "HTTPS proxy"},
"NO_PROXY": {"NO_PROXY", String("NO_PROXY")(), "No proxy"},
}
if runtime.GOOS != "windows" {
// Windows environment variables are case-insensitive so there's no need to duplicate them
ret["http_proxy"] = EnvVar{"http_proxy", String("http_proxy")(), "HTTP proxy"}
ret["https_proxy"] = EnvVar{"https_proxy", String("https_proxy")(), "HTTPS proxy"}
ret["no_proxy"] = EnvVar{"no_proxy", String("no_proxy")(), "No proxy"}
}
if runtime.GOOS != "darwin" {
ret["CUDA_VISIBLE_DEVICES"] = EnvVar{"CUDA_VISIBLE_DEVICES", CudaVisibleDevices(), "Set which NVIDIA devices are visible"}
ret["HIP_VISIBLE_DEVICES"] = EnvVar{"HIP_VISIBLE_DEVICES", HipVisibleDevices(), "Set which AMD devices are visible"}
@@ -267,6 +267,7 @@ func AsMap() map[string]EnvVar {
ret["HSA_OVERRIDE_GFX_VERSION"] = EnvVar{"HSA_OVERRIDE_GFX_VERSION", HsaOverrideGfxVersion(), "Override the gfx used for all detected AMD GPUs"}
ret["OLLAMA_INTEL_GPU"] = EnvVar{"OLLAMA_INTEL_GPU", IntelGPU(), "Enable experimental Intel GPU detection"}
}
return ret
}
@@ -282,3 +283,12 @@ func Values() map[string]string {
func Var(key string) string {
return strings.Trim(strings.TrimSpace(os.Getenv(key)), "\"'")
}
// On windows, we keep the binary at the top directory, but
// other platforms use a "bin" directory, so this returns ".."
func LibRelativeToExe() string {
if runtime.GOOS == "windows" {
return "."
}
return ".."
}

View File

@@ -13,34 +13,35 @@ func TestHost(t *testing.T) {
value string
expect string
}{
"empty": {"", "127.0.0.1:11434"},
"only address": {"1.2.3.4", "1.2.3.4:11434"},
"only port": {":1234", ":1234"},
"address and port": {"1.2.3.4:1234", "1.2.3.4:1234"},
"hostname": {"example.com", "example.com:11434"},
"hostname and port": {"example.com:1234", "example.com:1234"},
"zero port": {":0", ":0"},
"too large port": {":66000", ":11434"},
"too small port": {":-1", ":11434"},
"ipv6 localhost": {"[::1]", "[::1]:11434"},
"ipv6 world open": {"[::]", "[::]:11434"},
"ipv6 no brackets": {"::1", "[::1]:11434"},
"ipv6 + port": {"[::1]:1337", "[::1]:1337"},
"extra space": {" 1.2.3.4 ", "1.2.3.4:11434"},
"extra quotes": {"\"1.2.3.4\"", "1.2.3.4:11434"},
"extra space+quotes": {" \" 1.2.3.4 \" ", "1.2.3.4:11434"},
"extra single quotes": {"'1.2.3.4'", "1.2.3.4:11434"},
"http": {"http://1.2.3.4", "1.2.3.4:80"},
"http port": {"http://1.2.3.4:4321", "1.2.3.4:4321"},
"https": {"https://1.2.3.4", "1.2.3.4:443"},
"https port": {"https://1.2.3.4:4321", "1.2.3.4:4321"},
"empty": {"", "http://127.0.0.1:11434"},
"only address": {"1.2.3.4", "http://1.2.3.4:11434"},
"only port": {":1234", "http://:1234"},
"address and port": {"1.2.3.4:1234", "http://1.2.3.4:1234"},
"hostname": {"example.com", "http://example.com:11434"},
"hostname and port": {"example.com:1234", "http://example.com:1234"},
"zero port": {":0", "http://:0"},
"too large port": {":66000", "http://:11434"},
"too small port": {":-1", "http://:11434"},
"ipv6 localhost": {"[::1]", "http://[::1]:11434"},
"ipv6 world open": {"[::]", "http://[::]:11434"},
"ipv6 no brackets": {"::1", "http://[::1]:11434"},
"ipv6 + port": {"[::1]:1337", "http://[::1]:1337"},
"extra space": {" 1.2.3.4 ", "http://1.2.3.4:11434"},
"extra quotes": {"\"1.2.3.4\"", "http://1.2.3.4:11434"},
"extra space+quotes": {" \" 1.2.3.4 \" ", "http://1.2.3.4:11434"},
"extra single quotes": {"'1.2.3.4'", "http://1.2.3.4:11434"},
"http": {"http://1.2.3.4", "http://1.2.3.4:80"},
"http port": {"http://1.2.3.4:4321", "http://1.2.3.4:4321"},
"https": {"https://1.2.3.4", "https://1.2.3.4:443"},
"https port": {"https://1.2.3.4:4321", "https://1.2.3.4:4321"},
"proxy path": {"https://example.com/ollama", "https://example.com:443/ollama"},
}
for name, tt := range cases {
t.Run(name, func(t *testing.T) {
t.Setenv("OLLAMA_HOST", tt.value)
if host := Host(); host.Host != tt.expect {
t.Errorf("%s: expected %s, got %s", name, tt.expect, host.Host)
if host := Host(); host.String() != tt.expect {
t.Errorf("%s: expected %s, got %s", name, tt.expect, host.String())
}
})
}
@@ -214,6 +215,40 @@ func TestKeepAlive(t *testing.T) {
}
}
func TestLoadTimeout(t *testing.T) {
defaultTimeout := 5 * time.Minute
cases := map[string]time.Duration{
"": defaultTimeout,
"1s": time.Second,
"1m": time.Minute,
"1h": time.Hour,
"5m0s": defaultTimeout,
"1h2m3s": 1*time.Hour + 2*time.Minute + 3*time.Second,
"0": time.Duration(math.MaxInt64),
"60": 60 * time.Second,
"120": 2 * time.Minute,
"3600": time.Hour,
"-0": time.Duration(math.MaxInt64),
"-1": time.Duration(math.MaxInt64),
"-1m": time.Duration(math.MaxInt64),
// invalid values
" ": defaultTimeout,
"???": defaultTimeout,
"1d": defaultTimeout,
"1y": defaultTimeout,
"1w": defaultTimeout,
}
for tt, expect := range cases {
t.Run(tt, func(t *testing.T) {
t.Setenv("OLLAMA_LOAD_TIMEOUT", tt)
if actual := LoadTimeout(); actual != expect {
t.Errorf("%s: expected %s, got %s", tt, expect, actual)
}
})
}
}
func TestVar(t *testing.T) {
cases := map[string]string{
"value": "value",

View File

@@ -1,6 +1,6 @@
langchain==0.0.274
gpt4all==1.0.8
chromadb==0.4.7
chromadb==0.5.0
llama-cpp-python==0.1.81
urllib3==2.0.4
PyMuPDF==1.23.5
@@ -12,4 +12,4 @@ pandoc==2.3
pypandoc==1.11
tqdm==4.66.1
sentence_transformers==2.2.2
numpy>=1.22.2 # not directly required, pinned by Snyk to avoid a vulnerability
numpy>=1.22.2 # not directly required, pinned by Snyk to avoid a vulnerability

View File

@@ -0,0 +1,93 @@
# RAG Hallucination Checker using Bespoke-Minicheck
This example allows the user to ask questions related to a document, which can be specified via an article url. Relevant chunks are retreived from the document and given to `llama3.1` as context to answer the question. Then each sentence in the answer is checked against the retrieved chunks using `bespoke-minicheck` to ensure that the answer does not contain hallucinations.
## Running the Example
1. Ensure `all-minilm` (embedding) `llama3.1` (chat) and `bespoke-minicheck` (check) models installed:
```bash
ollama pull all-minilm
ollama pull llama3.1
ollama pull bespoke-minicheck
```
2. Install the dependencies.
```bash
pip install -r requirements.txt
```
3. Run the example:
```bash
python main.py
```
## Expected Output
```text
Enter the URL of an article you want to chat with, or press Enter for default example:
Loaded, chunked, and embedded text from https://www.theverge.com/2024/9/12/24242439/openai-o1-model-reasoning-strawberry-chatgpt.
Enter your question or type quit: Who is the CEO of openai?
Retrieved chunks:
OpenAI is releasing a new model called o1 , the first in a planned series of “ reasoning ” models that have been trained to answer more complex questions , faster than a human can . It s being released alongside o1-mini , a smaller , cheaper version . And yes , if you re steeped in AI rumors : this is , in fact , the extremely hyped Strawberry model . For OpenAI , o1 represents a step toward its broader goal of human-like artificial intelligence .
OpenAI is releasing a new model called o1 , the first in a planned series of “ reasoning ” models that have been trained to answer more complex questions , faster than a human can . It s being released alongside o1-mini , a smaller , cheaper version . And yes , if you re steeped in AI rumors : this is , in fact , the extremely hyped Strawberry model . For OpenAI , o1 represents a step toward its broader goal of human-like artificial intelligence . More practically , it does a better job at writing code and solving multistep problems than previous models . But it s also more expensive and slower to use than GPT-4o . OpenAI is calling this release of o1 a “ preview ” to emphasize how nascent it is . ChatGPT Plus and Team users get access to both o1-preview and o1-mini starting today , while Enterprise and Edu users will get access early next week .
More practically , it does a better job at writing code and solving multistep problems than previous models . But it s also more expensive and slower to use than GPT-4o . OpenAI is calling this release of o1 a “ preview ” to emphasize how nascent it is . ChatGPT Plus and Team users get access to both o1-preview and o1-mini starting today , while Enterprise and Edu users will get access early next week . OpenAI says it plans to bring o1-mini access to all the free users of ChatGPT but hasn t set a release date yet . Developer access to o1 is really expensive : In the API , o1-preview is $ 15 per 1 million input tokens , or chunks of text parsed by the model , and $ 60 per 1 million output tokens . For comparison , GPT-4o costs $ 5 per 1 million input tokens and $ 15 per 1 million output tokens .
OpenAI says it plans to bring o1-mini access to all the free users of ChatGPT but hasn t set a release date yet . Developer access to o1 is really expensive : In the API , o1-preview is $ 15 per 1 million input tokens , or chunks of text parsed by the model , and $ 60 per 1 million output tokens . For comparison , GPT-4o costs $ 5 per 1 million input tokens and $ 15 per 1 million output tokens . The training behind o1 is fundamentally different from its predecessors , OpenAI s research lead , Jerry Tworek , tells me , though the company is being vague about the exact details . He says o1 “ has been trained using a completely new optimization algorithm and a new training dataset specifically tailored for it. ” Image : OpenAI OpenAI taught previous GPT models to mimic patterns from its training data .
LLM Answer:
The text does not mention the CEO of OpenAI. It only discusses the release of a new model called o1 and some details about it, but does not provide information on the company's leadership.
LLM Claim: The text does not mention the CEO of OpenAI.
Is this claim supported by the context according to bespoke-minicheck? Yes
LLM Claim: It only discusses the release of a new model called o1 and some details about it, but does not provide information on the company's leadership.
Is this claim supported by the context according to bespoke-minicheck? No
```
The second claim is unsupported since the text mentions the research lead.
Another tricky example:
```text
Enter your question or type quit: what sets o1 apart from gpt-4o?
Retrieved chunks:
OpenAI says it plans to bring o1-mini access to all the free users of ChatGPT but hasn t set a release date yet . Developer access to o1 is really expensive : In the API , o1-preview is $ 15 per 1 million input tokens , or chunks of text parsed by the model , and $ 60 per 1 million output tokens . For comparison , GPT-4o costs $ 5 per 1 million input tokens and $ 15 per 1 million output tokens . The training behind o1 is fundamentally different from its predecessors , OpenAI s research lead , Jerry Tworek , tells me , though the company is being vague about the exact details . He says o1 “ has been trained using a completely new optimization algorithm and a new training dataset specifically tailored for it. ” Image : OpenAI OpenAI taught previous GPT models to mimic patterns from its training data .
He says OpenAI also tested o1 against a qualifying exam for the International Mathematics Olympiad , and while GPT-4o only correctly solved only 13 percent of problems , o1 scored 83 percent . “ We can t say we solved hallucinations ” In online programming contests known as Codeforces competitions , this new model reached the 89th percentile of participants , and OpenAI claims the next update of this model will perform “ similarly to PhD students on challenging benchmark tasks in physics , chemistry and biology. ” At the same time , o1 is not as capable as GPT-4o in a lot of areas . It doesn t do as well on factual knowledge about the world .
More practically , it does a better job at writing code and solving multistep problems than previous models . But it s also more expensive and slower to use than GPT-4o . OpenAI is calling this release of o1 a “ preview ” to emphasize how nascent it is . ChatGPT Plus and Team users get access to both o1-preview and o1-mini starting today , while Enterprise and Edu users will get access early next week . OpenAI says it plans to bring o1-mini access to all the free users of ChatGPT but hasn t set a release date yet . Developer access to o1 is really expensive : In the API , o1-preview is $ 15 per 1 million input tokens , or chunks of text parsed by the model , and $ 60 per 1 million output tokens . For comparison , GPT-4o costs $ 5 per 1 million input tokens and $ 15 per 1 million output tokens .
“ We can t say we solved hallucinations ” In online programming contests known as Codeforces competitions , this new model reached the 89th percentile of participants , and OpenAI claims the next update of this model will perform “ similarly to PhD students on challenging benchmark tasks in physics , chemistry and biology. ” At the same time , o1 is not as capable as GPT-4o in a lot of areas . It doesn t do as well on factual knowledge about the world . It also doesn t have the ability to browse the web or process files and images . Still , the company believes it represents a brand-new class of capabilities . It was named o1 to indicate “ resetting the counter back to 1. ” “ I m gon na be honest : I think we re terrible at naming , traditionally , ” McGrew says .
LLM Answer: According to the text, several things set o1 apart from GPT-4o:
* In online programming contests (Codeforces competitions), o1 scored 83% correct solutions compared to GPT-4o's 13%.
* The training behind o1 is "fundamentally different" from its predecessors, including a completely new optimization algorithm and a new training dataset specifically tailored for it.
* o1 has been shown to perform similarly to PhD students on challenging benchmark tasks in physics, chemistry, and biology, while GPT-4o does not have this level of performance.
* However, o1 is also less capable than GPT-4o in some areas, particularly with regard to factual knowledge about the world.
LLM Claim: According to the text, several things set o1 apart from GPT-4o:
* In online programming contests (Codeforces competitions), o1 scored 83% correct solutions compared to GPT-4o's 13%.
Is this claim supported by the context according to bespoke-minicheck? Yes
LLM Claim: * The training behind o1 is "fundamentally different" from its predecessors, including a completely new optimization algorithm and a new training dataset specifically tailored for it.
Is this claim supported by the context according to bespoke-minicheck? Yes
LLM Claim: * o1 has been shown to perform similarly to PhD students on challenging benchmark tasks in physics, chemistry, and biology, while GPT-4o does not have this level of performance.
Is this claim supported by the context according to bespoke-minicheck? No
LLM Claim: * However, o1 is also less capable than GPT-4o in some areas, particularly with regard to factual knowledge about the world.
Is this claim supported by the context according to bespoke-minicheck? Yes
```
We see that the third claim "* o1 has been shown to perform similarly to PhD students on challenging benchmark tasks in physics, chemistry, and biology, while GPT-4o does not have this level of performance." is not supported by the context. This is because the context only mentions that o1 "is claimed to perform" which is different from "has been shown to perform".

View File

@@ -0,0 +1,137 @@
import ollama
import warnings
from mattsollamatools import chunker
from newspaper import Article
import numpy as np
from sklearn.neighbors import NearestNeighbors
import nltk
warnings.filterwarnings(
"ignore", category=FutureWarning, module="transformers.tokenization_utils_base"
)
nltk.download("punkt_tab", quiet=True)
def getArticleText(url):
"""Gets the text of an article from a URL.
Often there are a bunch of ads and menus on pages for a news article.
This uses newspaper3k to get just the text of just the article.
"""
article = Article(url)
article.download()
article.parse()
return article.text
def knn_search(question_embedding, embeddings, k=5):
"""Performs K-nearest neighbors (KNN) search"""
X = np.array(
[item["embedding"] for article in embeddings for item in article["embeddings"]]
)
source_texts = [
item["source"] for article in embeddings for item in article["embeddings"]
]
# Fit a KNN model on the embeddings
knn = NearestNeighbors(n_neighbors=k, metric="cosine")
knn.fit(X)
# Find the indices and distances of the k-nearest neighbors.
_, indices = knn.kneighbors(question_embedding, n_neighbors=k)
# Get the indices and source texts of the best matches
best_matches = [(indices[0][i], source_texts[indices[0][i]]) for i in range(k)]
return best_matches
def check(document, claim):
"""Checks if the claim is supported by the document by calling bespoke-minicheck.
Returns Yes/yes if the claim is supported by the document, No/no otherwise.
Support for logits will be added in the future.
bespoke-minicheck's system prompt is defined as:
'Determine whether the provided claim is consistent with the corresponding
document. Consistency in this context implies that all information presented in the claim
is substantiated by the document. If not, it should be considered inconsistent. Please
assess the claim's consistency with the document by responding with either "Yes" or "No".'
bespoke-minicheck's user prompt is defined as:
"Document: {document}\nClaim: {claim}"
"""
prompt = f"Document: {document}\nClaim: {claim}"
response = ollama.generate(
model="bespoke-minicheck", prompt=prompt, options={"num_predict": 2, "temperature": 0.0}
)
return response["response"].strip()
if __name__ == "__main__":
allEmbeddings = []
default_url = "https://www.theverge.com/2024/9/12/24242439/openai-o1-model-reasoning-strawberry-chatgpt"
user_input = input(
"Enter the URL of an article you want to chat with, or press Enter for default example: "
)
article_url = user_input.strip() if user_input.strip() else default_url
article = {}
article["embeddings"] = []
article["url"] = article_url
text = getArticleText(article_url)
chunks = chunker(text)
# Embed (batch) chunks using ollama
embeddings = ollama.embed(model="all-minilm", input=chunks)["embeddings"]
for chunk, embedding in zip(chunks, embeddings):
item = {}
item["source"] = chunk
item["embedding"] = embedding
item["sourcelength"] = len(chunk)
article["embeddings"].append(item)
allEmbeddings.append(article)
print(f"\nLoaded, chunked, and embedded text from {article_url}.\n")
while True:
# Input a question from the user
# For example, "Who is the chief research officer?"
question = input("Enter your question or type quit: ")
if question.lower() == "quit":
break
# Embed the user's question using ollama.embed
question_embedding = ollama.embed(model="all-minilm", input=question)[
"embeddings"
]
# Perform KNN search to find the best matches (indices and source text)
best_matches = knn_search(question_embedding, allEmbeddings, k=4)
sourcetext = "\n\n".join([source_text for (_, source_text) in best_matches])
print(f"\nRetrieved chunks: \n{sourcetext}\n")
# Give the retreived chunks and question to the chat model
system_prompt = f"Only use the following information to answer the question. Do not use anything else: {sourcetext}"
ollama_response = ollama.generate(
model="llama3.1",
prompt=question,
system=system_prompt,
options={"stream": False},
)
answer = ollama_response["response"]
print(f"LLM Answer:\n{answer}\n")
# Check each sentence in the response for grounded factuality
if answer:
for claim in nltk.sent_tokenize(answer):
print(f"LLM Claim: {claim}")
print(
f"Is this claim supported by the context according to bespoke-minicheck? {check(sourcetext, claim)}\n"
)

View File

@@ -0,0 +1,8 @@
ollama
lxml==5.3.0
lxml_html_clean==0.2.2
mattsollamatools==0.0.25
newspaper3k==0.2.8
nltk==3.9.1
numpy==1.26.4
scikit-learn==1.5.2

View File

@@ -0,0 +1,53 @@
"""Simple example to demonstrate how to use the bespoke-minicheck model."""
import ollama
# NOTE: ollama must be running for this to work, start the ollama app or run `ollama serve`
def check(document, claim):
"""Checks if the claim is supported by the document by calling bespoke-minicheck.
Returns Yes/yes if the claim is supported by the document, No/no otherwise.
Support for logits will be added in the future.
bespoke-minicheck's system prompt is defined as:
'Determine whether the provided claim is consistent with the corresponding
document. Consistency in this context implies that all information presented in the claim
is substantiated by the document. If not, it should be considered inconsistent. Please
assess the claim's consistency with the document by responding with either "Yes" or "No".'
bespoke-minicheck's user prompt is defined as:
"Document: {document}\nClaim: {claim}"
"""
prompt = f"Document: {document}\nClaim: {claim}"
response = ollama.generate(
model="bespoke-minicheck", prompt=prompt, options={"num_predict": 2, "temperature": 0.0}
)
return response["response"].strip()
def get_user_input(prompt):
user_input = input(prompt)
if not user_input:
exit()
print()
return user_input
def main():
while True:
# Get a document from the user (e.g. "Ryan likes running and biking.")
document = get_user_input("Enter a document: ")
# Get a claim from the user (e.g. "Ryan likes to run.")
claim = get_user_input("Enter a claim: ")
# Check if the claim is supported by the document
grounded_factuality_check = check(document, claim)
print(
f"Is the claim supported by the document according to bespoke-minicheck? {grounded_factuality_check}"
)
print("\n\n")
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,54 @@
# Simple Bespoke-Minicheck Example
`bespoke-minicheck` is a model for checking if a claim is supported by a document. It is used through the **generate** endpoint, which is called in this example with a `prompt` that includes the expected formatting of the user input.
## Running the Example
1. Ensure you have the `bespoke-minicheck` model installed:
```bash
ollama pull bespoke-minicheck
```
2. Install the dependencies:
```bash
pip install -r requirements.txt
```
3. Run the program:
```bash
python main.py
```
4. Enter a document and a claim when prompted:
```bash
Enter a document: Roses are red.
Enter a claim: Roses are blue.
```
The claim and document are then given to the `bespoke-minicheck` as inputs, which then generates a response (Yes or No) on whether the claim is supported by the document.
```bash
Is the claim supported by the document according to bespoke-minicheck? No
```
## More Examples
Document ([source](https://en.wikipedia.org/wiki/Apple_I)):
> The Apple Computer 1 (Apple-1[a]), later known predominantly as the Apple I(written with a Roman numeral),[b] is an 8-bit motherboard-only personal computer designed by Steve Wozniak[5][6] and released by the Apple Computer Company (now Apple Inc.) in 1976. The company was initially formed to sell the Apple I its first product and would later become the world's largest technology company.[7] The idea of starting a company and selling the computer came from Wozniak's friend and Apple co-founder Steve Jobs.[8][9] One of the main innovations of the Apple I was that it included video display terminal circuitry on its circuit board, allowing it to connect to a low-cost composite video monitor or television, instead of an expensive computer terminal, compared to most existing computers at the time.
Claim:
>The Apple I is a 16-bit computer.
Expected output:
>Is the claim supported by the document according to bespoke-minicheck? **No**
Claim:
>Apple was originally called the Apple Computer Company.
Expected output:
>Is the claim supported by the document according to bespoke-minicheck? **Yes**

View File

@@ -0,0 +1 @@
ollama

View File

@@ -4,5 +4,5 @@ SYSTEM """
You are a log file analyzer. You will receive a set of lines from a log file for some software application, find the errors and other interesting aspects of the logs, and explain them so a new user can understand what they mean. If there are any steps they can do to resolve them, list the steps in your answer.
"""
PARAMETER TEMPERATURE 0.3
PARAMETER temperature 0.3

View File

@@ -21,6 +21,8 @@ You can try this with the `logtest.logfile` file included in this directory.
2. Install the Python Requirements.
```bash
python3 -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
```

View File

@@ -1 +1 @@
Requests==2.31.0
Requests>=2.32.3

View File

@@ -9,6 +9,8 @@ import (
"path/filepath"
"runtime"
"strings"
"github.com/ollama/ollama/envconfig"
)
// Determine if the given ROCm lib directory is usable by checking for existence of some glob patterns
@@ -54,7 +56,7 @@ func commonAMDValidateLibDir() (string, error) {
// Installer payload location if we're running the installed binary
exe, err := os.Executable()
if err == nil {
rocmTargetDir := filepath.Join(filepath.Dir(exe), "..", "lib", "ollama")
rocmTargetDir := filepath.Join(filepath.Dir(exe), envconfig.LibRelativeToExe(), "lib", "ollama")
if rocmLibUsable(rocmTargetDir) {
slog.Debug("detected ROCM next to ollama executable " + rocmTargetDir)
return rocmTargetDir, nil

View File

@@ -5,6 +5,7 @@ import (
"errors"
"fmt"
"io"
"io/fs"
"log/slog"
"os"
"path/filepath"
@@ -359,6 +360,10 @@ func AMDGetGPUInfo() []RocmGPUInfo {
if len(resp) == 0 {
slog.Info("no compatible amdgpu devices detected")
}
if err := verifyKFDDriverAccess(); err != nil {
slog.Error("amdgpu devices detected but permission problems block access", "error", err)
return nil
}
return resp
}
@@ -455,3 +460,19 @@ func getFreeMemory(usedFile string) (uint64, error) {
}
return usedMemory, nil
}
func verifyKFDDriverAccess() error {
// Verify we have permissions - either running as root, or we have group access to the driver
fd, err := os.OpenFile("/dev/kfd", os.O_RDWR, 0o666)
if err != nil {
if errors.Is(err, fs.ErrPermission) {
return fmt.Errorf("permissions not set up properly. Either run ollama as root, or add you user account to the render group. %w", err)
} else if errors.Is(err, fs.ErrNotExist) {
// Container runtime failure?
return fmt.Errorf("kfd driver not loaded. If running in a container, remember to include '--device /dev/kfd --device /dev/dri'")
}
return fmt.Errorf("failed to check permission on /dev/kfd: %w", err)
}
fd.Close()
return nil
}

View File

@@ -153,7 +153,7 @@ func AMDValidateLibDir() (string, error) {
// Installer payload (if we're running from some other location)
localAppData := os.Getenv("LOCALAPPDATA")
appDir := filepath.Join(localAppData, "Programs", "Ollama")
rocmTargetDir := filepath.Join(appDir, "..", "lib", "ollama")
rocmTargetDir := filepath.Join(appDir, envconfig.LibRelativeToExe(), "lib", "ollama")
if rocmLibUsable(rocmTargetDir) {
slog.Debug("detected ollama installed ROCm at " + rocmTargetDir)
return rocmTargetDir, nil

View File

@@ -1,148 +0,0 @@
package gpu
import (
"errors"
"fmt"
"log/slog"
"os"
"path/filepath"
"runtime"
"strconv"
"strings"
"sync"
"syscall"
"time"
"github.com/ollama/ollama/envconfig"
)
var (
lock sync.Mutex
payloadsDir = ""
)
func PayloadsDir() (string, error) {
lock.Lock()
defer lock.Unlock()
var err error
if payloadsDir == "" {
runnersDir := envconfig.RunnersDir()
if runnersDir != "" {
payloadsDir = runnersDir
return payloadsDir, nil
}
// The remainder only applies on non-windows where we still carry payloads in the main executable
cleanupTmpDirs()
tmpDir := envconfig.TmpDir()
if tmpDir == "" {
tmpDir, err = os.MkdirTemp("", "ollama")
if err != nil {
return "", fmt.Errorf("failed to generate tmp dir: %w", err)
}
} else {
err = os.MkdirAll(tmpDir, 0o755)
if err != nil {
return "", fmt.Errorf("failed to generate tmp dir %s: %w", tmpDir, err)
}
}
// Track our pid so we can clean up orphaned tmpdirs
n := filepath.Join(tmpDir, "ollama.pid")
if err := os.WriteFile(n, []byte(strconv.Itoa(os.Getpid())), 0o644); err != nil {
return "", fmt.Errorf("failed to write pid file %s: %w", n, err)
}
// We create a distinct subdirectory for payloads within the tmpdir
// This will typically look like /tmp/ollama3208993108/runners on linux
payloadsDir = filepath.Join(tmpDir, "runners")
}
return payloadsDir, nil
}
// Best effort to clean up prior tmpdirs
func cleanupTmpDirs() {
matches, err := filepath.Glob(filepath.Join(os.TempDir(), "ollama*", "ollama.pid"))
if err != nil {
return
}
for _, match := range matches {
raw, err := os.ReadFile(match)
if errors.Is(err, os.ErrNotExist) {
slog.Debug("not a ollama runtime directory, skipping", "path", match)
continue
} else if err != nil {
slog.Warn("could not read ollama.pid, skipping", "path", match, "error", err)
continue
}
pid, err := strconv.Atoi(string(raw))
if err != nil {
slog.Warn("invalid pid, skipping", "path", match, "error", err)
continue
}
p, err := os.FindProcess(pid)
if err == nil && !errors.Is(p.Signal(syscall.Signal(0)), os.ErrProcessDone) {
slog.Warn("process still running, skipping", "pid", pid, "path", match)
continue
}
if err := os.Remove(match); err != nil {
slog.Warn("could not cleanup stale pidfile", "path", match, "error", err)
}
runners := filepath.Join(filepath.Dir(match), "runners")
if err := os.RemoveAll(runners); err != nil {
slog.Warn("could not cleanup stale runners", "path", runners, "error", err)
}
if err := os.Remove(filepath.Dir(match)); err != nil {
slog.Warn("could not cleanup stale tmpdir", "path", filepath.Dir(match), "error", err)
}
}
}
func Cleanup() {
lock.Lock()
defer lock.Unlock()
runnersDir := envconfig.RunnersDir()
if payloadsDir != "" && runnersDir == "" && runtime.GOOS != "windows" {
// We want to fully clean up the tmpdir parent of the payloads dir
tmpDir := filepath.Clean(filepath.Join(payloadsDir, ".."))
slog.Debug("cleaning up", "dir", tmpDir)
err := os.RemoveAll(tmpDir)
if err != nil {
// On windows, if we remove too quickly the llama.dll may still be in-use and fail to remove
time.Sleep(1000 * time.Millisecond)
err = os.RemoveAll(tmpDir)
if err != nil {
slog.Warn("failed to clean up", "dir", tmpDir, "err", err)
}
}
}
}
func UpdatePath(dir string) {
if runtime.GOOS == "windows" {
tmpDir := filepath.Dir(dir)
pathComponents := strings.Split(os.Getenv("PATH"), ";")
i := 0
for _, comp := range pathComponents {
if strings.EqualFold(comp, dir) {
return
}
// Remove any other prior paths to our temp dir
if !strings.HasPrefix(strings.ToLower(comp), strings.ToLower(tmpDir)) {
pathComponents[i] = comp
i++
}
}
newPath := strings.Join(append([]string{dir}, pathComponents...), ";")
slog.Info("updating", "PATH", newPath)
os.Setenv("PATH", newPath)
}
// linux and darwin rely on rpath
}

View File

@@ -57,7 +57,7 @@ func cudaVariant(gpuInfo CudaGPUInfo) string {
}
}
if gpuInfo.computeMajor < 6 || gpuInfo.DriverMajor < 12 {
if gpuInfo.computeMajor < 6 || gpuInfo.DriverMajor < 12 || (gpuInfo.DriverMajor == 12 && gpuInfo.DriverMinor == 0) {
return "v11"
}
return "v12"

View File

@@ -93,10 +93,9 @@ func initCudaHandles() *cudaHandles {
localAppData := os.Getenv("LOCALAPPDATA")
cudartMgmtPatterns = []string{filepath.Join(localAppData, "Programs", "Ollama", CudartMgmtName)}
}
tmpDir, _ := PayloadsDir()
if tmpDir != "" {
// TODO - add "payloads" for subprocess
cudartMgmtPatterns = []string{filepath.Join(tmpDir, "cuda*", CudartMgmtName)}
libDir := LibraryDir()
if libDir != "" {
cudartMgmtPatterns = []string{filepath.Join(libDir, CudartMgmtName)}
}
cudartMgmtPatterns = append(cudartMgmtPatterns, CudartGlobs...)
@@ -206,13 +205,16 @@ func GetGPUInfo() GpuInfoList {
if err != nil {
slog.Warn("error looking up system memory", "error", err)
}
depPath := LibraryDir()
cpus = []CPUInfo{
{
GpuInfo: GpuInfo{
memInfo: mem,
Library: "cpu",
Variant: cpuCapability.String(),
ID: "0",
memInfo: mem,
Library: "cpu",
Variant: cpuCapability.String(),
ID: "0",
DependencyPath: depPath,
},
},
}
@@ -225,8 +227,6 @@ func GetGPUInfo() GpuInfoList {
return GpuInfoList{cpus[0].GpuInfo}
}
depPath := LibraryDir()
// Load ALL libraries
cHandles = initCudaHandles()
@@ -653,7 +653,7 @@ func LibraryDir() string {
slog.Warn("failed to lookup working directory", "error", err)
}
// Scan for any of our dependeices, and pick first match
for _, root := range []string{filepath.Dir(appExe), filepath.Join(filepath.Dir(appExe), ".."), cwd} {
for _, root := range []string{filepath.Dir(appExe), filepath.Join(filepath.Dir(appExe), envconfig.LibRelativeToExe()), cwd} {
libDep := filepath.Join("lib", "ollama")
if _, err := os.Stat(filepath.Join(root, libDep)); err == nil {
return filepath.Join(root, libDep)

View File

@@ -2,7 +2,7 @@ set(TARGET ollama_llama_server)
option(LLAMA_SERVER_VERBOSE "Build verbose logging option for Server" ON)
set(LLAMA_SERVER_LDFLAGS $ENV{LLAMA_SERVER_LDFLAGS})
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
add_executable(${TARGET} server.cpp utils.hpp json.hpp httplib.h)
add_executable(${TARGET} server.cpp utils.hpp httplib.h)
install(TARGETS ${TARGET} RUNTIME)
target_compile_definitions(${TARGET} PRIVATE
SERVER_VERBOSE=$<BOOL:${LLAMA_SERVER_VERBOSE}>
@@ -10,5 +10,6 @@ target_compile_definitions(${TARGET} PRIVATE
target_link_libraries(${TARGET} PRIVATE ggml llama common llava ${CMAKE_THREAD_LIBS_INIT} ${LLAMA_SERVER_LDFLAGS})
if (WIN32)
TARGET_LINK_LIBRARIES(${TARGET} PRIVATE ws2_32)
target_link_options(${TARGET} PRIVATE -municode -Wl,/subsystem:console)
endif()
target_compile_features(${TARGET} PRIVATE cxx_std_11)

24596
llm/ext_server/json.hpp vendored

File diff suppressed because it is too large Load Diff

View File

@@ -262,7 +262,7 @@ struct server_slot {
char buffer[512];
double t_token = t_prompt_processing / n_prompt_tokens_processed;
double n_tokens_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
sprintf(buffer, "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)",
snprintf(buffer, sizeof(buffer), "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)",
t_prompt_processing, n_prompt_tokens_processed,
t_token, n_tokens_second);
LOG_DEBUG(buffer, {
@@ -276,7 +276,7 @@ struct server_slot {
t_token = t_token_generation / n_decoded;
n_tokens_second = 1e3 / t_token_generation * n_decoded;
sprintf(buffer, "generation eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)",
snprintf(buffer, sizeof(buffer), "generation eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)",
t_token_generation, n_decoded,
t_token, n_tokens_second);
LOG_DEBUG(buffer, {
@@ -288,7 +288,7 @@ struct server_slot {
{"n_tokens_second", n_tokens_second},
});
sprintf(buffer, " total time = %10.2f ms", t_prompt_processing + t_token_generation);
snprintf(buffer, sizeof(buffer), " total time = %10.2f ms", t_prompt_processing + t_token_generation);
LOG_DEBUG(buffer, {
{"slot_id", id},
{"task_id", task_id},
@@ -425,7 +425,7 @@ struct llama_server_context
n_ctx = llama_n_ctx(ctx);
add_bos_token = llama_should_add_bos_token(model);
add_bos_token = llama_add_bos_token(model);
return true;
}
@@ -913,7 +913,9 @@ struct llama_server_context
slot.sampled = result.tok;
// search stop word and delete it
slot.generated_text += token_str;
if (!llama_token_is_eog(model, result.tok))
slot.generated_text += token_str;
slot.has_next_token = true;
if (slot.ctx_sampling->params.use_penalty_prompt_tokens && result.tok != -1)
@@ -954,30 +956,36 @@ struct llama_server_context
if (!incomplete)
{
size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
const std::string str_test = slot.generated_text.substr(pos);
bool is_stop_full = false;
size_t stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_FULL, slot);
if (stop_pos != std::string::npos)
{
is_stop_full = true;
slot.generated_text.erase(
slot.generated_text.begin() + pos + stop_pos,
slot.generated_text.end());
pos = std::min(slot.n_sent_text, slot.generated_text.size());
}
else
{
is_stop_full = false;
stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_PARTIAL, slot);
}
// check if there is any token to predict
if (stop_pos == std::string::npos || (!slot.has_next_token && !is_stop_full && stop_pos > 0))
{
// no send the stop word in the response
result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
slot.n_sent_text += result.text_to_send.size();
// add the token to slot queue and cache
if (!llama_token_is_eog(model, result.tok)) {
const std::string str_test = slot.generated_text.substr(pos);
bool is_stop_full = false;
size_t stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_FULL, slot);
if (stop_pos != std::string::npos)
{
is_stop_full = true;
slot.generated_text.erase(
slot.generated_text.begin() + pos + stop_pos,
slot.generated_text.end());
pos = std::min(slot.n_sent_text, slot.generated_text.size());
}
else
{
is_stop_full = false;
stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_PARTIAL, slot);
}
// check if there is any token to predict
if (stop_pos == std::string::npos || (!slot.has_next_token && !is_stop_full && stop_pos > 0))
{
// no send the stop word in the response
result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
slot.n_sent_text += result.text_to_send.size();
// add the token to slot queue and cache
}
} else {
result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
slot.n_sent_text += result.text_to_send.size();
}
if (slot.params.stream)
@@ -1031,7 +1039,7 @@ struct llama_server_context
continue;
}
if (!llava_image_embed_make_with_clip_img(clp_ctx, params.n_threads, img.img_data, &img.image_embedding, &img.image_tokens)) {
if (!llava_image_embed_make_with_clip_img(clp_ctx, params.cpuparams.n_threads, img.img_data, &img.image_embedding, &img.image_tokens)) {
LOG_TEE("Error processing the given image");
return false;
}
@@ -1117,9 +1125,7 @@ struct llama_server_context
{"multimodal", multimodal}
};
if (!llama_token_is_eog(model, tkn.tok)) {
res.result_json["content"] = tkn.text_to_send;
}
res.result_json["content"] = tkn.text_to_send;
if (slot.sparams.n_probs > 0)
{
@@ -2014,7 +2020,7 @@ static void server_print_usage(const char *argv0, const gpt_params &params,
printf("options:\n");
printf(" -h, --help show this help message and exit\n");
printf(" -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.cpuparams.n_threads);
printf(" -tb N, --threads-batch N number of threads to use during batch and prompt processing (default: same as --threads)\n");
printf(" --threads-http N number of threads in the http server pool to process requests (default: max(hardware concurrency - 1, --parallel N + 2))\n");
printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
@@ -2287,7 +2293,7 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, g
invalid_param = true;
break;
}
params.n_threads = std::stoi(argv[i]);
params.cpuparams.n_threads = std::stoi(argv[i]);
}
else if (arg == "--grp-attn-n" || arg == "-gan")
{
@@ -2315,7 +2321,7 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, g
invalid_param = true;
break;
}
params.n_threads_batch = std::stoi(argv[i]);
params.cpuparams_batch.n_threads = std::stoi(argv[i]);
}
else if (arg == "--threads-http")
{
@@ -2626,6 +2632,11 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, g
params.kv_overrides.back().key[0] = 0;
}
postprocess_cpu_params(params.cpuparams, nullptr);
postprocess_cpu_params(params.cpuparams_batch, &params.cpuparams);
postprocess_cpu_params(params.draft_cpuparams, &params.cpuparams);
postprocess_cpu_params(params.draft_cpuparams_batch, &params.cpuparams_batch);
if (invalid_param)
{
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
@@ -2775,8 +2786,8 @@ int main(int argc, char **argv) {
{"commit", LLAMA_COMMIT}});
LOG_INFO("system info", {
{"n_threads", params.n_threads},
{"n_threads_batch", params.n_threads_batch},
{"n_threads", params.cpuparams.n_threads},
{"n_threads_batch", params.cpuparams_batch.n_threads},
{"total_threads", std::thread::hardware_concurrency()},
{"system_info", llama_print_system_info()},
});

View File

@@ -31,6 +31,7 @@ init_vars() {
NO_WHOLE_ARCHIVE=""
GCC_ARCH="-arch ${ARCH}"
DIST_BASE=../../dist/darwin-${GOARCH}/
PAYLOAD_BASE=../../build/darwin/${GOARCH}
;;
"Linux")
LIB_EXT="so"
@@ -40,6 +41,7 @@ init_vars() {
# Cross compiling not supported on linux - Use docker
GCC_ARCH=""
DIST_BASE=../../dist/linux-${GOARCH}/
PAYLOAD_BASE=../../build/linux/${GOARCH}
;;
*)
;;
@@ -47,7 +49,8 @@ init_vars() {
if [ -z "${CMAKE_CUDA_ARCHITECTURES}" ] ; then
CMAKE_CUDA_ARCHITECTURES="50;52;61;70;75;80"
fi
GZIP=$(which pigz 2>/dev/null || echo "gzip")
GZIP=$(command -v pigz 2>/dev/null || echo "gzip")
RUNNER_BASE="${DIST_BASE}/lib/ollama/runners"
}
git_module_setup() {
@@ -66,40 +69,47 @@ git_module_setup() {
}
apply_patches() {
# Wire up our CMakefile
if ! grep ollama ${LLAMACPP_DIR}/CMakeLists.txt; then
echo 'add_subdirectory(../ext_server ext_server) # ollama' >>${LLAMACPP_DIR}/CMakeLists.txt
fi
if [ -n "$(ls -A ../patches/*.diff)" ]; then
# apply temporary patches until fix is upstream
for patch in ../patches/*.diff; do
for file in $(grep "^+++ " ${patch} | cut -f2 -d' ' | cut -f2- -d/); do
(cd ${LLAMACPP_DIR}; git checkout ${file})
done
done
for patch in ../patches/*.diff; do
(cd ${LLAMACPP_DIR} && git apply ${patch})
done
fi
# apply temporary patches until fix is upstream
for patch in ../patches/*.patch; do
git -c 'user.name=nobody' -c 'user.email=<>' -C ${LLAMACPP_DIR} am ${patch}
done
}
build() {
cmake -S ${LLAMACPP_DIR} -B ${BUILD_DIR} ${CMAKE_DEFS}
cmake --build ${BUILD_DIR} ${CMAKE_TARGETS} -j8
# remove unnecessary build artifacts
rm -f ${BUILD_DIR}/bin/ggml-common.h ${BUILD_DIR}/bin/ggml-metal.metal
}
compress() {
echo "Compressing payloads to reduce overall binary size..."
rm -rf ${BUILD_DIR}/bin/*.gz
dist() {
[ -z "${RUNNER}" ] && exit 1
mkdir -p ${RUNNER_BASE}/${RUNNER}/
for f in ${BUILD_DIR}/bin/* ; do
${GZIP} -n --best -f ${f} &
cp ${f} ${RUNNER_BASE}/${RUNNER}/
done
# check for lib directory
if [ -d ${BUILD_DIR}/lib ]; then
for f in ${BUILD_DIR}/lib/* ; do
cp ${f} ${RUNNER_BASE}/${RUNNER}/
done
fi
}
# Compress from the build $BUILD_DIR into the $PAYLOAD_BASE/$RUNNER dir
compress() {
[ -z "${RUNNER}" ] && exit 1
echo "Compressing payloads with ${GZIP} to reduce overall binary size..."
rm -rf "${PAYLOAD_BASE}/${RUNNER}/"
mkdir -p "${PAYLOAD_BASE}/${RUNNER}/"
for f in ${BUILD_DIR}/bin/* ; do
${GZIP} -c --best ${f} > "${PAYLOAD_BASE}/${RUNNER}/$(basename ${f}).gz" &
compress_pids+=" $!"
done
# check for lib directory
if [ -d ${BUILD_DIR}/lib ]; then
for f in ${BUILD_DIR}/lib/* ; do
${GZIP} -n --best -f ${f} &
${GZIP} -c --best ${f} > "${PAYLOAD_BASE}/${RUNNER}/$(basename ${f}).gz" &
compress_pids+=" $!"
done
fi
@@ -115,7 +125,7 @@ wait_for_compress() {
install() {
echo "Installing libraries to bin dir ${BUILD_DIR}/bin/"
for lib in $(find ${BUILD_DIR} -name \*.${LIB_EXT}); do
for lib in $(find ${BUILD_DIR} -name \*.${LIB_EXT} | grep -v "${BUILD_DIR}/bin/" ); do
rm -f "${BUILD_DIR}/bin/$(basename ${lib})"
cp -af "${lib}" "${BUILD_DIR}/bin/"
done

View File

@@ -19,7 +19,7 @@ sign() {
fi
}
COMMON_DARWIN_DEFS="-DBUILD_SHARED_LIBS=off -DCMAKE_OSX_DEPLOYMENT_TARGET=11.3 -DLLAMA_METAL_MACOSX_VERSION_MIN=11.3 -DCMAKE_SYSTEM_NAME=Darwin -DGGML_METAL_EMBED_LIBRARY=on -DGGML_OPENMP=off"
COMMON_DARWIN_DEFS="-DBUILD_SHARED_LIBS=off -DCMAKE_OSX_DEPLOYMENT_TARGET=11.3 -DGGML_METAL_MACOSX_VERSION_MIN=11.3 -DCMAKE_SYSTEM_NAME=Darwin -DGGML_METAL_EMBED_LIBRARY=on -DGGML_OPENMP=off"
case "${GOARCH}" in
"amd64")
@@ -39,7 +39,8 @@ case "${GOARCH}" in
#
init_vars
CMAKE_DEFS="${COMMON_CPU_DEFS} -DGGML_ACCELERATE=off -DGGML_BLAS=off -DGGML_AVX=off -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off ${CMAKE_DEFS}"
BUILD_DIR="../build/darwin/${ARCH}/cpu"
RUNNER=cpu
BUILD_DIR="../build/darwin/${GOARCH}/${RUNNER}"
echo "Building LCD CPU"
build
sign ${BUILD_DIR}/bin/ollama_llama_server
@@ -51,7 +52,8 @@ case "${GOARCH}" in
#
init_vars
CMAKE_DEFS="${COMMON_CPU_DEFS} -DGGML_ACCELERATE=off -DGGML_BLAS=off -DGGML_AVX=on -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off ${CMAKE_DEFS}"
BUILD_DIR="../build/darwin/${ARCH}/cpu_avx"
RUNNER=cpu_avx
BUILD_DIR="../build/darwin/${GOARCH}/${RUNNER}"
echo "Building AVX CPU"
build
sign ${BUILD_DIR}/bin/ollama_llama_server
@@ -63,7 +65,8 @@ case "${GOARCH}" in
#
init_vars
CMAKE_DEFS="${COMMON_CPU_DEFS} -DGGML_ACCELERATE=on -DGGML_BLAS=off -DGGML_AVX=on -DGGML_AVX2=on -DGGML_AVX512=off -DGGML_FMA=on -DGGML_F16C=on ${CMAKE_DEFS}"
BUILD_DIR="../build/darwin/${ARCH}/cpu_avx2"
RUNNER=cpu_avx2
BUILD_DIR="../build/darwin/${GOARCH}/${RUNNER}"
echo "Building AVX2 CPU"
EXTRA_LIBS="${EXTRA_LIBS} -framework Accelerate -framework Foundation"
build
@@ -84,7 +87,8 @@ case "${GOARCH}" in
if [ -z "$OLLAMA_SKIP_METAL_GENERATE" ]; then
init_vars
CMAKE_DEFS="${COMMON_DARWIN_DEFS} -DCMAKE_SYSTEM_PROCESSOR=${ARCH} -DCMAKE_OSX_ARCHITECTURES=${ARCH} ${CMAKE_DEFS}"
BUILD_DIR="../build/darwin/${ARCH}/metal"
RUNNER="metal"
BUILD_DIR="../build/darwin/${GOARCH}/${RUNNER}"
EXTRA_LIBS="${EXTRA_LIBS} -framework Accelerate -framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders"
build
sign ${BUILD_DIR}/bin/ollama_llama_server

View File

@@ -79,10 +79,12 @@ if [ -z "${OLLAMA_SKIP_CPU_GENERATE}" ]; then
init_vars
echo "OLLAMA_CUSTOM_CPU_DEFS=\"${OLLAMA_CUSTOM_CPU_DEFS}\""
CMAKE_DEFS="${OLLAMA_CUSTOM_CPU_DEFS} -DBUILD_SHARED_LIBS=on -DCMAKE_POSITION_INDEPENDENT_CODE=on ${CMAKE_DEFS}"
BUILD_DIR="../build/linux/${ARCH}/cpu"
RUNNER="cpu"
BUILD_DIR="../build/linux/${GOARCH}/${RUNNER}"
echo "Building custom CPU"
build
install
dist
compress
else
# Darwin Rosetta x86 emulation does NOT support AVX, AVX2, AVX512
@@ -102,10 +104,12 @@ if [ -z "${OLLAMA_SKIP_CPU_GENERATE}" ]; then
#
init_vars
CMAKE_DEFS="${COMMON_CPU_DEFS} -DGGML_AVX=off -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off ${CMAKE_DEFS}"
BUILD_DIR="../build/linux/${ARCH}/cpu"
RUNNER=cpu
BUILD_DIR="../build/linux/${GOARCH}/${RUNNER}"
echo "Building LCD CPU"
build
install
dist
compress
fi
@@ -120,10 +124,12 @@ if [ -z "${OLLAMA_SKIP_CPU_GENERATE}" ]; then
#
init_vars
CMAKE_DEFS="${COMMON_CPU_DEFS} -DGGML_AVX=on -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off ${CMAKE_DEFS}"
BUILD_DIR="../build/linux/${ARCH}/cpu_avx"
RUNNER=cpu_avx
BUILD_DIR="../build/linux/${GOARCH}/${RUNNER}"
echo "Building AVX CPU"
build
install
dist
compress
fi
@@ -134,10 +140,12 @@ if [ -z "${OLLAMA_SKIP_CPU_GENERATE}" ]; then
#
init_vars
CMAKE_DEFS="${COMMON_CPU_DEFS} -DGGML_AVX=on -DGGML_AVX2=on -DGGML_AVX512=off -DGGML_FMA=on -DGGML_F16C=on ${CMAKE_DEFS}"
BUILD_DIR="../build/linux/${ARCH}/cpu_avx2"
RUNNER=cpu_avx2
BUILD_DIR="../build/linux/${GOARCH}/${RUNNER}"
echo "Building AVX2 CPU"
build
install
dist
compress
fi
fi
@@ -187,11 +195,13 @@ if [ -z "${OLLAMA_SKIP_CUDA_GENERATE}" -a -d "${CUDA_LIB_DIR}" ]; then
fi
export CUDAFLAGS="-t8"
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} ${ARM64_DEFS} ${CMAKE_CUDA_DEFS} -DGGML_STATIC=off"
BUILD_DIR="../build/linux/${ARCH}/cuda${CUDA_VARIANT}"
RUNNER=cuda${CUDA_VARIANT}
BUILD_DIR="../build/linux/${GOARCH}/${RUNNER}"
export LLAMA_SERVER_LDFLAGS="-L${CUDA_LIB_DIR} -lcudart -lcublas -lcublasLt -lcuda"
CUDA_DIST_DIR="${CUDA_DIST_DIR:-${DIST_BASE}/lib/ollama}"
build
install
dist
echo "Installing CUDA dependencies in ${CUDA_DIST_DIR}"
mkdir -p "${CUDA_DIST_DIR}"
for lib in ${CUDA_LIB_DIR}/libcudart.so* ${CUDA_LIB_DIR}/libcublas.so* ${CUDA_LIB_DIR}/libcublasLt.so* ; do
@@ -212,7 +222,8 @@ if [ -z "${OLLAMA_SKIP_ONEAPI_GENERATE}" -a -d "${ONEAPI_ROOT}" ]; then
source ${ONEAPI_ROOT}/setvars.sh --force # set up environment variables for oneAPI
CC=icx
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL=ON -DGGML_SYCL_F16=OFF"
BUILD_DIR="../build/linux/${ARCH}/oneapi"
RUNNER=oneapi
BUILD_DIR="../build/linux/${GOARCH}/${RUNNER}"
ONEAPI_DIST_DIR="${DIST_BASE}/lib/ollama"
export LLAMA_SERVER_LDFLAGS="-fsycl -lOpenCL -lmkl_core -lmkl_sycl_blas -lmkl_intel_ilp64 -lmkl_tbb_thread -ltbb"
DEBUG_FLAGS="" # icx compiles with -O0 if we pass -g, so we must remove it
@@ -231,6 +242,7 @@ if [ -z "${OLLAMA_SKIP_ONEAPI_GENERATE}" -a -d "${ONEAPI_ROOT}" ]; then
cp "${ONEAPI_ROOT}/compiler/latest/lib/libsvml.so" "${ONEAPI_DIST_DIR}"
cp "${ONEAPI_ROOT}/compiler/latest/lib/libur_loader.so.0" "${ONEAPI_DIST_DIR}"
install
dist
compress
fi
@@ -259,7 +271,8 @@ if [ -z "${OLLAMA_SKIP_ROCM_GENERATE}" -a -d "${ROCM_PATH}" ]; then
CMAKE_DEFS="${CMAKE_DEFS} ${OLLAMA_CUSTOM_ROCM_DEFS}"
echo "Building custom ROCM GPU"
fi
BUILD_DIR="../build/linux/${ARCH}/rocm${ROCM_VARIANT}"
RUNNER=rocm${ROCM_VARIANT}
BUILD_DIR="../build/linux/${GOARCH}/${RUNNER}"
# ROCm dependencies are too large to fit into a unified bundle
ROCM_DIST_DIR="${DIST_BASE}/../linux-${GOARCH}-rocm/lib/ollama"
# TODO figure out how to disable runpath (rpath)
@@ -269,13 +282,17 @@ if [ -z "${OLLAMA_SKIP_ROCM_GENERATE}" -a -d "${ROCM_PATH}" ]; then
# copy the ROCM dependencies
mkdir -p "${ROCM_DIST_DIR}"
for dep in $(ldd "${BUILD_DIR}/bin/ollama_llama_server" | grep "=>" | cut -f2 -d= | cut -f2 -d' ' | grep -v "${ARCH}/rocm${ROCM_VARIANT}" | grep -e rocm -e amdgpu -e libtinfo ); do
for dep in $(ldd "${BUILD_DIR}/bin/ollama_llama_server" | grep "=>" | cut -f2 -d= | cut -f2 -d' ' | grep -v "${GOARCH}/rocm${ROCM_VARIANT}" | grep -e rocm -e amdgpu -e libtinfo -e libnuma -e libelf ); do
cp -a "${dep}"* "${ROCM_DIST_DIR}"
if [ $(readlink -f "${dep}") != "${dep}" ] ; then
cp $(readlink -f "${dep}") "${ROCM_DIST_DIR}"
fi
done
install
dist
compress
fi
cleanup
wait_for_compress
echo "go generate completed. LLM runners: $(cd ${BUILD_DIR}/..; echo *)"
echo "go generate completed. LLM runners: $(cd ${PAYLOAD_BASE}; echo *)"

View File

@@ -19,6 +19,19 @@ function amdGPUs {
function init_vars {
write-host "Checking for cmake..."
get-command cmake
write-host "Checking for ninja..."
$d=(get-command -ea 'silentlycontinue' ninja).path
if ($null -eq $d) {
$MSVC_INSTALL=(Get-CimInstance MSFT_VSInstance -Namespace root/cimv2/vs)[0].InstallLocation
$matches=(gci -path $MSVC_INSTALL -r -fi ninja.exe)
if ($matches.count -eq 0) {
throw "Unable to locate ninja"
}
$ninjaDir=($matches[0].FullName | split-path -parent)
$env:PATH="$env:PATH;$ninjaDir"
}
if (!$script:SRC_DIR) {
$script:SRC_DIR = $(resolve-path "..\..\")
}
@@ -83,29 +96,9 @@ function git_module_setup {
}
function apply_patches {
# Wire up our CMakefile
if (!(Select-String -Path "${script:llamacppDir}/CMakeLists.txt" -Pattern 'ollama')) {
Add-Content -Path "${script:llamacppDir}/CMakeLists.txt" -Value 'add_subdirectory(../ext_server ext_server) # ollama'
}
# Apply temporary patches until fix is upstream
$patches = Get-ChildItem "../patches/*.diff"
foreach ($patch in $patches) {
# Extract file paths from the patch file
$filePaths = Get-Content $patch.FullName | Where-Object { $_ -match '^\+\+\+ ' } | ForEach-Object {
$parts = $_ -split ' '
($parts[1] -split '/', 2)[1]
}
# Checkout each file
foreach ($file in $filePaths) {
git -C "${script:llamacppDir}" checkout $file
}
}
# Apply each patch
foreach ($patch in $patches) {
git -C "${script:llamacppDir}" apply $patch.FullName
foreach ($patch in $(Get-ChildItem "../patches/*.patch")) {
git -c 'user.name=nobody' -c 'user.email=<>' -C "${script:llamacppDir}" am $patch.FullName
}
}
@@ -165,7 +158,7 @@ function cleanup {
}
# Checkout each file
foreach ($file in $filePaths) {
foreach ($file in $filePaths) {
git -C "${script:llamacppDir}" checkout $file
}
git -C "${script:llamacppDir}" checkout CMakeLists.txt
@@ -182,12 +175,12 @@ function build_static() {
if ((-not "${env:OLLAMA_SKIP_STATIC_GENERATE}") -and ((-not "${env:OLLAMA_CPU_TARGET}") -or ("${env:OLLAMA_CPU_TARGET}" -eq "static"))) {
# GCC build for direct linking into the Go binary
init_vars
# cmake will silently fallback to msvc compilers if mingw isn't in the path, so detect and fail fast
# as we need this to be compiled by gcc for golang to be able to link with itx
write-host "Checking for MinGW..."
# error action ensures we exit on failure
get-command gcc
get-command mingw32-make
# cmake will silently fallback to msvc compilers if gcc isn't in the path, so detect and fail fast
# as we need this to be compiled by gcc for golang to be able to link with it
write-host "Checking for gcc..."
get-command gcc
get-command mingw32-make
$oldTargets = $script:cmakeTargets
$script:cmakeTargets = @("llama", "ggml")
$script:cmakeDefs = @(
@@ -211,11 +204,10 @@ function build_static() {
}
}
function build_cpu($gen_arch) {
function build_cpu_x64 {
if ((-not "${env:OLLAMA_SKIP_CPU_GENERATE}" ) -and ((-not "${env:OLLAMA_CPU_TARGET}") -or ("${env:OLLAMA_CPU_TARGET}" -eq "cpu"))) {
# remaining llama.cpp builds use MSVC
init_vars
$script:cmakeDefs = $script:commonCpuDefs + @("-A", $gen_arch, "-DGGML_AVX=off", "-DGGML_AVX2=off", "-DGGML_AVX512=off", "-DGGML_FMA=off", "-DGGML_F16C=off") + $script:cmakeDefs
$script:cmakeDefs = $script:commonCpuDefs + @("-A", "x64", "-DGGML_AVX=off", "-DGGML_AVX2=off", "-DGGML_AVX512=off", "-DGGML_FMA=off", "-DGGML_F16C=off") + $script:cmakeDefs
$script:buildDir="../build/windows/${script:ARCH}/cpu"
$script:distDir="$script:DIST_BASE\cpu"
write-host "Building LCD CPU"
@@ -227,6 +219,32 @@ function build_cpu($gen_arch) {
}
}
function build_cpu_arm64 {
if ((-not "${env:OLLAMA_SKIP_CPU_GENERATE}" ) -and ((-not "${env:OLLAMA_CPU_TARGET}") -or ("${env:OLLAMA_CPU_TARGET}" -eq "cpu"))) {
init_vars
write-host "Checking for clang..."
get-command clang
$env:CFLAGS="-march=armv8.7-a -fvectorize -ffp-model=fast -fno-finite-math-only"
$env:CXXFLAGS="$env:CFLAGS"
$env:LDFLAGS="-static-libstdc++"
$script:cmakeDefs = $script:commonCpuDefs + @(
"-DCMAKE_VERBOSE_MAKEFILE=on",
"-DCMAKE_C_COMPILER=clang.exe",
"-DCMAKE_CXX_COMPILER=clang++.exe",
"-DMSVC_RUNTIME_LIBRARY=MultiThreaded"
) + $script:cmakeDefs
$script:buildDir="../build/windows/${script:ARCH}/cpu"
$script:distDir="$script:DIST_BASE\cpu"
write-host "Building LCD CPU"
build
sign
install
} else {
write-host "Skipping CPU generation step as requested"
}
}
function build_cpu_avx() {
if ((-not "${env:OLLAMA_SKIP_CPU_GENERATE}" ) -and ((-not "${env:OLLAMA_CPU_TARGET}") -or ("${env:OLLAMA_CPU_TARGET}" -eq "cpu_avx"))) {
init_vars
@@ -351,7 +369,7 @@ function build_rocm() {
$script:buildDir="../build/windows/${script:ARCH}/rocm$script:ROCM_VARIANT"
$script:distDir="$script:DIST_BASE\rocm$script:ROCM_VARIANT"
$script:cmakeDefs += @(
"-G", "Ninja",
"-G", "Ninja",
"-DCMAKE_C_COMPILER=clang.exe",
"-DCMAKE_CXX_COMPILER=clang++.exe",
"-DGGML_HIPBLAS=on",
@@ -400,9 +418,9 @@ if ($($args.count) -eq 0) {
apply_patches
build_static
if ($script:ARCH -eq "arm64") {
build_cpu("ARM64")
build_cpu_arm64
} else { # amd64
build_cpu("x64")
build_cpu_x64
build_cpu_avx
build_cpu_avx2
build_cuda
@@ -416,5 +434,5 @@ if ($($args.count) -eq 0) {
for ( $i = 0; $i -lt $args.count; $i++ ) {
write-host "performing $($args[$i])"
& $($args[$i])
}
}
}

View File

@@ -360,11 +360,13 @@ func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload ui
switch llm.KV().Architecture() {
case "llama":
fullOffload = 4 * batch * (1 + 4*embedding + context*(1+heads))
fullOffload = max(
4*batch*(1+4*embedding+context*(1+heads)),
4*batch*(embedding+vocab),
)
partialOffload = 4 * batch * embedding
partialOffload += max(
// 4*batch*(4+6*embedding+context*(2*heads)+llm.KV().GQA()),
4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*heads+embeddingHeads*headsKV),
4*batch*(embedding+vocab)+embedding*vocab*105/128,
)

View File

@@ -5,7 +5,7 @@ package llm
// #cgo darwin,arm64 LDFLAGS: -L${SRCDIR}/build/darwin/arm64_static -L${SRCDIR}/build/darwin/arm64_static/src -L${SRCDIR}/build/darwin/arm64_static/ggml/src -framework Accelerate -framework Metal
// #cgo darwin,amd64 LDFLAGS: -L${SRCDIR}/build/darwin/x86_64_static -L${SRCDIR}/build/darwin/x86_64_static/src -L${SRCDIR}/build/darwin/x86_64_static/ggml/src
// #cgo windows,amd64 LDFLAGS: -static-libstdc++ -static-libgcc -static -L${SRCDIR}/build/windows/amd64_static -L${SRCDIR}/build/windows/amd64_static/src -L${SRCDIR}/build/windows/amd64_static/ggml/src
// #cgo windows,arm64 LDFLAGS: -static-libstdc++ -static-libgcc -static -L${SRCDIR}/build/windows/arm64_static -L${SRCDIR}/build/windows/arm64_static/src -L${SRCDIR}/build/windows/arm64_static/ggml/src
// #cgo windows,arm64 LDFLAGS: -lllama -lggml -static-libstdc++ -static-libgcc -static -L${SRCDIR}/build/windows/arm64_static -L${SRCDIR}/build/windows/arm64_static/src -L${SRCDIR}/build/windows/arm64_static/ggml/src
// #cgo linux,amd64 LDFLAGS: -L${SRCDIR}/build/linux/x86_64_static -L${SRCDIR}/build/linux/x86_64_static/src -L${SRCDIR}/build/linux/x86_64_static/ggml/src
// #cgo linux,arm64 LDFLAGS: -L${SRCDIR}/build/linux/arm64_static -L${SRCDIR}/build/linux/arm64_static/src -L${SRCDIR}/build/linux/arm64_static/ggml/src
// #include <stdlib.h>

View File

@@ -1,11 +1,7 @@
package llm
import (
"embed"
"syscall"
)
//go:embed build/darwin/arm64/*/bin/*
var libEmbed embed.FS
var LlamaServerSysProcAttr = &syscall.SysProcAttr{}

View File

@@ -1,11 +0,0 @@
package llm
import (
"embed"
"syscall"
)
//go:embed build/darwin/x86_64/*/bin/*
var libEmbed embed.FS
var LlamaServerSysProcAttr = &syscall.SysProcAttr{}

View File

@@ -1,11 +1,7 @@
package llm
import (
"embed"
"syscall"
)
//go:embed build/linux/*/*/bin/*
var libEmbed embed.FS
var LlamaServerSysProcAttr = &syscall.SysProcAttr{}

View File

@@ -1,14 +1,13 @@
package llm
import (
"embed"
"syscall"
)
// unused on windows
var libEmbed embed.FS
const CREATE_DEFAULT_ERROR_MODE = 0x04000000
const (
CREATE_DEFAULT_ERROR_MODE = 0x04000000
ABOVE_NORMAL_PRIORITY_CLASS = 0x00008000
)
var LlamaServerSysProcAttr = &syscall.SysProcAttr{
// Wire up the default error handling logic If for some reason a DLL is
@@ -16,5 +15,8 @@ var LlamaServerSysProcAttr = &syscall.SysProcAttr{
// the user can either fix their PATH, or report a bug. Without this
// setting, the process exits immediately with a generic exit status but no
// way to (easily) figure out what the actual missing DLL was.
CreationFlags: CREATE_DEFAULT_ERROR_MODE,
//
// Setting Above Normal priority class ensures when running as a "background service"
// with "programs" given best priority, we aren't starved of cpu cycles
CreationFlags: CREATE_DEFAULT_ERROR_MODE | ABOVE_NORMAL_PRIORITY_CLASS,
}

View File

@@ -7,6 +7,7 @@ import (
"strings"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/gpu"
)
@@ -94,6 +95,7 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
// Overflow that didn't fit into the GPU
var overflow uint64
overhead := envconfig.GpuOverhead()
availableList := make([]string, len(gpus))
for i, gpu := range gpus {
availableList[i] = format.HumanBytes2(gpu.FreeMemory)
@@ -164,8 +166,22 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
gzo = gpuZeroOverhead
}
// Only include GPUs that can fit the graph, gpu minimum, the layer buffer and at least more layer
if gpus[i].FreeMemory < gzo+max(graphPartialOffload, graphFullOffload)+gpus[i].MinimumMemory+2*layerSize {
slog.Debug("gpu has too little memory to allocate any layers", "gpu", gpus[i])
if (gpus[i].FreeMemory - overhead) < gzo+max(graphPartialOffload, graphFullOffload)+gpus[i].MinimumMemory+2*layerSize {
slog.Debug("gpu has too little memory to allocate any layers",
"id", gpus[i].ID,
"library", gpus[i].Library,
"variant", gpus[i].Variant,
"compute", gpus[i].Compute,
"driver", fmt.Sprintf("%d.%d", gpus[i].DriverMajor, gpus[i].DriverMinor),
"name", gpus[i].Name,
"total", format.HumanBytes2(gpus[i].TotalMemory),
"available", format.HumanBytes2(gpus[i].FreeMemory),
"minimum_memory", gpus[i].MinimumMemory,
"layer_size", format.HumanBytes2(layerSize),
"gpu_zer_overhead", format.HumanBytes2(gzo),
"partial_offload", format.HumanBytes2(graphPartialOffload),
"full_offload", format.HumanBytes2(graphFullOffload),
)
continue
}
gpusWithSpace = append(gpusWithSpace, gs{i, &gpus[i]})
@@ -196,7 +212,7 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
for j := len(gpusWithSpace); j > 0; j-- {
g := gpusWithSpace[i%j]
used := gpuAllocations[g.i] + max(graphPartialOffload, graphFullOffload)
if g.g.FreeMemory > used+layerSize {
if (g.g.FreeMemory - overhead) > used+layerSize {
gpuAllocations[g.i] += layerSize
layerCounts[g.i]++
layerCount++
@@ -219,7 +235,7 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
for j := len(gpusWithSpace); j > 0; j-- {
g := gpusWithSpace[layerCount%j]
used := gpuAllocations[g.i] + max(graphPartialOffload, graphFullOffload)
if g.g.FreeMemory > used+memoryLayerOutput {
if (g.g.FreeMemory - overhead) > used+memoryLayerOutput {
gpuAllocations[g.i] += memoryLayerOutput
layerCounts[g.i]++
layerCount++
@@ -306,6 +322,7 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
}
func (m MemoryEstimate) log() {
overhead := envconfig.GpuOverhead()
slog.Info(
"offload to "+m.inferenceLibrary,
slog.Group(
@@ -323,6 +340,7 @@ func (m MemoryEstimate) log() {
"memory",
// memory available by GPU for offloading
"available", m.availableList,
"gpu_overhead", format.HumanBytes2(overhead),
slog.Group(
"required",
// memory required for full offloading

View File

@@ -0,0 +1,22 @@
From 8b8d83ffca775840acc5dc700f3b3703e9f5cfe4 Mon Sep 17 00:00:00 2001
From: Michael Yang <mxyng@pm.me>
Date: Fri, 23 Aug 2024 11:27:48 -0700
Subject: [PATCH] patch cmakelist
---
CMakeLists.txt | 2 ++
1 file changed, 2 insertions(+)
diff --git a/CMakeLists.txt b/CMakeLists.txt
index a3132063..6a2a9912 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -199,3 +199,5 @@ if (LLAMA_BUILD_EXAMPLES)
add_subdirectory(examples)
add_subdirectory(pocs)
endif()
+
+add_subdirectory(../ext_server ext_server) # ollama
--
2.45.2

View File

@@ -1,8 +1,18 @@
From 2cfaa0a04faa9c87ba8f1ac8527eb953e69c6cde Mon Sep 17 00:00:00 2001
From: Michael Yang <mxyng@pm.me>
Date: Mon, 16 Sep 2024 15:53:10 -0700
Subject: [PATCH] 01-load-progress.diff
---
common/common.cpp | 2 ++
common/common.h | 7 +++++++
2 files changed, 9 insertions(+)
diff --git a/common/common.cpp b/common/common.cpp
index 2c05a4d4..927f0e3d 100644
index 9fa18472..48ff41e9 100644
--- a/common/common.cpp
+++ b/common/common.cpp
@@ -2093,6 +2093,8 @@ struct llama_model_params llama_model_params_from_gpt_params(const gpt_params &
@@ -2573,6 +2573,8 @@ struct llama_model_params llama_model_params_from_gpt_params(const gpt_params &
mparams.use_mmap = params.use_mmap;
mparams.use_mlock = params.use_mlock;
mparams.check_tensors = params.check_tensors;
@@ -12,10 +22,10 @@ index 2c05a4d4..927f0e3d 100644
mparams.kv_overrides = NULL;
} else {
diff --git a/common/common.h b/common/common.h
index 65c0ef81..ebca2c77 100644
index cb5e7f6d..d8f043f7 100644
--- a/common/common.h
+++ b/common/common.h
@@ -184,6 +184,13 @@ struct gpt_params {
@@ -204,6 +204,13 @@ struct gpt_params {
std::string mmproj = ""; // path to multimodal projector
std::vector<std::string> image; // path to image file(s)
@@ -29,3 +39,6 @@ index 65c0ef81..ebca2c77 100644
// embedding
bool embedding = false; // get only sentence embedding
int32_t embd_normalize = 2; // normalisation for embendings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
--
2.46.0

View File

@@ -1,5 +1,14 @@
From ba4bba80a744f76ac67b8234451c259a3c5da83b Mon Sep 17 00:00:00 2001
From: Michael Yang <mxyng@pm.me>
Date: Mon, 16 Sep 2024 15:53:11 -0700
Subject: [PATCH] 02-clip-log.diff
---
examples/llava/clip.cpp | 1 +
1 file changed, 1 insertion(+)
diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp
index e431c7f7..f077e688 100644
index 9b890571..cb51793d 100644
--- a/examples/llava/clip.cpp
+++ b/examples/llava/clip.cpp
@@ -3,6 +3,7 @@
@@ -10,3 +19,6 @@ index e431c7f7..f077e688 100644
#include "log.h"
#include "ggml.h"
#include "ggml-alloc.h"
--
2.46.0

View File

@@ -1,8 +1,17 @@
From e43bfd3f607a6dfcaba2d490d35f412a52e55e30 Mon Sep 17 00:00:00 2001
From: Michael Yang <mxyng@pm.me>
Date: Mon, 16 Sep 2024 15:53:12 -0700
Subject: [PATCH] 03-load_exception.diff
---
src/llama.cpp | 25 ++++++++++++++++---------
1 file changed, 16 insertions(+), 9 deletions(-)
diff --git a/src/llama.cpp b/src/llama.cpp
index 73f52435..58a00fb1 100644
index 88355971..926bb71a 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -7241,7 +7241,7 @@ static int llama_model_load(const std::string & fname, llama_model & model, llam
@@ -8635,7 +8635,7 @@ static int llama_model_load(const std::string & fname, llama_model & model, llam
}
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
@@ -11,7 +20,7 @@ index 73f52435..58a00fb1 100644
}
return 0;
@@ -17564,16 +17564,23 @@ struct llama_model * llama_load_model_from_file(
@@ -18022,16 +18022,23 @@ struct llama_model * llama_load_model_from_file(
}
model->rpc_servers.push_back(servers);
}
@@ -43,3 +52,6 @@ index 73f52435..58a00fb1 100644
}
return model;
--
2.46.0

View File

@@ -1,8 +1,17 @@
From 29411d9a9d2b6a0af6425ffe88498f17f71f7d5d Mon Sep 17 00:00:00 2001
From: Michael Yang <mxyng@pm.me>
Date: Mon, 16 Sep 2024 15:53:12 -0700
Subject: [PATCH] 04-metal.diff
---
ggml/src/ggml-metal.m | 30 +++++++++++++-----------------
1 file changed, 13 insertions(+), 17 deletions(-)
diff --git a/ggml/src/ggml-metal.m b/ggml/src/ggml-metal.m
index 0207b787..b5e9884b 100644
index 91b5e61b..9cfa72ac 100644
--- a/ggml/src/ggml-metal.m
+++ b/ggml/src/ggml-metal.m
@@ -1396,27 +1396,23 @@ static enum ggml_status ggml_metal_graph_compute(
@@ -1734,27 +1734,23 @@ static enum ggml_status ggml_metal_graph_compute(
// to the matrix-vector kernel
int ne11_mm_min = 1;
@@ -43,3 +52,6 @@ index 0207b787..b5e9884b 100644
// for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
// AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
--
2.46.0

View File

@@ -1,8 +1,17 @@
From b298ac8614d1e38da28f760eb1d2ae8af0fbbe62 Mon Sep 17 00:00:00 2001
From: Michael Yang <mxyng@pm.me>
Date: Mon, 16 Sep 2024 15:53:13 -0700
Subject: [PATCH] 05-default-pretokenizer.diff
---
src/llama.cpp | 14 +++-----------
1 file changed, 3 insertions(+), 11 deletions(-)
diff --git a/src/llama.cpp b/src/llama.cpp
index a207451f..2ddf431d 100644
index 926bb71a..d1e959fc 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -5347,16 +5347,7 @@ static void llm_load_vocab(
@@ -6083,16 +6083,7 @@ static void llm_load_vocab(
if (vocab.type == LLAMA_VOCAB_TYPE_BPE) {
vocab.tokenizer_add_space_prefix = false;
vocab.tokenizer_clean_spaces = true;
@@ -20,9 +29,9 @@ index a207451f..2ddf431d 100644
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
} else if (
tokenizer_pre == "llama3" ||
@@ -5443,7 +5434,8 @@ static void llm_load_vocab(
tokenizer_pre == "codeshell") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_CODESHELL;
@@ -6188,7 +6179,8 @@ static void llm_load_vocab(
tokenizer_pre == "exaone") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_EXAONE;
} else {
- throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
+ LLAMA_LOG_WARN("%s: missing or unrecognized pre-tokenizer type, using: 'default'\n", __func__);
@@ -30,3 +39,6 @@ index a207451f..2ddf431d 100644
}
} else if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
--
2.46.0

View File

@@ -1,37 +1,45 @@
From c9a6ca9fc039233dee746a4da9705762cd9e515d Mon Sep 17 00:00:00 2001
From: Michael Yang <mxyng@pm.me>
Date: Mon, 16 Sep 2024 15:53:14 -0700
Subject: [PATCH] 06-embeddings.diff
---
src/llama.cpp | 17 ++++++++++-------
1 file changed, 10 insertions(+), 7 deletions(-)
diff --git a/src/llama.cpp b/src/llama.cpp
index 1fe2b9f7..a43312a7 100644
index d1e959fc..f79bd782 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -13689,7 +13689,7 @@ static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
@@ -15898,7 +15898,7 @@ static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
const auto n_embd = hparams.n_embd;
// TODO: use a per-batch flag for logits presence instead
- const bool has_logits = !cparams.embeddings;
+ const bool has_logits = cparams.causal_attn;
const bool has_embd = lctx.is_encoding || (cparams.embeddings && (cparams.pooling_type == LLAMA_POOLING_TYPE_NONE));
const bool has_embd = cparams.embeddings && (cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
@@ -13959,17 +13959,25 @@ static int llama_decode_internal(
@@ -16167,20 +16167,23 @@ static int llama_decode_internal(
// no output
res = nullptr;
embd = nullptr;
- } else if (cparams.embeddings) {
- res = nullptr; // do not extract logits for embedding case
- embd = gf->nodes[gf->n_nodes - 1];
- if (strcmp(embd->name, "result_embd_pooled") != 0) {
- embd = gf->nodes[gf->n_nodes - 2];
- res = nullptr; // do not extract logits for embedding case
- embd = nullptr;
+ }
+
+ if (cparams.embeddings) {
+ for (int i = gf->n_nodes - 1; i >= 0; --i) {
for (int i = gf->n_nodes - 1; i >= 0; --i) {
- if (strcmp(gf->nodes[i]->name, "result_embd_pooled") == 0) {
- embd = gf->nodes[i];
+ embd = gf->nodes[i];
+ if (strcmp(embd->name, "result_embd_pooled") == 0) {
+ break;
+ }
break;
}
}
GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0 && "missing embeddings tensor");
- } else {
+ } else {
- GGML_ASSERT(embd != nullptr && "missing embeddings tensor");
} else {
embd = nullptr; // do not extract embeddings when not needed
GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
}
@@ -39,7 +47,9 @@ index 1fe2b9f7..a43312a7 100644
+ if (!cparams.causal_attn) {
+ res = nullptr; // do not extract logits when not needed
+ }
+
// LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
ggml_backend_sched_alloc_graph(lctx.sched, gf);
--
2.46.0

View File

@@ -1,8 +1,17 @@
From ae2b188a679c83ce105aa1e823499441dfab3c57 Mon Sep 17 00:00:00 2001
From: Michael Yang <mxyng@pm.me>
Date: Mon, 16 Sep 2024 15:53:15 -0700
Subject: [PATCH] 07-clip-unicode.diff
---
examples/llava/clip.cpp | 23 +++++++++++++++++++++++
1 file changed, 23 insertions(+)
diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp
index 95fbe3d0..5a02a6ec 100644
index cb51793d..8716472b 100644
--- a/examples/llava/clip.cpp
+++ b/examples/llava/clip.cpp
@@ -32,6 +33,14 @@
@@ -41,6 +41,14 @@
#include <cinttypes>
#include <limits>
@@ -17,7 +26,7 @@ index 95fbe3d0..5a02a6ec 100644
//#define CLIP_DEBUG_FUNCTIONS
// RGB uint8 image
@@ -1055,7 +1064,22 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
@@ -1223,7 +1231,22 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
return nullptr;
}
@@ -40,3 +49,6 @@ index 95fbe3d0..5a02a6ec 100644
if (!fin) {
LOG_TEE("cannot open model file for loading tensors\n");
clip_free(new_clip);
--
2.46.0

View File

@@ -0,0 +1,402 @@
From 8313ce5f43f11f3d84f352f97f3802792e90e18c Mon Sep 17 00:00:00 2001
From: Michael Yang <mxyng@pm.me>
Date: Mon, 16 Sep 2024 15:53:16 -0700
Subject: [PATCH] add solar-pro support
solar-pro introduces block skip connections where blocks are connected
to other, non-sequential blocks with a scale multiple
this change adds 4 new keys to store the skip connections and one new
tensor to store the scalar. the scalar is implemented a 1-dimensional
tensor with 2 elements dervied from the model's bskcn_tv configuration.
in general, the values are (bskcn_tv, 1 - bskcn_tv)
---
src/llama.cpp | 267 +++++++++++++++++++++++++++++++++++++++++++++++---
1 file changed, 254 insertions(+), 13 deletions(-)
diff --git a/src/llama.cpp b/src/llama.cpp
index f79bd782..b7771f53 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -213,6 +213,7 @@ enum llm_arch {
LLM_ARCH_NEMOTRON,
LLM_ARCH_EXAONE,
LLM_ARCH_RWKV6,
+ LLM_ARCH_SOLAR,
LLM_ARCH_UNKNOWN,
};
@@ -261,6 +262,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_NEMOTRON, "nemotron" },
{ LLM_ARCH_EXAONE, "exaone" },
{ LLM_ARCH_RWKV6, "rwkv6" },
+ { LLM_ARCH_SOLAR, "solar" },
{ LLM_ARCH_UNKNOWN, "(unknown)" },
};
@@ -314,6 +316,7 @@ enum llm_kv {
LLM_KV_ATTENTION_KV_LORA_RANK,
LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT,
LLM_KV_ATTENTION_SLIDING_WINDOW,
+ LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION,
LLM_KV_ROPE_DIMENSION_COUNT,
LLM_KV_ROPE_FREQ_BASE,
@@ -405,19 +408,20 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_TIME_MIX_EXTRA_DIM, "%s.time_mix_extra_dim" },
{ LLM_KV_TIME_DECAY_EXTRA_DIM, "%s.time_decay_extra_dim" },
- { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
- { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
- { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
- { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
- { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
- { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
- { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
- { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
- { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
- { LLM_KV_ATTENTION_Q_LORA_RANK, "%s.attention.q_lora_rank" },
- { LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" },
- { LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count" },
- { LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
+ { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
+ { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
+ { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
+ { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
+ { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
+ { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
+ { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
+ { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
+ { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
+ { LLM_KV_ATTENTION_Q_LORA_RANK, "%s.attention.q_lora_rank" },
+ { LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" },
+ { LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count" },
+ { LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
+ { LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION, "%s.attention.block_skip_connection.%d" },
{ LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
{ LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
@@ -589,6 +593,7 @@ enum llm_tensor {
LLM_TENSOR_ENC_FFN_DOWN,
LLM_TENSOR_ENC_FFN_UP,
LLM_TENSOR_ENC_OUTPUT_NORM,
+ LLM_TENSOR_BSKCN_TV,
};
static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
@@ -1408,6 +1413,24 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
{ LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, "blk.%d.channel_mix_receptance" },
},
},
+ {
+ LLM_ARCH_SOLAR,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ { LLM_TENSOR_BSKCN_TV, "bskcn_tv" },
+ },
+ },
{
LLM_ARCH_UNKNOWN,
{
@@ -2237,6 +2260,7 @@ enum e_model {
MODEL_15B,
MODEL_16B,
MODEL_20B,
+ MODEL_22B,
MODEL_30B,
MODEL_34B,
MODEL_35B,
@@ -2284,6 +2308,8 @@ struct llama_hparams {
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr;
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
+ std::array<std::array<uint32_t, LLAMA_MAX_LAYERS>, 4> n_bskcn_arr;
+
uint32_t n_layer_dense_lead = 0;
uint32_t n_lora_q = 0;
uint32_t n_lora_kv = 0;
@@ -2349,6 +2375,7 @@ struct llama_hparams {
if (this->n_head_arr != other.n_head_arr) return true;
if (this->n_head_kv_arr != other.n_head_kv_arr) return true;
if (this->n_ff_arr != other.n_ff_arr) return true;
+ if (this->n_bskcn_arr != other.n_bskcn_arr) return true;
if (this->n_rel_attn_bkts != other.n_rel_attn_bkts) return true;
if (this->n_layer_dense_lead != other.n_layer_dense_lead) return true;
@@ -2455,6 +2482,14 @@ struct llama_hparams {
return ssm_d_state * ssm_d_inner;
}
}
+
+ bool n_bskcn(uint32_t n, uint32_t il = 0) const {
+ if (il < n_layer) {
+ return n_bskcn_arr[n][il] > 0;
+ }
+
+ GGML_ABORT("fatal error");
+ }
};
static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");
@@ -2635,6 +2670,8 @@ struct llama_layer {
struct ggml_tensor * ffn_gate_scale;
struct ggml_tensor * ffn_up_scale;
struct ggml_tensor * ffn_down_scale;
+
+ struct ggml_tensor * bskcn_tv;
};
// very similar to llama_batch,
@@ -5937,6 +5974,21 @@ static void llm_load_hparams(
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
+ case LLM_ARCH_SOLAR:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+
+ for (int i = 0; i < hparams.n_bskcn_arr.max_size(); ++i) {
+ auto & bskcn = hparams.n_bskcn_arr.at(i);
+ bskcn.fill(0);
+ ml.get_key_or_arr(::format(LLM_KV_NAMES.at(LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION), LLM_ARCH_NAMES.at(ml.llm_kv.arch), i), bskcn, hparams.n_layer, false);
+ }
+
+ switch (hparams.n_layer) {
+ case 64: model.type = e_model::MODEL_22B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ }
default: (void)0;
}
@@ -8420,6 +8472,38 @@ static bool llm_load_tensors(
}
} break;
+ case LLM_ARCH_SOLAR:
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+ // output
+ {
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ }
+
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head});
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
+
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+
+ layer.bskcn_tv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_BSKCN_TV, "weight"), {2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
+
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
+ }
+ } break;
default:
throw std::runtime_error("unknown architecture");
}
@@ -15173,6 +15257,158 @@ struct llm_build_context {
return gf;
}
+
+ ggml_cgraph * build_solar() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
+
+ // mutable variable, needed during the last layer of the computation to skip unused tokens
+ int32_t n_tokens = this->n_tokens;
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ struct ggml_tensor * bskcn_1;
+ struct ggml_tensor * bskcn_2;
+
+ for (int il = 0; il < n_layer; ++il) {
+ struct ggml_tensor * inpSA = inpL;
+
+ if (hparams.n_bskcn(0, il)) {
+ bskcn_1 = inpSA;
+ }
+
+ if (hparams.n_bskcn(1, il)) {
+ bskcn_2 = inpSA;
+ }
+
+ if (hparams.n_bskcn(2, il)) {
+ inpSA = ggml_add(
+ ctx0,
+ ggml_mul(ctx0, bskcn_1, ggml_view_1d(ctx0, model.layers[il].bskcn_tv, 1, 0)),
+ ggml_mul(ctx0, inpSA, ggml_view_1d(ctx0, model.layers[il].bskcn_tv, 1, ggml_element_size(model.layers[il].bskcn_tv))));
+ }
+
+ if (hparams.n_bskcn(3, il)) {
+ inpSA = ggml_add(
+ ctx0,
+ ggml_mul(ctx0, bskcn_2, ggml_view_1d(ctx0, model.layers[il].bskcn_tv, 1, 0)),
+ ggml_mul(ctx0, inpSA, ggml_view_1d(ctx0, model.layers[il].bskcn_tv, 1, ggml_element_size(model.layers[il].bskcn_tv))));
+ }
+
+ // norm
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // self-attention
+ {
+ // rope freq factors for llama3; may return nullptr for llama2 and other models
+ struct ggml_tensor * rope_factors = build_rope_factors(il);
+
+ // compute Q and K and RoPE them
+ struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+ cb(Qcur, "Qcur", il);
+ if (model.layers[il].bq) {
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+ cb(Qcur, "Qcur", il);
+ }
+
+ struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+ cb(Kcur, "Kcur", il);
+ if (model.layers[il].bk) {
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+ cb(Kcur, "Kcur", il);
+ }
+
+ struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+ cb(Vcur, "Vcur", il);
+ if (model.layers[il].bv) {
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+ cb(Vcur, "Vcur", il);
+ }
+
+ Qcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Qcur, "Qcur", il);
+
+ Kcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, rope_factors,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Kcur, "Kcur", il);
+
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ model.layers[il].wo, model.layers[il].bo,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ n_tokens = n_outputs;
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+ }
+
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+ cb(ffn_inp, "ffn_inp", il);
+
+ // feed-forward network
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
+ model.layers[il].ffn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ cur = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
+ model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
+ NULL,
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+ cb(cur, "ffn_out", il);
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+ cb(cur, "ffn_out", il);
+
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.output_norm, NULL,
+ LLM_NORM_RMS, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ // lm_head
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
};
static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
@@ -15423,6 +15659,10 @@ static struct ggml_cgraph * llama_build_graph(
{
result = llm.build_rwkv6();
} break;
+ case LLM_ARCH_SOLAR:
+ {
+ result = llm.build_solar();
+ } break;
default:
GGML_ABORT("fatal error");
}
@@ -18503,6 +18743,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
case LLM_ARCH_ARCTIC:
case LLM_ARCH_DEEPSEEK2:
case LLM_ARCH_CHATGLM:
+ case LLM_ARCH_SOLAR:
return LLAMA_ROPE_TYPE_NORM;
// the pairs of head values are offset by n_rot/2
--
2.46.0

View File

@@ -1,350 +0,0 @@
diff --git a/common/common.cpp b/common/common.cpp
index 2e8374d5..70d0afde 100644
--- a/common/common.cpp
+++ b/common/common.cpp
@@ -2110,9 +2110,21 @@ struct llama_init_result llama_init_from_gpt_params(gpt_params & params) {
loaded_la.adapter = llama_lora_adapter_init(model, la.path.c_str());
if (loaded_la.adapter == nullptr) {
fprintf(stderr, "%s: error: failed to apply lora adapter '%s'\n", __func__, la.path.c_str());
- llama_free(lctx);
- llama_free_model(model);
- return iparams;
+
+ // if that fails, try loading as ggla for compatibility
+ int err = llama_model_apply_lora_from_file(model,
+ la.path.c_str(),
+ la.scale,
+ nullptr,
+ params.n_threads);
+ if (err != 0) {
+ fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
+ llama_free(lctx);
+ llama_free_model(model);
+ return iparams;
+ } else {
+ break;
+ }
}
iparams.lora_adapters.push_back(loaded_la); // copy to list of loaded adapters
}
diff --git a/include/llama.h b/include/llama.h
index 93fd77ca..b0fb37a6 100644
--- a/include/llama.h
+++ b/include/llama.h
@@ -1160,6 +1160,20 @@ extern "C" {
LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx);
+ // Apply a LoRA adapter to a loaded model
+ // path_base_model is the path to a higher quality model to use as a base for
+ // the layers modified by the adapter. Can be NULL to use the current loaded model.
+ // The model needs to be reloaded before applying a new adapter, otherwise the adapter
+ // will be applied on top of the previous one
+ // Returns 0 on success
+ LLAMA_API int32_t llama_model_apply_lora_from_file(
+ const struct llama_model * model,
+ const char * path_lora,
+ float scale,
+ const char * path_base_model,
+ int32_t n_threads);
+
+
#ifdef __cplusplus
}
#endif
diff --git a/src/llama.cpp b/src/llama.cpp
index 80a0dd0f..9d7b0e17 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -21880,3 +21880,290 @@ static void llama_log_callback_default(ggml_log_level level, const char * text,
fputs(text, stderr);
fflush(stderr);
}
+
+static int llama_apply_lora_from_file_internal(
+ const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
+) {
+ LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
+
+ const int64_t t_start_lora_us = ggml_time_us();
+
+ llama_file fin(path_lora, "rb");
+
+ // verify magic and version
+ {
+ uint32_t magic = fin.read_u32();
+ if (magic != LLAMA_FILE_MAGIC_GGLA) {
+ LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
+ return 1;
+ }
+
+ uint32_t format_version = fin.read_u32();
+ if (format_version != 1) {
+ LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
+ return 1;
+ }
+ }
+
+ int32_t lora_r = fin.read_u32();
+ int32_t lora_alpha = fin.read_u32();
+ float scaling = scale * (float)lora_alpha / (float)lora_r;
+
+ LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
+
+ // load base model
+ std::unique_ptr<llama_model_loader> ml;
+ if (path_base_model) {
+ LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
+ ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*check_tensors*/ false, /*kv_overrides*/ nullptr));
+ ml->init_mappings(/*prefetch*/ false); // no prefetching
+ }
+
+ struct tensor_meta {
+ std::string name;
+ ggml_type type;
+ int32_t ne[2];
+ size_t offset;
+ };
+ std::map<std::string, tensor_meta> tensor_meta_map;
+
+ // load all tensor meta
+ while (true) {
+ if (fin.tell() == fin.size) {
+ // eof
+ break;
+ }
+
+ int32_t n_dims;
+ int32_t name_len;
+ int32_t ftype;
+
+ fin.read_raw(&n_dims, sizeof(n_dims));
+ fin.read_raw(&name_len, sizeof(name_len));
+ fin.read_raw(&ftype, sizeof(ftype));
+
+ if (n_dims != 1 && n_dims != 2) {
+ LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
+ return 1;
+ }
+
+ int32_t ne[2] = { 1, 1 };
+ for (int i = 0; i < n_dims; ++i) {
+ fin.read_raw(&ne[i], sizeof(ne[i]));
+ }
+
+ std::string name;
+ {
+ GGML_ASSERT(name_len < GGML_MAX_NAME);
+ char buf[GGML_MAX_NAME];
+ fin.read_raw(buf, name_len);
+ name = std::string(buf, name_len);
+ }
+
+ // check for lora suffix
+ std::string lora_suffix;
+ if (name.length() > 6) {
+ lora_suffix = name.substr(name.length() - 6);
+ }
+ if (lora_suffix != ".loraA" && lora_suffix != ".loraB") {
+ LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
+ return 1;
+ }
+
+ // tensor type
+ ggml_type wtype;
+ switch (ftype) {
+ case 0: wtype = GGML_TYPE_F32; break;
+ case 1: wtype = GGML_TYPE_F16; break;
+ default:
+ {
+ LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
+ __func__, ftype);
+ return 1;
+ }
+ }
+
+ // data offset
+ size_t offset = fin.tell();
+ offset = (offset + 31) & -32;
+
+ // skip tensor data
+ fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET);
+
+ tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset });
+ }
+
+ bool warned = false;
+ int n_tensors = 0;
+
+ // apply
+ ggml_backend_t backend_cpu = ggml_backend_cpu_init();
+ if (backend_cpu == nullptr) {
+ LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__);
+ return 1;
+ }
+ ggml_backend_cpu_set_n_threads(backend_cpu, n_threads);
+
+ std::vector<no_init<uint8_t>> read_buf;
+ for (const auto & it : model.tensors_by_name) {
+ const std::string & base_name = it.first;
+ ggml_tensor * model_t = it.second;
+
+ if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() ||
+ tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) {
+ continue;
+ }
+
+ tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA");
+ tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB");
+
+ ggml_init_params lora_init_params = {
+ /* .mem_size */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
+ /* .mem_buffer */ nullptr,
+ /* .no_alloc */ true,
+ };
+ ggml_context * lora_ctx = ggml_init(lora_init_params);
+ if (lora_ctx == nullptr) {
+ LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__);
+ ggml_backend_free(backend_cpu);
+ return 1;
+ }
+
+ // create tensors
+ ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]);
+ ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]);
+ ggml_set_name(loraA, metaA.name.c_str());
+ ggml_set_name(loraB, metaB.name.c_str());
+
+ ggml_tensor * base_t;
+ if (ml) {
+ if (!ml->get_tensor_meta(base_name.c_str())) {
+ LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
+ return 1;
+ }
+ base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str()));
+ } else {
+ base_t = ggml_dup_tensor(lora_ctx, model_t);
+ }
+ ggml_set_name(base_t, base_name.c_str());
+
+ // allocate in backend buffer
+ ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
+ if (lora_buf == nullptr) {
+ LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__);
+ return 1;
+ }
+
+ // load tensor data
+ auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
+ read_buf.resize(ggml_nbytes(tensor));
+ fin.seek(tensor_meta.offset, SEEK_SET);
+ fin.read_raw(read_buf.data(), ggml_nbytes(tensor));
+ ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size());
+ };
+ load_tensor(metaA, loraA);
+ load_tensor(metaB, loraB);
+
+ // load base model tensor data
+ if (ml) {
+ ml->load_data_for(base_t);
+ } else {
+ ggml_backend_tensor_copy(model_t, base_t);
+ }
+
+ if (ggml_is_quantized(base_t->type) && !warned) {
+ LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
+ "use a f16 or f32 base model with --lora-base\n", __func__);
+ warned = true;
+ }
+
+ if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
+ LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
+ " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
+ ggml_free(lora_ctx);
+ ggml_backend_buffer_free(lora_buf);
+ ggml_backend_free(backend_cpu);
+ return 1;
+ }
+
+ auto build_lora_graph = [&]() {
+ // w = w + BA*s
+ ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
+ ggml_set_name(BA, "BA");
+
+ if (scaling != 1.0f) {
+ BA = ggml_scale(lora_ctx, BA, scaling);
+ ggml_set_name(BA, "BA_scaled");
+ }
+
+ ggml_tensor * r;
+ r = ggml_add_inplace(lora_ctx, base_t, BA);
+ ggml_set_name(r, "r_add");
+
+ if (base_t->type != model_t->type) {
+ // convert the result to the model type
+ r = ggml_cast(lora_ctx, r, model_t->type);
+ ggml_set_name(r, "r_cast");
+ }
+
+ return r;
+ };
+
+ ggml_cgraph * gf = ggml_new_graph(lora_ctx);
+ ggml_tensor * r = build_lora_graph();
+ ggml_build_forward_expand(gf, r);
+
+ ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
+ if (graph_buf == nullptr) {
+ LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__);
+ ggml_free(lora_ctx);
+ ggml_backend_buffer_free(lora_buf);
+ ggml_backend_free(backend_cpu);
+ return 1;
+ }
+
+ ggml_backend_graph_compute(backend_cpu, gf);
+
+ ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r));
+
+#if 0
+ // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU
+ //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE);
+
+ // sched compute
+ ggml_build_forward_expand(gf, build_graph());
+ ggml_backend_sched_init_measure(sched, gf);
+
+ // create the graph again, since the previous one was destroyed by the measure
+ ggml_graph_clear(gf);
+ ggml_build_forward_expand(gf, build_graph());
+ ggml_backend_sched_graph_compute(sched, gf);
+ ggml_backend_sched_free(sched);
+#endif
+
+ ggml_backend_buffer_free(lora_buf);
+ ggml_backend_buffer_free(graph_buf);
+ ggml_free(lora_ctx);
+
+ n_tensors++;
+ if (n_tensors % 4 == 0) {
+ LLAMA_LOG_INFO(".");
+ }
+ }
+
+ ggml_backend_free(backend_cpu);
+
+ const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
+ LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
+
+ return 0;
+}
+
+int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
+ try {
+ return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
+ } catch (const std::exception & err) {
+ LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
+ return 1;
+ }
+}
\ No newline at end of file

View File

@@ -1,43 +0,0 @@
From 6eedae4cf2fcc8015dac79cb3f28f61fcabacab2 Mon Sep 17 00:00:00 2001
From: Michael Yang <mxyng@pm.me>
Date: Wed, 31 Jul 2024 14:57:04 -0700
Subject: [PATCH] phi3 sliding window
---
src/llama.cpp | 6 +++---
1 file changed, 3 insertions(+), 3 deletions(-)
diff --git a/src/llama.cpp b/src/llama.cpp
index a207451f..f2872d4e 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -4893,7 +4893,7 @@ static void llm_load_hparams(
} break;
case LLM_ARCH_PHI3:
{
- ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
+ ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
@@ -10762,7 +10762,7 @@ struct llm_build_context {
struct ggml_tensor * inp_pos = build_inp_pos();
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask_swa = build_inp_KQ_mask_swa();
+ struct ggml_tensor * KQ_mask = hparams.n_swa > 0 ? build_inp_KQ_mask_swa() : build_inp_KQ_mask();
for (int il = 0; il < n_layer; ++il) {
auto residual = inpL;
@@ -10820,7 +10820,7 @@ struct llm_build_context {
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Qcur, KQ_mask_swa, n_tokens, kv_head, n_kv, 1.0f, cb, il);
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
}
if (il == n_layer - 1) {
--
2.45.2

View File

@@ -1,233 +0,0 @@
package llm
import (
"compress/gzip"
"errors"
"fmt"
"io"
"io/fs"
"log/slog"
"os"
"path/filepath"
"runtime"
"slices"
"strings"
"golang.org/x/sync/errgroup"
"github.com/ollama/ollama/gpu"
)
var errPayloadMissing = errors.New("expected payloads not included in this build of ollama")
func Init() error {
payloadsDir, err := gpu.PayloadsDir()
if err != nil {
return err
}
if runtime.GOOS != "windows" {
slog.Info("extracting embedded files", "dir", payloadsDir)
binGlob := "build/*/*/*/bin/*"
// extract server libraries
err = extractFiles(payloadsDir, binGlob)
if err != nil {
return fmt.Errorf("extract binaries: %v", err)
}
}
var variants []string
for v := range getAvailableServers() {
variants = append(variants, v)
}
slog.Info(fmt.Sprintf("Dynamic LLM libraries %v", variants))
slog.Debug("Override detection logic by setting OLLAMA_LLM_LIBRARY")
return nil
}
// binary names may contain an optional variant separated by '_'
// For example, "ollama_rocm_v6" and "ollama_rocm_v5" or "ollama_cpu" and "ollama_cpu_avx2"
// Any library without a variant is the lowest common denominator
func getAvailableServers() map[string]string {
payloadsDir, err := gpu.PayloadsDir()
if err != nil {
slog.Error("payload lookup error", "error", err)
return nil
}
// glob payloadsDir for files that start with ollama_
pattern := filepath.Join(payloadsDir, "*", "ollama_*")
files, err := filepath.Glob(pattern)
if err != nil {
slog.Debug("could not glob", "pattern", pattern, "error", err)
return nil
}
servers := make(map[string]string)
for _, file := range files {
slog.Debug("availableServers : found", "file", file)
servers[filepath.Base(filepath.Dir(file))] = filepath.Dir(file)
}
return servers
}
// serversForGpu returns a list of compatible servers give the provided GPU
// info, ordered by performance. assumes Init() has been called
// TODO - switch to metadata based mapping
func serversForGpu(info gpu.GpuInfo) []string {
// glob workDir for files that start with ollama_
availableServers := getAvailableServers()
requested := info.Library
if info.Variant != gpu.CPUCapabilityNone.String() {
requested += "_" + info.Variant
}
servers := []string{}
// exact match first
for a := range availableServers {
if a == requested {
servers = []string{a}
if a == "metal" {
return servers
}
break
}
}
alt := []string{}
// Then for GPUs load alternates and sort the list for consistent load ordering
if info.Library != "cpu" {
for a := range availableServers {
if info.Library == strings.Split(a, "_")[0] && a != requested {
alt = append(alt, a)
}
}
slices.Sort(alt)
servers = append(servers, alt...)
}
if !(runtime.GOOS == "darwin" && runtime.GOARCH == "arm64") {
// Load up the best CPU variant if not primary requested
if info.Library != "cpu" {
variant := gpu.GetCPUCapability()
// If no variant, then we fall back to default
// If we have a variant, try that if we find an exact match
// Attempting to run the wrong CPU instructions will panic the
// process
if variant != gpu.CPUCapabilityNone {
for cmp := range availableServers {
if cmp == "cpu_"+variant.String() {
servers = append(servers, cmp)
break
}
}
} else {
servers = append(servers, "cpu")
}
}
if len(servers) == 0 {
servers = []string{"cpu"}
}
}
return servers
}
// Return the optimal server for this CPU architecture
func serverForCpu() string {
if runtime.GOOS == "darwin" && runtime.GOARCH == "arm64" {
return "metal"
}
variant := gpu.GetCPUCapability()
availableServers := getAvailableServers()
if variant != gpu.CPUCapabilityNone {
for cmp := range availableServers {
if cmp == "cpu_"+variant.String() {
return cmp
}
}
}
return "cpu"
}
// extract extracts the embedded files to the target directory
func extractFiles(targetDir string, glob string) error {
files, err := fs.Glob(libEmbed, glob)
if err != nil || len(files) == 0 {
return errPayloadMissing
}
if err := os.MkdirAll(targetDir, 0o755); err != nil {
return fmt.Errorf("extractFiles could not mkdir %s: %v", targetDir, err)
}
g := new(errgroup.Group)
// build/$OS/$GOARCH/$VARIANT/{bin,lib}/$FILE
for _, file := range files {
filename := file
variant := filepath.Base(filepath.Dir(filepath.Dir(filename)))
slog.Debug("extracting", "variant", variant, "file", filename)
g.Go(func() error {
srcf, err := libEmbed.Open(filename)
if err != nil {
return err
}
defer srcf.Close()
src := io.Reader(srcf)
if strings.HasSuffix(filename, ".gz") {
src, err = gzip.NewReader(src)
if err != nil {
return fmt.Errorf("decompress payload %s: %v", filename, err)
}
filename = strings.TrimSuffix(filename, ".gz")
}
variantDir := filepath.Join(targetDir, variant)
if err := os.MkdirAll(variantDir, 0o755); err != nil {
return fmt.Errorf("extractFiles could not mkdir %s: %v", variantDir, err)
}
base := filepath.Base(filename)
destFilename := filepath.Join(variantDir, base)
_, err = os.Stat(destFilename)
switch {
case errors.Is(err, os.ErrNotExist):
destFile, err := os.OpenFile(destFilename, os.O_WRONLY|os.O_CREATE|os.O_TRUNC, 0o755)
if err != nil {
return fmt.Errorf("write payload %s: %v", filename, err)
}
defer destFile.Close()
if _, err := io.Copy(destFile, src); err != nil {
return fmt.Errorf("copy payload %s: %v", filename, err)
}
case err != nil:
return fmt.Errorf("stat payload %s: %v", filename, err)
}
return nil
})
}
err = g.Wait()
if err != nil {
// If we fail to extract, the payload dir is unusable, so cleanup whatever we extracted
gpu.Cleanup()
return err
}
return nil
}

View File

@@ -24,9 +24,11 @@ import (
"golang.org/x/sync/semaphore"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/build"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/gpu"
"github.com/ollama/ollama/runners"
)
type LlamaServer interface {
@@ -98,7 +100,7 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
systemTotalMemory = systemMemInfo.TotalMemory
systemFreeMemory = systemMemInfo.FreeMemory
systemSwapFreeMemory = systemMemInfo.FreeSwap
slog.Debug("system memory", "total", format.HumanBytes2(systemTotalMemory), "free", format.HumanBytes2(systemFreeMemory), "free_swap", format.HumanBytes2(systemSwapFreeMemory))
slog.Info("system memory", "total", format.HumanBytes2(systemTotalMemory), "free", format.HumanBytes2(systemFreeMemory), "free_swap", format.HumanBytes2(systemSwapFreeMemory))
}
// If the user wants zero GPU layers, reset the gpu list to be CPU/system ram info
@@ -106,7 +108,7 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
gpus = gpu.GetCPUInfo()
}
if len(gpus) == 1 && gpus[0].Library == "cpu" {
cpuRunner = serverForCpu()
cpuRunner = runners.ServerForCpu()
estimate = EstimateGPULayers(gpus, ggml, projectors, opts)
} else {
estimate = EstimateGPULayers(gpus, ggml, projectors, opts)
@@ -118,7 +120,7 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
opts.NumGPU = 0
case gpus[0].Library != "metal" && estimate.Layers == 0:
// Don't bother loading into the GPU if no layers can fit
cpuRunner = serverForCpu()
cpuRunner = runners.ServerForCpu()
gpus = gpu.GetCPUInfo()
case opts.NumGPU < 0 && estimate.Layers > 0 && gpus[0].Library != "cpu":
opts.NumGPU = estimate.Layers
@@ -145,25 +147,20 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
return nil, errors.New("ollama supports only one lora adapter, but multiple were provided")
}
availableServers := getAvailableServers()
rDir, err := runners.Refresh(build.EmbedFS)
if err != nil {
return nil, err
}
availableServers := runners.GetAvailableServers(rDir)
if len(availableServers) == 0 {
if runtime.GOOS != "windows" {
slog.Warn("llama server binary disappeared, reinitializing payloads")
err = Init()
if err != nil {
slog.Warn("failed to reinitialize payloads", "error", err)
return nil, err
}
availableServers = getAvailableServers()
} else {
return nil, finalErr
}
return nil, finalErr
}
var servers []string
if cpuRunner != "" {
servers = []string{cpuRunner}
} else {
servers = serversForGpu(gpus[0]) // All GPUs in the list are matching Library and Variant
servers = runners.ServersForGpu(gpus[0]) // All GPUs in the list are matching Library and Variant
}
demandLib := envconfig.LLMLibrary()
if demandLib != "" {
@@ -274,7 +271,7 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
params = append(params, "--tensor-split", estimate.TensorSplit)
}
for i := range len(servers) {
for i := range servers {
dir := availableServers[servers[i]]
if dir == "" {
// Shouldn't happen
@@ -330,7 +327,7 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
_, err := os.Stat(server)
if errors.Is(err, os.ErrNotExist) {
slog.Warn("llama server disappeared, reinitializing payloads", "path", server, "error", err)
err = Init()
_, err = runners.Refresh(build.EmbedFS)
if err != nil {
slog.Warn("failed to reinitialize payloads", "error", err)
return nil, err
@@ -409,7 +406,7 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
}
if err = s.cmd.Start(); err != nil {
// Detect permission denied and augment them essage about noexec
// Detect permission denied and augment the message about noexec
if errors.Is(err, os.ErrPermission) {
finalErr = fmt.Errorf("unable to start server %w. %s may have noexec set. Set OLLAMA_TMPDIR for server to a writable executable directory", err, dir)
continue
@@ -584,8 +581,7 @@ func (s *llmServer) Ping(ctx context.Context) error {
func (s *llmServer) WaitUntilRunning(ctx context.Context) error {
start := time.Now()
stallDuration := 5 * time.Minute // If no progress happens
finalLoadDuration := 5 * time.Minute // After we hit 100%, give the runner more time to come online
stallDuration := envconfig.LoadTimeout() // If no progress happens
stallTimer := time.Now().Add(stallDuration) // give up if we stall
slog.Info("waiting for llama runner to start responding")
@@ -637,7 +633,7 @@ func (s *llmServer) WaitUntilRunning(ctx context.Context) error {
stallTimer = time.Now().Add(stallDuration)
} else if !fullyLoaded && int(s.loadProgress*100.0) >= 100 {
slog.Debug("model load completed, waiting for server to become available", "status", status.ToString())
stallTimer = time.Now().Add(finalLoadDuration)
stallTimer = time.Now().Add(stallDuration)
fullyLoaded = true
}
time.Sleep(time.Millisecond * 250)

View File

@@ -79,7 +79,7 @@ type ChatCompletionRequest struct {
Stop any `json:"stop"`
Temperature *float64 `json:"temperature"`
FrequencyPenalty *float64 `json:"frequency_penalty"`
PresencePenalty *float64 `json:"presence_penalty_penalty"`
PresencePenalty *float64 `json:"presence_penalty"`
TopP *float64 `json:"top_p"`
ResponseFormat *ResponseFormat `json:"response_format"`
Tools []api.Tool `json:"tools"`
@@ -452,7 +452,7 @@ func fromChatRequest(r ChatCompletionRequest) (*api.ChatRequest, error) {
}
if r.Temperature != nil {
options["temperature"] = *r.Temperature * 2.0
options["temperature"] = *r.Temperature
} else {
options["temperature"] = 1.0
}
@@ -462,11 +462,11 @@ func fromChatRequest(r ChatCompletionRequest) (*api.ChatRequest, error) {
}
if r.FrequencyPenalty != nil {
options["frequency_penalty"] = *r.FrequencyPenalty * 2.0
options["frequency_penalty"] = *r.FrequencyPenalty
}
if r.PresencePenalty != nil {
options["presence_penalty"] = *r.PresencePenalty * 2.0
options["presence_penalty"] = *r.PresencePenalty
}
if r.TopP != nil {
@@ -513,7 +513,7 @@ func fromCompleteRequest(r CompletionRequest) (api.GenerateRequest, error) {
}
if r.Temperature != nil {
options["temperature"] = *r.Temperature * 2.0
options["temperature"] = *r.Temperature
} else {
options["temperature"] = 1.0
}
@@ -522,9 +522,9 @@ func fromCompleteRequest(r CompletionRequest) (api.GenerateRequest, error) {
options["seed"] = *r.Seed
}
options["frequency_penalty"] = r.FrequencyPenalty * 2.0
options["frequency_penalty"] = r.FrequencyPenalty
options["presence_penalty"] = r.PresencePenalty * 2.0
options["presence_penalty"] = r.PresencePenalty
if r.TopP != 0.0 {
options["top_p"] = r.TopP

View File

@@ -22,7 +22,10 @@ const (
image = `iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR42mNk+A8AAQUBAScY42YAAAAASUVORK5CYII=`
)
var False = false
var (
False = false
True = true
)
func captureRequestMiddleware(capturedRequest any) gin.HandlerFunc {
return func(c *gin.Context) {
@@ -70,6 +73,44 @@ func TestChatMiddleware(t *testing.T) {
Stream: &False,
},
},
{
name: "chat handler with options",
body: `{
"model": "test-model",
"messages": [
{"role": "user", "content": "Hello"}
],
"stream": true,
"max_tokens": 999,
"seed": 123,
"stop": ["\n", "stop"],
"temperature": 3.0,
"frequency_penalty": 4.0,
"presence_penalty": 5.0,
"top_p": 6.0,
"response_format": {"type": "json_object"}
}`,
req: api.ChatRequest{
Model: "test-model",
Messages: []api.Message{
{
Role: "user",
Content: "Hello",
},
},
Options: map[string]any{
"num_predict": 999.0, // float because JSON doesn't distinguish between float and int
"seed": 123.0,
"stop": []any{"\n", "stop"},
"temperature": 3.0,
"frequency_penalty": 4.0,
"presence_penalty": 5.0,
"top_p": 6.0,
},
Format: "json",
Stream: &True,
},
},
{
name: "chat handler with image content",
body: `{
@@ -186,6 +227,8 @@ func TestChatMiddleware(t *testing.T) {
req, _ := http.NewRequest(http.MethodPost, "/api/chat", strings.NewReader(tc.body))
req.Header.Set("Content-Type", "application/json")
defer func() { capturedRequest = nil }()
resp := httptest.NewRecorder()
router.ServeHTTP(resp, req)
@@ -202,7 +245,6 @@ func TestChatMiddleware(t *testing.T) {
if !reflect.DeepEqual(tc.err, errResp) {
t.Fatal("errors did not match")
}
capturedRequest = nil
})
}
}
@@ -233,7 +275,7 @@ func TestCompletionsMiddleware(t *testing.T) {
Options: map[string]any{
"frequency_penalty": 0.0,
"presence_penalty": 0.0,
"temperature": 1.6,
"temperature": 0.8,
"top_p": 1.0,
"stop": []any{"\n", "stop"},
},

384
runners/common.go Normal file
View File

@@ -0,0 +1,384 @@
package runners
import (
"compress/gzip"
"errors"
"fmt"
"io"
"io/fs"
"log/slog"
"os"
"path/filepath"
"runtime"
"slices"
"strconv"
"strings"
"sync"
"syscall"
"golang.org/x/sync/errgroup"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/gpu"
)
const (
binGlob = "*/*/*/*"
)
var (
lock sync.Mutex
runnersDir = ""
)
// Return the location where runners are stored
// If runners are payloads, this will either extract them
// or refresh them if any have disappeared due to tmp cleaners
func Refresh(payloadFS fs.FS) (string, error) {
lock.Lock()
defer lock.Unlock()
var err error
// Wire up extra logging on our first load
if runnersDir == "" {
defer func() {
var runners []string
for v := range GetAvailableServers(runnersDir) {
runners = append(runners, v)
}
slog.Info("Dynamic LLM libraries", "runners", runners)
slog.Debug("Override detection logic by setting OLLAMA_LLM_LIBRARY")
}()
}
if hasPayloads(payloadFS) {
if runnersDir == "" {
runnersDir, err = extractRunners(payloadFS)
} else {
err = refreshRunners(payloadFS, runnersDir)
}
} else if runnersDir == "" {
runnersDir, err = locateRunners()
}
return runnersDir, err
}
func Cleanup(payloadFS fs.FS) {
lock.Lock()
defer lock.Unlock()
if hasPayloads(payloadFS) && runnersDir != "" {
// We want to fully clean up the tmpdir parent of the payloads dir
tmpDir := filepath.Clean(filepath.Join(runnersDir, ".."))
slog.Debug("cleaning up", "dir", tmpDir)
err := os.RemoveAll(tmpDir)
if err != nil {
slog.Warn("failed to clean up", "dir", tmpDir, "err", err)
}
}
}
func locateRunners() (string, error) {
exe, err := os.Executable()
if err != nil {
return "", err
}
cwd, err := os.Getwd()
if err != nil {
return "", err
}
var paths []string
for _, root := range []string{filepath.Dir(exe), filepath.Join(filepath.Dir(exe), envconfig.LibRelativeToExe()), cwd} {
paths = append(paths,
root,
filepath.Join(root, runtime.GOOS+"-"+runtime.GOARCH),
filepath.Join(root, "dist", runtime.GOOS+"-"+runtime.GOARCH),
)
}
// Try a few variations to improve developer experience when building from source in the local tree
for _, path := range paths {
candidate := filepath.Join(path, "lib", "ollama", "runners")
if _, err := os.Stat(candidate); err == nil {
return candidate, nil
}
}
return "", fmt.Errorf("unable to locate runners in any search path %v", paths)
}
// Return true if we're carying nested payloads for the runners
func hasPayloads(payloadFS fs.FS) bool {
files, err := fs.Glob(payloadFS, binGlob)
if err != nil || len(files) == 0 || (len(files) == 1 && strings.Contains(files[0], "placeholder")) {
return false
}
return true
}
func extractRunners(payloadFS fs.FS) (string, error) {
cleanupTmpDirs()
tmpDir, err := os.MkdirTemp(envconfig.TmpDir(), "ollama")
if err != nil {
return "", fmt.Errorf("failed to generate tmp dir: %w", err)
}
// Track our pid so we can clean up orphaned tmpdirs
n := filepath.Join(tmpDir, "ollama.pid")
if err := os.WriteFile(n, []byte(strconv.Itoa(os.Getpid())), 0o644); err != nil {
slog.Warn("failed to write pid file", "file", n, "error", err)
}
// We create a distinct subdirectory for payloads within the tmpdir
// This will typically look like /tmp/ollama3208993108/runners on linux
rDir := filepath.Join(tmpDir, "runners")
slog.Info("extracting embedded files", "dir", rDir)
return rDir, refreshRunners(payloadFS, rDir)
}
func refreshRunners(payloadFS fs.FS, rDir string) error {
// extract or refresh server libraries
err := extractFiles(payloadFS, rDir, binGlob)
if err != nil {
return fmt.Errorf("extract binaries: %v", err)
}
return nil
}
// extract extracts the embedded files to the target directory
func extractFiles(payloadFS fs.FS, targetDir string, glob string) error {
files, err := fs.Glob(payloadFS, glob)
if err != nil || len(files) == 0 {
// Should not happen
return fmt.Errorf("extractFiles called without payload present")
}
if err := os.MkdirAll(targetDir, 0o755); err != nil {
return fmt.Errorf("extractFiles could not mkdir %s: %v", targetDir, err)
}
g := new(errgroup.Group)
// $OS/$GOARCH/$RUNNER/$FILE
for _, file := range files {
filename := file
runner := filepath.Base(filepath.Dir(filename))
slog.Debug("extracting", "runner", runner, "payload", filename)
g.Go(func() error {
srcf, err := payloadFS.Open(filename)
if err != nil {
return err
}
defer srcf.Close()
src := io.Reader(srcf)
if strings.HasSuffix(filename, ".gz") {
src, err = gzip.NewReader(src)
if err != nil {
return fmt.Errorf("decompress payload %s: %v", filename, err)
}
filename = strings.TrimSuffix(filename, ".gz")
}
runnerDir := filepath.Join(targetDir, runner)
if err := os.MkdirAll(runnerDir, 0o755); err != nil {
return fmt.Errorf("extractFiles could not mkdir %s: %v", runnerDir, err)
}
base := filepath.Base(filename)
destFilename := filepath.Join(runnerDir, base)
_, err = os.Stat(destFilename)
switch {
case errors.Is(err, os.ErrNotExist):
destFile, err := os.OpenFile(destFilename, os.O_WRONLY|os.O_CREATE|os.O_TRUNC, 0o755)
if err != nil {
return fmt.Errorf("write payload %s: %v", filename, err)
}
defer destFile.Close()
if _, err := io.Copy(destFile, src); err != nil {
return fmt.Errorf("copy payload %s: %v", filename, err)
}
case err != nil:
return fmt.Errorf("stat payload %s: %v", filename, err)
}
return nil
})
}
err = g.Wait()
if err != nil {
slog.Error("failed to extract files", "error", err)
// If we fail to extract, the payload dir is most likely unusable, so cleanup whatever we extracted
err := os.RemoveAll(targetDir)
if err != nil {
slog.Warn("failed to cleanup incomplete payload dir", "dir", targetDir, "error", err)
}
return err
}
return nil
}
// Best effort to clean up prior tmpdirs
func cleanupTmpDirs() {
tmpDir := envconfig.TmpDir()
if tmpDir == "" {
tmpDir = os.TempDir()
}
matches, err := filepath.Glob(filepath.Join(tmpDir, "ollama*", "ollama.pid"))
if err != nil {
return
}
for _, match := range matches {
raw, err := os.ReadFile(match)
if errors.Is(err, os.ErrNotExist) {
slog.Debug("not a ollama runtime directory, skipping", "path", match)
continue
} else if err != nil {
slog.Warn("could not read ollama.pid, skipping", "path", match, "error", err)
continue
}
pid, err := strconv.Atoi(string(raw))
if err != nil {
slog.Warn("invalid pid, skipping", "path", match, "error", err)
continue
}
p, err := os.FindProcess(pid)
if err == nil && !errors.Is(p.Signal(syscall.Signal(0)), os.ErrProcessDone) {
slog.Warn("process still running, skipping", "pid", pid, "path", match)
continue
}
if err := os.Remove(match); err != nil {
slog.Warn("could not cleanup stale pidfile", "path", match, "error", err)
}
runners := filepath.Join(filepath.Dir(match), "runners")
if err := os.RemoveAll(runners); err != nil {
slog.Warn("could not cleanup stale runners", "path", runners, "error", err)
}
if err := os.Remove(filepath.Dir(match)); err != nil {
slog.Warn("could not cleanup stale tmpdir", "path", filepath.Dir(match), "error", err)
}
}
}
// directory names are the name of the runner and may contain an optional
// variant prefixed with '_' as the separator. For example, "cuda_v11" and
// "cuda_v12" or "cpu" and "cpu_avx2". Any library without a variant is the
// lowest common denominator
func GetAvailableServers(payloadsDir string) map[string]string {
if payloadsDir == "" {
slog.Error("empty runner dir")
return nil
}
// glob payloadsDir for files that start with ollama_
pattern := filepath.Join(payloadsDir, "*", "ollama_*")
files, err := filepath.Glob(pattern)
if err != nil {
slog.Debug("could not glob", "pattern", pattern, "error", err)
return nil
}
servers := make(map[string]string)
for _, file := range files {
slog.Debug("availableServers : found", "file", file)
servers[filepath.Base(filepath.Dir(file))] = filepath.Dir(file)
}
return servers
}
// serversForGpu returns a list of compatible servers give the provided GPU
// info, ordered by performance. assumes Init() has been called
// TODO - switch to metadata based mapping
func ServersForGpu(info gpu.GpuInfo) []string {
// glob workDir for files that start with ollama_
availableServers := GetAvailableServers(runnersDir)
requested := info.Library
if info.Variant != gpu.CPUCapabilityNone.String() {
requested += "_" + info.Variant
}
servers := []string{}
// exact match first
for a := range availableServers {
if a == requested {
servers = []string{a}
if a == "metal" {
return servers
}
break
}
}
alt := []string{}
// Then for GPUs load alternates and sort the list for consistent load ordering
if info.Library != "cpu" {
for a := range availableServers {
if info.Library == strings.Split(a, "_")[0] && a != requested {
alt = append(alt, a)
}
}
slices.Sort(alt)
servers = append(servers, alt...)
}
if !(runtime.GOOS == "darwin" && runtime.GOARCH == "arm64") {
// Load up the best CPU variant if not primary requested
if info.Library != "cpu" {
variant := gpu.GetCPUCapability()
// If no variant, then we fall back to default
// If we have a variant, try that if we find an exact match
// Attempting to run the wrong CPU instructions will panic the
// process
if variant != gpu.CPUCapabilityNone {
for cmp := range availableServers {
if cmp == "cpu_"+variant.String() {
servers = append(servers, cmp)
break
}
}
} else {
servers = append(servers, "cpu")
}
}
if len(servers) == 0 {
servers = []string{"cpu"}
}
}
return servers
}
// Return the optimal server for this CPU architecture
func ServerForCpu() string {
if runtime.GOOS == "darwin" && runtime.GOARCH == "arm64" {
return "metal"
}
variant := gpu.GetCPUCapability()
availableServers := GetAvailableServers(runnersDir)
if variant != gpu.CPUCapabilityNone {
for cmp := range availableServers {
if cmp == "cpu_"+variant.String() {
return cmp
}
}
}
return "cpu"
}

50
runners/runners_test.go Normal file
View File

@@ -0,0 +1,50 @@
package runners
import (
"log/slog"
"os"
"path"
"runtime"
"strings"
"testing"
"testing/fstest"
)
func TestRefreshRunners(t *testing.T) {
slog.SetLogLoggerLevel(slog.LevelDebug)
payloadFS := fstest.MapFS{
path.Join(runtime.GOOS, runtime.GOARCH, "foo", "ollama_llama_server"): {Data: []byte("hello, world\n")},
}
tmpDir, err := os.MkdirTemp("", "testing")
if err != nil {
t.Fatalf("failed to make tmp dir %s", err)
}
t.Setenv("OLLAMA_TMPDIR", tmpDir)
rDir, err := Refresh(payloadFS)
if err != nil {
t.Fatalf("failed to extract to %s %s", tmpDir, err)
}
if !strings.Contains(rDir, tmpDir) {
t.Fatalf("runner dir %s was not in tmp dir %s", rDir, tmpDir)
}
// spot check results
servers := GetAvailableServers(rDir)
if len(servers) < 1 {
t.Fatalf("expected at least 1 server")
}
// Refresh contents
rDir, err = extractRunners(payloadFS)
if err != nil {
t.Fatalf("failed to extract to %s %s", tmpDir, err)
}
if !strings.Contains(rDir, tmpDir) {
t.Fatalf("runner dir %s was not in tmp dir %s", rDir, tmpDir)
}
cleanupTmpDirs()
Cleanup(payloadFS)
}

View File

@@ -2,8 +2,7 @@
set -e
export VERSION=${VERSION:-$(git describe --tags --first-parent --abbrev=7 --long --dirty --always | sed -e "s/^v//g")}
export GOFLAGS="'-ldflags=-w -s \"-X=github.com/ollama/ollama/version.Version=$VERSION\" \"-X=github.com/ollama/ollama/server.mode=release\"'"
. $(dirname $0)/env.sh
mkdir -p dist

View File

@@ -2,76 +2,34 @@
set -eu
export VERSION=${VERSION:-$(git describe --tags --first-parent --abbrev=7 --long --dirty --always | sed -e "s/^v//g")}
export GOFLAGS="'-ldflags=-w -s \"-X=github.com/ollama/ollama/version.Version=$VERSION\" \"-X=github.com/ollama/ollama/server.mode=release\"'"
# We use 2 different image repositories to handle combining architecture images into multiarch manifest
# (The ROCm image is x86 only and is not a multiarch manifest)
# For developers, you can override the DOCKER_ORG to generate multiarch manifests
# DOCKER_ORG=jdoe PUSH=1 ./scripts/build_docker.sh
DOCKER_ORG=${DOCKER_ORG:-"ollama"}
RELEASE_IMAGE_REPO=${RELEASE_IMAGE_REPO:-"${DOCKER_ORG}/release"}
FINAL_IMAGE_REPO=${FINAL_IMAGE_REPO:-"${DOCKER_ORG}/ollama"}
BUILD_ARCH=${BUILD_ARCH:-"amd64 arm64"}
. $(dirname $0)/env.sh
# Set PUSH to a non-empty string to trigger push instead of load
PUSH=${PUSH:-""}
# In CI mode, we break things down
OLLAMA_SKIP_MANIFEST_CREATE=${OLLAMA_SKIP_MANIFEST_CREATE:-""}
OLLAMA_SKIP_IMAGE_BUILD=${OLLAMA_SKIP_IMAGE_BUILD:-""}
if [ -z "${PUSH}" ] ; then
echo "Building ${FINAL_IMAGE_REPO}:$VERSION locally. set PUSH=1 to push"
LOAD_OR_PUSH="--load"
else
echo "Will be pushing ${RELEASE_IMAGE_REPO}:$VERSION for ${BUILD_ARCH}"
echo "Will be pushing ${FINAL_IMAGE_REPO}:$VERSION"
LOAD_OR_PUSH="--push"
fi
if [ -z "${OLLAMA_SKIP_IMAGE_BUILD}" ]; then
for TARGETARCH in ${BUILD_ARCH}; do
docker build \
${LOAD_OR_PUSH} \
--platform=linux/${TARGETARCH} \
--build-arg=VERSION \
--build-arg=GOFLAGS \
-f Dockerfile \
-t ${RELEASE_IMAGE_REPO}:$VERSION-${TARGETARCH} \
.
done
docker buildx build \
${LOAD_OR_PUSH} \
--platform=${PLATFORM} \
${OLLAMA_COMMON_BUILD_ARGS} \
-f Dockerfile \
-t ${FINAL_IMAGE_REPO}:$VERSION \
.
if echo ${BUILD_ARCH} | grep "amd64" > /dev/null; then
docker build \
${LOAD_OR_PUSH} \
--platform=linux/amd64 \
--build-arg=VERSION \
--build-arg=GOFLAGS \
--target runtime-rocm \
-f Dockerfile \
-t ${RELEASE_IMAGE_REPO}:$VERSION-rocm \
.
fi
fi
if [ -z "${OLLAMA_SKIP_MANIFEST_CREATE}" ]; then
if [ -n "${PUSH}" ]; then
docker manifest create ${FINAL_IMAGE_REPO}:$VERSION \
${RELEASE_IMAGE_REPO}:$VERSION-amd64 \
${RELEASE_IMAGE_REPO}:$VERSION-arm64
docker manifest push ${FINAL_IMAGE_REPO}:$VERSION
# For symmetry, tag/push the rocm image
if [ "${RELEASE_IMAGE_REPO}" != "${FINAL_IMAGE_REPO}" ]; then
echo "Tagging and pushing rocm image"
docker pull ${RELEASE_IMAGE_REPO}:$VERSION-rocm
docker tag ${RELEASE_IMAGE_REPO}:$VERSION-rocm ${FINAL_IMAGE_REPO}:$VERSION-rocm
docker push ${FINAL_IMAGE_REPO}:$VERSION-rocm
fi
else
echo "Skipping manifest generation when not pushing images are available locally as "
echo " ${RELEASE_IMAGE_REPO}:$VERSION-amd64"
echo " ${RELEASE_IMAGE_REPO}:$VERSION-arm64"
echo " ${RELEASE_IMAGE_REPO}:$VERSION-rocm"
fi
fi
if echo $PLATFORM | grep "amd64" > /dev/null; then
docker buildx build \
${LOAD_OR_PUSH} \
--platform=linux/amd64 \
${OLLAMA_COMMON_BUILD_ARGS} \
--target runtime-rocm \
-f Dockerfile \
-t ${FINAL_IMAGE_REPO}:$VERSION-rocm \
.
fi

View File

@@ -1,37 +1,29 @@
#!/bin/sh
#
# Mac ARM users, rosetta can be flaky, so to use a remote x86 builder
#
# docker context create amd64 --docker host=ssh://mybuildhost
# docker buildx create --name mybuilder amd64 --platform linux/amd64
# docker buildx create --name mybuilder --append desktop-linux --platform linux/arm64
# docker buildx use mybuilder
set -eu
export VERSION=${VERSION:-$(git describe --tags --first-parent --abbrev=7 --long --dirty --always | sed -e "s/^v//g")}
export GOFLAGS="'-ldflags=-w -s \"-X=github.com/ollama/ollama/version.Version=$VERSION\" \"-X=github.com/ollama/ollama/server.mode=release\"'"
GZIP=$(which pigz 2>/dev/null || echo "gzip")
. $(dirname $0)/env.sh
BUILD_ARCH=${BUILD_ARCH:-"amd64 arm64"}
export AMDGPU_TARGETS=${AMDGPU_TARGETS:=""}
mkdir -p dist
for TARGETARCH in ${BUILD_ARCH}; do
docker build \
--platform=linux/$TARGETARCH \
--build-arg=GOFLAGS \
--build-arg=CGO_CFLAGS \
--build-arg=OLLAMA_CUSTOM_CPU_DEFS \
--build-arg=AMDGPU_TARGETS \
--target build-$TARGETARCH \
docker buildx build \
--output type=local,dest=./dist/ \
--platform=${PLATFORM} \
${OLLAMA_COMMON_BUILD_ARGS} \
--target dist \
-f Dockerfile \
-t builder:$TARGETARCH \
.
docker create --platform linux/$TARGETARCH --name builder-$TARGETARCH builder:$TARGETARCH
rm -rf ./dist/linux-$TARGETARCH
docker cp builder-$TARGETARCH:/go/src/github.com/ollama/ollama/dist/linux-$TARGETARCH ./dist
if echo ${TARGETARCH} | grep "amd64" > /dev/null; then
docker cp builder-$TARGETARCH:/go/src/github.com/ollama/ollama/dist/linux-$TARGETARCH-rocm ./dist
fi
docker rm builder-$TARGETARCH
echo "Compressing final linux bundle..."
rm -f ./dist/ollama-linux-$TARGETARCH.tgz
(cd dist/linux-$TARGETARCH && tar cf - . | ${GZIP} --best > ../ollama-linux-$TARGETARCH.tgz )
if [ -d dist/linux-$TARGETARCH-rocm ]; then
(cd dist/linux-$TARGETARCH-rocm && tar cf - . | ${GZIP} --best > ../ollama-linux-$TARGETARCH-rocm.tgz )
fi
done
# buildx behavior changes for single vs. multiplatform
if echo $PLATFORM | grep "," > /dev/null ; then
mv -f ./dist/linux_*64/ollama* ./dist/
rmdir ./dist/linux_*64
fi

View File

@@ -7,12 +7,22 @@
$ErrorActionPreference = "Stop"
function checkEnv() {
$script:ARCH = $Env:PROCESSOR_ARCHITECTURE.ToLower()
$script:TARGET_ARCH=$Env:PROCESSOR_ARCHITECTURE.ToLower()
if ($null -ne $env:ARCH ) {
$script:ARCH = $env:ARCH
} else {
$arch=([System.Runtime.InteropServices.RuntimeInformation]::OSArchitecture)
if ($null -ne $arch) {
$script:ARCH = ($arch.ToString().ToLower()).Replace("x64", "amd64")
} else {
write-host "WARNING: old powershell detected, assuming amd64 architecture - set `$env:ARCH to override"
$script:ARCH="amd64"
}
}
$script:TARGET_ARCH=$script:ARCH
Write-host "Building for ${script:TARGET_ARCH}"
write-host "Locating required tools and paths"
$script:SRC_DIR=$PWD
if (!$env:VCToolsRedistDir) {
if ($null -eq $env:VCToolsRedistDir) {
$MSVC_INSTALL=(Get-CimInstance MSFT_VSInstance -Namespace root/cimv2/vs)[0].InstallLocation
$env:VCToolsRedistDir=(get-item "${MSVC_INSTALL}\VC\Redist\MSVC\*")[0]
}
@@ -28,9 +38,12 @@ function checkEnv() {
$script:CUDA_DIRS=$cudaList
}
$script:INNO_SETUP_DIR=(get-item "C:\Program Files*\Inno Setup*\")[0]
$inoSetup=(get-item "C:\Program Files*\Inno Setup*\")
if ($inoSetup.length -gt 0) {
$script:INNO_SETUP_DIR=$inoSetup[0]
}
$script:DEPS_DIR="${script:SRC_DIR}\dist\windows-${script:TARGET_ARCH}"
$script:DIST_DIR="${script:SRC_DIR}\dist\windows-${script:TARGET_ARCH}"
$env:CGO_ENABLED="1"
Write-Output "Checking version"
if (!$env:VERSION) {
@@ -67,7 +80,6 @@ function checkEnv() {
function buildOllama() {
write-host "Building ollama CLI"
if ($null -eq ${env:OLLAMA_SKIP_GENERATE}) {
Remove-Item -ea 0 -recurse -force -path "${script:SRC_DIR}\dist\windows-${script:ARCH}"
@@ -75,15 +87,16 @@ function buildOllama() {
# which targets to build
# Start by skipping CUDA to build everything else
pwsh -Command { $env:OLLAMA_SKIP_CUDA_GENERATE="1"; & go generate ./... }
write-host "Building ollama runners"
powershell -Command { $env:OLLAMA_SKIP_CUDA_GENERATE="1"; & go generate ./... }
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
# Then skip everyhting else and build all the CUDA variants
foreach ($env:CUDA_LIB_DIR in $script:CUDA_DIRS) {
write-host "Building CUDA ${env:CUDA_LIB_DIR}"
write-host "Building CUDA ${env:CUDA_LIB_DIR} runner"
if ($env:CUDA_LIB_DIR.Contains("v12")) {
pwsh -Command {
powershell -Command {
$env:OLLAMA_SKIP_CUDA_GENERATE=""
$env:OLLAMA_SKIP_STATIC_GENERATE="1"
$env:OLLAMA_SKIP_CPU_GENERATE="1"
@@ -96,7 +109,7 @@ function buildOllama() {
& go generate ./...
}
} else {
pwsh -Command {
powershell -Command {
$env:OLLAMA_SKIP_CUDA_GENERATE=""
$env:OLLAMA_SKIP_STATIC_GENERATE="1"
$env:OLLAMA_SKIP_CPU_GENERATE="1"
@@ -115,6 +128,7 @@ function buildOllama() {
} else {
write-host "Skipping generate step with OLLAMA_SKIP_GENERATE set"
}
write-host "Building ollama CLI"
& go build -trimpath -ldflags "-s -w -X=github.com/ollama/ollama/version.Version=$script:VERSION -X=github.com/ollama/ollama/server.mode=release" .
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
if ("${env:KEY_CONTAINER}") {
@@ -122,42 +136,58 @@ function buildOllama() {
/csp "Google Cloud KMS Provider" /kc ${env:KEY_CONTAINER} ollama.exe
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
}
New-Item -ItemType Directory -Path .\dist\windows-${script:TARGET_ARCH}\bin\ -Force
cp .\ollama.exe .\dist\windows-${script:TARGET_ARCH}\bin\
New-Item -ItemType Directory -Path .\dist\windows-${script:TARGET_ARCH}\ -Force
cp .\ollama.exe .\dist\windows-${script:TARGET_ARCH}\
}
function buildApp() {
write-host "Building Ollama App"
cd "${script:SRC_DIR}\app"
& windres -l 0 -o ollama.syso ollama.rc
& go build -trimpath -ldflags "-s -w -H windowsgui -X=github.com/ollama/ollama/version.Version=$script:VERSION -X=github.com/ollama/ollama/server.mode=release" .
& go build -trimpath -ldflags "-s -w -H windowsgui -X=github.com/ollama/ollama/version.Version=$script:VERSION -X=github.com/ollama/ollama/server.mode=release" -o "${script:SRC_DIR}\dist\windows-${script:TARGET_ARCH}-app.exe" .
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
if ("${env:KEY_CONTAINER}") {
& "${script:SignTool}" sign /v /fd sha256 /t http://timestamp.digicert.com /f "${script:OLLAMA_CERT}" `
/csp "Google Cloud KMS Provider" /kc ${env:KEY_CONTAINER} app.exe
/csp "Google Cloud KMS Provider" /kc ${env:KEY_CONTAINER} "${script:SRC_DIR}\dist\windows-${script:TARGET_ARCH}-app.exe"
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
}
}
function gatherDependencies() {
write-host "Gathering runtime dependencies"
if ($null -eq $env:VCToolsRedistDir) {
write-error "Unable to locate VC Install location - please use a Developer shell"
exit 1
}
write-host "Gathering runtime dependencies from $env:VCToolsRedistDir"
cd "${script:SRC_DIR}"
md "${script:DEPS_DIR}\lib\ollama" -ea 0 > $null
md "${script:DIST_DIR}\lib\ollama" -ea 0 > $null
# TODO - this varies based on host build system and MSVC version - drive from dumpbin output
# currently works for Win11 + MSVC 2019 + Cuda V11
cp "${env:VCToolsRedistDir}\x64\Microsoft.VC*.CRT\msvcp140*.dll" "${script:DEPS_DIR}\lib\ollama\"
cp "${env:VCToolsRedistDir}\x64\Microsoft.VC*.CRT\vcruntime140.dll" "${script:DEPS_DIR}\lib\ollama\"
cp "${env:VCToolsRedistDir}\x64\Microsoft.VC*.CRT\vcruntime140_1.dll" "${script:DEPS_DIR}\lib\ollama\"
foreach ($part in $("runtime", "stdio", "filesystem", "math", "convert", "heap", "string", "time", "locale", "environment")) {
cp "$env:VCToolsRedistDir\..\..\..\Tools\Llvm\x64\bin\api-ms-win-crt-${part}*.dll" "${script:DEPS_DIR}\lib\ollama\"
if ($script:TARGET_ARCH -eq "amd64") {
$depArch="x64"
} else {
$depArch=$script:TARGET_ARCH
}
if ($depArch -eq "amd64") {
cp "${env:VCToolsRedistDir}\${depArch}\Microsoft.VC*.CRT\msvcp140*.dll" "${script:DIST_DIR}\lib\ollama\"
cp "${env:VCToolsRedistDir}\${depArch}\Microsoft.VC*.CRT\vcruntime140.dll" "${script:DIST_DIR}\lib\ollama\"
cp "${env:VCToolsRedistDir}\${depArch}\Microsoft.VC*.CRT\vcruntime140_1.dll" "${script:DIST_DIR}\lib\ollama\"
$llvmCrtDir="$env:VCToolsRedistDir\..\..\..\Tools\Llvm\${depArch}\bin"
foreach ($part in $("runtime", "stdio", "filesystem", "math", "convert", "heap", "string", "time", "locale", "environment")) {
write-host "cp ${llvmCrtDir}\api-ms-win-crt-${part}*.dll ${script:DIST_DIR}\lib\ollama\"
cp "${llvmCrtDir}\api-ms-win-crt-${part}*.dll" "${script:DIST_DIR}\lib\ollama\"
}
} else {
# Carying the dll's doesn't seem to work, so use the redist installer
copy-item -path "${env:VCToolsRedistDir}\vc_redist.arm64.exe" -destination "${script:DIST_DIR}" -verbose
}
cp "${script:SRC_DIR}\app\ollama_welcome.ps1" "${script:SRC_DIR}\dist\"
if ("${env:KEY_CONTAINER}") {
write-host "about to sign"
foreach ($file in (get-childitem "${script:DEPS_DIR}\lib\ollama\cu*.dll") + @("${script:SRC_DIR}\dist\ollama_welcome.ps1")){
foreach ($file in (get-childitem "${script:DIST_DIR}\lib\ollama\cu*.dll") + @("${script:SRC_DIR}\dist\ollama_welcome.ps1")){
write-host "signing $file"
& "${script:SignTool}" sign /v /fd sha256 /t http://timestamp.digicert.com /f "${script:OLLAMA_CERT}" `
/csp "Google Cloud KMS Provider" /kc ${env:KEY_CONTAINER} $file
@@ -167,6 +197,10 @@ function gatherDependencies() {
}
function buildInstaller() {
if ($null -eq ${script:INNO_SETUP_DIR}) {
write-host "Inno Setup not present, skipping installer build"
return
}
write-host "Building Ollama Installer"
cd "${script:SRC_DIR}\app"
$env:PKG_VERSION=$script:PKG_VERSION
@@ -183,13 +217,20 @@ function distZip() {
Compress-Archive -Path "${script:SRC_DIR}\dist\windows-${script:TARGET_ARCH}\*" -DestinationPath "${script:SRC_DIR}\dist\ollama-windows-${script:TARGET_ARCH}.zip" -Force
}
checkEnv
try {
checkEnv
buildOllama
buildApp
gatherDependencies
buildInstaller
distZip
if ($($args.count) -eq 0) {
buildOllama
buildApp
gatherDependencies
buildInstaller
distZip
} else {
for ( $i = 0; $i -lt $args.count; $i++ ) {
write-host "performing $($args[$i])"
& $($args[$i])
}
}
} catch {
write-host "Build Failed"
write-host $_

14
scripts/env.sh Normal file
View File

@@ -0,0 +1,14 @@
# Common environment setup across build*.sh scripts
export VERSION=${VERSION:-$(git describe --tags --first-parent --abbrev=7 --long --dirty --always | sed -e "s/^v//g")}
export GOFLAGS="'-ldflags=-w -s \"-X=github.com/ollama/ollama/version.Version=$VERSION\" \"-X=github.com/ollama/ollama/server.mode=release\"'"
# TODO - consider `docker buildx ls --format=json` to autodiscover platform capability
PLATFORM=${PLATFORM:-"linux/arm64,linux/amd64"}
DOCKER_ORG=${DOCKER_ORG:-"ollama"}
RELEASE_IMAGE_REPO=${RELEASE_IMAGE_REPO:-"${DOCKER_ORG}/release"}
FINAL_IMAGE_REPO=${FINAL_IMAGE_REPO:-"${DOCKER_ORG}/ollama"}
OLLAMA_COMMON_BUILD_ARGS="--build-arg=VERSION --build-arg=GOFLAGS --build-arg=OLLAMA_CUSTOM_CPU_DEFS --build-arg=AMDGPU_TARGETS"
echo "Building Ollama"
echo "VERSION=$VERSION"
echo "PLATFORM=$PLATFORM"

View File

@@ -38,7 +38,7 @@ IS_WSL2=false
KERN=$(uname -r)
case "$KERN" in
*icrosoft*WSL2 | *icrosoft*wsl2) IS_WSL2=true;;
*icrosoft) error "Microsoft WSL1 is not currently supported. Please upgrade to WSL2 with 'wsl --set-version <distro> 2'" ;;
*icrosoft) error "Microsoft WSL1 is not currently supported. Please use WSL2 with 'wsl --set-version <distro> 2'" ;;
*) ;;
esac
@@ -356,12 +356,12 @@ if ! lsmod | grep -q nvidia || ! lsmod | grep -q nvidia_uvm; then
fi
# make sure the NVIDIA modules are loaded on boot with nvidia-persistenced
if command -v nvidia-persistenced > /dev/null 2>&1; then
if available nvidia-persistenced; then
$SUDO touch /etc/modules-load.d/nvidia.conf
MODULES="nvidia nvidia-uvm"
for MODULE in $MODULES; do
if ! grep -qxF "$MODULE" /etc/modules-load.d/nvidia.conf; then
echo "$MODULE" | sudo tee -a /etc/modules-load.d/nvidia.conf > /dev/null
echo "$MODULE" | $SUDO tee -a /etc/modules-load.d/nvidia.conf > /dev/null
fi
done
fi

View File

@@ -30,7 +30,7 @@ if grep -i "centos" /etc/system-release >/dev/null; then
dnf install -y rh-git227-git
ln -s /opt/rh/rh-git227/root/usr/bin/git /usr/local/bin/git
fi
dnf install -y devtoolset-10-gcc devtoolset-10-gcc-c++ pigz
dnf install -y devtoolset-10-gcc devtoolset-10-gcc-c++ pigz findutils
elif grep -i "rocky" /etc/system-release >/dev/null; then
# Temporary workaround until rocky 8 AppStream ships GCC 10.4 (10.3 is incompatible with NVCC)
cat << EOF > /etc/yum.repos.d/Rocky-Vault.repo
@@ -45,6 +45,7 @@ EOF
dnf install -y git \
gcc-toolset-10-gcc-10.2.1-8.2.el8 \
gcc-toolset-10-gcc-c++-10.2.1-8.2.el8 \
findutils \
pigz
else
echo "ERROR Unexpected distro"

View File

@@ -2,32 +2,12 @@
set -eu
# We use 2 different image repositories to handle combining architecture images into multiarch manifest
# (The ROCm image is x86 only and is not a multiarch manifest)
# For developers, you can override the DOCKER_ORG to generate multiarch manifests
# DOCKER_ORG=jdoe VERSION=0.1.30 PUSH=1 ./scripts/tag_latest.sh
# DOCKER_ORG=jdoe VERSION=0.1.30 ./scripts/tag_latest.sh
DOCKER_ORG=${DOCKER_ORG:-"ollama"}
RELEASE_IMAGE_REPO=${RELEASE_IMAGE_REPO:-"${DOCKER_ORG}/release"}
FINAL_IMAGE_REPO=${FINAL_IMAGE_REPO:-"${DOCKER_ORG}/ollama"}
# Set PUSH to a non-empty string to trigger push instead of load
PUSH=${PUSH:-""}
echo "Assembling manifest and tagging latest"
docker manifest rm ${FINAL_IMAGE_REPO}:latest || true
docker manifest create ${FINAL_IMAGE_REPO}:latest \
${RELEASE_IMAGE_REPO}:$VERSION-amd64 \
${RELEASE_IMAGE_REPO}:$VERSION-arm64
docker pull ${RELEASE_IMAGE_REPO}:$VERSION-rocm
docker tag ${RELEASE_IMAGE_REPO}:$VERSION-rocm ${FINAL_IMAGE_REPO}:rocm
if [ -n "${PUSH}" ]; then
echo "Pushing latest tags up..."
docker manifest push ${FINAL_IMAGE_REPO}:latest
docker push ${FINAL_IMAGE_REPO}:rocm
else
echo "Not pushing ${FINAL_IMAGE_REPO}:latest and ${FINAL_IMAGE_REPO}:rocm"
fi
echo "Updating ${FINAL_IMAGE_REPO}:latest -> ${FINAL_IMAGE_REPO}:${VERSION}"
docker buildx imagetools create -t ${FINAL_IMAGE_REPO}:latest ${FINAL_IMAGE_REPO}:${VERSION}
echo "Updating ${FINAL_IMAGE_REPO}:rocm -> ${FINAL_IMAGE_REPO}:${VERSION}-rocm"
docker buildx imagetools create -t ${FINAL_IMAGE_REPO}:rocm ${FINAL_IMAGE_REPO}:${VERSION}-rocm

View File

@@ -256,7 +256,7 @@ func (b *blobDownload) run(ctx context.Context, requestURL *url.URL, opts *regis
continue
}
defer resp.Body.Close()
if resp.StatusCode != http.StatusTemporaryRedirect {
if resp.StatusCode != http.StatusTemporaryRedirect && resp.StatusCode != http.StatusOK {
return nil, fmt.Errorf("unexpected status code %d", resp.StatusCode)
}
return resp.Location()

Some files were not shown because too many files have changed in this diff Show More