Compare commits
1384 Commits
skip-list
...
cuda-searc
Author | SHA1 | Date | |
---|---|---|---|
![]() |
be721ca0df | ||
![]() |
34344d801c | ||
![]() |
e868c8a5c7 | ||
![]() |
c336693f07 | ||
![]() |
e89dc1d54b | ||
![]() |
1961a81f03 | ||
![]() |
8a8c7e7f8d | ||
![]() |
6df83e6daa | ||
![]() |
62023177f6 | ||
![]() |
6164f378f2 | ||
![]() |
f387e9631b | ||
![]() |
6566387ae3 | ||
![]() |
37708931fb | ||
![]() |
f6cb0a553c | ||
![]() |
2680078c13 | ||
![]() |
f1b7e5f560 | ||
![]() |
cb534e6ac2 | ||
![]() |
58ce2d8273 | ||
![]() |
18ddf6d57d | ||
![]() |
61e6502449 | ||
![]() |
08f1e18965 | ||
![]() |
7e8f7c8358 | ||
![]() |
3f3eb19a3b | ||
![]() |
059ae4585e | ||
![]() |
6347f501ca | ||
![]() |
5feec959ad | ||
![]() |
dbdd50b283 | ||
![]() |
d74ce6bd4f | ||
![]() |
57942b4676 | ||
![]() |
e0d05b0f1e | ||
![]() |
2d9dd14f27 | ||
![]() |
1caa56128f | ||
![]() |
0101e76dbe | ||
![]() |
2ef9352b94 | ||
![]() |
5580ae2472 | ||
![]() |
3a9f447141 | ||
![]() |
9c2941e61b | ||
![]() |
238ac5e765 | ||
![]() |
4f4980b66b | ||
![]() |
22e93efa41 | ||
![]() |
2909dce894 | ||
![]() |
df32537312 | ||
![]() |
3367b5f3df | ||
![]() |
46edbbc518 | ||
![]() |
d2ff18cd6b | ||
![]() |
df086d3c8c | ||
![]() |
8baaaa39c0 | ||
![]() |
f9961c70ae | ||
![]() |
cd8fad3398 | ||
![]() |
9983fa5f4e | ||
![]() |
dfda91c2ee | ||
![]() |
fac9060da5 | ||
![]() |
a554616f8e | ||
![]() |
77d96da94b | ||
![]() |
0d6e3565ae | ||
![]() |
b5939008a1 | ||
![]() |
e9ce91e9a6 | ||
![]() |
4ad6c9b11f | ||
![]() |
c0285158a9 | ||
![]() |
77a66df72c | ||
![]() |
5b4837f881 | ||
![]() |
29340c2e62 | ||
![]() |
d5ec730354 | ||
![]() |
8bed487aba | ||
![]() |
c1a10a6e9b | ||
![]() |
ddbfa6fe31 | ||
![]() |
2fcd41ef81 | ||
![]() |
16f4603b67 | ||
![]() |
1184686649 | ||
![]() |
2588cb2daa | ||
![]() |
c7ea8f237e | ||
![]() |
0b3118e0af | ||
![]() |
05face44ef | ||
![]() |
a2ad952440 | ||
![]() |
5fea4410be | ||
![]() |
b846eb64d0 | ||
![]() |
3c5dd9ed1d | ||
![]() |
b17ccd0542 | ||
![]() |
d0409f772f | ||
![]() |
ec261422af | ||
![]() |
0498f7ce56 | ||
![]() |
738a8d12eb | ||
![]() |
d966b730ac | ||
![]() |
9a70aecccb | ||
![]() |
22cd5eaab6 | ||
![]() |
304a8799ca | ||
![]() |
2a2fa3c329 | ||
![]() |
55978c1dc9 | ||
![]() |
d4ebdadbe7 | ||
![]() |
e201efa14b | ||
![]() |
c5f21f73a4 | ||
![]() |
371bc73531 | ||
![]() |
c651d8b824 | ||
![]() |
cf50ef5b51 | ||
![]() |
697bea6939 | ||
![]() |
10da41d677 | ||
![]() |
db356c8519 | ||
![]() |
b80081022f | ||
![]() |
790457398a | ||
![]() |
511069a2a5 | ||
![]() |
5a85070c22 | ||
![]() |
291700c92d | ||
![]() |
9db28af84e | ||
![]() |
e5202eb687 | ||
![]() |
96fb441abd | ||
![]() |
495c06e4a6 | ||
![]() |
fa24e73b82 | ||
![]() |
325d74985b | ||
![]() |
fabf2f3467 | ||
![]() |
d9cd3d9667 | ||
![]() |
a607d922f0 | ||
![]() |
7555ea44f8 | ||
![]() |
df06812494 | ||
![]() |
1d1eb1688c | ||
![]() |
23dc179350 | ||
![]() |
63aac0edc5 | ||
![]() |
6558f94ed0 | ||
![]() |
1ca484f67e | ||
![]() |
72b0c32fe9 | ||
![]() |
68c28224f8 | ||
![]() |
54dbfa4c4a | ||
![]() |
5646826a79 | ||
![]() |
3269535a4c | ||
![]() |
1b991d0ba9 | ||
![]() |
51082535e1 | ||
![]() |
9adca7f711 | ||
![]() |
89bbaafa64 | ||
![]() |
35934b2e05 | ||
![]() |
f8ef4439e9 | ||
![]() |
d4cd695759 | ||
![]() |
5e7fd6906f | ||
![]() |
811b1f03c8 | ||
![]() |
ed195f3562 | ||
![]() |
e0d0072ef1 | ||
![]() |
620a2ffcfb | ||
![]() |
d287013f24 | ||
![]() |
6b5bdfa6c9 | ||
![]() |
c063ee4af0 | ||
![]() |
d99fa6ce0a | ||
![]() |
3948c6ea06 | ||
![]() |
b85982eb91 | ||
![]() |
86b0dd4b16 | ||
![]() |
f728738427 | ||
![]() |
115048a0d8 | ||
![]() |
1b417a7836 | ||
![]() |
0174665d0e | ||
![]() |
630518f0d9 | ||
![]() |
6e16098a60 | ||
![]() |
6ee8c80199 | ||
![]() |
31f0551dab | ||
![]() |
4a1abfe4fa | ||
![]() |
bbd41494bf | ||
![]() |
fedba24a63 | ||
![]() |
e3b090dbc5 | ||
![]() |
d9e60f634b | ||
![]() |
4251b342de | ||
![]() |
0a9d348023 | ||
![]() |
3144e2a439 | ||
![]() |
c0960e29b5 | ||
![]() |
5314fc9b63 | ||
![]() |
a36b5fef3b | ||
![]() |
910e9401d0 | ||
![]() |
56ffc3023a | ||
![]() |
7a1b37ac64 | ||
![]() |
5d4d2e2c60 | ||
![]() |
7db5bcf73b | ||
![]() |
fa2f095bd9 | ||
![]() |
045b855db9 | ||
![]() |
32064a0646 | ||
![]() |
d9a250e9b5 | ||
![]() |
944519ed16 | ||
![]() |
2dd040d04c | ||
![]() |
bbe41ce41a | ||
![]() |
9e1406e4ed | ||
![]() |
b74580c913 | ||
![]() |
7e9405fd07 | ||
![]() |
3b0b8930d4 | ||
![]() |
e3f925fc1b | ||
![]() |
2a2289fb6b | ||
![]() |
dd427f499a | ||
![]() |
2ae573c7ed | ||
![]() |
02fe26c44b | ||
![]() |
16c7548460 | ||
![]() |
fa75998c0d | ||
![]() |
5344f886c8 | ||
![]() |
6cc823c9b5 | ||
![]() |
b84d34e632 | ||
![]() |
30229a913c | ||
![]() |
1ade380bd7 | ||
![]() |
ba264e9da8 | ||
![]() |
a2405ec831 | ||
![]() |
ce809bb529 | ||
![]() |
76bc4d0458 | ||
![]() |
4a02945a15 | ||
![]() |
aec742b6d2 | ||
![]() |
f337642e94 | ||
![]() |
51131cc6e2 | ||
![]() |
43027789dc | ||
![]() |
f9b7d65e2b | ||
![]() |
1f05d77110 | ||
![]() |
c3ff36088b | ||
![]() |
13524b5e72 | ||
![]() |
f1b049fed8 | ||
![]() |
97c5696945 | ||
![]() |
47d4e22673 | ||
![]() |
32f62fbb8e | ||
![]() |
5d75505ebd | ||
![]() |
b9495ea162 | ||
![]() |
409bb9674e | ||
![]() |
d3479c07a1 | ||
![]() |
b12f1b984f | ||
![]() |
195e3d9dbd | ||
![]() |
38fe1a368b | ||
![]() |
4b77fcb2b9 | ||
![]() |
cde13bcdea | ||
![]() |
0f0cd265a7 | ||
![]() |
0db4706ec2 | ||
![]() |
1ebdbd9694 | ||
![]() |
5c59455b59 | ||
![]() |
00d06619a1 | ||
![]() |
f1ef3f9947 | ||
![]() |
5a5dca13b2 | ||
![]() |
7232f1fa41 | ||
![]() |
72e7a49aa9 | ||
![]() |
a3737cbd33 | ||
![]() |
998f1785b6 | ||
![]() |
70a93057cd | ||
![]() |
2cb0fa7d40 | ||
![]() |
b2816bca67 | ||
![]() |
bf704423c5 | ||
![]() |
7a0899d62d | ||
![]() |
0cca1486dd | ||
![]() |
2113c9d31a | ||
![]() |
6deebf2489 | ||
![]() |
95cb38ae47 | ||
![]() |
1f126afb2d | ||
![]() |
f6201a7a6c | ||
![]() |
b3f6c6598f | ||
![]() |
88620e983a | ||
![]() |
cedae0d17a | ||
![]() |
bb80a597db | ||
![]() |
6681d37861 | ||
![]() |
0409c1fa59 | ||
![]() |
b56e92470a | ||
![]() |
5687f1a0cf | ||
![]() |
7eda3d0c55 | ||
![]() |
7194a07d4d | ||
![]() |
13efd5f218 | ||
![]() |
c4bdfffd96 | ||
![]() |
26c63418e0 | ||
![]() |
2799784ac8 | ||
![]() |
91897a606f | ||
![]() |
96122b7271 | ||
![]() |
39be7fdb98 | ||
![]() |
c2e3b89176 | ||
![]() |
cde31cb220 | ||
![]() |
63097607b2 | ||
![]() |
2ae80e1e27 | ||
![]() |
b173cfc558 | ||
![]() |
424d53ac70 | ||
![]() |
e1a69d44c9 | ||
![]() |
3d620f9462 | ||
![]() |
928950fcc6 | ||
![]() |
39c6d949fc | ||
![]() |
16a9006306 | ||
![]() |
e9216ea459 | ||
![]() |
9e4a316405 | ||
![]() |
9fb5e8399c | ||
![]() |
82b9b329ff | ||
![]() |
12e8c12d2b | ||
![]() |
d77dde126b | ||
![]() |
c7e70cd3bb | ||
![]() |
199941cd15 | ||
![]() |
c9474f7f61 | ||
![]() |
927e3ba4a4 | ||
![]() |
37d95157df | ||
![]() |
2eaa95b417 | ||
![]() |
3cd07728f4 | ||
![]() |
ecf8b793f0 | ||
![]() |
abf294826b | ||
![]() |
ae06bb426b | ||
![]() |
d8e0f62ebb | ||
![]() |
a00fac4ec8 | ||
![]() |
f2113c1fc7 | ||
![]() |
6452e2ecb8 | ||
![]() |
9a28e263a5 | ||
![]() |
0c066c9214 | ||
![]() |
aabd71aede | ||
![]() |
da4d7c9f9c | ||
![]() |
f321b13a03 | ||
![]() |
5ebcde1541 | ||
![]() |
45206cb7cc | ||
![]() |
6e65b84f54 | ||
![]() |
c00ce12e83 | ||
![]() |
e1cd3152c9 | ||
![]() |
0bef3778c9 | ||
![]() |
6ebab38b89 | ||
![]() |
5d8e864d44 | ||
![]() |
5f7acd0bbd | ||
![]() |
44b3a1ad42 | ||
![]() |
0260be4414 | ||
![]() |
a3fcecf943 | ||
![]() |
df07e4a097 | ||
![]() |
0b7ade0d4c | ||
![]() |
19b7a4d715 | ||
![]() |
31ab453d37 | ||
![]() |
35c4b5ec16 | ||
![]() |
f24741ff39 | ||
![]() |
8c4022b06b | ||
![]() |
433702f421 | ||
![]() |
48896f626c | ||
![]() |
c57aee6fba | ||
![]() |
6066c70edd | ||
![]() |
f10ac5de19 | ||
![]() |
93a108214c | ||
![]() |
be61a81758 | ||
![]() |
2fdf1b5ff8 | ||
![]() |
331068b964 | ||
![]() |
0179d8eb6b | ||
![]() |
be48741308 | ||
![]() |
6bbd6e26fb | ||
![]() |
e6ad4813d3 | ||
![]() |
13ba6df5ab | ||
![]() |
9d73d3a6b5 | ||
![]() |
72cd336410 | ||
![]() |
1bd594b2fa | ||
![]() |
9a8c21ac3d | ||
![]() |
f6b317e8c9 | ||
![]() |
ac5076ce1e | ||
![]() |
42c2e3a624 | ||
![]() |
cb42589792 | ||
![]() |
258addc799 | ||
![]() |
c06b9b7304 | ||
![]() |
95b9acd324 | ||
![]() |
04cbf5ccc0 | ||
![]() |
e1d7056496 | ||
![]() |
02524a56ff | ||
![]() |
1657c6abc7 | ||
![]() |
12e046f12a | ||
![]() |
36a3bbf65f | ||
![]() |
43a726149d | ||
![]() |
984714f131 | ||
![]() |
bab9494176 | ||
![]() |
85e4441c6a | ||
![]() |
42e43736a4 | ||
![]() |
c6e6c8ee7e | ||
![]() |
a185b29719 | ||
![]() |
dc84b20d6b | ||
![]() |
ad8659b980 | ||
![]() |
c1bbf5ddee | ||
![]() |
0b19e24d81 | ||
![]() |
3cb07d2773 | ||
![]() |
976068369b | ||
![]() |
4d677ee389 | ||
![]() |
7ea905871a | ||
![]() |
d6ecaa2cbf | ||
![]() |
4dcf7a59b1 | ||
![]() |
1c0e092ead | ||
![]() |
c4a3ccd7ac | ||
![]() |
9f04e5a8ea | ||
![]() |
f91bb2f7f0 | ||
![]() |
0813387414 | ||
![]() |
4936b5bb37 | ||
![]() |
786288829e | ||
![]() |
72dcc952b6 | ||
![]() |
f7f6d6c693 | ||
![]() |
a3053b66d2 | ||
![]() |
c82ead4d01 | ||
![]() |
90860b6a7e | ||
![]() |
81092147c4 | ||
![]() |
92656a74b7 | ||
![]() |
41434a7cdc | ||
![]() |
71687ab809 | ||
![]() |
d8842b4d4b | ||
![]() |
32add8577d | ||
![]() |
585f9c01fa | ||
![]() |
c13bde962d | ||
![]() |
ee307937fd | ||
![]() |
ab6639bc47 | ||
![]() |
fefae84c06 | ||
![]() |
dbe6e77472 | ||
![]() |
4b3f4bc7d9 | ||
![]() |
a5ccf742c1 | ||
![]() |
e33ef391cd | ||
![]() |
75295b9528 | ||
![]() |
db5ef3004c | ||
![]() |
b5f158f046 | ||
![]() |
30141b42e9 | ||
![]() |
5f301ece1d | ||
![]() |
77954bea0e | ||
![]() |
54f92f01cb | ||
![]() |
30ae6e731e | ||
![]() |
b28a30f7ba | ||
![]() |
ecd71347ab | ||
![]() |
8ee4cbea0f | ||
![]() |
652d90e1c7 | ||
![]() |
bc22d5a38b | ||
![]() |
71d71d0988 | ||
![]() |
1901044b07 | ||
![]() |
d660eebf22 | ||
![]() |
cac11c9137 | ||
![]() |
a07c935d34 | ||
![]() |
1552cee59f | ||
![]() |
3ca56b5ada | ||
![]() |
b0d14ed51c | ||
![]() |
f61f340279 | ||
![]() |
686f85d6ca | ||
![]() |
85951d25ef | ||
![]() |
779e196ef6 | ||
![]() |
01ea6002c4 | ||
![]() |
423862042a | ||
![]() |
df18486c35 | ||
![]() |
4e612a2e92 | ||
![]() |
47ffb81db7 | ||
![]() |
69795d2db0 | ||
![]() |
acde0819d9 | ||
![]() |
f748331aa3 | ||
![]() |
f4edc302a8 | ||
![]() |
64b7e0c218 | ||
![]() |
eced0d52ab | ||
![]() |
96bf9cafa7 | ||
![]() |
6e0f686afa | ||
![]() |
c1a5220860 | ||
![]() |
3b15175a70 | ||
![]() |
c1844bbee2 | ||
![]() |
cb745965ce | ||
![]() |
8d29b6a2b6 | ||
![]() |
724aa64bee | ||
![]() |
d91c103e74 | ||
![]() |
98ec7d81e3 | ||
![]() |
b6817a83d8 | ||
![]() |
73f3448ede | ||
![]() |
7c438f2c53 | ||
![]() |
6e46338d44 | ||
![]() |
cdddd3df65 | ||
![]() |
afa61bdf45 | ||
![]() |
cc54a416c6 | ||
![]() |
c819d7f68a | ||
![]() |
e4f59ba073 | ||
![]() |
5de568bffe | ||
![]() |
5cba29b9d6 | ||
![]() |
d17730356a | ||
![]() |
32d79a6eea | ||
![]() |
5b39503bcd | ||
![]() |
1ae84bc2a2 | ||
![]() |
db8bf336fc | ||
![]() |
d77e094a90 | ||
![]() |
dd3dc47ddb | ||
![]() |
c5e1bbabda | ||
![]() |
a49d6acc1e | ||
![]() |
6e9bcdb9b3 | ||
![]() |
13086363bd | ||
![]() |
ec2a31e9b3 | ||
![]() |
ec84c02d54 | ||
![]() |
2a88b66bc9 | ||
![]() |
2d0faea96c | ||
![]() |
637142181a | ||
![]() |
bcbff421c9 | ||
![]() |
1359d6cf3b | ||
![]() |
6e2d0224d9 | ||
![]() |
921406f721 | ||
![]() |
c7047d7353 | ||
![]() |
1d155caba3 | ||
![]() |
866324b9a5 | ||
![]() |
145e060855 | ||
![]() |
146072113d | ||
![]() |
33d31d1b56 | ||
![]() |
274c6cbf4c | ||
![]() |
7ebbd89bbf | ||
![]() |
9079b1bb6d | ||
![]() |
6febde7200 | ||
![]() |
325cfcd9ff | ||
![]() |
639d0fd070 | ||
![]() |
e21579a0f1 | ||
![]() |
c44b619428 | ||
![]() |
434a6f9d46 | ||
![]() |
b13586cc72 | ||
![]() |
17678b7225 | ||
![]() |
84725ec7e3 | ||
![]() |
6109bebba6 | ||
![]() |
8ae8c9fa8c | ||
![]() |
f39daff461 | ||
![]() |
c50b01bc21 | ||
![]() |
b9dc875401 | ||
![]() |
06589a3b30 | ||
![]() |
1fd511e661 | ||
![]() |
c01bbe94fd | ||
![]() |
1beb5645a9 | ||
![]() |
6db3691b8f | ||
![]() |
fe5a872444 | ||
![]() |
d39709260f | ||
![]() |
60bb3c03a1 | ||
![]() |
2e53704685 | ||
![]() |
527f9a7975 | ||
![]() |
c4cc738cbf | ||
![]() |
2c6189f4fe | ||
![]() |
dccac8c8fa | ||
![]() |
c05ab9a86e | ||
![]() |
f42f3d9b27 | ||
![]() |
341fb7e35f | ||
![]() |
f31961637f | ||
![]() |
ec3614812a | ||
![]() |
f14969314a | ||
![]() |
1fb9288661 | ||
![]() |
01a03caa20 | ||
![]() |
bf6786bb39 | ||
![]() |
642128b75a | ||
![]() |
f21bd6210d | ||
![]() |
80362fedce | ||
![]() |
5757925060 | ||
![]() |
4512301756 | ||
![]() |
2236a93efc | ||
![]() |
ad88799411 | ||
![]() |
0818b5e318 | ||
![]() |
1df6100c77 | ||
![]() |
5c48fe1fb0 | ||
![]() |
874bb31986 | ||
![]() |
f7856a57eb | ||
![]() |
f9a4281124 | ||
![]() |
96da0792e6 | ||
![]() |
95d24262fc | ||
![]() |
8d03bd7b54 | ||
![]() |
9ec16f0f03 | ||
![]() |
57a58db1b0 | ||
![]() |
2d75a4537c | ||
![]() |
4748609611 | ||
![]() |
c0dcea1398 | ||
![]() |
115fc56eb7 | ||
![]() |
186f685224 | ||
![]() |
12efcbb057 | ||
![]() |
4e09aab8b9 | ||
![]() |
3a1ed9ff70 | ||
![]() |
6d283882b1 | ||
![]() |
5c3491f425 | ||
![]() |
e5d1ce4dde | ||
![]() |
2665f3c28e | ||
![]() |
a79f030e75 | ||
![]() |
9bc5864a03 | ||
![]() |
b88cc0fac9 | ||
![]() |
5b2cf16397 | ||
![]() |
910816a532 | ||
![]() |
28c3f288e2 | ||
![]() |
deeac961bb | ||
![]() |
49443e7da5 | ||
![]() |
bb8464c0d2 | ||
![]() |
daa5bb4473 | ||
![]() |
92119de9d8 | ||
![]() |
53b0ba8d43 | ||
![]() |
db342691f9 | ||
![]() |
cecf83141e | ||
![]() |
a5a2adf1ec | ||
![]() |
b0c9cd0f3b | ||
![]() |
77f61c6301 | ||
![]() |
f3604534e5 | ||
![]() |
914428351a | ||
![]() |
9afea9e3b9 | ||
![]() |
c039432b5c | ||
![]() |
c345b4ca7c | ||
![]() |
0c7a00a264 | ||
![]() |
36c160f1c3 | ||
![]() |
b66bcaa582 | ||
![]() |
c9167494cb | ||
![]() |
125d0a013a | ||
![]() |
ba2da6ceaa | ||
![]() |
ccff9ca09c | ||
![]() |
436a5be49c | ||
![]() |
cc0bf96398 | ||
![]() |
386169205c | ||
![]() |
0d6342a882 | ||
![]() |
75bee074b6 | ||
![]() |
533d76368c | ||
![]() |
459f4a7889 | ||
![]() |
25c63c91d8 | ||
![]() |
cbfff4f868 | ||
![]() |
7ed5a39bc7 | ||
![]() |
cc1d03f4ec | ||
![]() |
846f593dbf | ||
![]() |
0a53da03fd | ||
![]() |
2ce1793a1d | ||
![]() |
e1c5be24e7 | ||
![]() |
2ad8a074ac | ||
![]() |
7e547c6833 | ||
![]() |
689842b9ff | ||
![]() |
a19d47642e | ||
![]() |
a7dad24d92 | ||
![]() |
6b213216d5 | ||
![]() |
fe6f3b48f7 | ||
![]() |
36c88cb9db | ||
![]() |
235e43d7f6 | ||
![]() |
730996e530 | ||
![]() |
ce6197a8e0 | ||
![]() |
46b9953f32 | ||
![]() |
4dcceeffb7 | ||
![]() |
019e4a4558 | ||
![]() |
627d04d927 | ||
![]() |
940e8ebec3 | ||
![]() |
565648f3f7 | ||
![]() |
90c49bed57 | ||
![]() |
3a2477174f | ||
![]() |
8c6c2cbc8c | ||
![]() |
5dc0cff459 | ||
![]() |
c5c8b4b16a | ||
![]() |
8299bf76ed | ||
![]() |
ee4979e510 | ||
![]() |
08b0e04f40 | ||
![]() |
b36b0b71f8 | ||
![]() |
094df37563 | ||
![]() |
f3648fd206 | ||
![]() |
bd93a94abd | ||
![]() |
f55bdb6f10 | ||
![]() |
2870a9bfc8 | ||
![]() |
c031c211d1 | ||
![]() |
68391b0055 | ||
![]() |
b7e137323a | ||
![]() |
8fa3f366ad | ||
![]() |
fddb303f23 | ||
![]() |
ad5ee20c7b | ||
![]() |
785b4eb5bf | ||
![]() |
16ede1b30b | ||
![]() |
17d6bbbb2a | ||
![]() |
6481b7f34c | ||
![]() |
cb4a80b693 | ||
![]() |
68d7255bd3 | ||
![]() |
9ef2fce33a | ||
![]() |
43eaba3d60 | ||
![]() |
1af493c5a0 | ||
![]() |
a0c3e989de | ||
![]() |
7af0fdce48 | ||
![]() |
ee94693b1a | ||
![]() |
731dbdc1a5 | ||
![]() |
06bcfbd629 | ||
![]() |
7d7c2510f8 | ||
![]() |
f9b2f999ac | ||
![]() |
c416087339 | ||
![]() |
6002cebd2c | ||
![]() |
212bdc541c | ||
![]() |
dca6686273 | ||
![]() |
598621afab | ||
![]() |
6479f49c09 | ||
![]() |
b2974a7095 | ||
![]() |
832b4db9d4 | ||
![]() |
c43873f33b | ||
![]() |
11d82d7b9b | ||
![]() |
36fe2deebf | ||
![]() |
4a8931f634 | ||
![]() |
bd6e38fb1a | ||
![]() |
92189a5855 | ||
![]() |
d790bf9916 | ||
![]() |
35afac099a | ||
![]() |
811c3d1900 | ||
![]() |
3553d10769 | ||
![]() |
6fe178134d | ||
![]() |
d890890f66 | ||
![]() |
89ba19feca | ||
![]() |
6f58c77671 | ||
![]() |
3c975f898f | ||
![]() |
9245c8a1df | ||
![]() |
7a537cdca9 | ||
![]() |
257ffeb997 | ||
![]() |
9b513bb6b1 | ||
![]() |
042100f797 | ||
![]() |
7804b8fab9 | ||
![]() |
56497663c8 | ||
![]() |
e1afcb8af2 | ||
![]() |
385eeea357 | ||
![]() |
8a41b244e8 | ||
![]() |
92578798bb | ||
![]() |
788637918a | ||
![]() |
c413a55093 | ||
![]() |
630bb75d2a | ||
![]() |
a2055a1e93 | ||
![]() |
b599946b74 | ||
![]() |
aca2d65b82 | ||
![]() |
b5e08e3373 | ||
![]() |
274d5a5fdf | ||
![]() |
fc6b49be32 | ||
![]() |
77295f716e | ||
![]() |
615f7d1dea | ||
![]() |
cdf5e106ae | ||
![]() |
a85329f59a | ||
![]() |
f2ba1311aa | ||
![]() |
65dcd0ce35 | ||
![]() |
0040f543a2 | ||
![]() |
767f9bdbbb | ||
![]() |
f7f5169c94 | ||
![]() |
2cfffea02e | ||
![]() |
f6e98334e4 | ||
![]() |
ab0668293c | ||
![]() |
af4cf55884 | ||
![]() |
d6786f2945 | ||
![]() |
38dc2f79bc | ||
![]() |
cb961c87ca | ||
![]() |
0560b28a8d | ||
![]() |
10199c5987 | ||
![]() |
288814d3e4 | ||
![]() |
04733438da | ||
![]() |
711e891f0f | ||
![]() |
090d08422b | ||
![]() |
5b84404c64 | ||
![]() |
8544edca21 | ||
![]() |
5d22319a2c | ||
![]() |
2130c0708b | ||
![]() |
61ff1946e6 | ||
![]() |
d06bc0cb6e | ||
![]() |
d104b7e997 | ||
![]() |
9e2de1bd2c | ||
![]() |
dc87e9c9ae | ||
![]() |
367cb68dc1 | ||
![]() |
c02c0cd483 | ||
![]() |
1852755154 | ||
![]() |
6f2ce74231 | ||
![]() |
6edcc5c79f | ||
![]() |
b1f7123301 | ||
![]() |
1fbf3585d6 | ||
![]() |
99d5161e8a | ||
![]() |
ea8380be45 | ||
![]() |
4f25092dc1 | ||
![]() |
4fc10acce9 | ||
![]() |
0a4f21c0a7 | ||
![]() |
9abb66254a | ||
![]() |
1d0ebe67e8 | ||
![]() |
a1b2d95f96 | ||
![]() |
c0b1bf7537 | ||
![]() |
cdfeb165ca | ||
![]() |
92d454ec5f | ||
![]() |
9333b0cc82 | ||
![]() |
9771b1ec51 | ||
![]() |
76db4a49cf | ||
![]() |
4aa0976a2e | ||
![]() |
92c20fdae6 | ||
![]() |
c951da7096 | ||
![]() |
24d82a23a2 | ||
![]() |
f40b3de758 | ||
![]() |
5f4008c296 | ||
![]() |
6ae33d8141 | ||
![]() |
c5664c1fef | ||
![]() |
958a5a8184 | ||
![]() |
8608eb4760 | ||
![]() |
a2b210130f | ||
![]() |
ed20837f9a | ||
![]() |
1db2a61dd0 | ||
![]() |
2ded8ab206 | ||
![]() |
e6b3648bbf | ||
![]() |
0625e805f0 | ||
![]() |
c38ec5befb | ||
![]() |
c577721a43 | ||
![]() |
29c056ea39 | ||
![]() |
9fc3bba9cf | ||
![]() |
7774ed4ae6 | ||
![]() |
11f920f209 | ||
![]() |
6e6b655956 | ||
![]() |
110ae89a6c | ||
![]() |
5e388f931e | ||
![]() |
d5ad41dd7b | ||
![]() |
d294a11bc9 | ||
![]() |
93d887e4bc | ||
![]() |
5306b0269d | ||
![]() |
7de0c8345d | ||
![]() |
1b9dcab3ab | ||
![]() |
86279f4ae3 | ||
![]() |
b934bf23e6 | ||
![]() |
2b8ef455ad | ||
![]() |
0c5f47177c | ||
![]() |
1210db2924 | ||
![]() |
d0854bf1e6 | ||
![]() |
8396463255 | ||
![]() |
a027bbf4d7 | ||
![]() |
ed94a3dd02 | ||
![]() |
f14f62ab3b | ||
![]() |
0fb5268496 | ||
![]() |
c65edb1506 | ||
![]() |
1605af32ec | ||
![]() |
ee3032ad89 | ||
![]() |
5b7a27281d | ||
![]() |
d2a784e33e | ||
![]() |
413a2e4f91 | ||
![]() |
a92fdff620 | ||
![]() |
b5614f3ebc | ||
![]() |
8b2ba9cab8 | ||
![]() |
e29662ab5c | ||
![]() |
cbc40aa996 | ||
![]() |
5cb82540c9 | ||
![]() |
d7849a1dc9 | ||
![]() |
01c44d687e | ||
![]() |
9b12a511ca | ||
![]() |
e20362e0d5 | ||
![]() |
c928ceb927 | ||
![]() |
e1a0846483 | ||
![]() |
f997e29e45 | ||
![]() |
87d9efb364 | ||
![]() |
93d3a2568d | ||
![]() |
5a81390b24 | ||
![]() |
a89ef99aed | ||
![]() |
dc0c725ceb | ||
![]() |
5d71bda478 | ||
![]() |
88897a90e4 | ||
![]() |
9df31c3518 | ||
![]() |
2044f9d4da | ||
![]() |
0d186f3b33 | ||
![]() |
82f5b66c01 | ||
![]() |
c986694367 | ||
![]() |
058d0cd04b | ||
![]() |
ee1c994d15 | ||
![]() |
4cba75efc5 | ||
![]() |
8c83701e9f | ||
![]() |
6137b12799 | ||
![]() |
1fabba474b | ||
![]() |
765770efdb | ||
![]() |
9297ff8330 | ||
![]() |
ee4fd16f2c | ||
![]() |
a9ed7cc6aa | ||
![]() |
6c6a31a1e8 | ||
![]() |
fc6ec356fc | ||
![]() |
1255bc9b45 | ||
![]() |
084e4c782a | ||
![]() |
58ffa03d8b | ||
![]() |
637f8bc6a5 | ||
![]() |
499e9007a5 | ||
![]() |
b9bb5ca288 | ||
![]() |
4e8be787c7 | ||
![]() |
aa45d7c1df | ||
![]() |
e35565c567 | ||
![]() |
a5520bfb42 | ||
![]() |
2627c464ba | ||
![]() |
b58d5d16b0 | ||
![]() |
24580df958 | ||
![]() |
80dd44e80a | ||
![]() |
94e1d96b29 | ||
![]() |
66003e1d05 | ||
![]() |
c345053a8b | ||
![]() |
08d7c2a944 | ||
![]() |
bc9573dcb1 | ||
![]() |
e53bc57d4d | ||
![]() |
f0b398d17f | ||
![]() |
8efbc5df55 | ||
![]() |
ccc3e9ac6d | ||
![]() |
daa4f096f9 | ||
![]() |
3ee85f1c6c | ||
![]() |
2540c9181c | ||
![]() |
83ffb154bc | ||
![]() |
9aa192c812 | ||
![]() |
fc8707686f | ||
![]() |
f89c23764b | ||
![]() |
e6881cabd0 | ||
![]() |
d028853879 | ||
![]() |
949553db23 | ||
![]() |
0c5a454361 | ||
![]() |
f59c4d03f7 | ||
![]() |
7dee25a07f | ||
![]() |
f221637053 | ||
![]() |
45ac07cd02 | ||
![]() |
7d749cc787 | ||
![]() |
e7e91cd71c | ||
![]() |
3920e15386 | ||
![]() |
41e976edde | ||
![]() |
de227b620f | ||
![]() |
63def6ca49 | ||
![]() |
738fe9c4aa | ||
![]() |
a8da0bacbe | ||
![]() |
bf146fb072 | ||
![]() |
f0f4943577 | ||
![]() |
09dd2aeff9 | ||
![]() |
07b4074e7b | ||
![]() |
61dda6a5e0 | ||
![]() |
e1f9ced568 | ||
![]() |
9795b43d93 | ||
![]() |
0980d5c7e3 | ||
![]() |
0dae34b6a7 | ||
![]() |
83c6be1666 | ||
![]() |
1adfa67589 | ||
![]() |
790d24eb7b | ||
![]() |
7de300856b | ||
![]() |
213ffdb548 | ||
![]() |
d42d88386a | ||
![]() |
154f24af91 | ||
![]() |
a1ecdd36d5 | ||
![]() |
d18282bfda | ||
![]() |
9ae76ba8c9 | ||
![]() |
2bc06565c7 | ||
![]() |
d1c2558f7e | ||
![]() |
7b5aefb427 | ||
![]() |
06ef90c051 | ||
![]() |
7efbc84320 | ||
![]() |
e9f6df7dca | ||
![]() |
7fa6e51686 | ||
![]() |
8dc68417e7 | ||
![]() |
681f3c4c42 | ||
![]() |
59a705525c | ||
![]() |
5d3f314b0b | ||
![]() |
adaa13088b | ||
![]() |
62d29b2157 | ||
![]() |
ed19d10aa5 | ||
![]() |
36c2f45c40 | ||
![]() |
742226625f | ||
![]() |
6bb8a16ccb | ||
![]() |
a5dbcf2e73 | ||
![]() |
9304f0e7a8 | ||
![]() |
6578b2f8a1 | ||
![]() |
1c8fd627ad | ||
![]() |
ae950b00f1 | ||
![]() |
eeb40a672c | ||
![]() |
0f541a0367 | ||
![]() |
1363f537ce | ||
![]() |
bc3e21fdc6 | ||
![]() |
a82eb275ff | ||
![]() |
f964aea9a2 | ||
![]() |
42998d797d | ||
![]() |
f4432e1dba | ||
![]() |
982c535428 | ||
![]() |
7df342a6ea | ||
![]() |
8bbff2df98 | ||
![]() |
16b06699fd | ||
![]() |
246dc65417 | ||
![]() |
865fceb73c | ||
![]() |
72266c7684 | ||
![]() |
d3b838ce60 | ||
![]() |
e639a12fa1 | ||
![]() |
e82fcf30c6 | ||
![]() |
495e8b0a6a | ||
![]() |
59734ca24d | ||
![]() |
22ab7f5f88 | ||
![]() |
b25dd1795d | ||
![]() |
304f2b6c96 | ||
![]() |
2ecc3a33c3 | ||
![]() |
ee6e1df118 | ||
![]() |
177b69a211 | ||
![]() |
dad63f0821 | ||
![]() |
041f9ad1a1 | ||
![]() |
7a378f8b66 | ||
![]() |
de0bdd7f29 | ||
![]() |
b1cececb8e | ||
![]() |
e0d39fa3bf | ||
![]() |
968ced2e71 | ||
![]() |
32d1a00017 | ||
![]() |
04e2128273 | ||
![]() |
2cc634689b | ||
![]() |
8f827641b0 | ||
![]() |
95187d7e1e | ||
![]() |
9ec7e37534 | ||
![]() |
2c7f956b38 | ||
![]() |
a9f6c56652 | ||
![]() |
0a892419ad | ||
![]() |
e3054fc74e | ||
![]() |
23c2485044 | ||
![]() |
386c66f285 | ||
![]() |
3b49315f97 | ||
![]() |
5ca05c2e88 | ||
![]() |
7eda70f23b | ||
![]() |
3d79b414d3 | ||
![]() |
c84bbf1dd6 | ||
![]() |
f723bf0879 | ||
![]() |
cbf725a9ba | ||
![]() |
086449b6c7 | ||
![]() |
3cbc6a5c01 | ||
![]() |
54bb49a502 | ||
![]() |
cabaada956 | ||
![]() |
a894cc792d | ||
![]() |
519f4d98ef | ||
![]() |
b963a83559 | ||
![]() |
bf6688abe6 | ||
![]() |
6005b157c2 | ||
![]() |
14220d9833 | ||
![]() |
8ca50f24f3 | ||
![]() |
c149fc3143 | ||
![]() |
afbc763dac | ||
![]() |
5dfe91be8b | ||
![]() |
9f944c00f1 | ||
![]() |
56e87cecb1 | ||
![]() |
5ee6116420 | ||
![]() |
5d9a4cd251 | ||
![]() |
0ebec07569 | ||
![]() |
08265515b3 | ||
![]() |
67e593e355 | ||
![]() |
d15c7622b9 | ||
![]() |
1deb35ca64 | ||
![]() |
e2de886831 | ||
![]() |
f0d7c2f5ea | ||
![]() |
12052a7624 | ||
![]() |
23e1da778d | ||
![]() |
326de48930 | ||
![]() |
18f2cb0472 | ||
![]() |
53bc36d207 | ||
![]() |
4dcf5c3e0b | ||
![]() |
d1b2f532b9 | ||
![]() |
e26085b921 | ||
![]() |
f7b613332c | ||
![]() |
f594c8eb91 | ||
![]() |
76b85bc0e9 | ||
![]() |
af98a1773f | ||
![]() |
9ae9a89883 | ||
![]() |
648f0974c6 | ||
![]() |
fc5230dffa | ||
![]() |
2ab20095b3 | ||
![]() |
f020e1d519 | ||
![]() |
4b2d366c37 | ||
![]() |
56fd4e4ef2 | ||
![]() |
2c8b680b03 | ||
![]() |
99b6b60085 | ||
![]() |
74f00474e1 | ||
![]() |
e9a9580bdd | ||
![]() |
4c33a9ac67 | ||
![]() |
22885aeaee | ||
![]() |
ed969d2a06 | ||
![]() |
d9cf18e28d | ||
![]() |
1556162c90 | ||
![]() |
148f0225c0 | ||
![]() |
4e07941b1e | ||
![]() |
202c29c21a | ||
![]() |
c1c871620a | ||
![]() |
a21a8bef56 | ||
![]() |
522726228a | ||
![]() |
9770e3b325 | ||
![]() |
d617823355 | ||
![]() |
6ed991c8e2 | ||
![]() |
e41576e768 | ||
![]() |
155c1640f1 | ||
![]() |
f7d4947573 | ||
![]() |
0d7a133b15 | ||
![]() |
e863066144 | ||
![]() |
89a92477ad | ||
![]() |
5cda9cdd13 | ||
![]() |
e5914eb320 | ||
![]() |
ab78f48ff8 | ||
![]() |
b1c88eb978 | ||
![]() |
efae43f932 | ||
![]() |
d3ee1329e9 | ||
![]() |
700c719422 | ||
![]() |
55aa4aaf0f | ||
![]() |
820f95c4c4 | ||
![]() |
3a05d3def7 | ||
![]() |
edac9c2446 | ||
![]() |
d9c2687fd0 | ||
![]() |
6517bcc53c | ||
![]() |
4f54f25b66 | ||
![]() |
6a6828bddf | ||
![]() |
c0e7a3b90e | ||
![]() |
f27bc261cf | ||
![]() |
21e6197c0b | ||
![]() |
75d7d681c9 | ||
![]() |
81d8d7b73f | ||
![]() |
5c0de09a07 | ||
![]() |
20bf000e55 | ||
![]() |
40d0c4a1dc | ||
![]() |
be889b2f81 | ||
![]() |
7e26a8df31 | ||
![]() |
4ab1da38ba | ||
![]() |
be989d89d1 | ||
![]() |
bea683e3bf | ||
![]() |
178237d37f | ||
![]() |
76a678af34 | ||
![]() |
f65169b13e | ||
![]() |
040a5b9750 | ||
![]() |
37c9a8eea9 | ||
![]() |
6de5d032e1 | ||
![]() |
d791df75dd | ||
![]() |
020a3b3530 | ||
![]() |
fccf8d179f | ||
![]() |
5b5cc9c9f1 | ||
![]() |
4b3507f036 | ||
![]() |
5ebce03c77 | ||
![]() |
5e25f801ed | ||
![]() |
8e1234b758 | ||
![]() |
10885986b8 | ||
![]() |
984c9c628c | ||
![]() |
43c40c500e | ||
![]() |
c4861360ec | ||
![]() |
9738ef85db | ||
![]() |
ac971c56d1 | ||
![]() |
8228d166ce | ||
![]() |
907e6c56b3 | ||
![]() |
868e3b31c7 | ||
![]() |
09d8bf6730 | ||
![]() |
7a5f3616fd | ||
![]() |
cff002b824 | ||
![]() |
55cf5021f0 | ||
![]() |
f58caa5ab5 | ||
![]() |
82df473ec9 | ||
![]() |
e184c1d035 | ||
![]() |
371d4e5df3 | ||
![]() |
1f78e409b4 | ||
![]() |
34a88cd776 | ||
![]() |
1bee2347be | ||
![]() |
a027a7dd65 | ||
![]() |
22986ccb38 | ||
![]() |
884d78ceb3 | ||
![]() |
3ceac05108 | ||
![]() |
21ddcaa1f1 | ||
![]() |
f2074ed4c0 | ||
![]() |
a6f6d18f83 | ||
![]() |
34a13a9d05 | ||
![]() |
8713ac23a8 | ||
![]() |
5eb712f962 | ||
![]() |
4dc5b117dd | ||
![]() |
931a5f3cb9 | ||
![]() |
639288bf2b | ||
![]() |
d112c15d58 | ||
![]() |
1267895e44 | ||
![]() |
089d03bc8d | ||
![]() |
e37f4c4f42 | ||
![]() |
ab3ced9d32 | ||
![]() |
0c52b4509b | ||
![]() |
13aace3d34 | ||
![]() |
2b3bb41598 | ||
![]() |
93492f1e18 | ||
![]() |
54ba3e2ceb | ||
![]() |
4904cd8bcd | ||
![]() |
8a45359ec6 | ||
![]() |
fb593b7bfc | ||
![]() |
2544b8afa1 | ||
![]() |
ac1b04f271 | ||
![]() |
123fdeb919 | ||
![]() |
5c82bf95d1 | ||
![]() |
38a9b1618c | ||
![]() |
c18be72a3b | ||
![]() |
a101fe51a7 | ||
![]() |
06fc48ad66 | ||
![]() |
d93e2f9210 | ||
![]() |
31edc829fc | ||
![]() |
b31104768c | ||
![]() |
b662d9fd8c | ||
![]() |
da36196d79 | ||
![]() |
b9f4d67554 | ||
![]() |
42903973b7 | ||
![]() |
8f2df948ab | ||
![]() |
e3fb1fd3f1 | ||
![]() |
29b897f525 | ||
![]() |
85aeb42869 | ||
![]() |
c5bcf32823 | ||
![]() |
a71ff3f6a2 | ||
![]() |
f0b365a478 | ||
![]() |
df8048fecd | ||
![]() |
da2459d519 | ||
![]() |
bd6d741d87 | ||
![]() |
8b1e791820 | ||
![]() |
03cff3a225 | ||
![]() |
cc509a994e | ||
![]() |
0e79e52ddd | ||
![]() |
6fbb380076 | ||
![]() |
8f8b6288ac | ||
![]() |
b98096389d | ||
![]() |
74a5f7e698 | ||
![]() |
7a1c3e62dc | ||
![]() |
da52f5bfdd | ||
![]() |
50e87c6691 | ||
![]() |
e4a970ece1 | ||
![]() |
4ca43a694c | ||
![]() |
765994362c | ||
![]() |
40a25bf8c3 | ||
![]() |
1c5a8770ee | ||
![]() |
daa0d1de7a | ||
![]() |
58daeb962a | ||
![]() |
528bafa585 | ||
![]() |
81f75696e2 | ||
![]() |
8bdcf894bd | ||
![]() |
fe530423a5 | ||
![]() |
05e390205b | ||
![]() |
872011630a | ||
![]() |
203fdbc4b8 | ||
![]() |
70e0ab6b3d | ||
![]() |
319f078dd9 | ||
![]() |
9968153729 | ||
![]() |
7da249fcc1 | ||
![]() |
f529626c6c | ||
![]() |
36d6081ed1 | ||
![]() |
aadedda486 | ||
![]() |
671eec6da9 | ||
![]() |
e72fe7945f | ||
![]() |
d1c098b038 | ||
![]() |
90ba0b80c7 | ||
![]() |
39bb25d5f6 | ||
![]() |
eadee46840 | ||
![]() |
2e2e624d21 | ||
![]() |
ed832ce3b7 | ||
![]() |
227da16909 | ||
![]() |
bd58528fbd | ||
![]() |
c5e447a359 | ||
![]() |
fc40a4f166 | ||
![]() |
9c7f30d31c | ||
![]() |
6ed3ec0cb3 | ||
![]() |
47bda0b860 | ||
![]() |
c75cafdb58 | ||
![]() |
f5cbcb08e6 | ||
![]() |
67b6f8ba86 | ||
![]() |
184ad8f057 | ||
![]() |
822a0e36eb | ||
![]() |
18b6b601ad | ||
![]() |
0345070dfa | ||
![]() |
dffc8b6e09 | ||
![]() |
0871083776 | ||
![]() |
e5b26c3aa2 | ||
![]() |
3549676678 | ||
![]() |
8fa477fadb | ||
![]() |
fadf75f99d | ||
![]() |
01d155c969 | ||
![]() |
5685c16d4e | ||
![]() |
db77dfe01f | ||
![]() |
ad3a7d0e2c | ||
![]() |
18ffeeec45 | ||
![]() |
688661ab9b | ||
![]() |
36ad90e8e3 | ||
![]() |
6fff59c637 | ||
![]() |
fee7687cf3 | ||
![]() |
d3bfb4889c | ||
![]() |
1ac38ec89c | ||
![]() |
1ad8266473 | ||
![]() |
f5ac8ddfb4 | ||
![]() |
cca61181cb | ||
![]() |
c490416189 | ||
![]() |
f62a882760 | ||
![]() |
3003fc03fc | ||
![]() |
32aec66e6a | ||
![]() |
35af37a2cb | ||
![]() |
dbb3174cbc | ||
![]() |
31673d26d0 | ||
![]() |
8ba0f328af | ||
![]() |
d0e934b497 | ||
![]() |
e751e47d70 | ||
![]() |
19d0f2b4cc | ||
![]() |
c48f07f821 | ||
![]() |
dc642aa07d | ||
![]() |
f1ff892fdd | ||
![]() |
3f2a100465 | ||
![]() |
95397416f3 | ||
![]() |
8a86aae019 | ||
![]() |
24c2c77057 | ||
![]() |
5614984f06 | ||
![]() |
4c1caa3733 | ||
![]() |
12ab8f8f5f | ||
![]() |
8ebbd12f21 | ||
![]() |
07971759fa | ||
![]() |
f5f79049c2 | ||
![]() |
726bc647b2 | ||
![]() |
af9039a167 | ||
![]() |
07ed69bc37 | ||
![]() |
0deb3767fc | ||
![]() |
cb55fa9270 | ||
![]() |
93bc9f17a1 | ||
![]() |
536028c35a | ||
![]() |
aedf3d1f38 | ||
![]() |
91d927abc5 | ||
![]() |
ba8df10a43 | ||
![]() |
abf614804b | ||
![]() |
a0dbbb23c4 | ||
![]() |
0fd6278446 | ||
![]() |
29fe07f0cc | ||
![]() |
abfc73d31e | ||
![]() |
5a5ca8e7ff | ||
![]() |
f24a6f5988 | ||
![]() |
fdbef6c95e | ||
![]() |
24e43e3212 | ||
![]() |
4cb42ca55e | ||
![]() |
ec5e22ac85 | ||
![]() |
ed89da92b4 | ||
![]() |
a3297fed41 | ||
![]() |
88c55199f8 | ||
![]() |
c448443813 | ||
![]() |
efacd45fc5 | ||
![]() |
fa522695c4 | ||
![]() |
8609db77ea | ||
![]() |
65d93a86b2 | ||
![]() |
e6c427ce4d | ||
![]() |
b71c67b6ba | ||
![]() |
6d6b0d3321 | ||
![]() |
37324a0a00 | ||
![]() |
20a5d99f77 | ||
![]() |
3b43cc019a | ||
![]() |
b8421dce3d | ||
![]() |
9f6e97865c | ||
![]() |
9657314ae2 | ||
![]() |
3f7d2336c7 | ||
![]() |
e0a73d7fbe | ||
![]() |
b08c4ca2bd | ||
![]() |
734892f1e2 | ||
![]() |
d2bfaeac63 | ||
![]() |
0768b1b907 | ||
![]() |
f5f0da06d9 | ||
![]() |
52f04e39f2 | ||
![]() |
3c8f4c03d7 | ||
![]() |
7ba1308595 | ||
![]() |
91cd54016c | ||
![]() |
e7a393de54 | ||
![]() |
8454f298ac | ||
![]() |
a3badaf103 | ||
![]() |
50e8e5bdbe | ||
![]() |
8526e1f5f1 | ||
![]() |
0cfdbb95cc | ||
![]() |
6cea2061ec | ||
![]() |
2832801c2a | ||
![]() |
23a37dc466 | ||
![]() |
992892866b | ||
![]() |
dde880290c | ||
![]() |
1f27d7f1b8 | ||
![]() |
00aaa05901 | ||
![]() |
a83eaa7a9f | ||
![]() |
5156e48c2a | ||
![]() |
bf198c3918 | ||
![]() |
09dc6273e3 | ||
![]() |
ebaa33ac28 | ||
![]() |
3ec4ebc562 | ||
![]() |
6a19724d5f | ||
![]() |
924ce739f9 | ||
![]() |
e1973e6780 | ||
![]() |
f1b08ef40e | ||
![]() |
31f0cb7742 | ||
![]() |
e4b2ccfb23 | ||
![]() |
a3d7bb0a30 | ||
![]() |
77e49f3822 | ||
![]() |
8945b25484 | ||
![]() |
99ccf0c5d3 | ||
![]() |
d59b164fa2 | ||
![]() |
55b5f5dc34 | ||
![]() |
3b135ac963 | ||
![]() |
e6bae8d916 | ||
![]() |
d9f54300c3 | ||
![]() |
1511219763 | ||
![]() |
ada0add89b | ||
![]() |
75e508e1d6 | ||
![]() |
6f046dbf18 | ||
![]() |
cd820c8bca | ||
![]() |
88e755d7fd | ||
![]() |
6984171cfd | ||
![]() |
60b4db6389 | ||
![]() |
7c6ea2a966 | ||
![]() |
c161aef5f9 | ||
![]() |
c47786c1b0 | ||
![]() |
df100ce540 | ||
![]() |
5c5948b4e7 | ||
![]() |
1c72e46e09 | ||
![]() |
ca210ba480 | ||
![]() |
df146c41e2 | ||
![]() |
2d305fa99a | ||
![]() |
e4d7f3e287 | ||
![]() |
f2044b5838 | ||
![]() |
d53988f619 | ||
![]() |
ac88ab48d9 | ||
![]() |
84c6ee8cc6 | ||
![]() |
dbc90576b8 | ||
![]() |
84200dcde6 | ||
![]() |
e54c08da89 | ||
![]() |
31413857ea | ||
![]() |
25f874c030 | ||
![]() |
10d502611f | ||
![]() |
7fe4103b94 | ||
![]() |
7fbdc8e2c1 | ||
![]() |
9c5572d51f | ||
![]() |
75eb28f574 | ||
![]() |
56b6a1720f | ||
![]() |
dfceca48a7 | ||
![]() |
bbb67002c3 | ||
![]() |
0294216ea9 | ||
![]() |
7a62b2d2ab | ||
![]() |
f08c050e57 | ||
![]() |
67c8d49757 | ||
![]() |
ffcd90e8a7 | ||
![]() |
4ca7c4be1f | ||
![]() |
17b7af78f0 | ||
![]() |
4c1dc52083 | ||
![]() |
572fc9099f | ||
![]() |
3020f29041 | ||
![]() |
a6d03dd510 | ||
![]() |
68df36ae50 | ||
![]() |
5540305293 | ||
![]() |
d4cfee79d5 | ||
![]() |
6e36f948df | ||
![]() |
553fa39fe8 | ||
![]() |
820e581ad8 | ||
![]() |
d14785738e | ||
![]() |
9e15635c2d | ||
![]() |
3e10f902f5 | ||
![]() |
aa6714f25c | ||
![]() |
7f3a37aed4 | ||
![]() |
7b08280355 | ||
![]() |
e3cc4d5eac | ||
![]() |
8c85dfb735 | ||
![]() |
ac62a413e5 | ||
![]() |
d1f89778e9 | ||
![]() |
df67a90e64 | ||
![]() |
576ae644de | ||
![]() |
7e52e51db1 | ||
![]() |
f12df8d79a | ||
![]() |
65de730bdb | ||
![]() |
9658a5043b | ||
![]() |
280fbe8019 | ||
![]() |
2e339c2bab |
@@ -1,7 +1,8 @@
|
||||
build
|
||||
llama/build
|
||||
.venv
|
||||
.vscode
|
||||
ollama
|
||||
app
|
||||
web
|
||||
dist
|
||||
llm/llama.cpp
|
||||
.env
|
||||
.cache
|
||||
test_data
|
6
.gitignore
vendored
@@ -2,5 +2,11 @@
|
||||
.vscode
|
||||
.env
|
||||
.venv
|
||||
.swp
|
||||
dist
|
||||
ollama
|
||||
ggml-metal.metal
|
||||
.cache
|
||||
*.exe
|
||||
.idea
|
||||
test_data
|
4
.gitmodules
vendored
Normal file
@@ -0,0 +1,4 @@
|
||||
[submodule "llama.cpp"]
|
||||
path = llm/llama.cpp
|
||||
url = https://github.com/ggerganov/llama.cpp.git
|
||||
shallow = true
|
34
Dockerfile
@@ -1,15 +1,29 @@
|
||||
FROM golang:1.20
|
||||
WORKDIR /go/src/github.com/jmorganca/ollama
|
||||
COPY . .
|
||||
RUN CGO_ENABLED=1 go build -ldflags '-linkmode external -extldflags "-static"' .
|
||||
FROM nvidia/cuda:11.8.0-devel-ubuntu22.04
|
||||
|
||||
FROM alpine
|
||||
ARG TARGETARCH
|
||||
ARG GOFLAGS="'-ldflags=-w -s'"
|
||||
|
||||
WORKDIR /go/src/github.com/jmorganca/ollama
|
||||
RUN apt-get update && apt-get install -y git build-essential cmake
|
||||
ADD https://dl.google.com/go/go1.21.3.linux-$TARGETARCH.tar.gz /tmp/go1.21.3.tar.gz
|
||||
RUN mkdir -p /usr/local && tar xz -C /usr/local </tmp/go1.21.3.tar.gz
|
||||
|
||||
COPY . .
|
||||
ENV GOARCH=$TARGETARCH
|
||||
ENV GOFLAGS=$GOFLAGS
|
||||
RUN /usr/local/go/bin/go generate ./... \
|
||||
&& /usr/local/go/bin/go build .
|
||||
|
||||
FROM ubuntu:22.04
|
||||
RUN apt-get update && apt-get install -y ca-certificates
|
||||
COPY --from=0 /go/src/github.com/jmorganca/ollama/ollama /bin/ollama
|
||||
EXPOSE 11434
|
||||
ARG USER=ollama
|
||||
ARG GROUP=ollama
|
||||
RUN addgroup -g 1000 $GROUP && adduser -u 1000 -DG $GROUP $USER
|
||||
USER $USER:$GROUP
|
||||
ENTRYPOINT ["/bin/ollama"]
|
||||
ENV OLLAMA_HOST 0.0.0.0
|
||||
|
||||
# set some environment variable for better NVIDIA compatibility
|
||||
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
|
||||
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
|
||||
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
|
||||
|
||||
ENTRYPOINT ["/bin/ollama"]
|
||||
CMD ["serve"]
|
||||
|
101
Dockerfile.build
Normal file
@@ -0,0 +1,101 @@
|
||||
ARG GOLANG_VERSION=1.21.3
|
||||
ARG CMAKE_VERSION=3.22.1
|
||||
ARG CUDA_VERSION=11.3.1
|
||||
ARG ROCM_VERSION=5.7.1
|
||||
|
||||
FROM --platform=linux/amd64 nvidia/cuda:$CUDA_VERSION-devel-centos7 AS cuda-build-amd64
|
||||
|
||||
ARG CMAKE_VERSION
|
||||
|
||||
RUN yum install -y https://repo.ius.io/ius-release-el7.rpm centos-release-scl \
|
||||
&& yum update -y \
|
||||
&& yum install -y devtoolset-10-gcc devtoolset-10-gcc-c++ git236
|
||||
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
|
||||
|
||||
ADD https://github.com/Kitware/CMake/releases/download/v$CMAKE_VERSION/cmake-$CMAKE_VERSION-linux-x86_64.tar.gz /tmp/cmake-$CMAKE_VERSION.tar.gz
|
||||
RUN tar -zx -C /usr --strip-components 1 </tmp/cmake-$CMAKE_VERSION.tar.gz
|
||||
|
||||
WORKDIR /go/src/github.com/jmorganca/ollama
|
||||
COPY . .
|
||||
|
||||
WORKDIR llm/generate
|
||||
RUN sh gen_linux.sh
|
||||
|
||||
FROM --platform=linux/arm64 nvidia/cuda:$CUDA_VERSION-devel-rockylinux8 AS cuda-build-arm64
|
||||
|
||||
ARG CMAKE_VERSION
|
||||
|
||||
RUN dnf install -y git cmake
|
||||
|
||||
WORKDIR /go/src/github.com/jmorganca/ollama
|
||||
COPY . .
|
||||
|
||||
WORKDIR llm/generate
|
||||
RUN sh gen_linux.sh
|
||||
|
||||
FROM --platform=linux/amd64 rocm/dev-centos-7:$ROCM_VERSION-complete AS rocm-build-amd64
|
||||
|
||||
ARG CMAKE_VERSION
|
||||
|
||||
RUN yum install -y https://repo.ius.io/ius-release-el7.rpm centos-release-scl \
|
||||
&& yum update -y \
|
||||
&& yum remove -y git \
|
||||
&& yum install -y devtoolset-10-gcc devtoolset-10-gcc-c++ git236
|
||||
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
|
||||
ENV LIBRARY_PATH /opt/amdgpu/lib64
|
||||
|
||||
ADD https://github.com/Kitware/CMake/releases/download/v$CMAKE_VERSION/cmake-$CMAKE_VERSION-linux-x86_64.tar.gz /tmp/cmake-$CMAKE_VERSION.tar.gz
|
||||
RUN tar -zx -C /usr --strip-components 1 </tmp/cmake-$CMAKE_VERSION.tar.gz
|
||||
|
||||
WORKDIR /go/src/github.com/jmorganca/ollama
|
||||
COPY . .
|
||||
|
||||
WORKDIR llm/generate
|
||||
RUN sh gen_linux.sh
|
||||
|
||||
FROM --platform=linux/amd64 centos:7 AS build-amd64
|
||||
ENV CGO_ENABLED 1
|
||||
|
||||
ARG GOLANG_VERSION
|
||||
ARG GOFLAGS
|
||||
ARG CGO_FLAGS
|
||||
|
||||
RUN yum install -y centos-release-scl \
|
||||
&& yum update -y \
|
||||
&& yum install -y devtoolset-10-gcc devtoolset-10-gcc-c++
|
||||
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
|
||||
|
||||
ADD https://dl.google.com/go/go$GOLANG_VERSION.linux-amd64.tar.gz /tmp/go-$GOLANG_VERSION.tar.gz
|
||||
RUN mkdir -p /usr/local && tar xz -C /usr/local </tmp/go-$GOLANG_VERSION.tar.gz
|
||||
ENV PATH /usr/local/go/bin:$PATH
|
||||
|
||||
WORKDIR /go/src/github.com/jmorganca/ollama
|
||||
COPY . .
|
||||
COPY --from=cuda-build-amd64 /go/src/github.com/jmorganca/ollama/llm/llama.cpp/build/linux/cpu/lib llm/llama.cpp/build/linux/cpu/lib
|
||||
COPY --from=cuda-build-amd64 /go/src/github.com/jmorganca/ollama/llm/llama.cpp/build/linux/cuda/lib llm/llama.cpp/build/linux/cuda/lib
|
||||
COPY --from=rocm-build-amd64 /go/src/github.com/jmorganca/ollama/llm/llama.cpp/build/linux/rocm/lib llm/llama.cpp/build/linux/rocm/lib
|
||||
RUN go build .
|
||||
|
||||
FROM --platform=linux/arm64 centos:7 AS build-arm64
|
||||
ENV CGO_ENABLED 1
|
||||
|
||||
ARG GOLANG_VERSION
|
||||
ARG GOFLAGS
|
||||
ARG CGO_FLAGS
|
||||
|
||||
RUN yum install -y centos-release-scl \
|
||||
&& yum update -y \
|
||||
&& yum install -y devtoolset-10-gcc devtoolset-10-gcc-c++
|
||||
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
|
||||
|
||||
ADD https://dl.google.com/go/go$GOLANG_VERSION.linux-arm64.tar.gz /tmp/go-$GOLANG_VERSION.tar.gz
|
||||
RUN mkdir -p /usr/local && tar xz -C /usr/local </tmp/go-$GOLANG_VERSION.tar.gz
|
||||
ENV PATH /usr/local/go/bin:$PATH
|
||||
|
||||
WORKDIR /go/src/github.com/jmorganca/ollama
|
||||
COPY . .
|
||||
COPY --from=cuda-build-arm64 /go/src/github.com/jmorganca/ollama/llm/llama.cpp/build/linux/cpu/lib llm/llama.cpp/build/linux/cpu/lib
|
||||
COPY --from=cuda-build-arm64 /go/src/github.com/jmorganca/ollama/llm/llama.cpp/build/linux/cuda/lib llm/llama.cpp/build/linux/cuda/lib
|
||||
RUN go build .
|
||||
|
||||
FROM build-$TARGETARCH
|
306
README.md
@@ -1,108 +1,322 @@
|
||||

|
||||
<div align="center">
|
||||
<picture>
|
||||
<source media="(prefers-color-scheme: dark)" height="200px" srcset="https://github.com/jmorganca/ollama/assets/3325447/56ea1849-1284-4645-8970-956de6e51c3c">
|
||||
<img alt="logo" height="200px" src="https://github.com/jmorganca/ollama/assets/3325447/0d0b44e2-8f4a-4e99-9b52-a5c1c741c8f7">
|
||||
</picture>
|
||||
</div>
|
||||
|
||||
# Ollama
|
||||
|
||||
Run large language models with `llama.cpp`.
|
||||
[](https://discord.gg/ollama)
|
||||
|
||||
> Note: certain models that can be run with Ollama are intended for research and/or non-commercial use only.
|
||||
Get up and running with large language models locally.
|
||||
|
||||
### Features
|
||||
### macOS
|
||||
|
||||
- Download and run popular large language models
|
||||
- Switch between multiple models on the fly
|
||||
- Hardware acceleration where available (Metal, CUDA)
|
||||
- Fast inference server written in Go, powered by [llama.cpp](https://github.com/ggerganov/llama.cpp)
|
||||
- REST API to use with your application (python, typescript SDKs coming soon)
|
||||
[Download](https://ollama.ai/download/Ollama-darwin.zip)
|
||||
|
||||
## Install
|
||||
### Windows
|
||||
|
||||
- [Download](https://ollama.ai/download) for macOS with Apple Silicon (Intel coming soon)
|
||||
- Download for Windows (coming soon)
|
||||
Coming soon! For now, you can install Ollama on Windows via WSL2.
|
||||
|
||||
You can also build the [binary from source](#building).
|
||||
### Linux & WSL2
|
||||
|
||||
```
|
||||
curl https://ollama.ai/install.sh | sh
|
||||
```
|
||||
|
||||
[Manual install instructions](https://github.com/jmorganca/ollama/blob/main/docs/linux.md)
|
||||
|
||||
### Docker
|
||||
|
||||
The official [Ollama Docker image](https://hub.docker.com/r/ollama/ollama) `ollama/ollama` is available on Docker Hub.
|
||||
|
||||
## Quickstart
|
||||
|
||||
Run a fast and simple model.
|
||||
To run and chat with [Llama 2](https://ollama.ai/library/llama2):
|
||||
|
||||
```
|
||||
ollama run orca
|
||||
ollama run llama2
|
||||
```
|
||||
|
||||
## Example models
|
||||
## Model library
|
||||
|
||||
### 💬 Chat
|
||||
Ollama supports a list of open-source models available on [ollama.ai/library](https://ollama.ai/library 'ollama model library')
|
||||
|
||||
Have a conversation.
|
||||
Here are some example open-source models that can be downloaded:
|
||||
|
||||
| Model | Parameters | Size | Download |
|
||||
| ------------------ | ---------- | ----- | ------------------------------ |
|
||||
| Llama 2 | 7B | 3.8GB | `ollama run llama2` |
|
||||
| Mistral | 7B | 4.1GB | `ollama run mistral` |
|
||||
| Dolphin Phi | 2.7B | 1.6GB | `ollama run dolphin-phi` |
|
||||
| Phi-2 | 2.7B | 1.7GB | `ollama run phi` |
|
||||
| Neural Chat | 7B | 4.1GB | `ollama run neural-chat` |
|
||||
| Starling | 7B | 4.1GB | `ollama run starling-lm` |
|
||||
| Code Llama | 7B | 3.8GB | `ollama run codellama` |
|
||||
| Llama 2 Uncensored | 7B | 3.8GB | `ollama run llama2-uncensored` |
|
||||
| Llama 2 13B | 13B | 7.3GB | `ollama run llama2:13b` |
|
||||
| Llama 2 70B | 70B | 39GB | `ollama run llama2:70b` |
|
||||
| Orca Mini | 3B | 1.9GB | `ollama run orca-mini` |
|
||||
| Vicuna | 7B | 3.8GB | `ollama run vicuna` |
|
||||
| LLaVA | 7B | 4.5GB | `ollama run llava` |
|
||||
|
||||
> Note: You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
|
||||
|
||||
## Customize a model
|
||||
|
||||
### Import from GGUF
|
||||
|
||||
Ollama supports importing GGUF models in the Modelfile:
|
||||
|
||||
1. Create a file named `Modelfile`, with a `FROM` instruction with the local filepath to the model you want to import.
|
||||
|
||||
```
|
||||
FROM ./vicuna-33b.Q4_0.gguf
|
||||
```
|
||||
|
||||
2. Create the model in Ollama
|
||||
|
||||
```
|
||||
ollama create example -f Modelfile
|
||||
```
|
||||
|
||||
3. Run the model
|
||||
|
||||
```
|
||||
ollama run example
|
||||
```
|
||||
|
||||
### Import from PyTorch or Safetensors
|
||||
|
||||
See the [guide](docs/import.md) on importing models for more information.
|
||||
|
||||
### Customize a prompt
|
||||
|
||||
Models from the Ollama library can be customized with a prompt. For example, to customize the `llama2` model:
|
||||
|
||||
```
|
||||
ollama run vicuna "Why is the sky blue?"
|
||||
ollama pull llama2
|
||||
```
|
||||
|
||||
### 🗺️ Instructions
|
||||
|
||||
Get a helping hand.
|
||||
Create a `Modelfile`:
|
||||
|
||||
```
|
||||
ollama run orca "Write an email to my boss."
|
||||
FROM llama2
|
||||
|
||||
# set the temperature to 1 [higher is more creative, lower is more coherent]
|
||||
PARAMETER temperature 1
|
||||
|
||||
# set the system message
|
||||
SYSTEM """
|
||||
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
|
||||
"""
|
||||
```
|
||||
|
||||
### 🔎 Ask questions about documents
|
||||
|
||||
Send the contents of a document and ask questions about it.
|
||||
Next, create and run the model:
|
||||
|
||||
```
|
||||
ollama run nous-hermes "$(cat input.txt)", please summarize this story
|
||||
ollama create mario -f ./Modelfile
|
||||
ollama run mario
|
||||
>>> hi
|
||||
Hello! It's your friend Mario.
|
||||
```
|
||||
|
||||
### 📖 Storytelling
|
||||
For more examples, see the [examples](examples) directory. For more information on working with a Modelfile, see the [Modelfile](docs/modelfile.md) documentation.
|
||||
|
||||
Venture into the unknown.
|
||||
## CLI Reference
|
||||
|
||||
### Create a model
|
||||
|
||||
`ollama create` is used to create a model from a Modelfile.
|
||||
|
||||
```
|
||||
ollama run nous-hermes "Once upon a time"
|
||||
ollama create mymodel -f ./Modelfile
|
||||
```
|
||||
|
||||
## Advanced usage
|
||||
|
||||
### Run a local model
|
||||
### Pull a model
|
||||
|
||||
```
|
||||
ollama run ~/Downloads/vicuna-7b-v1.3.ggmlv3.q4_1.bin
|
||||
ollama pull llama2
|
||||
```
|
||||
|
||||
> This command can also be used to update a local model. Only the diff will be pulled.
|
||||
|
||||
### Remove a model
|
||||
|
||||
```
|
||||
ollama rm llama2
|
||||
```
|
||||
|
||||
### Copy a model
|
||||
|
||||
```
|
||||
ollama cp llama2 my-llama2
|
||||
```
|
||||
|
||||
### Multiline input
|
||||
|
||||
For multiline input, you can wrap text with `"""`:
|
||||
|
||||
```
|
||||
>>> """Hello,
|
||||
... world!
|
||||
... """
|
||||
I'm a basic program that prints the famous "Hello, world!" message to the console.
|
||||
```
|
||||
|
||||
### Multimodal models
|
||||
|
||||
```
|
||||
>>> What's in this image? /Users/jmorgan/Desktop/smile.png
|
||||
The image features a yellow smiley face, which is likely the central focus of the picture.
|
||||
```
|
||||
|
||||
### Pass in prompt as arguments
|
||||
|
||||
```
|
||||
$ ollama run llama2 "Summarize this file: $(cat README.md)"
|
||||
Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.
|
||||
```
|
||||
|
||||
### List models on your computer
|
||||
|
||||
```
|
||||
ollama list
|
||||
```
|
||||
|
||||
### Start Ollama
|
||||
|
||||
`ollama serve` is used when you want to start ollama without running the desktop application.
|
||||
|
||||
## Building
|
||||
|
||||
Install `cmake` and `go`:
|
||||
|
||||
```
|
||||
brew install cmake go
|
||||
```
|
||||
|
||||
Then generate dependencies:
|
||||
```
|
||||
go generate ./...
|
||||
```
|
||||
Then build the binary:
|
||||
```
|
||||
go build .
|
||||
```
|
||||
|
||||
To run it start the server:
|
||||
More detailed instructions can be found in the [developer guide](https://github.com/jmorganca/ollama/blob/main/docs/development.md)
|
||||
|
||||
|
||||
### Running local builds
|
||||
Next, start the server:
|
||||
|
||||
```
|
||||
./ollama server &
|
||||
./ollama serve
|
||||
```
|
||||
|
||||
Finally, run a model!
|
||||
Finally, in a separate shell, run a model:
|
||||
|
||||
```
|
||||
./ollama run ~/Downloads/vicuna-7b-v1.3.ggmlv3.q4_1.bin
|
||||
./ollama run llama2
|
||||
```
|
||||
|
||||
## API Reference
|
||||
## REST API
|
||||
|
||||
### `POST /api/pull`
|
||||
Ollama has a REST API for running and managing models.
|
||||
|
||||
Download a model
|
||||
### Generate a response
|
||||
|
||||
```
|
||||
curl -X POST http://localhost:11343/api/pull -d '{"model": "orca"}'
|
||||
curl http://localhost:11434/api/generate -d '{
|
||||
"model": "llama2",
|
||||
"prompt":"Why is the sky blue?"
|
||||
}'
|
||||
```
|
||||
|
||||
### `POST /api/generate`
|
||||
|
||||
Complete a prompt
|
||||
### Chat with a model
|
||||
|
||||
```
|
||||
curl -X POST http://localhost:11434/api/generate -d '{"model": "orca", "prompt": "hello!"}'
|
||||
curl http://localhost:11434/api/chat -d '{
|
||||
"model": "mistral",
|
||||
"messages": [
|
||||
{ "role": "user", "content": "why is the sky blue?" }
|
||||
]
|
||||
}'
|
||||
```
|
||||
|
||||
See the [API documentation](./docs/api.md) for all endpoints.
|
||||
|
||||
## Community Integrations
|
||||
|
||||
### Web & Desktop
|
||||
- [Bionic GPT](https://github.com/bionic-gpt/bionic-gpt)
|
||||
- [HTML UI](https://github.com/rtcfirefly/ollama-ui)
|
||||
- [Chatbot UI](https://github.com/ivanfioravanti/chatbot-ollama)
|
||||
- [Typescript UI](https://github.com/ollama-interface/Ollama-Gui?tab=readme-ov-file)
|
||||
- [Minimalistic React UI for Ollama Models](https://github.com/richawo/minimal-llm-ui)
|
||||
- [Web UI](https://github.com/ollama-webui/ollama-webui)
|
||||
- [Ollamac](https://github.com/kevinhermawan/Ollamac)
|
||||
- [big-AGI](https://github.com/enricoros/big-agi/blob/main/docs/config-ollama.md)
|
||||
- [Cheshire Cat assistant framework](https://github.com/cheshire-cat-ai/core)
|
||||
- [Amica](https://github.com/semperai/amica)
|
||||
- [chatd](https://github.com/BruceMacD/chatd)
|
||||
- [Ollama-SwiftUI](https://github.com/kghandour/Ollama-SwiftUI)
|
||||
|
||||
|
||||
### Terminal
|
||||
|
||||
- [oterm](https://github.com/ggozad/oterm)
|
||||
- [Ellama Emacs client](https://github.com/s-kostyaev/ellama)
|
||||
- [Emacs client](https://github.com/zweifisch/ollama)
|
||||
- [gen.nvim](https://github.com/David-Kunz/gen.nvim)
|
||||
- [ollama.nvim](https://github.com/nomnivore/ollama.nvim)
|
||||
- [ogpt.nvim](https://github.com/huynle/ogpt.nvim)
|
||||
- [gptel Emacs client](https://github.com/karthink/gptel)
|
||||
- [Oatmeal](https://github.com/dustinblackman/oatmeal)
|
||||
- [cmdh](https://github.com/pgibler/cmdh)
|
||||
|
||||
### Database
|
||||
|
||||
- [MindsDB](https://github.com/mindsdb/mindsdb/blob/staging/mindsdb/integrations/handlers/ollama_handler/README.md)
|
||||
|
||||
### Package managers
|
||||
|
||||
- [Pacman](https://archlinux.org/packages/extra/x86_64/ollama/)
|
||||
|
||||
### Libraries
|
||||
|
||||
- [LangChain](https://python.langchain.com/docs/integrations/llms/ollama) and [LangChain.js](https://js.langchain.com/docs/modules/model_io/models/llms/integrations/ollama) with [example](https://js.langchain.com/docs/use_cases/question_answering/local_retrieval_qa)
|
||||
- [LangChainGo](https://github.com/tmc/langchaingo/) with [example](https://github.com/tmc/langchaingo/tree/main/examples/ollama-completion-example)
|
||||
- [LlamaIndex](https://gpt-index.readthedocs.io/en/stable/examples/llm/ollama.html)
|
||||
- [LiteLLM](https://github.com/BerriAI/litellm)
|
||||
- [OllamaSharp for .NET](https://github.com/awaescher/OllamaSharp)
|
||||
- [Ollama for Ruby](https://github.com/gbaptista/ollama-ai)
|
||||
- [Ollama-rs for Rust](https://github.com/pepperoni21/ollama-rs)
|
||||
- [Ollama4j for Java](https://github.com/amithkoujalgi/ollama4j)
|
||||
- [ModelFusion Typescript Library](https://modelfusion.dev/integration/model-provider/ollama)
|
||||
- [OllamaKit for Swift](https://github.com/kevinhermawan/OllamaKit)
|
||||
- [Ollama for Dart](https://github.com/breitburg/dart-ollama)
|
||||
- [Ollama for Laravel](https://github.com/cloudstudio/ollama-laravel)
|
||||
- [LangChainDart](https://github.com/davidmigloz/langchain_dart)
|
||||
|
||||
### Mobile
|
||||
|
||||
- [Enchanted](https://github.com/AugustDev/enchanted)
|
||||
- [Maid](https://github.com/Mobile-Artificial-Intelligence/maid)
|
||||
|
||||
### Extensions & Plugins
|
||||
|
||||
- [Raycast extension](https://github.com/MassimilianoPasquini97/raycast_ollama)
|
||||
- [Discollama](https://github.com/mxyng/discollama) (Discord bot inside the Ollama discord channel)
|
||||
- [Continue](https://github.com/continuedev/continue)
|
||||
- [Obsidian Ollama plugin](https://github.com/hinterdupfinger/obsidian-ollama)
|
||||
- [Logseq Ollama plugin](https://github.com/omagdy7/ollama-logseq)
|
||||
- [Dagger Chatbot](https://github.com/samalba/dagger-chatbot)
|
||||
- [Discord AI Bot](https://github.com/mekb-turtle/discord-ai-bot)
|
||||
- [Ollama Telegram Bot](https://github.com/ruecat/ollama-telegram)
|
||||
- [Hass Ollama Conversation](https://github.com/ej52/hass-ollama-conversation)
|
||||
- [Rivet plugin](https://github.com/abrenneke/rivet-plugin-ollama)
|
||||
- [Llama Coder](https://github.com/ex3ndr/llama-coder) (Copilot alternative using Ollama)
|
||||
- [Obsidian BMO Chatbot plugin](https://github.com/longy2k/obsidian-bmo-chatbot)
|
||||
|
211
api/client.go
@@ -5,20 +5,27 @@ import (
|
||||
"bytes"
|
||||
"context"
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"net"
|
||||
"net/http"
|
||||
"net/url"
|
||||
"os"
|
||||
"runtime"
|
||||
"strings"
|
||||
|
||||
"github.com/jmorganca/ollama/format"
|
||||
"github.com/jmorganca/ollama/version"
|
||||
)
|
||||
|
||||
type Client struct {
|
||||
base url.URL
|
||||
HTTP http.Client
|
||||
Headers http.Header
|
||||
base *url.URL
|
||||
http http.Client
|
||||
}
|
||||
|
||||
func checkError(resp *http.Response, body []byte) error {
|
||||
if resp.StatusCode >= 200 && resp.StatusCode < 400 {
|
||||
if resp.StatusCode < http.StatusBadRequest {
|
||||
return nil
|
||||
}
|
||||
|
||||
@@ -27,51 +34,95 @@ func checkError(resp *http.Response, body []byte) error {
|
||||
err := json.Unmarshal(body, &apiError)
|
||||
if err != nil {
|
||||
// Use the full body as the message if we fail to decode a response.
|
||||
apiError.Message = string(body)
|
||||
apiError.ErrorMessage = string(body)
|
||||
}
|
||||
|
||||
return apiError
|
||||
}
|
||||
|
||||
func NewClient(hosts ...string) *Client {
|
||||
host := "127.0.0.1:11434"
|
||||
if len(hosts) > 0 {
|
||||
host = hosts[0]
|
||||
func ClientFromEnvironment() (*Client, error) {
|
||||
defaultPort := "11434"
|
||||
|
||||
scheme, hostport, ok := strings.Cut(os.Getenv("OLLAMA_HOST"), "://")
|
||||
switch {
|
||||
case !ok:
|
||||
scheme, hostport = "http", os.Getenv("OLLAMA_HOST")
|
||||
case scheme == "http":
|
||||
defaultPort = "80"
|
||||
case scheme == "https":
|
||||
defaultPort = "443"
|
||||
}
|
||||
|
||||
return &Client{
|
||||
base: url.URL{Scheme: "http", Host: host},
|
||||
HTTP: http.Client{},
|
||||
// trim trailing slashes
|
||||
hostport = strings.TrimRight(hostport, "/")
|
||||
|
||||
host, port, err := net.SplitHostPort(hostport)
|
||||
if err != nil {
|
||||
host, port = "127.0.0.1", defaultPort
|
||||
if ip := net.ParseIP(strings.Trim(hostport, "[]")); ip != nil {
|
||||
host = ip.String()
|
||||
} else if hostport != "" {
|
||||
host = hostport
|
||||
}
|
||||
}
|
||||
|
||||
client := Client{
|
||||
base: &url.URL{
|
||||
Scheme: scheme,
|
||||
Host: net.JoinHostPort(host, port),
|
||||
},
|
||||
}
|
||||
|
||||
mockRequest, err := http.NewRequest(http.MethodHead, client.base.String(), nil)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
proxyURL, err := http.ProxyFromEnvironment(mockRequest)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
client.http = http.Client{
|
||||
Transport: &http.Transport{
|
||||
Proxy: http.ProxyURL(proxyURL),
|
||||
},
|
||||
}
|
||||
|
||||
return &client, nil
|
||||
}
|
||||
|
||||
func (c *Client) do(ctx context.Context, method, path string, reqData, respData any) error {
|
||||
var reqBody io.Reader
|
||||
var data []byte
|
||||
var err error
|
||||
if reqData != nil {
|
||||
|
||||
switch reqData := reqData.(type) {
|
||||
case io.Reader:
|
||||
// reqData is already an io.Reader
|
||||
reqBody = reqData
|
||||
case nil:
|
||||
// noop
|
||||
default:
|
||||
data, err = json.Marshal(reqData)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
reqBody = bytes.NewReader(data)
|
||||
}
|
||||
|
||||
url := c.base.JoinPath(path).String()
|
||||
|
||||
req, err := http.NewRequestWithContext(ctx, method, url, reqBody)
|
||||
requestURL := c.base.JoinPath(path)
|
||||
request, err := http.NewRequestWithContext(ctx, method, requestURL.String(), reqBody)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
req.Header.Set("Content-Type", "application/json")
|
||||
req.Header.Set("Accept", "application/json")
|
||||
request.Header.Set("Content-Type", "application/json")
|
||||
request.Header.Set("Accept", "application/json")
|
||||
request.Header.Set("User-Agent", fmt.Sprintf("ollama/%s (%s %s) Go/%s", version.Version, runtime.GOARCH, runtime.GOOS, runtime.Version()))
|
||||
|
||||
for k, v := range c.Headers {
|
||||
req.Header[k] = v
|
||||
}
|
||||
|
||||
respObj, err := c.HTTP.Do(req)
|
||||
respObj, err := c.http.Do(request)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
@@ -92,9 +143,10 @@ func (c *Client) do(ctx context.Context, method, path string, reqData, respData
|
||||
}
|
||||
}
|
||||
return nil
|
||||
|
||||
}
|
||||
|
||||
const maxBufferSize = 512 * format.KiloByte
|
||||
|
||||
func (c *Client) stream(ctx context.Context, method, path string, data any, fn func([]byte) error) error {
|
||||
var buf *bytes.Buffer
|
||||
if data != nil {
|
||||
@@ -106,21 +158,26 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
|
||||
buf = bytes.NewBuffer(bts)
|
||||
}
|
||||
|
||||
request, err := http.NewRequestWithContext(ctx, method, c.base.JoinPath(path).String(), buf)
|
||||
requestURL := c.base.JoinPath(path)
|
||||
request, err := http.NewRequestWithContext(ctx, method, requestURL.String(), buf)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
request.Header.Set("Content-Type", "application/json")
|
||||
request.Header.Set("Accept", "application/json")
|
||||
request.Header.Set("Accept", "application/x-ndjson")
|
||||
request.Header.Set("User-Agent", fmt.Sprintf("ollama/%s (%s %s) Go/%s", version.Version, runtime.GOARCH, runtime.GOOS, runtime.Version()))
|
||||
|
||||
response, err := http.DefaultClient.Do(request)
|
||||
response, err := c.http.Do(request)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
defer response.Body.Close()
|
||||
|
||||
scanner := bufio.NewScanner(response.Body)
|
||||
// increase the buffer size to avoid running out of space
|
||||
scanBuf := make([]byte, 0, maxBufferSize)
|
||||
scanner.Buffer(scanBuf, maxBufferSize)
|
||||
for scanner.Scan() {
|
||||
var errorResponse struct {
|
||||
Error string `json:"error,omitempty"`
|
||||
@@ -131,11 +188,15 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
|
||||
return fmt.Errorf("unmarshal: %w", err)
|
||||
}
|
||||
|
||||
if response.StatusCode >= 400 {
|
||||
if errorResponse.Error != "" {
|
||||
return fmt.Errorf(errorResponse.Error)
|
||||
}
|
||||
|
||||
if response.StatusCode >= http.StatusBadRequest {
|
||||
return StatusError{
|
||||
StatusCode: response.StatusCode,
|
||||
Status: response.Status,
|
||||
Message: errorResponse.Error,
|
||||
StatusCode: response.StatusCode,
|
||||
Status: response.Status,
|
||||
ErrorMessage: errorResponse.Error,
|
||||
}
|
||||
}
|
||||
|
||||
@@ -160,11 +221,24 @@ func (c *Client) Generate(ctx context.Context, req *GenerateRequest, fn Generate
|
||||
})
|
||||
}
|
||||
|
||||
type PullProgressFunc func(PullProgress) error
|
||||
type ChatResponseFunc func(ChatResponse) error
|
||||
|
||||
func (c *Client) Chat(ctx context.Context, req *ChatRequest, fn ChatResponseFunc) error {
|
||||
return c.stream(ctx, http.MethodPost, "/api/chat", req, func(bts []byte) error {
|
||||
var resp ChatResponse
|
||||
if err := json.Unmarshal(bts, &resp); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
return fn(resp)
|
||||
})
|
||||
}
|
||||
|
||||
type PullProgressFunc func(ProgressResponse) error
|
||||
|
||||
func (c *Client) Pull(ctx context.Context, req *PullRequest, fn PullProgressFunc) error {
|
||||
return c.stream(ctx, http.MethodPost, "/api/pull", req, func(bts []byte) error {
|
||||
var resp PullProgress
|
||||
var resp ProgressResponse
|
||||
if err := json.Unmarshal(bts, &resp); err != nil {
|
||||
return err
|
||||
}
|
||||
@@ -173,11 +247,11 @@ func (c *Client) Pull(ctx context.Context, req *PullRequest, fn PullProgressFunc
|
||||
})
|
||||
}
|
||||
|
||||
type PushProgressFunc func(PushProgress) error
|
||||
type PushProgressFunc func(ProgressResponse) error
|
||||
|
||||
func (c *Client) Push(ctx context.Context, req *PushRequest, fn PushProgressFunc) error {
|
||||
return c.stream(ctx, http.MethodPost, "/api/push", req, func(bts []byte) error {
|
||||
var resp PushProgress
|
||||
var resp ProgressResponse
|
||||
if err := json.Unmarshal(bts, &resp); err != nil {
|
||||
return err
|
||||
}
|
||||
@@ -186,11 +260,11 @@ func (c *Client) Push(ctx context.Context, req *PushRequest, fn PushProgressFunc
|
||||
})
|
||||
}
|
||||
|
||||
type CreateProgressFunc func(CreateProgress) error
|
||||
type CreateProgressFunc func(ProgressResponse) error
|
||||
|
||||
func (c *Client) Create(ctx context.Context, req *CreateRequest, fn CreateProgressFunc) error {
|
||||
return c.stream(ctx, http.MethodPost, "/api/create", req, func(bts []byte) error {
|
||||
var resp CreateProgress
|
||||
var resp ProgressResponse
|
||||
if err := json.Unmarshal(bts, &resp); err != nil {
|
||||
return err
|
||||
}
|
||||
@@ -206,3 +280,66 @@ func (c *Client) List(ctx context.Context) (*ListResponse, error) {
|
||||
}
|
||||
return &lr, nil
|
||||
}
|
||||
|
||||
func (c *Client) Copy(ctx context.Context, req *CopyRequest) error {
|
||||
if err := c.do(ctx, http.MethodPost, "/api/copy", req, nil); err != nil {
|
||||
return err
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func (c *Client) Delete(ctx context.Context, req *DeleteRequest) error {
|
||||
if err := c.do(ctx, http.MethodDelete, "/api/delete", req, nil); err != nil {
|
||||
return err
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func (c *Client) Show(ctx context.Context, req *ShowRequest) (*ShowResponse, error) {
|
||||
var resp ShowResponse
|
||||
if err := c.do(ctx, http.MethodPost, "/api/show", req, &resp); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return &resp, nil
|
||||
}
|
||||
|
||||
func (c *Client) Heartbeat(ctx context.Context) error {
|
||||
if err := c.do(ctx, http.MethodHead, "/", nil, nil); err != nil {
|
||||
return err
|
||||
}
|
||||
return nil
|
||||
}
|
||||
func (c *Client) Embeddings(ctx context.Context, req *EmbeddingRequest) (*EmbeddingResponse, error) {
|
||||
var resp EmbeddingResponse
|
||||
if err := c.do(ctx, http.MethodPost, "/api/embeddings", req, &resp); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return &resp, nil
|
||||
}
|
||||
|
||||
func (c *Client) CreateBlob(ctx context.Context, digest string, r io.Reader) error {
|
||||
if err := c.do(ctx, http.MethodHead, fmt.Sprintf("/api/blobs/%s", digest), nil, nil); err != nil {
|
||||
var statusError StatusError
|
||||
if !errors.As(err, &statusError) || statusError.StatusCode != http.StatusNotFound {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := c.do(ctx, http.MethodPost, fmt.Sprintf("/api/blobs/%s", digest), r, nil); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (c *Client) Version(ctx context.Context) (string, error) {
|
||||
var version struct {
|
||||
Version string `json:"version"`
|
||||
}
|
||||
|
||||
if err := c.do(ctx, http.MethodGet, "/api/version", nil, &version); err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
return version.Version, nil
|
||||
}
|
||||
|
284
api/client.py
Normal file
@@ -0,0 +1,284 @@
|
||||
import os
|
||||
import json
|
||||
import requests
|
||||
import os
|
||||
import hashlib
|
||||
import json
|
||||
from pathlib import Path
|
||||
|
||||
BASE_URL = os.environ.get('OLLAMA_HOST', 'http://localhost:11434')
|
||||
|
||||
# Generate a response for a given prompt with a provided model. This is a streaming endpoint, so will be a series of responses.
|
||||
# The final response object will include statistics and additional data from the request. Use the callback function to override
|
||||
# the default handler.
|
||||
def generate(model_name, prompt, system=None, template=None, format="", context=None, options=None, callback=None):
|
||||
try:
|
||||
url = f"{BASE_URL}/api/generate"
|
||||
payload = {
|
||||
"model": model_name,
|
||||
"prompt": prompt,
|
||||
"system": system,
|
||||
"template": template,
|
||||
"context": context,
|
||||
"options": options,
|
||||
"format": format,
|
||||
}
|
||||
|
||||
# Remove keys with None values
|
||||
payload = {k: v for k, v in payload.items() if v is not None}
|
||||
|
||||
with requests.post(url, json=payload, stream=True) as response:
|
||||
response.raise_for_status()
|
||||
|
||||
# Creating a variable to hold the context history of the final chunk
|
||||
final_context = None
|
||||
|
||||
# Variable to hold concatenated response strings if no callback is provided
|
||||
full_response = ""
|
||||
|
||||
# Iterating over the response line by line and displaying the details
|
||||
for line in response.iter_lines():
|
||||
if line:
|
||||
# Parsing each line (JSON chunk) and extracting the details
|
||||
chunk = json.loads(line)
|
||||
|
||||
# If a callback function is provided, call it with the chunk
|
||||
if callback:
|
||||
callback(chunk)
|
||||
else:
|
||||
# If this is not the last chunk, add the "response" field value to full_response and print it
|
||||
if not chunk.get("done"):
|
||||
response_piece = chunk.get("response", "")
|
||||
full_response += response_piece
|
||||
print(response_piece, end="", flush=True)
|
||||
|
||||
# Check if it's the last chunk (done is true)
|
||||
if chunk.get("done"):
|
||||
final_context = chunk.get("context")
|
||||
|
||||
# Return the full response and the final context
|
||||
return full_response, final_context
|
||||
except requests.exceptions.RequestException as e:
|
||||
print(f"An error occurred: {e}")
|
||||
return None, None
|
||||
|
||||
|
||||
# Create a blob file on the server if it doesn't exist.
|
||||
def create_blob(digest, file_path):
|
||||
url = f"{BASE_URL}/api/blobs/{digest}"
|
||||
|
||||
# Check if the blob exists
|
||||
response = requests.head(url)
|
||||
if response.status_code != 404:
|
||||
return # Blob already exists, no need to upload
|
||||
response.raise_for_status()
|
||||
|
||||
# Upload the blob
|
||||
with open(file_path, 'rb') as file_data:
|
||||
requests.post(url, data=file_data)
|
||||
|
||||
|
||||
# Create a model from a Modelfile. Use the callback function to override the default handler.
|
||||
def create(model_name, filename, callback=None):
|
||||
try:
|
||||
file_path = Path(filename).expanduser().resolve()
|
||||
processed_lines = []
|
||||
|
||||
# Read and process the modelfile
|
||||
with open(file_path, 'r') as f:
|
||||
for line in f:
|
||||
# Skip empty or whitespace-only lines
|
||||
if not line.strip():
|
||||
continue
|
||||
|
||||
command, args = line.split(maxsplit=1)
|
||||
|
||||
if command.upper() in ["FROM", "ADAPTER"]:
|
||||
path = Path(args.strip()).expanduser()
|
||||
|
||||
# Check if path is relative and resolve it
|
||||
if not path.is_absolute():
|
||||
path = (file_path.parent / path)
|
||||
|
||||
# Skip if file does not exist for "model", this is handled by the server
|
||||
if not path.exists():
|
||||
processed_lines.append(line)
|
||||
continue
|
||||
|
||||
# Calculate SHA-256 hash
|
||||
with open(path, 'rb') as bin_file:
|
||||
hash = hashlib.sha256()
|
||||
hash.update(bin_file.read())
|
||||
blob = f"sha256:{hash.hexdigest()}"
|
||||
|
||||
# Add the file to the remote server
|
||||
create_blob(blob, path)
|
||||
|
||||
# Replace path with digest in the line
|
||||
line = f"{command} @{blob}\n"
|
||||
|
||||
processed_lines.append(line)
|
||||
|
||||
# Combine processed lines back into a single string
|
||||
modelfile_content = '\n'.join(processed_lines)
|
||||
|
||||
url = f"{BASE_URL}/api/create"
|
||||
payload = {"name": model_name, "modelfile": modelfile_content}
|
||||
|
||||
# Making a POST request with the stream parameter set to True to handle streaming responses
|
||||
with requests.post(url, json=payload, stream=True) as response:
|
||||
response.raise_for_status()
|
||||
# Iterating over the response line by line and displaying the status
|
||||
for line in response.iter_lines():
|
||||
if line:
|
||||
chunk = json.loads(line)
|
||||
if callback:
|
||||
callback(chunk)
|
||||
else:
|
||||
print(f"Status: {chunk.get('status')}")
|
||||
|
||||
except Exception as e:
|
||||
print(f"An error occurred: {e}")
|
||||
|
||||
|
||||
# Pull a model from a the model registry. Cancelled pulls are resumed from where they left off, and multiple
|
||||
# calls to will share the same download progress. Use the callback function to override the default handler.
|
||||
def pull(model_name, insecure=False, callback=None):
|
||||
try:
|
||||
url = f"{BASE_URL}/api/pull"
|
||||
payload = {
|
||||
"name": model_name,
|
||||
"insecure": insecure
|
||||
}
|
||||
|
||||
# Making a POST request with the stream parameter set to True to handle streaming responses
|
||||
with requests.post(url, json=payload, stream=True) as response:
|
||||
response.raise_for_status()
|
||||
|
||||
# Iterating over the response line by line and displaying the details
|
||||
for line in response.iter_lines():
|
||||
if line:
|
||||
# Parsing each line (JSON chunk) and extracting the details
|
||||
chunk = json.loads(line)
|
||||
|
||||
# If a callback function is provided, call it with the chunk
|
||||
if callback:
|
||||
callback(chunk)
|
||||
else:
|
||||
# Print the status message directly to the console
|
||||
print(chunk.get('status', ''), end='', flush=True)
|
||||
|
||||
# If there's layer data, you might also want to print that (adjust as necessary)
|
||||
if 'digest' in chunk:
|
||||
print(f" - Digest: {chunk['digest']}", end='', flush=True)
|
||||
print(f" - Total: {chunk['total']}", end='', flush=True)
|
||||
print(f" - Completed: {chunk['completed']}", end='\n', flush=True)
|
||||
else:
|
||||
print()
|
||||
except requests.exceptions.RequestException as e:
|
||||
print(f"An error occurred: {e}")
|
||||
|
||||
# Push a model to the model registry. Use the callback function to override the default handler.
|
||||
def push(model_name, insecure=False, callback=None):
|
||||
try:
|
||||
url = f"{BASE_URL}/api/push"
|
||||
payload = {
|
||||
"name": model_name,
|
||||
"insecure": insecure
|
||||
}
|
||||
|
||||
# Making a POST request with the stream parameter set to True to handle streaming responses
|
||||
with requests.post(url, json=payload, stream=True) as response:
|
||||
response.raise_for_status()
|
||||
|
||||
# Iterating over the response line by line and displaying the details
|
||||
for line in response.iter_lines():
|
||||
if line:
|
||||
# Parsing each line (JSON chunk) and extracting the details
|
||||
chunk = json.loads(line)
|
||||
|
||||
# If a callback function is provided, call it with the chunk
|
||||
if callback:
|
||||
callback(chunk)
|
||||
else:
|
||||
# Print the status message directly to the console
|
||||
print(chunk.get('status', ''), end='', flush=True)
|
||||
|
||||
# If there's layer data, you might also want to print that (adjust as necessary)
|
||||
if 'digest' in chunk:
|
||||
print(f" - Digest: {chunk['digest']}", end='', flush=True)
|
||||
print(f" - Total: {chunk['total']}", end='', flush=True)
|
||||
print(f" - Completed: {chunk['completed']}", end='\n', flush=True)
|
||||
else:
|
||||
print()
|
||||
except requests.exceptions.RequestException as e:
|
||||
print(f"An error occurred: {e}")
|
||||
|
||||
# List models that are available locally.
|
||||
def list():
|
||||
try:
|
||||
response = requests.get(f"{BASE_URL}/api/tags")
|
||||
response.raise_for_status()
|
||||
data = response.json()
|
||||
models = data.get('models', [])
|
||||
return models
|
||||
|
||||
except requests.exceptions.RequestException as e:
|
||||
print(f"An error occurred: {e}")
|
||||
return None
|
||||
|
||||
# Copy a model. Creates a model with another name from an existing model.
|
||||
def copy(source, destination):
|
||||
try:
|
||||
# Create the JSON payload
|
||||
payload = {
|
||||
"source": source,
|
||||
"destination": destination
|
||||
}
|
||||
|
||||
response = requests.post(f"{BASE_URL}/api/copy", json=payload)
|
||||
response.raise_for_status()
|
||||
|
||||
# If the request was successful, return a message indicating that the copy was successful
|
||||
return "Copy successful"
|
||||
|
||||
except requests.exceptions.RequestException as e:
|
||||
print(f"An error occurred: {e}")
|
||||
return None
|
||||
|
||||
# Delete a model and its data.
|
||||
def delete(model_name):
|
||||
try:
|
||||
url = f"{BASE_URL}/api/delete"
|
||||
payload = {"name": model_name}
|
||||
response = requests.delete(url, json=payload)
|
||||
response.raise_for_status()
|
||||
return "Delete successful"
|
||||
except requests.exceptions.RequestException as e:
|
||||
print(f"An error occurred: {e}")
|
||||
return None
|
||||
|
||||
# Show info about a model.
|
||||
def show(model_name):
|
||||
try:
|
||||
url = f"{BASE_URL}/api/show"
|
||||
payload = {"name": model_name}
|
||||
response = requests.post(url, json=payload)
|
||||
response.raise_for_status()
|
||||
|
||||
# Parse the JSON response and return it
|
||||
data = response.json()
|
||||
return data
|
||||
except requests.exceptions.RequestException as e:
|
||||
print(f"An error occurred: {e}")
|
||||
return None
|
||||
|
||||
def heartbeat():
|
||||
try:
|
||||
url = f"{BASE_URL}/"
|
||||
response = requests.head(url)
|
||||
response.raise_for_status()
|
||||
return "Ollama is running"
|
||||
except requests.exceptions.RequestException as e:
|
||||
print(f"An error occurred: {e}")
|
||||
return "Ollama is not running"
|
43
api/client_test.go
Normal file
@@ -0,0 +1,43 @@
|
||||
package api
|
||||
|
||||
import "testing"
|
||||
|
||||
func TestClientFromEnvironment(t *testing.T) {
|
||||
type testCase struct {
|
||||
value string
|
||||
expect string
|
||||
err error
|
||||
}
|
||||
|
||||
testCases := map[string]*testCase{
|
||||
"empty": {value: "", expect: "http://127.0.0.1:11434"},
|
||||
"only address": {value: "1.2.3.4", expect: "http://1.2.3.4:11434"},
|
||||
"only port": {value: ":1234", expect: "http://:1234"},
|
||||
"address and port": {value: "1.2.3.4:1234", expect: "http://1.2.3.4:1234"},
|
||||
"scheme http and address": {value: "http://1.2.3.4", expect: "http://1.2.3.4:80"},
|
||||
"scheme https and address": {value: "https://1.2.3.4", expect: "https://1.2.3.4:443"},
|
||||
"scheme, address, and port": {value: "https://1.2.3.4:1234", expect: "https://1.2.3.4:1234"},
|
||||
"hostname": {value: "example.com", expect: "http://example.com:11434"},
|
||||
"hostname and port": {value: "example.com:1234", expect: "http://example.com:1234"},
|
||||
"scheme http and hostname": {value: "http://example.com", expect: "http://example.com:80"},
|
||||
"scheme https and hostname": {value: "https://example.com", expect: "https://example.com:443"},
|
||||
"scheme, hostname, and port": {value: "https://example.com:1234", expect: "https://example.com:1234"},
|
||||
"trailing slash": {value: "example.com/", expect: "http://example.com:11434"},
|
||||
"trailing slash port": {value: "example.com:1234/", expect: "http://example.com:1234"},
|
||||
}
|
||||
|
||||
for k, v := range testCases {
|
||||
t.Run(k, func(t *testing.T) {
|
||||
t.Setenv("OLLAMA_HOST", v.value)
|
||||
|
||||
client, err := ClientFromEnvironment()
|
||||
if err != v.err {
|
||||
t.Fatalf("expected %s, got %s", v.err, err)
|
||||
}
|
||||
|
||||
if client.base.String() != v.expect {
|
||||
t.Fatalf("expected %s, got %s", v.expect, client.base.String())
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
524
api/types.go
@@ -1,182 +1,470 @@
|
||||
package api
|
||||
|
||||
import (
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"math"
|
||||
"os"
|
||||
"runtime"
|
||||
"reflect"
|
||||
"strconv"
|
||||
"strings"
|
||||
"time"
|
||||
)
|
||||
|
||||
type StatusError struct {
|
||||
StatusCode int
|
||||
Status string
|
||||
Message string
|
||||
StatusCode int
|
||||
Status string
|
||||
ErrorMessage string `json:"error"`
|
||||
}
|
||||
|
||||
func (e StatusError) Error() string {
|
||||
if e.Message != "" {
|
||||
return fmt.Sprintf("%s: %s", e.Status, e.Message)
|
||||
switch {
|
||||
case e.Status != "" && e.ErrorMessage != "":
|
||||
return fmt.Sprintf("%s: %s", e.Status, e.ErrorMessage)
|
||||
case e.Status != "":
|
||||
return e.Status
|
||||
case e.ErrorMessage != "":
|
||||
return e.ErrorMessage
|
||||
default:
|
||||
// this should not happen
|
||||
return "something went wrong, please see the ollama server logs for details"
|
||||
}
|
||||
return e.Status
|
||||
}
|
||||
|
||||
type ImageData []byte
|
||||
|
||||
type GenerateRequest struct {
|
||||
Model string `json:"model"`
|
||||
Prompt string `json:"prompt"`
|
||||
Context []int `json:"context,omitempty"`
|
||||
Model string `json:"model"`
|
||||
Prompt string `json:"prompt"`
|
||||
System string `json:"system"`
|
||||
Template string `json:"template"`
|
||||
Context []int `json:"context,omitempty"`
|
||||
Stream *bool `json:"stream,omitempty"`
|
||||
Raw bool `json:"raw,omitempty"`
|
||||
Format string `json:"format"`
|
||||
Images []ImageData `json:"images,omitempty"`
|
||||
|
||||
Options `json:"options"`
|
||||
Options map[string]interface{} `json:"options"`
|
||||
}
|
||||
|
||||
type CreateRequest struct {
|
||||
Name string `json:"name"`
|
||||
Path string `json:"path"`
|
||||
type ChatRequest struct {
|
||||
Model string `json:"model"`
|
||||
Messages []Message `json:"messages"`
|
||||
Stream *bool `json:"stream,omitempty"`
|
||||
Format string `json:"format"`
|
||||
|
||||
Options map[string]interface{} `json:"options"`
|
||||
}
|
||||
|
||||
type CreateProgress struct {
|
||||
Status string `json:"status"`
|
||||
type Message struct {
|
||||
Role string `json:"role"` // one of ["system", "user", "assistant"]
|
||||
Content string `json:"content"`
|
||||
Images []ImageData `json:"images,omitempty"`
|
||||
}
|
||||
|
||||
type PullRequest struct {
|
||||
Name string `json:"name"`
|
||||
Username string `json:"username"`
|
||||
Password string `json:"password"`
|
||||
}
|
||||
|
||||
type PullProgress struct {
|
||||
Status string `json:"status"`
|
||||
Digest string `json:"digest,omitempty"`
|
||||
Total int `json:"total,omitempty"`
|
||||
Completed int `json:"completed,omitempty"`
|
||||
Percent float64 `json:"percent,omitempty"`
|
||||
}
|
||||
|
||||
type PushRequest struct {
|
||||
Name string `json:"name"`
|
||||
Username string `json:"username"`
|
||||
Password string `json:"password"`
|
||||
}
|
||||
|
||||
type PushProgress struct {
|
||||
Status string `json:"status"`
|
||||
Digest string `json:"digest,omitempty"`
|
||||
Total int `json:"total,omitempty"`
|
||||
Completed int `json:"completed,omitempty"`
|
||||
Percent float64 `json:"percent,omitempty"`
|
||||
}
|
||||
|
||||
type ListResponse struct {
|
||||
Models []ListResponseModel `json:"models"`
|
||||
}
|
||||
|
||||
type ListResponseModel struct {
|
||||
Name string `json:"name"`
|
||||
ModifiedAt time.Time `json:"modified_at"`
|
||||
Size int `json:"size"`
|
||||
}
|
||||
|
||||
type GenerateResponse struct {
|
||||
type ChatResponse struct {
|
||||
Model string `json:"model"`
|
||||
CreatedAt time.Time `json:"created_at"`
|
||||
Response string `json:"response,omitempty"`
|
||||
Message Message `json:"message"`
|
||||
|
||||
Done bool `json:"done"`
|
||||
Context []int `json:"context,omitempty"`
|
||||
Done bool `json:"done"`
|
||||
|
||||
Metrics
|
||||
}
|
||||
|
||||
type Metrics struct {
|
||||
TotalDuration time.Duration `json:"total_duration,omitempty"`
|
||||
LoadDuration time.Duration `json:"load_duration,omitempty"`
|
||||
PromptEvalCount int `json:"prompt_eval_count,omitempty"`
|
||||
PromptEvalDuration time.Duration `json:"prompt_eval_duration,omitempty"`
|
||||
EvalCount int `json:"eval_count,omitempty"`
|
||||
EvalDuration time.Duration `json:"eval_duration,omitempty"`
|
||||
}
|
||||
|
||||
func (r *GenerateResponse) Summary() {
|
||||
if r.TotalDuration > 0 {
|
||||
fmt.Fprintf(os.Stderr, "total duration: %v\n", r.TotalDuration)
|
||||
// Options specfied in GenerateRequest, if you add a new option here add it to the API docs also
|
||||
type Options struct {
|
||||
Runner
|
||||
|
||||
// Predict options used at runtime
|
||||
NumKeep int `json:"num_keep,omitempty"`
|
||||
Seed int `json:"seed,omitempty"`
|
||||
NumPredict int `json:"num_predict,omitempty"`
|
||||
TopK int `json:"top_k,omitempty"`
|
||||
TopP float32 `json:"top_p,omitempty"`
|
||||
TFSZ float32 `json:"tfs_z,omitempty"`
|
||||
TypicalP float32 `json:"typical_p,omitempty"`
|
||||
RepeatLastN int `json:"repeat_last_n,omitempty"`
|
||||
Temperature float32 `json:"temperature,omitempty"`
|
||||
RepeatPenalty float32 `json:"repeat_penalty,omitempty"`
|
||||
PresencePenalty float32 `json:"presence_penalty,omitempty"`
|
||||
FrequencyPenalty float32 `json:"frequency_penalty,omitempty"`
|
||||
Mirostat int `json:"mirostat,omitempty"`
|
||||
MirostatTau float32 `json:"mirostat_tau,omitempty"`
|
||||
MirostatEta float32 `json:"mirostat_eta,omitempty"`
|
||||
PenalizeNewline bool `json:"penalize_newline,omitempty"`
|
||||
Stop []string `json:"stop,omitempty"`
|
||||
}
|
||||
|
||||
// Runner options which must be set when the model is loaded into memory
|
||||
type Runner struct {
|
||||
UseNUMA bool `json:"numa,omitempty"`
|
||||
NumCtx int `json:"num_ctx,omitempty"`
|
||||
NumBatch int `json:"num_batch,omitempty"`
|
||||
NumGQA int `json:"num_gqa,omitempty"`
|
||||
NumGPU int `json:"num_gpu,omitempty"`
|
||||
MainGPU int `json:"main_gpu,omitempty"`
|
||||
LowVRAM bool `json:"low_vram,omitempty"`
|
||||
F16KV bool `json:"f16_kv,omitempty"`
|
||||
LogitsAll bool `json:"logits_all,omitempty"`
|
||||
VocabOnly bool `json:"vocab_only,omitempty"`
|
||||
UseMMap bool `json:"use_mmap,omitempty"`
|
||||
UseMLock bool `json:"use_mlock,omitempty"`
|
||||
EmbeddingOnly bool `json:"embedding_only,omitempty"`
|
||||
RopeFrequencyBase float32 `json:"rope_frequency_base,omitempty"`
|
||||
RopeFrequencyScale float32 `json:"rope_frequency_scale,omitempty"`
|
||||
NumThread int `json:"num_thread,omitempty"`
|
||||
}
|
||||
|
||||
type EmbeddingRequest struct {
|
||||
Model string `json:"model"`
|
||||
Prompt string `json:"prompt"`
|
||||
|
||||
Options map[string]interface{} `json:"options"`
|
||||
}
|
||||
|
||||
type EmbeddingResponse struct {
|
||||
Embedding []float64 `json:"embedding"`
|
||||
}
|
||||
|
||||
type CreateRequest struct {
|
||||
Name string `json:"name"`
|
||||
Path string `json:"path"`
|
||||
Modelfile string `json:"modelfile"`
|
||||
Stream *bool `json:"stream,omitempty"`
|
||||
}
|
||||
|
||||
type DeleteRequest struct {
|
||||
Name string `json:"name"`
|
||||
}
|
||||
|
||||
type ShowRequest struct {
|
||||
Name string `json:"name"`
|
||||
Model string `json:"model"`
|
||||
System string `json:"system"`
|
||||
Template string `json:"template"`
|
||||
|
||||
Options map[string]interface{} `json:"options"`
|
||||
}
|
||||
|
||||
type ShowResponse struct {
|
||||
License string `json:"license,omitempty"`
|
||||
Modelfile string `json:"modelfile,omitempty"`
|
||||
Parameters string `json:"parameters,omitempty"`
|
||||
Template string `json:"template,omitempty"`
|
||||
System string `json:"system,omitempty"`
|
||||
Details ModelDetails `json:"details,omitempty"`
|
||||
}
|
||||
|
||||
type CopyRequest struct {
|
||||
Source string `json:"source"`
|
||||
Destination string `json:"destination"`
|
||||
}
|
||||
|
||||
type PullRequest struct {
|
||||
Name string `json:"name"`
|
||||
Insecure bool `json:"insecure,omitempty"`
|
||||
Username string `json:"username"`
|
||||
Password string `json:"password"`
|
||||
Stream *bool `json:"stream,omitempty"`
|
||||
}
|
||||
|
||||
type ProgressResponse struct {
|
||||
Status string `json:"status"`
|
||||
Digest string `json:"digest,omitempty"`
|
||||
Total int64 `json:"total,omitempty"`
|
||||
Completed int64 `json:"completed,omitempty"`
|
||||
}
|
||||
|
||||
type PushRequest struct {
|
||||
Name string `json:"name"`
|
||||
Insecure bool `json:"insecure,omitempty"`
|
||||
Username string `json:"username"`
|
||||
Password string `json:"password"`
|
||||
Stream *bool `json:"stream,omitempty"`
|
||||
}
|
||||
|
||||
type ListResponse struct {
|
||||
Models []ModelResponse `json:"models"`
|
||||
}
|
||||
|
||||
type ModelResponse struct {
|
||||
Name string `json:"name"`
|
||||
ModifiedAt time.Time `json:"modified_at"`
|
||||
Size int64 `json:"size"`
|
||||
Digest string `json:"digest"`
|
||||
Details ModelDetails `json:"details,omitempty"`
|
||||
}
|
||||
|
||||
type TokenResponse struct {
|
||||
Token string `json:"token"`
|
||||
}
|
||||
|
||||
type GenerateResponse struct {
|
||||
Model string `json:"model"`
|
||||
CreatedAt time.Time `json:"created_at"`
|
||||
Response string `json:"response"`
|
||||
|
||||
Done bool `json:"done"`
|
||||
Context []int `json:"context,omitempty"`
|
||||
|
||||
Metrics
|
||||
}
|
||||
|
||||
type ModelDetails struct {
|
||||
Format string `json:"format"`
|
||||
Family string `json:"family"`
|
||||
Families []string `json:"families"`
|
||||
ParameterSize string `json:"parameter_size"`
|
||||
QuantizationLevel string `json:"quantization_level"`
|
||||
}
|
||||
|
||||
func (m *Metrics) Summary() {
|
||||
if m.TotalDuration > 0 {
|
||||
fmt.Fprintf(os.Stderr, "total duration: %v\n", m.TotalDuration)
|
||||
}
|
||||
|
||||
if r.PromptEvalCount > 0 {
|
||||
fmt.Fprintf(os.Stderr, "prompt eval count: %d token(s)\n", r.PromptEvalCount)
|
||||
if m.LoadDuration > 0 {
|
||||
fmt.Fprintf(os.Stderr, "load duration: %v\n", m.LoadDuration)
|
||||
}
|
||||
|
||||
if r.PromptEvalDuration > 0 {
|
||||
fmt.Fprintf(os.Stderr, "prompt eval duration: %s\n", r.PromptEvalDuration)
|
||||
fmt.Fprintf(os.Stderr, "prompt eval rate: %.2f tokens/s\n", float64(r.PromptEvalCount)/r.PromptEvalDuration.Seconds())
|
||||
if m.PromptEvalCount > 0 {
|
||||
fmt.Fprintf(os.Stderr, "prompt eval count: %d token(s)\n", m.PromptEvalCount)
|
||||
}
|
||||
|
||||
if r.EvalCount > 0 {
|
||||
fmt.Fprintf(os.Stderr, "eval count: %d token(s)\n", r.EvalCount)
|
||||
if m.PromptEvalDuration > 0 {
|
||||
fmt.Fprintf(os.Stderr, "prompt eval duration: %s\n", m.PromptEvalDuration)
|
||||
fmt.Fprintf(os.Stderr, "prompt eval rate: %.2f tokens/s\n", float64(m.PromptEvalCount)/m.PromptEvalDuration.Seconds())
|
||||
}
|
||||
|
||||
if r.EvalDuration > 0 {
|
||||
fmt.Fprintf(os.Stderr, "eval duration: %s\n", r.EvalDuration)
|
||||
fmt.Fprintf(os.Stderr, "eval rate: %.2f tokens/s\n", float64(r.EvalCount)/r.EvalDuration.Seconds())
|
||||
if m.EvalCount > 0 {
|
||||
fmt.Fprintf(os.Stderr, "eval count: %d token(s)\n", m.EvalCount)
|
||||
}
|
||||
|
||||
if m.EvalDuration > 0 {
|
||||
fmt.Fprintf(os.Stderr, "eval duration: %s\n", m.EvalDuration)
|
||||
fmt.Fprintf(os.Stderr, "eval rate: %.2f tokens/s\n", float64(m.EvalCount)/m.EvalDuration.Seconds())
|
||||
}
|
||||
}
|
||||
|
||||
type Options struct {
|
||||
Seed int `json:"seed,omitempty"`
|
||||
var ErrInvalidOpts = fmt.Errorf("invalid options")
|
||||
|
||||
// Backend options
|
||||
UseNUMA bool `json:"numa,omitempty"`
|
||||
func (opts *Options) FromMap(m map[string]interface{}) error {
|
||||
valueOpts := reflect.ValueOf(opts).Elem() // names of the fields in the options struct
|
||||
typeOpts := reflect.TypeOf(opts).Elem() // types of the fields in the options struct
|
||||
|
||||
// Model options
|
||||
NumCtx int `json:"num_ctx,omitempty"`
|
||||
NumBatch int `json:"num_batch,omitempty"`
|
||||
NumGPU int `json:"num_gpu,omitempty"`
|
||||
MainGPU int `json:"main_gpu,omitempty"`
|
||||
LowVRAM bool `json:"low_vram,omitempty"`
|
||||
F16KV bool `json:"f16_kv,omitempty"`
|
||||
LogitsAll bool `json:"logits_all,omitempty"`
|
||||
VocabOnly bool `json:"vocab_only,omitempty"`
|
||||
UseMMap bool `json:"use_mmap,omitempty"`
|
||||
UseMLock bool `json:"use_mlock,omitempty"`
|
||||
EmbeddingOnly bool `json:"embedding_only,omitempty"`
|
||||
// build map of json struct tags to their types
|
||||
jsonOpts := make(map[string]reflect.StructField)
|
||||
for _, field := range reflect.VisibleFields(typeOpts) {
|
||||
jsonTag := strings.Split(field.Tag.Get("json"), ",")[0]
|
||||
if jsonTag != "" {
|
||||
jsonOpts[jsonTag] = field
|
||||
}
|
||||
}
|
||||
|
||||
// Predict options
|
||||
RepeatLastN int `json:"repeat_last_n,omitempty"`
|
||||
RepeatPenalty float32 `json:"repeat_penalty,omitempty"`
|
||||
FrequencyPenalty float32 `json:"frequency_penalty,omitempty"`
|
||||
PresencePenalty float32 `json:"presence_penalty,omitempty"`
|
||||
Temperature float32 `json:"temperature,omitempty"`
|
||||
TopK int `json:"top_k,omitempty"`
|
||||
TopP float32 `json:"top_p,omitempty"`
|
||||
TFSZ float32 `json:"tfs_z,omitempty"`
|
||||
TypicalP float32 `json:"typical_p,omitempty"`
|
||||
Mirostat int `json:"mirostat,omitempty"`
|
||||
MirostatTau float32 `json:"mirostat_tau,omitempty"`
|
||||
MirostatEta float32 `json:"mirostat_eta,omitempty"`
|
||||
invalidOpts := []string{}
|
||||
for key, val := range m {
|
||||
if opt, ok := jsonOpts[key]; ok {
|
||||
field := valueOpts.FieldByName(opt.Name)
|
||||
if field.IsValid() && field.CanSet() {
|
||||
if val == nil {
|
||||
continue
|
||||
}
|
||||
|
||||
NumThread int `json:"num_thread,omitempty"`
|
||||
switch field.Kind() {
|
||||
case reflect.Int:
|
||||
switch t := val.(type) {
|
||||
case int64:
|
||||
field.SetInt(t)
|
||||
case float64:
|
||||
// when JSON unmarshals numbers, it uses float64, not int
|
||||
field.SetInt(int64(t))
|
||||
default:
|
||||
return fmt.Errorf("option %q must be of type integer", key)
|
||||
}
|
||||
case reflect.Bool:
|
||||
val, ok := val.(bool)
|
||||
if !ok {
|
||||
return fmt.Errorf("option %q must be of type boolean", key)
|
||||
}
|
||||
field.SetBool(val)
|
||||
case reflect.Float32:
|
||||
// JSON unmarshals to float64
|
||||
val, ok := val.(float64)
|
||||
if !ok {
|
||||
return fmt.Errorf("option %q must be of type float32", key)
|
||||
}
|
||||
field.SetFloat(val)
|
||||
case reflect.String:
|
||||
val, ok := val.(string)
|
||||
if !ok {
|
||||
return fmt.Errorf("option %q must be of type string", key)
|
||||
}
|
||||
field.SetString(val)
|
||||
case reflect.Slice:
|
||||
// JSON unmarshals to []interface{}, not []string
|
||||
val, ok := val.([]interface{})
|
||||
if !ok {
|
||||
return fmt.Errorf("option %q must be of type array", key)
|
||||
}
|
||||
// convert []interface{} to []string
|
||||
slice := make([]string, len(val))
|
||||
for i, item := range val {
|
||||
str, ok := item.(string)
|
||||
if !ok {
|
||||
return fmt.Errorf("option %q must be of an array of strings", key)
|
||||
}
|
||||
slice[i] = str
|
||||
}
|
||||
field.Set(reflect.ValueOf(slice))
|
||||
default:
|
||||
return fmt.Errorf("unknown type loading config params: %v", field.Kind())
|
||||
}
|
||||
}
|
||||
} else {
|
||||
invalidOpts = append(invalidOpts, key)
|
||||
}
|
||||
}
|
||||
|
||||
if len(invalidOpts) > 0 {
|
||||
return fmt.Errorf("%w: %v", ErrInvalidOpts, strings.Join(invalidOpts, ", "))
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func DefaultOptions() Options {
|
||||
return Options{
|
||||
Seed: -1,
|
||||
|
||||
UseNUMA: false,
|
||||
|
||||
NumCtx: 2048,
|
||||
NumBatch: 512,
|
||||
NumGPU: 1,
|
||||
LowVRAM: false,
|
||||
F16KV: true,
|
||||
UseMMap: true,
|
||||
UseMLock: false,
|
||||
|
||||
RepeatLastN: 512,
|
||||
RepeatPenalty: 1.1,
|
||||
FrequencyPenalty: 0.0,
|
||||
PresencePenalty: 0.0,
|
||||
// options set on request to runner
|
||||
NumPredict: -1,
|
||||
NumKeep: 0,
|
||||
Temperature: 0.8,
|
||||
TopK: 40,
|
||||
TopP: 0.9,
|
||||
TFSZ: 1.0,
|
||||
TypicalP: 1.0,
|
||||
RepeatLastN: 64,
|
||||
RepeatPenalty: 1.1,
|
||||
PresencePenalty: 0.0,
|
||||
FrequencyPenalty: 0.0,
|
||||
Mirostat: 0,
|
||||
MirostatTau: 5.0,
|
||||
MirostatEta: 0.1,
|
||||
PenalizeNewline: true,
|
||||
Seed: -1,
|
||||
|
||||
NumThread: runtime.NumCPU(),
|
||||
Runner: Runner{
|
||||
// options set when the model is loaded
|
||||
NumCtx: 2048,
|
||||
RopeFrequencyBase: 10000.0,
|
||||
RopeFrequencyScale: 1.0,
|
||||
NumBatch: 512,
|
||||
NumGPU: -1, // -1 here indicates that NumGPU should be set dynamically
|
||||
NumGQA: 1,
|
||||
NumThread: 0, // let the runtime decide
|
||||
LowVRAM: false,
|
||||
F16KV: true,
|
||||
UseMLock: false,
|
||||
UseMMap: true,
|
||||
UseNUMA: false,
|
||||
EmbeddingOnly: true,
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
type Duration struct {
|
||||
time.Duration
|
||||
}
|
||||
|
||||
func (d *Duration) UnmarshalJSON(b []byte) (err error) {
|
||||
var v any
|
||||
if err := json.Unmarshal(b, &v); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
d.Duration = 5 * time.Minute
|
||||
|
||||
switch t := v.(type) {
|
||||
case float64:
|
||||
if t < 0 {
|
||||
t = math.MaxFloat64
|
||||
}
|
||||
|
||||
d.Duration = time.Duration(t)
|
||||
case string:
|
||||
d.Duration, err = time.ParseDuration(t)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
// FormatParams converts specified parameter options to their correct types
|
||||
func FormatParams(params map[string][]string) (map[string]interface{}, error) {
|
||||
opts := Options{}
|
||||
valueOpts := reflect.ValueOf(&opts).Elem() // names of the fields in the options struct
|
||||
typeOpts := reflect.TypeOf(opts) // types of the fields in the options struct
|
||||
|
||||
// build map of json struct tags to their types
|
||||
jsonOpts := make(map[string]reflect.StructField)
|
||||
for _, field := range reflect.VisibleFields(typeOpts) {
|
||||
jsonTag := strings.Split(field.Tag.Get("json"), ",")[0]
|
||||
if jsonTag != "" {
|
||||
jsonOpts[jsonTag] = field
|
||||
}
|
||||
}
|
||||
|
||||
out := make(map[string]interface{})
|
||||
// iterate params and set values based on json struct tags
|
||||
for key, vals := range params {
|
||||
if opt, ok := jsonOpts[key]; !ok {
|
||||
return nil, fmt.Errorf("unknown parameter '%s'", key)
|
||||
} else {
|
||||
field := valueOpts.FieldByName(opt.Name)
|
||||
if field.IsValid() && field.CanSet() {
|
||||
switch field.Kind() {
|
||||
case reflect.Float32:
|
||||
floatVal, err := strconv.ParseFloat(vals[0], 32)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("invalid float value %s", vals)
|
||||
}
|
||||
|
||||
out[key] = float32(floatVal)
|
||||
case reflect.Int:
|
||||
intVal, err := strconv.ParseInt(vals[0], 10, 64)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("invalid int value %s", vals)
|
||||
}
|
||||
|
||||
out[key] = intVal
|
||||
case reflect.Bool:
|
||||
boolVal, err := strconv.ParseBool(vals[0])
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("invalid bool value %s", vals)
|
||||
}
|
||||
|
||||
out[key] = boolVal
|
||||
case reflect.String:
|
||||
out[key] = vals[0]
|
||||
case reflect.Slice:
|
||||
// TODO: only string slices are supported right now
|
||||
out[key] = vals
|
||||
default:
|
||||
return nil, fmt.Errorf("unknown type %s for %s", field.Kind(), key)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return out, nil
|
||||
}
|
||||
|
@@ -1,7 +1,5 @@
|
||||
# Desktop
|
||||
|
||||
_Note: the Ollama desktop app is a work in progress and is not ready yet for general use._
|
||||
|
||||
This app builds upon Ollama to provide a desktop experience for running models.
|
||||
|
||||
## Developing
|
||||
@@ -9,19 +7,15 @@ This app builds upon Ollama to provide a desktop experience for running models.
|
||||
First, build the `ollama` binary:
|
||||
|
||||
```
|
||||
make -C ..
|
||||
cd ..
|
||||
go build .
|
||||
```
|
||||
|
||||
Then run the desktop app with `npm start`:
|
||||
|
||||
```
|
||||
cd app
|
||||
npm install
|
||||
npm start
|
||||
```
|
||||
|
||||
## Coming soon
|
||||
|
||||
- Browse the latest available models on Hugging Face and other sources
|
||||
- Keep track of previous conversations with models
|
||||
- Switch quickly between models
|
||||
- Connect to remote Ollama servers to run models
|
||||
|
BIN
app/assets/iconDarkTemplate.png
Normal file
After Width: | Height: | Size: 402 B |
Before Width: | Height: | Size: 741 B After Width: | Height: | Size: 741 B |
BIN
app/assets/iconDarkUpdateTemplate.png
Normal file
After Width: | Height: | Size: 440 B |
BIN
app/assets/iconDarkUpdateTemplate@2x.png
Normal file
After Width: | Height: | Size: 763 B |
BIN
app/assets/iconTemplate.png
Normal file
After Width: | Height: | Size: 447 B |
BIN
app/assets/iconTemplate@2x.png
Normal file
After Width: | Height: | Size: 891 B |
BIN
app/assets/iconUpdateTemplate.png
Normal file
After Width: | Height: | Size: 443 B |
BIN
app/assets/iconUpdateTemplate@2x.png
Normal file
After Width: | Height: | Size: 844 B |
Before Width: | Height: | Size: 403 B |
@@ -18,10 +18,15 @@ const config: ForgeConfig = {
|
||||
asar: true,
|
||||
icon: './assets/icon.icns',
|
||||
extraResource: [
|
||||
'../ollama',
|
||||
path.join(__dirname, './assets/ollama_icon_16x16Template.png'),
|
||||
path.join(__dirname, './assets/ollama_icon_16x16Template@2x.png'),
|
||||
...(process.platform === 'darwin' ? ['../llama/ggml-metal.metal'] : []),
|
||||
'../dist/ollama',
|
||||
path.join(__dirname, './assets/iconTemplate.png'),
|
||||
path.join(__dirname, './assets/iconTemplate@2x.png'),
|
||||
path.join(__dirname, './assets/iconUpdateTemplate.png'),
|
||||
path.join(__dirname, './assets/iconUpdateTemplate@2x.png'),
|
||||
path.join(__dirname, './assets/iconDarkTemplate.png'),
|
||||
path.join(__dirname, './assets/iconDarkTemplate@2x.png'),
|
||||
path.join(__dirname, './assets/iconDarkUpdateTemplate.png'),
|
||||
path.join(__dirname, './assets/iconDarkUpdateTemplate@2x.png'),
|
||||
],
|
||||
...(process.env.SIGN
|
||||
? {
|
||||
@@ -36,19 +41,12 @@ const config: ForgeConfig = {
|
||||
},
|
||||
}
|
||||
: {}),
|
||||
osxUniversal: {
|
||||
x64ArchFiles: '**/ollama',
|
||||
},
|
||||
},
|
||||
rebuildConfig: {},
|
||||
makers: [new MakerSquirrel({}), new MakerZIP({}, ['darwin'])],
|
||||
publishers: [
|
||||
new PublisherGithub({
|
||||
repository: {
|
||||
name: 'ollama',
|
||||
owner: 'jmorganca',
|
||||
},
|
||||
draft: false,
|
||||
prerelease: true,
|
||||
}),
|
||||
],
|
||||
hooks: {
|
||||
readPackageJson: async (_, packageJson) => {
|
||||
return { ...packageJson, version: process.env.VERSION || packageJson.version }
|
||||
|
999
app/package-lock.json
generated
@@ -6,12 +6,14 @@
|
||||
"main": ".webpack/main",
|
||||
"scripts": {
|
||||
"start": "electron-forge start",
|
||||
"package": "electron-forge package",
|
||||
"package:sign": "SIGN=1 electron-forge package",
|
||||
"make": "electron-forge make",
|
||||
"make:sign": "SIGN=1 electron-forge make",
|
||||
"package": "electron-forge package --arch universal",
|
||||
"package:sign": "SIGN=1 electron-forge package --arch universal",
|
||||
"make": "electron-forge make --arch universal",
|
||||
"make:sign": "SIGN=1 electron-forge make --arch universal",
|
||||
"publish": "SIGN=1 electron-forge publish",
|
||||
"lint": "eslint --ext .ts,.tsx ."
|
||||
"lint": "eslint --ext .ts,.tsx .",
|
||||
"format": "prettier --check . --ignore-path .gitignore",
|
||||
"format:fix": "prettier --write . --ignore-path .gitignore"
|
||||
},
|
||||
"keywords": [],
|
||||
"author": {
|
||||
@@ -30,6 +32,7 @@
|
||||
"@electron-forge/plugin-auto-unpack-natives": "^6.2.1",
|
||||
"@electron-forge/plugin-webpack": "^6.2.1",
|
||||
"@electron-forge/publisher-github": "^6.2.1",
|
||||
"@electron/universal": "^1.4.1",
|
||||
"@svgr/webpack": "^8.0.1",
|
||||
"@types/chmodr": "^1.0.0",
|
||||
"@types/node": "^20.4.0",
|
||||
@@ -43,7 +46,7 @@
|
||||
"chmodr": "^1.2.0",
|
||||
"copy-webpack-plugin": "^11.0.0",
|
||||
"css-loader": "^6.8.1",
|
||||
"electron": "25.2.0",
|
||||
"electron": "25.9.2",
|
||||
"eslint": "^8.43.0",
|
||||
"eslint-plugin-import": "^2.27.5",
|
||||
"fork-ts-checker-webpack-plugin": "^7.3.0",
|
||||
|
@@ -2,7 +2,7 @@ import { useState } from 'react'
|
||||
import copy from 'copy-to-clipboard'
|
||||
import { CheckIcon, DocumentDuplicateIcon } from '@heroicons/react/24/outline'
|
||||
import Store from 'electron-store'
|
||||
import { getCurrentWindow } from '@electron/remote'
|
||||
import { getCurrentWindow, app } from '@electron/remote'
|
||||
|
||||
import { install } from './install'
|
||||
import OllamaIcon from './ollama.svg'
|
||||
@@ -19,7 +19,7 @@ export default function () {
|
||||
const [step, setStep] = useState<Step>(Step.WELCOME)
|
||||
const [commandCopied, setCommandCopied] = useState<boolean>(false)
|
||||
|
||||
const command = 'ollama run orca'
|
||||
const command = 'ollama run llama2'
|
||||
|
||||
return (
|
||||
<div className='drag'>
|
||||
@@ -51,10 +51,15 @@ export default function () {
|
||||
<div className='mx-auto'>
|
||||
<button
|
||||
onClick={async () => {
|
||||
await install()
|
||||
getCurrentWindow().show()
|
||||
getCurrentWindow().focus()
|
||||
setStep(Step.FINISH)
|
||||
try {
|
||||
await install()
|
||||
setStep(Step.FINISH)
|
||||
} catch (e) {
|
||||
console.error('could not install: ', e)
|
||||
} finally {
|
||||
getCurrentWindow().show()
|
||||
getCurrentWindow().focus()
|
||||
}
|
||||
}}
|
||||
className='no-drag rounded-dm mx-auto w-[60%] rounded-md bg-black px-4 py-2 text-sm text-white hover:brightness-110'
|
||||
>
|
||||
@@ -77,7 +82,11 @@ export default function () {
|
||||
{command}
|
||||
</pre>
|
||||
<button
|
||||
className={`no-drag absolute right-[5px] px-2 py-2 ${commandCopied ? 'text-gray-900 opacity-100 hover:cursor-auto' : 'text-gray-200 opacity-50 hover:cursor-pointer'} hover:text-gray-900 hover:font-bold group-hover:opacity-100`}
|
||||
className={`no-drag absolute right-[5px] px-2 py-2 ${
|
||||
commandCopied
|
||||
? 'text-gray-900 opacity-100 hover:cursor-auto'
|
||||
: 'text-gray-200 opacity-50 hover:cursor-pointer'
|
||||
} hover:font-bold hover:text-gray-900 group-hover:opacity-100`}
|
||||
onClick={() => {
|
||||
copy(command)
|
||||
setCommandCopied(true)
|
||||
@@ -85,13 +94,15 @@ export default function () {
|
||||
}}
|
||||
>
|
||||
{commandCopied ? (
|
||||
<CheckIcon className='h-4 w-4 text-gray-500 font-bold' />
|
||||
<CheckIcon className='h-4 w-4 font-bold text-gray-500' />
|
||||
) : (
|
||||
<DocumentDuplicateIcon className='h-4 w-4 text-gray-500' />
|
||||
)}
|
||||
</button>
|
||||
</div>
|
||||
<p className='mx-auto my-4 w-[70%] text-xs text-gray-400'>Run this command in your favorite terminal.</p>
|
||||
<p className='mx-auto my-4 w-[70%] text-xs text-gray-400'>
|
||||
Run this command in your favorite terminal.
|
||||
</p>
|
||||
</div>
|
||||
<button
|
||||
onClick={() => {
|
||||
|
6
app/src/declarations.d.ts
vendored
@@ -1,4 +1,4 @@
|
||||
declare module '*.svg' {
|
||||
const content: string;
|
||||
export default content;
|
||||
}
|
||||
const content: string
|
||||
export default content
|
||||
}
|
||||
|
240
app/src/index.ts
@@ -1,17 +1,21 @@
|
||||
import { spawn } from 'child_process'
|
||||
import { app, autoUpdater, dialog, Tray, Menu, BrowserWindow } from 'electron'
|
||||
import { spawn, ChildProcess } from 'child_process'
|
||||
import { app, autoUpdater, dialog, Tray, Menu, BrowserWindow, MenuItemConstructorOptions, nativeTheme } from 'electron'
|
||||
import Store from 'electron-store'
|
||||
import winston from 'winston'
|
||||
import 'winston-daily-rotate-file'
|
||||
import * as path from 'path'
|
||||
|
||||
import { analytics, id } from './telemetry'
|
||||
import { v4 as uuidv4 } from 'uuid'
|
||||
import { installed } from './install'
|
||||
|
||||
require('@electron/remote/main').initialize()
|
||||
|
||||
if (require('electron-squirrel-startup')) {
|
||||
app.quit()
|
||||
}
|
||||
|
||||
const store = new Store()
|
||||
let tray: Tray | null = null
|
||||
|
||||
let welcomeWindow: BrowserWindow | null = null
|
||||
|
||||
declare const MAIN_WINDOW_WEBPACK_ENTRY: string
|
||||
@@ -28,10 +32,30 @@ const logger = winston.createLogger({
|
||||
format: winston.format.printf(info => info.message),
|
||||
})
|
||||
|
||||
const SingleInstanceLock = app.requestSingleInstanceLock()
|
||||
if (!SingleInstanceLock) {
|
||||
app.quit()
|
||||
}
|
||||
app.on('ready', () => {
|
||||
const gotTheLock = app.requestSingleInstanceLock()
|
||||
if (!gotTheLock) {
|
||||
app.exit(0)
|
||||
return
|
||||
}
|
||||
|
||||
app.on('second-instance', () => {
|
||||
if (app.hasSingleInstanceLock()) {
|
||||
app.releaseSingleInstanceLock()
|
||||
}
|
||||
|
||||
if (proc) {
|
||||
proc.off('exit', restart)
|
||||
proc.kill()
|
||||
}
|
||||
|
||||
app.exit(0)
|
||||
})
|
||||
|
||||
app.focus({ steal: true })
|
||||
|
||||
init()
|
||||
})
|
||||
|
||||
function firstRunWindow() {
|
||||
// Create the browser window.
|
||||
@@ -47,49 +71,74 @@ function firstRunWindow() {
|
||||
nodeIntegration: true,
|
||||
contextIsolation: false,
|
||||
},
|
||||
alwaysOnTop: true,
|
||||
})
|
||||
|
||||
require('@electron/remote/main').enable(welcomeWindow.webContents)
|
||||
|
||||
// and load the index.html of the app.
|
||||
welcomeWindow.loadURL(MAIN_WINDOW_WEBPACK_ENTRY)
|
||||
|
||||
welcomeWindow.on('ready-to-show', () => welcomeWindow.show())
|
||||
welcomeWindow.on('closed', () => {
|
||||
if (process.platform === 'darwin') {
|
||||
app.dock.hide()
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
// for debugging
|
||||
// welcomeWindow.webContents.openDevTools()
|
||||
let tray: Tray | null = null
|
||||
let updateAvailable = false
|
||||
const assetPath = app.isPackaged ? process.resourcesPath : path.join(__dirname, '..', '..', 'assets')
|
||||
|
||||
if (process.platform === 'darwin') {
|
||||
app.dock.hide()
|
||||
function trayIconPath() {
|
||||
return nativeTheme.shouldUseDarkColors
|
||||
? updateAvailable
|
||||
? path.join(assetPath, 'iconDarkUpdateTemplate.png')
|
||||
: path.join(assetPath, 'iconDarkTemplate.png')
|
||||
: updateAvailable
|
||||
? path.join(assetPath, 'iconUpdateTemplate.png')
|
||||
: path.join(assetPath, 'iconTemplate.png')
|
||||
}
|
||||
|
||||
function updateTrayIcon() {
|
||||
if (tray) {
|
||||
tray.setImage(trayIconPath())
|
||||
}
|
||||
}
|
||||
|
||||
function createSystemtray() {
|
||||
let iconPath = path.join(__dirname, '..', '..', 'assets', 'ollama_icon_16x16Template.png')
|
||||
function updateTray() {
|
||||
const updateItems: MenuItemConstructorOptions[] = [
|
||||
{ label: 'An update is available', enabled: false },
|
||||
{
|
||||
label: 'Restart to update',
|
||||
click: () => autoUpdater.quitAndInstall(),
|
||||
},
|
||||
{ type: 'separator' },
|
||||
]
|
||||
|
||||
if (app.isPackaged) {
|
||||
iconPath = path.join(process.resourcesPath, 'ollama_icon_16x16Template.png')
|
||||
const menu = Menu.buildFromTemplate([
|
||||
...(updateAvailable ? updateItems : []),
|
||||
{ role: 'quit', label: 'Quit Ollama', accelerator: 'Command+Q' },
|
||||
])
|
||||
|
||||
if (!tray) {
|
||||
tray = new Tray(trayIconPath())
|
||||
}
|
||||
|
||||
tray = new Tray(iconPath)
|
||||
tray.setToolTip(updateAvailable ? 'An update is available' : 'Ollama')
|
||||
tray.setContextMenu(menu)
|
||||
tray.setImage(trayIconPath())
|
||||
|
||||
const contextMenu = Menu.buildFromTemplate([{ role: 'quit', label: 'Quit Ollama', accelerator: 'Command+Q' }])
|
||||
|
||||
tray.setContextMenu(contextMenu)
|
||||
tray.setToolTip('Ollama')
|
||||
nativeTheme.off('updated', updateTrayIcon)
|
||||
nativeTheme.on('updated', updateTrayIcon)
|
||||
}
|
||||
|
||||
if (require('electron-squirrel-startup')) {
|
||||
app.quit()
|
||||
}
|
||||
let proc: ChildProcess = null
|
||||
|
||||
function server() {
|
||||
const binary = app.isPackaged
|
||||
? path.join(process.resourcesPath, 'ollama')
|
||||
: path.resolve(process.cwd(), '..', 'ollama')
|
||||
|
||||
const proc = spawn(binary, ['serve'])
|
||||
proc = spawn(binary, ['serve'])
|
||||
|
||||
proc.stdout.on('data', data => {
|
||||
logger.info(data.toString().trim())
|
||||
@@ -99,24 +148,75 @@ function server() {
|
||||
logger.error(data.toString().trim())
|
||||
})
|
||||
|
||||
function restart() {
|
||||
logger.info('Restarting the server...')
|
||||
server()
|
||||
proc.on('exit', restart)
|
||||
}
|
||||
|
||||
function restart() {
|
||||
setTimeout(server, 1000)
|
||||
}
|
||||
|
||||
app.on('before-quit', () => {
|
||||
if (proc) {
|
||||
proc.off('exit', restart)
|
||||
proc.kill('SIGINT') // send SIGINT signal to the server, which also stops any loaded llms
|
||||
}
|
||||
})
|
||||
|
||||
const updateURL = `https://ollama.ai/api/update?os=${process.platform}&arch=${
|
||||
process.arch
|
||||
}&version=${app.getVersion()}&id=${id()}`
|
||||
|
||||
let latest = ''
|
||||
async function isNewReleaseAvailable() {
|
||||
try {
|
||||
const response = await fetch(updateURL)
|
||||
|
||||
if (!response.ok) {
|
||||
return false
|
||||
}
|
||||
|
||||
if (response.status === 204) {
|
||||
return false
|
||||
}
|
||||
|
||||
const data = await response.json()
|
||||
|
||||
const url = data?.url
|
||||
if (!url) {
|
||||
return false
|
||||
}
|
||||
|
||||
if (latest === url) {
|
||||
return false
|
||||
}
|
||||
|
||||
latest = url
|
||||
|
||||
return true
|
||||
} catch (error) {
|
||||
logger.error(`update check failed - ${error}`)
|
||||
return false
|
||||
}
|
||||
}
|
||||
|
||||
async function checkUpdate() {
|
||||
const available = await isNewReleaseAvailable()
|
||||
if (available) {
|
||||
logger.info('checking for update')
|
||||
autoUpdater.checkForUpdates()
|
||||
}
|
||||
}
|
||||
|
||||
function init() {
|
||||
if (app.isPackaged) {
|
||||
checkUpdate()
|
||||
setInterval(() => {
|
||||
checkUpdate()
|
||||
}, 60 * 60 * 1000)
|
||||
}
|
||||
|
||||
proc.on('exit', restart)
|
||||
updateTray()
|
||||
|
||||
app.on('before-quit', () => {
|
||||
proc.off('exit', restart)
|
||||
proc.kill()
|
||||
})
|
||||
}
|
||||
|
||||
if (process.platform === 'darwin') {
|
||||
app.dock.hide()
|
||||
}
|
||||
|
||||
app.on('ready', () => {
|
||||
if (process.platform === 'darwin') {
|
||||
if (app.isPackaged) {
|
||||
if (!app.isInApplicationsFolder()) {
|
||||
@@ -152,10 +252,13 @@ app.on('ready', () => {
|
||||
}
|
||||
}
|
||||
|
||||
createSystemtray()
|
||||
server()
|
||||
|
||||
if (store.get('first-time-run') && installed()) {
|
||||
if (process.platform === 'darwin') {
|
||||
app.dock.hide()
|
||||
}
|
||||
|
||||
app.setLoginItemSettings({ openAtLogin: app.getLoginItemSettings().openAtLogin })
|
||||
return
|
||||
}
|
||||
@@ -163,7 +266,7 @@ app.on('ready', () => {
|
||||
// This is the first run or the CLI is no longer installed
|
||||
app.setLoginItemSettings({ openAtLogin: true })
|
||||
firstRunWindow()
|
||||
})
|
||||
}
|
||||
|
||||
// Quit when all windows are closed, except on macOS. There, it's common
|
||||
// for applications and their menu bar to stay active until the user quits
|
||||
@@ -174,45 +277,26 @@ app.on('window-all-closed', () => {
|
||||
}
|
||||
})
|
||||
|
||||
// In this file you can include the rest of your app's specific main process
|
||||
// code. You can also put them in separate files and import them here.
|
||||
autoUpdater.setFeedURL({
|
||||
url: `https://ollama.ai/api/update?os=${process.platform}&arch=${process.arch}&version=${app.getVersion()}`,
|
||||
})
|
||||
function id(): string {
|
||||
const id = store.get('id') as string
|
||||
|
||||
async function heartbeat() {
|
||||
analytics.track({
|
||||
anonymousId: id(),
|
||||
event: 'heartbeat',
|
||||
properties: {
|
||||
version: app.getVersion(),
|
||||
},
|
||||
})
|
||||
if (id) {
|
||||
return id
|
||||
}
|
||||
|
||||
const uuid = uuidv4()
|
||||
store.set('id', uuid)
|
||||
return uuid
|
||||
}
|
||||
|
||||
if (app.isPackaged) {
|
||||
heartbeat()
|
||||
autoUpdater.checkForUpdates()
|
||||
setInterval(() => {
|
||||
heartbeat()
|
||||
autoUpdater.checkForUpdates()
|
||||
}, 60 * 60 * 1000)
|
||||
}
|
||||
autoUpdater.setFeedURL({ url: updateURL })
|
||||
|
||||
autoUpdater.on('error', e => {
|
||||
logger.error(`update check failed - ${e.message}`)
|
||||
console.error(`update check failed - ${e.message}`)
|
||||
})
|
||||
|
||||
autoUpdater.on('update-downloaded', (event, releaseNotes, releaseName) => {
|
||||
dialog
|
||||
.showMessageBox({
|
||||
type: 'info',
|
||||
buttons: ['Restart Now', 'Later'],
|
||||
title: 'New update available',
|
||||
message: process.platform === 'win32' ? releaseNotes : releaseName,
|
||||
detail: 'A new version of Ollama is available. Restart to apply the update.',
|
||||
})
|
||||
.then(returnValue => {
|
||||
if (returnValue.response === 0) autoUpdater.quitAndInstall()
|
||||
})
|
||||
autoUpdater.on('update-downloaded', () => {
|
||||
updateAvailable = true
|
||||
updateTray()
|
||||
})
|
||||
|
@@ -13,12 +13,9 @@ export function installed() {
|
||||
}
|
||||
|
||||
export async function install() {
|
||||
const command = `do shell script "ln -F -s ${ollama} ${symlinkPath}" with administrator privileges`
|
||||
const command = `do shell script "mkdir -p ${path.dirname(
|
||||
symlinkPath
|
||||
)} && ln -F -s \\"${ollama}\\" \\"${symlinkPath}\\"" with administrator privileges`
|
||||
|
||||
try {
|
||||
await exec(`osascript -e '${command}'`)
|
||||
} catch (error) {
|
||||
console.error(`cli: failed to install cli: ${error.message}`)
|
||||
return
|
||||
}
|
||||
await exec(`osascript -e '${command}'`)
|
||||
}
|
||||
|
@@ -1,19 +0,0 @@
|
||||
import { Analytics } from '@segment/analytics-node'
|
||||
import { v4 as uuidv4 } from 'uuid'
|
||||
import Store from 'electron-store'
|
||||
|
||||
const store = new Store()
|
||||
|
||||
export const analytics = new Analytics({ writeKey: process.env.TELEMETRY_WRITE_KEY || '<empty>' })
|
||||
|
||||
export function id(): string {
|
||||
const id = store.get('id') as string
|
||||
|
||||
if (id) {
|
||||
return id
|
||||
}
|
||||
|
||||
const uuid = uuidv4()
|
||||
store.set('id', uuid)
|
||||
return uuid
|
||||
}
|
873
cmd/cmd.go
545
cmd/interactive.go
Normal file
@@ -0,0 +1,545 @@
|
||||
package cmd
|
||||
|
||||
import (
|
||||
"context"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"net/http"
|
||||
"os"
|
||||
"regexp"
|
||||
"strings"
|
||||
|
||||
"github.com/spf13/cobra"
|
||||
"golang.org/x/exp/slices"
|
||||
|
||||
"github.com/jmorganca/ollama/api"
|
||||
"github.com/jmorganca/ollama/readline"
|
||||
)
|
||||
|
||||
type MultilineState int
|
||||
|
||||
const (
|
||||
MultilineNone MultilineState = iota
|
||||
MultilinePrompt
|
||||
MultilineSystem
|
||||
MultilineTemplate
|
||||
)
|
||||
|
||||
func modelIsMultiModal(cmd *cobra.Command, name string) bool {
|
||||
// get model details
|
||||
client, err := api.ClientFromEnvironment()
|
||||
if err != nil {
|
||||
fmt.Println("error: couldn't connect to ollama server")
|
||||
return false
|
||||
}
|
||||
|
||||
req := api.ShowRequest{Name: name}
|
||||
resp, err := client.Show(cmd.Context(), &req)
|
||||
if err != nil {
|
||||
return false
|
||||
}
|
||||
|
||||
return slices.Contains(resp.Details.Families, "clip")
|
||||
}
|
||||
|
||||
func generateInteractive(cmd *cobra.Command, opts generateOptions) error {
|
||||
multiModal := modelIsMultiModal(cmd, opts.Model)
|
||||
|
||||
// load the model
|
||||
loadOpts := generateOptions{
|
||||
Model: opts.Model,
|
||||
Prompt: "",
|
||||
Images: []ImageData{},
|
||||
}
|
||||
if err := generate(cmd, loadOpts); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
usage := func() {
|
||||
fmt.Fprintln(os.Stderr, "Available Commands:")
|
||||
fmt.Fprintln(os.Stderr, " /set Set session variables")
|
||||
fmt.Fprintln(os.Stderr, " /show Show model information")
|
||||
fmt.Fprintln(os.Stderr, " /bye Exit")
|
||||
fmt.Fprintln(os.Stderr, " /?, /help Help for a command")
|
||||
fmt.Fprintln(os.Stderr, " /? shortcuts Help for keyboard shortcuts")
|
||||
fmt.Fprintln(os.Stderr, "")
|
||||
fmt.Fprintln(os.Stderr, "Use \"\"\" to begin a multi-line message.")
|
||||
fmt.Fprintln(os.Stderr, "")
|
||||
}
|
||||
|
||||
usageSet := func() {
|
||||
fmt.Fprintln(os.Stderr, "Available Commands:")
|
||||
fmt.Fprintln(os.Stderr, " /set parameter ... Set a parameter")
|
||||
fmt.Fprintln(os.Stderr, " /set system <string> Set system message")
|
||||
fmt.Fprintln(os.Stderr, " /set template <string> Set prompt template")
|
||||
fmt.Fprintln(os.Stderr, " /set history Enable history")
|
||||
fmt.Fprintln(os.Stderr, " /set nohistory Disable history")
|
||||
fmt.Fprintln(os.Stderr, " /set wordwrap Enable wordwrap")
|
||||
fmt.Fprintln(os.Stderr, " /set nowordwrap Disable wordwrap")
|
||||
fmt.Fprintln(os.Stderr, " /set format json Enable JSON mode")
|
||||
fmt.Fprintln(os.Stderr, " /set noformat Disable formatting")
|
||||
fmt.Fprintln(os.Stderr, " /set verbose Show LLM stats")
|
||||
fmt.Fprintln(os.Stderr, " /set quiet Disable LLM stats")
|
||||
fmt.Fprintln(os.Stderr, "")
|
||||
}
|
||||
|
||||
usageShortcuts := func() {
|
||||
fmt.Fprintln(os.Stderr, "Available keyboard shortcuts:")
|
||||
fmt.Fprintln(os.Stderr, " Ctrl + a Move to the beginning of the line (Home)")
|
||||
fmt.Fprintln(os.Stderr, " Ctrl + e Move to the end of the line (End)")
|
||||
fmt.Fprintln(os.Stderr, " Alt + b Move back (left) one word")
|
||||
fmt.Fprintln(os.Stderr, " Alt + f Move forward (right) one word")
|
||||
fmt.Fprintln(os.Stderr, " Ctrl + k Delete the sentence after the cursor")
|
||||
fmt.Fprintln(os.Stderr, " Ctrl + u Delete the sentence before the cursor")
|
||||
fmt.Fprintln(os.Stderr, "")
|
||||
fmt.Fprintln(os.Stderr, " Ctrl + l Clear the screen")
|
||||
fmt.Fprintln(os.Stderr, " Ctrl + c Stop the model from responding")
|
||||
fmt.Fprintln(os.Stderr, " Ctrl + d Exit ollama (/bye)")
|
||||
fmt.Fprintln(os.Stderr, "")
|
||||
}
|
||||
|
||||
usageShow := func() {
|
||||
fmt.Fprintln(os.Stderr, "Available Commands:")
|
||||
fmt.Fprintln(os.Stderr, " /show info Show details for this model")
|
||||
fmt.Fprintln(os.Stderr, " /show license Show model license")
|
||||
fmt.Fprintln(os.Stderr, " /show modelfile Show Modelfile for this model")
|
||||
fmt.Fprintln(os.Stderr, " /show parameters Show parameters for this model")
|
||||
fmt.Fprintln(os.Stderr, " /show system Show system message")
|
||||
fmt.Fprintln(os.Stderr, " /show template Show prompt template")
|
||||
fmt.Fprintln(os.Stderr, "")
|
||||
}
|
||||
|
||||
// only list out the most common parameters
|
||||
usageParameters := func() {
|
||||
fmt.Fprintln(os.Stderr, "Available Parameters:")
|
||||
fmt.Fprintln(os.Stderr, " /set parameter seed <int> Random number seed")
|
||||
fmt.Fprintln(os.Stderr, " /set parameter num_predict <int> Max number of tokens to predict")
|
||||
fmt.Fprintln(os.Stderr, " /set parameter top_k <int> Pick from top k num of tokens")
|
||||
fmt.Fprintln(os.Stderr, " /set parameter top_p <float> Pick token based on sum of probabilities")
|
||||
fmt.Fprintln(os.Stderr, " /set parameter num_ctx <int> Set the context size")
|
||||
fmt.Fprintln(os.Stderr, " /set parameter temperature <float> Set creativity level")
|
||||
fmt.Fprintln(os.Stderr, " /set parameter repeat_penalty <float> How strongly to penalize repetitions")
|
||||
fmt.Fprintln(os.Stderr, " /set parameter repeat_last_n <int> Set how far back to look for repetitions")
|
||||
fmt.Fprintln(os.Stderr, " /set parameter num_gpu <int> The number of layers to send to the GPU")
|
||||
fmt.Fprintln(os.Stderr, " /set parameter stop \"<string>\", ... Set the stop parameters")
|
||||
fmt.Fprintln(os.Stderr, "")
|
||||
}
|
||||
|
||||
scanner, err := readline.New(readline.Prompt{
|
||||
Prompt: ">>> ",
|
||||
AltPrompt: "... ",
|
||||
Placeholder: "Send a message (/? for help)",
|
||||
AltPlaceholder: `Use """ to end multi-line input`,
|
||||
})
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
fmt.Print(readline.StartBracketedPaste)
|
||||
defer fmt.Printf(readline.EndBracketedPaste)
|
||||
|
||||
var sb strings.Builder
|
||||
var multiline MultilineState
|
||||
|
||||
for {
|
||||
line, err := scanner.Readline()
|
||||
switch {
|
||||
case errors.Is(err, io.EOF):
|
||||
fmt.Println()
|
||||
return nil
|
||||
case errors.Is(err, readline.ErrInterrupt):
|
||||
if line == "" {
|
||||
fmt.Println("\nUse Ctrl + d or /bye to exit.")
|
||||
}
|
||||
|
||||
scanner.Prompt.UseAlt = false
|
||||
sb.Reset()
|
||||
|
||||
continue
|
||||
case err != nil:
|
||||
return err
|
||||
}
|
||||
|
||||
switch {
|
||||
case multiline != MultilineNone:
|
||||
// check if there's a multiline terminating string
|
||||
before, ok := strings.CutSuffix(line, `"""`)
|
||||
sb.WriteString(before)
|
||||
if !ok {
|
||||
fmt.Fprintln(&sb)
|
||||
continue
|
||||
}
|
||||
|
||||
switch multiline {
|
||||
case MultilineSystem:
|
||||
opts.System = sb.String()
|
||||
fmt.Println("Set system message.")
|
||||
sb.Reset()
|
||||
case MultilineTemplate:
|
||||
opts.Template = sb.String()
|
||||
fmt.Println("Set prompt template.")
|
||||
sb.Reset()
|
||||
}
|
||||
|
||||
multiline = MultilineNone
|
||||
scanner.Prompt.UseAlt = false
|
||||
case strings.HasPrefix(line, `"""`):
|
||||
line := strings.TrimPrefix(line, `"""`)
|
||||
line, ok := strings.CutSuffix(line, `"""`)
|
||||
sb.WriteString(line)
|
||||
if !ok {
|
||||
// no multiline terminating string; need more input
|
||||
fmt.Fprintln(&sb)
|
||||
multiline = MultilinePrompt
|
||||
scanner.Prompt.UseAlt = true
|
||||
break
|
||||
}
|
||||
case scanner.Pasting:
|
||||
fmt.Fprintln(&sb, line)
|
||||
continue
|
||||
case strings.HasPrefix(line, "/list"):
|
||||
args := strings.Fields(line)
|
||||
if err := ListHandler(cmd, args[1:]); err != nil {
|
||||
return err
|
||||
}
|
||||
case strings.HasPrefix(line, "/set"):
|
||||
args := strings.Fields(line)
|
||||
if len(args) > 1 {
|
||||
switch args[1] {
|
||||
case "history":
|
||||
scanner.HistoryEnable()
|
||||
case "nohistory":
|
||||
scanner.HistoryDisable()
|
||||
case "wordwrap":
|
||||
opts.WordWrap = true
|
||||
fmt.Println("Set 'wordwrap' mode.")
|
||||
case "nowordwrap":
|
||||
opts.WordWrap = false
|
||||
fmt.Println("Set 'nowordwrap' mode.")
|
||||
case "verbose":
|
||||
cmd.Flags().Set("verbose", "true")
|
||||
fmt.Println("Set 'verbose' mode.")
|
||||
case "quiet":
|
||||
cmd.Flags().Set("verbose", "false")
|
||||
fmt.Println("Set 'quiet' mode.")
|
||||
case "format":
|
||||
if len(args) < 3 || args[2] != "json" {
|
||||
fmt.Println("Invalid or missing format. For 'json' mode use '/set format json'")
|
||||
} else {
|
||||
opts.Format = args[2]
|
||||
fmt.Printf("Set format to '%s' mode.\n", args[2])
|
||||
}
|
||||
case "noformat":
|
||||
opts.Format = ""
|
||||
fmt.Println("Disabled format.")
|
||||
case "parameter":
|
||||
if len(args) < 4 {
|
||||
usageParameters()
|
||||
continue
|
||||
}
|
||||
var params []string
|
||||
for _, p := range args[3:] {
|
||||
params = append(params, p)
|
||||
}
|
||||
fp, err := api.FormatParams(map[string][]string{args[2]: params})
|
||||
if err != nil {
|
||||
fmt.Printf("Couldn't set parameter: %q\n\n", err)
|
||||
continue
|
||||
}
|
||||
fmt.Printf("Set parameter '%s' to '%s'\n\n", args[2], strings.Join(params, ", "))
|
||||
opts.Options[args[2]] = fp[args[2]]
|
||||
case "system", "template":
|
||||
if len(args) < 3 {
|
||||
usageSet()
|
||||
continue
|
||||
}
|
||||
|
||||
if args[1] == "system" {
|
||||
multiline = MultilineSystem
|
||||
} else if args[1] == "template" {
|
||||
multiline = MultilineTemplate
|
||||
}
|
||||
|
||||
line := strings.Join(args[2:], " ")
|
||||
line, ok := strings.CutPrefix(line, `"""`)
|
||||
if !ok {
|
||||
multiline = MultilineNone
|
||||
} else {
|
||||
// only cut suffix if the line is multiline
|
||||
line, ok = strings.CutSuffix(line, `"""`)
|
||||
if ok {
|
||||
multiline = MultilineNone
|
||||
}
|
||||
}
|
||||
|
||||
sb.WriteString(line)
|
||||
if multiline != MultilineNone {
|
||||
scanner.Prompt.UseAlt = true
|
||||
continue
|
||||
}
|
||||
|
||||
if args[1] == "system" {
|
||||
opts.System = sb.String()
|
||||
fmt.Println("Set system message.")
|
||||
} else if args[1] == "template" {
|
||||
opts.Template = sb.String()
|
||||
fmt.Println("Set prompt template.")
|
||||
}
|
||||
|
||||
sb.Reset()
|
||||
continue
|
||||
default:
|
||||
fmt.Printf("Unknown command '/set %s'. Type /? for help\n", args[1])
|
||||
}
|
||||
} else {
|
||||
usageSet()
|
||||
}
|
||||
case strings.HasPrefix(line, "/show"):
|
||||
args := strings.Fields(line)
|
||||
if len(args) > 1 {
|
||||
client, err := api.ClientFromEnvironment()
|
||||
if err != nil {
|
||||
fmt.Println("error: couldn't connect to ollama server")
|
||||
return err
|
||||
}
|
||||
req := &api.ShowRequest{
|
||||
Name: opts.Model,
|
||||
System: opts.System,
|
||||
Template: opts.Template,
|
||||
Options: opts.Options,
|
||||
}
|
||||
resp, err := client.Show(cmd.Context(), req)
|
||||
if err != nil {
|
||||
fmt.Println("error: couldn't get model")
|
||||
return err
|
||||
}
|
||||
|
||||
switch args[1] {
|
||||
case "info":
|
||||
fmt.Println("Model details:")
|
||||
if len(resp.Details.Families) > 0 {
|
||||
fmt.Printf("Family %s\n", strings.Join(resp.Details.Families, ", "))
|
||||
} else if resp.Details.Family != "" {
|
||||
fmt.Printf("Family %s\n", resp.Details.Family)
|
||||
}
|
||||
fmt.Printf("Parameter Size %s\n", resp.Details.ParameterSize)
|
||||
fmt.Printf("Quantization Level %s\n", resp.Details.QuantizationLevel)
|
||||
fmt.Println("")
|
||||
case "license":
|
||||
if resp.License == "" {
|
||||
fmt.Print("No license was specified for this model.\n\n")
|
||||
} else {
|
||||
fmt.Println(resp.License)
|
||||
}
|
||||
case "modelfile":
|
||||
fmt.Println(resp.Modelfile)
|
||||
case "parameters":
|
||||
if resp.Parameters == "" {
|
||||
fmt.Print("No parameters were specified for this model.\n\n")
|
||||
} else {
|
||||
if len(opts.Options) > 0 {
|
||||
fmt.Println("User defined parameters:")
|
||||
for k, v := range opts.Options {
|
||||
fmt.Printf("%-*s %v\n", 30, k, v)
|
||||
}
|
||||
fmt.Println()
|
||||
}
|
||||
fmt.Println("Model defined parameters:")
|
||||
fmt.Println(resp.Parameters)
|
||||
}
|
||||
case "system":
|
||||
switch {
|
||||
case opts.System != "":
|
||||
fmt.Println(opts.System + "\n")
|
||||
case resp.System != "":
|
||||
fmt.Println(resp.System + "\n")
|
||||
default:
|
||||
fmt.Print("No system message was specified for this model.\n\n")
|
||||
}
|
||||
case "template":
|
||||
switch {
|
||||
case opts.Template != "":
|
||||
fmt.Println(opts.Template + "\n")
|
||||
case resp.Template != "":
|
||||
fmt.Println(resp.Template)
|
||||
default:
|
||||
fmt.Print("No prompt template was specified for this model.\n\n")
|
||||
}
|
||||
default:
|
||||
fmt.Printf("Unknown command '/show %s'. Type /? for help\n", args[1])
|
||||
}
|
||||
} else {
|
||||
usageShow()
|
||||
}
|
||||
case strings.HasPrefix(line, "/help"), strings.HasPrefix(line, "/?"):
|
||||
args := strings.Fields(line)
|
||||
if len(args) > 1 {
|
||||
switch args[1] {
|
||||
case "set", "/set":
|
||||
usageSet()
|
||||
case "show", "/show":
|
||||
usageShow()
|
||||
case "shortcut", "shortcuts":
|
||||
usageShortcuts()
|
||||
}
|
||||
} else {
|
||||
usage()
|
||||
}
|
||||
case line == "/exit", line == "/bye":
|
||||
return nil
|
||||
case strings.HasPrefix(line, "/"):
|
||||
args := strings.Fields(line)
|
||||
isFile := false
|
||||
|
||||
if multiModal {
|
||||
for _, f := range extractFileNames(line) {
|
||||
if strings.HasPrefix(f, args[0]) {
|
||||
isFile = true
|
||||
break
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if !isFile {
|
||||
fmt.Printf("Unknown command '%s'. Type /? for help\n", args[0])
|
||||
continue
|
||||
}
|
||||
|
||||
sb.WriteString(line)
|
||||
default:
|
||||
sb.WriteString(line)
|
||||
}
|
||||
|
||||
if sb.Len() > 0 && multiline == MultilineNone {
|
||||
opts.Prompt = sb.String()
|
||||
if multiModal {
|
||||
newPrompt, images, err := extractFileData(sb.String())
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
opts.Prompt = newPrompt
|
||||
|
||||
// reset the context if we find another image
|
||||
if len(images) > 0 {
|
||||
opts.Images = images
|
||||
ctx := cmd.Context()
|
||||
ctx = context.WithValue(ctx, generateContextKey("context"), []int{})
|
||||
cmd.SetContext(ctx)
|
||||
}
|
||||
if len(opts.Images) == 0 {
|
||||
fmt.Println("This model requires you to add a jpeg, png, or svg image.")
|
||||
fmt.Println()
|
||||
sb.Reset()
|
||||
continue
|
||||
}
|
||||
}
|
||||
|
||||
if err := generate(cmd, opts); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
sb.Reset()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func normalizeFilePath(fp string) string {
|
||||
// Define a map of escaped characters and their replacements
|
||||
replacements := map[string]string{
|
||||
"\\ ": " ", // Escaped space
|
||||
"\\(": "(", // Escaped left parenthesis
|
||||
"\\)": ")", // Escaped right parenthesis
|
||||
"\\[": "[", // Escaped left square bracket
|
||||
"\\]": "]", // Escaped right square bracket
|
||||
"\\{": "{", // Escaped left curly brace
|
||||
"\\}": "}", // Escaped right curly brace
|
||||
"\\$": "$", // Escaped dollar sign
|
||||
"\\&": "&", // Escaped ampersand
|
||||
"\\;": ";", // Escaped semicolon
|
||||
"\\'": "'", // Escaped single quote
|
||||
"\\\\": "\\", // Escaped backslash
|
||||
"\\*": "*", // Escaped asterisk
|
||||
"\\?": "?", // Escaped question mark
|
||||
}
|
||||
|
||||
for escaped, actual := range replacements {
|
||||
fp = strings.ReplaceAll(fp, escaped, actual)
|
||||
}
|
||||
return fp
|
||||
}
|
||||
|
||||
func extractFileNames(input string) []string {
|
||||
// Regex to match file paths starting with optional drive letter, / ./ \ or .\ and include escaped or unescaped spaces (\ or %20)
|
||||
// and followed by more characters and a file extension
|
||||
// This will capture non filename strings, but we'll check for file existence to remove mismatches
|
||||
regexPattern := `(?:[a-zA-Z]:)?(?:\./|/|\\)[\S\\ ]+?\.(?i:jpg|jpeg|png|svg)\b`
|
||||
re := regexp.MustCompile(regexPattern)
|
||||
|
||||
return re.FindAllString(input, -1)
|
||||
}
|
||||
|
||||
func extractFileData(input string) (string, []ImageData, error) {
|
||||
filePaths := extractFileNames(input)
|
||||
var imgs []ImageData
|
||||
|
||||
for _, fp := range filePaths {
|
||||
nfp := normalizeFilePath(fp)
|
||||
data, err := getImageData(nfp)
|
||||
if err != nil {
|
||||
if os.IsNotExist(err) {
|
||||
continue
|
||||
}
|
||||
fmt.Printf("Couldn't process image: %q\n", err)
|
||||
return "", imgs, err
|
||||
}
|
||||
fmt.Printf("Added image '%s'\n", nfp)
|
||||
input = strings.ReplaceAll(input, fp, "")
|
||||
imgs = append(imgs, data)
|
||||
}
|
||||
return input, imgs, nil
|
||||
}
|
||||
|
||||
func getImageData(filePath string) ([]byte, error) {
|
||||
file, err := os.Open(filePath)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
defer file.Close()
|
||||
|
||||
buf := make([]byte, 512)
|
||||
_, err = file.Read(buf)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
contentType := http.DetectContentType(buf)
|
||||
allowedTypes := []string{"image/jpeg", "image/jpg", "image/svg+xml", "image/png"}
|
||||
if !slices.Contains(allowedTypes, contentType) {
|
||||
return nil, fmt.Errorf("invalid image type: %s", contentType)
|
||||
}
|
||||
|
||||
info, err := file.Stat()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// Check if the file size exceeds 100MB
|
||||
var maxSize int64 = 100 * 1024 * 1024 // 100MB in bytes
|
||||
if info.Size() > maxSize {
|
||||
return nil, fmt.Errorf("file size exceeds maximum limit (100MB)")
|
||||
}
|
||||
|
||||
buf = make([]byte, info.Size())
|
||||
_, err = file.Seek(0, 0)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
_, err = io.ReadFull(file, buf)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return buf, nil
|
||||
}
|
51
cmd/interactive_test.go
Normal file
@@ -0,0 +1,51 @@
|
||||
package cmd
|
||||
|
||||
import (
|
||||
"testing"
|
||||
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
func TestExtractFilenames(t *testing.T) {
|
||||
// Unix style paths
|
||||
input := ` some preamble
|
||||
./relative\ path/one.png inbetween1 ./not a valid two.jpg inbetween2
|
||||
/unescaped space /three.jpeg inbetween3 /valid\ path/dir/four.png "./quoted with spaces/five.svg`
|
||||
res := extractFileNames(input)
|
||||
assert.Len(t, res, 5)
|
||||
assert.Contains(t, res[0], "one.png")
|
||||
assert.Contains(t, res[1], "two.jpg")
|
||||
assert.Contains(t, res[2], "three.jpeg")
|
||||
assert.Contains(t, res[3], "four.png")
|
||||
assert.Contains(t, res[4], "five.svg")
|
||||
assert.NotContains(t, res[4], '"')
|
||||
assert.NotContains(t, res, "inbtween")
|
||||
|
||||
// Windows style paths
|
||||
input = ` some preamble
|
||||
c:/users/jdoe/one.png inbetween1 c:/program files/someplace/two.jpg inbetween2
|
||||
/absolute/nospace/three.jpeg inbetween3 /absolute/with space/four.png inbetween4
|
||||
./relative\ path/five.svg inbetween5 "./relative with/spaces/six.png inbetween6
|
||||
d:\path with\spaces\seven.svg inbetween7 c:\users\jdoe\eight.png inbetween8
|
||||
d:\program files\someplace\nine.png inbetween9 "E:\program files\someplace\ten.svg some ending
|
||||
`
|
||||
res = extractFileNames(input)
|
||||
assert.Len(t, res, 10)
|
||||
assert.NotContains(t, res, "inbtween")
|
||||
assert.Contains(t, res[0], "one.png")
|
||||
assert.Contains(t, res[0], "c:")
|
||||
assert.Contains(t, res[1], "two.jpg")
|
||||
assert.Contains(t, res[1], "c:")
|
||||
assert.Contains(t, res[2], "three.jpeg")
|
||||
assert.Contains(t, res[3], "four.png")
|
||||
assert.Contains(t, res[4], "five.svg")
|
||||
assert.Contains(t, res[5], "six.png")
|
||||
assert.Contains(t, res[6], "seven.svg")
|
||||
assert.Contains(t, res[6], "d:")
|
||||
assert.Contains(t, res[7], "eight.png")
|
||||
assert.Contains(t, res[7], "c:")
|
||||
assert.Contains(t, res[8], "nine.png")
|
||||
assert.Contains(t, res[8], "d:")
|
||||
assert.Contains(t, res[9], "ten.svg")
|
||||
assert.Contains(t, res[9], "E:")
|
||||
}
|
@@ -1,44 +0,0 @@
|
||||
package cmd
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"os"
|
||||
"time"
|
||||
|
||||
"github.com/schollz/progressbar/v3"
|
||||
)
|
||||
|
||||
type Spinner struct {
|
||||
description string
|
||||
*progressbar.ProgressBar
|
||||
}
|
||||
|
||||
func NewSpinner(description string) *Spinner {
|
||||
return &Spinner{
|
||||
description: description,
|
||||
ProgressBar: progressbar.NewOptions(-1,
|
||||
progressbar.OptionSetWriter(os.Stderr),
|
||||
progressbar.OptionThrottle(60*time.Millisecond),
|
||||
progressbar.OptionSpinnerType(14),
|
||||
progressbar.OptionSetRenderBlankState(true),
|
||||
progressbar.OptionSetElapsedTime(false),
|
||||
progressbar.OptionClearOnFinish(),
|
||||
progressbar.OptionSetDescription(description),
|
||||
),
|
||||
}
|
||||
}
|
||||
|
||||
func (s *Spinner) Spin(tick time.Duration) {
|
||||
for range time.Tick(tick) {
|
||||
if s.IsFinished() {
|
||||
break
|
||||
}
|
||||
|
||||
s.Add(1)
|
||||
}
|
||||
}
|
||||
|
||||
func (s *Spinner) Stop() {
|
||||
s.Finish()
|
||||
fmt.Println(s.description)
|
||||
}
|
25
docs/README.md
Normal file
@@ -0,0 +1,25 @@
|
||||
# Documentation
|
||||
|
||||
To get started, see the project's **[quickstart](../README.md#quickstart)**.
|
||||
|
||||
Ollama is a tool for running AI models on your hardware. Many users will choose to use the Command Line Interface (CLI) to work with Ollama. Learn more about all the commands in the CLI in the **[Main Readme](../README.md)**.
|
||||
|
||||
Use the RESTful API using any language, including Python, JavaScript, Typescript, Go, Rust, and many more. Learn more about using the API in the **[API Documentation](./api.md)**.
|
||||
|
||||
Create new models or modify models already in the library using the Modelfile. Learn more about the Modelfile syntax in the **[Modelfile Documentation](./modelfile.md)**.
|
||||
|
||||
Import models using source model weights found on Hugging Face and similar sites by referring to the **[Import Documentation](./import.md)**.
|
||||
|
||||
Installing on Linux in most cases is easy using the script on Ollama.ai. To get more detail about the install, including CUDA drivers, see the **[Linux Documentation](./linux.md)**.
|
||||
|
||||
Many of our users like the flexibility of using our official Docker Image. Learn more about using Docker with Ollama using the **[Docker Documentation](https://hub.docker.com/r/ollama/ollama)**.
|
||||
|
||||
It is easy to install on Linux and Mac, but many users will choose to build Ollama on their own. To do this, refer to the **[Development Documentation](./development.md)**.
|
||||
|
||||
If encountering a problem with Ollama, the best place to start is the logs. Find more information about them here in the **[Troubleshooting Guide](./troubleshooting.md)**.
|
||||
|
||||
Finally for all the questions that don't fit anywhere else, there is the **[FAQ](./faq.md)**
|
||||
|
||||
[Tutorials](./tutorials.md) apply the documentation to tasks.
|
||||
|
||||
For working code examples of using Ollama, see [Examples](../examples).
|
982
docs/api.md
Normal file
@@ -0,0 +1,982 @@
|
||||
# API
|
||||
|
||||
## Endpoints
|
||||
|
||||
- [Generate a completion](#generate-a-completion)
|
||||
- [Generate a chat completion](#generate-a-chat-completion)
|
||||
- [Create a Model](#create-a-model)
|
||||
- [List Local Models](#list-local-models)
|
||||
- [Show Model Information](#show-model-information)
|
||||
- [Copy a Model](#copy-a-model)
|
||||
- [Delete a Model](#delete-a-model)
|
||||
- [Pull a Model](#pull-a-model)
|
||||
- [Push a Model](#push-a-model)
|
||||
- [Generate Embeddings](#generate-embeddings)
|
||||
|
||||
## Conventions
|
||||
|
||||
### Model names
|
||||
|
||||
Model names follow a `model:tag` format, where `model` can have an optional namespace such as `example/model`. Some examples are `orca-mini:3b-q4_1` and `llama2:70b`. The tag is optional and, if not provided, will default to `latest`. The tag is used to identify a specific version.
|
||||
|
||||
### Durations
|
||||
|
||||
All durations are returned in nanoseconds.
|
||||
|
||||
### Streaming responses
|
||||
|
||||
Certain endpoints stream responses as JSON objects and can optional return non-streamed responses.
|
||||
|
||||
## Generate a completion
|
||||
|
||||
```shell
|
||||
POST /api/generate
|
||||
```
|
||||
|
||||
Generate a response for a given prompt with a provided model. This is a streaming endpoint, so there will be a series of responses. The final response object will include statistics and additional data from the request.
|
||||
|
||||
### Parameters
|
||||
|
||||
- `model`: (required) the [model name](#model-names)
|
||||
- `prompt`: the prompt to generate a response for
|
||||
- `images`: (optional) a list of base64-encoded images (for multimodal models such as `llava`)
|
||||
|
||||
Advanced parameters (optional):
|
||||
|
||||
- `format`: the format to return a response in. Currently the only accepted value is `json`
|
||||
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
|
||||
- `system`: system message to (overrides what is defined in the `Modelfile`)
|
||||
- `template`: the prompt template to use (overrides what is defined in the `Modelfile`)
|
||||
- `context`: the context parameter returned from a previous request to `/generate`, this can be used to keep a short conversational memory
|
||||
- `stream`: if `false` the response will be returned as a single response object, rather than a stream of objects
|
||||
- `raw`: if `true` no formatting will be applied to the prompt. You may choose to use the `raw` parameter if you are specifying a full templated prompt in your request to the API.
|
||||
|
||||
#### JSON mode
|
||||
|
||||
Enable JSON mode by setting the `format` parameter to `json`. This will structure the response as a valid JSON object. See the JSON mode [example](#generate-request-json-mode) below.
|
||||
|
||||
> Note: it's important to instruct the model to use JSON in the `prompt`. Otherwise, the model may generate large amounts whitespace.
|
||||
|
||||
### Examples
|
||||
|
||||
#### Generate request (Streaming)
|
||||
|
||||
##### Request
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/generate -d '{
|
||||
"model": "llama2",
|
||||
"prompt": "Why is the sky blue?"
|
||||
}'
|
||||
```
|
||||
|
||||
##### Response
|
||||
|
||||
A stream of JSON objects is returned:
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "llama2",
|
||||
"created_at": "2023-08-04T08:52:19.385406455-07:00",
|
||||
"response": "The",
|
||||
"done": false
|
||||
}
|
||||
```
|
||||
|
||||
The final response in the stream also includes additional data about the generation:
|
||||
|
||||
- `total_duration`: time spent generating the response
|
||||
- `load_duration`: time spent in nanoseconds loading the model
|
||||
- `prompt_eval_count`: number of tokens in the prompt
|
||||
- `prompt_eval_duration`: time spent in nanoseconds evaluating the prompt
|
||||
- `eval_count`: number of tokens the response
|
||||
- `eval_duration`: time in nanoseconds spent generating the response
|
||||
- `context`: an encoding of the conversation used in this response, this can be sent in the next request to keep a conversational memory
|
||||
- `response`: empty if the response was streamed, if not streamed, this will contain the full response
|
||||
|
||||
To calculate how fast the response is generated in tokens per second (token/s), divide `eval_count` / `eval_duration`.
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "llama2",
|
||||
"created_at": "2023-08-04T19:22:45.499127Z",
|
||||
"response": "",
|
||||
"done": true,
|
||||
"context": [1, 2, 3],
|
||||
"total_duration": 10706818083,
|
||||
"load_duration": 6338219291,
|
||||
"prompt_eval_count": 26,
|
||||
"prompt_eval_duration": 130079000,
|
||||
"eval_count": 259,
|
||||
"eval_duration": 4232710000
|
||||
}
|
||||
```
|
||||
|
||||
#### Request (No streaming)
|
||||
|
||||
##### Request
|
||||
|
||||
A response can be received in one reply when streaming is off.
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/generate -d '{
|
||||
"model": "llama2",
|
||||
"prompt": "Why is the sky blue?",
|
||||
"stream": false
|
||||
}'
|
||||
```
|
||||
|
||||
##### Response
|
||||
|
||||
If `stream` is set to `false`, the response will be a single JSON object:
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "llama2",
|
||||
"created_at": "2023-08-04T19:22:45.499127Z",
|
||||
"response": "The sky is blue because it is the color of the sky.",
|
||||
"done": true,
|
||||
"context": [1, 2, 3],
|
||||
"total_duration": 5043500667,
|
||||
"load_duration": 5025959,
|
||||
"prompt_eval_count": 26,
|
||||
"prompt_eval_duration": 325953000,
|
||||
"eval_count": 290,
|
||||
"eval_duration": 4709213000
|
||||
}
|
||||
```
|
||||
|
||||
#### Request (JSON mode)
|
||||
|
||||
> When `format` is set to `json`, the output will always be a well-formed JSON object. It's important to also instruct the model to respond in JSON.
|
||||
|
||||
##### Request
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/generate -d '{
|
||||
"model": "llama2",
|
||||
"prompt": "What color is the sky at different times of the day? Respond using JSON",
|
||||
"format": "json",
|
||||
"stream": false
|
||||
}'
|
||||
```
|
||||
|
||||
##### Response
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "llama2",
|
||||
"created_at": "2023-11-09T21:07:55.186497Z",
|
||||
"response": "{\n\"morning\": {\n\"color\": \"blue\"\n},\n\"noon\": {\n\"color\": \"blue-gray\"\n},\n\"afternoon\": {\n\"color\": \"warm gray\"\n},\n\"evening\": {\n\"color\": \"orange\"\n}\n}\n",
|
||||
"done": true,
|
||||
"context": [1, 2, 3],
|
||||
"total_duration": 4648158584,
|
||||
"load_duration": 4071084,
|
||||
"prompt_eval_count": 36,
|
||||
"prompt_eval_duration": 439038000,
|
||||
"eval_count": 180,
|
||||
"eval_duration": 4196918000
|
||||
}
|
||||
```
|
||||
|
||||
The value of `response` will be a string containing JSON similar to:
|
||||
|
||||
```json
|
||||
{
|
||||
"morning": {
|
||||
"color": "blue"
|
||||
},
|
||||
"noon": {
|
||||
"color": "blue-gray"
|
||||
},
|
||||
"afternoon": {
|
||||
"color": "warm gray"
|
||||
},
|
||||
"evening": {
|
||||
"color": "orange"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
#### Request (with images)
|
||||
|
||||
To submit images to multimodal models such as `llava` or `bakllava`, provide a list of base64-encoded `images`:
|
||||
|
||||
#### Request
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/generate -d '{
|
||||
"model": "llava",
|
||||
"prompt":"What is in this picture?",
|
||||
"stream": false,
|
||||
"images": ["iVBORw0KGgoAAAANSUhEUgAAAG0AAABmCAYAAADBPx+VAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAA3VSURBVHgB7Z27r0zdG8fX743i1bi1ikMoFMQloXRpKFFIqI7LH4BEQ+NWIkjQuSWCRIEoULk0gsK1kCBI0IhrQVT7tz/7zZo888yz1r7MnDl7z5xvsjkzs2fP3uu71nNfa7lkAsm7d++Sffv2JbNmzUqcc8m0adOSzZs3Z+/XES4ZckAWJEGWPiCxjsQNLWmQsWjRIpMseaxcuTKpG/7HP27I8P79e7dq1ars/yL4/v27S0ejqwv+cUOGEGGpKHR37tzJCEpHV9tnT58+dXXCJDdECBE2Ojrqjh071hpNECjx4cMHVycM1Uhbv359B2F79+51586daxN/+pyRkRFXKyRDAqxEp4yMlDDzXG1NPnnyJKkThoK0VFd1ELZu3TrzXKxKfW7dMBQ6bcuWLW2v0VlHjx41z717927ba22U9APcw7Nnz1oGEPeL3m3p2mTAYYnFmMOMXybPPXv2bNIPpFZr1NHn4HMw0KRBjg9NuRw95s8PEcz/6DZELQd/09C9QGq5RsmSRybqkwHGjh07OsJSsYYm3ijPpyHzoiacg35MLdDSIS/O1yM778jOTwYUkKNHWUzUWaOsylE00MyI0fcnOwIdjvtNdW/HZwNLGg+sR1kMepSNJXmIwxBZiG8tDTpEZzKg0GItNsosY8USkxDhD0Rinuiko2gfL/RbiD2LZAjU9zKQJj8RDR0vJBR1/Phx9+PHj9Z7REF4nTZkxzX4LCXHrV271qXkBAPGfP/atWvu/PnzHe4C97F48eIsRLZ9+3a3f/9+87dwP1JxaF7/3r17ba+5l4EcaVo0lj3SBq5kGTJSQmLWMjgYNei2GPT1MuMqGTDEFHzeQSP2wi/jGnkmPJ/nhccs44jvDAxpVcxnq0F6eT8h4ni/iIWpR5lPyA6ETkNXoSukvpJAD3AsXLiwpZs49+fPn5ke4j10TqYvegSfn0OnafC+Tv9ooA/JPkgQysqQNBzagXY55nO/oa1F7qvIPWkRL12WRpMWUvpVDYmxAPehxWSe8ZEXL20sadYIozfmNch4QJPAfeJgW3rNsnzphBKNJM2KKODo1rVOMRYik5ETy3ix4qWNI81qAAirizgMIc+yhTytx0JWZuNI03qsrgWlGtwjoS9XwgUhWGyhUaRZZQNNIEwCiXD16tXcAHUs79co0vSD8rrJCIW98pzvxpAWyyo3HYwqS0+H0BjStClcZJT5coMm6D2LOF8TolGJtK9fvyZpyiC5ePFi9nc/oJU4eiEP0jVoAnHa9wyJycITMP78+eMeP37sXrx44d6+fdt6f82aNdkx1pg9e3Zb5W+RSRE+n+VjksQWifvVaTKFhn5O8my63K8Qabdv33b379/PiAP//vuvW7BggZszZ072/+TJk91YgkafPn166zXB1rQHFvouAWHq9z3SEevSUerqCn2/dDCeta2jxYbr69evk4MHDyY7d+7MjhMnTiTPnz9Pfv/+nfQT2ggpO2dMF8cghuoM7Ygj5iWCqRlGFml0QC/ftGmTmzt3rmsaKDsgBSPh0/8yPeLLBihLkOKJc0jp8H8vUzcxIA1k6QJ/c78tWEyj5P3o4u9+jywNPdJi5rAH9x0KHcl4Hg570eQp3+vHXGyrmEeigzQsQsjavXt38ujRo44LQuDDhw+TW7duRS1HGgMxhNXHgflaNTOsHyKvHK5Ijo2jbFjJBQK9YwFd6RVMzfgRBmEfP37suBBm/p49e1qjEP2mwTViNRo0VJWH1deMXcNK08uUjVUu7s/zRaL+oLNxz1bpANco4npUgX4G2eFbpDFyQoQxojBCpEGSytmOH8qrH5Q9vuzD6ofQylkCUmh8DBAr+q8JCyVNtWQIidKQE9wNtLSQnS4jDSsxNHogzFuQBw4cyM61UKVsjfr3ooBkPSqqQHesUPWVtzi9/vQi1T+rJj7WiTz4Pt/l3LxUkr5P2VYZaZ4URpsE+st/dujQoaBBYokbrz/8TJNQYLSonrPS9kUaSkPeZyj1AWSj+d+VBoy1pIWVNed8P0Ll/ee5HdGRhrHhR5GGN0r4LGZBaj8oFDJitBTJzIZgFcmU0Y8ytWMZMzJOaXUSrUs5RxKnrxmbb5YXO9VGUhtpXldhEUogFr3IzIsvlpmdosVcGVGXFWp2oU9kLFL3dEkSz6NHEY1sjSRdIuDFWEhd8KxFqsRi1uM/nz9/zpxnwlESONdg6dKlbsaMGS4EHFHtjFIDHwKOo46l4TxSuxgDzi+rE2jg+BaFruOX4HXa0Nnf1lwAPufZeF8/r6zD97WK2qFnGjBxTw5qNGPxT+5T/r7/7RawFC3j4vTp09koCxkeHjqbHJqArmH5UrFKKksnxrK7FuRIs8STfBZv+luugXZ2pR/pP9Ois4z+TiMzUUkUjD0iEi1fzX8GmXyuxUBRcaUfykV0YZnlJGKQpOiGB76x5GeWkWWJc3mOrK6S7xdND+W5N6XyaRgtWJFe13GkaZnKOsYqGdOVVVbGupsyA/l7emTLHi7vwTdirNEt0qxnzAvBFcnQF16xh/TMpUuXHDowhlA9vQVraQhkudRdzOnK+04ZSP3DUhVSP61YsaLtd/ks7ZgtPcXqPqEafHkdqa84X6aCeL7YWlv6edGFHb+ZFICPlljHhg0bKuk0CSvVznWsotRu433alNdFrqG45ejoaPCaUkWERpLXjzFL2Rpllp7PJU2a/v7Ab8N05/9t27Z16KUqoFGsxnI9EosS2niSYg9SpU6B4JgTrvVW1flt1sT+0ADIJU2maXzcUTraGCRaL1Wp9rUMk16PMom8QhruxzvZIegJjFU7LLCePfS8uaQdPny4jTTL0dbee5mYokQsXTIWNY46kuMbnt8Kmec+LGWtOVIl9cT1rCB0V8WqkjAsRwta93TbwNYoGKsUSChN44lgBNCoHLHzquYKrU6qZ8lolCIN0Rh6cP0Q3U6I6IXILYOQI513hJaSKAorFpuHXJNfVlpRtmYBk1Su1obZr5dnKAO+L10Hrj3WZW+E3qh6IszE37F6EB+68mGpvKm4eb9bFrlzrok7fvr0Kfv727dvWRmdVTJHw0qiiCUSZ6wCK+7XL/AcsgNyL74DQQ730sv78Su7+t/A36MdY0sW5o40ahslXr58aZ5HtZB8GH64m9EmMZ7FpYw4T6QnrZfgenrhFxaSiSGXtPnz57e9TkNZLvTjeqhr734CNtrK41L40sUQckmj1lGKQ0rC37x544r8eNXRpnVE3ZZY7zXo8NomiO0ZUCj2uHz58rbXoZ6gc0uA+F6ZeKS/jhRDUq8MKrTho9fEkihMmhxtBI1DxKFY9XLpVcSkfoi8JGnToZO5sU5aiDQIW716ddt7ZLYtMQlhECdBGXZZMWldY5BHm5xgAroWj4C0hbYkSc/jBmggIrXJWlZM6pSETsEPGqZOndr2uuuR5rF169a2HoHPdurUKZM4CO1WTPqaDaAd+GFGKdIQkxAn9RuEWcTRyN2KSUgiSgF5aWzPTeA/lN5rZubMmR2bE4SIC4nJoltgAV/dVefZm72AtctUCJU2CMJ327hxY9t7EHbkyJFseq+EJSY16RPo3Dkq1kkr7+q0bNmyDuLQcZBEPYmHVdOBiJyIlrRDq41YPWfXOxUysi5fvtyaj+2BpcnsUV/oSoEMOk2CQGlr4ckhBwaetBhjCwH0ZHtJROPJkyc7UjcYLDjmrH7ADTEBXFfOYmB0k9oYBOjJ8b4aOYSe7QkKcYhFlq3QYLQhSidNmtS2RATwy8YOM3EQJsUjKiaWZ+vZToUQgzhkHXudb/PW5YMHD9yZM2faPsMwoc7RciYJXbGuBqJ1UIGKKLv915jsvgtJxCZDubdXr165mzdvtr1Hz5LONA8jrUwKPqsmVesKa49S3Q4WxmRPUEYdTjgiUcfUwLx589ySJUva3oMkP6IYddq6HMS4o55xBJBUeRjzfa4Zdeg56QZ43LhxoyPo7Lf1kNt7oO8wWAbNwaYjIv5lhyS7kRf96dvm5Jah8vfvX3flyhX35cuX6HfzFHOToS1H4BenCaHvO8pr8iDuwoUL7tevX+b5ZdbBair0xkFIlFDlW4ZknEClsp/TzXyAKVOmmHWFVSbDNw1l1+4f90U6IY/q4V27dpnE9bJ+v87QEydjqx/UamVVPRG+mwkNTYN+9tjkwzEx+atCm/X9WvWtDtAb68Wy9LXa1UmvCDDIpPkyOQ5ZwSzJ4jMrvFcr0rSjOUh+GcT4LSg5ugkW1Io0/SCDQBojh0hPlaJdah+tkVYrnTZowP8iq1F1TgMBBauufyB33x1v+NWFYmT5KmppgHC+NkAgbmRkpD3yn9QIseXymoTQFGQmIOKTxiZIWpvAatenVqRVXf2nTrAWMsPnKrMZHz6bJq5jvce6QK8J1cQNgKxlJapMPdZSR64/UivS9NztpkVEdKcrs5alhhWP9NeqlfWopzhZScI6QxseegZRGeg5a8C3Re1Mfl1ScP36ddcUaMuv24iOJtz7sbUjTS4qBvKmstYJoUauiuD3k5qhyr7QdUHMeCgLa1Ear9NquemdXgmum4fvJ6w1lqsuDhNrg1qSpleJK7K3TF0Q2jSd94uSZ60kK1e3qyVpQK6PVWXp2/FC3mp6jBhKKOiY2h3gtUV64TWM6wDETRPLDfSakXmH3w8g9Jlug8ZtTt4kVF0kLUYYmCCtD/DrQ5YhMGbA9L3ucdjh0y8kOHW5gU/VEEmJTcL4Pz/f7mgoAbYkAAAAAElFTkSuQmCC"]
|
||||
}'
|
||||
```
|
||||
|
||||
#### Response
|
||||
|
||||
```
|
||||
{
|
||||
"model": "llava",
|
||||
"created_at": "2023-11-03T15:36:02.583064Z",
|
||||
"response": "A happy cartoon character, which is cute and cheerful.",
|
||||
"done": true,
|
||||
"context": [1, 2, 3],
|
||||
"total_duration": 2938432250,
|
||||
"load_duration": 2559292,
|
||||
"prompt_eval_count": 1,
|
||||
"prompt_eval_duration": 2195557000,
|
||||
"eval_count": 44,
|
||||
"eval_duration": 736432000
|
||||
}
|
||||
```
|
||||
|
||||
#### Request (Raw Mode)
|
||||
|
||||
In some cases, you may wish to bypass the templating system and provide a full prompt. In this case, you can use the `raw` parameter to disable templating. Also note that raw mode will not return a context.
|
||||
|
||||
##### Request
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/generate -d '{
|
||||
"model": "mistral",
|
||||
"prompt": "[INST] why is the sky blue? [/INST]",
|
||||
"raw": true,
|
||||
"stream": false
|
||||
}'
|
||||
```
|
||||
|
||||
##### Response
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "mistral",
|
||||
"created_at": "2023-11-03T15:36:02.583064Z",
|
||||
"response": " The sky appears blue because of a phenomenon called Rayleigh scattering.",
|
||||
"done": true,
|
||||
"total_duration": 8493852375,
|
||||
"load_duration": 6589624375,
|
||||
"prompt_eval_count": 14,
|
||||
"prompt_eval_duration": 119039000,
|
||||
"eval_count": 110,
|
||||
"eval_duration": 1779061000
|
||||
}
|
||||
```
|
||||
|
||||
#### Generate request (With options)
|
||||
|
||||
If you want to set custom options for the model at runtime rather than in the Modelfile, you can do so with the `options` parameter. This example sets every available option, but you can set any of them individually and omit the ones you do not want to override.
|
||||
|
||||
##### Request
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/generate -d '{
|
||||
"model": "llama2",
|
||||
"prompt": "Why is the sky blue?",
|
||||
"stream": false,
|
||||
"options": {
|
||||
"num_keep": 5,
|
||||
"seed": 42,
|
||||
"num_predict": 100,
|
||||
"top_k": 20,
|
||||
"top_p": 0.9,
|
||||
"tfs_z": 0.5,
|
||||
"typical_p": 0.7,
|
||||
"repeat_last_n": 33,
|
||||
"temperature": 0.8,
|
||||
"repeat_penalty": 1.2,
|
||||
"presence_penalty": 1.5,
|
||||
"frequency_penalty": 1.0,
|
||||
"mirostat": 1,
|
||||
"mirostat_tau": 0.8,
|
||||
"mirostat_eta": 0.6,
|
||||
"penalize_newline": true,
|
||||
"stop": ["\n", "user:"],
|
||||
"numa": false,
|
||||
"num_ctx": 1024,
|
||||
"num_batch": 2,
|
||||
"num_gqa": 1,
|
||||
"num_gpu": 1,
|
||||
"main_gpu": 0,
|
||||
"low_vram": false,
|
||||
"f16_kv": true,
|
||||
"vocab_only": false,
|
||||
"use_mmap": true,
|
||||
"use_mlock": false,
|
||||
"embedding_only": false,
|
||||
"rope_frequency_base": 1.1,
|
||||
"rope_frequency_scale": 0.8,
|
||||
"num_thread": 8
|
||||
}
|
||||
}'
|
||||
```
|
||||
|
||||
##### Response
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "llama2",
|
||||
"created_at": "2023-08-04T19:22:45.499127Z",
|
||||
"response": "The sky is blue because it is the color of the sky.",
|
||||
"done": true,
|
||||
"context": [1, 2, 3],
|
||||
"total_duration": 4935886791,
|
||||
"load_duration": 534986708,
|
||||
"prompt_eval_count": 26,
|
||||
"prompt_eval_duration": 107345000,
|
||||
"eval_count": 237,
|
||||
"eval_duration": 4289432000
|
||||
}
|
||||
```
|
||||
|
||||
#### Load a model
|
||||
|
||||
If an empty prompt is provided, the model will be loaded into memory.
|
||||
|
||||
##### Request
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/generate -d '{
|
||||
"model": "llama2"
|
||||
}'
|
||||
```
|
||||
|
||||
##### Response
|
||||
|
||||
A single JSON object is returned:
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "llama2",
|
||||
"created_at": "2023-12-18T19:52:07.071755Z",
|
||||
"response": "",
|
||||
"done": true
|
||||
}
|
||||
```
|
||||
|
||||
## Generate a chat completion
|
||||
|
||||
```shell
|
||||
POST /api/chat
|
||||
```
|
||||
|
||||
Generate the next message in a chat with a provided model. This is a streaming endpoint, so there will be a series of responses. Streaming can be disabled using `"stream": false`. The final response object will include statistics and additional data from the request.
|
||||
|
||||
### Parameters
|
||||
|
||||
- `model`: (required) the [model name](#model-names)
|
||||
- `messages`: the messages of the chat, this can be used to keep a chat memory
|
||||
|
||||
The `message` object has the following fields:
|
||||
|
||||
- `role`: the role of the message, either `system`, `user` or `assistant`
|
||||
- `content`: the content of the message
|
||||
- `images` (optional): a list of images to include in the message (for multimodal models such as `llava`)
|
||||
|
||||
Advanced parameters (optional):
|
||||
|
||||
- `format`: the format to return a response in. Currently the only accepted value is `json`
|
||||
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
|
||||
- `template`: the prompt template to use (overrides what is defined in the `Modelfile`)
|
||||
- `stream`: if `false` the response will be returned as a single response object, rather than a stream of objects
|
||||
|
||||
### Examples
|
||||
|
||||
#### Chat Request (Streaming)
|
||||
|
||||
##### Request
|
||||
|
||||
Send a chat message with a streaming response.
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/chat -d '{
|
||||
"model": "llama2",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "why is the sky blue?"
|
||||
}
|
||||
]
|
||||
}'
|
||||
```
|
||||
|
||||
##### Response
|
||||
|
||||
A stream of JSON objects is returned:
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "llama2",
|
||||
"created_at": "2023-08-04T08:52:19.385406455-07:00",
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": "The",
|
||||
"images": null
|
||||
},
|
||||
"done": false
|
||||
}
|
||||
```
|
||||
|
||||
Final response:
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "llama2",
|
||||
"created_at": "2023-08-04T19:22:45.499127Z",
|
||||
"done": true,
|
||||
"total_duration": 4883583458,
|
||||
"load_duration": 1334875,
|
||||
"prompt_eval_count": 26,
|
||||
"prompt_eval_duration": 342546000,
|
||||
"eval_count": 282,
|
||||
"eval_duration": 4535599000
|
||||
}
|
||||
```
|
||||
|
||||
#### Chat request (No streaming)
|
||||
|
||||
##### Request
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/chat -d '{
|
||||
"model": "llama2",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "why is the sky blue?"
|
||||
}
|
||||
],
|
||||
"stream": false
|
||||
}'
|
||||
```
|
||||
|
||||
##### Response
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "registry.ollama.ai/library/llama2:latest",
|
||||
"created_at": "2023-12-12T14:13:43.416799Z",
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": "Hello! How are you today?"
|
||||
},
|
||||
"done": true,
|
||||
"total_duration": 5191566416,
|
||||
"load_duration": 2154458,
|
||||
"prompt_eval_count": 26,
|
||||
"prompt_eval_duration": 383809000,
|
||||
"eval_count": 298,
|
||||
"eval_duration": 4799921000
|
||||
}
|
||||
```
|
||||
|
||||
#### Chat request (With History)
|
||||
|
||||
Send a chat message with a conversation history. You can use this same approach to start the conversation using multi-shot or chain-of-thought prompting.
|
||||
|
||||
##### Request
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/chat -d '{
|
||||
"model": "llama2",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "why is the sky blue?"
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "due to rayleigh scattering."
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "how is that different than mie scattering?"
|
||||
}
|
||||
]
|
||||
}'
|
||||
```
|
||||
|
||||
##### Response
|
||||
|
||||
A stream of JSON objects is returned:
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "llama2",
|
||||
"created_at": "2023-08-04T08:52:19.385406455-07:00",
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": "The"
|
||||
},
|
||||
"done": false
|
||||
}
|
||||
```
|
||||
|
||||
Final response:
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "llama2",
|
||||
"created_at": "2023-08-04T19:22:45.499127Z",
|
||||
"done": true,
|
||||
"total_duration": 8113331500,
|
||||
"load_duration": 6396458,
|
||||
"prompt_eval_count": 61,
|
||||
"prompt_eval_duration": 398801000,
|
||||
"eval_count": 468,
|
||||
"eval_duration": 7701267000
|
||||
}
|
||||
```
|
||||
|
||||
#### Chat request (with images)
|
||||
|
||||
##### Request
|
||||
|
||||
Send a chat message with a conversation history.
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/chat -d '{
|
||||
"model": "llava",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "what is in this image?",
|
||||
"images": ["iVBORw0KGgoAAAANSUhEUgAAAG0AAABmCAYAAADBPx+VAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAA3VSURBVHgB7Z27r0zdG8fX743i1bi1ikMoFMQloXRpKFFIqI7LH4BEQ+NWIkjQuSWCRIEoULk0gsK1kCBI0IhrQVT7tz/7zZo888yz1r7MnDl7z5xvsjkzs2fP3uu71nNfa7lkAsm7d++Sffv2JbNmzUqcc8m0adOSzZs3Z+/XES4ZckAWJEGWPiCxjsQNLWmQsWjRIpMseaxcuTKpG/7HP27I8P79e7dq1ars/yL4/v27S0ejqwv+cUOGEGGpKHR37tzJCEpHV9tnT58+dXXCJDdECBE2Ojrqjh071hpNECjx4cMHVycM1Uhbv359B2F79+51586daxN/+pyRkRFXKyRDAqxEp4yMlDDzXG1NPnnyJKkThoK0VFd1ELZu3TrzXKxKfW7dMBQ6bcuWLW2v0VlHjx41z717927ba22U9APcw7Nnz1oGEPeL3m3p2mTAYYnFmMOMXybPPXv2bNIPpFZr1NHn4HMw0KRBjg9NuRw95s8PEcz/6DZELQd/09C9QGq5RsmSRybqkwHGjh07OsJSsYYm3ijPpyHzoiacg35MLdDSIS/O1yM778jOTwYUkKNHWUzUWaOsylE00MyI0fcnOwIdjvtNdW/HZwNLGg+sR1kMepSNJXmIwxBZiG8tDTpEZzKg0GItNsosY8USkxDhD0Rinuiko2gfL/RbiD2LZAjU9zKQJj8RDR0vJBR1/Phx9+PHj9Z7REF4nTZkxzX4LCXHrV271qXkBAPGfP/atWvu/PnzHe4C97F48eIsRLZ9+3a3f/9+87dwP1JxaF7/3r17ba+5l4EcaVo0lj3SBq5kGTJSQmLWMjgYNei2GPT1MuMqGTDEFHzeQSP2wi/jGnkmPJ/nhccs44jvDAxpVcxnq0F6eT8h4ni/iIWpR5lPyA6ETkNXoSukvpJAD3AsXLiwpZs49+fPn5ke4j10TqYvegSfn0OnafC+Tv9ooA/JPkgQysqQNBzagXY55nO/oa1F7qvIPWkRL12WRpMWUvpVDYmxAPehxWSe8ZEXL20sadYIozfmNch4QJPAfeJgW3rNsnzphBKNJM2KKODo1rVOMRYik5ETy3ix4qWNI81qAAirizgMIc+yhTytx0JWZuNI03qsrgWlGtwjoS9XwgUhWGyhUaRZZQNNIEwCiXD16tXcAHUs79co0vSD8rrJCIW98pzvxpAWyyo3HYwqS0+H0BjStClcZJT5coMm6D2LOF8TolGJtK9fvyZpyiC5ePFi9nc/oJU4eiEP0jVoAnHa9wyJycITMP78+eMeP37sXrx44d6+fdt6f82aNdkx1pg9e3Zb5W+RSRE+n+VjksQWifvVaTKFhn5O8my63K8Qabdv33b379/PiAP//vuvW7BggZszZ072/+TJk91YgkafPn166zXB1rQHFvouAWHq9z3SEevSUerqCn2/dDCeta2jxYbr69evk4MHDyY7d+7MjhMnTiTPnz9Pfv/+nfQT2ggpO2dMF8cghuoM7Ygj5iWCqRlGFml0QC/ftGmTmzt3rmsaKDsgBSPh0/8yPeLLBihLkOKJc0jp8H8vUzcxIA1k6QJ/c78tWEyj5P3o4u9+jywNPdJi5rAH9x0KHcl4Hg570eQp3+vHXGyrmEeigzQsQsjavXt38ujRo44LQuDDhw+TW7duRS1HGgMxhNXHgflaNTOsHyKvHK5Ijo2jbFjJBQK9YwFd6RVMzfgRBmEfP37suBBm/p49e1qjEP2mwTViNRo0VJWH1deMXcNK08uUjVUu7s/zRaL+oLNxz1bpANco4npUgX4G2eFbpDFyQoQxojBCpEGSytmOH8qrH5Q9vuzD6ofQylkCUmh8DBAr+q8JCyVNtWQIidKQE9wNtLSQnS4jDSsxNHogzFuQBw4cyM61UKVsjfr3ooBkPSqqQHesUPWVtzi9/vQi1T+rJj7WiTz4Pt/l3LxUkr5P2VYZaZ4URpsE+st/dujQoaBBYokbrz/8TJNQYLSonrPS9kUaSkPeZyj1AWSj+d+VBoy1pIWVNed8P0Ll/ee5HdGRhrHhR5GGN0r4LGZBaj8oFDJitBTJzIZgFcmU0Y8ytWMZMzJOaXUSrUs5RxKnrxmbb5YXO9VGUhtpXldhEUogFr3IzIsvlpmdosVcGVGXFWp2oU9kLFL3dEkSz6NHEY1sjSRdIuDFWEhd8KxFqsRi1uM/nz9/zpxnwlESONdg6dKlbsaMGS4EHFHtjFIDHwKOo46l4TxSuxgDzi+rE2jg+BaFruOX4HXa0Nnf1lwAPufZeF8/r6zD97WK2qFnGjBxTw5qNGPxT+5T/r7/7RawFC3j4vTp09koCxkeHjqbHJqArmH5UrFKKksnxrK7FuRIs8STfBZv+luugXZ2pR/pP9Ois4z+TiMzUUkUjD0iEi1fzX8GmXyuxUBRcaUfykV0YZnlJGKQpOiGB76x5GeWkWWJc3mOrK6S7xdND+W5N6XyaRgtWJFe13GkaZnKOsYqGdOVVVbGupsyA/l7emTLHi7vwTdirNEt0qxnzAvBFcnQF16xh/TMpUuXHDowhlA9vQVraQhkudRdzOnK+04ZSP3DUhVSP61YsaLtd/ks7ZgtPcXqPqEafHkdqa84X6aCeL7YWlv6edGFHb+ZFICPlljHhg0bKuk0CSvVznWsotRu433alNdFrqG45ejoaPCaUkWERpLXjzFL2Rpllp7PJU2a/v7Ab8N05/9t27Z16KUqoFGsxnI9EosS2niSYg9SpU6B4JgTrvVW1flt1sT+0ADIJU2maXzcUTraGCRaL1Wp9rUMk16PMom8QhruxzvZIegJjFU7LLCePfS8uaQdPny4jTTL0dbee5mYokQsXTIWNY46kuMbnt8Kmec+LGWtOVIl9cT1rCB0V8WqkjAsRwta93TbwNYoGKsUSChN44lgBNCoHLHzquYKrU6qZ8lolCIN0Rh6cP0Q3U6I6IXILYOQI513hJaSKAorFpuHXJNfVlpRtmYBk1Su1obZr5dnKAO+L10Hrj3WZW+E3qh6IszE37F6EB+68mGpvKm4eb9bFrlzrok7fvr0Kfv727dvWRmdVTJHw0qiiCUSZ6wCK+7XL/AcsgNyL74DQQ730sv78Su7+t/A36MdY0sW5o40ahslXr58aZ5HtZB8GH64m9EmMZ7FpYw4T6QnrZfgenrhFxaSiSGXtPnz57e9TkNZLvTjeqhr734CNtrK41L40sUQckmj1lGKQ0rC37x544r8eNXRpnVE3ZZY7zXo8NomiO0ZUCj2uHz58rbXoZ6gc0uA+F6ZeKS/jhRDUq8MKrTho9fEkihMmhxtBI1DxKFY9XLpVcSkfoi8JGnToZO5sU5aiDQIW716ddt7ZLYtMQlhECdBGXZZMWldY5BHm5xgAroWj4C0hbYkSc/jBmggIrXJWlZM6pSETsEPGqZOndr2uuuR5rF169a2HoHPdurUKZM4CO1WTPqaDaAd+GFGKdIQkxAn9RuEWcTRyN2KSUgiSgF5aWzPTeA/lN5rZubMmR2bE4SIC4nJoltgAV/dVefZm72AtctUCJU2CMJ327hxY9t7EHbkyJFseq+EJSY16RPo3Dkq1kkr7+q0bNmyDuLQcZBEPYmHVdOBiJyIlrRDq41YPWfXOxUysi5fvtyaj+2BpcnsUV/oSoEMOk2CQGlr4ckhBwaetBhjCwH0ZHtJROPJkyc7UjcYLDjmrH7ADTEBXFfOYmB0k9oYBOjJ8b4aOYSe7QkKcYhFlq3QYLQhSidNmtS2RATwy8YOM3EQJsUjKiaWZ+vZToUQgzhkHXudb/PW5YMHD9yZM2faPsMwoc7RciYJXbGuBqJ1UIGKKLv915jsvgtJxCZDubdXr165mzdvtr1Hz5LONA8jrUwKPqsmVesKa49S3Q4WxmRPUEYdTjgiUcfUwLx589ySJUva3oMkP6IYddq6HMS4o55xBJBUeRjzfa4Zdeg56QZ43LhxoyPo7Lf1kNt7oO8wWAbNwaYjIv5lhyS7kRf96dvm5Jah8vfvX3flyhX35cuX6HfzFHOToS1H4BenCaHvO8pr8iDuwoUL7tevX+b5ZdbBair0xkFIlFDlW4ZknEClsp/TzXyAKVOmmHWFVSbDNw1l1+4f90U6IY/q4V27dpnE9bJ+v87QEydjqx/UamVVPRG+mwkNTYN+9tjkwzEx+atCm/X9WvWtDtAb68Wy9LXa1UmvCDDIpPkyOQ5ZwSzJ4jMrvFcr0rSjOUh+GcT4LSg5ugkW1Io0/SCDQBojh0hPlaJdah+tkVYrnTZowP8iq1F1TgMBBauufyB33x1v+NWFYmT5KmppgHC+NkAgbmRkpD3yn9QIseXymoTQFGQmIOKTxiZIWpvAatenVqRVXf2nTrAWMsPnKrMZHz6bJq5jvce6QK8J1cQNgKxlJapMPdZSR64/UivS9NztpkVEdKcrs5alhhWP9NeqlfWopzhZScI6QxseegZRGeg5a8C3Re1Mfl1ScP36ddcUaMuv24iOJtz7sbUjTS4qBvKmstYJoUauiuD3k5qhyr7QdUHMeCgLa1Ear9NquemdXgmum4fvJ6w1lqsuDhNrg1qSpleJK7K3TF0Q2jSd94uSZ60kK1e3qyVpQK6PVWXp2/FC3mp6jBhKKOiY2h3gtUV64TWM6wDETRPLDfSakXmH3w8g9Jlug8ZtTt4kVF0kLUYYmCCtD/DrQ5YhMGbA9L3ucdjh0y8kOHW5gU/VEEmJTcL4Pz/f7mgoAbYkAAAAAElFTkSuQmCC"]
|
||||
},
|
||||
]
|
||||
}'
|
||||
```
|
||||
|
||||
##### Response
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "llava",
|
||||
"created_at": "2023-12-13T22:42:50.203334Z",
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": " The image features a cute, little pig with an angry facial expression. It's wearing a heart on its shirt and is waving in the air. This scene appears to be part of a drawing or sketching project.",
|
||||
"images": null
|
||||
},
|
||||
"done": true,
|
||||
"total_duration": 1668506709,
|
||||
"load_duration": 1986209,
|
||||
"prompt_eval_count": 26,
|
||||
"prompt_eval_duration": 359682000,
|
||||
"eval_count": 83,
|
||||
"eval_duration": 1303285000
|
||||
}
|
||||
```
|
||||
|
||||
## Create a Model
|
||||
|
||||
```shell
|
||||
POST /api/create
|
||||
```
|
||||
|
||||
Create a model from a [`Modelfile`](./modelfile.md). It is recommended to set `modelfile` to the content of the Modelfile rather than just set `path`. This is a requirement for remote create. Remote model creation must also create any file blobs, fields such as `FROM` and `ADAPTER`, explicitly with the server using [Create a Blob](#create-a-blob) and the value to the path indicated in the response.
|
||||
|
||||
### Parameters
|
||||
|
||||
- `name`: name of the model to create
|
||||
- `modelfile` (optional): contents of the Modelfile
|
||||
- `stream`: (optional) if `false` the response will be returned as a single response object, rather than a stream of objects
|
||||
- `path` (optional): path to the Modelfile
|
||||
|
||||
### Examples
|
||||
|
||||
#### Create a new model
|
||||
|
||||
Create a new model from a `Modelfile`.
|
||||
|
||||
##### Request
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/create -d '{
|
||||
"name": "mario",
|
||||
"modelfile": "FROM llama2\nSYSTEM You are mario from Super Mario Bros."
|
||||
}'
|
||||
```
|
||||
|
||||
##### Response
|
||||
|
||||
A stream of JSON objects. Notice that the final JSON object shows a `"status": "success"`.
|
||||
|
||||
```json
|
||||
{"status":"reading model metadata"}
|
||||
{"status":"creating system layer"}
|
||||
{"status":"using already created layer sha256:22f7f8ef5f4c791c1b03d7eb414399294764d7cc82c7e94aa81a1feb80a983a2"}
|
||||
{"status":"using already created layer sha256:8c17c2ebb0ea011be9981cc3922db8ca8fa61e828c5d3f44cb6ae342bf80460b"}
|
||||
{"status":"using already created layer sha256:7c23fb36d80141c4ab8cdbb61ee4790102ebd2bf7aeff414453177d4f2110e5d"}
|
||||
{"status":"using already created layer sha256:2e0493f67d0c8c9c68a8aeacdf6a38a2151cb3c4c1d42accf296e19810527988"}
|
||||
{"status":"using already created layer sha256:2759286baa875dc22de5394b4a925701b1896a7e3f8e53275c36f75a877a82c9"}
|
||||
{"status":"writing layer sha256:df30045fe90f0d750db82a058109cecd6d4de9c90a3d75b19c09e5f64580bb42"}
|
||||
{"status":"writing layer sha256:f18a68eb09bf925bb1b669490407c1b1251c5db98dc4d3d81f3088498ea55690"}
|
||||
{"status":"writing manifest"}
|
||||
{"status":"success"}
|
||||
```
|
||||
|
||||
### Check if a Blob Exists
|
||||
|
||||
```shell
|
||||
HEAD /api/blobs/:digest
|
||||
```
|
||||
|
||||
Ensures that the file blob used for a FROM or ADAPTER field exists on the server. This is checking your Ollama server and not Ollama.ai.
|
||||
|
||||
#### Query Parameters
|
||||
|
||||
- `digest`: the SHA256 digest of the blob
|
||||
|
||||
#### Examples
|
||||
|
||||
##### Request
|
||||
|
||||
```shell
|
||||
curl -I http://localhost:11434/api/blobs/sha256:29fdb92e57cf0827ded04ae6461b5931d01fa595843f55d36f5b275a52087dd2
|
||||
```
|
||||
|
||||
##### Response
|
||||
|
||||
Return 200 OK if the blob exists, 404 Not Found if it does not.
|
||||
|
||||
### Create a Blob
|
||||
|
||||
```shell
|
||||
POST /api/blobs/:digest
|
||||
```
|
||||
|
||||
Create a blob from a file on the server. Returns the server file path.
|
||||
|
||||
#### Query Parameters
|
||||
|
||||
- `digest`: the expected SHA256 digest of the file
|
||||
|
||||
#### Examples
|
||||
|
||||
##### Request
|
||||
|
||||
```shell
|
||||
curl -T model.bin -X POST http://localhost:11434/api/blobs/sha256:29fdb92e57cf0827ded04ae6461b5931d01fa595843f55d36f5b275a52087dd2
|
||||
```
|
||||
|
||||
##### Response
|
||||
|
||||
Return 201 Created if the blob was successfully created, 400 Bad Request if the digest used is not expected.
|
||||
|
||||
## List Local Models
|
||||
|
||||
```shell
|
||||
GET /api/tags
|
||||
```
|
||||
|
||||
List models that are available locally.
|
||||
|
||||
### Examples
|
||||
|
||||
#### Request
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/tags
|
||||
```
|
||||
|
||||
#### Response
|
||||
|
||||
A single JSON object will be returned.
|
||||
|
||||
```json
|
||||
{
|
||||
"models": [
|
||||
{
|
||||
"name": "codellama:13b",
|
||||
"modified_at": "2023-11-04T14:56:49.277302595-07:00",
|
||||
"size": 7365960935,
|
||||
"digest": "9f438cb9cd581fc025612d27f7c1a6669ff83a8bb0ed86c94fcf4c5440555697",
|
||||
"details": {
|
||||
"format": "gguf",
|
||||
"family": "llama",
|
||||
"families": null,
|
||||
"parameter_size": "13B",
|
||||
"quantization_level": "Q4_0"
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "llama2:latest",
|
||||
"modified_at": "2023-12-07T09:32:18.757212583-08:00",
|
||||
"size": 3825819519,
|
||||
"digest": "fe938a131f40e6f6d40083c9f0f430a515233eb2edaa6d72eb85c50d64f2300e",
|
||||
"details": {
|
||||
"format": "gguf",
|
||||
"family": "llama",
|
||||
"families": null,
|
||||
"parameter_size": "7B",
|
||||
"quantization_level": "Q4_0"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
## Show Model Information
|
||||
|
||||
```shell
|
||||
POST /api/show
|
||||
```
|
||||
|
||||
Show information about a model including details, modelfile, template, parameters, license, and system prompt.
|
||||
|
||||
### Parameters
|
||||
|
||||
- `name`: name of the model to show
|
||||
|
||||
### Examples
|
||||
|
||||
#### Request
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/show -d '{
|
||||
"name": "llama2"
|
||||
}'
|
||||
```
|
||||
|
||||
#### Response
|
||||
|
||||
```json
|
||||
{
|
||||
"modelfile": "# Modelfile generated by \"ollama show\"\n# To build a new Modelfile based on this one, replace the FROM line with:\n# FROM llava:latest\n\nFROM /Users/matt/.ollama/models/blobs/sha256:200765e1283640ffbd013184bf496e261032fa75b99498a9613be4e94d63ad52\nTEMPLATE \"\"\"{{ .System }}\nUSER: {{ .Prompt }}\nASSSISTANT: \"\"\"\nPARAMETER num_ctx 4096\nPARAMETER stop \"\u003c/s\u003e\"\nPARAMETER stop \"USER:\"\nPARAMETER stop \"ASSSISTANT:\"",
|
||||
"parameters": "num_ctx 4096\nstop \u003c/s\u003e\nstop USER:\nstop ASSSISTANT:",
|
||||
"template": "{{ .System }}\nUSER: {{ .Prompt }}\nASSSISTANT: ",
|
||||
"details": {
|
||||
"format": "gguf",
|
||||
"family": "llama",
|
||||
"families": ["llama", "clip"],
|
||||
"parameter_size": "7B",
|
||||
"quantization_level": "Q4_0"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Copy a Model
|
||||
|
||||
```shell
|
||||
POST /api/copy
|
||||
```
|
||||
|
||||
Copy a model. Creates a model with another name from an existing model.
|
||||
|
||||
### Examples
|
||||
|
||||
#### Request
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/copy -d '{
|
||||
"source": "llama2",
|
||||
"destination": "llama2-backup"
|
||||
}'
|
||||
```
|
||||
|
||||
#### Response
|
||||
|
||||
Returns a 200 OK if successful, or a 404 Not Found if the source model doesn't exist.
|
||||
|
||||
## Delete a Model
|
||||
|
||||
```shell
|
||||
DELETE /api/delete
|
||||
```
|
||||
|
||||
Delete a model and its data.
|
||||
|
||||
### Parameters
|
||||
|
||||
- `name`: model name to delete
|
||||
|
||||
### Examples
|
||||
|
||||
#### Request
|
||||
|
||||
```shell
|
||||
curl -X DELETE http://localhost:11434/api/delete -d '{
|
||||
"name": "llama2:13b"
|
||||
}'
|
||||
```
|
||||
|
||||
#### Response
|
||||
|
||||
Returns a 200 OK if successful, 404 Not Found if the model to be deleted doesn't exist.
|
||||
|
||||
## Pull a Model
|
||||
|
||||
```shell
|
||||
POST /api/pull
|
||||
```
|
||||
|
||||
Download a model from the ollama library. Cancelled pulls are resumed from where they left off, and multiple calls will share the same download progress.
|
||||
|
||||
### Parameters
|
||||
|
||||
- `name`: name of the model to pull
|
||||
- `insecure`: (optional) allow insecure connections to the library. Only use this if you are pulling from your own library during development.
|
||||
- `stream`: (optional) if `false` the response will be returned as a single response object, rather than a stream of objects
|
||||
|
||||
### Examples
|
||||
|
||||
#### Request
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/pull -d '{
|
||||
"name": "llama2"
|
||||
}'
|
||||
```
|
||||
|
||||
#### Response
|
||||
|
||||
If `stream` is not specified, or set to `true`, a stream of JSON objects is returned:
|
||||
|
||||
The first object is the manifest:
|
||||
|
||||
```json
|
||||
{
|
||||
"status": "pulling manifest"
|
||||
}
|
||||
```
|
||||
|
||||
Then there is a series of downloading responses. Until any of the download is completed, the `completed` key may not be included. The number of files to be downloaded depends on the number of layers specified in the manifest.
|
||||
|
||||
```json
|
||||
{
|
||||
"status": "downloading digestname",
|
||||
"digest": "digestname",
|
||||
"total": 2142590208,
|
||||
"completed": 241970
|
||||
}
|
||||
```
|
||||
|
||||
After all the files are downloaded, the final responses are:
|
||||
|
||||
```json
|
||||
{
|
||||
"status": "verifying sha256 digest"
|
||||
}
|
||||
{
|
||||
"status": "writing manifest"
|
||||
}
|
||||
{
|
||||
"status": "removing any unused layers"
|
||||
}
|
||||
{
|
||||
"status": "success"
|
||||
}
|
||||
```
|
||||
|
||||
if `stream` is set to false, then the response is a single JSON object:
|
||||
|
||||
```json
|
||||
{
|
||||
"status": "success"
|
||||
}
|
||||
```
|
||||
|
||||
## Push a Model
|
||||
|
||||
```shell
|
||||
POST /api/push
|
||||
```
|
||||
|
||||
Upload a model to a model library. Requires registering for ollama.ai and adding a public key first.
|
||||
|
||||
### Parameters
|
||||
|
||||
- `name`: name of the model to push in the form of `<namespace>/<model>:<tag>`
|
||||
- `insecure`: (optional) allow insecure connections to the library. Only use this if you are pushing to your library during development.
|
||||
- `stream`: (optional) if `false` the response will be returned as a single response object, rather than a stream of objects
|
||||
|
||||
### Examples
|
||||
|
||||
#### Request
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/push -d '{
|
||||
"name": "mattw/pygmalion:latest"
|
||||
}'
|
||||
```
|
||||
|
||||
#### Response
|
||||
|
||||
If `stream` is not specified, or set to `true`, a stream of JSON objects is returned:
|
||||
|
||||
```json
|
||||
{ "status": "retrieving manifest" }
|
||||
```
|
||||
|
||||
and then:
|
||||
|
||||
```json
|
||||
{
|
||||
"status": "starting upload",
|
||||
"digest": "sha256:bc07c81de745696fdf5afca05e065818a8149fb0c77266fb584d9b2cba3711ab",
|
||||
"total": 1928429856
|
||||
}
|
||||
```
|
||||
|
||||
Then there is a series of uploading responses:
|
||||
|
||||
```json
|
||||
{
|
||||
"status": "starting upload",
|
||||
"digest": "sha256:bc07c81de745696fdf5afca05e065818a8149fb0c77266fb584d9b2cba3711ab",
|
||||
"total": 1928429856
|
||||
}
|
||||
```
|
||||
|
||||
Finally, when the upload is complete:
|
||||
|
||||
```json
|
||||
{"status":"pushing manifest"}
|
||||
{"status":"success"}
|
||||
```
|
||||
|
||||
If `stream` is set to `false`, then the response is a single JSON object:
|
||||
|
||||
```json
|
||||
{ "status": "success" }
|
||||
```
|
||||
|
||||
## Generate Embeddings
|
||||
|
||||
```shell
|
||||
POST /api/embeddings
|
||||
```
|
||||
|
||||
Generate embeddings from a model
|
||||
|
||||
### Parameters
|
||||
|
||||
- `model`: name of model to generate embeddings from
|
||||
- `prompt`: text to generate embeddings for
|
||||
|
||||
Advanced parameters:
|
||||
|
||||
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
|
||||
|
||||
### Examples
|
||||
|
||||
#### Request
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/embeddings -d '{
|
||||
"model": "llama2",
|
||||
"prompt": "Here is an article about llamas..."
|
||||
}'
|
||||
```
|
||||
|
||||
#### Response
|
||||
|
||||
```json
|
||||
{
|
||||
"embedding": [
|
||||
0.5670403838157654, 0.009260174818336964, 0.23178744316101074, -0.2916173040866852, -0.8924556970596313,
|
||||
0.8785552978515625, -0.34576427936553955, 0.5742510557174683, -0.04222835972905159, -0.137906014919281
|
||||
]
|
||||
}
|
||||
```
|
@@ -1,40 +1,108 @@
|
||||
# Development
|
||||
|
||||
- Install cmake or (optionally, required tools for GPUs)
|
||||
- run `go generate ./...`
|
||||
- run `go build .`
|
||||
|
||||
Install required tools:
|
||||
|
||||
- cmake version 3.24 or higher
|
||||
- go version 1.20 or higher
|
||||
- gcc version 11.4.0 or higher
|
||||
|
||||
```bash
|
||||
brew install go cmake gcc
|
||||
```
|
||||
brew install go
|
||||
|
||||
Optionally enable debugging and more verbose logging:
|
||||
|
||||
```bash
|
||||
export CGO_CFLAGS="-g"
|
||||
```
|
||||
|
||||
Get the required libraries and build the native LLM code:
|
||||
|
||||
```bash
|
||||
go generate ./...
|
||||
```
|
||||
|
||||
Then build ollama:
|
||||
|
||||
```
|
||||
```bash
|
||||
go build .
|
||||
```
|
||||
|
||||
Now you can run `ollama`:
|
||||
|
||||
```
|
||||
```bash
|
||||
./ollama
|
||||
```
|
||||
|
||||
## Releasing
|
||||
### Linux
|
||||
|
||||
To release a new version of Ollama you'll need to set some environment variables:
|
||||
#### Linux CUDA (NVIDIA)
|
||||
|
||||
* `GITHUB_TOKEN`: your GitHub token
|
||||
* `APPLE_IDENTITY`: the Apple signing identity (macOS only)
|
||||
* `APPLE_ID`: your Apple ID
|
||||
* `APPLE_PASSWORD`: your Apple ID app-specific password
|
||||
* `APPLE_TEAM_ID`: the Apple team ID for the signing identity
|
||||
* `TELEMETRY_WRITE_KEY`: segment write key for telemetry
|
||||
*Your operating system distribution may already have packages for NVIDIA CUDA. Distro packages are often preferable, but instructions are distro-specific. Please consult distro-specific docs for dependencies if available!*
|
||||
|
||||
Then run the publish script with the target version:
|
||||
Install `cmake` and `golang` as well as [NVIDIA CUDA](https://developer.nvidia.com/cuda-downloads) development and runtime packages.
|
||||
Then generate dependencies:
|
||||
|
||||
```
|
||||
VERSION=0.0.2 ./scripts/publish.sh
|
||||
go generate ./...
|
||||
```
|
||||
|
||||
Then build the binary:
|
||||
|
||||
```
|
||||
go build .
|
||||
```
|
||||
|
||||
#### Linux ROCm (AMD)
|
||||
|
||||
*Your operating system distribution may already have packages for AMD ROCm and CLBlast. Distro packages are often preferable, but instructions are distro-specific. Please consult distro-specific docs for dependencies if available!*
|
||||
|
||||
Install [CLBlast](https://github.com/CNugteren/CLBlast/blob/master/doc/installation.md) and [ROCm](https://rocm.docs.amd.com/en/latest/deploy/linux/quick_start.html) developement packages first, as well as `cmake` and `golang`.
|
||||
Adjust the paths below (correct for Arch) as appropriate for your distributions install locations and generate dependencies:
|
||||
|
||||
```
|
||||
CLBlast_DIR=/usr/lib/cmake/CLBlast ROCM_PATH=/opt/rocm go generate ./...
|
||||
```
|
||||
|
||||
Then build the binary:
|
||||
|
||||
```
|
||||
go build .
|
||||
```
|
||||
|
||||
ROCm requires elevated privileges to access the GPU at runtime. On most distros you can add your user account to the `render` group, or run as root.
|
||||
|
||||
#### Containerized Linux Build
|
||||
|
||||
If you have Docker available, you can build linux binaries with `./scripts/build_linux.sh` which has the CUDA and ROCm dependencies included. The resulting binary is placed in `./dist`
|
||||
|
||||
|
||||
### Windows
|
||||
|
||||
Note: The windows build for Ollama is still under development.
|
||||
|
||||
Install required tools:
|
||||
|
||||
- MSVC toolchain - C/C++ and cmake as minimal requirements
|
||||
- go version 1.20 or higher
|
||||
- MinGW (pick one variant) with GCC.
|
||||
- <https://www.mingw-w64.org/>
|
||||
- <https://www.msys2.org/>
|
||||
|
||||
```powershell
|
||||
$env:CGO_ENABLED="1"
|
||||
|
||||
go generate ./...
|
||||
|
||||
go build .
|
||||
```
|
||||
|
||||
#### Windows CUDA (NVIDIA)
|
||||
|
||||
In addition to the common Windows development tools described above, install:
|
||||
|
||||
- [NVIDIA CUDA](https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html)
|
||||
|
114
docs/faq.md
Normal file
@@ -0,0 +1,114 @@
|
||||
# FAQ
|
||||
|
||||
## How can I upgrade Ollama?
|
||||
|
||||
To upgrade Ollama, run the installation process again. On the Mac, click the Ollama icon in the menubar and choose the restart option if an update is available.
|
||||
|
||||
## How can I view the logs?
|
||||
|
||||
Review the [Troubleshooting](./troubleshooting.md) docs for more about using logs.
|
||||
|
||||
## How do I use Ollama server environment variables on Mac
|
||||
|
||||
On macOS, Ollama runs in the background and is managed by the menubar app. If adding environment variables, Ollama will need to be run manually.
|
||||
|
||||
1. Click the menubar icon for Ollama and choose **Quit Ollama**.
|
||||
2. Open a new terminal window and run the following command (this example uses `OLLAMA_HOST` with an IP address of `123.1.1.1`):
|
||||
|
||||
```bash
|
||||
OLLAMA_HOST=123.1.1.1 ollama serve
|
||||
```
|
||||
|
||||
## How do I use Ollama server environment variables on Linux?
|
||||
|
||||
If Ollama is installed with the install script, a systemd service was created, running as the Ollama user. To add an environment variable, such as OLLAMA_HOST, follow these steps:
|
||||
|
||||
1. Create a `systemd` drop-in directory and add a config file. This is only needed once.
|
||||
|
||||
```bash
|
||||
mkdir -p /etc/systemd/system/ollama.service.d
|
||||
echo '[Service]' >>/etc/systemd/system/ollama.service.d/environment.conf
|
||||
```
|
||||
|
||||
2. For each environment variable, add it to the config file:
|
||||
|
||||
```bash
|
||||
echo 'Environment="OLLAMA_HOST=0.0.0.0:11434"' >>/etc/systemd/system/ollama.service.d/environment.conf
|
||||
```
|
||||
|
||||
3. Reload `systemd` and restart Ollama:
|
||||
|
||||
```bash
|
||||
systemctl daemon-reload
|
||||
systemctl restart ollama
|
||||
```
|
||||
|
||||
## How can I expose Ollama on my network?
|
||||
|
||||
Ollama binds to 127.0.0.1 port 11434 by default. Change the bind address with the `OLLAMA_HOST` environment variable. Refer to the section above for how to use environment variables on your platform.
|
||||
|
||||
## How can I allow additional web origins to access Ollama?
|
||||
|
||||
Ollama allows cross-origin requests from `127.0.0.1` and `0.0.0.0` by default. Add additional origins with the `OLLAMA_ORIGINS` environment variable. For example, to add all ports on 192.168.1.1 and https://example.com, use:
|
||||
|
||||
```shell
|
||||
OLLAMA_ORIGINS=http://192.168.1.1:*,https://example.com
|
||||
```
|
||||
|
||||
Refer to the section above for how to use environment variables on your platform.
|
||||
|
||||
## Where are models stored?
|
||||
|
||||
- macOS: `~/.ollama/models`.
|
||||
- Linux: `/usr/share/ollama/.ollama/models`
|
||||
|
||||
## How do I set them to a different location?
|
||||
|
||||
If a different directory needs to be used, set the environment variable `OLLAMA_MODELS` to the chosen directory. Refer to the section above for how to use environment variables on your platform.
|
||||
|
||||
## Does Ollama send my prompts and answers back to Ollama.ai to use in any way?
|
||||
|
||||
No, Ollama runs entirely locally, and conversation data will never leave your machine.
|
||||
|
||||
## How can I use Ollama in Visual Studio Code?
|
||||
|
||||
There is already a large collection of plugins available for VSCode as well as other editors that leverage Ollama. See the list of [extensions & plugins](https://github.com/jmorganca/ollama#extensions--plugins) at the bottom of the main repository readme.
|
||||
|
||||
## How do I use Ollama behind a proxy?
|
||||
|
||||
Ollama is compatible with proxy servers if `HTTP_PROXY` or `HTTPS_PROXY` are configured. When using either variables, ensure it is set where `ollama serve` can access the values. When using `HTTPS_PROXY`, ensure the proxy certificate is installed as a system certificate. Refer to the section above for how to use environment variables on your platform.
|
||||
|
||||
### How do I use Ollama behind a proxy in Docker?
|
||||
|
||||
The Ollama Docker container image can be configured to use a proxy by passing `-e HTTPS_PROXY=https://proxy.example.com` when starting the container.
|
||||
|
||||
Alternatively, the Docker daemon can be configured to use a proxy. Instructions are available for Docker Desktop on [macOS](https://docs.docker.com/desktop/settings/mac/#proxies), [Windows](https://docs.docker.com/desktop/settings/windows/#proxies), and [Linux](https://docs.docker.com/desktop/settings/linux/#proxies), and Docker [daemon with systemd](https://docs.docker.com/config/daemon/systemd/#httphttps-proxy).
|
||||
|
||||
Ensure the certificate is installed as a system certificate when using HTTPS. This may require a new Docker image when using a self-signed certificate.
|
||||
|
||||
```dockerfile
|
||||
FROM ollama/ollama
|
||||
COPY my-ca.pem /usr/local/share/ca-certificates/my-ca.crt
|
||||
RUN update-ca-certificates
|
||||
```
|
||||
|
||||
Build and run this image:
|
||||
|
||||
```shell
|
||||
docker build -t ollama-with-ca .
|
||||
docker run -d -e HTTPS_PROXY=https://my.proxy.example.com -p 11434:11434 ollama-with-ca
|
||||
```
|
||||
|
||||
## How do I use Ollama with GPU acceleration in Docker?
|
||||
|
||||
The Ollama Docker container can be configured with GPU acceleration in Linux or Windows (with WSL2). This requires the [nvidia-container-toolkit](https://github.com/NVIDIA/nvidia-container-toolkit). See [ollama/ollama](https://hub.docker.com/r/ollama/ollama) for more details.
|
||||
|
||||
GPU acceleration is not available for Docker Desktop in macOS due to the lack of GPU passthrough and emulation.
|
||||
|
||||
## Why is networking slow in WSL2 on Windows 10?
|
||||
|
||||
This can impact both installing Ollama, as well as downloading models.
|
||||
|
||||
Open `Control Panel > Networking and Internet > View network status and tasks` and click on `Change adapter settings` on the left panel. Find the `vEthernel (WSL)` adapter, right click and select `Properties`.
|
||||
Click on `Configure` and open the `Advanced` tab. Search through each of the properties until you find `Large Send Offload Version 2 (IPv4)` and `Large Send Offload Version 2 (IPv6)`. *Disable* both of these
|
||||
properties.
|
195
docs/import.md
Normal file
@@ -0,0 +1,195 @@
|
||||
# Import a model
|
||||
|
||||
This guide walks through importing a GGUF, PyTorch or Safetensors model.
|
||||
|
||||
## Importing (GGUF)
|
||||
|
||||
### Step 1: Write a `Modelfile`
|
||||
|
||||
Start by creating a `Modelfile`. This file is the blueprint for your model, specifying weights, parameters, prompt templates and more.
|
||||
|
||||
```
|
||||
FROM ./mistral-7b-v0.1.Q4_0.gguf
|
||||
```
|
||||
|
||||
(Optional) many chat models require a prompt template in order to answer correctly. A default prompt template can be specified with the `TEMPLATE` instruction in the `Modelfile`:
|
||||
|
||||
```
|
||||
FROM ./q4_0.bin
|
||||
TEMPLATE "[INST] {{ .Prompt }} [/INST]"
|
||||
```
|
||||
|
||||
### Step 2: Create the Ollama model
|
||||
|
||||
Finally, create a model from your `Modelfile`:
|
||||
|
||||
```
|
||||
ollama create example -f Modelfile
|
||||
```
|
||||
|
||||
### Step 3: Run your model
|
||||
|
||||
Next, test the model with `ollama run`:
|
||||
|
||||
```
|
||||
ollama run example "What is your favourite condiment?"
|
||||
```
|
||||
|
||||
## Importing (PyTorch & Safetensors)
|
||||
|
||||
### Supported models
|
||||
|
||||
Ollama supports a set of model architectures, with support for more coming soon:
|
||||
|
||||
- Llama & Mistral
|
||||
- Falcon & RW
|
||||
- BigCode
|
||||
|
||||
To view a model's architecture, check the `config.json` file in its HuggingFace repo. You should see an entry under `architectures` (e.g. `LlamaForCausalLM`).
|
||||
|
||||
### Step 1: Clone the HuggingFace repository (optional)
|
||||
|
||||
If the model is currently hosted in a HuggingFace repository, first clone that repository to download the raw model.
|
||||
|
||||
```
|
||||
git lfs install
|
||||
git clone https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
|
||||
cd Mistral-7B-Instruct-v0.1
|
||||
```
|
||||
|
||||
### Step 2: Convert and quantize to a `.bin` file (optional, for PyTorch and Safetensors)
|
||||
|
||||
If the model is in PyTorch or Safetensors format, a [Docker image](https://hub.docker.com/r/ollama/quantize) with the tooling required to convert and quantize models is available.
|
||||
|
||||
First, Install [Docker](https://www.docker.com/get-started/).
|
||||
|
||||
Next, to convert and quantize your model, run:
|
||||
|
||||
```
|
||||
docker run --rm -v .:/model ollama/quantize -q q4_0 /model
|
||||
```
|
||||
|
||||
This will output two files into the directory:
|
||||
|
||||
- `f16.bin`: the model converted to GGUF
|
||||
- `q4_0.bin` the model quantized to a 4-bit quantization (Ollama will use this file to create the Ollama model)
|
||||
|
||||
### Step 3: Write a `Modelfile`
|
||||
|
||||
Next, create a `Modelfile` for your model:
|
||||
|
||||
```
|
||||
FROM ./q4_0.bin
|
||||
```
|
||||
|
||||
(Optional) many chat models require a prompt template in order to answer correctly. A default prompt template can be specified with the `TEMPLATE` instruction in the `Modelfile`:
|
||||
|
||||
```
|
||||
FROM ./q4_0.bin
|
||||
TEMPLATE "[INST] {{ .Prompt }} [/INST]"
|
||||
```
|
||||
|
||||
### Step 4: Create the Ollama model
|
||||
|
||||
Finally, create a model from your `Modelfile`:
|
||||
|
||||
```
|
||||
ollama create example -f Modelfile
|
||||
```
|
||||
|
||||
### Step 5: Run your model
|
||||
|
||||
Next, test the model with `ollama run`:
|
||||
|
||||
```
|
||||
ollama run example "What is your favourite condiment?"
|
||||
```
|
||||
|
||||
## Publishing your model (optional – early alpha)
|
||||
|
||||
Publishing models is in early alpha. If you'd like to publish your model to share with others, follow these steps:
|
||||
|
||||
1. Create [an account](https://ollama.ai/signup)
|
||||
2. Run `cat ~/.ollama/id_ed25519.pub` to view your Ollama public key. Copy this to the clipboard.
|
||||
3. Add your public key to your [Ollama account](https://ollama.ai/settings/keys)
|
||||
|
||||
Next, copy your model to your username's namespace:
|
||||
|
||||
```
|
||||
ollama cp example <your username>/example
|
||||
```
|
||||
|
||||
Then push the model:
|
||||
|
||||
```
|
||||
ollama push <your username>/example
|
||||
```
|
||||
|
||||
After publishing, your model will be available at `https://ollama.ai/<your username>/example`.
|
||||
|
||||
## Quantization reference
|
||||
|
||||
The quantization options are as follow (from highest highest to lowest levels of quantization). Note: some architectures such as Falcon do not support K quants.
|
||||
|
||||
- `q2_K`
|
||||
- `q3_K`
|
||||
- `q3_K_S`
|
||||
- `q3_K_M`
|
||||
- `q3_K_L`
|
||||
- `q4_0` (recommended)
|
||||
- `q4_1`
|
||||
- `q4_K`
|
||||
- `q4_K_S`
|
||||
- `q4_K_M`
|
||||
- `q5_0`
|
||||
- `q5_1`
|
||||
- `q5_K`
|
||||
- `q5_K_S`
|
||||
- `q5_K_M`
|
||||
- `q6_K`
|
||||
- `q8_0`
|
||||
- `f16`
|
||||
|
||||
## Manually converting & quantizing models
|
||||
|
||||
### Prerequisites
|
||||
|
||||
Start by cloning the `llama.cpp` repo to your machine in another directory:
|
||||
|
||||
```
|
||||
git clone https://github.com/ggerganov/llama.cpp.git
|
||||
cd llama.cpp
|
||||
```
|
||||
|
||||
Next, install the Python dependencies:
|
||||
|
||||
```
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
Finally, build the `quantize` tool:
|
||||
|
||||
```
|
||||
make quantize
|
||||
```
|
||||
|
||||
### Convert the model
|
||||
|
||||
Run the correct conversion script for your model architecture:
|
||||
|
||||
```shell
|
||||
# LlamaForCausalLM or MistralForCausalLM
|
||||
python convert.py <path to model directory>
|
||||
|
||||
# FalconForCausalLM
|
||||
python convert-falcon-hf-to-gguf.py <path to model directory>
|
||||
|
||||
# GPTBigCodeForCausalLM
|
||||
python convert-starcoder-hf-to-gguf.py <path to model directory>
|
||||
```
|
||||
|
||||
### Quantize the model
|
||||
|
||||
```
|
||||
quantize <path to model dir>/ggml-model-f32.bin <path to model dir>/q4_0.bin q4_0
|
||||
```
|
116
docs/linux.md
Normal file
@@ -0,0 +1,116 @@
|
||||
# Ollama on Linux
|
||||
|
||||
## Install
|
||||
|
||||
Install Ollama running this one-liner:
|
||||
>
|
||||
```bash
|
||||
curl https://ollama.ai/install.sh | sh
|
||||
```
|
||||
|
||||
## Manual install
|
||||
|
||||
### Download the `ollama` binary
|
||||
|
||||
Ollama is distributed as a self-contained binary. Download it to a directory in your PATH:
|
||||
|
||||
```bash
|
||||
sudo curl -L https://ollama.ai/download/ollama-linux-amd64 -o /usr/bin/ollama
|
||||
sudo chmod +x /usr/bin/ollama
|
||||
```
|
||||
|
||||
### Adding Ollama as a startup service (recommended)
|
||||
|
||||
Create a user for Ollama:
|
||||
|
||||
```bash
|
||||
sudo useradd -r -s /bin/false -m -d /usr/share/ollama ollama
|
||||
```
|
||||
|
||||
Create a service file in `/etc/systemd/system/ollama.service`:
|
||||
|
||||
```ini
|
||||
[Unit]
|
||||
Description=Ollama Service
|
||||
After=network-online.target
|
||||
|
||||
[Service]
|
||||
ExecStart=/usr/bin/ollama serve
|
||||
User=ollama
|
||||
Group=ollama
|
||||
Restart=always
|
||||
RestartSec=3
|
||||
|
||||
[Install]
|
||||
WantedBy=default.target
|
||||
```
|
||||
|
||||
Then start the service:
|
||||
|
||||
```bash
|
||||
sudo systemctl daemon-reload
|
||||
sudo systemctl enable ollama
|
||||
```
|
||||
|
||||
### Install CUDA drivers (optional – for Nvidia GPUs)
|
||||
|
||||
[Download and install](https://developer.nvidia.com/cuda-downloads) CUDA.
|
||||
|
||||
Verify that the drivers are installed by running the following command, which should print details about your GPU:
|
||||
|
||||
```bash
|
||||
nvidia-smi
|
||||
```
|
||||
|
||||
### Start Ollama
|
||||
|
||||
Start Ollama using `systemd`:
|
||||
|
||||
```bash
|
||||
sudo systemctl start ollama
|
||||
```
|
||||
|
||||
## Update
|
||||
|
||||
Update ollama by running the install script again:
|
||||
|
||||
```bash
|
||||
curl https://ollama.ai/install.sh | sh
|
||||
```
|
||||
|
||||
Or by downloading the ollama binary:
|
||||
|
||||
```bash
|
||||
sudo curl -L https://ollama.ai/download/ollama-linux-amd64 -o /usr/bin/ollama
|
||||
sudo chmod +x /usr/bin/ollama
|
||||
```
|
||||
|
||||
## Viewing logs
|
||||
|
||||
To view logs of Ollama running as a startup service, run:
|
||||
|
||||
```bash
|
||||
journalctl -u ollama
|
||||
```
|
||||
|
||||
## Uninstall
|
||||
|
||||
Remove the ollama service:
|
||||
|
||||
```bash
|
||||
sudo systemctl stop ollama
|
||||
sudo systemctl disable ollama
|
||||
sudo rm /etc/systemd/system/ollama.service
|
||||
```
|
||||
|
||||
Remove the ollama binary from your bin directory (either `/usr/local/bin`, `/usr/bin`, or `/bin`):
|
||||
|
||||
```bash
|
||||
sudo rm $(which ollama)
|
||||
```
|
||||
|
||||
Remove the downloaded models and Ollama service user:
|
||||
```bash
|
||||
sudo rm -r /usr/share/ollama
|
||||
sudo userdel ollama
|
||||
```
|
@@ -1,33 +1,129 @@
|
||||
# Ollama Model File Reference
|
||||
# Ollama Model File
|
||||
|
||||
Ollama can build models automatically by reading the instructions from a Modelfile. A Modelfile is a text document that represents the complete configuration of the Model. You can see that a Modelfile is very similar to a Dockerfile.
|
||||
> Note: `Modelfile` syntax is in development
|
||||
|
||||
A model file is the blueprint to create and share models with Ollama.
|
||||
|
||||
## Table of Contents
|
||||
|
||||
- [Format](#format)
|
||||
- [Examples](#examples)
|
||||
- [Instructions](#instructions)
|
||||
- [FROM (Required)](#from-required)
|
||||
- [Build from llama2](#build-from-llama2)
|
||||
- [Build from a bin file](#build-from-a-bin-file)
|
||||
- [PARAMETER](#parameter)
|
||||
- [Valid Parameters and Values](#valid-parameters-and-values)
|
||||
- [TEMPLATE](#template)
|
||||
- [Template Variables](#template-variables)
|
||||
- [SYSTEM](#system)
|
||||
- [ADAPTER](#adapter)
|
||||
- [LICENSE](#license)
|
||||
- [Notes](#notes)
|
||||
|
||||
## Format
|
||||
|
||||
Here is the format of the Modelfile:
|
||||
The format of the `Modelfile`:
|
||||
|
||||
```modelfile
|
||||
# comment
|
||||
INSTRUCTION arguments
|
||||
```
|
||||
|
||||
Nothing in the file is case-sensitive. However, the convention is for instructions to be uppercase to make it easier to distinguish from the arguments.
|
||||
| Instruction | Description |
|
||||
| ----------------------------------- | -------------------------------------------------------------- |
|
||||
| [`FROM`](#from-required) (required) | Defines the base model to use. |
|
||||
| [`PARAMETER`](#parameter) | Sets the parameters for how Ollama will run the model. |
|
||||
| [`TEMPLATE`](#template) | The full prompt template to be sent to the model. |
|
||||
| [`SYSTEM`](#system) | Specifies the system message that will be set in the template. |
|
||||
| [`ADAPTER`](#adapter) | Defines the (Q)LoRA adapters to apply to the model. |
|
||||
| [`LICENSE`](#license) | Specifies the legal license. |
|
||||
|
||||
A Modelfile can include instructions in any order. But the convention is to start the Modelfile with the FROM instruction.
|
||||
## Examples
|
||||
|
||||
Although the example above shows a comment starting with a hash character, any instruction that is not recognized is seen as a comment.
|
||||
### Basic `Modelfile`
|
||||
|
||||
## FROM
|
||||
An example of a `Modelfile` creating a mario blueprint:
|
||||
|
||||
```modelfile
|
||||
FROM <image>[:<tag>]
|
||||
FROM llama2
|
||||
# sets the temperature to 1 [higher is more creative, lower is more coherent]
|
||||
PARAMETER temperature 1
|
||||
# sets the context window size to 4096, this controls how many tokens the LLM can use as context to generate the next token
|
||||
PARAMETER num_ctx 4096
|
||||
|
||||
# sets a custom system message to specify the behavior of the chat assistant
|
||||
SYSTEM You are Mario from super mario bros, acting as an assistant.
|
||||
```
|
||||
|
||||
This defines the base model to be used. An image can be a known image on the Ollama Hub, or a fully-qualified path to a model file on your system
|
||||
To use this:
|
||||
|
||||
## PARAMETER
|
||||
1. Save it as a file (e.g. `Modelfile`)
|
||||
2. `ollama create choose-a-model-name -f <location of the file e.g. ./Modelfile>'`
|
||||
3. `ollama run choose-a-model-name`
|
||||
4. Start using the model!
|
||||
|
||||
The PARAMETER instruction defines a parameter that can be set when the model is run.
|
||||
More examples are available in the [examples directory](../examples).
|
||||
|
||||
### `Modelfile`s in [ollama.ai/library][1]
|
||||
|
||||
There are two ways to view `Modelfile`s underlying the models in [ollama.ai/library][1]:
|
||||
|
||||
- Option 1: view a details page from a model's tags page:
|
||||
1. Go to a particular model's tags (e.g. https://ollama.ai/library/llama2/tags)
|
||||
2. Click on a tag (e.g. https://ollama.ai/library/llama2:13b)
|
||||
3. Scroll down to "Layers"
|
||||
- Note: if the [`FROM` instruction](#from-required) is not present,
|
||||
it means the model was created from a local file
|
||||
- Option 2: use `ollama show` to print the `Modelfile` for any local models like so:
|
||||
|
||||
```bash
|
||||
> ollama show --modelfile llama2:13b
|
||||
# Modelfile generated by "ollama show"
|
||||
# To build a new Modelfile based on this one, replace the FROM line with:
|
||||
# FROM llama2:13b
|
||||
|
||||
FROM /root/.ollama/models/blobs/sha256:123abc
|
||||
TEMPLATE """[INST] {{ if and .First .System }}<<SYS>>{{ .System }}<</SYS>>
|
||||
|
||||
{{ end }}{{ .Prompt }} [/INST] """
|
||||
SYSTEM """"""
|
||||
PARAMETER stop [INST]
|
||||
PARAMETER stop [/INST]
|
||||
PARAMETER stop <<SYS>>
|
||||
PARAMETER stop <</SYS>>
|
||||
```
|
||||
|
||||
## Instructions
|
||||
|
||||
### FROM (Required)
|
||||
|
||||
The `FROM` instruction defines the base model to use when creating a model.
|
||||
|
||||
```modelfile
|
||||
FROM <model name>:<tag>
|
||||
```
|
||||
|
||||
#### Build from llama2
|
||||
|
||||
```modelfile
|
||||
FROM llama2
|
||||
```
|
||||
|
||||
A list of available base models:
|
||||
<https://github.com/jmorganca/ollama#model-library>
|
||||
|
||||
#### Build from a `bin` file
|
||||
|
||||
```modelfile
|
||||
FROM ./ollama-model.bin
|
||||
```
|
||||
|
||||
This bin file location should be specified as an absolute path or relative to the `Modelfile` location.
|
||||
|
||||
### PARAMETER
|
||||
|
||||
The `PARAMETER` instruction defines a parameter that can be set when the model is run.
|
||||
|
||||
```modelfile
|
||||
PARAMETER <parameter> <parametervalue>
|
||||
@@ -35,46 +131,83 @@ PARAMETER <parameter> <parametervalue>
|
||||
|
||||
### Valid Parameters and Values
|
||||
|
||||
| Parameter | Description | Value Type | Value Range |
|
||||
| ---------------- | ------------------------------------------------------------------------------------------- | ---------- | ----------- |
|
||||
| NumCtx | | int | |
|
||||
| NumGPU | | int | |
|
||||
| MainGPU | | int | |
|
||||
| LowVRAM | | bool | |
|
||||
| F16KV | | bool | |
|
||||
| LogitsAll | | bool | |
|
||||
| VocabOnly | | bool | |
|
||||
| UseMMap | | bool | |
|
||||
| EmbeddingOnly | | bool | |
|
||||
| RepeatLastN | | int | |
|
||||
| RepeatPenalty | | float | |
|
||||
| FrequencyPenalty | | float | |
|
||||
| PresencePenalty | | float | |
|
||||
| temperature | The temperature of the model. Higher temperatures result in more creativity in the response | float | 0 - 1 |
|
||||
| TopK | | int | |
|
||||
| TopP | | float | |
|
||||
| TFSZ | | float | |
|
||||
| TypicalP | | float | |
|
||||
| Mirostat | | int | |
|
||||
| MirostatTau | | float | |
|
||||
| MirostatEta | | float | |
|
||||
| NumThread | | int | |
|
||||
| Parameter | Description | Value Type | Example Usage |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------- | -------------------- |
|
||||
| mirostat | Enable Mirostat sampling for controlling perplexity. (default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0) | int | mirostat 0 |
|
||||
| mirostat_eta | Influences how quickly the algorithm responds to feedback from the generated text. A lower learning rate will result in slower adjustments, while a higher learning rate will make the algorithm more responsive. (Default: 0.1) | float | mirostat_eta 0.1 |
|
||||
| mirostat_tau | Controls the balance between coherence and diversity of the output. A lower value will result in more focused and coherent text. (Default: 5.0) | float | mirostat_tau 5.0 |
|
||||
| num_ctx | Sets the size of the context window used to generate the next token. (Default: 2048) | int | num_ctx 4096 |
|
||||
| num_gqa | The number of GQA groups in the transformer layer. Required for some models, for example it is 8 for llama2:70b | int | num_gqa 1 |
|
||||
| num_gpu | The number of layers to send to the GPU(s). On macOS it defaults to 1 to enable metal support, 0 to disable. | int | num_gpu 50 |
|
||||
| num_thread | Sets the number of threads to use during computation. By default, Ollama will detect this for optimal performance. It is recommended to set this value to the number of physical CPU cores your system has (as opposed to the logical number of cores). | int | num_thread 8 |
|
||||
| repeat_last_n | Sets how far back for the model to look back to prevent repetition. (Default: 64, 0 = disabled, -1 = num_ctx) | int | repeat_last_n 64 |
|
||||
| repeat_penalty | Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1) | float | repeat_penalty 1.1 |
|
||||
| temperature | The temperature of the model. Increasing the temperature will make the model answer more creatively. (Default: 0.8) | float | temperature 0.7 |
|
||||
| seed | Sets the random number seed to use for generation. Setting this to a specific number will make the model generate the same text for the same prompt. (Default: 0) | int | seed 42 |
|
||||
| stop | Sets the stop sequences to use. When this pattern is encountered the LLM will stop generating text and return. Multiple stop patterns may be set by specifying multiple separate `stop` parameters in a modelfile. | string | stop "AI assistant:" |
|
||||
| tfs_z | Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting. (default: 1) | float | tfs_z 1 |
|
||||
| num_predict | Maximum number of tokens to predict when generating text. (Default: 128, -1 = infinite generation, -2 = fill context) | int | num_predict 42 |
|
||||
| top_k | Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40) | int | top_k 40 |
|
||||
| top_p | Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9) | float | top_p 0.9 |
|
||||
|
||||
### TEMPLATE
|
||||
|
||||
## PROMPT
|
||||
`TEMPLATE` of the full prompt template to be passed into the model. It may include (optionally) a system message and a user's prompt. This is used to create a full custom prompt, and syntax may be model specific. You can usually find the template for a given model in the readme for that model.
|
||||
|
||||
Prompt is a multiline instruction that defines the prompt to be used when the model is run. Typically there are 3-4 components to a prompt: System, context, user, and response.
|
||||
#### Template Variables
|
||||
|
||||
| Variable | Description |
|
||||
| ----------------- | ------------------------------------------------------------------------------------------------------------- |
|
||||
| `{{ .System }}` | The system message used to specify custom behavior, this must also be set in the Modelfile as an instruction. |
|
||||
| `{{ .Prompt }}` | The incoming prompt, this is not specified in the model file and will be set based on input. |
|
||||
| `{{ .Response }}` | The response from the LLM, if not specified response is appended to the end of the template. |
|
||||
| `{{ .First }}` | A boolean value used to render specific template information for the first generation of a session. |
|
||||
|
||||
```modelfile
|
||||
PROMPT """
|
||||
{{- if not .Context }}
|
||||
TEMPLATE """
|
||||
{{- if .First }}
|
||||
### System:
|
||||
You are a content marketer who needs to come up with a short but succinct tweet. Make sure to include the appropriate hashtags and links. Sometimes when appropriate, describe a meme that can be includes as well. All answers should be in the form of a tweet which has a max size of 280 characters. Every instruction will be the topic to create a tweet about.
|
||||
{{ .System }}
|
||||
{{- end }}
|
||||
### Instruction:
|
||||
|
||||
### User:
|
||||
{{ .Prompt }}
|
||||
|
||||
### Response:
|
||||
"""
|
||||
|
||||
```
|
||||
SYSTEM """<system message>"""
|
||||
```
|
||||
|
||||
### SYSTEM
|
||||
|
||||
The `SYSTEM` instruction specifies the system message to be used in the template, if applicable.
|
||||
|
||||
```modelfile
|
||||
SYSTEM """<system message>"""
|
||||
```
|
||||
|
||||
### ADAPTER
|
||||
|
||||
The `ADAPTER` instruction specifies the LoRA adapter to apply to the base model. The value of this instruction should be an absolute path or a path relative to the Modelfile and the file must be in a GGML file format. The adapter should be tuned from the base model otherwise the behaviour is undefined.
|
||||
|
||||
```modelfile
|
||||
ADAPTER ./ollama-lora.bin
|
||||
```
|
||||
|
||||
### LICENSE
|
||||
|
||||
The `LICENSE` instruction allows you to specify the legal license under which the model used with this Modelfile is shared or distributed.
|
||||
|
||||
```modelfile
|
||||
LICENSE """
|
||||
<license text>
|
||||
"""
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- the **`Modelfile` is not case sensitive**. In the examples, uppercase instructions are used to make it easier to distinguish it from arguments.
|
||||
- Instructions can be in any order. In the examples, the `FROM` instruction is first to keep it easily readable.
|
||||
|
||||
[1]: https://ollama.ai/library
|
||||
|
22
docs/troubleshooting.md
Normal file
@@ -0,0 +1,22 @@
|
||||
# How to troubleshoot issues
|
||||
|
||||
Sometimes Ollama may not perform as expected. One of the best ways to figure out what happened is to take a look at the logs. Find the logs on Mac by running the command:
|
||||
|
||||
```shell
|
||||
cat ~/.ollama/logs/server.log
|
||||
```
|
||||
|
||||
On Linux systems with systemd, the logs can be found with this command:
|
||||
|
||||
```shell
|
||||
journalctl -u ollama
|
||||
```
|
||||
|
||||
If manually running `ollama serve` in a terminal, the logs will be on that terminal.
|
||||
|
||||
Join the [Discord](https://discord.gg/ollama) for help interpreting the logs.
|
||||
|
||||
## Known issues
|
||||
|
||||
|
||||
* `signal: illegal instruction (core dumped)`: Ollama requires AVX support from the CPU. This was introduced in 2011 and CPUs started offering it in 2012. CPUs from before that and some lower end CPUs after that may not have AVX support and thus are not supported by Ollama. Some users have had luck with building Ollama on their machines disabling the need for AVX.
|
9
docs/tutorials.md
Normal file
@@ -0,0 +1,9 @@
|
||||
# Tutorials
|
||||
|
||||
Here is a list of ways you can use Ollama with other tools to build interesting applications.
|
||||
|
||||
- [Using LangChain with Ollama in JavaScript](./tutorials/langchainjs.md)
|
||||
- [Using LangChain with Ollama in Python](./tutorials/langchainpy.md)
|
||||
- [Running Ollama on NVIDIA Jetson Devices](./tutorials/nvidia-jetson.md)
|
||||
|
||||
Also be sure to check out the [examples](../examples) directory for more ways to use Ollama.
|
83
docs/tutorials/fly-gpu.md
Normal file
@@ -0,0 +1,83 @@
|
||||
# Running Ollama on Fly.io GPU Instances
|
||||
|
||||
Ollama runs with little to no configuration on [Fly.io GPU instances](https://fly.io/docs/gpus/gpu-quickstart/). If you don't have access to GPUs yet, you'll need to [apply for access](https://fly.io/gpu/) on the waitlist. Once you're accepted, you'll get an email with instructions on how to get started.
|
||||
|
||||
Create a new app with `fly apps create`:
|
||||
|
||||
```bash
|
||||
fly apps create
|
||||
```
|
||||
|
||||
Then create a `fly.toml` file in a new folder that looks like this:
|
||||
|
||||
```toml
|
||||
app = "sparkling-violet-709"
|
||||
primary_region = "ord"
|
||||
vm.size = "a100-40gb" # see https://fly.io/docs/gpus/gpu-quickstart/ for more info
|
||||
|
||||
[build]
|
||||
image = "ollama/ollama"
|
||||
|
||||
[http_service]
|
||||
internal_port = 11434
|
||||
force_https = false
|
||||
auto_stop_machines = true
|
||||
auto_start_machines = true
|
||||
min_machines_running = 0
|
||||
processes = ["app"]
|
||||
|
||||
[mounts]
|
||||
source = "models"
|
||||
destination = "/root/.ollama"
|
||||
initial_size = "100gb"
|
||||
```
|
||||
|
||||
Then create a [new private IPv6 address](https://fly.io/docs/reference/private-networking/#flycast-private-load-balancing) for your app:
|
||||
|
||||
```bash
|
||||
fly ips allocate-v6 --private
|
||||
```
|
||||
|
||||
Then deploy your app:
|
||||
|
||||
```bash
|
||||
fly deploy
|
||||
```
|
||||
|
||||
And finally you can access it interactively with a new Fly.io Machine:
|
||||
|
||||
```
|
||||
fly machine run -e OLLAMA_HOST=http://your-app-name.flycast --shell ollama/ollama
|
||||
```
|
||||
|
||||
```bash
|
||||
$ ollama run openchat:7b-v3.5-fp16
|
||||
>>> How do I bake chocolate chip cookies?
|
||||
To bake chocolate chip cookies, follow these steps:
|
||||
|
||||
1. Preheat the oven to 375°F (190°C) and line a baking sheet with parchment paper or silicone baking mat.
|
||||
|
||||
2. In a large bowl, mix together 1 cup of unsalted butter (softened), 3/4 cup granulated sugar, and 3/4
|
||||
cup packed brown sugar until light and fluffy.
|
||||
|
||||
3. Add 2 large eggs, one at a time, to the butter mixture, beating well after each addition. Stir in 1
|
||||
teaspoon of pure vanilla extract.
|
||||
|
||||
4. In a separate bowl, whisk together 2 cups all-purpose flour, 1/2 teaspoon baking soda, and 1/2 teaspoon
|
||||
salt. Gradually add the dry ingredients to the wet ingredients, stirring until just combined.
|
||||
|
||||
5. Fold in 2 cups of chocolate chips (or chunks) into the dough.
|
||||
|
||||
6. Drop rounded tablespoons of dough onto the prepared baking sheet, spacing them about 2 inches apart.
|
||||
|
||||
7. Bake for 10-12 minutes, or until the edges are golden brown. The centers should still be slightly soft.
|
||||
|
||||
8. Allow the cookies to cool on the baking sheet for a few minutes before transferring them to a wire rack
|
||||
to cool completely.
|
||||
|
||||
Enjoy your homemade chocolate chip cookies!
|
||||
```
|
||||
|
||||
When you set it up like this, it will automatically turn off when you're done using it. Then when you access it again, it will automatically turn back on. This is a great way to save money on GPU instances when you're not using them. If you want a persistent wake-on-use connection to your Ollama instance, you can set up a [connection to your Fly network using WireGuard](https://fly.io/docs/reference/private-networking/#discovering-apps-through-dns-on-a-wireguard-connection). Then you can access your Ollama instance at `http://your-app-name.flycast`.
|
||||
|
||||
And that's it!
|
77
docs/tutorials/langchainjs.md
Normal file
@@ -0,0 +1,77 @@
|
||||
# Using LangChain with Ollama using JavaScript
|
||||
|
||||
In this tutorial, we are going to use JavaScript with LangChain and Ollama to learn about something just a touch more recent. In August 2023, there was a series of wildfires on Maui. There is no way an LLM trained before that time can know about this, since their training data would not include anything as recent as that. So we can find the [Wikipedia article about the fires](https://en.wikipedia.org/wiki/2023_Hawaii_wildfires) and ask questions about the contents.
|
||||
|
||||
To get started, let's just use **LangChain** to ask a simple question to a model. To do this with JavaScript, we need to install **LangChain**:
|
||||
|
||||
```bash
|
||||
npm install langchain
|
||||
```
|
||||
|
||||
Now we can start building out our JavaScript:
|
||||
|
||||
```javascript
|
||||
import { Ollama } from "langchain/llms/ollama";
|
||||
|
||||
const ollama = new Ollama({
|
||||
baseUrl: "http://localhost:11434",
|
||||
model: "llama2",
|
||||
});
|
||||
|
||||
const answer = await ollama.call(`why is the sky blue?`);
|
||||
|
||||
console.log(answer);
|
||||
```
|
||||
|
||||
That will get us the same thing as if we ran `ollama run llama2 "why is the sky blue"` in the terminal. But we want to load a document from the web to ask a question against. **Cheerio** is a great library for ingesting a webpage, and **LangChain** uses it in their **CheerioWebBaseLoader**. So let's install **Cheerio** and build that part of the app.
|
||||
|
||||
```bash
|
||||
npm install cheerio
|
||||
```
|
||||
|
||||
```javascript
|
||||
import { CheerioWebBaseLoader } from "langchain/document_loaders/web/cheerio";
|
||||
|
||||
const loader = new CheerioWebBaseLoader("https://en.wikipedia.org/wiki/2023_Hawaii_wildfires");
|
||||
const data = await loader.load();
|
||||
```
|
||||
|
||||
That will load the document. Although this page is smaller than the Odyssey, it is certainly bigger than the context size for most LLMs. So we are going to need to split into smaller pieces, and then select just the pieces relevant to our question. This is a great use for a vector datastore. In this example, we will use the **MemoryVectorStore** that is part of **LangChain**. But there is one more thing we need to get the content into the datastore. We have to run an embeddings process that converts the tokens in the text into a series of vectors. And for that, we are going to use **Tensorflow**. There is a lot of stuff going on in this one. First, install the **Tensorflow** components that we need.
|
||||
|
||||
```javascript
|
||||
npm install @tensorflow/tfjs-core@3.6.0 @tensorflow/tfjs-converter@3.6.0 @tensorflow-models/universal-sentence-encoder@1.3.3 @tensorflow/tfjs-node@4.10.0
|
||||
```
|
||||
|
||||
If you just install those components without the version numbers, it will install the latest versions, but there are conflicts within **Tensorflow**, so you need to install the compatible versions.
|
||||
|
||||
```javascript
|
||||
import { RecursiveCharacterTextSplitter } from "langchain/text_splitter"
|
||||
import { MemoryVectorStore } from "langchain/vectorstores/memory";
|
||||
import "@tensorflow/tfjs-node";
|
||||
import { TensorFlowEmbeddings } from "langchain/embeddings/tensorflow";
|
||||
|
||||
// Split the text into 500 character chunks. And overlap each chunk by 20 characters
|
||||
const textSplitter = new RecursiveCharacterTextSplitter({
|
||||
chunkSize: 500,
|
||||
chunkOverlap: 20
|
||||
});
|
||||
const splitDocs = await textSplitter.splitDocuments(data);
|
||||
|
||||
// Then use the TensorFlow Embedding to store these chunks in the datastore
|
||||
const vectorStore = await MemoryVectorStore.fromDocuments(splitDocs, new TensorFlowEmbeddings());
|
||||
```
|
||||
|
||||
To connect the datastore to a question asked to a LLM, we need to use the concept at the heart of **LangChain**: the chain. Chains are a way to connect a number of activities together to accomplish a particular tasks. There are a number of chain types available, but for this tutorial we are using the **RetrievalQAChain**.
|
||||
|
||||
```javascript
|
||||
import { RetrievalQAChain } from "langchain/chains";
|
||||
|
||||
const retriever = vectorStore.asRetriever();
|
||||
const chain = RetrievalQAChain.fromLLM(ollama, retriever);
|
||||
const result = await chain.call({query: "When was Hawaii's request for a major disaster declaration approved?"});
|
||||
console.log(result.text)
|
||||
```
|
||||
|
||||
So we created a retriever, which is a way to return the chunks that match a query from a datastore. And then connect the retriever and the model via a chain. Finally, we send a query to the chain, which results in an answer using our document as a source. The answer it returned was correct, August 10, 2023.
|
||||
|
||||
And that is a simple introduction to what you can do with **LangChain** and **Ollama.**
|
82
docs/tutorials/langchainpy.md
Normal file
@@ -0,0 +1,82 @@
|
||||
# Using LangChain with Ollama in Python
|
||||
|
||||
Let's imagine we are studying the classics, such as **the Odyssey** by **Homer**. We might have a question about Neleus and his family. If you ask llama2 for that info, you may get something like:
|
||||
|
||||
> I apologize, but I'm a large language model, I cannot provide information on individuals or families that do not exist in reality. Neleus is not a real person or character, and therefore does not have a family or any other personal details. My apologies for any confusion. Is there anything else I can help you with?
|
||||
|
||||
This sounds like a typical censored response, but even llama2-uncensored gives a mediocre answer:
|
||||
|
||||
> Neleus was a legendary king of Pylos and the father of Nestor, one of the Argonauts. His mother was Clymene, a sea nymph, while his father was Neptune, the god of the sea.
|
||||
|
||||
So let's figure out how we can use **LangChain** with Ollama to ask our question to the actual document, the Odyssey by Homer, using Python.
|
||||
|
||||
Let's start by asking a simple question that we can get an answer to from the **Llama2** model using **Ollama**. First, we need to install the **LangChain** package:
|
||||
|
||||
`pip install langchain`
|
||||
|
||||
Then we can create a model and ask the question:
|
||||
|
||||
```python
|
||||
from langchain.llms import Ollama
|
||||
ollama = Ollama(base_url='http://localhost:11434',
|
||||
model="llama2")
|
||||
print(ollama("why is the sky blue"))
|
||||
```
|
||||
|
||||
Notice that we are defining the model and the base URL for Ollama.
|
||||
|
||||
Now let's load a document to ask questions against. I'll load up the Odyssey by Homer, which you can find at Project Gutenberg. We will need **WebBaseLoader** which is part of **LangChain** and loads text from any webpage. On my machine, I also needed to install **bs4** to get that to work, so run `pip install bs4`.
|
||||
|
||||
```python
|
||||
from langchain.document_loaders import WebBaseLoader
|
||||
loader = WebBaseLoader("https://www.gutenberg.org/files/1727/1727-h/1727-h.htm")
|
||||
data = loader.load()
|
||||
```
|
||||
|
||||
This file is pretty big. Just the preface is 3000 tokens. Which means the full document won't fit into the context for the model. So we need to split it up into smaller pieces.
|
||||
|
||||
```python
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||
|
||||
text_splitter=RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
|
||||
all_splits = text_splitter.split_documents(data)
|
||||
```
|
||||
|
||||
It's split up, but we have to find the relevant splits and then submit those to the model. We can do this by creating embeddings and storing them in a vector database. We can use Ollama directly to instantiate an embedding model. We will use ChromaDB in this example for a vector database. `pip install GPT4All chromadb`
|
||||
|
||||
```python
|
||||
from langchain.embeddings import OllamaEmbeddings
|
||||
from langchain.vectorstores import Chroma
|
||||
oembed = OllamaEmbeddings(base_url="http://localhost:11434", model="llama2")
|
||||
vectorstore = Chroma.from_documents(documents=all_splits, embedding=oembed)
|
||||
```
|
||||
|
||||
Now let's ask a question from the document. **Who was Neleus, and who is in his family?** Neleus is a character in the Odyssey, and the answer can be found in our text.
|
||||
|
||||
```python
|
||||
question="Who is Neleus and who is in Neleus' family?"
|
||||
docs = vectorstore.similarity_search(question)
|
||||
len(docs)
|
||||
```
|
||||
|
||||
This will output the number of matches for chunks of data similar to the search.
|
||||
|
||||
The next thing is to send the question and the relevant parts of the docs to the model to see if we can get a good answer. But we are stitching two parts of the process together, and that is called a chain. This means we need to define a chain:
|
||||
|
||||
```python
|
||||
from langchain.chains import RetrievalQA
|
||||
qachain=RetrievalQA.from_chain_type(ollama, retriever=vectorstore.as_retriever())
|
||||
qachain({"query": question})
|
||||
```
|
||||
|
||||
The answer received from this chain was:
|
||||
|
||||
> Neleus is a character in Homer's "Odyssey" and is mentioned in the context of Penelope's suitors. Neleus is the father of Chloris, who is married to Neleus and bears him several children, including Nestor, Chromius, Periclymenus, and Pero. Amphinomus, the son of Nisus, is also mentioned as a suitor of Penelope and is known for his good natural disposition and agreeable conversation.
|
||||
|
||||
It's not a perfect answer, as it implies Neleus married his daughter when actually Chloris "was the youngest daughter to Amphion son of Iasus and king of Minyan Orchomenus, and was Queen in Pylos".
|
||||
|
||||
I updated the chunk_overlap for the text splitter to 20 and tried again and got a much better answer:
|
||||
|
||||
> Neleus is a character in Homer's epic poem "The Odyssey." He is the husband of Chloris, who is the youngest daughter of Amphion son of Iasus and king of Minyan Orchomenus. Neleus has several children with Chloris, including Nestor, Chromius, Periclymenus, and Pero.
|
||||
|
||||
And that is a much better answer.
|
38
docs/tutorials/nvidia-jetson.md
Normal file
@@ -0,0 +1,38 @@
|
||||
# Running Ollama on NVIDIA Jetson Devices
|
||||
|
||||
With some minor configuration, Ollama runs well on [NVIDIA Jetson Devices](https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/). The following has been tested on [JetPack 5.1.2](https://developer.nvidia.com/embedded/jetpack).
|
||||
|
||||
NVIDIA Jetson devices are Linux-based embedded AI computers that are purpose-built for AI applications.
|
||||
|
||||
Jetsons have an integrated GPU that is wired directly to the memory controller of the machine. For this reason, the `nvidia-smi` command is unrecognized, and Ollama proceeds to operate in "CPU only"
|
||||
mode. This can be verified by using a monitoring tool like jtop.
|
||||
|
||||
In order to address this, we simply pass the path to the Jetson's pre-installed CUDA libraries into `ollama serve` (while in a tmux session). We then hardcode the num_gpu parameters into a cloned
|
||||
version of our target model.
|
||||
|
||||
Prerequisites:
|
||||
|
||||
- curl
|
||||
- tmux
|
||||
|
||||
Here are the steps:
|
||||
|
||||
- Install Ollama via standard Linux command (ignore the 404 error): `curl https://ollama.ai/install.sh | sh`
|
||||
- Stop the Ollama service: `sudo systemctl stop ollama`
|
||||
- Start Ollama serve in a tmux session called ollama_jetson and reference the CUDA libraries path: `tmux has-session -t ollama_jetson 2>/dev/null || tmux new-session -d -s ollama_jetson
|
||||
'LD_LIBRARY_PATH=/usr/local/cuda/lib64 ollama serve'`
|
||||
- Pull the model you want to use (e.g. mistral): `ollama pull mistral`
|
||||
- Create a new Modelfile specifically for enabling GPU support on the Jetson: `touch ModelfileMistralJetson`
|
||||
- In the ModelfileMistralJetson file, specify the FROM model and the num_gpu PARAMETER as shown below:
|
||||
|
||||
```
|
||||
FROM mistral
|
||||
PARAMETER num_gpu 999
|
||||
```
|
||||
|
||||
- Create a new model from your Modelfile: `ollama create mistral-jetson -f ./ModelfileMistralJetson`
|
||||
- Run the new model: `ollama run mistral-jetson`
|
||||
|
||||
If you run a monitoring tool like jtop you should now see that Ollama is using the Jetson's integrated GPU.
|
||||
|
||||
And that's it!
|
174
examples/.gitignore
vendored
Normal file
@@ -0,0 +1,174 @@
|
||||
node_modules
|
||||
bun.lockb
|
||||
.vscode
|
||||
# OSX
|
||||
.DS_STORE
|
||||
|
||||
|
||||
# Models
|
||||
models/
|
||||
|
||||
# Local Chroma db
|
||||
.chroma/
|
||||
db/
|
||||
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
|
||||
# C extensions
|
||||
*.so
|
||||
|
||||
# Distribution / packaging
|
||||
.Python
|
||||
build/
|
||||
develop-eggs/
|
||||
dist/
|
||||
downloads/
|
||||
eggs/
|
||||
.eggs/
|
||||
lib/
|
||||
lib64/
|
||||
parts/
|
||||
sdist/
|
||||
var/
|
||||
wheels/
|
||||
share/python-wheels/
|
||||
*.egg-info/
|
||||
.installed.cfg
|
||||
*.egg
|
||||
MANIFEST
|
||||
|
||||
# PyInstaller
|
||||
# Usually these files are written by a python script from a template
|
||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||
*.manifest
|
||||
*.spec
|
||||
|
||||
# Installer logs
|
||||
pip-log.txt
|
||||
pip-delete-this-directory.txt
|
||||
|
||||
# Unit test / coverage reports
|
||||
htmlcov/
|
||||
.tox/
|
||||
.nox/
|
||||
.coverage
|
||||
.coverage.*
|
||||
.cache
|
||||
nosetests.xml
|
||||
coverage.xml
|
||||
*.cover
|
||||
*.py,cover
|
||||
.hypothesis/
|
||||
.pytest_cache/
|
||||
cover/
|
||||
|
||||
# Translations
|
||||
*.mo
|
||||
*.pot
|
||||
|
||||
# Django stuff:
|
||||
*.log
|
||||
local_settings.py
|
||||
db.sqlite3
|
||||
db.sqlite3-journal
|
||||
|
||||
# Flask stuff:
|
||||
instance/
|
||||
.webassets-cache
|
||||
|
||||
# Scrapy stuff:
|
||||
.scrapy
|
||||
|
||||
# Sphinx documentation
|
||||
docs/_build/
|
||||
|
||||
# PyBuilder
|
||||
.pybuilder/
|
||||
target/
|
||||
|
||||
# Jupyter Notebook
|
||||
.ipynb_checkpoints
|
||||
|
||||
# IPython
|
||||
profile_default/
|
||||
ipython_config.py
|
||||
|
||||
# pyenv
|
||||
# For a library or package, you might want to ignore these files since the code is
|
||||
# intended to run in multiple environments; otherwise, check them in:
|
||||
# .python-version
|
||||
|
||||
# pipenv
|
||||
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
||||
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
||||
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
||||
# install all needed dependencies.
|
||||
#Pipfile.lock
|
||||
|
||||
# poetry
|
||||
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
||||
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
||||
# commonly ignored for libraries.
|
||||
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
||||
#poetry.lock
|
||||
|
||||
# pdm
|
||||
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
||||
#pdm.lock
|
||||
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
||||
# in version control.
|
||||
# https://pdm.fming.dev/#use-with-ide
|
||||
.pdm.toml
|
||||
|
||||
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
||||
__pypackages__/
|
||||
|
||||
# Celery stuff
|
||||
celerybeat-schedule
|
||||
celerybeat.pid
|
||||
|
||||
# SageMath parsed files
|
||||
*.sage.py
|
||||
|
||||
# Environments
|
||||
.env
|
||||
.venv
|
||||
env/
|
||||
venv/
|
||||
ENV/
|
||||
env.bak/
|
||||
venv.bak/
|
||||
|
||||
# Spyder project settings
|
||||
.spyderproject
|
||||
.spyproject
|
||||
|
||||
# Rope project settings
|
||||
.ropeproject
|
||||
|
||||
# mkdocs documentation
|
||||
/site
|
||||
|
||||
# mypy
|
||||
.mypy_cache/
|
||||
.dmypy.json
|
||||
dmypy.json
|
||||
|
||||
# Pyre type checker
|
||||
.pyre/
|
||||
|
||||
# pytype static type analyzer
|
||||
.pytype/
|
||||
|
||||
# Cython debug symbols
|
||||
cython_debug/
|
||||
|
||||
# PyCharm
|
||||
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
||||
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
||||
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
||||
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
||||
#.idea/
|
3
examples/README.md
Normal file
@@ -0,0 +1,3 @@
|
||||
# Examples
|
||||
|
||||
This directory contains different examples of using Ollama.
|
10
examples/bash-comparemodels/README.md
Normal file
@@ -0,0 +1,10 @@
|
||||
# Bash Shell examples
|
||||
|
||||
When calling `ollama`, you can pass it a file to run all the prompts in the file, one after the other:
|
||||
|
||||
`ollama run llama2 < sourcequestions.txt`
|
||||
|
||||
This concept is used in the following example.
|
||||
|
||||
## Compare Models
|
||||
`comparemodels.sh` is a script that runs all the questions in `sourcequestions.txt` using any 4 models you choose that you have already pulled from the Ollama library or have created locally.
|
64
examples/bash-comparemodels/comparemodels.sh
Executable file
@@ -0,0 +1,64 @@
|
||||
#! /usr/bin/env bash
|
||||
# Compare multiple models by running them with the same questions
|
||||
|
||||
NUMBEROFCHOICES=4
|
||||
SELECTIONS=()
|
||||
declare -a SUMS=()
|
||||
|
||||
# Get the list of models
|
||||
CHOICES=$(ollama list | awk '{print $1}')
|
||||
|
||||
# Select which models to run as a comparison
|
||||
echo "Select $NUMBEROFCHOICES models to compare:"
|
||||
select ITEM in $CHOICES; do
|
||||
if [[ -n $ITEM ]]; then
|
||||
echo "You have selected $ITEM"
|
||||
SELECTIONS+=("$ITEM")
|
||||
((COUNT++))
|
||||
if [[ $COUNT -eq $NUMBEROFCHOICES ]]; then
|
||||
break
|
||||
fi
|
||||
else
|
||||
echo "Invalid selection"
|
||||
fi
|
||||
done
|
||||
|
||||
# Loop through each of the selected models
|
||||
for ITEM in "${SELECTIONS[@]}"; do
|
||||
echo "--------------------------------------------------------------"
|
||||
echo "Loading the model $ITEM into memory"
|
||||
ollama run "$ITEM" ""
|
||||
echo "--------------------------------------------------------------"
|
||||
echo "Running the questions through the model $ITEM"
|
||||
COMMAND_OUTPUT=$(ollama run "$ITEM" --verbose < sourcequestions.txt 2>&1| tee /dev/stderr)
|
||||
|
||||
# eval duration is sometimes listed in seconds and sometimes in milliseconds.
|
||||
# Add up the values for each model
|
||||
SUM=$(echo "$COMMAND_OUTPUT" | awk '
|
||||
/eval duration:/ {
|
||||
value = $3
|
||||
if (index(value, "ms") > 0) {
|
||||
gsub("ms", "", value)
|
||||
value /= 1000
|
||||
} else {
|
||||
gsub("s", "", value)
|
||||
}
|
||||
sum += value
|
||||
}
|
||||
END { print sum }')
|
||||
|
||||
|
||||
SUMS+=("All questions for $ITEM completed in $SUM seconds")
|
||||
done
|
||||
|
||||
echo ""
|
||||
echo "--------------------------------------------------------------"
|
||||
echo -e "Sums of eval durations for each run:"
|
||||
for val in "${SUMS[@]}"; do
|
||||
echo "$val"
|
||||
done
|
||||
|
||||
echo "--------------------------------------------------------------"
|
||||
echo "Comparison complete. Now you can decide"
|
||||
echo "which model is best."
|
||||
echo "--------------------------------------------------------------"
|
7
examples/bash-comparemodels/sourcequestions.txt
Normal file
@@ -0,0 +1,7 @@
|
||||
Why is the sky blue
|
||||
What is a black hole
|
||||
Explain the big bang theory like I am 5?
|
||||
What is the quickest way to win a game of Monopoly with 3 others?
|
||||
Why does a vacuum bottle keep my coffee hot and my milkshake cold?
|
||||
What is the difference between a meteor, a meteorite, and a meteoroid?
|
||||
Create an array with 5 items and print to the console. Do this in Python, C#, Typescript, and Rust.
|
0
examples/golang-simplegenerate/README.md
Normal file
29
examples/golang-simplegenerate/main.go
Normal file
@@ -0,0 +1,29 @@
|
||||
package main
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"fmt"
|
||||
"io"
|
||||
"log"
|
||||
"net/http"
|
||||
"os"
|
||||
)
|
||||
|
||||
func main() {
|
||||
body := []byte(`{"model":"mistral"}`)
|
||||
resp, err := http.Post("http://localhost:11434/api/generate", "application/json", bytes.NewBuffer(body))
|
||||
|
||||
if err != nil {
|
||||
fmt.Print(err.Error())
|
||||
os.Exit(1)
|
||||
}
|
||||
|
||||
defer resp.Body.Close()
|
||||
|
||||
responseData, err := io.ReadAll(resp.Body)
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
fmt.Println(string(responseData))
|
||||
|
||||
}
|
5
examples/jupyter-notebook/README.md
Normal file
@@ -0,0 +1,5 @@
|
||||
# Ollama Jupyter Notebook
|
||||
|
||||
This example downloads and installs Ollama in a Jupyter instance such as Google Colab. It will start the Ollama service and expose an endpoint using `ngrok` which can be used to communicate with the Ollama instance remotely.
|
||||
|
||||
For best results, use an instance with GPU accelerator.
|
102
examples/jupyter-notebook/ollama.ipynb
Normal file
@@ -0,0 +1,102 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "93f59dcb-c588-41b8-a792-55d88ade739c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Download and run the Ollama Linux install script\n",
|
||||
"!curl https://ollama.ai/install.sh | sh\n",
|
||||
"!command -v systemctl >/dev/null && sudo systemctl stop ollama"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "658c147e-c7f8-490e-910e-62b80f577dda",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!pip install aiohttp pyngrok\n",
|
||||
"\n",
|
||||
"import os\n",
|
||||
"import asyncio\n",
|
||||
"from aiohttp import ClientSession\n",
|
||||
"\n",
|
||||
"# Set LD_LIBRARY_PATH so the system NVIDIA library becomes preferred\n",
|
||||
"# over the built-in library. This is particularly important for \n",
|
||||
"# Google Colab which installs older drivers\n",
|
||||
"os.environ.update({'LD_LIBRARY_PATH': '/usr/lib64-nvidia'})\n",
|
||||
"\n",
|
||||
"async def run(cmd):\n",
|
||||
" '''\n",
|
||||
" run is a helper function to run subcommands asynchronously.\n",
|
||||
" '''\n",
|
||||
" print('>>> starting', *cmd)\n",
|
||||
" p = await asyncio.subprocess.create_subprocess_exec(\n",
|
||||
" *cmd,\n",
|
||||
" stdout=asyncio.subprocess.PIPE,\n",
|
||||
" stderr=asyncio.subprocess.PIPE,\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" async def pipe(lines):\n",
|
||||
" async for line in lines:\n",
|
||||
" print(line.strip().decode('utf-8'))\n",
|
||||
"\n",
|
||||
" await asyncio.gather(\n",
|
||||
" pipe(p.stdout),\n",
|
||||
" pipe(p.stderr),\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"await asyncio.gather(\n",
|
||||
" run(['ollama', 'serve']),\n",
|
||||
" run(['ngrok', 'http', '--log', 'stderr', '11434']),\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "e7735a55-9aad-4caf-8683-52e2163ba53b",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The previous cell starts two processes, `ollama` and `ngrok`. The log output will show a line like the following which describes the external address.\n",
|
||||
"\n",
|
||||
"```\n",
|
||||
"t=2023-11-12T22:55:56+0000 lvl=info msg=\"started tunnel\" obj=tunnels name=command_line addr=http://localhost:11434 url=https://8249-34-125-179-11.ngrok.io\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"The external address in this case is `https://8249-34-125-179-11.ngrok.io` which can be passed into `OLLAMA_HOST` to access this instance.\n",
|
||||
"\n",
|
||||
"```bash\n",
|
||||
"export OLLAMA_HOST=https://8249-34-125-179-11.ngrok.io\n",
|
||||
"ollama list\n",
|
||||
"ollama run mistral\n",
|
||||
"```"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
36
examples/kubernetes/README.md
Normal file
@@ -0,0 +1,36 @@
|
||||
# Deploy Ollama to Kubernetes
|
||||
|
||||
## Prerequisites
|
||||
|
||||
- Ollama: https://ollama.ai/download
|
||||
- Kubernetes cluster. This example will use Google Kubernetes Engine.
|
||||
|
||||
## Steps
|
||||
|
||||
1. Create the Ollama namespace, daemon set, and service
|
||||
|
||||
```bash
|
||||
kubectl apply -f cpu.yaml
|
||||
```
|
||||
|
||||
1. Port forward the Ollama service to connect and use it locally
|
||||
|
||||
```bash
|
||||
kubectl -n ollama port-forward service/ollama 11434:80
|
||||
```
|
||||
|
||||
1. Pull and run a model, for example `orca-mini:3b`
|
||||
|
||||
```bash
|
||||
ollama run orca-mini:3b
|
||||
```
|
||||
|
||||
## (Optional) Hardware Acceleration
|
||||
|
||||
Hardware acceleration in Kubernetes requires NVIDIA's [`k8s-device-plugin`](https://github.com/NVIDIA/k8s-device-plugin). Follow the link for more details.
|
||||
|
||||
Once configured, create a GPU enabled Ollama deployment.
|
||||
|
||||
```bash
|
||||
kubectl apply -f gpu.yaml
|
||||
```
|
42
examples/kubernetes/cpu.yaml
Normal file
@@ -0,0 +1,42 @@
|
||||
---
|
||||
apiVersion: v1
|
||||
kind: Namespace
|
||||
metadata:
|
||||
name: ollama
|
||||
---
|
||||
apiVersion: apps/v1
|
||||
kind: Deployment
|
||||
metadata:
|
||||
name: ollama
|
||||
namespace: ollama
|
||||
spec:
|
||||
selector:
|
||||
matchLabels:
|
||||
name: ollama
|
||||
template:
|
||||
metadata:
|
||||
labels:
|
||||
name: ollama
|
||||
spec:
|
||||
containers:
|
||||
- name: ollama
|
||||
image: ollama/ollama:latest
|
||||
ports:
|
||||
- name: http
|
||||
containerPort: 11434
|
||||
protocol: TCP
|
||||
---
|
||||
apiVersion: v1
|
||||
kind: Service
|
||||
metadata:
|
||||
name: ollama
|
||||
namespace: ollama
|
||||
spec:
|
||||
type: ClusterIP
|
||||
selector:
|
||||
name: ollama
|
||||
ports:
|
||||
- port: 80
|
||||
name: http
|
||||
targetPort: http
|
||||
protocol: TCP
|
58
examples/kubernetes/gpu.yaml
Normal file
@@ -0,0 +1,58 @@
|
||||
---
|
||||
apiVersion: v1
|
||||
kind: Namespace
|
||||
metadata:
|
||||
name: ollama
|
||||
---
|
||||
apiVersion: apps/v1
|
||||
kind: Deployment
|
||||
metadata:
|
||||
name: ollama
|
||||
namespace: ollama
|
||||
spec:
|
||||
strategy:
|
||||
type: Recreate
|
||||
selector:
|
||||
matchLabels:
|
||||
name: ollama
|
||||
template:
|
||||
metadata:
|
||||
labels:
|
||||
name: ollama
|
||||
spec:
|
||||
containers:
|
||||
- name: ollama
|
||||
image: ollama/ollama:latest
|
||||
env:
|
||||
- name: PATH
|
||||
value: /usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
|
||||
- name: LD_LIBRARY_PATH
|
||||
value: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
|
||||
- name: NVIDIA_DRIVER_CAPABILITIES
|
||||
value: compute,utility
|
||||
ports:
|
||||
- name: http
|
||||
containerPort: 11434
|
||||
protocol: TCP
|
||||
resources:
|
||||
limits:
|
||||
nvidia.com/gpu: 1
|
||||
tolerations:
|
||||
- key: nvidia.com/gpu
|
||||
operator: Exists
|
||||
effect: NoSchedule
|
||||
---
|
||||
apiVersion: v1
|
||||
kind: Service
|
||||
metadata:
|
||||
name: ollama
|
||||
namespace: ollama
|
||||
spec:
|
||||
type: ClusterIP
|
||||
selector:
|
||||
name: ollama
|
||||
ports:
|
||||
- port: 80
|
||||
name: http
|
||||
targetPort: http
|
||||
protocol: TCP
|
21
examples/langchain-python-rag-document/README.md
Normal file
@@ -0,0 +1,21 @@
|
||||
# LangChain Document QA
|
||||
|
||||
This example provides an interface for asking questions to a PDF document.
|
||||
|
||||
## Setup
|
||||
|
||||
```
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
## Run
|
||||
|
||||
```
|
||||
python main.py
|
||||
```
|
||||
|
||||
A prompt will appear, where questions may be asked:
|
||||
|
||||
```
|
||||
Query: How many locations does WeWork have?
|
||||
```
|
61
examples/langchain-python-rag-document/main.py
Normal file
@@ -0,0 +1,61 @@
|
||||
from langchain.document_loaders import OnlinePDFLoader
|
||||
from langchain.vectorstores import Chroma
|
||||
from langchain.embeddings import GPT4AllEmbeddings
|
||||
from langchain import PromptTemplate
|
||||
from langchain.llms import Ollama
|
||||
from langchain.callbacks.manager import CallbackManager
|
||||
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
||||
from langchain.chains import RetrievalQA
|
||||
import sys
|
||||
import os
|
||||
|
||||
class SuppressStdout:
|
||||
def __enter__(self):
|
||||
self._original_stdout = sys.stdout
|
||||
self._original_stderr = sys.stderr
|
||||
sys.stdout = open(os.devnull, 'w')
|
||||
sys.stderr = open(os.devnull, 'w')
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
sys.stdout.close()
|
||||
sys.stdout = self._original_stdout
|
||||
sys.stderr = self._original_stderr
|
||||
|
||||
# load the pdf and split it into chunks
|
||||
loader = OnlinePDFLoader("https://d18rn0p25nwr6d.cloudfront.net/CIK-0001813756/975b3e9b-268e-4798-a9e4-2a9a7c92dc10.pdf")
|
||||
data = loader.load()
|
||||
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
|
||||
all_splits = text_splitter.split_documents(data)
|
||||
|
||||
with SuppressStdout():
|
||||
vectorstore = Chroma.from_documents(documents=all_splits, embedding=GPT4AllEmbeddings())
|
||||
|
||||
while True:
|
||||
query = input("\nQuery: ")
|
||||
if query == "exit":
|
||||
break
|
||||
if query.strip() == "":
|
||||
continue
|
||||
|
||||
# Prompt
|
||||
template = """Use the following pieces of context to answer the question at the end.
|
||||
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
||||
Use three sentences maximum and keep the answer as concise as possible.
|
||||
{context}
|
||||
Question: {question}
|
||||
Helpful Answer:"""
|
||||
QA_CHAIN_PROMPT = PromptTemplate(
|
||||
input_variables=["context", "question"],
|
||||
template=template,
|
||||
)
|
||||
|
||||
llm = Ollama(model="llama2:13b", callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]))
|
||||
qa_chain = RetrievalQA.from_chain_type(
|
||||
llm,
|
||||
retriever=vectorstore.as_retriever(),
|
||||
chain_type_kwargs={"prompt": QA_CHAIN_PROMPT},
|
||||
)
|
||||
|
||||
result = qa_chain({"query": query})
|
109
examples/langchain-python-rag-document/requirements.txt
Normal file
@@ -0,0 +1,109 @@
|
||||
absl-py==1.4.0
|
||||
aiohttp==3.8.5
|
||||
aiosignal==1.3.1
|
||||
anyio==3.7.1
|
||||
astunparse==1.6.3
|
||||
async-timeout==4.0.3
|
||||
attrs==23.1.0
|
||||
backoff==2.2.1
|
||||
beautifulsoup4==4.12.2
|
||||
bs4==0.0.1
|
||||
cachetools==5.3.1
|
||||
certifi==2023.7.22
|
||||
cffi==1.15.1
|
||||
chardet==5.2.0
|
||||
charset-normalizer==3.2.0
|
||||
Chroma==0.2.0
|
||||
chroma-hnswlib==0.7.2
|
||||
chromadb==0.4.5
|
||||
click==8.1.6
|
||||
coloredlogs==15.0.1
|
||||
cryptography==41.0.3
|
||||
dataclasses-json==0.5.14
|
||||
fastapi==0.99.1
|
||||
filetype==1.2.0
|
||||
flatbuffers==23.5.26
|
||||
frozenlist==1.4.0
|
||||
gast==0.4.0
|
||||
google-auth==2.22.0
|
||||
google-auth-oauthlib==1.0.0
|
||||
google-pasta==0.2.0
|
||||
gpt4all==1.0.8
|
||||
grpcio==1.57.0
|
||||
h11==0.14.0
|
||||
h5py==3.9.0
|
||||
httptools==0.6.0
|
||||
humanfriendly==10.0
|
||||
idna==3.4
|
||||
importlib-resources==6.0.1
|
||||
joblib==1.3.2
|
||||
keras==2.13.1
|
||||
langchain==0.0.261
|
||||
langsmith==0.0.21
|
||||
libclang==16.0.6
|
||||
lxml==4.9.3
|
||||
Markdown==3.4.4
|
||||
MarkupSafe==2.1.3
|
||||
marshmallow==3.20.1
|
||||
monotonic==1.6
|
||||
mpmath==1.3.0
|
||||
multidict==6.0.4
|
||||
mypy-extensions==1.0.0
|
||||
nltk==3.8.1
|
||||
numexpr==2.8.5
|
||||
numpy==1.24.3
|
||||
oauthlib==3.2.2
|
||||
onnxruntime==1.15.1
|
||||
openapi-schema-pydantic==1.2.4
|
||||
opt-einsum==3.3.0
|
||||
overrides==7.4.0
|
||||
packaging==23.1
|
||||
pdf2image==1.16.3
|
||||
pdfminer==20191125
|
||||
pdfminer.six==20221105
|
||||
Pillow==10.0.0
|
||||
posthog==3.0.1
|
||||
protobuf==4.24.0
|
||||
pulsar-client==3.2.0
|
||||
pyasn1==0.5.0
|
||||
pyasn1-modules==0.3.0
|
||||
pycparser==2.21
|
||||
pycryptodome==3.18.0
|
||||
pydantic==1.10.12
|
||||
PyPika==0.48.9
|
||||
python-dateutil==2.8.2
|
||||
python-dotenv==1.0.0
|
||||
python-magic==0.4.27
|
||||
PyYAML==6.0.1
|
||||
regex==2023.8.8
|
||||
requests==2.31.0
|
||||
requests-oauthlib==1.3.1
|
||||
rsa==4.9
|
||||
six==1.16.0
|
||||
sniffio==1.3.0
|
||||
soupsieve==2.4.1
|
||||
SQLAlchemy==2.0.19
|
||||
starlette==0.27.0
|
||||
sympy==1.12
|
||||
tabulate==0.9.0
|
||||
tenacity==8.2.2
|
||||
tensorboard==2.13.0
|
||||
tensorboard-data-server==0.7.1
|
||||
tensorflow==2.13.0
|
||||
tensorflow-estimator==2.13.0
|
||||
tensorflow-hub==0.14.0
|
||||
tensorflow-macos==2.13.0
|
||||
termcolor==2.3.0
|
||||
tokenizers==0.13.3
|
||||
tqdm==4.66.1
|
||||
typing-inspect==0.9.0
|
||||
typing_extensions==4.5.0
|
||||
unstructured==0.9.2
|
||||
urllib3==1.26.16
|
||||
uvicorn==0.23.2
|
||||
uvloop==0.17.0
|
||||
watchfiles==0.19.0
|
||||
websockets==11.0.3
|
||||
Werkzeug==2.3.6
|
||||
wrapt==1.15.0
|
||||
yarl==1.9.2
|
170
examples/langchain-python-rag-privategpt/.gitignore
vendored
Normal file
@@ -0,0 +1,170 @@
|
||||
# OSX
|
||||
.DS_STORE
|
||||
|
||||
# Models
|
||||
models/
|
||||
|
||||
# Local Chroma db
|
||||
.chroma/
|
||||
db/
|
||||
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
|
||||
# C extensions
|
||||
*.so
|
||||
|
||||
# Distribution / packaging
|
||||
.Python
|
||||
build/
|
||||
develop-eggs/
|
||||
dist/
|
||||
downloads/
|
||||
eggs/
|
||||
.eggs/
|
||||
lib/
|
||||
lib64/
|
||||
parts/
|
||||
sdist/
|
||||
var/
|
||||
wheels/
|
||||
share/python-wheels/
|
||||
*.egg-info/
|
||||
.installed.cfg
|
||||
*.egg
|
||||
MANIFEST
|
||||
|
||||
# PyInstaller
|
||||
# Usually these files are written by a python script from a template
|
||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||
*.manifest
|
||||
*.spec
|
||||
|
||||
# Installer logs
|
||||
pip-log.txt
|
||||
pip-delete-this-directory.txt
|
||||
|
||||
# Unit test / coverage reports
|
||||
htmlcov/
|
||||
.tox/
|
||||
.nox/
|
||||
.coverage
|
||||
.coverage.*
|
||||
.cache
|
||||
nosetests.xml
|
||||
coverage.xml
|
||||
*.cover
|
||||
*.py,cover
|
||||
.hypothesis/
|
||||
.pytest_cache/
|
||||
cover/
|
||||
|
||||
# Translations
|
||||
*.mo
|
||||
*.pot
|
||||
|
||||
# Django stuff:
|
||||
*.log
|
||||
local_settings.py
|
||||
db.sqlite3
|
||||
db.sqlite3-journal
|
||||
|
||||
# Flask stuff:
|
||||
instance/
|
||||
.webassets-cache
|
||||
|
||||
# Scrapy stuff:
|
||||
.scrapy
|
||||
|
||||
# Sphinx documentation
|
||||
docs/_build/
|
||||
|
||||
# PyBuilder
|
||||
.pybuilder/
|
||||
target/
|
||||
|
||||
# Jupyter Notebook
|
||||
.ipynb_checkpoints
|
||||
|
||||
# IPython
|
||||
profile_default/
|
||||
ipython_config.py
|
||||
|
||||
# pyenv
|
||||
# For a library or package, you might want to ignore these files since the code is
|
||||
# intended to run in multiple environments; otherwise, check them in:
|
||||
# .python-version
|
||||
|
||||
# pipenv
|
||||
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
||||
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
||||
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
||||
# install all needed dependencies.
|
||||
#Pipfile.lock
|
||||
|
||||
# poetry
|
||||
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
||||
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
||||
# commonly ignored for libraries.
|
||||
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
||||
#poetry.lock
|
||||
|
||||
# pdm
|
||||
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
||||
#pdm.lock
|
||||
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
||||
# in version control.
|
||||
# https://pdm.fming.dev/#use-with-ide
|
||||
.pdm.toml
|
||||
|
||||
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
||||
__pypackages__/
|
||||
|
||||
# Celery stuff
|
||||
celerybeat-schedule
|
||||
celerybeat.pid
|
||||
|
||||
# SageMath parsed files
|
||||
*.sage.py
|
||||
|
||||
# Environments
|
||||
.env
|
||||
.venv
|
||||
env/
|
||||
venv/
|
||||
ENV/
|
||||
env.bak/
|
||||
venv.bak/
|
||||
|
||||
# Spyder project settings
|
||||
.spyderproject
|
||||
.spyproject
|
||||
|
||||
# Rope project settings
|
||||
.ropeproject
|
||||
|
||||
# mkdocs documentation
|
||||
/site
|
||||
|
||||
# mypy
|
||||
.mypy_cache/
|
||||
.dmypy.json
|
||||
dmypy.json
|
||||
|
||||
# Pyre type checker
|
||||
.pyre/
|
||||
|
||||
# pytype static type analyzer
|
||||
.pytype/
|
||||
|
||||
# Cython debug symbols
|
||||
cython_debug/
|
||||
|
||||
# PyCharm
|
||||
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
||||
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
||||
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
||||
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
||||
#.idea/
|
201
examples/langchain-python-rag-privategpt/LICENSE
Normal file
@@ -0,0 +1,201 @@
|
||||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
APPENDIX: How to apply the Apache License to your work.
|
||||
|
||||
To apply the Apache License to your work, attach the following
|
||||
boilerplate notice, with the fields enclosed by brackets "[]"
|
||||
replaced with your own identifying information. (Don't include
|
||||
the brackets!) The text should be enclosed in the appropriate
|
||||
comment syntax for the file format. We also recommend that a
|
||||
file or class name and description of purpose be included on the
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright [yyyy] [name of copyright owner]
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
91
examples/langchain-python-rag-privategpt/README.md
Normal file
@@ -0,0 +1,91 @@
|
||||
# PrivateGPT with Llama 2 uncensored
|
||||
|
||||
https://github.com/jmorganca/ollama/assets/3325447/20cf8ec6-ff25-42c6-bdd8-9be594e3ce1b
|
||||
|
||||
> Note: this example is a slightly modified version of PrivateGPT using models such as Llama 2 Uncensored. All credit for PrivateGPT goes to Iván Martínez who is the creator of it, and you can find his GitHub repo [here](https://github.com/imartinez/privateGPT).
|
||||
|
||||
### Setup
|
||||
|
||||
Set up a virtual environment (optional):
|
||||
|
||||
```
|
||||
python3 -m venv .venv
|
||||
source .venv/bin/activate
|
||||
```
|
||||
|
||||
Install the Python dependencies:
|
||||
|
||||
```shell
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
Pull the model you'd like to use:
|
||||
|
||||
```
|
||||
ollama pull llama2-uncensored
|
||||
```
|
||||
|
||||
### Getting WeWork's latest quarterly earnings report (10-Q)
|
||||
|
||||
```
|
||||
mkdir source_documents
|
||||
curl https://d18rn0p25nwr6d.cloudfront.net/CIK-0001813756/975b3e9b-268e-4798-a9e4-2a9a7c92dc10.pdf -o source_documents/wework.pdf
|
||||
```
|
||||
|
||||
### Ingesting files
|
||||
|
||||
```shell
|
||||
python ingest.py
|
||||
```
|
||||
|
||||
Output should look like this:
|
||||
|
||||
```shell
|
||||
Creating new vectorstore
|
||||
Loading documents from source_documents
|
||||
Loading new documents: 100%|██████████████████████| 1/1 [00:01<00:00, 1.73s/it]
|
||||
Loaded 1 new documents from source_documents
|
||||
Split into 90 chunks of text (max. 500 tokens each)
|
||||
Creating embeddings. May take some minutes...
|
||||
Using embedded DuckDB with persistence: data will be stored in: db
|
||||
Ingestion complete! You can now run privateGPT.py to query your documents
|
||||
```
|
||||
|
||||
### Ask questions
|
||||
|
||||
```shell
|
||||
python privateGPT.py
|
||||
|
||||
Enter a query: How many locations does WeWork have?
|
||||
|
||||
> Answer (took 17.7 s.):
|
||||
As of June 2023, WeWork has 777 locations worldwide, including 610 Consolidated Locations (as defined in the section entitled Key Performance Indicators).
|
||||
```
|
||||
|
||||
### Try a different model:
|
||||
|
||||
```
|
||||
ollama pull llama2:13b
|
||||
MODEL=llama2:13b python privateGPT.py
|
||||
```
|
||||
|
||||
## Adding more files
|
||||
|
||||
Put any and all your files into the `source_documents` directory
|
||||
|
||||
The supported extensions are:
|
||||
|
||||
- `.csv`: CSV,
|
||||
- `.docx`: Word Document,
|
||||
- `.doc`: Word Document,
|
||||
- `.enex`: EverNote,
|
||||
- `.eml`: Email,
|
||||
- `.epub`: EPub,
|
||||
- `.html`: HTML File,
|
||||
- `.md`: Markdown,
|
||||
- `.msg`: Outlook Message,
|
||||
- `.odt`: Open Document Text,
|
||||
- `.pdf`: Portable Document Format (PDF),
|
||||
- `.pptx` : PowerPoint Document,
|
||||
- `.ppt` : PowerPoint Document,
|
||||
- `.txt`: Text file (UTF-8),
|
11
examples/langchain-python-rag-privategpt/constants.py
Normal file
@@ -0,0 +1,11 @@
|
||||
import os
|
||||
from chromadb.config import Settings
|
||||
|
||||
# Define the folder for storing database
|
||||
PERSIST_DIRECTORY = os.environ.get('PERSIST_DIRECTORY', 'db')
|
||||
|
||||
# Define the Chroma settings
|
||||
CHROMA_SETTINGS = Settings(
|
||||
persist_directory=PERSIST_DIRECTORY,
|
||||
anonymized_telemetry=False
|
||||
)
|
161
examples/langchain-python-rag-privategpt/ingest.py
Executable file
@@ -0,0 +1,161 @@
|
||||
#!/usr/bin/env python3
|
||||
import os
|
||||
import glob
|
||||
from typing import List
|
||||
from multiprocessing import Pool
|
||||
from tqdm import tqdm
|
||||
|
||||
from langchain.document_loaders import (
|
||||
CSVLoader,
|
||||
EverNoteLoader,
|
||||
PyMuPDFLoader,
|
||||
TextLoader,
|
||||
UnstructuredEmailLoader,
|
||||
UnstructuredEPubLoader,
|
||||
UnstructuredHTMLLoader,
|
||||
UnstructuredMarkdownLoader,
|
||||
UnstructuredODTLoader,
|
||||
UnstructuredPowerPointLoader,
|
||||
UnstructuredWordDocumentLoader,
|
||||
)
|
||||
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||
from langchain.vectorstores import Chroma
|
||||
from langchain.embeddings import HuggingFaceEmbeddings
|
||||
from langchain.docstore.document import Document
|
||||
from constants import CHROMA_SETTINGS
|
||||
|
||||
|
||||
# Load environment variables
|
||||
persist_directory = os.environ.get('PERSIST_DIRECTORY', 'db')
|
||||
source_directory = os.environ.get('SOURCE_DIRECTORY', 'source_documents')
|
||||
embeddings_model_name = os.environ.get('EMBEDDINGS_MODEL_NAME', 'all-MiniLM-L6-v2')
|
||||
chunk_size = 500
|
||||
chunk_overlap = 50
|
||||
|
||||
# Custom document loaders
|
||||
class MyElmLoader(UnstructuredEmailLoader):
|
||||
"""Wrapper to fallback to text/plain when default does not work"""
|
||||
|
||||
def load(self) -> List[Document]:
|
||||
"""Wrapper adding fallback for elm without html"""
|
||||
try:
|
||||
try:
|
||||
doc = UnstructuredEmailLoader.load(self)
|
||||
except ValueError as e:
|
||||
if 'text/html content not found in email' in str(e):
|
||||
# Try plain text
|
||||
self.unstructured_kwargs["content_source"]="text/plain"
|
||||
doc = UnstructuredEmailLoader.load(self)
|
||||
else:
|
||||
raise
|
||||
except Exception as e:
|
||||
# Add file_path to exception message
|
||||
raise type(e)(f"{self.file_path}: {e}") from e
|
||||
|
||||
return doc
|
||||
|
||||
|
||||
# Map file extensions to document loaders and their arguments
|
||||
LOADER_MAPPING = {
|
||||
".csv": (CSVLoader, {}),
|
||||
# ".docx": (Docx2txtLoader, {}),
|
||||
".doc": (UnstructuredWordDocumentLoader, {}),
|
||||
".docx": (UnstructuredWordDocumentLoader, {}),
|
||||
".enex": (EverNoteLoader, {}),
|
||||
".eml": (MyElmLoader, {}),
|
||||
".epub": (UnstructuredEPubLoader, {}),
|
||||
".html": (UnstructuredHTMLLoader, {}),
|
||||
".md": (UnstructuredMarkdownLoader, {}),
|
||||
".odt": (UnstructuredODTLoader, {}),
|
||||
".pdf": (PyMuPDFLoader, {}),
|
||||
".ppt": (UnstructuredPowerPointLoader, {}),
|
||||
".pptx": (UnstructuredPowerPointLoader, {}),
|
||||
".txt": (TextLoader, {"encoding": "utf8"}),
|
||||
# Add more mappings for other file extensions and loaders as needed
|
||||
}
|
||||
|
||||
|
||||
def load_single_document(file_path: str) -> List[Document]:
|
||||
ext = "." + file_path.rsplit(".", 1)[-1]
|
||||
if ext in LOADER_MAPPING:
|
||||
loader_class, loader_args = LOADER_MAPPING[ext]
|
||||
loader = loader_class(file_path, **loader_args)
|
||||
return loader.load()
|
||||
|
||||
raise ValueError(f"Unsupported file extension '{ext}'")
|
||||
|
||||
def load_documents(source_dir: str, ignored_files: List[str] = []) -> List[Document]:
|
||||
"""
|
||||
Loads all documents from the source documents directory, ignoring specified files
|
||||
"""
|
||||
all_files = []
|
||||
for ext in LOADER_MAPPING:
|
||||
all_files.extend(
|
||||
glob.glob(os.path.join(source_dir, f"**/*{ext}"), recursive=True)
|
||||
)
|
||||
filtered_files = [file_path for file_path in all_files if file_path not in ignored_files]
|
||||
|
||||
with Pool(processes=os.cpu_count()) as pool:
|
||||
results = []
|
||||
with tqdm(total=len(filtered_files), desc='Loading new documents', ncols=80) as pbar:
|
||||
for i, docs in enumerate(pool.imap_unordered(load_single_document, filtered_files)):
|
||||
results.extend(docs)
|
||||
pbar.update()
|
||||
|
||||
return results
|
||||
|
||||
def process_documents(ignored_files: List[str] = []) -> List[Document]:
|
||||
"""
|
||||
Load documents and split in chunks
|
||||
"""
|
||||
print(f"Loading documents from {source_directory}")
|
||||
documents = load_documents(source_directory, ignored_files)
|
||||
if not documents:
|
||||
print("No new documents to load")
|
||||
exit(0)
|
||||
print(f"Loaded {len(documents)} new documents from {source_directory}")
|
||||
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
||||
texts = text_splitter.split_documents(documents)
|
||||
print(f"Split into {len(texts)} chunks of text (max. {chunk_size} tokens each)")
|
||||
return texts
|
||||
|
||||
def does_vectorstore_exist(persist_directory: str) -> bool:
|
||||
"""
|
||||
Checks if vectorstore exists
|
||||
"""
|
||||
if os.path.exists(os.path.join(persist_directory, 'index')):
|
||||
if os.path.exists(os.path.join(persist_directory, 'chroma-collections.parquet')) and os.path.exists(os.path.join(persist_directory, 'chroma-embeddings.parquet')):
|
||||
list_index_files = glob.glob(os.path.join(persist_directory, 'index/*.bin'))
|
||||
list_index_files += glob.glob(os.path.join(persist_directory, 'index/*.pkl'))
|
||||
# At least 3 documents are needed in a working vectorstore
|
||||
if len(list_index_files) > 3:
|
||||
return True
|
||||
return False
|
||||
|
||||
def main():
|
||||
# Create embeddings
|
||||
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
|
||||
|
||||
if does_vectorstore_exist(persist_directory):
|
||||
# Update and store locally vectorstore
|
||||
print(f"Appending to existing vectorstore at {persist_directory}")
|
||||
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings, client_settings=CHROMA_SETTINGS)
|
||||
collection = db.get()
|
||||
texts = process_documents([metadata['source'] for metadata in collection['metadatas']])
|
||||
print(f"Creating embeddings. May take some minutes...")
|
||||
db.add_documents(texts)
|
||||
else:
|
||||
# Create and store locally vectorstore
|
||||
print("Creating new vectorstore")
|
||||
texts = process_documents()
|
||||
print(f"Creating embeddings. May take some minutes...")
|
||||
db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory)
|
||||
db.persist()
|
||||
db = None
|
||||
|
||||
print(f"Ingestion complete! You can now run privateGPT.py to query your documents")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
3833
examples/langchain-python-rag-privategpt/poetry.lock
generated
Normal file
74
examples/langchain-python-rag-privategpt/privateGPT.py
Executable file
@@ -0,0 +1,74 @@
|
||||
#!/usr/bin/env python3
|
||||
from langchain.chains import RetrievalQA
|
||||
from langchain.embeddings import HuggingFaceEmbeddings
|
||||
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
||||
from langchain.vectorstores import Chroma
|
||||
from langchain.llms import Ollama
|
||||
import chromadb
|
||||
import os
|
||||
import argparse
|
||||
import time
|
||||
|
||||
model = os.environ.get("MODEL", "llama2-uncensored")
|
||||
# For embeddings model, the example uses a sentence-transformers model
|
||||
# https://www.sbert.net/docs/pretrained_models.html
|
||||
# "The all-mpnet-base-v2 model provides the best quality, while all-MiniLM-L6-v2 is 5 times faster and still offers good quality."
|
||||
embeddings_model_name = os.environ.get("EMBEDDINGS_MODEL_NAME", "all-MiniLM-L6-v2")
|
||||
persist_directory = os.environ.get("PERSIST_DIRECTORY", "db")
|
||||
target_source_chunks = int(os.environ.get('TARGET_SOURCE_CHUNKS',4))
|
||||
|
||||
from constants import CHROMA_SETTINGS
|
||||
|
||||
def main():
|
||||
# Parse the command line arguments
|
||||
args = parse_arguments()
|
||||
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
|
||||
|
||||
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
|
||||
|
||||
retriever = db.as_retriever(search_kwargs={"k": target_source_chunks})
|
||||
# activate/deactivate the streaming StdOut callback for LLMs
|
||||
callbacks = [] if args.mute_stream else [StreamingStdOutCallbackHandler()]
|
||||
|
||||
llm = Ollama(model=model, callbacks=callbacks)
|
||||
|
||||
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents= not args.hide_source)
|
||||
# Interactive questions and answers
|
||||
while True:
|
||||
query = input("\nEnter a query: ")
|
||||
if query == "exit":
|
||||
break
|
||||
if query.strip() == "":
|
||||
continue
|
||||
|
||||
# Get the answer from the chain
|
||||
start = time.time()
|
||||
res = qa(query)
|
||||
answer, docs = res['result'], [] if args.hide_source else res['source_documents']
|
||||
end = time.time()
|
||||
|
||||
# Print the result
|
||||
print("\n\n> Question:")
|
||||
print(query)
|
||||
print(answer)
|
||||
|
||||
# Print the relevant sources used for the answer
|
||||
for document in docs:
|
||||
print("\n> " + document.metadata["source"] + ":")
|
||||
print(document.page_content)
|
||||
|
||||
def parse_arguments():
|
||||
parser = argparse.ArgumentParser(description='privateGPT: Ask questions to your documents without an internet connection, '
|
||||
'using the power of LLMs.')
|
||||
parser.add_argument("--hide-source", "-S", action='store_true',
|
||||
help='Use this flag to disable printing of source documents used for answers.')
|
||||
|
||||
parser.add_argument("--mute-stream", "-M",
|
||||
action='store_true',
|
||||
help='Use this flag to disable the streaming StdOut callback for LLMs.')
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
26
examples/langchain-python-rag-privategpt/pyproject.toml
Normal file
@@ -0,0 +1,26 @@
|
||||
[tool.poetry]
|
||||
name = "privategpt"
|
||||
version = "0.1.0"
|
||||
description = ""
|
||||
authors = ["Ivan Martinez <ivanmartit@gmail.com>"]
|
||||
license = "Apache Version 2.0"
|
||||
readme = "README.md"
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = "^3.10"
|
||||
langchain = "0.0.261"
|
||||
gpt4all = "^1.0.3"
|
||||
chromadb = "^0.3.26"
|
||||
PyMuPDF = "^1.22.5"
|
||||
python-dotenv = "^1.0.0"
|
||||
unstructured = "^0.8.0"
|
||||
extract-msg = "^0.41.5"
|
||||
tabulate = "^0.9.0"
|
||||
pandoc = "^2.3"
|
||||
pypandoc = "^1.11"
|
||||
tqdm = "^4.65.0"
|
||||
sentence-transformers = "^2.2.2"
|
||||
|
||||
[build-system]
|
||||
requires = ["poetry-core"]
|
||||
build-backend = "poetry.core.masonry.api"
|
14
examples/langchain-python-rag-privategpt/requirements.txt
Normal file
@@ -0,0 +1,14 @@
|
||||
langchain==0.0.274
|
||||
gpt4all==1.0.8
|
||||
chromadb==0.4.7
|
||||
llama-cpp-python==0.1.81
|
||||
urllib3==2.0.4
|
||||
PyMuPDF==1.23.5
|
||||
python-dotenv==1.0.0
|
||||
unstructured==0.10.8
|
||||
extract-msg==0.45.0
|
||||
tabulate==0.9.0
|
||||
pandoc==2.3
|
||||
pypandoc==1.11
|
||||
tqdm==4.66.1
|
||||
sentence_transformers==2.2.2
|
23
examples/langchain-python-rag-websummary/README.md
Normal file
@@ -0,0 +1,23 @@
|
||||
# LangChain Web Summarization
|
||||
|
||||
This example summarizes the website, [https://ollama.ai/blog/run-llama2-uncensored-locally](https://ollama.ai/blog/run-llama2-uncensored-locally)
|
||||
|
||||
## Running the Example
|
||||
|
||||
1. Ensure you have the `llama2` model installed:
|
||||
|
||||
```bash
|
||||
ollama pull llama2
|
||||
```
|
||||
|
||||
2. Install the Python Requirements.
|
||||
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
3. Run the example:
|
||||
|
||||
```bash
|
||||
python main.py
|
||||
```
|
12
examples/langchain-python-rag-websummary/main.py
Normal file
@@ -0,0 +1,12 @@
|
||||
from langchain.llms import Ollama
|
||||
from langchain.document_loaders import WebBaseLoader
|
||||
from langchain.chains.summarize import load_summarize_chain
|
||||
|
||||
loader = WebBaseLoader("https://ollama.ai/blog/run-llama2-uncensored-locally")
|
||||
docs = loader.load()
|
||||
|
||||
llm = Ollama(model="llama2")
|
||||
chain = load_summarize_chain(llm, chain_type="stuff")
|
||||
|
||||
result = chain.run(docs)
|
||||
print(result)
|
@@ -0,0 +1 @@
|
||||
langchain==0.0.259
|
24
examples/langchain-python-simple/README.md
Normal file
@@ -0,0 +1,24 @@
|
||||
# LangChain
|
||||
|
||||
This example is a basic "hello world" of using LangChain with Ollama.
|
||||
|
||||
## Running the Example
|
||||
|
||||
1. Ensure you have the `llama2` model installed:
|
||||
|
||||
```bash
|
||||
ollama pull llama2
|
||||
```
|
||||
|
||||
2. Install the Python Requirements.
|
||||
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
3. Run the example:
|
||||
|
||||
```bash
|
||||
python main.py
|
||||
```
|
||||
|
6
examples/langchain-python-simple/main.py
Normal file
@@ -0,0 +1,6 @@
|
||||
from langchain.llms import Ollama
|
||||
|
||||
input = input("What is your question?")
|
||||
llm = Ollama(model="llama2")
|
||||
res = llm.predict(input)
|
||||
print (res)
|
1
examples/langchain-python-simple/requirements.txt
Normal file
@@ -0,0 +1 @@
|
||||
langchain==0.0.259
|
23
examples/langchain-typescript-simple/README.md
Normal file
@@ -0,0 +1,23 @@
|
||||
# LangChain
|
||||
|
||||
This example is a basic "hello world" of using LangChain with Ollama using Node.js and Typescript.
|
||||
|
||||
## Running the Example
|
||||
|
||||
1. Install the prerequisites:
|
||||
|
||||
```bash
|
||||
npm install
|
||||
```
|
||||
|
||||
2. Ensure the `mistral` model is available:
|
||||
|
||||
```bash
|
||||
ollama pull mistral
|
||||
```
|
||||
|
||||
3. Run the example:
|
||||
|
||||
```bash
|
||||
npm start
|
||||
```
|
25
examples/langchain-typescript-simple/main.ts
Normal file
@@ -0,0 +1,25 @@
|
||||
import { Ollama } from 'langchain/llms/ollama';
|
||||
import * as readline from "readline";
|
||||
|
||||
async function main() {
|
||||
const ollama = new Ollama({
|
||||
model: 'mistral'
|
||||
// other parameters can be found at https://js.langchain.com/docs/api/llms_ollama/classes/Ollama
|
||||
});
|
||||
|
||||
const rl = readline.createInterface({
|
||||
input: process.stdin,
|
||||
output: process.stdout,
|
||||
});
|
||||
|
||||
rl.question("What is your question: \n", async (user_input) => {
|
||||
const stream = await ollama.stream(user_input);
|
||||
|
||||
for await (const chunk of stream) {
|
||||
process.stdout.write(chunk);
|
||||
}
|
||||
rl.close();
|
||||
})
|
||||
}
|
||||
|
||||
main();
|
997
examples/langchain-typescript-simple/package-lock.json
generated
Normal file
@@ -0,0 +1,997 @@
|
||||
{
|
||||
"name": "langchain-typescript-simple",
|
||||
"lockfileVersion": 3,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"dependencies": {
|
||||
"langchain": "^0.0.165"
|
||||
},
|
||||
"devDependencies": {
|
||||
"typescript": "^5.2.2"
|
||||
}
|
||||
},
|
||||
"node_modules/@anthropic-ai/sdk": {
|
||||
"version": "0.6.2",
|
||||
"resolved": "https://registry.npmjs.org/@anthropic-ai/sdk/-/sdk-0.6.2.tgz",
|
||||
"integrity": "sha512-fB9PUj9RFT+XjkL+E9Ol864ZIJi+1P8WnbHspN3N3/GK2uSzjd0cbVIKTGgf4v3N8MwaQu+UWnU7C4BG/fap/g==",
|
||||
"dependencies": {
|
||||
"@types/node": "^18.11.18",
|
||||
"@types/node-fetch": "^2.6.4",
|
||||
"abort-controller": "^3.0.0",
|
||||
"agentkeepalive": "^4.2.1",
|
||||
"digest-fetch": "^1.3.0",
|
||||
"form-data-encoder": "1.7.2",
|
||||
"formdata-node": "^4.3.2",
|
||||
"node-fetch": "^2.6.7"
|
||||
}
|
||||
},
|
||||
"node_modules/@types/node": {
|
||||
"version": "18.18.4",
|
||||
"resolved": "https://registry.npmjs.org/@types/node/-/node-18.18.4.tgz",
|
||||
"integrity": "sha512-t3rNFBgJRugIhackit2mVcLfF6IRc0JE4oeizPQL8Zrm8n2WY/0wOdpOPhdtG0V9Q2TlW/axbF1MJ6z+Yj/kKQ=="
|
||||
},
|
||||
"node_modules/@types/node-fetch": {
|
||||
"version": "2.6.6",
|
||||
"resolved": "https://registry.npmjs.org/@types/node-fetch/-/node-fetch-2.6.6.tgz",
|
||||
"integrity": "sha512-95X8guJYhfqiuVVhRFxVQcf4hW/2bCuoPwDasMf/531STFoNoWTT7YDnWdXHEZKqAGUigmpG31r2FE70LwnzJw==",
|
||||
"dependencies": {
|
||||
"@types/node": "*",
|
||||
"form-data": "^4.0.0"
|
||||
}
|
||||
},
|
||||
"node_modules/@types/retry": {
|
||||
"version": "0.12.0",
|
||||
"resolved": "https://registry.npmjs.org/@types/retry/-/retry-0.12.0.tgz",
|
||||
"integrity": "sha512-wWKOClTTiizcZhXnPY4wikVAwmdYHp8q6DmC+EJUzAMsycb7HB32Kh9RN4+0gExjmPmZSAQjgURXIGATPegAvA=="
|
||||
},
|
||||
"node_modules/@types/uuid": {
|
||||
"version": "9.0.5",
|
||||
"resolved": "https://registry.npmjs.org/@types/uuid/-/uuid-9.0.5.tgz",
|
||||
"integrity": "sha512-xfHdwa1FMJ082prjSJpoEI57GZITiQz10r3vEJCHa2khEFQjKy91aWKz6+zybzssCvXUwE1LQWgWVwZ4nYUvHQ=="
|
||||
},
|
||||
"node_modules/abort-controller": {
|
||||
"version": "3.0.0",
|
||||
"resolved": "https://registry.npmjs.org/abort-controller/-/abort-controller-3.0.0.tgz",
|
||||
"integrity": "sha512-h8lQ8tacZYnR3vNQTgibj+tODHI5/+l06Au2Pcriv/Gmet0eaj4TwWH41sO9wnHDiQsEj19q0drzdWdeAHtweg==",
|
||||
"dependencies": {
|
||||
"event-target-shim": "^5.0.0"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">=6.5"
|
||||
}
|
||||
},
|
||||
"node_modules/agentkeepalive": {
|
||||
"version": "4.5.0",
|
||||
"resolved": "https://registry.npmjs.org/agentkeepalive/-/agentkeepalive-4.5.0.tgz",
|
||||
"integrity": "sha512-5GG/5IbQQpC9FpkRGsSvZI5QYeSCzlJHdpBQntCsuTOxhKD8lqKhrleg2Yi7yvMIf82Ycmmqln9U8V9qwEiJew==",
|
||||
"dependencies": {
|
||||
"humanize-ms": "^1.2.1"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">= 8.0.0"
|
||||
}
|
||||
},
|
||||
"node_modules/ansi-styles": {
|
||||
"version": "5.2.0",
|
||||
"resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-5.2.0.tgz",
|
||||
"integrity": "sha512-Cxwpt2SfTzTtXcfOlzGEee8O+c+MmUgGrNiBcXnuWxuFJHe6a5Hz7qwhwe5OgaSYI0IJvkLqWX1ASG+cJOkEiA==",
|
||||
"engines": {
|
||||
"node": ">=10"
|
||||
},
|
||||
"funding": {
|
||||
"url": "https://github.com/chalk/ansi-styles?sponsor=1"
|
||||
}
|
||||
},
|
||||
"node_modules/argparse": {
|
||||
"version": "2.0.1",
|
||||
"resolved": "https://registry.npmjs.org/argparse/-/argparse-2.0.1.tgz",
|
||||
"integrity": "sha512-8+9WqebbFzpX9OR+Wa6O29asIogeRMzcGtAINdpMHHyAg10f05aSFVBbcEqGf/PXw1EjAZ+q2/bEBg3DvurK3Q=="
|
||||
},
|
||||
"node_modules/asynckit": {
|
||||
"version": "0.4.0",
|
||||
"resolved": "https://registry.npmjs.org/asynckit/-/asynckit-0.4.0.tgz",
|
||||
"integrity": "sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q=="
|
||||
},
|
||||
"node_modules/base-64": {
|
||||
"version": "0.1.0",
|
||||
"resolved": "https://registry.npmjs.org/base-64/-/base-64-0.1.0.tgz",
|
||||
"integrity": "sha512-Y5gU45svrR5tI2Vt/X9GPd3L0HNIKzGu202EjxrXMpuc2V2CiKgemAbUUsqYmZJvPtCXoUKjNZwBJzsNScUbXA=="
|
||||
},
|
||||
"node_modules/base64-js": {
|
||||
"version": "1.5.1",
|
||||
"resolved": "https://registry.npmjs.org/base64-js/-/base64-js-1.5.1.tgz",
|
||||
"integrity": "sha512-AKpaYlHn8t4SVbOHCy+b5+KKgvR4vrsD8vbvrbiQJps7fKDTkjkDry6ji0rUJjC0kzbNePLwzxq8iypo41qeWA==",
|
||||
"funding": [
|
||||
{
|
||||
"type": "github",
|
||||
"url": "https://github.com/sponsors/feross"
|
||||
},
|
||||
{
|
||||
"type": "patreon",
|
||||
"url": "https://www.patreon.com/feross"
|
||||
},
|
||||
{
|
||||
"type": "consulting",
|
||||
"url": "https://feross.org/support"
|
||||
}
|
||||
]
|
||||
},
|
||||
"node_modules/binary-extensions": {
|
||||
"version": "2.2.0",
|
||||
"resolved": "https://registry.npmjs.org/binary-extensions/-/binary-extensions-2.2.0.tgz",
|
||||
"integrity": "sha512-jDctJ/IVQbZoJykoeHbhXpOlNBqGNcwXJKJog42E5HDPUwQTSdjCHdihjj0DlnheQ7blbT6dHOafNAiS8ooQKA==",
|
||||
"engines": {
|
||||
"node": ">=8"
|
||||
}
|
||||
},
|
||||
"node_modules/binary-search": {
|
||||
"version": "1.3.6",
|
||||
"resolved": "https://registry.npmjs.org/binary-search/-/binary-search-1.3.6.tgz",
|
||||
"integrity": "sha512-nbE1WxOTTrUWIfsfZ4aHGYu5DOuNkbxGokjV6Z2kxfJK3uaAb8zNK1muzOeipoLHZjInT4Br88BHpzevc681xA=="
|
||||
},
|
||||
"node_modules/camelcase": {
|
||||
"version": "6.3.0",
|
||||
"resolved": "https://registry.npmjs.org/camelcase/-/camelcase-6.3.0.tgz",
|
||||
"integrity": "sha512-Gmy6FhYlCY7uOElZUSbxo2UCDH8owEk996gkbrpsgGtrJLM3J7jGxl9Ic7Qwwj4ivOE5AWZWRMecDdF7hqGjFA==",
|
||||
"engines": {
|
||||
"node": ">=10"
|
||||
},
|
||||
"funding": {
|
||||
"url": "https://github.com/sponsors/sindresorhus"
|
||||
}
|
||||
},
|
||||
"node_modules/charenc": {
|
||||
"version": "0.0.2",
|
||||
"resolved": "https://registry.npmjs.org/charenc/-/charenc-0.0.2.tgz",
|
||||
"integrity": "sha512-yrLQ/yVUFXkzg7EDQsPieE/53+0RlaWTs+wBrvW36cyilJ2SaDWfl4Yj7MtLTXleV9uEKefbAGUPv2/iWSooRA==",
|
||||
"engines": {
|
||||
"node": "*"
|
||||
}
|
||||
},
|
||||
"node_modules/combined-stream": {
|
||||
"version": "1.0.8",
|
||||
"resolved": "https://registry.npmjs.org/combined-stream/-/combined-stream-1.0.8.tgz",
|
||||
"integrity": "sha512-FQN4MRfuJeHf7cBbBMJFXhKSDq+2kAArBlmRBvcvFE5BB1HZKXtSFASDhdlz9zOYwxh8lDdnvmMOe/+5cdoEdg==",
|
||||
"dependencies": {
|
||||
"delayed-stream": "~1.0.0"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">= 0.8"
|
||||
}
|
||||
},
|
||||
"node_modules/commander": {
|
||||
"version": "10.0.1",
|
||||
"resolved": "https://registry.npmjs.org/commander/-/commander-10.0.1.tgz",
|
||||
"integrity": "sha512-y4Mg2tXshplEbSGzx7amzPwKKOCGuoSRP/CjEdwwk0FOGlUbq6lKuoyDZTNZkmxHdJtp54hdfY/JUrdL7Xfdug==",
|
||||
"engines": {
|
||||
"node": ">=14"
|
||||
}
|
||||
},
|
||||
"node_modules/crypt": {
|
||||
"version": "0.0.2",
|
||||
"resolved": "https://registry.npmjs.org/crypt/-/crypt-0.0.2.tgz",
|
||||
"integrity": "sha512-mCxBlsHFYh9C+HVpiEacem8FEBnMXgU9gy4zmNC+SXAZNB/1idgp/aulFJ4FgCi7GPEVbfyng092GqL2k2rmow==",
|
||||
"engines": {
|
||||
"node": "*"
|
||||
}
|
||||
},
|
||||
"node_modules/decamelize": {
|
||||
"version": "1.2.0",
|
||||
"resolved": "https://registry.npmjs.org/decamelize/-/decamelize-1.2.0.tgz",
|
||||
"integrity": "sha512-z2S+W9X73hAUUki+N+9Za2lBlun89zigOyGrsax+KUQ6wKW4ZoWpEYBkGhQjwAjjDCkWxhY0VKEhk8wzY7F5cA==",
|
||||
"engines": {
|
||||
"node": ">=0.10.0"
|
||||
}
|
||||
},
|
||||
"node_modules/delayed-stream": {
|
||||
"version": "1.0.0",
|
||||
"resolved": "https://registry.npmjs.org/delayed-stream/-/delayed-stream-1.0.0.tgz",
|
||||
"integrity": "sha512-ZySD7Nf91aLB0RxL4KGrKHBXl7Eds1DAmEdcoVawXnLD7SDhpNgtuII2aAkg7a7QS41jxPSZ17p4VdGnMHk3MQ==",
|
||||
"engines": {
|
||||
"node": ">=0.4.0"
|
||||
}
|
||||
},
|
||||
"node_modules/digest-fetch": {
|
||||
"version": "1.3.0",
|
||||
"resolved": "https://registry.npmjs.org/digest-fetch/-/digest-fetch-1.3.0.tgz",
|
||||
"integrity": "sha512-CGJuv6iKNM7QyZlM2T3sPAdZWd/p9zQiRNS9G+9COUCwzWFTs0Xp8NF5iePx7wtvhDykReiRRrSeNb4oMmB8lA==",
|
||||
"dependencies": {
|
||||
"base-64": "^0.1.0",
|
||||
"md5": "^2.3.0"
|
||||
}
|
||||
},
|
||||
"node_modules/event-target-shim": {
|
||||
"version": "5.0.1",
|
||||
"resolved": "https://registry.npmjs.org/event-target-shim/-/event-target-shim-5.0.1.tgz",
|
||||
"integrity": "sha512-i/2XbnSz/uxRCU6+NdVJgKWDTM427+MqYbkQzD321DuCQJUqOuJKIA0IM2+W2xtYHdKOmZ4dR6fExsd4SXL+WQ==",
|
||||
"engines": {
|
||||
"node": ">=6"
|
||||
}
|
||||
},
|
||||
"node_modules/eventemitter3": {
|
||||
"version": "4.0.7",
|
||||
"resolved": "https://registry.npmjs.org/eventemitter3/-/eventemitter3-4.0.7.tgz",
|
||||
"integrity": "sha512-8guHBZCwKnFhYdHr2ysuRWErTwhoN2X8XELRlrRwpmfeY2jjuUN4taQMsULKUVo1K4DvZl+0pgfyoysHxvmvEw=="
|
||||
},
|
||||
"node_modules/expr-eval": {
|
||||
"version": "2.0.2",
|
||||
"resolved": "https://registry.npmjs.org/expr-eval/-/expr-eval-2.0.2.tgz",
|
||||
"integrity": "sha512-4EMSHGOPSwAfBiibw3ndnP0AvjDWLsMvGOvWEZ2F96IGk0bIVdjQisOHxReSkE13mHcfbuCiXw+G4y0zv6N8Eg=="
|
||||
},
|
||||
"node_modules/flat": {
|
||||
"version": "5.0.2",
|
||||
"resolved": "https://registry.npmjs.org/flat/-/flat-5.0.2.tgz",
|
||||
"integrity": "sha512-b6suED+5/3rTpUBdG1gupIl8MPFCAMA0QXwmljLhvCUKcUvdE4gWky9zpuGCcXHOsz4J9wPGNWq6OKpmIzz3hQ==",
|
||||
"bin": {
|
||||
"flat": "cli.js"
|
||||
}
|
||||
},
|
||||
"node_modules/form-data": {
|
||||
"version": "4.0.0",
|
||||
"resolved": "https://registry.npmjs.org/form-data/-/form-data-4.0.0.tgz",
|
||||
"integrity": "sha512-ETEklSGi5t0QMZuiXoA/Q6vcnxcLQP5vdugSpuAyi6SVGi2clPPp+xgEhuMaHC+zGgn31Kd235W35f7Hykkaww==",
|
||||
"dependencies": {
|
||||
"asynckit": "^0.4.0",
|
||||
"combined-stream": "^1.0.8",
|
||||
"mime-types": "^2.1.12"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">= 6"
|
||||
}
|
||||
},
|
||||
"node_modules/form-data-encoder": {
|
||||
"version": "1.7.2",
|
||||
"resolved": "https://registry.npmjs.org/form-data-encoder/-/form-data-encoder-1.7.2.tgz",
|
||||
"integrity": "sha512-qfqtYan3rxrnCk1VYaA4H+Ms9xdpPqvLZa6xmMgFvhO32x7/3J/ExcTd6qpxM0vH2GdMI+poehyBZvqfMTto8A=="
|
||||
},
|
||||
"node_modules/formdata-node": {
|
||||
"version": "4.4.1",
|
||||
"resolved": "https://registry.npmjs.org/formdata-node/-/formdata-node-4.4.1.tgz",
|
||||
"integrity": "sha512-0iirZp3uVDjVGt9p49aTaqjk84TrglENEDuqfdlZQ1roC9CWlPk6Avf8EEnZNcAqPonwkG35x4n3ww/1THYAeQ==",
|
||||
"dependencies": {
|
||||
"node-domexception": "1.0.0",
|
||||
"web-streams-polyfill": "4.0.0-beta.3"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">= 12.20"
|
||||
}
|
||||
},
|
||||
"node_modules/humanize-ms": {
|
||||
"version": "1.2.1",
|
||||
"resolved": "https://registry.npmjs.org/humanize-ms/-/humanize-ms-1.2.1.tgz",
|
||||
"integrity": "sha512-Fl70vYtsAFb/C06PTS9dZBo7ihau+Tu/DNCk/OyHhea07S+aeMWpFFkUaXRa8fI+ScZbEI8dfSxwY7gxZ9SAVQ==",
|
||||
"dependencies": {
|
||||
"ms": "^2.0.0"
|
||||
}
|
||||
},
|
||||
"node_modules/is-any-array": {
|
||||
"version": "2.0.1",
|
||||
"resolved": "https://registry.npmjs.org/is-any-array/-/is-any-array-2.0.1.tgz",
|
||||
"integrity": "sha512-UtilS7hLRu++wb/WBAw9bNuP1Eg04Ivn1vERJck8zJthEvXCBEBpGR/33u/xLKWEQf95803oalHrVDptcAvFdQ=="
|
||||
},
|
||||
"node_modules/is-buffer": {
|
||||
"version": "1.1.6",
|
||||
"resolved": "https://registry.npmjs.org/is-buffer/-/is-buffer-1.1.6.tgz",
|
||||
"integrity": "sha512-NcdALwpXkTm5Zvvbk7owOUSvVvBKDgKP5/ewfXEznmQFfs4ZRmanOeKBTjRVjka3QFoN6XJ+9F3USqfHqTaU5w=="
|
||||
},
|
||||
"node_modules/js-tiktoken": {
|
||||
"version": "1.0.7",
|
||||
"resolved": "https://registry.npmjs.org/js-tiktoken/-/js-tiktoken-1.0.7.tgz",
|
||||
"integrity": "sha512-biba8u/clw7iesNEWLOLwrNGoBP2lA+hTaBLs/D45pJdUPFXyxD6nhcDVtADChghv4GgyAiMKYMiRx7x6h7Biw==",
|
||||
"dependencies": {
|
||||
"base64-js": "^1.5.1"
|
||||
}
|
||||
},
|
||||
"node_modules/js-yaml": {
|
||||
"version": "4.1.0",
|
||||
"resolved": "https://registry.npmjs.org/js-yaml/-/js-yaml-4.1.0.tgz",
|
||||
"integrity": "sha512-wpxZs9NoxZaJESJGIZTyDEaYpl0FKSA+FB9aJiyemKhMwkxQg63h4T1KJgUGHpTqPDNRcmmYLugrRjJlBtWvRA==",
|
||||
"dependencies": {
|
||||
"argparse": "^2.0.1"
|
||||
},
|
||||
"bin": {
|
||||
"js-yaml": "bin/js-yaml.js"
|
||||
}
|
||||
},
|
||||
"node_modules/jsonpointer": {
|
||||
"version": "5.0.1",
|
||||
"resolved": "https://registry.npmjs.org/jsonpointer/-/jsonpointer-5.0.1.tgz",
|
||||
"integrity": "sha512-p/nXbhSEcu3pZRdkW1OfJhpsVtW1gd4Wa1fnQc9YLiTfAjn0312eMKimbdIQzuZl9aa9xUGaRlP9T/CJE/ditQ==",
|
||||
"engines": {
|
||||
"node": ">=0.10.0"
|
||||
}
|
||||
},
|
||||
"node_modules/langchain": {
|
||||
"version": "0.0.165",
|
||||
"resolved": "https://registry.npmjs.org/langchain/-/langchain-0.0.165.tgz",
|
||||
"integrity": "sha512-CpbNpjwaE+9lzjdw+pZz0VgnRrFivEgr7CVp9dDaAb5JpaJAA4V2v6uQ9ZPN+TSqupTQ79HFn2sfyZVEl2EG7Q==",
|
||||
"dependencies": {
|
||||
"@anthropic-ai/sdk": "^0.6.2",
|
||||
"ansi-styles": "^5.0.0",
|
||||
"binary-extensions": "^2.2.0",
|
||||
"camelcase": "6",
|
||||
"decamelize": "^1.2.0",
|
||||
"expr-eval": "^2.0.2",
|
||||
"flat": "^5.0.2",
|
||||
"js-tiktoken": "^1.0.7",
|
||||
"js-yaml": "^4.1.0",
|
||||
"jsonpointer": "^5.0.1",
|
||||
"langchainhub": "~0.0.6",
|
||||
"langsmith": "~0.0.31",
|
||||
"ml-distance": "^4.0.0",
|
||||
"object-hash": "^3.0.0",
|
||||
"openai": "~4.4.0",
|
||||
"openapi-types": "^12.1.3",
|
||||
"p-queue": "^6.6.2",
|
||||
"p-retry": "4",
|
||||
"uuid": "^9.0.0",
|
||||
"yaml": "^2.2.1",
|
||||
"zod": "^3.22.3",
|
||||
"zod-to-json-schema": "^3.20.4"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">=18"
|
||||
},
|
||||
"peerDependencies": {
|
||||
"@aws-crypto/sha256-js": "^5.0.0",
|
||||
"@aws-sdk/client-bedrock-runtime": "^3.422.0",
|
||||
"@aws-sdk/client-dynamodb": "^3.310.0",
|
||||
"@aws-sdk/client-kendra": "^3.352.0",
|
||||
"@aws-sdk/client-lambda": "^3.310.0",
|
||||
"@aws-sdk/client-s3": "^3.310.0",
|
||||
"@aws-sdk/client-sagemaker-runtime": "^3.310.0",
|
||||
"@aws-sdk/client-sfn": "^3.310.0",
|
||||
"@aws-sdk/credential-provider-node": "^3.388.0",
|
||||
"@azure/storage-blob": "^12.15.0",
|
||||
"@clickhouse/client": "^0.0.14",
|
||||
"@cloudflare/ai": "^1.0.12",
|
||||
"@elastic/elasticsearch": "^8.4.0",
|
||||
"@getmetal/metal-sdk": "*",
|
||||
"@getzep/zep-js": "^0.7.0",
|
||||
"@gomomento/sdk": "^1.23.0",
|
||||
"@google-ai/generativelanguage": "^0.2.1",
|
||||
"@google-cloud/storage": "^6.10.1",
|
||||
"@huggingface/inference": "^1.5.1",
|
||||
"@mozilla/readability": "*",
|
||||
"@notionhq/client": "^2.2.10",
|
||||
"@opensearch-project/opensearch": "*",
|
||||
"@pinecone-database/pinecone": "^1.1.0",
|
||||
"@planetscale/database": "^1.8.0",
|
||||
"@qdrant/js-client-rest": "^1.2.0",
|
||||
"@raycast/api": "^1.55.2",
|
||||
"@smithy/eventstream-codec": "^2.0.5",
|
||||
"@smithy/protocol-http": "^3.0.6",
|
||||
"@smithy/signature-v4": "^2.0.10",
|
||||
"@smithy/util-utf8": "^2.0.0",
|
||||
"@supabase/postgrest-js": "^1.1.1",
|
||||
"@supabase/supabase-js": "^2.10.0",
|
||||
"@tensorflow-models/universal-sentence-encoder": "*",
|
||||
"@tensorflow/tfjs-converter": "*",
|
||||
"@tensorflow/tfjs-core": "*",
|
||||
"@upstash/redis": "^1.20.6",
|
||||
"@vercel/postgres": "^0.5.0",
|
||||
"@writerai/writer-sdk": "^0.40.2",
|
||||
"@xata.io/client": "^0.25.1",
|
||||
"@xenova/transformers": "^2.5.4",
|
||||
"@zilliz/milvus2-sdk-node": ">=2.2.7",
|
||||
"apify-client": "^2.7.1",
|
||||
"axios": "*",
|
||||
"cassandra-driver": "^4.6.4",
|
||||
"cheerio": "^1.0.0-rc.12",
|
||||
"chromadb": "*",
|
||||
"cohere-ai": ">=6.0.0",
|
||||
"d3-dsv": "^2.0.0",
|
||||
"epub2": "^3.0.1",
|
||||
"faiss-node": "^0.3.0",
|
||||
"fast-xml-parser": "^4.2.7",
|
||||
"firebase-admin": "^11.9.0",
|
||||
"google-auth-library": "^8.9.0",
|
||||
"googleapis": "^126.0.1",
|
||||
"hnswlib-node": "^1.4.2",
|
||||
"html-to-text": "^9.0.5",
|
||||
"ignore": "^5.2.0",
|
||||
"ioredis": "^5.3.2",
|
||||
"jsdom": "*",
|
||||
"llmonitor": "*",
|
||||
"lodash": "^4.17.21",
|
||||
"mammoth": "*",
|
||||
"mongodb": "^5.2.0",
|
||||
"mysql2": "^3.3.3",
|
||||
"neo4j-driver": "*",
|
||||
"node-llama-cpp": "*",
|
||||
"notion-to-md": "^3.1.0",
|
||||
"pdf-parse": "1.1.1",
|
||||
"peggy": "^3.0.2",
|
||||
"pg": "^8.11.0",
|
||||
"pg-copy-streams": "^6.0.5",
|
||||
"pickleparser": "^0.1.0",
|
||||
"playwright": "^1.32.1",
|
||||
"portkey-ai": "^0.1.11",
|
||||
"puppeteer": "^19.7.2",
|
||||
"redis": "^4.6.4",
|
||||
"replicate": "^0.18.0",
|
||||
"sonix-speech-recognition": "^2.1.1",
|
||||
"srt-parser-2": "^1.2.2",
|
||||
"typeorm": "^0.3.12",
|
||||
"typesense": "^1.5.3",
|
||||
"usearch": "^1.1.1",
|
||||
"vectordb": "^0.1.4",
|
||||
"voy-search": "0.6.2",
|
||||
"weaviate-ts-client": "^1.4.0",
|
||||
"web-auth-library": "^1.0.3",
|
||||
"youtube-transcript": "^1.0.6",
|
||||
"youtubei.js": "^5.8.0"
|
||||
},
|
||||
"peerDependenciesMeta": {
|
||||
"@aws-crypto/sha256-js": {
|
||||
"optional": true
|
||||
},
|
||||
"@aws-sdk/client-bedrock-runtime": {
|
||||
"optional": true
|
||||
},
|
||||
"@aws-sdk/client-dynamodb": {
|
||||
"optional": true
|
||||
},
|
||||
"@aws-sdk/client-kendra": {
|
||||
"optional": true
|
||||
},
|
||||
"@aws-sdk/client-lambda": {
|
||||
"optional": true
|
||||
},
|
||||
"@aws-sdk/client-s3": {
|
||||
"optional": true
|
||||
},
|
||||
"@aws-sdk/client-sagemaker-runtime": {
|
||||
"optional": true
|
||||
},
|
||||
"@aws-sdk/client-sfn": {
|
||||
"optional": true
|
||||
},
|
||||
"@aws-sdk/credential-provider-node": {
|
||||
"optional": true
|
||||
},
|
||||
"@azure/storage-blob": {
|
||||
"optional": true
|
||||
},
|
||||
"@clickhouse/client": {
|
||||
"optional": true
|
||||
},
|
||||
"@cloudflare/ai": {
|
||||
"optional": true
|
||||
},
|
||||
"@elastic/elasticsearch": {
|
||||
"optional": true
|
||||
},
|
||||
"@getmetal/metal-sdk": {
|
||||
"optional": true
|
||||
},
|
||||
"@getzep/zep-js": {
|
||||
"optional": true
|
||||
},
|
||||
"@gomomento/sdk": {
|
||||
"optional": true
|
||||
},
|
||||
"@google-ai/generativelanguage": {
|
||||
"optional": true
|
||||
},
|
||||
"@google-cloud/storage": {
|
||||
"optional": true
|
||||
},
|
||||
"@huggingface/inference": {
|
||||
"optional": true
|
||||
},
|
||||
"@mozilla/readability": {
|
||||
"optional": true
|
||||
},
|
||||
"@notionhq/client": {
|
||||
"optional": true
|
||||
},
|
||||
"@opensearch-project/opensearch": {
|
||||
"optional": true
|
||||
},
|
||||
"@pinecone-database/pinecone": {
|
||||
"optional": true
|
||||
},
|
||||
"@planetscale/database": {
|
||||
"optional": true
|
||||
},
|
||||
"@qdrant/js-client-rest": {
|
||||
"optional": true
|
||||
},
|
||||
"@raycast/api": {
|
||||
"optional": true
|
||||
},
|
||||
"@smithy/eventstream-codec": {
|
||||
"optional": true
|
||||
},
|
||||
"@smithy/protocol-http": {
|
||||
"optional": true
|
||||
},
|
||||
"@smithy/signature-v4": {
|
||||
"optional": true
|
||||
},
|
||||
"@smithy/util-utf8": {
|
||||
"optional": true
|
||||
},
|
||||
"@supabase/postgrest-js": {
|
||||
"optional": true
|
||||
},
|
||||
"@supabase/supabase-js": {
|
||||
"optional": true
|
||||
},
|
||||
"@tensorflow-models/universal-sentence-encoder": {
|
||||
"optional": true
|
||||
},
|
||||
"@tensorflow/tfjs-converter": {
|
||||
"optional": true
|
||||
},
|
||||
"@tensorflow/tfjs-core": {
|
||||
"optional": true
|
||||
},
|
||||
"@upstash/redis": {
|
||||
"optional": true
|
||||
},
|
||||
"@vercel/postgres": {
|
||||
"optional": true
|
||||
},
|
||||
"@writerai/writer-sdk": {
|
||||
"optional": true
|
||||
},
|
||||
"@xata.io/client": {
|
||||
"optional": true
|
||||
},
|
||||
"@xenova/transformers": {
|
||||
"optional": true
|
||||
},
|
||||
"@zilliz/milvus2-sdk-node": {
|
||||
"optional": true
|
||||
},
|
||||
"apify-client": {
|
||||
"optional": true
|
||||
},
|
||||
"axios": {
|
||||
"optional": true
|
||||
},
|
||||
"cassandra-driver": {
|
||||
"optional": true
|
||||
},
|
||||
"cheerio": {
|
||||
"optional": true
|
||||
},
|
||||
"chromadb": {
|
||||
"optional": true
|
||||
},
|
||||
"cohere-ai": {
|
||||
"optional": true
|
||||
},
|
||||
"d3-dsv": {
|
||||
"optional": true
|
||||
},
|
||||
"epub2": {
|
||||
"optional": true
|
||||
},
|
||||
"faiss-node": {
|
||||
"optional": true
|
||||
},
|
||||
"fast-xml-parser": {
|
||||
"optional": true
|
||||
},
|
||||
"firebase-admin": {
|
||||
"optional": true
|
||||
},
|
||||
"google-auth-library": {
|
||||
"optional": true
|
||||
},
|
||||
"googleapis": {
|
||||
"optional": true
|
||||
},
|
||||
"hnswlib-node": {
|
||||
"optional": true
|
||||
},
|
||||
"html-to-text": {
|
||||
"optional": true
|
||||
},
|
||||
"ignore": {
|
||||
"optional": true
|
||||
},
|
||||
"ioredis": {
|
||||
"optional": true
|
||||
},
|
||||
"jsdom": {
|
||||
"optional": true
|
||||
},
|
||||
"llmonitor": {
|
||||
"optional": true
|
||||
},
|
||||
"lodash": {
|
||||
"optional": true
|
||||
},
|
||||
"mammoth": {
|
||||
"optional": true
|
||||
},
|
||||
"mongodb": {
|
||||
"optional": true
|
||||
},
|
||||
"mysql2": {
|
||||
"optional": true
|
||||
},
|
||||
"neo4j-driver": {
|
||||
"optional": true
|
||||
},
|
||||
"node-llama-cpp": {
|
||||
"optional": true
|
||||
},
|
||||
"notion-to-md": {
|
||||
"optional": true
|
||||
},
|
||||
"pdf-parse": {
|
||||
"optional": true
|
||||
},
|
||||
"peggy": {
|
||||
"optional": true
|
||||
},
|
||||
"pg": {
|
||||
"optional": true
|
||||
},
|
||||
"pg-copy-streams": {
|
||||
"optional": true
|
||||
},
|
||||
"pickleparser": {
|
||||
"optional": true
|
||||
},
|
||||
"playwright": {
|
||||
"optional": true
|
||||
},
|
||||
"portkey-ai": {
|
||||
"optional": true
|
||||
},
|
||||
"puppeteer": {
|
||||
"optional": true
|
||||
},
|
||||
"redis": {
|
||||
"optional": true
|
||||
},
|
||||
"replicate": {
|
||||
"optional": true
|
||||
},
|
||||
"sonix-speech-recognition": {
|
||||
"optional": true
|
||||
},
|
||||
"srt-parser-2": {
|
||||
"optional": true
|
||||
},
|
||||
"typeorm": {
|
||||
"optional": true
|
||||
},
|
||||
"typesense": {
|
||||
"optional": true
|
||||
},
|
||||
"usearch": {
|
||||
"optional": true
|
||||
},
|
||||
"vectordb": {
|
||||
"optional": true
|
||||
},
|
||||
"voy-search": {
|
||||
"optional": true
|
||||
},
|
||||
"weaviate-ts-client": {
|
||||
"optional": true
|
||||
},
|
||||
"web-auth-library": {
|
||||
"optional": true
|
||||
},
|
||||
"youtube-transcript": {
|
||||
"optional": true
|
||||
},
|
||||
"youtubei.js": {
|
||||
"optional": true
|
||||
}
|
||||
}
|
||||
},
|
||||
"node_modules/langchainhub": {
|
||||
"version": "0.0.6",
|
||||
"resolved": "https://registry.npmjs.org/langchainhub/-/langchainhub-0.0.6.tgz",
|
||||
"integrity": "sha512-SW6105T+YP1cTe0yMf//7kyshCgvCTyFBMTgH2H3s9rTAR4e+78DA/BBrUL/Mt4Q5eMWui7iGuAYb3pgGsdQ9w=="
|
||||
},
|
||||
"node_modules/langsmith": {
|
||||
"version": "0.0.42",
|
||||
"resolved": "https://registry.npmjs.org/langsmith/-/langsmith-0.0.42.tgz",
|
||||
"integrity": "sha512-sFuN+e7E+pPBIRaRgFqZh/BRBWNHTZNAwi6uj4kydQawooCZYoJmM5snOkiQrhVSvAhgu6xFhLvmfvkPcKzD7w==",
|
||||
"dependencies": {
|
||||
"@types/uuid": "^9.0.1",
|
||||
"commander": "^10.0.1",
|
||||
"p-queue": "^6.6.2",
|
||||
"p-retry": "4",
|
||||
"uuid": "^9.0.0"
|
||||
},
|
||||
"bin": {
|
||||
"langsmith": "dist/cli/main.cjs"
|
||||
}
|
||||
},
|
||||
"node_modules/md5": {
|
||||
"version": "2.3.0",
|
||||
"resolved": "https://registry.npmjs.org/md5/-/md5-2.3.0.tgz",
|
||||
"integrity": "sha512-T1GITYmFaKuO91vxyoQMFETst+O71VUPEU3ze5GNzDm0OWdP8v1ziTaAEPUr/3kLsY3Sftgz242A1SetQiDL7g==",
|
||||
"dependencies": {
|
||||
"charenc": "0.0.2",
|
||||
"crypt": "0.0.2",
|
||||
"is-buffer": "~1.1.6"
|
||||
}
|
||||
},
|
||||
"node_modules/mime-db": {
|
||||
"version": "1.52.0",
|
||||
"resolved": "https://registry.npmjs.org/mime-db/-/mime-db-1.52.0.tgz",
|
||||
"integrity": "sha512-sPU4uV7dYlvtWJxwwxHD0PuihVNiE7TyAbQ5SWxDCB9mUYvOgroQOwYQQOKPJ8CIbE+1ETVlOoK1UC2nU3gYvg==",
|
||||
"engines": {
|
||||
"node": ">= 0.6"
|
||||
}
|
||||
},
|
||||
"node_modules/mime-types": {
|
||||
"version": "2.1.35",
|
||||
"resolved": "https://registry.npmjs.org/mime-types/-/mime-types-2.1.35.tgz",
|
||||
"integrity": "sha512-ZDY+bPm5zTTF+YpCrAU9nK0UgICYPT0QtT1NZWFv4s++TNkcgVaT0g6+4R2uI4MjQjzysHB1zxuWL50hzaeXiw==",
|
||||
"dependencies": {
|
||||
"mime-db": "1.52.0"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">= 0.6"
|
||||
}
|
||||
},
|
||||
"node_modules/ml-array-mean": {
|
||||
"version": "1.1.6",
|
||||
"resolved": "https://registry.npmjs.org/ml-array-mean/-/ml-array-mean-1.1.6.tgz",
|
||||
"integrity": "sha512-MIdf7Zc8HznwIisyiJGRH9tRigg3Yf4FldW8DxKxpCCv/g5CafTw0RRu51nojVEOXuCQC7DRVVu5c7XXO/5joQ==",
|
||||
"dependencies": {
|
||||
"ml-array-sum": "^1.1.6"
|
||||
}
|
||||
},
|
||||
"node_modules/ml-array-sum": {
|
||||
"version": "1.1.6",
|
||||
"resolved": "https://registry.npmjs.org/ml-array-sum/-/ml-array-sum-1.1.6.tgz",
|
||||
"integrity": "sha512-29mAh2GwH7ZmiRnup4UyibQZB9+ZLyMShvt4cH4eTK+cL2oEMIZFnSyB3SS8MlsTh6q/w/yh48KmqLxmovN4Dw==",
|
||||
"dependencies": {
|
||||
"is-any-array": "^2.0.0"
|
||||
}
|
||||
},
|
||||
"node_modules/ml-distance": {
|
||||
"version": "4.0.1",
|
||||
"resolved": "https://registry.npmjs.org/ml-distance/-/ml-distance-4.0.1.tgz",
|
||||
"integrity": "sha512-feZ5ziXs01zhyFUUUeZV5hwc0f5JW0Sh0ckU1koZe/wdVkJdGxcP06KNQuF0WBTj8FttQUzcvQcpcrOp/XrlEw==",
|
||||
"dependencies": {
|
||||
"ml-array-mean": "^1.1.6",
|
||||
"ml-distance-euclidean": "^2.0.0",
|
||||
"ml-tree-similarity": "^1.0.0"
|
||||
}
|
||||
},
|
||||
"node_modules/ml-distance-euclidean": {
|
||||
"version": "2.0.0",
|
||||
"resolved": "https://registry.npmjs.org/ml-distance-euclidean/-/ml-distance-euclidean-2.0.0.tgz",
|
||||
"integrity": "sha512-yC9/2o8QF0A3m/0IXqCTXCzz2pNEzvmcE/9HFKOZGnTjatvBbsn4lWYJkxENkA4Ug2fnYl7PXQxnPi21sgMy/Q=="
|
||||
},
|
||||
"node_modules/ml-tree-similarity": {
|
||||
"version": "1.0.0",
|
||||
"resolved": "https://registry.npmjs.org/ml-tree-similarity/-/ml-tree-similarity-1.0.0.tgz",
|
||||
"integrity": "sha512-XJUyYqjSuUQkNQHMscr6tcjldsOoAekxADTplt40QKfwW6nd++1wHWV9AArl0Zvw/TIHgNaZZNvr8QGvE8wLRg==",
|
||||
"dependencies": {
|
||||
"binary-search": "^1.3.5",
|
||||
"num-sort": "^2.0.0"
|
||||
}
|
||||
},
|
||||
"node_modules/ms": {
|
||||
"version": "2.1.3",
|
||||
"resolved": "https://registry.npmjs.org/ms/-/ms-2.1.3.tgz",
|
||||
"integrity": "sha512-6FlzubTLZG3J2a/NVCAleEhjzq5oxgHyaCU9yYXvcLsvoVaHJq/s5xXI6/XXP6tz7R9xAOtHnSO/tXtF3WRTlA=="
|
||||
},
|
||||
"node_modules/node-domexception": {
|
||||
"version": "1.0.0",
|
||||
"resolved": "https://registry.npmjs.org/node-domexception/-/node-domexception-1.0.0.tgz",
|
||||
"integrity": "sha512-/jKZoMpw0F8GRwl4/eLROPA3cfcXtLApP0QzLmUT/HuPCZWyB7IY9ZrMeKw2O/nFIqPQB3PVM9aYm0F312AXDQ==",
|
||||
"funding": [
|
||||
{
|
||||
"type": "github",
|
||||
"url": "https://github.com/sponsors/jimmywarting"
|
||||
},
|
||||
{
|
||||
"type": "github",
|
||||
"url": "https://paypal.me/jimmywarting"
|
||||
}
|
||||
],
|
||||
"engines": {
|
||||
"node": ">=10.5.0"
|
||||
}
|
||||
},
|
||||
"node_modules/node-fetch": {
|
||||
"version": "2.7.0",
|
||||
"resolved": "https://registry.npmjs.org/node-fetch/-/node-fetch-2.7.0.tgz",
|
||||
"integrity": "sha512-c4FRfUm/dbcWZ7U+1Wq0AwCyFL+3nt2bEw05wfxSz+DWpWsitgmSgYmy2dQdWyKC1694ELPqMs/YzUSNozLt8A==",
|
||||
"dependencies": {
|
||||
"whatwg-url": "^5.0.0"
|
||||
},
|
||||
"engines": {
|
||||
"node": "4.x || >=6.0.0"
|
||||
},
|
||||
"peerDependencies": {
|
||||
"encoding": "^0.1.0"
|
||||
},
|
||||
"peerDependenciesMeta": {
|
||||
"encoding": {
|
||||
"optional": true
|
||||
}
|
||||
}
|
||||
},
|
||||
"node_modules/num-sort": {
|
||||
"version": "2.1.0",
|
||||
"resolved": "https://registry.npmjs.org/num-sort/-/num-sort-2.1.0.tgz",
|
||||
"integrity": "sha512-1MQz1Ed8z2yckoBeSfkQHHO9K1yDRxxtotKSJ9yvcTUUxSvfvzEq5GwBrjjHEpMlq/k5gvXdmJ1SbYxWtpNoVg==",
|
||||
"engines": {
|
||||
"node": ">=8"
|
||||
},
|
||||
"funding": {
|
||||
"url": "https://github.com/sponsors/sindresorhus"
|
||||
}
|
||||
},
|
||||
"node_modules/object-hash": {
|
||||
"version": "3.0.0",
|
||||
"resolved": "https://registry.npmjs.org/object-hash/-/object-hash-3.0.0.tgz",
|
||||
"integrity": "sha512-RSn9F68PjH9HqtltsSnqYC1XXoWe9Bju5+213R98cNGttag9q9yAOTzdbsqvIa7aNm5WffBZFpWYr2aWrklWAw==",
|
||||
"engines": {
|
||||
"node": ">= 6"
|
||||
}
|
||||
},
|
||||
"node_modules/openai": {
|
||||
"version": "4.4.0",
|
||||
"resolved": "https://registry.npmjs.org/openai/-/openai-4.4.0.tgz",
|
||||
"integrity": "sha512-JN0t628Kh95T0IrXl0HdBqnlJg+4Vq0Bnh55tio+dfCnyzHvMLiWyCM9m726MAJD2YkDU4/8RQB6rNbEq9ct2w==",
|
||||
"dependencies": {
|
||||
"@types/node": "^18.11.18",
|
||||
"@types/node-fetch": "^2.6.4",
|
||||
"abort-controller": "^3.0.0",
|
||||
"agentkeepalive": "^4.2.1",
|
||||
"digest-fetch": "^1.3.0",
|
||||
"form-data-encoder": "1.7.2",
|
||||
"formdata-node": "^4.3.2",
|
||||
"node-fetch": "^2.6.7"
|
||||
},
|
||||
"bin": {
|
||||
"openai": "bin/cli"
|
||||
}
|
||||
},
|
||||
"node_modules/openapi-types": {
|
||||
"version": "12.1.3",
|
||||
"resolved": "https://registry.npmjs.org/openapi-types/-/openapi-types-12.1.3.tgz",
|
||||
"integrity": "sha512-N4YtSYJqghVu4iek2ZUvcN/0aqH1kRDuNqzcycDxhOUpg7GdvLa2F3DgS6yBNhInhv2r/6I0Flkn7CqL8+nIcw=="
|
||||
},
|
||||
"node_modules/p-finally": {
|
||||
"version": "1.0.0",
|
||||
"resolved": "https://registry.npmjs.org/p-finally/-/p-finally-1.0.0.tgz",
|
||||
"integrity": "sha512-LICb2p9CB7FS+0eR1oqWnHhp0FljGLZCWBE9aix0Uye9W8LTQPwMTYVGWQWIw9RdQiDg4+epXQODwIYJtSJaow==",
|
||||
"engines": {
|
||||
"node": ">=4"
|
||||
}
|
||||
},
|
||||
"node_modules/p-queue": {
|
||||
"version": "6.6.2",
|
||||
"resolved": "https://registry.npmjs.org/p-queue/-/p-queue-6.6.2.tgz",
|
||||
"integrity": "sha512-RwFpb72c/BhQLEXIZ5K2e+AhgNVmIejGlTgiB9MzZ0e93GRvqZ7uSi0dvRF7/XIXDeNkra2fNHBxTyPDGySpjQ==",
|
||||
"dependencies": {
|
||||
"eventemitter3": "^4.0.4",
|
||||
"p-timeout": "^3.2.0"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">=8"
|
||||
},
|
||||
"funding": {
|
||||
"url": "https://github.com/sponsors/sindresorhus"
|
||||
}
|
||||
},
|
||||
"node_modules/p-retry": {
|
||||
"version": "4.6.2",
|
||||
"resolved": "https://registry.npmjs.org/p-retry/-/p-retry-4.6.2.tgz",
|
||||
"integrity": "sha512-312Id396EbJdvRONlngUx0NydfrIQ5lsYu0znKVUzVvArzEIt08V1qhtyESbGVd1FGX7UKtiFp5uwKZdM8wIuQ==",
|
||||
"dependencies": {
|
||||
"@types/retry": "0.12.0",
|
||||
"retry": "^0.13.1"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">=8"
|
||||
}
|
||||
},
|
||||
"node_modules/p-timeout": {
|
||||
"version": "3.2.0",
|
||||
"resolved": "https://registry.npmjs.org/p-timeout/-/p-timeout-3.2.0.tgz",
|
||||
"integrity": "sha512-rhIwUycgwwKcP9yTOOFK/AKsAopjjCakVqLHePO3CC6Mir1Z99xT+R63jZxAT5lFZLa2inS5h+ZS2GvR99/FBg==",
|
||||
"dependencies": {
|
||||
"p-finally": "^1.0.0"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">=8"
|
||||
}
|
||||
},
|
||||
"node_modules/retry": {
|
||||
"version": "0.13.1",
|
||||
"resolved": "https://registry.npmjs.org/retry/-/retry-0.13.1.tgz",
|
||||
"integrity": "sha512-XQBQ3I8W1Cge0Seh+6gjj03LbmRFWuoszgK9ooCpwYIrhhoO80pfq4cUkU5DkknwfOfFteRwlZ56PYOGYyFWdg==",
|
||||
"engines": {
|
||||
"node": ">= 4"
|
||||
}
|
||||
},
|
||||
"node_modules/tr46": {
|
||||
"version": "0.0.3",
|
||||
"resolved": "https://registry.npmjs.org/tr46/-/tr46-0.0.3.tgz",
|
||||
"integrity": "sha512-N3WMsuqV66lT30CrXNbEjx4GEwlow3v6rr4mCcv6prnfwhS01rkgyFdjPNBYd9br7LpXV1+Emh01fHnq2Gdgrw=="
|
||||
},
|
||||
"node_modules/typescript": {
|
||||
"version": "5.2.2",
|
||||
"resolved": "https://registry.npmjs.org/typescript/-/typescript-5.2.2.tgz",
|
||||
"integrity": "sha512-mI4WrpHsbCIcwT9cF4FZvr80QUeKvsUsUvKDoR+X/7XHQH98xYD8YHZg7ANtz2GtZt/CBq2QJ0thkGJMHfqc1w==",
|
||||
"dev": true,
|
||||
"bin": {
|
||||
"tsc": "bin/tsc",
|
||||
"tsserver": "bin/tsserver"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">=14.17"
|
||||
}
|
||||
},
|
||||
"node_modules/uuid": {
|
||||
"version": "9.0.1",
|
||||
"resolved": "https://registry.npmjs.org/uuid/-/uuid-9.0.1.tgz",
|
||||
"integrity": "sha512-b+1eJOlsR9K8HJpow9Ok3fiWOWSIcIzXodvv0rQjVoOVNpWMpxf1wZNpt4y9h10odCNrqnYp1OBzRktckBe3sA==",
|
||||
"funding": [
|
||||
"https://github.com/sponsors/broofa",
|
||||
"https://github.com/sponsors/ctavan"
|
||||
],
|
||||
"bin": {
|
||||
"uuid": "dist/bin/uuid"
|
||||
}
|
||||
},
|
||||
"node_modules/web-streams-polyfill": {
|
||||
"version": "4.0.0-beta.3",
|
||||
"resolved": "https://registry.npmjs.org/web-streams-polyfill/-/web-streams-polyfill-4.0.0-beta.3.tgz",
|
||||
"integrity": "sha512-QW95TCTaHmsYfHDybGMwO5IJIM93I/6vTRk+daHTWFPhwh+C8Cg7j7XyKrwrj8Ib6vYXe0ocYNrmzY4xAAN6ug==",
|
||||
"engines": {
|
||||
"node": ">= 14"
|
||||
}
|
||||
},
|
||||
"node_modules/webidl-conversions": {
|
||||
"version": "3.0.1",
|
||||
"resolved": "https://registry.npmjs.org/webidl-conversions/-/webidl-conversions-3.0.1.tgz",
|
||||
"integrity": "sha512-2JAn3z8AR6rjK8Sm8orRC0h/bcl/DqL7tRPdGZ4I1CjdF+EaMLmYxBHyXuKL849eucPFhvBoxMsflfOb8kxaeQ=="
|
||||
},
|
||||
"node_modules/whatwg-url": {
|
||||
"version": "5.0.0",
|
||||
"resolved": "https://registry.npmjs.org/whatwg-url/-/whatwg-url-5.0.0.tgz",
|
||||
"integrity": "sha512-saE57nupxk6v3HY35+jzBwYa0rKSy0XR8JSxZPwgLr7ys0IBzhGviA1/TUGJLmSVqs8pb9AnvICXEuOHLprYTw==",
|
||||
"dependencies": {
|
||||
"tr46": "~0.0.3",
|
||||
"webidl-conversions": "^3.0.0"
|
||||
}
|
||||
},
|
||||
"node_modules/yaml": {
|
||||
"version": "2.3.2",
|
||||
"resolved": "https://registry.npmjs.org/yaml/-/yaml-2.3.2.tgz",
|
||||
"integrity": "sha512-N/lyzTPaJasoDmfV7YTrYCI0G/3ivm/9wdG0aHuheKowWQwGTsK0Eoiw6utmzAnI6pkJa0DUVygvp3spqqEKXg==",
|
||||
"engines": {
|
||||
"node": ">= 14"
|
||||
}
|
||||
},
|
||||
"node_modules/zod": {
|
||||
"version": "3.22.4",
|
||||
"resolved": "https://registry.npmjs.org/zod/-/zod-3.22.4.tgz",
|
||||
"integrity": "sha512-iC+8Io04lddc+mVqQ9AZ7OQ2MrUKGN+oIQyq1vemgt46jwCwLfhq7/pwnBnNXXXZb8VTVLKwp9EDkx+ryxIWmg==",
|
||||
"funding": {
|
||||
"url": "https://github.com/sponsors/colinhacks"
|
||||
}
|
||||
},
|
||||
"node_modules/zod-to-json-schema": {
|
||||
"version": "3.21.4",
|
||||
"resolved": "https://registry.npmjs.org/zod-to-json-schema/-/zod-to-json-schema-3.21.4.tgz",
|
||||
"integrity": "sha512-fjUZh4nQ1s6HMccgIeE0VP4QG/YRGPmyjO9sAh890aQKPEk3nqbfUXhMFaC+Dr5KvYBm8BCyvfpZf2jY9aGSsw==",
|
||||
"peerDependencies": {
|
||||
"zod": "^3.21.4"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
13
examples/langchain-typescript-simple/package.json
Normal file
@@ -0,0 +1,13 @@
|
||||
{
|
||||
"scripts": {
|
||||
"start": "tsx main.ts"
|
||||
},
|
||||
"devDependencies": {
|
||||
"tsx": "^4.6.2",
|
||||
"typescript": "^5.3.3"
|
||||
},
|
||||
"dependencies": {
|
||||
"langchain": "^0.0.165",
|
||||
"readline": "^1.3.0"
|
||||
}
|
||||
}
|
5
examples/modelfile-mario/Modelfile
Normal file
@@ -0,0 +1,5 @@
|
||||
FROM llama2
|
||||
PARAMETER temperature 1
|
||||
SYSTEM """
|
||||
You are Mario from super mario bros, acting as an assistant.
|
||||
"""
|
BIN
examples/modelfile-mario/logo.png
Normal file
After Width: | Height: | Size: 446 KiB |
43
examples/modelfile-mario/readme.md
Normal file
@@ -0,0 +1,43 @@
|
||||
<img src="logo.png" alt="image of Italian plumber" height="200"/>
|
||||
|
||||
# Example character: Mario
|
||||
|
||||
This example shows how to create a basic character using Llama2 as the base model.
|
||||
|
||||
To run this example:
|
||||
|
||||
1. Download the Modelfile
|
||||
2. `ollama pull llama2` to get the base model used in the model file.
|
||||
3. `ollama create NAME -f ./Modelfile`
|
||||
4. `ollama run NAME`
|
||||
|
||||
Ask it some questions like "Who are you?" or "Is Peach in trouble again?"
|
||||
|
||||
## Editing this file
|
||||
|
||||
What the model file looks like:
|
||||
|
||||
```
|
||||
FROM llama2
|
||||
PARAMETER temperature 1
|
||||
SYSTEM """
|
||||
You are Mario from Super Mario Bros, acting as an assistant.
|
||||
"""
|
||||
```
|
||||
|
||||
What if you want to change its behaviour?
|
||||
|
||||
- Try changing the prompt
|
||||
- Try changing the parameters [Docs](https://github.com/jmorganca/ollama/blob/main/docs/modelfile.md)
|
||||
- Try changing the model (e.g. An uncensored model by `FROM wizard-vicuna` this is the wizard-vicuna uncensored model )
|
||||
|
||||
Once the changes are made,
|
||||
|
||||
1. `ollama create NAME -f ./Modelfile`
|
||||
2. `ollama run NAME`
|
||||
3. Iterate until you are happy with the results.
|
||||
|
||||
Notes:
|
||||
|
||||
- This example is for research purposes only. There is no affiliation with any entity.
|
||||
- When using an uncensored model, please be aware that it may generate offensive content.
|
23
examples/modelfile-tweetwriter/readme.md
Normal file
@@ -0,0 +1,23 @@
|
||||
# Example Modelfile - Tweetwriter
|
||||
|
||||
This simple examples shows what you can do without any code, simply relying on a Modelfile. The file has two instructions:
|
||||
|
||||
1. FROM - The From instructions defines the parent model to use for this one. If you choose a model from the library, you can enter just the model name. For all other models, you need to specify the namespace as well. You could also use a local file. Just include the relative path to the converted, quantized model weights file. To learn more about creating that file, see the `import.md` file in the docs folder of this repository.
|
||||
2. SYSTEM - This defines the system prompt for the model and overrides the system prompt from the parent model.
|
||||
|
||||
## Running the Example
|
||||
|
||||
1. Create the model:
|
||||
|
||||
```bash
|
||||
ollama create tweetwriter
|
||||
```
|
||||
|
||||
2. Enter a topic to generate a tweet about.
|
||||
3. Show the Modelfile in the REPL.
|
||||
|
||||
```bash
|
||||
/show modelfile
|
||||
```
|
||||
|
||||
Notice that the FROM and SYSTEM match what was in the file. But there is also a TEMPLATE and PARAMETER. These are inherited from the parent model.
|
@@ -1,14 +0,0 @@
|
||||
# Modelfile for creating a Midjourney prompts from a topic
|
||||
# Run `ollama create mj -f pathtofile` and then `ollama run mj` and enter a topic
|
||||
|
||||
FROM library/nous-hermes:latest
|
||||
PROMPT """
|
||||
{{- if not .Context }}
|
||||
### System:
|
||||
Embrace your role as an AI-powered creative assistant, employing Midjourney to manifest compelling AI-generated art. I will outline a specific image concept, and in response, you must produce an exhaustive, multifaceted prompt for Midjourney, ensuring every detail of the original concept is represented in your instructions. Midjourney doesn't do well with text, so after the prompt, give me instructions that I can use to create the titles in a image editor.
|
||||
{{- end }}
|
||||
### Instruction:
|
||||
{{ .Prompt }}
|
||||
|
||||
### Response:
|
||||
"""
|
@@ -1,13 +0,0 @@
|
||||
# Modelfile for creating a recipe from a list of ingredients
|
||||
# Run `ollama create recipemaker -f pathtofile` and then `ollama run recipemaker` and feed it lists of ingredients to create recipes around.
|
||||
FROM library/nous-hermes:latest
|
||||
PROMPT """
|
||||
{{- if not .Context }}
|
||||
### System:
|
||||
The instruction will be a list of ingredients. You should generate a recipe that can be made in less than an hour. You can also include ingredients that most people will find in their pantry every day. The recipe should be 4 people and you should include a description of what the meal will taste like
|
||||
{{- end }}
|
||||
### Instruction:
|
||||
{{ .Prompt }}
|
||||
|
||||
### Response:
|
||||
"""
|
@@ -1,14 +0,0 @@
|
||||
# Modelfile for creating a tweet from a topic
|
||||
# Run `ollama create tweetwriter -f pathtofile` and then `ollama run tweetwriter` and enter a topic
|
||||
|
||||
FROM library/nous-hermes:latest
|
||||
PROMPT """
|
||||
{{- if not .Context }}
|
||||
### System:
|
||||
You are a content marketer who needs to come up with a short but succinct tweet. Make sure to include the appropriate hashtags and links. Sometimes when appropriate, describe a meme that can be includes as well. All answers should be in the form of a tweet which has a max size of 280 characters. Every instruction will be the topic to create a tweet about.
|
||||
{{- end }}
|
||||
### Instruction:
|
||||
{{ .Prompt }}
|
||||
|
||||
### Response:
|
||||
"""
|
20
examples/python-dockerit/Modelfile
Normal file
@@ -0,0 +1,20 @@
|
||||
FROM mistral
|
||||
SYSTEM """
|
||||
You are an experienced Devops engineer focused on docker. When given specifications for a particular need or application you know the best way to host that within a docker container. For instance if someone tells you they want an nginx server to host files located at /web you will answer as follows
|
||||
|
||||
---start
|
||||
FROM nginx:alpine
|
||||
COPY /myweb /usr/share/nginx/html
|
||||
EXPOSE 80
|
||||
---end
|
||||
|
||||
Notice that the answer you should give is just the contents of the dockerfile with no explanation and there are three dashes and the word start at the beginning and 3 dashes and the word end. The full output can be piped into a file and run as is. Here is another example. The user will ask to launch a Postgres server with a password of abc123. And the response should be
|
||||
|
||||
---start
|
||||
FROM postgres:latest
|
||||
ENV POSTGRES_PASSWORD=abc123
|
||||
EXPOSE 5432
|
||||
---end
|
||||
|
||||
Again it's just the contents of the dockerfile and nothing else.
|
||||
"""
|
31
examples/python-dockerit/README.md
Normal file
@@ -0,0 +1,31 @@
|
||||
# DockerIt
|
||||
|
||||
DockerIt is a tool to help you build and run your application in a Docker container. It consists of a model that defines the system prompt and model weights to use, along with a python script to then build the container and run the image automatically.
|
||||
|
||||
## Running the Example
|
||||
|
||||
1. Ensure you have the `mattw/dockerit` model installed:
|
||||
|
||||
```bash
|
||||
ollama pull mattw/dockerit
|
||||
```
|
||||
|
||||
2. Make sure Docker is running on your machine.
|
||||
|
||||
3. Install the Python Requirements.
|
||||
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
4. Run the example:
|
||||
|
||||
```bash
|
||||
python dockerit.py "simple postgres server with admin password set to 123"
|
||||
```
|
||||
|
||||
5. Enter the name you would like to use for your container image.
|
||||
|
||||
## Caveats
|
||||
|
||||
This is a simple example. It's assuming the Dockerfile content generated is going to work. In many cases, even with simple web servers, it fails when trying to copy files that don't exist. It's simply an example of what you could possibly do.
|
17
examples/python-dockerit/dockerit.py
Normal file
@@ -0,0 +1,17 @@
|
||||
import requests, json, docker, io, sys
|
||||
inputDescription = " ".join(sys.argv[1:])
|
||||
imageName = input("Enter the name of the image: ")
|
||||
client = docker.from_env()
|
||||
s = requests.Session()
|
||||
output=""
|
||||
with s.post('http://localhost:11434/api/generate', json={'model': 'dockerit', 'prompt': inputDescription}, stream=True) as r:
|
||||
for line in r.iter_lines():
|
||||
if line:
|
||||
j = json.loads(line)
|
||||
if "response" in j:
|
||||
output = output +j["response"]
|
||||
output = output[output.find("---start")+9:output.find("---end")-1]
|
||||
f = io.BytesIO(bytes(output, 'utf-8'))
|
||||
client.images.build(fileobj=f, tag=imageName)
|
||||
container = client.containers.run(imageName, detach=True)
|
||||
print("Container named", container.name, " started with id: ",container.id)
|
1
examples/python-dockerit/requirements.txt
Normal file
@@ -0,0 +1 @@
|
||||
docker
|
31
examples/python-json-datagenerator/predefinedschema.py
Normal file
@@ -0,0 +1,31 @@
|
||||
import requests
|
||||
import json
|
||||
import random
|
||||
|
||||
model = "llama2"
|
||||
template = {
|
||||
"firstName": "",
|
||||
"lastName": "",
|
||||
"address": {
|
||||
"street": "",
|
||||
"city": "",
|
||||
"state": "",
|
||||
"zipCode": ""
|
||||
},
|
||||
"phoneNumber": ""
|
||||
}
|
||||
|
||||
prompt = f"generate one realistically believable sample data set of a persons first name, last name, address in the US, and phone number. \nUse the following template: {json.dumps(template)}."
|
||||
|
||||
data = {
|
||||
"prompt": prompt,
|
||||
"model": model,
|
||||
"format": "json",
|
||||
"stream": False,
|
||||
"options": {"temperature": 2.5, "top_p": 0.99, "top_k": 100},
|
||||
}
|
||||
|
||||
print(f"Generating a sample user")
|
||||
response = requests.post("http://localhost:11434/api/generate", json=data, stream=False)
|
||||
json_data = json.loads(response.text)
|
||||
print(json.dumps(json.loads(json_data["response"]), indent=2))
|
31
examples/python-json-datagenerator/randomaddresses.py
Normal file
@@ -0,0 +1,31 @@
|
||||
import requests
|
||||
import json
|
||||
import random
|
||||
|
||||
countries = [
|
||||
"United States",
|
||||
"United Kingdom",
|
||||
"the Netherlands",
|
||||
"Germany",
|
||||
"Mexico",
|
||||
"Canada",
|
||||
"France",
|
||||
]
|
||||
country = random.choice(countries)
|
||||
model = "llama2"
|
||||
|
||||
prompt = f"generate one realistically believable sample data set of a persons first name, last name, address in {country}, and phone number. Do not use common names. Respond using JSON. Key names should have no backslashes, values should use plain ascii with no special characters."
|
||||
|
||||
data = {
|
||||
"prompt": prompt,
|
||||
"model": model,
|
||||
"format": "json",
|
||||
"stream": False,
|
||||
"options": {"temperature": 2.5, "top_p": 0.99, "top_k": 100},
|
||||
}
|
||||
|
||||
print(f"Generating a sample user in {country}")
|
||||
response = requests.post("http://localhost:11434/api/generate", json=data, stream=False)
|
||||
json_data = json.loads(response.text)
|
||||
|
||||
print(json.dumps(json.loads(json_data["response"]), indent=2))
|
60
examples/python-json-datagenerator/readme.md
Normal file
@@ -0,0 +1,60 @@
|
||||
# JSON Output Example
|
||||
|
||||

|
||||
|
||||
There are two python scripts in this example. `randomaddresses.py` generates random addresses from different countries. `predefinedschema.py` sets a template for the model to fill in.
|
||||
|
||||
## Running the Example
|
||||
|
||||
1. Ensure you have the `llama2` model installed:
|
||||
|
||||
```bash
|
||||
ollama pull llama2
|
||||
```
|
||||
|
||||
2. Install the Python Requirements.
|
||||
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
3. Run the Random Addresses example:
|
||||
|
||||
```bash
|
||||
python randomaddresses.py
|
||||
```
|
||||
|
||||
4. Run the Predefined Schema example:
|
||||
|
||||
```bash
|
||||
python predefinedschema.py
|
||||
```
|
||||
|
||||
## Review the Code
|
||||
|
||||
Both programs are basically the same, with a different prompt for each, demonstrating two different ideas. The key part of getting JSON out of a model is to state in the prompt or system prompt that it should respond using JSON, and specifying the `format` as `json` in the data body.
|
||||
|
||||
```python
|
||||
prompt = f"generate one realistically believable sample data set of a persons first name, last name, address in {country}, and phone number. Do not use common names. Respond using JSON. Key names should with no backslashes, values should use plain ascii with no special characters."
|
||||
|
||||
data = {
|
||||
"prompt": prompt,
|
||||
"model": model,
|
||||
"format": "json",
|
||||
"stream": False,
|
||||
"options": {"temperature": 2.5, "top_p": 0.99, "top_k": 100},
|
||||
}
|
||||
```
|
||||
|
||||
When running `randomaddresses.py` you will see that the schema changes and adapts to the chosen country.
|
||||
|
||||
In `predefinedschema.py`, a template has been specified in the prompt as well. It's been defined as JSON and then dumped into the prompt string to make it easier to work with.
|
||||
|
||||
Both examples turn streaming off so that we end up with the completed JSON all at once. We need to convert the `response.text` to JSON so that when we output it as a string we can set the indent spacing to make the output easy to read.
|
||||
|
||||
```python
|
||||
response = requests.post("http://localhost:11434/api/generate", json=data, stream=False)
|
||||
json_data = json.loads(response.text)
|
||||
|
||||
print(json.dumps(json.loads(json_data["response"]), indent=2))
|
||||
```
|
1
examples/python-json-datagenerator/requirements.txt
Normal file
@@ -0,0 +1 @@
|
||||
Requests==2.31.0
|
8
examples/python-loganalysis/Modelfile
Normal file
@@ -0,0 +1,8 @@
|
||||
FROM codebooga:latest
|
||||
|
||||
SYSTEM """
|
||||
You are a log file analyzer. You will receive a set of lines from a log file for some software application, find the errors and other interesting aspects of the logs, and explain them so a new user can understand what they mean. If there are any steps they can do to resolve them, list the steps in your answer.
|
||||
"""
|
||||
|
||||
PARAMETER TEMPERATURE 0.3
|
||||
|
41
examples/python-loganalysis/loganalysis.py
Normal file
@@ -0,0 +1,41 @@
|
||||
import sys
|
||||
import re
|
||||
import requests
|
||||
import json
|
||||
|
||||
# prelines and postlines represent the number of lines of context to include in the output around the error
|
||||
prelines = 10
|
||||
postlines = 10
|
||||
|
||||
def find_errors_in_log_file():
|
||||
if len(sys.argv) < 2:
|
||||
print("Usage: python loganalysis.py <filename>")
|
||||
return
|
||||
|
||||
log_file_path = sys.argv[1]
|
||||
with open(log_file_path, 'r') as log_file:
|
||||
log_lines = log_file.readlines()
|
||||
|
||||
error_logs = []
|
||||
for i, line in enumerate(log_lines):
|
||||
if "error" in line.lower():
|
||||
start_index = max(0, i - prelines)
|
||||
end_index = min(len(log_lines), i + postlines + 1)
|
||||
error_logs.extend(log_lines[start_index:end_index])
|
||||
|
||||
return error_logs
|
||||
|
||||
error_logs = find_errors_in_log_file()
|
||||
|
||||
data = {
|
||||
"prompt": "\n".join(error_logs),
|
||||
"model": "mattw/loganalyzer"
|
||||
}
|
||||
|
||||
response = requests.post("http://localhost:11434/api/generate", json=data, stream=True)
|
||||
for line in response.iter_lines():
|
||||
if line:
|
||||
json_data = json.loads(line)
|
||||
if json_data['done'] == False:
|
||||
print(json_data['response'], end='', flush=True)
|
||||
|
32
examples/python-loganalysis/logtest.logfile
Normal file
@@ -0,0 +1,32 @@
|
||||
2023-11-10 07:17:40 /docker-entrypoint.sh: /docker-entrypoint.d/ is not empty, will attempt to perform configuration
|
||||
2023-11-10 07:17:40 /docker-entrypoint.sh: Looking for shell scripts in /docker-entrypoint.d/
|
||||
2023-11-10 07:17:40 /docker-entrypoint.sh: Launching /docker-entrypoint.d/10-listen-on-ipv6-by-default.sh
|
||||
2023-11-10 07:17:40 10-listen-on-ipv6-by-default.sh: info: Getting the checksum of /etc/nginx/conf.d/default.conf
|
||||
2023-11-10 07:17:40 10-listen-on-ipv6-by-default.sh: info: Enabled listen on IPv6 in /etc/nginx/conf.d/default.conf
|
||||
2023-11-10 07:17:40 /docker-entrypoint.sh: Sourcing /docker-entrypoint.d/15-local-resolvers.envsh
|
||||
2023-11-10 07:17:40 /docker-entrypoint.sh: Launching /docker-entrypoint.d/20-envsubst-on-templates.sh
|
||||
2023-11-10 07:17:40 /docker-entrypoint.sh: Launching /docker-entrypoint.d/30-tune-worker-processes.sh
|
||||
2023-11-10 07:17:40 /docker-entrypoint.sh: Configuration complete; ready for start up
|
||||
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: using the "epoll" event method
|
||||
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: nginx/1.25.3
|
||||
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: built by gcc 12.2.0 (Debian 12.2.0-14)
|
||||
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: OS: Linux 6.4.16-linuxkit
|
||||
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: getrlimit(RLIMIT_NOFILE): 1048576:1048576
|
||||
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: start worker processes
|
||||
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: start worker process 29
|
||||
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: start worker process 30
|
||||
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: start worker process 31
|
||||
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: start worker process 32
|
||||
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: start worker process 33
|
||||
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: start worker process 34
|
||||
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: start worker process 35
|
||||
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: start worker process 36
|
||||
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: start worker process 37
|
||||
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: start worker process 38
|
||||
2023-11-10 07:17:44 192.168.65.1 - - [10/Nov/2023:13:17:43 +0000] "GET / HTTP/1.1" 200 615 "-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36" "-"
|
||||
2023-11-10 07:17:44 2023/11/10 13:17:44 [error] 29#29: *1 open() "/usr/share/nginx/html/favicon.ico" failed (2: No such file or directory), client: 192.168.65.1, server: localhost, request: "GET /favicon.ico HTTP/1.1", host: "localhost:8080", referrer: "http://localhost:8080/"
|
||||
2023-11-10 07:17:44 192.168.65.1 - - [10/Nov/2023:13:17:44 +0000] "GET /favicon.ico HTTP/1.1" 404 555 "http://localhost:8080/" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36" "-"
|
||||
2023-11-10 07:17:50 2023/11/10 13:17:50 [error] 29#29: *1 open() "/usr/share/nginx/html/ahstat" failed (2: No such file or directory), client: 192.168.65.1, server: localhost, request: "GET /ahstat HTTP/1.1", host: "localhost:8080"
|
||||
2023-11-10 07:17:50 192.168.65.1 - - [10/Nov/2023:13:17:50 +0000] "GET /ahstat HTTP/1.1" 404 555 "-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36" "-"
|
||||
2023-11-10 07:18:53 2023/11/10 13:18:53 [error] 29#29: *1 open() "/usr/share/nginx/html/ahstat" failed (2: No such file or directory), client: 192.168.65.1, server: localhost, request: "GET /ahstat HTTP/1.1", host: "localhost:8080"
|
||||
2023-11-10 07:18:53 192.168.65.1 - - [10/Nov/2023:13:18:53 +0000] "GET /ahstat HTTP/1.1" 404 555 "-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36" "-"
|
70
examples/python-loganalysis/readme.md
Normal file
@@ -0,0 +1,70 @@
|
||||
# Log Analysis example
|
||||
|
||||

|
||||
|
||||
This example shows one possible way to create a log file analyzer. It uses the model **mattw/loganalyzer** which is based on **codebooga**, a 34b parameter model.
|
||||
|
||||
To use it, run:
|
||||
|
||||
`python loganalysis.py <logfile>`
|
||||
|
||||
You can try this with the `logtest.logfile` file included in this directory.
|
||||
|
||||
## Running the Example
|
||||
|
||||
1. Ensure you have the `mattw/loganalyzer` model installed:
|
||||
|
||||
```bash
|
||||
ollama pull mattw/loganalyzer
|
||||
```
|
||||
|
||||
2. Install the Python Requirements.
|
||||
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
3. Run the example:
|
||||
|
||||
```bash
|
||||
python loganalysis.py logtest.logfile
|
||||
```
|
||||
|
||||
## Review the code
|
||||
|
||||
The first part of this example is a Modelfile that takes `codebooga` and applies a new System Prompt:
|
||||
|
||||
```plaintext
|
||||
SYSTEM """
|
||||
You are a log file analyzer. You will receive a set of lines from a log file for some software application, find the errors and other interesting aspects of the logs, and explain them so a new user can understand what they mean. If there are any steps they can do to resolve them, list the steps in your answer.
|
||||
"""
|
||||
```
|
||||
|
||||
This model is available at https://ollama.ai/mattw/loganalyzer. You can customize it and add to your own namespace using the command `ollama create <namespace/modelname> -f <path-to-modelfile>` then `ollama push <namespace/modelname>`.
|
||||
|
||||
Then loganalysis.py scans all the lines in the given log file and searches for the word 'error'. When the word is found, the 10 lines before and after are set as the prompt for a call to the Generate API.
|
||||
|
||||
```python
|
||||
data = {
|
||||
"prompt": "\n".join(error_logs),
|
||||
"model": "mattw/loganalyzer"
|
||||
}
|
||||
```
|
||||
|
||||
Finally, the streamed output is parsed and the response field in the output is printed to the line.
|
||||
|
||||
```python
|
||||
response = requests.post("http://localhost:11434/api/generate", json=data, stream=True)
|
||||
for line in response.iter_lines():
|
||||
if line:
|
||||
json_data = json.loads(line)
|
||||
if json_data['done'] == False:
|
||||
print(json_data['response'], end='')
|
||||
|
||||
```
|
||||
|
||||
## Next Steps
|
||||
|
||||
There is a lot more that can be done here. This is a simple way to detect errors, looking for the word error. Perhaps it would be interesting to find anomalous activity in the logs. It could be interesting to create embeddings for each line and compare them, looking for similar lines. Or look into applying Levenshtein Distance algorithms to find similar lines to help identify the anomalous lines.
|
||||
|
||||
Try different models and different prompts to analyze the data. You could consider adding retrieval augmented generation (RAG) to this to help understand newer log formats.
|
1
examples/python-loganalysis/requirements.txt
Normal file
@@ -0,0 +1 @@
|
||||
Requests==2.31.0
|
35
examples/python-rag-newssummary/README.md
Normal file
@@ -0,0 +1,35 @@
|
||||
# News Summarizer
|
||||
|
||||
This example goes through a series of steps:
|
||||
|
||||
1. You choose a topic area (e.g., "news", "NVidia", "music", etc.).
|
||||
2. Gets the most recent articles on that topic from various sources.
|
||||
3. Uses Ollama to summarize each article.
|
||||
4. Creates chunks of sentences from each article.
|
||||
5. Uses Sentence Transformers to generate embeddings for each of those chunks.
|
||||
6. You enter a question regarding the summaries shown.
|
||||
7. Uses Sentence Transformers to generate an embedding for that question.
|
||||
8. Uses the embedded question to find the most similar chunks.
|
||||
9. Feeds all that to Ollama to generate a good answer to your question based on these news articles.
|
||||
|
||||
This example lets you pick from a few different topic areas, then summarize the most recent x articles for that topic. It then creates chunks of sentences from each article and then generates embeddings for each of those chunks.
|
||||
|
||||
## Running the Example
|
||||
|
||||
1. Ensure you have the `mistral-openorca` model installed:
|
||||
|
||||
```bash
|
||||
ollama pull mistral-openorca
|
||||
```
|
||||
|
||||
2. Install the Python Requirements.
|
||||
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
3. Run the example:
|
||||
|
||||
```bash
|
||||
python summ.py
|
||||
```
|