Compare commits
71 Commits
Author | SHA1 | Date | |
---|---|---|---|
![]() |
db961934dc | ||
![]() |
2e6c64a8f9 | ||
![]() |
c7dd52271c | ||
![]() |
53d0052c6c | ||
![]() |
28a136e9a3 | ||
![]() |
529ff9ab6d | ||
![]() |
41aca47d43 | ||
![]() |
3862a51a6a | ||
![]() |
bcb612a30a | ||
![]() |
c05219aa0d | ||
![]() |
508ffbbb15 | ||
![]() |
59fa93cdd4 | ||
![]() |
952abe029b | ||
![]() |
f923855906 | ||
![]() |
9386073e96 | ||
![]() |
52ea4d4bb2 | ||
![]() |
c4ba192187 | ||
![]() |
fe758ca319 | ||
![]() |
08b933cc10 | ||
![]() |
6746a00af8 | ||
![]() |
2fb52261ad | ||
![]() |
6fdea03049 | ||
![]() |
38021ba494 | ||
![]() |
6c9fa573ae | ||
![]() |
40c9dc0a31 | ||
![]() |
0142660bd4 | ||
![]() |
743e957d88 | ||
![]() |
560f36e6c8 | ||
![]() |
e88dd25bab | ||
![]() |
567e74e7d7 | ||
![]() |
5ade3db040 | ||
![]() |
965f9ad033 | ||
![]() |
5d1c6b7499 | ||
![]() |
5fefaa5d4d | ||
![]() |
1775647f76 | ||
![]() |
77dc1a6d74 | ||
![]() |
05e08d2310 | ||
![]() |
31590284a7 | ||
![]() |
f2863cc7f8 | ||
![]() |
4dd296e155 | ||
![]() |
304f419429 | ||
![]() |
2666d3c206 | ||
![]() |
787d965331 | ||
![]() |
e6eee0732c | ||
![]() |
4c2b4589ac | ||
![]() |
5571ed5248 | ||
![]() |
0944b01e7d | ||
![]() |
5028de2901 | ||
![]() |
e1f0a0dc74 | ||
![]() |
b227261f21 | ||
![]() |
c63f811909 | ||
![]() |
7c71c10d4f | ||
![]() |
c5f7eadd87 | ||
![]() |
dcb6ba389a | ||
![]() |
ed6abba75a | ||
![]() |
b52a400cdf | ||
![]() |
2ed26f0047 | ||
![]() |
e64ef69e34 | ||
![]() |
3d0a9b477b | ||
![]() |
7226980fb6 | ||
![]() |
a806b03f62 | ||
![]() |
948323fa78 | ||
![]() |
e243329e2e | ||
![]() |
2a66a1164a | ||
![]() |
62620914e9 | ||
![]() |
442dec1c6f | ||
![]() |
fd4792ec56 | ||
![]() |
abaf7d3bda | ||
![]() |
7762584fb1 | ||
![]() |
317615fd5c | ||
![]() |
acc31427dd |
4
.gitignore
vendored
4
.gitignore
vendored
@@ -2,9 +2,5 @@
|
||||
.vscode
|
||||
.env
|
||||
.venv
|
||||
*.spec
|
||||
build
|
||||
dist
|
||||
__pycache__
|
||||
ollama
|
||||
ggml-metal.metal
|
||||
|
@@ -1,8 +1,6 @@
|
||||
FROM golang:1.20
|
||||
RUN apt-get update && apt-get install -y cmake
|
||||
WORKDIR /go/src/github.com/jmorganca/ollama
|
||||
COPY . .
|
||||
RUN cmake -S llama -B llama/build && cmake --build llama/build
|
||||
RUN CGO_ENABLED=1 go build -ldflags '-linkmode external -extldflags "-static"' .
|
||||
|
||||
FROM alpine
|
||||
|
19
Makefile
19
Makefile
@@ -1,19 +0,0 @@
|
||||
default: ollama
|
||||
|
||||
.PHONY: llama
|
||||
llama:
|
||||
cmake -S llama -B llama/build -DLLAMA_METAL=on
|
||||
cmake --build llama/build
|
||||
|
||||
.PHONY: ollama
|
||||
ollama: llama
|
||||
go build .
|
||||
|
||||
.PHONY: app
|
||||
app: ollama
|
||||
npm install --prefix app
|
||||
npm run --prefix app make:sign
|
||||
|
||||
clean:
|
||||
go clean
|
||||
rm -rf llama/build
|
@@ -16,9 +16,8 @@ Run large language models with `llama.cpp`.
|
||||
|
||||
## Install
|
||||
|
||||
- [Download](https://ollama.ai/download) for macOS
|
||||
- [Download](https://ollama.ai/download) for macOS with Apple Silicon (Intel coming soon)
|
||||
- Download for Windows (coming soon)
|
||||
- Docker: `docker run -p 11434:11434 ollama/ollama`
|
||||
|
||||
You can also build the [binary from source](#building).
|
||||
|
||||
@@ -75,7 +74,7 @@ ollama run ~/Downloads/vicuna-7b-v1.3.ggmlv3.q4_1.bin
|
||||
## Building
|
||||
|
||||
```
|
||||
make
|
||||
go build .
|
||||
```
|
||||
|
||||
To run it start the server:
|
||||
@@ -105,5 +104,5 @@ curl -X POST http://localhost:11343/api/pull -d '{"model": "orca"}'
|
||||
Complete a prompt
|
||||
|
||||
```
|
||||
curl -X POST http://localhost:11434/api/generate -d '{"model": "orca", "prompt": "hello!", "stream": true}'
|
||||
curl -X POST http://localhost:11434/api/generate -d '{"model": "orca", "prompt": "hello!"}'
|
||||
```
|
||||
|
@@ -10,6 +10,20 @@ import (
|
||||
"net/url"
|
||||
)
|
||||
|
||||
type StatusError struct {
|
||||
StatusCode int
|
||||
Status string
|
||||
Message string
|
||||
}
|
||||
|
||||
func (e StatusError) Error() string {
|
||||
if e.Message != "" {
|
||||
return fmt.Sprintf("%s: %s", e.Status, e.Message)
|
||||
}
|
||||
|
||||
return e.Status
|
||||
}
|
||||
|
||||
type Client struct {
|
||||
base url.URL
|
||||
}
|
||||
@@ -25,7 +39,7 @@ func NewClient(hosts ...string) *Client {
|
||||
}
|
||||
}
|
||||
|
||||
func (c *Client) stream(ctx context.Context, method, path string, data any, callback func([]byte) error) error {
|
||||
func (c *Client) stream(ctx context.Context, method, path string, data any, fn func([]byte) error) error {
|
||||
var buf *bytes.Buffer
|
||||
if data != nil {
|
||||
bts, err := json.Marshal(data)
|
||||
@@ -53,7 +67,7 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, call
|
||||
scanner := bufio.NewScanner(response.Body)
|
||||
for scanner.Scan() {
|
||||
var errorResponse struct {
|
||||
Error string `json:"error"`
|
||||
Error string `json:"error,omitempty"`
|
||||
}
|
||||
|
||||
bts := scanner.Bytes()
|
||||
@@ -61,11 +75,15 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, call
|
||||
return fmt.Errorf("unmarshal: %w", err)
|
||||
}
|
||||
|
||||
if len(errorResponse.Error) > 0 {
|
||||
return fmt.Errorf("stream: %s", errorResponse.Error)
|
||||
if response.StatusCode >= 400 {
|
||||
return StatusError{
|
||||
StatusCode: response.StatusCode,
|
||||
Status: response.Status,
|
||||
Message: errorResponse.Error,
|
||||
}
|
||||
}
|
||||
|
||||
if err := callback(bts); err != nil {
|
||||
if err := fn(bts); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
@@ -98,3 +116,29 @@ func (c *Client) Pull(ctx context.Context, req *PullRequest, fn PullProgressFunc
|
||||
return fn(resp)
|
||||
})
|
||||
}
|
||||
|
||||
type PushProgressFunc func(PushProgress) error
|
||||
|
||||
func (c *Client) Push(ctx context.Context, req *PushRequest, fn PushProgressFunc) error {
|
||||
return c.stream(ctx, http.MethodPost, "/api/push", req, func(bts []byte) error {
|
||||
var resp PushProgress
|
||||
if err := json.Unmarshal(bts, &resp); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
return fn(resp)
|
||||
})
|
||||
}
|
||||
|
||||
type CreateProgressFunc func(CreateProgress) error
|
||||
|
||||
func (c *Client) Create(ctx context.Context, req *CreateRequest, fn CreateProgressFunc) error {
|
||||
return c.stream(ctx, http.MethodPost, "/api/create", req, func(bts []byte) error {
|
||||
var resp CreateProgress
|
||||
if err := json.Unmarshal(bts, &resp); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
return fn(resp)
|
||||
})
|
||||
}
|
||||
|
237
api/types.go
237
api/types.go
@@ -1,106 +1,159 @@
|
||||
package api
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"os"
|
||||
"runtime"
|
||||
"time"
|
||||
)
|
||||
|
||||
type GenerateRequest struct {
|
||||
Model string `json:"model"`
|
||||
Prompt string `json:"prompt"`
|
||||
Context []int `json:"context,omitempty"`
|
||||
|
||||
Options `json:"options"`
|
||||
}
|
||||
|
||||
type CreateRequest struct {
|
||||
Name string `json:"name"`
|
||||
Path string `json:"path"`
|
||||
}
|
||||
|
||||
type CreateProgress struct {
|
||||
Status string `json:"status"`
|
||||
}
|
||||
|
||||
type PullRequest struct {
|
||||
Model string `json:"model"`
|
||||
Name string `json:"name"`
|
||||
Username string `json:"username"`
|
||||
Password string `json:"password"`
|
||||
}
|
||||
|
||||
type PullProgress struct {
|
||||
Total int64 `json:"total"`
|
||||
Completed int64 `json:"completed"`
|
||||
Percent float64 `json:"percent"`
|
||||
Status string `json:"status"`
|
||||
Digest string `json:"digest,omitempty"`
|
||||
Total int `json:"total,omitempty"`
|
||||
Completed int `json:"completed,omitempty"`
|
||||
Percent float64 `json:"percent,omitempty"`
|
||||
}
|
||||
|
||||
type GenerateRequest struct {
|
||||
Model string `json:"model"`
|
||||
Prompt string `json:"prompt"`
|
||||
|
||||
ModelOptions *ModelOptions `json:"model_opts,omitempty"`
|
||||
PredictOptions *PredictOptions `json:"predict_opts,omitempty"`
|
||||
type PushRequest struct {
|
||||
Name string `json:"name"`
|
||||
Username string `json:"username"`
|
||||
Password string `json:"password"`
|
||||
}
|
||||
|
||||
type ModelOptions struct {
|
||||
ContextSize int `json:"context_size,omitempty"`
|
||||
Seed int `json:"seed,omitempty"`
|
||||
NBatch int `json:"n_batch,omitempty"`
|
||||
F16Memory bool `json:"memory_f16,omitempty"`
|
||||
MLock bool `json:"mlock,omitempty"`
|
||||
MMap bool `json:"mmap,omitempty"`
|
||||
VocabOnly bool `json:"vocab_only,omitempty"`
|
||||
LowVRAM bool `json:"low_vram,omitempty"`
|
||||
Embeddings bool `json:"embeddings,omitempty"`
|
||||
NUMA bool `json:"numa,omitempty"`
|
||||
NGPULayers int `json:"gpu_layers,omitempty"`
|
||||
MainGPU string `json:"main_gpu,omitempty"`
|
||||
TensorSplit string `json:"tensor_split,omitempty"`
|
||||
}
|
||||
|
||||
type PredictOptions struct {
|
||||
Seed int `json:"seed,omitempty"`
|
||||
Threads int `json:"threads,omitempty"`
|
||||
Tokens int `json:"tokens,omitempty"`
|
||||
TopK int `json:"top_k,omitempty"`
|
||||
Repeat int `json:"repeat,omitempty"`
|
||||
Batch int `json:"batch,omitempty"`
|
||||
NKeep int `json:"nkeep,omitempty"`
|
||||
TopP float64 `json:"top_p,omitempty"`
|
||||
Temperature float64 `json:"temp,omitempty"`
|
||||
Penalty float64 `json:"penalty,omitempty"`
|
||||
F16KV bool
|
||||
DebugMode bool
|
||||
StopPrompts []string
|
||||
IgnoreEOS bool `json:"ignore_eos,omitempty"`
|
||||
|
||||
TailFreeSamplingZ float64 `json:"tfs_z,omitempty"`
|
||||
TypicalP float64 `json:"typical_p,omitempty"`
|
||||
FrequencyPenalty float64 `json:"freq_penalty,omitempty"`
|
||||
PresencePenalty float64 `json:"pres_penalty,omitempty"`
|
||||
Mirostat int `json:"mirostat,omitempty"`
|
||||
MirostatETA float64 `json:"mirostat_lr,omitempty"`
|
||||
MirostatTAU float64 `json:"mirostat_ent,omitempty"`
|
||||
PenalizeNL bool `json:"penalize_nl,omitempty"`
|
||||
LogitBias string `json:"logit_bias,omitempty"`
|
||||
|
||||
PathPromptCache string
|
||||
MLock bool `json:"mlock,omitempty"`
|
||||
MMap bool `json:"mmap,omitempty"`
|
||||
PromptCacheAll bool
|
||||
PromptCacheRO bool
|
||||
MainGPU string
|
||||
TensorSplit string
|
||||
}
|
||||
|
||||
var DefaultModelOptions ModelOptions = ModelOptions{
|
||||
ContextSize: 512,
|
||||
Seed: 0,
|
||||
F16Memory: true,
|
||||
MLock: false,
|
||||
Embeddings: true,
|
||||
MMap: true,
|
||||
LowVRAM: false,
|
||||
}
|
||||
|
||||
var DefaultPredictOptions PredictOptions = PredictOptions{
|
||||
Seed: -1,
|
||||
Threads: -1,
|
||||
Tokens: 512,
|
||||
Penalty: 1.1,
|
||||
Repeat: 64,
|
||||
Batch: 512,
|
||||
NKeep: 64,
|
||||
TopK: 90,
|
||||
TopP: 0.86,
|
||||
TailFreeSamplingZ: 1.0,
|
||||
TypicalP: 1.0,
|
||||
Temperature: 0.8,
|
||||
FrequencyPenalty: 0.0,
|
||||
PresencePenalty: 0.0,
|
||||
Mirostat: 0,
|
||||
MirostatTAU: 5.0,
|
||||
MirostatETA: 0.1,
|
||||
MMap: true,
|
||||
StopPrompts: []string{"llama"},
|
||||
type PushProgress struct {
|
||||
Status string `json:"status"`
|
||||
Digest string `json:"digest,omitempty"`
|
||||
Total int `json:"total,omitempty"`
|
||||
Completed int `json:"completed,omitempty"`
|
||||
Percent float64 `json:"percent,omitempty"`
|
||||
}
|
||||
|
||||
type GenerateResponse struct {
|
||||
Response string `json:"response"`
|
||||
Model string `json:"model"`
|
||||
CreatedAt time.Time `json:"created_at"`
|
||||
Response string `json:"response,omitempty"`
|
||||
|
||||
Done bool `json:"done"`
|
||||
Context []int `json:"context,omitempty"`
|
||||
|
||||
TotalDuration time.Duration `json:"total_duration,omitempty"`
|
||||
PromptEvalCount int `json:"prompt_eval_count,omitempty"`
|
||||
PromptEvalDuration time.Duration `json:"prompt_eval_duration,omitempty"`
|
||||
EvalCount int `json:"eval_count,omitempty"`
|
||||
EvalDuration time.Duration `json:"eval_duration,omitempty"`
|
||||
}
|
||||
|
||||
func (r *GenerateResponse) Summary() {
|
||||
if r.TotalDuration > 0 {
|
||||
fmt.Fprintf(os.Stderr, "total duration: %v\n", r.TotalDuration)
|
||||
}
|
||||
|
||||
if r.PromptEvalCount > 0 {
|
||||
fmt.Fprintf(os.Stderr, "prompt eval count: %d token(s)\n", r.PromptEvalCount)
|
||||
}
|
||||
|
||||
if r.PromptEvalDuration > 0 {
|
||||
fmt.Fprintf(os.Stderr, "prompt eval duration: %s\n", r.PromptEvalDuration)
|
||||
fmt.Fprintf(os.Stderr, "prompt eval rate: %.2f tokens/s\n", float64(r.PromptEvalCount)/r.PromptEvalDuration.Seconds())
|
||||
}
|
||||
|
||||
if r.EvalCount > 0 {
|
||||
fmt.Fprintf(os.Stderr, "eval count: %d token(s)\n", r.EvalCount)
|
||||
}
|
||||
|
||||
if r.EvalDuration > 0 {
|
||||
fmt.Fprintf(os.Stderr, "eval duration: %s\n", r.EvalDuration)
|
||||
fmt.Fprintf(os.Stderr, "eval rate: %.2f tokens/s\n", float64(r.EvalCount)/r.EvalDuration.Seconds())
|
||||
}
|
||||
}
|
||||
|
||||
type Options struct {
|
||||
Seed int `json:"seed,omitempty"`
|
||||
|
||||
// Backend options
|
||||
UseNUMA bool `json:"numa,omitempty"`
|
||||
|
||||
// Model options
|
||||
NumCtx int `json:"num_ctx,omitempty"`
|
||||
NumBatch int `json:"num_batch,omitempty"`
|
||||
NumGPU int `json:"num_gpu,omitempty"`
|
||||
MainGPU int `json:"main_gpu,omitempty"`
|
||||
LowVRAM bool `json:"low_vram,omitempty"`
|
||||
F16KV bool `json:"f16_kv,omitempty"`
|
||||
LogitsAll bool `json:"logits_all,omitempty"`
|
||||
VocabOnly bool `json:"vocab_only,omitempty"`
|
||||
UseMMap bool `json:"use_mmap,omitempty"`
|
||||
UseMLock bool `json:"use_mlock,omitempty"`
|
||||
EmbeddingOnly bool `json:"embedding_only,omitempty"`
|
||||
|
||||
// Predict options
|
||||
RepeatLastN int `json:"repeat_last_n,omitempty"`
|
||||
RepeatPenalty float32 `json:"repeat_penalty,omitempty"`
|
||||
FrequencyPenalty float32 `json:"frequency_penalty,omitempty"`
|
||||
PresencePenalty float32 `json:"presence_penalty,omitempty"`
|
||||
Temperature float32 `json:"temperature,omitempty"`
|
||||
TopK int `json:"top_k,omitempty"`
|
||||
TopP float32 `json:"top_p,omitempty"`
|
||||
TFSZ float32 `json:"tfs_z,omitempty"`
|
||||
TypicalP float32 `json:"typical_p,omitempty"`
|
||||
Mirostat int `json:"mirostat,omitempty"`
|
||||
MirostatTau float32 `json:"mirostat_tau,omitempty"`
|
||||
MirostatEta float32 `json:"mirostat_eta,omitempty"`
|
||||
|
||||
NumThread int `json:"num_thread,omitempty"`
|
||||
}
|
||||
|
||||
func DefaultOptions() Options {
|
||||
return Options{
|
||||
Seed: -1,
|
||||
|
||||
UseNUMA: false,
|
||||
|
||||
NumCtx: 2048,
|
||||
NumBatch: 512,
|
||||
NumGPU: 1,
|
||||
LowVRAM: false,
|
||||
F16KV: true,
|
||||
UseMMap: true,
|
||||
UseMLock: false,
|
||||
|
||||
RepeatLastN: 512,
|
||||
RepeatPenalty: 1.1,
|
||||
FrequencyPenalty: 0.0,
|
||||
PresencePenalty: 0.0,
|
||||
Temperature: 0.8,
|
||||
TopK: 40,
|
||||
TopP: 0.9,
|
||||
TFSZ: 1.0,
|
||||
TypicalP: 1.0,
|
||||
Mirostat: 0,
|
||||
MirostatTau: 5.0,
|
||||
MirostatEta: 0.1,
|
||||
|
||||
NumThread: runtime.NumCPU(),
|
||||
}
|
||||
}
|
||||
|
@@ -21,7 +21,7 @@ const config: ForgeConfig = {
|
||||
'../ollama',
|
||||
path.join(__dirname, './assets/ollama_icon_16x16Template.png'),
|
||||
path.join(__dirname, './assets/ollama_icon_16x16Template@2x.png'),
|
||||
...(process.platform === 'darwin' ? ['../ggml-metal.metal'] : []),
|
||||
...(process.platform === 'darwin' ? ['../llama/ggml-metal.metal'] : []),
|
||||
],
|
||||
...(process.env.SIGN
|
||||
? {
|
||||
@@ -58,7 +58,7 @@ const config: ForgeConfig = {
|
||||
new AutoUnpackNativesPlugin({}),
|
||||
new WebpackPlugin({
|
||||
mainConfig,
|
||||
devContentSecurityPolicy: `default-src * 'unsafe-eval' 'unsafe-inline'`,
|
||||
devContentSecurityPolicy: `default-src * 'unsafe-eval' 'unsafe-inline'; img-src data: 'self'`,
|
||||
renderer: {
|
||||
config: rendererConfig,
|
||||
nodeIntegration: true,
|
||||
|
2517
app/package-lock.json
generated
2517
app/package-lock.json
generated
File diff suppressed because it is too large
Load Diff
@@ -30,6 +30,7 @@
|
||||
"@electron-forge/plugin-auto-unpack-natives": "^6.2.1",
|
||||
"@electron-forge/plugin-webpack": "^6.2.1",
|
||||
"@electron-forge/publisher-github": "^6.2.1",
|
||||
"@svgr/webpack": "^8.0.1",
|
||||
"@types/chmodr": "^1.0.0",
|
||||
"@types/node": "^20.4.0",
|
||||
"@types/react": "^18.2.14",
|
||||
@@ -54,21 +55,27 @@
|
||||
"prettier": "^2.8.8",
|
||||
"prettier-plugin-tailwindcss": "^0.3.0",
|
||||
"style-loader": "^3.3.3",
|
||||
"svg-inline-loader": "^0.8.2",
|
||||
"tailwindcss": "^3.3.2",
|
||||
"ts-loader": "^9.4.3",
|
||||
"ts-node": "^10.9.1",
|
||||
"typescript": "~4.5.4",
|
||||
"url-loader": "^4.1.1",
|
||||
"webpack": "^5.88.0",
|
||||
"webpack-cli": "^5.1.4",
|
||||
"webpack-dev-server": "^4.15.1"
|
||||
},
|
||||
"dependencies": {
|
||||
"@electron/remote": "^2.0.10",
|
||||
"@heroicons/react": "^2.0.18",
|
||||
"@segment/analytics-node": "^1.0.0",
|
||||
"copy-to-clipboard": "^3.3.3",
|
||||
"electron-squirrel-startup": "^1.0.0",
|
||||
"electron-store": "^8.1.0",
|
||||
"react": "^18.2.0",
|
||||
"react-dom": "^18.2.0",
|
||||
"uuid": "^9.0.0"
|
||||
"uuid": "^9.0.0",
|
||||
"winston": "^3.10.0",
|
||||
"winston-daily-rotate-file": "^4.7.1"
|
||||
}
|
||||
}
|
||||
|
@@ -11,6 +11,10 @@ body {
|
||||
-webkit-app-region: drag;
|
||||
}
|
||||
|
||||
.no-drag {
|
||||
-webkit-app-region: no-drag;
|
||||
}
|
||||
|
||||
.blink {
|
||||
-webkit-animation: 1s blink step-end infinite;
|
||||
-moz-animation: 1s blink step-end infinite;
|
||||
|
239
app/src/app.tsx
239
app/src/app.tsx
@@ -1,158 +1,109 @@
|
||||
import { useState } from 'react'
|
||||
import path from 'path'
|
||||
import os from 'os'
|
||||
import { dialog, getCurrentWindow } from '@electron/remote'
|
||||
import copy from 'copy-to-clipboard'
|
||||
import { CheckIcon, DocumentDuplicateIcon } from '@heroicons/react/24/outline'
|
||||
import Store from 'electron-store'
|
||||
import { getCurrentWindow } from '@electron/remote'
|
||||
|
||||
const API_URL = 'http://127.0.0.1:7734'
|
||||
import { install } from './install'
|
||||
import OllamaIcon from './ollama.svg'
|
||||
|
||||
type Message = {
|
||||
sender: 'bot' | 'human'
|
||||
content: string
|
||||
}
|
||||
const store = new Store()
|
||||
|
||||
const userInfo = os.userInfo()
|
||||
|
||||
async function generate(prompt: string, model: string, callback: (res: string) => void) {
|
||||
const result = await fetch(`${API_URL}/generate`, {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
body: JSON.stringify({
|
||||
prompt,
|
||||
model,
|
||||
}),
|
||||
})
|
||||
|
||||
if (!result.ok) {
|
||||
return
|
||||
}
|
||||
|
||||
let reader = result.body.getReader()
|
||||
|
||||
while (true) {
|
||||
const { done, value } = await reader.read()
|
||||
|
||||
if (done) {
|
||||
break
|
||||
}
|
||||
|
||||
let decoder = new TextDecoder()
|
||||
let str = decoder.decode(value)
|
||||
|
||||
let re = /}\s*{/g
|
||||
str = '[' + str.replace(re, '},{') + ']'
|
||||
let messages = JSON.parse(str)
|
||||
|
||||
for (const message of messages) {
|
||||
const choice = message.choices[0]
|
||||
|
||||
callback(choice.text)
|
||||
|
||||
if (choice.finish_reason === 'stop') {
|
||||
break
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return
|
||||
enum Step {
|
||||
WELCOME = 0,
|
||||
CLI,
|
||||
FINISH,
|
||||
}
|
||||
|
||||
export default function () {
|
||||
const [prompt, setPrompt] = useState('')
|
||||
const [messages, setMessages] = useState<Message[]>([])
|
||||
const [model, setModel] = useState('')
|
||||
const [generating, setGenerating] = useState(false)
|
||||
const [step, setStep] = useState<Step>(Step.WELCOME)
|
||||
const [commandCopied, setCommandCopied] = useState<boolean>(false)
|
||||
|
||||
const command = 'ollama run orca'
|
||||
|
||||
return (
|
||||
<div className='flex min-h-screen flex-1 flex-col justify-between bg-white'>
|
||||
<header className='drag sticky top-0 z-50 flex h-14 w-full flex-row items-center border-b border-black/10 bg-white/75 backdrop-blur-md'>
|
||||
<div className='mx-auto w-full max-w-xl leading-none'>
|
||||
<h1 className='text-sm font-medium'>{path.basename(model).replace('.bin', '')}</h1>
|
||||
</div>
|
||||
</header>
|
||||
{model ? (
|
||||
<section className='mx-auto mb-10 w-full max-w-xl flex-1 break-words'>
|
||||
{messages.map((m, i) => (
|
||||
<div className='my-4 flex gap-4' key={i}>
|
||||
<div className='flex-none pr-1 text-lg'>
|
||||
{m.sender === 'human' ? (
|
||||
<div className='mt-px flex h-6 w-6 items-center justify-center rounded-md bg-neutral-200 text-sm text-neutral-700'>
|
||||
{userInfo.username[0].toUpperCase()}
|
||||
</div>
|
||||
) : (
|
||||
<div className='mt-0.5 flex h-6 w-6 items-center justify-center rounded-md bg-blue-600 text-sm text-white'>
|
||||
{path.basename(model)[0].toUpperCase()}
|
||||
</div>
|
||||
)}
|
||||
</div>
|
||||
<div className='flex-1 text-gray-800'>
|
||||
{m.content}
|
||||
{m.sender === 'bot' && generating && i === messages.length - 1 && (
|
||||
<span className='blink relative -top-[3px] left-1 text-[10px]'>█</span>
|
||||
)}
|
||||
<div className='drag'>
|
||||
<div className='mx-auto flex min-h-screen w-full flex-col justify-between bg-white px-4 pt-16'>
|
||||
{step === Step.WELCOME && (
|
||||
<>
|
||||
<div className='mx-auto text-center'>
|
||||
<h1 className='mb-6 mt-4 text-2xl tracking-tight text-gray-900'>Welcome to Ollama</h1>
|
||||
<p className='mx-auto w-[65%] text-sm text-gray-400'>
|
||||
Let's get you up and running with your own large language models.
|
||||
</p>
|
||||
<button
|
||||
onClick={() => setStep(Step.CLI)}
|
||||
className='no-drag rounded-dm mx-auto my-8 w-[40%] rounded-md bg-black px-4 py-2 text-sm text-white hover:brightness-110'
|
||||
>
|
||||
Next
|
||||
</button>
|
||||
</div>
|
||||
<div className='mx-auto'>
|
||||
<OllamaIcon />
|
||||
</div>
|
||||
</>
|
||||
)}
|
||||
{step === Step.CLI && (
|
||||
<>
|
||||
<div className='mx-auto flex flex-col space-y-28 text-center'>
|
||||
<h1 className='mt-4 text-2xl tracking-tight text-gray-900'>Install the command line</h1>
|
||||
<pre className='mx-auto text-4xl text-gray-400'>> ollama</pre>
|
||||
<div className='mx-auto'>
|
||||
<button
|
||||
onClick={async () => {
|
||||
await install()
|
||||
getCurrentWindow().show()
|
||||
getCurrentWindow().focus()
|
||||
setStep(Step.FINISH)
|
||||
}}
|
||||
className='no-drag rounded-dm mx-auto w-[60%] rounded-md bg-black px-4 py-2 text-sm text-white hover:brightness-110'
|
||||
>
|
||||
Install
|
||||
</button>
|
||||
<p className='mx-auto my-4 w-[70%] text-xs text-gray-400'>
|
||||
You will be prompted for administrator access
|
||||
</p>
|
||||
</div>
|
||||
</div>
|
||||
))}
|
||||
</section>
|
||||
) : (
|
||||
<section className='flex flex-1 select-none flex-col items-center justify-center pb-20'>
|
||||
<h2 className='text-3xl font-light text-neutral-400'>No model selected</h2>
|
||||
<button
|
||||
onClick={async () => {
|
||||
const res = await dialog.showOpenDialog(getCurrentWindow(), {
|
||||
properties: ['openFile', 'multiSelections'],
|
||||
})
|
||||
if (res.canceled) {
|
||||
return
|
||||
}
|
||||
|
||||
setModel(res.filePaths[0])
|
||||
}}
|
||||
className='rounded-dm my-8 rounded-md bg-blue-600 px-4 py-2 text-sm text-white hover:brightness-110'
|
||||
>
|
||||
Open file...
|
||||
</button>
|
||||
</section>
|
||||
)}
|
||||
<div className='sticky bottom-0 bg-gradient-to-b from-transparent to-white'>
|
||||
{model && (
|
||||
<textarea
|
||||
autoFocus
|
||||
rows={1}
|
||||
value={prompt}
|
||||
placeholder='Send a message...'
|
||||
onChange={e => setPrompt(e.target.value)}
|
||||
className='mx-auto my-4 block w-full max-w-xl resize-none rounded-xl border border-gray-200 px-5 py-3.5 text-[15px] shadow-lg shadow-black/5 focus:outline-none'
|
||||
onKeyDownCapture={async e => {
|
||||
if (e.key === 'Enter' && !e.shiftKey) {
|
||||
e.preventDefault()
|
||||
|
||||
if (generating) {
|
||||
return
|
||||
}
|
||||
|
||||
if (!prompt) {
|
||||
return
|
||||
}
|
||||
|
||||
await setMessages(messages => {
|
||||
return [...messages, { sender: 'human', content: prompt }, { sender: 'bot', content: '' }]
|
||||
})
|
||||
|
||||
setPrompt('')
|
||||
|
||||
setGenerating(true)
|
||||
await generate(prompt, model, res => {
|
||||
setMessages(messages => {
|
||||
let last = messages[messages.length - 1]
|
||||
return [...messages.slice(0, messages.length - 1), { ...last, content: last.content + res }]
|
||||
})
|
||||
})
|
||||
setGenerating(false)
|
||||
}
|
||||
}}
|
||||
></textarea>
|
||||
</>
|
||||
)}
|
||||
{step === Step.FINISH && (
|
||||
<>
|
||||
<div className='mx-auto flex flex-col space-y-20 text-center'>
|
||||
<h1 className='mt-4 text-2xl tracking-tight text-gray-900'>Run your first model</h1>
|
||||
<div className='flex flex-col'>
|
||||
<div className='group relative flex items-center'>
|
||||
<pre className='language-none text-2xs w-full rounded-md bg-gray-100 px-4 py-3 text-start leading-normal'>
|
||||
{command}
|
||||
</pre>
|
||||
<button
|
||||
className={`no-drag absolute right-[5px] px-2 py-2 ${commandCopied ? 'text-gray-900 opacity-100 hover:cursor-auto' : 'text-gray-200 opacity-50 hover:cursor-pointer'} hover:text-gray-900 hover:font-bold group-hover:opacity-100`}
|
||||
onClick={() => {
|
||||
copy(command)
|
||||
setCommandCopied(true)
|
||||
setTimeout(() => setCommandCopied(false), 3000)
|
||||
}}
|
||||
>
|
||||
{commandCopied ? (
|
||||
<CheckIcon className='h-4 w-4 text-gray-500 font-bold' />
|
||||
) : (
|
||||
<DocumentDuplicateIcon className='h-4 w-4 text-gray-500' />
|
||||
)}
|
||||
</button>
|
||||
</div>
|
||||
<p className='mx-auto my-4 w-[70%] text-xs text-gray-400'>Run this command in your favorite terminal.</p>
|
||||
</div>
|
||||
<button
|
||||
onClick={() => {
|
||||
store.set('first-time-run', true)
|
||||
window.close()
|
||||
}}
|
||||
className='no-drag rounded-dm mx-auto w-[60%] rounded-md bg-black px-4 py-2 text-sm text-white hover:brightness-110'
|
||||
>
|
||||
Finish
|
||||
</button>
|
||||
</div>
|
||||
</>
|
||||
)}
|
||||
</div>
|
||||
</div>
|
||||
|
4
app/src/declarations.d.ts
vendored
Normal file
4
app/src/declarations.d.ts
vendored
Normal file
@@ -0,0 +1,4 @@
|
||||
declare module '*.svg' {
|
||||
const content: string;
|
||||
export default content;
|
||||
}
|
148
app/src/index.ts
148
app/src/index.ts
@@ -1,22 +1,71 @@
|
||||
import { spawn, exec } from 'child_process'
|
||||
import { app, autoUpdater, dialog, Tray, Menu } from 'electron'
|
||||
import { spawn } from 'child_process'
|
||||
import { app, autoUpdater, dialog, Tray, Menu, BrowserWindow } from 'electron'
|
||||
import Store from 'electron-store'
|
||||
import winston from 'winston'
|
||||
import 'winston-daily-rotate-file'
|
||||
import * as path from 'path'
|
||||
import * as fs from 'fs'
|
||||
|
||||
import { analytics, id } from './telemetry'
|
||||
import { installed } from './install'
|
||||
|
||||
require('@electron/remote/main').initialize()
|
||||
|
||||
const store = new Store()
|
||||
let tray: Tray | null = null
|
||||
let welcomeWindow: BrowserWindow | null = null
|
||||
|
||||
declare const MAIN_WINDOW_WEBPACK_ENTRY: string
|
||||
|
||||
const logger = winston.createLogger({
|
||||
transports: [
|
||||
new winston.transports.Console(),
|
||||
new winston.transports.File({
|
||||
filename: path.join(app.getPath('home'), '.ollama', 'logs', 'server.log'),
|
||||
maxsize: 1024 * 1024 * 20,
|
||||
maxFiles: 5,
|
||||
}),
|
||||
],
|
||||
format: winston.format.printf(info => info.message),
|
||||
})
|
||||
|
||||
const SingleInstanceLock = app.requestSingleInstanceLock()
|
||||
if (!SingleInstanceLock) {
|
||||
app.quit()
|
||||
}
|
||||
|
||||
const createSystemtray = () => {
|
||||
function firstRunWindow() {
|
||||
// Create the browser window.
|
||||
welcomeWindow = new BrowserWindow({
|
||||
width: 400,
|
||||
height: 500,
|
||||
frame: false,
|
||||
fullscreenable: false,
|
||||
resizable: false,
|
||||
movable: true,
|
||||
show: false,
|
||||
webPreferences: {
|
||||
nodeIntegration: true,
|
||||
contextIsolation: false,
|
||||
},
|
||||
alwaysOnTop: true,
|
||||
})
|
||||
|
||||
require('@electron/remote/main').enable(welcomeWindow.webContents)
|
||||
|
||||
// and load the index.html of the app.
|
||||
welcomeWindow.loadURL(MAIN_WINDOW_WEBPACK_ENTRY)
|
||||
|
||||
welcomeWindow.on('ready-to-show', () => welcomeWindow.show())
|
||||
|
||||
// for debugging
|
||||
// welcomeWindow.webContents.openDevTools()
|
||||
|
||||
if (process.platform === 'darwin') {
|
||||
app.dock.hide()
|
||||
}
|
||||
}
|
||||
|
||||
function createSystemtray() {
|
||||
let iconPath = path.join(__dirname, '..', '..', 'assets', 'ollama_icon_16x16Template.png')
|
||||
|
||||
if (app.isPackaged) {
|
||||
@@ -31,87 +80,44 @@ const createSystemtray = () => {
|
||||
tray.setToolTip('Ollama')
|
||||
}
|
||||
|
||||
// Handle creating/removing shortcuts on Windows when installing/uninstalling.
|
||||
if (require('electron-squirrel-startup')) {
|
||||
app.quit()
|
||||
}
|
||||
|
||||
const ollama = path.join(process.resourcesPath, 'ollama')
|
||||
|
||||
function server() {
|
||||
const binary = app.isPackaged
|
||||
? path.join(process.resourcesPath, 'ollama')
|
||||
: path.resolve(process.cwd(), '..', 'ollama')
|
||||
? path.join(process.resourcesPath, 'ollama')
|
||||
: path.resolve(process.cwd(), '..', 'ollama')
|
||||
|
||||
console.log(`Starting server`)
|
||||
const proc = spawn(binary, ['serve'])
|
||||
|
||||
proc.stdout.on('data', data => {
|
||||
console.log(`server: ${data}`)
|
||||
logger.info(data.toString().trim())
|
||||
})
|
||||
|
||||
proc.stderr.on('data', data => {
|
||||
console.error(`server: ${data}`)
|
||||
logger.error(data.toString().trim())
|
||||
})
|
||||
|
||||
proc.on('exit', () => {
|
||||
console.log('Restarting...');
|
||||
server();
|
||||
})
|
||||
function restart() {
|
||||
logger.info('Restarting the server...')
|
||||
server()
|
||||
}
|
||||
|
||||
proc.on('disconnect', () => {
|
||||
console.log('Restarting...');
|
||||
server();
|
||||
})
|
||||
proc.on('exit', restart)
|
||||
|
||||
process.on('exit', () => {
|
||||
app.on('before-quit', () => {
|
||||
proc.off('exit', restart)
|
||||
proc.kill()
|
||||
})
|
||||
}
|
||||
|
||||
|
||||
function installCLI() {
|
||||
const symlinkPath = '/usr/local/bin/ollama'
|
||||
|
||||
if (fs.existsSync(symlinkPath) && fs.readlinkSync(symlinkPath) === ollama) {
|
||||
return
|
||||
}
|
||||
|
||||
dialog
|
||||
.showMessageBox({
|
||||
type: 'info',
|
||||
title: 'Ollama CLI installation',
|
||||
message: 'To make the Ollama command work in your terminal, it needs administrator privileges.',
|
||||
buttons: ['OK'],
|
||||
})
|
||||
.then(result => {
|
||||
if (result.response === 0) {
|
||||
const command = `
|
||||
do shell script "ln -F -s ${ollama} /usr/local/bin/ollama" with administrator privileges
|
||||
`
|
||||
exec(`osascript -e '${command}'`, (error: Error | null, stdout: string, stderr: string) => {
|
||||
if (error) {
|
||||
console.error(`exec error: ${error}`)
|
||||
return
|
||||
}
|
||||
console.log(`stdout: ${stdout}`)
|
||||
console.error(`stderr: ${stderr}`)
|
||||
})
|
||||
}
|
||||
})
|
||||
if (process.platform === 'darwin') {
|
||||
app.dock.hide()
|
||||
}
|
||||
|
||||
app.on('ready', () => {
|
||||
if (process.platform === 'darwin') {
|
||||
app.dock.hide()
|
||||
|
||||
if (!store.has('first-time-run')) {
|
||||
// This is the first run
|
||||
app.setLoginItemSettings({ openAtLogin: true })
|
||||
store.set('first-time-run', false)
|
||||
} else {
|
||||
// The app has been run before
|
||||
app.setLoginItemSettings({ openAtLogin: app.getLoginItemSettings().openAtLogin })
|
||||
}
|
||||
|
||||
if (app.isPackaged) {
|
||||
if (!app.isInApplicationsFolder()) {
|
||||
const chosen = dialog.showMessageBoxSync({
|
||||
@@ -139,19 +145,25 @@ app.on('ready', () => {
|
||||
})
|
||||
return
|
||||
} catch (e) {
|
||||
console.error('Failed to move to applications folder')
|
||||
console.error(e)
|
||||
logger.error(`[Move to Applications] Failed to move to applications folder - ${e.message}}`)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
installCLI()
|
||||
}
|
||||
}
|
||||
|
||||
createSystemtray()
|
||||
|
||||
server()
|
||||
|
||||
if (store.get('first-time-run') && installed()) {
|
||||
app.setLoginItemSettings({ openAtLogin: app.getLoginItemSettings().openAtLogin })
|
||||
return
|
||||
}
|
||||
|
||||
// This is the first run or the CLI is no longer installed
|
||||
app.setLoginItemSettings({ openAtLogin: true })
|
||||
|
||||
firstRunWindow()
|
||||
})
|
||||
|
||||
// Quit when all windows are closed, except on macOS. There, it's common
|
||||
@@ -189,7 +201,7 @@ if (app.isPackaged) {
|
||||
}
|
||||
|
||||
autoUpdater.on('error', e => {
|
||||
console.error('update check failed', e)
|
||||
logger.error(`update check failed - ${e.message}`)
|
||||
})
|
||||
|
||||
autoUpdater.on('update-downloaded', (event, releaseNotes, releaseName) => {
|
||||
|
24
app/src/install.ts
Normal file
24
app/src/install.ts
Normal file
@@ -0,0 +1,24 @@
|
||||
import * as fs from 'fs'
|
||||
import { exec as cbExec } from 'child_process'
|
||||
import * as path from 'path'
|
||||
import { promisify } from 'util'
|
||||
|
||||
const app = process && process.type === 'renderer' ? require('@electron/remote').app : require('electron').app
|
||||
const ollama = app.isPackaged ? path.join(process.resourcesPath, 'ollama') : path.resolve(process.cwd(), '..', 'ollama')
|
||||
const exec = promisify(cbExec)
|
||||
const symlinkPath = '/usr/local/bin/ollama'
|
||||
|
||||
export function installed() {
|
||||
return fs.existsSync(symlinkPath) && fs.readlinkSync(symlinkPath) === ollama
|
||||
}
|
||||
|
||||
export async function install() {
|
||||
const command = `do shell script "ln -F -s ${ollama} ${symlinkPath}" with administrator privileges`
|
||||
|
||||
try {
|
||||
await exec(`osascript -e '${command}'`)
|
||||
} catch (error) {
|
||||
console.error(`cli: failed to install cli: ${error.message}`)
|
||||
return
|
||||
}
|
||||
}
|
9
app/src/ollama.svg
Normal file
9
app/src/ollama.svg
Normal file
File diff suppressed because one or more lines are too long
After Width: | Height: | Size: 17 KiB |
@@ -28,4 +28,8 @@ export const rules: Required<ModuleOptions>['rules'] = [
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
test: /\.svg$/,
|
||||
use: ['@svgr/webpack'],
|
||||
},
|
||||
]
|
||||
|
178
cmd/cmd.go
178
cmd/cmd.go
@@ -7,8 +7,9 @@ import (
|
||||
"fmt"
|
||||
"log"
|
||||
"net"
|
||||
"net/http"
|
||||
"os"
|
||||
"path"
|
||||
"path/filepath"
|
||||
"strings"
|
||||
"time"
|
||||
|
||||
@@ -26,15 +27,45 @@ func cacheDir() string {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
return path.Join(home, ".ollama")
|
||||
return filepath.Join(home, ".ollama")
|
||||
}
|
||||
|
||||
func create(cmd *cobra.Command, args []string) error {
|
||||
filename, _ := cmd.Flags().GetString("file")
|
||||
client := api.NewClient()
|
||||
|
||||
request := api.CreateRequest{Name: args[0], Path: filename}
|
||||
fn := func(resp api.CreateProgress) error {
|
||||
fmt.Println(resp.Status)
|
||||
return nil
|
||||
}
|
||||
|
||||
if err := client.Create(context.Background(), &request, fn); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func RunRun(cmd *cobra.Command, args []string) error {
|
||||
_, err := os.Stat(args[0])
|
||||
mp := server.ParseModelPath(args[0])
|
||||
fp, err := mp.GetManifestPath(false)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
_, err = os.Stat(fp)
|
||||
switch {
|
||||
case errors.Is(err, os.ErrNotExist):
|
||||
if err := pull(args[0]); err != nil {
|
||||
return err
|
||||
var apiStatusError api.StatusError
|
||||
if !errors.As(err, &apiStatusError) {
|
||||
return err
|
||||
}
|
||||
|
||||
if apiStatusError.StatusCode != http.StatusBadGateway {
|
||||
return err
|
||||
}
|
||||
}
|
||||
case err != nil:
|
||||
return err
|
||||
@@ -43,41 +74,74 @@ func RunRun(cmd *cobra.Command, args []string) error {
|
||||
return RunGenerate(cmd, args)
|
||||
}
|
||||
|
||||
func pull(model string) error {
|
||||
func push(cmd *cobra.Command, args []string) error {
|
||||
client := api.NewClient()
|
||||
var bar *progressbar.ProgressBar
|
||||
return client.Pull(
|
||||
context.Background(),
|
||||
&api.PullRequest{Model: model},
|
||||
func(progress api.PullProgress) error {
|
||||
if bar == nil && progress.Percent == 100 {
|
||||
// already downloaded
|
||||
return nil
|
||||
}
|
||||
if bar == nil {
|
||||
bar = progressbar.DefaultBytes(progress.Total)
|
||||
}
|
||||
|
||||
return bar.Set64(progress.Completed)
|
||||
},
|
||||
)
|
||||
request := api.PushRequest{Name: args[0]}
|
||||
fn := func(resp api.PushProgress) error {
|
||||
fmt.Println(resp.Status)
|
||||
return nil
|
||||
}
|
||||
|
||||
if err := client.Push(context.Background(), &request, fn); err != nil {
|
||||
return err
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func RunGenerate(_ *cobra.Command, args []string) error {
|
||||
// join all args into a single prompt
|
||||
prompt := strings.Join(args[1:], " ")
|
||||
func RunPull(cmd *cobra.Command, args []string) error {
|
||||
return pull(args[0])
|
||||
}
|
||||
|
||||
func pull(model string) error {
|
||||
client := api.NewClient()
|
||||
|
||||
var bar *progressbar.ProgressBar
|
||||
|
||||
currentLayer := ""
|
||||
request := api.PullRequest{Name: model}
|
||||
fn := func(resp api.PullProgress) error {
|
||||
if resp.Digest != currentLayer && resp.Digest != "" {
|
||||
if currentLayer != "" {
|
||||
fmt.Println()
|
||||
}
|
||||
currentLayer = resp.Digest
|
||||
layerStr := resp.Digest[7:23] + "..."
|
||||
bar = progressbar.DefaultBytes(
|
||||
int64(resp.Total),
|
||||
"pulling "+layerStr,
|
||||
)
|
||||
} else if resp.Digest == currentLayer && resp.Digest != "" {
|
||||
bar.Set(resp.Completed)
|
||||
} else {
|
||||
currentLayer = ""
|
||||
fmt.Println(resp.Status)
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
if err := client.Pull(context.Background(), &request, fn); err != nil {
|
||||
return err
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func RunGenerate(cmd *cobra.Command, args []string) error {
|
||||
if len(args) > 1 {
|
||||
return generate(args[0], prompt)
|
||||
// join all args into a single prompt
|
||||
return generate(cmd, args[0], strings.Join(args[1:], " "))
|
||||
}
|
||||
|
||||
if term.IsTerminal(int(os.Stdin.Fd())) {
|
||||
return generateInteractive(args[0])
|
||||
return generateInteractive(cmd, args[0])
|
||||
}
|
||||
|
||||
return generateBatch(args[0])
|
||||
return generateBatch(cmd, args[0])
|
||||
}
|
||||
|
||||
func generate(model, prompt string) error {
|
||||
var generateContextKey struct{}
|
||||
|
||||
func generate(cmd *cobra.Command, model, prompt string) error {
|
||||
if len(strings.TrimSpace(prompt)) > 0 {
|
||||
client := api.NewClient()
|
||||
|
||||
@@ -100,13 +164,24 @@ func generate(model, prompt string) error {
|
||||
}
|
||||
}()
|
||||
|
||||
request := api.GenerateRequest{Model: model, Prompt: prompt}
|
||||
var latest api.GenerateResponse
|
||||
|
||||
generateContext, ok := cmd.Context().Value(generateContextKey).([]int)
|
||||
if !ok {
|
||||
generateContext = []int{}
|
||||
}
|
||||
|
||||
request := api.GenerateRequest{Model: model, Prompt: prompt, Context: generateContext}
|
||||
fn := func(resp api.GenerateResponse) error {
|
||||
if !spinner.IsFinished() {
|
||||
spinner.Finish()
|
||||
}
|
||||
|
||||
latest = resp
|
||||
|
||||
fmt.Print(resp.Response)
|
||||
|
||||
cmd.SetContext(context.WithValue(cmd.Context(), generateContextKey, resp.Context))
|
||||
return nil
|
||||
}
|
||||
|
||||
@@ -116,16 +191,25 @@ func generate(model, prompt string) error {
|
||||
|
||||
fmt.Println()
|
||||
fmt.Println()
|
||||
|
||||
verbose, err := cmd.Flags().GetBool("verbose")
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if verbose {
|
||||
latest.Summary()
|
||||
}
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func generateInteractive(model string) error {
|
||||
func generateInteractive(cmd *cobra.Command, model string) error {
|
||||
fmt.Print(">>> ")
|
||||
scanner := bufio.NewScanner(os.Stdin)
|
||||
for scanner.Scan() {
|
||||
if err := generate(model, scanner.Text()); err != nil {
|
||||
if err := generate(cmd, model, scanner.Text()); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
@@ -135,12 +219,12 @@ func generateInteractive(model string) error {
|
||||
return nil
|
||||
}
|
||||
|
||||
func generateBatch(model string) error {
|
||||
func generateBatch(cmd *cobra.Command, model string) error {
|
||||
scanner := bufio.NewScanner(os.Stdin)
|
||||
for scanner.Scan() {
|
||||
prompt := scanner.Text()
|
||||
fmt.Printf(">>> %s\n", prompt)
|
||||
if err := generate(model, prompt); err != nil {
|
||||
if err := generate(cmd, model, prompt); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
@@ -179,12 +263,21 @@ func NewCLI() *cobra.Command {
|
||||
},
|
||||
PersistentPreRunE: func(_ *cobra.Command, args []string) error {
|
||||
// create the models directory and it's parent
|
||||
return os.MkdirAll(path.Join(cacheDir(), "models"), 0o700)
|
||||
return os.MkdirAll(filepath.Join(cacheDir(), "models"), 0o700)
|
||||
},
|
||||
}
|
||||
|
||||
cobra.EnableCommandSorting = false
|
||||
|
||||
createCmd := &cobra.Command{
|
||||
Use: "create MODEL",
|
||||
Short: "Create a model from a Modelfile",
|
||||
Args: cobra.MinimumNArgs(1),
|
||||
RunE: create,
|
||||
}
|
||||
|
||||
createCmd.Flags().StringP("file", "f", "Modelfile", "Name of the Modelfile (default \"Modelfile\")")
|
||||
|
||||
runCmd := &cobra.Command{
|
||||
Use: "run MODEL [PROMPT]",
|
||||
Short: "Run a model",
|
||||
@@ -192,6 +285,8 @@ func NewCLI() *cobra.Command {
|
||||
RunE: RunRun,
|
||||
}
|
||||
|
||||
runCmd.Flags().Bool("verbose", false, "Show timings for response")
|
||||
|
||||
serveCmd := &cobra.Command{
|
||||
Use: "serve",
|
||||
Aliases: []string{"start"},
|
||||
@@ -199,9 +294,26 @@ func NewCLI() *cobra.Command {
|
||||
RunE: RunServer,
|
||||
}
|
||||
|
||||
pullCmd := &cobra.Command{
|
||||
Use: "pull MODEL",
|
||||
Short: "Pull a model from a registry",
|
||||
Args: cobra.MinimumNArgs(1),
|
||||
RunE: RunPull,
|
||||
}
|
||||
|
||||
pushCmd := &cobra.Command{
|
||||
Use: "push MODEL",
|
||||
Short: "Push a model to a registry",
|
||||
Args: cobra.MinimumNArgs(1),
|
||||
RunE: push,
|
||||
}
|
||||
|
||||
rootCmd.AddCommand(
|
||||
serveCmd,
|
||||
createCmd,
|
||||
runCmd,
|
||||
pullCmd,
|
||||
pushCmd,
|
||||
)
|
||||
|
||||
return rootCmd
|
||||
|
@@ -1,64 +0,0 @@
|
||||
# Python SDK
|
||||
|
||||
## Install
|
||||
|
||||
```
|
||||
pip install ollama
|
||||
```
|
||||
|
||||
## Example
|
||||
|
||||
```python
|
||||
import ollama
|
||||
ollama.generate("orca-mini-3b", "hi")
|
||||
```
|
||||
|
||||
## Reference
|
||||
|
||||
### `ollama.generate(model, message)`
|
||||
|
||||
Generate a completion
|
||||
|
||||
```python
|
||||
ollama.generate("./llama-7b-ggml.bin", "hi")
|
||||
```
|
||||
|
||||
### `ollama.models()`
|
||||
|
||||
List available local models
|
||||
|
||||
```python
|
||||
models = ollama.models()
|
||||
```
|
||||
|
||||
### `ollama.load(model)`
|
||||
|
||||
Manually a model for generation
|
||||
|
||||
```python
|
||||
ollama.load("model")
|
||||
```
|
||||
|
||||
### `ollama.unload(model)`
|
||||
|
||||
Unload a model
|
||||
|
||||
```python
|
||||
ollama.unload("model")
|
||||
```
|
||||
|
||||
### `ollama.pull(model)`
|
||||
|
||||
Download a model
|
||||
|
||||
```python
|
||||
ollama.pull("huggingface.co/thebloke/llama-7b-ggml")
|
||||
```
|
||||
|
||||
### `ollama.search(query)`
|
||||
|
||||
Search for compatible models that Ollama can run
|
||||
|
||||
```python
|
||||
ollama.search("llama-7b")
|
||||
```
|
1
ggml-metal.metal
Symbolic link
1
ggml-metal.metal
Symbolic link
@@ -0,0 +1 @@
|
||||
llama/ggml-metal.metal
|
2
go.mod
2
go.mod
@@ -14,6 +14,7 @@ require (
|
||||
)
|
||||
|
||||
require (
|
||||
dario.cat/mergo v1.0.0
|
||||
github.com/bytedance/sonic v1.9.1 // indirect
|
||||
github.com/chenzhuoyu/base64x v0.0.0-20221115062448-fe3a3abad311 // indirect
|
||||
github.com/gabriel-vasile/mimetype v1.4.2 // indirect
|
||||
@@ -27,7 +28,6 @@ require (
|
||||
github.com/json-iterator/go v1.1.12 // indirect
|
||||
github.com/klauspost/cpuid/v2 v2.2.4 // indirect
|
||||
github.com/leodido/go-urn v1.2.4 // indirect
|
||||
github.com/lithammer/fuzzysearch v1.1.8
|
||||
github.com/mattn/go-isatty v0.0.19 // indirect
|
||||
github.com/modern-go/concurrent v0.0.0-20180306012644-bacd9c7ef1dd // indirect
|
||||
github.com/modern-go/reflect2 v1.0.2 // indirect
|
||||
|
35
go.sum
35
go.sum
@@ -1,3 +1,5 @@
|
||||
dario.cat/mergo v1.0.0 h1:AGCNq9Evsj31mOgNPcLyXc+4PNABt905YmuqPYYpBWk=
|
||||
dario.cat/mergo v1.0.0/go.mod h1:uNxQE+84aUszobStD9th8a29P2fMDhsBdgRYvZOxGmk=
|
||||
github.com/bytedance/sonic v1.5.0/go.mod h1:ED5hyg4y6t3/9Ku1R6dU/4KyJ48DZ4jPhfY1O2AihPM=
|
||||
github.com/bytedance/sonic v1.9.1 h1:6iJ6NqdoxCDr6mbY8h18oSO+cShGSMRGCEo7F2h0x8s=
|
||||
github.com/bytedance/sonic v1.9.1/go.mod h1:i736AoUSYt75HyZLoJW9ERYxcy6eaN6h4BZXU064P/U=
|
||||
@@ -38,8 +40,6 @@ github.com/klauspost/cpuid/v2 v2.2.4 h1:acbojRNwl3o09bUq+yDCtZFc1aiwaAAxtcn8YkZX
|
||||
github.com/klauspost/cpuid/v2 v2.2.4/go.mod h1:RVVoqg1df56z8g3pUjL/3lE5UfnlrJX8tyFgg4nqhuY=
|
||||
github.com/leodido/go-urn v1.2.4 h1:XlAE/cm/ms7TE/VMVoduSpNBoyc2dOxHs5MZSwAN63Q=
|
||||
github.com/leodido/go-urn v1.2.4/go.mod h1:7ZrI8mTSeBSHl/UaRyKQW1qZeMgak41ANeCNaVckg+4=
|
||||
github.com/lithammer/fuzzysearch v1.1.8 h1:/HIuJnjHuXS8bKaiTMeeDlW2/AyIWk2brx1V8LFgLN4=
|
||||
github.com/lithammer/fuzzysearch v1.1.8/go.mod h1:IdqeyBClc3FFqSzYq/MXESsS4S0FsZ5ajtkr5xPLts4=
|
||||
github.com/mattn/go-isatty v0.0.17/go.mod h1:kYGgaQfpe5nmfYZH+SKPsOc2e4SrIfOl2e/yFXSvRLM=
|
||||
github.com/mattn/go-isatty v0.0.19 h1:JITubQf0MOLdlGRuRq+jtsDlekdYPia9ZFsB8h/APPA=
|
||||
github.com/mattn/go-isatty v0.0.19/go.mod h1:W+V8PltTTMOvKvAeJH7IuucS94S2C6jfK/D7dTCTo3Y=
|
||||
@@ -80,54 +80,23 @@ github.com/twitchyliquid64/golang-asm v0.15.1 h1:SU5vSMR7hnwNxj24w34ZyCi/FmDZTkS
|
||||
github.com/twitchyliquid64/golang-asm v0.15.1/go.mod h1:a1lVb/DtPvCB8fslRZhAngC2+aY1QWCk3Cedj/Gdt08=
|
||||
github.com/ugorji/go/codec v1.2.11 h1:BMaWp1Bb6fHwEtbplGBGJ498wD+LKlNSl25MjdZY4dU=
|
||||
github.com/ugorji/go/codec v1.2.11/go.mod h1:UNopzCgEMSXjBc6AOMqYvWC1ktqTAfzJZUZgYf6w6lg=
|
||||
github.com/yuin/goldmark v1.4.13/go.mod h1:6yULJ656Px+3vBD8DxQVa3kxgyrAnzto9xy5taEt/CY=
|
||||
golang.org/x/arch v0.0.0-20210923205945-b76863e36670/go.mod h1:5om86z9Hs0C8fWVUuoMHwpExlXzs5Tkyp9hOrfG7pp8=
|
||||
golang.org/x/arch v0.3.0 h1:02VY4/ZcO/gBOH6PUaoiptASxtXU10jazRCP865E97k=
|
||||
golang.org/x/arch v0.3.0/go.mod h1:5om86z9Hs0C8fWVUuoMHwpExlXzs5Tkyp9hOrfG7pp8=
|
||||
golang.org/x/crypto v0.0.0-20190308221718-c2843e01d9a2/go.mod h1:djNgcEr1/C05ACkg1iLfiJU5Ep61QUkGW8qpdssI0+w=
|
||||
golang.org/x/crypto v0.0.0-20210921155107-089bfa567519/go.mod h1:GvvjBRRGRdwPK5ydBHafDWAxML/pGHZbMvKqRZ5+Abc=
|
||||
golang.org/x/crypto v0.10.0 h1:LKqV2xt9+kDzSTfOhx4FrkEBcMrAgHSYgzywV9zcGmM=
|
||||
golang.org/x/crypto v0.10.0/go.mod h1:o4eNf7Ede1fv+hwOwZsTHl9EsPFO6q6ZvYR8vYfY45I=
|
||||
golang.org/x/mod v0.6.0-dev.0.20220419223038-86c51ed26bb4/go.mod h1:jJ57K6gSWd91VN4djpZkiMVwK6gcyfeH4XE8wZrZaV4=
|
||||
golang.org/x/mod v0.8.0/go.mod h1:iBbtSCu2XBx23ZKBPSOrRkjjQPZFPuis4dIYUhu/chs=
|
||||
golang.org/x/net v0.0.0-20190620200207-3b0461eec859/go.mod h1:z5CRVTTTmAJ677TzLLGU+0bjPO0LkuOLi4/5GtJWs/s=
|
||||
golang.org/x/net v0.0.0-20210226172049-e18ecbb05110/go.mod h1:m0MpNAwzfU5UDzcl9v0D8zg8gWTRqZa9RBIspLL5mdg=
|
||||
golang.org/x/net v0.0.0-20220722155237-a158d28d115b/go.mod h1:XRhObCWvk6IyKnWLug+ECip1KBveYUHfp+8e9klMJ9c=
|
||||
golang.org/x/net v0.6.0/go.mod h1:2Tu9+aMcznHK/AK1HMvgo6xiTLG5rD5rZLDS+rp2Bjs=
|
||||
golang.org/x/net v0.10.0 h1:X2//UzNDwYmtCLn7To6G58Wr6f5ahEAQgKNzv9Y951M=
|
||||
golang.org/x/net v0.10.0/go.mod h1:0qNGK6F8kojg2nk9dLZ2mShWaEBan6FAoqfSigmmuDg=
|
||||
golang.org/x/sync v0.0.0-20190423024810-112230192c58/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
|
||||
golang.org/x/sync v0.0.0-20220722155255-886fb9371eb4/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
|
||||
golang.org/x/sync v0.1.0/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
|
||||
golang.org/x/sys v0.0.0-20190215142949-d0b11bdaac8a/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
|
||||
golang.org/x/sys v0.0.0-20201119102817-f84b799fce68/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
|
||||
golang.org/x/sys v0.0.0-20210615035016-665e8c7367d1/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
||||
golang.org/x/sys v0.0.0-20220520151302-bc2c85ada10a/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
||||
golang.org/x/sys v0.0.0-20220704084225-05e143d24a9e/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
||||
golang.org/x/sys v0.0.0-20220722155257-8c9f86f7a55f/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
||||
golang.org/x/sys v0.0.0-20220811171246-fbc7d0a398ab/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
||||
golang.org/x/sys v0.5.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
||||
golang.org/x/sys v0.6.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
||||
golang.org/x/sys v0.10.0 h1:SqMFp9UcQJZa+pmYuAKjd9xq1f0j5rLcDIk0mj4qAsA=
|
||||
golang.org/x/sys v0.10.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
||||
golang.org/x/term v0.0.0-20201126162022-7de9c90e9dd1/go.mod h1:bj7SfCRtBDWHUb9snDiAeCFNEtKQo2Wmx5Cou7ajbmo=
|
||||
golang.org/x/term v0.0.0-20210927222741-03fcf44c2211/go.mod h1:jbD1KX2456YbFQfuXm/mYQcufACuNUgVhRMnK/tPxf8=
|
||||
golang.org/x/term v0.5.0/go.mod h1:jMB1sMXY+tzblOD4FWmEbocvup2/aLOaQEp7JmGp78k=
|
||||
golang.org/x/term v0.6.0/go.mod h1:m6U89DPEgQRMq3DNkDClhWw02AUbt2daBVO4cn4Hv9U=
|
||||
golang.org/x/term v0.10.0 h1:3R7pNqamzBraeqj/Tj8qt1aQ2HpmlC+Cx/qL/7hn4/c=
|
||||
golang.org/x/term v0.10.0/go.mod h1:lpqdcUyK/oCiQxvxVrppt5ggO2KCZ5QblwqPnfZ6d5o=
|
||||
golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
|
||||
golang.org/x/text v0.3.3/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
|
||||
golang.org/x/text v0.3.7/go.mod h1:u+2+/6zg+i71rQMx5EYifcz6MCKuco9NR6JIITiCfzQ=
|
||||
golang.org/x/text v0.7.0/go.mod h1:mrYo+phRRbMaCq/xk9113O4dZlRixOauAjOtrjsXDZ8=
|
||||
golang.org/x/text v0.9.0/go.mod h1:e1OnstbJyHTd6l/uOt8jFFHp6TRDWZR/bV3emEE/zU8=
|
||||
golang.org/x/text v0.10.0 h1:UpjohKhiEgNc0CSauXmwYftY1+LlaC75SJwh0SgCX58=
|
||||
golang.org/x/text v0.10.0/go.mod h1:TvPlkZtksWOMsz7fbANvkp4WM8x/WCo/om8BMLbz+aE=
|
||||
golang.org/x/tools v0.0.0-20180917221912-90fa682c2a6e/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
|
||||
golang.org/x/tools v0.0.0-20191119224855-298f0cb1881e/go.mod h1:b+2E5dAYhXwXZwtnZ6UAqBI28+e2cm9otk0dWdXHAEo=
|
||||
golang.org/x/tools v0.1.12/go.mod h1:hNGJHUnrk76NpqgfD5Aqm5Crs+Hm0VOH/i9J2+nxYbc=
|
||||
golang.org/x/tools v0.6.0/go.mod h1:Xwgl3UAJ/d3gWutnCtw505GrjyAbvKui8lOU390QaIU=
|
||||
golang.org/x/xerrors v0.0.0-20190717185122-a985d3407aa7/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
|
||||
golang.org/x/xerrors v0.0.0-20191204190536-9bdfabe68543/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
|
||||
google.golang.org/protobuf v1.26.0-rc.1/go.mod h1:jlhhOSvTdKEhbULTjvd4ARK9grFBp09yW+WbY/TyQbw=
|
||||
google.golang.org/protobuf v1.30.0 h1:kPPoIgf3TsEvrm0PFe15JQ+570QVxYzEvvHqChK+cng=
|
||||
|
1
llama/.gitignore
vendored
1
llama/.gitignore
vendored
@@ -1 +0,0 @@
|
||||
build
|
@@ -1,23 +0,0 @@
|
||||
cmake_minimum_required(VERSION 3.12)
|
||||
project(binding)
|
||||
|
||||
include(FetchContent)
|
||||
|
||||
FetchContent_Declare(
|
||||
llama_cpp
|
||||
GIT_REPOSITORY https://github.com/ggerganov/llama.cpp.git
|
||||
GIT_TAG 55dbb91
|
||||
)
|
||||
|
||||
FetchContent_MakeAvailable(llama_cpp)
|
||||
|
||||
add_library(binding ${CMAKE_CURRENT_SOURCE_DIR}/binding/binding.cpp ${llama_cpp_SOURCE_DIR}/examples/common.cpp)
|
||||
target_include_directories(binding PRIVATE ${llama_cpp_SOURCE_DIR}/examples)
|
||||
target_link_libraries(binding llama ggml_static)
|
||||
|
||||
if (LLAMA_METAL)
|
||||
configure_file(${llama_cpp_SOURCE_DIR}/ggml-metal.metal ${CMAKE_CURRENT_BINARY_DIR}/../../ggml-metal.metal COPYONLY)
|
||||
endif()
|
||||
|
||||
add_custom_target(copy_libllama ALL COMMAND ${CMAKE_COMMAND} -E copy_if_different $<TARGET_FILE:llama> ${CMAKE_CURRENT_BINARY_DIR})
|
||||
add_custom_target(copy_libggml_static ALL COMMAND ${CMAKE_COMMAND} -E copy_if_different $<TARGET_FILE:ggml_static> ${CMAKE_CURRENT_BINARY_DIR})
|
@@ -1,705 +0,0 @@
|
||||
// MIT License
|
||||
|
||||
// Copyright (c) 2023 go-skynet authors
|
||||
|
||||
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
// of this software and associated documentation files (the "Software"), to deal
|
||||
// in the Software without restriction, including without limitation the rights
|
||||
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
// copies of the Software, and to permit persons to whom the Software is
|
||||
// furnished to do so, subject to the following conditions:
|
||||
|
||||
// The above copyright notice and this permission notice shall be included in all
|
||||
// copies or substantial portions of the Software.
|
||||
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
// SOFTWARE.
|
||||
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include "binding.h"
|
||||
|
||||
#include <cassert>
|
||||
#include <cinttypes>
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <regex>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__))
|
||||
#include <signal.h>
|
||||
#include <unistd.h>
|
||||
#elif defined(_WIN32)
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#define NOMINMAX
|
||||
#include <signal.h>
|
||||
#include <windows.h>
|
||||
#endif
|
||||
|
||||
#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__)) || \
|
||||
defined(_WIN32)
|
||||
void sigint_handler(int signo) {
|
||||
if (signo == SIGINT) {
|
||||
_exit(130);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
int get_embeddings(void *params_ptr, void *state_pr, float *res_embeddings) {
|
||||
gpt_params *params_p = (gpt_params *)params_ptr;
|
||||
llama_context *ctx = (llama_context *)state_pr;
|
||||
gpt_params params = *params_p;
|
||||
|
||||
if (params.seed <= 0) {
|
||||
params.seed = time(NULL);
|
||||
}
|
||||
|
||||
std::mt19937 rng(params.seed);
|
||||
|
||||
llama_init_backend(params.numa);
|
||||
|
||||
int n_past = 0;
|
||||
|
||||
// Add a space in front of the first character to match OG llama tokenizer
|
||||
// behavior
|
||||
params.prompt.insert(0, 1, ' ');
|
||||
|
||||
// tokenize the prompt
|
||||
auto embd_inp = ::llama_tokenize(ctx, params.prompt, true);
|
||||
|
||||
// determine newline token
|
||||
auto llama_token_newline = ::llama_tokenize(ctx, "\n", false);
|
||||
|
||||
if (embd_inp.size() > 0) {
|
||||
if (llama_eval(ctx, embd_inp.data(), embd_inp.size(), n_past,
|
||||
params.n_threads)) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
const int n_embd = llama_n_embd(ctx);
|
||||
|
||||
const auto embeddings = llama_get_embeddings(ctx);
|
||||
|
||||
for (int i = 0; i < n_embd; i++) {
|
||||
res_embeddings[i] = embeddings[i];
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int get_token_embeddings(void *params_ptr, void *state_pr, int *tokens,
|
||||
int tokenSize, float *res_embeddings) {
|
||||
gpt_params *params_p = (gpt_params *)params_ptr;
|
||||
llama_context *ctx = (llama_context *)state_pr;
|
||||
gpt_params params = *params_p;
|
||||
|
||||
for (int i = 0; i < tokenSize; i++) {
|
||||
auto token_str = llama_token_to_str(ctx, tokens[i]);
|
||||
if (token_str == nullptr) {
|
||||
continue;
|
||||
}
|
||||
std::vector<std::string> my_vector;
|
||||
std::string str_token(token_str); // create a new std::string from the char*
|
||||
params_p->prompt += str_token;
|
||||
}
|
||||
|
||||
return get_embeddings(params_ptr, state_pr, res_embeddings);
|
||||
}
|
||||
|
||||
int eval(void *params_ptr, void *state_pr, char *text) {
|
||||
gpt_params *params_p = (gpt_params *)params_ptr;
|
||||
llama_context *ctx = (llama_context *)state_pr;
|
||||
|
||||
auto n_past = 0;
|
||||
auto last_n_tokens_data =
|
||||
std::vector<llama_token>(params_p->repeat_last_n, 0);
|
||||
|
||||
auto tokens = std::vector<llama_token>(params_p->n_ctx);
|
||||
auto n_prompt_tokens =
|
||||
llama_tokenize(ctx, text, tokens.data(), tokens.size(), true);
|
||||
|
||||
if (n_prompt_tokens < 1) {
|
||||
fprintf(stderr, "%s : failed to tokenize prompt\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// evaluate prompt
|
||||
return llama_eval(ctx, tokens.data(), n_prompt_tokens, n_past,
|
||||
params_p->n_threads);
|
||||
}
|
||||
|
||||
int llama_predict(void *params_ptr, void *state_pr, char *result, bool debug) {
|
||||
gpt_params *params_p = (gpt_params *)params_ptr;
|
||||
llama_context *ctx = (llama_context *)state_pr;
|
||||
|
||||
gpt_params params = *params_p;
|
||||
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
if (params.seed <= 0) {
|
||||
params.seed = time(NULL);
|
||||
}
|
||||
|
||||
std::mt19937 rng(params.seed);
|
||||
|
||||
std::string path_session = params.path_prompt_cache;
|
||||
std::vector<llama_token> session_tokens;
|
||||
|
||||
if (!path_session.empty()) {
|
||||
if (debug) {
|
||||
fprintf(stderr, "%s: attempting to load saved session from '%s'\n",
|
||||
__func__, path_session.c_str());
|
||||
}
|
||||
// fopen to check for existing session
|
||||
FILE *fp = std::fopen(path_session.c_str(), "rb");
|
||||
if (fp != NULL) {
|
||||
std::fclose(fp);
|
||||
|
||||
session_tokens.resize(n_ctx);
|
||||
size_t n_token_count_out = 0;
|
||||
if (!llama_load_session_file(
|
||||
ctx, path_session.c_str(), session_tokens.data(),
|
||||
session_tokens.capacity(), &n_token_count_out)) {
|
||||
fprintf(stderr, "%s: error: failed to load session file '%s'\n",
|
||||
__func__, path_session.c_str());
|
||||
return 1;
|
||||
}
|
||||
session_tokens.resize(n_token_count_out);
|
||||
llama_set_rng_seed(ctx, params.seed);
|
||||
if (debug) {
|
||||
fprintf(stderr, "%s: loaded a session with prompt size of %d tokens\n",
|
||||
__func__, (int)session_tokens.size());
|
||||
}
|
||||
} else {
|
||||
if (debug) {
|
||||
fprintf(stderr, "%s: session file does not exist, will create\n",
|
||||
__func__);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<llama_token> embd_inp;
|
||||
if (!params.prompt.empty() || session_tokens.empty()) {
|
||||
// Add a space in front of the first character to match OG llama tokenizer
|
||||
// behavior
|
||||
params.prompt.insert(0, 1, ' ');
|
||||
|
||||
embd_inp = ::llama_tokenize(ctx, params.prompt, true);
|
||||
} else {
|
||||
embd_inp = session_tokens;
|
||||
}
|
||||
|
||||
// debug message about similarity of saved session, if applicable
|
||||
size_t n_matching_session_tokens = 0;
|
||||
if (session_tokens.size()) {
|
||||
for (llama_token id : session_tokens) {
|
||||
if (n_matching_session_tokens >= embd_inp.size() ||
|
||||
id != embd_inp[n_matching_session_tokens]) {
|
||||
break;
|
||||
}
|
||||
n_matching_session_tokens++;
|
||||
}
|
||||
if (debug) {
|
||||
if (params.prompt.empty() &&
|
||||
n_matching_session_tokens == embd_inp.size()) {
|
||||
fprintf(stderr, "%s: using full prompt from session file\n", __func__);
|
||||
} else if (n_matching_session_tokens >= embd_inp.size()) {
|
||||
fprintf(stderr, "%s: session file has exact match for prompt!\n",
|
||||
__func__);
|
||||
} else if (n_matching_session_tokens < (embd_inp.size() / 2)) {
|
||||
fprintf(stderr,
|
||||
"%s: warning: session file has low similarity to prompt (%zu / "
|
||||
"%zu tokens); will mostly be reevaluated\n",
|
||||
__func__, n_matching_session_tokens, embd_inp.size());
|
||||
} else {
|
||||
fprintf(stderr, "%s: session file matches %zu / %zu tokens of prompt\n",
|
||||
__func__, n_matching_session_tokens, embd_inp.size());
|
||||
}
|
||||
}
|
||||
}
|
||||
// if we will use the cache for the full prompt without reaching the end of
|
||||
// the cache, force reevaluation of the last token token to recalculate the
|
||||
// cached logits
|
||||
if (!embd_inp.empty() && n_matching_session_tokens == embd_inp.size() &&
|
||||
session_tokens.size() > embd_inp.size()) {
|
||||
session_tokens.resize(embd_inp.size() - 1);
|
||||
}
|
||||
// number of tokens to keep when resetting context
|
||||
if (params.n_keep < 0 || params.n_keep > (int)embd_inp.size()) {
|
||||
params.n_keep = (int)embd_inp.size();
|
||||
}
|
||||
|
||||
// determine newline token
|
||||
auto llama_token_newline = ::llama_tokenize(ctx, "\n", false);
|
||||
|
||||
// TODO: replace with ring-buffer
|
||||
std::vector<llama_token> last_n_tokens(n_ctx);
|
||||
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
|
||||
|
||||
bool need_to_save_session =
|
||||
!path_session.empty() && n_matching_session_tokens < embd_inp.size();
|
||||
int n_past = 0;
|
||||
int n_remain = params.n_predict;
|
||||
int n_consumed = 0;
|
||||
int n_session_consumed = 0;
|
||||
|
||||
std::vector<llama_token> embd;
|
||||
std::string res = "";
|
||||
|
||||
// do one empty run to warm up the model
|
||||
{
|
||||
const std::vector<llama_token> tmp = {
|
||||
llama_token_bos(),
|
||||
};
|
||||
llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads);
|
||||
llama_reset_timings(ctx);
|
||||
}
|
||||
|
||||
while (n_remain != 0) {
|
||||
// predict
|
||||
if (embd.size() > 0) {
|
||||
// infinite text generation via context swapping
|
||||
// if we run out of context:
|
||||
// - take the n_keep first tokens from the original prompt (via n_past)
|
||||
// - take half of the last (n_ctx - n_keep) tokens and recompute the
|
||||
// logits in batches
|
||||
if (n_past + (int)embd.size() > n_ctx) {
|
||||
const int n_left = n_past - params.n_keep;
|
||||
|
||||
// always keep the first token - BOS
|
||||
n_past = std::max(1, params.n_keep);
|
||||
|
||||
// insert n_left/2 tokens at the start of embd from last_n_tokens
|
||||
embd.insert(embd.begin(),
|
||||
last_n_tokens.begin() + n_ctx - n_left / 2 - embd.size(),
|
||||
last_n_tokens.end() - embd.size());
|
||||
|
||||
// stop saving session if we run out of context
|
||||
path_session.clear();
|
||||
|
||||
// printf("\n---\n");
|
||||
// printf("resetting: '");
|
||||
// for (int i = 0; i < (int) embd.size(); i++) {
|
||||
// printf("%s", llama_token_to_str(ctx, embd[i]));
|
||||
// }
|
||||
// printf("'\n");
|
||||
// printf("\n---\n");
|
||||
}
|
||||
|
||||
// try to reuse a matching prefix from the loaded session instead of
|
||||
// re-eval (via n_past)
|
||||
if (n_session_consumed < (int)session_tokens.size()) {
|
||||
size_t i = 0;
|
||||
for (; i < embd.size(); i++) {
|
||||
if (embd[i] != session_tokens[n_session_consumed]) {
|
||||
session_tokens.resize(n_session_consumed);
|
||||
break;
|
||||
}
|
||||
|
||||
n_past++;
|
||||
n_session_consumed++;
|
||||
|
||||
if (n_session_consumed >= (int)session_tokens.size()) {
|
||||
++i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (i > 0) {
|
||||
embd.erase(embd.begin(), embd.begin() + i);
|
||||
}
|
||||
}
|
||||
|
||||
// evaluate tokens in batches
|
||||
// embd is typically prepared beforehand to fit within a batch, but not
|
||||
// always
|
||||
for (int i = 0; i < (int)embd.size(); i += params.n_batch) {
|
||||
int n_eval = (int)embd.size() - i;
|
||||
if (n_eval > params.n_batch) {
|
||||
n_eval = params.n_batch;
|
||||
}
|
||||
if (llama_eval(ctx, &embd[i], n_eval, n_past, params.n_threads)) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
n_past += n_eval;
|
||||
}
|
||||
|
||||
if (embd.size() > 0 && !path_session.empty()) {
|
||||
session_tokens.insert(session_tokens.end(), embd.begin(), embd.end());
|
||||
n_session_consumed = session_tokens.size();
|
||||
}
|
||||
}
|
||||
|
||||
embd.clear();
|
||||
|
||||
if ((int)embd_inp.size() <= n_consumed) {
|
||||
// out of user input, sample next token
|
||||
const float temp = params.temp;
|
||||
const int32_t top_k =
|
||||
params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k;
|
||||
const float top_p = params.top_p;
|
||||
const float tfs_z = params.tfs_z;
|
||||
const float typical_p = params.typical_p;
|
||||
const int32_t repeat_last_n =
|
||||
params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
|
||||
const float repeat_penalty = params.repeat_penalty;
|
||||
const float alpha_presence = params.presence_penalty;
|
||||
const float alpha_frequency = params.frequency_penalty;
|
||||
const int mirostat = params.mirostat;
|
||||
const float mirostat_tau = params.mirostat_tau;
|
||||
const float mirostat_eta = params.mirostat_eta;
|
||||
const bool penalize_nl = params.penalize_nl;
|
||||
|
||||
// optionally save the session on first sample (for faster prompt loading
|
||||
// next time)
|
||||
if (!path_session.empty() && need_to_save_session &&
|
||||
!params.prompt_cache_ro) {
|
||||
need_to_save_session = false;
|
||||
llama_save_session_file(ctx, path_session.c_str(),
|
||||
session_tokens.data(), session_tokens.size());
|
||||
}
|
||||
|
||||
llama_token id = 0;
|
||||
|
||||
{
|
||||
auto logits = llama_get_logits(ctx);
|
||||
auto n_vocab = llama_n_vocab(ctx);
|
||||
|
||||
// Apply params.logit_bias map
|
||||
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end();
|
||||
it++) {
|
||||
logits[it->first] += it->second;
|
||||
}
|
||||
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
candidates.emplace_back(
|
||||
llama_token_data{token_id, logits[token_id], 0.0f});
|
||||
}
|
||||
|
||||
llama_token_data_array candidates_p = {candidates.data(),
|
||||
candidates.size(), false};
|
||||
|
||||
// Apply penalties
|
||||
float nl_logit = logits[llama_token_nl()];
|
||||
auto last_n_repeat =
|
||||
std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
|
||||
llama_sample_repetition_penalty(
|
||||
ctx, &candidates_p,
|
||||
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
||||
last_n_repeat, repeat_penalty);
|
||||
llama_sample_frequency_and_presence_penalties(
|
||||
ctx, &candidates_p,
|
||||
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
||||
last_n_repeat, alpha_frequency, alpha_presence);
|
||||
if (!penalize_nl) {
|
||||
logits[llama_token_nl()] = nl_logit;
|
||||
}
|
||||
|
||||
if (temp <= 0) {
|
||||
// Greedy sampling
|
||||
id = llama_sample_token_greedy(ctx, &candidates_p);
|
||||
} else {
|
||||
if (mirostat == 1) {
|
||||
static float mirostat_mu = 2.0f * mirostat_tau;
|
||||
const int mirostat_m = 100;
|
||||
llama_sample_temperature(ctx, &candidates_p, temp);
|
||||
id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau,
|
||||
mirostat_eta, mirostat_m,
|
||||
&mirostat_mu);
|
||||
} else if (mirostat == 2) {
|
||||
static float mirostat_mu = 2.0f * mirostat_tau;
|
||||
llama_sample_temperature(ctx, &candidates_p, temp);
|
||||
id = llama_sample_token_mirostat_v2(
|
||||
ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
|
||||
} else {
|
||||
// Temperature sampling
|
||||
llama_sample_top_k(ctx, &candidates_p, top_k, 1);
|
||||
llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1);
|
||||
llama_sample_typical(ctx, &candidates_p, typical_p, 1);
|
||||
llama_sample_top_p(ctx, &candidates_p, top_p, 1);
|
||||
llama_sample_temperature(ctx, &candidates_p, temp);
|
||||
id = llama_sample_token(ctx, &candidates_p);
|
||||
}
|
||||
}
|
||||
// printf("`%d`", candidates_p.size);
|
||||
|
||||
last_n_tokens.erase(last_n_tokens.begin());
|
||||
last_n_tokens.push_back(id);
|
||||
}
|
||||
|
||||
// add it to the context
|
||||
embd.push_back(id);
|
||||
|
||||
// decrement remaining sampling budget
|
||||
--n_remain;
|
||||
|
||||
// call the token callback, no need to check if one is actually
|
||||
// registered, that will be handled on the Go side.
|
||||
auto token_str = llama_token_to_str(ctx, id);
|
||||
if (!tokenCallback(state_pr, (char *)token_str)) {
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
// some user input remains from prompt or interaction, forward it to
|
||||
// processing
|
||||
while ((int)embd_inp.size() > n_consumed) {
|
||||
embd.push_back(embd_inp[n_consumed]);
|
||||
last_n_tokens.erase(last_n_tokens.begin());
|
||||
last_n_tokens.push_back(embd_inp[n_consumed]);
|
||||
++n_consumed;
|
||||
if ((int)embd.size() >= params.n_batch) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (auto id : embd) {
|
||||
res += llama_token_to_str(ctx, id);
|
||||
}
|
||||
|
||||
// check for stop prompt
|
||||
if (params.antiprompt.size()) {
|
||||
std::string last_output;
|
||||
for (auto id : last_n_tokens) {
|
||||
last_output += llama_token_to_str(ctx, id);
|
||||
}
|
||||
// Check if each of the reverse prompts appears at the end of the output.
|
||||
for (std::string &antiprompt : params.antiprompt) {
|
||||
// size_t extra_padding = params.interactive ? 0 : 2;
|
||||
size_t extra_padding = 2;
|
||||
size_t search_start_pos =
|
||||
last_output.length() >
|
||||
static_cast<size_t>(antiprompt.length() + extra_padding)
|
||||
? last_output.length() -
|
||||
static_cast<size_t>(antiprompt.length() + extra_padding)
|
||||
: 0;
|
||||
|
||||
if (last_output.find(antiprompt.c_str(), search_start_pos) !=
|
||||
std::string::npos) {
|
||||
goto end;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// end of text token
|
||||
if (!embd.empty() && embd.back() == llama_token_eos()) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (!path_session.empty() && params.prompt_cache_all &&
|
||||
!params.prompt_cache_ro) {
|
||||
if (debug) {
|
||||
fprintf(stderr, "\n%s: saving final output to session file '%s'\n",
|
||||
__func__, path_session.c_str());
|
||||
}
|
||||
llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(),
|
||||
session_tokens.size());
|
||||
}
|
||||
|
||||
end:
|
||||
#if defined(_WIN32)
|
||||
signal(SIGINT, SIG_DFL);
|
||||
#endif
|
||||
|
||||
if (debug) {
|
||||
llama_print_timings(ctx);
|
||||
llama_reset_timings(ctx);
|
||||
}
|
||||
|
||||
strcpy(result, res.c_str());
|
||||
return 0;
|
||||
}
|
||||
|
||||
void llama_binding_free_model(void *state_ptr) {
|
||||
llama_context *ctx = (llama_context *)state_ptr;
|
||||
llama_free(ctx);
|
||||
}
|
||||
|
||||
void llama_free_params(void *params_ptr) {
|
||||
gpt_params *params = (gpt_params *)params_ptr;
|
||||
delete params;
|
||||
}
|
||||
|
||||
int load_state(void *ctx, char *statefile, char *modes) {
|
||||
llama_context *state = (llama_context *)ctx;
|
||||
const llama_context *constState = static_cast<const llama_context *>(state);
|
||||
const size_t state_size = llama_get_state_size(state);
|
||||
uint8_t *state_mem = new uint8_t[state_size];
|
||||
|
||||
{
|
||||
FILE *fp_read = fopen(statefile, modes);
|
||||
if (state_size != llama_get_state_size(constState)) {
|
||||
fprintf(stderr, "\n%s : failed to validate state size\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
const size_t ret = fread(state_mem, 1, state_size, fp_read);
|
||||
if (ret != state_size) {
|
||||
fprintf(stderr, "\n%s : failed to read state\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
llama_set_state_data(
|
||||
state, state_mem); // could also read directly from memory mapped file
|
||||
fclose(fp_read);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void save_state(void *ctx, char *dst, char *modes) {
|
||||
llama_context *state = (llama_context *)ctx;
|
||||
|
||||
const size_t state_size = llama_get_state_size(state);
|
||||
uint8_t *state_mem = new uint8_t[state_size];
|
||||
|
||||
// Save state (rng, logits, embedding and kv_cache) to file
|
||||
{
|
||||
FILE *fp_write = fopen(dst, modes);
|
||||
llama_copy_state_data(
|
||||
state, state_mem); // could also copy directly to memory mapped file
|
||||
fwrite(state_mem, 1, state_size, fp_write);
|
||||
fclose(fp_write);
|
||||
}
|
||||
}
|
||||
|
||||
void *llama_allocate_params(
|
||||
const char *prompt, int seed, int threads, int tokens, int top_k,
|
||||
float top_p, float temp, float repeat_penalty, int repeat_last_n,
|
||||
bool ignore_eos, bool memory_f16, int n_batch, int n_keep,
|
||||
const char **antiprompt, int antiprompt_count, float tfs_z, float typical_p,
|
||||
float frequency_penalty, float presence_penalty, int mirostat,
|
||||
float mirostat_eta, float mirostat_tau, bool penalize_nl,
|
||||
const char *logit_bias, bool mlock, bool mmap, const char *maingpu,
|
||||
const char *tensorsplit) {
|
||||
gpt_params *params = new gpt_params;
|
||||
params->seed = seed;
|
||||
params->n_threads = threads;
|
||||
params->n_predict = tokens;
|
||||
params->repeat_last_n = repeat_last_n;
|
||||
params->top_k = top_k;
|
||||
params->top_p = top_p;
|
||||
params->memory_f16 = memory_f16;
|
||||
params->temp = temp;
|
||||
params->use_mmap = mmap;
|
||||
params->use_mlock = mlock;
|
||||
params->repeat_penalty = repeat_penalty;
|
||||
params->n_batch = n_batch;
|
||||
params->n_keep = n_keep;
|
||||
if (maingpu[0] != '\0') {
|
||||
params->main_gpu = std::stoi(maingpu);
|
||||
}
|
||||
|
||||
if (tensorsplit[0] != '\0') {
|
||||
std::string arg_next = tensorsplit;
|
||||
// split string by , and /
|
||||
const std::regex regex{R"([,/]+)"};
|
||||
std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
|
||||
std::vector<std::string> split_arg{it, {}};
|
||||
GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
|
||||
|
||||
for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
|
||||
if (i < split_arg.size()) {
|
||||
params->tensor_split[i] = std::stof(split_arg[i]);
|
||||
} else {
|
||||
params->tensor_split[i] = 0.0f;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (ignore_eos) {
|
||||
params->logit_bias[llama_token_eos()] = -INFINITY;
|
||||
}
|
||||
|
||||
for (int i = 0; i < antiprompt_count; i++) {
|
||||
params->antiprompt.push_back(antiprompt[i]);
|
||||
}
|
||||
|
||||
params->tfs_z = tfs_z;
|
||||
params->typical_p = typical_p;
|
||||
params->presence_penalty = presence_penalty;
|
||||
params->mirostat = mirostat;
|
||||
params->mirostat_eta = mirostat_eta;
|
||||
params->mirostat_tau = mirostat_tau;
|
||||
params->penalize_nl = penalize_nl;
|
||||
std::stringstream ss(logit_bias);
|
||||
llama_token key;
|
||||
char sign;
|
||||
std::string value_str;
|
||||
if (ss >> key && ss >> sign && std::getline(ss, value_str) &&
|
||||
(sign == '+' || sign == '-')) {
|
||||
params->logit_bias[key] =
|
||||
std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
|
||||
}
|
||||
params->frequency_penalty = frequency_penalty;
|
||||
params->prompt = prompt;
|
||||
|
||||
return params;
|
||||
}
|
||||
|
||||
void *load_model(const char *fname, int n_ctx, int n_seed, bool memory_f16,
|
||||
bool mlock, bool embeddings, bool mmap, bool low_vram,
|
||||
bool vocab_only, int n_gpu_layers, int n_batch,
|
||||
const char *maingpu, const char *tensorsplit, bool numa) {
|
||||
// load the model
|
||||
auto lparams = llama_context_default_params();
|
||||
|
||||
lparams.n_ctx = n_ctx;
|
||||
lparams.seed = n_seed;
|
||||
lparams.f16_kv = memory_f16;
|
||||
lparams.embedding = embeddings;
|
||||
lparams.use_mlock = mlock;
|
||||
lparams.n_gpu_layers = n_gpu_layers;
|
||||
lparams.use_mmap = mmap;
|
||||
lparams.low_vram = low_vram;
|
||||
lparams.vocab_only = vocab_only;
|
||||
|
||||
if (maingpu[0] != '\0') {
|
||||
lparams.main_gpu = std::stoi(maingpu);
|
||||
}
|
||||
|
||||
if (tensorsplit[0] != '\0') {
|
||||
std::string arg_next = tensorsplit;
|
||||
// split string by , and /
|
||||
const std::regex regex{R"([,/]+)"};
|
||||
std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
|
||||
std::vector<std::string> split_arg{it, {}};
|
||||
GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
|
||||
|
||||
for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
|
||||
if (i < split_arg.size()) {
|
||||
lparams.tensor_split[i] = std::stof(split_arg[i]);
|
||||
} else {
|
||||
lparams.tensor_split[i] = 0.0f;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
lparams.n_batch = n_batch;
|
||||
|
||||
llama_init_backend(numa);
|
||||
void *res = nullptr;
|
||||
try {
|
||||
res = llama_init_from_file(fname, lparams);
|
||||
} catch (std::runtime_error &e) {
|
||||
fprintf(stderr, "failed %s", e.what());
|
||||
return res;
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
@@ -1,69 +0,0 @@
|
||||
// MIT License
|
||||
|
||||
// Copyright (c) 2023 go-skynet authors
|
||||
|
||||
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
// of this software and associated documentation files (the "Software"), to deal
|
||||
// in the Software without restriction, including without limitation the rights
|
||||
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
// copies of the Software, and to permit persons to whom the Software is
|
||||
// furnished to do so, subject to the following conditions:
|
||||
|
||||
// The above copyright notice and this permission notice shall be included in all
|
||||
// copies or substantial portions of the Software.
|
||||
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
// SOFTWARE.
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
||||
extern "C" {
|
||||
|
||||
#endif
|
||||
|
||||
#include <stdbool.h>
|
||||
|
||||
extern unsigned char tokenCallback(void *, char *);
|
||||
|
||||
int load_state(void *ctx, char *statefile, char *modes);
|
||||
|
||||
int eval(void *params_ptr, void *ctx, char *text);
|
||||
|
||||
void save_state(void *ctx, char *dst, char *modes);
|
||||
|
||||
void *load_model(const char *fname, int n_ctx, int n_seed, bool memory_f16,
|
||||
bool mlock, bool embeddings, bool mmap, bool low_vram,
|
||||
bool vocab_only, int n_gpu, int n_batch, const char *maingpu,
|
||||
const char *tensorsplit, bool numa);
|
||||
|
||||
int get_embeddings(void *params_ptr, void *state_pr, float *res_embeddings);
|
||||
|
||||
int get_token_embeddings(void *params_ptr, void *state_pr, int *tokens,
|
||||
int tokenSize, float *res_embeddings);
|
||||
|
||||
void *llama_allocate_params(
|
||||
const char *prompt, int seed, int threads, int tokens, int top_k,
|
||||
float top_p, float temp, float repeat_penalty, int repeat_last_n,
|
||||
bool ignore_eos, bool memory_f16, int n_batch, int n_keep,
|
||||
const char **antiprompt, int antiprompt_count, float tfs_z, float typical_p,
|
||||
float frequency_penalty, float presence_penalty, int mirostat,
|
||||
float mirostat_eta, float mirostat_tau, bool penalize_nl,
|
||||
const char *logit_bias, bool mlock, bool mmap, const char *maingpu,
|
||||
const char *tensorsplit);
|
||||
|
||||
void llama_free_params(void *params_ptr);
|
||||
|
||||
void llama_binding_free_model(void *state);
|
||||
|
||||
int llama_predict(void *params_ptr, void *state_pr, char *result, bool debug);
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
||||
}
|
||||
|
||||
#endif
|
3414
llama/ggml-cuda.cu
Normal file
3414
llama/ggml-cuda.cu
Normal file
File diff suppressed because it is too large
Load Diff
62
llama/ggml-cuda.h
Normal file
62
llama/ggml-cuda.h
Normal file
@@ -0,0 +1,62 @@
|
||||
/**
|
||||
* llama.cpp - git 5bf2a2771886ee86137e01dbc7492f78fb392066
|
||||
*
|
||||
* MIT License
|
||||
*
|
||||
* Copyright (c) 2023 Georgi Gerganov
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in all
|
||||
* copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
* SOFTWARE.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define GGML_CUDA_MAX_DEVICES 16
|
||||
|
||||
void ggml_init_cublas(void);
|
||||
void ggml_cuda_set_tensor_split(const float * tensor_split);
|
||||
|
||||
void ggml_cuda_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
|
||||
bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
|
||||
size_t ggml_cuda_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
|
||||
void ggml_cuda_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize);
|
||||
|
||||
// TODO: export these with GGML_API
|
||||
void * ggml_cuda_host_malloc(size_t size);
|
||||
void ggml_cuda_host_free(void * ptr);
|
||||
|
||||
void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor);
|
||||
|
||||
void ggml_cuda_free_data(struct ggml_tensor * tensor);
|
||||
void ggml_cuda_assign_buffers(struct ggml_tensor * tensor);
|
||||
void ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor);
|
||||
void ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tensor);
|
||||
void ggml_cuda_set_main_device(int main_device);
|
||||
void ggml_cuda_set_scratch_size(size_t scratch_size);
|
||||
void ggml_cuda_free_scratch(void);
|
||||
bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
97
llama/ggml-metal.h
Normal file
97
llama/ggml-metal.h
Normal file
@@ -0,0 +1,97 @@
|
||||
/**
|
||||
* llama.cpp - git 5bf2a2771886ee86137e01dbc7492f78fb392066
|
||||
*
|
||||
* MIT License
|
||||
*
|
||||
* Copyright (c) 2023 Georgi Gerganov
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in all
|
||||
* copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
* SOFTWARE.
|
||||
*/
|
||||
|
||||
// An interface allowing to compute ggml_cgraph with Metal
|
||||
//
|
||||
// This is a fully functional interface that extends ggml with GPU support for Apple devices.
|
||||
// A similar interface can be created for other GPU backends (e.g. Vulkan, CUDA, OpenCL, etc.)
|
||||
//
|
||||
// How it works?
|
||||
//
|
||||
// As long as your program can create and evaluate a ggml_cgraph on the CPU, you can use this
|
||||
// interface to evaluate the same graph on the GPU. Instead of using ggml_graph_compute(), you
|
||||
// use ggml_metal_graph_compute() (or ggml_vulkan_graph_compute(), etc.)
|
||||
//
|
||||
// You only need to make sure that all memory buffers that you used during the graph creation
|
||||
// are mapped to the device memory with the ggml_metal_add_buffer() function. This mapping is
|
||||
// used during the graph evaluation to determine the arguments of the compute kernels.
|
||||
//
|
||||
// Synchronization between device and host memory (for example for input and output tensors)
|
||||
// is done with the ggml_metal_set_tensor() and ggml_metal_get_tensor() functions.
|
||||
//
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
// max memory buffers that can be mapped to the device
|
||||
#define GGML_METAL_MAX_BUFFERS 16
|
||||
|
||||
struct ggml_tensor;
|
||||
struct ggml_cgraph;
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct ggml_metal_context;
|
||||
|
||||
// number of command buffers to use
|
||||
struct ggml_metal_context * ggml_metal_init(int n_cb);
|
||||
void ggml_metal_free(struct ggml_metal_context * ctx);
|
||||
|
||||
// set the number of command buffers to use
|
||||
void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb);
|
||||
|
||||
// creates a mapping between a host memory buffer and a device memory buffer
|
||||
// - make sure to map all buffers used in the graph before calling ggml_metal_graph_compute
|
||||
// - the mapping is used during computation to determine the arguments of the compute kernels
|
||||
// - you don't need to keep the host memory buffer allocated as it is never accessed by Metal
|
||||
// - max_size specifies the maximum size of a tensor and is used to create shared views such
|
||||
// that it is guaranteed that the tensor will fit in at least one of the views
|
||||
//
|
||||
bool ggml_metal_add_buffer(
|
||||
struct ggml_metal_context * ctx,
|
||||
const char * name,
|
||||
void * data,
|
||||
size_t size,
|
||||
size_t max_size);
|
||||
|
||||
// set data from host memory into the device
|
||||
void ggml_metal_set_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t);
|
||||
|
||||
// get data from the device into host memory
|
||||
void ggml_metal_get_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t);
|
||||
|
||||
// same as ggml_graph_compute but uses Metal
|
||||
// creates gf->n_threads command buffers in parallel
|
||||
void ggml_metal_graph_compute(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
1016
llama/ggml-metal.m
Normal file
1016
llama/ggml-metal.m
Normal file
File diff suppressed because it is too large
Load Diff
1855
llama/ggml-metal.metal
Normal file
1855
llama/ggml-metal.metal
Normal file
File diff suppressed because it is too large
Load Diff
18380
llama/ggml.c
Normal file
18380
llama/ggml.c
Normal file
File diff suppressed because it is too large
Load Diff
1575
llama/ggml.h
Normal file
1575
llama/ggml.h
Normal file
File diff suppressed because it is too large
Load Diff
3926
llama/k_quants.c
Normal file
3926
llama/k_quants.c
Normal file
File diff suppressed because it is too large
Load Diff
183
llama/k_quants.h
Normal file
183
llama/k_quants.h
Normal file
@@ -0,0 +1,183 @@
|
||||
/**
|
||||
* llama.cpp - git 5bf2a2771886ee86137e01dbc7492f78fb392066
|
||||
*
|
||||
* MIT License
|
||||
*
|
||||
* Copyright (c) 2023 Georgi Gerganov
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in all
|
||||
* copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
* SOFTWARE.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
#include <stdint.h>
|
||||
#include <assert.h>
|
||||
#include <stddef.h>
|
||||
|
||||
// Super-block size
|
||||
#ifdef GGML_QKK_64
|
||||
#define QK_K 64
|
||||
#define K_SCALE_SIZE 4
|
||||
#else
|
||||
#define QK_K 256
|
||||
#define K_SCALE_SIZE 12
|
||||
#endif
|
||||
|
||||
//
|
||||
// Super-block quantization structures
|
||||
//
|
||||
|
||||
// 2-bit quantization
|
||||
// weight is represented as x = a * q + b
|
||||
// 16 blocks of 16 elemenets each
|
||||
// Effectively 2.5625 bits per weight
|
||||
typedef struct {
|
||||
uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
|
||||
uint8_t qs[QK_K/4]; // quants
|
||||
ggml_fp16_t d; // super-block scale for quantized scales
|
||||
ggml_fp16_t dmin; // super-block scale for quantized mins
|
||||
} block_q2_K;
|
||||
static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "wrong q2_K block size/padding");
|
||||
|
||||
// 3-bit quantization
|
||||
// weight is represented as x = a * q
|
||||
// 16 blocks of 16 elemenets each
|
||||
// Effectively 3.4375 bits per weight
|
||||
#ifdef GGML_QKK_64
|
||||
typedef struct {
|
||||
uint8_t hmask[QK_K/8]; // quants - high bit
|
||||
uint8_t qs[QK_K/4]; // quants - low 2 bits
|
||||
uint8_t scales[2];
|
||||
ggml_fp16_t d; // super-block scale
|
||||
} block_q3_K;
|
||||
static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + 2, "wrong q3_K block size/padding");
|
||||
#else
|
||||
typedef struct {
|
||||
uint8_t hmask[QK_K/8]; // quants - high bit
|
||||
uint8_t qs[QK_K/4]; // quants - low 2 bits
|
||||
uint8_t scales[12]; // scales, quantized with 6 bits
|
||||
ggml_fp16_t d; // super-block scale
|
||||
} block_q3_K;
|
||||
static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + 12, "wrong q3_K block size/padding");
|
||||
#endif
|
||||
|
||||
// 4-bit quantization
|
||||
// 16 blocks of 32 elements each
|
||||
// weight is represented as x = a * q + b
|
||||
// Effectively 4.5 bits per weight
|
||||
#ifdef GGML_QKK_64
|
||||
typedef struct {
|
||||
ggml_fp16_t d[2]; // super-block scales/mins
|
||||
uint8_t scales[2]; // 4-bit block scales/mins
|
||||
uint8_t qs[QK_K/2]; // 4--bit quants
|
||||
} block_q4_K;
|
||||
static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + QK_K/2 + 2, "wrong q4_K block size/padding");
|
||||
#else
|
||||
typedef struct {
|
||||
ggml_fp16_t d; // super-block scale for quantized scales
|
||||
ggml_fp16_t dmin; // super-block scale for quantized mins
|
||||
uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
|
||||
uint8_t qs[QK_K/2]; // 4--bit quants
|
||||
} block_q4_K;
|
||||
static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2, "wrong q4_K block size/padding");
|
||||
#endif
|
||||
|
||||
// 5-bit quantization
|
||||
// 16 blocks of 32 elements each
|
||||
// weight is represented as x = a * q + b
|
||||
// Effectively 5.5 bits per weight
|
||||
#ifdef GGML_QKK_64
|
||||
typedef struct {
|
||||
ggml_fp16_t d; // super-block scale
|
||||
int8_t scales[QK_K/16]; // 8-bit block scales
|
||||
uint8_t qh[QK_K/8]; // quants, high bit
|
||||
uint8_t qs[QK_K/2]; // quants, low 4 bits
|
||||
} block_q5_K;
|
||||
static_assert(sizeof(block_q5_K) == sizeof(ggml_fp16_t) + QK_K/2 + QK_K/8 + QK_K/16, "wrong q5_K block size/padding");
|
||||
#else
|
||||
typedef struct {
|
||||
ggml_fp16_t d; // super-block scale for quantized scales
|
||||
ggml_fp16_t dmin; // super-block scale for quantized mins
|
||||
uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
|
||||
uint8_t qh[QK_K/8]; // quants, high bit
|
||||
uint8_t qs[QK_K/2]; // quants, low 4 bits
|
||||
} block_q5_K;
|
||||
static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2 + QK_K/8, "wrong q5_K block size/padding");
|
||||
#endif
|
||||
|
||||
// 6-bit quantization
|
||||
// weight is represented as x = a * q
|
||||
// 16 blocks of 16 elemenets each
|
||||
// Effectively 6.5625 bits per weight
|
||||
typedef struct {
|
||||
uint8_t ql[QK_K/2]; // quants, lower 4 bits
|
||||
uint8_t qh[QK_K/4]; // quants, upper 2 bits
|
||||
int8_t scales[QK_K/16]; // scales, quantized with 8 bits
|
||||
ggml_fp16_t d; // super-block scale
|
||||
} block_q6_K;
|
||||
static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + QK_K / 16 + 3*QK_K/4, "wrong q6_K block size/padding");
|
||||
|
||||
// This is only used for intermediate quantization and dot products
|
||||
typedef struct {
|
||||
float d; // delta
|
||||
int8_t qs[QK_K]; // quants
|
||||
int16_t bsums[QK_K/16]; // sum of quants in groups of 16
|
||||
} block_q8_K;
|
||||
static_assert(sizeof(block_q8_K) == sizeof(float) + QK_K + QK_K/16*sizeof(int16_t), "wrong q8_K block size/padding");
|
||||
|
||||
|
||||
// Quantization
|
||||
void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int k);
|
||||
void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int k);
|
||||
void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k);
|
||||
void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k);
|
||||
void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k);
|
||||
void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k);
|
||||
|
||||
void quantize_row_q2_K(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_q3_K(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_q4_K(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_q5_K(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_q6_K(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_q8_K(const float * restrict x, void * restrict y, int k);
|
||||
|
||||
// Dequantization
|
||||
void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int k);
|
||||
void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k);
|
||||
void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int k);
|
||||
void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int k);
|
||||
void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int k);
|
||||
void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int k);
|
||||
|
||||
// Dot product
|
||||
void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
|
||||
// Quantization with histogram collection
|
||||
size_t ggml_quantize_q2_K(const float * src, void * dst, int n, int k, int64_t * hist);
|
||||
size_t ggml_quantize_q3_K(const float * src, void * dst, int n, int k, int64_t * hist);
|
||||
size_t ggml_quantize_q4_K(const float * src, void * dst, int n, int k, int64_t * hist);
|
||||
size_t ggml_quantize_q5_K(const float * src, void * dst, int n, int k, int64_t * hist);
|
||||
size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist);
|
||||
|
530
llama/llama-util.h
Normal file
530
llama/llama-util.h
Normal file
@@ -0,0 +1,530 @@
|
||||
/**
|
||||
* llama.cpp - git 5bf2a2771886ee86137e01dbc7492f78fb392066
|
||||
*
|
||||
* MIT License
|
||||
*
|
||||
* Copyright (c) 2023 Georgi Gerganov
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in all
|
||||
* copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
* SOFTWARE.
|
||||
*/
|
||||
|
||||
// Internal header to be included only by llama.cpp.
|
||||
// Contains wrappers around OS interfaces.
|
||||
|
||||
#ifndef LLAMA_UTIL_H
|
||||
#define LLAMA_UTIL_H
|
||||
|
||||
#include <cstdio>
|
||||
#include <cstdint>
|
||||
#include <cerrno>
|
||||
#include <cstring>
|
||||
#include <cstdarg>
|
||||
#include <cstdlib>
|
||||
#include <climits>
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <stdexcept>
|
||||
|
||||
#ifdef __has_include
|
||||
#if __has_include(<unistd.h>)
|
||||
#include <unistd.h>
|
||||
#if defined(_POSIX_MAPPED_FILES)
|
||||
#include <sys/mman.h>
|
||||
#endif
|
||||
#if defined(_POSIX_MEMLOCK_RANGE)
|
||||
#include <sys/resource.h>
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(_WIN32)
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#ifndef NOMINMAX
|
||||
#define NOMINMAX
|
||||
#endif
|
||||
#include <windows.h>
|
||||
#include <io.h>
|
||||
#include <stdio.h> // for _fseeki64
|
||||
#endif
|
||||
|
||||
#define LLAMA_ASSERT(x) \
|
||||
do { \
|
||||
if (!(x)) { \
|
||||
fprintf(stderr, "LLAMA_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
|
||||
abort(); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#ifdef __GNUC__
|
||||
#ifdef __MINGW32__
|
||||
__attribute__((format(gnu_printf, 1, 2)))
|
||||
#else
|
||||
__attribute__((format(printf, 1, 2)))
|
||||
#endif
|
||||
#endif
|
||||
static std::string format(const char * fmt, ...) {
|
||||
va_list ap, ap2;
|
||||
va_start(ap, fmt);
|
||||
va_copy(ap2, ap);
|
||||
int size = vsnprintf(NULL, 0, fmt, ap);
|
||||
LLAMA_ASSERT(size >= 0 && size < INT_MAX);
|
||||
std::vector<char> buf(size + 1);
|
||||
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
|
||||
LLAMA_ASSERT(size2 == size);
|
||||
va_end(ap2);
|
||||
va_end(ap);
|
||||
return std::string(buf.data(), size);
|
||||
}
|
||||
|
||||
struct llama_file {
|
||||
// use FILE * so we don't have to re-open the file to mmap
|
||||
FILE * fp;
|
||||
size_t size;
|
||||
|
||||
llama_file(const char * fname, const char * mode) {
|
||||
fp = std::fopen(fname, mode);
|
||||
if (fp == NULL) {
|
||||
throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
|
||||
}
|
||||
seek(0, SEEK_END);
|
||||
size = tell();
|
||||
seek(0, SEEK_SET);
|
||||
}
|
||||
|
||||
size_t tell() const {
|
||||
#ifdef _WIN32
|
||||
__int64 ret = _ftelli64(fp);
|
||||
#else
|
||||
long ret = std::ftell(fp);
|
||||
#endif
|
||||
LLAMA_ASSERT(ret != -1); // this really shouldn't fail
|
||||
return (size_t) ret;
|
||||
}
|
||||
|
||||
void seek(size_t offset, int whence) {
|
||||
#ifdef _WIN32
|
||||
int ret = _fseeki64(fp, (__int64) offset, whence);
|
||||
#else
|
||||
int ret = std::fseek(fp, (long) offset, whence);
|
||||
#endif
|
||||
LLAMA_ASSERT(ret == 0); // same
|
||||
}
|
||||
|
||||
void read_raw(void * ptr, size_t len) const {
|
||||
if (len == 0) {
|
||||
return;
|
||||
}
|
||||
errno = 0;
|
||||
std::size_t ret = std::fread(ptr, len, 1, fp);
|
||||
if (ferror(fp)) {
|
||||
throw std::runtime_error(format("read error: %s", strerror(errno)));
|
||||
}
|
||||
if (ret != 1) {
|
||||
throw std::runtime_error(std::string("unexpectedly reached end of file"));
|
||||
}
|
||||
}
|
||||
|
||||
std::uint32_t read_u32() {
|
||||
std::uint32_t ret;
|
||||
read_raw(&ret, sizeof(ret));
|
||||
return ret;
|
||||
}
|
||||
|
||||
std::string read_string(std::uint32_t len) {
|
||||
std::vector<char> chars(len);
|
||||
read_raw(chars.data(), len);
|
||||
return std::string(chars.data(), len);
|
||||
}
|
||||
|
||||
void write_raw(const void * ptr, size_t len) const {
|
||||
if (len == 0) {
|
||||
return;
|
||||
}
|
||||
errno = 0;
|
||||
size_t ret = std::fwrite(ptr, len, 1, fp);
|
||||
if (ret != 1) {
|
||||
throw std::runtime_error(format("write error: %s", strerror(errno)));
|
||||
}
|
||||
}
|
||||
|
||||
void write_u32(std::uint32_t val) {
|
||||
write_raw(&val, sizeof(val));
|
||||
}
|
||||
|
||||
~llama_file() {
|
||||
if (fp) {
|
||||
std::fclose(fp);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
#if defined(_WIN32)
|
||||
static std::string llama_format_win_err(DWORD err) {
|
||||
LPSTR buf;
|
||||
size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
|
||||
NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
|
||||
if (!size) {
|
||||
return "FormatMessageA failed";
|
||||
}
|
||||
std::string ret(buf, size);
|
||||
LocalFree(buf);
|
||||
return ret;
|
||||
}
|
||||
#endif
|
||||
|
||||
struct llama_mmap {
|
||||
void * addr;
|
||||
size_t size;
|
||||
|
||||
llama_mmap(const llama_mmap &) = delete;
|
||||
|
||||
#ifdef _POSIX_MAPPED_FILES
|
||||
static constexpr bool SUPPORTED = true;
|
||||
|
||||
llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
|
||||
size = file->size;
|
||||
int fd = fileno(file->fp);
|
||||
int flags = MAP_PRIVATE;
|
||||
// prefetch/readahead impairs performance on NUMA systems
|
||||
if (numa) { prefetch = 0; }
|
||||
#ifdef __linux__
|
||||
if (prefetch) { flags |= MAP_POPULATE; }
|
||||
#endif
|
||||
addr = mmap(NULL, file->size, PROT_READ | PROT_WRITE, flags, fd, 0);
|
||||
if (addr == MAP_FAILED) {
|
||||
throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
|
||||
}
|
||||
|
||||
if (prefetch > 0) {
|
||||
// Advise the kernel to preload the mapped memory
|
||||
if (madvise(addr, std::min(file->size, prefetch), MADV_WILLNEED)) {
|
||||
fprintf(stderr, "warning: madvise(.., MADV_WILLNEED) failed: %s\n",
|
||||
strerror(errno));
|
||||
}
|
||||
}
|
||||
if (numa) {
|
||||
// advise the kernel not to use readahead
|
||||
// (because the next page might not belong on the same node)
|
||||
if (madvise(addr, file->size, MADV_RANDOM)) {
|
||||
fprintf(stderr, "warning: madvise(.., MADV_RANDOM) failed: %s\n",
|
||||
strerror(errno));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
~llama_mmap() {
|
||||
munmap(addr, size);
|
||||
}
|
||||
#elif defined(_WIN32)
|
||||
static constexpr bool SUPPORTED = true;
|
||||
|
||||
llama_mmap(struct llama_file * file, bool prefetch = true, bool numa = false) {
|
||||
(void) numa;
|
||||
|
||||
size = file->size;
|
||||
|
||||
HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
|
||||
|
||||
HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
|
||||
DWORD error = GetLastError();
|
||||
|
||||
if (hMapping == NULL) {
|
||||
throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
|
||||
}
|
||||
|
||||
addr = MapViewOfFile(hMapping, FILE_MAP_COPY, 0, 0, 0);
|
||||
error = GetLastError();
|
||||
CloseHandle(hMapping);
|
||||
|
||||
if (addr == NULL) {
|
||||
throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
|
||||
}
|
||||
|
||||
#if _WIN32_WINNT >= _WIN32_WINNT_WIN8
|
||||
if (prefetch) {
|
||||
// Advise the kernel to preload the mapped memory
|
||||
WIN32_MEMORY_RANGE_ENTRY range;
|
||||
range.VirtualAddress = addr;
|
||||
range.NumberOfBytes = (SIZE_T)size;
|
||||
if (!PrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
|
||||
fprintf(stderr, "warning: PrefetchVirtualMemory failed: %s\n",
|
||||
llama_format_win_err(GetLastError()).c_str());
|
||||
}
|
||||
}
|
||||
#else
|
||||
#pragma message("warning: You are building for pre-Windows 8; prefetch not supported")
|
||||
#endif // _WIN32_WINNT >= _WIN32_WINNT_WIN8
|
||||
}
|
||||
|
||||
~llama_mmap() {
|
||||
if (!UnmapViewOfFile(addr)) {
|
||||
fprintf(stderr, "warning: UnmapViewOfFile failed: %s\n",
|
||||
llama_format_win_err(GetLastError()).c_str());
|
||||
}
|
||||
}
|
||||
#else
|
||||
static constexpr bool SUPPORTED = false;
|
||||
|
||||
llama_mmap(struct llama_file *, bool prefetch = true, bool numa = false) {
|
||||
(void) prefetch;
|
||||
(void) numa;
|
||||
|
||||
throw std::runtime_error(std::string("mmap not supported"));
|
||||
}
|
||||
#endif
|
||||
};
|
||||
|
||||
// Represents some region of memory being locked using mlock or VirtualLock;
|
||||
// will automatically unlock on destruction.
|
||||
struct llama_mlock {
|
||||
void * addr = NULL;
|
||||
size_t size = 0;
|
||||
bool failed_already = false;
|
||||
|
||||
llama_mlock() {}
|
||||
llama_mlock(const llama_mlock &) = delete;
|
||||
|
||||
~llama_mlock() {
|
||||
if (size) {
|
||||
raw_unlock(addr, size);
|
||||
}
|
||||
}
|
||||
|
||||
void init(void * ptr) {
|
||||
LLAMA_ASSERT(addr == NULL && size == 0);
|
||||
addr = ptr;
|
||||
}
|
||||
|
||||
void grow_to(size_t target_size) {
|
||||
LLAMA_ASSERT(addr);
|
||||
if (failed_already) {
|
||||
return;
|
||||
}
|
||||
size_t granularity = lock_granularity();
|
||||
target_size = (target_size + granularity - 1) & ~(granularity - 1);
|
||||
if (target_size > size) {
|
||||
if (raw_lock((uint8_t *) addr + size, target_size - size)) {
|
||||
size = target_size;
|
||||
} else {
|
||||
failed_already = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef _POSIX_MEMLOCK_RANGE
|
||||
static constexpr bool SUPPORTED = true;
|
||||
|
||||
size_t lock_granularity() {
|
||||
return (size_t) sysconf(_SC_PAGESIZE);
|
||||
}
|
||||
|
||||
#ifdef __APPLE__
|
||||
#define MLOCK_SUGGESTION \
|
||||
"Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
|
||||
"decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l).\n"
|
||||
#else
|
||||
#define MLOCK_SUGGESTION \
|
||||
"Try increasing RLIMIT_MLOCK ('ulimit -l' as root).\n"
|
||||
#endif
|
||||
|
||||
bool raw_lock(const void * addr, size_t size) {
|
||||
if (!mlock(addr, size)) {
|
||||
return true;
|
||||
} else {
|
||||
char* errmsg = std::strerror(errno);
|
||||
bool suggest = (errno == ENOMEM);
|
||||
|
||||
// Check if the resource limit is fine after all
|
||||
struct rlimit lock_limit;
|
||||
if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit))
|
||||
suggest = false;
|
||||
if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size))
|
||||
suggest = false;
|
||||
|
||||
fprintf(stderr, "warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
|
||||
size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
#undef MLOCK_SUGGESTION
|
||||
|
||||
void raw_unlock(void * addr, size_t size) {
|
||||
if (munlock(addr, size)) {
|
||||
fprintf(stderr, "warning: failed to munlock buffer: %s\n", std::strerror(errno));
|
||||
}
|
||||
}
|
||||
#elif defined(_WIN32)
|
||||
static constexpr bool SUPPORTED = true;
|
||||
|
||||
size_t lock_granularity() {
|
||||
SYSTEM_INFO si;
|
||||
GetSystemInfo(&si);
|
||||
return (size_t) si.dwPageSize;
|
||||
}
|
||||
|
||||
bool raw_lock(void * ptr, size_t len) {
|
||||
for (int tries = 1; ; tries++) {
|
||||
if (VirtualLock(ptr, len)) {
|
||||
return true;
|
||||
}
|
||||
if (tries == 2) {
|
||||
fprintf(stderr, "warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
|
||||
len, size, llama_format_win_err(GetLastError()).c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
// It failed but this was only the first try; increase the working
|
||||
// set size and try again.
|
||||
SIZE_T min_ws_size, max_ws_size;
|
||||
if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
|
||||
fprintf(stderr, "warning: GetProcessWorkingSetSize failed: %s\n",
|
||||
llama_format_win_err(GetLastError()).c_str());
|
||||
return false;
|
||||
}
|
||||
// Per MSDN: "The maximum number of pages that a process can lock
|
||||
// is equal to the number of pages in its minimum working set minus
|
||||
// a small overhead."
|
||||
// Hopefully a megabyte is enough overhead:
|
||||
size_t increment = len + 1048576;
|
||||
// The minimum must be <= the maximum, so we need to increase both:
|
||||
min_ws_size += increment;
|
||||
max_ws_size += increment;
|
||||
if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
|
||||
fprintf(stderr, "warning: SetProcessWorkingSetSize failed: %s\n",
|
||||
llama_format_win_err(GetLastError()).c_str());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void raw_unlock(void * ptr, size_t len) {
|
||||
if (!VirtualUnlock(ptr, len)) {
|
||||
fprintf(stderr, "warning: failed to VirtualUnlock buffer: %s\n",
|
||||
llama_format_win_err(GetLastError()).c_str());
|
||||
}
|
||||
}
|
||||
#else
|
||||
static constexpr bool SUPPORTED = false;
|
||||
|
||||
size_t lock_granularity() {
|
||||
return (size_t) 65536;
|
||||
}
|
||||
|
||||
bool raw_lock(const void * addr, size_t len) {
|
||||
fprintf(stderr, "warning: mlock not supported on this system\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
void raw_unlock(const void * addr, size_t len) {}
|
||||
#endif
|
||||
};
|
||||
|
||||
// Replacement for std::vector<uint8_t> that doesn't require zero-initialization.
|
||||
struct llama_buffer {
|
||||
uint8_t * addr = NULL;
|
||||
size_t size = 0;
|
||||
|
||||
llama_buffer() = default;
|
||||
|
||||
void resize(size_t len) {
|
||||
#ifdef GGML_USE_METAL
|
||||
free(addr);
|
||||
int result = posix_memalign((void **) &addr, getpagesize(), len);
|
||||
if (result == 0) {
|
||||
memset(addr, 0, len);
|
||||
}
|
||||
else {
|
||||
addr = NULL;
|
||||
}
|
||||
#else
|
||||
delete[] addr;
|
||||
addr = new uint8_t[len];
|
||||
#endif
|
||||
size = len;
|
||||
}
|
||||
|
||||
~llama_buffer() {
|
||||
#ifdef GGML_USE_METAL
|
||||
free(addr);
|
||||
#else
|
||||
delete[] addr;
|
||||
#endif
|
||||
addr = NULL;
|
||||
}
|
||||
|
||||
// disable copy and move
|
||||
llama_buffer(const llama_buffer&) = delete;
|
||||
llama_buffer(llama_buffer&&) = delete;
|
||||
llama_buffer& operator=(const llama_buffer&) = delete;
|
||||
llama_buffer& operator=(llama_buffer&&) = delete;
|
||||
};
|
||||
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
#include "ggml-cuda.h"
|
||||
struct llama_ctx_buffer {
|
||||
uint8_t * addr = NULL;
|
||||
bool is_cuda;
|
||||
size_t size = 0;
|
||||
|
||||
llama_ctx_buffer() = default;
|
||||
|
||||
void resize(size_t size) {
|
||||
free();
|
||||
|
||||
addr = (uint8_t *) ggml_cuda_host_malloc(size);
|
||||
if (addr) {
|
||||
is_cuda = true;
|
||||
}
|
||||
else {
|
||||
// fall back to pageable memory
|
||||
addr = new uint8_t[size];
|
||||
is_cuda = false;
|
||||
}
|
||||
this->size = size;
|
||||
}
|
||||
|
||||
void free() {
|
||||
if (addr) {
|
||||
if (is_cuda) {
|
||||
ggml_cuda_host_free(addr);
|
||||
}
|
||||
else {
|
||||
delete[] addr;
|
||||
}
|
||||
}
|
||||
addr = NULL;
|
||||
}
|
||||
|
||||
~llama_ctx_buffer() {
|
||||
free();
|
||||
}
|
||||
|
||||
// disable copy and move
|
||||
llama_ctx_buffer(const llama_ctx_buffer&) = delete;
|
||||
llama_ctx_buffer(llama_ctx_buffer&&) = delete;
|
||||
llama_ctx_buffer& operator=(const llama_ctx_buffer&) = delete;
|
||||
llama_ctx_buffer& operator=(llama_ctx_buffer&&) = delete;
|
||||
};
|
||||
#else
|
||||
typedef llama_buffer llama_ctx_buffer;
|
||||
#endif
|
||||
|
||||
#endif
|
3700
llama/llama.cpp
Normal file
3700
llama/llama.cpp
Normal file
File diff suppressed because it is too large
Load Diff
417
llama/llama.go
417
llama/llama.go
@@ -1,215 +1,282 @@
|
||||
// MIT License
|
||||
|
||||
// Copyright (c) 2023 go-skynet authors
|
||||
|
||||
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
// of this software and associated documentation files (the "Software"), to deal
|
||||
// in the Software without restriction, including without limitation the rights
|
||||
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
// copies of the Software, and to permit persons to whom the Software is
|
||||
// furnished to do so, subject to the following conditions:
|
||||
|
||||
// The above copyright notice and this permission notice shall be included in all
|
||||
// copies or substantial portions of the Software.
|
||||
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
// SOFTWARE.
|
||||
|
||||
package llama
|
||||
|
||||
// #cgo LDFLAGS: -Lbuild -lbinding -lllama -lm -lggml_static -lstdc++
|
||||
// #cgo CXXFLAGS: -std=c++11
|
||||
// #cgo darwin LDFLAGS: -framework Accelerate -framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders
|
||||
// #include "binding/binding.h"
|
||||
// #include <stdlib.h>
|
||||
import "C"
|
||||
/*
|
||||
#cgo CPPFLAGS: -O3 -DNDEBUG=1
|
||||
#cgo CXXFLAGS: -std=c++11
|
||||
#cgo darwin CPPFLAGS: -DGGML_USE_METAL=1 -DGGML_METAL_NDEBUG=1
|
||||
#cgo darwin LDFLAGS: -framework Accelerate -framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders
|
||||
#include <stdlib.h>
|
||||
#include "llama.h"
|
||||
|
||||
struct llama_sample_options
|
||||
{
|
||||
float repeat_penalty;
|
||||
float frequency_penalty;
|
||||
float presence_penalty;
|
||||
float temperature;
|
||||
int32_t top_k;
|
||||
float top_p;
|
||||
float tfs_z;
|
||||
float typical_p;
|
||||
int mirostat;
|
||||
float mirostat_tau;
|
||||
float mirostat_eta;
|
||||
};
|
||||
|
||||
llama_token llama_sample(
|
||||
struct llama_context *ctx,
|
||||
struct llama_token_data *candidates,
|
||||
size_t n_candidates,
|
||||
const llama_token *last_tokens,
|
||||
size_t n_last_tokens,
|
||||
struct llama_sample_options *opts)
|
||||
{
|
||||
llama_token_data_array candidates_p = {
|
||||
candidates,
|
||||
n_candidates,
|
||||
false,
|
||||
};
|
||||
|
||||
llama_sample_repetition_penalty(
|
||||
ctx, &candidates_p,
|
||||
last_tokens, n_last_tokens,
|
||||
opts->repeat_penalty);
|
||||
|
||||
llama_sample_frequency_and_presence_penalties(
|
||||
ctx, &candidates_p,
|
||||
last_tokens, n_last_tokens,
|
||||
opts->frequency_penalty, opts->presence_penalty);
|
||||
|
||||
if (opts->temperature <= 0) {
|
||||
return llama_sample_token_greedy(ctx, &candidates_p);
|
||||
}
|
||||
|
||||
if (opts->mirostat == 1) {
|
||||
int mirostat_m = 100;
|
||||
float mirostat_mu = 2.0f * opts->mirostat_tau;
|
||||
llama_sample_temperature(ctx, &candidates_p, opts->temperature);
|
||||
return llama_sample_token_mirostat(
|
||||
ctx, &candidates_p,
|
||||
opts->mirostat_tau, opts->mirostat_eta,
|
||||
mirostat_m, &mirostat_mu);
|
||||
} else if (opts->mirostat == 2) {
|
||||
float mirostat_mu = 2.0f * opts->mirostat_tau;
|
||||
llama_sample_temperature(ctx, &candidates_p, opts->temperature);
|
||||
return llama_sample_token_mirostat_v2(
|
||||
ctx, &candidates_p,
|
||||
opts->mirostat_tau, opts->mirostat_eta,
|
||||
&mirostat_mu);
|
||||
} else {
|
||||
llama_sample_top_k(ctx, &candidates_p, opts->top_k, 1);
|
||||
llama_sample_tail_free(ctx, &candidates_p, opts->tfs_z, 1);
|
||||
llama_sample_typical(ctx, &candidates_p, opts->typical_p, 1);
|
||||
llama_sample_top_p(ctx, &candidates_p, opts->top_p, 1);
|
||||
llama_sample_temperature(ctx, &candidates_p, opts->temperature);
|
||||
return llama_sample_token(ctx, &candidates_p);
|
||||
}
|
||||
}
|
||||
*/
|
||||
import "C"
|
||||
import (
|
||||
"bytes"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"os"
|
||||
"strings"
|
||||
"sync"
|
||||
"time"
|
||||
"unicode/utf8"
|
||||
"unsafe"
|
||||
|
||||
"github.com/jmorganca/ollama/api"
|
||||
)
|
||||
|
||||
type LLama struct {
|
||||
ctx unsafe.Pointer
|
||||
embeddings bool
|
||||
contextSize int
|
||||
type llama struct {
|
||||
params *C.struct_llama_context_params
|
||||
model *C.struct_llama_model
|
||||
ctx *C.struct_llama_context
|
||||
|
||||
api.Options
|
||||
}
|
||||
|
||||
func New(model string, mo ModelOptions) (*LLama, error) {
|
||||
modelPath := C.CString(model)
|
||||
defer C.free(unsafe.Pointer(modelPath))
|
||||
|
||||
ctx := C.load_model(modelPath, C.int(mo.ContextSize), C.int(mo.Seed), C.bool(mo.F16Memory), C.bool(mo.MLock), C.bool(mo.Embeddings), C.bool(mo.MMap), C.bool(mo.LowVRAM), C.bool(mo.VocabOnly), C.int(mo.NGPULayers), C.int(mo.NBatch), C.CString(mo.MainGPU), C.CString(mo.TensorSplit), C.bool(mo.NUMA))
|
||||
if ctx == nil {
|
||||
return nil, fmt.Errorf("failed loading model")
|
||||
func New(model string, opts api.Options) (*llama, error) {
|
||||
if _, err := os.Stat(model); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
ll := &LLama{ctx: ctx, contextSize: mo.ContextSize, embeddings: mo.Embeddings}
|
||||
llm := llama{Options: opts}
|
||||
|
||||
return ll, nil
|
||||
C.llama_backend_init(C.bool(llm.UseNUMA))
|
||||
|
||||
params := C.llama_context_default_params()
|
||||
params.seed = C.uint(llm.Seed)
|
||||
params.n_ctx = C.int(llm.NumCtx)
|
||||
params.n_batch = C.int(llm.NumBatch)
|
||||
params.n_gpu_layers = C.int(llm.NumGPU)
|
||||
params.main_gpu = C.int(llm.MainGPU)
|
||||
params.low_vram = C.bool(llm.LowVRAM)
|
||||
params.f16_kv = C.bool(llm.F16KV)
|
||||
params.logits_all = C.bool(llm.LogitsAll)
|
||||
params.vocab_only = C.bool(llm.VocabOnly)
|
||||
params.use_mmap = C.bool(llm.UseMMap)
|
||||
params.use_mlock = C.bool(llm.UseMLock)
|
||||
params.embedding = C.bool(llm.EmbeddingOnly)
|
||||
llm.params = ¶ms
|
||||
|
||||
cModel := C.CString(model)
|
||||
defer C.free(unsafe.Pointer(cModel))
|
||||
|
||||
llm.model = C.llama_load_model_from_file(cModel, params)
|
||||
if llm.model == nil {
|
||||
return nil, errors.New("failed to load model")
|
||||
}
|
||||
|
||||
llm.ctx = C.llama_new_context_with_model(llm.model, params)
|
||||
if llm.ctx == nil {
|
||||
return nil, errors.New("failed to create context")
|
||||
}
|
||||
|
||||
// warm up the model
|
||||
bos := []C.llama_token{C.llama_token_bos()}
|
||||
C.llama_eval(llm.ctx, unsafe.SliceData(bos), C.int(len(bos)), 0, C.int(opts.NumThread))
|
||||
C.llama_reset_timings(llm.ctx)
|
||||
|
||||
return &llm, nil
|
||||
}
|
||||
|
||||
func (l *LLama) Free() {
|
||||
C.llama_binding_free_model(l.ctx)
|
||||
func (llm *llama) Close() {
|
||||
defer C.llama_free_model(llm.model)
|
||||
defer C.llama_free(llm.ctx)
|
||||
|
||||
C.llama_print_timings(llm.ctx)
|
||||
}
|
||||
|
||||
func (l *LLama) Eval(text string, po PredictOptions) error {
|
||||
input := C.CString(text)
|
||||
if po.Tokens == 0 {
|
||||
po.Tokens = 99999999
|
||||
}
|
||||
defer C.free(unsafe.Pointer(input))
|
||||
func (llm *llama) Predict(ctx []int, prompt string, fn func(api.GenerateResponse)) error {
|
||||
if input := llm.tokenize(prompt); input != nil {
|
||||
embd := make([]C.llama_token, len(ctx))
|
||||
for i := range ctx {
|
||||
embd[i] = C.llama_token(ctx[i])
|
||||
}
|
||||
|
||||
reverseCount := len(po.StopPrompts)
|
||||
reversePrompt := make([]*C.char, reverseCount)
|
||||
var pass **C.char
|
||||
for i, s := range po.StopPrompts {
|
||||
cs := C.CString(s)
|
||||
reversePrompt[i] = cs
|
||||
pass = &reversePrompt[0]
|
||||
defer C.free(unsafe.Pointer(cs))
|
||||
return llm.generate(append(embd, input...), fn)
|
||||
}
|
||||
|
||||
cLogitBias := C.CString(po.LogitBias)
|
||||
defer C.free(unsafe.Pointer(cLogitBias))
|
||||
return errors.New("llama: tokenize")
|
||||
}
|
||||
|
||||
cMainGPU := C.CString(po.MainGPU)
|
||||
defer C.free(unsafe.Pointer(cMainGPU))
|
||||
func (llm *llama) tokenize(prompt string) []C.llama_token {
|
||||
cPrompt := C.CString(prompt)
|
||||
defer C.free(unsafe.Pointer(cPrompt))
|
||||
|
||||
cTensorSplit := C.CString(po.TensorSplit)
|
||||
defer C.free(unsafe.Pointer(cTensorSplit))
|
||||
|
||||
params := C.llama_allocate_params(input, C.int(po.Seed), C.int(po.Threads), C.int(po.Tokens), C.int(po.TopK),
|
||||
C.float(po.TopP), C.float(po.Temperature), C.float(po.Penalty), C.int(po.Repeat),
|
||||
C.bool(po.IgnoreEOS), C.bool(po.F16KV),
|
||||
C.int(po.Batch), C.int(po.NKeep), pass, C.int(reverseCount),
|
||||
C.float(po.TailFreeSamplingZ), C.float(po.TypicalP), C.float(po.FrequencyPenalty), C.float(po.PresencePenalty),
|
||||
C.int(po.Mirostat), C.float(po.MirostatETA), C.float(po.MirostatTAU), C.bool(po.PenalizeNL), cLogitBias,
|
||||
C.bool(po.MLock), C.bool(po.MMap), cMainGPU, cTensorSplit,
|
||||
)
|
||||
defer C.llama_free_params(params)
|
||||
|
||||
ret := C.eval(params, l.ctx, input)
|
||||
if ret != 0 {
|
||||
return fmt.Errorf("inference failed")
|
||||
tokens := make([]C.llama_token, llm.NumCtx)
|
||||
if n := C.llama_tokenize(llm.ctx, cPrompt, unsafe.SliceData(tokens), C.int(len(tokens)), true); n > 0 {
|
||||
return tokens[:n]
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (l *LLama) Predict(text string, po PredictOptions) (string, error) {
|
||||
if po.TokenCallback != nil {
|
||||
setCallback(l.ctx, po.TokenCallback)
|
||||
func (llm *llama) detokenize(tokens ...C.llama_token) string {
|
||||
var sb strings.Builder
|
||||
for _, token := range tokens {
|
||||
sb.WriteString(C.GoString(C.llama_token_to_str(llm.ctx, token)))
|
||||
}
|
||||
|
||||
input := C.CString(text)
|
||||
if po.Tokens == 0 {
|
||||
po.Tokens = 99999999
|
||||
}
|
||||
defer C.free(unsafe.Pointer(input))
|
||||
|
||||
out := make([]byte, po.Tokens)
|
||||
|
||||
reverseCount := len(po.StopPrompts)
|
||||
reversePrompt := make([]*C.char, reverseCount)
|
||||
var pass **C.char
|
||||
for i, s := range po.StopPrompts {
|
||||
cs := C.CString(s)
|
||||
reversePrompt[i] = cs
|
||||
pass = &reversePrompt[0]
|
||||
defer C.free(unsafe.Pointer(cs))
|
||||
}
|
||||
|
||||
cLogitBias := C.CString(po.LogitBias)
|
||||
defer C.free(unsafe.Pointer(cLogitBias))
|
||||
|
||||
cMainGPU := C.CString(po.MainGPU)
|
||||
defer C.free(unsafe.Pointer(cMainGPU))
|
||||
|
||||
cTensorSplit := C.CString(po.TensorSplit)
|
||||
defer C.free(unsafe.Pointer(cTensorSplit))
|
||||
|
||||
params := C.llama_allocate_params(input, C.int(po.Seed), C.int(po.Threads), C.int(po.Tokens), C.int(po.TopK),
|
||||
C.float(po.TopP), C.float(po.Temperature), C.float(po.Penalty), C.int(po.Repeat),
|
||||
C.bool(po.IgnoreEOS), C.bool(po.F16KV),
|
||||
C.int(po.Batch), C.int(po.NKeep), pass, C.int(reverseCount),
|
||||
C.float(po.TailFreeSamplingZ), C.float(po.TypicalP), C.float(po.FrequencyPenalty), C.float(po.PresencePenalty),
|
||||
C.int(po.Mirostat), C.float(po.MirostatETA), C.float(po.MirostatTAU), C.bool(po.PenalizeNL), cLogitBias,
|
||||
C.bool(po.MLock), C.bool(po.MMap), cMainGPU, cTensorSplit,
|
||||
)
|
||||
defer C.llama_free_params(params)
|
||||
|
||||
ret := C.llama_predict(params, l.ctx, (*C.char)(unsafe.Pointer(&out[0])), C.bool(po.DebugMode))
|
||||
if ret != 0 {
|
||||
return "", fmt.Errorf("inference failed")
|
||||
}
|
||||
res := C.GoString((*C.char)(unsafe.Pointer(&out[0])))
|
||||
|
||||
res = strings.TrimPrefix(res, " ")
|
||||
res = strings.TrimPrefix(res, text)
|
||||
res = strings.TrimPrefix(res, "\n")
|
||||
|
||||
for _, s := range po.StopPrompts {
|
||||
res = strings.TrimRight(res, s)
|
||||
}
|
||||
|
||||
if po.TokenCallback != nil {
|
||||
setCallback(l.ctx, nil)
|
||||
}
|
||||
|
||||
return res, nil
|
||||
return sb.String()
|
||||
}
|
||||
|
||||
// CGo only allows us to use static calls from C to Go, we can't just dynamically pass in func's.
|
||||
// This is the next best thing, we register the callbacks in this map and call tokenCallback from
|
||||
// the C code. We also attach a finalizer to LLama, so it will unregister the callback when the
|
||||
// garbage collection frees it.
|
||||
func (llm *llama) generate(input []C.llama_token, fn func(api.GenerateResponse)) error {
|
||||
var opts C.struct_llama_sample_options
|
||||
opts.repeat_penalty = C.float(llm.RepeatPenalty)
|
||||
opts.frequency_penalty = C.float(llm.FrequencyPenalty)
|
||||
opts.presence_penalty = C.float(llm.PresencePenalty)
|
||||
opts.temperature = C.float(llm.Temperature)
|
||||
opts.top_k = C.int(llm.TopK)
|
||||
opts.top_p = C.float(llm.TopP)
|
||||
opts.tfs_z = C.float(llm.TFSZ)
|
||||
opts.typical_p = C.float(llm.TypicalP)
|
||||
opts.mirostat = C.int(llm.Mirostat)
|
||||
opts.mirostat_tau = C.float(llm.MirostatTau)
|
||||
opts.mirostat_eta = C.float(llm.MirostatEta)
|
||||
|
||||
// SetTokenCallback registers a callback for the individual tokens created when running Predict. It
|
||||
// will be called once for each token. The callback shall return true as long as the model should
|
||||
// continue predicting the next token. When the callback returns false the predictor will return.
|
||||
// The tokens are just converted into Go strings, they are not trimmed or otherwise changed. Also
|
||||
// the tokens may not be valid UTF-8.
|
||||
// Pass in nil to remove a callback.
|
||||
//
|
||||
// It is save to call this method while a prediction is running.
|
||||
func (l *LLama) SetTokenCallback(callback func(token string) bool) {
|
||||
setCallback(l.ctx, callback)
|
||||
}
|
||||
output := deque[C.llama_token]{capacity: llm.NumCtx}
|
||||
|
||||
var (
|
||||
m sync.Mutex
|
||||
callbacks = map[uintptr]func(string) bool{}
|
||||
)
|
||||
|
||||
//export tokenCallback
|
||||
func tokenCallback(statePtr unsafe.Pointer, token *C.char) bool {
|
||||
m.Lock()
|
||||
defer m.Unlock()
|
||||
|
||||
if callback, ok := callbacks[uintptr(statePtr)]; ok {
|
||||
return callback(C.GoString(token))
|
||||
context := deque[int]{capacity: llm.NumCtx / 2}
|
||||
for _, in := range input {
|
||||
context.PushLeft(int(in))
|
||||
}
|
||||
|
||||
return true
|
||||
}
|
||||
var b bytes.Buffer
|
||||
for C.llama_get_kv_cache_token_count(llm.ctx) < C.int(llm.NumCtx) {
|
||||
if retval := C.llama_eval(llm.ctx, unsafe.SliceData(input), C.int(len(input)), C.llama_get_kv_cache_token_count(llm.ctx), C.int(llm.NumThread)); retval != 0 {
|
||||
return errors.New("llama: eval")
|
||||
}
|
||||
|
||||
// setCallback can be used to register a token callback for LLama. Pass in a nil callback to
|
||||
// remove the callback.
|
||||
func setCallback(statePtr unsafe.Pointer, callback func(string) bool) {
|
||||
m.Lock()
|
||||
defer m.Unlock()
|
||||
token, err := llm.sample(output, &opts)
|
||||
if errors.Is(err, io.EOF) {
|
||||
break
|
||||
} else if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if callback == nil {
|
||||
delete(callbacks, uintptr(statePtr))
|
||||
} else {
|
||||
callbacks[uintptr(statePtr)] = callback
|
||||
b.WriteString(llm.detokenize(token))
|
||||
if utf8.Valid(b.Bytes()) || b.Len() >= utf8.UTFMax {
|
||||
// call the callback
|
||||
fn(api.GenerateResponse{
|
||||
Response: b.String(),
|
||||
})
|
||||
|
||||
output.PushLeft(token)
|
||||
context.PushLeft(int(token))
|
||||
b.Reset()
|
||||
}
|
||||
|
||||
input = []C.llama_token{token}
|
||||
}
|
||||
|
||||
dur := func(ms float64) time.Duration {
|
||||
d, err := time.ParseDuration(fmt.Sprintf("%fms", ms))
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
return d
|
||||
}
|
||||
|
||||
timings := C.llama_get_timings(llm.ctx)
|
||||
fn(api.GenerateResponse{
|
||||
Done: true,
|
||||
Context: context.Data(),
|
||||
PromptEvalCount: int(timings.n_p_eval),
|
||||
PromptEvalDuration: dur(float64(timings.t_p_eval_ms)),
|
||||
EvalCount: int(timings.n_eval),
|
||||
EvalDuration: dur(float64(timings.t_eval_ms)),
|
||||
})
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (llm *llama) sample(output deque[C.llama_token], opts *C.struct_llama_sample_options) (C.llama_token, error) {
|
||||
numVocab := int(C.llama_n_vocab(llm.ctx))
|
||||
logits := unsafe.Slice(C.llama_get_logits(llm.ctx), numVocab)
|
||||
|
||||
candidates := deque[C.struct_llama_token_data]{capacity: numVocab}
|
||||
for i := 0; i < candidates.Cap(); i++ {
|
||||
candidates.PushLeft(C.struct_llama_token_data{
|
||||
id: C.int(i),
|
||||
logit: logits[i],
|
||||
p: 0,
|
||||
})
|
||||
}
|
||||
|
||||
token := C.llama_sample(
|
||||
llm.ctx,
|
||||
unsafe.SliceData(candidates.Data()), C.size_t(candidates.Len()),
|
||||
unsafe.SliceData(output.Data()), C.size_t(output.Len()),
|
||||
opts)
|
||||
if token != C.llama_token_eos() {
|
||||
return token, nil
|
||||
}
|
||||
|
||||
return 0, io.EOF
|
||||
}
|
||||
|
410
llama/llama.h
Normal file
410
llama/llama.h
Normal file
@@ -0,0 +1,410 @@
|
||||
/**
|
||||
* llama.cpp - git 5bf2a2771886ee86137e01dbc7492f78fb392066
|
||||
*
|
||||
* MIT License
|
||||
*
|
||||
* Copyright (c) 2023 Georgi Gerganov
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in all
|
||||
* copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
* SOFTWARE.
|
||||
*/
|
||||
|
||||
#ifndef LLAMA_H
|
||||
#define LLAMA_H
|
||||
|
||||
#include "ggml.h"
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
#include "ggml-cuda.h"
|
||||
#define LLAMA_MAX_DEVICES GGML_CUDA_MAX_DEVICES
|
||||
#else
|
||||
#define LLAMA_MAX_DEVICES 1
|
||||
#endif // GGML_USE_CUBLAS
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
#ifdef LLAMA_SHARED
|
||||
# if defined(_WIN32) && !defined(__MINGW32__)
|
||||
# ifdef LLAMA_BUILD
|
||||
# define LLAMA_API __declspec(dllexport)
|
||||
# else
|
||||
# define LLAMA_API __declspec(dllimport)
|
||||
# endif
|
||||
# else
|
||||
# define LLAMA_API __attribute__ ((visibility ("default")))
|
||||
# endif
|
||||
#else
|
||||
# define LLAMA_API
|
||||
#endif
|
||||
|
||||
#ifdef __GNUC__
|
||||
# define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
|
||||
#elif defined(_MSC_VER)
|
||||
# define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
|
||||
#else
|
||||
# define DEPRECATED(func, hint) func
|
||||
#endif
|
||||
|
||||
#define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt'
|
||||
#define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
|
||||
#define LLAMA_FILE_MAGIC_GGMF 0x67676d66u // 'ggmf'
|
||||
#define LLAMA_FILE_MAGIC_GGML 0x67676d6cu // 'ggml'
|
||||
#define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
|
||||
|
||||
#define LLAMA_FILE_VERSION 3
|
||||
#define LLAMA_FILE_MAGIC LLAMA_FILE_MAGIC_GGJT
|
||||
#define LLAMA_FILE_MAGIC_UNVERSIONED LLAMA_FILE_MAGIC_GGML
|
||||
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
|
||||
#define LLAMA_SESSION_VERSION 1
|
||||
|
||||
#define LLAMA_DEFAULT_SEED 0xFFFFFFFF
|
||||
|
||||
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL)
|
||||
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
|
||||
#define LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//
|
||||
// C interface
|
||||
//
|
||||
// TODO: show sample usage
|
||||
//
|
||||
|
||||
struct llama_model;
|
||||
struct llama_context;
|
||||
|
||||
typedef int llama_token;
|
||||
|
||||
typedef struct llama_token_data {
|
||||
llama_token id; // token id
|
||||
float logit; // log-odds of the token
|
||||
float p; // probability of the token
|
||||
} llama_token_data;
|
||||
|
||||
typedef struct llama_token_data_array {
|
||||
llama_token_data * data;
|
||||
size_t size;
|
||||
bool sorted;
|
||||
} llama_token_data_array;
|
||||
|
||||
typedef void (*llama_progress_callback)(float progress, void *ctx);
|
||||
|
||||
struct llama_context_params {
|
||||
uint32_t seed; // RNG seed, -1 for random
|
||||
int32_t n_ctx; // text context
|
||||
int32_t n_batch; // prompt processing batch size
|
||||
int32_t n_gpu_layers; // number of layers to store in VRAM
|
||||
int32_t main_gpu; // the GPU that is used for scratch and small tensors
|
||||
float tensor_split[LLAMA_MAX_DEVICES]; // how to split layers across multiple GPUs
|
||||
// called with a progress value between 0 and 1, pass NULL to disable
|
||||
llama_progress_callback progress_callback;
|
||||
// context pointer passed to the progress callback
|
||||
void * progress_callback_user_data;
|
||||
|
||||
// Keep the booleans together to avoid misalignment during copy-by-value.
|
||||
bool low_vram; // if true, reduce VRAM usage at the cost of performance
|
||||
bool f16_kv; // use fp16 for KV cache
|
||||
bool logits_all; // the llama_eval() call computes all logits, not just the last one
|
||||
bool vocab_only; // only load the vocabulary, no weights
|
||||
bool use_mmap; // use mmap if possible
|
||||
bool use_mlock; // force system to keep model in RAM
|
||||
bool embedding; // embedding mode only
|
||||
};
|
||||
// model file types
|
||||
enum llama_ftype {
|
||||
LLAMA_FTYPE_ALL_F32 = 0,
|
||||
LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
|
||||
// LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
|
||||
// LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
|
||||
LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q2_K = 10,// except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q3_K_S = 11,// except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q3_K_M = 12,// except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q3_K_L = 13,// except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_K_S = 14,// except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_K_M = 15,// except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q5_K_S = 16,// except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q5_K_M = 17,// except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q6_K = 18,// except 1d tensors
|
||||
};
|
||||
|
||||
// model quantization parameters
|
||||
typedef struct llama_model_quantize_params {
|
||||
int nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
|
||||
enum llama_ftype ftype; // quantize to this llama_ftype
|
||||
bool allow_requantize; // allow quantizing non-f32/f16 tensors
|
||||
bool quantize_output_tensor; // quantize output.weight
|
||||
} llama_model_quantize_params;
|
||||
|
||||
// performance timing information
|
||||
struct llama_timings {
|
||||
double t_start_ms;
|
||||
double t_end_ms;
|
||||
double t_load_ms;
|
||||
double t_sample_ms;
|
||||
double t_p_eval_ms;
|
||||
double t_eval_ms;
|
||||
|
||||
int32_t n_sample;
|
||||
int32_t n_p_eval;
|
||||
int32_t n_eval;
|
||||
};
|
||||
|
||||
LLAMA_API struct llama_context_params llama_context_default_params();
|
||||
LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params();
|
||||
|
||||
LLAMA_API bool llama_mmap_supported();
|
||||
LLAMA_API bool llama_mlock_supported();
|
||||
|
||||
// TODO: not great API - very likely to change
|
||||
// Initialize the llama + ggml backend
|
||||
// If numa is true, use NUMA optimizations
|
||||
// Call once at the start of the program
|
||||
LLAMA_API void llama_backend_init(bool numa);
|
||||
// Call once at the end of the program - currently only used for MPI
|
||||
LLAMA_API void llama_backend_free();
|
||||
|
||||
LLAMA_API int64_t llama_time_us();
|
||||
|
||||
LLAMA_API struct llama_model * llama_load_model_from_file(
|
||||
const char * path_model,
|
||||
struct llama_context_params params);
|
||||
|
||||
LLAMA_API void llama_free_model(struct llama_model * model);
|
||||
|
||||
LLAMA_API struct llama_context * llama_new_context_with_model(
|
||||
struct llama_model * model,
|
||||
struct llama_context_params params);
|
||||
|
||||
// Various functions for loading a ggml llama model.
|
||||
// Allocate (almost) all memory needed for the model.
|
||||
// Return NULL on failure
|
||||
LLAMA_API DEPRECATED(struct llama_context * llama_init_from_file(
|
||||
const char * path_model,
|
||||
struct llama_context_params params),
|
||||
"please use llama_load_model_from_file combined with llama_new_context_with_model instead");
|
||||
|
||||
// Frees all allocated memory
|
||||
LLAMA_API void llama_free(struct llama_context * ctx);
|
||||
|
||||
// Returns 0 on success
|
||||
LLAMA_API int llama_model_quantize(
|
||||
const char * fname_inp,
|
||||
const char * fname_out,
|
||||
const llama_model_quantize_params * params);
|
||||
|
||||
// Apply a LoRA adapter to a loaded model
|
||||
// path_base_model is the path to a higher quality model to use as a base for
|
||||
// the layers modified by the adapter. Can be NULL to use the current loaded model.
|
||||
// The model needs to be reloaded before applying a new adapter, otherwise the adapter
|
||||
// will be applied on top of the previous one
|
||||
// Returns 0 on success
|
||||
LLAMA_API DEPRECATED(int llama_apply_lora_from_file(
|
||||
struct llama_context * ctx,
|
||||
const char * path_lora,
|
||||
const char * path_base_model,
|
||||
int n_threads),
|
||||
"please use llama_model_apply_lora_from_file instead");
|
||||
|
||||
LLAMA_API int llama_model_apply_lora_from_file(
|
||||
const struct llama_model * model,
|
||||
const char * path_lora,
|
||||
const char * path_base_model,
|
||||
int n_threads);
|
||||
|
||||
// Returns the number of tokens in the KV cache
|
||||
LLAMA_API int llama_get_kv_cache_token_count(const struct llama_context * ctx);
|
||||
|
||||
// Sets the current rng seed.
|
||||
LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
|
||||
|
||||
// Returns the maximum size in bytes of the state (rng, logits, embedding
|
||||
// and kv_cache) - will often be smaller after compacting tokens
|
||||
LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx);
|
||||
|
||||
// Copies the state to the specified destination address.
|
||||
// Destination needs to have allocated enough memory.
|
||||
// Returns the number of bytes copied
|
||||
LLAMA_API size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst);
|
||||
|
||||
// Set the state reading from the specified address
|
||||
// Returns the number of bytes read
|
||||
LLAMA_API size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src);
|
||||
|
||||
// Save/load session file
|
||||
LLAMA_API bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out);
|
||||
LLAMA_API bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count);
|
||||
|
||||
// Run the llama inference to obtain the logits and probabilities for the next token.
|
||||
// tokens + n_tokens is the provided batch of new tokens to process
|
||||
// n_past is the number of tokens to use from previous eval calls
|
||||
// Returns 0 on success
|
||||
LLAMA_API int llama_eval(
|
||||
struct llama_context * ctx,
|
||||
const llama_token * tokens,
|
||||
int n_tokens,
|
||||
int n_past,
|
||||
int n_threads);
|
||||
|
||||
// Same as llama_eval, but use float matrix input directly.
|
||||
LLAMA_API int llama_eval_embd(
|
||||
struct llama_context * ctx,
|
||||
const float * embd,
|
||||
int n_tokens,
|
||||
int n_past,
|
||||
int n_threads);
|
||||
|
||||
// Export a static computation graph for context of 511 and batch size of 1
|
||||
// NOTE: since this functionality is mostly for debugging and demonstration purposes, we hardcode these
|
||||
// parameters here to keep things simple
|
||||
// IMPORTANT: do not use for anything else other than debugging and testing!
|
||||
LLAMA_API int llama_eval_export(struct llama_context * ctx, const char * fname);
|
||||
|
||||
// Convert the provided text into tokens.
|
||||
// The tokens pointer must be large enough to hold the resulting tokens.
|
||||
// Returns the number of tokens on success, no more than n_max_tokens
|
||||
// Returns a negative number on failure - the number of tokens that would have been returned
|
||||
// TODO: not sure if correct
|
||||
LLAMA_API int llama_tokenize(
|
||||
struct llama_context * ctx,
|
||||
const char * text,
|
||||
llama_token * tokens,
|
||||
int n_max_tokens,
|
||||
bool add_bos);
|
||||
|
||||
LLAMA_API int llama_n_vocab(const struct llama_context * ctx);
|
||||
LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
|
||||
LLAMA_API int llama_n_embd (const struct llama_context * ctx);
|
||||
|
||||
// Get the vocabulary as output parameters.
|
||||
// Returns number of results.
|
||||
LLAMA_API int llama_get_vocab(
|
||||
const struct llama_context * ctx,
|
||||
const char * * strings,
|
||||
float * scores,
|
||||
int capacity);
|
||||
|
||||
// Token logits obtained from the last call to llama_eval()
|
||||
// The logits for the last token are stored in the last row
|
||||
// Can be mutated in order to change the probabilities of the next token
|
||||
// Rows: n_tokens
|
||||
// Cols: n_vocab
|
||||
LLAMA_API float * llama_get_logits(struct llama_context * ctx);
|
||||
|
||||
// Get the embeddings for the input
|
||||
// shape: [n_embd] (1-dimensional)
|
||||
LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
|
||||
|
||||
// Token Id -> String. Uses the vocabulary in the provided context
|
||||
LLAMA_API const char * llama_token_to_str(const struct llama_context * ctx, llama_token token);
|
||||
|
||||
// Special tokens
|
||||
LLAMA_API llama_token llama_token_bos(); // beginning-of-sentence
|
||||
LLAMA_API llama_token llama_token_eos(); // end-of-sentence
|
||||
LLAMA_API llama_token llama_token_nl(); // next-line
|
||||
|
||||
// Sampling functions
|
||||
|
||||
/// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
|
||||
LLAMA_API void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty);
|
||||
|
||||
/// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
|
||||
LLAMA_API void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence);
|
||||
|
||||
/// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
|
||||
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, the logits must be directly extracted from the original generation context without being sorted.
|
||||
/// @params guidance_ctx A separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
|
||||
/// @params scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
|
||||
/// @params smooth_factor Smooth factor between guidance logits and original logits. 1.0f means only use guidance logits. 0.0f means only original logits.
|
||||
LLAMA_API void llama_sample_classifier_free_guidance(
|
||||
struct llama_context * ctx,
|
||||
llama_token_data_array * candidates,
|
||||
struct llama_context * guidance_ctx,
|
||||
float scale,
|
||||
float smooth_factor);
|
||||
|
||||
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
|
||||
LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates);
|
||||
|
||||
/// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
||||
LLAMA_API void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep);
|
||||
|
||||
/// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
||||
LLAMA_API void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
|
||||
|
||||
/// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
|
||||
LLAMA_API void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep);
|
||||
|
||||
/// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
|
||||
LLAMA_API void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
|
||||
LLAMA_API void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates, float temp);
|
||||
|
||||
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
|
||||
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
|
||||
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
|
||||
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
|
||||
/// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
|
||||
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
|
||||
LLAMA_API llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu);
|
||||
|
||||
/// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
|
||||
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
|
||||
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
|
||||
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
|
||||
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
|
||||
LLAMA_API llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu);
|
||||
|
||||
/// @details Selects the token with the highest probability.
|
||||
LLAMA_API llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates);
|
||||
|
||||
/// @details Randomly selects a token from the candidates based on their probabilities.
|
||||
LLAMA_API llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates);
|
||||
|
||||
// Performance information
|
||||
LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
|
||||
LLAMA_API void llama_print_timings(struct llama_context * ctx);
|
||||
LLAMA_API void llama_reset_timings(struct llama_context * ctx);
|
||||
|
||||
// Print system information
|
||||
LLAMA_API const char * llama_print_system_info(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
// Internal API to be implemented by llama.cpp and used by tests/benchmarks only
|
||||
#ifdef LLAMA_API_INTERNAL
|
||||
|
||||
#include <vector>
|
||||
#include <string>
|
||||
struct ggml_tensor;
|
||||
|
||||
const std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx);
|
||||
|
||||
#endif
|
||||
|
||||
#endif // LLAMA_H
|
@@ -1,9 +0,0 @@
|
||||
//go:build cublas
|
||||
// +build cublas
|
||||
|
||||
package llama
|
||||
|
||||
/*
|
||||
#cgo LDFLAGS: -lcublas -lcudart -L/usr/local/cuda/lib64/
|
||||
*/
|
||||
import "C"
|
@@ -1,2 +0,0 @@
|
||||
//go:build metal
|
||||
package llama
|
@@ -1,9 +0,0 @@
|
||||
//go:build openblas
|
||||
// +build openblas
|
||||
|
||||
package llama
|
||||
|
||||
/*
|
||||
#cgo LDFLAGS: -lopenblas
|
||||
*/
|
||||
import "C"
|
@@ -1,98 +0,0 @@
|
||||
// MIT License
|
||||
|
||||
// Copyright (c) 2023 go-skynet authors
|
||||
|
||||
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
// of this software and associated documentation files (the "Software"), to deal
|
||||
// in the Software without restriction, including without limitation the rights
|
||||
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
// copies of the Software, and to permit persons to whom the Software is
|
||||
// furnished to do so, subject to the following conditions:
|
||||
|
||||
// The above copyright notice and this permission notice shall be included in all
|
||||
// copies or substantial portions of the Software.
|
||||
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
// SOFTWARE.
|
||||
|
||||
package llama
|
||||
|
||||
type ModelOptions struct {
|
||||
ContextSize int
|
||||
Seed int
|
||||
NBatch int
|
||||
F16Memory bool
|
||||
MLock bool
|
||||
MMap bool
|
||||
VocabOnly bool
|
||||
LowVRAM bool
|
||||
Embeddings bool
|
||||
NUMA bool
|
||||
NGPULayers int
|
||||
MainGPU string
|
||||
TensorSplit string
|
||||
}
|
||||
|
||||
type PredictOptions struct {
|
||||
Seed, Threads, Tokens, TopK, Repeat, Batch, NKeep int
|
||||
TopP, Temperature, Penalty float64
|
||||
F16KV bool
|
||||
DebugMode bool
|
||||
StopPrompts []string
|
||||
IgnoreEOS bool
|
||||
|
||||
TailFreeSamplingZ float64
|
||||
TypicalP float64
|
||||
FrequencyPenalty float64
|
||||
PresencePenalty float64
|
||||
Mirostat int
|
||||
MirostatETA float64
|
||||
MirostatTAU float64
|
||||
PenalizeNL bool
|
||||
LogitBias string
|
||||
TokenCallback func(string) bool
|
||||
|
||||
MLock, MMap bool
|
||||
MainGPU string
|
||||
TensorSplit string
|
||||
}
|
||||
|
||||
type PredictOption func(p *PredictOptions)
|
||||
|
||||
type ModelOption func(p *ModelOptions)
|
||||
|
||||
var DefaultModelOptions ModelOptions = ModelOptions{
|
||||
ContextSize: 512,
|
||||
Seed: 0,
|
||||
F16Memory: false,
|
||||
MLock: false,
|
||||
Embeddings: false,
|
||||
MMap: true,
|
||||
LowVRAM: false,
|
||||
}
|
||||
|
||||
var DefaultOptions PredictOptions = PredictOptions{
|
||||
Seed: -1,
|
||||
Threads: 4,
|
||||
Tokens: 128,
|
||||
Penalty: 1.1,
|
||||
Repeat: 64,
|
||||
Batch: 512,
|
||||
NKeep: 64,
|
||||
TopK: 40,
|
||||
TopP: 0.95,
|
||||
TailFreeSamplingZ: 1.0,
|
||||
TypicalP: 1.0,
|
||||
Temperature: 0.8,
|
||||
FrequencyPenalty: 0.0,
|
||||
PresencePenalty: 0.0,
|
||||
Mirostat: 0,
|
||||
MirostatTAU: 5.0,
|
||||
MirostatETA: 0.1,
|
||||
MMap: true,
|
||||
}
|
104
llama/utils.go
Normal file
104
llama/utils.go
Normal file
@@ -0,0 +1,104 @@
|
||||
package llama
|
||||
|
||||
type node[T any] struct {
|
||||
t T
|
||||
next *node[T]
|
||||
prev *node[T]
|
||||
}
|
||||
|
||||
type deque[T any] struct {
|
||||
head *node[T]
|
||||
tail *node[T]
|
||||
size int
|
||||
capacity int
|
||||
}
|
||||
|
||||
func (d *deque[T]) Empty() bool {
|
||||
return d.size == 0
|
||||
}
|
||||
|
||||
func (d *deque[T]) Len() int {
|
||||
return d.size
|
||||
}
|
||||
|
||||
func (d *deque[T]) Cap() int {
|
||||
return d.capacity
|
||||
}
|
||||
|
||||
func (d *deque[T]) Push(t T) {
|
||||
if d.capacity > 0 && d.size >= d.capacity {
|
||||
d.PopLeft()
|
||||
}
|
||||
|
||||
n := node[T]{t: t}
|
||||
if d.head != nil {
|
||||
n.next = d.head
|
||||
d.head.prev = &n
|
||||
d.head = &n
|
||||
} else {
|
||||
d.head = &n
|
||||
d.tail = &n
|
||||
}
|
||||
|
||||
d.size++
|
||||
}
|
||||
|
||||
func (d *deque[T]) PushLeft(t T) {
|
||||
if d.capacity > 0 && d.size >= d.capacity {
|
||||
d.Pop()
|
||||
}
|
||||
|
||||
n := node[T]{t: t}
|
||||
if d.tail != nil {
|
||||
n.prev = d.tail
|
||||
d.tail.next = &n
|
||||
d.tail = &n
|
||||
} else {
|
||||
d.head = &n
|
||||
d.tail = &n
|
||||
}
|
||||
|
||||
d.size++
|
||||
}
|
||||
|
||||
func (d *deque[T]) Pop() *T {
|
||||
if d.Empty() {
|
||||
return nil
|
||||
}
|
||||
|
||||
head := d.head
|
||||
d.head = head.next
|
||||
if d.head != nil {
|
||||
d.head.prev = nil
|
||||
} else {
|
||||
d.tail = nil
|
||||
}
|
||||
|
||||
d.size--
|
||||
return &head.t
|
||||
}
|
||||
|
||||
func (d *deque[T]) PopLeft() *T {
|
||||
if d.Empty() {
|
||||
return nil
|
||||
}
|
||||
|
||||
tail := d.tail
|
||||
d.tail = tail.prev
|
||||
if d.tail != nil {
|
||||
d.tail.next = nil
|
||||
} else {
|
||||
d.head = nil
|
||||
}
|
||||
|
||||
d.size--
|
||||
return &tail.t
|
||||
}
|
||||
|
||||
func (d *deque[T]) Data() (data []T) {
|
||||
for n := d.head; n != nil; n = n.next {
|
||||
data = append(data, n.t)
|
||||
}
|
||||
|
||||
return data
|
||||
}
|
4
main.go
4
main.go
@@ -1,9 +1,11 @@
|
||||
package main
|
||||
|
||||
import (
|
||||
"context"
|
||||
|
||||
"github.com/jmorganca/ollama/cmd"
|
||||
)
|
||||
|
||||
func main() {
|
||||
cmd.NewCLI().Execute()
|
||||
cmd.NewCLI().ExecuteContext(context.Background())
|
||||
}
|
||||
|
18
models.json
18
models.json
@@ -25,14 +25,14 @@
|
||||
},
|
||||
{
|
||||
"name": "vicuna",
|
||||
"display_name": "Wizard Vicuna Uncensored",
|
||||
"parameters": "13B",
|
||||
"url": "https://huggingface.co/TheBloke/Wizard-Vicuna-13B-Uncensored-GGML/resolve/main/Wizard-Vicuna-13B-Uncensored.ggmlv3.q2_K.bin",
|
||||
"short_description": "An uncensored model with no guardrails.",
|
||||
"description": "This model is trained with a subset of the dataset - responses that contained alignment / moralizing were removed. The intent is to train a WizardLM that doesn't have alignment built-in, so that alignment (of any sort) can be added separately with for example with a RLHF LoRA.",
|
||||
"display_name": "Vicuna",
|
||||
"parameters": "7B",
|
||||
"url": "https://huggingface.co/TheBloke/vicuna-7B-v1.3-GGML/resolve/main/vicuna-7b-v1.3.ggmlv3.q4_0.bin",
|
||||
"short_description": "Vicuna is a chat assistant trained by fine-tuning LLaMA on user-shared conversations collected from ShareGPT.",
|
||||
"description": "The primary use of Vicuna is research on large language models and chatbots. The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence.",
|
||||
"published_by": "TheBloke",
|
||||
"original_author": "ehartford",
|
||||
"original_url": "https://huggingface.co/ehartford/Wizard-Vicuna-13B-Uncensored",
|
||||
"license:": "GPL"
|
||||
"original_author": "LMSYS",
|
||||
"original_url": "https://huggingface.co/lmsys/vicuna-7b-v1.3",
|
||||
"license:": "Non-commercial"
|
||||
}
|
||||
]
|
||||
]
|
||||
|
77
parser/parser.go
Normal file
77
parser/parser.go
Normal file
@@ -0,0 +1,77 @@
|
||||
package parser
|
||||
|
||||
import (
|
||||
"bufio"
|
||||
"fmt"
|
||||
"io"
|
||||
"strings"
|
||||
)
|
||||
|
||||
type Command struct {
|
||||
Name string
|
||||
Arg string
|
||||
}
|
||||
|
||||
func Parse(reader io.Reader) ([]Command, error) {
|
||||
var commands []Command
|
||||
var foundModel bool
|
||||
|
||||
scanner := bufio.NewScanner(reader)
|
||||
multiline := false
|
||||
var multilineCommand *Command
|
||||
for scanner.Scan() {
|
||||
line := scanner.Text()
|
||||
if multiline {
|
||||
// If we're in a multiline string and the line is """, end the multiline string.
|
||||
if strings.TrimSpace(line) == `"""` {
|
||||
multiline = false
|
||||
commands = append(commands, *multilineCommand)
|
||||
} else {
|
||||
// Otherwise, append the line to the multiline string.
|
||||
multilineCommand.Arg += "\n" + line
|
||||
}
|
||||
continue
|
||||
}
|
||||
fields := strings.Fields(line)
|
||||
if len(fields) == 0 {
|
||||
continue
|
||||
}
|
||||
|
||||
command := Command{}
|
||||
switch fields[0] {
|
||||
case "FROM":
|
||||
command.Name = "model"
|
||||
command.Arg = fields[1]
|
||||
if command.Arg == "" {
|
||||
return nil, fmt.Errorf("no model specified in FROM line")
|
||||
}
|
||||
foundModel = true
|
||||
case "PROMPT":
|
||||
command.Name = "prompt"
|
||||
if fields[1] == `"""` {
|
||||
multiline = true
|
||||
multilineCommand = &command
|
||||
multilineCommand.Arg = ""
|
||||
} else {
|
||||
command.Arg = strings.Join(fields[1:], " ")
|
||||
}
|
||||
case "PARAMETER":
|
||||
command.Name = fields[1]
|
||||
command.Arg = strings.Join(fields[2:], " ")
|
||||
default:
|
||||
continue
|
||||
}
|
||||
if !multiline {
|
||||
commands = append(commands, command)
|
||||
}
|
||||
}
|
||||
|
||||
if !foundModel {
|
||||
return nil, fmt.Errorf("no FROM line for the model was specified")
|
||||
}
|
||||
|
||||
if multiline {
|
||||
return nil, fmt.Errorf("unclosed multiline string")
|
||||
}
|
||||
return commands, scanner.Err()
|
||||
}
|
@@ -10,7 +10,9 @@ fi
|
||||
OS=$(go env GOOS)
|
||||
ARCH=$(go env GOARCH)
|
||||
|
||||
make app
|
||||
go build .
|
||||
|
||||
npm --prefix app run make:sign
|
||||
|
||||
# Create a new tag if it doesn't exist.
|
||||
if ! git rev-parse v$VERSION >/dev/null 2>&1; then
|
||||
@@ -18,7 +20,7 @@ if ! git rev-parse v$VERSION >/dev/null 2>&1; then
|
||||
git push origin v$VERSION
|
||||
fi
|
||||
|
||||
mkdir dist
|
||||
mkdir -p dist
|
||||
cp app/out/make/zip/${OS}/${ARCH}/Ollama-${OS}-${ARCH}-${VERSION}.zip dist/Ollama-${OS}-${ARCH}.zip
|
||||
cp ./ollama dist/ollama-${OS}-${ARCH}
|
||||
|
||||
|
828
server/images.go
Normal file
828
server/images.go
Normal file
@@ -0,0 +1,828 @@
|
||||
package server
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"crypto/sha256"
|
||||
"encoding/hex"
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"io/ioutil"
|
||||
"log"
|
||||
"net/http"
|
||||
"os"
|
||||
"path"
|
||||
"path/filepath"
|
||||
"reflect"
|
||||
"strconv"
|
||||
"strings"
|
||||
|
||||
"github.com/jmorganca/ollama/api"
|
||||
"github.com/jmorganca/ollama/parser"
|
||||
)
|
||||
|
||||
type Model struct {
|
||||
Name string `json:"name"`
|
||||
ModelPath string
|
||||
Prompt string
|
||||
Options api.Options
|
||||
}
|
||||
|
||||
type ManifestV2 struct {
|
||||
SchemaVersion int `json:"schemaVersion"`
|
||||
MediaType string `json:"mediaType"`
|
||||
Config Layer `json:"config"`
|
||||
Layers []*Layer `json:"layers"`
|
||||
}
|
||||
|
||||
type Layer struct {
|
||||
MediaType string `json:"mediaType"`
|
||||
Digest string `json:"digest"`
|
||||
Size int `json:"size"`
|
||||
}
|
||||
|
||||
type LayerWithBuffer struct {
|
||||
Layer
|
||||
|
||||
Buffer *bytes.Buffer
|
||||
}
|
||||
|
||||
type ConfigV2 struct {
|
||||
Architecture string `json:"architecture"`
|
||||
OS string `json:"os"`
|
||||
RootFS RootFS `json:"rootfs"`
|
||||
}
|
||||
|
||||
type RootFS struct {
|
||||
Type string `json:"type"`
|
||||
DiffIDs []string `json:"diff_ids"`
|
||||
}
|
||||
|
||||
func GetManifest(mp ModelPath) (*ManifestV2, error) {
|
||||
fp, err := mp.GetManifestPath(false)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if _, err = os.Stat(fp); err != nil && !errors.Is(err, os.ErrNotExist) {
|
||||
return nil, fmt.Errorf("couldn't find model '%s'", mp.GetShortTagname())
|
||||
}
|
||||
|
||||
var manifest *ManifestV2
|
||||
|
||||
f, err := os.Open(fp)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("couldn't open file '%s'", fp)
|
||||
}
|
||||
|
||||
decoder := json.NewDecoder(f)
|
||||
err = decoder.Decode(&manifest)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return manifest, nil
|
||||
}
|
||||
|
||||
func GetModel(name string) (*Model, error) {
|
||||
mp := ParseModelPath(name)
|
||||
|
||||
manifest, err := GetManifest(mp)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
model := &Model{
|
||||
Name: mp.GetFullTagname(),
|
||||
}
|
||||
|
||||
for _, layer := range manifest.Layers {
|
||||
filename, err := GetBlobsPath(layer.Digest)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
switch layer.MediaType {
|
||||
case "application/vnd.ollama.image.model":
|
||||
model.ModelPath = filename
|
||||
case "application/vnd.ollama.image.prompt":
|
||||
data, err := os.ReadFile(filename)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
model.Prompt = string(data)
|
||||
case "application/vnd.ollama.image.params":
|
||||
params, err := os.Open(filename)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
defer params.Close()
|
||||
|
||||
var opts api.Options
|
||||
if err = json.NewDecoder(params).Decode(&opts); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
model.Options = opts
|
||||
}
|
||||
}
|
||||
|
||||
return model, nil
|
||||
}
|
||||
|
||||
func getAbsPath(fp string) (string, error) {
|
||||
if strings.HasPrefix(fp, "~/") {
|
||||
parts := strings.Split(fp, "/")
|
||||
home, err := os.UserHomeDir()
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
fp = filepath.Join(home, filepath.Join(parts[1:]...))
|
||||
}
|
||||
|
||||
return os.ExpandEnv(fp), nil
|
||||
}
|
||||
|
||||
func CreateModel(name string, mf io.Reader, fn func(status string)) error {
|
||||
fn("parsing modelfile")
|
||||
commands, err := parser.Parse(mf)
|
||||
if err != nil {
|
||||
fn(fmt.Sprintf("error: %v", err))
|
||||
return err
|
||||
}
|
||||
|
||||
var layers []*LayerWithBuffer
|
||||
params := make(map[string]string)
|
||||
|
||||
for _, c := range commands {
|
||||
log.Printf("[%s] - %s\n", c.Name, c.Arg)
|
||||
switch c.Name {
|
||||
case "model":
|
||||
fn("looking for model")
|
||||
mf, err := GetManifest(ParseModelPath(c.Arg))
|
||||
if err != nil {
|
||||
// if we couldn't read the manifest, try getting the bin file
|
||||
fp, err := getAbsPath(c.Arg)
|
||||
if err != nil {
|
||||
fn("error determing path. exiting.")
|
||||
return err
|
||||
}
|
||||
|
||||
fn("creating model layer")
|
||||
file, err := os.Open(fp)
|
||||
if err != nil {
|
||||
fn(fmt.Sprintf("couldn't find model '%s'", c.Arg))
|
||||
return fmt.Errorf("failed to open file: %v", err)
|
||||
}
|
||||
defer file.Close()
|
||||
|
||||
l, err := CreateLayer(file)
|
||||
if err != nil {
|
||||
fn(fmt.Sprintf("couldn't create model layer: %v", err))
|
||||
return fmt.Errorf("failed to create layer: %v", err)
|
||||
}
|
||||
l.MediaType = "application/vnd.ollama.image.model"
|
||||
layers = append(layers, l)
|
||||
} else {
|
||||
log.Printf("manifest = %#v", mf)
|
||||
for _, l := range mf.Layers {
|
||||
newLayer, err := GetLayerWithBufferFromLayer(l)
|
||||
if err != nil {
|
||||
fn(fmt.Sprintf("couldn't read layer: %v", err))
|
||||
return err
|
||||
}
|
||||
layers = append(layers, newLayer)
|
||||
}
|
||||
}
|
||||
case "prompt":
|
||||
fn("creating prompt layer")
|
||||
// remove the prompt layer if one exists
|
||||
layers = removeLayerFromLayers(layers, "application/vnd.ollama.image.prompt")
|
||||
|
||||
prompt := strings.NewReader(c.Arg)
|
||||
l, err := CreateLayer(prompt)
|
||||
if err != nil {
|
||||
fn(fmt.Sprintf("couldn't create prompt layer: %v", err))
|
||||
return fmt.Errorf("failed to create layer: %v", err)
|
||||
}
|
||||
l.MediaType = "application/vnd.ollama.image.prompt"
|
||||
layers = append(layers, l)
|
||||
default:
|
||||
params[c.Name] = c.Arg
|
||||
}
|
||||
}
|
||||
|
||||
// Create a single layer for the parameters
|
||||
if len(params) > 0 {
|
||||
fn("creating parameter layer")
|
||||
layers = removeLayerFromLayers(layers, "application/vnd.ollama.image.params")
|
||||
paramData, err := paramsToReader(params)
|
||||
if err != nil {
|
||||
return fmt.Errorf("couldn't create params json: %v", err)
|
||||
}
|
||||
l, err := CreateLayer(paramData)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed to create layer: %v", err)
|
||||
}
|
||||
l.MediaType = "application/vnd.ollama.image.params"
|
||||
layers = append(layers, l)
|
||||
}
|
||||
|
||||
digests, err := getLayerDigests(layers)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
var manifestLayers []*Layer
|
||||
for _, l := range layers {
|
||||
manifestLayers = append(manifestLayers, &l.Layer)
|
||||
}
|
||||
|
||||
// Create a layer for the config object
|
||||
fn("creating config layer")
|
||||
cfg, err := createConfigLayer(digests)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
layers = append(layers, cfg)
|
||||
|
||||
err = SaveLayers(layers, fn, false)
|
||||
if err != nil {
|
||||
fn(fmt.Sprintf("error saving layers: %v", err))
|
||||
return err
|
||||
}
|
||||
|
||||
// Create the manifest
|
||||
fn("writing manifest")
|
||||
err = CreateManifest(name, cfg, manifestLayers)
|
||||
if err != nil {
|
||||
fn(fmt.Sprintf("error creating manifest: %v", err))
|
||||
return err
|
||||
}
|
||||
|
||||
fn("success")
|
||||
return nil
|
||||
}
|
||||
|
||||
func removeLayerFromLayers(layers []*LayerWithBuffer, mediaType string) []*LayerWithBuffer {
|
||||
j := 0
|
||||
for _, l := range layers {
|
||||
if l.MediaType != mediaType {
|
||||
layers[j] = l
|
||||
j++
|
||||
}
|
||||
}
|
||||
return layers[:j]
|
||||
}
|
||||
|
||||
func SaveLayers(layers []*LayerWithBuffer, fn func(status string), force bool) error {
|
||||
// Write each of the layers to disk
|
||||
for _, layer := range layers {
|
||||
fp, err := GetBlobsPath(layer.Digest)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
_, err = os.Stat(fp)
|
||||
if os.IsNotExist(err) || force {
|
||||
fn(fmt.Sprintf("writing layer %s", layer.Digest))
|
||||
out, err := os.Create(fp)
|
||||
if err != nil {
|
||||
log.Printf("couldn't create %s", fp)
|
||||
return err
|
||||
}
|
||||
defer out.Close()
|
||||
|
||||
_, err = io.Copy(out, layer.Buffer)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
} else {
|
||||
fn(fmt.Sprintf("using already created layer %s", layer.Digest))
|
||||
}
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func CreateManifest(name string, cfg *LayerWithBuffer, layers []*Layer) error {
|
||||
mp := ParseModelPath(name)
|
||||
|
||||
manifest := ManifestV2{
|
||||
SchemaVersion: 2,
|
||||
MediaType: "application/vnd.docker.distribution.manifest.v2+json",
|
||||
Config: Layer{
|
||||
MediaType: cfg.MediaType,
|
||||
Size: cfg.Size,
|
||||
Digest: cfg.Digest,
|
||||
},
|
||||
Layers: layers,
|
||||
}
|
||||
|
||||
manifestJSON, err := json.Marshal(manifest)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
fp, err := mp.GetManifestPath(true)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
return os.WriteFile(fp, manifestJSON, 0o644)
|
||||
}
|
||||
|
||||
func GetLayerWithBufferFromLayer(layer *Layer) (*LayerWithBuffer, error) {
|
||||
fp, err := GetBlobsPath(layer.Digest)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
file, err := os.Open(fp)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("could not open blob: %w", err)
|
||||
}
|
||||
defer file.Close()
|
||||
|
||||
newLayer, err := CreateLayer(file)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
newLayer.MediaType = layer.MediaType
|
||||
return newLayer, nil
|
||||
}
|
||||
|
||||
func paramsToReader(params map[string]string) (io.Reader, error) {
|
||||
opts := api.DefaultOptions()
|
||||
typeOpts := reflect.TypeOf(opts)
|
||||
|
||||
// build map of json struct tags
|
||||
jsonOpts := make(map[string]reflect.StructField)
|
||||
for _, field := range reflect.VisibleFields(typeOpts) {
|
||||
jsonTag := strings.Split(field.Tag.Get("json"), ",")[0]
|
||||
if jsonTag != "" {
|
||||
jsonOpts[jsonTag] = field
|
||||
}
|
||||
}
|
||||
|
||||
valueOpts := reflect.ValueOf(&opts).Elem()
|
||||
// iterate params and set values based on json struct tags
|
||||
for key, val := range params {
|
||||
if opt, ok := jsonOpts[key]; ok {
|
||||
field := valueOpts.FieldByName(opt.Name)
|
||||
if field.IsValid() && field.CanSet() {
|
||||
switch field.Kind() {
|
||||
case reflect.Float32:
|
||||
floatVal, err := strconv.ParseFloat(val, 32)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("invalid float value %s", val)
|
||||
}
|
||||
|
||||
field.SetFloat(floatVal)
|
||||
case reflect.Int:
|
||||
intVal, err := strconv.ParseInt(val, 10, 0)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("invalid int value %s", val)
|
||||
}
|
||||
|
||||
field.SetInt(intVal)
|
||||
case reflect.Bool:
|
||||
boolVal, err := strconv.ParseBool(val)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("invalid bool value %s", val)
|
||||
}
|
||||
|
||||
field.SetBool(boolVal)
|
||||
case reflect.String:
|
||||
field.SetString(val)
|
||||
default:
|
||||
return nil, fmt.Errorf("unknown type %s for %s", field.Kind(), key)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bts, err := json.Marshal(opts)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return bytes.NewReader(bts), nil
|
||||
}
|
||||
|
||||
func getLayerDigests(layers []*LayerWithBuffer) ([]string, error) {
|
||||
var digests []string
|
||||
for _, l := range layers {
|
||||
if l.Digest == "" {
|
||||
return nil, fmt.Errorf("layer is missing a digest")
|
||||
}
|
||||
digests = append(digests, l.Digest)
|
||||
}
|
||||
return digests, nil
|
||||
}
|
||||
|
||||
// CreateLayer creates a Layer object from a given file
|
||||
func CreateLayer(f io.Reader) (*LayerWithBuffer, error) {
|
||||
buf := new(bytes.Buffer)
|
||||
_, err := io.Copy(buf, f)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
digest, size := GetSHA256Digest(buf)
|
||||
|
||||
layer := &LayerWithBuffer{
|
||||
Layer: Layer{
|
||||
MediaType: "application/vnd.docker.image.rootfs.diff.tar",
|
||||
Digest: digest,
|
||||
Size: size,
|
||||
},
|
||||
Buffer: buf,
|
||||
}
|
||||
|
||||
return layer, nil
|
||||
}
|
||||
|
||||
func PushModel(name, username, password string, fn func(status, digest string, Total, Completed int, Percent float64)) error {
|
||||
mp := ParseModelPath(name)
|
||||
|
||||
fn("retrieving manifest", "", 0, 0, 0)
|
||||
manifest, err := GetManifest(mp)
|
||||
if err != nil {
|
||||
fn("couldn't retrieve manifest", "", 0, 0, 0)
|
||||
return err
|
||||
}
|
||||
|
||||
var layers []*Layer
|
||||
var total int
|
||||
var completed int
|
||||
for _, layer := range manifest.Layers {
|
||||
layers = append(layers, layer)
|
||||
total += layer.Size
|
||||
}
|
||||
layers = append(layers, &manifest.Config)
|
||||
total += manifest.Config.Size
|
||||
|
||||
for _, layer := range layers {
|
||||
exists, err := checkBlobExistence(mp, layer.Digest, username, password)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if exists {
|
||||
completed += layer.Size
|
||||
fn("using existing layer", layer.Digest, total, completed, float64(completed)/float64(total))
|
||||
continue
|
||||
}
|
||||
|
||||
fn("starting upload", layer.Digest, total, completed, float64(completed)/float64(total))
|
||||
|
||||
location, err := startUpload(mp, username, password)
|
||||
if err != nil {
|
||||
log.Printf("couldn't start upload: %v", err)
|
||||
return err
|
||||
}
|
||||
|
||||
err = uploadBlob(location, layer, username, password)
|
||||
if err != nil {
|
||||
log.Printf("error uploading blob: %v", err)
|
||||
return err
|
||||
}
|
||||
completed += layer.Size
|
||||
fn("upload complete", layer.Digest, total, completed, float64(completed)/float64(total))
|
||||
}
|
||||
|
||||
fn("pushing manifest", "", total, completed, float64(completed/total))
|
||||
url := fmt.Sprintf("%s://%s/v2/%s/manifests/%s", mp.ProtocolScheme, mp.Registry, mp.GetNamespaceRepository(), mp.Tag)
|
||||
headers := map[string]string{
|
||||
"Content-Type": "application/vnd.docker.distribution.manifest.v2+json",
|
||||
}
|
||||
|
||||
manifestJSON, err := json.Marshal(manifest)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
resp, err := makeRequest("PUT", url, headers, bytes.NewReader(manifestJSON), username, password)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
defer resp.Body.Close()
|
||||
|
||||
// Check for success: For a successful upload, the Docker registry will respond with a 201 Created
|
||||
if resp.StatusCode != http.StatusCreated {
|
||||
body, _ := io.ReadAll(resp.Body)
|
||||
return fmt.Errorf("registry responded with code %d: %v", resp.StatusCode, string(body))
|
||||
}
|
||||
|
||||
fn("success", "", total, completed, 1.0)
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func PullModel(name, username, password string, fn func(status, digest string, Total, Completed int, Percent float64)) error {
|
||||
mp := ParseModelPath(name)
|
||||
|
||||
fn("pulling manifest", "", 0, 0, 0)
|
||||
|
||||
manifest, err := pullModelManifest(mp, username, password)
|
||||
if err != nil {
|
||||
return fmt.Errorf("pull model manifest: %q", err)
|
||||
}
|
||||
|
||||
var layers []*Layer
|
||||
var total int
|
||||
var completed int
|
||||
for _, layer := range manifest.Layers {
|
||||
layers = append(layers, layer)
|
||||
total += layer.Size
|
||||
}
|
||||
layers = append(layers, &manifest.Config)
|
||||
total += manifest.Config.Size
|
||||
|
||||
for _, layer := range layers {
|
||||
fn("starting download", layer.Digest, total, completed, float64(completed)/float64(total))
|
||||
if err := downloadBlob(mp, layer.Digest, username, password, fn); err != nil {
|
||||
fn(fmt.Sprintf("error downloading: %v", err), layer.Digest, 0, 0, 0)
|
||||
return err
|
||||
}
|
||||
completed += layer.Size
|
||||
fn("download complete", layer.Digest, total, completed, float64(completed)/float64(total))
|
||||
}
|
||||
|
||||
fn("writing manifest", "", total, completed, 1.0)
|
||||
|
||||
manifestJSON, err := json.Marshal(manifest)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
fp, err := mp.GetManifestPath(true)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
err = os.WriteFile(fp, manifestJSON, 0644)
|
||||
if err != nil {
|
||||
log.Printf("couldn't write to %s", fp)
|
||||
return err
|
||||
}
|
||||
|
||||
fn("success", "", total, completed, 1.0)
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func pullModelManifest(mp ModelPath, username, password string) (*ManifestV2, error) {
|
||||
url := fmt.Sprintf("%s://%s/v2/%s/manifests/%s", mp.ProtocolScheme, mp.Registry, mp.GetNamespaceRepository(), mp.Tag)
|
||||
headers := map[string]string{
|
||||
"Accept": "application/vnd.docker.distribution.manifest.v2+json",
|
||||
}
|
||||
|
||||
resp, err := makeRequest("GET", url, headers, nil, username, password)
|
||||
if err != nil {
|
||||
log.Printf("couldn't get manifest: %v", err)
|
||||
return nil, err
|
||||
}
|
||||
defer resp.Body.Close()
|
||||
|
||||
// Check for success: For a successful upload, the Docker registry will respond with a 201 Created
|
||||
if resp.StatusCode != http.StatusOK {
|
||||
body, _ := io.ReadAll(resp.Body)
|
||||
return nil, fmt.Errorf("registry responded with code %d: %s", resp.StatusCode, body)
|
||||
}
|
||||
|
||||
var m *ManifestV2
|
||||
if err := json.NewDecoder(resp.Body).Decode(&m); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return m, err
|
||||
}
|
||||
|
||||
func createConfigLayer(layers []string) (*LayerWithBuffer, error) {
|
||||
// TODO change architecture and OS
|
||||
config := ConfigV2{
|
||||
Architecture: "arm64",
|
||||
OS: "linux",
|
||||
RootFS: RootFS{
|
||||
Type: "layers",
|
||||
DiffIDs: layers,
|
||||
},
|
||||
}
|
||||
|
||||
configJSON, err := json.Marshal(config)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
buf := bytes.NewBuffer(configJSON)
|
||||
digest, size := GetSHA256Digest(buf)
|
||||
|
||||
layer := &LayerWithBuffer{
|
||||
Layer: Layer{
|
||||
MediaType: "application/vnd.docker.container.image.v1+json",
|
||||
Digest: digest,
|
||||
Size: size,
|
||||
},
|
||||
Buffer: buf,
|
||||
}
|
||||
return layer, nil
|
||||
}
|
||||
|
||||
// GetSHA256Digest returns the SHA256 hash of a given buffer and returns it, and the size of buffer
|
||||
func GetSHA256Digest(data *bytes.Buffer) (string, int) {
|
||||
layerBytes := data.Bytes()
|
||||
hash := sha256.Sum256(layerBytes)
|
||||
return "sha256:" + hex.EncodeToString(hash[:]), len(layerBytes)
|
||||
}
|
||||
|
||||
func startUpload(mp ModelPath, username string, password string) (string, error) {
|
||||
url := fmt.Sprintf("%s://%s/v2/%s/blobs/uploads/", mp.ProtocolScheme, mp.Registry, mp.GetNamespaceRepository())
|
||||
|
||||
resp, err := makeRequest("POST", url, nil, nil, username, password)
|
||||
if err != nil {
|
||||
log.Printf("couldn't start upload: %v", err)
|
||||
return "", err
|
||||
}
|
||||
defer resp.Body.Close()
|
||||
|
||||
// Check for success
|
||||
if resp.StatusCode != http.StatusAccepted {
|
||||
body, _ := io.ReadAll(resp.Body)
|
||||
return "", fmt.Errorf("registry responded with code %d: %s", resp.StatusCode, body)
|
||||
}
|
||||
|
||||
// Extract UUID location from header
|
||||
location := resp.Header.Get("Location")
|
||||
if location == "" {
|
||||
return "", fmt.Errorf("location header is missing in response")
|
||||
}
|
||||
|
||||
return location, nil
|
||||
}
|
||||
|
||||
// Function to check if a blob already exists in the Docker registry
|
||||
func checkBlobExistence(mp ModelPath, digest string, username string, password string) (bool, error) {
|
||||
url := fmt.Sprintf("%s://%s/v2/%s/blobs/%s", mp.ProtocolScheme, mp.Registry, mp.GetNamespaceRepository(), digest)
|
||||
|
||||
resp, err := makeRequest("HEAD", url, nil, nil, username, password)
|
||||
if err != nil {
|
||||
log.Printf("couldn't check for blob: %v", err)
|
||||
return false, err
|
||||
}
|
||||
defer resp.Body.Close()
|
||||
|
||||
// Check for success: If the blob exists, the Docker registry will respond with a 200 OK
|
||||
return resp.StatusCode == http.StatusOK, nil
|
||||
}
|
||||
|
||||
func uploadBlob(location string, layer *Layer, username string, password string) error {
|
||||
// Create URL
|
||||
url := fmt.Sprintf("%s&digest=%s", location, layer.Digest)
|
||||
|
||||
headers := make(map[string]string)
|
||||
headers["Content-Length"] = fmt.Sprintf("%d", layer.Size)
|
||||
headers["Content-Type"] = "application/octet-stream"
|
||||
|
||||
// TODO change from monolithic uploads to chunked uploads
|
||||
// TODO allow resumability
|
||||
// TODO allow canceling uploads via DELETE
|
||||
// TODO allow cross repo blob mount
|
||||
|
||||
fp, err := GetBlobsPath(layer.Digest)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
f, err := os.Open(fp)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
resp, err := makeRequest("PUT", url, headers, f, username, password)
|
||||
if err != nil {
|
||||
log.Printf("couldn't upload blob: %v", err)
|
||||
return err
|
||||
}
|
||||
defer resp.Body.Close()
|
||||
|
||||
// Check for success: For a successful upload, the Docker registry will respond with a 201 Created
|
||||
if resp.StatusCode != http.StatusCreated {
|
||||
body, _ := io.ReadAll(resp.Body)
|
||||
return fmt.Errorf("registry responded with code %d: %v", resp.StatusCode, string(body))
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func downloadBlob(mp ModelPath, digest string, username, password string, fn func(status, digest string, Total, Completed int, Percent float64)) error {
|
||||
fp, err := GetBlobsPath(digest)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
_, err = os.Stat(fp)
|
||||
if !os.IsNotExist(err) {
|
||||
// we already have the file, so return
|
||||
log.Printf("already have %s\n", digest)
|
||||
return nil
|
||||
}
|
||||
|
||||
var size int64
|
||||
|
||||
fi, err := os.Stat(fp + "-partial")
|
||||
switch {
|
||||
case errors.Is(err, os.ErrNotExist):
|
||||
// noop, file doesn't exist so create it
|
||||
case err != nil:
|
||||
return fmt.Errorf("stat: %w", err)
|
||||
default:
|
||||
size = fi.Size()
|
||||
}
|
||||
|
||||
url := fmt.Sprintf("%s://%s/v2/%s/blobs/%s", mp.ProtocolScheme, mp.Registry, mp.GetNamespaceRepository(), digest)
|
||||
headers := map[string]string{
|
||||
"Range": fmt.Sprintf("bytes=%d-", size),
|
||||
}
|
||||
|
||||
resp, err := makeRequest("GET", url, headers, nil, username, password)
|
||||
if err != nil {
|
||||
log.Printf("couldn't download blob: %v", err)
|
||||
return err
|
||||
}
|
||||
defer resp.Body.Close()
|
||||
|
||||
if resp.StatusCode != http.StatusOK && resp.StatusCode != http.StatusPartialContent {
|
||||
body, _ := ioutil.ReadAll(resp.Body)
|
||||
return fmt.Errorf("registry responded with code %d: %v", resp.StatusCode, string(body))
|
||||
}
|
||||
|
||||
err = os.MkdirAll(path.Dir(fp), 0o700)
|
||||
if err != nil {
|
||||
return fmt.Errorf("make blobs directory: %w", err)
|
||||
}
|
||||
|
||||
out, err := os.OpenFile(fp+"-partial", os.O_CREATE|os.O_APPEND|os.O_WRONLY, 0o644)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
defer out.Close()
|
||||
|
||||
remaining, _ := strconv.ParseInt(resp.Header.Get("Content-Length"), 10, 64)
|
||||
completed := size
|
||||
total := remaining + completed
|
||||
|
||||
for {
|
||||
fn(fmt.Sprintf("Downloading %s", digest), digest, int(total), int(completed), float64(completed)/float64(total))
|
||||
if completed >= total {
|
||||
if err := os.Rename(fp+"-partial", fp); err != nil {
|
||||
fn(fmt.Sprintf("error renaming file: %v", err), digest, int(total), int(completed), 1)
|
||||
return err
|
||||
}
|
||||
|
||||
break
|
||||
}
|
||||
|
||||
n, err := io.CopyN(out, resp.Body, 8192)
|
||||
if err != nil && !errors.Is(err, io.EOF) {
|
||||
return err
|
||||
}
|
||||
completed += n
|
||||
}
|
||||
|
||||
log.Printf("success getting %s\n", digest)
|
||||
return nil
|
||||
}
|
||||
|
||||
func makeRequest(method, url string, headers map[string]string, body io.Reader, username, password string) (*http.Response, error) {
|
||||
req, err := http.NewRequest(method, url, body)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
for k, v := range headers {
|
||||
req.Header.Set(k, v)
|
||||
}
|
||||
|
||||
// TODO: better auth
|
||||
if username != "" && password != "" {
|
||||
req.SetBasicAuth(username, password)
|
||||
}
|
||||
|
||||
client := &http.Client{
|
||||
CheckRedirect: func(req *http.Request, via []*http.Request) error {
|
||||
if len(via) >= 10 {
|
||||
return fmt.Errorf("too many redirects")
|
||||
}
|
||||
log.Printf("redirected to: %s\n", req.URL)
|
||||
return nil
|
||||
},
|
||||
}
|
||||
resp, err := client.Do(req)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return resp, nil
|
||||
}
|
106
server/modelpath.go
Normal file
106
server/modelpath.go
Normal file
@@ -0,0 +1,106 @@
|
||||
package server
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"strings"
|
||||
)
|
||||
|
||||
type ModelPath struct {
|
||||
ProtocolScheme string
|
||||
Registry string
|
||||
Namespace string
|
||||
Repository string
|
||||
Tag string
|
||||
}
|
||||
|
||||
const (
|
||||
DefaultRegistry = "registry.ollama.ai"
|
||||
DefaultNamespace = "library"
|
||||
DefaultTag = "latest"
|
||||
DefaultProtocolScheme = "https"
|
||||
)
|
||||
|
||||
func ParseModelPath(name string) ModelPath {
|
||||
slashParts := strings.Split(name, "/")
|
||||
var registry, namespace, repository, tag string
|
||||
|
||||
switch len(slashParts) {
|
||||
case 3:
|
||||
registry = slashParts[0]
|
||||
namespace = slashParts[1]
|
||||
repository = strings.Split(slashParts[2], ":")[0]
|
||||
case 2:
|
||||
registry = DefaultRegistry
|
||||
namespace = slashParts[0]
|
||||
repository = strings.Split(slashParts[1], ":")[0]
|
||||
case 1:
|
||||
registry = DefaultRegistry
|
||||
namespace = DefaultNamespace
|
||||
repository = strings.Split(slashParts[0], ":")[0]
|
||||
default:
|
||||
fmt.Println("Invalid image format.")
|
||||
return ModelPath{}
|
||||
}
|
||||
|
||||
colonParts := strings.Split(name, ":")
|
||||
if len(colonParts) == 2 {
|
||||
tag = colonParts[1]
|
||||
} else {
|
||||
tag = DefaultTag
|
||||
}
|
||||
|
||||
return ModelPath{
|
||||
ProtocolScheme: DefaultProtocolScheme,
|
||||
Registry: registry,
|
||||
Namespace: namespace,
|
||||
Repository: repository,
|
||||
Tag: tag,
|
||||
}
|
||||
}
|
||||
|
||||
func (mp ModelPath) GetNamespaceRepository() string {
|
||||
return fmt.Sprintf("%s/%s", mp.Namespace, mp.Repository)
|
||||
}
|
||||
|
||||
func (mp ModelPath) GetFullTagname() string {
|
||||
return fmt.Sprintf("%s/%s/%s:%s", mp.Registry, mp.Namespace, mp.Repository, mp.Tag)
|
||||
}
|
||||
|
||||
func (mp ModelPath) GetShortTagname() string {
|
||||
if mp.Registry == DefaultRegistry && mp.Namespace == DefaultNamespace {
|
||||
return fmt.Sprintf("%s:%s", mp.Repository, mp.Tag)
|
||||
}
|
||||
return fmt.Sprintf("%s/%s:%s", mp.Namespace, mp.Repository, mp.Tag)
|
||||
}
|
||||
|
||||
func (mp ModelPath) GetManifestPath(createDir bool) (string, error) {
|
||||
home, err := os.UserHomeDir()
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
path := filepath.Join(home, ".ollama", "models", "manifests", mp.Registry, mp.Namespace, mp.Repository, mp.Tag)
|
||||
if createDir {
|
||||
if err := os.MkdirAll(filepath.Dir(path), 0o755); err != nil {
|
||||
return "", err
|
||||
}
|
||||
}
|
||||
|
||||
return path, nil
|
||||
}
|
||||
|
||||
func GetBlobsPath(digest string) (string, error) {
|
||||
home, err := os.UserHomeDir()
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
path := filepath.Join(home, ".ollama", "models", "blobs")
|
||||
if err := os.MkdirAll(filepath.Dir(path), 0o755); err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
return filepath.Join(path, digest), nil
|
||||
}
|
154
server/models.go
154
server/models.go
@@ -1,154 +0,0 @@
|
||||
package server
|
||||
|
||||
import (
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"io"
|
||||
"net/http"
|
||||
"os"
|
||||
"path"
|
||||
"strconv"
|
||||
|
||||
"github.com/jmorganca/ollama/api"
|
||||
)
|
||||
|
||||
const directoryURL = "https://ollama.ai/api/models"
|
||||
|
||||
type Model struct {
|
||||
Name string `json:"name"`
|
||||
DisplayName string `json:"display_name"`
|
||||
Parameters string `json:"parameters"`
|
||||
URL string `json:"url"`
|
||||
ShortDescription string `json:"short_description"`
|
||||
Description string `json:"description"`
|
||||
PublishedBy string `json:"published_by"`
|
||||
OriginalAuthor string `json:"original_author"`
|
||||
OriginalURL string `json:"original_url"`
|
||||
License string `json:"license"`
|
||||
}
|
||||
|
||||
func (m *Model) FullName() string {
|
||||
home, err := os.UserHomeDir()
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
return path.Join(home, ".ollama", "models", m.Name+".bin")
|
||||
}
|
||||
|
||||
func pull(model string, progressCh chan<- api.PullProgress) error {
|
||||
remote, err := getRemote(model)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed to pull model: %w", err)
|
||||
}
|
||||
return saveModel(remote, progressCh)
|
||||
}
|
||||
|
||||
func getRemote(model string) (*Model, error) {
|
||||
// resolve the model download from our directory
|
||||
resp, err := http.Get(directoryURL)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("failed to get directory: %w", err)
|
||||
}
|
||||
defer resp.Body.Close()
|
||||
body, err := io.ReadAll(resp.Body)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("failed to read directory: %w", err)
|
||||
}
|
||||
var models []Model
|
||||
err = json.Unmarshal(body, &models)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("failed to parse directory: %w", err)
|
||||
}
|
||||
for _, m := range models {
|
||||
if m.Name == model {
|
||||
return &m, nil
|
||||
}
|
||||
}
|
||||
return nil, fmt.Errorf("model not found in directory: %s", model)
|
||||
}
|
||||
|
||||
func saveModel(model *Model, progressCh chan<- api.PullProgress) error {
|
||||
// this models cache directory is created by the server on startup
|
||||
|
||||
client := &http.Client{}
|
||||
req, err := http.NewRequest("GET", model.URL, nil)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed to download model: %w", err)
|
||||
}
|
||||
// check for resume
|
||||
alreadyDownloaded := int64(0)
|
||||
fileInfo, err := os.Stat(model.FullName())
|
||||
if err != nil {
|
||||
if !os.IsNotExist(err) {
|
||||
return fmt.Errorf("failed to check resume model file: %w", err)
|
||||
}
|
||||
// file doesn't exist, create it now
|
||||
} else {
|
||||
alreadyDownloaded = fileInfo.Size()
|
||||
req.Header.Add("Range", fmt.Sprintf("bytes=%d-", alreadyDownloaded))
|
||||
}
|
||||
|
||||
resp, err := client.Do(req)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed to download model: %w", err)
|
||||
}
|
||||
|
||||
defer resp.Body.Close()
|
||||
|
||||
if resp.StatusCode == http.StatusRequestedRangeNotSatisfiable {
|
||||
// already downloaded
|
||||
progressCh <- api.PullProgress{
|
||||
Total: alreadyDownloaded,
|
||||
Completed: alreadyDownloaded,
|
||||
Percent: 100,
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
if resp.StatusCode != http.StatusOK && resp.StatusCode != http.StatusPartialContent {
|
||||
return fmt.Errorf("failed to download model: %s", resp.Status)
|
||||
}
|
||||
|
||||
out, err := os.OpenFile(model.FullName(), os.O_CREATE|os.O_APPEND|os.O_WRONLY, 0o644)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
defer out.Close()
|
||||
|
||||
totalSize, _ := strconv.ParseInt(resp.Header.Get("Content-Length"), 10, 64)
|
||||
|
||||
buf := make([]byte, 1024)
|
||||
totalBytes := alreadyDownloaded
|
||||
totalSize += alreadyDownloaded
|
||||
|
||||
for {
|
||||
n, err := resp.Body.Read(buf)
|
||||
if err != nil && err != io.EOF {
|
||||
return err
|
||||
}
|
||||
if n == 0 {
|
||||
break
|
||||
}
|
||||
if _, err := out.Write(buf[:n]); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
totalBytes += int64(n)
|
||||
|
||||
// send progress updates
|
||||
progressCh <- api.PullProgress{
|
||||
Total: totalSize,
|
||||
Completed: totalBytes,
|
||||
Percent: float64(totalBytes) / float64(totalSize) * 100,
|
||||
}
|
||||
}
|
||||
|
||||
progressCh <- api.PullProgress{
|
||||
Total: totalSize,
|
||||
Completed: totalSize,
|
||||
Percent: 100,
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
334
server/routes.go
334
server/routes.go
@@ -1,118 +1,214 @@
|
||||
package server
|
||||
|
||||
import (
|
||||
"embed"
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"io"
|
||||
"log"
|
||||
"math"
|
||||
"net"
|
||||
"net/http"
|
||||
"os"
|
||||
"path"
|
||||
"runtime"
|
||||
"path/filepath"
|
||||
"strings"
|
||||
"text/template"
|
||||
"time"
|
||||
|
||||
"dario.cat/mergo"
|
||||
"github.com/gin-gonic/gin"
|
||||
"github.com/lithammer/fuzzysearch/fuzzy"
|
||||
|
||||
"github.com/jmorganca/ollama/api"
|
||||
"github.com/jmorganca/ollama/llama"
|
||||
)
|
||||
|
||||
//go:embed templates/*
|
||||
var templatesFS embed.FS
|
||||
var templates = template.Must(template.ParseFS(templatesFS, "templates/*.prompt"))
|
||||
|
||||
func cacheDir() string {
|
||||
home, err := os.UserHomeDir()
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
return path.Join(home, ".ollama")
|
||||
return filepath.Join(home, ".ollama")
|
||||
}
|
||||
|
||||
func generate(c *gin.Context) {
|
||||
var req api.GenerateRequest
|
||||
if req.ModelOptions == nil {
|
||||
req.ModelOptions = &api.DefaultModelOptions
|
||||
}
|
||||
start := time.Now()
|
||||
|
||||
if req.PredictOptions == nil {
|
||||
req.PredictOptions = &api.DefaultPredictOptions
|
||||
}
|
||||
var req api.GenerateRequest
|
||||
if err := c.ShouldBindJSON(&req); err != nil {
|
||||
c.JSON(http.StatusBadRequest, gin.H{"error": err.Error()})
|
||||
return
|
||||
}
|
||||
|
||||
if remoteModel, _ := getRemote(req.Model); remoteModel != nil {
|
||||
req.Model = remoteModel.FullName()
|
||||
}
|
||||
if _, err := os.Stat(req.Model); err != nil {
|
||||
if !errors.Is(err, os.ErrNotExist) {
|
||||
c.JSON(http.StatusBadRequest, gin.H{"error": err.Error()})
|
||||
return
|
||||
}
|
||||
req.Model = path.Join(cacheDir(), "models", req.Model+".bin")
|
||||
}
|
||||
|
||||
modelOpts := getModelOpts(req)
|
||||
modelOpts.NGPULayers = 1 // hard-code this for now
|
||||
|
||||
model, err := llama.New(req.Model, modelOpts)
|
||||
model, err := GetModel(req.Model)
|
||||
if err != nil {
|
||||
c.JSON(http.StatusBadRequest, gin.H{"error": err.Error()})
|
||||
return
|
||||
}
|
||||
defer model.Free()
|
||||
|
||||
templateNames := make([]string, 0, len(templates.Templates()))
|
||||
for _, template := range templates.Templates() {
|
||||
templateNames = append(templateNames, template.Name())
|
||||
opts := api.DefaultOptions()
|
||||
if err := mergo.Merge(&opts, model.Options, mergo.WithOverride); err != nil {
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
|
||||
return
|
||||
}
|
||||
|
||||
match, _ := matchRankOne(path.Base(req.Model), templateNames)
|
||||
if template := templates.Lookup(match); template != nil {
|
||||
var sb strings.Builder
|
||||
if err := template.Execute(&sb, req); err != nil {
|
||||
if err := mergo.Merge(&opts, req.Options, mergo.WithOverride); err != nil {
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
|
||||
return
|
||||
}
|
||||
|
||||
templ, err := template.New("").Parse(model.Prompt)
|
||||
if err != nil {
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
|
||||
return
|
||||
}
|
||||
|
||||
var sb strings.Builder
|
||||
if err = templ.Execute(&sb, req); err != nil {
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
|
||||
return
|
||||
}
|
||||
req.Prompt = sb.String()
|
||||
|
||||
llm, err := llama.New(model.ModelPath, opts)
|
||||
if err != nil {
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
|
||||
return
|
||||
}
|
||||
defer llm.Close()
|
||||
|
||||
ch := make(chan any)
|
||||
go func() {
|
||||
defer close(ch)
|
||||
llm.Predict(req.Context, req.Prompt, func(r api.GenerateResponse) {
|
||||
r.Model = req.Model
|
||||
r.CreatedAt = time.Now().UTC()
|
||||
if r.Done {
|
||||
r.TotalDuration = time.Since(start)
|
||||
}
|
||||
|
||||
ch <- r
|
||||
})
|
||||
}()
|
||||
|
||||
streamResponse(c, ch)
|
||||
}
|
||||
|
||||
func pull(c *gin.Context) {
|
||||
var req api.PullRequest
|
||||
if err := c.ShouldBindJSON(&req); err != nil {
|
||||
c.JSON(http.StatusBadRequest, gin.H{"error": err.Error()})
|
||||
return
|
||||
}
|
||||
|
||||
ch := make(chan any)
|
||||
go func() {
|
||||
defer close(ch)
|
||||
fn := func(status, digest string, total, completed int, percent float64) {
|
||||
ch <- api.PullProgress{
|
||||
Status: status,
|
||||
Digest: digest,
|
||||
Total: total,
|
||||
Completed: completed,
|
||||
Percent: percent,
|
||||
}
|
||||
}
|
||||
if err := PullModel(req.Name, req.Username, req.Password, fn); err != nil {
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
|
||||
return
|
||||
}
|
||||
}()
|
||||
|
||||
req.Prompt = sb.String()
|
||||
streamResponse(c, ch)
|
||||
}
|
||||
|
||||
func push(c *gin.Context) {
|
||||
var req api.PushRequest
|
||||
if err := c.ShouldBindJSON(&req); err != nil {
|
||||
c.JSON(http.StatusBadRequest, gin.H{"error": err.Error()})
|
||||
return
|
||||
}
|
||||
|
||||
ch := make(chan string)
|
||||
model.SetTokenCallback(func(token string) bool {
|
||||
ch <- token
|
||||
return true
|
||||
})
|
||||
|
||||
predictOpts := getPredictOpts(req)
|
||||
|
||||
ch := make(chan any)
|
||||
go func() {
|
||||
defer close(ch)
|
||||
_, err := model.Predict(req.Prompt, predictOpts)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
fn := func(status, digest string, total, completed int, percent float64) {
|
||||
ch <- api.PushProgress{
|
||||
Status: status,
|
||||
Digest: digest,
|
||||
Total: total,
|
||||
Completed: completed,
|
||||
Percent: percent,
|
||||
}
|
||||
}
|
||||
if err := PushModel(req.Name, req.Username, req.Password, fn); err != nil {
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
|
||||
return
|
||||
}
|
||||
}()
|
||||
|
||||
streamResponse(c, ch)
|
||||
}
|
||||
|
||||
func create(c *gin.Context) {
|
||||
var req api.CreateRequest
|
||||
if err := c.ShouldBindJSON(&req); err != nil {
|
||||
c.JSON(http.StatusBadRequest, gin.H{"message": err.Error()})
|
||||
return
|
||||
}
|
||||
|
||||
// NOTE consider passing the entire Modelfile in the json instead of the path to it
|
||||
|
||||
file, err := os.Open(req.Path)
|
||||
if err != nil {
|
||||
c.JSON(http.StatusBadRequest, gin.H{"message": err.Error()})
|
||||
return
|
||||
}
|
||||
defer file.Close()
|
||||
|
||||
ch := make(chan any)
|
||||
go func() {
|
||||
defer close(ch)
|
||||
fn := func(status string) {
|
||||
ch <- api.CreateProgress{
|
||||
Status: status,
|
||||
}
|
||||
}
|
||||
|
||||
if err := CreateModel(req.Name, file, fn); err != nil {
|
||||
c.JSON(http.StatusBadRequest, gin.H{"message": err.Error()})
|
||||
return
|
||||
}
|
||||
}()
|
||||
|
||||
streamResponse(c, ch)
|
||||
}
|
||||
|
||||
func Serve(ln net.Listener) error {
|
||||
r := gin.Default()
|
||||
|
||||
r.GET("/", func(c *gin.Context) {
|
||||
c.String(http.StatusOK, "Ollama is running")
|
||||
})
|
||||
|
||||
r.POST("/api/pull", pull)
|
||||
r.POST("/api/generate", generate)
|
||||
r.POST("/api/create", create)
|
||||
r.POST("/api/push", push)
|
||||
|
||||
log.Printf("Listening on %s", ln.Addr())
|
||||
s := &http.Server{
|
||||
Handler: r,
|
||||
}
|
||||
|
||||
return s.Serve(ln)
|
||||
}
|
||||
|
||||
func streamResponse(c *gin.Context, ch chan any) {
|
||||
c.Stream(func(w io.Writer) bool {
|
||||
token, ok := <-ch
|
||||
val, ok := <-ch
|
||||
if !ok {
|
||||
return false
|
||||
}
|
||||
|
||||
resp := api.GenerateResponse{
|
||||
Response: token,
|
||||
}
|
||||
|
||||
bts, err := json.Marshal(resp)
|
||||
bts, err := json.Marshal(val)
|
||||
if err != nil {
|
||||
return false
|
||||
}
|
||||
@@ -125,123 +221,3 @@ func generate(c *gin.Context) {
|
||||
return true
|
||||
})
|
||||
}
|
||||
|
||||
func Serve(ln net.Listener) error {
|
||||
r := gin.Default()
|
||||
|
||||
r.GET("/", func(c *gin.Context) {
|
||||
c.String(http.StatusOK, "Ollama is running")
|
||||
})
|
||||
|
||||
r.POST("api/pull", func(c *gin.Context) {
|
||||
var req api.PullRequest
|
||||
if err := c.ShouldBindJSON(&req); err != nil {
|
||||
c.JSON(http.StatusBadRequest, gin.H{"error": err.Error()})
|
||||
return
|
||||
}
|
||||
|
||||
progressCh := make(chan api.PullProgress)
|
||||
go func() {
|
||||
defer close(progressCh)
|
||||
if err := pull(req.Model, progressCh); err != nil {
|
||||
var opError *net.OpError
|
||||
if errors.As(err, &opError) {
|
||||
c.JSON(http.StatusBadGateway, gin.H{"error": err.Error()})
|
||||
return
|
||||
}
|
||||
c.JSON(http.StatusBadRequest, gin.H{"error": err.Error()})
|
||||
return
|
||||
}
|
||||
}()
|
||||
|
||||
c.Stream(func(w io.Writer) bool {
|
||||
progress, ok := <-progressCh
|
||||
if !ok {
|
||||
return false
|
||||
}
|
||||
|
||||
bts, err := json.Marshal(progress)
|
||||
if err != nil {
|
||||
return false
|
||||
}
|
||||
|
||||
bts = append(bts, '\n')
|
||||
if _, err := w.Write(bts); err != nil {
|
||||
return false
|
||||
}
|
||||
|
||||
return true
|
||||
})
|
||||
})
|
||||
|
||||
r.POST("/api/generate", generate)
|
||||
|
||||
log.Printf("Listening on %s", ln.Addr())
|
||||
s := &http.Server{
|
||||
Handler: r,
|
||||
}
|
||||
|
||||
return s.Serve(ln)
|
||||
}
|
||||
|
||||
func matchRankOne(source string, targets []string) (bestMatch string, bestRank int) {
|
||||
bestRank = math.MaxInt
|
||||
for _, target := range targets {
|
||||
if rank := fuzzy.LevenshteinDistance(source, target); bestRank > rank {
|
||||
bestRank = rank
|
||||
bestMatch = target
|
||||
}
|
||||
}
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
func getModelOpts(req api.GenerateRequest) llama.ModelOptions {
|
||||
var opts llama.ModelOptions
|
||||
opts.ContextSize = req.ModelOptions.ContextSize
|
||||
opts.Seed = req.ModelOptions.Seed
|
||||
opts.F16Memory = req.ModelOptions.F16Memory
|
||||
opts.MLock = req.ModelOptions.MLock
|
||||
opts.Embeddings = req.ModelOptions.Embeddings
|
||||
opts.MMap = req.ModelOptions.MMap
|
||||
opts.LowVRAM = req.ModelOptions.LowVRAM
|
||||
|
||||
opts.NBatch = req.ModelOptions.NBatch
|
||||
opts.VocabOnly = req.ModelOptions.VocabOnly
|
||||
opts.NUMA = req.ModelOptions.NUMA
|
||||
opts.NGPULayers = req.ModelOptions.NGPULayers
|
||||
opts.MainGPU = req.ModelOptions.MainGPU
|
||||
opts.TensorSplit = req.ModelOptions.TensorSplit
|
||||
|
||||
return opts
|
||||
}
|
||||
|
||||
func getPredictOpts(req api.GenerateRequest) llama.PredictOptions {
|
||||
var opts llama.PredictOptions
|
||||
|
||||
if req.PredictOptions.Threads == -1 {
|
||||
opts.Threads = runtime.NumCPU()
|
||||
} else {
|
||||
opts.Threads = req.PredictOptions.Threads
|
||||
}
|
||||
|
||||
opts.Seed = req.PredictOptions.Seed
|
||||
opts.Tokens = req.PredictOptions.Tokens
|
||||
opts.Penalty = req.PredictOptions.Penalty
|
||||
opts.Repeat = req.PredictOptions.Repeat
|
||||
opts.Batch = req.PredictOptions.Batch
|
||||
opts.NKeep = req.PredictOptions.NKeep
|
||||
opts.TopK = req.PredictOptions.TopK
|
||||
opts.TopP = req.PredictOptions.TopP
|
||||
opts.TailFreeSamplingZ = req.PredictOptions.TailFreeSamplingZ
|
||||
opts.TypicalP = req.PredictOptions.TypicalP
|
||||
opts.Temperature = req.PredictOptions.Temperature
|
||||
opts.FrequencyPenalty = req.PredictOptions.FrequencyPenalty
|
||||
opts.PresencePenalty = req.PredictOptions.PresencePenalty
|
||||
opts.Mirostat = req.PredictOptions.Mirostat
|
||||
opts.MirostatTAU = req.PredictOptions.MirostatTAU
|
||||
opts.MirostatETA = req.PredictOptions.MirostatETA
|
||||
opts.MMap = req.PredictOptions.MMap
|
||||
|
||||
return opts
|
||||
}
|
||||
|
@@ -1,4 +1,6 @@
|
||||
{{- if not .Context }}
|
||||
Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
||||
{{- end }}
|
||||
|
||||
### Instruction:
|
||||
{{ .Prompt }}
|
||||
|
@@ -1,3 +1,5 @@
|
||||
{{- if not .Context }}
|
||||
A helpful assistant who helps the user with any questions asked.
|
||||
{{- end }}
|
||||
User: {{ .Prompt }}
|
||||
Assistant:
|
||||
|
@@ -1,4 +1,6 @@
|
||||
{{- if not .Context }}
|
||||
Below is an instruction that describes a task. Write a response that appropriately completes the request. Be concise. Once the request is completed, include no other text.
|
||||
{{- end }}
|
||||
### Instruction:
|
||||
{{ .Prompt }}
|
||||
### Response:
|
||||
|
@@ -1,5 +1,7 @@
|
||||
{{- if not .Context }}
|
||||
### System:
|
||||
You are an AI assistant that follows instruction extremely well. Help as much as you can.
|
||||
{{- end }}
|
||||
|
||||
### User:
|
||||
{{ .Prompt }}
|
||||
|
@@ -1,4 +1,6 @@
|
||||
{{ if not .Context }}
|
||||
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
|
||||
{{- end }}
|
||||
|
||||
USER: {{ .Prompt }}
|
||||
ASSISTANT:
|
||||
|
@@ -1,4 +1,6 @@
|
||||
{{- if not .Context }}
|
||||
Below is an instruction that describes a task. Write a response that appropriately completes the request
|
||||
{{- end }}
|
||||
|
||||
### Instruction: {{ .Prompt }}
|
||||
|
||||
|
17
web/app/api/signup/route.ts
Normal file
17
web/app/api/signup/route.ts
Normal file
@@ -0,0 +1,17 @@
|
||||
import { Analytics } from '@segment/analytics-node'
|
||||
import { v4 as uuid } from 'uuid'
|
||||
|
||||
const analytics = new Analytics({ writeKey: process.env.TELEMETRY_WRITE_KEY || '<empty>' })
|
||||
|
||||
export async function POST(req: Request) {
|
||||
const { email } = await req.json()
|
||||
|
||||
analytics.identify({
|
||||
anonymousId: uuid(),
|
||||
traits: {
|
||||
email,
|
||||
},
|
||||
})
|
||||
|
||||
return new Response(null, { status: 200 })
|
||||
}
|
11
web/app/download/downloader.tsx
Normal file
11
web/app/download/downloader.tsx
Normal file
@@ -0,0 +1,11 @@
|
||||
'use client'
|
||||
|
||||
import { useEffect } from 'react'
|
||||
|
||||
export default function Downloader({ url }: { url: string }) {
|
||||
useEffect(() => {
|
||||
window.location.href = url
|
||||
}, [])
|
||||
|
||||
return null
|
||||
}
|
@@ -1,21 +1,19 @@
|
||||
import { Octokit } from '@octokit/rest'
|
||||
import { redirect } from 'next/navigation'
|
||||
|
||||
const octokit = new Octokit()
|
||||
import Downloader from './downloader'
|
||||
import Signup from './signup'
|
||||
|
||||
export default async function Download() {
|
||||
const res = await fetch('https://api.github.com/repos/jmorganca/ollama/releases', { next: { revalidate: 60 } })
|
||||
const data = await res.json()
|
||||
|
||||
if (data.length === 0) {
|
||||
return new Response('not found', { status: 404 })
|
||||
return null
|
||||
}
|
||||
|
||||
const latest = data[0]
|
||||
const assets = latest.assets || []
|
||||
|
||||
if (assets.length === 0) {
|
||||
return new Response('not found', { status: 404 })
|
||||
return null
|
||||
}
|
||||
|
||||
// todo: get the correct asset for the current arch/os
|
||||
@@ -24,12 +22,26 @@ export default async function Download() {
|
||||
)
|
||||
|
||||
if (!asset) {
|
||||
return new Response('not found', { status: 404 })
|
||||
return null
|
||||
}
|
||||
|
||||
if (asset) {
|
||||
redirect(asset.browser_download_url)
|
||||
}
|
||||
|
||||
return null
|
||||
return (
|
||||
<main className='flex min-h-screen max-w-2xl flex-col p-4 lg:p-24 items-center mx-auto'>
|
||||
<img src='/ollama.png' className='w-16 h-auto' />
|
||||
<section className='my-12 text-center'>
|
||||
<h2 className='my-2 max-w-md text-3xl tracking-tight'>Downloading Ollama</h2>
|
||||
<h3 className='text-sm text-neutral-500'>
|
||||
Problems downloading?{' '}
|
||||
<a href={asset.browser_download_url} className='underline'>
|
||||
Try again
|
||||
</a>
|
||||
</h3>
|
||||
<Downloader url={asset.browser_download_url} />
|
||||
</section>
|
||||
<section className='max-w-sm flex flex-col w-full items-center border border-neutral-200 rounded-xl px-8 pt-8 pb-2'>
|
||||
<p className='text-lg leading-tight text-center mb-6 max-w-[260px]'>Sign up for updates</p>
|
||||
<Signup />
|
||||
</section>
|
||||
</main>
|
||||
)
|
||||
}
|
||||
|
51
web/app/download/signup.tsx
Normal file
51
web/app/download/signup.tsx
Normal file
@@ -0,0 +1,51 @@
|
||||
'use client'
|
||||
|
||||
import { useState } from 'react'
|
||||
|
||||
export default function Signup() {
|
||||
const [email, setEmail] = useState('')
|
||||
const [submitting, setSubmitting] = useState(false)
|
||||
const [success, setSuccess] = useState(false)
|
||||
|
||||
return (
|
||||
<form
|
||||
onSubmit={async e => {
|
||||
e.preventDefault()
|
||||
|
||||
setSubmitting(true)
|
||||
|
||||
await fetch('/api/signup', {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
body: JSON.stringify({ email }),
|
||||
})
|
||||
|
||||
setSubmitting(false)
|
||||
setSuccess(true)
|
||||
setEmail('')
|
||||
|
||||
return false
|
||||
}}
|
||||
className='flex self-stretch flex-col gap-3 h-32'
|
||||
>
|
||||
<input
|
||||
required
|
||||
autoFocus
|
||||
value={email}
|
||||
onChange={e => setEmail(e.target.value)}
|
||||
type='email'
|
||||
placeholder='your@email.com'
|
||||
className='bg-neutral-100 rounded-lg px-4 py-2 focus:outline-none placeholder-neutral-500'
|
||||
/>
|
||||
<input
|
||||
type='submit'
|
||||
value='Get updates'
|
||||
disabled={submitting}
|
||||
className='bg-black text-white disabled:text-neutral-200 disabled:bg-neutral-700 rounded-lg px-4 py-2 focus:outline-none cursor-pointer'
|
||||
/>
|
||||
{success && <p className='text-center text-sm'>You're signed up for updates</p>}
|
||||
</form>
|
||||
)
|
||||
}
|
@@ -8,7 +8,7 @@ export const metadata = {
|
||||
export default function RootLayout({ children }: { children: React.ReactNode }) {
|
||||
return (
|
||||
<html lang='en'>
|
||||
<body>{children}</body>
|
||||
<body className='antialiased'>{children}</body>
|
||||
</html>
|
||||
)
|
||||
}
|
||||
|
@@ -5,7 +5,7 @@ import models from '../../models.json'
|
||||
export default async function Home() {
|
||||
return (
|
||||
<main className='flex min-h-screen max-w-2xl flex-col p-4 lg:p-24'>
|
||||
<img src='/ollama.png' className='w-20 h-auto' />
|
||||
<img src='/ollama.png' className='w-16 h-auto' />
|
||||
<section className='my-4'>
|
||||
<p className='my-3 max-w-md'>
|
||||
<a className='underline' href='https://github.com/jmorganca/ollama'>
|
||||
@@ -14,7 +14,7 @@ export default async function Home() {
|
||||
is a tool for running large language models, currently for macOS with Windows and Linux coming soon.
|
||||
<br />
|
||||
<br />
|
||||
<a href='/download' target='_blank'>
|
||||
<a href='/download'>
|
||||
<button className='bg-black text-white text-sm py-2 px-3 rounded-lg flex items-center gap-2'>
|
||||
<AiFillApple className='h-auto w-5 relative -top-px' /> Download for macOS
|
||||
</button>
|
||||
|
243
web/package-lock.json
generated
243
web/package-lock.json
generated
@@ -10,6 +10,7 @@
|
||||
"dependencies": {
|
||||
"@octokit/rest": "^19.0.13",
|
||||
"@octokit/types": "^11.0.0",
|
||||
"@segment/analytics-node": "^1.0.0",
|
||||
"@types/node": "20.4.0",
|
||||
"@types/react": "18.2.14",
|
||||
"@types/react-dom": "18.2.6",
|
||||
@@ -24,10 +25,14 @@
|
||||
"react-icons": "^4.10.1",
|
||||
"semver": "^7.5.3",
|
||||
"tailwindcss": "3.3.2",
|
||||
"typescript": "5.1.6"
|
||||
"typescript": "5.1.6",
|
||||
"uuid": "^9.0.0"
|
||||
},
|
||||
"devDependencies": {
|
||||
"@types/semver": "^7.5.0"
|
||||
"@types/semver": "^7.5.0",
|
||||
"@types/uuid": "^9.0.2",
|
||||
"prettier": "^3.0.0",
|
||||
"prettier-plugin-tailwindcss": "^0.4.0"
|
||||
}
|
||||
},
|
||||
"node_modules/@aashutoshrathi/word-wrap": {
|
||||
@@ -190,6 +195,25 @@
|
||||
"resolved": "https://registry.npmjs.org/@jridgewell/sourcemap-codec/-/sourcemap-codec-1.4.14.tgz",
|
||||
"integrity": "sha512-XPSJHWmi394fuUuzDnGz1wiKqWfo1yXecHQMRf2l6hztTO+nPru658AyDngaBe7isIxEkRsPR3FZh+s7iVa4Uw=="
|
||||
},
|
||||
"node_modules/@lukeed/csprng": {
|
||||
"version": "1.1.0",
|
||||
"resolved": "https://registry.npmjs.org/@lukeed/csprng/-/csprng-1.1.0.tgz",
|
||||
"integrity": "sha512-Z7C/xXCiGWsg0KuKsHTKJxbWhpI3Vs5GwLfOean7MGyVFGqdRgBbAjOCh6u4bbjPc/8MJ2pZmK/0DLdCbivLDA==",
|
||||
"engines": {
|
||||
"node": ">=8"
|
||||
}
|
||||
},
|
||||
"node_modules/@lukeed/uuid": {
|
||||
"version": "2.0.1",
|
||||
"resolved": "https://registry.npmjs.org/@lukeed/uuid/-/uuid-2.0.1.tgz",
|
||||
"integrity": "sha512-qC72D4+CDdjGqJvkFMMEAtancHUQ7/d/tAiHf64z8MopFDmcrtbcJuerDtFceuAfQJ2pDSfCKCtbqoGBNnwg0w==",
|
||||
"dependencies": {
|
||||
"@lukeed/csprng": "^1.1.0"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">=8"
|
||||
}
|
||||
},
|
||||
"node_modules/@next/env": {
|
||||
"version": "13.4.9",
|
||||
"resolved": "https://registry.npmjs.org/@next/env/-/env-13.4.9.tgz",
|
||||
@@ -599,6 +623,31 @@
|
||||
"resolved": "https://registry.npmjs.org/@rushstack/eslint-patch/-/eslint-patch-1.3.2.tgz",
|
||||
"integrity": "sha512-V+MvGwaHH03hYhY+k6Ef/xKd6RYlc4q8WBx+2ANmipHJcKuktNcI/NgEsJgdSUF6Lw32njT6OnrRsKYCdgHjYw=="
|
||||
},
|
||||
"node_modules/@segment/analytics-core": {
|
||||
"version": "1.3.0",
|
||||
"resolved": "https://registry.npmjs.org/@segment/analytics-core/-/analytics-core-1.3.0.tgz",
|
||||
"integrity": "sha512-ujScWZH49NK1hYlp2/EMw45nOPEh+pmTydAnR6gSkRNucZD4fuinvpPL03rmFCw8ibaMuKLAdgPJfQ0gkLKZ5A==",
|
||||
"dependencies": {
|
||||
"@lukeed/uuid": "^2.0.0",
|
||||
"dset": "^3.1.2",
|
||||
"tslib": "^2.4.1"
|
||||
}
|
||||
},
|
||||
"node_modules/@segment/analytics-node": {
|
||||
"version": "1.0.0",
|
||||
"resolved": "https://registry.npmjs.org/@segment/analytics-node/-/analytics-node-1.0.0.tgz",
|
||||
"integrity": "sha512-UWFujSxRkRauZuMVF4MPOT5QPvX4i7kiC2QCsozHhltoTiR2SBWRI86cYO/JI/Uk7qKaOxxGFDkJarCyIP7uLA==",
|
||||
"dependencies": {
|
||||
"@lukeed/uuid": "^2.0.0",
|
||||
"@segment/analytics-core": "1.3.0",
|
||||
"buffer": "^6.0.3",
|
||||
"node-fetch": "^2.6.7",
|
||||
"tslib": "^2.4.1"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">=14"
|
||||
}
|
||||
},
|
||||
"node_modules/@swc/helpers": {
|
||||
"version": "0.5.1",
|
||||
"resolved": "https://registry.npmjs.org/@swc/helpers/-/helpers-0.5.1.tgz",
|
||||
@@ -651,6 +700,12 @@
|
||||
"integrity": "sha512-G8hZ6XJiHnuhQKR7ZmysCeJWE08o8T0AXtk5darsCaTVsYZhhgUrq53jizaR2FvsoeCwJhlmwTjkXBY5Pn/ZHw==",
|
||||
"dev": true
|
||||
},
|
||||
"node_modules/@types/uuid": {
|
||||
"version": "9.0.2",
|
||||
"resolved": "https://registry.npmjs.org/@types/uuid/-/uuid-9.0.2.tgz",
|
||||
"integrity": "sha512-kNnC1GFBLuhImSnV7w4njQkUiJi0ZXUycu1rUaouPqiKlXkh77JKgdRnTAp1x5eBwcIwbtI+3otwzuIDEuDoxQ==",
|
||||
"dev": true
|
||||
},
|
||||
"node_modules/@typescript-eslint/parser": {
|
||||
"version": "5.60.1",
|
||||
"resolved": "https://registry.npmjs.org/@typescript-eslint/parser/-/parser-5.60.1.tgz",
|
||||
@@ -991,6 +1046,25 @@
|
||||
"resolved": "https://registry.npmjs.org/balanced-match/-/balanced-match-1.0.2.tgz",
|
||||
"integrity": "sha512-3oSeUO0TMV67hN1AmbXsK4yaqU7tjiHlbxRDZOpH0KW9+CeX4bRAaX0Anxt0tx2MrpRpWwQaPwIlISEJhYU5Pw=="
|
||||
},
|
||||
"node_modules/base64-js": {
|
||||
"version": "1.5.1",
|
||||
"resolved": "https://registry.npmjs.org/base64-js/-/base64-js-1.5.1.tgz",
|
||||
"integrity": "sha512-AKpaYlHn8t4SVbOHCy+b5+KKgvR4vrsD8vbvrbiQJps7fKDTkjkDry6ji0rUJjC0kzbNePLwzxq8iypo41qeWA==",
|
||||
"funding": [
|
||||
{
|
||||
"type": "github",
|
||||
"url": "https://github.com/sponsors/feross"
|
||||
},
|
||||
{
|
||||
"type": "patreon",
|
||||
"url": "https://www.patreon.com/feross"
|
||||
},
|
||||
{
|
||||
"type": "consulting",
|
||||
"url": "https://feross.org/support"
|
||||
}
|
||||
]
|
||||
},
|
||||
"node_modules/before-after-hook": {
|
||||
"version": "2.2.3",
|
||||
"resolved": "https://registry.npmjs.org/before-after-hook/-/before-after-hook-2.2.3.tgz",
|
||||
@@ -1074,6 +1148,29 @@
|
||||
"node": "^6 || ^7 || ^8 || ^9 || ^10 || ^11 || ^12 || >=13.7"
|
||||
}
|
||||
},
|
||||
"node_modules/buffer": {
|
||||
"version": "6.0.3",
|
||||
"resolved": "https://registry.npmjs.org/buffer/-/buffer-6.0.3.tgz",
|
||||
"integrity": "sha512-FTiCpNxtwiZZHEZbcbTIcZjERVICn9yq/pDFkTl95/AxzD1naBctN7YO68riM/gLSDY7sdrMby8hofADYuuqOA==",
|
||||
"funding": [
|
||||
{
|
||||
"type": "github",
|
||||
"url": "https://github.com/sponsors/feross"
|
||||
},
|
||||
{
|
||||
"type": "patreon",
|
||||
"url": "https://www.patreon.com/feross"
|
||||
},
|
||||
{
|
||||
"type": "consulting",
|
||||
"url": "https://feross.org/support"
|
||||
}
|
||||
],
|
||||
"dependencies": {
|
||||
"base64-js": "^1.3.1",
|
||||
"ieee754": "^1.2.1"
|
||||
}
|
||||
},
|
||||
"node_modules/bundle-name": {
|
||||
"version": "3.0.0",
|
||||
"resolved": "https://registry.npmjs.org/bundle-name/-/bundle-name-3.0.0.tgz",
|
||||
@@ -1390,6 +1487,14 @@
|
||||
"node": ">=6.0.0"
|
||||
}
|
||||
},
|
||||
"node_modules/dset": {
|
||||
"version": "3.1.2",
|
||||
"resolved": "https://registry.npmjs.org/dset/-/dset-3.1.2.tgz",
|
||||
"integrity": "sha512-g/M9sqy3oHe477Ar4voQxWtaPIFw1jTdKZuomOjhCcBx9nHUNn0pu6NopuFFrTh/TRZIKEj+76vLWFu9BNKk+Q==",
|
||||
"engines": {
|
||||
"node": ">=4"
|
||||
}
|
||||
},
|
||||
"node_modules/electron-to-chromium": {
|
||||
"version": "1.4.447",
|
||||
"resolved": "https://registry.npmjs.org/electron-to-chromium/-/electron-to-chromium-1.4.447.tgz",
|
||||
@@ -1747,9 +1852,9 @@
|
||||
}
|
||||
},
|
||||
"node_modules/eslint-plugin-import/node_modules/semver": {
|
||||
"version": "6.3.0",
|
||||
"resolved": "https://registry.npmjs.org/semver/-/semver-6.3.0.tgz",
|
||||
"integrity": "sha512-b39TBaTSfV6yBrapU89p5fKekE2m/NwnDocOVruQFS1/veMgdzuPcnOM34M6CwxW8jH/lxEa5rBoDeUwu5HHTw==",
|
||||
"version": "6.3.1",
|
||||
"resolved": "https://registry.npmjs.org/semver/-/semver-6.3.1.tgz",
|
||||
"integrity": "sha512-BR7VvDCVHO+q2xBEWskxS6DJE1qRnb7DxzUrogb71CWoSficBxYsiAGd+Kl0mmq/MprG9yArRkyrQxTO6XjMzA==",
|
||||
"bin": {
|
||||
"semver": "bin/semver.js"
|
||||
}
|
||||
@@ -1784,9 +1889,9 @@
|
||||
}
|
||||
},
|
||||
"node_modules/eslint-plugin-jsx-a11y/node_modules/semver": {
|
||||
"version": "6.3.0",
|
||||
"resolved": "https://registry.npmjs.org/semver/-/semver-6.3.0.tgz",
|
||||
"integrity": "sha512-b39TBaTSfV6yBrapU89p5fKekE2m/NwnDocOVruQFS1/veMgdzuPcnOM34M6CwxW8jH/lxEa5rBoDeUwu5HHTw==",
|
||||
"version": "6.3.1",
|
||||
"resolved": "https://registry.npmjs.org/semver/-/semver-6.3.1.tgz",
|
||||
"integrity": "sha512-BR7VvDCVHO+q2xBEWskxS6DJE1qRnb7DxzUrogb71CWoSficBxYsiAGd+Kl0mmq/MprG9yArRkyrQxTO6XjMzA==",
|
||||
"bin": {
|
||||
"semver": "bin/semver.js"
|
||||
}
|
||||
@@ -1858,9 +1963,9 @@
|
||||
}
|
||||
},
|
||||
"node_modules/eslint-plugin-react/node_modules/semver": {
|
||||
"version": "6.3.0",
|
||||
"resolved": "https://registry.npmjs.org/semver/-/semver-6.3.0.tgz",
|
||||
"integrity": "sha512-b39TBaTSfV6yBrapU89p5fKekE2m/NwnDocOVruQFS1/veMgdzuPcnOM34M6CwxW8jH/lxEa5rBoDeUwu5HHTw==",
|
||||
"version": "6.3.1",
|
||||
"resolved": "https://registry.npmjs.org/semver/-/semver-6.3.1.tgz",
|
||||
"integrity": "sha512-BR7VvDCVHO+q2xBEWskxS6DJE1qRnb7DxzUrogb71CWoSficBxYsiAGd+Kl0mmq/MprG9yArRkyrQxTO6XjMzA==",
|
||||
"bin": {
|
||||
"semver": "bin/semver.js"
|
||||
}
|
||||
@@ -2385,6 +2490,25 @@
|
||||
"node": ">=0.10.0"
|
||||
}
|
||||
},
|
||||
"node_modules/ieee754": {
|
||||
"version": "1.2.1",
|
||||
"resolved": "https://registry.npmjs.org/ieee754/-/ieee754-1.2.1.tgz",
|
||||
"integrity": "sha512-dcyqhDvX1C46lXZcVqCpK+FtMRQVdIMN6/Df5js2zouUsqG7I6sFxitIC+7KYK29KdXOLHdu9zL4sFnoVQnqaA==",
|
||||
"funding": [
|
||||
{
|
||||
"type": "github",
|
||||
"url": "https://github.com/sponsors/feross"
|
||||
},
|
||||
{
|
||||
"type": "patreon",
|
||||
"url": "https://www.patreon.com/feross"
|
||||
},
|
||||
{
|
||||
"type": "consulting",
|
||||
"url": "https://feross.org/support"
|
||||
}
|
||||
]
|
||||
},
|
||||
"node_modules/ignore": {
|
||||
"version": "5.2.4",
|
||||
"resolved": "https://registry.npmjs.org/ignore/-/ignore-5.2.4.tgz",
|
||||
@@ -3521,6 +3645,95 @@
|
||||
"node": ">= 0.8.0"
|
||||
}
|
||||
},
|
||||
"node_modules/prettier": {
|
||||
"version": "3.0.0",
|
||||
"resolved": "https://registry.npmjs.org/prettier/-/prettier-3.0.0.tgz",
|
||||
"integrity": "sha512-zBf5eHpwHOGPC47h0zrPyNn+eAEIdEzfywMoYn2XPi0P44Zp0tSq64rq0xAREh4auw2cJZHo9QUob+NqCQky4g==",
|
||||
"dev": true,
|
||||
"bin": {
|
||||
"prettier": "bin/prettier.cjs"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">=14"
|
||||
},
|
||||
"funding": {
|
||||
"url": "https://github.com/prettier/prettier?sponsor=1"
|
||||
}
|
||||
},
|
||||
"node_modules/prettier-plugin-tailwindcss": {
|
||||
"version": "0.4.0",
|
||||
"resolved": "https://registry.npmjs.org/prettier-plugin-tailwindcss/-/prettier-plugin-tailwindcss-0.4.0.tgz",
|
||||
"integrity": "sha512-Rna0sDPETA0KNhMHlN8wxKNgfSa8mTl2hPPAGxnbv6tUcHT6J4RQmQ8TLXyhB7Dm5Von4iHloBxTyClYM6wT0A==",
|
||||
"dev": true,
|
||||
"engines": {
|
||||
"node": ">=12.17.0"
|
||||
},
|
||||
"peerDependencies": {
|
||||
"@ianvs/prettier-plugin-sort-imports": "*",
|
||||
"@prettier/plugin-pug": "*",
|
||||
"@shopify/prettier-plugin-liquid": "*",
|
||||
"@shufo/prettier-plugin-blade": "*",
|
||||
"@trivago/prettier-plugin-sort-imports": "*",
|
||||
"prettier": "^2.2 || ^3.0",
|
||||
"prettier-plugin-astro": "*",
|
||||
"prettier-plugin-css-order": "*",
|
||||
"prettier-plugin-import-sort": "*",
|
||||
"prettier-plugin-jsdoc": "*",
|
||||
"prettier-plugin-marko": "*",
|
||||
"prettier-plugin-organize-attributes": "*",
|
||||
"prettier-plugin-organize-imports": "*",
|
||||
"prettier-plugin-style-order": "*",
|
||||
"prettier-plugin-svelte": "*",
|
||||
"prettier-plugin-twig-melody": "*"
|
||||
},
|
||||
"peerDependenciesMeta": {
|
||||
"@ianvs/prettier-plugin-sort-imports": {
|
||||
"optional": true
|
||||
},
|
||||
"@prettier/plugin-pug": {
|
||||
"optional": true
|
||||
},
|
||||
"@shopify/prettier-plugin-liquid": {
|
||||
"optional": true
|
||||
},
|
||||
"@shufo/prettier-plugin-blade": {
|
||||
"optional": true
|
||||
},
|
||||
"@trivago/prettier-plugin-sort-imports": {
|
||||
"optional": true
|
||||
},
|
||||
"prettier-plugin-astro": {
|
||||
"optional": true
|
||||
},
|
||||
"prettier-plugin-css-order": {
|
||||
"optional": true
|
||||
},
|
||||
"prettier-plugin-import-sort": {
|
||||
"optional": true
|
||||
},
|
||||
"prettier-plugin-jsdoc": {
|
||||
"optional": true
|
||||
},
|
||||
"prettier-plugin-marko": {
|
||||
"optional": true
|
||||
},
|
||||
"prettier-plugin-organize-attributes": {
|
||||
"optional": true
|
||||
},
|
||||
"prettier-plugin-organize-imports": {
|
||||
"optional": true
|
||||
},
|
||||
"prettier-plugin-style-order": {
|
||||
"optional": true
|
||||
},
|
||||
"prettier-plugin-svelte": {
|
||||
"optional": true
|
||||
},
|
||||
"prettier-plugin-twig-melody": {
|
||||
"optional": true
|
||||
}
|
||||
}
|
||||
},
|
||||
"node_modules/prop-types": {
|
||||
"version": "15.8.1",
|
||||
"resolved": "https://registry.npmjs.org/prop-types/-/prop-types-15.8.1.tgz",
|
||||
@@ -4360,6 +4573,14 @@
|
||||
"resolved": "https://registry.npmjs.org/util-deprecate/-/util-deprecate-1.0.2.tgz",
|
||||
"integrity": "sha512-EPD5q1uXyFxJpCrLnCc1nHnq3gOa6DZBocAIiI2TaSCA7VCJ1UJDMagCzIkXNsUYfD1daK//LTEQ8xiIbrHtcw=="
|
||||
},
|
||||
"node_modules/uuid": {
|
||||
"version": "9.0.0",
|
||||
"resolved": "https://registry.npmjs.org/uuid/-/uuid-9.0.0.tgz",
|
||||
"integrity": "sha512-MXcSTerfPa4uqyzStbRoTgt5XIe3x5+42+q1sDuy3R5MDk66URdLMOZe5aPX/SQd+kuYAh0FdP/pO28IkQyTeg==",
|
||||
"bin": {
|
||||
"uuid": "dist/bin/uuid"
|
||||
}
|
||||
},
|
||||
"node_modules/watchpack": {
|
||||
"version": "2.4.0",
|
||||
"resolved": "https://registry.npmjs.org/watchpack/-/watchpack-2.4.0.tgz",
|
||||
|
@@ -10,6 +10,7 @@
|
||||
"dependencies": {
|
||||
"@octokit/rest": "^19.0.13",
|
||||
"@octokit/types": "^11.0.0",
|
||||
"@segment/analytics-node": "^1.0.0",
|
||||
"@types/node": "20.4.0",
|
||||
"@types/react": "18.2.14",
|
||||
"@types/react-dom": "18.2.6",
|
||||
@@ -24,9 +25,13 @@
|
||||
"react-icons": "^4.10.1",
|
||||
"semver": "^7.5.3",
|
||||
"tailwindcss": "3.3.2",
|
||||
"typescript": "5.1.6"
|
||||
"typescript": "5.1.6",
|
||||
"uuid": "^9.0.0"
|
||||
},
|
||||
"devDependencies": {
|
||||
"@types/semver": "^7.5.0"
|
||||
"@types/semver": "^7.5.0",
|
||||
"@types/uuid": "^9.0.2",
|
||||
"prettier": "^3.0.0",
|
||||
"prettier-plugin-tailwindcss": "^0.4.0"
|
||||
}
|
||||
}
|
||||
|
Reference in New Issue
Block a user