Compare commits

..

1 Commits

Author SHA1 Message Date
Patrick Devine
206fab0e15 add license layers to the parser 2023-07-18 22:44:35 -07:00
267 changed files with 42834 additions and 26556 deletions

View File

@@ -1,8 +1,7 @@
build
llama/build
.venv
.vscode
ollama
app
dist
llm/llama.cpp
.env
.cache
test_data
web

View File

@@ -1,162 +0,0 @@
name: test
on:
pull_request:
jobs:
generate:
strategy:
matrix:
os: [ubuntu-latest, macos-latest, windows-latest]
arch: [amd64, arm64]
exclude:
- os: ubuntu-latest
arch: arm64
- os: windows-latest
arch: arm64
runs-on: ${{ matrix.os }}
env:
GOARCH: ${{ matrix.arch }}
steps:
- uses: actions/checkout@v4
- uses: actions/setup-go@v5
with:
go-version: '1.21'
cache: true
- run: go get ./...
- run: go generate -x ./...
- uses: actions/upload-artifact@v4
with:
name: ${{ matrix.os }}-${{ matrix.arch }}-libraries
path: llm/llama.cpp/build/**/lib/*
generate-cuda:
strategy:
matrix:
cuda-version:
- '11.8.0'
runs-on: linux
container: nvidia/cuda:${{ matrix.cuda-version }}-devel-ubuntu20.04
steps:
- run: |
apt-get update && apt-get install -y git build-essential curl
curl -fsSL https://github.com/Kitware/CMake/releases/download/v3.28.1/cmake-3.28.1-linux-x86_64.tar.gz \
| tar -zx -C /usr --strip-components 1
env:
DEBIAN_FRONTEND: noninteractive
- uses: actions/checkout@v4
- uses: actions/setup-go@v4
with:
go-version: '1.21'
cache: true
- run: go get ./...
- run: |
git config --global --add safe.directory /__w/ollama/ollama
go generate -x ./...
env:
OLLAMA_SKIP_CPU_GENERATE: '1'
- uses: actions/upload-artifact@v4
with:
name: cuda-${{ matrix.cuda-version }}-libraries
path: llm/llama.cpp/build/**/lib/*
generate-rocm:
strategy:
matrix:
rocm-version:
- '5.7.1'
- '6.0'
runs-on: linux
container: rocm/dev-ubuntu-20.04:${{ matrix.rocm-version }}
steps:
- run: |
apt-get update && apt-get install -y git build-essential curl rocm-libs
curl -fsSL https://github.com/Kitware/CMake/releases/download/v3.28.1/cmake-3.28.1-linux-x86_64.tar.gz \
| tar -zx -C /usr --strip-components 1
env:
DEBIAN_FRONTEND: noninteractive
- uses: actions/checkout@v4
- uses: actions/setup-go@v4
with:
go-version: '1.21'
cache: true
- run: go get ./...
- run: |
git config --global --add safe.directory /__w/ollama/ollama
go generate -x ./...
env:
OLLAMA_SKIP_CPU_GENERATE: '1'
- uses: actions/upload-artifact@v4
with:
name: rocm-${{ matrix.rocm-version }}-libraries
path: llm/llama.cpp/build/**/lib/*
lint:
strategy:
matrix:
os: [ubuntu-latest, macos-latest, windows-latest]
arch: [amd64, arm64]
exclude:
- os: ubuntu-latest
arch: arm64
- os: windows-latest
arch: arm64
- os: macos-latest
arch: amd64
runs-on: ${{ matrix.os }}
env:
GOARCH: ${{ matrix.arch }}
CGO_ENABLED: "1"
steps:
- uses: actions/checkout@v4
with:
submodules: recursive
- uses: actions/setup-go@v5
with:
go-version: '1.21'
cache: false
- run: |
mkdir -p llm/llama.cpp/build/linux/${{ matrix.arch }}/stub/lib/
touch llm/llama.cpp/build/linux/${{ matrix.arch }}/stub/lib/stub.so
if: ${{ startsWith(matrix.os, 'ubuntu-') }}
- run: |
mkdir -p llm/llama.cpp/build/darwin/${{ matrix.arch }}/stub/lib/
touch llm/llama.cpp/build/darwin/${{ matrix.arch }}/stub/lib/stub.dylib
touch llm/llama.cpp/ggml-metal.metal
if: ${{ startsWith(matrix.os, 'macos-') }}
- run: |
mkdir -p llm/llama.cpp/build/windows/${{ matrix.arch }}/stub/lib/
touch llm/llama.cpp/build/windows/${{ matrix.arch }}/stub/lib/stub.dll
if: ${{ startsWith(matrix.os, 'windows-') }}
- uses: golangci/golangci-lint-action@v3
test:
needs: generate
strategy:
matrix:
os: [ubuntu-latest, macos-latest, windows-latest]
arch: [amd64]
exclude:
- os: ubuntu-latest
arch: arm64
- os: windows-latest
arch: arm64
runs-on: ${{ matrix.os }}
env:
GOARCH: ${{ matrix.arch }}
CGO_ENABLED: "1"
steps:
- uses: actions/checkout@v4
with:
submodules: recursive
- uses: actions/setup-go@v5
with:
go-version: '1.21'
cache: true
- run: go get
- uses: actions/download-artifact@v4
with:
name: ${{ matrix.os }}-${{ matrix.arch }}-libraries
path: llm/llama.cpp/build
- run: go build
- run: go test -v ./...
- uses: actions/upload-artifact@v4
with:
name: ${{ matrix.os }}-binaries
path: ollama

6
.gitignore vendored
View File

@@ -2,11 +2,5 @@
.vscode
.env
.venv
.swp
dist
ollama
ggml-metal.metal
.cache
*.exe
.idea
test_data

4
.gitmodules vendored
View File

@@ -1,4 +0,0 @@
[submodule "llama.cpp"]
path = llm/llama.cpp
url = https://github.com/ggerganov/llama.cpp.git
shallow = true

View File

@@ -1,27 +0,0 @@
run:
timeout: 5m
linters:
enable:
- asasalint
- bidichk
- bodyclose
- containedctx
- contextcheck
- exportloopref
- gocheckcompilerdirectives
# FIXME: for some reason this errors on windows
# - gofmt
# - goimports
- misspell
- nilerr
- unused
linters-settings:
errcheck:
# exclude the following functions since we don't generally
# need to be concerned with the returned errors
exclude-functions:
- encoding/binary.Read
- (*os.File).Seek
- (*bufio.Writer).WriteString
- (*github.com/spf13/pflag.FlagSet).Set
- (*github.com/jmorganca/ollama/llm.readSeekOffset).Seek

View File

@@ -1,137 +1,15 @@
ARG GOLANG_VERSION=1.21.3
ARG CMAKE_VERSION=3.22.1
ARG CUDA_VERSION=11.3.1
# Copy the minimal context we need to run the generate scripts
FROM scratch AS llm-code
COPY .git .git
COPY .gitmodules .gitmodules
COPY llm llm
FROM --platform=linux/amd64 nvidia/cuda:$CUDA_VERSION-devel-centos7 AS cuda-build-amd64
ARG CMAKE_VERSION
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
COPY --from=llm-code / /go/src/github.com/jmorganca/ollama/
WORKDIR /go/src/github.com/jmorganca/ollama/llm/generate
ARG CGO_CFLAGS
RUN OLLAMA_SKIP_CPU_GENERATE=1 sh gen_linux.sh
FROM --platform=linux/arm64 nvidia/cuda:$CUDA_VERSION-devel-rockylinux8 AS cuda-build-arm64
ARG CMAKE_VERSION
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
ENV PATH /opt/rh/gcc-toolset-10/root/usr/bin:$PATH
COPY --from=llm-code / /go/src/github.com/jmorganca/ollama/
WORKDIR /go/src/github.com/jmorganca/ollama/llm/generate
ARG CGO_CFLAGS
RUN OLLAMA_SKIP_CPU_GENERATE=1 sh gen_linux.sh
FROM --platform=linux/amd64 rocm/dev-centos-7:5.7.1-complete AS rocm-5-build-amd64
ARG CMAKE_VERSION
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
ENV LIBRARY_PATH /opt/amdgpu/lib64
COPY --from=llm-code / /go/src/github.com/jmorganca/ollama/
WORKDIR /go/src/github.com/jmorganca/ollama/llm/generate
ARG CGO_CFLAGS
ARG AMDGPU_TARGETS
RUN OLLAMA_SKIP_CPU_GENERATE=1 sh gen_linux.sh
FROM --platform=linux/amd64 rocm/dev-centos-7:6.0-complete AS rocm-6-build-amd64
ARG CMAKE_VERSION
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
ENV LIBRARY_PATH /opt/amdgpu/lib64
COPY --from=llm-code / /go/src/github.com/jmorganca/ollama/
WORKDIR /go/src/github.com/jmorganca/ollama/llm/generate
ARG CGO_CFLAGS
ARG AMDGPU_TARGETS
RUN OLLAMA_SKIP_CPU_GENERATE=1 sh gen_linux.sh
FROM --platform=linux/amd64 centos:7 AS cpu-builder-amd64
ARG CMAKE_VERSION
ARG GOLANG_VERSION
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
COPY --from=llm-code / /go/src/github.com/jmorganca/ollama/
ARG OLLAMA_CUSTOM_CPU_DEFS
ARG CGO_CFLAGS
WORKDIR /go/src/github.com/jmorganca/ollama/llm/generate
FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu-build-amd64
RUN OLLAMA_CPU_TARGET="cpu" sh gen_linux.sh
FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu_avx-build-amd64
RUN OLLAMA_CPU_TARGET="cpu_avx" sh gen_linux.sh
FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu_avx2-build-amd64
RUN OLLAMA_CPU_TARGET="cpu_avx2" sh gen_linux.sh
FROM --platform=linux/arm64 centos:7 AS cpu-build-arm64
ARG CMAKE_VERSION
ARG GOLANG_VERSION
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
COPY --from=llm-code / /go/src/github.com/jmorganca/ollama/
WORKDIR /go/src/github.com/jmorganca/ollama/llm/generate
# Note, we only build the "base" CPU variant on arm since avx/avx2 are x86 features
ARG OLLAMA_CUSTOM_CPU_DEFS
ARG CGO_CFLAGS
RUN OLLAMA_CPU_TARGET="cpu" sh gen_linux.sh
# Intermediate stage used for ./scripts/build_linux.sh
FROM --platform=linux/amd64 cpu-build-amd64 AS build-amd64
ENV CGO_ENABLED 1
FROM golang:1.20
WORKDIR /go/src/github.com/jmorganca/ollama
COPY . .
COPY --from=cpu_avx-build-amd64 /go/src/github.com/jmorganca/ollama/llm/llama.cpp/build/linux/ llm/llama.cpp/build/linux/
COPY --from=cpu_avx2-build-amd64 /go/src/github.com/jmorganca/ollama/llm/llama.cpp/build/linux/ llm/llama.cpp/build/linux/
COPY --from=cuda-build-amd64 /go/src/github.com/jmorganca/ollama/llm/llama.cpp/build/linux/ llm/llama.cpp/build/linux/
COPY --from=rocm-5-build-amd64 /go/src/github.com/jmorganca/ollama/llm/llama.cpp/build/linux/ llm/llama.cpp/build/linux/
COPY --from=rocm-6-build-amd64 /go/src/github.com/jmorganca/ollama/llm/llama.cpp/build/linux/ llm/llama.cpp/build/linux/
ARG GOFLAGS
ARG CGO_CFLAGS
RUN go build .
RUN CGO_ENABLED=1 go build -ldflags '-linkmode external -extldflags "-static"' .
# Intermediate stage used for ./scripts/build_linux.sh
FROM --platform=linux/arm64 cpu-build-arm64 AS build-arm64
ENV CGO_ENABLED 1
ARG GOLANG_VERSION
WORKDIR /go/src/github.com/jmorganca/ollama
COPY . .
COPY --from=cuda-build-arm64 /go/src/github.com/jmorganca/ollama/llm/llama.cpp/build/linux/ llm/llama.cpp/build/linux/
ARG GOFLAGS
ARG CGO_CFLAGS
RUN go build .
# Runtime stages
FROM --platform=linux/amd64 ubuntu:22.04 as runtime-amd64
RUN apt-get update && apt-get install -y ca-certificates
COPY --from=build-amd64 /go/src/github.com/jmorganca/ollama/ollama /bin/ollama
FROM --platform=linux/arm64 ubuntu:22.04 as runtime-arm64
RUN apt-get update && apt-get install -y ca-certificates
COPY --from=build-arm64 /go/src/github.com/jmorganca/ollama/ollama /bin/ollama
# Radeon images are much larger so we keep it distinct from the CPU/CUDA image
FROM --platform=linux/amd64 rocm/dev-centos-7:5.7.1-complete as runtime-rocm
RUN update-pciids
COPY --from=build-amd64 /go/src/github.com/jmorganca/ollama/ollama /bin/ollama
FROM alpine
COPY --from=0 /go/src/github.com/jmorganca/ollama/ollama /bin/ollama
EXPOSE 11434
ENV OLLAMA_HOST 0.0.0.0
ARG USER=ollama
ARG GROUP=ollama
RUN addgroup -g 1000 $GROUP && adduser -u 1000 -DG $GROUP $USER
USER $USER:$GROUP
ENTRYPOINT ["/bin/ollama"]
CMD ["serve"]
FROM runtime-$TARGETARCH
EXPOSE 11434
ENV OLLAMA_HOST 0.0.0.0
ENV PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
ENTRYPOINT ["/bin/ollama"]
CMD ["serve"]

315
README.md
View File

@@ -1,117 +1,43 @@
<div align="center">
<img alt="ollama" height="200px" src="https://github.com/jmorganca/ollama/assets/3325447/0d0b44e2-8f4a-4e99-9b52-a5c1c741c8f7">
<picture>
<source media="(prefers-color-scheme: dark)" height="200px" srcset="https://github.com/jmorganca/ollama/assets/3325447/318048d2-b2dd-459c-925a-ac8449d5f02c">
<img alt="logo" height="200px" src="https://github.com/jmorganca/ollama/assets/3325447/c7d6e15f-7f4d-4776-b568-c084afa297c2">
</picture>
</div>
# Ollama
[![Discord](https://dcbadge.vercel.app/api/server/ollama?style=flat&compact=true)](https://discord.gg/ollama)
Create, run, and share self-contained large language models (LLMs). Ollama bundles a models weights, configuration, prompts, and more into self-contained packages that run anywhere.
Get up and running with large language models locally.
> Note: Ollama is in early preview. Please report any issues you find.
### macOS
## Download
[Download](https://ollama.ai/download/Ollama-darwin.zip)
- [Download](https://ollama.ai/download) for macOS on Apple Silicon (Intel coming soon)
- Download for Windows and Linux (coming soon)
- Build [from source](#building)
### Windows
## Examples
Coming soon! For now, you can install Ollama on Windows via WSL2.
### Linux & WSL2
```
curl https://ollama.ai/install.sh | sh
```
[Manual install instructions](https://github.com/jmorganca/ollama/blob/main/docs/linux.md)
### Docker
The official [Ollama Docker image](https://hub.docker.com/r/ollama/ollama) `ollama/ollama` is available on Docker Hub.
### Libraries
- [ollama-python](https://github.com/ollama/ollama-python)
- [ollama-js](https://github.com/ollama/ollama-js)
## Quickstart
To run and chat with [Llama 2](https://ollama.ai/library/llama2):
### Quickstart
```
ollama run llama2
>>> hi
Hello! How can I help you today?
```
## Model library
Ollama supports a list of open-source models available on [ollama.ai/library](https://ollama.ai/library 'ollama model library')
Here are some example open-source models that can be downloaded:
| Model | Parameters | Size | Download |
| ------------------ | ---------- | ----- | ------------------------------ |
| Llama 2 | 7B | 3.8GB | `ollama run llama2` |
| Mistral | 7B | 4.1GB | `ollama run mistral` |
| Dolphin Phi | 2.7B | 1.6GB | `ollama run dolphin-phi` |
| Phi-2 | 2.7B | 1.7GB | `ollama run phi` |
| Neural Chat | 7B | 4.1GB | `ollama run neural-chat` |
| Starling | 7B | 4.1GB | `ollama run starling-lm` |
| Code Llama | 7B | 3.8GB | `ollama run codellama` |
| Llama 2 Uncensored | 7B | 3.8GB | `ollama run llama2-uncensored` |
| Llama 2 13B | 13B | 7.3GB | `ollama run llama2:13b` |
| Llama 2 70B | 70B | 39GB | `ollama run llama2:70b` |
| Orca Mini | 3B | 1.9GB | `ollama run orca-mini` |
| Vicuna | 7B | 3.8GB | `ollama run vicuna` |
| LLaVA | 7B | 4.5GB | `ollama run llava` |
> Note: You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
## Customize a model
### Import from GGUF
Ollama supports importing GGUF models in the Modelfile:
1. Create a file named `Modelfile`, with a `FROM` instruction with the local filepath to the model you want to import.
```
FROM ./vicuna-33b.Q4_0.gguf
```
2. Create the model in Ollama
```
ollama create example -f Modelfile
```
3. Run the model
```
ollama run example
```
### Import from PyTorch or Safetensors
See the [guide](docs/import.md) on importing models for more information.
### Customize a prompt
Models from the Ollama library can be customized with a prompt. For example, to customize the `llama2` model:
```
ollama pull llama2
```
### Creating a custom model
Create a `Modelfile`:
```
FROM llama2
# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1
# set the system message
SYSTEM """
PROMPT """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
User: {{ .Prompt }}
Mario:
"""
```
@@ -124,212 +50,31 @@ ollama run mario
Hello! It's your friend Mario.
```
For more examples, see the [examples](examples) directory. For more information on working with a Modelfile, see the [Modelfile](docs/modelfile.md) documentation.
## Model library
## CLI Reference
Ollama includes a library of open-source, pre-trained models. More models are coming soon.
### Create a model
`ollama create` is used to create a model from a Modelfile.
```
ollama create mymodel -f ./Modelfile
```
### Pull a model
```
ollama pull llama2
```
> This command can also be used to update a local model. Only the diff will be pulled.
### Remove a model
```
ollama rm llama2
```
### Copy a model
```
ollama cp llama2 my-llama2
```
### Multiline input
For multiline input, you can wrap text with `"""`:
```
>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.
```
### Multimodal models
```
>>> What's in this image? /Users/jmorgan/Desktop/smile.png
The image features a yellow smiley face, which is likely the central focus of the picture.
```
### Pass in prompt as arguments
```
$ ollama run llama2 "Summarize this file: $(cat README.md)"
Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.
```
### List models on your computer
```
ollama list
```
### Start Ollama
`ollama serve` is used when you want to start ollama without running the desktop application.
| Model | Parameters | Size | Download |
| ----------- | ---------- | ----- | ------------------------- |
| Llama2 | 7B | 3.8GB | `ollama pull llama2` |
| Orca Mini | 3B | 1.9GB | `ollama pull orca` |
| Vicuna | 7B | 3.8GB | `ollama pull vicuna` |
| Nous-Hermes | 13B | 7.3GB | `ollama pull nous-hermes` |
## Building
Install `cmake` and `go`:
```
brew install cmake go
```
Then generate dependencies:
```
go generate ./...
```
Then build the binary:
```
go build .
```
More detailed instructions can be found in the [developer guide](https://github.com/jmorganca/ollama/blob/main/docs/development.md)
### Running local builds
Next, start the server:
To run it start the server:
```
./ollama serve
./ollama server &
```
Finally, in a separate shell, run a model:
Finally, run a model!
```
./ollama run llama2
```
## REST API
Ollama has a REST API for running and managing models.
### Generate a response
```
curl http://localhost:11434/api/generate -d '{
"model": "llama2",
"prompt":"Why is the sky blue?"
}'
```
### Chat with a model
```
curl http://localhost:11434/api/chat -d '{
"model": "mistral",
"messages": [
{ "role": "user", "content": "why is the sky blue?" }
]
}'
```
See the [API documentation](./docs/api.md) for all endpoints.
## Community Integrations
### Web & Desktop
- [Bionic GPT](https://github.com/bionic-gpt/bionic-gpt)
- [HTML UI](https://github.com/rtcfirefly/ollama-ui)
- [Chatbot UI](https://github.com/ivanfioravanti/chatbot-ollama)
- [Typescript UI](https://github.com/ollama-interface/Ollama-Gui?tab=readme-ov-file)
- [Minimalistic React UI for Ollama Models](https://github.com/richawo/minimal-llm-ui)
- [Web UI](https://github.com/ollama-webui/ollama-webui)
- [Ollamac](https://github.com/kevinhermawan/Ollamac)
- [big-AGI](https://github.com/enricoros/big-agi/blob/main/docs/config-ollama.md)
- [Cheshire Cat assistant framework](https://github.com/cheshire-cat-ai/core)
- [Amica](https://github.com/semperai/amica)
- [chatd](https://github.com/BruceMacD/chatd)
- [Ollama-SwiftUI](https://github.com/kghandour/Ollama-SwiftUI)
- [MindMac](https://mindmac.app)
### Terminal
- [oterm](https://github.com/ggozad/oterm)
- [Ellama Emacs client](https://github.com/s-kostyaev/ellama)
- [Emacs client](https://github.com/zweifisch/ollama)
- [gen.nvim](https://github.com/David-Kunz/gen.nvim)
- [ollama.nvim](https://github.com/nomnivore/ollama.nvim)
- [ogpt.nvim](https://github.com/huynle/ogpt.nvim)
- [gptel Emacs client](https://github.com/karthink/gptel)
- [Oatmeal](https://github.com/dustinblackman/oatmeal)
- [cmdh](https://github.com/pgibler/cmdh)
- [llm-ollama](https://github.com/taketwo/llm-ollama) for [Datasette's LLM CLI](https://llm.datasette.io/en/stable/).
### Database
- [MindsDB](https://github.com/mindsdb/mindsdb/blob/staging/mindsdb/integrations/handlers/ollama_handler/README.md)
### Package managers
- [Pacman](https://archlinux.org/packages/extra/x86_64/ollama/)
### Libraries
- [LangChain](https://python.langchain.com/docs/integrations/llms/ollama) and [LangChain.js](https://js.langchain.com/docs/modules/model_io/models/llms/integrations/ollama) with [example](https://js.langchain.com/docs/use_cases/question_answering/local_retrieval_qa)
- [LangChainGo](https://github.com/tmc/langchaingo/) with [example](https://github.com/tmc/langchaingo/tree/main/examples/ollama-completion-example)
- [LlamaIndex](https://gpt-index.readthedocs.io/en/stable/examples/llm/ollama.html)
- [LiteLLM](https://github.com/BerriAI/litellm)
- [OllamaSharp for .NET](https://github.com/awaescher/OllamaSharp)
- [Ollama for Ruby](https://github.com/gbaptista/ollama-ai)
- [Ollama-rs for Rust](https://github.com/pepperoni21/ollama-rs)
- [Ollama4j for Java](https://github.com/amithkoujalgi/ollama4j)
- [ModelFusion Typescript Library](https://modelfusion.dev/integration/model-provider/ollama)
- [OllamaKit for Swift](https://github.com/kevinhermawan/OllamaKit)
- [Ollama for Dart](https://github.com/breitburg/dart-ollama)
- [Ollama for Laravel](https://github.com/cloudstudio/ollama-laravel)
- [LangChainDart](https://github.com/davidmigloz/langchain_dart)
- [Semantic Kernel - Python](https://github.com/microsoft/semantic-kernel/tree/main/python/semantic_kernel/connectors/ai/ollama)
- [Haystack](https://github.com/deepset-ai/haystack-integrations/blob/main/integrations/ollama.md)
- [Ollama for R - rollama](https://github.com/JBGruber/rollama)
### Mobile
- [Enchanted](https://github.com/AugustDev/enchanted)
- [Maid](https://github.com/Mobile-Artificial-Intelligence/maid)
### Extensions & Plugins
- [Raycast extension](https://github.com/MassimilianoPasquini97/raycast_ollama)
- [Discollama](https://github.com/mxyng/discollama) (Discord bot inside the Ollama discord channel)
- [Continue](https://github.com/continuedev/continue)
- [Obsidian Ollama plugin](https://github.com/hinterdupfinger/obsidian-ollama)
- [Logseq Ollama plugin](https://github.com/omagdy7/ollama-logseq)
- [Dagger Chatbot](https://github.com/samalba/dagger-chatbot)
- [Discord AI Bot](https://github.com/mekb-turtle/discord-ai-bot)
- [Ollama Telegram Bot](https://github.com/ruecat/ollama-telegram)
- [Hass Ollama Conversation](https://github.com/ej52/hass-ollama-conversation)
- [Rivet plugin](https://github.com/abrenneke/rivet-plugin-ollama)
- [Llama Coder](https://github.com/ex3ndr/llama-coder) (Copilot alternative using Ollama)
- [Obsidian BMO Chatbot plugin](https://github.com/longy2k/obsidian-bmo-chatbot)
- [Open Interpreter](https://docs.openinterpreter.com/language-model-setup/local-models/ollama)
- [twinny](https://github.com/rjmacarthy/twinny) (Copilot and Copilot chat alternative using Ollama)
- [Wingman-AI](https://github.com/RussellCanfield/wingman-ai) (Copilot code and chat alternative using Ollama and HuggingFace)

View File

@@ -5,27 +5,20 @@ import (
"bytes"
"context"
"encoding/json"
"errors"
"fmt"
"io"
"net"
"net/http"
"net/url"
"os"
"runtime"
"strings"
"github.com/jmorganca/ollama/format"
"github.com/jmorganca/ollama/version"
)
type Client struct {
base *url.URL
http http.Client
base url.URL
HTTP http.Client
Headers http.Header
}
func checkError(resp *http.Response, body []byte) error {
if resp.StatusCode < http.StatusBadRequest {
if resp.StatusCode >= 200 && resp.StatusCode < 400 {
return nil
}
@@ -34,95 +27,51 @@ func checkError(resp *http.Response, body []byte) error {
err := json.Unmarshal(body, &apiError)
if err != nil {
// Use the full body as the message if we fail to decode a response.
apiError.ErrorMessage = string(body)
apiError.Message = string(body)
}
return apiError
}
func ClientFromEnvironment() (*Client, error) {
defaultPort := "11434"
scheme, hostport, ok := strings.Cut(os.Getenv("OLLAMA_HOST"), "://")
switch {
case !ok:
scheme, hostport = "http", os.Getenv("OLLAMA_HOST")
case scheme == "http":
defaultPort = "80"
case scheme == "https":
defaultPort = "443"
func NewClient(hosts ...string) *Client {
host := "127.0.0.1:11434"
if len(hosts) > 0 {
host = hosts[0]
}
// trim trailing slashes
hostport = strings.TrimRight(hostport, "/")
host, port, err := net.SplitHostPort(hostport)
if err != nil {
host, port = "127.0.0.1", defaultPort
if ip := net.ParseIP(strings.Trim(hostport, "[]")); ip != nil {
host = ip.String()
} else if hostport != "" {
host = hostport
}
return &Client{
base: url.URL{Scheme: "http", Host: host},
HTTP: http.Client{},
}
client := Client{
base: &url.URL{
Scheme: scheme,
Host: net.JoinHostPort(host, port),
},
}
mockRequest, err := http.NewRequest(http.MethodHead, client.base.String(), nil)
if err != nil {
return nil, err
}
proxyURL, err := http.ProxyFromEnvironment(mockRequest)
if err != nil {
return nil, err
}
client.http = http.Client{
Transport: &http.Transport{
Proxy: http.ProxyURL(proxyURL),
},
}
return &client, nil
}
func (c *Client) do(ctx context.Context, method, path string, reqData, respData any) error {
var reqBody io.Reader
var data []byte
var err error
switch reqData := reqData.(type) {
case io.Reader:
// reqData is already an io.Reader
reqBody = reqData
case nil:
// noop
default:
if reqData != nil {
data, err = json.Marshal(reqData)
if err != nil {
return err
}
reqBody = bytes.NewReader(data)
}
requestURL := c.base.JoinPath(path)
request, err := http.NewRequestWithContext(ctx, method, requestURL.String(), reqBody)
url := c.base.JoinPath(path).String()
req, err := http.NewRequestWithContext(ctx, method, url, reqBody)
if err != nil {
return err
}
request.Header.Set("Content-Type", "application/json")
request.Header.Set("Accept", "application/json")
request.Header.Set("User-Agent", fmt.Sprintf("ollama/%s (%s %s) Go/%s", version.Version, runtime.GOARCH, runtime.GOOS, runtime.Version()))
req.Header.Set("Content-Type", "application/json")
req.Header.Set("Accept", "application/json")
respObj, err := c.http.Do(request)
for k, v := range c.Headers {
req.Header[k] = v
}
respObj, err := c.HTTP.Do(req)
if err != nil {
return err
}
@@ -143,9 +92,8 @@ func (c *Client) do(ctx context.Context, method, path string, reqData, respData
}
}
return nil
}
const maxBufferSize = 512 * format.KiloByte
}
func (c *Client) stream(ctx context.Context, method, path string, data any, fn func([]byte) error) error {
var buf *bytes.Buffer
@@ -158,26 +106,21 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
buf = bytes.NewBuffer(bts)
}
requestURL := c.base.JoinPath(path)
request, err := http.NewRequestWithContext(ctx, method, requestURL.String(), buf)
request, err := http.NewRequestWithContext(ctx, method, c.base.JoinPath(path).String(), buf)
if err != nil {
return err
}
request.Header.Set("Content-Type", "application/json")
request.Header.Set("Accept", "application/x-ndjson")
request.Header.Set("User-Agent", fmt.Sprintf("ollama/%s (%s %s) Go/%s", version.Version, runtime.GOARCH, runtime.GOOS, runtime.Version()))
request.Header.Set("Accept", "application/json")
response, err := c.http.Do(request)
response, err := http.DefaultClient.Do(request)
if err != nil {
return err
}
defer response.Body.Close()
scanner := bufio.NewScanner(response.Body)
// increase the buffer size to avoid running out of space
scanBuf := make([]byte, 0, maxBufferSize)
scanner.Buffer(scanBuf, maxBufferSize)
for scanner.Scan() {
var errorResponse struct {
Error string `json:"error,omitempty"`
@@ -188,15 +131,11 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
return fmt.Errorf("unmarshal: %w", err)
}
if errorResponse.Error != "" {
return fmt.Errorf(errorResponse.Error)
}
if response.StatusCode >= http.StatusBadRequest {
if response.StatusCode >= 400 {
return StatusError{
StatusCode: response.StatusCode,
Status: response.Status,
ErrorMessage: errorResponse.Error,
StatusCode: response.StatusCode,
Status: response.Status,
Message: errorResponse.Error,
}
}
@@ -221,19 +160,6 @@ func (c *Client) Generate(ctx context.Context, req *GenerateRequest, fn Generate
})
}
type ChatResponseFunc func(ChatResponse) error
func (c *Client) Chat(ctx context.Context, req *ChatRequest, fn ChatResponseFunc) error {
return c.stream(ctx, http.MethodPost, "/api/chat", req, func(bts []byte) error {
var resp ChatResponse
if err := json.Unmarshal(bts, &resp); err != nil {
return err
}
return fn(resp)
})
}
type PullProgressFunc func(ProgressResponse) error
func (c *Client) Pull(ctx context.Context, req *PullRequest, fn PullProgressFunc) error {
@@ -260,11 +186,11 @@ func (c *Client) Push(ctx context.Context, req *PushRequest, fn PushProgressFunc
})
}
type CreateProgressFunc func(ProgressResponse) error
type CreateProgressFunc func(CreateProgress) error
func (c *Client) Create(ctx context.Context, req *CreateRequest, fn CreateProgressFunc) error {
return c.stream(ctx, http.MethodPost, "/api/create", req, func(bts []byte) error {
var resp ProgressResponse
var resp CreateProgress
if err := json.Unmarshal(bts, &resp); err != nil {
return err
}
@@ -280,66 +206,3 @@ func (c *Client) List(ctx context.Context) (*ListResponse, error) {
}
return &lr, nil
}
func (c *Client) Copy(ctx context.Context, req *CopyRequest) error {
if err := c.do(ctx, http.MethodPost, "/api/copy", req, nil); err != nil {
return err
}
return nil
}
func (c *Client) Delete(ctx context.Context, req *DeleteRequest) error {
if err := c.do(ctx, http.MethodDelete, "/api/delete", req, nil); err != nil {
return err
}
return nil
}
func (c *Client) Show(ctx context.Context, req *ShowRequest) (*ShowResponse, error) {
var resp ShowResponse
if err := c.do(ctx, http.MethodPost, "/api/show", req, &resp); err != nil {
return nil, err
}
return &resp, nil
}
func (c *Client) Heartbeat(ctx context.Context) error {
if err := c.do(ctx, http.MethodHead, "/", nil, nil); err != nil {
return err
}
return nil
}
func (c *Client) Embeddings(ctx context.Context, req *EmbeddingRequest) (*EmbeddingResponse, error) {
var resp EmbeddingResponse
if err := c.do(ctx, http.MethodPost, "/api/embeddings", req, &resp); err != nil {
return nil, err
}
return &resp, nil
}
func (c *Client) CreateBlob(ctx context.Context, digest string, r io.Reader) error {
if err := c.do(ctx, http.MethodHead, fmt.Sprintf("/api/blobs/%s", digest), nil, nil); err != nil {
var statusError StatusError
if !errors.As(err, &statusError) || statusError.StatusCode != http.StatusNotFound {
return err
}
if err := c.do(ctx, http.MethodPost, fmt.Sprintf("/api/blobs/%s", digest), r, nil); err != nil {
return err
}
}
return nil
}
func (c *Client) Version(ctx context.Context) (string, error) {
var version struct {
Version string `json:"version"`
}
if err := c.do(ctx, http.MethodGet, "/api/version", nil, &version); err != nil {
return "", err
}
return version.Version, nil
}

View File

@@ -1,43 +0,0 @@
package api
import "testing"
func TestClientFromEnvironment(t *testing.T) {
type testCase struct {
value string
expect string
err error
}
testCases := map[string]*testCase{
"empty": {value: "", expect: "http://127.0.0.1:11434"},
"only address": {value: "1.2.3.4", expect: "http://1.2.3.4:11434"},
"only port": {value: ":1234", expect: "http://:1234"},
"address and port": {value: "1.2.3.4:1234", expect: "http://1.2.3.4:1234"},
"scheme http and address": {value: "http://1.2.3.4", expect: "http://1.2.3.4:80"},
"scheme https and address": {value: "https://1.2.3.4", expect: "https://1.2.3.4:443"},
"scheme, address, and port": {value: "https://1.2.3.4:1234", expect: "https://1.2.3.4:1234"},
"hostname": {value: "example.com", expect: "http://example.com:11434"},
"hostname and port": {value: "example.com:1234", expect: "http://example.com:1234"},
"scheme http and hostname": {value: "http://example.com", expect: "http://example.com:80"},
"scheme https and hostname": {value: "https://example.com", expect: "https://example.com:443"},
"scheme, hostname, and port": {value: "https://example.com:1234", expect: "https://example.com:1234"},
"trailing slash": {value: "example.com/", expect: "http://example.com:11434"},
"trailing slash port": {value: "example.com:1234/", expect: "http://example.com:1234"},
}
for k, v := range testCases {
t.Run(k, func(t *testing.T) {
t.Setenv("OLLAMA_HOST", v.value)
client, err := ClientFromEnvironment()
if err != v.err {
t.Fatalf("expected %s, got %s", v.err, err)
}
if client.base.String() != v.expect {
t.Fatalf("expected %s, got %s", v.expect, client.base.String())
}
})
}
}

View File

@@ -1,495 +1,173 @@
package api
import (
"encoding/json"
"fmt"
"math"
"os"
"reflect"
"strconv"
"strings"
"runtime"
"time"
)
type StatusError struct {
StatusCode int
Status string
ErrorMessage string `json:"error"`
StatusCode int
Status string
Message string
}
func (e StatusError) Error() string {
switch {
case e.Status != "" && e.ErrorMessage != "":
return fmt.Sprintf("%s: %s", e.Status, e.ErrorMessage)
case e.Status != "":
return e.Status
case e.ErrorMessage != "":
return e.ErrorMessage
default:
// this should not happen
return "something went wrong, please see the ollama server logs for details"
if e.Message != "" {
return fmt.Sprintf("%s: %s", e.Status, e.Message)
}
return e.Status
}
type ImageData []byte
type GenerateRequest struct {
Model string `json:"model"`
Prompt string `json:"prompt"`
System string `json:"system"`
Template string `json:"template"`
Context []int `json:"context,omitempty"`
Stream *bool `json:"stream,omitempty"`
Raw bool `json:"raw,omitempty"`
Format string `json:"format"`
KeepAlive *Duration `json:"keep_alive,omitempty"`
Images []ImageData `json:"images,omitempty"`
Model string `json:"model"`
Prompt string `json:"prompt"`
Context []int `json:"context,omitempty"`
Options map[string]interface{} `json:"options"`
Options `json:"options"`
}
type ChatRequest struct {
Model string `json:"model"`
Messages []Message `json:"messages"`
Stream *bool `json:"stream,omitempty"`
Format string `json:"format"`
KeepAlive *Duration `json:"keep_alive,omitempty"`
Options map[string]interface{} `json:"options"`
type CreateRequest struct {
Name string `json:"name"`
Path string `json:"path"`
}
type Message struct {
Role string `json:"role"` // one of ["system", "user", "assistant"]
Content string `json:"content"`
Images []ImageData `json:"images,omitempty"`
type CreateProgress struct {
Status string `json:"status"`
}
type ChatResponse struct {
type PullRequest struct {
Name string `json:"name"`
Username string `json:"username"`
Password string `json:"password"`
}
type ProgressResponse struct {
Status string `json:"status"`
Digest string `json:"digest,omitempty"`
Total int `json:"total,omitempty"`
Completed int `json:"completed,omitempty"`
}
type PushRequest struct {
Name string `json:"name"`
Username string `json:"username"`
Password string `json:"password"`
}
type ListResponse struct {
Models []ListResponseModel `json:"models"`
}
type ListResponseModel struct {
Name string `json:"name"`
ModifiedAt time.Time `json:"modified_at"`
Size int `json:"size"`
}
type GenerateResponse struct {
Model string `json:"model"`
CreatedAt time.Time `json:"created_at"`
Message Message `json:"message"`
Response string `json:"response,omitempty"`
Done bool `json:"done"`
Done bool `json:"done"`
Context []int `json:"context,omitempty"`
Metrics
}
type Metrics struct {
TotalDuration time.Duration `json:"total_duration,omitempty"`
LoadDuration time.Duration `json:"load_duration,omitempty"`
PromptEvalCount int `json:"prompt_eval_count,omitempty"`
PromptEvalDuration time.Duration `json:"prompt_eval_duration,omitempty"`
EvalCount int `json:"eval_count,omitempty"`
EvalDuration time.Duration `json:"eval_duration,omitempty"`
}
// Options specfied in GenerateRequest, if you add a new option here add it to the API docs also
func (r *GenerateResponse) Summary() {
if r.TotalDuration > 0 {
fmt.Fprintf(os.Stderr, "total duration: %v\n", r.TotalDuration)
}
if r.PromptEvalCount > 0 {
fmt.Fprintf(os.Stderr, "prompt eval count: %d token(s)\n", r.PromptEvalCount)
}
if r.PromptEvalDuration > 0 {
fmt.Fprintf(os.Stderr, "prompt eval duration: %s\n", r.PromptEvalDuration)
fmt.Fprintf(os.Stderr, "prompt eval rate: %.2f tokens/s\n", float64(r.PromptEvalCount)/r.PromptEvalDuration.Seconds())
}
if r.EvalCount > 0 {
fmt.Fprintf(os.Stderr, "eval count: %d token(s)\n", r.EvalCount)
}
if r.EvalDuration > 0 {
fmt.Fprintf(os.Stderr, "eval duration: %s\n", r.EvalDuration)
fmt.Fprintf(os.Stderr, "eval rate: %.2f tokens/s\n", float64(r.EvalCount)/r.EvalDuration.Seconds())
}
}
type Options struct {
Runner
Seed int `json:"seed,omitempty"`
// Predict options used at runtime
NumKeep int `json:"num_keep,omitempty"`
Seed int `json:"seed,omitempty"`
NumPredict int `json:"num_predict,omitempty"`
TopK int `json:"top_k,omitempty"`
TopP float32 `json:"top_p,omitempty"`
TFSZ float32 `json:"tfs_z,omitempty"`
TypicalP float32 `json:"typical_p,omitempty"`
RepeatLastN int `json:"repeat_last_n,omitempty"`
Temperature float32 `json:"temperature,omitempty"`
RepeatPenalty float32 `json:"repeat_penalty,omitempty"`
PresencePenalty float32 `json:"presence_penalty,omitempty"`
FrequencyPenalty float32 `json:"frequency_penalty,omitempty"`
Mirostat int `json:"mirostat,omitempty"`
MirostatTau float32 `json:"mirostat_tau,omitempty"`
MirostatEta float32 `json:"mirostat_eta,omitempty"`
PenalizeNewline bool `json:"penalize_newline,omitempty"`
Stop []string `json:"stop,omitempty"`
}
// Backend options
UseNUMA bool `json:"numa,omitempty"`
// Runner options which must be set when the model is loaded into memory
type Runner struct {
UseNUMA bool `json:"numa,omitempty"`
NumCtx int `json:"num_ctx,omitempty"`
NumBatch int `json:"num_batch,omitempty"`
NumGQA int `json:"num_gqa,omitempty"`
NumGPU int `json:"num_gpu,omitempty"`
MainGPU int `json:"main_gpu,omitempty"`
LowVRAM bool `json:"low_vram,omitempty"`
F16KV bool `json:"f16_kv,omitempty"`
LogitsAll bool `json:"logits_all,omitempty"`
VocabOnly bool `json:"vocab_only,omitempty"`
UseMMap bool `json:"use_mmap,omitempty"`
UseMLock bool `json:"use_mlock,omitempty"`
EmbeddingOnly bool `json:"embedding_only,omitempty"`
RopeFrequencyBase float32 `json:"rope_frequency_base,omitempty"`
RopeFrequencyScale float32 `json:"rope_frequency_scale,omitempty"`
NumThread int `json:"num_thread,omitempty"`
}
// Model options
NumCtx int `json:"num_ctx,omitempty"`
NumBatch int `json:"num_batch,omitempty"`
NumGPU int `json:"num_gpu,omitempty"`
MainGPU int `json:"main_gpu,omitempty"`
LowVRAM bool `json:"low_vram,omitempty"`
F16KV bool `json:"f16_kv,omitempty"`
LogitsAll bool `json:"logits_all,omitempty"`
VocabOnly bool `json:"vocab_only,omitempty"`
UseMMap bool `json:"use_mmap,omitempty"`
UseMLock bool `json:"use_mlock,omitempty"`
EmbeddingOnly bool `json:"embedding_only,omitempty"`
type EmbeddingRequest struct {
Model string `json:"model"`
Prompt string `json:"prompt"`
KeepAlive *Duration `json:"keep_alive,omitempty"`
// Predict options
RepeatLastN int `json:"repeat_last_n,omitempty"`
RepeatPenalty float32 `json:"repeat_penalty,omitempty"`
FrequencyPenalty float32 `json:"frequency_penalty,omitempty"`
PresencePenalty float32 `json:"presence_penalty,omitempty"`
Temperature float32 `json:"temperature,omitempty"`
TopK int `json:"top_k,omitempty"`
TopP float32 `json:"top_p,omitempty"`
TFSZ float32 `json:"tfs_z,omitempty"`
TypicalP float32 `json:"typical_p,omitempty"`
Mirostat int `json:"mirostat,omitempty"`
MirostatTau float32 `json:"mirostat_tau,omitempty"`
MirostatEta float32 `json:"mirostat_eta,omitempty"`
Options map[string]interface{} `json:"options"`
}
type EmbeddingResponse struct {
Embedding []float64 `json:"embedding"`
}
type CreateRequest struct {
Model string `json:"model"`
Path string `json:"path"`
Modelfile string `json:"modelfile"`
Stream *bool `json:"stream,omitempty"`
// Name is deprecated, see Model
Name string `json:"name"`
}
type DeleteRequest struct {
Model string `json:"model"`
// Name is deprecated, see Model
Name string `json:"name"`
}
type ShowRequest struct {
Model string `json:"model"`
System string `json:"system"`
Template string `json:"template"`
Options map[string]interface{} `json:"options"`
// Name is deprecated, see Model
Name string `json:"name"`
}
type ShowResponse struct {
License string `json:"license,omitempty"`
Modelfile string `json:"modelfile,omitempty"`
Parameters string `json:"parameters,omitempty"`
Template string `json:"template,omitempty"`
System string `json:"system,omitempty"`
Details ModelDetails `json:"details,omitempty"`
Messages []Message `json:"messages,omitempty"`
}
type CopyRequest struct {
Source string `json:"source"`
Destination string `json:"destination"`
}
type PullRequest struct {
Model string `json:"model"`
Insecure bool `json:"insecure,omitempty"`
Username string `json:"username"`
Password string `json:"password"`
Stream *bool `json:"stream,omitempty"`
// Name is deprecated, see Model
Name string `json:"name"`
}
type ProgressResponse struct {
Status string `json:"status"`
Digest string `json:"digest,omitempty"`
Total int64 `json:"total,omitempty"`
Completed int64 `json:"completed,omitempty"`
}
type PushRequest struct {
Model string `json:"model"`
Insecure bool `json:"insecure,omitempty"`
Username string `json:"username"`
Password string `json:"password"`
Stream *bool `json:"stream,omitempty"`
// Name is deprecated, see Model
Name string `json:"name"`
}
type ListResponse struct {
Models []ModelResponse `json:"models"`
}
type ModelResponse struct {
Name string `json:"name"`
Model string `json:"model"`
ModifiedAt time.Time `json:"modified_at"`
Size int64 `json:"size"`
Digest string `json:"digest"`
Details ModelDetails `json:"details,omitempty"`
}
type TokenResponse struct {
Token string `json:"token"`
}
type GenerateResponse struct {
Model string `json:"model"`
CreatedAt time.Time `json:"created_at"`
Response string `json:"response"`
Done bool `json:"done"`
Context []int `json:"context,omitempty"`
Metrics
}
type ModelDetails struct {
ParentModel string `json:"parent_model"`
Format string `json:"format"`
Family string `json:"family"`
Families []string `json:"families"`
ParameterSize string `json:"parameter_size"`
QuantizationLevel string `json:"quantization_level"`
}
func (m *Metrics) Summary() {
if m.TotalDuration > 0 {
fmt.Fprintf(os.Stderr, "total duration: %v\n", m.TotalDuration)
}
if m.LoadDuration > 0 {
fmt.Fprintf(os.Stderr, "load duration: %v\n", m.LoadDuration)
}
if m.PromptEvalCount > 0 {
fmt.Fprintf(os.Stderr, "prompt eval count: %d token(s)\n", m.PromptEvalCount)
}
if m.PromptEvalDuration > 0 {
fmt.Fprintf(os.Stderr, "prompt eval duration: %s\n", m.PromptEvalDuration)
fmt.Fprintf(os.Stderr, "prompt eval rate: %.2f tokens/s\n", float64(m.PromptEvalCount)/m.PromptEvalDuration.Seconds())
}
if m.EvalCount > 0 {
fmt.Fprintf(os.Stderr, "eval count: %d token(s)\n", m.EvalCount)
}
if m.EvalDuration > 0 {
fmt.Fprintf(os.Stderr, "eval duration: %s\n", m.EvalDuration)
fmt.Fprintf(os.Stderr, "eval rate: %.2f tokens/s\n", float64(m.EvalCount)/m.EvalDuration.Seconds())
}
}
var ErrInvalidOpts = fmt.Errorf("invalid options")
func (opts *Options) FromMap(m map[string]interface{}) error {
valueOpts := reflect.ValueOf(opts).Elem() // names of the fields in the options struct
typeOpts := reflect.TypeOf(opts).Elem() // types of the fields in the options struct
// build map of json struct tags to their types
jsonOpts := make(map[string]reflect.StructField)
for _, field := range reflect.VisibleFields(typeOpts) {
jsonTag := strings.Split(field.Tag.Get("json"), ",")[0]
if jsonTag != "" {
jsonOpts[jsonTag] = field
}
}
invalidOpts := []string{}
for key, val := range m {
if opt, ok := jsonOpts[key]; ok {
field := valueOpts.FieldByName(opt.Name)
if field.IsValid() && field.CanSet() {
if val == nil {
continue
}
switch field.Kind() {
case reflect.Int:
switch t := val.(type) {
case int64:
field.SetInt(t)
case float64:
// when JSON unmarshals numbers, it uses float64, not int
field.SetInt(int64(t))
default:
return fmt.Errorf("option %q must be of type integer", key)
}
case reflect.Bool:
val, ok := val.(bool)
if !ok {
return fmt.Errorf("option %q must be of type boolean", key)
}
field.SetBool(val)
case reflect.Float32:
// JSON unmarshals to float64
val, ok := val.(float64)
if !ok {
return fmt.Errorf("option %q must be of type float32", key)
}
field.SetFloat(val)
case reflect.String:
val, ok := val.(string)
if !ok {
return fmt.Errorf("option %q must be of type string", key)
}
field.SetString(val)
case reflect.Slice:
// JSON unmarshals to []interface{}, not []string
val, ok := val.([]interface{})
if !ok {
return fmt.Errorf("option %q must be of type array", key)
}
// convert []interface{} to []string
slice := make([]string, len(val))
for i, item := range val {
str, ok := item.(string)
if !ok {
return fmt.Errorf("option %q must be of an array of strings", key)
}
slice[i] = str
}
field.Set(reflect.ValueOf(slice))
default:
return fmt.Errorf("unknown type loading config params: %v", field.Kind())
}
}
} else {
invalidOpts = append(invalidOpts, key)
}
}
if len(invalidOpts) > 0 {
return fmt.Errorf("%w: %v", ErrInvalidOpts, strings.Join(invalidOpts, ", "))
}
return nil
NumThread int `json:"num_thread,omitempty"`
}
func DefaultOptions() Options {
return Options{
// options set on request to runner
NumPredict: -1,
NumKeep: 0,
Seed: -1,
UseNUMA: false,
NumCtx: 2048,
NumBatch: 512,
NumGPU: 1,
LowVRAM: false,
F16KV: true,
UseMMap: true,
UseMLock: false,
RepeatLastN: 512,
RepeatPenalty: 1.1,
FrequencyPenalty: 0.0,
PresencePenalty: 0.0,
Temperature: 0.8,
TopK: 40,
TopP: 0.9,
TFSZ: 1.0,
TypicalP: 1.0,
RepeatLastN: 64,
RepeatPenalty: 1.1,
PresencePenalty: 0.0,
FrequencyPenalty: 0.0,
Mirostat: 0,
MirostatTau: 5.0,
MirostatEta: 0.1,
PenalizeNewline: true,
Seed: -1,
Runner: Runner{
// options set when the model is loaded
NumCtx: 2048,
RopeFrequencyBase: 10000.0,
RopeFrequencyScale: 1.0,
NumBatch: 512,
NumGPU: -1, // -1 here indicates that NumGPU should be set dynamically
NumGQA: 1,
NumThread: 0, // let the runtime decide
LowVRAM: false,
F16KV: true,
UseMLock: false,
UseMMap: true,
UseNUMA: false,
EmbeddingOnly: true,
},
NumThread: runtime.NumCPU(),
}
}
type Duration struct {
time.Duration
}
func (d *Duration) UnmarshalJSON(b []byte) (err error) {
var v any
if err := json.Unmarshal(b, &v); err != nil {
return err
}
d.Duration = 5 * time.Minute
switch t := v.(type) {
case float64:
if t < 0 {
t = math.MaxFloat64
d.Duration = time.Duration(t)
} else {
d.Duration = time.Duration(t * float64(time.Second))
}
case string:
d.Duration, err = time.ParseDuration(t)
if err != nil {
return err
}
if d.Duration < 0 {
mf := math.MaxFloat64
d.Duration = time.Duration(mf)
}
}
return nil
}
// FormatParams converts specified parameter options to their correct types
func FormatParams(params map[string][]string) (map[string]interface{}, error) {
opts := Options{}
valueOpts := reflect.ValueOf(&opts).Elem() // names of the fields in the options struct
typeOpts := reflect.TypeOf(opts) // types of the fields in the options struct
// build map of json struct tags to their types
jsonOpts := make(map[string]reflect.StructField)
for _, field := range reflect.VisibleFields(typeOpts) {
jsonTag := strings.Split(field.Tag.Get("json"), ",")[0]
if jsonTag != "" {
jsonOpts[jsonTag] = field
}
}
out := make(map[string]interface{})
// iterate params and set values based on json struct tags
for key, vals := range params {
if opt, ok := jsonOpts[key]; !ok {
return nil, fmt.Errorf("unknown parameter '%s'", key)
} else {
field := valueOpts.FieldByName(opt.Name)
if field.IsValid() && field.CanSet() {
switch field.Kind() {
case reflect.Float32:
floatVal, err := strconv.ParseFloat(vals[0], 32)
if err != nil {
return nil, fmt.Errorf("invalid float value %s", vals)
}
out[key] = float32(floatVal)
case reflect.Int:
intVal, err := strconv.ParseInt(vals[0], 10, 64)
if err != nil {
return nil, fmt.Errorf("invalid int value %s", vals)
}
out[key] = intVal
case reflect.Bool:
boolVal, err := strconv.ParseBool(vals[0])
if err != nil {
return nil, fmt.Errorf("invalid bool value %s", vals)
}
out[key] = boolVal
case reflect.String:
out[key] = vals[0]
case reflect.Slice:
// TODO: only string slices are supported right now
out[key] = vals
default:
return nil, fmt.Errorf("unknown type %s for %s", field.Kind(), key)
}
}
}
}
return out, nil
}

View File

@@ -1,5 +1,7 @@
# Desktop
_Note: the Ollama desktop app is a work in progress and is not ready yet for general use._
This app builds upon Ollama to provide a desktop experience for running models.
## Developing
@@ -7,15 +9,19 @@ This app builds upon Ollama to provide a desktop experience for running models.
First, build the `ollama` binary:
```
cd ..
go build .
make -C ..
```
Then run the desktop app with `npm start`:
```
cd app
npm install
npm start
```
## Coming soon
- Browse the latest available models on Hugging Face and other sources
- Keep track of previous conversations with models
- Switch quickly between models
- Connect to remote Ollama servers to run models

Binary file not shown.

Before

Width:  |  Height:  |  Size: 402 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 440 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 763 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 447 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 891 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 443 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 844 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 403 B

View File

Before

Width:  |  Height:  |  Size: 741 B

After

Width:  |  Height:  |  Size: 741 B

View File

@@ -18,15 +18,10 @@ const config: ForgeConfig = {
asar: true,
icon: './assets/icon.icns',
extraResource: [
'../dist/ollama',
path.join(__dirname, './assets/iconTemplate.png'),
path.join(__dirname, './assets/iconTemplate@2x.png'),
path.join(__dirname, './assets/iconUpdateTemplate.png'),
path.join(__dirname, './assets/iconUpdateTemplate@2x.png'),
path.join(__dirname, './assets/iconDarkTemplate.png'),
path.join(__dirname, './assets/iconDarkTemplate@2x.png'),
path.join(__dirname, './assets/iconDarkUpdateTemplate.png'),
path.join(__dirname, './assets/iconDarkUpdateTemplate@2x.png'),
'../ollama',
path.join(__dirname, './assets/ollama_icon_16x16Template.png'),
path.join(__dirname, './assets/ollama_icon_16x16Template@2x.png'),
...(process.platform === 'darwin' ? ['../llama/ggml-metal.metal'] : []),
],
...(process.env.SIGN
? {
@@ -41,12 +36,19 @@ const config: ForgeConfig = {
},
}
: {}),
osxUniversal: {
x64ArchFiles: '**/ollama',
},
},
rebuildConfig: {},
makers: [new MakerSquirrel({}), new MakerZIP({}, ['darwin'])],
publishers: [
new PublisherGithub({
repository: {
name: 'ollama',
owner: 'jmorganca',
},
draft: false,
prerelease: true,
}),
],
hooks: {
readPackageJson: async (_, packageJson) => {
return { ...packageJson, version: process.env.VERSION || packageJson.version }

997
app/package-lock.json generated

File diff suppressed because it is too large Load Diff

View File

@@ -6,14 +6,12 @@
"main": ".webpack/main",
"scripts": {
"start": "electron-forge start",
"package": "electron-forge package --arch universal",
"package:sign": "SIGN=1 electron-forge package --arch universal",
"make": "electron-forge make --arch universal",
"make:sign": "SIGN=1 electron-forge make --arch universal",
"package": "electron-forge package",
"package:sign": "SIGN=1 electron-forge package",
"make": "electron-forge make",
"make:sign": "SIGN=1 electron-forge make",
"publish": "SIGN=1 electron-forge publish",
"lint": "eslint --ext .ts,.tsx .",
"format": "prettier --check . --ignore-path .gitignore",
"format:fix": "prettier --write . --ignore-path .gitignore"
"lint": "eslint --ext .ts,.tsx ."
},
"keywords": [],
"author": {
@@ -32,7 +30,6 @@
"@electron-forge/plugin-auto-unpack-natives": "^6.2.1",
"@electron-forge/plugin-webpack": "^6.2.1",
"@electron-forge/publisher-github": "^6.2.1",
"@electron/universal": "^1.4.1",
"@svgr/webpack": "^8.0.1",
"@types/chmodr": "^1.0.0",
"@types/node": "^20.4.0",
@@ -46,7 +43,7 @@
"chmodr": "^1.2.0",
"copy-webpack-plugin": "^11.0.0",
"css-loader": "^6.8.1",
"electron": "25.9.2",
"electron": "25.2.0",
"eslint": "^8.43.0",
"eslint-plugin-import": "^2.27.5",
"fork-ts-checker-webpack-plugin": "^7.3.0",

View File

@@ -2,7 +2,7 @@ import { useState } from 'react'
import copy from 'copy-to-clipboard'
import { CheckIcon, DocumentDuplicateIcon } from '@heroicons/react/24/outline'
import Store from 'electron-store'
import { getCurrentWindow, app } from '@electron/remote'
import { getCurrentWindow } from '@electron/remote'
import { install } from './install'
import OllamaIcon from './ollama.svg'
@@ -51,15 +51,10 @@ export default function () {
<div className='mx-auto'>
<button
onClick={async () => {
try {
await install()
setStep(Step.FINISH)
} catch (e) {
console.error('could not install: ', e)
} finally {
getCurrentWindow().show()
getCurrentWindow().focus()
}
await install()
getCurrentWindow().show()
getCurrentWindow().focus()
setStep(Step.FINISH)
}}
className='no-drag rounded-dm mx-auto w-[60%] rounded-md bg-black px-4 py-2 text-sm text-white hover:brightness-110'
>

View File

@@ -1,4 +1,4 @@
declare module '*.svg' {
const content: string
export default content
}
const content: string;
export default content;
}

View File

@@ -1,21 +1,17 @@
import { spawn, ChildProcess } from 'child_process'
import { app, autoUpdater, dialog, Tray, Menu, BrowserWindow, MenuItemConstructorOptions, nativeTheme } from 'electron'
import { spawn } from 'child_process'
import { app, autoUpdater, dialog, Tray, Menu, BrowserWindow } from 'electron'
import Store from 'electron-store'
import winston from 'winston'
import 'winston-daily-rotate-file'
import * as path from 'path'
import { v4 as uuidv4 } from 'uuid'
import { analytics, id } from './telemetry'
import { installed } from './install'
require('@electron/remote/main').initialize()
if (require('electron-squirrel-startup')) {
app.quit()
}
const store = new Store()
let tray: Tray | null = null
let welcomeWindow: BrowserWindow | null = null
declare const MAIN_WINDOW_WEBPACK_ENTRY: string
@@ -32,30 +28,10 @@ const logger = winston.createLogger({
format: winston.format.printf(info => info.message),
})
app.on('ready', () => {
const gotTheLock = app.requestSingleInstanceLock()
if (!gotTheLock) {
app.exit(0)
return
}
app.on('second-instance', () => {
if (app.hasSingleInstanceLock()) {
app.releaseSingleInstanceLock()
}
if (proc) {
proc.off('exit', restart)
proc.kill()
}
app.exit(0)
})
app.focus({ steal: true })
init()
})
const SingleInstanceLock = app.requestSingleInstanceLock()
if (!SingleInstanceLock) {
app.quit()
}
function firstRunWindow() {
// Create the browser window.
@@ -71,74 +47,49 @@ function firstRunWindow() {
nodeIntegration: true,
contextIsolation: false,
},
alwaysOnTop: true,
})
require('@electron/remote/main').enable(welcomeWindow.webContents)
// and load the index.html of the app.
welcomeWindow.loadURL(MAIN_WINDOW_WEBPACK_ENTRY)
welcomeWindow.on('ready-to-show', () => welcomeWindow.show())
welcomeWindow.on('closed', () => {
if (process.platform === 'darwin') {
app.dock.hide()
}
})
}
let tray: Tray | null = null
let updateAvailable = false
const assetPath = app.isPackaged ? process.resourcesPath : path.join(__dirname, '..', '..', 'assets')
// for debugging
// welcomeWindow.webContents.openDevTools()
function trayIconPath() {
return nativeTheme.shouldUseDarkColors
? updateAvailable
? path.join(assetPath, 'iconDarkUpdateTemplate.png')
: path.join(assetPath, 'iconDarkTemplate.png')
: updateAvailable
? path.join(assetPath, 'iconUpdateTemplate.png')
: path.join(assetPath, 'iconTemplate.png')
}
function updateTrayIcon() {
if (tray) {
tray.setImage(trayIconPath())
if (process.platform === 'darwin') {
app.dock.hide()
}
}
function updateTray() {
const updateItems: MenuItemConstructorOptions[] = [
{ label: 'An update is available', enabled: false },
{
label: 'Restart to update',
click: () => autoUpdater.quitAndInstall(),
},
{ type: 'separator' },
]
function createSystemtray() {
let iconPath = path.join(__dirname, '..', '..', 'assets', 'ollama_icon_16x16Template.png')
const menu = Menu.buildFromTemplate([
...(updateAvailable ? updateItems : []),
{ role: 'quit', label: 'Quit Ollama', accelerator: 'Command+Q' },
])
if (!tray) {
tray = new Tray(trayIconPath())
if (app.isPackaged) {
iconPath = path.join(process.resourcesPath, 'ollama_icon_16x16Template.png')
}
tray.setToolTip(updateAvailable ? 'An update is available' : 'Ollama')
tray.setContextMenu(menu)
tray.setImage(trayIconPath())
tray = new Tray(iconPath)
nativeTheme.off('updated', updateTrayIcon)
nativeTheme.on('updated', updateTrayIcon)
const contextMenu = Menu.buildFromTemplate([{ role: 'quit', label: 'Quit Ollama', accelerator: 'Command+Q' }])
tray.setContextMenu(contextMenu)
tray.setToolTip('Ollama')
}
let proc: ChildProcess = null
if (require('electron-squirrel-startup')) {
app.quit()
}
function server() {
const binary = app.isPackaged
? path.join(process.resourcesPath, 'ollama')
: path.resolve(process.cwd(), '..', 'ollama')
proc = spawn(binary, ['serve'])
const proc = spawn(binary, ['serve'])
proc.stdout.on('data', data => {
logger.info(data.toString().trim())
@@ -148,75 +99,24 @@ function server() {
logger.error(data.toString().trim())
})
function restart() {
logger.info('Restarting the server...')
server()
}
proc.on('exit', restart)
}
function restart() {
setTimeout(server, 1000)
}
app.on('before-quit', () => {
if (proc) {
app.on('before-quit', () => {
proc.off('exit', restart)
proc.kill('SIGINT') // send SIGINT signal to the server, which also stops any loaded llms
}
})
const updateURL = `https://ollama.ai/api/update?os=${process.platform}&arch=${
process.arch
}&version=${app.getVersion()}&id=${id()}`
let latest = ''
async function isNewReleaseAvailable() {
try {
const response = await fetch(updateURL)
if (!response.ok) {
return false
}
if (response.status === 204) {
return false
}
const data = await response.json()
const url = data?.url
if (!url) {
return false
}
if (latest === url) {
return false
}
latest = url
return true
} catch (error) {
logger.error(`update check failed - ${error}`)
return false
}
proc.kill()
})
}
async function checkUpdate() {
const available = await isNewReleaseAvailable()
if (available) {
logger.info('checking for update')
autoUpdater.checkForUpdates()
}
if (process.platform === 'darwin') {
app.dock.hide()
}
function init() {
if (app.isPackaged) {
checkUpdate()
setInterval(() => {
checkUpdate()
}, 60 * 60 * 1000)
}
updateTray()
app.on('ready', () => {
if (process.platform === 'darwin') {
if (app.isPackaged) {
if (!app.isInApplicationsFolder()) {
@@ -252,13 +152,10 @@ function init() {
}
}
createSystemtray()
server()
if (store.get('first-time-run') && installed()) {
if (process.platform === 'darwin') {
app.dock.hide()
}
app.setLoginItemSettings({ openAtLogin: app.getLoginItemSettings().openAtLogin })
return
}
@@ -266,7 +163,7 @@ function init() {
// This is the first run or the CLI is no longer installed
app.setLoginItemSettings({ openAtLogin: true })
firstRunWindow()
}
})
// Quit when all windows are closed, except on macOS. There, it's common
// for applications and their menu bar to stay active until the user quits
@@ -277,26 +174,45 @@ app.on('window-all-closed', () => {
}
})
function id(): string {
const id = store.get('id') as string
// In this file you can include the rest of your app's specific main process
// code. You can also put them in separate files and import them here.
autoUpdater.setFeedURL({
url: `https://ollama.ai/api/update?os=${process.platform}&arch=${process.arch}&version=${app.getVersion()}`,
})
if (id) {
return id
}
const uuid = uuidv4()
store.set('id', uuid)
return uuid
async function heartbeat() {
analytics.track({
anonymousId: id(),
event: 'heartbeat',
properties: {
version: app.getVersion(),
},
})
}
autoUpdater.setFeedURL({ url: updateURL })
if (app.isPackaged) {
heartbeat()
autoUpdater.checkForUpdates()
setInterval(() => {
heartbeat()
autoUpdater.checkForUpdates()
}, 60 * 60 * 1000)
}
autoUpdater.on('error', e => {
logger.error(`update check failed - ${e.message}`)
console.error(`update check failed - ${e.message}`)
})
autoUpdater.on('update-downloaded', () => {
updateAvailable = true
updateTray()
autoUpdater.on('update-downloaded', (event, releaseNotes, releaseName) => {
dialog
.showMessageBox({
type: 'info',
buttons: ['Restart Now', 'Later'],
title: 'New update available',
message: process.platform === 'win32' ? releaseNotes : releaseName,
detail: 'A new version of Ollama is available. Restart to apply the update.',
})
.then(returnValue => {
if (returnValue.response === 0) autoUpdater.quitAndInstall()
})
})

View File

@@ -13,9 +13,12 @@ export function installed() {
}
export async function install() {
const command = `do shell script "mkdir -p ${path.dirname(
symlinkPath
)} && ln -F -s \\"${ollama}\\" \\"${symlinkPath}\\"" with administrator privileges`
const command = `do shell script "ln -F -s ${ollama} ${symlinkPath}" with administrator privileges`
await exec(`osascript -e '${command}'`)
try {
await exec(`osascript -e '${command}'`)
} catch (error) {
console.error(`cli: failed to install cli: ${error.message}`)
return
}
}

19
app/src/telemetry.ts Normal file
View File

@@ -0,0 +1,19 @@
import { Analytics } from '@segment/analytics-node'
import { v4 as uuidv4 } from 'uuid'
import Store from 'electron-store'
const store = new Store()
export const analytics = new Analytics({ writeKey: process.env.TELEMETRY_WRITE_KEY || '<empty>' })
export function id(): string {
const id = store.get('id') as string
if (id) {
return id
}
const uuid = uuidv4()
store.set('id', uuid)
return uuid
}

File diff suppressed because it is too large Load Diff

View File

@@ -1,656 +0,0 @@
package cmd
import (
"errors"
"fmt"
"io"
"net/http"
"os"
"path/filepath"
"regexp"
"sort"
"strings"
"github.com/spf13/cobra"
"golang.org/x/exp/slices"
"github.com/jmorganca/ollama/api"
"github.com/jmorganca/ollama/progress"
"github.com/jmorganca/ollama/readline"
)
type MultilineState int
const (
MultilineNone MultilineState = iota
MultilinePrompt
MultilineSystem
MultilineTemplate
)
func loadModel(cmd *cobra.Command, opts *runOptions) error {
client, err := api.ClientFromEnvironment()
if err != nil {
return err
}
p := progress.NewProgress(os.Stderr)
defer p.StopAndClear()
spinner := progress.NewSpinner("")
p.Add("", spinner)
showReq := api.ShowRequest{Name: opts.Model}
showResp, err := client.Show(cmd.Context(), &showReq)
if err != nil {
return err
}
opts.MultiModal = slices.Contains(showResp.Details.Families, "clip")
opts.ParentModel = showResp.Details.ParentModel
if len(showResp.Messages) > 0 {
opts.Messages = append(opts.Messages, showResp.Messages...)
}
chatReq := &api.ChatRequest{
Model: opts.Model,
Messages: []api.Message{},
}
err = client.Chat(cmd.Context(), chatReq, func(resp api.ChatResponse) error {
p.StopAndClear()
if len(opts.Messages) > 0 {
for _, msg := range opts.Messages {
switch msg.Role {
case "user":
fmt.Printf(">>> %s\n", msg.Content)
case "assistant":
state := &displayResponseState{}
displayResponse(msg.Content, opts.WordWrap, state)
fmt.Println()
fmt.Println()
}
}
}
return nil
})
if err != nil {
return err
}
return nil
}
func generateInteractive(cmd *cobra.Command, opts runOptions) error {
opts.Messages = make([]api.Message, 0)
err := loadModel(cmd, &opts)
if err != nil {
return err
}
usage := func() {
fmt.Fprintln(os.Stderr, "Available Commands:")
fmt.Fprintln(os.Stderr, " /set Set session variables")
fmt.Fprintln(os.Stderr, " /show Show model information")
fmt.Fprintln(os.Stderr, " /load <model> Load a session or model")
fmt.Fprintln(os.Stderr, " /save <model> Save your current session")
fmt.Fprintln(os.Stderr, " /bye Exit")
fmt.Fprintln(os.Stderr, " /?, /help Help for a command")
fmt.Fprintln(os.Stderr, " /? shortcuts Help for keyboard shortcuts")
fmt.Fprintln(os.Stderr, "")
fmt.Fprintln(os.Stderr, "Use \"\"\" to begin a multi-line message.")
if opts.MultiModal {
fmt.Fprintf(os.Stderr, "Use %s to include .jpg or .png images.\n", filepath.FromSlash("/path/to/file"))
}
fmt.Fprintln(os.Stderr, "")
}
usageSet := func() {
fmt.Fprintln(os.Stderr, "Available Commands:")
fmt.Fprintln(os.Stderr, " /set parameter ... Set a parameter")
fmt.Fprintln(os.Stderr, " /set system <string> Set system message")
fmt.Fprintln(os.Stderr, " /set template <string> Set prompt template")
fmt.Fprintln(os.Stderr, " /set history Enable history")
fmt.Fprintln(os.Stderr, " /set nohistory Disable history")
fmt.Fprintln(os.Stderr, " /set wordwrap Enable wordwrap")
fmt.Fprintln(os.Stderr, " /set nowordwrap Disable wordwrap")
fmt.Fprintln(os.Stderr, " /set format json Enable JSON mode")
fmt.Fprintln(os.Stderr, " /set noformat Disable formatting")
fmt.Fprintln(os.Stderr, " /set verbose Show LLM stats")
fmt.Fprintln(os.Stderr, " /set quiet Disable LLM stats")
fmt.Fprintln(os.Stderr, "")
}
usageShortcuts := func() {
fmt.Fprintln(os.Stderr, "Available keyboard shortcuts:")
fmt.Fprintln(os.Stderr, " Ctrl + a Move to the beginning of the line (Home)")
fmt.Fprintln(os.Stderr, " Ctrl + e Move to the end of the line (End)")
fmt.Fprintln(os.Stderr, " Alt + b Move back (left) one word")
fmt.Fprintln(os.Stderr, " Alt + f Move forward (right) one word")
fmt.Fprintln(os.Stderr, " Ctrl + k Delete the sentence after the cursor")
fmt.Fprintln(os.Stderr, " Ctrl + u Delete the sentence before the cursor")
fmt.Fprintln(os.Stderr, "")
fmt.Fprintln(os.Stderr, " Ctrl + l Clear the screen")
fmt.Fprintln(os.Stderr, " Ctrl + c Stop the model from responding")
fmt.Fprintln(os.Stderr, " Ctrl + d Exit ollama (/bye)")
fmt.Fprintln(os.Stderr, "")
}
usageShow := func() {
fmt.Fprintln(os.Stderr, "Available Commands:")
fmt.Fprintln(os.Stderr, " /show info Show details for this model")
fmt.Fprintln(os.Stderr, " /show license Show model license")
fmt.Fprintln(os.Stderr, " /show modelfile Show Modelfile for this model")
fmt.Fprintln(os.Stderr, " /show parameters Show parameters for this model")
fmt.Fprintln(os.Stderr, " /show system Show system message")
fmt.Fprintln(os.Stderr, " /show template Show prompt template")
fmt.Fprintln(os.Stderr, "")
}
// only list out the most common parameters
usageParameters := func() {
fmt.Fprintln(os.Stderr, "Available Parameters:")
fmt.Fprintln(os.Stderr, " /set parameter seed <int> Random number seed")
fmt.Fprintln(os.Stderr, " /set parameter num_predict <int> Max number of tokens to predict")
fmt.Fprintln(os.Stderr, " /set parameter top_k <int> Pick from top k num of tokens")
fmt.Fprintln(os.Stderr, " /set parameter top_p <float> Pick token based on sum of probabilities")
fmt.Fprintln(os.Stderr, " /set parameter num_ctx <int> Set the context size")
fmt.Fprintln(os.Stderr, " /set parameter temperature <float> Set creativity level")
fmt.Fprintln(os.Stderr, " /set parameter repeat_penalty <float> How strongly to penalize repetitions")
fmt.Fprintln(os.Stderr, " /set parameter repeat_last_n <int> Set how far back to look for repetitions")
fmt.Fprintln(os.Stderr, " /set parameter num_gpu <int> The number of layers to send to the GPU")
fmt.Fprintln(os.Stderr, " /set parameter stop \"<string>\", ... Set the stop parameters")
fmt.Fprintln(os.Stderr, "")
}
scanner, err := readline.New(readline.Prompt{
Prompt: ">>> ",
AltPrompt: "... ",
Placeholder: "Send a message (/? for help)",
AltPlaceholder: `Use """ to end multi-line input`,
})
if err != nil {
return err
}
fmt.Print(readline.StartBracketedPaste)
defer fmt.Printf(readline.EndBracketedPaste)
var sb strings.Builder
var multiline MultilineState
for {
line, err := scanner.Readline()
switch {
case errors.Is(err, io.EOF):
fmt.Println()
return nil
case errors.Is(err, readline.ErrInterrupt):
if line == "" {
fmt.Println("\nUse Ctrl + d or /bye to exit.")
}
scanner.Prompt.UseAlt = false
sb.Reset()
continue
case err != nil:
return err
}
switch {
case multiline != MultilineNone:
// check if there's a multiline terminating string
before, ok := strings.CutSuffix(line, `"""`)
sb.WriteString(before)
if !ok {
fmt.Fprintln(&sb)
continue
}
switch multiline {
case MultilineSystem:
opts.System = sb.String()
opts.Messages = append(opts.Messages, api.Message{Role: "system", Content: opts.System})
fmt.Println("Set system message.")
sb.Reset()
case MultilineTemplate:
opts.Template = sb.String()
fmt.Println("Set prompt template.")
sb.Reset()
}
multiline = MultilineNone
scanner.Prompt.UseAlt = false
case strings.HasPrefix(line, `"""`):
line := strings.TrimPrefix(line, `"""`)
line, ok := strings.CutSuffix(line, `"""`)
sb.WriteString(line)
if !ok {
// no multiline terminating string; need more input
fmt.Fprintln(&sb)
multiline = MultilinePrompt
scanner.Prompt.UseAlt = true
}
case scanner.Pasting:
fmt.Fprintln(&sb, line)
continue
case strings.HasPrefix(line, "/list"):
args := strings.Fields(line)
if err := ListHandler(cmd, args[1:]); err != nil {
return err
}
case strings.HasPrefix(line, "/load"):
args := strings.Fields(line)
if len(args) != 2 {
fmt.Println("Usage:\n /load <modelname>")
continue
}
opts.Model = args[1]
opts.Messages = []api.Message{}
fmt.Printf("Loading model '%s'\n", opts.Model)
if err := loadModel(cmd, &opts); err != nil {
return err
}
continue
case strings.HasPrefix(line, "/save"):
args := strings.Fields(line)
if len(args) != 2 {
fmt.Println("Usage:\n /save <modelname>")
continue
}
client, err := api.ClientFromEnvironment()
if err != nil {
fmt.Println("error: couldn't connect to ollama server")
return err
}
req := &api.CreateRequest{
Name: args[1],
Modelfile: buildModelfile(opts),
}
fn := func(resp api.ProgressResponse) error { return nil }
err = client.Create(cmd.Context(), req, fn)
if err != nil {
fmt.Println("error: couldn't save model")
return err
}
fmt.Printf("Created new model '%s'\n", args[1])
continue
case strings.HasPrefix(line, "/set"):
args := strings.Fields(line)
if len(args) > 1 {
switch args[1] {
case "history":
scanner.HistoryEnable()
case "nohistory":
scanner.HistoryDisable()
case "wordwrap":
opts.WordWrap = true
fmt.Println("Set 'wordwrap' mode.")
case "nowordwrap":
opts.WordWrap = false
fmt.Println("Set 'nowordwrap' mode.")
case "verbose":
cmd.Flags().Set("verbose", "true")
fmt.Println("Set 'verbose' mode.")
case "quiet":
cmd.Flags().Set("verbose", "false")
fmt.Println("Set 'quiet' mode.")
case "format":
if len(args) < 3 || args[2] != "json" {
fmt.Println("Invalid or missing format. For 'json' mode use '/set format json'")
} else {
opts.Format = args[2]
fmt.Printf("Set format to '%s' mode.\n", args[2])
}
case "noformat":
opts.Format = ""
fmt.Println("Disabled format.")
case "parameter":
if len(args) < 4 {
usageParameters()
continue
}
params := args[3:]
fp, err := api.FormatParams(map[string][]string{args[2]: params})
if err != nil {
fmt.Printf("Couldn't set parameter: %q\n", err)
continue
}
fmt.Printf("Set parameter '%s' to '%s'\n", args[2], strings.Join(params, ", "))
opts.Options[args[2]] = fp[args[2]]
case "system", "template":
if len(args) < 3 {
usageSet()
continue
}
if args[1] == "system" {
multiline = MultilineSystem
} else if args[1] == "template" {
multiline = MultilineTemplate
}
line := strings.Join(args[2:], " ")
line, ok := strings.CutPrefix(line, `"""`)
if !ok {
multiline = MultilineNone
} else {
// only cut suffix if the line is multiline
line, ok = strings.CutSuffix(line, `"""`)
if ok {
multiline = MultilineNone
}
}
sb.WriteString(line)
if multiline != MultilineNone {
scanner.Prompt.UseAlt = true
continue
}
if args[1] == "system" {
opts.System = sb.String()
opts.Messages = append(opts.Messages, api.Message{Role: "system", Content: opts.System})
fmt.Println("Set system message.")
sb.Reset()
} else if args[1] == "template" {
opts.Template = sb.String()
fmt.Println("Set prompt template.")
sb.Reset()
}
sb.Reset()
continue
default:
fmt.Printf("Unknown command '/set %s'. Type /? for help\n", args[1])
}
} else {
usageSet()
}
case strings.HasPrefix(line, "/show"):
args := strings.Fields(line)
if len(args) > 1 {
client, err := api.ClientFromEnvironment()
if err != nil {
fmt.Println("error: couldn't connect to ollama server")
return err
}
req := &api.ShowRequest{
Name: opts.Model,
System: opts.System,
Template: opts.Template,
Options: opts.Options,
}
resp, err := client.Show(cmd.Context(), req)
if err != nil {
fmt.Println("error: couldn't get model")
return err
}
switch args[1] {
case "info":
fmt.Println("Model details:")
if len(resp.Details.Families) > 0 {
fmt.Printf("Family %s\n", strings.Join(resp.Details.Families, ", "))
} else if resp.Details.Family != "" {
fmt.Printf("Family %s\n", resp.Details.Family)
}
fmt.Printf("Parameter Size %s\n", resp.Details.ParameterSize)
fmt.Printf("Quantization Level %s\n", resp.Details.QuantizationLevel)
fmt.Println("")
case "license":
if resp.License == "" {
fmt.Println("No license was specified for this model.")
} else {
fmt.Println(resp.License)
}
case "modelfile":
fmt.Println(resp.Modelfile)
case "parameters":
if resp.Parameters == "" {
fmt.Println("No parameters were specified for this model.")
} else {
if len(opts.Options) > 0 {
fmt.Println("User defined parameters:")
for k, v := range opts.Options {
fmt.Printf("%-*s %v\n", 30, k, v)
}
fmt.Println()
}
fmt.Println("Model defined parameters:")
fmt.Println(resp.Parameters)
}
case "system":
switch {
case opts.System != "":
fmt.Println(opts.System + "\n")
case resp.System != "":
fmt.Println(resp.System + "\n")
default:
fmt.Println("No system message was specified for this model.")
}
case "template":
switch {
case opts.Template != "":
fmt.Println(opts.Template + "\n")
case resp.Template != "":
fmt.Println(resp.Template)
default:
fmt.Println("No prompt template was specified for this model.")
}
default:
fmt.Printf("Unknown command '/show %s'. Type /? for help\n", args[1])
}
} else {
usageShow()
}
case strings.HasPrefix(line, "/help"), strings.HasPrefix(line, "/?"):
args := strings.Fields(line)
if len(args) > 1 {
switch args[1] {
case "set", "/set":
usageSet()
case "show", "/show":
usageShow()
case "shortcut", "shortcuts":
usageShortcuts()
}
} else {
usage()
}
case line == "/exit", line == "/bye":
return nil
case strings.HasPrefix(line, "/"):
args := strings.Fields(line)
isFile := false
if opts.MultiModal {
for _, f := range extractFileNames(line) {
if strings.HasPrefix(f, args[0]) {
isFile = true
break
}
}
}
if !isFile {
fmt.Printf("Unknown command '%s'. Type /? for help\n", args[0])
continue
}
sb.WriteString(line)
default:
sb.WriteString(line)
}
if sb.Len() > 0 && multiline == MultilineNone {
newMessage := api.Message{Role: "user", Content: sb.String()}
if opts.MultiModal {
msg, images, err := extractFileData(sb.String())
if err != nil {
return err
}
// clear all previous images for better responses
if len(images) > 0 {
for i := range opts.Messages {
opts.Messages[i].Images = nil
}
}
newMessage.Content = msg
newMessage.Images = images
}
opts.Messages = append(opts.Messages, newMessage)
assistant, err := chat(cmd, opts)
if err != nil {
return err
}
if assistant != nil {
opts.Messages = append(opts.Messages, *assistant)
}
sb.Reset()
}
}
}
func buildModelfile(opts runOptions) string {
var mf strings.Builder
model := opts.ParentModel
if model == "" {
model = opts.Model
}
fmt.Fprintf(&mf, "FROM %s\n", model)
if opts.System != "" {
fmt.Fprintf(&mf, "SYSTEM \"\"\"%s\"\"\"\n", opts.System)
}
if opts.Template != "" {
fmt.Fprintf(&mf, "TEMPLATE \"\"\"%s\"\"\"\n", opts.Template)
}
keys := make([]string, 0)
for k := range opts.Options {
keys = append(keys, k)
}
sort.Strings(keys)
for _, k := range keys {
fmt.Fprintf(&mf, "PARAMETER %s %v\n", k, opts.Options[k])
}
fmt.Fprintln(&mf)
for _, msg := range opts.Messages {
fmt.Fprintf(&mf, "MESSAGE %s \"\"\"%s\"\"\"\n", msg.Role, msg.Content)
}
return mf.String()
}
func normalizeFilePath(fp string) string {
// Define a map of escaped characters and their replacements
replacements := map[string]string{
"\\ ": " ", // Escaped space
"\\(": "(", // Escaped left parenthesis
"\\)": ")", // Escaped right parenthesis
"\\[": "[", // Escaped left square bracket
"\\]": "]", // Escaped right square bracket
"\\{": "{", // Escaped left curly brace
"\\}": "}", // Escaped right curly brace
"\\$": "$", // Escaped dollar sign
"\\&": "&", // Escaped ampersand
"\\;": ";", // Escaped semicolon
"\\'": "'", // Escaped single quote
"\\\\": "\\", // Escaped backslash
"\\*": "*", // Escaped asterisk
"\\?": "?", // Escaped question mark
}
for escaped, actual := range replacements {
fp = strings.ReplaceAll(fp, escaped, actual)
}
return fp
}
func extractFileNames(input string) []string {
// Regex to match file paths starting with optional drive letter, / ./ \ or .\ and include escaped or unescaped spaces (\ or %20)
// and followed by more characters and a file extension
// This will capture non filename strings, but we'll check for file existence to remove mismatches
regexPattern := `(?:[a-zA-Z]:)?(?:\./|/|\\)[\S\\ ]+?\.(?i:jpg|jpeg|png|svg)\b`
re := regexp.MustCompile(regexPattern)
return re.FindAllString(input, -1)
}
func extractFileData(input string) (string, []api.ImageData, error) {
filePaths := extractFileNames(input)
var imgs []api.ImageData
for _, fp := range filePaths {
nfp := normalizeFilePath(fp)
data, err := getImageData(nfp)
if err != nil {
if os.IsNotExist(err) {
continue
}
fmt.Fprintf(os.Stderr, "Couldn't process image: %q\n", err)
return "", imgs, err
}
fmt.Fprintf(os.Stderr, "Added image '%s'\n", nfp)
input = strings.ReplaceAll(input, fp, "")
imgs = append(imgs, data)
}
return input, imgs, nil
}
func getImageData(filePath string) ([]byte, error) {
file, err := os.Open(filePath)
if err != nil {
return nil, err
}
defer file.Close()
buf := make([]byte, 512)
_, err = file.Read(buf)
if err != nil {
return nil, err
}
contentType := http.DetectContentType(buf)
allowedTypes := []string{"image/jpeg", "image/jpg", "image/svg+xml", "image/png"}
if !slices.Contains(allowedTypes, contentType) {
return nil, fmt.Errorf("invalid image type: %s", contentType)
}
info, err := file.Stat()
if err != nil {
return nil, err
}
// Check if the file size exceeds 100MB
var maxSize int64 = 100 * 1024 * 1024 // 100MB in bytes
if info.Size() > maxSize {
return nil, fmt.Errorf("file size exceeds maximum limit (100MB)")
}
buf = make([]byte, info.Size())
_, err = file.Seek(0, 0)
if err != nil {
return nil, err
}
_, err = io.ReadFull(file, buf)
if err != nil {
return nil, err
}
return buf, nil
}

View File

@@ -1,116 +0,0 @@
package cmd
import (
"bytes"
"testing"
"text/template"
"github.com/stretchr/testify/assert"
"github.com/jmorganca/ollama/api"
)
func TestExtractFilenames(t *testing.T) {
// Unix style paths
input := ` some preamble
./relative\ path/one.png inbetween1 ./not a valid two.jpg inbetween2
/unescaped space /three.jpeg inbetween3 /valid\ path/dir/four.png "./quoted with spaces/five.svg`
res := extractFileNames(input)
assert.Len(t, res, 5)
assert.Contains(t, res[0], "one.png")
assert.Contains(t, res[1], "two.jpg")
assert.Contains(t, res[2], "three.jpeg")
assert.Contains(t, res[3], "four.png")
assert.Contains(t, res[4], "five.svg")
assert.NotContains(t, res[4], '"')
assert.NotContains(t, res, "inbtween")
// Windows style paths
input = ` some preamble
c:/users/jdoe/one.png inbetween1 c:/program files/someplace/two.jpg inbetween2
/absolute/nospace/three.jpeg inbetween3 /absolute/with space/four.png inbetween4
./relative\ path/five.svg inbetween5 "./relative with/spaces/six.png inbetween6
d:\path with\spaces\seven.svg inbetween7 c:\users\jdoe\eight.png inbetween8
d:\program files\someplace\nine.png inbetween9 "E:\program files\someplace\ten.svg some ending
`
res = extractFileNames(input)
assert.Len(t, res, 10)
assert.NotContains(t, res, "inbtween")
assert.Contains(t, res[0], "one.png")
assert.Contains(t, res[0], "c:")
assert.Contains(t, res[1], "two.jpg")
assert.Contains(t, res[1], "c:")
assert.Contains(t, res[2], "three.jpeg")
assert.Contains(t, res[3], "four.png")
assert.Contains(t, res[4], "five.svg")
assert.Contains(t, res[5], "six.png")
assert.Contains(t, res[6], "seven.svg")
assert.Contains(t, res[6], "d:")
assert.Contains(t, res[7], "eight.png")
assert.Contains(t, res[7], "c:")
assert.Contains(t, res[8], "nine.png")
assert.Contains(t, res[8], "d:")
assert.Contains(t, res[9], "ten.svg")
assert.Contains(t, res[9], "E:")
}
func TestModelfileBuilder(t *testing.T) {
opts := runOptions{
Model: "hork",
System: "You are part horse and part shark, but all hork. Do horklike things",
Template: "This is a template.",
Messages: []api.Message{
{Role: "user", Content: "Hey there hork!"},
{Role: "assistant", Content: "Yes it is true, I am half horse, half shark."},
},
Options: map[string]interface{}{},
}
opts.Options["temperature"] = 0.9
opts.Options["seed"] = 42
opts.Options["penalize_newline"] = false
opts.Options["stop"] = []string{"hi", "there"}
mf := buildModelfile(opts)
expectedModelfile := `FROM {{.Model}}
SYSTEM """{{.System}}"""
TEMPLATE """{{.Template}}"""
PARAMETER penalize_newline false
PARAMETER seed 42
PARAMETER stop [hi there]
PARAMETER temperature 0.9
MESSAGE user """Hey there hork!"""
MESSAGE assistant """Yes it is true, I am half horse, half shark."""
`
tmpl, err := template.New("").Parse(expectedModelfile)
assert.Nil(t, err)
var buf bytes.Buffer
err = tmpl.Execute(&buf, opts)
assert.Nil(t, err)
assert.Equal(t, buf.String(), mf)
opts.ParentModel = "horseshark"
mf = buildModelfile(opts)
expectedModelfile = `FROM {{.ParentModel}}
SYSTEM """{{.System}}"""
TEMPLATE """{{.Template}}"""
PARAMETER penalize_newline false
PARAMETER seed 42
PARAMETER stop [hi there]
PARAMETER temperature 0.9
MESSAGE user """Hey there hork!"""
MESSAGE assistant """Yes it is true, I am half horse, half shark."""
`
tmpl, err = template.New("").Parse(expectedModelfile)
assert.Nil(t, err)
var parentBuf bytes.Buffer
err = tmpl.Execute(&parentBuf, opts)
assert.Nil(t, err)
assert.Equal(t, parentBuf.String(), mf)
}

44
cmd/spinner.go Normal file
View File

@@ -0,0 +1,44 @@
package cmd
import (
"fmt"
"os"
"time"
"github.com/schollz/progressbar/v3"
)
type Spinner struct {
description string
*progressbar.ProgressBar
}
func NewSpinner(description string) *Spinner {
return &Spinner{
description: description,
ProgressBar: progressbar.NewOptions(-1,
progressbar.OptionSetWriter(os.Stderr),
progressbar.OptionThrottle(60*time.Millisecond),
progressbar.OptionSpinnerType(14),
progressbar.OptionSetRenderBlankState(true),
progressbar.OptionSetElapsedTime(false),
progressbar.OptionClearOnFinish(),
progressbar.OptionSetDescription(description),
),
}
}
func (s *Spinner) Spin(tick time.Duration) {
for range time.Tick(tick) {
if s.IsFinished() {
break
}
s.Add(1)
}
}
func (s *Spinner) Stop() {
s.Finish()
fmt.Println(s.description)
}

View File

@@ -1,25 +0,0 @@
# Documentation
To get started, see the project's **[quickstart](../README.md#quickstart)**.
Ollama is a tool for running AI models on your hardware. Many users will choose to use the Command Line Interface (CLI) to work with Ollama. Learn more about all the commands in the CLI in the **[Main Readme](../README.md)**.
Use the RESTful API using any language, including Python, JavaScript, Typescript, Go, Rust, and many more. Learn more about using the API in the **[API Documentation](./api.md)**.
Create new models or modify models already in the library using the Modelfile. Learn more about the Modelfile syntax in the **[Modelfile Documentation](./modelfile.md)**.
Import models using source model weights found on Hugging Face and similar sites by referring to the **[Import Documentation](./import.md)**.
Installing on Linux in most cases is easy using the script on Ollama.ai. To get more detail about the install, including CUDA drivers, see the **[Linux Documentation](./linux.md)**.
Many of our users like the flexibility of using our official Docker Image. Learn more about using Docker with Ollama using the **[Docker Documentation](https://hub.docker.com/r/ollama/ollama)**.
It is easy to install on Linux and Mac, but many users will choose to build Ollama on their own. To do this, refer to the **[Development Documentation](./development.md)**.
If encountering a problem with Ollama, the best place to start is the logs. Find more information about them here in the **[Troubleshooting Guide](./troubleshooting.md)**.
Finally for all the questions that don't fit anywhere else, there is the **[FAQ](./faq.md)**
[Tutorials](./tutorials.md) apply the documentation to tasks.
For working code examples of using Ollama, see [Examples](../examples).

View File

@@ -1,985 +0,0 @@
# API
## Endpoints
- [Generate a completion](#generate-a-completion)
- [Generate a chat completion](#generate-a-chat-completion)
- [Create a Model](#create-a-model)
- [List Local Models](#list-local-models)
- [Show Model Information](#show-model-information)
- [Copy a Model](#copy-a-model)
- [Delete a Model](#delete-a-model)
- [Pull a Model](#pull-a-model)
- [Push a Model](#push-a-model)
- [Generate Embeddings](#generate-embeddings)
## Conventions
### Model names
Model names follow a `model:tag` format, where `model` can have an optional namespace such as `example/model`. Some examples are `orca-mini:3b-q4_1` and `llama2:70b`. The tag is optional and, if not provided, will default to `latest`. The tag is used to identify a specific version.
### Durations
All durations are returned in nanoseconds.
### Streaming responses
Certain endpoints stream responses as JSON objects and can optional return non-streamed responses.
## Generate a completion
```shell
POST /api/generate
```
Generate a response for a given prompt with a provided model. This is a streaming endpoint, so there will be a series of responses. The final response object will include statistics and additional data from the request.
### Parameters
- `model`: (required) the [model name](#model-names)
- `prompt`: the prompt to generate a response for
- `images`: (optional) a list of base64-encoded images (for multimodal models such as `llava`)
Advanced parameters (optional):
- `format`: the format to return a response in. Currently the only accepted value is `json`
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `system`: system message to (overrides what is defined in the `Modelfile`)
- `template`: the prompt template to use (overrides what is defined in the `Modelfile`)
- `context`: the context parameter returned from a previous request to `/generate`, this can be used to keep a short conversational memory
- `stream`: if `false` the response will be returned as a single response object, rather than a stream of objects
- `raw`: if `true` no formatting will be applied to the prompt. You may choose to use the `raw` parameter if you are specifying a full templated prompt in your request to the API
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
#### JSON mode
Enable JSON mode by setting the `format` parameter to `json`. This will structure the response as a valid JSON object. See the JSON mode [example](#generate-request-json-mode) below.
> Note: it's important to instruct the model to use JSON in the `prompt`. Otherwise, the model may generate large amounts whitespace.
### Examples
#### Generate request (Streaming)
##### Request
```shell
curl http://localhost:11434/api/generate -d '{
"model": "llama2",
"prompt": "Why is the sky blue?"
}'
```
##### Response
A stream of JSON objects is returned:
```json
{
"model": "llama2",
"created_at": "2023-08-04T08:52:19.385406455-07:00",
"response": "The",
"done": false
}
```
The final response in the stream also includes additional data about the generation:
- `total_duration`: time spent generating the response
- `load_duration`: time spent in nanoseconds loading the model
- `prompt_eval_count`: number of tokens in the prompt
- `prompt_eval_duration`: time spent in nanoseconds evaluating the prompt
- `eval_count`: number of tokens the response
- `eval_duration`: time in nanoseconds spent generating the response
- `context`: an encoding of the conversation used in this response, this can be sent in the next request to keep a conversational memory
- `response`: empty if the response was streamed, if not streamed, this will contain the full response
To calculate how fast the response is generated in tokens per second (token/s), divide `eval_count` / `eval_duration`.
```json
{
"model": "llama2",
"created_at": "2023-08-04T19:22:45.499127Z",
"response": "",
"done": true,
"context": [1, 2, 3],
"total_duration": 10706818083,
"load_duration": 6338219291,
"prompt_eval_count": 26,
"prompt_eval_duration": 130079000,
"eval_count": 259,
"eval_duration": 4232710000
}
```
#### Request (No streaming)
##### Request
A response can be received in one reply when streaming is off.
```shell
curl http://localhost:11434/api/generate -d '{
"model": "llama2",
"prompt": "Why is the sky blue?",
"stream": false
}'
```
##### Response
If `stream` is set to `false`, the response will be a single JSON object:
```json
{
"model": "llama2",
"created_at": "2023-08-04T19:22:45.499127Z",
"response": "The sky is blue because it is the color of the sky.",
"done": true,
"context": [1, 2, 3],
"total_duration": 5043500667,
"load_duration": 5025959,
"prompt_eval_count": 26,
"prompt_eval_duration": 325953000,
"eval_count": 290,
"eval_duration": 4709213000
}
```
#### Request (JSON mode)
> When `format` is set to `json`, the output will always be a well-formed JSON object. It's important to also instruct the model to respond in JSON.
##### Request
```shell
curl http://localhost:11434/api/generate -d '{
"model": "llama2",
"prompt": "What color is the sky at different times of the day? Respond using JSON",
"format": "json",
"stream": false
}'
```
##### Response
```json
{
"model": "llama2",
"created_at": "2023-11-09T21:07:55.186497Z",
"response": "{\n\"morning\": {\n\"color\": \"blue\"\n},\n\"noon\": {\n\"color\": \"blue-gray\"\n},\n\"afternoon\": {\n\"color\": \"warm gray\"\n},\n\"evening\": {\n\"color\": \"orange\"\n}\n}\n",
"done": true,
"context": [1, 2, 3],
"total_duration": 4648158584,
"load_duration": 4071084,
"prompt_eval_count": 36,
"prompt_eval_duration": 439038000,
"eval_count": 180,
"eval_duration": 4196918000
}
```
The value of `response` will be a string containing JSON similar to:
```json
{
"morning": {
"color": "blue"
},
"noon": {
"color": "blue-gray"
},
"afternoon": {
"color": "warm gray"
},
"evening": {
"color": "orange"
}
}
```
#### Request (with images)
To submit images to multimodal models such as `llava` or `bakllava`, provide a list of base64-encoded `images`:
#### Request
```shell
curl http://localhost:11434/api/generate -d '{
"model": "llava",
"prompt":"What is in this picture?",
"stream": false,
"images": ["iVBORw0KGgoAAAANSUhEUgAAAG0AAABmCAYAAADBPx+VAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAA3VSURBVHgB7Z27r0zdG8fX743i1bi1ikMoFMQloXRpKFFIqI7LH4BEQ+NWIkjQuSWCRIEoULk0gsK1kCBI0IhrQVT7tz/7zZo888yz1r7MnDl7z5xvsjkzs2fP3uu71nNfa7lkAsm7d++Sffv2JbNmzUqcc8m0adOSzZs3Z+/XES4ZckAWJEGWPiCxjsQNLWmQsWjRIpMseaxcuTKpG/7HP27I8P79e7dq1ars/yL4/v27S0ejqwv+cUOGEGGpKHR37tzJCEpHV9tnT58+dXXCJDdECBE2Ojrqjh071hpNECjx4cMHVycM1Uhbv359B2F79+51586daxN/+pyRkRFXKyRDAqxEp4yMlDDzXG1NPnnyJKkThoK0VFd1ELZu3TrzXKxKfW7dMBQ6bcuWLW2v0VlHjx41z717927ba22U9APcw7Nnz1oGEPeL3m3p2mTAYYnFmMOMXybPPXv2bNIPpFZr1NHn4HMw0KRBjg9NuRw95s8PEcz/6DZELQd/09C9QGq5RsmSRybqkwHGjh07OsJSsYYm3ijPpyHzoiacg35MLdDSIS/O1yM778jOTwYUkKNHWUzUWaOsylE00MyI0fcnOwIdjvtNdW/HZwNLGg+sR1kMepSNJXmIwxBZiG8tDTpEZzKg0GItNsosY8USkxDhD0Rinuiko2gfL/RbiD2LZAjU9zKQJj8RDR0vJBR1/Phx9+PHj9Z7REF4nTZkxzX4LCXHrV271qXkBAPGfP/atWvu/PnzHe4C97F48eIsRLZ9+3a3f/9+87dwP1JxaF7/3r17ba+5l4EcaVo0lj3SBq5kGTJSQmLWMjgYNei2GPT1MuMqGTDEFHzeQSP2wi/jGnkmPJ/nhccs44jvDAxpVcxnq0F6eT8h4ni/iIWpR5lPyA6ETkNXoSukvpJAD3AsXLiwpZs49+fPn5ke4j10TqYvegSfn0OnafC+Tv9ooA/JPkgQysqQNBzagXY55nO/oa1F7qvIPWkRL12WRpMWUvpVDYmxAPehxWSe8ZEXL20sadYIozfmNch4QJPAfeJgW3rNsnzphBKNJM2KKODo1rVOMRYik5ETy3ix4qWNI81qAAirizgMIc+yhTytx0JWZuNI03qsrgWlGtwjoS9XwgUhWGyhUaRZZQNNIEwCiXD16tXcAHUs79co0vSD8rrJCIW98pzvxpAWyyo3HYwqS0+H0BjStClcZJT5coMm6D2LOF8TolGJtK9fvyZpyiC5ePFi9nc/oJU4eiEP0jVoAnHa9wyJycITMP78+eMeP37sXrx44d6+fdt6f82aNdkx1pg9e3Zb5W+RSRE+n+VjksQWifvVaTKFhn5O8my63K8Qabdv33b379/PiAP//vuvW7BggZszZ072/+TJk91YgkafPn166zXB1rQHFvouAWHq9z3SEevSUerqCn2/dDCeta2jxYbr69evk4MHDyY7d+7MjhMnTiTPnz9Pfv/+nfQT2ggpO2dMF8cghuoM7Ygj5iWCqRlGFml0QC/ftGmTmzt3rmsaKDsgBSPh0/8yPeLLBihLkOKJc0jp8H8vUzcxIA1k6QJ/c78tWEyj5P3o4u9+jywNPdJi5rAH9x0KHcl4Hg570eQp3+vHXGyrmEeigzQsQsjavXt38ujRo44LQuDDhw+TW7duRS1HGgMxhNXHgflaNTOsHyKvHK5Ijo2jbFjJBQK9YwFd6RVMzfgRBmEfP37suBBm/p49e1qjEP2mwTViNRo0VJWH1deMXcNK08uUjVUu7s/zRaL+oLNxz1bpANco4npUgX4G2eFbpDFyQoQxojBCpEGSytmOH8qrH5Q9vuzD6ofQylkCUmh8DBAr+q8JCyVNtWQIidKQE9wNtLSQnS4jDSsxNHogzFuQBw4cyM61UKVsjfr3ooBkPSqqQHesUPWVtzi9/vQi1T+rJj7WiTz4Pt/l3LxUkr5P2VYZaZ4URpsE+st/dujQoaBBYokbrz/8TJNQYLSonrPS9kUaSkPeZyj1AWSj+d+VBoy1pIWVNed8P0Ll/ee5HdGRhrHhR5GGN0r4LGZBaj8oFDJitBTJzIZgFcmU0Y8ytWMZMzJOaXUSrUs5RxKnrxmbb5YXO9VGUhtpXldhEUogFr3IzIsvlpmdosVcGVGXFWp2oU9kLFL3dEkSz6NHEY1sjSRdIuDFWEhd8KxFqsRi1uM/nz9/zpxnwlESONdg6dKlbsaMGS4EHFHtjFIDHwKOo46l4TxSuxgDzi+rE2jg+BaFruOX4HXa0Nnf1lwAPufZeF8/r6zD97WK2qFnGjBxTw5qNGPxT+5T/r7/7RawFC3j4vTp09koCxkeHjqbHJqArmH5UrFKKksnxrK7FuRIs8STfBZv+luugXZ2pR/pP9Ois4z+TiMzUUkUjD0iEi1fzX8GmXyuxUBRcaUfykV0YZnlJGKQpOiGB76x5GeWkWWJc3mOrK6S7xdND+W5N6XyaRgtWJFe13GkaZnKOsYqGdOVVVbGupsyA/l7emTLHi7vwTdirNEt0qxnzAvBFcnQF16xh/TMpUuXHDowhlA9vQVraQhkudRdzOnK+04ZSP3DUhVSP61YsaLtd/ks7ZgtPcXqPqEafHkdqa84X6aCeL7YWlv6edGFHb+ZFICPlljHhg0bKuk0CSvVznWsotRu433alNdFrqG45ejoaPCaUkWERpLXjzFL2Rpllp7PJU2a/v7Ab8N05/9t27Z16KUqoFGsxnI9EosS2niSYg9SpU6B4JgTrvVW1flt1sT+0ADIJU2maXzcUTraGCRaL1Wp9rUMk16PMom8QhruxzvZIegJjFU7LLCePfS8uaQdPny4jTTL0dbee5mYokQsXTIWNY46kuMbnt8Kmec+LGWtOVIl9cT1rCB0V8WqkjAsRwta93TbwNYoGKsUSChN44lgBNCoHLHzquYKrU6qZ8lolCIN0Rh6cP0Q3U6I6IXILYOQI513hJaSKAorFpuHXJNfVlpRtmYBk1Su1obZr5dnKAO+L10Hrj3WZW+E3qh6IszE37F6EB+68mGpvKm4eb9bFrlzrok7fvr0Kfv727dvWRmdVTJHw0qiiCUSZ6wCK+7XL/AcsgNyL74DQQ730sv78Su7+t/A36MdY0sW5o40ahslXr58aZ5HtZB8GH64m9EmMZ7FpYw4T6QnrZfgenrhFxaSiSGXtPnz57e9TkNZLvTjeqhr734CNtrK41L40sUQckmj1lGKQ0rC37x544r8eNXRpnVE3ZZY7zXo8NomiO0ZUCj2uHz58rbXoZ6gc0uA+F6ZeKS/jhRDUq8MKrTho9fEkihMmhxtBI1DxKFY9XLpVcSkfoi8JGnToZO5sU5aiDQIW716ddt7ZLYtMQlhECdBGXZZMWldY5BHm5xgAroWj4C0hbYkSc/jBmggIrXJWlZM6pSETsEPGqZOndr2uuuR5rF169a2HoHPdurUKZM4CO1WTPqaDaAd+GFGKdIQkxAn9RuEWcTRyN2KSUgiSgF5aWzPTeA/lN5rZubMmR2bE4SIC4nJoltgAV/dVefZm72AtctUCJU2CMJ327hxY9t7EHbkyJFseq+EJSY16RPo3Dkq1kkr7+q0bNmyDuLQcZBEPYmHVdOBiJyIlrRDq41YPWfXOxUysi5fvtyaj+2BpcnsUV/oSoEMOk2CQGlr4ckhBwaetBhjCwH0ZHtJROPJkyc7UjcYLDjmrH7ADTEBXFfOYmB0k9oYBOjJ8b4aOYSe7QkKcYhFlq3QYLQhSidNmtS2RATwy8YOM3EQJsUjKiaWZ+vZToUQgzhkHXudb/PW5YMHD9yZM2faPsMwoc7RciYJXbGuBqJ1UIGKKLv915jsvgtJxCZDubdXr165mzdvtr1Hz5LONA8jrUwKPqsmVesKa49S3Q4WxmRPUEYdTjgiUcfUwLx589ySJUva3oMkP6IYddq6HMS4o55xBJBUeRjzfa4Zdeg56QZ43LhxoyPo7Lf1kNt7oO8wWAbNwaYjIv5lhyS7kRf96dvm5Jah8vfvX3flyhX35cuX6HfzFHOToS1H4BenCaHvO8pr8iDuwoUL7tevX+b5ZdbBair0xkFIlFDlW4ZknEClsp/TzXyAKVOmmHWFVSbDNw1l1+4f90U6IY/q4V27dpnE9bJ+v87QEydjqx/UamVVPRG+mwkNTYN+9tjkwzEx+atCm/X9WvWtDtAb68Wy9LXa1UmvCDDIpPkyOQ5ZwSzJ4jMrvFcr0rSjOUh+GcT4LSg5ugkW1Io0/SCDQBojh0hPlaJdah+tkVYrnTZowP8iq1F1TgMBBauufyB33x1v+NWFYmT5KmppgHC+NkAgbmRkpD3yn9QIseXymoTQFGQmIOKTxiZIWpvAatenVqRVXf2nTrAWMsPnKrMZHz6bJq5jvce6QK8J1cQNgKxlJapMPdZSR64/UivS9NztpkVEdKcrs5alhhWP9NeqlfWopzhZScI6QxseegZRGeg5a8C3Re1Mfl1ScP36ddcUaMuv24iOJtz7sbUjTS4qBvKmstYJoUauiuD3k5qhyr7QdUHMeCgLa1Ear9NquemdXgmum4fvJ6w1lqsuDhNrg1qSpleJK7K3TF0Q2jSd94uSZ60kK1e3qyVpQK6PVWXp2/FC3mp6jBhKKOiY2h3gtUV64TWM6wDETRPLDfSakXmH3w8g9Jlug8ZtTt4kVF0kLUYYmCCtD/DrQ5YhMGbA9L3ucdjh0y8kOHW5gU/VEEmJTcL4Pz/f7mgoAbYkAAAAAElFTkSuQmCC"]
}'
```
#### Response
```
{
"model": "llava",
"created_at": "2023-11-03T15:36:02.583064Z",
"response": "A happy cartoon character, which is cute and cheerful.",
"done": true,
"context": [1, 2, 3],
"total_duration": 2938432250,
"load_duration": 2559292,
"prompt_eval_count": 1,
"prompt_eval_duration": 2195557000,
"eval_count": 44,
"eval_duration": 736432000
}
```
#### Request (Raw Mode)
In some cases, you may wish to bypass the templating system and provide a full prompt. In this case, you can use the `raw` parameter to disable templating. Also note that raw mode will not return a context.
##### Request
```shell
curl http://localhost:11434/api/generate -d '{
"model": "mistral",
"prompt": "[INST] why is the sky blue? [/INST]",
"raw": true,
"stream": false
}'
```
##### Response
```json
{
"model": "mistral",
"created_at": "2023-11-03T15:36:02.583064Z",
"response": " The sky appears blue because of a phenomenon called Rayleigh scattering.",
"done": true,
"total_duration": 8493852375,
"load_duration": 6589624375,
"prompt_eval_count": 14,
"prompt_eval_duration": 119039000,
"eval_count": 110,
"eval_duration": 1779061000
}
```
#### Generate request (With options)
If you want to set custom options for the model at runtime rather than in the Modelfile, you can do so with the `options` parameter. This example sets every available option, but you can set any of them individually and omit the ones you do not want to override.
##### Request
```shell
curl http://localhost:11434/api/generate -d '{
"model": "llama2",
"prompt": "Why is the sky blue?",
"stream": false,
"options": {
"num_keep": 5,
"seed": 42,
"num_predict": 100,
"top_k": 20,
"top_p": 0.9,
"tfs_z": 0.5,
"typical_p": 0.7,
"repeat_last_n": 33,
"temperature": 0.8,
"repeat_penalty": 1.2,
"presence_penalty": 1.5,
"frequency_penalty": 1.0,
"mirostat": 1,
"mirostat_tau": 0.8,
"mirostat_eta": 0.6,
"penalize_newline": true,
"stop": ["\n", "user:"],
"numa": false,
"num_ctx": 1024,
"num_batch": 2,
"num_gqa": 1,
"num_gpu": 1,
"main_gpu": 0,
"low_vram": false,
"f16_kv": true,
"vocab_only": false,
"use_mmap": true,
"use_mlock": false,
"embedding_only": false,
"rope_frequency_base": 1.1,
"rope_frequency_scale": 0.8,
"num_thread": 8
}
}'
```
##### Response
```json
{
"model": "llama2",
"created_at": "2023-08-04T19:22:45.499127Z",
"response": "The sky is blue because it is the color of the sky.",
"done": true,
"context": [1, 2, 3],
"total_duration": 4935886791,
"load_duration": 534986708,
"prompt_eval_count": 26,
"prompt_eval_duration": 107345000,
"eval_count": 237,
"eval_duration": 4289432000
}
```
#### Load a model
If an empty prompt is provided, the model will be loaded into memory.
##### Request
```shell
curl http://localhost:11434/api/generate -d '{
"model": "llama2"
}'
```
##### Response
A single JSON object is returned:
```json
{
"model": "llama2",
"created_at": "2023-12-18T19:52:07.071755Z",
"response": "",
"done": true
}
```
## Generate a chat completion
```shell
POST /api/chat
```
Generate the next message in a chat with a provided model. This is a streaming endpoint, so there will be a series of responses. Streaming can be disabled using `"stream": false`. The final response object will include statistics and additional data from the request.
### Parameters
- `model`: (required) the [model name](#model-names)
- `messages`: the messages of the chat, this can be used to keep a chat memory
The `message` object has the following fields:
- `role`: the role of the message, either `system`, `user` or `assistant`
- `content`: the content of the message
- `images` (optional): a list of images to include in the message (for multimodal models such as `llava`)
Advanced parameters (optional):
- `format`: the format to return a response in. Currently the only accepted value is `json`
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `template`: the prompt template to use (overrides what is defined in the `Modelfile`)
- `stream`: if `false` the response will be returned as a single response object, rather than a stream of objects
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
### Examples
#### Chat Request (Streaming)
##### Request
Send a chat message with a streaming response.
```shell
curl http://localhost:11434/api/chat -d '{
"model": "llama2",
"messages": [
{
"role": "user",
"content": "why is the sky blue?"
}
]
}'
```
##### Response
A stream of JSON objects is returned:
```json
{
"model": "llama2",
"created_at": "2023-08-04T08:52:19.385406455-07:00",
"message": {
"role": "assistant",
"content": "The",
"images": null
},
"done": false
}
```
Final response:
```json
{
"model": "llama2",
"created_at": "2023-08-04T19:22:45.499127Z",
"done": true,
"total_duration": 4883583458,
"load_duration": 1334875,
"prompt_eval_count": 26,
"prompt_eval_duration": 342546000,
"eval_count": 282,
"eval_duration": 4535599000
}
```
#### Chat request (No streaming)
##### Request
```shell
curl http://localhost:11434/api/chat -d '{
"model": "llama2",
"messages": [
{
"role": "user",
"content": "why is the sky blue?"
}
],
"stream": false
}'
```
##### Response
```json
{
"model": "registry.ollama.ai/library/llama2:latest",
"created_at": "2023-12-12T14:13:43.416799Z",
"message": {
"role": "assistant",
"content": "Hello! How are you today?"
},
"done": true,
"total_duration": 5191566416,
"load_duration": 2154458,
"prompt_eval_count": 26,
"prompt_eval_duration": 383809000,
"eval_count": 298,
"eval_duration": 4799921000
}
```
#### Chat request (With History)
Send a chat message with a conversation history. You can use this same approach to start the conversation using multi-shot or chain-of-thought prompting.
##### Request
```shell
curl http://localhost:11434/api/chat -d '{
"model": "llama2",
"messages": [
{
"role": "user",
"content": "why is the sky blue?"
},
{
"role": "assistant",
"content": "due to rayleigh scattering."
},
{
"role": "user",
"content": "how is that different than mie scattering?"
}
]
}'
```
##### Response
A stream of JSON objects is returned:
```json
{
"model": "llama2",
"created_at": "2023-08-04T08:52:19.385406455-07:00",
"message": {
"role": "assistant",
"content": "The"
},
"done": false
}
```
Final response:
```json
{
"model": "llama2",
"created_at": "2023-08-04T19:22:45.499127Z",
"done": true,
"total_duration": 8113331500,
"load_duration": 6396458,
"prompt_eval_count": 61,
"prompt_eval_duration": 398801000,
"eval_count": 468,
"eval_duration": 7701267000
}
```
#### Chat request (with images)
##### Request
Send a chat message with a conversation history.
```shell
curl http://localhost:11434/api/chat -d '{
"model": "llava",
"messages": [
{
"role": "user",
"content": "what is in this image?",
"images": ["iVBORw0KGgoAAAANSUhEUgAAAG0AAABmCAYAAADBPx+VAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAA3VSURBVHgB7Z27r0zdG8fX743i1bi1ikMoFMQloXRpKFFIqI7LH4BEQ+NWIkjQuSWCRIEoULk0gsK1kCBI0IhrQVT7tz/7zZo888yz1r7MnDl7z5xvsjkzs2fP3uu71nNfa7lkAsm7d++Sffv2JbNmzUqcc8m0adOSzZs3Z+/XES4ZckAWJEGWPiCxjsQNLWmQsWjRIpMseaxcuTKpG/7HP27I8P79e7dq1ars/yL4/v27S0ejqwv+cUOGEGGpKHR37tzJCEpHV9tnT58+dXXCJDdECBE2Ojrqjh071hpNECjx4cMHVycM1Uhbv359B2F79+51586daxN/+pyRkRFXKyRDAqxEp4yMlDDzXG1NPnnyJKkThoK0VFd1ELZu3TrzXKxKfW7dMBQ6bcuWLW2v0VlHjx41z717927ba22U9APcw7Nnz1oGEPeL3m3p2mTAYYnFmMOMXybPPXv2bNIPpFZr1NHn4HMw0KRBjg9NuRw95s8PEcz/6DZELQd/09C9QGq5RsmSRybqkwHGjh07OsJSsYYm3ijPpyHzoiacg35MLdDSIS/O1yM778jOTwYUkKNHWUzUWaOsylE00MyI0fcnOwIdjvtNdW/HZwNLGg+sR1kMepSNJXmIwxBZiG8tDTpEZzKg0GItNsosY8USkxDhD0Rinuiko2gfL/RbiD2LZAjU9zKQJj8RDR0vJBR1/Phx9+PHj9Z7REF4nTZkxzX4LCXHrV271qXkBAPGfP/atWvu/PnzHe4C97F48eIsRLZ9+3a3f/9+87dwP1JxaF7/3r17ba+5l4EcaVo0lj3SBq5kGTJSQmLWMjgYNei2GPT1MuMqGTDEFHzeQSP2wi/jGnkmPJ/nhccs44jvDAxpVcxnq0F6eT8h4ni/iIWpR5lPyA6ETkNXoSukvpJAD3AsXLiwpZs49+fPn5ke4j10TqYvegSfn0OnafC+Tv9ooA/JPkgQysqQNBzagXY55nO/oa1F7qvIPWkRL12WRpMWUvpVDYmxAPehxWSe8ZEXL20sadYIozfmNch4QJPAfeJgW3rNsnzphBKNJM2KKODo1rVOMRYik5ETy3ix4qWNI81qAAirizgMIc+yhTytx0JWZuNI03qsrgWlGtwjoS9XwgUhWGyhUaRZZQNNIEwCiXD16tXcAHUs79co0vSD8rrJCIW98pzvxpAWyyo3HYwqS0+H0BjStClcZJT5coMm6D2LOF8TolGJtK9fvyZpyiC5ePFi9nc/oJU4eiEP0jVoAnHa9wyJycITMP78+eMeP37sXrx44d6+fdt6f82aNdkx1pg9e3Zb5W+RSRE+n+VjksQWifvVaTKFhn5O8my63K8Qabdv33b379/PiAP//vuvW7BggZszZ072/+TJk91YgkafPn166zXB1rQHFvouAWHq9z3SEevSUerqCn2/dDCeta2jxYbr69evk4MHDyY7d+7MjhMnTiTPnz9Pfv/+nfQT2ggpO2dMF8cghuoM7Ygj5iWCqRlGFml0QC/ftGmTmzt3rmsaKDsgBSPh0/8yPeLLBihLkOKJc0jp8H8vUzcxIA1k6QJ/c78tWEyj5P3o4u9+jywNPdJi5rAH9x0KHcl4Hg570eQp3+vHXGyrmEeigzQsQsjavXt38ujRo44LQuDDhw+TW7duRS1HGgMxhNXHgflaNTOsHyKvHK5Ijo2jbFjJBQK9YwFd6RVMzfgRBmEfP37suBBm/p49e1qjEP2mwTViNRo0VJWH1deMXcNK08uUjVUu7s/zRaL+oLNxz1bpANco4npUgX4G2eFbpDFyQoQxojBCpEGSytmOH8qrH5Q9vuzD6ofQylkCUmh8DBAr+q8JCyVNtWQIidKQE9wNtLSQnS4jDSsxNHogzFuQBw4cyM61UKVsjfr3ooBkPSqqQHesUPWVtzi9/vQi1T+rJj7WiTz4Pt/l3LxUkr5P2VYZaZ4URpsE+st/dujQoaBBYokbrz/8TJNQYLSonrPS9kUaSkPeZyj1AWSj+d+VBoy1pIWVNed8P0Ll/ee5HdGRhrHhR5GGN0r4LGZBaj8oFDJitBTJzIZgFcmU0Y8ytWMZMzJOaXUSrUs5RxKnrxmbb5YXO9VGUhtpXldhEUogFr3IzIsvlpmdosVcGVGXFWp2oU9kLFL3dEkSz6NHEY1sjSRdIuDFWEhd8KxFqsRi1uM/nz9/zpxnwlESONdg6dKlbsaMGS4EHFHtjFIDHwKOo46l4TxSuxgDzi+rE2jg+BaFruOX4HXa0Nnf1lwAPufZeF8/r6zD97WK2qFnGjBxTw5qNGPxT+5T/r7/7RawFC3j4vTp09koCxkeHjqbHJqArmH5UrFKKksnxrK7FuRIs8STfBZv+luugXZ2pR/pP9Ois4z+TiMzUUkUjD0iEi1fzX8GmXyuxUBRcaUfykV0YZnlJGKQpOiGB76x5GeWkWWJc3mOrK6S7xdND+W5N6XyaRgtWJFe13GkaZnKOsYqGdOVVVbGupsyA/l7emTLHi7vwTdirNEt0qxnzAvBFcnQF16xh/TMpUuXHDowhlA9vQVraQhkudRdzOnK+04ZSP3DUhVSP61YsaLtd/ks7ZgtPcXqPqEafHkdqa84X6aCeL7YWlv6edGFHb+ZFICPlljHhg0bKuk0CSvVznWsotRu433alNdFrqG45ejoaPCaUkWERpLXjzFL2Rpllp7PJU2a/v7Ab8N05/9t27Z16KUqoFGsxnI9EosS2niSYg9SpU6B4JgTrvVW1flt1sT+0ADIJU2maXzcUTraGCRaL1Wp9rUMk16PMom8QhruxzvZIegJjFU7LLCePfS8uaQdPny4jTTL0dbee5mYokQsXTIWNY46kuMbnt8Kmec+LGWtOVIl9cT1rCB0V8WqkjAsRwta93TbwNYoGKsUSChN44lgBNCoHLHzquYKrU6qZ8lolCIN0Rh6cP0Q3U6I6IXILYOQI513hJaSKAorFpuHXJNfVlpRtmYBk1Su1obZr5dnKAO+L10Hrj3WZW+E3qh6IszE37F6EB+68mGpvKm4eb9bFrlzrok7fvr0Kfv727dvWRmdVTJHw0qiiCUSZ6wCK+7XL/AcsgNyL74DQQ730sv78Su7+t/A36MdY0sW5o40ahslXr58aZ5HtZB8GH64m9EmMZ7FpYw4T6QnrZfgenrhFxaSiSGXtPnz57e9TkNZLvTjeqhr734CNtrK41L40sUQckmj1lGKQ0rC37x544r8eNXRpnVE3ZZY7zXo8NomiO0ZUCj2uHz58rbXoZ6gc0uA+F6ZeKS/jhRDUq8MKrTho9fEkihMmhxtBI1DxKFY9XLpVcSkfoi8JGnToZO5sU5aiDQIW716ddt7ZLYtMQlhECdBGXZZMWldY5BHm5xgAroWj4C0hbYkSc/jBmggIrXJWlZM6pSETsEPGqZOndr2uuuR5rF169a2HoHPdurUKZM4CO1WTPqaDaAd+GFGKdIQkxAn9RuEWcTRyN2KSUgiSgF5aWzPTeA/lN5rZubMmR2bE4SIC4nJoltgAV/dVefZm72AtctUCJU2CMJ327hxY9t7EHbkyJFseq+EJSY16RPo3Dkq1kkr7+q0bNmyDuLQcZBEPYmHVdOBiJyIlrRDq41YPWfXOxUysi5fvtyaj+2BpcnsUV/oSoEMOk2CQGlr4ckhBwaetBhjCwH0ZHtJROPJkyc7UjcYLDjmrH7ADTEBXFfOYmB0k9oYBOjJ8b4aOYSe7QkKcYhFlq3QYLQhSidNmtS2RATwy8YOM3EQJsUjKiaWZ+vZToUQgzhkHXudb/PW5YMHD9yZM2faPsMwoc7RciYJXbGuBqJ1UIGKKLv915jsvgtJxCZDubdXr165mzdvtr1Hz5LONA8jrUwKPqsmVesKa49S3Q4WxmRPUEYdTjgiUcfUwLx589ySJUva3oMkP6IYddq6HMS4o55xBJBUeRjzfa4Zdeg56QZ43LhxoyPo7Lf1kNt7oO8wWAbNwaYjIv5lhyS7kRf96dvm5Jah8vfvX3flyhX35cuX6HfzFHOToS1H4BenCaHvO8pr8iDuwoUL7tevX+b5ZdbBair0xkFIlFDlW4ZknEClsp/TzXyAKVOmmHWFVSbDNw1l1+4f90U6IY/q4V27dpnE9bJ+v87QEydjqx/UamVVPRG+mwkNTYN+9tjkwzEx+atCm/X9WvWtDtAb68Wy9LXa1UmvCDDIpPkyOQ5ZwSzJ4jMrvFcr0rSjOUh+GcT4LSg5ugkW1Io0/SCDQBojh0hPlaJdah+tkVYrnTZowP8iq1F1TgMBBauufyB33x1v+NWFYmT5KmppgHC+NkAgbmRkpD3yn9QIseXymoTQFGQmIOKTxiZIWpvAatenVqRVXf2nTrAWMsPnKrMZHz6bJq5jvce6QK8J1cQNgKxlJapMPdZSR64/UivS9NztpkVEdKcrs5alhhWP9NeqlfWopzhZScI6QxseegZRGeg5a8C3Re1Mfl1ScP36ddcUaMuv24iOJtz7sbUjTS4qBvKmstYJoUauiuD3k5qhyr7QdUHMeCgLa1Ear9NquemdXgmum4fvJ6w1lqsuDhNrg1qSpleJK7K3TF0Q2jSd94uSZ60kK1e3qyVpQK6PVWXp2/FC3mp6jBhKKOiY2h3gtUV64TWM6wDETRPLDfSakXmH3w8g9Jlug8ZtTt4kVF0kLUYYmCCtD/DrQ5YhMGbA9L3ucdjh0y8kOHW5gU/VEEmJTcL4Pz/f7mgoAbYkAAAAAElFTkSuQmCC"]
}
]
}'
```
##### Response
```json
{
"model": "llava",
"created_at": "2023-12-13T22:42:50.203334Z",
"message": {
"role": "assistant",
"content": " The image features a cute, little pig with an angry facial expression. It's wearing a heart on its shirt and is waving in the air. This scene appears to be part of a drawing or sketching project.",
"images": null
},
"done": true,
"total_duration": 1668506709,
"load_duration": 1986209,
"prompt_eval_count": 26,
"prompt_eval_duration": 359682000,
"eval_count": 83,
"eval_duration": 1303285000
}
```
## Create a Model
```shell
POST /api/create
```
Create a model from a [`Modelfile`](./modelfile.md). It is recommended to set `modelfile` to the content of the Modelfile rather than just set `path`. This is a requirement for remote create. Remote model creation must also create any file blobs, fields such as `FROM` and `ADAPTER`, explicitly with the server using [Create a Blob](#create-a-blob) and the value to the path indicated in the response.
### Parameters
- `name`: name of the model to create
- `modelfile` (optional): contents of the Modelfile
- `stream`: (optional) if `false` the response will be returned as a single response object, rather than a stream of objects
- `path` (optional): path to the Modelfile
### Examples
#### Create a new model
Create a new model from a `Modelfile`.
##### Request
```shell
curl http://localhost:11434/api/create -d '{
"name": "mario",
"modelfile": "FROM llama2\nSYSTEM You are mario from Super Mario Bros."
}'
```
##### Response
A stream of JSON objects. Notice that the final JSON object shows a `"status": "success"`.
```json
{"status":"reading model metadata"}
{"status":"creating system layer"}
{"status":"using already created layer sha256:22f7f8ef5f4c791c1b03d7eb414399294764d7cc82c7e94aa81a1feb80a983a2"}
{"status":"using already created layer sha256:8c17c2ebb0ea011be9981cc3922db8ca8fa61e828c5d3f44cb6ae342bf80460b"}
{"status":"using already created layer sha256:7c23fb36d80141c4ab8cdbb61ee4790102ebd2bf7aeff414453177d4f2110e5d"}
{"status":"using already created layer sha256:2e0493f67d0c8c9c68a8aeacdf6a38a2151cb3c4c1d42accf296e19810527988"}
{"status":"using already created layer sha256:2759286baa875dc22de5394b4a925701b1896a7e3f8e53275c36f75a877a82c9"}
{"status":"writing layer sha256:df30045fe90f0d750db82a058109cecd6d4de9c90a3d75b19c09e5f64580bb42"}
{"status":"writing layer sha256:f18a68eb09bf925bb1b669490407c1b1251c5db98dc4d3d81f3088498ea55690"}
{"status":"writing manifest"}
{"status":"success"}
```
### Check if a Blob Exists
```shell
HEAD /api/blobs/:digest
```
Ensures that the file blob used for a FROM or ADAPTER field exists on the server. This is checking your Ollama server and not Ollama.ai.
#### Query Parameters
- `digest`: the SHA256 digest of the blob
#### Examples
##### Request
```shell
curl -I http://localhost:11434/api/blobs/sha256:29fdb92e57cf0827ded04ae6461b5931d01fa595843f55d36f5b275a52087dd2
```
##### Response
Return 200 OK if the blob exists, 404 Not Found if it does not.
### Create a Blob
```shell
POST /api/blobs/:digest
```
Create a blob from a file on the server. Returns the server file path.
#### Query Parameters
- `digest`: the expected SHA256 digest of the file
#### Examples
##### Request
```shell
curl -T model.bin -X POST http://localhost:11434/api/blobs/sha256:29fdb92e57cf0827ded04ae6461b5931d01fa595843f55d36f5b275a52087dd2
```
##### Response
Return 201 Created if the blob was successfully created, 400 Bad Request if the digest used is not expected.
## List Local Models
```shell
GET /api/tags
```
List models that are available locally.
### Examples
#### Request
```shell
curl http://localhost:11434/api/tags
```
#### Response
A single JSON object will be returned.
```json
{
"models": [
{
"name": "codellama:13b",
"modified_at": "2023-11-04T14:56:49.277302595-07:00",
"size": 7365960935,
"digest": "9f438cb9cd581fc025612d27f7c1a6669ff83a8bb0ed86c94fcf4c5440555697",
"details": {
"format": "gguf",
"family": "llama",
"families": null,
"parameter_size": "13B",
"quantization_level": "Q4_0"
}
},
{
"name": "llama2:latest",
"modified_at": "2023-12-07T09:32:18.757212583-08:00",
"size": 3825819519,
"digest": "fe938a131f40e6f6d40083c9f0f430a515233eb2edaa6d72eb85c50d64f2300e",
"details": {
"format": "gguf",
"family": "llama",
"families": null,
"parameter_size": "7B",
"quantization_level": "Q4_0"
}
}
]
}
```
## Show Model Information
```shell
POST /api/show
```
Show information about a model including details, modelfile, template, parameters, license, and system prompt.
### Parameters
- `name`: name of the model to show
### Examples
#### Request
```shell
curl http://localhost:11434/api/show -d '{
"name": "llama2"
}'
```
#### Response
```json
{
"modelfile": "# Modelfile generated by \"ollama show\"\n# To build a new Modelfile based on this one, replace the FROM line with:\n# FROM llava:latest\n\nFROM /Users/matt/.ollama/models/blobs/sha256:200765e1283640ffbd013184bf496e261032fa75b99498a9613be4e94d63ad52\nTEMPLATE \"\"\"{{ .System }}\nUSER: {{ .Prompt }}\nASSSISTANT: \"\"\"\nPARAMETER num_ctx 4096\nPARAMETER stop \"\u003c/s\u003e\"\nPARAMETER stop \"USER:\"\nPARAMETER stop \"ASSSISTANT:\"",
"parameters": "num_ctx 4096\nstop \u003c/s\u003e\nstop USER:\nstop ASSSISTANT:",
"template": "{{ .System }}\nUSER: {{ .Prompt }}\nASSSISTANT: ",
"details": {
"format": "gguf",
"family": "llama",
"families": ["llama", "clip"],
"parameter_size": "7B",
"quantization_level": "Q4_0"
}
}
```
## Copy a Model
```shell
POST /api/copy
```
Copy a model. Creates a model with another name from an existing model.
### Examples
#### Request
```shell
curl http://localhost:11434/api/copy -d '{
"source": "llama2",
"destination": "llama2-backup"
}'
```
#### Response
Returns a 200 OK if successful, or a 404 Not Found if the source model doesn't exist.
## Delete a Model
```shell
DELETE /api/delete
```
Delete a model and its data.
### Parameters
- `name`: model name to delete
### Examples
#### Request
```shell
curl -X DELETE http://localhost:11434/api/delete -d '{
"name": "llama2:13b"
}'
```
#### Response
Returns a 200 OK if successful, 404 Not Found if the model to be deleted doesn't exist.
## Pull a Model
```shell
POST /api/pull
```
Download a model from the ollama library. Cancelled pulls are resumed from where they left off, and multiple calls will share the same download progress.
### Parameters
- `name`: name of the model to pull
- `insecure`: (optional) allow insecure connections to the library. Only use this if you are pulling from your own library during development.
- `stream`: (optional) if `false` the response will be returned as a single response object, rather than a stream of objects
### Examples
#### Request
```shell
curl http://localhost:11434/api/pull -d '{
"name": "llama2"
}'
```
#### Response
If `stream` is not specified, or set to `true`, a stream of JSON objects is returned:
The first object is the manifest:
```json
{
"status": "pulling manifest"
}
```
Then there is a series of downloading responses. Until any of the download is completed, the `completed` key may not be included. The number of files to be downloaded depends on the number of layers specified in the manifest.
```json
{
"status": "downloading digestname",
"digest": "digestname",
"total": 2142590208,
"completed": 241970
}
```
After all the files are downloaded, the final responses are:
```json
{
"status": "verifying sha256 digest"
}
{
"status": "writing manifest"
}
{
"status": "removing any unused layers"
}
{
"status": "success"
}
```
if `stream` is set to false, then the response is a single JSON object:
```json
{
"status": "success"
}
```
## Push a Model
```shell
POST /api/push
```
Upload a model to a model library. Requires registering for ollama.ai and adding a public key first.
### Parameters
- `name`: name of the model to push in the form of `<namespace>/<model>:<tag>`
- `insecure`: (optional) allow insecure connections to the library. Only use this if you are pushing to your library during development.
- `stream`: (optional) if `false` the response will be returned as a single response object, rather than a stream of objects
### Examples
#### Request
```shell
curl http://localhost:11434/api/push -d '{
"name": "mattw/pygmalion:latest"
}'
```
#### Response
If `stream` is not specified, or set to `true`, a stream of JSON objects is returned:
```json
{ "status": "retrieving manifest" }
```
and then:
```json
{
"status": "starting upload",
"digest": "sha256:bc07c81de745696fdf5afca05e065818a8149fb0c77266fb584d9b2cba3711ab",
"total": 1928429856
}
```
Then there is a series of uploading responses:
```json
{
"status": "starting upload",
"digest": "sha256:bc07c81de745696fdf5afca05e065818a8149fb0c77266fb584d9b2cba3711ab",
"total": 1928429856
}
```
Finally, when the upload is complete:
```json
{"status":"pushing manifest"}
{"status":"success"}
```
If `stream` is set to `false`, then the response is a single JSON object:
```json
{ "status": "success" }
```
## Generate Embeddings
```shell
POST /api/embeddings
```
Generate embeddings from a model
### Parameters
- `model`: name of model to generate embeddings from
- `prompt`: text to generate embeddings for
Advanced parameters:
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
### Examples
#### Request
```shell
curl http://localhost:11434/api/embeddings -d '{
"model": "llama2",
"prompt": "Here is an article about llamas..."
}'
```
#### Response
```json
{
"embedding": [
0.5670403838157654, 0.009260174818336964, 0.23178744316101074, -0.2916173040866852, -0.8924556970596313,
0.8785552978515625, -0.34576427936553955, 0.5742510557174683, -0.04222835972905159, -0.137906014919281
]
}
```

View File

@@ -2,137 +2,39 @@
Install required tools:
- cmake version 3.24 or higher
- go version 1.21 or higher
- gcc version 11.4.0 or higher
```bash
brew install go cmake gcc
```
Optionally enable debugging and more verbose logging:
```bash
# At build time
export CGO_CFLAGS="-g"
# At runtime
export OLLAMA_DEBUG=1
```
Get the required libraries and build the native LLM code:
```bash
go generate ./...
brew install go
```
Then build ollama:
```bash
```
go build .
```
Now you can run `ollama`:
```bash
```
./ollama
```
### Linux
## Releasing
#### Linux CUDA (NVIDIA)
To release a new version of Ollama you'll need to set some environment variables:
*Your operating system distribution may already have packages for NVIDIA CUDA. Distro packages are often preferable, but instructions are distro-specific. Please consult distro-specific docs for dependencies if available!*
* `GITHUB_TOKEN`: your GitHub token
* `APPLE_IDENTITY`: the Apple signing identity (macOS only)
* `APPLE_ID`: your Apple ID
* `APPLE_PASSWORD`: your Apple ID app-specific password
* `APPLE_TEAM_ID`: the Apple team ID for the signing identity
* `TELEMETRY_WRITE_KEY`: segment write key for telemetry
Install `cmake` and `golang` as well as [NVIDIA CUDA](https://developer.nvidia.com/cuda-downloads)
development and runtime packages.
Typically the build scripts will auto-detect CUDA, however, if your Linux distro
or installation approach uses unusual paths, you can specify the location by
specifying an environment variable `CUDA_LIB_DIR` to the location of the shared
libraries, and `CUDACXX` to the location of the nvcc compiler. You can customize
set set of target CUDA architectues by setting `CMAKE_CUDA_ARCHITECTURES` (e.g. "50;60;70")
Then generate dependencies:
Then run the publish script with the target version:
```
go generate ./...
VERSION=0.0.2 ./scripts/publish.sh
```
Then build the binary:
```
go build .
```
#### Linux ROCm (AMD)
*Your operating system distribution may already have packages for AMD ROCm and CLBlast. Distro packages are often preferable, but instructions are distro-specific. Please consult distro-specific docs for dependencies if available!*
Install [CLBlast](https://github.com/CNugteren/CLBlast/blob/master/doc/installation.md) and [ROCm](https://rocm.docs.amd.com/en/latest/deploy/linux/quick_start.html) developement packages first, as well as `cmake` and `golang`.
Typically the build scripts will auto-detect ROCm, however, if your Linux distro
or installation approach uses unusual paths, you can specify the location by
specifying an environment variable `ROCM_PATH` to the location of the ROCm
install (typically `/opt/rocm`), and `CLBlast_DIR` to the location of the
CLBlast install (typically `/usr/lib/cmake/CLBlast`). You can also customize
the AMD GPU targets by setting AMDGPU_TARGETS (e.g. `AMDGPU_TARGETS="gfx1101;gfx1102"`)
```
go generate ./...
```
Then build the binary:
```
go build .
```
ROCm requires elevated privileges to access the GPU at runtime. On most distros you can add your user account to the `render` group, or run as root.
#### Advanced CPU Settings
By default, running `go generate ./...` will compile a few different variations
of the LLM library based on common CPU families and vector math capabilities,
including a lowest-common-denominator which should run on almost any 64 bit CPU
somewhat slowly. At runtime, Ollama will auto-detect the optimal variation to
load. If you would like to build a CPU-based build customized for your
processor, you can set `OLLAMA_CUSTOM_CPU_DEFS` to the llama.cpp flags you would
like to use. For example, to compile an optimized binary for an Intel i9-9880H,
you might use:
```
OLLAMA_CUSTOM_CPU_DEFS="-DLLAMA_AVX=on -DLLAMA_AVX2=on -DLLAMA_F16C=on -DLLAMA_FMA=on" go generate ./...
go build .
```
#### Containerized Linux Build
If you have Docker available, you can build linux binaries with `./scripts/build_linux.sh` which has the CUDA and ROCm dependencies included. The resulting binary is placed in `./dist`
### Windows
Note: The windows build for Ollama is still under development.
Install required tools:
- MSVC toolchain - C/C++ and cmake as minimal requirements
- go version 1.21 or higher
- MinGW (pick one variant) with GCC.
- <https://www.mingw-w64.org/>
- <https://www.msys2.org/>
```powershell
$env:CGO_ENABLED="1"
go generate ./...
go build .
```
#### Windows CUDA (NVIDIA)
In addition to the common Windows development tools described above, install:
- [NVIDIA CUDA](https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html)

View File

@@ -1,117 +0,0 @@
# FAQ
## How can I upgrade Ollama?
To upgrade Ollama, run the installation process again. On the Mac, click the Ollama icon in the menubar and choose the restart option if an update is available.
## How can I view the logs?
Review the [Troubleshooting](./troubleshooting.md) docs for more about using logs.
## How do I configure Ollama server?
Ollama server can be configured with environment variables.
### Setting environment variables on Mac
If Ollama is run as a macOS application, environment variables should be set using `launchctl`:
1. For each environment variable, call `launchctl setenv`.
```bash
launchctl setenv OLLAMA_HOST "0.0.0.0"
```
2. Restart Ollama application.
### Setting environment variables on Linux
If Ollama is run as a systemd service, environment variables should be set using `systemctl`:
1. Edit the systemd service by calling `systemctl edit ollama.service`. This will open an editor.
2. For each environment variable, add a line `Environment` under section `[Service]`:
```ini
[Service]
Environment="OLLAMA_HOST=0.0.0.0"
```
3. Save and exit.
4. Reload `systemd` and restart Ollama:
```bash
systemctl daemon-reload
systemctl restart ollama
```
## How can I expose Ollama on my network?
Ollama binds 127.0.0.1 port 11434 by default. Change the bind address with the `OLLAMA_HOST` environment variable.
Refer to the section [above](#how-do-i-configure-ollama-server) for how to set environment variables on your platform.
## How can I allow additional web origins to access Ollama?
Ollama allows cross-origin requests from `127.0.0.1` and `0.0.0.0` by default. Additional origins can be configured with `OLLAMA_ORIGINS`.
Refer to the section [above](#how-do-i-configure-ollama-server) for how to set environment variables on your platform.
## Where are models stored?
- macOS: `~/.ollama/models`.
- Linux: `/usr/share/ollama/.ollama/models`
### How do I set them to a different location?
If a different directory needs to be used, set the environment variable `OLLAMA_MODELS` to the chosen directory.
Refer to the section [above](#how-do-i-configure-ollama-server) for how to set environment variables on your platform.
## Does Ollama send my prompts and answers back to Ollama.ai to use in any way?
No, Ollama runs entirely locally, and conversation data will never leave your machine.
## How can I use Ollama in Visual Studio Code?
There is already a large collection of plugins available for VSCode as well as other editors that leverage Ollama. See the list of [extensions & plugins](https://github.com/jmorganca/ollama#extensions--plugins) at the bottom of the main repository readme.
## How do I use Ollama behind a proxy?
Ollama is compatible with proxy servers if `HTTP_PROXY` or `HTTPS_PROXY` are configured. When using either variables, ensure it is set where `ollama serve` can access the values. When using `HTTPS_PROXY`, ensure the proxy certificate is installed as a system certificate. Refer to the section above for how to use environment variables on your platform.
### How do I use Ollama behind a proxy in Docker?
The Ollama Docker container image can be configured to use a proxy by passing `-e HTTPS_PROXY=https://proxy.example.com` when starting the container.
Alternatively, the Docker daemon can be configured to use a proxy. Instructions are available for Docker Desktop on [macOS](https://docs.docker.com/desktop/settings/mac/#proxies), [Windows](https://docs.docker.com/desktop/settings/windows/#proxies), and [Linux](https://docs.docker.com/desktop/settings/linux/#proxies), and Docker [daemon with systemd](https://docs.docker.com/config/daemon/systemd/#httphttps-proxy).
Ensure the certificate is installed as a system certificate when using HTTPS. This may require a new Docker image when using a self-signed certificate.
```dockerfile
FROM ollama/ollama
COPY my-ca.pem /usr/local/share/ca-certificates/my-ca.crt
RUN update-ca-certificates
```
Build and run this image:
```shell
docker build -t ollama-with-ca .
docker run -d -e HTTPS_PROXY=https://my.proxy.example.com -p 11434:11434 ollama-with-ca
```
## How do I use Ollama with GPU acceleration in Docker?
The Ollama Docker container can be configured with GPU acceleration in Linux or Windows (with WSL2). This requires the [nvidia-container-toolkit](https://github.com/NVIDIA/nvidia-container-toolkit). See [ollama/ollama](https://hub.docker.com/r/ollama/ollama) for more details.
GPU acceleration is not available for Docker Desktop in macOS due to the lack of GPU passthrough and emulation.
## Why is networking slow in WSL2 on Windows 10?
This can impact both installing Ollama, as well as downloading models.
Open `Control Panel > Networking and Internet > View network status and tasks` and click on `Change adapter settings` on the left panel. Find the `vEthernel (WSL)` adapter, right click and select `Properties`.
Click on `Configure` and open the `Advanced` tab. Search through each of the properties until you find `Large Send Offload Version 2 (IPv4)` and `Large Send Offload Version 2 (IPv6)`. *Disable* both of these
properties.

View File

@@ -1,165 +0,0 @@
# Import a model
This guide walks through importing a GGUF, PyTorch or Safetensors model.
## Importing (GGUF)
### Step 1: Write a `Modelfile`
Start by creating a `Modelfile`. This file is the blueprint for your model, specifying weights, parameters, prompt templates and more.
```
FROM ./mistral-7b-v0.1.Q4_0.gguf
```
(Optional) many chat models require a prompt template in order to answer correctly. A default prompt template can be specified with the `TEMPLATE` instruction in the `Modelfile`:
```
FROM ./mistral-7b-v0.1.Q4_0.gguf
TEMPLATE "[INST] {{ .Prompt }} [/INST]"
```
### Step 2: Create the Ollama model
Finally, create a model from your `Modelfile`:
```
ollama create example -f Modelfile
```
### Step 3: Run your model
Next, test the model with `ollama run`:
```
ollama run example "What is your favourite condiment?"
```
## Importing (PyTorch & Safetensors)
> Importing from PyTorch and Safetensors is a longer process than importing from GGUF. Improvements that make it easier are a work in progress.
### Setup
First, clone the `ollama/ollama` repo:
```
git clone git@github.com:ollama/ollama.git ollama
cd ollama
```
and then fetch its `llama.cpp` submodule:
```shell
git submodule init
git submodule update llm/llama.cpp
```
Next, install the Python dependencies:
```
python3 -m venv llm/llama.cpp/.venv
source llm/llama.cpp/.venv/bin/activate
pip install -r llm/llama.cpp/requirements.txt
```
Then build the `quantize` tool:
```
make -C llm/llama.cpp quantize
```
### Clone the HuggingFace repository (optional)
If the model is currently hosted in a HuggingFace repository, first clone that repository to download the raw model.
Install [Git LFS](https://docs.github.com/en/repositories/working-with-files/managing-large-files/installing-git-large-file-storage), verify it's installed, and then clone the model's repository:
```
git lfs install
git clone https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1 model
```
### Convert the model
> Note: some model architectures require using specific convert scripts. For example, Qwen models require running `convert-hf-to-gguf.py` instead of `convert.py`
```
python llm/llama.cpp/convert.py ./model --outtype f16 --outfile converted.bin
```
### Quantize the model
```
llm/llama.cpp/quantize converted.bin quantized.bin q4_0
```
### Step 3: Write a `Modelfile`
Next, create a `Modelfile` for your model:
```
FROM quantized.bin
TEMPLATE "[INST] {{ .Prompt }} [/INST]"
```
### Step 4: Create the Ollama model
Finally, create a model from your `Modelfile`:
```
ollama create example -f Modelfile
```
### Step 5: Run your model
Next, test the model with `ollama run`:
```
ollama run example "What is your favourite condiment?"
```
## Publishing your model (optional early alpha)
Publishing models is in early alpha. If you'd like to publish your model to share with others, follow these steps:
1. Create [an account](https://ollama.ai/signup)
2. Run `cat ~/.ollama/id_ed25519.pub` to view your Ollama public key. Copy this to the clipboard.
3. Add your public key to your [Ollama account](https://ollama.ai/settings/keys)
Next, copy your model to your username's namespace:
```
ollama cp example <your username>/example
```
Then push the model:
```
ollama push <your username>/example
```
After publishing, your model will be available at `https://ollama.ai/<your username>/example`.
## Quantization reference
The quantization options are as follow (from highest highest to lowest levels of quantization). Note: some architectures such as Falcon do not support K quants.
- `q2_K`
- `q3_K`
- `q3_K_S`
- `q3_K_M`
- `q3_K_L`
- `q4_0` (recommended)
- `q4_1`
- `q4_K`
- `q4_K_S`
- `q4_K_M`
- `q5_0`
- `q5_1`
- `q5_K`
- `q5_K_S`
- `q5_K_M`
- `q6_K`
- `q8_0`
- `f16`

View File

@@ -1,117 +0,0 @@
# Ollama on Linux
## Install
Install Ollama running this one-liner:
>
```bash
curl https://ollama.ai/install.sh | sh
```
## Manual install
### Download the `ollama` binary
Ollama is distributed as a self-contained binary. Download it to a directory in your PATH:
```bash
sudo curl -L https://ollama.ai/download/ollama-linux-amd64 -o /usr/bin/ollama
sudo chmod +x /usr/bin/ollama
```
### Adding Ollama as a startup service (recommended)
Create a user for Ollama:
```bash
sudo useradd -r -s /bin/false -m -d /usr/share/ollama ollama
```
Create a service file in `/etc/systemd/system/ollama.service`:
```ini
[Unit]
Description=Ollama Service
After=network-online.target
[Service]
ExecStart=/usr/bin/ollama serve
User=ollama
Group=ollama
Restart=always
RestartSec=3
[Install]
WantedBy=default.target
```
Then start the service:
```bash
sudo systemctl daemon-reload
sudo systemctl enable ollama
```
### Install CUDA drivers (optional for Nvidia GPUs)
[Download and install](https://developer.nvidia.com/cuda-downloads) CUDA.
Verify that the drivers are installed by running the following command, which should print details about your GPU:
```bash
nvidia-smi
```
### Start Ollama
Start Ollama using `systemd`:
```bash
sudo systemctl start ollama
```
## Update
Update ollama by running the install script again:
```bash
curl https://ollama.ai/install.sh | sh
```
Or by downloading the ollama binary:
```bash
sudo curl -L https://ollama.ai/download/ollama-linux-amd64 -o /usr/bin/ollama
sudo chmod +x /usr/bin/ollama
```
## Viewing logs
To view logs of Ollama running as a startup service, run:
```bash
journalctl -u ollama
```
## Uninstall
Remove the ollama service:
```bash
sudo systemctl stop ollama
sudo systemctl disable ollama
sudo rm /etc/systemd/system/ollama.service
```
Remove the ollama binary from your bin directory (either `/usr/local/bin`, `/usr/bin`, or `/bin`):
```bash
sudo rm $(which ollama)
```
Remove the downloaded models and Ollama service user and group:
```bash
sudo rm -r /usr/share/ollama
sudo userdel ollama
sudo groupdel ollama
```

View File

@@ -1,131 +1,33 @@
# Ollama Model File
# Ollama Model File Reference
> Note: `Modelfile` syntax is in development
A model file is the blueprint to create and share models with Ollama.
## Table of Contents
- [Format](#format)
- [Examples](#examples)
- [Instructions](#instructions)
- [FROM (Required)](#from-required)
- [Build from llama2](#build-from-llama2)
- [Build from a bin file](#build-from-a-bin-file)
- [PARAMETER](#parameter)
- [Valid Parameters and Values](#valid-parameters-and-values)
- [TEMPLATE](#template)
- [Template Variables](#template-variables)
- [SYSTEM](#system)
- [ADAPTER](#adapter)
- [LICENSE](#license)
- [MESSAGE](#message)
- [Notes](#notes)
Ollama can build models automatically by reading the instructions from a Modelfile. A Modelfile is a text document that represents the complete configuration of the Model. You can see that a Modelfile is very similar to a Dockerfile.
## Format
The format of the `Modelfile`:
Here is the format of the Modelfile:
```modelfile
# comment
INSTRUCTION arguments
```
| Instruction | Description |
| ----------------------------------- | -------------------------------------------------------------- |
| [`FROM`](#from-required) (required) | Defines the base model to use. |
| [`PARAMETER`](#parameter) | Sets the parameters for how Ollama will run the model. |
| [`TEMPLATE`](#template) | The full prompt template to be sent to the model. |
| [`SYSTEM`](#system) | Specifies the system message that will be set in the template. |
| [`ADAPTER`](#adapter) | Defines the (Q)LoRA adapters to apply to the model. |
| [`LICENSE`](#license) | Specifies the legal license. |
| [`MESSAGE`](#message) | Specify message history. |
Nothing in the file is case-sensitive. However, the convention is for instructions to be uppercase to make it easier to distinguish from the arguments.
## Examples
A Modelfile can include instructions in any order. But the convention is to start the Modelfile with the FROM instruction.
### Basic `Modelfile`
Although the example above shows a comment starting with a hash character, any instruction that is not recognized is seen as a comment.
An example of a `Modelfile` creating a mario blueprint:
## FROM
```modelfile
FROM llama2
# sets the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1
# sets the context window size to 4096, this controls how many tokens the LLM can use as context to generate the next token
PARAMETER num_ctx 4096
# sets a custom system message to specify the behavior of the chat assistant
SYSTEM You are Mario from super mario bros, acting as an assistant.
FROM <image>[:<tag>]
```
To use this:
This defines the base model to be used. An image can be a known image on the Ollama Hub, or a fully-qualified path to a model file on your system
1. Save it as a file (e.g. `Modelfile`)
2. `ollama create choose-a-model-name -f <location of the file e.g. ./Modelfile>'`
3. `ollama run choose-a-model-name`
4. Start using the model!
## PARAMETER
More examples are available in the [examples directory](../examples).
### `Modelfile`s in [ollama.ai/library][1]
There are two ways to view `Modelfile`s underlying the models in [ollama.ai/library][1]:
- Option 1: view a details page from a model's tags page:
1. Go to a particular model's tags (e.g. https://ollama.ai/library/llama2/tags)
2. Click on a tag (e.g. https://ollama.ai/library/llama2:13b)
3. Scroll down to "Layers"
- Note: if the [`FROM` instruction](#from-required) is not present,
it means the model was created from a local file
- Option 2: use `ollama show` to print the `Modelfile` for any local models like so:
```bash
> ollama show --modelfile llama2:13b
# Modelfile generated by "ollama show"
# To build a new Modelfile based on this one, replace the FROM line with:
# FROM llama2:13b
FROM /root/.ollama/models/blobs/sha256:123abc
TEMPLATE """[INST] {{ if and .First .System }}<<SYS>>{{ .System }}<</SYS>>
{{ end }}{{ .Prompt }} [/INST] """
SYSTEM """"""
PARAMETER stop [INST]
PARAMETER stop [/INST]
PARAMETER stop <<SYS>>
PARAMETER stop <</SYS>>
```
## Instructions
### FROM (Required)
The `FROM` instruction defines the base model to use when creating a model.
```modelfile
FROM <model name>:<tag>
```
#### Build from llama2
```modelfile
FROM llama2
```
A list of available base models:
<https://github.com/jmorganca/ollama#model-library>
#### Build from a `bin` file
```modelfile
FROM ./ollama-model.bin
```
This bin file location should be specified as an absolute path or relative to the `Modelfile` location.
### PARAMETER
The `PARAMETER` instruction defines a parameter that can be set when the model is run.
The PARAMETER instruction defines a parameter that can be set when the model is run.
```modelfile
PARAMETER <parameter> <parametervalue>
@@ -133,96 +35,46 @@ PARAMETER <parameter> <parametervalue>
### Valid Parameters and Values
| Parameter | Description | Value Type | Example Usage |
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------- | -------------------- |
| mirostat | Enable Mirostat sampling for controlling perplexity. (default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0) | int | mirostat 0 |
| mirostat_eta | Influences how quickly the algorithm responds to feedback from the generated text. A lower learning rate will result in slower adjustments, while a higher learning rate will make the algorithm more responsive. (Default: 0.1) | float | mirostat_eta 0.1 |
| mirostat_tau | Controls the balance between coherence and diversity of the output. A lower value will result in more focused and coherent text. (Default: 5.0) | float | mirostat_tau 5.0 |
| num_ctx | Sets the size of the context window used to generate the next token. (Default: 2048) | int | num_ctx 4096 |
| num_gqa | The number of GQA groups in the transformer layer. Required for some models, for example it is 8 for llama2:70b | int | num_gqa 1 |
| num_gpu | The number of layers to send to the GPU(s). On macOS it defaults to 1 to enable metal support, 0 to disable. | int | num_gpu 50 |
| num_thread | Sets the number of threads to use during computation. By default, Ollama will detect this for optimal performance. It is recommended to set this value to the number of physical CPU cores your system has (as opposed to the logical number of cores). | int | num_thread 8 |
| repeat_last_n | Sets how far back for the model to look back to prevent repetition. (Default: 64, 0 = disabled, -1 = num_ctx) | int | repeat_last_n 64 |
| repeat_penalty | Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1) | float | repeat_penalty 1.1 |
| temperature | The temperature of the model. Increasing the temperature will make the model answer more creatively. (Default: 0.8) | float | temperature 0.7 |
| seed | Sets the random number seed to use for generation. Setting this to a specific number will make the model generate the same text for the same prompt. (Default: 0) | int | seed 42 |
| stop | Sets the stop sequences to use. When this pattern is encountered the LLM will stop generating text and return. Multiple stop patterns may be set by specifying multiple separate `stop` parameters in a modelfile. | string | stop "AI assistant:" |
| tfs_z | Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting. (default: 1) | float | tfs_z 1 |
| num_predict | Maximum number of tokens to predict when generating text. (Default: 128, -1 = infinite generation, -2 = fill context) | int | num_predict 42 |
| top_k | Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40) | int | top_k 40 |
| top_p | Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9) | float | top_p 0.9 |
| Parameter | Description | Value Type | Value Range |
| ---------------- | ------------------------------------------------------------------------------------------- | ---------- | ----------- |
| NumCtx | | int | |
| NumGPU | | int | |
| MainGPU | | int | |
| LowVRAM | | bool | |
| F16KV | | bool | |
| LogitsAll | | bool | |
| VocabOnly | | bool | |
| UseMMap | | bool | |
| EmbeddingOnly | | bool | |
| RepeatLastN | | int | |
| RepeatPenalty | | float | |
| FrequencyPenalty | | float | |
| PresencePenalty | | float | |
| temperature | The temperature of the model. Higher temperatures result in more creativity in the response | float | 0 - 1 |
| TopK | | int | |
| TopP | | float | |
| TFSZ | | float | |
| TypicalP | | float | |
| Mirostat | | int | |
| MirostatTau | | float | |
| MirostatEta | | float | |
| NumThread | | int | |
### TEMPLATE
`TEMPLATE` of the full prompt template to be passed into the model. It may include (optionally) a system message and a user's prompt. This is used to create a full custom prompt, and syntax may be model specific. You can usually find the template for a given model in the readme for that model.
## PROMPT
#### Template Variables
| Variable | Description |
| ----------------- | ------------------------------------------------------------------------------------------------------------- |
| `{{ .System }}` | The system message used to specify custom behavior, this must also be set in the Modelfile as an instruction. |
| `{{ .Prompt }}` | The incoming prompt, this is not specified in the model file and will be set based on input. |
| `{{ .Response }}` | The response from the LLM, if not specified response is appended to the end of the template. |
| `{{ .First }}` | A boolean value used to render specific template information for the first generation of a session. |
Prompt is a multiline instruction that defines the prompt to be used when the model is run. Typically there are 3-4 components to a prompt: System, context, user, and response.
```modelfile
TEMPLATE """
{{- if .First }}
PROMPT """
{{- if not .Context }}
### System:
{{ .System }}
You are a content marketer who needs to come up with a short but succinct tweet. Make sure to include the appropriate hashtags and links. Sometimes when appropriate, describe a meme that can be includes as well. All answers should be in the form of a tweet which has a max size of 280 characters. Every instruction will be the topic to create a tweet about.
{{- end }}
### User:
### Instruction:
{{ .Prompt }}
### Response:
"""
SYSTEM """<system message>"""
```
### SYSTEM
The `SYSTEM` instruction specifies the system message to be used in the template, if applicable.
```modelfile
SYSTEM """<system message>"""
```
### ADAPTER
The `ADAPTER` instruction specifies the LoRA adapter to apply to the base model. The value of this instruction should be an absolute path or a path relative to the Modelfile and the file must be in a GGML file format. The adapter should be tuned from the base model otherwise the behaviour is undefined.
```modelfile
ADAPTER ./ollama-lora.bin
```
### LICENSE
The `LICENSE` instruction allows you to specify the legal license under which the model used with this Modelfile is shared or distributed.
```modelfile
LICENSE """
<license text>
"""
```
### MESSAGE
The `MESSAGE` instruction allows you to specify a message history for the model to use when responding:
```modelfile
MESSAGE user Is Toronto in Canada?
MESSAGE assistant yes
MESSAGE user Is Sacramento in Canada?
MESSAGE assistant no
MESSAGE user Is Ontario in Canada?
MESSAGE assistant yes
```
## Notes
- the **`Modelfile` is not case sensitive**. In the examples, uppercase instructions are used to make it easier to distinguish it from arguments.
- Instructions can be in any order. In the examples, the `FROM` instruction is first to keep it easily readable.
[1]: https://ollama.ai/library
```

View File

@@ -1,142 +0,0 @@
# OpenAI compatibility
> **Note:** OpenAI compatibility is now part of the `main` branch and will be available in an upcoming release of Ollama.
> **Note:** OpenAI compatibility is experimental and is subject to major adjustments including breaking changes. For fully-featured access to the Ollama API, see the Ollama [Python library](https://github.com/ollama/ollama-python), [JavaScript library](https://github.com/ollama/ollama-js) and [REST API](https://github.com/jmorganca/ollama/blob/main/docs/api.md).
Ollama provides experimental compatibility with parts of the [OpenAI API](https://platform.openai.com/docs/api-reference) to help connect existing applications to Ollama.
## Usage
### OpenAI Python library
```python
from openai import OpenAI
client = OpenAI(
base_url='http://localhost:11434/v1/',
# required but ignored
api_key='ollama',
)
chat_completion = client.chat.completions.create(
messages=[
{
'role': 'user',
'content': 'Say this is a test',
}
],
model='llama2',
)
```
### OpenAI JavaScript library
```javascript
import OpenAI from 'openai'
const openai = new OpenAI({
baseURL: 'http://localhost:11434/v1/',
// required but ignored
apiKey: 'ollama',
})
const chatCompletion = await openai.chat.completions.create({
messages: [{ role: 'user', content: 'Say this is a test' }],
model: 'llama2',
})
```
### `curl`
```
curl http://localhost:11434/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "llama2",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "Hello!"
}
]
}'
```
## Endpoints
### `/v1/chat/completions`
#### Supported features
- [x] Chat completions
- [x] Streaming
- [x] JSON mode
- [x] Reproducible outputs
- [ ] Vision
- [ ] Function calling
- [ ] Logprobs
#### Supported request fields
- [x] `model`
- [x] `messages`
- [x] Text `content`
- [ ] Array of `content` parts
- [x] `frequency_penalty`
- [x] `presence_penalty`
- [x] `response_format`
- [x] `seed`
- [x] `stop`
- [x] `stream`
- [x] `temperature`
- [x] `top_p`
- [x] `max_tokens`
- [ ] `logit_bias`
- [ ] `tools`
- [ ] `tool_choice`
- [ ] `user`
#### Notes
- Setting `seed` will always set `temperature` to `0`
- `finish_reason` will always be `stop`
- `usage.prompt_tokens` will be 0 for completions where prompt evaluation is cached
## Models
Before using a model, pull it locally `ollama pull`:
```shell
ollama pull llama2
```
### Default model names
For tooling that relies on default OpenAI model names such as `gpt-3.5-turbo`, use `ollama cp` to copy an existing model name to a temporary name:
```
ollama cp llama2 gpt-3.5-turbo
```
Afterwards, this new model name can be specified the `model` field:
```shell
curl http://localhost:11434/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "Hello!"
}
]
}'
```

View File

@@ -1,60 +0,0 @@
# How to troubleshoot issues
Sometimes Ollama may not perform as expected. One of the best ways to figure out what happened is to take a look at the logs. Find the logs on Mac by running the command:
```shell
cat ~/.ollama/logs/server.log
```
On Linux systems with systemd, the logs can be found with this command:
```shell
journalctl -u ollama
```
When you run Ollama in a container, the logs go to stdout/stderr in the container:
```shell
docker logs <container-name>
```
(Use `docker ps` to find the container name)
If manually running `ollama serve` in a terminal, the logs will be on that terminal.
Join the [Discord](https://discord.gg/ollama) for help interpreting the logs.
## LLM libraries
Ollama includes multiple LLM libraries compiled for different GPUs and CPU
vector features. Ollama tries to pick the best one based on the capabilities of
your system. If this autodetection has problems, or you run into other problems
(e.g. crashes in your GPU) you can workaround this by forcing a specific LLM
library. `cpu_avx2` will perform the best, followed by `cpu_avx` an the slowest
but most compatible is `cpu`. Rosetta emulation under MacOS will work with the
`cpu` library.
In the server log, you will see a message that looks something like this (varies
from release to release):
```
Dynamic LLM libraries [rocm_v6 cpu cpu_avx cpu_avx2 cuda_v11 rocm_v5]
```
**Experimental LLM Library Override**
You can set OLLAMA_LLM_LIBRARY to any of the available LLM libraries to bypass
autodetection, so for example, if you have a CUDA card, but want to force the
CPU LLM library with AVX2 vector support, use:
```
OLLAMA_LLM_LIBRARY="cpu_avx2" ollama serve
```
You can see what features your CPU has with the following.
```
cat /proc/cpuinfo| grep flags | head -1
```
## Known issues
* N/A

View File

@@ -1,9 +0,0 @@
# Tutorials
Here is a list of ways you can use Ollama with other tools to build interesting applications.
- [Using LangChain with Ollama in JavaScript](./tutorials/langchainjs.md)
- [Using LangChain with Ollama in Python](./tutorials/langchainpy.md)
- [Running Ollama on NVIDIA Jetson Devices](./tutorials/nvidia-jetson.md)
Also be sure to check out the [examples](../examples) directory for more ways to use Ollama.

View File

@@ -1,83 +0,0 @@
# Running Ollama on Fly.io GPU Instances
Ollama runs with little to no configuration on [Fly.io GPU instances](https://fly.io/docs/gpus/gpu-quickstart/). If you don't have access to GPUs yet, you'll need to [apply for access](https://fly.io/gpu/) on the waitlist. Once you're accepted, you'll get an email with instructions on how to get started.
Create a new app with `fly apps create`:
```bash
fly apps create
```
Then create a `fly.toml` file in a new folder that looks like this:
```toml
app = "sparkling-violet-709"
primary_region = "ord"
vm.size = "a100-40gb" # see https://fly.io/docs/gpus/gpu-quickstart/ for more info
[build]
image = "ollama/ollama"
[http_service]
internal_port = 11434
force_https = false
auto_stop_machines = true
auto_start_machines = true
min_machines_running = 0
processes = ["app"]
[mounts]
source = "models"
destination = "/root/.ollama"
initial_size = "100gb"
```
Then create a [new private IPv6 address](https://fly.io/docs/reference/private-networking/#flycast-private-load-balancing) for your app:
```bash
fly ips allocate-v6 --private
```
Then deploy your app:
```bash
fly deploy
```
And finally you can access it interactively with a new Fly.io Machine:
```
fly machine run -e OLLAMA_HOST=http://your-app-name.flycast --shell ollama/ollama
```
```bash
$ ollama run openchat:7b-v3.5-fp16
>>> How do I bake chocolate chip cookies?
To bake chocolate chip cookies, follow these steps:
1. Preheat the oven to 375°F (190°C) and line a baking sheet with parchment paper or silicone baking mat.
2. In a large bowl, mix together 1 cup of unsalted butter (softened), 3/4 cup granulated sugar, and 3/4
cup packed brown sugar until light and fluffy.
3. Add 2 large eggs, one at a time, to the butter mixture, beating well after each addition. Stir in 1
teaspoon of pure vanilla extract.
4. In a separate bowl, whisk together 2 cups all-purpose flour, 1/2 teaspoon baking soda, and 1/2 teaspoon
salt. Gradually add the dry ingredients to the wet ingredients, stirring until just combined.
5. Fold in 2 cups of chocolate chips (or chunks) into the dough.
6. Drop rounded tablespoons of dough onto the prepared baking sheet, spacing them about 2 inches apart.
7. Bake for 10-12 minutes, or until the edges are golden brown. The centers should still be slightly soft.
8. Allow the cookies to cool on the baking sheet for a few minutes before transferring them to a wire rack
to cool completely.
Enjoy your homemade chocolate chip cookies!
```
When you set it up like this, it will automatically turn off when you're done using it. Then when you access it again, it will automatically turn back on. This is a great way to save money on GPU instances when you're not using them. If you want a persistent wake-on-use connection to your Ollama instance, you can set up a [connection to your Fly network using WireGuard](https://fly.io/docs/reference/private-networking/#discovering-apps-through-dns-on-a-wireguard-connection). Then you can access your Ollama instance at `http://your-app-name.flycast`.
And that's it!

View File

@@ -1,77 +0,0 @@
# Using LangChain with Ollama using JavaScript
In this tutorial, we are going to use JavaScript with LangChain and Ollama to learn about something just a touch more recent. In August 2023, there was a series of wildfires on Maui. There is no way an LLM trained before that time can know about this, since their training data would not include anything as recent as that. So we can find the [Wikipedia article about the fires](https://en.wikipedia.org/wiki/2023_Hawaii_wildfires) and ask questions about the contents.
To get started, let's just use **LangChain** to ask a simple question to a model. To do this with JavaScript, we need to install **LangChain**:
```bash
npm install langchain
```
Now we can start building out our JavaScript:
```javascript
import { Ollama } from "langchain/llms/ollama";
const ollama = new Ollama({
baseUrl: "http://localhost:11434",
model: "llama2",
});
const answer = await ollama.call(`why is the sky blue?`);
console.log(answer);
```
That will get us the same thing as if we ran `ollama run llama2 "why is the sky blue"` in the terminal. But we want to load a document from the web to ask a question against. **Cheerio** is a great library for ingesting a webpage, and **LangChain** uses it in their **CheerioWebBaseLoader**. So let's install **Cheerio** and build that part of the app.
```bash
npm install cheerio
```
```javascript
import { CheerioWebBaseLoader } from "langchain/document_loaders/web/cheerio";
const loader = new CheerioWebBaseLoader("https://en.wikipedia.org/wiki/2023_Hawaii_wildfires");
const data = await loader.load();
```
That will load the document. Although this page is smaller than the Odyssey, it is certainly bigger than the context size for most LLMs. So we are going to need to split into smaller pieces, and then select just the pieces relevant to our question. This is a great use for a vector datastore. In this example, we will use the **MemoryVectorStore** that is part of **LangChain**. But there is one more thing we need to get the content into the datastore. We have to run an embeddings process that converts the tokens in the text into a series of vectors. And for that, we are going to use **Tensorflow**. There is a lot of stuff going on in this one. First, install the **Tensorflow** components that we need.
```javascript
npm install @tensorflow/tfjs-core@3.6.0 @tensorflow/tfjs-converter@3.6.0 @tensorflow-models/universal-sentence-encoder@1.3.3 @tensorflow/tfjs-node@4.10.0
```
If you just install those components without the version numbers, it will install the latest versions, but there are conflicts within **Tensorflow**, so you need to install the compatible versions.
```javascript
import { RecursiveCharacterTextSplitter } from "langchain/text_splitter"
import { MemoryVectorStore } from "langchain/vectorstores/memory";
import "@tensorflow/tfjs-node";
import { TensorFlowEmbeddings } from "langchain/embeddings/tensorflow";
// Split the text into 500 character chunks. And overlap each chunk by 20 characters
const textSplitter = new RecursiveCharacterTextSplitter({
chunkSize: 500,
chunkOverlap: 20
});
const splitDocs = await textSplitter.splitDocuments(data);
// Then use the TensorFlow Embedding to store these chunks in the datastore
const vectorStore = await MemoryVectorStore.fromDocuments(splitDocs, new TensorFlowEmbeddings());
```
To connect the datastore to a question asked to a LLM, we need to use the concept at the heart of **LangChain**: the chain. Chains are a way to connect a number of activities together to accomplish a particular tasks. There are a number of chain types available, but for this tutorial we are using the **RetrievalQAChain**.
```javascript
import { RetrievalQAChain } from "langchain/chains";
const retriever = vectorStore.asRetriever();
const chain = RetrievalQAChain.fromLLM(ollama, retriever);
const result = await chain.call({query: "When was Hawaii's request for a major disaster declaration approved?"});
console.log(result.text)
```
So we created a retriever, which is a way to return the chunks that match a query from a datastore. And then connect the retriever and the model via a chain. Finally, we send a query to the chain, which results in an answer using our document as a source. The answer it returned was correct, August 10, 2023.
And that is a simple introduction to what you can do with **LangChain** and **Ollama.**

View File

@@ -1,82 +0,0 @@
# Using LangChain with Ollama in Python
Let's imagine we are studying the classics, such as **the Odyssey** by **Homer**. We might have a question about Neleus and his family. If you ask llama2 for that info, you may get something like:
> I apologize, but I'm a large language model, I cannot provide information on individuals or families that do not exist in reality. Neleus is not a real person or character, and therefore does not have a family or any other personal details. My apologies for any confusion. Is there anything else I can help you with?
This sounds like a typical censored response, but even llama2-uncensored gives a mediocre answer:
> Neleus was a legendary king of Pylos and the father of Nestor, one of the Argonauts. His mother was Clymene, a sea nymph, while his father was Neptune, the god of the sea.
So let's figure out how we can use **LangChain** with Ollama to ask our question to the actual document, the Odyssey by Homer, using Python.
Let's start by asking a simple question that we can get an answer to from the **Llama2** model using **Ollama**. First, we need to install the **LangChain** package:
`pip install langchain`
Then we can create a model and ask the question:
```python
from langchain.llms import Ollama
ollama = Ollama(base_url='http://localhost:11434',
model="llama2")
print(ollama("why is the sky blue"))
```
Notice that we are defining the model and the base URL for Ollama.
Now let's load a document to ask questions against. I'll load up the Odyssey by Homer, which you can find at Project Gutenberg. We will need **WebBaseLoader** which is part of **LangChain** and loads text from any webpage. On my machine, I also needed to install **bs4** to get that to work, so run `pip install bs4`.
```python
from langchain.document_loaders import WebBaseLoader
loader = WebBaseLoader("https://www.gutenberg.org/files/1727/1727-h/1727-h.htm")
data = loader.load()
```
This file is pretty big. Just the preface is 3000 tokens. Which means the full document won't fit into the context for the model. So we need to split it up into smaller pieces.
```python
from langchain.text_splitter import RecursiveCharacterTextSplitter
text_splitter=RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
all_splits = text_splitter.split_documents(data)
```
It's split up, but we have to find the relevant splits and then submit those to the model. We can do this by creating embeddings and storing them in a vector database. We can use Ollama directly to instantiate an embedding model. We will use ChromaDB in this example for a vector database. `pip install GPT4All chromadb`
```python
from langchain.embeddings import OllamaEmbeddings
from langchain.vectorstores import Chroma
oembed = OllamaEmbeddings(base_url="http://localhost:11434", model="llama2")
vectorstore = Chroma.from_documents(documents=all_splits, embedding=oembed)
```
Now let's ask a question from the document. **Who was Neleus, and who is in his family?** Neleus is a character in the Odyssey, and the answer can be found in our text.
```python
question="Who is Neleus and who is in Neleus' family?"
docs = vectorstore.similarity_search(question)
len(docs)
```
This will output the number of matches for chunks of data similar to the search.
The next thing is to send the question and the relevant parts of the docs to the model to see if we can get a good answer. But we are stitching two parts of the process together, and that is called a chain. This means we need to define a chain:
```python
from langchain.chains import RetrievalQA
qachain=RetrievalQA.from_chain_type(ollama, retriever=vectorstore.as_retriever())
qachain({"query": question})
```
The answer received from this chain was:
> Neleus is a character in Homer's "Odyssey" and is mentioned in the context of Penelope's suitors. Neleus is the father of Chloris, who is married to Neleus and bears him several children, including Nestor, Chromius, Periclymenus, and Pero. Amphinomus, the son of Nisus, is also mentioned as a suitor of Penelope and is known for his good natural disposition and agreeable conversation.
It's not a perfect answer, as it implies Neleus married his daughter when actually Chloris "was the youngest daughter to Amphion son of Iasus and king of Minyan Orchomenus, and was Queen in Pylos".
I updated the chunk_overlap for the text splitter to 20 and tried again and got a much better answer:
> Neleus is a character in Homer's epic poem "The Odyssey." He is the husband of Chloris, who is the youngest daughter of Amphion son of Iasus and king of Minyan Orchomenus. Neleus has several children with Chloris, including Nestor, Chromius, Periclymenus, and Pero.
And that is a much better answer.

View File

@@ -1,38 +0,0 @@
# Running Ollama on NVIDIA Jetson Devices
With some minor configuration, Ollama runs well on [NVIDIA Jetson Devices](https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/). The following has been tested on [JetPack 5.1.2](https://developer.nvidia.com/embedded/jetpack).
NVIDIA Jetson devices are Linux-based embedded AI computers that are purpose-built for AI applications.
Jetsons have an integrated GPU that is wired directly to the memory controller of the machine. For this reason, the `nvidia-smi` command is unrecognized, and Ollama proceeds to operate in "CPU only"
mode. This can be verified by using a monitoring tool like jtop.
In order to address this, we simply pass the path to the Jetson's pre-installed CUDA libraries into `ollama serve` (while in a tmux session). We then hardcode the num_gpu parameters into a cloned
version of our target model.
Prerequisites:
- curl
- tmux
Here are the steps:
- Install Ollama via standard Linux command (ignore the 404 error): `curl https://ollama.ai/install.sh | sh`
- Stop the Ollama service: `sudo systemctl stop ollama`
- Start Ollama serve in a tmux session called ollama_jetson and reference the CUDA libraries path: `tmux has-session -t ollama_jetson 2>/dev/null || tmux new-session -d -s ollama_jetson
'LD_LIBRARY_PATH=/usr/local/cuda/lib64 ollama serve'`
- Pull the model you want to use (e.g. mistral): `ollama pull mistral`
- Create a new Modelfile specifically for enabling GPU support on the Jetson: `touch ModelfileMistralJetson`
- In the ModelfileMistralJetson file, specify the FROM model and the num_gpu PARAMETER as shown below:
```
FROM mistral
PARAMETER num_gpu 999
```
- Create a new model from your Modelfile: `ollama create mistral-jetson -f ./ModelfileMistralJetson`
- Run the new model: `ollama run mistral-jetson`
If you run a monitoring tool like jtop you should now see that Ollama is using the Jetson's integrated GPU.
And that's it!

174
examples/.gitignore vendored
View File

@@ -1,174 +0,0 @@
node_modules
bun.lockb
.vscode
# OSX
.DS_STORE
# Models
models/
# Local Chroma db
.chroma/
db/
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
# pdm
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
#pdm.lock
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/#use-with-ide
.pdm.toml
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# PyCharm
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/

View File

@@ -1,3 +1,15 @@
# Examples
This directory contains different examples of using Ollama.
This directory contains examples that can be created and run with `ollama`.
To create a model:
```
ollama create example -f <example file>
```
To run a model:
```
ollama run example
```

View File

@@ -1,10 +0,0 @@
# Bash Shell examples
When calling `ollama`, you can pass it a file to run all the prompts in the file, one after the other:
`ollama run llama2 < sourcequestions.txt`
This concept is used in the following example.
## Compare Models
`comparemodels.sh` is a script that runs all the questions in `sourcequestions.txt` using any 4 models you choose that you have already pulled from the Ollama library or have created locally.

View File

@@ -1,64 +0,0 @@
#! /usr/bin/env bash
# Compare multiple models by running them with the same questions
NUMBEROFCHOICES=4
SELECTIONS=()
declare -a SUMS=()
# Get the list of models
CHOICES=$(ollama list | awk '{print $1}')
# Select which models to run as a comparison
echo "Select $NUMBEROFCHOICES models to compare:"
select ITEM in $CHOICES; do
if [[ -n $ITEM ]]; then
echo "You have selected $ITEM"
SELECTIONS+=("$ITEM")
((COUNT++))
if [[ $COUNT -eq $NUMBEROFCHOICES ]]; then
break
fi
else
echo "Invalid selection"
fi
done
# Loop through each of the selected models
for ITEM in "${SELECTIONS[@]}"; do
echo "--------------------------------------------------------------"
echo "Loading the model $ITEM into memory"
ollama run "$ITEM" ""
echo "--------------------------------------------------------------"
echo "Running the questions through the model $ITEM"
COMMAND_OUTPUT=$(ollama run "$ITEM" --verbose < sourcequestions.txt 2>&1| tee /dev/stderr)
# eval duration is sometimes listed in seconds and sometimes in milliseconds.
# Add up the values for each model
SUM=$(echo "$COMMAND_OUTPUT" | awk '
/eval duration:/ {
value = $3
if (index(value, "ms") > 0) {
gsub("ms", "", value)
value /= 1000
} else {
gsub("s", "", value)
}
sum += value
}
END { print sum }')
SUMS+=("All questions for $ITEM completed in $SUM seconds")
done
echo ""
echo "--------------------------------------------------------------"
echo -e "Sums of eval durations for each run:"
for val in "${SUMS[@]}"; do
echo "$val"
done
echo "--------------------------------------------------------------"
echo "Comparison complete. Now you can decide"
echo "which model is best."
echo "--------------------------------------------------------------"

View File

@@ -1,7 +0,0 @@
Why is the sky blue
What is a black hole
Explain the big bang theory like I am 5?
What is the quickest way to win a game of Monopoly with 3 others?
Why does a vacuum bottle keep my coffee hot and my milkshake cold?
What is the difference between a meteor, a meteorite, and a meteoroid?
Create an array with 5 items and print to the console. Do this in Python, C#, Typescript, and Rust.

View File

@@ -1,29 +0,0 @@
package main
import (
"bytes"
"fmt"
"io"
"log"
"net/http"
"os"
)
func main() {
body := []byte(`{"model":"mistral"}`)
resp, err := http.Post("http://localhost:11434/api/generate", "application/json", bytes.NewBuffer(body))
if err != nil {
fmt.Print(err.Error())
os.Exit(1)
}
defer resp.Body.Close()
responseData, err := io.ReadAll(resp.Body)
if err != nil {
log.Fatal(err)
}
fmt.Println(string(responseData))
}

View File

@@ -1,5 +0,0 @@
# Ollama Jupyter Notebook
This example downloads and installs Ollama in a Jupyter instance such as Google Colab. It will start the Ollama service and expose an endpoint using `ngrok` which can be used to communicate with the Ollama instance remotely.
For best results, use an instance with GPU accelerator.

View File

@@ -1,102 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "93f59dcb-c588-41b8-a792-55d88ade739c",
"metadata": {},
"outputs": [],
"source": [
"# Download and run the Ollama Linux install script\n",
"!curl https://ollama.ai/install.sh | sh\n",
"!command -v systemctl >/dev/null && sudo systemctl stop ollama"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "658c147e-c7f8-490e-910e-62b80f577dda",
"metadata": {},
"outputs": [],
"source": [
"!pip install aiohttp pyngrok\n",
"\n",
"import os\n",
"import asyncio\n",
"from aiohttp import ClientSession\n",
"\n",
"# Set LD_LIBRARY_PATH so the system NVIDIA library becomes preferred\n",
"# over the built-in library. This is particularly important for \n",
"# Google Colab which installs older drivers\n",
"os.environ.update({'LD_LIBRARY_PATH': '/usr/lib64-nvidia'})\n",
"\n",
"async def run(cmd):\n",
" '''\n",
" run is a helper function to run subcommands asynchronously.\n",
" '''\n",
" print('>>> starting', *cmd)\n",
" p = await asyncio.subprocess.create_subprocess_exec(\n",
" *cmd,\n",
" stdout=asyncio.subprocess.PIPE,\n",
" stderr=asyncio.subprocess.PIPE,\n",
" )\n",
"\n",
" async def pipe(lines):\n",
" async for line in lines:\n",
" print(line.strip().decode('utf-8'))\n",
"\n",
" await asyncio.gather(\n",
" pipe(p.stdout),\n",
" pipe(p.stderr),\n",
" )\n",
"\n",
"\n",
"await asyncio.gather(\n",
" run(['ollama', 'serve']),\n",
" run(['ngrok', 'http', '--log', 'stderr', '11434']),\n",
")"
]
},
{
"cell_type": "markdown",
"id": "e7735a55-9aad-4caf-8683-52e2163ba53b",
"metadata": {},
"source": [
"The previous cell starts two processes, `ollama` and `ngrok`. The log output will show a line like the following which describes the external address.\n",
"\n",
"```\n",
"t=2023-11-12T22:55:56+0000 lvl=info msg=\"started tunnel\" obj=tunnels name=command_line addr=http://localhost:11434 url=https://8249-34-125-179-11.ngrok.io\n",
"```\n",
"\n",
"The external address in this case is `https://8249-34-125-179-11.ngrok.io` which can be passed into `OLLAMA_HOST` to access this instance.\n",
"\n",
"```bash\n",
"export OLLAMA_HOST=https://8249-34-125-179-11.ngrok.io\n",
"ollama list\n",
"ollama run mistral\n",
"```"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,36 +0,0 @@
# Deploy Ollama to Kubernetes
## Prerequisites
- Ollama: https://ollama.ai/download
- Kubernetes cluster. This example will use Google Kubernetes Engine.
## Steps
1. Create the Ollama namespace, daemon set, and service
```bash
kubectl apply -f cpu.yaml
```
1. Port forward the Ollama service to connect and use it locally
```bash
kubectl -n ollama port-forward service/ollama 11434:80
```
1. Pull and run a model, for example `orca-mini:3b`
```bash
ollama run orca-mini:3b
```
## (Optional) Hardware Acceleration
Hardware acceleration in Kubernetes requires NVIDIA's [`k8s-device-plugin`](https://github.com/NVIDIA/k8s-device-plugin). Follow the link for more details.
Once configured, create a GPU enabled Ollama deployment.
```bash
kubectl apply -f gpu.yaml
```

View File

@@ -1,42 +0,0 @@
---
apiVersion: v1
kind: Namespace
metadata:
name: ollama
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: ollama
namespace: ollama
spec:
selector:
matchLabels:
name: ollama
template:
metadata:
labels:
name: ollama
spec:
containers:
- name: ollama
image: ollama/ollama:latest
ports:
- name: http
containerPort: 11434
protocol: TCP
---
apiVersion: v1
kind: Service
metadata:
name: ollama
namespace: ollama
spec:
type: ClusterIP
selector:
name: ollama
ports:
- port: 80
name: http
targetPort: http
protocol: TCP

View File

@@ -1,58 +0,0 @@
---
apiVersion: v1
kind: Namespace
metadata:
name: ollama
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: ollama
namespace: ollama
spec:
strategy:
type: Recreate
selector:
matchLabels:
name: ollama
template:
metadata:
labels:
name: ollama
spec:
containers:
- name: ollama
image: ollama/ollama:latest
env:
- name: PATH
value: /usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
- name: LD_LIBRARY_PATH
value: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
- name: NVIDIA_DRIVER_CAPABILITIES
value: compute,utility
ports:
- name: http
containerPort: 11434
protocol: TCP
resources:
limits:
nvidia.com/gpu: 1
tolerations:
- key: nvidia.com/gpu
operator: Exists
effect: NoSchedule
---
apiVersion: v1
kind: Service
metadata:
name: ollama
namespace: ollama
spec:
type: ClusterIP
selector:
name: ollama
ports:
- port: 80
name: http
targetPort: http
protocol: TCP

View File

@@ -1,21 +0,0 @@
# LangChain Document QA
This example provides an interface for asking questions to a PDF document.
## Setup
```
pip install -r requirements.txt
```
## Run
```
python main.py
```
A prompt will appear, where questions may be asked:
```
Query: How many locations does WeWork have?
```

View File

@@ -1,61 +0,0 @@
from langchain.document_loaders import OnlinePDFLoader
from langchain.vectorstores import Chroma
from langchain.embeddings import GPT4AllEmbeddings
from langchain import PromptTemplate
from langchain.llms import Ollama
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.chains import RetrievalQA
import sys
import os
class SuppressStdout:
def __enter__(self):
self._original_stdout = sys.stdout
self._original_stderr = sys.stderr
sys.stdout = open(os.devnull, 'w')
sys.stderr = open(os.devnull, 'w')
def __exit__(self, exc_type, exc_val, exc_tb):
sys.stdout.close()
sys.stdout = self._original_stdout
sys.stderr = self._original_stderr
# load the pdf and split it into chunks
loader = OnlinePDFLoader("https://d18rn0p25nwr6d.cloudfront.net/CIK-0001813756/975b3e9b-268e-4798-a9e4-2a9a7c92dc10.pdf")
data = loader.load()
from langchain.text_splitter import RecursiveCharacterTextSplitter
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
all_splits = text_splitter.split_documents(data)
with SuppressStdout():
vectorstore = Chroma.from_documents(documents=all_splits, embedding=GPT4AllEmbeddings())
while True:
query = input("\nQuery: ")
if query == "exit":
break
if query.strip() == "":
continue
# Prompt
template = """Use the following pieces of context to answer the question at the end.
If you don't know the answer, just say that you don't know, don't try to make up an answer.
Use three sentences maximum and keep the answer as concise as possible.
{context}
Question: {question}
Helpful Answer:"""
QA_CHAIN_PROMPT = PromptTemplate(
input_variables=["context", "question"],
template=template,
)
llm = Ollama(model="llama2:13b", callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]))
qa_chain = RetrievalQA.from_chain_type(
llm,
retriever=vectorstore.as_retriever(),
chain_type_kwargs={"prompt": QA_CHAIN_PROMPT},
)
result = qa_chain({"query": query})

View File

@@ -1,109 +0,0 @@
absl-py==1.4.0
aiohttp==3.8.5
aiosignal==1.3.1
anyio==3.7.1
astunparse==1.6.3
async-timeout==4.0.3
attrs==23.1.0
backoff==2.2.1
beautifulsoup4==4.12.2
bs4==0.0.1
cachetools==5.3.1
certifi==2023.7.22
cffi==1.15.1
chardet==5.2.0
charset-normalizer==3.2.0
Chroma==0.2.0
chroma-hnswlib==0.7.2
chromadb==0.4.5
click==8.1.6
coloredlogs==15.0.1
cryptography==41.0.3
dataclasses-json==0.5.14
fastapi==0.99.1
filetype==1.2.0
flatbuffers==23.5.26
frozenlist==1.4.0
gast==0.4.0
google-auth==2.22.0
google-auth-oauthlib==1.0.0
google-pasta==0.2.0
gpt4all==1.0.8
grpcio==1.57.0
h11==0.14.0
h5py==3.9.0
httptools==0.6.0
humanfriendly==10.0
idna==3.4
importlib-resources==6.0.1
joblib==1.3.2
keras==2.13.1
langchain==0.0.261
langsmith==0.0.21
libclang==16.0.6
lxml==4.9.3
Markdown==3.4.4
MarkupSafe==2.1.3
marshmallow==3.20.1
monotonic==1.6
mpmath==1.3.0
multidict==6.0.4
mypy-extensions==1.0.0
nltk==3.8.1
numexpr==2.8.5
numpy==1.24.3
oauthlib==3.2.2
onnxruntime==1.15.1
openapi-schema-pydantic==1.2.4
opt-einsum==3.3.0
overrides==7.4.0
packaging==23.1
pdf2image==1.16.3
pdfminer==20191125
pdfminer.six==20221105
Pillow==10.0.0
posthog==3.0.1
protobuf==4.24.0
pulsar-client==3.2.0
pyasn1==0.5.0
pyasn1-modules==0.3.0
pycparser==2.21
pycryptodome==3.18.0
pydantic==1.10.12
PyPika==0.48.9
python-dateutil==2.8.2
python-dotenv==1.0.0
python-magic==0.4.27
PyYAML==6.0.1
regex==2023.8.8
requests==2.31.0
requests-oauthlib==1.3.1
rsa==4.9
six==1.16.0
sniffio==1.3.0
soupsieve==2.4.1
SQLAlchemy==2.0.19
starlette==0.27.0
sympy==1.12
tabulate==0.9.0
tenacity==8.2.2
tensorboard==2.13.0
tensorboard-data-server==0.7.1
tensorflow==2.13.0
tensorflow-estimator==2.13.0
tensorflow-hub==0.14.0
tensorflow-macos==2.13.0
termcolor==2.3.0
tokenizers==0.13.3
tqdm==4.66.1
typing-inspect==0.9.0
typing_extensions==4.5.0
unstructured==0.9.2
urllib3==1.26.16
uvicorn==0.23.2
uvloop==0.17.0
watchfiles==0.19.0
websockets==11.0.3
Werkzeug==2.3.6
wrapt==1.15.0
yarl==1.9.2

View File

@@ -1,170 +0,0 @@
# OSX
.DS_STORE
# Models
models/
# Local Chroma db
.chroma/
db/
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
# pdm
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
#pdm.lock
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/#use-with-ide
.pdm.toml
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# PyCharm
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/

View File

@@ -1,201 +0,0 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@@ -1,91 +0,0 @@
# PrivateGPT with Llama 2 uncensored
https://github.com/jmorganca/ollama/assets/3325447/20cf8ec6-ff25-42c6-bdd8-9be594e3ce1b
> Note: this example is a slightly modified version of PrivateGPT using models such as Llama 2 Uncensored. All credit for PrivateGPT goes to Iván Martínez who is the creator of it, and you can find his GitHub repo [here](https://github.com/imartinez/privateGPT).
### Setup
Set up a virtual environment (optional):
```
python3 -m venv .venv
source .venv/bin/activate
```
Install the Python dependencies:
```shell
pip install -r requirements.txt
```
Pull the model you'd like to use:
```
ollama pull llama2-uncensored
```
### Getting WeWork's latest quarterly earnings report (10-Q)
```
mkdir source_documents
curl https://d18rn0p25nwr6d.cloudfront.net/CIK-0001813756/975b3e9b-268e-4798-a9e4-2a9a7c92dc10.pdf -o source_documents/wework.pdf
```
### Ingesting files
```shell
python ingest.py
```
Output should look like this:
```shell
Creating new vectorstore
Loading documents from source_documents
Loading new documents: 100%|██████████████████████| 1/1 [00:01<00:00, 1.73s/it]
Loaded 1 new documents from source_documents
Split into 90 chunks of text (max. 500 tokens each)
Creating embeddings. May take some minutes...
Using embedded DuckDB with persistence: data will be stored in: db
Ingestion complete! You can now run privateGPT.py to query your documents
```
### Ask questions
```shell
python privateGPT.py
Enter a query: How many locations does WeWork have?
> Answer (took 17.7 s.):
As of June 2023, WeWork has 777 locations worldwide, including 610 Consolidated Locations (as defined in the section entitled Key Performance Indicators).
```
### Try a different model:
```
ollama pull llama2:13b
MODEL=llama2:13b python privateGPT.py
```
## Adding more files
Put any and all your files into the `source_documents` directory
The supported extensions are:
- `.csv`: CSV,
- `.docx`: Word Document,
- `.doc`: Word Document,
- `.enex`: EverNote,
- `.eml`: Email,
- `.epub`: EPub,
- `.html`: HTML File,
- `.md`: Markdown,
- `.msg`: Outlook Message,
- `.odt`: Open Document Text,
- `.pdf`: Portable Document Format (PDF),
- `.pptx` : PowerPoint Document,
- `.ppt` : PowerPoint Document,
- `.txt`: Text file (UTF-8),

View File

@@ -1,11 +0,0 @@
import os
from chromadb.config import Settings
# Define the folder for storing database
PERSIST_DIRECTORY = os.environ.get('PERSIST_DIRECTORY', 'db')
# Define the Chroma settings
CHROMA_SETTINGS = Settings(
persist_directory=PERSIST_DIRECTORY,
anonymized_telemetry=False
)

View File

@@ -1,161 +0,0 @@
#!/usr/bin/env python3
import os
import glob
from typing import List
from multiprocessing import Pool
from tqdm import tqdm
from langchain.document_loaders import (
CSVLoader,
EverNoteLoader,
PyMuPDFLoader,
TextLoader,
UnstructuredEmailLoader,
UnstructuredEPubLoader,
UnstructuredHTMLLoader,
UnstructuredMarkdownLoader,
UnstructuredODTLoader,
UnstructuredPowerPointLoader,
UnstructuredWordDocumentLoader,
)
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.docstore.document import Document
from constants import CHROMA_SETTINGS
# Load environment variables
persist_directory = os.environ.get('PERSIST_DIRECTORY', 'db')
source_directory = os.environ.get('SOURCE_DIRECTORY', 'source_documents')
embeddings_model_name = os.environ.get('EMBEDDINGS_MODEL_NAME', 'all-MiniLM-L6-v2')
chunk_size = 500
chunk_overlap = 50
# Custom document loaders
class MyElmLoader(UnstructuredEmailLoader):
"""Wrapper to fallback to text/plain when default does not work"""
def load(self) -> List[Document]:
"""Wrapper adding fallback for elm without html"""
try:
try:
doc = UnstructuredEmailLoader.load(self)
except ValueError as e:
if 'text/html content not found in email' in str(e):
# Try plain text
self.unstructured_kwargs["content_source"]="text/plain"
doc = UnstructuredEmailLoader.load(self)
else:
raise
except Exception as e:
# Add file_path to exception message
raise type(e)(f"{self.file_path}: {e}") from e
return doc
# Map file extensions to document loaders and their arguments
LOADER_MAPPING = {
".csv": (CSVLoader, {}),
# ".docx": (Docx2txtLoader, {}),
".doc": (UnstructuredWordDocumentLoader, {}),
".docx": (UnstructuredWordDocumentLoader, {}),
".enex": (EverNoteLoader, {}),
".eml": (MyElmLoader, {}),
".epub": (UnstructuredEPubLoader, {}),
".html": (UnstructuredHTMLLoader, {}),
".md": (UnstructuredMarkdownLoader, {}),
".odt": (UnstructuredODTLoader, {}),
".pdf": (PyMuPDFLoader, {}),
".ppt": (UnstructuredPowerPointLoader, {}),
".pptx": (UnstructuredPowerPointLoader, {}),
".txt": (TextLoader, {"encoding": "utf8"}),
# Add more mappings for other file extensions and loaders as needed
}
def load_single_document(file_path: str) -> List[Document]:
ext = "." + file_path.rsplit(".", 1)[-1]
if ext in LOADER_MAPPING:
loader_class, loader_args = LOADER_MAPPING[ext]
loader = loader_class(file_path, **loader_args)
return loader.load()
raise ValueError(f"Unsupported file extension '{ext}'")
def load_documents(source_dir: str, ignored_files: List[str] = []) -> List[Document]:
"""
Loads all documents from the source documents directory, ignoring specified files
"""
all_files = []
for ext in LOADER_MAPPING:
all_files.extend(
glob.glob(os.path.join(source_dir, f"**/*{ext}"), recursive=True)
)
filtered_files = [file_path for file_path in all_files if file_path not in ignored_files]
with Pool(processes=os.cpu_count()) as pool:
results = []
with tqdm(total=len(filtered_files), desc='Loading new documents', ncols=80) as pbar:
for i, docs in enumerate(pool.imap_unordered(load_single_document, filtered_files)):
results.extend(docs)
pbar.update()
return results
def process_documents(ignored_files: List[str] = []) -> List[Document]:
"""
Load documents and split in chunks
"""
print(f"Loading documents from {source_directory}")
documents = load_documents(source_directory, ignored_files)
if not documents:
print("No new documents to load")
exit(0)
print(f"Loaded {len(documents)} new documents from {source_directory}")
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
texts = text_splitter.split_documents(documents)
print(f"Split into {len(texts)} chunks of text (max. {chunk_size} tokens each)")
return texts
def does_vectorstore_exist(persist_directory: str) -> bool:
"""
Checks if vectorstore exists
"""
if os.path.exists(os.path.join(persist_directory, 'index')):
if os.path.exists(os.path.join(persist_directory, 'chroma-collections.parquet')) and os.path.exists(os.path.join(persist_directory, 'chroma-embeddings.parquet')):
list_index_files = glob.glob(os.path.join(persist_directory, 'index/*.bin'))
list_index_files += glob.glob(os.path.join(persist_directory, 'index/*.pkl'))
# At least 3 documents are needed in a working vectorstore
if len(list_index_files) > 3:
return True
return False
def main():
# Create embeddings
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
if does_vectorstore_exist(persist_directory):
# Update and store locally vectorstore
print(f"Appending to existing vectorstore at {persist_directory}")
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings, client_settings=CHROMA_SETTINGS)
collection = db.get()
texts = process_documents([metadata['source'] for metadata in collection['metadatas']])
print(f"Creating embeddings. May take some minutes...")
db.add_documents(texts)
else:
# Create and store locally vectorstore
print("Creating new vectorstore")
texts = process_documents()
print(f"Creating embeddings. May take some minutes...")
db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory)
db.persist()
db = None
print(f"Ingestion complete! You can now run privateGPT.py to query your documents")
if __name__ == "__main__":
main()

File diff suppressed because it is too large Load Diff

View File

@@ -1,74 +0,0 @@
#!/usr/bin/env python3
from langchain.chains import RetrievalQA
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.vectorstores import Chroma
from langchain.llms import Ollama
import chromadb
import os
import argparse
import time
model = os.environ.get("MODEL", "llama2-uncensored")
# For embeddings model, the example uses a sentence-transformers model
# https://www.sbert.net/docs/pretrained_models.html
# "The all-mpnet-base-v2 model provides the best quality, while all-MiniLM-L6-v2 is 5 times faster and still offers good quality."
embeddings_model_name = os.environ.get("EMBEDDINGS_MODEL_NAME", "all-MiniLM-L6-v2")
persist_directory = os.environ.get("PERSIST_DIRECTORY", "db")
target_source_chunks = int(os.environ.get('TARGET_SOURCE_CHUNKS',4))
from constants import CHROMA_SETTINGS
def main():
# Parse the command line arguments
args = parse_arguments()
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
retriever = db.as_retriever(search_kwargs={"k": target_source_chunks})
# activate/deactivate the streaming StdOut callback for LLMs
callbacks = [] if args.mute_stream else [StreamingStdOutCallbackHandler()]
llm = Ollama(model=model, callbacks=callbacks)
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents= not args.hide_source)
# Interactive questions and answers
while True:
query = input("\nEnter a query: ")
if query == "exit":
break
if query.strip() == "":
continue
# Get the answer from the chain
start = time.time()
res = qa(query)
answer, docs = res['result'], [] if args.hide_source else res['source_documents']
end = time.time()
# Print the result
print("\n\n> Question:")
print(query)
print(answer)
# Print the relevant sources used for the answer
for document in docs:
print("\n> " + document.metadata["source"] + ":")
print(document.page_content)
def parse_arguments():
parser = argparse.ArgumentParser(description='privateGPT: Ask questions to your documents without an internet connection, '
'using the power of LLMs.')
parser.add_argument("--hide-source", "-S", action='store_true',
help='Use this flag to disable printing of source documents used for answers.')
parser.add_argument("--mute-stream", "-M",
action='store_true',
help='Use this flag to disable the streaming StdOut callback for LLMs.')
return parser.parse_args()
if __name__ == "__main__":
main()

View File

@@ -1,26 +0,0 @@
[tool.poetry]
name = "privategpt"
version = "0.1.0"
description = ""
authors = ["Ivan Martinez <ivanmartit@gmail.com>"]
license = "Apache Version 2.0"
readme = "README.md"
[tool.poetry.dependencies]
python = "^3.10"
langchain = "0.0.261"
gpt4all = "^1.0.3"
chromadb = "^0.3.26"
PyMuPDF = "^1.22.5"
python-dotenv = "^1.0.0"
unstructured = "^0.8.0"
extract-msg = "^0.41.5"
tabulate = "^0.9.0"
pandoc = "^2.3"
pypandoc = "^1.11"
tqdm = "^4.65.0"
sentence-transformers = "^2.2.2"
[build-system]
requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api"

View File

@@ -1,14 +0,0 @@
langchain==0.0.274
gpt4all==1.0.8
chromadb==0.4.7
llama-cpp-python==0.1.81
urllib3==2.0.4
PyMuPDF==1.23.5
python-dotenv==1.0.0
unstructured==0.10.8
extract-msg==0.45.0
tabulate==0.9.0
pandoc==2.3
pypandoc==1.11
tqdm==4.66.1
sentence_transformers==2.2.2

View File

@@ -1,23 +0,0 @@
# LangChain Web Summarization
This example summarizes the website, [https://ollama.ai/blog/run-llama2-uncensored-locally](https://ollama.ai/blog/run-llama2-uncensored-locally)
## Running the Example
1. Ensure you have the `llama2` model installed:
```bash
ollama pull llama2
```
2. Install the Python Requirements.
```bash
pip install -r requirements.txt
```
3. Run the example:
```bash
python main.py
```

View File

@@ -1,12 +0,0 @@
from langchain.llms import Ollama
from langchain.document_loaders import WebBaseLoader
from langchain.chains.summarize import load_summarize_chain
loader = WebBaseLoader("https://ollama.ai/blog/run-llama2-uncensored-locally")
docs = loader.load()
llm = Ollama(model="llama2")
chain = load_summarize_chain(llm, chain_type="stuff")
result = chain.run(docs)
print(result)

View File

@@ -1 +0,0 @@
langchain==0.0.259

View File

@@ -1,24 +0,0 @@
# LangChain
This example is a basic "hello world" of using LangChain with Ollama.
## Running the Example
1. Ensure you have the `llama2` model installed:
```bash
ollama pull llama2
```
2. Install the Python Requirements.
```bash
pip install -r requirements.txt
```
3. Run the example:
```bash
python main.py
```

View File

@@ -1,6 +0,0 @@
from langchain.llms import Ollama
input = input("What is your question?")
llm = Ollama(model="llama2")
res = llm.predict(input)
print (res)

View File

@@ -1 +0,0 @@
langchain==0.0.259

View File

@@ -1,23 +0,0 @@
# LangChain
This example is a basic "hello world" of using LangChain with Ollama using Node.js and Typescript.
## Running the Example
1. Install the prerequisites:
```bash
npm install
```
2. Ensure the `mistral` model is available:
```bash
ollama pull mistral
```
3. Run the example:
```bash
npm start
```

View File

@@ -1,25 +0,0 @@
import { Ollama } from 'langchain/llms/ollama';
import * as readline from "readline";
async function main() {
const ollama = new Ollama({
model: 'mistral'
// other parameters can be found at https://js.langchain.com/docs/api/llms_ollama/classes/Ollama
});
const rl = readline.createInterface({
input: process.stdin,
output: process.stdout,
});
rl.question("What is your question: \n", async (user_input) => {
const stream = await ollama.stream(user_input);
for await (const chunk of stream) {
process.stdout.write(chunk);
}
rl.close();
})
}
main();

View File

@@ -1,997 +0,0 @@
{
"name": "langchain-typescript-simple",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"dependencies": {
"langchain": "^0.0.165"
},
"devDependencies": {
"typescript": "^5.2.2"
}
},
"node_modules/@anthropic-ai/sdk": {
"version": "0.6.2",
"resolved": "https://registry.npmjs.org/@anthropic-ai/sdk/-/sdk-0.6.2.tgz",
"integrity": "sha512-fB9PUj9RFT+XjkL+E9Ol864ZIJi+1P8WnbHspN3N3/GK2uSzjd0cbVIKTGgf4v3N8MwaQu+UWnU7C4BG/fap/g==",
"dependencies": {
"@types/node": "^18.11.18",
"@types/node-fetch": "^2.6.4",
"abort-controller": "^3.0.0",
"agentkeepalive": "^4.2.1",
"digest-fetch": "^1.3.0",
"form-data-encoder": "1.7.2",
"formdata-node": "^4.3.2",
"node-fetch": "^2.6.7"
}
},
"node_modules/@types/node": {
"version": "18.18.4",
"resolved": "https://registry.npmjs.org/@types/node/-/node-18.18.4.tgz",
"integrity": "sha512-t3rNFBgJRugIhackit2mVcLfF6IRc0JE4oeizPQL8Zrm8n2WY/0wOdpOPhdtG0V9Q2TlW/axbF1MJ6z+Yj/kKQ=="
},
"node_modules/@types/node-fetch": {
"version": "2.6.6",
"resolved": "https://registry.npmjs.org/@types/node-fetch/-/node-fetch-2.6.6.tgz",
"integrity": "sha512-95X8guJYhfqiuVVhRFxVQcf4hW/2bCuoPwDasMf/531STFoNoWTT7YDnWdXHEZKqAGUigmpG31r2FE70LwnzJw==",
"dependencies": {
"@types/node": "*",
"form-data": "^4.0.0"
}
},
"node_modules/@types/retry": {
"version": "0.12.0",
"resolved": "https://registry.npmjs.org/@types/retry/-/retry-0.12.0.tgz",
"integrity": "sha512-wWKOClTTiizcZhXnPY4wikVAwmdYHp8q6DmC+EJUzAMsycb7HB32Kh9RN4+0gExjmPmZSAQjgURXIGATPegAvA=="
},
"node_modules/@types/uuid": {
"version": "9.0.5",
"resolved": "https://registry.npmjs.org/@types/uuid/-/uuid-9.0.5.tgz",
"integrity": "sha512-xfHdwa1FMJ082prjSJpoEI57GZITiQz10r3vEJCHa2khEFQjKy91aWKz6+zybzssCvXUwE1LQWgWVwZ4nYUvHQ=="
},
"node_modules/abort-controller": {
"version": "3.0.0",
"resolved": "https://registry.npmjs.org/abort-controller/-/abort-controller-3.0.0.tgz",
"integrity": "sha512-h8lQ8tacZYnR3vNQTgibj+tODHI5/+l06Au2Pcriv/Gmet0eaj4TwWH41sO9wnHDiQsEj19q0drzdWdeAHtweg==",
"dependencies": {
"event-target-shim": "^5.0.0"
},
"engines": {
"node": ">=6.5"
}
},
"node_modules/agentkeepalive": {
"version": "4.5.0",
"resolved": "https://registry.npmjs.org/agentkeepalive/-/agentkeepalive-4.5.0.tgz",
"integrity": "sha512-5GG/5IbQQpC9FpkRGsSvZI5QYeSCzlJHdpBQntCsuTOxhKD8lqKhrleg2Yi7yvMIf82Ycmmqln9U8V9qwEiJew==",
"dependencies": {
"humanize-ms": "^1.2.1"
},
"engines": {
"node": ">= 8.0.0"
}
},
"node_modules/ansi-styles": {
"version": "5.2.0",
"resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-5.2.0.tgz",
"integrity": "sha512-Cxwpt2SfTzTtXcfOlzGEee8O+c+MmUgGrNiBcXnuWxuFJHe6a5Hz7qwhwe5OgaSYI0IJvkLqWX1ASG+cJOkEiA==",
"engines": {
"node": ">=10"
},
"funding": {
"url": "https://github.com/chalk/ansi-styles?sponsor=1"
}
},
"node_modules/argparse": {
"version": "2.0.1",
"resolved": "https://registry.npmjs.org/argparse/-/argparse-2.0.1.tgz",
"integrity": "sha512-8+9WqebbFzpX9OR+Wa6O29asIogeRMzcGtAINdpMHHyAg10f05aSFVBbcEqGf/PXw1EjAZ+q2/bEBg3DvurK3Q=="
},
"node_modules/asynckit": {
"version": "0.4.0",
"resolved": "https://registry.npmjs.org/asynckit/-/asynckit-0.4.0.tgz",
"integrity": "sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q=="
},
"node_modules/base-64": {
"version": "0.1.0",
"resolved": "https://registry.npmjs.org/base-64/-/base-64-0.1.0.tgz",
"integrity": "sha512-Y5gU45svrR5tI2Vt/X9GPd3L0HNIKzGu202EjxrXMpuc2V2CiKgemAbUUsqYmZJvPtCXoUKjNZwBJzsNScUbXA=="
},
"node_modules/base64-js": {
"version": "1.5.1",
"resolved": "https://registry.npmjs.org/base64-js/-/base64-js-1.5.1.tgz",
"integrity": "sha512-AKpaYlHn8t4SVbOHCy+b5+KKgvR4vrsD8vbvrbiQJps7fKDTkjkDry6ji0rUJjC0kzbNePLwzxq8iypo41qeWA==",
"funding": [
{
"type": "github",
"url": "https://github.com/sponsors/feross"
},
{
"type": "patreon",
"url": "https://www.patreon.com/feross"
},
{
"type": "consulting",
"url": "https://feross.org/support"
}
]
},
"node_modules/binary-extensions": {
"version": "2.2.0",
"resolved": "https://registry.npmjs.org/binary-extensions/-/binary-extensions-2.2.0.tgz",
"integrity": "sha512-jDctJ/IVQbZoJykoeHbhXpOlNBqGNcwXJKJog42E5HDPUwQTSdjCHdihjj0DlnheQ7blbT6dHOafNAiS8ooQKA==",
"engines": {
"node": ">=8"
}
},
"node_modules/binary-search": {
"version": "1.3.6",
"resolved": "https://registry.npmjs.org/binary-search/-/binary-search-1.3.6.tgz",
"integrity": "sha512-nbE1WxOTTrUWIfsfZ4aHGYu5DOuNkbxGokjV6Z2kxfJK3uaAb8zNK1muzOeipoLHZjInT4Br88BHpzevc681xA=="
},
"node_modules/camelcase": {
"version": "6.3.0",
"resolved": "https://registry.npmjs.org/camelcase/-/camelcase-6.3.0.tgz",
"integrity": "sha512-Gmy6FhYlCY7uOElZUSbxo2UCDH8owEk996gkbrpsgGtrJLM3J7jGxl9Ic7Qwwj4ivOE5AWZWRMecDdF7hqGjFA==",
"engines": {
"node": ">=10"
},
"funding": {
"url": "https://github.com/sponsors/sindresorhus"
}
},
"node_modules/charenc": {
"version": "0.0.2",
"resolved": "https://registry.npmjs.org/charenc/-/charenc-0.0.2.tgz",
"integrity": "sha512-yrLQ/yVUFXkzg7EDQsPieE/53+0RlaWTs+wBrvW36cyilJ2SaDWfl4Yj7MtLTXleV9uEKefbAGUPv2/iWSooRA==",
"engines": {
"node": "*"
}
},
"node_modules/combined-stream": {
"version": "1.0.8",
"resolved": "https://registry.npmjs.org/combined-stream/-/combined-stream-1.0.8.tgz",
"integrity": "sha512-FQN4MRfuJeHf7cBbBMJFXhKSDq+2kAArBlmRBvcvFE5BB1HZKXtSFASDhdlz9zOYwxh8lDdnvmMOe/+5cdoEdg==",
"dependencies": {
"delayed-stream": "~1.0.0"
},
"engines": {
"node": ">= 0.8"
}
},
"node_modules/commander": {
"version": "10.0.1",
"resolved": "https://registry.npmjs.org/commander/-/commander-10.0.1.tgz",
"integrity": "sha512-y4Mg2tXshplEbSGzx7amzPwKKOCGuoSRP/CjEdwwk0FOGlUbq6lKuoyDZTNZkmxHdJtp54hdfY/JUrdL7Xfdug==",
"engines": {
"node": ">=14"
}
},
"node_modules/crypt": {
"version": "0.0.2",
"resolved": "https://registry.npmjs.org/crypt/-/crypt-0.0.2.tgz",
"integrity": "sha512-mCxBlsHFYh9C+HVpiEacem8FEBnMXgU9gy4zmNC+SXAZNB/1idgp/aulFJ4FgCi7GPEVbfyng092GqL2k2rmow==",
"engines": {
"node": "*"
}
},
"node_modules/decamelize": {
"version": "1.2.0",
"resolved": "https://registry.npmjs.org/decamelize/-/decamelize-1.2.0.tgz",
"integrity": "sha512-z2S+W9X73hAUUki+N+9Za2lBlun89zigOyGrsax+KUQ6wKW4ZoWpEYBkGhQjwAjjDCkWxhY0VKEhk8wzY7F5cA==",
"engines": {
"node": ">=0.10.0"
}
},
"node_modules/delayed-stream": {
"version": "1.0.0",
"resolved": "https://registry.npmjs.org/delayed-stream/-/delayed-stream-1.0.0.tgz",
"integrity": "sha512-ZySD7Nf91aLB0RxL4KGrKHBXl7Eds1DAmEdcoVawXnLD7SDhpNgtuII2aAkg7a7QS41jxPSZ17p4VdGnMHk3MQ==",
"engines": {
"node": ">=0.4.0"
}
},
"node_modules/digest-fetch": {
"version": "1.3.0",
"resolved": "https://registry.npmjs.org/digest-fetch/-/digest-fetch-1.3.0.tgz",
"integrity": "sha512-CGJuv6iKNM7QyZlM2T3sPAdZWd/p9zQiRNS9G+9COUCwzWFTs0Xp8NF5iePx7wtvhDykReiRRrSeNb4oMmB8lA==",
"dependencies": {
"base-64": "^0.1.0",
"md5": "^2.3.0"
}
},
"node_modules/event-target-shim": {
"version": "5.0.1",
"resolved": "https://registry.npmjs.org/event-target-shim/-/event-target-shim-5.0.1.tgz",
"integrity": "sha512-i/2XbnSz/uxRCU6+NdVJgKWDTM427+MqYbkQzD321DuCQJUqOuJKIA0IM2+W2xtYHdKOmZ4dR6fExsd4SXL+WQ==",
"engines": {
"node": ">=6"
}
},
"node_modules/eventemitter3": {
"version": "4.0.7",
"resolved": "https://registry.npmjs.org/eventemitter3/-/eventemitter3-4.0.7.tgz",
"integrity": "sha512-8guHBZCwKnFhYdHr2ysuRWErTwhoN2X8XELRlrRwpmfeY2jjuUN4taQMsULKUVo1K4DvZl+0pgfyoysHxvmvEw=="
},
"node_modules/expr-eval": {
"version": "2.0.2",
"resolved": "https://registry.npmjs.org/expr-eval/-/expr-eval-2.0.2.tgz",
"integrity": "sha512-4EMSHGOPSwAfBiibw3ndnP0AvjDWLsMvGOvWEZ2F96IGk0bIVdjQisOHxReSkE13mHcfbuCiXw+G4y0zv6N8Eg=="
},
"node_modules/flat": {
"version": "5.0.2",
"resolved": "https://registry.npmjs.org/flat/-/flat-5.0.2.tgz",
"integrity": "sha512-b6suED+5/3rTpUBdG1gupIl8MPFCAMA0QXwmljLhvCUKcUvdE4gWky9zpuGCcXHOsz4J9wPGNWq6OKpmIzz3hQ==",
"bin": {
"flat": "cli.js"
}
},
"node_modules/form-data": {
"version": "4.0.0",
"resolved": "https://registry.npmjs.org/form-data/-/form-data-4.0.0.tgz",
"integrity": "sha512-ETEklSGi5t0QMZuiXoA/Q6vcnxcLQP5vdugSpuAyi6SVGi2clPPp+xgEhuMaHC+zGgn31Kd235W35f7Hykkaww==",
"dependencies": {
"asynckit": "^0.4.0",
"combined-stream": "^1.0.8",
"mime-types": "^2.1.12"
},
"engines": {
"node": ">= 6"
}
},
"node_modules/form-data-encoder": {
"version": "1.7.2",
"resolved": "https://registry.npmjs.org/form-data-encoder/-/form-data-encoder-1.7.2.tgz",
"integrity": "sha512-qfqtYan3rxrnCk1VYaA4H+Ms9xdpPqvLZa6xmMgFvhO32x7/3J/ExcTd6qpxM0vH2GdMI+poehyBZvqfMTto8A=="
},
"node_modules/formdata-node": {
"version": "4.4.1",
"resolved": "https://registry.npmjs.org/formdata-node/-/formdata-node-4.4.1.tgz",
"integrity": "sha512-0iirZp3uVDjVGt9p49aTaqjk84TrglENEDuqfdlZQ1roC9CWlPk6Avf8EEnZNcAqPonwkG35x4n3ww/1THYAeQ==",
"dependencies": {
"node-domexception": "1.0.0",
"web-streams-polyfill": "4.0.0-beta.3"
},
"engines": {
"node": ">= 12.20"
}
},
"node_modules/humanize-ms": {
"version": "1.2.1",
"resolved": "https://registry.npmjs.org/humanize-ms/-/humanize-ms-1.2.1.tgz",
"integrity": "sha512-Fl70vYtsAFb/C06PTS9dZBo7ihau+Tu/DNCk/OyHhea07S+aeMWpFFkUaXRa8fI+ScZbEI8dfSxwY7gxZ9SAVQ==",
"dependencies": {
"ms": "^2.0.0"
}
},
"node_modules/is-any-array": {
"version": "2.0.1",
"resolved": "https://registry.npmjs.org/is-any-array/-/is-any-array-2.0.1.tgz",
"integrity": "sha512-UtilS7hLRu++wb/WBAw9bNuP1Eg04Ivn1vERJck8zJthEvXCBEBpGR/33u/xLKWEQf95803oalHrVDptcAvFdQ=="
},
"node_modules/is-buffer": {
"version": "1.1.6",
"resolved": "https://registry.npmjs.org/is-buffer/-/is-buffer-1.1.6.tgz",
"integrity": "sha512-NcdALwpXkTm5Zvvbk7owOUSvVvBKDgKP5/ewfXEznmQFfs4ZRmanOeKBTjRVjka3QFoN6XJ+9F3USqfHqTaU5w=="
},
"node_modules/js-tiktoken": {
"version": "1.0.7",
"resolved": "https://registry.npmjs.org/js-tiktoken/-/js-tiktoken-1.0.7.tgz",
"integrity": "sha512-biba8u/clw7iesNEWLOLwrNGoBP2lA+hTaBLs/D45pJdUPFXyxD6nhcDVtADChghv4GgyAiMKYMiRx7x6h7Biw==",
"dependencies": {
"base64-js": "^1.5.1"
}
},
"node_modules/js-yaml": {
"version": "4.1.0",
"resolved": "https://registry.npmjs.org/js-yaml/-/js-yaml-4.1.0.tgz",
"integrity": "sha512-wpxZs9NoxZaJESJGIZTyDEaYpl0FKSA+FB9aJiyemKhMwkxQg63h4T1KJgUGHpTqPDNRcmmYLugrRjJlBtWvRA==",
"dependencies": {
"argparse": "^2.0.1"
},
"bin": {
"js-yaml": "bin/js-yaml.js"
}
},
"node_modules/jsonpointer": {
"version": "5.0.1",
"resolved": "https://registry.npmjs.org/jsonpointer/-/jsonpointer-5.0.1.tgz",
"integrity": "sha512-p/nXbhSEcu3pZRdkW1OfJhpsVtW1gd4Wa1fnQc9YLiTfAjn0312eMKimbdIQzuZl9aa9xUGaRlP9T/CJE/ditQ==",
"engines": {
"node": ">=0.10.0"
}
},
"node_modules/langchain": {
"version": "0.0.165",
"resolved": "https://registry.npmjs.org/langchain/-/langchain-0.0.165.tgz",
"integrity": "sha512-CpbNpjwaE+9lzjdw+pZz0VgnRrFivEgr7CVp9dDaAb5JpaJAA4V2v6uQ9ZPN+TSqupTQ79HFn2sfyZVEl2EG7Q==",
"dependencies": {
"@anthropic-ai/sdk": "^0.6.2",
"ansi-styles": "^5.0.0",
"binary-extensions": "^2.2.0",
"camelcase": "6",
"decamelize": "^1.2.0",
"expr-eval": "^2.0.2",
"flat": "^5.0.2",
"js-tiktoken": "^1.0.7",
"js-yaml": "^4.1.0",
"jsonpointer": "^5.0.1",
"langchainhub": "~0.0.6",
"langsmith": "~0.0.31",
"ml-distance": "^4.0.0",
"object-hash": "^3.0.0",
"openai": "~4.4.0",
"openapi-types": "^12.1.3",
"p-queue": "^6.6.2",
"p-retry": "4",
"uuid": "^9.0.0",
"yaml": "^2.2.1",
"zod": "^3.22.3",
"zod-to-json-schema": "^3.20.4"
},
"engines": {
"node": ">=18"
},
"peerDependencies": {
"@aws-crypto/sha256-js": "^5.0.0",
"@aws-sdk/client-bedrock-runtime": "^3.422.0",
"@aws-sdk/client-dynamodb": "^3.310.0",
"@aws-sdk/client-kendra": "^3.352.0",
"@aws-sdk/client-lambda": "^3.310.0",
"@aws-sdk/client-s3": "^3.310.0",
"@aws-sdk/client-sagemaker-runtime": "^3.310.0",
"@aws-sdk/client-sfn": "^3.310.0",
"@aws-sdk/credential-provider-node": "^3.388.0",
"@azure/storage-blob": "^12.15.0",
"@clickhouse/client": "^0.0.14",
"@cloudflare/ai": "^1.0.12",
"@elastic/elasticsearch": "^8.4.0",
"@getmetal/metal-sdk": "*",
"@getzep/zep-js": "^0.7.0",
"@gomomento/sdk": "^1.23.0",
"@google-ai/generativelanguage": "^0.2.1",
"@google-cloud/storage": "^6.10.1",
"@huggingface/inference": "^1.5.1",
"@mozilla/readability": "*",
"@notionhq/client": "^2.2.10",
"@opensearch-project/opensearch": "*",
"@pinecone-database/pinecone": "^1.1.0",
"@planetscale/database": "^1.8.0",
"@qdrant/js-client-rest": "^1.2.0",
"@raycast/api": "^1.55.2",
"@smithy/eventstream-codec": "^2.0.5",
"@smithy/protocol-http": "^3.0.6",
"@smithy/signature-v4": "^2.0.10",
"@smithy/util-utf8": "^2.0.0",
"@supabase/postgrest-js": "^1.1.1",
"@supabase/supabase-js": "^2.10.0",
"@tensorflow-models/universal-sentence-encoder": "*",
"@tensorflow/tfjs-converter": "*",
"@tensorflow/tfjs-core": "*",
"@upstash/redis": "^1.20.6",
"@vercel/postgres": "^0.5.0",
"@writerai/writer-sdk": "^0.40.2",
"@xata.io/client": "^0.25.1",
"@xenova/transformers": "^2.5.4",
"@zilliz/milvus2-sdk-node": ">=2.2.7",
"apify-client": "^2.7.1",
"axios": "*",
"cassandra-driver": "^4.6.4",
"cheerio": "^1.0.0-rc.12",
"chromadb": "*",
"cohere-ai": ">=6.0.0",
"d3-dsv": "^2.0.0",
"epub2": "^3.0.1",
"faiss-node": "^0.3.0",
"fast-xml-parser": "^4.2.7",
"firebase-admin": "^11.9.0",
"google-auth-library": "^8.9.0",
"googleapis": "^126.0.1",
"hnswlib-node": "^1.4.2",
"html-to-text": "^9.0.5",
"ignore": "^5.2.0",
"ioredis": "^5.3.2",
"jsdom": "*",
"llmonitor": "*",
"lodash": "^4.17.21",
"mammoth": "*",
"mongodb": "^5.2.0",
"mysql2": "^3.3.3",
"neo4j-driver": "*",
"node-llama-cpp": "*",
"notion-to-md": "^3.1.0",
"pdf-parse": "1.1.1",
"peggy": "^3.0.2",
"pg": "^8.11.0",
"pg-copy-streams": "^6.0.5",
"pickleparser": "^0.1.0",
"playwright": "^1.32.1",
"portkey-ai": "^0.1.11",
"puppeteer": "^19.7.2",
"redis": "^4.6.4",
"replicate": "^0.18.0",
"sonix-speech-recognition": "^2.1.1",
"srt-parser-2": "^1.2.2",
"typeorm": "^0.3.12",
"typesense": "^1.5.3",
"usearch": "^1.1.1",
"vectordb": "^0.1.4",
"voy-search": "0.6.2",
"weaviate-ts-client": "^1.4.0",
"web-auth-library": "^1.0.3",
"youtube-transcript": "^1.0.6",
"youtubei.js": "^5.8.0"
},
"peerDependenciesMeta": {
"@aws-crypto/sha256-js": {
"optional": true
},
"@aws-sdk/client-bedrock-runtime": {
"optional": true
},
"@aws-sdk/client-dynamodb": {
"optional": true
},
"@aws-sdk/client-kendra": {
"optional": true
},
"@aws-sdk/client-lambda": {
"optional": true
},
"@aws-sdk/client-s3": {
"optional": true
},
"@aws-sdk/client-sagemaker-runtime": {
"optional": true
},
"@aws-sdk/client-sfn": {
"optional": true
},
"@aws-sdk/credential-provider-node": {
"optional": true
},
"@azure/storage-blob": {
"optional": true
},
"@clickhouse/client": {
"optional": true
},
"@cloudflare/ai": {
"optional": true
},
"@elastic/elasticsearch": {
"optional": true
},
"@getmetal/metal-sdk": {
"optional": true
},
"@getzep/zep-js": {
"optional": true
},
"@gomomento/sdk": {
"optional": true
},
"@google-ai/generativelanguage": {
"optional": true
},
"@google-cloud/storage": {
"optional": true
},
"@huggingface/inference": {
"optional": true
},
"@mozilla/readability": {
"optional": true
},
"@notionhq/client": {
"optional": true
},
"@opensearch-project/opensearch": {
"optional": true
},
"@pinecone-database/pinecone": {
"optional": true
},
"@planetscale/database": {
"optional": true
},
"@qdrant/js-client-rest": {
"optional": true
},
"@raycast/api": {
"optional": true
},
"@smithy/eventstream-codec": {
"optional": true
},
"@smithy/protocol-http": {
"optional": true
},
"@smithy/signature-v4": {
"optional": true
},
"@smithy/util-utf8": {
"optional": true
},
"@supabase/postgrest-js": {
"optional": true
},
"@supabase/supabase-js": {
"optional": true
},
"@tensorflow-models/universal-sentence-encoder": {
"optional": true
},
"@tensorflow/tfjs-converter": {
"optional": true
},
"@tensorflow/tfjs-core": {
"optional": true
},
"@upstash/redis": {
"optional": true
},
"@vercel/postgres": {
"optional": true
},
"@writerai/writer-sdk": {
"optional": true
},
"@xata.io/client": {
"optional": true
},
"@xenova/transformers": {
"optional": true
},
"@zilliz/milvus2-sdk-node": {
"optional": true
},
"apify-client": {
"optional": true
},
"axios": {
"optional": true
},
"cassandra-driver": {
"optional": true
},
"cheerio": {
"optional": true
},
"chromadb": {
"optional": true
},
"cohere-ai": {
"optional": true
},
"d3-dsv": {
"optional": true
},
"epub2": {
"optional": true
},
"faiss-node": {
"optional": true
},
"fast-xml-parser": {
"optional": true
},
"firebase-admin": {
"optional": true
},
"google-auth-library": {
"optional": true
},
"googleapis": {
"optional": true
},
"hnswlib-node": {
"optional": true
},
"html-to-text": {
"optional": true
},
"ignore": {
"optional": true
},
"ioredis": {
"optional": true
},
"jsdom": {
"optional": true
},
"llmonitor": {
"optional": true
},
"lodash": {
"optional": true
},
"mammoth": {
"optional": true
},
"mongodb": {
"optional": true
},
"mysql2": {
"optional": true
},
"neo4j-driver": {
"optional": true
},
"node-llama-cpp": {
"optional": true
},
"notion-to-md": {
"optional": true
},
"pdf-parse": {
"optional": true
},
"peggy": {
"optional": true
},
"pg": {
"optional": true
},
"pg-copy-streams": {
"optional": true
},
"pickleparser": {
"optional": true
},
"playwright": {
"optional": true
},
"portkey-ai": {
"optional": true
},
"puppeteer": {
"optional": true
},
"redis": {
"optional": true
},
"replicate": {
"optional": true
},
"sonix-speech-recognition": {
"optional": true
},
"srt-parser-2": {
"optional": true
},
"typeorm": {
"optional": true
},
"typesense": {
"optional": true
},
"usearch": {
"optional": true
},
"vectordb": {
"optional": true
},
"voy-search": {
"optional": true
},
"weaviate-ts-client": {
"optional": true
},
"web-auth-library": {
"optional": true
},
"youtube-transcript": {
"optional": true
},
"youtubei.js": {
"optional": true
}
}
},
"node_modules/langchainhub": {
"version": "0.0.6",
"resolved": "https://registry.npmjs.org/langchainhub/-/langchainhub-0.0.6.tgz",
"integrity": "sha512-SW6105T+YP1cTe0yMf//7kyshCgvCTyFBMTgH2H3s9rTAR4e+78DA/BBrUL/Mt4Q5eMWui7iGuAYb3pgGsdQ9w=="
},
"node_modules/langsmith": {
"version": "0.0.42",
"resolved": "https://registry.npmjs.org/langsmith/-/langsmith-0.0.42.tgz",
"integrity": "sha512-sFuN+e7E+pPBIRaRgFqZh/BRBWNHTZNAwi6uj4kydQawooCZYoJmM5snOkiQrhVSvAhgu6xFhLvmfvkPcKzD7w==",
"dependencies": {
"@types/uuid": "^9.0.1",
"commander": "^10.0.1",
"p-queue": "^6.6.2",
"p-retry": "4",
"uuid": "^9.0.0"
},
"bin": {
"langsmith": "dist/cli/main.cjs"
}
},
"node_modules/md5": {
"version": "2.3.0",
"resolved": "https://registry.npmjs.org/md5/-/md5-2.3.0.tgz",
"integrity": "sha512-T1GITYmFaKuO91vxyoQMFETst+O71VUPEU3ze5GNzDm0OWdP8v1ziTaAEPUr/3kLsY3Sftgz242A1SetQiDL7g==",
"dependencies": {
"charenc": "0.0.2",
"crypt": "0.0.2",
"is-buffer": "~1.1.6"
}
},
"node_modules/mime-db": {
"version": "1.52.0",
"resolved": "https://registry.npmjs.org/mime-db/-/mime-db-1.52.0.tgz",
"integrity": "sha512-sPU4uV7dYlvtWJxwwxHD0PuihVNiE7TyAbQ5SWxDCB9mUYvOgroQOwYQQOKPJ8CIbE+1ETVlOoK1UC2nU3gYvg==",
"engines": {
"node": ">= 0.6"
}
},
"node_modules/mime-types": {
"version": "2.1.35",
"resolved": "https://registry.npmjs.org/mime-types/-/mime-types-2.1.35.tgz",
"integrity": "sha512-ZDY+bPm5zTTF+YpCrAU9nK0UgICYPT0QtT1NZWFv4s++TNkcgVaT0g6+4R2uI4MjQjzysHB1zxuWL50hzaeXiw==",
"dependencies": {
"mime-db": "1.52.0"
},
"engines": {
"node": ">= 0.6"
}
},
"node_modules/ml-array-mean": {
"version": "1.1.6",
"resolved": "https://registry.npmjs.org/ml-array-mean/-/ml-array-mean-1.1.6.tgz",
"integrity": "sha512-MIdf7Zc8HznwIisyiJGRH9tRigg3Yf4FldW8DxKxpCCv/g5CafTw0RRu51nojVEOXuCQC7DRVVu5c7XXO/5joQ==",
"dependencies": {
"ml-array-sum": "^1.1.6"
}
},
"node_modules/ml-array-sum": {
"version": "1.1.6",
"resolved": "https://registry.npmjs.org/ml-array-sum/-/ml-array-sum-1.1.6.tgz",
"integrity": "sha512-29mAh2GwH7ZmiRnup4UyibQZB9+ZLyMShvt4cH4eTK+cL2oEMIZFnSyB3SS8MlsTh6q/w/yh48KmqLxmovN4Dw==",
"dependencies": {
"is-any-array": "^2.0.0"
}
},
"node_modules/ml-distance": {
"version": "4.0.1",
"resolved": "https://registry.npmjs.org/ml-distance/-/ml-distance-4.0.1.tgz",
"integrity": "sha512-feZ5ziXs01zhyFUUUeZV5hwc0f5JW0Sh0ckU1koZe/wdVkJdGxcP06KNQuF0WBTj8FttQUzcvQcpcrOp/XrlEw==",
"dependencies": {
"ml-array-mean": "^1.1.6",
"ml-distance-euclidean": "^2.0.0",
"ml-tree-similarity": "^1.0.0"
}
},
"node_modules/ml-distance-euclidean": {
"version": "2.0.0",
"resolved": "https://registry.npmjs.org/ml-distance-euclidean/-/ml-distance-euclidean-2.0.0.tgz",
"integrity": "sha512-yC9/2o8QF0A3m/0IXqCTXCzz2pNEzvmcE/9HFKOZGnTjatvBbsn4lWYJkxENkA4Ug2fnYl7PXQxnPi21sgMy/Q=="
},
"node_modules/ml-tree-similarity": {
"version": "1.0.0",
"resolved": "https://registry.npmjs.org/ml-tree-similarity/-/ml-tree-similarity-1.0.0.tgz",
"integrity": "sha512-XJUyYqjSuUQkNQHMscr6tcjldsOoAekxADTplt40QKfwW6nd++1wHWV9AArl0Zvw/TIHgNaZZNvr8QGvE8wLRg==",
"dependencies": {
"binary-search": "^1.3.5",
"num-sort": "^2.0.0"
}
},
"node_modules/ms": {
"version": "2.1.3",
"resolved": "https://registry.npmjs.org/ms/-/ms-2.1.3.tgz",
"integrity": "sha512-6FlzubTLZG3J2a/NVCAleEhjzq5oxgHyaCU9yYXvcLsvoVaHJq/s5xXI6/XXP6tz7R9xAOtHnSO/tXtF3WRTlA=="
},
"node_modules/node-domexception": {
"version": "1.0.0",
"resolved": "https://registry.npmjs.org/node-domexception/-/node-domexception-1.0.0.tgz",
"integrity": "sha512-/jKZoMpw0F8GRwl4/eLROPA3cfcXtLApP0QzLmUT/HuPCZWyB7IY9ZrMeKw2O/nFIqPQB3PVM9aYm0F312AXDQ==",
"funding": [
{
"type": "github",
"url": "https://github.com/sponsors/jimmywarting"
},
{
"type": "github",
"url": "https://paypal.me/jimmywarting"
}
],
"engines": {
"node": ">=10.5.0"
}
},
"node_modules/node-fetch": {
"version": "2.7.0",
"resolved": "https://registry.npmjs.org/node-fetch/-/node-fetch-2.7.0.tgz",
"integrity": "sha512-c4FRfUm/dbcWZ7U+1Wq0AwCyFL+3nt2bEw05wfxSz+DWpWsitgmSgYmy2dQdWyKC1694ELPqMs/YzUSNozLt8A==",
"dependencies": {
"whatwg-url": "^5.0.0"
},
"engines": {
"node": "4.x || >=6.0.0"
},
"peerDependencies": {
"encoding": "^0.1.0"
},
"peerDependenciesMeta": {
"encoding": {
"optional": true
}
}
},
"node_modules/num-sort": {
"version": "2.1.0",
"resolved": "https://registry.npmjs.org/num-sort/-/num-sort-2.1.0.tgz",
"integrity": "sha512-1MQz1Ed8z2yckoBeSfkQHHO9K1yDRxxtotKSJ9yvcTUUxSvfvzEq5GwBrjjHEpMlq/k5gvXdmJ1SbYxWtpNoVg==",
"engines": {
"node": ">=8"
},
"funding": {
"url": "https://github.com/sponsors/sindresorhus"
}
},
"node_modules/object-hash": {
"version": "3.0.0",
"resolved": "https://registry.npmjs.org/object-hash/-/object-hash-3.0.0.tgz",
"integrity": "sha512-RSn9F68PjH9HqtltsSnqYC1XXoWe9Bju5+213R98cNGttag9q9yAOTzdbsqvIa7aNm5WffBZFpWYr2aWrklWAw==",
"engines": {
"node": ">= 6"
}
},
"node_modules/openai": {
"version": "4.4.0",
"resolved": "https://registry.npmjs.org/openai/-/openai-4.4.0.tgz",
"integrity": "sha512-JN0t628Kh95T0IrXl0HdBqnlJg+4Vq0Bnh55tio+dfCnyzHvMLiWyCM9m726MAJD2YkDU4/8RQB6rNbEq9ct2w==",
"dependencies": {
"@types/node": "^18.11.18",
"@types/node-fetch": "^2.6.4",
"abort-controller": "^3.0.0",
"agentkeepalive": "^4.2.1",
"digest-fetch": "^1.3.0",
"form-data-encoder": "1.7.2",
"formdata-node": "^4.3.2",
"node-fetch": "^2.6.7"
},
"bin": {
"openai": "bin/cli"
}
},
"node_modules/openapi-types": {
"version": "12.1.3",
"resolved": "https://registry.npmjs.org/openapi-types/-/openapi-types-12.1.3.tgz",
"integrity": "sha512-N4YtSYJqghVu4iek2ZUvcN/0aqH1kRDuNqzcycDxhOUpg7GdvLa2F3DgS6yBNhInhv2r/6I0Flkn7CqL8+nIcw=="
},
"node_modules/p-finally": {
"version": "1.0.0",
"resolved": "https://registry.npmjs.org/p-finally/-/p-finally-1.0.0.tgz",
"integrity": "sha512-LICb2p9CB7FS+0eR1oqWnHhp0FljGLZCWBE9aix0Uye9W8LTQPwMTYVGWQWIw9RdQiDg4+epXQODwIYJtSJaow==",
"engines": {
"node": ">=4"
}
},
"node_modules/p-queue": {
"version": "6.6.2",
"resolved": "https://registry.npmjs.org/p-queue/-/p-queue-6.6.2.tgz",
"integrity": "sha512-RwFpb72c/BhQLEXIZ5K2e+AhgNVmIejGlTgiB9MzZ0e93GRvqZ7uSi0dvRF7/XIXDeNkra2fNHBxTyPDGySpjQ==",
"dependencies": {
"eventemitter3": "^4.0.4",
"p-timeout": "^3.2.0"
},
"engines": {
"node": ">=8"
},
"funding": {
"url": "https://github.com/sponsors/sindresorhus"
}
},
"node_modules/p-retry": {
"version": "4.6.2",
"resolved": "https://registry.npmjs.org/p-retry/-/p-retry-4.6.2.tgz",
"integrity": "sha512-312Id396EbJdvRONlngUx0NydfrIQ5lsYu0znKVUzVvArzEIt08V1qhtyESbGVd1FGX7UKtiFp5uwKZdM8wIuQ==",
"dependencies": {
"@types/retry": "0.12.0",
"retry": "^0.13.1"
},
"engines": {
"node": ">=8"
}
},
"node_modules/p-timeout": {
"version": "3.2.0",
"resolved": "https://registry.npmjs.org/p-timeout/-/p-timeout-3.2.0.tgz",
"integrity": "sha512-rhIwUycgwwKcP9yTOOFK/AKsAopjjCakVqLHePO3CC6Mir1Z99xT+R63jZxAT5lFZLa2inS5h+ZS2GvR99/FBg==",
"dependencies": {
"p-finally": "^1.0.0"
},
"engines": {
"node": ">=8"
}
},
"node_modules/retry": {
"version": "0.13.1",
"resolved": "https://registry.npmjs.org/retry/-/retry-0.13.1.tgz",
"integrity": "sha512-XQBQ3I8W1Cge0Seh+6gjj03LbmRFWuoszgK9ooCpwYIrhhoO80pfq4cUkU5DkknwfOfFteRwlZ56PYOGYyFWdg==",
"engines": {
"node": ">= 4"
}
},
"node_modules/tr46": {
"version": "0.0.3",
"resolved": "https://registry.npmjs.org/tr46/-/tr46-0.0.3.tgz",
"integrity": "sha512-N3WMsuqV66lT30CrXNbEjx4GEwlow3v6rr4mCcv6prnfwhS01rkgyFdjPNBYd9br7LpXV1+Emh01fHnq2Gdgrw=="
},
"node_modules/typescript": {
"version": "5.2.2",
"resolved": "https://registry.npmjs.org/typescript/-/typescript-5.2.2.tgz",
"integrity": "sha512-mI4WrpHsbCIcwT9cF4FZvr80QUeKvsUsUvKDoR+X/7XHQH98xYD8YHZg7ANtz2GtZt/CBq2QJ0thkGJMHfqc1w==",
"dev": true,
"bin": {
"tsc": "bin/tsc",
"tsserver": "bin/tsserver"
},
"engines": {
"node": ">=14.17"
}
},
"node_modules/uuid": {
"version": "9.0.1",
"resolved": "https://registry.npmjs.org/uuid/-/uuid-9.0.1.tgz",
"integrity": "sha512-b+1eJOlsR9K8HJpow9Ok3fiWOWSIcIzXodvv0rQjVoOVNpWMpxf1wZNpt4y9h10odCNrqnYp1OBzRktckBe3sA==",
"funding": [
"https://github.com/sponsors/broofa",
"https://github.com/sponsors/ctavan"
],
"bin": {
"uuid": "dist/bin/uuid"
}
},
"node_modules/web-streams-polyfill": {
"version": "4.0.0-beta.3",
"resolved": "https://registry.npmjs.org/web-streams-polyfill/-/web-streams-polyfill-4.0.0-beta.3.tgz",
"integrity": "sha512-QW95TCTaHmsYfHDybGMwO5IJIM93I/6vTRk+daHTWFPhwh+C8Cg7j7XyKrwrj8Ib6vYXe0ocYNrmzY4xAAN6ug==",
"engines": {
"node": ">= 14"
}
},
"node_modules/webidl-conversions": {
"version": "3.0.1",
"resolved": "https://registry.npmjs.org/webidl-conversions/-/webidl-conversions-3.0.1.tgz",
"integrity": "sha512-2JAn3z8AR6rjK8Sm8orRC0h/bcl/DqL7tRPdGZ4I1CjdF+EaMLmYxBHyXuKL849eucPFhvBoxMsflfOb8kxaeQ=="
},
"node_modules/whatwg-url": {
"version": "5.0.0",
"resolved": "https://registry.npmjs.org/whatwg-url/-/whatwg-url-5.0.0.tgz",
"integrity": "sha512-saE57nupxk6v3HY35+jzBwYa0rKSy0XR8JSxZPwgLr7ys0IBzhGviA1/TUGJLmSVqs8pb9AnvICXEuOHLprYTw==",
"dependencies": {
"tr46": "~0.0.3",
"webidl-conversions": "^3.0.0"
}
},
"node_modules/yaml": {
"version": "2.3.2",
"resolved": "https://registry.npmjs.org/yaml/-/yaml-2.3.2.tgz",
"integrity": "sha512-N/lyzTPaJasoDmfV7YTrYCI0G/3ivm/9wdG0aHuheKowWQwGTsK0Eoiw6utmzAnI6pkJa0DUVygvp3spqqEKXg==",
"engines": {
"node": ">= 14"
}
},
"node_modules/zod": {
"version": "3.22.4",
"resolved": "https://registry.npmjs.org/zod/-/zod-3.22.4.tgz",
"integrity": "sha512-iC+8Io04lddc+mVqQ9AZ7OQ2MrUKGN+oIQyq1vemgt46jwCwLfhq7/pwnBnNXXXZb8VTVLKwp9EDkx+ryxIWmg==",
"funding": {
"url": "https://github.com/sponsors/colinhacks"
}
},
"node_modules/zod-to-json-schema": {
"version": "3.21.4",
"resolved": "https://registry.npmjs.org/zod-to-json-schema/-/zod-to-json-schema-3.21.4.tgz",
"integrity": "sha512-fjUZh4nQ1s6HMccgIeE0VP4QG/YRGPmyjO9sAh890aQKPEk3nqbfUXhMFaC+Dr5KvYBm8BCyvfpZf2jY9aGSsw==",
"peerDependencies": {
"zod": "^3.21.4"
}
}
}
}

View File

@@ -1,13 +0,0 @@
{
"scripts": {
"start": "tsx main.ts"
},
"devDependencies": {
"tsx": "^4.6.2",
"typescript": "^5.3.3"
},
"dependencies": {
"langchain": "^0.0.165",
"readline": "^1.3.0"
}
}

7
examples/mario Normal file
View File

@@ -0,0 +1,7 @@
FROM llama2
PARAMETER temperature 1
PROMPT """
System: You are Mario from super mario bros, acting as an assistant.
User: {{ .Prompt }}
Assistant:
"""

View File

@@ -0,0 +1,14 @@
# Modelfile for creating a Midjourney prompts from a topic
# Run `ollama create mj -f pathtofile` and then `ollama run mj` and enter a topic
FROM library/nous-hermes:latest
PROMPT """
{{- if not .Context }}
### System:
Embrace your role as an AI-powered creative assistant, employing Midjourney to manifest compelling AI-generated art. I will outline a specific image concept, and in response, you must produce an exhaustive, multifaceted prompt for Midjourney, ensuring every detail of the original concept is represented in your instructions. Midjourney doesn't do well with text, so after the prompt, give me instructions that I can use to create the titles in a image editor.
{{- end }}
### Instruction:
{{ .Prompt }}
### Response:
"""

View File

@@ -1,5 +0,0 @@
FROM llama2
PARAMETER temperature 1
SYSTEM """
You are Mario from super mario bros, acting as an assistant.
"""

Binary file not shown.

Before

Width:  |  Height:  |  Size: 446 KiB

View File

@@ -1,43 +0,0 @@
<img src="logo.png" alt="image of Italian plumber" height="200"/>
# Example character: Mario
This example shows how to create a basic character using Llama2 as the base model.
To run this example:
1. Download the Modelfile
2. `ollama pull llama2` to get the base model used in the model file.
3. `ollama create NAME -f ./Modelfile`
4. `ollama run NAME`
Ask it some questions like "Who are you?" or "Is Peach in trouble again?"
## Editing this file
What the model file looks like:
```
FROM llama2
PARAMETER temperature 1
SYSTEM """
You are Mario from Super Mario Bros, acting as an assistant.
"""
```
What if you want to change its behaviour?
- Try changing the prompt
- Try changing the parameters [Docs](https://github.com/jmorganca/ollama/blob/main/docs/modelfile.md)
- Try changing the model (e.g. An uncensored model by `FROM wizard-vicuna` this is the wizard-vicuna uncensored model )
Once the changes are made,
1. `ollama create NAME -f ./Modelfile`
2. `ollama run NAME`
3. Iterate until you are happy with the results.
Notes:
- This example is for research purposes only. There is no affiliation with any entity.
- When using an uncensored model, please be aware that it may generate offensive content.

View File

@@ -1,23 +0,0 @@
# Example Modelfile - Tweetwriter
This simple examples shows what you can do without any code, simply relying on a Modelfile. The file has two instructions:
1. FROM - The From instructions defines the parent model to use for this one. If you choose a model from the library, you can enter just the model name. For all other models, you need to specify the namespace as well. You could also use a local file. Just include the relative path to the converted, quantized model weights file. To learn more about creating that file, see the `import.md` file in the docs folder of this repository.
2. SYSTEM - This defines the system prompt for the model and overrides the system prompt from the parent model.
## Running the Example
1. Create the model:
```bash
ollama create tweetwriter
```
2. Enter a topic to generate a tweet about.
3. Show the Modelfile in the REPL.
```bash
/show modelfile
```
Notice that the FROM and SYSTEM match what was in the file. But there is also a TEMPLATE and PARAMETER. These are inherited from the parent model.

View File

@@ -1,20 +0,0 @@
FROM mistral
SYSTEM """
You are an experienced Devops engineer focused on docker. When given specifications for a particular need or application you know the best way to host that within a docker container. For instance if someone tells you they want an nginx server to host files located at /web you will answer as follows
---start
FROM nginx:alpine
COPY /myweb /usr/share/nginx/html
EXPOSE 80
---end
Notice that the answer you should give is just the contents of the dockerfile with no explanation and there are three dashes and the word start at the beginning and 3 dashes and the word end. The full output can be piped into a file and run as is. Here is another example. The user will ask to launch a Postgres server with a password of abc123. And the response should be
---start
FROM postgres:latest
ENV POSTGRES_PASSWORD=abc123
EXPOSE 5432
---end
Again it's just the contents of the dockerfile and nothing else.
"""

View File

@@ -1,31 +0,0 @@
# DockerIt
DockerIt is a tool to help you build and run your application in a Docker container. It consists of a model that defines the system prompt and model weights to use, along with a python script to then build the container and run the image automatically.
## Running the Example
1. Ensure you have the `mattw/dockerit` model installed:
```bash
ollama pull mattw/dockerit
```
2. Make sure Docker is running on your machine.
3. Install the Python Requirements.
```bash
pip install -r requirements.txt
```
4. Run the example:
```bash
python dockerit.py "simple postgres server with admin password set to 123"
```
5. Enter the name you would like to use for your container image.
## Caveats
This is a simple example. It's assuming the Dockerfile content generated is going to work. In many cases, even with simple web servers, it fails when trying to copy files that don't exist. It's simply an example of what you could possibly do.

View File

@@ -1,17 +0,0 @@
import requests, json, docker, io, sys
inputDescription = " ".join(sys.argv[1:])
imageName = input("Enter the name of the image: ")
client = docker.from_env()
s = requests.Session()
output=""
with s.post('http://localhost:11434/api/generate', json={'model': 'dockerit', 'prompt': inputDescription}, stream=True) as r:
for line in r.iter_lines():
if line:
j = json.loads(line)
if "response" in j:
output = output +j["response"]
output = output[output.find("---start")+9:output.find("---end")-1]
f = io.BytesIO(bytes(output, 'utf-8'))
client.images.build(fileobj=f, tag=imageName)
container = client.containers.run(imageName, detach=True)
print("Container named", container.name, " started with id: ",container.id)

View File

@@ -1 +0,0 @@
docker

View File

@@ -1,31 +0,0 @@
import requests
import json
import random
model = "llama2"
template = {
"firstName": "",
"lastName": "",
"address": {
"street": "",
"city": "",
"state": "",
"zipCode": ""
},
"phoneNumber": ""
}
prompt = f"generate one realistically believable sample data set of a persons first name, last name, address in the US, and phone number. \nUse the following template: {json.dumps(template)}."
data = {
"prompt": prompt,
"model": model,
"format": "json",
"stream": False,
"options": {"temperature": 2.5, "top_p": 0.99, "top_k": 100},
}
print(f"Generating a sample user")
response = requests.post("http://localhost:11434/api/generate", json=data, stream=False)
json_data = json.loads(response.text)
print(json.dumps(json.loads(json_data["response"]), indent=2))

View File

@@ -1,31 +0,0 @@
import requests
import json
import random
countries = [
"United States",
"United Kingdom",
"the Netherlands",
"Germany",
"Mexico",
"Canada",
"France",
]
country = random.choice(countries)
model = "llama2"
prompt = f"generate one realistically believable sample data set of a persons first name, last name, address in {country}, and phone number. Do not use common names. Respond using JSON. Key names should have no backslashes, values should use plain ascii with no special characters."
data = {
"prompt": prompt,
"model": model,
"format": "json",
"stream": False,
"options": {"temperature": 2.5, "top_p": 0.99, "top_k": 100},
}
print(f"Generating a sample user in {country}")
response = requests.post("http://localhost:11434/api/generate", json=data, stream=False)
json_data = json.loads(response.text)
print(json.dumps(json.loads(json_data["response"]), indent=2))

View File

@@ -1,60 +0,0 @@
# JSON Output Example
![llmjson 2023-11-10 15_31_31](https://github.com/jmorganca/ollama/assets/633681/e599d986-9b4a-4118-81a4-4cfe7e22da25)
There are two python scripts in this example. `randomaddresses.py` generates random addresses from different countries. `predefinedschema.py` sets a template for the model to fill in.
## Running the Example
1. Ensure you have the `llama2` model installed:
```bash
ollama pull llama2
```
2. Install the Python Requirements.
```bash
pip install -r requirements.txt
```
3. Run the Random Addresses example:
```bash
python randomaddresses.py
```
4. Run the Predefined Schema example:
```bash
python predefinedschema.py
```
## Review the Code
Both programs are basically the same, with a different prompt for each, demonstrating two different ideas. The key part of getting JSON out of a model is to state in the prompt or system prompt that it should respond using JSON, and specifying the `format` as `json` in the data body.
```python
prompt = f"generate one realistically believable sample data set of a persons first name, last name, address in {country}, and phone number. Do not use common names. Respond using JSON. Key names should with no backslashes, values should use plain ascii with no special characters."
data = {
"prompt": prompt,
"model": model,
"format": "json",
"stream": False,
"options": {"temperature": 2.5, "top_p": 0.99, "top_k": 100},
}
```
When running `randomaddresses.py` you will see that the schema changes and adapts to the chosen country.
In `predefinedschema.py`, a template has been specified in the prompt as well. It's been defined as JSON and then dumped into the prompt string to make it easier to work with.
Both examples turn streaming off so that we end up with the completed JSON all at once. We need to convert the `response.text` to JSON so that when we output it as a string we can set the indent spacing to make the output easy to read.
```python
response = requests.post("http://localhost:11434/api/generate", json=data, stream=False)
json_data = json.loads(response.text)
print(json.dumps(json.loads(json_data["response"]), indent=2))
```

View File

@@ -1 +0,0 @@
Requests==2.31.0

View File

@@ -1,8 +0,0 @@
FROM codebooga:latest
SYSTEM """
You are a log file analyzer. You will receive a set of lines from a log file for some software application, find the errors and other interesting aspects of the logs, and explain them so a new user can understand what they mean. If there are any steps they can do to resolve them, list the steps in your answer.
"""
PARAMETER TEMPERATURE 0.3

View File

@@ -1,41 +0,0 @@
import sys
import re
import requests
import json
# prelines and postlines represent the number of lines of context to include in the output around the error
prelines = 10
postlines = 10
def find_errors_in_log_file():
if len(sys.argv) < 2:
print("Usage: python loganalysis.py <filename>")
return
log_file_path = sys.argv[1]
with open(log_file_path, 'r') as log_file:
log_lines = log_file.readlines()
error_logs = []
for i, line in enumerate(log_lines):
if "error" in line.lower():
start_index = max(0, i - prelines)
end_index = min(len(log_lines), i + postlines + 1)
error_logs.extend(log_lines[start_index:end_index])
return error_logs
error_logs = find_errors_in_log_file()
data = {
"prompt": "\n".join(error_logs),
"model": "mattw/loganalyzer"
}
response = requests.post("http://localhost:11434/api/generate", json=data, stream=True)
for line in response.iter_lines():
if line:
json_data = json.loads(line)
if json_data['done'] == False:
print(json_data['response'], end='', flush=True)

View File

@@ -1,32 +0,0 @@
2023-11-10 07:17:40 /docker-entrypoint.sh: /docker-entrypoint.d/ is not empty, will attempt to perform configuration
2023-11-10 07:17:40 /docker-entrypoint.sh: Looking for shell scripts in /docker-entrypoint.d/
2023-11-10 07:17:40 /docker-entrypoint.sh: Launching /docker-entrypoint.d/10-listen-on-ipv6-by-default.sh
2023-11-10 07:17:40 10-listen-on-ipv6-by-default.sh: info: Getting the checksum of /etc/nginx/conf.d/default.conf
2023-11-10 07:17:40 10-listen-on-ipv6-by-default.sh: info: Enabled listen on IPv6 in /etc/nginx/conf.d/default.conf
2023-11-10 07:17:40 /docker-entrypoint.sh: Sourcing /docker-entrypoint.d/15-local-resolvers.envsh
2023-11-10 07:17:40 /docker-entrypoint.sh: Launching /docker-entrypoint.d/20-envsubst-on-templates.sh
2023-11-10 07:17:40 /docker-entrypoint.sh: Launching /docker-entrypoint.d/30-tune-worker-processes.sh
2023-11-10 07:17:40 /docker-entrypoint.sh: Configuration complete; ready for start up
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: using the "epoll" event method
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: nginx/1.25.3
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: built by gcc 12.2.0 (Debian 12.2.0-14)
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: OS: Linux 6.4.16-linuxkit
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: getrlimit(RLIMIT_NOFILE): 1048576:1048576
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: start worker processes
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: start worker process 29
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: start worker process 30
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: start worker process 31
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: start worker process 32
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: start worker process 33
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: start worker process 34
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: start worker process 35
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: start worker process 36
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: start worker process 37
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: start worker process 38
2023-11-10 07:17:44 192.168.65.1 - - [10/Nov/2023:13:17:43 +0000] "GET / HTTP/1.1" 200 615 "-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36" "-"
2023-11-10 07:17:44 2023/11/10 13:17:44 [error] 29#29: *1 open() "/usr/share/nginx/html/favicon.ico" failed (2: No such file or directory), client: 192.168.65.1, server: localhost, request: "GET /favicon.ico HTTP/1.1", host: "localhost:8080", referrer: "http://localhost:8080/"
2023-11-10 07:17:44 192.168.65.1 - - [10/Nov/2023:13:17:44 +0000] "GET /favicon.ico HTTP/1.1" 404 555 "http://localhost:8080/" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36" "-"
2023-11-10 07:17:50 2023/11/10 13:17:50 [error] 29#29: *1 open() "/usr/share/nginx/html/ahstat" failed (2: No such file or directory), client: 192.168.65.1, server: localhost, request: "GET /ahstat HTTP/1.1", host: "localhost:8080"
2023-11-10 07:17:50 192.168.65.1 - - [10/Nov/2023:13:17:50 +0000] "GET /ahstat HTTP/1.1" 404 555 "-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36" "-"
2023-11-10 07:18:53 2023/11/10 13:18:53 [error] 29#29: *1 open() "/usr/share/nginx/html/ahstat" failed (2: No such file or directory), client: 192.168.65.1, server: localhost, request: "GET /ahstat HTTP/1.1", host: "localhost:8080"
2023-11-10 07:18:53 192.168.65.1 - - [10/Nov/2023:13:18:53 +0000] "GET /ahstat HTTP/1.1" 404 555 "-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36" "-"

View File

@@ -1,70 +0,0 @@
# Log Analysis example
![loganalyzer 2023-11-10 08_53_29](https://github.com/jmorganca/ollama/assets/633681/ad30f1fc-321f-4953-8914-e30e24db9921)
This example shows one possible way to create a log file analyzer. It uses the model **mattw/loganalyzer** which is based on **codebooga**, a 34b parameter model.
To use it, run:
`python loganalysis.py <logfile>`
You can try this with the `logtest.logfile` file included in this directory.
## Running the Example
1. Ensure you have the `mattw/loganalyzer` model installed:
```bash
ollama pull mattw/loganalyzer
```
2. Install the Python Requirements.
```bash
pip install -r requirements.txt
```
3. Run the example:
```bash
python loganalysis.py logtest.logfile
```
## Review the code
The first part of this example is a Modelfile that takes `codebooga` and applies a new System Prompt:
```plaintext
SYSTEM """
You are a log file analyzer. You will receive a set of lines from a log file for some software application, find the errors and other interesting aspects of the logs, and explain them so a new user can understand what they mean. If there are any steps they can do to resolve them, list the steps in your answer.
"""
```
This model is available at https://ollama.ai/mattw/loganalyzer. You can customize it and add to your own namespace using the command `ollama create <namespace/modelname> -f <path-to-modelfile>` then `ollama push <namespace/modelname>`.
Then loganalysis.py scans all the lines in the given log file and searches for the word 'error'. When the word is found, the 10 lines before and after are set as the prompt for a call to the Generate API.
```python
data = {
"prompt": "\n".join(error_logs),
"model": "mattw/loganalyzer"
}
```
Finally, the streamed output is parsed and the response field in the output is printed to the line.
```python
response = requests.post("http://localhost:11434/api/generate", json=data, stream=True)
for line in response.iter_lines():
if line:
json_data = json.loads(line)
if json_data['done'] == False:
print(json_data['response'], end='')
```
## Next Steps
There is a lot more that can be done here. This is a simple way to detect errors, looking for the word error. Perhaps it would be interesting to find anomalous activity in the logs. It could be interesting to create embeddings for each line and compare them, looking for similar lines. Or look into applying Levenshtein Distance algorithms to find similar lines to help identify the anomalous lines.
Try different models and different prompts to analyze the data. You could consider adding retrieval augmented generation (RAG) to this to help understand newer log formats.

View File

@@ -1 +0,0 @@
Requests==2.31.0

View File

@@ -1,35 +0,0 @@
# News Summarizer
This example goes through a series of steps:
1. You choose a topic area (e.g., "news", "NVidia", "music", etc.).
2. Gets the most recent articles on that topic from various sources.
3. Uses Ollama to summarize each article.
4. Creates chunks of sentences from each article.
5. Uses Sentence Transformers to generate embeddings for each of those chunks.
6. You enter a question regarding the summaries shown.
7. Uses Sentence Transformers to generate an embedding for that question.
8. Uses the embedded question to find the most similar chunks.
9. Feeds all that to Ollama to generate a good answer to your question based on these news articles.
This example lets you pick from a few different topic areas, then summarize the most recent x articles for that topic. It then creates chunks of sentences from each article and then generates embeddings for each of those chunks.
## Running the Example
1. Ensure you have the `mistral-openorca` model installed:
```bash
ollama pull mistral-openorca
```
2. Install the Python Requirements.
```bash
pip install -r requirements.txt
```
3. Run the example:
```bash
python summ.py
```

Some files were not shown because too many files have changed in this diff Show More