Compare commits

..

1 Commits

Author SHA1 Message Date
Patrick Devine
402babdad0 change push to chunked uploads from monolithic 2023-07-22 16:13:28 -07:00
333 changed files with 48233 additions and 28682 deletions

View File

@@ -1,8 +1,7 @@
build
llama/build
.venv
.vscode
ollama
app
dist
llm/llama.cpp
.env
.cache
test_data
web

View File

@@ -1,162 +0,0 @@
name: test
on:
pull_request:
jobs:
generate:
strategy:
matrix:
os: [ubuntu-latest, macos-latest, windows-latest]
arch: [amd64, arm64]
exclude:
- os: ubuntu-latest
arch: arm64
- os: windows-latest
arch: arm64
runs-on: ${{ matrix.os }}
env:
GOARCH: ${{ matrix.arch }}
steps:
- uses: actions/checkout@v4
- uses: actions/setup-go@v5
with:
go-version: '1.21'
cache: true
- run: go get ./...
- run: go generate -x ./...
- uses: actions/upload-artifact@v4
with:
name: ${{ matrix.os }}-${{ matrix.arch }}-libraries
path: llm/llama.cpp/build/**/lib/*
generate-cuda:
strategy:
matrix:
cuda-version:
- '11.8.0'
runs-on: linux
container: nvidia/cuda:${{ matrix.cuda-version }}-devel-ubuntu20.04
steps:
- run: |
apt-get update && apt-get install -y git build-essential curl
curl -fsSL https://github.com/Kitware/CMake/releases/download/v3.28.1/cmake-3.28.1-linux-x86_64.tar.gz \
| tar -zx -C /usr --strip-components 1
env:
DEBIAN_FRONTEND: noninteractive
- uses: actions/checkout@v4
- uses: actions/setup-go@v4
with:
go-version: '1.21'
cache: true
- run: go get ./...
- run: |
git config --global --add safe.directory /__w/ollama/ollama
go generate -x ./...
env:
OLLAMA_SKIP_CPU_GENERATE: '1'
- uses: actions/upload-artifact@v4
with:
name: cuda-${{ matrix.cuda-version }}-libraries
path: llm/llama.cpp/build/**/lib/*
generate-rocm:
strategy:
matrix:
rocm-version:
- '5.7.1'
- '6.0'
runs-on: linux
container: rocm/dev-ubuntu-20.04:${{ matrix.rocm-version }}
steps:
- run: |
apt-get update && apt-get install -y git build-essential curl rocm-libs
curl -fsSL https://github.com/Kitware/CMake/releases/download/v3.28.1/cmake-3.28.1-linux-x86_64.tar.gz \
| tar -zx -C /usr --strip-components 1
env:
DEBIAN_FRONTEND: noninteractive
- uses: actions/checkout@v4
- uses: actions/setup-go@v4
with:
go-version: '1.21'
cache: true
- run: go get ./...
- run: |
git config --global --add safe.directory /__w/ollama/ollama
go generate -x ./...
env:
OLLAMA_SKIP_CPU_GENERATE: '1'
- uses: actions/upload-artifact@v4
with:
name: rocm-${{ matrix.rocm-version }}-libraries
path: llm/llama.cpp/build/**/lib/*
lint:
strategy:
matrix:
os: [ubuntu-latest, macos-latest, windows-latest]
arch: [amd64, arm64]
exclude:
- os: ubuntu-latest
arch: arm64
- os: windows-latest
arch: arm64
- os: macos-latest
arch: amd64
runs-on: ${{ matrix.os }}
env:
GOARCH: ${{ matrix.arch }}
CGO_ENABLED: "1"
steps:
- uses: actions/checkout@v4
with:
submodules: recursive
- uses: actions/setup-go@v5
with:
go-version: '1.21'
cache: false
- run: |
mkdir -p llm/llama.cpp/build/linux/${{ matrix.arch }}/stub/lib/
touch llm/llama.cpp/build/linux/${{ matrix.arch }}/stub/lib/stub.so
if: ${{ startsWith(matrix.os, 'ubuntu-') }}
- run: |
mkdir -p llm/llama.cpp/build/darwin/${{ matrix.arch }}/stub/lib/
touch llm/llama.cpp/build/darwin/${{ matrix.arch }}/stub/lib/stub.dylib
touch llm/llama.cpp/ggml-metal.metal
if: ${{ startsWith(matrix.os, 'macos-') }}
- run: |
mkdir -p llm/llama.cpp/build/windows/${{ matrix.arch }}/stub/lib/
touch llm/llama.cpp/build/windows/${{ matrix.arch }}/stub/lib/stub.dll
if: ${{ startsWith(matrix.os, 'windows-') }}
- uses: golangci/golangci-lint-action@v3
test:
needs: generate
strategy:
matrix:
os: [ubuntu-latest, macos-latest, windows-latest]
arch: [amd64]
exclude:
- os: ubuntu-latest
arch: arm64
- os: windows-latest
arch: arm64
runs-on: ${{ matrix.os }}
env:
GOARCH: ${{ matrix.arch }}
CGO_ENABLED: "1"
steps:
- uses: actions/checkout@v4
with:
submodules: recursive
- uses: actions/setup-go@v5
with:
go-version: '1.21'
cache: true
- run: go get
- uses: actions/download-artifact@v4
with:
name: ${{ matrix.os }}-${{ matrix.arch }}-libraries
path: llm/llama.cpp/build
- run: go build
- run: go test -v ./...
- uses: actions/upload-artifact@v4
with:
name: ${{ matrix.os }}-binaries
path: ollama

6
.gitignore vendored
View File

@@ -5,9 +5,3 @@
.swp
dist
ollama
ggml-metal.metal
.cache
*.exe
.idea
test_data
*.crt

4
.gitmodules vendored
View File

@@ -1,4 +0,0 @@
[submodule "llama.cpp"]
path = llm/llama.cpp
url = https://github.com/ggerganov/llama.cpp.git
shallow = true

View File

@@ -1,27 +0,0 @@
run:
timeout: 5m
linters:
enable:
- asasalint
- bidichk
- bodyclose
- containedctx
- contextcheck
- exportloopref
- gocheckcompilerdirectives
# FIXME: for some reason this errors on windows
# - gofmt
# - goimports
- misspell
- nilerr
- unused
linters-settings:
errcheck:
# exclude the following functions since we don't generally
# need to be concerned with the returned errors
exclude-functions:
- encoding/binary.Read
- (*os.File).Seek
- (*bufio.Writer).WriteString
- (*github.com/spf13/pflag.FlagSet).Set
- (*github.com/jmorganca/ollama/llm.readSeekOffset).Seek

View File

@@ -1,137 +1,15 @@
ARG GOLANG_VERSION=1.21.3
ARG CMAKE_VERSION=3.22.1
ARG CUDA_VERSION=11.3.1
# Copy the minimal context we need to run the generate scripts
FROM scratch AS llm-code
COPY .git .git
COPY .gitmodules .gitmodules
COPY llm llm
FROM --platform=linux/amd64 nvidia/cuda:$CUDA_VERSION-devel-centos7 AS cuda-build-amd64
ARG CMAKE_VERSION
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
COPY --from=llm-code / /go/src/github.com/jmorganca/ollama/
WORKDIR /go/src/github.com/jmorganca/ollama/llm/generate
ARG CGO_CFLAGS
RUN OLLAMA_SKIP_CPU_GENERATE=1 sh gen_linux.sh
FROM --platform=linux/arm64 nvidia/cuda:$CUDA_VERSION-devel-rockylinux8 AS cuda-build-arm64
ARG CMAKE_VERSION
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
ENV PATH /opt/rh/gcc-toolset-10/root/usr/bin:$PATH
COPY --from=llm-code / /go/src/github.com/jmorganca/ollama/
WORKDIR /go/src/github.com/jmorganca/ollama/llm/generate
ARG CGO_CFLAGS
RUN OLLAMA_SKIP_CPU_GENERATE=1 sh gen_linux.sh
FROM --platform=linux/amd64 rocm/dev-centos-7:5.7.1-complete AS rocm-5-build-amd64
ARG CMAKE_VERSION
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
ENV LIBRARY_PATH /opt/amdgpu/lib64
COPY --from=llm-code / /go/src/github.com/jmorganca/ollama/
WORKDIR /go/src/github.com/jmorganca/ollama/llm/generate
ARG CGO_CFLAGS
ARG AMDGPU_TARGETS
RUN OLLAMA_SKIP_CPU_GENERATE=1 sh gen_linux.sh
FROM --platform=linux/amd64 rocm/dev-centos-7:6.0-complete AS rocm-6-build-amd64
ARG CMAKE_VERSION
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
ENV LIBRARY_PATH /opt/amdgpu/lib64
COPY --from=llm-code / /go/src/github.com/jmorganca/ollama/
WORKDIR /go/src/github.com/jmorganca/ollama/llm/generate
ARG CGO_CFLAGS
ARG AMDGPU_TARGETS
RUN OLLAMA_SKIP_CPU_GENERATE=1 sh gen_linux.sh
FROM --platform=linux/amd64 centos:7 AS cpu-builder-amd64
ARG CMAKE_VERSION
ARG GOLANG_VERSION
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
COPY --from=llm-code / /go/src/github.com/jmorganca/ollama/
ARG OLLAMA_CUSTOM_CPU_DEFS
ARG CGO_CFLAGS
WORKDIR /go/src/github.com/jmorganca/ollama/llm/generate
FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu-build-amd64
RUN OLLAMA_CPU_TARGET="cpu" sh gen_linux.sh
FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu_avx-build-amd64
RUN OLLAMA_CPU_TARGET="cpu_avx" sh gen_linux.sh
FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu_avx2-build-amd64
RUN OLLAMA_CPU_TARGET="cpu_avx2" sh gen_linux.sh
FROM --platform=linux/arm64 centos:7 AS cpu-build-arm64
ARG CMAKE_VERSION
ARG GOLANG_VERSION
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
COPY --from=llm-code / /go/src/github.com/jmorganca/ollama/
WORKDIR /go/src/github.com/jmorganca/ollama/llm/generate
# Note, we only build the "base" CPU variant on arm since avx/avx2 are x86 features
ARG OLLAMA_CUSTOM_CPU_DEFS
ARG CGO_CFLAGS
RUN OLLAMA_CPU_TARGET="cpu" sh gen_linux.sh
# Intermediate stage used for ./scripts/build_linux.sh
FROM --platform=linux/amd64 cpu-build-amd64 AS build-amd64
ENV CGO_ENABLED 1
FROM golang:1.20
WORKDIR /go/src/github.com/jmorganca/ollama
COPY . .
COPY --from=cpu_avx-build-amd64 /go/src/github.com/jmorganca/ollama/llm/llama.cpp/build/linux/ llm/llama.cpp/build/linux/
COPY --from=cpu_avx2-build-amd64 /go/src/github.com/jmorganca/ollama/llm/llama.cpp/build/linux/ llm/llama.cpp/build/linux/
COPY --from=cuda-build-amd64 /go/src/github.com/jmorganca/ollama/llm/llama.cpp/build/linux/ llm/llama.cpp/build/linux/
COPY --from=rocm-5-build-amd64 /go/src/github.com/jmorganca/ollama/llm/llama.cpp/build/linux/ llm/llama.cpp/build/linux/
COPY --from=rocm-6-build-amd64 /go/src/github.com/jmorganca/ollama/llm/llama.cpp/build/linux/ llm/llama.cpp/build/linux/
ARG GOFLAGS
ARG CGO_CFLAGS
RUN go build .
RUN CGO_ENABLED=1 go build -ldflags '-linkmode external -extldflags "-static"' .
# Intermediate stage used for ./scripts/build_linux.sh
FROM --platform=linux/arm64 cpu-build-arm64 AS build-arm64
ENV CGO_ENABLED 1
ARG GOLANG_VERSION
WORKDIR /go/src/github.com/jmorganca/ollama
COPY . .
COPY --from=cuda-build-arm64 /go/src/github.com/jmorganca/ollama/llm/llama.cpp/build/linux/ llm/llama.cpp/build/linux/
ARG GOFLAGS
ARG CGO_CFLAGS
RUN go build .
# Runtime stages
FROM --platform=linux/amd64 ubuntu:22.04 as runtime-amd64
RUN apt-get update && apt-get install -y ca-certificates
COPY --from=build-amd64 /go/src/github.com/jmorganca/ollama/ollama /bin/ollama
FROM --platform=linux/arm64 ubuntu:22.04 as runtime-arm64
RUN apt-get update && apt-get install -y ca-certificates
COPY --from=build-arm64 /go/src/github.com/jmorganca/ollama/ollama /bin/ollama
# Radeon images are much larger so we keep it distinct from the CPU/CUDA image
FROM --platform=linux/amd64 rocm/dev-centos-7:5.7.1-complete as runtime-rocm
RUN update-pciids
COPY --from=build-amd64 /go/src/github.com/jmorganca/ollama/ollama /bin/ollama
FROM alpine
COPY --from=0 /go/src/github.com/jmorganca/ollama/ollama /bin/ollama
EXPOSE 11434
ENV OLLAMA_HOST 0.0.0.0
ARG USER=ollama
ARG GROUP=ollama
RUN addgroup -g 1000 $GROUP && adduser -u 1000 -DG $GROUP $USER
USER $USER:$GROUP
ENTRYPOINT ["/bin/ollama"]
CMD ["serve"]
FROM runtime-$TARGETARCH
EXPOSE 11434
ENV OLLAMA_HOST 0.0.0.0
ENV PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
ENTRYPOINT ["/bin/ollama"]
CMD ["serve"]

308
README.md
View File

@@ -1,41 +1,27 @@
<div align="center">
<img alt="ollama" height="200px" src="https://github.com/jmorganca/ollama/assets/3325447/0d0b44e2-8f4a-4e99-9b52-a5c1c741c8f7">
<picture>
<source media="(prefers-color-scheme: dark)" height="200px" srcset="https://github.com/jmorganca/ollama/assets/3325447/56ea1849-1284-4645-8970-956de6e51c3c">
<img alt="logo" height="200px" src="https://github.com/jmorganca/ollama/assets/3325447/0d0b44e2-8f4a-4e99-9b52-a5c1c741c8f7">
</picture>
</div>
# Ollama
[![Discord](https://dcbadge.vercel.app/api/server/ollama?style=flat&compact=true)](https://discord.gg/ollama)
Get up and running with large language models locally.
> Note: Ollama is in early preview. Please report any issues you find.
### macOS
Run, create, and share large language models (LLMs).
[Download](https://ollama.com/download/Ollama-darwin.zip)
## Download
### Windows preview
[Download](https://ollama.com/download/OllamaSetup.exe)
### Linux
```
curl -fsSL https://ollama.com/install.sh | sh
```
[Manual install instructions](https://github.com/jmorganca/ollama/blob/main/docs/linux.md)
### Docker
The official [Ollama Docker image](https://hub.docker.com/r/ollama/ollama) `ollama/ollama` is available on Docker Hub.
### Libraries
- [ollama-python](https://github.com/ollama/ollama-python)
- [ollama-js](https://github.com/ollama/ollama-js)
- [Download](https://ollama.ai/download) for macOS on Apple Silicon (Intel coming soon)
- Download for Windows and Linux (coming soon)
- Build [from source](#building)
## Quickstart
To run and chat with [Llama 2](https://ollama.com/library/llama2):
To run and chat with [Llama 2](https://ai.meta.com/llama), the new model by Meta:
```
ollama run llama2
@@ -43,59 +29,32 @@ ollama run llama2
## Model library
Ollama supports a list of models available on [ollama.com/library](https://ollama.com/library 'ollama model library')
`ollama` includes a library of open-source models:
Here are some example models that can be downloaded:
| Model | Parameters | Size | Download |
| ------------------------ | ---------- | ----- | --------------------------- |
| Llama2 | 7B | 3.8GB | `ollama pull llama2` |
| Llama2 13B | 13B | 7.3GB | `ollama pull llama2:13b` |
| Orca Mini | 3B | 1.9GB | `ollama pull orca` |
| Vicuna | 7B | 3.8GB | `ollama pull vicuna` |
| Nous-Hermes | 13B | 7.3GB | `ollama pull nous-hermes` |
| Wizard Vicuna Uncensored | 13B | 7.3GB | `ollama pull wizard-vicuna` |
| Model | Parameters | Size | Download |
| ------------------ | ---------- | ----- | ------------------------------ |
| Llama 2 | 7B | 3.8GB | `ollama run llama2` |
| Mistral | 7B | 4.1GB | `ollama run mistral` |
| Dolphin Phi | 2.7B | 1.6GB | `ollama run dolphin-phi` |
| Phi-2 | 2.7B | 1.7GB | `ollama run phi` |
| Neural Chat | 7B | 4.1GB | `ollama run neural-chat` |
| Starling | 7B | 4.1GB | `ollama run starling-lm` |
| Code Llama | 7B | 3.8GB | `ollama run codellama` |
| Llama 2 Uncensored | 7B | 3.8GB | `ollama run llama2-uncensored` |
| Llama 2 13B | 13B | 7.3GB | `ollama run llama2:13b` |
| Llama 2 70B | 70B | 39GB | `ollama run llama2:70b` |
| Orca Mini | 3B | 1.9GB | `ollama run orca-mini` |
| Vicuna | 7B | 3.8GB | `ollama run vicuna` |
| LLaVA | 7B | 4.5GB | `ollama run llava` |
> Note: You should have at least 8 GB of RAM to run the 3B models, 16 GB to run the 7B models, and 32 GB to run the 13B models.
> Note: You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
## Examples
## Customize a model
### Run a model
### Import from GGUF
```
ollama run llama2
>>> hi
Hello! How can I help you today?
```
Ollama supports importing GGUF models in the Modelfile:
### Create a custom model
1. Create a file named `Modelfile`, with a `FROM` instruction with the local filepath to the model you want to import.
```
FROM ./vicuna-33b.Q4_0.gguf
```
2. Create the model in Ollama
```
ollama create example -f Modelfile
```
3. Run the model
```
ollama run example
```
### Import from PyTorch or Safetensors
See the [guide](docs/import.md) on importing models for more information.
### Customize a prompt
Models from the Ollama library can be customized with a prompt. For example, to customize the `llama2` model:
Pull a base model:
```
ollama pull llama2
@@ -109,7 +68,7 @@ FROM llama2
# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1
# set the system message
# set the system prompt
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""
@@ -124,104 +83,44 @@ ollama run mario
Hello! It's your friend Mario.
```
For more examples, see the [examples](examples) directory. For more information on working with a Modelfile, see the [Modelfile](docs/modelfile.md) documentation.
For more examples, see the [examples](./examples) directory.
## CLI Reference
### Create a model
`ollama create` is used to create a model from a Modelfile.
### Pull a model from the registry
```
ollama create mymodel -f ./Modelfile
ollama pull orca
```
### Pull a model
```
ollama pull llama2
```
> This command can also be used to update a local model. Only the diff will be pulled.
### Remove a model
```
ollama rm llama2
```
### Copy a model
```
ollama cp llama2 my-llama2
```
### Multiline input
For multiline input, you can wrap text with `"""`:
```
>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.
```
### Multimodal models
```
>>> What's in this image? /Users/jmorgan/Desktop/smile.png
The image features a yellow smiley face, which is likely the central focus of the picture.
```
### Pass in prompt as arguments
```
$ ollama run llama2 "Summarize this file: $(cat README.md)"
Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.
```
### List models on your computer
### Listing local models
```
ollama list
```
### Start Ollama
## Model packages
`ollama serve` is used when you want to start ollama without running the desktop application.
### Overview
Ollama bundles model weights, configuration, and data into a single package, defined by a [Modelfile](./docs/modelfile.md).
<picture>
<source media="(prefers-color-scheme: dark)" height="480" srcset="https://github.com/jmorganca/ollama/assets/251292/2fd96b5f-191b-45c1-9668-941cfad4eb70">
<img alt="logo" height="480" src="https://github.com/jmorganca/ollama/assets/251292/2fd96b5f-191b-45c1-9668-941cfad4eb70">
</picture>
## Building
Install `cmake` and `go`:
```
brew install cmake go
```
Then generate dependencies:
```
go generate ./...
```
Then build the binary:
```
go build .
```
More detailed instructions can be found in the [developer guide](https://github.com/jmorganca/ollama/blob/main/docs/development.md)
### Running local builds
Next, start the server:
To run it start the server:
```
./ollama serve
./ollama serve &
```
Finally, in a separate shell, run a model:
Finally, run a model!
```
./ollama run llama2
@@ -229,117 +128,10 @@ Finally, in a separate shell, run a model:
## REST API
Ollama has a REST API for running and managing models.
### `POST /api/generate`
### Generate a response
Generate text from a model.
```
curl http://localhost:11434/api/generate -d '{
"model": "llama2",
"prompt":"Why is the sky blue?"
}'
curl -X POST http://localhost:11434/api/generate -d '{"model": "llama2", "prompt":"Why is the sky blue?"}'
```
### Chat with a model
```
curl http://localhost:11434/api/chat -d '{
"model": "mistral",
"messages": [
{ "role": "user", "content": "why is the sky blue?" }
]
}'
```
See the [API documentation](./docs/api.md) for all endpoints.
## Community Integrations
### Web & Desktop
- [Bionic GPT](https://github.com/bionic-gpt/bionic-gpt)
- [HTML UI](https://github.com/rtcfirefly/ollama-ui)
- [Chatbot UI](https://github.com/ivanfioravanti/chatbot-ollama)
- [Typescript UI](https://github.com/ollama-interface/Ollama-Gui?tab=readme-ov-file)
- [Minimalistic React UI for Ollama Models](https://github.com/richawo/minimal-llm-ui)
- [Open WebUI](https://github.com/open-webui/open-webui)
- [Ollamac](https://github.com/kevinhermawan/Ollamac)
- [big-AGI](https://github.com/enricoros/big-AGI/blob/main/docs/config-local-ollama.md)
- [Cheshire Cat assistant framework](https://github.com/cheshire-cat-ai/core)
- [Amica](https://github.com/semperai/amica)
- [chatd](https://github.com/BruceMacD/chatd)
- [Ollama-SwiftUI](https://github.com/kghandour/Ollama-SwiftUI)
- [MindMac](https://mindmac.app)
- [NextJS Web Interface for Ollama](https://github.com/jakobhoeg/nextjs-ollama-llm-ui)
- [Msty](https://msty.app)
### Terminal
- [oterm](https://github.com/ggozad/oterm)
- [Ellama Emacs client](https://github.com/s-kostyaev/ellama)
- [Emacs client](https://github.com/zweifisch/ollama)
- [gen.nvim](https://github.com/David-Kunz/gen.nvim)
- [ollama.nvim](https://github.com/nomnivore/ollama.nvim)
- [ollama-chat.nvim](https://github.com/gerazov/ollama-chat.nvim)
- [ogpt.nvim](https://github.com/huynle/ogpt.nvim)
- [gptel Emacs client](https://github.com/karthink/gptel)
- [Oatmeal](https://github.com/dustinblackman/oatmeal)
- [cmdh](https://github.com/pgibler/cmdh)
- [tenere](https://github.com/pythops/tenere)
- [llm-ollama](https://github.com/taketwo/llm-ollama) for [Datasette's LLM CLI](https://llm.datasette.io/en/stable/).
- [ShellOracle](https://github.com/djcopley/ShellOracle)
### Database
- [MindsDB](https://github.com/mindsdb/mindsdb/blob/staging/mindsdb/integrations/handlers/ollama_handler/README.md)
### Package managers
- [Pacman](https://archlinux.org/packages/extra/x86_64/ollama/)
- [Helm Chart](https://artifacthub.io/packages/helm/ollama-helm/ollama)
### Libraries
- [LangChain](https://python.langchain.com/docs/integrations/llms/ollama) and [LangChain.js](https://js.langchain.com/docs/modules/model_io/models/llms/integrations/ollama) with [example](https://js.langchain.com/docs/use_cases/question_answering/local_retrieval_qa)
- [LangChainGo](https://github.com/tmc/langchaingo/) with [example](https://github.com/tmc/langchaingo/tree/main/examples/ollama-completion-example)
- [LlamaIndex](https://gpt-index.readthedocs.io/en/stable/examples/llm/ollama.html)
- [LangChain4j](https://github.com/langchain4j/langchain4j/tree/main/langchain4j-ollama)
- [LiteLLM](https://github.com/BerriAI/litellm)
- [OllamaSharp for .NET](https://github.com/awaescher/OllamaSharp)
- [Ollama for Ruby](https://github.com/gbaptista/ollama-ai)
- [Ollama-rs for Rust](https://github.com/pepperoni21/ollama-rs)
- [Ollama4j for Java](https://github.com/amithkoujalgi/ollama4j)
- [ModelFusion Typescript Library](https://modelfusion.dev/integration/model-provider/ollama)
- [OllamaKit for Swift](https://github.com/kevinhermawan/OllamaKit)
- [Ollama for Dart](https://github.com/breitburg/dart-ollama)
- [Ollama for Laravel](https://github.com/cloudstudio/ollama-laravel)
- [LangChainDart](https://github.com/davidmigloz/langchain_dart)
- [Semantic Kernel - Python](https://github.com/microsoft/semantic-kernel/tree/main/python/semantic_kernel/connectors/ai/ollama)
- [Haystack](https://github.com/deepset-ai/haystack-integrations/blob/main/integrations/ollama.md)
- [Elixir LangChain](https://github.com/brainlid/langchain)
- [Ollama for R - rollama](https://github.com/JBGruber/rollama)
- [Ollama-ex for Elixir](https://github.com/lebrunel/ollama-ex)
### Mobile
- [Enchanted](https://github.com/AugustDev/enchanted)
- [Maid](https://github.com/Mobile-Artificial-Intelligence/maid)
### Extensions & Plugins
- [Raycast extension](https://github.com/MassimilianoPasquini97/raycast_ollama)
- [Discollama](https://github.com/mxyng/discollama) (Discord bot inside the Ollama discord channel)
- [Continue](https://github.com/continuedev/continue)
- [Obsidian Ollama plugin](https://github.com/hinterdupfinger/obsidian-ollama)
- [Logseq Ollama plugin](https://github.com/omagdy7/ollama-logseq)
- [Dagger Chatbot](https://github.com/samalba/dagger-chatbot)
- [Discord AI Bot](https://github.com/mekb-turtle/discord-ai-bot)
- [Ollama Telegram Bot](https://github.com/ruecat/ollama-telegram)
- [Hass Ollama Conversation](https://github.com/ej52/hass-ollama-conversation)
- [Rivet plugin](https://github.com/abrenneke/rivet-plugin-ollama)
- [Llama Coder](https://github.com/ex3ndr/llama-coder) (Copilot alternative using Ollama)
- [Obsidian BMO Chatbot plugin](https://github.com/longy2k/obsidian-bmo-chatbot)
- [Open Interpreter](https://docs.openinterpreter.com/language-model-setup/local-models/ollama)
- [twinny](https://github.com/rjmacarthy/twinny) (Copilot and Copilot chat alternative using Ollama)
- [Wingman-AI](https://github.com/RussellCanfield/wingman-ai) (Copilot code and chat alternative using Ollama and HuggingFace)
- [Page Assist](https://github.com/n4ze3m/page-assist) (Chrome Extension)

View File

@@ -5,27 +5,20 @@ import (
"bytes"
"context"
"encoding/json"
"errors"
"fmt"
"io"
"net"
"net/http"
"net/url"
"os"
"runtime"
"strings"
"github.com/jmorganca/ollama/format"
"github.com/jmorganca/ollama/version"
)
type Client struct {
base *url.URL
http *http.Client
base url.URL
HTTP http.Client
Headers http.Header
}
func checkError(resp *http.Response, body []byte) error {
if resp.StatusCode < http.StatusBadRequest {
if resp.StatusCode >= 200 && resp.StatusCode < 400 {
return nil
}
@@ -40,72 +33,45 @@ func checkError(resp *http.Response, body []byte) error {
return apiError
}
func ClientFromEnvironment() (*Client, error) {
defaultPort := "11434"
scheme, hostport, ok := strings.Cut(os.Getenv("OLLAMA_HOST"), "://")
switch {
case !ok:
scheme, hostport = "http", os.Getenv("OLLAMA_HOST")
case scheme == "http":
defaultPort = "80"
case scheme == "https":
defaultPort = "443"
}
// trim trailing slashes
hostport = strings.TrimRight(hostport, "/")
host, port, err := net.SplitHostPort(hostport)
if err != nil {
host, port = "127.0.0.1", defaultPort
if ip := net.ParseIP(strings.Trim(hostport, "[]")); ip != nil {
host = ip.String()
} else if hostport != "" {
host = hostport
}
func NewClient(hosts ...string) *Client {
host := "127.0.0.1:11434"
if len(hosts) > 0 {
host = hosts[0]
}
return &Client{
base: &url.URL{
Scheme: scheme,
Host: net.JoinHostPort(host, port),
},
http: http.DefaultClient,
}, nil
base: url.URL{Scheme: "http", Host: host},
HTTP: http.Client{},
}
}
func (c *Client) do(ctx context.Context, method, path string, reqData, respData any) error {
var reqBody io.Reader
var data []byte
var err error
switch reqData := reqData.(type) {
case io.Reader:
// reqData is already an io.Reader
reqBody = reqData
case nil:
// noop
default:
if reqData != nil {
data, err = json.Marshal(reqData)
if err != nil {
return err
}
reqBody = bytes.NewReader(data)
}
requestURL := c.base.JoinPath(path)
request, err := http.NewRequestWithContext(ctx, method, requestURL.String(), reqBody)
url := c.base.JoinPath(path).String()
req, err := http.NewRequestWithContext(ctx, method, url, reqBody)
if err != nil {
return err
}
request.Header.Set("Content-Type", "application/json")
request.Header.Set("Accept", "application/json")
request.Header.Set("User-Agent", fmt.Sprintf("ollama/%s (%s %s) Go/%s", version.Version, runtime.GOARCH, runtime.GOOS, runtime.Version()))
req.Header.Set("Content-Type", "application/json")
req.Header.Set("Accept", "application/json")
respObj, err := c.http.Do(request)
for k, v := range c.Headers {
req.Header[k] = v
}
respObj, err := c.HTTP.Do(req)
if err != nil {
return err
}
@@ -128,8 +94,6 @@ func (c *Client) do(ctx context.Context, method, path string, reqData, respData
return nil
}
const maxBufferSize = 512 * format.KiloByte
func (c *Client) stream(ctx context.Context, method, path string, data any, fn func([]byte) error) error {
var buf *bytes.Buffer
if data != nil {
@@ -141,26 +105,21 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
buf = bytes.NewBuffer(bts)
}
requestURL := c.base.JoinPath(path)
request, err := http.NewRequestWithContext(ctx, method, requestURL.String(), buf)
request, err := http.NewRequestWithContext(ctx, method, c.base.JoinPath(path).String(), buf)
if err != nil {
return err
}
request.Header.Set("Content-Type", "application/json")
request.Header.Set("Accept", "application/x-ndjson")
request.Header.Set("User-Agent", fmt.Sprintf("ollama/%s (%s %s) Go/%s", version.Version, runtime.GOARCH, runtime.GOOS, runtime.Version()))
request.Header.Set("Accept", "application/json")
response, err := c.http.Do(request)
response, err := http.DefaultClient.Do(request)
if err != nil {
return err
}
defer response.Body.Close()
scanner := bufio.NewScanner(response.Body)
// increase the buffer size to avoid running out of space
scanBuf := make([]byte, 0, maxBufferSize)
scanner.Buffer(scanBuf, maxBufferSize)
for scanner.Scan() {
var errorResponse struct {
Error string `json:"error,omitempty"`
@@ -172,10 +131,10 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
}
if errorResponse.Error != "" {
return fmt.Errorf(errorResponse.Error)
return fmt.Errorf("stream: %s", errorResponse.Error)
}
if response.StatusCode >= http.StatusBadRequest {
if response.StatusCode >= 400 {
return StatusError{
StatusCode: response.StatusCode,
Status: response.Status,
@@ -204,19 +163,6 @@ func (c *Client) Generate(ctx context.Context, req *GenerateRequest, fn Generate
})
}
type ChatResponseFunc func(ChatResponse) error
func (c *Client) Chat(ctx context.Context, req *ChatRequest, fn ChatResponseFunc) error {
return c.stream(ctx, http.MethodPost, "/api/chat", req, func(bts []byte) error {
var resp ChatResponse
if err := json.Unmarshal(bts, &resp); err != nil {
return err
}
return fn(resp)
})
}
type PullProgressFunc func(ProgressResponse) error
func (c *Client) Pull(ctx context.Context, req *PullRequest, fn PullProgressFunc) error {
@@ -243,11 +189,11 @@ func (c *Client) Push(ctx context.Context, req *PushRequest, fn PushProgressFunc
})
}
type CreateProgressFunc func(ProgressResponse) error
type CreateProgressFunc func(CreateProgress) error
func (c *Client) Create(ctx context.Context, req *CreateRequest, fn CreateProgressFunc) error {
return c.stream(ctx, http.MethodPost, "/api/create", req, func(bts []byte) error {
var resp ProgressResponse
var resp CreateProgress
if err := json.Unmarshal(bts, &resp); err != nil {
return err
}
@@ -264,65 +210,9 @@ func (c *Client) List(ctx context.Context) (*ListResponse, error) {
return &lr, nil
}
func (c *Client) Copy(ctx context.Context, req *CopyRequest) error {
if err := c.do(ctx, http.MethodPost, "/api/copy", req, nil); err != nil {
return err
}
return nil
}
func (c *Client) Delete(ctx context.Context, req *DeleteRequest) error {
if err := c.do(ctx, http.MethodDelete, "/api/delete", req, nil); err != nil {
return err
}
return nil
}
func (c *Client) Show(ctx context.Context, req *ShowRequest) (*ShowResponse, error) {
var resp ShowResponse
if err := c.do(ctx, http.MethodPost, "/api/show", req, &resp); err != nil {
return nil, err
}
return &resp, nil
}
func (c *Client) Heartbeat(ctx context.Context) error {
if err := c.do(ctx, http.MethodHead, "/", nil, nil); err != nil {
return err
}
return nil
}
func (c *Client) Embeddings(ctx context.Context, req *EmbeddingRequest) (*EmbeddingResponse, error) {
var resp EmbeddingResponse
if err := c.do(ctx, http.MethodPost, "/api/embeddings", req, &resp); err != nil {
return nil, err
}
return &resp, nil
}
func (c *Client) CreateBlob(ctx context.Context, digest string, r io.Reader) error {
if err := c.do(ctx, http.MethodHead, fmt.Sprintf("/api/blobs/%s", digest), nil, nil); err != nil {
var statusError StatusError
if !errors.As(err, &statusError) || statusError.StatusCode != http.StatusNotFound {
return err
}
if err := c.do(ctx, http.MethodPost, fmt.Sprintf("/api/blobs/%s", digest), r, nil); err != nil {
return err
}
}
return nil
}
func (c *Client) Version(ctx context.Context) (string, error) {
var version struct {
Version string `json:"version"`
}
if err := c.do(ctx, http.MethodGet, "/api/version", nil, &version); err != nil {
return "", err
}
return version.Version, nil
}

View File

@@ -1,43 +0,0 @@
package api
import "testing"
func TestClientFromEnvironment(t *testing.T) {
type testCase struct {
value string
expect string
err error
}
testCases := map[string]*testCase{
"empty": {value: "", expect: "http://127.0.0.1:11434"},
"only address": {value: "1.2.3.4", expect: "http://1.2.3.4:11434"},
"only port": {value: ":1234", expect: "http://:1234"},
"address and port": {value: "1.2.3.4:1234", expect: "http://1.2.3.4:1234"},
"scheme http and address": {value: "http://1.2.3.4", expect: "http://1.2.3.4:80"},
"scheme https and address": {value: "https://1.2.3.4", expect: "https://1.2.3.4:443"},
"scheme, address, and port": {value: "https://1.2.3.4:1234", expect: "https://1.2.3.4:1234"},
"hostname": {value: "example.com", expect: "http://example.com:11434"},
"hostname and port": {value: "example.com:1234", expect: "http://example.com:1234"},
"scheme http and hostname": {value: "http://example.com", expect: "http://example.com:80"},
"scheme https and hostname": {value: "https://example.com", expect: "https://example.com:443"},
"scheme, hostname, and port": {value: "https://example.com:1234", expect: "https://example.com:1234"},
"trailing slash": {value: "example.com/", expect: "http://example.com:11434"},
"trailing slash port": {value: "example.com:1234/", expect: "http://example.com:1234"},
}
for k, v := range testCases {
t.Run(k, func(t *testing.T) {
t.Setenv("OLLAMA_HOST", v.value)
client, err := ClientFromEnvironment()
if err != v.err {
t.Fatalf("expected %s, got %s", v.err, err)
}
if client.base.String() != v.expect {
t.Fatalf("expected %s, got %s", v.expect, client.base.String())
}
})
}
}

View File

@@ -1,13 +1,9 @@
package api
import (
"encoding/json"
"fmt"
"math"
"os"
"reflect"
"strconv"
"strings"
"runtime"
"time"
)
@@ -31,463 +27,160 @@ func (e StatusError) Error() string {
}
}
type ImageData []byte
type GenerateRequest struct {
Model string `json:"model"`
Prompt string `json:"prompt"`
System string `json:"system"`
Template string `json:"template"`
Context []int `json:"context,omitempty"`
Stream *bool `json:"stream,omitempty"`
Raw bool `json:"raw,omitempty"`
Format string `json:"format"`
KeepAlive *Duration `json:"keep_alive,omitempty"`
Images []ImageData `json:"images,omitempty"`
Model string `json:"model"`
Prompt string `json:"prompt"`
Context []int `json:"context,omitempty"`
Options map[string]interface{} `json:"options"`
Options `json:"options"`
}
type ChatRequest struct {
Model string `json:"model"`
Messages []Message `json:"messages"`
Stream *bool `json:"stream,omitempty"`
Format string `json:"format"`
KeepAlive *Duration `json:"keep_alive,omitempty"`
Options map[string]interface{} `json:"options"`
type CreateRequest struct {
Name string `json:"name"`
Path string `json:"path"`
}
type Message struct {
Role string `json:"role"` // one of ["system", "user", "assistant"]
Content string `json:"content"`
Images []ImageData `json:"images,omitempty"`
type CreateProgress struct {
Status string `json:"status"`
}
type ChatResponse struct {
type DeleteRequest struct {
Name string `json:"name"`
}
type PullRequest struct {
Name string `json:"name"`
Insecure bool `json:"insecure,omitempty"`
Username string `json:"username"`
Password string `json:"password"`
}
type ProgressResponse struct {
Status string `json:"status"`
Digest string `json:"digest,omitempty"`
Total int `json:"total,omitempty"`
Completed int `json:"completed,omitempty"`
}
type PushRequest struct {
Name string `json:"name"`
Insecure bool `json:"insecure,omitempty"`
Username string `json:"username"`
Password string `json:"password"`
}
type ListResponse struct {
Models []ListResponseModel `json:"models"`
}
type ListResponseModel struct {
Name string `json:"name"`
ModifiedAt time.Time `json:"modified_at"`
Size int `json:"size"`
}
type GenerateResponse struct {
Model string `json:"model"`
CreatedAt time.Time `json:"created_at"`
Message Message `json:"message"`
Response string `json:"response,omitempty"`
Done bool `json:"done"`
Done bool `json:"done"`
Context []int `json:"context,omitempty"`
Metrics
}
type Metrics struct {
TotalDuration time.Duration `json:"total_duration,omitempty"`
LoadDuration time.Duration `json:"load_duration,omitempty"`
PromptEvalCount int `json:"prompt_eval_count,omitempty"`
PromptEvalDuration time.Duration `json:"prompt_eval_duration,omitempty"`
EvalCount int `json:"eval_count,omitempty"`
EvalDuration time.Duration `json:"eval_duration,omitempty"`
}
// Options specfied in GenerateRequest, if you add a new option here add it to the API docs also
func (r *GenerateResponse) Summary() {
if r.TotalDuration > 0 {
fmt.Fprintf(os.Stderr, "total duration: %v\n", r.TotalDuration)
}
if r.PromptEvalCount > 0 {
fmt.Fprintf(os.Stderr, "prompt eval count: %d token(s)\n", r.PromptEvalCount)
}
if r.PromptEvalDuration > 0 {
fmt.Fprintf(os.Stderr, "prompt eval duration: %s\n", r.PromptEvalDuration)
fmt.Fprintf(os.Stderr, "prompt eval rate: %.2f tokens/s\n", float64(r.PromptEvalCount)/r.PromptEvalDuration.Seconds())
}
if r.EvalCount > 0 {
fmt.Fprintf(os.Stderr, "eval count: %d token(s)\n", r.EvalCount)
}
if r.EvalDuration > 0 {
fmt.Fprintf(os.Stderr, "eval duration: %s\n", r.EvalDuration)
fmt.Fprintf(os.Stderr, "eval rate: %.2f tokens/s\n", float64(r.EvalCount)/r.EvalDuration.Seconds())
}
}
type Options struct {
Runner
Seed int `json:"seed,omitempty"`
// Predict options used at runtime
NumKeep int `json:"num_keep,omitempty"`
Seed int `json:"seed,omitempty"`
NumPredict int `json:"num_predict,omitempty"`
TopK int `json:"top_k,omitempty"`
TopP float32 `json:"top_p,omitempty"`
TFSZ float32 `json:"tfs_z,omitempty"`
TypicalP float32 `json:"typical_p,omitempty"`
RepeatLastN int `json:"repeat_last_n,omitempty"`
Temperature float32 `json:"temperature,omitempty"`
RepeatPenalty float32 `json:"repeat_penalty,omitempty"`
PresencePenalty float32 `json:"presence_penalty,omitempty"`
FrequencyPenalty float32 `json:"frequency_penalty,omitempty"`
Mirostat int `json:"mirostat,omitempty"`
MirostatTau float32 `json:"mirostat_tau,omitempty"`
MirostatEta float32 `json:"mirostat_eta,omitempty"`
PenalizeNewline bool `json:"penalize_newline,omitempty"`
Stop []string `json:"stop,omitempty"`
}
// Backend options
UseNUMA bool `json:"numa,omitempty"`
// Runner options which must be set when the model is loaded into memory
type Runner struct {
UseNUMA bool `json:"numa,omitempty"`
NumCtx int `json:"num_ctx,omitempty"`
NumBatch int `json:"num_batch,omitempty"`
NumGQA int `json:"num_gqa,omitempty"`
NumGPU int `json:"num_gpu,omitempty"`
MainGPU int `json:"main_gpu,omitempty"`
LowVRAM bool `json:"low_vram,omitempty"`
F16KV bool `json:"f16_kv,omitempty"`
LogitsAll bool `json:"logits_all,omitempty"`
VocabOnly bool `json:"vocab_only,omitempty"`
UseMMap bool `json:"use_mmap,omitempty"`
UseMLock bool `json:"use_mlock,omitempty"`
EmbeddingOnly bool `json:"embedding_only,omitempty"`
RopeFrequencyBase float32 `json:"rope_frequency_base,omitempty"`
RopeFrequencyScale float32 `json:"rope_frequency_scale,omitempty"`
NumThread int `json:"num_thread,omitempty"`
}
// Model options
NumCtx int `json:"num_ctx,omitempty"`
NumBatch int `json:"num_batch,omitempty"`
NumGPU int `json:"num_gpu,omitempty"`
MainGPU int `json:"main_gpu,omitempty"`
LowVRAM bool `json:"low_vram,omitempty"`
F16KV bool `json:"f16_kv,omitempty"`
LogitsAll bool `json:"logits_all,omitempty"`
VocabOnly bool `json:"vocab_only,omitempty"`
UseMMap bool `json:"use_mmap,omitempty"`
UseMLock bool `json:"use_mlock,omitempty"`
EmbeddingOnly bool `json:"embedding_only,omitempty"`
type EmbeddingRequest struct {
Model string `json:"model"`
Prompt string `json:"prompt"`
KeepAlive *Duration `json:"keep_alive,omitempty"`
// Predict options
RepeatLastN int `json:"repeat_last_n,omitempty"`
RepeatPenalty float32 `json:"repeat_penalty,omitempty"`
FrequencyPenalty float32 `json:"frequency_penalty,omitempty"`
PresencePenalty float32 `json:"presence_penalty,omitempty"`
Temperature float32 `json:"temperature,omitempty"`
TopK int `json:"top_k,omitempty"`
TopP float32 `json:"top_p,omitempty"`
TFSZ float32 `json:"tfs_z,omitempty"`
TypicalP float32 `json:"typical_p,omitempty"`
Mirostat int `json:"mirostat,omitempty"`
MirostatTau float32 `json:"mirostat_tau,omitempty"`
MirostatEta float32 `json:"mirostat_eta,omitempty"`
Options map[string]interface{} `json:"options"`
}
type EmbeddingResponse struct {
Embedding []float64 `json:"embedding"`
}
type CreateRequest struct {
Model string `json:"model"`
Path string `json:"path"`
Modelfile string `json:"modelfile"`
Stream *bool `json:"stream,omitempty"`
// Name is deprecated, see Model
Name string `json:"name"`
}
type DeleteRequest struct {
Model string `json:"model"`
// Name is deprecated, see Model
Name string `json:"name"`
}
type ShowRequest struct {
Model string `json:"model"`
System string `json:"system"`
Template string `json:"template"`
Options map[string]interface{} `json:"options"`
// Name is deprecated, see Model
Name string `json:"name"`
}
type ShowResponse struct {
License string `json:"license,omitempty"`
Modelfile string `json:"modelfile,omitempty"`
Parameters string `json:"parameters,omitempty"`
Template string `json:"template,omitempty"`
System string `json:"system,omitempty"`
Details ModelDetails `json:"details,omitempty"`
Messages []Message `json:"messages,omitempty"`
}
type CopyRequest struct {
Source string `json:"source"`
Destination string `json:"destination"`
}
type PullRequest struct {
Model string `json:"model"`
Insecure bool `json:"insecure,omitempty"`
Username string `json:"username"`
Password string `json:"password"`
Stream *bool `json:"stream,omitempty"`
// Name is deprecated, see Model
Name string `json:"name"`
}
type ProgressResponse struct {
Status string `json:"status"`
Digest string `json:"digest,omitempty"`
Total int64 `json:"total,omitempty"`
Completed int64 `json:"completed,omitempty"`
}
type PushRequest struct {
Model string `json:"model"`
Insecure bool `json:"insecure,omitempty"`
Username string `json:"username"`
Password string `json:"password"`
Stream *bool `json:"stream,omitempty"`
// Name is deprecated, see Model
Name string `json:"name"`
}
type ListResponse struct {
Models []ModelResponse `json:"models"`
}
type ModelResponse struct {
Name string `json:"name"`
Model string `json:"model"`
ModifiedAt time.Time `json:"modified_at"`
Size int64 `json:"size"`
Digest string `json:"digest"`
Details ModelDetails `json:"details,omitempty"`
}
type TokenResponse struct {
Token string `json:"token"`
}
type GenerateResponse struct {
Model string `json:"model"`
CreatedAt time.Time `json:"created_at"`
Response string `json:"response"`
Done bool `json:"done"`
Context []int `json:"context,omitempty"`
Metrics
}
type ModelDetails struct {
ParentModel string `json:"parent_model"`
Format string `json:"format"`
Family string `json:"family"`
Families []string `json:"families"`
ParameterSize string `json:"parameter_size"`
QuantizationLevel string `json:"quantization_level"`
}
func (m *Metrics) Summary() {
if m.TotalDuration > 0 {
fmt.Fprintf(os.Stderr, "total duration: %v\n", m.TotalDuration)
}
if m.LoadDuration > 0 {
fmt.Fprintf(os.Stderr, "load duration: %v\n", m.LoadDuration)
}
if m.PromptEvalCount > 0 {
fmt.Fprintf(os.Stderr, "prompt eval count: %d token(s)\n", m.PromptEvalCount)
}
if m.PromptEvalDuration > 0 {
fmt.Fprintf(os.Stderr, "prompt eval duration: %s\n", m.PromptEvalDuration)
fmt.Fprintf(os.Stderr, "prompt eval rate: %.2f tokens/s\n", float64(m.PromptEvalCount)/m.PromptEvalDuration.Seconds())
}
if m.EvalCount > 0 {
fmt.Fprintf(os.Stderr, "eval count: %d token(s)\n", m.EvalCount)
}
if m.EvalDuration > 0 {
fmt.Fprintf(os.Stderr, "eval duration: %s\n", m.EvalDuration)
fmt.Fprintf(os.Stderr, "eval rate: %.2f tokens/s\n", float64(m.EvalCount)/m.EvalDuration.Seconds())
}
}
var ErrInvalidOpts = fmt.Errorf("invalid options")
func (opts *Options) FromMap(m map[string]interface{}) error {
valueOpts := reflect.ValueOf(opts).Elem() // names of the fields in the options struct
typeOpts := reflect.TypeOf(opts).Elem() // types of the fields in the options struct
// build map of json struct tags to their types
jsonOpts := make(map[string]reflect.StructField)
for _, field := range reflect.VisibleFields(typeOpts) {
jsonTag := strings.Split(field.Tag.Get("json"), ",")[0]
if jsonTag != "" {
jsonOpts[jsonTag] = field
}
}
invalidOpts := []string{}
for key, val := range m {
if opt, ok := jsonOpts[key]; ok {
field := valueOpts.FieldByName(opt.Name)
if field.IsValid() && field.CanSet() {
if val == nil {
continue
}
switch field.Kind() {
case reflect.Int:
switch t := val.(type) {
case int64:
field.SetInt(t)
case float64:
// when JSON unmarshals numbers, it uses float64, not int
field.SetInt(int64(t))
default:
return fmt.Errorf("option %q must be of type integer", key)
}
case reflect.Bool:
val, ok := val.(bool)
if !ok {
return fmt.Errorf("option %q must be of type boolean", key)
}
field.SetBool(val)
case reflect.Float32:
// JSON unmarshals to float64
val, ok := val.(float64)
if !ok {
return fmt.Errorf("option %q must be of type float32", key)
}
field.SetFloat(val)
case reflect.String:
val, ok := val.(string)
if !ok {
return fmt.Errorf("option %q must be of type string", key)
}
field.SetString(val)
case reflect.Slice:
// JSON unmarshals to []interface{}, not []string
val, ok := val.([]interface{})
if !ok {
return fmt.Errorf("option %q must be of type array", key)
}
// convert []interface{} to []string
slice := make([]string, len(val))
for i, item := range val {
str, ok := item.(string)
if !ok {
return fmt.Errorf("option %q must be of an array of strings", key)
}
slice[i] = str
}
field.Set(reflect.ValueOf(slice))
default:
return fmt.Errorf("unknown type loading config params: %v", field.Kind())
}
}
} else {
invalidOpts = append(invalidOpts, key)
}
}
if len(invalidOpts) > 0 {
return fmt.Errorf("%w: %v", ErrInvalidOpts, strings.Join(invalidOpts, ", "))
}
return nil
NumThread int `json:"num_thread,omitempty"`
}
func DefaultOptions() Options {
return Options{
// options set on request to runner
NumPredict: -1,
NumKeep: 0,
Seed: -1,
UseNUMA: false,
NumCtx: 2048,
NumBatch: 512,
NumGPU: 1,
LowVRAM: false,
F16KV: true,
UseMMap: true,
UseMLock: false,
RepeatLastN: 512,
RepeatPenalty: 1.1,
FrequencyPenalty: 0.0,
PresencePenalty: 0.0,
Temperature: 0.8,
TopK: 40,
TopP: 0.9,
TFSZ: 1.0,
TypicalP: 1.0,
RepeatLastN: 64,
RepeatPenalty: 1.1,
PresencePenalty: 0.0,
FrequencyPenalty: 0.0,
Mirostat: 0,
MirostatTau: 5.0,
MirostatEta: 0.1,
PenalizeNewline: true,
Seed: -1,
Runner: Runner{
// options set when the model is loaded
NumCtx: 2048,
RopeFrequencyBase: 10000.0,
RopeFrequencyScale: 1.0,
NumBatch: 512,
NumGPU: -1, // -1 here indicates that NumGPU should be set dynamically
NumGQA: 1,
NumThread: 0, // let the runtime decide
LowVRAM: false,
F16KV: true,
UseMLock: false,
UseMMap: true,
UseNUMA: false,
EmbeddingOnly: true,
},
NumThread: runtime.NumCPU(),
}
}
type Duration struct {
time.Duration
}
func (d *Duration) UnmarshalJSON(b []byte) (err error) {
var v any
if err := json.Unmarshal(b, &v); err != nil {
return err
}
d.Duration = 5 * time.Minute
switch t := v.(type) {
case float64:
if t < 0 {
d.Duration = time.Duration(math.MaxInt64)
} else {
d.Duration = time.Duration(t * float64(time.Second))
}
case string:
d.Duration, err = time.ParseDuration(t)
if err != nil {
return err
}
if d.Duration < 0 {
d.Duration = time.Duration(math.MaxInt64)
}
}
return nil
}
// FormatParams converts specified parameter options to their correct types
func FormatParams(params map[string][]string) (map[string]interface{}, error) {
opts := Options{}
valueOpts := reflect.ValueOf(&opts).Elem() // names of the fields in the options struct
typeOpts := reflect.TypeOf(opts) // types of the fields in the options struct
// build map of json struct tags to their types
jsonOpts := make(map[string]reflect.StructField)
for _, field := range reflect.VisibleFields(typeOpts) {
jsonTag := strings.Split(field.Tag.Get("json"), ",")[0]
if jsonTag != "" {
jsonOpts[jsonTag] = field
}
}
out := make(map[string]interface{})
// iterate params and set values based on json struct tags
for key, vals := range params {
if opt, ok := jsonOpts[key]; !ok {
return nil, fmt.Errorf("unknown parameter '%s'", key)
} else {
field := valueOpts.FieldByName(opt.Name)
if field.IsValid() && field.CanSet() {
switch field.Kind() {
case reflect.Float32:
floatVal, err := strconv.ParseFloat(vals[0], 32)
if err != nil {
return nil, fmt.Errorf("invalid float value %s", vals)
}
out[key] = float32(floatVal)
case reflect.Int:
intVal, err := strconv.ParseInt(vals[0], 10, 64)
if err != nil {
return nil, fmt.Errorf("invalid int value %s", vals)
}
out[key] = intVal
case reflect.Bool:
boolVal, err := strconv.ParseBool(vals[0])
if err != nil {
return nil, fmt.Errorf("invalid bool value %s", vals)
}
out[key] = boolVal
case reflect.String:
out[key] = vals[0]
case reflect.Slice:
// TODO: only string slices are supported right now
out[key] = vals
default:
return nil, fmt.Errorf("unknown type %s for %s", field.Kind(), key)
}
}
}
}
return out, nil
}

93
app/.gitignore vendored
View File

@@ -1 +1,92 @@
ollama.syso
# Logs
logs
*.log
npm-debug.log*
yarn-debug.log*
yarn-error.log*
lerna-debug.log*
# Diagnostic reports (https://nodejs.org/api/report.html)
report.[0-9]*.[0-9]*.[0-9]*.[0-9]*.json
# Runtime data
pids
*.pid
*.seed
*.pid.lock
.DS_Store
# Directory for instrumented libs generated by jscoverage/JSCover
lib-cov
# Coverage directory used by tools like istanbul
coverage
*.lcov
# nyc test coverage
.nyc_output
# node-waf configuration
.lock-wscript
# Compiled binary addons (https://nodejs.org/api/addons.html)
build/Release
# Dependency directories
node_modules/
jspm_packages/
# TypeScript v1 declaration files
typings/
# TypeScript cache
*.tsbuildinfo
# Optional npm cache directory
.npm
# Optional eslint cache
.eslintcache
# Optional REPL history
.node_repl_history
# Output of 'npm pack'
*.tgz
# Yarn Integrity file
.yarn-integrity
# dotenv environment variables file
.env
.env.test
# parcel-bundler cache (https://parceljs.org/)
.cache
# next.js build output
.next
# nuxt.js build output
.nuxt
# vuepress build output
.vuepress/dist
# Serverless directories
.serverless/
# FuseBox cache
.fusebox/
# DynamoDB Local files
.dynamodb/
# Webpack
.webpack/
# Vite
.vite/
# Electron-Forge
out/

View File

@@ -1,22 +1,27 @@
# Ollama App
# Desktop
## Linux
_Note: the Ollama desktop app is a work in progress and is not ready yet for general use._
TODO
This app builds upon Ollama to provide a desktop experience for running models.
## MacOS
## Developing
TODO
## Windows
If you want to build the installer, youll need to install
- https://jrsoftware.org/isinfo.php
In the top directory of this repo, run the following powershell script
to build the ollama CLI, ollama app, and ollama installer.
First, build the `ollama` binary:
```
powershell -ExecutionPolicy Bypass -File .\scripts\build_windows.ps1
make -C ..
```
Then run the desktop app with `npm start`:
```
npm install
npm start
```
## Coming soon
- Browse the latest available models on Hugging Face and other sources
- Keep track of previous conversations with models
- Switch quickly between models
- Connect to remote Ollama servers to run models

Binary file not shown.

Before

Width:  |  Height:  |  Size: 7.3 KiB

View File

@@ -1,17 +0,0 @@
package assets
import (
"embed"
"io/fs"
)
//go:embed *.ico
var icons embed.FS
func ListIcons() ([]string, error) {
return fs.Glob(icons, "*")
}
func GetIcon(filename string) ([]byte, error) {
return icons.ReadFile(filename)
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 403 B

View File

Before

Width:  |  Height:  |  Size: 741 B

After

Width:  |  Height:  |  Size: 741 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 445 B

View File

Before

Width:  |  Height:  |  Size: 891 B

After

Width:  |  Height:  |  Size: 891 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 76 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 89 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 91 KiB

View File

@@ -18,15 +18,12 @@ const config: ForgeConfig = {
asar: true,
icon: './assets/icon.icns',
extraResource: [
'../dist/ollama',
path.join(__dirname, './assets/iconTemplate.png'),
path.join(__dirname, './assets/iconTemplate@2x.png'),
path.join(__dirname, './assets/iconUpdateTemplate.png'),
path.join(__dirname, './assets/iconUpdateTemplate@2x.png'),
path.join(__dirname, './assets/iconDarkTemplate.png'),
path.join(__dirname, './assets/iconDarkTemplate@2x.png'),
path.join(__dirname, './assets/iconDarkUpdateTemplate.png'),
path.join(__dirname, './assets/iconDarkUpdateTemplate@2x.png'),
'../ollama',
path.join(__dirname, './assets/ollama_icon_16x16Template.png'),
path.join(__dirname, './assets/ollama_icon_16x16Template@2x.png'),
path.join(__dirname, './assets/ollama_outline_icon_16x16Template.png'),
path.join(__dirname, './assets/ollama_outline_icon_16x16Template@2x.png'),
...(process.platform === 'darwin' ? ['../llama/ggml-metal.metal'] : []),
],
...(process.env.SIGN
? {
@@ -41,12 +38,19 @@ const config: ForgeConfig = {
},
}
: {}),
osxUniversal: {
x64ArchFiles: '**/ollama',
},
},
rebuildConfig: {},
makers: [new MakerSquirrel({}), new MakerZIP({}, ['darwin'])],
publishers: [
new PublisherGithub({
repository: {
name: 'ollama',
owner: 'jmorganca',
},
draft: false,
prerelease: true,
}),
],
hooks: {
readPackageJson: async (_, packageJson) => {
return { ...packageJson, version: process.env.VERSION || packageJson.version }

View File

@@ -1,9 +0,0 @@
//go:build !windows
package lifecycle
import "fmt"
func GetStarted() error {
return fmt.Errorf("GetStarted not implemented")
}

View File

@@ -1,44 +0,0 @@
package lifecycle
import (
"fmt"
"log/slog"
"os"
"os/exec"
"path/filepath"
"syscall"
)
func GetStarted() error {
const CREATE_NEW_CONSOLE = 0x00000010
var err error
bannerScript := filepath.Join(AppDir, "ollama_welcome.ps1")
args := []string{
// TODO once we're signed, the execution policy bypass should be removed
"powershell", "-noexit", "-ExecutionPolicy", "Bypass", "-nologo", "-file", bannerScript,
}
args[0], err = exec.LookPath(args[0])
if err != nil {
return err
}
// Make sure the script actually exists
_, err = os.Stat(bannerScript)
if err != nil {
return fmt.Errorf("getting started banner script error %s", err)
}
slog.Info(fmt.Sprintf("opening getting started terminal with %v", args))
attrs := &os.ProcAttr{
Files: []*os.File{os.Stdin, os.Stdout, os.Stderr},
Sys: &syscall.SysProcAttr{CreationFlags: CREATE_NEW_CONSOLE, HideWindow: false},
}
proc, err := os.StartProcess(args[0], args, attrs)
if err != nil {
return fmt.Errorf("unable to start getting started shell %w", err)
}
slog.Debug(fmt.Sprintf("getting started terminal PID: %d", proc.Pid))
return proc.Release()
}

View File

@@ -1,92 +0,0 @@
package lifecycle
import (
"context"
"fmt"
"log"
"log/slog"
"os"
"os/signal"
"syscall"
"github.com/jmorganca/ollama/app/store"
"github.com/jmorganca/ollama/app/tray"
)
func Run() {
InitLogging()
ctx, cancel := context.WithCancel(context.Background())
var done chan int
t, err := tray.NewTray()
if err != nil {
log.Fatalf("Failed to start: %s", err)
}
callbacks := t.GetCallbacks()
signals := make(chan os.Signal, 1)
signal.Notify(signals, syscall.SIGINT, syscall.SIGTERM)
go func() {
slog.Debug("starting callback loop")
for {
select {
case <-callbacks.Quit:
slog.Debug("quit called")
t.Quit()
case <-signals:
slog.Debug("shutting down due to signal")
t.Quit()
case <-callbacks.Update:
err := DoUpgrade(cancel, done)
if err != nil {
slog.Warn(fmt.Sprintf("upgrade attempt failed: %s", err))
}
case <-callbacks.ShowLogs:
ShowLogs()
case <-callbacks.DoFirstUse:
err := GetStarted()
if err != nil {
slog.Warn(fmt.Sprintf("Failed to launch getting started shell: %s", err))
}
}
}
}()
// Are we first use?
if !store.GetFirstTimeRun() {
slog.Debug("First time run")
err = t.DisplayFirstUseNotification()
if err != nil {
slog.Debug(fmt.Sprintf("XXX failed to display first use notification %v", err))
}
store.SetFirstTimeRun(true)
} else {
slog.Debug("Not first time, skipping first run notification")
}
if IsServerRunning(ctx) {
slog.Info("Detected another instance of ollama running, exiting")
os.Exit(1)
} else {
done, err = SpawnServer(ctx, CLIName)
if err != nil {
// TODO - should we retry in a backoff loop?
// TODO - should we pop up a warning and maybe add a menu item to view application logs?
slog.Error(fmt.Sprintf("Failed to spawn ollama server %s", err))
done = make(chan int, 1)
done <- 1
}
}
StartBackgroundUpdaterChecker(ctx, t.UpdateAvailable)
t.Run()
cancel()
slog.Info("Waiting for ollama server to shutdown...")
if done != nil {
<-done
}
slog.Info("Ollama app exiting")
}

View File

@@ -1,46 +0,0 @@
package lifecycle
import (
"fmt"
"log/slog"
"os"
"path/filepath"
)
func InitLogging() {
level := slog.LevelInfo
if debug := os.Getenv("OLLAMA_DEBUG"); debug != "" {
level = slog.LevelDebug
}
var logFile *os.File
var err error
// Detect if we're a GUI app on windows, and if not, send logs to console
if os.Stderr.Fd() != 0 {
// Console app detected
logFile = os.Stderr
// TODO - write one-line to the app.log file saying we're running in console mode to help avoid confusion
} else {
logFile, err = os.OpenFile(AppLogFile, os.O_APPEND|os.O_WRONLY|os.O_CREATE, 0755)
if err != nil {
slog.Error(fmt.Sprintf("failed to create server log %v", err))
return
}
}
handler := slog.NewTextHandler(logFile, &slog.HandlerOptions{
Level: level,
AddSource: true,
ReplaceAttr: func(_ []string, attr slog.Attr) slog.Attr {
if attr.Key == slog.SourceKey {
source := attr.Value.Any().(*slog.Source)
source.File = filepath.Base(source.File)
}
return attr
},
})
slog.SetDefault(slog.New(handler))
slog.Info("ollama app started")
}

View File

@@ -1,9 +0,0 @@
//go:build !windows
package lifecycle
import "log/slog"
func ShowLogs() {
slog.Warn("ShowLogs not yet implemented")
}

View File

@@ -1,19 +0,0 @@
package lifecycle
import (
"fmt"
"log/slog"
"os/exec"
"syscall"
)
func ShowLogs() {
cmd_path := "c:\\Windows\\system32\\cmd.exe"
slog.Debug(fmt.Sprintf("viewing logs with start %s", AppDataDir))
cmd := exec.Command(cmd_path, "/c", "start", AppDataDir)
cmd.SysProcAttr = &syscall.SysProcAttr{HideWindow: false, CreationFlags: 0x08000000}
err := cmd.Start()
if err != nil {
slog.Error(fmt.Sprintf("Failed to open log dir: %s", err))
}
}

View File

@@ -1,79 +0,0 @@
package lifecycle
import (
"errors"
"fmt"
"log/slog"
"os"
"path/filepath"
"runtime"
"strings"
)
var (
AppName = "ollama app"
CLIName = "ollama"
AppDir = "/opt/Ollama"
AppDataDir = "/opt/Ollama"
// TODO - should there be a distinct log dir?
UpdateStageDir = "/tmp"
AppLogFile = "/tmp/ollama_app.log"
ServerLogFile = "/tmp/ollama.log"
UpgradeLogFile = "/tmp/ollama_update.log"
Installer = "OllamaSetup.exe"
)
func init() {
if runtime.GOOS == "windows" {
AppName += ".exe"
CLIName += ".exe"
// Logs, configs, downloads go to LOCALAPPDATA
localAppData := os.Getenv("LOCALAPPDATA")
AppDataDir = filepath.Join(localAppData, "Ollama")
UpdateStageDir = filepath.Join(AppDataDir, "updates")
AppLogFile = filepath.Join(AppDataDir, "app.log")
ServerLogFile = filepath.Join(AppDataDir, "server.log")
UpgradeLogFile = filepath.Join(AppDataDir, "upgrade.log")
// Executables are stored in APPDATA
AppDir = filepath.Join(localAppData, "Programs", "Ollama")
// Make sure we have PATH set correctly for any spawned children
paths := strings.Split(os.Getenv("PATH"), ";")
// Start with whatever we find in the PATH/LD_LIBRARY_PATH
found := false
for _, path := range paths {
d, err := filepath.Abs(path)
if err != nil {
continue
}
if strings.EqualFold(AppDir, d) {
found = true
}
}
if !found {
paths = append(paths, AppDir)
pathVal := strings.Join(paths, ";")
slog.Debug("setting PATH=" + pathVal)
err := os.Setenv("PATH", pathVal)
if err != nil {
slog.Error(fmt.Sprintf("failed to update PATH: %s", err))
}
}
// Make sure our logging dir exists
_, err := os.Stat(AppDataDir)
if errors.Is(err, os.ErrNotExist) {
if err := os.MkdirAll(AppDataDir, 0o755); err != nil {
slog.Error(fmt.Sprintf("create ollama dir %s: %v", AppDataDir, err))
}
}
} else if runtime.GOOS == "darwin" {
// TODO
AppName += ".app"
// } else if runtime.GOOS == "linux" {
// TODO
}
}

View File

@@ -1,139 +0,0 @@
package lifecycle
import (
"context"
"errors"
"fmt"
"io"
"log/slog"
"os"
"os/exec"
"path/filepath"
"time"
"github.com/jmorganca/ollama/api"
)
func getCLIFullPath(command string) string {
cmdPath := ""
appExe, err := os.Executable()
if err == nil {
cmdPath = filepath.Join(filepath.Dir(appExe), command)
_, err := os.Stat(cmdPath)
if err == nil {
return cmdPath
}
}
cmdPath, err = exec.LookPath(command)
if err == nil {
_, err := os.Stat(cmdPath)
if err == nil {
return cmdPath
}
}
pwd, err := os.Getwd()
if err == nil {
cmdPath = filepath.Join(pwd, command)
_, err = os.Stat(cmdPath)
if err == nil {
return cmdPath
}
}
return command
}
func SpawnServer(ctx context.Context, command string) (chan int, error) {
done := make(chan int)
logDir := filepath.Dir(ServerLogFile)
_, err := os.Stat(logDir)
if errors.Is(err, os.ErrNotExist) {
if err := os.MkdirAll(logDir, 0o755); err != nil {
return done, fmt.Errorf("create ollama server log dir %s: %v", logDir, err)
}
}
cmd := getCmd(ctx, getCLIFullPath(command))
// send stdout and stderr to a file
stdout, err := cmd.StdoutPipe()
if err != nil {
return done, fmt.Errorf("failed to spawn server stdout pipe %s", err)
}
stderr, err := cmd.StderrPipe()
if err != nil {
return done, fmt.Errorf("failed to spawn server stderr pipe %s", err)
}
stdin, err := cmd.StdinPipe()
if err != nil {
return done, fmt.Errorf("failed to spawn server stdin pipe %s", err)
}
// TODO - rotation
logFile, err := os.OpenFile(ServerLogFile, os.O_APPEND|os.O_WRONLY|os.O_CREATE, 0755)
if err != nil {
return done, fmt.Errorf("failed to create server log %w", err)
}
go func() {
defer logFile.Close()
io.Copy(logFile, stdout) //nolint:errcheck
}()
go func() {
defer logFile.Close()
io.Copy(logFile, stderr) //nolint:errcheck
}()
// run the command and wait for it to finish
if err := cmd.Start(); err != nil {
return done, fmt.Errorf("failed to start server %w", err)
}
if cmd.Process != nil {
slog.Info(fmt.Sprintf("started ollama server with pid %d", cmd.Process.Pid))
}
slog.Info(fmt.Sprintf("ollama server logs %s", ServerLogFile))
go func() {
// Keep the server running unless we're shuttind down the app
crashCount := 0
for {
cmd.Wait() //nolint:errcheck
stdin.Close()
var code int
if cmd.ProcessState != nil {
code = cmd.ProcessState.ExitCode()
}
select {
case <-ctx.Done():
slog.Debug(fmt.Sprintf("server shutdown with exit code %d", code))
done <- code
return
default:
crashCount++
slog.Warn(fmt.Sprintf("server crash %d - exit code %d - respawning", crashCount, code))
time.Sleep(500 * time.Millisecond)
if err := cmd.Start(); err != nil {
slog.Error(fmt.Sprintf("failed to restart server %s", err))
// Keep trying, but back off if we keep failing
time.Sleep(time.Duration(crashCount) * time.Second)
}
}
}
}()
return done, nil
}
func IsServerRunning(ctx context.Context) bool {
client, err := api.ClientFromEnvironment()
if err != nil {
slog.Info("unable to connect to server")
return false
}
err = client.Heartbeat(ctx)
if err != nil {
slog.Debug(fmt.Sprintf("heartbeat from server: %s", err))
slog.Info("unable to connect to server")
return false
}
return true
}

View File

@@ -1,12 +0,0 @@
//go:build !windows
package lifecycle
import (
"context"
"os/exec"
)
func getCmd(ctx context.Context, cmd string) *exec.Cmd {
return exec.CommandContext(ctx, cmd, "serve")
}

View File

@@ -1,13 +0,0 @@
package lifecycle
import (
"context"
"os/exec"
"syscall"
)
func getCmd(ctx context.Context, exePath string) *exec.Cmd {
cmd := exec.CommandContext(ctx, exePath, "serve")
cmd.SysProcAttr = &syscall.SysProcAttr{HideWindow: true, CreationFlags: 0x08000000}
return cmd
}

View File

@@ -1,223 +0,0 @@
package lifecycle
import (
"context"
"crypto/rand"
"encoding/json"
"errors"
"fmt"
"io"
"log/slog"
"mime"
"net/http"
"net/url"
"os"
"path"
"path/filepath"
"runtime"
"strings"
"time"
"github.com/jmorganca/ollama/auth"
"github.com/jmorganca/ollama/version"
)
var (
UpdateCheckURLBase = "https://ollama.com/api/update"
UpdateDownloaded = false
UpdateCheckInterval = 60 * 60 * time.Second
)
// TODO - maybe move up to the API package?
type UpdateResponse struct {
UpdateURL string `json:"url"`
UpdateVersion string `json:"version"`
}
func IsNewReleaseAvailable(ctx context.Context) (bool, UpdateResponse) {
var updateResp UpdateResponse
requestURL, err := url.Parse(UpdateCheckURLBase)
if err != nil {
return false, updateResp
}
query := requestURL.Query()
query.Add("os", runtime.GOOS)
query.Add("arch", runtime.GOARCH)
query.Add("version", version.Version)
query.Add("ts", fmt.Sprintf("%d", time.Now().Unix()))
nonce, err := auth.NewNonce(rand.Reader, 16)
if err != nil {
return false, updateResp
}
query.Add("nonce", nonce)
requestURL.RawQuery = query.Encode()
data := []byte(fmt.Sprintf("%s,%s", http.MethodGet, requestURL.RequestURI()))
signature, err := auth.Sign(ctx, data)
if err != nil {
return false, updateResp
}
req, err := http.NewRequestWithContext(ctx, http.MethodGet, requestURL.String(), nil)
if err != nil {
slog.Warn(fmt.Sprintf("failed to check for update: %s", err))
return false, updateResp
}
req.Header.Set("Authorization", signature)
req.Header.Set("User-Agent", fmt.Sprintf("ollama/%s (%s %s) Go/%s", version.Version, runtime.GOARCH, runtime.GOOS, runtime.Version()))
slog.Debug("checking for available update", "requestURL", requestURL)
resp, err := http.DefaultClient.Do(req)
if err != nil {
slog.Warn(fmt.Sprintf("failed to check for update: %s", err))
return false, updateResp
}
defer resp.Body.Close()
if resp.StatusCode == 204 {
slog.Debug("check update response 204 (current version is up to date)")
return false, updateResp
}
body, err := io.ReadAll(resp.Body)
if err != nil {
slog.Warn(fmt.Sprintf("failed to read body response: %s", err))
}
err = json.Unmarshal(body, &updateResp)
if err != nil {
slog.Warn(fmt.Sprintf("malformed response checking for update: %s", err))
return false, updateResp
}
// Extract the version string from the URL in the github release artifact path
updateResp.UpdateVersion = path.Base(path.Dir(updateResp.UpdateURL))
slog.Info("New update available at " + updateResp.UpdateURL)
return true, updateResp
}
func DownloadNewRelease(ctx context.Context, updateResp UpdateResponse) error {
// Do a head first to check etag info
req, err := http.NewRequestWithContext(ctx, http.MethodHead, updateResp.UpdateURL, nil)
if err != nil {
return err
}
resp, err := http.DefaultClient.Do(req)
if err != nil {
return fmt.Errorf("error checking update: %w", err)
}
if resp.StatusCode != 200 {
return fmt.Errorf("unexpected status attempting to download update %d", resp.StatusCode)
}
resp.Body.Close()
etag := strings.Trim(resp.Header.Get("etag"), "\"")
if etag == "" {
slog.Debug("no etag detected, falling back to filename based dedup")
etag = "_"
}
filename := Installer
_, params, err := mime.ParseMediaType(resp.Header.Get("content-disposition"))
if err == nil {
filename = params["filename"]
}
stageFilename := filepath.Join(UpdateStageDir, etag, filename)
// Check to see if we already have it downloaded
_, err = os.Stat(stageFilename)
if err == nil {
slog.Info("update already downloaded")
return nil
}
cleanupOldDownloads()
req.Method = http.MethodGet
resp, err = http.DefaultClient.Do(req)
if err != nil {
return fmt.Errorf("error checking update: %w", err)
}
defer resp.Body.Close()
etag = strings.Trim(resp.Header.Get("etag"), "\"")
if etag == "" {
slog.Debug("no etag detected, falling back to filename based dedup") // TODO probably can get rid of this redundant log
etag = "_"
}
stageFilename = filepath.Join(UpdateStageDir, etag, filename)
_, err = os.Stat(filepath.Dir(stageFilename))
if errors.Is(err, os.ErrNotExist) {
if err := os.MkdirAll(filepath.Dir(stageFilename), 0o755); err != nil {
return fmt.Errorf("create ollama dir %s: %v", filepath.Dir(stageFilename), err)
}
}
payload, err := io.ReadAll(resp.Body)
if err != nil {
return fmt.Errorf("failed to read body response: %w", err)
}
fp, err := os.OpenFile(stageFilename, os.O_WRONLY|os.O_CREATE|os.O_TRUNC, 0o755)
if err != nil {
return fmt.Errorf("write payload %s: %w", stageFilename, err)
}
defer fp.Close()
if n, err := fp.Write(payload); err != nil || n != len(payload) {
return fmt.Errorf("write payload %s: %d vs %d -- %w", stageFilename, n, len(payload), err)
}
slog.Info("new update downloaded " + stageFilename)
UpdateDownloaded = true
return nil
}
func cleanupOldDownloads() {
files, err := os.ReadDir(UpdateStageDir)
if err != nil && errors.Is(err, os.ErrNotExist) {
// Expected behavior on first run
return
} else if err != nil {
slog.Warn(fmt.Sprintf("failed to list stage dir: %s", err))
return
}
for _, file := range files {
fullname := filepath.Join(UpdateStageDir, file.Name())
slog.Debug("cleaning up old download: " + fullname)
err = os.RemoveAll(fullname)
if err != nil {
slog.Warn(fmt.Sprintf("failed to cleanup stale update download %s", err))
}
}
}
func StartBackgroundUpdaterChecker(ctx context.Context, cb func(string) error) {
go func() {
// Don't blast an update message immediately after startup
// time.Sleep(30 * time.Second)
time.Sleep(3 * time.Second)
for {
available, resp := IsNewReleaseAvailable(ctx)
if available {
err := DownloadNewRelease(ctx, resp)
if err != nil {
slog.Error(fmt.Sprintf("failed to download new release: %s", err))
}
err = cb(resp.UpdateVersion)
if err != nil {
slog.Warn(fmt.Sprintf("failed to register update available with tray: %s", err))
}
}
select {
case <-ctx.Done():
slog.Debug("stopping background update checker")
return
default:
time.Sleep(UpdateCheckInterval)
}
}
}()
}

View File

@@ -1,12 +0,0 @@
//go:build !windows
package lifecycle
import (
"context"
"fmt"
)
func DoUpgrade(cancel context.CancelFunc, done chan int) error {
return fmt.Errorf("DoUpgrade not yet implemented")
}

View File

@@ -1,80 +0,0 @@
package lifecycle
import (
"context"
"fmt"
"log/slog"
"os"
"os/exec"
"path/filepath"
)
func DoUpgrade(cancel context.CancelFunc, done chan int) error {
files, err := filepath.Glob(filepath.Join(UpdateStageDir, "*", "*.exe")) // TODO generalize for multiplatform
if err != nil {
return fmt.Errorf("failed to lookup downloads: %s", err)
}
if len(files) == 0 {
return fmt.Errorf("no update downloads found")
} else if len(files) > 1 {
// Shouldn't happen
slog.Warn(fmt.Sprintf("multiple downloads found, using first one %v", files))
}
installerExe := files[0]
slog.Info("starting upgrade with " + installerExe)
slog.Info("upgrade log file " + UpgradeLogFile)
// When running in debug mode, we'll be "verbose" and let the installer pop up and prompt
installArgs := []string{
"/CLOSEAPPLICATIONS", // Quit the tray app if it's still running
"/LOG=" + filepath.Base(UpgradeLogFile), // Only relative seems reliable, so set pwd
"/FORCECLOSEAPPLICATIONS", // Force close the tray app - might be needed
}
// When we're not in debug mode, make the upgrade as quiet as possible (no GUI, no prompts)
// TODO - temporarily disable since we're pinning in debug mode for the preview
// if debug := os.Getenv("OLLAMA_DEBUG"); debug == "" {
installArgs = append(installArgs,
"/SP", // Skip the "This will install... Do you wish to continue" prompt
"/SUPPRESSMSGBOXES",
"/SILENT",
"/VERYSILENT",
)
// }
// Safeguard in case we have requests in flight that need to drain...
slog.Info("Waiting for server to shutdown")
cancel()
if done != nil {
<-done
} else {
// Shouldn't happen
slog.Warn("done chan was nil, not actually waiting")
}
slog.Debug(fmt.Sprintf("starting installer: %s %v", installerExe, installArgs))
os.Chdir(filepath.Dir(UpgradeLogFile)) //nolint:errcheck
cmd := exec.Command(installerExe, installArgs...)
if err := cmd.Start(); err != nil {
return fmt.Errorf("unable to start ollama app %w", err)
}
if cmd.Process != nil {
err = cmd.Process.Release()
if err != nil {
slog.Error(fmt.Sprintf("failed to release server process: %s", err))
}
} else {
// TODO - some details about why it didn't start, or is this a pedantic error case?
return fmt.Errorf("installer process did not start")
}
// TODO should we linger for a moment and check to make sure it's actually running by checking the pid?
slog.Info("Installer started in background, exiting")
os.Exit(0)
// Not reached
return nil
}

View File

@@ -1,12 +0,0 @@
package main
// Compile with the following to get rid of the cmd pop up on windows
// go build -ldflags="-H windowsgui" .
import (
"github.com/jmorganca/ollama/app/lifecycle"
)
func main() {
lifecycle.Run()
}

View File

@@ -1,153 +0,0 @@
; Inno Setup Installer for Ollama
;
; To build the installer use the build script invoked from the top of the source tree
;
; powershell -ExecutionPolicy Bypass -File .\scripts\build_windows.ps
#define MyAppName "Ollama"
#if GetEnv("PKG_VERSION") != ""
#define MyAppVersion GetEnv("PKG_VERSION")
#else
#define MyAppVersion "0.0.0"
#endif
#define MyAppPublisher "Ollama"
#define MyAppURL "https://ollama.com/"
#define MyAppExeName "ollama app.exe"
#define MyIcon ".\assets\app.ico"
[Setup]
; NOTE: The value of AppId uniquely identifies this application. Do not use the same AppId value in installers for other applications.
; (To generate a new GUID, click Tools | Generate GUID inside the IDE.)
AppId={{44E83376-CE68-45EB-8FC1-393500EB558C}
AppName={#MyAppName}
AppVersion={#MyAppVersion}
VersionInfoVersion={#MyAppVersion}
;AppVerName={#MyAppName} {#MyAppVersion}
AppPublisher={#MyAppPublisher}
AppPublisherURL={#MyAppURL}
AppSupportURL={#MyAppURL}
AppUpdatesURL={#MyAppURL}
ArchitecturesAllowed=x64
ArchitecturesInstallIn64BitMode=x64
DefaultDirName={localappdata}\Programs\{#MyAppName}
DefaultGroupName={#MyAppName}
DisableProgramGroupPage=yes
PrivilegesRequired=lowest
OutputBaseFilename="OllamaSetup"
SetupIconFile={#MyIcon}
UninstallDisplayIcon={uninstallexe}
Compression=lzma2
SolidCompression=no
WizardStyle=modern
ChangesEnvironment=yes
OutputDir=..\dist\
; Disable logging once everything's battle tested
; Filename will be %TEMP%\Setup Log*.txt
SetupLogging=yes
CloseApplications=yes
RestartApplications=no
; Make sure they can at least download llama2 as a minimum
ExtraDiskSpaceRequired=3826806784
; https://jrsoftware.org/ishelp/index.php?topic=setup_wizardimagefile
WizardSmallImageFile=.\assets\setup.bmp
; TODO verifty actual min windows version...
; OG Win 10
MinVersion=10.0.10240
; First release that supports WinRT UI Composition for win32 apps
; MinVersion=10.0.17134
; First release with XAML Islands - possible UI path forward
; MinVersion=10.0.18362
; quiet...
DisableDirPage=yes
DisableFinishedPage=yes
DisableReadyMemo=yes
DisableReadyPage=yes
DisableStartupPrompt=yes
DisableWelcomePage=yes
; TODO - percentage can't be set less than 100, so how to make it shorter?
; WizardSizePercent=100,80
#if GetEnv("KEY_CONTAINER")
SignTool=MySignTool
SignedUninstaller=yes
#endif
SetupMutex=OllamaSetupMutex
[Languages]
Name: "english"; MessagesFile: "compiler:Default.isl"
[LangOptions]
DialogFontSize=12
[Files]
Source: ".\app.exe"; DestDir: "{app}"; DestName: "{#MyAppExeName}" ; Flags: ignoreversion 64bit
Source: "..\ollama.exe"; DestDir: "{app}"; Flags: ignoreversion 64bit
Source: "..\dist\windeps\*.dll"; DestDir: "{app}"; Flags: ignoreversion 64bit
Source: "..\dist\ollama_welcome.ps1"; DestDir: "{app}"; Flags: ignoreversion
Source: ".\assets\app.ico"; DestDir: "{app}"; Flags: ignoreversion
[Icons]
Name: "{group}\{#MyAppName}"; Filename: "{app}\{#MyAppExeName}"; IconFilename: "{app}\app.ico"
Name: "{userstartup}\{#MyAppName}"; Filename: "{app}\{#MyAppExeName}"; IconFilename: "{app}\app.ico"
Name: "{userprograms}\{#MyAppName}"; Filename: "{app}\{#MyAppExeName}"; IconFilename: "{app}\app.ico"
[Run]
Filename: "{cmd}"; Parameters: "/C set PATH={app};%PATH% & ""{app}\{#MyAppExeName}"""; Flags: postinstall nowait runhidden
[UninstallRun]
; Filename: "{cmd}"; Parameters: "/C ""taskkill /im ''{#MyAppExeName}'' /f /t"; Flags: runhidden
; Filename: "{cmd}"; Parameters: "/C ""taskkill /im ollama.exe /f /t"; Flags: runhidden
Filename: "taskkill"; Parameters: "/im ""{#MyAppExeName}"" /f /t"; Flags: runhidden
Filename: "taskkill"; Parameters: "/im ""ollama.exe"" /f /t"; Flags: runhidden
; HACK! need to give the server and app enough time to exit
; TODO - convert this to a Pascal code script so it waits until they're no longer running, then completes
Filename: "{cmd}"; Parameters: "/c timeout 5"; Flags: runhidden
[UninstallDelete]
Type: filesandordirs; Name: "{%TEMP}\ollama*"
Type: filesandordirs; Name: "{%LOCALAPPDATA}\Ollama"
Type: filesandordirs; Name: "{%LOCALAPPDATA}\Programs\Ollama"
Type: filesandordirs; Name: "{%USERPROFILE}\.ollama"
; NOTE: if the user has a custom OLLAMA_MODELS it will be preserved
[Messages]
WizardReady=Ollama Windows Preview
ReadyLabel1=%nLet's get you up and running with your own large language models.
SetupAppRunningError=Another Ollama installer is running.%n%nPlease cancel or finish the other installer, then click OK to continue with this install, or Cancel to exit.
;FinishedHeadingLabel=Run your first model
;FinishedLabel=%nRun this command in a PowerShell or cmd terminal.%n%n%n ollama run llama2
;ClickFinish=%n
[Registry]
Root: HKCU; Subkey: "Environment"; \
ValueType: expandsz; ValueName: "Path"; ValueData: "{olddata};{app}"; \
Check: NeedsAddPath('{app}')
[Code]
function NeedsAddPath(Param: string): boolean;
var
OrigPath: string;
begin
if not RegQueryStringValue(HKEY_CURRENT_USER,
'Environment',
'Path', OrigPath)
then begin
Result := True;
exit;
end;
{ look for the path with leading and trailing semicolon }
{ Pos() returns 0 if not found }
Result := Pos(';' + ExpandConstant(Param) + ';', ';' + OrigPath + ';') = 0;
end;

View File

@@ -1,29 +0,0 @@
#include <winver.h>
VS_VERSION_INFO VERSIONINFO
FILEFLAGSMASK 0x3fL
#ifdef _DEBUG
FILEFLAGS 0x1L
#else
FILEFLAGS 0x0L
#endif
FILEOS 0x40004L
FILETYPE 0x1L
FILESUBTYPE 0x0L
BEGIN
BLOCK "StringFileInfo"
BEGIN
BLOCK "040904b0"
BEGIN
VALUE "FileDescription", "Ollama"
VALUE "InternalName", "Ollama"
VALUE "OriginalFilename", "ollama app.exe"
VALUE "ProductName", "Ollama"
END
END
BLOCK "VarFileInfo"
BEGIN
VALUE "Translation", 0x409, 1200
END
END

View File

@@ -1,8 +0,0 @@
# TODO - consider ANSI colors and maybe ASCII art...
write-host ""
write-host "Welcome to Ollama!"
write-host ""
write-host "Run your first model:"
write-host ""
write-host "`tollama run llama2"
write-host ""

File diff suppressed because it is too large Load Diff

View File

@@ -6,10 +6,10 @@
"main": ".webpack/main",
"scripts": {
"start": "electron-forge start",
"package": "electron-forge package --arch universal",
"package:sign": "SIGN=1 electron-forge package --arch universal",
"make": "electron-forge make --arch universal",
"make:sign": "SIGN=1 electron-forge make --arch universal",
"package": "electron-forge package",
"package:sign": "SIGN=1 electron-forge package",
"make": "electron-forge make",
"make:sign": "SIGN=1 electron-forge make",
"publish": "SIGN=1 electron-forge publish",
"lint": "eslint --ext .ts,.tsx .",
"format": "prettier --check . --ignore-path .gitignore",
@@ -32,7 +32,6 @@
"@electron-forge/plugin-auto-unpack-natives": "^6.2.1",
"@electron-forge/plugin-webpack": "^6.2.1",
"@electron-forge/publisher-github": "^6.2.1",
"@electron/universal": "^1.4.1",
"@svgr/webpack": "^8.0.1",
"@types/chmodr": "^1.0.0",
"@types/node": "^20.4.0",
@@ -46,7 +45,7 @@
"chmodr": "^1.2.0",
"copy-webpack-plugin": "^11.0.0",
"css-loader": "^6.8.1",
"electron": "25.9.2",
"electron": "25.2.0",
"eslint": "^8.43.0",
"eslint-plugin-import": "^2.27.5",
"fork-ts-checker-webpack-plugin": "^7.3.0",

View File

@@ -2,7 +2,7 @@ import { useState } from 'react'
import copy from 'copy-to-clipboard'
import { CheckIcon, DocumentDuplicateIcon } from '@heroicons/react/24/outline'
import Store from 'electron-store'
import { getCurrentWindow, app } from '@electron/remote'
import { getCurrentWindow } from '@electron/remote'
import { install } from './install'
import OllamaIcon from './ollama.svg'
@@ -51,15 +51,10 @@ export default function () {
<div className='mx-auto'>
<button
onClick={async () => {
try {
await install()
setStep(Step.FINISH)
} catch (e) {
console.error('could not install: ', e)
} finally {
getCurrentWindow().show()
getCurrentWindow().focus()
}
await install()
getCurrentWindow().show()
getCurrentWindow().focus()
setStep(Step.FINISH)
}}
className='no-drag rounded-dm mx-auto w-[60%] rounded-md bg-black px-4 py-2 text-sm text-white hover:brightness-110'
>

View File

@@ -1,21 +1,17 @@
import { spawn, ChildProcess } from 'child_process'
import { app, autoUpdater, dialog, Tray, Menu, BrowserWindow, MenuItemConstructorOptions, nativeTheme } from 'electron'
import { spawn } from 'child_process'
import { app, autoUpdater, dialog, Tray, Menu, BrowserWindow, nativeTheme } from 'electron'
import Store from 'electron-store'
import winston from 'winston'
import 'winston-daily-rotate-file'
import * as path from 'path'
import { v4 as uuidv4 } from 'uuid'
import { analytics, id } from './telemetry'
import { installed } from './install'
require('@electron/remote/main').initialize()
if (require('electron-squirrel-startup')) {
app.quit()
}
const store = new Store()
let tray: Tray | null = null
let welcomeWindow: BrowserWindow | null = null
declare const MAIN_WINDOW_WEBPACK_ENTRY: string
@@ -32,30 +28,10 @@ const logger = winston.createLogger({
format: winston.format.printf(info => info.message),
})
app.on('ready', () => {
const gotTheLock = app.requestSingleInstanceLock()
if (!gotTheLock) {
app.exit(0)
return
}
app.on('second-instance', () => {
if (app.hasSingleInstanceLock()) {
app.releaseSingleInstanceLock()
}
if (proc) {
proc.off('exit', restart)
proc.kill()
}
app.exit(0)
})
app.focus({ steal: true })
init()
})
const SingleInstanceLock = app.requestSingleInstanceLock()
if (!SingleInstanceLock) {
app.quit()
}
function firstRunWindow() {
// Create the browser window.
@@ -71,74 +47,65 @@ function firstRunWindow() {
nodeIntegration: true,
contextIsolation: false,
},
alwaysOnTop: true,
})
require('@electron/remote/main').enable(welcomeWindow.webContents)
// and load the index.html of the app.
welcomeWindow.loadURL(MAIN_WINDOW_WEBPACK_ENTRY)
welcomeWindow.on('ready-to-show', () => welcomeWindow.show())
welcomeWindow.on('closed', () => {
if (process.platform === 'darwin') {
app.dock.hide()
// for debugging
// welcomeWindow.webContents.openDevTools()
if (process.platform === 'darwin') {
app.dock.hide()
}
}
function createSystemtray() {
let iconPath = nativeTheme.shouldUseDarkColors
? path.join(__dirname, '..', '..', 'assets', 'ollama_icon_16x16Template.png')
: path.join(__dirname, '..', '..', 'assets', 'ollama_outline_icon_16x16Template.png')
if (app.isPackaged) {
iconPath = nativeTheme.shouldUseDarkColors
? path.join(process.resourcesPath, 'ollama_icon_16x16Template.png')
: path.join(process.resourcesPath, 'ollama_outline_icon_16x16Template.png')
}
tray = new Tray(iconPath)
nativeTheme.on('updated', function theThemeHasChanged() {
if (nativeTheme.shouldUseDarkColors) {
app.isPackaged
? tray.setImage(path.join(process.resourcesPath, 'ollama_icon_16x16Template.png'))
: tray.setImage(path.join(__dirname, '..', '..', 'assets', 'ollama_icon_16x16Template.png'))
} else {
app.isPackaged
? tray.setImage(path.join(process.resourcesPath, 'ollama_outline_icon_16x16Template.png'))
: tray.setImage(path.join(__dirname, '..', '..', 'assets', 'ollama_outline_icon_16x16Template.png'))
}
})
const contextMenu = Menu.buildFromTemplate([{ role: 'quit', label: 'Quit Ollama', accelerator: 'Command+Q' }])
tray.setContextMenu(contextMenu)
tray.setToolTip('Ollama')
}
let tray: Tray | null = null
let updateAvailable = false
const assetPath = app.isPackaged ? process.resourcesPath : path.join(__dirname, '..', '..', 'assets')
function trayIconPath() {
return nativeTheme.shouldUseDarkColors
? updateAvailable
? path.join(assetPath, 'iconDarkUpdateTemplate.png')
: path.join(assetPath, 'iconDarkTemplate.png')
: updateAvailable
? path.join(assetPath, 'iconUpdateTemplate.png')
: path.join(assetPath, 'iconTemplate.png')
if (require('electron-squirrel-startup')) {
app.quit()
}
function updateTrayIcon() {
if (tray) {
tray.setImage(trayIconPath())
}
}
function updateTray() {
const updateItems: MenuItemConstructorOptions[] = [
{ label: 'An update is available', enabled: false },
{
label: 'Restart to update',
click: () => autoUpdater.quitAndInstall(),
},
{ type: 'separator' },
]
const menu = Menu.buildFromTemplate([
...(updateAvailable ? updateItems : []),
{ role: 'quit', label: 'Quit Ollama', accelerator: 'Command+Q' },
])
if (!tray) {
tray = new Tray(trayIconPath())
}
tray.setToolTip(updateAvailable ? 'An update is available' : 'Ollama')
tray.setContextMenu(menu)
tray.setImage(trayIconPath())
nativeTheme.off('updated', updateTrayIcon)
nativeTheme.on('updated', updateTrayIcon)
}
let proc: ChildProcess = null
function server() {
const binary = app.isPackaged
? path.join(process.resourcesPath, 'ollama')
: path.resolve(process.cwd(), '..', 'ollama')
proc = spawn(binary, ['serve'])
const proc = spawn(binary, ['serve'])
proc.stdout.on('data', data => {
logger.info(data.toString().trim())
@@ -148,75 +115,23 @@ function server() {
logger.error(data.toString().trim())
})
function restart() {
setTimeout(server, 3000)
}
proc.on('exit', restart)
}
function restart() {
setTimeout(server, 1000)
}
app.on('before-quit', () => {
if (proc) {
app.on('before-quit', () => {
proc.off('exit', restart)
proc.kill('SIGINT') // send SIGINT signal to the server, which also stops any loaded llms
}
})
const updateURL = `https://ollama.ai/api/update?os=${process.platform}&arch=${
process.arch
}&version=${app.getVersion()}&id=${id()}`
let latest = ''
async function isNewReleaseAvailable() {
try {
const response = await fetch(updateURL)
if (!response.ok) {
return false
}
if (response.status === 204) {
return false
}
const data = await response.json()
const url = data?.url
if (!url) {
return false
}
if (latest === url) {
return false
}
latest = url
return true
} catch (error) {
logger.error(`update check failed - ${error}`)
return false
}
proc.kill()
})
}
async function checkUpdate() {
const available = await isNewReleaseAvailable()
if (available) {
logger.info('checking for update')
autoUpdater.checkForUpdates()
}
if (process.platform === 'darwin') {
app.dock.hide()
}
function init() {
if (app.isPackaged) {
checkUpdate()
setInterval(() => {
checkUpdate()
}, 60 * 60 * 1000)
}
updateTray()
app.on('ready', () => {
if (process.platform === 'darwin') {
if (app.isPackaged) {
if (!app.isInApplicationsFolder()) {
@@ -252,13 +167,10 @@ function init() {
}
}
createSystemtray()
server()
if (store.get('first-time-run') && installed()) {
if (process.platform === 'darwin') {
app.dock.hide()
}
app.setLoginItemSettings({ openAtLogin: app.getLoginItemSettings().openAtLogin })
return
}
@@ -266,7 +178,7 @@ function init() {
// This is the first run or the CLI is no longer installed
app.setLoginItemSettings({ openAtLogin: true })
firstRunWindow()
}
})
// Quit when all windows are closed, except on macOS. There, it's common
// for applications and their menu bar to stay active until the user quits
@@ -277,26 +189,45 @@ app.on('window-all-closed', () => {
}
})
function id(): string {
const id = store.get('id') as string
// In this file you can include the rest of your app's specific main process
// code. You can also put them in separate files and import them here.
autoUpdater.setFeedURL({
url: `https://ollama.ai/api/update?os=${process.platform}&arch=${process.arch}&version=${app.getVersion()}`,
})
if (id) {
return id
}
const uuid = uuidv4()
store.set('id', uuid)
return uuid
async function heartbeat() {
analytics.track({
anonymousId: id(),
event: 'heartbeat',
properties: {
version: app.getVersion(),
},
})
}
autoUpdater.setFeedURL({ url: updateURL })
if (app.isPackaged) {
heartbeat()
autoUpdater.checkForUpdates()
setInterval(() => {
heartbeat()
autoUpdater.checkForUpdates()
}, 60 * 60 * 1000)
}
autoUpdater.on('error', e => {
logger.error(`update check failed - ${e.message}`)
console.error(`update check failed - ${e.message}`)
})
autoUpdater.on('update-downloaded', () => {
updateAvailable = true
updateTray()
autoUpdater.on('update-downloaded', (event, releaseNotes, releaseName) => {
dialog
.showMessageBox({
type: 'info',
buttons: ['Restart Now', 'Later'],
title: 'New update available',
message: process.platform === 'win32' ? releaseNotes : releaseName,
detail: 'A new version of Ollama is available. Restart to apply the update.',
})
.then(returnValue => {
if (returnValue.response === 0) autoUpdater.quitAndInstall()
})
})

View File

@@ -15,7 +15,12 @@ export function installed() {
export async function install() {
const command = `do shell script "mkdir -p ${path.dirname(
symlinkPath
)} && ln -F -s \\"${ollama}\\" \\"${symlinkPath}\\"" with administrator privileges`
)} && ln -F -s ${ollama} ${symlinkPath}" with administrator privileges`
await exec(`osascript -e '${command}'`)
try {
await exec(`osascript -e '${command}'`)
} catch (error) {
console.error(`cli: failed to install cli: ${error.message}`)
return
}
}

View File

Before

Width:  |  Height:  |  Size: 17 KiB

After

Width:  |  Height:  |  Size: 17 KiB

19
app/src/telemetry.ts Normal file
View File

@@ -0,0 +1,19 @@
import { Analytics } from '@segment/analytics-node'
import { v4 as uuidv4 } from 'uuid'
import Store from 'electron-store'
const store = new Store()
export const analytics = new Analytics({ writeKey: process.env.TELEMETRY_WRITE_KEY || '<empty>' })
export function id(): string {
const id = store.get('id') as string
if (id) {
return id
}
const uuid = uuidv4()
store.set('id', uuid)
return uuid
}

View File

@@ -1,98 +0,0 @@
package store
import (
"encoding/json"
"errors"
"fmt"
"log/slog"
"os"
"path/filepath"
"sync"
"github.com/google/uuid"
)
type Store struct {
ID string `json:"id"`
FirstTimeRun bool `json:"first-time-run"`
}
var (
lock sync.Mutex
store Store
)
func GetID() string {
lock.Lock()
defer lock.Unlock()
if store.ID == "" {
initStore()
}
return store.ID
}
func GetFirstTimeRun() bool {
lock.Lock()
defer lock.Unlock()
if store.ID == "" {
initStore()
}
return store.FirstTimeRun
}
func SetFirstTimeRun(val bool) {
lock.Lock()
defer lock.Unlock()
if store.FirstTimeRun == val {
return
}
store.FirstTimeRun = val
writeStore(getStorePath())
}
// lock must be held
func initStore() {
storeFile, err := os.Open(getStorePath())
if err == nil {
defer storeFile.Close()
err = json.NewDecoder(storeFile).Decode(&store)
if err == nil {
slog.Debug(fmt.Sprintf("loaded existing store %s - ID: %s", getStorePath(), store.ID))
return
}
} else if !errors.Is(err, os.ErrNotExist) {
slog.Debug(fmt.Sprintf("unexpected error searching for store: %s", err))
}
slog.Debug("initializing new store")
store.ID = uuid.New().String()
writeStore(getStorePath())
}
func writeStore(storeFilename string) {
ollamaDir := filepath.Dir(storeFilename)
_, err := os.Stat(ollamaDir)
if errors.Is(err, os.ErrNotExist) {
if err := os.MkdirAll(ollamaDir, 0o755); err != nil {
slog.Error(fmt.Sprintf("create ollama dir %s: %v", ollamaDir, err))
return
}
}
payload, err := json.Marshal(store)
if err != nil {
slog.Error(fmt.Sprintf("failed to marshal store: %s", err))
return
}
fp, err := os.OpenFile(storeFilename, os.O_WRONLY|os.O_CREATE|os.O_TRUNC, 0o755)
if err != nil {
slog.Error(fmt.Sprintf("write store payload %s: %v", storeFilename, err))
return
}
defer fp.Close()
if n, err := fp.Write(payload); err != nil || n != len(payload) {
slog.Error(fmt.Sprintf("write store payload %s: %d vs %d -- %v", storeFilename, n, len(payload), err))
return
}
slog.Debug("Store contents: " + string(payload))
slog.Info(fmt.Sprintf("wrote store: %s", storeFilename))
}

View File

@@ -1,13 +0,0 @@
package store
import (
"os"
"path/filepath"
)
func getStorePath() string {
// TODO - system wide location?
home := os.Getenv("HOME")
return filepath.Join(home, "Library", "Application Support", "Ollama", "config.json")
}

View File

@@ -1,16 +0,0 @@
package store
import (
"os"
"path/filepath"
)
func getStorePath() string {
if os.Geteuid() == 0 {
// TODO where should we store this on linux for system-wide operation?
return "/etc/ollama/config.json"
}
home := os.Getenv("HOME")
return filepath.Join(home, ".ollama", "config.json")
}

View File

@@ -1,11 +0,0 @@
package store
import (
"os"
"path/filepath"
)
func getStorePath() string {
localAppData := os.Getenv("LOCALAPPDATA")
return filepath.Join(localAppData, "Ollama", "config.json")
}

View File

@@ -1,24 +0,0 @@
package commontray
var (
Title = "Ollama"
ToolTip = "Ollama"
UpdateIconName = "tray_upgrade"
IconName = "tray"
)
type Callbacks struct {
Quit chan struct{}
Update chan struct{}
DoFirstUse chan struct{}
ShowLogs chan struct{}
}
type OllamaTray interface {
GetCallbacks() Callbacks
Run()
UpdateAvailable(ver string) error
DisplayFirstUseNotification() error
Quit()
}

View File

@@ -1,33 +0,0 @@
package tray
import (
"fmt"
"runtime"
"github.com/jmorganca/ollama/app/assets"
"github.com/jmorganca/ollama/app/tray/commontray"
)
func NewTray() (commontray.OllamaTray, error) {
extension := ".png"
if runtime.GOOS == "windows" {
extension = ".ico"
}
iconName := commontray.UpdateIconName + extension
updateIcon, err := assets.GetIcon(iconName)
if err != nil {
return nil, fmt.Errorf("failed to load icon %s: %w", iconName, err)
}
iconName = commontray.IconName + extension
icon, err := assets.GetIcon(iconName)
if err != nil {
return nil, fmt.Errorf("failed to load icon %s: %w", iconName, err)
}
tray, err := InitPlatformTray(icon, updateIcon)
if err != nil {
return nil, err
}
return tray, nil
}

View File

@@ -1,13 +0,0 @@
//go:build !windows
package tray
import (
"fmt"
"github.com/jmorganca/ollama/app/tray/commontray"
)
func InitPlatformTray(icon, updateIcon []byte) (commontray.OllamaTray, error) {
return nil, fmt.Errorf("NOT IMPLEMENTED YET")
}

View File

@@ -1,10 +0,0 @@
package tray
import (
"github.com/jmorganca/ollama/app/tray/commontray"
"github.com/jmorganca/ollama/app/tray/wintray"
)
func InitPlatformTray(icon, updateIcon []byte) (commontray.OllamaTray, error) {
return wintray.InitTray(icon, updateIcon)
}

View File

@@ -1,184 +0,0 @@
//go:build windows
package wintray
import (
"fmt"
"log/slog"
"sync"
"unsafe"
"golang.org/x/sys/windows"
)
var (
quitOnce sync.Once
)
func (t *winTray) Run() {
nativeLoop()
}
func nativeLoop() {
// Main message pump.
slog.Debug("starting event handling loop")
m := &struct {
WindowHandle windows.Handle
Message uint32
Wparam uintptr
Lparam uintptr
Time uint32
Pt point
LPrivate uint32
}{}
for {
ret, _, err := pGetMessage.Call(uintptr(unsafe.Pointer(m)), 0, 0, 0)
// If the function retrieves a message other than WM_QUIT, the return value is nonzero.
// If the function retrieves the WM_QUIT message, the return value is zero.
// If there is an error, the return value is -1
// https://msdn.microsoft.com/en-us/library/windows/desktop/ms644936(v=vs.85).aspx
switch int32(ret) {
case -1:
slog.Error(fmt.Sprintf("get message failure: %v", err))
return
case 0:
return
default:
pTranslateMessage.Call(uintptr(unsafe.Pointer(m))) //nolint:errcheck
pDispatchMessage.Call(uintptr(unsafe.Pointer(m))) //nolint:errcheck
}
}
}
// WindowProc callback function that processes messages sent to a window.
// https://msdn.microsoft.com/en-us/library/windows/desktop/ms633573(v=vs.85).aspx
func (t *winTray) wndProc(hWnd windows.Handle, message uint32, wParam, lParam uintptr) (lResult uintptr) {
const (
WM_RBUTTONUP = 0x0205
WM_LBUTTONUP = 0x0202
WM_COMMAND = 0x0111
WM_ENDSESSION = 0x0016
WM_CLOSE = 0x0010
WM_DESTROY = 0x0002
WM_MOUSEMOVE = 0x0200
WM_LBUTTONDOWN = 0x0201
)
switch message {
case WM_COMMAND:
menuItemId := int32(wParam)
// https://docs.microsoft.com/en-us/windows/win32/menurc/wm-command#menus
switch menuItemId {
case quitMenuID:
select {
case t.callbacks.Quit <- struct{}{}:
// should not happen but in case not listening
default:
slog.Error("no listener on Quit")
}
case updateMenuID:
select {
case t.callbacks.Update <- struct{}{}:
// should not happen but in case not listening
default:
slog.Error("no listener on Update")
}
case diagLogsMenuID:
select {
case t.callbacks.ShowLogs <- struct{}{}:
// should not happen but in case not listening
default:
slog.Error("no listener on ShowLogs")
}
default:
slog.Debug(fmt.Sprintf("Unexpected menu item id: %d", menuItemId))
}
case WM_CLOSE:
boolRet, _, err := pDestroyWindow.Call(uintptr(t.window))
if boolRet == 0 {
slog.Error(fmt.Sprintf("failed to destroy window: %s", err))
}
err = t.wcex.unregister()
if err != nil {
slog.Error(fmt.Sprintf("failed to uregister windo %s", err))
}
case WM_DESTROY:
// same as WM_ENDSESSION, but throws 0 exit code after all
defer pPostQuitMessage.Call(uintptr(int32(0))) //nolint:errcheck
fallthrough
case WM_ENDSESSION:
t.muNID.Lock()
if t.nid != nil {
err := t.nid.delete()
if err != nil {
slog.Error(fmt.Sprintf("failed to delete nid: %s", err))
}
}
t.muNID.Unlock()
case t.wmSystrayMessage:
switch lParam {
case WM_MOUSEMOVE, WM_LBUTTONDOWN:
// Ignore these...
case WM_RBUTTONUP, WM_LBUTTONUP:
err := t.showMenu()
if err != nil {
slog.Error(fmt.Sprintf("failed to show menu: %s", err))
}
case 0x405: // TODO - how is this magic value derived for the notification left click
if t.pendingUpdate {
select {
case t.callbacks.Update <- struct{}{}:
// should not happen but in case not listening
default:
slog.Error("no listener on Update")
}
} else {
select {
case t.callbacks.DoFirstUse <- struct{}{}:
// should not happen but in case not listening
default:
slog.Error("no listener on DoFirstUse")
}
}
case 0x404: // Middle click or close notification
// slog.Debug("doing nothing on close of first time notification")
default:
// 0x402 also seems common - what is it?
slog.Debug(fmt.Sprintf("unmanaged app message, lParm: 0x%x", lParam))
}
case t.wmTaskbarCreated: // on explorer.exe restarts
t.muNID.Lock()
err := t.nid.add()
if err != nil {
slog.Error(fmt.Sprintf("failed to refresh the taskbar on explorer restart: %s", err))
}
t.muNID.Unlock()
default:
// Calls the default window procedure to provide default processing for any window messages that an application does not process.
// https://msdn.microsoft.com/en-us/library/windows/desktop/ms633572(v=vs.85).aspx
lResult, _, _ = pDefWindowProc.Call(
uintptr(hWnd),
uintptr(message),
uintptr(wParam),
uintptr(lParam),
)
}
return
}
func (t *winTray) Quit() {
quitOnce.Do(quit)
}
func quit() {
boolRet, _, err := pPostMessage.Call(
uintptr(wt.window),
WM_CLOSE,
0,
0,
)
if boolRet == 0 {
slog.Error(fmt.Sprintf("failed to post close message on shutdown %s", err))
}
}

View File

@@ -1,71 +0,0 @@
//go:build windows
package wintray
import (
"fmt"
"log/slog"
"unsafe"
"golang.org/x/sys/windows"
)
const (
updatAvailableMenuID = 1
updateMenuID = updatAvailableMenuID + 1
separatorMenuID = updateMenuID + 1
diagLogsMenuID = separatorMenuID + 1
diagSeparatorMenuID = diagLogsMenuID + 1
quitMenuID = diagSeparatorMenuID + 1
)
func (t *winTray) initMenus() error {
if err := t.addOrUpdateMenuItem(diagLogsMenuID, 0, diagLogsMenuTitle, false); err != nil {
return fmt.Errorf("unable to create menu entries %w\n", err)
}
if err := t.addSeparatorMenuItem(diagSeparatorMenuID, 0); err != nil {
return fmt.Errorf("unable to create menu entries %w", err)
}
if err := t.addOrUpdateMenuItem(quitMenuID, 0, quitMenuTitle, false); err != nil {
return fmt.Errorf("unable to create menu entries %w\n", err)
}
return nil
}
func (t *winTray) UpdateAvailable(ver string) error {
if !t.updateNotified {
slog.Debug("updating menu and sending notification for new update")
if err := t.addOrUpdateMenuItem(updatAvailableMenuID, 0, updateAvailableMenuTitle, true); err != nil {
return fmt.Errorf("unable to create menu entries %w", err)
}
if err := t.addOrUpdateMenuItem(updateMenuID, 0, updateMenutTitle, false); err != nil {
return fmt.Errorf("unable to create menu entries %w", err)
}
if err := t.addSeparatorMenuItem(separatorMenuID, 0); err != nil {
return fmt.Errorf("unable to create menu entries %w", err)
}
iconFilePath, err := iconBytesToFilePath(wt.updateIcon)
if err != nil {
return fmt.Errorf("unable to write icon data to temp file: %w", err)
}
if err := wt.setIcon(iconFilePath); err != nil {
return fmt.Errorf("unable to set icon: %w", err)
}
t.updateNotified = true
t.pendingUpdate = true
// Now pop up the notification
t.muNID.Lock()
defer t.muNID.Unlock()
copy(t.nid.InfoTitle[:], windows.StringToUTF16(updateTitle))
copy(t.nid.Info[:], windows.StringToUTF16(fmt.Sprintf(updateMessage, ver)))
t.nid.Flags |= NIF_INFO
t.nid.Timeout = 10
t.nid.Size = uint32(unsafe.Sizeof(*wt.nid))
err = t.nid.modify()
if err != nil {
return err
}
}
return nil
}

View File

@@ -1,15 +0,0 @@
//go:build windows
package wintray
const (
firstTimeTitle = "Ollama is running"
firstTimeMessage = "Click here to get started"
updateTitle = "Update available"
updateMessage = "Ollama version %s is ready to install"
quitMenuTitle = "Quit Ollama"
updateAvailableMenuTitle = "An update is available"
updateMenutTitle = "Restart to update"
diagLogsMenuTitle = "View logs"
)

View File

@@ -1,66 +0,0 @@
//go:build windows
package wintray
import (
"unsafe"
"golang.org/x/sys/windows"
)
// Contains information that the system needs to display notifications in the notification area.
// Used by Shell_NotifyIcon.
// https://msdn.microsoft.com/en-us/library/windows/desktop/bb773352(v=vs.85).aspx
// https://msdn.microsoft.com/en-us/library/windows/desktop/bb762159
type notifyIconData struct {
Size uint32
Wnd windows.Handle
ID, Flags, CallbackMessage uint32
Icon windows.Handle
Tip [128]uint16
State, StateMask uint32
Info [256]uint16
// Timeout, Version uint32
Timeout uint32
InfoTitle [64]uint16
InfoFlags uint32
GuidItem windows.GUID
BalloonIcon windows.Handle
}
func (nid *notifyIconData) add() error {
const NIM_ADD = 0x00000000
res, _, err := pShellNotifyIcon.Call(
uintptr(NIM_ADD),
uintptr(unsafe.Pointer(nid)),
)
if res == 0 {
return err
}
return nil
}
func (nid *notifyIconData) modify() error {
const NIM_MODIFY = 0x00000001
res, _, err := pShellNotifyIcon.Call(
uintptr(NIM_MODIFY),
uintptr(unsafe.Pointer(nid)),
)
if res == 0 {
return err
}
return nil
}
func (nid *notifyIconData) delete() error {
const NIM_DELETE = 0x00000002
res, _, err := pShellNotifyIcon.Call(
uintptr(NIM_DELETE),
uintptr(unsafe.Pointer(nid)),
)
if res == 0 {
return err
}
return nil
}

View File

@@ -1,485 +0,0 @@
//go:build windows
package wintray
import (
"crypto/md5"
"encoding/hex"
"fmt"
"log/slog"
"os"
"path/filepath"
"sort"
"sync"
"unsafe"
"github.com/jmorganca/ollama/app/tray/commontray"
"golang.org/x/sys/windows"
)
// Helpful sources: https://github.com/golang/exp/blob/master/shiny/driver/internal/win32
// Contains information about loaded resources
type winTray struct {
instance,
icon,
cursor,
window windows.Handle
loadedImages map[string]windows.Handle
muLoadedImages sync.RWMutex
// menus keeps track of the submenus keyed by the menu item ID, plus 0
// which corresponds to the main popup menu.
menus map[uint32]windows.Handle
muMenus sync.RWMutex
menuOf map[uint32]windows.Handle
muMenuOf sync.RWMutex
// menuItemIcons maintains the bitmap of each menu item (if applies). It's
// needed to show the icon correctly when showing a previously hidden menu
// item again.
// menuItemIcons map[uint32]windows.Handle
// muMenuItemIcons sync.RWMutex
visibleItems map[uint32][]uint32
muVisibleItems sync.RWMutex
nid *notifyIconData
muNID sync.RWMutex
wcex *wndClassEx
wmSystrayMessage,
wmTaskbarCreated uint32
pendingUpdate bool
updateNotified bool // Only pop up the notification once - TODO consider daily nag?
// Callbacks
callbacks commontray.Callbacks
normalIcon []byte
updateIcon []byte
}
var wt winTray
func (t *winTray) GetCallbacks() commontray.Callbacks {
return t.callbacks
}
func InitTray(icon, updateIcon []byte) (*winTray, error) {
wt.callbacks.Quit = make(chan struct{})
wt.callbacks.Update = make(chan struct{})
wt.callbacks.ShowLogs = make(chan struct{})
wt.callbacks.DoFirstUse = make(chan struct{})
wt.normalIcon = icon
wt.updateIcon = updateIcon
if err := wt.initInstance(); err != nil {
return nil, fmt.Errorf("Unable to init instance: %w\n", err)
}
if err := wt.createMenu(); err != nil {
return nil, fmt.Errorf("Unable to create menu: %w\n", err)
}
iconFilePath, err := iconBytesToFilePath(wt.normalIcon)
if err != nil {
return nil, fmt.Errorf("Unable to write icon data to temp file: %w", err)
}
if err := wt.setIcon(iconFilePath); err != nil {
return nil, fmt.Errorf("Unable to set icon: %w", err)
}
return &wt, wt.initMenus()
}
func (t *winTray) initInstance() error {
const (
className = "OllamaClass"
windowName = ""
)
t.wmSystrayMessage = WM_USER + 1
t.visibleItems = make(map[uint32][]uint32)
t.menus = make(map[uint32]windows.Handle)
t.menuOf = make(map[uint32]windows.Handle)
t.loadedImages = make(map[string]windows.Handle)
taskbarEventNamePtr, _ := windows.UTF16PtrFromString("TaskbarCreated")
// https://msdn.microsoft.com/en-us/library/windows/desktop/ms644947
res, _, err := pRegisterWindowMessage.Call(
uintptr(unsafe.Pointer(taskbarEventNamePtr)),
)
if res == 0 { // success 0xc000-0xfff
return fmt.Errorf("failed to register window: %w", err)
}
t.wmTaskbarCreated = uint32(res)
instanceHandle, _, err := pGetModuleHandle.Call(0)
if instanceHandle == 0 {
return err
}
t.instance = windows.Handle(instanceHandle)
// https://msdn.microsoft.com/en-us/library/windows/desktop/ms648072(v=vs.85).aspx
iconHandle, _, err := pLoadIcon.Call(0, uintptr(IDI_APPLICATION))
if iconHandle == 0 {
return err
}
t.icon = windows.Handle(iconHandle)
// https://msdn.microsoft.com/en-us/library/windows/desktop/ms648391(v=vs.85).aspx
cursorHandle, _, err := pLoadCursor.Call(0, uintptr(IDC_ARROW))
if cursorHandle == 0 {
return err
}
t.cursor = windows.Handle(cursorHandle)
classNamePtr, err := windows.UTF16PtrFromString(className)
if err != nil {
return err
}
windowNamePtr, err := windows.UTF16PtrFromString(windowName)
if err != nil {
return err
}
t.wcex = &wndClassEx{
Style: CS_HREDRAW | CS_VREDRAW,
WndProc: windows.NewCallback(t.wndProc),
Instance: t.instance,
Icon: t.icon,
Cursor: t.cursor,
Background: windows.Handle(6), // (COLOR_WINDOW + 1)
ClassName: classNamePtr,
IconSm: t.icon,
}
if err := t.wcex.register(); err != nil {
return err
}
windowHandle, _, err := pCreateWindowEx.Call(
uintptr(0),
uintptr(unsafe.Pointer(classNamePtr)),
uintptr(unsafe.Pointer(windowNamePtr)),
uintptr(WS_OVERLAPPEDWINDOW),
uintptr(CW_USEDEFAULT),
uintptr(CW_USEDEFAULT),
uintptr(CW_USEDEFAULT),
uintptr(CW_USEDEFAULT),
uintptr(0),
uintptr(0),
uintptr(t.instance),
uintptr(0),
)
if windowHandle == 0 {
return err
}
t.window = windows.Handle(windowHandle)
pShowWindow.Call(uintptr(t.window), uintptr(SW_HIDE)) //nolint:errcheck
boolRet, _, err := pUpdateWindow.Call(uintptr(t.window))
if boolRet == 0 {
slog.Error(fmt.Sprintf("failed to update window: %s", err))
}
t.muNID.Lock()
defer t.muNID.Unlock()
t.nid = &notifyIconData{
Wnd: windows.Handle(t.window),
ID: 100,
Flags: NIF_MESSAGE,
CallbackMessage: t.wmSystrayMessage,
}
t.nid.Size = uint32(unsafe.Sizeof(*t.nid))
return t.nid.add()
}
func (t *winTray) createMenu() error {
menuHandle, _, err := pCreatePopupMenu.Call()
if menuHandle == 0 {
return err
}
t.menus[0] = windows.Handle(menuHandle)
// https://msdn.microsoft.com/en-us/library/windows/desktop/ms647575(v=vs.85).aspx
mi := struct {
Size, Mask, Style, Max uint32
Background windows.Handle
ContextHelpID uint32
MenuData uintptr
}{
Mask: MIM_APPLYTOSUBMENUS,
}
mi.Size = uint32(unsafe.Sizeof(mi))
res, _, err := pSetMenuInfo.Call(
uintptr(t.menus[0]),
uintptr(unsafe.Pointer(&mi)),
)
if res == 0 {
return err
}
return nil
}
// Contains information about a menu item.
// https://msdn.microsoft.com/en-us/library/windows/desktop/ms647578(v=vs.85).aspx
type menuItemInfo struct {
Size, Mask, Type, State uint32
ID uint32
SubMenu, Checked, Unchecked windows.Handle
ItemData uintptr
TypeData *uint16
Cch uint32
BMPItem windows.Handle
}
func (t *winTray) addOrUpdateMenuItem(menuItemId uint32, parentId uint32, title string, disabled bool) error {
titlePtr, err := windows.UTF16PtrFromString(title)
if err != nil {
return err
}
mi := menuItemInfo{
Mask: MIIM_FTYPE | MIIM_STRING | MIIM_ID | MIIM_STATE,
Type: MFT_STRING,
ID: uint32(menuItemId),
TypeData: titlePtr,
Cch: uint32(len(title)),
}
mi.Size = uint32(unsafe.Sizeof(mi))
if disabled {
mi.State |= MFS_DISABLED
}
var res uintptr
t.muMenus.RLock()
menu := t.menus[parentId]
t.muMenus.RUnlock()
if t.getVisibleItemIndex(parentId, menuItemId) != -1 {
// We set the menu item info based on the menuID
boolRet, _, err := pSetMenuItemInfo.Call(
uintptr(menu),
uintptr(menuItemId),
0,
uintptr(unsafe.Pointer(&mi)),
)
if boolRet == 0 {
return fmt.Errorf("failed to set menu item: %w", err)
}
}
if res == 0 {
// Menu item does not already exist, create it
t.muMenus.RLock()
submenu, exists := t.menus[menuItemId]
t.muMenus.RUnlock()
if exists {
mi.Mask |= MIIM_SUBMENU
mi.SubMenu = submenu
}
t.addToVisibleItems(parentId, menuItemId)
position := t.getVisibleItemIndex(parentId, menuItemId)
res, _, err = pInsertMenuItem.Call(
uintptr(menu),
uintptr(position),
1,
uintptr(unsafe.Pointer(&mi)),
)
if res == 0 {
t.delFromVisibleItems(parentId, menuItemId)
return err
}
t.muMenuOf.Lock()
t.menuOf[menuItemId] = menu
t.muMenuOf.Unlock()
}
return nil
}
func (t *winTray) addSeparatorMenuItem(menuItemId, parentId uint32) error {
mi := menuItemInfo{
Mask: MIIM_FTYPE | MIIM_ID | MIIM_STATE,
Type: MFT_SEPARATOR,
ID: uint32(menuItemId),
}
mi.Size = uint32(unsafe.Sizeof(mi))
t.addToVisibleItems(parentId, menuItemId)
position := t.getVisibleItemIndex(parentId, menuItemId)
t.muMenus.RLock()
menu := uintptr(t.menus[parentId])
t.muMenus.RUnlock()
res, _, err := pInsertMenuItem.Call(
menu,
uintptr(position),
1,
uintptr(unsafe.Pointer(&mi)),
)
if res == 0 {
return err
}
return nil
}
// func (t *winTray) hideMenuItem(menuItemId, parentId uint32) error {
// const ERROR_SUCCESS syscall.Errno = 0
// t.muMenus.RLock()
// menu := uintptr(t.menus[parentId])
// t.muMenus.RUnlock()
// res, _, err := pRemoveMenu.Call(
// menu,
// uintptr(menuItemId),
// MF_BYCOMMAND,
// )
// if res == 0 && err.(syscall.Errno) != ERROR_SUCCESS {
// return err
// }
// t.delFromVisibleItems(parentId, menuItemId)
// return nil
// }
func (t *winTray) showMenu() error {
p := point{}
boolRet, _, err := pGetCursorPos.Call(uintptr(unsafe.Pointer(&p)))
if boolRet == 0 {
return err
}
boolRet, _, err = pSetForegroundWindow.Call(uintptr(t.window))
if boolRet == 0 {
slog.Warn(fmt.Sprintf("failed to bring menu to foreground: %s", err))
}
boolRet, _, err = pTrackPopupMenu.Call(
uintptr(t.menus[0]),
TPM_BOTTOMALIGN|TPM_LEFTALIGN,
uintptr(p.X),
uintptr(p.Y),
0,
uintptr(t.window),
0,
)
if boolRet == 0 {
return err
}
return nil
}
func (t *winTray) delFromVisibleItems(parent, val uint32) {
t.muVisibleItems.Lock()
defer t.muVisibleItems.Unlock()
visibleItems := t.visibleItems[parent]
for i, itemval := range visibleItems {
if val == itemval {
t.visibleItems[parent] = append(visibleItems[:i], visibleItems[i+1:]...)
break
}
}
}
func (t *winTray) addToVisibleItems(parent, val uint32) {
t.muVisibleItems.Lock()
defer t.muVisibleItems.Unlock()
if visibleItems, exists := t.visibleItems[parent]; !exists {
t.visibleItems[parent] = []uint32{val}
} else {
newvisible := append(visibleItems, val)
sort.Slice(newvisible, func(i, j int) bool { return newvisible[i] < newvisible[j] })
t.visibleItems[parent] = newvisible
}
}
func (t *winTray) getVisibleItemIndex(parent, val uint32) int {
t.muVisibleItems.RLock()
defer t.muVisibleItems.RUnlock()
for i, itemval := range t.visibleItems[parent] {
if val == itemval {
return i
}
}
return -1
}
func iconBytesToFilePath(iconBytes []byte) (string, error) {
bh := md5.Sum(iconBytes)
dataHash := hex.EncodeToString(bh[:])
iconFilePath := filepath.Join(os.TempDir(), "ollama_temp_icon_"+dataHash)
if _, err := os.Stat(iconFilePath); os.IsNotExist(err) {
if err := os.WriteFile(iconFilePath, iconBytes, 0644); err != nil {
return "", err
}
}
return iconFilePath, nil
}
// Loads an image from file and shows it in tray.
// Shell_NotifyIcon: https://msdn.microsoft.com/en-us/library/windows/desktop/bb762159(v=vs.85).aspx
func (t *winTray) setIcon(src string) error {
h, err := t.loadIconFrom(src)
if err != nil {
return err
}
t.muNID.Lock()
defer t.muNID.Unlock()
t.nid.Icon = h
t.nid.Flags |= NIF_ICON
t.nid.Size = uint32(unsafe.Sizeof(*t.nid))
return t.nid.modify()
}
// Loads an image from file to be shown in tray or menu item.
// LoadImage: https://msdn.microsoft.com/en-us/library/windows/desktop/ms648045(v=vs.85).aspx
func (t *winTray) loadIconFrom(src string) (windows.Handle, error) {
// Save and reuse handles of loaded images
t.muLoadedImages.RLock()
h, ok := t.loadedImages[src]
t.muLoadedImages.RUnlock()
if !ok {
srcPtr, err := windows.UTF16PtrFromString(src)
if err != nil {
return 0, err
}
res, _, err := pLoadImage.Call(
0,
uintptr(unsafe.Pointer(srcPtr)),
IMAGE_ICON,
0,
0,
LR_LOADFROMFILE|LR_DEFAULTSIZE,
)
if res == 0 {
return 0, err
}
h = windows.Handle(res)
t.muLoadedImages.Lock()
t.loadedImages[src] = h
t.muLoadedImages.Unlock()
}
return h, nil
}
func (t *winTray) DisplayFirstUseNotification() error {
t.muNID.Lock()
defer t.muNID.Unlock()
copy(t.nid.InfoTitle[:], windows.StringToUTF16(firstTimeTitle))
copy(t.nid.Info[:], windows.StringToUTF16(firstTimeMessage))
t.nid.Flags |= NIF_INFO
t.nid.Size = uint32(unsafe.Sizeof(*wt.nid))
return t.nid.modify()
}

View File

@@ -1,89 +0,0 @@
//go:build windows
package wintray
import (
"runtime"
"golang.org/x/sys/windows"
)
var (
k32 = windows.NewLazySystemDLL("Kernel32.dll")
u32 = windows.NewLazySystemDLL("User32.dll")
s32 = windows.NewLazySystemDLL("Shell32.dll")
pCreatePopupMenu = u32.NewProc("CreatePopupMenu")
pCreateWindowEx = u32.NewProc("CreateWindowExW")
pDefWindowProc = u32.NewProc("DefWindowProcW")
pDestroyWindow = u32.NewProc("DestroyWindow")
pDispatchMessage = u32.NewProc("DispatchMessageW")
pGetCursorPos = u32.NewProc("GetCursorPos")
pGetMessage = u32.NewProc("GetMessageW")
pGetModuleHandle = k32.NewProc("GetModuleHandleW")
pInsertMenuItem = u32.NewProc("InsertMenuItemW")
pLoadCursor = u32.NewProc("LoadCursorW")
pLoadIcon = u32.NewProc("LoadIconW")
pLoadImage = u32.NewProc("LoadImageW")
pPostMessage = u32.NewProc("PostMessageW")
pPostQuitMessage = u32.NewProc("PostQuitMessage")
pRegisterClass = u32.NewProc("RegisterClassExW")
pRegisterWindowMessage = u32.NewProc("RegisterWindowMessageW")
pSetForegroundWindow = u32.NewProc("SetForegroundWindow")
pSetMenuInfo = u32.NewProc("SetMenuInfo")
pSetMenuItemInfo = u32.NewProc("SetMenuItemInfoW")
pShellNotifyIcon = s32.NewProc("Shell_NotifyIconW")
pShowWindow = u32.NewProc("ShowWindow")
pTrackPopupMenu = u32.NewProc("TrackPopupMenu")
pTranslateMessage = u32.NewProc("TranslateMessage")
pUnregisterClass = u32.NewProc("UnregisterClassW")
pUpdateWindow = u32.NewProc("UpdateWindow")
)
const (
CS_HREDRAW = 0x0002
CS_VREDRAW = 0x0001
CW_USEDEFAULT = 0x80000000
IDC_ARROW = 32512 // Standard arrow
IDI_APPLICATION = 32512
IMAGE_ICON = 1 // Loads an icon
LR_DEFAULTSIZE = 0x00000040 // Loads default-size icon for windows(SM_CXICON x SM_CYICON) if cx, cy are set to zero
LR_LOADFROMFILE = 0x00000010 // Loads the stand-alone image from the file
MF_BYCOMMAND = 0x00000000
MFS_DISABLED = 0x00000003
MFT_SEPARATOR = 0x00000800
MFT_STRING = 0x00000000
MIIM_BITMAP = 0x00000080
MIIM_FTYPE = 0x00000100
MIIM_ID = 0x00000002
MIIM_STATE = 0x00000001
MIIM_STRING = 0x00000040
MIIM_SUBMENU = 0x00000004
MIM_APPLYTOSUBMENUS = 0x80000000
NIF_ICON = 0x00000002
NIF_INFO = 0x00000010
NIF_MESSAGE = 0x00000001
SW_HIDE = 0
TPM_BOTTOMALIGN = 0x0020
TPM_LEFTALIGN = 0x0000
WM_CLOSE = 0x0010
WM_USER = 0x0400
WS_CAPTION = 0x00C00000
WS_MAXIMIZEBOX = 0x00010000
WS_MINIMIZEBOX = 0x00020000
WS_OVERLAPPED = 0x00000000
WS_OVERLAPPEDWINDOW = WS_OVERLAPPED | WS_CAPTION | WS_SYSMENU | WS_THICKFRAME | WS_MINIMIZEBOX | WS_MAXIMIZEBOX
WS_SYSMENU = 0x00080000
WS_THICKFRAME = 0x00040000
)
// Not sure if this is actually needed on windows
func init() {
runtime.LockOSThread()
}
// The POINT structure defines the x- and y- coordinates of a point.
// https://msdn.microsoft.com/en-us/library/windows/desktop/dd162805(v=vs.85).aspx
type point struct {
X, Y int32
}

View File

@@ -1,45 +0,0 @@
//go:build windows
package wintray
import (
"unsafe"
"golang.org/x/sys/windows"
)
// Contains window class information.
// It is used with the RegisterClassEx and GetClassInfoEx functions.
// https://msdn.microsoft.com/en-us/library/ms633577.aspx
type wndClassEx struct {
Size, Style uint32
WndProc uintptr
ClsExtra, WndExtra int32
Instance, Icon, Cursor, Background windows.Handle
MenuName, ClassName *uint16
IconSm windows.Handle
}
// Registers a window class for subsequent use in calls to the CreateWindow or CreateWindowEx function.
// https://msdn.microsoft.com/en-us/library/ms633587.aspx
func (w *wndClassEx) register() error {
w.Size = uint32(unsafe.Sizeof(*w))
res, _, err := pRegisterClass.Call(uintptr(unsafe.Pointer(w)))
if res == 0 {
return err
}
return nil
}
// Unregisters a window class, freeing the memory required for the class.
// https://msdn.microsoft.com/en-us/library/ms644899.aspx
func (w *wndClassEx) unregister() error {
res, _, err := pUnregisterClass.Call(
uintptr(unsafe.Pointer(w.ClassName)),
uintptr(w.Instance),
)
if res == 0 {
return err
}
return nil
}

View File

@@ -1,61 +0,0 @@
package auth
import (
"bytes"
"context"
"crypto/rand"
"encoding/base64"
"fmt"
"io"
"log/slog"
"os"
"path/filepath"
"golang.org/x/crypto/ssh"
)
const defaultPrivateKey = "id_ed25519"
func NewNonce(r io.Reader, length int) (string, error) {
nonce := make([]byte, length)
if _, err := io.ReadFull(r, nonce); err != nil {
return "", err
}
return base64.RawURLEncoding.EncodeToString(nonce), nil
}
func Sign(ctx context.Context, bts []byte) (string, error) {
home, err := os.UserHomeDir()
if err != nil {
return "", err
}
keyPath := filepath.Join(home, ".ollama", defaultPrivateKey)
privateKeyFile, err := os.ReadFile(keyPath)
if err != nil {
slog.Info(fmt.Sprintf("Failed to load private key: %v", err))
return "", err
}
privateKey, err := ssh.ParsePrivateKey(privateKeyFile)
if err != nil {
return "", err
}
// get the pubkey, but remove the type
publicKey := ssh.MarshalAuthorizedKey(privateKey.PublicKey())
parts := bytes.Split(publicKey, []byte(" "))
if len(parts) < 2 {
return "", fmt.Errorf("malformed public key")
}
signedData, err := privateKey.Sign(rand.Reader, bts)
if err != nil {
return "", err
}
// signature is <pubkey>:<signature>
return fmt.Sprintf("%s:%s", bytes.TrimSpace(parts[1]), base64.StdEncoding.EncodeToString(signedData.Blob)), nil
}

File diff suppressed because it is too large Load Diff

View File

@@ -1,663 +0,0 @@
package cmd
import (
"errors"
"fmt"
"io"
"net/http"
"os"
"path/filepath"
"regexp"
"sort"
"strings"
"github.com/spf13/cobra"
"golang.org/x/exp/slices"
"github.com/jmorganca/ollama/api"
"github.com/jmorganca/ollama/progress"
"github.com/jmorganca/ollama/readline"
)
type MultilineState int
const (
MultilineNone MultilineState = iota
MultilinePrompt
MultilineSystem
MultilineTemplate
)
func loadModel(cmd *cobra.Command, opts *runOptions) error {
client, err := api.ClientFromEnvironment()
if err != nil {
return err
}
p := progress.NewProgress(os.Stderr)
defer p.StopAndClear()
spinner := progress.NewSpinner("")
p.Add("", spinner)
showReq := api.ShowRequest{Name: opts.Model}
showResp, err := client.Show(cmd.Context(), &showReq)
if err != nil {
return err
}
opts.MultiModal = slices.Contains(showResp.Details.Families, "clip")
opts.ParentModel = showResp.Details.ParentModel
if len(showResp.Messages) > 0 {
opts.Messages = append(opts.Messages, showResp.Messages...)
}
chatReq := &api.ChatRequest{
Model: opts.Model,
Messages: []api.Message{},
}
err = client.Chat(cmd.Context(), chatReq, func(resp api.ChatResponse) error {
p.StopAndClear()
if len(opts.Messages) > 0 {
for _, msg := range opts.Messages {
switch msg.Role {
case "user":
fmt.Printf(">>> %s\n", msg.Content)
case "assistant":
state := &displayResponseState{}
displayResponse(msg.Content, opts.WordWrap, state)
fmt.Println()
fmt.Println()
}
}
}
return nil
})
if err != nil {
return err
}
return nil
}
func generateInteractive(cmd *cobra.Command, opts runOptions) error {
opts.Messages = make([]api.Message, 0)
err := loadModel(cmd, &opts)
if err != nil {
return err
}
usage := func() {
fmt.Fprintln(os.Stderr, "Available Commands:")
fmt.Fprintln(os.Stderr, " /set Set session variables")
fmt.Fprintln(os.Stderr, " /show Show model information")
fmt.Fprintln(os.Stderr, " /load <model> Load a session or model")
fmt.Fprintln(os.Stderr, " /save <model> Save your current session")
fmt.Fprintln(os.Stderr, " /bye Exit")
fmt.Fprintln(os.Stderr, " /?, /help Help for a command")
fmt.Fprintln(os.Stderr, " /? shortcuts Help for keyboard shortcuts")
fmt.Fprintln(os.Stderr, "")
fmt.Fprintln(os.Stderr, "Use \"\"\" to begin a multi-line message.")
if opts.MultiModal {
fmt.Fprintf(os.Stderr, "Use %s to include .jpg or .png images.\n", filepath.FromSlash("/path/to/file"))
}
fmt.Fprintln(os.Stderr, "")
}
usageSet := func() {
fmt.Fprintln(os.Stderr, "Available Commands:")
fmt.Fprintln(os.Stderr, " /set parameter ... Set a parameter")
fmt.Fprintln(os.Stderr, " /set system <string> Set system message")
fmt.Fprintln(os.Stderr, " /set template <string> Set prompt template")
fmt.Fprintln(os.Stderr, " /set history Enable history")
fmt.Fprintln(os.Stderr, " /set nohistory Disable history")
fmt.Fprintln(os.Stderr, " /set wordwrap Enable wordwrap")
fmt.Fprintln(os.Stderr, " /set nowordwrap Disable wordwrap")
fmt.Fprintln(os.Stderr, " /set format json Enable JSON mode")
fmt.Fprintln(os.Stderr, " /set noformat Disable formatting")
fmt.Fprintln(os.Stderr, " /set verbose Show LLM stats")
fmt.Fprintln(os.Stderr, " /set quiet Disable LLM stats")
fmt.Fprintln(os.Stderr, "")
}
usageShortcuts := func() {
fmt.Fprintln(os.Stderr, "Available keyboard shortcuts:")
fmt.Fprintln(os.Stderr, " Ctrl + a Move to the beginning of the line (Home)")
fmt.Fprintln(os.Stderr, " Ctrl + e Move to the end of the line (End)")
fmt.Fprintln(os.Stderr, " Alt + b Move back (left) one word")
fmt.Fprintln(os.Stderr, " Alt + f Move forward (right) one word")
fmt.Fprintln(os.Stderr, " Ctrl + k Delete the sentence after the cursor")
fmt.Fprintln(os.Stderr, " Ctrl + u Delete the sentence before the cursor")
fmt.Fprintln(os.Stderr, "")
fmt.Fprintln(os.Stderr, " Ctrl + l Clear the screen")
fmt.Fprintln(os.Stderr, " Ctrl + c Stop the model from responding")
fmt.Fprintln(os.Stderr, " Ctrl + d Exit ollama (/bye)")
fmt.Fprintln(os.Stderr, "")
}
usageShow := func() {
fmt.Fprintln(os.Stderr, "Available Commands:")
fmt.Fprintln(os.Stderr, " /show info Show details for this model")
fmt.Fprintln(os.Stderr, " /show license Show model license")
fmt.Fprintln(os.Stderr, " /show modelfile Show Modelfile for this model")
fmt.Fprintln(os.Stderr, " /show parameters Show parameters for this model")
fmt.Fprintln(os.Stderr, " /show system Show system message")
fmt.Fprintln(os.Stderr, " /show template Show prompt template")
fmt.Fprintln(os.Stderr, "")
}
// only list out the most common parameters
usageParameters := func() {
fmt.Fprintln(os.Stderr, "Available Parameters:")
fmt.Fprintln(os.Stderr, " /set parameter seed <int> Random number seed")
fmt.Fprintln(os.Stderr, " /set parameter num_predict <int> Max number of tokens to predict")
fmt.Fprintln(os.Stderr, " /set parameter top_k <int> Pick from top k num of tokens")
fmt.Fprintln(os.Stderr, " /set parameter top_p <float> Pick token based on sum of probabilities")
fmt.Fprintln(os.Stderr, " /set parameter num_ctx <int> Set the context size")
fmt.Fprintln(os.Stderr, " /set parameter temperature <float> Set creativity level")
fmt.Fprintln(os.Stderr, " /set parameter repeat_penalty <float> How strongly to penalize repetitions")
fmt.Fprintln(os.Stderr, " /set parameter repeat_last_n <int> Set how far back to look for repetitions")
fmt.Fprintln(os.Stderr, " /set parameter num_gpu <int> The number of layers to send to the GPU")
fmt.Fprintln(os.Stderr, " /set parameter stop \"<string>\", ... Set the stop parameters")
fmt.Fprintln(os.Stderr, "")
}
scanner, err := readline.New(readline.Prompt{
Prompt: ">>> ",
AltPrompt: "... ",
Placeholder: "Send a message (/? for help)",
AltPlaceholder: `Use """ to end multi-line input`,
})
if err != nil {
return err
}
fmt.Print(readline.StartBracketedPaste)
defer fmt.Printf(readline.EndBracketedPaste)
var sb strings.Builder
var multiline MultilineState
for {
line, err := scanner.Readline()
switch {
case errors.Is(err, io.EOF):
fmt.Println()
return nil
case errors.Is(err, readline.ErrInterrupt):
if line == "" {
fmt.Println("\nUse Ctrl + d or /bye to exit.")
}
scanner.Prompt.UseAlt = false
sb.Reset()
continue
case err != nil:
return err
}
switch {
case multiline != MultilineNone:
// check if there's a multiline terminating string
before, ok := strings.CutSuffix(line, `"""`)
sb.WriteString(before)
if !ok {
fmt.Fprintln(&sb)
continue
}
switch multiline {
case MultilineSystem:
opts.System = sb.String()
opts.Messages = append(opts.Messages, api.Message{Role: "system", Content: opts.System})
fmt.Println("Set system message.")
sb.Reset()
case MultilineTemplate:
opts.Template = sb.String()
fmt.Println("Set prompt template.")
sb.Reset()
}
multiline = MultilineNone
scanner.Prompt.UseAlt = false
case strings.HasPrefix(line, `"""`):
line := strings.TrimPrefix(line, `"""`)
line, ok := strings.CutSuffix(line, `"""`)
sb.WriteString(line)
if !ok {
// no multiline terminating string; need more input
fmt.Fprintln(&sb)
multiline = MultilinePrompt
scanner.Prompt.UseAlt = true
}
case scanner.Pasting:
fmt.Fprintln(&sb, line)
continue
case strings.HasPrefix(line, "/list"):
args := strings.Fields(line)
if err := ListHandler(cmd, args[1:]); err != nil {
return err
}
case strings.HasPrefix(line, "/load"):
args := strings.Fields(line)
if len(args) != 2 {
fmt.Println("Usage:\n /load <modelname>")
continue
}
opts.Model = args[1]
opts.Messages = []api.Message{}
fmt.Printf("Loading model '%s'\n", opts.Model)
if err := loadModel(cmd, &opts); err != nil {
return err
}
continue
case strings.HasPrefix(line, "/save"):
args := strings.Fields(line)
if len(args) != 2 {
fmt.Println("Usage:\n /save <modelname>")
continue
}
client, err := api.ClientFromEnvironment()
if err != nil {
fmt.Println("error: couldn't connect to ollama server")
return err
}
req := &api.CreateRequest{
Name: args[1],
Modelfile: buildModelfile(opts),
}
fn := func(resp api.ProgressResponse) error { return nil }
err = client.Create(cmd.Context(), req, fn)
if err != nil {
fmt.Println("error: couldn't save model")
return err
}
fmt.Printf("Created new model '%s'\n", args[1])
continue
case strings.HasPrefix(line, "/set"):
args := strings.Fields(line)
if len(args) > 1 {
switch args[1] {
case "history":
scanner.HistoryEnable()
case "nohistory":
scanner.HistoryDisable()
case "wordwrap":
opts.WordWrap = true
fmt.Println("Set 'wordwrap' mode.")
case "nowordwrap":
opts.WordWrap = false
fmt.Println("Set 'nowordwrap' mode.")
case "verbose":
cmd.Flags().Set("verbose", "true")
fmt.Println("Set 'verbose' mode.")
case "quiet":
cmd.Flags().Set("verbose", "false")
fmt.Println("Set 'quiet' mode.")
case "format":
if len(args) < 3 || args[2] != "json" {
fmt.Println("Invalid or missing format. For 'json' mode use '/set format json'")
} else {
opts.Format = args[2]
fmt.Printf("Set format to '%s' mode.\n", args[2])
}
case "noformat":
opts.Format = ""
fmt.Println("Disabled format.")
case "parameter":
if len(args) < 4 {
usageParameters()
continue
}
params := args[3:]
fp, err := api.FormatParams(map[string][]string{args[2]: params})
if err != nil {
fmt.Printf("Couldn't set parameter: %q\n", err)
continue
}
fmt.Printf("Set parameter '%s' to '%s'\n", args[2], strings.Join(params, ", "))
opts.Options[args[2]] = fp[args[2]]
case "system", "template":
if len(args) < 3 {
usageSet()
continue
}
if args[1] == "system" {
multiline = MultilineSystem
} else if args[1] == "template" {
multiline = MultilineTemplate
}
line := strings.Join(args[2:], " ")
line, ok := strings.CutPrefix(line, `"""`)
if !ok {
multiline = MultilineNone
} else {
// only cut suffix if the line is multiline
line, ok = strings.CutSuffix(line, `"""`)
if ok {
multiline = MultilineNone
}
}
sb.WriteString(line)
if multiline != MultilineNone {
scanner.Prompt.UseAlt = true
continue
}
if args[1] == "system" {
opts.System = sb.String() // for display in modelfile
newMessage := api.Message{Role: "system", Content: sb.String()}
// Check if the slice is not empty and the last message is from 'system'
if len(opts.Messages) > 0 && opts.Messages[len(opts.Messages)-1].Role == "system" {
// Replace the last message
opts.Messages[len(opts.Messages)-1] = newMessage
} else {
opts.Messages = append(opts.Messages, newMessage)
}
fmt.Println("Set system message.")
sb.Reset()
} else if args[1] == "template" {
opts.Template = sb.String()
fmt.Println("Set prompt template.")
sb.Reset()
}
sb.Reset()
continue
default:
fmt.Printf("Unknown command '/set %s'. Type /? for help\n", args[1])
}
} else {
usageSet()
}
case strings.HasPrefix(line, "/show"):
args := strings.Fields(line)
if len(args) > 1 {
client, err := api.ClientFromEnvironment()
if err != nil {
fmt.Println("error: couldn't connect to ollama server")
return err
}
req := &api.ShowRequest{
Name: opts.Model,
System: opts.System,
Template: opts.Template,
Options: opts.Options,
}
resp, err := client.Show(cmd.Context(), req)
if err != nil {
fmt.Println("error: couldn't get model")
return err
}
switch args[1] {
case "info":
fmt.Println("Model details:")
if len(resp.Details.Families) > 0 {
fmt.Printf("Family %s\n", strings.Join(resp.Details.Families, ", "))
} else if resp.Details.Family != "" {
fmt.Printf("Family %s\n", resp.Details.Family)
}
fmt.Printf("Parameter Size %s\n", resp.Details.ParameterSize)
fmt.Printf("Quantization Level %s\n", resp.Details.QuantizationLevel)
fmt.Println("")
case "license":
if resp.License == "" {
fmt.Println("No license was specified for this model.")
} else {
fmt.Println(resp.License)
}
case "modelfile":
fmt.Println(resp.Modelfile)
case "parameters":
if resp.Parameters == "" {
fmt.Println("No parameters were specified for this model.")
} else {
if len(opts.Options) > 0 {
fmt.Println("User defined parameters:")
for k, v := range opts.Options {
fmt.Printf("%-*s %v\n", 30, k, v)
}
fmt.Println()
}
fmt.Println("Model defined parameters:")
fmt.Println(resp.Parameters)
}
case "system":
switch {
case opts.System != "":
fmt.Println(opts.System + "\n")
case resp.System != "":
fmt.Println(resp.System + "\n")
default:
fmt.Println("No system message was specified for this model.")
}
case "template":
switch {
case opts.Template != "":
fmt.Println(opts.Template + "\n")
case resp.Template != "":
fmt.Println(resp.Template)
default:
fmt.Println("No prompt template was specified for this model.")
}
default:
fmt.Printf("Unknown command '/show %s'. Type /? for help\n", args[1])
}
} else {
usageShow()
}
case strings.HasPrefix(line, "/help"), strings.HasPrefix(line, "/?"):
args := strings.Fields(line)
if len(args) > 1 {
switch args[1] {
case "set", "/set":
usageSet()
case "show", "/show":
usageShow()
case "shortcut", "shortcuts":
usageShortcuts()
}
} else {
usage()
}
case strings.HasPrefix(line, "/exit"), strings.HasPrefix(line, "/bye"):
return nil
case strings.HasPrefix(line, "/"):
args := strings.Fields(line)
isFile := false
if opts.MultiModal {
for _, f := range extractFileNames(line) {
if strings.HasPrefix(f, args[0]) {
isFile = true
break
}
}
}
if !isFile {
fmt.Printf("Unknown command '%s'. Type /? for help\n", args[0])
continue
}
sb.WriteString(line)
default:
sb.WriteString(line)
}
if sb.Len() > 0 && multiline == MultilineNone {
newMessage := api.Message{Role: "user", Content: sb.String()}
if opts.MultiModal {
msg, images, err := extractFileData(sb.String())
if err != nil {
return err
}
// clear all previous images for better responses
if len(images) > 0 {
for i := range opts.Messages {
opts.Messages[i].Images = nil
}
}
newMessage.Content = msg
newMessage.Images = images
}
opts.Messages = append(opts.Messages, newMessage)
assistant, err := chat(cmd, opts)
if err != nil {
return err
}
if assistant != nil {
opts.Messages = append(opts.Messages, *assistant)
}
sb.Reset()
}
}
}
func buildModelfile(opts runOptions) string {
var mf strings.Builder
model := opts.ParentModel
if model == "" {
model = opts.Model
}
fmt.Fprintf(&mf, "FROM %s\n", model)
if opts.System != "" {
fmt.Fprintf(&mf, "SYSTEM \"\"\"%s\"\"\"\n", opts.System)
}
if opts.Template != "" {
fmt.Fprintf(&mf, "TEMPLATE \"\"\"%s\"\"\"\n", opts.Template)
}
keys := make([]string, 0)
for k := range opts.Options {
keys = append(keys, k)
}
sort.Strings(keys)
for _, k := range keys {
fmt.Fprintf(&mf, "PARAMETER %s %v\n", k, opts.Options[k])
}
fmt.Fprintln(&mf)
for _, msg := range opts.Messages {
fmt.Fprintf(&mf, "MESSAGE %s \"\"\"%s\"\"\"\n", msg.Role, msg.Content)
}
return mf.String()
}
func normalizeFilePath(fp string) string {
// Define a map of escaped characters and their replacements
replacements := map[string]string{
"\\ ": " ", // Escaped space
"\\(": "(", // Escaped left parenthesis
"\\)": ")", // Escaped right parenthesis
"\\[": "[", // Escaped left square bracket
"\\]": "]", // Escaped right square bracket
"\\{": "{", // Escaped left curly brace
"\\}": "}", // Escaped right curly brace
"\\$": "$", // Escaped dollar sign
"\\&": "&", // Escaped ampersand
"\\;": ";", // Escaped semicolon
"\\'": "'", // Escaped single quote
"\\\\": "\\", // Escaped backslash
"\\*": "*", // Escaped asterisk
"\\?": "?", // Escaped question mark
}
for escaped, actual := range replacements {
fp = strings.ReplaceAll(fp, escaped, actual)
}
return fp
}
func extractFileNames(input string) []string {
// Regex to match file paths starting with optional drive letter, / ./ \ or .\ and include escaped or unescaped spaces (\ or %20)
// and followed by more characters and a file extension
// This will capture non filename strings, but we'll check for file existence to remove mismatches
regexPattern := `(?:[a-zA-Z]:)?(?:\./|/|\\)[\S\\ ]+?\.(?i:jpg|jpeg|png|svg)\b`
re := regexp.MustCompile(regexPattern)
return re.FindAllString(input, -1)
}
func extractFileData(input string) (string, []api.ImageData, error) {
filePaths := extractFileNames(input)
var imgs []api.ImageData
for _, fp := range filePaths {
nfp := normalizeFilePath(fp)
data, err := getImageData(nfp)
if err != nil {
if os.IsNotExist(err) {
continue
}
fmt.Fprintf(os.Stderr, "Couldn't process image: %q\n", err)
return "", imgs, err
}
fmt.Fprintf(os.Stderr, "Added image '%s'\n", nfp)
input = strings.ReplaceAll(input, fp, "")
imgs = append(imgs, data)
}
return input, imgs, nil
}
func getImageData(filePath string) ([]byte, error) {
file, err := os.Open(filePath)
if err != nil {
return nil, err
}
defer file.Close()
buf := make([]byte, 512)
_, err = file.Read(buf)
if err != nil {
return nil, err
}
contentType := http.DetectContentType(buf)
allowedTypes := []string{"image/jpeg", "image/jpg", "image/png"}
if !slices.Contains(allowedTypes, contentType) {
return nil, fmt.Errorf("invalid image type: %s", contentType)
}
info, err := file.Stat()
if err != nil {
return nil, err
}
// Check if the file size exceeds 100MB
var maxSize int64 = 100 * 1024 * 1024 // 100MB in bytes
if info.Size() > maxSize {
return nil, fmt.Errorf("file size exceeds maximum limit (100MB)")
}
buf = make([]byte, info.Size())
_, err = file.Seek(0, 0)
if err != nil {
return nil, err
}
_, err = io.ReadFull(file, buf)
if err != nil {
return nil, err
}
return buf, nil
}

View File

@@ -1,116 +0,0 @@
package cmd
import (
"bytes"
"testing"
"text/template"
"github.com/stretchr/testify/assert"
"github.com/jmorganca/ollama/api"
)
func TestExtractFilenames(t *testing.T) {
// Unix style paths
input := ` some preamble
./relative\ path/one.png inbetween1 ./not a valid two.jpg inbetween2
/unescaped space /three.jpeg inbetween3 /valid\ path/dir/four.png "./quoted with spaces/five.svg`
res := extractFileNames(input)
assert.Len(t, res, 5)
assert.Contains(t, res[0], "one.png")
assert.Contains(t, res[1], "two.jpg")
assert.Contains(t, res[2], "three.jpeg")
assert.Contains(t, res[3], "four.png")
assert.Contains(t, res[4], "five.svg")
assert.NotContains(t, res[4], '"')
assert.NotContains(t, res, "inbtween")
// Windows style paths
input = ` some preamble
c:/users/jdoe/one.png inbetween1 c:/program files/someplace/two.jpg inbetween2
/absolute/nospace/three.jpeg inbetween3 /absolute/with space/four.png inbetween4
./relative\ path/five.svg inbetween5 "./relative with/spaces/six.png inbetween6
d:\path with\spaces\seven.svg inbetween7 c:\users\jdoe\eight.png inbetween8
d:\program files\someplace\nine.png inbetween9 "E:\program files\someplace\ten.svg some ending
`
res = extractFileNames(input)
assert.Len(t, res, 10)
assert.NotContains(t, res, "inbtween")
assert.Contains(t, res[0], "one.png")
assert.Contains(t, res[0], "c:")
assert.Contains(t, res[1], "two.jpg")
assert.Contains(t, res[1], "c:")
assert.Contains(t, res[2], "three.jpeg")
assert.Contains(t, res[3], "four.png")
assert.Contains(t, res[4], "five.svg")
assert.Contains(t, res[5], "six.png")
assert.Contains(t, res[6], "seven.svg")
assert.Contains(t, res[6], "d:")
assert.Contains(t, res[7], "eight.png")
assert.Contains(t, res[7], "c:")
assert.Contains(t, res[8], "nine.png")
assert.Contains(t, res[8], "d:")
assert.Contains(t, res[9], "ten.svg")
assert.Contains(t, res[9], "E:")
}
func TestModelfileBuilder(t *testing.T) {
opts := runOptions{
Model: "hork",
System: "You are part horse and part shark, but all hork. Do horklike things",
Template: "This is a template.",
Messages: []api.Message{
{Role: "user", Content: "Hey there hork!"},
{Role: "assistant", Content: "Yes it is true, I am half horse, half shark."},
},
Options: map[string]interface{}{},
}
opts.Options["temperature"] = 0.9
opts.Options["seed"] = 42
opts.Options["penalize_newline"] = false
opts.Options["stop"] = []string{"hi", "there"}
mf := buildModelfile(opts)
expectedModelfile := `FROM {{.Model}}
SYSTEM """{{.System}}"""
TEMPLATE """{{.Template}}"""
PARAMETER penalize_newline false
PARAMETER seed 42
PARAMETER stop [hi there]
PARAMETER temperature 0.9
MESSAGE user """Hey there hork!"""
MESSAGE assistant """Yes it is true, I am half horse, half shark."""
`
tmpl, err := template.New("").Parse(expectedModelfile)
assert.Nil(t, err)
var buf bytes.Buffer
err = tmpl.Execute(&buf, opts)
assert.Nil(t, err)
assert.Equal(t, buf.String(), mf)
opts.ParentModel = "horseshark"
mf = buildModelfile(opts)
expectedModelfile = `FROM {{.ParentModel}}
SYSTEM """{{.System}}"""
TEMPLATE """{{.Template}}"""
PARAMETER penalize_newline false
PARAMETER seed 42
PARAMETER stop [hi there]
PARAMETER temperature 0.9
MESSAGE user """Hey there hork!"""
MESSAGE assistant """Yes it is true, I am half horse, half shark."""
`
tmpl, err = template.New("").Parse(expectedModelfile)
assert.Nil(t, err)
var parentBuf bytes.Buffer
err = tmpl.Execute(&parentBuf, opts)
assert.Nil(t, err)
assert.Equal(t, parentBuf.String(), mf)
}

44
cmd/spinner.go Normal file
View File

@@ -0,0 +1,44 @@
package cmd
import (
"fmt"
"os"
"time"
"github.com/jmorganca/ollama/progressbar"
)
type Spinner struct {
description string
*progressbar.ProgressBar
}
func NewSpinner(description string) *Spinner {
return &Spinner{
description: description,
ProgressBar: progressbar.NewOptions(-1,
progressbar.OptionSetWriter(os.Stderr),
progressbar.OptionThrottle(60*time.Millisecond),
progressbar.OptionSpinnerType(14),
progressbar.OptionSetRenderBlankState(true),
progressbar.OptionSetElapsedTime(false),
progressbar.OptionClearOnFinish(),
progressbar.OptionSetDescription(description),
),
}
}
func (s *Spinner) Spin(tick time.Duration) {
for range time.Tick(tick) {
if s.IsFinished() {
break
}
s.Add(1)
}
}
func (s *Spinner) Stop() {
s.Finish()
fmt.Println(s.description)
}

View File

@@ -1,30 +0,0 @@
package cmd
import (
"context"
"fmt"
"os"
"os/exec"
"strings"
"github.com/jmorganca/ollama/api"
)
func startApp(ctx context.Context, client *api.Client) error {
exe, err := os.Executable()
if err != nil {
return err
}
link, err := os.Readlink(exe)
if err != nil {
return err
}
if !strings.Contains(link, "Ollama.app") {
return fmt.Errorf("could not find ollama app")
}
path := strings.Split(link, "Ollama.app")
if err := exec.Command("/usr/bin/open", "-a", path[0]+"Ollama.app").Run(); err != nil {
return err
}
return waitForServer(ctx, client)
}

View File

@@ -1,14 +0,0 @@
//go:build !windows && !darwin
package cmd
import (
"context"
"fmt"
"github.com/jmorganca/ollama/api"
)
func startApp(ctx context.Context, client *api.Client) error {
return fmt.Errorf("could not connect to ollama server, run 'ollama serve' to start it")
}

View File

@@ -1,58 +0,0 @@
package cmd
import (
"context"
"errors"
"fmt"
"os"
"os/exec"
"path/filepath"
"strings"
"syscall"
"github.com/jmorganca/ollama/api"
)
func startApp(ctx context.Context, client *api.Client) error {
// log.Printf("XXX Attempting to find and start ollama app")
AppName := "ollama app.exe"
exe, err := os.Executable()
if err != nil {
return err
}
appExe := filepath.Join(filepath.Dir(exe), AppName)
_, err = os.Stat(appExe)
if errors.Is(err, os.ErrNotExist) {
// Try the standard install location
localAppData := os.Getenv("LOCALAPPDATA")
appExe = filepath.Join(localAppData, "Ollama", AppName)
_, err := os.Stat(appExe)
if errors.Is(err, os.ErrNotExist) {
// Finally look in the path
appExe, err = exec.LookPath(AppName)
if err != nil {
return fmt.Errorf("could not locate ollama app")
}
}
}
// log.Printf("XXX attempting to start app %s", appExe)
cmd_path := "c:\\Windows\\system32\\cmd.exe"
cmd := exec.Command(cmd_path, "/c", appExe)
// TODO - these hide flags aren't working - still pops up a command window for some reason
cmd.SysProcAttr = &syscall.SysProcAttr{CreationFlags: 0x08000000, HideWindow: true}
// TODO this didn't help either...
cmd.Stdin = strings.NewReader("")
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
if err := cmd.Start(); err != nil {
return fmt.Errorf("unable to start ollama app %w", err)
}
if cmd.Process != nil {
defer cmd.Process.Release() //nolint:errcheck
}
return waitForServer(ctx, client)
}

View File

@@ -1,25 +0,0 @@
# Documentation
To get started, see the project's **[quickstart](../README.md#quickstart)**.
Ollama is a tool for running AI models on your hardware. Many users will choose to use the Command Line Interface (CLI) to work with Ollama. Learn more about all the commands in the CLI in the **[Main Readme](../README.md)**.
Use the RESTful API using any language, including Python, JavaScript, Typescript, Go, Rust, and many more. Learn more about using the API in the **[API Documentation](./api.md)**.
Create new models or modify models already in the library using the Modelfile. Learn more about the Modelfile syntax in the **[Modelfile Documentation](./modelfile.md)**.
Import models using source model weights found on Hugging Face and similar sites by referring to the **[Import Documentation](./import.md)**.
Installing on Linux in most cases is easy using the script on [ollama.com/download](ollama.com/download). To get more detail about the install, including CUDA drivers, see the **[Linux Documentation](./linux.md)**.
Many of our users like the flexibility of using our official Docker Image. Learn more about using Docker with Ollama using the **[Docker Documentation](https://hub.docker.com/r/ollama/ollama)**.
It is easy to install on Linux and Mac, but many users will choose to build Ollama on their own. To do this, refer to the **[Development Documentation](./development.md)**.
If encountering a problem with Ollama, the best place to start is the logs. Find more information about them here in the **[Troubleshooting Guide](./troubleshooting.md)**.
Finally for all the questions that don't fit anywhere else, there is the **[FAQ](./faq.md)**
[Tutorials](./tutorials.md) apply the documentation to tasks.
For working code examples of using Ollama, see [Examples](../examples).

File diff suppressed because it is too large Load Diff

View File

@@ -2,137 +2,45 @@
Install required tools:
- cmake version 3.24 or higher
- go version 1.21 or higher
- gcc version 11.4.0 or higher
```bash
brew install go cmake gcc
```
brew install go
```
Optionally enable debugging and more verbose logging:
Enable CGO:
```bash
# At build time
export CGO_CFLAGS="-g"
# At runtime
export OLLAMA_DEBUG=1
```
Get the required libraries and build the native LLM code:
```bash
go generate ./...
export CGO_ENABLED=1
```
Then build ollama:
```bash
```
go build .
```
Now you can run `ollama`:
```bash
```
./ollama
```
### Linux
## Releasing
#### Linux CUDA (NVIDIA)
To release a new version of Ollama you'll need to set some environment variables:
*Your operating system distribution may already have packages for NVIDIA CUDA. Distro packages are often preferable, but instructions are distro-specific. Please consult distro-specific docs for dependencies if available!*
* `GITHUB_TOKEN`: your GitHub token
* `APPLE_IDENTITY`: the Apple signing identity (macOS only)
* `APPLE_ID`: your Apple ID
* `APPLE_PASSWORD`: your Apple ID app-specific password
* `APPLE_TEAM_ID`: the Apple team ID for the signing identity
* `TELEMETRY_WRITE_KEY`: segment write key for telemetry
Install `cmake` and `golang` as well as [NVIDIA CUDA](https://developer.nvidia.com/cuda-downloads)
development and runtime packages.
Typically the build scripts will auto-detect CUDA, however, if your Linux distro
or installation approach uses unusual paths, you can specify the location by
specifying an environment variable `CUDA_LIB_DIR` to the location of the shared
libraries, and `CUDACXX` to the location of the nvcc compiler. You can customize
set set of target CUDA architectues by setting `CMAKE_CUDA_ARCHITECTURES` (e.g. "50;60;70")
Then generate dependencies:
Then run the publish script with the target version:
```
go generate ./...
VERSION=0.0.2 ./scripts/publish.sh
```
Then build the binary:
```
go build .
```
#### Linux ROCm (AMD)
*Your operating system distribution may already have packages for AMD ROCm and CLBlast. Distro packages are often preferable, but instructions are distro-specific. Please consult distro-specific docs for dependencies if available!*
Install [CLBlast](https://github.com/CNugteren/CLBlast/blob/master/doc/installation.md) and [ROCm](https://rocm.docs.amd.com/en/latest/deploy/linux/quick_start.html) developement packages first, as well as `cmake` and `golang`.
Typically the build scripts will auto-detect ROCm, however, if your Linux distro
or installation approach uses unusual paths, you can specify the location by
specifying an environment variable `ROCM_PATH` to the location of the ROCm
install (typically `/opt/rocm`), and `CLBlast_DIR` to the location of the
CLBlast install (typically `/usr/lib/cmake/CLBlast`). You can also customize
the AMD GPU targets by setting AMDGPU_TARGETS (e.g. `AMDGPU_TARGETS="gfx1101;gfx1102"`)
```
go generate ./...
```
Then build the binary:
```
go build .
```
ROCm requires elevated privileges to access the GPU at runtime. On most distros you can add your user account to the `render` group, or run as root.
#### Advanced CPU Settings
By default, running `go generate ./...` will compile a few different variations
of the LLM library based on common CPU families and vector math capabilities,
including a lowest-common-denominator which should run on almost any 64 bit CPU
somewhat slowly. At runtime, Ollama will auto-detect the optimal variation to
load. If you would like to build a CPU-based build customized for your
processor, you can set `OLLAMA_CUSTOM_CPU_DEFS` to the llama.cpp flags you would
like to use. For example, to compile an optimized binary for an Intel i9-9880H,
you might use:
```
OLLAMA_CUSTOM_CPU_DEFS="-DLLAMA_AVX=on -DLLAMA_AVX2=on -DLLAMA_F16C=on -DLLAMA_FMA=on" go generate ./...
go build .
```
#### Containerized Linux Build
If you have Docker available, you can build linux binaries with `./scripts/build_linux.sh` which has the CUDA and ROCm dependencies included. The resulting binary is placed in `./dist`
### Windows
Note: The windows build for Ollama is still under development.
Install required tools:
- MSVC toolchain - C/C++ and cmake as minimal requirements
- go version 1.21 or higher
- MinGW (pick one variant) with GCC.
- <https://www.mingw-w64.org/>
- <https://www.msys2.org/>
```powershell
$env:CGO_ENABLED="1"
go generate ./...
go build .
```
#### Windows CUDA (NVIDIA)
In addition to the common Windows development tools described above, install:
- [NVIDIA CUDA](https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html)

View File

@@ -1,195 +0,0 @@
# FAQ
## How can I upgrade Ollama?
Ollama on macOS and Windows will automatically download updates. Click on the taskbar or menubar item and then click "Restart to update" to apply the update. Updates can also be installed by downloading the latest version [manually](https://ollama.com/download/).
On Linux, re-run the install script:
```
curl -fsSL https://ollama.com/install.sh | sh
```
## How can I view the logs?
Review the [Troubleshooting](./troubleshooting.md) docs for more about using logs.
## How can I specify the context window size?
By default, Ollama uses a context window size of 2048 tokens.
To change this when using `ollama run`, use `/set parameter`:
```
/set parameter num_ctx 4096
```
When using the API, specify the `num_ctx` parameter:
```
curl http://localhost:11434/api/generate -d '{
"model": "llama2",
"prompt": "Why is the sky blue?",
"options": {
"num_ctx": 4096
}
}'
```
## How do I configure Ollama server?
Ollama server can be configured with environment variables.
### Setting environment variables on Mac
If Ollama is run as a macOS application, environment variables should be set using `launchctl`:
1. For each environment variable, call `launchctl setenv`.
```bash
launchctl setenv OLLAMA_HOST "0.0.0.0"
```
2. Restart Ollama application.
### Setting environment variables on Linux
If Ollama is run as a systemd service, environment variables should be set using `systemctl`:
1. Edit the systemd service by calling `systemctl edit ollama.service`. This will open an editor.
2. For each environment variable, add a line `Environment` under section `[Service]`:
```ini
[Service]
Environment="OLLAMA_HOST=0.0.0.0"
```
3. Save and exit.
4. Reload `systemd` and restart Ollama:
```bash
systemctl daemon-reload
systemctl restart ollama
```
### Setting environment variables on Windows
On windows, Ollama inherits your user and system environment variables.
1. First Quit Ollama by clicking on it in the task bar
2. Edit system environment variables from the control panel
3. Edit or create New variable(s) for your user account for `OLLAMA_HOST`, `OLLAMA_MODELS`, etc.
4. Click OK/Apply to save
5. Run `ollama` from a new terminal window
## How can I expose Ollama on my network?
Ollama binds 127.0.0.1 port 11434 by default. Change the bind address with the `OLLAMA_HOST` environment variable.
Refer to the section [above](#how-do-i-configure-ollama-server) for how to set environment variables on your platform.
## How can I allow additional web origins to access Ollama?
Ollama allows cross-origin requests from `127.0.0.1` and `0.0.0.0` by default. Additional origins can be configured with `OLLAMA_ORIGINS`.
Refer to the section [above](#how-do-i-configure-ollama-server) for how to set environment variables on your platform.
## Where are models stored?
- macOS: `~/.ollama/models`
- Linux: `/usr/share/ollama/.ollama/models`
- Windows: `C:\Users\<username>\.ollama\models`
### How do I set them to a different location?
If a different directory needs to be used, set the environment variable `OLLAMA_MODELS` to the chosen directory.
Refer to the section [above](#how-do-i-configure-ollama-server) for how to set environment variables on your platform.
## Does Ollama send my prompts and answers back to ollama.com?
No. Ollama runs locally, and conversation data does not leave your machine.
## How can I use Ollama in Visual Studio Code?
There is already a large collection of plugins available for VSCode as well as other editors that leverage Ollama. See the list of [extensions & plugins](https://github.com/jmorganca/ollama#extensions--plugins) at the bottom of the main repository readme.
## How do I use Ollama behind a proxy?
Ollama is compatible with proxy servers if `HTTP_PROXY` or `HTTPS_PROXY` are configured. When using either variables, ensure it is set where `ollama serve` can access the values. When using `HTTPS_PROXY`, ensure the proxy certificate is installed as a system certificate. Refer to the section above for how to use environment variables on your platform.
### How do I use Ollama behind a proxy in Docker?
The Ollama Docker container image can be configured to use a proxy by passing `-e HTTPS_PROXY=https://proxy.example.com` when starting the container.
Alternatively, the Docker daemon can be configured to use a proxy. Instructions are available for Docker Desktop on [macOS](https://docs.docker.com/desktop/settings/mac/#proxies), [Windows](https://docs.docker.com/desktop/settings/windows/#proxies), and [Linux](https://docs.docker.com/desktop/settings/linux/#proxies), and Docker [daemon with systemd](https://docs.docker.com/config/daemon/systemd/#httphttps-proxy).
Ensure the certificate is installed as a system certificate when using HTTPS. This may require a new Docker image when using a self-signed certificate.
```dockerfile
FROM ollama/ollama
COPY my-ca.pem /usr/local/share/ca-certificates/my-ca.crt
RUN update-ca-certificates
```
Build and run this image:
```shell
docker build -t ollama-with-ca .
docker run -d -e HTTPS_PROXY=https://my.proxy.example.com -p 11434:11434 ollama-with-ca
```
## How do I use Ollama with GPU acceleration in Docker?
The Ollama Docker container can be configured with GPU acceleration in Linux or Windows (with WSL2). This requires the [nvidia-container-toolkit](https://github.com/NVIDIA/nvidia-container-toolkit). See [ollama/ollama](https://hub.docker.com/r/ollama/ollama) for more details.
GPU acceleration is not available for Docker Desktop in macOS due to the lack of GPU passthrough and emulation.
## Why is networking slow in WSL2 on Windows 10?
This can impact both installing Ollama, as well as downloading models.
Open `Control Panel > Networking and Internet > View network status and tasks` and click on `Change adapter settings` on the left panel. Find the `vEthernel (WSL)` adapter, right click and select `Properties`.
Click on `Configure` and open the `Advanced` tab. Search through each of the properties until you find `Large Send Offload Version 2 (IPv4)` and `Large Send Offload Version 2 (IPv6)`. *Disable* both of these
properties.
## How can I pre-load a model to get faster response times?
If you are using the API you can preload a model by sending the Ollama server an empty request. This works with both the `/api/generate` and `/api/chat` API endpoints.
To preload the mistral model using the generate endpoint, use:
```shell
curl http://localhost:11434/api/generate -d '{"model": "mistral"}'
```
To use the chat completions endpoint, use:
```shell
curl http://localhost:11434/api/chat -d '{"model": "mistral"}'
```
## How do I keep a model loaded in memory or make it unload immediately?
By default models are kept in memory for 5 minutes before being unloaded. This allows for quicker response times if you are making numerous requests to the LLM. You may, however, want to free up the memory before the 5 minutes have elapsed or keep the model loaded indefinitely. Use the `keep_alive` parameter with either the `/api/generate` and `/api/chat` API endpoints to control how long the model is left in memory.
The `keep_alive` parameter can be set to:
* a duration string (such as "10m" or "24h")
* a number in seconds (such as 3600)
* any negative number which will keep the model loaded in memory (e.g. -1 or "-1m")
* '0' which will unload the model immediately after generating a response
For example, to preload a model and leave it in memory use:
```shell
curl http://localhost:11434/api/generate -d '{"model": "llama2", "keep_alive": -1}'
```
To unload the model and free up memory use:
```shell
curl http://localhost:11434/api/generate -d '{"model": "llama2", "keep_alive": 0}'
```

View File

@@ -1,165 +0,0 @@
# Import a model
This guide walks through importing a GGUF, PyTorch or Safetensors model.
## Importing (GGUF)
### Step 1: Write a `Modelfile`
Start by creating a `Modelfile`. This file is the blueprint for your model, specifying weights, parameters, prompt templates and more.
```
FROM ./mistral-7b-v0.1.Q4_0.gguf
```
(Optional) many chat models require a prompt template in order to answer correctly. A default prompt template can be specified with the `TEMPLATE` instruction in the `Modelfile`:
```
FROM ./mistral-7b-v0.1.Q4_0.gguf
TEMPLATE "[INST] {{ .Prompt }} [/INST]"
```
### Step 2: Create the Ollama model
Finally, create a model from your `Modelfile`:
```
ollama create example -f Modelfile
```
### Step 3: Run your model
Next, test the model with `ollama run`:
```
ollama run example "What is your favourite condiment?"
```
## Importing (PyTorch & Safetensors)
> Importing from PyTorch and Safetensors is a longer process than importing from GGUF. Improvements that make it easier are a work in progress.
### Setup
First, clone the `ollama/ollama` repo:
```
git clone git@github.com:ollama/ollama.git ollama
cd ollama
```
and then fetch its `llama.cpp` submodule:
```shell
git submodule init
git submodule update llm/llama.cpp
```
Next, install the Python dependencies:
```
python3 -m venv llm/llama.cpp/.venv
source llm/llama.cpp/.venv/bin/activate
pip install -r llm/llama.cpp/requirements.txt
```
Then build the `quantize` tool:
```
make -C llm/llama.cpp quantize
```
### Clone the HuggingFace repository (optional)
If the model is currently hosted in a HuggingFace repository, first clone that repository to download the raw model.
Install [Git LFS](https://docs.github.com/en/repositories/working-with-files/managing-large-files/installing-git-large-file-storage), verify it's installed, and then clone the model's repository:
```
git lfs install
git clone https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1 model
```
### Convert the model
> Note: some model architectures require using specific convert scripts. For example, Qwen models require running `convert-hf-to-gguf.py` instead of `convert.py`
```
python llm/llama.cpp/convert.py ./model --outtype f16 --outfile converted.bin
```
### Quantize the model
```
llm/llama.cpp/quantize converted.bin quantized.bin q4_0
```
### Step 3: Write a `Modelfile`
Next, create a `Modelfile` for your model:
```
FROM quantized.bin
TEMPLATE "[INST] {{ .Prompt }} [/INST]"
```
### Step 4: Create the Ollama model
Finally, create a model from your `Modelfile`:
```
ollama create example -f Modelfile
```
### Step 5: Run your model
Next, test the model with `ollama run`:
```
ollama run example "What is your favourite condiment?"
```
## Publishing your model (optional early alpha)
Publishing models is in early alpha. If you'd like to publish your model to share with others, follow these steps:
1. Create [an account](https://ollama.com/signup)
2. Run `cat ~/.ollama/id_ed25519.pub` (or `type %USERPROFILE%\.ollama\id_ed25519.pub` on Windows) to view your Ollama public key. Copy this to the clipboard.
3. Add your public key to your [Ollama account](https://ollama.com/settings/keys)
Next, copy your model to your username's namespace:
```
ollama cp example <your username>/example
```
Then push the model:
```
ollama push <your username>/example
```
After publishing, your model will be available at `https://ollama.com/<your username>/example`.
## Quantization reference
The quantization options are as follow (from highest highest to lowest levels of quantization). Note: some architectures such as Falcon do not support K quants.
- `q2_K`
- `q3_K`
- `q3_K_S`
- `q3_K_M`
- `q3_K_L`
- `q4_0` (recommended)
- `q4_1`
- `q4_K`
- `q4_K_S`
- `q4_K_M`
- `q5_0`
- `q5_1`
- `q5_K`
- `q5_K_S`
- `q5_K_M`
- `q6_K`
- `q8_0`
- `f16`

View File

@@ -1,120 +0,0 @@
# Ollama on Linux
## Install
Install Ollama running this one-liner:
>
```bash
curl -fsSL https://ollama.com/install.sh | sh
```
## Manual install
### Download the `ollama` binary
Ollama is distributed as a self-contained binary. Download it to a directory in your PATH:
```bash
sudo curl -L https://ollama.com/download/ollama-linux-amd64 -o /usr/bin/ollama
sudo chmod +x /usr/bin/ollama
```
### Adding Ollama as a startup service (recommended)
Create a user for Ollama:
```bash
sudo useradd -r -s /bin/false -m -d /usr/share/ollama ollama
```
Create a service file in `/etc/systemd/system/ollama.service`:
```ini
[Unit]
Description=Ollama Service
After=network-online.target
[Service]
ExecStart=/usr/bin/ollama serve
User=ollama
Group=ollama
Restart=always
RestartSec=3
[Install]
WantedBy=default.target
```
Then start the service:
```bash
sudo systemctl daemon-reload
sudo systemctl enable ollama
```
### Install CUDA drivers (optional for Nvidia GPUs)
[Download and install](https://developer.nvidia.com/cuda-downloads) CUDA.
Verify that the drivers are installed by running the following command, which should print details about your GPU:
```bash
nvidia-smi
```
### Start Ollama
Start Ollama using `systemd`:
```bash
sudo systemctl start ollama
```
## Update
Update ollama by running the install script again:
```bash
curl -fsSL https://ollama.com/install.sh | sh
```
Or by downloading the ollama binary:
```bash
sudo curl -L https://ollama.com/download/ollama-linux-amd64 -o /usr/bin/ollama
sudo chmod +x /usr/bin/ollama
```
## Viewing logs
To view logs of Ollama running as a startup service, run:
```bash
journalctl -u ollama
```
## Uninstall
Remove the ollama service:
```bash
sudo systemctl stop ollama
sudo systemctl disable ollama
sudo rm /etc/systemd/system/ollama.service
```
Remove the ollama binary from your bin directory (either `/usr/local/bin`, `/usr/bin`, or `/bin`):
```bash
sudo rm $(which ollama)
```
Remove the downloaded models and Ollama service user and group:
```bash
sudo rm -r /usr/share/ollama
sudo userdel ollama
sudo groupdel ollama
```

View File

@@ -1,220 +1,105 @@
# Ollama Model File
> Note: `Modelfile` syntax is in development
> Note: this model file syntax is in development
A model file is the blueprint to create and share models with Ollama.
## Table of Contents
- [Format](#format)
- [Examples](#examples)
- [Instructions](#instructions)
- [FROM (Required)](#from-required)
- [Build from llama2](#build-from-llama2)
- [Build from a bin file](#build-from-a-bin-file)
- [PARAMETER](#parameter)
- [Valid Parameters and Values](#valid-parameters-and-values)
- [TEMPLATE](#template)
- [Template Variables](#template-variables)
- [SYSTEM](#system)
- [ADAPTER](#adapter)
- [LICENSE](#license)
- [MESSAGE](#message)
- [Notes](#notes)
## Format
The format of the `Modelfile`:
The format of the Modelfile:
```modelfile
# comment
INSTRUCTION arguments
```
| Instruction | Description |
| ----------------------------------- | -------------------------------------------------------------- |
| [`FROM`](#from-required) (required) | Defines the base model to use. |
| [`PARAMETER`](#parameter) | Sets the parameters for how Ollama will run the model. |
| [`TEMPLATE`](#template) | The full prompt template to be sent to the model. |
| [`SYSTEM`](#system) | Specifies the system message that will be set in the template. |
| [`ADAPTER`](#adapter) | Defines the (Q)LoRA adapters to apply to the model. |
| [`LICENSE`](#license) | Specifies the legal license. |
| [`MESSAGE`](#message) | Specify message history. |
| Instruction | Description |
| ----------------- | ----------------------------------------------------- |
| `FROM` (required) | Defines the base model to use |
| `PARAMETER` | Sets the parameters for how Ollama will run the model |
| `SYSTEM` | Specifies the system prompt that will set the context |
| `TEMPLATE` | The full prompt template to be sent to the model |
| `LICENSE` | Specifies the legal license |
## Examples
### Basic `Modelfile`
An example of a model file creating a mario blueprint:
An example of a `Modelfile` creating a mario blueprint:
```modelfile
```
FROM llama2
# sets the temperature to 1 [higher is more creative, lower is more coherent]
# sets the context size to 4096
PARAMETER temperature 1
# sets the context window size to 4096, this controls how many tokens the LLM can use as context to generate the next token
PARAMETER num_ctx 4096
# sets a custom system message to specify the behavior of the chat assistant
# Overriding the system prompt
SYSTEM You are Mario from super mario bros, acting as an assistant.
```
To use this:
1. Save it as a file (e.g. `Modelfile`)
2. `ollama create choose-a-model-name -f <location of the file e.g. ./Modelfile>'`
3. `ollama run choose-a-model-name`
1. Save it as a file (eg. `Modelfile`)
2. `ollama create NAME -f <location of the file eg. ./Modelfile>'`
3. `ollama run NAME`
4. Start using the model!
More examples are available in the [examples directory](../examples).
## FROM (Required)
### `Modelfile`s in [ollama.com/library][1]
The FROM instruction defines the base model to use when creating a model.
There are two ways to view `Modelfile`s underlying the models in [ollama.com/library][1]:
- Option 1: view a details page from a model's tags page:
1. Go to a particular model's tags (e.g. https://ollama.com/library/llama2/tags)
2. Click on a tag (e.g. https://ollama.com/library/llama2:13b)
3. Scroll down to "Layers"
- Note: if the [`FROM` instruction](#from-required) is not present,
it means the model was created from a local file
- Option 2: use `ollama show` to print the `Modelfile` for any local models like so:
```bash
> ollama show --modelfile llama2:13b
# Modelfile generated by "ollama show"
# To build a new Modelfile based on this one, replace the FROM line with:
# FROM llama2:13b
FROM /root/.ollama/models/blobs/sha256:123abc
TEMPLATE """[INST] {{ if .System }}<<SYS>>{{ .System }}<</SYS>>
{{ end }}{{ .Prompt }} [/INST] """
SYSTEM """"""
PARAMETER stop [INST]
PARAMETER stop [/INST]
PARAMETER stop <<SYS>>
PARAMETER stop <</SYS>>
```
## Instructions
### FROM (Required)
The `FROM` instruction defines the base model to use when creating a model.
```modelfile
```
FROM <model name>:<tag>
```
#### Build from llama2
### Build from llama2
```modelfile
```
FROM llama2
```
A list of available base models:
<https://github.com/jmorganca/ollama#model-library>
#### Build from a `bin` file
### Build from a bin file
```modelfile
```
FROM ./ollama-model.bin
```
This bin file location should be specified as an absolute path or relative to the `Modelfile` location.
### PARAMETER
## PARAMETER (Optional)
The `PARAMETER` instruction defines a parameter that can be set when the model is run.
```modelfile
```
PARAMETER <parameter> <parametervalue>
```
### Valid Parameters and Values
| Parameter | Description | Value Type | Example Usage |
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------- | -------------------- |
| mirostat | Enable Mirostat sampling for controlling perplexity. (default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0) | int | mirostat 0 |
| mirostat_eta | Influences how quickly the algorithm responds to feedback from the generated text. A lower learning rate will result in slower adjustments, while a higher learning rate will make the algorithm more responsive. (Default: 0.1) | float | mirostat_eta 0.1 |
| mirostat_tau | Controls the balance between coherence and diversity of the output. A lower value will result in more focused and coherent text. (Default: 5.0) | float | mirostat_tau 5.0 |
| num_ctx | Sets the size of the context window used to generate the next token. (Default: 2048) | int | num_ctx 4096 |
| num_gqa | The number of GQA groups in the transformer layer. Required for some models, for example it is 8 for llama2:70b | int | num_gqa 1 |
| num_gpu | The number of layers to send to the GPU(s). On macOS it defaults to 1 to enable metal support, 0 to disable. | int | num_gpu 50 |
| num_thread | Sets the number of threads to use during computation. By default, Ollama will detect this for optimal performance. It is recommended to set this value to the number of physical CPU cores your system has (as opposed to the logical number of cores). | int | num_thread 8 |
| repeat_last_n | Sets how far back for the model to look back to prevent repetition. (Default: 64, 0 = disabled, -1 = num_ctx) | int | repeat_last_n 64 |
| repeat_penalty | Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1) | float | repeat_penalty 1.1 |
| temperature | The temperature of the model. Increasing the temperature will make the model answer more creatively. (Default: 0.8) | float | temperature 0.7 |
| seed | Sets the random number seed to use for generation. Setting this to a specific number will make the model generate the same text for the same prompt. (Default: 0) | int | seed 42 |
| stop | Sets the stop sequences to use. When this pattern is encountered the LLM will stop generating text and return. Multiple stop patterns may be set by specifying multiple separate `stop` parameters in a modelfile. | string | stop "AI assistant:" |
| tfs_z | Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting. (default: 1) | float | tfs_z 1 |
| num_predict | Maximum number of tokens to predict when generating text. (Default: 128, -1 = infinite generation, -2 = fill context) | int | num_predict 42 |
| top_k | Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40) | int | top_k 40 |
| top_p | Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9) | float | top_p 0.9 |
| Parameter | Description | Value Type | Example Usage |
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------- | ------------------ |
| num_ctx | Sets the size of the prompt context size length model. (Default: 2048) | int | num_ctx 4096 |
| temperature | The temperature of the model. Increasing the temperature will make the model answer more creatively. (Default: 0.8) | float | temperature 0.7 |
| top_k | Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40) | int | top_k 40 |
| top_p | Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9) | float | top_p 0.9 |
| num_gpu | The number of GPUs to use. On macOS it defaults to 1 to enable metal support, 0 to disable. | int | num_gpu 1 |
| repeat_last_n | Sets how far back for the model to look back to prevent repetition. (Default: 64, 0 = disabled, -1 = ctx-size) | int | repeat_last_n 64 |
| repeat_penalty | Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1) | float | repeat_penalty 1.1 |
| tfs_z | Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting. (default: 1) | float | tfs_z 1 |
| mirostat | Enable Mirostat sampling for controlling perplexity. (default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0) | int | mirostat 0 |
| mirostat_tau | Controls the balance between coherence and diversity of the output. A lower value will result in more focused and coherent text. (Default: 5.0) | float | mirostat_tau 5.0 |
| mirostat_eta | Influences how quickly the algorithm responds to feedback from the generated text. A lower learning rate will result in slower adjustments, while a higher learning rate will make the algorithm more responsive. (Default: 0.1) | float | mirostat_eta 0.1 |
| num_thread | Sets the number of threads to use during computation. By default, Ollama will detect this for optimal performance. It is recommended to set this value to the number of physical CPU cores your system has (as opposed to the logical number of cores). | int | num_thread 8 |
### TEMPLATE
## Prompt
`TEMPLATE` of the full prompt template to be passed into the model. It may include (optionally) a system message, a user's message and the response from the model. Note: syntax may be model specific. Templates use Go [template syntax](https://pkg.go.dev/text/template).
When building on top of the base models supplied by Ollama, it comes with the prompt template predefined. To override the supplied system prompt, simply add `SYSTEM insert system prompt` to change the system prompt.
#### Template Variables
### Prompt Template
| Variable | Description |
| ----------------- | --------------------------------------------------------------------------------------------- |
| `{{ .System }}` | The system message used to specify custom behavior. |
| `{{ .Prompt }}` | The user prompt message. |
| `{{ .Response }}` | The response from the model. When generating a response, text after this variable is omitted. |
```
TEMPLATE """{{ if .System }}<|im_start|>system
{{ .System }}<|im_end|>
{{ end }}{{ if .Prompt }}<|im_start|>user
{{ .Prompt }}<|im_end|>
{{ end }}<|im_start|>assistant
"""
```
### SYSTEM
The `SYSTEM` instruction specifies the system message to be used in the template, if applicable.
```modelfile
SYSTEM """<system message>"""
```
### ADAPTER
The `ADAPTER` instruction specifies the LoRA adapter to apply to the base model. The value of this instruction should be an absolute path or a path relative to the Modelfile and the file must be in a GGML file format. The adapter should be tuned from the base model otherwise the behaviour is undefined.
```modelfile
ADAPTER ./ollama-lora.bin
```
### LICENSE
The `LICENSE` instruction allows you to specify the legal license under which the model used with this Modelfile is shared or distributed.
```modelfile
LICENSE """
<license text>
"""
```
### MESSAGE
The `MESSAGE` instruction allows you to specify a message history for the model to use when responding:
```modelfile
MESSAGE user Is Toronto in Canada?
MESSAGE assistant yes
MESSAGE user Is Sacramento in Canada?
MESSAGE assistant no
MESSAGE user Is Ontario in Canada?
MESSAGE assistant yes
```
`TEMPLATE` the full prompt template to be passed into the model. It may include (optionally) a system prompt, user prompt, and assistant prompt. This is used to create a full custom prompt, and syntax may be model specific.
## Notes
- the **`Modelfile` is not case sensitive**. In the examples, uppercase instructions are used to make it easier to distinguish it from arguments.
- Instructions can be in any order. In the examples, the `FROM` instruction is first to keep it easily readable.
[1]: https://ollama.com/library
- the **modelfile is not case sensitive**. In the examples, we use uppercase for instructions to make it easier to distinguish it from arguments.
- Instructions can be in any order. In the examples, we start with FROM instruction to keep it easily readable.

View File

@@ -1,141 +0,0 @@
# OpenAI compatibility
> **Note:** OpenAI compatibility is experimental and is subject to major adjustments including breaking changes. For fully-featured access to the Ollama API, see the Ollama [Python library](https://github.com/ollama/ollama-python), [JavaScript library](https://github.com/ollama/ollama-js) and [REST API](https://github.com/jmorganca/ollama/blob/main/docs/api.md).
Ollama provides experimental compatibility with parts of the [OpenAI API](https://platform.openai.com/docs/api-reference) to help connect existing applications to Ollama.
## Usage
### OpenAI Python library
```python
from openai import OpenAI
client = OpenAI(
base_url='http://localhost:11434/v1/',
# required but ignored
api_key='ollama',
)
chat_completion = client.chat.completions.create(
messages=[
{
'role': 'user',
'content': 'Say this is a test',
}
],
model='llama2',
)
```
### OpenAI JavaScript library
```javascript
import OpenAI from 'openai'
const openai = new OpenAI({
baseURL: 'http://localhost:11434/v1/',
// required but ignored
apiKey: 'ollama',
})
const chatCompletion = await openai.chat.completions.create({
messages: [{ role: 'user', content: 'Say this is a test' }],
model: 'llama2',
})
```
### `curl`
```
curl http://localhost:11434/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "llama2",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "Hello!"
}
]
}'
```
## Endpoints
### `/v1/chat/completions`
#### Supported features
- [x] Chat completions
- [x] Streaming
- [x] JSON mode
- [x] Reproducible outputs
- [ ] Vision
- [ ] Function calling
- [ ] Logprobs
#### Supported request fields
- [x] `model`
- [x] `messages`
- [x] Text `content`
- [ ] Array of `content` parts
- [x] `frequency_penalty`
- [x] `presence_penalty`
- [x] `response_format`
- [x] `seed`
- [x] `stop`
- [x] `stream`
- [x] `temperature`
- [x] `top_p`
- [x] `max_tokens`
- [ ] `logit_bias`
- [ ] `tools`
- [ ] `tool_choice`
- [ ] `user`
- [ ] `n`
#### Notes
- Setting `seed` will always set `temperature` to `0`
- `finish_reason` will always be `stop`
- `usage.prompt_tokens` will be 0 for completions where prompt evaluation is cached
## Models
Before using a model, pull it locally `ollama pull`:
```shell
ollama pull llama2
```
### Default model names
For tooling that relies on default OpenAI model names such as `gpt-3.5-turbo`, use `ollama cp` to copy an existing model name to a temporary name:
```
ollama cp llama2 gpt-3.5-turbo
```
Afterwards, this new model name can be specified the `model` field:
```shell
curl http://localhost:11434/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "Hello!"
}
]
}'
```

View File

@@ -1,72 +0,0 @@
# How to troubleshoot issues
Sometimes Ollama may not perform as expected. One of the best ways to figure out what happened is to take a look at the logs. Find the logs on **Mac** by running the command:
```shell
cat ~/.ollama/logs/server.log
```
On **Linux** systems with systemd, the logs can be found with this command:
```shell
journalctl -u ollama
```
When you run Ollama in a **container**, the logs go to stdout/stderr in the container:
```shell
docker logs <container-name>
```
(Use `docker ps` to find the container name)
If manually running `ollama serve` in a terminal, the logs will be on that terminal.
When you run Ollama on **Windows**, there are a few different locations. You can view them in the explorer window by hitting `<cmd>+R` and type in:
- `explorer %LOCALAPPDATA%\Ollama` to view logs
- `explorer %LOCALAPPDATA%\Programs\Ollama` to browse the binaries (The installer adds this to your user PATH)
- `explorer %HOMEPATH%\.ollama` to browse where models and configuration is stored
- `explorer %TEMP%` where temporary executable files are stored in one or more `ollama*` directories
To enable additional debug logging to help troubleshoot problems, first **Quit the running app from the tray menu** then in a powershell terminal
```powershell
$env:OLLAMA_DEBUG="1"
& "ollama app.exe"
```
Join the [Discord](https://discord.gg/ollama) for help interpreting the logs.
## LLM libraries
Ollama includes multiple LLM libraries compiled for different GPUs and CPU
vector features. Ollama tries to pick the best one based on the capabilities of
your system. If this autodetection has problems, or you run into other problems
(e.g. crashes in your GPU) you can workaround this by forcing a specific LLM
library. `cpu_avx2` will perform the best, followed by `cpu_avx` an the slowest
but most compatible is `cpu`. Rosetta emulation under MacOS will work with the
`cpu` library.
In the server log, you will see a message that looks something like this (varies
from release to release):
```
Dynamic LLM libraries [rocm_v6 cpu cpu_avx cpu_avx2 cuda_v11 rocm_v5]
```
**Experimental LLM Library Override**
You can set OLLAMA_LLM_LIBRARY to any of the available LLM libraries to bypass
autodetection, so for example, if you have a CUDA card, but want to force the
CPU LLM library with AVX2 vector support, use:
```
OLLAMA_LLM_LIBRARY="cpu_avx2" ollama serve
```
You can see what features your CPU has with the following.
```
cat /proc/cpuinfo| grep flags | head -1
```
## Known issues
* N/A

View File

@@ -1,9 +0,0 @@
# Tutorials
Here is a list of ways you can use Ollama with other tools to build interesting applications.
- [Using LangChain with Ollama in JavaScript](./tutorials/langchainjs.md)
- [Using LangChain with Ollama in Python](./tutorials/langchainpy.md)
- [Running Ollama on NVIDIA Jetson Devices](./tutorials/nvidia-jetson.md)
Also be sure to check out the [examples](../examples) directory for more ways to use Ollama.

View File

@@ -1,83 +0,0 @@
# Running Ollama on Fly.io GPU Instances
Ollama runs with little to no configuration on [Fly.io GPU instances](https://fly.io/docs/gpus/gpu-quickstart/). If you don't have access to GPUs yet, you'll need to [apply for access](https://fly.io/gpu/) on the waitlist. Once you're accepted, you'll get an email with instructions on how to get started.
Create a new app with `fly apps create`:
```bash
fly apps create
```
Then create a `fly.toml` file in a new folder that looks like this:
```toml
app = "sparkling-violet-709"
primary_region = "ord"
vm.size = "a100-40gb" # see https://fly.io/docs/gpus/gpu-quickstart/ for more info
[build]
image = "ollama/ollama"
[http_service]
internal_port = 11434
force_https = false
auto_stop_machines = true
auto_start_machines = true
min_machines_running = 0
processes = ["app"]
[mounts]
source = "models"
destination = "/root/.ollama"
initial_size = "100gb"
```
Then create a [new private IPv6 address](https://fly.io/docs/reference/private-networking/#flycast-private-load-balancing) for your app:
```bash
fly ips allocate-v6 --private
```
Then deploy your app:
```bash
fly deploy
```
And finally you can access it interactively with a new Fly.io Machine:
```
fly machine run -e OLLAMA_HOST=http://your-app-name.flycast --shell ollama/ollama
```
```bash
$ ollama run openchat:7b-v3.5-fp16
>>> How do I bake chocolate chip cookies?
To bake chocolate chip cookies, follow these steps:
1. Preheat the oven to 375°F (190°C) and line a baking sheet with parchment paper or silicone baking mat.
2. In a large bowl, mix together 1 cup of unsalted butter (softened), 3/4 cup granulated sugar, and 3/4
cup packed brown sugar until light and fluffy.
3. Add 2 large eggs, one at a time, to the butter mixture, beating well after each addition. Stir in 1
teaspoon of pure vanilla extract.
4. In a separate bowl, whisk together 2 cups all-purpose flour, 1/2 teaspoon baking soda, and 1/2 teaspoon
salt. Gradually add the dry ingredients to the wet ingredients, stirring until just combined.
5. Fold in 2 cups of chocolate chips (or chunks) into the dough.
6. Drop rounded tablespoons of dough onto the prepared baking sheet, spacing them about 2 inches apart.
7. Bake for 10-12 minutes, or until the edges are golden brown. The centers should still be slightly soft.
8. Allow the cookies to cool on the baking sheet for a few minutes before transferring them to a wire rack
to cool completely.
Enjoy your homemade chocolate chip cookies!
```
When you set it up like this, it will automatically turn off when you're done using it. Then when you access it again, it will automatically turn back on. This is a great way to save money on GPU instances when you're not using them. If you want a persistent wake-on-use connection to your Ollama instance, you can set up a [connection to your Fly network using WireGuard](https://fly.io/docs/reference/private-networking/#discovering-apps-through-dns-on-a-wireguard-connection). Then you can access your Ollama instance at `http://your-app-name.flycast`.
And that's it!

View File

@@ -1,77 +0,0 @@
# Using LangChain with Ollama using JavaScript
In this tutorial, we are going to use JavaScript with LangChain and Ollama to learn about something just a touch more recent. In August 2023, there was a series of wildfires on Maui. There is no way an LLM trained before that time can know about this, since their training data would not include anything as recent as that. So we can find the [Wikipedia article about the fires](https://en.wikipedia.org/wiki/2023_Hawaii_wildfires) and ask questions about the contents.
To get started, let's just use **LangChain** to ask a simple question to a model. To do this with JavaScript, we need to install **LangChain**:
```bash
npm install langchain
```
Now we can start building out our JavaScript:
```javascript
import { Ollama } from "langchain/llms/ollama";
const ollama = new Ollama({
baseUrl: "http://localhost:11434",
model: "llama2",
});
const answer = await ollama.call(`why is the sky blue?`);
console.log(answer);
```
That will get us the same thing as if we ran `ollama run llama2 "why is the sky blue"` in the terminal. But we want to load a document from the web to ask a question against. **Cheerio** is a great library for ingesting a webpage, and **LangChain** uses it in their **CheerioWebBaseLoader**. So let's install **Cheerio** and build that part of the app.
```bash
npm install cheerio
```
```javascript
import { CheerioWebBaseLoader } from "langchain/document_loaders/web/cheerio";
const loader = new CheerioWebBaseLoader("https://en.wikipedia.org/wiki/2023_Hawaii_wildfires");
const data = await loader.load();
```
That will load the document. Although this page is smaller than the Odyssey, it is certainly bigger than the context size for most LLMs. So we are going to need to split into smaller pieces, and then select just the pieces relevant to our question. This is a great use for a vector datastore. In this example, we will use the **MemoryVectorStore** that is part of **LangChain**. But there is one more thing we need to get the content into the datastore. We have to run an embeddings process that converts the tokens in the text into a series of vectors. And for that, we are going to use **Tensorflow**. There is a lot of stuff going on in this one. First, install the **Tensorflow** components that we need.
```javascript
npm install @tensorflow/tfjs-core@3.6.0 @tensorflow/tfjs-converter@3.6.0 @tensorflow-models/universal-sentence-encoder@1.3.3 @tensorflow/tfjs-node@4.10.0
```
If you just install those components without the version numbers, it will install the latest versions, but there are conflicts within **Tensorflow**, so you need to install the compatible versions.
```javascript
import { RecursiveCharacterTextSplitter } from "langchain/text_splitter"
import { MemoryVectorStore } from "langchain/vectorstores/memory";
import "@tensorflow/tfjs-node";
import { TensorFlowEmbeddings } from "langchain/embeddings/tensorflow";
// Split the text into 500 character chunks. And overlap each chunk by 20 characters
const textSplitter = new RecursiveCharacterTextSplitter({
chunkSize: 500,
chunkOverlap: 20
});
const splitDocs = await textSplitter.splitDocuments(data);
// Then use the TensorFlow Embedding to store these chunks in the datastore
const vectorStore = await MemoryVectorStore.fromDocuments(splitDocs, new TensorFlowEmbeddings());
```
To connect the datastore to a question asked to a LLM, we need to use the concept at the heart of **LangChain**: the chain. Chains are a way to connect a number of activities together to accomplish a particular tasks. There are a number of chain types available, but for this tutorial we are using the **RetrievalQAChain**.
```javascript
import { RetrievalQAChain } from "langchain/chains";
const retriever = vectorStore.asRetriever();
const chain = RetrievalQAChain.fromLLM(ollama, retriever);
const result = await chain.call({query: "When was Hawaii's request for a major disaster declaration approved?"});
console.log(result.text)
```
So we created a retriever, which is a way to return the chunks that match a query from a datastore. And then connect the retriever and the model via a chain. Finally, we send a query to the chain, which results in an answer using our document as a source. The answer it returned was correct, August 10, 2023.
And that is a simple introduction to what you can do with **LangChain** and **Ollama.**

View File

@@ -1,82 +0,0 @@
# Using LangChain with Ollama in Python
Let's imagine we are studying the classics, such as **the Odyssey** by **Homer**. We might have a question about Neleus and his family. If you ask llama2 for that info, you may get something like:
> I apologize, but I'm a large language model, I cannot provide information on individuals or families that do not exist in reality. Neleus is not a real person or character, and therefore does not have a family or any other personal details. My apologies for any confusion. Is there anything else I can help you with?
This sounds like a typical censored response, but even llama2-uncensored gives a mediocre answer:
> Neleus was a legendary king of Pylos and the father of Nestor, one of the Argonauts. His mother was Clymene, a sea nymph, while his father was Neptune, the god of the sea.
So let's figure out how we can use **LangChain** with Ollama to ask our question to the actual document, the Odyssey by Homer, using Python.
Let's start by asking a simple question that we can get an answer to from the **Llama2** model using **Ollama**. First, we need to install the **LangChain** package:
`pip install langchain`
Then we can create a model and ask the question:
```python
from langchain.llms import Ollama
ollama = Ollama(base_url='http://localhost:11434',
model="llama2")
print(ollama("why is the sky blue"))
```
Notice that we are defining the model and the base URL for Ollama.
Now let's load a document to ask questions against. I'll load up the Odyssey by Homer, which you can find at Project Gutenberg. We will need **WebBaseLoader** which is part of **LangChain** and loads text from any webpage. On my machine, I also needed to install **bs4** to get that to work, so run `pip install bs4`.
```python
from langchain.document_loaders import WebBaseLoader
loader = WebBaseLoader("https://www.gutenberg.org/files/1727/1727-h/1727-h.htm")
data = loader.load()
```
This file is pretty big. Just the preface is 3000 tokens. Which means the full document won't fit into the context for the model. So we need to split it up into smaller pieces.
```python
from langchain.text_splitter import RecursiveCharacterTextSplitter
text_splitter=RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
all_splits = text_splitter.split_documents(data)
```
It's split up, but we have to find the relevant splits and then submit those to the model. We can do this by creating embeddings and storing them in a vector database. We can use Ollama directly to instantiate an embedding model. We will use ChromaDB in this example for a vector database. `pip install GPT4All chromadb`
```python
from langchain.embeddings import OllamaEmbeddings
from langchain.vectorstores import Chroma
oembed = OllamaEmbeddings(base_url="http://localhost:11434", model="llama2")
vectorstore = Chroma.from_documents(documents=all_splits, embedding=oembed)
```
Now let's ask a question from the document. **Who was Neleus, and who is in his family?** Neleus is a character in the Odyssey, and the answer can be found in our text.
```python
question="Who is Neleus and who is in Neleus' family?"
docs = vectorstore.similarity_search(question)
len(docs)
```
This will output the number of matches for chunks of data similar to the search.
The next thing is to send the question and the relevant parts of the docs to the model to see if we can get a good answer. But we are stitching two parts of the process together, and that is called a chain. This means we need to define a chain:
```python
from langchain.chains import RetrievalQA
qachain=RetrievalQA.from_chain_type(ollama, retriever=vectorstore.as_retriever())
qachain({"query": question})
```
The answer received from this chain was:
> Neleus is a character in Homer's "Odyssey" and is mentioned in the context of Penelope's suitors. Neleus is the father of Chloris, who is married to Neleus and bears him several children, including Nestor, Chromius, Periclymenus, and Pero. Amphinomus, the son of Nisus, is also mentioned as a suitor of Penelope and is known for his good natural disposition and agreeable conversation.
It's not a perfect answer, as it implies Neleus married his daughter when actually Chloris "was the youngest daughter to Amphion son of Iasus and king of Minyan Orchomenus, and was Queen in Pylos".
I updated the chunk_overlap for the text splitter to 20 and tried again and got a much better answer:
> Neleus is a character in Homer's epic poem "The Odyssey." He is the husband of Chloris, who is the youngest daughter of Amphion son of Iasus and king of Minyan Orchomenus. Neleus has several children with Chloris, including Nestor, Chromius, Periclymenus, and Pero.
And that is a much better answer.

View File

@@ -1,38 +0,0 @@
# Running Ollama on NVIDIA Jetson Devices
With some minor configuration, Ollama runs well on [NVIDIA Jetson Devices](https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/). The following has been tested on [JetPack 5.1.2](https://developer.nvidia.com/embedded/jetpack).
NVIDIA Jetson devices are Linux-based embedded AI computers that are purpose-built for AI applications.
Jetsons have an integrated GPU that is wired directly to the memory controller of the machine. For this reason, the `nvidia-smi` command is unrecognized, and Ollama proceeds to operate in "CPU only"
mode. This can be verified by using a monitoring tool like jtop.
In order to address this, we simply pass the path to the Jetson's pre-installed CUDA libraries into `ollama serve` (while in a tmux session). We then hardcode the num_gpu parameters into a cloned
version of our target model.
Prerequisites:
- curl
- tmux
Here are the steps:
- Install Ollama via standard Linux command (ignore the 404 error): `curl https://ollama.com/install.sh | sh`
- Stop the Ollama service: `sudo systemctl stop ollama`
- Start Ollama serve in a tmux session called ollama_jetson and reference the CUDA libraries path: `tmux has-session -t ollama_jetson 2>/dev/null || tmux new-session -d -s ollama_jetson
'LD_LIBRARY_PATH=/usr/local/cuda/lib64 ollama serve'`
- Pull the model you want to use (e.g. mistral): `ollama pull mistral`
- Create a new Modelfile specifically for enabling GPU support on the Jetson: `touch ModelfileMistralJetson`
- In the ModelfileMistralJetson file, specify the FROM model and the num_gpu PARAMETER as shown below:
```
FROM mistral
PARAMETER num_gpu 999
```
- Create a new model from your Modelfile: `ollama create mistral-jetson -f ./ModelfileMistralJetson`
- Run the new model: `ollama run mistral-jetson`
If you run a monitoring tool like jtop you should now see that Ollama is using the Jetson's integrated GPU.
And that's it!

View File

@@ -1,46 +0,0 @@
# Ollama Windows Preview
Welcome to the Ollama Windows preview.
No more WSL required!
Ollama now runs as a native Windows application, including NVIDIA GPU support.
After installing Ollama Windows Preview, Ollama will run in the background and
the `ollama` command line is available in `cmd`, `powershell` or your favorite
terminal application. As usual the Ollama [api](./api.md) will be served on
`http://localhost:11434`.
As this is a preview release, you should expect a few bugs here and there. If
you run into a problem you can reach out on
[Discord](https://discord.gg/ollama), or file an
[issue](https://github.com/ollama/ollama/issues).
Logs will often be helpful in dianosing the problem (see
[Troubleshooting](#troubleshooting) below)
## System Requirements
* Windows 10 or newer, Home or Pro
* NVIDIA 452.39 or newer Drivers if you have an NVIDIA card
## API Access
Here's a quick example showing API access from `powershell`
```powershell
(Invoke-WebRequest -method POST -Body '{"model":"llama2", "prompt":"Why is the sky blue?", "stream": false}' -uri http://localhost:11434/api/generate ).Content | ConvertFrom-json
```
## Troubleshooting
While we're in preview, `OLLAMA_DEBUG` is always enabled, which adds
a "view logs" menu item to the app, and increses logging for the GUI app and
server.
Ollama on Windows stores files in a few different locations. You can view them in
the explorer window by hitting `<cmd>+R` and type in:
- `explorer %LOCALAPPDATA%\Ollama` contains logs, and downloaded updates
- *app.log* contains logs from the GUI application
- *server.log* contains the server logs
- *upgrade.log* contains log output for upgrades
- `explorer %LOCALAPPDATA%\Programs\Ollama` contains the binaries (The installer adds this to your user PATH)
- `explorer %HOMEPATH%\.ollama` contains models and configuration
- `explorer %TEMP%` contains temporary executable files in one or more `ollama*` directories

174
examples/.gitignore vendored
View File

@@ -1,174 +0,0 @@
node_modules
bun.lockb
.vscode
# OSX
.DS_STORE
# Models
models/
# Local Chroma db
.chroma/
db/
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
# pdm
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
#pdm.lock
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/#use-with-ide
.pdm.toml
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# PyCharm
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/

View File

@@ -1,3 +1,15 @@
# Examples
This directory contains different examples of using Ollama.
This directory contains examples that can be created and run with `ollama`.
To create a model:
```
ollama create example -f <example file>
```
To run a model:
```
ollama run example
```

Some files were not shown because too many files have changed in this diff Show More