Compare commits
35 Commits
v0.3.12-rc
...
v0.4.0-rc0
Author | SHA1 | Date | |
---|---|---|---|
![]() |
b5d1677a4e | ||
![]() |
4bbdbbcaef | ||
![]() |
c7cb0f0602 | ||
![]() |
bf4018b9ec | ||
![]() |
f86d00cd95 | ||
![]() |
f2890a4494 | ||
![]() |
05cd82ef94 | ||
![]() |
7d6eb0d4c3 | ||
![]() |
24636dfa87 | ||
![]() |
1d7fa3ad2d | ||
![]() |
09035b71cd | ||
![]() |
f3c8b898cd | ||
![]() |
5dd0477fd4 | ||
![]() |
c3d321d405 | ||
![]() |
7fe3902552 | ||
![]() |
0077e22d52 | ||
![]() |
03408f3437 | ||
![]() |
cd7e01e8b9 | ||
![]() |
7a962bd802 | ||
![]() |
f9584deba5 | ||
![]() |
96efd9052f | ||
![]() |
de982616f1 | ||
![]() |
defbf9425a | ||
![]() |
f40bb398f6 | ||
![]() |
79d3b1e2bd | ||
![]() |
03608cb46e | ||
![]() |
450acb71a6 | ||
![]() |
55ea963c9e | ||
![]() |
e9e9bdb8d9 | ||
![]() |
35bb6d32b3 | ||
![]() |
98701b58b3 | ||
![]() |
ad935f45ac | ||
![]() |
dbba73469d | ||
![]() |
6c2eb73a70 | ||
![]() |
2a038c1d7e |
@@ -3,9 +3,7 @@ ollama
|
||||
app
|
||||
macapp
|
||||
dist
|
||||
llm/llama.cpp
|
||||
.env
|
||||
.cache
|
||||
test_data
|
||||
llm/build
|
||||
llama/build
|
||||
|
10
.gitattributes
vendored
10
.gitattributes
vendored
@@ -1,3 +1,11 @@
|
||||
llm/ext_server/* linguist-vendored
|
||||
llama/**/*.cpp linguist-vendored
|
||||
llama/**/*.hpp linguist-vendored
|
||||
llama/**/*.h linguist-vendored
|
||||
llama/**/*.c linguist-vendored
|
||||
llama/**/*.cu linguist-vendored
|
||||
llama/**/*.cuh linguist-vendored
|
||||
llama/**/*.m linguist-vendored
|
||||
llama/**/*.metal linguist-vendored
|
||||
|
||||
* text=auto
|
||||
*.go text eol=lf
|
||||
|
70
.github/workflows/release.yaml
vendored
70
.github/workflows/release.yaml
vendored
@@ -48,8 +48,8 @@ jobs:
|
||||
with:
|
||||
name: dist-darwin
|
||||
path: |
|
||||
dist/*arwin*
|
||||
!dist/*-cov
|
||||
dist/Ollama-darwin.zip
|
||||
dist/ollama-darwin
|
||||
|
||||
# Windows builds take a long time to both install the dependencies and build, so parallelize
|
||||
# CPU generation step
|
||||
@@ -92,19 +92,19 @@ jobs:
|
||||
- run: go get ./...
|
||||
- run: |
|
||||
$gopath=(get-command go).source | split-path -parent
|
||||
& "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1"
|
||||
cd $env:GITHUB_WORKSPACE
|
||||
import-module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
|
||||
Enter-VsDevShell -vsinstallpath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -skipautomaticlocation -DevCmdArguments '-arch=x64 -no_logo'
|
||||
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
|
||||
$env:PATH="$gopath;$env:PATH"
|
||||
go generate -x ./...
|
||||
name: go generate
|
||||
$cores = (Get-ComputerInfo -Property CsProcessors).CsProcessors.NumberOfCores
|
||||
make -j $cores
|
||||
name: make
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: generate-windows-cpu
|
||||
path: |
|
||||
build/**/*
|
||||
build/**/*.a
|
||||
llm/build/**/*.a
|
||||
dist/windows-amd64/**
|
||||
|
||||
# ROCm generation step
|
||||
@@ -158,14 +158,15 @@ jobs:
|
||||
- run: go get ./...
|
||||
- run: |
|
||||
$gopath=(get-command go).source | split-path -parent
|
||||
& "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1"
|
||||
cd $env:GITHUB_WORKSPACE
|
||||
import-module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
|
||||
Enter-VsDevShell -vsinstallpath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -skipautomaticlocation -DevCmdArguments '-arch=x64 -no_logo'
|
||||
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
|
||||
$env:PATH="$gopath;$env:PATH"
|
||||
$env:OLLAMA_SKIP_CPU_GENERATE="1"
|
||||
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
|
||||
go generate -x ./...
|
||||
name: go generate
|
||||
$cores = (Get-ComputerInfo -Property CsProcessors).CsProcessors.NumberOfCores
|
||||
make -j $cores
|
||||
name: make
|
||||
- name: 'gather rocm dependencies'
|
||||
run: |
|
||||
$HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
|
||||
@@ -245,16 +246,17 @@ jobs:
|
||||
- name: 'Verify CUDA'
|
||||
run: nvcc -V
|
||||
- run: go get ./...
|
||||
- name: go generate
|
||||
- name: make
|
||||
run: |
|
||||
$gopath=(get-command go).source | split-path -parent
|
||||
$cudabin=(get-command nvcc).source | split-path
|
||||
& "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1"
|
||||
cd $env:GITHUB_WORKSPACE
|
||||
import-module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
|
||||
Enter-VsDevShell -vsinstallpath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -skipautomaticlocation -DevCmdArguments '-arch=x64 -no_logo'
|
||||
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
|
||||
$env:PATH="$gopath;$cudabin;$env:PATH"
|
||||
$env:OLLAMA_SKIP_CPU_GENERATE="1"
|
||||
go generate -x ./...
|
||||
$cores = (Get-ComputerInfo -Property CsProcessors).CsProcessors.NumberOfCores
|
||||
make -j $cores
|
||||
- name: 'gather cuda dependencies'
|
||||
run: |
|
||||
$NVIDIA_DIR=(resolve-path 'C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\*\bin\')[0]
|
||||
@@ -292,6 +294,30 @@ jobs:
|
||||
choco install -y --no-progress git gzip
|
||||
echo "C:\Program Files\Git\cmd" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
echo "C:\ProgramData\chocolatey\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
# pacman is buggy on win arm64, so we avoid using it, but rely on the binary artifacts
|
||||
# we download the sfx (7zip bundle) which isn't fully set up, but the binaries we need to build work
|
||||
- name: Install msys2 x64
|
||||
run: |
|
||||
$url="https://github.com/msys2/msys2-installer/releases/download/2024-07-27/msys2-base-x86_64-20240727.sfx.exe"
|
||||
write-host "Downloading MSYS2"
|
||||
Invoke-WebRequest -Uri "$url" -outfile "${env:RUNNER_TEMP}\msys2.exe"
|
||||
write-host "Installing msys2"
|
||||
Start-Process "${env:RUNNER_TEMP}\msys2.exe" -ArgumentList @(
|
||||
'-y', '-oC:\'
|
||||
) -NoNewWindow -Wait
|
||||
echo "c:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
# since pacman isn't reliable, we just download the tar file and extract directly
|
||||
- name: Downloading and extracting msys2 make tar file
|
||||
run: |
|
||||
$url="https://mirror.msys2.org/msys/x86_64/make-4.4.1-2-x86_64.pkg.tar.zst"
|
||||
write-host "Downloading make"
|
||||
Invoke-WebRequest -Uri "$url" -outfile c:\msys64\make.tar.zst
|
||||
cd c:\msys64; tar -xf make.tar.zst
|
||||
rm c:\msys64\make.tar.zst
|
||||
- name: Verify Make works properly
|
||||
run: |
|
||||
echo $env:PATH
|
||||
make --version
|
||||
- name: Install Visual Studio 2022
|
||||
run: |
|
||||
$components = @(
|
||||
@@ -354,7 +380,7 @@ jobs:
|
||||
- name: Set Version
|
||||
run: |
|
||||
$ver=${env:GITHUB_REF_NAME}.trim("v")
|
||||
write-host VERSION=$ver | Out-File -FilePath ${env:GITHUB_ENV} -Encoding utf8 -Append
|
||||
echo VERSION=$ver | Out-File -FilePath ${env:GITHUB_ENV} -Encoding utf8 -Append
|
||||
- uses: 'google-github-actions/auth@v2'
|
||||
with:
|
||||
project_id: 'ollama'
|
||||
@@ -385,10 +411,9 @@ jobs:
|
||||
- run: |
|
||||
$gopath=(get-command go).source | split-path -parent
|
||||
$gccpath=(get-command gcc).source | split-path -parent
|
||||
& "C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\Tools\Launch-VsDevShell.ps1"
|
||||
cd $env:GITHUB_WORKSPACE
|
||||
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
|
||||
$env:PATH="$gopath;$gccpath;$env:PATH;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\CMake\CMake\bin"
|
||||
import-module 'C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
|
||||
Enter-VsDevShell -Arch arm64 -vsinstallpath 'C:\Program Files\Microsoft Visual Studio\2022\Community' -skipautomaticlocation
|
||||
$env:PATH="$gopath;$gccpath;$env:PATH"
|
||||
echo $env:PATH
|
||||
$env:ARCH="arm64"
|
||||
.\scripts\build_windows.ps1 buildOllama buildApp gatherDependencies distZip
|
||||
@@ -470,11 +495,12 @@ jobs:
|
||||
- uses: actions/download-artifact@v4
|
||||
with:
|
||||
name: windows-arm64
|
||||
path: dist
|
||||
- run: dir build
|
||||
- run: |
|
||||
$gopath=(get-command go).source | split-path -parent
|
||||
& "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1"
|
||||
cd $env:GITHUB_WORKSPACE
|
||||
import-module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
|
||||
Enter-VsDevShell -vsinstallpath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -skipautomaticlocation -DevCmdArguments '-arch=x64 -no_logo'
|
||||
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
|
||||
$env:PATH="$gopath;$env:PATH"
|
||||
$env:OLLAMA_SKIP_GENERATE="1"
|
||||
|
155
.github/workflows/test.yaml
vendored
155
.github/workflows/test.yaml
vendored
@@ -21,9 +21,7 @@ jobs:
|
||||
changes:
|
||||
runs-on: ubuntu-latest
|
||||
outputs:
|
||||
GENERATE: ${{ steps.changes.outputs.GENERATE }}
|
||||
GENERATE_CUDA: ${{ steps.changes.outputs.GENERATE_CUDA }}
|
||||
GENERATE_ROCM: ${{ steps.changes.outputs.GENERATE_ROCM }}
|
||||
RUNNERS: ${{ steps.changes.outputs.RUNNERS }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
@@ -38,52 +36,12 @@ jobs:
|
||||
}
|
||||
|
||||
{
|
||||
echo GENERATE=$(changed 'llm/llama.cpp' 'llm/patches/**' 'llm/ext_server/**' 'llm/generate/**')
|
||||
echo GENERATE_CUDA=$(changed 'llm/llama.cpp' 'llm/patches/**' 'llm/ext_server/**' 'llm/generate/**')
|
||||
echo GENERATE_ROCM=$(changed 'llm/llama.cpp' 'llm/patches/**' 'llm/ext_server/**' 'llm/generate/**')
|
||||
echo RUNNERS=$(changed 'llama/**')
|
||||
} >>$GITHUB_OUTPUT
|
||||
|
||||
generate:
|
||||
runners-linux-cuda:
|
||||
needs: [changes]
|
||||
if: ${{ needs.changes.outputs.GENERATE == 'True' }}
|
||||
strategy:
|
||||
matrix:
|
||||
os: [ubuntu-latest, macos-latest, windows-2019]
|
||||
arch: [amd64, arm64]
|
||||
exclude:
|
||||
- os: ubuntu-latest
|
||||
arch: arm64
|
||||
- os: windows-2019
|
||||
arch: arm64
|
||||
runs-on: ${{ matrix.os }}
|
||||
env:
|
||||
GOARCH: ${{ matrix.arch }}
|
||||
CGO_ENABLED: '1'
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version-file: go.mod
|
||||
cache: true
|
||||
- run: go get ./...
|
||||
- run: |
|
||||
$gopath=(get-command go).source | split-path -parent
|
||||
$gccpath=(get-command gcc).source | split-path -parent
|
||||
& "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1"
|
||||
cd $env:GITHUB_WORKSPACE
|
||||
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
|
||||
$env:PATH="$gopath;$gccpath;$env:PATH"
|
||||
echo $env:PATH
|
||||
go generate -x ./...
|
||||
if: ${{ startsWith(matrix.os, 'windows-') }}
|
||||
name: 'Windows Go Generate'
|
||||
- run: go generate -x ./...
|
||||
if: ${{ ! startsWith(matrix.os, 'windows-') }}
|
||||
name: 'Unix Go Generate'
|
||||
- run: go build .
|
||||
generate-cuda:
|
||||
needs: [changes]
|
||||
if: ${{ needs.changes.outputs.GENERATE_CUDA == 'True' }}
|
||||
if: ${{ needs.changes.outputs.RUNNERS == 'True' }}
|
||||
strategy:
|
||||
matrix:
|
||||
cuda-version:
|
||||
@@ -93,8 +51,6 @@ jobs:
|
||||
steps:
|
||||
- run: |
|
||||
apt-get update && apt-get install -y git build-essential curl
|
||||
curl -fsSL https://github.com/Kitware/CMake/releases/download/v3.28.1/cmake-3.28.1-linux-x86_64.tar.gz \
|
||||
| tar -zx -C /usr --strip-components 1
|
||||
env:
|
||||
DEBIAN_FRONTEND: noninteractive
|
||||
- uses: actions/checkout@v4
|
||||
@@ -105,12 +61,11 @@ jobs:
|
||||
- run: go get ./...
|
||||
- run: |
|
||||
git config --global --add safe.directory /__w/ollama/ollama
|
||||
go generate -x ./...
|
||||
env:
|
||||
OLLAMA_SKIP_CPU_GENERATE: '1'
|
||||
generate-rocm:
|
||||
cores=$(grep '^core id' /proc/cpuinfo |sort -u|wc -l)
|
||||
make -j $cores cuda_v11
|
||||
runners-linux-rocm:
|
||||
needs: [changes]
|
||||
if: ${{ needs.changes.outputs.GENERATE_ROCM == 'True' }}
|
||||
if: ${{ needs.changes.outputs.RUNNERS == 'True' }}
|
||||
strategy:
|
||||
matrix:
|
||||
rocm-version:
|
||||
@@ -120,8 +75,6 @@ jobs:
|
||||
steps:
|
||||
- run: |
|
||||
apt-get update && apt-get install -y git build-essential curl rocm-libs
|
||||
curl -fsSL https://github.com/Kitware/CMake/releases/download/v3.28.1/cmake-3.28.1-linux-x86_64.tar.gz \
|
||||
| tar -zx -C /usr --strip-components 1
|
||||
env:
|
||||
DEBIAN_FRONTEND: noninteractive
|
||||
- uses: actions/checkout@v4
|
||||
@@ -132,14 +85,13 @@ jobs:
|
||||
- run: go get ./...
|
||||
- run: |
|
||||
git config --global --add safe.directory /__w/ollama/ollama
|
||||
go generate -x ./...
|
||||
env:
|
||||
OLLAMA_SKIP_CPU_GENERATE: '1'
|
||||
cores=$(grep '^core id' /proc/cpuinfo |sort -u|wc -l)
|
||||
make -j $cores rocm
|
||||
|
||||
# ROCm generation step
|
||||
generate-windows-rocm:
|
||||
runners-windows-rocm:
|
||||
needs: [changes]
|
||||
if: ${{ needs.changes.outputs.GENERATE_ROCM == 'True' }}
|
||||
if: ${{ needs.changes.outputs.RUNNERS == 'True' }}
|
||||
runs-on: windows
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
@@ -161,21 +113,21 @@ jobs:
|
||||
- run: go get ./...
|
||||
- run: |
|
||||
$gopath=(get-command go).source | split-path -parent
|
||||
& "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1"
|
||||
cd $env:GITHUB_WORKSPACE
|
||||
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
|
||||
import-module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
|
||||
Enter-VsDevShell -vsinstallpath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -skipautomaticlocation -DevCmdArguments '-arch=x64 -no_logo'
|
||||
$env:PATH="$gopath;$env:PATH"
|
||||
$env:OLLAMA_SKIP_CPU_GENERATE="1"
|
||||
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
|
||||
go generate -x ./...
|
||||
name: go generate
|
||||
env:
|
||||
OLLAMA_SKIP_CPU_GENERATE: '1'
|
||||
$cores = (Get-ComputerInfo -Property CsProcessors).CsProcessors.NumberOfCores
|
||||
write-host $env:HIP_PATH
|
||||
make -C llama print-HIP_PATH print-HIP_LIB_DIR
|
||||
make -j $cores rocm
|
||||
name: make
|
||||
|
||||
# CUDA generation step
|
||||
generate-windows-cuda:
|
||||
runners-windows-cuda:
|
||||
needs: [changes]
|
||||
if: ${{ needs.changes.outputs.GENERATE_CUDA == 'True' }}
|
||||
if: ${{ needs.changes.outputs.RUNNERS == 'True' }}
|
||||
runs-on: windows
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
@@ -200,19 +152,60 @@ jobs:
|
||||
- name: 'Verify CUDA'
|
||||
run: nvcc -V
|
||||
- run: go get ./...
|
||||
- name: go generate
|
||||
- name: make
|
||||
run: |
|
||||
$gopath=(get-command go).source | split-path -parent
|
||||
$cudabin=(get-command nvcc).source | split-path
|
||||
& "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1"
|
||||
cd $env:GITHUB_WORKSPACE
|
||||
import-module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
|
||||
Enter-VsDevShell -vsinstallpath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -skipautomaticlocation -DevCmdArguments '-arch=x64 -no_logo'
|
||||
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
|
||||
$env:PATH="$gopath;$cudabin;$env:PATH"
|
||||
$env:OLLAMA_SKIP_CPU_GENERATE="1"
|
||||
go generate -x ./...
|
||||
$cores = (Get-ComputerInfo -Property CsProcessors).CsProcessors.NumberOfCores
|
||||
make -j $cores cuda_v11
|
||||
env:
|
||||
OLLAMA_SKIP_CPU_GENERATE: '1'
|
||||
|
||||
runners-cpu:
|
||||
needs: [changes]
|
||||
if: ${{ needs.changes.outputs.RUNNERS == 'True' }}
|
||||
strategy:
|
||||
matrix:
|
||||
os: [ubuntu-latest, macos-latest, windows-2019]
|
||||
arch: [amd64, arm64]
|
||||
exclude:
|
||||
- os: ubuntu-latest
|
||||
arch: arm64
|
||||
- os: windows-2019
|
||||
arch: arm64
|
||||
runs-on: ${{ matrix.os }}
|
||||
env:
|
||||
GOARCH: ${{ matrix.arch }}
|
||||
ARCH: ${{ matrix.arch }}
|
||||
CGO_ENABLED: '1'
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version-file: go.mod
|
||||
cache: true
|
||||
- run: go get ./...
|
||||
- name: 'Build Windows Go Runners'
|
||||
if: ${{ startsWith(matrix.os, 'windows-') }}
|
||||
run: |
|
||||
$gopath=(get-command go).source | split-path -parent
|
||||
$gccpath=(get-command gcc).source | split-path -parent
|
||||
import-module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
|
||||
Enter-VsDevShell -vsinstallpath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -skipautomaticlocation -DevCmdArguments '-arch=x64 -no_logo'
|
||||
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
|
||||
$env:PATH="$gopath;$gccpath;$env:PATH"
|
||||
echo $env:PATH
|
||||
make -j 4
|
||||
- name: 'Build Unix Go Runners'
|
||||
if: ${{ ! startsWith(matrix.os, 'windows-') }}
|
||||
run: make -j 4
|
||||
- run: go build .
|
||||
|
||||
lint:
|
||||
strategy:
|
||||
matrix:
|
||||
@@ -260,9 +253,6 @@ jobs:
|
||||
env:
|
||||
GOARCH: ${{ matrix.arch }}
|
||||
CGO_ENABLED: '1'
|
||||
OLLAMA_CPU_TARGET: 'static'
|
||||
OLLAMA_SKIP_CPU_GENERATE: '1'
|
||||
OLLAMA_SKIP_METAL_GENERATE: '1'
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
@@ -277,6 +267,17 @@ jobs:
|
||||
arm64) echo ARCH=arm64 ;;
|
||||
esac >>$GITHUB_ENV
|
||||
shell: bash
|
||||
- run: go generate ./...
|
||||
- run: go build
|
||||
- run: go test -v ./...
|
||||
|
||||
patches:
|
||||
needs: [changes]
|
||||
if: ${{ needs.changes.outputs.RUNNERS == 'True' }}
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: recursive
|
||||
- name: Verify patches carry all the changes
|
||||
run: |
|
||||
make apply-patches sync && git diff --compact-summary --exit-code llama
|
4
.gitignore
vendored
4
.gitignore
vendored
@@ -5,7 +5,6 @@
|
||||
.swp
|
||||
dist
|
||||
ollama
|
||||
ggml-metal.metal
|
||||
.cache
|
||||
*.exe
|
||||
.idea
|
||||
@@ -15,4 +14,5 @@ llm/build
|
||||
build/*/*/*
|
||||
!build/**/placeholder
|
||||
llama/build
|
||||
__debug_bin*
|
||||
__debug_bin*
|
||||
llama/vendor
|
4
.gitmodules
vendored
4
.gitmodules
vendored
@@ -1,4 +0,0 @@
|
||||
[submodule "llama.cpp"]
|
||||
path = llm/llama.cpp
|
||||
url = https://github.com/ggerganov/llama.cpp.git
|
||||
shallow = true
|
291
Dockerfile
291
Dockerfile
@@ -1,3 +1,4 @@
|
||||
# Note: once we have fully transitioned to the Go server, this will replace the old Dockerfile at the top of the tree
|
||||
ARG GOLANG_VERSION=1.22.5
|
||||
ARG CMAKE_VERSION=3.22.1
|
||||
ARG CUDA_VERSION_11=11.3.1
|
||||
@@ -6,176 +7,134 @@ ARG CUDA_VERSION_12=12.4.0
|
||||
ARG CUDA_V12_ARCHITECTURES="60;61;62;70;72;75;80;86;87;89;90;90a"
|
||||
ARG ROCM_VERSION=6.1.2
|
||||
|
||||
# Copy the minimal context we need to run the generate scripts
|
||||
FROM scratch AS llm-code
|
||||
COPY .git .git
|
||||
COPY .gitmodules .gitmodules
|
||||
COPY llm llm
|
||||
|
||||
FROM --platform=linux/amd64 nvidia/cuda:$CUDA_VERSION_11-devel-centos7 AS cuda-11-build-amd64
|
||||
ARG CMAKE_VERSION
|
||||
COPY ./scripts/rh_linux_deps.sh /
|
||||
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
|
||||
ENV PATH=/opt/rh/devtoolset-10/root/usr/bin:$PATH
|
||||
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
|
||||
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
|
||||
ARG CGO_CFLAGS
|
||||
ARG CUDA_V11_ARCHITECTURES
|
||||
ENV GOARCH=amd64
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
OLLAMA_SKIP_STATIC_GENERATE=1 \
|
||||
OLLAMA_SKIP_CPU_GENERATE=1 \
|
||||
CMAKE_CUDA_ARCHITECTURES="${CUDA_V11_ARCHITECTURES}" \
|
||||
CUDA_VARIANT="_v11" \
|
||||
bash gen_linux.sh
|
||||
|
||||
FROM --platform=linux/amd64 nvidia/cuda:$CUDA_VERSION_12-devel-centos7 AS cuda-12-build-amd64
|
||||
ARG CMAKE_VERSION
|
||||
COPY ./scripts/rh_linux_deps.sh /
|
||||
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
|
||||
ENV PATH=/opt/rh/devtoolset-10/root/usr/bin:$PATH
|
||||
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
|
||||
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
|
||||
ARG CGO_CFLAGS
|
||||
ARG CUDA_V12_ARCHITECTURES
|
||||
ENV GOARCH=amd64
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
OLLAMA_SKIP_STATIC_GENERATE=1 \
|
||||
OLLAMA_SKIP_CPU_GENERATE=1 \
|
||||
CMAKE_CUDA_ARCHITECTURES="${CUDA_V12_ARCHITECTURES}" \
|
||||
CUDA_VARIANT="_v12" \
|
||||
OLLAMA_CUSTOM_CUDA_DEFS="-DGGML_CUDA_USE_GRAPHS=on" \
|
||||
bash gen_linux.sh
|
||||
|
||||
FROM --platform=linux/arm64 nvidia/cuda:$CUDA_VERSION_11-devel-rockylinux8 AS cuda-11-build-runner-arm64
|
||||
ARG CMAKE_VERSION
|
||||
COPY ./scripts/rh_linux_deps.sh /
|
||||
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
|
||||
ENV PATH=/opt/rh/gcc-toolset-10/root/usr/bin:$PATH
|
||||
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
|
||||
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
|
||||
ARG CGO_CFLAGS
|
||||
ARG CUDA_V11_ARCHITECTURES
|
||||
ENV GOARCH=arm64
|
||||
RUN OLLAMA_SKIP_STATIC_GENERATE=1 \
|
||||
OLLAMA_SKIP_CPU_GENERATE=1 \
|
||||
CMAKE_CUDA_ARCHITECTURES="${CUDA_V11_ARCHITECTURES}" \
|
||||
CUDA_VARIANT="_v11" \
|
||||
bash gen_linux.sh
|
||||
|
||||
FROM --platform=linux/arm64 nvidia/cuda:$CUDA_VERSION_12-devel-rockylinux8 AS cuda-12-build-runner-arm64
|
||||
ARG CMAKE_VERSION
|
||||
COPY ./scripts/rh_linux_deps.sh /
|
||||
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
|
||||
ENV PATH=/opt/rh/gcc-toolset-10/root/usr/bin:$PATH
|
||||
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
|
||||
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
|
||||
ARG CGO_CFLAGS
|
||||
ARG CUDA_V12_ARCHITECTURES
|
||||
ENV GOARCH=arm64
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
OLLAMA_SKIP_STATIC_GENERATE=1 \
|
||||
OLLAMA_SKIP_CPU_GENERATE=1 \
|
||||
CMAKE_CUDA_ARCHITECTURES="${CUDA_V12_ARCHITECTURES}" \
|
||||
CUDA_VARIANT="_v12" \
|
||||
OLLAMA_CUSTOM_CUDA_DEFS="-DGGML_CUDA_USE_GRAPHS=on" \
|
||||
bash gen_linux.sh
|
||||
|
||||
|
||||
FROM --platform=linux/amd64 rocm/dev-centos-7:${ROCM_VERSION}-complete AS rocm-build-amd64
|
||||
ARG CMAKE_VERSION
|
||||
COPY ./scripts/rh_linux_deps.sh /
|
||||
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
|
||||
ENV PATH=/opt/rh/devtoolset-10/root/usr/bin:$PATH
|
||||
ENV LIBRARY_PATH=/opt/amdgpu/lib64
|
||||
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
|
||||
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
|
||||
ARG CGO_CFLAGS
|
||||
ARG AMDGPU_TARGETS
|
||||
ENV GOARCH=amd64
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_SKIP_CPU_GENERATE=1 bash gen_linux.sh
|
||||
RUN mkdir -p ../../dist/linux-amd64-rocm/lib/ollama && \
|
||||
(cd /opt/rocm/lib && tar cf - rocblas/library) | (cd ../../dist/linux-amd64-rocm/lib/ollama && tar xf - )
|
||||
|
||||
FROM --platform=linux/amd64 centos:7 AS cpu-builder-amd64
|
||||
### To create a local image for building linux binaries on mac or windows with efficient incremental builds
|
||||
#
|
||||
# docker build --platform linux/amd64 -t builder-amd64 -f Dockerfile.new --target unified-builder-amd64 .
|
||||
# docker run --platform linux/amd64 --rm -it -v $(pwd):/go/src/github.com/ollama/ollama/ builder-amd64
|
||||
#
|
||||
### Then incremental builds will be much faster in this container
|
||||
#
|
||||
# make -C llama -j 10 && go build -trimpath -o dist/linux-amd64/ollama .
|
||||
#
|
||||
FROM --platform=linux/amd64 rocm/dev-centos-7:${ROCM_VERSION}-complete AS unified-builder-amd64
|
||||
ARG CMAKE_VERSION
|
||||
ARG GOLANG_VERSION
|
||||
ARG CUDA_VERSION_11
|
||||
ARG CUDA_VERSION_12
|
||||
COPY ./scripts/rh_linux_deps.sh /
|
||||
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:/usr/local/cuda/bin:$PATH
|
||||
ENV LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/cuda/lib64
|
||||
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs:/opt/amdgpu/lib64
|
||||
RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
|
||||
ENV PATH=/opt/rh/devtoolset-10/root/usr/bin:$PATH
|
||||
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
|
||||
ARG OLLAMA_CUSTOM_CPU_DEFS
|
||||
ARG CGO_CFLAGS
|
||||
ENV GOARCH=amd64
|
||||
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
|
||||
RUN yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel7/x86_64/cuda-rhel7.repo && \
|
||||
dnf clean all && \
|
||||
dnf install -y \
|
||||
zsh \
|
||||
cuda-$(echo ${CUDA_VERSION_11} | cut -f1-2 -d. | sed -e "s/\./-/g") \
|
||||
cuda-$(echo ${CUDA_VERSION_12} | cut -f1-2 -d. | sed -e "s/\./-/g")
|
||||
# TODO intel oneapi goes here...
|
||||
ENV GOARCH amd64
|
||||
ENV CGO_ENABLED 1
|
||||
WORKDIR /go/src/github.com/ollama/ollama/
|
||||
ENTRYPOINT [ "zsh" ]
|
||||
|
||||
FROM --platform=linux/amd64 cpu-builder-amd64 AS static-build-amd64
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
OLLAMA_CPU_TARGET="static" bash gen_linux.sh
|
||||
FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu-build-amd64
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu" bash gen_linux.sh
|
||||
FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu_avx-build-amd64
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu_avx" bash gen_linux.sh
|
||||
FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu_avx2-build-amd64
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu_avx2" bash gen_linux.sh
|
||||
|
||||
FROM --platform=linux/arm64 rockylinux:8 AS cpu-builder-arm64
|
||||
### To create a local image for building linux binaries on mac or linux/arm64 with efficient incremental builds
|
||||
# Note: this does not contain jetson variants
|
||||
#
|
||||
# docker build --platform linux/arm64 -t builder-arm64 -f Dockerfile.new --target unified-builder-arm64 .
|
||||
# docker run --platform linux/arm64 --rm -it -v $(pwd):/go/src/github.com/ollama/ollama/ builder-arm64
|
||||
#
|
||||
FROM --platform=linux/arm64 rockylinux:8 AS unified-builder-arm64
|
||||
ARG CMAKE_VERSION
|
||||
ARG GOLANG_VERSION
|
||||
ARG CUDA_VERSION_11
|
||||
ARG CUDA_VERSION_12
|
||||
COPY ./scripts/rh_linux_deps.sh /
|
||||
RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
|
||||
ENV PATH=/opt/rh/gcc-toolset-10/root/usr/bin:$PATH
|
||||
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
|
||||
ARG OLLAMA_CUSTOM_CPU_DEFS
|
||||
ARG CGO_CFLAGS
|
||||
ENV GOARCH=arm64
|
||||
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
|
||||
RUN yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/sbsa/cuda-rhel8.repo && \
|
||||
dnf config-manager --set-enabled appstream && \
|
||||
dnf clean all && \
|
||||
dnf install -y \
|
||||
zsh \
|
||||
cuda-toolkit-$(echo ${CUDA_VERSION_11} | cut -f1-2 -d. | sed -e "s/\./-/g") \
|
||||
cuda-toolkit-$(echo ${CUDA_VERSION_12} | cut -f1-2 -d. | sed -e "s/\./-/g")
|
||||
ENV PATH /opt/rh/gcc-toolset-10/root/usr/bin:$PATH:/usr/local/cuda/bin
|
||||
ENV LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/cuda/lib64
|
||||
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs:/opt/amdgpu/lib64
|
||||
ENV GOARCH amd64
|
||||
ENV CGO_ENABLED 1
|
||||
WORKDIR /go/src/github.com/ollama/ollama/
|
||||
ENTRYPOINT [ "zsh" ]
|
||||
|
||||
FROM --platform=linux/arm64 cpu-builder-arm64 AS static-build-arm64
|
||||
FROM --platform=linux/amd64 unified-builder-amd64 AS runners-amd64
|
||||
COPY . .
|
||||
ARG OLLAMA_SKIP_CUDA_GENERATE
|
||||
ARG OLLAMA_SKIP_CUDA_11_GENERATE
|
||||
ARG OLLAMA_SKIP_CUDA_12_GENERATE
|
||||
ARG OLLAMA_SKIP_ROCM_GENERATE
|
||||
ARG CUDA_V11_ARCHITECTURES
|
||||
ARG CUDA_V12_ARCHITECTURES
|
||||
ARG OLLAMA_FAST_BUILD
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
OLLAMA_CPU_TARGET="static" bash gen_linux.sh
|
||||
FROM --platform=linux/arm64 cpu-builder-arm64 AS cpu-build-arm64
|
||||
if grep "^flags" /proc/cpuinfo|grep avx>/dev/null; then \
|
||||
make -C llama -j $(expr $(nproc) / 2 ) ; \
|
||||
else \
|
||||
make -C llama -j 5 ; \
|
||||
fi
|
||||
|
||||
FROM --platform=linux/arm64 unified-builder-arm64 AS runners-arm64
|
||||
COPY . .
|
||||
ARG OLLAMA_SKIP_CUDA_GENERATE
|
||||
ARG OLLAMA_SKIP_CUDA_11_GENERATE
|
||||
ARG OLLAMA_SKIP_CUDA_12_GENERATE
|
||||
ARG CUDA_V11_ARCHITECTURES
|
||||
ARG CUDA_V12_ARCHITECTURES
|
||||
ARG OLLAMA_FAST_BUILD
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu" bash gen_linux.sh
|
||||
make -C llama -j 8
|
||||
|
||||
|
||||
# Intermediate stages used for ./scripts/build_linux.sh
|
||||
FROM --platform=linux/amd64 cpu-build-amd64 AS build-amd64
|
||||
ENV CGO_ENABLED=1
|
||||
FROM --platform=linux/amd64 centos:7 AS builder-amd64
|
||||
ARG CMAKE_VERSION
|
||||
ARG GOLANG_VERSION
|
||||
COPY ./scripts/rh_linux_deps.sh /
|
||||
RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
|
||||
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
|
||||
ENV CGO_ENABLED 1
|
||||
ENV GOARCH amd64
|
||||
WORKDIR /go/src/github.com/ollama/ollama
|
||||
|
||||
FROM --platform=linux/amd64 builder-amd64 AS build-amd64
|
||||
COPY . .
|
||||
COPY --from=static-build-amd64 /go/src/github.com/ollama/ollama/llm/build/ llm/build/
|
||||
COPY --from=cpu_avx-build-amd64 /go/src/github.com/ollama/ollama/build/ build/
|
||||
COPY --from=cpu_avx2-build-amd64 /go/src/github.com/ollama/ollama/build/ build/
|
||||
COPY --from=cuda-11-build-amd64 /go/src/github.com/ollama/ollama/dist/ dist/
|
||||
COPY --from=cuda-11-build-amd64 /go/src/github.com/ollama/ollama/build/ build/
|
||||
COPY --from=cuda-12-build-amd64 /go/src/github.com/ollama/ollama/dist/ dist/
|
||||
COPY --from=cuda-12-build-amd64 /go/src/github.com/ollama/ollama/build/ build/
|
||||
COPY --from=rocm-build-amd64 /go/src/github.com/ollama/ollama/dist/ dist/
|
||||
COPY --from=rocm-build-amd64 /go/src/github.com/ollama/ollama/build/ build/
|
||||
COPY --from=runners-amd64 /go/src/github.com/ollama/ollama/dist/ dist/
|
||||
COPY --from=runners-amd64 /go/src/github.com/ollama/ollama/build/ build/
|
||||
ARG GOFLAGS
|
||||
ARG CGO_CFLAGS
|
||||
ARG OLLAMA_SKIP_ROCM_GENERATE
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
go build -trimpath -o dist/linux-amd64/bin/ollama .
|
||||
RUN cd dist/linux-$GOARCH && \
|
||||
tar --exclude runners -cf - . | pigz --best > ../ollama-linux-$GOARCH.tgz
|
||||
RUN cd dist/linux-$GOARCH-rocm && \
|
||||
tar -cf - . | pigz --best > ../ollama-linux-$GOARCH-rocm.tgz
|
||||
RUN if [ -z ${OLLAMA_SKIP_ROCM_GENERATE} ] ; then \
|
||||
cd dist/linux-$GOARCH-rocm && \
|
||||
tar -cf - . | pigz --best > ../ollama-linux-$GOARCH-rocm.tgz ;\
|
||||
fi
|
||||
|
||||
FROM --platform=linux/arm64 cpu-build-arm64 AS build-arm64
|
||||
ENV CGO_ENABLED=1
|
||||
FROM --platform=linux/arm64 rockylinux:8 AS builder-arm64
|
||||
ARG CMAKE_VERSION
|
||||
ARG GOLANG_VERSION
|
||||
COPY ./scripts/rh_linux_deps.sh /
|
||||
RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
|
||||
ENV PATH /opt/rh/gcc-toolset-10/root/usr/bin:$PATH
|
||||
ENV CGO_ENABLED 1
|
||||
ENV GOARCH arm64
|
||||
WORKDIR /go/src/github.com/ollama/ollama
|
||||
|
||||
FROM --platform=linux/arm64 builder-arm64 AS build-arm64
|
||||
COPY . .
|
||||
COPY --from=static-build-arm64 /go/src/github.com/ollama/ollama/llm/build/ llm/build/
|
||||
COPY --from=cuda-11-build-runner-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
|
||||
COPY --from=cuda-11-build-runner-arm64 /go/src/github.com/ollama/ollama/build/ build/
|
||||
COPY --from=cuda-12-build-runner-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
|
||||
COPY --from=cuda-12-build-runner-arm64 /go/src/github.com/ollama/ollama/build/ build/
|
||||
COPY --from=runners-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
|
||||
COPY --from=runners-arm64 /go/src/github.com/ollama/ollama/build/ build/
|
||||
ARG GOFLAGS
|
||||
ARG CGO_CFLAGS
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
@@ -187,11 +146,11 @@ FROM --platform=linux/amd64 scratch AS dist-amd64
|
||||
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/ollama-linux-*.tgz /
|
||||
FROM --platform=linux/arm64 scratch AS dist-arm64
|
||||
COPY --from=build-arm64 /go/src/github.com/ollama/ollama/dist/ollama-linux-*.tgz /
|
||||
FROM dist-$TARGETARCH as dist
|
||||
FROM dist-$TARGETARCH AS dist
|
||||
|
||||
|
||||
# Optimized container images do not cary nested payloads
|
||||
FROM --platform=linux/amd64 static-build-amd64 AS container-build-amd64
|
||||
FROM --platform=linux/amd64 builder-amd64 AS container-build-amd64
|
||||
WORKDIR /go/src/github.com/ollama/ollama
|
||||
COPY . .
|
||||
ARG GOFLAGS
|
||||
@@ -199,7 +158,7 @@ ARG CGO_CFLAGS
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
go build -trimpath -o dist/linux-amd64/bin/ollama .
|
||||
|
||||
FROM --platform=linux/arm64 static-build-arm64 AS container-build-arm64
|
||||
FROM --platform=linux/arm64 builder-arm64 AS container-build-arm64
|
||||
WORKDIR /go/src/github.com/ollama/ollama
|
||||
COPY . .
|
||||
ARG GOFLAGS
|
||||
@@ -207,48 +166,52 @@ ARG CGO_CFLAGS
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
go build -trimpath -o dist/linux-arm64/bin/ollama .
|
||||
|
||||
# For amd64 container images, filter out cuda/rocm to minimize size
|
||||
FROM runners-amd64 AS runners-cuda-amd64
|
||||
RUN rm -rf \
|
||||
./dist/linux-amd64/lib/ollama/libggml_hipblas.so \
|
||||
./dist/linux-amd64/lib/ollama/runners/rocm*
|
||||
|
||||
FROM runners-amd64 AS runners-rocm-amd64
|
||||
RUN rm -rf \
|
||||
./dist/linux-amd64/lib/ollama/libggml_cuda*.so \
|
||||
./dist/linux-amd64/lib/ollama/libcu*.so* \
|
||||
./dist/linux-amd64/lib/ollama/runners/cuda*
|
||||
|
||||
FROM --platform=linux/amd64 ubuntu:22.04 AS runtime-amd64
|
||||
RUN apt-get update && \
|
||||
apt-get install -y ca-certificates && \
|
||||
apt-get clean && rm -rf /var/lib/apt/lists/*
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
COPY --from=container-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/bin/ /bin/
|
||||
COPY --from=cpu-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
|
||||
COPY --from=cpu_avx-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
|
||||
COPY --from=cpu_avx2-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
|
||||
COPY --from=cuda-11-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
|
||||
COPY --from=cuda-12-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
|
||||
COPY --from=runners-cuda-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
|
||||
|
||||
FROM --platform=linux/arm64 ubuntu:22.04 AS runtime-arm64
|
||||
RUN apt-get update && \
|
||||
apt-get install -y ca-certificates && \
|
||||
apt-get clean && rm -rf /var/lib/apt/lists/*
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
COPY --from=container-build-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/bin/ /bin/
|
||||
COPY --from=cpu-build-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
|
||||
COPY --from=cuda-11-build-runner-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
|
||||
COPY --from=cuda-12-build-runner-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
|
||||
COPY --from=runners-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
|
||||
|
||||
# ROCm libraries larger so we keep it distinct from the CPU/CUDA image
|
||||
FROM --platform=linux/amd64 ubuntu:22.04 AS runtime-rocm
|
||||
# Frontload the rocm libraries which are large, and rarely change to increase chance of a common layer
|
||||
# across releases
|
||||
COPY --from=rocm-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64-rocm/lib/ /lib/
|
||||
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64-rocm/lib/ /lib/
|
||||
RUN apt-get update && \
|
||||
apt-get install -y ca-certificates && \
|
||||
apt-get clean && rm -rf /var/lib/apt/lists/*
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
COPY --from=container-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/bin/ /bin/
|
||||
COPY --from=cpu-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
|
||||
COPY --from=cpu_avx-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
|
||||
COPY --from=cpu_avx2-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
|
||||
COPY --from=rocm-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
|
||||
COPY --from=runners-rocm-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
|
||||
|
||||
EXPOSE 11434
|
||||
ENV OLLAMA_HOST=0.0.0.0
|
||||
ENV OLLAMA_HOST 0.0.0.0
|
||||
|
||||
ENTRYPOINT ["/bin/ollama"]
|
||||
CMD ["serve"]
|
||||
|
||||
FROM runtime-$TARGETARCH
|
||||
EXPOSE 11434
|
||||
ENV OLLAMA_HOST=0.0.0.0
|
||||
ENV OLLAMA_HOST 0.0.0.0
|
||||
ENV PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
|
||||
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
|
||||
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
|
||||
|
4
Makefile
Normal file
4
Makefile
Normal file
@@ -0,0 +1,4 @@
|
||||
GOALS := $(or $(MAKECMDGOALS),all)
|
||||
.PHONY: $(GOALS)
|
||||
$(GOALS):
|
||||
$(MAKE) -C llama $@
|
39
README.md
39
README.md
@@ -35,10 +35,10 @@ The official [Ollama Docker image](https://hub.docker.com/r/ollama/ollama) `olla
|
||||
|
||||
## Quickstart
|
||||
|
||||
To run and chat with [Llama 3.1](https://ollama.com/library/llama3.1):
|
||||
To run and chat with [Llama 3.2](https://ollama.com/library/llama3.2):
|
||||
|
||||
```
|
||||
ollama run llama3.1
|
||||
ollama run llama3.2
|
||||
```
|
||||
|
||||
## Model library
|
||||
@@ -49,6 +49,8 @@ Here are some example models that can be downloaded:
|
||||
|
||||
| Model | Parameters | Size | Download |
|
||||
| ------------------ | ---------- | ----- | ------------------------------ |
|
||||
| Llama 3.2 | 3B | 2.0GB | `ollama run llama3.2` |
|
||||
| Llama 3.2 | 1B | 1.3GB | `ollama run llama3.2:1b` |
|
||||
| Llama 3.1 | 8B | 4.7GB | `ollama run llama3.1` |
|
||||
| Llama 3.1 | 70B | 40GB | `ollama run llama3.1:70b` |
|
||||
| Llama 3.1 | 405B | 231GB | `ollama run llama3.1:405b` |
|
||||
@@ -99,16 +101,16 @@ See the [guide](docs/import.md) on importing models for more information.
|
||||
|
||||
### Customize a prompt
|
||||
|
||||
Models from the Ollama library can be customized with a prompt. For example, to customize the `llama3.1` model:
|
||||
Models from the Ollama library can be customized with a prompt. For example, to customize the `llama3.2` model:
|
||||
|
||||
```
|
||||
ollama pull llama3.1
|
||||
ollama pull llama3.2
|
||||
```
|
||||
|
||||
Create a `Modelfile`:
|
||||
|
||||
```
|
||||
FROM llama3.1
|
||||
FROM llama3.2
|
||||
|
||||
# set the temperature to 1 [higher is more creative, lower is more coherent]
|
||||
PARAMETER temperature 1
|
||||
@@ -143,7 +145,7 @@ ollama create mymodel -f ./Modelfile
|
||||
### Pull a model
|
||||
|
||||
```
|
||||
ollama pull llama3.1
|
||||
ollama pull llama3.2
|
||||
```
|
||||
|
||||
> This command can also be used to update a local model. Only the diff will be pulled.
|
||||
@@ -151,13 +153,13 @@ ollama pull llama3.1
|
||||
### Remove a model
|
||||
|
||||
```
|
||||
ollama rm llama3.1
|
||||
ollama rm llama3.2
|
||||
```
|
||||
|
||||
### Copy a model
|
||||
|
||||
```
|
||||
ollama cp llama3.1 my-model
|
||||
ollama cp llama3.2 my-model
|
||||
```
|
||||
|
||||
### Multiline input
|
||||
@@ -181,14 +183,14 @@ The image features a yellow smiley face, which is likely the central focus of th
|
||||
### Pass the prompt as an argument
|
||||
|
||||
```
|
||||
$ ollama run llama3.1 "Summarize this file: $(cat README.md)"
|
||||
$ ollama run llama3.2 "Summarize this file: $(cat README.md)"
|
||||
Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.
|
||||
```
|
||||
|
||||
### Show model information
|
||||
|
||||
```
|
||||
ollama show llama3.1
|
||||
ollama show llama3.2
|
||||
```
|
||||
|
||||
### List models on your computer
|
||||
@@ -206,7 +208,7 @@ ollama ps
|
||||
### Stop a model which is currently running
|
||||
|
||||
```
|
||||
ollama stop llama3.1
|
||||
ollama stop llama3.2
|
||||
```
|
||||
|
||||
### Start Ollama
|
||||
@@ -228,7 +230,7 @@ Next, start the server:
|
||||
Finally, in a separate shell, run a model:
|
||||
|
||||
```
|
||||
./ollama run llama3.1
|
||||
./ollama run llama3.2
|
||||
```
|
||||
|
||||
## REST API
|
||||
@@ -239,7 +241,7 @@ Ollama has a REST API for running and managing models.
|
||||
|
||||
```
|
||||
curl http://localhost:11434/api/generate -d '{
|
||||
"model": "llama3.1",
|
||||
"model": "llama3.2",
|
||||
"prompt":"Why is the sky blue?"
|
||||
}'
|
||||
```
|
||||
@@ -248,7 +250,7 @@ curl http://localhost:11434/api/generate -d '{
|
||||
|
||||
```
|
||||
curl http://localhost:11434/api/chat -d '{
|
||||
"model": "llama3.1",
|
||||
"model": "llama3.2",
|
||||
"messages": [
|
||||
{ "role": "user", "content": "why is the sky blue?" }
|
||||
]
|
||||
@@ -325,6 +327,10 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)
|
||||
- [Archyve](https://github.com/nickthecook/archyve) (RAG-enabling document library)
|
||||
- [crewAI with Mesop](https://github.com/rapidarchitect/ollama-crew-mesop) (Mesop Web Interface to run crewAI with Ollama)
|
||||
- [LLMChat](https://github.com/trendy-design/llmchat) (Privacy focused, 100% local, intuitive all-in-one chat interface)
|
||||
- [ARGO](https://github.com/xark-argo/argo) (Locally download and run Ollama and Huggingface models with RAG on Mac/Windows/Linux)
|
||||
- [G1](https://github.com/bklieger-groq/g1) (Prototype of using prompting strategies to improve the LLM's reasoning through o1-like reasoning chains.)
|
||||
- [Ollama App](https://github.com/JHubi1/ollama-app) (Modern and easy-to-use multi-platform client for Ollama)
|
||||
|
||||
### Terminal
|
||||
|
||||
@@ -371,13 +377,13 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
|
||||
### Libraries
|
||||
|
||||
- [LangChain](https://python.langchain.com/docs/integrations/llms/ollama) and [LangChain.js](https://js.langchain.com/docs/modules/model_io/models/llms/integrations/ollama) with [example](https://js.langchain.com/docs/use_cases/question_answering/local_retrieval_qa)
|
||||
- [LangChain](https://python.langchain.com/docs/integrations/llms/ollama) and [LangChain.js](https://js.langchain.com/docs/integrations/chat/ollama/) with [example](https://js.langchain.com/docs/tutorials/local_rag/)
|
||||
- [Firebase Genkit](https://firebase.google.com/docs/genkit/plugins/ollama)
|
||||
- [crewAI](https://github.com/crewAIInc/crewAI)
|
||||
- [LangChainGo](https://github.com/tmc/langchaingo/) with [example](https://github.com/tmc/langchaingo/tree/main/examples/ollama-completion-example)
|
||||
- [LangChain4j](https://github.com/langchain4j/langchain4j) with [example](https://github.com/langchain4j/langchain4j-examples/tree/main/ollama-examples/src/main/java)
|
||||
- [LangChainRust](https://github.com/Abraxas-365/langchain-rust) with [example](https://github.com/Abraxas-365/langchain-rust/blob/main/examples/llm_ollama.rs)
|
||||
- [LlamaIndex](https://gpt-index.readthedocs.io/en/stable/examples/llm/ollama.html)
|
||||
- [LlamaIndex](https://docs.llamaindex.ai/en/stable/examples/llm/ollama/) and [LlamaIndexTS](https://ts.llamaindex.ai/modules/llms/available_llms/ollama)
|
||||
- [LiteLLM](https://github.com/BerriAI/litellm)
|
||||
- [OllamaFarm for Go](https://github.com/presbrey/ollamafarm)
|
||||
- [OllamaSharp for .NET](https://github.com/awaescher/OllamaSharp)
|
||||
@@ -411,6 +417,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
|
||||
- [Enchanted](https://github.com/AugustDev/enchanted)
|
||||
- [Maid](https://github.com/Mobile-Artificial-Intelligence/maid)
|
||||
- [Ollama App](https://github.com/JHubi1/ollama-app) (Modern and easy-to-use multi-platform client for Ollama)
|
||||
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)
|
||||
|
||||
### Extensions & Plugins
|
||||
|
@@ -142,7 +142,7 @@ SetupAppRunningError=Another Ollama installer is running.%n%nPlease cancel or fi
|
||||
|
||||
|
||||
;FinishedHeadingLabel=Run your first model
|
||||
;FinishedLabel=%nRun this command in a PowerShell or cmd terminal.%n%n%n ollama run llama3.1
|
||||
;FinishedLabel=%nRun this command in a PowerShell or cmd terminal.%n%n%n ollama run llama3.2
|
||||
;ClickFinish=%n
|
||||
|
||||
[Registry]
|
||||
|
@@ -4,5 +4,5 @@ write-host "Welcome to Ollama!"
|
||||
write-host ""
|
||||
write-host "Run your first model:"
|
||||
write-host ""
|
||||
write-host "`tollama run llama3.1"
|
||||
write-host "`tollama run llama3.2"
|
||||
write-host ""
|
14
cmd/cmd.go
14
cmd/cmd.go
@@ -21,7 +21,6 @@ import (
|
||||
"path/filepath"
|
||||
"regexp"
|
||||
"runtime"
|
||||
"slices"
|
||||
"strconv"
|
||||
"strings"
|
||||
"sync/atomic"
|
||||
@@ -453,7 +452,7 @@ func RunHandler(cmd *cobra.Command, args []string) error {
|
||||
return err
|
||||
}
|
||||
|
||||
opts.MultiModal = slices.Contains(info.Details.Families, "clip")
|
||||
opts.MultiModal = len(info.ProjectorInfo) != 0
|
||||
opts.ParentModel = info.Details.ParentModel
|
||||
|
||||
if interactive {
|
||||
@@ -680,6 +679,17 @@ func DeleteHandler(cmd *cobra.Command, args []string) error {
|
||||
return err
|
||||
}
|
||||
|
||||
// Unload the model if it's running before deletion
|
||||
opts := &runOptions{
|
||||
Model: args[0],
|
||||
KeepAlive: &api.Duration{Duration: 0},
|
||||
}
|
||||
if err := loadOrUnloadModel(cmd, opts); err != nil {
|
||||
if !strings.Contains(err.Error(), "not found") {
|
||||
return fmt.Errorf("unable to stop existing running model \"%s\": %s", args[0], err)
|
||||
}
|
||||
}
|
||||
|
||||
for _, name := range args {
|
||||
req := api.DeleteRequest{Name: name}
|
||||
if err := client.Delete(cmd.Context(), &req); err != nil {
|
||||
|
@@ -2,11 +2,17 @@ package cmd
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"context"
|
||||
"encoding/json"
|
||||
"net/http"
|
||||
"net/http/httptest"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"strings"
|
||||
"testing"
|
||||
|
||||
"github.com/google/go-cmp/cmp"
|
||||
"github.com/spf13/cobra"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
)
|
||||
@@ -204,3 +210,63 @@ Weigh anchor!
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
func TestDeleteHandler(t *testing.T) {
|
||||
stopped := false
|
||||
mockServer := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
|
||||
if r.URL.Path == "/api/delete" && r.Method == http.MethodDelete {
|
||||
var req api.DeleteRequest
|
||||
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
|
||||
http.Error(w, err.Error(), http.StatusBadRequest)
|
||||
return
|
||||
}
|
||||
if req.Name == "test-model" {
|
||||
w.WriteHeader(http.StatusOK)
|
||||
} else {
|
||||
w.WriteHeader(http.StatusNotFound)
|
||||
}
|
||||
return
|
||||
}
|
||||
if r.URL.Path == "/api/generate" && r.Method == http.MethodPost {
|
||||
var req api.GenerateRequest
|
||||
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
|
||||
http.Error(w, err.Error(), http.StatusBadRequest)
|
||||
return
|
||||
}
|
||||
if req.Model == "test-model" {
|
||||
w.WriteHeader(http.StatusOK)
|
||||
if err := json.NewEncoder(w).Encode(api.GenerateResponse{
|
||||
Done: true,
|
||||
}); err != nil {
|
||||
http.Error(w, err.Error(), http.StatusInternalServerError)
|
||||
}
|
||||
stopped = true
|
||||
return
|
||||
} else {
|
||||
w.WriteHeader(http.StatusNotFound)
|
||||
if err := json.NewEncoder(w).Encode(api.GenerateResponse{
|
||||
Done: false,
|
||||
}); err != nil {
|
||||
http.Error(w, err.Error(), http.StatusInternalServerError)
|
||||
}
|
||||
}
|
||||
}
|
||||
}))
|
||||
|
||||
t.Setenv("OLLAMA_HOST", mockServer.URL)
|
||||
t.Cleanup(mockServer.Close)
|
||||
|
||||
cmd := &cobra.Command{}
|
||||
cmd.SetContext(context.TODO())
|
||||
if err := DeleteHandler(cmd, []string{"test-model"}); err != nil {
|
||||
t.Fatalf("DeleteHandler failed: %v", err)
|
||||
}
|
||||
if !stopped {
|
||||
t.Fatal("Model was not stopped before deletion")
|
||||
}
|
||||
|
||||
err := DeleteHandler(cmd, []string{"test-model-not-found"})
|
||||
if err == nil || !strings.Contains(err.Error(), "unable to stop existing running model \"test-model-not-found\"") {
|
||||
t.Fatalf("DeleteHandler failed: expected error about stopping non-existent model, got %v", err)
|
||||
}
|
||||
}
|
||||
|
@@ -442,13 +442,6 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
return err
|
||||
}
|
||||
|
||||
// clear all previous images for better responses
|
||||
if len(images) > 0 {
|
||||
for i := range opts.Messages {
|
||||
opts.Messages[i].Images = nil
|
||||
}
|
||||
}
|
||||
|
||||
newMessage.Content = msg
|
||||
newMessage.Images = images
|
||||
}
|
||||
@@ -501,28 +494,22 @@ func buildModelfile(opts runOptions) string {
|
||||
}
|
||||
|
||||
func normalizeFilePath(fp string) string {
|
||||
// Define a map of escaped characters and their replacements
|
||||
replacements := map[string]string{
|
||||
"\\ ": " ", // Escaped space
|
||||
"\\(": "(", // Escaped left parenthesis
|
||||
"\\)": ")", // Escaped right parenthesis
|
||||
"\\[": "[", // Escaped left square bracket
|
||||
"\\]": "]", // Escaped right square bracket
|
||||
"\\{": "{", // Escaped left curly brace
|
||||
"\\}": "}", // Escaped right curly brace
|
||||
"\\$": "$", // Escaped dollar sign
|
||||
"\\&": "&", // Escaped ampersand
|
||||
"\\;": ";", // Escaped semicolon
|
||||
"\\'": "'", // Escaped single quote
|
||||
"\\\\": "\\", // Escaped backslash
|
||||
"\\*": "*", // Escaped asterisk
|
||||
"\\?": "?", // Escaped question mark
|
||||
}
|
||||
|
||||
for escaped, actual := range replacements {
|
||||
fp = strings.ReplaceAll(fp, escaped, actual)
|
||||
}
|
||||
return fp
|
||||
return strings.NewReplacer(
|
||||
"\\ ", " ", // Escaped space
|
||||
"\\(", "(", // Escaped left parenthesis
|
||||
"\\)", ")", // Escaped right parenthesis
|
||||
"\\[", "[", // Escaped left square bracket
|
||||
"\\]", "]", // Escaped right square bracket
|
||||
"\\{", "{", // Escaped left curly brace
|
||||
"\\}", "}", // Escaped right curly brace
|
||||
"\\$", "$", // Escaped dollar sign
|
||||
"\\&", "&", // Escaped ampersand
|
||||
"\\;", ";", // Escaped semicolon
|
||||
"\\'", "'", // Escaped single quote
|
||||
"\\\\", "\\", // Escaped backslash
|
||||
"\\*", "*", // Escaped asterisk
|
||||
"\\?", "?", // Escaped question mark
|
||||
).Replace(fp)
|
||||
}
|
||||
|
||||
func extractFileNames(input string) []string {
|
||||
@@ -542,10 +529,9 @@ func extractFileData(input string) (string, []api.ImageData, error) {
|
||||
for _, fp := range filePaths {
|
||||
nfp := normalizeFilePath(fp)
|
||||
data, err := getImageData(nfp)
|
||||
if err != nil {
|
||||
if os.IsNotExist(err) {
|
||||
continue
|
||||
}
|
||||
if errors.Is(err, os.ErrNotExist) {
|
||||
continue
|
||||
} else if err != nil {
|
||||
fmt.Fprintf(os.Stderr, "Couldn't process image: %q\n", err)
|
||||
return "", imgs, err
|
||||
}
|
||||
@@ -553,7 +539,7 @@ func extractFileData(input string) (string, []api.ImageData, error) {
|
||||
input = strings.ReplaceAll(input, fp, "")
|
||||
imgs = append(imgs, data)
|
||||
}
|
||||
return input, imgs, nil
|
||||
return strings.TrimSpace(input), imgs, nil
|
||||
}
|
||||
|
||||
func getImageData(filePath string) ([]byte, error) {
|
||||
|
@@ -9,7 +9,7 @@ import (
|
||||
"log/slog"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fileutils"
|
||||
)
|
||||
|
||||
type ModelParameters struct {
|
||||
@@ -27,8 +27,8 @@ type AdapterParameters struct {
|
||||
} `json:"lora_parameters"`
|
||||
}
|
||||
|
||||
func (ModelParameters) KV(t *Tokenizer) llm.KV {
|
||||
kv := llm.KV{
|
||||
func (ModelParameters) KV(t *Tokenizer) fileutils.KV {
|
||||
kv := fileutils.KV{
|
||||
"general.file_type": uint32(1),
|
||||
"general.quantization_version": uint32(2),
|
||||
"tokenizer.ggml.pre": t.Pre,
|
||||
@@ -54,7 +54,7 @@ func (ModelParameters) KV(t *Tokenizer) llm.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p AdapterParameters) KV() llm.KV {
|
||||
func (p AdapterParameters) KV() fileutils.KV {
|
||||
var alpha float32
|
||||
if p.LoraParameters.Alpha == 0 {
|
||||
alpha = float32(p.Alpha)
|
||||
@@ -62,7 +62,7 @@ func (p AdapterParameters) KV() llm.KV {
|
||||
alpha = p.LoraParameters.Alpha
|
||||
}
|
||||
|
||||
kv := llm.KV{
|
||||
kv := fileutils.KV{
|
||||
"adapter.lora.alpha": alpha,
|
||||
"adapter.type": "lora",
|
||||
"general.file_type": uint32(1),
|
||||
@@ -79,19 +79,19 @@ func (ModelParameters) specialTokenTypes() []string {
|
||||
}
|
||||
}
|
||||
|
||||
func (ModelParameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
|
||||
return llm.WriteGGUF(ws, kv, ts)
|
||||
func (ModelParameters) writeFile(ws io.WriteSeeker, kv fileutils.KV, ts []fileutils.Tensor) error {
|
||||
return fileutils.WriteGGUF(ws, kv, ts)
|
||||
}
|
||||
|
||||
func (AdapterParameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
|
||||
return llm.WriteGGUF(ws, kv, ts)
|
||||
func (AdapterParameters) writeFile(ws io.WriteSeeker, kv fileutils.KV, ts []fileutils.Tensor) error {
|
||||
return fileutils.WriteGGUF(ws, kv, ts)
|
||||
}
|
||||
|
||||
type ModelConverter interface {
|
||||
// KV maps parameters to LLM key-values
|
||||
KV(*Tokenizer) llm.KV
|
||||
KV(*Tokenizer) fileutils.KV
|
||||
// Tensors maps input tensors to LLM tensors. Model specific modifications can be done here.
|
||||
Tensors([]Tensor) []llm.Tensor
|
||||
Tensors([]Tensor) []fileutils.Tensor
|
||||
// Replacements returns a list of string pairs to replace in tensor names.
|
||||
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
|
||||
Replacements() []string
|
||||
@@ -99,7 +99,7 @@ type ModelConverter interface {
|
||||
// specialTokenTypes returns any special token types the model uses
|
||||
specialTokenTypes() []string
|
||||
// writeFile writes the model to the provided io.WriteSeeker
|
||||
writeFile(io.WriteSeeker, llm.KV, []llm.Tensor) error
|
||||
writeFile(io.WriteSeeker, fileutils.KV, []fileutils.Tensor) error
|
||||
}
|
||||
|
||||
type moreParser interface {
|
||||
@@ -108,17 +108,17 @@ type moreParser interface {
|
||||
|
||||
type AdapterConverter interface {
|
||||
// KV maps parameters to LLM key-values
|
||||
KV(llm.KV) llm.KV
|
||||
KV(fileutils.KV) fileutils.KV
|
||||
// Tensors maps input tensors to LLM tensors. Adapter specific modifications can be done here.
|
||||
Tensors([]Tensor) []llm.Tensor
|
||||
Tensors([]Tensor) []fileutils.Tensor
|
||||
// Replacements returns a list of string pairs to replace in tensor names.
|
||||
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
|
||||
Replacements() []string
|
||||
|
||||
writeFile(io.WriteSeeker, llm.KV, []llm.Tensor) error
|
||||
writeFile(io.WriteSeeker, fileutils.KV, []fileutils.Tensor) error
|
||||
}
|
||||
|
||||
func ConvertAdapter(fsys fs.FS, ws io.WriteSeeker, baseKV llm.KV) error {
|
||||
func ConvertAdapter(fsys fs.FS, ws io.WriteSeeker, baseKV fileutils.KV) error {
|
||||
bts, err := fs.ReadFile(fsys, "adapter_config.json")
|
||||
if err != nil {
|
||||
return err
|
||||
|
@@ -8,7 +8,7 @@ import (
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fileutils"
|
||||
)
|
||||
|
||||
type bertModel struct {
|
||||
@@ -85,7 +85,7 @@ func (p *bertModel) parseMore(fsys fs.FS) error {
|
||||
return nil
|
||||
}
|
||||
|
||||
func (p *bertModel) KV(t *Tokenizer) llm.KV {
|
||||
func (p *bertModel) KV(t *Tokenizer) fileutils.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "bert"
|
||||
kv["bert.attention.causal"] = false
|
||||
@@ -132,8 +132,8 @@ func (p *bertModel) KV(t *Tokenizer) llm.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *bertModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||
var out []llm.Tensor
|
||||
func (p *bertModel) Tensors(ts []Tensor) []fileutils.Tensor {
|
||||
var out []fileutils.Tensor
|
||||
for _, t := range ts {
|
||||
if slices.Contains([]string{
|
||||
"embeddings.position_ids",
|
||||
@@ -143,7 +143,7 @@ func (p *bertModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||
continue
|
||||
}
|
||||
|
||||
out = append(out, llm.Tensor{
|
||||
out = append(out, fileutils.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
|
@@ -6,7 +6,7 @@ import (
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fileutils"
|
||||
)
|
||||
|
||||
type gemmaModel struct {
|
||||
@@ -23,7 +23,7 @@ type gemmaModel struct {
|
||||
|
||||
var _ ModelConverter = (*gemmaModel)(nil)
|
||||
|
||||
func (p *gemmaModel) KV(t *Tokenizer) llm.KV {
|
||||
func (p *gemmaModel) KV(t *Tokenizer) fileutils.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "gemma"
|
||||
kv["gemma.context_length"] = p.MaxPositionEmbeddings
|
||||
@@ -42,14 +42,14 @@ func (p *gemmaModel) KV(t *Tokenizer) llm.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *gemmaModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||
var out []llm.Tensor
|
||||
func (p *gemmaModel) Tensors(ts []Tensor) []fileutils.Tensor {
|
||||
var out []fileutils.Tensor
|
||||
for _, t := range ts {
|
||||
if strings.HasSuffix(t.Name(), "_norm.weight") {
|
||||
t.SetRepacker(p.addOne)
|
||||
}
|
||||
|
||||
out = append(out, llm.Tensor{
|
||||
out = append(out, fileutils.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
|
@@ -1,7 +1,7 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fileutils"
|
||||
)
|
||||
|
||||
type gemma2Model struct {
|
||||
@@ -11,7 +11,7 @@ type gemma2Model struct {
|
||||
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
|
||||
}
|
||||
|
||||
func (p *gemma2Model) KV(t *Tokenizer) llm.KV {
|
||||
func (p *gemma2Model) KV(t *Tokenizer) fileutils.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "gemma2"
|
||||
kv["gemma2.context_length"] = p.MaxPositionEmbeddings
|
||||
|
@@ -6,7 +6,7 @@ import (
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fileutils"
|
||||
)
|
||||
|
||||
type gemma2Adapter struct {
|
||||
@@ -15,14 +15,14 @@ type gemma2Adapter struct {
|
||||
|
||||
var _ AdapterConverter = (*gemma2Adapter)(nil)
|
||||
|
||||
func (p *gemma2Adapter) KV(baseKV llm.KV) llm.KV {
|
||||
func (p *gemma2Adapter) KV(baseKV fileutils.KV) fileutils.KV {
|
||||
kv := p.AdapterParameters.KV()
|
||||
kv["general.architecture"] = "gemma2"
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *gemma2Adapter) Tensors(ts []Tensor) []llm.Tensor {
|
||||
var out []llm.Tensor
|
||||
func (p *gemma2Adapter) Tensors(ts []Tensor) []fileutils.Tensor {
|
||||
var out []fileutils.Tensor
|
||||
for _, t := range ts {
|
||||
shape := t.Shape()
|
||||
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
|
||||
@@ -31,7 +31,7 @@ func (p *gemma2Adapter) Tensors(ts []Tensor) []llm.Tensor {
|
||||
t.SetRepacker(p.repack)
|
||||
}
|
||||
|
||||
out = append(out, llm.Tensor{
|
||||
out = append(out, fileutils.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
|
@@ -9,7 +9,7 @@ import (
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fileutils"
|
||||
)
|
||||
|
||||
type llamaModel struct {
|
||||
@@ -46,7 +46,7 @@ type llamaModel struct {
|
||||
|
||||
var _ ModelConverter = (*llamaModel)(nil)
|
||||
|
||||
func (p *llamaModel) KV(t *Tokenizer) llm.KV {
|
||||
func (p *llamaModel) KV(t *Tokenizer) fileutils.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "llama"
|
||||
kv["llama.vocab_size"] = p.VocabSize
|
||||
@@ -120,11 +120,11 @@ func (p *llamaModel) KV(t *Tokenizer) llm.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *llamaModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||
var out []llm.Tensor
|
||||
func (p *llamaModel) Tensors(ts []Tensor) []fileutils.Tensor {
|
||||
var out []fileutils.Tensor
|
||||
|
||||
if p.RopeScaling.factors != nil {
|
||||
out = append(out, llm.Tensor{
|
||||
out = append(out, fileutils.Tensor{
|
||||
Name: "rope_freqs.weight",
|
||||
Kind: 0,
|
||||
Shape: []uint64{uint64(len(p.RopeScaling.factors))},
|
||||
@@ -138,7 +138,7 @@ func (p *llamaModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||
t.SetRepacker(p.repack)
|
||||
}
|
||||
|
||||
out = append(out, llm.Tensor{
|
||||
out = append(out, fileutils.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
|
@@ -7,7 +7,7 @@ import (
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fileutils"
|
||||
)
|
||||
|
||||
type llamaAdapter struct {
|
||||
@@ -18,7 +18,7 @@ type llamaAdapter struct {
|
||||
|
||||
var _ AdapterConverter = (*llamaAdapter)(nil)
|
||||
|
||||
func (p *llamaAdapter) KV(baseKV llm.KV) llm.KV {
|
||||
func (p *llamaAdapter) KV(baseKV fileutils.KV) fileutils.KV {
|
||||
kv := p.AdapterParameters.KV()
|
||||
kv["general.architecture"] = "llama"
|
||||
kv["llama.attention.head_count"] = baseKV["llama.attention.head_count"]
|
||||
@@ -29,8 +29,8 @@ func (p *llamaAdapter) KV(baseKV llm.KV) llm.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *llamaAdapter) Tensors(ts []Tensor) []llm.Tensor {
|
||||
var out []llm.Tensor
|
||||
func (p *llamaAdapter) Tensors(ts []Tensor) []fileutils.Tensor {
|
||||
var out []fileutils.Tensor
|
||||
for _, t := range ts {
|
||||
shape := t.Shape()
|
||||
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
|
||||
@@ -41,7 +41,7 @@ func (p *llamaAdapter) Tensors(ts []Tensor) []llm.Tensor {
|
||||
t.SetRepacker(p.repack)
|
||||
}
|
||||
|
||||
out = append(out, llm.Tensor{
|
||||
out = append(out, fileutils.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: shape,
|
||||
|
@@ -6,7 +6,7 @@ import (
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fileutils"
|
||||
)
|
||||
|
||||
type mixtralModel struct {
|
||||
@@ -15,7 +15,7 @@ type mixtralModel struct {
|
||||
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
|
||||
}
|
||||
|
||||
func (p *mixtralModel) KV(t *Tokenizer) llm.KV {
|
||||
func (p *mixtralModel) KV(t *Tokenizer) fileutils.KV {
|
||||
kv := p.llamaModel.KV(t)
|
||||
|
||||
if p.NumLocalExperts > 0 {
|
||||
@@ -29,7 +29,7 @@ func (p *mixtralModel) KV(t *Tokenizer) llm.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *mixtralModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||
func (p *mixtralModel) Tensors(ts []Tensor) []fileutils.Tensor {
|
||||
oldnew := []string{
|
||||
"model.layers", "blk",
|
||||
"w1", "ffn_gate_exps",
|
||||
@@ -56,10 +56,10 @@ func (p *mixtralModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||
return true
|
||||
})
|
||||
|
||||
var out []llm.Tensor
|
||||
var out []fileutils.Tensor
|
||||
for n, e := range experts {
|
||||
// TODO(mxyng): sanity check experts
|
||||
out = append(out, llm.Tensor{
|
||||
out = append(out, fileutils.Tensor{
|
||||
Name: n,
|
||||
Kind: e[0].Kind(),
|
||||
Shape: append([]uint64{uint64(len(e))}, e[0].Shape()...),
|
||||
|
@@ -8,7 +8,7 @@ import (
|
||||
"strings"
|
||||
"sync"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fileutils"
|
||||
)
|
||||
|
||||
type phi3Model struct {
|
||||
@@ -37,7 +37,7 @@ type phi3Model struct {
|
||||
|
||||
var _ ModelConverter = (*phi3Model)(nil)
|
||||
|
||||
func (p *phi3Model) KV(t *Tokenizer) llm.KV {
|
||||
func (p *phi3Model) KV(t *Tokenizer) fileutils.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "phi3"
|
||||
kv["phi3.context_length"] = p.MaxPositionEmbeddings
|
||||
@@ -68,19 +68,19 @@ func (p *phi3Model) KV(t *Tokenizer) llm.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *phi3Model) Tensors(ts []Tensor) []llm.Tensor {
|
||||
func (p *phi3Model) Tensors(ts []Tensor) []fileutils.Tensor {
|
||||
var addRopeFactors sync.Once
|
||||
|
||||
out := make([]llm.Tensor, 0, len(ts)+2)
|
||||
out := make([]fileutils.Tensor, 0, len(ts)+2)
|
||||
for _, t := range ts {
|
||||
if strings.HasPrefix(t.Name(), "blk.0.") {
|
||||
addRopeFactors.Do(func() {
|
||||
out = append(out, llm.Tensor{
|
||||
out = append(out, fileutils.Tensor{
|
||||
Name: "rope_factors_long.weight",
|
||||
Kind: 0,
|
||||
Shape: []uint64{uint64(len(p.RopeScaling.LongFactor))},
|
||||
WriterTo: p.RopeScaling.LongFactor,
|
||||
}, llm.Tensor{
|
||||
}, fileutils.Tensor{
|
||||
Name: "rope_factors_short.weight",
|
||||
Kind: 0,
|
||||
Shape: []uint64{uint64(len(p.RopeScaling.ShortFactor))},
|
||||
@@ -89,7 +89,7 @@ func (p *phi3Model) Tensors(ts []Tensor) []llm.Tensor {
|
||||
})
|
||||
}
|
||||
|
||||
out = append(out, llm.Tensor{
|
||||
out = append(out, fileutils.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
|
@@ -20,7 +20,7 @@ import (
|
||||
|
||||
"golang.org/x/exp/maps"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fileutils"
|
||||
)
|
||||
|
||||
type tensorData struct {
|
||||
@@ -29,7 +29,7 @@ type tensorData struct {
|
||||
Shape []int `json:"shape"`
|
||||
}
|
||||
|
||||
func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, llm.Tensors) {
|
||||
func convertFull(t *testing.T, fsys fs.FS) (*os.File, fileutils.KV, *fileutils.Tensors) {
|
||||
t.Helper()
|
||||
|
||||
f, err := os.CreateTemp(t.TempDir(), "f16")
|
||||
@@ -48,7 +48,7 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, llm.Tensors) {
|
||||
}
|
||||
t.Cleanup(func() { r.Close() })
|
||||
|
||||
m, _, err := llm.DecodeGGML(r, math.MaxInt)
|
||||
m, _, err := fileutils.DecodeGGML(r, math.MaxInt)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
@@ -60,7 +60,7 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, llm.Tensors) {
|
||||
return r, m.KV(), m.Tensors()
|
||||
}
|
||||
|
||||
func generateResultsJSON(t *testing.T, f *os.File, kv llm.KV, tensors llm.Tensors) map[string]string {
|
||||
func generateResultsJSON(t *testing.T, f *os.File, kv fileutils.KV, tensors *fileutils.Tensors) map[string]string {
|
||||
actual := make(map[string]string)
|
||||
for k, v := range kv {
|
||||
if s, ok := v.(json.Marshaler); !ok {
|
||||
@@ -330,7 +330,7 @@ func TestConvertAdapter(t *testing.T) {
|
||||
}
|
||||
defer r.Close()
|
||||
|
||||
m, _, err := llm.DecodeGGML(r, math.MaxInt)
|
||||
m, _, err := fileutils.DecodeGGML(r, math.MaxInt)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
3
discover/README.md
Normal file
3
discover/README.md
Normal file
@@ -0,0 +1,3 @@
|
||||
# `discover`
|
||||
|
||||
This package is responsible for discovering information about the system and the capabilities to run LLM. This includes GPU and CPU discovery so the optimal runner can be chosen for a given model. The ollama scheduler relies on up-to-date available memory information, so this package provides the ability to refresh free memory as efficiently as possible.
|
@@ -1,6 +1,6 @@
|
||||
//go:build linux || windows
|
||||
|
||||
package gpu
|
||||
package discover
|
||||
|
||||
import (
|
||||
"errors"
|
@@ -1,4 +1,4 @@
|
||||
package gpu
|
||||
package discover
|
||||
|
||||
import (
|
||||
"errors"
|
@@ -1,4 +1,4 @@
|
||||
package gpu
|
||||
package discover
|
||||
|
||||
import (
|
||||
"bufio"
|
||||
@@ -47,10 +47,11 @@ var (
|
||||
)
|
||||
|
||||
// Gather GPU information from the amdgpu driver if any supported GPUs are detected
|
||||
func AMDGetGPUInfo() []RocmGPUInfo {
|
||||
// Only called once during bootstrap
|
||||
func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
|
||||
resp := []RocmGPUInfo{}
|
||||
if !AMDDetected() {
|
||||
return resp
|
||||
return resp, fmt.Errorf("AMD GPUs not detected")
|
||||
}
|
||||
|
||||
// Opportunistic logging of driver version to aid in troubleshooting
|
||||
@@ -194,13 +195,9 @@ func AMDGetGPUInfo() []RocmGPUInfo {
|
||||
|
||||
// Shouldn't happen, but just in case...
|
||||
if gpuID < 0 {
|
||||
slog.Error("unexpected amdgpu sysfs data resulted in negative GPU ID, please set OLLAMA_DEBUG=1 and report an issue")
|
||||
return nil
|
||||
}
|
||||
|
||||
if int(major) < RocmComputeMin {
|
||||
slog.Warn(fmt.Sprintf("amdgpu too old gfx%d%x%x", major, minor, patch), "gpu", gpuID)
|
||||
continue
|
||||
err := fmt.Errorf("unexpected amdgpu sysfs data resulted in negative GPU ID, please set OLLAMA_DEBUG=1 and report an issue")
|
||||
slog.Error(err.Error())
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// Look up the memory for the current node
|
||||
@@ -270,19 +267,12 @@ func AMDGetGPUInfo() []RocmGPUInfo {
|
||||
break
|
||||
}
|
||||
|
||||
// iGPU detection, remove this check once we can support an iGPU variant of the rocm library
|
||||
if totalMemory < IGPUMemLimit {
|
||||
slog.Info("unsupported Radeon iGPU detected skipping", "id", gpuID, "total", format.HumanBytes2(totalMemory))
|
||||
continue
|
||||
}
|
||||
var name string
|
||||
// TODO - PCI ID lookup
|
||||
if vendor > 0 && device > 0 {
|
||||
name = fmt.Sprintf("%04x:%04x", vendor, device)
|
||||
}
|
||||
|
||||
slog.Debug("amdgpu memory", "gpu", gpuID, "total", format.HumanBytes2(totalMemory))
|
||||
slog.Debug("amdgpu memory", "gpu", gpuID, "available", format.HumanBytes2(totalMemory-usedMemory))
|
||||
gpuInfo := RocmGPUInfo{
|
||||
GpuInfo: GpuInfo{
|
||||
Library: "rocm",
|
||||
@@ -300,6 +290,31 @@ func AMDGetGPUInfo() []RocmGPUInfo {
|
||||
usedFilepath: usedFile,
|
||||
}
|
||||
|
||||
// iGPU detection, remove this check once we can support an iGPU variant of the rocm library
|
||||
if totalMemory < IGPUMemLimit {
|
||||
reason := "unsupported Radeon iGPU detected skipping"
|
||||
slog.Info(reason, "id", gpuID, "total", format.HumanBytes2(totalMemory))
|
||||
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
|
||||
GpuInfo: gpuInfo.GpuInfo,
|
||||
Reason: reason,
|
||||
})
|
||||
continue
|
||||
}
|
||||
|
||||
if int(major) < RocmComputeMin {
|
||||
reason := fmt.Sprintf("amdgpu too old gfx%d%x%x", major, minor, patch)
|
||||
slog.Warn(reason, "gpu", gpuID)
|
||||
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
|
||||
GpuInfo: gpuInfo.GpuInfo,
|
||||
Reason: reason,
|
||||
})
|
||||
|
||||
continue
|
||||
}
|
||||
|
||||
slog.Debug("amdgpu memory", "gpu", gpuID, "total", format.HumanBytes2(totalMemory))
|
||||
slog.Debug("amdgpu memory", "gpu", gpuID, "available", format.HumanBytes2(totalMemory-usedMemory))
|
||||
|
||||
// If the user wants to filter to a subset of devices, filter out if we aren't a match
|
||||
if len(visibleDevices) > 0 {
|
||||
include := false
|
||||
@@ -310,7 +325,13 @@ func AMDGetGPUInfo() []RocmGPUInfo {
|
||||
}
|
||||
}
|
||||
if !include {
|
||||
slog.Info("filtering out device per user request", "id", gpuInfo.ID, "visible_devices", visibleDevices)
|
||||
reason := "filtering out device per user request"
|
||||
slog.Info(reason, "id", gpuInfo.ID, "visible_devices", visibleDevices)
|
||||
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
|
||||
GpuInfo: gpuInfo.GpuInfo,
|
||||
Reason: reason,
|
||||
})
|
||||
|
||||
continue
|
||||
}
|
||||
}
|
||||
@@ -320,8 +341,13 @@ func AMDGetGPUInfo() []RocmGPUInfo {
|
||||
if libDir == "" {
|
||||
libDir, err = AMDValidateLibDir()
|
||||
if err != nil {
|
||||
slog.Warn("unable to verify rocm library, will use cpu", "error", err)
|
||||
return nil
|
||||
err = fmt.Errorf("unable to verify rocm library: %w", err)
|
||||
slog.Warn(err.Error())
|
||||
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
|
||||
GpuInfo: gpuInfo.GpuInfo,
|
||||
Reason: err.Error(),
|
||||
})
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
gpuInfo.DependencyPath = libDir
|
||||
@@ -331,14 +357,25 @@ func AMDGetGPUInfo() []RocmGPUInfo {
|
||||
if len(supported) == 0 {
|
||||
supported, err = GetSupportedGFX(libDir)
|
||||
if err != nil {
|
||||
slog.Warn("failed to lookup supported GFX types, falling back to CPU mode", "error", err)
|
||||
return nil
|
||||
err = fmt.Errorf("failed to lookup supported GFX types: %w", err)
|
||||
slog.Warn(err.Error())
|
||||
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
|
||||
GpuInfo: gpuInfo.GpuInfo,
|
||||
Reason: err.Error(),
|
||||
})
|
||||
return nil, err
|
||||
}
|
||||
slog.Debug("rocm supported GPUs", "types", supported)
|
||||
}
|
||||
gfx := gpuInfo.Compute
|
||||
if !slices.Contains[[]string, string](supported, gfx) {
|
||||
slog.Warn("amdgpu is not supported", "gpu", gpuInfo.ID, "gpu_type", gfx, "library", libDir, "supported_types", supported)
|
||||
reason := fmt.Sprintf("amdgpu is not supported (supported types:%s)", supported)
|
||||
slog.Warn(reason, "gpu_type", gfx, "gpu", gpuInfo.ID, "library", libDir)
|
||||
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
|
||||
GpuInfo: gpuInfo.GpuInfo,
|
||||
Reason: reason,
|
||||
})
|
||||
|
||||
// TODO - consider discrete markdown just for ROCM troubleshooting?
|
||||
slog.Warn("See https://github.com/ollama/ollama/blob/main/docs/gpu.md#overrides for HSA_OVERRIDE_GFX_VERSION usage")
|
||||
continue
|
||||
@@ -358,13 +395,16 @@ func AMDGetGPUInfo() []RocmGPUInfo {
|
||||
resp = append(resp, gpuInfo)
|
||||
}
|
||||
if len(resp) == 0 {
|
||||
slog.Info("no compatible amdgpu devices detected")
|
||||
err := fmt.Errorf("no compatible amdgpu devices detected")
|
||||
slog.Info(err.Error())
|
||||
return nil, err
|
||||
}
|
||||
if err := verifyKFDDriverAccess(); err != nil {
|
||||
slog.Error("amdgpu devices detected but permission problems block access", "error", err)
|
||||
return nil
|
||||
err = fmt.Errorf("amdgpu devices detected but permission problems block access: %w", err)
|
||||
slog.Error(err.Error())
|
||||
return nil, err
|
||||
}
|
||||
return resp
|
||||
return resp, nil
|
||||
}
|
||||
|
||||
// Quick check for AMD driver so we can skip amdgpu discovery if not present
|
@@ -1,8 +1,9 @@
|
||||
package gpu
|
||||
package discover
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"errors"
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"os"
|
||||
"path/filepath"
|
||||
@@ -26,12 +27,13 @@ var (
|
||||
RocmStandardLocations = []string{"C:\\Program Files\\AMD\\ROCm\\6.1\\bin"} // TODO glob?
|
||||
)
|
||||
|
||||
func AMDGetGPUInfo() []RocmGPUInfo {
|
||||
// Only called once during bootstrap
|
||||
func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
|
||||
resp := []RocmGPUInfo{}
|
||||
hl, err := NewHipLib()
|
||||
if err != nil {
|
||||
slog.Debug(err.Error())
|
||||
return nil
|
||||
return nil, err
|
||||
}
|
||||
defer hl.Release()
|
||||
|
||||
@@ -44,12 +46,15 @@ func AMDGetGPUInfo() []RocmGPUInfo {
|
||||
// Note: the HIP library automatically handles subsetting to any HIP_VISIBLE_DEVICES the user specified
|
||||
count := hl.HipGetDeviceCount()
|
||||
if count == 0 {
|
||||
return nil
|
||||
err := fmt.Errorf("no compatible amdgpu devices detected")
|
||||
slog.Info(err.Error())
|
||||
return nil, err
|
||||
}
|
||||
libDir, err := AMDValidateLibDir()
|
||||
if err != nil {
|
||||
slog.Warn("unable to verify rocm library, will use cpu", "error", err)
|
||||
return nil
|
||||
err = fmt.Errorf("unable to verify rocm library: %w", err)
|
||||
slog.Warn(err.Error())
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var supported []string
|
||||
@@ -57,8 +62,9 @@ func AMDGetGPUInfo() []RocmGPUInfo {
|
||||
if gfxOverride == "" {
|
||||
supported, err = GetSupportedGFX(libDir)
|
||||
if err != nil {
|
||||
slog.Warn("failed to lookup supported GFX types, falling back to CPU mode", "error", err)
|
||||
return nil
|
||||
err = fmt.Errorf("failed to lookup supported GFX types: %w", err)
|
||||
slog.Warn(err.Error())
|
||||
return nil, err
|
||||
}
|
||||
} else {
|
||||
slog.Info("skipping rocm gfx compatibility check", "HSA_OVERRIDE_GFX_VERSION", gfxOverride)
|
||||
@@ -87,21 +93,6 @@ func AMDGetGPUInfo() []RocmGPUInfo {
|
||||
slog.Debug("hip device", "id", i, "name", name, "gfx", gfx)
|
||||
// slog.Info(fmt.Sprintf("[%d] Integrated: %d", i, props.iGPU)) // DOESN'T REPORT CORRECTLY! Always 0
|
||||
// TODO Why isn't props.iGPU accurate!?
|
||||
if strings.EqualFold(name, iGPUName) {
|
||||
slog.Info("unsupported Radeon iGPU detected skipping", "id", i, "name", name, "gfx", gfx)
|
||||
continue
|
||||
}
|
||||
if gfxOverride == "" {
|
||||
// Strip off Target Features when comparing
|
||||
if !slices.Contains[[]string, string](supported, strings.Split(gfx, ":")[0]) {
|
||||
slog.Warn("amdgpu is not supported", "gpu", i, "gpu_type", gfx, "library", libDir, "supported_types", supported)
|
||||
// TODO - consider discrete markdown just for ROCM troubleshooting?
|
||||
slog.Warn("See https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md for HSA_OVERRIDE_GFX_VERSION usage")
|
||||
continue
|
||||
} else {
|
||||
slog.Debug("amdgpu is supported", "gpu", i, "gpu_type", gfx)
|
||||
}
|
||||
}
|
||||
|
||||
freeMemory, totalMemory, err := hl.HipMemGetInfo()
|
||||
if err != nil {
|
||||
@@ -109,14 +100,6 @@ func AMDGetGPUInfo() []RocmGPUInfo {
|
||||
continue
|
||||
}
|
||||
|
||||
// iGPU detection, remove this check once we can support an iGPU variant of the rocm library
|
||||
if totalMemory < IGPUMemLimit {
|
||||
slog.Info("amdgpu appears to be an iGPU, skipping", "gpu", i, "total", format.HumanBytes2(totalMemory))
|
||||
continue
|
||||
}
|
||||
|
||||
slog.Debug("amdgpu memory", "gpu", i, "total", format.HumanBytes2(totalMemory))
|
||||
slog.Debug("amdgpu memory", "gpu", i, "available", format.HumanBytes2(freeMemory))
|
||||
gpuInfo := RocmGPUInfo{
|
||||
GpuInfo: GpuInfo{
|
||||
Library: "rocm",
|
||||
@@ -138,10 +121,38 @@ func AMDGetGPUInfo() []RocmGPUInfo {
|
||||
index: i,
|
||||
}
|
||||
|
||||
// iGPU detection, remove this check once we can support an iGPU variant of the rocm library
|
||||
if strings.EqualFold(name, iGPUName) || totalMemory < IGPUMemLimit {
|
||||
reason := "unsupported Radeon iGPU detected skipping"
|
||||
slog.Info(reason, "id", gpuInfo.ID, "total", format.HumanBytes2(totalMemory))
|
||||
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
|
||||
GpuInfo: gpuInfo.GpuInfo,
|
||||
Reason: reason,
|
||||
})
|
||||
continue
|
||||
}
|
||||
|
||||
// Strip off Target Features when comparing
|
||||
if !slices.Contains[[]string, string](supported, strings.Split(gfx, ":")[0]) {
|
||||
reason := fmt.Sprintf("amdgpu is not supported (supported types:%s)", supported)
|
||||
slog.Warn(reason, "gpu_type", gfx, "gpu", gpuInfo.ID, "library", libDir)
|
||||
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
|
||||
GpuInfo: gpuInfo.GpuInfo,
|
||||
Reason: reason,
|
||||
})
|
||||
// HSA_OVERRIDE_GFX_VERSION not supported on windows
|
||||
continue
|
||||
} else {
|
||||
slog.Debug("amdgpu is supported", "gpu", i, "gpu_type", gfx)
|
||||
}
|
||||
|
||||
slog.Debug("amdgpu memory", "gpu", i, "total", format.HumanBytes2(totalMemory))
|
||||
slog.Debug("amdgpu memory", "gpu", i, "available", format.HumanBytes2(freeMemory))
|
||||
|
||||
resp = append(resp, gpuInfo)
|
||||
}
|
||||
|
||||
return resp
|
||||
return resp, nil
|
||||
}
|
||||
|
||||
func AMDValidateLibDir() (string, error) {
|
@@ -1,4 +1,4 @@
|
||||
package gpu
|
||||
package discover
|
||||
|
||||
import (
|
||||
"os"
|
@@ -1,6 +1,6 @@
|
||||
//go:build linux || windows
|
||||
|
||||
package gpu
|
||||
package discover
|
||||
|
||||
import (
|
||||
"log/slog"
|
@@ -1,6 +1,6 @@
|
||||
//go:build linux || windows
|
||||
|
||||
package gpu
|
||||
package discover
|
||||
|
||||
/*
|
||||
#cgo linux LDFLAGS: -lrt -lpthread -ldl -lstdc++ -lm
|
||||
@@ -54,6 +54,13 @@ var (
|
||||
nvmlLibPath string
|
||||
rocmGPUs []RocmGPUInfo
|
||||
oneapiGPUs []OneapiGPUInfo
|
||||
|
||||
// If any discovered GPUs are incompatible, report why
|
||||
unsupportedGPUs []UnsupportedGPUInfo
|
||||
|
||||
// Keep track of errors during bootstrapping so that if GPUs are missing
|
||||
// they expected to be present this may explain why
|
||||
bootstrapErrors []error
|
||||
)
|
||||
|
||||
// With our current CUDA compile flags, older than 5.0 will not work properly
|
||||
@@ -70,16 +77,17 @@ func initCudaHandles() *cudaHandles {
|
||||
|
||||
cHandles := &cudaHandles{}
|
||||
// Short Circuit if we already know which library to use
|
||||
// ignore bootstrap errors in this case since we already recorded them
|
||||
if nvmlLibPath != "" {
|
||||
cHandles.nvml, _ = LoadNVMLMgmt([]string{nvmlLibPath})
|
||||
cHandles.nvml, _, _ = loadNVMLMgmt([]string{nvmlLibPath})
|
||||
return cHandles
|
||||
}
|
||||
if nvcudaLibPath != "" {
|
||||
cHandles.deviceCount, cHandles.nvcuda, _ = LoadNVCUDAMgmt([]string{nvcudaLibPath})
|
||||
cHandles.deviceCount, cHandles.nvcuda, _, _ = loadNVCUDAMgmt([]string{nvcudaLibPath})
|
||||
return cHandles
|
||||
}
|
||||
if cudartLibPath != "" {
|
||||
cHandles.deviceCount, cHandles.cudart, _ = LoadCUDARTMgmt([]string{cudartLibPath})
|
||||
cHandles.deviceCount, cHandles.cudart, _, _ = loadCUDARTMgmt([]string{cudartLibPath})
|
||||
return cHandles
|
||||
}
|
||||
|
||||
@@ -102,18 +110,21 @@ func initCudaHandles() *cudaHandles {
|
||||
if len(NvmlGlobs) > 0 {
|
||||
nvmlLibPaths := FindGPULibs(NvmlMgmtName, NvmlGlobs)
|
||||
if len(nvmlLibPaths) > 0 {
|
||||
nvml, libPath := LoadNVMLMgmt(nvmlLibPaths)
|
||||
nvml, libPath, err := loadNVMLMgmt(nvmlLibPaths)
|
||||
if nvml != nil {
|
||||
slog.Debug("nvidia-ml loaded", "library", libPath)
|
||||
cHandles.nvml = nvml
|
||||
nvmlLibPath = libPath
|
||||
}
|
||||
if err != nil {
|
||||
bootstrapErrors = append(bootstrapErrors, err)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
nvcudaLibPaths := FindGPULibs(NvcudaMgmtName, nvcudaMgmtPatterns)
|
||||
if len(nvcudaLibPaths) > 0 {
|
||||
deviceCount, nvcuda, libPath := LoadNVCUDAMgmt(nvcudaLibPaths)
|
||||
deviceCount, nvcuda, libPath, err := loadNVCUDAMgmt(nvcudaLibPaths)
|
||||
if nvcuda != nil {
|
||||
slog.Debug("detected GPUs", "count", deviceCount, "library", libPath)
|
||||
cHandles.nvcuda = nvcuda
|
||||
@@ -121,11 +132,14 @@ func initCudaHandles() *cudaHandles {
|
||||
nvcudaLibPath = libPath
|
||||
return cHandles
|
||||
}
|
||||
if err != nil {
|
||||
bootstrapErrors = append(bootstrapErrors, err)
|
||||
}
|
||||
}
|
||||
|
||||
cudartLibPaths := FindGPULibs(CudartMgmtName, cudartMgmtPatterns)
|
||||
if len(cudartLibPaths) > 0 {
|
||||
deviceCount, cudart, libPath := LoadCUDARTMgmt(cudartLibPaths)
|
||||
deviceCount, cudart, libPath, err := loadCUDARTMgmt(cudartLibPaths)
|
||||
if cudart != nil {
|
||||
slog.Debug("detected GPUs", "library", libPath, "count", deviceCount)
|
||||
cHandles.cudart = cudart
|
||||
@@ -133,6 +147,9 @@ func initCudaHandles() *cudaHandles {
|
||||
cudartLibPath = libPath
|
||||
return cHandles
|
||||
}
|
||||
if err != nil {
|
||||
bootstrapErrors = append(bootstrapErrors, err)
|
||||
}
|
||||
}
|
||||
|
||||
return cHandles
|
||||
@@ -143,14 +160,19 @@ func initOneAPIHandles() *oneapiHandles {
|
||||
oHandles := &oneapiHandles{}
|
||||
|
||||
// Short Circuit if we already know which library to use
|
||||
// ignore bootstrap errors in this case since we already recorded them
|
||||
if oneapiLibPath != "" {
|
||||
oHandles.deviceCount, oHandles.oneapi, _ = LoadOneapiMgmt([]string{oneapiLibPath})
|
||||
oHandles.deviceCount, oHandles.oneapi, _, _ = loadOneapiMgmt([]string{oneapiLibPath})
|
||||
return oHandles
|
||||
}
|
||||
|
||||
oneapiLibPaths := FindGPULibs(OneapiMgmtName, OneapiGlobs)
|
||||
if len(oneapiLibPaths) > 0 {
|
||||
oHandles.deviceCount, oHandles.oneapi, oneapiLibPath = LoadOneapiMgmt(oneapiLibPaths)
|
||||
var err error
|
||||
oHandles.deviceCount, oHandles.oneapi, oneapiLibPath, err = loadOneapiMgmt(oneapiLibPaths)
|
||||
if err != nil {
|
||||
bootstrapErrors = append(bootstrapErrors, err)
|
||||
}
|
||||
}
|
||||
|
||||
return oHandles
|
||||
@@ -197,6 +219,7 @@ func GetGPUInfo() GpuInfoList {
|
||||
|
||||
if !bootstrapped {
|
||||
slog.Info("looking for compatible GPUs")
|
||||
bootstrapErrors = []error{}
|
||||
needRefresh = false
|
||||
cpuCapability = GetCPUCapability()
|
||||
var memInfo C.mem_info_t
|
||||
@@ -205,27 +228,34 @@ func GetGPUInfo() GpuInfoList {
|
||||
if err != nil {
|
||||
slog.Warn("error looking up system memory", "error", err)
|
||||
}
|
||||
depPath := LibraryDir()
|
||||
details, err := GetCPUDetails()
|
||||
if err != nil {
|
||||
slog.Warn("failed to lookup CPU details", "error", err)
|
||||
}
|
||||
cpus = []CPUInfo{
|
||||
{
|
||||
GpuInfo: GpuInfo{
|
||||
memInfo: mem,
|
||||
Library: "cpu",
|
||||
Variant: cpuCapability.String(),
|
||||
ID: "0",
|
||||
memInfo: mem,
|
||||
Library: "cpu",
|
||||
Variant: cpuCapability.String(),
|
||||
ID: "0",
|
||||
DependencyPath: depPath,
|
||||
},
|
||||
CPUs: details,
|
||||
},
|
||||
}
|
||||
|
||||
// Fallback to CPU mode if we're lacking required vector extensions on x86
|
||||
if cpuCapability < GPURunnerCPUCapability && runtime.GOARCH == "amd64" {
|
||||
slog.Warn("CPU does not have minimum vector extensions, GPU inference disabled", "required", GPURunnerCPUCapability, "detected", cpuCapability)
|
||||
err := fmt.Errorf("CPU does not have minimum vector extensions, GPU inference disabled. Required:%s Detected:%s", GPURunnerCPUCapability, cpuCapability)
|
||||
slog.Warn(err.Error())
|
||||
bootstrapErrors = append(bootstrapErrors, err)
|
||||
bootstrapped = true
|
||||
// No need to do any GPU discovery, since we can't run on them
|
||||
return GpuInfoList{cpus[0].GpuInfo}
|
||||
}
|
||||
|
||||
depPath := LibraryDir()
|
||||
|
||||
// Load ALL libraries
|
||||
cHandles = initCudaHandles()
|
||||
|
||||
@@ -252,10 +282,6 @@ func GetGPUInfo() GpuInfoList {
|
||||
C.free(unsafe.Pointer(memInfo.err))
|
||||
continue
|
||||
}
|
||||
if memInfo.major < CudaComputeMin[0] || (memInfo.major == CudaComputeMin[0] && memInfo.minor < CudaComputeMin[1]) {
|
||||
slog.Info(fmt.Sprintf("[%d] CUDA GPU is too old. Compute Capability detected: %d.%d", i, memInfo.major, memInfo.minor))
|
||||
continue
|
||||
}
|
||||
gpuInfo.TotalMemory = uint64(memInfo.total)
|
||||
gpuInfo.FreeMemory = uint64(memInfo.free)
|
||||
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
|
||||
@@ -278,6 +304,15 @@ func GetGPUInfo() GpuInfoList {
|
||||
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
|
||||
gpuInfo.Variant = variant
|
||||
|
||||
if memInfo.major < CudaComputeMin[0] || (memInfo.major == CudaComputeMin[0] && memInfo.minor < CudaComputeMin[1]) {
|
||||
unsupportedGPUs = append(unsupportedGPUs,
|
||||
UnsupportedGPUInfo{
|
||||
GpuInfo: gpuInfo.GpuInfo,
|
||||
})
|
||||
slog.Info(fmt.Sprintf("[%d] CUDA GPU is too old. Compute Capability detected: %d.%d", i, memInfo.major, memInfo.minor))
|
||||
continue
|
||||
}
|
||||
|
||||
// query the management library as well so we can record any skew between the two
|
||||
// which represents overhead on the GPU we must set aside on subsequent updates
|
||||
if cHandles.nvml != nil {
|
||||
@@ -340,7 +375,10 @@ func GetGPUInfo() GpuInfoList {
|
||||
}
|
||||
}
|
||||
|
||||
rocmGPUs = AMDGetGPUInfo()
|
||||
rocmGPUs, err = AMDGetGPUInfo()
|
||||
if err != nil {
|
||||
bootstrapErrors = append(bootstrapErrors, err)
|
||||
}
|
||||
bootstrapped = true
|
||||
if len(cudaGPUs) == 0 && len(rocmGPUs) == 0 && len(oneapiGPUs) == 0 {
|
||||
slog.Info("no compatible GPUs were discovered")
|
||||
@@ -525,92 +563,114 @@ func FindGPULibs(baseLibName string, defaultPatterns []string) []string {
|
||||
return gpuLibPaths
|
||||
}
|
||||
|
||||
func LoadCUDARTMgmt(cudartLibPaths []string) (int, *C.cudart_handle_t, string) {
|
||||
// Bootstrap the runtime library
|
||||
// Returns: num devices, handle, libPath, error
|
||||
func loadCUDARTMgmt(cudartLibPaths []string) (int, *C.cudart_handle_t, string, error) {
|
||||
var resp C.cudart_init_resp_t
|
||||
resp.ch.verbose = getVerboseState()
|
||||
var err error
|
||||
for _, libPath := range cudartLibPaths {
|
||||
lib := C.CString(libPath)
|
||||
defer C.free(unsafe.Pointer(lib))
|
||||
C.cudart_init(lib, &resp)
|
||||
if resp.err != nil {
|
||||
slog.Debug("Unable to load cudart", "library", libPath, "error", C.GoString(resp.err))
|
||||
err = fmt.Errorf("Unable to load cudart library %s: %s", libPath, C.GoString(resp.err))
|
||||
slog.Debug(err.Error())
|
||||
C.free(unsafe.Pointer(resp.err))
|
||||
} else {
|
||||
return int(resp.num_devices), &resp.ch, libPath
|
||||
err = nil
|
||||
return int(resp.num_devices), &resp.ch, libPath, err
|
||||
}
|
||||
}
|
||||
return 0, nil, ""
|
||||
return 0, nil, "", err
|
||||
}
|
||||
|
||||
func LoadNVCUDAMgmt(nvcudaLibPaths []string) (int, *C.nvcuda_handle_t, string) {
|
||||
// Bootstrap the driver library
|
||||
// Returns: num devices, handle, libPath, error
|
||||
func loadNVCUDAMgmt(nvcudaLibPaths []string) (int, *C.nvcuda_handle_t, string, error) {
|
||||
var resp C.nvcuda_init_resp_t
|
||||
resp.ch.verbose = getVerboseState()
|
||||
var err error
|
||||
for _, libPath := range nvcudaLibPaths {
|
||||
lib := C.CString(libPath)
|
||||
defer C.free(unsafe.Pointer(lib))
|
||||
C.nvcuda_init(lib, &resp)
|
||||
if resp.err != nil {
|
||||
// Decide what log level based on the type of error message to help users understand why
|
||||
msg := C.GoString(resp.err)
|
||||
switch resp.cudaErr {
|
||||
case C.CUDA_ERROR_INSUFFICIENT_DRIVER, C.CUDA_ERROR_SYSTEM_DRIVER_MISMATCH:
|
||||
slog.Warn("version mismatch between driver and cuda driver library - reboot or upgrade may be required", "library", libPath, "error", msg)
|
||||
err = fmt.Errorf("version mismatch between driver and cuda driver library - reboot or upgrade may be required: library %s", libPath)
|
||||
slog.Warn(err.Error())
|
||||
case C.CUDA_ERROR_NO_DEVICE:
|
||||
slog.Info("no nvidia devices detected", "library", libPath)
|
||||
err = fmt.Errorf("no nvidia devices detected by library %s", libPath)
|
||||
slog.Info(err.Error())
|
||||
case C.CUDA_ERROR_UNKNOWN:
|
||||
slog.Warn("unknown error initializing cuda driver library", "library", libPath, "error", msg)
|
||||
slog.Warn("see https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md for more information")
|
||||
err = fmt.Errorf("unknown error initializing cuda driver library %s: %s. see https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md for more information", libPath, C.GoString(resp.err))
|
||||
slog.Warn(err.Error())
|
||||
default:
|
||||
msg := C.GoString(resp.err)
|
||||
if strings.Contains(msg, "wrong ELF class") {
|
||||
slog.Debug("skipping 32bit library", "library", libPath)
|
||||
} else {
|
||||
slog.Info("unable to load cuda driver library", "library", libPath, "error", msg)
|
||||
err = fmt.Errorf("Unable to load cudart library %s: %s", libPath, C.GoString(resp.err))
|
||||
slog.Info(err.Error())
|
||||
}
|
||||
}
|
||||
C.free(unsafe.Pointer(resp.err))
|
||||
} else {
|
||||
return int(resp.num_devices), &resp.ch, libPath
|
||||
err = nil
|
||||
return int(resp.num_devices), &resp.ch, libPath, err
|
||||
}
|
||||
}
|
||||
return 0, nil, ""
|
||||
return 0, nil, "", err
|
||||
}
|
||||
|
||||
func LoadNVMLMgmt(nvmlLibPaths []string) (*C.nvml_handle_t, string) {
|
||||
// Bootstrap the management library
|
||||
// Returns: handle, libPath, error
|
||||
func loadNVMLMgmt(nvmlLibPaths []string) (*C.nvml_handle_t, string, error) {
|
||||
var resp C.nvml_init_resp_t
|
||||
resp.ch.verbose = getVerboseState()
|
||||
var err error
|
||||
for _, libPath := range nvmlLibPaths {
|
||||
lib := C.CString(libPath)
|
||||
defer C.free(unsafe.Pointer(lib))
|
||||
C.nvml_init(lib, &resp)
|
||||
if resp.err != nil {
|
||||
slog.Info(fmt.Sprintf("Unable to load NVML management library %s: %s", libPath, C.GoString(resp.err)))
|
||||
err = fmt.Errorf("Unable to load NVML management library %s: %s", libPath, C.GoString(resp.err))
|
||||
slog.Info(err.Error())
|
||||
C.free(unsafe.Pointer(resp.err))
|
||||
} else {
|
||||
return &resp.ch, libPath
|
||||
err = nil
|
||||
return &resp.ch, libPath, err
|
||||
}
|
||||
}
|
||||
return nil, ""
|
||||
return nil, "", err
|
||||
}
|
||||
|
||||
func LoadOneapiMgmt(oneapiLibPaths []string) (int, *C.oneapi_handle_t, string) {
|
||||
// bootstrap the Intel GPU library
|
||||
// Returns: num devices, handle, libPath, error
|
||||
func loadOneapiMgmt(oneapiLibPaths []string) (int, *C.oneapi_handle_t, string, error) {
|
||||
var resp C.oneapi_init_resp_t
|
||||
num_devices := 0
|
||||
resp.oh.verbose = getVerboseState()
|
||||
var err error
|
||||
for _, libPath := range oneapiLibPaths {
|
||||
lib := C.CString(libPath)
|
||||
defer C.free(unsafe.Pointer(lib))
|
||||
C.oneapi_init(lib, &resp)
|
||||
if resp.err != nil {
|
||||
slog.Debug("Unable to load oneAPI management library", "library", libPath, "error", C.GoString(resp.err))
|
||||
err = fmt.Errorf("Unable to load oneAPI management library %s: %s", libPath, C.GoString(resp.err))
|
||||
slog.Debug(err.Error())
|
||||
C.free(unsafe.Pointer(resp.err))
|
||||
} else {
|
||||
err = nil
|
||||
for i := range resp.oh.num_drivers {
|
||||
num_devices += int(C.oneapi_get_device_count(resp.oh, C.int(i)))
|
||||
}
|
||||
return num_devices, &resp.oh, libPath
|
||||
return num_devices, &resp.oh, libPath, err
|
||||
}
|
||||
}
|
||||
return 0, nil, ""
|
||||
return 0, nil, "", err
|
||||
}
|
||||
|
||||
func getVerboseState() C.uint16_t {
|
||||
@@ -668,3 +728,23 @@ func LibraryDir() string {
|
||||
slog.Warn("unable to locate gpu dependency libraries")
|
||||
return ""
|
||||
}
|
||||
|
||||
func GetSystemInfo() SystemInfo {
|
||||
gpus := GetGPUInfo()
|
||||
gpuMutex.Lock()
|
||||
defer gpuMutex.Unlock()
|
||||
discoveryErrors := []string{}
|
||||
for _, err := range bootstrapErrors {
|
||||
discoveryErrors = append(discoveryErrors, err.Error())
|
||||
}
|
||||
if len(gpus) == 1 && gpus[0].Library == "cpu" {
|
||||
gpus = []GpuInfo{}
|
||||
}
|
||||
|
||||
return SystemInfo{
|
||||
System: cpus[0],
|
||||
GPUs: gpus,
|
||||
UnsupportedGPUs: unsupportedGPUs,
|
||||
DiscoveryErrors: discoveryErrors,
|
||||
}
|
||||
}
|
@@ -1,6 +1,6 @@
|
||||
//go:build darwin
|
||||
|
||||
package gpu
|
||||
package discover
|
||||
|
||||
/*
|
||||
#cgo CFLAGS: -x objective-c
|
||||
@@ -10,7 +10,9 @@ package gpu
|
||||
import "C"
|
||||
|
||||
import (
|
||||
"log/slog"
|
||||
"runtime"
|
||||
"syscall"
|
||||
|
||||
"github.com/ollama/ollama/format"
|
||||
)
|
||||
@@ -66,3 +68,34 @@ func (l GpuInfoList) GetVisibleDevicesEnv() (string, string) {
|
||||
// No-op on darwin
|
||||
return "", ""
|
||||
}
|
||||
|
||||
func GetSystemInfo() SystemInfo {
|
||||
mem, _ := GetCPUMem()
|
||||
query := "hw.perflevel0.physicalcpu"
|
||||
perfCores, err := syscall.SysctlUint32(query)
|
||||
if err != nil {
|
||||
slog.Warn("failed to discover physical CPU details", "query", query, "error", err)
|
||||
}
|
||||
query = "hw.perflevel1.physicalcpu"
|
||||
efficiencyCores, _ := syscall.SysctlUint32(query) // On x86 xeon this wont return data
|
||||
|
||||
// Determine thread count
|
||||
query = "hw.logicalcpu"
|
||||
logicalCores, _ := syscall.SysctlUint32(query)
|
||||
|
||||
return SystemInfo{
|
||||
System: CPUInfo{
|
||||
GpuInfo: GpuInfo{
|
||||
memInfo: mem,
|
||||
},
|
||||
CPUs: []CPU{
|
||||
{
|
||||
CoreCount: int(perfCores + efficiencyCores),
|
||||
EfficiencyCoreCount: int(efficiencyCores),
|
||||
ThreadCount: int(logicalCores),
|
||||
},
|
||||
},
|
||||
},
|
||||
GPUs: GetGPUInfo(),
|
||||
}
|
||||
}
|
186
discover/gpu_linux.go
Normal file
186
discover/gpu_linux.go
Normal file
@@ -0,0 +1,186 @@
|
||||
package discover
|
||||
|
||||
import (
|
||||
"bufio"
|
||||
"fmt"
|
||||
"os"
|
||||
"reflect"
|
||||
"regexp"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/format"
|
||||
)
|
||||
|
||||
var CudartGlobs = []string{
|
||||
"/usr/local/cuda/lib64/libcudart.so*",
|
||||
"/usr/lib/x86_64-linux-gnu/nvidia/current/libcudart.so*",
|
||||
"/usr/lib/x86_64-linux-gnu/libcudart.so*",
|
||||
"/usr/lib/wsl/lib/libcudart.so*",
|
||||
"/usr/lib/wsl/drivers/*/libcudart.so*",
|
||||
"/opt/cuda/lib64/libcudart.so*",
|
||||
"/usr/local/cuda*/targets/aarch64-linux/lib/libcudart.so*",
|
||||
"/usr/lib/aarch64-linux-gnu/nvidia/current/libcudart.so*",
|
||||
"/usr/lib/aarch64-linux-gnu/libcudart.so*",
|
||||
"/usr/local/cuda/lib*/libcudart.so*",
|
||||
"/usr/lib*/libcudart.so*",
|
||||
"/usr/local/lib*/libcudart.so*",
|
||||
}
|
||||
|
||||
var NvmlGlobs = []string{}
|
||||
|
||||
var NvcudaGlobs = []string{
|
||||
"/usr/local/cuda*/targets/*/lib/libcuda.so*",
|
||||
"/usr/lib/*-linux-gnu/nvidia/current/libcuda.so*",
|
||||
"/usr/lib/*-linux-gnu/libcuda.so*",
|
||||
"/usr/lib/wsl/lib/libcuda.so*",
|
||||
"/usr/lib/wsl/drivers/*/libcuda.so*",
|
||||
"/opt/cuda/lib*/libcuda.so*",
|
||||
"/usr/local/cuda/lib*/libcuda.so*",
|
||||
"/usr/lib*/libcuda.so*",
|
||||
"/usr/local/lib*/libcuda.so*",
|
||||
}
|
||||
|
||||
var OneapiGlobs = []string{
|
||||
"/usr/lib/x86_64-linux-gnu/libze_intel_gpu.so*",
|
||||
"/usr/lib*/libze_intel_gpu.so*",
|
||||
}
|
||||
|
||||
var (
|
||||
CudartMgmtName = "libcudart.so*"
|
||||
NvcudaMgmtName = "libcuda.so*"
|
||||
NvmlMgmtName = "" // not currently wired on linux
|
||||
OneapiMgmtName = "libze_intel_gpu.so*"
|
||||
)
|
||||
|
||||
func GetCPUMem() (memInfo, error) {
|
||||
var mem memInfo
|
||||
var total, available, free, buffers, cached, freeSwap uint64
|
||||
f, err := os.Open("/proc/meminfo")
|
||||
if err != nil {
|
||||
return mem, err
|
||||
}
|
||||
defer f.Close()
|
||||
s := bufio.NewScanner(f)
|
||||
for s.Scan() {
|
||||
line := s.Text()
|
||||
switch {
|
||||
case strings.HasPrefix(line, "MemTotal:"):
|
||||
_, err = fmt.Sscanf(line, "MemTotal:%d", &total)
|
||||
case strings.HasPrefix(line, "MemAvailable:"):
|
||||
_, err = fmt.Sscanf(line, "MemAvailable:%d", &available)
|
||||
case strings.HasPrefix(line, "MemFree:"):
|
||||
_, err = fmt.Sscanf(line, "MemFree:%d", &free)
|
||||
case strings.HasPrefix(line, "Buffers:"):
|
||||
_, err = fmt.Sscanf(line, "Buffers:%d", &buffers)
|
||||
case strings.HasPrefix(line, "Cached:"):
|
||||
_, err = fmt.Sscanf(line, "Cached:%d", &cached)
|
||||
case strings.HasPrefix(line, "SwapFree:"):
|
||||
_, err = fmt.Sscanf(line, "SwapFree:%d", &freeSwap)
|
||||
default:
|
||||
continue
|
||||
}
|
||||
if err != nil {
|
||||
return mem, err
|
||||
}
|
||||
}
|
||||
mem.TotalMemory = total * format.KibiByte
|
||||
mem.FreeSwap = freeSwap * format.KibiByte
|
||||
if available > 0 {
|
||||
mem.FreeMemory = available * format.KibiByte
|
||||
} else {
|
||||
mem.FreeMemory = (free + buffers + cached) * format.KibiByte
|
||||
}
|
||||
return mem, nil
|
||||
}
|
||||
|
||||
const CpuInfoFilename = "/proc/cpuinfo"
|
||||
|
||||
type linuxCpuInfo struct {
|
||||
ID string `cpuinfo:"processor"`
|
||||
VendorID string `cpuinfo:"vendor_id"`
|
||||
ModelName string `cpuinfo:"model name"`
|
||||
PhysicalID string `cpuinfo:"physical id"`
|
||||
Siblings string `cpuinfo:"siblings"`
|
||||
CoreID string `cpuinfo:"core id"`
|
||||
}
|
||||
|
||||
func GetCPUDetails() ([]CPU, error) {
|
||||
file, err := os.Open(CpuInfoFilename)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
reColumns := regexp.MustCompile("\t+: ")
|
||||
scanner := bufio.NewScanner(file)
|
||||
cpuInfos := []linuxCpuInfo{}
|
||||
cpu := &linuxCpuInfo{}
|
||||
for scanner.Scan() {
|
||||
line := scanner.Text()
|
||||
if sl := reColumns.Split(line, 2); len(sl) > 1 {
|
||||
t := reflect.TypeOf(cpu).Elem()
|
||||
s := reflect.ValueOf(cpu).Elem()
|
||||
for i := range t.NumField() {
|
||||
field := t.Field(i)
|
||||
tag := field.Tag.Get("cpuinfo")
|
||||
if tag == sl[0] {
|
||||
s.FieldByName(field.Name).SetString(sl[1])
|
||||
break
|
||||
}
|
||||
}
|
||||
} else if strings.TrimSpace(line) == "" && cpu.ID != "" {
|
||||
cpuInfos = append(cpuInfos, *cpu)
|
||||
cpu = &linuxCpuInfo{}
|
||||
}
|
||||
}
|
||||
|
||||
// Process the sockets/cores/threads
|
||||
socketByID := map[string]*CPU{}
|
||||
coreBySocket := map[string]map[string]struct{}{}
|
||||
threadsByCoreBySocket := map[string]map[string]int{}
|
||||
for _, c := range cpuInfos {
|
||||
if _, found := socketByID[c.PhysicalID]; !found {
|
||||
socketByID[c.PhysicalID] = &CPU{
|
||||
ID: c.PhysicalID,
|
||||
VendorID: c.VendorID,
|
||||
ModelName: c.ModelName,
|
||||
}
|
||||
coreBySocket[c.PhysicalID] = map[string]struct{}{}
|
||||
threadsByCoreBySocket[c.PhysicalID] = map[string]int{}
|
||||
}
|
||||
if c.CoreID != "" {
|
||||
coreBySocket[c.PhysicalID][c.PhysicalID+":"+c.CoreID] = struct{}{}
|
||||
threadsByCoreBySocket[c.PhysicalID][c.PhysicalID+":"+c.CoreID]++
|
||||
} else {
|
||||
coreBySocket[c.PhysicalID][c.PhysicalID+":"+c.ID] = struct{}{}
|
||||
threadsByCoreBySocket[c.PhysicalID][c.PhysicalID+":"+c.ID]++
|
||||
}
|
||||
}
|
||||
|
||||
// Tally up the values from the tracking maps
|
||||
for id, s := range socketByID {
|
||||
s.CoreCount = len(coreBySocket[id])
|
||||
s.ThreadCount = 0
|
||||
for _, tc := range threadsByCoreBySocket[id] {
|
||||
s.ThreadCount += tc
|
||||
}
|
||||
|
||||
// This only works if HT is enabled, consider a more reliable model, maybe cache size comparisons?
|
||||
efficiencyCoreCount := 0
|
||||
for _, threads := range threadsByCoreBySocket[id] {
|
||||
if threads == 1 {
|
||||
efficiencyCoreCount++
|
||||
}
|
||||
}
|
||||
if efficiencyCoreCount == s.CoreCount {
|
||||
// 1:1 mapping means they're not actually efficiency cores, but regular cores
|
||||
s.EfficiencyCoreCount = 0
|
||||
} else {
|
||||
s.EfficiencyCoreCount = efficiencyCoreCount
|
||||
}
|
||||
}
|
||||
|
||||
result := []CPU{}
|
||||
for _, c := range socketByID {
|
||||
result = append(result, *c)
|
||||
}
|
||||
return result, nil
|
||||
}
|
@@ -1,6 +1,6 @@
|
||||
//go:build linux || windows
|
||||
|
||||
package gpu
|
||||
package discover
|
||||
|
||||
import (
|
||||
"log/slog"
|
@@ -1,4 +1,4 @@
|
||||
package gpu
|
||||
package discover
|
||||
|
||||
import (
|
||||
"runtime"
|
234
discover/gpu_windows.go
Normal file
234
discover/gpu_windows.go
Normal file
@@ -0,0 +1,234 @@
|
||||
package discover
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"syscall"
|
||||
"unsafe"
|
||||
)
|
||||
|
||||
type MEMORYSTATUSEX struct {
|
||||
length uint32
|
||||
MemoryLoad uint32
|
||||
TotalPhys uint64
|
||||
AvailPhys uint64
|
||||
TotalPageFile uint64
|
||||
AvailPageFile uint64
|
||||
TotalVirtual uint64
|
||||
AvailVirtual uint64
|
||||
AvailExtendedVirtual uint64
|
||||
}
|
||||
|
||||
var (
|
||||
k32 = syscall.NewLazyDLL("kernel32.dll")
|
||||
globalMemoryStatusExProc = k32.NewProc("GlobalMemoryStatusEx")
|
||||
sizeofMemoryStatusEx = uint32(unsafe.Sizeof(MEMORYSTATUSEX{}))
|
||||
GetLogicalProcessorInformationEx = k32.NewProc("GetLogicalProcessorInformationEx")
|
||||
)
|
||||
|
||||
var CudartGlobs = []string{
|
||||
"c:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v*\\bin\\cudart64_*.dll",
|
||||
}
|
||||
|
||||
var NvmlGlobs = []string{
|
||||
"c:\\Windows\\System32\\nvml.dll",
|
||||
}
|
||||
|
||||
var NvcudaGlobs = []string{
|
||||
"c:\\windows\\system*\\nvcuda.dll",
|
||||
}
|
||||
|
||||
var OneapiGlobs = []string{
|
||||
"c:\\Windows\\System32\\DriverStore\\FileRepository\\*\\ze_intel_gpu64.dll",
|
||||
}
|
||||
|
||||
var (
|
||||
CudartMgmtName = "cudart64_*.dll"
|
||||
NvcudaMgmtName = "nvcuda.dll"
|
||||
NvmlMgmtName = "nvml.dll"
|
||||
OneapiMgmtName = "ze_intel_gpu64.dll"
|
||||
)
|
||||
|
||||
func GetCPUMem() (memInfo, error) {
|
||||
memStatus := MEMORYSTATUSEX{length: sizeofMemoryStatusEx}
|
||||
r1, _, err := globalMemoryStatusExProc.Call(uintptr(unsafe.Pointer(&memStatus)))
|
||||
if r1 == 0 {
|
||||
return memInfo{}, fmt.Errorf("GlobalMemoryStatusEx failed: %w", err)
|
||||
}
|
||||
return memInfo{TotalMemory: memStatus.TotalPhys, FreeMemory: memStatus.AvailPhys, FreeSwap: memStatus.AvailPageFile}, nil
|
||||
}
|
||||
|
||||
type LOGICAL_PROCESSOR_RELATIONSHIP uint32
|
||||
|
||||
const (
|
||||
RelationProcessorCore LOGICAL_PROCESSOR_RELATIONSHIP = iota
|
||||
RelationNumaNode
|
||||
RelationCache
|
||||
RelationProcessorPackage
|
||||
RelationGroup
|
||||
RelationProcessorDie
|
||||
RelationNumaNodeEx
|
||||
RelationProcessorModule
|
||||
)
|
||||
const RelationAll LOGICAL_PROCESSOR_RELATIONSHIP = 0xffff
|
||||
|
||||
type GROUP_AFFINITY struct {
|
||||
Mask uintptr // KAFFINITY
|
||||
Group uint16
|
||||
Reserved [3]uint16
|
||||
}
|
||||
|
||||
type PROCESSOR_RELATIONSHIP struct {
|
||||
Flags byte
|
||||
EfficiencyClass byte
|
||||
Reserved [20]byte
|
||||
GroupCount uint16
|
||||
GroupMask [1]GROUP_AFFINITY // len GroupCount
|
||||
}
|
||||
|
||||
// Omitted unused structs: NUMA_NODE_RELATIONSHIP CACHE_RELATIONSHIP GROUP_RELATIONSHIP
|
||||
|
||||
type SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX struct {
|
||||
Relationship LOGICAL_PROCESSOR_RELATIONSHIP
|
||||
Size uint32
|
||||
U [1]byte // Union len Size
|
||||
// PROCESSOR_RELATIONSHIP
|
||||
// NUMA_NODE_RELATIONSHIP
|
||||
// CACHE_RELATIONSHIP
|
||||
// GROUP_RELATIONSHIP
|
||||
}
|
||||
|
||||
func (group *GROUP_AFFINITY) IsMember(target *GROUP_AFFINITY) bool {
|
||||
if group == nil || target == nil {
|
||||
return false
|
||||
}
|
||||
return group.Mask&target.Mask != 0
|
||||
}
|
||||
|
||||
type winPackage struct {
|
||||
groups []*GROUP_AFFINITY
|
||||
coreCount int // performance cores = coreCount - efficiencyCoreCount
|
||||
efficiencyCoreCount int
|
||||
threadCount int
|
||||
}
|
||||
|
||||
func (pkg *winPackage) IsMember(target *GROUP_AFFINITY) bool {
|
||||
for _, group := range pkg.groups {
|
||||
if group.IsMember(target) {
|
||||
return true
|
||||
}
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
func getLogicalProcessorInformationEx() ([]byte, error) {
|
||||
buf := make([]byte, 1)
|
||||
bufSize := len(buf)
|
||||
ret, _, err := GetLogicalProcessorInformationEx.Call(
|
||||
uintptr(RelationAll),
|
||||
uintptr(unsafe.Pointer(&buf[0])),
|
||||
uintptr(unsafe.Pointer(&bufSize)),
|
||||
)
|
||||
if ret != 0 {
|
||||
return nil, fmt.Errorf("failed to determine size info ret:%d %w", ret, err)
|
||||
}
|
||||
|
||||
buf = make([]byte, bufSize)
|
||||
ret, _, err = GetLogicalProcessorInformationEx.Call(
|
||||
uintptr(RelationAll),
|
||||
uintptr(unsafe.Pointer(&buf[0])),
|
||||
uintptr(unsafe.Pointer(&bufSize)),
|
||||
)
|
||||
if ret == 0 {
|
||||
return nil, fmt.Errorf("failed to gather processor information ret:%d buflen:%d %w", ret, bufSize, err)
|
||||
}
|
||||
return buf, nil
|
||||
}
|
||||
|
||||
func processSystemLogicalProcessorInforationList(buf []byte) []*winPackage {
|
||||
var slpi *SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX
|
||||
// Find all the packages first
|
||||
packages := []*winPackage{}
|
||||
for bufOffset := 0; bufOffset < len(buf); bufOffset += int(slpi.Size) {
|
||||
slpi = (*SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX)(unsafe.Pointer(&buf[bufOffset]))
|
||||
if slpi.Relationship != RelationProcessorPackage {
|
||||
continue
|
||||
}
|
||||
pr := (*PROCESSOR_RELATIONSHIP)(unsafe.Pointer(&slpi.U[0]))
|
||||
pkg := &winPackage{}
|
||||
ga0 := unsafe.Pointer(&pr.GroupMask[0])
|
||||
for j := range pr.GroupCount {
|
||||
gm := (*GROUP_AFFINITY)(unsafe.Pointer(uintptr(ga0) + uintptr(j)*unsafe.Sizeof(GROUP_AFFINITY{})))
|
||||
pkg.groups = append(pkg.groups, gm)
|
||||
}
|
||||
packages = append(packages, pkg)
|
||||
}
|
||||
|
||||
slog.Info("packages", "count", len(packages))
|
||||
|
||||
// To identify efficiency cores we have to compare the relative values
|
||||
// Larger values are "less efficient" (aka, more performant)
|
||||
var maxEfficiencyClass byte
|
||||
for bufOffset := 0; bufOffset < len(buf); bufOffset += int(slpi.Size) {
|
||||
slpi = (*SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX)(unsafe.Pointer(&buf[bufOffset]))
|
||||
if slpi.Relationship != RelationProcessorCore {
|
||||
continue
|
||||
}
|
||||
pr := (*PROCESSOR_RELATIONSHIP)(unsafe.Pointer(&slpi.U[0]))
|
||||
if pr.EfficiencyClass > maxEfficiencyClass {
|
||||
maxEfficiencyClass = pr.EfficiencyClass
|
||||
}
|
||||
}
|
||||
if maxEfficiencyClass > 0 {
|
||||
slog.Info("efficiency cores detected", "maxEfficiencyClass", maxEfficiencyClass)
|
||||
}
|
||||
|
||||
// then match up the Cores to the Packages, count up cores, threads and efficiency cores
|
||||
for bufOffset := 0; bufOffset < len(buf); bufOffset += int(slpi.Size) {
|
||||
slpi = (*SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX)(unsafe.Pointer(&buf[bufOffset]))
|
||||
if slpi.Relationship != RelationProcessorCore {
|
||||
continue
|
||||
}
|
||||
pr := (*PROCESSOR_RELATIONSHIP)(unsafe.Pointer(&slpi.U[0]))
|
||||
ga0 := unsafe.Pointer(&pr.GroupMask[0])
|
||||
for j := range pr.GroupCount {
|
||||
gm := (*GROUP_AFFINITY)(unsafe.Pointer(uintptr(ga0) + uintptr(j)*unsafe.Sizeof(GROUP_AFFINITY{})))
|
||||
for _, pkg := range packages {
|
||||
if pkg.IsMember(gm) {
|
||||
pkg.coreCount++
|
||||
if pr.Flags == 0 {
|
||||
pkg.threadCount++
|
||||
} else {
|
||||
pkg.threadCount += 2
|
||||
}
|
||||
if pr.EfficiencyClass < maxEfficiencyClass {
|
||||
pkg.efficiencyCoreCount++
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Sumarize the results
|
||||
for i, pkg := range packages {
|
||||
slog.Info("", "package", i, "cores", pkg.coreCount, "efficiency", pkg.efficiencyCoreCount, "threads", pkg.threadCount)
|
||||
}
|
||||
|
||||
return packages
|
||||
}
|
||||
|
||||
func GetCPUDetails() ([]CPU, error) {
|
||||
buf, err := getLogicalProcessorInformationEx()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
packages := processSystemLogicalProcessorInforationList(buf)
|
||||
cpus := make([]CPU, len(packages))
|
||||
|
||||
for i, pkg := range packages {
|
||||
cpus[i].CoreCount = pkg.coreCount
|
||||
cpus[i].EfficiencyCoreCount = pkg.efficiencyCoreCount
|
||||
cpus[i].ThreadCount = pkg.threadCount
|
||||
}
|
||||
return cpus, nil
|
||||
}
|
77
discover/gpu_windows_test.go
Normal file
77
discover/gpu_windows_test.go
Normal file
File diff suppressed because one or more lines are too long
@@ -1,4 +1,4 @@
|
||||
package gpu
|
||||
package discover
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
@@ -10,11 +10,11 @@ import (
|
||||
type memInfo struct {
|
||||
TotalMemory uint64 `json:"total_memory,omitempty"`
|
||||
FreeMemory uint64 `json:"free_memory,omitempty"`
|
||||
FreeSwap uint64 `json:"free_swap,omitempty"`
|
||||
FreeSwap uint64 `json:"free_swap,omitempty"` // TODO split this out for system only
|
||||
}
|
||||
|
||||
// Beginning of an `ollama info` command
|
||||
type GpuInfo struct {
|
||||
type GpuInfo struct { // TODO better name maybe "InferenceProcessor"?
|
||||
memInfo
|
||||
Library string `json:"library,omitempty"`
|
||||
|
||||
@@ -49,6 +49,17 @@ type GpuInfo struct {
|
||||
|
||||
type CPUInfo struct {
|
||||
GpuInfo
|
||||
CPUs []CPU
|
||||
}
|
||||
|
||||
// CPU type represents a CPU Package occupying a socket
|
||||
type CPU struct {
|
||||
ID string `cpuinfo:"processor"`
|
||||
VendorID string `cpuinfo:"vendor_id"`
|
||||
ModelName string `cpuinfo:"model name"`
|
||||
CoreCount int
|
||||
EfficiencyCoreCount int // Performance = CoreCount - Efficiency
|
||||
ThreadCount int
|
||||
}
|
||||
|
||||
type CudaGPUInfo struct {
|
||||
@@ -76,6 +87,11 @@ type OneapiGPUInfoList []OneapiGPUInfo
|
||||
|
||||
type GpuInfoList []GpuInfo
|
||||
|
||||
type UnsupportedGPUInfo struct {
|
||||
GpuInfo
|
||||
Reason string `json:"reason"`
|
||||
}
|
||||
|
||||
// Split up the set of gpu info's by Library and variant
|
||||
func (l GpuInfoList) ByLibrary() []GpuInfoList {
|
||||
resp := []GpuInfoList{}
|
||||
@@ -146,3 +162,19 @@ func (c CPUCapability) String() string {
|
||||
return "no vector extensions"
|
||||
}
|
||||
}
|
||||
|
||||
type SystemInfo struct {
|
||||
System CPUInfo `json:"system"`
|
||||
GPUs []GpuInfo `json:"gpus"`
|
||||
UnsupportedGPUs []UnsupportedGPUInfo `json:"unsupported_gpus"`
|
||||
DiscoveryErrors []string `json:"discovery_errors"`
|
||||
}
|
||||
|
||||
// Return the optimal number of threads to use for inference
|
||||
func (si SystemInfo) GetOptimalThreadCount() int {
|
||||
if len(si.System.CPUs) == 0 {
|
||||
return 0
|
||||
}
|
||||
// Allocate thread count matching the performance cores on a single socket
|
||||
return si.System.CPUs[0].CoreCount - si.System.CPUs[0].EfficiencyCoreCount
|
||||
}
|
64
docs/api.md
64
docs/api.md
@@ -69,7 +69,7 @@ Enable JSON mode by setting the `format` parameter to `json`. This will structur
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/generate -d '{
|
||||
"model": "llama3.1",
|
||||
"model": "llama3.2",
|
||||
"prompt": "Why is the sky blue?"
|
||||
}'
|
||||
```
|
||||
@@ -80,7 +80,7 @@ A stream of JSON objects is returned:
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "llama3.1",
|
||||
"model": "llama3.2",
|
||||
"created_at": "2023-08-04T08:52:19.385406455-07:00",
|
||||
"response": "The",
|
||||
"done": false
|
||||
@@ -102,7 +102,7 @@ To calculate how fast the response is generated in tokens per second (token/s),
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "llama3.1",
|
||||
"model": "llama3.2",
|
||||
"created_at": "2023-08-04T19:22:45.499127Z",
|
||||
"response": "",
|
||||
"done": true,
|
||||
@@ -124,7 +124,7 @@ A response can be received in one reply when streaming is off.
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/generate -d '{
|
||||
"model": "llama3.1",
|
||||
"model": "llama3.2",
|
||||
"prompt": "Why is the sky blue?",
|
||||
"stream": false
|
||||
}'
|
||||
@@ -136,7 +136,7 @@ If `stream` is set to `false`, the response will be a single JSON object:
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "llama3.1",
|
||||
"model": "llama3.2",
|
||||
"created_at": "2023-08-04T19:22:45.499127Z",
|
||||
"response": "The sky is blue because it is the color of the sky.",
|
||||
"done": true,
|
||||
@@ -194,7 +194,7 @@ curl http://localhost:11434/api/generate -d '{
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/generate -d '{
|
||||
"model": "llama3.1",
|
||||
"model": "llama3.2",
|
||||
"prompt": "What color is the sky at different times of the day? Respond using JSON",
|
||||
"format": "json",
|
||||
"stream": false
|
||||
@@ -205,7 +205,7 @@ curl http://localhost:11434/api/generate -d '{
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "llama3.1",
|
||||
"model": "llama3.2",
|
||||
"created_at": "2023-11-09T21:07:55.186497Z",
|
||||
"response": "{\n\"morning\": {\n\"color\": \"blue\"\n},\n\"noon\": {\n\"color\": \"blue-gray\"\n},\n\"afternoon\": {\n\"color\": \"warm gray\"\n},\n\"evening\": {\n\"color\": \"orange\"\n}\n}\n",
|
||||
"done": true,
|
||||
@@ -327,7 +327,7 @@ If you want to set custom options for the model at runtime rather than in the Mo
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/generate -d '{
|
||||
"model": "llama3.1",
|
||||
"model": "llama3.2",
|
||||
"prompt": "Why is the sky blue?",
|
||||
"stream": false,
|
||||
"options": {
|
||||
@@ -368,7 +368,7 @@ curl http://localhost:11434/api/generate -d '{
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "llama3.1",
|
||||
"model": "llama3.2",
|
||||
"created_at": "2023-08-04T19:22:45.499127Z",
|
||||
"response": "The sky is blue because it is the color of the sky.",
|
||||
"done": true,
|
||||
@@ -390,7 +390,7 @@ If an empty prompt is provided, the model will be loaded into memory.
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/generate -d '{
|
||||
"model": "llama3.1"
|
||||
"model": "llama3.2"
|
||||
}'
|
||||
```
|
||||
|
||||
@@ -400,7 +400,7 @@ A single JSON object is returned:
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "llama3.1",
|
||||
"model": "llama3.2",
|
||||
"created_at": "2023-12-18T19:52:07.071755Z",
|
||||
"response": "",
|
||||
"done": true
|
||||
@@ -415,7 +415,7 @@ If an empty prompt is provided and the `keep_alive` parameter is set to `0`, a m
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/generate -d '{
|
||||
"model": "llama3.1",
|
||||
"model": "llama3.2",
|
||||
"keep_alive": 0
|
||||
}'
|
||||
```
|
||||
@@ -426,7 +426,7 @@ A single JSON object is returned:
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "llama3.1",
|
||||
"model": "llama3.2",
|
||||
"created_at": "2024-09-12T03:54:03.516566Z",
|
||||
"response": "",
|
||||
"done": true,
|
||||
@@ -472,7 +472,7 @@ Send a chat message with a streaming response.
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/chat -d '{
|
||||
"model": "llama3.1",
|
||||
"model": "llama3.2",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
@@ -488,7 +488,7 @@ A stream of JSON objects is returned:
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "llama3.1",
|
||||
"model": "llama3.2",
|
||||
"created_at": "2023-08-04T08:52:19.385406455-07:00",
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
@@ -503,7 +503,7 @@ Final response:
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "llama3.1",
|
||||
"model": "llama3.2",
|
||||
"created_at": "2023-08-04T19:22:45.499127Z",
|
||||
"done": true,
|
||||
"total_duration": 4883583458,
|
||||
@@ -521,7 +521,7 @@ Final response:
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/chat -d '{
|
||||
"model": "llama3.1",
|
||||
"model": "llama3.2",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
@@ -536,7 +536,7 @@ curl http://localhost:11434/api/chat -d '{
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "llama3.1",
|
||||
"model": "llama3.2",
|
||||
"created_at": "2023-12-12T14:13:43.416799Z",
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
@@ -560,7 +560,7 @@ Send a chat message with a conversation history. You can use this same approach
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/chat -d '{
|
||||
"model": "llama3.1",
|
||||
"model": "llama3.2",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
@@ -584,7 +584,7 @@ A stream of JSON objects is returned:
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "llama3.1",
|
||||
"model": "llama3.2",
|
||||
"created_at": "2023-08-04T08:52:19.385406455-07:00",
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
@@ -598,7 +598,7 @@ Final response:
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "llama3.1",
|
||||
"model": "llama3.2",
|
||||
"created_at": "2023-08-04T19:22:45.499127Z",
|
||||
"done": true,
|
||||
"total_duration": 8113331500,
|
||||
@@ -656,7 +656,7 @@ curl http://localhost:11434/api/chat -d '{
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/chat -d '{
|
||||
"model": "llama3.1",
|
||||
"model": "llama3.2",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
@@ -674,7 +674,7 @@ curl http://localhost:11434/api/chat -d '{
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "llama3.1",
|
||||
"model": "llama3.2",
|
||||
"created_at": "2023-12-12T14:13:43.416799Z",
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
@@ -696,7 +696,7 @@ curl http://localhost:11434/api/chat -d '{
|
||||
|
||||
```
|
||||
curl http://localhost:11434/api/chat -d '{
|
||||
"model": "llama3.1",
|
||||
"model": "llama3.2",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
@@ -735,7 +735,7 @@ curl http://localhost:11434/api/chat -d '{
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "llama3.1",
|
||||
"model": "llama3.2",
|
||||
"created_at": "2024-07-22T20:33:28.123648Z",
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
@@ -771,7 +771,7 @@ If the messages array is empty, the model will be loaded into memory.
|
||||
|
||||
```
|
||||
curl http://localhost:11434/api/chat -d '{
|
||||
"model": "llama3.1",
|
||||
"model": "llama3.2",
|
||||
"messages": []
|
||||
}'
|
||||
```
|
||||
@@ -779,7 +779,7 @@ curl http://localhost:11434/api/chat -d '{
|
||||
##### Response
|
||||
```json
|
||||
{
|
||||
"model": "llama3.1",
|
||||
"model": "llama3.2",
|
||||
"created_at":"2024-09-12T21:17:29.110811Z",
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
@@ -798,7 +798,7 @@ If the messages array is empty and the `keep_alive` parameter is set to `0`, a m
|
||||
|
||||
```
|
||||
curl http://localhost:11434/api/chat -d '{
|
||||
"model": "llama3.1",
|
||||
"model": "llama3.2",
|
||||
"messages": [],
|
||||
"keep_alive": 0
|
||||
}'
|
||||
@@ -810,7 +810,7 @@ A single JSON object is returned:
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "llama3.1",
|
||||
"model": "llama3.2",
|
||||
"created_at":"2024-09-12T21:33:17.547535Z",
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
@@ -989,7 +989,7 @@ Show information about a model including details, modelfile, template, parameter
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/show -d '{
|
||||
"name": "llama3.1"
|
||||
"name": "llama3.2"
|
||||
}'
|
||||
```
|
||||
|
||||
@@ -1050,7 +1050,7 @@ Copy a model. Creates a model with another name from an existing model.
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/copy -d '{
|
||||
"source": "llama3.1",
|
||||
"source": "llama3.2",
|
||||
"destination": "llama3-backup"
|
||||
}'
|
||||
```
|
||||
@@ -1105,7 +1105,7 @@ Download a model from the ollama library. Cancelled pulls are resumed from where
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/pull -d '{
|
||||
"name": "llama3.1"
|
||||
"name": "llama3.2"
|
||||
}'
|
||||
```
|
||||
|
||||
|
@@ -2,15 +2,13 @@
|
||||
|
||||
Install required tools:
|
||||
|
||||
- cmake version 3.24 or higher
|
||||
- go version 1.22 or higher
|
||||
- gcc version 11.4.0 or higher
|
||||
|
||||
|
||||
### MacOS
|
||||
|
||||
```bash
|
||||
brew install go cmake gcc
|
||||
```
|
||||
[Download Go](https://go.dev/dl/)
|
||||
|
||||
Optionally enable debugging and more verbose logging:
|
||||
|
||||
@@ -22,10 +20,10 @@ export CGO_CFLAGS="-g"
|
||||
export OLLAMA_DEBUG=1
|
||||
```
|
||||
|
||||
Get the required libraries and build the native LLM code:
|
||||
Get the required libraries and build the native LLM code: (Adjust the job count based on your number of processors for a faster build)
|
||||
|
||||
```bash
|
||||
go generate ./...
|
||||
make -j 5
|
||||
```
|
||||
|
||||
Then build ollama:
|
||||
@@ -40,13 +38,17 @@ Now you can run `ollama`:
|
||||
./ollama
|
||||
```
|
||||
|
||||
#### Xcode 15 warnings
|
||||
|
||||
If you are using Xcode newer than version 14, you may see a warning during `go build` about `ld: warning: ignoring duplicate libraries: '-lobjc'` due to Golang issue https://github.com/golang/go/issues/67799 which can be safely ignored. You can suppress the warning with `export CGO_LDFLAGS="-Wl,-no_warn_duplicate_libraries"`
|
||||
|
||||
### Linux
|
||||
|
||||
#### Linux CUDA (NVIDIA)
|
||||
|
||||
_Your operating system distribution may already have packages for NVIDIA CUDA. Distro packages are often preferable, but instructions are distro-specific. Please consult distro-specific docs for dependencies if available!_
|
||||
|
||||
Install `cmake` and `golang` as well as [NVIDIA CUDA](https://developer.nvidia.com/cuda-downloads)
|
||||
Install `make`, `gcc` and `golang` as well as [NVIDIA CUDA](https://developer.nvidia.com/cuda-downloads)
|
||||
development and runtime packages.
|
||||
|
||||
Typically the build scripts will auto-detect CUDA, however, if your Linux distro
|
||||
@@ -55,10 +57,10 @@ specifying an environment variable `CUDA_LIB_DIR` to the location of the shared
|
||||
libraries, and `CUDACXX` to the location of the nvcc compiler. You can customize
|
||||
a set of target CUDA architectures by setting `CMAKE_CUDA_ARCHITECTURES` (e.g. "50;60;70")
|
||||
|
||||
Then generate dependencies:
|
||||
Then generate dependencies: (Adjust the job count based on your number of processors for a faster build)
|
||||
|
||||
```
|
||||
go generate ./...
|
||||
make -j 5
|
||||
```
|
||||
|
||||
Then build the binary:
|
||||
@@ -71,7 +73,7 @@ go build .
|
||||
|
||||
_Your operating system distribution may already have packages for AMD ROCm and CLBlast. Distro packages are often preferable, but instructions are distro-specific. Please consult distro-specific docs for dependencies if available!_
|
||||
|
||||
Install [CLBlast](https://github.com/CNugteren/CLBlast/blob/master/doc/installation.md) and [ROCm](https://rocm.docs.amd.com/en/latest/) development packages first, as well as `cmake` and `golang`.
|
||||
Install [CLBlast](https://github.com/CNugteren/CLBlast/blob/master/doc/installation.md) and [ROCm](https://rocm.docs.amd.com/en/latest/) development packages first, as well as `make`, `gcc`, and `golang`.
|
||||
|
||||
Typically the build scripts will auto-detect ROCm, however, if your Linux distro
|
||||
or installation approach uses unusual paths, you can specify the location by
|
||||
@@ -80,8 +82,10 @@ install (typically `/opt/rocm`), and `CLBlast_DIR` to the location of the
|
||||
CLBlast install (typically `/usr/lib/cmake/CLBlast`). You can also customize
|
||||
the AMD GPU targets by setting AMDGPU_TARGETS (e.g. `AMDGPU_TARGETS="gfx1101;gfx1102"`)
|
||||
|
||||
Then generate dependencies: (Adjust the job count based on your number of processors for a faster build)
|
||||
|
||||
```
|
||||
go generate ./...
|
||||
make -j 5
|
||||
```
|
||||
|
||||
Then build the binary:
|
||||
@@ -94,60 +98,59 @@ ROCm requires elevated privileges to access the GPU at runtime. On most distros
|
||||
|
||||
#### Advanced CPU Settings
|
||||
|
||||
By default, running `go generate ./...` will compile a few different variations
|
||||
By default, running `make` will compile a few different variations
|
||||
of the LLM library based on common CPU families and vector math capabilities,
|
||||
including a lowest-common-denominator which should run on almost any 64 bit CPU
|
||||
somewhat slowly. At runtime, Ollama will auto-detect the optimal variation to
|
||||
load. If you would like to build a CPU-based build customized for your
|
||||
processor, you can set `OLLAMA_CUSTOM_CPU_DEFS` to the llama.cpp flags you would
|
||||
like to use. For example, to compile an optimized binary for an Intel i9-9880H,
|
||||
you might use:
|
||||
load.
|
||||
|
||||
```
|
||||
OLLAMA_CUSTOM_CPU_DEFS="-DGGML_AVX=on -DGGML_AVX2=on -DGGML_F16C=on -DGGML_FMA=on" go generate ./...
|
||||
go build .
|
||||
```
|
||||
Custom CPU settings are not currently supported in the new Go server build but will be added back after we complete the transition.
|
||||
|
||||
#### Containerized Linux Build
|
||||
|
||||
If you have Docker available, you can build linux binaries with `./scripts/build_linux.sh` which has the CUDA and ROCm dependencies included. The resulting binary is placed in `./dist`
|
||||
If you have Docker available, you can build linux binaries with `OLLAMA_NEW_RUNNERS=1 ./scripts/build_linux.sh` which has the CUDA and ROCm dependencies included. The resulting binary is placed in `./dist`
|
||||
|
||||
### Windows
|
||||
|
||||
Note: The Windows build for Ollama is still under development.
|
||||
The following tools are required as a minimal development environment to build CPU inference support.
|
||||
|
||||
First, install required tools:
|
||||
|
||||
- MSVC toolchain - C/C++ and cmake as minimal requirements
|
||||
- Go version 1.22 or higher
|
||||
- MinGW (pick one variant) with GCC.
|
||||
- [MinGW-w64](https://www.mingw-w64.org/)
|
||||
- https://go.dev/dl/
|
||||
- Git
|
||||
- https://git-scm.com/download/win
|
||||
- GCC and Make. There are multiple options on how to go about installing these tools on Windows. We have verified the following, but others may work as well:
|
||||
- [MSYS2](https://www.msys2.org/)
|
||||
- The `ThreadJob` Powershell module: `Install-Module -Name ThreadJob -Scope CurrentUser`
|
||||
- After installing, from an MSYS2 terminal, run `pacman -S mingw-w64-ucrt-x86_64-gcc make` to install the required tools
|
||||
- Assuming you used the default install prefix for msys2 above, add `c:\msys64\ucrt64\bin` and `c:\msys64\usr\bin` to your environment variable `PATH` where you will perform the build steps below (e.g. system-wide, account-level, powershell, cmd, etc.)
|
||||
|
||||
Then, build the `ollama` binary:
|
||||
|
||||
```powershell
|
||||
$env:CGO_ENABLED="1"
|
||||
go generate ./...
|
||||
make -j 8
|
||||
go build .
|
||||
```
|
||||
|
||||
#### GPU Support
|
||||
|
||||
The GPU tools require the Microsoft native build tools. To build either CUDA or ROCm, you must first install MSVC via Visual Studio:
|
||||
|
||||
- Make sure to select `Desktop development with C++` as a Workload during the Visual Studio install
|
||||
- You must complete the Visual Studio install and run it once **BEFORE** installing CUDA or ROCm for the tools to properly register
|
||||
- Add the location of the **64 bit (x64)** compiler (`cl.exe`) to your `PATH`
|
||||
- Note: the default Developer Shell may configure the 32 bit (x86) compiler which will lead to build failures. Ollama requires a 64 bit toolchain.
|
||||
|
||||
#### Windows CUDA (NVIDIA)
|
||||
|
||||
In addition to the common Windows development tools described above, install CUDA after installing MSVC.
|
||||
In addition to the common Windows development tools and MSVC described above:
|
||||
|
||||
- [NVIDIA CUDA](https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html)
|
||||
|
||||
|
||||
#### Windows ROCm (AMD Radeon)
|
||||
|
||||
In addition to the common Windows development tools described above, install AMDs HIP package after installing MSVC.
|
||||
In addition to the common Windows development tools and MSVC described above:
|
||||
|
||||
- [AMD HIP](https://www.amd.com/en/developer/resources/rocm-hub/hip-sdk.html)
|
||||
- [Strawberry Perl](https://strawberryperl.com/)
|
||||
|
||||
Lastly, add `ninja.exe` included with MSVC to the system path (e.g. `C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\Common7\IDE\CommonExtensions\Microsoft\CMake\Ninja`).
|
||||
|
||||
#### Windows arm64
|
||||
|
||||
@@ -166,4 +169,4 @@ Follow the instructions at https://www.msys2.org/wiki/arm64/ to set up an arm64
|
||||
pacman -S mingw-w64-clang-aarch64-clang mingw-w64-clang-aarch64-gcc-compat mingw-w64-clang-aarch64-make make
|
||||
```
|
||||
|
||||
You will need to ensure your PATH includes go, cmake, gcc and clang mingw32-make to build ollama from source. (typically `C:\msys64\clangarm64\bin\`)
|
||||
You will need to ensure your PATH includes go, cmake, gcc and clang mingw32-make to build ollama from source. (typically `C:\msys64\clangarm64\bin\`)
|
||||
|
@@ -63,7 +63,7 @@ docker run -d --device /dev/kfd --device /dev/dri -v ollama:/root/.ollama -p 114
|
||||
Now you can run a model:
|
||||
|
||||
```
|
||||
docker exec -it ollama ollama run llama3.1
|
||||
docker exec -it ollama ollama run llama3.2
|
||||
```
|
||||
|
||||
### Try different models
|
||||
|
10
docs/faq.md
10
docs/faq.md
@@ -32,7 +32,7 @@ When using the API, specify the `num_ctx` parameter:
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/generate -d '{
|
||||
"model": "llama3.1",
|
||||
"model": "llama3.2",
|
||||
"prompt": "Why is the sky blue?",
|
||||
"options": {
|
||||
"num_ctx": 4096
|
||||
@@ -232,7 +232,7 @@ curl http://localhost:11434/api/chat -d '{"model": "mistral"}'
|
||||
|
||||
To preload a model using the CLI, use the command:
|
||||
```shell
|
||||
ollama run llama3.1 ""
|
||||
ollama run llama3.2 ""
|
||||
```
|
||||
|
||||
## How do I keep a model loaded in memory or make it unload immediately?
|
||||
@@ -240,7 +240,7 @@ ollama run llama3.1 ""
|
||||
By default models are kept in memory for 5 minutes before being unloaded. This allows for quicker response times if you're making numerous requests to the LLM. If you want to immediately unload a model from memory, use the `ollama stop` command:
|
||||
|
||||
```shell
|
||||
ollama stop llama3.1
|
||||
ollama stop llama3.2
|
||||
```
|
||||
|
||||
If you're using the API, use the `keep_alive` parameter with the `/api/generate` and `/api/chat` endpoints to set the amount of time that a model stays in memory. The `keep_alive` parameter can be set to:
|
||||
@@ -251,12 +251,12 @@ If you're using the API, use the `keep_alive` parameter with the `/api/generate`
|
||||
|
||||
For example, to preload a model and leave it in memory use:
|
||||
```shell
|
||||
curl http://localhost:11434/api/generate -d '{"model": "llama3.1", "keep_alive": -1}'
|
||||
curl http://localhost:11434/api/generate -d '{"model": "llama3.2", "keep_alive": -1}'
|
||||
```
|
||||
|
||||
To unload the model and free up memory use:
|
||||
```shell
|
||||
curl http://localhost:11434/api/generate -d '{"model": "llama3.1", "keep_alive": 0}'
|
||||
curl http://localhost:11434/api/generate -d '{"model": "llama3.2", "keep_alive": 0}'
|
||||
```
|
||||
|
||||
Alternatively, you can change the amount of time all models are loaded into memory by setting the `OLLAMA_KEEP_ALIVE` environment variable when starting the Ollama server. The `OLLAMA_KEEP_ALIVE` variable uses the same parameter types as the `keep_alive` parameter types mentioned above. Refer to the section explaining [how to configure the Ollama server](#how-do-i-configure-ollama-server) to correctly set the environment variable.
|
||||
|
@@ -50,7 +50,7 @@ INSTRUCTION arguments
|
||||
An example of a `Modelfile` creating a mario blueprint:
|
||||
|
||||
```modelfile
|
||||
FROM llama3.1
|
||||
FROM llama3.2
|
||||
# sets the temperature to 1 [higher is more creative, lower is more coherent]
|
||||
PARAMETER temperature 1
|
||||
# sets the context window size to 4096, this controls how many tokens the LLM can use as context to generate the next token
|
||||
@@ -72,10 +72,10 @@ More examples are available in the [examples directory](../examples).
|
||||
To view the Modelfile of a given model, use the `ollama show --modelfile` command.
|
||||
|
||||
```bash
|
||||
> ollama show --modelfile llama3.1
|
||||
> ollama show --modelfile llama3.2
|
||||
# Modelfile generated by "ollama show"
|
||||
# To build a new Modelfile based on this one, replace the FROM line with:
|
||||
# FROM llama3.1:latest
|
||||
# FROM llama3.2:latest
|
||||
FROM /Users/pdevine/.ollama/models/blobs/sha256-00e1317cbf74d901080d7100f57580ba8dd8de57203072dc6f668324ba545f29
|
||||
TEMPLATE """{{ if .System }}<|start_header_id|>system<|end_header_id|>
|
||||
|
||||
@@ -103,7 +103,7 @@ FROM <model name>:<tag>
|
||||
#### Build from existing model
|
||||
|
||||
```modelfile
|
||||
FROM llama3.1
|
||||
FROM llama3.2
|
||||
```
|
||||
|
||||
A list of available base models:
|
||||
|
@@ -25,7 +25,7 @@ chat_completion = client.chat.completions.create(
|
||||
'content': 'Say this is a test',
|
||||
}
|
||||
],
|
||||
model='llama3.1',
|
||||
model='llama3.2',
|
||||
)
|
||||
|
||||
response = client.chat.completions.create(
|
||||
@@ -46,13 +46,13 @@ response = client.chat.completions.create(
|
||||
)
|
||||
|
||||
completion = client.completions.create(
|
||||
model="llama3.1",
|
||||
model="llama3.2",
|
||||
prompt="Say this is a test",
|
||||
)
|
||||
|
||||
list_completion = client.models.list()
|
||||
|
||||
model = client.models.retrieve("llama3.1")
|
||||
model = client.models.retrieve("llama3.2")
|
||||
|
||||
embeddings = client.embeddings.create(
|
||||
model="all-minilm",
|
||||
@@ -74,7 +74,7 @@ const openai = new OpenAI({
|
||||
|
||||
const chatCompletion = await openai.chat.completions.create({
|
||||
messages: [{ role: 'user', content: 'Say this is a test' }],
|
||||
model: 'llama3.1',
|
||||
model: 'llama3.2',
|
||||
})
|
||||
|
||||
const response = await openai.chat.completions.create({
|
||||
@@ -94,13 +94,13 @@ const response = await openai.chat.completions.create({
|
||||
})
|
||||
|
||||
const completion = await openai.completions.create({
|
||||
model: "llama3.1",
|
||||
model: "llama3.2",
|
||||
prompt: "Say this is a test.",
|
||||
})
|
||||
|
||||
const listCompletion = await openai.models.list()
|
||||
|
||||
const model = await openai.models.retrieve("llama3.1")
|
||||
const model = await openai.models.retrieve("llama3.2")
|
||||
|
||||
const embedding = await openai.embeddings.create({
|
||||
model: "all-minilm",
|
||||
@@ -114,7 +114,7 @@ const embedding = await openai.embeddings.create({
|
||||
curl http://localhost:11434/v1/chat/completions \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"model": "llama3.1",
|
||||
"model": "llama3.2",
|
||||
"messages": [
|
||||
{
|
||||
"role": "system",
|
||||
@@ -154,13 +154,13 @@ curl http://localhost:11434/v1/chat/completions \
|
||||
curl http://localhost:11434/v1/completions \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"model": "llama3.1",
|
||||
"model": "llama3.2",
|
||||
"prompt": "Say this is a test"
|
||||
}'
|
||||
|
||||
curl http://localhost:11434/v1/models
|
||||
|
||||
curl http://localhost:11434/v1/models/llama3.1
|
||||
curl http://localhost:11434/v1/models/llama3.2
|
||||
|
||||
curl http://localhost:11434/v1/embeddings \
|
||||
-H "Content-Type: application/json" \
|
||||
@@ -274,7 +274,7 @@ curl http://localhost:11434/v1/embeddings \
|
||||
Before using a model, pull it locally `ollama pull`:
|
||||
|
||||
```shell
|
||||
ollama pull llama3.1
|
||||
ollama pull llama3.2
|
||||
```
|
||||
|
||||
### Default model names
|
||||
@@ -282,7 +282,7 @@ ollama pull llama3.1
|
||||
For tooling that relies on default OpenAI model names such as `gpt-3.5-turbo`, use `ollama cp` to copy an existing model name to a temporary name:
|
||||
|
||||
```
|
||||
ollama cp llama3.1 gpt-3.5-turbo
|
||||
ollama cp llama3.2 gpt-3.5-turbo
|
||||
```
|
||||
|
||||
Afterwards, this new model name can be specified the `model` field:
|
||||
|
@@ -33,7 +33,7 @@ Omitting a template in these models puts the responsibility of correctly templat
|
||||
To add templates in your model, you'll need to add a `TEMPLATE` command to the Modelfile. Here's an example using Meta's Llama 3.
|
||||
|
||||
```dockerfile
|
||||
FROM llama3.1
|
||||
FROM llama3.2
|
||||
|
||||
TEMPLATE """{{- if .System }}<|start_header_id|>system<|end_header_id|>
|
||||
|
||||
|
@@ -15,7 +15,7 @@ import { Ollama } from "@langchain/community/llms/ollama";
|
||||
|
||||
const ollama = new Ollama({
|
||||
baseUrl: "http://localhost:11434",
|
||||
model: "llama3.1",
|
||||
model: "llama3.2",
|
||||
});
|
||||
|
||||
const answer = await ollama.invoke(`why is the sky blue?`);
|
||||
@@ -23,7 +23,7 @@ const answer = await ollama.invoke(`why is the sky blue?`);
|
||||
console.log(answer);
|
||||
```
|
||||
|
||||
That will get us the same thing as if we ran `ollama run llama3.1 "why is the sky blue"` in the terminal. But we want to load a document from the web to ask a question against. **Cheerio** is a great library for ingesting a webpage, and **LangChain** uses it in their **CheerioWebBaseLoader**. So let's install **Cheerio** and build that part of the app.
|
||||
That will get us the same thing as if we ran `ollama run llama3.2 "why is the sky blue"` in the terminal. But we want to load a document from the web to ask a question against. **Cheerio** is a great library for ingesting a webpage, and **LangChain** uses it in their **CheerioWebBaseLoader**. So let's install **Cheerio** and build that part of the app.
|
||||
|
||||
```bash
|
||||
npm install cheerio
|
||||
|
@@ -29,7 +29,7 @@ Ollama uses unicode characters for progress indication, which may render as unkn
|
||||
|
||||
Here's a quick example showing API access from `powershell`
|
||||
```powershell
|
||||
(Invoke-WebRequest -method POST -Body '{"model":"llama3.1", "prompt":"Why is the sky blue?", "stream": false}' -uri http://localhost:11434/api/generate ).Content | ConvertFrom-json
|
||||
(Invoke-WebRequest -method POST -Body '{"model":"llama3.2", "prompt":"Why is the sky blue?", "stream": false}' -uri http://localhost:11434/api/generate ).Content | ConvertFrom-json
|
||||
```
|
||||
|
||||
## Troubleshooting
|
||||
|
@@ -160,6 +160,8 @@ var (
|
||||
SchedSpread = Bool("OLLAMA_SCHED_SPREAD")
|
||||
// IntelGPU enables experimental Intel GPU detection.
|
||||
IntelGPU = Bool("OLLAMA_INTEL_GPU")
|
||||
// MultiUserCache optimizes prompt caching for multi-user scenarios
|
||||
MultiUserCache = Bool("OLLAMA_MULTIUSER_CACHE")
|
||||
)
|
||||
|
||||
func String(s string) func() string {
|
||||
@@ -245,6 +247,7 @@ func AsMap() map[string]EnvVar {
|
||||
"OLLAMA_ORIGINS": {"OLLAMA_ORIGINS", Origins(), "A comma separated list of allowed origins"},
|
||||
"OLLAMA_SCHED_SPREAD": {"OLLAMA_SCHED_SPREAD", SchedSpread(), "Always schedule model across all GPUs"},
|
||||
"OLLAMA_TMPDIR": {"OLLAMA_TMPDIR", TmpDir(), "Location for temporary files"},
|
||||
"OLLAMA_MULTIUSER_CACHE": {"OLLAMA_MULTIUSER_CACHE", MultiUserCache(), "Optimize prompt caching for multi-user scenarios"},
|
||||
|
||||
// Informational
|
||||
"HTTP_PROXY": {"HTTP_PROXY", String("HTTP_PROXY")(), "HTTP proxy"},
|
||||
|
@@ -35,7 +35,7 @@ func main() {
|
||||
|
||||
ctx := context.Background()
|
||||
req := &api.ChatRequest{
|
||||
Model: "llama3.1",
|
||||
Model: "llama3.2",
|
||||
Messages: messages,
|
||||
}
|
||||
|
||||
|
@@ -4,10 +4,10 @@ This example provides an interface for asking questions to a PDF document.
|
||||
|
||||
## Setup
|
||||
|
||||
1. Ensure you have the `llama3.1` model installed:
|
||||
1. Ensure you have the `llama3.2` model installed:
|
||||
|
||||
```
|
||||
ollama pull llama3.1
|
||||
ollama pull llama3.2
|
||||
```
|
||||
|
||||
2. Install the Python Requirements.
|
||||
|
@@ -51,7 +51,7 @@ while True:
|
||||
template=template,
|
||||
)
|
||||
|
||||
llm = Ollama(model="llama3.1", callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]))
|
||||
llm = Ollama(model="llama3.2", callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]))
|
||||
qa_chain = RetrievalQA.from_chain_type(
|
||||
llm,
|
||||
retriever=vectorstore.as_retriever(),
|
||||
|
@@ -4,10 +4,10 @@ This example summarizes the website, [https://ollama.com/blog/run-llama2-uncenso
|
||||
|
||||
## Running the Example
|
||||
|
||||
1. Ensure you have the `llama3.1` model installed:
|
||||
1. Ensure you have the `llama3.2` model installed:
|
||||
|
||||
```bash
|
||||
ollama pull llama3.1
|
||||
ollama pull llama3.2
|
||||
```
|
||||
|
||||
2. Install the Python Requirements.
|
||||
|
@@ -5,7 +5,7 @@ from langchain.chains.summarize import load_summarize_chain
|
||||
loader = WebBaseLoader("https://ollama.com/blog/run-llama2-uncensored-locally")
|
||||
docs = loader.load()
|
||||
|
||||
llm = Ollama(model="llama3.1")
|
||||
llm = Ollama(model="llama3.2")
|
||||
chain = load_summarize_chain(llm, chain_type="stuff")
|
||||
|
||||
result = chain.invoke(docs)
|
||||
|
@@ -4,10 +4,10 @@ This example is a basic "hello world" of using LangChain with Ollama.
|
||||
|
||||
## Running the Example
|
||||
|
||||
1. Ensure you have the `llama3.1` model installed:
|
||||
1. Ensure you have the `llama3.2` model installed:
|
||||
|
||||
```bash
|
||||
ollama pull llama3.1
|
||||
ollama pull llama3.2
|
||||
```
|
||||
|
||||
2. Install the Python Requirements.
|
||||
|
@@ -1,6 +1,6 @@
|
||||
from langchain.llms import Ollama
|
||||
|
||||
input = input("What is your question?")
|
||||
llm = Ollama(model="llama3.1")
|
||||
llm = Ollama(model="llama3.2")
|
||||
res = llm.predict(input)
|
||||
print (res)
|
||||
|
@@ -1,4 +1,4 @@
|
||||
FROM llama3.1
|
||||
FROM llama3.2
|
||||
PARAMETER temperature 1
|
||||
SYSTEM """
|
||||
You are Mario from super mario bros, acting as an assistant.
|
||||
|
@@ -2,12 +2,12 @@
|
||||
|
||||
# Example character: Mario
|
||||
|
||||
This example shows how to create a basic character using Llama3.1 as the base model.
|
||||
This example shows how to create a basic character using Llama 3.2 as the base model.
|
||||
|
||||
To run this example:
|
||||
|
||||
1. Download the Modelfile
|
||||
2. `ollama pull llama3.1` to get the base model used in the model file.
|
||||
2. `ollama pull llama3.2` to get the base model used in the model file.
|
||||
3. `ollama create NAME -f ./Modelfile`
|
||||
4. `ollama run NAME`
|
||||
|
||||
@@ -18,7 +18,7 @@ Ask it some questions like "Who are you?" or "Is Peach in trouble again?"
|
||||
What the model file looks like:
|
||||
|
||||
```
|
||||
FROM llama3.1
|
||||
FROM llama3.2
|
||||
PARAMETER temperature 1
|
||||
SYSTEM """
|
||||
You are Mario from Super Mario Bros, acting as an assistant.
|
||||
|
@@ -1,14 +1,14 @@
|
||||
# RAG Hallucination Checker using Bespoke-Minicheck
|
||||
|
||||
This example allows the user to ask questions related to a document, which can be specified via an article url. Relevant chunks are retreived from the document and given to `llama3.1` as context to answer the question. Then each sentence in the answer is checked against the retrieved chunks using `bespoke-minicheck` to ensure that the answer does not contain hallucinations.
|
||||
This example allows the user to ask questions related to a document, which can be specified via an article url. Relevant chunks are retreived from the document and given to `llama3.2` as context to answer the question. Then each sentence in the answer is checked against the retrieved chunks using `bespoke-minicheck` to ensure that the answer does not contain hallucinations.
|
||||
|
||||
## Running the Example
|
||||
|
||||
1. Ensure `all-minilm` (embedding) `llama3.1` (chat) and `bespoke-minicheck` (check) models installed:
|
||||
1. Ensure `all-minilm` (embedding) `llama3.2` (chat) and `bespoke-minicheck` (check) models installed:
|
||||
|
||||
```bash
|
||||
ollama pull all-minilm
|
||||
ollama pull llama3.1
|
||||
ollama pull llama3.2
|
||||
ollama pull bespoke-minicheck
|
||||
```
|
||||
|
||||
|
@@ -9,7 +9,7 @@ import nltk
|
||||
warnings.filterwarnings(
|
||||
"ignore", category=FutureWarning, module="transformers.tokenization_utils_base"
|
||||
)
|
||||
nltk.download("punkt", quiet=True)
|
||||
nltk.download("punkt_tab", quiet=True)
|
||||
|
||||
|
||||
def getArticleText(url):
|
||||
@@ -119,7 +119,7 @@ if __name__ == "__main__":
|
||||
system_prompt = f"Only use the following information to answer the question. Do not use anything else: {sourcetext}"
|
||||
|
||||
ollama_response = ollama.generate(
|
||||
model="llama3.1",
|
||||
model="llama3.2",
|
||||
prompt=question,
|
||||
system=system_prompt,
|
||||
options={"stream": False},
|
||||
|
@@ -2,7 +2,7 @@ import requests
|
||||
import json
|
||||
import random
|
||||
|
||||
model = "llama3.1"
|
||||
model = "llama3.2"
|
||||
template = {
|
||||
"firstName": "",
|
||||
"lastName": "",
|
||||
|
@@ -12,7 +12,7 @@ countries = [
|
||||
"France",
|
||||
]
|
||||
country = random.choice(countries)
|
||||
model = "llama3.1"
|
||||
model = "llama3.2"
|
||||
|
||||
prompt = f"generate one realistically believable sample data set of a persons first name, last name, address in {country}, and phone number. Do not use common names. Respond using JSON. Key names should have no backslashes, values should use plain ascii with no special characters."
|
||||
|
||||
|
@@ -6,10 +6,10 @@ There are two python scripts in this example. `randomaddresses.py` generates ran
|
||||
|
||||
## Running the Example
|
||||
|
||||
1. Ensure you have the `llama3.1` model installed:
|
||||
1. Ensure you have the `llama3.2` model installed:
|
||||
|
||||
```bash
|
||||
ollama pull llama3.1
|
||||
ollama pull llama3.2
|
||||
```
|
||||
|
||||
2. Install the Python Requirements.
|
||||
|
@@ -2,7 +2,7 @@ import json
|
||||
import requests
|
||||
|
||||
# NOTE: ollama must be running for this to work, start the ollama app or run `ollama serve`
|
||||
model = "llama3.1" # TODO: update this for whatever model you wish to use
|
||||
model = "llama3.2" # TODO: update this for whatever model you wish to use
|
||||
|
||||
|
||||
def chat(messages):
|
||||
|
@@ -4,10 +4,10 @@ The **chat** endpoint is one of two ways to generate text from an LLM with Ollam
|
||||
|
||||
## Running the Example
|
||||
|
||||
1. Ensure you have the `llama3.1` model installed:
|
||||
1. Ensure you have the `llama3.2` model installed:
|
||||
|
||||
```bash
|
||||
ollama pull llama3.1
|
||||
ollama pull llama3.2
|
||||
```
|
||||
|
||||
2. Install the Python Requirements.
|
||||
|
@@ -1,6 +1,6 @@
|
||||
import * as readline from "readline";
|
||||
|
||||
const model = "llama3.1";
|
||||
const model = "llama3.2";
|
||||
type Message = {
|
||||
role: "assistant" | "user" | "system";
|
||||
content: string;
|
||||
|
3
fileutils/README.md
Normal file
3
fileutils/README.md
Normal file
@@ -0,0 +1,3 @@
|
||||
# `modelfile`
|
||||
|
||||
This package provides utilities for loading and inspecting model files
|
@@ -1,9 +1,11 @@
|
||||
package llm
|
||||
package fileutils
|
||||
|
||||
import "fmt"
|
||||
|
||||
type fileType uint32
|
||||
|
||||
// TODO this should map over to the GGML CGO enum type
|
||||
|
||||
const (
|
||||
fileTypeF32 fileType = iota
|
||||
fileTypeF16
|
@@ -1,4 +1,4 @@
|
||||
package llm
|
||||
package fileutils
|
||||
|
||||
import (
|
||||
"encoding/binary"
|
||||
@@ -51,8 +51,8 @@ func (llm *ggla) KV() KV {
|
||||
return llm.kv
|
||||
}
|
||||
|
||||
func (llm *ggla) Tensors() Tensors {
|
||||
return Tensors{
|
||||
func (llm *ggla) Tensors() *Tensors {
|
||||
return &Tensors{
|
||||
Items: llm.tensors,
|
||||
Offset: llm.tensorOffset,
|
||||
}
|
@@ -1,11 +1,14 @@
|
||||
package llm
|
||||
package fileutils
|
||||
|
||||
import (
|
||||
"encoding/binary"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"os"
|
||||
"slices"
|
||||
"strings"
|
||||
"sync"
|
||||
|
||||
"github.com/ollama/ollama/util/bufioutil"
|
||||
)
|
||||
@@ -17,7 +20,7 @@ type GGML struct {
|
||||
|
||||
type model interface {
|
||||
KV() KV
|
||||
Tensors() Tensors
|
||||
Tensors() *Tensors
|
||||
}
|
||||
|
||||
type KV map[string]any
|
||||
@@ -123,25 +126,34 @@ func (kv KV) ChatTemplate() string {
|
||||
type Tensors struct {
|
||||
Items []*Tensor
|
||||
Offset uint64
|
||||
|
||||
layers map[string]Layer
|
||||
layersOnce sync.Once
|
||||
}
|
||||
|
||||
func (ts Tensors) Layers() map[string]Layer {
|
||||
layers := make(map[string]Layer)
|
||||
for _, t := range ts.Items {
|
||||
parts := strings.Split(t.Name, ".")
|
||||
if parts[0] == "blk" {
|
||||
// join first and second part, e.g. blk.%d
|
||||
parts = append([]string{fmt.Sprintf("%s.%s", parts[0], parts[1])}, parts[2:]...)
|
||||
func (ts *Tensors) Layers() map[string]Layer {
|
||||
ts.layersOnce.Do(func() {
|
||||
ts.layers = make(map[string]Layer)
|
||||
for _, t := range ts.Items {
|
||||
parts := strings.Split(t.Name, ".")
|
||||
if index := slices.IndexFunc(parts, func(s string) bool { return s == "blk" || s == "mm" }); index != -1 {
|
||||
if len(parts) > index+2 {
|
||||
// blk and mm should have a number after them, join it
|
||||
parts = append(
|
||||
[]string{strings.Join(parts[:index+2], ".")},
|
||||
parts[index+2:]...)
|
||||
}
|
||||
}
|
||||
|
||||
if _, ok := ts.layers[parts[0]]; !ok {
|
||||
ts.layers[parts[0]] = make(Layer)
|
||||
}
|
||||
|
||||
ts.layers[parts[0]][strings.Join(parts[1:], ".")] = t
|
||||
}
|
||||
})
|
||||
|
||||
if _, ok := layers[parts[0]]; !ok {
|
||||
layers[parts[0]] = make(Layer)
|
||||
}
|
||||
|
||||
layers[parts[0]][strings.Join(parts[1:], ".")] = t
|
||||
}
|
||||
|
||||
return layers
|
||||
return ts.layers
|
||||
}
|
||||
|
||||
type Layer map[string]*Tensor
|
||||
@@ -244,6 +256,8 @@ func (t Tensor) typeSize() uint64 {
|
||||
return 8
|
||||
case 29: // IQ1_M
|
||||
return blockSize/8 + blockSize/16 + blockSize/32
|
||||
case 30: // BF16
|
||||
return 2
|
||||
default:
|
||||
return 0
|
||||
}
|
||||
@@ -475,3 +489,23 @@ func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload ui
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
// LoadModel will load a model from disk. The model must be in the GGML format.
|
||||
//
|
||||
// It collects array values for arrays with a size less than or equal to
|
||||
// maxArraySize. If maxArraySize is 0, the default value of 1024 is used. If
|
||||
// the maxArraySize is negative, all arrays are collected.
|
||||
func LoadModel(model string, maxArraySize int) (*GGML, error) {
|
||||
if _, err := os.Stat(model); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
f, err := os.Open(model)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
ggml, _, err := DecodeGGML(f, maxArraySize)
|
||||
return ggml, err
|
||||
}
|
1
fileutils/ggml_test.go
Normal file
1
fileutils/ggml_test.go
Normal file
@@ -0,0 +1 @@
|
||||
package fileutils
|
@@ -1,4 +1,4 @@
|
||||
package llm
|
||||
package fileutils
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
@@ -110,8 +110,8 @@ func (llm *gguf) KV() KV {
|
||||
return llm.kv
|
||||
}
|
||||
|
||||
func (llm *gguf) Tensors() Tensors {
|
||||
return Tensors{
|
||||
func (llm *gguf) Tensors() *Tensors {
|
||||
return &Tensors{
|
||||
Items: llm.tensors,
|
||||
Offset: llm.tensorOffset,
|
||||
}
|
@@ -1,19 +1,20 @@
|
||||
package llm
|
||||
package fileutils
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"os"
|
||||
"strconv"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/discover"
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/format"
|
||||
"github.com/ollama/ollama/gpu"
|
||||
)
|
||||
|
||||
// This algorithm looks for a complete fit to determine if we need to unload other models
|
||||
func PredictServerFit(allGpus gpu.GpuInfoList, ggml *GGML, adapters, projectors []string, opts api.Options) (bool, uint64) {
|
||||
func PredictServerFit(allGpus discover.GpuInfoList, ggml *GGML, adapters, projectors []string, opts api.Options) (bool, uint64) {
|
||||
// Split up the GPUs by type and try them
|
||||
var estimatedVRAM uint64
|
||||
for _, gpus := range allGpus.ByLibrary() {
|
||||
@@ -63,11 +64,13 @@ type MemoryEstimate struct {
|
||||
memoryLayerOutput uint64
|
||||
graphFullOffload uint64
|
||||
graphPartialOffload uint64
|
||||
|
||||
projectorWeights, projectorGraph uint64
|
||||
}
|
||||
|
||||
// Given a model and one or more GPU targets, predict how many layers and bytes we can load, and the total size
|
||||
// The GPUs provided must all be the same Library
|
||||
func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts api.Options) MemoryEstimate {
|
||||
func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string, opts api.Options) MemoryEstimate {
|
||||
// Graph size for a partial offload, applies to all GPUs
|
||||
var graphPartialOffload uint64
|
||||
|
||||
@@ -78,7 +81,8 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
|
||||
var graphOffload uint64
|
||||
|
||||
// Projectors loaded into GPU0 only
|
||||
var projectorSize uint64
|
||||
var projectorWeights uint64
|
||||
var projectorGraph uint64
|
||||
|
||||
// Conditional output size on GPU 0
|
||||
var memoryLayerOutput uint64
|
||||
@@ -103,7 +107,9 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
|
||||
slog.Debug("evaluating", "library", gpus[0].Library, "gpu_count", len(gpus), "available", availableList)
|
||||
|
||||
for _, projector := range projectors {
|
||||
projectorSize += projectorMemoryRequirements(projector)
|
||||
weight, graph := projectorMemoryRequirements(projector)
|
||||
projectorWeights += weight
|
||||
projectorGraph += graph
|
||||
|
||||
// multimodal models require at least 2048 context
|
||||
opts.NumCtx = max(opts.NumCtx, 2048)
|
||||
@@ -149,7 +155,7 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
|
||||
}
|
||||
|
||||
// Output layer handled at the end if we have space
|
||||
gpuZeroOverhead := projectorSize
|
||||
gpuZeroOverhead := projectorWeights + projectorGraph
|
||||
|
||||
// Reduce set of GPUs to only those that have sufficient space to fit overhead and at least one layer
|
||||
var layerCount int
|
||||
@@ -157,7 +163,7 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
|
||||
gpuAllocations := make([]uint64, len(gpus))
|
||||
type gs struct {
|
||||
i int
|
||||
g *gpu.GpuInfo
|
||||
g *discover.GpuInfo
|
||||
}
|
||||
gpusWithSpace := []gs{}
|
||||
for i := range gpus {
|
||||
@@ -303,6 +309,8 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
|
||||
memoryLayerOutput: memoryLayerOutput,
|
||||
graphFullOffload: graphFullOffload,
|
||||
graphPartialOffload: graphPartialOffload,
|
||||
projectorWeights: projectorWeights,
|
||||
projectorGraph: projectorGraph,
|
||||
}
|
||||
|
||||
if gpus[0].Library == "cpu" {
|
||||
@@ -321,9 +329,21 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
|
||||
return estimate
|
||||
}
|
||||
|
||||
func (m MemoryEstimate) log() {
|
||||
func (m MemoryEstimate) Log() {
|
||||
overhead := envconfig.GpuOverhead()
|
||||
slog.Info(
|
||||
|
||||
log := slog.With()
|
||||
if m.projectorWeights > 0 {
|
||||
log = log.With(
|
||||
slog.Group(
|
||||
"projector",
|
||||
"weights", format.HumanBytes2(m.projectorWeights),
|
||||
"graph", format.HumanBytes2(m.projectorGraph),
|
||||
),
|
||||
)
|
||||
}
|
||||
|
||||
log.Info(
|
||||
"offload to "+m.inferenceLibrary,
|
||||
slog.Group(
|
||||
"layers",
|
||||
@@ -371,3 +391,52 @@ func (m MemoryEstimate) log() {
|
||||
),
|
||||
)
|
||||
}
|
||||
|
||||
func projectorMemoryRequirements(filename string) (weights, graphSize uint64) {
|
||||
file, err := os.Open(filename)
|
||||
if err != nil {
|
||||
return 0, 0
|
||||
}
|
||||
defer file.Close()
|
||||
|
||||
ggml, _, err := DecodeGGML(file, 0)
|
||||
if err != nil {
|
||||
return 0, 0
|
||||
}
|
||||
|
||||
for _, layer := range ggml.Tensors().Layers() {
|
||||
weights += layer.size()
|
||||
}
|
||||
|
||||
switch arch := ggml.KV().Architecture(); arch {
|
||||
case "mllama":
|
||||
kv := func(n string) uint64 {
|
||||
if v, ok := ggml.KV()[arch+".vision."+n].(uint32); ok {
|
||||
return uint64(v)
|
||||
}
|
||||
|
||||
return 0
|
||||
}
|
||||
|
||||
imageSize := kv("image_size")
|
||||
|
||||
maxNumTiles := kv("max_num_tiles")
|
||||
embeddingLength := kv("embedding_length")
|
||||
headCount := kv("attention.head_count")
|
||||
|
||||
numPatches := (imageSize / kv("patch_size")) * (imageSize / kv("patch_size"))
|
||||
if _, ok := ggml.Tensors().Layers()["v"]["class_embd"]; ok {
|
||||
numPatches++
|
||||
}
|
||||
|
||||
numPaddedPatches := numPatches + 8 - (numPatches%8)%8
|
||||
|
||||
graphSize = 4 * (8 +
|
||||
imageSize*imageSize*kv("num_channels")*maxNumTiles +
|
||||
embeddingLength*numPatches*maxNumTiles +
|
||||
9*embeddingLength*numPaddedPatches*maxNumTiles +
|
||||
numPaddedPatches*maxNumTiles*numPaddedPatches*maxNumTiles*headCount)
|
||||
}
|
||||
|
||||
return weights, graphSize
|
||||
}
|
@@ -1,4 +1,4 @@
|
||||
package llm
|
||||
package fileutils
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
@@ -10,7 +10,7 @@ import (
|
||||
"github.com/stretchr/testify/require"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/gpu"
|
||||
"github.com/ollama/ollama/discover"
|
||||
)
|
||||
|
||||
func TestEstimateGPULayers(t *testing.T) {
|
||||
@@ -50,7 +50,7 @@ func TestEstimateGPULayers(t *testing.T) {
|
||||
}
|
||||
|
||||
// Simple CPU scenario
|
||||
gpus := []gpu.GpuInfo{
|
||||
gpus := []discover.GpuInfo{
|
||||
{
|
||||
Library: "cpu",
|
||||
},
|
||||
@@ -72,7 +72,7 @@ func TestEstimateGPULayers(t *testing.T) {
|
||||
|
||||
// Dual CUDA scenario with assymetry
|
||||
gpuMinimumMemory := uint64(2048)
|
||||
gpus = []gpu.GpuInfo{
|
||||
gpus = []discover.GpuInfo{
|
||||
{
|
||||
Library: "cuda",
|
||||
MinimumMemory: gpuMinimumMemory,
|
1
go.mod
1
go.mod
@@ -22,6 +22,7 @@ require (
|
||||
github.com/mattn/go-runewidth v0.0.14
|
||||
github.com/nlpodyssey/gopickle v0.3.0
|
||||
github.com/pdevine/tensor v0.0.0-20240510204454-f88f4562727c
|
||||
golang.org/x/image v0.14.0
|
||||
)
|
||||
|
||||
require (
|
||||
|
2
go.sum
2
go.sum
@@ -230,6 +230,8 @@ golang.org/x/image v0.0.0-20200430140353-33d19683fad8/go.mod h1:FeLwcggjj3mMvU+o
|
||||
golang.org/x/image v0.0.0-20200618115811-c13761719519/go.mod h1:FeLwcggjj3mMvU+oOTbSwawSJRM1uh48EjtB4UJZlP0=
|
||||
golang.org/x/image v0.0.0-20201208152932-35266b937fa6/go.mod h1:FeLwcggjj3mMvU+oOTbSwawSJRM1uh48EjtB4UJZlP0=
|
||||
golang.org/x/image v0.0.0-20210216034530-4410531fe030/go.mod h1:FeLwcggjj3mMvU+oOTbSwawSJRM1uh48EjtB4UJZlP0=
|
||||
golang.org/x/image v0.14.0 h1:tNgSxAFe3jC4uYqvZdTr84SZoM1KfwdC9SKIFrLjFn4=
|
||||
golang.org/x/image v0.14.0/go.mod h1:HUYqC05R2ZcZ3ejNQsIHQDQiwWM4JBqmm6MKANTp4LE=
|
||||
golang.org/x/lint v0.0.0-20181026193005-c67002cb31c3/go.mod h1:UVdnD1Gm6xHRNCYTkRU2/jEulfH38KcIWyp/GAMgvoE=
|
||||
golang.org/x/lint v0.0.0-20190227174305-5b3e6a55c961/go.mod h1:wehouNa3lNwaWXcvxsM5YxQ5yQlVC4a0KAMCusXpPoU=
|
||||
golang.org/x/lint v0.0.0-20190313153728-d0100b6bd8b3/go.mod h1:6SW0HCj/g11FgYtHlgUYUwCkIfeOF89ocIRzGO/8vkc=
|
||||
|
@@ -1,92 +0,0 @@
|
||||
package gpu
|
||||
|
||||
import (
|
||||
"bufio"
|
||||
"fmt"
|
||||
"os"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/format"
|
||||
)
|
||||
|
||||
var CudartGlobs = []string{
|
||||
"/usr/local/cuda/lib64/libcudart.so*",
|
||||
"/usr/lib/x86_64-linux-gnu/nvidia/current/libcudart.so*",
|
||||
"/usr/lib/x86_64-linux-gnu/libcudart.so*",
|
||||
"/usr/lib/wsl/lib/libcudart.so*",
|
||||
"/usr/lib/wsl/drivers/*/libcudart.so*",
|
||||
"/opt/cuda/lib64/libcudart.so*",
|
||||
"/usr/local/cuda*/targets/aarch64-linux/lib/libcudart.so*",
|
||||
"/usr/lib/aarch64-linux-gnu/nvidia/current/libcudart.so*",
|
||||
"/usr/lib/aarch64-linux-gnu/libcudart.so*",
|
||||
"/usr/local/cuda/lib*/libcudart.so*",
|
||||
"/usr/lib*/libcudart.so*",
|
||||
"/usr/local/lib*/libcudart.so*",
|
||||
}
|
||||
|
||||
var NvmlGlobs = []string{}
|
||||
|
||||
var NvcudaGlobs = []string{
|
||||
"/usr/local/cuda*/targets/*/lib/libcuda.so*",
|
||||
"/usr/lib/*-linux-gnu/nvidia/current/libcuda.so*",
|
||||
"/usr/lib/*-linux-gnu/libcuda.so*",
|
||||
"/usr/lib/wsl/lib/libcuda.so*",
|
||||
"/usr/lib/wsl/drivers/*/libcuda.so*",
|
||||
"/opt/cuda/lib*/libcuda.so*",
|
||||
"/usr/local/cuda/lib*/libcuda.so*",
|
||||
"/usr/lib*/libcuda.so*",
|
||||
"/usr/local/lib*/libcuda.so*",
|
||||
}
|
||||
|
||||
var OneapiGlobs = []string{
|
||||
"/usr/lib/x86_64-linux-gnu/libze_intel_gpu.so*",
|
||||
"/usr/lib*/libze_intel_gpu.so*",
|
||||
}
|
||||
|
||||
var (
|
||||
CudartMgmtName = "libcudart.so*"
|
||||
NvcudaMgmtName = "libcuda.so*"
|
||||
NvmlMgmtName = "" // not currently wired on linux
|
||||
OneapiMgmtName = "libze_intel_gpu.so*"
|
||||
)
|
||||
|
||||
func GetCPUMem() (memInfo, error) {
|
||||
var mem memInfo
|
||||
var total, available, free, buffers, cached, freeSwap uint64
|
||||
f, err := os.Open("/proc/meminfo")
|
||||
if err != nil {
|
||||
return mem, err
|
||||
}
|
||||
defer f.Close()
|
||||
s := bufio.NewScanner(f)
|
||||
for s.Scan() {
|
||||
line := s.Text()
|
||||
switch {
|
||||
case strings.HasPrefix(line, "MemTotal:"):
|
||||
_, err = fmt.Sscanf(line, "MemTotal:%d", &total)
|
||||
case strings.HasPrefix(line, "MemAvailable:"):
|
||||
_, err = fmt.Sscanf(line, "MemAvailable:%d", &available)
|
||||
case strings.HasPrefix(line, "MemFree:"):
|
||||
_, err = fmt.Sscanf(line, "MemFree:%d", &free)
|
||||
case strings.HasPrefix(line, "Buffers:"):
|
||||
_, err = fmt.Sscanf(line, "Buffers:%d", &buffers)
|
||||
case strings.HasPrefix(line, "Cached:"):
|
||||
_, err = fmt.Sscanf(line, "Cached:%d", &cached)
|
||||
case strings.HasPrefix(line, "SwapFree:"):
|
||||
_, err = fmt.Sscanf(line, "SwapFree:%d", &freeSwap)
|
||||
default:
|
||||
continue
|
||||
}
|
||||
if err != nil {
|
||||
return mem, err
|
||||
}
|
||||
}
|
||||
mem.TotalMemory = total * format.KibiByte
|
||||
mem.FreeSwap = freeSwap * format.KibiByte
|
||||
if available > 0 {
|
||||
mem.FreeMemory = available * format.KibiByte
|
||||
} else {
|
||||
mem.FreeMemory = (free + buffers + cached) * format.KibiByte
|
||||
}
|
||||
return mem, nil
|
||||
}
|
@@ -1,57 +0,0 @@
|
||||
package gpu
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"syscall"
|
||||
"unsafe"
|
||||
)
|
||||
|
||||
type MEMORYSTATUSEX struct {
|
||||
length uint32
|
||||
MemoryLoad uint32
|
||||
TotalPhys uint64
|
||||
AvailPhys uint64
|
||||
TotalPageFile uint64
|
||||
AvailPageFile uint64
|
||||
TotalVirtual uint64
|
||||
AvailVirtual uint64
|
||||
AvailExtendedVirtual uint64
|
||||
}
|
||||
|
||||
var (
|
||||
k32 = syscall.NewLazyDLL("kernel32.dll")
|
||||
globalMemoryStatusExProc = k32.NewProc("GlobalMemoryStatusEx")
|
||||
sizeofMemoryStatusEx = uint32(unsafe.Sizeof(MEMORYSTATUSEX{}))
|
||||
)
|
||||
|
||||
var CudartGlobs = []string{
|
||||
"c:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v*\\bin\\cudart64_*.dll",
|
||||
}
|
||||
|
||||
var NvmlGlobs = []string{
|
||||
"c:\\Windows\\System32\\nvml.dll",
|
||||
}
|
||||
|
||||
var NvcudaGlobs = []string{
|
||||
"c:\\windows\\system*\\nvcuda.dll",
|
||||
}
|
||||
|
||||
var OneapiGlobs = []string{
|
||||
"c:\\Windows\\System32\\DriverStore\\FileRepository\\*\\ze_intel_gpu64.dll",
|
||||
}
|
||||
|
||||
var (
|
||||
CudartMgmtName = "cudart64_*.dll"
|
||||
NvcudaMgmtName = "nvcuda.dll"
|
||||
NvmlMgmtName = "nvml.dll"
|
||||
OneapiMgmtName = "ze_intel_gpu64.dll"
|
||||
)
|
||||
|
||||
func GetCPUMem() (memInfo, error) {
|
||||
memStatus := MEMORYSTATUSEX{length: sizeofMemoryStatusEx}
|
||||
r1, _, err := globalMemoryStatusExProc.Call(uintptr(unsafe.Pointer(&memStatus)))
|
||||
if r1 == 0 {
|
||||
return memInfo{}, fmt.Errorf("GlobalMemoryStatusEx failed: %w", err)
|
||||
}
|
||||
return memInfo{TotalMemory: memStatus.TotalPhys, FreeMemory: memStatus.AvailPhys, FreeSwap: memStatus.AvailPageFile}, nil
|
||||
}
|
@@ -42,7 +42,7 @@ func TestMultiModelConcurrency(t *testing.T) {
|
||||
}
|
||||
resp = [2][]string{
|
||||
{"sunlight"},
|
||||
{"england", "english", "massachusetts", "pilgrims", "british"},
|
||||
{"england", "english", "massachusetts", "pilgrims", "british", "festival"},
|
||||
}
|
||||
)
|
||||
var wg sync.WaitGroup
|
||||
|
@@ -275,7 +275,7 @@ func DoGenerate(ctx context.Context, t *testing.T, client *api.Client, genReq ap
|
||||
break
|
||||
}
|
||||
}
|
||||
require.True(t, atLeastOne, "none of %v found in %s", anyResp, response)
|
||||
require.True(t, atLeastOne, "%s: none of %v found in %s", genReq.Model, anyResp, response)
|
||||
slog.Info("test pass", "model", genReq.Model, "prompt", genReq.Prompt, "contains", anyResp, "response", response)
|
||||
case <-ctx.Done():
|
||||
t.Error("outer test context done while waiting for generate")
|
||||
|
3
llama/.gitignore
vendored
Normal file
3
llama/.gitignore
vendored
Normal file
@@ -0,0 +1,3 @@
|
||||
*.bin
|
||||
*.gguf
|
||||
build/
|
57
llama/Makefile
Normal file
57
llama/Makefile
Normal file
@@ -0,0 +1,57 @@
|
||||
# top level makefile for Go server
|
||||
include make/common-defs.make
|
||||
|
||||
RUNNER_TARGETS := default
|
||||
|
||||
# Determine which if any GPU runners we should build
|
||||
ifeq ($(OS),windows)
|
||||
CUDA_PATH?=$(shell cygpath -m -s "C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\" 2>/dev/null)unknown
|
||||
CUDA_BASE_DIR := $(dir $(shell cygpath -m -s "$(CUDA_PATH)\\.." 2>/dev/null))
|
||||
CUDA_11:=$(shell ls -d $(CUDA_BASE_DIR)/v11.? 2>/dev/null)
|
||||
CUDA_12:=$(shell ls -d $(CUDA_BASE_DIR)/v12.? 2>/dev/null)
|
||||
HIP_LIB_DIR := $(shell ls -d $(HIP_PATH)/lib 2>/dev/null)
|
||||
else ifeq ($(OS),linux)
|
||||
HIP_PATH?=/opt/rocm
|
||||
HIP_LIB_DIR := $(shell ls -d $(HIP_PATH)/lib 2>/dev/null)
|
||||
CUDA_PATH?=/usr/local/cuda
|
||||
CUDA_11:=$(shell ls -d $(CUDA_PATH)-11 2>/dev/null)
|
||||
CUDA_12:=$(shell ls -d $(CUDA_PATH)-12 2>/dev/null)
|
||||
endif
|
||||
|
||||
ifeq ($(OLLAMA_SKIP_CUDA_GENERATE),)
|
||||
ifneq ($(CUDA_11),)
|
||||
RUNNER_TARGETS += cuda_v11
|
||||
endif
|
||||
ifneq ($(CUDA_12),)
|
||||
RUNNER_TARGETS += cuda_v12
|
||||
endif
|
||||
endif
|
||||
ifeq ($(OLLAMA_SKIP_ROCM_GENERATE),)
|
||||
ifneq ($(HIP_LIB_DIR),)
|
||||
RUNNER_TARGETS += rocm
|
||||
endif
|
||||
endif
|
||||
|
||||
|
||||
all: clean-payload .WAIT runners
|
||||
|
||||
runners: $(RUNNER_TARGETS)
|
||||
|
||||
$(RUNNER_TARGETS):
|
||||
$(MAKE) -f make/Makefile.$@
|
||||
|
||||
help-sync apply-patches create-patches sync:
|
||||
$(MAKE) -f make/Makefile.sync $@
|
||||
|
||||
clean:
|
||||
rm -rf $(BUILD_DIR) $(DIST_RUNNERS) $(PAYLOAD_RUNNERS)
|
||||
go clean -cache
|
||||
|
||||
clean-payload:
|
||||
rm -rf $(addprefix $(RUNNERS_PAYLOAD_DIR)/, $(RUNNER_TARGETS) metal cpu cpu_avx cpu_avx2)
|
||||
|
||||
.PHONY: all runners clean clean-payload $(RUNNER_TARGETS) .WAIT
|
||||
|
||||
# Handy debugging for make variables
|
||||
print-%:
|
||||
@echo '$*=$($*)'
|
160
llama/README.md
Normal file
160
llama/README.md
Normal file
@@ -0,0 +1,160 @@
|
||||
# `llama`
|
||||
|
||||
This package integrates the [llama.cpp](https://github.com/ggerganov/llama.cpp) library as a Go package and makes it easy to build it with tags for different CPU and GPU processors.
|
||||
|
||||
Supported:
|
||||
|
||||
- [x] CPU
|
||||
- [x] avx, avx2
|
||||
- [x] macOS Metal
|
||||
- [x] Windows CUDA
|
||||
- [x] Windows ROCm
|
||||
- [x] Linux CUDA
|
||||
- [x] Linux ROCm
|
||||
- [x] Llava
|
||||
|
||||
Extra build steps are required for CUDA and ROCm on Windows since `nvcc` and `hipcc` both require using msvc as the host compiler. For these shared libraries are created:
|
||||
|
||||
- `ggml_cuda.dll` on Windows or `ggml_cuda.so` on Linux
|
||||
- `ggml_hipblas.dll` on Windows or `ggml_hipblas.so` on Linux
|
||||
|
||||
> Note: it's important that memory is allocated and freed by the same compiler (e.g. entirely by code compiled with msvc or mingw). Issues from this should be rare, but there are some places where pointers are returned by the CUDA or HIP runtimes and freed elsewhere, causing a a crash. In a future change the same runtime should be used in both cases to avoid crashes.
|
||||
|
||||
## Building
|
||||
|
||||
```
|
||||
go build .
|
||||
```
|
||||
|
||||
### AVX
|
||||
|
||||
```shell
|
||||
go build -tags avx .
|
||||
```
|
||||
|
||||
### AVX2
|
||||
|
||||
```shell
|
||||
# go doesn't recognize `-mfma` as a valid compiler flag
|
||||
# see https://github.com/golang/go/issues/17895
|
||||
go env -w "CGO_CFLAGS_ALLOW=-mfma|-mf16c"
|
||||
go env -w "CGO_CXXFLAGS_ALLOW=-mfma|-mf16c"
|
||||
go build -tags=avx,avx2 .
|
||||
```
|
||||
|
||||
## Linux
|
||||
|
||||
### CUDA
|
||||
|
||||
Install the [CUDA toolkit v11.3.1](https://developer.nvidia.com/cuda-11-3-1-download-archive):
|
||||
|
||||
```shell
|
||||
make ggml_cuda.so
|
||||
go build -tags avx,cuda .
|
||||
```
|
||||
|
||||
### ROCm
|
||||
|
||||
Install the [CUDA toolkit v11.3.1](https://developer.nvidia.com/cuda-11-3-1-download-archive):
|
||||
|
||||
```shell
|
||||
make ggml_hipblas.so
|
||||
go build -tags avx,rocm .
|
||||
```
|
||||
|
||||
## Windows
|
||||
|
||||
Download [w64devkit](https://github.com/skeeto/w64devkit/releases/latest) for a simple MinGW development environment.
|
||||
|
||||
### CUDA
|
||||
|
||||
Install the [CUDA toolkit v11.3.1](https://developer.nvidia.com/cuda-11-3-1-download-archive) then build the cuda code:
|
||||
|
||||
```shell
|
||||
make ggml_cuda.dll
|
||||
go build -tags avx,cuda .
|
||||
```
|
||||
|
||||
### ROCm
|
||||
|
||||
Install [ROCm 5.7.1](https://rocm.docs.amd.com/en/docs-5.7.1/).
|
||||
|
||||
```shell
|
||||
make ggml_hipblas.dll
|
||||
go build -tags avx,rocm .
|
||||
```
|
||||
|
||||
## Building runners
|
||||
|
||||
```shell
|
||||
# build all runners for this platform
|
||||
make -j
|
||||
```
|
||||
|
||||
## Vendoring
|
||||
|
||||
Ollama currently vendors [llama.cpp](https://github.com/ggerganov/llama.cpp/) and [ggml](https://github.com/ggerganov/ggml) through a vendoring model. While we generally strive to contribute changes back upstream to avoid drift, we cary a small set of patches which are applied to the tracking commit. A set of make targets are available to aid developers in updating to a newer tracking commit, or to work on changes.
|
||||
|
||||
If you update the vendoring code, start by running the following command to establish the tracking llama.cpp repo in the `./vendor/` directory.
|
||||
|
||||
```
|
||||
make apply-patches
|
||||
```
|
||||
|
||||
### Updating Base Commit
|
||||
|
||||
**Pin to new base commit**
|
||||
|
||||
To update to a newer base commit, select the upstream git tag or commit and update `llama/vendoring.env`
|
||||
|
||||
#### Applying patches
|
||||
|
||||
When updating to a newer base commit, the existing patches may not apply cleanly and require manual merge resolution.
|
||||
|
||||
Start by applying the patches. If any of the patches have conflicts, the `git am` will stop at the first failure.
|
||||
|
||||
```
|
||||
make apply-patches
|
||||
```
|
||||
|
||||
If you see an error message about a conflict, go into the `./vendor/` directory, and perform merge resolution using your preferred tool to the patch commit which failed. Save the file(s) and continue the patch series with `git am --continue` . If any additional patches fail, follow the same pattern until the full patch series is applied. Once finished, run a final `create-patches` and `sync` target to ensure everything is updated.
|
||||
|
||||
```
|
||||
make create-patches sync
|
||||
```
|
||||
|
||||
Build and test Ollama, and make any necessary changes to the Go code based on the new base commit. Submit your PR to the Ollama repo.
|
||||
|
||||
### Generating Patches
|
||||
|
||||
When working on new fixes or features that impact vendored code, use the following model. First get a clean tracking repo with all current patches applied:
|
||||
|
||||
```
|
||||
make apply-patches
|
||||
```
|
||||
|
||||
Now edit the upstream native code in the `./vendor/` directory. You do not need to commit every change in order to build, a dirty working tree in the tracking repo is OK while developing. Simply save in your editor, and run the following to refresh the vendored code with your changes, build the backend(s) and build ollama:
|
||||
|
||||
```
|
||||
make sync
|
||||
make -j 8
|
||||
go build .
|
||||
```
|
||||
|
||||
> [!IMPORTANT]
|
||||
> Do **NOT** run `apply-patches` while you're iterating as that will reset the tracking repo. It will detect a dirty tree and abort, but if your tree is clean and you accidentally ran this target, use `git reflog` to recover your commit(s).
|
||||
|
||||
Iterate until you're ready to submit PRs. Once your code is ready, commit a change in the `./vendor/` directory, then generate the patches for ollama with
|
||||
|
||||
```
|
||||
make create-patches
|
||||
```
|
||||
|
||||
> [!IMPORTANT]
|
||||
> Once you have completed this step, it is safe to run `apply-patches` since your change is preserved in the patches.
|
||||
|
||||
In your `./vendor/` directory, create a branch, and cherry-pick the new commit to that branch, then submit a PR upstream to llama.cpp.
|
||||
|
||||
Commit the changes in the ollama repo and submit a PR to Ollama, which will include the vendored code update with your change, along with the patches.
|
||||
|
||||
After your PR upstream is merged, follow the **Updating Base Commit** instructions above, however first remove your patch before running `apply-patches` since the new base commit contains your change already.
|
392
llama/base64.hpp
vendored
Normal file
392
llama/base64.hpp
vendored
Normal file
@@ -0,0 +1,392 @@
|
||||
/*
|
||||
This is free and unencumbered software released into the public domain.
|
||||
|
||||
Anyone is free to copy, modify, publish, use, compile, sell, or
|
||||
distribute this software, either in source code form or as a compiled
|
||||
binary, for any purpose, commercial or non-commercial, and by any
|
||||
means.
|
||||
|
||||
In jurisdictions that recognize copyright laws, the author or authors
|
||||
of this software dedicate any and all copyright interest in the
|
||||
software to the public domain. We make this dedication for the benefit
|
||||
of the public at large and to the detriment of our heirs and
|
||||
successors. We intend this dedication to be an overt act of
|
||||
relinquishment in perpetuity of all present and future rights to this
|
||||
software under copyright law.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||||
IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
||||
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
||||
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
||||
OTHER DEALINGS IN THE SOFTWARE.
|
||||
|
||||
For more information, please refer to <http://unlicense.org>
|
||||
*/
|
||||
|
||||
#ifndef PUBLIC_DOMAIN_BASE64_HPP_
|
||||
#define PUBLIC_DOMAIN_BASE64_HPP_
|
||||
|
||||
#include <cstdint>
|
||||
#include <iterator>
|
||||
#include <stdexcept>
|
||||
#include <string>
|
||||
|
||||
class base64_error : public std::runtime_error
|
||||
{
|
||||
public:
|
||||
using std::runtime_error::runtime_error;
|
||||
};
|
||||
|
||||
class base64
|
||||
{
|
||||
public:
|
||||
enum class alphabet
|
||||
{
|
||||
/** the alphabet is detected automatically */
|
||||
auto_,
|
||||
/** the standard base64 alphabet is used */
|
||||
standard,
|
||||
/** like `standard` except that the characters `+` and `/` are replaced by `-` and `_` respectively*/
|
||||
url_filename_safe
|
||||
};
|
||||
|
||||
enum class decoding_behavior
|
||||
{
|
||||
/** if the input is not padded, the remaining bits are ignored */
|
||||
moderate,
|
||||
/** if a padding character is encounter decoding is finished */
|
||||
loose
|
||||
};
|
||||
|
||||
/**
|
||||
Encodes all the elements from `in_begin` to `in_end` to `out`.
|
||||
|
||||
@warning The source and destination cannot overlap. The destination must be able to hold at least
|
||||
`required_encode_size(std::distance(in_begin, in_end))`, otherwise the behavior depends on the output iterator.
|
||||
|
||||
@tparam Input_iterator the source; the returned elements are cast to `std::uint8_t` and should not be greater than
|
||||
8 bits
|
||||
@tparam Output_iterator the destination; the elements written to it are from the type `char`
|
||||
@param in_begin the beginning of the source
|
||||
@param in_end the ending of the source
|
||||
@param out the destination iterator
|
||||
@param alphabet which alphabet should be used
|
||||
@returns the iterator to the next element past the last element copied
|
||||
@throws see `Input_iterator` and `Output_iterator`
|
||||
*/
|
||||
template<typename Input_iterator, typename Output_iterator>
|
||||
static Output_iterator encode(Input_iterator in_begin, Input_iterator in_end, Output_iterator out,
|
||||
alphabet alphabet = alphabet::standard)
|
||||
{
|
||||
constexpr auto pad = '=';
|
||||
const char* alpha = alphabet == alphabet::url_filename_safe
|
||||
? "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_"
|
||||
: "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
|
||||
|
||||
while (in_begin != in_end) {
|
||||
std::uint8_t i0 = 0, i1 = 0, i2 = 0;
|
||||
|
||||
// first character
|
||||
i0 = static_cast<std::uint8_t>(*in_begin);
|
||||
++in_begin;
|
||||
|
||||
*out = alpha[i0 >> 2 & 0x3f];
|
||||
++out;
|
||||
|
||||
// part of first character and second
|
||||
if (in_begin != in_end) {
|
||||
i1 = static_cast<std::uint8_t>(*in_begin);
|
||||
++in_begin;
|
||||
|
||||
*out = alpha[((i0 & 0x3) << 4) | (i1 >> 4 & 0x0f)];
|
||||
++out;
|
||||
} else {
|
||||
*out = alpha[(i0 & 0x3) << 4];
|
||||
++out;
|
||||
|
||||
// last padding
|
||||
*out = pad;
|
||||
++out;
|
||||
|
||||
// last padding
|
||||
*out = pad;
|
||||
++out;
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
// part of second character and third
|
||||
if (in_begin != in_end) {
|
||||
i2 = static_cast<std::uint8_t>(*in_begin);
|
||||
++in_begin;
|
||||
|
||||
*out = alpha[((i1 & 0xf) << 2) | (i2 >> 6 & 0x03)];
|
||||
++out;
|
||||
} else {
|
||||
*out = alpha[(i1 & 0xf) << 2];
|
||||
++out;
|
||||
|
||||
// last padding
|
||||
*out = pad;
|
||||
++out;
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
// rest of third
|
||||
*out = alpha[i2 & 0x3f];
|
||||
++out;
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
/**
|
||||
Encodes a string.
|
||||
|
||||
@param str the string that should be encoded
|
||||
@param alphabet which alphabet should be used
|
||||
@returns the encoded base64 string
|
||||
@throws see base64::encode()
|
||||
*/
|
||||
static std::string encode(const std::string& str, alphabet alphabet = alphabet::standard)
|
||||
{
|
||||
std::string result;
|
||||
|
||||
result.reserve(required_encode_size(str.length()) + 1);
|
||||
|
||||
encode(str.begin(), str.end(), std::back_inserter(result), alphabet);
|
||||
|
||||
return result;
|
||||
}
|
||||
/**
|
||||
Encodes a char array.
|
||||
|
||||
@param buffer the char array
|
||||
@param size the size of the array
|
||||
@param alphabet which alphabet should be used
|
||||
@returns the encoded string
|
||||
*/
|
||||
static std::string encode(const char* buffer, std::size_t size, alphabet alphabet = alphabet::standard)
|
||||
{
|
||||
std::string result;
|
||||
|
||||
result.reserve(required_encode_size(size) + 1);
|
||||
|
||||
encode(buffer, buffer + size, std::back_inserter(result), alphabet);
|
||||
|
||||
return result;
|
||||
}
|
||||
/**
|
||||
Decodes all the elements from `in_begin` to `in_end` to `out`. `in_begin` may point to the same location as `out`,
|
||||
in other words: inplace decoding is possible.
|
||||
|
||||
@warning The destination must be able to hold at least `required_decode_size(std::distance(in_begin, in_end))`,
|
||||
otherwise the behavior depends on the output iterator.
|
||||
|
||||
@tparam Input_iterator the source; the returned elements are cast to `char`
|
||||
@tparam Output_iterator the destination; the elements written to it are from the type `std::uint8_t`
|
||||
@param in_begin the beginning of the source
|
||||
@param in_end the ending of the source
|
||||
@param out the destination iterator
|
||||
@param alphabet which alphabet should be used
|
||||
@param behavior the behavior when an error was detected
|
||||
@returns the iterator to the next element past the last element copied
|
||||
@throws base64_error depending on the set behavior
|
||||
@throws see `Input_iterator` and `Output_iterator`
|
||||
*/
|
||||
template<typename Input_iterator, typename Output_iterator>
|
||||
static Output_iterator decode(Input_iterator in_begin, Input_iterator in_end, Output_iterator out,
|
||||
alphabet alphabet = alphabet::auto_,
|
||||
decoding_behavior behavior = decoding_behavior::moderate)
|
||||
{
|
||||
//constexpr auto pad = '=';
|
||||
std::uint8_t last = 0;
|
||||
auto bits = 0;
|
||||
|
||||
while (in_begin != in_end) {
|
||||
auto c = *in_begin;
|
||||
++in_begin;
|
||||
|
||||
if (c == '=') {
|
||||
break;
|
||||
}
|
||||
|
||||
auto part = _base64_value(alphabet, c);
|
||||
|
||||
// enough bits for one byte
|
||||
if (bits + 6 >= 8) {
|
||||
*out = (last << (8 - bits)) | (part >> (bits - 2));
|
||||
++out;
|
||||
|
||||
bits -= 2;
|
||||
} else {
|
||||
bits += 6;
|
||||
}
|
||||
|
||||
last = part;
|
||||
}
|
||||
|
||||
// check padding
|
||||
if (behavior != decoding_behavior::loose) {
|
||||
while (in_begin != in_end) {
|
||||
auto c = *in_begin;
|
||||
++in_begin;
|
||||
|
||||
if (c != '=') {
|
||||
throw base64_error("invalid base64 character.");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
/**
|
||||
Decodes a string.
|
||||
|
||||
@param str the base64 encoded string
|
||||
@param alphabet which alphabet should be used
|
||||
@param behavior the behavior when an error was detected
|
||||
@returns the decoded string
|
||||
@throws see base64::decode()
|
||||
*/
|
||||
static std::string decode(const std::string& str, alphabet alphabet = alphabet::auto_,
|
||||
decoding_behavior behavior = decoding_behavior::moderate)
|
||||
{
|
||||
std::string result;
|
||||
|
||||
result.reserve(max_decode_size(str.length()));
|
||||
|
||||
decode(str.begin(), str.end(), std::back_inserter(result), alphabet, behavior);
|
||||
|
||||
return result;
|
||||
}
|
||||
/**
|
||||
Decodes a string.
|
||||
|
||||
@param buffer the base64 encoded buffer
|
||||
@param size the size of the buffer
|
||||
@param alphabet which alphabet should be used
|
||||
@param behavior the behavior when an error was detected
|
||||
@returns the decoded string
|
||||
@throws see base64::decode()
|
||||
*/
|
||||
static std::string decode(const char* buffer, std::size_t size, alphabet alphabet = alphabet::auto_,
|
||||
decoding_behavior behavior = decoding_behavior::moderate)
|
||||
{
|
||||
std::string result;
|
||||
|
||||
result.reserve(max_decode_size(size));
|
||||
|
||||
decode(buffer, buffer + size, std::back_inserter(result), alphabet, behavior);
|
||||
|
||||
return result;
|
||||
}
|
||||
/**
|
||||
Decodes a string inplace.
|
||||
|
||||
@param[in,out] str the base64 encoded string
|
||||
@param alphabet which alphabet should be used
|
||||
@param behavior the behavior when an error was detected
|
||||
@throws base64::decode_inplace()
|
||||
*/
|
||||
static void decode_inplace(std::string& str, alphabet alphabet = alphabet::auto_,
|
||||
decoding_behavior behavior = decoding_behavior::moderate)
|
||||
{
|
||||
str.resize(decode(str.begin(), str.end(), str.begin(), alphabet, behavior) - str.begin());
|
||||
}
|
||||
/**
|
||||
Decodes a char array inplace.
|
||||
|
||||
@param[in,out] str the string array
|
||||
@param size the length of the array
|
||||
@param alphabet which alphabet should be used
|
||||
@param behavior the behavior when an error was detected
|
||||
@returns the pointer to the next element past the last element decoded
|
||||
@throws base64::decode_inplace()
|
||||
*/
|
||||
static char* decode_inplace(char* str, std::size_t size, alphabet alphabet = alphabet::auto_,
|
||||
decoding_behavior behavior = decoding_behavior::moderate)
|
||||
{
|
||||
return decode(str, str + size, str, alphabet, behavior);
|
||||
}
|
||||
/**
|
||||
Returns the required decoding size for a given size. The value is calculated with the following formula:
|
||||
|
||||
$$
|
||||
\lceil \frac{size}{4} \rceil \cdot 3
|
||||
$$
|
||||
|
||||
@param size the size of the encoded input
|
||||
@returns the size of the resulting decoded buffer; this the absolute maximum
|
||||
*/
|
||||
static std::size_t max_decode_size(std::size_t size) noexcept
|
||||
{
|
||||
return (size / 4 + (size % 4 ? 1 : 0)) * 3;
|
||||
}
|
||||
/**
|
||||
Returns the required encoding size for a given size. The value is calculated with the following formula:
|
||||
|
||||
$$
|
||||
\lceil \frac{size}{3} \rceil \cdot 4
|
||||
$$
|
||||
|
||||
@param size the size of the decoded input
|
||||
@returns the size of the resulting encoded buffer
|
||||
*/
|
||||
static std::size_t required_encode_size(std::size_t size) noexcept
|
||||
{
|
||||
return (size / 3 + (size % 3 ? 1 : 0)) * 4;
|
||||
}
|
||||
|
||||
private:
|
||||
static std::uint8_t _base64_value(alphabet& alphabet, char c)
|
||||
{
|
||||
if (c >= 'A' && c <= 'Z') {
|
||||
return c - 'A';
|
||||
} else if (c >= 'a' && c <= 'z') {
|
||||
return c - 'a' + 26;
|
||||
} else if (c >= '0' && c <= '9') {
|
||||
return c - '0' + 52;
|
||||
}
|
||||
|
||||
// comes down to alphabet
|
||||
if (alphabet == alphabet::standard) {
|
||||
if (c == '+') {
|
||||
return 62;
|
||||
} else if (c == '/') {
|
||||
return 63;
|
||||
}
|
||||
} else if (alphabet == alphabet::url_filename_safe) {
|
||||
if (c == '-') {
|
||||
return 62;
|
||||
} else if (c == '_') {
|
||||
return 63;
|
||||
}
|
||||
} // auto detect
|
||||
else {
|
||||
if (c == '+') {
|
||||
alphabet = alphabet::standard;
|
||||
|
||||
return 62;
|
||||
} else if (c == '/') {
|
||||
alphabet = alphabet::standard;
|
||||
|
||||
return 63;
|
||||
} else if (c == '-') {
|
||||
alphabet = alphabet::url_filename_safe;
|
||||
|
||||
return 62;
|
||||
} else if (c == '_') {
|
||||
alphabet = alphabet::url_filename_safe;
|
||||
|
||||
return 63;
|
||||
}
|
||||
}
|
||||
|
||||
throw base64_error("invalid base64 character.");
|
||||
}
|
||||
};
|
||||
|
||||
#endif // !PUBLIC_DOMAIN_BASE64_HPP_
|
4
llama/build-info.cpp
vendored
Normal file
4
llama/build-info.cpp
vendored
Normal file
@@ -0,0 +1,4 @@
|
||||
int LLAMA_BUILD_NUMBER = 0;
|
||||
char const *LLAMA_COMMIT = "3f1ae2e32cde00c39b96be6d01c2997c29bae555";
|
||||
char const *LLAMA_COMPILER = "";
|
||||
char const *LLAMA_BUILD_TARGET = "";
|
2686
llama/clip.cpp
vendored
Normal file
2686
llama/clip.cpp
vendored
Normal file
File diff suppressed because it is too large
Load Diff
120
llama/clip.h
vendored
Normal file
120
llama/clip.h
vendored
Normal file
@@ -0,0 +1,120 @@
|
||||
/**
|
||||
* llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
|
||||
*
|
||||
* MIT License
|
||||
*
|
||||
* Copyright (c) 2023-2024 The ggml authors
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in all
|
||||
* copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
* SOFTWARE.
|
||||
*/
|
||||
|
||||
#ifndef CLIP_H
|
||||
#define CLIP_H
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#ifdef LLAMA_SHARED
|
||||
# if defined(_WIN32) && !defined(__MINGW32__)
|
||||
# ifdef LLAMA_BUILD
|
||||
# define CLIP_API __declspec(dllexport)
|
||||
# else
|
||||
# define CLIP_API __declspec(dllimport)
|
||||
# endif
|
||||
# else
|
||||
# define CLIP_API __attribute__ ((visibility ("default")))
|
||||
# endif
|
||||
#else
|
||||
# define CLIP_API
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct clip_ctx;
|
||||
|
||||
struct clip_image_size {
|
||||
int width;
|
||||
int height;
|
||||
};
|
||||
|
||||
struct clip_image_u8_batch {
|
||||
struct clip_image_u8 * data;
|
||||
size_t size;
|
||||
};
|
||||
|
||||
struct clip_image_f32_batch {
|
||||
struct clip_image_f32 * data;
|
||||
size_t size;
|
||||
};
|
||||
|
||||
CLIP_API struct clip_ctx * clip_model_load (const char * fname, int verbosity);
|
||||
CLIP_API struct clip_ctx * clip_model_load_cpu(const char * fname, int verbosity);
|
||||
|
||||
CLIP_API void clip_free(struct clip_ctx * ctx);
|
||||
|
||||
CLIP_API size_t clip_embd_nbytes(const struct clip_ctx * ctx);
|
||||
|
||||
CLIP_API int32_t clip_image_size (const struct clip_ctx * ctx);
|
||||
CLIP_API int32_t clip_patch_size (const struct clip_ctx * ctx);
|
||||
CLIP_API int32_t clip_hidden_size(const struct clip_ctx * ctx);
|
||||
|
||||
// TODO: should be enum, not string
|
||||
CLIP_API const char * clip_patch_merge_type(const struct clip_ctx * ctx);
|
||||
|
||||
CLIP_API const int32_t * clip_image_grid(const struct clip_ctx * ctx);
|
||||
|
||||
CLIP_API int clip_n_patches (const struct clip_ctx * ctx);
|
||||
CLIP_API int clip_n_mmproj_embd(const struct clip_ctx * ctx);
|
||||
|
||||
CLIP_API int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip);
|
||||
CLIP_API void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size);
|
||||
|
||||
CLIP_API struct clip_image_size * clip_image_size_init();
|
||||
CLIP_API struct clip_image_u8 * clip_image_u8_init ();
|
||||
CLIP_API struct clip_image_f32 * clip_image_f32_init();
|
||||
|
||||
CLIP_API void clip_image_u8_free (struct clip_image_u8 * img);
|
||||
CLIP_API void clip_image_f32_free(struct clip_image_f32 * img);
|
||||
CLIP_API void clip_image_u8_batch_free (struct clip_image_u8_batch * batch);
|
||||
CLIP_API void clip_image_f32_batch_free(struct clip_image_f32_batch * batch);
|
||||
|
||||
CLIP_API bool clip_image_load_from_file(const char * fname, struct clip_image_u8 * img);
|
||||
|
||||
/** interpret bytes as an image file with length bytes_length, and use the result to populate img */
|
||||
CLIP_API bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img);
|
||||
|
||||
/** preprocess img and store the result in res_imgs, pad_to_square may be overridden to false depending on model configuration */
|
||||
CLIP_API bool clip_image_preprocess(struct clip_ctx * ctx, const struct clip_image_u8 * img, struct clip_image_f32_batch * res_imgs );
|
||||
|
||||
CLIP_API struct ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx);
|
||||
|
||||
CLIP_API bool clip_image_encode (struct clip_ctx * ctx, int n_threads, struct clip_image_f32 * img, float * vec);
|
||||
CLIP_API bool clip_image_batch_encode(struct clip_ctx * ctx, int n_threads, const struct clip_image_f32_batch * imgs, float * vec);
|
||||
|
||||
CLIP_API bool clip_model_quantize(const char * fname_inp, const char * fname_out, int itype);
|
||||
|
||||
CLIP_API int clip_is_minicpmv(const struct clip_ctx * ctx);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // CLIP_H
|
2092
llama/common.cpp
vendored
Normal file
2092
llama/common.cpp
vendored
Normal file
File diff suppressed because it is too large
Load Diff
581
llama/common.h
vendored
Normal file
581
llama/common.h
vendored
Normal file
@@ -0,0 +1,581 @@
|
||||
/**
|
||||
* llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
|
||||
*
|
||||
* MIT License
|
||||
*
|
||||
* Copyright (c) 2023-2024 The ggml authors
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in all
|
||||
* copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
* SOFTWARE.
|
||||
*/
|
||||
|
||||
// Various helper functions and utilities
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "llama.h"
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <sstream>
|
||||
|
||||
#ifdef _WIN32
|
||||
#define DIRECTORY_SEPARATOR '\\'
|
||||
#else
|
||||
#define DIRECTORY_SEPARATOR '/'
|
||||
#endif // _WIN32
|
||||
|
||||
#define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
|
||||
#define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
|
||||
|
||||
#define print_build_info() do { \
|
||||
fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \
|
||||
fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
|
||||
} while(0)
|
||||
|
||||
#define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
|
||||
|
||||
struct llama_lora_adapter_info {
|
||||
std::string path;
|
||||
float scale;
|
||||
};
|
||||
|
||||
struct llama_lora_adapter_container : llama_lora_adapter_info {
|
||||
struct llama_lora_adapter * adapter;
|
||||
};
|
||||
|
||||
// build info
|
||||
extern int LLAMA_BUILD_NUMBER;
|
||||
extern char const * LLAMA_COMMIT;
|
||||
extern char const * LLAMA_COMPILER;
|
||||
extern char const * LLAMA_BUILD_TARGET;
|
||||
|
||||
struct llama_control_vector_load_info;
|
||||
|
||||
//
|
||||
// CPU utils
|
||||
//
|
||||
|
||||
struct cpu_params {
|
||||
int n_threads = -1;
|
||||
bool cpumask[GGML_MAX_N_THREADS] = {false}; // CPU affinity mask.
|
||||
bool mask_valid = false; // Default: any CPU
|
||||
enum ggml_sched_priority priority = GGML_SCHED_PRIO_NORMAL; // Scheduling prio : (0 - normal, 1 - medium, 2 - high, 3 - realtime)
|
||||
bool strict_cpu = false; // Use strict CPU placement
|
||||
uint32_t poll = 50; // Polling (busywait) level (0 - no polling, 100 - mostly polling)
|
||||
};
|
||||
|
||||
int32_t cpu_get_num_physical_cores();
|
||||
int32_t cpu_get_num_math();
|
||||
|
||||
//
|
||||
// Common params
|
||||
//
|
||||
|
||||
enum llama_example {
|
||||
LLAMA_EXAMPLE_COMMON,
|
||||
LLAMA_EXAMPLE_SPECULATIVE,
|
||||
LLAMA_EXAMPLE_MAIN,
|
||||
LLAMA_EXAMPLE_INFILL,
|
||||
LLAMA_EXAMPLE_EMBEDDING,
|
||||
LLAMA_EXAMPLE_PERPLEXITY,
|
||||
LLAMA_EXAMPLE_RETRIEVAL,
|
||||
LLAMA_EXAMPLE_PASSKEY,
|
||||
LLAMA_EXAMPLE_IMATRIX,
|
||||
LLAMA_EXAMPLE_BENCH,
|
||||
LLAMA_EXAMPLE_SERVER,
|
||||
LLAMA_EXAMPLE_CVECTOR_GENERATOR,
|
||||
LLAMA_EXAMPLE_EXPORT_LORA,
|
||||
LLAMA_EXAMPLE_LLAVA,
|
||||
LLAMA_EXAMPLE_LOOKUP,
|
||||
LLAMA_EXAMPLE_PARALLEL,
|
||||
|
||||
LLAMA_EXAMPLE_COUNT,
|
||||
};
|
||||
|
||||
enum gpt_sampler_type {
|
||||
GPT_SAMPLER_TYPE_NONE = 0,
|
||||
GPT_SAMPLER_TYPE_TOP_K = 1,
|
||||
GPT_SAMPLER_TYPE_TOP_P = 2,
|
||||
GPT_SAMPLER_TYPE_MIN_P = 3,
|
||||
GPT_SAMPLER_TYPE_TFS_Z = 4,
|
||||
GPT_SAMPLER_TYPE_TYPICAL_P = 5,
|
||||
GPT_SAMPLER_TYPE_TEMPERATURE = 6,
|
||||
};
|
||||
|
||||
// dimensionality reduction methods, used by cvector-generator
|
||||
enum dimre_method {
|
||||
DIMRE_METHOD_PCA,
|
||||
DIMRE_METHOD_MEAN,
|
||||
};
|
||||
|
||||
// sampler parameters
|
||||
struct gpt_sampler_params {
|
||||
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
|
||||
|
||||
int32_t n_prev = 64; // number of previous tokens to remember
|
||||
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
||||
int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
|
||||
int32_t top_k = 40; // <= 0 to use vocab size
|
||||
float top_p = 0.95f; // 1.0 = disabled
|
||||
float min_p = 0.05f; // 0.0 = disabled
|
||||
float tfs_z = 1.00f; // 1.0 = disabled
|
||||
float typ_p = 1.00f; // typical_p, 1.0 = disabled
|
||||
float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
|
||||
float dynatemp_range = 0.00f; // 0.0 = disabled
|
||||
float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
|
||||
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
|
||||
float penalty_repeat = 1.00f; // 1.0 = disabled
|
||||
float penalty_freq = 0.00f; // 0.0 = disabled
|
||||
float penalty_present = 0.00f; // 0.0 = disabled
|
||||
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
|
||||
float mirostat_tau = 5.00f; // target entropy
|
||||
float mirostat_eta = 0.10f; // learning rate
|
||||
bool penalize_nl = false; // consider newlines as a repeatable token
|
||||
bool ignore_eos = false;
|
||||
bool no_perf = false; // disable performance metrics
|
||||
|
||||
std::vector<enum gpt_sampler_type> samplers = {
|
||||
GPT_SAMPLER_TYPE_TOP_K,
|
||||
GPT_SAMPLER_TYPE_TFS_Z,
|
||||
GPT_SAMPLER_TYPE_TYPICAL_P,
|
||||
GPT_SAMPLER_TYPE_TOP_P,
|
||||
GPT_SAMPLER_TYPE_MIN_P,
|
||||
GPT_SAMPLER_TYPE_TEMPERATURE
|
||||
};
|
||||
|
||||
std::string grammar; // optional BNF-like grammar to constrain sampling
|
||||
|
||||
std::vector<llama_logit_bias> logit_bias; // logit biases to apply
|
||||
|
||||
// print the parameters into a string
|
||||
std::string print() const;
|
||||
};
|
||||
|
||||
struct gpt_params {
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
int32_t n_ctx = 0; // context size
|
||||
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
|
||||
int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
|
||||
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
||||
int32_t n_draft = 5; // number of tokens to draft during speculative decoding
|
||||
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
|
||||
int32_t n_parallel = 1; // number of parallel sequences to decode
|
||||
int32_t n_sequences = 1; // number of sequences to decode
|
||||
float p_split = 0.1f; // speculative decoding split probability
|
||||
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
|
||||
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
|
||||
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
||||
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
|
||||
int32_t grp_attn_n = 1; // group-attention factor
|
||||
int32_t grp_attn_w = 512; // group-attention width
|
||||
int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
|
||||
float rope_freq_base = 0.0f; // RoPE base frequency
|
||||
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
|
||||
float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
|
||||
float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
|
||||
float yarn_beta_fast = 32.0f; // YaRN low correction dim
|
||||
float yarn_beta_slow = 1.0f; // YaRN high correction dim
|
||||
int32_t yarn_orig_ctx = 0; // YaRN original context length
|
||||
float defrag_thold = -1.0f; // KV cache defragmentation threshold
|
||||
|
||||
struct cpu_params cpuparams;
|
||||
struct cpu_params cpuparams_batch;
|
||||
struct cpu_params draft_cpuparams;
|
||||
struct cpu_params draft_cpuparams_batch;
|
||||
|
||||
ggml_backend_sched_eval_callback cb_eval = nullptr;
|
||||
void * cb_eval_user_data = nullptr;
|
||||
|
||||
ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
|
||||
|
||||
enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
|
||||
enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
|
||||
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
|
||||
enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
|
||||
|
||||
struct gpt_sampler_params sparams;
|
||||
|
||||
std::string model = ""; // model path // NOLINT
|
||||
std::string model_draft = ""; // draft model for speculative decoding // NOLINT
|
||||
std::string model_alias = "unknown"; // model alias // NOLINT
|
||||
std::string model_url = ""; // model url to download // NOLINT
|
||||
std::string hf_token = ""; // HF token // NOLINT
|
||||
std::string hf_repo = ""; // HF repo // NOLINT
|
||||
std::string hf_file = ""; // HF file // NOLINT
|
||||
std::string prompt = ""; // NOLINT
|
||||
std::string prompt_file = ""; // store the external prompt file name // NOLINT
|
||||
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state // NOLINT
|
||||
std::string input_prefix = ""; // string to prefix user inputs with // NOLINT
|
||||
std::string input_suffix = ""; // string to suffix user inputs with // NOLINT
|
||||
std::string logdir = ""; // directory in which to save YAML log files // NOLINT
|
||||
std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding // NOLINT
|
||||
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT
|
||||
std::string logits_file = ""; // file for saving *all* logits // NOLINT
|
||||
std::string rpc_servers = ""; // comma separated list of RPC servers // NOLINT
|
||||
|
||||
std::vector<std::string> in_files; // all input files
|
||||
std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
|
||||
std::vector<llama_model_kv_override> kv_overrides;
|
||||
|
||||
bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_lora_adapter_apply)
|
||||
std::vector<llama_lora_adapter_info> lora_adapters; // lora adapter path with user defined scale
|
||||
|
||||
std::vector<llama_control_vector_load_info> control_vectors; // control vector with user defined scale
|
||||
|
||||
int32_t verbosity = 0;
|
||||
int32_t control_vector_layer_start = -1; // layer range for control vector
|
||||
int32_t control_vector_layer_end = -1; // layer range for control vector
|
||||
|
||||
int32_t ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
|
||||
int32_t ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
|
||||
// (which is more convenient to use for plotting)
|
||||
//
|
||||
bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
|
||||
size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
|
||||
|
||||
bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt
|
||||
size_t winogrande_tasks = 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
|
||||
|
||||
bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt
|
||||
size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
|
||||
|
||||
bool kl_divergence = false; // compute KL divergence
|
||||
|
||||
bool usage = false; // print usage
|
||||
bool use_color = false; // use color to distinguish generations and inputs
|
||||
bool special = false; // enable special token output
|
||||
bool interactive = false; // interactive mode
|
||||
bool interactive_first = false; // wait for user input immediately
|
||||
bool conversation = false; // conversation mode (does not print special tokens and suffix/prefix)
|
||||
bool prompt_cache_all = false; // save user input and generations to prompt cache
|
||||
bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
|
||||
|
||||
bool escape = true; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
|
||||
bool multiline_input = false; // reverse the usage of `\`
|
||||
bool simple_io = false; // improves compatibility with subprocesses and limited consoles
|
||||
bool cont_batching = true; // insert new sequences for decoding on-the-fly
|
||||
bool flash_attn = false; // flash attention
|
||||
bool no_perf = false; // disable performance metrics
|
||||
bool ctx_shift = true; // context shift on inifinite text generation
|
||||
|
||||
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
|
||||
bool logits_all = false; // return logits for all tokens in the batch
|
||||
bool use_mmap = true; // use mmap for faster loads
|
||||
bool use_mlock = false; // use mlock to keep model in memory
|
||||
bool verbose_prompt = false; // print prompt tokens before generation
|
||||
bool display_prompt = true; // print prompt before generation
|
||||
bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
|
||||
bool no_kv_offload = false; // disable KV offloading
|
||||
bool warmup = true; // warmup run
|
||||
bool check_tensors = false; // validate tensor data
|
||||
|
||||
std::string cache_type_k = "f16"; // KV cache data type for the K
|
||||
std::string cache_type_v = "f16"; // KV cache data type for the V
|
||||
|
||||
// multimodal models (see examples/llava)
|
||||
std::string mmproj = ""; // path to multimodal projector // NOLINT
|
||||
std::vector<std::string> image; // path to image file(s)
|
||||
|
||||
// embedding
|
||||
bool embedding = false; // get only sentence embedding
|
||||
int32_t embd_normalize = 2; // normalisation for embendings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
|
||||
std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
|
||||
std::string embd_sep = "\n"; // separator of embendings
|
||||
bool reranking = false; // enable reranking support on server
|
||||
|
||||
// server params
|
||||
int32_t port = 8080; // server listens on this network port
|
||||
int32_t timeout_read = 600; // http read timeout in seconds
|
||||
int32_t timeout_write = timeout_read; // http write timeout in seconds
|
||||
int n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
|
||||
|
||||
std::string hostname = "127.0.0.1";
|
||||
std::string public_path = ""; // NOLINT
|
||||
std::string chat_template = ""; // NOLINT
|
||||
std::string system_prompt = ""; // NOLINT
|
||||
bool enable_chat_template = true;
|
||||
|
||||
std::vector<std::string> api_keys;
|
||||
|
||||
std::string ssl_file_key = ""; // NOLINT
|
||||
std::string ssl_file_cert = ""; // NOLINT
|
||||
|
||||
bool endpoint_slots = true;
|
||||
bool endpoint_metrics = false;
|
||||
|
||||
bool log_json = false;
|
||||
|
||||
std::string slot_save_path;
|
||||
|
||||
float slot_prompt_similarity = 0.5f;
|
||||
|
||||
// batched-bench params
|
||||
bool is_pp_shared = false;
|
||||
|
||||
std::vector<int32_t> n_pp;
|
||||
std::vector<int32_t> n_tg;
|
||||
std::vector<int32_t> n_pl;
|
||||
|
||||
// retrieval params
|
||||
std::vector<std::string> context_files; // context files to embed
|
||||
|
||||
int32_t chunk_size = 64; // chunk size for context embedding
|
||||
|
||||
std::string chunk_separator = "\n"; // chunk separator for context embedding
|
||||
|
||||
// passkey params
|
||||
int32_t n_junk = 250; // number of times to repeat the junk text
|
||||
int32_t i_pos = -1; // position of the passkey in the junk text
|
||||
|
||||
// imatrix params
|
||||
std::string out_file = "imatrix.dat"; // save the resulting imatrix to this file
|
||||
|
||||
int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations
|
||||
int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations
|
||||
int32_t i_chunk = 0; // start processing from this chunk
|
||||
|
||||
bool process_output = false; // collect data for the output tensor
|
||||
bool compute_ppl = true; // whether to compute perplexity
|
||||
|
||||
// cvector-generator params
|
||||
int n_pca_batch = 100;
|
||||
int n_pca_iterations = 1000;
|
||||
dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
|
||||
std::string cvector_outfile = "control_vector.gguf";
|
||||
std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
|
||||
std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
|
||||
|
||||
bool spm_infill = false; // suffix/prefix/middle pattern for infill
|
||||
|
||||
std::string lora_outfile = "ggml-lora-merged-f16.gguf";
|
||||
|
||||
// batched-bench params
|
||||
bool batched_bench_output_jsonl = false;
|
||||
};
|
||||
|
||||
// call once at the start of a program if it uses libcommon
|
||||
// initializes the logging system and prints info about the build
|
||||
void gpt_init();
|
||||
|
||||
std::string gpt_params_get_system_info(const gpt_params & params);
|
||||
|
||||
bool parse_cpu_range(const std::string& range, bool(&boolmask)[GGML_MAX_N_THREADS]);
|
||||
bool parse_cpu_mask(const std::string& mask, bool(&boolmask)[GGML_MAX_N_THREADS]);
|
||||
void postprocess_cpu_params(cpu_params& cpuparams, const cpu_params* role_model = nullptr);
|
||||
bool set_process_priority(enum ggml_sched_priority prio);
|
||||
|
||||
//
|
||||
// String utils
|
||||
//
|
||||
|
||||
std::vector<std::string> string_split(std::string input, char separator);
|
||||
|
||||
std::string string_strip(const std::string & str);
|
||||
std::string string_get_sortable_timestamp();
|
||||
|
||||
void string_replace_all(std::string & s, const std::string & search, const std::string & replace);
|
||||
|
||||
template<class T>
|
||||
static std::vector<T> string_split(const std::string & str, char delim) {
|
||||
std::vector<T> values;
|
||||
std::istringstream str_stream(str);
|
||||
std::string token;
|
||||
while (std::getline(str_stream, token, delim)) {
|
||||
T value;
|
||||
std::istringstream token_stream(token);
|
||||
token_stream >> value;
|
||||
values.push_back(value);
|
||||
}
|
||||
return values;
|
||||
}
|
||||
|
||||
bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
|
||||
void string_process_escapes(std::string & input);
|
||||
|
||||
std::string string_from(bool value);
|
||||
std::string string_from(const std::vector<int> & values);
|
||||
std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens);
|
||||
std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch);
|
||||
|
||||
//
|
||||
// Filesystem utils
|
||||
//
|
||||
|
||||
bool fs_validate_filename(const std::string & filename);
|
||||
bool fs_create_directory_with_parents(const std::string & path);
|
||||
|
||||
std::string fs_get_cache_directory();
|
||||
std::string fs_get_cache_file(const std::string & filename);
|
||||
|
||||
//
|
||||
// Model utils
|
||||
//
|
||||
|
||||
struct llama_init_result {
|
||||
struct llama_model * model = nullptr;
|
||||
struct llama_context * context = nullptr;
|
||||
std::vector<llama_lora_adapter_container> lora_adapters;
|
||||
};
|
||||
|
||||
struct llama_init_result llama_init_from_gpt_params(gpt_params & params);
|
||||
|
||||
struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params);
|
||||
struct llama_context_params llama_context_params_from_gpt_params (const gpt_params & params);
|
||||
struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
|
||||
|
||||
struct llama_model * llama_load_model_from_url(const char * model_url, const char * path_model, const char * hf_token, const struct llama_model_params & params);
|
||||
struct llama_model * llama_load_model_from_hf(const char * repo, const char * file, const char * path_model, const char * hf_token, const struct llama_model_params & params);
|
||||
|
||||
// clear LoRA adapters from context, then apply new list of adapters
|
||||
void llama_lora_adapters_apply(struct llama_context * ctx, std::vector<llama_lora_adapter_container> & lora_adapters);
|
||||
|
||||
// Batch utils
|
||||
|
||||
void llama_batch_clear(struct llama_batch & batch);
|
||||
|
||||
void llama_batch_add(
|
||||
struct llama_batch & batch,
|
||||
llama_token id,
|
||||
llama_pos pos,
|
||||
const std::vector<llama_seq_id> & seq_ids,
|
||||
bool logits);
|
||||
|
||||
//
|
||||
// Vocab utils
|
||||
//
|
||||
|
||||
// tokenizes a string into a vector of tokens
|
||||
// should work similar to Python's `tokenizer.encode`
|
||||
std::vector<llama_token> llama_tokenize(
|
||||
const struct llama_context * ctx,
|
||||
const std::string & text,
|
||||
bool add_special,
|
||||
bool parse_special = false);
|
||||
|
||||
std::vector<llama_token> llama_tokenize(
|
||||
const struct llama_model * model,
|
||||
const std::string & text,
|
||||
bool add_special,
|
||||
bool parse_special = false);
|
||||
|
||||
// tokenizes a token into a piece, optionally renders special/control tokens
|
||||
// should work similar to Python's `tokenizer.id_to_piece`
|
||||
std::string llama_token_to_piece(
|
||||
const struct llama_context * ctx,
|
||||
llama_token token,
|
||||
bool special = true);
|
||||
|
||||
// detokenizes a vector of tokens into a string
|
||||
// should work similar to Python's `tokenizer.decode`
|
||||
// optionally renders special/control tokens
|
||||
std::string llama_detokenize(
|
||||
llama_context * ctx,
|
||||
const std::vector<llama_token> & tokens,
|
||||
bool special = true);
|
||||
|
||||
//
|
||||
// Chat template utils
|
||||
//
|
||||
|
||||
// same with llama_chat_message, but uses std::string
|
||||
struct llama_chat_msg {
|
||||
std::string role;
|
||||
std::string content;
|
||||
};
|
||||
|
||||
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
|
||||
bool llama_chat_verify_template(const std::string & tmpl);
|
||||
|
||||
// CPP wrapper for llama_chat_apply_template
|
||||
// If the built-in template is not supported, we default to chatml
|
||||
// If the custom "tmpl" is not supported, we throw an error
|
||||
std::string llama_chat_apply_template(const struct llama_model * model,
|
||||
const std::string & tmpl,
|
||||
const std::vector<llama_chat_msg> & chat,
|
||||
bool add_ass);
|
||||
|
||||
// Format single message, while taking into account the position of that message in chat history
|
||||
std::string llama_chat_format_single(const struct llama_model * model,
|
||||
const std::string & tmpl,
|
||||
const std::vector<llama_chat_msg> & past_msg,
|
||||
const llama_chat_msg & new_msg,
|
||||
bool add_ass);
|
||||
|
||||
// Returns an example of formatted chat
|
||||
std::string llama_chat_format_example(const struct llama_model * model,
|
||||
const std::string & tmpl);
|
||||
|
||||
//
|
||||
// KV cache utils
|
||||
//
|
||||
|
||||
// Dump the KV cache view with the number of sequences per cell.
|
||||
void llama_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
|
||||
|
||||
// Dump the KV cache view showing individual sequences in each cell (long output).
|
||||
void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
|
||||
|
||||
//
|
||||
// Embedding utils
|
||||
//
|
||||
|
||||
void llama_embd_normalize(const float * inp, float * out, int n, int embd_norm = 2);
|
||||
|
||||
float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n);
|
||||
|
||||
//
|
||||
// Control vector utils
|
||||
//
|
||||
|
||||
struct llama_control_vector_data {
|
||||
int n_embd;
|
||||
|
||||
// stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
|
||||
std::vector<float> data;
|
||||
};
|
||||
|
||||
struct llama_control_vector_load_info {
|
||||
float strength;
|
||||
|
||||
std::string fname;
|
||||
};
|
||||
|
||||
// Load control vectors, scale each by strength, and add them together.
|
||||
// On error, returns {-1, empty}
|
||||
llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos);
|
||||
|
||||
//
|
||||
// Split utils
|
||||
//
|
||||
|
||||
static const char * const LLM_KV_SPLIT_NO = "split.no";
|
||||
static const char * const LLM_KV_SPLIT_COUNT = "split.count";
|
||||
static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
|
||||
|
||||
//
|
||||
// YAML utils
|
||||
//
|
||||
|
||||
void yaml_dump_vector_float (FILE * stream, const char * prop_name, const std::vector<float> & data);
|
||||
void yaml_dump_vector_int (FILE * stream, const char * prop_name, const std::vector<int> & data);
|
||||
void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data);
|
||||
|
||||
void yaml_dump_non_result_info(
|
||||
FILE * stream, const gpt_params & params, const llama_context * lctx,
|
||||
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user