Compare commits

...

69 Commits

Author SHA1 Message Date
Patrick Devine
cb576a6b23 fix ref 2024-08-26 19:59:33 -07:00
Patrick Devine
15b7ff3a89 more comments 2024-08-26 19:56:45 -07:00
Patrick Devine
3ad243466b comments 2024-08-26 19:54:06 -07:00
Patrick Devine
a13e583c49 cleanup whitespace 2024-08-26 18:09:21 -07:00
Patrick Devine
3c1994d0ee small change 2024-08-26 18:07:59 -07:00
Patrick Devine
1b2da3829d update the import docs 2024-08-26 18:04:46 -07:00
Daniel Hiltgen
0f92b19bec Only enable numa on CPUs (#6484)
The numa flag may be having a performance impact on multi-socket systems with GPU loads
2024-08-24 17:24:50 -07:00
Daniel Hiltgen
69be940bf6 gpu: Group GPU Library sets by variant (#6483)
The recent cuda variant changes uncovered a bug in ByLibrary
which failed to group by common variant for GPU types.
2024-08-23 15:11:56 -07:00
Michael Yang
9638c24c58 Merge pull request #5446 from ollama/mxyng/faq
update faq
2024-08-23 14:05:59 -07:00
Michael Yang
bb362caf88 update faq 2024-08-23 13:37:21 -07:00
Patrick Devine
0c819e167b convert safetensor adapters into GGUF (#6327) 2024-08-23 11:29:56 -07:00
Daniel Hiltgen
7a1e1c1caf gpu: Ensure driver version set before variant (#6480)
During rebasing, the ordering was inverted causing the cuda version
selection logic to break, with driver version being evaluated as zero
incorrectly causing a downgrade to v11.
2024-08-23 11:21:12 -07:00
Daniel Hiltgen
0b03b9c32f llm: Align cmake define for cuda no peer copy (#6455)
Define changed recently and this slipped through the cracks with the old
name.
2024-08-23 11:20:39 -07:00
Daniel Hiltgen
90ca84172c Fix embeddings memory corruption (#6467)
* Fix embeddings memory corruption

The patch was leading to a buffer overrun corruption.  Once removed though, parallism
in server.cpp lead to hitting an assert due to slot/seq IDs being >= token count.  To
work around this, only use slot 0 for embeddings.

* Fix embed integration test assumption

The token eval count has changed with recent llama.cpp bumps (0.3.5+)
2024-08-22 14:51:42 -07:00
Michael Yang
6bd8a4b0a1 Merge pull request #6064 from ollama/mxyng/convert-llama3
convert: update llama conversion for llama3.1
2024-08-21 12:57:09 -07:00
Michael Yang
77903ab8b4 llama3.1 2024-08-21 11:49:31 -07:00
Michael Yang
e22286c9e1 Merge pull request #5365 from ollama/mxyng/convert-gemma2
convert gemma2
2024-08-21 11:48:43 -07:00
Michael Yang
107f695929 Merge pull request #4917 from ollama/mxyng/convert-bert
convert bert model from safetensors
2024-08-21 11:48:29 -07:00
Michael Yang
4ecc70d3b4 Merge pull request #6386 from zwwhdls/fix-new-layer
fix: chmod new layer to 0o644 when creating it
2024-08-21 10:58:45 -07:00
Michael Yang
3546bbd08c convert gemma2 2024-08-20 17:27:51 -07:00
Michael Yang
beb49eef65 create bert models from cli 2024-08-20 17:27:34 -07:00
Michael Yang
5a28b9cf5f bert 2024-08-20 17:27:34 -07:00
Daniel Hiltgen
a017cf2fea Split rocm back out of bundle (#6432)
We're over budget for github's maximum release artifact size with rocm + 2 cuda
versions.  This splits rocm back out as a discrete artifact, but keeps the layout so it can
be extracted into the same location as the main bundle.
2024-08-20 07:26:38 -07:00
Daniel Hiltgen
19e5a890f7 CI: remove directories from dist dir before upload step (#6429) 2024-08-19 15:19:21 -07:00
Daniel Hiltgen
f91c9e3709 CI: handle directories during checksum (#6427) 2024-08-19 13:48:45 -07:00
Daniel Hiltgen
2df6905ede Merge pull request #6424 from dhiltgen/cuda_v12
Fix overlapping artifact name on CI
2024-08-19 12:11:58 -07:00
Daniel Hiltgen
d8be22e47d Fix overlapping artifact name on CI 2024-08-19 12:07:18 -07:00
Daniel Hiltgen
652c273f0e Merge pull request #5049 from dhiltgen/cuda_v12
Cuda v12
2024-08-19 11:14:24 -07:00
Daniel Hiltgen
88e7705079 Merge pull request #6402 from rick-github/numParallel
Override numParallel in pickBestPartialFitByLibrary() only if unset.
2024-08-19 11:07:22 -07:00
Daniel Hiltgen
f9e31da946 Review comments 2024-08-19 10:36:15 -07:00
Daniel Hiltgen
88bb9e3328 Adjust layout to bin+lib/ollama 2024-08-19 09:38:53 -07:00
Daniel Hiltgen
3b19cdba2a Remove Jetpack 2024-08-19 09:38:53 -07:00
Daniel Hiltgen
927d98a6cd Add windows cuda v12 + v11 support 2024-08-19 09:38:53 -07:00
Daniel Hiltgen
f6c811b320 Enable cuda v12 flags 2024-08-19 09:38:53 -07:00
Daniel Hiltgen
4fe3a556fa Add cuda v12 variant and selection logic
Based on compute capability and driver version, pick
v12 or v11 cuda variants.
2024-08-19 09:38:53 -07:00
Daniel Hiltgen
fc3b4cda89 Report GPU variant in log 2024-08-19 09:38:53 -07:00
Daniel Hiltgen
d470ebe78b Add Jetson cuda variants for arm
This adds new variants for arm64 specific to Jetson platforms
2024-08-19 09:38:53 -07:00
Daniel Hiltgen
c7bcb00319 Wire up ccache and pigz in the docker based build
This should help speed things up a little
2024-08-19 09:38:53 -07:00
Daniel Hiltgen
74d45f0102 Refactor linux packaging
This adjusts linux to follow a similar model to windows with a discrete archive
(zip/tgz) to cary the primary executable, and dependent libraries. Runners are
still carried as payloads inside the main binary

Darwin retain the payload model where the go binary is fully self contained.
2024-08-19 09:38:53 -07:00
Jeffrey Morgan
9fddef3731 server: limit upload parts to 16 (#6411) 2024-08-19 09:20:52 -07:00
Richard Lyons
885cf45087 Fix white space. 2024-08-18 03:07:16 +02:00
Richard Lyons
9352eeb752 Reset NumCtx. 2024-08-18 02:55:01 +02:00
Richard Lyons
0ad0e738cd Override numParallel only if unset. 2024-08-18 01:43:26 +02:00
zwwhdls
bdc4308afb fix: chmod new layer to 0o644 when creating it
Signed-off-by: zwwhdls <zww@hdls.me>
2024-08-16 11:43:19 +08:00
Daniel Hiltgen
d29cd4c2ed Merge pull request #6381 from eust-w/main
fix: Add tooltip to system tray icon
2024-08-15 15:31:15 -07:00
eust-w
a84c05cf91 fix: Add tooltip to system tray icon
- Updated setIcon method to include tooltip text for the system tray icon.
- Added NIF_TIP flag and set the tooltip text using UTF16 encoding.

Resolves: #6372
2024-08-16 06:00:12 +08:00
Michael Yang
e3d7f32af7 Merge pull request #6363 from ollama/mxyng/fix-noprune
fix: noprune on pull
2024-08-15 12:20:38 -07:00
Michael Yang
3a75e74e34 only skip invalid json manifests 2024-08-15 10:29:14 -07:00
Michael Yang
237dccba1e skip invalid manifest files 2024-08-14 16:55:45 -07:00
Michael Yang
b3f75fc812 fix noprune 2024-08-14 15:48:51 -07:00
Jeffrey Morgan
8200c371ae add CONTRIBUTING.md (#6349) 2024-08-14 15:19:50 -07:00
longtao
0a8d6ea86d Fix typo and improve readability (#5964)
* Fix typo and improve readability

Summary:
* Rename updatAvailableMenuID to updateAvailableMenuID
* Replace unused cmd parameter with _ in RunServer function
* Fix typos in comments

(cherry picked from commit 5b8715f0b04773369e8eb1f9e6737995a0ab3ba7)

* Update api/client.go

Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com>

---------

Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com>
2024-08-13 17:54:19 -07:00
Blake Mizerany
8e1050f366 server: reduce max connections used in download (#6347)
The previous value of 64 was WAY too high and unnecessary. It reached
diminishing returns and blew past it. This is a more reasonable number
for _most_ normal cases. For users on cloud servers with excellent
network quality, this will keep screaming for them, without hitting our
CDN limits. For users with relatively poor network quality, this will
keep them from saturating their network and causing other issues.
2024-08-13 16:47:35 -07:00
Bruce MacDonald
eda8a32a09 update chatml template format to latest in docs (#6344) 2024-08-13 16:39:18 -07:00
Michael Yang
a0a40aa20c Merge pull request #6346 from ollama/mxyng/lint 2024-08-13 14:58:35 -07:00
Michael Yang
2697d7f5aa lint
- fixes printf: non-constant format string in call to fmt.Printf
- fixes SA1032: arguments have the wrong order
- disables testifylint
2024-08-13 14:36:33 -07:00
Pamela Fox
1f32276178 Update openai.md to remove extra checkbox (#6345) 2024-08-13 13:36:05 -07:00
Daniel Hiltgen
4c4fe3f87f Merge pull request #6343 from dhiltgen/revert_win_go_version
Go back to a pinned Go version
2024-08-13 11:53:49 -07:00
Daniel Hiltgen
feedf49c71 Go back to a pinned Go version
Go version 1.22.6 is triggering AV false positives, so go back to 1.22.5
2024-08-13 11:45:44 -07:00
royjhan
8b00a415ab Load Embedding Model on Empty Input (#6325)
* load on empty input

* no load on invalid input
2024-08-13 10:19:56 -07:00
Michael Yang
01b80e9ffc Merge pull request #5443 from ollama/mxyng/convert-phi3
add conversion for microsoft phi 3 mini/medium 4k, 128k
2024-08-12 15:47:58 -07:00
Michael Yang
bd5e432630 update import.md 2024-08-12 15:13:29 -07:00
Bruce MacDonald
aec77d6a05 support new "longrope" attention factor 2024-08-12 15:13:29 -07:00
Michael Yang
6ffb5cb017 add conversion for microsoft phi 3 mini/medium 4k, 128 2024-08-12 15:13:29 -07:00
Josh
f7e3b9190f cmd: spinner progress for transfer model data (#6100) 2024-08-12 11:46:32 -07:00
Josh
980dd15f81 cmd: speed up gguf creates (#6324) 2024-08-12 11:46:09 -07:00
royjhan
01d544d373 OpenAI: Simplify input output in testing (#5858)
* simplify input output

* direct comp

* in line image

* rm error pointer type

* update response testing

* lint
2024-08-12 10:33:34 -07:00
Josh
1dc3ef3aa9 Revert "server: speed up single gguf creates (#5898)" (#6323)
This reverts commit 8aac22438e.
2024-08-12 09:57:51 -07:00
Josh
8aac22438e server: speed up single gguf creates (#5898) 2024-08-12 09:28:55 -07:00
81 changed files with 2877 additions and 1054 deletions

View File

@@ -31,7 +31,7 @@ jobs:
security set-keychain-settings -lut 3600 build.keychain security set-keychain-settings -lut 3600 build.keychain
- uses: actions/setup-go@v5 - uses: actions/setup-go@v5
with: with:
go-version: "stable" go-version-file: go.mod
cache: true cache: true
- name: Build Darwin - name: Build Darwin
env: env:
@@ -87,7 +87,7 @@ jobs:
write-host "plugin installed" write-host "plugin installed"
- uses: actions/setup-go@v5 - uses: actions/setup-go@v5
with: with:
go-version: "stable" go-version-file: go.mod
cache: true cache: true
- run: go get ./... - run: go get ./...
- run: | - run: |
@@ -141,7 +141,7 @@ jobs:
write-host "plugin installed" write-host "plugin installed"
- uses: actions/setup-go@v5 - uses: actions/setup-go@v5
with: with:
go-version: "stable" go-version-file: go.mod
cache: true cache: true
- name: 'Install ROCm' - name: 'Install ROCm'
run: | run: |
@@ -187,6 +187,13 @@ jobs:
generate-windows-cuda: generate-windows-cuda:
environment: release environment: release
runs-on: windows runs-on: windows
strategy:
matrix:
cuda:
- version: "11"
url: 'https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe'
- version: "12"
url: 'https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_551.61_windows.exe'
env: env:
KEY_CONTAINER: ${{ vars.KEY_CONTAINER }} KEY_CONTAINER: ${{ vars.KEY_CONTAINER }}
steps: steps:
@@ -218,13 +225,13 @@ jobs:
write-host "plugin installed" write-host "plugin installed"
- uses: actions/setup-go@v5 - uses: actions/setup-go@v5
with: with:
go-version: "stable" go-version-file: go.mod
cache: true cache: true
- name: 'Install CUDA' - name: 'Install CUDA ${{ matrix.cuda.version }}'
run: | run: |
$ErrorActionPreference = "Stop" $ErrorActionPreference = "Stop"
write-host "downloading CUDA Installer" write-host "downloading CUDA Installer"
Invoke-WebRequest -Uri "https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe" -OutFile "${env:RUNNER_TEMP}\cuda-install.exe" Invoke-WebRequest -Uri "${{ matrix.cuda.url }}" -OutFile "${env:RUNNER_TEMP}\cuda-install.exe"
write-host "Installing CUDA" write-host "Installing CUDA"
Start-Process "${env:RUNNER_TEMP}\cuda-install.exe" -ArgumentList '-s' -NoNewWindow -Wait Start-Process "${env:RUNNER_TEMP}\cuda-install.exe" -ArgumentList '-s' -NoNewWindow -Wait
write-host "Completed CUDA" write-host "Completed CUDA"
@@ -256,15 +263,16 @@ jobs:
cp "${NVIDIA_DIR}\cublasLt64_*.dll" "dist\deps\" cp "${NVIDIA_DIR}\cublasLt64_*.dll" "dist\deps\"
- uses: actions/upload-artifact@v4 - uses: actions/upload-artifact@v4
with: with:
name: generate-windows-cuda name: generate-windows-cuda-${{ matrix.cuda.version }}
path: | path: |
llm/build/**/bin/* llm/build/**/bin/*
dist/windows-amd64/** dist/windows-amd64/**
- uses: actions/upload-artifact@v4 - uses: actions/upload-artifact@v4
with: with:
name: windows-cuda-deps name: windows-cuda-deps-${{ matrix.cuda.version }}
path: dist/deps/* path: dist/deps/*
# Import the prior generation steps and build the final windows assets # Import the prior generation steps and build the final windows assets
build-windows: build-windows:
environment: release environment: release
@@ -306,7 +314,7 @@ jobs:
write-host "plugin installed" write-host "plugin installed"
- uses: actions/setup-go@v5 - uses: actions/setup-go@v5
with: with:
go-version: "stable" go-version-file: go.mod
cache: true cache: true
- run: go get - run: go get
- uses: actions/download-artifact@v4 - uses: actions/download-artifact@v4
@@ -314,10 +322,16 @@ jobs:
name: generate-windows-cpu name: generate-windows-cpu
- uses: actions/download-artifact@v4 - uses: actions/download-artifact@v4
with: with:
name: generate-windows-cuda name: generate-windows-cuda-11
- uses: actions/download-artifact@v4 - uses: actions/download-artifact@v4
with: with:
name: windows-cuda-deps name: generate-windows-cuda-12
- uses: actions/download-artifact@v4
with:
name: windows-cuda-deps-11
- uses: actions/download-artifact@v4
with:
name: windows-cuda-deps-12
- uses: actions/download-artifact@v4 - uses: actions/download-artifact@v4
with: with:
name: windows-rocm-deps name: windows-rocm-deps
@@ -363,7 +377,6 @@ jobs:
- run: | - run: |
./scripts/build_linux.sh ./scripts/build_linux.sh
./scripts/build_docker.sh ./scripts/build_docker.sh
mv dist/deps/* dist/
- uses: actions/upload-artifact@v4 - uses: actions/upload-artifact@v4
with: with:
name: dist-linux-amd64 name: dist-linux-amd64
@@ -459,7 +472,10 @@ jobs:
merge-multiple: true merge-multiple: true
- run: | - run: |
ls -lh dist/ ls -lh dist/
(cd dist; sha256sum * > sha256sum.txt) (cd dist; find . -type f | xargs sha256sum > ../sha256sum.txt)
mv sha256sum.txt dist/
mv dist/linux-???64 .
mv dist/linux-amd64-rocm .
cat dist/sha256sum.txt cat dist/sha256sum.txt
- name: Create or update Release - name: Create or update Release
run: | run: |

View File

@@ -63,7 +63,7 @@ jobs:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
- uses: actions/setup-go@v5 - uses: actions/setup-go@v5
with: with:
go-version: "stable" go-version-file: go.mod
cache: true cache: true
- run: go get ./... - run: go get ./...
- run: | - run: |
@@ -163,7 +163,7 @@ jobs:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
- uses: actions/setup-go@v5 - uses: actions/setup-go@v5
with: with:
go-version: "stable" go-version-file: go.mod
cache: true cache: true
- name: 'Install ROCm' - name: 'Install ROCm'
run: | run: |
@@ -200,7 +200,7 @@ jobs:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
- uses: actions/setup-go@v5 - uses: actions/setup-go@v5
with: with:
go-version: "stable" go-version-file: go.mod
cache: true cache: true
- name: 'Install CUDA' - name: 'Install CUDA'
run: | run: |
@@ -255,7 +255,7 @@ jobs:
submodules: recursive submodules: recursive
- uses: actions/setup-go@v5 - uses: actions/setup-go@v5
with: with:
go-version: "stable" go-version-file: go.mod
cache: false cache: false
- run: | - run: |
case ${{ matrix.arch }} in case ${{ matrix.arch }} in
@@ -297,7 +297,7 @@ jobs:
submodules: recursive submodules: recursive
- uses: actions/setup-go@v5 - uses: actions/setup-go@v5
with: with:
go-version: "stable" go-version-file: go.mod
cache: true cache: true
- run: | - run: |
case ${{ matrix.arch }} in case ${{ matrix.arch }} in

View File

@@ -24,7 +24,6 @@ linters:
- nosprintfhostport - nosprintfhostport
- staticcheck - staticcheck
- tenv - tenv
- testifylint
- unconvert - unconvert
- unused - unused
- usestdlibvars - usestdlibvars

37
CONTRIBUTING.md Normal file
View File

@@ -0,0 +1,37 @@
# Contributing to Ollama
Thank you for your interest in contributing to Ollama! Here are a few guidelines to help get you started.
## Set up
See the [development documentation](./docs/development.md) for instructions on how to build and run Ollama locally.
## Pull requests
### Ideal issues
* [Bugs](https://github.com/ollama/ollama/issues?q=is%3Aissue+is%3Aopen+label%3Abug): issues where Ollama stops working or where it results in an unexpected error.
* [Performance](https://github.com/ollama/ollama/issues?q=is%3Aissue+is%3Aopen+label%3Aperformance): issues to make Ollama faster at model inference, downloading or uploading.
* [Security](https://github.com/ollama/ollama/blob/main/SECURITY.md): issues that could lead to a security vulnerability. As mentioned in [SECURITY.md](https://github.com/ollama/ollama/blob/main/SECURITY.md), please do not disclose security vulnerabilities publicly.
### Issues that are harder to review
* New features: new features (e.g. API fields, environment variables) add surface area to Ollama and make it harder to maintain in the long run as they cannot be removed without potentially breaking users in the future.
* Refactoring: large code improvements are important, but can be harder or take longer to review and merge.
* Documentation: small updates to fill in or dorrect missing documentation is helpful, however large documentation additions can be hard to maintain over time.
### Issues that may not be accepted
* Changes that break backwards compatibility in Ollama's API (including the OpenAI-compatible API)
* Changes that add significant friction to the user experience
* Changes that create a large future maintenance burden for maintainers and contributors
### Best practices
* Commit messages: please leave both a title and a description in your commit messages. The title should be a short summary of the changes, with a leading word that explains the section of the code being changed (e.g. `api: fix parsing of prompt field`) . In the description, leave a short 2-3 sentences that explain more about the change and its impact.
* Tests: please add test coverage to changes where possible.
* Minimize dependencies: avoid adding new dependencies unless absolutely necessary.
## Need help?
If you need help with anything, feel free to reach out to us on our [Discord server](https://discord.gg/ollama).

View File

@@ -1,7 +1,9 @@
ARG GOLANG_VERSION=1.22.5 ARG GOLANG_VERSION=1.22.5
ARG CMAKE_VERSION=3.22.1 ARG CMAKE_VERSION=3.22.1
# this CUDA_VERSION corresponds with the one specified in docs/gpu.md ARG CUDA_VERSION_11=11.3.1
ARG CUDA_VERSION=11.3.1 ARG CUDA_V11_ARCHITECTURES="50;52;53;60;61;62;70;72;75;80;86"
ARG CUDA_VERSION_12=12.4.0
ARG CUDA_V12_ARCHITECTURES="60;61;62;70;72;75;80;86;87;89;90;90a"
ARG ROCM_VERSION=6.1.2 ARG ROCM_VERSION=6.1.2
# Copy the minimal context we need to run the generate scripts # Copy the minimal context we need to run the generate scripts
@@ -10,7 +12,7 @@ COPY .git .git
COPY .gitmodules .gitmodules COPY .gitmodules .gitmodules
COPY llm llm COPY llm llm
FROM --platform=linux/amd64 nvidia/cuda:$CUDA_VERSION-devel-centos7 AS cuda-build-amd64 FROM --platform=linux/amd64 nvidia/cuda:$CUDA_VERSION_11-devel-centos7 AS cuda-11-build-amd64
ARG CMAKE_VERSION ARG CMAKE_VERSION
COPY ./scripts/rh_linux_deps.sh / COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
@@ -18,9 +20,34 @@ ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
COPY --from=llm-code / /go/src/github.com/ollama/ollama/ COPY --from=llm-code / /go/src/github.com/ollama/ollama/
WORKDIR /go/src/github.com/ollama/ollama/llm/generate WORKDIR /go/src/github.com/ollama/ollama/llm/generate
ARG CGO_CFLAGS ARG CGO_CFLAGS
RUN OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_SKIP_CPU_GENERATE=1 sh gen_linux.sh ARG CUDA_V11_ARCHITECTURES
ENV GOARCH amd64
RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_SKIP_STATIC_GENERATE=1 \
OLLAMA_SKIP_CPU_GENERATE=1 \
CMAKE_CUDA_ARCHITECTURES="${CUDA_V11_ARCHITECTURES}" \
CUDA_VARIANT="_v11" \
bash gen_linux.sh
FROM --platform=linux/arm64 nvidia/cuda:$CUDA_VERSION-devel-rockylinux8 AS cuda-build-arm64 FROM --platform=linux/amd64 nvidia/cuda:$CUDA_VERSION_12-devel-centos7 AS cuda-12-build-amd64
ARG CMAKE_VERSION
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
ARG CGO_CFLAGS
ARG CUDA_V12_ARCHITECTURES
ENV GOARCH amd64
RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_SKIP_STATIC_GENERATE=1 \
OLLAMA_SKIP_CPU_GENERATE=1 \
CMAKE_CUDA_ARCHITECTURES="${CUDA_V12_ARCHITECTURES}" \
CUDA_VARIANT="_v12" \
OLLAMA_CUSTOM_CUDA_DEFS="-DGGML_CUDA_USE_GRAPHS=on" \
bash gen_linux.sh
FROM --platform=linux/arm64 nvidia/cuda:$CUDA_VERSION_11-devel-rockylinux8 AS cuda-11-build-server-arm64
ARG CMAKE_VERSION ARG CMAKE_VERSION
COPY ./scripts/rh_linux_deps.sh / COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
@@ -28,7 +55,32 @@ ENV PATH /opt/rh/gcc-toolset-10/root/usr/bin:$PATH
COPY --from=llm-code / /go/src/github.com/ollama/ollama/ COPY --from=llm-code / /go/src/github.com/ollama/ollama/
WORKDIR /go/src/github.com/ollama/ollama/llm/generate WORKDIR /go/src/github.com/ollama/ollama/llm/generate
ARG CGO_CFLAGS ARG CGO_CFLAGS
RUN OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_SKIP_CPU_GENERATE=1 sh gen_linux.sh ARG CUDA_V11_ARCHITECTURES
ENV GOARCH arm64
RUN OLLAMA_SKIP_STATIC_GENERATE=1 \
OLLAMA_SKIP_CPU_GENERATE=1 \
CMAKE_CUDA_ARCHITECTURES="${CUDA_V11_ARCHITECTURES}" \
CUDA_VARIANT="_v11" \
bash gen_linux.sh
FROM --platform=linux/arm64 nvidia/cuda:$CUDA_VERSION_12-devel-rockylinux8 AS cuda-12-build-server-arm64
ARG CMAKE_VERSION
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
ENV PATH /opt/rh/gcc-toolset-10/root/usr/bin:$PATH
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
ARG CGO_CFLAGS
ARG CUDA_V12_ARCHITECTURES
ENV GOARCH arm64
RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_SKIP_STATIC_GENERATE=1 \
OLLAMA_SKIP_CPU_GENERATE=1 \
CMAKE_CUDA_ARCHITECTURES="${CUDA_V12_ARCHITECTURES}" \
CUDA_VARIANT="_v12" \
OLLAMA_CUSTOM_CUDA_DEFS="-DGGML_CUDA_USE_GRAPHS=on" \
bash gen_linux.sh
FROM --platform=linux/amd64 rocm/dev-centos-7:${ROCM_VERSION}-complete AS rocm-build-amd64 FROM --platform=linux/amd64 rocm/dev-centos-7:${ROCM_VERSION}-complete AS rocm-build-amd64
ARG CMAKE_VERSION ARG CMAKE_VERSION
@@ -40,15 +92,11 @@ COPY --from=llm-code / /go/src/github.com/ollama/ollama/
WORKDIR /go/src/github.com/ollama/ollama/llm/generate WORKDIR /go/src/github.com/ollama/ollama/llm/generate
ARG CGO_CFLAGS ARG CGO_CFLAGS
ARG AMDGPU_TARGETS ARG AMDGPU_TARGETS
RUN OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_SKIP_CPU_GENERATE=1 sh gen_linux.sh ENV GOARCH amd64
RUN mkdir /tmp/scratch && \ RUN --mount=type=cache,target=/root/.ccache \
for dep in $(zcat /go/src/github.com/ollama/ollama/llm/build/linux/x86_64/rocm*/bin/deps.txt.gz) ; do \ OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_SKIP_CPU_GENERATE=1 bash gen_linux.sh
cp ${dep} /tmp/scratch/ || exit 1 ; \ RUN mkdir -p ../../dist/linux-amd64-rocm/lib/ollama && \
done && \ (cd /opt/rocm/lib && tar cf - rocblas/library) | (cd ../../dist/linux-amd64-rocm/lib/ollama && tar xf - )
(cd /opt/rocm/lib && tar cf - rocblas/library) | (cd /tmp/scratch/ && tar xf - ) && \
mkdir -p /go/src/github.com/ollama/ollama/dist/deps/ && \
(cd /tmp/scratch/ && tar czvf /go/src/github.com/ollama/ollama/dist/deps/ollama-linux-amd64-rocm.tgz . )
FROM --platform=linux/amd64 centos:7 AS cpu-builder-amd64 FROM --platform=linux/amd64 centos:7 AS cpu-builder-amd64
ARG CMAKE_VERSION ARG CMAKE_VERSION
@@ -59,16 +107,21 @@ ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
COPY --from=llm-code / /go/src/github.com/ollama/ollama/ COPY --from=llm-code / /go/src/github.com/ollama/ollama/
ARG OLLAMA_CUSTOM_CPU_DEFS ARG OLLAMA_CUSTOM_CPU_DEFS
ARG CGO_CFLAGS ARG CGO_CFLAGS
ENV GOARCH amd64
WORKDIR /go/src/github.com/ollama/ollama/llm/generate WORKDIR /go/src/github.com/ollama/ollama/llm/generate
FROM --platform=linux/amd64 cpu-builder-amd64 AS static-build-amd64 FROM --platform=linux/amd64 cpu-builder-amd64 AS static-build-amd64
RUN OLLAMA_CPU_TARGET="static" sh gen_linux.sh RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_CPU_TARGET="static" bash gen_linux.sh
FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu-build-amd64 FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu-build-amd64
RUN OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu" sh gen_linux.sh RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu" bash gen_linux.sh
FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu_avx-build-amd64 FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu_avx-build-amd64
RUN OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu_avx" sh gen_linux.sh RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu_avx" bash gen_linux.sh
FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu_avx2-build-amd64 FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu_avx2-build-amd64
RUN OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu_avx2" sh gen_linux.sh RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu_avx2" bash gen_linux.sh
FROM --platform=linux/arm64 rockylinux:8 AS cpu-builder-arm64 FROM --platform=linux/arm64 rockylinux:8 AS cpu-builder-arm64
ARG CMAKE_VERSION ARG CMAKE_VERSION
@@ -79,12 +132,15 @@ ENV PATH /opt/rh/gcc-toolset-10/root/usr/bin:$PATH
COPY --from=llm-code / /go/src/github.com/ollama/ollama/ COPY --from=llm-code / /go/src/github.com/ollama/ollama/
ARG OLLAMA_CUSTOM_CPU_DEFS ARG OLLAMA_CUSTOM_CPU_DEFS
ARG CGO_CFLAGS ARG CGO_CFLAGS
ENV GOARCH arm64
WORKDIR /go/src/github.com/ollama/ollama/llm/generate WORKDIR /go/src/github.com/ollama/ollama/llm/generate
FROM --platform=linux/arm64 cpu-builder-arm64 AS static-build-arm64 FROM --platform=linux/arm64 cpu-builder-arm64 AS static-build-arm64
RUN OLLAMA_CPU_TARGET="static" sh gen_linux.sh RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_CPU_TARGET="static" bash gen_linux.sh
FROM --platform=linux/arm64 cpu-builder-arm64 AS cpu-build-arm64 FROM --platform=linux/arm64 cpu-builder-arm64 AS cpu-build-arm64
RUN OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu" sh gen_linux.sh RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu" bash gen_linux.sh
# Intermediate stage used for ./scripts/build_linux.sh # Intermediate stage used for ./scripts/build_linux.sh
@@ -95,12 +151,16 @@ COPY . .
COPY --from=static-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/ COPY --from=static-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
COPY --from=cpu_avx-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/ COPY --from=cpu_avx-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
COPY --from=cpu_avx2-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/ COPY --from=cpu_avx2-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
COPY --from=cuda-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/ COPY --from=cuda-11-build-amd64 /go/src/github.com/ollama/ollama/dist/ dist/
COPY --from=cuda-11-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
COPY --from=cuda-12-build-amd64 /go/src/github.com/ollama/ollama/dist/ dist/
COPY --from=cuda-12-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
COPY --from=rocm-build-amd64 /go/src/github.com/ollama/ollama/dist/ dist/
COPY --from=rocm-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/ COPY --from=rocm-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
COPY --from=rocm-build-amd64 /go/src/github.com/ollama/ollama/dist/deps/ ./dist/deps/
ARG GOFLAGS ARG GOFLAGS
ARG CGO_CFLAGS ARG CGO_CFLAGS
RUN go build -trimpath . RUN --mount=type=cache,target=/root/.ccache \
go build -trimpath -o dist/linux-amd64/bin/ollama .
# Intermediate stage used for ./scripts/build_linux.sh # Intermediate stage used for ./scripts/build_linux.sh
FROM --platform=linux/arm64 cpu-build-arm64 AS build-arm64 FROM --platform=linux/arm64 cpu-build-arm64 AS build-arm64
@@ -109,23 +169,36 @@ ARG GOLANG_VERSION
WORKDIR /go/src/github.com/ollama/ollama WORKDIR /go/src/github.com/ollama/ollama
COPY . . COPY . .
COPY --from=static-build-arm64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/ COPY --from=static-build-arm64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
COPY --from=cuda-build-arm64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/ COPY --from=cuda-11-build-server-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
COPY --from=cuda-11-build-server-arm64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
COPY --from=cuda-12-build-server-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
COPY --from=cuda-12-build-server-arm64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
ARG GOFLAGS ARG GOFLAGS
ARG CGO_CFLAGS ARG CGO_CFLAGS
RUN go build -trimpath . RUN --mount=type=cache,target=/root/.ccache \
go build -trimpath -o dist/linux-arm64/bin/ollama .
# Strip out ROCm dependencies to keep the primary image lean
FROM --platform=linux/amd64 ubuntu:22.04 as amd64-libs-without-rocm
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /scratch/
RUN cd /scratch/ollama/ && rm -rf rocblas libamd* libdrm* libroc* libhip* libhsa*
# Runtime stages # Runtime stages
FROM --platform=linux/amd64 ubuntu:22.04 as runtime-amd64 FROM --platform=linux/amd64 ubuntu:22.04 as runtime-amd64
COPY --from=amd64-libs-without-rocm /scratch/ /lib/
RUN apt-get update && apt-get install -y ca-certificates RUN apt-get update && apt-get install -y ca-certificates
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/ollama /bin/ollama COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/bin/ /bin/
FROM --platform=linux/arm64 ubuntu:22.04 as runtime-arm64 FROM --platform=linux/arm64 ubuntu:22.04 as runtime-arm64
COPY --from=build-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
RUN apt-get update && apt-get install -y ca-certificates RUN apt-get update && apt-get install -y ca-certificates
COPY --from=build-arm64 /go/src/github.com/ollama/ollama/ollama /bin/ollama COPY --from=build-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/bin/ /bin/
# Radeon images are much larger so we keep it distinct from the CPU/CUDA image # Radeon images are much larger so we keep it distinct from the CPU/CUDA image
FROM --platform=linux/amd64 rocm/dev-centos-7:${ROCM_VERSION}-complete as runtime-rocm FROM --platform=linux/amd64 rocm/dev-centos-7:${ROCM_VERSION}-complete as runtime-rocm
RUN update-pciids RUN update-pciids
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/ollama /bin/ollama COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/bin/ /bin/
RUN ln -s /opt/rocm/lib /lib/ollama
EXPOSE 11434 EXPOSE 11434
ENV OLLAMA_HOST 0.0.0.0 ENV OLLAMA_HOST 0.0.0.0

View File

@@ -298,7 +298,7 @@ func (c *Client) List(ctx context.Context) (*ListResponse, error) {
return &lr, nil return &lr, nil
} }
// List running models. // ListRunning lists running models.
func (c *Client) ListRunning(ctx context.Context) (*ProcessResponse, error) { func (c *Client) ListRunning(ctx context.Context) (*ProcessResponse, error) {
var lr ProcessResponse var lr ProcessResponse
if err := c.do(ctx, http.MethodGet, "/api/ps", nil, &lr); err != nil { if err := c.do(ctx, http.MethodGet, "/api/ps", nil, &lr); err != nil {
@@ -333,7 +333,7 @@ func (c *Client) Show(ctx context.Context, req *ShowRequest) (*ShowResponse, err
return &resp, nil return &resp, nil
} }
// Hearbeat checks if the server has started and is responsive; if yes, it // Heartbeat checks if the server has started and is responsive; if yes, it
// returns nil, otherwise an error. // returns nil, otherwise an error.
func (c *Client) Heartbeat(ctx context.Context) error { func (c *Client) Heartbeat(ctx context.Context) error {
if err := c.do(ctx, http.MethodHead, "/", nil, nil); err != nil { if err := c.do(ctx, http.MethodHead, "/", nil, nil); err != nil {

View File

@@ -87,20 +87,11 @@ DialogFontSize=12
[Files] [Files]
Source: ".\app.exe"; DestDir: "{app}"; DestName: "{#MyAppExeName}" ; Flags: ignoreversion 64bit Source: ".\app.exe"; DestDir: "{app}"; DestName: "{#MyAppExeName}" ; Flags: ignoreversion 64bit
Source: "..\ollama.exe"; DestDir: "{app}"; Flags: ignoreversion 64bit Source: "..\ollama.exe"; DestDir: "{app}\bin"; Flags: ignoreversion 64bit
Source: "..\dist\windows-{#ARCH}\ollama_runners\*"; DestDir: "{app}\ollama_runners"; Flags: ignoreversion 64bit recursesubdirs Source: "..\dist\windows-{#ARCH}\lib\ollama\runners\*"; DestDir: "{app}\lib\ollama\runners"; Flags: ignoreversion 64bit recursesubdirs
Source: "..\dist\ollama_welcome.ps1"; DestDir: "{app}"; Flags: ignoreversion Source: "..\dist\ollama_welcome.ps1"; DestDir: "{app}"; Flags: ignoreversion
Source: ".\assets\app.ico"; DestDir: "{app}"; Flags: ignoreversion Source: ".\assets\app.ico"; DestDir: "{app}"; Flags: ignoreversion
#if DirExists("..\dist\windows-amd64\cuda") Source: "..\dist\windows-amd64\lib\ollama\*"; DestDir: "{app}\lib\ollama\"; Flags: ignoreversion recursesubdirs
Source: "..\dist\windows-amd64\cuda\*"; DestDir: "{app}\cuda\"; Flags: ignoreversion recursesubdirs
#endif
#if DirExists("..\dist\windows-amd64\oneapi")
Source: "..\dist\windows-amd64\oneapi\*"; DestDir: "{app}\oneapi\"; Flags: ignoreversion recursesubdirs
#endif
#if DirExists("..\dist\windows-amd64\rocm")
Source: "..\dist\windows-amd64\rocm\*"; DestDir: "{app}\rocm\"; Flags: ignoreversion recursesubdirs
#endif
[Icons] [Icons]
Name: "{group}\{#MyAppName}"; Filename: "{app}\{#MyAppExeName}"; IconFilename: "{app}\app.ico" Name: "{group}\{#MyAppName}"; Filename: "{app}\{#MyAppExeName}"; IconFilename: "{app}\app.ico"
@@ -108,7 +99,7 @@ Name: "{userstartup}\{#MyAppName}"; Filename: "{app}\{#MyAppExeName}"; IconFilen
Name: "{userprograms}\{#MyAppName}"; Filename: "{app}\{#MyAppExeName}"; IconFilename: "{app}\app.ico" Name: "{userprograms}\{#MyAppName}"; Filename: "{app}\{#MyAppExeName}"; IconFilename: "{app}\app.ico"
[Run] [Run]
Filename: "{cmd}"; Parameters: "/C set PATH={app};%PATH% & ""{app}\{#MyAppExeName}"""; Flags: postinstall nowait runhidden Filename: "{cmd}"; Parameters: "/C set PATH={app}\bin;%PATH% & ""{app}\{#MyAppExeName}"""; Flags: postinstall nowait runhidden
[UninstallRun] [UninstallRun]
; Filename: "{cmd}"; Parameters: "/C ""taskkill /im ''{#MyAppExeName}'' /f /t"; Flags: runhidden ; Filename: "{cmd}"; Parameters: "/C ""taskkill /im ''{#MyAppExeName}'' /f /t"; Flags: runhidden
@@ -143,8 +134,8 @@ SetupAppRunningError=Another Ollama installer is running.%n%nPlease cancel or fi
[Registry] [Registry]
Root: HKCU; Subkey: "Environment"; \ Root: HKCU; Subkey: "Environment"; \
ValueType: expandsz; ValueName: "Path"; ValueData: "{olddata};{app}"; \ ValueType: expandsz; ValueName: "Path"; ValueData: "{olddata};{app}\bin"; \
Check: NeedsAddPath('{app}') Check: NeedsAddPath('{app}\bin')
[Code] [Code]

View File

@@ -11,12 +11,12 @@ import (
) )
const ( const (
updatAvailableMenuID = 1 updateAvailableMenuID = 1
updateMenuID = updatAvailableMenuID + 1 updateMenuID = updateAvailableMenuID + 1
separatorMenuID = updateMenuID + 1 separatorMenuID = updateMenuID + 1
diagLogsMenuID = separatorMenuID + 1 diagLogsMenuID = separatorMenuID + 1
diagSeparatorMenuID = diagLogsMenuID + 1 diagSeparatorMenuID = diagLogsMenuID + 1
quitMenuID = diagSeparatorMenuID + 1 quitMenuID = diagSeparatorMenuID + 1
) )
func (t *winTray) initMenus() error { func (t *winTray) initMenus() error {
@@ -35,7 +35,7 @@ func (t *winTray) initMenus() error {
func (t *winTray) UpdateAvailable(ver string) error { func (t *winTray) UpdateAvailable(ver string) error {
if !t.updateNotified { if !t.updateNotified {
slog.Debug("updating menu and sending notification for new update") slog.Debug("updating menu and sending notification for new update")
if err := t.addOrUpdateMenuItem(updatAvailableMenuID, 0, updateAvailableMenuTitle, true); err != nil { if err := t.addOrUpdateMenuItem(updateAvailableMenuID, 0, updateAvailableMenuTitle, true); err != nil {
return fmt.Errorf("unable to create menu entries %w", err) return fmt.Errorf("unable to create menu entries %w", err)
} }
if err := t.addOrUpdateMenuItem(updateMenuID, 0, updateMenutTitle, false); err != nil { if err := t.addOrUpdateMenuItem(updateMenuID, 0, updateMenutTitle, false); err != nil {

View File

@@ -11,6 +11,7 @@ import (
"path/filepath" "path/filepath"
"sort" "sort"
"sync" "sync"
"syscall"
"unsafe" "unsafe"
"golang.org/x/sys/windows" "golang.org/x/sys/windows"
@@ -433,7 +434,12 @@ func (t *winTray) setIcon(src string) error {
t.muNID.Lock() t.muNID.Lock()
defer t.muNID.Unlock() defer t.muNID.Unlock()
t.nid.Icon = h t.nid.Icon = h
t.nid.Flags |= NIF_ICON t.nid.Flags |= NIF_ICON | NIF_TIP
if toolTipUTF16, err := syscall.UTF16FromString(commontray.ToolTip); err == nil {
copy(t.nid.Tip[:], toolTipUTF16)
} else {
return err
}
t.nid.Size = uint32(unsafe.Sizeof(*t.nid)) t.nid.Size = uint32(unsafe.Sizeof(*t.nid))
return t.nid.modify() return t.nid.modify()

View File

@@ -61,6 +61,7 @@ const (
MIIM_SUBMENU = 0x00000004 MIIM_SUBMENU = 0x00000004
MIM_APPLYTOSUBMENUS = 0x80000000 MIM_APPLYTOSUBMENUS = 0x80000000
NIF_ICON = 0x00000002 NIF_ICON = 0x00000002
NIF_TIP = 0x00000004
NIF_INFO = 0x00000010 NIF_INFO = 0x00000010
NIF_MESSAGE = 0x00000001 NIF_MESSAGE = 0x00000001
SW_HIDE = 0 SW_HIDE = 0

View File

@@ -22,6 +22,7 @@ import (
"runtime" "runtime"
"slices" "slices"
"strings" "strings"
"sync/atomic"
"syscall" "syscall"
"time" "time"
@@ -78,6 +79,7 @@ func CreateHandler(cmd *cobra.Command, args []string) error {
status := "transferring model data" status := "transferring model data"
spinner := progress.NewSpinner(status) spinner := progress.NewSpinner(status)
p.Add(status, spinner) p.Add(status, spinner)
defer p.Stop()
for i := range modelfile.Commands { for i := range modelfile.Commands {
switch modelfile.Commands[i].Name { switch modelfile.Commands[i].Name {
@@ -112,7 +114,7 @@ func CreateHandler(cmd *cobra.Command, args []string) error {
path = tempfile path = tempfile
} }
digest, err := createBlob(cmd, client, path) digest, err := createBlob(cmd, client, path, spinner)
if err != nil { if err != nil {
return err return err
} }
@@ -202,6 +204,12 @@ func tempZipFiles(path string) (string, error) {
// safetensors files might be unresolved git lfs references; skip if they are // safetensors files might be unresolved git lfs references; skip if they are
// covers model-x-of-y.safetensors, model.fp32-x-of-y.safetensors, model.safetensors // covers model-x-of-y.safetensors, model.fp32-x-of-y.safetensors, model.safetensors
files = append(files, st...) files = append(files, st...)
} else if st, _ := glob(filepath.Join(path, "adapters.safetensors"), "application/octet-stream"); len(st) > 0 {
// covers adapters.safetensors
files = append(files, st...)
} else if st, _ := glob(filepath.Join(path, "adapter_model.safetensors"), "application/octet-stream"); len(st) > 0 {
// covers adapter_model.safetensors
files = append(files, st...)
} else if pt, _ := glob(filepath.Join(path, "pytorch_model*.bin"), "application/zip"); len(pt) > 0 { } else if pt, _ := glob(filepath.Join(path, "pytorch_model*.bin"), "application/zip"); len(pt) > 0 {
// pytorch files might also be unresolved git lfs references; skip if they are // pytorch files might also be unresolved git lfs references; skip if they are
// covers pytorch_model-x-of-y.bin, pytorch_model.fp32-x-of-y.bin, pytorch_model.bin // covers pytorch_model-x-of-y.bin, pytorch_model.fp32-x-of-y.bin, pytorch_model.bin
@@ -221,6 +229,14 @@ func tempZipFiles(path string) (string, error) {
} }
files = append(files, js...) files = append(files, js...)
// bert models require a nested config.json
// TODO(mxyng): merge this with the glob above
js, err = glob(filepath.Join(path, "**/*.json"), "text/plain")
if err != nil {
return "", err
}
files = append(files, js...)
if tks, _ := glob(filepath.Join(path, "tokenizer.model"), "application/octet-stream"); len(tks) > 0 { if tks, _ := glob(filepath.Join(path, "tokenizer.model"), "application/octet-stream"); len(tks) > 0 {
// add tokenizer.model if it exists, tokenizer.json is automatically picked up by the previous glob // add tokenizer.model if it exists, tokenizer.json is automatically picked up by the previous glob
// tokenizer.model might be a unresolved git lfs reference; error if it is // tokenizer.model might be a unresolved git lfs reference; error if it is
@@ -250,6 +266,11 @@ func tempZipFiles(path string) (string, error) {
return "", err return "", err
} }
zfi.Name, err = filepath.Rel(path, file)
if err != nil {
return "", err
}
zf, err := zipfile.CreateHeader(zfi) zf, err := zipfile.CreateHeader(zfi)
if err != nil { if err != nil {
return "", err return "", err
@@ -263,13 +284,20 @@ func tempZipFiles(path string) (string, error) {
return tempfile.Name(), nil return tempfile.Name(), nil
} }
func createBlob(cmd *cobra.Command, client *api.Client, path string) (string, error) { func createBlob(cmd *cobra.Command, client *api.Client, path string, spinner *progress.Spinner) (string, error) {
bin, err := os.Open(path) bin, err := os.Open(path)
if err != nil { if err != nil {
return "", err return "", err
} }
defer bin.Close() defer bin.Close()
// Get file info to retrieve the size
fileInfo, err := bin.Stat()
if err != nil {
return "", err
}
fileSize := fileInfo.Size()
hash := sha256.New() hash := sha256.New()
if _, err := io.Copy(hash, bin); err != nil { if _, err := io.Copy(hash, bin); err != nil {
return "", err return "", err
@@ -279,13 +307,43 @@ func createBlob(cmd *cobra.Command, client *api.Client, path string) (string, er
return "", err return "", err
} }
var pw progressWriter
status := "transferring model data 0%"
spinner.SetMessage(status)
done := make(chan struct{})
defer close(done)
go func() {
ticker := time.NewTicker(60 * time.Millisecond)
defer ticker.Stop()
for {
select {
case <-ticker.C:
spinner.SetMessage(fmt.Sprintf("transferring model data %d%%", int(100*pw.n.Load()/fileSize)))
case <-done:
spinner.SetMessage("transferring model data 100%")
return
}
}
}()
digest := fmt.Sprintf("sha256:%x", hash.Sum(nil)) digest := fmt.Sprintf("sha256:%x", hash.Sum(nil))
if err = client.CreateBlob(cmd.Context(), digest, bin); err != nil { if err = client.CreateBlob(cmd.Context(), digest, io.TeeReader(bin, &pw)); err != nil {
return "", err return "", err
} }
return digest, nil return digest, nil
} }
type progressWriter struct {
n atomic.Int64
}
func (w *progressWriter) Write(p []byte) (n int, err error) {
w.n.Add(int64(len(p)))
return len(p), nil
}
func RunHandler(cmd *cobra.Command, args []string) error { func RunHandler(cmd *cobra.Command, args []string) error {
interactive := true interactive := true
@@ -1086,7 +1144,7 @@ func generate(cmd *cobra.Command, opts runOptions) error {
return nil return nil
} }
func RunServer(cmd *cobra.Command, _ []string) error { func RunServer(_ *cobra.Command, _ []string) error {
if err := initializeKeypair(); err != nil { if err := initializeKeypair(); err != nil {
return err return err
} }

View File

@@ -7,16 +7,27 @@ import (
"io" "io"
"io/fs" "io/fs"
"log/slog" "log/slog"
"strings"
"github.com/ollama/ollama/llm" "github.com/ollama/ollama/llm"
) )
type Parameters struct { type ModelParameters struct {
Architectures []string `json:"architectures"` Architectures []string `json:"architectures"`
VocabSize uint32 `json:"vocab_size"` VocabSize uint32 `json:"vocab_size"`
} }
func (Parameters) KV(t *Tokenizer) llm.KV { type AdapterParameters struct {
Alpha uint32 `json:"lora_alpha"`
LoraLayers uint32 `json:"lora_layers"`
LoraParameters struct {
Rank uint32 `json:"rank"`
Alpha float32 `json:"alpha"`
Scale float32 `json:"scale"`
} `json:"lora_parameters"`
}
func (ModelParameters) KV(t *Tokenizer) llm.KV {
kv := llm.KV{ kv := llm.KV{
"general.file_type": uint32(1), "general.file_type": uint32(1),
"general.quantization_version": uint32(2), "general.quantization_version": uint32(2),
@@ -27,6 +38,10 @@ func (Parameters) KV(t *Tokenizer) llm.KV {
"tokenizer.ggml.token_type": t.Vocabulary.Types, "tokenizer.ggml.token_type": t.Vocabulary.Types,
} }
if len(t.Merges) > 0 {
kv["tokenizer.ggml.merges"] = t.Merges
}
if t.Template != "" { if t.Template != "" {
kv["tokenizer.chat_template"] = t.Template kv["tokenizer.chat_template"] = t.Template
} }
@@ -39,40 +54,119 @@ func (Parameters) KV(t *Tokenizer) llm.KV {
return kv return kv
} }
func (Parameters) specialTokenTypes() []string { func (p AdapterParameters) KV() llm.KV {
var alpha float32
if p.LoraParameters.Alpha == 0 {
alpha = float32(p.Alpha)
} else {
alpha = p.LoraParameters.Alpha
}
kv := llm.KV{
"adapter.lora.alpha": alpha,
"adapter.type": "lora",
"general.file_type": uint32(1),
"general.type": "adapter",
"general.version": "v0.2",
}
return kv
}
func (ModelParameters) specialTokenTypes() []string {
return []string{ return []string{
"bos", "eos", "unk", "sep", "pad", "cls", "mask", "bos", "eos", "unk", "sep", "pad", "cls", "mask",
} }
} }
func (Parameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error { func (ModelParameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
return llm.WriteGGUF(ws, kv, ts) return llm.WriteGGUF(ws, kv, ts)
} }
type Converter interface { func (AdapterParameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
return llm.WriteGGUF(ws, kv, ts)
}
type ModelConverter interface {
// KV maps parameters to LLM key-values // KV maps parameters to LLM key-values
KV(*Tokenizer) llm.KV KV(*Tokenizer) llm.KV
// Tensors maps input tensors to LLM tensors. Model specific modifications can be done here. // Tensors maps input tensors to LLM tensors. Model specific modifications can be done here.
Tensors([]Tensor) []llm.Tensor Tensors([]Tensor) []llm.Tensor
// Replacements returns a list of string pairs to replace in tensor names.
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
Replacements() []string
// tensorName returns the LLM tensor name for a specific input name
tensorName(string) string
// specialTokenTypes returns any special token types the model uses // specialTokenTypes returns any special token types the model uses
specialTokenTypes() []string specialTokenTypes() []string
// writeFile writes the model to the provided io.WriteSeeker
writeFile(io.WriteSeeker, llm.KV, []llm.Tensor) error writeFile(io.WriteSeeker, llm.KV, []llm.Tensor) error
} }
type moreParser interface {
parseMore(fs.FS) error
}
type AdapterConverter interface {
// KV maps parameters to LLM key-values
KV(llm.KV) llm.KV
// Tensors maps input tensors to LLM tensors. Adapter specific modifications can be done here.
Tensors([]Tensor) []llm.Tensor
// Replacements returns a list of string pairs to replace in tensor names.
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
Replacements() []string
writeFile(io.WriteSeeker, llm.KV, []llm.Tensor) error
}
func ConvertAdapter(fsys fs.FS, ws io.WriteSeeker, baseKV llm.KV) error {
bts, err := fs.ReadFile(fsys, "adapter_config.json")
if err != nil {
return err
}
var p AdapterParameters
if err := json.Unmarshal(bts, &p); err != nil {
return err
}
arch, ok := baseKV["general.architecture"]
if !ok {
return errors.New("architecture not set for the base model")
}
var conv AdapterConverter
switch arch {
case "llama":
conv = &llamaAdapter{}
case "gemma2":
conv = &gemma2Adapter{}
default:
return errors.New("unsupported architecture")
}
ts, err := parseTensors(fsys, strings.NewReplacer(conv.Replacements()...))
if err != nil {
return err
}
if err := json.Unmarshal(bts, conv); err != nil {
return err
}
return conv.writeFile(ws, conv.KV(baseKV), conv.Tensors(ts))
}
// Convert writes an Ollama compatible model to the provided io.WriteSeeker based on configurations // Convert writes an Ollama compatible model to the provided io.WriteSeeker based on configurations
// and files it finds in the input path. // and files it finds in the input path.
// Supported input model formats include safetensors. // Supported input model formats include safetensors.
// Supported input tokenizers files include tokenizer.json (preferred) and tokenizer.model. // Supported input tokenizers files include tokenizer.json (preferred) and tokenizer.model.
func Convert(fsys fs.FS, ws io.WriteSeeker) error { func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
bts, err := fs.ReadFile(fsys, "config.json") bts, err := fs.ReadFile(fsys, "config.json")
if err != nil { if err != nil {
return err return err
} }
var p Parameters var p ModelParameters
if err := json.Unmarshal(bts, &p); err != nil { if err := json.Unmarshal(bts, &p); err != nil {
return err return err
} }
@@ -81,14 +175,20 @@ func Convert(fsys fs.FS, ws io.WriteSeeker) error {
return errors.New("unknown architecture") return errors.New("unknown architecture")
} }
var conv Converter var conv ModelConverter
switch p.Architectures[0] { switch p.Architectures[0] {
case "LlamaForCausalLM", "MistralForCausalLM": case "LlamaForCausalLM", "MistralForCausalLM":
conv = &llama{} conv = &llamaModel{}
case "MixtralForCausalLM": case "MixtralForCausalLM":
conv = &mixtral{} conv = &mixtralModel{}
case "GemmaForCausalLM": case "GemmaForCausalLM":
conv = &gemma{} conv = &gemmaModel{}
case "Gemma2ForCausalLM":
conv = &gemma2Model{}
case "Phi3ForCausalLM":
conv = &phi3Model{}
case "BertModel":
conv = &bertModel{}
default: default:
return errors.New("unsupported architecture") return errors.New("unsupported architecture")
} }
@@ -97,6 +197,12 @@ func Convert(fsys fs.FS, ws io.WriteSeeker) error {
return err return err
} }
if t, ok := conv.(moreParser); ok {
if err := t.parseMore(fsys); err != nil {
return err
}
}
t, err := parseTokenizer(fsys, conv.specialTokenTypes()) t, err := parseTokenizer(fsys, conv.specialTokenTypes())
if err != nil { if err != nil {
return err return err
@@ -113,7 +219,7 @@ func Convert(fsys fs.FS, ws io.WriteSeeker) error {
slog.Debug("vocabulary", "size", len(t.Vocabulary.Tokens)) slog.Debug("vocabulary", "size", len(t.Vocabulary.Tokens))
} }
ts, err := parseTensors(fsys) ts, err := parseTensors(fsys, strings.NewReplacer(conv.Replacements()...))
if err != nil { if err != nil {
return err return err
} }

174
convert/convert_bert.go Normal file
View File

@@ -0,0 +1,174 @@
package convert
import (
"cmp"
"encoding/json"
"io/fs"
"path/filepath"
"slices"
"strings"
"github.com/ollama/ollama/llm"
)
type bertModel struct {
ModelParameters
NLayers uint32 `json:"n_layers"`
NumHiddenLayers uint32 `json:"num_hidden_layers"`
NLayer uint32 `json:"n_layer"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
NCtx uint32 `json:"n_ctx"`
HiddenSize uint32 `json:"hidden_size"`
NEmbd uint32 `json:"n_embd"`
IntermediateSize uint32 `json:"intermediate_size"`
NInner uint32 `json:"n_inner"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NHead uint32 `json:"n_head"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
LayerNormEPS float32 `json:"layer_norm_eps"`
LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
NormEpsilon float32 `json:"norm_epsilon"`
PoolingType uint32
}
var (
_ ModelConverter = (*bertModel)(nil)
_ moreParser = (*bertModel)(nil)
)
func (p *bertModel) parseMore(fsys fs.FS) error {
bts, err := fs.ReadFile(fsys, "modules.json")
if err != nil {
return err
}
var modules []struct {
Type string `json:"type"`
Path string `json:"path"`
}
if err := json.Unmarshal(bts, &modules); err != nil {
return err
}
var pooling string
for _, m := range modules {
if m.Type == "sentence_transformers.models.Pooling" {
pooling = m.Path
break
}
}
if pooling != "" {
bts, err := fs.ReadFile(fsys, filepath.Join(pooling, "config.json"))
if err != nil {
return err
}
var pc struct {
PoolingModeCLSToken bool `json:"pooling_mode_cls_token"`
PoolingModeMeanTokens bool `json:"pooling_mode_mean_tokens"`
}
if err := json.Unmarshal(bts, &pc); err != nil {
return err
}
if pc.PoolingModeMeanTokens {
p.PoolingType = 1
} else if pc.PoolingModeCLSToken {
p.PoolingType = 2
}
}
return nil
}
func (p *bertModel) KV(t *Tokenizer) llm.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "bert"
kv["bert.attention.causal"] = false
kv["bert.pooling_type"] = p.PoolingType
kv["bert.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer)
if contextLength := cmp.Or(p.MaxPositionEmbeddings, p.NCtx); contextLength > 0 {
kv["bert.context_length"] = contextLength
}
if embeddingLength := cmp.Or(p.HiddenSize, p.NEmbd); embeddingLength > 0 {
kv["bert.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd)
}
if feedForwardLength := cmp.Or(p.IntermediateSize, p.NInner); feedForwardLength > 0 {
kv["bert.feed_forward_length"] = cmp.Or(p.IntermediateSize, p.NInner)
}
if headCount := cmp.Or(p.NumAttentionHeads, p.NHead); headCount > 0 {
kv["bert.attention.head_count"] = cmp.Or(p.NumAttentionHeads, p.NHead)
}
if layerNormEpsilon := cmp.Or(p.LayerNormEPS, p.LayerNormEpsilon, p.NormEpsilon); layerNormEpsilon > 0 {
kv["bert.attention.layer_norm_epsilon"] = layerNormEpsilon
}
kv["tokenizer.ggml.model"] = "bert"
kv["tokenizer.ggml.token_type_count"] = uint32(2)
// convert to phantom space tokens
for i, e := range t.Tokens {
if strings.HasPrefix(e, "[") && strings.HasSuffix(e, "]") {
// noop
} else if strings.HasPrefix(e, "##") {
t.Tokens[i] = e[2:]
} else {
t.Tokens[i] = "\u2581" + e
}
}
kv["tokenizer.ggml.tokens"] = t.Tokens
return kv
}
func (p *bertModel) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
for _, t := range ts {
if slices.Contains([]string{
"embeddings.position_ids",
"pooler.dense.weight",
"pooler.dense.bias",
}, t.Name()) {
continue
}
out = append(out, llm.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (bertModel) Replacements() []string {
return []string{
"encoder.layer", "blk",
"encoder.layers", "blk",
"embeddings.word_embeddings", "token_embd",
"embeddings.token_type_embeddings", "token_types",
"embeddings.LayerNorm", "token_embd_norm",
"embeddings.position_embeddings", "position_embd",
"attention.self.query", "attn_q",
"attention.self.key", "attn_k",
"attention.self.value", "attn_v",
"attention.output.dense", "attn_output",
"attention.output.LayerNorm", "attn_output_norm",
"intermediate.dense", "ffn_up",
"output.dense", "ffn_down",
"output.LayerNorm", "layer_output_norm",
}
}

View File

@@ -9,8 +9,8 @@ import (
"github.com/ollama/ollama/llm" "github.com/ollama/ollama/llm"
) )
type gemma struct { type gemmaModel struct {
Parameters ModelParameters
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"` MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"` HiddenSize uint32 `json:"hidden_size"`
HiddenLayers uint32 `json:"num_hidden_layers"` HiddenLayers uint32 `json:"num_hidden_layers"`
@@ -21,12 +21,11 @@ type gemma struct {
HeadDim uint32 `json:"head_dim"` HeadDim uint32 `json:"head_dim"`
} }
var _ Converter = (*gemma)(nil) var _ ModelConverter = (*gemmaModel)(nil)
func (p *gemma) KV(t *Tokenizer) llm.KV { func (p *gemmaModel) KV(t *Tokenizer) llm.KV {
kv := p.Parameters.KV(t) kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "gemma" kv["general.architecture"] = "gemma"
kv["general.name"] = "gemma"
kv["gemma.context_length"] = p.MaxPositionEmbeddings kv["gemma.context_length"] = p.MaxPositionEmbeddings
kv["gemma.embedding_length"] = p.HiddenSize kv["gemma.embedding_length"] = p.HiddenSize
kv["gemma.block_count"] = p.HiddenLayers kv["gemma.block_count"] = p.HiddenLayers
@@ -43,16 +42,15 @@ func (p *gemma) KV(t *Tokenizer) llm.KV {
return kv return kv
} }
func (p *gemma) Tensors(ts []Tensor) []llm.Tensor { func (p *gemmaModel) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor var out []llm.Tensor
for _, t := range ts { for _, t := range ts {
name := p.tensorName(t.Name()) if strings.HasSuffix(t.Name(), "_norm.weight") {
if strings.HasSuffix(name, "_norm.weight") {
t.SetRepacker(p.addOne) t.SetRepacker(p.addOne)
} }
out = append(out, llm.Tensor{ out = append(out, llm.Tensor{
Name: name, Name: t.Name(),
Kind: t.Kind(), Kind: t.Kind(),
Shape: t.Shape(), Shape: t.Shape(),
WriterTo: t, WriterTo: t,
@@ -62,8 +60,8 @@ func (p *gemma) Tensors(ts []Tensor) []llm.Tensor {
return out return out
} }
func (p *gemma) tensorName(n string) string { func (p *gemmaModel) Replacements() []string {
return strings.NewReplacer( return []string{
"model.embed_tokens", "token_embd", "model.embed_tokens", "token_embd",
"model.norm", "output_norm", "model.norm", "output_norm",
"model.layers", "blk", "model.layers", "blk",
@@ -76,11 +74,10 @@ func (p *gemma) tensorName(n string) string {
"mlp.down_proj", "ffn_down", "mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up", "mlp.up_proj", "ffn_up",
"post_attention_layernorm", "ffn_norm", "post_attention_layernorm", "ffn_norm",
"block_sparse_moe.gate", "ffn_inp", }
).Replace(n)
} }
func (*gemma) addOne(_ string, data []float32, shape []uint64) ([]float32, error) { func (*gemmaModel) addOne(_ string, data []float32, shape []uint64) ([]float32, error) {
n := tensor.New(tensor.WithShape(int(shape[0])), tensor.WithBacking(data)) n := tensor.New(tensor.WithShape(int(shape[0])), tensor.WithBacking(data))
ones := tensor.Ones(tensor.Float32, int(shape[0])) ones := tensor.Ones(tensor.Float32, int(shape[0]))

43
convert/convert_gemma2.go Normal file
View File

@@ -0,0 +1,43 @@
package convert
import (
"github.com/ollama/ollama/llm"
)
type gemma2Model struct {
gemmaModel
SlidingWindow uint32 `json:"sliding_window"`
AttentionLogitSoftcap float32 `json:"attn_logit_softcapping"`
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
}
func (p *gemma2Model) KV(t *Tokenizer) llm.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "gemma2"
kv["gemma2.context_length"] = p.MaxPositionEmbeddings
kv["gemma2.embedding_length"] = p.HiddenSize
kv["gemma2.block_count"] = p.HiddenLayers
kv["gemma2.feed_forward_length"] = p.IntermediateSize
kv["gemma2.attention.head_count"] = p.NumAttentionHeads
kv["gemma2.attention.head_count_kv"] = p.NumKeyValueHeads
kv["gemma2.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
kv["gemma2.attention.key_length"] = p.HeadDim
kv["gemma2.attention.value_length"] = p.HeadDim
kv["gemma2.attention.sliding_window"] = p.SlidingWindow
kv["gemma2.attn_logit_softcapping"] = p.AttentionLogitSoftcap
kv["gemma2.final_logit_softcapping"] = p.FinalLogitSoftcap
kv["tokenizer.ggml.eot_token_id"] = uint32(107)
kv["tokenizer.ggml.middle_token_id"] = uint32(68)
kv["tokenizer.ggml.prefix_token_id"] = uint32(67)
kv["tokenizer.ggml.suffix_token_id"] = uint32(69)
return kv
}
func (p *gemma2Model) Replacements() []string {
return append(
p.gemmaModel.Replacements(),
"post_attention_layernorm", "post_attention_norm",
"pre_feedforward_layernorm", "ffn_norm",
"post_feedforward_layernorm", "post_ffw_norm",
)
}

View File

@@ -0,0 +1,91 @@
package convert
import (
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/llm"
)
type gemma2Adapter struct {
AdapterParameters
}
var _ AdapterConverter = (*gemma2Adapter)(nil)
func (p *gemma2Adapter) KV(baseKV llm.KV) llm.KV {
kv := p.AdapterParameters.KV()
kv["general.architecture"] = "gemma2"
return kv
}
func (p *gemma2Adapter) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
for _, t := range ts {
shape := t.Shape()
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
(strings.HasSuffix(t.Name(), "weight.lora_b") && shape[0] < shape[1]) {
shape[0], shape[1] = shape[1], shape[0]
t.SetRepacker(p.repack)
}
out = append(out, llm.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (p *gemma2Adapter) Replacements() []string {
return []string{
"base_model.model.", "",
"model.layers", "blk",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"mlp.gate_proj", "ffn_gate",
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
"lora_A.weight", "weight.lora_a",
"lora_B.weight", "weight.lora_b",
"lora_a", "weight.lora_a",
"lora_b", "weight.lora_b",
}
}
func (p *gemma2Adapter) repack(name string, data []float32, shape []uint64) ([]float32, error) {
dims := []int{int(shape[1]), int(shape[0])}
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
if err := n.T(1, 0); err != nil {
return nil, err
}
if err := n.Reshape(dims...); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 1)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}

View File

@@ -3,6 +3,7 @@ package convert
import ( import (
"cmp" "cmp"
"fmt" "fmt"
"math"
"strings" "strings"
"github.com/pdevine/tensor" "github.com/pdevine/tensor"
@@ -11,8 +12,8 @@ import (
"github.com/ollama/ollama/llm" "github.com/ollama/ollama/llm"
) )
type llama struct { type llamaModel struct {
Parameters ModelParameters
NLayers uint32 `json:"n_layers"` NLayers uint32 `json:"n_layers"`
NumHiddenLayers uint32 `json:"num_hidden_layers"` NumHiddenLayers uint32 `json:"num_hidden_layers"`
NLayer uint32 `json:"n_layer"` NLayer uint32 `json:"n_layer"`
@@ -27,8 +28,14 @@ type llama struct {
NumKeyValueHeads uint32 `json:"num_key_value_heads"` NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RopeTheta float32 `json:"rope_theta"` RopeTheta float32 `json:"rope_theta"`
RopeScaling struct { RopeScaling struct {
Type string `json:"type"` Type string `json:"type"`
Factor float32 `json:"factor"` RopeType string `json:"rope_type"`
Factor float32 `json:"factor"`
LowFrequencyFactor float32 `json:"low_freq_factor"`
HighFrequencyFactor float32 `json:"high_freq_factor"`
OriginalMaxPositionalEmbeddings uint32 `json:"original_max_positional_embeddings"`
factors ropeFactor
} `json:"rope_scaling"` } `json:"rope_scaling"`
RMSNormEPS float32 `json:"rms_norm_eps"` RMSNormEPS float32 `json:"rms_norm_eps"`
LayerNormEPS float32 `json:"layer_norm_eps"` LayerNormEPS float32 `json:"layer_norm_eps"`
@@ -37,12 +44,11 @@ type llama struct {
HeadDim uint32 `json:"head_dim"` HeadDim uint32 `json:"head_dim"`
} }
var _ Converter = (*llama)(nil) var _ ModelConverter = (*llamaModel)(nil)
func (p *llama) KV(t *Tokenizer) llm.KV { func (p *llamaModel) KV(t *Tokenizer) llm.KV {
kv := p.Parameters.KV(t) kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "llama" kv["general.architecture"] = "llama"
kv["general.name"] = "llama"
kv["llama.vocab_size"] = p.VocabSize kv["llama.vocab_size"] = p.VocabSize
kv["llama.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer) kv["llama.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer)
@@ -71,6 +77,27 @@ func (p *llama) KV(t *Tokenizer) llm.KV {
if p.RopeScaling.Type == "linear" { if p.RopeScaling.Type == "linear" {
kv["llama.rope.scaling.type"] = p.RopeScaling.Type kv["llama.rope.scaling.type"] = p.RopeScaling.Type
kv["llama.rope.scaling.factor"] = p.RopeScaling.Factor kv["llama.rope.scaling.factor"] = p.RopeScaling.Factor
} else if p.RopeScaling.RopeType == "llama3" {
dim := p.HiddenSize / p.NumAttentionHeads
for i := uint32(0); i < dim; i += 2 {
factor := cmp.Or(p.RopeScaling.Factor, 8.0)
factorLow := cmp.Or(p.RopeScaling.LowFrequencyFactor, 1.0)
factorHigh := cmp.Or(p.RopeScaling.HighFrequencyFactor, 4.0)
original := cmp.Or(p.RopeScaling.OriginalMaxPositionalEmbeddings, 8192)
lambdaLow := float32(original) / factorLow
lambdaHigh := float32(original) / factorHigh
lambda := 2 * math.Pi * math.Pow(float64(p.RopeTheta), float64(i)/float64(dim))
if lambda < float64(lambdaHigh) {
p.RopeScaling.factors = append(p.RopeScaling.factors, 1.0)
} else if lambda > float64(lambdaLow) {
p.RopeScaling.factors = append(p.RopeScaling.factors, factor)
} else {
smooth := (float32(original)/float32(lambda) - factorLow) / (factorHigh - factorLow)
p.RopeScaling.factors = append(p.RopeScaling.factors, 1.0/((1-smooth)/factor+smooth))
}
}
} }
if p.NumKeyValueHeads > 0 { if p.NumKeyValueHeads > 0 {
@@ -90,24 +117,29 @@ func (p *llama) KV(t *Tokenizer) llm.KV {
kv["llama.attention.value_length"] = p.HeadDim kv["llama.attention.value_length"] = p.HeadDim
} }
if len(t.Merges) > 0 {
kv["tokenizer.ggml.merges"] = t.Merges
}
return kv return kv
} }
func (p *llama) Tensors(ts []Tensor) []llm.Tensor { func (p *llamaModel) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor var out []llm.Tensor
if p.RopeScaling.factors != nil {
out = append(out, llm.Tensor{
Name: "rope_freqs.weight",
Kind: 0,
Shape: []uint64{uint64(len(p.RopeScaling.factors))},
WriterTo: p.RopeScaling.factors,
})
}
for _, t := range ts { for _, t := range ts {
name := p.tensorName(t.Name()) if strings.HasSuffix(t.Name(), "attn_q.weight") ||
if strings.HasSuffix(name, "attn_q.weight") || strings.HasSuffix(t.Name(), "attn_k.weight") {
strings.HasSuffix(name, "attn_k.weight") {
t.SetRepacker(p.repack) t.SetRepacker(p.repack)
} }
out = append(out, llm.Tensor{ out = append(out, llm.Tensor{
Name: name, Name: t.Name(),
Kind: t.Kind(), Kind: t.Kind(),
Shape: t.Shape(), Shape: t.Shape(),
WriterTo: t, WriterTo: t,
@@ -117,8 +149,8 @@ func (p *llama) Tensors(ts []Tensor) []llm.Tensor {
return out return out
} }
func (p *llama) tensorName(n string) string { func (p *llamaModel) Replacements() []string {
return strings.NewReplacer( return []string{
"lm_head", "output", "lm_head", "output",
"model.embed_tokens", "token_embd", "model.embed_tokens", "token_embd",
"model.norm", "output_norm", "model.norm", "output_norm",
@@ -132,21 +164,19 @@ func (p *llama) tensorName(n string) string {
"mlp.down_proj", "ffn_down", "mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up", "mlp.up_proj", "ffn_up",
"post_attention_layernorm", "ffn_norm", "post_attention_layernorm", "ffn_norm",
// mixtral }
"block_sparse_moe.gate", "ffn_gate_inp",
).Replace(n)
} }
func (p *llama) repack(name string, data []float32, shape []uint64) ([]float32, error) { func (p *llamaModel) repack(name string, data []float32, shape []uint64) ([]float32, error) {
var dims []int var dims []int
for _, dim := range shape { for _, dim := range shape {
dims = append(dims, int(dim)) dims = append(dims, int(dim))
} }
var heads uint32 var heads uint32
if strings.HasSuffix(name, "q_proj.weight") { if strings.HasSuffix(name, "attn_q.weight") {
heads = p.NumAttentionHeads heads = p.NumAttentionHeads
} else if strings.HasSuffix(name, "k_proj.weight") { } else if strings.HasSuffix(name, "attn_k.weight") {
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads) heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
} else { } else {
return nil, fmt.Errorf("unknown tensor for repack: %s", name) return nil, fmt.Errorf("unknown tensor for repack: %s", name)

View File

@@ -0,0 +1,169 @@
package convert
import (
"cmp"
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/llm"
)
type llamaAdapter struct {
AdapterParameters
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
}
var _ AdapterConverter = (*llamaAdapter)(nil)
func (p *llamaAdapter) KV(baseKV llm.KV) llm.KV {
kv := p.AdapterParameters.KV()
kv["general.architecture"] = "llama"
kv["llama.attention.head_count"] = baseKV["llama.attention.head_count"]
kv["llama.attention.head_count_kv"] = baseKV["llama.attention.head_count_kv"]
p.NumAttentionHeads = baseKV["llama.attention.head_count"].(uint32)
return kv
}
func (p *llamaAdapter) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
for _, t := range ts {
shape := t.Shape()
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
(strings.HasSuffix(t.Name(), "weight.lora_b") && shape[0] < shape[1]) {
shape[0], shape[1] = shape[1], shape[0]
t.SetRepacker(p.repackAndTranspose)
} else {
t.SetRepacker(p.repack)
}
out = append(out, llm.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: shape,
WriterTo: t,
})
}
return out
}
func (p *llamaAdapter) Replacements() []string {
return []string{
"base_model.model.", "",
"model.layers", "blk",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"mlp.gate_proj", "ffn_gate",
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
"lora_A.weight", "weight.lora_a",
"lora_B.weight", "weight.lora_b",
"lora_a", "weight.lora_a",
"lora_b", "weight.lora_b",
}
}
func (p *llamaAdapter) repack(name string, data []float32, shape []uint64) ([]float32, error) {
dims := []int{int(shape[1]), int(shape[0])}
var heads uint32
if strings.HasSuffix(name, "attn_q.weight.lora_a") {
heads = p.NumAttentionHeads
} else if strings.HasSuffix(name, "attn_k.weight.lora_a") {
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
} else {
return data, nil
}
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
return nil, err
}
if err := n.T(0, 2, 1, 3); err != nil {
return nil, err
}
if err := n.Reshape(dims...); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 1)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}
func (p *llamaAdapter) repackAndTranspose(name string, data []float32, shape []uint64) ([]float32, error) {
dims := []int{int(shape[1]), int(shape[0])}
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
var heads uint32
if strings.HasSuffix(name, "attn_q.weight.lora_a") {
heads = p.NumAttentionHeads
} else if strings.HasSuffix(name, "attn_k.weight.lora_a") {
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
}
if heads > 0 {
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
return nil, err
}
if err := n.T(0, 2, 1, 3); err != nil {
return nil, err
}
if err := n.Reshape(dims...); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
}
if err := n.T(1, 0); err != nil {
return nil, err
}
if err := n.Reshape(dims...); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 1)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}

View File

@@ -9,16 +9,14 @@ import (
"github.com/ollama/ollama/llm" "github.com/ollama/ollama/llm"
) )
type mixtral struct { type mixtralModel struct {
llama llamaModel
NumLocalExperts uint32 `json:"num_local_experts"` NumLocalExperts uint32 `json:"num_local_experts"`
NumExpertsPerToken uint32 `json:"num_experts_per_tok"` NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
} }
var _ Converter = (*mixtral)(nil) func (p *mixtralModel) KV(t *Tokenizer) llm.KV {
kv := p.llamaModel.KV(t)
func (p *mixtral) KV(t *Tokenizer) llm.KV {
kv := p.llama.KV(t)
if p.NumLocalExperts > 0 { if p.NumLocalExperts > 0 {
kv["llama.expert_count"] = p.NumLocalExperts kv["llama.expert_count"] = p.NumLocalExperts
@@ -31,7 +29,7 @@ func (p *mixtral) KV(t *Tokenizer) llm.KV {
return kv return kv
} }
func (p *mixtral) Tensors(ts []Tensor) []llm.Tensor { func (p *mixtralModel) Tensors(ts []Tensor) []llm.Tensor {
oldnew := []string{ oldnew := []string{
"model.layers", "blk", "model.layers", "blk",
"w1", "ffn_gate_exps", "w1", "ffn_gate_exps",
@@ -69,7 +67,14 @@ func (p *mixtral) Tensors(ts []Tensor) []llm.Tensor {
}) })
} }
return append(out, p.llama.Tensors(ts)...) return append(out, p.llamaModel.Tensors(ts)...)
}
func (p *mixtralModel) Replacements() []string {
return append(
p.llamaModel.Replacements(),
"block_sparse_moe.gate", "ffn_gate_inp",
)
} }
type experts []Tensor type experts []Tensor

123
convert/convert_phi3.go Normal file
View File

@@ -0,0 +1,123 @@
package convert
import (
"cmp"
"encoding/binary"
"io"
"math"
"strings"
"sync"
"github.com/ollama/ollama/llm"
)
type phi3Model struct {
ModelParameters
NumHiddenLayers uint32 `json:"num_hidden_layers"`
NLayers uint32 `json:"n_layers"`
HiddenSize uint32 `json:"hidden_size"`
NEmbd uint32 `json:"n_embd"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NHead uint32 `json:"n_head"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
NHeadKV uint32 `json:"n_head_kv"`
RopeTheta float32 `json:"rope_theta"`
RopeScaling struct {
Type string `json:"type"`
LongFactor ropeFactor `json:"long_factor"`
ShortFactor ropeFactor `json:"short_factor"`
} `json:"rope_scaling"`
RMSNormEPS float32 `json:"rms_norm_eps"`
NPositions uint32 `json:"n_positions"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
SlidingWindow uint32 `json:"sliding_window"`
}
var _ ModelConverter = (*phi3Model)(nil)
func (p *phi3Model) KV(t *Tokenizer) llm.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "phi3"
kv["phi3.context_length"] = p.MaxPositionEmbeddings
kv["phi3.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd)
kv["phi3.feed_forward_length"] = p.IntermediateSize
kv["phi3.block_count"] = cmp.Or(p.NumHiddenLayers, p.NLayers)
kv["phi3.attention.head_count"] = cmp.Or(p.NumAttentionHeads, p.NHead)
kv["phi3.attention.head_count_kv"] = cmp.Or(p.NumKeyValueHeads, p.NHeadKV)
kv["phi3.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
kv["phi3.rope.dimension_count"] = p.HiddenSize / cmp.Or(p.NumAttentionHeads, p.NHead)
kv["phi3.rope.freq_base"] = p.RopeTheta
kv["phi3.rope.scaling.original_context_length"] = p.OriginalMaxPositionEmbeddings
kv["phi3.attention.sliding_window"] = p.SlidingWindow
scale := float64(p.MaxPositionEmbeddings) / float64(p.OriginalMaxPositionEmbeddings)
switch p.RopeScaling.Type {
case "":
// no scaling
case "su", "longrope":
kv["phi3.rope.scaling.attn_factor"] = float32(max(math.Sqrt(1+math.Log(scale)/math.Log(float64(p.OriginalMaxPositionEmbeddings))), 1.0))
case "yarn":
kv["phi3.rope.scaling.attn_factor"] = float32(max(0.1*math.Log(scale)+1.0, 1.0))
default:
panic("unknown rope scaling type")
}
return kv
}
func (p *phi3Model) Tensors(ts []Tensor) []llm.Tensor {
var addRopeFactors sync.Once
out := make([]llm.Tensor, 0, len(ts)+2)
for _, t := range ts {
if strings.HasPrefix(t.Name(), "blk.0.") {
addRopeFactors.Do(func() {
out = append(out, llm.Tensor{
Name: "rope_factors_long.weight",
Kind: 0,
Shape: []uint64{uint64(len(p.RopeScaling.LongFactor))},
WriterTo: p.RopeScaling.LongFactor,
}, llm.Tensor{
Name: "rope_factors_short.weight",
Kind: 0,
Shape: []uint64{uint64(len(p.RopeScaling.ShortFactor))},
WriterTo: p.RopeScaling.ShortFactor,
})
})
}
out = append(out, llm.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (p *phi3Model) Replacements() []string {
return []string{
"lm_head", "output",
"model.embed_tokens", "token_embd",
"model.norm", "output_norm",
"model.layers", "blk",
"input_layernorm", "attn_norm",
"self_attn.qkv_proj", "attn_qkv",
"self_attn.o_proj", "attn_output",
"mlp.down_proj", "ffn_down",
"mlp.gate_up_proj", "ffn_up",
"post_attention_layernorm", "ffn_norm",
}
}
type ropeFactor []float32
func (r ropeFactor) WriteTo(w io.Writer) (int64, error) {
err := binary.Write(w, binary.LittleEndian, r)
return 0, err
}

View File

@@ -1,7 +1,9 @@
package convert package convert
import ( import (
"bytes"
"crypto/sha256" "crypto/sha256"
"encoding/binary"
"encoding/hex" "encoding/hex"
"encoding/json" "encoding/json"
"flag" "flag"
@@ -29,7 +31,7 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, llm.Tensors) {
} }
defer f.Close() defer f.Close()
if err := Convert(fsys, f); err != nil { if err := ConvertModel(fsys, f); err != nil {
t.Fatal(err) t.Fatal(err)
} }
@@ -51,6 +53,34 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, llm.Tensors) {
return r, m.KV(), m.Tensors() return r, m.KV(), m.Tensors()
} }
func generateResultsJSON(t *testing.T, f *os.File, kv llm.KV, tensors llm.Tensors) map[string]string {
actual := make(map[string]string)
for k, v := range kv {
if s, ok := v.(json.Marshaler); !ok {
actual[k] = fmt.Sprintf("%v", v)
} else {
bts, err := json.Marshal(s)
if err != nil {
t.Fatal(err)
}
actual[k] = fmt.Sprintf("%x", sha256.Sum256(bts))
}
}
for _, tensor := range tensors.Items {
sha256sum := sha256.New()
sr := io.NewSectionReader(f, int64(tensors.Offset+tensor.Offset), int64(tensor.Size()))
if _, err := io.Copy(sha256sum, sr); err != nil {
t.Fatal(err)
}
actual[tensor.Name] = hex.EncodeToString(sha256sum.Sum(nil))
}
return actual
}
func TestMain(m *testing.M) { func TestMain(m *testing.M) {
var level slog.Level var level slog.Level
flag.TextVar(&level, "level", slog.LevelInfo, "log level") flag.TextVar(&level, "level", slog.LevelInfo, "log level")
@@ -62,9 +92,14 @@ func TestMain(m *testing.M) {
func TestConvertFull(t *testing.T) { func TestConvertFull(t *testing.T) {
cases := []string{ cases := []string{
"Meta-Llama-3-8B-Instruct", "Meta-Llama-3-8B-Instruct",
"Meta-Llama-3.1-8B-Instruct",
"Mistral-7B-Instruct-v0.2", "Mistral-7B-Instruct-v0.2",
"Mixtral-8x7B-Instruct-v0.1", "Mixtral-8x7B-Instruct-v0.1",
"gemma-2b-it", "gemma-2b-it",
// microsoft/Phi-3-mini-128-instruct@d548c233192db00165d842bf8edff054bb3212f8
"Phi-3-mini-128k-instruct",
"all-MiniLM-L6-v2",
"gemma-2-9b-it",
} }
for i := range cases { for i := range cases {
@@ -80,29 +115,7 @@ func TestConvertFull(t *testing.T) {
} }
f, kv, tensors := convertFull(t, os.DirFS(p)) f, kv, tensors := convertFull(t, os.DirFS(p))
actual := make(map[string]string) actual := generateResultsJSON(t, f, kv, tensors)
for k, v := range kv {
if s, ok := v.(json.Marshaler); !ok {
actual[k] = fmt.Sprintf("%v", v)
} else {
bts, err := json.Marshal(s)
if err != nil {
t.Fatal(err)
}
actual[k] = fmt.Sprintf("%x", sha256.Sum256(bts))
}
}
for _, tensor := range tensors.Items {
sha256sum := sha256.New()
sr := io.NewSectionReader(f, int64(tensors.Offset+tensor.Offset), int64(tensor.Size()))
if _, err := io.Copy(sha256sum, sr); err != nil {
t.Fatal(err)
}
actual[tensor.Name] = hex.EncodeToString(sha256sum.Sum(nil))
}
expectFile, err := os.Open(filepath.Join("testdata", fmt.Sprintf("%s.json", tt))) expectFile, err := os.Open(filepath.Join("testdata", fmt.Sprintf("%s.json", tt)))
if err != nil { if err != nil {
@@ -126,3 +139,209 @@ func TestConvertFull(t *testing.T) {
}) })
} }
} }
func TestConvertAdapter(t *testing.T) {
type AdapterCase struct {
Name string
BaseKV map[string]any
Expected map[string]string
}
cases := []AdapterCase{
{
Name: "discollama",
BaseKV: map[string]any{
"general.architecture": "llama",
"llama.attention.head_count": uint32(32),
"llama.attention.head_count_kv": uint32(8),
},
Expected: map[string]string{
"general.architecture": "llama",
"general.file_type": "1",
"general.parameter_count": "106496",
"general.type": "adapter",
"general.version": "v0.2",
"adapter.lora.alpha": "16",
"adapter.type": "lora",
"llama.attention.head_count": "32",
"llama.attention.head_count_kv": "8",
"blk.31.attn_q.weight.lora_a": "0eb3318b02cd313429bcc7621b539fdbb10240fea190c56c9e5f93fcd37a4e50",
"blk.31.attn_q.weight.lora_b": "0eb3318b02cd313429bcc7621b539fdbb10240fea190c56c9e5f93fcd37a4e50",
"blk.31.attn_v.weight.lora_a": "0eb3318b02cd313429bcc7621b539fdbb10240fea190c56c9e5f93fcd37a4e50",
"blk.31.attn_v.weight.lora_b": "071dcafe89df065d6e1c935ecb8fdf6479b3c202eb912e7da938597673ff5857",
},
},
}
for _, c := range cases {
t.Run(c.Name, func(t *testing.T) {
t.Parallel()
f, err := os.CreateTemp(t.TempDir(), "f16")
if err != nil {
t.Fatal(err)
}
defer f.Close()
tempDir := t.TempDir()
generateLoraTestData(t, tempDir)
if err = ConvertAdapter(os.DirFS(tempDir), f, c.BaseKV); err != nil {
t.Fatal(err)
}
r, err := os.Open(f.Name())
if err != nil {
t.Fatal(err)
}
defer r.Close()
m, _, err := llm.DecodeGGML(r, math.MaxInt)
if err != nil {
t.Fatal(err)
}
if _, err := r.Seek(0, io.SeekStart); err != nil {
t.Fatal(err)
}
actual := generateResultsJSON(t, r, m.KV(), m.Tensors())
keys := maps.Keys(c.Expected)
slices.Sort(keys)
for _, k := range keys {
if v, ok := actual[k]; !ok {
t.Errorf("missing %s", k)
} else if v != c.Expected[k] {
t.Errorf("unexpected %s: want %s, got %s", k, c.Expected[k], v)
}
}
})
}
}
func generateLoraTestData(t *testing.T, tempDir string) {
type tensorData struct {
Offsets []int `json:"data_offsets"`
Type string `json:"dtype"`
Shape []int `json:"shape"`
}
offset := 4096 * 8 * 4
td := map[string]*tensorData{"__metadata__": nil}
td["model.layers.31.self_attn.q_proj.lora_a"] = &tensorData{
Offsets: []int{0, offset},
Type: "F32",
Shape: []int{4096, 8},
}
td["model.layers.31.self_attn.q_proj.lora_b"] = &tensorData{
Offsets: []int{offset, offset * 2},
Type: "F32",
Shape: []int{8, 4096},
}
td["model.layers.31.self_attn.v_proj.lora_a"] = &tensorData{
Offsets: []int{offset * 2, offset * 3},
Type: "F32",
Shape: []int{4096, 8},
}
td["model.layers.31.self_attn.v_proj.lora_b"] = &tensorData{
Offsets: []int{offset * 3, offset*3 + 8*1024*4},
Type: "F32",
Shape: []int{8, 1024},
}
data, err := json.Marshal(td)
if err != nil {
t.Fatal(err)
}
var buf bytes.Buffer
l := int64(len(data))
err = binary.Write(&buf, binary.LittleEndian, l)
if err != nil {
t.Fatal(err)
}
_, err = buf.Write(data)
if err != nil {
t.Fatal(err)
}
// write some data for the tensors
ones := make([]float32, 4096*8)
for i := range ones {
ones[i] = float32(1)
}
for range 3 {
err = binary.Write(&buf, binary.LittleEndian, ones)
if err != nil {
t.Fatal(err)
}
}
ones = make([]float32, 1024*8)
for i := range ones {
ones[i] = float32(1)
}
err = binary.Write(&buf, binary.LittleEndian, ones)
if err != nil {
t.Fatal(err)
}
fdata, err := os.Create(filepath.Join(tempDir, "adapters.safetensors"))
if err != nil {
t.Fatal(err)
}
defer fdata.Close()
_, err = fdata.Write(buf.Bytes())
if err != nil {
t.Fatal(err)
}
configData := `
{
"adapter_path": "adapters-test",
"batch_size": 8,
"config": "config-tiny.json",
"data": "../discollama-completion",
"grad_checkpoint": null,
"iters": 1000,
"learning_rate": 1e-05,
"lora_layers": 1,
"lora_parameters": {
"rank": 8,
"alpha": 16,
"dropout": 0.0,
"scale": 2.0
},
"lr_schedule": null,
"max_seq_length": 2048,
"model": "/Users/pdevine/git/Meta-Llama-3-8B-Instruct",
"resume_adapter_file": null,
"save_every": 100,
"seed": 0,
"steps_per_eval": 200,
"steps_per_report": 10,
"test": false,
"test_batches": 500,
"train": true,
"use_dora": false,
"val_batches": 25
}
`
f, err := os.Create(filepath.Join(tempDir, "adapter_config.json"))
if err != nil {
t.Fatal(err)
}
defer f.Close()
_, err = f.WriteString(configData)
if err != nil {
t.Fatal(err)
}
}

View File

@@ -35,7 +35,9 @@ const (
) )
func (t tensorBase) Kind() uint32 { func (t tensorBase) Kind() uint32 {
if strings.HasSuffix(t.name, ".block_sparse_moe.gate.weight") { if strings.HasSuffix(t.name, ".ffn_gate_inp.weight") ||
t.name == "token_types.weight" {
// these tensors are always F32
return 0 return 0
} }
@@ -55,13 +57,15 @@ func (t *tensorBase) SetRepacker(fn repacker) {
type repacker func(string, []float32, []uint64) ([]float32, error) type repacker func(string, []float32, []uint64) ([]float32, error)
func parseTensors(fsys fs.FS) ([]Tensor, error) { func parseTensors(fsys fs.FS, replacer *strings.Replacer) ([]Tensor, error) {
patterns := []struct { patterns := []struct {
Pattern string Pattern string
Func func(fs.FS, ...string) ([]Tensor, error) Func func(fs.FS, *strings.Replacer, ...string) ([]Tensor, error)
}{ }{
{"model-*-of-*.safetensors", parseSafetensors}, {"model-*-of-*.safetensors", parseSafetensors},
{"model.safetensors", parseSafetensors}, {"model.safetensors", parseSafetensors},
{"adapters.safetensors", parseSafetensors},
{"adapter_model.safetensors", parseSafetensors},
{"pytorch_model-*-of-*.bin", parseTorch}, {"pytorch_model-*-of-*.bin", parseTorch},
{"pytorch_model.bin", parseTorch}, {"pytorch_model.bin", parseTorch},
{"consolidated.*.pth", parseTorch}, {"consolidated.*.pth", parseTorch},
@@ -74,7 +78,7 @@ func parseTensors(fsys fs.FS) ([]Tensor, error) {
} }
if len(matches) > 0 { if len(matches) > 0 {
return pattern.Func(fsys, matches...) return pattern.Func(fsys, replacer, matches...)
} }
} }

View File

@@ -8,6 +8,7 @@ import (
"io" "io"
"io/fs" "io/fs"
"slices" "slices"
"strings"
"github.com/d4l3k/go-bfloat16" "github.com/d4l3k/go-bfloat16"
"github.com/x448/float16" "github.com/x448/float16"
@@ -20,7 +21,7 @@ type safetensorMetadata struct {
Offsets []int64 `json:"data_offsets"` Offsets []int64 `json:"data_offsets"`
} }
func parseSafetensors(fsys fs.FS, ps ...string) ([]Tensor, error) { func parseSafetensors(fsys fs.FS, replacer *strings.Replacer, ps ...string) ([]Tensor, error) {
var ts []Tensor var ts []Tensor
for _, p := range ps { for _, p := range ps {
f, err := fsys.Open(p) f, err := fsys.Open(p)
@@ -56,7 +57,7 @@ func parseSafetensors(fsys fs.FS, ps ...string) ([]Tensor, error) {
offset: safetensorsPad(n, value.Offsets[0]), offset: safetensorsPad(n, value.Offsets[0]),
size: safetensorsPad(n, value.Offsets[1]) - safetensorsPad(n, value.Offsets[0]), size: safetensorsPad(n, value.Offsets[1]) - safetensorsPad(n, value.Offsets[0]),
tensorBase: &tensorBase{ tensorBase: &tensorBase{
name: key, name: replacer.Replace(key),
shape: value.Shape, shape: value.Shape,
}, },
}) })

View File

@@ -3,12 +3,13 @@ package convert
import ( import (
"io" "io"
"io/fs" "io/fs"
"strings"
"github.com/nlpodyssey/gopickle/pytorch" "github.com/nlpodyssey/gopickle/pytorch"
"github.com/nlpodyssey/gopickle/types" "github.com/nlpodyssey/gopickle/types"
) )
func parseTorch(fsys fs.FS, ps ...string) ([]Tensor, error) { func parseTorch(fsys fs.FS, replacer *strings.Replacer, ps ...string) ([]Tensor, error) {
var ts []Tensor var ts []Tensor
for _, p := range ps { for _, p := range ps {
pt, err := pytorch.Load(p) pt, err := pytorch.Load(p)
@@ -27,7 +28,7 @@ func parseTorch(fsys fs.FS, ps ...string) ([]Tensor, error) {
ts = append(ts, torch{ ts = append(ts, torch{
storage: t.(*pytorch.Tensor).Source, storage: t.(*pytorch.Tensor).Source,
tensorBase: &tensorBase{ tensorBase: &tensorBase{
name: k.(string), name: replacer.Replace(k.(string)),
shape: shape, shape: shape,
}, },
}) })

View File

@@ -0,0 +1,3 @@
{
"rope_freqs.weight": "80fd5efb2f729381785b293a091a268cfeceb0079167f6ece9b07070e662b222"
}

View File

@@ -0,0 +1,225 @@
{
"general.architecture": "phi3",
"general.file_type": "1",
"general.quantization_version": "2",
"phi3.block_count": "32",
"phi3.context_length": "131072",
"phi3.embedding_length": "3072",
"phi3.feed_forward_length": "8192",
"phi3.rope.scaling.original_context_length": "4096",
"phi3.rope.dimension_count": "96",
"phi3.rope.freq_base": "10000",
"phi3.rope.scaling.attn_factor": "1.1902381",
"phi3.attention.head_count": "32",
"phi3.attention.head_count_kv": "32",
"phi3.attention.layer_norm_rms_epsilon": "1e-05",
"phi3.attention.sliding_window": "262144",
"tokenizer.ggml.model": "llama",
"tokenizer.ggml.pre": "default",
"tokenizer.ggml.add_bos_token": "false",
"tokenizer.ggml.add_eos_token": "false",
"tokenizer.ggml.bos_token_id": "1",
"tokenizer.ggml.eos_token_id": "32000",
"tokenizer.ggml.unknown_token_id": "0",
"tokenizer.ggml.padding_token_id": "32000",
"tokenizer.ggml.scores": "6e37bcde2adc7e350e87c496eddd7a2124329c1dc66c5bf3ad3997253e4f7a62",
"tokenizer.ggml.token_type": "b6ecf55ec64ee67d87750bdb8d757a2c58bf78377e9f4219f5689a6c4dea57ce",
"tokenizer.ggml.tokens": "d168da3ddd3eee820916945fcb9baf24dd3cde42f606cffa2d19e7c8a8743918",
"blk.0.attn_norm.weight": "216aeb2c9e0c271f899e1ef2a63cceeb8f41e97642e84fada54b1d3c1c11cf25",
"blk.0.attn_output.weight": "b597d56f7188ffc1fafc273fadc59d41738cffd677ae98c61a62c3285b3a3099",
"blk.0.attn_qkv.weight": "d28a6b44e13f59be5483e4be2bedb544e346168d720aca27f47d1a5a722be91e",
"blk.0.ffn_down.weight": "4a691370e5a61fcbbf540fbcbf4c0f1d15dec0364528c0e916d0744f6262b63b",
"blk.0.ffn_norm.weight": "0c00af2b4a3128bec64a0cbb1084b042fdbe13d9ad0d03bd577f9449dfead338",
"blk.0.ffn_up.weight": "b32b52f790c1c083bfb8a3126dc1111cfeeb28dc8c584a930a1e5334cb176bf4",
"blk.1.attn_norm.weight": "68748011503c6c029e8e69a84a8e5a89338f378769627b6dbf7f93d715c292e1",
"blk.1.attn_output.weight": "2267344add13b048ca59e4377c86dc512be8046a57156901fa32a20fa74e4ee0",
"blk.1.attn_qkv.weight": "9109d2e3d7a2eacfda5226587b8be124a3bf44b972da7ebb17aa15795897eacc",
"blk.1.ffn_down.weight": "d675df4df4dd039c0c339ad6445d39eddd2004db6bf35bed6314c7497245a633",
"blk.1.ffn_norm.weight": "3b5767ae977bc8baaa06b06efdbea193b6b3ba605ce76d77a76ce317e935500c",
"blk.1.ffn_up.weight": "80dfd6d9d234b00334c89b8e0a02f81899c2efd377321c34ba5ba51a5f61b5ff",
"blk.2.attn_norm.weight": "6a6743b057e5088f145bc179e92c9bfb41163e7295d7b81c62e23dd89d2b59c4",
"blk.2.attn_output.weight": "bc5491ea54e0db81462d7d9b7d25cbdda380c2db8de041bd1c4ab7b76a1d19c3",
"blk.2.attn_qkv.weight": "a61287a9852e2f5aca9c100b471d98398b2913a3497c743de3c70ec9ddd7087f",
"blk.2.ffn_down.weight": "4fddcc382c8dceeab027fe43d8d44e67edb5e8ce4b9a1b7f773c87770380ade1",
"blk.2.ffn_norm.weight": "07e05f82b3f63f711db3b684ca79aed25c0657917e66f88af47348a82065c227",
"blk.2.ffn_up.weight": "4835a682ef1826c12df01ae7663fc45f9c82bc8e64b665f13fb7da8e201ec0fb",
"blk.3.attn_norm.weight": "f22aba7c03999ba7136f39cda747a39715e498699dc1716cd97fc5dfc58d1b1c",
"blk.3.attn_output.weight": "53b579855366fd786c5126b2b30aac4d583ca7bda56833c4865f5cadb5c18c6d",
"blk.3.attn_qkv.weight": "bb56aba78158123140fcea59c69ac562ca208f6d3086819417cdad8c50f333ad",
"blk.3.ffn_down.weight": "97280897a7cd86db2830c004bccc5bc094f50e293baded0189159a2019145a6e",
"blk.3.ffn_norm.weight": "10a8c99f8b57a960e8e0a1133c4a26f9148403d1b9bff2eff114917de996f3b5",
"blk.3.ffn_up.weight": "7324046c915e75d621b2043597a245a428d8eea31869135e6257a861491d8dcc",
"blk.4.attn_norm.weight": "507d8e164de94646edbfe33def8e8fbf7c9a6ee3fbaedb5000f72d9f51ec5e36",
"blk.4.attn_output.weight": "bbb3429e6efa98c150e0fdbf48c16180cbf0d0cbc1b3c253c6c319d78f4593a2",
"blk.4.attn_qkv.weight": "b95ee5be0786d3901273d806c339fe6c20e6bfffd2a20672a9f56af80921e8ab",
"blk.4.ffn_down.weight": "806bbf91df92a5a22bd5aa1ffb7fc2869f7293ffc7704771c290ecc583b27975",
"blk.4.ffn_norm.weight": "cfc2930a81df7aee3a5e7f726a15c1182233e868bf0d9d37f6b6ae6d8c15c234",
"blk.4.ffn_up.weight": "c3390c69533de2c8424e8069323ccc5d0c4543111535da04cf2c7d26745576aa",
"blk.5.attn_norm.weight": "0d71c4fbcefabbd021569442853d2fe90668b19409ae2805a718a829ca60beab",
"blk.5.attn_output.weight": "10ebd93629112bf2df5c30dd0953a4a5e9020306768283181ed426934d47e14f",
"blk.5.attn_qkv.weight": "5cb05633369f12d4b00e0ff787736bd846856682115720ebc6cce05270c334f6",
"blk.5.ffn_down.weight": "e28bcc5094212eafc7476dbc5b7a520d25b79578cbf4229d698e2655956a80ad",
"blk.5.ffn_norm.weight": "b6f2c4cf9f34bb4d59989f96165c14a67dc1e266ad0a6d0fcc49f1add929e6ff",
"blk.5.ffn_up.weight": "0f9ef99423cc07ebedc0e9cfa95809f2d7108d910bb4ef97ebc0b0309c440750",
"blk.6.attn_norm.weight": "b3edcc47a42218234f7564d7470611b49401a41ae8cd42123f86557c69f5d7f2",
"blk.6.attn_output.weight": "eb9b7d257b388bb5b8fe0515e5c6873317239cb94cda236e4b6ada2a6c57c65c",
"blk.6.attn_qkv.weight": "eb968081f478c52f07bd9c2761741e982dba33cc4eeadeea3557d391b9ac2106",
"blk.6.ffn_down.weight": "1b8588bb7463206290322695577dcfced300895d6e6f4b26966c53a9ae2f0f84",
"blk.6.ffn_norm.weight": "1219c04b7770983c77814200eefe743f46d15328ea2b12711e44f8103eab08d3",
"blk.6.ffn_up.weight": "197ef287239fec47c55677f0fbb66eaf0644f775bc382de843971730721394f6",
"blk.7.attn_norm.weight": "b630ad08c80d564ed1c024384818e9fd3f22a36cd7a14aa96e7e2759a8285099",
"blk.7.attn_output.weight": "970255aa750828a47d6b9d399f9612b5bf25aefe7dadbcba41fc416d0d4067c1",
"blk.7.attn_qkv.weight": "ebb157c880293e6de8d629f263ba8853ed1dbdc02c311d43432bb8cfbb310739",
"blk.7.ffn_down.weight": "24bcd4db4cba844c89f878b81843c373dbbc0675e889d32c5b12e63384a7b670",
"blk.7.ffn_norm.weight": "b9c6f71001808ee873ce7db8056e4b53fb4cccec8b7f0f312899b575fae39d39",
"blk.7.ffn_up.weight": "979f1828d227455c26015a2a11afe9dd05f2bb97a8ba6b38c8dab3f50e627401",
"blk.8.attn_norm.weight": "4e8e347e3775010b7112ee630f2f4f2383be7ff64e6ca6154b9b22566552eaa6",
"blk.8.attn_output.weight": "65a44babf44a435a1829945211b3168f9ec78ac3cb7a049a733e93d11f0d6659",
"blk.8.attn_qkv.weight": "343ed07671da400b040812a4058482fa38284b5d9af9becfed07417fe26ce747",
"blk.8.ffn_down.weight": "7fb7e073e3c2c503c4e9d60efa0988fed7398d900cc003695fe3fffd3e188b82",
"blk.8.ffn_norm.weight": "b07c1f655d8593e3892a2cf73f8a0c19ce8e5cb613fafbe7cbd430da8ce4c57d",
"blk.8.ffn_up.weight": "8b26e14de54b3fdc2e2d3ea41720f9d9c236a93688c3b7fd7bf43f5fbb327c9b",
"blk.9.attn_norm.weight": "46394d408a8e316916177e6aa261de32e137a82d729c0b1800b072f0c38c39b6",
"blk.9.attn_output.weight": "d57f3d46107947a7073373a0b35d6ecf7759b5df15406f4a3590a60666af6b16",
"blk.9.attn_qkv.weight": "14bb8ace8c5453148f4b536e9f4279c813f31136716947256f5cca333448639c",
"blk.9.ffn_down.weight": "2b8d98e2b5ed68338f6e4de43bf7de0c4858cc69103cd5177725f7444eec7694",
"blk.9.ffn_norm.weight": "41a499dfd418cc4c6b8c12313f673f7e2cd4a3f9c4065eb6c4feb5eed02fb542",
"blk.9.ffn_up.weight": "143aab7533a64b17fbe201490a6f674bc7f0bd370c094500b2e100419073d1c2",
"blk.10.attn_norm.weight": "ebb670aafd36816a794347287269d8f1a5b19c1e3c0a1e38023bc19fdba9b073",
"blk.10.attn_output.weight": "b5d65bbc0ed5e49fdd9d754bc18163cd042a285024d0cf6f954c503bc8c877cb",
"blk.10.attn_qkv.weight": "f06b15bac88da798fa34a62b03eaac0dbe8b846020516603c387541f2d8dd672",
"blk.10.ffn_down.weight": "fb091fcd1b4de25d1bea94d1755e255cb02914a030d23e3a234e57b8d46bde6e",
"blk.10.ffn_norm.weight": "eb347bdf9c40414af87e13a8e72e40b31f004b50f7cb366f1a219ced60a61355",
"blk.10.ffn_up.weight": "ed2d52fc881a173f404fe8a1067862c9856d6c3e0d2e90a330a7aa394e3f84d1",
"blk.11.attn_norm.weight": "64e252603cf010a0e502ca39fdf8d0a196a79aec67c0d2bb9213fc0cb80c47d4",
"blk.11.attn_output.weight": "228e33e21c69f52efc74fdfc831bc9af271e44b2a29a3dced1d64e667ce36eb5",
"blk.11.attn_qkv.weight": "ab9ce6d4ef9e42ee0da3f20a7708a3bbc5e79e967b05fa86ba946a05e2eb63eb",
"blk.11.ffn_down.weight": "0ca133b7835c98dc77c25d64e4eb7873778bdb5e4d22d8b80f920f46865b43bd",
"blk.11.ffn_norm.weight": "02455741a0dfd161c79aa1ecc381901721f229fdcda5615622a629631fb61cfd",
"blk.11.ffn_up.weight": "9fecdcc099fbb8e23c6b1ea9294702a027f4a58d265543ec5e7be79b8f63b354",
"blk.12.attn_norm.weight": "783bb459911b1b3609a9b2bdfe272f1670add73b5471da738e07ac47e2e07dfd",
"blk.12.attn_output.weight": "1e1a914c9e48b857206ac5a1f7cead994bc1ea91d5d4fff8c834d73f2e38ef5d",
"blk.12.attn_qkv.weight": "5953e7185ccb87fb4dae8f9426ec86315d4c7794326e8ab59b3a95d4af2189f0",
"blk.12.ffn_down.weight": "a3eecf0f394f86e2cfb48a5940a5c50ca86d71883b2f79fcc642a935fabce0d4",
"blk.12.ffn_norm.weight": "0a4272e41373c23bd72f10d2d82930aa3a1480aac75832bfbf01cebf0b86b6a4",
"blk.12.ffn_up.weight": "06f42776de3a7ceac3025f26a7a8bd20e062233cce2bdaa2183470dc4b30b87d",
"blk.13.attn_norm.weight": "5915da60fb03e201fa649faba780e5fdf1c761c262b206e5415cf83181f65780",
"blk.13.attn_output.weight": "4dbf6eab074fa3835fd32bd631a8208e511037d5056d2fd3015735cca7674ef7",
"blk.13.attn_qkv.weight": "d3d8339a1c4782d9e73d77fdebe154d3c5b83ac40c9175b3e91a4977d08f876b",
"blk.13.ffn_down.weight": "de6772b46a55e1fd42b007637dfbf68b6598e5d5b61622da0935002e1e192d3a",
"blk.13.ffn_norm.weight": "5a640ea3b8c7be49c95a58a2327e10d8e8d9d142504bde5c8091613e5b961d7a",
"blk.13.ffn_up.weight": "f35e3545e4bd3531b2e843b5efd31dee0c13c807ee6386e65473ba67bbec30d0",
"blk.14.attn_norm.weight": "9b34986450b7c98b4927e81e61a816f9e84b1addc7c14926402100037aad6678",
"blk.14.attn_output.weight": "155d52efb23d366016d861a251d4d1f4a0c13699188c50d50dba016a0d8bfcd9",
"blk.14.attn_qkv.weight": "8e1415084e1f33c73a777f19e752489f4dd312cca047733e5ea643cd4a955e04",
"blk.14.ffn_down.weight": "a2a142226b94baa01ccb65bdea2b7418e49085c1d9c3c63e544e3112c58a25da",
"blk.14.ffn_norm.weight": "8aecfd9b0ae6affaea31a80c5c9a4a14b31deaa0db7bd8f6da2a64d23447921c",
"blk.14.ffn_up.weight": "0c1407237b8c1bd02f193346b5681926fe698a5055eac6a7450451b0f991707c",
"blk.15.attn_norm.weight": "e037bd19880bfa83d983200fb0c7866f8ad16c3ff5cc4b4f3a37ca7373870ff6",
"blk.15.attn_output.weight": "045fe4fc95cc129a1b92771b179c11b12845c4c088786c607f17bd98857e68e1",
"blk.15.attn_qkv.weight": "7621b7559705cab1d4dea1c69f76dbf9dc1c8837a203b656f484703b9c1b70ce",
"blk.15.ffn_down.weight": "7e5ac20e290bc60761e1cd972354fde225b7fa861048d44d9a0dd9b046d55f58",
"blk.15.ffn_norm.weight": "b6d830d88f1db1825687973c8c2b1a24c6fa84f07af8d0e3ef9c86009baca0b2",
"blk.15.ffn_up.weight": "dcda0957cd04fc45476774dba2bbf9aa89d6b05d5ca7b10ae6f73ad2c49b1cd3",
"blk.16.attn_norm.weight": "4ee9b70ba15cb2a08240f93990e90f5068c48fceb481f8e2186bec8b7214eb3f",
"blk.16.attn_output.weight": "315cfe5536658d2498192b2980eade15b2c9a4ff220e4011911457b1727fa103",
"blk.16.attn_qkv.weight": "3c8122e3ad637583b9dcde8ff3a323267d3014bb1f0f9771e5322260ca9ecc8d",
"blk.16.ffn_down.weight": "3b5fbebd5ee2b86cad96fb8a9b45a8770d08f82c1c8b74d7061e866f7020a18d",
"blk.16.ffn_norm.weight": "ffab69f20bda372de6e5878f0539163e2fc6ba113621ded95705fc3b1465c9f0",
"blk.16.ffn_up.weight": "0935ea3d258da42d6258406365f39f58ddaabfe97ea5977580db3635188f24a1",
"blk.17.attn_norm.weight": "f030441733f3d147b4a06a1eb4aeb8465c7c24d9c53bf4c48fe7e134d3629803",
"blk.17.attn_output.weight": "07a955ef09e8dc766ac0df647d0b2c69f23c4c69a7137654b4aad80303ed0eda",
"blk.17.attn_qkv.weight": "1c10688061e21e2fe12ad0cb54bf03895c1f83c3b0df743a42f548b52cbca1b2",
"blk.17.ffn_down.weight": "ebb9cc9836f41d88fdae2aa9a4355514e4edaec8d1577ffeb947a35204e77f52",
"blk.17.ffn_norm.weight": "50aff44f6528b13db5389f2ddcdb7676244947610bd7ffbff3f881c968c2a0d4",
"blk.17.ffn_up.weight": "d716537949582be33bde6b02e38f5a70081c9642a9fb05a61312126718b8d148",
"blk.18.attn_norm.weight": "0ea695c4e53d637902f46663a6ee42adc493c36794476acc7dbddaa05b13840d",
"blk.18.attn_output.weight": "5fd35b500221a612eb4f4bddf0e9b6b7db4d7733032a75f8802fb2d884647c2e",
"blk.18.attn_qkv.weight": "b0da37fd030fe69581f990bf23bfd35467a1bbe558af6de7c0924f6b72e92317",
"blk.18.ffn_down.weight": "b355c33f44b328f4bb977567de8f7544db4b005d7a8fbded658518ecf3c5a153",
"blk.18.ffn_norm.weight": "58b3fe9094079989a86e0387143259e1cc35952d24dc3df290c4ba6df44f5c51",
"blk.18.ffn_up.weight": "2ce530954c342c30ed2ead5353f931960bfae1d278868504c0efb973560fabbe",
"blk.19.attn_norm.weight": "533e9aed66feea8f0392aa81f9e293240e1f009a5334253915fb60c2749b615d",
"blk.19.attn_output.weight": "84f2d00f98a4113a779d3b5d1c3e7c914eb47784d3ab13b290367c124c2994aa",
"blk.19.attn_qkv.weight": "fbe6b9f53b07fa7537d3b3d452d20a9bc666f9fd41ec2091dd28bc2f70fc668f",
"blk.19.ffn_down.weight": "b30199e098c8bb3f890183d8b18471e80b62b604729b277ad62488dd71e1206b",
"blk.19.ffn_norm.weight": "c81373e41cd340b7badb19f9517c77c4250b4eb9a02dc758b8b49b652487d7ff",
"blk.19.ffn_up.weight": "5a5cb083ca7725720e3a890f7fa46354760e8007a8188849a092e305694a75e3",
"blk.20.attn_norm.weight": "4953091b4477e354357a8e743ba0a1900633e52f1599ee082a0c9b0b2b5cd978",
"blk.20.attn_output.weight": "62d54f7749cd6856097b2632066a322b0296df915fe66f382c5b5981be0d4f23",
"blk.20.attn_qkv.weight": "406de9e35b0729ebe902d7a47905cc7fb29a921431ed35dbef0c03e5690a1329",
"blk.20.ffn_down.weight": "62fb678b0d1261e19a4903a2b347d67afcc8acff01feb33a687a35a2d1e6f9a5",
"blk.20.ffn_norm.weight": "cd9d36b7e71e55c8925b97bb09c28219f182626bcff094878ae39c3db887a14b",
"blk.20.ffn_up.weight": "b9276771d79d3e932e73ccc520c3f8476342b9ef312ed2ee1e0da822e6e3ad18",
"blk.21.attn_norm.weight": "66d8c8a35e13ce9c2a0e75b670150e2c31484a55c2316df46075312196178ed3",
"blk.21.attn_output.weight": "12ab46c9382648f9b3350fdd92a6be6352743d62d6b520d7e2024e0c838588f5",
"blk.21.attn_qkv.weight": "a7909676ee1675ca23cd29a5fdd226df8dd9d68f94c6c9bbb51dd9fd38504008",
"blk.21.ffn_down.weight": "6fb317279c6542e82f97d5a12a60fac1bd0fa0405154f9fbe265e2fe39bd49cc",
"blk.21.ffn_norm.weight": "c0f703eb3ff161b5ba4490d87d8684b8a6c47a8f433e12f418333b9db439010a",
"blk.21.ffn_up.weight": "6dbdb80ef0c35e364bbce12d40d5e74c7963c7b55d58d9579567a07ffce7b863",
"blk.22.attn_norm.weight": "f94237433bf03d675cb2f655b81ca91a1ce2447bc6b00b13d6b0ccfe2d411eff",
"blk.22.attn_output.weight": "e821f95995ce497c01e63ca64f737713b1b65f11df1903e51d444aa516f33f71",
"blk.22.attn_qkv.weight": "1b0f717c73afb5eb4c82a1708c4e85c969e8a2a8770d9ddb78b1870a2d8a781e",
"blk.22.ffn_down.weight": "0f33f7a3cdc685484be99aa0c03642b0b20850a27d1fddbe054b13a9382f3ccb",
"blk.22.ffn_norm.weight": "9df285cf211ddd7df2b36a50489af574755c7d4d98b29a05cd04566ae613c8dc",
"blk.22.ffn_up.weight": "63ac300e1efb34041dd0136cf43ea622fac6f0caccce1cd9262f5e08d2cf179c",
"blk.23.attn_norm.weight": "5f72d9e88689b4027b28f5f8f26cd3abb03635ceea7ec98a4c91a9fc691f6707",
"blk.23.attn_output.weight": "6ecf04ff61125c5fc768f8656497152149373daf321ee9c957e8f7245a1184d1",
"blk.23.attn_qkv.weight": "a9d9978806724c2959f2cf386c233831f08e1e933dbf2b32665e788d9d512ea4",
"blk.23.ffn_down.weight": "72c7d17886a3da17fa0daa456aa5e877b2ef5b8b403182b870d9ca5ca9c70347",
"blk.23.ffn_norm.weight": "971e4b712e3025a13419b5b57d674b5e4ab7f18f74b57b9afc4671623da90c4b",
"blk.23.ffn_up.weight": "df2b5c7dbd5834545b815073af0c7355b065124e6d6f0fee78d8fa5b2076dc3e",
"blk.24.attn_norm.weight": "c41957c4a79ad3b16f6e11daec1c7f530b9f3f4b618e1e4367c3b67787ac4ab6",
"blk.24.attn_output.weight": "ef7d61f5fc88ac6f31bf60cb5f4d2d6b8df42d38825807112361a7224b0dee3b",
"blk.24.attn_qkv.weight": "3e6a58fe7d49c90bb6971efbad3371c32256881173ea5aee4b0c296cb206490f",
"blk.24.ffn_down.weight": "f43619144047de42fed81dfa495f1815d3cb771330e574043e2b67620819292c",
"blk.24.ffn_norm.weight": "5501d4a2a98c8ca6b42e77b53b221dbc08f530f6a067256d787534ec6fe028bd",
"blk.24.ffn_up.weight": "d64c8b0e509e2b1118f6000176f8956cacecdbb200c7e95ed93fb78b6e26c84a",
"blk.25.attn_norm.weight": "502fa3c302d371f61c5791f4615b73018ffb1daa09b6499b227116581244c5d4",
"blk.25.attn_output.weight": "ad8391d4e9c980856f2547aa945b2b6a407a6382158dc1ddd4f08d94ecc24be6",
"blk.25.attn_qkv.weight": "42e8983780d4a01a02c54ad23d4df21eea437f119a10af5a9c12a76a42d308c1",
"blk.25.ffn_down.weight": "302dd010d4e0ab4eeaee89090409ea0dddeeeed3236415eb8f97c942497eea91",
"blk.25.ffn_norm.weight": "fb34c1ee5bca96986c08834df0a0c047ba041c1123ac1f563e9d64312bf82d6a",
"blk.25.ffn_up.weight": "10739a8de156816d93c92b935386540bfa976bdbef204f0312960f6fc657582f",
"blk.26.attn_norm.weight": "7036c711609128c4e55968ff3681d3043338879a5737efd6c2ac9e1a2a61f1a0",
"blk.26.attn_output.weight": "db5db45dead5cb911fa01da59832f121b7c18b2d167bf53741c40819f24d346c",
"blk.26.attn_qkv.weight": "cae34c6b7f82ed14348d5ed30a79919c383737c1694a9cb9c0de609d3b0c1d0a",
"blk.26.ffn_down.weight": "491ec3a4da9b4f49f8ebc6be658ce397a9b801ae9fb35e82177e47808c65e5d0",
"blk.26.ffn_norm.weight": "fd7059d75d7f0e5288511ddeeb0f772eb3cae3ccfe4226b877015834edc3c386",
"blk.26.ffn_up.weight": "ea1ee1274c56458ce056d2205e5bb6e5422ce4cb0ad58006b8141749b97a0c39",
"blk.27.attn_norm.weight": "cc362c9a937609265052cd38544af17a1a7448cea086d4c801139e1fc865832d",
"blk.27.attn_output.weight": "ba757a81dabde9cb1b069d1bb616fe79649a1724f756567ec61caed1304fe6cf",
"blk.27.attn_qkv.weight": "1ab8d7d02d87756c12c2275636823aa5ede3d683178225c4cac4bd892c319bd4",
"blk.27.ffn_down.weight": "deb1c711c8a66acf4dcd2d088e1548f8e08f296f755e4067d6557fa55afde88c",
"blk.27.ffn_norm.weight": "fc6242d8cb8a4a37a8ddb7e41e7e60a63d4a89edf36acb35df052f10b9c91ece",
"blk.27.ffn_up.weight": "8df39b09c4801f343aca78f2918a1f6db78c8c55e591eda4c69eadb74c26e180",
"blk.28.attn_norm.weight": "75b539308f77e3cefdc6d98484d8b5cbf0538f0c2869a77b7373a145a18bc850",
"blk.28.attn_output.weight": "ae128940eb60a6d2e121762ef4b3e9dcf9eb3e105b249507fa7f12de0e19822c",
"blk.28.attn_qkv.weight": "bdda781c288e9326c240e33905f8e621b6a2ad902e620739d34f93fcd6f933de",
"blk.28.ffn_down.weight": "f1d6e6d1c286b1138bfd7e53fe477f399ae93bc2c04e35416f84218ed7247965",
"blk.28.ffn_norm.weight": "3f837ce82c8b9bde0d61d08b6f5fe5574886ea5328dbdc53f2929f18da8b4087",
"blk.28.ffn_up.weight": "2af027002e31d1b6cfedbdb30a2b9d7213f3aa691167c353913adfd48fda31e4",
"blk.29.attn_norm.weight": "61e8003b5329462ffe0fe172f2b160260de006aed858332d49d75504b6b6aa7a",
"blk.29.attn_output.weight": "ca44542a72a37476dc73dbdcc01f5b7497cb3ebc4ea230a55c9634ccd8e56ad4",
"blk.29.attn_qkv.weight": "abb3d9d6abe57872ae3daa51935d43264093ded5ce63b49d1e280ee5758be0e4",
"blk.29.ffn_down.weight": "6764b895fce881df097489c263446f0106de36217997660c15984b3ee22a5a06",
"blk.29.ffn_norm.weight": "89e03e9a33fc0e6e31ba9f0c2bd7c5734a118c5602bb90148793e08a80e8d0ae",
"blk.29.ffn_up.weight": "fa7ad57a84954f4121653152efed1a871d8adb20a1ea9086e3e849ce359d7d2e",
"blk.30.attn_norm.weight": "91a697aca1e42af54f806a20211031c3369e8d0bd58df1b0147fe24954e1f5a4",
"blk.30.attn_output.weight": "36063fcf766c89ac75be56f688cc63cefe5f2c733fbf4378ea9956ad386fa148",
"blk.30.attn_qkv.weight": "2cacd1161f1121a2c0b979930134f4666f73fb8d7237b3b0659ae091b15955a6",
"blk.30.ffn_down.weight": "9f3fcb6217100595850c05dc98f9ab2a263afdb6ab28df2fcb08aeff512057d7",
"blk.30.ffn_norm.weight": "6c600bc1fc7de39d4f8917b81fc7d1d5ed2a9b56492234c13a4bd6028c30d880",
"blk.30.ffn_up.weight": "73cabd1bb011956b2689ea3338bb76642ef3a57c197377d666d2ab5f56317668",
"blk.31.attn_norm.weight": "72d3e1cc771380645fa75a899858c95f39857a4f3f1ed60fe1578df383b8bc53",
"blk.31.attn_output.weight": "40089cdd29994dc19a1d89fa15902a89cfeca3540f12dc9bf4d00ef82506e456",
"blk.31.attn_qkv.weight": "1d0bb40e9258071ae14290a53c619a8e331dda07354d2a02ef45766c029ae5e4",
"blk.31.ffn_down.weight": "8defa0e06335b793fa8be03883f0a322d6c5b33f52c69c943c35c60d16e42c0a",
"blk.31.ffn_norm.weight": "33c55d9d0c496ccfb130361fe131649346e098abaaac39c0519507e5d846721d",
"blk.31.ffn_up.weight": "599f6503f61c692c1f82001973d35119f9688db5e6be9d9c298411491c93f09b",
"output.weight": "14b8dc662bfa3308ebb2e102c562d8e52c15670e538f20f3216a9c310ca9dd41",
"output_norm.weight": "7f2294ba94ce65681df6c7ddd8698799199b9d77dc83c10bdad5c3999f0fdb82",
"rope_factors_long.weight": "e34d378664e354652c38f47d10dafb0498ccc2fb042d39ff7fef768146fff22b",
"rope_factors_short.weight": "9379146a4988f373d362fe47b06c75e7fe7c54aa4dc9558758df79b7a87471fd",
"token_embd.weight": "19a03c1fb5ac0baee93b0a7d8b0f26e9a9b011e229b694afc50ebfc13d84f8bf"
}

124
convert/testdata/all-MiniLM-L6-v2.json vendored Normal file
View File

@@ -0,0 +1,124 @@
{
"general.architecture": "bert",
"general.file_type": "1",
"general.quantization_version": "2",
"bert.attention.causal": "false",
"bert.attention.head_count": "12",
"bert.attention.layer_norm_epsilon": "1e-12",
"bert.block_count": "6",
"bert.context_length": "512",
"bert.embedding_length": "384",
"bert.feed_forward_length": "1536",
"bert.pooling_type": "1",
"tokenizer.ggml.model": "bert",
"tokenizer.ggml.padding_token_id": "0",
"tokenizer.ggml.unknown_token_id": "100",
"tokenizer.ggml.cls_token_id": "101",
"tokenizer.ggml.seperator_token_id": "102",
"tokenizer.ggml.mask_token_id": "103",
"tokenizer.ggml.token_type_count": "2",
"tokenizer.ggml.scores": "6db964fe67338aca57790481a390121ff3dd643eebe49f7dd308029ad99abb6f",
"tokenizer.ggml.token_type": "98d247c5404b6b18f05f133b92dd56edf6efefefac326794b00d7b351f6c5aa1",
"tokenizer.ggml.tokens": "9efe405e229a45ff9916f54c475d151d2200cd2ab0006f347abfb069cf096c86",
"token_embd.weight": "8c1ee80a9ea4f65aa385ba30112010068af3d209bebc6e149d3d4589c2cd0a5a",
"position_embd.weight": "6c516f0b1c4e2388ab90394dd80ad69e4e4509b890982fc3408108ae66210eb6",
"token_types.weight": "f879f8e422ed211948f28b560d3c5e17aae7993f063b51196a28cf5c0fb3da21",
"token_embd_norm.weight": "75076e095d717aab96f8b6beeee503c27940d9a76f2b891a0e3de72f8a6043e4",
"token_embd_norm.bias": "298735285ffe944e1bf03e5d35c7280326b85cf121bde9874f1af5dc51ab939d",
"blk.0.attn_q.weight": "ab0923ce4c1549175112dcdfcc860fe30137f991e03ea6857fb5993670adaf6c",
"blk.0.attn_q.bias": "a3ec29551dabf976e1d34256b8ab5ab7b758f3ed9742c3cafdbd984d5441df62",
"blk.0.attn_k.weight": "4c1038a6d035c3e9ffed7fa672b614627814752503755fbad0cfb76a41ad71ba",
"blk.0.attn_k.bias": "e0363930eb588d91816aa3d230bb03b6e2551c165117b80b8d60397413819ef9",
"blk.0.attn_v.weight": "425e2e53e3f00ce98d29c3e6a161eb55d3e6ae0d96fdb9f6242d1c4fd6eef4b3",
"blk.0.attn_v.bias": "6579173a1e65ee124fbd0bd53cbdca4225515b4f2c5f18fb1bfd000f5978f9bb",
"blk.0.attn_output.weight": "a6d70a08cd7164de5d12af65d86d657c3db35aaecde778b2b3fda9193c4c9802",
"blk.0.attn_output.bias": "2b8d12c4f9a9c5bfaa29c597839568f6e0525cb41eeaf64ddeb6bd84dfeb9701",
"blk.0.attn_output_norm.weight": "bbe6e502a473228b525aeed26cc31b7db123ad63bdc5a6eebac6ea70b8b51d62",
"blk.0.attn_output_norm.bias": "36eaacaf0007c5c62daea97aab0115390c0682914f78482e37eb76885f4b7a50",
"blk.0.ffn_up.weight": "24654561c76ce387d125759ba843f06b904ef721fcceaeff6ccc62180a48e874",
"blk.0.ffn_up.bias": "fd3f0126aa1d95768fa60eb6f4ab8a2763cfcb7e5405f35b92353031d86f4d34",
"blk.0.ffn_down.weight": "97a829763a6a5bf3329ceb4d39c424ba4787d61653a5b0bbd1f84782e4d4e0ca",
"blk.0.ffn_down.bias": "7aa980c30ae8b4ee7f69df28808dbf5c431f56ccc4a80340f644a0419f16c054",
"blk.0.layer_output_norm.weight": "ef30dad4c2a083ae1ff5039a2a6cda60ecc89bf1e486a6f8c0d15f50589603f8",
"blk.0.layer_output_norm.bias": "8b1b77e67568b1bce43fc476de1b177c53ff688d66beb66995e8eb3dc290da8a",
"blk.1.attn_q.weight": "284331622a1f6f9b87ccee4f652bd66a394ca493c4d93be4d1844e4f6159ad10",
"blk.1.attn_q.bias": "e24ebd4860330e08f6bfdd077a82db0bee33f4c8846cf1db26327a34754c7069",
"blk.1.attn_k.weight": "729dd0d555544b5bd0f7580b3c8b384256b974605f0e7487b95f295aa032997d",
"blk.1.attn_k.bias": "2aa51a828a858f35473f54477583fea54ce2ccc34ea60fbd1d228fbe9bca827f",
"blk.1.attn_v.weight": "6be304671cc311d5ca5c103f2b51467ee800c589bc5b8101e09ff5aed1f68c21",
"blk.1.attn_v.bias": "43bcbab78a8819e07f723bc9e5b737b71e87a7594f15234e882b63e327a64199",
"blk.1.attn_output.weight": "15ec8a1a12b26c9976445308a09f748ab0e4bef0f583d13ab08c3129f8738d73",
"blk.1.attn_output.bias": "dac2146f4baa6ed16f6c0dc7443831fb7ec79bedcceafd80d1a4b628a1bb072d",
"blk.1.attn_output_norm.weight": "d2151eb33bffac536787a4c9a5d2b31c7a80b17c4611877842a3cce2cd6e98d8",
"blk.1.attn_output_norm.bias": "31e1b779716dafb855d2cf5631ee168a0ccf372eb9c6ea6091f66fa97a9b9d2d",
"blk.1.ffn_up.weight": "a57547fc3fc3b77406f5cdcb0c87af9bc184701f175c39c1f35297826fce3cc7",
"blk.1.ffn_up.bias": "123be6d541d086202913c75d878c54d59a749f3af7b58f7ef9eb9e7c62a24c9a",
"blk.1.ffn_down.weight": "cfdb79788377e5cbded8790cd41b9e66c397ecab75474071fcd7cf32d30f9613",
"blk.1.ffn_down.bias": "bcb58315519a573097960891c9ae41cf4c685ab78c3e0e77471471758a7eae88",
"blk.1.layer_output_norm.weight": "819b554271452bfb1d84c2603b90377b2e41a0ac1e3aa8b417ccf9dce63375bd",
"blk.1.layer_output_norm.bias": "47a3433ac27f5ce8947fb38dd491f3706df4ef6adb0ddf74612bf0f54b19e164",
"blk.2.attn_q.weight": "1557a9ea852b1880551f7290e00aded4f35e6c4180fdcbed1b0039bf805f639e",
"blk.2.attn_q.bias": "c3bfe5f3066f655fd36b055530997b59ff33ef013563aaeb3cb8ff07dabd59a9",
"blk.2.attn_k.weight": "cfd08eb69c61ae2f9f14f9b7ff5c5394ca264b1a9f3d48156677f90dd1766289",
"blk.2.attn_k.bias": "9b839bc0e79974a0b3f5d1895972bc6f5c9a1bc16052e1af786e6a530758152d",
"blk.2.attn_v.weight": "02b26b1208480eaeeb00e7b4cf8b690006ca14759357fc44ed4a2a8924ead993",
"blk.2.attn_v.bias": "e7e6f0089fded1659a867ab736c220d9653ea7da6b1b94baf5c8d30a748b63ab",
"blk.2.attn_output.weight": "a1db121c7d33806b349cadd050300a57db49fdc91224fd07c9ac43bf4299dc79",
"blk.2.attn_output.bias": "7675128b6a92555cd955c820311e91e9417d31f48848f45d047b4100c62148b3",
"blk.2.attn_output_norm.weight": "5b4595e0fbcba67a700c4331adf746d2fba3546364a4db5607ae241947bb1a21",
"blk.2.attn_output_norm.bias": "7b8e16826ea30e5a2ba0b02e0095a901775981a296e98819625320e983060d08",
"blk.2.ffn_up.weight": "a0d815d946ac07a65095c4ae4df77b818845e6d97795c7d82f55e689d944db59",
"blk.2.ffn_up.bias": "ce37c0a4174d6bf773ded7bd016ede627ad3bdb8bc99b9992a18dc8e8898f252",
"blk.2.ffn_down.weight": "f6231d2a25426fbd45b9f1160aa484220eb227ceef0348c4a6a6de890606e5ef",
"blk.2.ffn_down.bias": "429e00556e8dc63a785238b309b9d83738500c1ef6d736fe6526ad88ea496d27",
"blk.2.layer_output_norm.weight": "651457a573adf3f7dd9ee5dfe1c8e89389e94443993aab77ec6a0b05aa621e35",
"blk.2.layer_output_norm.bias": "41fbbeda7fd89b0cef5f945ae44011c316982390401d6f75ba8c6d365e185247",
"blk.3.attn_q.weight": "95a43f32949d2cb8d22815bb27a44abfc6665ba96221af817dfe058cb6ca72c6",
"blk.3.attn_q.bias": "f4e34385e75d8108b6b3bd336106e2133a8c9be0cc343dfe5dc48c32a823c7cb",
"blk.3.attn_k.weight": "6b892da6a17d4d3265265a15f695864a31813ee8c8e710ae9bc9e1adbc6c9a18",
"blk.3.attn_k.bias": "40b8067b641a56014cee42548240aa8930820958b1933004892b5f04fbaef39e",
"blk.3.attn_v.weight": "9fcd5922319dd2a461082a5ce040c1dfe65d87d70ca6547dd0b46eeecc3eeb2b",
"blk.3.attn_v.bias": "b528c56212e66931fdbe267ac327a9c2f87cd03baff3ea719e30afe681da15f1",
"blk.3.attn_output.weight": "e3b178c1b03981e75510e0d277af23ea59cc404b5394e61bd32291825719b502",
"blk.3.attn_output.bias": "712c84d39a6a5a9c06a09da8fd9939ba0d5525524a4bba61ea4de09b48f45cae",
"blk.3.attn_output_norm.weight": "d1ffac88e675592ff72f8a617be32b4a381d443b2f8f2645dbe44a1e5745aac0",
"blk.3.attn_output_norm.bias": "ea31a1c73146234c50e0e43f485c458413714867b8e2703af66482f7db2d6c40",
"blk.3.ffn_up.weight": "4ef4f3b9a1ea6ab2ef2eb6e8b008e06a44790d099d97482a05a51e39a29afac0",
"blk.3.ffn_up.bias": "06a4296dda16f452675c51f108079fe7722552d6521c737d97734943818b9a2b",
"blk.3.ffn_down.weight": "f114b2bebe392c7d80433bb880c6730293aa4561b0b0370dcdaf7472daebd847",
"blk.3.ffn_down.bias": "2c8e67831d28a3bf613fc7912ae3259b63d72abcaf4d30efd8800758400158de",
"blk.3.layer_output_norm.weight": "a1dfeb7b5a51dd56447312ca41e2ad2f361a3ea12ddc355127f5f4219fb0a482",
"blk.3.layer_output_norm.bias": "1ed630021b25c6c6fc93fd32988b9907df966d4982a93081f639aac3044618ab",
"blk.4.attn_q.weight": "b5fae4c1f9a5f33a2a2e816ac0c01c25f422e4efdd59ef1ed93da2610e5370fc",
"blk.4.attn_q.bias": "c2e376524ea98ac3b10d9eee19ecb1b1e261fa5149efe0232844c923dfb428fb",
"blk.4.attn_k.weight": "a4632f5ebf9321d9d08f9112a4e5dda2efe5671df4a4e67fee24845f5b14af16",
"blk.4.attn_k.bias": "a9a02ffb8b8b4f6dfe487a7e0341f1d5318c9d2b793a688f34cb1b22fc66ef60",
"blk.4.attn_v.weight": "10ad8deb81d9fa093b1e5c0f24ea82aa7df43e6aca49e260fcbea56eab8cc86a",
"blk.4.attn_v.bias": "7326813e181e021130bd33ac136293fcffccce2d1d8cb59041e5b13a8cceacf6",
"blk.4.attn_output.weight": "c92573088c7437c2b3cda51490e152c27fb19e5468df591eabba5a49d5398d44",
"blk.4.attn_output.bias": "14e10b419e5859af1eb685af5c330aee67048cd704dcead9217840c6f5393222",
"blk.4.attn_output_norm.weight": "02b6831c0e0fb0edbc579a92812a1dd972cb15d14fcd382d4427c5a7b300ac44",
"blk.4.attn_output_norm.bias": "7eed5cd503bb6bb6ceb1bc8b07cc077903a4f14fb8b9d6cdf39644815ecf1374",
"blk.4.ffn_up.weight": "8d0c91d62e74d6431321116a37cf3339e630bd50ba164d3304fc4fe8dd831223",
"blk.4.ffn_up.bias": "d325f07f73c005a273c484c7be8e7abb4d6e8a5c4fd093f5869133b97629d017",
"blk.4.ffn_down.weight": "7ba7bd81143f40537b84f938e403e19f30e4928625eb371de052b9025beb4d21",
"blk.4.ffn_down.bias": "2853d9c2a75288214a4bf4907dc19d04d01926f4913d302b1aa7bdbfcce0f7a1",
"blk.4.layer_output_norm.weight": "a4ed1885fa77b90fed5300c355ef0aa0c876a8c747151d9d790939d464d57d4f",
"blk.4.layer_output_norm.bias": "62142a81e813a9e636333b2b805d6bc3b17c5e7cd4b15adce1ada6bc9a32563c",
"blk.5.attn_q.weight": "afc1dff080a72c3daad01384b1448d476aaf789871017c8ff8e144788887995d",
"blk.5.attn_q.bias": "748a820371c1d4f872c84545b36358d239c35bf6c99e2812c237d88c3292763b",
"blk.5.attn_k.weight": "59e30c1ed8acd2cbb01de5f62e7804015b9ecf98ba157d98cab016344639eda5",
"blk.5.attn_k.bias": "f839520078f9e589496e982e86d0126c7aa14196047339abffcf49a696229f77",
"blk.5.attn_v.weight": "3e21fb874e21b90308e1f46af034a3c32d3eba1628d62ae5f2246d6af5818923",
"blk.5.attn_v.bias": "5cd4852bf95c1444d10d756750f6bf49f842c0b39e9953c7f408bb67c325ac8c",
"blk.5.attn_output.weight": "636ce6a7752895f204b9d01ba0aedd9a294f908b42f372c22a16d9dd590d7471",
"blk.5.attn_output.bias": "82d924d4b0d2b94f2bbff91619216d6967a3541ce9b1531a6a60457a67b5d219",
"blk.5.attn_output_norm.weight": "5e7bd0a8d3396080f3360d7c4700bf094a06216431bd014c4479eef72ecf4271",
"blk.5.attn_output_norm.bias": "66c6de5edda5466d029c6753780be81ccd4218bf8bc00680000e0f06856ab712",
"blk.5.ffn_up.weight": "5bbf6e7ea380e216e33f8bee06d25f2265359d3876a300e92bc6e41d48e33430",
"blk.5.ffn_up.bias": "9d795388bb36fb33ad3a37fea3ccb4937838e02800a608fb47d363cd06b47370",
"blk.5.ffn_down.weight": "2fd628974e7f075479dd227b46fbd48ae8d3ca34d735b36f391ac06410730368",
"blk.5.ffn_down.bias": "cd213ba9eaa75fa541648097fbe9c96e58077e6c3ad6ad2fb1f21f8350f44291",
"blk.5.layer_output_norm.weight": "159a9df41d15b7022d136f86a2a2631c4635f9816e957472217077b522bcf52a",
"blk.5.layer_output_norm.bias": "24c1f27ffd1eb4e5be7e3a2909943e6f0980635d761fa1efdd0c19645da23766"
}

6
convert/testdata/gemma-2-9b-it.json vendored Normal file
View File

@@ -0,0 +1,6 @@
{
"general.architecture": "gemma2",
"gemma2.attention.sliding_window": "4096",
"gemma2.attn_logit_softcapping": "50",
"gemma2.final_logit_softcapping": "30"
}

View File

@@ -1,7 +1,6 @@
package convert package convert
import ( import (
"cmp"
"crypto/sha256" "crypto/sha256"
"encoding/hex" "encoding/hex"
"encoding/json" "encoding/json"
@@ -11,6 +10,8 @@ import (
"log/slog" "log/slog"
"os" "os"
"slices" "slices"
"golang.org/x/exp/maps"
) )
const ( const (
@@ -184,32 +185,32 @@ func parseVocabularyFromTokenizer(fsys fs.FS) (*Vocabulary, error) {
return nil, err return nil, err
} }
var tokens []token tokens := make(map[int]token, len(t.Model.Vocab))
for k, v := range t.Model.Vocab { for k, v := range t.Model.Vocab {
tokens = append(tokens, token{ tokens[v] = token{
ID: v, ID: v,
Content: k, Content: k,
}) }
} }
for _, t := range t.AddedTokens { for _, token := range t.AddedTokens {
t.UserDefined = true token.UserDefined = true
tokens = append(tokens, t) tokens[token.ID] = token
} }
slices.SortFunc(tokens, func(i, j token) int { keys := maps.Keys(tokens)
return cmp.Compare(i.ID, j.ID) slices.Sort(keys)
})
v := Vocabulary{Model: "gpt2"} v := Vocabulary{Model: "gpt2"}
for _, t := range tokens { for _, k := range keys {
v.Tokens = append(v.Tokens, t.Content) token := tokens[k]
v.Scores = append(v.Scores, float32(t.ID)) v.Tokens = append(v.Tokens, token.Content)
v.Scores = append(v.Scores, float32(token.ID))
switch { switch {
case t.Special: case token.Special:
v.Types = append(v.Types, tokenTypeControl) v.Types = append(v.Types, tokenTypeControl)
case t.UserDefined: case token.UserDefined:
v.Types = append(v.Types, tokenTypeUserDefined) v.Types = append(v.Types, tokenTypeUserDefined)
default: default:
v.Types = append(v.Types, tokenTypeNormal) v.Types = append(v.Types, tokenTypeNormal)

View File

@@ -15,6 +15,11 @@ import (
) )
func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) { func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
ast, err := parseAdditionalSpecialTokens(fsys)
if err != nil {
return nil, err
}
bts, err := fs.ReadFile(fsys, "tokenizer.model") bts, err := fs.ReadFile(fsys, "tokenizer.model")
if err != nil { if err != nil {
return nil, err return nil, err
@@ -37,7 +42,12 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
sentencepiece.ModelProto_SentencePiece_BYTE: sentencepiece.ModelProto_SentencePiece_BYTE:
v.Types = append(v.Types, int32(t)) v.Types = append(v.Types, int32(t))
default: default:
v.Types = append(v.Types, int32(sentencepiece.ModelProto_SentencePiece_NORMAL)) tt := int32(sentencepiece.ModelProto_SentencePiece_NORMAL)
if slices.Contains(ast, piece.GetPiece()) {
tt = int32(sentencepiece.ModelProto_SentencePiece_CONTROL)
}
v.Types = append(v.Types, tt)
} }
} }
@@ -81,3 +91,23 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
return &v, nil return &v, nil
} }
func parseAdditionalSpecialTokens(fsys fs.FS) ([]string, error) {
f, err := fsys.Open("special_tokens_map.json")
if errors.Is(err, os.ErrNotExist) {
return nil, nil
} else if err != nil {
return nil, err
}
defer f.Close()
var m struct {
AdditionalSpecialTokens []string `json:"additional_special_tokens"`
}
if err := json.NewDecoder(f).Decode(&m); err != nil {
return nil, err
}
return m.AdditionalSpecialTokens, nil
}

View File

@@ -111,7 +111,10 @@ On Windows, Ollama inherits your user and system environment variables.
## How do I use Ollama behind a proxy? ## How do I use Ollama behind a proxy?
Ollama is compatible with proxy servers if `HTTP_PROXY` or `HTTPS_PROXY` are configured. When using either variables, ensure it is set where `ollama serve` can access the values. When using `HTTPS_PROXY`, ensure the proxy certificate is installed as a system certificate. Refer to the section above for how to use environment variables on your platform. Ollama pulls models from the Internet and may require a proxy server to access the models. Use `HTTPS_PROXY` to redirect outbound requests through the proxy. Ensure the proxy certificate is installed as a system certificate. Refer to the section above for how to use environment variables on your platform.
> [!NOTE]
> Avoid setting `HTTP_PROXY`. Ollama does not use HTTP for model pulls, only HTTPS. Setting `HTTP_PROXY` may interrupt client connections to the server.
### How do I use Ollama behind a proxy in Docker? ### How do I use Ollama behind a proxy in Docker?
@@ -276,4 +279,4 @@ Note: Windows with Radeon GPUs currently default to 1 model maximum due to limit
## How does Ollama load models on multiple GPUs? ## How does Ollama load models on multiple GPUs?
Installing multiple GPUs of the same brand can be a great way to increase your available VRAM to load larger models. When you load a new model, Ollama evaluates the required VRAM for the model against what is currently available. If the model will entirely fit on any single GPU, Ollama will load the model on that GPU. This typically provides the best performance as it reduces the amount of data transfering across the PCI bus during inference. If the model does not fit entirely on one GPU, then it will be spread across all the available GPUs. Installing multiple GPUs of the same brand can be a great way to increase your available VRAM to load larger models. When you load a new model, Ollama evaluates the required VRAM for the model against what is currently available. If the model will entirely fit on any single GPU, Ollama will load the model on that GPU. This typically provides the best performance as it reduces the amount of data transfering across the PCI bus during inference. If the model does not fit entirely on one GPU, then it will be spread across all the available GPUs.

BIN
docs/images/ollama-keys.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 141 KiB

BIN
docs/images/signup.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 80 KiB

View File

@@ -1,42 +1,129 @@
# Import # Importing a model
GGUF models and select Safetensors models can be imported directly into Ollama. ## Table of Contents
## Import GGUF * [Importing a Safetensors adapter](#Importing-a-fine-tuned-adapter-from-Safetensors-weights)
* [Importing a Safetensors model](#Importing-a-model-from-Safetensors-weights)
* [Importing a GGUF file](#Importing-a-GGUF-based-model-or-adapter)
* [Sharing models on ollama.com](#Sharing-your-model-on-ollamacom)
A binary GGUF file can be imported directly into Ollama through a Modelfile. ## Importing a fine tuned adapter from Safetensors weights
First, create a `Modelfile` with a `FROM` command pointing at the base model you used for fine tuning, and an `ADAPTER` command which points to the directory with your Safetensors adapter:
```dockerfile ```dockerfile
FROM /path/to/file.gguf FROM <base model name>
ADAPTER /path/to/safetensors/adapter/directory
``` ```
## Import Safetensors Make sure that you use the same base model in the `FROM` command as you used to create the adapter otherwise you will get erratic results. Most frameworks use different quantization methods, so it's best to use non-quantized (i.e. non-QLoRA) adapters. If your adapter is in the same directory as your `Modelfile`, use `ADAPTER .` to specify the adapter path.
If the model being imported is one of these architectures, it can be imported directly into Ollama through a Modelfile: Now run `ollama create` from the directory where the `Modelfile` was created:
- LlamaForCausalLM ```bash
- MistralForCausalLM ollama create my-model
- GemmaForCausalLM ```
Lastly, test the model:
```bash
ollama run my-model
```
Ollama supports importing adapters based on several different model architectures including:
* Llama (including Llama 2, Llama 3, and Llama 3.1);
* Mistral (including Mistral 1, Mistral 2, and Mixtral); and
* Gemma (including Gemma 1 and Gemma 2)
You can create the adapter using a fine tuning framework or tool which can output adapters in the Safetensors format, such as:
* Hugging Face [fine tuning framework] (https://huggingface.co/docs/transformers/en/training)
* [Unsloth](https://github.com/unslothai/unsloth)
* [MLX](https://github.com/ml-explore/mlx)
## Importing a model from Safetensors weights
First, create a `Modelfile` with a `FROM` command which points to the directory containing your Safetensors weights:
```dockerfile ```dockerfile
FROM /path/to/safetensors/directory FROM /path/to/safetensors/directory
``` ```
For architectures not directly convertable by Ollama, see llama.cpp's [guide](https://github.com/ggerganov/llama.cpp/blob/master/README.md#prepare-and-quantize) on conversion. After conversion, see [Import GGUF](#import-gguf). If you create the Modelfile in the same directory as the weights, you can use the command `FROM .`.
## Automatic Quantization Now run the `ollama create` command from the directory where you created the `Modelfile`:
> [!NOTE] ```shell
> Automatic quantization requires v0.1.35 or higher. ollama create my-model
```
Ollama is capable of quantizing FP16 or FP32 models to any of the supported quantizations with the `-q/--quantize` flag in `ollama create`. Lastly, test the model:
```shell
ollama run my-model
```
Ollama supports importing models for several different architectures including:
* Llama (including Llama 2, Llama 3, and Llama 3.1);
* Mistral (including Mistral 1, Mistral 2, and Mixtral);
* Gemma (including Gemma 1 and Gemma 2); and
* Phi3
This includes importing foundation models as well as any fine tuned models which which have been _fused_ with a foundation model.
## Importing a GGUF based model or adapter
If you have a GGUF based model or adapter it is possible to import it into Ollama. You can obtain a GGUF model or adapter by:
* converting a Safetensors model with the `convert_hf_to_gguf.py` from Llama.cpp;
* converting a Safetensors adapter with the `convert_lora_to_gguf.py` from Llama.cpp; or
* downloading a model or adapter from a place such as HuggingFace
To import a GGUF model, create a `Modelfile` containg:
```dockerfile
FROM /path/to/file.gguf
```
For a GGUF adapter, create the `Modelfile` with:
```dockerfile
FROM <model name>
ADAPTER /path/to/file.gguf
```
When importing a GGUF adapter, it's important to use the same base model as the base model that the adapter was created with. You can use:
* a model from Ollama
* a GGUF file
* a Safetensors based model
Once you have created your `Modelfile`, use the `ollama create` command to build the model.
```shell
ollama create my-model
```
## Quantizing a Model
Quantizing a model allows you to run models faster and with less memory consumption but at reduced accuracy. This allows you to run a model on more modest hardware.
Ollama can quantize FP16 and FP32 based models into different quantization levels using the `-q/--quantize` flag with the `ollama create` command.
First, create a Modelfile with the FP16 or FP32 based model you wish to quantize.
```dockerfile ```dockerfile
FROM /path/to/my/gemma/f16/model FROM /path/to/my/gemma/f16/model
``` ```
Use `ollama create` to then create the quantized model.
```shell ```shell
$ ollama create -q Q4_K_M mymodel $ ollama create --quantize q4_K_M mymodel
transferring model data transferring model data
quantizing F16 model to Q4_K_M quantizing F16 model to Q4_K_M
creating new layer sha256:735e246cc1abfd06e9cdcf95504d6789a6cd1ad7577108a70d9902fef503c1bd creating new layer sha256:735e246cc1abfd06e9cdcf95504d6789a6cd1ad7577108a70d9902fef503c1bd
@@ -47,42 +134,53 @@ success
### Supported Quantizations ### Supported Quantizations
- `Q4_0` - `q4_0`
- `Q4_1` - `q4_1`
- `Q5_0` - `q5_0`
- `Q5_1` - `q5_1`
- `Q8_0` - `q8_0`
#### K-means Quantizations #### K-means Quantizations
- `Q3_K_S` - `q3_K_S`
- `Q3_K_M` - `q3_K_M`
- `Q3_K_L` - `q3_K_L`
- `Q4_K_S` - `q4_K_S`
- `Q4_K_M` - `q4_K_M`
- `Q5_K_S` - `q5_K_S`
- `Q5_K_M` - `q5_K_M`
- `Q6_K` - `q6_K`
## Template Detection
> [!NOTE] ## Sharing your model on ollama.com
> Template detection requires v0.1.42 or higher.
Ollama uses model metadata, specifically `tokenizer.chat_template`, to automatically create a template appropriate for the model you're importing. You can share any model you have created by pushing it to [ollama.com](https://ollama.com) so that other users can try it out.
```dockerfile First, use your browser to go to the [Ollama Sign-Up](https://ollama.com/signup) page. If you already have an account, you can skip this step.
FROM /path/to/my/gemma/model
``` ![Sign-Up](images/signup.png)
The `Username` field will be used as part of your model's name (e.g. `jmorganca/mymodel`), so make sure you are comfortable with the username that you have selected.
Now that you have created an account and are signed-in, go to the [Ollama Keys Settings](https://ollama.com/settings/keys) page.
Follow the directions on the page to determine where your Ollama Public Key is located.
![Ollama Key](images/ollama-keys.png)
Click on the `Add Ollama Public Key` button, and copy and paste the contents of your Ollama Public Key into the text field.
To push a model to [ollama.com](https://ollama.com), first make sure that it is named correctly with your username. You may have to use the `ollama cp` command to copy
your model to give it the correct name. Once you're happy with your model's name, use the `ollama push` command to push it to [ollama.com](https://ollama.com).
```shell ```shell
$ ollama create mymodel ollama cp mymodel myuser/mymodel
transferring model data ollama push myuser/mymodel
using autodetected template gemma-instruct ```
creating new layer sha256:baa2a0edc27d19cc6b7537578a9a7ba1a4e3214dc185ed5ae43692b319af7b84
creating new layer sha256:ba66c3309914dbef07e5149a648fd1877f030d337a4f240d444ea335008943cb Once your model has been pushed, other users can pull and run it by using the command:
writing manifest
success ```shell
ollama run myuser/mymodel
``` ```
Defining a template in the Modelfile will disable this feature which may be useful if you want to use a different template than the autodetected one.

View File

@@ -20,13 +20,12 @@ GPU.
## Manual install ## Manual install
### Download the `ollama` binary ### Download `ollama`
Ollama is distributed as a self-contained binary. Download it to a directory in your PATH: Download and extract the Linux package:
```bash ```bash
sudo curl -L https://ollama.com/download/ollama-linux-amd64 -o /usr/bin/ollama curl -fsSL https://ollama.com/download/ollama-linux-amd64.tgz | sudo tar zx -C /usr
sudo chmod +x /usr/bin/ollama
``` ```
### Adding Ollama as a startup service (recommended) ### Adding Ollama as a startup service (recommended)
@@ -96,8 +95,7 @@ curl -fsSL https://ollama.com/install.sh | sh
Or by downloading the ollama binary: Or by downloading the ollama binary:
```bash ```bash
sudo curl -L https://ollama.com/download/ollama-linux-amd64 -o /usr/bin/ollama curl -fsSL https://ollama.com/download/ollama-linux-amd64.tgz | sudo tar zx -C /usr
sudo chmod +x /usr/bin/ollama
``` ```
## Installing specific versions ## Installing specific versions

View File

@@ -182,7 +182,6 @@ curl http://localhost:11434/v1/embeddings \
- [x] Reproducible outputs - [x] Reproducible outputs
- [x] Vision - [x] Vision
- [x] Tools (streaming support coming soon) - [x] Tools (streaming support coming soon)
- [ ] Vision
- [ ] Logprobs - [ ] Logprobs
#### Supported request fields #### Supported request fields

View File

@@ -112,15 +112,9 @@ Keep the following tips and best practices in mind when working with Go template
ChatML is a popular template format. It can be used for models such as Databrick's DBRX, Intel's Neural Chat, and Microsoft's Orca 2. ChatML is a popular template format. It can be used for models such as Databrick's DBRX, Intel's Neural Chat, and Microsoft's Orca 2.
```gotmpl ```gotmpl
{{- if .System }}<|im_start|>system
{{ .System }}<|im_end|>
{{ end }}
{{- range .Messages }}<|im_start|>{{ .Role }} {{- range .Messages }}<|im_start|>{{ .Role }}
{{ .Content }}<|im_end|> {{ .Content }}<|im_end|>
{{ end }}<|im_start|>assistant {{ end }}<|im_start|>assistant
{{ else }}
{{ if .System }}<|im_start|>system
{{ .System }}<|im_end|>
``` ```
### Example Tools ### Example Tools

View File

@@ -174,7 +174,7 @@ func RunnersDir() (p string) {
defer func() { defer func() {
if p == "" { if p == "" {
slog.Error("unable to locate llm runner directory. Set OLLAMA_RUNNERS_DIR to the location of 'ollama_runners'") slog.Error("unable to locate llm runner directory. Set OLLAMA_RUNNERS_DIR to the location of 'ollama/runners'")
} }
}() }()
@@ -190,17 +190,17 @@ func RunnersDir() (p string) {
} }
var paths []string var paths []string
for _, root := range []string{filepath.Dir(exe), cwd} { for _, root := range []string{filepath.Dir(exe), filepath.Join(filepath.Dir(exe), ".."), cwd} {
paths = append(paths, paths = append(paths,
root, root,
filepath.Join(root, "windows-"+runtime.GOARCH), filepath.Join(root, runtime.GOOS+"-"+runtime.GOARCH),
filepath.Join(root, "dist", "windows-"+runtime.GOARCH), filepath.Join(root, "dist", runtime.GOOS+"-"+runtime.GOARCH),
) )
} }
// Try a few variations to improve developer experience when building from source in the local tree // Try a few variations to improve developer experience when building from source in the local tree
for _, path := range paths { for _, path := range paths {
candidate := filepath.Join(path, "ollama_runners") candidate := filepath.Join(path, "lib", "ollama", "runners")
if _, err := os.Stat(candidate); err == nil { if _, err := os.Stat(candidate); err == nil {
p = candidate p = candidate
break break

2
go.mod
View File

@@ -1,6 +1,6 @@
module github.com/ollama/ollama module github.com/ollama/ollama
go 1.22.0 go 1.22.5
require ( require (
github.com/containerd/console v1.0.3 github.com/containerd/console v1.0.3

View File

@@ -54,7 +54,7 @@ func commonAMDValidateLibDir() (string, error) {
// Installer payload location if we're running the installed binary // Installer payload location if we're running the installed binary
exe, err := os.Executable() exe, err := os.Executable()
if err == nil { if err == nil {
rocmTargetDir := filepath.Join(filepath.Dir(exe), "rocm") rocmTargetDir := filepath.Join(filepath.Dir(exe), "..", "lib", "ollama")
if rocmLibUsable(rocmTargetDir) { if rocmLibUsable(rocmTargetDir) {
slog.Debug("detected ROCM next to ollama executable " + rocmTargetDir) slog.Debug("detected ROCM next to ollama executable " + rocmTargetDir)
return rocmTargetDir, nil return rocmTargetDir, nil

View File

@@ -153,7 +153,7 @@ func AMDValidateLibDir() (string, error) {
// Installer payload (if we're running from some other location) // Installer payload (if we're running from some other location)
localAppData := os.Getenv("LOCALAPPDATA") localAppData := os.Getenv("LOCALAPPDATA")
appDir := filepath.Join(localAppData, "Programs", "Ollama") appDir := filepath.Join(localAppData, "Programs", "Ollama")
rocmTargetDir := filepath.Join(appDir, "rocm") rocmTargetDir := filepath.Join(appDir, "..", "lib", "ollama")
if rocmLibUsable(rocmTargetDir) { if rocmLibUsable(rocmTargetDir) {
slog.Debug("detected ollama installed ROCm at " + rocmTargetDir) slog.Debug("detected ollama installed ROCm at " + rocmTargetDir)
return rocmTargetDir, nil return rocmTargetDir, nil

View File

@@ -4,9 +4,17 @@ package gpu
import ( import (
"log/slog" "log/slog"
"os"
"regexp"
"runtime"
"strconv"
"strings" "strings"
) )
// Jetson devices have JETSON_JETPACK="x.y.z" factory set to the Jetpack version installed.
// Included to drive logic for reducing Ollama-allocated overhead on L4T/Jetson devices.
var CudaTegra string = os.Getenv("JETSON_JETPACK")
func cudaGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) { func cudaGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
ids := []string{} ids := []string{}
for _, info := range gpuInfo { for _, info := range gpuInfo {
@@ -19,3 +27,38 @@ func cudaGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
} }
return "CUDA_VISIBLE_DEVICES", strings.Join(ids, ",") return "CUDA_VISIBLE_DEVICES", strings.Join(ids, ",")
} }
func cudaVariant(gpuInfo CudaGPUInfo) string {
if runtime.GOARCH == "arm64" && runtime.GOOS == "linux" {
if CudaTegra != "" {
ver := strings.Split(CudaTegra, ".")
if len(ver) > 0 {
return "jetpack" + ver[0]
}
} else if data, err := os.ReadFile("/etc/nv_tegra_release"); err == nil {
r := regexp.MustCompile(` R(\d+) `)
m := r.FindSubmatch(data)
if len(m) != 2 {
slog.Info("Unexpected format for /etc/nv_tegra_release. Set JETSON_JETPACK to select version")
} else {
if l4t, err := strconv.Atoi(string(m[1])); err == nil {
// Note: mapping from L4t -> JP is inconsistent (can't just subtract 30)
// https://developer.nvidia.com/embedded/jetpack-archive
switch l4t {
case 35:
return "jetpack5"
case 36:
return "jetpack6"
default:
slog.Info("unsupported L4T version", "nv_tegra_release", string(data))
}
}
}
}
}
if gpuInfo.computeMajor < 6 || gpuInfo.DriverMajor < 12 {
return "v11"
}
return "v12"
}

View File

@@ -64,10 +64,6 @@ var RocmComputeMin = 9
// TODO find a better way to detect iGPU instead of minimum memory // TODO find a better way to detect iGPU instead of minimum memory
const IGPUMemLimit = 1 * format.GibiByte // 512G is what they typically report, so anything less than 1G must be iGPU const IGPUMemLimit = 1 * format.GibiByte // 512G is what they typically report, so anything less than 1G must be iGPU
// Jetson devices have JETSON_JETPACK="x.y.z" factory set to the Jetpack version installed.
// Included to drive logic for reducing Ollama-allocated overhead on L4T/Jetson devices.
var CudaTegra string = os.Getenv("JETSON_JETPACK")
// Note: gpuMutex must already be held // Note: gpuMutex must already be held
func initCudaHandles() *cudaHandles { func initCudaHandles() *cudaHandles {
// TODO - if the ollama build is CPU only, don't do these checks as they're irrelevant and confusing // TODO - if the ollama build is CPU only, don't do these checks as they're irrelevant and confusing
@@ -215,7 +211,7 @@ func GetGPUInfo() GpuInfoList {
GpuInfo: GpuInfo{ GpuInfo: GpuInfo{
memInfo: mem, memInfo: mem,
Library: "cpu", Library: "cpu",
Variant: cpuCapability, Variant: cpuCapability.String(),
ID: "0", ID: "0",
}, },
}, },
@@ -229,11 +225,7 @@ func GetGPUInfo() GpuInfoList {
return GpuInfoList{cpus[0].GpuInfo} return GpuInfoList{cpus[0].GpuInfo}
} }
// On windows we bundle the nvidia library one level above the runner dir depPath := LibraryDir()
depPath := ""
if runtime.GOOS == "windows" && envconfig.RunnersDir() != "" {
depPath = filepath.Join(filepath.Dir(envconfig.RunnersDir()), "cuda")
}
// Load ALL libraries // Load ALL libraries
cHandles = initCudaHandles() cHandles = initCudaHandles()
@@ -269,11 +261,23 @@ func GetGPUInfo() GpuInfoList {
gpuInfo.FreeMemory = uint64(memInfo.free) gpuInfo.FreeMemory = uint64(memInfo.free)
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0]) gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
gpuInfo.Compute = fmt.Sprintf("%d.%d", memInfo.major, memInfo.minor) gpuInfo.Compute = fmt.Sprintf("%d.%d", memInfo.major, memInfo.minor)
gpuInfo.computeMajor = int(memInfo.major)
gpuInfo.computeMinor = int(memInfo.minor)
gpuInfo.MinimumMemory = cudaMinimumMemory gpuInfo.MinimumMemory = cudaMinimumMemory
gpuInfo.DependencyPath = depPath
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
gpuInfo.DriverMajor = driverMajor gpuInfo.DriverMajor = driverMajor
gpuInfo.DriverMinor = driverMinor gpuInfo.DriverMinor = driverMinor
variant := cudaVariant(gpuInfo)
if depPath != "" {
gpuInfo.DependencyPath = depPath
// Check for variant specific directory
if variant != "" {
if _, err := os.Stat(filepath.Join(depPath, "cuda_"+variant)); err == nil {
gpuInfo.DependencyPath = filepath.Join(depPath, "cuda_"+variant)
}
}
}
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
gpuInfo.Variant = variant
// query the management library as well so we can record any skew between the two // query the management library as well so we can record any skew between the two
// which represents overhead on the GPU we must set aside on subsequent updates // which represents overhead on the GPU we must set aside on subsequent updates
@@ -306,13 +310,6 @@ func GetGPUInfo() GpuInfoList {
if envconfig.IntelGPU() { if envconfig.IntelGPU() {
oHandles = initOneAPIHandles() oHandles = initOneAPIHandles()
if oHandles != nil && oHandles.oneapi != nil { if oHandles != nil && oHandles.oneapi != nil {
// On windows we bundle the oneapi library one level above the runner dir
depPath = ""
if runtime.GOOS == "windows" && envconfig.RunnersDir() != "" {
depPath = filepath.Join(filepath.Dir(envconfig.RunnersDir()), "oneapi")
}
for d := range oHandles.oneapi.num_drivers { for d := range oHandles.oneapi.num_drivers {
if oHandles.oneapi == nil { if oHandles.oneapi == nil {
// shouldn't happen // shouldn't happen
@@ -467,10 +464,12 @@ func GetGPUInfo() GpuInfoList {
func FindGPULibs(baseLibName string, defaultPatterns []string) []string { func FindGPULibs(baseLibName string, defaultPatterns []string) []string {
// Multiple GPU libraries may exist, and some may not work, so keep trying until we exhaust them // Multiple GPU libraries may exist, and some may not work, so keep trying until we exhaust them
var ldPaths []string var ldPaths []string
var patterns []string
gpuLibPaths := []string{} gpuLibPaths := []string{}
slog.Debug("Searching for GPU library", "name", baseLibName) slog.Debug("Searching for GPU library", "name", baseLibName)
// Start with our bundled libraries
patterns := []string{filepath.Join(LibraryDir(), baseLibName)}
switch runtime.GOOS { switch runtime.GOOS {
case "windows": case "windows":
ldPaths = strings.Split(os.Getenv("PATH"), ";") ldPaths = strings.Split(os.Getenv("PATH"), ";")
@@ -479,13 +478,14 @@ func FindGPULibs(baseLibName string, defaultPatterns []string) []string {
default: default:
return gpuLibPaths return gpuLibPaths
} }
// Start with whatever we find in the PATH/LD_LIBRARY_PATH
// Then with whatever we find in the PATH/LD_LIBRARY_PATH
for _, ldPath := range ldPaths { for _, ldPath := range ldPaths {
d, err := filepath.Abs(ldPath) d, err := filepath.Abs(ldPath)
if err != nil { if err != nil {
continue continue
} }
patterns = append(patterns, filepath.Join(d, baseLibName+"*")) patterns = append(patterns, filepath.Join(d, baseLibName))
} }
patterns = append(patterns, defaultPatterns...) patterns = append(patterns, defaultPatterns...)
slog.Debug("gpu library search", "globs", patterns) slog.Debug("gpu library search", "globs", patterns)
@@ -641,3 +641,31 @@ func (l GpuInfoList) GetVisibleDevicesEnv() (string, string) {
return "", "" return "", ""
} }
} }
func LibraryDir() string {
// On Windows/linux we bundle the dependencies at the same level as the executable
appExe, err := os.Executable()
if err != nil {
slog.Warn("failed to lookup executable path", "error", err)
}
cwd, err := os.Getwd()
if err != nil {
slog.Warn("failed to lookup working directory", "error", err)
}
// Scan for any of our dependeices, and pick first match
for _, root := range []string{filepath.Dir(appExe), filepath.Join(filepath.Dir(appExe), ".."), cwd} {
libDep := filepath.Join("lib", "ollama")
if _, err := os.Stat(filepath.Join(root, libDep)); err == nil {
return filepath.Join(root, libDep)
}
// Developer mode, local build
if _, err := os.Stat(filepath.Join(root, runtime.GOOS+"-"+runtime.GOARCH, libDep)); err == nil {
return filepath.Join(root, runtime.GOOS+"-"+runtime.GOARCH, libDep)
}
if _, err := os.Stat(filepath.Join(root, "dist", runtime.GOOS+"-"+runtime.GOARCH, libDep)); err == nil {
return filepath.Join(root, "dist", runtime.GOOS+"-"+runtime.GOARCH, libDep)
}
}
slog.Warn("unable to locate gpu dependency libraries")
return ""
}

View File

@@ -25,7 +25,7 @@ func GetGPUInfo() GpuInfoList {
return []GpuInfo{ return []GpuInfo{
{ {
Library: "cpu", Library: "cpu",
Variant: GetCPUCapability(), Variant: GetCPUCapability().String(),
memInfo: mem, memInfo: mem,
}, },
} }
@@ -48,7 +48,7 @@ func GetCPUInfo() GpuInfoList {
return []GpuInfo{ return []GpuInfo{
{ {
Library: "cpu", Library: "cpu",
Variant: GetCPUCapability(), Variant: GetCPUCapability().String(),
memInfo: mem, memInfo: mem,
}, },
} }

View File

@@ -47,7 +47,7 @@ var (
CudartMgmtName = "libcudart.so*" CudartMgmtName = "libcudart.so*"
NvcudaMgmtName = "libcuda.so*" NvcudaMgmtName = "libcuda.so*"
NvmlMgmtName = "" // not currently wired on linux NvmlMgmtName = "" // not currently wired on linux
OneapiMgmtName = "libze_intel_gpu.so" OneapiMgmtName = "libze_intel_gpu.so*"
) )
func GetCPUMem() (memInfo, error) { func GetCPUMem() (memInfo, error) {

View File

@@ -32,4 +32,29 @@ func TestCPUMemInfo(t *testing.T) {
} }
} }
func TestByLibrary(t *testing.T) {
type testCase struct {
input []GpuInfo
expect int
}
testCases := map[string]*testCase{
"empty": {input: []GpuInfo{}, expect: 0},
"cpu": {input: []GpuInfo{{Library: "cpu"}}, expect: 1},
"cpu + GPU": {input: []GpuInfo{{Library: "cpu"}, {Library: "cuda"}}, expect: 2},
"cpu + 2 GPU no variant": {input: []GpuInfo{{Library: "cpu"}, {Library: "cuda"}, {Library: "cuda"}}, expect: 2},
"cpu + 2 GPU same variant": {input: []GpuInfo{{Library: "cpu"}, {Library: "cuda", Variant: "v11"}, {Library: "cuda", Variant: "v11"}}, expect: 2},
"cpu + 2 GPU diff variant": {input: []GpuInfo{{Library: "cpu"}, {Library: "cuda", Variant: "v11"}, {Library: "cuda", Variant: "v12"}}, expect: 3},
}
for k, v := range testCases {
t.Run(k, func(t *testing.T) {
resp := (GpuInfoList)(v.input).ByLibrary()
if len(resp) != v.expect {
t.Fatalf("expected length %d, got %d => %+v", v.expect, len(resp), resp)
}
})
}
}
// TODO - add some logic to figure out card type through other means and actually verify we got back what we expected // TODO - add some logic to figure out card type through other means and actually verify we got back what we expected

View File

@@ -19,7 +19,7 @@ type GpuInfo struct {
Library string `json:"library,omitempty"` Library string `json:"library,omitempty"`
// Optional variant to select (e.g. versions, cpu feature flags) // Optional variant to select (e.g. versions, cpu feature flags)
Variant CPUCapability `json:"variant"` Variant string `json:"variant"`
// MinimumMemory represents the minimum memory required to use the GPU // MinimumMemory represents the minimum memory required to use the GPU
MinimumMemory uint64 `json:"-"` MinimumMemory uint64 `json:"-"`
@@ -53,8 +53,10 @@ type CPUInfo struct {
type CudaGPUInfo struct { type CudaGPUInfo struct {
GpuInfo GpuInfo
OSOverhead uint64 // Memory overhead between the driver library and management library OSOverhead uint64 // Memory overhead between the driver library and management library
index int //nolint:unused,nolintlint index int //nolint:unused,nolintlint
computeMajor int //nolint:unused,nolintlint
computeMinor int //nolint:unused,nolintlint
} }
type CudaGPUInfoList []CudaGPUInfo type CudaGPUInfoList []CudaGPUInfo
@@ -81,8 +83,8 @@ func (l GpuInfoList) ByLibrary() []GpuInfoList {
for _, info := range l { for _, info := range l {
found := false found := false
requested := info.Library requested := info.Library
if info.Variant != CPUCapabilityNone { if info.Variant != CPUCapabilityNone.String() {
requested += "_" + info.Variant.String() requested += "_" + info.Variant
} }
for i, lib := range libs { for i, lib := range libs {
if lib == requested { if lib == requested {
@@ -92,7 +94,7 @@ func (l GpuInfoList) ByLibrary() []GpuInfoList {
} }
} }
if !found { if !found {
libs = append(libs, info.Library) libs = append(libs, requested)
resp = append(resp, []GpuInfo{info}) resp = append(resp, []GpuInfo{info})
} }
} }
@@ -105,6 +107,7 @@ func (l GpuInfoList) LogDetails() {
slog.Info("inference compute", slog.Info("inference compute",
"id", g.ID, "id", g.ID,
"library", g.Library, "library", g.Library,
"variant", g.Variant,
"compute", g.Compute, "compute", g.Compute,
"driver", fmt.Sprintf("%d.%d", g.DriverMajor, g.DriverMinor), "driver", fmt.Sprintf("%d.%d", g.DriverMajor, g.DriverMinor),
"name", g.Name, "name", g.Name,

View File

@@ -70,8 +70,8 @@ func TestAllMiniLMEmbed(t *testing.T) {
t.Fatalf("expected 0.010071031, got %.8f", res.Embeddings[0][0]) t.Fatalf("expected 0.010071031, got %.8f", res.Embeddings[0][0])
} }
if res.PromptEvalCount != 8 { if res.PromptEvalCount != 6 {
t.Fatalf("expected 8 prompt tokens, got %d", res.PromptEvalCount) t.Fatalf("expected 6 prompt tokens, got %d", res.PromptEvalCount)
} }
} }
@@ -102,8 +102,8 @@ func TestAllMiniLMBatchEmbed(t *testing.T) {
t.Fatalf("expected 0.010071031 and -0.009802706, got %.8f and %.8f", res.Embeddings[0][0], res.Embeddings[1][0]) t.Fatalf("expected 0.010071031 and -0.009802706, got %.8f and %.8f", res.Embeddings[0][0], res.Embeddings[1][0])
} }
if res.PromptEvalCount != 16 { if res.PromptEvalCount != 12 {
t.Fatalf("expected 16 prompt tokens, got %d", res.PromptEvalCount) t.Fatalf("expected 12 prompt tokens, got %d", res.PromptEvalCount)
} }
} }

View File

@@ -1,12 +1,13 @@
set(TARGET ollama_llama_server) set(TARGET ollama_llama_server)
option(LLAMA_SERVER_VERBOSE "Build verbose logging option for Server" ON) option(LLAMA_SERVER_VERBOSE "Build verbose logging option for Server" ON)
set(LLAMA_SERVER_LDFLAGS $ENV{LLAMA_SERVER_LDFLAGS})
include_directories(${CMAKE_CURRENT_SOURCE_DIR}) include_directories(${CMAKE_CURRENT_SOURCE_DIR})
add_executable(${TARGET} server.cpp utils.hpp json.hpp httplib.h) add_executable(${TARGET} server.cpp utils.hpp json.hpp httplib.h)
install(TARGETS ${TARGET} RUNTIME) install(TARGETS ${TARGET} RUNTIME)
target_compile_definitions(${TARGET} PRIVATE target_compile_definitions(${TARGET} PRIVATE
SERVER_VERBOSE=$<BOOL:${LLAMA_SERVER_VERBOSE}> SERVER_VERBOSE=$<BOOL:${LLAMA_SERVER_VERBOSE}>
) )
target_link_libraries(${TARGET} PRIVATE ggml llama common llava ${CMAKE_THREAD_LIBS_INIT}) target_link_libraries(${TARGET} PRIVATE ggml llama common llava ${CMAKE_THREAD_LIBS_INIT} ${LLAMA_SERVER_LDFLAGS})
if (WIN32) if (WIN32)
TARGET_LINK_LIBRARIES(${TARGET} PRIVATE ws2_32) TARGET_LINK_LIBRARIES(${TARGET} PRIVATE ws2_32)
endif() endif()

View File

@@ -1429,7 +1429,13 @@ struct llama_server_context
switch (task.type) switch (task.type)
{ {
case TASK_TYPE_COMPLETION: { case TASK_TYPE_COMPLETION: {
server_slot *slot = prefix_slot(task.data["prompt"]); server_slot *slot = nullptr;
if (task.embedding_mode) {
// Embedding seq_id (aka slot id) must always be <= token length, so always use slot 0
slot = slots[0].available() ? &slots[0] : nullptr;
} else {
slot = prefix_slot(task.data["prompt"]);
}
if (slot == nullptr) if (slot == nullptr)
{ {
// if no slot is available, we defer this task for processing later // if no slot is available, we defer this task for processing later

View File

@@ -9,11 +9,14 @@ init_vars() {
ARCH="arm64" ARCH="arm64"
;; ;;
*) *)
ARCH=$(uname -m | sed -e "s/aarch64/arm64/g") echo "GOARCH must be set"
echo "this script is meant to be run from within go generate"
exit 1
;;
esac esac
LLAMACPP_DIR=../llama.cpp LLAMACPP_DIR=../llama.cpp
CMAKE_DEFS="" CMAKE_DEFS="-DCMAKE_SKIP_RPATH=on"
CMAKE_TARGETS="--target ollama_llama_server" CMAKE_TARGETS="--target ollama_llama_server"
if echo "${CGO_CFLAGS}" | grep -- '-g' >/dev/null; then if echo "${CGO_CFLAGS}" | grep -- '-g' >/dev/null; then
CMAKE_DEFS="-DCMAKE_BUILD_TYPE=RelWithDebInfo -DCMAKE_VERBOSE_MAKEFILE=on -DLLAMA_GPROF=on -DLLAMA_SERVER_VERBOSE=on ${CMAKE_DEFS}" CMAKE_DEFS="-DCMAKE_BUILD_TYPE=RelWithDebInfo -DCMAKE_VERBOSE_MAKEFILE=on -DLLAMA_GPROF=on -DLLAMA_SERVER_VERBOSE=on ${CMAKE_DEFS}"
@@ -27,6 +30,7 @@ init_vars() {
WHOLE_ARCHIVE="-Wl,-force_load" WHOLE_ARCHIVE="-Wl,-force_load"
NO_WHOLE_ARCHIVE="" NO_WHOLE_ARCHIVE=""
GCC_ARCH="-arch ${ARCH}" GCC_ARCH="-arch ${ARCH}"
DIST_BASE=../../dist/darwin-${GOARCH}/
;; ;;
"Linux") "Linux")
LIB_EXT="so" LIB_EXT="so"
@@ -35,6 +39,7 @@ init_vars() {
# Cross compiling not supported on linux - Use docker # Cross compiling not supported on linux - Use docker
GCC_ARCH="" GCC_ARCH=""
DIST_BASE=../../dist/linux-${GOARCH}/
;; ;;
*) *)
;; ;;
@@ -42,6 +47,7 @@ init_vars() {
if [ -z "${CMAKE_CUDA_ARCHITECTURES}" ] ; then if [ -z "${CMAKE_CUDA_ARCHITECTURES}" ] ; then
CMAKE_CUDA_ARCHITECTURES="50;52;61;70;75;80" CMAKE_CUDA_ARCHITECTURES="50;52;61;70;75;80"
fi fi
GZIP=$(which pigz 2>/dev/null || echo "gzip")
} }
git_module_setup() { git_module_setup() {
@@ -85,26 +91,36 @@ build() {
compress() { compress() {
echo "Compressing payloads to reduce overall binary size..." echo "Compressing payloads to reduce overall binary size..."
pids=""
rm -rf ${BUILD_DIR}/bin/*.gz rm -rf ${BUILD_DIR}/bin/*.gz
for f in ${BUILD_DIR}/bin/* ; do for f in ${BUILD_DIR}/bin/* ; do
gzip -n --best -f ${f} & ${GZIP} -n --best -f ${f} &
pids+=" $!" compress_pids+=" $!"
done done
# check for lib directory # check for lib directory
if [ -d ${BUILD_DIR}/lib ]; then if [ -d ${BUILD_DIR}/lib ]; then
for f in ${BUILD_DIR}/lib/* ; do for f in ${BUILD_DIR}/lib/* ; do
gzip -n --best -f ${f} & ${GZIP} -n --best -f ${f} &
pids+=" $!" compress_pids+=" $!"
done done
fi fi
echo echo
for pid in ${pids}; do }
wait_for_compress() {
for pid in ${compress_pids}; do
wait $pid wait $pid
done done
echo "Finished compression" echo "Finished compression"
} }
install() {
echo "Installing libraries to bin dir ${BUILD_DIR}/bin/"
for lib in $(find ${BUILD_DIR} -name \*.${LIB_EXT}); do
rm -f "${BUILD_DIR}/bin/$(basename ${lib})"
cp -af "${lib}" "${BUILD_DIR}/bin/"
done
}
# Keep the local tree clean after we're done with the build # Keep the local tree clean after we're done with the build
cleanup() { cleanup() {
(cd ${LLAMACPP_DIR}/ && git checkout CMakeLists.txt) (cd ${LLAMACPP_DIR}/ && git checkout CMakeLists.txt)

View File

@@ -6,6 +6,7 @@
set -ex set -ex
set -o pipefail set -o pipefail
compress_pids=""
echo "Starting darwin generate script" echo "Starting darwin generate script"
source $(dirname $0)/gen_common.sh source $(dirname $0)/gen_common.sh
init_vars init_vars
@@ -98,4 +99,5 @@ case "${GOARCH}" in
esac esac
cleanup cleanup
wait_for_compress
echo "go generate completed. LLM runners: $(cd ${BUILD_DIR}/..; echo *)" echo "go generate completed. LLM runners: $(cd ${BUILD_DIR}/..; echo *)"

View File

@@ -13,6 +13,7 @@
set -ex set -ex
set -o pipefail set -o pipefail
compress_pids=""
# See https://llvm.org/docs/AMDGPUUsage.html#processors for reference # See https://llvm.org/docs/AMDGPUUsage.html#processors for reference
amdGPUs() { amdGPUs() {
@@ -51,7 +52,7 @@ if [ -z "${CUDACXX}" ]; then
export CUDACXX=$(command -v nvcc) export CUDACXX=$(command -v nvcc)
fi fi
fi fi
COMMON_CMAKE_DEFS="-DBUILD_SHARED_LIBS=off -DCMAKE_POSITION_INDEPENDENT_CODE=on -DGGML_NATIVE=off -DGGML_AVX=on -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off -DGGML_OPENMP=off" COMMON_CMAKE_DEFS="-DCMAKE_SKIP_RPATH=on -DBUILD_SHARED_LIBS=on -DCMAKE_POSITION_INDEPENDENT_CODE=on -DGGML_NATIVE=off -DGGML_AVX=on -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off -DGGML_OPENMP=off"
source $(dirname $0)/gen_common.sh source $(dirname $0)/gen_common.sh
init_vars init_vars
git_module_setup git_module_setup
@@ -77,10 +78,11 @@ if [ -z "${OLLAMA_SKIP_CPU_GENERATE}" ]; then
if [ -n "${OLLAMA_CUSTOM_CPU_DEFS}" ]; then if [ -n "${OLLAMA_CUSTOM_CPU_DEFS}" ]; then
init_vars init_vars
echo "OLLAMA_CUSTOM_CPU_DEFS=\"${OLLAMA_CUSTOM_CPU_DEFS}\"" echo "OLLAMA_CUSTOM_CPU_DEFS=\"${OLLAMA_CUSTOM_CPU_DEFS}\""
CMAKE_DEFS="${OLLAMA_CUSTOM_CPU_DEFS} -DBUILD_SHARED_LIBS=off -DCMAKE_POSITION_INDEPENDENT_CODE=on ${CMAKE_DEFS}" CMAKE_DEFS="${OLLAMA_CUSTOM_CPU_DEFS} -DBUILD_SHARED_LIBS=on -DCMAKE_POSITION_INDEPENDENT_CODE=on ${CMAKE_DEFS}"
BUILD_DIR="../build/linux/${ARCH}/cpu" BUILD_DIR="../build/linux/${ARCH}/cpu"
echo "Building custom CPU" echo "Building custom CPU"
build build
install
compress compress
else else
# Darwin Rosetta x86 emulation does NOT support AVX, AVX2, AVX512 # Darwin Rosetta x86 emulation does NOT support AVX, AVX2, AVX512
@@ -93,7 +95,7 @@ if [ -z "${OLLAMA_SKIP_CPU_GENERATE}" ]; then
# -DGGML_AVX512_VBMI -- 2018 Intel Cannon Lake # -DGGML_AVX512_VBMI -- 2018 Intel Cannon Lake
# -DGGML_AVX512_VNNI -- 2021 Intel Alder Lake # -DGGML_AVX512_VNNI -- 2021 Intel Alder Lake
COMMON_CPU_DEFS="-DBUILD_SHARED_LIBS=off -DCMAKE_POSITION_INDEPENDENT_CODE=on -DGGML_NATIVE=off -DGGML_OPENMP=off" COMMON_CPU_DEFS="-DBUILD_SHARED_LIBS=on -DCMAKE_POSITION_INDEPENDENT_CODE=on -DGGML_NATIVE=off -DGGML_OPENMP=off"
if [ -z "${OLLAMA_CPU_TARGET}" -o "${OLLAMA_CPU_TARGET}" = "cpu" ]; then if [ -z "${OLLAMA_CPU_TARGET}" -o "${OLLAMA_CPU_TARGET}" = "cpu" ]; then
# #
# CPU first for the default library, set up as lowest common denominator for maximum compatibility (including Rosetta) # CPU first for the default library, set up as lowest common denominator for maximum compatibility (including Rosetta)
@@ -103,6 +105,7 @@ if [ -z "${OLLAMA_SKIP_CPU_GENERATE}" ]; then
BUILD_DIR="../build/linux/${ARCH}/cpu" BUILD_DIR="../build/linux/${ARCH}/cpu"
echo "Building LCD CPU" echo "Building LCD CPU"
build build
install
compress compress
fi fi
@@ -120,6 +123,7 @@ if [ -z "${OLLAMA_SKIP_CPU_GENERATE}" ]; then
BUILD_DIR="../build/linux/${ARCH}/cpu_avx" BUILD_DIR="../build/linux/${ARCH}/cpu_avx"
echo "Building AVX CPU" echo "Building AVX CPU"
build build
install
compress compress
fi fi
@@ -133,6 +137,7 @@ if [ -z "${OLLAMA_SKIP_CPU_GENERATE}" ]; then
BUILD_DIR="../build/linux/${ARCH}/cpu_avx2" BUILD_DIR="../build/linux/${ARCH}/cpu_avx2"
echo "Building AVX2 CPU" echo "Building AVX2 CPU"
build build
install
compress compress
fi fi
fi fi
@@ -160,7 +165,7 @@ if [ -z "${OLLAMA_SKIP_CUDA_GENERATE}" -a -d "${CUDA_LIB_DIR}" ]; then
echo "CUDA libraries detected - building dynamic CUDA library" echo "CUDA libraries detected - building dynamic CUDA library"
init_vars init_vars
CUDA_MAJOR=$(ls "${CUDA_LIB_DIR}"/libcudart.so.* | head -1 | cut -f3 -d. || true) CUDA_MAJOR=$(ls "${CUDA_LIB_DIR}"/libcudart.so.* | head -1 | cut -f3 -d. || true)
if [ -n "${CUDA_MAJOR}" ]; then if [ -n "${CUDA_MAJOR}" -a -z "${CUDA_VARIANT}" ]; then
CUDA_VARIANT=_v${CUDA_MAJOR} CUDA_VARIANT=_v${CUDA_MAJOR}
fi fi
if [ "${ARCH}" == "arm64" ]; then if [ "${ARCH}" == "arm64" ]; then
@@ -178,29 +183,19 @@ if [ -z "${OLLAMA_SKIP_CUDA_GENERATE}" -a -d "${CUDA_LIB_DIR}" ]; then
CMAKE_CUDA_DEFS="-DGGML_CUDA=on -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES} ${OLLAMA_CUSTOM_CUDA_DEFS}" CMAKE_CUDA_DEFS="-DGGML_CUDA=on -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES} ${OLLAMA_CUSTOM_CUDA_DEFS}"
echo "Building custom CUDA GPU" echo "Building custom CUDA GPU"
else else
CMAKE_CUDA_DEFS="-DGGML_CUDA=on -DCMAKE_CUDA_FLAGS=-t8 -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES}" CMAKE_CUDA_DEFS="-DGGML_CUDA=on -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES}"
fi fi
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} ${ARM64_DEFS} ${CMAKE_CUDA_DEFS}" export CUDAFLAGS="-t8"
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} ${ARM64_DEFS} ${CMAKE_CUDA_DEFS} -DGGML_STATIC=off"
BUILD_DIR="../build/linux/${ARCH}/cuda${CUDA_VARIANT}" BUILD_DIR="../build/linux/${ARCH}/cuda${CUDA_VARIANT}"
EXTRA_LIBS="-L${CUDA_LIB_DIR} -lcudart -lcublas -lcublasLt -lcuda" export LLAMA_SERVER_LDFLAGS="-L${CUDA_LIB_DIR} -lcudart -lcublas -lcublasLt -lcuda"
CUDA_DIST_DIR="${CUDA_DIST_DIR:-${DIST_BASE}/lib/ollama}"
build build
install
# Carry the CUDA libs as payloads to help reduce dependency burden on users echo "Installing CUDA dependencies in ${CUDA_DIST_DIR}"
# mkdir -p "${CUDA_DIST_DIR}"
# TODO - in the future we may shift to packaging these separately and conditionally for lib in ${CUDA_LIB_DIR}/libcudart.so* ${CUDA_LIB_DIR}/libcublas.so* ${CUDA_LIB_DIR}/libcublasLt.so* ; do
# downloading them in the install script. cp -a "${lib}" "${CUDA_DIST_DIR}"
DEPS="$(ldd ${BUILD_DIR}/bin/ollama_llama_server )"
for lib in libcudart.so libcublas.so libcublasLt.so ; do
DEP=$(echo "${DEPS}" | grep ${lib} | cut -f1 -d' ' | xargs || true)
if [ -n "${DEP}" -a -e "${CUDA_LIB_DIR}/${DEP}" ]; then
cp "${CUDA_LIB_DIR}/${DEP}" "${BUILD_DIR}/bin/"
elif [ -e "${CUDA_LIB_DIR}/${lib}.${CUDA_MAJOR}" ]; then
cp "${CUDA_LIB_DIR}/${lib}.${CUDA_MAJOR}" "${BUILD_DIR}/bin/"
elif [ -e "${CUDART_LIB_DIR}/${lib}" ]; then
cp -d ${CUDART_LIB_DIR}/${lib}* "${BUILD_DIR}/bin/"
else
cp -d "${CUDA_LIB_DIR}/${lib}*" "${BUILD_DIR}/bin/"
fi
done done
compress compress
@@ -218,21 +213,24 @@ if [ -z "${OLLAMA_SKIP_ONEAPI_GENERATE}" -a -d "${ONEAPI_ROOT}" ]; then
CC=icx CC=icx
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL=ON -DGGML_SYCL_F16=OFF" CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL=ON -DGGML_SYCL_F16=OFF"
BUILD_DIR="../build/linux/${ARCH}/oneapi" BUILD_DIR="../build/linux/${ARCH}/oneapi"
EXTRA_LIBS="-fsycl -Wl,-rpath,${ONEAPI_ROOT}/compiler/latest/lib,-rpath,${ONEAPI_ROOT}/mkl/latest/lib,-rpath,${ONEAPI_ROOT}/tbb/latest/lib,-rpath,${ONEAPI_ROOT}/compiler/latest/opt/oclfpga/linux64/lib -lOpenCL -lmkl_core -lmkl_sycl_blas -lmkl_intel_ilp64 -lmkl_tbb_thread -ltbb" ONEAPI_DIST_DIR="${DIST_BASE}/lib/ollama"
export LLAMA_SERVER_LDFLAGS="-fsycl -lOpenCL -lmkl_core -lmkl_sycl_blas -lmkl_intel_ilp64 -lmkl_tbb_thread -ltbb"
DEBUG_FLAGS="" # icx compiles with -O0 if we pass -g, so we must remove it DEBUG_FLAGS="" # icx compiles with -O0 if we pass -g, so we must remove it
build build
# copy oneAPI dependencies # copy oneAPI dependencies
mkdir -p "${ONEAPI_DIST_DIR}"
for dep in $(ldd "${BUILD_DIR}/bin/ollama_llama_server" | grep "=>" | cut -f2 -d= | cut -f2 -d' ' | grep -e sycl -e mkl -e tbb); do for dep in $(ldd "${BUILD_DIR}/bin/ollama_llama_server" | grep "=>" | cut -f2 -d= | cut -f2 -d' ' | grep -e sycl -e mkl -e tbb); do
cp "${dep}" "${BUILD_DIR}/bin/" cp -a "${dep}" "${ONEAPI_DIST_DIR}"
done done
cp "${ONEAPI_ROOT}/compiler/latest/lib/libOpenCL.so" "${BUILD_DIR}/bin/" cp "${ONEAPI_ROOT}/compiler/latest/lib/libOpenCL.so" "${ONEAPI_DIST_DIR}"
cp "${ONEAPI_ROOT}/compiler/latest/lib/libimf.so" "${BUILD_DIR}/bin/" cp "${ONEAPI_ROOT}/compiler/latest/lib/libimf.so" "${ONEAPI_DIST_DIR}"
cp "${ONEAPI_ROOT}/compiler/latest/lib/libintlc.so.5" "${BUILD_DIR}/bin/" cp "${ONEAPI_ROOT}/compiler/latest/lib/libintlc.so.5" "${ONEAPI_DIST_DIR}"
cp "${ONEAPI_ROOT}/compiler/latest/lib/libirng.so" "${BUILD_DIR}/bin/" cp "${ONEAPI_ROOT}/compiler/latest/lib/libirng.so" "${ONEAPI_DIST_DIR}"
cp "${ONEAPI_ROOT}/compiler/latest/lib/libpi_level_zero.so" "${BUILD_DIR}/bin/" cp "${ONEAPI_ROOT}/compiler/latest/lib/libpi_level_zero.so" "${ONEAPI_DIST_DIR}"
cp "${ONEAPI_ROOT}/compiler/latest/lib/libsvml.so" "${BUILD_DIR}/bin/" cp "${ONEAPI_ROOT}/compiler/latest/lib/libsvml.so" "${ONEAPI_DIST_DIR}"
cp "${ONEAPI_ROOT}/compiler/latest/lib/libur_loader.so.0" "${BUILD_DIR}/bin/" cp "${ONEAPI_ROOT}/compiler/latest/lib/libur_loader.so.0" "${ONEAPI_DIST_DIR}"
install
compress compress
fi fi
@@ -254,7 +252,7 @@ if [ -z "${OLLAMA_SKIP_ROCM_GENERATE}" -a -d "${ROCM_PATH}" ]; then
ROCM_VARIANT=_v$(ls ${ROCM_PATH}/lib/librocblas.so.*.*.????? | cut -f5 -d. || true) ROCM_VARIANT=_v$(ls ${ROCM_PATH}/lib/librocblas.so.*.*.????? | cut -f5 -d. || true)
fi fi
init_vars init_vars
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} -DGGML_HIPBLAS=on -DLLAMA_CUDA_NO_PEER_COPY=on -DCMAKE_C_COMPILER=$ROCM_PATH/llvm/bin/clang -DCMAKE_CXX_COMPILER=$ROCM_PATH/llvm/bin/clang++ -DAMDGPU_TARGETS=$(amdGPUs) -DGPU_TARGETS=$(amdGPUs)" CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} -DGGML_HIPBLAS=on -DGGML_CUDA_NO_PEER_COPY=on -DCMAKE_C_COMPILER=$ROCM_PATH/llvm/bin/clang -DCMAKE_CXX_COMPILER=$ROCM_PATH/llvm/bin/clang++ -DAMDGPU_TARGETS=$(amdGPUs) -DGPU_TARGETS=$(amdGPUs)"
# Users building from source can tune the exact flags we pass to cmake for configuring llama.cpp # Users building from source can tune the exact flags we pass to cmake for configuring llama.cpp
if [ -n "${OLLAMA_CUSTOM_ROCM_DEFS}" ]; then if [ -n "${OLLAMA_CUSTOM_ROCM_DEFS}" ]; then
echo "OLLAMA_CUSTOM_ROCM_DEFS=\"${OLLAMA_CUSTOM_ROCM_DEFS}\"" echo "OLLAMA_CUSTOM_ROCM_DEFS=\"${OLLAMA_CUSTOM_ROCM_DEFS}\""
@@ -262,23 +260,22 @@ if [ -z "${OLLAMA_SKIP_ROCM_GENERATE}" -a -d "${ROCM_PATH}" ]; then
echo "Building custom ROCM GPU" echo "Building custom ROCM GPU"
fi fi
BUILD_DIR="../build/linux/${ARCH}/rocm${ROCM_VARIANT}" BUILD_DIR="../build/linux/${ARCH}/rocm${ROCM_VARIANT}"
EXTRA_LIBS="-L${ROCM_PATH}/lib -L/opt/amdgpu/lib/x86_64-linux-gnu/ -Wl,-rpath,\$ORIGIN/../../rocm/ -lhipblas -lrocblas -lamdhip64 -lrocsolver -lamd_comgr -lhsa-runtime64 -lrocsparse -ldrm -ldrm_amdgpu" # ROCm dependencies are too large to fit into a unified bundle
ROCM_DIST_DIR="${DIST_BASE}/../linux-${GOARCH}-rocm/lib/ollama"
# TODO figure out how to disable runpath (rpath)
# export CMAKE_HIP_FLAGS="-fno-rtlib-add-rpath" # doesn't work
export LLAMA_SERVER_LDFLAGS="-L${ROCM_PATH}/lib -L/opt/amdgpu/lib/x86_64-linux-gnu/ -lhipblas -lrocblas -lamdhip64 -lrocsolver -lamd_comgr -lhsa-runtime64 -lrocsparse -ldrm -ldrm_amdgpu"
build build
# Record the ROCM dependencies # copy the ROCM dependencies
rm -f "${BUILD_DIR}/bin/deps.txt" mkdir -p "${ROCM_DIST_DIR}"
touch "${BUILD_DIR}/bin/deps.txt" for dep in $(ldd "${BUILD_DIR}/bin/ollama_llama_server" | grep "=>" | cut -f2 -d= | cut -f2 -d' ' | grep -v "${ARCH}/rocm${ROCM_VARIANT}" | grep -e rocm -e amdgpu -e libtinfo ); do
for dep in $(ldd "${BUILD_DIR}/bin/ollama_llama_server" | grep "=>" | cut -f2 -d= | cut -f2 -d' ' | grep -e rocm -e amdgpu -e libtinfo ); do cp -a "${dep}"* "${ROCM_DIST_DIR}"
echo "${dep}" >> "${BUILD_DIR}/bin/deps.txt"
done done
# bomb out if for some reason we didn't get a few deps install
if [ $(cat "${BUILD_DIR}/bin/deps.txt" | wc -l ) -lt 8 ] ; then
cat "${BUILD_DIR}/bin/deps.txt"
echo "ERROR: deps file short"
exit 1
fi
compress compress
fi fi
cleanup cleanup
wait_for_compress
echo "go generate completed. LLM runners: $(cd ${BUILD_DIR}/..; echo *)" echo "go generate completed. LLM runners: $(cd ${BUILD_DIR}/..; echo *)"

View File

@@ -35,7 +35,7 @@ function init_vars {
) )
$script:commonCpuDefs = @("-DCMAKE_POSITION_INDEPENDENT_CODE=on") $script:commonCpuDefs = @("-DCMAKE_POSITION_INDEPENDENT_CODE=on")
$script:ARCH = $Env:PROCESSOR_ARCHITECTURE.ToLower() $script:ARCH = $Env:PROCESSOR_ARCHITECTURE.ToLower()
$script:DIST_BASE = "${script:SRC_DIR}\dist\windows-${script:ARCH}\ollama_runners" $script:DIST_BASE = "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\runners"
md "$script:DIST_BASE" -ea 0 > $null md "$script:DIST_BASE" -ea 0 > $null
if ($env:CGO_CFLAGS -contains "-g") { if ($env:CGO_CFLAGS -contains "-g") {
$script:cmakeDefs += @("-DCMAKE_VERBOSE_MAKEFILE=on", "-DLLAMA_SERVER_VERBOSE=on", "-DCMAKE_BUILD_TYPE=RelWithDebInfo") $script:cmakeDefs += @("-DCMAKE_VERBOSE_MAKEFILE=on", "-DLLAMA_SERVER_VERBOSE=on", "-DCMAKE_BUILD_TYPE=RelWithDebInfo")
@@ -117,7 +117,7 @@ function build {
if ($cmakeDefs -contains "-G") { if ($cmakeDefs -contains "-G") {
$extra=@("-j8") $extra=@("-j8")
} else { } else {
$extra= @("--", "/p:CL_MPcount=8") $extra= @("--", "/maxCpuCount:8")
} }
write-host "building with: cmake --build $script:buildDir --config $script:config $($script:cmakeTargets | ForEach-Object { `"--target`", $_ }) $extra" write-host "building with: cmake --build $script:buildDir --config $script:config $($script:cmakeTargets | ForEach-Object { `"--target`", $_ }) $extra"
& cmake --build $script:buildDir --config $script:config ($script:cmakeTargets | ForEach-Object { "--target", $_ }) $extra & cmake --build $script:buildDir --config $script:config ($script:cmakeTargets | ForEach-Object { "--target", $_ }) $extra
@@ -261,7 +261,7 @@ function build_cuda() {
if ((-not "${env:OLLAMA_SKIP_CUDA_GENERATE}") -and ("${script:CUDA_LIB_DIR}")) { if ((-not "${env:OLLAMA_SKIP_CUDA_GENERATE}") -and ("${script:CUDA_LIB_DIR}")) {
# Then build cuda as a dynamically loaded library # Then build cuda as a dynamically loaded library
$nvcc = "$script:CUDA_LIB_DIR\nvcc.exe" $nvcc = "$script:CUDA_LIB_DIR\nvcc.exe"
$script:CUDA_VERSION=(get-item ($nvcc | split-path | split-path)).Basename $script:CUDA_VERSION=((get-item ($nvcc | split-path | split-path)).Basename -Split "\.")[0]
if ($null -ne $script:CUDA_VERSION) { if ($null -ne $script:CUDA_VERSION) {
$script:CUDA_VARIANT="_"+$script:CUDA_VERSION $script:CUDA_VARIANT="_"+$script:CUDA_VERSION
} }
@@ -273,9 +273,9 @@ function build_cuda() {
"-DGGML_CUDA=ON", "-DGGML_CUDA=ON",
"-DGGML_AVX=on", "-DGGML_AVX=on",
"-DGGML_AVX2=off", "-DGGML_AVX2=off",
"-DCUDAToolkit_INCLUDE_DIR=$script:CUDA_INCLUDE_DIR", "-DCMAKE_CUDA_FLAGS=-t6",
"-DCMAKE_CUDA_FLAGS=-t8", "-DCMAKE_CUDA_ARCHITECTURES=${script:CMAKE_CUDA_ARCHITECTURES}",
"-DCMAKE_CUDA_ARCHITECTURES=${script:CMAKE_CUDA_ARCHITECTURES}" "-DCMAKE_CUDA_COMPILER_TOOLKIT_ROOT=$env:CUDA_PATH"
) )
if ($null -ne $env:OLLAMA_CUSTOM_CUDA_DEFS) { if ($null -ne $env:OLLAMA_CUSTOM_CUDA_DEFS) {
write-host "OLLAMA_CUSTOM_CUDA_DEFS=`"${env:OLLAMA_CUSTOM_CUDA_DEFS}`"" write-host "OLLAMA_CUSTOM_CUDA_DEFS=`"${env:OLLAMA_CUSTOM_CUDA_DEFS}`""
@@ -286,12 +286,11 @@ function build_cuda() {
sign sign
install install
rm -ea 0 -recurse -force -path "${script:SRC_DIR}\dist\windows-${script:ARCH}\cuda\" md "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\" -ea 0 > $null
md "${script:SRC_DIR}\dist\windows-${script:ARCH}\cuda\" -ea 0 > $null write-host "copying CUDA dependencies to ${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
write-host "copying CUDA dependencies to ${script:SRC_DIR}\dist\windows-${script:ARCH}\cuda\" cp "${script:CUDA_LIB_DIR}\cudart64_*.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
cp "${script:CUDA_LIB_DIR}\cudart64_*.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\cuda\" cp "${script:CUDA_LIB_DIR}\cublas64_*.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
cp "${script:CUDA_LIB_DIR}\cublas64_*.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\cuda\" cp "${script:CUDA_LIB_DIR}\cublasLt64_*.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
cp "${script:CUDA_LIB_DIR}\cublasLt64_*.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\cuda\"
} else { } else {
write-host "Skipping CUDA generation step" write-host "Skipping CUDA generation step"
} }
@@ -325,18 +324,17 @@ function build_oneapi() {
sign sign
install install
rm -ea 0 -recurse -force -path "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\" md "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\" -ea 0 > $null
md "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\" -ea 0 > $null cp "${env:ONEAPI_ROOT}\compiler\latest\bin\libirngmd.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\libirngmd.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\" cp "${env:ONEAPI_ROOT}\compiler\latest\bin\libmmd.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\libmmd.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\" cp "${env:ONEAPI_ROOT}\compiler\latest\bin\pi_level_zero.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\pi_level_zero.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\" cp "${env:ONEAPI_ROOT}\compiler\latest\bin\pi_unified_runtime.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\pi_unified_runtime.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\" cp "${env:ONEAPI_ROOT}\compiler\latest\bin\pi_win_proxy_loader.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\pi_win_proxy_loader.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\" cp "${env:ONEAPI_ROOT}\compiler\latest\bin\svml_dispmd.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\svml_dispmd.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\" cp "${env:ONEAPI_ROOT}\compiler\latest\bin\sycl7.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\sycl7.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\" cp "${env:ONEAPI_ROOT}\mkl\latest\bin\mkl_core.2.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
cp "${env:ONEAPI_ROOT}\mkl\latest\bin\mkl_core.2.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\" cp "${env:ONEAPI_ROOT}\mkl\latest\bin\mkl_sycl_blas.4.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
cp "${env:ONEAPI_ROOT}\mkl\latest\bin\mkl_sycl_blas.4.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\" cp "${env:ONEAPI_ROOT}\mkl\latest\bin\mkl_tbb_thread.2.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
cp "${env:ONEAPI_ROOT}\mkl\latest\bin\mkl_tbb_thread.2.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
} else { } else {
Write-Host "Skipping oneAPI generation step" Write-Host "Skipping oneAPI generation step"
} }
@@ -357,7 +355,7 @@ function build_rocm() {
"-DCMAKE_C_COMPILER=clang.exe", "-DCMAKE_C_COMPILER=clang.exe",
"-DCMAKE_CXX_COMPILER=clang++.exe", "-DCMAKE_CXX_COMPILER=clang++.exe",
"-DGGML_HIPBLAS=on", "-DGGML_HIPBLAS=on",
"-DLLAMA_CUDA_NO_PEER_COPY=on", "-DGGML_CUDA_NO_PEER_COPY=on",
"-DHIP_PLATFORM=amd", "-DHIP_PLATFORM=amd",
"-DGGML_AVX=on", "-DGGML_AVX=on",
"-DGGML_AVX2=off", "-DGGML_AVX2=off",
@@ -386,12 +384,11 @@ function build_rocm() {
sign sign
install install
rm -ea 0 -recurse -force -path "${script:SRC_DIR}\dist\windows-${script:ARCH}\rocm\" md "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\rocblas\library\" -ea 0 > $null
md "${script:SRC_DIR}\dist\windows-${script:ARCH}\rocm\rocblas\library\" -ea 0 > $null cp "${env:HIP_PATH}\bin\hipblas.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
cp "${env:HIP_PATH}\bin\hipblas.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\rocm\" cp "${env:HIP_PATH}\bin\rocblas.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
cp "${env:HIP_PATH}\bin\rocblas.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\rocm\"
# amdhip64.dll dependency comes from the driver and must be installed on the host to use AMD GPUs # amdhip64.dll dependency comes from the driver and must be installed on the host to use AMD GPUs
cp "${env:HIP_PATH}\bin\rocblas\library\*" "${script:SRC_DIR}\dist\windows-${script:ARCH}\rocm\rocblas\library\" cp "${env:HIP_PATH}\bin\rocblas\library\*" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\rocblas\library\"
} else { } else {
write-host "Skipping ROCm generation step" write-host "Skipping ROCm generation step"
} }

View File

@@ -43,6 +43,14 @@ func (kv KV) Architecture() string {
return "unknown" return "unknown"
} }
func (kv KV) Kind() string {
if s, ok := kv["general.type"].(string); ok {
return s
}
return "unknown"
}
func (kv KV) ParameterCount() uint64 { func (kv KV) ParameterCount() uint64 {
return kv.u64("general.parameter_count") return kv.u64("general.parameter_count")
} }
@@ -157,6 +165,14 @@ type Tensor struct {
io.WriterTo `json:"-"` io.WriterTo `json:"-"`
} }
func (t Tensor) block() (n int) {
if _, err := fmt.Sscanf(t.Name, "blk.%d.", &n); err != nil {
return -1
}
return
}
func (t Tensor) blockSize() uint64 { func (t Tensor) blockSize() uint64 {
switch t.Kind { switch t.Kind {
case 0, 1, 24, 25, 26, 27, 28, 30: // F32, F16, I8, I16, I32, I64, F64, BF16 case 0, 1, 24, 25, 26, 27, 28, 30: // F32, F16, I8, I16, I32, I64, F64, BF16

View File

@@ -532,15 +532,14 @@ func WriteGGUF(ws io.WriteSeeker, kv KV, ts []Tensor) error {
} }
} }
slices.SortFunc(ts, func(a, b Tensor) int { slices.SortStableFunc(ts, func(a, b Tensor) int {
var i, j int if i, j := a.block(), b.block(); i < 0 && j > 0 {
if n, err := fmt.Sscanf(a.Name, "blk.%d", &i); err != nil || n != 1 { return 1
return cmp.Compare(a.Name, b.Name) } else if i > 0 && j < 0 {
} else if n, err := fmt.Sscanf(b.Name, "blk.%d", &j); err != nil || n != 1 { return -1
return cmp.Compare(a.Name, b.Name) } else {
return cmp.Compare(i, j)
} }
return cmp.Compare(i, j)
}) })
var s uint64 var s uint64

View File

@@ -33,7 +33,6 @@ func TestEstimateGPULayers(t *testing.T) {
assert.Len(t, tensors, inputLayerCount+1) assert.Len(t, tensors, inputLayerCount+1)
err = WriteGGUF(f, KV{ err = WriteGGUF(f, KV{
"general.architecture": "llama", "general.architecture": "llama",
"general.name": "name",
"llama.context_length": uint32(32), "llama.context_length": uint32(32),
"llama.embedding_length": uint32(4096), "llama.embedding_length": uint32(4096),
"llama.block_count": uint32(inputLayerCount), "llama.block_count": uint32(inputLayerCount),

View File

@@ -1,60 +0,0 @@
diff --git a/src/llama.cpp b/src/llama.cpp
index 721b8f4e..cfe7ac40 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -8420,14 +8420,14 @@ struct llm_build_context {
}
struct ggml_tensor * build_inp_mean() {
- lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
+ lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, cparams.n_seq_max);
cb(lctx.inp_mean, "inp_mean", -1);
ggml_set_input(lctx.inp_mean);
return lctx.inp_mean;
}
struct ggml_tensor * build_inp_cls() {
- lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
+ lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, cparams.n_seq_max);
cb(lctx.inp_cls, "inp_cls", -1);
ggml_set_input(lctx.inp_cls);
return lctx.inp_cls;
@@ -13847,19 +13847,16 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
float * data = (float *) lctx.inp_mean->data;
- memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
+ memset(lctx.inp_mean->data, 0, n_tokens * cparams.n_seq_max * ggml_element_size(lctx.inp_mean));
std::vector<uint64_t> sum(n_tokens, 0);
for (int i = 0; i < n_tokens; ++i) {
const llama_seq_id seq_id = batch.seq_id[i][0];
-
- GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
-
sum[seq_id] += 1;
}
- std::vector<float> div(n_tokens, 0.0f);
- for (int i = 0; i < n_tokens; ++i) {
+ std::vector<float> div(cparams.n_seq_max, 0.0f);
+ for (uint32_t i = 0; i < cparams.n_seq_max; ++i) {
const uint64_t s = sum[i];
if (s > 0) {
div[i] = 1.0f/float(s);
@@ -13879,14 +13876,11 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
uint32_t * data = (uint32_t *) lctx.inp_cls->data;
- memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
+ memset(lctx.inp_cls->data, 0, cparams.n_seq_max * ggml_element_size(lctx.inp_cls));
for (int i = 0; i < n_tokens; ++i) {
const llama_seq_id seq_id = batch.seq_id[i][0];
const llama_pos pos = batch.pos[i];
-
- GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");
-
if (pos == 0) {
data[seq_id] = i;
}

View File

@@ -82,8 +82,8 @@ func serversForGpu(info gpu.GpuInfo) []string {
// glob workDir for files that start with ollama_ // glob workDir for files that start with ollama_
availableServers := getAvailableServers() availableServers := getAvailableServers()
requested := info.Library requested := info.Library
if info.Variant != gpu.CPUCapabilityNone { if info.Variant != gpu.CPUCapabilityNone.String() {
requested += "_" + info.Variant.String() requested += "_" + info.Variant
} }
servers := []string{} servers := []string{}

View File

@@ -258,7 +258,7 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
params = append(params, "--mlock") params = append(params, "--mlock")
} }
if gpu.IsNUMA() { if gpu.IsNUMA() && gpus[0].Library == "cpu" {
numaMode := "distribute" numaMode := "distribute"
if runtime.GOOS == "linux" { if runtime.GOOS == "linux" {
if _, err := exec.LookPath("numactl"); err == nil { if _, err := exec.LookPath("numactl"); err == nil {
@@ -306,20 +306,18 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
if runtime.GOOS == "windows" { if runtime.GOOS == "windows" {
pathEnv = "PATH" pathEnv = "PATH"
} }
// prepend the server directory to LD_LIBRARY_PATH/PATH and the parent dir for common dependencies // Start with the server directory for the LD_LIBRARY_PATH/PATH
libraryPaths := []string{dir, filepath.Dir(dir)} libraryPaths := []string{dir}
if libraryPath, ok := os.LookupEnv(pathEnv); ok { if libraryPath, ok := os.LookupEnv(pathEnv); ok {
// Append our runner directory to the path // favor our bundled library dependencies over system libraries
// This will favor system libraries over our bundled library dependencies
libraryPaths = append(libraryPaths, filepath.SplitList(libraryPath)...) libraryPaths = append(libraryPaths, filepath.SplitList(libraryPath)...)
} }
// Note: we always put the dependency path first // Note: we always put the dependency path first
// since this was the exact version we verified for AMD GPUs // since this was the exact version we compiled/linked against
// and we favor what the user had in their path
if gpus[0].DependencyPath != "" { if gpus[0].DependencyPath != "" {
// TODO refine for multi-gpu support // assume gpus from the same library have the same dependency path
libraryPaths = append([]string{gpus[0].DependencyPath}, libraryPaths...) libraryPaths = append([]string{gpus[0].DependencyPath}, libraryPaths...)
} }

View File

@@ -7,27 +7,22 @@ import (
"io" "io"
"net/http" "net/http"
"net/http/httptest" "net/http/httptest"
"reflect"
"strings" "strings"
"testing" "testing"
"time" "time"
"github.com/gin-gonic/gin" "github.com/gin-gonic/gin"
"github.com/stretchr/testify/assert"
"github.com/ollama/ollama/api" "github.com/ollama/ollama/api"
) )
const ( const (
prefix = `data:image/jpeg;base64,` prefix = `data:image/jpeg;base64,`
image = `iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR42mNk+A8AAQUBAScY42YAAAAASUVORK5CYII=` image = `iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR42mNk+A8AAQUBAScY42YAAAAASUVORK5CYII=`
imageURL = prefix + image
) )
func prepareRequest(req *http.Request, body any) { var False = false
bodyBytes, _ := json.Marshal(body)
req.Body = io.NopCloser(bytes.NewReader(bodyBytes))
req.Header.Set("Content-Type", "application/json")
}
func captureRequestMiddleware(capturedRequest any) gin.HandlerFunc { func captureRequestMiddleware(capturedRequest any) gin.HandlerFunc {
return func(c *gin.Context) { return func(c *gin.Context) {
@@ -43,134 +38,136 @@ func captureRequestMiddleware(capturedRequest any) gin.HandlerFunc {
func TestChatMiddleware(t *testing.T) { func TestChatMiddleware(t *testing.T) {
type testCase struct { type testCase struct {
Name string name string
Setup func(t *testing.T, req *http.Request) body string
Expected func(t *testing.T, req *api.ChatRequest, resp *httptest.ResponseRecorder) req api.ChatRequest
err ErrorResponse
} }
var capturedRequest *api.ChatRequest var capturedRequest *api.ChatRequest
testCases := []testCase{ testCases := []testCase{
{ {
Name: "chat handler", name: "chat handler",
Setup: func(t *testing.T, req *http.Request) { body: `{
body := ChatCompletionRequest{ "model": "test-model",
Model: "test-model", "messages": [
Messages: []Message{{Role: "user", Content: "Hello"}}, {"role": "user", "content": "Hello"}
} ]
prepareRequest(req, body) }`,
}, req: api.ChatRequest{
Expected: func(t *testing.T, req *api.ChatRequest, resp *httptest.ResponseRecorder) { Model: "test-model",
if resp.Code != http.StatusOK { Messages: []api.Message{
t.Fatalf("expected 200, got %d", resp.Code) {
} Role: "user",
Content: "Hello",
if req.Messages[0].Role != "user" { },
t.Fatalf("expected 'user', got %s", req.Messages[0].Role) },
} Options: map[string]any{
"temperature": 1.0,
if req.Messages[0].Content != "Hello" { "top_p": 1.0,
t.Fatalf("expected 'Hello', got %s", req.Messages[0].Content) },
} Stream: &False,
}, },
}, },
{ {
Name: "chat handler with image content", name: "chat handler with image content",
Setup: func(t *testing.T, req *http.Request) { body: `{
body := ChatCompletionRequest{ "model": "test-model",
Model: "test-model", "messages": [
Messages: []Message{ {
{ "role": "user",
Role: "user", Content: []map[string]any{ "content": [
{"type": "text", "text": "Hello"}, {
{"type": "image_url", "image_url": map[string]string{"url": imageURL}}, "type": "text",
"text": "Hello"
},
{
"type": "image_url",
"image_url": {
"url": "` + prefix + image + `"
}
}
]
}
]
}`,
req: api.ChatRequest{
Model: "test-model",
Messages: []api.Message{
{
Role: "user",
Content: "Hello",
},
{
Role: "user",
Images: []api.ImageData{
func() []byte {
img, _ := base64.StdEncoding.DecodeString(image)
return img
}(),
},
},
},
Options: map[string]any{
"temperature": 1.0,
"top_p": 1.0,
},
Stream: &False,
},
},
{
name: "chat handler with tools",
body: `{
"model": "test-model",
"messages": [
{"role": "user", "content": "What's the weather like in Paris Today?"},
{"role": "assistant", "tool_calls": [{"id": "id", "type": "function", "function": {"name": "get_current_weather", "arguments": "{\"location\": \"Paris, France\", \"format\": \"celsius\"}"}}]}
]
}`,
req: api.ChatRequest{
Model: "test-model",
Messages: []api.Message{
{
Role: "user",
Content: "What's the weather like in Paris Today?",
},
{
Role: "assistant",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_current_weather",
Arguments: map[string]interface{}{
"location": "Paris, France",
"format": "celsius",
},
},
}, },
}, },
}, },
} },
prepareRequest(req, body) Options: map[string]any{
}, "temperature": 1.0,
Expected: func(t *testing.T, req *api.ChatRequest, resp *httptest.ResponseRecorder) { "top_p": 1.0,
if resp.Code != http.StatusOK { },
t.Fatalf("expected 200, got %d", resp.Code) Stream: &False,
}
if req.Messages[0].Role != "user" {
t.Fatalf("expected 'user', got %s", req.Messages[0].Role)
}
if req.Messages[0].Content != "Hello" {
t.Fatalf("expected 'Hello', got %s", req.Messages[0].Content)
}
img, _ := base64.StdEncoding.DecodeString(imageURL[len(prefix):])
if req.Messages[1].Role != "user" {
t.Fatalf("expected 'user', got %s", req.Messages[1].Role)
}
if !bytes.Equal(req.Messages[1].Images[0], img) {
t.Fatalf("expected image encoding, got %s", req.Messages[1].Images[0])
}
}, },
}, },
{ {
Name: "chat handler with tools", name: "chat handler error forwarding",
Setup: func(t *testing.T, req *http.Request) { body: `{
body := ChatCompletionRequest{ "model": "test-model",
Model: "test-model", "messages": [
Messages: []Message{ {"role": "user", "content": 2}
{Role: "user", Content: "What's the weather like in Paris Today?"}, ]
{Role: "assistant", ToolCalls: []ToolCall{{ }`,
ID: "id", err: ErrorResponse{
Type: "function", Error: Error{
Function: struct { Message: "invalid message content type: float64",
Name string `json:"name"` Type: "invalid_request_error",
Arguments string `json:"arguments"` },
}{
Name: "get_current_weather",
Arguments: "{\"location\": \"Paris, France\", \"format\": \"celsius\"}",
},
}}},
},
}
prepareRequest(req, body)
},
Expected: func(t *testing.T, req *api.ChatRequest, resp *httptest.ResponseRecorder) {
if resp.Code != 200 {
t.Fatalf("expected 200, got %d", resp.Code)
}
if req.Messages[0].Content != "What's the weather like in Paris Today?" {
t.Fatalf("expected What's the weather like in Paris Today?, got %s", req.Messages[0].Content)
}
if req.Messages[1].ToolCalls[0].Function.Arguments["location"] != "Paris, France" {
t.Fatalf("expected 'Paris, France', got %v", req.Messages[1].ToolCalls[0].Function.Arguments["location"])
}
if req.Messages[1].ToolCalls[0].Function.Arguments["format"] != "celsius" {
t.Fatalf("expected celsius, got %v", req.Messages[1].ToolCalls[0].Function.Arguments["format"])
}
},
},
{
Name: "chat handler error forwarding",
Setup: func(t *testing.T, req *http.Request) {
body := ChatCompletionRequest{
Model: "test-model",
Messages: []Message{{Role: "user", Content: 2}},
}
prepareRequest(req, body)
},
Expected: func(t *testing.T, req *api.ChatRequest, resp *httptest.ResponseRecorder) {
if resp.Code != http.StatusBadRequest {
t.Fatalf("expected 400, got %d", resp.Code)
}
if !strings.Contains(resp.Body.String(), "invalid message content type") {
t.Fatalf("error was not forwarded")
}
}, },
}, },
} }
@@ -185,16 +182,26 @@ func TestChatMiddleware(t *testing.T) {
router.Handle(http.MethodPost, "/api/chat", endpoint) router.Handle(http.MethodPost, "/api/chat", endpoint)
for _, tc := range testCases { for _, tc := range testCases {
t.Run(tc.Name, func(t *testing.T) { t.Run(tc.name, func(t *testing.T) {
req, _ := http.NewRequest(http.MethodPost, "/api/chat", nil) req, _ := http.NewRequest(http.MethodPost, "/api/chat", strings.NewReader(tc.body))
req.Header.Set("Content-Type", "application/json")
tc.Setup(t, req)
resp := httptest.NewRecorder() resp := httptest.NewRecorder()
router.ServeHTTP(resp, req) router.ServeHTTP(resp, req)
tc.Expected(t, capturedRequest, resp) var errResp ErrorResponse
if resp.Code != http.StatusOK {
if err := json.Unmarshal(resp.Body.Bytes(), &errResp); err != nil {
t.Fatal(err)
}
}
if capturedRequest != nil && !reflect.DeepEqual(tc.req, *capturedRequest) {
t.Fatal("requests did not match")
}
if !reflect.DeepEqual(tc.err, errResp) {
t.Fatal("errors did not match")
}
capturedRequest = nil capturedRequest = nil
}) })
} }
@@ -202,71 +209,52 @@ func TestChatMiddleware(t *testing.T) {
func TestCompletionsMiddleware(t *testing.T) { func TestCompletionsMiddleware(t *testing.T) {
type testCase struct { type testCase struct {
Name string name string
Setup func(t *testing.T, req *http.Request) body string
Expected func(t *testing.T, req *api.GenerateRequest, resp *httptest.ResponseRecorder) req api.GenerateRequest
err ErrorResponse
} }
var capturedRequest *api.GenerateRequest var capturedRequest *api.GenerateRequest
testCases := []testCase{ testCases := []testCase{
{ {
Name: "completions handler", name: "completions handler",
Setup: func(t *testing.T, req *http.Request) { body: `{
temp := float32(0.8) "model": "test-model",
body := CompletionRequest{ "prompt": "Hello",
Model: "test-model", "temperature": 0.8,
Prompt: "Hello", "stop": ["\n", "stop"],
Temperature: &temp, "suffix": "suffix"
Stop: []string{"\n", "stop"}, }`,
Suffix: "suffix", req: api.GenerateRequest{
} Model: "test-model",
prepareRequest(req, body) Prompt: "Hello",
}, Options: map[string]any{
Expected: func(t *testing.T, req *api.GenerateRequest, resp *httptest.ResponseRecorder) { "frequency_penalty": 0.0,
if req.Prompt != "Hello" { "presence_penalty": 0.0,
t.Fatalf("expected 'Hello', got %s", req.Prompt) "temperature": 1.6,
} "top_p": 1.0,
"stop": []any{"\n", "stop"},
if req.Options["temperature"] != 1.6 { },
t.Fatalf("expected 1.6, got %f", req.Options["temperature"]) Suffix: "suffix",
} Stream: &False,
stopTokens, ok := req.Options["stop"].([]any)
if !ok {
t.Fatalf("expected stop tokens to be a list")
}
if stopTokens[0] != "\n" || stopTokens[1] != "stop" {
t.Fatalf("expected ['\\n', 'stop'], got %v", stopTokens)
}
if req.Suffix != "suffix" {
t.Fatalf("expected 'suffix', got %s", req.Suffix)
}
}, },
}, },
{ {
Name: "completions handler error forwarding", name: "completions handler error forwarding",
Setup: func(t *testing.T, req *http.Request) { body: `{
body := CompletionRequest{ "model": "test-model",
Model: "test-model", "prompt": "Hello",
Prompt: "Hello", "temperature": null,
Temperature: nil, "stop": [1, 2],
Stop: []int{1, 2}, "suffix": "suffix"
Suffix: "suffix", }`,
} err: ErrorResponse{
prepareRequest(req, body) Error: Error{
}, Message: "invalid type for 'stop' field: float64",
Expected: func(t *testing.T, req *api.GenerateRequest, resp *httptest.ResponseRecorder) { Type: "invalid_request_error",
if resp.Code != http.StatusBadRequest { },
t.Fatalf("expected 400, got %d", resp.Code)
}
if !strings.Contains(resp.Body.String(), "invalid type for 'stop' field") {
t.Fatalf("error was not forwarded")
}
}, },
}, },
} }
@@ -281,15 +269,27 @@ func TestCompletionsMiddleware(t *testing.T) {
router.Handle(http.MethodPost, "/api/generate", endpoint) router.Handle(http.MethodPost, "/api/generate", endpoint)
for _, tc := range testCases { for _, tc := range testCases {
t.Run(tc.Name, func(t *testing.T) { t.Run(tc.name, func(t *testing.T) {
req, _ := http.NewRequest(http.MethodPost, "/api/generate", nil) req, _ := http.NewRequest(http.MethodPost, "/api/generate", strings.NewReader(tc.body))
req.Header.Set("Content-Type", "application/json")
tc.Setup(t, req)
resp := httptest.NewRecorder() resp := httptest.NewRecorder()
router.ServeHTTP(resp, req) router.ServeHTTP(resp, req)
tc.Expected(t, capturedRequest, resp) var errResp ErrorResponse
if resp.Code != http.StatusOK {
if err := json.Unmarshal(resp.Body.Bytes(), &errResp); err != nil {
t.Fatal(err)
}
}
if capturedRequest != nil && !reflect.DeepEqual(tc.req, *capturedRequest) {
t.Fatal("requests did not match")
}
if !reflect.DeepEqual(tc.err, errResp) {
t.Fatal("errors did not match")
}
capturedRequest = nil capturedRequest = nil
}) })
@@ -298,78 +298,47 @@ func TestCompletionsMiddleware(t *testing.T) {
func TestEmbeddingsMiddleware(t *testing.T) { func TestEmbeddingsMiddleware(t *testing.T) {
type testCase struct { type testCase struct {
Name string name string
Setup func(t *testing.T, req *http.Request) body string
Expected func(t *testing.T, req *api.EmbedRequest, resp *httptest.ResponseRecorder) req api.EmbedRequest
err ErrorResponse
} }
var capturedRequest *api.EmbedRequest var capturedRequest *api.EmbedRequest
testCases := []testCase{ testCases := []testCase{
{ {
Name: "embed handler single input", name: "embed handler single input",
Setup: func(t *testing.T, req *http.Request) { body: `{
body := EmbedRequest{ "input": "Hello",
Input: "Hello", "model": "test-model"
Model: "test-model", }`,
} req: api.EmbedRequest{
prepareRequest(req, body) Input: "Hello",
}, Model: "test-model",
Expected: func(t *testing.T, req *api.EmbedRequest, resp *httptest.ResponseRecorder) {
if req.Input != "Hello" {
t.Fatalf("expected 'Hello', got %s", req.Input)
}
if req.Model != "test-model" {
t.Fatalf("expected 'test-model', got %s", req.Model)
}
}, },
}, },
{ {
Name: "embed handler batch input", name: "embed handler batch input",
Setup: func(t *testing.T, req *http.Request) { body: `{
body := EmbedRequest{ "input": ["Hello", "World"],
Input: []string{"Hello", "World"}, "model": "test-model"
Model: "test-model", }`,
} req: api.EmbedRequest{
prepareRequest(req, body) Input: []any{"Hello", "World"},
}, Model: "test-model",
Expected: func(t *testing.T, req *api.EmbedRequest, resp *httptest.ResponseRecorder) {
input, ok := req.Input.([]any)
if !ok {
t.Fatalf("expected input to be a list")
}
if input[0].(string) != "Hello" {
t.Fatalf("expected 'Hello', got %s", input[0])
}
if input[1].(string) != "World" {
t.Fatalf("expected 'World', got %s", input[1])
}
if req.Model != "test-model" {
t.Fatalf("expected 'test-model', got %s", req.Model)
}
}, },
}, },
{ {
Name: "embed handler error forwarding", name: "embed handler error forwarding",
Setup: func(t *testing.T, req *http.Request) { body: `{
body := EmbedRequest{ "model": "test-model"
Model: "test-model", }`,
} err: ErrorResponse{
prepareRequest(req, body) Error: Error{
}, Message: "invalid input",
Expected: func(t *testing.T, req *api.EmbedRequest, resp *httptest.ResponseRecorder) { Type: "invalid_request_error",
if resp.Code != http.StatusBadRequest { },
t.Fatalf("expected 400, got %d", resp.Code)
}
if !strings.Contains(resp.Body.String(), "invalid input") {
t.Fatalf("error was not forwarded")
}
}, },
}, },
} }
@@ -384,116 +353,167 @@ func TestEmbeddingsMiddleware(t *testing.T) {
router.Handle(http.MethodPost, "/api/embed", endpoint) router.Handle(http.MethodPost, "/api/embed", endpoint)
for _, tc := range testCases { for _, tc := range testCases {
t.Run(tc.Name, func(t *testing.T) { t.Run(tc.name, func(t *testing.T) {
req, _ := http.NewRequest(http.MethodPost, "/api/embed", nil) req, _ := http.NewRequest(http.MethodPost, "/api/embed", strings.NewReader(tc.body))
req.Header.Set("Content-Type", "application/json")
tc.Setup(t, req)
resp := httptest.NewRecorder() resp := httptest.NewRecorder()
router.ServeHTTP(resp, req) router.ServeHTTP(resp, req)
tc.Expected(t, capturedRequest, resp) var errResp ErrorResponse
if resp.Code != http.StatusOK {
if err := json.Unmarshal(resp.Body.Bytes(), &errResp); err != nil {
t.Fatal(err)
}
}
if capturedRequest != nil && !reflect.DeepEqual(tc.req, *capturedRequest) {
t.Fatal("requests did not match")
}
if !reflect.DeepEqual(tc.err, errResp) {
t.Fatal("errors did not match")
}
capturedRequest = nil capturedRequest = nil
}) })
} }
} }
func TestMiddlewareResponses(t *testing.T) { func TestListMiddleware(t *testing.T) {
type testCase struct { type testCase struct {
Name string name string
Method string endpoint func(c *gin.Context)
Path string resp string
TestPath string
Handler func() gin.HandlerFunc
Endpoint func(c *gin.Context)
Setup func(t *testing.T, req *http.Request)
Expected func(t *testing.T, resp *httptest.ResponseRecorder)
} }
testCases := []testCase{ testCases := []testCase{
{ {
Name: "list handler", name: "list handler",
Method: http.MethodGet, endpoint: func(c *gin.Context) {
Path: "/api/tags",
TestPath: "/api/tags",
Handler: ListMiddleware,
Endpoint: func(c *gin.Context) {
c.JSON(http.StatusOK, api.ListResponse{ c.JSON(http.StatusOK, api.ListResponse{
Models: []api.ListModelResponse{ Models: []api.ListModelResponse{
{ {
Name: "Test Model", Name: "test-model",
ModifiedAt: time.Unix(int64(1686935002), 0).UTC(),
}, },
}, },
}) })
}, },
Expected: func(t *testing.T, resp *httptest.ResponseRecorder) { resp: `{
var listResp ListCompletion "object": "list",
if err := json.NewDecoder(resp.Body).Decode(&listResp); err != nil { "data": [
t.Fatal(err) {
} "id": "test-model",
"object": "model",
if listResp.Object != "list" { "created": 1686935002,
t.Fatalf("expected list, got %s", listResp.Object) "owned_by": "library"
} }
]
if len(listResp.Data) != 1 { }`,
t.Fatalf("expected 1, got %d", len(listResp.Data))
}
if listResp.Data[0].Id != "Test Model" {
t.Fatalf("expected Test Model, got %s", listResp.Data[0].Id)
}
},
}, },
{ {
Name: "retrieve model", name: "list handler empty output",
Method: http.MethodGet, endpoint: func(c *gin.Context) {
Path: "/api/show/:model", c.JSON(http.StatusOK, api.ListResponse{})
TestPath: "/api/show/test-model",
Handler: RetrieveMiddleware,
Endpoint: func(c *gin.Context) {
c.JSON(http.StatusOK, api.ShowResponse{
ModifiedAt: time.Date(2024, 6, 17, 13, 45, 0, 0, time.UTC),
})
},
Expected: func(t *testing.T, resp *httptest.ResponseRecorder) {
var retrieveResp Model
if err := json.NewDecoder(resp.Body).Decode(&retrieveResp); err != nil {
t.Fatal(err)
}
if retrieveResp.Object != "model" {
t.Fatalf("Expected object to be model, got %s", retrieveResp.Object)
}
if retrieveResp.Id != "test-model" {
t.Fatalf("Expected id to be test-model, got %s", retrieveResp.Id)
}
}, },
resp: `{
"object": "list",
"data": null
}`,
}, },
} }
gin.SetMode(gin.TestMode) gin.SetMode(gin.TestMode)
router := gin.New()
for _, tc := range testCases { for _, tc := range testCases {
t.Run(tc.Name, func(t *testing.T) { router := gin.New()
router = gin.New() router.Use(ListMiddleware())
router.Use(tc.Handler()) router.Handle(http.MethodGet, "/api/tags", tc.endpoint)
router.Handle(tc.Method, tc.Path, tc.Endpoint) req, _ := http.NewRequest(http.MethodGet, "/api/tags", nil)
req, _ := http.NewRequest(tc.Method, tc.TestPath, nil)
if tc.Setup != nil { resp := httptest.NewRecorder()
tc.Setup(t, req) router.ServeHTTP(resp, req)
}
resp := httptest.NewRecorder() var expected, actual map[string]any
router.ServeHTTP(resp, req) err := json.Unmarshal([]byte(tc.resp), &expected)
if err != nil {
t.Fatalf("failed to unmarshal expected response: %v", err)
}
assert.Equal(t, http.StatusOK, resp.Code) err = json.Unmarshal(resp.Body.Bytes(), &actual)
if err != nil {
t.Fatalf("failed to unmarshal actual response: %v", err)
}
tc.Expected(t, resp) if !reflect.DeepEqual(expected, actual) {
}) t.Errorf("responses did not match\nExpected: %+v\nActual: %+v", expected, actual)
}
}
}
func TestRetrieveMiddleware(t *testing.T) {
type testCase struct {
name string
endpoint func(c *gin.Context)
resp string
}
testCases := []testCase{
{
name: "retrieve handler",
endpoint: func(c *gin.Context) {
c.JSON(http.StatusOK, api.ShowResponse{
ModifiedAt: time.Unix(int64(1686935002), 0).UTC(),
})
},
resp: `{
"id":"test-model",
"object":"model",
"created":1686935002,
"owned_by":"library"}
`,
},
{
name: "retrieve handler error forwarding",
endpoint: func(c *gin.Context) {
c.JSON(http.StatusBadRequest, gin.H{"error": "model not found"})
},
resp: `{
"error": {
"code": null,
"message": "model not found",
"param": null,
"type": "api_error"
}
}`,
},
}
gin.SetMode(gin.TestMode)
for _, tc := range testCases {
router := gin.New()
router.Use(RetrieveMiddleware())
router.Handle(http.MethodGet, "/api/show/:model", tc.endpoint)
req, _ := http.NewRequest(http.MethodGet, "/api/show/test-model", nil)
resp := httptest.NewRecorder()
router.ServeHTTP(resp, req)
var expected, actual map[string]any
err := json.Unmarshal([]byte(tc.resp), &expected)
if err != nil {
t.Fatalf("failed to unmarshal expected response: %v", err)
}
err = json.Unmarshal(resp.Body.Bytes(), &actual)
if err != nil {
t.Fatalf("failed to unmarshal actual response: %v", err)
}
if !reflect.DeepEqual(expected, actual) {
t.Errorf("responses did not match\nExpected: %+v\nActual: %+v", expected, actual)
}
} }
} }

View File

@@ -3,11 +3,12 @@ package progress
import ( import (
"fmt" "fmt"
"strings" "strings"
"sync/atomic"
"time" "time"
) )
type Spinner struct { type Spinner struct {
message string message atomic.Value
messageWidth int messageWidth int
parts []string parts []string
@@ -21,20 +22,25 @@ type Spinner struct {
func NewSpinner(message string) *Spinner { func NewSpinner(message string) *Spinner {
s := &Spinner{ s := &Spinner{
message: message,
parts: []string{ parts: []string{
"⠋", "⠙", "⠹", "⠸", "⠼", "⠴", "⠦", "⠧", "⠇", "⠏", "⠋", "⠙", "⠹", "⠸", "⠼", "⠴", "⠦", "⠧", "⠇", "⠏",
}, },
started: time.Now(), started: time.Now(),
} }
s.SetMessage(message)
go s.start() go s.start()
return s return s
} }
func (s *Spinner) SetMessage(message string) {
s.message.Store(message)
}
func (s *Spinner) String() string { func (s *Spinner) String() string {
var sb strings.Builder var sb strings.Builder
if len(s.message) > 0 {
message := strings.TrimSpace(s.message) if message, ok := s.message.Load().(string); ok && len(message) > 0 {
message := strings.TrimSpace(message)
if s.messageWidth > 0 && len(message) > s.messageWidth { if s.messageWidth > 0 && len(message) > s.messageWidth {
message = message[:s.messageWidth] message = message[:s.messageWidth]
} }

View File

@@ -62,7 +62,7 @@ func (b *Buffer) MoveLeft() {
rLength := runewidth.RuneWidth(r) rLength := runewidth.RuneWidth(r)
if b.DisplayPos%b.LineWidth == 0 { if b.DisplayPos%b.LineWidth == 0 {
fmt.Printf(CursorUp + CursorBOL + cursorRightN(b.Width)) fmt.Print(CursorUp + CursorBOL + CursorRightN(b.Width))
if rLength == 2 { if rLength == 2 {
fmt.Print(CursorLeft) fmt.Print(CursorLeft)
} }
@@ -74,7 +74,7 @@ func (b *Buffer) MoveLeft() {
fmt.Print(CursorLeft) fmt.Print(CursorLeft)
} }
} else { } else {
fmt.Print(cursorLeftN(rLength)) fmt.Print(CursorLeftN(rLength))
} }
b.Pos -= 1 b.Pos -= 1
@@ -115,15 +115,15 @@ func (b *Buffer) MoveRight() {
b.DisplayPos += rLength b.DisplayPos += rLength
if b.DisplayPos%b.LineWidth == 0 { if b.DisplayPos%b.LineWidth == 0 {
fmt.Printf(CursorDown + CursorBOL + cursorRightN(len(b.Prompt.prompt()))) fmt.Print(CursorDown + CursorBOL + CursorRightN(len(b.Prompt.prompt())))
} else if (b.DisplayPos-rLength)%b.LineWidth == b.LineWidth-1 && hasSpace { } else if (b.DisplayPos-rLength)%b.LineWidth == b.LineWidth-1 && hasSpace {
fmt.Printf(CursorDown + CursorBOL + cursorRightN(len(b.Prompt.prompt())+rLength)) fmt.Print(CursorDown + CursorBOL + CursorRightN(len(b.Prompt.prompt())+rLength))
b.DisplayPos += 1 b.DisplayPos += 1
} else if b.LineHasSpace.Size() > 0 && b.DisplayPos%b.LineWidth == b.LineWidth-1 && hasSpace { } else if b.LineHasSpace.Size() > 0 && b.DisplayPos%b.LineWidth == b.LineWidth-1 && hasSpace {
fmt.Printf(CursorDown + CursorBOL + cursorRightN(len(b.Prompt.prompt()))) fmt.Print(CursorDown + CursorBOL + CursorRightN(len(b.Prompt.prompt())))
b.DisplayPos += 1 b.DisplayPos += 1
} else { } else {
fmt.Print(cursorRightN(rLength)) fmt.Print(CursorRightN(rLength))
} }
} }
} }
@@ -154,7 +154,7 @@ func (b *Buffer) MoveToStart() {
fmt.Print(CursorUp) fmt.Print(CursorUp)
} }
} }
fmt.Printf(CursorBOL + cursorRightN(len(b.Prompt.prompt()))) fmt.Print(CursorBOL + CursorRightN(len(b.Prompt.prompt())))
b.Pos = 0 b.Pos = 0
b.DisplayPos = 0 b.DisplayPos = 0
} }
@@ -169,9 +169,9 @@ func (b *Buffer) MoveToEnd() {
fmt.Print(CursorDown) fmt.Print(CursorDown)
} }
remainder := b.DisplaySize() % b.LineWidth remainder := b.DisplaySize() % b.LineWidth
fmt.Printf(CursorBOL + cursorRightN(len(b.Prompt.prompt())+remainder)) fmt.Print(CursorBOL + CursorRightN(len(b.Prompt.prompt())+remainder))
} else { } else {
fmt.Print(cursorRightN(b.DisplaySize() - b.DisplayPos)) fmt.Print(CursorRightN(b.DisplaySize() - b.DisplayPos))
} }
b.Pos = b.Buf.Size() b.Pos = b.Buf.Size()
@@ -286,8 +286,7 @@ func (b *Buffer) drawRemaining() {
remLength := runewidth.StringWidth(remainingText) remLength := runewidth.StringWidth(remainingText)
if len(currLine) > 0 { if len(currLine) > 0 {
fmt.Printf(ClearToEOL + currLine) fmt.Print(ClearToEOL + currLine + CursorLeftN(currLineSpace))
fmt.Print(cursorLeftN(currLineSpace))
} else { } else {
fmt.Print(ClearToEOL) fmt.Print(ClearToEOL)
} }
@@ -301,9 +300,9 @@ func (b *Buffer) drawRemaining() {
} }
if (b.DisplayPos+currLineSpace)%b.LineWidth == 0 && currLine == remainingText { if (b.DisplayPos+currLineSpace)%b.LineWidth == 0 && currLine == remainingText {
fmt.Print(cursorRightN(currLineSpace)) fmt.Print(CursorRightN(currLineSpace))
fmt.Printf("\n%s", b.Prompt.AltPrompt) fmt.Printf("\n%s", b.Prompt.AltPrompt)
fmt.Printf(CursorUp + CursorBOL + cursorRightN(b.Width-currLineSpace)) fmt.Print(CursorUp + CursorBOL + CursorRightN(b.Width-currLineSpace))
} }
// render the other lines // render the other lines
@@ -333,9 +332,7 @@ func (b *Buffer) drawRemaining() {
lineLength += runewidth.RuneWidth(c) lineLength += runewidth.RuneWidth(c)
fmt.Printf("%c", c) fmt.Printf("%c", c)
} }
fmt.Print(ClearToEOL) fmt.Print(ClearToEOL + CursorUpN(totalLines) + CursorBOL + CursorRightN(b.Width-currLineSpace))
fmt.Print(cursorUpN(totalLines))
fmt.Printf(CursorBOL + cursorRightN(b.Width-currLineSpace))
hasSpace := b.GetLineSpacing(b.DisplayPos / b.LineWidth) hasSpace := b.GetLineSpacing(b.DisplayPos / b.LineWidth)
@@ -357,8 +354,7 @@ func (b *Buffer) Remove() {
if b.DisplayPos%b.LineWidth == 0 { if b.DisplayPos%b.LineWidth == 0 {
// if the user backspaces over the word boundary, do this magic to clear the line // if the user backspaces over the word boundary, do this magic to clear the line
// and move to the end of the previous line // and move to the end of the previous line
fmt.Printf(CursorBOL + ClearToEOL) fmt.Print(CursorBOL + ClearToEOL + CursorUp + CursorBOL + CursorRightN(b.Width))
fmt.Printf(CursorUp + CursorBOL + cursorRightN(b.Width))
if b.DisplaySize()%b.LineWidth < (b.DisplaySize()-rLength)%b.LineWidth { if b.DisplaySize()%b.LineWidth < (b.DisplaySize()-rLength)%b.LineWidth {
b.LineHasSpace.Remove(b.DisplayPos/b.LineWidth - 1) b.LineHasSpace.Remove(b.DisplayPos/b.LineWidth - 1)
@@ -370,24 +366,23 @@ func (b *Buffer) Remove() {
} }
if rLength == 2 { if rLength == 2 {
fmt.Print(CursorLeft + " " + cursorLeftN(2)) fmt.Print(CursorLeft + " " + CursorLeftN(2))
} else { } else {
fmt.Print(" " + CursorLeft) fmt.Print(" " + CursorLeft)
} }
} else if (b.DisplayPos-rLength)%b.LineWidth == 0 && hasSpace { } else if (b.DisplayPos-rLength)%b.LineWidth == 0 && hasSpace {
fmt.Printf(CursorBOL + ClearToEOL) fmt.Print(CursorBOL + ClearToEOL + CursorUp + CursorBOL + CursorRightN(b.Width))
fmt.Printf(CursorUp + CursorBOL + cursorRightN(b.Width))
if b.Pos == b.Buf.Size() { if b.Pos == b.Buf.Size() {
b.LineHasSpace.Remove(b.DisplayPos/b.LineWidth - 1) b.LineHasSpace.Remove(b.DisplayPos/b.LineWidth - 1)
} }
b.DisplayPos -= 1 b.DisplayPos -= 1
} else { } else {
fmt.Print(cursorLeftN(rLength)) fmt.Print(CursorLeftN(rLength))
for range rLength { for range rLength {
fmt.Print(" ") fmt.Print(" ")
} }
fmt.Print(cursorLeftN(rLength)) fmt.Print(CursorLeftN(rLength))
} }
var eraseExtraLine bool var eraseExtraLine bool
@@ -405,9 +400,9 @@ func (b *Buffer) Remove() {
// are trailing characters which go over the line width boundary // are trailing characters which go over the line width boundary
if eraseExtraLine { if eraseExtraLine {
remainingLines := (b.DisplaySize() - b.DisplayPos) / b.LineWidth remainingLines := (b.DisplaySize() - b.DisplayPos) / b.LineWidth
fmt.Printf(cursorDownN(remainingLines+1) + CursorBOL + ClearToEOL) fmt.Print(CursorDownN(remainingLines+1) + CursorBOL + ClearToEOL)
place := b.DisplayPos % b.LineWidth place := b.DisplayPos % b.LineWidth
fmt.Printf(cursorUpN(remainingLines+1) + cursorRightN(place+len(b.Prompt.prompt()))) fmt.Print(CursorUpN(remainingLines+1) + CursorRightN(place+len(b.Prompt.prompt())))
} }
} }
} }
@@ -422,9 +417,9 @@ func (b *Buffer) Delete() {
if b.DisplaySize()%b.LineWidth == 0 { if b.DisplaySize()%b.LineWidth == 0 {
if b.DisplayPos != b.DisplaySize() { if b.DisplayPos != b.DisplaySize() {
remainingLines := (b.DisplaySize() - b.DisplayPos) / b.LineWidth remainingLines := (b.DisplaySize() - b.DisplayPos) / b.LineWidth
fmt.Printf(cursorDownN(remainingLines) + CursorBOL + ClearToEOL) fmt.Print(CursorDownN(remainingLines) + CursorBOL + ClearToEOL)
place := b.DisplayPos % b.LineWidth place := b.DisplayPos % b.LineWidth
fmt.Printf(cursorUpN(remainingLines) + cursorRightN(place+len(b.Prompt.prompt()))) fmt.Print(CursorUpN(remainingLines) + CursorRightN(place+len(b.Prompt.prompt())))
} }
} }
} }
@@ -471,17 +466,17 @@ func (b *Buffer) DeleteWord() {
} }
func (b *Buffer) ClearScreen() { func (b *Buffer) ClearScreen() {
fmt.Printf(ClearScreen + CursorReset + b.Prompt.prompt()) fmt.Print(ClearScreen + CursorReset + b.Prompt.prompt())
if b.IsEmpty() { if b.IsEmpty() {
ph := b.Prompt.placeholder() ph := b.Prompt.placeholder()
fmt.Printf(ColorGrey + ph + cursorLeftN(len(ph)) + ColorDefault) fmt.Print(ColorGrey + ph + CursorLeftN(len(ph)) + ColorDefault)
} else { } else {
currPos := b.DisplayPos currPos := b.DisplayPos
currIndex := b.Pos currIndex := b.Pos
b.Pos = 0 b.Pos = 0
b.DisplayPos = 0 b.DisplayPos = 0
b.drawRemaining() b.drawRemaining()
fmt.Printf(CursorReset + cursorRightN(len(b.Prompt.prompt()))) fmt.Print(CursorReset + CursorRightN(len(b.Prompt.prompt())))
if currPos > 0 { if currPos > 0 {
targetLine := currPos / b.LineWidth targetLine := currPos / b.LineWidth
if targetLine > 0 { if targetLine > 0 {
@@ -491,10 +486,10 @@ func (b *Buffer) ClearScreen() {
} }
remainder := currPos % b.LineWidth remainder := currPos % b.LineWidth
if remainder > 0 { if remainder > 0 {
fmt.Print(cursorRightN(remainder)) fmt.Print(CursorRightN(remainder))
} }
if currPos%b.LineWidth == 0 { if currPos%b.LineWidth == 0 {
fmt.Printf(CursorBOL + b.Prompt.AltPrompt) fmt.Print(CursorBOL + b.Prompt.AltPrompt)
} }
} }
b.Pos = currIndex b.Pos = currIndex
@@ -513,13 +508,13 @@ func (b *Buffer) Replace(r []rune) {
b.Buf.Clear() b.Buf.Clear()
fmt.Printf(CursorBOL + ClearToEOL) fmt.Print(CursorBOL + ClearToEOL)
for range lineNums { for range lineNums {
fmt.Print(CursorUp + CursorBOL + ClearToEOL) fmt.Print(CursorUp + CursorBOL + ClearToEOL)
} }
fmt.Printf(CursorBOL + b.Prompt.prompt()) fmt.Print(CursorBOL + b.Prompt.prompt())
for _, c := range r { for _, c := range r {
b.Add(c) b.Add(c)
@@ -545,19 +540,3 @@ func (b *Buffer) StringNM(n, m int) string {
} }
return s return s
} }
func cursorLeftN(n int) string {
return fmt.Sprintf(CursorLeftN, n)
}
func cursorRightN(n int) string {
return fmt.Sprintf(CursorRightN, n)
}
func cursorUpN(n int) string {
return fmt.Sprintf(CursorUpN, n)
}
func cursorDownN(n int) string {
return fmt.Sprintf(CursorDownN, n)
}

View File

@@ -98,7 +98,7 @@ func (i *Instance) Readline() (string, error) {
showPlaceholder := !i.Pasting || i.Prompt.UseAlt showPlaceholder := !i.Pasting || i.Prompt.UseAlt
if buf.IsEmpty() && showPlaceholder { if buf.IsEmpty() && showPlaceholder {
ph := i.Prompt.placeholder() ph := i.Prompt.placeholder()
fmt.Printf(ColorGrey + ph + fmt.Sprintf(CursorLeftN, len(ph)) + ColorDefault) fmt.Print(ColorGrey + ph + CursorLeftN(len(ph)) + ColorDefault)
} }
r, err := i.Terminal.Read() r, err := i.Terminal.Read()

View File

@@ -1,5 +1,7 @@
package readline package readline
import "strconv"
const ( const (
CharNull = 0 CharNull = 0
CharLineStart = 1 CharLineStart = 1
@@ -41,34 +43,49 @@ const (
) )
const ( const (
CursorUp = "\033[1A" Esc = "\x1b"
CursorDown = "\033[1B"
CursorRight = "\033[1C"
CursorLeft = "\033[1D"
CursorSave = "\033[s" CursorSave = Esc + "[s"
CursorRestore = "\033[u" CursorRestore = Esc + "[u"
CursorUpN = "\033[%dA" CursorEOL = Esc + "[E"
CursorDownN = "\033[%dB" CursorBOL = Esc + "[1G"
CursorRightN = "\033[%dC" CursorHide = Esc + "[?25l"
CursorLeftN = "\033[%dD" CursorShow = Esc + "[?25h"
CursorEOL = "\033[E" ClearToEOL = Esc + "[K"
CursorBOL = "\033[1G" ClearLine = Esc + "[2K"
CursorHide = "\033[?25l" ClearScreen = Esc + "[2J"
CursorShow = "\033[?25h" CursorReset = Esc + "[0;0f"
ClearToEOL = "\033[K" ColorGrey = Esc + "[38;5;245m"
ClearLine = "\033[2K" ColorDefault = Esc + "[0m"
ClearScreen = "\033[2J"
CursorReset = "\033[0;0f"
ColorGrey = "\033[38;5;245m" StartBracketedPaste = Esc + "[?2004h"
ColorDefault = "\033[0m" EndBracketedPaste = Esc + "[?2004l"
)
StartBracketedPaste = "\033[?2004h" func CursorUpN(n int) string {
EndBracketedPaste = "\033[?2004l" return Esc + "[" + strconv.Itoa(n) + "A"
}
func CursorDownN(n int) string {
return Esc + "[" + strconv.Itoa(n) + "B"
}
func CursorRightN(n int) string {
return Esc + "[" + strconv.Itoa(n) + "C"
}
func CursorLeftN(n int) string {
return Esc + "[" + strconv.Itoa(n) + "D"
}
var (
CursorUp = CursorUpN(1)
CursorDown = CursorDownN(1)
CursorRight = CursorRightN(1)
CursorLeft = CursorLeftN(1)
) )
const ( const (

View File

@@ -4,6 +4,7 @@ set -eu
export VERSION=${VERSION:-$(git describe --tags --first-parent --abbrev=7 --long --dirty --always | sed -e "s/^v//g")} export VERSION=${VERSION:-$(git describe --tags --first-parent --abbrev=7 --long --dirty --always | sed -e "s/^v//g")}
export GOFLAGS="'-ldflags=-w -s \"-X=github.com/ollama/ollama/version.Version=$VERSION\" \"-X=github.com/ollama/ollama/server.mode=release\"'" export GOFLAGS="'-ldflags=-w -s \"-X=github.com/ollama/ollama/version.Version=$VERSION\" \"-X=github.com/ollama/ollama/server.mode=release\"'"
GZIP=$(which pigz 2>/dev/null || echo "gzip")
BUILD_ARCH=${BUILD_ARCH:-"amd64 arm64"} BUILD_ARCH=${BUILD_ARCH:-"amd64 arm64"}
export AMDGPU_TARGETS=${AMDGPU_TARGETS:=""} export AMDGPU_TARGETS=${AMDGPU_TARGETS:=""}
@@ -21,11 +22,16 @@ for TARGETARCH in ${BUILD_ARCH}; do
-t builder:$TARGETARCH \ -t builder:$TARGETARCH \
. .
docker create --platform linux/$TARGETARCH --name builder-$TARGETARCH builder:$TARGETARCH docker create --platform linux/$TARGETARCH --name builder-$TARGETARCH builder:$TARGETARCH
docker cp builder-$TARGETARCH:/go/src/github.com/ollama/ollama/ollama ./dist/ollama-linux-$TARGETARCH rm -rf ./dist/linux-$TARGETARCH
docker cp builder-$TARGETARCH:/go/src/github.com/ollama/ollama/dist/linux-$TARGETARCH ./dist
if [ "$TARGETARCH" = "amd64" ]; then if echo ${TARGETARCH} | grep "amd64" > /dev/null; then
docker cp builder-$TARGETARCH:/go/src/github.com/ollama/ollama/dist/deps/ ./dist/ docker cp builder-$TARGETARCH:/go/src/github.com/ollama/ollama/dist/linux-$TARGETARCH-rocm ./dist
fi fi
docker rm builder-$TARGETARCH docker rm builder-$TARGETARCH
echo "Compressing final linux bundle..."
rm -f ./dist/ollama-linux-$TARGETARCH.tgz
(cd dist/linux-$TARGETARCH && tar cf - . | ${GZIP} --best > ../ollama-linux-$TARGETARCH.tgz )
if [ -d dist/linux-$TARGETARCH-rocm ]; then
(cd dist/linux-$TARGETARCH-rocm && tar cf - . | ${GZIP} --best > ../ollama-linux-$TARGETARCH-rocm.tgz )
fi
done done

View File

@@ -7,6 +7,7 @@
$ErrorActionPreference = "Stop" $ErrorActionPreference = "Stop"
function checkEnv() { function checkEnv() {
$script:ARCH = $Env:PROCESSOR_ARCHITECTURE.ToLower()
$script:TARGET_ARCH=$Env:PROCESSOR_ARCHITECTURE.ToLower() $script:TARGET_ARCH=$Env:PROCESSOR_ARCHITECTURE.ToLower()
Write-host "Building for ${script:TARGET_ARCH}" Write-host "Building for ${script:TARGET_ARCH}"
write-host "Locating required tools and paths" write-host "Locating required tools and paths"
@@ -15,26 +16,23 @@ function checkEnv() {
$MSVC_INSTALL=(Get-CimInstance MSFT_VSInstance -Namespace root/cimv2/vs)[0].InstallLocation $MSVC_INSTALL=(Get-CimInstance MSFT_VSInstance -Namespace root/cimv2/vs)[0].InstallLocation
$env:VCToolsRedistDir=(get-item "${MSVC_INSTALL}\VC\Redist\MSVC\*")[0] $env:VCToolsRedistDir=(get-item "${MSVC_INSTALL}\VC\Redist\MSVC\*")[0]
} }
# Try to find the CUDA dir # Locate CUDA versions
if ($null -eq $env:NVIDIA_DIR) { # Note: this assumes every version found will be built
$cudaList=(get-item "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v*\bin\" -ea 'silentlycontinue')
if ($cudaList.length -eq 0) {
$d=(get-command -ea 'silentlycontinue' nvcc).path $d=(get-command -ea 'silentlycontinue' nvcc).path
if ($d -ne $null) { if ($null -ne $d) {
$script:NVIDIA_DIR=($d| split-path -parent) $script:CUDA_DIRS=@($d| split-path -parent)
} else {
$cudaList=(get-item "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v*\bin\" -ea 'silentlycontinue')
if ($cudaList.length > 0) {
$script:NVIDIA_DIR=$cudaList[0]
}
} }
} else { } else {
$script:NVIDIA_DIR=$env:NVIDIA_DIR $script:CUDA_DIRS=$cudaList
} }
$script:INNO_SETUP_DIR=(get-item "C:\Program Files*\Inno Setup*\")[0] $script:INNO_SETUP_DIR=(get-item "C:\Program Files*\Inno Setup*\")[0]
$script:DEPS_DIR="${script:SRC_DIR}\dist\windows-${script:TARGET_ARCH}" $script:DEPS_DIR="${script:SRC_DIR}\dist\windows-${script:TARGET_ARCH}"
$env:CGO_ENABLED="1" $env:CGO_ENABLED="1"
echo "Checking version" Write-Output "Checking version"
if (!$env:VERSION) { if (!$env:VERSION) {
$data=(git describe --tags --first-parent --abbrev=7 --long --dirty --always) $data=(git describe --tags --first-parent --abbrev=7 --long --dirty --always)
$pattern="v(.+)" $pattern="v(.+)"
@@ -71,7 +69,48 @@ function checkEnv() {
function buildOllama() { function buildOllama() {
write-host "Building ollama CLI" write-host "Building ollama CLI"
if ($null -eq ${env:OLLAMA_SKIP_GENERATE}) { if ($null -eq ${env:OLLAMA_SKIP_GENERATE}) {
& go generate ./... Remove-Item -ea 0 -recurse -force -path "${script:SRC_DIR}\dist\windows-${script:ARCH}"
# TODO - consider trying to parallelize this with Start-ThreadJob, but env vars can't be used to toggle
# which targets to build
# Start by skipping CUDA to build everything else
pwsh -Command { $env:OLLAMA_SKIP_CUDA_GENERATE="1"; & go generate ./... }
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
# Then skip everyhting else and build all the CUDA variants
foreach ($env:CUDA_LIB_DIR in $script:CUDA_DIRS) {
write-host "Building CUDA ${env:CUDA_LIB_DIR}"
if ($env:CUDA_LIB_DIR.Contains("v12")) {
pwsh -Command {
$env:OLLAMA_SKIP_CUDA_GENERATE=""
$env:OLLAMA_SKIP_STATIC_GENERATE="1"
$env:OLLAMA_SKIP_CPU_GENERATE="1"
$env:OLLAMA_SKIP_ONEAPI_GENERATE="1"
$env:OLLAMA_SKIP_ROCM_GENERATE="1"
$env:CMAKE_CUDA_ARCHITECTURES="60;61;62;70;72;75;80;86;87;89;90;90a"
$env:OLLAMA_CUSTOM_CUDA_DEFS="-DGGML_CUDA_USE_GRAPHS=on"
$env:CUDA_PATH=split-path -path $env:CUDA_LIB_DIR -parent
$env:PATH="$envs:CUDA_LIB_DIR;$env:PATH"
& go generate ./...
}
} else {
pwsh -Command {
$env:OLLAMA_SKIP_CUDA_GENERATE=""
$env:OLLAMA_SKIP_STATIC_GENERATE="1"
$env:OLLAMA_SKIP_CPU_GENERATE="1"
$env:OLLAMA_SKIP_ONEAPI_GENERATE="1"
$env:OLLAMA_SKIP_ROCM_GENERATE="1"
$env:CMAKE_CUDA_ARCHITECTURES="50;52;53;60;61;62;70;72;75;80;86"
$env:OLLAMA_CUSTOM_CUDA_DEFS=""
$env:CUDA_PATH=split-path -path $env:CUDA_LIB_DIR -parent
$env:PATH="$envs:CUDA_LIB_DIR;$env:PATH"
& go generate ./...
}
}
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
}
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)} if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
} else { } else {
write-host "Skipping generate step with OLLAMA_SKIP_GENERATE set" write-host "Skipping generate step with OLLAMA_SKIP_GENERATE set"
@@ -83,8 +122,8 @@ function buildOllama() {
/csp "Google Cloud KMS Provider" /kc ${env:KEY_CONTAINER} ollama.exe /csp "Google Cloud KMS Provider" /kc ${env:KEY_CONTAINER} ollama.exe
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)} if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
} }
New-Item -ItemType Directory -Path .\dist\windows-${script:TARGET_ARCH}\ -Force New-Item -ItemType Directory -Path .\dist\windows-${script:TARGET_ARCH}\bin\ -Force
cp .\ollama.exe .\dist\windows-${script:TARGET_ARCH}\ cp .\ollama.exe .\dist\windows-${script:TARGET_ARCH}\bin\
} }
function buildApp() { function buildApp() {
@@ -103,22 +142,22 @@ function buildApp() {
function gatherDependencies() { function gatherDependencies() {
write-host "Gathering runtime dependencies" write-host "Gathering runtime dependencies"
cd "${script:SRC_DIR}" cd "${script:SRC_DIR}"
md "${script:DEPS_DIR}\ollama_runners" -ea 0 > $null md "${script:DEPS_DIR}\lib\ollama" -ea 0 > $null
# TODO - this varies based on host build system and MSVC version - drive from dumpbin output # TODO - this varies based on host build system and MSVC version - drive from dumpbin output
# currently works for Win11 + MSVC 2019 + Cuda V11 # currently works for Win11 + MSVC 2019 + Cuda V11
cp "${env:VCToolsRedistDir}\x64\Microsoft.VC*.CRT\msvcp140*.dll" "${script:DEPS_DIR}\ollama_runners\" cp "${env:VCToolsRedistDir}\x64\Microsoft.VC*.CRT\msvcp140*.dll" "${script:DEPS_DIR}\lib\ollama\"
cp "${env:VCToolsRedistDir}\x64\Microsoft.VC*.CRT\vcruntime140.dll" "${script:DEPS_DIR}\ollama_runners\" cp "${env:VCToolsRedistDir}\x64\Microsoft.VC*.CRT\vcruntime140.dll" "${script:DEPS_DIR}\lib\ollama\"
cp "${env:VCToolsRedistDir}\x64\Microsoft.VC*.CRT\vcruntime140_1.dll" "${script:DEPS_DIR}\ollama_runners\" cp "${env:VCToolsRedistDir}\x64\Microsoft.VC*.CRT\vcruntime140_1.dll" "${script:DEPS_DIR}\lib\ollama\"
foreach ($part in $("runtime", "stdio", "filesystem", "math", "convert", "heap", "string", "time", "locale", "environment")) { foreach ($part in $("runtime", "stdio", "filesystem", "math", "convert", "heap", "string", "time", "locale", "environment")) {
cp "$env:VCToolsRedistDir\..\..\..\Tools\Llvm\x64\bin\api-ms-win-crt-${part}*.dll" "${script:DEPS_DIR}\ollama_runners\" cp "$env:VCToolsRedistDir\..\..\..\Tools\Llvm\x64\bin\api-ms-win-crt-${part}*.dll" "${script:DEPS_DIR}\lib\ollama\"
} }
cp "${script:SRC_DIR}\app\ollama_welcome.ps1" "${script:SRC_DIR}\dist\" cp "${script:SRC_DIR}\app\ollama_welcome.ps1" "${script:SRC_DIR}\dist\"
if ("${env:KEY_CONTAINER}") { if ("${env:KEY_CONTAINER}") {
write-host "about to sign" write-host "about to sign"
foreach ($file in (get-childitem "${script:DEPS_DIR}\cuda\cu*.dll") + @("${script:SRC_DIR}\dist\ollama_welcome.ps1")){ foreach ($file in (get-childitem "${script:DEPS_DIR}\lib\ollama\cu*.dll") + @("${script:SRC_DIR}\dist\ollama_welcome.ps1")){
write-host "signing $file" write-host "signing $file"
& "${script:SignTool}" sign /v /fd sha256 /t http://timestamp.digicert.com /f "${script:OLLAMA_CERT}" ` & "${script:SignTool}" sign /v /fd sha256 /t http://timestamp.digicert.com /f "${script:OLLAMA_CERT}" `
/csp "Google Cloud KMS Provider" /kc ${env:KEY_CONTAINER} $file /csp "Google Cloud KMS Provider" /kc ${env:KEY_CONTAINER} $file

View File

@@ -63,16 +63,36 @@ if [ -n "$NEEDS" ]; then
exit 1 exit 1
fi fi
status "Downloading ollama..."
curl --fail --show-error --location --progress-bar -o $TEMP_DIR/ollama "https://ollama.com/download/ollama-linux-${ARCH}${VER_PARAM}"
for BINDIR in /usr/local/bin /usr/bin /bin; do for BINDIR in /usr/local/bin /usr/bin /bin; do
echo $PATH | grep -q $BINDIR && break || continue echo $PATH | grep -q $BINDIR && break || continue
done done
OLLAMA_INSTALL_DIR=$(dirname ${BINDIR})
status "Installing ollama to $BINDIR..." status "Installing ollama to $OLLAMA_INSTALL_DIR"
$SUDO install -o0 -g0 -m755 -d $BINDIR $SUDO install -o0 -g0 -m755 -d $BINDIR
$SUDO install -o0 -g0 -m755 $TEMP_DIR/ollama $BINDIR/ollama $SUDO install -o0 -g0 -m755 -d "$OLLAMA_INSTALL_DIR"
if curl -I --silent --fail --location "https://ollama.com/download/ollama-linux-${ARCH}.tgz${VER_PARAM}" >/dev/null ; then
status "Downloading Linux ${ARCH} bundle"
curl --fail --show-error --location --progress-bar \
"https://ollama.com/download/ollama-linux-${ARCH}.tgz${VER_PARAM}" | \
$SUDO tar -xzf - -C "$OLLAMA_INSTALL_DIR"
BUNDLE=1
if [ "$OLLAMA_INSTALL_DIR/bin/ollama" != "$BINDIR/ollama" ] ; then
status "Making ollama accessible in the PATH in $BINDIR"
$SUDO ln -sf "$OLLAMA_INSTALL_DIR/ollama" "$BINDIR/ollama"
fi
else
status "Downloading Linux ${ARCH} CLI"
curl --fail --show-error --location --progress-bar -o "$TEMP_DIR/ollama"\
"https://ollama.com/download/ollama-linux-${ARCH}${VER_PARAM}"
$SUDO install -o0 -g0 -m755 $TEMP_DIR/ollama $OLLAMA_INSTALL_DIR/ollama
BUNDLE=0
if [ "$OLLAMA_INSTALL_DIR/ollama" != "$BINDIR/ollama" ] ; then
status "Making ollama accessible in the PATH in $BINDIR"
$SUDO ln -sf "$OLLAMA_INSTALL_DIR/ollama" "$BINDIR/ollama"
fi
fi
install_success() { install_success() {
status 'The Ollama API is now available at 127.0.0.1:11434.' status 'The Ollama API is now available at 127.0.0.1:11434.'
@@ -178,6 +198,16 @@ if ! check_gpu lspci nvidia && ! check_gpu lshw nvidia && ! check_gpu lspci amdg
fi fi
if check_gpu lspci amdgpu || check_gpu lshw amdgpu; then if check_gpu lspci amdgpu || check_gpu lshw amdgpu; then
if [ $BUNDLE -ne 0 ]; then
status "Downloading Linux ROCm ${ARCH} bundle"
curl --fail --show-error --location --progress-bar \
"https://ollama.com/download/ollama-linux-${ARCH}-rocm.tgz${VER_PARAM}" | \
$SUDO tar -xzf - -C "$OLLAMA_INSTALL_DIR"
install_success
status "AMD GPU ready."
exit 0
fi
# Look for pre-existing ROCm v6 before downloading the dependencies # Look for pre-existing ROCm v6 before downloading the dependencies
for search in "${HIP_PATH:-''}" "${ROCM_PATH:-''}" "/opt/rocm" "/usr/lib64"; do for search in "${HIP_PATH:-''}" "${ROCM_PATH:-''}" "/opt/rocm" "/usr/lib64"; do
if [ -n "${search}" ] && [ -e "${search}/libhipblas.so.2" -o -e "${search}/lib/libhipblas.so.2" ]; then if [ -n "${search}" ] && [ -e "${search}/libhipblas.so.2" -o -e "${search}/lib/libhipblas.so.2" ]; then

View File

@@ -3,6 +3,7 @@
# Script for common Dockerfile dependency installation in redhat linux based images # Script for common Dockerfile dependency installation in redhat linux based images
set -ex set -ex
set -o pipefail
MACHINE=$(uname -m) MACHINE=$(uname -m)
if grep -i "centos" /etc/system-release >/dev/null; then if grep -i "centos" /etc/system-release >/dev/null; then
@@ -29,7 +30,7 @@ if grep -i "centos" /etc/system-release >/dev/null; then
dnf install -y rh-git227-git dnf install -y rh-git227-git
ln -s /opt/rh/rh-git227/root/usr/bin/git /usr/local/bin/git ln -s /opt/rh/rh-git227/root/usr/bin/git /usr/local/bin/git
fi fi
dnf install -y devtoolset-10-gcc devtoolset-10-gcc-c++ dnf install -y devtoolset-10-gcc devtoolset-10-gcc-c++ pigz
elif grep -i "rocky" /etc/system-release >/dev/null; then elif grep -i "rocky" /etc/system-release >/dev/null; then
# Temporary workaround until rocky 8 AppStream ships GCC 10.4 (10.3 is incompatible with NVCC) # Temporary workaround until rocky 8 AppStream ships GCC 10.4 (10.3 is incompatible with NVCC)
cat << EOF > /etc/yum.repos.d/Rocky-Vault.repo cat << EOF > /etc/yum.repos.d/Rocky-Vault.repo
@@ -43,12 +44,21 @@ gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-rockyofficial
EOF EOF
dnf install -y git \ dnf install -y git \
gcc-toolset-10-gcc-10.2.1-8.2.el8 \ gcc-toolset-10-gcc-10.2.1-8.2.el8 \
gcc-toolset-10-gcc-c++-10.2.1-8.2.el8 gcc-toolset-10-gcc-c++-10.2.1-8.2.el8 \
pigz
else else
echo "ERROR Unexpected distro" echo "ERROR Unexpected distro"
exit 1 exit 1
fi fi
if [ "${MACHINE}" = "x86_64" ] ; then
curl -s -L https://github.com/ccache/ccache/releases/download/v4.10.2/ccache-4.10.2-linux-x86_64.tar.xz | tar -Jx -C /tmp --strip-components 1 && \
mv /tmp/ccache /usr/local/bin/
else
yum -y install epel-release
yum install -y ccache
fi
if [ -n "${CMAKE_VERSION}" ]; then if [ -n "${CMAKE_VERSION}" ]; then
curl -s -L https://github.com/Kitware/CMake/releases/download/v${CMAKE_VERSION}/cmake-${CMAKE_VERSION}-linux-$(uname -m).tar.gz | tar -zx -C /usr --strip-components 1 curl -s -L https://github.com/Kitware/CMake/releases/download/v${CMAKE_VERSION}/cmake-${CMAKE_VERSION}-linux-$(uname -m).tar.gz | tar -zx -C /usr --strip-components 1
fi fi

View File

@@ -94,7 +94,7 @@ func (p *blobDownloadPart) UnmarshalJSON(b []byte) error {
} }
const ( const (
numDownloadParts = 64 numDownloadParts = 16
minDownloadPartSize int64 = 100 * format.MegaByte minDownloadPartSize int64 = 100 * format.MegaByte
maxDownloadPartSize int64 = 1000 * format.MegaByte maxDownloadPartSize int64 = 1000 * format.MegaByte
) )

View File

@@ -215,25 +215,20 @@ func GetManifest(mp ModelPath) (*Manifest, string, error) {
return nil, "", err return nil, "", err
} }
if _, err = os.Stat(fp); err != nil { f, err := os.Open(fp)
return nil, "", err
}
var manifest *Manifest
bts, err := os.ReadFile(fp)
if err != nil { if err != nil {
return nil, "", fmt.Errorf("couldn't open file '%s'", fp) return nil, "", err
} }
defer f.Close()
shaSum := sha256.Sum256(bts) sha256sum := sha256.New()
shaStr := hex.EncodeToString(shaSum[:])
if err := json.Unmarshal(bts, &manifest); err != nil { var manifest Manifest
if err := json.NewDecoder(io.TeeReader(f, sha256sum)).Decode(&manifest); err != nil {
return nil, "", err return nil, "", err
} }
return manifest, shaStr, nil return &manifest, hex.EncodeToString(sha256sum.Sum(nil)), nil
} }
func GetModel(name string) (*Model, error) { func GetModel(name string) (*Model, error) {
@@ -374,13 +369,14 @@ func CreateModel(ctx context.Context, name model.Name, modelFileDir, quantizatio
parameters := make(map[string]any) parameters := make(map[string]any)
var layers []Layer var layers []Layer
var baseLayers []*layerGGML
for _, c := range modelfile.Commands { for _, c := range modelfile.Commands {
mediatype := fmt.Sprintf("application/vnd.ollama.image.%s", c.Name) mediatype := fmt.Sprintf("application/vnd.ollama.image.%s", c.Name)
command := c.Name
switch c.Name { switch command {
case "model", "adapter": case "model", "adapter":
var baseLayers []*layerGGML if name := model.ParseName(c.Args); name.IsValid() && command == "model" {
if name := model.ParseName(c.Args); name.IsValid() {
baseLayers, err = parseFromModel(ctx, name, fn) baseLayers, err = parseFromModel(ctx, name, fn)
if err != nil { if err != nil {
return err return err
@@ -414,14 +410,14 @@ func CreateModel(ctx context.Context, name model.Name, modelFileDir, quantizatio
} }
defer blob.Close() defer blob.Close()
baseLayers, err = parseFromFile(ctx, blob, digest, fn) baseLayers, err = parseFromFile(ctx, command, baseLayers, blob, digest, fn)
if err != nil { if err != nil {
return err return err
} }
} else if file, err := os.Open(realpath(modelFileDir, c.Args)); err == nil { } else if file, err := os.Open(realpath(modelFileDir, c.Args)); err == nil {
defer file.Close() defer file.Close()
baseLayers, err = parseFromFile(ctx, file, "", fn) baseLayers, err = parseFromFile(ctx, command, baseLayers, file, "", fn)
if err != nil { if err != nil {
return err return err
} }
@@ -692,43 +688,18 @@ func CopyModel(src, dst model.Name) error {
return err return err
} }
func deleteUnusedLayers(skipModelPath *ModelPath, deleteMap map[string]struct{}) error { func deleteUnusedLayers(deleteMap map[string]struct{}) error {
fp, err := GetManifestPath() manifests, err := Manifests()
if err != nil { if err != nil {
return err return err
} }
walkFunc := func(path string, info os.FileInfo, _ error) error { for _, manifest := range manifests {
if info.IsDir() {
return nil
}
dir, file := filepath.Split(path)
dir = strings.Trim(strings.TrimPrefix(dir, fp), string(os.PathSeparator))
tag := strings.Join([]string{dir, file}, ":")
fmp := ParseModelPath(tag)
// skip the manifest we're trying to delete
if skipModelPath != nil && skipModelPath.GetFullTagname() == fmp.GetFullTagname() {
return nil
}
// save (i.e. delete from the deleteMap) any files used in other manifests
manifest, _, err := GetManifest(fmp)
if err != nil {
return err
}
for _, layer := range manifest.Layers { for _, layer := range manifest.Layers {
delete(deleteMap, layer.Digest) delete(deleteMap, layer.Digest)
} }
delete(deleteMap, manifest.Config.Digest) delete(deleteMap, manifest.Config.Digest)
return nil
}
if err := filepath.Walk(fp, walkFunc); err != nil {
return err
} }
// only delete the files which are still in the deleteMap // only delete the files which are still in the deleteMap
@@ -781,8 +752,7 @@ func PruneLayers() error {
slog.Info(fmt.Sprintf("total blobs: %d", len(deleteMap))) slog.Info(fmt.Sprintf("total blobs: %d", len(deleteMap)))
err = deleteUnusedLayers(nil, deleteMap) if err := deleteUnusedLayers(deleteMap); err != nil {
if err != nil {
slog.Error(fmt.Sprintf("couldn't remove unused layers: %v", err)) slog.Error(fmt.Sprintf("couldn't remove unused layers: %v", err))
return nil return nil
} }
@@ -877,26 +847,19 @@ func PushModel(ctx context.Context, name string, regOpts *registryOptions, fn fu
func PullModel(ctx context.Context, name string, regOpts *registryOptions, fn func(api.ProgressResponse)) error { func PullModel(ctx context.Context, name string, regOpts *registryOptions, fn func(api.ProgressResponse)) error {
mp := ParseModelPath(name) mp := ParseModelPath(name)
var manifest *Manifest
var err error
var noprune string
// build deleteMap to prune unused layers // build deleteMap to prune unused layers
deleteMap := make(map[string]struct{}) deleteMap := make(map[string]struct{})
manifest, _, err := GetManifest(mp)
if !envconfig.NoPrune() { if errors.Is(err, os.ErrNotExist) {
manifest, _, err = GetManifest(mp) // noop
if err != nil && !errors.Is(err, os.ErrNotExist) { } else if err != nil && !errors.Is(err, os.ErrNotExist) {
return err return err
} else {
for _, l := range manifest.Layers {
deleteMap[l.Digest] = struct{}{}
} }
if manifest.Config.Digest != "" {
if manifest != nil { deleteMap[manifest.Config.Digest] = struct{}{}
for _, l := range manifest.Layers {
deleteMap[l.Digest] = struct{}{}
}
if manifest.Config.Digest != "" {
deleteMap[manifest.Config.Digest] = struct{}{}
}
} }
} }
@@ -975,11 +938,9 @@ func PullModel(ctx context.Context, name string, regOpts *registryOptions, fn fu
return err return err
} }
if noprune == "" { if !envconfig.NoPrune() && len(deleteMap) > 0 {
fn(api.ProgressResponse{Status: "removing any unused layers"}) fn(api.ProgressResponse{Status: "removing unused layers"})
err = deleteUnusedLayers(nil, deleteMap) if err := deleteUnusedLayers(deleteMap); err != nil {
if err != nil {
slog.Error(fmt.Sprintf("couldn't remove unused layers: %v", err))
fn(api.ProgressResponse{Status: fmt.Sprintf("couldn't remove unused layers: %v", err)}) fn(api.ProgressResponse{Status: fmt.Sprintf("couldn't remove unused layers: %v", err)})
} }
} }
@@ -1000,12 +961,12 @@ func pullModelManifest(ctx context.Context, mp ModelPath, regOpts *registryOptio
} }
defer resp.Body.Close() defer resp.Body.Close()
var m *Manifest var m Manifest
if err := json.NewDecoder(resp.Body).Decode(&m); err != nil { if err := json.NewDecoder(resp.Body).Decode(&m); err != nil {
return nil, err return nil, err
} }
return m, err return &m, err
} }
// GetSHA256Digest returns the SHA256 hash of a given buffer and returns it, and the size of buffer // GetSHA256Digest returns the SHA256 hash of a given buffer and returns it, and the size of buffer

View File

@@ -51,6 +51,9 @@ func NewLayer(r io.Reader, mediatype string) (Layer, error) {
if err := os.Rename(temp.Name(), blob); err != nil { if err := os.Rename(temp.Name(), blob); err != nil {
return Layer{}, err return Layer{}, err
} }
if err := os.Chmod(blob, 0o644); err != nil {
return Layer{}, err
}
} }
return Layer{ return Layer{

View File

@@ -5,6 +5,7 @@ import (
"encoding/hex" "encoding/hex"
"encoding/json" "encoding/json"
"errors" "errors"
"fmt"
"io" "io"
"log/slog" "log/slog"
"os" "os"
@@ -150,14 +151,16 @@ func Manifests() (map[model.Name]*Manifest, error) {
n := model.ParseNameFromFilepath(rel) n := model.ParseNameFromFilepath(rel)
if !n.IsValid() { if !n.IsValid() {
slog.Warn("bad manifest name", "path", rel, "error", err) slog.Warn("bad manifest name", "path", rel)
continue continue
} }
m, err := ParseNamedManifest(n) m, err := ParseNamedManifest(n)
if err != nil { if syntax := &(json.SyntaxError{}); errors.As(err, &syntax) {
slog.Warn("bad manifest", "name", n, "error", err) slog.Warn("bad manifest", "name", n, "error", err)
continue continue
} else if err != nil {
return nil, fmt.Errorf("%s: %w", n, err)
} }
ms[n] = m ms[n] = m

View File

@@ -81,7 +81,7 @@ func parseFromModel(ctx context.Context, name model.Name, fn func(api.ProgressRe
return layers, nil return layers, nil
} }
func parseFromZipFile(_ context.Context, f *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) { func parseFromZipFile(_ context.Context, command string, baseLayers []*layerGGML, f *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) {
fi, err := f.Stat() fi, err := f.Stat()
if err != nil { if err != nil {
return nil, err return nil, err
@@ -108,16 +108,38 @@ func parseFromZipFile(_ context.Context, f *os.File, digest string, fn func(api.
defer t.Close() defer t.Close()
defer os.Remove(t.Name()) defer os.Remove(t.Name())
fn(api.ProgressResponse{Status: "converting model"}) var layerType string
if err := convert.Convert(convert.NewZipReader(r, p, 32<<20), t); err != nil {
return nil, err switch command {
case "adapter":
var baseModel *llm.GGML
for _, l := range baseLayers {
if l.GGML != nil {
baseModel = l.GGML
break
}
}
if baseModel == nil {
return nil, fmt.Errorf("no base model specified for the adapter")
}
if err := convert.ConvertAdapter(convert.NewZipReader(r, p, 32<<20), t, baseModel.KV()); err != nil {
return nil, err
}
layerType = "application/vnd.ollama.image.adapter"
case "model":
if err := convert.ConvertModel(convert.NewZipReader(r, p, 32<<20), t); err != nil {
return nil, err
}
layerType = "application/vnd.ollama.image.model"
} }
if _, err := t.Seek(0, io.SeekStart); err != nil { if _, err := t.Seek(0, io.SeekStart); err != nil {
return nil, err return nil, err
} }
layer, err := NewLayer(t, "application/vnd.ollama.image.model") layer, err := NewLayer(t, layerType)
if err != nil { if err != nil {
return nil, err return nil, err
} }
@@ -139,7 +161,7 @@ func parseFromZipFile(_ context.Context, f *os.File, digest string, fn func(api.
return detectChatTemplate(layers) return detectChatTemplate(layers)
} }
func parseFromFile(ctx context.Context, file *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) { func parseFromFile(ctx context.Context, command string, baseLayers []*layerGGML, file *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) {
sr := io.NewSectionReader(file, 0, 512) sr := io.NewSectionReader(file, 0, 512)
contentType, err := detectContentType(sr) contentType, err := detectContentType(sr)
if err != nil { if err != nil {
@@ -150,7 +172,7 @@ func parseFromFile(ctx context.Context, file *os.File, digest string, fn func(ap
case "gguf", "ggla": case "gguf", "ggla":
// noop // noop
case "application/zip": case "application/zip":
return parseFromZipFile(ctx, file, digest, fn) return parseFromZipFile(ctx, command, baseLayers, file, digest, fn)
default: default:
return nil, fmt.Errorf("unsupported content type: %s", contentType) return nil, fmt.Errorf("unsupported content type: %s", contentType)
} }
@@ -170,15 +192,26 @@ func parseFromFile(ctx context.Context, file *os.File, digest string, fn func(ap
} }
mediatype := "application/vnd.ollama.image.model" mediatype := "application/vnd.ollama.image.model"
if ggml.Name() == "ggla" { if ggml.Name() == "ggla" || ggml.KV().Kind() == "adapter" {
mediatype = "application/vnd.ollama.image.adapter" mediatype = "application/vnd.ollama.image.adapter"
} else if ggml.KV().Architecture() == "clip" { } else if ggml.KV().Architecture() == "clip" {
mediatype = "application/vnd.ollama.image.projector" mediatype = "application/vnd.ollama.image.projector"
} }
layer, err := NewLayer(io.NewSectionReader(file, offset, n), mediatype) var layer Layer
if err != nil { if digest != "" && n == stat.Size() && offset == 0 {
return nil, err layer, err = NewLayerFromLayer(digest, mediatype, file.Name())
if err != nil {
slog.Debug("could not create new layer from layer", "error", err)
}
}
// Fallback to creating layer from file copy (either NewLayerFromLayer failed, or digest empty/n != stat.Size())
if layer.Digest == "" {
layer, err = NewLayer(io.NewSectionReader(file, offset, n), mediatype)
if err != nil {
return nil, err
}
} }
layers = append(layers, &layerGGML{layer, ggml}) layers = append(layers, &layerGGML{layer, ggml})

View File

@@ -2,8 +2,10 @@ package server
import ( import (
"bytes" "bytes"
"context"
"encoding/json" "encoding/json"
"fmt" "fmt"
"io"
"os" "os"
"path/filepath" "path/filepath"
"testing" "testing"
@@ -11,6 +13,7 @@ import (
"github.com/google/go-cmp/cmp" "github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/api" "github.com/ollama/ollama/api"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/template" "github.com/ollama/ollama/template"
) )
@@ -133,3 +136,82 @@ The temperature in San Francisco, CA is 70°F and in Toronto, Canada is 20°C.`,
}) })
} }
} }
func TestParseFromFileFromLayer(t *testing.T) {
tempModels := t.TempDir()
file, err := os.CreateTemp(tempModels, "")
if err != nil {
t.Fatalf("failed to open file: %v", err)
}
defer file.Close()
if err := llm.WriteGGUF(file, llm.KV{"general.architecture": "gemma"}, []llm.Tensor{}); err != nil {
t.Fatalf("failed to write gguf: %v", err)
}
if _, err := file.Seek(0, io.SeekStart); err != nil {
t.Fatalf("failed to seek to start: %v", err)
}
layers, err := parseFromFile(context.Background(), "model", []*layerGGML{}, file, "", func(api.ProgressResponse) {})
if err != nil {
t.Fatalf("failed to parse from file: %v", err)
}
if len(layers) != 1 {
t.Fatalf("got %d != want 1", len(layers))
}
if _, err := file.Seek(0, io.SeekStart); err != nil {
t.Fatalf("failed to seek to start: %v", err)
}
layers2, err := parseFromFile(context.Background(), "model", []*layerGGML{}, file, layers[0].Digest, func(api.ProgressResponse) {})
if err != nil {
t.Fatalf("failed to parse from file: %v", err)
}
if len(layers2) != 1 {
t.Fatalf("got %d != want 1", len(layers2))
}
if layers[0].Digest != layers2[0].Digest {
t.Fatalf("got %s != want %s", layers[0].Digest, layers2[0].Digest)
}
if layers[0].Size != layers2[0].Size {
t.Fatalf("got %d != want %d", layers[0].Size, layers2[0].Size)
}
if layers[0].MediaType != layers2[0].MediaType {
t.Fatalf("got %v != want %v", layers[0].MediaType, layers2[0].MediaType)
}
}
func TestParseLayerFromCopy(t *testing.T) {
tempModels := t.TempDir()
file2, err := os.CreateTemp(tempModels, "")
if err != nil {
t.Fatalf("failed to open file: %v", err)
}
defer file2.Close()
for range 5 {
if err := llm.WriteGGUF(file2, llm.KV{"general.architecture": "gemma"}, []llm.Tensor{}); err != nil {
t.Fatalf("failed to write gguf: %v", err)
}
}
if _, err := file2.Seek(0, io.SeekStart); err != nil {
t.Fatalf("failed to seek to start: %v", err)
}
layers, err := parseFromFile(context.Background(), "model", []*layerGGML{}, file2, "", func(api.ProgressResponse) {})
if err != nil {
t.Fatalf("failed to parse from file: %v", err)
}
if len(layers) != 5 {
t.Fatalf("got %d != want 5", len(layers))
}
}

View File

@@ -324,13 +324,10 @@ func (s *Server) EmbedHandler(c *gin.Context) {
input = append(input, v.(string)) input = append(input, v.(string))
} }
default: default:
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "invalid input type"}) if req.Input != nil {
return c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "invalid input type"})
} return
}
if len(input) == 0 {
c.JSON(http.StatusOK, api.EmbedResponse{Model: req.Model, Embeddings: [][]float32{}})
return
} }
r, m, opts, err := s.scheduleRunner(c.Request.Context(), req.Model, []Capability{}, req.Options, req.KeepAlive) r, m, opts, err := s.scheduleRunner(c.Request.Context(), req.Model, []Capability{}, req.Options, req.KeepAlive)
@@ -341,6 +338,11 @@ func (s *Server) EmbedHandler(c *gin.Context) {
checkpointLoaded := time.Now() checkpointLoaded := time.Now()
if len(input) == 0 {
c.JSON(http.StatusOK, api.EmbedResponse{Model: req.Model, Embeddings: [][]float32{}})
return
}
kvData, err := getKVData(m.ModelPath, false) kvData, err := getKVData(m.ModelPath, false)
if err != nil { if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()}) c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})

View File

@@ -272,76 +272,6 @@ func Test_Routes(t *testing.T) {
assert.Equal(t, "library", retrieveResp.OwnedBy) assert.Equal(t, "library", retrieveResp.OwnedBy)
}, },
}, },
{
Name: "Embed Handler Empty Input",
Method: http.MethodPost,
Path: "/api/embed",
Setup: func(t *testing.T, req *http.Request) {
embedReq := api.EmbedRequest{
Model: "t-bone",
Input: "",
}
jsonData, err := json.Marshal(embedReq)
require.NoError(t, err)
req.Body = io.NopCloser(bytes.NewReader(jsonData))
},
Expected: func(t *testing.T, resp *http.Response) {
contentType := resp.Header.Get("Content-Type")
if contentType != "application/json; charset=utf-8" {
t.Fatalf("expected content type application/json; charset=utf-8, got %s", contentType)
}
body, err := io.ReadAll(resp.Body)
if err != nil {
t.Fatal(err)
}
var embedResp api.EmbedResponse
err = json.Unmarshal(body, &embedResp)
if err != nil {
t.Fatal(err)
}
if embedResp.Model != "t-bone" {
t.Fatalf("expected model t-bone, got %s", embedResp.Model)
}
if embedResp.Embeddings == nil {
t.Fatalf("expected embeddings to not be nil, got %v", embedResp.Embeddings)
}
if len(embedResp.Embeddings) != 0 {
t.Fatalf("expected embeddings to be empty, got %v", embedResp.Embeddings)
}
},
},
{
Name: "Embed Handler Invalid Input",
Method: http.MethodPost,
Path: "/api/embed",
Setup: func(t *testing.T, req *http.Request) {
embedReq := api.EmbedRequest{
Model: "t-bone",
Input: 2,
}
jsonData, err := json.Marshal(embedReq)
require.NoError(t, err)
req.Body = io.NopCloser(bytes.NewReader(jsonData))
},
Expected: func(t *testing.T, resp *http.Response) {
contentType := resp.Header.Get("Content-Type")
if contentType != "application/json; charset=utf-8" {
t.Fatalf("expected content type application/json; charset=utf-8, got %s", contentType)
}
_, err := io.ReadAll(resp.Body)
if err != nil {
t.Fatal(err)
}
if resp.StatusCode != http.StatusBadRequest {
t.Fatalf("expected status code 400, got %d", resp.StatusCode)
}
},
},
} }
t.Setenv("OLLAMA_MODELS", t.TempDir()) t.Setenv("OLLAMA_MODELS", t.TempDir())

View File

@@ -193,6 +193,11 @@ func (s *Scheduler) processPending(ctx context.Context) {
break break
} }
// Embedding models should always be loaded with parallel=1
if pending.model.CheckCapabilities(CapabilityCompletion) != nil {
numParallel = 1
}
// Evaluate if the model will fit in the available system memory, or if we should unload a model first // Evaluate if the model will fit in the available system memory, or if we should unload a model first
if len(gpus) == 1 && gpus[0].Library == "cpu" { if len(gpus) == 1 && gpus[0].Library == "cpu" {
// simplifying assumption of defaultParallel when in CPU mode // simplifying assumption of defaultParallel when in CPU mode
@@ -418,7 +423,7 @@ func (s *Scheduler) load(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList,
// some older models are not compatible with newer versions of llama.cpp // some older models are not compatible with newer versions of llama.cpp
// show a generalized compatibility error until there is a better way to // show a generalized compatibility error until there is a better way to
// check for model compatibility // check for model compatibility
if errors.Is(llm.ErrUnsupportedFormat, err) || strings.Contains(err.Error(), "failed to load model") { if errors.Is(err, llm.ErrUnsupportedFormat) || strings.Contains(err.Error(), "failed to load model") {
err = fmt.Errorf("%v: this model may be incompatible with your version of Ollama. If you previously pulled this model, try updating it by running `ollama pull %s`", err, req.model.ShortName) err = fmt.Errorf("%v: this model may be incompatible with your version of Ollama. If you previously pulled this model, try updating it by running `ollama pull %s`", err, req.model.ShortName)
} }
slog.Info("NewLlamaServer failed", "model", req.model.ModelPath, "error", err) slog.Info("NewLlamaServer failed", "model", req.model.ModelPath, "error", err)
@@ -734,7 +739,10 @@ func pickBestFullFitByLibrary(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoL
// If multiple Libraries are detected, pick the Library which loads the most layers for the model // If multiple Libraries are detected, pick the Library which loads the most layers for the model
func pickBestPartialFitByLibrary(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel *int) gpu.GpuInfoList { func pickBestPartialFitByLibrary(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel *int) gpu.GpuInfoList {
*numParallel = 1 if *numParallel <= 0 {
*numParallel = 1
req.opts.NumCtx = req.origNumCtx
}
byLibrary := gpus.ByLibrary() byLibrary := gpus.ByLibrary()
if len(byLibrary) <= 1 { if len(byLibrary) <= 1 {
return gpus return gpus

View File

@@ -117,7 +117,6 @@ func newScenarioRequest(t *testing.T, ctx context.Context, modelName string, est
require.NoError(t, llm.WriteGGUF(f, llm.KV{ require.NoError(t, llm.WriteGGUF(f, llm.KV{
"general.architecture": "llama", "general.architecture": "llama",
"general.name": "name",
"llama.context_length": uint32(32), "llama.context_length": uint32(32),
"llama.embedding_length": uint32(4096), "llama.embedding_length": uint32(4096),
"llama.block_count": uint32(1), "llama.block_count": uint32(1),

View File

@@ -45,7 +45,7 @@ type blobUpload struct {
} }
const ( const (
numUploadParts = 64 numUploadParts = 16
minUploadPartSize int64 = 100 * format.MegaByte minUploadPartSize int64 = 100 * format.MegaByte
maxUploadPartSize int64 = 1000 * format.MegaByte maxUploadPartSize int64 = 1000 * format.MegaByte
) )

View File

@@ -219,7 +219,7 @@ func (n Name) String() string {
return b.String() return b.String()
} }
// DisplayShort returns a short string version of the name. // DisplayShortest returns a short string version of the name.
func (n Name) DisplayShortest() string { func (n Name) DisplayShortest() string {
var sb strings.Builder var sb strings.Builder