Compare commits
2215 Commits
whitespace
...
drifkin/ar
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
20c5fd39c8 | ||
|
|
6e9a7a2568 | ||
|
|
b585a58121 | ||
|
|
fa9973cd7f | ||
|
|
3d9498a425 | ||
|
|
3098c8b29b | ||
|
|
5e380c3b42 | ||
|
|
392de84031 | ||
|
|
af31ccefc0 | ||
|
|
fa393554b9 | ||
|
|
307e3b3e1d | ||
|
|
4090aca97b | ||
|
|
92ce438de0 | ||
|
|
424810450f | ||
|
|
95e744beeb | ||
|
|
3b2d2c8326 | ||
|
|
d931ee8f22 | ||
|
|
7073600797 | ||
|
|
b1c40138da | ||
|
|
17466217e5 | ||
|
|
1703d1472e | ||
|
|
913905028b | ||
|
|
7e5c8eee5c | ||
|
|
6a74bba7e7 | ||
|
|
76ea735aaf | ||
|
|
dd1d4e99e7 | ||
|
|
a6ef73f4f2 | ||
|
|
c2f5d6662b | ||
|
|
57fb759f3c | ||
|
|
8dd12c873d | ||
|
|
e6d2d04121 | ||
|
|
074bac8447 | ||
|
|
8e8f2c6d67 | ||
|
|
938e8447e8 | ||
|
|
d5d5f0c445 | ||
|
|
a7835c6716 | ||
|
|
ad3c7c9bda | ||
|
|
415c8fcc3d | ||
|
|
718eda1b3e | ||
|
|
421b7edeb4 | ||
|
|
7b68e254c2 | ||
|
|
7bec2724a5 | ||
|
|
a27462b708 | ||
|
|
6bf0b8193a | ||
|
|
db428adbb8 | ||
|
|
fe5b9bb21b | ||
|
|
6ec71d8fb6 | ||
|
|
44b466eeb2 | ||
|
|
a25f3f8260 | ||
|
|
dd93e1af85 | ||
|
|
d2ee599dcf | ||
|
|
6ed8898590 | ||
|
|
5cfc1c39f3 | ||
|
|
f0ad49ea17 | ||
|
|
7ba9fa9c7d | ||
|
|
8bf11b84c1 | ||
|
|
470af8ab89 | ||
|
|
178761aef3 | ||
|
|
f0c66e6dea | ||
|
|
54055a6dae | ||
|
|
340448d2d1 | ||
|
|
ced7d0e53d | ||
|
|
a0dba0f8ae | ||
|
|
5e20b170a7 | ||
|
|
d26c18e25c | ||
|
|
8d376acc9b | ||
|
|
dc1e81f027 | ||
|
|
5d0279164c | ||
|
|
214a7678ea | ||
|
|
4892872c18 | ||
|
|
0b9198bf47 | ||
|
|
e9e5f61c45 | ||
|
|
11dde41824 | ||
|
|
a53d744b01 | ||
|
|
40b10eee6d | ||
|
|
424f648632 | ||
|
|
2eb1fb3231 | ||
|
|
0806521642 | ||
|
|
88738b357b | ||
|
|
4e535e6188 | ||
|
|
40b8fdbdca | ||
|
|
1d99451ad7 | ||
|
|
09bb2e30f6 | ||
|
|
dc264be6ff | ||
|
|
fbe7039618 | ||
|
|
943464ccb8 | ||
|
|
369de832cd | ||
|
|
3457a315b2 | ||
|
|
ed4e139314 | ||
|
|
56dc316a57 | ||
|
|
2fec73eef6 | ||
|
|
1e7f62cb42 | ||
|
|
ccb7eb8135 | ||
|
|
637fd21230 | ||
|
|
0fe487e732 | ||
|
|
6bfaa6e282 | ||
|
|
378d3210dc | ||
|
|
97fe45e36d | ||
|
|
64a9cc8f05 | ||
|
|
f50d691254 | ||
|
|
34c3b68fc8 | ||
|
|
f33ccd5d27 | ||
|
|
bc108b9ad6 | ||
|
|
ef65174df2 | ||
|
|
42ecb9f138 | ||
|
|
5c0331fd83 | ||
|
|
e7019c9455 | ||
|
|
d98bfe7e70 | ||
|
|
6747099d71 | ||
|
|
ccc8c6777b | ||
|
|
dbb149e6f7 | ||
|
|
a807985e59 | ||
|
|
8643c4d5bf | ||
|
|
b0c3aba590 | ||
|
|
19c0c25de8 | ||
|
|
2f723ac2d6 | ||
|
|
249fbbe52f | ||
|
|
c38680b8a1 | ||
|
|
16fca86c4a | ||
|
|
0f3f9e353d | ||
|
|
6bd0a983cd | ||
|
|
1861fbdeb5 | ||
|
|
3b96a93672 | ||
|
|
e53b3cbd0c | ||
|
|
b51e0f397c | ||
|
|
b42970063d | ||
|
|
493385eb3e | ||
|
|
9876c9faa4 | ||
|
|
4e415029b3 | ||
|
|
e172f095ba | ||
|
|
c001b98087 | ||
|
|
23fc8e92eb | ||
|
|
4059a297a6 | ||
|
|
66b2539238 | ||
|
|
ef27d52e79 | ||
|
|
b2a465296d | ||
|
|
5d097277ef | ||
|
|
071a9872cb | ||
|
|
0bd0454ea7 | ||
|
|
01aa788722 | ||
|
|
ead27aa9fe | ||
|
|
b816ff86c9 | ||
|
|
e5d84fb90b | ||
|
|
dd66712e31 | ||
|
|
f66216e399 | ||
|
|
f4f0992b6e | ||
|
|
1feff61977 | ||
|
|
5e0b904e88 | ||
|
|
131f0355a5 | ||
|
|
ce929984a3 | ||
|
|
4b34930a31 | ||
|
|
74bd09652d | ||
|
|
fb6252d786 | ||
|
|
c794fef2f2 | ||
|
|
00ebda8cc4 | ||
|
|
d14ce75b95 | ||
|
|
2d6eac9084 | ||
|
|
3ed7ad3ab3 | ||
|
|
6d1103048e | ||
|
|
0ff28758b3 | ||
|
|
d3e9ca3eda | ||
|
|
0fbfcf3c9c | ||
|
|
0c220935bd | ||
|
|
ffbfe833da | ||
|
|
42a14f7f63 | ||
|
|
f8c3dbe5b5 | ||
|
|
b078dd157c | ||
|
|
2ddacd7516 | ||
|
|
da0e345200 | ||
|
|
df94175a0f | ||
|
|
61a8825216 | ||
|
|
021dcf089d | ||
|
|
bf24498b1e | ||
|
|
95e271d98f | ||
|
|
364629b8d6 | ||
|
|
108fe02165 | ||
|
|
4561fff36e | ||
|
|
50b5962042 | ||
|
|
e27e4a3c1b | ||
|
|
088514bbd4 | ||
|
|
2c8b484643 | ||
|
|
8294676150 | ||
|
|
ef378ad673 | ||
|
|
2d2247e59e | ||
|
|
7bf793a600 | ||
|
|
282bfaaa95 | ||
|
|
9679f40146 | ||
|
|
3892c3a703 | ||
|
|
4e320b8b90 | ||
|
|
eb2b22b042 | ||
|
|
4ea4d2b189 | ||
|
|
8d76fa23ef | ||
|
|
74b44fdf8f | ||
|
|
65b88c544f | ||
|
|
a422ba39c9 | ||
|
|
d2ec22371e | ||
|
|
033cec232a | ||
|
|
543240fb5f | ||
|
|
4bed739259 | ||
|
|
80c7ce381b | ||
|
|
ccfd41c4f0 | ||
|
|
3e102b7dad | ||
|
|
ec46f3286c | ||
|
|
5e2e0b46b1 | ||
|
|
45a13b1dec | ||
|
|
5c0b663969 | ||
|
|
30d7a59ba8 | ||
|
|
4aeb67ef4c | ||
|
|
3ba91634c1 | ||
|
|
1b7433b71e | ||
|
|
a70820daa0 | ||
|
|
6b45b1d6b4 | ||
|
|
85ab552028 | ||
|
|
b3af953a55 | ||
|
|
ad4e0bf3be | ||
|
|
aee28501b5 | ||
|
|
83f0ec8269 | ||
|
|
c6b6938b3a | ||
|
|
fb4664fcec | ||
|
|
20e3593863 | ||
|
|
63a394068c | ||
|
|
ab39e08eb9 | ||
|
|
11bfa62796 | ||
|
|
f63e62e546 | ||
|
|
65b0f329d1 | ||
|
|
06007c0a18 | ||
|
|
a8e83a7654 | ||
|
|
475005504e | ||
|
|
2c40c4d35e | ||
|
|
e95278932b | ||
|
|
9d2a20a763 | ||
|
|
2e54d72fc3 | ||
|
|
6b32a2d549 | ||
|
|
c5cbe4fc2a | ||
|
|
f888912870 | ||
|
|
9e4642e9b3 | ||
|
|
6b0486c216 | ||
|
|
d368c039f0 | ||
|
|
9b54267e69 | ||
|
|
46bb0169c4 | ||
|
|
8934324b72 | ||
|
|
0e886595bf | ||
|
|
c62861f4fa | ||
|
|
0df1800436 | ||
|
|
631fecc6d9 | ||
|
|
4346c2409d | ||
|
|
4b037a97dc | ||
|
|
5f74d1fd47 | ||
|
|
4dcf80167a | ||
|
|
26a26998fb | ||
|
|
9926eae015 | ||
|
|
8585b7b151 | ||
|
|
7e34f4fbfa | ||
|
|
fe776293f7 | ||
|
|
d8a5d96b98 | ||
|
|
757668c42f | ||
|
|
96ec8afd09 | ||
|
|
e093db92c4 | ||
|
|
a1cda80bcb | ||
|
|
4614fafae0 | ||
|
|
4100ed7bdd | ||
|
|
f52b2615ef | ||
|
|
25f9b152f9 | ||
|
|
6da8b6a879 | ||
|
|
0daaaef8c9 | ||
|
|
98272fbd58 | ||
|
|
b27e8f3f10 | ||
|
|
45df786f09 | ||
|
|
daaf42e4a4 | ||
|
|
2dc60d4620 | ||
|
|
b5312f30e8 | ||
|
|
26c2e0bd35 | ||
|
|
bf920883d5 | ||
|
|
58b9ec1f6b | ||
|
|
7bae7fa5ce | ||
|
|
764e199d67 | ||
|
|
bfce55db3d | ||
|
|
bab6f34dc0 | ||
|
|
0682dae027 | ||
|
|
1f6986e919 | ||
|
|
4289c74359 | ||
|
|
25248f4bd5 | ||
|
|
a7e63b82be | ||
|
|
b70fc4d51e | ||
|
|
e2252d0fc6 | ||
|
|
cae5d4d4ea | ||
|
|
05a01fdecb | ||
|
|
8fe6f69f28 | ||
|
|
1fdb351c37 | ||
|
|
7a01ad7614 | ||
|
|
55ab9f371a | ||
|
|
fefbf8f74b | ||
|
|
b428ddd796 | ||
|
|
ba7d31240e | ||
|
|
d25efe3954 | ||
|
|
36dfb906bb | ||
|
|
a6f0f908b9 | ||
|
|
3b1ddb2b3a | ||
|
|
1579c4f06d | ||
|
|
3519dd1c6e | ||
|
|
e41c4cbea7 | ||
|
|
ee048b76d4 | ||
|
|
af68d60a58 | ||
|
|
21aa666a1e | ||
|
|
ee141cc821 | ||
|
|
55e5776c44 | ||
|
|
854a9195f3 | ||
|
|
96a97adf9b | ||
|
|
e75c6126e9 | ||
|
|
cda6f5c66c | ||
|
|
bebb6823c0 | ||
|
|
31e472baa4 | ||
|
|
657685e85d | ||
|
|
a14912858e | ||
|
|
eed11ded30 | ||
|
|
b42aba40ed | ||
|
|
25885e5335 | ||
|
|
98d44fa39d | ||
|
|
2099e2d267 | ||
|
|
0c1041ad85 | ||
|
|
c245b0406f | ||
|
|
8b194b7520 | ||
|
|
3e8b8a1933 | ||
|
|
41dc280491 | ||
|
|
53d2990d9b | ||
|
|
e185c08ad9 | ||
|
|
2412adf42b | ||
|
|
be2ac1ed93 | ||
|
|
dc13813a03 | ||
|
|
d6af13efed | ||
|
|
a59f665235 | ||
|
|
688925aca9 | ||
|
|
76e903cf9d | ||
|
|
a5272130c4 | ||
|
|
d7d7e99662 | ||
|
|
2db96c18e7 | ||
|
|
e12af460ed | ||
|
|
3ad4bc8afe | ||
|
|
0d694793f2 | ||
|
|
e91ae3d47d | ||
|
|
6ecd7f64ba | ||
|
|
888855675e | ||
|
|
b16367b4b2 | ||
|
|
a499390648 | ||
|
|
4df98f3eb5 | ||
|
|
348b3e0983 | ||
|
|
0b7e1676eb | ||
|
|
314573bfe8 | ||
|
|
4604b10306 | ||
|
|
8c13cfa4dd | ||
|
|
7cfd4aee4d | ||
|
|
68bac1e0a6 | ||
|
|
f53f4198c3 | ||
|
|
2192a28eed | ||
|
|
5d81c1a184 | ||
|
|
5c5535c064 | ||
|
|
e5bcc51ae1 | ||
|
|
bd6a7d5e64 | ||
|
|
14b5a9a150 | ||
|
|
ba9ec3d05e | ||
|
|
7c168b08c9 | ||
|
|
3d4cc7833c | ||
|
|
351a85d9ea | ||
|
|
bda4ef6c56 | ||
|
|
1e438b237c | ||
|
|
d721a02e7d | ||
|
|
778603a818 | ||
|
|
3c874df46e | ||
|
|
d2eb226c91 | ||
|
|
e13e7c8d94 | ||
|
|
78f403ff45 | ||
|
|
5f8c03189e | ||
|
|
08a299e1d0 | ||
|
|
7b5d916a9a | ||
|
|
33ad61b112 | ||
|
|
716e365615 | ||
|
|
3b4424ff98 | ||
|
|
f9c7ead160 | ||
|
|
5930aaeb1a | ||
|
|
faf67db089 | ||
|
|
0667baddc6 | ||
|
|
d006e1e09b | ||
|
|
df2680b4b9 | ||
|
|
010313bb63 | ||
|
|
5296f487a8 | ||
|
|
f05774b04c | ||
|
|
6600bd7d91 | ||
|
|
ed443a0393 | ||
|
|
6945617af5 | ||
|
|
7916f55009 | ||
|
|
d650ad398f | ||
|
|
d223f3b697 | ||
|
|
60830695c2 | ||
|
|
01d9a46854 | ||
|
|
d773b7d671 | ||
|
|
4d4463b2bd | ||
|
|
0e38297f87 | ||
|
|
7e13f568dc | ||
|
|
58245413f4 | ||
|
|
8cf16063a5 | ||
|
|
3a4449e2f1 | ||
|
|
10d59d5f90 | ||
|
|
a4f69a0191 | ||
|
|
82658c3eec | ||
|
|
378d6e1e6a | ||
|
|
afa55bc70c | ||
|
|
49df03da9a | ||
|
|
0189bdd0b7 | ||
|
|
f4711da7bd | ||
|
|
38117fba83 | ||
|
|
1f766c36fb | ||
|
|
484a99e428 | ||
|
|
ec6121c331 | ||
|
|
b86c0a1500 | ||
|
|
7e402ebb8c | ||
|
|
b901a712c6 | ||
|
|
abb8dd57f8 | ||
|
|
a400df48c0 | ||
|
|
6ab4ba4c26 | ||
|
|
e8d4eb3e68 | ||
|
|
ae7e368f75 | ||
|
|
31acd1ebf9 | ||
|
|
9a4757ae66 | ||
|
|
7814019708 | ||
|
|
b698f9a0d8 | ||
|
|
32285a6d19 | ||
|
|
1c198977ec | ||
|
|
330b6c50b0 | ||
|
|
928911bc68 | ||
|
|
5b446cc815 | ||
|
|
451c1596af | ||
|
|
932bded12f | ||
|
|
070ad913ac | ||
|
|
8d8b9f83ae | ||
|
|
f00d359a67 | ||
|
|
291def6adb | ||
|
|
cd3fbf1c49 | ||
|
|
c852b8e021 | ||
|
|
d8932c55e7 | ||
|
|
63f0269f7f | ||
|
|
4759ecae19 | ||
|
|
65b7ecac7b | ||
|
|
f9d2d89135 | ||
|
|
669dc31cf3 | ||
|
|
d4d338c224 | ||
|
|
bfdeffc375 | ||
|
|
e806184023 | ||
|
|
50566113ac | ||
|
|
ad22ace439 | ||
|
|
f4321a421c | ||
|
|
475333d533 | ||
|
|
39fd89308c | ||
|
|
548a9f56a6 | ||
|
|
3f0cb36bdb | ||
|
|
bea1f1fac6 | ||
|
|
5d75d837ef | ||
|
|
711648c9bb | ||
|
|
dcfb7a105c | ||
|
|
2ef3c803a1 | ||
|
|
453e4d090b | ||
|
|
ca2f9843c8 | ||
|
|
294b6f5a22 | ||
|
|
7bb356c680 | ||
|
|
021817e59a | ||
|
|
a420a453b4 | ||
|
|
42cf4db601 | ||
|
|
93a8daf285 | ||
|
|
a041b4df7c | ||
|
|
2539f2dbf9 | ||
|
|
61676fb506 | ||
|
|
f6f3713001 | ||
|
|
a30f347201 | ||
|
|
74ea4fb604 | ||
|
|
6982e9cc96 | ||
|
|
ab39872cb4 | ||
|
|
84a2314463 | ||
|
|
17fcdea698 | ||
|
|
32bd37adf8 | ||
|
|
9446c2c902 | ||
|
|
9aa141d023 | ||
|
|
8bccae4f92 | ||
|
|
6ae2adc1af | ||
|
|
1deafd8254 | ||
|
|
57f038ec7b | ||
|
|
cdf3a181dc | ||
|
|
3919f4ba3d | ||
|
|
2d33c4e97d | ||
|
|
29a8975c66 | ||
|
|
86a622cbdc | ||
|
|
459d822b51 | ||
|
|
844899440a | ||
|
|
103db4216d | ||
|
|
6daddcde01 | ||
|
|
07f7e69b36 | ||
|
|
b68e8e5727 | ||
|
|
369fb529e2 | ||
|
|
023e4bca14 | ||
|
|
51af455f62 | ||
|
|
ffe3549064 | ||
|
|
928de9050e | ||
|
|
36aea6154a | ||
|
|
dd352ab27f | ||
|
|
cb40d60469 | ||
|
|
d8bab8ea44 | ||
|
|
9ab62eb96f | ||
|
|
290cf2040a | ||
|
|
a72f2dce45 | ||
|
|
08a832b482 | ||
|
|
2ddc32d5c5 | ||
|
|
2cde4b8817 | ||
|
|
87f0a49fe6 | ||
|
|
0f06a6daa7 | ||
|
|
8f805dd74b | ||
|
|
89d5e2f2fd | ||
|
|
297ada6c87 | ||
|
|
8c9fb8eb73 | ||
|
|
b75ccfc5ec | ||
|
|
7a81daf026 | ||
|
|
60f75560a2 | ||
|
|
e28f2d4900 | ||
|
|
c216850523 | ||
|
|
18f6a98bd6 | ||
|
|
b1fd7fef86 | ||
|
|
36d111e788 | ||
|
|
9039c821a2 | ||
|
|
581a4a5553 | ||
|
|
cf4d7c52c4 | ||
|
|
6a6328a5e9 | ||
|
|
527cc97899 | ||
|
|
a37f4a86a7 | ||
|
|
46f74e0cb5 | ||
|
|
7622ea21af | ||
|
|
c5d3947084 | ||
|
|
757eeacc1b | ||
|
|
dd42acf737 | ||
|
|
b9ccb3741e | ||
|
|
abfdc4710f | ||
|
|
82a02e18d9 | ||
|
|
4879a234c4 | ||
|
|
63269668c0 | ||
|
|
900f64e6be | ||
|
|
da09488fbf | ||
|
|
7f0ccc8a9d | ||
|
|
de52b6c2f9 | ||
|
|
acd7d03266 | ||
|
|
f6e87fd628 | ||
|
|
aed1419c64 | ||
|
|
c6c526275d | ||
|
|
630e7dc6ff | ||
|
|
eb8366d658 | ||
|
|
4456012956 | ||
|
|
539be43640 | ||
|
|
1bdab9fdb1 | ||
|
|
2b82c5a8a1 | ||
|
|
55c3efa900 | ||
|
|
1aedffad93 | ||
|
|
ff6c2d6dc8 | ||
|
|
d543b282a7 | ||
|
|
5f8051180e | ||
|
|
39e29ae5dd | ||
|
|
30a9f063c9 | ||
|
|
ce7455a8e1 | ||
|
|
e3936d4fb3 | ||
|
|
940e62772e | ||
|
|
71e6a0d0d1 | ||
|
|
2cd11ae365 | ||
|
|
52bbad12f9 | ||
|
|
30e88d7f31 | ||
|
|
2b7ed61ca2 | ||
|
|
647513a7d4 | ||
|
|
a210ec74d2 | ||
|
|
cfb1ddd6fc | ||
|
|
3987acd7ec | ||
|
|
fda1e6b563 | ||
|
|
3440ffb37b | ||
|
|
a820d2b267 | ||
|
|
2ebdb54fb3 | ||
|
|
bb52abfa55 | ||
|
|
31cb1ca9e5 | ||
|
|
78f779a323 | ||
|
|
3478b2cf14 | ||
|
|
7b5585b9cb | ||
|
|
f0a351810c | ||
|
|
b85520bfb9 | ||
|
|
d88972ea48 | ||
|
|
25c9339e2d | ||
|
|
597072ef1b | ||
|
|
84b3e07f1b | ||
|
|
422d52858c | ||
|
|
723f285813 | ||
|
|
eaaf5d309d | ||
|
|
27d9c749d5 | ||
|
|
b7bddeebc1 | ||
|
|
6a0c2ec50f | ||
|
|
baa41be2aa | ||
|
|
2157b1232e | ||
|
|
37711578a2 | ||
|
|
fb2c9594e0 | ||
|
|
7fbcd55da3 | ||
|
|
b4348bdd25 | ||
|
|
155734e09a | ||
|
|
883d80e097 | ||
|
|
e4c9f75b23 | ||
|
|
f5ec7cc872 | ||
|
|
811bafba82 | ||
|
|
431075fcbb | ||
|
|
c4f27225ac | ||
|
|
b7aa5ee06c | ||
|
|
3f87f71755 | ||
|
|
20623cec13 | ||
|
|
0e5f31a86d | ||
|
|
7e92091751 | ||
|
|
1a742f54c9 | ||
|
|
6a89dcf848 | ||
|
|
c5e238e8e5 | ||
|
|
fce30f407a | ||
|
|
d863298210 | ||
|
|
c4b34f2a2a | ||
|
|
c3ff916431 | ||
|
|
3fc1dc0e6f | ||
|
|
7121dfa309 | ||
|
|
5f68fcab12 | ||
|
|
ecf41eed05 | ||
|
|
b8c66d3307 | ||
|
|
303f4bc79e | ||
|
|
d2a25206b1 | ||
|
|
2f0a8c8778 | ||
|
|
bfd30f4286 | ||
|
|
0ef17ede89 | ||
|
|
909a88c5c0 | ||
|
|
f602ab4de4 | ||
|
|
807ace5b1f | ||
|
|
4b8a2e341a | ||
|
|
e66c29261a | ||
|
|
712d63c3f0 | ||
|
|
6cdf27d154 | ||
|
|
5c18e66384 | ||
|
|
35096a7eff | ||
|
|
81d55d3e4d | ||
|
|
a14f76491d | ||
|
|
760cfa27e5 | ||
|
|
c9a5aca3da | ||
|
|
d5da2ab7e8 | ||
|
|
1c04117114 | ||
|
|
8b4b243f5f | ||
|
|
b42a596425 | ||
|
|
4759d879f2 | ||
|
|
d875e99e46 | ||
|
|
8a35bb926e | ||
|
|
a0ea067b63 | ||
|
|
4efb98cb4f | ||
|
|
0679d491fe | ||
|
|
c25ffde91d | ||
|
|
17b386a891 | ||
|
|
549c2bdfcf | ||
|
|
67691e410d | ||
|
|
5b3393b6a2 | ||
|
|
d7eb05b936 | ||
|
|
636a743c2b | ||
|
|
df011054fa | ||
|
|
ac07160c8d | ||
|
|
6606e4243c | ||
|
|
65973ceb64 | ||
|
|
bebef1e50d | ||
|
|
d48c1c5a44 | ||
|
|
36a8372b28 | ||
|
|
4e94227b5d | ||
|
|
479d551766 | ||
|
|
76b2b723b2 | ||
|
|
b8d77cdeab | ||
|
|
c2e8cbaa14 | ||
|
|
771fab1dd8 | ||
|
|
3a5239e6bf | ||
|
|
3d25e7bf8c | ||
|
|
1618700c5a | ||
|
|
b111aa5a91 | ||
|
|
9e83e550e1 | ||
|
|
fc2a0715df | ||
|
|
3020d2dc58 | ||
|
|
a909417602 | ||
|
|
6cd566872b | ||
|
|
9d71bcc3e2 | ||
|
|
a4c70fe157 | ||
|
|
34a75102f7 | ||
|
|
4157d1f7b6 | ||
|
|
4ebfa2cb91 | ||
|
|
046054fa3b | ||
|
|
95483f348b | ||
|
|
f247a6233e | ||
|
|
44bd9e5994 | ||
|
|
18237be9b2 | ||
|
|
29ab9fa7d7 | ||
|
|
b8d5036e33 | ||
|
|
312d9de1d1 | ||
|
|
a103dae01e | ||
|
|
d07cf41a97 | ||
|
|
8c238e70ab | ||
|
|
8a9bb0d000 | ||
|
|
26acdcf44e | ||
|
|
921779bb10 | ||
|
|
16f4eabe2d | ||
|
|
c826e57475 | ||
|
|
712e99d477 | ||
|
|
b754f5a6a3 | ||
|
|
a805e5947e | ||
|
|
91dfbb1bba | ||
|
|
db1842b9e1 | ||
|
|
c9ca386131 | ||
|
|
078f666f73 | ||
|
|
de1557a0dc | ||
|
|
084929c293 | ||
|
|
abd5dfd06a | ||
|
|
099f7077a1 | ||
|
|
d7c94e0ca6 | ||
|
|
35ec7f079f | ||
|
|
5231ae52d9 | ||
|
|
3085c47bea | ||
|
|
0ccc73251a | ||
|
|
dc6fe82051 | ||
|
|
d78fb62056 | ||
|
|
5c44461ccf | ||
|
|
03e40efa51 | ||
|
|
23f746508d | ||
|
|
48708ca0d5 | ||
|
|
c7cb0f0602 | ||
|
|
bf4018b9ec | ||
|
|
f86d00cd95 | ||
|
|
f2890a4494 | ||
|
|
05cd82ef94 | ||
|
|
7d6eb0d4c3 | ||
|
|
24636dfa87 | ||
|
|
1d7fa3ad2d | ||
|
|
09035b71cd | ||
|
|
f3c8b898cd | ||
|
|
5dd0477fd4 | ||
|
|
c3d321d405 | ||
|
|
7fe3902552 | ||
|
|
0077e22d52 | ||
|
|
03408f3437 | ||
|
|
cd7e01e8b9 | ||
|
|
7a962bd802 | ||
|
|
f9584deba5 | ||
|
|
96efd9052f | ||
|
|
de982616f1 | ||
|
|
defbf9425a | ||
|
|
f40bb398f6 | ||
|
|
79d3b1e2bd | ||
|
|
03608cb46e | ||
|
|
450acb71a6 | ||
|
|
55ea963c9e | ||
|
|
e9e9bdb8d9 | ||
|
|
35bb6d32b3 | ||
|
|
98701b58b3 | ||
|
|
ad935f45ac | ||
|
|
dbba73469d | ||
|
|
6c2eb73a70 | ||
|
|
2a038c1d7e | ||
|
|
616c5eafee | ||
|
|
f5ff917b1d | ||
|
|
d632e23fba | ||
|
|
5804cf1723 | ||
|
|
bf7ee0f4d4 | ||
|
|
504a410f02 | ||
|
|
d05da29912 | ||
|
|
72962c6e08 | ||
|
|
7bd7b02712 | ||
|
|
8f9ab5e14d | ||
|
|
7717bb6a84 | ||
|
|
0ec2915ea7 | ||
|
|
c9a7541b9c | ||
|
|
d81cfd7d6f | ||
|
|
b330c830d3 | ||
|
|
d889c6fd07 | ||
|
|
56b9af336a | ||
|
|
fda0d3be52 | ||
|
|
cd5c8f6471 | ||
|
|
fef257c5c5 | ||
|
|
d066d9b8e0 | ||
|
|
5a00dc9fc9 | ||
|
|
c354e87809 | ||
|
|
93ac3760cb | ||
|
|
abed273de3 | ||
|
|
034392624c | ||
|
|
ecab6f1cc5 | ||
|
|
7d6900827d | ||
|
|
9246e6dd15 | ||
|
|
735a0ca2e4 | ||
|
|
dddb72e084 | ||
|
|
83a9b5271a | ||
|
|
4a8069f9c4 | ||
|
|
84b84ce2db | ||
|
|
bb6a086d63 | ||
|
|
30c8f201cc | ||
|
|
06d4fba851 | ||
|
|
108fb6c1d1 | ||
|
|
da915345d1 | ||
|
|
8a027bc401 | ||
|
|
5446903fbd | ||
|
|
56318fb365 | ||
|
|
fe91d7fff1 | ||
|
|
608e87bf87 | ||
|
|
48685c6ed0 | ||
|
|
9565fa64a8 | ||
|
|
6719097649 | ||
|
|
b05c9e83d9 | ||
|
|
a60d9b89ce | ||
|
|
bf612cd608 | ||
|
|
ef98e56122 | ||
|
|
5f944baac7 | ||
|
|
6fc9d22707 | ||
|
|
f27c00d8c5 | ||
|
|
c7c845ec52 | ||
|
|
cf48603943 | ||
|
|
6e67be09b6 | ||
|
|
0f5f060d2b | ||
|
|
b3554778bd | ||
|
|
bbe7b96ded | ||
|
|
c18ff18b2c | ||
|
|
133770a548 | ||
|
|
f36ebfb478 | ||
|
|
5b55379651 | ||
|
|
93eb43d020 | ||
|
|
369479cc30 | ||
|
|
7d89e48f5c | ||
|
|
27bcce6d9f | ||
|
|
491fc312ae | ||
|
|
5e2653f9fe | ||
|
|
f29b167e1a | ||
|
|
037a4d103e | ||
|
|
50c05d57e0 | ||
|
|
35159de18a | ||
|
|
94fff5805f | ||
|
|
14d5093cd0 | ||
|
|
9df5f0e8e4 | ||
|
|
ad3eb00bee | ||
|
|
bfc2d61549 | ||
|
|
741affdfd6 | ||
|
|
5f7b4a5e30 | ||
|
|
1aad838707 | ||
|
|
a1cef4d0a5 | ||
|
|
c41f0b9e6c | ||
|
|
142cbb722d | ||
|
|
9468c6824a | ||
|
|
11018196e0 | ||
|
|
56346ccfa3 | ||
|
|
8e4e509fa4 | ||
|
|
47c2b947a9 | ||
|
|
5eb77bf976 | ||
|
|
e4d0a9c325 | ||
|
|
7416ced70f | ||
|
|
9cfd2dd3e3 | ||
|
|
8e6da3cbc5 | ||
|
|
d9d50c43cc | ||
|
|
6c1c1ad6a9 | ||
|
|
93ea9240ae | ||
|
|
413ae39f3c | ||
|
|
60e47573a6 | ||
|
|
d13c3daa0b | ||
|
|
1713eddcd0 | ||
|
|
4e1c4f6e0b | ||
|
|
397cae7962 | ||
|
|
1c70a00f71 | ||
|
|
eae3af6807 | ||
|
|
3eb08377f8 | ||
|
|
ac80010db8 | ||
|
|
47fa0839b9 | ||
|
|
0f92b19bec | ||
|
|
69be940bf6 | ||
|
|
9638c24c58 | ||
|
|
bb362caf88 | ||
|
|
386af6c1a0 | ||
|
|
0c819e167b | ||
|
|
7a1e1c1caf | ||
|
|
0b03b9c32f | ||
|
|
90ca84172c | ||
|
|
6bd8a4b0a1 | ||
|
|
77903ab8b4 | ||
|
|
e22286c9e1 | ||
|
|
107f695929 | ||
|
|
4ecc70d3b4 | ||
|
|
3546bbd08c | ||
|
|
beb49eef65 | ||
|
|
5a28b9cf5f | ||
|
|
a017cf2fea | ||
|
|
19e5a890f7 | ||
|
|
f91c9e3709 | ||
|
|
2df6905ede | ||
|
|
d8be22e47d | ||
|
|
652c273f0e | ||
|
|
88e7705079 | ||
|
|
f9e31da946 | ||
|
|
88bb9e3328 | ||
|
|
3b19cdba2a | ||
|
|
927d98a6cd | ||
|
|
f6c811b320 | ||
|
|
4fe3a556fa | ||
|
|
fc3b4cda89 | ||
|
|
d470ebe78b | ||
|
|
c7bcb00319 | ||
|
|
74d45f0102 | ||
|
|
9fddef3731 | ||
|
|
885cf45087 | ||
|
|
9352eeb752 | ||
|
|
0ad0e738cd | ||
|
|
bdc4308afb | ||
|
|
d29cd4c2ed | ||
|
|
a84c05cf91 | ||
|
|
e3d7f32af7 | ||
|
|
3a75e74e34 | ||
|
|
237dccba1e | ||
|
|
b3f75fc812 | ||
|
|
8200c371ae | ||
|
|
0a8d6ea86d | ||
|
|
8e1050f366 | ||
|
|
eda8a32a09 | ||
|
|
a0a40aa20c | ||
|
|
2697d7f5aa | ||
|
|
1f32276178 | ||
|
|
4c4fe3f87f | ||
|
|
feedf49c71 | ||
|
|
8b00a415ab | ||
|
|
01b80e9ffc | ||
|
|
bd5e432630 | ||
|
|
aec77d6a05 | ||
|
|
6ffb5cb017 | ||
|
|
f7e3b9190f | ||
|
|
980dd15f81 | ||
|
|
01d544d373 | ||
|
|
1dc3ef3aa9 | ||
|
|
8aac22438e | ||
|
|
15c2d8fe14 | ||
|
|
25906d72d1 | ||
|
|
023451ce47 | ||
|
|
9b53e39d8e | ||
|
|
97fae2df95 | ||
|
|
160d9d4900 | ||
|
|
d4e6407464 | ||
|
|
b7f7d8cd15 | ||
|
|
2fa1db4345 | ||
|
|
71b0945fc6 | ||
|
|
5bca2e60a7 | ||
|
|
67472e0e89 | ||
|
|
e9aa5117c4 | ||
|
|
2473bdba5e | ||
|
|
2003d60159 | ||
|
|
7d1c0047fa | ||
|
|
7b61eba471 | ||
|
|
7edaf6e7e8 | ||
|
|
97ec8cfd4e | ||
|
|
5b3a21b578 | ||
|
|
ad0c19dde4 | ||
|
|
69eb06c40e | ||
|
|
1829fb61bd | ||
|
|
ce67706037 | ||
|
|
685a53534b | ||
|
|
de4fc29773 | ||
|
|
e04c7012c2 | ||
|
|
d4a7216c82 | ||
|
|
a4fdd03c3b | ||
|
|
fc85f50a2b | ||
|
|
86b907f82a | ||
|
|
10d49bce70 | ||
|
|
7ed367419e | ||
|
|
50ee8b5f56 | ||
|
|
03bdac0595 | ||
|
|
f457d63400 | ||
|
|
04210aa6dd | ||
|
|
43f9d92008 | ||
|
|
ed6c8bfe57 | ||
|
|
39f2bc6bfc | ||
|
|
b73b0940ef | ||
|
|
6a07344786 | ||
|
|
8b920f35a4 | ||
|
|
4221e39867 | ||
|
|
a091fadfda | ||
|
|
77ccbf04dc | ||
|
|
4addf6b587 | ||
|
|
85c7f11170 | ||
|
|
df3802a65f | ||
|
|
b732beba6a | ||
|
|
ce1fb4447e | ||
|
|
558a54b098 | ||
|
|
ed52833bb1 | ||
|
|
6f133a0bdd | ||
|
|
f561eecfb8 | ||
|
|
ff7c9060ec | ||
|
|
0ff42e84b0 | ||
|
|
8a9f946ca7 | ||
|
|
3b5210548e | ||
|
|
b0c216584c | ||
|
|
49a5483139 | ||
|
|
6bc5c13758 | ||
|
|
3e614260af | ||
|
|
d87b4a488e | ||
|
|
4c14855ad7 | ||
|
|
dc77bbcfa4 | ||
|
|
d8e2664c33 | ||
|
|
eafc607abb | ||
|
|
781fc2d576 | ||
|
|
df993fa37b | ||
|
|
5e9db9fb0b | ||
|
|
0f3271db88 | ||
|
|
6b252918fb | ||
|
|
c4c84b7a0d | ||
|
|
5c1912769e | ||
|
|
71399aa682 | ||
|
|
463a8aa273 | ||
|
|
3579b4966a | ||
|
|
5d66578356 | ||
|
|
afa8d6e9d5 | ||
|
|
1b44d873e7 | ||
|
|
cef2c6054d | ||
|
|
345420998e | ||
|
|
0be8baad2b | ||
|
|
1a83581a8e | ||
|
|
37926eb991 | ||
|
|
3d4634fdff | ||
|
|
365431d406 | ||
|
|
161e12cecf | ||
|
|
46e6327e0f | ||
|
|
68ee42f995 | ||
|
|
f26aef9a8b | ||
|
|
38d9036b59 | ||
|
|
6f26e9322f | ||
|
|
0e4d653687 | ||
|
|
2c01610616 | ||
|
|
f3d7a481b7 | ||
|
|
f2a96c7d77 | ||
|
|
e8a66680d1 | ||
|
|
079b2c3b03 | ||
|
|
750c1c55f7 | ||
|
|
a622c47bd3 | ||
|
|
ec4c35fe99 | ||
|
|
a250c2cb13 | ||
|
|
3d9de805b7 | ||
|
|
15af558423 | ||
|
|
f5e3939220 | ||
|
|
ae27d9dcfd | ||
|
|
37096790a7 | ||
|
|
997c903884 | ||
|
|
c8af3c2d96 | ||
|
|
455e61170d | ||
|
|
4de1370a9d | ||
|
|
bbf8f102ee | ||
|
|
ce3c93b08f | ||
|
|
6c2129d5d0 | ||
|
|
7c2a157ca4 | ||
|
|
bb46bbcf5e | ||
|
|
ac33aa7d37 | ||
|
|
830fdd2715 | ||
|
|
a6cd8f6169 | ||
|
|
c78089263a | ||
|
|
3e5ea035d5 | ||
|
|
5d604eec5b | ||
|
|
db0968f30c | ||
|
|
e12fff8810 | ||
|
|
9b60a038e5 | ||
|
|
83a0cb8d88 | ||
|
|
c0648233f2 | ||
|
|
d835368eb8 | ||
|
|
85d9d73a72 | ||
|
|
78140a712c | ||
|
|
1954ec5917 | ||
|
|
0f1910129f | ||
|
|
e2c3f6b3e2 | ||
|
|
8570c1c0ef | ||
|
|
55cd3ddcca | ||
|
|
66fe77f084 | ||
|
|
d1a5227cad | ||
|
|
4f1afd575d | ||
|
|
35b89b2eab | ||
|
|
5784c05397 | ||
|
|
f14aa5435d | ||
|
|
f8fedbda20 | ||
|
|
b3e5491e41 | ||
|
|
cc269ba094 | ||
|
|
a3c20e3f18 | ||
|
|
80ee9b5e47 | ||
|
|
5534f2cc6a | ||
|
|
d321297d8a | ||
|
|
06e5d74e34 | ||
|
|
5d707e6fd5 | ||
|
|
283948c83b | ||
|
|
1475eab95f | ||
|
|
20090f3172 | ||
|
|
69a2d4ccff | ||
|
|
e8b954c646 | ||
|
|
c57317cbf0 | ||
|
|
51b2fd299c | ||
|
|
d0634b1596 | ||
|
|
43606d6d6a | ||
|
|
70b1010fa5 | ||
|
|
84e5721f3a | ||
|
|
319fb1ce03 | ||
|
|
b255445557 | ||
|
|
f02f83660c | ||
|
|
b23424bb3c | ||
|
|
5fd6988126 | ||
|
|
5b82960df8 | ||
|
|
cc9a252d8c | ||
|
|
d281a6e603 | ||
|
|
154f6f45d4 | ||
|
|
0d41623b52 | ||
|
|
c279f96371 | ||
|
|
499e87c9ba | ||
|
|
cd0853f2d5 | ||
|
|
d290e87513 | ||
|
|
97c20ede33 | ||
|
|
5a83f79afd | ||
|
|
987dbab0b0 | ||
|
|
a8388beb94 | ||
|
|
5afbb60fc4 | ||
|
|
4cb5d7decc | ||
|
|
8eac50dd4f | ||
|
|
4a565cbf94 | ||
|
|
64039df6d7 | ||
|
|
7ac6d462ec | ||
|
|
ef5136a745 | ||
|
|
8288ec8824 | ||
|
|
d02bbebb11 | ||
|
|
224337b32f | ||
|
|
9e35d9bbee | ||
|
|
b9f5e16c80 | ||
|
|
e9f7f36029 | ||
|
|
057d31861e | ||
|
|
f7ee012300 | ||
|
|
1ed0aa8fea | ||
|
|
ef98803d63 | ||
|
|
02fea420e5 | ||
|
|
22c5451fc2 | ||
|
|
ebc529cbb3 | ||
|
|
23ebbaa46e | ||
|
|
9ac0a7a50b | ||
|
|
e5c65a85df | ||
|
|
33627331a3 | ||
|
|
36c87c433b | ||
|
|
179737feb7 | ||
|
|
47353f5ee4 | ||
|
|
10e768826c | ||
|
|
5056bb9c01 | ||
|
|
c4cf8ad559 | ||
|
|
57ec6901eb | ||
|
|
e64f9ebb44 | ||
|
|
791650ddef | ||
|
|
efbf41ed81 | ||
|
|
cf15589851 | ||
|
|
19753c18c0 | ||
|
|
41be28096a | ||
|
|
37a570f962 | ||
|
|
5a739ff4cb | ||
|
|
4e262eb2a8 | ||
|
|
4cfcbc328f | ||
|
|
79292ff3e0 | ||
|
|
8ea500441d | ||
|
|
b50c818623 | ||
|
|
b99e750b62 | ||
|
|
1f50356e8e | ||
|
|
22c81f62ec | ||
|
|
73e2c8f68f | ||
|
|
f4408219e9 | ||
|
|
2d1e3c3229 | ||
|
|
4918fae535 | ||
|
|
0aff67877e | ||
|
|
f6f759fc5f | ||
|
|
9544a57ee4 | ||
|
|
b51e3b63ac | ||
|
|
6bbbc50f10 | ||
|
|
9bbddc37a7 | ||
|
|
e4ff73297d | ||
|
|
b44320db13 | ||
|
|
0bacb30007 | ||
|
|
53da2c6965 | ||
|
|
d8def1ff94 | ||
|
|
571dc61955 | ||
|
|
0e09c380fc | ||
|
|
0ee87615c7 | ||
|
|
f8241bfba3 | ||
|
|
4607c70641 | ||
|
|
c12f1c5b99 | ||
|
|
a08f20d910 | ||
|
|
6cea036027 | ||
|
|
5796bfc401 | ||
|
|
f1a379aa56 | ||
|
|
9ae146993e | ||
|
|
e0348d3fe8 | ||
|
|
2cc854f8cb | ||
|
|
5304b765b2 | ||
|
|
fb6cbc02fb | ||
|
|
4fd5f3526a | ||
|
|
842f85f758 | ||
|
|
9d30f9f8b3 | ||
|
|
631cfd9e62 | ||
|
|
326363b3a7 | ||
|
|
ac7a842e55 | ||
|
|
2c3fe1fd97 | ||
|
|
269ed6e6a2 | ||
|
|
78fb33dd07 | ||
|
|
8f8e736b13 | ||
|
|
d89454de80 | ||
|
|
af28b94533 | ||
|
|
e9188e971a | ||
|
|
78eddfc068 | ||
|
|
02c24d3d01 | ||
|
|
52abc8acb7 | ||
|
|
4d71c559b2 | ||
|
|
0d16eb310e | ||
|
|
8072e205ff | ||
|
|
955f2a4e03 | ||
|
|
3c75113e37 | ||
|
|
ccd7785859 | ||
|
|
3b5a4a77f3 | ||
|
|
daed0634a9 | ||
|
|
0d4dd707bc | ||
|
|
0e982bc1f4 | ||
|
|
6298f49816 | ||
|
|
ef757da2c9 | ||
|
|
e5352297d9 | ||
|
|
65a5040e09 | ||
|
|
d626b99b54 | ||
|
|
dddb58a38b | ||
|
|
400056e154 | ||
|
|
d2f19024d0 | ||
|
|
69c04eecc4 | ||
|
|
996bb1b85e | ||
|
|
422dcc3856 | ||
|
|
020bd60ab2 | ||
|
|
8e277b72bb | ||
|
|
4f67b39d26 | ||
|
|
2425281317 | ||
|
|
0403e9860e | ||
|
|
33a65e3ba3 | ||
|
|
88bcd79bb9 | ||
|
|
7e571f95f0 | ||
|
|
da8e2a0447 | ||
|
|
a30915bde1 | ||
|
|
58e3fff311 | ||
|
|
3f0b309ad4 | ||
|
|
e70610ef06 | ||
|
|
dfded7e075 | ||
|
|
173b550438 | ||
|
|
cff3f44f4a | ||
|
|
26e4e66faf | ||
|
|
97c9e11768 | ||
|
|
3518aaef33 | ||
|
|
1963c00201 | ||
|
|
27402cb7a2 | ||
|
|
c1218199cf | ||
|
|
717f7229eb | ||
|
|
aae56abb7c | ||
|
|
5f034f5b63 | ||
|
|
b910fa9010 | ||
|
|
6d4219083c | ||
|
|
1ed4f521c4 | ||
|
|
de2163dafd | ||
|
|
9bd00041fa | ||
|
|
4e986a823c | ||
|
|
2cc7d05012 | ||
|
|
123a722a6f | ||
|
|
4d311eb731 | ||
|
|
cb42e607c5 | ||
|
|
2aa91a937b | ||
|
|
ccef9431c8 | ||
|
|
642cee1342 | ||
|
|
9a9e7d83c4 | ||
|
|
9929751cc8 | ||
|
|
17b7186cd7 | ||
|
|
189a43caa2 | ||
|
|
e835ef1836 | ||
|
|
7e7749224c | ||
|
|
c7c2f3bc22 | ||
|
|
54a79d6a8a | ||
|
|
5bf5aeec01 | ||
|
|
e01e535cbb | ||
|
|
0195d6a2f8 | ||
|
|
8e0641a9bf | ||
|
|
662568d453 | ||
|
|
4ebb66c662 | ||
|
|
23e899f32d | ||
|
|
fedf71635e | ||
|
|
97c59be653 | ||
|
|
9d8a4988e8 | ||
|
|
1ae0750a21 | ||
|
|
9d91e5e587 | ||
|
|
96624aa412 | ||
|
|
10f33b8537 | ||
|
|
4a633cc295 | ||
|
|
d34d88e417 | ||
|
|
52ce350b7a | ||
|
|
2abebb2cbe | ||
|
|
380e06e5be | ||
|
|
badf975e45 | ||
|
|
755b4e4fc2 | ||
|
|
1a1c99e334 | ||
|
|
21adf8b6d2 | ||
|
|
784bf88b0d | ||
|
|
e873841cbb | ||
|
|
26d0bf9236 | ||
|
|
359b15a597 | ||
|
|
b55958a587 | ||
|
|
7784ca33ce | ||
|
|
c9c8c98bf6 | ||
|
|
171796791f | ||
|
|
176d0f7075 | ||
|
|
8ed51cac37 | ||
|
|
c9e6f0542d | ||
|
|
b0930626c5 | ||
|
|
e890be4814 | ||
|
|
b2799f111b | ||
|
|
152fc202f5 | ||
|
|
4ad0d4d6d3 | ||
|
|
163cd3e77c | ||
|
|
4c2c8f93dd | ||
|
|
fd1e6e0590 | ||
|
|
89c79bec8c | ||
|
|
c7b77004e3 | ||
|
|
07d143f412 | ||
|
|
a12283e2ff | ||
|
|
4b0050cf0e | ||
|
|
0577af98f4 | ||
|
|
17ce203a26 | ||
|
|
d76555ffb5 | ||
|
|
2786dff5d3 | ||
|
|
225f0d1219 | ||
|
|
532db58311 | ||
|
|
6be309e1bd | ||
|
|
da3bf23354 | ||
|
|
26ab67732b | ||
|
|
45cacbaf05 | ||
|
|
17df6520c8 | ||
|
|
6f351bf586 | ||
|
|
ff4f0cbd1d | ||
|
|
fc37c192ae | ||
|
|
434dfe30c5 | ||
|
|
4e2b7e181d | ||
|
|
48702dd149 | ||
|
|
68dfc6236a | ||
|
|
5e8ff556cb | ||
|
|
6fd04ca922 | ||
|
|
206797bda4 | ||
|
|
43ed358f9a | ||
|
|
b32ebb4f29 | ||
|
|
fb9cdfa723 | ||
|
|
efac488675 | ||
|
|
6b800aa7b7 | ||
|
|
dd7c9ebeaf | ||
|
|
4dc7fb9525 | ||
|
|
c39761c552 | ||
|
|
aac367636d | ||
|
|
15a687ae4b | ||
|
|
d528e1af75 | ||
|
|
cd234ce22c | ||
|
|
94618b2365 | ||
|
|
1fd236d177 | ||
|
|
e87fc7200d | ||
|
|
20b9f8e6f4 | ||
|
|
c69bc19e46 | ||
|
|
bba5d177aa | ||
|
|
c16f8af911 | ||
|
|
217f60c3d9 | ||
|
|
7bdcd1da94 | ||
|
|
ead259d877 | ||
|
|
2ff45d571d | ||
|
|
157f09acdf | ||
|
|
0f3cf1d42e | ||
|
|
5bc029c529 | ||
|
|
e9a9c6a8e8 | ||
|
|
515f497e6d | ||
|
|
b27268aaef | ||
|
|
f5f245cc15 | ||
|
|
94d37fdcae | ||
|
|
b84aea1685 | ||
|
|
896495de7b | ||
|
|
5528dd9d11 | ||
|
|
943172cbf4 | ||
|
|
85169e8d6f | ||
|
|
34f142797a | ||
|
|
46a7f1e74a | ||
|
|
620d5c569e | ||
|
|
b9ce7bf75e | ||
|
|
cddc63381c | ||
|
|
385a32ecb5 | ||
|
|
030e765e76 | ||
|
|
ab8c929e20 | ||
|
|
ce0dc33cb8 | ||
|
|
78f81fc0e5 | ||
|
|
9b6c2e6eb6 | ||
|
|
1a29e9a879 | ||
|
|
4bf1da4944 | ||
|
|
de5beb06b3 | ||
|
|
98e65929dc | ||
|
|
66ab48772f | ||
|
|
22fcf8f7de | ||
|
|
28c7813ac4 | ||
|
|
1d8616d30f | ||
|
|
d61ef8b954 | ||
|
|
89d9900152 | ||
|
|
4a048715b6 | ||
|
|
6297f85606 | ||
|
|
ed56428dd7 | ||
|
|
ad40b92b6a | ||
|
|
8ce4032e72 | ||
|
|
42660466f8 | ||
|
|
e919f6811f | ||
|
|
bf7edb0d5d | ||
|
|
f38353d6b9 | ||
|
|
201d853fdf | ||
|
|
e40145a39d | ||
|
|
c895a7d13f | ||
|
|
dad7a987ae | ||
|
|
8ffb51749f | ||
|
|
55f6eba049 | ||
|
|
04f3c12bb7 | ||
|
|
60323e0805 | ||
|
|
d4a86102fd | ||
|
|
476fb8e892 | ||
|
|
829ff87bd1 | ||
|
|
f6b622c4b3 | ||
|
|
2e4da8eec2 | ||
|
|
763bb65dbb | ||
|
|
7ca9605f54 | ||
|
|
eb2c443a79 | ||
|
|
278e25ea44 | ||
|
|
a50a87a7b8 | ||
|
|
98085015d5 | ||
|
|
bf54c845e9 | ||
|
|
c365f195a8 | ||
|
|
e91d0ef737 | ||
|
|
22f5c12ced | ||
|
|
298c996e54 | ||
|
|
0fc0cfc6d2 | ||
|
|
914f68f021 | ||
|
|
bd1d119ba9 | ||
|
|
a03be18189 | ||
|
|
96bc232b43 | ||
|
|
bca7b12284 | ||
|
|
32cb1960c1 | ||
|
|
de781b37c8 | ||
|
|
3e21799377 | ||
|
|
26a00a0410 | ||
|
|
646371f56d | ||
|
|
1f5008544b | ||
|
|
45cbfc5aee | ||
|
|
6d423b383b | ||
|
|
ad897080a2 | ||
|
|
b7d316d98d | ||
|
|
d7339fad52 | ||
|
|
92c81e8117 | ||
|
|
9db0996ed4 | ||
|
|
6f43898b17 | ||
|
|
7487229c34 | ||
|
|
8a8e7afa96 | ||
|
|
c79f8c9c39 | ||
|
|
485016bfbb | ||
|
|
0165ba1651 | ||
|
|
c4209d6d21 | ||
|
|
6adca97f37 | ||
|
|
9a3c8003c8 | ||
|
|
d51f15257c | ||
|
|
8f440d579a | ||
|
|
4cc3be3035 | ||
|
|
db2ffa79f1 | ||
|
|
afd2b058b4 | ||
|
|
fd5971be0b | ||
|
|
89bf98bcf2 | ||
|
|
1b2d156094 | ||
|
|
714adb8bd1 | ||
|
|
95b1133d0c | ||
|
|
b37b496a12 | ||
|
|
d6f692ad1a | ||
|
|
f77713bf1f | ||
|
|
38255d2af1 | ||
|
|
73630a7e85 | ||
|
|
955c317cab | ||
|
|
9f18b88a06 | ||
|
|
353f83a9c7 | ||
|
|
3bade04e10 | ||
|
|
a6d0f443eb | ||
|
|
96236b7968 | ||
|
|
4434d7f447 | ||
|
|
171eb040fc | ||
|
|
3591bbe56f | ||
|
|
34d5ef29b3 | ||
|
|
bbbd9f20f3 | ||
|
|
547132e820 | ||
|
|
2d315ba9a9 | ||
|
|
d355d2020f | ||
|
|
c8cf0d94ed | ||
|
|
4730762e5c | ||
|
|
d88582dffd | ||
|
|
2f81b3dce2 | ||
|
|
5cab13739e | ||
|
|
8aadad9c72 | ||
|
|
807d092761 | ||
|
|
f36f1d6be9 | ||
|
|
8800c8a59b | ||
|
|
b4dce13309 | ||
|
|
e15307fdf4 | ||
|
|
3520c0e4d5 | ||
|
|
ccdf0b2a44 | ||
|
|
63a453554d | ||
|
|
105186aa17 | ||
|
|
ba04afc9a4 | ||
|
|
7e1e0086e7 | ||
|
|
02b31c9dc8 | ||
|
|
7f2fbad736 | ||
|
|
5bece94509 | ||
|
|
3d90156e99 | ||
|
|
5e46c5c435 | ||
|
|
583c1f472c | ||
|
|
26bfc1c443 | ||
|
|
799aa9883c | ||
|
|
84ed77cbd8 | ||
|
|
c9e584fb90 | ||
|
|
17b1e81ca1 | ||
|
|
7e9a2da097 | ||
|
|
c48c1d7c46 | ||
|
|
d1692fd3e0 | ||
|
|
5fa36a0833 | ||
|
|
853ae490e1 | ||
|
|
f2cf97d6f1 | ||
|
|
c344da4c5a | ||
|
|
85a57006d1 | ||
|
|
c5e892cb3e | ||
|
|
81fb06f530 | ||
|
|
a385382ff5 | ||
|
|
b8772a353f | ||
|
|
c2714fcbfd | ||
|
|
a2fc933fed | ||
|
|
0e331c7168 | ||
|
|
ac145f75ca | ||
|
|
a4b8d1f89a | ||
|
|
798b107f19 | ||
|
|
6a1b471365 | ||
|
|
ec231a7923 | ||
|
|
7ca71a6b0f | ||
|
|
7607e6e902 | ||
|
|
f1548ef62d | ||
|
|
6845988807 | ||
|
|
9eed4a90ce | ||
|
|
f8464785a6 | ||
|
|
1d359e737e | ||
|
|
50b9056e09 | ||
|
|
91a090a485 | ||
|
|
9c76b30d72 | ||
|
|
93f19910c5 | ||
|
|
4ec7445a6f | ||
|
|
0372c51f82 | ||
|
|
0fec3525ad | ||
|
|
41ba3017fd | ||
|
|
8080fbce35 | ||
|
|
ec14f6ceda | ||
|
|
c60a086635 | ||
|
|
92ca2cca95 | ||
|
|
1e1634daca | ||
|
|
824ee5446f | ||
|
|
879e2caf8c | ||
|
|
c4014e73a2 | ||
|
|
be9efdb981 | ||
|
|
074dc3b9d8 | ||
|
|
86f9b582d5 | ||
|
|
4142c3ef7c | ||
|
|
6602e793c0 | ||
|
|
ea0fdaed28 | ||
|
|
1eb382da5a | ||
|
|
bb6fd02298 | ||
|
|
7e2bceceee | ||
|
|
30a7d7096c | ||
|
|
200a18820e | ||
|
|
e03637176d | ||
|
|
c02db93243 | ||
|
|
ffa4d5134a | ||
|
|
302d7fdbf3 | ||
|
|
cf442cd57e | ||
|
|
0e1ba65855 | ||
|
|
6aad333c63 | ||
|
|
4fcc84e67a | ||
|
|
3ae2f441e0 | ||
|
|
2abb3f6424 | ||
|
|
ce3b212d12 | ||
|
|
83d6d46e29 | ||
|
|
354ad9254e | ||
|
|
58876091f7 | ||
|
|
dc18eee39d | ||
|
|
8727a9c140 | ||
|
|
d0425f26cf | ||
|
|
cfa84b8470 | ||
|
|
1580ed4c06 | ||
|
|
a7ee84fc31 | ||
|
|
84ac7ce139 | ||
|
|
788b092c49 | ||
|
|
5cde17a096 | ||
|
|
c3837eb08c | ||
|
|
8cc0ee2efe | ||
|
|
d5eec16d23 | ||
|
|
daa1a032f7 | ||
|
|
6042e8bc57 | ||
|
|
920a4b0794 | ||
|
|
ee49844d09 | ||
|
|
8a516ac862 | ||
|
|
bee2f4a3b0 | ||
|
|
cef45feaa4 | ||
|
|
2687f02c96 | ||
|
|
b25976aeb8 | ||
|
|
001f167aad | ||
|
|
486a2c1d94 | ||
|
|
88cf154483 | ||
|
|
8cbd3e7510 | ||
|
|
eeb695261f | ||
|
|
dc9b1111e0 | ||
|
|
06ac829e70 | ||
|
|
72700279e2 | ||
|
|
5d3f7fff26 | ||
|
|
d77c1c5f9d | ||
|
|
2a5302a1cf | ||
|
|
ffbd3d173f | ||
|
|
1e0a669f75 | ||
|
|
527e9be058 | ||
|
|
34bea2e272 | ||
|
|
fe44ae3371 | ||
|
|
adeb40eaf2 | ||
|
|
d7d33e5255 | ||
|
|
63bc884e25 | ||
|
|
ef4e095d24 | ||
|
|
4d4f75a8a8 | ||
|
|
3f71ba406a | ||
|
|
88a67127d8 | ||
|
|
f7dc7dcc64 | ||
|
|
04f971c84b | ||
|
|
548a7df014 | ||
|
|
70edb9bc4d | ||
|
|
3f0ed03856 | ||
|
|
4736391bfb | ||
|
|
7c5330413b | ||
|
|
39d9d22ca3 | ||
|
|
af47413dba | ||
|
|
b2f00aa977 | ||
|
|
6694be5e50 | ||
|
|
f5e8b207fb | ||
|
|
d245460362 | ||
|
|
4d0d0fa383 | ||
|
|
7ffe45734d | ||
|
|
01811c176a | ||
|
|
a7248f6ea8 | ||
|
|
9685c34509 | ||
|
|
d091fe3c21 | ||
|
|
ee02f548c8 | ||
|
|
b08870aff3 | ||
|
|
3ecae420ac | ||
|
|
4cbbf0e13b | ||
|
|
380378cc80 | ||
|
|
0963c65027 | ||
|
|
ed740a2504 | ||
|
|
c9f98622b1 | ||
|
|
0a954e5066 | ||
|
|
aa93423fbf | ||
|
|
01c9386267 | ||
|
|
af9eb36f9f | ||
|
|
06093fd396 | ||
|
|
86b7fcac32 | ||
|
|
fb8ddc564e | ||
|
|
242efe6611 | ||
|
|
1b0e6c9c0e | ||
|
|
dfa2f32ca0 | ||
|
|
840424a2c4 | ||
|
|
f56aa20014 | ||
|
|
6707768ebd | ||
|
|
c78bb76a12 | ||
|
|
942c979232 | ||
|
|
06164911dd | ||
|
|
2a21363bb7 | ||
|
|
026869915f | ||
|
|
45d61aaaa3 | ||
|
|
20f6c06569 | ||
|
|
371f5e52aa | ||
|
|
e006480e49 | ||
|
|
aed545872d | ||
|
|
44869c59d6 | ||
|
|
52663284cf | ||
|
|
42fa9d7f0a | ||
|
|
b7a87a22b6 | ||
|
|
e8aaea030e | ||
|
|
b1ad3a43cb | ||
|
|
267e25a750 | ||
|
|
9a32c514cb | ||
|
|
e9ae607ece | ||
|
|
93707fa3f2 | ||
|
|
94c369095f | ||
|
|
9164b0161b | ||
|
|
e592e8fccb | ||
|
|
bf4fc25f7b | ||
|
|
5b806d8d24 | ||
|
|
cb1e072643 | ||
|
|
45b6a12e45 | ||
|
|
68755f1f5e | ||
|
|
997a455039 | ||
|
|
88775e1ff9 | ||
|
|
8867e744ff | ||
|
|
4fd064bea6 | ||
|
|
59fbceedcc | ||
|
|
321d57e1a0 | ||
|
|
ba26c7aa00 | ||
|
|
63c763685f | ||
|
|
34a4a94f13 | ||
|
|
f4a73d57a4 | ||
|
|
948114e3e3 | ||
|
|
a3e60d9058 | ||
|
|
8acb233668 | ||
|
|
119589fcb3 | ||
|
|
5ea844964e | ||
|
|
bd8eed57fc | ||
|
|
9cf0f2e973 | ||
|
|
176ad3aa6e | ||
|
|
4d08363580 | ||
|
|
8907bf51d2 | ||
|
|
abe614c705 | ||
|
|
238715037d | ||
|
|
c0a00f68ae | ||
|
|
f0c454ab57 | ||
|
|
089daaeabc | ||
|
|
b9f74ff3d6 | ||
|
|
fcf4d60eee | ||
|
|
e33d5c2dbc | ||
|
|
18d9a7e1f1 | ||
|
|
8488388cbd | ||
|
|
588901f449 | ||
|
|
0a7fdbe533 | ||
|
|
5950c176ca | ||
|
|
23d23409a0 | ||
|
|
9009bedf13 | ||
|
|
d4ac57e240 | ||
|
|
7b59d1770f | ||
|
|
95ead8ffba | ||
|
|
7aa08a77ca | ||
|
|
7e432cdfac | ||
|
|
586672f490 | ||
|
|
b03408de74 | ||
|
|
1e6a28bf5b | ||
|
|
d6e3b64582 | ||
|
|
114c932a8e | ||
|
|
7f7103de06 | ||
|
|
c631a9c726 | ||
|
|
8fd9e56804 | ||
|
|
8a65717f55 | ||
|
|
6d3152a98a | ||
|
|
b438d485f1 | ||
|
|
204349b17b | ||
|
|
86e67fc4a9 | ||
|
|
2bed62926e | ||
|
|
aad8d128a0 | ||
|
|
ec1acbb867 | ||
|
|
e4859c4563 | ||
|
|
8e30eb26bd | ||
|
|
0b5c589ca2 | ||
|
|
65fadddc85 | ||
|
|
ed5fb088c4 | ||
|
|
f81f308118 | ||
|
|
b1390a7b37 | ||
|
|
11d83386a5 | ||
|
|
bb31def011 | ||
|
|
41e03ede95 | ||
|
|
7fea1ecdf6 | ||
|
|
054894271d | ||
|
|
6fef042f0b | ||
|
|
5c0c2d1d09 | ||
|
|
37f9c8ad99 | ||
|
|
2a80f55e2a | ||
|
|
421c878a2d | ||
|
|
36666c2142 | ||
|
|
85801317d1 | ||
|
|
2ed0d65948 | ||
|
|
d459dc4ad1 | ||
|
|
40bc4622ef | ||
|
|
c0f818a07a | ||
|
|
8671fdeda6 | ||
|
|
2619850fb4 | ||
|
|
8feb97dc0d | ||
|
|
4e1ff6dcbb | ||
|
|
8589d752ac | ||
|
|
de4ded68b0 | ||
|
|
9b5a3c5991 | ||
|
|
00b0699c75 | ||
|
|
993cf8bf55 | ||
|
|
7bb7cb8a60 | ||
|
|
b123be5b71 | ||
|
|
ddf5c09a9b | ||
|
|
5f73c08729 | ||
|
|
f503a848c2 | ||
|
|
36a6daccab | ||
|
|
ceb0e26e5e | ||
|
|
284e02bed0 | ||
|
|
3450a57d4a | ||
|
|
592dae31c8 | ||
|
|
2010cbc5fa | ||
|
|
ac0801eced | ||
|
|
ad66e5b060 | ||
|
|
ade4b55520 | ||
|
|
a6d62e0617 | ||
|
|
6e76348df7 | ||
|
|
0d6687f84c | ||
|
|
74d2a9ef9a | ||
|
|
14476d48cc | ||
|
|
ce8ce82567 | ||
|
|
4dc4f1be34 | ||
|
|
16b52331a4 | ||
|
|
5445aaa94e | ||
|
|
2ac3dd6853 | ||
|
|
d8851cb7a0 | ||
|
|
058f6cd2cc | ||
|
|
790cf34d17 | ||
|
|
928d844896 | ||
|
|
939d6a8606 | ||
|
|
58888a74bc | ||
|
|
cc5a71e0e3 | ||
|
|
e83bcf7f9a | ||
|
|
5690e5ce99 | ||
|
|
f2ea8470e5 | ||
|
|
34b9db5afc | ||
|
|
8711d03df7 | ||
|
|
ee448deaba | ||
|
|
6e8db04716 | ||
|
|
658e60cf73 | ||
|
|
4c78f028f8 | ||
|
|
435cc866a3 | ||
|
|
c7d3a558f6 | ||
|
|
089cdb2877 | ||
|
|
ea1e9aa36b | ||
|
|
d0d28ef90d | ||
|
|
6654186a7c | ||
|
|
aa72281eae | ||
|
|
74bcbf828f | ||
|
|
fe39147e64 | ||
|
|
fad00a85e5 | ||
|
|
9c0db4cc83 | ||
|
|
62be2050dd | ||
|
|
56f8aa6912 | ||
|
|
e6f9bfc0e8 | ||
|
|
6f18297b3a | ||
|
|
15016413de | ||
|
|
440b7190ed | ||
|
|
8d1995c625 | ||
|
|
fd01fbf038 | ||
|
|
0408205c1c | ||
|
|
63a7edd771 | ||
|
|
554ffdcce3 | ||
|
|
c496967e56 | ||
|
|
9850a4ce08 | ||
|
|
3934c15895 | ||
|
|
fd048f1367 | ||
|
|
8645076a71 | ||
|
|
05e9424824 | ||
|
|
52ebe67a98 | ||
|
|
889b31ab78 | ||
|
|
3cf483fe48 | ||
|
|
8dca03173d | ||
|
|
85bdf14b56 | ||
|
|
d524e5ef5e | ||
|
|
52f5370c48 | ||
|
|
da8a0c7657 | ||
|
|
1b42b4b59a | ||
|
|
7c000ec3ed | ||
|
|
c8afe7168c | ||
|
|
28d3cd0148 | ||
|
|
eb5554232a | ||
|
|
ea4c284a48 | ||
|
|
2bdc320216 | ||
|
|
32561aed09 | ||
|
|
71548d9829 | ||
|
|
8aec92fa6d | ||
|
|
a8b9b930b4 | ||
|
|
9755cf9173 | ||
|
|
70261b9bb6 | ||
|
|
c942e4a07b | ||
|
|
bd54b08261 | ||
|
|
9df6c85c3a | ||
|
|
e74163af4c | ||
|
|
fb9580df85 | ||
|
|
26df674785 | ||
|
|
7c9792a6e0 | ||
|
|
7afb2e125a | ||
|
|
41a272de9f | ||
|
|
f335722275 | ||
|
|
6d53b67c2c | ||
|
|
969238b19e | ||
|
|
949d7832cf | ||
|
|
99d227c9db | ||
|
|
a27e419b47 | ||
|
|
e4d0db5a97 | ||
|
|
ba460802c2 | ||
|
|
e54a3c7fcd | ||
|
|
9f8691c6c8 | ||
|
|
a0b8a32eb4 | ||
|
|
7027f264fb | ||
|
|
9bee3b63b1 | ||
|
|
309aef7fee | ||
|
|
08655170aa | ||
|
|
2b341069a7 | ||
|
|
c00fee6936 | ||
|
|
c2d813bdc3 | ||
|
|
786f3a1c44 | ||
|
|
3397eff0cd | ||
|
|
0efb7931c7 | ||
|
|
42f2cc408e | ||
|
|
9446b795b5 | ||
|
|
62f8cda3b3 | ||
|
|
6a1de23175 | ||
|
|
a7b431e743 | ||
|
|
5a25f93522 | ||
|
|
7e33a017c0 | ||
|
|
8b2c10061c | ||
|
|
c5c451ca3b | ||
|
|
2b4ca6cf36 | ||
|
|
ad90b9ab3d | ||
|
|
4340f8eba4 | ||
|
|
4c7db6b7e9 | ||
|
|
c03f0e3c3d | ||
|
|
c5ff443b9f | ||
|
|
01114b4526 | ||
|
|
1524f323a3 | ||
|
|
fccf3eecaa | ||
|
|
c77d45d836 | ||
|
|
5ec12cec6c | ||
|
|
d9578d2bad | ||
|
|
cb8352d6b4 | ||
|
|
fc6558f47f | ||
|
|
9502e5661f | ||
|
|
e1c9a2a00f | ||
|
|
1341ee1b56 | ||
|
|
63efa075a0 | ||
|
|
cb03fc9571 | ||
|
|
a5ec9cfc0f | ||
|
|
be517e491c | ||
|
|
fc8e108642 | ||
|
|
c5d5c4a96c | ||
|
|
dfe330fa1c | ||
|
|
01f77ae25d | ||
|
|
483b81a863 | ||
|
|
36bd967722 | ||
|
|
b0e7d35db8 | ||
|
|
aeb1fb5192 | ||
|
|
a2e60ebcaf | ||
|
|
883ec4d1ef | ||
|
|
4de0126719 | ||
|
|
9768e2dc75 | ||
|
|
08600d5bec | ||
|
|
a624e672d2 | ||
|
|
e4a7e5b2ca | ||
|
|
a0a15cfd5b | ||
|
|
12e923e158 | ||
|
|
cd135317d2 | ||
|
|
4f895d633f | ||
|
|
7d05a6ee8f | ||
|
|
464d817824 | ||
|
|
531324a9be | ||
|
|
6589eb8a8c | ||
|
|
90f071c658 | ||
|
|
a039e383cd | ||
|
|
80163ebcb5 | ||
|
|
a57818d93e | ||
|
|
841adda157 | ||
|
|
0035e31af8 | ||
|
|
c863c6a96d | ||
|
|
1f11b52511 | ||
|
|
526d4eb204 | ||
|
|
0a74cb31d5 | ||
|
|
10ed1b6292 | ||
|
|
4fec5816d6 | ||
|
|
0a0e9f3e0f | ||
|
|
58d95cc9bd | ||
|
|
3b6a9154dd | ||
|
|
d6dd2ff839 | ||
|
|
e57a6ba89f | ||
|
|
12ec2346ef | ||
|
|
1ec0df1069 | ||
|
|
91b3e4d282 | ||
|
|
d338d70492 | ||
|
|
011bb67351 | ||
|
|
d124627202 | ||
|
|
b0a8246a69 | ||
|
|
e6fb39c182 | ||
|
|
e1f1c374ea | ||
|
|
06a1508bfe | ||
|
|
5a5efee46b | ||
|
|
97ae517fbf | ||
|
|
44b813e459 | ||
|
|
539043f5e0 | ||
|
|
dbcace6847 | ||
|
|
c91a4ebcff | ||
|
|
b79c7e4528 | ||
|
|
035b274b70 | ||
|
|
9c6a254945 | ||
|
|
f31f2bedf4 | ||
|
|
756c257553 | ||
|
|
5255d0af8a | ||
|
|
af8a8a6b59 | ||
|
|
461ad25015 | ||
|
|
8838ae787d | ||
|
|
db75402ade | ||
|
|
1e85a140a3 | ||
|
|
c363282fdc | ||
|
|
5b0c48d29e | ||
|
|
913306f4fd | ||
|
|
f5ca7f8c8e | ||
|
|
856b8ec131 | ||
|
|
1b272d5bcd | ||
|
|
29715dbca7 | ||
|
|
54a028d07f | ||
|
|
f83e4db365 | ||
|
|
3b5866a233 | ||
|
|
b8c2be6142 | ||
|
|
e0319bd78d | ||
|
|
b31ed7f031 | ||
|
|
5dacc1ebe8 | ||
|
|
c2712b5566 | ||
|
|
8091ef2eeb | ||
|
|
f38b705dc7 | ||
|
|
560be5e0b6 | ||
|
|
4a1c76b3aa | ||
|
|
28a64e23ca | ||
|
|
92d74e2f59 | ||
|
|
6f8f57dd1d | ||
|
|
b2fa68b0ea | ||
|
|
3767d5ef0d | ||
|
|
9fed85bc8b | ||
|
|
4501bc0913 | ||
|
|
57ba519e63 | ||
|
|
d98d322d24 | ||
|
|
0c3ec74cf1 | ||
|
|
42ae8359fa | ||
|
|
e4b76dfb76 | ||
|
|
2c56517494 | ||
|
|
cfbc1b152b | ||
|
|
9305ac1b2e | ||
|
|
45d6292959 | ||
|
|
22921a3969 | ||
|
|
7b6cbc10ec | ||
|
|
dfc6721b20 | ||
|
|
acfa2b9422 | ||
|
|
2c390a73ac | ||
|
|
3e30c75f3e | ||
|
|
7e430ff352 | ||
|
|
1784113ef5 | ||
|
|
949b6c01e0 | ||
|
|
38daf0a252 | ||
|
|
43799532c1 | ||
|
|
d8fdbfd8da | ||
|
|
a5ba0fcf78 | ||
|
|
3a30bf56dc | ||
|
|
a1c0a48524 | ||
|
|
74788b487c | ||
|
|
7ed3e94105 | ||
|
|
2297ad39da | ||
|
|
01cff6136d | ||
|
|
3c4ad0ecab | ||
|
|
22f326464e | ||
|
|
e95ffc7448 | ||
|
|
2dce1ab40b | ||
|
|
f4b31c2d53 | ||
|
|
ab3456207b | ||
|
|
6ad414f31e | ||
|
|
052b5a3b77 | ||
|
|
d4c10df2b0 | ||
|
|
540f4af45f | ||
|
|
6ce37e4d96 | ||
|
|
703684a82a | ||
|
|
6459377ae0 | ||
|
|
8546dd3d72 | ||
|
|
87100be5e0 | ||
|
|
e87c780ff9 | ||
|
|
291c663865 | ||
|
|
da20786e3e | ||
|
|
5ce997a7b9 | ||
|
|
672ffe9b7d | ||
|
|
47cfe58af5 | ||
|
|
c1a81c6fe3 | ||
|
|
152ab524c2 | ||
|
|
e72c567cfd | ||
|
|
3e22611200 | ||
|
|
a54d4a28dc | ||
|
|
82b0c7c27e | ||
|
|
ba7cf7fb66 | ||
|
|
2f804068bd | ||
|
|
85129d3a32 | ||
|
|
9ac6440da3 | ||
|
|
0085297928 | ||
|
|
34d00f90b1 | ||
|
|
b53229a2ed | ||
|
|
53c107e20e | ||
|
|
51578d8573 | ||
|
|
b5fcd9d3aa | ||
|
|
b80661e8c7 | ||
|
|
6d3adfbea2 | ||
|
|
369eda65f5 | ||
|
|
f878e91070 | ||
|
|
0d651478e4 | ||
|
|
9ea492f1ce | ||
|
|
bc13da2bfe | ||
|
|
41b00b9856 | ||
|
|
c2a8ed48e7 | ||
|
|
3dc1bb6a35 | ||
|
|
7865a6996a | ||
|
|
00ec269321 | ||
|
|
908005d90b | ||
|
|
cdf65e793f | ||
|
|
82ca694d68 | ||
|
|
5017a15bcb | ||
|
|
e11668aa07 | ||
|
|
0bd0f4a29c | ||
|
|
1ffb1e2874 | ||
|
|
0a7844413c | ||
|
|
f9cd55c70b | ||
|
|
0fdebb34a9 | ||
|
|
ac64cd4ef9 | ||
|
|
4a5c9b8035 | ||
|
|
efe5617b64 | ||
|
|
5b3fad9636 | ||
|
|
bfec2c6e10 | ||
|
|
5c143af726 | ||
|
|
6c0af2599e | ||
|
|
fc8c044584 | ||
|
|
ecc133d843 | ||
|
|
76bdebbadf | ||
|
|
18979ad4a1 | ||
|
|
8e0ef931d8 | ||
|
|
280da44522 | ||
|
|
0cebc79cba | ||
|
|
0e4669b04f | ||
|
|
b886bec3f9 | ||
|
|
fc06205971 | ||
|
|
2ada81e068 | ||
|
|
b1e74d4fda | ||
|
|
f678f5c5c3 | ||
|
|
2cb74e23fb | ||
|
|
69f0227813 | ||
|
|
3c8df3808b | ||
|
|
7d564835c2 | ||
|
|
72431031d9 | ||
|
|
6041abb5b2 | ||
|
|
6c5ccb11f9 | ||
|
|
2e20110e50 | ||
|
|
82ddc3e441 | ||
|
|
d481fb3cc8 | ||
|
|
23ee633252 | ||
|
|
23ebe8fe11 | ||
|
|
2c017ca441 | ||
|
|
be330174dd | ||
|
|
0ded7fdc4b | ||
|
|
2103a5073c | ||
|
|
ce9f7c4674 | ||
|
|
e5596c1944 | ||
|
|
9bc3fee694 | ||
|
|
21347e1ed6 | ||
|
|
3b4bab3dc5 | ||
|
|
cbd6e3b38e | ||
|
|
b830afa716 | ||
|
|
bd1d8b0d14 | ||
|
|
25c2912120 | ||
|
|
0e19476b56 | ||
|
|
fa2f2b3563 | ||
|
|
cbf4970e0f | ||
|
|
74468513bd | ||
|
|
794a916a72 | ||
|
|
76e5d9ec88 | ||
|
|
076237b8ea | ||
|
|
53d694c67f | ||
|
|
5aa6bfea94 | ||
|
|
1cde63dd64 | ||
|
|
98e0b7e94f | ||
|
|
061e8f6abc | ||
|
|
a189810df6 | ||
|
|
e95b896790 | ||
|
|
1f087c4d26 | ||
|
|
5d7ea6616f | ||
|
|
2a4b128ae3 | ||
|
|
fc483274ad | ||
|
|
fd10a2ad4b | ||
|
|
b291f63188 | ||
|
|
f58856bf6f | ||
|
|
275ea01587 | ||
|
|
8782dd5628 | ||
|
|
11bfff8ee1 | ||
|
|
7c0167a8f6 | ||
|
|
74d898e37d | ||
|
|
c6e8b00718 | ||
|
|
be9980ef13 | ||
|
|
646a0dedb9 | ||
|
|
7f964d938c | ||
|
|
e6b8a139ff | ||
|
|
bdc0ea1ba5 | ||
|
|
7fab7918cc | ||
|
|
74c1bdba0d | ||
|
|
f983ef7f5f | ||
|
|
1ae1c33651 | ||
|
|
084d846621 | ||
|
|
6a4b994433 | ||
|
|
bea007deb7 | ||
|
|
074934be03 | ||
|
|
0de12368a0 | ||
|
|
917bd61084 | ||
|
|
efe040f8c0 | ||
|
|
2a7553ce09 | ||
|
|
10af6070a9 | ||
|
|
92423b0600 | ||
|
|
b3eac61cac | ||
|
|
287ba11500 | ||
|
|
63861f58cc | ||
|
|
f0425d3de9 | ||
|
|
210b65268e | ||
|
|
949d7b1c48 | ||
|
|
897b213468 | ||
|
|
4613a080e7 | ||
|
|
ace2cdf1c6 | ||
|
|
eed92bc19a | ||
|
|
e0a2f46466 | ||
|
|
01ff2e14db | ||
|
|
b99c291f47 |
@@ -1,8 +1,11 @@
|
|||||||
.vscode
|
.vscode
|
||||||
ollama
|
ollama
|
||||||
app
|
app
|
||||||
|
macapp
|
||||||
dist
|
dist
|
||||||
llm/llama.cpp
|
build
|
||||||
.env
|
.env
|
||||||
.cache
|
.cache
|
||||||
test_data
|
test_data
|
||||||
|
.git
|
||||||
|
|
||||||
|
|||||||
24
.gitattributes
vendored
Normal file
24
.gitattributes
vendored
Normal file
@@ -0,0 +1,24 @@
|
|||||||
|
llama/**/*.cpp linguist-vendored
|
||||||
|
llama/**/*.hpp linguist-vendored
|
||||||
|
llama/**/*.h linguist-vendored
|
||||||
|
llama/**/*.c linguist-vendored
|
||||||
|
llama/**/*.cu linguist-vendored
|
||||||
|
llama/**/*.cuh linguist-vendored
|
||||||
|
llama/**/*.m linguist-vendored
|
||||||
|
llama/**/*.metal linguist-vendored
|
||||||
|
|
||||||
|
ml/backend/**/*.c linguist-vendored
|
||||||
|
ml/backend/**/*.h linguist-vendored
|
||||||
|
ml/backend/**/*.cpp linguist-vendored
|
||||||
|
ml/backend/**/*.hpp linguist-vendored
|
||||||
|
ml/backend/**/*.cu linguist-vendored
|
||||||
|
ml/backend/**/*.cuh linguist-vendored
|
||||||
|
ml/backend/**/*.m linguist-vendored
|
||||||
|
ml/backend/**/*.metal linguist-vendored
|
||||||
|
ml/backend/**/CMakeLists.txt linguist-vendored
|
||||||
|
|
||||||
|
llama/build-info.cpp linguist-generated
|
||||||
|
ml/backend/ggml/ggml/src/ggml-metal/ggml-metal-embed.s linguist-generated
|
||||||
|
|
||||||
|
* text=auto
|
||||||
|
*.go text eol=lf
|
||||||
68
.github/ISSUE_TEMPLATE/10_bug_report.yml
vendored
Normal file
68
.github/ISSUE_TEMPLATE/10_bug_report.yml
vendored
Normal file
@@ -0,0 +1,68 @@
|
|||||||
|
name: Bug report
|
||||||
|
labels: [bug]
|
||||||
|
description: Something isn't working right.
|
||||||
|
body:
|
||||||
|
- type: textarea
|
||||||
|
id: description
|
||||||
|
attributes:
|
||||||
|
label: What is the issue?
|
||||||
|
description: What happened? What did you expect to happen?
|
||||||
|
validations:
|
||||||
|
required: true
|
||||||
|
- type: textarea
|
||||||
|
id: logs
|
||||||
|
attributes:
|
||||||
|
label: Relevant log output
|
||||||
|
description: Please copy and paste any relevant log output. See [Troubleshooting Guide](https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md#how-to-troubleshoot-issues) for details.
|
||||||
|
render: shell
|
||||||
|
validations:
|
||||||
|
required: false
|
||||||
|
- type: dropdown
|
||||||
|
id: os
|
||||||
|
attributes:
|
||||||
|
label: OS
|
||||||
|
description: Which operating system are you using?
|
||||||
|
multiple: true
|
||||||
|
options:
|
||||||
|
- Linux
|
||||||
|
- macOS
|
||||||
|
- Windows
|
||||||
|
- Docker
|
||||||
|
- WSL2
|
||||||
|
validations:
|
||||||
|
required: false
|
||||||
|
- type: dropdown
|
||||||
|
id: gpu
|
||||||
|
attributes:
|
||||||
|
label: GPU
|
||||||
|
description: Which GPU are you using?
|
||||||
|
multiple: true
|
||||||
|
options:
|
||||||
|
- Nvidia
|
||||||
|
- AMD
|
||||||
|
- Intel
|
||||||
|
- Apple
|
||||||
|
- Other
|
||||||
|
validations:
|
||||||
|
required: false
|
||||||
|
- type: dropdown
|
||||||
|
id: cpu
|
||||||
|
attributes:
|
||||||
|
label: CPU
|
||||||
|
description: Which CPU are you using?
|
||||||
|
multiple: true
|
||||||
|
options:
|
||||||
|
- Intel
|
||||||
|
- AMD
|
||||||
|
- Apple
|
||||||
|
- Other
|
||||||
|
validations:
|
||||||
|
required: false
|
||||||
|
- type: input
|
||||||
|
id: version
|
||||||
|
attributes:
|
||||||
|
label: Ollama version
|
||||||
|
description: What version of Ollama are you using? (`ollama --version`)
|
||||||
|
placeholder: e.g., 0.1.32
|
||||||
|
validations:
|
||||||
|
required: false
|
||||||
6
.github/ISSUE_TEMPLATE/20_feature_request.md
vendored
Normal file
6
.github/ISSUE_TEMPLATE/20_feature_request.md
vendored
Normal file
@@ -0,0 +1,6 @@
|
|||||||
|
---
|
||||||
|
name: Feature request
|
||||||
|
about: Request a new feature
|
||||||
|
labels: feature request
|
||||||
|
---
|
||||||
|
|
||||||
5
.github/ISSUE_TEMPLATE/30_model_request.md
vendored
Normal file
5
.github/ISSUE_TEMPLATE/30_model_request.md
vendored
Normal file
@@ -0,0 +1,5 @@
|
|||||||
|
---
|
||||||
|
name: Model request
|
||||||
|
about: Request support for a new model to be added to Ollama
|
||||||
|
labels: model request
|
||||||
|
---
|
||||||
8
.github/ISSUE_TEMPLATE/config.yml
vendored
Normal file
8
.github/ISSUE_TEMPLATE/config.yml
vendored
Normal file
@@ -0,0 +1,8 @@
|
|||||||
|
blank_issues_enabled: true
|
||||||
|
contact_links:
|
||||||
|
- name: Help
|
||||||
|
url: https://discord.com/invite/ollama
|
||||||
|
about: Please join our Discord server for help using Ollama
|
||||||
|
- name: Troubleshooting
|
||||||
|
url: https://github.com/ollama/ollama/blob/main/docs/faq.md#faq
|
||||||
|
about: See the FAQ for common issues and solutions
|
||||||
24
.github/workflows/latest.yaml
vendored
Normal file
24
.github/workflows/latest.yaml
vendored
Normal file
@@ -0,0 +1,24 @@
|
|||||||
|
name: latest
|
||||||
|
|
||||||
|
on:
|
||||||
|
release:
|
||||||
|
types: [released]
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
update-latest:
|
||||||
|
environment: release
|
||||||
|
runs-on: linux
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
- name: Login to Docker Hub
|
||||||
|
uses: docker/login-action@v3
|
||||||
|
with:
|
||||||
|
username: ${{ vars.DOCKER_USER }}
|
||||||
|
password: ${{ secrets.DOCKER_ACCESS_TOKEN }}
|
||||||
|
- name: Tag images as latest
|
||||||
|
env:
|
||||||
|
PUSH: "1"
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
export "VERSION=${GITHUB_REF_NAME#v}"
|
||||||
|
./scripts/tag_latest.sh
|
||||||
489
.github/workflows/release.yaml
vendored
Normal file
489
.github/workflows/release.yaml
vendored
Normal file
@@ -0,0 +1,489 @@
|
|||||||
|
name: release
|
||||||
|
|
||||||
|
on:
|
||||||
|
push:
|
||||||
|
tags:
|
||||||
|
- 'v*'
|
||||||
|
|
||||||
|
env:
|
||||||
|
CGO_CFLAGS: '-O3'
|
||||||
|
CGO_CXXFLAGS: '-O3'
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
setup-environment:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
environment: release
|
||||||
|
outputs:
|
||||||
|
GOFLAGS: ${{ steps.goflags.outputs.GOFLAGS }}
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
- name: Set environment
|
||||||
|
id: goflags
|
||||||
|
run: |
|
||||||
|
echo GOFLAGS="'-ldflags=-w -s \"-X=github.com/ollama/ollama/version.Version=${GITHUB_REF_NAME#v}\" \"-X=github.com/ollama/ollama/server.mode=release\"'" >>$GITHUB_OUTPUT
|
||||||
|
|
||||||
|
darwin-build:
|
||||||
|
runs-on: macos-13
|
||||||
|
environment: release
|
||||||
|
needs: setup-environment
|
||||||
|
strategy:
|
||||||
|
matrix:
|
||||||
|
os: [darwin]
|
||||||
|
arch: [amd64, arm64]
|
||||||
|
env:
|
||||||
|
GOFLAGS: ${{ needs.setup-environment.outputs.GOFLAGS }}
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
- uses: actions/setup-go@v5
|
||||||
|
with:
|
||||||
|
go-version-file: go.mod
|
||||||
|
- run: |
|
||||||
|
go build -o dist/ .
|
||||||
|
env:
|
||||||
|
GOOS: ${{ matrix.os }}
|
||||||
|
GOARCH: ${{ matrix.arch }}
|
||||||
|
CGO_ENABLED: 1
|
||||||
|
CGO_CPPFLAGS: '-mmacosx-version-min=11.3'
|
||||||
|
- if: matrix.arch == 'amd64'
|
||||||
|
run: |
|
||||||
|
cmake --preset CPU -DCMAKE_OSX_DEPLOYMENT_TARGET=11.3 -DCMAKE_SYSTEM_PROCESSOR=x86_64 -DCMAKE_OSX_ARCHITECTURES=x86_64
|
||||||
|
cmake --build --parallel --preset CPU
|
||||||
|
cmake --install build --component CPU --strip --parallel 8
|
||||||
|
- uses: actions/upload-artifact@v4
|
||||||
|
with:
|
||||||
|
name: build-${{ matrix.os }}-${{ matrix.arch }}
|
||||||
|
path: dist/*
|
||||||
|
|
||||||
|
darwin-sign:
|
||||||
|
runs-on: macos-13
|
||||||
|
environment: release
|
||||||
|
needs: darwin-build
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
- run: |
|
||||||
|
echo $MACOS_SIGNING_KEY | base64 --decode > certificate.p12
|
||||||
|
security create-keychain -p password build.keychain
|
||||||
|
security default-keychain -s build.keychain
|
||||||
|
security unlock-keychain -p password build.keychain
|
||||||
|
security import certificate.p12 -k build.keychain -P $MACOS_SIGNING_KEY_PASSWORD -T /usr/bin/codesign
|
||||||
|
security set-key-partition-list -S apple-tool:,apple:,codesign: -s -k password build.keychain
|
||||||
|
security set-keychain-settings -lut 3600 build.keychain
|
||||||
|
env:
|
||||||
|
MACOS_SIGNING_KEY: ${{ secrets.MACOS_SIGNING_KEY }}
|
||||||
|
MACOS_SIGNING_KEY_PASSWORD: ${{ secrets.MACOS_SIGNING_KEY_PASSWORD }}
|
||||||
|
- uses: actions/download-artifact@v4
|
||||||
|
with:
|
||||||
|
name: build-darwin-amd64
|
||||||
|
path: dist/darwin-amd64
|
||||||
|
- uses: actions/download-artifact@v4
|
||||||
|
with:
|
||||||
|
name: build-darwin-arm64
|
||||||
|
path: dist/darwin-arm64
|
||||||
|
- run: |
|
||||||
|
export VERSION=${GITHUB_REF_NAME#v}
|
||||||
|
./scripts/build_darwin.sh sign macapp
|
||||||
|
env:
|
||||||
|
APPLE_IDENTITY: ${{ secrets.APPLE_IDENTITY }}
|
||||||
|
APPLE_PASSWORD: ${{ secrets.APPLE_PASSWORD }}
|
||||||
|
APPLE_TEAM_ID: ${{ vars.APPLE_TEAM_ID }}
|
||||||
|
APPLE_ID: ${{ vars.APPLE_ID }}
|
||||||
|
SDKROOT: /Applications/Xcode_14.1.0.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk
|
||||||
|
DEVELOPER_DIR: /Applications/Xcode_14.1.0.app/Contents/Developer
|
||||||
|
- uses: actions/upload-artifact@v4
|
||||||
|
with:
|
||||||
|
name: dist-darwin
|
||||||
|
path: |
|
||||||
|
dist/Ollama-darwin.zip
|
||||||
|
dist/ollama-darwin.tgz
|
||||||
|
|
||||||
|
windows-depends:
|
||||||
|
strategy:
|
||||||
|
matrix:
|
||||||
|
os: [windows]
|
||||||
|
arch: [amd64]
|
||||||
|
preset: ['CPU']
|
||||||
|
include:
|
||||||
|
- os: windows
|
||||||
|
arch: amd64
|
||||||
|
preset: 'CUDA 12'
|
||||||
|
install: https://developer.download.nvidia.com/compute/cuda/12.8.0/local_installers/cuda_12.8.0_571.96_windows.exe
|
||||||
|
cuda-version: '12.8'
|
||||||
|
- os: windows
|
||||||
|
arch: amd64
|
||||||
|
preset: 'ROCm 6'
|
||||||
|
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q4-WinSvr2022-For-HIP.exe
|
||||||
|
rocm-version: '6.2'
|
||||||
|
runs-on: ${{ matrix.arch == 'arm64' && format('{0}-{1}', matrix.os, matrix.arch) || matrix.os }}
|
||||||
|
environment: release
|
||||||
|
env:
|
||||||
|
GOFLAGS: ${{ needs.setup-environment.outputs.GOFLAGS }}
|
||||||
|
steps:
|
||||||
|
- name: Install system dependencies
|
||||||
|
run: |
|
||||||
|
choco install -y --no-progress ccache ninja
|
||||||
|
ccache -o cache_dir=${{ github.workspace }}\.ccache
|
||||||
|
- if: startsWith(matrix.preset, 'CUDA ') || startsWith(matrix.preset, 'ROCm ')
|
||||||
|
id: cache-install
|
||||||
|
uses: actions/cache/restore@v4
|
||||||
|
with:
|
||||||
|
path: |
|
||||||
|
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA
|
||||||
|
C:\Program Files\AMD\ROCm
|
||||||
|
key: ${{ matrix.install }}
|
||||||
|
- if: startsWith(matrix.preset, 'CUDA ')
|
||||||
|
name: Install CUDA ${{ matrix.cuda-version }}
|
||||||
|
run: |
|
||||||
|
$ErrorActionPreference = "Stop"
|
||||||
|
if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') {
|
||||||
|
Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe"
|
||||||
|
$subpackages = @("cudart", "nvcc", "cublas", "cublas_dev") | Foreach-Object {"${_}_${{ matrix.cuda-version }}"}
|
||||||
|
Start-Process -FilePath .\install.exe -ArgumentList (@("-s") + $subpackages) -NoNewWindow -Wait
|
||||||
|
}
|
||||||
|
|
||||||
|
$cudaPath = (Resolve-Path "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\*").path
|
||||||
|
echo "$cudaPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||||
|
- if: startsWith(matrix.preset, 'ROCm')
|
||||||
|
name: Install ROCm ${{ matrix.rocm-version }}
|
||||||
|
run: |
|
||||||
|
$ErrorActionPreference = "Stop"
|
||||||
|
if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') {
|
||||||
|
Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe"
|
||||||
|
Start-Process -FilePath .\install.exe -ArgumentList '-install' -NoNewWindow -Wait
|
||||||
|
}
|
||||||
|
|
||||||
|
$hipPath = (Resolve-Path "C:\Program Files\AMD\ROCm\*").path
|
||||||
|
echo "$hipPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||||
|
echo "CC=$hipPath\bin\clang.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
|
||||||
|
echo "CXX=$hipPath\bin\clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
|
||||||
|
- if: matrix.preset == 'CPU'
|
||||||
|
run: |
|
||||||
|
echo "CC=clang.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
|
||||||
|
echo "CXX=clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
|
||||||
|
- if: ${{ !cancelled() && steps.cache-install.outputs.cache-hit != 'true' }}
|
||||||
|
uses: actions/cache/save@v4
|
||||||
|
with:
|
||||||
|
path: |
|
||||||
|
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA
|
||||||
|
C:\Program Files\AMD\ROCm
|
||||||
|
key: ${{ matrix.install }}
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
- uses: actions/cache@v4
|
||||||
|
with:
|
||||||
|
path: ${{ github.workspace }}\.ccache
|
||||||
|
key: ccache-${{ matrix.os }}-${{ matrix.arch }}-${{ matrix.preset }}
|
||||||
|
- name: Build target "${{ matrix.preset }}"
|
||||||
|
run: |
|
||||||
|
Import-Module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
|
||||||
|
Enter-VsDevShell -VsInstallPath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -SkipAutomaticLocation -DevCmdArguments '-arch=x64 -no_logo'
|
||||||
|
cmake --preset "${{ matrix.preset }}"
|
||||||
|
cmake --build --parallel --preset "${{ matrix.preset }}"
|
||||||
|
cmake --install build --component "${{ startsWith(matrix.preset, 'CUDA ') && 'CUDA' || startsWith(matrix.preset, 'ROCm ') && 'HIP' || 'CPU' }}" --strip --parallel 8
|
||||||
|
env:
|
||||||
|
CMAKE_GENERATOR: Ninja
|
||||||
|
- uses: actions/upload-artifact@v4
|
||||||
|
with:
|
||||||
|
name: depends-${{ matrix.os }}-${{ matrix.arch }}-${{ matrix.preset }}
|
||||||
|
path: dist\*
|
||||||
|
|
||||||
|
windows-build:
|
||||||
|
strategy:
|
||||||
|
matrix:
|
||||||
|
os: [windows]
|
||||||
|
arch: [amd64, arm64]
|
||||||
|
runs-on: ${{ matrix.arch == 'arm64' && format('{0}-{1}', matrix.os, matrix.arch) || matrix.os }}
|
||||||
|
environment: release
|
||||||
|
needs: [setup-environment]
|
||||||
|
env:
|
||||||
|
GOFLAGS: ${{ needs.setup-environment.outputs.GOFLAGS }}
|
||||||
|
steps:
|
||||||
|
- name: Install AMD64 system dependencies
|
||||||
|
if: matrix.arch == 'amd64'
|
||||||
|
run: |
|
||||||
|
$ErrorActionPreference = "Stop"
|
||||||
|
Start-Process "C:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang") -NoNewWindow -Wait
|
||||||
|
echo "C:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||||
|
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||||
|
- name: Install ARM64 system dependencies
|
||||||
|
if: matrix.arch == 'arm64'
|
||||||
|
run: |
|
||||||
|
$ErrorActionPreference = "Stop"
|
||||||
|
Set-ExecutionPolicy Bypass -Scope Process -Force
|
||||||
|
[System.Net.ServicePointManager]::SecurityProtocol = [System.Net.ServicePointManager]::SecurityProtocol -bor 3072
|
||||||
|
iex ((New-Object System.Net.WebClient).DownloadString('https://community.chocolatey.org/install.ps1'))
|
||||||
|
echo "C:\ProgramData\chocolatey\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||||
|
|
||||||
|
choco install -y --no-progress git gzip
|
||||||
|
echo "C:\Program Files\Git\cmd" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||||
|
|
||||||
|
Invoke-WebRequest -Uri "https://github.com/mstorsjo/llvm-mingw/releases/download/20240619/llvm-mingw-20240619-ucrt-aarch64.zip" -OutFile "${{ runner.temp }}\llvm-mingw-ucrt-aarch64.zip"
|
||||||
|
Expand-Archive -Path ${{ runner.temp }}\llvm-mingw-ucrt-aarch64.zip -DestinationPath "C:\Program Files\"
|
||||||
|
$installPath=(Resolve-Path -Path "C:\Program Files\llvm-mingw-*-ucrt-aarch64").path
|
||||||
|
echo $installPath\bin | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
- uses: actions/setup-go@v5
|
||||||
|
with:
|
||||||
|
go-version-file: go.mod
|
||||||
|
- run: |
|
||||||
|
go build -o dist/${{ matrix.os }}-${{ matrix.arch }}/ .
|
||||||
|
- if: matrix.arch == 'arm64'
|
||||||
|
run: |
|
||||||
|
Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vc_redist.arm64.exe" -OutFile "dist\windows-arm64\vc_redist.arm64.exe"
|
||||||
|
- run: |
|
||||||
|
$env:VERSION='${{ github.ref_name }}' -Replace "v(.*)", '$1'
|
||||||
|
& .\scripts\build_windows.ps1 buildApp
|
||||||
|
env:
|
||||||
|
VCToolsRedistDir: stub
|
||||||
|
- uses: actions/upload-artifact@v4
|
||||||
|
with:
|
||||||
|
name: build-${{ matrix.os }}-${{ matrix.arch }}
|
||||||
|
path: |
|
||||||
|
dist\${{ matrix.os }}-${{ matrix.arch }}\*.exe
|
||||||
|
dist\${{ matrix.os }}-${{ matrix.arch }}-app.exe
|
||||||
|
|
||||||
|
windows-sign:
|
||||||
|
runs-on: windows-2022
|
||||||
|
environment: release
|
||||||
|
needs: [windows-depends, windows-build]
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
- uses: google-github-actions/auth@v2
|
||||||
|
with:
|
||||||
|
project_id: ollama
|
||||||
|
credentials_json: ${{ secrets.GOOGLE_SIGNING_CREDENTIALS }}
|
||||||
|
- run: |
|
||||||
|
$ErrorActionPreference = "Stop"
|
||||||
|
Invoke-WebRequest -Uri "https://go.microsoft.com/fwlink/p/?LinkId=323507" -OutFile "${{ runner.temp }}\sdksetup.exe"
|
||||||
|
Start-Process "${{ runner.temp }}\sdksetup.exe" -ArgumentList @("/q") -NoNewWindow -Wait
|
||||||
|
|
||||||
|
Invoke-WebRequest -Uri "https://github.com/GoogleCloudPlatform/kms-integrations/releases/download/cng-v1.0/kmscng-1.0-windows-amd64.zip" -OutFile "${{ runner.temp }}\plugin.zip"
|
||||||
|
Expand-Archive -Path "${{ runner.temp }}\plugin.zip" -DestinationPath "${{ runner.temp }}\plugin\"
|
||||||
|
& "${{ runner.temp }}\plugin\*\kmscng.msi" /quiet
|
||||||
|
|
||||||
|
echo "${{ vars.OLLAMA_CERT }}" >ollama_inc.crt
|
||||||
|
- uses: actions/download-artifact@v4
|
||||||
|
with:
|
||||||
|
pattern: build-windows-*
|
||||||
|
path: dist\
|
||||||
|
merge-multiple: true
|
||||||
|
- uses: actions/download-artifact@v4
|
||||||
|
with:
|
||||||
|
pattern: depends-windows-amd64-*
|
||||||
|
path: dist\windows-amd64\
|
||||||
|
merge-multiple: true
|
||||||
|
- run: |
|
||||||
|
& .\scripts\build_windows.ps1 gatherDependencies sign buildInstaller distZip
|
||||||
|
env:
|
||||||
|
KEY_CONTAINER: ${{ vars.KEY_CONTAINER }}
|
||||||
|
- uses: actions/upload-artifact@v4
|
||||||
|
with:
|
||||||
|
name: dist-windows
|
||||||
|
path: |
|
||||||
|
dist\OllamaSetup.exe
|
||||||
|
dist\ollama-windows-*.zip
|
||||||
|
|
||||||
|
linux-build:
|
||||||
|
strategy:
|
||||||
|
matrix:
|
||||||
|
include:
|
||||||
|
- os: linux
|
||||||
|
arch: amd64
|
||||||
|
target: archive
|
||||||
|
- os: linux
|
||||||
|
arch: amd64
|
||||||
|
target: rocm
|
||||||
|
- os: linux
|
||||||
|
arch: arm64
|
||||||
|
target: archive
|
||||||
|
runs-on: ${{ matrix.arch == 'arm64' && format('{0}-{1}', matrix.os, matrix.arch) || matrix.os }}
|
||||||
|
environment: release
|
||||||
|
needs: setup-environment
|
||||||
|
env:
|
||||||
|
GOFLAGS: ${{ needs.setup-environment.outputs.GOFLAGS }}
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
- uses: docker/setup-buildx-action@v3
|
||||||
|
- uses: docker/build-push-action@v6
|
||||||
|
with:
|
||||||
|
context: .
|
||||||
|
platforms: ${{ matrix.os }}/${{ matrix.arch }}
|
||||||
|
target: ${{ matrix.target }}
|
||||||
|
build-args: |
|
||||||
|
GOFLAGS=${{ env.GOFLAGS }}
|
||||||
|
CGO_CFLAGS=${{ env.CGO_CFLAGS }}
|
||||||
|
CGO_CXXFLAGS=${{ env.CGO_CXXFLAGS }}
|
||||||
|
outputs: type=local,dest=dist/${{ matrix.os }}-${{ matrix.arch }}
|
||||||
|
cache-from: type=registry,ref=ollama/ollama:latest
|
||||||
|
cache-to: type=inline
|
||||||
|
- run: |
|
||||||
|
for COMPONENT in bin/* lib/ollama/*; do
|
||||||
|
case "$COMPONENT" in
|
||||||
|
bin/ollama) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
|
||||||
|
lib/ollama/*.so) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
|
||||||
|
lib/ollama/cuda_v12) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
|
||||||
|
lib/ollama/cuda_jetpack5) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack5.tar.in ;;
|
||||||
|
lib/ollama/cuda_jetpack6) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack6.tar.in ;;
|
||||||
|
lib/ollama/rocm) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-rocm.tar.in ;;
|
||||||
|
esac
|
||||||
|
done
|
||||||
|
working-directory: dist/${{ matrix.os }}-${{ matrix.arch }}
|
||||||
|
- run: |
|
||||||
|
for ARCHIVE in dist/${{ matrix.os }}-${{ matrix.arch }}/*.tar.in; do
|
||||||
|
tar c -C dist/${{ matrix.os }}-${{ matrix.arch }} -T $ARCHIVE --owner 0 --group 0 | pigz -9vc >$(basename ${ARCHIVE//.*/}.tgz);
|
||||||
|
done
|
||||||
|
- uses: actions/upload-artifact@v4
|
||||||
|
with:
|
||||||
|
name: dist-${{ matrix.os }}-${{ matrix.arch }}-${{ matrix.target }}
|
||||||
|
path: |
|
||||||
|
*.tgz
|
||||||
|
|
||||||
|
# Build each Docker variant (OS, arch, and flavor) separately. Using QEMU is unreliable and slower.
|
||||||
|
docker-build-push:
|
||||||
|
strategy:
|
||||||
|
matrix:
|
||||||
|
include:
|
||||||
|
- os: linux
|
||||||
|
arch: arm64
|
||||||
|
build-args: |
|
||||||
|
CGO_CFLAGS
|
||||||
|
CGO_CXXFLAGS
|
||||||
|
GOFLAGS
|
||||||
|
- os: linux
|
||||||
|
arch: amd64
|
||||||
|
build-args: |
|
||||||
|
CGO_CFLAGS
|
||||||
|
CGO_CXXFLAGS
|
||||||
|
GOFLAGS
|
||||||
|
- os: linux
|
||||||
|
arch: amd64
|
||||||
|
suffix: '-rocm'
|
||||||
|
build-args: |
|
||||||
|
CGO_CFLAGS
|
||||||
|
CGO_CXXFLAGS
|
||||||
|
GOFLAGS
|
||||||
|
FLAVOR=rocm
|
||||||
|
runs-on: ${{ matrix.arch == 'arm64' && format('{0}-{1}', matrix.os, matrix.arch) || matrix.os }}
|
||||||
|
environment: release
|
||||||
|
needs: setup-environment
|
||||||
|
env:
|
||||||
|
GOFLAGS: ${{ needs.setup-environment.outputs.GOFLAGS }}
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
- uses: docker/setup-buildx-action@v3
|
||||||
|
- uses: docker/login-action@v3
|
||||||
|
with:
|
||||||
|
username: ${{ vars.DOCKER_USER }}
|
||||||
|
password: ${{ secrets.DOCKER_ACCESS_TOKEN }}
|
||||||
|
- id: build-push
|
||||||
|
uses: docker/build-push-action@v6
|
||||||
|
with:
|
||||||
|
context: .
|
||||||
|
platforms: ${{ matrix.os }}/${{ matrix.arch }}
|
||||||
|
build-args: ${{ matrix.build-args }}
|
||||||
|
outputs: type=image,name=ollama/ollama,push-by-digest=true,name-canonical=true,push=true
|
||||||
|
cache-from: type=registry,ref=ollama/ollama:latest
|
||||||
|
cache-to: type=inline
|
||||||
|
- run: |
|
||||||
|
mkdir -p ${{ matrix.os }}-${{ matrix.arch }}
|
||||||
|
echo "${{ steps.build-push.outputs.digest }}" >${{ matrix.os }}-${{ matrix.arch }}-${{ matrix.suffix }}.txt
|
||||||
|
working-directory: ${{ runner.temp }}
|
||||||
|
- uses: actions/upload-artifact@v4
|
||||||
|
with:
|
||||||
|
name: digest-${{ matrix.os }}-${{ matrix.arch }}-${{ matrix.suffix }}
|
||||||
|
path: |
|
||||||
|
${{ runner.temp }}/${{ matrix.os }}-${{ matrix.arch }}-${{ matrix.suffix }}.txt
|
||||||
|
|
||||||
|
# Merge Docker images for the same flavor into a single multi-arch manifest
|
||||||
|
docker-merge-push:
|
||||||
|
strategy:
|
||||||
|
matrix:
|
||||||
|
suffix: ['', '-rocm']
|
||||||
|
runs-on: linux
|
||||||
|
environment: release
|
||||||
|
needs: [docker-build-push]
|
||||||
|
steps:
|
||||||
|
- uses: docker/login-action@v3
|
||||||
|
with:
|
||||||
|
username: ${{ vars.DOCKER_USER }}
|
||||||
|
password: ${{ secrets.DOCKER_ACCESS_TOKEN }}
|
||||||
|
- id: metadata
|
||||||
|
uses: docker/metadata-action@v4
|
||||||
|
with:
|
||||||
|
flavor: |
|
||||||
|
latest=false
|
||||||
|
suffix=${{ matrix.suffix }}
|
||||||
|
images: |
|
||||||
|
ollama/ollama
|
||||||
|
tags: |
|
||||||
|
type=ref,enable=true,priority=600,prefix=pr-,event=pr
|
||||||
|
type=semver,pattern={{version}}
|
||||||
|
- uses: actions/download-artifact@v4
|
||||||
|
with:
|
||||||
|
pattern: digest-*
|
||||||
|
path: ${{ runner.temp }}
|
||||||
|
merge-multiple: true
|
||||||
|
- run: |
|
||||||
|
docker buildx imagetools create $(echo '${{ steps.metadata.outputs.json }}' | jq -cr '.tags | map("-t", .) | join(" ")') $(cat *-${{ matrix.suffix }}.txt | xargs printf 'ollama/ollama@%s ')
|
||||||
|
docker buildx imagetools inspect ollama/ollama:${{ steps.metadata.outputs.version }}
|
||||||
|
working-directory: ${{ runner.temp }}
|
||||||
|
|
||||||
|
# Trigger downstream release process
|
||||||
|
trigger:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
environment: release
|
||||||
|
needs: [darwin-build, windows-build, windows-depends]
|
||||||
|
steps:
|
||||||
|
- name: Trigger downstream release process
|
||||||
|
run: |
|
||||||
|
curl -L \
|
||||||
|
-X POST \
|
||||||
|
-H "Accept: application/vnd.github+json" \
|
||||||
|
-H "Authorization: Bearer ${{ secrets.RELEASE_TOKEN }}" \
|
||||||
|
-H "X-GitHub-Api-Version: 2022-11-28" \
|
||||||
|
https://api.github.com/repos/ollama/${{ vars.RELEASE_REPO }}/dispatches \
|
||||||
|
-d "{\"event_type\": \"trigger-workflow\", \"client_payload\": {\"run_id\": \"${GITHUB_RUN_ID}\", \"version\": \"${GITHUB_REF_NAME#v}\"}}"
|
||||||
|
|
||||||
|
# Aggregate all the assets and ship a release
|
||||||
|
release:
|
||||||
|
needs: [darwin-sign, windows-sign, linux-build]
|
||||||
|
runs-on: linux
|
||||||
|
environment: release
|
||||||
|
permissions:
|
||||||
|
contents: write
|
||||||
|
env:
|
||||||
|
GH_TOKEN: ${{ github.token }}
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
- uses: actions/download-artifact@v4
|
||||||
|
with:
|
||||||
|
name: dist-darwin
|
||||||
|
path: dist
|
||||||
|
- uses: actions/download-artifact@v4
|
||||||
|
with:
|
||||||
|
name: dist-windows
|
||||||
|
path: dist
|
||||||
|
- uses: actions/download-artifact@v4
|
||||||
|
with:
|
||||||
|
pattern: dist-linux-*
|
||||||
|
path: dist
|
||||||
|
merge-multiple: true
|
||||||
|
- run: find . -type f -not -name 'sha256sum.txt' | xargs sha256sum | tee sha256sum.txt
|
||||||
|
working-directory: dist
|
||||||
|
- name: Create or update Release
|
||||||
|
run: |
|
||||||
|
RELEASE_VERSION="$(echo ${GITHUB_REF_NAME} | cut -f1 -d-)"
|
||||||
|
|
||||||
|
echo "Looking for existing release for ${RELEASE_VERSION}"
|
||||||
|
OLD_TAG=$(gh release ls --json name,tagName | jq -r ".[] | select(.name == \"${RELEASE_VERSION}\") | .tagName")
|
||||||
|
if [ -n "$OLD_TAG" ]; then
|
||||||
|
echo "Updating release ${RELEASE_VERSION} to point to new tag ${GITHUB_REF_NAME}"
|
||||||
|
gh release edit ${OLD_TAG} --tag ${GITHUB_REF_NAME}
|
||||||
|
else
|
||||||
|
echo "Creating new release ${RELEASE_VERSION} pointing to tag ${GITHUB_REF_NAME}"
|
||||||
|
gh release create ${GITHUB_REF_NAME} \
|
||||||
|
--title ${RELEASE_VERSION} \
|
||||||
|
--draft \
|
||||||
|
--generate-notes \
|
||||||
|
--prerelease
|
||||||
|
fi
|
||||||
|
echo "Uploading artifacts for tag ${GITHUB_REF_NAME}"
|
||||||
|
gh release upload ${GITHUB_REF_NAME} dist/* --clobber
|
||||||
331
.github/workflows/test.yaml
vendored
331
.github/workflows/test.yaml
vendored
@@ -1,162 +1,241 @@
|
|||||||
name: test
|
name: test
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
# For PRs, later CI runs preempt previous ones. e.g. a force push on a PR
|
||||||
|
# cancels running CI jobs and starts all new ones.
|
||||||
|
#
|
||||||
|
# For non-PR pushes, concurrency.group needs to be unique for every distinct
|
||||||
|
# CI run we want to have happen. Use run_id, which in practice means all
|
||||||
|
# non-PR CI runs will be allowed to run without preempting each other.
|
||||||
|
group: ${{ github.workflow }}-$${{ github.pull_request.number || github.run_id }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
on:
|
on:
|
||||||
pull_request:
|
pull_request:
|
||||||
|
paths:
|
||||||
|
- '**/*'
|
||||||
|
- '!docs/**'
|
||||||
|
- '!README.md'
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
generate:
|
changes:
|
||||||
strategy:
|
runs-on: ubuntu-latest
|
||||||
matrix:
|
outputs:
|
||||||
os: [ubuntu-latest, macos-latest, windows-latest]
|
changed: ${{ steps.changes.outputs.changed }}
|
||||||
arch: [amd64, arm64]
|
|
||||||
exclude:
|
|
||||||
- os: ubuntu-latest
|
|
||||||
arch: arm64
|
|
||||||
- os: windows-latest
|
|
||||||
arch: arm64
|
|
||||||
runs-on: ${{ matrix.os }}
|
|
||||||
env:
|
|
||||||
GOARCH: ${{ matrix.arch }}
|
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v4
|
- uses: actions/checkout@v4
|
||||||
- uses: actions/setup-go@v5
|
|
||||||
with:
|
with:
|
||||||
go-version: '1.21'
|
fetch-depth: 0
|
||||||
cache: true
|
- id: changes
|
||||||
- run: go get ./...
|
run: |
|
||||||
- run: go generate -x ./...
|
changed() {
|
||||||
- uses: actions/upload-artifact@v4
|
local BASE=${{ github.event.pull_request.base.sha }}
|
||||||
with:
|
local HEAD=${{ github.event.pull_request.head.sha }}
|
||||||
name: ${{ matrix.os }}-${{ matrix.arch }}-libraries
|
local MERGE_BASE=$(git merge-base $BASE $HEAD)
|
||||||
path: llm/llama.cpp/build/**/lib/*
|
git diff-tree -r --no-commit-id --name-only "$MERGE_BASE" "$HEAD" \
|
||||||
generate-cuda:
|
| xargs python3 -c "import sys; from pathlib import Path; print(any(Path(x).match(glob) for x in sys.argv[1:] for glob in '$*'.split(' ')))"
|
||||||
|
}
|
||||||
|
|
||||||
|
echo changed=$(changed 'llama/llama.cpp/**' 'ml/backend/ggml/ggml/**') | tee -a $GITHUB_OUTPUT
|
||||||
|
|
||||||
|
linux:
|
||||||
|
needs: [changes]
|
||||||
|
if: needs.changes.outputs.changed == 'True'
|
||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
cuda-version:
|
include:
|
||||||
- '11.8.0'
|
- preset: CPU
|
||||||
|
- preset: CUDA
|
||||||
|
container: nvidia/cuda:12.8.1-devel-ubuntu22.04
|
||||||
|
flags: '-DCMAKE_CUDA_ARCHITECTURES=87'
|
||||||
|
- preset: ROCm
|
||||||
|
container: rocm/dev-ubuntu-22.04:6.1.2
|
||||||
|
extra-packages: rocm-libs
|
||||||
|
flags: '-DAMDGPU_TARGETS=gfx1010 -DCMAKE_PREFIX_PATH=/opt/rocm'
|
||||||
runs-on: linux
|
runs-on: linux
|
||||||
container: nvidia/cuda:${{ matrix.cuda-version }}-devel-ubuntu20.04
|
container: ${{ matrix.container }}
|
||||||
steps:
|
steps:
|
||||||
|
- uses: actions/checkout@v4
|
||||||
- run: |
|
- run: |
|
||||||
apt-get update && apt-get install -y git build-essential curl
|
[ -n "${{ matrix.container }}" ] || sudo=sudo
|
||||||
curl -fsSL https://github.com/Kitware/CMake/releases/download/v3.28.1/cmake-3.28.1-linux-x86_64.tar.gz \
|
$sudo apt-get update
|
||||||
| tar -zx -C /usr --strip-components 1
|
$sudo apt-get install -y cmake ccache ${{ matrix.extra-packages }}
|
||||||
env:
|
env:
|
||||||
DEBIAN_FRONTEND: noninteractive
|
DEBIAN_FRONTEND: noninteractive
|
||||||
- uses: actions/checkout@v4
|
- uses: actions/cache@v4
|
||||||
- uses: actions/setup-go@v4
|
|
||||||
with:
|
with:
|
||||||
go-version: '1.21'
|
path: /github/home/.cache/ccache
|
||||||
cache: true
|
key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }}
|
||||||
- run: go get ./...
|
|
||||||
- run: |
|
- run: |
|
||||||
git config --global --add safe.directory /__w/ollama/ollama
|
cmake --preset ${{ matrix.preset }} ${{ matrix.flags }}
|
||||||
go generate -x ./...
|
cmake --build --preset ${{ matrix.preset }} --parallel
|
||||||
env:
|
|
||||||
OLLAMA_SKIP_CPU_GENERATE: '1'
|
windows:
|
||||||
- uses: actions/upload-artifact@v4
|
needs: [changes]
|
||||||
with:
|
if: needs.changes.outputs.changed == 'True'
|
||||||
name: cuda-${{ matrix.cuda-version }}-libraries
|
|
||||||
path: llm/llama.cpp/build/**/lib/*
|
|
||||||
generate-rocm:
|
|
||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
rocm-version:
|
include:
|
||||||
- '5.7.1'
|
- preset: CPU
|
||||||
- '6.0'
|
- preset: CUDA
|
||||||
runs-on: linux
|
install: https://developer.download.nvidia.com/compute/cuda/12.8.0/local_installers/cuda_12.8.0_571.96_windows.exe
|
||||||
container: rocm/dev-ubuntu-20.04:${{ matrix.rocm-version }}
|
flags: '-DCMAKE_CUDA_ARCHITECTURES=80'
|
||||||
|
- preset: ROCm
|
||||||
|
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q4-WinSvr2022-For-HIP.exe
|
||||||
|
flags: '-DAMDGPU_TARGETS=gfx1010'
|
||||||
|
runs-on: windows
|
||||||
steps:
|
steps:
|
||||||
- run: |
|
- run: |
|
||||||
apt-get update && apt-get install -y git build-essential curl rocm-libs
|
choco install -y --no-progress ccache ninja
|
||||||
curl -fsSL https://github.com/Kitware/CMake/releases/download/v3.28.1/cmake-3.28.1-linux-x86_64.tar.gz \
|
ccache -o cache_dir=${{ github.workspace }}\.ccache
|
||||||
| tar -zx -C /usr --strip-components 1
|
- if: matrix.preset == 'CUDA' || matrix.preset == 'ROCm'
|
||||||
env:
|
id: cache-install
|
||||||
DEBIAN_FRONTEND: noninteractive
|
uses: actions/cache/restore@v4
|
||||||
|
with:
|
||||||
|
path: |
|
||||||
|
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA
|
||||||
|
C:\Program Files\AMD\ROCm
|
||||||
|
key: ${{ matrix.install }}
|
||||||
|
- if: matrix.preset == 'CUDA'
|
||||||
|
name: Install CUDA ${{ matrix.cuda-version }}
|
||||||
|
run: |
|
||||||
|
$ErrorActionPreference = "Stop"
|
||||||
|
if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') {
|
||||||
|
Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe"
|
||||||
|
Start-Process -FilePath .\install.exe -ArgumentList (@("-s", "cudart_12.8", "nvcc_12.8", "cublas_12.8", "cublas_dev_12.8")) -NoNewWindow -Wait
|
||||||
|
}
|
||||||
|
|
||||||
|
$cudaPath = (Resolve-Path "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\*").path
|
||||||
|
echo "$cudaPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||||
|
- if: matrix.preset == 'ROCm'
|
||||||
|
name: Install ROCm ${{ matrix.rocm-version }}
|
||||||
|
run: |
|
||||||
|
$ErrorActionPreference = "Stop"
|
||||||
|
if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') {
|
||||||
|
Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe"
|
||||||
|
Start-Process -FilePath .\install.exe -ArgumentList '-install' -NoNewWindow -Wait
|
||||||
|
}
|
||||||
|
|
||||||
|
$hipPath = (Resolve-Path "C:\Program Files\AMD\ROCm\*").path
|
||||||
|
echo "$hipPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||||
|
echo "CC=$hipPath\bin\clang.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
|
||||||
|
echo "CXX=$hipPath\bin\clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
|
||||||
|
- if: ${{ !cancelled() && steps.cache-install.outputs.cache-hit != 'true' }}
|
||||||
|
uses: actions/cache/save@v4
|
||||||
|
with:
|
||||||
|
path: |
|
||||||
|
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA
|
||||||
|
C:\Program Files\AMD\ROCm
|
||||||
|
key: ${{ matrix.install }}
|
||||||
- uses: actions/checkout@v4
|
- uses: actions/checkout@v4
|
||||||
- uses: actions/setup-go@v4
|
- uses: actions/cache@v4
|
||||||
with:
|
with:
|
||||||
go-version: '1.21'
|
path: ${{ github.workspace }}\.ccache
|
||||||
cache: true
|
key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }}
|
||||||
- run: go get ./...
|
|
||||||
- run: |
|
- run: |
|
||||||
git config --global --add safe.directory /__w/ollama/ollama
|
Import-Module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
|
||||||
go generate -x ./...
|
Enter-VsDevShell -VsInstallPath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -SkipAutomaticLocation -DevCmdArguments '-arch=x64 -no_logo'
|
||||||
|
cmake --preset "${{ matrix.preset }}" ${{ matrix.flags }}
|
||||||
|
cmake --build --parallel --preset "${{ matrix.preset }}"
|
||||||
env:
|
env:
|
||||||
OLLAMA_SKIP_CPU_GENERATE: '1'
|
CMAKE_GENERATOR: Ninja
|
||||||
- uses: actions/upload-artifact@v4
|
|
||||||
with:
|
go_mod_tidy:
|
||||||
name: rocm-${{ matrix.rocm-version }}-libraries
|
runs-on: ubuntu-latest
|
||||||
path: llm/llama.cpp/build/**/lib/*
|
|
||||||
lint:
|
|
||||||
strategy:
|
|
||||||
matrix:
|
|
||||||
os: [ubuntu-latest, macos-latest, windows-latest]
|
|
||||||
arch: [amd64, arm64]
|
|
||||||
exclude:
|
|
||||||
- os: ubuntu-latest
|
|
||||||
arch: arm64
|
|
||||||
- os: windows-latest
|
|
||||||
arch: arm64
|
|
||||||
- os: macos-latest
|
|
||||||
arch: amd64
|
|
||||||
runs-on: ${{ matrix.os }}
|
|
||||||
env:
|
|
||||||
GOARCH: ${{ matrix.arch }}
|
|
||||||
CGO_ENABLED: "1"
|
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v4
|
- uses: actions/checkout@v4
|
||||||
with:
|
- name: check that 'go mod tidy' is clean
|
||||||
submodules: recursive
|
run: go mod tidy --diff || (echo "Please run 'go mod tidy'." && exit 1)
|
||||||
- uses: actions/setup-go@v5
|
|
||||||
with:
|
|
||||||
go-version: '1.21'
|
|
||||||
cache: false
|
|
||||||
- run: |
|
|
||||||
mkdir -p llm/llama.cpp/build/linux/${{ matrix.arch }}/stub/lib/
|
|
||||||
touch llm/llama.cpp/build/linux/${{ matrix.arch }}/stub/lib/stub.so
|
|
||||||
if: ${{ startsWith(matrix.os, 'ubuntu-') }}
|
|
||||||
- run: |
|
|
||||||
mkdir -p llm/llama.cpp/build/darwin/${{ matrix.arch }}/stub/lib/
|
|
||||||
touch llm/llama.cpp/build/darwin/${{ matrix.arch }}/stub/lib/stub.dylib
|
|
||||||
touch llm/llama.cpp/ggml-metal.metal
|
|
||||||
if: ${{ startsWith(matrix.os, 'macos-') }}
|
|
||||||
- run: |
|
|
||||||
mkdir -p llm/llama.cpp/build/windows/${{ matrix.arch }}/stub/lib/
|
|
||||||
touch llm/llama.cpp/build/windows/${{ matrix.arch }}/stub/lib/stub.dll
|
|
||||||
if: ${{ startsWith(matrix.os, 'windows-') }}
|
|
||||||
- uses: golangci/golangci-lint-action@v3
|
|
||||||
test:
|
test:
|
||||||
needs: generate
|
|
||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
os: [ubuntu-latest, macos-latest, windows-latest]
|
os: [ubuntu-latest, macos-latest, windows-latest]
|
||||||
arch: [amd64]
|
|
||||||
exclude:
|
|
||||||
- os: ubuntu-latest
|
|
||||||
arch: arm64
|
|
||||||
- os: windows-latest
|
|
||||||
arch: arm64
|
|
||||||
runs-on: ${{ matrix.os }}
|
runs-on: ${{ matrix.os }}
|
||||||
env:
|
env:
|
||||||
GOARCH: ${{ matrix.arch }}
|
CGO_ENABLED: '1'
|
||||||
CGO_ENABLED: "1"
|
GOEXPERIMENT: 'synctest'
|
||||||
|
steps:
|
||||||
|
- name: checkout
|
||||||
|
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # 4.2.2
|
||||||
|
|
||||||
|
- name: cache restore
|
||||||
|
uses: actions/cache/restore@1bd1e32a3bdc45362d1e726936510720a7c30a57 # v4.2.0
|
||||||
|
with:
|
||||||
|
# Note: unlike the other setups, this is only grabbing the mod download
|
||||||
|
# cache, rather than the whole mod directory, as the download cache
|
||||||
|
# contains zips that can be unpacked in parallel faster than they can be
|
||||||
|
# fetched and extracted by tar
|
||||||
|
path: |
|
||||||
|
~/.cache/go-build
|
||||||
|
~/go/pkg/mod/cache
|
||||||
|
~\AppData\Local\go-build
|
||||||
|
# NOTE: The -3- here should be incremented when the scheme of data to be
|
||||||
|
# cached changes (e.g. path above changes).
|
||||||
|
key: ${{ github.job }}-${{ runner.os }}-${{ matrix.goarch }}-${{ matrix.buildflags }}-go-3-${{ hashFiles('**/go.sum') }}-${{ github.run_id }}
|
||||||
|
restore-keys: |
|
||||||
|
${{ github.job }}-${{ runner.os }}-${{ matrix.goarch }}-${{ matrix.buildflags }}-go-3-${{ hashFiles('**/go.sum') }}
|
||||||
|
${{ github.job }}-${{ runner.os }}-${{ matrix.goarch }}-${{ matrix.buildflags }}-go-3-
|
||||||
|
|
||||||
|
- name: Setup Go
|
||||||
|
uses: actions/setup-go@v5
|
||||||
|
with:
|
||||||
|
# The caching strategy of setup-go is less than ideal, and wastes
|
||||||
|
# time by not saving artifacts due to small failures like the linter
|
||||||
|
# complaining, etc. This means subsequent have to rebuild their world
|
||||||
|
# again until all checks pass. For instance, if you mispell a word,
|
||||||
|
# you're punished until you fix it. This is more hostile than
|
||||||
|
# helpful.
|
||||||
|
cache: false
|
||||||
|
|
||||||
|
go-version-file: go.mod
|
||||||
|
|
||||||
|
# It is tempting to run this in a platform independent way, but the past
|
||||||
|
# shows this codebase will see introductions of platform specific code
|
||||||
|
# generation, and so we need to check this per platform to ensure we
|
||||||
|
# don't abuse go generate on specific platforms.
|
||||||
|
- name: check that 'go generate' is clean
|
||||||
|
if: always()
|
||||||
|
run: |
|
||||||
|
go generate ./...
|
||||||
|
git diff --name-only --exit-code || (echo "Please run 'go generate ./...'." && exit 1)
|
||||||
|
|
||||||
|
- name: go test
|
||||||
|
if: always()
|
||||||
|
run: go test -count=1 -benchtime=1x ./...
|
||||||
|
|
||||||
|
# TODO(bmizerany): replace this heavy tool with just the
|
||||||
|
# tools/checks/binaries we want and then make them all run in parallel
|
||||||
|
# across jobs, not on a single tiny vm on Github Actions.
|
||||||
|
- uses: golangci/golangci-lint-action@v6
|
||||||
|
with:
|
||||||
|
args: --timeout 10m0s -v
|
||||||
|
|
||||||
|
- name: cache save
|
||||||
|
# Always save the cache, even if the job fails. The artifacts produced
|
||||||
|
# during the building of test binaries are not all for naught. They can
|
||||||
|
# be used to speed up subsequent runs.
|
||||||
|
if: always()
|
||||||
|
|
||||||
|
uses: actions/cache/save@1bd1e32a3bdc45362d1e726936510720a7c30a57 # v4.2.0
|
||||||
|
with:
|
||||||
|
# Note: unlike the other setups, this is only grabbing the mod download
|
||||||
|
# cache, rather than the whole mod directory, as the download cache
|
||||||
|
# contains zips that can be unpacked in parallel faster than they can be
|
||||||
|
# fetched and extracted by tar
|
||||||
|
path: |
|
||||||
|
~/.cache/go-build
|
||||||
|
~/go/pkg/mod/cache
|
||||||
|
~\AppData\Local\go-build
|
||||||
|
# NOTE: The -3- here should be incremented when the scheme of data to be
|
||||||
|
# cached changes (e.g. path above changes).
|
||||||
|
key: ${{ github.job }}-${{ runner.os }}-${{ matrix.goarch }}-${{ matrix.buildflags }}-go-3-${{ hashFiles('**/go.sum') }}-${{ github.run_id }}
|
||||||
|
|
||||||
|
patches:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v4
|
- uses: actions/checkout@v4
|
||||||
with:
|
- name: Verify patches apply cleanly and do not change files
|
||||||
submodules: recursive
|
run: |
|
||||||
- uses: actions/setup-go@v5
|
make -f Makefile.sync clean checkout apply-patches sync
|
||||||
with:
|
git diff --compact-summary --exit-code
|
||||||
go-version: '1.21'
|
|
||||||
cache: true
|
|
||||||
- run: go get
|
|
||||||
- uses: actions/download-artifact@v4
|
|
||||||
with:
|
|
||||||
name: ${{ matrix.os }}-${{ matrix.arch }}-libraries
|
|
||||||
path: llm/llama.cpp/build
|
|
||||||
- run: go build
|
|
||||||
- run: go test -v ./...
|
|
||||||
- uses: actions/upload-artifact@v4
|
|
||||||
with:
|
|
||||||
name: ${{ matrix.os }}-binaries
|
|
||||||
path: ollama
|
|
||||||
9
.gitignore
vendored
9
.gitignore
vendored
@@ -4,10 +4,13 @@
|
|||||||
.venv
|
.venv
|
||||||
.swp
|
.swp
|
||||||
dist
|
dist
|
||||||
ollama
|
build
|
||||||
ggml-metal.metal
|
|
||||||
.cache
|
.cache
|
||||||
*.exe
|
*.exe
|
||||||
.idea
|
.idea
|
||||||
test_data
|
test_data
|
||||||
*.crt
|
*.crt
|
||||||
|
__debug_bin*
|
||||||
|
llama/build
|
||||||
|
llama/vendor
|
||||||
|
/ollama
|
||||||
|
|||||||
4
.gitmodules
vendored
4
.gitmodules
vendored
@@ -1,4 +0,0 @@
|
|||||||
[submodule "llama.cpp"]
|
|
||||||
path = llm/llama.cpp
|
|
||||||
url = https://github.com/ggerganov/llama.cpp.git
|
|
||||||
shallow = true
|
|
||||||
@@ -6,22 +6,36 @@ linters:
|
|||||||
- bidichk
|
- bidichk
|
||||||
- bodyclose
|
- bodyclose
|
||||||
- containedctx
|
- containedctx
|
||||||
- contextcheck
|
|
||||||
- exportloopref
|
|
||||||
- gocheckcompilerdirectives
|
- gocheckcompilerdirectives
|
||||||
# FIXME: for some reason this errors on windows
|
- gofmt
|
||||||
# - gofmt
|
- gofumpt
|
||||||
# - goimports
|
- gosimple
|
||||||
|
- govet
|
||||||
|
- ineffassign
|
||||||
|
- intrange
|
||||||
|
- makezero
|
||||||
- misspell
|
- misspell
|
||||||
- nilerr
|
- nilerr
|
||||||
- unused
|
- nolintlint
|
||||||
|
- nosprintfhostport
|
||||||
|
- staticcheck
|
||||||
|
- unconvert
|
||||||
|
- usetesting
|
||||||
|
- wastedassign
|
||||||
|
- whitespace
|
||||||
|
disable:
|
||||||
|
- usestdlibvars
|
||||||
|
- errcheck
|
||||||
linters-settings:
|
linters-settings:
|
||||||
errcheck:
|
staticcheck:
|
||||||
# exclude the following functions since we don't generally
|
checks:
|
||||||
# need to be concerned with the returned errors
|
- all
|
||||||
exclude-functions:
|
- -SA1019 # omit Deprecated check
|
||||||
- encoding/binary.Read
|
severity:
|
||||||
- (*os.File).Seek
|
default-severity: error
|
||||||
- (*bufio.Writer).WriteString
|
rules:
|
||||||
- (*github.com/spf13/pflag.FlagSet).Set
|
- linters:
|
||||||
- (*github.com/jmorganca/ollama/llm.readSeekOffset).Seek
|
- gofmt
|
||||||
|
- goimports
|
||||||
|
- intrange
|
||||||
|
severity: info
|
||||||
|
|||||||
@@ -1,10 +0,0 @@
|
|||||||
{
|
|
||||||
"trailingComma": "es5",
|
|
||||||
"tabWidth": 2,
|
|
||||||
"useTabs": false,
|
|
||||||
"semi": false,
|
|
||||||
"singleQuote": true,
|
|
||||||
"jsxSingleQuote": true,
|
|
||||||
"printWidth": 120,
|
|
||||||
"arrowParens": "avoid"
|
|
||||||
}
|
|
||||||
133
CMakeLists.txt
Normal file
133
CMakeLists.txt
Normal file
@@ -0,0 +1,133 @@
|
|||||||
|
cmake_minimum_required(VERSION 3.21)
|
||||||
|
|
||||||
|
project(Ollama C CXX)
|
||||||
|
|
||||||
|
include(CheckLanguage)
|
||||||
|
|
||||||
|
find_package(Threads REQUIRED)
|
||||||
|
|
||||||
|
set(CMAKE_BUILD_TYPE Release)
|
||||||
|
set(BUILD_SHARED_LIBS ON)
|
||||||
|
|
||||||
|
set(CMAKE_CXX_STANDARD 17)
|
||||||
|
set(CMAKE_CXX_STANDARD_REQUIRED ON)
|
||||||
|
set(CMAKE_CXX_EXTENSIONS OFF)
|
||||||
|
|
||||||
|
set(GGML_BUILD ON)
|
||||||
|
set(GGML_SHARED ON)
|
||||||
|
set(GGML_CCACHE ON)
|
||||||
|
set(GGML_BACKEND_DL ON)
|
||||||
|
set(GGML_BACKEND_SHARED ON)
|
||||||
|
set(GGML_SCHED_MAX_COPIES 4)
|
||||||
|
|
||||||
|
set(GGML_LLAMAFILE ON)
|
||||||
|
set(GGML_CUDA_PEER_MAX_BATCH_SIZE 128)
|
||||||
|
set(GGML_CUDA_GRAPHS ON)
|
||||||
|
set(GGML_CUDA_FA ON)
|
||||||
|
set(GGML_CUDA_COMPRESSION_MODE default)
|
||||||
|
|
||||||
|
if((CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_OSX_ARCHITECTURES MATCHES "arm64")
|
||||||
|
OR (NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_SYSTEM_PROCESSOR MATCHES "arm|aarch64|ARM64|ARMv[0-9]+"))
|
||||||
|
set(GGML_CPU_ALL_VARIANTS ON)
|
||||||
|
endif()
|
||||||
|
|
||||||
|
if (CMAKE_OSX_ARCHITECTURES MATCHES "x86_64")
|
||||||
|
set(CMAKE_BUILD_RPATH "@loader_path")
|
||||||
|
set(CMAKE_INSTALL_RPATH "@loader_path")
|
||||||
|
endif()
|
||||||
|
|
||||||
|
set(OLLAMA_BUILD_DIR ${CMAKE_BINARY_DIR}/lib/ollama)
|
||||||
|
set(OLLAMA_INSTALL_DIR ${CMAKE_INSTALL_PREFIX}/lib/ollama)
|
||||||
|
|
||||||
|
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${OLLAMA_BUILD_DIR})
|
||||||
|
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY_DEBUG ${OLLAMA_BUILD_DIR})
|
||||||
|
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY_RELEASE ${OLLAMA_BUILD_DIR})
|
||||||
|
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${OLLAMA_BUILD_DIR})
|
||||||
|
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY_DEBUG ${OLLAMA_BUILD_DIR})
|
||||||
|
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY_RELEASE ${OLLAMA_BUILD_DIR})
|
||||||
|
|
||||||
|
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src)
|
||||||
|
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/include)
|
||||||
|
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cpu)
|
||||||
|
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cpu/amx)
|
||||||
|
|
||||||
|
set(GGML_CPU ON)
|
||||||
|
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src)
|
||||||
|
set_property(TARGET ggml PROPERTY EXCLUDE_FROM_ALL TRUE)
|
||||||
|
|
||||||
|
get_target_property(CPU_VARIANTS ggml-cpu MANUALLY_ADDED_DEPENDENCIES)
|
||||||
|
if(NOT CPU_VARIANTS)
|
||||||
|
set(CPU_VARIANTS "ggml-cpu")
|
||||||
|
endif()
|
||||||
|
|
||||||
|
install(TARGETS ggml-base ${CPU_VARIANTS}
|
||||||
|
RUNTIME_DEPENDENCIES
|
||||||
|
PRE_EXCLUDE_REGEXES ".*"
|
||||||
|
RUNTIME DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT CPU
|
||||||
|
LIBRARY DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT CPU
|
||||||
|
FRAMEWORK DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT CPU
|
||||||
|
)
|
||||||
|
|
||||||
|
check_language(CUDA)
|
||||||
|
if(CMAKE_CUDA_COMPILER)
|
||||||
|
if(CMAKE_VERSION VERSION_GREATER_EQUAL "3.24" AND NOT CMAKE_CUDA_ARCHITECTURES)
|
||||||
|
set(CMAKE_CUDA_ARCHITECTURES "native")
|
||||||
|
endif()
|
||||||
|
|
||||||
|
find_package(CUDAToolkit)
|
||||||
|
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cuda)
|
||||||
|
set(OLLAMA_CUDA_INSTALL_DIR ${OLLAMA_INSTALL_DIR}/cuda_v${CUDAToolkit_VERSION_MAJOR})
|
||||||
|
install(TARGETS ggml-cuda
|
||||||
|
RUNTIME_DEPENDENCIES
|
||||||
|
DIRECTORIES ${CUDAToolkit_BIN_DIR} ${CUDAToolkit_LIBRARY_DIR}
|
||||||
|
PRE_INCLUDE_REGEXES cublas cublasLt cudart
|
||||||
|
PRE_EXCLUDE_REGEXES ".*"
|
||||||
|
RUNTIME DESTINATION ${OLLAMA_CUDA_INSTALL_DIR} COMPONENT CUDA
|
||||||
|
LIBRARY DESTINATION ${OLLAMA_CUDA_INSTALL_DIR} COMPONENT CUDA
|
||||||
|
)
|
||||||
|
endif()
|
||||||
|
|
||||||
|
set(WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX "^gfx(906|908|90a|1200|1201):xnack[+-]$"
|
||||||
|
CACHE STRING
|
||||||
|
"Regular expression describing AMDGPU_TARGETS not supported on Windows. Override to force building these targets. Default \"^gfx(906|908|90a|1200|1201):xnack[+-]$\"."
|
||||||
|
)
|
||||||
|
|
||||||
|
check_language(HIP)
|
||||||
|
if(CMAKE_HIP_COMPILER)
|
||||||
|
set(HIP_PLATFORM "amd")
|
||||||
|
|
||||||
|
find_package(hip REQUIRED)
|
||||||
|
if(NOT AMDGPU_TARGETS)
|
||||||
|
list(FILTER AMDGPU_TARGETS INCLUDE REGEX "^gfx(900|94[012]|101[02]|1030|110[012]|120[01])$")
|
||||||
|
elseif(WIN32 AND WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX)
|
||||||
|
list(FILTER AMDGPU_TARGETS EXCLUDE REGEX ${WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX})
|
||||||
|
endif()
|
||||||
|
|
||||||
|
if(AMDGPU_TARGETS)
|
||||||
|
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-hip)
|
||||||
|
|
||||||
|
if (WIN32)
|
||||||
|
target_compile_definitions(ggml-hip PRIVATE GGML_CUDA_NO_PEER_COPY)
|
||||||
|
endif()
|
||||||
|
|
||||||
|
target_compile_definitions(ggml-hip PRIVATE GGML_HIP_NO_VMM)
|
||||||
|
|
||||||
|
set(OLLAMA_HIP_INSTALL_DIR ${OLLAMA_INSTALL_DIR}/rocm)
|
||||||
|
install(TARGETS ggml-hip
|
||||||
|
RUNTIME_DEPENDENCIES
|
||||||
|
DIRECTORIES ${HIP_BIN_INSTALL_DIR} ${HIP_LIB_INSTALL_DIR}
|
||||||
|
PRE_INCLUDE_REGEXES hipblas rocblas amdhip64 rocsolver amd_comgr hsa-runtime64 rocsparse tinfo rocprofiler-register drm drm_amdgpu numa elf
|
||||||
|
PRE_EXCLUDE_REGEXES ".*"
|
||||||
|
POST_EXCLUDE_REGEXES "system32"
|
||||||
|
RUNTIME DESTINATION ${OLLAMA_HIP_INSTALL_DIR} COMPONENT HIP
|
||||||
|
LIBRARY DESTINATION ${OLLAMA_HIP_INSTALL_DIR} COMPONENT HIP
|
||||||
|
)
|
||||||
|
|
||||||
|
foreach(HIP_LIB_BIN_INSTALL_DIR IN ITEMS ${HIP_BIN_INSTALL_DIR} ${HIP_LIB_INSTALL_DIR})
|
||||||
|
if(EXISTS ${HIP_LIB_BIN_INSTALL_DIR}/rocblas)
|
||||||
|
install(DIRECTORY ${HIP_LIB_BIN_INSTALL_DIR}/rocblas DESTINATION ${OLLAMA_HIP_INSTALL_DIR} COMPONENT HIP)
|
||||||
|
break()
|
||||||
|
endif()
|
||||||
|
endforeach()
|
||||||
|
endif()
|
||||||
|
endif()
|
||||||
99
CMakePresets.json
Normal file
99
CMakePresets.json
Normal file
@@ -0,0 +1,99 @@
|
|||||||
|
{
|
||||||
|
"version": 3,
|
||||||
|
"configurePresets": [
|
||||||
|
{
|
||||||
|
"name": "Default",
|
||||||
|
"binaryDir": "${sourceDir}/build",
|
||||||
|
"installDir": "${sourceDir}/dist",
|
||||||
|
"cacheVariables": {
|
||||||
|
"CMAKE_BUILD_TYPE": "Release"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "CPU",
|
||||||
|
"inherits": [ "Default" ]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "CUDA",
|
||||||
|
"inherits": [ "Default" ]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "CUDA 12",
|
||||||
|
"inherits": [ "CUDA" ],
|
||||||
|
"cacheVariables": {
|
||||||
|
"CMAKE_CUDA_ARCHITECTURES": "50;60;61;70;75;80;86;87;89;90;90a;120",
|
||||||
|
"CMAKE_CUDA_FLAGS": "-Wno-deprecated-gpu-targets"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "JetPack 5",
|
||||||
|
"inherits": [ "CUDA" ],
|
||||||
|
"cacheVariables": {
|
||||||
|
"CMAKE_CUDA_ARCHITECTURES": "72;87"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "JetPack 6",
|
||||||
|
"inherits": [ "CUDA" ],
|
||||||
|
"cacheVariables": {
|
||||||
|
"CMAKE_CUDA_ARCHITECTURES": "87"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "ROCm",
|
||||||
|
"inherits": [ "Default" ],
|
||||||
|
"cacheVariables": {
|
||||||
|
"CMAKE_HIP_PLATFORM": "amd"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "ROCm 6",
|
||||||
|
"inherits": [ "ROCm" ],
|
||||||
|
"cacheVariables": {
|
||||||
|
"AMDGPU_TARGETS": "gfx900;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102;gfx1151;gfx1200;gfx1201;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"buildPresets": [
|
||||||
|
{
|
||||||
|
"name": "Default",
|
||||||
|
"configurePreset": "Default",
|
||||||
|
"configuration": "Release"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "CPU",
|
||||||
|
"configurePreset": "Default",
|
||||||
|
"targets": [ "ggml-cpu" ]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "CUDA",
|
||||||
|
"configurePreset": "CUDA",
|
||||||
|
"targets": [ "ggml-cuda" ]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "CUDA 12",
|
||||||
|
"inherits": [ "CUDA" ],
|
||||||
|
"configurePreset": "CUDA 12"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "JetPack 5",
|
||||||
|
"inherits": [ "CUDA" ],
|
||||||
|
"configurePreset": "JetPack 5"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "JetPack 6",
|
||||||
|
"inherits": [ "CUDA" ],
|
||||||
|
"configurePreset": "JetPack 6"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "ROCm",
|
||||||
|
"configurePreset": "ROCm",
|
||||||
|
"targets": [ "ggml-hip" ]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "ROCm 6",
|
||||||
|
"inherits": [ "ROCm" ],
|
||||||
|
"configurePreset": "ROCm 6"
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
88
CONTRIBUTING.md
Normal file
88
CONTRIBUTING.md
Normal file
@@ -0,0 +1,88 @@
|
|||||||
|
# Contributing to Ollama
|
||||||
|
|
||||||
|
Thank you for your interest in contributing to Ollama! Here are a few guidelines to help get you started.
|
||||||
|
|
||||||
|
## Set up
|
||||||
|
|
||||||
|
See the [development documentation](./docs/development.md) for instructions on how to build and run Ollama locally.
|
||||||
|
|
||||||
|
### Ideal issues
|
||||||
|
|
||||||
|
* [Bugs](https://github.com/ollama/ollama/issues?q=is%3Aissue+is%3Aopen+label%3Abug): issues where Ollama stops working or where it results in an unexpected error.
|
||||||
|
* [Performance](https://github.com/ollama/ollama/issues?q=is%3Aissue+is%3Aopen+label%3Aperformance): issues to make Ollama faster at model inference, downloading or uploading.
|
||||||
|
* [Security](https://github.com/ollama/ollama/blob/main/SECURITY.md): issues that could lead to a security vulnerability. As mentioned in [SECURITY.md](https://github.com/ollama/ollama/blob/main/SECURITY.md), please do not disclose security vulnerabilities publicly.
|
||||||
|
|
||||||
|
### Issues that are harder to review
|
||||||
|
|
||||||
|
* New features: new features (e.g. API fields, environment variables) add surface area to Ollama and make it harder to maintain in the long run as they cannot be removed without potentially breaking users in the future.
|
||||||
|
* Refactoring: large code improvements are important, but can be harder or take longer to review and merge.
|
||||||
|
* Documentation: small updates to fill in or correct missing documentation is helpful, however large documentation additions can be hard to maintain over time.
|
||||||
|
|
||||||
|
### Issues that may not be accepted
|
||||||
|
|
||||||
|
* Changes that break backwards compatibility in Ollama's API (including the OpenAI-compatible API)
|
||||||
|
* Changes that add significant friction to the user experience
|
||||||
|
* Changes that create a large future maintenance burden for maintainers and contributors
|
||||||
|
|
||||||
|
## Proposing a (non-trivial) change
|
||||||
|
|
||||||
|
> By "non-trivial", we mean a change that is not a bug fix or small
|
||||||
|
> documentation update. If you are unsure, please ask us on our [Discord
|
||||||
|
> server](https://discord.gg/ollama).
|
||||||
|
|
||||||
|
Before opening a non-trivial Pull Request, please open an issue to discuss the change and
|
||||||
|
get feedback from the maintainers. This helps us understand the context of the
|
||||||
|
change and how it fits into Ollama's roadmap and prevents us from duplicating
|
||||||
|
work or you from spending time on a change that we may not be able to accept.
|
||||||
|
|
||||||
|
Tips for proposals:
|
||||||
|
|
||||||
|
* Explain the problem you are trying to solve, not what you are trying to do.
|
||||||
|
* Explain why the change is important.
|
||||||
|
* Explain how the change will be used.
|
||||||
|
* Explain how the change will be tested.
|
||||||
|
|
||||||
|
Additionally, for bonus points: Provide draft documentation you would expect to
|
||||||
|
see if the change were accepted.
|
||||||
|
|
||||||
|
## Pull requests
|
||||||
|
|
||||||
|
**Commit messages**
|
||||||
|
|
||||||
|
The title should look like:
|
||||||
|
|
||||||
|
<package>: <short description>
|
||||||
|
|
||||||
|
The package is the most affected Go package. If the change does not affect Go
|
||||||
|
code, then use the directory name instead. Changes to a single well-known
|
||||||
|
file in the root directory may use the file name.
|
||||||
|
|
||||||
|
The short description should start with a lowercase letter and be a
|
||||||
|
continuation of the sentence:
|
||||||
|
|
||||||
|
"This changes Ollama to..."
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
|
||||||
|
llm/backend/mlx: support the llama architecture
|
||||||
|
CONTRIBUTING: provide clairity on good commit messages, and bad
|
||||||
|
|
||||||
|
Bad Examples:
|
||||||
|
|
||||||
|
feat: add more emoji
|
||||||
|
fix: was not using famous web framework
|
||||||
|
chore: generify code
|
||||||
|
|
||||||
|
**Tests**
|
||||||
|
|
||||||
|
Please include tests. Strive to test behavior, not implementation.
|
||||||
|
|
||||||
|
**New dependencies**
|
||||||
|
|
||||||
|
Dependencies should be added sparingly. If you are adding a new dependency,
|
||||||
|
please explain why it is necessary and what other ways you attempted that
|
||||||
|
did not work without it.
|
||||||
|
|
||||||
|
## Need help?
|
||||||
|
|
||||||
|
If you need help with anything, feel free to reach out to us on our [Discord server](https://discord.gg/ollama).
|
||||||
213
Dockerfile
213
Dockerfile
@@ -1,137 +1,116 @@
|
|||||||
ARG GOLANG_VERSION=1.21.3
|
# vim: filetype=dockerfile
|
||||||
ARG CMAKE_VERSION=3.22.1
|
|
||||||
ARG CUDA_VERSION=11.3.1
|
|
||||||
|
|
||||||
# Copy the minimal context we need to run the generate scripts
|
ARG FLAVOR=${TARGETARCH}
|
||||||
FROM scratch AS llm-code
|
|
||||||
COPY .git .git
|
|
||||||
COPY .gitmodules .gitmodules
|
|
||||||
COPY llm llm
|
|
||||||
|
|
||||||
FROM --platform=linux/amd64 nvidia/cuda:$CUDA_VERSION-devel-centos7 AS cuda-build-amd64
|
ARG ROCMVERSION=6.3.3
|
||||||
ARG CMAKE_VERSION
|
ARG JETPACK5VERSION=r35.4.1
|
||||||
COPY ./scripts/rh_linux_deps.sh /
|
ARG JETPACK6VERSION=r36.4.0
|
||||||
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
|
ARG CMAKEVERSION=3.31.2
|
||||||
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
|
|
||||||
COPY --from=llm-code / /go/src/github.com/jmorganca/ollama/
|
|
||||||
WORKDIR /go/src/github.com/jmorganca/ollama/llm/generate
|
|
||||||
ARG CGO_CFLAGS
|
|
||||||
RUN OLLAMA_SKIP_CPU_GENERATE=1 sh gen_linux.sh
|
|
||||||
|
|
||||||
FROM --platform=linux/arm64 nvidia/cuda:$CUDA_VERSION-devel-rockylinux8 AS cuda-build-arm64
|
FROM --platform=linux/amd64 rocm/dev-almalinux-8:${ROCMVERSION}-complete AS base-amd64
|
||||||
ARG CMAKE_VERSION
|
RUN yum install -y yum-utils \
|
||||||
COPY ./scripts/rh_linux_deps.sh /
|
&& dnf install -y ccache \
|
||||||
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
|
&& yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/x86_64/cuda-rhel8.repo
|
||||||
ENV PATH /opt/rh/gcc-toolset-10/root/usr/bin:$PATH
|
|
||||||
COPY --from=llm-code / /go/src/github.com/jmorganca/ollama/
|
|
||||||
WORKDIR /go/src/github.com/jmorganca/ollama/llm/generate
|
|
||||||
ARG CGO_CFLAGS
|
|
||||||
RUN OLLAMA_SKIP_CPU_GENERATE=1 sh gen_linux.sh
|
|
||||||
|
|
||||||
FROM --platform=linux/amd64 rocm/dev-centos-7:5.7.1-complete AS rocm-5-build-amd64
|
FROM --platform=linux/arm64 almalinux:8 AS base-arm64
|
||||||
ARG CMAKE_VERSION
|
# install epel-release for ccache
|
||||||
COPY ./scripts/rh_linux_deps.sh /
|
RUN yum install -y yum-utils epel-release \
|
||||||
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
|
&& dnf install -y clang ccache \
|
||||||
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
|
&& yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/sbsa/cuda-rhel8.repo
|
||||||
ENV LIBRARY_PATH /opt/amdgpu/lib64
|
ENV CC=clang CXX=clang++
|
||||||
COPY --from=llm-code / /go/src/github.com/jmorganca/ollama/
|
|
||||||
WORKDIR /go/src/github.com/jmorganca/ollama/llm/generate
|
|
||||||
ARG CGO_CFLAGS
|
|
||||||
ARG AMDGPU_TARGETS
|
|
||||||
RUN OLLAMA_SKIP_CPU_GENERATE=1 sh gen_linux.sh
|
|
||||||
|
|
||||||
FROM --platform=linux/amd64 rocm/dev-centos-7:6.0-complete AS rocm-6-build-amd64
|
FROM base-${TARGETARCH} AS base
|
||||||
ARG CMAKE_VERSION
|
ARG CMAKEVERSION
|
||||||
COPY ./scripts/rh_linux_deps.sh /
|
RUN curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKEVERSION}/cmake-${CMAKEVERSION}-linux-$(uname -m).tar.gz | tar xz -C /usr/local --strip-components 1
|
||||||
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
|
COPY CMakeLists.txt CMakePresets.json .
|
||||||
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
|
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
|
||||||
ENV LIBRARY_PATH /opt/amdgpu/lib64
|
ENV LDFLAGS=-s
|
||||||
COPY --from=llm-code / /go/src/github.com/jmorganca/ollama/
|
|
||||||
WORKDIR /go/src/github.com/jmorganca/ollama/llm/generate
|
|
||||||
ARG CGO_CFLAGS
|
|
||||||
ARG AMDGPU_TARGETS
|
|
||||||
RUN OLLAMA_SKIP_CPU_GENERATE=1 sh gen_linux.sh
|
|
||||||
|
|
||||||
FROM --platform=linux/amd64 centos:7 AS cpu-builder-amd64
|
FROM base AS cpu
|
||||||
ARG CMAKE_VERSION
|
RUN dnf install -y gcc-toolset-11-gcc gcc-toolset-11-gcc-c++
|
||||||
ARG GOLANG_VERSION
|
ENV PATH=/opt/rh/gcc-toolset-11/root/usr/bin:$PATH
|
||||||
COPY ./scripts/rh_linux_deps.sh /
|
RUN --mount=type=cache,target=/root/.ccache \
|
||||||
RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
|
cmake --preset 'CPU' \
|
||||||
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
|
&& cmake --build --parallel --preset 'CPU' \
|
||||||
COPY --from=llm-code / /go/src/github.com/jmorganca/ollama/
|
&& cmake --install build --component CPU --strip --parallel 8
|
||||||
ARG OLLAMA_CUSTOM_CPU_DEFS
|
|
||||||
ARG CGO_CFLAGS
|
|
||||||
WORKDIR /go/src/github.com/jmorganca/ollama/llm/generate
|
|
||||||
|
|
||||||
FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu-build-amd64
|
FROM base AS cuda-12
|
||||||
RUN OLLAMA_CPU_TARGET="cpu" sh gen_linux.sh
|
ARG CUDA12VERSION=12.8
|
||||||
FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu_avx-build-amd64
|
RUN dnf install -y cuda-toolkit-${CUDA12VERSION//./-}
|
||||||
RUN OLLAMA_CPU_TARGET="cpu_avx" sh gen_linux.sh
|
ENV PATH=/usr/local/cuda-12/bin:$PATH
|
||||||
FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu_avx2-build-amd64
|
RUN --mount=type=cache,target=/root/.ccache \
|
||||||
RUN OLLAMA_CPU_TARGET="cpu_avx2" sh gen_linux.sh
|
cmake --preset 'CUDA 12' \
|
||||||
|
&& cmake --build --parallel --preset 'CUDA 12' \
|
||||||
|
&& cmake --install build --component CUDA --strip --parallel 8
|
||||||
|
|
||||||
FROM --platform=linux/arm64 centos:7 AS cpu-build-arm64
|
FROM base AS rocm-6
|
||||||
ARG CMAKE_VERSION
|
ENV PATH=/opt/rocm/hcc/bin:/opt/rocm/hip/bin:/opt/rocm/bin:/opt/rocm/hcc/bin:$PATH
|
||||||
ARG GOLANG_VERSION
|
RUN --mount=type=cache,target=/root/.ccache \
|
||||||
COPY ./scripts/rh_linux_deps.sh /
|
cmake --preset 'ROCm 6' \
|
||||||
RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
|
&& cmake --build --parallel --preset 'ROCm 6' \
|
||||||
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
|
&& cmake --install build --component HIP --strip --parallel 8
|
||||||
COPY --from=llm-code / /go/src/github.com/jmorganca/ollama/
|
|
||||||
WORKDIR /go/src/github.com/jmorganca/ollama/llm/generate
|
|
||||||
# Note, we only build the "base" CPU variant on arm since avx/avx2 are x86 features
|
|
||||||
ARG OLLAMA_CUSTOM_CPU_DEFS
|
|
||||||
ARG CGO_CFLAGS
|
|
||||||
RUN OLLAMA_CPU_TARGET="cpu" sh gen_linux.sh
|
|
||||||
|
|
||||||
# Intermediate stage used for ./scripts/build_linux.sh
|
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK5VERSION} AS jetpack-5
|
||||||
FROM --platform=linux/amd64 cpu-build-amd64 AS build-amd64
|
ARG CMAKEVERSION
|
||||||
ENV CGO_ENABLED 1
|
RUN apt-get update && apt-get install -y curl ccache \
|
||||||
WORKDIR /go/src/github.com/jmorganca/ollama
|
&& curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKEVERSION}/cmake-${CMAKEVERSION}-linux-$(uname -m).tar.gz | tar xz -C /usr/local --strip-components 1
|
||||||
|
COPY CMakeLists.txt CMakePresets.json .
|
||||||
|
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
|
||||||
|
RUN --mount=type=cache,target=/root/.ccache \
|
||||||
|
cmake --preset 'JetPack 5' \
|
||||||
|
&& cmake --build --parallel --preset 'JetPack 5' \
|
||||||
|
&& cmake --install build --component CUDA --strip --parallel 8
|
||||||
|
|
||||||
|
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK6VERSION} AS jetpack-6
|
||||||
|
ARG CMAKEVERSION
|
||||||
|
RUN apt-get update && apt-get install -y curl ccache \
|
||||||
|
&& curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKEVERSION}/cmake-${CMAKEVERSION}-linux-$(uname -m).tar.gz | tar xz -C /usr/local --strip-components 1
|
||||||
|
COPY CMakeLists.txt CMakePresets.json .
|
||||||
|
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
|
||||||
|
RUN --mount=type=cache,target=/root/.ccache \
|
||||||
|
cmake --preset 'JetPack 6' \
|
||||||
|
&& cmake --build --parallel --preset 'JetPack 6' \
|
||||||
|
&& cmake --install build --component CUDA --strip --parallel 8
|
||||||
|
|
||||||
|
FROM base AS build
|
||||||
|
WORKDIR /go/src/github.com/ollama/ollama
|
||||||
|
COPY go.mod go.sum .
|
||||||
|
RUN curl -fsSL https://golang.org/dl/go$(awk '/^go/ { print $2 }' go.mod).linux-$(case $(uname -m) in x86_64) echo amd64 ;; aarch64) echo arm64 ;; esac).tar.gz | tar xz -C /usr/local
|
||||||
|
ENV PATH=/usr/local/go/bin:$PATH
|
||||||
|
RUN go mod download
|
||||||
COPY . .
|
COPY . .
|
||||||
COPY --from=cpu_avx-build-amd64 /go/src/github.com/jmorganca/ollama/llm/llama.cpp/build/linux/ llm/llama.cpp/build/linux/
|
ARG GOFLAGS="'-ldflags=-w -s'"
|
||||||
COPY --from=cpu_avx2-build-amd64 /go/src/github.com/jmorganca/ollama/llm/llama.cpp/build/linux/ llm/llama.cpp/build/linux/
|
ENV CGO_ENABLED=1
|
||||||
COPY --from=cuda-build-amd64 /go/src/github.com/jmorganca/ollama/llm/llama.cpp/build/linux/ llm/llama.cpp/build/linux/
|
RUN --mount=type=cache,target=/root/.cache/go-build \
|
||||||
COPY --from=rocm-5-build-amd64 /go/src/github.com/jmorganca/ollama/llm/llama.cpp/build/linux/ llm/llama.cpp/build/linux/
|
go build -trimpath -buildmode=pie -o /bin/ollama .
|
||||||
COPY --from=rocm-6-build-amd64 /go/src/github.com/jmorganca/ollama/llm/llama.cpp/build/linux/ llm/llama.cpp/build/linux/
|
|
||||||
ARG GOFLAGS
|
|
||||||
ARG CGO_CFLAGS
|
|
||||||
RUN go build .
|
|
||||||
|
|
||||||
# Intermediate stage used for ./scripts/build_linux.sh
|
FROM --platform=linux/amd64 scratch AS amd64
|
||||||
FROM --platform=linux/arm64 cpu-build-arm64 AS build-arm64
|
COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12
|
||||||
ENV CGO_ENABLED 1
|
|
||||||
ARG GOLANG_VERSION
|
|
||||||
WORKDIR /go/src/github.com/jmorganca/ollama
|
|
||||||
COPY . .
|
|
||||||
COPY --from=cuda-build-arm64 /go/src/github.com/jmorganca/ollama/llm/llama.cpp/build/linux/ llm/llama.cpp/build/linux/
|
|
||||||
ARG GOFLAGS
|
|
||||||
ARG CGO_CFLAGS
|
|
||||||
RUN go build .
|
|
||||||
|
|
||||||
# Runtime stages
|
FROM --platform=linux/arm64 scratch AS arm64
|
||||||
FROM --platform=linux/amd64 ubuntu:22.04 as runtime-amd64
|
COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12
|
||||||
RUN apt-get update && apt-get install -y ca-certificates
|
COPY --from=jetpack-5 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_jetpack5
|
||||||
COPY --from=build-amd64 /go/src/github.com/jmorganca/ollama/ollama /bin/ollama
|
COPY --from=jetpack-6 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_jetpack6
|
||||||
FROM --platform=linux/arm64 ubuntu:22.04 as runtime-arm64
|
|
||||||
RUN apt-get update && apt-get install -y ca-certificates
|
|
||||||
COPY --from=build-arm64 /go/src/github.com/jmorganca/ollama/ollama /bin/ollama
|
|
||||||
|
|
||||||
# Radeon images are much larger so we keep it distinct from the CPU/CUDA image
|
FROM scratch AS rocm
|
||||||
FROM --platform=linux/amd64 rocm/dev-centos-7:5.7.1-complete as runtime-rocm
|
COPY --from=rocm-6 dist/lib/ollama/rocm /lib/ollama/rocm
|
||||||
RUN update-pciids
|
|
||||||
COPY --from=build-amd64 /go/src/github.com/jmorganca/ollama/ollama /bin/ollama
|
|
||||||
EXPOSE 11434
|
|
||||||
ENV OLLAMA_HOST 0.0.0.0
|
|
||||||
|
|
||||||
ENTRYPOINT ["/bin/ollama"]
|
FROM ${FLAVOR} AS archive
|
||||||
CMD ["serve"]
|
COPY --from=cpu dist/lib/ollama /lib/ollama
|
||||||
|
COPY --from=build /bin/ollama /bin/ollama
|
||||||
|
|
||||||
FROM runtime-$TARGETARCH
|
FROM ubuntu:20.04
|
||||||
EXPOSE 11434
|
RUN apt-get update \
|
||||||
ENV OLLAMA_HOST 0.0.0.0
|
&& apt-get install -y ca-certificates \
|
||||||
|
&& apt-get clean \
|
||||||
|
&& rm -rf /var/lib/apt/lists/*
|
||||||
|
COPY --from=archive /bin /usr/bin
|
||||||
ENV PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
|
ENV PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
|
||||||
|
COPY --from=archive /lib/ollama /usr/lib/ollama
|
||||||
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
|
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
|
||||||
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
|
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
|
||||||
|
ENV NVIDIA_VISIBLE_DEVICES=all
|
||||||
|
ENV OLLAMA_HOST=0.0.0.0:11434
|
||||||
|
EXPOSE 11434
|
||||||
ENTRYPOINT ["/bin/ollama"]
|
ENTRYPOINT ["/bin/ollama"]
|
||||||
CMD ["serve"]
|
CMD ["serve"]
|
||||||
|
|||||||
60
Makefile.sync
Normal file
60
Makefile.sync
Normal file
@@ -0,0 +1,60 @@
|
|||||||
|
UPSTREAM=https://github.com/ggerganov/llama.cpp.git
|
||||||
|
WORKDIR=llama/vendor
|
||||||
|
FETCH_HEAD=e1e8e0991ffd9e99a445c6812bb519d5bac9f4b5
|
||||||
|
|
||||||
|
.PHONY: help
|
||||||
|
help:
|
||||||
|
@echo "Available targets:"
|
||||||
|
@echo " sync Sync with upstream repositories"
|
||||||
|
@echo " checkout Checkout upstream repository"
|
||||||
|
@echo " apply-patches Apply patches to local repository"
|
||||||
|
@echo " format-patches Format patches from local repository"
|
||||||
|
@echo " clean Clean local repository"
|
||||||
|
@echo
|
||||||
|
@echo "Example:"
|
||||||
|
@echo " make -f $(lastword $(MAKEFILE_LIST)) clean sync"
|
||||||
|
|
||||||
|
.PHONY: sync
|
||||||
|
sync: llama/build-info.cpp llama/llama.cpp ml/backend/ggml/ggml
|
||||||
|
|
||||||
|
.PHONY: llama/build-info.cpp
|
||||||
|
llama/build-info.cpp: llama/build-info.cpp.in
|
||||||
|
sed -e 's|@FETCH_HEAD@|$(FETCH_HEAD)|' $< > $@
|
||||||
|
|
||||||
|
.PHONY: llama/llama.cpp
|
||||||
|
llama/llama.cpp: llama/vendor/
|
||||||
|
rsync -arvzc -f "merge $@/.rsync-filter" $< $@
|
||||||
|
|
||||||
|
.PHONY: ml/backend/ggml/ggml
|
||||||
|
ml/backend/ggml/ggml: llama/vendor/ggml/
|
||||||
|
rsync -arvzc -f "merge $@/.rsync-filter" $< $@
|
||||||
|
|
||||||
|
PATCHES=$(wildcard llama/patches/*.patch)
|
||||||
|
|
||||||
|
.PHONY: apply-patches
|
||||||
|
.NOTPARALLEL:
|
||||||
|
apply-patches: $(addsuffix ed, $(PATCHES))
|
||||||
|
|
||||||
|
%.patched: %.patch
|
||||||
|
@if git -c user.name=nobody -c 'user.email=<>' -C $(WORKDIR) am -3 $(realpath $<); then touch $@; else git -C $(WORKDIR) am --abort; exit 1; fi
|
||||||
|
|
||||||
|
.PHONY: checkout
|
||||||
|
checkout: $(WORKDIR)
|
||||||
|
git -C $(WORKDIR) fetch
|
||||||
|
git -C $(WORKDIR) checkout -f $(FETCH_HEAD)
|
||||||
|
|
||||||
|
$(WORKDIR):
|
||||||
|
git clone $(UPSTREAM) $(WORKDIR)
|
||||||
|
|
||||||
|
.PHONE: format-patches
|
||||||
|
format-patches: llama/patches
|
||||||
|
git -C $(WORKDIR) format-patch \
|
||||||
|
--no-signature \
|
||||||
|
--no-numbered \
|
||||||
|
--zero-commit \
|
||||||
|
-o $(realpath $<) \
|
||||||
|
$(FETCH_HEAD)
|
||||||
|
|
||||||
|
.PHONE: clean
|
||||||
|
clean: checkout
|
||||||
|
$(RM) $(addsuffix ed, $(PATCHES))
|
||||||
418
README.md
418
README.md
@@ -1,28 +1,28 @@
|
|||||||
<div align="center">
|
<div align="center">
|
||||||
<img alt="ollama" height="200px" src="https://github.com/jmorganca/ollama/assets/3325447/0d0b44e2-8f4a-4e99-9b52-a5c1c741c8f7">
|
<a href="https://ollama.com">
|
||||||
|
<img alt="ollama" height="200px" src="https://github.com/ollama/ollama/assets/3325447/0d0b44e2-8f4a-4e99-9b52-a5c1c741c8f7">
|
||||||
|
</a>
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
# Ollama
|
# Ollama
|
||||||
|
|
||||||
[](https://discord.gg/ollama)
|
Get up and running with large language models.
|
||||||
|
|
||||||
Get up and running with large language models locally.
|
|
||||||
|
|
||||||
### macOS
|
### macOS
|
||||||
|
|
||||||
[Download](https://ollama.com/download/Ollama-darwin.zip)
|
[Download](https://ollama.com/download/Ollama-darwin.zip)
|
||||||
|
|
||||||
### Windows preview
|
### Windows
|
||||||
|
|
||||||
[Download](https://ollama.com/download/OllamaSetup.exe)
|
[Download](https://ollama.com/download/OllamaSetup.exe)
|
||||||
|
|
||||||
### Linux
|
### Linux
|
||||||
|
|
||||||
```
|
```shell
|
||||||
curl -fsSL https://ollama.com/install.sh | sh
|
curl -fsSL https://ollama.com/install.sh | sh
|
||||||
```
|
```
|
||||||
|
|
||||||
[Manual install instructions](https://github.com/jmorganca/ollama/blob/main/docs/linux.md)
|
[Manual install instructions](https://github.com/ollama/ollama/blob/main/docs/linux.md)
|
||||||
|
|
||||||
### Docker
|
### Docker
|
||||||
|
|
||||||
@@ -33,12 +33,17 @@ The official [Ollama Docker image](https://hub.docker.com/r/ollama/ollama) `olla
|
|||||||
- [ollama-python](https://github.com/ollama/ollama-python)
|
- [ollama-python](https://github.com/ollama/ollama-python)
|
||||||
- [ollama-js](https://github.com/ollama/ollama-js)
|
- [ollama-js](https://github.com/ollama/ollama-js)
|
||||||
|
|
||||||
|
### Community
|
||||||
|
|
||||||
|
- [Discord](https://discord.gg/ollama)
|
||||||
|
- [Reddit](https://reddit.com/r/ollama)
|
||||||
|
|
||||||
## Quickstart
|
## Quickstart
|
||||||
|
|
||||||
To run and chat with [Llama 2](https://ollama.com/library/llama2):
|
To run and chat with [Llama 3.2](https://ollama.com/library/llama3.2):
|
||||||
|
|
||||||
```
|
```shell
|
||||||
ollama run llama2
|
ollama run llama3.2
|
||||||
```
|
```
|
||||||
|
|
||||||
## Model library
|
## Model library
|
||||||
@@ -47,23 +52,37 @@ Ollama supports a list of models available on [ollama.com/library](https://ollam
|
|||||||
|
|
||||||
Here are some example models that can be downloaded:
|
Here are some example models that can be downloaded:
|
||||||
|
|
||||||
| Model | Parameters | Size | Download |
|
| Model | Parameters | Size | Download |
|
||||||
| ------------------ | ---------- | ----- | ------------------------------ |
|
| ------------------ | ---------- | ----- | -------------------------------- |
|
||||||
| Llama 2 | 7B | 3.8GB | `ollama run llama2` |
|
| Gemma 3 | 1B | 815MB | `ollama run gemma3:1b` |
|
||||||
| Mistral | 7B | 4.1GB | `ollama run mistral` |
|
| Gemma 3 | 4B | 3.3GB | `ollama run gemma3` |
|
||||||
| Dolphin Phi | 2.7B | 1.6GB | `ollama run dolphin-phi` |
|
| Gemma 3 | 12B | 8.1GB | `ollama run gemma3:12b` |
|
||||||
| Phi-2 | 2.7B | 1.7GB | `ollama run phi` |
|
| Gemma 3 | 27B | 17GB | `ollama run gemma3:27b` |
|
||||||
| Neural Chat | 7B | 4.1GB | `ollama run neural-chat` |
|
| QwQ | 32B | 20GB | `ollama run qwq` |
|
||||||
| Starling | 7B | 4.1GB | `ollama run starling-lm` |
|
| DeepSeek-R1 | 7B | 4.7GB | `ollama run deepseek-r1` |
|
||||||
| Code Llama | 7B | 3.8GB | `ollama run codellama` |
|
| DeepSeek-R1 | 671B | 404GB | `ollama run deepseek-r1:671b` |
|
||||||
| Llama 2 Uncensored | 7B | 3.8GB | `ollama run llama2-uncensored` |
|
| Llama 4 | 109B | 67GB | `ollama run llama4:scout` |
|
||||||
| Llama 2 13B | 13B | 7.3GB | `ollama run llama2:13b` |
|
| Llama 4 | 400B | 245GB | `ollama run llama4:maverick` |
|
||||||
| Llama 2 70B | 70B | 39GB | `ollama run llama2:70b` |
|
| Llama 3.3 | 70B | 43GB | `ollama run llama3.3` |
|
||||||
| Orca Mini | 3B | 1.9GB | `ollama run orca-mini` |
|
| Llama 3.2 | 3B | 2.0GB | `ollama run llama3.2` |
|
||||||
| Vicuna | 7B | 3.8GB | `ollama run vicuna` |
|
| Llama 3.2 | 1B | 1.3GB | `ollama run llama3.2:1b` |
|
||||||
| LLaVA | 7B | 4.5GB | `ollama run llava` |
|
| Llama 3.2 Vision | 11B | 7.9GB | `ollama run llama3.2-vision` |
|
||||||
|
| Llama 3.2 Vision | 90B | 55GB | `ollama run llama3.2-vision:90b` |
|
||||||
|
| Llama 3.1 | 8B | 4.7GB | `ollama run llama3.1` |
|
||||||
|
| Llama 3.1 | 405B | 231GB | `ollama run llama3.1:405b` |
|
||||||
|
| Phi 4 | 14B | 9.1GB | `ollama run phi4` |
|
||||||
|
| Phi 4 Mini | 3.8B | 2.5GB | `ollama run phi4-mini` |
|
||||||
|
| Mistral | 7B | 4.1GB | `ollama run mistral` |
|
||||||
|
| Moondream 2 | 1.4B | 829MB | `ollama run moondream` |
|
||||||
|
| Neural Chat | 7B | 4.1GB | `ollama run neural-chat` |
|
||||||
|
| Starling | 7B | 4.1GB | `ollama run starling-lm` |
|
||||||
|
| Code Llama | 7B | 3.8GB | `ollama run codellama` |
|
||||||
|
| Llama 2 Uncensored | 7B | 3.8GB | `ollama run llama2-uncensored` |
|
||||||
|
| LLaVA | 7B | 4.5GB | `ollama run llava` |
|
||||||
|
| Granite-3.3 | 8B | 4.9GB | `ollama run granite3.3` |
|
||||||
|
|
||||||
> Note: You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
|
> [!NOTE]
|
||||||
|
> You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
|
||||||
|
|
||||||
## Customize a model
|
## Customize a model
|
||||||
|
|
||||||
@@ -79,32 +98,32 @@ Ollama supports importing GGUF models in the Modelfile:
|
|||||||
|
|
||||||
2. Create the model in Ollama
|
2. Create the model in Ollama
|
||||||
|
|
||||||
```
|
```shell
|
||||||
ollama create example -f Modelfile
|
ollama create example -f Modelfile
|
||||||
```
|
```
|
||||||
|
|
||||||
3. Run the model
|
3. Run the model
|
||||||
|
|
||||||
```
|
```shell
|
||||||
ollama run example
|
ollama run example
|
||||||
```
|
```
|
||||||
|
|
||||||
### Import from PyTorch or Safetensors
|
### Import from Safetensors
|
||||||
|
|
||||||
See the [guide](docs/import.md) on importing models for more information.
|
See the [guide](docs/import.md) on importing models for more information.
|
||||||
|
|
||||||
### Customize a prompt
|
### Customize a prompt
|
||||||
|
|
||||||
Models from the Ollama library can be customized with a prompt. For example, to customize the `llama2` model:
|
Models from the Ollama library can be customized with a prompt. For example, to customize the `llama3.2` model:
|
||||||
|
|
||||||
```
|
```shell
|
||||||
ollama pull llama2
|
ollama pull llama3.2
|
||||||
```
|
```
|
||||||
|
|
||||||
Create a `Modelfile`:
|
Create a `Modelfile`:
|
||||||
|
|
||||||
```
|
```
|
||||||
FROM llama2
|
FROM llama3.2
|
||||||
|
|
||||||
# set the temperature to 1 [higher is more creative, lower is more coherent]
|
# set the temperature to 1 [higher is more creative, lower is more coherent]
|
||||||
PARAMETER temperature 1
|
PARAMETER temperature 1
|
||||||
@@ -124,7 +143,7 @@ ollama run mario
|
|||||||
Hello! It's your friend Mario.
|
Hello! It's your friend Mario.
|
||||||
```
|
```
|
||||||
|
|
||||||
For more examples, see the [examples](examples) directory. For more information on working with a Modelfile, see the [Modelfile](docs/modelfile.md) documentation.
|
For more information on working with a Modelfile, see the [Modelfile](docs/modelfile.md) documentation.
|
||||||
|
|
||||||
## CLI Reference
|
## CLI Reference
|
||||||
|
|
||||||
@@ -132,28 +151,28 @@ For more examples, see the [examples](examples) directory. For more information
|
|||||||
|
|
||||||
`ollama create` is used to create a model from a Modelfile.
|
`ollama create` is used to create a model from a Modelfile.
|
||||||
|
|
||||||
```
|
```shell
|
||||||
ollama create mymodel -f ./Modelfile
|
ollama create mymodel -f ./Modelfile
|
||||||
```
|
```
|
||||||
|
|
||||||
### Pull a model
|
### Pull a model
|
||||||
|
|
||||||
```
|
```shell
|
||||||
ollama pull llama2
|
ollama pull llama3.2
|
||||||
```
|
```
|
||||||
|
|
||||||
> This command can also be used to update a local model. Only the diff will be pulled.
|
> This command can also be used to update a local model. Only the diff will be pulled.
|
||||||
|
|
||||||
### Remove a model
|
### Remove a model
|
||||||
|
|
||||||
```
|
```shell
|
||||||
ollama rm llama2
|
ollama rm llama3.2
|
||||||
```
|
```
|
||||||
|
|
||||||
### Copy a model
|
### Copy a model
|
||||||
|
|
||||||
```
|
```shell
|
||||||
ollama cp llama2 my-llama2
|
ollama cp llama3.2 my-model
|
||||||
```
|
```
|
||||||
|
|
||||||
### Multiline input
|
### Multiline input
|
||||||
@@ -170,61 +189,63 @@ I'm a basic program that prints the famous "Hello, world!" message to the consol
|
|||||||
### Multimodal models
|
### Multimodal models
|
||||||
|
|
||||||
```
|
```
|
||||||
>>> What's in this image? /Users/jmorgan/Desktop/smile.png
|
ollama run llava "What's in this image? /Users/jmorgan/Desktop/smile.png"
|
||||||
The image features a yellow smiley face, which is likely the central focus of the picture.
|
|
||||||
```
|
```
|
||||||
|
|
||||||
### Pass in prompt as arguments
|
> **Output**: The image features a yellow smiley face, which is likely the central focus of the picture.
|
||||||
|
|
||||||
|
### Pass the prompt as an argument
|
||||||
|
|
||||||
|
```shell
|
||||||
|
ollama run llama3.2 "Summarize this file: $(cat README.md)"
|
||||||
```
|
```
|
||||||
$ ollama run llama2 "Summarize this file: $(cat README.md)"
|
|
||||||
Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.
|
> **Output**: Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.
|
||||||
|
|
||||||
|
### Show model information
|
||||||
|
|
||||||
|
```shell
|
||||||
|
ollama show llama3.2
|
||||||
```
|
```
|
||||||
|
|
||||||
### List models on your computer
|
### List models on your computer
|
||||||
|
|
||||||
```
|
```shell
|
||||||
ollama list
|
ollama list
|
||||||
```
|
```
|
||||||
|
|
||||||
|
### List which models are currently loaded
|
||||||
|
|
||||||
|
```shell
|
||||||
|
ollama ps
|
||||||
|
```
|
||||||
|
|
||||||
|
### Stop a model which is currently running
|
||||||
|
|
||||||
|
```shell
|
||||||
|
ollama stop llama3.2
|
||||||
|
```
|
||||||
|
|
||||||
### Start Ollama
|
### Start Ollama
|
||||||
|
|
||||||
`ollama serve` is used when you want to start ollama without running the desktop application.
|
`ollama serve` is used when you want to start ollama without running the desktop application.
|
||||||
|
|
||||||
## Building
|
## Building
|
||||||
|
|
||||||
Install `cmake` and `go`:
|
See the [developer guide](https://github.com/ollama/ollama/blob/main/docs/development.md)
|
||||||
|
|
||||||
```
|
|
||||||
brew install cmake go
|
|
||||||
```
|
|
||||||
|
|
||||||
Then generate dependencies:
|
|
||||||
|
|
||||||
```
|
|
||||||
go generate ./...
|
|
||||||
```
|
|
||||||
|
|
||||||
Then build the binary:
|
|
||||||
|
|
||||||
```
|
|
||||||
go build .
|
|
||||||
```
|
|
||||||
|
|
||||||
More detailed instructions can be found in the [developer guide](https://github.com/jmorganca/ollama/blob/main/docs/development.md)
|
|
||||||
|
|
||||||
### Running local builds
|
### Running local builds
|
||||||
|
|
||||||
Next, start the server:
|
Next, start the server:
|
||||||
|
|
||||||
```
|
```shell
|
||||||
./ollama serve
|
./ollama serve
|
||||||
```
|
```
|
||||||
|
|
||||||
Finally, in a separate shell, run a model:
|
Finally, in a separate shell, run a model:
|
||||||
|
|
||||||
```
|
```shell
|
||||||
./ollama run llama2
|
./ollama run llama3.2
|
||||||
```
|
```
|
||||||
|
|
||||||
## REST API
|
## REST API
|
||||||
@@ -233,18 +254,18 @@ Ollama has a REST API for running and managing models.
|
|||||||
|
|
||||||
### Generate a response
|
### Generate a response
|
||||||
|
|
||||||
```
|
```shell
|
||||||
curl http://localhost:11434/api/generate -d '{
|
curl http://localhost:11434/api/generate -d '{
|
||||||
"model": "llama2",
|
"model": "llama3.2",
|
||||||
"prompt":"Why is the sky blue?"
|
"prompt":"Why is the sky blue?"
|
||||||
}'
|
}'
|
||||||
```
|
```
|
||||||
|
|
||||||
### Chat with a model
|
### Chat with a model
|
||||||
|
|
||||||
```
|
```shell
|
||||||
curl http://localhost:11434/api/chat -d '{
|
curl http://localhost:11434/api/chat -d '{
|
||||||
"model": "mistral",
|
"model": "llama3.2",
|
||||||
"messages": [
|
"messages": [
|
||||||
{ "role": "user", "content": "why is the sky blue?" }
|
{ "role": "user", "content": "why is the sky blue?" }
|
||||||
]
|
]
|
||||||
@@ -257,57 +278,219 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
|||||||
|
|
||||||
### Web & Desktop
|
### Web & Desktop
|
||||||
|
|
||||||
|
- [Open WebUI](https://github.com/open-webui/open-webui)
|
||||||
|
- [SwiftChat (macOS with ReactNative)](https://github.com/aws-samples/swift-chat)
|
||||||
|
- [Enchanted (macOS native)](https://github.com/AugustDev/enchanted)
|
||||||
|
- [Hollama](https://github.com/fmaclen/hollama)
|
||||||
|
- [Lollms-Webui](https://github.com/ParisNeo/lollms-webui)
|
||||||
|
- [LibreChat](https://github.com/danny-avila/LibreChat)
|
||||||
- [Bionic GPT](https://github.com/bionic-gpt/bionic-gpt)
|
- [Bionic GPT](https://github.com/bionic-gpt/bionic-gpt)
|
||||||
- [HTML UI](https://github.com/rtcfirefly/ollama-ui)
|
- [HTML UI](https://github.com/rtcfirefly/ollama-ui)
|
||||||
|
- [Saddle](https://github.com/jikkuatwork/saddle)
|
||||||
|
- [TagSpaces](https://www.tagspaces.org) (A platform for file-based apps, [utilizing Ollama](https://docs.tagspaces.org/ai/) for the generation of tags and descriptions)
|
||||||
- [Chatbot UI](https://github.com/ivanfioravanti/chatbot-ollama)
|
- [Chatbot UI](https://github.com/ivanfioravanti/chatbot-ollama)
|
||||||
|
- [Chatbot UI v2](https://github.com/mckaywrigley/chatbot-ui)
|
||||||
- [Typescript UI](https://github.com/ollama-interface/Ollama-Gui?tab=readme-ov-file)
|
- [Typescript UI](https://github.com/ollama-interface/Ollama-Gui?tab=readme-ov-file)
|
||||||
- [Minimalistic React UI for Ollama Models](https://github.com/richawo/minimal-llm-ui)
|
- [Minimalistic React UI for Ollama Models](https://github.com/richawo/minimal-llm-ui)
|
||||||
- [Open WebUI](https://github.com/open-webui/open-webui)
|
|
||||||
- [Ollamac](https://github.com/kevinhermawan/Ollamac)
|
- [Ollamac](https://github.com/kevinhermawan/Ollamac)
|
||||||
- [big-AGI](https://github.com/enricoros/big-agi/blob/main/docs/config-ollama.md)
|
- [big-AGI](https://github.com/enricoros/big-AGI)
|
||||||
- [Cheshire Cat assistant framework](https://github.com/cheshire-cat-ai/core)
|
- [Cheshire Cat assistant framework](https://github.com/cheshire-cat-ai/core)
|
||||||
- [Amica](https://github.com/semperai/amica)
|
- [Amica](https://github.com/semperai/amica)
|
||||||
- [chatd](https://github.com/BruceMacD/chatd)
|
- [chatd](https://github.com/BruceMacD/chatd)
|
||||||
- [Ollama-SwiftUI](https://github.com/kghandour/Ollama-SwiftUI)
|
- [Ollama-SwiftUI](https://github.com/kghandour/Ollama-SwiftUI)
|
||||||
|
- [Dify.AI](https://github.com/langgenius/dify)
|
||||||
- [MindMac](https://mindmac.app)
|
- [MindMac](https://mindmac.app)
|
||||||
- [NextJS Web Interface for Ollama](https://github.com/jakobhoeg/nextjs-ollama-llm-ui)
|
- [NextJS Web Interface for Ollama](https://github.com/jakobhoeg/nextjs-ollama-llm-ui)
|
||||||
|
- [Msty](https://msty.app)
|
||||||
|
- [Chatbox](https://github.com/Bin-Huang/Chatbox)
|
||||||
|
- [WinForm Ollama Copilot](https://github.com/tgraupmann/WinForm_Ollama_Copilot)
|
||||||
|
- [NextChat](https://github.com/ChatGPTNextWeb/ChatGPT-Next-Web) with [Get Started Doc](https://docs.nextchat.dev/models/ollama)
|
||||||
|
- [Alpaca WebUI](https://github.com/mmo80/alpaca-webui)
|
||||||
|
- [OllamaGUI](https://github.com/enoch1118/ollamaGUI)
|
||||||
|
- [OpenAOE](https://github.com/InternLM/OpenAOE)
|
||||||
|
- [Odin Runes](https://github.com/leonid20000/OdinRunes)
|
||||||
|
- [LLM-X](https://github.com/mrdjohnson/llm-x) (Progressive Web App)
|
||||||
|
- [AnythingLLM (Docker + MacOs/Windows/Linux native app)](https://github.com/Mintplex-Labs/anything-llm)
|
||||||
|
- [Ollama Basic Chat: Uses HyperDiv Reactive UI](https://github.com/rapidarchitect/ollama_basic_chat)
|
||||||
|
- [Ollama-chats RPG](https://github.com/drazdra/ollama-chats)
|
||||||
|
- [IntelliBar](https://intellibar.app/) (AI-powered assistant for macOS)
|
||||||
|
- [Jirapt](https://github.com/AliAhmedNada/jirapt) (Jira Integration to generate issues, tasks, epics)
|
||||||
|
- [QA-Pilot](https://github.com/reid41/QA-Pilot) (Interactive chat tool that can leverage Ollama models for rapid understanding and navigation of GitHub code repositories)
|
||||||
|
- [ChatOllama](https://github.com/sugarforever/chat-ollama) (Open Source Chatbot based on Ollama with Knowledge Bases)
|
||||||
|
- [CRAG Ollama Chat](https://github.com/Nagi-ovo/CRAG-Ollama-Chat) (Simple Web Search with Corrective RAG)
|
||||||
|
- [RAGFlow](https://github.com/infiniflow/ragflow) (Open-source Retrieval-Augmented Generation engine based on deep document understanding)
|
||||||
|
- [StreamDeploy](https://github.com/StreamDeploy-DevRel/streamdeploy-llm-app-scaffold) (LLM Application Scaffold)
|
||||||
|
- [chat](https://github.com/swuecho/chat) (chat web app for teams)
|
||||||
|
- [Lobe Chat](https://github.com/lobehub/lobe-chat) with [Integrating Doc](https://lobehub.com/docs/self-hosting/examples/ollama)
|
||||||
|
- [Ollama RAG Chatbot](https://github.com/datvodinh/rag-chatbot.git) (Local Chat with multiple PDFs using Ollama and RAG)
|
||||||
|
- [BrainSoup](https://www.nurgo-software.com/products/brainsoup) (Flexible native client with RAG & multi-agent automation)
|
||||||
|
- [macai](https://github.com/Renset/macai) (macOS client for Ollama, ChatGPT, and other compatible API back-ends)
|
||||||
|
- [RWKV-Runner](https://github.com/josStorer/RWKV-Runner) (RWKV offline LLM deployment tool, also usable as a client for ChatGPT and Ollama)
|
||||||
|
- [Ollama Grid Search](https://github.com/dezoito/ollama-grid-search) (app to evaluate and compare models)
|
||||||
|
- [Olpaka](https://github.com/Otacon/olpaka) (User-friendly Flutter Web App for Ollama)
|
||||||
|
- [Casibase](https://casibase.org) (An open source AI knowledge base and dialogue system combining the latest RAG, SSO, ollama support, and multiple large language models.)
|
||||||
|
- [OllamaSpring](https://github.com/CrazyNeil/OllamaSpring) (Ollama Client for macOS)
|
||||||
|
- [LLocal.in](https://github.com/kartikm7/llocal) (Easy to use Electron Desktop Client for Ollama)
|
||||||
|
- [Shinkai Desktop](https://github.com/dcSpark/shinkai-apps) (Two click install Local AI using Ollama + Files + RAG)
|
||||||
|
- [AiLama](https://github.com/zeyoyt/ailama) (A Discord User App that allows you to interact with Ollama anywhere in Discord)
|
||||||
|
- [Ollama with Google Mesop](https://github.com/rapidarchitect/ollama_mesop/) (Mesop Chat Client implementation with Ollama)
|
||||||
|
- [R2R](https://github.com/SciPhi-AI/R2R) (Open-source RAG engine)
|
||||||
|
- [Ollama-Kis](https://github.com/elearningshow/ollama-kis) (A simple easy-to-use GUI with sample custom LLM for Drivers Education)
|
||||||
|
- [OpenGPA](https://opengpa.org) (Open-source offline-first Enterprise Agentic Application)
|
||||||
|
- [Painting Droid](https://github.com/mateuszmigas/painting-droid) (Painting app with AI integrations)
|
||||||
|
- [Kerlig AI](https://www.kerlig.com/) (AI writing assistant for macOS)
|
||||||
|
- [AI Studio](https://github.com/MindWorkAI/AI-Studio)
|
||||||
|
- [Sidellama](https://github.com/gyopak/sidellama) (browser-based LLM client)
|
||||||
|
- [LLMStack](https://github.com/trypromptly/LLMStack) (No-code multi-agent framework to build LLM agents and workflows)
|
||||||
|
- [BoltAI for Mac](https://boltai.com) (AI Chat Client for Mac)
|
||||||
|
- [Harbor](https://github.com/av/harbor) (Containerized LLM Toolkit with Ollama as default backend)
|
||||||
|
- [PyGPT](https://github.com/szczyglis-dev/py-gpt) (AI desktop assistant for Linux, Windows, and Mac)
|
||||||
|
- [Alpaca](https://github.com/Jeffser/Alpaca) (An Ollama client application for Linux and macOS made with GTK4 and Adwaita)
|
||||||
|
- [AutoGPT](https://github.com/Significant-Gravitas/AutoGPT/blob/master/docs/content/platform/ollama.md) (AutoGPT Ollama integration)
|
||||||
|
- [Go-CREW](https://www.jonathanhecl.com/go-crew/) (Powerful Offline RAG in Golang)
|
||||||
|
- [PartCAD](https://github.com/openvmp/partcad/) (CAD model generation with OpenSCAD and CadQuery)
|
||||||
|
- [Ollama4j Web UI](https://github.com/ollama4j/ollama4j-web-ui) - Java-based Web UI for Ollama built with Vaadin, Spring Boot, and Ollama4j
|
||||||
|
- [PyOllaMx](https://github.com/kspviswa/pyOllaMx) - macOS application capable of chatting with both Ollama and Apple MLX models.
|
||||||
|
- [Cline](https://github.com/cline/cline) - Formerly known as Claude Dev is a VSCode extension for multi-file/whole-repo coding
|
||||||
|
- [Cherry Studio](https://github.com/kangfenmao/cherry-studio) (Desktop client with Ollama support)
|
||||||
|
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy-focused LLM chat interface with optional encryption)
|
||||||
|
- [Archyve](https://github.com/nickthecook/archyve) (RAG-enabling document library)
|
||||||
|
- [crewAI with Mesop](https://github.com/rapidarchitect/ollama-crew-mesop) (Mesop Web Interface to run crewAI with Ollama)
|
||||||
|
- [Tkinter-based client](https://github.com/chyok/ollama-gui) (Python tkinter-based Client for Ollama)
|
||||||
|
- [LLMChat](https://github.com/trendy-design/llmchat) (Privacy focused, 100% local, intuitive all-in-one chat interface)
|
||||||
|
- [Local Multimodal AI Chat](https://github.com/Leon-Sander/Local-Multimodal-AI-Chat) (Ollama-based LLM Chat with support for multiple features, including PDF RAG, voice chat, image-based interactions, and integration with OpenAI.)
|
||||||
|
- [ARGO](https://github.com/xark-argo/argo) (Locally download and run Ollama and Huggingface models with RAG on Mac/Windows/Linux)
|
||||||
|
- [OrionChat](https://github.com/EliasPereirah/OrionChat) - OrionChat is a web interface for chatting with different AI providers
|
||||||
|
- [G1](https://github.com/bklieger-groq/g1) (Prototype of using prompting strategies to improve the LLM's reasoning through o1-like reasoning chains.)
|
||||||
|
- [Web management](https://github.com/lemonit-eric-mao/ollama-web-management) (Web management page)
|
||||||
|
- [Promptery](https://github.com/promptery/promptery) (desktop client for Ollama.)
|
||||||
|
- [Ollama App](https://github.com/JHubi1/ollama-app) (Modern and easy-to-use multi-platform client for Ollama)
|
||||||
|
- [chat-ollama](https://github.com/annilq/chat-ollama) (a React Native client for Ollama)
|
||||||
|
- [SpaceLlama](https://github.com/tcsenpai/spacellama) (Firefox and Chrome extension to quickly summarize web pages with ollama in a sidebar)
|
||||||
|
- [YouLama](https://github.com/tcsenpai/youlama) (Webapp to quickly summarize any YouTube video, supporting Invidious as well)
|
||||||
|
- [DualMind](https://github.com/tcsenpai/dualmind) (Experimental app allowing two models to talk to each other in the terminal or in a web interface)
|
||||||
|
- [ollamarama-matrix](https://github.com/h1ddenpr0cess20/ollamarama-matrix) (Ollama chatbot for the Matrix chat protocol)
|
||||||
|
- [ollama-chat-app](https://github.com/anan1213095357/ollama-chat-app) (Flutter-based chat app)
|
||||||
|
- [Perfect Memory AI](https://www.perfectmemory.ai/) (Productivity AI assists personalized by what you have seen on your screen, heard, and said in the meetings)
|
||||||
|
- [Hexabot](https://github.com/hexastack/hexabot) (A conversational AI builder)
|
||||||
|
- [Reddit Rate](https://github.com/rapidarchitect/reddit_analyzer) (Search and Rate Reddit topics with a weighted summation)
|
||||||
|
- [OpenTalkGpt](https://github.com/adarshM84/OpenTalkGpt) (Chrome Extension to manage open-source models supported by Ollama, create custom models, and chat with models from a user-friendly UI)
|
||||||
|
- [VT](https://github.com/vinhnx/vt.ai) (A minimal multimodal AI chat app, with dynamic conversation routing. Supports local models via Ollama)
|
||||||
|
- [Nosia](https://github.com/nosia-ai/nosia) (Easy to install and use RAG platform based on Ollama)
|
||||||
|
- [Witsy](https://github.com/nbonamy/witsy) (An AI Desktop application available for Mac/Windows/Linux)
|
||||||
|
- [Abbey](https://github.com/US-Artificial-Intelligence/abbey) (A configurable AI interface server with notebooks, document storage, and YouTube support)
|
||||||
|
- [Minima](https://github.com/dmayboroda/minima) (RAG with on-premises or fully local workflow)
|
||||||
|
- [aidful-ollama-model-delete](https://github.com/AidfulAI/aidful-ollama-model-delete) (User interface for simplified model cleanup)
|
||||||
|
- [Perplexica](https://github.com/ItzCrazyKns/Perplexica) (An AI-powered search engine & an open-source alternative to Perplexity AI)
|
||||||
|
- [Ollama Chat WebUI for Docker ](https://github.com/oslook/ollama-webui) (Support for local docker deployment, lightweight ollama webui)
|
||||||
|
- [AI Toolkit for Visual Studio Code](https://aka.ms/ai-tooklit/ollama-docs) (Microsoft-official VSCode extension to chat, test, evaluate models with Ollama support, and use them in your AI applications.)
|
||||||
|
- [MinimalNextOllamaChat](https://github.com/anilkay/MinimalNextOllamaChat) (Minimal Web UI for Chat and Model Control)
|
||||||
|
- [Chipper](https://github.com/TilmanGriesel/chipper) AI interface for tinkerers (Ollama, Haystack RAG, Python)
|
||||||
|
- [ChibiChat](https://github.com/CosmicEventHorizon/ChibiChat) (Kotlin-based Android app to chat with Ollama and Koboldcpp API endpoints)
|
||||||
|
- [LocalLLM](https://github.com/qusaismael/localllm) (Minimal Web-App to run ollama models on it with a GUI)
|
||||||
|
- [Ollamazing](https://github.com/buiducnhat/ollamazing) (Web extension to run Ollama models)
|
||||||
|
- [OpenDeepResearcher-via-searxng](https://github.com/benhaotang/OpenDeepResearcher-via-searxng) (A Deep Research equivalent endpoint with Ollama support for running locally)
|
||||||
|
- [AntSK](https://github.com/AIDotNet/AntSK) (Out-of-the-box & Adaptable RAG Chatbot)
|
||||||
|
- [MaxKB](https://github.com/1Panel-dev/MaxKB/) (Ready-to-use & flexible RAG Chatbot)
|
||||||
|
- [yla](https://github.com/danielekp/yla) (Web interface to freely interact with your customized models)
|
||||||
|
- [LangBot](https://github.com/RockChinQ/LangBot) (LLM-based instant messaging bots platform, with Agents, RAG features, supports multiple platforms)
|
||||||
|
- [1Panel](https://github.com/1Panel-dev/1Panel/) (Web-based Linux Server Management Tool)
|
||||||
|
- [AstrBot](https://github.com/Soulter/AstrBot/) (User-friendly LLM-based multi-platform chatbot with a WebUI, supporting RAG, LLM agents, and plugins integration)
|
||||||
|
- [Reins](https://github.com/ibrahimcetin/reins) (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)
|
||||||
|
- [Flufy](https://github.com/Aharon-Bensadoun/Flufy) (A beautiful chat interface for interacting with Ollama's API. Built with React, TypeScript, and Material-UI.)
|
||||||
|
- [Ellama](https://github.com/zeozeozeo/ellama) (Friendly native app to chat with an Ollama instance)
|
||||||
|
- [screenpipe](https://github.com/mediar-ai/screenpipe) Build agents powered by your screen history
|
||||||
|
- [Ollamb](https://github.com/hengkysteen/ollamb) (Simple yet rich in features, cross-platform built with Flutter and designed for Ollama. Try the [web demo](https://hengkysteen.github.io/demo/ollamb/).)
|
||||||
|
- [Writeopia](https://github.com/Writeopia/Writeopia) (Text editor with integration with Ollama)
|
||||||
|
- [AppFlowy](https://github.com/AppFlowy-IO/AppFlowy) (AI collaborative workspace with Ollama, cross-platform and self-hostable)
|
||||||
|
- [Lumina](https://github.com/cushydigit/lumina.git) (A lightweight, minimal React.js frontend for interacting with Ollama servers)
|
||||||
|
|
||||||
|
### Cloud
|
||||||
|
|
||||||
|
- [Google Cloud](https://cloud.google.com/run/docs/tutorials/gpu-gemma2-with-ollama)
|
||||||
|
- [Fly.io](https://fly.io/docs/python/do-more/add-ollama/)
|
||||||
|
- [Koyeb](https://www.koyeb.com/deploy/ollama)
|
||||||
|
|
||||||
### Terminal
|
### Terminal
|
||||||
|
|
||||||
- [oterm](https://github.com/ggozad/oterm)
|
- [oterm](https://github.com/ggozad/oterm)
|
||||||
- [Ellama Emacs client](https://github.com/s-kostyaev/ellama)
|
- [Ellama Emacs client](https://github.com/s-kostyaev/ellama)
|
||||||
- [Emacs client](https://github.com/zweifisch/ollama)
|
- [Emacs client](https://github.com/zweifisch/ollama)
|
||||||
|
- [neollama](https://github.com/paradoxical-dev/neollama) UI client for interacting with models from within Neovim
|
||||||
- [gen.nvim](https://github.com/David-Kunz/gen.nvim)
|
- [gen.nvim](https://github.com/David-Kunz/gen.nvim)
|
||||||
- [ollama.nvim](https://github.com/nomnivore/ollama.nvim)
|
- [ollama.nvim](https://github.com/nomnivore/ollama.nvim)
|
||||||
|
- [ollero.nvim](https://github.com/marco-souza/ollero.nvim)
|
||||||
- [ollama-chat.nvim](https://github.com/gerazov/ollama-chat.nvim)
|
- [ollama-chat.nvim](https://github.com/gerazov/ollama-chat.nvim)
|
||||||
- [ogpt.nvim](https://github.com/huynle/ogpt.nvim)
|
- [ogpt.nvim](https://github.com/huynle/ogpt.nvim)
|
||||||
- [gptel Emacs client](https://github.com/karthink/gptel)
|
- [gptel Emacs client](https://github.com/karthink/gptel)
|
||||||
- [Oatmeal](https://github.com/dustinblackman/oatmeal)
|
- [Oatmeal](https://github.com/dustinblackman/oatmeal)
|
||||||
- [cmdh](https://github.com/pgibler/cmdh)
|
- [cmdh](https://github.com/pgibler/cmdh)
|
||||||
|
- [ooo](https://github.com/npahlfer/ooo)
|
||||||
|
- [shell-pilot](https://github.com/reid41/shell-pilot)(Interact with models via pure shell scripts on Linux or macOS)
|
||||||
- [tenere](https://github.com/pythops/tenere)
|
- [tenere](https://github.com/pythops/tenere)
|
||||||
- [llm-ollama](https://github.com/taketwo/llm-ollama) for [Datasette's LLM CLI](https://llm.datasette.io/en/stable/).
|
- [llm-ollama](https://github.com/taketwo/llm-ollama) for [Datasette's LLM CLI](https://llm.datasette.io/en/stable/).
|
||||||
|
- [typechat-cli](https://github.com/anaisbetts/typechat-cli)
|
||||||
- [ShellOracle](https://github.com/djcopley/ShellOracle)
|
- [ShellOracle](https://github.com/djcopley/ShellOracle)
|
||||||
|
- [tlm](https://github.com/yusufcanb/tlm)
|
||||||
|
- [podman-ollama](https://github.com/ericcurtin/podman-ollama)
|
||||||
|
- [gollama](https://github.com/sammcj/gollama)
|
||||||
|
- [ParLlama](https://github.com/paulrobello/parllama)
|
||||||
|
- [Ollama eBook Summary](https://github.com/cognitivetech/ollama-ebook-summary/)
|
||||||
|
- [Ollama Mixture of Experts (MOE) in 50 lines of code](https://github.com/rapidarchitect/ollama_moe)
|
||||||
|
- [vim-intelligence-bridge](https://github.com/pepo-ec/vim-intelligence-bridge) Simple interaction of "Ollama" with the Vim editor
|
||||||
|
- [x-cmd ollama](https://x-cmd.com/mod/ollama)
|
||||||
|
- [bb7](https://github.com/drunkwcodes/bb7)
|
||||||
|
- [SwollamaCLI](https://github.com/marcusziade/Swollama) bundled with the Swollama Swift package. [Demo](https://github.com/marcusziade/Swollama?tab=readme-ov-file#cli-usage)
|
||||||
|
- [aichat](https://github.com/sigoden/aichat) All-in-one LLM CLI tool featuring Shell Assistant, Chat-REPL, RAG, AI tools & agents, with access to OpenAI, Claude, Gemini, Ollama, Groq, and more.
|
||||||
|
- [PowershAI](https://github.com/rrg92/powershai) PowerShell module that brings AI to terminal on Windows, including support for Ollama
|
||||||
|
- [DeepShell](https://github.com/Abyss-c0re/deepshell) Your self-hosted AI assistant. Interactive Shell, Files and Folders analysis.
|
||||||
|
- [orbiton](https://github.com/xyproto/orbiton) Configuration-free text editor and IDE with support for tab completion with Ollama.
|
||||||
|
- [orca-cli](https://github.com/molbal/orca-cli) Ollama Registry CLI Application - Browse, pull, and download models from Ollama Registry in your terminal.
|
||||||
|
- [GGUF-to-Ollama](https://github.com/jonathanhecl/gguf-to-ollama) - Importing GGUF to Ollama made easy (multiplatform)
|
||||||
|
|
||||||
|
### Apple Vision Pro
|
||||||
|
|
||||||
|
- [SwiftChat](https://github.com/aws-samples/swift-chat) (Cross-platform AI chat app supporting Apple Vision Pro via "Designed for iPad")
|
||||||
|
- [Enchanted](https://github.com/AugustDev/enchanted)
|
||||||
|
|
||||||
### Database
|
### Database
|
||||||
|
|
||||||
- [MindsDB](https://github.com/mindsdb/mindsdb/blob/staging/mindsdb/integrations/handlers/ollama_handler/README.md)
|
- [pgai](https://github.com/timescale/pgai) - PostgreSQL as a vector database (Create and search embeddings from Ollama models using pgvector)
|
||||||
|
- [Get started guide](https://github.com/timescale/pgai/blob/main/docs/vectorizer-quick-start.md)
|
||||||
|
- [MindsDB](https://github.com/mindsdb/mindsdb/blob/staging/mindsdb/integrations/handlers/ollama_handler/README.md) (Connects Ollama models with nearly 200 data platforms and apps)
|
||||||
|
- [chromem-go](https://github.com/philippgille/chromem-go/blob/v0.5.0/embed_ollama.go) with [example](https://github.com/philippgille/chromem-go/tree/v0.5.0/examples/rag-wikipedia-ollama)
|
||||||
|
- [Kangaroo](https://github.com/dbkangaroo/kangaroo) (AI-powered SQL client and admin tool for popular databases)
|
||||||
|
|
||||||
### Package managers
|
### Package managers
|
||||||
|
|
||||||
- [Pacman](https://archlinux.org/packages/extra/x86_64/ollama/)
|
- [Pacman](https://archlinux.org/packages/extra/x86_64/ollama/)
|
||||||
|
- [Gentoo](https://github.com/gentoo/guru/tree/master/app-misc/ollama)
|
||||||
|
- [Homebrew](https://formulae.brew.sh/formula/ollama)
|
||||||
- [Helm Chart](https://artifacthub.io/packages/helm/ollama-helm/ollama)
|
- [Helm Chart](https://artifacthub.io/packages/helm/ollama-helm/ollama)
|
||||||
|
- [Guix channel](https://codeberg.org/tusharhero/ollama-guix)
|
||||||
|
- [Nix package](https://search.nixos.org/packages?show=ollama&from=0&size=50&sort=relevance&type=packages&query=ollama)
|
||||||
|
- [Flox](https://flox.dev/blog/ollama-part-one)
|
||||||
|
|
||||||
### Libraries
|
### Libraries
|
||||||
|
|
||||||
- [LangChain](https://python.langchain.com/docs/integrations/llms/ollama) and [LangChain.js](https://js.langchain.com/docs/modules/model_io/models/llms/integrations/ollama) with [example](https://js.langchain.com/docs/use_cases/question_answering/local_retrieval_qa)
|
- [LangChain](https://python.langchain.com/docs/integrations/chat/ollama/) and [LangChain.js](https://js.langchain.com/docs/integrations/chat/ollama/) with [example](https://js.langchain.com/docs/tutorials/local_rag/)
|
||||||
|
- [Firebase Genkit](https://firebase.google.com/docs/genkit/plugins/ollama)
|
||||||
|
- [crewAI](https://github.com/crewAIInc/crewAI)
|
||||||
|
- [Yacana](https://remembersoftwares.github.io/yacana/) (User-friendly multi-agent framework for brainstorming and executing predetermined flows with built-in tool integration)
|
||||||
|
- [Spring AI](https://github.com/spring-projects/spring-ai) with [reference](https://docs.spring.io/spring-ai/reference/api/chat/ollama-chat.html) and [example](https://github.com/tzolov/ollama-tools)
|
||||||
- [LangChainGo](https://github.com/tmc/langchaingo/) with [example](https://github.com/tmc/langchaingo/tree/main/examples/ollama-completion-example)
|
- [LangChainGo](https://github.com/tmc/langchaingo/) with [example](https://github.com/tmc/langchaingo/tree/main/examples/ollama-completion-example)
|
||||||
- [LlamaIndex](https://gpt-index.readthedocs.io/en/stable/examples/llm/ollama.html)
|
- [LangChain4j](https://github.com/langchain4j/langchain4j) with [example](https://github.com/langchain4j/langchain4j-examples/tree/main/ollama-examples/src/main/java)
|
||||||
- [LangChain4j](https://github.com/langchain4j/langchain4j/tree/main/langchain4j-ollama)
|
- [LangChainRust](https://github.com/Abraxas-365/langchain-rust) with [example](https://github.com/Abraxas-365/langchain-rust/blob/main/examples/llm_ollama.rs)
|
||||||
|
- [LangChain for .NET](https://github.com/tryAGI/LangChain) with [example](https://github.com/tryAGI/LangChain/blob/main/examples/LangChain.Samples.OpenAI/Program.cs)
|
||||||
|
- [LLPhant](https://github.com/theodo-group/LLPhant?tab=readme-ov-file#ollama)
|
||||||
|
- [LlamaIndex](https://docs.llamaindex.ai/en/stable/examples/llm/ollama/) and [LlamaIndexTS](https://ts.llamaindex.ai/modules/llms/available_llms/ollama)
|
||||||
- [LiteLLM](https://github.com/BerriAI/litellm)
|
- [LiteLLM](https://github.com/BerriAI/litellm)
|
||||||
|
- [OllamaFarm for Go](https://github.com/presbrey/ollamafarm)
|
||||||
- [OllamaSharp for .NET](https://github.com/awaescher/OllamaSharp)
|
- [OllamaSharp for .NET](https://github.com/awaescher/OllamaSharp)
|
||||||
- [Ollama for Ruby](https://github.com/gbaptista/ollama-ai)
|
- [Ollama for Ruby](https://github.com/gbaptista/ollama-ai)
|
||||||
- [Ollama-rs for Rust](https://github.com/pepperoni21/ollama-rs)
|
- [Ollama-rs for Rust](https://github.com/pepperoni21/ollama-rs)
|
||||||
- [Ollama4j for Java](https://github.com/amithkoujalgi/ollama4j)
|
- [Ollama-hpp for C++](https://github.com/jmont-dev/ollama-hpp)
|
||||||
|
- [Ollama4j for Java](https://github.com/ollama4j/ollama4j)
|
||||||
- [ModelFusion Typescript Library](https://modelfusion.dev/integration/model-provider/ollama)
|
- [ModelFusion Typescript Library](https://modelfusion.dev/integration/model-provider/ollama)
|
||||||
- [OllamaKit for Swift](https://github.com/kevinhermawan/OllamaKit)
|
- [OllamaKit for Swift](https://github.com/kevinhermawan/OllamaKit)
|
||||||
- [Ollama for Dart](https://github.com/breitburg/dart-ollama)
|
- [Ollama for Dart](https://github.com/breitburg/dart-ollama)
|
||||||
@@ -315,28 +498,99 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
|||||||
- [LangChainDart](https://github.com/davidmigloz/langchain_dart)
|
- [LangChainDart](https://github.com/davidmigloz/langchain_dart)
|
||||||
- [Semantic Kernel - Python](https://github.com/microsoft/semantic-kernel/tree/main/python/semantic_kernel/connectors/ai/ollama)
|
- [Semantic Kernel - Python](https://github.com/microsoft/semantic-kernel/tree/main/python/semantic_kernel/connectors/ai/ollama)
|
||||||
- [Haystack](https://github.com/deepset-ai/haystack-integrations/blob/main/integrations/ollama.md)
|
- [Haystack](https://github.com/deepset-ai/haystack-integrations/blob/main/integrations/ollama.md)
|
||||||
|
- [Elixir LangChain](https://github.com/brainlid/langchain)
|
||||||
- [Ollama for R - rollama](https://github.com/JBGruber/rollama)
|
- [Ollama for R - rollama](https://github.com/JBGruber/rollama)
|
||||||
|
- [Ollama for R - ollama-r](https://github.com/hauselin/ollama-r)
|
||||||
- [Ollama-ex for Elixir](https://github.com/lebrunel/ollama-ex)
|
- [Ollama-ex for Elixir](https://github.com/lebrunel/ollama-ex)
|
||||||
|
- [Ollama Connector for SAP ABAP](https://github.com/b-tocs/abap_btocs_ollama)
|
||||||
|
- [Testcontainers](https://testcontainers.com/modules/ollama/)
|
||||||
|
- [Portkey](https://portkey.ai/docs/welcome/integration-guides/ollama)
|
||||||
|
- [PromptingTools.jl](https://github.com/svilupp/PromptingTools.jl) with an [example](https://svilupp.github.io/PromptingTools.jl/dev/examples/working_with_ollama)
|
||||||
|
- [LlamaScript](https://github.com/Project-Llama/llamascript)
|
||||||
|
- [llm-axe](https://github.com/emirsahin1/llm-axe) (Python Toolkit for Building LLM Powered Apps)
|
||||||
|
- [Gollm](https://docs.gollm.co/examples/ollama-example)
|
||||||
|
- [Gollama for Golang](https://github.com/jonathanhecl/gollama)
|
||||||
|
- [Ollamaclient for Golang](https://github.com/xyproto/ollamaclient)
|
||||||
|
- [High-level function abstraction in Go](https://gitlab.com/tozd/go/fun)
|
||||||
|
- [Ollama PHP](https://github.com/ArdaGnsrn/ollama-php)
|
||||||
|
- [Agents-Flex for Java](https://github.com/agents-flex/agents-flex) with [example](https://github.com/agents-flex/agents-flex/tree/main/agents-flex-llm/agents-flex-llm-ollama/src/test/java/com/agentsflex/llm/ollama)
|
||||||
|
- [Parakeet](https://github.com/parakeet-nest/parakeet) is a GoLang library, made to simplify the development of small generative AI applications with Ollama.
|
||||||
|
- [Haverscript](https://github.com/andygill/haverscript) with [examples](https://github.com/andygill/haverscript/tree/main/examples)
|
||||||
|
- [Ollama for Swift](https://github.com/mattt/ollama-swift)
|
||||||
|
- [Swollama for Swift](https://github.com/marcusziade/Swollama) with [DocC](https://marcusziade.github.io/Swollama/documentation/swollama/)
|
||||||
|
- [GoLamify](https://github.com/prasad89/golamify)
|
||||||
|
- [Ollama for Haskell](https://github.com/tusharad/ollama-haskell)
|
||||||
|
- [multi-llm-ts](https://github.com/nbonamy/multi-llm-ts) (A Typescript/JavaScript library allowing access to different LLM in a unified API)
|
||||||
|
- [LlmTornado](https://github.com/lofcz/llmtornado) (C# library providing a unified interface for major FOSS & Commercial inference APIs)
|
||||||
|
- [Ollama for Zig](https://github.com/dravenk/ollama-zig)
|
||||||
|
- [Abso](https://github.com/lunary-ai/abso) (OpenAI-compatible TypeScript SDK for any LLM provider)
|
||||||
|
- [Nichey](https://github.com/goodreasonai/nichey) is a Python package for generating custom wikis for your research topic
|
||||||
|
- [Ollama for D](https://github.com/kassane/ollama-d)
|
||||||
|
|
||||||
### Mobile
|
### Mobile
|
||||||
|
|
||||||
|
- [SwiftChat](https://github.com/aws-samples/swift-chat) (Lightning-fast Cross-platform AI chat app with native UI for Android, iOS, and iPad)
|
||||||
- [Enchanted](https://github.com/AugustDev/enchanted)
|
- [Enchanted](https://github.com/AugustDev/enchanted)
|
||||||
- [Maid](https://github.com/Mobile-Artificial-Intelligence/maid)
|
- [Maid](https://github.com/Mobile-Artificial-Intelligence/maid)
|
||||||
|
- [Ollama App](https://github.com/JHubi1/ollama-app) (Modern and easy-to-use multi-platform client for Ollama)
|
||||||
|
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy-focused LLM chat interface with optional encryption)
|
||||||
|
- [Ollama Android Chat](https://github.com/sunshine0523/OllamaServer) (No need for Termux, start the Ollama service with one click on an Android device)
|
||||||
|
- [Reins](https://github.com/ibrahimcetin/reins) (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)
|
||||||
|
|
||||||
### Extensions & Plugins
|
### Extensions & Plugins
|
||||||
|
|
||||||
- [Raycast extension](https://github.com/MassimilianoPasquini97/raycast_ollama)
|
- [Raycast extension](https://github.com/MassimilianoPasquini97/raycast_ollama)
|
||||||
- [Discollama](https://github.com/mxyng/discollama) (Discord bot inside the Ollama discord channel)
|
- [Discollama](https://github.com/mxyng/discollama) (Discord bot inside the Ollama discord channel)
|
||||||
- [Continue](https://github.com/continuedev/continue)
|
- [Continue](https://github.com/continuedev/continue)
|
||||||
|
- [Vibe](https://github.com/thewh1teagle/vibe) (Transcribe and analyze meetings with Ollama)
|
||||||
- [Obsidian Ollama plugin](https://github.com/hinterdupfinger/obsidian-ollama)
|
- [Obsidian Ollama plugin](https://github.com/hinterdupfinger/obsidian-ollama)
|
||||||
- [Logseq Ollama plugin](https://github.com/omagdy7/ollama-logseq)
|
- [Logseq Ollama plugin](https://github.com/omagdy7/ollama-logseq)
|
||||||
|
- [NotesOllama](https://github.com/andersrex/notesollama) (Apple Notes Ollama plugin)
|
||||||
- [Dagger Chatbot](https://github.com/samalba/dagger-chatbot)
|
- [Dagger Chatbot](https://github.com/samalba/dagger-chatbot)
|
||||||
- [Discord AI Bot](https://github.com/mekb-turtle/discord-ai-bot)
|
- [Discord AI Bot](https://github.com/mekb-turtle/discord-ai-bot)
|
||||||
- [Ollama Telegram Bot](https://github.com/ruecat/ollama-telegram)
|
- [Ollama Telegram Bot](https://github.com/ruecat/ollama-telegram)
|
||||||
- [Hass Ollama Conversation](https://github.com/ej52/hass-ollama-conversation)
|
- [Hass Ollama Conversation](https://github.com/ej52/hass-ollama-conversation)
|
||||||
- [Rivet plugin](https://github.com/abrenneke/rivet-plugin-ollama)
|
- [Rivet plugin](https://github.com/abrenneke/rivet-plugin-ollama)
|
||||||
- [Llama Coder](https://github.com/ex3ndr/llama-coder) (Copilot alternative using Ollama)
|
|
||||||
- [Obsidian BMO Chatbot plugin](https://github.com/longy2k/obsidian-bmo-chatbot)
|
- [Obsidian BMO Chatbot plugin](https://github.com/longy2k/obsidian-bmo-chatbot)
|
||||||
|
- [Cliobot](https://github.com/herval/cliobot) (Telegram bot with Ollama support)
|
||||||
|
- [Copilot for Obsidian plugin](https://github.com/logancyang/obsidian-copilot)
|
||||||
|
- [Obsidian Local GPT plugin](https://github.com/pfrankov/obsidian-local-gpt)
|
||||||
- [Open Interpreter](https://docs.openinterpreter.com/language-model-setup/local-models/ollama)
|
- [Open Interpreter](https://docs.openinterpreter.com/language-model-setup/local-models/ollama)
|
||||||
|
- [Llama Coder](https://github.com/ex3ndr/llama-coder) (Copilot alternative using Ollama)
|
||||||
|
- [Ollama Copilot](https://github.com/bernardo-bruning/ollama-copilot) (Proxy that allows you to use Ollama as a copilot like GitHub Copilot)
|
||||||
- [twinny](https://github.com/rjmacarthy/twinny) (Copilot and Copilot chat alternative using Ollama)
|
- [twinny](https://github.com/rjmacarthy/twinny) (Copilot and Copilot chat alternative using Ollama)
|
||||||
- [Wingman-AI](https://github.com/RussellCanfield/wingman-ai) (Copilot code and chat alternative using Ollama and HuggingFace)
|
- [Wingman-AI](https://github.com/RussellCanfield/wingman-ai) (Copilot code and chat alternative using Ollama and Hugging Face)
|
||||||
|
- [Page Assist](https://github.com/n4ze3m/page-assist) (Chrome Extension)
|
||||||
|
- [Plasmoid Ollama Control](https://github.com/imoize/plasmoid-ollamacontrol) (KDE Plasma extension that allows you to quickly manage/control Ollama model)
|
||||||
|
- [AI Telegram Bot](https://github.com/tusharhero/aitelegrambot) (Telegram bot using Ollama in backend)
|
||||||
|
- [AI ST Completion](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) (Sublime Text 4 AI assistant plugin with Ollama support)
|
||||||
|
- [Discord-Ollama Chat Bot](https://github.com/kevinthedang/discord-ollama) (Generalized TypeScript Discord Bot w/ Tuning Documentation)
|
||||||
|
- [ChatGPTBox: All in one browser extension](https://github.com/josStorer/chatGPTBox) with [Integrating Tutorial](https://github.com/josStorer/chatGPTBox/issues/616#issuecomment-1975186467)
|
||||||
|
- [Discord AI chat/moderation bot](https://github.com/rapmd73/Companion) Chat/moderation bot written in python. Uses Ollama to create personalities.
|
||||||
|
- [Headless Ollama](https://github.com/nischalj10/headless-ollama) (Scripts to automatically install ollama client & models on any OS for apps that depend on ollama server)
|
||||||
|
- [Terraform AWS Ollama & Open WebUI](https://github.com/xuyangbocn/terraform-aws-self-host-llm) (A Terraform module to deploy on AWS a ready-to-use Ollama service, together with its front-end Open WebUI service.)
|
||||||
|
- [node-red-contrib-ollama](https://github.com/jakubburkiewicz/node-red-contrib-ollama)
|
||||||
|
- [Local AI Helper](https://github.com/ivostoykov/localAI) (Chrome and Firefox extensions that enable interactions with the active tab and customisable API endpoints. Includes secure storage for user prompts.)
|
||||||
|
- [vnc-lm](https://github.com/jake83741/vnc-lm) (Discord bot for messaging with LLMs through Ollama and LiteLLM. Seamlessly move between local and flagship models.)
|
||||||
|
- [LSP-AI](https://github.com/SilasMarvin/lsp-ai) (Open-source language server for AI-powered functionality)
|
||||||
|
- [QodeAssist](https://github.com/Palm1r/QodeAssist) (AI-powered coding assistant plugin for Qt Creator)
|
||||||
|
- [Obsidian Quiz Generator plugin](https://github.com/ECuiDev/obsidian-quiz-generator)
|
||||||
|
- [AI Summmary Helper plugin](https://github.com/philffm/ai-summary-helper)
|
||||||
|
- [TextCraft](https://github.com/suncloudsmoon/TextCraft) (Copilot in Word alternative using Ollama)
|
||||||
|
- [Alfred Ollama](https://github.com/zeitlings/alfred-ollama) (Alfred Workflow)
|
||||||
|
- [TextLLaMA](https://github.com/adarshM84/TextLLaMA) A Chrome Extension that helps you write emails, correct grammar, and translate into any language
|
||||||
|
- [Simple-Discord-AI](https://github.com/zyphixor/simple-discord-ai)
|
||||||
|
- [LLM Telegram Bot](https://github.com/innightwolfsleep/llm_telegram_bot) (telegram bot, primary for RP. Oobabooga-like buttons, [A1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui) API integration e.t.c)
|
||||||
|
- [mcp-llm](https://github.com/sammcj/mcp-llm) (MCP Server to allow LLMs to call other LLMs)
|
||||||
|
|
||||||
|
### Supported backends
|
||||||
|
|
||||||
|
- [llama.cpp](https://github.com/ggerganov/llama.cpp) project founded by Georgi Gerganov.
|
||||||
|
|
||||||
|
### Observability
|
||||||
|
- [Opik](https://www.comet.com/docs/opik/cookbook/ollama) is an open-source platform to debug, evaluate, and monitor your LLM applications, RAG systems, and agentic workflows with comprehensive tracing, automated evaluations, and production-ready dashboards. Opik supports native intergration to Ollama.
|
||||||
|
- [Lunary](https://lunary.ai/docs/integrations/ollama) is the leading open-source LLM observability platform. It provides a variety of enterprise-grade features such as real-time analytics, prompt templates management, PII masking, and comprehensive agent tracing.
|
||||||
|
- [OpenLIT](https://github.com/openlit/openlit) is an OpenTelemetry-native tool for monitoring Ollama Applications & GPUs using traces and metrics.
|
||||||
|
- [HoneyHive](https://docs.honeyhive.ai/integrations/ollama) is an AI observability and evaluation platform for AI agents. Use HoneyHive to evaluate agent performance, interrogate failures, and monitor quality in production.
|
||||||
|
- [Langfuse](https://langfuse.com/docs/integrations/ollama) is an open source LLM observability platform that enables teams to collaboratively monitor, evaluate and debug AI applications.
|
||||||
|
- [MLflow Tracing](https://mlflow.org/docs/latest/llms/tracing/index.html#automatic-tracing) is an open source LLM observability tool with a convenient API to log and visualize traces, making it easy to debug and evaluate GenAI applications.
|
||||||
|
|||||||
25
SECURITY.md
Normal file
25
SECURITY.md
Normal file
@@ -0,0 +1,25 @@
|
|||||||
|
# Security
|
||||||
|
|
||||||
|
The Ollama maintainer team takes security seriously and will actively work to resolve security issues.
|
||||||
|
|
||||||
|
## Reporting a vulnerability
|
||||||
|
|
||||||
|
If you discover a security vulnerability, please do not open a public issue. Instead, please report it by emailing hello@ollama.com. We ask that you give us sufficient time to investigate and address the vulnerability before disclosing it publicly.
|
||||||
|
|
||||||
|
Please include the following details in your report:
|
||||||
|
- A description of the vulnerability
|
||||||
|
- Steps to reproduce the issue
|
||||||
|
- Your assessment of the potential impact
|
||||||
|
- Any possible mitigations
|
||||||
|
|
||||||
|
## Security best practices
|
||||||
|
|
||||||
|
While the maintainer team does their best to secure Ollama, users are encouraged to implement their own security best practices, such as:
|
||||||
|
|
||||||
|
- Regularly updating to the latest version of Ollama
|
||||||
|
- Securing access to hosted instances of Ollama
|
||||||
|
- Monitoring systems for unusual activity
|
||||||
|
|
||||||
|
## Contact
|
||||||
|
|
||||||
|
For any other questions or concerns related to security, please contact us at hello@ollama.com
|
||||||
169
api/client.go
169
api/client.go
@@ -1,3 +1,16 @@
|
|||||||
|
// Package api implements the client-side API for code wishing to interact
|
||||||
|
// with the ollama service. The methods of the [Client] type correspond to
|
||||||
|
// the ollama REST API as described in [the API documentation].
|
||||||
|
// The ollama command-line client itself uses this package to interact with
|
||||||
|
// the backend service.
|
||||||
|
//
|
||||||
|
// # Examples
|
||||||
|
//
|
||||||
|
// Several examples of using this package are available [in the GitHub
|
||||||
|
// repository].
|
||||||
|
//
|
||||||
|
// [the API documentation]: https://github.com/ollama/ollama/blob/main/docs/api.md
|
||||||
|
// [in the GitHub repository]: https://github.com/ollama/ollama/tree/main/api/examples
|
||||||
package api
|
package api
|
||||||
|
|
||||||
import (
|
import (
|
||||||
@@ -8,20 +21,20 @@ import (
|
|||||||
"errors"
|
"errors"
|
||||||
"fmt"
|
"fmt"
|
||||||
"io"
|
"io"
|
||||||
"net"
|
|
||||||
"net/http"
|
"net/http"
|
||||||
"net/url"
|
"net/url"
|
||||||
"os"
|
|
||||||
"runtime"
|
"runtime"
|
||||||
"strings"
|
|
||||||
|
|
||||||
"github.com/jmorganca/ollama/format"
|
"github.com/ollama/ollama/envconfig"
|
||||||
"github.com/jmorganca/ollama/version"
|
"github.com/ollama/ollama/format"
|
||||||
|
"github.com/ollama/ollama/version"
|
||||||
)
|
)
|
||||||
|
|
||||||
|
// Client encapsulates client state for interacting with the ollama
|
||||||
|
// service. Use [ClientFromEnvironment] to create new Clients.
|
||||||
type Client struct {
|
type Client struct {
|
||||||
base *url.URL
|
base *url.URL
|
||||||
http http.Client
|
http *http.Client
|
||||||
}
|
}
|
||||||
|
|
||||||
func checkError(resp *http.Response, body []byte) error {
|
func checkError(resp *http.Response, body []byte) error {
|
||||||
@@ -40,56 +53,27 @@ func checkError(resp *http.Response, body []byte) error {
|
|||||||
return apiError
|
return apiError
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// ClientFromEnvironment creates a new [Client] using configuration from the
|
||||||
|
// environment variable OLLAMA_HOST, which points to the network host and
|
||||||
|
// port on which the ollama service is listening. The format of this variable
|
||||||
|
// is:
|
||||||
|
//
|
||||||
|
// <scheme>://<host>:<port>
|
||||||
|
//
|
||||||
|
// If the variable is not specified, a default ollama host and port will be
|
||||||
|
// used.
|
||||||
func ClientFromEnvironment() (*Client, error) {
|
func ClientFromEnvironment() (*Client, error) {
|
||||||
defaultPort := "11434"
|
return &Client{
|
||||||
|
base: envconfig.Host(),
|
||||||
|
http: http.DefaultClient,
|
||||||
|
}, nil
|
||||||
|
}
|
||||||
|
|
||||||
scheme, hostport, ok := strings.Cut(os.Getenv("OLLAMA_HOST"), "://")
|
func NewClient(base *url.URL, http *http.Client) *Client {
|
||||||
switch {
|
return &Client{
|
||||||
case !ok:
|
base: base,
|
||||||
scheme, hostport = "http", os.Getenv("OLLAMA_HOST")
|
http: http,
|
||||||
case scheme == "http":
|
|
||||||
defaultPort = "80"
|
|
||||||
case scheme == "https":
|
|
||||||
defaultPort = "443"
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// trim trailing slashes
|
|
||||||
hostport = strings.TrimRight(hostport, "/")
|
|
||||||
|
|
||||||
host, port, err := net.SplitHostPort(hostport)
|
|
||||||
if err != nil {
|
|
||||||
host, port = "127.0.0.1", defaultPort
|
|
||||||
if ip := net.ParseIP(strings.Trim(hostport, "[]")); ip != nil {
|
|
||||||
host = ip.String()
|
|
||||||
} else if hostport != "" {
|
|
||||||
host = hostport
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
client := Client{
|
|
||||||
base: &url.URL{
|
|
||||||
Scheme: scheme,
|
|
||||||
Host: net.JoinHostPort(host, port),
|
|
||||||
},
|
|
||||||
}
|
|
||||||
|
|
||||||
mockRequest, err := http.NewRequest(http.MethodHead, client.base.String(), nil)
|
|
||||||
if err != nil {
|
|
||||||
return nil, err
|
|
||||||
}
|
|
||||||
|
|
||||||
proxyURL, err := http.ProxyFromEnvironment(mockRequest)
|
|
||||||
if err != nil {
|
|
||||||
return nil, err
|
|
||||||
}
|
|
||||||
|
|
||||||
client.http = http.Client{
|
|
||||||
Transport: &http.Transport{
|
|
||||||
Proxy: http.ProxyURL(proxyURL),
|
|
||||||
},
|
|
||||||
}
|
|
||||||
|
|
||||||
return &client, nil
|
|
||||||
}
|
}
|
||||||
|
|
||||||
func (c *Client) do(ctx context.Context, method, path string, reqData, respData any) error {
|
func (c *Client) do(ctx context.Context, method, path string, reqData, respData any) error {
|
||||||
@@ -148,7 +132,7 @@ func (c *Client) do(ctx context.Context, method, path string, reqData, respData
|
|||||||
const maxBufferSize = 512 * format.KiloByte
|
const maxBufferSize = 512 * format.KiloByte
|
||||||
|
|
||||||
func (c *Client) stream(ctx context.Context, method, path string, data any, fn func([]byte) error) error {
|
func (c *Client) stream(ctx context.Context, method, path string, data any, fn func([]byte) error) error {
|
||||||
var buf *bytes.Buffer
|
var buf io.Reader
|
||||||
if data != nil {
|
if data != nil {
|
||||||
bts, err := json.Marshal(data)
|
bts, err := json.Marshal(data)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
@@ -189,7 +173,7 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
|
|||||||
}
|
}
|
||||||
|
|
||||||
if errorResponse.Error != "" {
|
if errorResponse.Error != "" {
|
||||||
return fmt.Errorf(errorResponse.Error)
|
return errors.New(errorResponse.Error)
|
||||||
}
|
}
|
||||||
|
|
||||||
if response.StatusCode >= http.StatusBadRequest {
|
if response.StatusCode >= http.StatusBadRequest {
|
||||||
@@ -208,8 +192,14 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
|
|||||||
return nil
|
return nil
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// GenerateResponseFunc is a function that [Client.Generate] invokes every time
|
||||||
|
// a response is received from the service. If this function returns an error,
|
||||||
|
// [Client.Generate] will stop generating and return this error.
|
||||||
type GenerateResponseFunc func(GenerateResponse) error
|
type GenerateResponseFunc func(GenerateResponse) error
|
||||||
|
|
||||||
|
// Generate generates a response for a given prompt. The req parameter should
|
||||||
|
// be populated with prompt details. fn is called for each response (there may
|
||||||
|
// be multiple responses, e.g. in case streaming is enabled).
|
||||||
func (c *Client) Generate(ctx context.Context, req *GenerateRequest, fn GenerateResponseFunc) error {
|
func (c *Client) Generate(ctx context.Context, req *GenerateRequest, fn GenerateResponseFunc) error {
|
||||||
return c.stream(ctx, http.MethodPost, "/api/generate", req, func(bts []byte) error {
|
return c.stream(ctx, http.MethodPost, "/api/generate", req, func(bts []byte) error {
|
||||||
var resp GenerateResponse
|
var resp GenerateResponse
|
||||||
@@ -221,8 +211,15 @@ func (c *Client) Generate(ctx context.Context, req *GenerateRequest, fn Generate
|
|||||||
})
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// ChatResponseFunc is a function that [Client.Chat] invokes every time
|
||||||
|
// a response is received from the service. If this function returns an error,
|
||||||
|
// [Client.Chat] will stop generating and return this error.
|
||||||
type ChatResponseFunc func(ChatResponse) error
|
type ChatResponseFunc func(ChatResponse) error
|
||||||
|
|
||||||
|
// Chat generates the next message in a chat. [ChatRequest] may contain a
|
||||||
|
// sequence of messages which can be used to maintain chat history with a model.
|
||||||
|
// fn is called for each response (there may be multiple responses, e.g. if case
|
||||||
|
// streaming is enabled).
|
||||||
func (c *Client) Chat(ctx context.Context, req *ChatRequest, fn ChatResponseFunc) error {
|
func (c *Client) Chat(ctx context.Context, req *ChatRequest, fn ChatResponseFunc) error {
|
||||||
return c.stream(ctx, http.MethodPost, "/api/chat", req, func(bts []byte) error {
|
return c.stream(ctx, http.MethodPost, "/api/chat", req, func(bts []byte) error {
|
||||||
var resp ChatResponse
|
var resp ChatResponse
|
||||||
@@ -234,8 +231,14 @@ func (c *Client) Chat(ctx context.Context, req *ChatRequest, fn ChatResponseFunc
|
|||||||
})
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// PullProgressFunc is a function that [Client.Pull] invokes every time there
|
||||||
|
// is progress with a "pull" request sent to the service. If this function
|
||||||
|
// returns an error, [Client.Pull] will stop the process and return this error.
|
||||||
type PullProgressFunc func(ProgressResponse) error
|
type PullProgressFunc func(ProgressResponse) error
|
||||||
|
|
||||||
|
// Pull downloads a model from the ollama library. fn is called each time
|
||||||
|
// progress is made on the request and can be used to display a progress bar,
|
||||||
|
// etc.
|
||||||
func (c *Client) Pull(ctx context.Context, req *PullRequest, fn PullProgressFunc) error {
|
func (c *Client) Pull(ctx context.Context, req *PullRequest, fn PullProgressFunc) error {
|
||||||
return c.stream(ctx, http.MethodPost, "/api/pull", req, func(bts []byte) error {
|
return c.stream(ctx, http.MethodPost, "/api/pull", req, func(bts []byte) error {
|
||||||
var resp ProgressResponse
|
var resp ProgressResponse
|
||||||
@@ -247,8 +250,14 @@ func (c *Client) Pull(ctx context.Context, req *PullRequest, fn PullProgressFunc
|
|||||||
})
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// PushProgressFunc is a function that [Client.Push] invokes when progress is
|
||||||
|
// made.
|
||||||
|
// It's similar to other progress function types like [PullProgressFunc].
|
||||||
type PushProgressFunc func(ProgressResponse) error
|
type PushProgressFunc func(ProgressResponse) error
|
||||||
|
|
||||||
|
// Push uploads a model to the model library; requires registering for ollama.ai
|
||||||
|
// and adding a public key first. fn is called each time progress is made on
|
||||||
|
// the request and can be used to display a progress bar, etc.
|
||||||
func (c *Client) Push(ctx context.Context, req *PushRequest, fn PushProgressFunc) error {
|
func (c *Client) Push(ctx context.Context, req *PushRequest, fn PushProgressFunc) error {
|
||||||
return c.stream(ctx, http.MethodPost, "/api/push", req, func(bts []byte) error {
|
return c.stream(ctx, http.MethodPost, "/api/push", req, func(bts []byte) error {
|
||||||
var resp ProgressResponse
|
var resp ProgressResponse
|
||||||
@@ -260,8 +269,15 @@ func (c *Client) Push(ctx context.Context, req *PushRequest, fn PushProgressFunc
|
|||||||
})
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// CreateProgressFunc is a function that [Client.Create] invokes when progress
|
||||||
|
// is made.
|
||||||
|
// It's similar to other progress function types like [PullProgressFunc].
|
||||||
type CreateProgressFunc func(ProgressResponse) error
|
type CreateProgressFunc func(ProgressResponse) error
|
||||||
|
|
||||||
|
// Create creates a model from a [Modelfile]. fn is a progress function that
|
||||||
|
// behaves similarly to other methods (see [Client.Pull]).
|
||||||
|
//
|
||||||
|
// [Modelfile]: https://github.com/ollama/ollama/blob/main/docs/modelfile.md
|
||||||
func (c *Client) Create(ctx context.Context, req *CreateRequest, fn CreateProgressFunc) error {
|
func (c *Client) Create(ctx context.Context, req *CreateRequest, fn CreateProgressFunc) error {
|
||||||
return c.stream(ctx, http.MethodPost, "/api/create", req, func(bts []byte) error {
|
return c.stream(ctx, http.MethodPost, "/api/create", req, func(bts []byte) error {
|
||||||
var resp ProgressResponse
|
var resp ProgressResponse
|
||||||
@@ -273,6 +289,7 @@ func (c *Client) Create(ctx context.Context, req *CreateRequest, fn CreateProgre
|
|||||||
})
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// List lists models that are available locally.
|
||||||
func (c *Client) List(ctx context.Context) (*ListResponse, error) {
|
func (c *Client) List(ctx context.Context) (*ListResponse, error) {
|
||||||
var lr ListResponse
|
var lr ListResponse
|
||||||
if err := c.do(ctx, http.MethodGet, "/api/tags", nil, &lr); err != nil {
|
if err := c.do(ctx, http.MethodGet, "/api/tags", nil, &lr); err != nil {
|
||||||
@@ -281,6 +298,17 @@ func (c *Client) List(ctx context.Context) (*ListResponse, error) {
|
|||||||
return &lr, nil
|
return &lr, nil
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// ListRunning lists running models.
|
||||||
|
func (c *Client) ListRunning(ctx context.Context) (*ProcessResponse, error) {
|
||||||
|
var lr ProcessResponse
|
||||||
|
if err := c.do(ctx, http.MethodGet, "/api/ps", nil, &lr); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
return &lr, nil
|
||||||
|
}
|
||||||
|
|
||||||
|
// Copy copies a model - creating a model with another name from an existing
|
||||||
|
// model.
|
||||||
func (c *Client) Copy(ctx context.Context, req *CopyRequest) error {
|
func (c *Client) Copy(ctx context.Context, req *CopyRequest) error {
|
||||||
if err := c.do(ctx, http.MethodPost, "/api/copy", req, nil); err != nil {
|
if err := c.do(ctx, http.MethodPost, "/api/copy", req, nil); err != nil {
|
||||||
return err
|
return err
|
||||||
@@ -288,6 +316,7 @@ func (c *Client) Copy(ctx context.Context, req *CopyRequest) error {
|
|||||||
return nil
|
return nil
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Delete deletes a model and its data.
|
||||||
func (c *Client) Delete(ctx context.Context, req *DeleteRequest) error {
|
func (c *Client) Delete(ctx context.Context, req *DeleteRequest) error {
|
||||||
if err := c.do(ctx, http.MethodDelete, "/api/delete", req, nil); err != nil {
|
if err := c.do(ctx, http.MethodDelete, "/api/delete", req, nil); err != nil {
|
||||||
return err
|
return err
|
||||||
@@ -295,6 +324,7 @@ func (c *Client) Delete(ctx context.Context, req *DeleteRequest) error {
|
|||||||
return nil
|
return nil
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Show obtains model information, including details, modelfile, license etc.
|
||||||
func (c *Client) Show(ctx context.Context, req *ShowRequest) (*ShowResponse, error) {
|
func (c *Client) Show(ctx context.Context, req *ShowRequest) (*ShowResponse, error) {
|
||||||
var resp ShowResponse
|
var resp ShowResponse
|
||||||
if err := c.do(ctx, http.MethodPost, "/api/show", req, &resp); err != nil {
|
if err := c.do(ctx, http.MethodPost, "/api/show", req, &resp); err != nil {
|
||||||
@@ -303,12 +333,25 @@ func (c *Client) Show(ctx context.Context, req *ShowRequest) (*ShowResponse, err
|
|||||||
return &resp, nil
|
return &resp, nil
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Heartbeat checks if the server has started and is responsive; if yes, it
|
||||||
|
// returns nil, otherwise an error.
|
||||||
func (c *Client) Heartbeat(ctx context.Context) error {
|
func (c *Client) Heartbeat(ctx context.Context) error {
|
||||||
if err := c.do(ctx, http.MethodHead, "/", nil, nil); err != nil {
|
if err := c.do(ctx, http.MethodHead, "/", nil, nil); err != nil {
|
||||||
return err
|
return err
|
||||||
}
|
}
|
||||||
return nil
|
return nil
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Embed generates embeddings from a model.
|
||||||
|
func (c *Client) Embed(ctx context.Context, req *EmbedRequest) (*EmbedResponse, error) {
|
||||||
|
var resp EmbedResponse
|
||||||
|
if err := c.do(ctx, http.MethodPost, "/api/embed", req, &resp); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
return &resp, nil
|
||||||
|
}
|
||||||
|
|
||||||
|
// Embeddings generates an embedding from a model.
|
||||||
func (c *Client) Embeddings(ctx context.Context, req *EmbeddingRequest) (*EmbeddingResponse, error) {
|
func (c *Client) Embeddings(ctx context.Context, req *EmbeddingRequest) (*EmbeddingResponse, error) {
|
||||||
var resp EmbeddingResponse
|
var resp EmbeddingResponse
|
||||||
if err := c.do(ctx, http.MethodPost, "/api/embeddings", req, &resp); err != nil {
|
if err := c.do(ctx, http.MethodPost, "/api/embeddings", req, &resp); err != nil {
|
||||||
@@ -317,21 +360,13 @@ func (c *Client) Embeddings(ctx context.Context, req *EmbeddingRequest) (*Embedd
|
|||||||
return &resp, nil
|
return &resp, nil
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// CreateBlob creates a blob from a file on the server. digest is the
|
||||||
|
// expected SHA256 digest of the file, and r represents the file.
|
||||||
func (c *Client) CreateBlob(ctx context.Context, digest string, r io.Reader) error {
|
func (c *Client) CreateBlob(ctx context.Context, digest string, r io.Reader) error {
|
||||||
if err := c.do(ctx, http.MethodHead, fmt.Sprintf("/api/blobs/%s", digest), nil, nil); err != nil {
|
return c.do(ctx, http.MethodPost, fmt.Sprintf("/api/blobs/%s", digest), r, nil)
|
||||||
var statusError StatusError
|
|
||||||
if !errors.As(err, &statusError) || statusError.StatusCode != http.StatusNotFound {
|
|
||||||
return err
|
|
||||||
}
|
|
||||||
|
|
||||||
if err := c.do(ctx, http.MethodPost, fmt.Sprintf("/api/blobs/%s", digest), r, nil); err != nil {
|
|
||||||
return err
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return nil
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Version returns the Ollama server version as a string.
|
||||||
func (c *Client) Version(ctx context.Context) (string, error) {
|
func (c *Client) Version(ctx context.Context) (string, error) {
|
||||||
var version struct {
|
var version struct {
|
||||||
Version string `json:"version"`
|
Version string `json:"version"`
|
||||||
|
|||||||
@@ -1,6 +1,14 @@
|
|||||||
package api
|
package api
|
||||||
|
|
||||||
import "testing"
|
import (
|
||||||
|
"encoding/json"
|
||||||
|
"fmt"
|
||||||
|
"net/http"
|
||||||
|
"net/http/httptest"
|
||||||
|
"net/url"
|
||||||
|
"strings"
|
||||||
|
"testing"
|
||||||
|
)
|
||||||
|
|
||||||
func TestClientFromEnvironment(t *testing.T) {
|
func TestClientFromEnvironment(t *testing.T) {
|
||||||
type testCase struct {
|
type testCase struct {
|
||||||
@@ -41,3 +49,206 @@ func TestClientFromEnvironment(t *testing.T) {
|
|||||||
})
|
})
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// testError represents an internal error type with status code and message
|
||||||
|
// this is used since the error response from the server is not a standard error struct
|
||||||
|
type testError struct {
|
||||||
|
message string
|
||||||
|
statusCode int
|
||||||
|
}
|
||||||
|
|
||||||
|
func (e testError) Error() string {
|
||||||
|
return e.message
|
||||||
|
}
|
||||||
|
|
||||||
|
func TestClientStream(t *testing.T) {
|
||||||
|
testCases := []struct {
|
||||||
|
name string
|
||||||
|
responses []any
|
||||||
|
wantErr string
|
||||||
|
}{
|
||||||
|
{
|
||||||
|
name: "immediate error response",
|
||||||
|
responses: []any{
|
||||||
|
testError{
|
||||||
|
message: "test error message",
|
||||||
|
statusCode: http.StatusBadRequest,
|
||||||
|
},
|
||||||
|
},
|
||||||
|
wantErr: "test error message",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "error after successful chunks, ok response",
|
||||||
|
responses: []any{
|
||||||
|
ChatResponse{Message: Message{Content: "partial response 1"}},
|
||||||
|
ChatResponse{Message: Message{Content: "partial response 2"}},
|
||||||
|
testError{
|
||||||
|
message: "mid-stream error",
|
||||||
|
statusCode: http.StatusOK,
|
||||||
|
},
|
||||||
|
},
|
||||||
|
wantErr: "mid-stream error",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "successful stream completion",
|
||||||
|
responses: []any{
|
||||||
|
ChatResponse{Message: Message{Content: "chunk 1"}},
|
||||||
|
ChatResponse{Message: Message{Content: "chunk 2"}},
|
||||||
|
ChatResponse{
|
||||||
|
Message: Message{Content: "final chunk"},
|
||||||
|
Done: true,
|
||||||
|
DoneReason: "stop",
|
||||||
|
},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, tc := range testCases {
|
||||||
|
t.Run(tc.name, func(t *testing.T) {
|
||||||
|
ts := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
|
||||||
|
flusher, ok := w.(http.Flusher)
|
||||||
|
if !ok {
|
||||||
|
t.Fatal("expected http.Flusher")
|
||||||
|
}
|
||||||
|
|
||||||
|
w.Header().Set("Content-Type", "application/x-ndjson")
|
||||||
|
|
||||||
|
for _, resp := range tc.responses {
|
||||||
|
if errResp, ok := resp.(testError); ok {
|
||||||
|
w.WriteHeader(errResp.statusCode)
|
||||||
|
err := json.NewEncoder(w).Encode(map[string]string{
|
||||||
|
"error": errResp.message,
|
||||||
|
})
|
||||||
|
if err != nil {
|
||||||
|
t.Fatal("failed to encode error response:", err)
|
||||||
|
}
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
if err := json.NewEncoder(w).Encode(resp); err != nil {
|
||||||
|
t.Fatalf("failed to encode response: %v", err)
|
||||||
|
}
|
||||||
|
flusher.Flush()
|
||||||
|
}
|
||||||
|
}))
|
||||||
|
defer ts.Close()
|
||||||
|
|
||||||
|
client := NewClient(&url.URL{Scheme: "http", Host: ts.Listener.Addr().String()}, http.DefaultClient)
|
||||||
|
|
||||||
|
var receivedChunks []ChatResponse
|
||||||
|
err := client.stream(t.Context(), http.MethodPost, "/v1/chat", nil, func(chunk []byte) error {
|
||||||
|
var resp ChatResponse
|
||||||
|
if err := json.Unmarshal(chunk, &resp); err != nil {
|
||||||
|
return fmt.Errorf("failed to unmarshal chunk: %w", err)
|
||||||
|
}
|
||||||
|
receivedChunks = append(receivedChunks, resp)
|
||||||
|
return nil
|
||||||
|
})
|
||||||
|
|
||||||
|
if tc.wantErr != "" {
|
||||||
|
if err == nil {
|
||||||
|
t.Fatal("expected error but got nil")
|
||||||
|
}
|
||||||
|
if !strings.Contains(err.Error(), tc.wantErr) {
|
||||||
|
t.Errorf("expected error containing %q, got %v", tc.wantErr, err)
|
||||||
|
}
|
||||||
|
return
|
||||||
|
}
|
||||||
|
if err != nil {
|
||||||
|
t.Errorf("unexpected error: %v", err)
|
||||||
|
}
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func TestClientDo(t *testing.T) {
|
||||||
|
testCases := []struct {
|
||||||
|
name string
|
||||||
|
response any
|
||||||
|
wantErr string
|
||||||
|
}{
|
||||||
|
{
|
||||||
|
name: "immediate error response",
|
||||||
|
response: testError{
|
||||||
|
message: "test error message",
|
||||||
|
statusCode: http.StatusBadRequest,
|
||||||
|
},
|
||||||
|
wantErr: "test error message",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "server error response",
|
||||||
|
response: testError{
|
||||||
|
message: "internal error",
|
||||||
|
statusCode: http.StatusInternalServerError,
|
||||||
|
},
|
||||||
|
wantErr: "internal error",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "successful response",
|
||||||
|
response: struct {
|
||||||
|
ID string `json:"id"`
|
||||||
|
Success bool `json:"success"`
|
||||||
|
}{
|
||||||
|
ID: "msg_123",
|
||||||
|
Success: true,
|
||||||
|
},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, tc := range testCases {
|
||||||
|
t.Run(tc.name, func(t *testing.T) {
|
||||||
|
ts := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
|
||||||
|
if errResp, ok := tc.response.(testError); ok {
|
||||||
|
w.WriteHeader(errResp.statusCode)
|
||||||
|
err := json.NewEncoder(w).Encode(map[string]string{
|
||||||
|
"error": errResp.message,
|
||||||
|
})
|
||||||
|
if err != nil {
|
||||||
|
t.Fatal("failed to encode error response:", err)
|
||||||
|
}
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
w.Header().Set("Content-Type", "application/json")
|
||||||
|
if err := json.NewEncoder(w).Encode(tc.response); err != nil {
|
||||||
|
t.Fatalf("failed to encode response: %v", err)
|
||||||
|
}
|
||||||
|
}))
|
||||||
|
defer ts.Close()
|
||||||
|
|
||||||
|
client := NewClient(&url.URL{Scheme: "http", Host: ts.Listener.Addr().String()}, http.DefaultClient)
|
||||||
|
|
||||||
|
var resp struct {
|
||||||
|
ID string `json:"id"`
|
||||||
|
Success bool `json:"success"`
|
||||||
|
}
|
||||||
|
err := client.do(t.Context(), http.MethodPost, "/v1/messages", nil, &resp)
|
||||||
|
|
||||||
|
if tc.wantErr != "" {
|
||||||
|
if err == nil {
|
||||||
|
t.Fatalf("got nil, want error %q", tc.wantErr)
|
||||||
|
}
|
||||||
|
if err.Error() != tc.wantErr {
|
||||||
|
t.Errorf("error message mismatch: got %q, want %q", err.Error(), tc.wantErr)
|
||||||
|
}
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
if err != nil {
|
||||||
|
t.Fatalf("got error %q, want nil", err)
|
||||||
|
}
|
||||||
|
|
||||||
|
if expectedResp, ok := tc.response.(struct {
|
||||||
|
ID string `json:"id"`
|
||||||
|
Success bool `json:"success"`
|
||||||
|
}); ok {
|
||||||
|
if resp.ID != expectedResp.ID {
|
||||||
|
t.Errorf("response ID mismatch: got %q, want %q", resp.ID, expectedResp.ID)
|
||||||
|
}
|
||||||
|
if resp.Success != expectedResp.Success {
|
||||||
|
t.Errorf("response Success mismatch: got %v, want %v", resp.Success, expectedResp.Success)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|||||||
18
api/examples/README.md
Normal file
18
api/examples/README.md
Normal file
@@ -0,0 +1,18 @@
|
|||||||
|
# Ollama API Examples
|
||||||
|
|
||||||
|
Run the examples in this directory with:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
go run example_name/main.go
|
||||||
|
```
|
||||||
|
|
||||||
|
## Chat - Chat with a model
|
||||||
|
- [chat/main.go](chat/main.go)
|
||||||
|
|
||||||
|
## Generate - Generate text from a model
|
||||||
|
- [generate/main.go](generate/main.go)
|
||||||
|
- [generate-streaming/main.go](generate-streaming/main.go)
|
||||||
|
|
||||||
|
## Pull - Pull a model
|
||||||
|
- [pull-progress/main.go](pull-progress/main.go)
|
||||||
|
|
||||||
51
api/examples/chat/main.go
Normal file
51
api/examples/chat/main.go
Normal file
@@ -0,0 +1,51 @@
|
|||||||
|
package main
|
||||||
|
|
||||||
|
import (
|
||||||
|
"context"
|
||||||
|
"fmt"
|
||||||
|
"log"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/api"
|
||||||
|
)
|
||||||
|
|
||||||
|
func main() {
|
||||||
|
client, err := api.ClientFromEnvironment()
|
||||||
|
if err != nil {
|
||||||
|
log.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
messages := []api.Message{
|
||||||
|
api.Message{
|
||||||
|
Role: "system",
|
||||||
|
Content: "Provide very brief, concise responses",
|
||||||
|
},
|
||||||
|
api.Message{
|
||||||
|
Role: "user",
|
||||||
|
Content: "Name some unusual animals",
|
||||||
|
},
|
||||||
|
api.Message{
|
||||||
|
Role: "assistant",
|
||||||
|
Content: "Monotreme, platypus, echidna",
|
||||||
|
},
|
||||||
|
api.Message{
|
||||||
|
Role: "user",
|
||||||
|
Content: "which of these is the most dangerous?",
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
ctx := context.Background()
|
||||||
|
req := &api.ChatRequest{
|
||||||
|
Model: "llama3.2",
|
||||||
|
Messages: messages,
|
||||||
|
}
|
||||||
|
|
||||||
|
respFunc := func(resp api.ChatResponse) error {
|
||||||
|
fmt.Print(resp.Message.Content)
|
||||||
|
return nil
|
||||||
|
}
|
||||||
|
|
||||||
|
err = client.Chat(ctx, req, respFunc)
|
||||||
|
if err != nil {
|
||||||
|
log.Fatal(err)
|
||||||
|
}
|
||||||
|
}
|
||||||
40
api/examples/generate-streaming/main.go
Normal file
40
api/examples/generate-streaming/main.go
Normal file
@@ -0,0 +1,40 @@
|
|||||||
|
package main
|
||||||
|
|
||||||
|
import (
|
||||||
|
"context"
|
||||||
|
"fmt"
|
||||||
|
"log"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/api"
|
||||||
|
)
|
||||||
|
|
||||||
|
func main() {
|
||||||
|
client, err := api.ClientFromEnvironment()
|
||||||
|
if err != nil {
|
||||||
|
log.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
// By default, GenerateRequest is streaming.
|
||||||
|
req := &api.GenerateRequest{
|
||||||
|
Model: "gemma2",
|
||||||
|
Prompt: "how many planets are there?",
|
||||||
|
}
|
||||||
|
|
||||||
|
ctx := context.Background()
|
||||||
|
respFunc := func(resp api.GenerateResponse) error {
|
||||||
|
// Only print the response here; GenerateResponse has a number of other
|
||||||
|
// interesting fields you want to examine.
|
||||||
|
|
||||||
|
// In streaming mode, responses are partial so we call fmt.Print (and not
|
||||||
|
// Println) in order to avoid spurious newlines being introduced. The
|
||||||
|
// model will insert its own newlines if it wants.
|
||||||
|
fmt.Print(resp.Response)
|
||||||
|
return nil
|
||||||
|
}
|
||||||
|
|
||||||
|
err = client.Generate(ctx, req, respFunc)
|
||||||
|
if err != nil {
|
||||||
|
log.Fatal(err)
|
||||||
|
}
|
||||||
|
fmt.Println()
|
||||||
|
}
|
||||||
37
api/examples/generate/main.go
Normal file
37
api/examples/generate/main.go
Normal file
@@ -0,0 +1,37 @@
|
|||||||
|
package main
|
||||||
|
|
||||||
|
import (
|
||||||
|
"context"
|
||||||
|
"fmt"
|
||||||
|
"log"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/api"
|
||||||
|
)
|
||||||
|
|
||||||
|
func main() {
|
||||||
|
client, err := api.ClientFromEnvironment()
|
||||||
|
if err != nil {
|
||||||
|
log.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
req := &api.GenerateRequest{
|
||||||
|
Model: "gemma2",
|
||||||
|
Prompt: "how many planets are there?",
|
||||||
|
|
||||||
|
// set streaming to false
|
||||||
|
Stream: new(bool),
|
||||||
|
}
|
||||||
|
|
||||||
|
ctx := context.Background()
|
||||||
|
respFunc := func(resp api.GenerateResponse) error {
|
||||||
|
// Only print the response here; GenerateResponse has a number of other
|
||||||
|
// interesting fields you want to examine.
|
||||||
|
fmt.Println(resp.Response)
|
||||||
|
return nil
|
||||||
|
}
|
||||||
|
|
||||||
|
err = client.Generate(ctx, req, respFunc)
|
||||||
|
if err != nil {
|
||||||
|
log.Fatal(err)
|
||||||
|
}
|
||||||
|
}
|
||||||
47
api/examples/multimodal/main.go
Normal file
47
api/examples/multimodal/main.go
Normal file
@@ -0,0 +1,47 @@
|
|||||||
|
package main
|
||||||
|
|
||||||
|
import (
|
||||||
|
"context"
|
||||||
|
"fmt"
|
||||||
|
"log"
|
||||||
|
"os"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/api"
|
||||||
|
)
|
||||||
|
|
||||||
|
func main() {
|
||||||
|
if len(os.Args) <= 1 {
|
||||||
|
log.Fatal("usage: <image name>")
|
||||||
|
}
|
||||||
|
|
||||||
|
imgData, err := os.ReadFile(os.Args[1])
|
||||||
|
if err != nil {
|
||||||
|
log.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
client, err := api.ClientFromEnvironment()
|
||||||
|
if err != nil {
|
||||||
|
log.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
req := &api.GenerateRequest{
|
||||||
|
Model: "llava",
|
||||||
|
Prompt: "describe this image",
|
||||||
|
Images: []api.ImageData{imgData},
|
||||||
|
}
|
||||||
|
|
||||||
|
ctx := context.Background()
|
||||||
|
respFunc := func(resp api.GenerateResponse) error {
|
||||||
|
// In streaming mode, responses are partial so we call fmt.Print (and not
|
||||||
|
// Println) in order to avoid spurious newlines being introduced. The
|
||||||
|
// model will insert its own newlines if it wants.
|
||||||
|
fmt.Print(resp.Response)
|
||||||
|
return nil
|
||||||
|
}
|
||||||
|
|
||||||
|
err = client.Generate(ctx, req, respFunc)
|
||||||
|
if err != nil {
|
||||||
|
log.Fatal(err)
|
||||||
|
}
|
||||||
|
fmt.Println()
|
||||||
|
}
|
||||||
31
api/examples/pull-progress/main.go
Normal file
31
api/examples/pull-progress/main.go
Normal file
@@ -0,0 +1,31 @@
|
|||||||
|
package main
|
||||||
|
|
||||||
|
import (
|
||||||
|
"context"
|
||||||
|
"fmt"
|
||||||
|
"log"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/api"
|
||||||
|
)
|
||||||
|
|
||||||
|
func main() {
|
||||||
|
client, err := api.ClientFromEnvironment()
|
||||||
|
if err != nil {
|
||||||
|
log.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
ctx := context.Background()
|
||||||
|
|
||||||
|
req := &api.PullRequest{
|
||||||
|
Model: "mistral",
|
||||||
|
}
|
||||||
|
progressFunc := func(resp api.ProgressResponse) error {
|
||||||
|
fmt.Printf("Progress: status=%v, total=%v, completed=%v\n", resp.Status, resp.Total, resp.Completed)
|
||||||
|
return nil
|
||||||
|
}
|
||||||
|
|
||||||
|
err = client.Pull(ctx, req, progressFunc)
|
||||||
|
if err != nil {
|
||||||
|
log.Fatal(err)
|
||||||
|
}
|
||||||
|
}
|
||||||
596
api/types.go
596
api/types.go
@@ -3,14 +3,19 @@ package api
|
|||||||
import (
|
import (
|
||||||
"encoding/json"
|
"encoding/json"
|
||||||
"fmt"
|
"fmt"
|
||||||
|
"log/slog"
|
||||||
"math"
|
"math"
|
||||||
"os"
|
"os"
|
||||||
"reflect"
|
"reflect"
|
||||||
"strconv"
|
"strconv"
|
||||||
"strings"
|
"strings"
|
||||||
"time"
|
"time"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/envconfig"
|
||||||
|
"github.com/ollama/ollama/types/model"
|
||||||
)
|
)
|
||||||
|
|
||||||
|
// StatusError is an error with an HTTP status code and message.
|
||||||
type StatusError struct {
|
type StatusError struct {
|
||||||
StatusCode int
|
StatusCode int
|
||||||
Status string
|
Status string
|
||||||
@@ -31,43 +36,208 @@ func (e StatusError) Error() string {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// ImageData represents the raw binary data of an image file.
|
||||||
type ImageData []byte
|
type ImageData []byte
|
||||||
|
|
||||||
|
// GenerateRequest describes a request sent by [Client.Generate]. While you
|
||||||
|
// have to specify the Model and Prompt fields, all the other fields have
|
||||||
|
// reasonable defaults for basic uses.
|
||||||
type GenerateRequest struct {
|
type GenerateRequest struct {
|
||||||
Model string `json:"model"`
|
// Model is the model name; it should be a name familiar to Ollama from
|
||||||
Prompt string `json:"prompt"`
|
// the library at https://ollama.com/library
|
||||||
System string `json:"system"`
|
Model string `json:"model"`
|
||||||
Template string `json:"template"`
|
|
||||||
Context []int `json:"context,omitempty"`
|
|
||||||
Stream *bool `json:"stream,omitempty"`
|
|
||||||
Raw bool `json:"raw,omitempty"`
|
|
||||||
Format string `json:"format"`
|
|
||||||
KeepAlive *Duration `json:"keep_alive,omitempty"`
|
|
||||||
Images []ImageData `json:"images,omitempty"`
|
|
||||||
|
|
||||||
Options map[string]interface{} `json:"options"`
|
// Prompt is the textual prompt to send to the model.
|
||||||
}
|
Prompt string `json:"prompt"`
|
||||||
|
|
||||||
type ChatRequest struct {
|
// Suffix is the text that comes after the inserted text.
|
||||||
Model string `json:"model"`
|
Suffix string `json:"suffix"`
|
||||||
Messages []Message `json:"messages"`
|
|
||||||
Stream *bool `json:"stream,omitempty"`
|
// System overrides the model's default system message/prompt.
|
||||||
Format string `json:"format"`
|
System string `json:"system"`
|
||||||
|
|
||||||
|
// Template overrides the model's default prompt template.
|
||||||
|
Template string `json:"template"`
|
||||||
|
|
||||||
|
// Context is the context parameter returned from a previous call to
|
||||||
|
// [Client.Generate]. It can be used to keep a short conversational memory.
|
||||||
|
Context []int `json:"context,omitempty"`
|
||||||
|
|
||||||
|
// Stream specifies whether the response is streaming; it is true by default.
|
||||||
|
Stream *bool `json:"stream,omitempty"`
|
||||||
|
|
||||||
|
// Raw set to true means that no formatting will be applied to the prompt.
|
||||||
|
Raw bool `json:"raw,omitempty"`
|
||||||
|
|
||||||
|
// Format specifies the format to return a response in.
|
||||||
|
Format json.RawMessage `json:"format,omitempty"`
|
||||||
|
|
||||||
|
// KeepAlive controls how long the model will stay loaded in memory following
|
||||||
|
// this request.
|
||||||
KeepAlive *Duration `json:"keep_alive,omitempty"`
|
KeepAlive *Duration `json:"keep_alive,omitempty"`
|
||||||
|
|
||||||
Options map[string]interface{} `json:"options"`
|
// Images is an optional list of raw image bytes accompanying this
|
||||||
|
// request, for multimodal models.
|
||||||
|
Images []ImageData `json:"images,omitempty"`
|
||||||
|
|
||||||
|
// Options lists model-specific options. For example, temperature can be
|
||||||
|
// set through this field, if the model supports it.
|
||||||
|
Options map[string]any `json:"options"`
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// ChatRequest describes a request sent by [Client.Chat].
|
||||||
|
type ChatRequest struct {
|
||||||
|
// Model is the model name, as in [GenerateRequest].
|
||||||
|
Model string `json:"model"`
|
||||||
|
|
||||||
|
// Messages is the messages of the chat - can be used to keep a chat memory.
|
||||||
|
Messages []Message `json:"messages"`
|
||||||
|
|
||||||
|
// Stream enables streaming of returned responses; true by default.
|
||||||
|
Stream *bool `json:"stream,omitempty"`
|
||||||
|
|
||||||
|
// Format is the format to return the response in (e.g. "json").
|
||||||
|
Format json.RawMessage `json:"format,omitempty"`
|
||||||
|
|
||||||
|
// KeepAlive controls how long the model will stay loaded into memory
|
||||||
|
// following the request.
|
||||||
|
KeepAlive *Duration `json:"keep_alive,omitempty"`
|
||||||
|
|
||||||
|
// Tools is an optional list of tools the model has access to.
|
||||||
|
Tools `json:"tools,omitempty"`
|
||||||
|
|
||||||
|
// Options lists model-specific options.
|
||||||
|
Options map[string]any `json:"options"`
|
||||||
|
}
|
||||||
|
|
||||||
|
type Tools []Tool
|
||||||
|
|
||||||
|
func (t Tools) String() string {
|
||||||
|
bts, _ := json.Marshal(t)
|
||||||
|
return string(bts)
|
||||||
|
}
|
||||||
|
|
||||||
|
func (t Tool) String() string {
|
||||||
|
bts, _ := json.Marshal(t)
|
||||||
|
return string(bts)
|
||||||
|
}
|
||||||
|
|
||||||
|
// Message is a single message in a chat sequence. The message contains the
|
||||||
|
// role ("system", "user", or "assistant"), the content and an optional list
|
||||||
|
// of images.
|
||||||
type Message struct {
|
type Message struct {
|
||||||
Role string `json:"role"` // one of ["system", "user", "assistant"]
|
Role string `json:"role"`
|
||||||
Content string `json:"content"`
|
Content string `json:"content"`
|
||||||
Images []ImageData `json:"images,omitempty"`
|
Images []ImageData `json:"images,omitempty"`
|
||||||
|
ToolCalls []ToolCall `json:"tool_calls,omitempty"`
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func (m *Message) UnmarshalJSON(b []byte) error {
|
||||||
|
type Alias Message
|
||||||
|
var a Alias
|
||||||
|
if err := json.Unmarshal(b, &a); err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
|
||||||
|
*m = Message(a)
|
||||||
|
m.Role = strings.ToLower(m.Role)
|
||||||
|
return nil
|
||||||
|
}
|
||||||
|
|
||||||
|
type ToolCall struct {
|
||||||
|
Function ToolCallFunction `json:"function"`
|
||||||
|
}
|
||||||
|
|
||||||
|
type ToolCallFunction struct {
|
||||||
|
Index int `json:"index,omitempty"`
|
||||||
|
Name string `json:"name"`
|
||||||
|
Arguments ToolCallFunctionArguments `json:"arguments"`
|
||||||
|
}
|
||||||
|
|
||||||
|
type ToolCallFunctionArguments map[string]any
|
||||||
|
|
||||||
|
func (t *ToolCallFunctionArguments) String() string {
|
||||||
|
bts, _ := json.Marshal(t)
|
||||||
|
return string(bts)
|
||||||
|
}
|
||||||
|
|
||||||
|
type Tool struct {
|
||||||
|
Type string `json:"type"`
|
||||||
|
Items any `json:"items,omitempty"`
|
||||||
|
Function ToolFunction `json:"function"`
|
||||||
|
}
|
||||||
|
|
||||||
|
// PropertyType can be either a string or an array of strings
|
||||||
|
type PropertyType []string
|
||||||
|
|
||||||
|
// UnmarshalJSON implements the json.Unmarshaler interface
|
||||||
|
func (pt *PropertyType) UnmarshalJSON(data []byte) error {
|
||||||
|
// Try to unmarshal as a string first
|
||||||
|
var s string
|
||||||
|
if err := json.Unmarshal(data, &s); err == nil {
|
||||||
|
*pt = []string{s}
|
||||||
|
return nil
|
||||||
|
}
|
||||||
|
|
||||||
|
// If that fails, try to unmarshal as an array of strings
|
||||||
|
var a []string
|
||||||
|
if err := json.Unmarshal(data, &a); err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
*pt = a
|
||||||
|
return nil
|
||||||
|
}
|
||||||
|
|
||||||
|
// MarshalJSON implements the json.Marshaler interface
|
||||||
|
func (pt PropertyType) MarshalJSON() ([]byte, error) {
|
||||||
|
if len(pt) == 1 {
|
||||||
|
// If there's only one type, marshal as a string
|
||||||
|
return json.Marshal(pt[0])
|
||||||
|
}
|
||||||
|
// Otherwise marshal as an array
|
||||||
|
return json.Marshal([]string(pt))
|
||||||
|
}
|
||||||
|
|
||||||
|
// String returns a string representation of the PropertyType
|
||||||
|
func (pt PropertyType) String() string {
|
||||||
|
if len(pt) == 0 {
|
||||||
|
return ""
|
||||||
|
}
|
||||||
|
if len(pt) == 1 {
|
||||||
|
return pt[0]
|
||||||
|
}
|
||||||
|
return fmt.Sprintf("%v", []string(pt))
|
||||||
|
}
|
||||||
|
|
||||||
|
type ToolFunction struct {
|
||||||
|
Name string `json:"name"`
|
||||||
|
Description string `json:"description"`
|
||||||
|
Parameters struct {
|
||||||
|
Type string `json:"type"`
|
||||||
|
Defs any `json:"$defs,omitempty"`
|
||||||
|
Items any `json:"items,omitempty"`
|
||||||
|
Required []string `json:"required"`
|
||||||
|
Properties map[string]struct {
|
||||||
|
Type PropertyType `json:"type"`
|
||||||
|
Items any `json:"items,omitempty"`
|
||||||
|
Description string `json:"description"`
|
||||||
|
Enum []any `json:"enum,omitempty"`
|
||||||
|
} `json:"properties"`
|
||||||
|
} `json:"parameters"`
|
||||||
|
}
|
||||||
|
|
||||||
|
func (t *ToolFunction) String() string {
|
||||||
|
bts, _ := json.Marshal(t)
|
||||||
|
return string(bts)
|
||||||
|
}
|
||||||
|
|
||||||
|
// ChatResponse is the response returned by [Client.Chat]. Its fields are
|
||||||
|
// similar to [GenerateResponse].
|
||||||
type ChatResponse struct {
|
type ChatResponse struct {
|
||||||
Model string `json:"model"`
|
Model string `json:"model"`
|
||||||
CreatedAt time.Time `json:"created_at"`
|
CreatedAt time.Time `json:"created_at"`
|
||||||
Message Message `json:"message"`
|
Message Message `json:"message"`
|
||||||
|
DoneReason string `json:"done_reason,omitempty"`
|
||||||
|
|
||||||
Done bool `json:"done"`
|
Done bool `json:"done"`
|
||||||
|
|
||||||
@@ -83,7 +253,8 @@ type Metrics struct {
|
|||||||
EvalDuration time.Duration `json:"eval_duration,omitempty"`
|
EvalDuration time.Duration `json:"eval_duration,omitempty"`
|
||||||
}
|
}
|
||||||
|
|
||||||
// Options specfied in GenerateRequest, if you add a new option here add it to the API docs also
|
// Options specified in [GenerateRequest]. If you add a new option here, also
|
||||||
|
// add it to the API docs.
|
||||||
type Options struct {
|
type Options struct {
|
||||||
Runner
|
Runner
|
||||||
|
|
||||||
@@ -93,106 +264,155 @@ type Options struct {
|
|||||||
NumPredict int `json:"num_predict,omitempty"`
|
NumPredict int `json:"num_predict,omitempty"`
|
||||||
TopK int `json:"top_k,omitempty"`
|
TopK int `json:"top_k,omitempty"`
|
||||||
TopP float32 `json:"top_p,omitempty"`
|
TopP float32 `json:"top_p,omitempty"`
|
||||||
TFSZ float32 `json:"tfs_z,omitempty"`
|
MinP float32 `json:"min_p,omitempty"`
|
||||||
TypicalP float32 `json:"typical_p,omitempty"`
|
TypicalP float32 `json:"typical_p,omitempty"`
|
||||||
RepeatLastN int `json:"repeat_last_n,omitempty"`
|
RepeatLastN int `json:"repeat_last_n,omitempty"`
|
||||||
Temperature float32 `json:"temperature,omitempty"`
|
Temperature float32 `json:"temperature,omitempty"`
|
||||||
RepeatPenalty float32 `json:"repeat_penalty,omitempty"`
|
RepeatPenalty float32 `json:"repeat_penalty,omitempty"`
|
||||||
PresencePenalty float32 `json:"presence_penalty,omitempty"`
|
PresencePenalty float32 `json:"presence_penalty,omitempty"`
|
||||||
FrequencyPenalty float32 `json:"frequency_penalty,omitempty"`
|
FrequencyPenalty float32 `json:"frequency_penalty,omitempty"`
|
||||||
Mirostat int `json:"mirostat,omitempty"`
|
|
||||||
MirostatTau float32 `json:"mirostat_tau,omitempty"`
|
|
||||||
MirostatEta float32 `json:"mirostat_eta,omitempty"`
|
|
||||||
PenalizeNewline bool `json:"penalize_newline,omitempty"`
|
|
||||||
Stop []string `json:"stop,omitempty"`
|
Stop []string `json:"stop,omitempty"`
|
||||||
}
|
}
|
||||||
|
|
||||||
// Runner options which must be set when the model is loaded into memory
|
// Runner options which must be set when the model is loaded into memory
|
||||||
type Runner struct {
|
type Runner struct {
|
||||||
UseNUMA bool `json:"numa,omitempty"`
|
NumCtx int `json:"num_ctx,omitempty"`
|
||||||
NumCtx int `json:"num_ctx,omitempty"`
|
NumBatch int `json:"num_batch,omitempty"`
|
||||||
NumBatch int `json:"num_batch,omitempty"`
|
NumGPU int `json:"num_gpu,omitempty"`
|
||||||
NumGQA int `json:"num_gqa,omitempty"`
|
MainGPU int `json:"main_gpu,omitempty"`
|
||||||
NumGPU int `json:"num_gpu,omitempty"`
|
UseMMap *bool `json:"use_mmap,omitempty"`
|
||||||
MainGPU int `json:"main_gpu,omitempty"`
|
NumThread int `json:"num_thread,omitempty"`
|
||||||
LowVRAM bool `json:"low_vram,omitempty"`
|
|
||||||
F16KV bool `json:"f16_kv,omitempty"`
|
|
||||||
LogitsAll bool `json:"logits_all,omitempty"`
|
|
||||||
VocabOnly bool `json:"vocab_only,omitempty"`
|
|
||||||
UseMMap bool `json:"use_mmap,omitempty"`
|
|
||||||
UseMLock bool `json:"use_mlock,omitempty"`
|
|
||||||
EmbeddingOnly bool `json:"embedding_only,omitempty"`
|
|
||||||
RopeFrequencyBase float32 `json:"rope_frequency_base,omitempty"`
|
|
||||||
RopeFrequencyScale float32 `json:"rope_frequency_scale,omitempty"`
|
|
||||||
NumThread int `json:"num_thread,omitempty"`
|
|
||||||
}
|
}
|
||||||
|
|
||||||
type EmbeddingRequest struct {
|
// EmbedRequest is the request passed to [Client.Embed].
|
||||||
Model string `json:"model"`
|
type EmbedRequest struct {
|
||||||
Prompt string `json:"prompt"`
|
// Model is the model name.
|
||||||
|
Model string `json:"model"`
|
||||||
|
|
||||||
|
// Input is the input to embed.
|
||||||
|
Input any `json:"input"`
|
||||||
|
|
||||||
|
// KeepAlive controls how long the model will stay loaded in memory following
|
||||||
|
// this request.
|
||||||
KeepAlive *Duration `json:"keep_alive,omitempty"`
|
KeepAlive *Duration `json:"keep_alive,omitempty"`
|
||||||
|
|
||||||
Options map[string]interface{} `json:"options"`
|
Truncate *bool `json:"truncate,omitempty"`
|
||||||
|
|
||||||
|
// Options lists model-specific options.
|
||||||
|
Options map[string]any `json:"options"`
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// EmbedResponse is the response from [Client.Embed].
|
||||||
|
type EmbedResponse struct {
|
||||||
|
Model string `json:"model"`
|
||||||
|
Embeddings [][]float32 `json:"embeddings"`
|
||||||
|
|
||||||
|
TotalDuration time.Duration `json:"total_duration,omitempty"`
|
||||||
|
LoadDuration time.Duration `json:"load_duration,omitempty"`
|
||||||
|
PromptEvalCount int `json:"prompt_eval_count,omitempty"`
|
||||||
|
}
|
||||||
|
|
||||||
|
// EmbeddingRequest is the request passed to [Client.Embeddings].
|
||||||
|
type EmbeddingRequest struct {
|
||||||
|
// Model is the model name.
|
||||||
|
Model string `json:"model"`
|
||||||
|
|
||||||
|
// Prompt is the textual prompt to embed.
|
||||||
|
Prompt string `json:"prompt"`
|
||||||
|
|
||||||
|
// KeepAlive controls how long the model will stay loaded in memory following
|
||||||
|
// this request.
|
||||||
|
KeepAlive *Duration `json:"keep_alive,omitempty"`
|
||||||
|
|
||||||
|
// Options lists model-specific options.
|
||||||
|
Options map[string]any `json:"options"`
|
||||||
|
}
|
||||||
|
|
||||||
|
// EmbeddingResponse is the response from [Client.Embeddings].
|
||||||
type EmbeddingResponse struct {
|
type EmbeddingResponse struct {
|
||||||
Embedding []float64 `json:"embedding"`
|
Embedding []float64 `json:"embedding"`
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// CreateRequest is the request passed to [Client.Create].
|
||||||
type CreateRequest struct {
|
type CreateRequest struct {
|
||||||
Model string `json:"model"`
|
Model string `json:"model"`
|
||||||
Path string `json:"path"`
|
Stream *bool `json:"stream,omitempty"`
|
||||||
Modelfile string `json:"modelfile"`
|
Quantize string `json:"quantize,omitempty"`
|
||||||
Stream *bool `json:"stream,omitempty"`
|
|
||||||
|
|
||||||
// Name is deprecated, see Model
|
From string `json:"from,omitempty"`
|
||||||
|
Files map[string]string `json:"files,omitempty"`
|
||||||
|
Adapters map[string]string `json:"adapters,omitempty"`
|
||||||
|
Template string `json:"template,omitempty"`
|
||||||
|
License any `json:"license,omitempty"`
|
||||||
|
System string `json:"system,omitempty"`
|
||||||
|
Parameters map[string]any `json:"parameters,omitempty"`
|
||||||
|
Messages []Message `json:"messages,omitempty"`
|
||||||
|
|
||||||
|
// Deprecated: set the model name with Model instead
|
||||||
Name string `json:"name"`
|
Name string `json:"name"`
|
||||||
|
// Deprecated: use Quantize instead
|
||||||
|
Quantization string `json:"quantization,omitempty"`
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// DeleteRequest is the request passed to [Client.Delete].
|
||||||
type DeleteRequest struct {
|
type DeleteRequest struct {
|
||||||
Model string `json:"model"`
|
Model string `json:"model"`
|
||||||
|
|
||||||
// Name is deprecated, see Model
|
// Deprecated: set the model name with Model instead
|
||||||
Name string `json:"name"`
|
Name string `json:"name"`
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// ShowRequest is the request passed to [Client.Show].
|
||||||
type ShowRequest struct {
|
type ShowRequest struct {
|
||||||
Model string `json:"model"`
|
Model string `json:"model"`
|
||||||
System string `json:"system"`
|
System string `json:"system"`
|
||||||
|
|
||||||
|
// Template is deprecated
|
||||||
Template string `json:"template"`
|
Template string `json:"template"`
|
||||||
|
Verbose bool `json:"verbose"`
|
||||||
|
|
||||||
Options map[string]interface{} `json:"options"`
|
Options map[string]any `json:"options"`
|
||||||
|
|
||||||
// Name is deprecated, see Model
|
// Deprecated: set the model name with Model instead
|
||||||
Name string `json:"name"`
|
Name string `json:"name"`
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// ShowResponse is the response returned from [Client.Show].
|
||||||
type ShowResponse struct {
|
type ShowResponse struct {
|
||||||
License string `json:"license,omitempty"`
|
License string `json:"license,omitempty"`
|
||||||
Modelfile string `json:"modelfile,omitempty"`
|
Modelfile string `json:"modelfile,omitempty"`
|
||||||
Parameters string `json:"parameters,omitempty"`
|
Parameters string `json:"parameters,omitempty"`
|
||||||
Template string `json:"template,omitempty"`
|
Template string `json:"template,omitempty"`
|
||||||
System string `json:"system,omitempty"`
|
System string `json:"system,omitempty"`
|
||||||
Details ModelDetails `json:"details,omitempty"`
|
Details ModelDetails `json:"details,omitempty"`
|
||||||
Messages []Message `json:"messages,omitempty"`
|
Messages []Message `json:"messages,omitempty"`
|
||||||
|
ModelInfo map[string]any `json:"model_info,omitempty"`
|
||||||
|
ProjectorInfo map[string]any `json:"projector_info,omitempty"`
|
||||||
|
Tensors []Tensor `json:"tensors,omitempty"`
|
||||||
|
Capabilities []model.Capability `json:"capabilities,omitempty"`
|
||||||
|
ModifiedAt time.Time `json:"modified_at,omitempty"`
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// CopyRequest is the request passed to [Client.Copy].
|
||||||
type CopyRequest struct {
|
type CopyRequest struct {
|
||||||
Source string `json:"source"`
|
Source string `json:"source"`
|
||||||
Destination string `json:"destination"`
|
Destination string `json:"destination"`
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// PullRequest is the request passed to [Client.Pull].
|
||||||
type PullRequest struct {
|
type PullRequest struct {
|
||||||
Model string `json:"model"`
|
Model string `json:"model"`
|
||||||
Insecure bool `json:"insecure,omitempty"`
|
Insecure bool `json:"insecure,omitempty"` // Deprecated: ignored
|
||||||
Username string `json:"username"`
|
Username string `json:"username"` // Deprecated: ignored
|
||||||
Password string `json:"password"`
|
Password string `json:"password"` // Deprecated: ignored
|
||||||
Stream *bool `json:"stream,omitempty"`
|
Stream *bool `json:"stream,omitempty"`
|
||||||
|
|
||||||
// Name is deprecated, see Model
|
// Deprecated: set the model name with Model instead
|
||||||
Name string `json:"name"`
|
Name string `json:"name"`
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// ProgressResponse is the response passed to progress functions like
|
||||||
|
// [PullProgressFunc] and [PushProgressFunc].
|
||||||
type ProgressResponse struct {
|
type ProgressResponse struct {
|
||||||
Status string `json:"status"`
|
Status string `json:"status"`
|
||||||
Digest string `json:"digest,omitempty"`
|
Digest string `json:"digest,omitempty"`
|
||||||
@@ -200,6 +420,7 @@ type ProgressResponse struct {
|
|||||||
Completed int64 `json:"completed,omitempty"`
|
Completed int64 `json:"completed,omitempty"`
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// PushRequest is the request passed to [Client.Push].
|
||||||
type PushRequest struct {
|
type PushRequest struct {
|
||||||
Model string `json:"model"`
|
Model string `json:"model"`
|
||||||
Insecure bool `json:"insecure,omitempty"`
|
Insecure bool `json:"insecure,omitempty"`
|
||||||
@@ -207,15 +428,22 @@ type PushRequest struct {
|
|||||||
Password string `json:"password"`
|
Password string `json:"password"`
|
||||||
Stream *bool `json:"stream,omitempty"`
|
Stream *bool `json:"stream,omitempty"`
|
||||||
|
|
||||||
// Name is deprecated, see Model
|
// Deprecated: set the model name with Model instead
|
||||||
Name string `json:"name"`
|
Name string `json:"name"`
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// ListResponse is the response from [Client.List].
|
||||||
type ListResponse struct {
|
type ListResponse struct {
|
||||||
Models []ModelResponse `json:"models"`
|
Models []ListModelResponse `json:"models"`
|
||||||
}
|
}
|
||||||
|
|
||||||
type ModelResponse struct {
|
// ProcessResponse is the response from [Client.Process].
|
||||||
|
type ProcessResponse struct {
|
||||||
|
Models []ProcessModelResponse `json:"models"`
|
||||||
|
}
|
||||||
|
|
||||||
|
// ListModelResponse is a single model description in [ListResponse].
|
||||||
|
type ListModelResponse struct {
|
||||||
Name string `json:"name"`
|
Name string `json:"name"`
|
||||||
Model string `json:"model"`
|
Model string `json:"model"`
|
||||||
ModifiedAt time.Time `json:"modified_at"`
|
ModifiedAt time.Time `json:"modified_at"`
|
||||||
@@ -224,21 +452,46 @@ type ModelResponse struct {
|
|||||||
Details ModelDetails `json:"details,omitempty"`
|
Details ModelDetails `json:"details,omitempty"`
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// ProcessModelResponse is a single model description in [ProcessResponse].
|
||||||
|
type ProcessModelResponse struct {
|
||||||
|
Name string `json:"name"`
|
||||||
|
Model string `json:"model"`
|
||||||
|
Size int64 `json:"size"`
|
||||||
|
Digest string `json:"digest"`
|
||||||
|
Details ModelDetails `json:"details,omitempty"`
|
||||||
|
ExpiresAt time.Time `json:"expires_at"`
|
||||||
|
SizeVRAM int64 `json:"size_vram"`
|
||||||
|
}
|
||||||
|
|
||||||
type TokenResponse struct {
|
type TokenResponse struct {
|
||||||
Token string `json:"token"`
|
Token string `json:"token"`
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// GenerateResponse is the response passed into [GenerateResponseFunc].
|
||||||
type GenerateResponse struct {
|
type GenerateResponse struct {
|
||||||
Model string `json:"model"`
|
// Model is the model name that generated the response.
|
||||||
CreatedAt time.Time `json:"created_at"`
|
Model string `json:"model"`
|
||||||
Response string `json:"response"`
|
|
||||||
|
|
||||||
Done bool `json:"done"`
|
// CreatedAt is the timestamp of the response.
|
||||||
|
CreatedAt time.Time `json:"created_at"`
|
||||||
|
|
||||||
|
// Response is the textual response itself.
|
||||||
|
Response string `json:"response"`
|
||||||
|
|
||||||
|
// Done specifies if the response is complete.
|
||||||
|
Done bool `json:"done"`
|
||||||
|
|
||||||
|
// DoneReason is the reason the model stopped generating text.
|
||||||
|
DoneReason string `json:"done_reason,omitempty"`
|
||||||
|
|
||||||
|
// Context is an encoding of the conversation used in this response; this
|
||||||
|
// can be sent in the next request to keep a conversational memory.
|
||||||
Context []int `json:"context,omitempty"`
|
Context []int `json:"context,omitempty"`
|
||||||
|
|
||||||
Metrics
|
Metrics
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// ModelDetails provides details about a model.
|
||||||
type ModelDetails struct {
|
type ModelDetails struct {
|
||||||
ParentModel string `json:"parent_model"`
|
ParentModel string `json:"parent_model"`
|
||||||
Format string `json:"format"`
|
Format string `json:"format"`
|
||||||
@@ -248,6 +501,13 @@ type ModelDetails struct {
|
|||||||
QuantizationLevel string `json:"quantization_level"`
|
QuantizationLevel string `json:"quantization_level"`
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Tensor describes the metadata for a given tensor.
|
||||||
|
type Tensor struct {
|
||||||
|
Name string `json:"name"`
|
||||||
|
Type string `json:"type"`
|
||||||
|
Shape []uint64 `json:"shape"`
|
||||||
|
}
|
||||||
|
|
||||||
func (m *Metrics) Summary() {
|
func (m *Metrics) Summary() {
|
||||||
if m.TotalDuration > 0 {
|
if m.TotalDuration > 0 {
|
||||||
fmt.Fprintf(os.Stderr, "total duration: %v\n", m.TotalDuration)
|
fmt.Fprintf(os.Stderr, "total duration: %v\n", m.TotalDuration)
|
||||||
@@ -276,9 +536,7 @@ func (m *Metrics) Summary() {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
var ErrInvalidOpts = fmt.Errorf("invalid options")
|
func (opts *Options) FromMap(m map[string]any) error {
|
||||||
|
|
||||||
func (opts *Options) FromMap(m map[string]interface{}) error {
|
|
||||||
valueOpts := reflect.ValueOf(opts).Elem() // names of the fields in the options struct
|
valueOpts := reflect.ValueOf(opts).Elem() // names of the fields in the options struct
|
||||||
typeOpts := reflect.TypeOf(opts).Elem() // types of the fields in the options struct
|
typeOpts := reflect.TypeOf(opts).Elem() // types of the fields in the options struct
|
||||||
|
|
||||||
@@ -291,111 +549,111 @@ func (opts *Options) FromMap(m map[string]interface{}) error {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
invalidOpts := []string{}
|
|
||||||
for key, val := range m {
|
for key, val := range m {
|
||||||
if opt, ok := jsonOpts[key]; ok {
|
opt, ok := jsonOpts[key]
|
||||||
field := valueOpts.FieldByName(opt.Name)
|
if !ok {
|
||||||
if field.IsValid() && field.CanSet() {
|
slog.Warn("invalid option provided", "option", key)
|
||||||
if val == nil {
|
continue
|
||||||
continue
|
}
|
||||||
}
|
|
||||||
|
|
||||||
switch field.Kind() {
|
field := valueOpts.FieldByName(opt.Name)
|
||||||
case reflect.Int:
|
if field.IsValid() && field.CanSet() {
|
||||||
switch t := val.(type) {
|
if val == nil {
|
||||||
case int64:
|
continue
|
||||||
field.SetInt(t)
|
}
|
||||||
case float64:
|
|
||||||
// when JSON unmarshals numbers, it uses float64, not int
|
switch field.Kind() {
|
||||||
field.SetInt(int64(t))
|
case reflect.Int:
|
||||||
default:
|
switch t := val.(type) {
|
||||||
return fmt.Errorf("option %q must be of type integer", key)
|
case int64:
|
||||||
|
field.SetInt(t)
|
||||||
|
case float64:
|
||||||
|
// when JSON unmarshals numbers, it uses float64, not int
|
||||||
|
field.SetInt(int64(t))
|
||||||
|
default:
|
||||||
|
return fmt.Errorf("option %q must be of type integer", key)
|
||||||
|
}
|
||||||
|
case reflect.Bool:
|
||||||
|
val, ok := val.(bool)
|
||||||
|
if !ok {
|
||||||
|
return fmt.Errorf("option %q must be of type boolean", key)
|
||||||
|
}
|
||||||
|
field.SetBool(val)
|
||||||
|
case reflect.Float32:
|
||||||
|
// JSON unmarshals to float64
|
||||||
|
val, ok := val.(float64)
|
||||||
|
if !ok {
|
||||||
|
return fmt.Errorf("option %q must be of type float32", key)
|
||||||
|
}
|
||||||
|
field.SetFloat(val)
|
||||||
|
case reflect.String:
|
||||||
|
val, ok := val.(string)
|
||||||
|
if !ok {
|
||||||
|
return fmt.Errorf("option %q must be of type string", key)
|
||||||
|
}
|
||||||
|
field.SetString(val)
|
||||||
|
case reflect.Slice:
|
||||||
|
// JSON unmarshals to []any, not []string
|
||||||
|
val, ok := val.([]any)
|
||||||
|
if !ok {
|
||||||
|
return fmt.Errorf("option %q must be of type array", key)
|
||||||
|
}
|
||||||
|
// convert []any to []string
|
||||||
|
slice := make([]string, len(val))
|
||||||
|
for i, item := range val {
|
||||||
|
str, ok := item.(string)
|
||||||
|
if !ok {
|
||||||
|
return fmt.Errorf("option %q must be of an array of strings", key)
|
||||||
}
|
}
|
||||||
case reflect.Bool:
|
slice[i] = str
|
||||||
|
}
|
||||||
|
field.Set(reflect.ValueOf(slice))
|
||||||
|
case reflect.Pointer:
|
||||||
|
var b bool
|
||||||
|
if field.Type() == reflect.TypeOf(&b) {
|
||||||
val, ok := val.(bool)
|
val, ok := val.(bool)
|
||||||
if !ok {
|
if !ok {
|
||||||
return fmt.Errorf("option %q must be of type boolean", key)
|
return fmt.Errorf("option %q must be of type boolean", key)
|
||||||
}
|
}
|
||||||
field.SetBool(val)
|
field.Set(reflect.ValueOf(&val))
|
||||||
case reflect.Float32:
|
} else {
|
||||||
// JSON unmarshals to float64
|
return fmt.Errorf("unknown type loading config params: %v %v", field.Kind(), field.Type())
|
||||||
val, ok := val.(float64)
|
|
||||||
if !ok {
|
|
||||||
return fmt.Errorf("option %q must be of type float32", key)
|
|
||||||
}
|
|
||||||
field.SetFloat(val)
|
|
||||||
case reflect.String:
|
|
||||||
val, ok := val.(string)
|
|
||||||
if !ok {
|
|
||||||
return fmt.Errorf("option %q must be of type string", key)
|
|
||||||
}
|
|
||||||
field.SetString(val)
|
|
||||||
case reflect.Slice:
|
|
||||||
// JSON unmarshals to []interface{}, not []string
|
|
||||||
val, ok := val.([]interface{})
|
|
||||||
if !ok {
|
|
||||||
return fmt.Errorf("option %q must be of type array", key)
|
|
||||||
}
|
|
||||||
// convert []interface{} to []string
|
|
||||||
slice := make([]string, len(val))
|
|
||||||
for i, item := range val {
|
|
||||||
str, ok := item.(string)
|
|
||||||
if !ok {
|
|
||||||
return fmt.Errorf("option %q must be of an array of strings", key)
|
|
||||||
}
|
|
||||||
slice[i] = str
|
|
||||||
}
|
|
||||||
field.Set(reflect.ValueOf(slice))
|
|
||||||
default:
|
|
||||||
return fmt.Errorf("unknown type loading config params: %v", field.Kind())
|
|
||||||
}
|
}
|
||||||
|
default:
|
||||||
|
return fmt.Errorf("unknown type loading config params: %v", field.Kind())
|
||||||
}
|
}
|
||||||
} else {
|
|
||||||
invalidOpts = append(invalidOpts, key)
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if len(invalidOpts) > 0 {
|
|
||||||
return fmt.Errorf("%w: %v", ErrInvalidOpts, strings.Join(invalidOpts, ", "))
|
|
||||||
}
|
|
||||||
return nil
|
return nil
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// DefaultOptions is the default set of options for [GenerateRequest]; these
|
||||||
|
// values are used unless the user specifies other values explicitly.
|
||||||
func DefaultOptions() Options {
|
func DefaultOptions() Options {
|
||||||
return Options{
|
return Options{
|
||||||
// options set on request to runner
|
// options set on request to runner
|
||||||
NumPredict: -1,
|
NumPredict: -1,
|
||||||
NumKeep: 0,
|
|
||||||
|
// set a minimal num_keep to avoid issues on context shifts
|
||||||
|
NumKeep: 4,
|
||||||
Temperature: 0.8,
|
Temperature: 0.8,
|
||||||
TopK: 40,
|
TopK: 40,
|
||||||
TopP: 0.9,
|
TopP: 0.9,
|
||||||
TFSZ: 1.0,
|
|
||||||
TypicalP: 1.0,
|
TypicalP: 1.0,
|
||||||
RepeatLastN: 64,
|
RepeatLastN: 64,
|
||||||
RepeatPenalty: 1.1,
|
RepeatPenalty: 1.1,
|
||||||
PresencePenalty: 0.0,
|
PresencePenalty: 0.0,
|
||||||
FrequencyPenalty: 0.0,
|
FrequencyPenalty: 0.0,
|
||||||
Mirostat: 0,
|
|
||||||
MirostatTau: 5.0,
|
|
||||||
MirostatEta: 0.1,
|
|
||||||
PenalizeNewline: true,
|
|
||||||
Seed: -1,
|
Seed: -1,
|
||||||
|
|
||||||
Runner: Runner{
|
Runner: Runner{
|
||||||
// options set when the model is loaded
|
// options set when the model is loaded
|
||||||
NumCtx: 2048,
|
NumCtx: int(envconfig.ContextLength()),
|
||||||
RopeFrequencyBase: 10000.0,
|
NumBatch: 512,
|
||||||
RopeFrequencyScale: 1.0,
|
NumGPU: -1, // -1 here indicates that NumGPU should be set dynamically
|
||||||
NumBatch: 512,
|
NumThread: 0, // let the runtime decide
|
||||||
NumGPU: -1, // -1 here indicates that NumGPU should be set dynamically
|
UseMMap: nil,
|
||||||
NumGQA: 1,
|
|
||||||
NumThread: 0, // let the runtime decide
|
|
||||||
LowVRAM: false,
|
|
||||||
F16KV: true,
|
|
||||||
UseMLock: false,
|
|
||||||
UseMMap: true,
|
|
||||||
UseNUMA: false,
|
|
||||||
EmbeddingOnly: true,
|
|
||||||
},
|
},
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@@ -404,6 +662,13 @@ type Duration struct {
|
|||||||
time.Duration
|
time.Duration
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func (d Duration) MarshalJSON() ([]byte, error) {
|
||||||
|
if d.Duration < 0 {
|
||||||
|
return []byte("-1"), nil
|
||||||
|
}
|
||||||
|
return []byte("\"" + d.Duration.String() + "\""), nil
|
||||||
|
}
|
||||||
|
|
||||||
func (d *Duration) UnmarshalJSON(b []byte) (err error) {
|
func (d *Duration) UnmarshalJSON(b []byte) (err error) {
|
||||||
var v any
|
var v any
|
||||||
if err := json.Unmarshal(b, &v); err != nil {
|
if err := json.Unmarshal(b, &v); err != nil {
|
||||||
@@ -417,7 +682,7 @@ func (d *Duration) UnmarshalJSON(b []byte) (err error) {
|
|||||||
if t < 0 {
|
if t < 0 {
|
||||||
d.Duration = time.Duration(math.MaxInt64)
|
d.Duration = time.Duration(math.MaxInt64)
|
||||||
} else {
|
} else {
|
||||||
d.Duration = time.Duration(t * float64(time.Second))
|
d.Duration = time.Duration(int(t) * int(time.Second))
|
||||||
}
|
}
|
||||||
case string:
|
case string:
|
||||||
d.Duration, err = time.ParseDuration(t)
|
d.Duration, err = time.ParseDuration(t)
|
||||||
@@ -427,13 +692,15 @@ func (d *Duration) UnmarshalJSON(b []byte) (err error) {
|
|||||||
if d.Duration < 0 {
|
if d.Duration < 0 {
|
||||||
d.Duration = time.Duration(math.MaxInt64)
|
d.Duration = time.Duration(math.MaxInt64)
|
||||||
}
|
}
|
||||||
|
default:
|
||||||
|
return fmt.Errorf("Unsupported type: '%s'", reflect.TypeOf(v))
|
||||||
}
|
}
|
||||||
|
|
||||||
return nil
|
return nil
|
||||||
}
|
}
|
||||||
|
|
||||||
// FormatParams converts specified parameter options to their correct types
|
// FormatParams converts specified parameter options to their correct types
|
||||||
func FormatParams(params map[string][]string) (map[string]interface{}, error) {
|
func FormatParams(params map[string][]string) (map[string]any, error) {
|
||||||
opts := Options{}
|
opts := Options{}
|
||||||
valueOpts := reflect.ValueOf(&opts).Elem() // names of the fields in the options struct
|
valueOpts := reflect.ValueOf(&opts).Elem() // names of the fields in the options struct
|
||||||
typeOpts := reflect.TypeOf(opts) // types of the fields in the options struct
|
typeOpts := reflect.TypeOf(opts) // types of the fields in the options struct
|
||||||
@@ -447,7 +714,7 @@ func FormatParams(params map[string][]string) (map[string]interface{}, error) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
out := make(map[string]interface{})
|
out := make(map[string]any)
|
||||||
// iterate params and set values based on json struct tags
|
// iterate params and set values based on json struct tags
|
||||||
for key, vals := range params {
|
for key, vals := range params {
|
||||||
if opt, ok := jsonOpts[key]; !ok {
|
if opt, ok := jsonOpts[key]; !ok {
|
||||||
@@ -482,6 +749,17 @@ func FormatParams(params map[string][]string) (map[string]interface{}, error) {
|
|||||||
case reflect.Slice:
|
case reflect.Slice:
|
||||||
// TODO: only string slices are supported right now
|
// TODO: only string slices are supported right now
|
||||||
out[key] = vals
|
out[key] = vals
|
||||||
|
case reflect.Pointer:
|
||||||
|
var b bool
|
||||||
|
if field.Type() == reflect.TypeOf(&b) {
|
||||||
|
boolVal, err := strconv.ParseBool(vals[0])
|
||||||
|
if err != nil {
|
||||||
|
return nil, fmt.Errorf("invalid bool value %s", vals)
|
||||||
|
}
|
||||||
|
out[key] = &boolVal
|
||||||
|
} else {
|
||||||
|
return nil, fmt.Errorf("unknown type %s for %s", field.Kind(), key)
|
||||||
|
}
|
||||||
default:
|
default:
|
||||||
return nil, fmt.Errorf("unknown type %s for %s", field.Kind(), key)
|
return nil, fmt.Errorf("unknown type %s for %s", field.Kind(), key)
|
||||||
}
|
}
|
||||||
|
|||||||
374
api/types_test.go
Normal file
374
api/types_test.go
Normal file
@@ -0,0 +1,374 @@
|
|||||||
|
package api
|
||||||
|
|
||||||
|
import (
|
||||||
|
"encoding/json"
|
||||||
|
"errors"
|
||||||
|
"math"
|
||||||
|
"testing"
|
||||||
|
"time"
|
||||||
|
|
||||||
|
"github.com/stretchr/testify/assert"
|
||||||
|
"github.com/stretchr/testify/require"
|
||||||
|
)
|
||||||
|
|
||||||
|
func TestKeepAliveParsingFromJSON(t *testing.T) {
|
||||||
|
tests := []struct {
|
||||||
|
name string
|
||||||
|
req string
|
||||||
|
exp *Duration
|
||||||
|
}{
|
||||||
|
{
|
||||||
|
name: "Positive Integer",
|
||||||
|
req: `{ "keep_alive": 42 }`,
|
||||||
|
exp: &Duration{42 * time.Second},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "Positive Float",
|
||||||
|
req: `{ "keep_alive": 42.5 }`,
|
||||||
|
exp: &Duration{42 * time.Second},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "Positive Integer String",
|
||||||
|
req: `{ "keep_alive": "42m" }`,
|
||||||
|
exp: &Duration{42 * time.Minute},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "Negative Integer",
|
||||||
|
req: `{ "keep_alive": -1 }`,
|
||||||
|
exp: &Duration{math.MaxInt64},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "Negative Float",
|
||||||
|
req: `{ "keep_alive": -3.14 }`,
|
||||||
|
exp: &Duration{math.MaxInt64},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "Negative Integer String",
|
||||||
|
req: `{ "keep_alive": "-1m" }`,
|
||||||
|
exp: &Duration{math.MaxInt64},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, test := range tests {
|
||||||
|
t.Run(test.name, func(t *testing.T) {
|
||||||
|
var dec ChatRequest
|
||||||
|
err := json.Unmarshal([]byte(test.req), &dec)
|
||||||
|
require.NoError(t, err)
|
||||||
|
|
||||||
|
assert.Equal(t, test.exp, dec.KeepAlive)
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func TestDurationMarshalUnmarshal(t *testing.T) {
|
||||||
|
tests := []struct {
|
||||||
|
name string
|
||||||
|
input time.Duration
|
||||||
|
expected time.Duration
|
||||||
|
}{
|
||||||
|
{
|
||||||
|
"negative duration",
|
||||||
|
time.Duration(-1),
|
||||||
|
time.Duration(math.MaxInt64),
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"positive duration",
|
||||||
|
42 * time.Second,
|
||||||
|
42 * time.Second,
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"another positive duration",
|
||||||
|
42 * time.Minute,
|
||||||
|
42 * time.Minute,
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"zero duration",
|
||||||
|
time.Duration(0),
|
||||||
|
time.Duration(0),
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"max duration",
|
||||||
|
time.Duration(math.MaxInt64),
|
||||||
|
time.Duration(math.MaxInt64),
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, test := range tests {
|
||||||
|
t.Run(test.name, func(t *testing.T) {
|
||||||
|
b, err := json.Marshal(Duration{test.input})
|
||||||
|
require.NoError(t, err)
|
||||||
|
|
||||||
|
var d Duration
|
||||||
|
err = json.Unmarshal(b, &d)
|
||||||
|
require.NoError(t, err)
|
||||||
|
|
||||||
|
assert.Equal(t, test.expected, d.Duration, "input %v, marshalled %v, got %v", test.input, string(b), d.Duration)
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func TestUseMmapParsingFromJSON(t *testing.T) {
|
||||||
|
tr := true
|
||||||
|
fa := false
|
||||||
|
tests := []struct {
|
||||||
|
name string
|
||||||
|
req string
|
||||||
|
exp *bool
|
||||||
|
}{
|
||||||
|
{
|
||||||
|
name: "Undefined",
|
||||||
|
req: `{ }`,
|
||||||
|
exp: nil,
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "True",
|
||||||
|
req: `{ "use_mmap": true }`,
|
||||||
|
exp: &tr,
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "False",
|
||||||
|
req: `{ "use_mmap": false }`,
|
||||||
|
exp: &fa,
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, test := range tests {
|
||||||
|
t.Run(test.name, func(t *testing.T) {
|
||||||
|
var oMap map[string]any
|
||||||
|
err := json.Unmarshal([]byte(test.req), &oMap)
|
||||||
|
require.NoError(t, err)
|
||||||
|
opts := DefaultOptions()
|
||||||
|
err = opts.FromMap(oMap)
|
||||||
|
require.NoError(t, err)
|
||||||
|
assert.Equal(t, test.exp, opts.UseMMap)
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func TestUseMmapFormatParams(t *testing.T) {
|
||||||
|
tr := true
|
||||||
|
fa := false
|
||||||
|
tests := []struct {
|
||||||
|
name string
|
||||||
|
req map[string][]string
|
||||||
|
exp *bool
|
||||||
|
err error
|
||||||
|
}{
|
||||||
|
{
|
||||||
|
name: "True",
|
||||||
|
req: map[string][]string{
|
||||||
|
"use_mmap": {"true"},
|
||||||
|
},
|
||||||
|
exp: &tr,
|
||||||
|
err: nil,
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "False",
|
||||||
|
req: map[string][]string{
|
||||||
|
"use_mmap": {"false"},
|
||||||
|
},
|
||||||
|
exp: &fa,
|
||||||
|
err: nil,
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "Numeric True",
|
||||||
|
req: map[string][]string{
|
||||||
|
"use_mmap": {"1"},
|
||||||
|
},
|
||||||
|
exp: &tr,
|
||||||
|
err: nil,
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "Numeric False",
|
||||||
|
req: map[string][]string{
|
||||||
|
"use_mmap": {"0"},
|
||||||
|
},
|
||||||
|
exp: &fa,
|
||||||
|
err: nil,
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "invalid string",
|
||||||
|
req: map[string][]string{
|
||||||
|
"use_mmap": {"foo"},
|
||||||
|
},
|
||||||
|
exp: nil,
|
||||||
|
err: errors.New("invalid bool value [foo]"),
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, test := range tests {
|
||||||
|
t.Run(test.name, func(t *testing.T) {
|
||||||
|
resp, err := FormatParams(test.req)
|
||||||
|
require.Equal(t, test.err, err)
|
||||||
|
respVal, ok := resp["use_mmap"]
|
||||||
|
if test.exp != nil {
|
||||||
|
assert.True(t, ok, "resp: %v", resp)
|
||||||
|
assert.Equal(t, *test.exp, *respVal.(*bool))
|
||||||
|
}
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func TestMessage_UnmarshalJSON(t *testing.T) {
|
||||||
|
tests := []struct {
|
||||||
|
input string
|
||||||
|
expected string
|
||||||
|
}{
|
||||||
|
{`{"role": "USER", "content": "Hello!"}`, "user"},
|
||||||
|
{`{"role": "System", "content": "Initialization complete."}`, "system"},
|
||||||
|
{`{"role": "assistant", "content": "How can I help you?"}`, "assistant"},
|
||||||
|
{`{"role": "TOOl", "content": "Access granted."}`, "tool"},
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, test := range tests {
|
||||||
|
var msg Message
|
||||||
|
if err := json.Unmarshal([]byte(test.input), &msg); err != nil {
|
||||||
|
t.Errorf("Unexpected error: %v", err)
|
||||||
|
}
|
||||||
|
|
||||||
|
if msg.Role != test.expected {
|
||||||
|
t.Errorf("role not lowercased: got %v, expected %v", msg.Role, test.expected)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func TestToolFunction_UnmarshalJSON(t *testing.T) {
|
||||||
|
tests := []struct {
|
||||||
|
name string
|
||||||
|
input string
|
||||||
|
wantErr string
|
||||||
|
}{
|
||||||
|
{
|
||||||
|
name: "valid enum with same types",
|
||||||
|
input: `{
|
||||||
|
"name": "test",
|
||||||
|
"description": "test function",
|
||||||
|
"parameters": {
|
||||||
|
"type": "object",
|
||||||
|
"required": ["test"],
|
||||||
|
"properties": {
|
||||||
|
"test": {
|
||||||
|
"type": "string",
|
||||||
|
"description": "test prop",
|
||||||
|
"enum": ["a", "b", "c"]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}`,
|
||||||
|
wantErr: "",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "empty enum array",
|
||||||
|
input: `{
|
||||||
|
"name": "test",
|
||||||
|
"description": "test function",
|
||||||
|
"parameters": {
|
||||||
|
"type": "object",
|
||||||
|
"required": ["test"],
|
||||||
|
"properties": {
|
||||||
|
"test": {
|
||||||
|
"type": "string",
|
||||||
|
"description": "test prop",
|
||||||
|
"enum": []
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}`,
|
||||||
|
wantErr: "",
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, tt := range tests {
|
||||||
|
t.Run(tt.name, func(t *testing.T) {
|
||||||
|
var tf ToolFunction
|
||||||
|
err := json.Unmarshal([]byte(tt.input), &tf)
|
||||||
|
|
||||||
|
if tt.wantErr != "" {
|
||||||
|
require.Error(t, err)
|
||||||
|
assert.Contains(t, err.Error(), tt.wantErr)
|
||||||
|
} else {
|
||||||
|
require.NoError(t, err)
|
||||||
|
}
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func TestPropertyType_UnmarshalJSON(t *testing.T) {
|
||||||
|
tests := []struct {
|
||||||
|
name string
|
||||||
|
input string
|
||||||
|
expected PropertyType
|
||||||
|
}{
|
||||||
|
{
|
||||||
|
name: "string type",
|
||||||
|
input: `"string"`,
|
||||||
|
expected: PropertyType{"string"},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "array of types",
|
||||||
|
input: `["string", "number"]`,
|
||||||
|
expected: PropertyType{"string", "number"},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "array with single type",
|
||||||
|
input: `["string"]`,
|
||||||
|
expected: PropertyType{"string"},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, test := range tests {
|
||||||
|
t.Run(test.name, func(t *testing.T) {
|
||||||
|
var pt PropertyType
|
||||||
|
if err := json.Unmarshal([]byte(test.input), &pt); err != nil {
|
||||||
|
t.Errorf("Unexpected error: %v", err)
|
||||||
|
}
|
||||||
|
|
||||||
|
if len(pt) != len(test.expected) {
|
||||||
|
t.Errorf("Length mismatch: got %v, expected %v", len(pt), len(test.expected))
|
||||||
|
}
|
||||||
|
|
||||||
|
for i, v := range pt {
|
||||||
|
if v != test.expected[i] {
|
||||||
|
t.Errorf("Value mismatch at index %d: got %v, expected %v", i, v, test.expected[i])
|
||||||
|
}
|
||||||
|
}
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func TestPropertyType_MarshalJSON(t *testing.T) {
|
||||||
|
tests := []struct {
|
||||||
|
name string
|
||||||
|
input PropertyType
|
||||||
|
expected string
|
||||||
|
}{
|
||||||
|
{
|
||||||
|
name: "single type",
|
||||||
|
input: PropertyType{"string"},
|
||||||
|
expected: `"string"`,
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "multiple types",
|
||||||
|
input: PropertyType{"string", "number"},
|
||||||
|
expected: `["string","number"]`,
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "empty type",
|
||||||
|
input: PropertyType{},
|
||||||
|
expected: `[]`,
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, test := range tests {
|
||||||
|
t.Run(test.name, func(t *testing.T) {
|
||||||
|
data, err := json.Marshal(test.input)
|
||||||
|
if err != nil {
|
||||||
|
t.Errorf("Unexpected error: %v", err)
|
||||||
|
}
|
||||||
|
|
||||||
|
if string(data) != test.expected {
|
||||||
|
t.Errorf("Marshaled data mismatch: got %v, expected %v", string(data), test.expected)
|
||||||
|
}
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
@@ -17,6 +17,6 @@ If you want to build the installer, youll need to install
|
|||||||
In the top directory of this repo, run the following powershell script
|
In the top directory of this repo, run the following powershell script
|
||||||
to build the ollama CLI, ollama app, and ollama installer.
|
to build the ollama CLI, ollama app, and ollama installer.
|
||||||
|
|
||||||
```
|
```powershell
|
||||||
powershell -ExecutionPolicy Bypass -File .\scripts\build_windows.ps1
|
powershell -ExecutionPolicy Bypass -File .\scripts\build_windows.ps1
|
||||||
```
|
```
|
||||||
|
|||||||
@@ -2,8 +2,8 @@
|
|||||||
|
|
||||||
package lifecycle
|
package lifecycle
|
||||||
|
|
||||||
import "fmt"
|
import "errors"
|
||||||
|
|
||||||
func GetStarted() error {
|
func GetStarted() error {
|
||||||
return fmt.Errorf("GetStarted not implemented")
|
return errors.New("not implemented")
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -34,7 +34,6 @@ func GetStarted() error {
|
|||||||
Sys: &syscall.SysProcAttr{CreationFlags: CREATE_NEW_CONSOLE, HideWindow: false},
|
Sys: &syscall.SysProcAttr{CreationFlags: CREATE_NEW_CONSOLE, HideWindow: false},
|
||||||
}
|
}
|
||||||
proc, err := os.StartProcess(args[0], args, attrs)
|
proc, err := os.StartProcess(args[0], args, attrs)
|
||||||
|
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return fmt.Errorf("unable to start getting started shell %w", err)
|
return fmt.Errorf("unable to start getting started shell %w", err)
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -9,12 +9,14 @@ import (
|
|||||||
"os/signal"
|
"os/signal"
|
||||||
"syscall"
|
"syscall"
|
||||||
|
|
||||||
"github.com/jmorganca/ollama/app/store"
|
"github.com/ollama/ollama/app/store"
|
||||||
"github.com/jmorganca/ollama/app/tray"
|
"github.com/ollama/ollama/app/tray"
|
||||||
|
"github.com/ollama/ollama/envconfig"
|
||||||
)
|
)
|
||||||
|
|
||||||
func Run() {
|
func Run() {
|
||||||
InitLogging()
|
InitLogging()
|
||||||
|
slog.Info("app config", "env", envconfig.Values())
|
||||||
|
|
||||||
ctx, cancel := context.WithCancel(context.Background())
|
ctx, cancel := context.WithCancel(context.Background())
|
||||||
var done chan int
|
var done chan int
|
||||||
|
|||||||
@@ -5,12 +5,16 @@ import (
|
|||||||
"log/slog"
|
"log/slog"
|
||||||
"os"
|
"os"
|
||||||
"path/filepath"
|
"path/filepath"
|
||||||
|
"strconv"
|
||||||
|
"strings"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/envconfig"
|
||||||
)
|
)
|
||||||
|
|
||||||
func InitLogging() {
|
func InitLogging() {
|
||||||
level := slog.LevelInfo
|
level := slog.LevelInfo
|
||||||
|
|
||||||
if debug := os.Getenv("OLLAMA_DEBUG"); debug != "" {
|
if envconfig.Debug() {
|
||||||
level = slog.LevelDebug
|
level = slog.LevelDebug
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -22,7 +26,8 @@ func InitLogging() {
|
|||||||
logFile = os.Stderr
|
logFile = os.Stderr
|
||||||
// TODO - write one-line to the app.log file saying we're running in console mode to help avoid confusion
|
// TODO - write one-line to the app.log file saying we're running in console mode to help avoid confusion
|
||||||
} else {
|
} else {
|
||||||
logFile, err = os.OpenFile(AppLogFile, os.O_APPEND|os.O_WRONLY|os.O_CREATE, 0755)
|
rotateLogs(AppLogFile)
|
||||||
|
logFile, err = os.OpenFile(AppLogFile, os.O_APPEND|os.O_WRONLY|os.O_CREATE, 0o755)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
slog.Error(fmt.Sprintf("failed to create server log %v", err))
|
slog.Error(fmt.Sprintf("failed to create server log %v", err))
|
||||||
return
|
return
|
||||||
@@ -44,3 +49,32 @@ func InitLogging() {
|
|||||||
|
|
||||||
slog.Info("ollama app started")
|
slog.Info("ollama app started")
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func rotateLogs(logFile string) {
|
||||||
|
if _, err := os.Stat(logFile); os.IsNotExist(err) {
|
||||||
|
return
|
||||||
|
}
|
||||||
|
index := strings.LastIndex(logFile, ".")
|
||||||
|
pre := logFile[:index]
|
||||||
|
post := "." + logFile[index+1:]
|
||||||
|
for i := LogRotationCount; i > 0; i-- {
|
||||||
|
older := pre + "-" + strconv.Itoa(i) + post
|
||||||
|
newer := pre + "-" + strconv.Itoa(i-1) + post
|
||||||
|
if i == 1 {
|
||||||
|
newer = pre + post
|
||||||
|
}
|
||||||
|
if _, err := os.Stat(newer); err == nil {
|
||||||
|
if _, err := os.Stat(older); err == nil {
|
||||||
|
err := os.Remove(older)
|
||||||
|
if err != nil {
|
||||||
|
slog.Warn("Failed to remove older log", "older", older, "error", err)
|
||||||
|
continue
|
||||||
|
}
|
||||||
|
}
|
||||||
|
err := os.Rename(newer, older)
|
||||||
|
if err != nil {
|
||||||
|
slog.Warn("Failed to rotate log", "older", older, "newer", newer, "error", err)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|||||||
@@ -5,5 +5,5 @@ package lifecycle
|
|||||||
import "log/slog"
|
import "log/slog"
|
||||||
|
|
||||||
func ShowLogs() {
|
func ShowLogs() {
|
||||||
slog.Warn("ShowLogs not yet implemented")
|
slog.Warn("not implemented")
|
||||||
}
|
}
|
||||||
|
|||||||
44
app/lifecycle/logging_test.go
Normal file
44
app/lifecycle/logging_test.go
Normal file
@@ -0,0 +1,44 @@
|
|||||||
|
package lifecycle
|
||||||
|
|
||||||
|
import (
|
||||||
|
"os"
|
||||||
|
"path/filepath"
|
||||||
|
"strconv"
|
||||||
|
"testing"
|
||||||
|
|
||||||
|
"github.com/stretchr/testify/assert"
|
||||||
|
"github.com/stretchr/testify/require"
|
||||||
|
)
|
||||||
|
|
||||||
|
func TestRotateLogs(t *testing.T) {
|
||||||
|
logDir := t.TempDir()
|
||||||
|
logFile := filepath.Join(logDir, "testlog.log")
|
||||||
|
|
||||||
|
// No log exists
|
||||||
|
rotateLogs(logFile)
|
||||||
|
|
||||||
|
require.NoError(t, os.WriteFile(logFile, []byte("1"), 0o644))
|
||||||
|
assert.FileExists(t, logFile)
|
||||||
|
// First rotation
|
||||||
|
rotateLogs(logFile)
|
||||||
|
assert.FileExists(t, filepath.Join(logDir, "testlog-1.log"))
|
||||||
|
assert.NoFileExists(t, filepath.Join(logDir, "testlog-2.log"))
|
||||||
|
assert.NoFileExists(t, logFile)
|
||||||
|
|
||||||
|
// Should be a no-op without a new log
|
||||||
|
rotateLogs(logFile)
|
||||||
|
assert.FileExists(t, filepath.Join(logDir, "testlog-1.log"))
|
||||||
|
assert.NoFileExists(t, filepath.Join(logDir, "testlog-2.log"))
|
||||||
|
assert.NoFileExists(t, logFile)
|
||||||
|
|
||||||
|
for i := 2; i <= LogRotationCount+1; i++ {
|
||||||
|
require.NoError(t, os.WriteFile(logFile, []byte(strconv.Itoa(i)), 0o644))
|
||||||
|
assert.FileExists(t, logFile)
|
||||||
|
rotateLogs(logFile)
|
||||||
|
assert.NoFileExists(t, logFile)
|
||||||
|
for j := 1; j < i; j++ {
|
||||||
|
assert.FileExists(t, filepath.Join(logDir, "testlog-"+strconv.Itoa(j)+".log"))
|
||||||
|
}
|
||||||
|
assert.NoFileExists(t, filepath.Join(logDir, "testlog-"+strconv.Itoa(i+1)+".log"))
|
||||||
|
}
|
||||||
|
}
|
||||||
@@ -16,11 +16,12 @@ var (
|
|||||||
AppDir = "/opt/Ollama"
|
AppDir = "/opt/Ollama"
|
||||||
AppDataDir = "/opt/Ollama"
|
AppDataDir = "/opt/Ollama"
|
||||||
// TODO - should there be a distinct log dir?
|
// TODO - should there be a distinct log dir?
|
||||||
UpdateStageDir = "/tmp"
|
UpdateStageDir = "/tmp"
|
||||||
AppLogFile = "/tmp/ollama_app.log"
|
AppLogFile = "/tmp/ollama_app.log"
|
||||||
ServerLogFile = "/tmp/ollama.log"
|
ServerLogFile = "/tmp/ollama.log"
|
||||||
UpgradeLogFile = "/tmp/ollama_update.log"
|
UpgradeLogFile = "/tmp/ollama_update.log"
|
||||||
Installer = "OllamaSetup.exe"
|
Installer = "OllamaSetup.exe"
|
||||||
|
LogRotationCount = 5
|
||||||
)
|
)
|
||||||
|
|
||||||
func init() {
|
func init() {
|
||||||
@@ -35,8 +36,13 @@ func init() {
|
|||||||
ServerLogFile = filepath.Join(AppDataDir, "server.log")
|
ServerLogFile = filepath.Join(AppDataDir, "server.log")
|
||||||
UpgradeLogFile = filepath.Join(AppDataDir, "upgrade.log")
|
UpgradeLogFile = filepath.Join(AppDataDir, "upgrade.log")
|
||||||
|
|
||||||
// Executables are stored in APPDATA
|
exe, err := os.Executable()
|
||||||
AppDir = filepath.Join(localAppData, "Programs", "Ollama")
|
if err != nil {
|
||||||
|
slog.Warn("error discovering executable directory", "error", err)
|
||||||
|
AppDir = filepath.Join(localAppData, "Programs", "Ollama")
|
||||||
|
} else {
|
||||||
|
AppDir = filepath.Dir(exe)
|
||||||
|
}
|
||||||
|
|
||||||
// Make sure we have PATH set correctly for any spawned children
|
// Make sure we have PATH set correctly for any spawned children
|
||||||
paths := strings.Split(os.Getenv("PATH"), ";")
|
paths := strings.Split(os.Getenv("PATH"), ";")
|
||||||
@@ -63,13 +69,12 @@ func init() {
|
|||||||
}
|
}
|
||||||
|
|
||||||
// Make sure our logging dir exists
|
// Make sure our logging dir exists
|
||||||
_, err := os.Stat(AppDataDir)
|
_, err = os.Stat(AppDataDir)
|
||||||
if errors.Is(err, os.ErrNotExist) {
|
if errors.Is(err, os.ErrNotExist) {
|
||||||
if err := os.MkdirAll(AppDataDir, 0o755); err != nil {
|
if err := os.MkdirAll(AppDataDir, 0o755); err != nil {
|
||||||
slog.Error(fmt.Sprintf("create ollama dir %s: %v", AppDataDir, err))
|
slog.Error(fmt.Sprintf("create ollama dir %s: %v", AppDataDir, err))
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
} else if runtime.GOOS == "darwin" {
|
} else if runtime.GOOS == "darwin" {
|
||||||
// TODO
|
// TODO
|
||||||
AppName += ".app"
|
AppName += ".app"
|
||||||
|
|||||||
@@ -11,18 +11,24 @@ import (
|
|||||||
"path/filepath"
|
"path/filepath"
|
||||||
"time"
|
"time"
|
||||||
|
|
||||||
"github.com/jmorganca/ollama/api"
|
"github.com/ollama/ollama/api"
|
||||||
)
|
)
|
||||||
|
|
||||||
func getCLIFullPath(command string) string {
|
func getCLIFullPath(command string) string {
|
||||||
cmdPath := ""
|
var cmdPath string
|
||||||
appExe, err := os.Executable()
|
appExe, err := os.Executable()
|
||||||
if err == nil {
|
if err == nil {
|
||||||
|
// Check both the same location as the tray app, as well as ./bin
|
||||||
cmdPath = filepath.Join(filepath.Dir(appExe), command)
|
cmdPath = filepath.Join(filepath.Dir(appExe), command)
|
||||||
_, err := os.Stat(cmdPath)
|
_, err := os.Stat(cmdPath)
|
||||||
if err == nil {
|
if err == nil {
|
||||||
return cmdPath
|
return cmdPath
|
||||||
}
|
}
|
||||||
|
cmdPath = filepath.Join(filepath.Dir(appExe), "bin", command)
|
||||||
|
_, err = os.Stat(cmdPath)
|
||||||
|
if err == nil {
|
||||||
|
return cmdPath
|
||||||
|
}
|
||||||
}
|
}
|
||||||
cmdPath, err = exec.LookPath(command)
|
cmdPath, err = exec.LookPath(command)
|
||||||
if err == nil {
|
if err == nil {
|
||||||
@@ -43,37 +49,35 @@ func getCLIFullPath(command string) string {
|
|||||||
return command
|
return command
|
||||||
}
|
}
|
||||||
|
|
||||||
func SpawnServer(ctx context.Context, command string) (chan int, error) {
|
func start(ctx context.Context, command string) (*exec.Cmd, error) {
|
||||||
done := make(chan int)
|
|
||||||
|
|
||||||
logDir := filepath.Dir(ServerLogFile)
|
|
||||||
_, err := os.Stat(logDir)
|
|
||||||
if errors.Is(err, os.ErrNotExist) {
|
|
||||||
if err := os.MkdirAll(logDir, 0o755); err != nil {
|
|
||||||
return done, fmt.Errorf("create ollama server log dir %s: %v", logDir, err)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
cmd := getCmd(ctx, getCLIFullPath(command))
|
cmd := getCmd(ctx, getCLIFullPath(command))
|
||||||
// send stdout and stderr to a file
|
|
||||||
stdout, err := cmd.StdoutPipe()
|
stdout, err := cmd.StdoutPipe()
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return done, fmt.Errorf("failed to spawn server stdout pipe %s", err)
|
return nil, fmt.Errorf("failed to spawn server stdout pipe: %w", err)
|
||||||
}
|
}
|
||||||
stderr, err := cmd.StderrPipe()
|
stderr, err := cmd.StderrPipe()
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return done, fmt.Errorf("failed to spawn server stderr pipe %s", err)
|
return nil, fmt.Errorf("failed to spawn server stderr pipe: %w", err)
|
||||||
}
|
|
||||||
stdin, err := cmd.StdinPipe()
|
|
||||||
if err != nil {
|
|
||||||
return done, fmt.Errorf("failed to spawn server stdin pipe %s", err)
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// TODO - rotation
|
rotateLogs(ServerLogFile)
|
||||||
logFile, err := os.OpenFile(ServerLogFile, os.O_APPEND|os.O_WRONLY|os.O_CREATE, 0755)
|
logFile, err := os.OpenFile(ServerLogFile, os.O_APPEND|os.O_WRONLY|os.O_CREATE, 0o755)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return done, fmt.Errorf("failed to create server log %w", err)
|
return nil, fmt.Errorf("failed to create server log: %w", err)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
logDir := filepath.Dir(ServerLogFile)
|
||||||
|
_, err = os.Stat(logDir)
|
||||||
|
if err != nil {
|
||||||
|
if !errors.Is(err, os.ErrNotExist) {
|
||||||
|
return nil, fmt.Errorf("stat ollama server log dir %s: %v", logDir, err)
|
||||||
|
}
|
||||||
|
|
||||||
|
if err := os.MkdirAll(logDir, 0o755); err != nil {
|
||||||
|
return nil, fmt.Errorf("create ollama server log dir %s: %v", logDir, err)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
go func() {
|
go func() {
|
||||||
defer logFile.Close()
|
defer logFile.Close()
|
||||||
io.Copy(logFile, stdout) //nolint:errcheck
|
io.Copy(logFile, stdout) //nolint:errcheck
|
||||||
@@ -83,21 +87,67 @@ func SpawnServer(ctx context.Context, command string) (chan int, error) {
|
|||||||
io.Copy(logFile, stderr) //nolint:errcheck
|
io.Copy(logFile, stderr) //nolint:errcheck
|
||||||
}()
|
}()
|
||||||
|
|
||||||
|
// Re-wire context done behavior to attempt a graceful shutdown of the server
|
||||||
|
cmd.Cancel = func() error {
|
||||||
|
if cmd.Process != nil {
|
||||||
|
err := terminate(cmd)
|
||||||
|
if err != nil {
|
||||||
|
slog.Warn("error trying to gracefully terminate server", "err", err)
|
||||||
|
return cmd.Process.Kill()
|
||||||
|
}
|
||||||
|
|
||||||
|
tick := time.NewTicker(10 * time.Millisecond)
|
||||||
|
defer tick.Stop()
|
||||||
|
|
||||||
|
for {
|
||||||
|
select {
|
||||||
|
case <-tick.C:
|
||||||
|
exited, err := isProcessExited(cmd.Process.Pid)
|
||||||
|
if err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
|
||||||
|
if exited {
|
||||||
|
return nil
|
||||||
|
}
|
||||||
|
case <-time.After(5 * time.Second):
|
||||||
|
slog.Warn("graceful server shutdown timeout, killing", "pid", cmd.Process.Pid)
|
||||||
|
return cmd.Process.Kill()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return nil
|
||||||
|
}
|
||||||
|
|
||||||
// run the command and wait for it to finish
|
// run the command and wait for it to finish
|
||||||
if err := cmd.Start(); err != nil {
|
if err := cmd.Start(); err != nil {
|
||||||
return done, fmt.Errorf("failed to start server %w", err)
|
return nil, fmt.Errorf("failed to start server %w", err)
|
||||||
}
|
}
|
||||||
if cmd.Process != nil {
|
if cmd.Process != nil {
|
||||||
slog.Info(fmt.Sprintf("started ollama server with pid %d", cmd.Process.Pid))
|
slog.Info(fmt.Sprintf("started ollama server with pid %d", cmd.Process.Pid))
|
||||||
}
|
}
|
||||||
slog.Info(fmt.Sprintf("ollama server logs %s", ServerLogFile))
|
slog.Info(fmt.Sprintf("ollama server logs %s", ServerLogFile))
|
||||||
|
|
||||||
|
return cmd, nil
|
||||||
|
}
|
||||||
|
|
||||||
|
func SpawnServer(ctx context.Context, command string) (chan int, error) {
|
||||||
|
done := make(chan int)
|
||||||
|
|
||||||
go func() {
|
go func() {
|
||||||
// Keep the server running unless we're shuttind down the app
|
// Keep the server running unless we're shuttind down the app
|
||||||
crashCount := 0
|
crashCount := 0
|
||||||
for {
|
for {
|
||||||
|
slog.Info("starting server...")
|
||||||
|
cmd, err := start(ctx, command)
|
||||||
|
if err != nil {
|
||||||
|
crashCount++
|
||||||
|
slog.Error(fmt.Sprintf("failed to start server %s", err))
|
||||||
|
time.Sleep(500 * time.Millisecond * time.Duration(crashCount))
|
||||||
|
continue
|
||||||
|
}
|
||||||
|
|
||||||
cmd.Wait() //nolint:errcheck
|
cmd.Wait() //nolint:errcheck
|
||||||
stdin.Close()
|
|
||||||
var code int
|
var code int
|
||||||
if cmd.ProcessState != nil {
|
if cmd.ProcessState != nil {
|
||||||
code = cmd.ProcessState.ExitCode()
|
code = cmd.ProcessState.ExitCode()
|
||||||
@@ -105,21 +155,18 @@ func SpawnServer(ctx context.Context, command string) (chan int, error) {
|
|||||||
|
|
||||||
select {
|
select {
|
||||||
case <-ctx.Done():
|
case <-ctx.Done():
|
||||||
slog.Debug(fmt.Sprintf("server shutdown with exit code %d", code))
|
slog.Info(fmt.Sprintf("server shutdown with exit code %d", code))
|
||||||
done <- code
|
done <- code
|
||||||
return
|
return
|
||||||
default:
|
default:
|
||||||
crashCount++
|
crashCount++
|
||||||
slog.Warn(fmt.Sprintf("server crash %d - exit code %d - respawning", crashCount, code))
|
slog.Warn(fmt.Sprintf("server crash %d - exit code %d - respawning", crashCount, code))
|
||||||
time.Sleep(500 * time.Millisecond)
|
time.Sleep(500 * time.Millisecond * time.Duration(crashCount))
|
||||||
if err := cmd.Start(); err != nil {
|
break
|
||||||
slog.Error(fmt.Sprintf("failed to restart server %s", err))
|
|
||||||
// Keep trying, but back off if we keep failing
|
|
||||||
time.Sleep(time.Duration(crashCount) * time.Second)
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}()
|
}()
|
||||||
|
|
||||||
return done, nil
|
return done, nil
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
@@ -4,9 +4,35 @@ package lifecycle
|
|||||||
|
|
||||||
import (
|
import (
|
||||||
"context"
|
"context"
|
||||||
|
"errors"
|
||||||
|
"fmt"
|
||||||
|
"os"
|
||||||
"os/exec"
|
"os/exec"
|
||||||
|
"syscall"
|
||||||
)
|
)
|
||||||
|
|
||||||
func getCmd(ctx context.Context, cmd string) *exec.Cmd {
|
func getCmd(ctx context.Context, cmd string) *exec.Cmd {
|
||||||
return exec.CommandContext(ctx, cmd, "serve")
|
return exec.CommandContext(ctx, cmd, "serve")
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func terminate(cmd *exec.Cmd) error {
|
||||||
|
return cmd.Process.Signal(os.Interrupt)
|
||||||
|
}
|
||||||
|
|
||||||
|
func isProcessExited(pid int) (bool, error) {
|
||||||
|
proc, err := os.FindProcess(pid)
|
||||||
|
if err != nil {
|
||||||
|
return false, fmt.Errorf("failed to find process: %v", err)
|
||||||
|
}
|
||||||
|
|
||||||
|
err = proc.Signal(syscall.Signal(0))
|
||||||
|
if err != nil {
|
||||||
|
if errors.Is(err, os.ErrProcessDone) || errors.Is(err, syscall.ESRCH) {
|
||||||
|
return true, nil
|
||||||
|
}
|
||||||
|
|
||||||
|
return false, fmt.Errorf("error signaling process: %v", err)
|
||||||
|
}
|
||||||
|
|
||||||
|
return false, nil
|
||||||
|
}
|
||||||
|
|||||||
@@ -2,12 +2,90 @@ package lifecycle
|
|||||||
|
|
||||||
import (
|
import (
|
||||||
"context"
|
"context"
|
||||||
|
"fmt"
|
||||||
"os/exec"
|
"os/exec"
|
||||||
"syscall"
|
"syscall"
|
||||||
|
|
||||||
|
"golang.org/x/sys/windows"
|
||||||
)
|
)
|
||||||
|
|
||||||
func getCmd(ctx context.Context, exePath string) *exec.Cmd {
|
func getCmd(ctx context.Context, exePath string) *exec.Cmd {
|
||||||
cmd := exec.CommandContext(ctx, exePath, "serve")
|
cmd := exec.CommandContext(ctx, exePath, "serve")
|
||||||
cmd.SysProcAttr = &syscall.SysProcAttr{HideWindow: true, CreationFlags: 0x08000000}
|
cmd.SysProcAttr = &syscall.SysProcAttr{
|
||||||
|
HideWindow: true,
|
||||||
|
CreationFlags: windows.CREATE_NEW_PROCESS_GROUP,
|
||||||
|
}
|
||||||
|
|
||||||
return cmd
|
return cmd
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func terminate(cmd *exec.Cmd) error {
|
||||||
|
dll, err := windows.LoadDLL("kernel32.dll")
|
||||||
|
if err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
//nolint:errcheck
|
||||||
|
defer dll.Release()
|
||||||
|
|
||||||
|
pid := cmd.Process.Pid
|
||||||
|
|
||||||
|
f, err := dll.FindProc("AttachConsole")
|
||||||
|
if err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
|
||||||
|
r1, _, err := f.Call(uintptr(pid))
|
||||||
|
if r1 == 0 && err != syscall.ERROR_ACCESS_DENIED {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
|
||||||
|
f, err = dll.FindProc("SetConsoleCtrlHandler")
|
||||||
|
if err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
|
||||||
|
r1, _, err = f.Call(0, 1)
|
||||||
|
if r1 == 0 {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
|
||||||
|
f, err = dll.FindProc("GenerateConsoleCtrlEvent")
|
||||||
|
if err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
|
||||||
|
r1, _, err = f.Call(windows.CTRL_BREAK_EVENT, uintptr(pid))
|
||||||
|
if r1 == 0 {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
|
||||||
|
r1, _, err = f.Call(windows.CTRL_C_EVENT, uintptr(pid))
|
||||||
|
if r1 == 0 {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
|
||||||
|
return nil
|
||||||
|
}
|
||||||
|
|
||||||
|
const STILL_ACTIVE = 259
|
||||||
|
|
||||||
|
func isProcessExited(pid int) (bool, error) {
|
||||||
|
hProcess, err := windows.OpenProcess(windows.PROCESS_QUERY_INFORMATION, false, uint32(pid))
|
||||||
|
if err != nil {
|
||||||
|
return false, fmt.Errorf("failed to open process: %v", err)
|
||||||
|
}
|
||||||
|
//nolint:errcheck
|
||||||
|
defer windows.CloseHandle(hProcess)
|
||||||
|
|
||||||
|
var exitCode uint32
|
||||||
|
err = windows.GetExitCodeProcess(hProcess, &exitCode)
|
||||||
|
if err != nil {
|
||||||
|
return false, fmt.Errorf("failed to get exit code: %v", err)
|
||||||
|
}
|
||||||
|
|
||||||
|
if exitCode == STILL_ACTIVE {
|
||||||
|
return false, nil
|
||||||
|
}
|
||||||
|
|
||||||
|
return true, nil
|
||||||
|
}
|
||||||
|
|||||||
@@ -15,11 +15,12 @@ import (
|
|||||||
"path"
|
"path"
|
||||||
"path/filepath"
|
"path/filepath"
|
||||||
"runtime"
|
"runtime"
|
||||||
|
"strconv"
|
||||||
"strings"
|
"strings"
|
||||||
"time"
|
"time"
|
||||||
|
|
||||||
"github.com/jmorganca/ollama/auth"
|
"github.com/ollama/ollama/auth"
|
||||||
"github.com/jmorganca/ollama/version"
|
"github.com/ollama/ollama/version"
|
||||||
)
|
)
|
||||||
|
|
||||||
var (
|
var (
|
||||||
@@ -34,20 +35,6 @@ type UpdateResponse struct {
|
|||||||
UpdateVersion string `json:"version"`
|
UpdateVersion string `json:"version"`
|
||||||
}
|
}
|
||||||
|
|
||||||
func getClient(req *http.Request) http.Client {
|
|
||||||
proxyURL, err := http.ProxyFromEnvironment(req)
|
|
||||||
if err != nil {
|
|
||||||
slog.Warn(fmt.Sprintf("failed to handle proxy: %s", err))
|
|
||||||
return http.Client{}
|
|
||||||
}
|
|
||||||
|
|
||||||
return http.Client{
|
|
||||||
Transport: &http.Transport{
|
|
||||||
Proxy: http.ProxyURL(proxyURL),
|
|
||||||
},
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
func IsNewReleaseAvailable(ctx context.Context) (bool, UpdateResponse) {
|
func IsNewReleaseAvailable(ctx context.Context) (bool, UpdateResponse) {
|
||||||
var updateResp UpdateResponse
|
var updateResp UpdateResponse
|
||||||
|
|
||||||
@@ -60,7 +47,7 @@ func IsNewReleaseAvailable(ctx context.Context) (bool, UpdateResponse) {
|
|||||||
query.Add("os", runtime.GOOS)
|
query.Add("os", runtime.GOOS)
|
||||||
query.Add("arch", runtime.GOARCH)
|
query.Add("arch", runtime.GOARCH)
|
||||||
query.Add("version", version.Version)
|
query.Add("version", version.Version)
|
||||||
query.Add("ts", fmt.Sprintf("%d", time.Now().Unix()))
|
query.Add("ts", strconv.FormatInt(time.Now().Unix(), 10))
|
||||||
|
|
||||||
nonce, err := auth.NewNonce(rand.Reader, 16)
|
nonce, err := auth.NewNonce(rand.Reader, 16)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
@@ -83,17 +70,16 @@ func IsNewReleaseAvailable(ctx context.Context) (bool, UpdateResponse) {
|
|||||||
}
|
}
|
||||||
req.Header.Set("Authorization", signature)
|
req.Header.Set("Authorization", signature)
|
||||||
req.Header.Set("User-Agent", fmt.Sprintf("ollama/%s (%s %s) Go/%s", version.Version, runtime.GOARCH, runtime.GOOS, runtime.Version()))
|
req.Header.Set("User-Agent", fmt.Sprintf("ollama/%s (%s %s) Go/%s", version.Version, runtime.GOARCH, runtime.GOOS, runtime.Version()))
|
||||||
client := getClient(req)
|
|
||||||
|
|
||||||
slog.Debug("checking for available update", "requestURL", requestURL)
|
slog.Debug("checking for available update", "requestURL", requestURL)
|
||||||
resp, err := client.Do(req)
|
resp, err := http.DefaultClient.Do(req)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
slog.Warn(fmt.Sprintf("failed to check for update: %s", err))
|
slog.Warn(fmt.Sprintf("failed to check for update: %s", err))
|
||||||
return false, updateResp
|
return false, updateResp
|
||||||
}
|
}
|
||||||
defer resp.Body.Close()
|
defer resp.Body.Close()
|
||||||
|
|
||||||
if resp.StatusCode == 204 {
|
if resp.StatusCode == http.StatusNoContent {
|
||||||
slog.Debug("check update response 204 (current version is up to date)")
|
slog.Debug("check update response 204 (current version is up to date)")
|
||||||
return false, updateResp
|
return false, updateResp
|
||||||
}
|
}
|
||||||
@@ -101,6 +87,11 @@ func IsNewReleaseAvailable(ctx context.Context) (bool, UpdateResponse) {
|
|||||||
if err != nil {
|
if err != nil {
|
||||||
slog.Warn(fmt.Sprintf("failed to read body response: %s", err))
|
slog.Warn(fmt.Sprintf("failed to read body response: %s", err))
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if resp.StatusCode != http.StatusOK {
|
||||||
|
slog.Info(fmt.Sprintf("check update error %d - %.96s", resp.StatusCode, string(body)))
|
||||||
|
return false, updateResp
|
||||||
|
}
|
||||||
err = json.Unmarshal(body, &updateResp)
|
err = json.Unmarshal(body, &updateResp)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
slog.Warn(fmt.Sprintf("malformed response checking for update: %s", err))
|
slog.Warn(fmt.Sprintf("malformed response checking for update: %s", err))
|
||||||
@@ -119,12 +110,12 @@ func DownloadNewRelease(ctx context.Context, updateResp UpdateResponse) error {
|
|||||||
if err != nil {
|
if err != nil {
|
||||||
return err
|
return err
|
||||||
}
|
}
|
||||||
client := getClient(req)
|
|
||||||
resp, err := client.Do(req)
|
resp, err := http.DefaultClient.Do(req)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return fmt.Errorf("error checking update: %w", err)
|
return fmt.Errorf("error checking update: %w", err)
|
||||||
}
|
}
|
||||||
if resp.StatusCode != 200 {
|
if resp.StatusCode != http.StatusOK {
|
||||||
return fmt.Errorf("unexpected status attempting to download update %d", resp.StatusCode)
|
return fmt.Errorf("unexpected status attempting to download update %d", resp.StatusCode)
|
||||||
}
|
}
|
||||||
resp.Body.Close()
|
resp.Body.Close()
|
||||||
@@ -151,7 +142,7 @@ func DownloadNewRelease(ctx context.Context, updateResp UpdateResponse) error {
|
|||||||
cleanupOldDownloads()
|
cleanupOldDownloads()
|
||||||
|
|
||||||
req.Method = http.MethodGet
|
req.Method = http.MethodGet
|
||||||
resp, err = client.Do(req)
|
resp, err = http.DefaultClient.Do(req)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return fmt.Errorf("error checking update: %w", err)
|
return fmt.Errorf("error checking update: %w", err)
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -4,9 +4,9 @@ package lifecycle
|
|||||||
|
|
||||||
import (
|
import (
|
||||||
"context"
|
"context"
|
||||||
"fmt"
|
"errors"
|
||||||
)
|
)
|
||||||
|
|
||||||
func DoUpgrade(cancel context.CancelFunc, done chan int) error {
|
func DoUpgrade(cancel context.CancelFunc, done chan int) error {
|
||||||
return fmt.Errorf("DoUpgrade not yet implemented")
|
return errors.New("not implemented")
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -2,6 +2,7 @@ package lifecycle
|
|||||||
|
|
||||||
import (
|
import (
|
||||||
"context"
|
"context"
|
||||||
|
"errors"
|
||||||
"fmt"
|
"fmt"
|
||||||
"log/slog"
|
"log/slog"
|
||||||
"os"
|
"os"
|
||||||
@@ -15,7 +16,7 @@ func DoUpgrade(cancel context.CancelFunc, done chan int) error {
|
|||||||
return fmt.Errorf("failed to lookup downloads: %s", err)
|
return fmt.Errorf("failed to lookup downloads: %s", err)
|
||||||
}
|
}
|
||||||
if len(files) == 0 {
|
if len(files) == 0 {
|
||||||
return fmt.Errorf("no update downloads found")
|
return errors.New("no update downloads found")
|
||||||
} else if len(files) > 1 {
|
} else if len(files) > 1 {
|
||||||
// Shouldn't happen
|
// Shouldn't happen
|
||||||
slog.Warn(fmt.Sprintf("multiple downloads found, using first one %v", files))
|
slog.Warn(fmt.Sprintf("multiple downloads found, using first one %v", files))
|
||||||
@@ -25,22 +26,15 @@ func DoUpgrade(cancel context.CancelFunc, done chan int) error {
|
|||||||
slog.Info("starting upgrade with " + installerExe)
|
slog.Info("starting upgrade with " + installerExe)
|
||||||
slog.Info("upgrade log file " + UpgradeLogFile)
|
slog.Info("upgrade log file " + UpgradeLogFile)
|
||||||
|
|
||||||
// When running in debug mode, we'll be "verbose" and let the installer pop up and prompt
|
// make the upgrade show progress, but non interactive
|
||||||
installArgs := []string{
|
installArgs := []string{
|
||||||
"/CLOSEAPPLICATIONS", // Quit the tray app if it's still running
|
"/CLOSEAPPLICATIONS", // Quit the tray app if it's still running
|
||||||
"/LOG=" + filepath.Base(UpgradeLogFile), // Only relative seems reliable, so set pwd
|
"/LOG=" + filepath.Base(UpgradeLogFile), // Only relative seems reliable, so set pwd
|
||||||
"/FORCECLOSEAPPLICATIONS", // Force close the tray app - might be needed
|
"/FORCECLOSEAPPLICATIONS", // Force close the tray app - might be needed
|
||||||
}
|
"/SP", // Skip the "This will install... Do you wish to continue" prompt
|
||||||
// When we're not in debug mode, make the upgrade as quiet as possible (no GUI, no prompts)
|
"/NOCANCEL", // Disable the ability to cancel upgrade mid-flight to avoid partially installed upgrades
|
||||||
// TODO - temporarily disable since we're pinning in debug mode for the preview
|
|
||||||
// if debug := os.Getenv("OLLAMA_DEBUG"); debug == "" {
|
|
||||||
installArgs = append(installArgs,
|
|
||||||
"/SP", // Skip the "This will install... Do you wish to continue" prompt
|
|
||||||
"/SUPPRESSMSGBOXES",
|
|
||||||
"/SILENT",
|
"/SILENT",
|
||||||
"/VERYSILENT",
|
}
|
||||||
)
|
|
||||||
// }
|
|
||||||
|
|
||||||
// Safeguard in case we have requests in flight that need to drain...
|
// Safeguard in case we have requests in flight that need to drain...
|
||||||
slog.Info("Waiting for server to shutdown")
|
slog.Info("Waiting for server to shutdown")
|
||||||
@@ -67,7 +61,7 @@ func DoUpgrade(cancel context.CancelFunc, done chan int) error {
|
|||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
// TODO - some details about why it didn't start, or is this a pedantic error case?
|
// TODO - some details about why it didn't start, or is this a pedantic error case?
|
||||||
return fmt.Errorf("installer process did not start")
|
return errors.New("installer process did not start")
|
||||||
}
|
}
|
||||||
|
|
||||||
// TODO should we linger for a moment and check to make sure it's actually running by checking the pid?
|
// TODO should we linger for a moment and check to make sure it's actually running by checking the pid?
|
||||||
|
|||||||
@@ -4,7 +4,7 @@ package main
|
|||||||
// go build -ldflags="-H windowsgui" .
|
// go build -ldflags="-H windowsgui" .
|
||||||
|
|
||||||
import (
|
import (
|
||||||
"github.com/jmorganca/ollama/app/lifecycle"
|
"github.com/ollama/ollama/app/lifecycle"
|
||||||
)
|
)
|
||||||
|
|
||||||
func main() {
|
func main() {
|
||||||
|
|||||||
@@ -28,8 +28,8 @@ AppPublisher={#MyAppPublisher}
|
|||||||
AppPublisherURL={#MyAppURL}
|
AppPublisherURL={#MyAppURL}
|
||||||
AppSupportURL={#MyAppURL}
|
AppSupportURL={#MyAppURL}
|
||||||
AppUpdatesURL={#MyAppURL}
|
AppUpdatesURL={#MyAppURL}
|
||||||
ArchitecturesAllowed=x64
|
ArchitecturesAllowed=x64compatible arm64
|
||||||
ArchitecturesInstallIn64BitMode=x64
|
ArchitecturesInstallIn64BitMode=x64compatible arm64
|
||||||
DefaultDirName={localappdata}\Programs\{#MyAppName}
|
DefaultDirName={localappdata}\Programs\{#MyAppName}
|
||||||
DefaultGroupName={#MyAppName}
|
DefaultGroupName={#MyAppName}
|
||||||
DisableProgramGroupPage=yes
|
DisableProgramGroupPage=yes
|
||||||
@@ -48,15 +48,13 @@ OutputDir=..\dist\
|
|||||||
SetupLogging=yes
|
SetupLogging=yes
|
||||||
CloseApplications=yes
|
CloseApplications=yes
|
||||||
RestartApplications=no
|
RestartApplications=no
|
||||||
|
RestartIfNeededByRun=no
|
||||||
; Make sure they can at least download llama2 as a minimum
|
|
||||||
ExtraDiskSpaceRequired=3826806784
|
|
||||||
|
|
||||||
; https://jrsoftware.org/ishelp/index.php?topic=setup_wizardimagefile
|
; https://jrsoftware.org/ishelp/index.php?topic=setup_wizardimagefile
|
||||||
WizardSmallImageFile=.\assets\setup.bmp
|
WizardSmallImageFile=.\assets\setup.bmp
|
||||||
|
|
||||||
; TODO verifty actual min windows version...
|
; Ollama requires Windows 10 22H2 or newer for proper unicode rendering
|
||||||
; OG Win 10
|
; TODO: consider setting this to 10.0.19045
|
||||||
MinVersion=10.0.10240
|
MinVersion=10.0.10240
|
||||||
|
|
||||||
; First release that supports WinRT UI Composition for win32 apps
|
; First release that supports WinRT UI Composition for win32 apps
|
||||||
@@ -89,9 +87,18 @@ Name: "english"; MessagesFile: "compiler:Default.isl"
|
|||||||
DialogFontSize=12
|
DialogFontSize=12
|
||||||
|
|
||||||
[Files]
|
[Files]
|
||||||
Source: ".\app.exe"; DestDir: "{app}"; DestName: "{#MyAppExeName}" ; Flags: ignoreversion 64bit
|
#if DirExists("..\dist\windows-amd64")
|
||||||
Source: "..\ollama.exe"; DestDir: "{app}"; Flags: ignoreversion 64bit
|
Source: "..\dist\windows-amd64-app.exe"; DestDir: "{app}"; DestName: "{#MyAppExeName}" ;Check: not IsArm64(); Flags: ignoreversion 64bit
|
||||||
Source: "..\dist\windeps\*.dll"; DestDir: "{app}"; Flags: ignoreversion 64bit
|
Source: "..\dist\windows-amd64\ollama.exe"; DestDir: "{app}"; Check: not IsArm64(); Flags: ignoreversion 64bit
|
||||||
|
Source: "..\dist\windows-amd64\lib\ollama\*"; DestDir: "{app}\lib\ollama\"; Check: not IsArm64(); Flags: ignoreversion 64bit recursesubdirs
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#if DirExists("..\dist\windows-arm64")
|
||||||
|
Source: "..\dist\windows-arm64\vc_redist.arm64.exe"; DestDir: "{tmp}"; Check: IsArm64() and vc_redist_needed(); Flags: deleteafterinstall
|
||||||
|
Source: "..\dist\windows-arm64-app.exe"; DestDir: "{app}"; DestName: "{#MyAppExeName}" ;Check: IsArm64(); Flags: ignoreversion 64bit
|
||||||
|
Source: "..\dist\windows-arm64\ollama.exe"; DestDir: "{app}"; Check: IsArm64(); Flags: ignoreversion 64bit
|
||||||
|
#endif
|
||||||
|
|
||||||
Source: "..\dist\ollama_welcome.ps1"; DestDir: "{app}"; Flags: ignoreversion
|
Source: "..\dist\ollama_welcome.ps1"; DestDir: "{app}"; Flags: ignoreversion
|
||||||
Source: ".\assets\app.ico"; DestDir: "{app}"; Flags: ignoreversion
|
Source: ".\assets\app.ico"; DestDir: "{app}"; Flags: ignoreversion
|
||||||
|
|
||||||
@@ -101,6 +108,9 @@ Name: "{userstartup}\{#MyAppName}"; Filename: "{app}\{#MyAppExeName}"; IconFilen
|
|||||||
Name: "{userprograms}\{#MyAppName}"; Filename: "{app}\{#MyAppExeName}"; IconFilename: "{app}\app.ico"
|
Name: "{userprograms}\{#MyAppName}"; Filename: "{app}\{#MyAppExeName}"; IconFilename: "{app}\app.ico"
|
||||||
|
|
||||||
[Run]
|
[Run]
|
||||||
|
#if DirExists("..\dist\windows-arm64")
|
||||||
|
Filename: "{tmp}\vc_redist.arm64.exe"; Parameters: "/install /passive /norestart"; Check: IsArm64() and vc_redist_needed(); StatusMsg: "Installing VC++ Redistributables..."; Flags: waituntilterminated
|
||||||
|
#endif
|
||||||
Filename: "{cmd}"; Parameters: "/C set PATH={app};%PATH% & ""{app}\{#MyAppExeName}"""; Flags: postinstall nowait runhidden
|
Filename: "{cmd}"; Parameters: "/C set PATH={app};%PATH% & ""{app}\{#MyAppExeName}"""; Flags: postinstall nowait runhidden
|
||||||
|
|
||||||
[UninstallRun]
|
[UninstallRun]
|
||||||
@@ -116,17 +126,22 @@ Filename: "{cmd}"; Parameters: "/c timeout 5"; Flags: runhidden
|
|||||||
Type: filesandordirs; Name: "{%TEMP}\ollama*"
|
Type: filesandordirs; Name: "{%TEMP}\ollama*"
|
||||||
Type: filesandordirs; Name: "{%LOCALAPPDATA}\Ollama"
|
Type: filesandordirs; Name: "{%LOCALAPPDATA}\Ollama"
|
||||||
Type: filesandordirs; Name: "{%LOCALAPPDATA}\Programs\Ollama"
|
Type: filesandordirs; Name: "{%LOCALAPPDATA}\Programs\Ollama"
|
||||||
Type: filesandordirs; Name: "{%USERPROFILE}\.ollama"
|
Type: filesandordirs; Name: "{%USERPROFILE}\.ollama\models"
|
||||||
|
Type: filesandordirs; Name: "{%USERPROFILE}\.ollama\history"
|
||||||
; NOTE: if the user has a custom OLLAMA_MODELS it will be preserved
|
; NOTE: if the user has a custom OLLAMA_MODELS it will be preserved
|
||||||
|
|
||||||
|
[InstallDelete]
|
||||||
|
Type: filesandordirs; Name: "{%TEMP}\ollama*"
|
||||||
|
Type: filesandordirs; Name: "{%LOCALAPPDATA}\Programs\Ollama"
|
||||||
|
|
||||||
[Messages]
|
[Messages]
|
||||||
WizardReady=Ollama Windows Preview
|
WizardReady=Ollama
|
||||||
ReadyLabel1=%nLet's get you up and running with your own large language models.
|
ReadyLabel1=%nLet's get you up and running with your own large language models.
|
||||||
SetupAppRunningError=Another Ollama installer is running.%n%nPlease cancel or finish the other installer, then click OK to continue with this install, or Cancel to exit.
|
SetupAppRunningError=Another Ollama installer is running.%n%nPlease cancel or finish the other installer, then click OK to continue with this install, or Cancel to exit.
|
||||||
|
|
||||||
|
|
||||||
;FinishedHeadingLabel=Run your first model
|
;FinishedHeadingLabel=Run your first model
|
||||||
;FinishedLabel=%nRun this command in a PowerShell or cmd terminal.%n%n%n ollama run llama2
|
;FinishedLabel=%nRun this command in a PowerShell or cmd terminal.%n%n%n ollama run llama3.2
|
||||||
;ClickFinish=%n
|
;ClickFinish=%n
|
||||||
|
|
||||||
[Registry]
|
[Registry]
|
||||||
@@ -151,3 +166,39 @@ begin
|
|||||||
{ Pos() returns 0 if not found }
|
{ Pos() returns 0 if not found }
|
||||||
Result := Pos(';' + ExpandConstant(Param) + ';', ';' + OrigPath + ';') = 0;
|
Result := Pos(';' + ExpandConstant(Param) + ';', ';' + OrigPath + ';') = 0;
|
||||||
end;
|
end;
|
||||||
|
|
||||||
|
{ --- VC Runtime libraries discovery code - Only install vc_redist if it isn't already installed ----- }
|
||||||
|
const VCRTL_MIN_V1 = 14;
|
||||||
|
const VCRTL_MIN_V2 = 40;
|
||||||
|
const VCRTL_MIN_V3 = 33807;
|
||||||
|
const VCRTL_MIN_V4 = 0;
|
||||||
|
|
||||||
|
// check if the minimum required vc redist is installed (by looking the registry)
|
||||||
|
function vc_redist_needed (): Boolean;
|
||||||
|
var
|
||||||
|
sRegKey: string;
|
||||||
|
v1: Cardinal;
|
||||||
|
v2: Cardinal;
|
||||||
|
v3: Cardinal;
|
||||||
|
v4: Cardinal;
|
||||||
|
begin
|
||||||
|
sRegKey := 'SOFTWARE\WOW6432Node\Microsoft\VisualStudio\14.0\VC\Runtimes\arm64';
|
||||||
|
if (RegQueryDWordValue (HKEY_LOCAL_MACHINE, sRegKey, 'Major', v1) and
|
||||||
|
RegQueryDWordValue (HKEY_LOCAL_MACHINE, sRegKey, 'Minor', v2) and
|
||||||
|
RegQueryDWordValue (HKEY_LOCAL_MACHINE, sRegKey, 'Bld', v3) and
|
||||||
|
RegQueryDWordValue (HKEY_LOCAL_MACHINE, sRegKey, 'RBld', v4)) then
|
||||||
|
begin
|
||||||
|
Log ('VC Redist version: ' + IntToStr (v1) +
|
||||||
|
'.' + IntToStr (v2) + '.' + IntToStr (v3) +
|
||||||
|
'.' + IntToStr (v4));
|
||||||
|
{ Version info was found. Return true if later or equal to our
|
||||||
|
minimal required version RTL_MIN_Vx }
|
||||||
|
Result := not (
|
||||||
|
(v1 > VCRTL_MIN_V1) or ((v1 = VCRTL_MIN_V1) and
|
||||||
|
((v2 > VCRTL_MIN_V2) or ((v2 = VCRTL_MIN_V2) and
|
||||||
|
((v3 > VCRTL_MIN_V3) or ((v3 = VCRTL_MIN_V3) and
|
||||||
|
(v4 >= VCRTL_MIN_V4)))))));
|
||||||
|
end
|
||||||
|
else
|
||||||
|
Result := TRUE;
|
||||||
|
end;
|
||||||
|
|||||||
@@ -4,5 +4,5 @@ write-host "Welcome to Ollama!"
|
|||||||
write-host ""
|
write-host ""
|
||||||
write-host "Run your first model:"
|
write-host "Run your first model:"
|
||||||
write-host ""
|
write-host ""
|
||||||
write-host "`tollama run llama2"
|
write-host "`tollama run llama3.2"
|
||||||
write-host ""
|
write-host ""
|
||||||
@@ -29,7 +29,6 @@ func GetID() string {
|
|||||||
initStore()
|
initStore()
|
||||||
}
|
}
|
||||||
return store.ID
|
return store.ID
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
func GetFirstTimeRun() bool {
|
func GetFirstTimeRun() bool {
|
||||||
@@ -65,7 +64,7 @@ func initStore() {
|
|||||||
slog.Debug(fmt.Sprintf("unexpected error searching for store: %s", err))
|
slog.Debug(fmt.Sprintf("unexpected error searching for store: %s", err))
|
||||||
}
|
}
|
||||||
slog.Debug("initializing new store")
|
slog.Debug("initializing new store")
|
||||||
store.ID = uuid.New().String()
|
store.ID = uuid.NewString()
|
||||||
writeStore(getStorePath())
|
writeStore(getStorePath())
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
@@ -4,8 +4,8 @@ import (
|
|||||||
"fmt"
|
"fmt"
|
||||||
"runtime"
|
"runtime"
|
||||||
|
|
||||||
"github.com/jmorganca/ollama/app/assets"
|
"github.com/ollama/ollama/app/assets"
|
||||||
"github.com/jmorganca/ollama/app/tray/commontray"
|
"github.com/ollama/ollama/app/tray/commontray"
|
||||||
)
|
)
|
||||||
|
|
||||||
func NewTray() (commontray.OllamaTray, error) {
|
func NewTray() (commontray.OllamaTray, error) {
|
||||||
@@ -24,10 +24,5 @@ func NewTray() (commontray.OllamaTray, error) {
|
|||||||
return nil, fmt.Errorf("failed to load icon %s: %w", iconName, err)
|
return nil, fmt.Errorf("failed to load icon %s: %w", iconName, err)
|
||||||
}
|
}
|
||||||
|
|
||||||
tray, err := InitPlatformTray(icon, updateIcon)
|
return InitPlatformTray(icon, updateIcon)
|
||||||
if err != nil {
|
|
||||||
return nil, err
|
|
||||||
}
|
|
||||||
|
|
||||||
return tray, nil
|
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -3,11 +3,11 @@
|
|||||||
package tray
|
package tray
|
||||||
|
|
||||||
import (
|
import (
|
||||||
"fmt"
|
"errors"
|
||||||
|
|
||||||
"github.com/jmorganca/ollama/app/tray/commontray"
|
"github.com/ollama/ollama/app/tray/commontray"
|
||||||
)
|
)
|
||||||
|
|
||||||
func InitPlatformTray(icon, updateIcon []byte) (commontray.OllamaTray, error) {
|
func InitPlatformTray(icon, updateIcon []byte) (commontray.OllamaTray, error) {
|
||||||
return nil, fmt.Errorf("NOT IMPLEMENTED YET")
|
return nil, errors.New("not implemented")
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -1,8 +1,8 @@
|
|||||||
package tray
|
package tray
|
||||||
|
|
||||||
import (
|
import (
|
||||||
"github.com/jmorganca/ollama/app/tray/commontray"
|
"github.com/ollama/ollama/app/tray/commontray"
|
||||||
"github.com/jmorganca/ollama/app/tray/wintray"
|
"github.com/ollama/ollama/app/tray/wintray"
|
||||||
)
|
)
|
||||||
|
|
||||||
func InitPlatformTray(icon, updateIcon []byte) (commontray.OllamaTray, error) {
|
func InitPlatformTray(icon, updateIcon []byte) (commontray.OllamaTray, error) {
|
||||||
|
|||||||
@@ -11,9 +11,7 @@ import (
|
|||||||
"golang.org/x/sys/windows"
|
"golang.org/x/sys/windows"
|
||||||
)
|
)
|
||||||
|
|
||||||
var (
|
var quitOnce sync.Once
|
||||||
quitOnce sync.Once
|
|
||||||
)
|
|
||||||
|
|
||||||
func (t *winTray) Run() {
|
func (t *winTray) Run() {
|
||||||
nativeLoop()
|
nativeLoop()
|
||||||
@@ -47,7 +45,6 @@ func nativeLoop() {
|
|||||||
default:
|
default:
|
||||||
pTranslateMessage.Call(uintptr(unsafe.Pointer(m))) //nolint:errcheck
|
pTranslateMessage.Call(uintptr(unsafe.Pointer(m))) //nolint:errcheck
|
||||||
pDispatchMessage.Call(uintptr(unsafe.Pointer(m))) //nolint:errcheck
|
pDispatchMessage.Call(uintptr(unsafe.Pointer(m))) //nolint:errcheck
|
||||||
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@@ -101,7 +98,7 @@ func (t *winTray) wndProc(hWnd windows.Handle, message uint32, wParam, lParam ui
|
|||||||
}
|
}
|
||||||
err = t.wcex.unregister()
|
err = t.wcex.unregister()
|
||||||
if err != nil {
|
if err != nil {
|
||||||
slog.Error(fmt.Sprintf("failed to uregister windo %s", err))
|
slog.Error(fmt.Sprintf("failed to unregister window %s", err))
|
||||||
}
|
}
|
||||||
case WM_DESTROY:
|
case WM_DESTROY:
|
||||||
// same as WM_ENDSESSION, but throws 0 exit code after all
|
// same as WM_ENDSESSION, but throws 0 exit code after all
|
||||||
@@ -160,8 +157,8 @@ func (t *winTray) wndProc(hWnd windows.Handle, message uint32, wParam, lParam ui
|
|||||||
lResult, _, _ = pDefWindowProc.Call(
|
lResult, _, _ = pDefWindowProc.Call(
|
||||||
uintptr(hWnd),
|
uintptr(hWnd),
|
||||||
uintptr(message),
|
uintptr(message),
|
||||||
uintptr(wParam),
|
wParam,
|
||||||
uintptr(lParam),
|
lParam,
|
||||||
)
|
)
|
||||||
}
|
}
|
||||||
return
|
return
|
||||||
|
|||||||
@@ -1,71 +1,72 @@
|
|||||||
//go:build windows
|
//go:build windows
|
||||||
|
|
||||||
package wintray
|
package wintray
|
||||||
|
|
||||||
import (
|
import (
|
||||||
"fmt"
|
"fmt"
|
||||||
"log/slog"
|
"log/slog"
|
||||||
"unsafe"
|
"unsafe"
|
||||||
|
|
||||||
"golang.org/x/sys/windows"
|
"golang.org/x/sys/windows"
|
||||||
)
|
)
|
||||||
|
|
||||||
const (
|
const (
|
||||||
updatAvailableMenuID = 1
|
_ = iota
|
||||||
updateMenuID = updatAvailableMenuID + 1
|
updateAvailableMenuID
|
||||||
separatorMenuID = updateMenuID + 1
|
updateMenuID
|
||||||
diagLogsMenuID = separatorMenuID + 1
|
separatorMenuID
|
||||||
diagSeparatorMenuID = diagLogsMenuID + 1
|
diagLogsMenuID
|
||||||
quitMenuID = diagSeparatorMenuID + 1
|
diagSeparatorMenuID
|
||||||
)
|
quitMenuID
|
||||||
|
)
|
||||||
func (t *winTray) initMenus() error {
|
|
||||||
if err := t.addOrUpdateMenuItem(diagLogsMenuID, 0, diagLogsMenuTitle, false); err != nil {
|
func (t *winTray) initMenus() error {
|
||||||
return fmt.Errorf("unable to create menu entries %w\n", err)
|
if err := t.addOrUpdateMenuItem(diagLogsMenuID, 0, diagLogsMenuTitle, false); err != nil {
|
||||||
}
|
return fmt.Errorf("unable to create menu entries %w\n", err)
|
||||||
if err := t.addSeparatorMenuItem(diagSeparatorMenuID, 0); err != nil {
|
}
|
||||||
return fmt.Errorf("unable to create menu entries %w", err)
|
if err := t.addSeparatorMenuItem(diagSeparatorMenuID, 0); err != nil {
|
||||||
}
|
return fmt.Errorf("unable to create menu entries %w", err)
|
||||||
if err := t.addOrUpdateMenuItem(quitMenuID, 0, quitMenuTitle, false); err != nil {
|
}
|
||||||
return fmt.Errorf("unable to create menu entries %w\n", err)
|
if err := t.addOrUpdateMenuItem(quitMenuID, 0, quitMenuTitle, false); err != nil {
|
||||||
}
|
return fmt.Errorf("unable to create menu entries %w\n", err)
|
||||||
return nil
|
}
|
||||||
}
|
return nil
|
||||||
|
}
|
||||||
func (t *winTray) UpdateAvailable(ver string) error {
|
|
||||||
if !t.updateNotified {
|
func (t *winTray) UpdateAvailable(ver string) error {
|
||||||
slog.Debug("updating menu and sending notification for new update")
|
if !t.updateNotified {
|
||||||
if err := t.addOrUpdateMenuItem(updatAvailableMenuID, 0, updateAvailableMenuTitle, true); err != nil {
|
slog.Debug("updating menu and sending notification for new update")
|
||||||
return fmt.Errorf("unable to create menu entries %w", err)
|
if err := t.addOrUpdateMenuItem(updateAvailableMenuID, 0, updateAvailableMenuTitle, true); err != nil {
|
||||||
}
|
return fmt.Errorf("unable to create menu entries %w", err)
|
||||||
if err := t.addOrUpdateMenuItem(updateMenuID, 0, updateMenutTitle, false); err != nil {
|
}
|
||||||
return fmt.Errorf("unable to create menu entries %w", err)
|
if err := t.addOrUpdateMenuItem(updateMenuID, 0, updateMenuTitle, false); err != nil {
|
||||||
}
|
return fmt.Errorf("unable to create menu entries %w", err)
|
||||||
if err := t.addSeparatorMenuItem(separatorMenuID, 0); err != nil {
|
}
|
||||||
return fmt.Errorf("unable to create menu entries %w", err)
|
if err := t.addSeparatorMenuItem(separatorMenuID, 0); err != nil {
|
||||||
}
|
return fmt.Errorf("unable to create menu entries %w", err)
|
||||||
iconFilePath, err := iconBytesToFilePath(wt.updateIcon)
|
}
|
||||||
if err != nil {
|
iconFilePath, err := iconBytesToFilePath(wt.updateIcon)
|
||||||
return fmt.Errorf("unable to write icon data to temp file: %w", err)
|
if err != nil {
|
||||||
}
|
return fmt.Errorf("unable to write icon data to temp file: %w", err)
|
||||||
if err := wt.setIcon(iconFilePath); err != nil {
|
}
|
||||||
return fmt.Errorf("unable to set icon: %w", err)
|
if err := wt.setIcon(iconFilePath); err != nil {
|
||||||
}
|
return fmt.Errorf("unable to set icon: %w", err)
|
||||||
t.updateNotified = true
|
}
|
||||||
|
t.updateNotified = true
|
||||||
t.pendingUpdate = true
|
|
||||||
// Now pop up the notification
|
t.pendingUpdate = true
|
||||||
t.muNID.Lock()
|
// Now pop up the notification
|
||||||
defer t.muNID.Unlock()
|
t.muNID.Lock()
|
||||||
copy(t.nid.InfoTitle[:], windows.StringToUTF16(updateTitle))
|
defer t.muNID.Unlock()
|
||||||
copy(t.nid.Info[:], windows.StringToUTF16(fmt.Sprintf(updateMessage, ver)))
|
copy(t.nid.InfoTitle[:], windows.StringToUTF16(updateTitle))
|
||||||
t.nid.Flags |= NIF_INFO
|
copy(t.nid.Info[:], windows.StringToUTF16(fmt.Sprintf(updateMessage, ver)))
|
||||||
t.nid.Timeout = 10
|
t.nid.Flags |= NIF_INFO
|
||||||
t.nid.Size = uint32(unsafe.Sizeof(*wt.nid))
|
t.nid.Timeout = 10
|
||||||
err = t.nid.modify()
|
t.nid.Size = uint32(unsafe.Sizeof(*wt.nid))
|
||||||
if err != nil {
|
err = t.nid.modify()
|
||||||
return err
|
if err != nil {
|
||||||
}
|
return err
|
||||||
}
|
}
|
||||||
return nil
|
}
|
||||||
}
|
return nil
|
||||||
|
}
|
||||||
|
|||||||
@@ -10,6 +10,6 @@ const (
|
|||||||
|
|
||||||
quitMenuTitle = "Quit Ollama"
|
quitMenuTitle = "Quit Ollama"
|
||||||
updateAvailableMenuTitle = "An update is available"
|
updateAvailableMenuTitle = "An update is available"
|
||||||
updateMenutTitle = "Restart to update"
|
updateMenuTitle = "Restart to update"
|
||||||
diagLogsMenuTitle = "View logs"
|
diagLogsMenuTitle = "View logs"
|
||||||
)
|
)
|
||||||
|
|||||||
@@ -11,10 +11,12 @@ import (
|
|||||||
"path/filepath"
|
"path/filepath"
|
||||||
"sort"
|
"sort"
|
||||||
"sync"
|
"sync"
|
||||||
|
"syscall"
|
||||||
"unsafe"
|
"unsafe"
|
||||||
|
|
||||||
"github.com/jmorganca/ollama/app/tray/commontray"
|
|
||||||
"golang.org/x/sys/windows"
|
"golang.org/x/sys/windows"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/app/tray/commontray"
|
||||||
)
|
)
|
||||||
|
|
||||||
// Helpful sources: https://github.com/golang/exp/blob/master/shiny/driver/internal/win32
|
// Helpful sources: https://github.com/golang/exp/blob/master/shiny/driver/internal/win32
|
||||||
@@ -186,7 +188,7 @@ func (t *winTray) initInstance() error {
|
|||||||
t.muNID.Lock()
|
t.muNID.Lock()
|
||||||
defer t.muNID.Unlock()
|
defer t.muNID.Unlock()
|
||||||
t.nid = ¬ifyIconData{
|
t.nid = ¬ifyIconData{
|
||||||
Wnd: windows.Handle(t.window),
|
Wnd: t.window,
|
||||||
ID: 100,
|
ID: 100,
|
||||||
Flags: NIF_MESSAGE,
|
Flags: NIF_MESSAGE,
|
||||||
CallbackMessage: t.wmSystrayMessage,
|
CallbackMessage: t.wmSystrayMessage,
|
||||||
@@ -197,7 +199,6 @@ func (t *winTray) initInstance() error {
|
|||||||
}
|
}
|
||||||
|
|
||||||
func (t *winTray) createMenu() error {
|
func (t *winTray) createMenu() error {
|
||||||
|
|
||||||
menuHandle, _, err := pCreatePopupMenu.Call()
|
menuHandle, _, err := pCreatePopupMenu.Call()
|
||||||
if menuHandle == 0 {
|
if menuHandle == 0 {
|
||||||
return err
|
return err
|
||||||
@@ -246,7 +247,7 @@ func (t *winTray) addOrUpdateMenuItem(menuItemId uint32, parentId uint32, title
|
|||||||
mi := menuItemInfo{
|
mi := menuItemInfo{
|
||||||
Mask: MIIM_FTYPE | MIIM_STRING | MIIM_ID | MIIM_STATE,
|
Mask: MIIM_FTYPE | MIIM_STRING | MIIM_ID | MIIM_STATE,
|
||||||
Type: MFT_STRING,
|
Type: MFT_STRING,
|
||||||
ID: uint32(menuItemId),
|
ID: menuItemId,
|
||||||
TypeData: titlePtr,
|
TypeData: titlePtr,
|
||||||
Cch: uint32(len(title)),
|
Cch: uint32(len(title)),
|
||||||
}
|
}
|
||||||
@@ -302,11 +303,10 @@ func (t *winTray) addOrUpdateMenuItem(menuItemId uint32, parentId uint32, title
|
|||||||
}
|
}
|
||||||
|
|
||||||
func (t *winTray) addSeparatorMenuItem(menuItemId, parentId uint32) error {
|
func (t *winTray) addSeparatorMenuItem(menuItemId, parentId uint32) error {
|
||||||
|
|
||||||
mi := menuItemInfo{
|
mi := menuItemInfo{
|
||||||
Mask: MIIM_FTYPE | MIIM_ID | MIIM_STATE,
|
Mask: MIIM_FTYPE | MIIM_ID | MIIM_STATE,
|
||||||
Type: MFT_SEPARATOR,
|
Type: MFT_SEPARATOR,
|
||||||
ID: uint32(menuItemId),
|
ID: menuItemId,
|
||||||
}
|
}
|
||||||
|
|
||||||
mi.Size = uint32(unsafe.Sizeof(mi))
|
mi.Size = uint32(unsafe.Sizeof(mi))
|
||||||
@@ -361,7 +361,7 @@ func (t *winTray) showMenu() error {
|
|||||||
|
|
||||||
boolRet, _, err = pTrackPopupMenu.Call(
|
boolRet, _, err = pTrackPopupMenu.Call(
|
||||||
uintptr(t.menus[0]),
|
uintptr(t.menus[0]),
|
||||||
TPM_BOTTOMALIGN|TPM_LEFTALIGN,
|
TPM_BOTTOMALIGN|TPM_LEFTALIGN|TPM_RIGHTBUTTON,
|
||||||
uintptr(p.X),
|
uintptr(p.X),
|
||||||
uintptr(p.Y),
|
uintptr(p.Y),
|
||||||
0,
|
0,
|
||||||
@@ -416,7 +416,7 @@ func iconBytesToFilePath(iconBytes []byte) (string, error) {
|
|||||||
iconFilePath := filepath.Join(os.TempDir(), "ollama_temp_icon_"+dataHash)
|
iconFilePath := filepath.Join(os.TempDir(), "ollama_temp_icon_"+dataHash)
|
||||||
|
|
||||||
if _, err := os.Stat(iconFilePath); os.IsNotExist(err) {
|
if _, err := os.Stat(iconFilePath); os.IsNotExist(err) {
|
||||||
if err := os.WriteFile(iconFilePath, iconBytes, 0644); err != nil {
|
if err := os.WriteFile(iconFilePath, iconBytes, 0o644); err != nil {
|
||||||
return "", err
|
return "", err
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@@ -426,7 +426,6 @@ func iconBytesToFilePath(iconBytes []byte) (string, error) {
|
|||||||
// Loads an image from file and shows it in tray.
|
// Loads an image from file and shows it in tray.
|
||||||
// Shell_NotifyIcon: https://msdn.microsoft.com/en-us/library/windows/desktop/bb762159(v=vs.85).aspx
|
// Shell_NotifyIcon: https://msdn.microsoft.com/en-us/library/windows/desktop/bb762159(v=vs.85).aspx
|
||||||
func (t *winTray) setIcon(src string) error {
|
func (t *winTray) setIcon(src string) error {
|
||||||
|
|
||||||
h, err := t.loadIconFrom(src)
|
h, err := t.loadIconFrom(src)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return err
|
return err
|
||||||
@@ -435,7 +434,12 @@ func (t *winTray) setIcon(src string) error {
|
|||||||
t.muNID.Lock()
|
t.muNID.Lock()
|
||||||
defer t.muNID.Unlock()
|
defer t.muNID.Unlock()
|
||||||
t.nid.Icon = h
|
t.nid.Icon = h
|
||||||
t.nid.Flags |= NIF_ICON
|
t.nid.Flags |= NIF_ICON | NIF_TIP
|
||||||
|
if toolTipUTF16, err := syscall.UTF16FromString(commontray.ToolTip); err == nil {
|
||||||
|
copy(t.nid.Tip[:], toolTipUTF16)
|
||||||
|
} else {
|
||||||
|
return err
|
||||||
|
}
|
||||||
t.nid.Size = uint32(unsafe.Sizeof(*t.nid))
|
t.nid.Size = uint32(unsafe.Sizeof(*t.nid))
|
||||||
|
|
||||||
return t.nid.modify()
|
return t.nid.modify()
|
||||||
@@ -444,7 +448,6 @@ func (t *winTray) setIcon(src string) error {
|
|||||||
// Loads an image from file to be shown in tray or menu item.
|
// Loads an image from file to be shown in tray or menu item.
|
||||||
// LoadImage: https://msdn.microsoft.com/en-us/library/windows/desktop/ms648045(v=vs.85).aspx
|
// LoadImage: https://msdn.microsoft.com/en-us/library/windows/desktop/ms648045(v=vs.85).aspx
|
||||||
func (t *winTray) loadIconFrom(src string) (windows.Handle, error) {
|
func (t *winTray) loadIconFrom(src string) (windows.Handle, error) {
|
||||||
|
|
||||||
// Save and reuse handles of loaded images
|
// Save and reuse handles of loaded images
|
||||||
t.muLoadedImages.RLock()
|
t.muLoadedImages.RLock()
|
||||||
h, ok := t.loadedImages[src]
|
h, ok := t.loadedImages[src]
|
||||||
|
|||||||
@@ -61,11 +61,13 @@ const (
|
|||||||
MIIM_SUBMENU = 0x00000004
|
MIIM_SUBMENU = 0x00000004
|
||||||
MIM_APPLYTOSUBMENUS = 0x80000000
|
MIM_APPLYTOSUBMENUS = 0x80000000
|
||||||
NIF_ICON = 0x00000002
|
NIF_ICON = 0x00000002
|
||||||
|
NIF_TIP = 0x00000004
|
||||||
NIF_INFO = 0x00000010
|
NIF_INFO = 0x00000010
|
||||||
NIF_MESSAGE = 0x00000001
|
NIF_MESSAGE = 0x00000001
|
||||||
SW_HIDE = 0
|
SW_HIDE = 0
|
||||||
TPM_BOTTOMALIGN = 0x0020
|
TPM_BOTTOMALIGN = 0x0020
|
||||||
TPM_LEFTALIGN = 0x0000
|
TPM_LEFTALIGN = 0x0000
|
||||||
|
TPM_RIGHTBUTTON = 0x0002
|
||||||
WM_CLOSE = 0x0010
|
WM_CLOSE = 0x0010
|
||||||
WM_USER = 0x0400
|
WM_USER = 0x0400
|
||||||
WS_CAPTION = 0x00C00000
|
WS_CAPTION = 0x00C00000
|
||||||
|
|||||||
39
auth/auth.go
39
auth/auth.go
@@ -5,17 +5,50 @@ import (
|
|||||||
"context"
|
"context"
|
||||||
"crypto/rand"
|
"crypto/rand"
|
||||||
"encoding/base64"
|
"encoding/base64"
|
||||||
|
"errors"
|
||||||
"fmt"
|
"fmt"
|
||||||
"io"
|
"io"
|
||||||
"log/slog"
|
"log/slog"
|
||||||
"os"
|
"os"
|
||||||
"path/filepath"
|
"path/filepath"
|
||||||
|
"strings"
|
||||||
|
|
||||||
"golang.org/x/crypto/ssh"
|
"golang.org/x/crypto/ssh"
|
||||||
)
|
)
|
||||||
|
|
||||||
const defaultPrivateKey = "id_ed25519"
|
const defaultPrivateKey = "id_ed25519"
|
||||||
|
|
||||||
|
func keyPath() (string, error) {
|
||||||
|
home, err := os.UserHomeDir()
|
||||||
|
if err != nil {
|
||||||
|
return "", err
|
||||||
|
}
|
||||||
|
|
||||||
|
return filepath.Join(home, ".ollama", defaultPrivateKey), nil
|
||||||
|
}
|
||||||
|
|
||||||
|
func GetPublicKey() (string, error) {
|
||||||
|
keyPath, err := keyPath()
|
||||||
|
if err != nil {
|
||||||
|
return "", err
|
||||||
|
}
|
||||||
|
|
||||||
|
privateKeyFile, err := os.ReadFile(keyPath)
|
||||||
|
if err != nil {
|
||||||
|
slog.Info(fmt.Sprintf("Failed to load private key: %v", err))
|
||||||
|
return "", err
|
||||||
|
}
|
||||||
|
|
||||||
|
privateKey, err := ssh.ParsePrivateKey(privateKeyFile)
|
||||||
|
if err != nil {
|
||||||
|
return "", err
|
||||||
|
}
|
||||||
|
|
||||||
|
publicKey := ssh.MarshalAuthorizedKey(privateKey.PublicKey())
|
||||||
|
|
||||||
|
return strings.TrimSpace(string(publicKey)), nil
|
||||||
|
}
|
||||||
|
|
||||||
func NewNonce(r io.Reader, length int) (string, error) {
|
func NewNonce(r io.Reader, length int) (string, error) {
|
||||||
nonce := make([]byte, length)
|
nonce := make([]byte, length)
|
||||||
if _, err := io.ReadFull(r, nonce); err != nil {
|
if _, err := io.ReadFull(r, nonce); err != nil {
|
||||||
@@ -26,13 +59,11 @@ func NewNonce(r io.Reader, length int) (string, error) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
func Sign(ctx context.Context, bts []byte) (string, error) {
|
func Sign(ctx context.Context, bts []byte) (string, error) {
|
||||||
home, err := os.UserHomeDir()
|
keyPath, err := keyPath()
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return "", err
|
return "", err
|
||||||
}
|
}
|
||||||
|
|
||||||
keyPath := filepath.Join(home, ".ollama", defaultPrivateKey)
|
|
||||||
|
|
||||||
privateKeyFile, err := os.ReadFile(keyPath)
|
privateKeyFile, err := os.ReadFile(keyPath)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
slog.Info(fmt.Sprintf("Failed to load private key: %v", err))
|
slog.Info(fmt.Sprintf("Failed to load private key: %v", err))
|
||||||
@@ -48,7 +79,7 @@ func Sign(ctx context.Context, bts []byte) (string, error) {
|
|||||||
publicKey := ssh.MarshalAuthorizedKey(privateKey.PublicKey())
|
publicKey := ssh.MarshalAuthorizedKey(privateKey.PublicKey())
|
||||||
parts := bytes.Split(publicKey, []byte(" "))
|
parts := bytes.Split(publicKey, []byte(" "))
|
||||||
if len(parts) < 2 {
|
if len(parts) < 2 {
|
||||||
return "", fmt.Errorf("malformed public key")
|
return "", errors.New("malformed public key")
|
||||||
}
|
}
|
||||||
|
|
||||||
signedData, err := privateKey.Sign(rand.Reader, bts)
|
signedData, err := privateKey.Sign(rand.Reader, bts)
|
||||||
|
|||||||
178
benchmark/server_benchmark_test.go
Normal file
178
benchmark/server_benchmark_test.go
Normal file
@@ -0,0 +1,178 @@
|
|||||||
|
package benchmark
|
||||||
|
|
||||||
|
import (
|
||||||
|
"context"
|
||||||
|
"flag"
|
||||||
|
"fmt"
|
||||||
|
"testing"
|
||||||
|
"time"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/api"
|
||||||
|
)
|
||||||
|
|
||||||
|
// Command line flags
|
||||||
|
var modelFlag string
|
||||||
|
|
||||||
|
func init() {
|
||||||
|
flag.StringVar(&modelFlag, "m", "", "Name of the model to benchmark")
|
||||||
|
flag.Lookup("m").DefValue = "model"
|
||||||
|
}
|
||||||
|
|
||||||
|
// modelName returns the model name from flags, failing the test if not set
|
||||||
|
func modelName(b *testing.B) string {
|
||||||
|
if modelFlag == "" {
|
||||||
|
b.Fatal("Error: -m flag is required for benchmark tests")
|
||||||
|
}
|
||||||
|
return modelFlag
|
||||||
|
}
|
||||||
|
|
||||||
|
type TestCase struct {
|
||||||
|
name string
|
||||||
|
prompt string
|
||||||
|
maxTokens int
|
||||||
|
}
|
||||||
|
|
||||||
|
// runGenerateBenchmark contains the common generate and metrics logic
|
||||||
|
func runGenerateBenchmark(b *testing.B, ctx context.Context, client *api.Client, req *api.GenerateRequest) {
|
||||||
|
start := time.Now()
|
||||||
|
var ttft time.Duration
|
||||||
|
var metrics api.Metrics
|
||||||
|
|
||||||
|
err := client.Generate(ctx, req, func(resp api.GenerateResponse) error {
|
||||||
|
if ttft == 0 && resp.Response != "" {
|
||||||
|
ttft = time.Since(start)
|
||||||
|
}
|
||||||
|
if resp.Done {
|
||||||
|
metrics = resp.Metrics
|
||||||
|
}
|
||||||
|
return nil
|
||||||
|
})
|
||||||
|
|
||||||
|
// Report custom metrics as part of the benchmark results
|
||||||
|
b.ReportMetric(float64(ttft.Milliseconds()), "ttft_ms")
|
||||||
|
b.ReportMetric(float64(metrics.LoadDuration.Milliseconds()), "load_ms")
|
||||||
|
|
||||||
|
// Token throughput metrics
|
||||||
|
promptThroughput := float64(metrics.PromptEvalCount) / metrics.PromptEvalDuration.Seconds()
|
||||||
|
genThroughput := float64(metrics.EvalCount) / metrics.EvalDuration.Seconds()
|
||||||
|
b.ReportMetric(promptThroughput, "prompt_tok/s")
|
||||||
|
b.ReportMetric(genThroughput, "gen_tok/s")
|
||||||
|
|
||||||
|
// Token counts
|
||||||
|
b.ReportMetric(float64(metrics.PromptEvalCount), "prompt_tokens")
|
||||||
|
b.ReportMetric(float64(metrics.EvalCount), "gen_tokens")
|
||||||
|
if err != nil {
|
||||||
|
b.Fatal(err)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// BenchmarkColdStart runs benchmarks with model loading from cold state
|
||||||
|
func BenchmarkColdStart(b *testing.B) {
|
||||||
|
client := setup(b)
|
||||||
|
tests := []TestCase{
|
||||||
|
{"short_prompt", "Write a long story", 100},
|
||||||
|
{"medium_prompt", "Write a detailed economic analysis", 500},
|
||||||
|
{"long_prompt", "Write a comprehensive AI research paper", 1000},
|
||||||
|
}
|
||||||
|
m := modelName(b)
|
||||||
|
|
||||||
|
for _, tt := range tests {
|
||||||
|
b.Run(fmt.Sprintf("%s/cold/%s", m, tt.name), func(b *testing.B) {
|
||||||
|
ctx := b.Context()
|
||||||
|
|
||||||
|
// Set number of tokens as our throughput metric
|
||||||
|
b.SetBytes(int64(tt.maxTokens))
|
||||||
|
|
||||||
|
for b.Loop() {
|
||||||
|
b.StopTimer()
|
||||||
|
// Ensure model is unloaded before each iteration
|
||||||
|
unload(client, m, b)
|
||||||
|
b.StartTimer()
|
||||||
|
|
||||||
|
req := &api.GenerateRequest{
|
||||||
|
Model: m,
|
||||||
|
Prompt: tt.prompt,
|
||||||
|
Options: map[string]any{"num_predict": tt.maxTokens, "temperature": 0.1},
|
||||||
|
}
|
||||||
|
|
||||||
|
runGenerateBenchmark(b, ctx, client, req)
|
||||||
|
}
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// BenchmarkWarmStart runs benchmarks with pre-loaded model
|
||||||
|
func BenchmarkWarmStart(b *testing.B) {
|
||||||
|
client := setup(b)
|
||||||
|
tests := []TestCase{
|
||||||
|
{"short_prompt", "Write a long story", 100},
|
||||||
|
{"medium_prompt", "Write a detailed economic analysis", 500},
|
||||||
|
{"long_prompt", "Write a comprehensive AI research paper", 1000},
|
||||||
|
}
|
||||||
|
m := modelName(b)
|
||||||
|
|
||||||
|
for _, tt := range tests {
|
||||||
|
b.Run(fmt.Sprintf("%s/warm/%s", m, tt.name), func(b *testing.B) {
|
||||||
|
ctx := b.Context()
|
||||||
|
|
||||||
|
// Pre-warm the model
|
||||||
|
warmup(client, m, tt.prompt, b)
|
||||||
|
|
||||||
|
// Set number of tokens as our throughput metric
|
||||||
|
b.SetBytes(int64(tt.maxTokens))
|
||||||
|
|
||||||
|
for b.Loop() {
|
||||||
|
req := &api.GenerateRequest{
|
||||||
|
Model: m,
|
||||||
|
Prompt: tt.prompt,
|
||||||
|
Options: map[string]any{"num_predict": tt.maxTokens, "temperature": 0.1},
|
||||||
|
}
|
||||||
|
|
||||||
|
runGenerateBenchmark(b, ctx, client, req)
|
||||||
|
}
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// setup verifies server and model availability
|
||||||
|
func setup(b *testing.B) *api.Client {
|
||||||
|
client, err := api.ClientFromEnvironment()
|
||||||
|
if err != nil {
|
||||||
|
b.Fatal(err)
|
||||||
|
}
|
||||||
|
if _, err := client.Show(b.Context(), &api.ShowRequest{Model: modelName(b)}); err != nil {
|
||||||
|
b.Fatalf("Model unavailable: %v", err)
|
||||||
|
}
|
||||||
|
|
||||||
|
return client
|
||||||
|
}
|
||||||
|
|
||||||
|
// warmup ensures the model is loaded and warmed up
|
||||||
|
func warmup(client *api.Client, model string, prompt string, b *testing.B) {
|
||||||
|
for range 3 {
|
||||||
|
err := client.Generate(
|
||||||
|
context.Background(),
|
||||||
|
&api.GenerateRequest{
|
||||||
|
Model: model,
|
||||||
|
Prompt: prompt,
|
||||||
|
Options: map[string]any{"num_predict": 50, "temperature": 0.1},
|
||||||
|
},
|
||||||
|
func(api.GenerateResponse) error { return nil },
|
||||||
|
)
|
||||||
|
if err != nil {
|
||||||
|
b.Logf("Error during model warm-up: %v", err)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// unload forces model unloading using KeepAlive: 0 parameter
|
||||||
|
func unload(client *api.Client, model string, b *testing.B) {
|
||||||
|
req := &api.GenerateRequest{
|
||||||
|
Model: model,
|
||||||
|
KeepAlive: &api.Duration{Duration: 0},
|
||||||
|
}
|
||||||
|
if err := client.Generate(context.Background(), req, func(api.GenerateResponse) error { return nil }); err != nil {
|
||||||
|
b.Logf("Unload error: %v", err)
|
||||||
|
}
|
||||||
|
time.Sleep(1 * time.Second)
|
||||||
|
}
|
||||||
899
cmd/cmd.go
899
cmd/cmd.go
File diff suppressed because it is too large
Load Diff
916
cmd/cmd_test.go
Normal file
916
cmd/cmd_test.go
Normal file
@@ -0,0 +1,916 @@
|
|||||||
|
package cmd
|
||||||
|
|
||||||
|
import (
|
||||||
|
"bytes"
|
||||||
|
"encoding/json"
|
||||||
|
"io"
|
||||||
|
"net/http"
|
||||||
|
"net/http/httptest"
|
||||||
|
"os"
|
||||||
|
"strings"
|
||||||
|
"testing"
|
||||||
|
"time"
|
||||||
|
|
||||||
|
"github.com/google/go-cmp/cmp"
|
||||||
|
"github.com/spf13/cobra"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/api"
|
||||||
|
"github.com/ollama/ollama/types/model"
|
||||||
|
)
|
||||||
|
|
||||||
|
func TestShowInfo(t *testing.T) {
|
||||||
|
t.Run("bare details", func(t *testing.T) {
|
||||||
|
var b bytes.Buffer
|
||||||
|
if err := showInfo(&api.ShowResponse{
|
||||||
|
Details: api.ModelDetails{
|
||||||
|
Family: "test",
|
||||||
|
ParameterSize: "7B",
|
||||||
|
QuantizationLevel: "FP16",
|
||||||
|
},
|
||||||
|
}, false, &b); err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
expect := ` Model
|
||||||
|
architecture test
|
||||||
|
parameters 7B
|
||||||
|
quantization FP16
|
||||||
|
|
||||||
|
`
|
||||||
|
|
||||||
|
if diff := cmp.Diff(expect, b.String()); diff != "" {
|
||||||
|
t.Errorf("unexpected output (-want +got):\n%s", diff)
|
||||||
|
}
|
||||||
|
})
|
||||||
|
|
||||||
|
t.Run("bare model info", func(t *testing.T) {
|
||||||
|
var b bytes.Buffer
|
||||||
|
if err := showInfo(&api.ShowResponse{
|
||||||
|
ModelInfo: map[string]any{
|
||||||
|
"general.architecture": "test",
|
||||||
|
"general.parameter_count": float64(7_000_000_000),
|
||||||
|
"test.context_length": float64(0),
|
||||||
|
"test.embedding_length": float64(0),
|
||||||
|
},
|
||||||
|
Details: api.ModelDetails{
|
||||||
|
Family: "test",
|
||||||
|
ParameterSize: "7B",
|
||||||
|
QuantizationLevel: "FP16",
|
||||||
|
},
|
||||||
|
}, false, &b); err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
expect := ` Model
|
||||||
|
architecture test
|
||||||
|
parameters 7B
|
||||||
|
context length 0
|
||||||
|
embedding length 0
|
||||||
|
quantization FP16
|
||||||
|
|
||||||
|
`
|
||||||
|
if diff := cmp.Diff(expect, b.String()); diff != "" {
|
||||||
|
t.Errorf("unexpected output (-want +got):\n%s", diff)
|
||||||
|
}
|
||||||
|
})
|
||||||
|
|
||||||
|
t.Run("verbose model", func(t *testing.T) {
|
||||||
|
var b bytes.Buffer
|
||||||
|
if err := showInfo(&api.ShowResponse{
|
||||||
|
Details: api.ModelDetails{
|
||||||
|
Family: "test",
|
||||||
|
ParameterSize: "8B",
|
||||||
|
QuantizationLevel: "FP16",
|
||||||
|
},
|
||||||
|
Parameters: `
|
||||||
|
stop up`,
|
||||||
|
ModelInfo: map[string]any{
|
||||||
|
"general.architecture": "test",
|
||||||
|
"general.parameter_count": float64(8_000_000_000),
|
||||||
|
"some.true_bool": true,
|
||||||
|
"some.false_bool": false,
|
||||||
|
"test.context_length": float64(1000),
|
||||||
|
"test.embedding_length": float64(11434),
|
||||||
|
},
|
||||||
|
Tensors: []api.Tensor{
|
||||||
|
{Name: "blk.0.attn_k.weight", Type: "BF16", Shape: []uint64{42, 3117}},
|
||||||
|
{Name: "blk.0.attn_q.weight", Type: "FP16", Shape: []uint64{3117, 42}},
|
||||||
|
},
|
||||||
|
}, true, &b); err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
expect := ` Model
|
||||||
|
architecture test
|
||||||
|
parameters 8B
|
||||||
|
context length 1000
|
||||||
|
embedding length 11434
|
||||||
|
quantization FP16
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
stop up
|
||||||
|
|
||||||
|
Metadata
|
||||||
|
general.architecture test
|
||||||
|
general.parameter_count 8e+09
|
||||||
|
some.false_bool false
|
||||||
|
some.true_bool true
|
||||||
|
test.context_length 1000
|
||||||
|
test.embedding_length 11434
|
||||||
|
|
||||||
|
Tensors
|
||||||
|
blk.0.attn_k.weight BF16 [42 3117]
|
||||||
|
blk.0.attn_q.weight FP16 [3117 42]
|
||||||
|
|
||||||
|
`
|
||||||
|
if diff := cmp.Diff(expect, b.String()); diff != "" {
|
||||||
|
t.Errorf("unexpected output (-want +got):\n%s", diff)
|
||||||
|
}
|
||||||
|
})
|
||||||
|
|
||||||
|
t.Run("parameters", func(t *testing.T) {
|
||||||
|
var b bytes.Buffer
|
||||||
|
if err := showInfo(&api.ShowResponse{
|
||||||
|
Details: api.ModelDetails{
|
||||||
|
Family: "test",
|
||||||
|
ParameterSize: "7B",
|
||||||
|
QuantizationLevel: "FP16",
|
||||||
|
},
|
||||||
|
Parameters: `
|
||||||
|
stop never
|
||||||
|
stop gonna
|
||||||
|
stop give
|
||||||
|
stop you
|
||||||
|
stop up
|
||||||
|
temperature 99`,
|
||||||
|
}, false, &b); err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
expect := ` Model
|
||||||
|
architecture test
|
||||||
|
parameters 7B
|
||||||
|
quantization FP16
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
stop never
|
||||||
|
stop gonna
|
||||||
|
stop give
|
||||||
|
stop you
|
||||||
|
stop up
|
||||||
|
temperature 99
|
||||||
|
|
||||||
|
`
|
||||||
|
if diff := cmp.Diff(expect, b.String()); diff != "" {
|
||||||
|
t.Errorf("unexpected output (-want +got):\n%s", diff)
|
||||||
|
}
|
||||||
|
})
|
||||||
|
|
||||||
|
t.Run("project info", func(t *testing.T) {
|
||||||
|
var b bytes.Buffer
|
||||||
|
if err := showInfo(&api.ShowResponse{
|
||||||
|
Details: api.ModelDetails{
|
||||||
|
Family: "test",
|
||||||
|
ParameterSize: "7B",
|
||||||
|
QuantizationLevel: "FP16",
|
||||||
|
},
|
||||||
|
ProjectorInfo: map[string]any{
|
||||||
|
"general.architecture": "clip",
|
||||||
|
"general.parameter_count": float64(133_700_000),
|
||||||
|
"clip.vision.embedding_length": float64(0),
|
||||||
|
"clip.vision.projection_dim": float64(0),
|
||||||
|
},
|
||||||
|
}, false, &b); err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
expect := ` Model
|
||||||
|
architecture test
|
||||||
|
parameters 7B
|
||||||
|
quantization FP16
|
||||||
|
|
||||||
|
Projector
|
||||||
|
architecture clip
|
||||||
|
parameters 133.70M
|
||||||
|
embedding length 0
|
||||||
|
dimensions 0
|
||||||
|
|
||||||
|
`
|
||||||
|
if diff := cmp.Diff(expect, b.String()); diff != "" {
|
||||||
|
t.Errorf("unexpected output (-want +got):\n%s", diff)
|
||||||
|
}
|
||||||
|
})
|
||||||
|
|
||||||
|
t.Run("system", func(t *testing.T) {
|
||||||
|
var b bytes.Buffer
|
||||||
|
if err := showInfo(&api.ShowResponse{
|
||||||
|
Details: api.ModelDetails{
|
||||||
|
Family: "test",
|
||||||
|
ParameterSize: "7B",
|
||||||
|
QuantizationLevel: "FP16",
|
||||||
|
},
|
||||||
|
System: `You are a pirate!
|
||||||
|
Ahoy, matey!
|
||||||
|
Weigh anchor!
|
||||||
|
`,
|
||||||
|
}, false, &b); err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
expect := ` Model
|
||||||
|
architecture test
|
||||||
|
parameters 7B
|
||||||
|
quantization FP16
|
||||||
|
|
||||||
|
System
|
||||||
|
You are a pirate!
|
||||||
|
Ahoy, matey!
|
||||||
|
|
||||||
|
`
|
||||||
|
if diff := cmp.Diff(expect, b.String()); diff != "" {
|
||||||
|
t.Errorf("unexpected output (-want +got):\n%s", diff)
|
||||||
|
}
|
||||||
|
})
|
||||||
|
|
||||||
|
t.Run("license", func(t *testing.T) {
|
||||||
|
var b bytes.Buffer
|
||||||
|
license := "MIT License\nCopyright (c) Ollama\n"
|
||||||
|
if err := showInfo(&api.ShowResponse{
|
||||||
|
Details: api.ModelDetails{
|
||||||
|
Family: "test",
|
||||||
|
ParameterSize: "7B",
|
||||||
|
QuantizationLevel: "FP16",
|
||||||
|
},
|
||||||
|
License: license,
|
||||||
|
}, false, &b); err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
expect := ` Model
|
||||||
|
architecture test
|
||||||
|
parameters 7B
|
||||||
|
quantization FP16
|
||||||
|
|
||||||
|
License
|
||||||
|
MIT License
|
||||||
|
Copyright (c) Ollama
|
||||||
|
|
||||||
|
`
|
||||||
|
if diff := cmp.Diff(expect, b.String()); diff != "" {
|
||||||
|
t.Errorf("unexpected output (-want +got):\n%s", diff)
|
||||||
|
}
|
||||||
|
})
|
||||||
|
|
||||||
|
t.Run("capabilities", func(t *testing.T) {
|
||||||
|
var b bytes.Buffer
|
||||||
|
if err := showInfo(&api.ShowResponse{
|
||||||
|
Details: api.ModelDetails{
|
||||||
|
Family: "test",
|
||||||
|
ParameterSize: "7B",
|
||||||
|
QuantizationLevel: "FP16",
|
||||||
|
},
|
||||||
|
Capabilities: []model.Capability{model.CapabilityVision, model.CapabilityTools},
|
||||||
|
}, false, &b); err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
expect := " Model\n" +
|
||||||
|
" architecture test \n" +
|
||||||
|
" parameters 7B \n" +
|
||||||
|
" quantization FP16 \n" +
|
||||||
|
"\n" +
|
||||||
|
" Capabilities\n" +
|
||||||
|
" vision \n" +
|
||||||
|
" tools \n" +
|
||||||
|
"\n"
|
||||||
|
|
||||||
|
if diff := cmp.Diff(expect, b.String()); diff != "" {
|
||||||
|
t.Errorf("unexpected output (-want +got):\n%s", diff)
|
||||||
|
}
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
func TestDeleteHandler(t *testing.T) {
|
||||||
|
stopped := false
|
||||||
|
mockServer := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
|
||||||
|
if r.URL.Path == "/api/delete" && r.Method == http.MethodDelete {
|
||||||
|
var req api.DeleteRequest
|
||||||
|
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
|
||||||
|
http.Error(w, err.Error(), http.StatusBadRequest)
|
||||||
|
return
|
||||||
|
}
|
||||||
|
if req.Name == "test-model" {
|
||||||
|
w.WriteHeader(http.StatusOK)
|
||||||
|
} else {
|
||||||
|
w.WriteHeader(http.StatusNotFound)
|
||||||
|
}
|
||||||
|
return
|
||||||
|
}
|
||||||
|
if r.URL.Path == "/api/generate" && r.Method == http.MethodPost {
|
||||||
|
var req api.GenerateRequest
|
||||||
|
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
|
||||||
|
http.Error(w, err.Error(), http.StatusBadRequest)
|
||||||
|
return
|
||||||
|
}
|
||||||
|
if req.Model == "test-model" {
|
||||||
|
w.WriteHeader(http.StatusOK)
|
||||||
|
if err := json.NewEncoder(w).Encode(api.GenerateResponse{
|
||||||
|
Done: true,
|
||||||
|
}); err != nil {
|
||||||
|
http.Error(w, err.Error(), http.StatusInternalServerError)
|
||||||
|
}
|
||||||
|
stopped = true
|
||||||
|
return
|
||||||
|
} else {
|
||||||
|
w.WriteHeader(http.StatusNotFound)
|
||||||
|
if err := json.NewEncoder(w).Encode(api.GenerateResponse{
|
||||||
|
Done: false,
|
||||||
|
}); err != nil {
|
||||||
|
http.Error(w, err.Error(), http.StatusInternalServerError)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}))
|
||||||
|
|
||||||
|
t.Setenv("OLLAMA_HOST", mockServer.URL)
|
||||||
|
t.Cleanup(mockServer.Close)
|
||||||
|
|
||||||
|
cmd := &cobra.Command{}
|
||||||
|
cmd.SetContext(t.Context())
|
||||||
|
if err := DeleteHandler(cmd, []string{"test-model"}); err != nil {
|
||||||
|
t.Fatalf("DeleteHandler failed: %v", err)
|
||||||
|
}
|
||||||
|
if !stopped {
|
||||||
|
t.Fatal("Model was not stopped before deletion")
|
||||||
|
}
|
||||||
|
|
||||||
|
err := DeleteHandler(cmd, []string{"test-model-not-found"})
|
||||||
|
if err == nil || !strings.Contains(err.Error(), "unable to stop existing running model \"test-model-not-found\"") {
|
||||||
|
t.Fatalf("DeleteHandler failed: expected error about stopping non-existent model, got %v", err)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func TestGetModelfileName(t *testing.T) {
|
||||||
|
tests := []struct {
|
||||||
|
name string
|
||||||
|
modelfileName string
|
||||||
|
fileExists bool
|
||||||
|
expectedName string
|
||||||
|
expectedErr error
|
||||||
|
}{
|
||||||
|
{
|
||||||
|
name: "no modelfile specified, no modelfile exists",
|
||||||
|
modelfileName: "",
|
||||||
|
fileExists: false,
|
||||||
|
expectedName: "",
|
||||||
|
expectedErr: os.ErrNotExist,
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "no modelfile specified, modelfile exists",
|
||||||
|
modelfileName: "",
|
||||||
|
fileExists: true,
|
||||||
|
expectedName: "Modelfile",
|
||||||
|
expectedErr: nil,
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "modelfile specified, no modelfile exists",
|
||||||
|
modelfileName: "crazyfile",
|
||||||
|
fileExists: false,
|
||||||
|
expectedName: "",
|
||||||
|
expectedErr: os.ErrNotExist,
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "modelfile specified, modelfile exists",
|
||||||
|
modelfileName: "anotherfile",
|
||||||
|
fileExists: true,
|
||||||
|
expectedName: "anotherfile",
|
||||||
|
expectedErr: nil,
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, tt := range tests {
|
||||||
|
t.Run(tt.name, func(t *testing.T) {
|
||||||
|
cmd := &cobra.Command{
|
||||||
|
Use: "fakecmd",
|
||||||
|
}
|
||||||
|
cmd.Flags().String("file", "", "path to modelfile")
|
||||||
|
|
||||||
|
var expectedFilename string
|
||||||
|
|
||||||
|
if tt.fileExists {
|
||||||
|
var fn string
|
||||||
|
if tt.modelfileName != "" {
|
||||||
|
fn = tt.modelfileName
|
||||||
|
} else {
|
||||||
|
fn = "Modelfile"
|
||||||
|
}
|
||||||
|
|
||||||
|
tempFile, err := os.CreateTemp(t.TempDir(), fn)
|
||||||
|
if err != nil {
|
||||||
|
t.Fatalf("temp modelfile creation failed: %v", err)
|
||||||
|
}
|
||||||
|
defer tempFile.Close()
|
||||||
|
|
||||||
|
expectedFilename = tempFile.Name()
|
||||||
|
err = cmd.Flags().Set("file", expectedFilename)
|
||||||
|
if err != nil {
|
||||||
|
t.Fatalf("couldn't set file flag: %v", err)
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
expectedFilename = tt.expectedName
|
||||||
|
if tt.modelfileName != "" {
|
||||||
|
err := cmd.Flags().Set("file", tt.modelfileName)
|
||||||
|
if err != nil {
|
||||||
|
t.Fatalf("couldn't set file flag: %v", err)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
actualFilename, actualErr := getModelfileName(cmd)
|
||||||
|
|
||||||
|
if actualFilename != expectedFilename {
|
||||||
|
t.Errorf("expected filename: '%s' actual filename: '%s'", expectedFilename, actualFilename)
|
||||||
|
}
|
||||||
|
|
||||||
|
if tt.expectedErr != os.ErrNotExist {
|
||||||
|
if actualErr != tt.expectedErr {
|
||||||
|
t.Errorf("expected err: %v actual err: %v", tt.expectedErr, actualErr)
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
if !os.IsNotExist(actualErr) {
|
||||||
|
t.Errorf("expected err: %v actual err: %v", tt.expectedErr, actualErr)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func TestPushHandler(t *testing.T) {
|
||||||
|
tests := []struct {
|
||||||
|
name string
|
||||||
|
modelName string
|
||||||
|
serverResponse map[string]func(w http.ResponseWriter, r *http.Request)
|
||||||
|
expectedError string
|
||||||
|
expectedOutput string
|
||||||
|
}{
|
||||||
|
{
|
||||||
|
name: "successful push",
|
||||||
|
modelName: "test-model",
|
||||||
|
serverResponse: map[string]func(w http.ResponseWriter, r *http.Request){
|
||||||
|
"/api/push": func(w http.ResponseWriter, r *http.Request) {
|
||||||
|
if r.Method != http.MethodPost {
|
||||||
|
t.Errorf("expected POST request, got %s", r.Method)
|
||||||
|
}
|
||||||
|
|
||||||
|
var req api.PushRequest
|
||||||
|
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
|
||||||
|
http.Error(w, err.Error(), http.StatusBadRequest)
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
if req.Name != "test-model" {
|
||||||
|
t.Errorf("expected model name 'test-model', got %s", req.Name)
|
||||||
|
}
|
||||||
|
|
||||||
|
// Simulate progress updates
|
||||||
|
responses := []api.ProgressResponse{
|
||||||
|
{Status: "preparing manifest"},
|
||||||
|
{Digest: "sha256:abc123456789", Total: 100, Completed: 50},
|
||||||
|
{Digest: "sha256:abc123456789", Total: 100, Completed: 100},
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, resp := range responses {
|
||||||
|
if err := json.NewEncoder(w).Encode(resp); err != nil {
|
||||||
|
http.Error(w, err.Error(), http.StatusInternalServerError)
|
||||||
|
return
|
||||||
|
}
|
||||||
|
w.(http.Flusher).Flush()
|
||||||
|
}
|
||||||
|
},
|
||||||
|
},
|
||||||
|
expectedOutput: "\nYou can find your model at:\n\n\thttps://ollama.com/test-model\n",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "unauthorized push",
|
||||||
|
modelName: "unauthorized-model",
|
||||||
|
serverResponse: map[string]func(w http.ResponseWriter, r *http.Request){
|
||||||
|
"/api/push": func(w http.ResponseWriter, r *http.Request) {
|
||||||
|
w.Header().Set("Content-Type", "application/json")
|
||||||
|
w.WriteHeader(http.StatusUnauthorized)
|
||||||
|
err := json.NewEncoder(w).Encode(map[string]string{
|
||||||
|
"error": "access denied",
|
||||||
|
})
|
||||||
|
if err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
},
|
||||||
|
},
|
||||||
|
expectedError: "you are not authorized to push to this namespace, create the model under a namespace you own",
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, tt := range tests {
|
||||||
|
t.Run(tt.name, func(t *testing.T) {
|
||||||
|
mockServer := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
|
||||||
|
if handler, ok := tt.serverResponse[r.URL.Path]; ok {
|
||||||
|
handler(w, r)
|
||||||
|
return
|
||||||
|
}
|
||||||
|
http.Error(w, "not found", http.StatusNotFound)
|
||||||
|
}))
|
||||||
|
defer mockServer.Close()
|
||||||
|
|
||||||
|
t.Setenv("OLLAMA_HOST", mockServer.URL)
|
||||||
|
|
||||||
|
cmd := &cobra.Command{}
|
||||||
|
cmd.Flags().Bool("insecure", false, "")
|
||||||
|
cmd.SetContext(t.Context())
|
||||||
|
|
||||||
|
// Redirect stderr to capture progress output
|
||||||
|
oldStderr := os.Stderr
|
||||||
|
r, w, _ := os.Pipe()
|
||||||
|
os.Stderr = w
|
||||||
|
|
||||||
|
// Capture stdout for the "Model pushed" message
|
||||||
|
oldStdout := os.Stdout
|
||||||
|
outR, outW, _ := os.Pipe()
|
||||||
|
os.Stdout = outW
|
||||||
|
|
||||||
|
err := PushHandler(cmd, []string{tt.modelName})
|
||||||
|
|
||||||
|
// Restore stderr
|
||||||
|
w.Close()
|
||||||
|
os.Stderr = oldStderr
|
||||||
|
// drain the pipe
|
||||||
|
if _, err := io.ReadAll(r); err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
// Restore stdout and get output
|
||||||
|
outW.Close()
|
||||||
|
os.Stdout = oldStdout
|
||||||
|
stdout, _ := io.ReadAll(outR)
|
||||||
|
|
||||||
|
if tt.expectedError == "" {
|
||||||
|
if err != nil {
|
||||||
|
t.Errorf("expected no error, got %v", err)
|
||||||
|
}
|
||||||
|
if tt.expectedOutput != "" {
|
||||||
|
if got := string(stdout); got != tt.expectedOutput {
|
||||||
|
t.Errorf("expected output %q, got %q", tt.expectedOutput, got)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
if err == nil || !strings.Contains(err.Error(), tt.expectedError) {
|
||||||
|
t.Errorf("expected error containing %q, got %v", tt.expectedError, err)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func TestListHandler(t *testing.T) {
|
||||||
|
tests := []struct {
|
||||||
|
name string
|
||||||
|
args []string
|
||||||
|
serverResponse []api.ListModelResponse
|
||||||
|
expectedError string
|
||||||
|
expectedOutput string
|
||||||
|
}{
|
||||||
|
{
|
||||||
|
name: "list all models",
|
||||||
|
args: []string{},
|
||||||
|
serverResponse: []api.ListModelResponse{
|
||||||
|
{Name: "model1", Digest: "sha256:abc123", Size: 1024, ModifiedAt: time.Now().Add(-24 * time.Hour)},
|
||||||
|
{Name: "model2", Digest: "sha256:def456", Size: 2048, ModifiedAt: time.Now().Add(-48 * time.Hour)},
|
||||||
|
},
|
||||||
|
expectedOutput: "NAME ID SIZE MODIFIED \n" +
|
||||||
|
"model1 sha256:abc12 1.0 KB 24 hours ago \n" +
|
||||||
|
"model2 sha256:def45 2.0 KB 2 days ago \n",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "filter models by prefix",
|
||||||
|
args: []string{"model1"},
|
||||||
|
serverResponse: []api.ListModelResponse{
|
||||||
|
{Name: "model1", Digest: "sha256:abc123", Size: 1024, ModifiedAt: time.Now().Add(-24 * time.Hour)},
|
||||||
|
{Name: "model2", Digest: "sha256:def456", Size: 2048, ModifiedAt: time.Now().Add(-24 * time.Hour)},
|
||||||
|
},
|
||||||
|
expectedOutput: "NAME ID SIZE MODIFIED \n" +
|
||||||
|
"model1 sha256:abc12 1.0 KB 24 hours ago \n",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "server error",
|
||||||
|
args: []string{},
|
||||||
|
expectedError: "server error",
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, tt := range tests {
|
||||||
|
t.Run(tt.name, func(t *testing.T) {
|
||||||
|
mockServer := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
|
||||||
|
if r.URL.Path != "/api/tags" || r.Method != http.MethodGet {
|
||||||
|
t.Errorf("unexpected request to %s %s", r.Method, r.URL.Path)
|
||||||
|
http.Error(w, "not found", http.StatusNotFound)
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
if tt.expectedError != "" {
|
||||||
|
http.Error(w, tt.expectedError, http.StatusInternalServerError)
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
response := api.ListResponse{Models: tt.serverResponse}
|
||||||
|
if err := json.NewEncoder(w).Encode(response); err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
}))
|
||||||
|
defer mockServer.Close()
|
||||||
|
|
||||||
|
t.Setenv("OLLAMA_HOST", mockServer.URL)
|
||||||
|
|
||||||
|
cmd := &cobra.Command{}
|
||||||
|
cmd.SetContext(t.Context())
|
||||||
|
|
||||||
|
// Capture stdout
|
||||||
|
oldStdout := os.Stdout
|
||||||
|
r, w, _ := os.Pipe()
|
||||||
|
os.Stdout = w
|
||||||
|
|
||||||
|
err := ListHandler(cmd, tt.args)
|
||||||
|
|
||||||
|
// Restore stdout and get output
|
||||||
|
w.Close()
|
||||||
|
os.Stdout = oldStdout
|
||||||
|
output, _ := io.ReadAll(r)
|
||||||
|
|
||||||
|
if tt.expectedError == "" {
|
||||||
|
if err != nil {
|
||||||
|
t.Errorf("expected no error, got %v", err)
|
||||||
|
}
|
||||||
|
if got := string(output); got != tt.expectedOutput {
|
||||||
|
t.Errorf("expected output:\n%s\ngot:\n%s", tt.expectedOutput, got)
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
if err == nil || !strings.Contains(err.Error(), tt.expectedError) {
|
||||||
|
t.Errorf("expected error containing %q, got %v", tt.expectedError, err)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func TestCreateHandler(t *testing.T) {
|
||||||
|
tests := []struct {
|
||||||
|
name string
|
||||||
|
modelName string
|
||||||
|
modelFile string
|
||||||
|
serverResponse map[string]func(w http.ResponseWriter, r *http.Request)
|
||||||
|
expectedError string
|
||||||
|
expectedOutput string
|
||||||
|
}{
|
||||||
|
{
|
||||||
|
name: "successful create",
|
||||||
|
modelName: "test-model",
|
||||||
|
modelFile: "FROM foo",
|
||||||
|
serverResponse: map[string]func(w http.ResponseWriter, r *http.Request){
|
||||||
|
"/api/create": func(w http.ResponseWriter, r *http.Request) {
|
||||||
|
if r.Method != http.MethodPost {
|
||||||
|
t.Errorf("expected POST request, got %s", r.Method)
|
||||||
|
}
|
||||||
|
|
||||||
|
req := api.CreateRequest{}
|
||||||
|
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
|
||||||
|
http.Error(w, err.Error(), http.StatusBadRequest)
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
if req.Model != "test-model" {
|
||||||
|
t.Errorf("expected model name 'test-model', got %s", req.Name)
|
||||||
|
}
|
||||||
|
|
||||||
|
if req.From != "foo" {
|
||||||
|
t.Errorf("expected from 'foo', got %s", req.From)
|
||||||
|
}
|
||||||
|
|
||||||
|
responses := []api.ProgressResponse{
|
||||||
|
{Status: "using existing layer sha256:56bb8bd477a519ffa694fc449c2413c6f0e1d3b1c88fa7e3c9d88d3ae49d4dcb"},
|
||||||
|
{Status: "writing manifest"},
|
||||||
|
{Status: "success"},
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, resp := range responses {
|
||||||
|
if err := json.NewEncoder(w).Encode(resp); err != nil {
|
||||||
|
http.Error(w, err.Error(), http.StatusInternalServerError)
|
||||||
|
return
|
||||||
|
}
|
||||||
|
w.(http.Flusher).Flush()
|
||||||
|
}
|
||||||
|
},
|
||||||
|
},
|
||||||
|
expectedOutput: "",
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, tt := range tests {
|
||||||
|
t.Run(tt.name, func(t *testing.T) {
|
||||||
|
mockServer := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
|
||||||
|
handler, ok := tt.serverResponse[r.URL.Path]
|
||||||
|
if !ok {
|
||||||
|
t.Errorf("unexpected request to %s", r.URL.Path)
|
||||||
|
http.Error(w, "not found", http.StatusNotFound)
|
||||||
|
return
|
||||||
|
}
|
||||||
|
handler(w, r)
|
||||||
|
}))
|
||||||
|
t.Setenv("OLLAMA_HOST", mockServer.URL)
|
||||||
|
t.Cleanup(mockServer.Close)
|
||||||
|
tempFile, err := os.CreateTemp(t.TempDir(), "modelfile")
|
||||||
|
if err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
defer os.Remove(tempFile.Name())
|
||||||
|
|
||||||
|
if _, err := tempFile.WriteString(tt.modelFile); err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
if err := tempFile.Close(); err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
cmd := &cobra.Command{}
|
||||||
|
cmd.Flags().String("file", "", "")
|
||||||
|
if err := cmd.Flags().Set("file", tempFile.Name()); err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
cmd.Flags().Bool("insecure", false, "")
|
||||||
|
cmd.SetContext(t.Context())
|
||||||
|
|
||||||
|
// Redirect stderr to capture progress output
|
||||||
|
oldStderr := os.Stderr
|
||||||
|
r, w, _ := os.Pipe()
|
||||||
|
os.Stderr = w
|
||||||
|
|
||||||
|
// Capture stdout for the "Model pushed" message
|
||||||
|
oldStdout := os.Stdout
|
||||||
|
outR, outW, _ := os.Pipe()
|
||||||
|
os.Stdout = outW
|
||||||
|
|
||||||
|
err = CreateHandler(cmd, []string{tt.modelName})
|
||||||
|
|
||||||
|
// Restore stderr
|
||||||
|
w.Close()
|
||||||
|
os.Stderr = oldStderr
|
||||||
|
// drain the pipe
|
||||||
|
if _, err := io.ReadAll(r); err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
// Restore stdout and get output
|
||||||
|
outW.Close()
|
||||||
|
os.Stdout = oldStdout
|
||||||
|
stdout, _ := io.ReadAll(outR)
|
||||||
|
|
||||||
|
if tt.expectedError == "" {
|
||||||
|
if err != nil {
|
||||||
|
t.Errorf("expected no error, got %v", err)
|
||||||
|
}
|
||||||
|
|
||||||
|
if tt.expectedOutput != "" {
|
||||||
|
if got := string(stdout); got != tt.expectedOutput {
|
||||||
|
t.Errorf("expected output %q, got %q", tt.expectedOutput, got)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func TestNewCreateRequest(t *testing.T) {
|
||||||
|
tests := []struct {
|
||||||
|
name string
|
||||||
|
from string
|
||||||
|
opts runOptions
|
||||||
|
expected *api.CreateRequest
|
||||||
|
}{
|
||||||
|
{
|
||||||
|
"basic test",
|
||||||
|
"newmodel",
|
||||||
|
runOptions{
|
||||||
|
Model: "mymodel",
|
||||||
|
ParentModel: "",
|
||||||
|
Prompt: "You are a fun AI agent",
|
||||||
|
Messages: []api.Message{},
|
||||||
|
WordWrap: true,
|
||||||
|
},
|
||||||
|
&api.CreateRequest{
|
||||||
|
From: "mymodel",
|
||||||
|
Model: "newmodel",
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"parent model test",
|
||||||
|
"newmodel",
|
||||||
|
runOptions{
|
||||||
|
Model: "mymodel",
|
||||||
|
ParentModel: "parentmodel",
|
||||||
|
Messages: []api.Message{},
|
||||||
|
WordWrap: true,
|
||||||
|
},
|
||||||
|
&api.CreateRequest{
|
||||||
|
From: "parentmodel",
|
||||||
|
Model: "newmodel",
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"parent model as filepath test",
|
||||||
|
"newmodel",
|
||||||
|
runOptions{
|
||||||
|
Model: "mymodel",
|
||||||
|
ParentModel: "/some/file/like/etc/passwd",
|
||||||
|
Messages: []api.Message{},
|
||||||
|
WordWrap: true,
|
||||||
|
},
|
||||||
|
&api.CreateRequest{
|
||||||
|
From: "mymodel",
|
||||||
|
Model: "newmodel",
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"parent model as windows filepath test",
|
||||||
|
"newmodel",
|
||||||
|
runOptions{
|
||||||
|
Model: "mymodel",
|
||||||
|
ParentModel: "D:\\some\\file\\like\\etc\\passwd",
|
||||||
|
Messages: []api.Message{},
|
||||||
|
WordWrap: true,
|
||||||
|
},
|
||||||
|
&api.CreateRequest{
|
||||||
|
From: "mymodel",
|
||||||
|
Model: "newmodel",
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"options test",
|
||||||
|
"newmodel",
|
||||||
|
runOptions{
|
||||||
|
Model: "mymodel",
|
||||||
|
ParentModel: "parentmodel",
|
||||||
|
Options: map[string]any{
|
||||||
|
"temperature": 1.0,
|
||||||
|
},
|
||||||
|
},
|
||||||
|
&api.CreateRequest{
|
||||||
|
From: "parentmodel",
|
||||||
|
Model: "newmodel",
|
||||||
|
Parameters: map[string]any{
|
||||||
|
"temperature": 1.0,
|
||||||
|
},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"messages test",
|
||||||
|
"newmodel",
|
||||||
|
runOptions{
|
||||||
|
Model: "mymodel",
|
||||||
|
ParentModel: "parentmodel",
|
||||||
|
System: "You are a fun AI agent",
|
||||||
|
Messages: []api.Message{
|
||||||
|
{
|
||||||
|
Role: "user",
|
||||||
|
Content: "hello there!",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
Role: "assistant",
|
||||||
|
Content: "hello to you!",
|
||||||
|
},
|
||||||
|
},
|
||||||
|
WordWrap: true,
|
||||||
|
},
|
||||||
|
&api.CreateRequest{
|
||||||
|
From: "parentmodel",
|
||||||
|
Model: "newmodel",
|
||||||
|
System: "You are a fun AI agent",
|
||||||
|
Messages: []api.Message{
|
||||||
|
{
|
||||||
|
Role: "user",
|
||||||
|
Content: "hello there!",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
Role: "assistant",
|
||||||
|
Content: "hello to you!",
|
||||||
|
},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, tt := range tests {
|
||||||
|
t.Run(tt.name, func(t *testing.T) {
|
||||||
|
actual := NewCreateRequest(tt.from, tt.opts)
|
||||||
|
if !cmp.Equal(actual, tt.expected) {
|
||||||
|
t.Errorf("expected output %#v, got %#v", tt.expected, actual)
|
||||||
|
}
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
@@ -1,6 +1,7 @@
|
|||||||
package cmd
|
package cmd
|
||||||
|
|
||||||
import (
|
import (
|
||||||
|
"cmp"
|
||||||
"errors"
|
"errors"
|
||||||
"fmt"
|
"fmt"
|
||||||
"io"
|
"io"
|
||||||
@@ -8,15 +9,16 @@ import (
|
|||||||
"os"
|
"os"
|
||||||
"path/filepath"
|
"path/filepath"
|
||||||
"regexp"
|
"regexp"
|
||||||
"sort"
|
"slices"
|
||||||
"strings"
|
"strings"
|
||||||
|
|
||||||
"github.com/spf13/cobra"
|
"github.com/spf13/cobra"
|
||||||
"golang.org/x/exp/slices"
|
|
||||||
|
|
||||||
"github.com/jmorganca/ollama/api"
|
"github.com/ollama/ollama/api"
|
||||||
"github.com/jmorganca/ollama/progress"
|
"github.com/ollama/ollama/envconfig"
|
||||||
"github.com/jmorganca/ollama/readline"
|
"github.com/ollama/ollama/readline"
|
||||||
|
"github.com/ollama/ollama/types/errtypes"
|
||||||
|
"github.com/ollama/ollama/types/model"
|
||||||
)
|
)
|
||||||
|
|
||||||
type MultilineState int
|
type MultilineState int
|
||||||
@@ -25,75 +27,16 @@ const (
|
|||||||
MultilineNone MultilineState = iota
|
MultilineNone MultilineState = iota
|
||||||
MultilinePrompt
|
MultilinePrompt
|
||||||
MultilineSystem
|
MultilineSystem
|
||||||
MultilineTemplate
|
|
||||||
)
|
)
|
||||||
|
|
||||||
func loadModel(cmd *cobra.Command, opts *runOptions) error {
|
|
||||||
client, err := api.ClientFromEnvironment()
|
|
||||||
if err != nil {
|
|
||||||
return err
|
|
||||||
}
|
|
||||||
|
|
||||||
p := progress.NewProgress(os.Stderr)
|
|
||||||
defer p.StopAndClear()
|
|
||||||
|
|
||||||
spinner := progress.NewSpinner("")
|
|
||||||
p.Add("", spinner)
|
|
||||||
|
|
||||||
showReq := api.ShowRequest{Name: opts.Model}
|
|
||||||
showResp, err := client.Show(cmd.Context(), &showReq)
|
|
||||||
if err != nil {
|
|
||||||
return err
|
|
||||||
}
|
|
||||||
opts.MultiModal = slices.Contains(showResp.Details.Families, "clip")
|
|
||||||
opts.ParentModel = showResp.Details.ParentModel
|
|
||||||
|
|
||||||
if len(showResp.Messages) > 0 {
|
|
||||||
opts.Messages = append(opts.Messages, showResp.Messages...)
|
|
||||||
}
|
|
||||||
|
|
||||||
chatReq := &api.ChatRequest{
|
|
||||||
Model: opts.Model,
|
|
||||||
Messages: []api.Message{},
|
|
||||||
}
|
|
||||||
err = client.Chat(cmd.Context(), chatReq, func(resp api.ChatResponse) error {
|
|
||||||
p.StopAndClear()
|
|
||||||
if len(opts.Messages) > 0 {
|
|
||||||
for _, msg := range opts.Messages {
|
|
||||||
switch msg.Role {
|
|
||||||
case "user":
|
|
||||||
fmt.Printf(">>> %s\n", msg.Content)
|
|
||||||
case "assistant":
|
|
||||||
state := &displayResponseState{}
|
|
||||||
displayResponse(msg.Content, opts.WordWrap, state)
|
|
||||||
fmt.Println()
|
|
||||||
fmt.Println()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return nil
|
|
||||||
})
|
|
||||||
if err != nil {
|
|
||||||
return err
|
|
||||||
}
|
|
||||||
|
|
||||||
return nil
|
|
||||||
}
|
|
||||||
|
|
||||||
func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||||
opts.Messages = make([]api.Message, 0)
|
|
||||||
|
|
||||||
err := loadModel(cmd, &opts)
|
|
||||||
if err != nil {
|
|
||||||
return err
|
|
||||||
}
|
|
||||||
|
|
||||||
usage := func() {
|
usage := func() {
|
||||||
fmt.Fprintln(os.Stderr, "Available Commands:")
|
fmt.Fprintln(os.Stderr, "Available Commands:")
|
||||||
fmt.Fprintln(os.Stderr, " /set Set session variables")
|
fmt.Fprintln(os.Stderr, " /set Set session variables")
|
||||||
fmt.Fprintln(os.Stderr, " /show Show model information")
|
fmt.Fprintln(os.Stderr, " /show Show model information")
|
||||||
fmt.Fprintln(os.Stderr, " /load <model> Load a session or model")
|
fmt.Fprintln(os.Stderr, " /load <model> Load a session or model")
|
||||||
fmt.Fprintln(os.Stderr, " /save <model> Save your current session")
|
fmt.Fprintln(os.Stderr, " /save <model> Save your current session")
|
||||||
|
fmt.Fprintln(os.Stderr, " /clear Clear session context")
|
||||||
fmt.Fprintln(os.Stderr, " /bye Exit")
|
fmt.Fprintln(os.Stderr, " /bye Exit")
|
||||||
fmt.Fprintln(os.Stderr, " /?, /help Help for a command")
|
fmt.Fprintln(os.Stderr, " /?, /help Help for a command")
|
||||||
fmt.Fprintln(os.Stderr, " /? shortcuts Help for keyboard shortcuts")
|
fmt.Fprintln(os.Stderr, " /? shortcuts Help for keyboard shortcuts")
|
||||||
@@ -111,7 +54,6 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
|||||||
fmt.Fprintln(os.Stderr, "Available Commands:")
|
fmt.Fprintln(os.Stderr, "Available Commands:")
|
||||||
fmt.Fprintln(os.Stderr, " /set parameter ... Set a parameter")
|
fmt.Fprintln(os.Stderr, " /set parameter ... Set a parameter")
|
||||||
fmt.Fprintln(os.Stderr, " /set system <string> Set system message")
|
fmt.Fprintln(os.Stderr, " /set system <string> Set system message")
|
||||||
fmt.Fprintln(os.Stderr, " /set template <string> Set prompt template")
|
|
||||||
fmt.Fprintln(os.Stderr, " /set history Enable history")
|
fmt.Fprintln(os.Stderr, " /set history Enable history")
|
||||||
fmt.Fprintln(os.Stderr, " /set nohistory Disable history")
|
fmt.Fprintln(os.Stderr, " /set nohistory Disable history")
|
||||||
fmt.Fprintln(os.Stderr, " /set wordwrap Enable wordwrap")
|
fmt.Fprintln(os.Stderr, " /set wordwrap Enable wordwrap")
|
||||||
@@ -131,6 +73,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
|||||||
fmt.Fprintln(os.Stderr, " Alt + f Move forward (right) one word")
|
fmt.Fprintln(os.Stderr, " Alt + f Move forward (right) one word")
|
||||||
fmt.Fprintln(os.Stderr, " Ctrl + k Delete the sentence after the cursor")
|
fmt.Fprintln(os.Stderr, " Ctrl + k Delete the sentence after the cursor")
|
||||||
fmt.Fprintln(os.Stderr, " Ctrl + u Delete the sentence before the cursor")
|
fmt.Fprintln(os.Stderr, " Ctrl + u Delete the sentence before the cursor")
|
||||||
|
fmt.Fprintln(os.Stderr, " Ctrl + w Delete the word before the cursor")
|
||||||
fmt.Fprintln(os.Stderr, "")
|
fmt.Fprintln(os.Stderr, "")
|
||||||
fmt.Fprintln(os.Stderr, " Ctrl + l Clear the screen")
|
fmt.Fprintln(os.Stderr, " Ctrl + l Clear the screen")
|
||||||
fmt.Fprintln(os.Stderr, " Ctrl + c Stop the model from responding")
|
fmt.Fprintln(os.Stderr, " Ctrl + c Stop the model from responding")
|
||||||
@@ -156,12 +99,13 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
|||||||
fmt.Fprintln(os.Stderr, " /set parameter num_predict <int> Max number of tokens to predict")
|
fmt.Fprintln(os.Stderr, " /set parameter num_predict <int> Max number of tokens to predict")
|
||||||
fmt.Fprintln(os.Stderr, " /set parameter top_k <int> Pick from top k num of tokens")
|
fmt.Fprintln(os.Stderr, " /set parameter top_k <int> Pick from top k num of tokens")
|
||||||
fmt.Fprintln(os.Stderr, " /set parameter top_p <float> Pick token based on sum of probabilities")
|
fmt.Fprintln(os.Stderr, " /set parameter top_p <float> Pick token based on sum of probabilities")
|
||||||
|
fmt.Fprintln(os.Stderr, " /set parameter min_p <float> Pick token based on top token probability * min_p")
|
||||||
fmt.Fprintln(os.Stderr, " /set parameter num_ctx <int> Set the context size")
|
fmt.Fprintln(os.Stderr, " /set parameter num_ctx <int> Set the context size")
|
||||||
fmt.Fprintln(os.Stderr, " /set parameter temperature <float> Set creativity level")
|
fmt.Fprintln(os.Stderr, " /set parameter temperature <float> Set creativity level")
|
||||||
fmt.Fprintln(os.Stderr, " /set parameter repeat_penalty <float> How strongly to penalize repetitions")
|
fmt.Fprintln(os.Stderr, " /set parameter repeat_penalty <float> How strongly to penalize repetitions")
|
||||||
fmt.Fprintln(os.Stderr, " /set parameter repeat_last_n <int> Set how far back to look for repetitions")
|
fmt.Fprintln(os.Stderr, " /set parameter repeat_last_n <int> Set how far back to look for repetitions")
|
||||||
fmt.Fprintln(os.Stderr, " /set parameter num_gpu <int> The number of layers to send to the GPU")
|
fmt.Fprintln(os.Stderr, " /set parameter num_gpu <int> The number of layers to send to the GPU")
|
||||||
fmt.Fprintln(os.Stderr, " /set parameter stop \"<string>\", ... Set the stop parameters")
|
fmt.Fprintln(os.Stderr, " /set parameter stop <string> <string> ... Set the stop parameters")
|
||||||
fmt.Fprintln(os.Stderr, "")
|
fmt.Fprintln(os.Stderr, "")
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -175,6 +119,10 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
|||||||
return err
|
return err
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if envconfig.NoHistory() {
|
||||||
|
scanner.HistoryDisable()
|
||||||
|
}
|
||||||
|
|
||||||
fmt.Print(readline.StartBracketedPaste)
|
fmt.Print(readline.StartBracketedPaste)
|
||||||
defer fmt.Printf(readline.EndBracketedPaste)
|
defer fmt.Printf(readline.EndBracketedPaste)
|
||||||
|
|
||||||
@@ -216,10 +164,6 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
|||||||
opts.Messages = append(opts.Messages, api.Message{Role: "system", Content: opts.System})
|
opts.Messages = append(opts.Messages, api.Message{Role: "system", Content: opts.System})
|
||||||
fmt.Println("Set system message.")
|
fmt.Println("Set system message.")
|
||||||
sb.Reset()
|
sb.Reset()
|
||||||
case MultilineTemplate:
|
|
||||||
opts.Template = sb.String()
|
|
||||||
fmt.Println("Set prompt template.")
|
|
||||||
sb.Reset()
|
|
||||||
}
|
}
|
||||||
|
|
||||||
multiline = MultilineNone
|
multiline = MultilineNone
|
||||||
@@ -251,7 +195,11 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
|||||||
opts.Model = args[1]
|
opts.Model = args[1]
|
||||||
opts.Messages = []api.Message{}
|
opts.Messages = []api.Message{}
|
||||||
fmt.Printf("Loading model '%s'\n", opts.Model)
|
fmt.Printf("Loading model '%s'\n", opts.Model)
|
||||||
if err := loadModel(cmd, &opts); err != nil {
|
if err := loadOrUnloadModel(cmd, &opts); err != nil {
|
||||||
|
if strings.Contains(err.Error(), "not found") {
|
||||||
|
fmt.Printf("error: %v\n", err)
|
||||||
|
continue
|
||||||
|
}
|
||||||
return err
|
return err
|
||||||
}
|
}
|
||||||
continue
|
continue
|
||||||
@@ -268,18 +216,26 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
|||||||
return err
|
return err
|
||||||
}
|
}
|
||||||
|
|
||||||
req := &api.CreateRequest{
|
req := NewCreateRequest(args[1], opts)
|
||||||
Name: args[1],
|
|
||||||
Modelfile: buildModelfile(opts),
|
|
||||||
}
|
|
||||||
fn := func(resp api.ProgressResponse) error { return nil }
|
fn := func(resp api.ProgressResponse) error { return nil }
|
||||||
err = client.Create(cmd.Context(), req, fn)
|
err = client.Create(cmd.Context(), req, fn)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
fmt.Println("error: couldn't save model")
|
if strings.Contains(err.Error(), errtypes.InvalidModelNameErrMsg) {
|
||||||
|
fmt.Printf("error: The model name '%s' is invalid\n", args[1])
|
||||||
|
continue
|
||||||
|
}
|
||||||
return err
|
return err
|
||||||
}
|
}
|
||||||
fmt.Printf("Created new model '%s'\n", args[1])
|
fmt.Printf("Created new model '%s'\n", args[1])
|
||||||
continue
|
continue
|
||||||
|
case strings.HasPrefix(line, "/clear"):
|
||||||
|
opts.Messages = []api.Message{}
|
||||||
|
if opts.System != "" {
|
||||||
|
newMessage := api.Message{Role: "system", Content: opts.System}
|
||||||
|
opts.Messages = append(opts.Messages, newMessage)
|
||||||
|
}
|
||||||
|
fmt.Println("Cleared session context")
|
||||||
|
continue
|
||||||
case strings.HasPrefix(line, "/set"):
|
case strings.HasPrefix(line, "/set"):
|
||||||
args := strings.Fields(line)
|
args := strings.Fields(line)
|
||||||
if len(args) > 1 {
|
if len(args) > 1 {
|
||||||
@@ -295,10 +251,14 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
|||||||
opts.WordWrap = false
|
opts.WordWrap = false
|
||||||
fmt.Println("Set 'nowordwrap' mode.")
|
fmt.Println("Set 'nowordwrap' mode.")
|
||||||
case "verbose":
|
case "verbose":
|
||||||
cmd.Flags().Set("verbose", "true")
|
if err := cmd.Flags().Set("verbose", "true"); err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
fmt.Println("Set 'verbose' mode.")
|
fmt.Println("Set 'verbose' mode.")
|
||||||
case "quiet":
|
case "quiet":
|
||||||
cmd.Flags().Set("verbose", "false")
|
if err := cmd.Flags().Set("verbose", "false"); err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
fmt.Println("Set 'quiet' mode.")
|
fmt.Println("Set 'quiet' mode.")
|
||||||
case "format":
|
case "format":
|
||||||
if len(args) < 3 || args[2] != "json" {
|
if len(args) < 3 || args[2] != "json" {
|
||||||
@@ -323,17 +283,13 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
|||||||
}
|
}
|
||||||
fmt.Printf("Set parameter '%s' to '%s'\n", args[2], strings.Join(params, ", "))
|
fmt.Printf("Set parameter '%s' to '%s'\n", args[2], strings.Join(params, ", "))
|
||||||
opts.Options[args[2]] = fp[args[2]]
|
opts.Options[args[2]] = fp[args[2]]
|
||||||
case "system", "template":
|
case "system":
|
||||||
if len(args) < 3 {
|
if len(args) < 3 {
|
||||||
usageSet()
|
usageSet()
|
||||||
continue
|
continue
|
||||||
}
|
}
|
||||||
|
|
||||||
if args[1] == "system" {
|
multiline = MultilineSystem
|
||||||
multiline = MultilineSystem
|
|
||||||
} else if args[1] == "template" {
|
|
||||||
multiline = MultilineTemplate
|
|
||||||
}
|
|
||||||
|
|
||||||
line := strings.Join(args[2:], " ")
|
line := strings.Join(args[2:], " ")
|
||||||
line, ok := strings.CutPrefix(line, `"""`)
|
line, ok := strings.CutPrefix(line, `"""`)
|
||||||
@@ -353,24 +309,16 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
|||||||
continue
|
continue
|
||||||
}
|
}
|
||||||
|
|
||||||
if args[1] == "system" {
|
opts.System = sb.String() // for display in modelfile
|
||||||
opts.System = sb.String() // for display in modelfile
|
newMessage := api.Message{Role: "system", Content: sb.String()}
|
||||||
newMessage := api.Message{Role: "system", Content: sb.String()}
|
// Check if the slice is not empty and the last message is from 'system'
|
||||||
// Check if the slice is not empty and the last message is from 'system'
|
if len(opts.Messages) > 0 && opts.Messages[len(opts.Messages)-1].Role == "system" {
|
||||||
if len(opts.Messages) > 0 && opts.Messages[len(opts.Messages)-1].Role == "system" {
|
// Replace the last message
|
||||||
// Replace the last message
|
opts.Messages[len(opts.Messages)-1] = newMessage
|
||||||
opts.Messages[len(opts.Messages)-1] = newMessage
|
} else {
|
||||||
} else {
|
opts.Messages = append(opts.Messages, newMessage)
|
||||||
opts.Messages = append(opts.Messages, newMessage)
|
|
||||||
}
|
|
||||||
fmt.Println("Set system message.")
|
|
||||||
sb.Reset()
|
|
||||||
} else if args[1] == "template" {
|
|
||||||
opts.Template = sb.String()
|
|
||||||
fmt.Println("Set prompt template.")
|
|
||||||
sb.Reset()
|
|
||||||
}
|
}
|
||||||
|
fmt.Println("Set system message.")
|
||||||
sb.Reset()
|
sb.Reset()
|
||||||
continue
|
continue
|
||||||
default:
|
default:
|
||||||
@@ -388,10 +336,9 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
|||||||
return err
|
return err
|
||||||
}
|
}
|
||||||
req := &api.ShowRequest{
|
req := &api.ShowRequest{
|
||||||
Name: opts.Model,
|
Name: opts.Model,
|
||||||
System: opts.System,
|
System: opts.System,
|
||||||
Template: opts.Template,
|
Options: opts.Options,
|
||||||
Options: opts.Options,
|
|
||||||
}
|
}
|
||||||
resp, err := client.Show(cmd.Context(), req)
|
resp, err := client.Show(cmd.Context(), req)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
@@ -401,15 +348,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
|||||||
|
|
||||||
switch args[1] {
|
switch args[1] {
|
||||||
case "info":
|
case "info":
|
||||||
fmt.Println("Model details:")
|
_ = showInfo(resp, false, os.Stderr)
|
||||||
if len(resp.Details.Families) > 0 {
|
|
||||||
fmt.Printf("Family %s\n", strings.Join(resp.Details.Families, ", "))
|
|
||||||
} else if resp.Details.Family != "" {
|
|
||||||
fmt.Printf("Family %s\n", resp.Details.Family)
|
|
||||||
}
|
|
||||||
fmt.Printf("Parameter Size %s\n", resp.Details.ParameterSize)
|
|
||||||
fmt.Printf("Quantization Level %s\n", resp.Details.QuantizationLevel)
|
|
||||||
fmt.Println("")
|
|
||||||
case "license":
|
case "license":
|
||||||
if resp.License == "" {
|
if resp.License == "" {
|
||||||
fmt.Println("No license was specified for this model.")
|
fmt.Println("No license was specified for this model.")
|
||||||
@@ -442,12 +381,9 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
|||||||
fmt.Println("No system message was specified for this model.")
|
fmt.Println("No system message was specified for this model.")
|
||||||
}
|
}
|
||||||
case "template":
|
case "template":
|
||||||
switch {
|
if resp.Template != "" {
|
||||||
case opts.Template != "":
|
|
||||||
fmt.Println(opts.Template + "\n")
|
|
||||||
case resp.Template != "":
|
|
||||||
fmt.Println(resp.Template)
|
fmt.Println(resp.Template)
|
||||||
default:
|
} else {
|
||||||
fmt.Println("No prompt template was specified for this model.")
|
fmt.Println("No prompt template was specified for this model.")
|
||||||
}
|
}
|
||||||
default:
|
default:
|
||||||
@@ -504,13 +440,6 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
|||||||
return err
|
return err
|
||||||
}
|
}
|
||||||
|
|
||||||
// clear all previous images for better responses
|
|
||||||
if len(images) > 0 {
|
|
||||||
for i := range opts.Messages {
|
|
||||||
opts.Messages[i].Images = nil
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
newMessage.Content = msg
|
newMessage.Content = msg
|
||||||
newMessage.Images = images
|
newMessage.Images = images
|
||||||
}
|
}
|
||||||
@@ -530,68 +459,59 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
func buildModelfile(opts runOptions) string {
|
func NewCreateRequest(name string, opts runOptions) *api.CreateRequest {
|
||||||
var mf strings.Builder
|
parentModel := opts.ParentModel
|
||||||
model := opts.ParentModel
|
|
||||||
if model == "" {
|
modelName := model.ParseName(parentModel)
|
||||||
model = opts.Model
|
if !modelName.IsValid() {
|
||||||
|
parentModel = ""
|
||||||
}
|
}
|
||||||
fmt.Fprintf(&mf, "FROM %s\n", model)
|
|
||||||
|
req := &api.CreateRequest{
|
||||||
|
Model: name,
|
||||||
|
From: cmp.Or(parentModel, opts.Model),
|
||||||
|
}
|
||||||
|
|
||||||
if opts.System != "" {
|
if opts.System != "" {
|
||||||
fmt.Fprintf(&mf, "SYSTEM \"\"\"%s\"\"\"\n", opts.System)
|
req.System = opts.System
|
||||||
}
|
}
|
||||||
|
|
||||||
if opts.Template != "" {
|
if len(opts.Options) > 0 {
|
||||||
fmt.Fprintf(&mf, "TEMPLATE \"\"\"%s\"\"\"\n", opts.Template)
|
req.Parameters = opts.Options
|
||||||
}
|
}
|
||||||
|
|
||||||
keys := make([]string, 0)
|
if len(opts.Messages) > 0 {
|
||||||
for k := range opts.Options {
|
req.Messages = opts.Messages
|
||||||
keys = append(keys, k)
|
|
||||||
}
|
|
||||||
sort.Strings(keys)
|
|
||||||
for _, k := range keys {
|
|
||||||
fmt.Fprintf(&mf, "PARAMETER %s %v\n", k, opts.Options[k])
|
|
||||||
}
|
|
||||||
fmt.Fprintln(&mf)
|
|
||||||
|
|
||||||
for _, msg := range opts.Messages {
|
|
||||||
fmt.Fprintf(&mf, "MESSAGE %s \"\"\"%s\"\"\"\n", msg.Role, msg.Content)
|
|
||||||
}
|
}
|
||||||
|
|
||||||
return mf.String()
|
return req
|
||||||
}
|
}
|
||||||
|
|
||||||
func normalizeFilePath(fp string) string {
|
func normalizeFilePath(fp string) string {
|
||||||
// Define a map of escaped characters and their replacements
|
return strings.NewReplacer(
|
||||||
replacements := map[string]string{
|
"\\ ", " ", // Escaped space
|
||||||
"\\ ": " ", // Escaped space
|
"\\(", "(", // Escaped left parenthesis
|
||||||
"\\(": "(", // Escaped left parenthesis
|
"\\)", ")", // Escaped right parenthesis
|
||||||
"\\)": ")", // Escaped right parenthesis
|
"\\[", "[", // Escaped left square bracket
|
||||||
"\\[": "[", // Escaped left square bracket
|
"\\]", "]", // Escaped right square bracket
|
||||||
"\\]": "]", // Escaped right square bracket
|
"\\{", "{", // Escaped left curly brace
|
||||||
"\\{": "{", // Escaped left curly brace
|
"\\}", "}", // Escaped right curly brace
|
||||||
"\\}": "}", // Escaped right curly brace
|
"\\$", "$", // Escaped dollar sign
|
||||||
"\\$": "$", // Escaped dollar sign
|
"\\&", "&", // Escaped ampersand
|
||||||
"\\&": "&", // Escaped ampersand
|
"\\;", ";", // Escaped semicolon
|
||||||
"\\;": ";", // Escaped semicolon
|
"\\'", "'", // Escaped single quote
|
||||||
"\\'": "'", // Escaped single quote
|
"\\\\", "\\", // Escaped backslash
|
||||||
"\\\\": "\\", // Escaped backslash
|
"\\*", "*", // Escaped asterisk
|
||||||
"\\*": "*", // Escaped asterisk
|
"\\?", "?", // Escaped question mark
|
||||||
"\\?": "?", // Escaped question mark
|
"\\~", "~", // Escaped tilde
|
||||||
}
|
).Replace(fp)
|
||||||
|
|
||||||
for escaped, actual := range replacements {
|
|
||||||
fp = strings.ReplaceAll(fp, escaped, actual)
|
|
||||||
}
|
|
||||||
return fp
|
|
||||||
}
|
}
|
||||||
|
|
||||||
func extractFileNames(input string) []string {
|
func extractFileNames(input string) []string {
|
||||||
// Regex to match file paths starting with optional drive letter, / ./ \ or .\ and include escaped or unescaped spaces (\ or %20)
|
// Regex to match file paths starting with optional drive letter, / ./ \ or .\ and include escaped or unescaped spaces (\ or %20)
|
||||||
// and followed by more characters and a file extension
|
// and followed by more characters and a file extension
|
||||||
// This will capture non filename strings, but we'll check for file existence to remove mismatches
|
// This will capture non filename strings, but we'll check for file existence to remove mismatches
|
||||||
regexPattern := `(?:[a-zA-Z]:)?(?:\./|/|\\)[\S\\ ]+?\.(?i:jpg|jpeg|png|svg)\b`
|
regexPattern := `(?:[a-zA-Z]:)?(?:\./|/|\\)[\S\\ ]+?\.(?i:jpg|jpeg|png)\b`
|
||||||
re := regexp.MustCompile(regexPattern)
|
re := regexp.MustCompile(regexPattern)
|
||||||
|
|
||||||
return re.FindAllString(input, -1)
|
return re.FindAllString(input, -1)
|
||||||
@@ -604,10 +524,9 @@ func extractFileData(input string) (string, []api.ImageData, error) {
|
|||||||
for _, fp := range filePaths {
|
for _, fp := range filePaths {
|
||||||
nfp := normalizeFilePath(fp)
|
nfp := normalizeFilePath(fp)
|
||||||
data, err := getImageData(nfp)
|
data, err := getImageData(nfp)
|
||||||
if err != nil {
|
if errors.Is(err, os.ErrNotExist) {
|
||||||
if os.IsNotExist(err) {
|
continue
|
||||||
continue
|
} else if err != nil {
|
||||||
}
|
|
||||||
fmt.Fprintf(os.Stderr, "Couldn't process image: %q\n", err)
|
fmt.Fprintf(os.Stderr, "Couldn't process image: %q\n", err)
|
||||||
return "", imgs, err
|
return "", imgs, err
|
||||||
}
|
}
|
||||||
@@ -615,7 +534,7 @@ func extractFileData(input string) (string, []api.ImageData, error) {
|
|||||||
input = strings.ReplaceAll(input, fp, "")
|
input = strings.ReplaceAll(input, fp, "")
|
||||||
imgs = append(imgs, data)
|
imgs = append(imgs, data)
|
||||||
}
|
}
|
||||||
return input, imgs, nil
|
return strings.TrimSpace(input), imgs, nil
|
||||||
}
|
}
|
||||||
|
|
||||||
func getImageData(filePath string) ([]byte, error) {
|
func getImageData(filePath string) ([]byte, error) {
|
||||||
@@ -645,7 +564,7 @@ func getImageData(filePath string) ([]byte, error) {
|
|||||||
// Check if the file size exceeds 100MB
|
// Check if the file size exceeds 100MB
|
||||||
var maxSize int64 = 100 * 1024 * 1024 // 100MB in bytes
|
var maxSize int64 = 100 * 1024 * 1024 // 100MB in bytes
|
||||||
if info.Size() > maxSize {
|
if info.Size() > maxSize {
|
||||||
return nil, fmt.Errorf("file size exceeds maximum limit (100MB)")
|
return nil, errors.New("file size exceeds maximum limit (100MB)")
|
||||||
}
|
}
|
||||||
|
|
||||||
buf = make([]byte, info.Size())
|
buf = make([]byte, info.Size())
|
||||||
|
|||||||
@@ -1,116 +1,52 @@
|
|||||||
package cmd
|
package cmd
|
||||||
|
|
||||||
import (
|
import (
|
||||||
"bytes"
|
|
||||||
"testing"
|
"testing"
|
||||||
"text/template"
|
|
||||||
|
|
||||||
"github.com/stretchr/testify/assert"
|
"github.com/stretchr/testify/assert"
|
||||||
|
|
||||||
"github.com/jmorganca/ollama/api"
|
|
||||||
)
|
)
|
||||||
|
|
||||||
func TestExtractFilenames(t *testing.T) {
|
func TestExtractFilenames(t *testing.T) {
|
||||||
// Unix style paths
|
// Unix style paths
|
||||||
input := ` some preamble
|
input := ` some preamble
|
||||||
./relative\ path/one.png inbetween1 ./not a valid two.jpg inbetween2
|
./relative\ path/one.png inbetween1 ./not a valid two.jpg inbetween2 ./1.svg
|
||||||
/unescaped space /three.jpeg inbetween3 /valid\ path/dir/four.png "./quoted with spaces/five.svg`
|
/unescaped space /three.jpeg inbetween3 /valid\ path/dir/four.png "./quoted with spaces/five.JPG`
|
||||||
res := extractFileNames(input)
|
res := extractFileNames(input)
|
||||||
assert.Len(t, res, 5)
|
assert.Len(t, res, 5)
|
||||||
assert.Contains(t, res[0], "one.png")
|
assert.Contains(t, res[0], "one.png")
|
||||||
assert.Contains(t, res[1], "two.jpg")
|
assert.Contains(t, res[1], "two.jpg")
|
||||||
assert.Contains(t, res[2], "three.jpeg")
|
assert.Contains(t, res[2], "three.jpeg")
|
||||||
assert.Contains(t, res[3], "four.png")
|
assert.Contains(t, res[3], "four.png")
|
||||||
assert.Contains(t, res[4], "five.svg")
|
assert.Contains(t, res[4], "five.JPG")
|
||||||
assert.NotContains(t, res[4], '"')
|
assert.NotContains(t, res[4], '"')
|
||||||
assert.NotContains(t, res, "inbtween")
|
assert.NotContains(t, res, "inbetween1")
|
||||||
|
assert.NotContains(t, res, "./1.svg")
|
||||||
|
|
||||||
// Windows style paths
|
// Windows style paths
|
||||||
input = ` some preamble
|
input = ` some preamble
|
||||||
c:/users/jdoe/one.png inbetween1 c:/program files/someplace/two.jpg inbetween2
|
c:/users/jdoe/one.png inbetween1 c:/program files/someplace/two.jpg inbetween2
|
||||||
/absolute/nospace/three.jpeg inbetween3 /absolute/with space/four.png inbetween4
|
/absolute/nospace/three.jpeg inbetween3 /absolute/with space/four.png inbetween4
|
||||||
./relative\ path/five.svg inbetween5 "./relative with/spaces/six.png inbetween6
|
./relative\ path/five.JPG inbetween5 "./relative with/spaces/six.png inbetween6
|
||||||
d:\path with\spaces\seven.svg inbetween7 c:\users\jdoe\eight.png inbetween8
|
d:\path with\spaces\seven.JPEG inbetween7 c:\users\jdoe\eight.png inbetween8
|
||||||
d:\program files\someplace\nine.png inbetween9 "E:\program files\someplace\ten.svg some ending
|
d:\program files\someplace\nine.png inbetween9 "E:\program files\someplace\ten.PNG some ending
|
||||||
`
|
`
|
||||||
res = extractFileNames(input)
|
res = extractFileNames(input)
|
||||||
assert.Len(t, res, 10)
|
assert.Len(t, res, 10)
|
||||||
assert.NotContains(t, res, "inbtween")
|
assert.NotContains(t, res, "inbetween2")
|
||||||
assert.Contains(t, res[0], "one.png")
|
assert.Contains(t, res[0], "one.png")
|
||||||
assert.Contains(t, res[0], "c:")
|
assert.Contains(t, res[0], "c:")
|
||||||
assert.Contains(t, res[1], "two.jpg")
|
assert.Contains(t, res[1], "two.jpg")
|
||||||
assert.Contains(t, res[1], "c:")
|
assert.Contains(t, res[1], "c:")
|
||||||
assert.Contains(t, res[2], "three.jpeg")
|
assert.Contains(t, res[2], "three.jpeg")
|
||||||
assert.Contains(t, res[3], "four.png")
|
assert.Contains(t, res[3], "four.png")
|
||||||
assert.Contains(t, res[4], "five.svg")
|
assert.Contains(t, res[4], "five.JPG")
|
||||||
assert.Contains(t, res[5], "six.png")
|
assert.Contains(t, res[5], "six.png")
|
||||||
assert.Contains(t, res[6], "seven.svg")
|
assert.Contains(t, res[6], "seven.JPEG")
|
||||||
assert.Contains(t, res[6], "d:")
|
assert.Contains(t, res[6], "d:")
|
||||||
assert.Contains(t, res[7], "eight.png")
|
assert.Contains(t, res[7], "eight.png")
|
||||||
assert.Contains(t, res[7], "c:")
|
assert.Contains(t, res[7], "c:")
|
||||||
assert.Contains(t, res[8], "nine.png")
|
assert.Contains(t, res[8], "nine.png")
|
||||||
assert.Contains(t, res[8], "d:")
|
assert.Contains(t, res[8], "d:")
|
||||||
assert.Contains(t, res[9], "ten.svg")
|
assert.Contains(t, res[9], "ten.PNG")
|
||||||
assert.Contains(t, res[9], "E:")
|
assert.Contains(t, res[9], "E:")
|
||||||
}
|
}
|
||||||
|
|
||||||
func TestModelfileBuilder(t *testing.T) {
|
|
||||||
opts := runOptions{
|
|
||||||
Model: "hork",
|
|
||||||
System: "You are part horse and part shark, but all hork. Do horklike things",
|
|
||||||
Template: "This is a template.",
|
|
||||||
Messages: []api.Message{
|
|
||||||
{Role: "user", Content: "Hey there hork!"},
|
|
||||||
{Role: "assistant", Content: "Yes it is true, I am half horse, half shark."},
|
|
||||||
},
|
|
||||||
Options: map[string]interface{}{},
|
|
||||||
}
|
|
||||||
|
|
||||||
opts.Options["temperature"] = 0.9
|
|
||||||
opts.Options["seed"] = 42
|
|
||||||
opts.Options["penalize_newline"] = false
|
|
||||||
opts.Options["stop"] = []string{"hi", "there"}
|
|
||||||
|
|
||||||
mf := buildModelfile(opts)
|
|
||||||
expectedModelfile := `FROM {{.Model}}
|
|
||||||
SYSTEM """{{.System}}"""
|
|
||||||
TEMPLATE """{{.Template}}"""
|
|
||||||
PARAMETER penalize_newline false
|
|
||||||
PARAMETER seed 42
|
|
||||||
PARAMETER stop [hi there]
|
|
||||||
PARAMETER temperature 0.9
|
|
||||||
|
|
||||||
MESSAGE user """Hey there hork!"""
|
|
||||||
MESSAGE assistant """Yes it is true, I am half horse, half shark."""
|
|
||||||
`
|
|
||||||
|
|
||||||
tmpl, err := template.New("").Parse(expectedModelfile)
|
|
||||||
assert.Nil(t, err)
|
|
||||||
|
|
||||||
var buf bytes.Buffer
|
|
||||||
err = tmpl.Execute(&buf, opts)
|
|
||||||
assert.Nil(t, err)
|
|
||||||
assert.Equal(t, buf.String(), mf)
|
|
||||||
|
|
||||||
opts.ParentModel = "horseshark"
|
|
||||||
mf = buildModelfile(opts)
|
|
||||||
expectedModelfile = `FROM {{.ParentModel}}
|
|
||||||
SYSTEM """{{.System}}"""
|
|
||||||
TEMPLATE """{{.Template}}"""
|
|
||||||
PARAMETER penalize_newline false
|
|
||||||
PARAMETER seed 42
|
|
||||||
PARAMETER stop [hi there]
|
|
||||||
PARAMETER temperature 0.9
|
|
||||||
|
|
||||||
MESSAGE user """Hey there hork!"""
|
|
||||||
MESSAGE assistant """Yes it is true, I am half horse, half shark."""
|
|
||||||
`
|
|
||||||
|
|
||||||
tmpl, err = template.New("").Parse(expectedModelfile)
|
|
||||||
assert.Nil(t, err)
|
|
||||||
|
|
||||||
var parentBuf bytes.Buffer
|
|
||||||
err = tmpl.Execute(&parentBuf, opts)
|
|
||||||
assert.Nil(t, err)
|
|
||||||
assert.Equal(t, parentBuf.String(), mf)
|
|
||||||
}
|
|
||||||
|
|||||||
15
cmd/runner/main.go
Normal file
15
cmd/runner/main.go
Normal file
@@ -0,0 +1,15 @@
|
|||||||
|
package main
|
||||||
|
|
||||||
|
import (
|
||||||
|
"fmt"
|
||||||
|
"os"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/runner"
|
||||||
|
)
|
||||||
|
|
||||||
|
func main() {
|
||||||
|
if err := runner.Execute(os.Args[1:]); err != nil {
|
||||||
|
fmt.Fprintf(os.Stderr, "error: %s\n", err)
|
||||||
|
os.Exit(1)
|
||||||
|
}
|
||||||
|
}
|
||||||
27
cmd/start.go
Normal file
27
cmd/start.go
Normal file
@@ -0,0 +1,27 @@
|
|||||||
|
//go:build darwin || windows
|
||||||
|
|
||||||
|
package cmd
|
||||||
|
|
||||||
|
import (
|
||||||
|
"context"
|
||||||
|
"errors"
|
||||||
|
"time"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/api"
|
||||||
|
)
|
||||||
|
|
||||||
|
func waitForServer(ctx context.Context, client *api.Client) error {
|
||||||
|
// wait for the server to start
|
||||||
|
timeout := time.After(5 * time.Second)
|
||||||
|
tick := time.Tick(500 * time.Millisecond)
|
||||||
|
for {
|
||||||
|
select {
|
||||||
|
case <-timeout:
|
||||||
|
return errors.New("timed out waiting for server to start")
|
||||||
|
case <-tick:
|
||||||
|
if err := client.Heartbeat(ctx); err == nil {
|
||||||
|
return nil // server has started
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
@@ -2,12 +2,12 @@ package cmd
|
|||||||
|
|
||||||
import (
|
import (
|
||||||
"context"
|
"context"
|
||||||
"fmt"
|
"errors"
|
||||||
"os"
|
"os"
|
||||||
"os/exec"
|
"os/exec"
|
||||||
"strings"
|
"strings"
|
||||||
|
|
||||||
"github.com/jmorganca/ollama/api"
|
"github.com/ollama/ollama/api"
|
||||||
)
|
)
|
||||||
|
|
||||||
func startApp(ctx context.Context, client *api.Client) error {
|
func startApp(ctx context.Context, client *api.Client) error {
|
||||||
@@ -20,7 +20,7 @@ func startApp(ctx context.Context, client *api.Client) error {
|
|||||||
return err
|
return err
|
||||||
}
|
}
|
||||||
if !strings.Contains(link, "Ollama.app") {
|
if !strings.Contains(link, "Ollama.app") {
|
||||||
return fmt.Errorf("could not find ollama app")
|
return errors.New("could not find ollama app")
|
||||||
}
|
}
|
||||||
path := strings.Split(link, "Ollama.app")
|
path := strings.Split(link, "Ollama.app")
|
||||||
if err := exec.Command("/usr/bin/open", "-a", path[0]+"Ollama.app").Run(); err != nil {
|
if err := exec.Command("/usr/bin/open", "-a", path[0]+"Ollama.app").Run(); err != nil {
|
||||||
|
|||||||
@@ -4,11 +4,11 @@ package cmd
|
|||||||
|
|
||||||
import (
|
import (
|
||||||
"context"
|
"context"
|
||||||
"fmt"
|
"errors"
|
||||||
|
|
||||||
"github.com/jmorganca/ollama/api"
|
"github.com/ollama/ollama/api"
|
||||||
)
|
)
|
||||||
|
|
||||||
func startApp(ctx context.Context, client *api.Client) error {
|
func startApp(ctx context.Context, client *api.Client) error {
|
||||||
return fmt.Errorf("could not connect to ollama server, run 'ollama serve' to start it")
|
return errors.New("could not connect to ollama server, run 'ollama serve' to start it")
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -10,7 +10,7 @@ import (
|
|||||||
"strings"
|
"strings"
|
||||||
"syscall"
|
"syscall"
|
||||||
|
|
||||||
"github.com/jmorganca/ollama/api"
|
"github.com/ollama/ollama/api"
|
||||||
)
|
)
|
||||||
|
|
||||||
func startApp(ctx context.Context, client *api.Client) error {
|
func startApp(ctx context.Context, client *api.Client) error {
|
||||||
@@ -31,7 +31,7 @@ func startApp(ctx context.Context, client *api.Client) error {
|
|||||||
// Finally look in the path
|
// Finally look in the path
|
||||||
appExe, err = exec.LookPath(AppName)
|
appExe, err = exec.LookPath(AppName)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return fmt.Errorf("could not locate ollama app")
|
return errors.New("could not locate ollama app")
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
251
convert/convert.go
Normal file
251
convert/convert.go
Normal file
@@ -0,0 +1,251 @@
|
|||||||
|
package convert
|
||||||
|
|
||||||
|
import (
|
||||||
|
"encoding/json"
|
||||||
|
"errors"
|
||||||
|
"fmt"
|
||||||
|
"io/fs"
|
||||||
|
"log/slog"
|
||||||
|
"os"
|
||||||
|
"slices"
|
||||||
|
"strings"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/fs/ggml"
|
||||||
|
)
|
||||||
|
|
||||||
|
type ModelParameters struct {
|
||||||
|
Architectures []string `json:"architectures"`
|
||||||
|
VocabSize uint32 `json:"vocab_size"`
|
||||||
|
TextModel TextParameters `json:"text_config"`
|
||||||
|
}
|
||||||
|
|
||||||
|
type TextParameters struct {
|
||||||
|
VocabSize uint32 `json:"vocab_size"`
|
||||||
|
}
|
||||||
|
|
||||||
|
type AdapterParameters struct {
|
||||||
|
Alpha uint32 `json:"lora_alpha"`
|
||||||
|
LoraLayers uint32 `json:"lora_layers"`
|
||||||
|
LoraParameters struct {
|
||||||
|
Rank uint32 `json:"rank"`
|
||||||
|
Alpha float32 `json:"alpha"`
|
||||||
|
Scale float32 `json:"scale"`
|
||||||
|
} `json:"lora_parameters"`
|
||||||
|
}
|
||||||
|
|
||||||
|
func (ModelParameters) KV(t *Tokenizer) ggml.KV {
|
||||||
|
kv := ggml.KV{
|
||||||
|
"general.file_type": uint32(1),
|
||||||
|
"general.quantization_version": uint32(2),
|
||||||
|
"tokenizer.ggml.pre": t.Pre,
|
||||||
|
"tokenizer.ggml.model": t.Vocabulary.Model,
|
||||||
|
"tokenizer.ggml.tokens": t.Vocabulary.Tokens,
|
||||||
|
"tokenizer.ggml.scores": t.Vocabulary.Scores,
|
||||||
|
"tokenizer.ggml.token_type": t.Vocabulary.Types,
|
||||||
|
}
|
||||||
|
|
||||||
|
if len(t.Merges) > 0 {
|
||||||
|
kv["tokenizer.ggml.merges"] = t.Merges
|
||||||
|
}
|
||||||
|
|
||||||
|
if t.Template != "" {
|
||||||
|
kv["tokenizer.chat_template"] = t.Template
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, sv := range t.SpecialVocabulary {
|
||||||
|
kv[fmt.Sprintf("tokenizer.ggml.%s_token_id", sv.Key())] = uint32(sv.ID)
|
||||||
|
kv[fmt.Sprintf("tokenizer.ggml.add_%s_token", sv.Key())] = sv.AddToken
|
||||||
|
}
|
||||||
|
|
||||||
|
return kv
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p AdapterParameters) KV() ggml.KV {
|
||||||
|
var alpha float32
|
||||||
|
if p.LoraParameters.Alpha == 0 {
|
||||||
|
alpha = float32(p.Alpha)
|
||||||
|
} else {
|
||||||
|
alpha = p.LoraParameters.Alpha
|
||||||
|
}
|
||||||
|
|
||||||
|
kv := ggml.KV{
|
||||||
|
"adapter.lora.alpha": alpha,
|
||||||
|
"adapter.type": "lora",
|
||||||
|
"general.file_type": uint32(1),
|
||||||
|
"general.type": "adapter",
|
||||||
|
"general.version": "v0.2",
|
||||||
|
}
|
||||||
|
|
||||||
|
return kv
|
||||||
|
}
|
||||||
|
|
||||||
|
func (ModelParameters) specialTokenTypes() []string {
|
||||||
|
return []string{
|
||||||
|
"bos", "eos", "unk", "sep", "pad", "cls", "mask",
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
type ModelConverter interface {
|
||||||
|
// KV maps parameters to LLM key-values
|
||||||
|
KV(*Tokenizer) ggml.KV
|
||||||
|
// Tensors maps input tensors to LLM tensors. Model specific modifications can be done here.
|
||||||
|
Tensors([]Tensor) []*ggml.Tensor
|
||||||
|
// Replacements returns a list of string pairs to replace in tensor names.
|
||||||
|
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
|
||||||
|
Replacements() []string
|
||||||
|
|
||||||
|
// specialTokenTypes returns any special token types the model uses
|
||||||
|
specialTokenTypes() []string
|
||||||
|
}
|
||||||
|
|
||||||
|
type moreParser interface {
|
||||||
|
parseMore(fs.FS) error
|
||||||
|
}
|
||||||
|
|
||||||
|
type AdapterConverter interface {
|
||||||
|
// KV maps parameters to LLM key-values
|
||||||
|
KV(ggml.KV) ggml.KV
|
||||||
|
// Tensors maps input tensors to LLM tensors. Adapter specific modifications can be done here.
|
||||||
|
Tensors([]Tensor) []*ggml.Tensor
|
||||||
|
// Replacements returns a list of string pairs to replace in tensor names.
|
||||||
|
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
|
||||||
|
Replacements() []string
|
||||||
|
}
|
||||||
|
|
||||||
|
func ConvertAdapter(fsys fs.FS, f *os.File, baseKV ggml.KV) error {
|
||||||
|
bts, err := fs.ReadFile(fsys, "adapter_config.json")
|
||||||
|
if err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
|
||||||
|
var p AdapterParameters
|
||||||
|
if err := json.Unmarshal(bts, &p); err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
|
||||||
|
arch, ok := baseKV["general.architecture"]
|
||||||
|
if !ok {
|
||||||
|
return errors.New("architecture not set for the base model")
|
||||||
|
}
|
||||||
|
|
||||||
|
var conv AdapterConverter
|
||||||
|
switch arch {
|
||||||
|
case "llama":
|
||||||
|
conv = &llamaAdapter{}
|
||||||
|
case "gemma2":
|
||||||
|
conv = &gemma2Adapter{}
|
||||||
|
default:
|
||||||
|
return errors.New("unsupported architecture")
|
||||||
|
}
|
||||||
|
|
||||||
|
ts, err := parseTensors(fsys, strings.NewReplacer(conv.Replacements()...))
|
||||||
|
if err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
|
||||||
|
if err := json.Unmarshal(bts, conv); err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
|
||||||
|
return writeFile(f, conv.KV(baseKV), conv.Tensors(ts))
|
||||||
|
}
|
||||||
|
|
||||||
|
// Convert writes an Ollama compatible model to the provided io.WriteSeeker based on configurations
|
||||||
|
// and files it finds in the input path.
|
||||||
|
// Supported input model formats include safetensors.
|
||||||
|
// Supported input tokenizers files include tokenizer.json (preferred) and tokenizer.model.
|
||||||
|
func ConvertModel(fsys fs.FS, f *os.File) error {
|
||||||
|
bts, err := fs.ReadFile(fsys, "config.json")
|
||||||
|
if err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
|
||||||
|
var p ModelParameters
|
||||||
|
if err := json.Unmarshal(bts, &p); err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
|
||||||
|
if len(p.Architectures) < 1 {
|
||||||
|
return errors.New("unknown architecture")
|
||||||
|
}
|
||||||
|
|
||||||
|
var conv ModelConverter
|
||||||
|
switch p.Architectures[0] {
|
||||||
|
case "LlamaForCausalLM":
|
||||||
|
conv = &llamaModel{}
|
||||||
|
case "Llama4ForConditionalGeneration":
|
||||||
|
conv = &llama4Model{}
|
||||||
|
case "Mistral3ForConditionalGeneration":
|
||||||
|
conv = &mistral3Model{}
|
||||||
|
case "MixtralForCausalLM":
|
||||||
|
conv = &mixtralModel{}
|
||||||
|
case "GemmaForCausalLM":
|
||||||
|
conv = &gemmaModel{}
|
||||||
|
case "Gemma2ForCausalLM":
|
||||||
|
conv = &gemma2Model{}
|
||||||
|
case "Gemma3ForCausalLM", "Gemma3ForConditionalGeneration":
|
||||||
|
conv = &gemma3Model{Architecture: p.Architectures[0]}
|
||||||
|
case "Phi3ForCausalLM":
|
||||||
|
conv = &phi3Model{}
|
||||||
|
case "Qwen2ForCausalLM":
|
||||||
|
conv = &qwen2Model{}
|
||||||
|
case "BertModel":
|
||||||
|
conv = &bertModel{}
|
||||||
|
case "CohereForCausalLM":
|
||||||
|
conv = &commandrModel{}
|
||||||
|
default:
|
||||||
|
return fmt.Errorf("unsupported architecture %q", p.Architectures[0])
|
||||||
|
}
|
||||||
|
|
||||||
|
if err := json.Unmarshal(bts, conv); err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
|
||||||
|
if t, ok := conv.(moreParser); ok {
|
||||||
|
if err := t.parseMore(fsys); err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
t, err := parseTokenizer(fsys, conv.specialTokenTypes())
|
||||||
|
if err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
|
||||||
|
vocabSize := int(p.VocabSize)
|
||||||
|
if vocabSize == 0 {
|
||||||
|
tVocabSize := int(p.TextModel.VocabSize)
|
||||||
|
vocabSize = tVocabSize
|
||||||
|
}
|
||||||
|
|
||||||
|
switch {
|
||||||
|
case vocabSize == 0:
|
||||||
|
slog.Warn("vocabulary size was not explicitly set by the model", "default size", len(t.Vocabulary.Tokens))
|
||||||
|
case vocabSize > len(t.Vocabulary.Tokens):
|
||||||
|
slog.Warn("vocabulary is smaller than expected, padding with dummy tokens", "expect", vocabSize, "actual", len(t.Vocabulary.Tokens))
|
||||||
|
for i := range vocabSize - len(t.Vocabulary.Tokens) {
|
||||||
|
t.Vocabulary.Tokens = append(t.Vocabulary.Tokens, fmt.Sprintf("[PAD%d]", i))
|
||||||
|
t.Vocabulary.Scores = append(t.Vocabulary.Scores, -1)
|
||||||
|
t.Vocabulary.Types = append(t.Vocabulary.Types, tokenTypeUserDefined)
|
||||||
|
}
|
||||||
|
case vocabSize < len(t.Vocabulary.Tokens):
|
||||||
|
return fmt.Errorf("vocabulary is larger than expected '%d' instead of '%d'", len(t.Vocabulary.Tokens), vocabSize)
|
||||||
|
default:
|
||||||
|
slog.Debug("vocabulary", "size", len(t.Vocabulary.Tokens))
|
||||||
|
}
|
||||||
|
|
||||||
|
ts, err := parseTensors(fsys, strings.NewReplacer(conv.Replacements()...))
|
||||||
|
if err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
|
||||||
|
return writeFile(f, conv.KV(t), conv.Tensors(ts))
|
||||||
|
}
|
||||||
|
|
||||||
|
func writeFile(f *os.File, kv ggml.KV, ts []*ggml.Tensor) error {
|
||||||
|
for i := range ts {
|
||||||
|
ts[i].Shape = slices.Clone(ts[i].Shape)
|
||||||
|
slices.Reverse(ts[i].Shape)
|
||||||
|
}
|
||||||
|
return ggml.WriteGGUF(f, kv, ts)
|
||||||
|
}
|
||||||
174
convert/convert_bert.go
Normal file
174
convert/convert_bert.go
Normal file
@@ -0,0 +1,174 @@
|
|||||||
|
package convert
|
||||||
|
|
||||||
|
import (
|
||||||
|
"cmp"
|
||||||
|
"encoding/json"
|
||||||
|
"io/fs"
|
||||||
|
"path/filepath"
|
||||||
|
"slices"
|
||||||
|
"strings"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/fs/ggml"
|
||||||
|
)
|
||||||
|
|
||||||
|
type bertModel struct {
|
||||||
|
ModelParameters
|
||||||
|
NLayers uint32 `json:"n_layers"`
|
||||||
|
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||||
|
NLayer uint32 `json:"n_layer"`
|
||||||
|
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||||
|
NCtx uint32 `json:"n_ctx"`
|
||||||
|
HiddenSize uint32 `json:"hidden_size"`
|
||||||
|
NEmbd uint32 `json:"n_embd"`
|
||||||
|
IntermediateSize uint32 `json:"intermediate_size"`
|
||||||
|
NInner uint32 `json:"n_inner"`
|
||||||
|
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||||
|
NHead uint32 `json:"n_head"`
|
||||||
|
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||||
|
LayerNormEPS float32 `json:"layer_norm_eps"`
|
||||||
|
LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
|
||||||
|
NormEpsilon float32 `json:"norm_epsilon"`
|
||||||
|
|
||||||
|
PoolingType uint32
|
||||||
|
}
|
||||||
|
|
||||||
|
var (
|
||||||
|
_ ModelConverter = (*bertModel)(nil)
|
||||||
|
_ moreParser = (*bertModel)(nil)
|
||||||
|
)
|
||||||
|
|
||||||
|
func (p *bertModel) parseMore(fsys fs.FS) error {
|
||||||
|
bts, err := fs.ReadFile(fsys, "modules.json")
|
||||||
|
if err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
|
||||||
|
var modules []struct {
|
||||||
|
Type string `json:"type"`
|
||||||
|
Path string `json:"path"`
|
||||||
|
}
|
||||||
|
|
||||||
|
if err := json.Unmarshal(bts, &modules); err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
|
||||||
|
var pooling string
|
||||||
|
for _, m := range modules {
|
||||||
|
if m.Type == "sentence_transformers.models.Pooling" {
|
||||||
|
pooling = m.Path
|
||||||
|
break
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if pooling != "" {
|
||||||
|
bts, err := fs.ReadFile(fsys, filepath.Join(pooling, "config.json"))
|
||||||
|
if err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
|
||||||
|
var pc struct {
|
||||||
|
PoolingModeCLSToken bool `json:"pooling_mode_cls_token"`
|
||||||
|
PoolingModeMeanTokens bool `json:"pooling_mode_mean_tokens"`
|
||||||
|
}
|
||||||
|
|
||||||
|
if err := json.Unmarshal(bts, &pc); err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
|
||||||
|
if pc.PoolingModeMeanTokens {
|
||||||
|
p.PoolingType = 1
|
||||||
|
} else if pc.PoolingModeCLSToken {
|
||||||
|
p.PoolingType = 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return nil
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *bertModel) KV(t *Tokenizer) ggml.KV {
|
||||||
|
kv := p.ModelParameters.KV(t)
|
||||||
|
kv["general.architecture"] = "bert"
|
||||||
|
kv["bert.attention.causal"] = false
|
||||||
|
kv["bert.pooling_type"] = p.PoolingType
|
||||||
|
|
||||||
|
kv["bert.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer)
|
||||||
|
|
||||||
|
if contextLength := cmp.Or(p.MaxPositionEmbeddings, p.NCtx); contextLength > 0 {
|
||||||
|
kv["bert.context_length"] = contextLength
|
||||||
|
}
|
||||||
|
|
||||||
|
if embeddingLength := cmp.Or(p.HiddenSize, p.NEmbd); embeddingLength > 0 {
|
||||||
|
kv["bert.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd)
|
||||||
|
}
|
||||||
|
|
||||||
|
if feedForwardLength := cmp.Or(p.IntermediateSize, p.NInner); feedForwardLength > 0 {
|
||||||
|
kv["bert.feed_forward_length"] = cmp.Or(p.IntermediateSize, p.NInner)
|
||||||
|
}
|
||||||
|
|
||||||
|
if headCount := cmp.Or(p.NumAttentionHeads, p.NHead); headCount > 0 {
|
||||||
|
kv["bert.attention.head_count"] = cmp.Or(p.NumAttentionHeads, p.NHead)
|
||||||
|
}
|
||||||
|
|
||||||
|
if layerNormEpsilon := cmp.Or(p.LayerNormEPS, p.LayerNormEpsilon, p.NormEpsilon); layerNormEpsilon > 0 {
|
||||||
|
kv["bert.attention.layer_norm_epsilon"] = layerNormEpsilon
|
||||||
|
}
|
||||||
|
|
||||||
|
kv["tokenizer.ggml.model"] = "bert"
|
||||||
|
kv["tokenizer.ggml.token_type_count"] = uint32(2)
|
||||||
|
|
||||||
|
// convert to phantom space tokens
|
||||||
|
for i, e := range t.Tokens {
|
||||||
|
if strings.HasPrefix(e, "[") && strings.HasSuffix(e, "]") {
|
||||||
|
// noop
|
||||||
|
} else if strings.HasPrefix(e, "##") {
|
||||||
|
t.Tokens[i] = e[2:]
|
||||||
|
} else {
|
||||||
|
t.Tokens[i] = "\u2581" + e
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
kv["tokenizer.ggml.tokens"] = t.Tokens
|
||||||
|
|
||||||
|
return kv
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *bertModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||||
|
var out []*ggml.Tensor
|
||||||
|
for _, t := range ts {
|
||||||
|
if slices.Contains([]string{
|
||||||
|
"embeddings.position_ids",
|
||||||
|
"pooler.dense.weight",
|
||||||
|
"pooler.dense.bias",
|
||||||
|
}, t.Name()) {
|
||||||
|
continue
|
||||||
|
}
|
||||||
|
|
||||||
|
out = append(out, &ggml.Tensor{
|
||||||
|
Name: t.Name(),
|
||||||
|
Kind: t.Kind(),
|
||||||
|
Shape: t.Shape(),
|
||||||
|
WriterTo: t,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
return out
|
||||||
|
}
|
||||||
|
|
||||||
|
func (bertModel) Replacements() []string {
|
||||||
|
return []string{
|
||||||
|
"encoder.layer", "blk",
|
||||||
|
"encoder.layers", "blk",
|
||||||
|
"embeddings.word_embeddings", "token_embd",
|
||||||
|
"embeddings.token_type_embeddings", "token_types",
|
||||||
|
"embeddings.LayerNorm", "token_embd_norm",
|
||||||
|
"embeddings.position_embeddings", "position_embd",
|
||||||
|
"attention.self.query", "attn_q",
|
||||||
|
"attention.self.key", "attn_k",
|
||||||
|
"attention.self.value", "attn_v",
|
||||||
|
"attention.output.dense", "attn_output",
|
||||||
|
"attention.output.LayerNorm", "attn_output_norm",
|
||||||
|
"intermediate.dense", "ffn_up",
|
||||||
|
"output.dense", "ffn_down",
|
||||||
|
"output.LayerNorm", "layer_output_norm",
|
||||||
|
}
|
||||||
|
}
|
||||||
76
convert/convert_commandr.go
Normal file
76
convert/convert_commandr.go
Normal file
@@ -0,0 +1,76 @@
|
|||||||
|
package convert
|
||||||
|
|
||||||
|
import (
|
||||||
|
"cmp"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/fs/ggml"
|
||||||
|
)
|
||||||
|
|
||||||
|
type commandrModel struct {
|
||||||
|
ModelParameters
|
||||||
|
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||||
|
HiddenSize uint32 `json:"hidden_size"`
|
||||||
|
HiddenLayers uint32 `json:"num_hidden_layers"`
|
||||||
|
IntermediateSize uint32 `json:"intermediate_size"`
|
||||||
|
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||||
|
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||||
|
LayerNormEPS float32 `json:"layer_norm_eps"`
|
||||||
|
RopeTheta float32 `json:"rope_theta"`
|
||||||
|
UseQKNorm bool `json:"use_qk_norm"`
|
||||||
|
MaxLength uint32 `json:"model_max_length"`
|
||||||
|
LogitScale float32 `json:"logit_scale"`
|
||||||
|
NCtx uint32 `json:"n_ctx"`
|
||||||
|
}
|
||||||
|
|
||||||
|
var _ ModelConverter = (*commandrModel)(nil)
|
||||||
|
|
||||||
|
func (p *commandrModel) KV(t *Tokenizer) ggml.KV {
|
||||||
|
kv := p.ModelParameters.KV(t)
|
||||||
|
kv["general.architecture"] = "command-r"
|
||||||
|
kv["general.name"] = "command-r"
|
||||||
|
kv["command-r.context_length"] = cmp.Or(p.MaxLength, p.MaxPositionEmbeddings, p.NCtx)
|
||||||
|
kv["command-r.embedding_length"] = p.HiddenSize
|
||||||
|
kv["command-r.block_count"] = p.HiddenLayers
|
||||||
|
kv["command-r.feed_forward_length"] = p.IntermediateSize
|
||||||
|
kv["command-r.attention.head_count"] = p.NumAttentionHeads
|
||||||
|
kv["command-r.attention.head_count_kv"] = p.NumKeyValueHeads
|
||||||
|
kv["command-r.attention.layer_norm_epsilon"] = p.LayerNormEPS
|
||||||
|
kv["command-r.rope.freq_base"] = p.RopeTheta
|
||||||
|
kv["command-r.max_position_embeddings"] = cmp.Or(p.MaxLength, p.MaxPositionEmbeddings)
|
||||||
|
kv["command-r.logit_scale"] = p.LogitScale
|
||||||
|
kv["command-r.rope.scaling.type"] = "none"
|
||||||
|
|
||||||
|
return kv
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *commandrModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||||
|
var out []*ggml.Tensor
|
||||||
|
for _, t := range ts {
|
||||||
|
out = append(out, &ggml.Tensor{
|
||||||
|
Name: t.Name(),
|
||||||
|
Kind: t.Kind(),
|
||||||
|
Shape: t.Shape(),
|
||||||
|
WriterTo: t,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
return out
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *commandrModel) Replacements() []string {
|
||||||
|
return []string{
|
||||||
|
"self_attn.q_norm", "attn_q_norm",
|
||||||
|
"self_attn.k_norm", "attn_k_norm",
|
||||||
|
"model.layers", "blk",
|
||||||
|
"input_layernorm", "attn_norm",
|
||||||
|
"mlp.down_proj", "ffn_down",
|
||||||
|
"mlp.gate_proj", "ffn_gate",
|
||||||
|
"mlp.up_proj", "ffn_up",
|
||||||
|
"self_attn.k_proj", "attn_k",
|
||||||
|
"self_attn.o_proj", "attn_output",
|
||||||
|
"self_attn.q_proj", "attn_q",
|
||||||
|
"self_attn.v_proj", "attn_v",
|
||||||
|
"model.norm", "output_norm",
|
||||||
|
"model.embed_tokens", "token_embd",
|
||||||
|
}
|
||||||
|
}
|
||||||
100
convert/convert_gemma.go
Normal file
100
convert/convert_gemma.go
Normal file
@@ -0,0 +1,100 @@
|
|||||||
|
package convert
|
||||||
|
|
||||||
|
import (
|
||||||
|
"strings"
|
||||||
|
|
||||||
|
"github.com/pdevine/tensor"
|
||||||
|
"github.com/pdevine/tensor/native"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/fs/ggml"
|
||||||
|
)
|
||||||
|
|
||||||
|
type gemmaModel struct {
|
||||||
|
ModelParameters
|
||||||
|
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||||
|
HiddenSize uint32 `json:"hidden_size"`
|
||||||
|
HiddenLayers uint32 `json:"num_hidden_layers"`
|
||||||
|
IntermediateSize uint32 `json:"intermediate_size"`
|
||||||
|
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||||
|
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||||
|
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||||
|
HeadDim uint32 `json:"head_dim"`
|
||||||
|
}
|
||||||
|
|
||||||
|
var _ ModelConverter = (*gemmaModel)(nil)
|
||||||
|
|
||||||
|
func (p *gemmaModel) KV(t *Tokenizer) ggml.KV {
|
||||||
|
kv := p.ModelParameters.KV(t)
|
||||||
|
kv["general.architecture"] = "gemma"
|
||||||
|
kv["gemma.context_length"] = p.MaxPositionEmbeddings
|
||||||
|
kv["gemma.embedding_length"] = p.HiddenSize
|
||||||
|
kv["gemma.block_count"] = p.HiddenLayers
|
||||||
|
kv["gemma.feed_forward_length"] = p.IntermediateSize
|
||||||
|
kv["gemma.attention.head_count"] = p.NumAttentionHeads
|
||||||
|
kv["gemma.attention.head_count_kv"] = p.NumKeyValueHeads
|
||||||
|
kv["gemma.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
|
||||||
|
kv["gemma.attention.key_length"] = p.HeadDim
|
||||||
|
kv["gemma.attention.value_length"] = p.HeadDim
|
||||||
|
kv["tokenizer.ggml.eot_token_id"] = uint32(107)
|
||||||
|
kv["tokenizer.ggml.middle_token_id"] = uint32(68)
|
||||||
|
kv["tokenizer.ggml.prefix_token_id"] = uint32(67)
|
||||||
|
kv["tokenizer.ggml.suffix_token_id"] = uint32(69)
|
||||||
|
return kv
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *gemmaModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||||
|
var out []*ggml.Tensor
|
||||||
|
for _, t := range ts {
|
||||||
|
if !strings.HasPrefix(t.Name(), "v.") && strings.HasSuffix(t.Name(), "_norm.weight") {
|
||||||
|
t.SetRepacker(p.addOne)
|
||||||
|
}
|
||||||
|
|
||||||
|
out = append(out, &ggml.Tensor{
|
||||||
|
Name: t.Name(),
|
||||||
|
Kind: t.Kind(),
|
||||||
|
Shape: t.Shape(),
|
||||||
|
WriterTo: t,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
return out
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *gemmaModel) Replacements() []string {
|
||||||
|
return []string{
|
||||||
|
"model.embed_tokens", "token_embd",
|
||||||
|
"model.norm", "output_norm",
|
||||||
|
"model.layers", "blk",
|
||||||
|
"input_layernorm", "attn_norm",
|
||||||
|
"self_attn.q_proj", "attn_q",
|
||||||
|
"self_attn.k_proj", "attn_k",
|
||||||
|
"self_attn.v_proj", "attn_v",
|
||||||
|
"self_attn.o_proj", "attn_output",
|
||||||
|
"mlp.gate_proj", "ffn_gate",
|
||||||
|
"mlp.down_proj", "ffn_down",
|
||||||
|
"mlp.up_proj", "ffn_up",
|
||||||
|
"post_attention_layernorm", "ffn_norm",
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func (*gemmaModel) addOne(_ string, data []float32, shape []uint64) ([]float32, error) {
|
||||||
|
n := tensor.New(tensor.WithShape(int(shape[0])), tensor.WithBacking(data))
|
||||||
|
ones := tensor.Ones(tensor.Float32, int(shape[0]))
|
||||||
|
|
||||||
|
n, err := n.Add(ones)
|
||||||
|
if err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
ts, err := native.SelectF32(n, 0)
|
||||||
|
if err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
var f32s []float32
|
||||||
|
for _, t := range ts {
|
||||||
|
f32s = append(f32s, t...)
|
||||||
|
}
|
||||||
|
|
||||||
|
return f32s, nil
|
||||||
|
}
|
||||||
51
convert/convert_gemma2.go
Normal file
51
convert/convert_gemma2.go
Normal file
@@ -0,0 +1,51 @@
|
|||||||
|
package convert
|
||||||
|
|
||||||
|
import "github.com/ollama/ollama/fs/ggml"
|
||||||
|
|
||||||
|
type gemma2Model struct {
|
||||||
|
gemmaModel
|
||||||
|
SlidingWindow uint32 `json:"sliding_window"`
|
||||||
|
AttentionLogitSoftcap float32 `json:"attn_logit_softcapping"`
|
||||||
|
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *gemma2Model) KV(t *Tokenizer) ggml.KV {
|
||||||
|
kv := p.ModelParameters.KV(t)
|
||||||
|
kv["general.architecture"] = "gemma2"
|
||||||
|
kv["gemma2.context_length"] = p.MaxPositionEmbeddings
|
||||||
|
kv["gemma2.embedding_length"] = p.HiddenSize
|
||||||
|
kv["gemma2.block_count"] = p.HiddenLayers
|
||||||
|
kv["gemma2.feed_forward_length"] = p.IntermediateSize
|
||||||
|
kv["gemma2.attention.head_count"] = p.NumAttentionHeads
|
||||||
|
kv["gemma2.attention.head_count_kv"] = p.NumKeyValueHeads
|
||||||
|
kv["gemma2.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
|
||||||
|
kv["gemma2.attention.key_length"] = p.HeadDim
|
||||||
|
kv["gemma2.attention.value_length"] = p.HeadDim
|
||||||
|
kv["gemma2.attention.sliding_window"] = p.SlidingWindow
|
||||||
|
kv["gemma2.attn_logit_softcapping"] = p.AttentionLogitSoftcap
|
||||||
|
kv["gemma2.final_logit_softcapping"] = p.FinalLogitSoftcap
|
||||||
|
kv["tokenizer.ggml.eot_token_id"] = uint32(107)
|
||||||
|
kv["tokenizer.ggml.middle_token_id"] = uint32(68)
|
||||||
|
kv["tokenizer.ggml.prefix_token_id"] = uint32(67)
|
||||||
|
kv["tokenizer.ggml.suffix_token_id"] = uint32(69)
|
||||||
|
return kv
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *gemma2Model) Replacements() []string {
|
||||||
|
return []string{
|
||||||
|
"model.embed_tokens", "token_embd",
|
||||||
|
"model.norm", "output_norm",
|
||||||
|
"model.layers", "blk",
|
||||||
|
"input_layernorm", "attn_norm",
|
||||||
|
"self_attn.q_proj", "attn_q",
|
||||||
|
"self_attn.k_proj", "attn_k",
|
||||||
|
"self_attn.v_proj", "attn_v",
|
||||||
|
"self_attn.o_proj", "attn_output",
|
||||||
|
"mlp.gate_proj", "ffn_gate",
|
||||||
|
"mlp.down_proj", "ffn_down",
|
||||||
|
"mlp.up_proj", "ffn_up",
|
||||||
|
"post_attention_layernorm", "post_attention_norm",
|
||||||
|
"pre_feedforward_layernorm", "ffn_norm",
|
||||||
|
"post_feedforward_layernorm", "post_ffw_norm",
|
||||||
|
}
|
||||||
|
}
|
||||||
91
convert/convert_gemma2_adapter.go
Normal file
91
convert/convert_gemma2_adapter.go
Normal file
@@ -0,0 +1,91 @@
|
|||||||
|
package convert
|
||||||
|
|
||||||
|
import (
|
||||||
|
"strings"
|
||||||
|
|
||||||
|
"github.com/pdevine/tensor"
|
||||||
|
"github.com/pdevine/tensor/native"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/fs/ggml"
|
||||||
|
)
|
||||||
|
|
||||||
|
type gemma2Adapter struct {
|
||||||
|
AdapterParameters
|
||||||
|
}
|
||||||
|
|
||||||
|
var _ AdapterConverter = (*gemma2Adapter)(nil)
|
||||||
|
|
||||||
|
func (p *gemma2Adapter) KV(baseKV ggml.KV) ggml.KV {
|
||||||
|
kv := p.AdapterParameters.KV()
|
||||||
|
kv["general.architecture"] = "gemma2"
|
||||||
|
return kv
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *gemma2Adapter) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||||
|
var out []*ggml.Tensor
|
||||||
|
for _, t := range ts {
|
||||||
|
shape := t.Shape()
|
||||||
|
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
|
||||||
|
(strings.HasSuffix(t.Name(), "weight.lora_b") && shape[0] < shape[1]) {
|
||||||
|
shape[0], shape[1] = shape[1], shape[0]
|
||||||
|
t.SetRepacker(p.repack)
|
||||||
|
}
|
||||||
|
|
||||||
|
out = append(out, &ggml.Tensor{
|
||||||
|
Name: t.Name(),
|
||||||
|
Kind: t.Kind(),
|
||||||
|
Shape: t.Shape(),
|
||||||
|
WriterTo: t,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
return out
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *gemma2Adapter) Replacements() []string {
|
||||||
|
return []string{
|
||||||
|
"base_model.model.", "",
|
||||||
|
"model.layers", "blk",
|
||||||
|
"self_attn.q_proj", "attn_q",
|
||||||
|
"self_attn.k_proj", "attn_k",
|
||||||
|
"self_attn.v_proj", "attn_v",
|
||||||
|
"self_attn.o_proj", "attn_output",
|
||||||
|
"mlp.gate_proj", "ffn_gate",
|
||||||
|
"mlp.down_proj", "ffn_down",
|
||||||
|
"mlp.up_proj", "ffn_up",
|
||||||
|
"lora_A.weight", "weight.lora_a",
|
||||||
|
"lora_B.weight", "weight.lora_b",
|
||||||
|
"lora_a", "weight.lora_a",
|
||||||
|
"lora_b", "weight.lora_b",
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *gemma2Adapter) repack(name string, data []float32, shape []uint64) ([]float32, error) {
|
||||||
|
dims := []int{int(shape[1]), int(shape[0])}
|
||||||
|
|
||||||
|
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
||||||
|
|
||||||
|
if err := n.T(1, 0); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
if err := n.Reshape(dims...); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
if err := n.Transpose(); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
ts, err := native.SelectF32(n, 1)
|
||||||
|
if err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
var f32s []float32
|
||||||
|
for _, t := range ts {
|
||||||
|
f32s = append(f32s, t...)
|
||||||
|
}
|
||||||
|
|
||||||
|
return f32s, nil
|
||||||
|
}
|
||||||
142
convert/convert_gemma3.go
Normal file
142
convert/convert_gemma3.go
Normal file
@@ -0,0 +1,142 @@
|
|||||||
|
package convert
|
||||||
|
|
||||||
|
import (
|
||||||
|
"cmp"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/fs/ggml"
|
||||||
|
)
|
||||||
|
|
||||||
|
type gemma3Model struct {
|
||||||
|
gemmaModel
|
||||||
|
Architecture string
|
||||||
|
TextModel struct {
|
||||||
|
HeadDim uint32 `json:"head_dim"`
|
||||||
|
HiddenSize uint32 `json:"hidden_size"`
|
||||||
|
HiddenLayers uint32 `json:"num_hidden_layers"`
|
||||||
|
IntermediateSize uint32 `json:"intermediate_size"`
|
||||||
|
SlidingWindow uint32 `json:"sliding_window"`
|
||||||
|
} `json:"text_config"`
|
||||||
|
VisionModel struct {
|
||||||
|
NumAttentionHeads uint32 `json:"num_attention_heads"` // attention.head_count 16
|
||||||
|
LayerNormEpsilon float32 `json:"layer_norm_eps"` // attention.layer_norm_epsilon 1e-05
|
||||||
|
NumHiddenLayers uint32 `json:"num_hidden_layers"` // block_count 32
|
||||||
|
HiddenSize uint32 `json:"hidden_size"` // embedding_length 1280
|
||||||
|
IntermediateSize uint32 `json:"intermediate_size"` // feed_forward_length 5120
|
||||||
|
ImageSize uint32 `json:"image_size"` // image_size 560
|
||||||
|
NumChannels uint32 `json:"num_channels"` // num_channels 3
|
||||||
|
PatchSize uint32 `json:"patch_size"` // patch_size 14
|
||||||
|
} `json:"vision_config"`
|
||||||
|
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||||
|
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||||
|
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||||
|
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||||
|
HeadDim uint32 `json:"head_dim"`
|
||||||
|
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
|
||||||
|
RopeLocalTheta float32 `json:"rope_local_base_freq"`
|
||||||
|
RopeGlobalTheta float32 `json:"rope_global_base_freq"`
|
||||||
|
SlidingWindow uint32 `json:"sliding_window"`
|
||||||
|
MultiModalTokensPerImage uint32 `json:"mm_tokens_per_image"`
|
||||||
|
}
|
||||||
|
|
||||||
|
const (
|
||||||
|
gemma4BLayerCount = 34
|
||||||
|
gemma12BLayerCount = 48
|
||||||
|
gemma27BLayerCount = 62
|
||||||
|
)
|
||||||
|
|
||||||
|
func (p *gemma3Model) KV(t *Tokenizer) ggml.KV {
|
||||||
|
kv := p.ModelParameters.KV(t)
|
||||||
|
kv["general.architecture"] = "gemma3"
|
||||||
|
|
||||||
|
numBlocks := cmp.Or(p.HiddenLayers, p.TextModel.HiddenLayers)
|
||||||
|
kv["gemma3.block_count"] = numBlocks
|
||||||
|
|
||||||
|
var (
|
||||||
|
numHeads uint32
|
||||||
|
numKVHeads uint32
|
||||||
|
)
|
||||||
|
|
||||||
|
switch numBlocks {
|
||||||
|
case gemma4BLayerCount:
|
||||||
|
numHeads = 8
|
||||||
|
numKVHeads = 4
|
||||||
|
case gemma12BLayerCount:
|
||||||
|
numHeads = 16
|
||||||
|
numKVHeads = 8
|
||||||
|
case gemma27BLayerCount:
|
||||||
|
numHeads = 32
|
||||||
|
numKVHeads = 16
|
||||||
|
default:
|
||||||
|
numHeads = p.NumAttentionHeads
|
||||||
|
numKVHeads = p.NumKeyValueHeads
|
||||||
|
}
|
||||||
|
|
||||||
|
kv["gemma3.attention.head_count"] = numHeads
|
||||||
|
kv["gemma3.attention.head_count_kv"] = numKVHeads
|
||||||
|
|
||||||
|
switch p.Architecture {
|
||||||
|
case "Gemma3ForCausalLM":
|
||||||
|
kv["gemma3.context_length"] = p.MaxPositionEmbeddings
|
||||||
|
kv["gemma3.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
|
||||||
|
kv["gemma3.attention.key_length"] = p.HeadDim
|
||||||
|
kv["gemma3.attention.value_length"] = p.HeadDim
|
||||||
|
kv["gemma3.attention.sliding_window"] = p.SlidingWindow
|
||||||
|
kv["gemma3.final_logit_softcapping"] = cmp.Or(p.FinalLogitSoftcap, 30)
|
||||||
|
kv["gemma3.rope.local.freq_base"] = cmp.Or(p.RopeLocalTheta, 10000.0)
|
||||||
|
kv["gemma3.rope.global.freq_base"] = cmp.Or(p.RopeGlobalTheta, 1000000.0)
|
||||||
|
kv["gemma3.embedding_length"] = p.HiddenSize
|
||||||
|
kv["gemma3.feed_forward_length"] = p.IntermediateSize
|
||||||
|
default:
|
||||||
|
kv["gemma3.context_length"] = cmp.Or(p.MaxPositionEmbeddings, 131072)
|
||||||
|
kv["gemma3.embedding_length"] = p.TextModel.HiddenSize
|
||||||
|
kv["gemma3.feed_forward_length"] = p.TextModel.IntermediateSize
|
||||||
|
kv["gemma3.attention.sliding_window"] = p.TextModel.SlidingWindow
|
||||||
|
kv["gemma3.vision.block_count"] = p.VisionModel.NumHiddenLayers
|
||||||
|
kv["gemma3.vision.embedding_length"] = p.VisionModel.HiddenSize
|
||||||
|
kv["gemma3.vision.feed_forward_length"] = p.VisionModel.IntermediateSize
|
||||||
|
kv["gemma3.vision.image_size"] = p.VisionModel.ImageSize
|
||||||
|
kv["gemma3.vision.patch_size"] = p.VisionModel.PatchSize
|
||||||
|
kv["gemma3.vision.num_channels"] = cmp.Or(p.VisionModel.NumChannels, 3)
|
||||||
|
kv["gemma3.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
|
||||||
|
kv["gemma3.vision.attention.layer_norm_epsilon"] = cmp.Or(p.VisionModel.LayerNormEpsilon, 1e-6)
|
||||||
|
kv["gemma3.attention.key_length"] = cmp.Or(p.TextModel.HeadDim, 256)
|
||||||
|
kv["gemma3.attention.value_length"] = cmp.Or(p.TextModel.HeadDim, 256)
|
||||||
|
}
|
||||||
|
|
||||||
|
if p.MultiModalTokensPerImage > 0 {
|
||||||
|
kv["gemma3.mm.tokens_per_image"] = p.MultiModalTokensPerImage
|
||||||
|
}
|
||||||
|
|
||||||
|
return kv
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *gemma3Model) Replacements() []string {
|
||||||
|
return []string{
|
||||||
|
"lm_head", "output",
|
||||||
|
"model.embed_tokens", "token_embd",
|
||||||
|
"model.norm", "output_norm",
|
||||||
|
"vision_tower.vision_model.embeddings", "v",
|
||||||
|
"vision_tower.vision_model", "v",
|
||||||
|
"vision_model.vision_model.embeddings", "v",
|
||||||
|
"vision_model.vision_model", "v",
|
||||||
|
"language_model.", "",
|
||||||
|
"model.layers", "blk",
|
||||||
|
"encoder.layers", "blk",
|
||||||
|
"input_layernorm", "attn_norm",
|
||||||
|
"self_attn.q_proj", "attn_q",
|
||||||
|
"self_attn.q_norm", "attn_q_norm",
|
||||||
|
"self_attn.k_proj", "attn_k",
|
||||||
|
"self_attn.k_norm", "attn_k_norm",
|
||||||
|
"self_attn.v_proj", "attn_v",
|
||||||
|
"self_attn.o_proj", "attn_output",
|
||||||
|
"self_attn.out_proj", "attn_output",
|
||||||
|
"mlp.gate_proj", "ffn_gate",
|
||||||
|
"mlp.down_proj", "ffn_down",
|
||||||
|
"mlp.up_proj", "ffn_up",
|
||||||
|
"post_attention_layernorm", "post_attention_norm",
|
||||||
|
"pre_feedforward_layernorm", "ffn_norm",
|
||||||
|
"post_feedforward_layernorm", "post_ffw_norm",
|
||||||
|
"input_projection_weight", "input_projection.weight",
|
||||||
|
"multi_modal_projector", "mm",
|
||||||
|
}
|
||||||
|
}
|
||||||
220
convert/convert_llama.go
Normal file
220
convert/convert_llama.go
Normal file
@@ -0,0 +1,220 @@
|
|||||||
|
package convert
|
||||||
|
|
||||||
|
import (
|
||||||
|
"cmp"
|
||||||
|
"fmt"
|
||||||
|
"math"
|
||||||
|
"strings"
|
||||||
|
|
||||||
|
"github.com/pdevine/tensor"
|
||||||
|
"github.com/pdevine/tensor/native"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/fs/ggml"
|
||||||
|
)
|
||||||
|
|
||||||
|
type llamaModel struct {
|
||||||
|
ModelParameters
|
||||||
|
NLayers uint32 `json:"n_layers"`
|
||||||
|
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||||
|
NLayer uint32 `json:"n_layer"`
|
||||||
|
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||||
|
NCtx uint32 `json:"n_ctx"`
|
||||||
|
HiddenSize uint32 `json:"hidden_size"`
|
||||||
|
NEmbd uint32 `json:"n_embd"`
|
||||||
|
IntermediateSize uint32 `json:"intermediate_size"`
|
||||||
|
NInner uint32 `json:"n_inner"`
|
||||||
|
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||||
|
NHead uint32 `json:"n_head"`
|
||||||
|
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||||
|
RopeTheta float32 `json:"rope_theta"`
|
||||||
|
RopeScaling struct {
|
||||||
|
Type string `json:"type"`
|
||||||
|
RopeType string `json:"rope_type"`
|
||||||
|
Factor float32 `json:"factor"`
|
||||||
|
LowFrequencyFactor float32 `json:"low_freq_factor"`
|
||||||
|
HighFrequencyFactor float32 `json:"high_freq_factor"`
|
||||||
|
OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
|
||||||
|
|
||||||
|
factors ropeFactor
|
||||||
|
} `json:"rope_scaling"`
|
||||||
|
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||||
|
LayerNormEPS float32 `json:"layer_norm_eps"`
|
||||||
|
LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
|
||||||
|
NormEpsilon float32 `json:"norm_epsilon"`
|
||||||
|
HeadDim uint32 `json:"head_dim"`
|
||||||
|
|
||||||
|
skipRepack bool
|
||||||
|
}
|
||||||
|
|
||||||
|
var _ ModelConverter = (*llamaModel)(nil)
|
||||||
|
|
||||||
|
func (p *llamaModel) KV(t *Tokenizer) ggml.KV {
|
||||||
|
kv := p.ModelParameters.KV(t)
|
||||||
|
kv["general.architecture"] = "llama"
|
||||||
|
kv["llama.vocab_size"] = p.VocabSize
|
||||||
|
|
||||||
|
kv["llama.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer)
|
||||||
|
|
||||||
|
if contextLength := cmp.Or(p.MaxPositionEmbeddings, p.NCtx); contextLength > 0 {
|
||||||
|
kv["llama.context_length"] = contextLength
|
||||||
|
}
|
||||||
|
|
||||||
|
if embeddingLength := cmp.Or(p.HiddenSize, p.NEmbd); embeddingLength > 0 {
|
||||||
|
kv["llama.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd)
|
||||||
|
}
|
||||||
|
|
||||||
|
if feedForwardLength := cmp.Or(p.IntermediateSize, p.NInner); feedForwardLength > 0 {
|
||||||
|
kv["llama.feed_forward_length"] = cmp.Or(p.IntermediateSize, p.NInner)
|
||||||
|
}
|
||||||
|
|
||||||
|
if headCount := cmp.Or(p.NumAttentionHeads, p.NHead); headCount > 0 {
|
||||||
|
kv["llama.attention.head_count"] = cmp.Or(p.NumAttentionHeads, p.NHead)
|
||||||
|
kv["llama.rope.dimension_count"] = p.HiddenSize / headCount
|
||||||
|
}
|
||||||
|
|
||||||
|
if p.HeadDim > 0 {
|
||||||
|
kv["llama.attention.head_dim"] = p.HeadDim
|
||||||
|
}
|
||||||
|
|
||||||
|
if p.RopeTheta > 0 {
|
||||||
|
kv["llama.rope.freq_base"] = p.RopeTheta
|
||||||
|
}
|
||||||
|
|
||||||
|
if p.RopeScaling.Type == "linear" {
|
||||||
|
kv["llama.rope.scaling.type"] = p.RopeScaling.Type
|
||||||
|
kv["llama.rope.scaling.factor"] = p.RopeScaling.Factor
|
||||||
|
} else if p.RopeScaling.RopeType == "llama3" {
|
||||||
|
dim := p.HiddenSize / p.NumAttentionHeads
|
||||||
|
for i := uint32(0); i < dim; i += 2 {
|
||||||
|
factor := cmp.Or(p.RopeScaling.Factor, 8.0)
|
||||||
|
factorLow := cmp.Or(p.RopeScaling.LowFrequencyFactor, 1.0)
|
||||||
|
factorHigh := cmp.Or(p.RopeScaling.HighFrequencyFactor, 4.0)
|
||||||
|
|
||||||
|
original := cmp.Or(p.RopeScaling.OriginalMaxPositionEmbeddings, 8192)
|
||||||
|
lambdaLow := float32(original) / factorLow
|
||||||
|
lambdaHigh := float32(original) / factorHigh
|
||||||
|
|
||||||
|
lambda := 2 * math.Pi * math.Pow(float64(p.RopeTheta), float64(i)/float64(dim))
|
||||||
|
if lambda < float64(lambdaHigh) {
|
||||||
|
p.RopeScaling.factors = append(p.RopeScaling.factors, 1.0)
|
||||||
|
} else if lambda > float64(lambdaLow) {
|
||||||
|
p.RopeScaling.factors = append(p.RopeScaling.factors, factor)
|
||||||
|
} else {
|
||||||
|
smooth := (float32(original)/float32(lambda) - factorLow) / (factorHigh - factorLow)
|
||||||
|
p.RopeScaling.factors = append(p.RopeScaling.factors, 1.0/((1-smooth)/factor+smooth))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if p.NumKeyValueHeads > 0 {
|
||||||
|
kv["llama.attention.head_count_kv"] = p.NumKeyValueHeads
|
||||||
|
}
|
||||||
|
|
||||||
|
if p.RMSNormEPS > 0 {
|
||||||
|
kv["llama.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
|
||||||
|
}
|
||||||
|
|
||||||
|
if layerNormEpsilon := cmp.Or(p.LayerNormEPS, p.LayerNormEpsilon, p.NormEpsilon); layerNormEpsilon > 0 {
|
||||||
|
kv["llama.attention.layer_norm_epsilon"] = layerNormEpsilon
|
||||||
|
}
|
||||||
|
|
||||||
|
if p.HeadDim > 0 {
|
||||||
|
kv["llama.attention.key_length"] = p.HeadDim
|
||||||
|
kv["llama.attention.value_length"] = p.HeadDim
|
||||||
|
}
|
||||||
|
|
||||||
|
return kv
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *llamaModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||||
|
var out []*ggml.Tensor
|
||||||
|
|
||||||
|
if p.RopeScaling.factors != nil {
|
||||||
|
out = append(out, &ggml.Tensor{
|
||||||
|
Name: "rope_freqs.weight",
|
||||||
|
Kind: 0,
|
||||||
|
Shape: []uint64{uint64(len(p.RopeScaling.factors))},
|
||||||
|
WriterTo: p.RopeScaling.factors,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, t := range ts {
|
||||||
|
if strings.HasSuffix(t.Name(), "attn_q.weight") || strings.HasSuffix(t.Name(), "attn_k.weight") {
|
||||||
|
if !p.skipRepack {
|
||||||
|
t.SetRepacker(p.repack)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
out = append(out, &ggml.Tensor{
|
||||||
|
Name: t.Name(),
|
||||||
|
Kind: t.Kind(),
|
||||||
|
Shape: t.Shape(),
|
||||||
|
WriterTo: t,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
return out
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *llamaModel) Replacements() []string {
|
||||||
|
return []string{
|
||||||
|
"lm_head", "output",
|
||||||
|
"model.embed_tokens", "token_embd",
|
||||||
|
"model.norm", "output_norm",
|
||||||
|
"model.layers", "blk",
|
||||||
|
"input_layernorm", "attn_norm",
|
||||||
|
"self_attn.q_proj", "attn_q",
|
||||||
|
"self_attn.k_proj", "attn_k",
|
||||||
|
"self_attn.v_proj", "attn_v",
|
||||||
|
"self_attn.o_proj", "attn_output",
|
||||||
|
"mlp.gate_proj", "ffn_gate",
|
||||||
|
"mlp.down_proj", "ffn_down",
|
||||||
|
"mlp.up_proj", "ffn_up",
|
||||||
|
"post_attention_layernorm", "ffn_norm",
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *llamaModel) repack(name string, data []float32, shape []uint64) ([]float32, error) {
|
||||||
|
var dims []int
|
||||||
|
for _, dim := range shape {
|
||||||
|
dims = append(dims, int(dim))
|
||||||
|
}
|
||||||
|
|
||||||
|
var heads uint32
|
||||||
|
if strings.HasSuffix(name, "attn_q.weight") {
|
||||||
|
heads = p.NumAttentionHeads
|
||||||
|
} else if strings.HasSuffix(name, "attn_k.weight") {
|
||||||
|
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
|
||||||
|
} else {
|
||||||
|
return nil, fmt.Errorf("unknown tensor for repack: %s", name)
|
||||||
|
}
|
||||||
|
|
||||||
|
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
||||||
|
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
if err := n.T(0, 2, 1, 3); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
if err := n.Reshape(dims...); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
if err := n.Transpose(); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
ts, err := native.SelectF32(n, 1)
|
||||||
|
if err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
var f32s []float32
|
||||||
|
for _, t := range ts {
|
||||||
|
f32s = append(f32s, t...)
|
||||||
|
}
|
||||||
|
|
||||||
|
return f32s, nil
|
||||||
|
}
|
||||||
169
convert/convert_llama4.go
Normal file
169
convert/convert_llama4.go
Normal file
@@ -0,0 +1,169 @@
|
|||||||
|
package convert
|
||||||
|
|
||||||
|
import (
|
||||||
|
"slices"
|
||||||
|
"strings"
|
||||||
|
|
||||||
|
"github.com/pdevine/tensor"
|
||||||
|
"github.com/pdevine/tensor/native"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/fs/ggml"
|
||||||
|
)
|
||||||
|
|
||||||
|
type llama4Model struct {
|
||||||
|
ModelParameters
|
||||||
|
TextModel struct {
|
||||||
|
llamaModel
|
||||||
|
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
|
||||||
|
NumLocalExperts uint32 `json:"num_local_experts"`
|
||||||
|
InterleaveMOELayerStep uint32 `json:"interleave_moe_layer_step"`
|
||||||
|
UseQKNorm bool `json:"use_qk_norm"`
|
||||||
|
IntermediateSizeMLP uint32 `json:"intermediate_size_mlp"`
|
||||||
|
AttentionChunkSize uint32 `json:"attention_chunk_size"`
|
||||||
|
} `json:"text_config"`
|
||||||
|
VisionModel struct {
|
||||||
|
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||||
|
HiddenSize uint32 `json:"hidden_size"`
|
||||||
|
IntermediateSize uint32 `json:"intermediate_size"`
|
||||||
|
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||||
|
ImageSize uint32 `json:"image_size"`
|
||||||
|
PatchSize uint32 `json:"patch_size"`
|
||||||
|
RopeTheta float32 `json:"rope_theta"`
|
||||||
|
NormEpsilon float32 `json:"norm_eps"`
|
||||||
|
PixelShuffleRatio float32 `json:"pixel_shuffle_ratio"`
|
||||||
|
} `json:"vision_config"`
|
||||||
|
}
|
||||||
|
|
||||||
|
// KV implements ModelConverter.
|
||||||
|
func (p *llama4Model) KV(t *Tokenizer) ggml.KV {
|
||||||
|
kv := p.ModelParameters.KV(t)
|
||||||
|
kv["general.architecture"] = "llama4"
|
||||||
|
|
||||||
|
for k, v := range p.TextModel.KV(t) {
|
||||||
|
if strings.HasPrefix(k, "llama.") {
|
||||||
|
kv[strings.ReplaceAll(k, "llama.", "llama4.")] = v
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
kv["llama4.feed_forward_length"] = p.TextModel.IntermediateSizeMLP
|
||||||
|
kv["llama4.expert_feed_forward_length"] = p.TextModel.IntermediateSize
|
||||||
|
|
||||||
|
kv["llama4.expert_count"] = p.TextModel.NumLocalExperts
|
||||||
|
kv["llama4.expert_used_count"] = p.TextModel.NumExpertsPerToken
|
||||||
|
kv["llama4.interleave_moe_layer_step"] = p.TextModel.InterleaveMOELayerStep
|
||||||
|
kv["llama4.use_qk_norm"] = p.TextModel.UseQKNorm
|
||||||
|
kv["llama4.attention.chunk_size"] = p.TextModel.AttentionChunkSize
|
||||||
|
|
||||||
|
kv["llama4.vision.block_count"] = p.VisionModel.NumHiddenLayers
|
||||||
|
kv["llama4.vision.embedding_length"] = p.VisionModel.HiddenSize
|
||||||
|
kv["llama4.vision.feed_forward_length"] = p.VisionModel.IntermediateSize
|
||||||
|
kv["llama4.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
|
||||||
|
kv["llama4.vision.image_size"] = p.VisionModel.ImageSize
|
||||||
|
kv["llama4.vision.patch_size"] = p.VisionModel.PatchSize
|
||||||
|
kv["llama4.vision.rope.freq_base"] = p.VisionModel.RopeTheta
|
||||||
|
kv["llama4.vision.layer_norm_epsilon"] = p.VisionModel.NormEpsilon
|
||||||
|
kv["llama4.vision.pixel_shuffle_ratio"] = p.VisionModel.PixelShuffleRatio
|
||||||
|
return kv
|
||||||
|
}
|
||||||
|
|
||||||
|
// Replacements implements ModelConverter.
|
||||||
|
func (p *llama4Model) Replacements() []string {
|
||||||
|
return append(
|
||||||
|
p.TextModel.Replacements(),
|
||||||
|
"language_model.", "",
|
||||||
|
"vision_model", "v",
|
||||||
|
"multi_modal_projector", "mm",
|
||||||
|
"feed_forward.down_proj", "ffn_down",
|
||||||
|
"feed_forward.up_proj", "ffn_up",
|
||||||
|
"feed_forward.gate_proj", "ffn_gate",
|
||||||
|
"feed_forward.", "ffn_",
|
||||||
|
"shared_expert.down_proj", "down_shexp",
|
||||||
|
"shared_expert.gate_proj", "gate_shexp",
|
||||||
|
"shared_expert.up_proj", "up_shexp",
|
||||||
|
"experts.down_proj", "down_exps.weight",
|
||||||
|
"experts.gate_up_proj", "gate_up_exps.weight",
|
||||||
|
"router", "gate_inp",
|
||||||
|
"patch_embedding.linear", "patch_embedding",
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
// Tensors implements ModelConverter.
|
||||||
|
func (p *llama4Model) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||||
|
var out []*ggml.Tensor
|
||||||
|
|
||||||
|
var textTensors []Tensor
|
||||||
|
for _, t := range ts {
|
||||||
|
if strings.HasPrefix(t.Name(), "v.") || strings.HasPrefix(t.Name(), "mm.") {
|
||||||
|
out = append(out, &ggml.Tensor{
|
||||||
|
Name: t.Name(),
|
||||||
|
Kind: t.Kind(),
|
||||||
|
Shape: t.Shape(),
|
||||||
|
WriterTo: t,
|
||||||
|
})
|
||||||
|
} else if strings.Contains(t.Name(), "ffn_gate_up_exps") {
|
||||||
|
// gate and up projectors are fused
|
||||||
|
// dims[1], dims[2] must be swapped
|
||||||
|
// [experts, hidden_size, intermediate_size * 2] --> [experts, intermediate_size, hidden_size]
|
||||||
|
halfDim := int(t.Shape()[2]) / 2
|
||||||
|
|
||||||
|
newShape := slices.Clone(t.Shape())
|
||||||
|
newShape[1], newShape[2] = newShape[2]/2, newShape[1]
|
||||||
|
for i, name := range []string{"ffn_gate_exps", "ffn_up_exps"} {
|
||||||
|
// clone tensor since we need separate repackers
|
||||||
|
tt := t.Clone()
|
||||||
|
tt.SetRepacker(p.repack(nil, nil, tensor.S(i*halfDim, (i+1)*halfDim)))
|
||||||
|
out = append(out, &ggml.Tensor{
|
||||||
|
Name: strings.ReplaceAll(tt.Name(), "ffn_gate_up_exps", name),
|
||||||
|
Kind: tt.Kind(),
|
||||||
|
Shape: newShape,
|
||||||
|
WriterTo: tt,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
} else if strings.Contains(t.Name(), "ffn_down_exps") {
|
||||||
|
// dims[1], dims[2] must be swapped
|
||||||
|
// [experts, intermediate_size, hidden_size] --> [experts, hidden_size, intermediate_size]
|
||||||
|
t.SetRepacker(p.repack())
|
||||||
|
newShape := slices.Clone(t.Shape())
|
||||||
|
newShape[1], newShape[2] = newShape[2], newShape[1]
|
||||||
|
out = append(out, &ggml.Tensor{
|
||||||
|
Name: t.Name(),
|
||||||
|
Kind: t.Kind(),
|
||||||
|
Shape: newShape,
|
||||||
|
WriterTo: t,
|
||||||
|
})
|
||||||
|
} else {
|
||||||
|
textTensors = append(textTensors, t)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
p.TextModel.skipRepack = true
|
||||||
|
out = append(out, p.TextModel.Tensors(textTensors)...)
|
||||||
|
return out
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *llama4Model) repack(slice ...tensor.Slice) Repacker {
|
||||||
|
return func(name string, data []float32, shape []uint64) ([]float32, error) {
|
||||||
|
dims := make([]int, len(shape))
|
||||||
|
for i, dim := range shape {
|
||||||
|
dims[i] = int(dim)
|
||||||
|
}
|
||||||
|
|
||||||
|
var t tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
||||||
|
t, err := t.Slice(slice...)
|
||||||
|
if err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
if err := t.T(0, 2, 1); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
t = tensor.Materialize(t)
|
||||||
|
// flatten tensor so it can be return as a vector
|
||||||
|
if err := t.Reshape(t.Shape().TotalSize()); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
return native.VectorF32(t.(*tensor.Dense))
|
||||||
|
}
|
||||||
|
}
|
||||||
169
convert/convert_llama_adapter.go
Normal file
169
convert/convert_llama_adapter.go
Normal file
@@ -0,0 +1,169 @@
|
|||||||
|
package convert
|
||||||
|
|
||||||
|
import (
|
||||||
|
"cmp"
|
||||||
|
"strings"
|
||||||
|
|
||||||
|
"github.com/pdevine/tensor"
|
||||||
|
"github.com/pdevine/tensor/native"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/fs/ggml"
|
||||||
|
)
|
||||||
|
|
||||||
|
type llamaAdapter struct {
|
||||||
|
AdapterParameters
|
||||||
|
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||||
|
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||||
|
}
|
||||||
|
|
||||||
|
var _ AdapterConverter = (*llamaAdapter)(nil)
|
||||||
|
|
||||||
|
func (p *llamaAdapter) KV(baseKV ggml.KV) ggml.KV {
|
||||||
|
kv := p.AdapterParameters.KV()
|
||||||
|
kv["general.architecture"] = "llama"
|
||||||
|
kv["llama.attention.head_count"] = baseKV["llama.attention.head_count"]
|
||||||
|
kv["llama.attention.head_count_kv"] = baseKV["llama.attention.head_count_kv"]
|
||||||
|
|
||||||
|
p.NumAttentionHeads = baseKV["llama.attention.head_count"].(uint32)
|
||||||
|
|
||||||
|
return kv
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *llamaAdapter) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||||
|
var out []*ggml.Tensor
|
||||||
|
for _, t := range ts {
|
||||||
|
shape := t.Shape()
|
||||||
|
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
|
||||||
|
(strings.HasSuffix(t.Name(), "weight.lora_b") && shape[0] < shape[1]) {
|
||||||
|
shape[0], shape[1] = shape[1], shape[0]
|
||||||
|
t.SetRepacker(p.repackAndTranspose)
|
||||||
|
} else {
|
||||||
|
t.SetRepacker(p.repack)
|
||||||
|
}
|
||||||
|
|
||||||
|
out = append(out, &ggml.Tensor{
|
||||||
|
Name: t.Name(),
|
||||||
|
Kind: t.Kind(),
|
||||||
|
Shape: shape,
|
||||||
|
WriterTo: t,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
return out
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *llamaAdapter) Replacements() []string {
|
||||||
|
return []string{
|
||||||
|
"base_model.model.", "",
|
||||||
|
"model.layers", "blk",
|
||||||
|
"self_attn.q_proj", "attn_q",
|
||||||
|
"self_attn.k_proj", "attn_k",
|
||||||
|
"self_attn.v_proj", "attn_v",
|
||||||
|
"self_attn.o_proj", "attn_output",
|
||||||
|
"mlp.gate_proj", "ffn_gate",
|
||||||
|
"mlp.down_proj", "ffn_down",
|
||||||
|
"mlp.up_proj", "ffn_up",
|
||||||
|
"lora_A.weight", "weight.lora_a",
|
||||||
|
"lora_B.weight", "weight.lora_b",
|
||||||
|
"lora_a", "weight.lora_a",
|
||||||
|
"lora_b", "weight.lora_b",
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *llamaAdapter) repack(name string, data []float32, shape []uint64) ([]float32, error) {
|
||||||
|
dims := []int{int(shape[1]), int(shape[0])}
|
||||||
|
|
||||||
|
var heads uint32
|
||||||
|
if strings.HasSuffix(name, "attn_q.weight.lora_a") {
|
||||||
|
heads = p.NumAttentionHeads
|
||||||
|
} else if strings.HasSuffix(name, "attn_k.weight.lora_a") {
|
||||||
|
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
|
||||||
|
} else {
|
||||||
|
return data, nil
|
||||||
|
}
|
||||||
|
|
||||||
|
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
||||||
|
|
||||||
|
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
if err := n.T(0, 2, 1, 3); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
if err := n.Reshape(dims...); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
if err := n.Transpose(); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
ts, err := native.SelectF32(n, 1)
|
||||||
|
if err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
var f32s []float32
|
||||||
|
for _, t := range ts {
|
||||||
|
f32s = append(f32s, t...)
|
||||||
|
}
|
||||||
|
|
||||||
|
return f32s, nil
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *llamaAdapter) repackAndTranspose(name string, data []float32, shape []uint64) ([]float32, error) {
|
||||||
|
dims := []int{int(shape[1]), int(shape[0])}
|
||||||
|
|
||||||
|
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
||||||
|
|
||||||
|
var heads uint32
|
||||||
|
if strings.HasSuffix(name, "attn_q.weight.lora_a") {
|
||||||
|
heads = p.NumAttentionHeads
|
||||||
|
} else if strings.HasSuffix(name, "attn_k.weight.lora_a") {
|
||||||
|
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
|
||||||
|
}
|
||||||
|
|
||||||
|
if heads > 0 {
|
||||||
|
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
if err := n.T(0, 2, 1, 3); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
if err := n.Reshape(dims...); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
if err := n.Transpose(); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if err := n.T(1, 0); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
if err := n.Reshape(dims...); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
if err := n.Transpose(); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
ts, err := native.SelectF32(n, 1)
|
||||||
|
if err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
var f32s []float32
|
||||||
|
for _, t := range ts {
|
||||||
|
f32s = append(f32s, t...)
|
||||||
|
}
|
||||||
|
|
||||||
|
return f32s, nil
|
||||||
|
}
|
||||||
190
convert/convert_mistral.go
Normal file
190
convert/convert_mistral.go
Normal file
@@ -0,0 +1,190 @@
|
|||||||
|
package convert
|
||||||
|
|
||||||
|
import (
|
||||||
|
"cmp"
|
||||||
|
"fmt"
|
||||||
|
"strings"
|
||||||
|
|
||||||
|
"github.com/pdevine/tensor"
|
||||||
|
"github.com/pdevine/tensor/native"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/fs/ggml"
|
||||||
|
)
|
||||||
|
|
||||||
|
type mistral3Model struct {
|
||||||
|
ModelParameters
|
||||||
|
ImageTokenIndex uint32 `json:"image_token_index"`
|
||||||
|
SpatialMergeSize uint32 `json:"spatial_merge_size"`
|
||||||
|
VisionFeatureLayer int32 `json:"vision_feature_layer"`
|
||||||
|
TextModel struct {
|
||||||
|
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||||
|
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||||
|
HiddenSize uint32 `json:"hidden_size"`
|
||||||
|
IntermediateSize uint32 `json:"intermediate_size"`
|
||||||
|
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||||
|
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||||
|
RopeTheta float32 `json:"rope_theta"`
|
||||||
|
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||||
|
HeadDim uint32 `json:"head_dim"`
|
||||||
|
SlidingWindow *uint32 `json:"sliding_window"`
|
||||||
|
HiddenAct string `json:"hidden_act"`
|
||||||
|
VocabSize uint32 `json:"vocab_size"`
|
||||||
|
} `json:"text_config"`
|
||||||
|
VisionModel struct {
|
||||||
|
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||||
|
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||||
|
HiddenSize uint32 `json:"hidden_size"`
|
||||||
|
IntermediateSize uint32 `json:"intermediate_size"`
|
||||||
|
ImageSize uint32 `json:"image_size"`
|
||||||
|
NumChannels uint32 `json:"num_channels"`
|
||||||
|
PatchSize uint32 `json:"patch_size"`
|
||||||
|
HeadDim uint32 `json:"head_dim"`
|
||||||
|
HiddenAct string `json:"hidden_act"`
|
||||||
|
RopeTheta float32 `json:"rope_theta"`
|
||||||
|
} `json:"vision_config"`
|
||||||
|
MultiModalProjectorBias bool `json:"multimodal_projector_bias"`
|
||||||
|
ProjectorHiddenAct string `json:"projector_hidden_act"`
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *mistral3Model) KV(t *Tokenizer) ggml.KV {
|
||||||
|
kv := p.ModelParameters.KV(t)
|
||||||
|
kv["general.architecture"] = "mistral3"
|
||||||
|
kv["mistral3.vocab_size"] = p.TextModel.VocabSize
|
||||||
|
|
||||||
|
// Text configuration
|
||||||
|
kv["mistral3.block_count"] = p.TextModel.NumHiddenLayers
|
||||||
|
kv["mistral3.context_length"] = p.TextModel.MaxPositionEmbeddings
|
||||||
|
kv["mistral3.embedding_length"] = p.TextModel.HiddenSize
|
||||||
|
kv["mistral3.feed_forward_length"] = p.TextModel.IntermediateSize
|
||||||
|
kv["mistral3.attention.head_count"] = p.TextModel.NumAttentionHeads
|
||||||
|
kv["mistral3.attention.head_count_kv"] = p.TextModel.NumKeyValueHeads
|
||||||
|
kv["mistral3.attention.layer_norm_rms_epsilon"] = p.TextModel.RMSNormEPS
|
||||||
|
kv["mistral3.attention.key_length"] = p.TextModel.HeadDim
|
||||||
|
kv["mistral3.attention.value_length"] = p.TextModel.HeadDim
|
||||||
|
kv["mistral3.rope.dimension_count"] = p.TextModel.HiddenSize / p.TextModel.NumHiddenLayers
|
||||||
|
kv["mistral3.rope.freq_base"] = p.TextModel.RopeTheta
|
||||||
|
|
||||||
|
// Vision configuration
|
||||||
|
kv["mistral3.vision.block_count"] = p.VisionModel.NumHiddenLayers
|
||||||
|
kv["mistral3.vision.embedding_length"] = p.VisionModel.HiddenSize
|
||||||
|
kv["mistral3.vision.feed_forward_length"] = p.VisionModel.IntermediateSize
|
||||||
|
kv["mistral3.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
|
||||||
|
kv["mistral3.vision.attention.key_length"] = p.VisionModel.HeadDim
|
||||||
|
kv["mistral3.vision.image_size"] = p.VisionModel.ImageSize
|
||||||
|
kv["mistral3.vision.patch_size"] = p.VisionModel.PatchSize
|
||||||
|
kv["mistral3.vision.num_channels"] = p.VisionModel.NumChannels
|
||||||
|
// kv["mistral3.vision.attention.layer_norm_epsilon"] = 1e-05 // Default value
|
||||||
|
kv["mistral3.vision.rope.freq_base"] = p.VisionModel.RopeTheta
|
||||||
|
|
||||||
|
// Multimodal configuration
|
||||||
|
kv["mistral3.image_token_index"] = p.ImageTokenIndex
|
||||||
|
kv["mistral3.spatial_merge_size"] = p.SpatialMergeSize
|
||||||
|
|
||||||
|
kv["mistral3.mm.projector_bias"] = p.MultiModalProjectorBias
|
||||||
|
|
||||||
|
if p.ProjectorHiddenAct != "" {
|
||||||
|
kv["mistral3.mm.projector_hidden_act"] = p.ProjectorHiddenAct
|
||||||
|
}
|
||||||
|
|
||||||
|
return kv
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *mistral3Model) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||||
|
var out []*ggml.Tensor
|
||||||
|
|
||||||
|
for _, t := range ts {
|
||||||
|
if !strings.HasPrefix(t.Name(), "v.") {
|
||||||
|
if strings.HasSuffix(t.Name(), ".attn_q.weight") ||
|
||||||
|
strings.HasSuffix(t.Name(), ".attn_k.weight") {
|
||||||
|
t.SetRepacker(p.repack)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
out = append(out, &ggml.Tensor{
|
||||||
|
Name: t.Name(),
|
||||||
|
Kind: t.Kind(),
|
||||||
|
Shape: t.Shape(),
|
||||||
|
WriterTo: t,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
return out
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *mistral3Model) Replacements() []string {
|
||||||
|
return []string{
|
||||||
|
"language_model.model.norm", "output_norm",
|
||||||
|
"language_model.model.", "",
|
||||||
|
"language_model.", "",
|
||||||
|
"layers", "blk",
|
||||||
|
"transformer.layers", "blk",
|
||||||
|
"vision_tower", "v",
|
||||||
|
"ln_pre", "encoder_norm",
|
||||||
|
"input_layernorm", "attn_norm",
|
||||||
|
"post_attention_layernorm", "ffn_norm",
|
||||||
|
"embed_tokens", "token_embd",
|
||||||
|
"self_attn.q_proj", "attn_q",
|
||||||
|
"self_attn.k_proj", "attn_k",
|
||||||
|
"self_attn.v_proj", "attn_v",
|
||||||
|
"self_attn.o_proj", "attn_output",
|
||||||
|
"mlp.down_proj", "ffn_down",
|
||||||
|
"mlp.gate_proj", "ffn_gate",
|
||||||
|
"mlp.up_proj", "ffn_up",
|
||||||
|
"attention.q_proj", "attn_q",
|
||||||
|
"attention.k_proj", "attn_k",
|
||||||
|
"attention.v_proj", "attn_v",
|
||||||
|
"attention.o_proj", "attn_output",
|
||||||
|
"attention_norm", "attn_norm",
|
||||||
|
"feed_forward.gate_proj", "ffn_gate",
|
||||||
|
"feed_forward.down_proj", "ffn_down",
|
||||||
|
"feed_forward.up_proj", "ffn_up",
|
||||||
|
"multi_modal_projector", "mm",
|
||||||
|
"ffn_norm", "ffn_norm",
|
||||||
|
"lm_head", "output",
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *mistral3Model) repack(name string, data []float32, shape []uint64) ([]float32, error) {
|
||||||
|
var dims []int
|
||||||
|
for _, dim := range shape {
|
||||||
|
dims = append(dims, int(dim))
|
||||||
|
}
|
||||||
|
|
||||||
|
var heads uint32
|
||||||
|
if strings.HasSuffix(name, ".attn_q.weight") {
|
||||||
|
heads = p.TextModel.NumAttentionHeads
|
||||||
|
} else if strings.HasSuffix(name, ".attn_k.weight") {
|
||||||
|
heads = cmp.Or(p.TextModel.NumKeyValueHeads, p.TextModel.NumAttentionHeads)
|
||||||
|
} else {
|
||||||
|
return nil, fmt.Errorf("unknown tensor for repack: %s", name)
|
||||||
|
}
|
||||||
|
|
||||||
|
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
||||||
|
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
if err := n.T(0, 2, 1, 3); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
if err := n.Reshape(dims...); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
if err := n.Transpose(); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
ts, err := native.SelectF32(n, 1)
|
||||||
|
if err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
var f32s []float32
|
||||||
|
for _, t := range ts {
|
||||||
|
f32s = append(f32s, t...)
|
||||||
|
}
|
||||||
|
|
||||||
|
return f32s, nil
|
||||||
|
}
|
||||||
94
convert/convert_mixtral.go
Normal file
94
convert/convert_mixtral.go
Normal file
@@ -0,0 +1,94 @@
|
|||||||
|
package convert
|
||||||
|
|
||||||
|
import (
|
||||||
|
"fmt"
|
||||||
|
"io"
|
||||||
|
"slices"
|
||||||
|
"strings"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/fs/ggml"
|
||||||
|
)
|
||||||
|
|
||||||
|
type mixtralModel struct {
|
||||||
|
llamaModel
|
||||||
|
NumLocalExperts uint32 `json:"num_local_experts"`
|
||||||
|
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *mixtralModel) KV(t *Tokenizer) ggml.KV {
|
||||||
|
kv := p.llamaModel.KV(t)
|
||||||
|
|
||||||
|
if p.NumLocalExperts > 0 {
|
||||||
|
kv["llama.expert_count"] = p.NumLocalExperts
|
||||||
|
}
|
||||||
|
|
||||||
|
if p.NumExpertsPerToken > 0 {
|
||||||
|
kv["llama.expert_used_count"] = p.NumExpertsPerToken
|
||||||
|
}
|
||||||
|
|
||||||
|
return kv
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *mixtralModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||||
|
oldnew := []string{
|
||||||
|
"model.layers", "blk",
|
||||||
|
"w1", "ffn_gate_exps",
|
||||||
|
"w2", "ffn_down_exps",
|
||||||
|
"w3", "ffn_up_exps",
|
||||||
|
}
|
||||||
|
|
||||||
|
for i := range p.NumLocalExperts {
|
||||||
|
oldnew = append(oldnew, fmt.Sprintf(".block_sparse_moe.experts.%d.", i), ".")
|
||||||
|
}
|
||||||
|
|
||||||
|
// group experts of the same layer (model.layers.%d) and type (w[123]) into a single tensor
|
||||||
|
namer := strings.NewReplacer(oldnew...)
|
||||||
|
experts := make(map[string]experts)
|
||||||
|
|
||||||
|
// merge experts into a single tensor while removing them from ts
|
||||||
|
ts = slices.DeleteFunc(ts, func(t Tensor) bool {
|
||||||
|
if !strings.Contains(t.Name(), ".block_sparse_moe.experts.") {
|
||||||
|
return false
|
||||||
|
}
|
||||||
|
|
||||||
|
name := namer.Replace(t.Name())
|
||||||
|
experts[name] = append(experts[name], t)
|
||||||
|
return true
|
||||||
|
})
|
||||||
|
|
||||||
|
var out []*ggml.Tensor
|
||||||
|
for n, e := range experts {
|
||||||
|
// TODO(mxyng): sanity check experts
|
||||||
|
out = append(out, &ggml.Tensor{
|
||||||
|
Name: n,
|
||||||
|
Kind: e[0].Kind(),
|
||||||
|
Shape: append([]uint64{uint64(len(e))}, e[0].Shape()...),
|
||||||
|
WriterTo: e,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
return append(out, p.llamaModel.Tensors(ts)...)
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *mixtralModel) Replacements() []string {
|
||||||
|
return append(
|
||||||
|
p.llamaModel.Replacements(),
|
||||||
|
"block_sparse_moe.gate", "ffn_gate_inp",
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
type experts []Tensor
|
||||||
|
|
||||||
|
func (e experts) WriteTo(w io.Writer) (int64, error) {
|
||||||
|
// TODO(mxyng): experts _should_ be numerically sorted by expert but this should check
|
||||||
|
for _, t := range e {
|
||||||
|
// the canonical merged experts tensor stacks all experts along a new, 0 axis,
|
||||||
|
// e.g. `tensor.Stack(0, e[0], e[1:]...)`, which requires allocating temporary buffers
|
||||||
|
// this accomplishes the same thing by writing each expert tensor in sequence
|
||||||
|
if _, err := t.WriteTo(w); err != nil {
|
||||||
|
return 0, err
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return 0, nil
|
||||||
|
}
|
||||||
122
convert/convert_phi3.go
Normal file
122
convert/convert_phi3.go
Normal file
@@ -0,0 +1,122 @@
|
|||||||
|
package convert
|
||||||
|
|
||||||
|
import (
|
||||||
|
"cmp"
|
||||||
|
"encoding/binary"
|
||||||
|
"io"
|
||||||
|
"math"
|
||||||
|
"strings"
|
||||||
|
"sync"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/fs/ggml"
|
||||||
|
)
|
||||||
|
|
||||||
|
type phi3Model struct {
|
||||||
|
ModelParameters
|
||||||
|
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||||
|
NLayers uint32 `json:"n_layers"`
|
||||||
|
HiddenSize uint32 `json:"hidden_size"`
|
||||||
|
NEmbd uint32 `json:"n_embd"`
|
||||||
|
IntermediateSize uint32 `json:"intermediate_size"`
|
||||||
|
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||||
|
NHead uint32 `json:"n_head"`
|
||||||
|
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||||
|
NHeadKV uint32 `json:"n_head_kv"`
|
||||||
|
RopeTheta float32 `json:"rope_theta"`
|
||||||
|
RopeScaling struct {
|
||||||
|
Type string `json:"type"`
|
||||||
|
LongFactor ropeFactor `json:"long_factor"`
|
||||||
|
ShortFactor ropeFactor `json:"short_factor"`
|
||||||
|
} `json:"rope_scaling"`
|
||||||
|
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||||
|
NPositions uint32 `json:"n_positions"`
|
||||||
|
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||||
|
OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
|
||||||
|
SlidingWindow uint32 `json:"sliding_window"`
|
||||||
|
}
|
||||||
|
|
||||||
|
var _ ModelConverter = (*phi3Model)(nil)
|
||||||
|
|
||||||
|
func (p *phi3Model) KV(t *Tokenizer) ggml.KV {
|
||||||
|
kv := p.ModelParameters.KV(t)
|
||||||
|
kv["general.architecture"] = "phi3"
|
||||||
|
kv["phi3.context_length"] = p.MaxPositionEmbeddings
|
||||||
|
kv["phi3.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd)
|
||||||
|
kv["phi3.feed_forward_length"] = p.IntermediateSize
|
||||||
|
kv["phi3.block_count"] = cmp.Or(p.NumHiddenLayers, p.NLayers)
|
||||||
|
kv["phi3.attention.head_count"] = cmp.Or(p.NumAttentionHeads, p.NHead)
|
||||||
|
kv["phi3.attention.head_count_kv"] = cmp.Or(p.NumKeyValueHeads, p.NHeadKV)
|
||||||
|
kv["phi3.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
|
||||||
|
kv["phi3.rope.dimension_count"] = p.HiddenSize / cmp.Or(p.NumAttentionHeads, p.NHead)
|
||||||
|
kv["phi3.rope.freq_base"] = p.RopeTheta
|
||||||
|
kv["phi3.rope.scaling.original_context_length"] = p.OriginalMaxPositionEmbeddings
|
||||||
|
kv["phi3.attention.sliding_window"] = p.SlidingWindow
|
||||||
|
|
||||||
|
scale := float64(p.MaxPositionEmbeddings) / float64(p.OriginalMaxPositionEmbeddings)
|
||||||
|
|
||||||
|
switch p.RopeScaling.Type {
|
||||||
|
case "":
|
||||||
|
// no scaling
|
||||||
|
case "su", "longrope":
|
||||||
|
kv["phi3.rope.scaling.attn_factor"] = float32(max(math.Sqrt(1+math.Log(scale)/math.Log(float64(p.OriginalMaxPositionEmbeddings))), 1.0))
|
||||||
|
case "yarn":
|
||||||
|
kv["phi3.rope.scaling.attn_factor"] = float32(max(0.1*math.Log(scale)+1.0, 1.0))
|
||||||
|
default:
|
||||||
|
panic("unknown rope scaling type")
|
||||||
|
}
|
||||||
|
|
||||||
|
return kv
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *phi3Model) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||||
|
var addRopeFactors sync.Once
|
||||||
|
|
||||||
|
out := make([]*ggml.Tensor, 0, len(ts)+2)
|
||||||
|
for _, t := range ts {
|
||||||
|
if strings.HasPrefix(t.Name(), "blk.0.") {
|
||||||
|
addRopeFactors.Do(func() {
|
||||||
|
out = append(out, &ggml.Tensor{
|
||||||
|
Name: "rope_factors_long.weight",
|
||||||
|
Kind: 0,
|
||||||
|
Shape: []uint64{uint64(len(p.RopeScaling.LongFactor))},
|
||||||
|
WriterTo: p.RopeScaling.LongFactor,
|
||||||
|
}, &ggml.Tensor{
|
||||||
|
Name: "rope_factors_short.weight",
|
||||||
|
Kind: 0,
|
||||||
|
Shape: []uint64{uint64(len(p.RopeScaling.ShortFactor))},
|
||||||
|
WriterTo: p.RopeScaling.ShortFactor,
|
||||||
|
})
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
out = append(out, &ggml.Tensor{
|
||||||
|
Name: t.Name(),
|
||||||
|
Kind: t.Kind(),
|
||||||
|
Shape: t.Shape(),
|
||||||
|
WriterTo: t,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
return out
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *phi3Model) Replacements() []string {
|
||||||
|
return []string{
|
||||||
|
"lm_head", "output",
|
||||||
|
"model.embed_tokens", "token_embd",
|
||||||
|
"model.norm", "output_norm",
|
||||||
|
"model.layers", "blk",
|
||||||
|
"input_layernorm", "attn_norm",
|
||||||
|
"self_attn.qkv_proj", "attn_qkv",
|
||||||
|
"self_attn.o_proj", "attn_output",
|
||||||
|
"mlp.down_proj", "ffn_down",
|
||||||
|
"mlp.gate_up_proj", "ffn_up",
|
||||||
|
"post_attention_layernorm", "ffn_norm",
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
type ropeFactor []float32
|
||||||
|
|
||||||
|
func (r ropeFactor) WriteTo(w io.Writer) (int64, error) {
|
||||||
|
return 0, binary.Write(w, binary.LittleEndian, r)
|
||||||
|
}
|
||||||
78
convert/convert_qwen2.go
Normal file
78
convert/convert_qwen2.go
Normal file
@@ -0,0 +1,78 @@
|
|||||||
|
package convert
|
||||||
|
|
||||||
|
import "github.com/ollama/ollama/fs/ggml"
|
||||||
|
|
||||||
|
type qwen2Model struct {
|
||||||
|
ModelParameters
|
||||||
|
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||||
|
HiddenSize uint32 `json:"hidden_size"`
|
||||||
|
HiddenLayers uint32 `json:"num_hidden_layers"`
|
||||||
|
IntermediateSize uint32 `json:"intermediate_size"`
|
||||||
|
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||||
|
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||||
|
RopeTheta float32 `json:"rope_theta"`
|
||||||
|
RopeScaling struct {
|
||||||
|
Type string `json:"type"`
|
||||||
|
Factor ropeFactor `json:"factor"`
|
||||||
|
OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
|
||||||
|
} `json:"rope_scaling"`
|
||||||
|
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||||
|
}
|
||||||
|
|
||||||
|
var _ ModelConverter = (*qwen2Model)(nil)
|
||||||
|
|
||||||
|
func (q *qwen2Model) KV(t *Tokenizer) ggml.KV {
|
||||||
|
kv := q.ModelParameters.KV(t)
|
||||||
|
kv["general.architecture"] = "qwen2"
|
||||||
|
kv["qwen2.block_count"] = q.HiddenLayers
|
||||||
|
kv["qwen2.context_length"] = q.MaxPositionEmbeddings
|
||||||
|
kv["qwen2.embedding_length"] = q.HiddenSize
|
||||||
|
kv["qwen2.feed_forward_length"] = q.IntermediateSize
|
||||||
|
kv["qwen2.attention.head_count"] = q.NumAttentionHeads
|
||||||
|
kv["qwen2.attention.head_count_kv"] = q.NumKeyValueHeads
|
||||||
|
kv["qwen2.rope.freq_base"] = q.RopeTheta
|
||||||
|
kv["qwen2.attention.layer_norm_rms_epsilon"] = q.RMSNormEPS
|
||||||
|
|
||||||
|
switch q.RopeScaling.Type {
|
||||||
|
case "":
|
||||||
|
// no scaling
|
||||||
|
case "yarn":
|
||||||
|
kv["qwen2.rope.scaling.type"] = q.RopeScaling.Type
|
||||||
|
kv["qwen2.rope.scaling.factor"] = q.RopeScaling.Factor
|
||||||
|
default:
|
||||||
|
panic("unknown rope scaling type")
|
||||||
|
}
|
||||||
|
return kv
|
||||||
|
}
|
||||||
|
|
||||||
|
func (q *qwen2Model) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||||
|
var out []*ggml.Tensor
|
||||||
|
for _, t := range ts {
|
||||||
|
out = append(out, &ggml.Tensor{
|
||||||
|
Name: t.Name(),
|
||||||
|
Kind: t.Kind(),
|
||||||
|
Shape: t.Shape(),
|
||||||
|
WriterTo: t,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
return out
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *qwen2Model) Replacements() []string {
|
||||||
|
return []string{
|
||||||
|
"lm_head", "output",
|
||||||
|
"model.embed_tokens", "token_embd",
|
||||||
|
"model.layers", "blk",
|
||||||
|
"input_layernorm", "attn_norm",
|
||||||
|
"self_attn.k_proj", "attn_k",
|
||||||
|
"self_attn.v_proj", "attn_v",
|
||||||
|
"self_attn.q_proj", "attn_q",
|
||||||
|
"self_attn.o_proj", "attn_output",
|
||||||
|
"mlp.down_proj", "ffn_down",
|
||||||
|
"mlp.gate_proj", "ffn_gate",
|
||||||
|
"mlp.up_proj", "ffn_up",
|
||||||
|
"post_attention_layernorm", "ffn_norm",
|
||||||
|
"model.norm", "output_norm",
|
||||||
|
}
|
||||||
|
}
|
||||||
478
convert/convert_test.go
Normal file
478
convert/convert_test.go
Normal file
@@ -0,0 +1,478 @@
|
|||||||
|
package convert
|
||||||
|
|
||||||
|
import (
|
||||||
|
"bytes"
|
||||||
|
"crypto/sha256"
|
||||||
|
"encoding/binary"
|
||||||
|
"encoding/hex"
|
||||||
|
"encoding/json"
|
||||||
|
"flag"
|
||||||
|
"fmt"
|
||||||
|
"io"
|
||||||
|
"io/fs"
|
||||||
|
"log/slog"
|
||||||
|
"os"
|
||||||
|
"path/filepath"
|
||||||
|
"slices"
|
||||||
|
"strings"
|
||||||
|
"testing"
|
||||||
|
|
||||||
|
"golang.org/x/exp/maps"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/fs/ggml"
|
||||||
|
)
|
||||||
|
|
||||||
|
type tensorData struct {
|
||||||
|
Offsets []int `json:"data_offsets"`
|
||||||
|
Type string `json:"dtype"`
|
||||||
|
Shape []int `json:"shape"`
|
||||||
|
}
|
||||||
|
|
||||||
|
func convertFull(t *testing.T, fsys fs.FS) (*os.File, ggml.KV, ggml.Tensors) {
|
||||||
|
t.Helper()
|
||||||
|
|
||||||
|
f, err := os.CreateTemp(t.TempDir(), "f16")
|
||||||
|
if err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
defer f.Close()
|
||||||
|
|
||||||
|
if err := ConvertModel(fsys, f); err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
r, err := os.Open(f.Name())
|
||||||
|
if err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
t.Cleanup(func() { r.Close() })
|
||||||
|
|
||||||
|
m, _, err := ggml.Decode(r, -1)
|
||||||
|
if err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
if _, err := r.Seek(0, io.SeekStart); err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
return r, m.KV(), m.Tensors()
|
||||||
|
}
|
||||||
|
|
||||||
|
func generateResultsJSON(t *testing.T, f *os.File, kv ggml.KV, tensors ggml.Tensors) map[string]string {
|
||||||
|
actual := make(map[string]string)
|
||||||
|
for k, v := range kv {
|
||||||
|
if s, ok := v.(json.Marshaler); !ok {
|
||||||
|
actual[k] = fmt.Sprintf("%v", v)
|
||||||
|
} else {
|
||||||
|
bts, err := json.Marshal(s)
|
||||||
|
if err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
actual[k] = fmt.Sprintf("%x", sha256.Sum256(bts))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, tensor := range tensors.Items() {
|
||||||
|
sha256sum := sha256.New()
|
||||||
|
sr := io.NewSectionReader(f, int64(tensors.Offset+tensor.Offset), int64(tensor.Size()))
|
||||||
|
if _, err := io.Copy(sha256sum, sr); err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
actual[tensor.Name] = hex.EncodeToString(sha256sum.Sum(nil))
|
||||||
|
}
|
||||||
|
|
||||||
|
return actual
|
||||||
|
}
|
||||||
|
|
||||||
|
func TestMain(m *testing.M) {
|
||||||
|
var level slog.Level
|
||||||
|
flag.TextVar(&level, "level", slog.LevelInfo, "log level")
|
||||||
|
flag.Parse()
|
||||||
|
slog.SetLogLoggerLevel(level)
|
||||||
|
os.Exit(m.Run())
|
||||||
|
}
|
||||||
|
|
||||||
|
func TestConvertModel(t *testing.T) {
|
||||||
|
cases := []string{
|
||||||
|
"Meta-Llama-3-8B-Instruct",
|
||||||
|
"Meta-Llama-3.1-8B-Instruct",
|
||||||
|
"Mistral-7B-Instruct-v0.2",
|
||||||
|
"Mixtral-8x7B-Instruct-v0.1",
|
||||||
|
"gemma-2b-it",
|
||||||
|
"gemma-2-2b-it",
|
||||||
|
// microsoft/Phi-3-mini-128-instruct@d548c233192db00165d842bf8edff054bb3212f8
|
||||||
|
"Phi-3-mini-128k-instruct",
|
||||||
|
"all-MiniLM-L6-v2",
|
||||||
|
"gemma-2-9b-it",
|
||||||
|
"Qwen2.5-0.5B-Instruct",
|
||||||
|
"c4ai-command-r-v01",
|
||||||
|
}
|
||||||
|
|
||||||
|
for i := range cases {
|
||||||
|
tt := cases[i]
|
||||||
|
t.Run(tt, func(t *testing.T) {
|
||||||
|
t.Parallel()
|
||||||
|
|
||||||
|
p := filepath.Join("testdata", tt)
|
||||||
|
if testing.Short() {
|
||||||
|
t.Skip("skipping in short mode")
|
||||||
|
} else if _, err := os.Stat(p); err != nil {
|
||||||
|
t.Skipf("%s not found", p)
|
||||||
|
}
|
||||||
|
|
||||||
|
f, kv, tensors := convertFull(t, os.DirFS(p))
|
||||||
|
actual := generateResultsJSON(t, f, kv, tensors)
|
||||||
|
|
||||||
|
expectFile, err := os.Open(filepath.Join("testdata", fmt.Sprintf("%s.json", tt)))
|
||||||
|
if err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
defer expectFile.Close()
|
||||||
|
|
||||||
|
var expect map[string]string
|
||||||
|
if err := json.NewDecoder(expectFile).Decode(&expect); err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
keys := maps.Keys(expect)
|
||||||
|
slices.Sort(keys)
|
||||||
|
for _, k := range keys {
|
||||||
|
if v, ok := actual[k]; !ok {
|
||||||
|
t.Errorf("missing %s", k)
|
||||||
|
} else if v != expect[k] {
|
||||||
|
t.Errorf("unexpected %s: want %s, got %s", k, expect[k], v)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func TestConvertInvalidTensorNames(t *testing.T) {
|
||||||
|
f, err := os.CreateTemp(t.TempDir(), "testmodel")
|
||||||
|
if err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
defer f.Close()
|
||||||
|
|
||||||
|
tempDir := t.TempDir()
|
||||||
|
|
||||||
|
td := map[string]*tensorData{}
|
||||||
|
offset := 4096
|
||||||
|
|
||||||
|
td["model.layers.0.self_attn.q_proj.weight"] = &tensorData{
|
||||||
|
Offsets: []int{0, offset},
|
||||||
|
Type: "F32",
|
||||||
|
Shape: []int{4096, 4096},
|
||||||
|
}
|
||||||
|
td["blk.0.attn_q.weight"] = &tensorData{
|
||||||
|
Offsets: []int{offset, offset * 2},
|
||||||
|
Type: "F32",
|
||||||
|
Shape: []int{4096, 4096},
|
||||||
|
}
|
||||||
|
generateSafetensorTestData(t, tempDir, td)
|
||||||
|
|
||||||
|
err = ConvertModel(os.DirFS(tempDir), f)
|
||||||
|
if err == nil || !strings.HasPrefix(err.Error(), "duplicate tensor name") {
|
||||||
|
t.Errorf("expected error but didn't get one")
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func TestConvertInvalidDatatype(t *testing.T) {
|
||||||
|
f, err := os.CreateTemp(t.TempDir(), "testmodel")
|
||||||
|
if err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
defer f.Close()
|
||||||
|
|
||||||
|
tempDir := t.TempDir()
|
||||||
|
|
||||||
|
td := map[string]*tensorData{}
|
||||||
|
offset := 4096 * 14336
|
||||||
|
|
||||||
|
td["model.layers.0.mlp.down_proj.weight"] = &tensorData{
|
||||||
|
Offsets: []int{0, offset},
|
||||||
|
Type: "I8",
|
||||||
|
Shape: []int{4096, 14336},
|
||||||
|
}
|
||||||
|
td["model.layers.0.mlp.down_proj.weight_format"] = &tensorData{
|
||||||
|
Offsets: []int{offset, offset},
|
||||||
|
Type: "U8",
|
||||||
|
Shape: []int{},
|
||||||
|
}
|
||||||
|
generateSafetensorTestData(t, tempDir, td)
|
||||||
|
|
||||||
|
err = ConvertModel(os.DirFS(tempDir), f)
|
||||||
|
if err == nil || err.Error() != "unsupported safetensors model" {
|
||||||
|
t.Errorf("expected error but didn't get one")
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func generateSafetensorTestData(t *testing.T, tempDir string, tensorData map[string]*tensorData) {
|
||||||
|
data, err := json.Marshal(tensorData)
|
||||||
|
if err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
var buf bytes.Buffer
|
||||||
|
|
||||||
|
l := int64(len(data))
|
||||||
|
err = binary.Write(&buf, binary.LittleEndian, l)
|
||||||
|
if err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
_, err = buf.Write(data)
|
||||||
|
if err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
fdata, err := os.Create(filepath.Join(tempDir, "model-00001-of-00001.safetensors"))
|
||||||
|
if err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
defer fdata.Close()
|
||||||
|
|
||||||
|
_, err = fdata.Write(buf.Bytes())
|
||||||
|
if err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
configData := `
|
||||||
|
{
|
||||||
|
"architectures": [
|
||||||
|
"LlamaForCausalLM"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
`
|
||||||
|
|
||||||
|
f, err := os.Create(filepath.Join(tempDir, "config.json"))
|
||||||
|
if err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
defer f.Close()
|
||||||
|
|
||||||
|
_, err = f.WriteString(configData)
|
||||||
|
if err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
tokenizerData := `
|
||||||
|
{
|
||||||
|
}
|
||||||
|
`
|
||||||
|
|
||||||
|
f, err = os.Create(filepath.Join(tempDir, "tokenizer.json"))
|
||||||
|
if err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
defer f.Close()
|
||||||
|
|
||||||
|
_, err = f.WriteString(tokenizerData)
|
||||||
|
if err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func TestConvertAdapter(t *testing.T) {
|
||||||
|
type AdapterCase struct {
|
||||||
|
Name string
|
||||||
|
BaseKV map[string]any
|
||||||
|
Expected map[string]string
|
||||||
|
}
|
||||||
|
|
||||||
|
cases := []AdapterCase{
|
||||||
|
{
|
||||||
|
Name: "discollama",
|
||||||
|
BaseKV: map[string]any{
|
||||||
|
"general.architecture": "llama",
|
||||||
|
"llama.attention.head_count": uint32(32),
|
||||||
|
"llama.attention.head_count_kv": uint32(8),
|
||||||
|
},
|
||||||
|
Expected: map[string]string{
|
||||||
|
"general.architecture": "llama",
|
||||||
|
"general.file_type": "1",
|
||||||
|
"general.parameter_count": "106496",
|
||||||
|
"general.type": "adapter",
|
||||||
|
"general.version": "v0.2",
|
||||||
|
"adapter.lora.alpha": "16",
|
||||||
|
"adapter.type": "lora",
|
||||||
|
"llama.attention.head_count": "32",
|
||||||
|
"llama.attention.head_count_kv": "8",
|
||||||
|
"blk.31.attn_q.weight.lora_a": "0eb3318b02cd313429bcc7621b539fdbb10240fea190c56c9e5f93fcd37a4e50",
|
||||||
|
"blk.31.attn_q.weight.lora_b": "0eb3318b02cd313429bcc7621b539fdbb10240fea190c56c9e5f93fcd37a4e50",
|
||||||
|
"blk.31.attn_v.weight.lora_a": "0eb3318b02cd313429bcc7621b539fdbb10240fea190c56c9e5f93fcd37a4e50",
|
||||||
|
"blk.31.attn_v.weight.lora_b": "071dcafe89df065d6e1c935ecb8fdf6479b3c202eb912e7da938597673ff5857",
|
||||||
|
},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, c := range cases {
|
||||||
|
t.Run(c.Name, func(t *testing.T) {
|
||||||
|
t.Parallel()
|
||||||
|
|
||||||
|
f, err := os.CreateTemp(t.TempDir(), "f16")
|
||||||
|
if err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
defer f.Close()
|
||||||
|
|
||||||
|
tempDir := t.TempDir()
|
||||||
|
generateLoraTestData(t, tempDir)
|
||||||
|
|
||||||
|
if err = ConvertAdapter(os.DirFS(tempDir), f, c.BaseKV); err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
r, err := os.Open(f.Name())
|
||||||
|
if err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
defer r.Close()
|
||||||
|
|
||||||
|
m, _, err := ggml.Decode(r, -1)
|
||||||
|
if err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
if _, err := r.Seek(0, io.SeekStart); err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
actual := generateResultsJSON(t, r, m.KV(), m.Tensors())
|
||||||
|
|
||||||
|
keys := maps.Keys(c.Expected)
|
||||||
|
slices.Sort(keys)
|
||||||
|
for _, k := range keys {
|
||||||
|
if v, ok := actual[k]; !ok {
|
||||||
|
t.Errorf("missing %s", k)
|
||||||
|
} else if v != c.Expected[k] {
|
||||||
|
t.Errorf("unexpected %s: want %s, got %s", k, c.Expected[k], v)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func generateLoraTestData(t *testing.T, tempDir string) {
|
||||||
|
offset := 4096 * 8 * 4
|
||||||
|
|
||||||
|
td := map[string]*tensorData{"__metadata__": nil}
|
||||||
|
td["model.layers.31.self_attn.q_proj.lora_a"] = &tensorData{
|
||||||
|
Offsets: []int{0, offset},
|
||||||
|
Type: "F32",
|
||||||
|
Shape: []int{4096, 8},
|
||||||
|
}
|
||||||
|
td["model.layers.31.self_attn.q_proj.lora_b"] = &tensorData{
|
||||||
|
Offsets: []int{offset, offset * 2},
|
||||||
|
Type: "F32",
|
||||||
|
Shape: []int{8, 4096},
|
||||||
|
}
|
||||||
|
td["model.layers.31.self_attn.v_proj.lora_a"] = &tensorData{
|
||||||
|
Offsets: []int{offset * 2, offset * 3},
|
||||||
|
Type: "F32",
|
||||||
|
Shape: []int{4096, 8},
|
||||||
|
}
|
||||||
|
td["model.layers.31.self_attn.v_proj.lora_b"] = &tensorData{
|
||||||
|
Offsets: []int{offset * 3, offset*3 + 8*1024*4},
|
||||||
|
Type: "F32",
|
||||||
|
Shape: []int{8, 1024},
|
||||||
|
}
|
||||||
|
|
||||||
|
data, err := json.Marshal(td)
|
||||||
|
if err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
var buf bytes.Buffer
|
||||||
|
|
||||||
|
l := int64(len(data))
|
||||||
|
err = binary.Write(&buf, binary.LittleEndian, l)
|
||||||
|
if err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
_, err = buf.Write(data)
|
||||||
|
if err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
// write some data for the tensors
|
||||||
|
|
||||||
|
ones := make([]float32, 4096*8)
|
||||||
|
for i := range ones {
|
||||||
|
ones[i] = float32(1)
|
||||||
|
}
|
||||||
|
|
||||||
|
for range 3 {
|
||||||
|
err = binary.Write(&buf, binary.LittleEndian, ones)
|
||||||
|
if err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
ones = make([]float32, 1024*8)
|
||||||
|
for i := range ones {
|
||||||
|
ones[i] = float32(1)
|
||||||
|
}
|
||||||
|
|
||||||
|
err = binary.Write(&buf, binary.LittleEndian, ones)
|
||||||
|
if err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
fdata, err := os.Create(filepath.Join(tempDir, "adapters.safetensors"))
|
||||||
|
if err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
defer fdata.Close()
|
||||||
|
|
||||||
|
_, err = fdata.Write(buf.Bytes())
|
||||||
|
if err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
configData := `
|
||||||
|
{
|
||||||
|
"adapter_path": "adapters-test",
|
||||||
|
"batch_size": 8,
|
||||||
|
"config": "config-tiny.json",
|
||||||
|
"data": "../discollama-completion",
|
||||||
|
"grad_checkpoint": null,
|
||||||
|
"iters": 1000,
|
||||||
|
"learning_rate": 1e-05,
|
||||||
|
"lora_layers": 1,
|
||||||
|
"lora_parameters": {
|
||||||
|
"rank": 8,
|
||||||
|
"alpha": 16,
|
||||||
|
"dropout": 0.0,
|
||||||
|
"scale": 2.0
|
||||||
|
},
|
||||||
|
"lr_schedule": null,
|
||||||
|
"max_seq_length": 2048,
|
||||||
|
"model": "/Users/pdevine/git/Meta-Llama-3-8B-Instruct",
|
||||||
|
"resume_adapter_file": null,
|
||||||
|
"save_every": 100,
|
||||||
|
"seed": 0,
|
||||||
|
"steps_per_eval": 200,
|
||||||
|
"steps_per_report": 10,
|
||||||
|
"test": false,
|
||||||
|
"test_batches": 500,
|
||||||
|
"train": true,
|
||||||
|
"use_dora": false,
|
||||||
|
"val_batches": 25
|
||||||
|
}
|
||||||
|
`
|
||||||
|
f, err := os.Create(filepath.Join(tempDir, "adapter_config.json"))
|
||||||
|
if err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
defer f.Close()
|
||||||
|
|
||||||
|
_, err = f.WriteString(configData)
|
||||||
|
if err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
}
|
||||||
85
convert/reader.go
Normal file
85
convert/reader.go
Normal file
@@ -0,0 +1,85 @@
|
|||||||
|
package convert
|
||||||
|
|
||||||
|
import (
|
||||||
|
"errors"
|
||||||
|
"io"
|
||||||
|
"io/fs"
|
||||||
|
"strings"
|
||||||
|
)
|
||||||
|
|
||||||
|
type Tensor interface {
|
||||||
|
Name() string
|
||||||
|
Shape() []uint64
|
||||||
|
Kind() uint32
|
||||||
|
SetRepacker(Repacker)
|
||||||
|
WriteTo(io.Writer) (int64, error)
|
||||||
|
Clone() Tensor
|
||||||
|
}
|
||||||
|
|
||||||
|
type tensorBase struct {
|
||||||
|
name string
|
||||||
|
shape []uint64
|
||||||
|
repacker Repacker
|
||||||
|
}
|
||||||
|
|
||||||
|
func (t tensorBase) Name() string {
|
||||||
|
return t.name
|
||||||
|
}
|
||||||
|
|
||||||
|
func (t tensorBase) Shape() []uint64 {
|
||||||
|
return t.shape
|
||||||
|
}
|
||||||
|
|
||||||
|
const (
|
||||||
|
tensorKindF32 uint32 = iota
|
||||||
|
tensorKindF16
|
||||||
|
)
|
||||||
|
|
||||||
|
func (t tensorBase) Kind() uint32 {
|
||||||
|
if strings.HasSuffix(t.name, ".ffn_gate_inp.weight") ||
|
||||||
|
t.name == "token_types.weight" ||
|
||||||
|
t.name == "v.positional_embedding_vlm" {
|
||||||
|
// these tensors are always F32
|
||||||
|
return 0
|
||||||
|
}
|
||||||
|
|
||||||
|
switch len(t.shape) {
|
||||||
|
case 0:
|
||||||
|
panic("invalid tensor shape")
|
||||||
|
case 1:
|
||||||
|
return tensorKindF32
|
||||||
|
default:
|
||||||
|
return tensorKindF16
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func (t *tensorBase) SetRepacker(fn Repacker) {
|
||||||
|
t.repacker = fn
|
||||||
|
}
|
||||||
|
|
||||||
|
type Repacker func(string, []float32, []uint64) ([]float32, error)
|
||||||
|
|
||||||
|
func parseTensors(fsys fs.FS, replacer *strings.Replacer) ([]Tensor, error) {
|
||||||
|
patterns := []struct {
|
||||||
|
Pattern string
|
||||||
|
Func func(fs.FS, *strings.Replacer, ...string) ([]Tensor, error)
|
||||||
|
}{
|
||||||
|
{"*.safetensors", parseSafetensors},
|
||||||
|
{"pytorch_model-*-of-*.bin", parseTorch},
|
||||||
|
{"pytorch_model.bin", parseTorch},
|
||||||
|
{"consolidated.*.pth", parseTorch},
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, pattern := range patterns {
|
||||||
|
matches, err := fs.Glob(fsys, pattern.Pattern)
|
||||||
|
if err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
if len(matches) > 0 {
|
||||||
|
return pattern.Func(fsys, replacer, matches...)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return nil, errors.New("unknown tensor format")
|
||||||
|
}
|
||||||
178
convert/reader_safetensors.go
Normal file
178
convert/reader_safetensors.go
Normal file
@@ -0,0 +1,178 @@
|
|||||||
|
package convert
|
||||||
|
|
||||||
|
import (
|
||||||
|
"bytes"
|
||||||
|
"encoding/binary"
|
||||||
|
"encoding/json"
|
||||||
|
"errors"
|
||||||
|
"fmt"
|
||||||
|
"io"
|
||||||
|
"io/fs"
|
||||||
|
"slices"
|
||||||
|
"strings"
|
||||||
|
|
||||||
|
"github.com/d4l3k/go-bfloat16"
|
||||||
|
"github.com/x448/float16"
|
||||||
|
"golang.org/x/exp/maps"
|
||||||
|
)
|
||||||
|
|
||||||
|
type safetensorMetadata struct {
|
||||||
|
Type string `json:"dtype"`
|
||||||
|
Shape []uint64 `json:"shape"`
|
||||||
|
Offsets []int64 `json:"data_offsets"`
|
||||||
|
}
|
||||||
|
|
||||||
|
func parseSafetensors(fsys fs.FS, replacer *strings.Replacer, ps ...string) ([]Tensor, error) {
|
||||||
|
var ts []Tensor
|
||||||
|
for _, p := range ps {
|
||||||
|
f, err := fsys.Open(p)
|
||||||
|
if err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
defer f.Close()
|
||||||
|
|
||||||
|
var n int64
|
||||||
|
if err := binary.Read(f, binary.LittleEndian, &n); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
b := bytes.NewBuffer(make([]byte, 0, n))
|
||||||
|
if _, err = io.CopyN(b, f, n); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
var headers map[string]safetensorMetadata
|
||||||
|
if err := json.NewDecoder(b).Decode(&headers); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
keys := maps.Keys(headers)
|
||||||
|
slices.Sort(keys)
|
||||||
|
|
||||||
|
names := make(map[string]struct{}, len(keys))
|
||||||
|
|
||||||
|
for _, key := range keys {
|
||||||
|
if value := headers[key]; value.Type != "" {
|
||||||
|
// bitsandbytes quantized models are unsupported
|
||||||
|
if len(value.Shape) == 0 {
|
||||||
|
return nil, errors.New("unsupported safetensors model")
|
||||||
|
}
|
||||||
|
ggufName := replacer.Replace(key)
|
||||||
|
if _, ok := names[ggufName]; ok {
|
||||||
|
return nil, fmt.Errorf("duplicate tensor name '%s' was found for this model", ggufName)
|
||||||
|
}
|
||||||
|
names[ggufName] = struct{}{}
|
||||||
|
ts = append(ts, safetensor{
|
||||||
|
fs: fsys,
|
||||||
|
path: p,
|
||||||
|
dtype: value.Type,
|
||||||
|
offset: safetensorsPad(n, value.Offsets[0]),
|
||||||
|
size: safetensorsPad(n, value.Offsets[1]) - safetensorsPad(n, value.Offsets[0]),
|
||||||
|
tensorBase: &tensorBase{
|
||||||
|
name: ggufName,
|
||||||
|
shape: value.Shape,
|
||||||
|
},
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return ts, nil
|
||||||
|
}
|
||||||
|
|
||||||
|
// safetensorsPad returns the padded size of the safetensors file given a length n and offset s
|
||||||
|
func safetensorsPad(n, offset int64) int64 {
|
||||||
|
return 8 + n + offset
|
||||||
|
}
|
||||||
|
|
||||||
|
type safetensor struct {
|
||||||
|
fs fs.FS
|
||||||
|
path string
|
||||||
|
dtype string
|
||||||
|
offset int64
|
||||||
|
size int64
|
||||||
|
*tensorBase
|
||||||
|
}
|
||||||
|
|
||||||
|
func (st safetensor) Clone() Tensor {
|
||||||
|
return &safetensor{
|
||||||
|
fs: st.fs,
|
||||||
|
path: st.path,
|
||||||
|
dtype: st.dtype,
|
||||||
|
offset: st.offset,
|
||||||
|
size: st.size,
|
||||||
|
tensorBase: &tensorBase{
|
||||||
|
name: st.name,
|
||||||
|
repacker: st.repacker,
|
||||||
|
shape: slices.Clone(st.shape),
|
||||||
|
},
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func (st safetensor) WriteTo(w io.Writer) (int64, error) {
|
||||||
|
f, err := st.fs.Open(st.path)
|
||||||
|
if err != nil {
|
||||||
|
return 0, err
|
||||||
|
}
|
||||||
|
defer f.Close()
|
||||||
|
|
||||||
|
if seeker, ok := f.(io.Seeker); ok {
|
||||||
|
if _, err := seeker.Seek(st.offset, io.SeekStart); err != nil {
|
||||||
|
return 0, err
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
if _, err := io.CopyN(io.Discard, f, st.offset); err != nil {
|
||||||
|
return 0, err
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
var f32s []float32
|
||||||
|
switch st.dtype {
|
||||||
|
case "F32":
|
||||||
|
f32s = make([]float32, st.size/4)
|
||||||
|
if err = binary.Read(f, binary.LittleEndian, f32s); err != nil {
|
||||||
|
return 0, err
|
||||||
|
}
|
||||||
|
case "F16":
|
||||||
|
u16s := make([]uint16, st.size/2)
|
||||||
|
if err = binary.Read(f, binary.LittleEndian, u16s); err != nil {
|
||||||
|
return 0, err
|
||||||
|
}
|
||||||
|
|
||||||
|
f32s = make([]float32, len(u16s))
|
||||||
|
for i := range u16s {
|
||||||
|
f32s[i] = float16.Frombits(u16s[i]).Float32()
|
||||||
|
}
|
||||||
|
|
||||||
|
case "BF16":
|
||||||
|
u8s := make([]uint8, st.size)
|
||||||
|
if err = binary.Read(f, binary.LittleEndian, u8s); err != nil {
|
||||||
|
return 0, err
|
||||||
|
}
|
||||||
|
|
||||||
|
f32s = bfloat16.DecodeFloat32(u8s)
|
||||||
|
default:
|
||||||
|
return 0, fmt.Errorf("unknown data type: %s", st.dtype)
|
||||||
|
}
|
||||||
|
|
||||||
|
if st.repacker != nil {
|
||||||
|
f32s, err = st.repacker(st.Name(), f32s, st.Shape())
|
||||||
|
if err != nil {
|
||||||
|
return 0, err
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
switch st.Kind() {
|
||||||
|
case tensorKindF32:
|
||||||
|
return 0, binary.Write(w, binary.LittleEndian, f32s)
|
||||||
|
case tensorKindF16:
|
||||||
|
f16s := make([]uint16, len(f32s))
|
||||||
|
for i := range f32s {
|
||||||
|
f16s[i] = float16.Fromfloat32(f32s[i]).Bits()
|
||||||
|
}
|
||||||
|
|
||||||
|
return 0, binary.Write(w, binary.LittleEndian, f16s)
|
||||||
|
default:
|
||||||
|
return 0, fmt.Errorf("unknown storage type: %d", st.Kind())
|
||||||
|
}
|
||||||
|
}
|
||||||
59
convert/reader_torch.go
Normal file
59
convert/reader_torch.go
Normal file
@@ -0,0 +1,59 @@
|
|||||||
|
package convert
|
||||||
|
|
||||||
|
import (
|
||||||
|
"io"
|
||||||
|
"io/fs"
|
||||||
|
"strings"
|
||||||
|
|
||||||
|
"github.com/nlpodyssey/gopickle/pytorch"
|
||||||
|
"github.com/nlpodyssey/gopickle/types"
|
||||||
|
)
|
||||||
|
|
||||||
|
func parseTorch(fsys fs.FS, replacer *strings.Replacer, ps ...string) ([]Tensor, error) {
|
||||||
|
var ts []Tensor
|
||||||
|
for _, p := range ps {
|
||||||
|
pt, err := pytorch.Load(p)
|
||||||
|
if err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, k := range pt.(*types.Dict).Keys() {
|
||||||
|
t := pt.(*types.Dict).MustGet(k)
|
||||||
|
|
||||||
|
var shape []uint64
|
||||||
|
for dim := range t.(*pytorch.Tensor).Size {
|
||||||
|
shape = append(shape, uint64(dim))
|
||||||
|
}
|
||||||
|
|
||||||
|
ts = append(ts, torch{
|
||||||
|
storage: t.(*pytorch.Tensor).Source,
|
||||||
|
tensorBase: &tensorBase{
|
||||||
|
name: replacer.Replace(k.(string)),
|
||||||
|
shape: shape,
|
||||||
|
},
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return ts, nil
|
||||||
|
}
|
||||||
|
|
||||||
|
type torch struct {
|
||||||
|
storage pytorch.StorageInterface
|
||||||
|
*tensorBase
|
||||||
|
}
|
||||||
|
|
||||||
|
func (t torch) Clone() Tensor {
|
||||||
|
return torch{
|
||||||
|
storage: t.storage,
|
||||||
|
tensorBase: &tensorBase{
|
||||||
|
name: t.name,
|
||||||
|
shape: t.shape,
|
||||||
|
repacker: t.repacker,
|
||||||
|
},
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func (pt torch) WriteTo(w io.Writer) (int64, error) {
|
||||||
|
return 0, nil
|
||||||
|
}
|
||||||
1497
convert/sentencepiece/sentencepiece_model.pb.go
Normal file
1497
convert/sentencepiece/sentencepiece_model.pb.go
Normal file
File diff suppressed because it is too large
Load Diff
333
convert/sentencepiece_model.proto
Normal file
333
convert/sentencepiece_model.proto
Normal file
@@ -0,0 +1,333 @@
|
|||||||
|
// Copyright 2016 Google Inc.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.!
|
||||||
|
|
||||||
|
syntax = "proto2";
|
||||||
|
|
||||||
|
// TODO(taku): Needs to use LITE RUNTIME in OSS release.
|
||||||
|
option optimize_for = LITE_RUNTIME;
|
||||||
|
option go_package = "./sentencepiece";
|
||||||
|
|
||||||
|
package sentencepiece;
|
||||||
|
|
||||||
|
// TrainerSpec encodes a various parameters for SentencePiece training.
|
||||||
|
// Next id: 55
|
||||||
|
message TrainerSpec {
|
||||||
|
///////////////////////////////////////////////////////////////////
|
||||||
|
// General parameters
|
||||||
|
//
|
||||||
|
// Input corpus files.
|
||||||
|
// Trainer accepts the following two formats:
|
||||||
|
// A) Monolingual: plain text, one sentence per line.
|
||||||
|
// B) Bilingual: TSV, source sentence <tab> target sentence
|
||||||
|
// When bilingual data is passed, shared vocabulary model is built.
|
||||||
|
// Note that the input file must be raw corpus, not a preprocessed corpus.
|
||||||
|
// Trainer only loads the first `input_sentence_size` sentences specified
|
||||||
|
// with this parameter.
|
||||||
|
repeated string input = 1;
|
||||||
|
|
||||||
|
// Input corpus format:
|
||||||
|
// "text": one-sentence-per-line text format (default)
|
||||||
|
// "tsv": sentence <tab> freq
|
||||||
|
optional string input_format = 7;
|
||||||
|
|
||||||
|
// Output model file prefix.
|
||||||
|
// <model_prefix>.model and <model_prefix>.vocab are generated.
|
||||||
|
optional string model_prefix = 2;
|
||||||
|
|
||||||
|
// Model type. only have UNIGRAM now.
|
||||||
|
enum ModelType {
|
||||||
|
UNIGRAM = 1; // Unigram language model with dynamic algorithm
|
||||||
|
BPE = 2; // Byte Pair Encoding
|
||||||
|
WORD = 3; // Delimitered by whitespace.
|
||||||
|
CHAR = 4; // tokenizes into character sequence
|
||||||
|
}
|
||||||
|
optional ModelType model_type = 3 [default = UNIGRAM];
|
||||||
|
|
||||||
|
// Vocabulary size. 8k is the default size.
|
||||||
|
optional int32 vocab_size = 4 [default = 8000];
|
||||||
|
|
||||||
|
// List of the languages this model can accept.
|
||||||
|
// Since the model is language-agnostic, this field is used as a reference.
|
||||||
|
repeated string accept_language = 5;
|
||||||
|
|
||||||
|
// Size of self-test samples, which are encoded in the model file.
|
||||||
|
optional int32 self_test_sample_size = 6 [default = 0];
|
||||||
|
|
||||||
|
// Whether to use DP version of sentencepiece. Use it with TSV input format
|
||||||
|
// (requires precomputed word tab counts to work).
|
||||||
|
optional bool enable_differential_privacy = 50 [default = false];
|
||||||
|
// Set these parameters if you need DP version of sentencepiece.
|
||||||
|
// std of noise to add.
|
||||||
|
optional float differential_privacy_noise_level = 51 [default = 0.0];
|
||||||
|
// Clipping threshold to apply after adding noise. All the words with
|
||||||
|
// frequency less than this value are dropped.
|
||||||
|
optional uint64 differential_privacy_clipping_threshold = 52 [default = 0];
|
||||||
|
|
||||||
|
///////////////////////////////////////////////////////////////////
|
||||||
|
// Training parameters.
|
||||||
|
//
|
||||||
|
// Uses characters which cover the corpus with the ratio of `chars_coverage`.
|
||||||
|
// This parameter determines the set of basic Alphabet of sentence piece.
|
||||||
|
// 1.0 - `chars_coverage` characters are treated as UNK.
|
||||||
|
// See also required_chars field.
|
||||||
|
optional float character_coverage = 10 [default = 0.9995];
|
||||||
|
|
||||||
|
// Maximum size of sentences the trainer loads from `input` parameter.
|
||||||
|
// Trainer simply loads the `input` files in sequence.
|
||||||
|
// It is better to shuffle the input corpus randomly.
|
||||||
|
optional uint64 input_sentence_size = 11 [default = 0];
|
||||||
|
optional bool shuffle_input_sentence = 19 [default = true];
|
||||||
|
|
||||||
|
// Maximum size of sentences to make seed sentence pieces.
|
||||||
|
// Extended suffix array is constructed to extract frequent
|
||||||
|
// sub-strings from the corpus. This uses 20N working space,
|
||||||
|
// where N is the size of corpus.
|
||||||
|
optional int32 mining_sentence_size = 12 [deprecated = true];
|
||||||
|
|
||||||
|
// Maximum size of sentences to train sentence pieces.
|
||||||
|
optional int32 training_sentence_size = 13 [deprecated = true];
|
||||||
|
|
||||||
|
// The size of seed sentencepieces.
|
||||||
|
// `seed_sentencepiece_size` must be larger than `vocab_size`.
|
||||||
|
optional int32 seed_sentencepiece_size = 14 [default = 1000000];
|
||||||
|
|
||||||
|
// In every EM sub-iterations, keeps top
|
||||||
|
// `shrinking_factor` * `current sentencepieces size` with respect to
|
||||||
|
// the loss of the sentence piece. This value should be smaller than 1.0.
|
||||||
|
optional float shrinking_factor = 15 [default = 0.75];
|
||||||
|
|
||||||
|
// The maximum sentence length in byte. The sentences with the length
|
||||||
|
// larger than `max_sentence_length` is simply ignored.
|
||||||
|
// Longer input tends to bring the following risks:
|
||||||
|
// * Overflow during EM training (unigram language model only)
|
||||||
|
// * Performance drop because of O(n log n) cost in BPE.
|
||||||
|
optional int32 max_sentence_length = 18 [default = 4192];
|
||||||
|
|
||||||
|
// Number of threads in the training.
|
||||||
|
optional int32 num_threads = 16 [default = 16];
|
||||||
|
|
||||||
|
// Number of EM sub iterations.
|
||||||
|
optional int32 num_sub_iterations = 17 [default = 2];
|
||||||
|
|
||||||
|
///////////////////////////////////////////////////////////////////
|
||||||
|
// SentencePiece parameters which control the shapes of sentence piece.
|
||||||
|
//
|
||||||
|
// Maximum length of sentencepiece.
|
||||||
|
optional int32 max_sentencepiece_length = 20 [default = 16];
|
||||||
|
|
||||||
|
// Uses Unicode script to split sentence pieces.
|
||||||
|
// When `split_by_unicode_script` is true, we do not allow sentence piece to
|
||||||
|
// include multiple Unicode scripts, e.g. "F1" is not a valid piece.
|
||||||
|
// Exception: CJ characters (Hiragana/Katakana/Han) are all handled
|
||||||
|
// as one script type, since Japanese word can consist of multiple scripts.
|
||||||
|
// This exception is always applied regardless of the accept-language
|
||||||
|
// parameter.
|
||||||
|
optional bool split_by_unicode_script = 21 [default = true];
|
||||||
|
|
||||||
|
// When `split_by_number` is true, put a boundary between number and
|
||||||
|
// non-number transition. If we want to treat "F1" is one token, set this flag
|
||||||
|
// to be false.
|
||||||
|
optional bool split_by_number = 23 [default = true];
|
||||||
|
|
||||||
|
// Use a white space to split sentence pieces.
|
||||||
|
// When `split_by_whitespace` is false, we may have the piece containing
|
||||||
|
// a white space in the middle. e.g., "in_the".
|
||||||
|
optional bool split_by_whitespace = 22 [default = true];
|
||||||
|
|
||||||
|
// Adds whitespace symbol (_) as a suffix instead of prefix. e.g., _hello =>
|
||||||
|
// hello_. When `treat_whitespace_as_suffix` is true,
|
||||||
|
// NormalizerSpec::add_dummy_prefix will add the dummy whitespace to the end
|
||||||
|
// of sentence.
|
||||||
|
optional bool treat_whitespace_as_suffix = 24 [default = false];
|
||||||
|
|
||||||
|
// Allows pieces that only contain whitespaces instead of appearing only as
|
||||||
|
// prefix or suffix of other pieces.
|
||||||
|
optional bool allow_whitespace_only_pieces = 26 [default = false];
|
||||||
|
|
||||||
|
// Split all digits (0-9) into separate pieces.
|
||||||
|
optional bool split_digits = 25 [default = false];
|
||||||
|
|
||||||
|
// Defines the pre-tokenization delimiter.
|
||||||
|
// When specified, no pieces crossing this delimiter is not included
|
||||||
|
// in the vocab. Then the delimiter string is virtually ignored
|
||||||
|
// during the training. This field can allows constraints on the vocabulary
|
||||||
|
// selection. Note that this field is available on unigram mode.
|
||||||
|
optional string pretokenization_delimiter = 53 [ default = ""];
|
||||||
|
|
||||||
|
///////////////////////////////////////////////////////////////////
|
||||||
|
// Vocabulary management
|
||||||
|
//
|
||||||
|
// Defines control symbols used as an indicator to
|
||||||
|
// change the behavior of the decoder. <s> and </s> are pre-defined.
|
||||||
|
// We can use this field to encode various meta information,
|
||||||
|
// including language indicator in multilingual model.
|
||||||
|
// These symbols are not visible to users, but visible to
|
||||||
|
// the decoder. Note that when the input sentence contains control symbols,
|
||||||
|
// they are not treated as one token, but segmented into normal pieces.
|
||||||
|
// Control symbols must be inserted independently from the segmentation.
|
||||||
|
repeated string control_symbols = 30;
|
||||||
|
|
||||||
|
// Defines user defined symbols.
|
||||||
|
// These symbols are added with extremely high score
|
||||||
|
// so they are always treated as one unique symbol in any context.
|
||||||
|
// Typical usage of user_defined_symbols is placeholder for named entities.
|
||||||
|
repeated string user_defined_symbols = 31;
|
||||||
|
|
||||||
|
// Defines required characters. Each UTF8 character in this string is included
|
||||||
|
// in the character set regardless of character_coverage value. Unlike
|
||||||
|
// user_defined_symbols, these characters have scores based on the frequency
|
||||||
|
// on input sentences, and the model can form subwords using characters
|
||||||
|
// in this field.
|
||||||
|
optional string required_chars = 36;
|
||||||
|
|
||||||
|
// Decomposes unknown pieces into UTF-8 bytes.
|
||||||
|
optional bool byte_fallback = 35 [default = false];
|
||||||
|
|
||||||
|
// When creating the vocabulary file, defines whether or not to additionally
|
||||||
|
// output the score for each piece.
|
||||||
|
optional bool vocabulary_output_piece_score = 32 [default = true];
|
||||||
|
|
||||||
|
// `vocab_size` is treated as hard limit. Crash if
|
||||||
|
// the model can not produce the vocab of size `vocab_size`,
|
||||||
|
// When `hard_vocab_limit` is false, vocab_size is treated
|
||||||
|
// as soft limit. Note that when model_type=char,
|
||||||
|
// always assumes hard_vocab_limit = false.
|
||||||
|
optional bool hard_vocab_limit = 33 [default = true];
|
||||||
|
|
||||||
|
// use all symbols for vocab extraction. This flag is valid
|
||||||
|
// if model type is either CHAR or WORD
|
||||||
|
optional bool use_all_vocab = 34 [default = false];
|
||||||
|
|
||||||
|
///////////////////////////////////////////////////////////////////
|
||||||
|
// Reserved special meta tokens.
|
||||||
|
// * -1 is not used.
|
||||||
|
// * unk_id must not be -1.
|
||||||
|
// Id must start with 0 and be contiguous.
|
||||||
|
optional int32 unk_id = 40 [default = 0]; // <unk>
|
||||||
|
optional int32 bos_id = 41 [default = 1]; // <s>
|
||||||
|
optional int32 eos_id = 42 [default = 2]; // </s>
|
||||||
|
optional int32 pad_id = 43 [default = -1]; // <pad> (padding)
|
||||||
|
optional string unk_piece = 45 [default = "<unk>"];
|
||||||
|
optional string bos_piece = 46 [default = "<s>"];
|
||||||
|
optional string eos_piece = 47 [default = "</s>"];
|
||||||
|
optional string pad_piece = 48 [default = "<pad>"];
|
||||||
|
|
||||||
|
// Encodes <unk> into U+2047 (DOUBLE QUESTION MARK),
|
||||||
|
// since this character can be useful both for user and
|
||||||
|
// developer. We can easily figure out that <unk> is emitted.
|
||||||
|
optional string unk_surface = 44 [default = " \xE2\x81\x87 "];
|
||||||
|
|
||||||
|
// Increase bit depth to allow unigram model training on large
|
||||||
|
// (>10M sentences) corpora. A Side-effect of enabling this flag
|
||||||
|
// is increased memory usage.
|
||||||
|
optional bool train_extremely_large_corpus = 49 [default = false];
|
||||||
|
|
||||||
|
// Path to a seed sentencepieces file, with one tab-separated
|
||||||
|
// seed sentencepiece <tab> frequency per line.
|
||||||
|
optional string seed_sentencepieces_file = 54 [default = ""];
|
||||||
|
|
||||||
|
// Customized extensions: the range of field numbers
|
||||||
|
// are open to third-party extensions.
|
||||||
|
extensions 200 to max;
|
||||||
|
}
|
||||||
|
|
||||||
|
// NormalizerSpec encodes a various parameters for string normalizaiton
|
||||||
|
message NormalizerSpec {
|
||||||
|
// name of normalization rule.
|
||||||
|
optional string name = 1;
|
||||||
|
|
||||||
|
// Pre-compiled normalization rule created by
|
||||||
|
// Builder::GetPrecompiledCharsMap() or Builder::CompileCharsMap() method.
|
||||||
|
// Usually this field is set by Builder::GetNormalizerSpec() method.
|
||||||
|
optional bytes precompiled_charsmap = 2;
|
||||||
|
|
||||||
|
// Adds dummy whitespace at the beginning of text in order to
|
||||||
|
// treat "world" in "world" and "hello world" in the same way.
|
||||||
|
optional bool add_dummy_prefix = 3 [default = true];
|
||||||
|
|
||||||
|
// Removes leading, trailing, and duplicate internal whitespace.
|
||||||
|
optional bool remove_extra_whitespaces = 4 [default = true];
|
||||||
|
|
||||||
|
// Replaces whitespace with meta symbol.
|
||||||
|
// This field must be true to train sentence piece model.
|
||||||
|
optional bool escape_whitespaces = 5 [default = true];
|
||||||
|
|
||||||
|
// Custom normalization rule file in TSV format.
|
||||||
|
// https://github.com/google/sentencepiece/blob/master/doc/normalization.md
|
||||||
|
// This field is only used in SentencePieceTrainer::Train() method, which
|
||||||
|
// compiles the rule into the binary rule stored in `precompiled_charsmap`.
|
||||||
|
optional string normalization_rule_tsv = 6;
|
||||||
|
|
||||||
|
// Customized extensions: the range of field numbers
|
||||||
|
// are open to third-party extensions.
|
||||||
|
extensions 200 to max;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Proto to store samples for self-testing.
|
||||||
|
message SelfTestData {
|
||||||
|
message Sample {
|
||||||
|
optional string input = 1;
|
||||||
|
optional string expected = 2;
|
||||||
|
}
|
||||||
|
repeated Sample samples = 1;
|
||||||
|
|
||||||
|
// Customized extensions: the range of field numbers
|
||||||
|
// are open to third-party extensions.
|
||||||
|
extensions 200 to max;
|
||||||
|
}
|
||||||
|
|
||||||
|
// ModelProto stores model parameters.
|
||||||
|
// SentencePieceProcessor is supposed to be self-contained.
|
||||||
|
// All settings/parameters which may change the behavior must be encoded
|
||||||
|
// in ModelProto.
|
||||||
|
message ModelProto {
|
||||||
|
message SentencePiece {
|
||||||
|
enum Type {
|
||||||
|
NORMAL = 1; // normal symbol
|
||||||
|
UNKNOWN = 2; // unknown symbol. only <unk> for now.
|
||||||
|
CONTROL = 3; // control symbols. </s>, <s>, <2ja> etc.
|
||||||
|
USER_DEFINED = 4; // user defined symbols.
|
||||||
|
// Typical usage of USER_DEFINED symbol
|
||||||
|
// is placeholder.
|
||||||
|
BYTE = 6; // byte symbols. Used when `byte_fallback` is true.
|
||||||
|
UNUSED = 5; // this piece is not used.
|
||||||
|
}
|
||||||
|
optional string piece = 1; // piece must not be empty.
|
||||||
|
optional float score = 2;
|
||||||
|
optional Type type = 3 [default = NORMAL];
|
||||||
|
|
||||||
|
// Customized extensions: the range of field numbers
|
||||||
|
// are open to third-party extensions.
|
||||||
|
extensions 200 to max;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Sentence pieces with scores.
|
||||||
|
repeated SentencePiece pieces = 1;
|
||||||
|
|
||||||
|
// Spec used to generate this model file.
|
||||||
|
optional TrainerSpec trainer_spec = 2;
|
||||||
|
|
||||||
|
// Spec for text normalization.
|
||||||
|
optional NormalizerSpec normalizer_spec = 3;
|
||||||
|
|
||||||
|
// Stores sample input and its expected segmentation to verify the model.
|
||||||
|
optional SelfTestData self_test_data = 4;
|
||||||
|
|
||||||
|
// Spec for text de-normalization.
|
||||||
|
optional NormalizerSpec denormalizer_spec = 5;
|
||||||
|
|
||||||
|
// Customized extensions: the range of field numbers
|
||||||
|
// are open to third-party extensions.
|
||||||
|
extensions 200 to max;
|
||||||
|
}
|
||||||
313
convert/testdata/Meta-Llama-3-8B-Instruct.json
vendored
Normal file
313
convert/testdata/Meta-Llama-3-8B-Instruct.json
vendored
Normal file
@@ -0,0 +1,313 @@
|
|||||||
|
{
|
||||||
|
"general.architecture": "llama",
|
||||||
|
"general.file_type": "1",
|
||||||
|
"general.quantization_version": "2",
|
||||||
|
"llama.block_count": "32",
|
||||||
|
"llama.context_length": "8192",
|
||||||
|
"llama.embedding_length": "4096",
|
||||||
|
"llama.feed_forward_length": "14336",
|
||||||
|
"llama.rope.dimension_count": "128",
|
||||||
|
"llama.rope.freq_base": "500000",
|
||||||
|
"llama.vocab_size": "128256",
|
||||||
|
"llama.attention.head_count": "32",
|
||||||
|
"llama.attention.head_count_kv": "8",
|
||||||
|
"llama.attention.layer_norm_rms_epsilon": "1e-05",
|
||||||
|
"tokenizer.ggml.model": "gpt2",
|
||||||
|
"tokenizer.ggml.pre": "llama-bpe",
|
||||||
|
"tokenizer.ggml.bos_token_id": "128000",
|
||||||
|
"tokenizer.ggml.eos_token_id": "128009",
|
||||||
|
"tokenizer.ggml.merges": "d0cbac1fcc9dcf03724b8db5c9bfb593ae1cf68fb9bc72eb1d15274dcbbf618b",
|
||||||
|
"tokenizer.ggml.token_type": "d70a88809fd7da6f1f028622685cd64268a7a922c5d343c96f25b66327358978",
|
||||||
|
"tokenizer.ggml.tokens": "765b529dbcbc42dd202ce657341c63807b51f3b07e09898f6aa6196326865d5a",
|
||||||
|
"token_embd.weight": "b53102a11d9064bbd404833e3464b1b13e08ce73300b442312cccde2f19b2698",
|
||||||
|
"blk.0.attn_norm.weight": "7318df3cca9e8d153ff0a503026a1265e63d20b2a8c1dd7a2769585082b5d1ee",
|
||||||
|
"blk.0.ffn_down.weight": "b950806a1fc722c9fad7fd0b20c3c0a7fb50f14395e1e7663a590bfd62e20900",
|
||||||
|
"blk.0.ffn_gate.weight": "e73e580af6d4f08e060a74a3c25efdf5d3bed99e183d95a5a85ae859014839fd",
|
||||||
|
"blk.0.ffn_up.weight": "c8158af679ef99746da1befb67eebb19489e0bbe6ce7d97e13e348508244e516",
|
||||||
|
"blk.0.ffn_norm.weight": "7ec69c3c31e95e49a3359003b0033f6b9e85561a3e3fd83e7476661ecdd756bb",
|
||||||
|
"blk.0.attn_k.weight": "2732303257bac969b4964e0e32ec08b5a7f5c031bb02bf6ac4467b3ea0ebcf1e",
|
||||||
|
"blk.0.attn_output.weight": "ecda1d43b4ccc91cd5b366d7e7a275353990ac78561a07c83d9c77031aba12dc",
|
||||||
|
"blk.0.attn_q.weight": "569b1f5faf92b6f00910cf7effb2d5862f91038ce5c3b0019fc10e5d79fbd5e1",
|
||||||
|
"blk.0.attn_v.weight": "aa8416c5ef7e32fb54a1f20d6ac651656845d4af240564b397c39bd83e06e3b8",
|
||||||
|
"blk.1.attn_norm.weight": "03327e02862908c2a44b2f52decdb924bf4201f400b46f8037a9cb2e1d7a61ff",
|
||||||
|
"blk.1.ffn_down.weight": "5a83a87603f38c99f8e1e370a2d5f967bb45ac51d881a609304a7811027321e0",
|
||||||
|
"blk.1.ffn_gate.weight": "31da0572c79e655186c721c231376f85e56cdcc6257c28d08c8c5b40d5c22b40",
|
||||||
|
"blk.1.ffn_up.weight": "e0c811d64ca155c8de10a868e72015d43888834804614ee1aa2953129ffbc90f",
|
||||||
|
"blk.1.ffn_norm.weight": "5861f313d6137d6f0f904d423df47fffc6069e224ff746e1b637ac9c7f0af862",
|
||||||
|
"blk.1.attn_k.weight": "5fbbec0acca6457b9416ebdcd90e526885d0224537b7628f6be376a7f275313d",
|
||||||
|
"blk.1.attn_output.weight": "b237c9763fa3f75166a6f70b70f1566e77d0d89dfa164ed1b3137393e90575c3",
|
||||||
|
"blk.1.attn_q.weight": "c0a9cf4a98b4882b16f3eb2b49d933793dcc5357abb246fd3fe3134ed2b12e1c",
|
||||||
|
"blk.1.attn_v.weight": "96867111727200cac1af7865189dd41fd62b47584e5e5f33a91f1d34509cbd40",
|
||||||
|
"blk.2.attn_norm.weight": "f392f8a88ee3a95b1cc19c40dd4ef66317037b0faaa1800f610779e129ee0539",
|
||||||
|
"blk.2.ffn_down.weight": "73823eef46632aedcc8c1cb08a736b6aa97ca97842cd1fdfc5567d8dec459662",
|
||||||
|
"blk.2.ffn_gate.weight": "f4909ae19fc3848b00bb8b9050122e74f8e903b89e22937036f4cc9fea20a718",
|
||||||
|
"blk.2.ffn_up.weight": "16f4904a3d814ea68f00519724fc4943e48444a84c786bda39aa5efc298a7d84",
|
||||||
|
"blk.2.ffn_norm.weight": "e3ccdf56e75cb969f6f69c39caf6daf7c4e70e89e25df0f4d2e4bc60e159aafe",
|
||||||
|
"blk.2.attn_k.weight": "c3beb1e0a11bcf007ef0f0d8f6bdd3082d8b29090cd29597846b5d51e308a8e5",
|
||||||
|
"blk.2.attn_output.weight": "bb9f66c32cff51154fea92933c2cd62549236f8cb1a767f9ef28d3f99809b343",
|
||||||
|
"blk.2.attn_q.weight": "8eba394132eef2a05c5a92d62d2376000f7948448d7a2dc74e6b608203add20d",
|
||||||
|
"blk.2.attn_v.weight": "88f61f77c53567c617db3eef8f30621109a750e679f6784f7911739bd42c2f02",
|
||||||
|
"blk.3.attn_norm.weight": "7b996675b7ca75fa24107b3ebe0788653ede0f49ac83b8659d71ff54d591f81a",
|
||||||
|
"blk.3.ffn_down.weight": "2cb332bc05e4821962fdc9dcbcc7cc12630f32117711b687d18fb53c0bc4fbf4",
|
||||||
|
"blk.3.ffn_gate.weight": "340b387c7f208c8f0a6db904ef8d87c1e84b7d6ad57177abd32d86c8d18b760f",
|
||||||
|
"blk.3.ffn_up.weight": "07484433f8a7ee061c55aa0de2ecc009f769b0617c9c0ec096e9bb2946df9f0e",
|
||||||
|
"blk.3.ffn_norm.weight": "4f1a4ade36b393af341240bc894a2aab09cff7e4d56dc4658445deb107f9371b",
|
||||||
|
"blk.3.attn_k.weight": "483dcd96acb4528df84b9842970994630dbd82b8715ace394aa8b39fcf8d6291",
|
||||||
|
"blk.3.attn_output.weight": "beaff0810687923585642ee11d929cbf3b43dc6f87f30ddb552c222ab57bdbb3",
|
||||||
|
"blk.3.attn_q.weight": "0739355002f6fce520863add697e0ff25fc88215322dc3f993be7bb68dcce7e8",
|
||||||
|
"blk.3.attn_v.weight": "c216d17b6d90ee3e07f82598b8161fae34de2f392dbb0f745b682b578c324767",
|
||||||
|
"blk.4.attn_norm.weight": "91ab405bc4ba15bf63af233f266aa43aaab43789a9e6596e14a357c2ac7df217",
|
||||||
|
"blk.4.ffn_down.weight": "620f34ee75cdc73aecb8949af5fbb0d2437fd81422b6d8eb7acfc52addb9fc68",
|
||||||
|
"blk.4.ffn_gate.weight": "f6feec7bc9acadf35ec22532f8998d8e50f31afedabb19263590dcf8b9a92eee",
|
||||||
|
"blk.4.ffn_up.weight": "4a72af7cd28fd07b038f6cc4406678d120517280236ea85d9e76eff40ab2cc22",
|
||||||
|
"blk.4.ffn_norm.weight": "1805b37b44d5d682bdbd2fadeafb763ee001617d7870848cc487079ee34b21f9",
|
||||||
|
"blk.4.attn_k.weight": "a1e4f9d97cdf4c1b0d177cf00c4e32d1be30c1984a239b3c9bd73f8848888853",
|
||||||
|
"blk.4.attn_output.weight": "a1547e2497c423b0aff0eee71d9300d6fdf4e4986679418b6e637b69a9a6720b",
|
||||||
|
"blk.4.attn_q.weight": "0677483a9264ea6803d03d304d87a54632242cb516e8b76b6e3e8284c2f4de04",
|
||||||
|
"blk.4.attn_v.weight": "02691ba3af344fcc1969428ab0df811ac94aaa2fd91b0dc4ec1ac0a58806980d",
|
||||||
|
"blk.5.attn_norm.weight": "ba9c028335e5c895b87a5bd1448ca429248f9746ed97bdcb8679923206117156",
|
||||||
|
"blk.5.ffn_down.weight": "ccfdc9006acad1940a6bc05042a3947f1066acd671e0bb53b7684e9eea9ef5c9",
|
||||||
|
"blk.5.ffn_gate.weight": "623157679f1e742ccc3807c0b0153ddc8450104de75ec62f1370ec3807c09cf4",
|
||||||
|
"blk.5.ffn_up.weight": "05748804c65091f963729b58b085f58351891cac8a2861f5eae26b06aa60b2a0",
|
||||||
|
"blk.5.ffn_norm.weight": "84bae55af2efc8b8429f09056c8c04990c466dae31cb3f9356038b8957f1b406",
|
||||||
|
"blk.5.attn_k.weight": "8c766180c726b037d587fc52371de6e3307140c52409011609d1225624b6a3eb",
|
||||||
|
"blk.5.attn_output.weight": "490b582b3b1dc151ae55aee8b6743dad6c01fb49e43afefb6e68394b74be3d73",
|
||||||
|
"blk.5.attn_q.weight": "6f7b8ca4d9025ec836a44bbcca46be30c66b471a9fb62943ddff8288b3731409",
|
||||||
|
"blk.5.attn_v.weight": "9f70df3ba00c9e723214b3da83ff435a2163fff5915f75515c9664c05c866c27",
|
||||||
|
"blk.6.attn_norm.weight": "1a4a66613a682df6f061fc7c4d986f9f7e9175b62f0c42fc1ef31db536bd5942",
|
||||||
|
"blk.6.ffn_down.weight": "c56f25e4e49b443dbc82d88311ee63bc1f5002cc67e52f4787fd5f003aedeac1",
|
||||||
|
"blk.6.ffn_gate.weight": "31a5cf1aa9b831a81588d508550f51fc425f9517c43254d4ef7096d38029cf04",
|
||||||
|
"blk.6.ffn_up.weight": "ce135f3a1163e0c9297a615bdbe68a67ead21edce8debbfa9f6e15e6af8d4c94",
|
||||||
|
"blk.6.ffn_norm.weight": "4e328ce0648c94e732bc40501858ef6262ad1161e2e407b0cdcf4813fa9d45d8",
|
||||||
|
"blk.6.attn_k.weight": "1eb1c4c9f9c4c7ff7f5429075e0dc6a7782bed55109fa88df209a817dd8ef960",
|
||||||
|
"blk.6.attn_output.weight": "3d32986b56873b88655ee1edabdd413fdd9ab18b82108c9ce90bdbc2d3a6f3a3",
|
||||||
|
"blk.6.attn_q.weight": "8432f583b3a2809c99c393f9beb077cb0534dd5d247c17108f2986cadc6651f6",
|
||||||
|
"blk.6.attn_v.weight": "5045381513815bb91839dbac8335ffe49bbc7b0008369de7ea97eb676c5e2b36",
|
||||||
|
"blk.7.attn_norm.weight": "3dabd003638ec2499bfc8a48c49eef34276caab4fe76894eb963207848c2fdaf",
|
||||||
|
"blk.7.ffn_down.weight": "194fae858608bdcffd235be59ab119d0b91c8549f864ea06dae69249e099935f",
|
||||||
|
"blk.7.ffn_gate.weight": "00b24c29c30246892bce0791be804a89701d4c1332777e0bcdad5d9d5666604f",
|
||||||
|
"blk.7.ffn_up.weight": "44d7082a5280080c90cef9e19d410391de34f212ca0736377769b8ddd0c82d5e",
|
||||||
|
"blk.7.ffn_norm.weight": "21fe8a7fd6911c64e0d15a788b3b4cb6d71dd6ec51de65f760ee89afbb6ae53e",
|
||||||
|
"blk.7.attn_k.weight": "57a149eec5f6744a9526cd3925ac073f9d12db0fbcb5afe042ef4dc846458c44",
|
||||||
|
"blk.7.attn_output.weight": "0e9c28a3e81a2880251ce5eed77bcb8be8aaa1a51c9cb6de820b47ed83849fc2",
|
||||||
|
"blk.7.attn_q.weight": "15ee75263ee4e2a43eb322bc159ae004bb7d77e3a7e63ee4ddab700430693fff",
|
||||||
|
"blk.7.attn_v.weight": "440aa970bba4bff429fd7b7b1de21f2ad14fb2952b776cfa4acee68d7c6e9b8f",
|
||||||
|
"blk.8.attn_norm.weight": "af5b44825633c42c1ae964c82bb2be6a242d3a751f0a91f1bae4f593e8f5b6ec",
|
||||||
|
"blk.8.ffn_down.weight": "b11c14c76adca94fa200496dd2c10743becb23aab6642443ef1ae6d8710edbc1",
|
||||||
|
"blk.8.ffn_gate.weight": "7bb03d3325bf8637ae2fa1296b0651356515578d46a7c5ca65c7a923d7de27bc",
|
||||||
|
"blk.8.ffn_up.weight": "b956ef0a0669b5a9c9bf3a8da2d1c24f52d331cfb7354f6d7c51bd65be355e30",
|
||||||
|
"blk.8.ffn_norm.weight": "c78c3d748302edfef76f71ea5cb2055c94352122eee8b9b1173779a1814d224e",
|
||||||
|
"blk.8.attn_k.weight": "c0fba6a596ed9c1c32a7055c31a935a8b31e42b77282ee47c1f03ee3bde736b5",
|
||||||
|
"blk.8.attn_output.weight": "83cf9947080c5d8d571f04a842bc3dcfe7bbb0195fb25b346e22635e8649f2d4",
|
||||||
|
"blk.8.attn_q.weight": "47409350a576b333d97b7c877d69f47f46df504f3765102dfc0be9e521c7ecd6",
|
||||||
|
"blk.8.attn_v.weight": "1999dff91404fdcf1ecb34d9eaaaa9244ec7658a74dec8feb7cfd1fddba0347e",
|
||||||
|
"blk.9.attn_norm.weight": "1e6e29d5c3889ab4e1b0a5b9998cba60179b0f1fca133515df49cbc19d092593",
|
||||||
|
"blk.9.ffn_down.weight": "acb898a6490adff592e10b4c62d70edc5941661ee6da44658500e9205357c8e9",
|
||||||
|
"blk.9.ffn_gate.weight": "4cff63013593aadc3ffbaaa6ed70ffdba1224cd43c3644bf6f4162b5ac1ab542",
|
||||||
|
"blk.9.ffn_up.weight": "f985b5a2d6cf4fe32c7256301c3c89b8ad22b59e516342c52da42d8110766a4e",
|
||||||
|
"blk.9.ffn_norm.weight": "0d659c538bc6b21ed0018f107ab674a7424a00a42946c80e07208b479b21918f",
|
||||||
|
"blk.9.attn_k.weight": "f67611d888780d1b38c1c146b361c65310c8183bdf64fd73e2259985c6e8517f",
|
||||||
|
"blk.9.attn_output.weight": "f12ca1fa62a02ddc3f77f798bfb5707e0c50bf18ee0eaa67025521a98355f26b",
|
||||||
|
"blk.9.attn_q.weight": "3865185f4361a645b086ad47b72904c095313fb1c624e511647bf1a7dfc1c476",
|
||||||
|
"blk.9.attn_v.weight": "92125bbfed63544ab56052bd1e4aa453bbf34c795249ee54cde54907c8c6d1d3",
|
||||||
|
"blk.10.attn_norm.weight": "5d6bfbe545bcc2fcb2fc75c68f64b1f4c918badaf53e0156fe2d88aa977b2f94",
|
||||||
|
"blk.10.ffn_down.weight": "1dd9da8b0d2696ab5531fbca8a29c7d67567620a9d3e5fc2a19ec5d7e4c6cc8a",
|
||||||
|
"blk.10.ffn_gate.weight": "6e55e7f014edaebda0ac6819a426221d3b025c27312a2e18cc5806f31e3db226",
|
||||||
|
"blk.10.ffn_up.weight": "d80dde54af5db51241345ee8d64c1972608644f4deeac1e8195dc423bf27474a",
|
||||||
|
"blk.10.ffn_norm.weight": "f6ca65951d58ae3379eee8247bec34ebd0db05674cc9295593573841b8a55df3",
|
||||||
|
"blk.10.attn_k.weight": "b58e350bd6b49aba0fba4e4dd6865de3a2a0651ab865dbf2419b627b53ffc187",
|
||||||
|
"blk.10.attn_output.weight": "6b26a986e12fe66ec286a21d7d5af5eaa1bfe6f2bf502165d270e4497235a54a",
|
||||||
|
"blk.10.attn_q.weight": "3440e0e5b7e0d1e426424ae5a33f4e057be623249e9035ea12e57dbe5d3893c4",
|
||||||
|
"blk.10.attn_v.weight": "ebfadcfe14bcd6dee933053df0a67e12e7a196d5cc45728c1ffb2a2daedd5ca2",
|
||||||
|
"blk.11.attn_norm.weight": "3ed057b9576cd2de84507ef64c7646dc478c651efca4c2024cbe91a4f3fbf0bc",
|
||||||
|
"blk.11.ffn_down.weight": "8ff1c2487d22f5c499761e4eb721418f141f960160d0bab779595a34e4d68898",
|
||||||
|
"blk.11.ffn_gate.weight": "9c74e4507c7e45bf39b7cc7402198cd1dd77e3fff8c625b0413acaeb16efeb9f",
|
||||||
|
"blk.11.ffn_up.weight": "4367158007161d29939e00a322bb6776016e43f648a94f9b08a96a477aae75be",
|
||||||
|
"blk.11.ffn_norm.weight": "1cc0288c1491072121f4c9a0af20be0e13af49895696a3320e4fcac608768de3",
|
||||||
|
"blk.11.attn_k.weight": "066f5b3c144fce1366835e1ebf376f768b333b8ae29f5b478c42d1d0c809c855",
|
||||||
|
"blk.11.attn_output.weight": "e0d9f3d3f2c54aed59c02713ea4fb562799ddbacbe67ca3998dfc887bc44e47b",
|
||||||
|
"blk.11.attn_q.weight": "28d3ecc8a88cb3815e89a7f7a7d043da7a71f702b337a126e4d3a2ac1cd6370f",
|
||||||
|
"blk.11.attn_v.weight": "7c5cdef10ee73bca0a3b9f6ece5f0a0155664e0ce3d8de90ccdccfab5545e5e7",
|
||||||
|
"blk.12.attn_norm.weight": "973b133301a1af760cd7b3a7955371ea0a750808b442deb6adaf7b98482bd0c6",
|
||||||
|
"blk.12.ffn_down.weight": "d6c87b4b4ca03f75546ddd6a9e7fca720585a309188723c1ace8122438d4b200",
|
||||||
|
"blk.12.ffn_gate.weight": "2189a6e0cab1540bd05d6089b922aa8fd694be51255654933c165f302a0c955f",
|
||||||
|
"blk.12.ffn_up.weight": "5affbec19b58d092b9305721e3552481fe2eff51269ea3ed91cda3b9ef84d4df",
|
||||||
|
"blk.12.ffn_norm.weight": "f650fd42a34e950f758b4a130e7b8b1a712b1dcbede0291bb8edde47aaed0ef6",
|
||||||
|
"blk.12.attn_k.weight": "59b1e86f10450a7cc188beefc0856d2dcf44e8d7fdd9cd8859c30ec1ebaf24b6",
|
||||||
|
"blk.12.attn_output.weight": "446b0d36b2f66bd72a2323f4f4e9d85a0f621e9a58872e89a27248d6b1123238",
|
||||||
|
"blk.12.attn_q.weight": "3ed6bfd39f040301ed99fad882d3e569769d594259f9948445bef0e44ec881fb",
|
||||||
|
"blk.12.attn_v.weight": "e73652cd5d0029b1931be3ba9d82508f6696dce5a29d085476a54fb7a2ddbabc",
|
||||||
|
"blk.13.attn_norm.weight": "491b85278c0bd67bd31b9b8a9720902c244bd067e53a4a03641b7c0994782e82",
|
||||||
|
"blk.13.ffn_down.weight": "ad71cc248a85e9ced49307a24a9bfae01d387e979a7689c82ff59998e09741f3",
|
||||||
|
"blk.13.ffn_gate.weight": "0a55984d53971fab97575ee0ef5882013be7fdecfa76e3fbebb5dc85a07a14d4",
|
||||||
|
"blk.13.ffn_up.weight": "378b697b35e2e53c0de98e8e29b73d42ae3ec112ec16129aa5997a9e2f3b5943",
|
||||||
|
"blk.13.ffn_norm.weight": "f8aff2f69ab286210fad45a62b03f8d10b38f96a420d7baadf6b95d7b0b0bcd2",
|
||||||
|
"blk.13.attn_k.weight": "25ceb841afb1034831bea7f4d6a6c578def2ce4d4c412c780ef147dc9a598360",
|
||||||
|
"blk.13.attn_output.weight": "a242b322889c6bdaa14b67a7bab593db39df8eea3721638ef639abbb74d482e3",
|
||||||
|
"blk.13.attn_q.weight": "d80be9945a369439e835c55cfb0e97828b8a66bb7ced534d9059c92487bf20a9",
|
||||||
|
"blk.13.attn_v.weight": "ac33274cf9b67979d9ecdc967a55175afe0c9c4aeeff6391433cd9840c818706",
|
||||||
|
"blk.14.attn_norm.weight": "12a1e1091de5b2da12c9e7c0b1c8e6f09ce2a749733cf7d5240445b8e21cd093",
|
||||||
|
"blk.14.ffn_down.weight": "cfd41965c88266e32bc2dcdadda512499c35519e8686fefb9a7f249ab2291eb5",
|
||||||
|
"blk.14.ffn_gate.weight": "8dcfe774f07a095c7c6cf0a901c9df70d938bad7b5ba347fbc8f694e7603c0d1",
|
||||||
|
"blk.14.ffn_up.weight": "c7995577fe4a72ea0fb17c4a7b6b87b959072bbfdd5edacc6c367d43465809ae",
|
||||||
|
"blk.14.ffn_norm.weight": "81c41ebde41739e7016ffec31d2256217b825dc3cae049a935f5f61a60d22003",
|
||||||
|
"blk.14.attn_k.weight": "fb708bdebe4384f5c4b479c110028554f4d122f166b8091eda7d8d65e6780eb8",
|
||||||
|
"blk.14.attn_output.weight": "f5295caf2dfdc60553dcabe17537a80577e8b153c902247daac058df23542514",
|
||||||
|
"blk.14.attn_q.weight": "c12b7a3601c68c63ab5dc9d2599ebf3f3a10abc2c59d3a2126fffd5818f2763b",
|
||||||
|
"blk.14.attn_v.weight": "1ce968d9149bf0d5e237d52cc6d6433565b4bbf03252a736262bb00a2b34a687",
|
||||||
|
"blk.15.attn_norm.weight": "266fd2c36d7dcefc6b6bb7f1c9374c41f2bab5d6c84a063b6f91c4f682dad3c4",
|
||||||
|
"blk.15.ffn_down.weight": "6154886e9ef0a6cc08ab0d264a35f497e6f0987efdac992ed04e87088bea7801",
|
||||||
|
"blk.15.ffn_gate.weight": "183d9fd3c1b5657840099053d2fd3f72ad953b1de523296159b7761f20491a76",
|
||||||
|
"blk.15.ffn_up.weight": "51546d4498842ae2340ee226a0888d5f61e7d2ca4d052dfa06a77b0451242d3d",
|
||||||
|
"blk.15.ffn_norm.weight": "ef7378091a41a25a5f58bf1bf9d3bc64ea562e7f421e1c232b1f177c30fd3500",
|
||||||
|
"blk.15.attn_k.weight": "8d556ab8d9639324141774999b6eed0e91d7ee645bf3e7a3dcd200b2e7a00751",
|
||||||
|
"blk.15.attn_output.weight": "54aa6ba87def7cbe18b0c6ab3aff5c351cb3b6ca4a0d7b2cd5f75a1312991429",
|
||||||
|
"blk.15.attn_q.weight": "10731b0dc031ea8e0ef37bd7f010e0a78518a10a6df05a8bae48e3148b73ef3e",
|
||||||
|
"blk.15.attn_v.weight": "cbbe50c2ed7224866d3cf9b489c599f3ec41a4ea1aa3181e9f4e87e1fa0cefec",
|
||||||
|
"blk.16.attn_norm.weight": "387058eb39d4b28c04cf1368247417f1faeae8ae79d894c9f293457e0eaa00b0",
|
||||||
|
"blk.16.ffn_down.weight": "2cb26ccee585e933401ad5c82ed36ddacb3289efa0b28f8cf91b020ffbd9c333",
|
||||||
|
"blk.16.ffn_gate.weight": "d745985efb5bab42304e5d509024631efe35f92f2b2ec4931ead6db97ca9727e",
|
||||||
|
"blk.16.ffn_up.weight": "7a67bd195e0642828ca36eb7818149bb70c2c25f82de07e2b5807c520daf540e",
|
||||||
|
"blk.16.ffn_norm.weight": "7cefd061c8182482a89272f8a4e88a954b12609a62716923ca1cb3593b1c1651",
|
||||||
|
"blk.16.attn_k.weight": "d7968a2de67e755b4533e061aaad1cb62f8882af92dcad67f99d6d5112513439",
|
||||||
|
"blk.16.attn_output.weight": "9e9ab5788272ca3394ea89eadbce8c86ecc3fd75b7899184d6191c134ad9aae0",
|
||||||
|
"blk.16.attn_q.weight": "ef81c261b536c1a3a093b33f44cf2d42b86e5aa2d821674f07a0c80e992ed925",
|
||||||
|
"blk.16.attn_v.weight": "aef38e7958301b4a437cbdd2fbae6197f677b09269ec1eaf63188cd5da428d25",
|
||||||
|
"blk.17.attn_norm.weight": "28f6b289f1bc3131041e9f791b7a2a3a48baee0dfea27bf7051ebbb7ed364d80",
|
||||||
|
"blk.17.ffn_down.weight": "1a502829aafc6a9bd6bc81f12573bf8632d5c8c659f0dfb13c8b2411f3b1ec05",
|
||||||
|
"blk.17.ffn_gate.weight": "ddfd8aa0eb98846ebc9afe31366249159f46ae9815199dd70161527ed241ac4d",
|
||||||
|
"blk.17.ffn_up.weight": "4211a3cc247071bd361b30de2131d02382f552855062bf3b3e004c17992e5d09",
|
||||||
|
"blk.17.ffn_norm.weight": "647e5fa99a5b0d232af36d15816539f4d27e60a50a341b00aa88bb6e4474f8b9",
|
||||||
|
"blk.17.attn_k.weight": "d9125ff33a19c502c0f8846433ffc24395048582fc2f463d34a0301a82156f02",
|
||||||
|
"blk.17.attn_output.weight": "3d64fbb1cfef04444827f37c35fd9ad3413eb2165094d339ef89f00503f09de4",
|
||||||
|
"blk.17.attn_q.weight": "e5b29424028f578beca385fd82e29f37adedf3037cd51e5889d5a1ffb0428ca7",
|
||||||
|
"blk.17.attn_v.weight": "1809c5aaf2ac04c5d65539097564ad62796e87d24bb8b9ce5b095561a61d908a",
|
||||||
|
"blk.18.attn_norm.weight": "99daca58d001c627523d3adfbca1d95f04e590382a326866544d57989d5f4835",
|
||||||
|
"blk.18.ffn_down.weight": "84f30231ce6ca0f10227541dfc602d6418c1a210386b0c4926ef1656e7d4635c",
|
||||||
|
"blk.18.ffn_gate.weight": "ca5bbe4468b541740e54f69b9e08fcc8e478c344b70551dab21b1206acfbaadb",
|
||||||
|
"blk.18.ffn_up.weight": "0b3067b9dded31686dcfdc1e247eae3974a28a61ac59e9862758dbfaad64e8f7",
|
||||||
|
"blk.18.ffn_norm.weight": "8154a102232dbc0f90ce77ae5c1ff8f26f8b6e4dcf326e9ec1645749669e7960",
|
||||||
|
"blk.18.attn_k.weight": "25abb26021ccc481471a30e0d4cbeb7e1db29828417ec5136edeb93fecf09ac4",
|
||||||
|
"blk.18.attn_output.weight": "d87d481d9b046b68efa06ccdd4ed8cbf61e692d61114b75b7fad5ed75f5d87b2",
|
||||||
|
"blk.18.attn_q.weight": "cc6400379e15766992ff1293be79dc67682c28e9e15155a78109f4b64653b164",
|
||||||
|
"blk.18.attn_v.weight": "45c75cb1dd496aea3173aafe2575b841dd1d02cbe010b3198099731eb98f531c",
|
||||||
|
"blk.19.attn_norm.weight": "65389efc75297684773284ef8e5f8789a4504b636c9f33b8a32e0ee42499fa72",
|
||||||
|
"blk.19.ffn_down.weight": "4eefab7e939f64a17e4a214ca3c77a6fa110d94f677e2d6401086f70fc538b04",
|
||||||
|
"blk.19.ffn_gate.weight": "f1c0a59cafda66f466ab585b0b8b4861b58abe87a67cea1f6a488492242edfdf",
|
||||||
|
"blk.19.ffn_up.weight": "c42d045eef588db4a0e56960a57e110e1ff92eb8041107d19899165fd3b90f17",
|
||||||
|
"blk.19.ffn_norm.weight": "a8f33eda6d5d62ff5f333ad9771783caff556641f4e7df713451385676f441fa",
|
||||||
|
"blk.19.attn_k.weight": "0bab5d9e9083492bfb05a5a3bb23b79c0e7b99ef6a6644817b4d57d5c453b8a5",
|
||||||
|
"blk.19.attn_output.weight": "c99c551d70eafad0f7aea98fb6f9251635897168eb3895f76abf0d4ea3b3aa6f",
|
||||||
|
"blk.19.attn_q.weight": "c98bde95627c3b54c9443813ca50b4e14f518319681db6bbf7b2332ba26e9a60",
|
||||||
|
"blk.19.attn_v.weight": "ff3a490518cf64904db89ce0dc7d6eb89e870f1440e41883c6b55a221f82de84",
|
||||||
|
"blk.20.ffn_gate.weight": "761f0e317229cafe9d3754048ab038a0a84e9a287b196ab65f633139f2d29aba",
|
||||||
|
"blk.20.attn_k.weight": "45d13439b41066d282e8490a726785abf513605f46c79bd0c840f6419d27e790",
|
||||||
|
"blk.20.attn_output.weight": "a3b958d84b4a097844179b7d55c18fd0e4f319cb15e918c6fde33b68de1bcac6",
|
||||||
|
"blk.20.attn_q.weight": "127ab8e7d8c3f882874904196a02712bab42e6744fde45871b67350609d19f5e",
|
||||||
|
"blk.20.attn_v.weight": "5f0ad2d14a8ae42dd3bbeccfb33295687a14055fa92c54bc946249373c1c9f17",
|
||||||
|
"blk.20.attn_norm.weight": "77300b1755edc8c70089e0f45efa646056b9add7d8568b2324d2f3e62b64971a",
|
||||||
|
"blk.20.ffn_down.weight": "ab93d0e075b42e9017b701a070d561e698050d90aac4b4b9919256fbe50c3204",
|
||||||
|
"blk.20.ffn_up.weight": "4fd6628a07acc57a48d1ef83f81b7d7aa0bce569c1160a99d307284f8821322c",
|
||||||
|
"blk.20.ffn_norm.weight": "2a9e46b9e48e8e55215de56592e1f189530037c1c94a1428e3d6f106c7f26fb2",
|
||||||
|
"blk.21.attn_norm.weight": "4b3b5912c7bc61eb9da8e47d4651f896e85d9e59c4ecaa65df7acf3c21737298",
|
||||||
|
"blk.21.ffn_down.weight": "7146f931663d93b8771cd84405cd4802ea6560d0729b0d6d44588203c095bc53",
|
||||||
|
"blk.21.ffn_gate.weight": "b44ec5d64388fa40b90b3e9976d97a8b6800fa3b97584f32e64b03daffb8601f",
|
||||||
|
"blk.21.ffn_up.weight": "0cf3643fd23c685e17062cd11e116e17ce57a405e5e78953bab94cd62fe48789",
|
||||||
|
"blk.21.ffn_norm.weight": "4ef2cdb53da166df70b39f3e6b17af51848cfa5ea3c27ad6a1ae2a1bb1da1ce9",
|
||||||
|
"blk.21.attn_k.weight": "5d40f32a706f670c19972b14176bf660d5b045e3637b110dbf8d7de4ff32101a",
|
||||||
|
"blk.21.attn_output.weight": "18afaa916752ce16c9653ec0ec7e2fe60be55faa2aa5025d147be184adb75cac",
|
||||||
|
"blk.21.attn_q.weight": "2621daa5f858931514a4b2f0fe8d81cf9b96f541e6af99bfa7539e9bde8e34ee",
|
||||||
|
"blk.21.attn_v.weight": "63226dafc54c899bbce4aa49efceeedd8908e94faa613450fdda91f332b62864",
|
||||||
|
"blk.22.attn_norm.weight": "cf3058daab4d2c04387e7d169d1553bb8e7358eea66285ec067703f6ce62043a",
|
||||||
|
"blk.22.ffn_down.weight": "6a58d5fd220abdbac6cee7ba048abab794731af318f04982c2506df59413d0b3",
|
||||||
|
"blk.22.ffn_gate.weight": "d5614535324b03c7b91727a903b2a72f8d07ad17f7aa8b61ea173cf9b895069e",
|
||||||
|
"blk.22.ffn_up.weight": "ec20da3949566e93f66cabb67f8cd7eab399047ec6ebf5d43edfaf3669b82296",
|
||||||
|
"blk.22.ffn_norm.weight": "84c82f38f53a649972a44466fc476bf764e064ce18de870291edc302f3700e28",
|
||||||
|
"blk.22.attn_k.weight": "a3d2ecc37fde7c201176bb8abadf27f0d8ede9679a6034913e03d9db924fda12",
|
||||||
|
"blk.22.attn_output.weight": "5a3b8bb433f43a387df43dd371bdf80ddfac986dfeaf38e9bac1d7a0ec6628de",
|
||||||
|
"blk.22.attn_q.weight": "3a875cec661b4859f30a8fd2c866811184b25b68c9e36fe2663d299caf8b59c6",
|
||||||
|
"blk.22.attn_v.weight": "8717a83b79035058dcfd3ef6f8e5b36e71d77379e5a239e1899eef8766fb7703",
|
||||||
|
"blk.23.attn_norm.weight": "2b4a68a0a2f023dd646e4755c9bef17c2f631901154afd839edac7ac006ec99c",
|
||||||
|
"blk.23.ffn_down.weight": "29499b1586c6fc4883c9b7a9c8cf388035146b5aecf90c5c4c8c8e082c71e7d7",
|
||||||
|
"blk.23.ffn_gate.weight": "7d6554036d21c587b9b556428054f9c15cbef96d24b257f906fcef4ae38bd9c8",
|
||||||
|
"blk.23.ffn_up.weight": "19761ecb288d6ebd44b681c4535661583b1e19dc29e96d0c007333cd8f00aacf",
|
||||||
|
"blk.23.ffn_norm.weight": "37dc35500790a4ca33807b39cf7af65065e535dc25b9e94f3ed2759f61887ac9",
|
||||||
|
"blk.23.attn_k.weight": "717547d00323817b0cb40a72ec5f8cf42ecd1f9e3e42715c2cc5e38f07fffffe",
|
||||||
|
"blk.23.attn_output.weight": "a24786feb6a905fdf166d7500133757cbe494779d4ebcba9eb03046b319557df",
|
||||||
|
"blk.23.attn_q.weight": "6a2c4a98f138b928d22136efa163562691d3b4ed526d52d46a2fa2694a8f3965",
|
||||||
|
"blk.23.attn_v.weight": "c6e6081eb9c38a7fda023085957b460e9ea321e1fff408b38c2b58595c39979c",
|
||||||
|
"blk.24.attn_norm.weight": "5e6283f891e538670425f3e244b08dc6f96f33dfa4aefa913f8eb17212421850",
|
||||||
|
"blk.24.ffn_down.weight": "e09eb170f389deea0a4a1cbfdb52c12490768a2c60491b7bef8a4c445e2a08f5",
|
||||||
|
"blk.24.ffn_gate.weight": "af29d815cf49a38fc2ebd0bf9b2dd9933d023a29f2d766981acb9a1b53f09117",
|
||||||
|
"blk.24.ffn_up.weight": "36ccd9333426666de9d3088bd4dcdf5b624b09dca9e3a83a22fc0383f2d950fa",
|
||||||
|
"blk.24.ffn_norm.weight": "a88e1692318826db6ac42582d182e51a3c698c655d0e21e04fa086318832d07b",
|
||||||
|
"blk.24.attn_k.weight": "f7d61d6d1225289bcc502e3bbb0168b4584add0253218c1b77ac92ccef9a1c2e",
|
||||||
|
"blk.24.attn_output.weight": "85a1363b3ccc87312094c2195022687c16b0dad7fafb9e80bb4ec474d53c29ac",
|
||||||
|
"blk.24.attn_q.weight": "53482a2c008f42f4fad779ca323addc3712040149dfc12f782417756388a72bb",
|
||||||
|
"blk.24.attn_v.weight": "67498272369af7dd10097c73b07f731b565cfc9a559e711cc0d526389e7b44e2",
|
||||||
|
"blk.25.attn_norm.weight": "98dd617def5cb7825ee4833132ca2da2121245921585e1d9e36b93344adc321b",
|
||||||
|
"blk.25.ffn_down.weight": "7fd477d6c50aed5f424a878dd284343379cffbee8a34c0b6e55100c8305fa13f",
|
||||||
|
"blk.25.ffn_gate.weight": "f892c9806c8ec22e8aa746734ac9213428c534921cf161239e1d249fdb5d1ec0",
|
||||||
|
"blk.25.ffn_up.weight": "528bed14c9bf9762f790525ee40412545221f4321d2a2323fa8e73c58b7643c5",
|
||||||
|
"blk.25.ffn_norm.weight": "ca5831966672e7be6a578feeb631ec3570d3b5afe12860819ccb96e896ffc346",
|
||||||
|
"blk.25.attn_k.weight": "610d3068cc9b20401f0c3a0efea39a279dd9f564fde19baf3403b2ec2319e4c4",
|
||||||
|
"blk.25.attn_output.weight": "798aaf702e53b657265ac3b5e6caf3a0ab515bdadfeb1a3a156b4f3bfba76666",
|
||||||
|
"blk.25.attn_q.weight": "8a7fa25248de83029fb97b51d036a01baebe31fcb4be121ab00dd8b7de209b10",
|
||||||
|
"blk.25.attn_v.weight": "2a53d5e9f8a1218c66958c6388d3b37400a9af7956c785024ca44bfbc3c7d371",
|
||||||
|
"blk.26.attn_norm.weight": "5f44fc043481eb0771f3e6d2420bcbcf73140afb9a9feb8eddb6575452acebee",
|
||||||
|
"blk.26.ffn_down.weight": "944a60a409d0d5b6a851e33c69aca152454b691711a8b96f5bcc488772ab2833",
|
||||||
|
"blk.26.ffn_gate.weight": "2a0ca4abb3de5593e6693d8be69b63d6d1a639855ac8332a75f520353f030c62",
|
||||||
|
"blk.26.ffn_up.weight": "0b1df496163f9ac07bf89375d3eb441b51a81d41b47d769a04a61efc18dbe35b",
|
||||||
|
"blk.26.ffn_norm.weight": "56b8dd046e9be6ea71f7efd80dbd14e7fb1aa020d3cd38e063275f3873fd12f8",
|
||||||
|
"blk.26.attn_k.weight": "b1dabfabb970e6971c7ea6e53c63cf7ef56341e6a2edd9cf177785cad9af2f9a",
|
||||||
|
"blk.26.attn_output.weight": "39532c7e836baad164a655fb97ec5114ea4da37ffba9fdea2684f6e4450e6f84",
|
||||||
|
"blk.26.attn_q.weight": "8f48bf6aaa1252bc149e98af2be1777a5c0d2c3274c6d314171ea9344a41b604",
|
||||||
|
"blk.26.attn_v.weight": "02fb145f7fd905133750e90571effacadddfd3f4966552dc59982ac3900ab8c4",
|
||||||
|
"blk.27.attn_norm.weight": "654d168fc3cab716d91261f5719f180b7d697218401633b4878a759f1b5283f2",
|
||||||
|
"blk.27.ffn_down.weight": "2823272bec3a1c12f02cc4cb24aa4031abd7e9dbe0b02676e2305b21671818f0",
|
||||||
|
"blk.27.ffn_gate.weight": "b1a1d40cd02f97182cac17a79971d1934ee0daf3aa0bf11303568c636e208a64",
|
||||||
|
"blk.27.ffn_up.weight": "ed62ec72a020d070e64eb7b50237b32213944727b5b2427f45d989f50df5fb2a",
|
||||||
|
"blk.27.ffn_norm.weight": "c69649ac65d694b306a905dee8b03b89eec1ed188b1eaaf38f8e29d4b12e38a0",
|
||||||
|
"blk.27.attn_k.weight": "cc57bbf413f1fd227128dc66efc8590c73634cbd6f96d01ec4878b5e7ca6a925",
|
||||||
|
"blk.27.attn_output.weight": "cac407ad02361d53207b3c7e25ceab84dcb4347b8087055162e2efe14d11d84a",
|
||||||
|
"blk.27.attn_q.weight": "0af18e07cee12015761c07c94407024f4f4d77d97bdb24163db0e16669e2cef3",
|
||||||
|
"blk.27.attn_v.weight": "a1d08fbdfa40af773c5adcf93bd68b78a44ed144e3fc6bbeb8af02e937527eb6",
|
||||||
|
"blk.28.attn_norm.weight": "f39a51f814512b040a1082143150e4a49ff730f85cef49d7f77fc79d83e91f40",
|
||||||
|
"blk.28.ffn_down.weight": "74f29ed51055d1c1adb8f0660bbe538a27e016c65650f2d67efc6f1c84fa1b45",
|
||||||
|
"blk.28.ffn_gate.weight": "ae48bb16487ded6781c60aafc0bf738fb4ae15729952906f247d216592ce249a",
|
||||||
|
"blk.28.ffn_up.weight": "543009727718ac22f11ee4b17815f68ea6f15ba1f3e7ed5ecdb755cf6417565b",
|
||||||
|
"blk.28.ffn_norm.weight": "b8f9e54c322079ff20a82b88948cdc2916c22c7db40b9a9ed6d3cbe89efb727e",
|
||||||
|
"blk.28.attn_k.weight": "55d055ba653b728d6e784f9e013786fed07115c9fdf23367e3941386d5e77db8",
|
||||||
|
"blk.28.attn_output.weight": "155101c03ddbf18f4fd0694bfc982f33c7bae25c9b087d6f5273c2bfbffcf2c9",
|
||||||
|
"blk.28.attn_q.weight": "1ed19bfdd22e9c14eca014739982492e9516d411515a8585f65cf754d849e53f",
|
||||||
|
"blk.28.attn_v.weight": "11ba854dd575c025d37256eee9041f6d1bd2b549a083d6409a09bfc1542913f3",
|
||||||
|
"blk.29.attn_norm.weight": "02b0bf5e2fcefd11a153cc988c81ba672682e4844fcf6442423e21a0e10d566d",
|
||||||
|
"blk.29.ffn_down.weight": "594bb692ec2779938721ff4748666ca8370e0e4fe85229503f616438b8884f5f",
|
||||||
|
"blk.29.ffn_gate.weight": "8bedcf47e91dcb2cf4093de56b048ee411faab6ff472f89ab2c9c113a08e6967",
|
||||||
|
"blk.29.ffn_up.weight": "e241a547b5fd6dfca8200b8141e21c1c487a96cbc4e5855f181a7ed1be91b642",
|
||||||
|
"blk.29.ffn_norm.weight": "e63eba5e4c6b288bfd9f15e46e236086456c8b7f1f9c732c0b5de84962a2e7cc",
|
||||||
|
"blk.29.attn_k.weight": "afe5979d5bcf211aebb526620f5974bcb0a2c39c8be71e815575c55d6385e3aa",
|
||||||
|
"blk.29.attn_output.weight": "9c944ed44b124b014906fc240afd3b90aed56bbd9567f2eddfd5b7a685b3cb48",
|
||||||
|
"blk.29.attn_q.weight": "e234e08e5c1bd9245a2edc8d63e9933b6b879f97c01392209cad4f55f05f3ada",
|
||||||
|
"blk.29.attn_v.weight": "5cb8e3e5f954e775c5a5e4de7a9a62b17e9c6931bb0ff0e2f82c4126fd3e1a1c",
|
||||||
|
"blk.30.attn_norm.weight": "a65483ee51a0b214144ec8a14f28ea5437586e9e12ebe342a57d1f8627ee12af",
|
||||||
|
"blk.30.ffn_down.weight": "417959da77ceb33ead4271cbb9428b195196173a893c44e52880a7ec61b4856b",
|
||||||
|
"blk.30.ffn_gate.weight": "a0d503ffcbe45dc927600bb98c9f6082487e65cb577ab545add400d666a87638",
|
||||||
|
"blk.30.ffn_up.weight": "f8ab957b82ffcd10b21303cb5e866209b6fe95f827b1b94e9a949207952d12c0",
|
||||||
|
"blk.30.ffn_norm.weight": "210c7ceb0514a9ef27b5d4d1b3aff6dde43f1af0345a050d71097940e0e73e03",
|
||||||
|
"blk.30.attn_k.weight": "16861b9abcf5a3fe73c93d977ca45a1e6daa65be0fd85c2cff53486ce2033afa",
|
||||||
|
"blk.30.attn_output.weight": "ca541fb2e57e2257118c35784845b0c731278af8db3036ac53d71aa1681fdbdc",
|
||||||
|
"blk.30.attn_q.weight": "f7834917748e26bb456b945e230bc926c228e93696bc01fbc2b134bdeeac71a1",
|
||||||
|
"blk.30.attn_v.weight": "9292783171dbe5eb689d17c9bda11e537f0e9b328fced6986c938d61ed590e81",
|
||||||
|
"blk.31.ffn_gate.weight": "e4766a04bcd8f937ba883c6a144101e546747804ca66c35c97281d6ccb47b566",
|
||||||
|
"blk.31.ffn_up.weight": "cc1e666116f7e6b06736db4aa4b81003c583f54f4d9200bfa48842249940e16a",
|
||||||
|
"blk.31.attn_k.weight": "fc80b57557687504efae7d24265cb7dc39b8f826bb3d897a11783012dbedc44f",
|
||||||
|
"blk.31.attn_output.weight": "215617f50a1f5d9b2250b82f3652b35a9e9aa0ad9ef2b485d73965a14b2b872a",
|
||||||
|
"blk.31.attn_q.weight": "274b4f1dfb0bdec28632705677049fb3e327ce6d9e1f3baaad1560439039982f",
|
||||||
|
"blk.31.attn_v.weight": "e641b8b926f9dfcbbf6b6da1c02555525ac4b1c306d96f20cfbba7d6662c4e56",
|
||||||
|
"blk.31.attn_norm.weight": "b3243c361d4041ddb892ce6862dd5091f57d87357e3c67e177451b85d8baf34d",
|
||||||
|
"blk.31.ffn_down.weight": "0a00cd3ecd5e91624a27f9e239b1de425d5ba3cfff82c256a11a4ad434abf3c2",
|
||||||
|
"blk.31.ffn_norm.weight": "2a0d67ea2bb1303975712243f07273c92fce83baa11b1cd6d8e42e74ea3c810b",
|
||||||
|
"output.weight": "768615f077fb797967844571c58b94d7c399d884d115be3ab4b0154504cae892",
|
||||||
|
"output_norm.weight": "7cc5b7ce10e5082000fa00bfa68af8c7c5da218e59e2c41cf2f1499d40ca229e"
|
||||||
|
}
|
||||||
3
convert/testdata/Meta-Llama-3.1-8B-Instruct.json
vendored
Normal file
3
convert/testdata/Meta-Llama-3.1-8B-Instruct.json
vendored
Normal file
@@ -0,0 +1,3 @@
|
|||||||
|
{
|
||||||
|
"rope_freqs.weight": "80fd5efb2f729381785b293a091a268cfeceb0079167f6ece9b07070e662b222"
|
||||||
|
}
|
||||||
313
convert/testdata/Mistral-7B-Instruct-v0.2.json
vendored
Normal file
313
convert/testdata/Mistral-7B-Instruct-v0.2.json
vendored
Normal file
@@ -0,0 +1,313 @@
|
|||||||
|
{
|
||||||
|
"general.architecture": "llama",
|
||||||
|
"general.file_type": "1",
|
||||||
|
"general.quantization_version": "2",
|
||||||
|
"llama.block_count": "32",
|
||||||
|
"llama.context_length": "32768",
|
||||||
|
"llama.embedding_length": "4096",
|
||||||
|
"llama.feed_forward_length": "14336",
|
||||||
|
"llama.attention.head_count": "32",
|
||||||
|
"llama.attention.head_count_kv": "8",
|
||||||
|
"llama.attention.layer_norm_rms_epsilon": "1e-05",
|
||||||
|
"llama.rope.dimension_count": "128",
|
||||||
|
"tokenizer.ggml.model": "llama",
|
||||||
|
"tokenizer.ggml.add_bos_token": "true",
|
||||||
|
"tokenizer.ggml.add_eos_token": "false",
|
||||||
|
"tokenizer.ggml.bos_token_id": "1",
|
||||||
|
"tokenizer.ggml.eos_token_id": "2",
|
||||||
|
"tokenizer.ggml.unknown_token_id": "0",
|
||||||
|
"tokenizer.ggml.scores": "e3d3eea80bb41a1213f2d0aa3e8a38581d1f19323be77dbd779c9c7e3b72e676",
|
||||||
|
"tokenizer.ggml.token_type": "6040635e6bd38d98af06698feb75c1802bad35180ee6ae0a503e38c0f60fd71e",
|
||||||
|
"tokenizer.ggml.tokens": "604ac4bfbd019e430d7b6cdf18c6c0cd5b967900601f0307f714ec7773aa5ca6",
|
||||||
|
"token_embd.weight": "cde834ccac5e94324b25cb81b02d27312cac0c551b55a7e1d555d90bf6cb6e81",
|
||||||
|
"blk.0.attn_k.weight": "458bfdd9715c66e017c2447b1ed3c582963a3111479314e664faad8c914f42be",
|
||||||
|
"blk.0.attn_norm.weight": "e1fd60b95f713bae7b7e3ca933c64ae6c9cd1e8d808000204bbfdc19f0ba635b",
|
||||||
|
"blk.0.attn_output.weight": "df13b6a157d9d4f96c53b012b3b9bcd207d0c94144cbd22ae3ec13bb07d6c373",
|
||||||
|
"blk.0.attn_q.weight": "13b4126b4245bf06c915a93317c42b8174e05053535ec99dc576541e4cec7c25",
|
||||||
|
"blk.0.attn_v.weight": "5b1781d3a341214511b27eb4e268674ea3ea829dbdf8ae5a6bb89b3c0b33fafd",
|
||||||
|
"blk.0.ffn_down.weight": "49186f5d8148d316b07458841d13a2e66587f4af69b776188a809591ed9c070d",
|
||||||
|
"blk.0.ffn_gate.weight": "4397e30ece09136f00f4ff84ff49e5241b765a374deb8c5a12e897e2bf73473e",
|
||||||
|
"blk.0.ffn_norm.weight": "43260589aac3850a779bca3f9649f793bbfbe5db538361cb743b3830217f8287",
|
||||||
|
"blk.0.ffn_up.weight": "fd7ac918240a07566f6967527ffca58fcf433a30b78fdd6d84b2136d4ebd9987",
|
||||||
|
"blk.1.attn_k.weight": "209839566c7d235bdc20565a4766378b6ee8553133a5a3315abe8a85baa80712",
|
||||||
|
"blk.1.attn_norm.weight": "58c52986f7c69784ba327cb7f350923420782bee17fa39b1fbd13839d4005357",
|
||||||
|
"blk.1.attn_output.weight": "5067cc628449682665dfcf59b16e58fe2a9d2a81cb099f0fcd42f4f8670c6740",
|
||||||
|
"blk.1.attn_q.weight": "f410f9f0dd5edc09401af597d02e2a4c727f1502ec3ec3898321617b36c6df6b",
|
||||||
|
"blk.1.attn_v.weight": "d40fa49e07c102c0644e130e7909eaa93ed0d54e2edddc0759e721d58a4e4f5e",
|
||||||
|
"blk.1.ffn_down.weight": "594b1eff6ed4defbdd819fabbe2d48764984f08878a860bdb808511d5a25b8db",
|
||||||
|
"blk.1.ffn_gate.weight": "4cda97541e388a5bb607ce4cc8b3db1da7045830a630e7ba4d17807befcff346",
|
||||||
|
"blk.1.ffn_norm.weight": "66c13d7481be65b97aa474735ddc9674f33d512ddda76fa6fb45c7464b09f1ed",
|
||||||
|
"blk.1.ffn_up.weight": "1adc6de288ba4cc1237833ca8b4eb81107149842e38bc452e18e5cfe284338a2",
|
||||||
|
"blk.2.attn_k.weight": "5420423559f236ab22d85a00849f31e0cc6e9c7dd879de724393d8cd2b379153",
|
||||||
|
"blk.2.attn_norm.weight": "495fe1ab40cc52aa054ddd4f0c2d2790f4326c8d103296b1b38f3b1060db2a24",
|
||||||
|
"blk.2.attn_output.weight": "ccb83e7085381f558bfd65588c525ad2671feddcbc3887afb4038ad9c7aac348",
|
||||||
|
"blk.2.attn_q.weight": "2e8f77478392bc93c2a391f2e0f4a173a952bbab88a7aca099c6ee909726409a",
|
||||||
|
"blk.2.attn_v.weight": "d64512590f3b7ebbb9e77c2eb97fbda90b00d45c944f2b174f03a2cb11007567",
|
||||||
|
"blk.2.ffn_down.weight": "1de5084a05dcaa6b1bd926e83517dbe9ebe7fde79235fe56018b3028b1aa6397",
|
||||||
|
"blk.2.ffn_gate.weight": "cbea526b557f49aad8c976973cf367fcd12175b900f551984f498b9e07e4b7fd",
|
||||||
|
"blk.2.ffn_norm.weight": "530aa49b10c7eae08899d143409240deb95dae4e1d5bf78cea3b26393cff3ba1",
|
||||||
|
"blk.2.ffn_up.weight": "13a5fc19b96b4dcc1e9bd01998c8272ebe52034c1933ed123a506b711fae9a5c",
|
||||||
|
"blk.3.attn_k.weight": "1913b63a73305941d8cdc472e7f101c633d3357a78602eac0a4b49a744261075",
|
||||||
|
"blk.3.attn_norm.weight": "9c11bed5ab41f4adbfdae4ead65b525c8f19443e656a8c61ba412a4e1ad1193b",
|
||||||
|
"blk.3.attn_output.weight": "bb0b42c1d34779c5943272ed71f1dbb31ad8edd75f8bcd5c868f88505ac3a610",
|
||||||
|
"blk.3.attn_q.weight": "3461a1fe4e49f5319ea047cae98ccdb46528a3ec23831183fe87610b48c94948",
|
||||||
|
"blk.3.attn_v.weight": "82aa30be6a61526a41fb79bb28a2617416f5909f0477aa9e95e16be9370fcb38",
|
||||||
|
"blk.3.ffn_down.weight": "68521011ae03f5e3b0966127111afa8ee9f2eaeeef8d3a0b86b633e0332e9fbf",
|
||||||
|
"blk.3.ffn_gate.weight": "1e89e26338fd364bb679695968c65106382f15ad55c95cbb5ec9bdfeb766f432",
|
||||||
|
"blk.3.ffn_norm.weight": "c81932529a5a8c417c27b888dbe95fff8b447c2ea5f6f560444ec5d50b93832c",
|
||||||
|
"blk.3.ffn_up.weight": "305021735afd8669afefd713f56137248d5e817e60471a112ad06b7fa07ffe88",
|
||||||
|
"blk.4.attn_k.weight": "cc26ba5c5c28082a79e6abfe61186029e80b145252ca6a7924c437f0bcf2d51b",
|
||||||
|
"blk.4.attn_norm.weight": "302d251fdcc91f7468cf33f80b49484251d8917d7018ad264ab3a85c8ecf9ddd",
|
||||||
|
"blk.4.attn_output.weight": "a012f5bee3520cd4ce51f0076c132ebc3653309f304032ad051aa308f55f36de",
|
||||||
|
"blk.4.attn_q.weight": "3c8d607e447f5ef21e73af71e3c0d32fae16f91f31faae34ff06912cf9cb68fa",
|
||||||
|
"blk.4.attn_v.weight": "49f6c81a634ce46d71c2350206ecbd231b1732af96e4e4e67693c41a07e007d8",
|
||||||
|
"blk.4.ffn_down.weight": "e89504f311a4a34dc819a67b761022f14d71c43df3ead4f892c87aaa8e9f0adf",
|
||||||
|
"blk.4.ffn_gate.weight": "18b22f079a2fbaefe3572eec61fdcd996fd747724e2f0ff4f08cfcb43eb7bfb6",
|
||||||
|
"blk.4.ffn_norm.weight": "22415a492c168a0878912b05c854a631228b01c3ea8842e1d75989ec46c18a65",
|
||||||
|
"blk.4.ffn_up.weight": "f57379eae2874d8853f14ddf0f0fcc4ff1338574d5ed5d7e88331d5fb84f5642",
|
||||||
|
"blk.5.attn_k.weight": "d627af853c40bddf9762ce3988008c1ff17f2686fa8f73a0b5da38010147c316",
|
||||||
|
"blk.5.attn_norm.weight": "9ce01092c7f7f1c3ef72d6b794da12d77aa1f6a24fb96ba1b9bd5a0bcc3e2443",
|
||||||
|
"blk.5.attn_output.weight": "0388da8064c4b6b795ce2d8079e8a36535e82b2c9cf794e38ce8ae460aae726d",
|
||||||
|
"blk.5.attn_q.weight": "039b7ce1c909761fdf475c06cf14cabe5a90199282c89e4dcf460e95a4b6275d",
|
||||||
|
"blk.5.attn_v.weight": "c47bfd8d2496bdb6e00e03b903e15fd0ee806a515094ec257e43cc433147ab7e",
|
||||||
|
"blk.5.ffn_down.weight": "1d62e6708974bae318cbf00a8bf621d9ba0537e549ce4710a536520a8d14168e",
|
||||||
|
"blk.5.ffn_gate.weight": "8b42b1b11c92db19985094cbb50434e3a7c9cfea71ee6f21ea79eae7c49284a5",
|
||||||
|
"blk.5.ffn_norm.weight": "e0bc520f1505e687ec391d632a381d38d8ebcdec19f614a11a2000ab573e8b7b",
|
||||||
|
"blk.5.ffn_up.weight": "8cdcd17d2ea89bb9ab902dbc6bf3f827fa4ee029c6bf19eecbdefd146d8b6f2f",
|
||||||
|
"blk.6.attn_k.weight": "5dc6bcff89794d1756bf57ec665b58622d9352130d31082a6c66e1a079f99932",
|
||||||
|
"blk.6.attn_norm.weight": "13b26008abe0f119b5104b9d78ebd5e797d3cdd68122b93d73a3b4831a54d085",
|
||||||
|
"blk.6.attn_output.weight": "f5a49917ea70c3fb311ccfffbfafa63ab18416a5d55e5429b70ce8bfba57c075",
|
||||||
|
"blk.6.attn_q.weight": "d9c2f652c87dbd09ec3822e12876648fa32e86553ac25afab723b1cd9f8cef90",
|
||||||
|
"blk.6.attn_v.weight": "5ecc5fe67609a35151011cb526f45c56fc0a999079ae0ff37c755ca03c68c555",
|
||||||
|
"blk.6.ffn_down.weight": "0ec125ae0ecb2d9277fdb1b04f17efee94e37d0ae37311057c212ca2db3fe6d1",
|
||||||
|
"blk.6.ffn_gate.weight": "fa4d6d38355ee8aa3b80b476d65ae7e343c9b7770d7b097fc848ee8a6e091d1f",
|
||||||
|
"blk.6.ffn_norm.weight": "30e8f7defc627532e1739dc76d31223d45767391a431f925b63dabe334b0f392",
|
||||||
|
"blk.6.ffn_up.weight": "6b97cc32b290fa9087806b5d65aa6dc1760737730c8c71394cc4f30c2157f9ab",
|
||||||
|
"blk.7.attn_k.weight": "0231cb127cb7c3714cd72b8f39343891d7715a9bab2237ade9e7bc5f4ed2e68a",
|
||||||
|
"blk.7.attn_norm.weight": "7c3187f07eead7d219d98ab2daf87905e88d5f1ace109b6f5fa55dce3914981f",
|
||||||
|
"blk.7.attn_output.weight": "2f30ad972c284ae7c8eb0482053433495ebe8fe9c5ee2c28b4bc4ed1f33050fe",
|
||||||
|
"blk.7.attn_q.weight": "3a2b4b8d61cc9956d304fa9f82a9e65b4bb9fda2196670b16df7e0d8c43eff2c",
|
||||||
|
"blk.7.attn_v.weight": "d2aab97d0dcf0f61dd2f32848f7a8a99c423a4948a660a660a03a546972b8db8",
|
||||||
|
"blk.7.ffn_down.weight": "2270d520468c5549cd30023ff9c452a277058310104c4239a616373fc5a94387",
|
||||||
|
"blk.7.ffn_gate.weight": "4134a3ef71b3eac8f76b6f1a2e58625b3bae48081f175994bc3ed7d8b0d4f2d0",
|
||||||
|
"blk.7.ffn_norm.weight": "42df4abd4b8769b16f3930068f96960af1b061f1aeb7505384f272233b2badff",
|
||||||
|
"blk.7.ffn_up.weight": "c920549054ec16ff8c73a72f5d837cf4e11885e44db57c1c1c584c18fbd7a9a5",
|
||||||
|
"blk.8.attn_k.weight": "01c609bd3bf31ce65688f1f640ee413740e821330134d4ed1877a3065d1527d5",
|
||||||
|
"blk.8.attn_norm.weight": "48857411f769b00290f4e4f2e593e092781fdc2503f80c1e3eeda1b85a20f74d",
|
||||||
|
"blk.8.attn_output.weight": "90fb273f8df83744554bd59236515c16c5a5a698ca3fbedc17cc89ddcee354ff",
|
||||||
|
"blk.8.attn_q.weight": "ade617ac4653c7f00593dbb51837a468afef20a14eaab3780fb96ac3d6714369",
|
||||||
|
"blk.8.attn_v.weight": "c2c37496494864fee5c527d1fe1f88529d31c73f9cbd02ef9b2e9b23611ea50f",
|
||||||
|
"blk.8.ffn_down.weight": "2da58572e9ad79087c03cbb0c23c9ef69f93ec221fd5fe4ed92fb93871d23ffa",
|
||||||
|
"blk.8.ffn_gate.weight": "4483294e628edaa4901708e73e92c917bdd93b780fa01aa74aed57166f2bbf0a",
|
||||||
|
"blk.8.ffn_norm.weight": "c0cbb7a4f8123b62f0c4652a687f3b394802bc32870dc446eefb709e42043a7f",
|
||||||
|
"blk.8.ffn_up.weight": "9eaf8a2060cb9224cd585997cd671866c4051ad885c2c6d9fdc7056c2a5c0d89",
|
||||||
|
"blk.9.attn_k.weight": "5dd36c45fbc9c50fd35c36cd75576288506971eac5c5311d4f5c16ef60099645",
|
||||||
|
"blk.9.attn_norm.weight": "3c8ca64f2f75ed7c8fc1da010c23be787648139a96ca0ef3ad10be7b14942b8d",
|
||||||
|
"blk.9.attn_output.weight": "6277e1f833024f53c409be919ec76d34464a78b278c8f9dbf79e777746e3b995",
|
||||||
|
"blk.9.attn_q.weight": "87352b70d9e328c2d51d59090cf5ea5a046529864a890d0bc8986447a0a5c006",
|
||||||
|
"blk.9.attn_v.weight": "2efdf01161d7a82a9117cc2d87d37dba5ffefcf730781cb94fcc95130e48ff9e",
|
||||||
|
"blk.9.ffn_down.weight": "e7658a2ca984961c7ace16acb679387bedb1fef656b5330bbbf588db19673a75",
|
||||||
|
"blk.9.ffn_gate.weight": "773cd330d4ff5d64be8af00adf2e2722fae4e33fc26bb9d03549f6f4b3b0fe57",
|
||||||
|
"blk.9.ffn_norm.weight": "c8b86cd5c43b332f72060b807091c33a258e5dac01358ff4733b916cd34c9c97",
|
||||||
|
"blk.9.ffn_up.weight": "d8cc3bcff18bd46124ba2aa7caacc71220b44eeef6fccb993b4c6cb53e8f2c3a",
|
||||||
|
"blk.10.attn_k.weight": "964bdf3b4e77b915a216f750ff7b0f2eb1dd6bfa071358aef21010b90111044d",
|
||||||
|
"blk.10.attn_norm.weight": "59ed411d91d14775764eb514acb0895a75a10cbbfbc1c15d453bc50f8046cb7f",
|
||||||
|
"blk.10.attn_output.weight": "4d35a2a44cfe4ac0a83fd3ab0dcf1f5a0bf54cdb3b7be9fc353ed32c8a3eb81c",
|
||||||
|
"blk.10.attn_q.weight": "defff5339450dd881ac352f5c459293f39e07b9619ebd10ed632d79a3f310278",
|
||||||
|
"blk.10.attn_v.weight": "b9803e8d6a54acea58f662d4c0a5c8ebdf986676de7dfe12d4b288937881ce93",
|
||||||
|
"blk.10.ffn_down.weight": "eba856be64e4be20b92fb4639a783454dd92427250759df92a337e39f1971c08",
|
||||||
|
"blk.10.ffn_gate.weight": "2d5c509b066584db4de3632b01234e86edcde35409c5ebce18957dc80fe465e3",
|
||||||
|
"blk.10.ffn_norm.weight": "ecb9a8679945ff0273856624ce435dd250ffe5a440ea0861a5c84f0e4c44d2c6",
|
||||||
|
"blk.10.ffn_up.weight": "e76ec7e993f399af02958778c643aa78368e3067846714165eb5aba9d5f547f5",
|
||||||
|
"blk.11.attn_k.weight": "29c6d1f34bd3ba2f0904e57b32a5bf8dcb2834d439159a33edf234ce0b775677",
|
||||||
|
"blk.11.attn_norm.weight": "b5817b275149cd2abe18a6a10e19854605fc58fd364666744362ceee8cfe49f4",
|
||||||
|
"blk.11.attn_output.weight": "1e05653220e237cbe0cc770033e183c9a0eed5680510997409b16186c6691950",
|
||||||
|
"blk.11.attn_q.weight": "03db725ae669151e4d536e50285b3b047ad097f52475df208ed3e790e31a44be",
|
||||||
|
"blk.11.attn_v.weight": "27cdf1d4e971326c451a4615a0b79a8c7fe9508f9b76c0d52fa01971fc7eb403",
|
||||||
|
"blk.11.ffn_down.weight": "176938cd7c2966094f614cace8ba568b10532e45a0d438f80eccd19b6c2a7f87",
|
||||||
|
"blk.11.ffn_gate.weight": "9782339915dd6fa70013628a01524ee1d01ad8beab04068da7ac6a5ee7603a60",
|
||||||
|
"blk.11.ffn_norm.weight": "8245f6391e3be97811c0ff27f0d8f484ecc82a468a837c893f059745bfcd95eb",
|
||||||
|
"blk.11.ffn_up.weight": "15616ddde096d0d25e906375c548b6de4bd5576d1f6b68eefdc29f14e183af42",
|
||||||
|
"blk.12.attn_k.weight": "66dd21604993edd1b1fe547bcaa06f5bb7e31c9204902d147a227e4badf7feec",
|
||||||
|
"blk.12.attn_norm.weight": "23a69f85dd8a0904b9839cc5d0afcda299b74e82ae2642106224a1c820f2b761",
|
||||||
|
"blk.12.attn_output.weight": "4a98d132e376beb274a39d4ea9b6a1b870ad5c66625439d7ff6f45c229c3ca04",
|
||||||
|
"blk.12.attn_q.weight": "1c6c309d63afcfde32fe37257e300a78e25d01117e33490801107c0e75d1ea66",
|
||||||
|
"blk.12.attn_v.weight": "723d9e4ebe4e2b1974afa01d8f512b52933698fa36717dd47b37b07760c50a10",
|
||||||
|
"blk.12.ffn_down.weight": "00e0fb09e1f1fbbf3803f1dee373eaae7a93756b6e13063ab77f9927bc6f996a",
|
||||||
|
"blk.12.ffn_gate.weight": "89159f7f97aefb1e100107e3ac2d694e1008ad873f79bb953d60c2c1bb22724d",
|
||||||
|
"blk.12.ffn_norm.weight": "5f70aebd0e43a39d6373d8658cc670c13aadd7818831d3d84f761d5f688442f0",
|
||||||
|
"blk.12.ffn_up.weight": "faec21b446f061eb4dca561a3180712724347b77a71eb312e7afe9be9e89fa04",
|
||||||
|
"blk.13.attn_k.weight": "3d440825d19eac3b1753b34d94fee2b3a3cb6636c10b2703ffcf688d3c1eded3",
|
||||||
|
"blk.13.attn_norm.weight": "47b575e57e410738ad13fd3c74bb49c06b3d31030910834ece509cd1a5c6d9be",
|
||||||
|
"blk.13.attn_output.weight": "05436d8e613f4475741c1798a7c371b53d61b229507fa04fe23c504ba1f0e12a",
|
||||||
|
"blk.13.attn_q.weight": "002b5024ce520da41256e3ded5cdc60e5ae07ad9b202cb19d76ab511efd02b1b",
|
||||||
|
"blk.13.attn_v.weight": "c1f2d6763587c50312cee0d7140fa2c7ee326f5b172bc99b2d8946e08329cabd",
|
||||||
|
"blk.13.ffn_down.weight": "b5c4e0d8a3ff96cd76a135e415b89f02d28c28f7f3c16a36af31ef0ab8773da5",
|
||||||
|
"blk.13.ffn_gate.weight": "ae06e9e3d2e1f64c7ad23a4009dc904c2eccd7241f9f91c4974ab2504f116be0",
|
||||||
|
"blk.13.ffn_norm.weight": "e44a22321bcbcb4a3c345b504e939e8071370f54a8cd702fabdb40b97e0d7683",
|
||||||
|
"blk.13.ffn_up.weight": "7e6f366d538e21ad431264b12c011892d0be9dfe4c4da9f730af677f920641ba",
|
||||||
|
"blk.14.attn_k.weight": "95492d6417952ec24b2cab87bceb750fc7e95ac6b1944fc328a3852d980164be",
|
||||||
|
"blk.14.attn_norm.weight": "6b7b09e1c51addcdbb160ea59edf032531421c520ec5645fe1ff9ca4180cef54",
|
||||||
|
"blk.14.attn_output.weight": "75887474e4d72c218e6ab0f69f1bf3ec3dc414d51b36fc59df00cdb23421bb6a",
|
||||||
|
"blk.14.attn_q.weight": "940e33f76e48c21215d19e8a21234c8246d4d084381a7d9806aecb24b071d5bd",
|
||||||
|
"blk.14.attn_v.weight": "c58601cf5a9833f80f7f9a5b2656e8eab5eb133211446ebd48f8be15fed4ebb9",
|
||||||
|
"blk.14.ffn_down.weight": "f9f886e7f9b2a54d717b08947a25a0a93e8c2a5b8bcd5a907c06817c8ee3ac11",
|
||||||
|
"blk.14.ffn_gate.weight": "727ed0ee68594a3f59d704ed3240b6929f083b9c36650fb848d182315737245c",
|
||||||
|
"blk.14.ffn_norm.weight": "bd2471008ff1b2bae9aa26bea019393fb2bbc5b9493b8cec3ebd2c280fca24ca",
|
||||||
|
"blk.14.ffn_up.weight": "b006446769f51e4f93b503c4727deae897bc1fc7f4fad49f85024b63c4548d38",
|
||||||
|
"blk.15.attn_k.weight": "23bb70f9035356624039547a603e46be7d1e4403616eafc2451cc09c5373d522",
|
||||||
|
"blk.15.attn_norm.weight": "718cb371ca052eeb3bfac6ac506abb887df125271821fd171797a7f2d8dd6313",
|
||||||
|
"blk.15.attn_output.weight": "c76a2695a204b43a8e5acfa5720590b5d449a9ad9e082cbe3e80fab5903ea16a",
|
||||||
|
"blk.15.attn_q.weight": "2b3e4037b9e91bdd26d6e8d904cf39f948192dcf09bb6445cb55ca058d4f4626",
|
||||||
|
"blk.15.attn_v.weight": "7c15e89b6acafc8619e86aa9d412f5893ab17843ff2cfaf40eea9637b24910c6",
|
||||||
|
"blk.15.ffn_down.weight": "e16fd4bdc6d1c1209c6b633454df4992870c8cefb2cb0e8c92a7e489e9fb5d19",
|
||||||
|
"blk.15.ffn_gate.weight": "95a46bea366c260337c537fde06b4cbeaeec52484a69c3390bb1d178eb0525c9",
|
||||||
|
"blk.15.ffn_norm.weight": "37730293f704da265dc6d1896b3be00c39c0a41dab07f573af39dc30a481d623",
|
||||||
|
"blk.15.ffn_up.weight": "ba74a199da2d0875d7410824238c4ffafbda3993568812284a72b8800df91f15",
|
||||||
|
"blk.16.attn_k.weight": "f58f79a2a91c9a763adefce0c53a71eb5ce6bd8442f4af554b04b58083bff27e",
|
||||||
|
"blk.16.attn_norm.weight": "0c16e41b95e81978e0e0e3b338e2afe2d297426578cacee94de15df74e94eaad",
|
||||||
|
"blk.16.attn_output.weight": "ead22fc337514e4add49aee19720008558e52090466866e849671953a1fccba4",
|
||||||
|
"blk.16.attn_q.weight": "ef59c4e8fe8918c1add43d7e9c6fb3ef799dd3e1bdd731ec7b6a4a6f97c86048",
|
||||||
|
"blk.16.attn_v.weight": "902e6b84c2b64241470b13e6f412f859f66b4b223bcfb9c15d5cb1106b07ef3b",
|
||||||
|
"blk.16.ffn_down.weight": "2ad6e9eb4d8372c32a554395d460d17cfb02d6dbcb757cc962b6bfa36db4f5ee",
|
||||||
|
"blk.16.ffn_gate.weight": "825b2d50fcce3dbe6a5d8d8a50a95466f83ca4a10343efe67894c20b4628fb15",
|
||||||
|
"blk.16.ffn_norm.weight": "3bf6ac90befb0e17e077c8ea9454a8485a30f89f2d761ec7751b60c90aed1af9",
|
||||||
|
"blk.16.ffn_up.weight": "9fbdd08739b32411f5ab0252174d386bab19eb0b17884862f760429b7d41d78c",
|
||||||
|
"blk.17.attn_k.weight": "4033398718bf3674830ed1b73071ed8482b6dd4ef27f31a6c5fbb998321b6c07",
|
||||||
|
"blk.17.attn_norm.weight": "714f2e8ac9592966a0f1c02ee979eee8f84586405b992e8ee9543e840199ffa1",
|
||||||
|
"blk.17.attn_output.weight": "b6bbb618597d767b8f535117be68f92911e4a71d4eb4d8b5d943444151445ece",
|
||||||
|
"blk.17.attn_q.weight": "b84a0dc00ceb515faa2628125dcec502eed923077b21cfe900a4ff16c2e5f9ed",
|
||||||
|
"blk.17.attn_v.weight": "4387c7d6a17da9cc7a6bca8f4a75618b20407d570792056283a8e93b6ec65f18",
|
||||||
|
"blk.17.ffn_down.weight": "47db95c6f1e12b399c3eaf9ddba261782dd71173dd163b52af96541cf87b5196",
|
||||||
|
"blk.17.ffn_gate.weight": "59abaded0aedfd12f01df81f7a811e84db6a227f51b60abe9a247ca726e87392",
|
||||||
|
"blk.17.ffn_norm.weight": "b7e86445be5c7b722e01ddb98d5c7527ca86cb827ce0354f2c269e0f2558751e",
|
||||||
|
"blk.17.ffn_up.weight": "8e31c293bac649d2f60da4b3fc4a3acdce1111ec6058d8805eeeb242443011de",
|
||||||
|
"blk.18.attn_k.weight": "5ce762ab7b032511c131df81093b587871718c7097f79d8e07d707571f18a47b",
|
||||||
|
"blk.18.attn_norm.weight": "1f52cdc7af1f4dc1f0ef6ad1ad02e18cda32133654e57cfa9c72ada9c0b1d995",
|
||||||
|
"blk.18.attn_output.weight": "6486957f30bf8a88516e25772c6650f98b13923f490a2865a8752e36439d1cfa",
|
||||||
|
"blk.18.attn_q.weight": "93621c8abf69d2ca29c5207180eb628fb2b544d89de6c4a7fb0699be95534899",
|
||||||
|
"blk.18.attn_v.weight": "11604083b5a74828ac1d226af015ad5dc0215a1fdca44fa7131c2163c02d8156",
|
||||||
|
"blk.18.ffn_down.weight": "8f9997feb94385f106915df810239c9753b31efda2bf14bdf18a9fbbeec8233d",
|
||||||
|
"blk.18.ffn_gate.weight": "427c213b3a4e94af703429daf2f65766f70424d8230c123e7e712a18bceb5ecb",
|
||||||
|
"blk.18.ffn_norm.weight": "c45d305c4ea6a54013ba112f12dafaade064a32cf01317373464a3618d8ba44a",
|
||||||
|
"blk.18.ffn_up.weight": "a2811f2e73ac9eb9cce91a21a454e84e230a155244e2cd73f2c12aad3c9b8cfd",
|
||||||
|
"blk.19.attn_k.weight": "b2daed159925eac58c291e2f1e2000beed21002b03c9e1bc7e7a52e22240666c",
|
||||||
|
"blk.19.attn_norm.weight": "6307306ede2ab5bffa1bcac3f8b139354678c0376b1d9f5530c1fcb4268cfeb4",
|
||||||
|
"blk.19.attn_output.weight": "ebb98218b2a9c84d3fb6baeb02c5df264b7ab80d994d1098ba1cd47aa398effe",
|
||||||
|
"blk.19.attn_q.weight": "4f10df2ad09177e7528e9456039b670d07db22940a49417101b725d239c16724",
|
||||||
|
"blk.19.attn_v.weight": "30f1efc5114badaeaafa91fa466dc7fa14b1616db433c6f563ab851f7333a5dd",
|
||||||
|
"blk.19.ffn_down.weight": "be5ec7fe6b48855cd0015b0e430d1b70c620de87a7ff188c7c1afef546d7b6bd",
|
||||||
|
"blk.19.ffn_gate.weight": "10dffea4213881f8a9b583ee0fd370e033756d32255ed15053f794375b9400e9",
|
||||||
|
"blk.19.ffn_norm.weight": "e75cd24ade45dca78fdb0cbcaaa2d4a17d83a5a73dcc94ce0ec2d68fbdb2a881",
|
||||||
|
"blk.19.ffn_up.weight": "63e81bdb951410ffa81bcfba1b94a679ec9ebae59cd1623ce2651ed5d4c78bfd",
|
||||||
|
"blk.20.attn_k.weight": "c2fc5ad39e9bdd45e73c6e54aecc474388d944c4be1ee1921b7fcd035bad02e0",
|
||||||
|
"blk.20.attn_norm.weight": "aaa9169171937bdce20c1f057e94e9252f221cabacf1ced12e11b9586f23d308",
|
||||||
|
"blk.20.attn_output.weight": "a9f4fb496e4bc053e3f6cf2e72e22d4cd2b545ef6c32f7e782c2ef6ebcc21d4b",
|
||||||
|
"blk.20.attn_q.weight": "5a07ac619ed251494170b213921ef3fcc4c2712839da262516d9d5b8ea1ff185",
|
||||||
|
"blk.20.attn_v.weight": "d6689473105d241eacb17f09f06000ee237336916cf5ec4f48271c5b41bcb8e7",
|
||||||
|
"blk.20.ffn_down.weight": "74be38db51df736f26ede7c6b52ea787e385f181cb66231e2cced4556a25c9b8",
|
||||||
|
"blk.20.ffn_gate.weight": "ea91e06dc3d051c0ba0243b5a8bb40edbf254eadfb54fda7247e05cfdd88cbe2",
|
||||||
|
"blk.20.ffn_norm.weight": "5fbd357b3d6f44a7a91e8a4fc246b24303891b7957e0f3c32818ae5dc16ddd8d",
|
||||||
|
"blk.20.ffn_up.weight": "fe3290333e056af4ed12942ac72aeba97a6b562e2db05e79cd35dd07eab5b101",
|
||||||
|
"blk.21.attn_k.weight": "201ec6ee95f06ea5eb80fe86fd07bd016d3ae9ab6abd25d631834414e14a010e",
|
||||||
|
"blk.21.attn_norm.weight": "ea8154f93e06485828475a00b98cc397ac84768dd70e06ecc0c075b5712d7276",
|
||||||
|
"blk.21.attn_output.weight": "9f8af74d531478fd304723fd8e4e01578db598441b80dc7c960cb801dbbc501e",
|
||||||
|
"blk.21.attn_q.weight": "277de9953a8d3cff894ffd06c15ad0ee1407e319df0c1a693d4f45fa9c74ac7f",
|
||||||
|
"blk.21.attn_v.weight": "6bfdc16cfb898909b7788ddd39dd04b928f31d6732772195d53c558004638dca",
|
||||||
|
"blk.21.ffn_down.weight": "173877146cb94801157796ee9e5eecf3f46acb3b5e797f90b83a3fc22395eb30",
|
||||||
|
"blk.21.ffn_gate.weight": "53146713e2ca1be80496024077a028f6b6d749b02e71003c349e113b436f48f4",
|
||||||
|
"blk.21.ffn_norm.weight": "b28b97e18ab20a5c553ba422f7d7f6014f5902f1d62a69abd20d9fe19a5f9462",
|
||||||
|
"blk.21.ffn_up.weight": "5c39d0ac4d602b8ec8909dade93b2efcd6b6d9d84a19b252d76bb66dcfaab87c",
|
||||||
|
"blk.22.attn_k.weight": "01f26272c82917a87a3ccf922fa1d521a952b05de878241b7efe3525b617ac87",
|
||||||
|
"blk.22.attn_norm.weight": "5ffc96249d8873b506e9eb7158bdfd07fa1429e53c1951430ca7505d25f11c76",
|
||||||
|
"blk.22.attn_output.weight": "9c2201569358f720244b9c9497e4da02585a167b1414c8a506b85ad75ba990d0",
|
||||||
|
"blk.22.attn_q.weight": "906036eb4ddf027f6d920f9356a6a2a5e529b96f4e1231a0496d46b4434a5842",
|
||||||
|
"blk.22.attn_v.weight": "30ede8b0d166003a4b8a81fc99437f557719fc36e5c4dd510c9f161f36a47e73",
|
||||||
|
"blk.22.ffn_down.weight": "d04c164beabab30e1837b843e18852260efccfbb9d96a34ddd816e6fb3ba23c5",
|
||||||
|
"blk.22.ffn_gate.weight": "19c889db6b19179f0a62d5981a1506592c65de83760d67afbe00d202202750a8",
|
||||||
|
"blk.22.ffn_norm.weight": "4885eff2d851b32dbd306bd632c725857e6d164f0fa8b3d5857e572e6ef98ee9",
|
||||||
|
"blk.22.ffn_up.weight": "365594d8db8e95cf87cc33ac23947942dc326110175cc8ec5a07b5c7059089a7",
|
||||||
|
"blk.23.attn_k.weight": "badfea1569da0fc6ab817c5727ca3a69b07d9cfd622fb8be5e66678d5b3f7ae2",
|
||||||
|
"blk.23.attn_norm.weight": "8968f78a379ac3ca5458b4ed4251e8d9112aca6d6dd1ef6440b4bb0b380375a4",
|
||||||
|
"blk.23.attn_output.weight": "93e43393c03956287b1fe31e9735ff1cfe84f4ae56b83dbaebe96275e4e11831",
|
||||||
|
"blk.23.attn_q.weight": "aaff73c725a8700ae66bf26ac8869dfe96738eff23a8ff340de2ab53400a5795",
|
||||||
|
"blk.23.attn_v.weight": "3a86a8dcf14a746ed1411f5a7e634064bc4dfd6511c24cfeccfb2c9ebb6b4101",
|
||||||
|
"blk.23.ffn_down.weight": "d4da6f37bd7ef69bb203f7b0dd59f50bce37432c70627e6cf274ab81548af5cf",
|
||||||
|
"blk.23.ffn_gate.weight": "5b6072936c4a693923bb4e3d1473fd45545cb02fc07799aca458ef0449a04061",
|
||||||
|
"blk.23.ffn_norm.weight": "cd76e37025f84773180298ddb15e0d4ba9cfc7d832e19c791049daa47c6d9c10",
|
||||||
|
"blk.23.ffn_up.weight": "cde43b99b83124a13b2e4753d12674b3a61dfb34c04703007ced3e8e2aee1801",
|
||||||
|
"blk.24.attn_k.weight": "457379edc4cce4cbbe107385079019bc922264fdfc7bd1d1ae84343a81460c66",
|
||||||
|
"blk.24.attn_norm.weight": "0ce0dfab2edeede5da419fa7833db78e36222cf25c358d08f3ec664310f031fb",
|
||||||
|
"blk.24.attn_output.weight": "0cf91c2fd40c204d2fd4b9c85b69281e5ad4ea8442972fcd44b5fc8e835ffdf8",
|
||||||
|
"blk.24.attn_q.weight": "87ede30c09eafec6a4e6285674c1bc4637140b168b2da4ed34f36fdb6e176cc9",
|
||||||
|
"blk.24.attn_v.weight": "4c0b078b2798ca35d6d2c2258fe499820d2bc88700654ba4016e4b028f563590",
|
||||||
|
"blk.24.ffn_down.weight": "cdb8540c32b1ab988f984484928d39f6841f2131c1cebe90ad9456737fccbcaf",
|
||||||
|
"blk.24.ffn_gate.weight": "da2e0e913648b5526bd2bbb344038dd067639343aed3b413662b064b0db7556e",
|
||||||
|
"blk.24.ffn_norm.weight": "8940bd781c610d75eb2be63cfc8d869a3af05e53c963dc7fd4c6f653df5a80ab",
|
||||||
|
"blk.24.ffn_up.weight": "90cbac2a58801abe11ed6c24560aa4acb949f79429f2aa8ff129ac05868bb87d",
|
||||||
|
"blk.25.attn_k.weight": "90607131e36998e990ce718ad05cbecd1bcaed010931401ce6baa3b0d93ebce6",
|
||||||
|
"blk.25.attn_norm.weight": "fbf679c85656c04a6cf8fedd5412c1ace22960e6c2d47f2d43997827811fbb97",
|
||||||
|
"blk.25.attn_output.weight": "08412724ee7a2086514406e6f68fb9f622e10bac25b0c373b294709f4b09bd2b",
|
||||||
|
"blk.25.attn_q.weight": "9c1238e98a2747654a0d4371d3e7ea8b979867f609dc42482544f25591e85c7f",
|
||||||
|
"blk.25.attn_v.weight": "a57796a535c6cb09581cbafd6a91dc14adc8cca2a2465a7ffd0aec546cd84074",
|
||||||
|
"blk.25.ffn_down.weight": "f7e34e8a6391b480da08b52640613ccadce268373934b409759743a1735b74d6",
|
||||||
|
"blk.25.ffn_gate.weight": "b8d0b2f4612678b5ce42bd4a683f8024514b75fb5ebf6b22c600811e95582ee4",
|
||||||
|
"blk.25.ffn_norm.weight": "cde1fdba2369d315f3c6940a997c471ec891924e642505db580d732763bd7b75",
|
||||||
|
"blk.25.ffn_up.weight": "72e700c32ac8b9c47559c2222e45888a480b527ea512075423c5dc01678e2bb3",
|
||||||
|
"blk.26.attn_k.weight": "6ac83b3414ae75bf3a9055c32e49d2c40fe611ab21f8444f03d2f465d18122c9",
|
||||||
|
"blk.26.attn_norm.weight": "55f9d6dc9d75973dc75136ecb9d991b4398097ac133070873fb96ec76a6f60bc",
|
||||||
|
"blk.26.attn_output.weight": "ebc4fcbd15b33263e50ed2ad45740867cce15bc90e1216623babcb1820734509",
|
||||||
|
"blk.26.attn_q.weight": "080f057521073e412936fe3fee64fd574c8128fa4a148b879d3e598fe4954581",
|
||||||
|
"blk.26.attn_v.weight": "0fa2830d6746487ac91b243716e4302361f891e4e008eddd14abec47c7809d5e",
|
||||||
|
"blk.26.ffn_down.weight": "cb2ab8af1653adc57111ada49d2825c6995e338c8208455b92de10e580f60f31",
|
||||||
|
"blk.26.ffn_gate.weight": "231ce30966086bce2dc0e0afd34a22a1958cfda7a57c41b3b8e9444c5dfde8a6",
|
||||||
|
"blk.26.ffn_norm.weight": "35d959d25d17b00617590f5d5831bf705c385c51e46297a14375a700effca6af",
|
||||||
|
"blk.26.ffn_up.weight": "367680c8d332538b467d1ef87cfeb36cc5c6af564c5023c5fb50e728e3438287",
|
||||||
|
"blk.27.attn_k.weight": "0bfcb351c6d17aeac5b55a915074fbdf00f11c4bda98babb196ac8804805746b",
|
||||||
|
"blk.27.attn_norm.weight": "5d598a88c2e75ba59dd7ba4fee940bdec92d72038f1286536d2dfb71d008a09c",
|
||||||
|
"blk.27.attn_output.weight": "23a9da7347336479f6a10ded14cb3f46e06b5bd56dc4b0fbc526c688552ec840",
|
||||||
|
"blk.27.attn_q.weight": "b83319dba9055f069208e9c9d66da08bc6874f23e575288fcd81697d1777aa54",
|
||||||
|
"blk.27.attn_v.weight": "36ed34ccb2f36fdf16b2c2dd225a98ea6b7b0e376e7791191136ccd7bd7a4add",
|
||||||
|
"blk.27.ffn_down.weight": "5488e1d3a58c71b5e9ddda430540b4776b268cfe1457cbc1c2622dedd9e4526e",
|
||||||
|
"blk.27.ffn_gate.weight": "4ff48011ee0bac39af704849d9132a2410392c87a509c684f2062f6b76b498fb",
|
||||||
|
"blk.27.ffn_norm.weight": "32afe99675983da3de2961d1b5ca41c98970a356823597fe29e91f6e86abf0e8",
|
||||||
|
"blk.27.ffn_up.weight": "1eae3088a75629571fdbf6a20f141bc2bb2ed3f5ba2b9fd1d949f80695e442a1",
|
||||||
|
"blk.28.attn_k.weight": "c4e80af714962d6f9040d2c09f316f4a1cbc3a2e994e19902d7c653cf3c73dba",
|
||||||
|
"blk.28.attn_norm.weight": "c1ecf85dedc1c83d5d402bb7c94fb8b9c11f1a3e5f64e7680f80912d4a560794",
|
||||||
|
"blk.28.attn_output.weight": "72ba47c061b21f5ebc5213a455eaf6fc49c8f8e04ff9ce37e6ed4921b629161d",
|
||||||
|
"blk.28.attn_q.weight": "c4abc47234307f44b8ca789aa6668e298158fa4b459b2c1e84bd581806591cc1",
|
||||||
|
"blk.28.attn_v.weight": "aeba950799d4950e491ad0fcbe30334e39b8975177990a2cb339031c45ac153c",
|
||||||
|
"blk.28.ffn_down.weight": "4e84ce382a37b994fb8608df451a60040559e3f4f3241c3b3cb8989a3ed50d83",
|
||||||
|
"blk.28.ffn_gate.weight": "04df157acdc8e8534ad60acc2d2a4dd3a7a6610f6382535ec728994fa6f83f83",
|
||||||
|
"blk.28.ffn_norm.weight": "4d0386dae2bd1c1a9d0f9730718333e3a486c3bc6a5c5d482193c75d39832c80",
|
||||||
|
"blk.28.ffn_up.weight": "fec60bb0a3daf182a14bd8311fe6dd1e3fd020c5fc273e2549cdb1a2d6b79b05",
|
||||||
|
"blk.29.attn_k.weight": "b0532a263aa5a4e2a7a80adc83fc5dec974493bd18da7f953e7ebfc3f3a19aae",
|
||||||
|
"blk.29.attn_norm.weight": "593fc3b4000c35b7a59dace09ca1756c08be0105b2edd354a0e1c16c82898859",
|
||||||
|
"blk.29.attn_output.weight": "315b896f9f0cbacd0ca8937384c3a3a227efa908cb8c3a9125ec00c480e32b9b",
|
||||||
|
"blk.29.attn_q.weight": "d482d45386d4ad3394f08e9dff233ee3a70d0427d65c0b8fa05905da7e25ca53",
|
||||||
|
"blk.29.attn_v.weight": "cd3b5a6e2852da796902930a6a84bc87fc6a7c7bf51f8fc23758d12a39013b36",
|
||||||
|
"blk.29.ffn_down.weight": "5b3dba6f9753bd1b1ebcba65ef5373dd62c38e755c44b7231b95d93d45761f89",
|
||||||
|
"blk.29.ffn_gate.weight": "8610d9d2db15c256243ffcca3ffd31786d0ada0af0e7c7aa3fd20524370ab036",
|
||||||
|
"blk.29.ffn_norm.weight": "1a2ef2d38b7ac3e51190b9ccb8b6552ba83ab290e523356a7f851ddb35dedca2",
|
||||||
|
"blk.29.ffn_up.weight": "a5fdd15811bde16dc27677cf1a4c97daab4c28cb12a9530f1a0e573134fdb69c",
|
||||||
|
"blk.30.attn_k.weight": "1efeb0b5f4b45a85cdf47300f892ac77ac1f38000ec3653565d1303d1fb8c743",
|
||||||
|
"blk.30.attn_norm.weight": "c73934c182c7fe80838ec1d0b92f50a583f75f7a3d78d822f009b58ad2c80e65",
|
||||||
|
"blk.30.attn_output.weight": "3a0fd89de2d274614750345d827a9c886a4f97b343a13cdf680390505df596a3",
|
||||||
|
"blk.30.attn_q.weight": "711e113362bdb067db843c66236704eb1cd3fc5f40e3767143e96d510686ef4e",
|
||||||
|
"blk.30.attn_v.weight": "82b12a9a74fd3d91b73cc2e841e2b3f0a5197ccd2998afa17020995f880d2267",
|
||||||
|
"blk.30.ffn_down.weight": "af9f4b1287c0d824ae22d6e335d19e04a70135b835be7caa2435f1d85e931993",
|
||||||
|
"blk.30.ffn_gate.weight": "e2ab3e6f15f5c50fca66c084cb6a57a2b6b82406d65150e82ea0437b93dd9a46",
|
||||||
|
"blk.30.ffn_norm.weight": "c1b9c325c83f00e177386a4d7e769945f2995e60950c4a576c0a2c4ab9703d04",
|
||||||
|
"blk.30.ffn_up.weight": "9b94a21efd419715d82071b490d3b635cf1e8da080620dcc39e5bde976d7e9a6",
|
||||||
|
"blk.31.attn_k.weight": "0db0d82e3ddcc2c06209f5f013e1d72a84a996c40bf00186be485b909cc268e8",
|
||||||
|
"blk.31.attn_norm.weight": "2b8b7239471f57140c5cdfe06bd224a4f6326282f99736e44fba4c7b120ac101",
|
||||||
|
"blk.31.attn_output.weight": "a310b048840cc3ff2be4b84796340e8e2cdf05ec89d14bd3655c109b2bfa9fcd",
|
||||||
|
"blk.31.attn_q.weight": "f45e0cd95645175ea82813455356d171838539bc3f7676d877c698f2af0a0eda",
|
||||||
|
"blk.31.attn_v.weight": "8bde008e809112aa7e7c23e9c3099087bcc557313b01306c87efa0a4a30805ba",
|
||||||
|
"blk.31.ffn_down.weight": "8266fec7e203fbfad7033120861e44984581ff8b6851d01dfb7b81c5d8fa90ec",
|
||||||
|
"blk.31.ffn_gate.weight": "b73bc0aa5baf006d9ef6403104891b8133671b0992398fe038380b67e0d7e2cf",
|
||||||
|
"blk.31.ffn_norm.weight": "9c62cc27a7b6017c1df8ad49bff249a8245e8895c6754f402cd44623fda83268",
|
||||||
|
"blk.31.ffn_up.weight": "5b970a4694ea3171a0167f6e1636d9f00268bc1c9640430ffc35218494884adb",
|
||||||
|
"output.weight": "74fa0ef08c57a30e633e7117b1e9c805f833e2e5e21434bc79ddf9c92c6d7330",
|
||||||
|
"output_norm.weight": "59b8a59fd3fbf39353506116e43e5e76edd0cbf2a2873d869da4cf27a04997c3"
|
||||||
|
}
|
||||||
348
convert/testdata/Mixtral-8x7B-Instruct-v0.1.json
vendored
Normal file
348
convert/testdata/Mixtral-8x7B-Instruct-v0.1.json
vendored
Normal file
@@ -0,0 +1,348 @@
|
|||||||
|
{
|
||||||
|
"general.architecture": "llama",
|
||||||
|
"general.file_type": "1",
|
||||||
|
"general.quantization_version": "2",
|
||||||
|
"llama.block_count": "32",
|
||||||
|
"llama.context_length": "32768",
|
||||||
|
"llama.embedding_length": "4096",
|
||||||
|
"llama.feed_forward_length": "14336",
|
||||||
|
"llama.rope.dimension_count": "128",
|
||||||
|
"llama.rope.freq_base": "1e+06",
|
||||||
|
"llama.attention.head_count": "32",
|
||||||
|
"llama.attention.head_count_kv": "8",
|
||||||
|
"llama.attention.layer_norm_rms_epsilon": "1e-05",
|
||||||
|
"llama.expert_count": "8",
|
||||||
|
"llama.expert_used_count": "2",
|
||||||
|
"tokenizer.ggml.model": "llama",
|
||||||
|
"tokenizer.ggml.add_bos_token": "true",
|
||||||
|
"tokenizer.ggml.add_eos_token": "false",
|
||||||
|
"tokenizer.ggml.bos_token_id": "1",
|
||||||
|
"tokenizer.ggml.eos_token_id": "2",
|
||||||
|
"tokenizer.ggml.unknown_token_id": "0",
|
||||||
|
"tokenizer.ggml.scores": "e3d3eea80bb41a1213f2d0aa3e8a38581d1f19323be77dbd779c9c7e3b72e676",
|
||||||
|
"tokenizer.ggml.token_type": "6040635e6bd38d98af06698feb75c1802bad35180ee6ae0a503e38c0f60fd71e",
|
||||||
|
"tokenizer.ggml.tokens": "604ac4bfbd019e430d7b6cdf18c6c0cd5b967900601f0307f714ec7773aa5ca6",
|
||||||
|
"token_embd.weight": "1d1d1d39a867d5a4bfb32792a47247d2638c10c95a6259391d02843583505cc4",
|
||||||
|
"blk.0.ffn_gate_exps.weight": "2e5cd43ac3f26c44f071926ff6c3f239ecc52a34bc9a5b5906d3d4c1bf2fbbfa",
|
||||||
|
"blk.0.ffn_down_exps.weight": "a4dfc7e7c96e7402eb70279601675b956bb7331da8101e63fe5c0a611b6972e5",
|
||||||
|
"blk.0.ffn_up_exps.weight": "2d5d87b378b2319c344ed2c642598b6f7cb6beeb582a8ea51abc9ae690d473c3",
|
||||||
|
"blk.0.ffn_gate_inp.weight": "a46aaf5aba7401ce6e41f158242b4879d34901661f3ede85496cbd0ce79d6314",
|
||||||
|
"blk.0.attn_norm.weight": "3fe37d913bdd2b65076bcdd6efe64a37b0b03cacbb1b80b9f7089068aa35f38c",
|
||||||
|
"blk.0.ffn_norm.weight": "5e14308a3c894734eb204c8f558bdc817e94bbd5b4e9cb4094e91ba388c8f7f2",
|
||||||
|
"blk.0.attn_k.weight": "73d943dcac0911e87bd771f4aa1c901e1bfe1aed293af06e1a67812159859f67",
|
||||||
|
"blk.0.attn_output.weight": "4c5f754c855e262e8d4c94c6fbbb57af06399dc0e170d7d99a1a17fc9aab9227",
|
||||||
|
"blk.0.attn_q.weight": "d6fd7403c873d49c05f6f03208f30d99ad34cb3b71c9990c47334d502a8e4c7b",
|
||||||
|
"blk.0.attn_v.weight": "cf17cf64b2d683bd9de6cebaf60e5c264df6fdc38fe719dde9d54c80334f6366",
|
||||||
|
"blk.1.ffn_gate_inp.weight": "0d524de81cd915816b4e714bf595ad6946a9130b3de731cd89428b2781230809",
|
||||||
|
"blk.1.attn_k.weight": "2ea47f412992b374c70674730fe84700e0c8cce177086ce9b6635e42408964bd",
|
||||||
|
"blk.1.attn_output.weight": "b4b2520794d54113e86c8ff678eacfc62e35be4395a594a6c8c22b4383ebcc0c",
|
||||||
|
"blk.1.attn_q.weight": "5db930c98c4f91f6eab57eb974c72210b158e366d23d6d2890b2759c053bee33",
|
||||||
|
"blk.1.attn_v.weight": "079bdde09668394bf7af9f8bc175017b4f48f0ab64e6dd855a4d7561d1693c0f",
|
||||||
|
"blk.1.ffn_gate_exps.weight": "146a62de19f9ab093deb101f9640534ffc3dc40d69f508be12fc0475d01b0c7a",
|
||||||
|
"blk.1.ffn_down_exps.weight": "949da94a3c0f375160672a979e85f7def284264b10d48d038238aad5f5ece793",
|
||||||
|
"blk.1.ffn_up_exps.weight": "7016a3f467d9e3f2f4b4019579ed86b757469cd367f2b225483305376b4bb3c1",
|
||||||
|
"blk.1.attn_norm.weight": "1614d1e6ed537737275eb888666c7bac533f4eefbe73dec92b591045ca9e1afd",
|
||||||
|
"blk.1.ffn_norm.weight": "405a455fa7d1ec36894652ceb554bbcb09a07fd6405f42741e66dc4a4665c19c",
|
||||||
|
"blk.2.ffn_gate_exps.weight": "90d5003fc7421f44220c0842d43128955e91488f6f785fe570b62d81b719e964",
|
||||||
|
"blk.2.ffn_down_exps.weight": "ecdc2b5a8b504ef0a7833acff47d69b0c1fa9c22126de1bb120ff5e48c3d6e2c",
|
||||||
|
"blk.2.ffn_up_exps.weight": "2cbd9485a32460d315eb50a2f3b00863fd77245bfe885b7565efac1cdb1f191e",
|
||||||
|
"blk.2.ffn_gate_inp.weight": "0d0a17a1a2c7a61f2cca49ecbb479154dc93a870873257bc4f225e7607f2e2c2",
|
||||||
|
"blk.2.attn_norm.weight": "b2e4c5a977f87a6f880896bd73596234c9b83622fa0d7add5892501e3155913c",
|
||||||
|
"blk.2.ffn_norm.weight": "0ab875b4280afa922376cfc7b9aa3f7071c9432ea1254091ce7de3749df0e8e6",
|
||||||
|
"blk.2.attn_k.weight": "bb884af51fb51550acfef54ccf1b58ce8284e587806e6a2f88c8265e1ad05a5e",
|
||||||
|
"blk.2.attn_output.weight": "0f03099ba1ef342ea61af9cd71d028123bbd8b1dd7d7fd9b509aef77815427d9",
|
||||||
|
"blk.2.attn_q.weight": "8fad0d29eb4c9d24e564774ee3316b9eb7a4c4985e4567111d2c836c830f6cf3",
|
||||||
|
"blk.2.attn_v.weight": "fe04c847ff677632401a94e7b6b6fdca60391ab21cb23bd791533115de6303a1",
|
||||||
|
"blk.3.ffn_gate_inp.weight": "29e3aaa724590c070e614af8288939603d2641b0ef11e8c0f476bebb2776673c",
|
||||||
|
"blk.3.attn_k.weight": "231cc5631def10f7f292d8862d6125ff555164cd70480ac76362149fad204497",
|
||||||
|
"blk.3.attn_output.weight": "86467a605c62852e05fda1a7ef43150df2cf715fe59785dbcba09f1c27cfa086",
|
||||||
|
"blk.3.attn_q.weight": "901822402453922225c2d6ac79616691d48217635d5ff7338daa971d5ddee210",
|
||||||
|
"blk.3.attn_v.weight": "27030784f44375720df2f090933645a31a022d3fb3b14573e5ca0b78f44070c1",
|
||||||
|
"blk.3.ffn_gate_exps.weight": "231ba59cc0b988d125d77bf627aa3f04636684870af88f081f3944b48a160d86",
|
||||||
|
"blk.3.ffn_down_exps.weight": "530c3ab44ae4d66e8afa4d10c153ba5dfcdfb7321989a988e62e9d12e7234625",
|
||||||
|
"blk.3.ffn_up_exps.weight": "b85c2d4d9d11332e702b3c0a6610d4f525f9a93e5d12f5c7c55c592c40755e75",
|
||||||
|
"blk.3.attn_norm.weight": "05dbb6d88cfa6b199f9d705ccbda97c0ef13f9ec875c595398a1a42d009a4555",
|
||||||
|
"blk.3.ffn_norm.weight": "6880b1c27d46969ce36fac049c05dc8b89e4bb47dc89df357e32df7e18fc512e",
|
||||||
|
"blk.4.ffn_gate_exps.weight": "a883b4f225b760c5a2f6605dc5e2167ab85bb398c70bf64ceb539fcbd6128dcd",
|
||||||
|
"blk.4.ffn_down_exps.weight": "d291bb656aae77947d4b525e2819bf4112afece53ff31de9dab999af1f65f9c4",
|
||||||
|
"blk.4.ffn_up_exps.weight": "38592afb8ba3dcfb26970f906174f7d3fa62da44fa4be4fc6912a19030ea9164",
|
||||||
|
"blk.4.ffn_gate_inp.weight": "1596cb74e8fd6c3080b937b06468bb397b0dbb661e6d180a6bcbdc43e8bfd0c6",
|
||||||
|
"blk.4.attn_norm.weight": "f90c83c5ff4366281d283384efc941620542b9cfdea160d678dc54a75e33f758",
|
||||||
|
"blk.4.ffn_norm.weight": "d28d8c49d1746b7cc085562d1074905fd14023844de823dc4fb22202bb280790",
|
||||||
|
"blk.4.attn_k.weight": "792bbf412cc357140fdaba543e547a9b2f7582919e307bbd9a80c7d6d8f5f1f9",
|
||||||
|
"blk.4.attn_output.weight": "d98e4a062d2631d9c315f1990d5f6ca9a88e7e0e46387f611ccb0353f876aa12",
|
||||||
|
"blk.4.attn_q.weight": "1a11a55a91d9f748a72176ff6b1c174844df406e00d1b66b9aa64dc6ee4bcd1d",
|
||||||
|
"blk.4.attn_v.weight": "04cb3c02b12a6313c7ac7044513441083d534fb4c5a3f63bbaa58f7edbd2fadb",
|
||||||
|
"blk.5.ffn_gate_inp.weight": "cbd5cdf015d33a2da6703eb74c22fcb97581fb9175435173b6dc4f9e8364320d",
|
||||||
|
"blk.5.attn_k.weight": "4fdf3405e4d657403f5647b51233521310ee984b4b81bbcd901cb3e6ab76b7ff",
|
||||||
|
"blk.5.attn_output.weight": "4a25662c46979a29600ed77e1907cf81fb16ef30e724c155444e54ccb76af481",
|
||||||
|
"blk.5.attn_q.weight": "e2acb30e30b97300039bb20ad0878f05159d5657fa811748a51d5b6fb35d631e",
|
||||||
|
"blk.5.attn_v.weight": "306504b6a26aa123c63dbbed3f4ced0ed2ee8fb6a30bf0093539b817539f5ece",
|
||||||
|
"blk.5.ffn_gate_exps.weight": "7e34df9b9944dbeea5e8565786d3aa6937314a4b87acd4d0874687877c5a39fd",
|
||||||
|
"blk.5.ffn_down_exps.weight": "c4b7a57a42b5ac0a8ae27dcd5cb2646d7a7cc7123126d44a56ab128e85f60b13",
|
||||||
|
"blk.5.ffn_up_exps.weight": "09d47593b6dd6c664a9155bff02fc2eb7ac4a70219a88162d05c802a01d3c6ba",
|
||||||
|
"blk.5.attn_norm.weight": "58804a036d6ac4c1fe357b8b6a97a5c37cae1c2f06ee0086c041d449c1c6ef6a",
|
||||||
|
"blk.5.ffn_norm.weight": "d872dee6789f0826211aa46ca9d0869e3e96bcace9e77d6559a7b6f3e524f3ca",
|
||||||
|
"blk.6.ffn_gate_inp.weight": "fb1eae732e974d6c1d020a5b4ef98c5f33016f984701bcea656f999a99daad66",
|
||||||
|
"blk.6.attn_k.weight": "55e9c59c5051ab5519b3a7962e1b5fa96a3c0251cb6200dc2f177885ad2de470",
|
||||||
|
"blk.6.attn_output.weight": "f3c834a8d0027370350e2b6294d95434d31432e57be6313b013c15a56303d61c",
|
||||||
|
"blk.6.attn_q.weight": "efaefe5f11c2140dc7cb532b0832c2a0b363a165cbda21f00fadae77efca377b",
|
||||||
|
"blk.6.attn_v.weight": "900bd734d75616d846a90a121c97e081c956a3d1ab012f66dd0bc62c43e1ec3c",
|
||||||
|
"blk.6.ffn_gate_exps.weight": "312a99661b1468fcaed2474621116f1681432755e973f3ee79d01912974fd424",
|
||||||
|
"blk.6.ffn_down_exps.weight": "ac9cd7db67a2ef0d2b5def86873673d05e48d49d147dd944469dbb8e2d4c46f6",
|
||||||
|
"blk.6.ffn_up_exps.weight": "57613e7e09579400a1a09fee4445acfbfe83f2f327fdf317877787d96ada6b84",
|
||||||
|
"blk.6.attn_norm.weight": "0e8801e09885c633bc01a9a5b85d4e878d30158a4eb41a937dc5b760ebd044cb",
|
||||||
|
"blk.6.ffn_norm.weight": "b8c58062ac93072f878446b0e7f958c737aa47fb769fc3a8f593133d12db2dd1",
|
||||||
|
"blk.7.ffn_gate_exps.weight": "1ef611732ff13edfa8d30981ed9dac00c15ceba9fc012ed0b199e9280a849948",
|
||||||
|
"blk.7.ffn_down_exps.weight": "856c6811945c7b0fa461ca17811cfa43436b4cdf5326bad23cbc30883486d7cc",
|
||||||
|
"blk.7.ffn_up_exps.weight": "6725e3e33994302ee13fa5ec163631ce2dcaa08aadde8fc166c2265d4561c5c5",
|
||||||
|
"blk.7.ffn_gate_inp.weight": "36b49d7f80c1003dc392b2c1b9960cd49889dd69e77b26b9e4b13d01f3d0a32a",
|
||||||
|
"blk.7.attn_norm.weight": "7a0ec49acc5e20ee71c6f80ca02f4f1e564c485e0ae0621309e7c2eb0c616cf0",
|
||||||
|
"blk.7.ffn_norm.weight": "eeae035c39ab6e64bc06a4baa1bf6e50d4c8b8797cb0ad8abd48be86974802c0",
|
||||||
|
"blk.7.attn_k.weight": "e8f78c1def01a7a38d2d9bf7becb17755e28fefe4927856f7890fbee52840187",
|
||||||
|
"blk.7.attn_output.weight": "5367f05ac3bb49ef8745ba5902e1bdd4442415a3ebff2c7e1a3918d7be6fe948",
|
||||||
|
"blk.7.attn_q.weight": "37c95fc5acc55a4f6e5f02cab9be60e4fe54c08b65f98f4455741b4aa542ff4e",
|
||||||
|
"blk.7.attn_v.weight": "c89f1343486ba55814233511e94090f7365662a8a4214aa4c278cdadc79196c2",
|
||||||
|
"blk.8.ffn_gate_inp.weight": "4e239afe8c7afb8de3a005757c887cf14b1622ca2d224227591cb0e5301f4c17",
|
||||||
|
"blk.8.attn_k.weight": "2ad0229f30fdcc1e85ce64e00d8f75902238294844a81d5af43e14ba75c02983",
|
||||||
|
"blk.8.attn_output.weight": "2e44a4722acb3b521b81d0b910f8ca2f6c286d874a92ddd02150566454061699",
|
||||||
|
"blk.8.attn_q.weight": "1cd2b09cb2f43e08de776b5f7eac197a5a6d4ffdfd52b21baa36319450147bd0",
|
||||||
|
"blk.8.attn_v.weight": "5a22c57ebfd33ac500cbcfd321d5b5b1783f8728801db6f3f8bed51c7183e4db",
|
||||||
|
"blk.8.ffn_gate_exps.weight": "91063fe56cb4f3ff3b41052bb5046fcf8ef61516a603ee90aab893a9d68c15a7",
|
||||||
|
"blk.8.ffn_down_exps.weight": "d4c3abc8f1d1b462f67f70bd8f404b3fcf45dceeaa8527fa120527254c383c90",
|
||||||
|
"blk.8.ffn_up_exps.weight": "76a1a1f08ec577716a2e7027b45293e9205751126424f1bebe1de89c78f087d5",
|
||||||
|
"blk.8.attn_norm.weight": "f980d774da39eb76c52358afac3e38cb4c81cb323deaabbe5c41822e3f17a98e",
|
||||||
|
"blk.8.ffn_norm.weight": "1c937658cf90f1a85db9a5f26e077730fdd4b694607dbeeb825c5fb2bc407e0b",
|
||||||
|
"blk.9.ffn_gate_exps.weight": "a2532471ecb7896d5c78e5a34e10cfaf4125265e1595166c8d0d0dfbe2a3187f",
|
||||||
|
"blk.9.ffn_down_exps.weight": "b47921a28412d48fee450b8b9d97cee42344a2e69f06d407fd9523d7adf13333",
|
||||||
|
"blk.9.ffn_up_exps.weight": "7c461bd1b2a73b439cff6a10d94afa01e8b06f7e6f09d9a6f28e3876aef48bce",
|
||||||
|
"blk.9.ffn_gate_inp.weight": "1648dfb08b5c06d7953a5a97ecb764995fae9487fb729a1c867023b2538149d0",
|
||||||
|
"blk.9.attn_norm.weight": "8635db0f299882a63b7cfcd1d4259c9e53fab22c31d3d054de36b1001380b31b",
|
||||||
|
"blk.9.ffn_norm.weight": "f9309aa323062d174c463613afef9b0a33501b510bfaa58a8e0e866d12ffef3c",
|
||||||
|
"blk.9.attn_k.weight": "dfe62030441e947a588512d18d9c6e4ed72c2f71c227d622c095e4263b23dadf",
|
||||||
|
"blk.9.attn_output.weight": "1977beb75c6349c50ba7dd3865d7c0a9c5c5ddc854413147b0eec98ac4fda351",
|
||||||
|
"blk.9.attn_q.weight": "eb132596719605cd6bd1782487f121994629e115190edd69240b12af66e734f5",
|
||||||
|
"blk.9.attn_v.weight": "9e708f15d332d7c5187b0693b1a977eb30a2fa10bf7df48ed9d7537c0aa6ed99",
|
||||||
|
"blk.10.ffn_gate_inp.weight": "97503a5d166c1925f9b65c0eed980753d411714d66896f3d0fad5286c7aba702",
|
||||||
|
"blk.10.attn_k.weight": "1ebdd222336bd25b48df1b138cdbe09021c4a5562ea7cb78cadd1255d2be3a39",
|
||||||
|
"blk.10.attn_output.weight": "5e98faa38e9d514b9057e1c8342c509cbe1083defd518e506f6bad89117d1f5a",
|
||||||
|
"blk.10.attn_q.weight": "3323a26c87d936d1dd87c577d0b763459fced726679612c874b3de5fc6d969c5",
|
||||||
|
"blk.10.attn_v.weight": "d5fa73cb56aca388e205f44455e4b4f676fdc12ed7fac4542fbb3b41ecea59ad",
|
||||||
|
"blk.10.ffn_gate_exps.weight": "225021b53782800906cd13b70be3a4161e8b300b97f984a959ccad6a6e8adcbd",
|
||||||
|
"blk.10.ffn_down_exps.weight": "f08eb91526bd22f5fd0402fe925d6141cdbb308a1ced0330858d0c85c71f5ef3",
|
||||||
|
"blk.10.ffn_up_exps.weight": "a9f688350c3b53eaada5103b5848bd9a3d7d6b327a70fa16c24bf28ece933eac",
|
||||||
|
"blk.10.attn_norm.weight": "5ba426c9dfc79805015ccd76cd1068b0ad3bb7a8453e14bb1d35486f122d8f95",
|
||||||
|
"blk.10.ffn_norm.weight": "98891d6acbc3986b2581b7a3af9f5946a392d9188972c6a8b15d4e745a4f2482",
|
||||||
|
"blk.11.ffn_gate_inp.weight": "b2365a60566e7dace892e1cb0e62eb73ce387352601723e847052b34874feaa6",
|
||||||
|
"blk.11.attn_k.weight": "0efbc1d1430505543ff71532a4fcda821aeac616ef6c1dca40e00d4f2ff70bea",
|
||||||
|
"blk.11.attn_output.weight": "3d5bd4d9a41236f30d4293edb9ae27beaa113ffb31b4fbfadff3a4c370dfd3e6",
|
||||||
|
"blk.11.attn_q.weight": "aa11e9db14dd9c77951511443077c2a1a78070753d7bd3d9811038473f69e325",
|
||||||
|
"blk.11.attn_v.weight": "5adc567f377aa11d1763d35f50e53fb2896a8b03b623ac36acc45efa2486d512",
|
||||||
|
"blk.11.ffn_gate_exps.weight": "71d07d982aabfab9eed3c733d49c20f023bf475368fc71db5084d91beadc4b47",
|
||||||
|
"blk.11.ffn_down_exps.weight": "9a06e61461e48b3925a9f7d9cca634d048c8b62163d7bc5c43e35899f959319e",
|
||||||
|
"blk.11.ffn_up_exps.weight": "bc05494d0dcec61021b3ac0c5bc1bf502736cadf48224e213bc139d562699a89",
|
||||||
|
"blk.11.attn_norm.weight": "a5758a10bdd0404ae1470e8e9db903985d4d07f60553c5001a5e7b660d4f7ada",
|
||||||
|
"blk.11.ffn_norm.weight": "814ae037563aad3771787316bec4806c95bf6f5991dd6474b4b1e5cc13dc18ee",
|
||||||
|
"blk.12.ffn_gate_exps.weight": "3a68b831ba1606fb9ef6dffed4732032447ecef23ea563ff4e79317586c7eb49",
|
||||||
|
"blk.12.ffn_down_exps.weight": "268b25e13f4b7beab08686e83705a41b21d15251809ee4784526f78a580da829",
|
||||||
|
"blk.12.ffn_up_exps.weight": "9105751a5b5b42ca2614d0456f24f779d2e2ac8cdff0f96842aa7ae2b70f341e",
|
||||||
|
"blk.12.ffn_gate_inp.weight": "d0de1558cc1d458c5c504f63ddc59785c323df7330474bb0644c346104b40a3a",
|
||||||
|
"blk.12.attn_norm.weight": "859a4c8113678e2e202d10299850e0cfb52eb11ea50bcbf4fe3ff39bdd394154",
|
||||||
|
"blk.12.ffn_norm.weight": "7fbf4c459c1760218877e9ee3f5ad49e960956a4369bcfe96c143f04ff9ddf97",
|
||||||
|
"blk.12.attn_k.weight": "0a7e254fdf3730a57372b6ff421a613eabaea68cdefd64800857941411318374",
|
||||||
|
"blk.12.attn_output.weight": "ceb763fc15d88af149d8fb78e82db2b7dab3aeae584af8cf7611a12356a397e5",
|
||||||
|
"blk.12.attn_q.weight": "a43402d23c46cb2d3cb3c2a98c81b19d10026b7e6742370fed6b2880b6e049b5",
|
||||||
|
"blk.12.attn_v.weight": "3bc24f2c0480ce91ef72993ee8f1cf962f7359e12183424583ffa1246bf3db52",
|
||||||
|
"blk.13.ffn_gate_inp.weight": "a6d68c82bfe66d8bab68f980f5f18268a9e2c0cd6b8832ed39010e0de198ae05",
|
||||||
|
"blk.13.attn_k.weight": "0166c39546b37dc2e01b2b396ba43e183f797dd04eaa51a6d103d8b58ee4bace",
|
||||||
|
"blk.13.attn_output.weight": "2ce5eb198deab9557475a58b69b11e9874b547e05c23f223c6e42fa35ddca069",
|
||||||
|
"blk.13.attn_q.weight": "745c1bbdf434284a7fae98f45e821c076dd9c2a2467dba6a9d8cf0041e419dbc",
|
||||||
|
"blk.13.attn_v.weight": "9ece68d5ac64d1421ea7aa32e1cff9cc1fecf5175f4c4da858dd31d8633e3337",
|
||||||
|
"blk.13.ffn_gate_exps.weight": "ccfdcb4670b131689de12d396a010b5ea737795cf5c15a14a304d720b3c7c899",
|
||||||
|
"blk.13.ffn_down_exps.weight": "8b8fb328664764f1aaa5cbdec336d5654e981e965a02ef622bde5f07ea1c164d",
|
||||||
|
"blk.13.ffn_up_exps.weight": "d2ace0236c2fb3365fdc85499d676a7f65813c48e5085348b1df1799922766ec",
|
||||||
|
"blk.13.attn_norm.weight": "1ed29d7d89ce52d7cb4d57e895ff7115430466e917136c049c385c030ed44e9c",
|
||||||
|
"blk.13.ffn_norm.weight": "a194fc542597a4dcfdfaec5e3cba2a2b2b21b21edfc87c39c0d7f7651355bc4d",
|
||||||
|
"blk.14.ffn_gate_exps.weight": "a625e3574e5e740e7f8e2f9c40390f2f382c720aab5b10534e298002dd8d1fb9",
|
||||||
|
"blk.14.ffn_down_exps.weight": "bc366f015b83c865946afd74c8a884943e0ea2c671314a0b7bb72f21a44d2f78",
|
||||||
|
"blk.14.ffn_up_exps.weight": "ee3199bf2086de77b49f57f487676be8ee70e102a2fb5a5ef8ddbbc28a9eff41",
|
||||||
|
"blk.14.ffn_gate_inp.weight": "2b437870c850fa2e2044d032bb02908af634356e37466fdae260b933e48ee8b4",
|
||||||
|
"blk.14.attn_norm.weight": "cd8344d193a1cbd42bd898e17f4bcb1ca0b2918420fbdafa9249a6f2b7f4ae06",
|
||||||
|
"blk.14.ffn_norm.weight": "70eec40374e558fed5b07257283cf36342b6b0129285a00007deb59c32c9f7c8",
|
||||||
|
"blk.14.attn_k.weight": "4053bdb507e0543d724b632570bac86b31707696d90a0db44c49b2a082e0d599",
|
||||||
|
"blk.14.attn_output.weight": "0182632cb0e06a07241b8293d25d109fbc1862e1e337d435f908e8681e2eb1ab",
|
||||||
|
"blk.14.attn_q.weight": "ffc7794a4c1b6f793c842dba969435330a7a80b9212e457b4b2ac33e68b41241",
|
||||||
|
"blk.14.attn_v.weight": "6411805292d528e61bbaad8f9aab9dd073529a17946c057fb06864fad9cf3211",
|
||||||
|
"blk.15.ffn_gate_inp.weight": "77d0744567c76e6abb67f81ba9c715b2b544841186d5b948309571eff213bafb",
|
||||||
|
"blk.15.attn_k.weight": "1f7957954ea4c6521c257b35a360e868ffa02bdb3de91f146d5e06bb4a545c98",
|
||||||
|
"blk.15.attn_output.weight": "d7809d36bd8d3342240c46fd87bcc7f9821a222f48d9a95e45ae50460265d3cf",
|
||||||
|
"blk.15.attn_q.weight": "25f509313ae4d8401b871904059f472a26f5714e7c791c725de77a1a522c976e",
|
||||||
|
"blk.15.attn_v.weight": "96fedf5a591fc0f020e6de10fd72ff12b3ef9cf70cd21dabaa0d3e7b06f54e73",
|
||||||
|
"blk.15.ffn_gate_exps.weight": "8f950d976b2fd9a3d213b84123cf114c1377efde9352767fb2ddee89e177c8ef",
|
||||||
|
"blk.15.ffn_down_exps.weight": "6fd09d1557bb94b06efbd4f6a1ca4be532a202ba290e9315bc8da3d12a5c4c4a",
|
||||||
|
"blk.15.ffn_up_exps.weight": "cbeb59ae7b0266a928dc7e3a6e70a9330b92f9ee1b17ee1ed91022108204a33c",
|
||||||
|
"blk.15.attn_norm.weight": "2005330911ac2edc7b6d27aca021c67d30d16eb632e49b1a13f30fdb2717aed0",
|
||||||
|
"blk.15.ffn_norm.weight": "0e9198f3b548eb78acc8961f2b3350d238d26cec110933ba753a8cf0035c501c",
|
||||||
|
"blk.16.ffn_gate_inp.weight": "a41d1f99d739c8b150c3945b6949763988d0c6a4c5a2b5855592ca1a48ed23d5",
|
||||||
|
"blk.16.attn_k.weight": "b624e2ec88c2d3047f60530fb87e72cb4a5e655a9663f6f3e9b09e5ad32cddaa",
|
||||||
|
"blk.16.attn_output.weight": "687759ea75e45108526ffc1573d6fdf084728079bfc2dc89b9979e76280f43c4",
|
||||||
|
"blk.16.attn_q.weight": "beff3a45c7e9ec82ffc6d3c701126be28654d10aabd747d03441210491fd31b6",
|
||||||
|
"blk.16.attn_v.weight": "43a349b13f0b9d040cacecd942bcb168c030fef8c75c987d59a4fce6c14e855b",
|
||||||
|
"blk.16.ffn_gate_exps.weight": "793406d6c13d727c82bb7b692ca98d65ca975baee69fc57be5378d77c5a19b62",
|
||||||
|
"blk.16.ffn_down_exps.weight": "9bad3dd150d0230404b7f886ac7ff8803225757e813f195cdb26bad245243b4d",
|
||||||
|
"blk.16.ffn_up_exps.weight": "7449d663023fea3496475bf0a9c1de7272ad0ce9adcb3265e8e424badaa674dc",
|
||||||
|
"blk.16.attn_norm.weight": "a424ce34c195a401df1ce37ac4f2794e8a6720b1ee8acb21428e2b68c65e0125",
|
||||||
|
"blk.16.ffn_norm.weight": "405a68bb8e16e1064df2de55ca3cd9ceddda1d9fc0af007a9bd7cad4b2676248",
|
||||||
|
"blk.17.ffn_gate_exps.weight": "97c6e5321491ca5dc039ee88da0eb0e78f347372785411809af84b3298cb19dd",
|
||||||
|
"blk.17.ffn_down_exps.weight": "1617ac19788a1be19bac69277408761e6bdf5719d63a8c7fea14d41cc27641b5",
|
||||||
|
"blk.17.ffn_up_exps.weight": "4ead1c365f112581c10610ea3f63d2a1474311d2503d2060fed4b458ef337f5d",
|
||||||
|
"blk.17.ffn_gate_inp.weight": "ed4b3393f2523f2b5e0fc7680a1caa2842e605728a529b5af68a7fa8d7abf940",
|
||||||
|
"blk.17.attn_norm.weight": "beac17ef86a7fb2b5840cc72f7a95a5e3d6bd24e7fa698e0b0ebb9bdac45c561",
|
||||||
|
"blk.17.ffn_norm.weight": "81cb58ec6d6dc02a0b4ede10adc336dc865fa76f982d4eab0e4a37b40f5b0fac",
|
||||||
|
"blk.17.attn_k.weight": "eab569e5ea8c8b05e5a6a209fba031129453c2e28181eee3e736b3b04b36bbec",
|
||||||
|
"blk.17.attn_output.weight": "f85b70f01438ce8fe5d10599b113f30bf18dee2bbae0657d3eba295870001db3",
|
||||||
|
"blk.17.attn_q.weight": "887ceebfbf6a2b94b43d2df4439ac3a5bbc29311d4b28addc04d525546032047",
|
||||||
|
"blk.17.attn_v.weight": "2df9414d65014c06a93da22ba3a668be7b83e2e8008e98d7771f7dfebed98298",
|
||||||
|
"blk.18.ffn_gate_inp.weight": "9b07741a0950fc667e5fd25937e33bc22e1f764f80eb4ff3119f005327ae0f6e",
|
||||||
|
"blk.18.attn_k.weight": "8649598dbb63938744c39bcda5ce8c31773e29c573be8d4d2c114f5030f8d3e8",
|
||||||
|
"blk.18.attn_output.weight": "f8e391adb92622298ca834d5d1eda48b69c3b1c51c5a584ef6c54a725c298d75",
|
||||||
|
"blk.18.attn_q.weight": "84bf8708a2eed618f48f69c178ed7dd11fa4c468102376e72e910ebd037d131f",
|
||||||
|
"blk.18.attn_v.weight": "31db3cd773f09548c2c1b1eac2718e46364a7810970fe9c433fad9d8de5397eb",
|
||||||
|
"blk.18.ffn_gate_exps.weight": "be2a2ba378002f1b61f86c273a69eede9b93786d5ce96b4fee1861f730dca4c4",
|
||||||
|
"blk.18.ffn_down_exps.weight": "d35196159e37705db50a5343e3989f7335477f1a4add67ef42ad64a638cd07ae",
|
||||||
|
"blk.18.ffn_up_exps.weight": "c6ceedd86e97913a6dcadc838e7abb762d629fb8dd55f15cf02fd9bd66d2ba78",
|
||||||
|
"blk.18.attn_norm.weight": "41f0b1ad83d6e3cb9fbe0d27878c2e7ad4a351b9f554a6bc9117c01745cdf6e5",
|
||||||
|
"blk.18.ffn_norm.weight": "96646204bd0d82f25dc77faba4dbd86b1332e449313e6684e00122da8be99057",
|
||||||
|
"blk.19.ffn_gate_exps.weight": "c6eb7f61e7938bda0492dbc05e51e8f631c99224fe18e99861fc4fc53ba9e9ff",
|
||||||
|
"blk.19.ffn_down_exps.weight": "4384803da3a3a3d44120d7dd192fe2c9bbd9a1a0cb492dbec1fdd7565230f1e8",
|
||||||
|
"blk.19.ffn_up_exps.weight": "22d73de2fbb8bb0f1bd2caf17fad8a355c47d914143f7f6e6d0128f66f074a60",
|
||||||
|
"blk.19.ffn_gate_inp.weight": "9a0cc4a2301a5634022fbce41189021bf0d1a961792d2d9330fd35556d18e5bd",
|
||||||
|
"blk.19.attn_norm.weight": "c5cc56ec5df9a1f7d5ad71fbda49f1433132e58895d45cb44c73420bd61ebd6b",
|
||||||
|
"blk.19.ffn_norm.weight": "77e17de741742ef2482fc7872fd423c8e3c1454dc4d2be89ee939084b6d78bc0",
|
||||||
|
"blk.19.attn_k.weight": "a92ea36ce2e3569656306aeefb835ccd5d1b03b33a86e0d3d030644cc923b813",
|
||||||
|
"blk.19.attn_output.weight": "5e2a912b37855f84ea964907a1a86d609cbdd79efa0c93c3e8e2fc07caf7c226",
|
||||||
|
"blk.19.attn_q.weight": "4ef3a5913292ac3c1a6fd3e9e53d011021f2b41d0276cf849706d1ca925cf7a7",
|
||||||
|
"blk.19.attn_v.weight": "42981b75b68ae852cee638b5433605c147da4392aaa6d7a06e756115b0171f39",
|
||||||
|
"blk.20.ffn_gate_inp.weight": "71381b9879a7c80b9f7b475abc0aa31b8cd71ccc00856ebe89764a2acb9df2dc",
|
||||||
|
"blk.20.attn_k.weight": "1928b7ebc054eb3967929ed6fb446314d5352f4aaf8b475ce55c6345019f2ea4",
|
||||||
|
"blk.20.attn_output.weight": "6071ecd9ca91af0d2ba93fef4a1a56f3b243dd70f862a21a2d164d56f386043b",
|
||||||
|
"blk.20.attn_q.weight": "002e95042a40f36ceed5829e3d0c8072e5f5e4ee86a089e2902b2348fed24dd5",
|
||||||
|
"blk.20.attn_v.weight": "42f509cdb1c0e298f89f896e349be86952c5168e49b3f83bb17badbcb7596d57",
|
||||||
|
"blk.20.ffn_gate_exps.weight": "a684a3ffe4b0a57c819a5fa9cb3521de223f392732927271e97ce925b6e33765",
|
||||||
|
"blk.20.ffn_down_exps.weight": "e3081a7bc7ba750d8a4886bc8ca4f231b55db4ca082b54b4106c7531964725cb",
|
||||||
|
"blk.20.ffn_up_exps.weight": "fad0fd5eca36ab154788da28be8ec25bb5d6db06c9d133db89e96df358a2f6a2",
|
||||||
|
"blk.20.attn_norm.weight": "c3e3f2429715ae95e884ef1246b0b461b23c5cc0ed08beecf70a14cddd184820",
|
||||||
|
"blk.20.ffn_norm.weight": "ff31f609dda65ca496b0584fabea6550e42edd05ebf229812aa6b7bb5ede15e6",
|
||||||
|
"blk.21.ffn_gate_exps.weight": "366f09ef0ecfb86808eb3296cc9abdb957951d27f6533c03f1422b54061da660",
|
||||||
|
"blk.21.ffn_down_exps.weight": "3fc495947d27fcca7fc0893c8a96e5d48ba27b2c8c58f8fcfb8dcfcd5539741c",
|
||||||
|
"blk.21.ffn_up_exps.weight": "6713ed51410bcc8283cbb001c4ad784098f25701e8021f4fa4f411e186859c4a",
|
||||||
|
"blk.21.ffn_gate_inp.weight": "6d4c92c01ec801647134d907bf1108878156df266a6107abc10526332b328b93",
|
||||||
|
"blk.21.attn_norm.weight": "27605719ae2df24f4f2e85a730927cab20367631612cb501631f6bbf38eb1209",
|
||||||
|
"blk.21.ffn_norm.weight": "ca80ee8177db185b15a4a378c1cb6f7143c76546a7f1726bda23f329323d4ffa",
|
||||||
|
"blk.21.attn_k.weight": "9e49f743d4a5bda9b4bd9c40c2ca37cdae5aec7e54cb193897ac8b4945ada14d",
|
||||||
|
"blk.21.attn_output.weight": "ab923540879753feaed152f5950f69cdd83d8f2413ca873f5f038b63ab0aea12",
|
||||||
|
"blk.21.attn_q.weight": "62617fc3f1c9d2aa672a4d91a121c7a91b92d145b65e75f0b06b4bb7c825dc36",
|
||||||
|
"blk.21.attn_v.weight": "15f8b2e72f8e8e992f2f6b3e93238a9d7be7bd6136f91c9d04b4b4cd0cd60369",
|
||||||
|
"blk.22.ffn_gate_inp.weight": "3ddb1773d9257b68add7a2a4e94dad25ed926803e02707863dd742ab9b2dc179",
|
||||||
|
"blk.22.attn_k.weight": "680e45a9e8d5feddee5266e119dc053bf80718fa9af1cf6803e6f493b265f1eb",
|
||||||
|
"blk.22.attn_output.weight": "0d5fae3402fb2c5aa3a860010e3973fc8e3168d1015f7a76b7b2964681693206",
|
||||||
|
"blk.22.attn_q.weight": "eee7e3d426ab533bd18d62c9aa142eedbde394bed07db58313e0fccc82a23237",
|
||||||
|
"blk.22.attn_v.weight": "26b5be1fe3c2b6824c5a648a3e4bdf17691904526fca158fbc3ebb627b67e2f4",
|
||||||
|
"blk.22.ffn_gate_exps.weight": "32ab7a7735313d60f6a75229b1aeee940b6aee176c9648536bf5921b0dc2929a",
|
||||||
|
"blk.22.ffn_down_exps.weight": "67590808f6a67777d3eb7976c31fe616d388b98fecbb12253b72d1241d70753f",
|
||||||
|
"blk.22.ffn_up_exps.weight": "fc245c0183e6d90829ff5e71a4ec93e4860b3d4c1a17b9dda2fb64f5f5c9ed32",
|
||||||
|
"blk.22.attn_norm.weight": "128e99d206d4d6724758ec97468af767fa0aea592149c324b731659c1e74a1a8",
|
||||||
|
"blk.22.ffn_norm.weight": "e45f498033f0cffa15da0eff2c47b4472e43fcf8921729fc4eeb2e3a6b3c78e2",
|
||||||
|
"blk.23.ffn_gate_inp.weight": "d63e686f5325fbc89fa242c2c52a3b8ff54f867dca914c9ae6eea13e9d6f46e5",
|
||||||
|
"blk.23.attn_k.weight": "f71f5a577f46ea12b1818f3a5ff4b85ddc45f9a2afb0fa2e041d71a3e31c6779",
|
||||||
|
"blk.23.attn_output.weight": "92b13563c1e0eac0d748fb67b235dfd7a64c8f16e2dafb316885744582e23b4b",
|
||||||
|
"blk.23.attn_q.weight": "2f9b9c35dc4f912f3f51c06e2d68f417b51a0de0a84aac530a64f9d3d7b0a2dd",
|
||||||
|
"blk.23.attn_v.weight": "268e40813806e74a5c364b19556d087bf8374e76e7b6fcf55c381eb7da13ccd1",
|
||||||
|
"blk.23.ffn_gate_exps.weight": "12f857e7a7ce228afac34d99b602c8d6fe96984f2a21118f459a58cb767ee65e",
|
||||||
|
"blk.23.ffn_down_exps.weight": "cdb082c16599c3bb36a28066dcc122d9529b54fa91b6cf0153437ec960a5e16d",
|
||||||
|
"blk.23.ffn_up_exps.weight": "f4b99f6f44d7b8b5a305894e88633bf5938fc1f6303a2b2092399da9c8b64d7c",
|
||||||
|
"blk.23.attn_norm.weight": "a691392210383915916b4d3886d5e4d56e7855e27e37e414fbd73bf66b3712e6",
|
||||||
|
"blk.23.ffn_norm.weight": "0c3dc72f667e5ae19b69bfa9f2bd2a01a57681f89ef9527bad4eb0d8c7b70da8",
|
||||||
|
"blk.24.ffn_gate_exps.weight": "86baca2a3157994df7fd8ced5e08436d5c1810dc29c0715637c36de723e0e7d1",
|
||||||
|
"blk.24.ffn_down_exps.weight": "ac5d559562b35c34993e34b071f66d15c65be5907797078c2d2a49aba54e3192",
|
||||||
|
"blk.24.ffn_up_exps.weight": "fce0a099cf09777f44fbab3606ceb75f7fae6f0b80725f9e871654b8cdf9262a",
|
||||||
|
"blk.24.ffn_gate_inp.weight": "e7c6800c0cfc56b565b2d35ad6f1dbfdb70dd0b05b338bc8da2286ffc3678d79",
|
||||||
|
"blk.24.attn_norm.weight": "dc6cc18ec52d102d015153c4a1132f9d7a504e29cbdec81c5edbf3b9e65815e1",
|
||||||
|
"blk.24.ffn_norm.weight": "480d5a1397af5e0e657f1e67d20ec0cdef5724e71246a326843321b87ffabd33",
|
||||||
|
"blk.24.attn_k.weight": "338c0597954a9b95a782545b2fe36469553e73f86ae2d2b5697767b28e1c7daa",
|
||||||
|
"blk.24.attn_output.weight": "a77d23b79933c67e52f1eef7f83a3dff4f767ce0bbcc39572f8cec4acd457643",
|
||||||
|
"blk.24.attn_q.weight": "45c9478593002be1998e96e70668aafa2dd3972380fbc1df12fb05c24ba959e0",
|
||||||
|
"blk.24.attn_v.weight": "515729420885408a6a9614bc27cda393ed907521318d14d21335d39a3eff0b61",
|
||||||
|
"blk.25.ffn_gate_inp.weight": "aae4ac40e9ab3925241f9d784b54b38851d9bc999a6c3bc03fc3f17c9b28a67c",
|
||||||
|
"blk.25.attn_k.weight": "4ab4808d02396c35b00b426f536015673b71c17ae6cd55bbc2e6bfe7a4c59d0c",
|
||||||
|
"blk.25.attn_output.weight": "1990bb982b77e0c947cd1a8ef0b36227ee1259e6dbbc2829e5c136edf88675eb",
|
||||||
|
"blk.25.attn_q.weight": "a1490f3048e8c0ec8784f8550c43adf5cc8d0f2f90131c934713fe4b1b015bd7",
|
||||||
|
"blk.25.attn_v.weight": "f15e53c6d45b3b6f58808fa968425d65e0b26b7f9b268127a77abb1227c67431",
|
||||||
|
"blk.25.ffn_gate_exps.weight": "656662447ff54f56ee80f78a1b9483f7efdc40f7375d0cd8a9c72ccf21f77e7b",
|
||||||
|
"blk.25.ffn_down_exps.weight": "db06f101bccbaef19cced0f6c185166e18202465f4a42cddfd535fbe5cbabb4a",
|
||||||
|
"blk.25.ffn_up_exps.weight": "584a7b02456f27fe1d8d3c7ccd21d426b6ea887795a3ed77f704596a1e3841d7",
|
||||||
|
"blk.25.attn_norm.weight": "8f0f3597982930fd237e9d609776c64f2b909a455b21678f83a7ebd4bbb83e64",
|
||||||
|
"blk.25.ffn_norm.weight": "3e7079c32582afba0c55e032f254adc18d2997705eec860185e9a6dd3d82f07e",
|
||||||
|
"blk.26.ffn_gate_exps.weight": "e70341691b583b86489812b29b77aa41eb658b1865733d6118da54c66e3bfcc6",
|
||||||
|
"blk.26.ffn_down_exps.weight": "5c1b812d11dfb064af816ced5ab6463bf9722eefdfc341b8a93705d5038fd781",
|
||||||
|
"blk.26.ffn_up_exps.weight": "e18118362ae54ef7432781c83884f9fb230a9d934e342aabeda8822ea5f71fb6",
|
||||||
|
"blk.26.ffn_gate_inp.weight": "cd1c5f6710166b9567c6b74c97b2348b191c60aa860958c6bc264ab095261dff",
|
||||||
|
"blk.26.attn_norm.weight": "71d087531af2520bda2e676c489e8529cef5db8aeea1eec0a937a8b4f2fa2e54",
|
||||||
|
"blk.26.ffn_norm.weight": "7f704e936fda28eb5c2cc339f0f6a5f78170b5aa43c01265b21668870d819c82",
|
||||||
|
"blk.26.attn_k.weight": "1cc62a0ce0ae251275d898c52c4a9fba5995fca10955d2011d10dd1a59e1afb8",
|
||||||
|
"blk.26.attn_output.weight": "636e881b1505f9cef656a4be98bec6a4765321d51f9bf1dac8933397cf44b765",
|
||||||
|
"blk.26.attn_q.weight": "89a3c4d202d7d6adebb9e0c1bcfd8b775f6456386f1be25e86e43acc949c1e16",
|
||||||
|
"blk.26.attn_v.weight": "ff2cc963b597cdf1a21703f3e7022af3bb4c65a34a19e19d9309a7c5e198b5bd",
|
||||||
|
"blk.27.ffn_gate_inp.weight": "6150139498fefe380bb99d11e72028da47a15ecb73dfc5b2774f726f4bed8f9e",
|
||||||
|
"blk.27.attn_k.weight": "f286eb9e5c56c7b801a497aedc40158c2a27877d7f9fb59b3fc67834798902d2",
|
||||||
|
"blk.27.attn_output.weight": "5dc3d3a05f9f7729509147fd09c16fb53f85f520cdab5cb69abf4bae3fd460c7",
|
||||||
|
"blk.27.attn_q.weight": "8462e40f86b24251960d6f35a9ea99b8793a01937faf1aec2859f2e5395dbb61",
|
||||||
|
"blk.27.attn_v.weight": "bac1a99e38e25953f8315f7212eb9777dc216cadb09b959977885ae62724ceca",
|
||||||
|
"blk.27.ffn_gate_exps.weight": "6a15eca7f0f6ecfd93db2e55c63875348ec4a78c4ff643ec46df9e958c0101e4",
|
||||||
|
"blk.27.ffn_down_exps.weight": "2e1c91247c4359e2073a8e5f26fd7f6426da7be3ed5bc65dcfff701f0a5022b2",
|
||||||
|
"blk.27.ffn_up_exps.weight": "65d6f5c553c9332085eae4aeadf25090b5d7768212ea7b08ed698102c21b29a1",
|
||||||
|
"blk.27.attn_norm.weight": "7fab8ae63ec8e91ce625cd130ab96d8427dad3a7413bb21b25ec5f408c5b9f5a",
|
||||||
|
"blk.27.ffn_norm.weight": "532720546b0fdcd423a02ca6e3e9d8aacb84b1b3e8269968f88a47fe2a69bab4",
|
||||||
|
"blk.28.ffn_gate_inp.weight": "a305ea58d98962d9dcf0c53ad2389b7acc8936fb35a0e3fc9410e7767cd49dea",
|
||||||
|
"blk.28.attn_k.weight": "8315e8a2e4f78dfdf36d4fc18fffc74bc95fe42c3ae4f9af2b6c874612c0f71b",
|
||||||
|
"blk.28.attn_output.weight": "9b5fdedd32d39ef46a22cca7cd5355d7b93bd07ea305f466a8aad6ca5a4f3778",
|
||||||
|
"blk.28.attn_q.weight": "4e8fb96997c30e231c437130f410d7c91d541a816f6c568b5f3bfdb4b8dece74",
|
||||||
|
"blk.28.attn_v.weight": "1fec739cf3bd7b4913f72ca358d4cf31391c304de44ac0ae31ecb825beaa7cfd",
|
||||||
|
"blk.28.ffn_gate_exps.weight": "9f259789d535e09268266b9a8020f32d6a6779966c909d91d3a10574f06238a2",
|
||||||
|
"blk.28.ffn_down_exps.weight": "516d3f8abaedb01b9916a4b67d4672159769138ef2850158bc1b32c41e31f0e8",
|
||||||
|
"blk.28.ffn_up_exps.weight": "f2f1d88d2c31ed588806fb5ad981d68f5134d7284c4fc022fd018de2eef437fc",
|
||||||
|
"blk.28.attn_norm.weight": "960fd005598deadaebd969996f4367a9dbfad90539a863674fe95730935acc64",
|
||||||
|
"blk.28.ffn_norm.weight": "e1993b37ced93d4049e9af2c47b0d9207d8f7e6f2cc3a52f57bef30bc806d805",
|
||||||
|
"blk.29.ffn_gate_exps.weight": "58927146338f443513337476b3cd30e6341742f096c2beb5890d400f10121298",
|
||||||
|
"blk.29.ffn_down_exps.weight": "03a3386e4f0b75a28c5608e23b2de8f0de25f21954e4aa7fc343431bde9db07e",
|
||||||
|
"blk.29.ffn_up_exps.weight": "6916b7490a7ae7b04a5d81cc1e7ac9b20c483434f3b186b12d87fe176bf1567b",
|
||||||
|
"blk.29.ffn_gate_inp.weight": "98e710e467a3d567abe4ce29d78b8e8dc033148762290c0c5e1ae4d78efd8c78",
|
||||||
|
"blk.29.attn_norm.weight": "4e64cb307d37be20d55f38c94faf7e451d11df5e60df347906cbaf9c5441be71",
|
||||||
|
"blk.29.ffn_norm.weight": "696c23a52f742679bd44440d687a4c44b4302d57f1e9dc5610d23374336187e7",
|
||||||
|
"blk.29.attn_k.weight": "e85253652fd6120c623634ba66b725bf7cd491318b54ccdad2c7df8851d64c0a",
|
||||||
|
"blk.29.attn_output.weight": "4f650a71efb150d1f24cd4d114d4187bf570ac424da3b92ea6455abdf1aea705",
|
||||||
|
"blk.29.attn_q.weight": "69fa7da901026ebcbbbc848455b425458b7e3295007d7fc093acf4b38e2166ea",
|
||||||
|
"blk.29.attn_v.weight": "17e2e7590b317b21f106de546aafd955579703d1e95d6aea044ee72ec3a514c9",
|
||||||
|
"blk.30.ffn_gate_inp.weight": "3a03284b4aa60d59d4a2ec86253469b61fc656372afca427cb77a5332fbcc62c",
|
||||||
|
"blk.30.attn_k.weight": "d518cfd0db9708e769eb1399e87ee49357dc54d5afdbac3d4c0ca46c64e789eb",
|
||||||
|
"blk.30.attn_output.weight": "9b44378714d784c5ef9ab604359091baca4e0ec222afa139b7f840eaefb371fd",
|
||||||
|
"blk.30.attn_q.weight": "cbb95365bbfbcad0c9cd99b4eebb5a5d32de68ce08e4063b5ec3e792b7548044",
|
||||||
|
"blk.30.attn_v.weight": "e7985c04fe1740e35a9598f43b67b0922b4fc2d00b68a92a9f917b82c3248de1",
|
||||||
|
"blk.30.ffn_gate_exps.weight": "8ac4bbd07935d98f895ba94dc174e5ad5046c3c222b53729d60f987c05e7eb70",
|
||||||
|
"blk.30.ffn_down_exps.weight": "dd672cc71e82abf05064a18121b8e55fe1a4f19bc1d7cb9a142f4add54bc336e",
|
||||||
|
"blk.30.ffn_up_exps.weight": "12282f664a2a12aa25e2deac58946108715ebb978bafed5274cef24569107646",
|
||||||
|
"blk.30.attn_norm.weight": "1a33458fee054c6c9c896a4bb0a4e1fbfa0293b2408c7dd2b81d692e966e7273",
|
||||||
|
"blk.30.ffn_norm.weight": "311e33b68051f507f1478ed8f2693fddb846170ddb7285a91be43f795c2ce31e",
|
||||||
|
"blk.31.ffn_gate_exps.weight": "8af43d9867a51cd8392fb48b981b0ceee0ae979c491c07d711b3b56b5162c786",
|
||||||
|
"blk.31.ffn_down_exps.weight": "5579cb7758c1600b19d1f540deffe081b575962e37437b3b2efb2fb0a2924e40",
|
||||||
|
"blk.31.ffn_up_exps.weight": "f2e7c005276b3a001fb40753f027fa10b4d5a346f43cf4b4bbdeec6e74e1cf6a",
|
||||||
|
"blk.31.ffn_gate_inp.weight": "89885dc0e30b6b16a90c0331d7fa3174671e941364e8102d934f02132237e61b",
|
||||||
|
"blk.31.attn_norm.weight": "99e4e9bf86a9edf8c404153a7e8a82324ba79da462622196e2faba161bd95172",
|
||||||
|
"blk.31.ffn_norm.weight": "55335997cf6de781bf332b943de96ff4646966b05d9fee86b76ea897e27b6ca7",
|
||||||
|
"blk.31.attn_k.weight": "cee570762b78da6316b637892cc4b080e40f57af5551ffb1866b9a8e80e96628",
|
||||||
|
"blk.31.attn_output.weight": "fa321ff55ec7819ead7b819fd45215262f39744569765ba2113c989c03588802",
|
||||||
|
"blk.31.attn_q.weight": "9e2c409b878f8a2a1436874abf428fceb1c534b21f9ad4dd6f532b8a469007f0",
|
||||||
|
"blk.31.attn_v.weight": "a845d0be68ba537b4a775bfba4d897faf7c82a811a2612b0b7420cc4f3574cb8",
|
||||||
|
"output.weight": "16101cbb74b54cda9ebc07ca3c762e3263a56efb3cc011156184b95807d7cf13",
|
||||||
|
"output_norm.weight": "d7aa61585baedd60157aafe157930785742c55989c288573566a971b02423564"
|
||||||
|
}
|
||||||
225
convert/testdata/Phi-3-mini-128k-instruct.json
vendored
Normal file
225
convert/testdata/Phi-3-mini-128k-instruct.json
vendored
Normal file
@@ -0,0 +1,225 @@
|
|||||||
|
{
|
||||||
|
"general.architecture": "phi3",
|
||||||
|
"general.file_type": "1",
|
||||||
|
"general.quantization_version": "2",
|
||||||
|
"phi3.block_count": "32",
|
||||||
|
"phi3.context_length": "131072",
|
||||||
|
"phi3.embedding_length": "3072",
|
||||||
|
"phi3.feed_forward_length": "8192",
|
||||||
|
"phi3.rope.scaling.original_context_length": "4096",
|
||||||
|
"phi3.rope.dimension_count": "96",
|
||||||
|
"phi3.rope.freq_base": "10000",
|
||||||
|
"phi3.rope.scaling.attn_factor": "1.1902381",
|
||||||
|
"phi3.attention.head_count": "32",
|
||||||
|
"phi3.attention.head_count_kv": "32",
|
||||||
|
"phi3.attention.layer_norm_rms_epsilon": "1e-05",
|
||||||
|
"phi3.attention.sliding_window": "262144",
|
||||||
|
"tokenizer.ggml.model": "llama",
|
||||||
|
"tokenizer.ggml.pre": "default",
|
||||||
|
"tokenizer.ggml.add_bos_token": "false",
|
||||||
|
"tokenizer.ggml.add_eos_token": "false",
|
||||||
|
"tokenizer.ggml.bos_token_id": "1",
|
||||||
|
"tokenizer.ggml.eos_token_id": "32000",
|
||||||
|
"tokenizer.ggml.unknown_token_id": "0",
|
||||||
|
"tokenizer.ggml.padding_token_id": "32000",
|
||||||
|
"tokenizer.ggml.scores": "6e37bcde2adc7e350e87c496eddd7a2124329c1dc66c5bf3ad3997253e4f7a62",
|
||||||
|
"tokenizer.ggml.token_type": "b6ecf55ec64ee67d87750bdb8d757a2c58bf78377e9f4219f5689a6c4dea57ce",
|
||||||
|
"tokenizer.ggml.tokens": "d168da3ddd3eee820916945fcb9baf24dd3cde42f606cffa2d19e7c8a8743918",
|
||||||
|
"blk.0.attn_norm.weight": "216aeb2c9e0c271f899e1ef2a63cceeb8f41e97642e84fada54b1d3c1c11cf25",
|
||||||
|
"blk.0.attn_output.weight": "b597d56f7188ffc1fafc273fadc59d41738cffd677ae98c61a62c3285b3a3099",
|
||||||
|
"blk.0.attn_qkv.weight": "d28a6b44e13f59be5483e4be2bedb544e346168d720aca27f47d1a5a722be91e",
|
||||||
|
"blk.0.ffn_down.weight": "4a691370e5a61fcbbf540fbcbf4c0f1d15dec0364528c0e916d0744f6262b63b",
|
||||||
|
"blk.0.ffn_norm.weight": "0c00af2b4a3128bec64a0cbb1084b042fdbe13d9ad0d03bd577f9449dfead338",
|
||||||
|
"blk.0.ffn_up.weight": "b32b52f790c1c083bfb8a3126dc1111cfeeb28dc8c584a930a1e5334cb176bf4",
|
||||||
|
"blk.1.attn_norm.weight": "68748011503c6c029e8e69a84a8e5a89338f378769627b6dbf7f93d715c292e1",
|
||||||
|
"blk.1.attn_output.weight": "2267344add13b048ca59e4377c86dc512be8046a57156901fa32a20fa74e4ee0",
|
||||||
|
"blk.1.attn_qkv.weight": "9109d2e3d7a2eacfda5226587b8be124a3bf44b972da7ebb17aa15795897eacc",
|
||||||
|
"blk.1.ffn_down.weight": "d675df4df4dd039c0c339ad6445d39eddd2004db6bf35bed6314c7497245a633",
|
||||||
|
"blk.1.ffn_norm.weight": "3b5767ae977bc8baaa06b06efdbea193b6b3ba605ce76d77a76ce317e935500c",
|
||||||
|
"blk.1.ffn_up.weight": "80dfd6d9d234b00334c89b8e0a02f81899c2efd377321c34ba5ba51a5f61b5ff",
|
||||||
|
"blk.2.attn_norm.weight": "6a6743b057e5088f145bc179e92c9bfb41163e7295d7b81c62e23dd89d2b59c4",
|
||||||
|
"blk.2.attn_output.weight": "bc5491ea54e0db81462d7d9b7d25cbdda380c2db8de041bd1c4ab7b76a1d19c3",
|
||||||
|
"blk.2.attn_qkv.weight": "a61287a9852e2f5aca9c100b471d98398b2913a3497c743de3c70ec9ddd7087f",
|
||||||
|
"blk.2.ffn_down.weight": "4fddcc382c8dceeab027fe43d8d44e67edb5e8ce4b9a1b7f773c87770380ade1",
|
||||||
|
"blk.2.ffn_norm.weight": "07e05f82b3f63f711db3b684ca79aed25c0657917e66f88af47348a82065c227",
|
||||||
|
"blk.2.ffn_up.weight": "4835a682ef1826c12df01ae7663fc45f9c82bc8e64b665f13fb7da8e201ec0fb",
|
||||||
|
"blk.3.attn_norm.weight": "f22aba7c03999ba7136f39cda747a39715e498699dc1716cd97fc5dfc58d1b1c",
|
||||||
|
"blk.3.attn_output.weight": "53b579855366fd786c5126b2b30aac4d583ca7bda56833c4865f5cadb5c18c6d",
|
||||||
|
"blk.3.attn_qkv.weight": "bb56aba78158123140fcea59c69ac562ca208f6d3086819417cdad8c50f333ad",
|
||||||
|
"blk.3.ffn_down.weight": "97280897a7cd86db2830c004bccc5bc094f50e293baded0189159a2019145a6e",
|
||||||
|
"blk.3.ffn_norm.weight": "10a8c99f8b57a960e8e0a1133c4a26f9148403d1b9bff2eff114917de996f3b5",
|
||||||
|
"blk.3.ffn_up.weight": "7324046c915e75d621b2043597a245a428d8eea31869135e6257a861491d8dcc",
|
||||||
|
"blk.4.attn_norm.weight": "507d8e164de94646edbfe33def8e8fbf7c9a6ee3fbaedb5000f72d9f51ec5e36",
|
||||||
|
"blk.4.attn_output.weight": "bbb3429e6efa98c150e0fdbf48c16180cbf0d0cbc1b3c253c6c319d78f4593a2",
|
||||||
|
"blk.4.attn_qkv.weight": "b95ee5be0786d3901273d806c339fe6c20e6bfffd2a20672a9f56af80921e8ab",
|
||||||
|
"blk.4.ffn_down.weight": "806bbf91df92a5a22bd5aa1ffb7fc2869f7293ffc7704771c290ecc583b27975",
|
||||||
|
"blk.4.ffn_norm.weight": "cfc2930a81df7aee3a5e7f726a15c1182233e868bf0d9d37f6b6ae6d8c15c234",
|
||||||
|
"blk.4.ffn_up.weight": "c3390c69533de2c8424e8069323ccc5d0c4543111535da04cf2c7d26745576aa",
|
||||||
|
"blk.5.attn_norm.weight": "0d71c4fbcefabbd021569442853d2fe90668b19409ae2805a718a829ca60beab",
|
||||||
|
"blk.5.attn_output.weight": "10ebd93629112bf2df5c30dd0953a4a5e9020306768283181ed426934d47e14f",
|
||||||
|
"blk.5.attn_qkv.weight": "5cb05633369f12d4b00e0ff787736bd846856682115720ebc6cce05270c334f6",
|
||||||
|
"blk.5.ffn_down.weight": "e28bcc5094212eafc7476dbc5b7a520d25b79578cbf4229d698e2655956a80ad",
|
||||||
|
"blk.5.ffn_norm.weight": "b6f2c4cf9f34bb4d59989f96165c14a67dc1e266ad0a6d0fcc49f1add929e6ff",
|
||||||
|
"blk.5.ffn_up.weight": "0f9ef99423cc07ebedc0e9cfa95809f2d7108d910bb4ef97ebc0b0309c440750",
|
||||||
|
"blk.6.attn_norm.weight": "b3edcc47a42218234f7564d7470611b49401a41ae8cd42123f86557c69f5d7f2",
|
||||||
|
"blk.6.attn_output.weight": "eb9b7d257b388bb5b8fe0515e5c6873317239cb94cda236e4b6ada2a6c57c65c",
|
||||||
|
"blk.6.attn_qkv.weight": "eb968081f478c52f07bd9c2761741e982dba33cc4eeadeea3557d391b9ac2106",
|
||||||
|
"blk.6.ffn_down.weight": "1b8588bb7463206290322695577dcfced300895d6e6f4b26966c53a9ae2f0f84",
|
||||||
|
"blk.6.ffn_norm.weight": "1219c04b7770983c77814200eefe743f46d15328ea2b12711e44f8103eab08d3",
|
||||||
|
"blk.6.ffn_up.weight": "197ef287239fec47c55677f0fbb66eaf0644f775bc382de843971730721394f6",
|
||||||
|
"blk.7.attn_norm.weight": "b630ad08c80d564ed1c024384818e9fd3f22a36cd7a14aa96e7e2759a8285099",
|
||||||
|
"blk.7.attn_output.weight": "970255aa750828a47d6b9d399f9612b5bf25aefe7dadbcba41fc416d0d4067c1",
|
||||||
|
"blk.7.attn_qkv.weight": "ebb157c880293e6de8d629f263ba8853ed1dbdc02c311d43432bb8cfbb310739",
|
||||||
|
"blk.7.ffn_down.weight": "24bcd4db4cba844c89f878b81843c373dbbc0675e889d32c5b12e63384a7b670",
|
||||||
|
"blk.7.ffn_norm.weight": "b9c6f71001808ee873ce7db8056e4b53fb4cccec8b7f0f312899b575fae39d39",
|
||||||
|
"blk.7.ffn_up.weight": "979f1828d227455c26015a2a11afe9dd05f2bb97a8ba6b38c8dab3f50e627401",
|
||||||
|
"blk.8.attn_norm.weight": "4e8e347e3775010b7112ee630f2f4f2383be7ff64e6ca6154b9b22566552eaa6",
|
||||||
|
"blk.8.attn_output.weight": "65a44babf44a435a1829945211b3168f9ec78ac3cb7a049a733e93d11f0d6659",
|
||||||
|
"blk.8.attn_qkv.weight": "343ed07671da400b040812a4058482fa38284b5d9af9becfed07417fe26ce747",
|
||||||
|
"blk.8.ffn_down.weight": "7fb7e073e3c2c503c4e9d60efa0988fed7398d900cc003695fe3fffd3e188b82",
|
||||||
|
"blk.8.ffn_norm.weight": "b07c1f655d8593e3892a2cf73f8a0c19ce8e5cb613fafbe7cbd430da8ce4c57d",
|
||||||
|
"blk.8.ffn_up.weight": "8b26e14de54b3fdc2e2d3ea41720f9d9c236a93688c3b7fd7bf43f5fbb327c9b",
|
||||||
|
"blk.9.attn_norm.weight": "46394d408a8e316916177e6aa261de32e137a82d729c0b1800b072f0c38c39b6",
|
||||||
|
"blk.9.attn_output.weight": "d57f3d46107947a7073373a0b35d6ecf7759b5df15406f4a3590a60666af6b16",
|
||||||
|
"blk.9.attn_qkv.weight": "14bb8ace8c5453148f4b536e9f4279c813f31136716947256f5cca333448639c",
|
||||||
|
"blk.9.ffn_down.weight": "2b8d98e2b5ed68338f6e4de43bf7de0c4858cc69103cd5177725f7444eec7694",
|
||||||
|
"blk.9.ffn_norm.weight": "41a499dfd418cc4c6b8c12313f673f7e2cd4a3f9c4065eb6c4feb5eed02fb542",
|
||||||
|
"blk.9.ffn_up.weight": "143aab7533a64b17fbe201490a6f674bc7f0bd370c094500b2e100419073d1c2",
|
||||||
|
"blk.10.attn_norm.weight": "ebb670aafd36816a794347287269d8f1a5b19c1e3c0a1e38023bc19fdba9b073",
|
||||||
|
"blk.10.attn_output.weight": "b5d65bbc0ed5e49fdd9d754bc18163cd042a285024d0cf6f954c503bc8c877cb",
|
||||||
|
"blk.10.attn_qkv.weight": "f06b15bac88da798fa34a62b03eaac0dbe8b846020516603c387541f2d8dd672",
|
||||||
|
"blk.10.ffn_down.weight": "fb091fcd1b4de25d1bea94d1755e255cb02914a030d23e3a234e57b8d46bde6e",
|
||||||
|
"blk.10.ffn_norm.weight": "eb347bdf9c40414af87e13a8e72e40b31f004b50f7cb366f1a219ced60a61355",
|
||||||
|
"blk.10.ffn_up.weight": "ed2d52fc881a173f404fe8a1067862c9856d6c3e0d2e90a330a7aa394e3f84d1",
|
||||||
|
"blk.11.attn_norm.weight": "64e252603cf010a0e502ca39fdf8d0a196a79aec67c0d2bb9213fc0cb80c47d4",
|
||||||
|
"blk.11.attn_output.weight": "228e33e21c69f52efc74fdfc831bc9af271e44b2a29a3dced1d64e667ce36eb5",
|
||||||
|
"blk.11.attn_qkv.weight": "ab9ce6d4ef9e42ee0da3f20a7708a3bbc5e79e967b05fa86ba946a05e2eb63eb",
|
||||||
|
"blk.11.ffn_down.weight": "0ca133b7835c98dc77c25d64e4eb7873778bdb5e4d22d8b80f920f46865b43bd",
|
||||||
|
"blk.11.ffn_norm.weight": "02455741a0dfd161c79aa1ecc381901721f229fdcda5615622a629631fb61cfd",
|
||||||
|
"blk.11.ffn_up.weight": "9fecdcc099fbb8e23c6b1ea9294702a027f4a58d265543ec5e7be79b8f63b354",
|
||||||
|
"blk.12.attn_norm.weight": "783bb459911b1b3609a9b2bdfe272f1670add73b5471da738e07ac47e2e07dfd",
|
||||||
|
"blk.12.attn_output.weight": "1e1a914c9e48b857206ac5a1f7cead994bc1ea91d5d4fff8c834d73f2e38ef5d",
|
||||||
|
"blk.12.attn_qkv.weight": "5953e7185ccb87fb4dae8f9426ec86315d4c7794326e8ab59b3a95d4af2189f0",
|
||||||
|
"blk.12.ffn_down.weight": "a3eecf0f394f86e2cfb48a5940a5c50ca86d71883b2f79fcc642a935fabce0d4",
|
||||||
|
"blk.12.ffn_norm.weight": "0a4272e41373c23bd72f10d2d82930aa3a1480aac75832bfbf01cebf0b86b6a4",
|
||||||
|
"blk.12.ffn_up.weight": "06f42776de3a7ceac3025f26a7a8bd20e062233cce2bdaa2183470dc4b30b87d",
|
||||||
|
"blk.13.attn_norm.weight": "5915da60fb03e201fa649faba780e5fdf1c761c262b206e5415cf83181f65780",
|
||||||
|
"blk.13.attn_output.weight": "4dbf6eab074fa3835fd32bd631a8208e511037d5056d2fd3015735cca7674ef7",
|
||||||
|
"blk.13.attn_qkv.weight": "d3d8339a1c4782d9e73d77fdebe154d3c5b83ac40c9175b3e91a4977d08f876b",
|
||||||
|
"blk.13.ffn_down.weight": "de6772b46a55e1fd42b007637dfbf68b6598e5d5b61622da0935002e1e192d3a",
|
||||||
|
"blk.13.ffn_norm.weight": "5a640ea3b8c7be49c95a58a2327e10d8e8d9d142504bde5c8091613e5b961d7a",
|
||||||
|
"blk.13.ffn_up.weight": "f35e3545e4bd3531b2e843b5efd31dee0c13c807ee6386e65473ba67bbec30d0",
|
||||||
|
"blk.14.attn_norm.weight": "9b34986450b7c98b4927e81e61a816f9e84b1addc7c14926402100037aad6678",
|
||||||
|
"blk.14.attn_output.weight": "155d52efb23d366016d861a251d4d1f4a0c13699188c50d50dba016a0d8bfcd9",
|
||||||
|
"blk.14.attn_qkv.weight": "8e1415084e1f33c73a777f19e752489f4dd312cca047733e5ea643cd4a955e04",
|
||||||
|
"blk.14.ffn_down.weight": "a2a142226b94baa01ccb65bdea2b7418e49085c1d9c3c63e544e3112c58a25da",
|
||||||
|
"blk.14.ffn_norm.weight": "8aecfd9b0ae6affaea31a80c5c9a4a14b31deaa0db7bd8f6da2a64d23447921c",
|
||||||
|
"blk.14.ffn_up.weight": "0c1407237b8c1bd02f193346b5681926fe698a5055eac6a7450451b0f991707c",
|
||||||
|
"blk.15.attn_norm.weight": "e037bd19880bfa83d983200fb0c7866f8ad16c3ff5cc4b4f3a37ca7373870ff6",
|
||||||
|
"blk.15.attn_output.weight": "045fe4fc95cc129a1b92771b179c11b12845c4c088786c607f17bd98857e68e1",
|
||||||
|
"blk.15.attn_qkv.weight": "7621b7559705cab1d4dea1c69f76dbf9dc1c8837a203b656f484703b9c1b70ce",
|
||||||
|
"blk.15.ffn_down.weight": "7e5ac20e290bc60761e1cd972354fde225b7fa861048d44d9a0dd9b046d55f58",
|
||||||
|
"blk.15.ffn_norm.weight": "b6d830d88f1db1825687973c8c2b1a24c6fa84f07af8d0e3ef9c86009baca0b2",
|
||||||
|
"blk.15.ffn_up.weight": "dcda0957cd04fc45476774dba2bbf9aa89d6b05d5ca7b10ae6f73ad2c49b1cd3",
|
||||||
|
"blk.16.attn_norm.weight": "4ee9b70ba15cb2a08240f93990e90f5068c48fceb481f8e2186bec8b7214eb3f",
|
||||||
|
"blk.16.attn_output.weight": "315cfe5536658d2498192b2980eade15b2c9a4ff220e4011911457b1727fa103",
|
||||||
|
"blk.16.attn_qkv.weight": "3c8122e3ad637583b9dcde8ff3a323267d3014bb1f0f9771e5322260ca9ecc8d",
|
||||||
|
"blk.16.ffn_down.weight": "3b5fbebd5ee2b86cad96fb8a9b45a8770d08f82c1c8b74d7061e866f7020a18d",
|
||||||
|
"blk.16.ffn_norm.weight": "ffab69f20bda372de6e5878f0539163e2fc6ba113621ded95705fc3b1465c9f0",
|
||||||
|
"blk.16.ffn_up.weight": "0935ea3d258da42d6258406365f39f58ddaabfe97ea5977580db3635188f24a1",
|
||||||
|
"blk.17.attn_norm.weight": "f030441733f3d147b4a06a1eb4aeb8465c7c24d9c53bf4c48fe7e134d3629803",
|
||||||
|
"blk.17.attn_output.weight": "07a955ef09e8dc766ac0df647d0b2c69f23c4c69a7137654b4aad80303ed0eda",
|
||||||
|
"blk.17.attn_qkv.weight": "1c10688061e21e2fe12ad0cb54bf03895c1f83c3b0df743a42f548b52cbca1b2",
|
||||||
|
"blk.17.ffn_down.weight": "ebb9cc9836f41d88fdae2aa9a4355514e4edaec8d1577ffeb947a35204e77f52",
|
||||||
|
"blk.17.ffn_norm.weight": "50aff44f6528b13db5389f2ddcdb7676244947610bd7ffbff3f881c968c2a0d4",
|
||||||
|
"blk.17.ffn_up.weight": "d716537949582be33bde6b02e38f5a70081c9642a9fb05a61312126718b8d148",
|
||||||
|
"blk.18.attn_norm.weight": "0ea695c4e53d637902f46663a6ee42adc493c36794476acc7dbddaa05b13840d",
|
||||||
|
"blk.18.attn_output.weight": "5fd35b500221a612eb4f4bddf0e9b6b7db4d7733032a75f8802fb2d884647c2e",
|
||||||
|
"blk.18.attn_qkv.weight": "b0da37fd030fe69581f990bf23bfd35467a1bbe558af6de7c0924f6b72e92317",
|
||||||
|
"blk.18.ffn_down.weight": "b355c33f44b328f4bb977567de8f7544db4b005d7a8fbded658518ecf3c5a153",
|
||||||
|
"blk.18.ffn_norm.weight": "58b3fe9094079989a86e0387143259e1cc35952d24dc3df290c4ba6df44f5c51",
|
||||||
|
"blk.18.ffn_up.weight": "2ce530954c342c30ed2ead5353f931960bfae1d278868504c0efb973560fabbe",
|
||||||
|
"blk.19.attn_norm.weight": "533e9aed66feea8f0392aa81f9e293240e1f009a5334253915fb60c2749b615d",
|
||||||
|
"blk.19.attn_output.weight": "84f2d00f98a4113a779d3b5d1c3e7c914eb47784d3ab13b290367c124c2994aa",
|
||||||
|
"blk.19.attn_qkv.weight": "fbe6b9f53b07fa7537d3b3d452d20a9bc666f9fd41ec2091dd28bc2f70fc668f",
|
||||||
|
"blk.19.ffn_down.weight": "b30199e098c8bb3f890183d8b18471e80b62b604729b277ad62488dd71e1206b",
|
||||||
|
"blk.19.ffn_norm.weight": "c81373e41cd340b7badb19f9517c77c4250b4eb9a02dc758b8b49b652487d7ff",
|
||||||
|
"blk.19.ffn_up.weight": "5a5cb083ca7725720e3a890f7fa46354760e8007a8188849a092e305694a75e3",
|
||||||
|
"blk.20.attn_norm.weight": "4953091b4477e354357a8e743ba0a1900633e52f1599ee082a0c9b0b2b5cd978",
|
||||||
|
"blk.20.attn_output.weight": "62d54f7749cd6856097b2632066a322b0296df915fe66f382c5b5981be0d4f23",
|
||||||
|
"blk.20.attn_qkv.weight": "406de9e35b0729ebe902d7a47905cc7fb29a921431ed35dbef0c03e5690a1329",
|
||||||
|
"blk.20.ffn_down.weight": "62fb678b0d1261e19a4903a2b347d67afcc8acff01feb33a687a35a2d1e6f9a5",
|
||||||
|
"blk.20.ffn_norm.weight": "cd9d36b7e71e55c8925b97bb09c28219f182626bcff094878ae39c3db887a14b",
|
||||||
|
"blk.20.ffn_up.weight": "b9276771d79d3e932e73ccc520c3f8476342b9ef312ed2ee1e0da822e6e3ad18",
|
||||||
|
"blk.21.attn_norm.weight": "66d8c8a35e13ce9c2a0e75b670150e2c31484a55c2316df46075312196178ed3",
|
||||||
|
"blk.21.attn_output.weight": "12ab46c9382648f9b3350fdd92a6be6352743d62d6b520d7e2024e0c838588f5",
|
||||||
|
"blk.21.attn_qkv.weight": "a7909676ee1675ca23cd29a5fdd226df8dd9d68f94c6c9bbb51dd9fd38504008",
|
||||||
|
"blk.21.ffn_down.weight": "6fb317279c6542e82f97d5a12a60fac1bd0fa0405154f9fbe265e2fe39bd49cc",
|
||||||
|
"blk.21.ffn_norm.weight": "c0f703eb3ff161b5ba4490d87d8684b8a6c47a8f433e12f418333b9db439010a",
|
||||||
|
"blk.21.ffn_up.weight": "6dbdb80ef0c35e364bbce12d40d5e74c7963c7b55d58d9579567a07ffce7b863",
|
||||||
|
"blk.22.attn_norm.weight": "f94237433bf03d675cb2f655b81ca91a1ce2447bc6b00b13d6b0ccfe2d411eff",
|
||||||
|
"blk.22.attn_output.weight": "e821f95995ce497c01e63ca64f737713b1b65f11df1903e51d444aa516f33f71",
|
||||||
|
"blk.22.attn_qkv.weight": "1b0f717c73afb5eb4c82a1708c4e85c969e8a2a8770d9ddb78b1870a2d8a781e",
|
||||||
|
"blk.22.ffn_down.weight": "0f33f7a3cdc685484be99aa0c03642b0b20850a27d1fddbe054b13a9382f3ccb",
|
||||||
|
"blk.22.ffn_norm.weight": "9df285cf211ddd7df2b36a50489af574755c7d4d98b29a05cd04566ae613c8dc",
|
||||||
|
"blk.22.ffn_up.weight": "63ac300e1efb34041dd0136cf43ea622fac6f0caccce1cd9262f5e08d2cf179c",
|
||||||
|
"blk.23.attn_norm.weight": "5f72d9e88689b4027b28f5f8f26cd3abb03635ceea7ec98a4c91a9fc691f6707",
|
||||||
|
"blk.23.attn_output.weight": "6ecf04ff61125c5fc768f8656497152149373daf321ee9c957e8f7245a1184d1",
|
||||||
|
"blk.23.attn_qkv.weight": "a9d9978806724c2959f2cf386c233831f08e1e933dbf2b32665e788d9d512ea4",
|
||||||
|
"blk.23.ffn_down.weight": "72c7d17886a3da17fa0daa456aa5e877b2ef5b8b403182b870d9ca5ca9c70347",
|
||||||
|
"blk.23.ffn_norm.weight": "971e4b712e3025a13419b5b57d674b5e4ab7f18f74b57b9afc4671623da90c4b",
|
||||||
|
"blk.23.ffn_up.weight": "df2b5c7dbd5834545b815073af0c7355b065124e6d6f0fee78d8fa5b2076dc3e",
|
||||||
|
"blk.24.attn_norm.weight": "c41957c4a79ad3b16f6e11daec1c7f530b9f3f4b618e1e4367c3b67787ac4ab6",
|
||||||
|
"blk.24.attn_output.weight": "ef7d61f5fc88ac6f31bf60cb5f4d2d6b8df42d38825807112361a7224b0dee3b",
|
||||||
|
"blk.24.attn_qkv.weight": "3e6a58fe7d49c90bb6971efbad3371c32256881173ea5aee4b0c296cb206490f",
|
||||||
|
"blk.24.ffn_down.weight": "f43619144047de42fed81dfa495f1815d3cb771330e574043e2b67620819292c",
|
||||||
|
"blk.24.ffn_norm.weight": "5501d4a2a98c8ca6b42e77b53b221dbc08f530f6a067256d787534ec6fe028bd",
|
||||||
|
"blk.24.ffn_up.weight": "d64c8b0e509e2b1118f6000176f8956cacecdbb200c7e95ed93fb78b6e26c84a",
|
||||||
|
"blk.25.attn_norm.weight": "502fa3c302d371f61c5791f4615b73018ffb1daa09b6499b227116581244c5d4",
|
||||||
|
"blk.25.attn_output.weight": "ad8391d4e9c980856f2547aa945b2b6a407a6382158dc1ddd4f08d94ecc24be6",
|
||||||
|
"blk.25.attn_qkv.weight": "42e8983780d4a01a02c54ad23d4df21eea437f119a10af5a9c12a76a42d308c1",
|
||||||
|
"blk.25.ffn_down.weight": "302dd010d4e0ab4eeaee89090409ea0dddeeeed3236415eb8f97c942497eea91",
|
||||||
|
"blk.25.ffn_norm.weight": "fb34c1ee5bca96986c08834df0a0c047ba041c1123ac1f563e9d64312bf82d6a",
|
||||||
|
"blk.25.ffn_up.weight": "10739a8de156816d93c92b935386540bfa976bdbef204f0312960f6fc657582f",
|
||||||
|
"blk.26.attn_norm.weight": "7036c711609128c4e55968ff3681d3043338879a5737efd6c2ac9e1a2a61f1a0",
|
||||||
|
"blk.26.attn_output.weight": "db5db45dead5cb911fa01da59832f121b7c18b2d167bf53741c40819f24d346c",
|
||||||
|
"blk.26.attn_qkv.weight": "cae34c6b7f82ed14348d5ed30a79919c383737c1694a9cb9c0de609d3b0c1d0a",
|
||||||
|
"blk.26.ffn_down.weight": "491ec3a4da9b4f49f8ebc6be658ce397a9b801ae9fb35e82177e47808c65e5d0",
|
||||||
|
"blk.26.ffn_norm.weight": "fd7059d75d7f0e5288511ddeeb0f772eb3cae3ccfe4226b877015834edc3c386",
|
||||||
|
"blk.26.ffn_up.weight": "ea1ee1274c56458ce056d2205e5bb6e5422ce4cb0ad58006b8141749b97a0c39",
|
||||||
|
"blk.27.attn_norm.weight": "cc362c9a937609265052cd38544af17a1a7448cea086d4c801139e1fc865832d",
|
||||||
|
"blk.27.attn_output.weight": "ba757a81dabde9cb1b069d1bb616fe79649a1724f756567ec61caed1304fe6cf",
|
||||||
|
"blk.27.attn_qkv.weight": "1ab8d7d02d87756c12c2275636823aa5ede3d683178225c4cac4bd892c319bd4",
|
||||||
|
"blk.27.ffn_down.weight": "deb1c711c8a66acf4dcd2d088e1548f8e08f296f755e4067d6557fa55afde88c",
|
||||||
|
"blk.27.ffn_norm.weight": "fc6242d8cb8a4a37a8ddb7e41e7e60a63d4a89edf36acb35df052f10b9c91ece",
|
||||||
|
"blk.27.ffn_up.weight": "8df39b09c4801f343aca78f2918a1f6db78c8c55e591eda4c69eadb74c26e180",
|
||||||
|
"blk.28.attn_norm.weight": "75b539308f77e3cefdc6d98484d8b5cbf0538f0c2869a77b7373a145a18bc850",
|
||||||
|
"blk.28.attn_output.weight": "ae128940eb60a6d2e121762ef4b3e9dcf9eb3e105b249507fa7f12de0e19822c",
|
||||||
|
"blk.28.attn_qkv.weight": "bdda781c288e9326c240e33905f8e621b6a2ad902e620739d34f93fcd6f933de",
|
||||||
|
"blk.28.ffn_down.weight": "f1d6e6d1c286b1138bfd7e53fe477f399ae93bc2c04e35416f84218ed7247965",
|
||||||
|
"blk.28.ffn_norm.weight": "3f837ce82c8b9bde0d61d08b6f5fe5574886ea5328dbdc53f2929f18da8b4087",
|
||||||
|
"blk.28.ffn_up.weight": "2af027002e31d1b6cfedbdb30a2b9d7213f3aa691167c353913adfd48fda31e4",
|
||||||
|
"blk.29.attn_norm.weight": "61e8003b5329462ffe0fe172f2b160260de006aed858332d49d75504b6b6aa7a",
|
||||||
|
"blk.29.attn_output.weight": "ca44542a72a37476dc73dbdcc01f5b7497cb3ebc4ea230a55c9634ccd8e56ad4",
|
||||||
|
"blk.29.attn_qkv.weight": "abb3d9d6abe57872ae3daa51935d43264093ded5ce63b49d1e280ee5758be0e4",
|
||||||
|
"blk.29.ffn_down.weight": "6764b895fce881df097489c263446f0106de36217997660c15984b3ee22a5a06",
|
||||||
|
"blk.29.ffn_norm.weight": "89e03e9a33fc0e6e31ba9f0c2bd7c5734a118c5602bb90148793e08a80e8d0ae",
|
||||||
|
"blk.29.ffn_up.weight": "fa7ad57a84954f4121653152efed1a871d8adb20a1ea9086e3e849ce359d7d2e",
|
||||||
|
"blk.30.attn_norm.weight": "91a697aca1e42af54f806a20211031c3369e8d0bd58df1b0147fe24954e1f5a4",
|
||||||
|
"blk.30.attn_output.weight": "36063fcf766c89ac75be56f688cc63cefe5f2c733fbf4378ea9956ad386fa148",
|
||||||
|
"blk.30.attn_qkv.weight": "2cacd1161f1121a2c0b979930134f4666f73fb8d7237b3b0659ae091b15955a6",
|
||||||
|
"blk.30.ffn_down.weight": "9f3fcb6217100595850c05dc98f9ab2a263afdb6ab28df2fcb08aeff512057d7",
|
||||||
|
"blk.30.ffn_norm.weight": "6c600bc1fc7de39d4f8917b81fc7d1d5ed2a9b56492234c13a4bd6028c30d880",
|
||||||
|
"blk.30.ffn_up.weight": "73cabd1bb011956b2689ea3338bb76642ef3a57c197377d666d2ab5f56317668",
|
||||||
|
"blk.31.attn_norm.weight": "72d3e1cc771380645fa75a899858c95f39857a4f3f1ed60fe1578df383b8bc53",
|
||||||
|
"blk.31.attn_output.weight": "40089cdd29994dc19a1d89fa15902a89cfeca3540f12dc9bf4d00ef82506e456",
|
||||||
|
"blk.31.attn_qkv.weight": "1d0bb40e9258071ae14290a53c619a8e331dda07354d2a02ef45766c029ae5e4",
|
||||||
|
"blk.31.ffn_down.weight": "8defa0e06335b793fa8be03883f0a322d6c5b33f52c69c943c35c60d16e42c0a",
|
||||||
|
"blk.31.ffn_norm.weight": "33c55d9d0c496ccfb130361fe131649346e098abaaac39c0519507e5d846721d",
|
||||||
|
"blk.31.ffn_up.weight": "599f6503f61c692c1f82001973d35119f9688db5e6be9d9c298411491c93f09b",
|
||||||
|
"output.weight": "14b8dc662bfa3308ebb2e102c562d8e52c15670e538f20f3216a9c310ca9dd41",
|
||||||
|
"output_norm.weight": "7f2294ba94ce65681df6c7ddd8698799199b9d77dc83c10bdad5c3999f0fdb82",
|
||||||
|
"rope_factors_long.weight": "e34d378664e354652c38f47d10dafb0498ccc2fb042d39ff7fef768146fff22b",
|
||||||
|
"rope_factors_short.weight": "9379146a4988f373d362fe47b06c75e7fe7c54aa4dc9558758df79b7a87471fd",
|
||||||
|
"token_embd.weight": "19a03c1fb5ac0baee93b0a7d8b0f26e9a9b011e229b694afc50ebfc13d84f8bf"
|
||||||
|
}
|
||||||
314
convert/testdata/Qwen2.5-0.5B-Instruct.json
vendored
Normal file
314
convert/testdata/Qwen2.5-0.5B-Instruct.json
vendored
Normal file
@@ -0,0 +1,314 @@
|
|||||||
|
{
|
||||||
|
"general.architecture": "qwen2",
|
||||||
|
"general.file_type": "1",
|
||||||
|
"general.parameter_count": "494032768",
|
||||||
|
"general.quantization_version": "2",
|
||||||
|
"output_norm.weight": "93a01a6db3419e85320a244bbf8ae81c43033b1d10c342bea3797ff2ce348390",
|
||||||
|
"qwen2.attention.head_count": "14",
|
||||||
|
"qwen2.attention.head_count_kv": "2",
|
||||||
|
"qwen2.attention.layer_norm_rms_epsilon": "1e-06",
|
||||||
|
"qwen2.block_count": "24",
|
||||||
|
"qwen2.context_length": "32768",
|
||||||
|
"qwen2.embedding_length": "896",
|
||||||
|
"qwen2.feed_forward_length": "4864",
|
||||||
|
"qwen2.rope.freq_base": "1e+06",
|
||||||
|
"token_embd.weight": "d74257dc547b48be5ae7b93f1c9af072c0c42dbbb85503078e25c59cd09e68d0",
|
||||||
|
"tokenizer.ggml.add_eos_token": "false",
|
||||||
|
"tokenizer.ggml.add_padding_token": "false",
|
||||||
|
"tokenizer.ggml.eos_token_id": "151645",
|
||||||
|
"tokenizer.ggml.merges": "6b1b1c58f1223d74f9095929d3e6416cdd74784440221a5507b87b8197f2bfd2",
|
||||||
|
"tokenizer.ggml.model": "gpt2",
|
||||||
|
"tokenizer.ggml.padding_token_id": "151643",
|
||||||
|
"tokenizer.ggml.pre": "qwen2",
|
||||||
|
"tokenizer.ggml.scores": "94e247e531e8b0fa3d248f3de09c9beae0c87da8106208a8edfaac0b8ec4b53d",
|
||||||
|
"tokenizer.ggml.token_type": "b178dbc9d1b2e08f84d02918e00fc2de2619a250e6c188c91a6605f701860055",
|
||||||
|
"tokenizer.ggml.tokens": "1d93f6679b23a1152b725f7f473792d54d53c1040c5250d3e46b42f81e0a1a34",
|
||||||
|
"blk.0.attn_k.bias": "5ce6617845f66c34515978d23d52e729c298d8bffa28c356a0428bef17142cf1",
|
||||||
|
"blk.0.attn_k.weight": "a960832a9e0e83e4d95402e5d1a01cc74300fcca0c381237162126330e1a7af8",
|
||||||
|
"blk.0.attn_norm.weight": "32c7d51cd0958f1f1771174192db341f9770516d7595a2f0fd18a4d78bd5aba3",
|
||||||
|
"blk.0.attn_output.weight": "c67e6e7e868354a11bf9121c70ee56c140b20eec611a8955e7dfe54a21d40a98",
|
||||||
|
"blk.0.attn_q.bias": "3e9e994eb1f03bccfc82f8bb3c324c920d42d547e07de5be83be12c428645063",
|
||||||
|
"blk.0.attn_q.weight": "dc12132f789b97cfa1e3f5775ceb835247fa67aa47400fd09c8f9f3769208583",
|
||||||
|
"blk.0.attn_v.bias": "a3fd0757b31fdc78af5ec320332d239c1a79d34e8804df06c5454e86955e8cc9",
|
||||||
|
"blk.0.attn_v.weight": "f43094a2134c7ee2dcc52aac3c8b7d9d64fb0295a8adb94cabfd49213f017b84",
|
||||||
|
"blk.0.ffn_down.weight": "18c2aec92db14f21976838a8c35d5575f80d0e4b1e05ccc0d8388d5877e80147",
|
||||||
|
"blk.0.ffn_gate.weight": "a3a1c4ef38f8f750eabadfe3d83bbb0f77941eec1cc1a388e51852e99c8691f6",
|
||||||
|
"blk.0.ffn_norm.weight": "b59b779c42d44b5c4cec41e39b4eb61e0491a07c1b3e946ccb5b8d5c657eda3f",
|
||||||
|
"blk.0.ffn_up.weight": "db64f09987ea59449e90abae5a2ffcc20efd9203f0eebec77a6aacb5809d6cff",
|
||||||
|
"blk.1.attn_k.bias": "a5c8c5671703ec0aa0143ff70a20ffdd67b5d5790ca1dfa5bba4e87e4071ed9f",
|
||||||
|
"blk.1.attn_k.weight": "835c7c7cc95b3cb2e55bd9cac585aa0760a033896621d3e06421f3378c540f7d",
|
||||||
|
"blk.1.attn_norm.weight": "f4c36fb6c14fce721fab0de78cc118d6f66e3a3d3ea0017bb14aade24c3c5434",
|
||||||
|
"blk.1.attn_output.weight": "cc1e80310c97cef068e48e40b7096f32fa2138519d6209c6a1a9994985999016",
|
||||||
|
"blk.1.attn_q.bias": "bc332780e66b0aac80ec5e63ac32344919a840db2fcc8f87bcef16a43a54138e",
|
||||||
|
"blk.1.attn_q.weight": "d766f06c925cce38d4b31b2165b3448e1fb49a7d561985f95d9cd2fcba52367a",
|
||||||
|
"blk.1.attn_v.bias": "9f486626fb6ed9ac84970a71e9b9818dd2758501fd3f61bb1c08540dcc7a8631",
|
||||||
|
"blk.1.attn_v.weight": "e873d1e5bd4f4d6abfd47c0f55119c2c111105838753ee273a03c5ccea25ce5c",
|
||||||
|
"blk.1.ffn_down.weight": "b3ce82b093f187344de04284b1783a452de1b72640914609b8f830dc81580521",
|
||||||
|
"blk.1.ffn_gate.weight": "5cd44ad237edaca525a28a3ac13975d1b565f576d6a8003237a341ae0d156f2e",
|
||||||
|
"blk.1.ffn_norm.weight": "4ac774ee8afaee119610c46aa1ff89fc6c9084a29d226075bc4aa4d2f15f746c",
|
||||||
|
"blk.1.ffn_up.weight": "042d81ab5f1983d85c81213232f3bfc05a9302d9dfaa98d931ebba326b6058b8",
|
||||||
|
"blk.10.attn_k.bias": "767ecfeacd60a2c2221ac4d76c357190849dd9cdf64ced418d9d0c7949101401",
|
||||||
|
"blk.10.attn_k.weight": "a9f3df343227537636be8202303453086375091944e498bad11e0b91e45e8c71",
|
||||||
|
"blk.10.attn_norm.weight": "01acd0e7b3e363f873dbfde6f0995ffcce83f5aaa10ff91c31dbf775035f6d5a",
|
||||||
|
"blk.10.attn_output.weight": "a531fe660769604ab869f01b203eb115e025cad4c0baeacdd1bcca99cf6d0264",
|
||||||
|
"blk.10.attn_q.bias": "356a02c9163dd660c1340fbe1e049b335ac6178891e00996131bba9ab4cb3e59",
|
||||||
|
"blk.10.attn_q.weight": "81be0cfb227339d83f954cd8dcf35828441211c6e1d184060e3eb76085041e2f",
|
||||||
|
"blk.10.attn_v.bias": "ed0450653284b62f8bf2c2db19c0ff7a6cf3cda1324d0a044c5e3db7bb692bd3",
|
||||||
|
"blk.10.attn_v.weight": "c1247ff7092babd2ed979883095b9aa022b2996cab1c77fb9e6176ddc1498d16",
|
||||||
|
"blk.10.ffn_down.weight": "fda7544965dc9af874f1062c22151c6cefc8ba08cbe15dc67aa89979e77b2de4",
|
||||||
|
"blk.10.ffn_gate.weight": "9f2632b1dee7304d10c70bd38d85bb1f148a628a8468f894f57975b8a2f1d945",
|
||||||
|
"blk.10.ffn_norm.weight": "94f8cbd6b17a4d5aabd93fa32930a687db3b11f086142f1cd71c535c11adcad4",
|
||||||
|
"blk.10.ffn_up.weight": "8dc2f8db0474939a277a3d89db34c3bcc3381cfea57bd05a8426a164634d9112",
|
||||||
|
"blk.11.attn_k.bias": "3b8e5a662b19411e3f6530714b766aad2ee41eebc8161bec9db0bc82d383a6e0",
|
||||||
|
"blk.11.attn_k.weight": "2c29f1ed1ce53ce9604e9ea3663c2c373157e909a0d6064a8920005f6d15dad9",
|
||||||
|
"blk.11.attn_norm.weight": "48f68a99c3da4ab4c9e492677b606d1b8e0e3de1fdbf6a977523f97b8c21ec31",
|
||||||
|
"blk.11.attn_output.weight": "5859f3838a94898b020c23040941ed88f4fcb132db400d0849f30a01f62c0f1c",
|
||||||
|
"blk.11.attn_q.bias": "c5ad89a5628f2bd81252ef44ef6bbcbff15c33ad16fba66435509b959c2af6d3",
|
||||||
|
"blk.11.attn_q.weight": "d102104e5d61c1e3219564f1d0149fd593db6c6daa9f3872460c84403323cfef",
|
||||||
|
"blk.11.attn_v.bias": "8653f7d48c5f75a5b55630819f99ecf01c932f12d33fd1a3ee634613e70edde8",
|
||||||
|
"blk.11.attn_v.weight": "e0a7c7d89b9f2d0d781ce85330022229126e130a8600a09d4a5f920f0bbd50b2",
|
||||||
|
"blk.11.ffn_down.weight": "4a22b3361eba8bbe1d9a6fda1812618e894c49f13bcacb505defa9badb6b96a6",
|
||||||
|
"blk.11.ffn_gate.weight": "484698b206760d3fd8df68b252a3c5bae65c8bf6392fb53a5261b021b6f39144",
|
||||||
|
"blk.11.ffn_norm.weight": "da69e96338cbe30882cf5a9544004387f5bbc0bcb6038e61ba2baabbd2623bac",
|
||||||
|
"blk.11.ffn_up.weight": "26ec74f1f504d1281715680dfbcc321db4e9900c53932fa40955daceb891b9aa",
|
||||||
|
"blk.12.attn_k.bias": "f94b49ec3e498f14f6bc3ebefe1f82018935bbe594df03253bfffae36bc20751",
|
||||||
|
"blk.12.attn_k.weight": "ae6323d0bbcfcea01f598d308993d1a7530317e78c1f64923e36d4b1649e9e73",
|
||||||
|
"blk.12.attn_norm.weight": "3784536a7611a839a42a29a5cc538c74ee4f9793092e5efe1b227b48f8c4d37f",
|
||||||
|
"blk.12.attn_output.weight": "46826c00b066829355db78293ab216e890f5eaaed3a70499ee68785189a6b0d9",
|
||||||
|
"blk.12.attn_q.bias": "b14db2d327ce0deec97beda7d3965a56c43e1e63dc9181840fb176b114cf643a",
|
||||||
|
"blk.12.attn_q.weight": "30f67df52ced06f76b6c85531657584276a454d6ec9bb7d0c7d2ca8f067f5551",
|
||||||
|
"blk.12.attn_v.bias": "57ab4b7e43f4fc5853bca7bfbb2702f8c2c391a49252a760abbb7b26330dc4aa",
|
||||||
|
"blk.12.attn_v.weight": "3ccd9da0cfe241cd33a63310f3ca6d81c5bc5a50d200bfea6612ac376166aca2",
|
||||||
|
"blk.12.ffn_down.weight": "a095774413198a83c549ce132d7c9684c0baef33145eaa889be370ef9c881c81",
|
||||||
|
"blk.12.ffn_gate.weight": "bb3b2bbdfb065d2a0a795909c53beec327781a4a7e974bf9f99c436cea459991",
|
||||||
|
"blk.12.ffn_norm.weight": "3b486c6cd97eb4b17967d9d6c0cc3821a1a6ad73d96b4d8fbf980101b32b8dab",
|
||||||
|
"blk.12.ffn_up.weight": "d020b82dd39a5d5a9d3881397bf53a567790a07f395284e6eb0f5fe0fef53de3",
|
||||||
|
"blk.13.attn_k.bias": "69381f8254586eba3623eceb18697fe79f9b4d8f2c30136acb10d5926e3ba1d0",
|
||||||
|
"blk.13.attn_k.weight": "c4d7a31495d71269f81b586203a50abea3a9e2985667faf258c9306ec6030f1d",
|
||||||
|
"blk.13.attn_norm.weight": "907da11075d16eda668dabe548af3cfd794df26b8ab53939af1344d91bec6fba",
|
||||||
|
"blk.13.attn_output.weight": "ca01cf6d2b8ece2fb3b0f56f1eb76194471ac27b54fe264f99c909f5eb7fef4a",
|
||||||
|
"blk.13.attn_q.bias": "2f5ecebafe03b1d485b93c41cff756ca57fb65b02e9d8336f14a3d26ab5d159a",
|
||||||
|
"blk.13.attn_q.weight": "f557f8acad7f0fa62da06b5da134182fe04a5bed8bdb269e316f970c9cc440fb",
|
||||||
|
"blk.13.attn_v.bias": "a492a88ae131e95714b092545a8752eaea7c7d2f9cb77852628ca8296c415525",
|
||||||
|
"blk.13.attn_v.weight": "d1220b1fe9f1cc0a5a88ee239d65fec900f5eaf6c448b6c2cbe74c81e15ed333",
|
||||||
|
"blk.13.ffn_down.weight": "53184e33440b49848a896304eb16a983efbc6b8bee0b93de8c8de716e1585fcb",
|
||||||
|
"blk.13.ffn_gate.weight": "684bf8896f148c851506c62717e45c426921b93c10d536ecdeb0fb28259a106d",
|
||||||
|
"blk.13.ffn_norm.weight": "6cb4e547ad8665eb7c174855c08afe1e5490fece66122522c1e9e8132d9064eb",
|
||||||
|
"blk.13.ffn_up.weight": "c64107897e38c06727075aba4ea7940b2cdd0e278b5c555dffb2790ef553bb57",
|
||||||
|
"blk.14.attn_k.bias": "2814ca9b160b16ae39557c9b629482fbe3a7592d372c1e1bf1ac59a2d578fde1",
|
||||||
|
"blk.14.attn_k.weight": "3377177396463afba667742972920ebb45dfdc37e9950e1f0e1d60a2f936b27d",
|
||||||
|
"blk.14.attn_norm.weight": "5cae870477d51dd35a6d22aaeacfce4dff218ffba693820ede6a4e11f02afd6d",
|
||||||
|
"blk.14.attn_output.weight": "3cfe9ccf3d48ae9e95b93a132a1c6240189a277d764f58590fb36fdbb714cad0",
|
||||||
|
"blk.14.attn_q.bias": "6a75acc2f090b2e67bfc26f7fca080ae8bd7c7aa090ec252e694be66b8b8f038",
|
||||||
|
"blk.14.attn_q.weight": "5ef45c86d7dda1df585aa1b827b89823adf679a6bb9c164bd0f97b2aa6eb96f1",
|
||||||
|
"blk.14.attn_v.bias": "5534480443e10ed72c31a917f3d104b0f49df5e6dbfa58d0eb5e7318120e3aee",
|
||||||
|
"blk.14.attn_v.weight": "58f45cf3240c4623626ec415c7d5441eaa8d2fb184f101aba973f222989422d1",
|
||||||
|
"blk.14.ffn_down.weight": "2dc82a0f20c05b77512458738130d8d05ce150cc078680ae7ee6dd7ed68d955d",
|
||||||
|
"blk.14.ffn_gate.weight": "d4a6c6f0fcccddfd1fcaa074846622f4a74cb22b9a654ab497abdc1d0dde9450",
|
||||||
|
"blk.14.ffn_norm.weight": "777e444932a0212ff3feac98442444e17bd8a98cb758ea3356697d0846d12c56",
|
||||||
|
"blk.14.ffn_up.weight": "6b75f6bd00195198447b69a417ed9d98f8ca28b3cb8be82f4bad908be0777d57",
|
||||||
|
"blk.15.attn_k.bias": "2d07211a58e6c2f23aa3a6dc03c80a7d135dfb28726b60b0e0fdd0f35ea5c37b",
|
||||||
|
"blk.15.attn_k.weight": "e77f3c0075a1810e70df956cc51fd08612f576cc09b6de8708dcae5daedb0739",
|
||||||
|
"blk.15.attn_norm.weight": "379a10d90609a5d5ba67d633803eda1424fc61ba5cca8d3bffe70c8b18b58ebf",
|
||||||
|
"blk.15.attn_output.weight": "402751c12ee9dbc9db5e3bf66a7b23ebe7d36c0500e0be67be4c8b1c4357fa62",
|
||||||
|
"blk.15.attn_q.bias": "acb37fc409ee725ceedf7a3a41b40106086abc47b76780728f781942c5120208",
|
||||||
|
"blk.15.attn_q.weight": "89cd3047a09b46ed2bb57c69dd687f67a1f0235149b30376fa31b525898e4a55",
|
||||||
|
"blk.15.attn_v.bias": "f081a37289cbe811978feb4da3ef543bdeb7355414d476f44e09b498da10cb2c",
|
||||||
|
"blk.15.attn_v.weight": "8404f242a11e6d512c9ead9b2f083cda031e9b269f8a0a83f57ee4c56934764e",
|
||||||
|
"blk.15.ffn_down.weight": "93438f43ee8cc4f1a7fd3840a6afdd5f02123e76db4f0d9474430c0100d148fc",
|
||||||
|
"blk.15.ffn_gate.weight": "ff935a2698843e87fad9dbf7125f53e460190ec71ee128b650b3fc027fe37bfc",
|
||||||
|
"blk.15.ffn_norm.weight": "4be80f199841cba831982e988451e1833c3c938a4d6ca1169319087bf0bd723e",
|
||||||
|
"blk.15.ffn_up.weight": "ee9ba63c66d71053e33551ddd519878bb30b88eeb03cfe047119c5c4000fb0a6",
|
||||||
|
"blk.16.attn_k.bias": "3f5fbabed4510c620b99d9d542739295fa6a262a7157f3a00a4889253f8341b8",
|
||||||
|
"blk.16.attn_k.weight": "8ca6eb139b281c257324cddea97a8e9aa7c048b53075cf00153123b967c27ee5",
|
||||||
|
"blk.16.attn_norm.weight": "290157f005e5aa7dddf4bd60100e7ee7b0baa7f11ec5c2cea5e0ead2aad3a4c6",
|
||||||
|
"blk.16.attn_output.weight": "b1f4d80a7447f08f1c331712527f750d00147f35c042442ade96fd029dadc5a1",
|
||||||
|
"blk.16.attn_q.bias": "e3e4e442ad4416791b468cad8de0d0d2d68c7e7df8d06002f4d49b4da9cb25e4",
|
||||||
|
"blk.16.attn_q.weight": "cc7392fa5bb1107d3816e7e7363de252d37efd4165d065e258806291ce0a147b",
|
||||||
|
"blk.16.attn_v.bias": "a7629830f2f6293e018916849614636d40b1bcd11245f75dbc34d38abae8f324",
|
||||||
|
"blk.16.attn_v.weight": "b6c7856c7d594437630929c8cf3b31d476e817875daf1095334ec08e40c5e355",
|
||||||
|
"blk.16.ffn_down.weight": "f9c0a777a00170990a4982d5a06717511bf9b0dd08aeaab64d9040d59bcbebba",
|
||||||
|
"blk.16.ffn_gate.weight": "ed88f11bc3176c9f22004e3559ccb9830a278b75edd05e11971d51c014bd5cd2",
|
||||||
|
"blk.16.ffn_norm.weight": "ab24abdcc4957895e434c6bb3a5237a71ff5044efb9f76c1a9e76e280c128410",
|
||||||
|
"blk.16.ffn_up.weight": "99f594dc8db37f554efa606e71d215fbc3907aa464a54038d6e40e9229a547ff",
|
||||||
|
"blk.17.attn_k.bias": "f236625676f9b2faa6781c7184d12d84c089c130d2a9350a6cf70210990f6bf1",
|
||||||
|
"blk.17.attn_k.weight": "c2a4f20cd3e98538308a13afe9cc5880bdd90d543449c6072dedd694b511ee1a",
|
||||||
|
"blk.17.attn_norm.weight": "5a9da4ee168311f487a79fc9d065a035432c6cafa8adb963a84954cf32f57a2a",
|
||||||
|
"blk.17.attn_output.weight": "d5df7031e354186ce65dc09d6f8a92eb721c0319816f8596b0c8a5d148ed0a2a",
|
||||||
|
"blk.17.attn_q.bias": "3212d5eeaa7ed7fac93cc99e16544de93c01bb681ae9391256ed4a8671fc6b00",
|
||||||
|
"blk.17.attn_q.weight": "d18cd9aa7ee10c551cb705549fa1ae974aea233f86471c9a19022dc29b63d0d5",
|
||||||
|
"blk.17.attn_v.bias": "a74ad11a1f8357742f80e2a0c0b3a2578fc8bbaf14c8223000767e07a5d79703",
|
||||||
|
"blk.17.attn_v.weight": "da18ac0e90884436a1cb0ad6a067f97a37f321b03c70b8b03bf481339fef5c80",
|
||||||
|
"blk.17.ffn_down.weight": "81a8a5d7a194fb53d976558e0347efbe9fdb1effffde9634c70162e1a20eff51",
|
||||||
|
"blk.17.ffn_gate.weight": "72870d83ab62f2dcd45f593924e291a45e4ae1b87f804b5b88aa34cfd76dd15e",
|
||||||
|
"blk.17.ffn_norm.weight": "cae39ac69b9bdaeefab7533796fdf11dbb7a4bdbdeed601e20f209503aafe008",
|
||||||
|
"blk.17.ffn_up.weight": "e7cb40b0842468507cec0e502bbed8a86428b51d439e3466bc12f44b2754e28f",
|
||||||
|
"blk.18.attn_k.bias": "8bfc02b94f9587aa125e2d8bbc2b15f0a5eb8f378d8b3e64a8150ae0a8ca3df2",
|
||||||
|
"blk.18.attn_k.weight": "434bc3b3332ea48afee890aa689eb458a75c50bc783492b0cbf64d42db40e8ad",
|
||||||
|
"blk.18.attn_norm.weight": "d6ffc09396c42a70d1f0e97d81113eee704d3bfc9eeae2bed022075a5dd08075",
|
||||||
|
"blk.18.attn_output.weight": "133f001f81f3b082468a7de67cb2e7a76508fce34bcc4dee7f0858e06eee082c",
|
||||||
|
"blk.18.attn_q.bias": "758d0e28bf5e660b3090aafb70e2a3191b4f3bb218d65e9139a086ceacaf599f",
|
||||||
|
"blk.18.attn_q.weight": "12d7b86fc1b09b9fa7f8b7ed43d8a410892cec8672d0c752f8346f6193343696",
|
||||||
|
"blk.18.attn_v.bias": "9efd15bab0519462431d6c6e8a5b7dd4e151dc449468097ee0ddca369c0ecc2e",
|
||||||
|
"blk.18.attn_v.weight": "f631231a79d4a2e9730fb2e386d8c18621eb3fb7900fbfdff5e6d52cc42db122",
|
||||||
|
"blk.18.ffn_down.weight": "874a2dddf456f3ab56b958b0860d71c8c680a6f89322c9bf6b2f32a113592300",
|
||||||
|
"blk.18.ffn_gate.weight": "4549ef8976c345a511df4a7133bdaf6fe387335f52dfd8a4605a8ae3f728c403",
|
||||||
|
"blk.18.ffn_norm.weight": "80c258a2536a860e19bfcbd9f29afa13214fbb4c34bde0d4da51287d354e9a59",
|
||||||
|
"blk.18.ffn_up.weight": "8b03308a581457a3c038b7a086f3cdf14941d7ad4107c4bd6d9d6b062fd00d73",
|
||||||
|
"blk.19.attn_k.bias": "e77f7b0c8e3e0a9b0d61918cd88371047752a1b02b1576936f4ec807d4d870ee",
|
||||||
|
"blk.19.attn_k.weight": "a2a318e93355230c0d0f95c441b080bf9c4914507255f363fb67a5e771d4d1e6",
|
||||||
|
"blk.19.attn_norm.weight": "9a4bdeb3970be21ac74a94c2c81eb36986533db81b78db6edec48d9802910d59",
|
||||||
|
"blk.19.attn_output.weight": "2369b103dd3947e2cef02b2669b405af5957fb3a7f9d0ff40646078c4b4317ad",
|
||||||
|
"blk.19.attn_q.bias": "e20bf427bef69059ae84a5d9f98f7d688489627f198fb6153def018ff9fd2e34",
|
||||||
|
"blk.19.attn_q.weight": "45a3bb3bdfd2f29dd76e5f78ddae73678b9a2a85dfaf609e460240ef5b7be2ad",
|
||||||
|
"blk.19.attn_v.bias": "a441f58a3e02ed86ee1819eefc9bd4e8b70d11b864a929d58a2c2ac0aeb8203d",
|
||||||
|
"blk.19.attn_v.weight": "30b0b04480c510450a7abb2ce9fa05c65b150a3cc4dc76f8916bf8d013f1b6be",
|
||||||
|
"blk.19.ffn_down.weight": "eebb9ab8fdb6a6efcfff8cf383adac9ec2d64aeeff703d16ed60d3621f86c395",
|
||||||
|
"blk.19.ffn_gate.weight": "3fef1493029298378886586478410b3d2e4e879f6aa83c07e210a7ce6481817f",
|
||||||
|
"blk.19.ffn_norm.weight": "e1be99ea1e8fb9678f7b8ba200f3f37e03878f3574d65d57bcd3a9fd796e2112",
|
||||||
|
"blk.19.ffn_up.weight": "f07cf25e09394fb69fe3ef324bdc0df9a4cecf3dc53070b8acc39e6d1689bf82",
|
||||||
|
"blk.2.attn_k.bias": "b29baa8221f125eff6b8ac1a950fa1d7cfc1bce7bdc636bf3df7d4065ab6466c",
|
||||||
|
"blk.2.attn_k.weight": "4bd0c179bced8bc37a09f5748c394e0cf50273942fb38a866e5cf50b6c96c437",
|
||||||
|
"blk.2.attn_norm.weight": "07b3edc6a6325c3428aa12f29bcae0be0de363ce61a6af487bc5c93fb8c468d9",
|
||||||
|
"blk.2.attn_output.weight": "056b5b31dbc81087c81b9d41c25960aa66c7190004c842ba343979644d7f4d88",
|
||||||
|
"blk.2.attn_q.bias": "479b6212401e097767c9d52b12a1adb8961c0fce9fcaaab81f202a9d85744376",
|
||||||
|
"blk.2.attn_q.weight": "f89196076f446a6dd8a9eee017f303504f9c03094c326449cee5a7fc0a97fade",
|
||||||
|
"blk.2.attn_v.bias": "ef9b1b986dbd9d7291027a88b67dc31434435b20e76e4f1e9d6273ebd31224f0",
|
||||||
|
"blk.2.attn_v.weight": "9322f4f00e85f8c0936845c51ca64b202a93df104f36886986a8452a8e4967a5",
|
||||||
|
"blk.2.ffn_down.weight": "7beac0d2440dc49af33ededb85a6cc3ba23ab33ad3ffa5760714b2ef84d94f6e",
|
||||||
|
"blk.2.ffn_gate.weight": "818a93864a5890c1f4dc66429004fad07645a50142350e9bff9a68fe24608a52",
|
||||||
|
"blk.2.ffn_norm.weight": "152c924d5514942ad274aafb8cc91b35c1db3627c3d973d92f60ff75f3daf9ba",
|
||||||
|
"blk.2.ffn_up.weight": "9c9579e600f209546db6015c9acfeda4f51b6d3cca6e8db4d20a04285fe61a37",
|
||||||
|
"blk.20.attn_k.bias": "fd22bfeffb63d818ce2ff1ea2ace0db5d940f7a9489b6bfc1ec4a5398848d7fe",
|
||||||
|
"blk.20.attn_k.weight": "f74439bc74c2f9252130c9c28384fd7352368b58bb7ce3f2444cf0288dfff861",
|
||||||
|
"blk.20.attn_norm.weight": "5c15d2613df87be6495fb7546b7dcedd2801d12fa5ecc02c877df889330e8f37",
|
||||||
|
"blk.20.attn_output.weight": "6731a39286a67f6859832f96695732e579e14e0c36956eccd1edce3db11595b8",
|
||||||
|
"blk.20.attn_q.bias": "04466e5a3f454a19b9b433fc2585396feac780027ece7ccb4e4bb3e406fc14d8",
|
||||||
|
"blk.20.attn_q.weight": "ead4c71daaeb17bf20d014a34c88b97f238456488e815ae0f281a5daf6fc99b8",
|
||||||
|
"blk.20.attn_v.bias": "adcc848e043025de9bd55ccb14dd8fb6343e8b5185ed07e12964be41d0faf99f",
|
||||||
|
"blk.20.attn_v.weight": "81bfc23f83526386a4761c2c16b6a93cd0bbf9d846c1a51b82c71f1474a465f1",
|
||||||
|
"blk.20.ffn_down.weight": "9bf660af3bafad919d03173c89a65fc9c89440a76c42c9e55e4d171076f3c17f",
|
||||||
|
"blk.20.ffn_gate.weight": "c04b4f3ccce44917ee228b998e2c19dd702aef10a43413afb152e808b5ac5c42",
|
||||||
|
"blk.20.ffn_norm.weight": "3d5b555d7746a71220143c6b8fff5ce4eb63283d9d9c772f1233d848f69f4ff4",
|
||||||
|
"blk.20.ffn_up.weight": "d7a196505c39e5469dfc7c6958bdbb54e93629ac1a047a6663ed96b318753094",
|
||||||
|
"blk.21.attn_k.bias": "4db1f48e5c6a3bc5720a5da813bbef08283e6269e12d83f8a9c54e52715d8011",
|
||||||
|
"blk.21.attn_k.weight": "c687b2f0e132a5e220a2a059b61aa2a537f37d8a674d7709f87880637b263b31",
|
||||||
|
"blk.21.attn_norm.weight": "ec23b0ff847a4b45585ab8e04f10fc20bb1637c5f1fbcdc4d73f336bcb5d1bd0",
|
||||||
|
"blk.21.attn_output.weight": "01255390576316c1731ef201e32c6e934eba356c28438cd06d9027ac6a3ff84f",
|
||||||
|
"blk.21.attn_q.bias": "3098f37205a15418e1681e407c82b7ce7c6fda6c6826b0590a13e1b68a38a1ea",
|
||||||
|
"blk.21.attn_q.weight": "30ea62cbb702a5359229dc96819df17ee535e2e9988d044b005c73ea536e1005",
|
||||||
|
"blk.21.attn_v.bias": "7bbedb2c22a04737f21993115701d4a06b985b7ca3b64681f53cd1be8d7ea39e",
|
||||||
|
"blk.21.attn_v.weight": "e11905e63579e36fbee978062af7599339ae29633765a4835628d79a795ec8df",
|
||||||
|
"blk.21.ffn_down.weight": "84def2ffd8aca766f9ce12ed9ac76919ab81eb34bdeae44fa4224417c38af527",
|
||||||
|
"blk.21.ffn_gate.weight": "4e99f05377b4a0b8d875045530a5c59dee6a46ac8a45597f6579f6fdfa800787",
|
||||||
|
"blk.21.ffn_norm.weight": "af48f13d03fba38ff8794a5f5005e666e501f971ca2e30bbded2777a8096f37d",
|
||||||
|
"blk.21.ffn_up.weight": "a29541c39a6acbc364be86994632a5bf55d701027cb7f23320f8c6d55ee42c91",
|
||||||
|
"blk.22.attn_k.bias": "c97f84db6c75422df6ef5768676d4e9abefaa3b8337aa2730ff260f8fc350480",
|
||||||
|
"blk.22.attn_k.weight": "af9a0c56f68779513e95be11611b7be6175ddae27d48bee9dd72fdbf05f6cbfa",
|
||||||
|
"blk.22.attn_norm.weight": "1c7518eb5bcff4a202c6f4a2827f14abd76f9bcc64ce75fe9db60b69437a5c9c",
|
||||||
|
"blk.22.attn_output.weight": "1abcf1f3caa2f59dd018646b93f9cf8fd30d49e98a473e6a8704419a751be46f",
|
||||||
|
"blk.22.attn_q.bias": "7221e01cb692faf2f7f8c2eb6e2fac38a1b751a9c9fdb6a21a0a936eb0bf4b96",
|
||||||
|
"blk.22.attn_q.weight": "faaf8fb7b6c19f343d47f3ea6b57151fb46c787e0b3bd2c292fd327d3d4d8e35",
|
||||||
|
"blk.22.attn_v.bias": "3ec05942e82d735de99dfd0d8228d8425e63e2fc584da98b3326bdef89ecb2e5",
|
||||||
|
"blk.22.attn_v.weight": "42e7b0ad06db76227837da9d4e74b2db97f3df4050ecb3a87cb9b55e08dfcb42",
|
||||||
|
"blk.22.ffn_down.weight": "87ef98ad2d0e824b0fa5ad8aa18787162922e527c9b1b721a99bc07d3bf97c82",
|
||||||
|
"blk.22.ffn_gate.weight": "562d6e5a1654b03aaa0e33864d23c10297fd4bcaa72d30fac69fb771ee1df9d6",
|
||||||
|
"blk.22.ffn_norm.weight": "f8a405dee467749d59427ce05cdd4b9c11bb18934a89258ea461f013b7d251f5",
|
||||||
|
"blk.22.ffn_up.weight": "90e1f4ae4062649d4d838399eb353e8bb8d56a49982b6a7f64aa3945377f7187",
|
||||||
|
"blk.23.attn_k.bias": "9ad22178a85f3be7e25f5aff462f31627466364f2f5e92f265cc91db0da9a8a8",
|
||||||
|
"blk.23.attn_k.weight": "d813beffb10f03278f5b58eea0f9d73cdcb7b5b4045ae025c379592e854f7dfd",
|
||||||
|
"blk.23.attn_norm.weight": "f583c9836044bdb056d6f8911088ac28add68e500043ae1f97b5d9158fe3d769",
|
||||||
|
"blk.23.attn_output.weight": "02789911ac3b97f6b761e958b7dd6dc7da61a46a1be92bd0b346039ca7ecd2b2",
|
||||||
|
"blk.23.attn_q.bias": "38c4970fb9b4f7e4a139258a45639d848653814b4bc89ea9849709b13f16414b",
|
||||||
|
"blk.23.attn_q.weight": "eb694be9a5ab5858b8dab064ee4cce247dc757424e65282989bd4d015b8580ce",
|
||||||
|
"blk.23.attn_v.bias": "0a25f6533aa7e7a152a4b198cf6c411c2408a34afa4f161bb4d5ffba2f74e33f",
|
||||||
|
"blk.23.attn_v.weight": "187e1bac6b70f74e6364de226565aa8275ee2854d09cbe5895451a689596049e",
|
||||||
|
"blk.23.ffn_down.weight": "88880dd9ba7ee80ade972927f810b5d2c30a69520c615190b27f9daabc0a8c5a",
|
||||||
|
"blk.23.ffn_gate.weight": "5abec63197935ab3eb8e6de0a5307396ec46cdb1cc5de25d87c845f3c4a3e887",
|
||||||
|
"blk.23.ffn_norm.weight": "60e1f5e6310c3a531c554a6bb7cd883aed58db1e51853f739436ea461c1843d7",
|
||||||
|
"blk.23.ffn_up.weight": "3d7f502771743f4a634188dfcd8b8a384fb07467ca8528366aee59ddb25b7bce",
|
||||||
|
"blk.3.attn_k.bias": "0b6b442ebbac29c8c4b67e8e3876d0382dd2dc52efdf4ab0ebbc6f71b6252393",
|
||||||
|
"blk.3.attn_k.weight": "480f40584fbda692c26f2cee45f5923780b236f8b4e8ec7bbee0237777a0918d",
|
||||||
|
"blk.3.attn_norm.weight": "39872be2af31bc9cd6b583ebba6fb759f621d586d66e5a2fc0b85991615a8923",
|
||||||
|
"blk.3.attn_output.weight": "924b2c80d8513bf637f8ebb3756a340d9cf2243de723fd08d7f5dccd46b3f8b6",
|
||||||
|
"blk.3.attn_q.bias": "863c9d848156847a3fe9bbc44415a4395245b5d13e95673c014fdb71e494ab0a",
|
||||||
|
"blk.3.attn_q.weight": "bff73ee5de92fba8f6c089bbb19ce57e17ab3c9c29295712804bb752711b882e",
|
||||||
|
"blk.3.attn_v.bias": "e1b6fea126e86189112fcdfee79ffc66a087461527bc9c2dc52dc80f3b7de95e",
|
||||||
|
"blk.3.attn_v.weight": "7812b7f5133636f06cdbb4dcc48ef7803206538641b6c960777b37f60a8e6752",
|
||||||
|
"blk.3.ffn_down.weight": "00b393d6a7e3ad9b5224211ccdbc54a96aae151f24ed631764ac224972a6bc82",
|
||||||
|
"blk.3.ffn_gate.weight": "cfd63fa3a038af05dc53c6eeb3c192f1602f26ff24cb840bcf1510fcb37b5513",
|
||||||
|
"blk.3.ffn_norm.weight": "7389fc240a282949580ea2f5b0d7973ac79f32f76dc0155b537bb6b751f8e27a",
|
||||||
|
"blk.3.ffn_up.weight": "2a945f47090df9cb16f92f1f06c520f156f8e232182eaaed09f257b8947a2a62",
|
||||||
|
"blk.4.attn_k.bias": "62533c31f0de498187593f238c6597503fef2a92e920cd540a96bc5311b3b2a0",
|
||||||
|
"blk.4.attn_k.weight": "93e829868bffd980a8e589b9c4566cd81e6ce4296a5f357a2ae93febe1284156",
|
||||||
|
"blk.4.attn_norm.weight": "9e0aaa4bbdd1389890f8abec20533f3ab16d61b872b1a8dbd623023921c660a9",
|
||||||
|
"blk.4.attn_output.weight": "74467d6f44357d67f452ac49da861468b38e98057017bd38bc9a449f9d3538e6",
|
||||||
|
"blk.4.attn_q.bias": "8e6d9026fd69b314c1773c5946be2e11daf806ef22a5d91d744344fd30c58c59",
|
||||||
|
"blk.4.attn_q.weight": "e5bfbafd94a4d530f3769f5edbba8cc08d9b5bee8f66ebf4cb54e69bc0b7f63b",
|
||||||
|
"blk.4.attn_v.bias": "20c570f92022d9905eb85c0e41d1fdb30db22007a9628b51f512f8268d6c34a2",
|
||||||
|
"blk.4.attn_v.weight": "9638d459d61da03c9dd34dad985e03c43b4f8a5bc9701a82153478329b0517e0",
|
||||||
|
"blk.4.ffn_down.weight": "9d91b06e89d52f4365dece7eaeec50f81e52cb2407b333248a81e6e2f84c05b8",
|
||||||
|
"blk.4.ffn_gate.weight": "bf6350a79c6a6ee9146edfd788b88d4a4c2b54db1aa0adcc1464dbba8a84b646",
|
||||||
|
"blk.4.ffn_norm.weight": "11a70a6b9f7ce336292f4e3a2c6c92d366d4ee4306ad4fdb1870fde107e9cc31",
|
||||||
|
"blk.4.ffn_up.weight": "64f23f493d02b147a72a59605e6b7dd1c4c74f6813a38a2a60818bd66f697347",
|
||||||
|
"blk.5.attn_k.bias": "f6c2c279c0ed686f298ad1e5514b5cd882199341f896abbb2c2129d4c64ce9c5",
|
||||||
|
"blk.5.attn_k.weight": "0e682f75870abf9efaca10dac5f04c580f42820ecf4e234d43af967019acb86f",
|
||||||
|
"blk.5.attn_norm.weight": "01efae7653705e741932fcd79dff3be643d7e97f4b5719b887835dffe44b3a82",
|
||||||
|
"blk.5.attn_output.weight": "69e841d00d196acc489cd70bc5ffbbb63530ac5fabb169d40c4fb3a32ebb8ed8",
|
||||||
|
"blk.5.attn_q.bias": "f3304d76ccd44fed887565857c8e513b1211d89a5d3e81782de507ab3f6fc045",
|
||||||
|
"blk.5.attn_q.weight": "98612a6b7920a247853ada95c240807d4ca8e43604279e7a2fc9bb265ae40469",
|
||||||
|
"blk.5.attn_v.bias": "39940a9b353ceed3edfd4a39b985c9520490aa1b9f11749c94fdf6d879d1a259",
|
||||||
|
"blk.5.attn_v.weight": "839f84b828cf83aecf479a0dc7bc86cce05145ef77dcf29916dc3e0680f5b665",
|
||||||
|
"blk.5.ffn_down.weight": "1f48cbb0960f15e06ab8a3754ade792995a655856389ddbca629c07e89d1b114",
|
||||||
|
"blk.5.ffn_gate.weight": "33d8219fce3189e1aab376039896eebd4ad36ebd26a8278cd19b26e4357e4f81",
|
||||||
|
"blk.5.ffn_norm.weight": "0f4a0f83d37127fa4483f2905cb4f38ef6ddc71584b6cb05632c62a9af313dda",
|
||||||
|
"blk.5.ffn_up.weight": "22a64a11e5f0a1ff45ca327bf9e1efa258f085ff6a96edc398b7474f725b4514",
|
||||||
|
"blk.6.attn_k.bias": "baa91df99d4df2d25e8d590bca4e334b97f2d9aa3df8e748fedc8a6188499111",
|
||||||
|
"blk.6.attn_k.weight": "121f3b9f4b9491996499392e2688a929cafe102a67920b4cb2a039349c43d8eb",
|
||||||
|
"blk.6.attn_norm.weight": "b4cf987e923d71f2f84c58d20ea8af7576b225bf61952145b489fdd395e3d411",
|
||||||
|
"blk.6.attn_output.weight": "a112642150a138d54b2a4038042fd33619035a35694771e966f3575856c635d6",
|
||||||
|
"blk.6.attn_q.bias": "a97ea10469cdfa3fdddf8bad6de683ef99f6170eb8d29d15dcf6bf4bce37c5a3",
|
||||||
|
"blk.6.attn_q.weight": "d80c787019317a87361de6bbc7df6701357216bdd9b404522cede34a719a5500",
|
||||||
|
"blk.6.attn_v.bias": "d846269db9cd77ae28da26ba0914cace1b6754bd5301af9c44607085dfcbd2d7",
|
||||||
|
"blk.6.attn_v.weight": "06567c433e8a391647633291b50828a076ad7c2436106bb9278c60a3f8fccb3b",
|
||||||
|
"blk.6.ffn_down.weight": "f15f66f56b3c474eac8c6315c5fff07c3e29c6e483d7efd4d303c7f43814be91",
|
||||||
|
"blk.6.ffn_gate.weight": "47768f89c6da8eefb29adb766ff4eb38c9dfd79320bbc1386248319fcbcf567f",
|
||||||
|
"blk.6.ffn_norm.weight": "7f8195e6b148212967145fc9d86ce36b699cff0de026042245c2d344f1ef8510",
|
||||||
|
"blk.6.ffn_up.weight": "53d7707ae4347aadb445289f9f87a008b72df5cb855b00080a605442fdd8edf3",
|
||||||
|
"blk.7.attn_k.bias": "63e274df3217dde25b8369a383e480fe4f6b403a74385f15ac0b5db71dce2744",
|
||||||
|
"blk.7.attn_k.weight": "f6fce88602f5945eee09767acbcad387d132614e6da39ae359f2bbf380d94b1f",
|
||||||
|
"blk.7.attn_norm.weight": "bbf5dc7336c0f9a511afef6bf5efeffd78f1b83940850c3eb7eb20c621b75656",
|
||||||
|
"blk.7.attn_output.weight": "d9fb907a138396a859cecbfcb377927308dc93c24c7fb52dba5eb59265feadec",
|
||||||
|
"blk.7.attn_q.bias": "f02ba1318346af77e309f40aee716e2de7ee8cab67e67b17636db9bf40894fb0",
|
||||||
|
"blk.7.attn_q.weight": "54a691e824be287a61c35c172edc01922ed792d2addeee029afc17ba6c7e11b9",
|
||||||
|
"blk.7.attn_v.bias": "3a4f182f51e84ce862d558fb2751b91802b65d74596bb14d624808513a8a83ec",
|
||||||
|
"blk.7.attn_v.weight": "a142fe6e106d3ab484e2dc6f9c72b8fc0a385279dde08deb1ad1fd05ac25deb1",
|
||||||
|
"blk.7.ffn_down.weight": "8daf7e8c430d183a4d6ab3eb575fafa4b5e31689f68b290c8b370411ad9d0f12",
|
||||||
|
"blk.7.ffn_gate.weight": "a2a786b45eb660994254b48e2aaf22f3e9821cfb383dee0ba04cc4350a2f8e72",
|
||||||
|
"blk.7.ffn_norm.weight": "73828bbc8c9610cc139fcf03e96272648cdc291263251fe3a67367408deb69e1",
|
||||||
|
"blk.7.ffn_up.weight": "e85dd0f63fed449ce16893c5795ea6a050a2d7a66d9534410a227e22c905dafa",
|
||||||
|
"blk.8.attn_k.bias": "91a752a6e2c364e5ee6a015770fe289aece4911ae6c6bbfe74ac52f465465f93",
|
||||||
|
"blk.8.attn_k.weight": "99c069e92c43a2efb74e23188256b3cabbbe06399878e681ce203a05d5da378a",
|
||||||
|
"blk.8.attn_norm.weight": "c76d36d3cc06aa2a9edb1abf9f602bb7ed61ac9d61f8ef7ed736a1e619abe717",
|
||||||
|
"blk.8.attn_output.weight": "ee5ff156a2625e1f203f65e69b514f9df04bd9a5e82b28e3876e16cf1c6f65c5",
|
||||||
|
"blk.8.attn_q.bias": "8fbd868a93b330c8b0418b488c5301f42a7eb0c58445a4e515d56777f1d96ed5",
|
||||||
|
"blk.8.attn_q.weight": "9f20ef86e80098ba52a3a31ebcc315bea3a614dac9cba7ac1db02f156db9b577",
|
||||||
|
"blk.8.attn_v.bias": "c4813571d5d618742183a7890c0b89cd7f18e210c758f63aad564659bc38a26d",
|
||||||
|
"blk.8.attn_v.weight": "ea88e1a4cf8bd56e9a88ada427d2b0cd352234827640757ee2a9ed594fb67a53",
|
||||||
|
"blk.8.ffn_down.weight": "b0d1a7495811580b189aaa3e20ea871d6d01ed7b6c23e59825078ef786944ff2",
|
||||||
|
"blk.8.ffn_gate.weight": "0a17c0caa0b06721c49b59b2a63a5dcbf744dd1cffa55962b404ba910c658a62",
|
||||||
|
"blk.8.ffn_norm.weight": "f15f109d4a8e9d1ff7c71fa5bc6373df7ee80c5f7d1de3fa0d4849d747e36bcb",
|
||||||
|
"blk.8.ffn_up.weight": "bbf4c5c4c5c8a0f9ae8b88e3cc8b86f81b98148722d5a350995af176c0b774f2",
|
||||||
|
"blk.9.attn_k.bias": "a7f60d962686b8ca60f69643e0e0fa8614688be738fb0b1c6bd54de35c2beb5e",
|
||||||
|
"blk.9.attn_k.weight": "dd80ce4adb00e338fc04b307e4c18a27071f4ba4397184a24d765e6e4a268ef4",
|
||||||
|
"blk.9.attn_norm.weight": "721e6487547e2b3986ab4b4e2500ceade59d908bccf4436e1e8031f246deb2bd",
|
||||||
|
"blk.9.attn_output.weight": "5a800af39107b363861e5f5173483cdcd644d8ac3b0c8a443b9c759d71285db8",
|
||||||
|
"blk.9.attn_q.bias": "0a19b4925ea8ca8067acc909b058adc327de3874cfc94cc9eb4a106d3f370123",
|
||||||
|
"blk.9.attn_q.weight": "93e84906684c0c7ede79967236d9fc8344da84a9f1daa04e8295c2c9b6b26a24",
|
||||||
|
"blk.9.attn_v.bias": "615421f812f821e230ecde4e6da35d868823248355ce7e4e51e2d650ead565f9",
|
||||||
|
"blk.9.attn_v.weight": "7f4913e289aefd9ceecbdaf9767b1e95303f5d59dd67ecb2cc15768477f4d08e",
|
||||||
|
"blk.9.ffn_down.weight": "95d1b3933221e87dc4af70dd566daec9498bf358070b8d26f1fc70766a84a152",
|
||||||
|
"blk.9.ffn_gate.weight": "530f2d04f6a1fbffaaa5f2fbc3a328ebed7b330e3af14b4fc7d8a51b13ad8d42",
|
||||||
|
"blk.9.ffn_norm.weight": "28077de416217ea1df94b96017bef4cc562ab62e51b1a03a671c70abc29ce52a",
|
||||||
|
"blk.9.ffn_up.weight": "b87b6190778aaee4695938e24ac6c90dbbee6dce7c5c2ab5bc26ba4564581822"
|
||||||
|
}
|
||||||
124
convert/testdata/all-MiniLM-L6-v2.json
vendored
Normal file
124
convert/testdata/all-MiniLM-L6-v2.json
vendored
Normal file
@@ -0,0 +1,124 @@
|
|||||||
|
{
|
||||||
|
"general.architecture": "bert",
|
||||||
|
"general.file_type": "1",
|
||||||
|
"general.quantization_version": "2",
|
||||||
|
"bert.attention.causal": "false",
|
||||||
|
"bert.attention.head_count": "12",
|
||||||
|
"bert.attention.layer_norm_epsilon": "1e-12",
|
||||||
|
"bert.block_count": "6",
|
||||||
|
"bert.context_length": "512",
|
||||||
|
"bert.embedding_length": "384",
|
||||||
|
"bert.feed_forward_length": "1536",
|
||||||
|
"bert.pooling_type": "1",
|
||||||
|
"tokenizer.ggml.model": "bert",
|
||||||
|
"tokenizer.ggml.padding_token_id": "0",
|
||||||
|
"tokenizer.ggml.unknown_token_id": "100",
|
||||||
|
"tokenizer.ggml.cls_token_id": "101",
|
||||||
|
"tokenizer.ggml.seperator_token_id": "102",
|
||||||
|
"tokenizer.ggml.mask_token_id": "103",
|
||||||
|
"tokenizer.ggml.token_type_count": "2",
|
||||||
|
"tokenizer.ggml.scores": "6db964fe67338aca57790481a390121ff3dd643eebe49f7dd308029ad99abb6f",
|
||||||
|
"tokenizer.ggml.token_type": "98d247c5404b6b18f05f133b92dd56edf6efefefac326794b00d7b351f6c5aa1",
|
||||||
|
"tokenizer.ggml.tokens": "9efe405e229a45ff9916f54c475d151d2200cd2ab0006f347abfb069cf096c86",
|
||||||
|
"token_embd.weight": "8c1ee80a9ea4f65aa385ba30112010068af3d209bebc6e149d3d4589c2cd0a5a",
|
||||||
|
"position_embd.weight": "6c516f0b1c4e2388ab90394dd80ad69e4e4509b890982fc3408108ae66210eb6",
|
||||||
|
"token_types.weight": "f879f8e422ed211948f28b560d3c5e17aae7993f063b51196a28cf5c0fb3da21",
|
||||||
|
"token_embd_norm.weight": "75076e095d717aab96f8b6beeee503c27940d9a76f2b891a0e3de72f8a6043e4",
|
||||||
|
"token_embd_norm.bias": "298735285ffe944e1bf03e5d35c7280326b85cf121bde9874f1af5dc51ab939d",
|
||||||
|
"blk.0.attn_q.weight": "ab0923ce4c1549175112dcdfcc860fe30137f991e03ea6857fb5993670adaf6c",
|
||||||
|
"blk.0.attn_q.bias": "a3ec29551dabf976e1d34256b8ab5ab7b758f3ed9742c3cafdbd984d5441df62",
|
||||||
|
"blk.0.attn_k.weight": "4c1038a6d035c3e9ffed7fa672b614627814752503755fbad0cfb76a41ad71ba",
|
||||||
|
"blk.0.attn_k.bias": "e0363930eb588d91816aa3d230bb03b6e2551c165117b80b8d60397413819ef9",
|
||||||
|
"blk.0.attn_v.weight": "425e2e53e3f00ce98d29c3e6a161eb55d3e6ae0d96fdb9f6242d1c4fd6eef4b3",
|
||||||
|
"blk.0.attn_v.bias": "6579173a1e65ee124fbd0bd53cbdca4225515b4f2c5f18fb1bfd000f5978f9bb",
|
||||||
|
"blk.0.attn_output.weight": "a6d70a08cd7164de5d12af65d86d657c3db35aaecde778b2b3fda9193c4c9802",
|
||||||
|
"blk.0.attn_output.bias": "2b8d12c4f9a9c5bfaa29c597839568f6e0525cb41eeaf64ddeb6bd84dfeb9701",
|
||||||
|
"blk.0.attn_output_norm.weight": "bbe6e502a473228b525aeed26cc31b7db123ad63bdc5a6eebac6ea70b8b51d62",
|
||||||
|
"blk.0.attn_output_norm.bias": "36eaacaf0007c5c62daea97aab0115390c0682914f78482e37eb76885f4b7a50",
|
||||||
|
"blk.0.ffn_up.weight": "24654561c76ce387d125759ba843f06b904ef721fcceaeff6ccc62180a48e874",
|
||||||
|
"blk.0.ffn_up.bias": "fd3f0126aa1d95768fa60eb6f4ab8a2763cfcb7e5405f35b92353031d86f4d34",
|
||||||
|
"blk.0.ffn_down.weight": "97a829763a6a5bf3329ceb4d39c424ba4787d61653a5b0bbd1f84782e4d4e0ca",
|
||||||
|
"blk.0.ffn_down.bias": "7aa980c30ae8b4ee7f69df28808dbf5c431f56ccc4a80340f644a0419f16c054",
|
||||||
|
"blk.0.layer_output_norm.weight": "ef30dad4c2a083ae1ff5039a2a6cda60ecc89bf1e486a6f8c0d15f50589603f8",
|
||||||
|
"blk.0.layer_output_norm.bias": "8b1b77e67568b1bce43fc476de1b177c53ff688d66beb66995e8eb3dc290da8a",
|
||||||
|
"blk.1.attn_q.weight": "284331622a1f6f9b87ccee4f652bd66a394ca493c4d93be4d1844e4f6159ad10",
|
||||||
|
"blk.1.attn_q.bias": "e24ebd4860330e08f6bfdd077a82db0bee33f4c8846cf1db26327a34754c7069",
|
||||||
|
"blk.1.attn_k.weight": "729dd0d555544b5bd0f7580b3c8b384256b974605f0e7487b95f295aa032997d",
|
||||||
|
"blk.1.attn_k.bias": "2aa51a828a858f35473f54477583fea54ce2ccc34ea60fbd1d228fbe9bca827f",
|
||||||
|
"blk.1.attn_v.weight": "6be304671cc311d5ca5c103f2b51467ee800c589bc5b8101e09ff5aed1f68c21",
|
||||||
|
"blk.1.attn_v.bias": "43bcbab78a8819e07f723bc9e5b737b71e87a7594f15234e882b63e327a64199",
|
||||||
|
"blk.1.attn_output.weight": "15ec8a1a12b26c9976445308a09f748ab0e4bef0f583d13ab08c3129f8738d73",
|
||||||
|
"blk.1.attn_output.bias": "dac2146f4baa6ed16f6c0dc7443831fb7ec79bedcceafd80d1a4b628a1bb072d",
|
||||||
|
"blk.1.attn_output_norm.weight": "d2151eb33bffac536787a4c9a5d2b31c7a80b17c4611877842a3cce2cd6e98d8",
|
||||||
|
"blk.1.attn_output_norm.bias": "31e1b779716dafb855d2cf5631ee168a0ccf372eb9c6ea6091f66fa97a9b9d2d",
|
||||||
|
"blk.1.ffn_up.weight": "a57547fc3fc3b77406f5cdcb0c87af9bc184701f175c39c1f35297826fce3cc7",
|
||||||
|
"blk.1.ffn_up.bias": "123be6d541d086202913c75d878c54d59a749f3af7b58f7ef9eb9e7c62a24c9a",
|
||||||
|
"blk.1.ffn_down.weight": "cfdb79788377e5cbded8790cd41b9e66c397ecab75474071fcd7cf32d30f9613",
|
||||||
|
"blk.1.ffn_down.bias": "bcb58315519a573097960891c9ae41cf4c685ab78c3e0e77471471758a7eae88",
|
||||||
|
"blk.1.layer_output_norm.weight": "819b554271452bfb1d84c2603b90377b2e41a0ac1e3aa8b417ccf9dce63375bd",
|
||||||
|
"blk.1.layer_output_norm.bias": "47a3433ac27f5ce8947fb38dd491f3706df4ef6adb0ddf74612bf0f54b19e164",
|
||||||
|
"blk.2.attn_q.weight": "1557a9ea852b1880551f7290e00aded4f35e6c4180fdcbed1b0039bf805f639e",
|
||||||
|
"blk.2.attn_q.bias": "c3bfe5f3066f655fd36b055530997b59ff33ef013563aaeb3cb8ff07dabd59a9",
|
||||||
|
"blk.2.attn_k.weight": "cfd08eb69c61ae2f9f14f9b7ff5c5394ca264b1a9f3d48156677f90dd1766289",
|
||||||
|
"blk.2.attn_k.bias": "9b839bc0e79974a0b3f5d1895972bc6f5c9a1bc16052e1af786e6a530758152d",
|
||||||
|
"blk.2.attn_v.weight": "02b26b1208480eaeeb00e7b4cf8b690006ca14759357fc44ed4a2a8924ead993",
|
||||||
|
"blk.2.attn_v.bias": "e7e6f0089fded1659a867ab736c220d9653ea7da6b1b94baf5c8d30a748b63ab",
|
||||||
|
"blk.2.attn_output.weight": "a1db121c7d33806b349cadd050300a57db49fdc91224fd07c9ac43bf4299dc79",
|
||||||
|
"blk.2.attn_output.bias": "7675128b6a92555cd955c820311e91e9417d31f48848f45d047b4100c62148b3",
|
||||||
|
"blk.2.attn_output_norm.weight": "5b4595e0fbcba67a700c4331adf746d2fba3546364a4db5607ae241947bb1a21",
|
||||||
|
"blk.2.attn_output_norm.bias": "7b8e16826ea30e5a2ba0b02e0095a901775981a296e98819625320e983060d08",
|
||||||
|
"blk.2.ffn_up.weight": "a0d815d946ac07a65095c4ae4df77b818845e6d97795c7d82f55e689d944db59",
|
||||||
|
"blk.2.ffn_up.bias": "ce37c0a4174d6bf773ded7bd016ede627ad3bdb8bc99b9992a18dc8e8898f252",
|
||||||
|
"blk.2.ffn_down.weight": "f6231d2a25426fbd45b9f1160aa484220eb227ceef0348c4a6a6de890606e5ef",
|
||||||
|
"blk.2.ffn_down.bias": "429e00556e8dc63a785238b309b9d83738500c1ef6d736fe6526ad88ea496d27",
|
||||||
|
"blk.2.layer_output_norm.weight": "651457a573adf3f7dd9ee5dfe1c8e89389e94443993aab77ec6a0b05aa621e35",
|
||||||
|
"blk.2.layer_output_norm.bias": "41fbbeda7fd89b0cef5f945ae44011c316982390401d6f75ba8c6d365e185247",
|
||||||
|
"blk.3.attn_q.weight": "95a43f32949d2cb8d22815bb27a44abfc6665ba96221af817dfe058cb6ca72c6",
|
||||||
|
"blk.3.attn_q.bias": "f4e34385e75d8108b6b3bd336106e2133a8c9be0cc343dfe5dc48c32a823c7cb",
|
||||||
|
"blk.3.attn_k.weight": "6b892da6a17d4d3265265a15f695864a31813ee8c8e710ae9bc9e1adbc6c9a18",
|
||||||
|
"blk.3.attn_k.bias": "40b8067b641a56014cee42548240aa8930820958b1933004892b5f04fbaef39e",
|
||||||
|
"blk.3.attn_v.weight": "9fcd5922319dd2a461082a5ce040c1dfe65d87d70ca6547dd0b46eeecc3eeb2b",
|
||||||
|
"blk.3.attn_v.bias": "b528c56212e66931fdbe267ac327a9c2f87cd03baff3ea719e30afe681da15f1",
|
||||||
|
"blk.3.attn_output.weight": "e3b178c1b03981e75510e0d277af23ea59cc404b5394e61bd32291825719b502",
|
||||||
|
"blk.3.attn_output.bias": "712c84d39a6a5a9c06a09da8fd9939ba0d5525524a4bba61ea4de09b48f45cae",
|
||||||
|
"blk.3.attn_output_norm.weight": "d1ffac88e675592ff72f8a617be32b4a381d443b2f8f2645dbe44a1e5745aac0",
|
||||||
|
"blk.3.attn_output_norm.bias": "ea31a1c73146234c50e0e43f485c458413714867b8e2703af66482f7db2d6c40",
|
||||||
|
"blk.3.ffn_up.weight": "4ef4f3b9a1ea6ab2ef2eb6e8b008e06a44790d099d97482a05a51e39a29afac0",
|
||||||
|
"blk.3.ffn_up.bias": "06a4296dda16f452675c51f108079fe7722552d6521c737d97734943818b9a2b",
|
||||||
|
"blk.3.ffn_down.weight": "f114b2bebe392c7d80433bb880c6730293aa4561b0b0370dcdaf7472daebd847",
|
||||||
|
"blk.3.ffn_down.bias": "2c8e67831d28a3bf613fc7912ae3259b63d72abcaf4d30efd8800758400158de",
|
||||||
|
"blk.3.layer_output_norm.weight": "a1dfeb7b5a51dd56447312ca41e2ad2f361a3ea12ddc355127f5f4219fb0a482",
|
||||||
|
"blk.3.layer_output_norm.bias": "1ed630021b25c6c6fc93fd32988b9907df966d4982a93081f639aac3044618ab",
|
||||||
|
"blk.4.attn_q.weight": "b5fae4c1f9a5f33a2a2e816ac0c01c25f422e4efdd59ef1ed93da2610e5370fc",
|
||||||
|
"blk.4.attn_q.bias": "c2e376524ea98ac3b10d9eee19ecb1b1e261fa5149efe0232844c923dfb428fb",
|
||||||
|
"blk.4.attn_k.weight": "a4632f5ebf9321d9d08f9112a4e5dda2efe5671df4a4e67fee24845f5b14af16",
|
||||||
|
"blk.4.attn_k.bias": "a9a02ffb8b8b4f6dfe487a7e0341f1d5318c9d2b793a688f34cb1b22fc66ef60",
|
||||||
|
"blk.4.attn_v.weight": "10ad8deb81d9fa093b1e5c0f24ea82aa7df43e6aca49e260fcbea56eab8cc86a",
|
||||||
|
"blk.4.attn_v.bias": "7326813e181e021130bd33ac136293fcffccce2d1d8cb59041e5b13a8cceacf6",
|
||||||
|
"blk.4.attn_output.weight": "c92573088c7437c2b3cda51490e152c27fb19e5468df591eabba5a49d5398d44",
|
||||||
|
"blk.4.attn_output.bias": "14e10b419e5859af1eb685af5c330aee67048cd704dcead9217840c6f5393222",
|
||||||
|
"blk.4.attn_output_norm.weight": "02b6831c0e0fb0edbc579a92812a1dd972cb15d14fcd382d4427c5a7b300ac44",
|
||||||
|
"blk.4.attn_output_norm.bias": "7eed5cd503bb6bb6ceb1bc8b07cc077903a4f14fb8b9d6cdf39644815ecf1374",
|
||||||
|
"blk.4.ffn_up.weight": "8d0c91d62e74d6431321116a37cf3339e630bd50ba164d3304fc4fe8dd831223",
|
||||||
|
"blk.4.ffn_up.bias": "d325f07f73c005a273c484c7be8e7abb4d6e8a5c4fd093f5869133b97629d017",
|
||||||
|
"blk.4.ffn_down.weight": "7ba7bd81143f40537b84f938e403e19f30e4928625eb371de052b9025beb4d21",
|
||||||
|
"blk.4.ffn_down.bias": "2853d9c2a75288214a4bf4907dc19d04d01926f4913d302b1aa7bdbfcce0f7a1",
|
||||||
|
"blk.4.layer_output_norm.weight": "a4ed1885fa77b90fed5300c355ef0aa0c876a8c747151d9d790939d464d57d4f",
|
||||||
|
"blk.4.layer_output_norm.bias": "62142a81e813a9e636333b2b805d6bc3b17c5e7cd4b15adce1ada6bc9a32563c",
|
||||||
|
"blk.5.attn_q.weight": "afc1dff080a72c3daad01384b1448d476aaf789871017c8ff8e144788887995d",
|
||||||
|
"blk.5.attn_q.bias": "748a820371c1d4f872c84545b36358d239c35bf6c99e2812c237d88c3292763b",
|
||||||
|
"blk.5.attn_k.weight": "59e30c1ed8acd2cbb01de5f62e7804015b9ecf98ba157d98cab016344639eda5",
|
||||||
|
"blk.5.attn_k.bias": "f839520078f9e589496e982e86d0126c7aa14196047339abffcf49a696229f77",
|
||||||
|
"blk.5.attn_v.weight": "3e21fb874e21b90308e1f46af034a3c32d3eba1628d62ae5f2246d6af5818923",
|
||||||
|
"blk.5.attn_v.bias": "5cd4852bf95c1444d10d756750f6bf49f842c0b39e9953c7f408bb67c325ac8c",
|
||||||
|
"blk.5.attn_output.weight": "636ce6a7752895f204b9d01ba0aedd9a294f908b42f372c22a16d9dd590d7471",
|
||||||
|
"blk.5.attn_output.bias": "82d924d4b0d2b94f2bbff91619216d6967a3541ce9b1531a6a60457a67b5d219",
|
||||||
|
"blk.5.attn_output_norm.weight": "5e7bd0a8d3396080f3360d7c4700bf094a06216431bd014c4479eef72ecf4271",
|
||||||
|
"blk.5.attn_output_norm.bias": "66c6de5edda5466d029c6753780be81ccd4218bf8bc00680000e0f06856ab712",
|
||||||
|
"blk.5.ffn_up.weight": "5bbf6e7ea380e216e33f8bee06d25f2265359d3876a300e92bc6e41d48e33430",
|
||||||
|
"blk.5.ffn_up.bias": "9d795388bb36fb33ad3a37fea3ccb4937838e02800a608fb47d363cd06b47370",
|
||||||
|
"blk.5.ffn_down.weight": "2fd628974e7f075479dd227b46fbd48ae8d3ca34d735b36f391ac06410730368",
|
||||||
|
"blk.5.ffn_down.bias": "cd213ba9eaa75fa541648097fbe9c96e58077e6c3ad6ad2fb1f21f8350f44291",
|
||||||
|
"blk.5.layer_output_norm.weight": "159a9df41d15b7022d136f86a2a2631c4635f9816e957472217077b522bcf52a",
|
||||||
|
"blk.5.layer_output_norm.bias": "24c1f27ffd1eb4e5be7e3a2909943e6f0980635d761fa1efdd0c19645da23766"
|
||||||
|
}
|
||||||
344
convert/testdata/c4ai-command-r-v01.json
vendored
Normal file
344
convert/testdata/c4ai-command-r-v01.json
vendored
Normal file
@@ -0,0 +1,344 @@
|
|||||||
|
{
|
||||||
|
"general.architecture": "command-r",
|
||||||
|
"general.name": "command-r",
|
||||||
|
"command-r.attention.head_count": "64",
|
||||||
|
"command-r.attention.head_count_kv": "64",
|
||||||
|
"command-r.attention.layer_norm_epsilon": "1e-05",
|
||||||
|
"command-r.block_count": "40",
|
||||||
|
"command-r.context_length": "131072",
|
||||||
|
"command-r.embedding_length": "8192",
|
||||||
|
"command-r.feed_forward_length": "22528",
|
||||||
|
"command-r.logit_scale": "0.0625",
|
||||||
|
"command-r.rope.freq_base": "8e+06",
|
||||||
|
"command-r.rope.scaling.type": "none",
|
||||||
|
"tokenizer.ggml.add_bos_token": "true",
|
||||||
|
"tokenizer.ggml.add_eos_token": "false",
|
||||||
|
"tokenizer.ggml.bos_token_id": "5",
|
||||||
|
"tokenizer.ggml.eos_token_id": "255001",
|
||||||
|
"tokenizer.ggml.merges": "902a060cac8884a5793d2a857dd2e53a259de46c8d08c4deb243c239671e1350",
|
||||||
|
"tokenizer.ggml.model": "gpt2",
|
||||||
|
"tokenizer.ggml.padding_token_id": "0",
|
||||||
|
"tokenizer.ggml.token_type": "b7a352ccd1c99d4413bcf452c2db707b0526d0e1216616b865560fab80296462",
|
||||||
|
"tokenizer.ggml.tokens": "815ac90ff23565081522d7258f46648c8a0619eb847a9c7c31b238a9b984e4ae",
|
||||||
|
"blk.0.attn_k.weight": "6fcfdb466f9ceb1229404ce4ec4e480751b8d00da12707a11783dad7256cb864",
|
||||||
|
"blk.0.attn_norm.weight": "6063317f731371864049c7704a70772f1eb632194201ebdc2ed0f8e483507c72",
|
||||||
|
"blk.0.attn_output.weight": "920f49716a1e2fc73b6794ec777947f1c122701e63ed302422ac89e90f06e9da",
|
||||||
|
"blk.0.attn_q.weight": "ddbcd7cde197e632564ac58e4f25d9e3a8ca52917329eeb6081eb41a797932ab",
|
||||||
|
"blk.0.attn_v.weight": "318fc02a189d87420f0cbf57f47f11e00c21ec1ed472ce0a2a895b44f7fa0fca",
|
||||||
|
"blk.0.ffn_down.weight": "aa71975b6eb1f4c77b03d2ac4a194cf8d95718efac741bb12f0f3ff79a27f9bc",
|
||||||
|
"blk.0.ffn_gate.weight": "42967702fa0bc738b88dc50007ace26dbe74a5a9e0978124dd093f818241a9e1",
|
||||||
|
"blk.0.ffn_up.weight": "5282c8788b086bd30f46525e7995a17464882a72703fd27165491afdd8bfd4af",
|
||||||
|
"blk.1.attn_k.weight": "cd248882e64fd2c3402c44790ebe12440133dc671b6893fdad0564c461973adc",
|
||||||
|
"blk.1.attn_norm.weight": "ba84e1c8fd30af6ec94208db4078befac8c921aad3acb887812887f3282ea2be",
|
||||||
|
"blk.1.attn_output.weight": "2efa3ef7c5666ccceb05e339b83ad680cc0d2c3ec78203f5da5959f23a80e14f",
|
||||||
|
"blk.1.attn_q.weight": "5106f2e255358a1303c22e8b5f0ec044852bb30a866c52cabefd30017a7a6b7d",
|
||||||
|
"blk.1.attn_v.weight": "a211a634a1a5df1d5f973645438be0461dd922210f9747c6b04e386c7f1ebe95",
|
||||||
|
"blk.1.ffn_down.weight": "37093afe48d32c578ec956c9ed85242cd000d6aa979e60526aafa10c822dbb10",
|
||||||
|
"blk.1.ffn_gate.weight": "469860819e9159caefb1aad0bc66db790f3393f05fd87b08e52256a7ed256543",
|
||||||
|
"blk.1.ffn_up.weight": "736742c97d35d1a011f9cafd3c0ce947ad559bb2fba6da73c816f6bfd0fa9aeb",
|
||||||
|
"blk.2.attn_k.weight": "92c219d92804d832ab404bd6dc7339c90877bb7cf405dd030c121f8b27757739",
|
||||||
|
"blk.2.attn_norm.weight": "61e4466069474b76b6d1e702566420eb669faf3556b00ff7b824784aca13a2d6",
|
||||||
|
"blk.2.attn_output.weight": "d2fb38a2b2171fd91caf037faa585a62225819aa232d86fd4f7f9d2c3c8a45e9",
|
||||||
|
"blk.2.attn_q.weight": "f6faf5cc6844e3daa4f9f68d90f5458c64879de68a7728860e38374e30c3429d",
|
||||||
|
"blk.2.attn_v.weight": "f340ef8f7341d987a6f37c0e9afe0aef5be67be00c0ce5f57612daf73319cce1",
|
||||||
|
"blk.2.ffn_down.weight": "c7be61a701d779860b621b143fb6365b607bf99ec7c0f153b07908ac8120885a",
|
||||||
|
"blk.2.ffn_gate.weight": "b64f0878187bd3392abfa4c3e8ad2f8b4c133903e54246747ff8f3b4639ad83e",
|
||||||
|
"blk.2.ffn_up.weight": "50b11c712652e90ee7428dbb45cffebb80662ac982bc72bd9eafff361b5eb5a8",
|
||||||
|
"blk.3.attn_k.weight": "2b7bcbe9ee5c9c630c8c8d7483887e78b73581016f4cbb6933db2a147a25f431",
|
||||||
|
"blk.3.attn_norm.weight": "0181dac7f4eee7252980323e8032cf339bef2046ce0a16c0fd72af7c98a8a37b",
|
||||||
|
"blk.3.attn_output.weight": "aef8843b636ce231da9e7c9acbee197883cc15df0e2887709324c6a50f16da7b",
|
||||||
|
"blk.3.attn_q.weight": "55404130fa10e81322d33eb378aa0de31a92990ce7730f1338c0ace0406bb1b1",
|
||||||
|
"blk.3.attn_v.weight": "76f7fb8040d82b957d689ce34fea2302a6640ad5bbaa0052ad2b7ebce270c33d",
|
||||||
|
"blk.3.ffn_down.weight": "648628933eff3b357c3729c33c5b1ae51c28e59b9c19acd1601a2ff7c5d5d9a5",
|
||||||
|
"blk.3.ffn_gate.weight": "6a588885d16e98d5f50ebed05af089154f680085ca9c97691e5b489088630a4a",
|
||||||
|
"blk.3.ffn_up.weight": "e12455a1d702f4986e1a663493e3d5102b367af74d45557522002a35d63ecac2",
|
||||||
|
"blk.4.attn_k.weight": "40d943380a8a85e4eab147934bf6e16f23cc8ab753f6636526382c074d182288",
|
||||||
|
"blk.4.attn_norm.weight": "4ab2c098983d4599fe540eef624c4df954adb7473faebda7471ef0ba4134814c",
|
||||||
|
"blk.4.attn_output.weight": "d14b91e40f58bf4a3c8c2eca0b12bb541de406574af39027d56f6c588a147082",
|
||||||
|
"blk.4.attn_q.weight": "e1224960a3562107488589f883fa32414bae41712fa8dbd47c5f3e3a7801452f",
|
||||||
|
"blk.4.attn_v.weight": "063f297bc4aa6e709fc32c4c32e35af7d07d80e83cb939b76adbba858006c03d",
|
||||||
|
"blk.4.ffn_down.weight": "f88a18020c5e1caaa29596895eb348e76ee5bfad27ed57651a86cd8cd1f9b5aa",
|
||||||
|
"blk.4.ffn_gate.weight": "48e7e1eed3fb52e92e61d3557dd0ec002418327090e034ce4322fd68542266f8",
|
||||||
|
"blk.4.ffn_up.weight": "1ca8a7aa17355b6ce0d9ad5539fdad3899fa47fd359c285fbfb31f19f47bf073",
|
||||||
|
"blk.5.attn_k.weight": "2bdf15f8e73d068d972380f25d207004cf0bf3b5bfa46946803ba6fba07d9175",
|
||||||
|
"blk.5.attn_norm.weight": "60448d7cde6e1b6467aa31bdea012e39cdb08c88081cee7d102dca4f93f766ef",
|
||||||
|
"blk.5.attn_output.weight": "f9f687d7c457537f9fca8a4087a59f1c3bebfaf5537b94e42c831a13224f7799",
|
||||||
|
"blk.5.attn_q.weight": "987db7a2ad68657a92625e1980effbb1f79697c2183f2b9f3b3a0570c51b0ab9",
|
||||||
|
"blk.5.attn_v.weight": "cf696891148f3e4783ad1d20f93462ae091eb8651c656bba9b662253b6263e02",
|
||||||
|
"blk.5.ffn_down.weight": "c0662b0bd0929136005fb9d691fdd9b2c33867d9ce9622339a6a456b720b059a",
|
||||||
|
"blk.5.ffn_gate.weight": "200bbdfab615d7a3a84719b6ced7751e3ce52757ef212d96f87798bc1de5e987",
|
||||||
|
"blk.5.ffn_up.weight": "df5d23e7e035fb1b9d163da7ddfdfe38da6a37e86e96534dc02ad20f011b55b3",
|
||||||
|
"blk.6.attn_k.weight": "c0dae2d272a7c5a2fa004bbb8475dbab362fc1f6d008e73d5a4434a9382ac6ba",
|
||||||
|
"blk.6.attn_norm.weight": "51c57ac8b55e04354d5dca6bb9c0cf4177639d3b038e80209e33036209688f64",
|
||||||
|
"blk.6.attn_output.weight": "229d97892c62f85bcdf431675250e01c976ad69ffa450b01fb543bf88f14a2fb",
|
||||||
|
"blk.6.attn_q.weight": "c20e49621821bd46ed156e6823864a5bda4f317750e71ab8dc54e44eb48cf7c2",
|
||||||
|
"blk.6.attn_v.weight": "53ceb1a2ee43fce3c7b5b33c58a9fc5ee7f44dc1c6f29bc9dbefc37582102dc9",
|
||||||
|
"blk.6.ffn_down.weight": "7923c943b7629d560a032d1efa210d1d75c6692140f1be94464ee7ed24f44ed0",
|
||||||
|
"blk.6.ffn_gate.weight": "57593d350361af753a6a39f53b066282634c0fb44f396f6f2966a574b01d8f8c",
|
||||||
|
"blk.6.ffn_up.weight": "327b6a7a387098b8899d3ded04a4d4e7c658ca61b80d4e7b17594be232721602",
|
||||||
|
"blk.7.attn_k.weight": "9ca48b87a10116fd8868e62b76f211d4bb91f166096be9061439ee2e1c3a5c20",
|
||||||
|
"blk.7.attn_norm.weight": "cd56cfcc4e2ad6b96e23ea7b0d32b4caf236107d99a0b22c56760b62e63c8cfd",
|
||||||
|
"blk.7.attn_output.weight": "7352b509a03cae2491ffc060e577d189341a0f861233f18c96f9d275dc4234bf",
|
||||||
|
"blk.7.attn_q.weight": "2b3791c8c008c33ddbe12bedba8191322ceea2dcce5cf0eb7a93d40ad254e672",
|
||||||
|
"blk.7.attn_v.weight": "3ae721d52466487a3d48150581e57f6d64ea1e83ab929f23b28c3d777422eeb6",
|
||||||
|
"blk.7.ffn_down.weight": "3b6fa8ececdb3c34af3a5363863d6f94289c1c95bf47fce3a3ddcf184c5f0848",
|
||||||
|
"blk.7.ffn_gate.weight": "dbd7df6c5ae5eb4adb859f0d36453813a4e289a359a1ba8f72d67fcbf21c3e22",
|
||||||
|
"blk.7.ffn_up.weight": "de68380a334b4c5cfd4c318b0e9854aec59bd79aa0f0c30af3f56414f83482b0",
|
||||||
|
"blk.8.attn_k.weight": "7303c4e4480abc72a7ee271811311199245fb5c2ea27a2bd3b8cad3a53a03c27",
|
||||||
|
"blk.8.attn_norm.weight": "2e3d1921898d1b943ce1a1b6818546c8b471d6d542da24f51a8b514b8c3dd4ef",
|
||||||
|
"blk.8.attn_output.weight": "30421520887b66bf97a18dbcdc283bc8d0b60590b612fd638a319a6eae923227",
|
||||||
|
"blk.8.attn_q.weight": "73e064d5433c9b500068a1c31744dbd53f4ade298fb450a0e8c97f62cf1f8a8d",
|
||||||
|
"blk.8.attn_v.weight": "27e21f8b9a9a8533e8178ca34a72aa1d786393d57302b7806dcdf3e51de511a8",
|
||||||
|
"blk.8.ffn_down.weight": "bf694bd8e00047982108000e7b3dee7b225db8b19abc595e5697b6bbefd92e7c",
|
||||||
|
"blk.8.ffn_gate.weight": "d55fdbf8606d9141b774b0500c58944fd1253b9e69d1f765eaa9a680b9f2ca40",
|
||||||
|
"blk.8.ffn_up.weight": "1ae3f580655e7c8e8dd6c34fa4ac574fdfc5e3f1a8536da0c5442d3a2976f0e7",
|
||||||
|
"blk.9.attn_k.weight": "b18080626012d8aabcf78542d6c7bf31c712bf55a70172fbfe173fcf34481036",
|
||||||
|
"blk.9.attn_norm.weight": "2e3620620dc09998c6d3063a7d5de5433fbbae8c11e5b00d13f145d39140e162",
|
||||||
|
"blk.9.attn_output.weight": "69c3c0e27ef1c0fc933eeb7b612b70909f18cde238873c0d576a2ba9714ef174",
|
||||||
|
"blk.9.attn_q.weight": "68330e5aa28a28873c9a6e67f032186ef651df2df5844e0f27094ba349fbe4ab",
|
||||||
|
"blk.9.attn_v.weight": "3df8d45a102be082d0793a51cb82aa62a43cd0e9d047ba4115ca0f2414b39325",
|
||||||
|
"blk.9.ffn_down.weight": "1d6cc162b73745b135b4f040a0aac3c06d5135a3dc5b2421e7ee2af48662fd7f",
|
||||||
|
"blk.9.ffn_gate.weight": "034a9d40fb1e32b534b45f4bccd65cbe43c4a6a3f5d01132bd245ca0005de5fc",
|
||||||
|
"blk.9.ffn_up.weight": "c838c38d0e1a0ac0da17eb2a66023ed31929f07d8fcfe1cc546df26096c91f0c",
|
||||||
|
"blk.10.attn_k.weight": "a78507cb72f744b86ceaa032596e74e5571c822d0226d334881169addb32cbd5",
|
||||||
|
"blk.10.attn_norm.weight": "35f48d0b28ee0e6b4cad4e983925737562d64824be5b168b3e26df3d6b260cf1",
|
||||||
|
"blk.10.attn_output.weight": "53712db06796de39b131323e7abf9a58551b6d52da6db66a471580386d396252",
|
||||||
|
"blk.10.attn_q.weight": "efe08429ba196026b81cd1c471e1c7418afd9e966659feb3936b674aa0803b58",
|
||||||
|
"blk.10.attn_v.weight": "7ec6055e134f89da0cbe79ec9f13ef2e442ac584b1f03c3e13e7d0cdad0078bd",
|
||||||
|
"blk.10.ffn_down.weight": "37e66af4bcd1f3079e841e892255b8255070655901864ea3a8c602a7f681a640",
|
||||||
|
"blk.10.ffn_gate.weight": "1825282bc34830d371c6edcc3c1e73e6ecc1e10f4aea0122dbb7acc1d6f7b1bc",
|
||||||
|
"blk.10.ffn_up.weight": "819b3b276a4d4c14a35ed6682d5ef18a5e8ed468e5ce3f12e8c75ec18ac20ec4",
|
||||||
|
"blk.11.attn_k.weight": "5327e6a2af82dfff0619a14971f5864a15553c36fead84e1af42c7630f2729c6",
|
||||||
|
"blk.11.attn_norm.weight": "fec363b3c4a43036d2c635fb8aa9e122dd87ee79811839f2f6cd955be3373e7b",
|
||||||
|
"blk.11.attn_output.weight": "ccf7b38f18ee8798b8a6a35018e2df3eb3e007de62876befb68025dd66c79763",
|
||||||
|
"blk.11.attn_q.weight": "da8c4a1c824ffe174e39f126cd72f7ef83c56aff1259d452a1212de80f98f5e9",
|
||||||
|
"blk.11.attn_v.weight": "d17ae6bb77f03982b55d341eb67acb5969e9ad3da5994b96eafc09793dcfe3a0",
|
||||||
|
"blk.11.ffn_down.weight": "a6bac521e2791345f22c57205fa1c2f2f687794dfd24d0e98d50ae0d0eb6088a",
|
||||||
|
"blk.11.ffn_gate.weight": "5ed902c488cb51ba5635f3df08258c5f84f31a679a00211ea5f9d8b824ef6d9d",
|
||||||
|
"blk.11.ffn_up.weight": "ee9f1437eb890d2cf9df2574afa1cecf20aafdd847cd75b152d7eb74419afd34",
|
||||||
|
"blk.12.attn_k.weight": "5a069c06e1019b0f889088e67458f7a11ec77fa190ada6069e46211f62219947",
|
||||||
|
"blk.12.attn_norm.weight": "194d7e5fcc8c49aea62daf1940532419cf3c505afdce6be377286b677db5db8f",
|
||||||
|
"blk.12.attn_output.weight": "6534995fd4d6fecb55e317add4b1723aba4d825e1e9471d0b08813dfdc247176",
|
||||||
|
"blk.12.attn_q.weight": "4ab51ca519b5995581fa34f846276feca3b907ef2b51f192f6cc0b3263c3f5a2",
|
||||||
|
"blk.12.attn_v.weight": "5652ca3fa81ef9a1ac1543d71fc6813f8517f8ec54b25c701f6f98061614830f",
|
||||||
|
"blk.12.ffn_down.weight": "4b2c263f54c88516b8eb273bb8d9615b01c5c8b484dc70358adb91b50b300edd",
|
||||||
|
"blk.12.ffn_gate.weight": "8f50c3c3e3e8568991d6c1b0e74b500cf4f208e7700bbb8e87c3f6a6d359b6b5",
|
||||||
|
"blk.12.ffn_up.weight": "1c1a581fec1fbe959e1427fa513f400100b5e1ee9d83932630be9905fb49c231",
|
||||||
|
"blk.13.attn_k.weight": "efd7a38c46f08d8376d82974f33c644e3a02220e142d63b1704718699a8a884c",
|
||||||
|
"blk.13.attn_norm.weight": "d28fa4f1bd75abbd063b0e622e08f579c89cd0c0c5ce63c1952ec9f944f8ee13",
|
||||||
|
"blk.13.attn_output.weight": "71e0068a639288718bdb70a6cfdefd50bc8b3ec3993347a65129e70001ca5827",
|
||||||
|
"blk.13.attn_q.weight": "b97077adc92cff07a2e07d80ee38f214ad8713571c69cd5c70ebd43dc501ac87",
|
||||||
|
"blk.13.attn_v.weight": "79b3e2749ab4b459c81e96e322b215f1e8af645eb346e176c326bd00cf6ed2fd",
|
||||||
|
"blk.13.ffn_down.weight": "9f8687d11effa1db7cfecf7bec5631734bcf2962aad74a9f519144491e08ec85",
|
||||||
|
"blk.13.ffn_gate.weight": "7d14dfa0543852e7777fe8fff29ca533744cbcf1ebcf10067e5adfc4eb345e65",
|
||||||
|
"blk.13.ffn_up.weight": "852b9527b97fdab211ff3f832a660ee1d93ccb56906144c50f01319a6e8ee615",
|
||||||
|
"blk.14.attn_k.weight": "79e926b20f36f66d58226cb358881f2f68ae7b468787d33cafae5110287a14a0",
|
||||||
|
"blk.14.attn_norm.weight": "97d481b63deb0df6142c2c6cd23043720c62eb609e390f47a7113751c79974ec",
|
||||||
|
"blk.14.attn_output.weight": "aa6e94d7176d5c79fbb89b96e5f13ce75702ce3dd23ee52986446da436a6c3d6",
|
||||||
|
"blk.14.attn_q.weight": "214becb6d1bb460da9fb8ace0f99b9a5afa9edf7aa7acc19606c7401b11d6305",
|
||||||
|
"blk.14.attn_v.weight": "488b0e6d7f1a7a2ed0972aaa6d10ef9c775ee5373460324efcf5b3e3da9311df",
|
||||||
|
"blk.14.ffn_down.weight": "29c7ad16cf9542e30996a1a01ab95b844533b28051f04cc7949c371afb796471",
|
||||||
|
"blk.14.ffn_gate.weight": "b7ef208f2b054803665b377f5a5980c122c026841809cf855c6ba06d1c3a885a",
|
||||||
|
"blk.14.ffn_up.weight": "76a5cc28100748d79c4398ce7b9176aab4d661548b6293a82f99144812e5b70e",
|
||||||
|
"blk.15.attn_k.weight": "a6b8f9e98ab878fa7ebc5d080978ebf2d050acc2ab2fa8ea9188eb10e27702c8",
|
||||||
|
"blk.15.attn_norm.weight": "a26d07a9752d6dccb68e3a8a2a49fd0752cdd0a415e05547819bc37d9ba63d5e",
|
||||||
|
"blk.15.attn_output.weight": "c63616c69048ccbee801e05be4f56d21fda21aa0cc470f41d57c31b4d9283a4d",
|
||||||
|
"blk.15.attn_q.weight": "fd595a67bf96c6ba16eb148a9d02fa52fa3c1d33ed10be28a08f851409fd6e64",
|
||||||
|
"blk.15.attn_v.weight": "1c5c9d33fa07c05d5f4ed0032c6c4aa83d863f0d31c94a66109d239dcd03cea3",
|
||||||
|
"blk.15.ffn_down.weight": "585ea62ab8aff7d7d212ea5c1a03226fda6b68370c890b776834af70c948dcbc",
|
||||||
|
"blk.15.ffn_gate.weight": "a13c63f86f879b03a573d5dd2a25cfd1f4dc73e8132e6454ecc23e538b4cdf6f",
|
||||||
|
"blk.15.ffn_up.weight": "f7112450f57c12fcd511f049e0dc0b541625a107a7901c3261ed9e984299f65c",
|
||||||
|
"blk.16.attn_k.weight": "2d2c8b11dd71fba6d1c106aa1673c113a5448653cca7eab897c8739212ed5003",
|
||||||
|
"blk.16.attn_norm.weight": "95c2ec7be9469690e18a9a1779684acb3e9da44b13e263a0da840305646fbf8a",
|
||||||
|
"blk.16.attn_output.weight": "31a65046e677f54dae654ded4e733479fcc0f7283d83076b7dc7cbcae8528230",
|
||||||
|
"blk.16.attn_q.weight": "bfc6292b9c6d49b7118d08060242a138182eb182d136ba5dfaf469437c16081d",
|
||||||
|
"blk.16.attn_v.weight": "68f81d037340217d87c7853ff4d6edfbc46d9e827ee6d5bff7c3f6238e3a95ad",
|
||||||
|
"blk.16.ffn_down.weight": "bbd6629691950cef4d5113e1c6670e91b216a9b872cb92cee02dfda4d6c4f7b8",
|
||||||
|
"blk.16.ffn_gate.weight": "63cb56f282b7401ed6c76e5bb6fdf1bf68a64f9af0c82c014209b55bcb5191d0",
|
||||||
|
"blk.16.ffn_up.weight": "b54f39a2541063cbfb6f713aa81c3b69a04100e999aa2ebbeec195dc382eceec",
|
||||||
|
"blk.17.attn_k.weight": "3d9ba49799cc56664ec30a002bcad61eb651294212a68c3ddb573eb042aef5a4",
|
||||||
|
"blk.17.attn_norm.weight": "42ee0db4b9d63257bca0012a30b12737ead1caafeb5ed3d93c8f48ffec4b46de",
|
||||||
|
"blk.17.attn_output.weight": "a38fd100f05c9041c592bc739e287de0b10d08ef2bda41a879225bdca9002f71",
|
||||||
|
"blk.17.attn_q.weight": "8a3bee285b0180a9eb35662e449ee4cbe16d992bdd48fb3a94bc4a347728cfa2",
|
||||||
|
"blk.17.attn_v.weight": "d7f8f1b8b863494ed4392a1656775912e9b264ad36016547b12e832a1d6757d6",
|
||||||
|
"blk.17.ffn_down.weight": "bb7ee58f61da8630972e25b621996fbe8ec06f4dc9ab1e268ab5b120c526ca28",
|
||||||
|
"blk.17.ffn_gate.weight": "6b652dbf167fee09a45ebfd78d500ff6548fb2756dbe5343ffec3f7e6207179f",
|
||||||
|
"blk.17.ffn_up.weight": "3b67f727e55e742715de978fab80457781e7a3762bc48f79d13b45dcb8de664c",
|
||||||
|
"blk.18.attn_k.weight": "ff7fe57c57b90c6fcc0aefc39ec24593c3a7d1ea1c23770480075a015450e0f5",
|
||||||
|
"blk.18.attn_norm.weight": "1d40faca082d2633ef0ccf19e121870dd6c7c3e2154607c7f3543fa96e99cb2d",
|
||||||
|
"blk.18.attn_output.weight": "9adfecaaa397a92db4687efd5fcabfa0daef9e6b0493763b7ff5ebc185c43a6c",
|
||||||
|
"blk.18.attn_q.weight": "ad1803eb9b291948639277afe981e666b07167eb3fcae903ba5b73bf86d8f50b",
|
||||||
|
"blk.18.attn_v.weight": "308cf23399adccf27401a4ab60d74dac6fb9d4cd4b9c5940d9145118d1881b34",
|
||||||
|
"blk.18.ffn_down.weight": "7de4ac9a561fb580619b745687dfd7ca8a69ef70471dee978741b80e9ff7bead",
|
||||||
|
"blk.18.ffn_gate.weight": "0c66970f696b33bd5ee8f1f2fbcb41fd78fa5ccabdc927e11a4d5a4089f19c69",
|
||||||
|
"blk.18.ffn_up.weight": "66a42e988e8a1f468fabf976c48e9e4bb045eaac6916ef16555ac101cd674abc",
|
||||||
|
"blk.19.attn_k.weight": "a928ab50390bacbcebe2e4b66922498134ce22d7b93beaa87d6cf4ab52eb7174",
|
||||||
|
"blk.19.attn_norm.weight": "b4a02c55b46c2a96aec9c64a254087cf48e6c1d4b6f31782c77a46fc4daebad1",
|
||||||
|
"blk.19.attn_output.weight": "b768319c641dff1eac5d1f8ceb960c9899c795bf2b24c1d6bf70aa24fda45f77",
|
||||||
|
"blk.19.attn_q.weight": "79ef3f57d187d3954a26362096e1b6c222d76f537dff73e034d6e9999935b8bc",
|
||||||
|
"blk.19.attn_v.weight": "ce13d6b13e24fcb2d5bc6a2662e5bd295b31b12db10a6d0307f86cf29b8d5001",
|
||||||
|
"blk.19.ffn_down.weight": "cf90d7e2137482cfd50934a8223ad774621d08554969da80a9712df5e6227eb0",
|
||||||
|
"blk.19.ffn_gate.weight": "71ce30150f003b6eeb3bf7464e05b6ae615f135110d8e47f0a47fd973e537c0f",
|
||||||
|
"blk.19.ffn_up.weight": "7f92aca0cc29866633feec701ec01a85a8ee2fd4e2b9630173a6cffb1d9d50ee",
|
||||||
|
"blk.20.attn_k.weight": "a2df23159d6fb74ef28e14b61028fe8b00a693a2fc9234a980be74f20b958682",
|
||||||
|
"blk.20.attn_norm.weight": "c6cd5f1b096fc5efa4eb59ca1c8c4bd28730f3dcedd59a63601663eccc6724ed",
|
||||||
|
"blk.20.attn_output.weight": "896a8a166d0f006d4b09867ae4345426303cbc3fb13a18d3d4e1bde00f16dbdf",
|
||||||
|
"blk.20.attn_q.weight": "01eb79588fe61baea0da43e99f4dc5939590e1bafd01e12dadb8326f102bfea2",
|
||||||
|
"blk.20.attn_v.weight": "bd39630fdd5a7c859ac1addaf53e63faf524c3f32f5f4896d86b6e746b1d5c06",
|
||||||
|
"blk.20.ffn_down.weight": "0304a5d39957a0e3f031c4bcc4549a135d396c8d97c8d276fd1c823ce86560c2",
|
||||||
|
"blk.20.ffn_gate.weight": "117b79d595b1dca0c8b37586beaecc4d84411507276212dc286cde7fc36c9bef",
|
||||||
|
"blk.20.ffn_up.weight": "6e799346db145c125f01783539749d3828fcc451cd4f10c5352f047a47e28714",
|
||||||
|
"blk.21.attn_k.weight": "1c37e4c0664147e775bb006b226b9553e3421140cd96288ea755f81731ab80ba",
|
||||||
|
"blk.21.attn_norm.weight": "00ae783a29000ccda5e4bdbff03df0752fb82805dc3f9b987500ebd80714476e",
|
||||||
|
"blk.21.attn_output.weight": "7588b84f9fb19f15095b5265c60b4a4e7ae74bcc47d4607dfa5d0bfab6f136cb",
|
||||||
|
"blk.21.attn_q.weight": "a65f1c0dd06d45bb97532d3e932689c1eecfe7359089b39174a96a149335cbc1",
|
||||||
|
"blk.21.attn_v.weight": "4220b77e7d5e8709b4eef33a679b5dad11f297085ef44c9977f9e54ef08f7a2d",
|
||||||
|
"blk.21.ffn_down.weight": "b8c082a0530d4b5328e67db0df84c5498f2af956de23c639fa0198ffea853950",
|
||||||
|
"blk.21.ffn_gate.weight": "cd1b656ee72d00e9835ef667c19ef89a88de261eb8eb7c0e936e0f9ddf83ef9f",
|
||||||
|
"blk.21.ffn_up.weight": "dc445f73e36ec7a3bd86884186b728f8e0187f32848c3b8b69d4d41f8571bf31",
|
||||||
|
"blk.22.attn_k.weight": "e37cf0b893ec8b9ee8c78dd139b8d9c45cb997a3bc0c3d93a70ca1c3f6af8859",
|
||||||
|
"blk.22.attn_norm.weight": "248a27838d3c46cc03a5c312facc84e2e0e2c990ef8401e93da25918497f88d1",
|
||||||
|
"blk.22.attn_output.weight": "fc191a18f6d18332c66761f7ab28008bfe295dd1f5c8741a2488442f9e00d0f5",
|
||||||
|
"blk.22.attn_q.weight": "4b193a2ab8bc2b085db18f2bf3eeba26e02b537b2cdd738160c8f14b165d0f5a",
|
||||||
|
"blk.22.attn_v.weight": "7a60ce5ccac7e045e55ba1e1e85bd2a0f93f8c781daee96c5223665e22f0c666",
|
||||||
|
"blk.22.ffn_down.weight": "e0a34fb4244e2c7168f3dbaa1904c15d339ec39999cdf27128bbaf619ee0a237",
|
||||||
|
"blk.22.ffn_gate.weight": "8bac872d4b8549c8812f927efa309f1792b524f33601095fff61b826de5a5615",
|
||||||
|
"blk.22.ffn_up.weight": "b67fa2b94dd901b6ec64c0853ce8ca2d86fe9cb1cc6d2f15fbbbe0e691c0c648",
|
||||||
|
"blk.23.attn_k.weight": "2c32e66ad01942b819ac09a197c71579fe66f02226a264fdd72ad1e02c67a27e",
|
||||||
|
"blk.23.attn_norm.weight": "825fdc94deb439cb93c713eeb077c1052b90ed658d6d464fc4ad3d611e911d48",
|
||||||
|
"blk.23.attn_output.weight": "95ca6707a95b8750b0c7c5d379d368f0f2e7ebef631954e7d4d8ec0f41f13a3a",
|
||||||
|
"blk.23.attn_q.weight": "6eccc84faca5fac015d1b26e2854501edcfd292a302228fe14cf99f5eb59a34b",
|
||||||
|
"blk.23.attn_v.weight": "b343ac3d226040f1033ee049668aa1d89b1774bc18431965682e5dbdce78ccdc",
|
||||||
|
"blk.23.ffn_down.weight": "9fc599befea8d3b1e342d564a110074f66d2542df406c4b90b6bdc5828fbb2b2",
|
||||||
|
"blk.23.ffn_gate.weight": "488556c1b0c9f0b20b0c99b4bac2e0f4046b81edb601d7b91e7e5b3bab47d667",
|
||||||
|
"blk.23.ffn_up.weight": "1088e291d7008dd9c7c2dd6830af686a8a84b724d123a016209bd5156d6898f1",
|
||||||
|
"blk.24.attn_k.weight": "a923fbe35e61e009a53927d7828818e0592bb737d6a1106c4b0b5a1efc367e07",
|
||||||
|
"blk.24.attn_norm.weight": "9b51aaaa939cefafdd9b13a7e5b74ac7fa2d603427e55a16a909d6f3f353750a",
|
||||||
|
"blk.24.attn_output.weight": "1beb2baba56f8409466434b037771248c2f620ec5f53e15f44c271d5a2d9ecf4",
|
||||||
|
"blk.24.attn_q.weight": "4b0194fe5bfae0c6bf6131dcf8cb6e2b994f6ea10b27cb03574f0f4f8cc0c950",
|
||||||
|
"blk.24.attn_v.weight": "6ac34b1ab0f66226d85bca1194a7c212cd93d384ecbc8b8395de48aec0970a61",
|
||||||
|
"blk.24.ffn_down.weight": "5508f74cb732a662c2936b32ac5e90742d172b9f961a747b0e5cba0e5906a89d",
|
||||||
|
"blk.24.ffn_gate.weight": "095e39b8584403835f9bb1ac33e0e81f54175575e4800273d281b845bff381e7",
|
||||||
|
"blk.24.ffn_up.weight": "2d43ec21637dda12973de367b0113ee9840b0d815bf6fce042f7c3f270b0b530",
|
||||||
|
"blk.25.attn_k.weight": "9e2aee029f3d2c7f67dfc7926e72c8228fb978382c8e5a4701bbf82c93801419",
|
||||||
|
"blk.25.attn_norm.weight": "220cd7164fb4cdbe22d26058e4153b26c27c7b5ce2bec8e95bf2c0ea08d23103",
|
||||||
|
"blk.25.attn_output.weight": "a17f4a5dc6aa51f03dbd75602d98e9491767c205cdc2c3a5f8667fc54bbf7c64",
|
||||||
|
"blk.25.attn_q.weight": "f60827496835c440c794bf57ce9780704d10a59d8229886bf75ebb18900ba4ef",
|
||||||
|
"blk.25.attn_v.weight": "9cac217e9e9f4f4c85f14ee51165a77c580165bd4a34b202389169bbe61a1ced",
|
||||||
|
"blk.25.ffn_down.weight": "a0f36949b663e80849581dfb71e7babcc73580793bbcb0c80ab26d5a6e000359",
|
||||||
|
"blk.25.ffn_gate.weight": "df4d1be4d50d6afe5ad3ef0d0e0fac76a33e85c963dea769641d612dd53e7d13",
|
||||||
|
"blk.25.ffn_up.weight": "992da76be762632e25ebc5ef4d03728eece1b43f7c4e31827df19ca724aea694",
|
||||||
|
"blk.26.attn_k.weight": "34199ff856ac32a500c754539d070258574192a34ecba87a182897cb59fdff52",
|
||||||
|
"blk.26.attn_norm.weight": "a8e9dfb2dae5d22b5c0aec5f3675991c0e3c3e6a44153db2579136b73f456e00",
|
||||||
|
"blk.26.attn_output.weight": "1c4f257ffb0d7db0f11cfb275e38b4af736917b43ad82de1badce3f1d227da4d",
|
||||||
|
"blk.26.attn_q.weight": "33d55786274c2e718cf61e8fbecf3dfa5ee0c208f0b716d42b061f55459acb3c",
|
||||||
|
"blk.26.attn_v.weight": "684b636939cd4ffcfec5a6238a0790ffa43d853c95783af9b9e8275e74071a7a",
|
||||||
|
"blk.26.ffn_down.weight": "89d0bf066db154e6d312b5433aed1714f6a28b40f4c52e3e1530ee07703303c8",
|
||||||
|
"blk.26.ffn_gate.weight": "393d649bebe5e2940e1b043649f6c860b4b8b9f380f30e9da1744a830f358156",
|
||||||
|
"blk.26.ffn_up.weight": "179edc85ababd9d8440cc6093eecd1004290aa1cb96434b26ecf7585b6cca17b",
|
||||||
|
"blk.27.attn_k.weight": "334841445a7f1e14731b08f56eb0b1f0938c63823d28bc6d078c4c5f05b36f19",
|
||||||
|
"blk.27.attn_norm.weight": "57344471bbda2e9deffdfdb2dd05a07aa47f8761e24de53525588639145bf551",
|
||||||
|
"blk.27.attn_output.weight": "506126af9ee54b535d49f97e36f630e74834f480329f098d6d62e96246d8d65a",
|
||||||
|
"blk.27.attn_q.weight": "dd984df1acb4783849e25ba7ae378bfd385cd9efc540fb798cd5bdd873f0118f",
|
||||||
|
"blk.27.attn_v.weight": "b4b3fe9a4455d34c297ff20a2f537b647cef424741d840a747b265f23d320ac0",
|
||||||
|
"blk.27.ffn_down.weight": "621fdb185ba0d35ba5476dae73d2c81ec1482a0e878d5bfd5c3b29fe837af013",
|
||||||
|
"blk.27.ffn_gate.weight": "e4fbab45f2ec506fa374103251a0bdb7baa6f576080bdd796f3e9db92098e08f",
|
||||||
|
"blk.27.ffn_up.weight": "a0c57e463e988002bbd6a6c6792baa21a65e6f89ae303a2c301951b0ae6e4bbe",
|
||||||
|
"blk.28.attn_k.weight": "bac36cbd52ec5056841663865e1291ddab4b47ef9a2544dd285d4503bfb0e4a0",
|
||||||
|
"blk.28.attn_norm.weight": "5774a9df2bbb2e86d1f70179c7b92d81e1f401160148b3328fb64db6646a5425",
|
||||||
|
"blk.28.attn_output.weight": "e8712622d1569557000c75f26c3f55fad267fd300463c2c2cfe3afbfa1c8f908",
|
||||||
|
"blk.28.attn_q.weight": "11677751fddee52cc739699c02836f7be54d96038be4240be5d4f53d00161608",
|
||||||
|
"blk.28.attn_v.weight": "e5ee459b8958d65e1445997b9aa1e90e2f5d17761ebcf5357313119a45322507",
|
||||||
|
"blk.28.ffn_down.weight": "3934518f9f85292da8475fe38a8edcbfc4e24ac56c351b472d6351f98750871e",
|
||||||
|
"blk.28.ffn_gate.weight": "6ba735d57e98d0847e487f25ffaa25256deaa8abec76f428cb70bd9774279d83",
|
||||||
|
"blk.28.ffn_up.weight": "977fae6e1e5353114fc645dd98429464749758765cbc6e6457593d596e57850c",
|
||||||
|
"blk.29.attn_k.weight": "8122a457307d580ad6f1e0acea09a2f593d97f595ba0d6737f5fea16d2433642",
|
||||||
|
"blk.29.attn_norm.weight": "d626f721e05aa1202439b01027031d4caf1adace61ed37870a277cb6297c77cc",
|
||||||
|
"blk.29.attn_output.weight": "7fb7122ab1b6b1e6615ca746897da27bc52c92cb70d3147183cdde61795b72b3",
|
||||||
|
"blk.29.attn_q.weight": "be43e94ff6b6e391024dc824101efa0ddf4005d5b002ac26cb03765c0c73c2fa",
|
||||||
|
"blk.29.attn_v.weight": "af93c85ebff908f74f9935b81bde0516ca487c84139868a1ce079c3ae20036b1",
|
||||||
|
"blk.29.ffn_down.weight": "39dae12340ed3120bd19c495fe0872b559613641e41fde69d02d8631900b84c0",
|
||||||
|
"blk.29.ffn_gate.weight": "36fd482439840ef197c9f3b8905d86acfcea49bcf018544106ca465d4bf8d5c7",
|
||||||
|
"blk.29.ffn_up.weight": "5243fbdfdc1e2a1dd84b6210a9869d18a014db9088897e345240cdc99990bd5d",
|
||||||
|
"blk.30.attn_k.weight": "948f263616bd3788b2b968baafd69b9c5bd1b77578665f096c4b7e247b4cea42",
|
||||||
|
"blk.30.attn_norm.weight": "e168df981e744874ff303faf2eb470e5f6868c2040ba5f383f6c5148669975e7",
|
||||||
|
"blk.30.attn_output.weight": "4cf0ccca04b792573b756655a24fc89cfb1f272da8305633f0bc66ef14990b93",
|
||||||
|
"blk.30.attn_q.weight": "21e07d6cba6c50d65350289258209717174a13c42be57e8141d69712cbaf32c1",
|
||||||
|
"blk.30.attn_v.weight": "65a8ca29c7237b3182ccf03e2fc94e84f9a53d0e160fb679ab401c853170dd9c",
|
||||||
|
"blk.30.ffn_down.weight": "8b00500a6d00d84058f6658ee1d6f06fb4fcae2f90d4341792259362923b3c13",
|
||||||
|
"blk.30.ffn_gate.weight": "5bc0e19ab7a31b50ac2118ad1b36e31055271a322cd8ff661d47c3ac0210703c",
|
||||||
|
"blk.30.ffn_up.weight": "f37a0561955725bd59ee2d064fa9f4e00a12a1b620b624db3bc3add5330bc321",
|
||||||
|
"blk.31.attn_k.weight": "9a5663edda227f5d87533897146764f8e8a7481b9e71fae197c39204f8463221",
|
||||||
|
"blk.31.attn_norm.weight": "060a4f438a1ee5e220b5b5278ad2f5c085a428bf38c515766781815597c87529",
|
||||||
|
"blk.31.attn_output.weight": "6ada5d3cad9dea4780ffbb43302bb6ccc2f24eddd0fc4f5f84c9ce0fc0c6e5dd",
|
||||||
|
"blk.31.attn_q.weight": "bb5d08c08603907981ad388d5d8b70fcc9b98034ba264b8474c8890cc0297af0",
|
||||||
|
"blk.31.attn_v.weight": "e01b4252ea9c6a889c32b21144b441a347464d04536ef4f6572425be55759796",
|
||||||
|
"blk.31.ffn_down.weight": "8ba4d679c36e93ba65ba03180385ef35ea86b3b7cdf2fded9df59369f1c09630",
|
||||||
|
"blk.31.ffn_gate.weight": "e5b41dc93645f8b5e8eebae3ada3ea43a18f97ce2654228655170b07b463ccb0",
|
||||||
|
"blk.31.ffn_up.weight": "25b88cdddc8b547af294ed107d3d1312e90b983cae87936fa6062ecd8ea02539",
|
||||||
|
"blk.32.attn_k.weight": "4bcf86dc0858c8ca2fbdf6aa76674d43eb698f78979fdc1a38f556a7af1facc4",
|
||||||
|
"blk.32.attn_norm.weight": "cdcc12f3b8b9773c6722736bfb748a2729230b21478cbcc4104859d3148df815",
|
||||||
|
"blk.32.attn_output.weight": "d43f1196822995ed89a9365c97054753a8b30ce20b6e273c8edcc42673a1e141",
|
||||||
|
"blk.32.attn_q.weight": "ebf2972bb3865cbc5be4840113a322089752038344beab2a0122c7cb4fb399b6",
|
||||||
|
"blk.32.attn_v.weight": "714db81704ff34fa137512903c1013acee7877467473e46600728b9240582eb7",
|
||||||
|
"blk.32.ffn_down.weight": "2cde3da1258bb170a79d5d3cdfe10c86a71eb34b77da46b74c5ed71e7f4fe274",
|
||||||
|
"blk.32.ffn_gate.weight": "c7e1ed792532613ff9d4e5834b6536e2e0f47df2303bc0fdaa90aac0c1f4e8db",
|
||||||
|
"blk.32.ffn_up.weight": "d8d6f13fe66a716e28f79101a29817f0c0d6f99969a6f017d51bafd1a16c600c",
|
||||||
|
"blk.33.attn_k.weight": "a0a28f6cbca88da00cab2ca37094d9b0503bf9defdae77b91895b911c408cbb6",
|
||||||
|
"blk.33.attn_norm.weight": "0251200c24cc8445607ace6dc8c5aa0566567997262b7cca53a11ac23cc564b2",
|
||||||
|
"blk.33.attn_output.weight": "b2423205bdf6a1096d43c44d8d12f1a84fcd4e1bb70fcf6dc8542b8b8a71a13c",
|
||||||
|
"blk.33.attn_q.weight": "00b425c3ef71065ce5e0234e702bf38143b4952da78a85f52ab2c2e3073d97ab",
|
||||||
|
"blk.33.attn_v.weight": "035edd2335df816c42c765a5e66b9d9b9e15a822a8dc1863508145499c942c14",
|
||||||
|
"blk.33.ffn_down.weight": "4894a923a3db75bae4496ba3ce5f28796ad31fe33996a066271fb8654964310e",
|
||||||
|
"blk.33.ffn_gate.weight": "8f6c819b8bbfbe3357fae89e1ac5a3d58be85b3b04be3bacf7b62775869046ff",
|
||||||
|
"blk.33.ffn_up.weight": "257c3544b5b544fd5d839665bf5caf107a329b59dbc3751efcaa24ae63c56179",
|
||||||
|
"blk.34.attn_k.weight": "b6cd8bba892e38dac4a2ebc3ba1bce49e71b967fc436fde30c6d76f54a18935f",
|
||||||
|
"blk.34.attn_norm.weight": "2b3c8e60a064cba9955752bbbbdd92c71ba5c2f1bd721097bdbe88b5abc68787",
|
||||||
|
"blk.34.attn_output.weight": "8cc272551c9aaca9db5a660c6927bab94a0243d74a30b2bc165f06bd577714ea",
|
||||||
|
"blk.34.attn_q.weight": "74b561eb4792484e6a94b58fe2583848c3ae28ff2f1bf3d02939a0cfdfa49990",
|
||||||
|
"blk.34.attn_v.weight": "dba19e24ff05154dc5a1f55c023729303a583d13d68732ce22ea74d4410dc8f0",
|
||||||
|
"blk.34.ffn_down.weight": "76eca5dfeb274c35774e0bf9f22ee420ed9085c8e99aa2cd5a236e4918b44c61",
|
||||||
|
"blk.34.ffn_gate.weight": "9af0862d5fcbc24732846488e653db8242a467765c0cdbc00332b3a40256b4a6",
|
||||||
|
"blk.34.ffn_up.weight": "2a03126bf73587eaba99ece2066103d12e47bcd4ce30ff6c17b2f383b81d40df",
|
||||||
|
"blk.35.attn_k.weight": "52513fc0cd4e997a842729af7d21dd09399bce0a339558374738be266d0fa2f0",
|
||||||
|
"blk.35.attn_norm.weight": "e5281fa911964263ccf1630b14762edbd41d0b9472d6ec695fc600fed4892c35",
|
||||||
|
"blk.35.attn_output.weight": "b391d6705d5dc6f48326b5fd16573f679edf64109d86fb729a498819676590ca",
|
||||||
|
"blk.35.attn_q.weight": "d16446921966db9b0e0539626ad22a2511ace780e59379d6a4162d8c5441440b",
|
||||||
|
"blk.35.attn_v.weight": "9d8cdf23ffdb0c5c74106843390b94b24c9f33ef0eb9998d39f78c73390101ea",
|
||||||
|
"blk.35.ffn_down.weight": "938eb6301f7bbf162d7dd965682a5ed11d0a4a530c6fedd7e5469ce80012fc17",
|
||||||
|
"blk.35.ffn_gate.weight": "5ad84f5a0c8edcfea1ecf1a3e3d21d85ceda0c4ad9e3c6ca68885eeff8ed3c2f",
|
||||||
|
"blk.35.ffn_up.weight": "1c4330d9dc71bf4c98812c34356c51f520f47610a534152aa6d29284b758090d",
|
||||||
|
"blk.36.attn_k.weight": "ef720655e5ca2465f13db2dfc4732fb4ef2c9d53acde52f514fd4f301e974081",
|
||||||
|
"blk.36.attn_norm.weight": "88f4b9310b3c8c2644e3029160cd35678c79dfa59280430e03f5c29a6fe84a58",
|
||||||
|
"blk.36.attn_output.weight": "aec6f915fffd7bb72cd783273e871b4f09605950089d45e72059d1316b6c4b01",
|
||||||
|
"blk.36.attn_q.weight": "72f9408a2405d42f8db6ce5fcf1d26a3660b6f225fc60e77d0277109cfcb82ed",
|
||||||
|
"blk.36.attn_v.weight": "0f3b3d851dc44b3893ef53f6cca5b4acc9658bacfe1cc2d13c3d704ddd409b67",
|
||||||
|
"blk.36.ffn_down.weight": "470aec48ce8c5129a6654d9fd26fcae72776f9fc1429a8bb05818072a876475d",
|
||||||
|
"blk.36.ffn_gate.weight": "7f5f296d09cf55679767b5d15de3eff489c456782119f25204be4b1647f18dcf",
|
||||||
|
"blk.36.ffn_up.weight": "b7ef74a1f7ffb4982711d93f1787be3a70edc3d2358d5203c41d8900508037d4",
|
||||||
|
"blk.37.attn_k.weight": "c4ffa5412e4ff2dcfe1aed991c1f54169fd171a4c7638e4b9f21a1ca64c5e1d6",
|
||||||
|
"blk.37.attn_norm.weight": "4eb6c888d841cccfacf5b963f8611120f6ff24b84af0b5714fd9ab36dcda422f",
|
||||||
|
"blk.37.attn_output.weight": "db2a7bbf9682f9f6eea672dae8e150738f1bf74dbc80edc7022017a3f040c8ac",
|
||||||
|
"blk.37.attn_q.weight": "e38c0462aff139afcbab289189823527e453abc9e541154adde5e7af88cacf0b",
|
||||||
|
"blk.37.attn_v.weight": "952eb2492ed452a72f96bcc12d4b2affad9dfdf46ee39ce4a5d7b57a5dc301e5",
|
||||||
|
"blk.37.ffn_down.weight": "25f23a8fbc44febf6dc4848fd7fe03a580e2822bd3b3b5a51f4990826bfe3e4e",
|
||||||
|
"blk.37.ffn_gate.weight": "707da5eb40118b035305d3262444382351f170a20a537386a70e90c5a83a7817",
|
||||||
|
"blk.37.ffn_up.weight": "d2d2ba5cfc4ef47338dd7384219e22bf030a5a2209e0354d88f5bbaaafd20e87",
|
||||||
|
"blk.38.attn_k.weight": "abc4bb189dedf7ce661e79028427623a4f91ac091c2cd60e31b58bc62b1cda71",
|
||||||
|
"blk.38.attn_norm.weight": "9f4803a7d03fd40fcb83d85f84eb1d5682ea4e5bb084f210c02850675d804c3d",
|
||||||
|
"blk.38.attn_output.weight": "77cb66007f1a41df7135d0e7f900ceb499c2f667dfc3f1a6ac01a3203bbd3ccf",
|
||||||
|
"blk.38.attn_q.weight": "d94a8b26cd375bf2bcaa76597e314aa8268ee50a479d00931e5e0e021feadb5d",
|
||||||
|
"blk.38.attn_v.weight": "660c907888bc5016dc69b7d35fe6f55c7ded697c93be0e2d332a2f17aff88758",
|
||||||
|
"blk.38.ffn_down.weight": "6f06173bae5b00ffaf88ef383619a8b9c6a8d0d5c6494695d17f6c1de1a68a13",
|
||||||
|
"blk.38.ffn_gate.weight": "89f99be149d03f116527bfcabe073c50001c874de40fb6e817f6619027f3cd05",
|
||||||
|
"blk.38.ffn_up.weight": "8d57557c8d5e2d2688b73f01dddf1ce8d5194990cda6358153320aea88aac7f8",
|
||||||
|
"blk.39.attn_k.weight": "21be09c988b46c8393e6c2ec9230f3b5136eb7607dd1953ba92d0811c2f0dd75",
|
||||||
|
"blk.39.attn_norm.weight": "ba7c1912dd1c4e2d16917201f62396fd0600e4a451137eaddff255548c209abd",
|
||||||
|
"blk.39.attn_output.weight": "acfaf4abb3fd27fd899b5563c3877f176b597d8f6cdb2f2fd3f3a0bd4da15ed6",
|
||||||
|
"blk.39.attn_q.weight": "e8adbc140d4c8f0db2a27ca584c5531d5b1e080555fe627e34d80d0814a92bed",
|
||||||
|
"blk.39.attn_v.weight": "92f96b0e1f724e73a0f90a76c145654418844c04a6d4b14c05eb5af8a62bf8dc",
|
||||||
|
"blk.39.ffn_down.weight": "4d9ee7c65fc16fe95d10c47b79ac6a525741947600a64b5fcea5d300a82c50de",
|
||||||
|
"blk.39.ffn_gate.weight": "7e18507989f39b32191133d2657c2ee3b74f42f070579204d727eb72215793d1",
|
||||||
|
"blk.39.ffn_up.weight": "22cda752269c9757ba918abede1df95bb0f83a5c772dea13c8deea3d5f2723d9",
|
||||||
|
"output_norm.weight": "2858cf0e39d32caf52b7861378ace076000241e147f10b9eb21d8a5cd149e3cb"
|
||||||
|
}
|
||||||
312
convert/testdata/gemma-2-2b-it.json
vendored
Normal file
312
convert/testdata/gemma-2-2b-it.json
vendored
Normal file
@@ -0,0 +1,312 @@
|
|||||||
|
{
|
||||||
|
"general.architecture": "gemma2",
|
||||||
|
"general.file_type": "1",
|
||||||
|
"general.quantization_version": "2",
|
||||||
|
"gemma2.block_count": "26",
|
||||||
|
"gemma2.context_length": "8192",
|
||||||
|
"gemma2.embedding_length": "2304",
|
||||||
|
"gemma2.feed_forward_length": "9216",
|
||||||
|
"gemma2.attention.head_count": "8",
|
||||||
|
"gemma2.attention.head_count_kv": "4",
|
||||||
|
"gemma2.attention.key_length": "256",
|
||||||
|
"gemma2.attention.value_length": "256",
|
||||||
|
"gemma2.attention.layer_norm_rms_epsilon": "1e-06",
|
||||||
|
"tokenizer.ggml.model": "llama",
|
||||||
|
"tokenizer.ggml.add_bos_token": "true",
|
||||||
|
"tokenizer.ggml.add_eos_token": "false",
|
||||||
|
"tokenizer.ggml.bos_token_id": "2",
|
||||||
|
"tokenizer.ggml.eos_token_id": "1",
|
||||||
|
"tokenizer.ggml.padding_token_id": "0",
|
||||||
|
"tokenizer.ggml.unknown_token_id": "3",
|
||||||
|
"tokenizer.ggml.scores": "0872465d173867d755d3ee728f882b9dc2057a0bfd596fe1e3d131522f1250d8",
|
||||||
|
"tokenizer.ggml.token_type": "8d40143b3477df77beea4139420335ede458bf5e14102f01b0170197b55da8d8",
|
||||||
|
"tokenizer.ggml.tokens": "c6e66de1841f04de8b8d236d461ab720a4c9b9b5414dc293a09c6e10eab45fda",
|
||||||
|
"token_embd.weight": "64a9d30707e659e2e673656d71f5aef7a9fb9fd83bb9a77558dfc5abbe218a05",
|
||||||
|
"blk.0.attn_k.weight": "d8b4437c5edb3cddf6af9987038e1bb2b191c4f0fce0e160d2abace717f5d5d7",
|
||||||
|
"blk.0.attn_norm.weight": "1eb73e3f7aa8e502f6ca31cd19efbb8e4fd9a89692e13e48ac8205545a7fa7e8",
|
||||||
|
"blk.0.attn_output.weight": "39e7b78e57d356a22dd89ce1c4d7163b970712ba756545e1703f97866cd2192e",
|
||||||
|
"blk.0.attn_q.weight": "795058e23b6109febd9d55c89e1eebe6af0714ec8c56fd86a160876a6135ffe8",
|
||||||
|
"blk.0.attn_v.weight": "0cd6e583d1887c020472e961bbb113fe5a0d23ae2f1c2c876fc366cdb7692b52",
|
||||||
|
"blk.0.ffn_down.weight": "51eb4d962189e945a84e94e0dc1aad3f8f90cc1a11e18029670afcd0ea0acb1b",
|
||||||
|
"blk.0.ffn_gate.weight": "9811a29b8ad48432925897ab21dfcb13c5cbd372aeccbbefca9b7866883b4ce3",
|
||||||
|
"blk.0.ffn_norm.weight": "92cbf4652ef503c1de5b10f2be00b3fcf00100980cb3baa8f3013a8d8bf3d851",
|
||||||
|
"blk.0.ffn_up.weight": "af87de21746879483ed1b374cdd76b19ba11ca2b6dbb1beba98efdf3be3e8077",
|
||||||
|
"blk.0.post_attention_norm.weight": "32e135f1f258ffe407018899e39af1725d59d66d60022b9a21575ba160e0357a",
|
||||||
|
"blk.0.post_ffw_norm.weight": "ba286f5ac11b07fbc986173708c66f1920427be5a6d108af38fa0a837c1c8eb6",
|
||||||
|
"blk.1.attn_k.weight": "51584435552051f7fade76beca582b3f7190cf7fc07adcf527c2774d4b1c3901",
|
||||||
|
"blk.1.attn_norm.weight": "6833104c7fbf35a7e799ae56c262b97fffa14789642aee14381b25acd21ed80a",
|
||||||
|
"blk.1.attn_output.weight": "14c39481369087bf292ac9a3ab2ef166f9fe376a9f90c246653213ef264febdc",
|
||||||
|
"blk.1.attn_q.weight": "443f64ae2229f857c69d6bebb7800b685786cb77884c3ae19d4286aeed081325",
|
||||||
|
"blk.1.attn_v.weight": "0df482de2038f1e4c8a7733ac0ddb69ad90759dab5968b942af0155588de4c4a",
|
||||||
|
"blk.1.ffn_down.weight": "66f30763a8bbbcaea609a0087ed75fadb5e771c06378dd2cea94cf17e492e8cf",
|
||||||
|
"blk.1.ffn_gate.weight": "a7151bff00a545fa18b2c92dcd2a14572ccf9beb957a6c494f1374e8ebe174c9",
|
||||||
|
"blk.1.ffn_norm.weight": "e197d71ea11b5276bc0167d2663b88089b3ff42b47ba91e85f6c5d95f6306435",
|
||||||
|
"blk.1.ffn_up.weight": "57c182e0b14cccd1350d388f0c616991702e74281db54637451b70f4ccc24f9b",
|
||||||
|
"blk.1.post_attention_norm.weight": "3c56f837168d784c2d8bac247c130bdca6610c095c8da4558c536ccad7605609",
|
||||||
|
"blk.1.post_ffw_norm.weight": "d2a51d320fd01069dd7ccaa7082f16a7faeb671885607d7900b10a89c354d0fa",
|
||||||
|
"blk.2.attn_k.weight": "bc103c818192de7ce36caaf89dc117be4df13fb902e0bd9a23c64edace5df9b6",
|
||||||
|
"blk.2.attn_norm.weight": "0f2503aa126083a5d6ac72481be1ef66c6014705b573682b35bd864e4749a3d5",
|
||||||
|
"blk.2.attn_output.weight": "05fcd4a1226e482f91803a266f72caca887a93e63c2d2ba5611ab3c68d38743a",
|
||||||
|
"blk.2.attn_q.weight": "6a10b5c2fd423d1e4c4fd60fa8c154a0159b6b2501ea79cae2ef19f45a674e5e",
|
||||||
|
"blk.2.attn_v.weight": "3cf891945a1f8ae7cc908a5c6b729ff5b70f4436c5ffdbf245cc0ed4cc19cd1b",
|
||||||
|
"blk.2.ffn_down.weight": "ea204fd04e0d2fc728a9861a459216bbfec629c152004ba625f52cd8837bd51e",
|
||||||
|
"blk.2.ffn_gate.weight": "3a3518729f1b8b64a82b8792f33987db5418fdb094be0263c68f146a5c38de54",
|
||||||
|
"blk.2.ffn_norm.weight": "754ede678b725de41a34b82f0edf7688b5c065be7c0d46df6f7ad9430d986884",
|
||||||
|
"blk.2.ffn_up.weight": "ffdcb88439f5828ffbd9fc844b03ff91637b790b9838097258cc3ae75935720c",
|
||||||
|
"blk.2.post_attention_norm.weight": "4b3f53b7ba26e8c36b2dfda3b7e5fc4b1065257cefdea235fc7df9af130ac2fd",
|
||||||
|
"blk.2.post_ffw_norm.weight": "e550369e26b8485e2b54ad34b34bc98af5494287dcc513c2c39cf1eaa5b89d07",
|
||||||
|
"blk.3.attn_k.weight": "89f24ea450e37d9e95757651a83205c085d81b354ee9489dd6310a391d8409f3",
|
||||||
|
"blk.3.attn_norm.weight": "24e2ea662b7cb822b4ca5cd61bc17f2709f406d990ec3b4a0dac1cc112db45cf",
|
||||||
|
"blk.3.attn_output.weight": "ac4dad69473c6e3fac56669212cadd8c34ecc5973d945972e974d94805334967",
|
||||||
|
"blk.3.attn_q.weight": "b6a9c9a7d4722b9096631c65de62228dfddca6e26edfe6af7fce01e116ef0f4c",
|
||||||
|
"blk.3.attn_v.weight": "f272a960a40093942309bc342a379984cbacec2d7bc64428db3f64e6b1887ed4",
|
||||||
|
"blk.3.ffn_down.weight": "c0188ba50d8228805982029c277fc0e87aa57473b8363037c648f6d006ff828a",
|
||||||
|
"blk.3.ffn_gate.weight": "a04aec1561ee6c0fbb18c3db49dc62fb533619cf697fd548cbf2279761aaec3b",
|
||||||
|
"blk.3.ffn_norm.weight": "bc053837d44087ec05eb5d9458357b2a5be787789b19cdbbdc694b57697f99a6",
|
||||||
|
"blk.3.ffn_up.weight": "b3ce8b274f20796d3b1a7c08ba27a919066f9de89a782faa544c4a8d6bea1382",
|
||||||
|
"blk.3.post_attention_norm.weight": "9c922dee7a7df5667289e2788e60170238239cee2dfdbbd9e435763f9f416718",
|
||||||
|
"blk.3.post_ffw_norm.weight": "b682544ac953ad2e0b49027ed8916f2e9d1aba5d1587bb4127ac703570c7a03a",
|
||||||
|
"blk.4.attn_k.weight": "143b0cbb4b787b95c2b6212374410e32173ccef2adb914908a2f89a7916de512",
|
||||||
|
"blk.4.attn_norm.weight": "5668f60491b780273745192662d02c9a92a4f692b29d16aa0bbc7413fec4f85b",
|
||||||
|
"blk.4.attn_output.weight": "b9f2bdb68be1e0cf66dd19f8fa2afb105910ad2ef394864cb32cea8f8944e0d5",
|
||||||
|
"blk.4.attn_q.weight": "ddcf1343dafbc2dfcd0b8741225af22fe4b54b2becce29240bd01c34265d126c",
|
||||||
|
"blk.4.attn_v.weight": "6dc7074366e7ed52d9f48c594dcc85bef738e096276cb99d28228c89eecc5b9c",
|
||||||
|
"blk.4.ffn_down.weight": "30334ffc59ce343cf2a1b973174acb7722823463adc07e19a99bd0f404bc9906",
|
||||||
|
"blk.4.ffn_gate.weight": "890f7c8af208d63b28db52c4b8c16c2288a382d87ff5a6a6d6b0a5b3bf27e6cd",
|
||||||
|
"blk.4.ffn_norm.weight": "ff0316cc7847221eb86a90c1ab441d4ee61553d410c66414a7755021b3b12448",
|
||||||
|
"blk.4.ffn_up.weight": "6af97d113f91564c636734f215e25ee602d48eb045458f300b3ec7582be0f41d",
|
||||||
|
"blk.4.post_attention_norm.weight": "69438f231e105e68216b078bdeb35a7cdc8b12c4e2845e18ecf4c8d361d6a321",
|
||||||
|
"blk.4.post_ffw_norm.weight": "0fd535da78bcf2b32c95b05b2b83dc49817393765be90d8cc1ed3d56f47b68ec",
|
||||||
|
"blk.5.attn_k.weight": "0166eb3c6d20dcf3d3c169e94caa8dee057535bb525e29f698fb6f8844f18a6c",
|
||||||
|
"blk.5.attn_norm.weight": "a7808f27f164023d5cde2be00fc23cac6c71aa0ddeb60bc23e12411b80087672",
|
||||||
|
"blk.5.attn_output.weight": "8b65b2027a0842b68c5308f91d6a31de9599d794157d77df8418b19f9e0d9334",
|
||||||
|
"blk.5.attn_q.weight": "966bc626ef2c2394d872087a41c126bb1b67d1d5f6de920204ef5e5b16c34003",
|
||||||
|
"blk.5.attn_v.weight": "9a362aef3f4437fbf0ef6e1ba785f3329c3db2960f93fe36547d2795e9c254ea",
|
||||||
|
"blk.5.ffn_down.weight": "63e53541d34197720c06f297aa8142ac6b6eec002c7987b296f26e8b1400f931",
|
||||||
|
"blk.5.ffn_gate.weight": "d9591fdd32f783e0fc26e20d5d587ee8971ac8ae2e4c818c6eac1c125c7c7f37",
|
||||||
|
"blk.5.ffn_norm.weight": "677334cc60ecce3a7f4ab3acda15d359353d7358872f614ad8914e3780e9fc6e",
|
||||||
|
"blk.5.ffn_up.weight": "a63764110e1c655ffbd55af0669b2dfe4cc29d0e198d33a8e5426461b08a85f7",
|
||||||
|
"blk.5.post_attention_norm.weight": "c55499f859b2c0a7f5cabceaae47309a5ad38bc29d0f4a8db81f1357023162a9",
|
||||||
|
"blk.5.post_ffw_norm.weight": "82752754665f842418f3e302cb5f43d1e0504dcd124c4b8ddb77018b2c793837",
|
||||||
|
"blk.6.attn_k.weight": "e20a5f0d6c807273c8d491439566b428497ac02097cf0aa55e33748c28e14be6",
|
||||||
|
"blk.6.attn_norm.weight": "2c6ba42fd3c73d72073ced03a32dd28d70a89ed9bbbc8fea1ba03a7ade951e6c",
|
||||||
|
"blk.6.attn_output.weight": "4de7c5c2f4a133a266e17ed8c14c52959466b54cc7ab9e19f789a33b4850f284",
|
||||||
|
"blk.6.attn_q.weight": "56462d921800e6b8cd2213fef04c4ff16d728905cb2f4c58e966d0a053a3b0ae",
|
||||||
|
"blk.6.attn_v.weight": "b758dcbff769d6240c2245ede1dbc62c4170a67c77458e866312589220fe29af",
|
||||||
|
"blk.6.ffn_down.weight": "582247fb3c2bf687cbe9413fe18d18ad47bef4b65df7d78905e10335c6134764",
|
||||||
|
"blk.6.ffn_gate.weight": "3035444d5286aefb7a6d04e55bc27e1fac7cf895cd5be02319a431b8e047b4ae",
|
||||||
|
"blk.6.ffn_norm.weight": "e582d24c66e01b96faa20ce6adfda3d8583b11e809bff89969927398175e369a",
|
||||||
|
"blk.6.ffn_up.weight": "6f4b7bbfedeacf61a4866ae0616c4ba6c9e856662e8f00ae6aaec7f52c53e7b4",
|
||||||
|
"blk.6.post_attention_norm.weight": "8fe51b50bd677d21586aecab0b565c4bf9fa68ad50bfe366f45e8fea3c657ca8",
|
||||||
|
"blk.6.post_ffw_norm.weight": "81ba3cb4c2bf5c546b86855b7a885d3fafededc67eb3a35cd3598b03c9e26e65",
|
||||||
|
"blk.7.attn_k.weight": "2e044179cdcae0946708c86bfea7aa0391e1f7e2a09b33fca035d384cc3ca758",
|
||||||
|
"blk.7.attn_norm.weight": "94b48c546b046803c60e75a3acb17a356b710735989938021b565f68df9b4985",
|
||||||
|
"blk.7.attn_output.weight": "65709b4ad7a581f4d75793d39d4032a359f6bcc0c3835205242a0b99e5b66824",
|
||||||
|
"blk.7.attn_q.weight": "8ded993c95d1f7caf201ceb6fa035cd6ed6d351b50b999fa9355dfee9486cb5b",
|
||||||
|
"blk.7.attn_v.weight": "c92d5e2d2d48397542bc03bea25bf39154075e66c5bb1ead85188505aa04ae91",
|
||||||
|
"blk.7.ffn_down.weight": "e8ba8fb57208805ef1dc23cd7c86e9a2d1fb7c52c3940d292cd5bb2eb24b3fac",
|
||||||
|
"blk.7.ffn_gate.weight": "f0f06d6a2e06c5ac252083bc61d05c814e6289d3f4e4a87d2f06918254c02c36",
|
||||||
|
"blk.7.ffn_norm.weight": "ebf8ef775f72624148e09d68a4332187a7a5020c521fe0623da1cd3485ad33e0",
|
||||||
|
"blk.7.ffn_up.weight": "a554adc4fc7122c247c77670e169916ba1794c787b5be30a2b36705138f1f746",
|
||||||
|
"blk.7.post_attention_norm.weight": "3aa6bc21d85c3a0c12b964e82b12feaedfdd13130c3cd2229228e24e0967ebdf",
|
||||||
|
"blk.7.post_ffw_norm.weight": "508bc7b19ee8ff08f0007c890133a462fc57c7e72b16ee8f6dd64def264ef876",
|
||||||
|
"blk.8.attn_k.weight": "363c8e74056642fe9e7c2f3f9769d57319cd3fa0a6022810189ab8d894322885",
|
||||||
|
"blk.8.attn_norm.weight": "685b49a1f1acb169f4df0bdd8e3de6943f3033cebad14b898a72000595610d92",
|
||||||
|
"blk.8.attn_output.weight": "7bde571e4efef1c6a6143f0526721dfb59e0a0ea0e1a3616a322b2eb937efa48",
|
||||||
|
"blk.8.attn_q.weight": "fc993dbc1074c28a0e1d85e5ab2f4ea6a9c6c1affe7ee56027000a275daed9b6",
|
||||||
|
"blk.8.attn_v.weight": "281e8791d3aef9b3864f1cb054da0ae0c2fef4ce0a58b1bad8bc136b2fa0f62b",
|
||||||
|
"blk.8.ffn_down.weight": "b1164a2578a7f87ed99c2bbc76c5dfbbbc6a1a803605391acc3f320fc989ffd7",
|
||||||
|
"blk.8.ffn_gate.weight": "6b39a3b3aaaa79aee61416b54d62160b9258042650e61c6b47bc77c2dd17daf3",
|
||||||
|
"blk.8.ffn_norm.weight": "17ea1362c72da27f12bc936500492035bdef3fd8f940cb12b57f37d42ba8ecb1",
|
||||||
|
"blk.8.ffn_up.weight": "bc3a7c47afc440d2bdf8fbe9ddf2c9220467472c60c8b4ded8c0f181470ec96c",
|
||||||
|
"blk.8.post_attention_norm.weight": "5c506204e00411ef9c8b4134d40eedcc19fffe68dd0af7d7cc49dcabf2dfac7e",
|
||||||
|
"blk.8.post_ffw_norm.weight": "002faec235c3678864e2901eed275ce4e9dc229164a91c9cd4c965142ba62305",
|
||||||
|
"blk.9.attn_k.weight": "0bab39d8c237f1b6d0010db40467142625a9e6f2e0e4c49a56c12b41e4e0b1fa",
|
||||||
|
"blk.9.attn_norm.weight": "de5f38e873b17f07aa7598831b89cc1cae2c9bc3eb2e042ee9af059d2563e84e",
|
||||||
|
"blk.9.attn_output.weight": "8a8184702c25a62df9ff309c0c7badc8587208523b2be3e8fa90ce7080573e6f",
|
||||||
|
"blk.9.attn_q.weight": "7c961b2431b09ddf95377acd07201cb91bf13d9cd3ae0f2c25c7d6a0358d9f50",
|
||||||
|
"blk.9.attn_v.weight": "e22d240cb4743067033e659cbf210ebe2ebbab3e1dea6ccbe5eaa982382ca038",
|
||||||
|
"blk.9.ffn_down.weight": "a426f81210f03d6ad53277416e1fdcdf37d8065e4817613edaf6c67a343426be",
|
||||||
|
"blk.9.ffn_gate.weight": "a82eba825cb77b8e64f85ff99ede2fc71bc9b01751eeb17e9e6c246ee12ea62e",
|
||||||
|
"blk.9.ffn_norm.weight": "1a97f9b1302a3a326d534c5c3fed2db6db0ae45fd0edd381a3e4fc1c75d81030",
|
||||||
|
"blk.9.ffn_up.weight": "5f20bac2bbf03bb42adb92fbf99561651e1edda57e0b61935ac7f6c08c0ed7cb",
|
||||||
|
"blk.9.post_attention_norm.weight": "9f9866d13988e1946b1e1c80d9374a92a6e3be33748f8eaed3e126d1e1a4c796",
|
||||||
|
"blk.9.post_ffw_norm.weight": "a6896dbf698db4dbbe5dbf12417d4fd80e9cad0c539c858892ec0aa5b046bb58",
|
||||||
|
"blk.10.attn_k.weight": "ca8446e5d21ecd4e6a70dca8d321be480be4fba94d70cba065205436feb44270",
|
||||||
|
"blk.10.attn_norm.weight": "4f41fe290e8f21f63b82151b6cce94bf7318d121468816b0c58af0ff7c1658ab",
|
||||||
|
"blk.10.attn_output.weight": "c626d2e9681c5c941bbde43dddfae1a8d4986bf2be4470857bc8e8bd7f869044",
|
||||||
|
"blk.10.attn_q.weight": "1e61b210a13a429977325cf15d781ab77d604cfa862f4270329cbd94237d5835",
|
||||||
|
"blk.10.attn_v.weight": "8ff8d3e3f058ec3b35ada1057f2ed59c06494d0e0be6a8dc3ff9edf9f0e1a115",
|
||||||
|
"blk.10.ffn_down.weight": "bcebc04219f8081a5f483e58103c0ddbbbc631a0a54fd6dd9d55778e041f70ee",
|
||||||
|
"blk.10.ffn_gate.weight": "7a23a1e620ef871384ddf9611ccdcfb893fbf013cc203ac8e72f745420f1eea0",
|
||||||
|
"blk.10.ffn_norm.weight": "e3a375e43c349a1c6c66c22328e513cc1af3137fe839e43dc8e9be2f65914fd7",
|
||||||
|
"blk.10.ffn_up.weight": "5d182e7c94369194fca5f19cbbe668a999911e57f3d363bc7fb6088428700cb9",
|
||||||
|
"blk.10.post_attention_norm.weight": "b841c6308296e8984f3c5f549c6e3a242f4b3e19141e1f54cc08de9c46759c09",
|
||||||
|
"blk.10.post_ffw_norm.weight": "9d66fa05b5c940208f634f5053d809094c99a2a10a1d1e8847c8281fbd99fb49",
|
||||||
|
"blk.11.attn_k.weight": "14adf24ebb2bb17b336ca81cec3e690fd854782f4440ca6c66cc1d7e7bf1c850",
|
||||||
|
"blk.11.attn_norm.weight": "2d2213f311f50414702b5b34f22aafb9d9a0b6787243e7578562583dc40ad195",
|
||||||
|
"blk.11.attn_output.weight": "de1f14cc2a7fff00cf11b229f0576999205f17b9536e97abc9d6de3cc79a7884",
|
||||||
|
"blk.11.attn_q.weight": "2bcc5c147524003109ece0be08b89ac8b25baa71416ffa76573c6c052ffc6eea",
|
||||||
|
"blk.11.attn_v.weight": "2e6ab8573070c22dc1e0d7aebe4d52123226dacf7822dcce06fadbb38fb036a4",
|
||||||
|
"blk.11.ffn_down.weight": "1b86902f4e36868421e5228b9445051f8290b292df22a6d1af836dcecc1f25c3",
|
||||||
|
"blk.11.ffn_gate.weight": "e756e8081bd0a16aea4a9ef5076ad102113524f7a3d50a3a77aaa7f7938b63e8",
|
||||||
|
"blk.11.ffn_norm.weight": "6913887267be227cf9d1991a3dd8db2e7e74bb9b5fbdfcb9ac954fd7d7b95b3b",
|
||||||
|
"blk.11.ffn_up.weight": "619a3ac0609ebdf42c3fb2b6e4b1db48df79e6dd8418d7ab8f1bbff13d8a6a50",
|
||||||
|
"blk.11.post_attention_norm.weight": "e4b4ba92cef7b6a78407e8ab1b0307d47dac6c3df7b6817e28038317ff662d7e",
|
||||||
|
"blk.11.post_ffw_norm.weight": "40aceeec58cb855f0c158c9cc217168fcd5d0e735567d587217b1d78df17bc5f",
|
||||||
|
"blk.12.attn_k.weight": "c54c5a4d4892522022d1aa2204cfc624f0b4042caa536e678967316293fe5cb1",
|
||||||
|
"blk.12.attn_norm.weight": "7cd2ef58298569ffdf244d9b390f3917245276c8206e5780af5f96d8c0bbb446",
|
||||||
|
"blk.12.attn_output.weight": "85495ef9cc8b3deb21f741bde463ff6493acae2be51f02ecdeef952cbdec3375",
|
||||||
|
"blk.12.attn_q.weight": "d19383f83fd119bfb8c0280c9515705c11d8e7d502019fcf8f49efeef0d106d0",
|
||||||
|
"blk.12.attn_v.weight": "869ac669ba49531d9128892a0e27cef15de508ff40cdf80cc1681dde50d09204",
|
||||||
|
"blk.12.ffn_down.weight": "578f39f8f9fc2f09138afc884a952d7cc3a9a31de4216acd10e88e19e0b75f8c",
|
||||||
|
"blk.12.ffn_gate.weight": "e29a0186bc6c4a0720246306e922d3a83f777dadcf4ac80bad468287031cc8b5",
|
||||||
|
"blk.12.ffn_norm.weight": "e1ee95c6584b5cb57fcf1db8ce2bcc03aff91eb389238c094a61c00dde93d1f2",
|
||||||
|
"blk.12.ffn_up.weight": "2a826f06d7cdfb3edc6ae250ff44363ef77a2a9cdf96313e23a331b99ebfa17d",
|
||||||
|
"blk.12.post_attention_norm.weight": "4bafc7699b948d5cbc0d3e09b418b06c6abc4651a61ada9609d9a2f21c7e5607",
|
||||||
|
"blk.12.post_ffw_norm.weight": "bbb8c34a7176bb1a49f9fe2bacca0bd26b673d52c0835b2e90fa11f2962f077f",
|
||||||
|
"blk.13.attn_k.weight": "ffeefccfe8255d1b694382012ff4134eee5fec9d9491c8d0ff0a13832d1a37e8",
|
||||||
|
"blk.13.attn_norm.weight": "35713726529e3887c4135a88e86e8a4d7270ba5b9f2d1ab462622fbf40a7cdce",
|
||||||
|
"blk.13.attn_output.weight": "0d60b7c5cd71190a9ef4b873b0f516be15447c32d83914db2794b14592b0b460",
|
||||||
|
"blk.13.attn_q.weight": "8296069e65bef794cefc61257fc65789b3cb22955e30f3df129205e5041b2222",
|
||||||
|
"blk.13.attn_v.weight": "ca0f4ab9d16a748fc643a5c0c7a19826a811bf2a4e7316a8c935d4bf0ce8abc6",
|
||||||
|
"blk.13.ffn_down.weight": "d5514e0c8e7b3ed1cbcc1605eb5be1733b6ab3514cf8a0508fc72f7d05ed8bcb",
|
||||||
|
"blk.13.ffn_gate.weight": "8108e517a82e08a3aefbbd267bfa50a1668f92a76273280ce8a6bc1f6dd61521",
|
||||||
|
"blk.13.ffn_norm.weight": "5fcb6132d2134bf1f835b904a99820fa501dbc57d2224129f7098bf3cabc1d36",
|
||||||
|
"blk.13.ffn_up.weight": "6d744b7cd390a3cae3aa350dd379b81246acd056a2259996b6aaadece8465ccc",
|
||||||
|
"blk.13.post_attention_norm.weight": "e08b14698912509790e9575b8676971fbb0a4d82d719367e3756c0d0c4ab8cc0",
|
||||||
|
"blk.13.post_ffw_norm.weight": "2b196e4450fc5f1e7367b2cf7fe33a15fe919fbcdd861d11002346f16e980535",
|
||||||
|
"blk.14.attn_k.weight": "120e5f48d7268dfd9ab5f4bc9cc57a7cec63ea9635f56b80d435eb22936e9483",
|
||||||
|
"blk.14.attn_norm.weight": "146367bcce4db72cc894419a2e0145a6f533507dd68e4739c10ee480308c401f",
|
||||||
|
"blk.14.attn_output.weight": "720fa0165e756876c5cb6ad9e2780dd910390933f3f8849e5add5da04266650b",
|
||||||
|
"blk.14.attn_q.weight": "f5183466f56219ca1aca52d8b82c2d966a4198fea40fdd6b39f4d8b06ca2a6dd",
|
||||||
|
"blk.14.attn_v.weight": "24f8ea3d5512cd37c43c8329cb0da0c90d1895aef763ac2dcee3fe5157ec50a2",
|
||||||
|
"blk.14.ffn_down.weight": "e29960965b384ae5ab3d898a4dbaa8fddd28fa0e477ac28bcac49dec12a5ac67",
|
||||||
|
"blk.14.ffn_gate.weight": "6d0d6a74bfe9692e8f8eedff0fc34fc4fa1c8687794f35f2e2b033ab2d7510b8",
|
||||||
|
"blk.14.ffn_norm.weight": "f7036c1a9a71e046c9d2af16e9218fda5dbb0f7241ab44747abed1f0f9d602ca",
|
||||||
|
"blk.14.ffn_up.weight": "7d69ea1424007ffc9c12247dd0308c616e93ac02a59ec341cfa48f92d6ce3b10",
|
||||||
|
"blk.14.post_attention_norm.weight": "65b9712834d9445d4236bec362f3fb795c20d60c541b3dc6dbb7914d9b493e41",
|
||||||
|
"blk.14.post_ffw_norm.weight": "9c6a8da2e4e437d5cfdf3b9097e9f8b64bf07946a048badec20f4d374613f38f",
|
||||||
|
"blk.15.attn_k.weight": "864bc618303a0e4ee67fb1d5e751de61e936cd51e96669dd86f8cd08f2305045",
|
||||||
|
"blk.15.attn_norm.weight": "f9f4187da6eeadc2fc5921d8fe669741697d16c13d71e4aaeb73b82f50dc577e",
|
||||||
|
"blk.15.attn_output.weight": "ce2419a0b097036b2a31f2f4ad731d5814bcc2ef4c511786e24471e5eefd273b",
|
||||||
|
"blk.15.attn_q.weight": "9539db5a970d11ebe99722d1e13fcd635e250033630811efe583d2f97778e4a9",
|
||||||
|
"blk.15.attn_v.weight": "1c834b48ccd88adaeabb7d8bcb6be0bcd6d5ac1354ce88fc28f19a1a96b81ab3",
|
||||||
|
"blk.15.ffn_down.weight": "bc1f97a65dde6fa2c1e5397afb612266944b343f2eaa868b635ddd25829f8a42",
|
||||||
|
"blk.15.ffn_gate.weight": "1b14529d57056b79037f6cb5008132e62cc35992353b38dda59572274623103b",
|
||||||
|
"blk.15.ffn_norm.weight": "9af77458de9ee55c66f93865759f9c2c398557f94f3fa8fa6af30543d7339cde",
|
||||||
|
"blk.15.ffn_up.weight": "41d524a26b61a9595816b4fd53cf57ef50a702e4ef32933ff6136dca9136a267",
|
||||||
|
"blk.15.post_attention_norm.weight": "c60a03cd0e63a7db5c80015e58e9b97ba2208caa19f66a6fef5c4447eca900ce",
|
||||||
|
"blk.15.post_ffw_norm.weight": "34f7f9f96769215bbc3d17084df091864aef96a6645b7d0b3b7d9bd92f1a4b0b",
|
||||||
|
"blk.16.attn_k.weight": "7e27240d9f3a8c6cf0f4a980113d43234f514eadc3e3e1792b86efb29ffb1a6d",
|
||||||
|
"blk.16.attn_norm.weight": "af798acc0899282a30448edec48223b3e8efda177090273e612d8eca5e377301",
|
||||||
|
"blk.16.attn_output.weight": "79df39a3709d3d53e84146291e0944a7a653d06705293d9ccb5648dceadb432c",
|
||||||
|
"blk.16.attn_q.weight": "db58a1c3b83ad294804e5fd7321005719e200659173466df5a52a182b80b7165",
|
||||||
|
"blk.16.attn_v.weight": "2af6d48cbaeb225b5c1a704f76abd89c8ab1521417695b112b4dcc2cbd39b74d",
|
||||||
|
"blk.16.ffn_down.weight": "fc1c813eb5e7da3d6194569d6cb21602fc6eff2dc8e1b0eb753f2d5df148189c",
|
||||||
|
"blk.16.ffn_gate.weight": "7a80bcbc42464bd55df4814a6edbd7b5c153e0428323bbe49de55e2d2add33e7",
|
||||||
|
"blk.16.ffn_norm.weight": "2041685ee926d30f3f2ae4ec35b5688f1cd834167a6359a7d4057eac804c58b2",
|
||||||
|
"blk.16.ffn_up.weight": "8da4b718973ac1d43b928829bc45e062fd101984d6c98dd825bd7c5d08ebfbe3",
|
||||||
|
"blk.16.post_attention_norm.weight": "975c48fe680a6167438a106140a8872eee7765191f152d80e3b8ddf47693e095",
|
||||||
|
"blk.16.post_ffw_norm.weight": "4de2d4d483acfe4fc77860ea929025df2f4e15c10729413f36a18c94eaa6d689",
|
||||||
|
"blk.17.attn_k.weight": "f937e61f0af8c4cd98ee742648eb60e02e579683e21d421071295a3b70aebaad",
|
||||||
|
"blk.17.attn_norm.weight": "c3270583ed28b7e423f5b170c59113234f258169b93a867d9274f4c10b7cb115",
|
||||||
|
"blk.17.attn_output.weight": "b8c1150e81e685e539a5dcf2c19047a24eba2b281fabe166674b1d71ef4612ea",
|
||||||
|
"blk.17.attn_q.weight": "c255100ae2011e7dc7e3bf3bc3ccd96d859fbb98581cae993d7b82c1ba8e8b39",
|
||||||
|
"blk.17.attn_v.weight": "5830bb0a555984c6485348067f70b5d22ae337c011aa9248dac2ff4c95944551",
|
||||||
|
"blk.17.ffn_down.weight": "8ff9a7cccaa3776434a9d895aae4fb5c36c736bf2ec98784226b4c234940fbb0",
|
||||||
|
"blk.17.ffn_gate.weight": "1b52876739712831c272911533da206f407b46034a1a4ae8a88c1f96b6bd5747",
|
||||||
|
"blk.17.ffn_norm.weight": "d0e16ba5e87c91b545334e022058c7d03849665c3b1a6298771b656531366b66",
|
||||||
|
"blk.17.ffn_up.weight": "4dd6211d01dbebbe21052708eddc242b082a58b5f18ed16479e17987c1d3432e",
|
||||||
|
"blk.17.post_attention_norm.weight": "6f49c775c7417dade77ba8268a0f8441c1e5ec28b5d7e4dc5ed07a04d04600c8",
|
||||||
|
"blk.17.post_ffw_norm.weight": "b91a0bb2e6679e9c9be06ad323adae441d00a3d673efb19d7c4954be2aa84b27",
|
||||||
|
"blk.18.attn_k.weight": "22b565ace1b4da8b33865a58625be1d90beea9891f29686a69fa9cf7c93217db",
|
||||||
|
"blk.18.attn_norm.weight": "3e0160d7063c8753de65d2356a66648e47d921efdc5c917efb8209892120f8db",
|
||||||
|
"blk.18.attn_output.weight": "e3180f0bb4ca90b31e9b08158db38e332de62dfbaefe34aa94cc316409331e09",
|
||||||
|
"blk.18.attn_q.weight": "f3a5a83614c3ba7ea41cdd5b1b0819a241ee2a951a381ce4a9e001d3f700ed8f",
|
||||||
|
"blk.18.attn_v.weight": "f3350a5984fb951fc738adcf78147e6d812ff1c576670c460cafc99c253c1654",
|
||||||
|
"blk.18.ffn_down.weight": "9e9d09b13a33525e14bdaee6efc65c551ac7cf7680e534b940ab122a3a7c1ac9",
|
||||||
|
"blk.18.ffn_gate.weight": "ebaec8b4b578a2e8d815baac12f1675c208f80c68074d5a18288a2e1a60680ee",
|
||||||
|
"blk.18.ffn_norm.weight": "33e7687c53a242f2f8dc7093a491c97b18d4a5a8c14d183f02bd586a770f05aa",
|
||||||
|
"blk.18.ffn_up.weight": "78a1816662378ce56cc870e705174492781897b3afd2d4d97a51f10f2f2987c1",
|
||||||
|
"blk.18.post_attention_norm.weight": "a58dde3f12df3e94cbc27d87c8ea86f89af8a388a506446ff6758f05399b05fc",
|
||||||
|
"blk.18.post_ffw_norm.weight": "cebf90cc143577d483cca27b032dfd82031ee59bdf17c0e2cf60a0a3ad5bf996",
|
||||||
|
"blk.19.attn_k.weight": "4683375d0599ac9e2232196aae1e90af13a14cae26e865465de5c8e257bb2055",
|
||||||
|
"blk.19.attn_norm.weight": "f3eba936bfb1814bbcb0a1d62739eb66daac839df8c9c836fe0e94860df88525",
|
||||||
|
"blk.19.attn_output.weight": "51c0f01d38a9dcfe9bdbc4643576fab164c1d9e4b7168b7695c0ee55e6965667",
|
||||||
|
"blk.19.attn_q.weight": "28d15b69b8416f2e7ddc88fe381cb1e2ef2ad705fb1c268139ba96498cc74848",
|
||||||
|
"blk.19.attn_v.weight": "6860f1cd720638e63a981fa2c0b4db900129826bcb9823c9ddf9fb8b1b9f3383",
|
||||||
|
"blk.19.ffn_down.weight": "bc7f2d7827ee01c2dd41401c7b3b1700ad3a4ff620e8bb734f92630d342dcc7f",
|
||||||
|
"blk.19.ffn_gate.weight": "54d03ef69ba373fc410fbca8f1e34a565d58e4296d9a035ff7e48340b9c848e7",
|
||||||
|
"blk.19.ffn_norm.weight": "9178fc796a340ee6e8128ca74c0cb6203d1adbed6927af4e5ac7863da57affc7",
|
||||||
|
"blk.19.ffn_up.weight": "a77bd708026c6e83ad5c79c223278e74621bcf74a9641c7818d96b595daaad20",
|
||||||
|
"blk.19.post_attention_norm.weight": "ae94aa26f4c411bf9496a6fd4a6df64ee589ee1ae9a04b531d45acc95721e582",
|
||||||
|
"blk.19.post_ffw_norm.weight": "9ad210700edeef12133bdcff04bf1c7f62b49f6f4a9ba483c7cdc59857c24a5c",
|
||||||
|
"blk.20.attn_k.weight": "e35bce1e9f4a7a09ef34721f57ea38cfca68c272f52d923fe50af8308f66cfaa",
|
||||||
|
"blk.20.attn_norm.weight": "644800f6926fd34f233795c4dec1151a295d2138ca8cac33e3e48167d26f8b41",
|
||||||
|
"blk.20.attn_output.weight": "8d3758cd236471741e1ad66c0710cb79077dc8c7a3a292d35bc551c0c5abe627",
|
||||||
|
"blk.20.attn_q.weight": "c333b1f0f6f956b5d73891df10b1a0321e55fc31c40d623a24e1f52caa6a998b",
|
||||||
|
"blk.20.attn_v.weight": "8562b418d0c4868a050fb19fa3fcaf50a8cf1c669f537d666c80c7b3a04714e1",
|
||||||
|
"blk.20.ffn_down.weight": "97efb608ac44cc804198faec3ee66eafe56ced6b7ca5359700c6f1df75b7205e",
|
||||||
|
"blk.20.ffn_gate.weight": "5c61151d86f28415c73c73d90ec088c646cbe5c1640197caf58eb501ba7db293",
|
||||||
|
"blk.20.ffn_norm.weight": "24bbe0a701afd4bbeea65b3edde712b3cbb2281043bbc43dbf250582453116ed",
|
||||||
|
"blk.20.ffn_up.weight": "e170cf68e249566aa99eb6f6b265679bf9a5a6b76830ba24e7e130c2515910c4",
|
||||||
|
"blk.20.post_attention_norm.weight": "e092d751cfe20dbf2d348358f3b38397bd83e4ed94d6bbaa6bbaddcd902b2ac4",
|
||||||
|
"blk.20.post_ffw_norm.weight": "219a18a47dcba76e669e4322223a5a9227bd3db1de3fbd3d3cfb22e54a783c5a",
|
||||||
|
"blk.21.attn_k.weight": "c3a095ebddb42c63824f1c98da65263dc88e4d790a26aa1632840b44f5cc7cb1",
|
||||||
|
"blk.21.attn_norm.weight": "ef8bbaded5fbc45ad9cf3985ae02174524e7090fe6362811124f942ef643bec7",
|
||||||
|
"blk.21.attn_output.weight": "668f018aba72baac6252aa3ad58569ddd55ab751a0dd8d7bcc9fb9b6efb4bf53",
|
||||||
|
"blk.21.attn_q.weight": "e759c65663089f3bbbd51847934c185e680c82f1249065d5d487da638e519e6d",
|
||||||
|
"blk.21.attn_v.weight": "2ff57762686cf9ba1f5a6be76503454b97556ce67f4ac98254bd0562231197ba",
|
||||||
|
"blk.21.ffn_down.weight": "3fd106556fb721b1c28ae3f4026bc83eb1b08ed910f2ba5f466c6b5f327d91cb",
|
||||||
|
"blk.21.ffn_gate.weight": "338022d882f4b6619e8054a6fb909696fa3eef3013cf69b65c3cacdfc5b9e42c",
|
||||||
|
"blk.21.ffn_norm.weight": "1e77660c23a3f9653ee721a863d1960f773d87437cabc4dc0a6e17ee3d4e5e44",
|
||||||
|
"blk.21.ffn_up.weight": "7d31b20fbc2e6eba8f350f170069dc36f0cb12f68fbc4206ec5022a74085ebcb",
|
||||||
|
"blk.21.post_attention_norm.weight": "9638bae8d8bdcd7ed68da282979cd84a07c41ff9cabcaea94ebc846a1803db23",
|
||||||
|
"blk.21.post_ffw_norm.weight": "d622ef11115fe0cbe04b727d5a3b6371e7f39bf08c8d5eb9bc6da52e3f3cfb9d",
|
||||||
|
"blk.22.attn_k.weight": "5c321cb29deffbe57de200dd206a62005f1e80acb86c4fd2349dd44c8d3594fd",
|
||||||
|
"blk.22.attn_norm.weight": "198d949705d7170a331d75889d8c7500c3635254dac2cc6aa4dc35d556584536",
|
||||||
|
"blk.22.attn_output.weight": "19805cd5d7025b457e5d41d70db8b3fd63c2dd0e4a94d3ef1704d50ef4e749e8",
|
||||||
|
"blk.22.attn_q.weight": "177836cd583fc87405975ddc21ebfebdaa090a0363799664c72caa3da851ae2c",
|
||||||
|
"blk.22.attn_v.weight": "fea255692483e30d0108f9e4e250eb3ed7dbda8d83f499b06519b8c223ae6096",
|
||||||
|
"blk.22.ffn_down.weight": "00cb8939f03e5817d6d412de8cf2c923c9568d5493e382cec7faf5718fb034eb",
|
||||||
|
"blk.22.ffn_gate.weight": "b0591065b91281b2fbd8a9567f3568d40479f680e1f0a29e27ae213f37642489",
|
||||||
|
"blk.22.ffn_norm.weight": "96b5c5d0737c2ceb8fc869f54adb9e5f46e28cb7b177c40f49fa926b923c00f8",
|
||||||
|
"blk.22.ffn_up.weight": "81f472185b24344ab0594ea8246cc6e200e0dc1cab4943e74fbe4ca19d5a9701",
|
||||||
|
"blk.22.post_attention_norm.weight": "27fa9aa6260aa3071e0391e1a1d49322dcb6e8072315b8a9b7064087108dbd06",
|
||||||
|
"blk.22.post_ffw_norm.weight": "f37e1dcd7f643d9545675ffe9dc527a11eba86eb204989c2f44f636b266d896a",
|
||||||
|
"blk.23.attn_k.weight": "5d82f36658a56c3f94d0bb2d61f65509c966fa6568f81812e0d3e338b380ef8c",
|
||||||
|
"blk.23.attn_norm.weight": "b7983f88d9cad88bc88a528923e6da592ad20e699965b223ebc10840fe1f4fec",
|
||||||
|
"blk.23.attn_output.weight": "59f97f80f430d71606aab0158a195aed29ccd3405e6c0a5c41c809be8eb01898",
|
||||||
|
"blk.23.attn_q.weight": "53ac4789fe958919cc02ea4222bcd64c0ea1b4baa54304bff46635bdf42f7490",
|
||||||
|
"blk.23.attn_v.weight": "ec8abe09b9e84dbb52c7a068094657c6d3c62fe551ba8d7c3a3f23da622e9756",
|
||||||
|
"blk.23.ffn_down.weight": "3cf547eccb1b82aa64f208cee9682d7f558ca84e0aead7d9d3d1420d90f3d992",
|
||||||
|
"blk.23.ffn_gate.weight": "366aa2486d911ba81eb519119e13807deacf7e9908bc1975a2a63e00d6b10124",
|
||||||
|
"blk.23.ffn_norm.weight": "6d1d4a4af34bb7dc090ac87d6457d398c3e0fb68bd2e2b60b099dc318b6cfac3",
|
||||||
|
"blk.23.ffn_up.weight": "53f76692e253f5d2420b3f200c731b9f3b7a83e379920b4a067c729b4674aa4d",
|
||||||
|
"blk.23.post_attention_norm.weight": "7c952fa0efa76b3f048c8c4c9e8dcb5e3724d231327eda6423a34d3f3d3367de",
|
||||||
|
"blk.23.post_ffw_norm.weight": "7ab188cfe61f0a91b40309a0ab6bfa99f19d0ff2a37b6ac10e5f0c7f44eb5270",
|
||||||
|
"blk.24.attn_k.weight": "225798792f9bfdd10eff0505ebe61e0aad0209c17b431f6044ee7968ffe8c198",
|
||||||
|
"blk.24.attn_norm.weight": "635e3c1ebf5219bbebfc40ef164bc32d2b726ef595a94da64ac524ae878e2915",
|
||||||
|
"blk.24.attn_output.weight": "482f5bb2db8d9ed22b253d9a3296333b239efe698e5992e5d77e7e12dc2a5cf5",
|
||||||
|
"blk.24.attn_q.weight": "43805bbccddb65d58fffc4be9b5c374d4e1df1395ec1e1ffb4bcff03e98d5adb",
|
||||||
|
"blk.24.attn_v.weight": "fa741af54b4a3b1775d32f59134756090c5df2e7345a12a2d8db94fe289667a7",
|
||||||
|
"blk.24.ffn_down.weight": "83c6351e3162626b276f524a57836144625c2556dbe321b57cbd8fd486a68fab",
|
||||||
|
"blk.24.ffn_gate.weight": "fbe66be0d84d12cea5176cc7eaef64382ffc7324cd9d6266a3342dc43442f2ac",
|
||||||
|
"blk.24.ffn_norm.weight": "77c1445a8639ad24938bdf0280233eea2362d47391421833dfa72ec756dfc1e8",
|
||||||
|
"blk.24.ffn_up.weight": "78235ac729ee23c1cf1ae543751e3af32776d8808cee6e529c2a625a1f027654",
|
||||||
|
"blk.24.post_attention_norm.weight": "161f71b6d07628d43e4ae51a4c9088ec6ca2db123a17986a14505d83fdd04dad",
|
||||||
|
"blk.24.post_ffw_norm.weight": "cf1ba692aa683368b02ac413e69b2521b98c69a5274eacbb54165b53bf38a8b2",
|
||||||
|
"blk.25.attn_k.weight": "057a56bd8c8d2b41608d1f71faa3052902152ddf85e47669ad950c1c3e77c33f",
|
||||||
|
"blk.25.attn_norm.weight": "b7179fe02c334da556ddcf6c1b502245639a728c4cbba8b552d8e1df4565ee9d",
|
||||||
|
"blk.25.attn_output.weight": "4fed8b05b08a0ff75ffd022701bbeb52f17b23d09332a1ddcba737244bd0d3b0",
|
||||||
|
"blk.25.attn_q.weight": "c52e99f5d38bf7538d6106a0bbf38ac6dc6296bca9a3f849afa384ea67b4af01",
|
||||||
|
"blk.25.attn_v.weight": "c49c23d8e1cfa6a8eb971eb69942204890c6d7d830dc8774c84b108a80598912",
|
||||||
|
"blk.25.ffn_down.weight": "c08d4dc8412b19fdc870c164b83c341b236ec6fe7bb4a9bcfe0dc100faa20286",
|
||||||
|
"blk.25.ffn_gate.weight": "1a4cb3f36735d59181721471452807903006539e5e1b5ceb4f72d1d7ae134127",
|
||||||
|
"blk.25.ffn_norm.weight": "8fd6bd0dcec5198761525a36992a57c9ec5e9da60a22092839a84ae8c4e87f26",
|
||||||
|
"blk.25.ffn_up.weight": "3a00f39bdd5f31dc5e3b281d2002e1ac4f2475d49a0ac1d7720a25b377dcd04a",
|
||||||
|
"blk.25.post_attention_norm.weight": "e5f31a648612c859b6d21c9ee426e87a86cb1973dfdd86276c767371d9cef5ad",
|
||||||
|
"blk.25.post_ffw_norm.weight": "553c3bd774922c99c2384380a142d019881d30dbf0fe3bf9430dabfb3f6cbd33",
|
||||||
|
"output_norm.weight": "49445c4585ab0a8135717a0bdb1cda4a062a030177d0119561d91542aec5744b"
|
||||||
|
}
|
||||||
6
convert/testdata/gemma-2-9b-it.json
vendored
Normal file
6
convert/testdata/gemma-2-9b-it.json
vendored
Normal file
@@ -0,0 +1,6 @@
|
|||||||
|
{
|
||||||
|
"general.architecture": "gemma2",
|
||||||
|
"gemma2.attention.sliding_window": "4096",
|
||||||
|
"gemma2.attn_logit_softcapping": "50",
|
||||||
|
"gemma2.final_logit_softcapping": "30"
|
||||||
|
}
|
||||||
188
convert/testdata/gemma-2b-it.json
vendored
Normal file
188
convert/testdata/gemma-2b-it.json
vendored
Normal file
@@ -0,0 +1,188 @@
|
|||||||
|
{
|
||||||
|
"general.architecture": "gemma",
|
||||||
|
"general.file_type": "1",
|
||||||
|
"general.quantization_version": "2",
|
||||||
|
"gemma.block_count": "18",
|
||||||
|
"gemma.context_length": "8192",
|
||||||
|
"gemma.embedding_length": "2048",
|
||||||
|
"gemma.feed_forward_length": "16384",
|
||||||
|
"gemma.attention.head_count": "8",
|
||||||
|
"gemma.attention.head_count_kv": "1",
|
||||||
|
"gemma.attention.key_length": "256",
|
||||||
|
"gemma.attention.value_length": "256",
|
||||||
|
"gemma.attention.layer_norm_rms_epsilon": "1e-06",
|
||||||
|
"tokenizer.ggml.model": "llama",
|
||||||
|
"tokenizer.ggml.add_bos_token": "true",
|
||||||
|
"tokenizer.ggml.add_eos_token": "false",
|
||||||
|
"tokenizer.ggml.bos_token_id": "2",
|
||||||
|
"tokenizer.ggml.eos_token_id": "1",
|
||||||
|
"tokenizer.ggml.padding_token_id": "0",
|
||||||
|
"tokenizer.ggml.unknown_token_id": "3",
|
||||||
|
"tokenizer.ggml.scores": "0872465d173867d755d3ee728f882b9dc2057a0bfd596fe1e3d131522f1250d8",
|
||||||
|
"tokenizer.ggml.token_type": "485e40bf3d715a4764818fc097d6a2a41db872d82ee714bc500872a3437ff48d",
|
||||||
|
"tokenizer.ggml.tokens": "c6e66de1841f04de8b8d236d461ab720a4c9b9b5414dc293a09c6e10eab45fda",
|
||||||
|
"token_embd.weight": "17b87ab2c01c80657855a5413d0457b4a041afaeda0cc785080e44e2f04acf07",
|
||||||
|
"blk.0.attn_k.weight": "28ac0da05754ad2714ae95da28a5ad191192140b30b8fd22d108d4700c9d989f",
|
||||||
|
"blk.0.attn_norm.weight": "3f9d5675d1ab0eb8a816719dac9fab81f2e95c52be02c34263339acbc087febb",
|
||||||
|
"blk.0.attn_output.weight": "703295c2c63990ff896778685c678f145298886f680f3ed5dc2a7ad54c293265",
|
||||||
|
"blk.0.attn_q.weight": "69c2d0e4870e9d722a190d356203c9605575a16863466c3d1747966ef1cf5791",
|
||||||
|
"blk.0.attn_v.weight": "95219c9c07b5ffe9a9a01e456d845eef2b11f4fc12c93dbbba479db395444c13",
|
||||||
|
"blk.0.ffn_down.weight": "a2feb5eb3d572c57c5bafbf0ab506862df1160fe40965dcfe4b9fd855c08bed7",
|
||||||
|
"blk.0.ffn_gate.weight": "fcca072c445c31f4dc4d5dfaa785b1bdf7271342442099b74fd17268b5829fbf",
|
||||||
|
"blk.0.ffn_norm.weight": "7621f95dbd245cade6fffd6b08797d69d8e3954e960f0b5551b90d967ab95448",
|
||||||
|
"blk.0.ffn_up.weight": "14a9bcdd451403c67136391e1b6e53b3b1830f00199bd911dbcc56d8749c14f4",
|
||||||
|
"blk.1.attn_k.weight": "c70f73c5df20579cb44d971164b48b5f0d8d5abdb38b381e7a8b880ba12aa406",
|
||||||
|
"blk.1.attn_norm.weight": "88b6b91f93a1ef83425a7c7dc2a2fbd3b22704a04c64a80061df376ac8c33626",
|
||||||
|
"blk.1.attn_output.weight": "f031a537490c452be3b3bb51e6b7949a636405756e160976a1c070a792ea00ee",
|
||||||
|
"blk.1.attn_q.weight": "bdb23214b1cf9cfd30f863a0a5868e52c6809d93b7e8f44df096a94204d9896a",
|
||||||
|
"blk.1.attn_v.weight": "e9bbc0b05f2c872fb1403f8f938cd1612b502229ee401f12593b1164c61acc00",
|
||||||
|
"blk.1.ffn_down.weight": "5ff53811038b661a7b8f2bfdf213bebfb185ec1a6060b662f063714f33584d79",
|
||||||
|
"blk.1.ffn_gate.weight": "205085c8c951a5c7543b1495183cd96028fb49f67464b3e9862a2693a6077a33",
|
||||||
|
"blk.1.ffn_norm.weight": "798f354fc85afce9625f5d10093a585a966831698a0560e6c9b97ce659eb4b22",
|
||||||
|
"blk.1.ffn_up.weight": "db92dc5684cb6e90940e13f4d1da555ed20ba4f8cab1e990ddfd7553e2e91315",
|
||||||
|
"blk.2.attn_k.weight": "ef5ce360c4eed6d00d03ca4761e0f8e4b0af4509978468314be14f3d46621044",
|
||||||
|
"blk.2.attn_norm.weight": "6dadbc05dbd0d3fabb4216affa60a3de1378a82d2859dc90b338cbe70f50d455",
|
||||||
|
"blk.2.attn_output.weight": "6bbf87a966f691bbfd7c8d25629aa4e6710107bd431a667434861febb391edc5",
|
||||||
|
"blk.2.attn_q.weight": "4e575c09ae2de417ce9057ce8b073680e860a24aae13a472b68f101b760752e5",
|
||||||
|
"blk.2.attn_v.weight": "cd33f7f01141e9439afdaf2ea1aaced9feaa335e32a58daa136ebd555d4d96f4",
|
||||||
|
"blk.2.ffn_down.weight": "b970ff1b0b6494165defe2fbfa1d31425766ed71e64de9ec4e66ac3955c8bc5f",
|
||||||
|
"blk.2.ffn_gate.weight": "dbb3e1360402e0e369b101995bb686b73f95d4a7673f061be85d64d15dfb0061",
|
||||||
|
"blk.2.ffn_norm.weight": "bfb7980105d8ac9647710454f57a5cdac50598a0f6f4884e16f1d94b00844687",
|
||||||
|
"blk.2.ffn_up.weight": "50ef89339b275a438b664686f6227dd9b6e43853ed6856ec9e33ef4bbd90bda1",
|
||||||
|
"blk.3.attn_k.weight": "be942ea98151434eebcd2c1da4b00e0146152fe524a530689b1fd491cb833d21",
|
||||||
|
"blk.3.attn_norm.weight": "0df2f218daf609c289fb7c60c5f375fa99c0d4e04381ad5a494a19144edd8e20",
|
||||||
|
"blk.3.attn_output.weight": "c2184aaf86aa2cb8f47be49f60b165834e97205f39c6ee1dfd19fd4411a156ce",
|
||||||
|
"blk.3.attn_q.weight": "4f86e2a0a4221c1c84ff9c409ac89893cb95d7208cf65bf1e98e24e01125f991",
|
||||||
|
"blk.3.attn_v.weight": "abfdb8a60c349dadde641d1afc9542025e24fbf41a3238bfa9675e0b1f1e4b68",
|
||||||
|
"blk.3.ffn_down.weight": "58821a8d87008d47d122427911c6fad5272aca70c448bbae223256a74bacd07e",
|
||||||
|
"blk.3.ffn_gate.weight": "776e051f1a0ddd5c4934e69186683a75ca9a3c8c0f61911bba321fed1dd287d2",
|
||||||
|
"blk.3.ffn_norm.weight": "7f380f29335e28be90bfcfae6f6d69fdf5751211b36d2dd62aa5541ed113e4f2",
|
||||||
|
"blk.3.ffn_up.weight": "fc5ae8d488894cbd4951059675468d227da27871d26e925c9941863841c097ee",
|
||||||
|
"blk.4.attn_k.weight": "14833b078cc4c5137bdd5fdc0538047974ca147a99b0282e1b144440c78bc1db",
|
||||||
|
"blk.4.attn_norm.weight": "0a69957d4a15599fb80ad4753558020804925221457d9a5052926754d3768065",
|
||||||
|
"blk.4.attn_output.weight": "887a49b6130fb6297cf10767207c3dd97191b2cf63723449af9c27bca8dbeda0",
|
||||||
|
"blk.4.attn_q.weight": "51fd577b76764824dd6f0d4891c137ebe4736f591b5ca2793c5fff2be49abbde",
|
||||||
|
"blk.4.attn_v.weight": "1a623c43cf9c509d1b7ea0d1a5c04d0af4809665f9f9e93b7d6dba8c5df178fa",
|
||||||
|
"blk.4.ffn_down.weight": "5d61e8856d8941d2b1fd138116d015f63840d0fa1e31e20e20a5ceca1536ceec",
|
||||||
|
"blk.4.ffn_gate.weight": "06640f7273764f8ca5df7e386547417916b6cd7d565a8343153113239a94b0a1",
|
||||||
|
"blk.4.ffn_norm.weight": "91a6c6c41b894228e361435ecbc5058dca34d4911a23da5b56de219299c964d3",
|
||||||
|
"blk.4.ffn_up.weight": "d016dac1055e36d6a10b6317e57f98a904709ea892ef3194342f4d2f6326561e",
|
||||||
|
"blk.5.attn_k.weight": "987146afe124131500808cc0da33c06d207433656d41df6e6d8c99118a83bac5",
|
||||||
|
"blk.5.attn_norm.weight": "6b354938966f2608a2fb8d0f5b363ed0d8b0967c2ec8d0abd5c625b413042ded",
|
||||||
|
"blk.5.attn_output.weight": "cdcbfe02c6ff79d5326882b017a02099f5af71beedf6b1b3eb4de01e3a844536",
|
||||||
|
"blk.5.attn_q.weight": "b910d0cff781d3efb42eab0a302f46f286b2de717079175680d5b42bf8c309c8",
|
||||||
|
"blk.5.attn_v.weight": "66d3a279f747412f9f4b0e8abad44540c122ab2e811a7ee74c1f33bc36caade9",
|
||||||
|
"blk.5.ffn_down.weight": "c9b0efd2212981f16d956d8571f054b68780ad01f4917033647e359b557a4653",
|
||||||
|
"blk.5.ffn_gate.weight": "fe96b94109ca141c01f6a04788e20783019ca6ec334aa1f3134810bdb499e557",
|
||||||
|
"blk.5.ffn_norm.weight": "aa7b016e832e7055a36c6e20de58ea1936f995f390401fff1c5fc65906064e49",
|
||||||
|
"blk.5.ffn_up.weight": "555ce27c4873d3375394f38ad3b45e3d8848f9d5642dc1602383d0f0a33c2a14",
|
||||||
|
"blk.6.attn_k.weight": "88280d461db324c4f36475ce396793063e61a27283ec64511b0480890fb5b3b4",
|
||||||
|
"blk.6.attn_norm.weight": "af8f460c411f660d33196286d208f1845fd5a2b45f7b56549a4df31e7515447a",
|
||||||
|
"blk.6.attn_output.weight": "dd9996fb0a256e8375ad3917705258a33fce006bcea0f536caae420a77974d8b",
|
||||||
|
"blk.6.attn_q.weight": "7a4841541191e037cfb9b07930c4d8cab451809658b182f0ada6ccde9615c003",
|
||||||
|
"blk.6.attn_v.weight": "ae81e6a592b64d701a9d40233e986039a56cba8d8d24f61aea93c6393cf3078a",
|
||||||
|
"blk.6.ffn_down.weight": "622dd1ce1706355cbc659a8ab2c4509678ffe0f3ad34258e5e25ed2a5d951bcd",
|
||||||
|
"blk.6.ffn_gate.weight": "8389a735c0bd5591010f8ced9805a2a12c749f6df0d3c18ad4d05c2a302e7168",
|
||||||
|
"blk.6.ffn_norm.weight": "621f5346400382474d61358397bd58fb1459b07c53e376e4bca15e08b3f9b3fb",
|
||||||
|
"blk.6.ffn_up.weight": "8d834e4c42f13c251dfee36cf89e12f1bd400680d00d5c2e6cac0459e9ce2f7f",
|
||||||
|
"blk.7.attn_k.weight": "8bd0412de65a3e64901ef8fe6a28c95e116bf39dc9aa22f0126b9d36688e5ea7",
|
||||||
|
"blk.7.attn_norm.weight": "056d8e56be4e87d6dc6f900762f0dc6fde07bfdc50dd85bfc510415e2bba3f3d",
|
||||||
|
"blk.7.attn_output.weight": "27972eda51da53d416ff95aed78149a2c5a287b47d2cd46f2f544ca692ecb3bb",
|
||||||
|
"blk.7.attn_q.weight": "41eca977b9371f7932800c11a9c45b931310196919e2a0651b847703b180fc7f",
|
||||||
|
"blk.7.attn_v.weight": "13c74fd7e07f08883a09fb070a1fe5bbdd2341b4cb8d1cac07c4b637049b5774",
|
||||||
|
"blk.7.ffn_down.weight": "9e75db42468800849a9a7da603d0072c5e86c8ed2b4d8b20a312a51fb86a7a10",
|
||||||
|
"blk.7.ffn_gate.weight": "db6bdc3117f910088aaf7db51f2da63ea5bd933de36af5599c215bfb26f7db2b",
|
||||||
|
"blk.7.ffn_norm.weight": "48bb82b49bfc8679a1e77f282ee182d952db7a3c11be7ef9a102ee2ddd8011e2",
|
||||||
|
"blk.7.ffn_up.weight": "feebea87175817a0f3585ec0af09dc873d94c203581ae97a712eb356d3b49efe",
|
||||||
|
"blk.8.attn_k.weight": "d5640ad71b6af68d88e17bf8e7fc26c907d2262605457a84247dd9afc2884d69",
|
||||||
|
"blk.8.attn_norm.weight": "75b850c481a69083ae09d0207ba7317b37c735a39fcf5fef5400e6c84fb1257f",
|
||||||
|
"blk.8.attn_output.weight": "cbd669dbdea2bdd90f9f0cc97566b3dffff3c56cecb4f47290ceef30da83b2d6",
|
||||||
|
"blk.8.attn_q.weight": "9edcb63087a431bac361822497e6ecdaa06d9ea4a1a754e36da7ba9f8db81c7c",
|
||||||
|
"blk.8.attn_v.weight": "3fb72c2c4f95a83626aa3e30062f9450b09ab37c7871e229f18bbc5cf744633c",
|
||||||
|
"blk.8.ffn_down.weight": "bd69d2c9172974fff154441b237b4787fb53b2d185325442d5048130ef5bc4ef",
|
||||||
|
"blk.8.ffn_gate.weight": "d04689c80553edd011d1cbaa5d570fffa7fa91e88b66cf1352d89ab60b72f908",
|
||||||
|
"blk.8.ffn_norm.weight": "e49984183b735b7f2c4e4730c289eed9394056d2e283a00fd83ea0915df31a73",
|
||||||
|
"blk.8.ffn_up.weight": "8fe62a1ce8e847e567add6c6f6bf2922bc467495b5eb4c116b3cb85b85b3b211",
|
||||||
|
"blk.9.attn_k.weight": "d90904959e5004cf0d6e729c6bff18cc33c094798b802473c1ec55ab8d276183",
|
||||||
|
"blk.9.attn_norm.weight": "79277f290cc07411115d8fa138045edf4a17b3416ab2145409cbe8ab829fd4ee",
|
||||||
|
"blk.9.attn_output.weight": "5a21bf2e1f09a81405025f96d4153ffb630158e17269cff8ffff935c38ceb1a7",
|
||||||
|
"blk.9.attn_q.weight": "51b1d0febc3b350945be4504f55afa4347517bde0f710e1a4b88e6b17e71e7c7",
|
||||||
|
"blk.9.attn_v.weight": "aab7e1db0a8b50a03036356791ffce736ab010d15674c96eaef8049d80076054",
|
||||||
|
"blk.9.ffn_down.weight": "cbf43ec84becb40c9359a181ab0e641fd7faae7d34b549501f7cfb7afdc3d764",
|
||||||
|
"blk.9.ffn_gate.weight": "dce0e8661c778327bed7f03b6790d26710764188aed9dc746e6e05863891fa57",
|
||||||
|
"blk.9.ffn_norm.weight": "6d41642104f995c77bf31122b13237caebda3e7fcccb1367ce91db36b015e923",
|
||||||
|
"blk.9.ffn_up.weight": "82fe4c67bf24e7b2d6f6e05f7b1234c2bf90c3932951091a9066211b8e15ecbb",
|
||||||
|
"blk.10.attn_k.weight": "f6a9ed8fd8d3229b5d03175c413ffc56a07f2ce7236271986361dd3d8993f9aa",
|
||||||
|
"blk.10.attn_norm.weight": "cebbef89f0326ca8e02df3867a571e4d61c20c2a12f295f98ae590d62bc86010",
|
||||||
|
"blk.10.attn_output.weight": "34f5efb86accb4f06347d83a32558ea8eab3039d128969161a741ebacbb656ff",
|
||||||
|
"blk.10.attn_q.weight": "1e0efe27df2d5d50f7157253ba2cfd436d6781c3dc78ca176d0c16a210b5b763",
|
||||||
|
"blk.10.attn_v.weight": "8f085bf50a2b0f83cd6cdda3c8ef5a9e204a36348ed95871aac725d1f68640cf",
|
||||||
|
"blk.10.ffn_down.weight": "bf3b3cb4cace435809ac7b4cc933f20853af12f1f272d3dcefe7f19c0f203b8b",
|
||||||
|
"blk.10.ffn_gate.weight": "d3df7a1413b1c5adf1a1dcda9e5225a15c89874bae53bb6137ad1ea42fca2d34",
|
||||||
|
"blk.10.ffn_norm.weight": "a1da603b0480471b5ed8e862148cecd5fed918f8304d6933ab0bdb25b8d2fb8f",
|
||||||
|
"blk.10.ffn_up.weight": "bffbba605922e972dc47dda88a0b4659aa52236c76e5fe861a949e6d9a367492",
|
||||||
|
"blk.11.attn_k.weight": "9f31c63d66cd32c29b1eb8bb829d0c8525ce2ae936e0eefdaab6335a2d12a3df",
|
||||||
|
"blk.11.attn_norm.weight": "0bde1a266d8b2e8f202bb7e2e88b19147ca83021901f6d3cae77a4df5548c754",
|
||||||
|
"blk.11.attn_output.weight": "e10725c7cf746ed4a7e472cf7aea6cb564e5db6a1d5197adc980d650a387ccea",
|
||||||
|
"blk.11.attn_q.weight": "05ee758a7d065802630f8c65dca424364c1c8825e389aa33f9405c45e8a50cce",
|
||||||
|
"blk.11.attn_v.weight": "0c3ae7090f11775d24c51120db6e305db6aff706493e7ee123dcab74485ba789",
|
||||||
|
"blk.11.ffn_down.weight": "7ba40b8e12c09c5fb2006b77a771cb01ce894e88a3b3e1877f927a5b89c91709",
|
||||||
|
"blk.11.ffn_gate.weight": "db76388a023b98097972d354ba1c6a5e26efdeb1c596b9c28bf2cd8f6596975e",
|
||||||
|
"blk.11.ffn_norm.weight": "a38c3ae1b89a68ddc7b72c99c5b28be7fe3787c4fad9904d0c43d64eaf00c474",
|
||||||
|
"blk.11.ffn_up.weight": "13c8142f9cf1eddc658babf978daf3515c4ccc45f849f3e7e3930aa18a8480a0",
|
||||||
|
"blk.12.attn_k.weight": "f03241c36ac87cb57429a2ef22186b8d7d0b590a8b173beb01fa13d93772f3b1",
|
||||||
|
"blk.12.attn_norm.weight": "4568f654e6d65104d586e7c16ba960c83428698ce103022b7e0be15e2884e13b",
|
||||||
|
"blk.12.attn_output.weight": "04867603f82f91e41306e09b33ecda0104b3ee4834061f2c0bbdc8da33c72509",
|
||||||
|
"blk.12.attn_q.weight": "70fe04b9a8e08b6100cc8d6b58bf4cbbad15ca1de82d63baca5d352ba6c4cbae",
|
||||||
|
"blk.12.attn_v.weight": "15cb28db61a86c98687991d7e611bc92a1fcc6007f3432149cfb5fe518a4f65e",
|
||||||
|
"blk.12.ffn_down.weight": "6d10c790a4e3dc44c2dc36d96251ae97cdf30a4fa04d4c43e31bfbd038e6a7b7",
|
||||||
|
"blk.12.ffn_gate.weight": "3462a2d8f6b4743b25e24da51b90018ac2858d05ac7e582bcb69063cfdac1104",
|
||||||
|
"blk.12.ffn_norm.weight": "1f96392c1faa34e34ae5dea55a6a86c5aa4c79758952075d53d28de89dd88456",
|
||||||
|
"blk.12.ffn_up.weight": "d22eacc612a7411953d948483c5fb201e11722955ee0754da866e7bec578ac6d",
|
||||||
|
"blk.13.attn_k.weight": "5864977e6b733ea942647d6feed5c76156c48c200649c22e4e11b9e5860e57f3",
|
||||||
|
"blk.13.attn_norm.weight": "87e053535144723db4145aa5402acc54331b7696752d852bb9fc542ff33f0fb5",
|
||||||
|
"blk.13.attn_output.weight": "078145f5ad83f8b14f97a869346f7fd1583b24d1e3edadaa95d3da4242973f8f",
|
||||||
|
"blk.13.attn_q.weight": "3b8caf35504cbc4d1a7dd6e011a95760703b7f71e2218b030b1254f811362dd7",
|
||||||
|
"blk.13.attn_v.weight": "4fdf8365a603e043e5b40c4a21c84ac167f9be62794178f9d8a608dfe5653bf9",
|
||||||
|
"blk.13.ffn_down.weight": "a07d3abbfcacf48ba028df2cab895be32cc15022d23389a745286e79c1b1d1fd",
|
||||||
|
"blk.13.ffn_gate.weight": "1d2ab39666aa2909acc96787432a3ed13b19d25170f74665fadff9b17bbaffb1",
|
||||||
|
"blk.13.ffn_norm.weight": "4f2e809fda5f3eadf52578ee50e0ba36e53be91e55dce418c12dfe595f5f18e7",
|
||||||
|
"blk.13.ffn_up.weight": "8783d2720c2c37ca176a5801e0b3ef1f9cc9cf3ef1cd37af423aaf6b2a27e2bd",
|
||||||
|
"blk.14.attn_k.weight": "ce9428e2b55d43ae0c6690dbd56182f99adc427694ba8236b405cc8ea5035e86",
|
||||||
|
"blk.14.attn_norm.weight": "6abb35f9db8251d6ae954bda147c6ada2371b0574d11702e828f3c6ac99b7cc0",
|
||||||
|
"blk.14.attn_output.weight": "fe3880916d0ceb5bff672c88bbefb7060a545be609bf049beb2024b38221836d",
|
||||||
|
"blk.14.attn_q.weight": "7c8ad81be6f4a350931fd108b5f7c9e366e8c26ef62d1d85ffef5dca8fd893f8",
|
||||||
|
"blk.14.attn_v.weight": "e4bdedffacbebe38567a0734dfd67db90e911d9a9669fcde9a7c4ad8a0066c52",
|
||||||
|
"blk.14.ffn_down.weight": "ef6694dff1e05820aac0cd2b22f39ac7788b4967afc9250775575554c66aab2c",
|
||||||
|
"blk.14.ffn_gate.weight": "db63c4179e2db704bc505e2b4696e055b593e295a1b7c4c586fc793bdd5aab19",
|
||||||
|
"blk.14.ffn_norm.weight": "2796a62d832a9710148f95d533320492a33e712b2e5218659c548705bd11684d",
|
||||||
|
"blk.14.ffn_up.weight": "3f78c78d8c2d54df45f799d4ff902316628af296834afe4ceed63d4a324ff03e",
|
||||||
|
"blk.15.attn_k.weight": "6e810ee3859e07695645ee0c9a5efc7962668984a5f0a9325f47e462743b447c",
|
||||||
|
"blk.15.attn_norm.weight": "0956b576ae96db0b28cb09f761f801cfd9281432284664f0fe181c8d9c55d1ec",
|
||||||
|
"blk.15.attn_output.weight": "03a17f7e94208177aace5cc41b7f54670ba57873b7274ff6e23caf58cce110ca",
|
||||||
|
"blk.15.attn_q.weight": "b8edafe7d2216a6f8b4ae4905a906475490e6ea418f6e1d3cec563dbdc6fab91",
|
||||||
|
"blk.15.attn_v.weight": "f8ae8cae0f4cfa34a459824eba57350c3c248104ba5607e7d9dc7d7c39aaf4a6",
|
||||||
|
"blk.15.ffn_down.weight": "8d02eb439da852246d2ca67e9b7b6de0b090b80744355e64728a23e41926505b",
|
||||||
|
"blk.15.ffn_gate.weight": "ed5bf361c67db8731f186b775826f21c33bdb521111fd2d922539719a770239f",
|
||||||
|
"blk.15.ffn_norm.weight": "5942ca3c73209ac9a0c8bfd9b4aab7f7be7aee9aa12d9c35833493b44af76767",
|
||||||
|
"blk.15.ffn_up.weight": "f4bebf4ad99ec5f911327dec347be6c595814885309c7bc5647ce28c7f4d1cf5",
|
||||||
|
"blk.16.attn_k.weight": "756a534c19364448e0958b8948fe33891c6ccda0fbb4dfa2024e1f532a87804b",
|
||||||
|
"blk.16.attn_norm.weight": "386b7b9e4e6509f6af9c022d942b6c6c6cc136aeed8751ecb037c74d7c4bfb93",
|
||||||
|
"blk.16.attn_output.weight": "3ba1a766a25830b84d7c22178203635f9c5624caad290bc5e5d73da5d5e7a2ec",
|
||||||
|
"blk.16.attn_q.weight": "d39b0c91e1fda7685d50a0f7cc8d18c44b5bdc90a142c7fda0bc329cca1afa74",
|
||||||
|
"blk.16.attn_v.weight": "98b33fcb0ee3483cff1b06ecb44d7b7ffb4d34c268248e4d73dfdf82b2065b2f",
|
||||||
|
"blk.16.ffn_down.weight": "14006f5e4acb2f9416271ae562e299359cd2585739c7fc77ccbca54495563948",
|
||||||
|
"blk.16.ffn_gate.weight": "12f8abae2d301d8f88bedb6af98b1daecc7b0b8d05148594f931f30958d77aca",
|
||||||
|
"blk.16.ffn_norm.weight": "129a15a046ee96d06de288bd43c80f77a6b0fb3a159c7367154c6e4aaf362672",
|
||||||
|
"blk.16.ffn_up.weight": "b4a5911a45f3871ef1d4efb7dc7108645a564b70f818eccf45beebef2e844ee9",
|
||||||
|
"blk.17.attn_k.weight": "5e1bfcff0146ebdde3817b656952892eb671e14e75afc92fa53f84f8eecbec4c",
|
||||||
|
"blk.17.attn_norm.weight": "60bc988fab7c4b29ee9de599df41a8de00caa94fcd74677da011fac82f60f465",
|
||||||
|
"blk.17.attn_output.weight": "ba49b40d6a0b5685f749c24b0edbed3adc44dbe13b5d5e5fa1e56169fc746555",
|
||||||
|
"blk.17.attn_q.weight": "82bb415d24efcd14d03ace03f907bb70db6a204c76a0bdd1892e0fba165db87d",
|
||||||
|
"blk.17.attn_v.weight": "73dbe54beb91a899884e275ea81ffc5187a20cb7d5b68d5c299b783096999d94",
|
||||||
|
"blk.17.ffn_down.weight": "7c086166241e0664f8963fd1ca4ed74c737abfb2525ec20f8435821ff50158f3",
|
||||||
|
"blk.17.ffn_gate.weight": "51a32f78244d42a539f619c5ce661db9e6cf41636280a826d439b5444edcd28c",
|
||||||
|
"blk.17.ffn_norm.weight": "c4bb247fccd1ecc84875028af63dd20aaf5cbd17eb94a9bc36679c09285dccab",
|
||||||
|
"blk.17.ffn_up.weight": "b5886182790bc6fbadd63de9bc4ffee416f3b69a66280d197ab8c18edf769abf",
|
||||||
|
"output_norm.weight": "481f3097d0a20412e35b3a739b1b958487bcd41ff67744baa3c9acbddd2ee4d4"
|
||||||
|
}
|
||||||
299
convert/tokenizer.go
Normal file
299
convert/tokenizer.go
Normal file
@@ -0,0 +1,299 @@
|
|||||||
|
package convert
|
||||||
|
|
||||||
|
import (
|
||||||
|
"crypto/sha256"
|
||||||
|
"encoding/hex"
|
||||||
|
"encoding/json"
|
||||||
|
"errors"
|
||||||
|
"fmt"
|
||||||
|
"io/fs"
|
||||||
|
"log/slog"
|
||||||
|
"os"
|
||||||
|
"slices"
|
||||||
|
"strings"
|
||||||
|
|
||||||
|
"golang.org/x/exp/maps"
|
||||||
|
)
|
||||||
|
|
||||||
|
const (
|
||||||
|
_ int32 = iota
|
||||||
|
tokenTypeNormal
|
||||||
|
tokenTypeUnknown
|
||||||
|
tokenTypeControl
|
||||||
|
tokenTypeUserDefined
|
||||||
|
tokenTypeUnused
|
||||||
|
tokenTypeByte
|
||||||
|
)
|
||||||
|
|
||||||
|
type Tokenizer struct {
|
||||||
|
*Vocabulary
|
||||||
|
SpecialVocabulary []*SpecialVocabulary
|
||||||
|
Merges []string
|
||||||
|
|
||||||
|
Pre string
|
||||||
|
Template string
|
||||||
|
}
|
||||||
|
|
||||||
|
func parseTokenizer(fsys fs.FS, specialTokenTypes []string) (*Tokenizer, error) {
|
||||||
|
v, err := parseVocabulary(fsys)
|
||||||
|
if err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
t := &Tokenizer{
|
||||||
|
Vocabulary: v,
|
||||||
|
Pre: "default",
|
||||||
|
}
|
||||||
|
|
||||||
|
addedTokens := make(map[string]token)
|
||||||
|
if f, err := fsys.Open("tokenizer.json"); errors.Is(err, os.ErrNotExist) {
|
||||||
|
} else if err != nil {
|
||||||
|
return nil, err
|
||||||
|
} else {
|
||||||
|
defer f.Close()
|
||||||
|
|
||||||
|
var tt tokenizer
|
||||||
|
if err := json.NewDecoder(f).Decode(&tt); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, t := range tt.AddedTokens {
|
||||||
|
addedTokens[t.Content] = t
|
||||||
|
}
|
||||||
|
|
||||||
|
if len(tt.Model.Merges) == 0 {
|
||||||
|
// noop; merges is empty
|
||||||
|
} else if err := json.Unmarshal(tt.Model.Merges, &t.Merges); err == nil {
|
||||||
|
// noop; merges is []string
|
||||||
|
} else if merges, err := func() ([][]string, error) {
|
||||||
|
var merges [][]string
|
||||||
|
if err := json.Unmarshal(tt.Model.Merges, &merges); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
return merges, nil
|
||||||
|
}(); err == nil {
|
||||||
|
t.Merges = make([]string, len(merges))
|
||||||
|
for i := range merges {
|
||||||
|
t.Merges[i] = strings.Join(merges[i], " ")
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
return nil, fmt.Errorf("could not parse tokenizer merges. expected []string or [][]string: %w", err)
|
||||||
|
}
|
||||||
|
|
||||||
|
sha256sum := sha256.New()
|
||||||
|
for _, pt := range tt.PreTokenizer.PreTokenizers {
|
||||||
|
switch pt.Type {
|
||||||
|
case "Split":
|
||||||
|
if pt.Pattern.Regex != "" {
|
||||||
|
// create a checksum of all Split pretokenizers which should be sufficient
|
||||||
|
// to identify the pretokenizer
|
||||||
|
sha256sum.Write([]byte(pt.Pattern.Regex))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
switch digest := hex.EncodeToString(sha256sum.Sum(nil)); digest {
|
||||||
|
case "d98f9631be1e9607a9848c26c1f9eac1aa9fc21ac6ba82a2fc0741af9780a48f":
|
||||||
|
t.Pre = "llama-bpe"
|
||||||
|
case "03df5c5863ad70781dcfdef491ead25140f895fe8010964be0daefe27be32b02":
|
||||||
|
t.Pre = "deepseek-llm"
|
||||||
|
case "21cde974d587f0d54dc8d56b183cc1e6239600172035c68fbd6d4b9f8da0576e":
|
||||||
|
t.Pre = "deepseek-coder"
|
||||||
|
case "1ff7f41064896984db5d1bb6ff64fa4bc29007d08c1b439e505b7392777a319e":
|
||||||
|
t.Pre = "qwen2"
|
||||||
|
case "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855":
|
||||||
|
// noop, empty pretokenizer
|
||||||
|
default:
|
||||||
|
slog.Warn("unknown pretokenizer, using default", "digest", digest)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if f, err := fsys.Open("tokenizer_config.json"); errors.Is(err, os.ErrNotExist) {
|
||||||
|
} else if err != nil {
|
||||||
|
return nil, err
|
||||||
|
} else {
|
||||||
|
defer f.Close()
|
||||||
|
|
||||||
|
var p map[string]json.RawMessage
|
||||||
|
if err := json.NewDecoder(f).Decode(&p); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
if template, ok := p["chat_template"]; ok {
|
||||||
|
var s []struct {
|
||||||
|
Name string `json:"name"`
|
||||||
|
Template string `json:"template"`
|
||||||
|
}
|
||||||
|
if err := json.Unmarshal(template, &t.Template); err == nil {
|
||||||
|
// noop
|
||||||
|
} else if err := json.Unmarshal(template, &s); err == nil {
|
||||||
|
for _, e := range s {
|
||||||
|
if e.Name == "default" {
|
||||||
|
t.Template = e.Template
|
||||||
|
break
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
return nil, fmt.Errorf("invalid chat_template: %w", err)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, st := range specialTokenTypes {
|
||||||
|
sv := SpecialVocabulary{Type: st}
|
||||||
|
if bts, ok := p[fmt.Sprintf("add_%s_token", st)]; ok {
|
||||||
|
if err := json.Unmarshal(bts, &sv.AddToken); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if bts, ok := p[fmt.Sprintf("%s_token", st)]; ok {
|
||||||
|
var content string
|
||||||
|
if err := json.Unmarshal(bts, &content); err != nil {
|
||||||
|
var mm map[string]any
|
||||||
|
if err := json.Unmarshal(bts, &mm); err != nil {
|
||||||
|
continue
|
||||||
|
}
|
||||||
|
|
||||||
|
content, ok = mm["content"].(string)
|
||||||
|
if !ok {
|
||||||
|
continue
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
sv.Content = content
|
||||||
|
}
|
||||||
|
|
||||||
|
if id, ok := addedTokens[sv.Content]; ok {
|
||||||
|
sv.ID = id.ID
|
||||||
|
t.SpecialVocabulary = append(t.SpecialVocabulary, &sv)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return t, nil
|
||||||
|
}
|
||||||
|
|
||||||
|
type tokenizer struct {
|
||||||
|
AddedTokens []token `json:"added_tokens"`
|
||||||
|
Model struct {
|
||||||
|
Type string `json:"type"`
|
||||||
|
Vocab map[string]int `json:"vocab"`
|
||||||
|
Merges json.RawMessage `json:"merges"`
|
||||||
|
} `json:"model"`
|
||||||
|
|
||||||
|
PreTokenizer struct {
|
||||||
|
PreTokenizers []struct {
|
||||||
|
Type string `json:"type"`
|
||||||
|
Pattern struct {
|
||||||
|
Regex string `json:"Regex"`
|
||||||
|
} `json:"pattern"`
|
||||||
|
} `json:"pretokenizers"`
|
||||||
|
} `json:"pre_tokenizer"`
|
||||||
|
}
|
||||||
|
|
||||||
|
type token struct {
|
||||||
|
ID int `json:"id"`
|
||||||
|
Content string `json:"content"`
|
||||||
|
Special bool `json:"special"`
|
||||||
|
UserDefined bool
|
||||||
|
}
|
||||||
|
|
||||||
|
type Vocabulary struct {
|
||||||
|
Model string
|
||||||
|
Tokens []string
|
||||||
|
Scores []float32
|
||||||
|
Types []int32
|
||||||
|
}
|
||||||
|
|
||||||
|
func parseVocabularyFromTokenizer(fsys fs.FS) (*Vocabulary, error) {
|
||||||
|
f, err := fsys.Open("tokenizer.json")
|
||||||
|
if err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
defer f.Close()
|
||||||
|
|
||||||
|
var t tokenizer
|
||||||
|
if err := json.NewDecoder(f).Decode(&t); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
tokens := make(map[int]token, len(t.Model.Vocab))
|
||||||
|
for k, v := range t.Model.Vocab {
|
||||||
|
tokens[v] = token{
|
||||||
|
ID: v,
|
||||||
|
Content: k,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, token := range t.AddedTokens {
|
||||||
|
token.UserDefined = true
|
||||||
|
tokens[token.ID] = token
|
||||||
|
}
|
||||||
|
|
||||||
|
keys := maps.Keys(tokens)
|
||||||
|
slices.Sort(keys)
|
||||||
|
|
||||||
|
v := Vocabulary{Model: "gpt2"}
|
||||||
|
for _, k := range keys {
|
||||||
|
token := tokens[k]
|
||||||
|
v.Tokens = append(v.Tokens, token.Content)
|
||||||
|
v.Scores = append(v.Scores, float32(token.ID))
|
||||||
|
|
||||||
|
switch {
|
||||||
|
case token.Special:
|
||||||
|
v.Types = append(v.Types, tokenTypeControl)
|
||||||
|
case token.UserDefined:
|
||||||
|
v.Types = append(v.Types, tokenTypeUserDefined)
|
||||||
|
default:
|
||||||
|
v.Types = append(v.Types, tokenTypeNormal)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return &v, nil
|
||||||
|
}
|
||||||
|
|
||||||
|
func parseVocabulary(fsys fs.FS) (*Vocabulary, error) {
|
||||||
|
patterns := []struct {
|
||||||
|
Pattern string
|
||||||
|
Func func(fs.FS) (*Vocabulary, error)
|
||||||
|
}{
|
||||||
|
{"tokenizer.model", parseSentencePiece},
|
||||||
|
{"tokenizer.json", parseVocabularyFromTokenizer},
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, pattern := range patterns {
|
||||||
|
if _, err := fs.Stat(fsys, pattern.Pattern); errors.Is(err, os.ErrNotExist) {
|
||||||
|
continue
|
||||||
|
} else if err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
return pattern.Func(fsys)
|
||||||
|
}
|
||||||
|
|
||||||
|
return nil, errors.New("unknown tokenizer format")
|
||||||
|
}
|
||||||
|
|
||||||
|
type SpecialVocabulary struct {
|
||||||
|
Type string
|
||||||
|
ID int
|
||||||
|
Content string
|
||||||
|
AddToken bool
|
||||||
|
}
|
||||||
|
|
||||||
|
func (sv SpecialVocabulary) Key() string {
|
||||||
|
switch t := sv.Type; t {
|
||||||
|
case "bos", "eos", "cls", "mask":
|
||||||
|
return t
|
||||||
|
case "unk":
|
||||||
|
return "unknown"
|
||||||
|
case "sep":
|
||||||
|
//nolint:misspell // this is an upstream typo
|
||||||
|
return "seperator"
|
||||||
|
case "pad":
|
||||||
|
return "padding"
|
||||||
|
}
|
||||||
|
|
||||||
|
panic("unknown special vocabulary type")
|
||||||
|
}
|
||||||
171
convert/tokenizer_spm.go
Normal file
171
convert/tokenizer_spm.go
Normal file
@@ -0,0 +1,171 @@
|
|||||||
|
package convert
|
||||||
|
|
||||||
|
import (
|
||||||
|
"cmp"
|
||||||
|
"encoding/json"
|
||||||
|
"errors"
|
||||||
|
"fmt"
|
||||||
|
"io/fs"
|
||||||
|
"log/slog"
|
||||||
|
"os"
|
||||||
|
"reflect"
|
||||||
|
"slices"
|
||||||
|
|
||||||
|
"google.golang.org/protobuf/proto"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/convert/sentencepiece"
|
||||||
|
)
|
||||||
|
|
||||||
|
func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
|
||||||
|
slog.Debug("using spm vocabulary")
|
||||||
|
|
||||||
|
ast, err := parseAdditionalSpecialTokens(fsys)
|
||||||
|
if err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
bts, err := fs.ReadFile(fsys, "tokenizer.model")
|
||||||
|
if err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
var spm sentencepiece.ModelProto
|
||||||
|
if err := proto.Unmarshal(bts, &spm); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
v := Vocabulary{Model: "llama"}
|
||||||
|
for _, piece := range spm.GetPieces() {
|
||||||
|
v.Tokens = append(v.Tokens, piece.GetPiece())
|
||||||
|
v.Scores = append(v.Scores, piece.GetScore())
|
||||||
|
|
||||||
|
switch t := piece.GetType(); t {
|
||||||
|
case sentencepiece.ModelProto_SentencePiece_UNKNOWN,
|
||||||
|
sentencepiece.ModelProto_SentencePiece_CONTROL,
|
||||||
|
sentencepiece.ModelProto_SentencePiece_UNUSED,
|
||||||
|
sentencepiece.ModelProto_SentencePiece_BYTE:
|
||||||
|
v.Types = append(v.Types, int32(t))
|
||||||
|
default:
|
||||||
|
tt := int32(sentencepiece.ModelProto_SentencePiece_NORMAL)
|
||||||
|
|
||||||
|
// temporary fix to handle gemma3 broken configs
|
||||||
|
if slices.Contains([]string{"<end_of_turn>", "<start_of_turn>"}, piece.GetPiece()) {
|
||||||
|
tt = int32(sentencepiece.ModelProto_SentencePiece_CONTROL)
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, t := range ast {
|
||||||
|
if t.Content == piece.GetPiece() {
|
||||||
|
tt = int32(sentencepiece.ModelProto_SentencePiece_CONTROL)
|
||||||
|
break
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
v.Types = append(v.Types, tt)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
f, err := fsys.Open("added_tokens.json")
|
||||||
|
if errors.Is(err, os.ErrNotExist) {
|
||||||
|
return &v, nil
|
||||||
|
} else if err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
defer f.Close()
|
||||||
|
|
||||||
|
var atm map[string]int
|
||||||
|
if err := json.NewDecoder(f).Decode(&atm); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
type t struct {
|
||||||
|
id int
|
||||||
|
content string
|
||||||
|
}
|
||||||
|
|
||||||
|
var ts []t
|
||||||
|
for content, id := range atm {
|
||||||
|
ts = append(ts, t{id, content})
|
||||||
|
}
|
||||||
|
|
||||||
|
slices.SortFunc(ts, func(i, j t) int {
|
||||||
|
return cmp.Compare(i.id, j.id)
|
||||||
|
})
|
||||||
|
|
||||||
|
for _, t := range ts {
|
||||||
|
if t.id < len(v.Tokens) {
|
||||||
|
if v.Tokens[t.id] == t.content {
|
||||||
|
slog.Warn("tokenizer", "duplicate token", t.content, "id", t.id)
|
||||||
|
continue
|
||||||
|
}
|
||||||
|
return nil, fmt.Errorf("token mismatch: %s != %s at pos [%d]", t.content, v.Tokens[t.id], t.id)
|
||||||
|
}
|
||||||
|
if t.id != len(v.Tokens) {
|
||||||
|
return nil, fmt.Errorf("invalid token id: [%d] as pos [%d]", t.id, len(v.Tokens))
|
||||||
|
}
|
||||||
|
|
||||||
|
v.Tokens = append(v.Tokens, t.content)
|
||||||
|
v.Scores = append(v.Scores, -1000.0)
|
||||||
|
v.Types = append(v.Types, tokenTypeUserDefined)
|
||||||
|
}
|
||||||
|
|
||||||
|
return &v, nil
|
||||||
|
}
|
||||||
|
|
||||||
|
type specialToken struct {
|
||||||
|
Content string `json:"content"`
|
||||||
|
Lstrip bool `json:"lstrip"`
|
||||||
|
Normalized bool `json:"normalized"`
|
||||||
|
Rstrip bool `json:"rstrip"`
|
||||||
|
SingleWord bool `json:"single_word"`
|
||||||
|
}
|
||||||
|
|
||||||
|
func parseAdditionalSpecialTokens(fsys fs.FS) ([]specialToken, error) {
|
||||||
|
f, err := fsys.Open("special_tokens_map.json")
|
||||||
|
if errors.Is(err, os.ErrNotExist) {
|
||||||
|
return nil, nil
|
||||||
|
} else if err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
defer f.Close()
|
||||||
|
|
||||||
|
var m struct {
|
||||||
|
AdditionalSpecialTokens any `json:"additional_special_tokens"`
|
||||||
|
}
|
||||||
|
|
||||||
|
if err := json.NewDecoder(f).Decode(&m); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
var ast []specialToken
|
||||||
|
|
||||||
|
switch st := m.AdditionalSpecialTokens.(type) {
|
||||||
|
case []string:
|
||||||
|
for _, s := range st {
|
||||||
|
ast = append(ast, specialToken{Content: s})
|
||||||
|
}
|
||||||
|
case []any:
|
||||||
|
for _, s := range st {
|
||||||
|
// marshal and unmarshal the object to get the special token
|
||||||
|
tMap := s.(map[string]any)
|
||||||
|
data, err := json.Marshal(tMap)
|
||||||
|
if err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
var token specialToken
|
||||||
|
err = json.Unmarshal(data, &token)
|
||||||
|
if err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
ast = append(ast, token)
|
||||||
|
}
|
||||||
|
|
||||||
|
default:
|
||||||
|
slog.Warn("special token", "unknown token", reflect.TypeOf(st))
|
||||||
|
}
|
||||||
|
|
||||||
|
slog.Debug("spm tokenizer", "additional tokens", ast)
|
||||||
|
|
||||||
|
return ast, nil
|
||||||
|
}
|
||||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user