Compare commits

..

101 Commits

Author SHA1 Message Date
Michael Yang
fcfbb06f1b cmd: handle sigint globally
This change also updates both client.do and client.stream to return
ctx.Err(). Previously this error is skipped so canceled contexts are
silently ignored
2025-02-19 10:46:25 -08:00
Michael Yang
e8d35d0de0 cmd: fix hide cursor
hides the cursor for the entire progress rather than each render cycle
2025-02-19 09:43:44 -08:00
Michael Yang
e13e7c8d94 Merge pull request #9079 from jeremyschlatter/main
cmd: fix flickering in progress bar
2025-02-18 22:59:29 +00:00
Jeremy Schlatter
78f403ff45 address code review comments 2025-02-18 14:50:09 -08:00
Michael Yang
08a299e1d0 cmake: avoid building intel backends on linux 2025-02-18 22:17:00 +00:00
Michael Yang
7b5d916a9a ci: set owner/group in tarball
set owner and group when building the linux tarball so extracted files
are consistent. this is the behaviour of release tarballs in version
0.5.7 and lower
2025-02-18 20:11:09 +00:00
benhaotang
33ad61b112 Add OpenDeepResearcher-via-searxng to Community Integrations (#9138) 2025-02-18 11:39:11 -08:00
L. Jiang
716e365615 test: add test cases for HumanNumber (#9108) 2025-02-18 11:35:26 -08:00
innightwolfsleep
3b4424ff98 readme: add LLM Telegram Bot to community integrations (#9150) 2025-02-18 10:04:30 -05:00
Jeremy Schlatter
f9c7ead160 cmd: eliminate flickering with synchronized output 2025-02-17 20:01:03 -08:00
Jeremy Schlatter
5930aaeb1a cmd: fix cursor flickering in progress bar
The previous commit fixed flickering in the progress bar itself. Cursor
flickering is harder to address.

Cursor flickering could be fixed by hiding the cursor altogether while
the progress bar is displayed. The downside of this is that if the
program is killed in such a way that it can't clean up its state, it
would leave the cursor invisible.

Instead, this commit introduces an output buffer. All of the escape
codes and content for a single progress update are written to a buffer,
which is then flushed to the terminal all at once. This significantly
decreases the time during which the terminal has seen the cursor-hiding
code but has not yet seen the cursor-showing code, thus minimizing (but
not 100% eliminating) cursor flickering.

For more context, see:
https://gitlab.gnome.org/GNOME/vte/-/issues/2837#note_2269501
2025-02-17 14:56:57 -08:00
Jeremy Schlatter
faf67db089 cmd: fix progress bar flickering
Previous code cleared the display before writing new content, creating a
window where the terminal could (and in some cases did) render empty lines.

Instead, we now write new content over the old content, only clearing
the trailing end of lines for cases where the new line is shorter.

Fixes #1664
2025-02-17 13:39:02 -08:00
James-William-Kincaid-III
0667baddc6 docs: fix incorrect shortcut key in windows.md (#9098) 2025-02-15 15:38:24 -05:00
Bruce MacDonald
d006e1e09b model: document high-level model interface (#9122) 2025-02-14 16:01:00 -08:00
Daniel Hiltgen
df2680b4b9 Wire up system info log for new engine (#9123) 2025-02-14 15:55:33 -08:00
Jesse Gross
010313bb63 llamarunner: Init GGML before printing system info
We currently print system info before the GGML backends are loaded.
This results in only getting information about the default lowest
common denominator runner. If we move up the GGML init then we can
see what we are actually running.

Before:
time=2025-02-14T11:15:07.606-08:00 level=INFO source=runner.go:935 msg=system info="CPU : LLAMAFILE = 1 | CPU : LLAMAFILE = 1 | cgo(gcc)" threads=24

After:
time=2025-02-14T11:16:02.936-08:00 level=INFO source=runner.go:935 msg=system info="CPU : LLAMAFILE = 1 | CPU : LLAMAFILE = 1 | CUDA : ARCHS = 890 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | LLAMAFILE = 1 | cgo(gcc)" threads=24
2025-02-14 11:41:53 -08:00
Jeffrey Morgan
5296f487a8 llm: attempt to evaluate symlinks, but do not fail (#9089)
provides a better approach to #9088 that will attempt to
evaluate symlinks (important for macOS where 'ollama' is
often a symlink), but use the result of os.Executable()
as a fallback in scenarios where filepath.EvalSymlinks
fails due to permission erorrs or other issues
2025-02-13 22:37:59 -08:00
Jeffrey Morgan
f05774b04c llm: do not evaluate symlink for exe path lookup (#9088)
In some cases, the directories in the executable path read by
filepath.EvalSymlinks are not accessible, resulting in permission
errors which results in an error when running models. It also
doesn't work well on long paths on windows, also resulting in
errors. This change removes filepath.EvalSymlinks when accessing
os.Executable() altogether
2025-02-13 22:13:00 -08:00
Jeffrey Morgan
6600bd7d91 ml/backend/ggml: stable sort devices by score (#9081) 2025-02-13 18:42:36 -08:00
Jesse Gross
ed443a0393 Runner for Ollama engine
This provides integration with the new Ollama engine
(5824541 next ollama runner (#7913)) and the rest of the Ollama
infrastructure such as the runner and Ollama server.

In addition, it also builds out the KV cache infrastructure to
support requirements of how Ollama runs models such as:
 - Parallel processing
 - Memory management for defragmentation and shifting
 - Multi-modal modals

Both old and new engines continue to be supported. By default, only
the old engine is used. To enable the new engine:

Start the server with the OLLAMA_NEW_ENGINE environment variable set:
OLLAMA_NEW_ENGINE=1 ./ollama serve

Start a model that is supported by the Ollama engine. This one is Llama 3.1 8b Q4_K_M:
./ollama run jessegross/llama3.1
2025-02-13 17:09:26 -08:00
Jesse Gross
6945617af5 models: Move model into their own directory
This allows there to be a file that is a list of models that is
not mixed into the runner code.
2025-02-13 17:09:26 -08:00
Jesse Gross
7916f55009 vocab: Use int32 for special tokens
Special tokens are currently read as uint32 from the model metadata.
However, all other parts of the system (including the tokenizer) use
int32 to represent tokens so it is impossible to represent the high
portion of the unsigned range. For consistency and to avoid casts,
we should just use int32 everywhere.
2025-02-13 17:09:26 -08:00
Jesse Gross
d650ad398f model: Load tensors behind an interface
Currently, if a model uses an interface for its data structures (as mllama
does) then the tensor data in the structs implementing that interface will
not get loaded.
2025-02-13 17:09:26 -08:00
Jesse Gross
d223f3b697 ggml-backend: Close on nil should be a no-op 2025-02-13 17:09:26 -08:00
Jesse Gross
60830695c2 ggml-backend: Ensure data is available after async computation
We need to sync before retrieving data after async computation.
It is also important to ensure that the Go buffer is not moved by
the GC across function calls so we do a synchronous copy.
2025-02-13 17:09:26 -08:00
Jesse Gross
01d9a46854 ggml-backend: Let GGML allocate context memory
Passing in a Go buffer is not safe because the garbage collector could
free or move the memory while the context is still open. However, if
we pass in the size and a nil pointer then GGML will allocate it from
the C side.
2025-02-13 17:09:26 -08:00
Jesse Gross
d773b7d671 backend: API to support full precision matmul
Most tensor backends try to optimize performance by using a lower
precision for matmuls. However, some operations (such as kq) on
some models are sensitive to this and require full precision.
2025-02-13 17:09:26 -08:00
Jesse Gross
4d4463b2bd backend: Support graph computation that does not return an output
There are two cases where we may not have an output after computing:
 - Prompt processing where the length of the input exceeds the batch
   size
 - Internal memory management operations such as cache defrag and shift
2025-02-13 17:09:26 -08:00
Jesse Gross
0e38297f87 backend: Consistently use int (vs. int64) for tensor shapes
Currently there is a mixture of int and int64 used when dealing with
tensor dimensions and shapes, which causes unnecessary conversions -
they all should be the same type.

In general, most interfaces (such as Pytorch) use int64 for
generality but most implementations (such as CUDA) use int32 for
performance. There isn't much benefit to us to being more flexible
than the implementations we are likely to run on.

In addition, as a practical matter, a model with a tensor with a single
dimension larger than 32 bits is unlikely to run on a 32-bit machine.
2025-02-13 17:09:26 -08:00
Jesse Gross
7e13f568dc backend: Don't return an error on Close
It is not common to return errors with close/free operations - most
people won't check it and even if they did there's probably not much
that can do. It's better to not give implementations false expectations.
2025-02-13 17:09:26 -08:00
Michael Yang
58245413f4 next ollama runner (#7913)
feat: add new Ollama engine using ggml through cgo

This change introduces a new way to run pretrained models. It introduces 3 high level interfaces and a bunch of smaller helper interfaces to facilitate this.

- `model.Model` defines the interface for a model architecture. Models such as `llama` and `mllama`, which are provided as examples, can implement the model's forward propagation in the `Forward` method. This method will be called to generate completions. This interface can be found in `model/model.go`
- `ml.Backend` defines the interface for a backend tensor library, in this case `ggml`. Among other things, a Backend is responsible for loading a pretrained model into hardware (GPU, CPU, etc) and providing an interface for Models to access loaded tensors. This interface can be found in `ml/backend.go`
- `ml.Tensor` defines the interface for a tensor and tensor operations

This is the first implementation of the new engine. Follow up PRs will implement more features:

- non-greedy sampling (#8410)
- integration with Ollama and KV caching (#8301)
- more model support (#9080) with more coming soon

Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
2025-02-13 16:31:21 -08:00
Bùi Đức Nhật
8cf16063a5 docs: add ollamazing to the README.md (#9075) 2025-02-13 10:47:09 -08:00
frob
3a4449e2f1 docs: add H200 as supported device. (#9076)
Co-authored-by: Richard Lyons <frob@cloudstaff.com>
2025-02-13 10:44:23 -08:00
Anuraag (Rag) Agrawal
10d59d5f90 openai: finish_reason as tool_calls for streaming with tools (#7963) 2025-02-13 10:20:12 -08:00
Jeffrey Morgan
a4f69a0191 build: add -DGGML_CUDA_NO_PEER_COPY=ON for rocm builds on windows (#9060) 2025-02-13 00:23:17 -08:00
Clinton
82658c3eec readme: add Homebrew to package managers section (#9052) 2025-02-12 11:17:39 -08:00
bloominstrong
378d6e1e6a docs: fix nix package link (#9045)
removing the channel tag from the url so it will always go to the current stable channel.
2025-02-12 09:16:26 -08:00
Hugues Chocart
afa55bc70c doc: fix link for Abso (#9043) 2025-02-12 09:15:08 -08:00
Michael Yang
49df03da9a fix: harden backend loading (#9024)
* wrap ggml_backend_load_best in try/catch
* ignore non-ollama paths
2025-02-11 15:36:53 -08:00
Hugues Chocart
0189bdd0b7 readme: add Abso SDK to community integrations (#8973) 2025-02-11 00:14:45 -08:00
Jeffrey Morgan
f4711da7bd ml/backend/ggml: fix crash on dlopen for non-AVX systems (#8976) 2025-02-10 09:52:12 -08:00
Hugues Chocart
38117fba83 readme: add Lunary to observability community integrations (#8975) 2025-02-09 22:08:46 -08:00
Michael Yang
1f766c36fb ci: use windows-2022 to sign and bundle (#8941)
ollama requires vcruntime140_1.dll which isn't found on 2019. previously
the job used the windows runner (2019) but it explicitly installs
2022 to build the app. since the sign job doesn't actually build
anything, it can use the windows-2022 runner instead.
2025-02-08 13:07:00 -08:00
Qusai Ismael
484a99e428 docs: add LocalLLM app to community integrations (#8953) 2025-02-08 12:28:01 -08:00
DravenK
ec6121c331 docs: ollama zig community lib (#8688) 2025-02-08 11:10:47 -08:00
Jeffrey Morgan
b86c0a1500 docs: link directly to latest release page for tdm-gcc (#8939) 2025-02-08 00:21:10 -08:00
Guddu Kumar
7e402ebb8c readme: add deepseek to supported models 2025-02-07 11:28:28 -08:00
Azis Alvriyanto
b901a712c6 docs: improve syntax highlighting in code blocks (#8854) 2025-02-07 09:55:07 -08:00
Michael Yang
abb8dd57f8 add gfx instinct gpus (#8933) 2025-02-07 09:51:22 -08:00
Leisure Linux
a400df48c0 docs: include port in faq.md OLLAMA_HOST examples (#8905) 2025-02-06 18:45:09 -08:00
annilq
6ab4ba4c26 readme: add React Native client to community integrations (#8877) 2025-02-06 17:15:48 -08:00
CosmicEventHorizon
e8d4eb3e68 readme: add ChibiChat to community integrations (#8883) 2025-02-06 16:08:46 -08:00
Michael Yang
ae7e368f75 build(rocm): add numa, elf (#8900) 2025-02-06 15:46:30 -08:00
oslook
31acd1ebf9 readme: add Ollama Chat WebUI for Docker to community integrations (#8084) 2025-02-06 15:41:02 -08:00
Michael Yang
9a4757ae66 build(rocm): add tinfo (#8899) 2025-02-06 15:08:12 -08:00
Abhinav Pant
7814019708 docs: add step for removing libraries in linux.md (#8897) 2025-02-06 14:54:58 -08:00
Michael Yang
b698f9a0d8 build: add missing dependencies (#8896) 2025-02-06 13:12:16 -08:00
Azis Alvriyanto
32285a6d19 format: rename test file from byte_test.go to bytes_test.go (#8865) 2025-02-06 13:06:15 -08:00
Michael Yang
1c198977ec ci: fix linux archive (#8862)
the find returns intermediate directories which pulls the parent
directories. it also omits files under lib/ollama.

switch back to globbing
2025-02-05 19:45:58 -08:00
zyphixor
330b6c50b0 readme: add simple-discord-ai to community integrations (#8659) 2025-02-05 18:35:04 -08:00
Diego Pereira
928911bc68 runner: avoid buffer overwrite when generating multiple embeddings (#8714)
Shield the code processing the embedding result
from subsequent calls that may overwrite the same
buffer to process a second input when retrieving
model embeddings.
2025-02-05 16:53:33 -08:00
Michael Yang
5b446cc815 chore: update gitattributes (#8860)
* chore: update gitattributes
* chore: add build info source
2025-02-05 16:37:18 -08:00
Daniel Lok
451c1596af readme: add MLflow Tracing as an observability integration (#8811) 2025-02-05 16:04:24 -08:00
Michael Yang
932bded12f chore: add optional field for server logs 2025-02-05 15:55:32 -08:00
Michael Yang
070ad913ac ci: fix linux archive 2025-02-05 15:08:02 -08:00
Azis Alvriyanto
8d8b9f83ae format: byte formatting test coverage (#8692)
Removed redundant checks and streamlined the switch-case structure.
Added test cases for both HumanBytes and HumanBytes2 to cover a wide range of scenarios.
2025-02-05 12:23:07 -08:00
Jeffrey Morgan
f00d359a67 docs: add section in development.md on library detection (#8855) 2025-02-05 11:16:27 -08:00
Yashwanth A
291def6adb server: increase timeout in stall detection from 5s to 30s (#8831)
In some cases, downloads slow due to disk i/o or other factors,
causing the download to restart a part. This causes the download
to "reverse" in percent completion. By increasing the timeout to 30s,
this should happen less frequently.
2025-02-05 10:00:26 -08:00
Jeffrey Morgan
cd3fbf1c49 llama: use dynamic backend loading for mllama and clip (#8835) 2025-02-05 09:46:56 -08:00
Jeffrey Morgan
c852b8e021 server: always print upload/download part info (#8832) 2025-02-04 19:30:49 -08:00
William
d8932c55e7 server: fix out of bounds exception on model download (#8746) 2025-02-04 18:52:47 -08:00
Michael Yang
63f0269f7f ci: split docker build by platform
this improves build reliability and concurrency
2025-02-04 17:04:27 -08:00
Jeffrey Morgan
4759ecae19 ml/backend/ggml: fix library loading on macOS amd64 (#8827) 2025-02-04 15:05:39 -08:00
Michael Yang
65b7ecac7b fix extra quote 2025-02-04 08:35:30 -08:00
Michael Yang
f9d2d89135 fix linux archive 2025-02-03 16:12:33 -08:00
Michael Yang
669dc31cf3 fix build 2025-02-03 15:10:51 -08:00
Tilman Griesel
d4d338c224 readme: add Chipper to community integrations (#8803) 2025-02-03 14:18:19 -08:00
Melroy van den Berg
bfdeffc375 docs: use OLLAMA_VERSION=0.5.7 for install version override (#8802) 2025-02-03 13:54:08 -08:00
Michael Yang
e806184023 fix release workflow 2025-02-03 13:19:57 -08:00
Jeffrey Morgan
50566113ac llm: do not error if LibOllamaPath does not exist (#8801) 2025-02-03 12:27:48 -08:00
Davide Bertoni
ad22ace439 docs: add missing json and shell code blocks in api.md (#8766) 2025-02-02 13:12:55 -08:00
Anıl Kaynar
f4321a421c readme: add MinimalNextOllamaChat to community integrations (#8767) 2025-02-02 12:56:10 -08:00
Michael Yang
475333d533 fix docker build-args
env context is not accessible from job.*.strategy. since it's in the
environment, just tell docker to use the environment variable[1]

[1]: https://docs.docker.com/reference/cli/docker/buildx/build/#build-arg
2025-01-31 14:56:02 -08:00
Michael Yang
39fd89308c build: set CFLAGS=-O3 specifically for cpu.go 2025-01-31 10:25:39 -08:00
Michael Yang
548a9f56a6 Revert "cgo: use O3"
This reverts commit bea1f1fac6.
2025-01-31 10:25:39 -08:00
Michael Yang
3f0cb36bdb build: set goflags in linux release 2025-01-30 13:07:32 -08:00
Michael Yang
bea1f1fac6 cgo: use O3 2025-01-30 12:21:50 -08:00
Jeffrey Morgan
5d75d837ef discover: fix default LibOllamaPath value (#8702) 2025-01-30 12:21:38 -08:00
Parth Sareen
711648c9bb docs: update api.md with streaming with tools is enabled (#8676) 2025-01-29 15:14:30 -08:00
Michael Yang
dcfb7a105c next build (#8539)
* add build to .dockerignore

* test: only build one arch

* add build to .gitignore

* fix ccache path

* filter amdgpu targets

* only filter if autodetecting

* Don't clobber gpu list for default runner

This ensures the GPU specific environment variables are set properly

* explicitly set CXX compiler for HIP

* Update build_windows.ps1

This isn't complete, but is close.  Dependencies are missing, and it only builds the "default" preset.

* build: add ollama subdir

* add .git to .dockerignore

* docs: update development.md

* update build_darwin.sh

* remove unused scripts

* llm: add cwd and build/lib/ollama to library paths

* default DYLD_LIBRARY_PATH to LD_LIBRARY_PATH in runner on macOS

* add additional cmake output vars for msvc

* interim edits to make server detection logic work with dll directories like lib/ollama/cuda_v12

* remove unncessary filepath.Dir, cleanup

* add hardware-specific directory to path

* use absolute server path

* build: linux arm

* cmake install targets

* remove unused files

* ml: visit each library path once

* build: skip cpu variants on arm

* build: install cpu targets

* build: fix workflow

* shorter names

* fix rocblas install

* docs: clean up development.md

* consistent build dir removal in development.md

* silence -Wimplicit-function-declaration build warnings in ggml-cpu

* update readme

* update development readme

* llm: update library lookup logic now that there is one runner (#8587)

* tweak development.md

* update docs

* add windows cuda/rocm tests

---------

Co-authored-by: jmorganca <jmorganca@gmail.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-01-29 15:03:38 -08:00
Xiaofu Huang
2ef3c803a1 readme: add AI Toolkit for VSCode to community integrations (#8604) 2025-01-27 00:36:23 -08:00
Matěj Štágl
453e4d090b readme: add LlmTornado to community integrations (#8551) 2025-01-25 01:04:07 -08:00
Daniel Jalkut
ca2f9843c8 docs: remove reference to the deleted examples folder (#8524) 2025-01-22 22:52:15 -08:00
frob
294b6f5a22 docs: remove tfs_z option from documentation (#8515) 2025-01-21 09:28:59 -08:00
EndoTheDev
7bb356c680 docs: update suspend header in gpu.md (#8487) 2025-01-19 18:45:35 -08:00
Jannik Maierhöfer
021817e59a readme: add link to Langfuse (#8455) 2025-01-16 22:41:12 -08:00
Patrick Devine
a420a453b4 fix default modelfile for create (#8452) 2025-01-16 01:14:04 -08:00
Jeffrey Morgan
42cf4db601 parser: fix parsing Modelfiles with multiple FROM commands (#8449) 2025-01-16 00:14:04 -08:00
Josh
93a8daf285 convert: import support for command-r models from safetensors (#6063)
---------

Co-authored-by: Patrick Devine <patrick@infrahq.com>
2025-01-15 16:31:22 -08:00
Gloryjaw
a041b4df7c docs: fix path to examples (#8438) 2025-01-15 11:49:12 -08:00
Patrick Devine
2539f2dbf9 Fix absolute path names + gguf detection (#8428) 2025-01-14 19:01:24 -08:00
181 changed files with 478358 additions and 7007 deletions

View File

@@ -3,7 +3,9 @@ ollama
app
macapp
dist
build
.env
.cache
test_data
llama/build
.git

4
.gitattributes vendored
View File

@@ -15,6 +15,10 @@ ml/backend/**/*.cu linguist-vendored
ml/backend/**/*.cuh linguist-vendored
ml/backend/**/*.m linguist-vendored
ml/backend/**/*.metal linguist-vendored
ml/backend/**/CMakeLists.txt linguist-vendored
llama/build-info.cpp linguist-generated
ml/backend/ggml/ggml/src/ggml-metal/ggml-metal-embed.s linguist-generated
* text=auto
*.go text eol=lf

View File

@@ -9,6 +9,14 @@ body:
description: What happened? What did you expect to happen?
validations:
required: true
- type: textarea
id: logs
attributes:
label: Relevant log output
description: Please copy and paste any relevant log output. See [Troubleshooting Guide](https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md#how-to-troubleshoot-issues) for details.
render: shell
validations:
required: false
- type: dropdown
id: os
attributes:

File diff suppressed because it is too large Load Diff

View File

@@ -40,28 +40,106 @@ jobs:
linux:
needs: [changes]
if: ${{ needs.changes.outputs.changed == 'True' }}
if: needs.changes.outputs.changed == 'True'
strategy:
matrix:
include:
- container: nvidia/cuda:11.8.0-devel-ubuntu22.04
preset: CUDA
- container: rocm/dev-ubuntu-22.04:6.1.2
preset: ROCm
- preset: CPU
- preset: CUDA
container: nvidia/cuda:11.8.0-devel-ubuntu22.04
flags: '-DCMAKE_CUDA_ARCHITECTURES=87'
- preset: ROCm
container: rocm/dev-ubuntu-22.04:6.1.2
extra-packages: rocm-libs
runs-on: ubuntu-latest
flags: '-DAMDGPU_TARGETS=gfx1010 -DCMAKE_PREFIX_PATH=/opt/rocm'
runs-on: linux
container: ${{ matrix.container }}
steps:
- uses: actions/checkout@v4
- run: |
apt-get update
apt-get install -y cmake pkg-config ${{ matrix.extra-packages }}
[ -n "${{ matrix.container }}" ] || sudo=sudo
$sudo apt-get update
$sudo apt-get install -y cmake ccache ${{ matrix.extra-packages }}
env:
DEBIAN_FRONTEND: noninteractive
- uses: actions/cache@v4
with:
path: /github/home/.cache/ccache
key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }}
- run: |
cmake --preset ${{ matrix.preset }}
cmake --preset ${{ matrix.preset }} ${{ matrix.flags }}
cmake --build --preset ${{ matrix.preset }} --parallel
windows:
needs: [changes]
if: needs.changes.outputs.changed == 'True'
strategy:
matrix:
include:
- preset: CPU
- preset: CUDA
install: https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_522.06_windows.exe
flags: '-DCMAKE_CUDA_ARCHITECTURES=87'
- preset: ROCm
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe
flags: '-DAMDGPU_TARGETS=gfx1010'
runs-on: windows
steps:
- run: |
choco install -y --no-progress ccache ninja
ccache -o cache_dir=${{ github.workspace }}\.ccache
- if: matrix.preset == 'CUDA' || matrix.preset == 'ROCm'
id: cache-install
uses: actions/cache/restore@v4
with:
path: |
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA
C:\Program Files\AMD\ROCm
key: ${{ matrix.install }}
- if: matrix.preset == 'CUDA'
name: Install CUDA ${{ matrix.cuda-version }}
run: |
$ErrorActionPreference = "Stop"
if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') {
Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe"
Start-Process -FilePath .\install.exe -ArgumentList (@("-s", "cudart_11.8", "nvcc_11.8", "cublas_11.8", "cublas_dev_11.8")) -NoNewWindow -Wait
}
$cudaPath = (Resolve-Path "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\*").path
echo "$cudaPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- if: matrix.preset == 'ROCm'
name: Install ROCm ${{ matrix.rocm-version }}
run: |
$ErrorActionPreference = "Stop"
if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') {
Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe"
Start-Process -FilePath .\install.exe -ArgumentList '-install' -NoNewWindow -Wait
}
$hipPath = (Resolve-Path "C:\Program Files\AMD\ROCm\*").path
echo "$hipPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "CC=$hipPath\bin\clang.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "CXX=$hipPath\bin\clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
- if: ${{ !cancelled() && steps.cache-install.outputs.cache-hit != 'true' }}
uses: actions/cache/save@v4
with:
path: |
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA
C:\Program Files\AMD\ROCm
key: ${{ matrix.install }}
- uses: actions/checkout@v4
- uses: actions/cache@v4
with:
path: ${{ github.workspace }}\.ccache
key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }}
- run: |
Import-Module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -VsInstallPath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -SkipAutomaticLocation -DevCmdArguments '-arch=x64 -no_logo'
cmake --preset "${{ matrix.preset }}" ${{ matrix.flags }}
cmake --build --parallel --preset "${{ matrix.preset }}"
env:
CMAKE_GENERATOR: Ninja
test:
strategy:
matrix:
@@ -85,5 +163,5 @@ jobs:
- uses: actions/checkout@v4
- name: Verify patches apply cleanly and do not change files
run: |
make -f Makefile2 clean checkout sync
make -f Makefile.sync clean sync
git diff --compact-summary --exit-code

5
.gitignore vendored
View File

@@ -4,12 +4,13 @@
.venv
.swp
dist
build
ollama
.cache
*.exe
.idea
test_data
*.crt
llama/build
__debug_bin*
llama/vendor
llama/build
llama/vendor

View File

@@ -19,11 +19,30 @@ set(GGML_CCACHE ON)
set(GGML_BACKEND_DL ON)
set(GGML_BACKEND_SHARED ON)
set(GGML_SCHED_MAX_COPIES 4)
set(GGML_CPU_ALL_VARIANTS ON)
set(GGML_CUDA_PEER_MAX_BATCH_SIZE 128)
set(GGML_LLAMAFILE ON)
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/lib)
set(GGML_LLAMAFILE ON)
set(GGML_CUDA_PEER_MAX_BATCH_SIZE 128)
set(GGML_CUDA_GRAPHS ON)
if((CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_OSX_ARCHITECTURES MATCHES "arm64")
OR (NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_SYSTEM_PROCESSOR MATCHES "arm|aarch64|ARM64|ARMv[0-9]+"))
set(GGML_CPU_ALL_VARIANTS ON)
endif()
if (CMAKE_OSX_ARCHITECTURES MATCHES "x86_64")
set(CMAKE_BUILD_RPATH "@loader_path")
set(CMAKE_INSTALL_RPATH "@loader_path")
endif()
set(OLLAMA_BUILD_DIR ${CMAKE_BINARY_DIR}/lib/ollama)
set(OLLAMA_INSTALL_DIR ${CMAKE_INSTALL_PREFIX}/lib/ollama)
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${OLLAMA_BUILD_DIR})
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY_DEBUG ${OLLAMA_BUILD_DIR})
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY_RELEASE ${OLLAMA_BUILD_DIR})
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${OLLAMA_BUILD_DIR})
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY_DEBUG ${OLLAMA_BUILD_DIR})
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY_RELEASE ${OLLAMA_BUILD_DIR})
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src)
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/include)
@@ -34,12 +53,77 @@ set(GGML_CPU ON)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src)
set_property(TARGET ggml PROPERTY EXCLUDE_FROM_ALL TRUE)
get_target_property(CPU_VARIANTS ggml-cpu MANUALLY_ADDED_DEPENDENCIES)
if(NOT CPU_VARIANTS)
set(CPU_VARIANTS "ggml-cpu")
endif()
install(TARGETS ggml-base ${CPU_VARIANTS}
RUNTIME_DEPENDENCIES
PRE_EXCLUDE_REGEXES ".*"
RUNTIME DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT CPU
LIBRARY DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT CPU
FRAMEWORK DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT CPU
)
check_language(CUDA)
if(CMAKE_CUDA_COMPILER)
if(CMAKE_VERSION VERSION_GREATER_EQUAL "3.24" AND NOT CMAKE_CUDA_ARCHITECTURES)
set(CMAKE_CUDA_ARCHITECTURES "native")
endif()
find_package(CUDAToolkit)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cuda)
set(OLLAMA_CUDA_INSTALL_DIR ${OLLAMA_INSTALL_DIR}/cuda_v${CUDAToolkit_VERSION_MAJOR})
install(TARGETS ggml-cuda
RUNTIME_DEPENDENCIES
DIRECTORIES ${CUDAToolkit_BIN_DIR} ${CUDAToolkit_LIBRARY_DIR}
PRE_INCLUDE_REGEXES cublas cublasLt cudart
PRE_EXCLUDE_REGEXES ".*"
RUNTIME DESTINATION ${OLLAMA_CUDA_INSTALL_DIR} COMPONENT CUDA
LIBRARY DESTINATION ${OLLAMA_CUDA_INSTALL_DIR} COMPONENT CUDA
)
endif()
set(WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX "^gfx(906|908|90a):xnack[+-]$"
CACHE STRING
"Regular expression describing AMDGPU_TARGETS not supported on Windows. Override to force building these targets. Default \"^gfx(906|908|90a):xnack[+-]$\"."
)
check_language(HIP)
if(CMAKE_HIP_COMPILER)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-hip)
set(HIP_PLATFORM "amd")
find_package(hip REQUIRED)
if(NOT AMDGPU_TARGETS)
list(FILTER AMDGPU_TARGETS INCLUDE REGEX "^gfx(900|94[012]|101[02]|1030|110[012])$")
elseif(WIN32 AND WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX)
list(FILTER AMDGPU_TARGETS EXCLUDE REGEX ${WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX})
endif()
if(AMDGPU_TARGETS)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-hip)
if (WIN32)
target_compile_definitions(ggml-hip PRIVATE GGML_CUDA_NO_PEER_COPY=1)
endif()
set(OLLAMA_HIP_INSTALL_DIR ${OLLAMA_INSTALL_DIR}/rocm)
install(TARGETS ggml-hip
RUNTIME_DEPENDENCIES
DIRECTORIES ${HIP_BIN_INSTALL_DIR} ${HIP_LIB_INSTALL_DIR}
PRE_INCLUDE_REGEXES hipblas rocblas amdhip64 rocsolver amd_comgr hsa-runtime64 rocsparse tinfo rocprofiler-register drm drm_amdgpu numa elf
PRE_EXCLUDE_REGEXES ".*"
POST_EXCLUDE_REGEXES "system32"
RUNTIME DESTINATION ${OLLAMA_HIP_INSTALL_DIR} COMPONENT HIP
LIBRARY DESTINATION ${OLLAMA_HIP_INSTALL_DIR} COMPONENT HIP
)
foreach(HIP_LIB_BIN_INSTALL_DIR IN ITEMS ${HIP_BIN_INSTALL_DIR} ${HIP_LIB_INSTALL_DIR})
if(EXISTS ${HIP_LIB_BIN_INSTALL_DIR}/rocblas)
install(DIRECTORY ${HIP_LIB_BIN_INSTALL_DIR}/rocblas DESTINATION ${OLLAMA_HIP_INSTALL_DIR} COMPONENT HIP)
break()
endif()
endforeach()
endif()
endif()

View File

@@ -4,10 +4,15 @@
{
"name": "Default",
"binaryDir": "${sourceDir}/build",
"installDir": "${sourceDir}/dist",
"cacheVariables": {
"CMAKE_BUILD_TYPE": "Release"
}
},
{
"name": "CPU",
"inherits": [ "Default" ]
},
{
"name": "CUDA",
"inherits": [ "Default" ]
@@ -42,20 +47,29 @@
},
{
"name": "ROCm",
"inherits": [ "Default" ]
"inherits": [ "Default" ],
"cacheVariables": {
"CMAKE_HIP_PLATFORM": "amd"
}
},
{
"name": "ROCm 6",
"inherits": [ "ROCm" ],
"cacheVariables": {
"CMAKE_HIP_ARCHITECTURES": "gfx900;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102"
"AMDGPU_TARGETS": "gfx900;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-"
}
}
],
"buildPresets": [
{
"name": "Default",
"configurePreset": "Default"
"configurePreset": "Default",
"configuration": "Release"
},
{
"name": "CPU",
"configurePreset": "Default",
"targets": [ "ggml-cpu" ]
},
{
"name": "CUDA",

View File

@@ -1,201 +1,128 @@
ARG GOLANG_VERSION=1.22.8
ARG CUDA_VERSION_11=11.3.1
ARG CUDA_VERSION_12=12.4.0
ARG ROCM_VERSION=6.1.2
ARG JETPACK_6=r36.2.0
ARG JETPACK_5=r35.4.1
# vim: filetype=dockerfile
### To create a local image for building linux binaries on mac or windows with efficient incremental builds
#
# docker build --platform linux/amd64 -t builder-amd64 -f Dockerfile --target unified-builder-amd64 .
# docker run --platform linux/amd64 --rm -it -v $(pwd):/go/src/github.com/ollama/ollama/ builder-amd64
#
### Then incremental builds will be much faster in this container
#
# make -j 10 dist
#
FROM --platform=linux/amd64 rocm/dev-centos-7:${ROCM_VERSION}-complete AS unified-builder-amd64
ARG GOLANG_VERSION
ARG CUDA_VERSION_11
ARG CUDA_VERSION_12
COPY ./scripts/rh_linux_deps.sh /
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:/usr/local/cuda/bin:$PATH
ENV LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/cuda/lib64
RUN GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
RUN yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel7/x86_64/cuda-rhel7.repo && \
dnf clean all && \
dnf install -y \
zsh \
cuda-toolkit-$(echo ${CUDA_VERSION_11} | cut -f1-2 -d. | sed -e "s/\./-/g") \
cuda-toolkit-$(echo ${CUDA_VERSION_12} | cut -f1-2 -d. | sed -e "s/\./-/g")
# TODO intel oneapi goes here...
ENV GOARCH amd64
ENV CGO_ENABLED 1
WORKDIR /go/src/github.com/ollama/ollama/
ENTRYPOINT [ "zsh" ]
ARG FLAVOR=${TARGETARCH}
### To create a local image for building linux binaries on mac or linux/arm64 with efficient incremental builds
# Note: this does not contain jetson variants
#
# docker build --platform linux/arm64 -t builder-arm64 -f Dockerfile --target unified-builder-arm64 .
# docker run --platform linux/arm64 --rm -it -v $(pwd):/go/src/github.com/ollama/ollama/ builder-arm64
#
FROM --platform=linux/arm64 rockylinux:8 AS unified-builder-arm64
ARG GOLANG_VERSION
ARG CUDA_VERSION_11
ARG CUDA_VERSION_12
COPY ./scripts/rh_linux_deps.sh /
RUN GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
RUN yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/sbsa/cuda-rhel8.repo && \
dnf config-manager --set-enabled appstream && \
dnf clean all && \
dnf install -y \
zsh \
cuda-toolkit-$(echo ${CUDA_VERSION_11} | cut -f1-2 -d. | sed -e "s/\./-/g") \
cuda-toolkit-$(echo ${CUDA_VERSION_12} | cut -f1-2 -d. | sed -e "s/\./-/g")
ENV PATH /opt/rh/gcc-toolset-10/root/usr/bin:$PATH:/usr/local/cuda/bin
ENV LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/cuda/lib64
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs:/opt/amdgpu/lib64
ENV GOARCH arm64
ENV CGO_ENABLED 1
WORKDIR /go/src/github.com/ollama/ollama/
ENTRYPOINT [ "zsh" ]
ARG ROCMVERSION=6.1.2
ARG JETPACK5VERSION=r35.4.1
ARG JETPACK6VERSION=r36.2.0
ARG CMAKEVERSION=3.31.2
FROM --platform=linux/amd64 unified-builder-amd64 AS build-amd64
COPY . .
ARG OLLAMA_SKIP_CUDA_GENERATE
ARG OLLAMA_SKIP_ROCM_GENERATE
ARG OLLAMA_FAST_BUILD
ARG VERSION
ARG CUSTOM_CPU_FLAGS
FROM --platform=linux/amd64 rocm/dev-centos-7:${ROCMVERSION}-complete AS base-amd64
RUN sed -i -e 's/mirror.centos.org/vault.centos.org/g' -e 's/^#.*baseurl=http/baseurl=http/g' -e 's/^mirrorlist=http/#mirrorlist=http/g' /etc/yum.repos.d/*.repo \
&& yum install -y yum-utils devtoolset-10-gcc devtoolset-10-gcc-c++ \
&& yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel7/x86_64/cuda-rhel7.repo \
&& curl -s -L https://github.com/ccache/ccache/releases/download/v4.10.2/ccache-4.10.2-linux-x86_64.tar.xz | tar -Jx -C /usr/local/bin --strip-components 1
ENV PATH=/opt/rh/devtoolset-10/root/usr/bin:/opt/rh/devtoolset-11/root/usr/bin:$PATH
FROM --platform=linux/arm64 rockylinux:8 AS base-arm64
# install epel-release for ccache
RUN yum install -y yum-utils epel-release \
&& yum install -y clang ccache \
&& yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/sbsa/cuda-rhel8.repo
ENV CC=clang CXX=clang++
FROM base-${TARGETARCH} AS base
ARG CMAKEVERSION
RUN curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKEVERSION}/cmake-${CMAKEVERSION}-linux-$(uname -m).tar.gz | tar xz -C /usr/local --strip-components 1
COPY CMakeLists.txt CMakePresets.json .
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
ENV LDFLAGS=-s
FROM base AS cpu
# amd64 uses gcc which requires devtoolset-11 for AVX extensions while arm64 uses clang
RUN if [ "$(uname -m)" = "x86_64" ]; then yum install -y devtoolset-11-gcc devtoolset-11-gcc-c++; fi
ENV PATH=/opt/rh/devtoolset-11/root/usr/bin:$PATH
RUN --mount=type=cache,target=/root/.ccache \
if grep "^flags" /proc/cpuinfo|grep avx>/dev/null; then \
make -j $(nproc) dist ; \
else \
make -j 5 dist ; \
fi
RUN cd dist/linux-$GOARCH && \
tar -cf - . | pigz --best > ../ollama-linux-$GOARCH.tgz
RUN if [ -z ${OLLAMA_SKIP_ROCM_GENERATE} ] ; then \
cd dist/linux-$GOARCH-rocm && \
tar -cf - . | pigz --best > ../ollama-linux-$GOARCH-rocm.tgz ;\
fi
cmake --preset 'CPU' \
&& cmake --build --parallel --preset 'CPU' \
&& cmake --install build --component CPU --strip --parallel 8
# Jetsons need to be built in discrete stages
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK_5} AS runners-jetpack5-arm64
ARG GOLANG_VERSION
RUN apt-get update && apt-get install -y git curl ccache && \
curl -s -L https://dl.google.com/go/go${GOLANG_VERSION}.linux-arm64.tar.gz | tar xz -C /usr/local && \
ln -s /usr/local/go/bin/go /usr/local/bin/go && \
ln -s /usr/local/go/bin/gofmt /usr/local/bin/gofmt && \
apt-get clean && rm -rf /var/lib/apt/lists/*
WORKDIR /go/src/github.com/ollama/ollama/
COPY . .
ARG CGO_CFLAGS
ENV GOARCH arm64
ARG VERSION
FROM base AS cuda-11
ARG CUDA11VERSION=11.3
RUN yum install -y cuda-toolkit-${CUDA11VERSION//./-}
ENV PATH=/usr/local/cuda-11/bin:$PATH
RUN --mount=type=cache,target=/root/.ccache \
make -j 5 dist_cuda_v11 \
CUDA_ARCHITECTURES="72;87" \
GPU_RUNNER_VARIANT=_jetpack5 \
DIST_LIB_DIR=/go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack5/lib/ollama \
DIST_GPU_RUNNER_DEPS_DIR=/go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack5/lib/ollama/cuda_jetpack5
cmake --preset 'CUDA 11' \
&& cmake --build --parallel --preset 'CUDA 11' \
&& cmake --install build --component CUDA --strip --parallel 8
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK_6} AS runners-jetpack6-arm64
ARG GOLANG_VERSION
RUN apt-get update && apt-get install -y git curl ccache && \
curl -s -L https://dl.google.com/go/go${GOLANG_VERSION}.linux-arm64.tar.gz | tar xz -C /usr/local && \
ln -s /usr/local/go/bin/go /usr/local/bin/go && \
ln -s /usr/local/go/bin/gofmt /usr/local/bin/gofmt && \
apt-get clean && rm -rf /var/lib/apt/lists/*
WORKDIR /go/src/github.com/ollama/ollama/
COPY . .
ARG CGO_CFLAGS
ENV GOARCH arm64
ARG VERSION
FROM base AS cuda-12
ARG CUDA12VERSION=12.4
RUN yum install -y cuda-toolkit-${CUDA12VERSION//./-}
ENV PATH=/usr/local/cuda-12/bin:$PATH
RUN --mount=type=cache,target=/root/.ccache \
make -j 5 dist_cuda_v12 \
CUDA_ARCHITECTURES="87" \
GPU_RUNNER_VARIANT=_jetpack6 \
DIST_LIB_DIR=/go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack6/lib/ollama \
DIST_GPU_RUNNER_DEPS_DIR=/go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack6/lib/ollama/cuda_jetpack6
cmake --preset 'CUDA 12' \
&& cmake --build --parallel --preset 'CUDA 12' \
&& cmake --install build --component CUDA --strip --parallel 8
FROM --platform=linux/arm64 unified-builder-arm64 AS build-arm64
COPY . .
ARG OLLAMA_SKIP_CUDA_GENERATE
ARG OLLAMA_FAST_BUILD
ARG VERSION
FROM base AS rocm-6
RUN --mount=type=cache,target=/root/.ccache \
make -j 5 dist
COPY --from=runners-jetpack5-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
COPY --from=runners-jetpack6-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
RUN cd dist/linux-$GOARCH && \
tar -cf - . | pigz --best > ../ollama-linux-$GOARCH.tgz
RUN cd dist/linux-$GOARCH-jetpack5 && \
tar -cf - . | pigz --best > ../ollama-linux-$GOARCH-jetpack5.tgz
RUN cd dist/linux-$GOARCH-jetpack6 && \
tar -cf - . | pigz --best > ../ollama-linux-$GOARCH-jetpack6.tgz
cmake --preset 'ROCm 6' \
&& cmake --build --parallel --preset 'ROCm 6' \
&& cmake --install build --component HIP --strip --parallel 8
FROM --platform=linux/amd64 scratch AS dist-amd64
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/ollama-linux-*.tgz /
FROM --platform=linux/arm64 scratch AS dist-arm64
COPY --from=build-arm64 /go/src/github.com/ollama/ollama/dist/ollama-linux-*.tgz /
FROM dist-$TARGETARCH AS dist
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK5VERSION} AS jetpack-5
ARG CMAKEVERSION
RUN apt-get update && apt-get install -y curl ccache \
&& curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKEVERSION}/cmake-${CMAKEVERSION}-linux-$(uname -m).tar.gz | tar xz -C /usr/local --strip-components 1
COPY CMakeLists.txt CMakePresets.json .
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'JetPack 5' \
&& cmake --build --parallel --preset 'JetPack 5' \
&& cmake --install build --component CUDA --strip --parallel 8
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK6VERSION} AS jetpack-6
ARG CMAKEVERSION
RUN apt-get update && apt-get install -y curl ccache \
&& curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKEVERSION}/cmake-${CMAKEVERSION}-linux-$(uname -m).tar.gz | tar xz -C /usr/local --strip-components 1
COPY CMakeLists.txt CMakePresets.json .
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'JetPack 6' \
&& cmake --build --parallel --preset 'JetPack 6' \
&& cmake --install build --component CUDA --strip --parallel 8
# For amd64 container images, filter out cuda/rocm to minimize size
FROM build-amd64 AS runners-cuda-amd64
RUN rm -rf \
./dist/linux-amd64/lib/ollama/libggml_hipblas.so \
./dist/linux-amd64/lib/ollama/runners/rocm*
FROM base AS build
ARG GOVERSION=1.23.4
RUN curl -fsSL https://golang.org/dl/go${GOVERSION}.linux-$(case $(uname -m) in x86_64) echo amd64 ;; aarch64) echo arm64 ;; esac).tar.gz | tar xz -C /usr/local
ENV PATH=/usr/local/go/bin:$PATH
WORKDIR /go/src/github.com/ollama/ollama
COPY . .
ARG GOFLAGS="'-ldflags=-w -s'"
ENV CGO_ENABLED=1
RUN --mount=type=cache,target=/root/.cache/go-build \
go build -trimpath -buildmode=pie -o /bin/ollama .
FROM build-amd64 AS runners-rocm-amd64
RUN rm -rf \
./dist/linux-amd64/lib/ollama/libggml_cuda*.so \
./dist/linux-amd64/lib/ollama/libcu*.so* \
./dist/linux-amd64/lib/ollama/runners/cuda*
FROM --platform=linux/amd64 scratch AS amd64
COPY --from=cuda-11 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_v11
COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12
FROM --platform=linux/amd64 ubuntu:22.04 AS runtime-amd64
RUN apt-get update && \
apt-get install -y ca-certificates && \
apt-get clean && rm -rf /var/lib/apt/lists/*
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/bin/ /bin/
COPY --from=runners-cuda-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
FROM --platform=linux/arm64 scratch AS arm64
COPY --from=cuda-11 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_v11
COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12
COPY --from=jetpack-5 dist/lib/ollama/cuda_v11 lib/ollama/cuda_jetpack5
COPY --from=jetpack-6 dist/lib/ollama/cuda_v12 lib/ollama/cuda_jetpack6
FROM --platform=linux/arm64 ubuntu:22.04 AS runtime-arm64
RUN apt-get update && \
apt-get install -y ca-certificates && \
apt-get clean && rm -rf /var/lib/apt/lists/*
COPY --from=build-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/bin/ /bin/
COPY --from=build-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
COPY --from=runners-jetpack5-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack5/lib/ /lib/
COPY --from=runners-jetpack6-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack6/lib/ /lib/
FROM --platform=linux/arm64 scratch AS rocm
COPY --from=rocm-6 dist/lib/ollama/rocm /lib/ollama/rocm
FROM ${FLAVOR} AS archive
COPY --from=cpu dist/lib/ollama /lib/ollama
COPY --from=build /bin/ollama /bin/ollama
# ROCm libraries larger so we keep it distinct from the CPU/CUDA image
FROM --platform=linux/amd64 ubuntu:22.04 AS runtime-rocm
# Frontload the rocm libraries which are large, and rarely change to increase chance of a common layer
# across releases
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64-rocm/lib/ /lib/
RUN apt-get update && \
apt-get install -y ca-certificates && \
apt-get clean && rm -rf /var/lib/apt/lists/*
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/bin/ /bin/
COPY --from=runners-rocm-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
EXPOSE 11434
ENV OLLAMA_HOST 0.0.0.0
ENTRYPOINT ["/bin/ollama"]
CMD ["serve"]
FROM runtime-$TARGETARCH
EXPOSE 11434
ENV OLLAMA_HOST 0.0.0.0
FROM ubuntu:20.04
RUN apt-get update \
&& apt-get install -y ca-certificates \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*
COPY --from=archive /bin /usr/bin
ENV PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
COPY --from=archive /lib/ollama /usr/lib/ollama
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
ENV NVIDIA_VISIBLE_DEVICES=all
ENV OLLAMA_HOST=0.0.0.0:11434
EXPOSE 11434
ENTRYPOINT ["/bin/ollama"]
CMD ["serve"]

View File

@@ -1,66 +0,0 @@
ARG CUDA_11_VERSION=11.3
ARG CUDA_12_VERSION=12.4
ARG ROCM_VERSION=6.1.2
ARG JETPACK_5_VERSION=r35.4.1
ARG JETPACK_6_VERSION=r36.2.0
ARG CMAKE_VERSION=3.31.2
FROM --platform=linux/amd64 rocm/dev-centos-7:${ROCM_VERSION}-complete AS base
ARG CMAKE_VERSION
RUN curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKE_VERSION}/cmake-${CMAKE_VERSION}-linux-x86_64.tar.gz | tar xz -C /usr --strip-components 1
RUN sed -i -e 's/mirror.centos.org/vault.centos.org/g' -e 's/^#.*baseurl=http/baseurl=http/g' -e 's/^mirrorlist=http/#mirrorlist=http/g' /etc/yum.repos.d/*.repo \
&& yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel7/x86_64/cuda-rhel7.repo
# FROM --platform=linux/arm64 rockylinux:8 AS base
# ARG CMAKE_VERSION
# RUN curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKE_VERSION}/cmake-${CMAKE_VERSION}-linux-aarch64.tar.gz | tar xz -C /usr --strip-components 1
# RUN yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/sbsa/cuda-rhel8.repo
FROM base AS amd64
ARG CUDA_11_VERSION
ARG CUDA_12_VERSION
RUN yum install -y cuda-toolkit-${CUDA_11_VERSION//./-} \
&& yum install -y cuda-toolkit-${CUDA_12_VERSION//./-}
COPY CMakeLists.txt CMakeLists.txt
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
FROM --platform=linux/amd64 amd64 AS cuda_11
ENV PATH=/usr/local/cuda-${CUDA_11_VERSION}/bin:$PATH
RUN cmake -S . -B build -DCMAKE_CUDA_ARCHITECTURES="50;52;53;60;61;62;70;72;75;80;86"
RUN cmake --build build --target ggml-cuda -j
FROM --platform=linux/amd64 amd64 AS cuda_12
ENV PATH=/usr/local/cuda-${CUDA_12_VERSION}/bin:$PATH
RUN cmake -S . -B build -DCMAKE_CUDA_ARCHITECTURES="60;61;62;70;72;75;80;86;87;89;90;90a"
RUN cmake --build build --target ggml-cuda -j
FROM --platform=linux/amd64 amd64 AS rocm
RUN cmake -S . -B build -DCMAKE_HIP_ARCHITECTURES="gfx900;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102"
RUN cmake --build build --target ggml-hip -j
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK_5_VERSION} AS jetpack_5
ARG CMAKE_VERSION
RUN curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKE_VERSION}/cmake-${CMAKE_VERSION}-linux-aarch64.tar.gz | tar xz -C /usr --strip-components 1
COPY CMakeLists.txt .
COPY ml/backend/ggml/ggml .
RUN cmake -S . -B build \
-DCMAKE_CUDA_ARCHITECTURES="72;87"
RUN cmake --build build --target ggml-cuda
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK_6_VERSION} AS jetpack_6
ARG CMAKE_VERSION
RUN curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKE_VERSION}/cmake-${CMAKE_VERSION}-linux-aarch64.tar.gz | tar xz -C /usr --strip-components 1
COPY CMakeLists.txt .
COPY ml/backend/ggml/ggml .
RUN cmake -S . -B build \
-DCMAKE_CUDA_ARCHITECTURES="87"
RUN cmake --build build --target ggml-cuda
FROM --platform=linux/amd64 golang:1.23
COPY --from=cuda_11 build/ml/backend/ggml/ggml/src/ggml-cuda/libggml-cuda.so libggml-cuda-11.so
COPY --from=cuda_12 build/ml/backend/ggml/ggml/src/ggml-cuda/libggml-cuda.so libggml-cuda-12.so
COPY --from=rocm build/ml/backend/ggml/ggml/src/ggml-hip/libggml-hip.so libggml-hip.so
# FROM --platform=linux/arm64 golang:1.23
# COPY --from=jetpack_5 build/ml/backend/ggml/ggml/src/ggml-cuda/libggml-cuda.so libggml-cuda-jetpack-5.so
# COPY --from=jetpack_6 build/ml/backend/ggml/ggml/src/ggml-cuda/libggml-cuda.so libggml-cuda-jetpack-6.so

60
Makefile.sync Normal file
View File

@@ -0,0 +1,60 @@
UPSTREAM=https://github.com/ggerganov/llama.cpp.git
WORKDIR=llama/vendor
FETCH_HEAD=46e3556e01b824e52395fb050b29804b6cff2a7c
.PHONY: help
help:
@echo "Available targets:"
@echo " sync Sync with upstream repositories"
@echo " checkout Checkout upstream repository"
@echo " apply-patches Apply patches to local repository"
@echo " format-patches Format patches from local repository"
@echo " clean Clean local repository"
@echo
@echo "Example:"
@echo " make -f $(lastword $(MAKEFILE_LIST)) clean sync"
.PHONY: sync
sync: llama/build-info.cpp llama/llama.cpp ml/backend/ggml/ggml apply-patches
.PHONY: llama/build-info.cpp
llama/build-info.cpp: llama/build-info.cpp.in
sed -e 's|@FETCH_HEAD@|$(FETCH_HEAD)|' $< > $@
.PHONY: llama/llama.cpp
llama/llama.cpp: llama/vendor/ apply-patches
rsync -arvzc -f "merge $@/.rsync-filter" $< $@
.PHONY: ml/backend/ggml/ggml apply-patches
ml/backend/ggml/ggml: llama/vendor/ggml/ apply-patches
rsync -arvzc -f "merge $@/.rsync-filter" $< $@
PATCHES=$(wildcard llama/patches/*.patch)
.PHONY: apply-patches
.NOTPARALLEL:
apply-patches: $(addsuffix ed, $(PATCHES))
%.patched: %.patch
@if git -c user.name=nobody -c 'user.email=<>' -C $(WORKDIR) am -3 $(realpath $<); then touch $@; else git -C $(WORKDIR) am --abort; exit 1; fi
.PHONY: checkout
checkout: $(WORKDIR)
git -C $(WORKDIR) fetch
git -C $(WORKDIR) checkout -f $(FETCH_HEAD)
$(WORKDIR):
git clone $(UPSTREAM) $(WORKDIR)
.PHONE: format-patches
format-patches: llama/patches
git -C $(WORKDIR) format-patch \
--no-signature \
--no-numbered \
--zero-commit \
-o $(realpath $<) \
$(FETCH_HEAD)
.PHONE: clean
clean: checkout
$(RM) $(addsuffix ed, $(PATCHES))

View File

@@ -1,46 +0,0 @@
UPSTREAM=https://github.com/ggerganov/llama.cpp.git
WORKDIR=llama/vendor
FETCH_HEAD=46e3556e01b824e52395fb050b29804b6cff2a7c
all: sync
.PHONY: sync
sync: llama/llama.cpp ml/backend/ggml/ggml
.PHONY: llama/llama.cpp
llama/llama.cpp: llama/vendor/ apply_patches
rsync -arvzc -f "merge $@/.rsync-filter" $< $@
.PHONY: ml/backend/ggml/ggml apply_patches
ml/backend/ggml/ggml: llama/vendor/ggml/ apply_patches
rsync -arvzc -f "merge $@/.rsync-filter" $< $@
PATCHES=$(wildcard llama/patches/*.patch)
.PHONY: apply_patches
.NOTPARALLEL:
apply_patches: $(addsuffix ed, $(PATCHES))
%.patched: %.patch
@if git -c user.name=nobody -c 'user.email=<>' -C $(WORKDIR) am -3 $(realpath $<); then touch $@; else git -C $(WORKDIR) am --abort; exit 1; fi
.PHONY: checkout
checkout: $(WORKDIR)
git -C $(WORKDIR) fetch
git -C $(WORKDIR) checkout -f $(FETCH_HEAD)
$(WORKDIR):
git clone $(UPSTREAM) $(WORKDIR)
.PHONE: format_patches
format_patches: llama/patches
git -C $(WORKDIR) format-patch \
--no-signature \
--no-numbered \
--zero-commit \
-o $(realpath $<) \
$(FETCH_HEAD)
.PHONE: clean
clean: checkout
$(RM) $(addsuffix ed, $(PATCHES))

View File

@@ -18,7 +18,7 @@ Get up and running with large language models.
### Linux
```
```shell
curl -fsSL https://ollama.com/install.sh | sh
```
@@ -42,7 +42,7 @@ The official [Ollama Docker image](https://hub.docker.com/r/ollama/ollama) `olla
To run and chat with [Llama 3.2](https://ollama.com/library/llama3.2):
```
```shell
ollama run llama3.2
```
@@ -54,6 +54,8 @@ Here are some example models that can be downloaded:
| Model | Parameters | Size | Download |
| ------------------ | ---------- | ----- | -------------------------------- |
| DeepSeek-R1 | 7B | 4.7GB | `ollama run deepseek-r1` |
| DeepSeek-R1 | 671B | 404GB | `ollama run deepseek-r1:671b` |
| Llama 3.3 | 70B | 43GB | `ollama run llama3.3` |
| Llama 3.2 | 3B | 2.0GB | `ollama run llama3.2` |
| Llama 3.2 | 1B | 1.3GB | `ollama run llama3.2:1b` |
@@ -92,13 +94,13 @@ Ollama supports importing GGUF models in the Modelfile:
2. Create the model in Ollama
```
```shell
ollama create example -f Modelfile
```
3. Run the model
```
```shell
ollama run example
```
@@ -110,7 +112,7 @@ See the [guide](docs/import.md) on importing models for more information.
Models from the Ollama library can be customized with a prompt. For example, to customize the `llama3.2` model:
```
```shell
ollama pull llama3.2
```
@@ -145,13 +147,13 @@ For more information on working with a Modelfile, see the [Modelfile](docs/model
`ollama create` is used to create a model from a Modelfile.
```
```shell
ollama create mymodel -f ./Modelfile
```
### Pull a model
```
```shell
ollama pull llama3.2
```
@@ -159,13 +161,13 @@ ollama pull llama3.2
### Remove a model
```
```shell
ollama rm llama3.2
```
### Copy a model
```
```shell
ollama cp llama3.2 my-model
```
@@ -184,37 +186,39 @@ I'm a basic program that prints the famous "Hello, world!" message to the consol
```
ollama run llava "What's in this image? /Users/jmorgan/Desktop/smile.png"
The image features a yellow smiley face, which is likely the central focus of the picture.
```
> **Output**: The image features a yellow smiley face, which is likely the central focus of the picture.
### Pass the prompt as an argument
```shell
ollama run llama3.2 "Summarize this file: $(cat README.md)"
```
$ ollama run llama3.2 "Summarize this file: $(cat README.md)"
Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.
```
> **Output**: Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.
### Show model information
```
```shell
ollama show llama3.2
```
### List models on your computer
```
```shell
ollama list
```
### List which models are currently loaded
```
```shell
ollama ps
```
### Stop a model which is currently running
```
```shell
ollama stop llama3.2
```
@@ -230,13 +234,13 @@ See the [developer guide](https://github.com/ollama/ollama/blob/main/docs/develo
Next, start the server:
```
```shell
./ollama serve
```
Finally, in a separate shell, run a model:
```
```shell
./ollama run llama3.2
```
@@ -246,7 +250,7 @@ Ollama has a REST API for running and managing models.
### Generate a response
```
```shell
curl http://localhost:11434/api/generate -d '{
"model": "llama3.2",
"prompt":"Why is the sky blue?"
@@ -255,7 +259,7 @@ curl http://localhost:11434/api/generate -d '{
### Chat with a model
```
```shell
curl http://localhost:11434/api/chat -d '{
"model": "llama3.2",
"messages": [
@@ -353,6 +357,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Web management](https://github.com/lemonit-eric-mao/ollama-web-management) (Web management page)
- [Promptery](https://github.com/promptery/promptery) (desktop client for Ollama.)
- [Ollama App](https://github.com/JHubi1/ollama-app) (Modern and easy-to-use multi-platform client for Ollama)
- [chat-ollama](https://github.com/annilq/chat-ollama) (a React Native client for Ollama)
- [SpaceLlama](https://github.com/tcsenpai/spacellama) (Firefox and Chrome extension to quickly summarize web pages with ollama in a sidebar)
- [YouLama](https://github.com/tcsenpai/youlama) (Webapp to quickly summarize any YouTube video, supporting Invidious as well)
- [DualMind](https://github.com/tcsenpai/dualmind) (Experimental app allowing two models to talk to each other in the terminal or in a web interface)
@@ -369,6 +374,14 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Minima](https://github.com/dmayboroda/minima) (RAG with on-premises or fully local workflow)
- [aidful-ollama-model-delete](https://github.com/AidfulAI/aidful-ollama-model-delete) (User interface for simplified model cleanup)
- [Perplexica](https://github.com/ItzCrazyKns/Perplexica) (An AI-powered search engine & an open-source alternative to Perplexity AI)
- [Ollama Chat WebUI for Docker ](https://github.com/oslook/ollama-webui) (Support for local docker deployment, lightweight ollama webui)
- [AI Toolkit for Visual Studio Code](https://aka.ms/ai-tooklit/ollama-docs) (Microsoft-official VSCode extension to chat, test, evaluate models with Ollama support, and use them in your AI applications.)
- [MinimalNextOllamaChat](https://github.com/anilkay/MinimalNextOllamaChat) (Minimal Web UI for Chat and Model Control)
- [Chipper](https://github.com/TilmanGriesel/chipper) AI interface for tinkerers (Ollama, Haystack RAG, Python)
- [ChibiChat](https://github.com/CosmicEventHorizon/ChibiChat) (Kotlin-based Android app to chat with Ollama and Koboldcpp API endpoints)
- [LocalLLM](https://github.com/qusaismael/localllm) (Minimal Web-App to run ollama models on it with a GUI)
- [Ollamazing](https://github.com/buiducnhat/ollamazing) (Web extension to run Ollama models)
- [OpenDeepResearcher-via-searxng](https://github.com/benhaotang/OpenDeepResearcher-via-searxng) (A Deep Research equivent endpoint with Ollama support for running locally)
### Cloud
@@ -426,9 +439,10 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Pacman](https://archlinux.org/packages/extra/x86_64/ollama/)
- [Gentoo](https://github.com/gentoo/guru/tree/master/app-misc/ollama)
- [Homebrew](https://formulae.brew.sh/formula/ollama)
- [Helm Chart](https://artifacthub.io/packages/helm/ollama-helm/ollama)
- [Guix channel](https://codeberg.org/tusharhero/ollama-guix)
- [Nix package](https://search.nixos.org/packages?channel=24.05&show=ollama&from=0&size=50&sort=relevance&type=packages&query=ollama)
- [Nix package](https://search.nixos.org/packages?show=ollama&from=0&size=50&sort=relevance&type=packages&query=ollama)
- [Flox](https://flox.dev/blog/ollama-part-one)
### Libraries
@@ -481,6 +495,9 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [GoLamify](https://github.com/prasad89/golamify)
- [Ollama for Haskell](https://github.com/tusharad/ollama-haskell)
- [multi-llm-ts](https://github.com/nbonamy/multi-llm-ts) (A Typescript/JavaScript library allowing access to different LLM in unified API)
- [LlmTornado](https://github.com/lofcz/llmtornado) (C# library providing a unified interface for major FOSS & Commercial inference APIs)
- [Ollama for Zig](https://github.com/dravenk/ollama-zig)
- [Abso](https://github.com/lunary-ai/abso) (OpenAI-compatible TypeScript SDK for any LLM provider)
### Mobile
@@ -531,12 +548,16 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [TextCraft](https://github.com/suncloudsmoon/TextCraft) (Copilot in Word alternative using Ollama)
- [Alfred Ollama](https://github.com/zeitlings/alfred-ollama) (Alfred Workflow)
- [TextLLaMA](https://github.com/adarshM84/TextLLaMA) A Chrome Extension that helps you write emails, correct grammar, and translate into any language
- [Simple-Discord-AI](https://github.com/zyphixor/simple-discord-ai)
- [LLM Telegram Bot](https://github.com/innightwolfsleep/llm_telegram_bot) (telegram bot, primary for RP. Oobabooga-like buttons, [A1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui) API integration e.t.c)
### Supported backends
- [llama.cpp](https://github.com/ggerganov/llama.cpp) project founded by Georgi Gerganov.
### Observability
- [Lunary](https://lunary.ai/docs/integrations/ollama) is the leading open-source LLM observability platform. It provides a variety of enterprise-grade features such as real-time analytics, prompt templates management, PII masking, and comprehensive agent tracing.
- [OpenLIT](https://github.com/openlit/openlit) is an OpenTelemetry-native tool for monitoring Ollama Applications & GPUs using traces and metrics.
- [HoneyHive](https://docs.honeyhive.ai/integrations/ollama) is an AI observability and evaluation platform for AI agents. Use HoneyHive to evaluate agent performance, interrogate failures, and monitor quality in production.
- [HoneyHive](https://docs.honeyhive.ai/integrations/ollama) is an AI observability and evaluation platform for AI agents. Use HoneyHive to evaluate agent performance, interrogate failures, and monitor quality in production.
- [Langfuse](https://langfuse.com/docs/integrations/ollama) is an open source LLM observability platform that enables teams to collaboratively monitor, evaluate and debug AI applications.
- [MLflow Tracing](https://mlflow.org/docs/latest/llms/tracing/index.html#automatic-tracing) is an open source LLM observability tool with a convenient API to log and visualize traces, making it easy to debug and evaluate GenAI applications.

View File

@@ -126,7 +126,8 @@ func (c *Client) do(ctx context.Context, method, path string, reqData, respData
return err
}
}
return nil
return ctx.Err()
}
const maxBufferSize = 512 * format.KiloByte
@@ -189,7 +190,7 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
}
}
return nil
return ctx.Err()
}
// GenerateResponseFunc is a function that [Client.Generate] invokes every time

View File

@@ -2,9 +2,10 @@
Run the examples in this directory with:
```
```shell
go run example_name/main.go
```
## Chat - Chat with a model
- [chat/main.go](chat/main.go)

View File

@@ -17,6 +17,6 @@ If you want to build the installer, youll need to install
In the top directory of this repo, run the following powershell script
to build the ollama CLI, ollama app, and ollama installer.
```
```powershell
powershell -ExecutionPolicy Bypass -File .\scripts\build_windows.ps1
```

63
cache/cache.go vendored
View File

@@ -1,63 +0,0 @@
package cache
import (
"github.com/ollama/ollama/ml"
)
type Options struct {
Position int
}
type Cache interface {
Sub(i int) Cache
Put(ctx ml.Context, key, value ml.Tensor, opts Options) (ml.Tensor, ml.Tensor)
}
type Simple struct {
DType ml.DType
Capacity int
keys, values []ml.Tensor
}
func (c *Simple) Sub(i int) Cache {
if i >= len(c.keys) {
c.keys = append(c.keys, make([]ml.Tensor, i-len(c.keys)+1)...)
c.values = append(c.values, make([]ml.Tensor, i-len(c.values)+1)...)
}
return &Simple{
keys: c.keys[i : i+1],
values: c.values[i : i+1],
Capacity: c.Capacity,
DType: c.DType,
}
}
func (c *Simple) Put(ctx ml.Context, key, value ml.Tensor, opts Options) (ml.Tensor, ml.Tensor) {
if c.keys[0] == nil || c.values[0] == nil {
c.keys[0] = ctx.Zeros(c.DType, int(key.Dim(0)*key.Dim(1))*c.Capacity)
c.values[0] = ctx.Zeros(c.DType, int(value.Dim(0)*value.Dim(1))*c.Capacity)
}
ctx.Forward(key.Copy(ctx, c.keys[0].View(ctx, int(key.Stride(2))*opts.Position, int(key.Dim(0)*key.Dim(1)*key.Dim(2)))))
ctx.Forward(value.Copy(ctx, c.values[0].View(ctx, int(value.Stride(2))*opts.Position, int(value.Dim(0)*value.Dim(1)*value.Dim(2)))))
n := min(c.Capacity, int(key.Dim(2))+opts.Position)
key = c.keys[0].View(ctx, 0,
int(key.Dim(0)), int(key.Stride(1)),
int(key.Dim(1)), int(key.Stride(2)),
n,
)
value = c.values[0].View(ctx, 0,
int(value.Dim(0)), int(value.Stride(1)),
int(value.Dim(1)), int(value.Stride(2)),
n,
)
// TODO shift context if necessary
return key, value
}

View File

@@ -15,13 +15,11 @@ import (
"net"
"net/http"
"os"
"os/signal"
"path/filepath"
"runtime"
"strconv"
"strings"
"sync/atomic"
"syscall"
"time"
"github.com/containerd/console"
@@ -35,9 +33,9 @@ import (
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/llama"
"github.com/ollama/ollama/llama/runner"
"github.com/ollama/ollama/parser"
"github.com/ollama/ollama/progress"
"github.com/ollama/ollama/runner"
"github.com/ollama/ollama/server"
"github.com/ollama/ollama/types/model"
"github.com/ollama/ollama/version"
@@ -59,7 +57,7 @@ func getModelfileName(cmd *cobra.Command) (string, error) {
_, err = os.Stat(absName)
if err != nil {
return filename, err
return "", err
}
return absName, nil
@@ -330,6 +328,7 @@ func RunHandler(cmd *cobra.Command, args []string) error {
if err := PullHandler(cmd, []string{name}); err != nil {
return nil, err
}
return client.Show(cmd.Context(), &api.ShowRequest{Name: name})
}
return info, err
@@ -338,7 +337,10 @@ func RunHandler(cmd *cobra.Command, args []string) error {
return err
}
opts.MultiModal = len(info.ProjectorInfo) != 0
// TODO(jessegross): We should either find another way to know if this is
// a vision model or remove the logic. Also consider that other modalities will
// need different behavior anyways.
opts.MultiModal = len(info.ProjectorInfo) != 0 || envconfig.NewEngine()
opts.ParentModel = info.Details.ParentModel
if interactive {
@@ -855,17 +857,6 @@ func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
spinner := progress.NewSpinner("")
p.Add("", spinner)
cancelCtx, cancel := context.WithCancel(cmd.Context())
defer cancel()
sigChan := make(chan os.Signal, 1)
signal.Notify(sigChan, syscall.SIGINT)
go func() {
<-sigChan
cancel()
}()
var state *displayResponseState = &displayResponseState{}
var latest api.ChatResponse
var fullResponse strings.Builder
@@ -900,10 +891,7 @@ func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
req.KeepAlive = opts.KeepAlive
}
if err := client.Chat(cancelCtx, req, fn); err != nil {
if errors.Is(err, context.Canceled) {
return nil, nil
}
if err := client.Chat(cmd.Context(), req, fn); err != nil {
return nil, err
}
@@ -943,17 +931,6 @@ func generate(cmd *cobra.Command, opts runOptions) error {
generateContext = []int{}
}
ctx, cancel := context.WithCancel(cmd.Context())
defer cancel()
sigChan := make(chan os.Signal, 1)
signal.Notify(sigChan, syscall.SIGINT)
go func() {
<-sigChan
cancel()
}()
var state *displayResponseState = &displayResponseState{}
fn := func(response api.GenerateResponse) error {
@@ -989,10 +966,7 @@ func generate(cmd *cobra.Command, opts runOptions) error {
KeepAlive: opts.KeepAlive,
}
if err := client.Generate(ctx, &request, fn); err != nil {
if errors.Is(err, context.Canceled) {
return nil
}
if err := client.Generate(cmd.Context(), &request, fn); err != nil {
return err
}
@@ -1014,8 +988,7 @@ func generate(cmd *cobra.Command, opts runOptions) error {
latest.Summary()
}
ctx = context.WithValue(cmd.Context(), generateContextKey("context"), latest.Context)
cmd.SetContext(ctx)
cmd.SetContext(context.WithValue(cmd.Context(), generateContextKey("context"), latest.Context))
return nil
}

View File

@@ -279,7 +279,7 @@ func TestGetModelfileName(t *testing.T) {
name: "no modelfile specified, no modelfile exists",
modelfileName: "",
fileExists: false,
expectedName: "Modelfile",
expectedName: "",
expectedErr: os.ErrNotExist,
},
{
@@ -293,7 +293,7 @@ func TestGetModelfileName(t *testing.T) {
name: "modelfile specified, no modelfile exists",
modelfileName: "crazyfile",
fileExists: false,
expectedName: "crazyfile",
expectedName: "",
expectedErr: os.ErrNotExist,
},
{

View File

@@ -4,7 +4,7 @@ import (
"fmt"
"os"
"github.com/ollama/ollama/llama/runner"
"github.com/ollama/ollama/runner"
)
func main() {

View File

@@ -191,6 +191,8 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
conv = &qwen2Model{}
case "BertModel":
conv = &bertModel{}
case "CohereForCausalLM":
conv = &commandrModel{}
default:
return errors.New("unsupported architecture")
}

View File

@@ -0,0 +1,76 @@
package convert
import (
"cmp"
"github.com/ollama/ollama/fs/ggml"
)
type commandrModel struct {
ModelParameters
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
HiddenLayers uint32 `json:"num_hidden_layers"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
LayerNormEPS float32 `json:"layer_norm_eps"`
RopeTheta float32 `json:"rope_theta"`
UseQKNorm bool `json:"use_qk_norm"`
MaxLength uint32 `json:"model_max_length"`
LogitScale float32 `json:"logit_scale"`
NCtx uint32 `json:"n_ctx"`
}
var _ ModelConverter = (*commandrModel)(nil)
func (p *commandrModel) KV(t *Tokenizer) ggml.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "command-r"
kv["general.name"] = "command-r"
kv["command-r.context_length"] = cmp.Or(p.MaxLength, p.MaxPositionEmbeddings, p.NCtx)
kv["command-r.embedding_length"] = p.HiddenSize
kv["command-r.block_count"] = p.HiddenLayers
kv["command-r.feed_forward_length"] = p.IntermediateSize
kv["command-r.attention.head_count"] = p.NumAttentionHeads
kv["command-r.attention.head_count_kv"] = p.NumKeyValueHeads
kv["command-r.attention.layer_norm_epsilon"] = p.LayerNormEPS
kv["command-r.rope.freq_base"] = p.RopeTheta
kv["command-r.max_position_embeddings"] = cmp.Or(p.MaxLength, p.MaxPositionEmbeddings)
kv["command-r.logit_scale"] = p.LogitScale
kv["command-r.rope.scaling.type"] = "none"
return kv
}
func (p *commandrModel) Tensors(ts []Tensor) []ggml.Tensor {
var out []ggml.Tensor
for _, t := range ts {
out = append(out, ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (p *commandrModel) Replacements() []string {
return []string{
"self_attn.q_norm", "attn_q_norm",
"self_attn.k_norm", "attn_k_norm",
"model.layers", "blk",
"input_layernorm", "attn_norm",
"mlp.down_proj", "ffn_down",
"mlp.gate_proj", "ffn_gate",
"mlp.up_proj", "ffn_up",
"self_attn.k_proj", "attn_k",
"self_attn.o_proj", "attn_output",
"self_attn.q_proj", "attn_q",
"self_attn.v_proj", "attn_v",
"model.norm", "output_norm",
"model.embed_tokens", "token_embd",
}
}

View File

@@ -2,7 +2,6 @@ package convert
import "github.com/ollama/ollama/fs/ggml"
type qwen2Model struct {
ModelParameters
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`

View File

@@ -109,6 +109,7 @@ func TestConvertModel(t *testing.T) {
"all-MiniLM-L6-v2",
"gemma-2-9b-it",
"Qwen2.5-0.5B-Instruct",
"c4ai-command-r-v01",
}
for i := range cases {

344
convert/testdata/c4ai-command-r-v01.json vendored Normal file
View File

@@ -0,0 +1,344 @@
{
"general.architecture": "command-r",
"general.name": "command-r",
"command-r.attention.head_count": "64",
"command-r.attention.head_count_kv": "64",
"command-r.attention.layer_norm_epsilon": "1e-05",
"command-r.block_count": "40",
"command-r.context_length": "131072",
"command-r.embedding_length": "8192",
"command-r.feed_forward_length": "22528",
"command-r.logit_scale": "0.0625",
"command-r.rope.freq_base": "8e+06",
"command-r.rope.scaling.type": "none",
"tokenizer.ggml.add_bos_token": "true",
"tokenizer.ggml.add_eos_token": "false",
"tokenizer.ggml.bos_token_id": "5",
"tokenizer.ggml.eos_token_id": "255001",
"tokenizer.ggml.merges": "902a060cac8884a5793d2a857dd2e53a259de46c8d08c4deb243c239671e1350",
"tokenizer.ggml.model": "gpt2",
"tokenizer.ggml.padding_token_id": "0",
"tokenizer.ggml.token_type": "b7a352ccd1c99d4413bcf452c2db707b0526d0e1216616b865560fab80296462",
"tokenizer.ggml.tokens": "815ac90ff23565081522d7258f46648c8a0619eb847a9c7c31b238a9b984e4ae",
"blk.0.attn_k.weight": "6fcfdb466f9ceb1229404ce4ec4e480751b8d00da12707a11783dad7256cb864",
"blk.0.attn_norm.weight": "6063317f731371864049c7704a70772f1eb632194201ebdc2ed0f8e483507c72",
"blk.0.attn_output.weight": "920f49716a1e2fc73b6794ec777947f1c122701e63ed302422ac89e90f06e9da",
"blk.0.attn_q.weight": "ddbcd7cde197e632564ac58e4f25d9e3a8ca52917329eeb6081eb41a797932ab",
"blk.0.attn_v.weight": "318fc02a189d87420f0cbf57f47f11e00c21ec1ed472ce0a2a895b44f7fa0fca",
"blk.0.ffn_down.weight": "aa71975b6eb1f4c77b03d2ac4a194cf8d95718efac741bb12f0f3ff79a27f9bc",
"blk.0.ffn_gate.weight": "42967702fa0bc738b88dc50007ace26dbe74a5a9e0978124dd093f818241a9e1",
"blk.0.ffn_up.weight": "5282c8788b086bd30f46525e7995a17464882a72703fd27165491afdd8bfd4af",
"blk.1.attn_k.weight": "cd248882e64fd2c3402c44790ebe12440133dc671b6893fdad0564c461973adc",
"blk.1.attn_norm.weight": "ba84e1c8fd30af6ec94208db4078befac8c921aad3acb887812887f3282ea2be",
"blk.1.attn_output.weight": "2efa3ef7c5666ccceb05e339b83ad680cc0d2c3ec78203f5da5959f23a80e14f",
"blk.1.attn_q.weight": "5106f2e255358a1303c22e8b5f0ec044852bb30a866c52cabefd30017a7a6b7d",
"blk.1.attn_v.weight": "a211a634a1a5df1d5f973645438be0461dd922210f9747c6b04e386c7f1ebe95",
"blk.1.ffn_down.weight": "37093afe48d32c578ec956c9ed85242cd000d6aa979e60526aafa10c822dbb10",
"blk.1.ffn_gate.weight": "469860819e9159caefb1aad0bc66db790f3393f05fd87b08e52256a7ed256543",
"blk.1.ffn_up.weight": "736742c97d35d1a011f9cafd3c0ce947ad559bb2fba6da73c816f6bfd0fa9aeb",
"blk.2.attn_k.weight": "92c219d92804d832ab404bd6dc7339c90877bb7cf405dd030c121f8b27757739",
"blk.2.attn_norm.weight": "61e4466069474b76b6d1e702566420eb669faf3556b00ff7b824784aca13a2d6",
"blk.2.attn_output.weight": "d2fb38a2b2171fd91caf037faa585a62225819aa232d86fd4f7f9d2c3c8a45e9",
"blk.2.attn_q.weight": "f6faf5cc6844e3daa4f9f68d90f5458c64879de68a7728860e38374e30c3429d",
"blk.2.attn_v.weight": "f340ef8f7341d987a6f37c0e9afe0aef5be67be00c0ce5f57612daf73319cce1",
"blk.2.ffn_down.weight": "c7be61a701d779860b621b143fb6365b607bf99ec7c0f153b07908ac8120885a",
"blk.2.ffn_gate.weight": "b64f0878187bd3392abfa4c3e8ad2f8b4c133903e54246747ff8f3b4639ad83e",
"blk.2.ffn_up.weight": "50b11c712652e90ee7428dbb45cffebb80662ac982bc72bd9eafff361b5eb5a8",
"blk.3.attn_k.weight": "2b7bcbe9ee5c9c630c8c8d7483887e78b73581016f4cbb6933db2a147a25f431",
"blk.3.attn_norm.weight": "0181dac7f4eee7252980323e8032cf339bef2046ce0a16c0fd72af7c98a8a37b",
"blk.3.attn_output.weight": "aef8843b636ce231da9e7c9acbee197883cc15df0e2887709324c6a50f16da7b",
"blk.3.attn_q.weight": "55404130fa10e81322d33eb378aa0de31a92990ce7730f1338c0ace0406bb1b1",
"blk.3.attn_v.weight": "76f7fb8040d82b957d689ce34fea2302a6640ad5bbaa0052ad2b7ebce270c33d",
"blk.3.ffn_down.weight": "648628933eff3b357c3729c33c5b1ae51c28e59b9c19acd1601a2ff7c5d5d9a5",
"blk.3.ffn_gate.weight": "6a588885d16e98d5f50ebed05af089154f680085ca9c97691e5b489088630a4a",
"blk.3.ffn_up.weight": "e12455a1d702f4986e1a663493e3d5102b367af74d45557522002a35d63ecac2",
"blk.4.attn_k.weight": "40d943380a8a85e4eab147934bf6e16f23cc8ab753f6636526382c074d182288",
"blk.4.attn_norm.weight": "4ab2c098983d4599fe540eef624c4df954adb7473faebda7471ef0ba4134814c",
"blk.4.attn_output.weight": "d14b91e40f58bf4a3c8c2eca0b12bb541de406574af39027d56f6c588a147082",
"blk.4.attn_q.weight": "e1224960a3562107488589f883fa32414bae41712fa8dbd47c5f3e3a7801452f",
"blk.4.attn_v.weight": "063f297bc4aa6e709fc32c4c32e35af7d07d80e83cb939b76adbba858006c03d",
"blk.4.ffn_down.weight": "f88a18020c5e1caaa29596895eb348e76ee5bfad27ed57651a86cd8cd1f9b5aa",
"blk.4.ffn_gate.weight": "48e7e1eed3fb52e92e61d3557dd0ec002418327090e034ce4322fd68542266f8",
"blk.4.ffn_up.weight": "1ca8a7aa17355b6ce0d9ad5539fdad3899fa47fd359c285fbfb31f19f47bf073",
"blk.5.attn_k.weight": "2bdf15f8e73d068d972380f25d207004cf0bf3b5bfa46946803ba6fba07d9175",
"blk.5.attn_norm.weight": "60448d7cde6e1b6467aa31bdea012e39cdb08c88081cee7d102dca4f93f766ef",
"blk.5.attn_output.weight": "f9f687d7c457537f9fca8a4087a59f1c3bebfaf5537b94e42c831a13224f7799",
"blk.5.attn_q.weight": "987db7a2ad68657a92625e1980effbb1f79697c2183f2b9f3b3a0570c51b0ab9",
"blk.5.attn_v.weight": "cf696891148f3e4783ad1d20f93462ae091eb8651c656bba9b662253b6263e02",
"blk.5.ffn_down.weight": "c0662b0bd0929136005fb9d691fdd9b2c33867d9ce9622339a6a456b720b059a",
"blk.5.ffn_gate.weight": "200bbdfab615d7a3a84719b6ced7751e3ce52757ef212d96f87798bc1de5e987",
"blk.5.ffn_up.weight": "df5d23e7e035fb1b9d163da7ddfdfe38da6a37e86e96534dc02ad20f011b55b3",
"blk.6.attn_k.weight": "c0dae2d272a7c5a2fa004bbb8475dbab362fc1f6d008e73d5a4434a9382ac6ba",
"blk.6.attn_norm.weight": "51c57ac8b55e04354d5dca6bb9c0cf4177639d3b038e80209e33036209688f64",
"blk.6.attn_output.weight": "229d97892c62f85bcdf431675250e01c976ad69ffa450b01fb543bf88f14a2fb",
"blk.6.attn_q.weight": "c20e49621821bd46ed156e6823864a5bda4f317750e71ab8dc54e44eb48cf7c2",
"blk.6.attn_v.weight": "53ceb1a2ee43fce3c7b5b33c58a9fc5ee7f44dc1c6f29bc9dbefc37582102dc9",
"blk.6.ffn_down.weight": "7923c943b7629d560a032d1efa210d1d75c6692140f1be94464ee7ed24f44ed0",
"blk.6.ffn_gate.weight": "57593d350361af753a6a39f53b066282634c0fb44f396f6f2966a574b01d8f8c",
"blk.6.ffn_up.weight": "327b6a7a387098b8899d3ded04a4d4e7c658ca61b80d4e7b17594be232721602",
"blk.7.attn_k.weight": "9ca48b87a10116fd8868e62b76f211d4bb91f166096be9061439ee2e1c3a5c20",
"blk.7.attn_norm.weight": "cd56cfcc4e2ad6b96e23ea7b0d32b4caf236107d99a0b22c56760b62e63c8cfd",
"blk.7.attn_output.weight": "7352b509a03cae2491ffc060e577d189341a0f861233f18c96f9d275dc4234bf",
"blk.7.attn_q.weight": "2b3791c8c008c33ddbe12bedba8191322ceea2dcce5cf0eb7a93d40ad254e672",
"blk.7.attn_v.weight": "3ae721d52466487a3d48150581e57f6d64ea1e83ab929f23b28c3d777422eeb6",
"blk.7.ffn_down.weight": "3b6fa8ececdb3c34af3a5363863d6f94289c1c95bf47fce3a3ddcf184c5f0848",
"blk.7.ffn_gate.weight": "dbd7df6c5ae5eb4adb859f0d36453813a4e289a359a1ba8f72d67fcbf21c3e22",
"blk.7.ffn_up.weight": "de68380a334b4c5cfd4c318b0e9854aec59bd79aa0f0c30af3f56414f83482b0",
"blk.8.attn_k.weight": "7303c4e4480abc72a7ee271811311199245fb5c2ea27a2bd3b8cad3a53a03c27",
"blk.8.attn_norm.weight": "2e3d1921898d1b943ce1a1b6818546c8b471d6d542da24f51a8b514b8c3dd4ef",
"blk.8.attn_output.weight": "30421520887b66bf97a18dbcdc283bc8d0b60590b612fd638a319a6eae923227",
"blk.8.attn_q.weight": "73e064d5433c9b500068a1c31744dbd53f4ade298fb450a0e8c97f62cf1f8a8d",
"blk.8.attn_v.weight": "27e21f8b9a9a8533e8178ca34a72aa1d786393d57302b7806dcdf3e51de511a8",
"blk.8.ffn_down.weight": "bf694bd8e00047982108000e7b3dee7b225db8b19abc595e5697b6bbefd92e7c",
"blk.8.ffn_gate.weight": "d55fdbf8606d9141b774b0500c58944fd1253b9e69d1f765eaa9a680b9f2ca40",
"blk.8.ffn_up.weight": "1ae3f580655e7c8e8dd6c34fa4ac574fdfc5e3f1a8536da0c5442d3a2976f0e7",
"blk.9.attn_k.weight": "b18080626012d8aabcf78542d6c7bf31c712bf55a70172fbfe173fcf34481036",
"blk.9.attn_norm.weight": "2e3620620dc09998c6d3063a7d5de5433fbbae8c11e5b00d13f145d39140e162",
"blk.9.attn_output.weight": "69c3c0e27ef1c0fc933eeb7b612b70909f18cde238873c0d576a2ba9714ef174",
"blk.9.attn_q.weight": "68330e5aa28a28873c9a6e67f032186ef651df2df5844e0f27094ba349fbe4ab",
"blk.9.attn_v.weight": "3df8d45a102be082d0793a51cb82aa62a43cd0e9d047ba4115ca0f2414b39325",
"blk.9.ffn_down.weight": "1d6cc162b73745b135b4f040a0aac3c06d5135a3dc5b2421e7ee2af48662fd7f",
"blk.9.ffn_gate.weight": "034a9d40fb1e32b534b45f4bccd65cbe43c4a6a3f5d01132bd245ca0005de5fc",
"blk.9.ffn_up.weight": "c838c38d0e1a0ac0da17eb2a66023ed31929f07d8fcfe1cc546df26096c91f0c",
"blk.10.attn_k.weight": "a78507cb72f744b86ceaa032596e74e5571c822d0226d334881169addb32cbd5",
"blk.10.attn_norm.weight": "35f48d0b28ee0e6b4cad4e983925737562d64824be5b168b3e26df3d6b260cf1",
"blk.10.attn_output.weight": "53712db06796de39b131323e7abf9a58551b6d52da6db66a471580386d396252",
"blk.10.attn_q.weight": "efe08429ba196026b81cd1c471e1c7418afd9e966659feb3936b674aa0803b58",
"blk.10.attn_v.weight": "7ec6055e134f89da0cbe79ec9f13ef2e442ac584b1f03c3e13e7d0cdad0078bd",
"blk.10.ffn_down.weight": "37e66af4bcd1f3079e841e892255b8255070655901864ea3a8c602a7f681a640",
"blk.10.ffn_gate.weight": "1825282bc34830d371c6edcc3c1e73e6ecc1e10f4aea0122dbb7acc1d6f7b1bc",
"blk.10.ffn_up.weight": "819b3b276a4d4c14a35ed6682d5ef18a5e8ed468e5ce3f12e8c75ec18ac20ec4",
"blk.11.attn_k.weight": "5327e6a2af82dfff0619a14971f5864a15553c36fead84e1af42c7630f2729c6",
"blk.11.attn_norm.weight": "fec363b3c4a43036d2c635fb8aa9e122dd87ee79811839f2f6cd955be3373e7b",
"blk.11.attn_output.weight": "ccf7b38f18ee8798b8a6a35018e2df3eb3e007de62876befb68025dd66c79763",
"blk.11.attn_q.weight": "da8c4a1c824ffe174e39f126cd72f7ef83c56aff1259d452a1212de80f98f5e9",
"blk.11.attn_v.weight": "d17ae6bb77f03982b55d341eb67acb5969e9ad3da5994b96eafc09793dcfe3a0",
"blk.11.ffn_down.weight": "a6bac521e2791345f22c57205fa1c2f2f687794dfd24d0e98d50ae0d0eb6088a",
"blk.11.ffn_gate.weight": "5ed902c488cb51ba5635f3df08258c5f84f31a679a00211ea5f9d8b824ef6d9d",
"blk.11.ffn_up.weight": "ee9f1437eb890d2cf9df2574afa1cecf20aafdd847cd75b152d7eb74419afd34",
"blk.12.attn_k.weight": "5a069c06e1019b0f889088e67458f7a11ec77fa190ada6069e46211f62219947",
"blk.12.attn_norm.weight": "194d7e5fcc8c49aea62daf1940532419cf3c505afdce6be377286b677db5db8f",
"blk.12.attn_output.weight": "6534995fd4d6fecb55e317add4b1723aba4d825e1e9471d0b08813dfdc247176",
"blk.12.attn_q.weight": "4ab51ca519b5995581fa34f846276feca3b907ef2b51f192f6cc0b3263c3f5a2",
"blk.12.attn_v.weight": "5652ca3fa81ef9a1ac1543d71fc6813f8517f8ec54b25c701f6f98061614830f",
"blk.12.ffn_down.weight": "4b2c263f54c88516b8eb273bb8d9615b01c5c8b484dc70358adb91b50b300edd",
"blk.12.ffn_gate.weight": "8f50c3c3e3e8568991d6c1b0e74b500cf4f208e7700bbb8e87c3f6a6d359b6b5",
"blk.12.ffn_up.weight": "1c1a581fec1fbe959e1427fa513f400100b5e1ee9d83932630be9905fb49c231",
"blk.13.attn_k.weight": "efd7a38c46f08d8376d82974f33c644e3a02220e142d63b1704718699a8a884c",
"blk.13.attn_norm.weight": "d28fa4f1bd75abbd063b0e622e08f579c89cd0c0c5ce63c1952ec9f944f8ee13",
"blk.13.attn_output.weight": "71e0068a639288718bdb70a6cfdefd50bc8b3ec3993347a65129e70001ca5827",
"blk.13.attn_q.weight": "b97077adc92cff07a2e07d80ee38f214ad8713571c69cd5c70ebd43dc501ac87",
"blk.13.attn_v.weight": "79b3e2749ab4b459c81e96e322b215f1e8af645eb346e176c326bd00cf6ed2fd",
"blk.13.ffn_down.weight": "9f8687d11effa1db7cfecf7bec5631734bcf2962aad74a9f519144491e08ec85",
"blk.13.ffn_gate.weight": "7d14dfa0543852e7777fe8fff29ca533744cbcf1ebcf10067e5adfc4eb345e65",
"blk.13.ffn_up.weight": "852b9527b97fdab211ff3f832a660ee1d93ccb56906144c50f01319a6e8ee615",
"blk.14.attn_k.weight": "79e926b20f36f66d58226cb358881f2f68ae7b468787d33cafae5110287a14a0",
"blk.14.attn_norm.weight": "97d481b63deb0df6142c2c6cd23043720c62eb609e390f47a7113751c79974ec",
"blk.14.attn_output.weight": "aa6e94d7176d5c79fbb89b96e5f13ce75702ce3dd23ee52986446da436a6c3d6",
"blk.14.attn_q.weight": "214becb6d1bb460da9fb8ace0f99b9a5afa9edf7aa7acc19606c7401b11d6305",
"blk.14.attn_v.weight": "488b0e6d7f1a7a2ed0972aaa6d10ef9c775ee5373460324efcf5b3e3da9311df",
"blk.14.ffn_down.weight": "29c7ad16cf9542e30996a1a01ab95b844533b28051f04cc7949c371afb796471",
"blk.14.ffn_gate.weight": "b7ef208f2b054803665b377f5a5980c122c026841809cf855c6ba06d1c3a885a",
"blk.14.ffn_up.weight": "76a5cc28100748d79c4398ce7b9176aab4d661548b6293a82f99144812e5b70e",
"blk.15.attn_k.weight": "a6b8f9e98ab878fa7ebc5d080978ebf2d050acc2ab2fa8ea9188eb10e27702c8",
"blk.15.attn_norm.weight": "a26d07a9752d6dccb68e3a8a2a49fd0752cdd0a415e05547819bc37d9ba63d5e",
"blk.15.attn_output.weight": "c63616c69048ccbee801e05be4f56d21fda21aa0cc470f41d57c31b4d9283a4d",
"blk.15.attn_q.weight": "fd595a67bf96c6ba16eb148a9d02fa52fa3c1d33ed10be28a08f851409fd6e64",
"blk.15.attn_v.weight": "1c5c9d33fa07c05d5f4ed0032c6c4aa83d863f0d31c94a66109d239dcd03cea3",
"blk.15.ffn_down.weight": "585ea62ab8aff7d7d212ea5c1a03226fda6b68370c890b776834af70c948dcbc",
"blk.15.ffn_gate.weight": "a13c63f86f879b03a573d5dd2a25cfd1f4dc73e8132e6454ecc23e538b4cdf6f",
"blk.15.ffn_up.weight": "f7112450f57c12fcd511f049e0dc0b541625a107a7901c3261ed9e984299f65c",
"blk.16.attn_k.weight": "2d2c8b11dd71fba6d1c106aa1673c113a5448653cca7eab897c8739212ed5003",
"blk.16.attn_norm.weight": "95c2ec7be9469690e18a9a1779684acb3e9da44b13e263a0da840305646fbf8a",
"blk.16.attn_output.weight": "31a65046e677f54dae654ded4e733479fcc0f7283d83076b7dc7cbcae8528230",
"blk.16.attn_q.weight": "bfc6292b9c6d49b7118d08060242a138182eb182d136ba5dfaf469437c16081d",
"blk.16.attn_v.weight": "68f81d037340217d87c7853ff4d6edfbc46d9e827ee6d5bff7c3f6238e3a95ad",
"blk.16.ffn_down.weight": "bbd6629691950cef4d5113e1c6670e91b216a9b872cb92cee02dfda4d6c4f7b8",
"blk.16.ffn_gate.weight": "63cb56f282b7401ed6c76e5bb6fdf1bf68a64f9af0c82c014209b55bcb5191d0",
"blk.16.ffn_up.weight": "b54f39a2541063cbfb6f713aa81c3b69a04100e999aa2ebbeec195dc382eceec",
"blk.17.attn_k.weight": "3d9ba49799cc56664ec30a002bcad61eb651294212a68c3ddb573eb042aef5a4",
"blk.17.attn_norm.weight": "42ee0db4b9d63257bca0012a30b12737ead1caafeb5ed3d93c8f48ffec4b46de",
"blk.17.attn_output.weight": "a38fd100f05c9041c592bc739e287de0b10d08ef2bda41a879225bdca9002f71",
"blk.17.attn_q.weight": "8a3bee285b0180a9eb35662e449ee4cbe16d992bdd48fb3a94bc4a347728cfa2",
"blk.17.attn_v.weight": "d7f8f1b8b863494ed4392a1656775912e9b264ad36016547b12e832a1d6757d6",
"blk.17.ffn_down.weight": "bb7ee58f61da8630972e25b621996fbe8ec06f4dc9ab1e268ab5b120c526ca28",
"blk.17.ffn_gate.weight": "6b652dbf167fee09a45ebfd78d500ff6548fb2756dbe5343ffec3f7e6207179f",
"blk.17.ffn_up.weight": "3b67f727e55e742715de978fab80457781e7a3762bc48f79d13b45dcb8de664c",
"blk.18.attn_k.weight": "ff7fe57c57b90c6fcc0aefc39ec24593c3a7d1ea1c23770480075a015450e0f5",
"blk.18.attn_norm.weight": "1d40faca082d2633ef0ccf19e121870dd6c7c3e2154607c7f3543fa96e99cb2d",
"blk.18.attn_output.weight": "9adfecaaa397a92db4687efd5fcabfa0daef9e6b0493763b7ff5ebc185c43a6c",
"blk.18.attn_q.weight": "ad1803eb9b291948639277afe981e666b07167eb3fcae903ba5b73bf86d8f50b",
"blk.18.attn_v.weight": "308cf23399adccf27401a4ab60d74dac6fb9d4cd4b9c5940d9145118d1881b34",
"blk.18.ffn_down.weight": "7de4ac9a561fb580619b745687dfd7ca8a69ef70471dee978741b80e9ff7bead",
"blk.18.ffn_gate.weight": "0c66970f696b33bd5ee8f1f2fbcb41fd78fa5ccabdc927e11a4d5a4089f19c69",
"blk.18.ffn_up.weight": "66a42e988e8a1f468fabf976c48e9e4bb045eaac6916ef16555ac101cd674abc",
"blk.19.attn_k.weight": "a928ab50390bacbcebe2e4b66922498134ce22d7b93beaa87d6cf4ab52eb7174",
"blk.19.attn_norm.weight": "b4a02c55b46c2a96aec9c64a254087cf48e6c1d4b6f31782c77a46fc4daebad1",
"blk.19.attn_output.weight": "b768319c641dff1eac5d1f8ceb960c9899c795bf2b24c1d6bf70aa24fda45f77",
"blk.19.attn_q.weight": "79ef3f57d187d3954a26362096e1b6c222d76f537dff73e034d6e9999935b8bc",
"blk.19.attn_v.weight": "ce13d6b13e24fcb2d5bc6a2662e5bd295b31b12db10a6d0307f86cf29b8d5001",
"blk.19.ffn_down.weight": "cf90d7e2137482cfd50934a8223ad774621d08554969da80a9712df5e6227eb0",
"blk.19.ffn_gate.weight": "71ce30150f003b6eeb3bf7464e05b6ae615f135110d8e47f0a47fd973e537c0f",
"blk.19.ffn_up.weight": "7f92aca0cc29866633feec701ec01a85a8ee2fd4e2b9630173a6cffb1d9d50ee",
"blk.20.attn_k.weight": "a2df23159d6fb74ef28e14b61028fe8b00a693a2fc9234a980be74f20b958682",
"blk.20.attn_norm.weight": "c6cd5f1b096fc5efa4eb59ca1c8c4bd28730f3dcedd59a63601663eccc6724ed",
"blk.20.attn_output.weight": "896a8a166d0f006d4b09867ae4345426303cbc3fb13a18d3d4e1bde00f16dbdf",
"blk.20.attn_q.weight": "01eb79588fe61baea0da43e99f4dc5939590e1bafd01e12dadb8326f102bfea2",
"blk.20.attn_v.weight": "bd39630fdd5a7c859ac1addaf53e63faf524c3f32f5f4896d86b6e746b1d5c06",
"blk.20.ffn_down.weight": "0304a5d39957a0e3f031c4bcc4549a135d396c8d97c8d276fd1c823ce86560c2",
"blk.20.ffn_gate.weight": "117b79d595b1dca0c8b37586beaecc4d84411507276212dc286cde7fc36c9bef",
"blk.20.ffn_up.weight": "6e799346db145c125f01783539749d3828fcc451cd4f10c5352f047a47e28714",
"blk.21.attn_k.weight": "1c37e4c0664147e775bb006b226b9553e3421140cd96288ea755f81731ab80ba",
"blk.21.attn_norm.weight": "00ae783a29000ccda5e4bdbff03df0752fb82805dc3f9b987500ebd80714476e",
"blk.21.attn_output.weight": "7588b84f9fb19f15095b5265c60b4a4e7ae74bcc47d4607dfa5d0bfab6f136cb",
"blk.21.attn_q.weight": "a65f1c0dd06d45bb97532d3e932689c1eecfe7359089b39174a96a149335cbc1",
"blk.21.attn_v.weight": "4220b77e7d5e8709b4eef33a679b5dad11f297085ef44c9977f9e54ef08f7a2d",
"blk.21.ffn_down.weight": "b8c082a0530d4b5328e67db0df84c5498f2af956de23c639fa0198ffea853950",
"blk.21.ffn_gate.weight": "cd1b656ee72d00e9835ef667c19ef89a88de261eb8eb7c0e936e0f9ddf83ef9f",
"blk.21.ffn_up.weight": "dc445f73e36ec7a3bd86884186b728f8e0187f32848c3b8b69d4d41f8571bf31",
"blk.22.attn_k.weight": "e37cf0b893ec8b9ee8c78dd139b8d9c45cb997a3bc0c3d93a70ca1c3f6af8859",
"blk.22.attn_norm.weight": "248a27838d3c46cc03a5c312facc84e2e0e2c990ef8401e93da25918497f88d1",
"blk.22.attn_output.weight": "fc191a18f6d18332c66761f7ab28008bfe295dd1f5c8741a2488442f9e00d0f5",
"blk.22.attn_q.weight": "4b193a2ab8bc2b085db18f2bf3eeba26e02b537b2cdd738160c8f14b165d0f5a",
"blk.22.attn_v.weight": "7a60ce5ccac7e045e55ba1e1e85bd2a0f93f8c781daee96c5223665e22f0c666",
"blk.22.ffn_down.weight": "e0a34fb4244e2c7168f3dbaa1904c15d339ec39999cdf27128bbaf619ee0a237",
"blk.22.ffn_gate.weight": "8bac872d4b8549c8812f927efa309f1792b524f33601095fff61b826de5a5615",
"blk.22.ffn_up.weight": "b67fa2b94dd901b6ec64c0853ce8ca2d86fe9cb1cc6d2f15fbbbe0e691c0c648",
"blk.23.attn_k.weight": "2c32e66ad01942b819ac09a197c71579fe66f02226a264fdd72ad1e02c67a27e",
"blk.23.attn_norm.weight": "825fdc94deb439cb93c713eeb077c1052b90ed658d6d464fc4ad3d611e911d48",
"blk.23.attn_output.weight": "95ca6707a95b8750b0c7c5d379d368f0f2e7ebef631954e7d4d8ec0f41f13a3a",
"blk.23.attn_q.weight": "6eccc84faca5fac015d1b26e2854501edcfd292a302228fe14cf99f5eb59a34b",
"blk.23.attn_v.weight": "b343ac3d226040f1033ee049668aa1d89b1774bc18431965682e5dbdce78ccdc",
"blk.23.ffn_down.weight": "9fc599befea8d3b1e342d564a110074f66d2542df406c4b90b6bdc5828fbb2b2",
"blk.23.ffn_gate.weight": "488556c1b0c9f0b20b0c99b4bac2e0f4046b81edb601d7b91e7e5b3bab47d667",
"blk.23.ffn_up.weight": "1088e291d7008dd9c7c2dd6830af686a8a84b724d123a016209bd5156d6898f1",
"blk.24.attn_k.weight": "a923fbe35e61e009a53927d7828818e0592bb737d6a1106c4b0b5a1efc367e07",
"blk.24.attn_norm.weight": "9b51aaaa939cefafdd9b13a7e5b74ac7fa2d603427e55a16a909d6f3f353750a",
"blk.24.attn_output.weight": "1beb2baba56f8409466434b037771248c2f620ec5f53e15f44c271d5a2d9ecf4",
"blk.24.attn_q.weight": "4b0194fe5bfae0c6bf6131dcf8cb6e2b994f6ea10b27cb03574f0f4f8cc0c950",
"blk.24.attn_v.weight": "6ac34b1ab0f66226d85bca1194a7c212cd93d384ecbc8b8395de48aec0970a61",
"blk.24.ffn_down.weight": "5508f74cb732a662c2936b32ac5e90742d172b9f961a747b0e5cba0e5906a89d",
"blk.24.ffn_gate.weight": "095e39b8584403835f9bb1ac33e0e81f54175575e4800273d281b845bff381e7",
"blk.24.ffn_up.weight": "2d43ec21637dda12973de367b0113ee9840b0d815bf6fce042f7c3f270b0b530",
"blk.25.attn_k.weight": "9e2aee029f3d2c7f67dfc7926e72c8228fb978382c8e5a4701bbf82c93801419",
"blk.25.attn_norm.weight": "220cd7164fb4cdbe22d26058e4153b26c27c7b5ce2bec8e95bf2c0ea08d23103",
"blk.25.attn_output.weight": "a17f4a5dc6aa51f03dbd75602d98e9491767c205cdc2c3a5f8667fc54bbf7c64",
"blk.25.attn_q.weight": "f60827496835c440c794bf57ce9780704d10a59d8229886bf75ebb18900ba4ef",
"blk.25.attn_v.weight": "9cac217e9e9f4f4c85f14ee51165a77c580165bd4a34b202389169bbe61a1ced",
"blk.25.ffn_down.weight": "a0f36949b663e80849581dfb71e7babcc73580793bbcb0c80ab26d5a6e000359",
"blk.25.ffn_gate.weight": "df4d1be4d50d6afe5ad3ef0d0e0fac76a33e85c963dea769641d612dd53e7d13",
"blk.25.ffn_up.weight": "992da76be762632e25ebc5ef4d03728eece1b43f7c4e31827df19ca724aea694",
"blk.26.attn_k.weight": "34199ff856ac32a500c754539d070258574192a34ecba87a182897cb59fdff52",
"blk.26.attn_norm.weight": "a8e9dfb2dae5d22b5c0aec5f3675991c0e3c3e6a44153db2579136b73f456e00",
"blk.26.attn_output.weight": "1c4f257ffb0d7db0f11cfb275e38b4af736917b43ad82de1badce3f1d227da4d",
"blk.26.attn_q.weight": "33d55786274c2e718cf61e8fbecf3dfa5ee0c208f0b716d42b061f55459acb3c",
"blk.26.attn_v.weight": "684b636939cd4ffcfec5a6238a0790ffa43d853c95783af9b9e8275e74071a7a",
"blk.26.ffn_down.weight": "89d0bf066db154e6d312b5433aed1714f6a28b40f4c52e3e1530ee07703303c8",
"blk.26.ffn_gate.weight": "393d649bebe5e2940e1b043649f6c860b4b8b9f380f30e9da1744a830f358156",
"blk.26.ffn_up.weight": "179edc85ababd9d8440cc6093eecd1004290aa1cb96434b26ecf7585b6cca17b",
"blk.27.attn_k.weight": "334841445a7f1e14731b08f56eb0b1f0938c63823d28bc6d078c4c5f05b36f19",
"blk.27.attn_norm.weight": "57344471bbda2e9deffdfdb2dd05a07aa47f8761e24de53525588639145bf551",
"blk.27.attn_output.weight": "506126af9ee54b535d49f97e36f630e74834f480329f098d6d62e96246d8d65a",
"blk.27.attn_q.weight": "dd984df1acb4783849e25ba7ae378bfd385cd9efc540fb798cd5bdd873f0118f",
"blk.27.attn_v.weight": "b4b3fe9a4455d34c297ff20a2f537b647cef424741d840a747b265f23d320ac0",
"blk.27.ffn_down.weight": "621fdb185ba0d35ba5476dae73d2c81ec1482a0e878d5bfd5c3b29fe837af013",
"blk.27.ffn_gate.weight": "e4fbab45f2ec506fa374103251a0bdb7baa6f576080bdd796f3e9db92098e08f",
"blk.27.ffn_up.weight": "a0c57e463e988002bbd6a6c6792baa21a65e6f89ae303a2c301951b0ae6e4bbe",
"blk.28.attn_k.weight": "bac36cbd52ec5056841663865e1291ddab4b47ef9a2544dd285d4503bfb0e4a0",
"blk.28.attn_norm.weight": "5774a9df2bbb2e86d1f70179c7b92d81e1f401160148b3328fb64db6646a5425",
"blk.28.attn_output.weight": "e8712622d1569557000c75f26c3f55fad267fd300463c2c2cfe3afbfa1c8f908",
"blk.28.attn_q.weight": "11677751fddee52cc739699c02836f7be54d96038be4240be5d4f53d00161608",
"blk.28.attn_v.weight": "e5ee459b8958d65e1445997b9aa1e90e2f5d17761ebcf5357313119a45322507",
"blk.28.ffn_down.weight": "3934518f9f85292da8475fe38a8edcbfc4e24ac56c351b472d6351f98750871e",
"blk.28.ffn_gate.weight": "6ba735d57e98d0847e487f25ffaa25256deaa8abec76f428cb70bd9774279d83",
"blk.28.ffn_up.weight": "977fae6e1e5353114fc645dd98429464749758765cbc6e6457593d596e57850c",
"blk.29.attn_k.weight": "8122a457307d580ad6f1e0acea09a2f593d97f595ba0d6737f5fea16d2433642",
"blk.29.attn_norm.weight": "d626f721e05aa1202439b01027031d4caf1adace61ed37870a277cb6297c77cc",
"blk.29.attn_output.weight": "7fb7122ab1b6b1e6615ca746897da27bc52c92cb70d3147183cdde61795b72b3",
"blk.29.attn_q.weight": "be43e94ff6b6e391024dc824101efa0ddf4005d5b002ac26cb03765c0c73c2fa",
"blk.29.attn_v.weight": "af93c85ebff908f74f9935b81bde0516ca487c84139868a1ce079c3ae20036b1",
"blk.29.ffn_down.weight": "39dae12340ed3120bd19c495fe0872b559613641e41fde69d02d8631900b84c0",
"blk.29.ffn_gate.weight": "36fd482439840ef197c9f3b8905d86acfcea49bcf018544106ca465d4bf8d5c7",
"blk.29.ffn_up.weight": "5243fbdfdc1e2a1dd84b6210a9869d18a014db9088897e345240cdc99990bd5d",
"blk.30.attn_k.weight": "948f263616bd3788b2b968baafd69b9c5bd1b77578665f096c4b7e247b4cea42",
"blk.30.attn_norm.weight": "e168df981e744874ff303faf2eb470e5f6868c2040ba5f383f6c5148669975e7",
"blk.30.attn_output.weight": "4cf0ccca04b792573b756655a24fc89cfb1f272da8305633f0bc66ef14990b93",
"blk.30.attn_q.weight": "21e07d6cba6c50d65350289258209717174a13c42be57e8141d69712cbaf32c1",
"blk.30.attn_v.weight": "65a8ca29c7237b3182ccf03e2fc94e84f9a53d0e160fb679ab401c853170dd9c",
"blk.30.ffn_down.weight": "8b00500a6d00d84058f6658ee1d6f06fb4fcae2f90d4341792259362923b3c13",
"blk.30.ffn_gate.weight": "5bc0e19ab7a31b50ac2118ad1b36e31055271a322cd8ff661d47c3ac0210703c",
"blk.30.ffn_up.weight": "f37a0561955725bd59ee2d064fa9f4e00a12a1b620b624db3bc3add5330bc321",
"blk.31.attn_k.weight": "9a5663edda227f5d87533897146764f8e8a7481b9e71fae197c39204f8463221",
"blk.31.attn_norm.weight": "060a4f438a1ee5e220b5b5278ad2f5c085a428bf38c515766781815597c87529",
"blk.31.attn_output.weight": "6ada5d3cad9dea4780ffbb43302bb6ccc2f24eddd0fc4f5f84c9ce0fc0c6e5dd",
"blk.31.attn_q.weight": "bb5d08c08603907981ad388d5d8b70fcc9b98034ba264b8474c8890cc0297af0",
"blk.31.attn_v.weight": "e01b4252ea9c6a889c32b21144b441a347464d04536ef4f6572425be55759796",
"blk.31.ffn_down.weight": "8ba4d679c36e93ba65ba03180385ef35ea86b3b7cdf2fded9df59369f1c09630",
"blk.31.ffn_gate.weight": "e5b41dc93645f8b5e8eebae3ada3ea43a18f97ce2654228655170b07b463ccb0",
"blk.31.ffn_up.weight": "25b88cdddc8b547af294ed107d3d1312e90b983cae87936fa6062ecd8ea02539",
"blk.32.attn_k.weight": "4bcf86dc0858c8ca2fbdf6aa76674d43eb698f78979fdc1a38f556a7af1facc4",
"blk.32.attn_norm.weight": "cdcc12f3b8b9773c6722736bfb748a2729230b21478cbcc4104859d3148df815",
"blk.32.attn_output.weight": "d43f1196822995ed89a9365c97054753a8b30ce20b6e273c8edcc42673a1e141",
"blk.32.attn_q.weight": "ebf2972bb3865cbc5be4840113a322089752038344beab2a0122c7cb4fb399b6",
"blk.32.attn_v.weight": "714db81704ff34fa137512903c1013acee7877467473e46600728b9240582eb7",
"blk.32.ffn_down.weight": "2cde3da1258bb170a79d5d3cdfe10c86a71eb34b77da46b74c5ed71e7f4fe274",
"blk.32.ffn_gate.weight": "c7e1ed792532613ff9d4e5834b6536e2e0f47df2303bc0fdaa90aac0c1f4e8db",
"blk.32.ffn_up.weight": "d8d6f13fe66a716e28f79101a29817f0c0d6f99969a6f017d51bafd1a16c600c",
"blk.33.attn_k.weight": "a0a28f6cbca88da00cab2ca37094d9b0503bf9defdae77b91895b911c408cbb6",
"blk.33.attn_norm.weight": "0251200c24cc8445607ace6dc8c5aa0566567997262b7cca53a11ac23cc564b2",
"blk.33.attn_output.weight": "b2423205bdf6a1096d43c44d8d12f1a84fcd4e1bb70fcf6dc8542b8b8a71a13c",
"blk.33.attn_q.weight": "00b425c3ef71065ce5e0234e702bf38143b4952da78a85f52ab2c2e3073d97ab",
"blk.33.attn_v.weight": "035edd2335df816c42c765a5e66b9d9b9e15a822a8dc1863508145499c942c14",
"blk.33.ffn_down.weight": "4894a923a3db75bae4496ba3ce5f28796ad31fe33996a066271fb8654964310e",
"blk.33.ffn_gate.weight": "8f6c819b8bbfbe3357fae89e1ac5a3d58be85b3b04be3bacf7b62775869046ff",
"blk.33.ffn_up.weight": "257c3544b5b544fd5d839665bf5caf107a329b59dbc3751efcaa24ae63c56179",
"blk.34.attn_k.weight": "b6cd8bba892e38dac4a2ebc3ba1bce49e71b967fc436fde30c6d76f54a18935f",
"blk.34.attn_norm.weight": "2b3c8e60a064cba9955752bbbbdd92c71ba5c2f1bd721097bdbe88b5abc68787",
"blk.34.attn_output.weight": "8cc272551c9aaca9db5a660c6927bab94a0243d74a30b2bc165f06bd577714ea",
"blk.34.attn_q.weight": "74b561eb4792484e6a94b58fe2583848c3ae28ff2f1bf3d02939a0cfdfa49990",
"blk.34.attn_v.weight": "dba19e24ff05154dc5a1f55c023729303a583d13d68732ce22ea74d4410dc8f0",
"blk.34.ffn_down.weight": "76eca5dfeb274c35774e0bf9f22ee420ed9085c8e99aa2cd5a236e4918b44c61",
"blk.34.ffn_gate.weight": "9af0862d5fcbc24732846488e653db8242a467765c0cdbc00332b3a40256b4a6",
"blk.34.ffn_up.weight": "2a03126bf73587eaba99ece2066103d12e47bcd4ce30ff6c17b2f383b81d40df",
"blk.35.attn_k.weight": "52513fc0cd4e997a842729af7d21dd09399bce0a339558374738be266d0fa2f0",
"blk.35.attn_norm.weight": "e5281fa911964263ccf1630b14762edbd41d0b9472d6ec695fc600fed4892c35",
"blk.35.attn_output.weight": "b391d6705d5dc6f48326b5fd16573f679edf64109d86fb729a498819676590ca",
"blk.35.attn_q.weight": "d16446921966db9b0e0539626ad22a2511ace780e59379d6a4162d8c5441440b",
"blk.35.attn_v.weight": "9d8cdf23ffdb0c5c74106843390b94b24c9f33ef0eb9998d39f78c73390101ea",
"blk.35.ffn_down.weight": "938eb6301f7bbf162d7dd965682a5ed11d0a4a530c6fedd7e5469ce80012fc17",
"blk.35.ffn_gate.weight": "5ad84f5a0c8edcfea1ecf1a3e3d21d85ceda0c4ad9e3c6ca68885eeff8ed3c2f",
"blk.35.ffn_up.weight": "1c4330d9dc71bf4c98812c34356c51f520f47610a534152aa6d29284b758090d",
"blk.36.attn_k.weight": "ef720655e5ca2465f13db2dfc4732fb4ef2c9d53acde52f514fd4f301e974081",
"blk.36.attn_norm.weight": "88f4b9310b3c8c2644e3029160cd35678c79dfa59280430e03f5c29a6fe84a58",
"blk.36.attn_output.weight": "aec6f915fffd7bb72cd783273e871b4f09605950089d45e72059d1316b6c4b01",
"blk.36.attn_q.weight": "72f9408a2405d42f8db6ce5fcf1d26a3660b6f225fc60e77d0277109cfcb82ed",
"blk.36.attn_v.weight": "0f3b3d851dc44b3893ef53f6cca5b4acc9658bacfe1cc2d13c3d704ddd409b67",
"blk.36.ffn_down.weight": "470aec48ce8c5129a6654d9fd26fcae72776f9fc1429a8bb05818072a876475d",
"blk.36.ffn_gate.weight": "7f5f296d09cf55679767b5d15de3eff489c456782119f25204be4b1647f18dcf",
"blk.36.ffn_up.weight": "b7ef74a1f7ffb4982711d93f1787be3a70edc3d2358d5203c41d8900508037d4",
"blk.37.attn_k.weight": "c4ffa5412e4ff2dcfe1aed991c1f54169fd171a4c7638e4b9f21a1ca64c5e1d6",
"blk.37.attn_norm.weight": "4eb6c888d841cccfacf5b963f8611120f6ff24b84af0b5714fd9ab36dcda422f",
"blk.37.attn_output.weight": "db2a7bbf9682f9f6eea672dae8e150738f1bf74dbc80edc7022017a3f040c8ac",
"blk.37.attn_q.weight": "e38c0462aff139afcbab289189823527e453abc9e541154adde5e7af88cacf0b",
"blk.37.attn_v.weight": "952eb2492ed452a72f96bcc12d4b2affad9dfdf46ee39ce4a5d7b57a5dc301e5",
"blk.37.ffn_down.weight": "25f23a8fbc44febf6dc4848fd7fe03a580e2822bd3b3b5a51f4990826bfe3e4e",
"blk.37.ffn_gate.weight": "707da5eb40118b035305d3262444382351f170a20a537386a70e90c5a83a7817",
"blk.37.ffn_up.weight": "d2d2ba5cfc4ef47338dd7384219e22bf030a5a2209e0354d88f5bbaaafd20e87",
"blk.38.attn_k.weight": "abc4bb189dedf7ce661e79028427623a4f91ac091c2cd60e31b58bc62b1cda71",
"blk.38.attn_norm.weight": "9f4803a7d03fd40fcb83d85f84eb1d5682ea4e5bb084f210c02850675d804c3d",
"blk.38.attn_output.weight": "77cb66007f1a41df7135d0e7f900ceb499c2f667dfc3f1a6ac01a3203bbd3ccf",
"blk.38.attn_q.weight": "d94a8b26cd375bf2bcaa76597e314aa8268ee50a479d00931e5e0e021feadb5d",
"blk.38.attn_v.weight": "660c907888bc5016dc69b7d35fe6f55c7ded697c93be0e2d332a2f17aff88758",
"blk.38.ffn_down.weight": "6f06173bae5b00ffaf88ef383619a8b9c6a8d0d5c6494695d17f6c1de1a68a13",
"blk.38.ffn_gate.weight": "89f99be149d03f116527bfcabe073c50001c874de40fb6e817f6619027f3cd05",
"blk.38.ffn_up.weight": "8d57557c8d5e2d2688b73f01dddf1ce8d5194990cda6358153320aea88aac7f8",
"blk.39.attn_k.weight": "21be09c988b46c8393e6c2ec9230f3b5136eb7607dd1953ba92d0811c2f0dd75",
"blk.39.attn_norm.weight": "ba7c1912dd1c4e2d16917201f62396fd0600e4a451137eaddff255548c209abd",
"blk.39.attn_output.weight": "acfaf4abb3fd27fd899b5563c3877f176b597d8f6cdb2f2fd3f3a0bd4da15ed6",
"blk.39.attn_q.weight": "e8adbc140d4c8f0db2a27ca584c5531d5b1e080555fe627e34d80d0814a92bed",
"blk.39.attn_v.weight": "92f96b0e1f724e73a0f90a76c145654418844c04a6d4b14c05eb5af8a62bf8dc",
"blk.39.ffn_down.weight": "4d9ee7c65fc16fe95d10c47b79ac6a525741947600a64b5fcea5d300a82c50de",
"blk.39.ffn_gate.weight": "7e18507989f39b32191133d2657c2ee3b74f42f070579204d727eb72215793d1",
"blk.39.ffn_up.weight": "22cda752269c9757ba918abede1df95bb0f83a5c772dea13c8deea3d5f2723d9",
"output_norm.weight": "2858cf0e39d32caf52b7861378ace076000241e147f10b9eb21d8a5cd149e3cb"
}

View File

@@ -9,8 +9,6 @@ import (
"path/filepath"
"runtime"
"strings"
"github.com/ollama/ollama/envconfig"
)
// Determine if the given ROCm lib directory is usable by checking for existence of some glob patterns
@@ -41,13 +39,10 @@ func commonAMDValidateLibDir() (string, error) {
// Favor our bundled version
// Installer payload location if we're running the installed binary
exe, err := os.Executable()
if err == nil {
rocmTargetDir := filepath.Join(filepath.Dir(exe), envconfig.LibRelativeToExe(), "lib", "ollama")
if rocmLibUsable(rocmTargetDir) {
slog.Debug("detected ROCM next to ollama executable " + rocmTargetDir)
return rocmTargetDir, nil
}
rocmTargetDir := filepath.Join(LibOllamaPath, "rocm")
if rocmLibUsable(rocmTargetDir) {
slog.Debug("detected ROCM next to ollama executable " + rocmTargetDir)
return rocmTargetDir, nil
}
// Prefer explicit HIP env var

View File

@@ -77,8 +77,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
gfxOverride := envconfig.HsaOverrideGfxVersion()
var supported []string
depPaths := LibraryDirs()
libDir := ""
var libDir string
// The amdgpu driver always exposes the host CPU(s) first, but we have to skip them and subtract
// from the other IDs to get alignment with the HIP libraries expectations (zero is the first GPU, not the CPU)
@@ -353,9 +352,8 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
})
return nil, err
}
depPaths = append(depPaths, libDir)
}
gpuInfo.DependencyPath = depPaths
gpuInfo.DependencyPath = []string{libDir}
if gfxOverride == "" {
// Only load supported list once

View File

@@ -5,7 +5,6 @@ import (
"errors"
"fmt"
"log/slog"
"os"
"path/filepath"
"slices"
"strconv"
@@ -50,14 +49,13 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
slog.Info(err.Error())
return nil, err
}
depPaths := LibraryDirs()
libDir, err := AMDValidateLibDir()
if err != nil {
err = fmt.Errorf("unable to verify rocm library: %w", err)
slog.Warn(err.Error())
return nil, err
}
depPaths = append(depPaths, libDir)
var supported []string
gfxOverride := envconfig.HsaOverrideGfxVersion()
@@ -113,7 +111,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
UnreliableFreeMemory: true,
ID: strconv.Itoa(i), // TODO this is probably wrong if we specify visible devices
DependencyPath: depPaths,
DependencyPath: []string{libDir},
MinimumMemory: rocmMinimumMemory,
Name: name,
Compute: gfx,
@@ -164,9 +162,7 @@ func AMDValidateLibDir() (string, error) {
}
// Installer payload (if we're running from some other location)
localAppData := os.Getenv("LOCALAPPDATA")
appDir := filepath.Join(localAppData, "Programs", "Ollama")
rocmTargetDir := filepath.Join(appDir, envconfig.LibRelativeToExe(), "lib", "ollama")
rocmTargetDir := filepath.Join(LibOllamaPath, "rocm")
if rocmLibUsable(rocmTargetDir) {
slog.Debug("detected ollama installed ROCm at " + rocmTargetDir)
return rocmTargetDir, nil

View File

@@ -23,7 +23,6 @@ import (
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/runners"
)
type cudaHandles struct {
@@ -101,15 +100,7 @@ func initCudaHandles() *cudaHandles {
// Aligned with driver, we can't carry as payloads
nvcudaMgmtPatterns := NvcudaGlobs
if runtime.GOOS == "windows" {
localAppData := os.Getenv("LOCALAPPDATA")
cudartMgmtPatterns = []string{filepath.Join(localAppData, "Programs", "Ollama", CudartMgmtName)}
}
libDirs := LibraryDirs()
for _, d := range libDirs {
cudartMgmtPatterns = append(cudartMgmtPatterns, filepath.Join(d, CudartMgmtName))
}
cudartMgmtPatterns = append(cudartMgmtPatterns, filepath.Join(LibOllamaPath, "cuda_v*", CudartMgmtName))
cudartMgmtPatterns = append(cudartMgmtPatterns, CudartGlobs...)
if len(NvmlGlobs) > 0 {
@@ -240,7 +231,7 @@ func GetGPUInfo() GpuInfoList {
if err != nil {
slog.Warn("error looking up system memory", "error", err)
}
depPaths := LibraryDirs()
details, err := GetCPUDetails()
if err != nil {
slog.Warn("failed to lookup CPU details", "error", err)
@@ -248,11 +239,9 @@ func GetGPUInfo() GpuInfoList {
cpus = []CPUInfo{
{
GpuInfo: GpuInfo{
memInfo: mem,
Library: "cpu",
Variant: runners.GetCPUCapability().String(),
ID: "0",
DependencyPath: depPaths,
memInfo: mem,
Library: "cpu",
ID: "0",
},
CPUs: details,
},
@@ -294,17 +283,13 @@ func GetGPUInfo() GpuInfoList {
gpuInfo.DriverMajor = driverMajor
gpuInfo.DriverMinor = driverMinor
variant := cudaVariant(gpuInfo)
if depPaths != nil {
gpuInfo.DependencyPath = depPaths
// Check for variant specific directory
if variant != "" {
for _, d := range depPaths {
if _, err := os.Stat(filepath.Join(d, "cuda_"+variant)); err == nil {
// Put the variant directory first in the search path to avoid runtime linking to the wrong library
gpuInfo.DependencyPath = append([]string{filepath.Join(d, "cuda_"+variant)}, gpuInfo.DependencyPath...)
break
}
}
// Start with our bundled libraries
if variant != "" {
variantPath := filepath.Join(LibOllamaPath, "cuda_"+variant)
if _, err := os.Stat(variantPath); err == nil {
// Put the variant directory first in the search path to avoid runtime linking to the wrong library
gpuInfo.DependencyPath = append([]string{variantPath}, gpuInfo.DependencyPath...)
}
}
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
@@ -376,7 +361,7 @@ func GetGPUInfo() GpuInfoList {
gpuInfo.FreeMemory = uint64(memInfo.free)
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
gpuInfo.DependencyPath = depPaths
gpuInfo.DependencyPath = []string{LibOllamaPath}
oneapiGPUs = append(oneapiGPUs, gpuInfo)
}
}
@@ -512,33 +497,30 @@ func GetGPUInfo() GpuInfoList {
func FindGPULibs(baseLibName string, defaultPatterns []string) []string {
// Multiple GPU libraries may exist, and some may not work, so keep trying until we exhaust them
var ldPaths []string
gpuLibPaths := []string{}
slog.Debug("Searching for GPU library", "name", baseLibName)
// Start with our bundled libraries
patterns := []string{}
for _, d := range LibraryDirs() {
patterns = append(patterns, filepath.Join(d, baseLibName))
}
// search our bundled libraries first
patterns := []string{filepath.Join(LibOllamaPath, baseLibName)}
var ldPaths []string
switch runtime.GOOS {
case "windows":
ldPaths = strings.Split(os.Getenv("PATH"), ";")
ldPaths = strings.Split(os.Getenv("PATH"), string(os.PathListSeparator))
case "linux":
ldPaths = strings.Split(os.Getenv("LD_LIBRARY_PATH"), ":")
default:
return gpuLibPaths
ldPaths = strings.Split(os.Getenv("LD_LIBRARY_PATH"), string(os.PathListSeparator))
}
// Then with whatever we find in the PATH/LD_LIBRARY_PATH
for _, ldPath := range ldPaths {
d, err := filepath.Abs(ldPath)
// then search the system's LD_LIBRARY_PATH
for _, p := range ldPaths {
p, err := filepath.Abs(p)
if err != nil {
continue
}
patterns = append(patterns, filepath.Join(d, baseLibName))
patterns = append(patterns, filepath.Join(p, baseLibName))
}
// finally, search the default patterns provided by the caller
patterns = append(patterns, defaultPatterns...)
slog.Debug("gpu library search", "globs", patterns)
for _, pattern := range patterns {
@@ -715,23 +697,6 @@ func (l GpuInfoList) GetVisibleDevicesEnv() (string, string) {
}
}
func LibraryDirs() []string {
// dependencies can exist wherever we found the runners (e.g. build tree for developers) and relative to the executable
// This can be simplified once we no longer carry runners as payloads
exe, err := os.Executable()
if err != nil {
slog.Warn("failed to lookup executable path", "error", err)
return nil
}
lib := filepath.Join(filepath.Dir(exe), envconfig.LibRelativeToExe(), "lib", "ollama")
if _, err := os.Stat(lib); err != nil {
return nil
}
return []string{lib}
}
func GetSystemInfo() SystemInfo {
gpus := GetGPUInfo()
gpuMutex.Lock()

View File

@@ -15,7 +15,6 @@ import (
"syscall"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/runners"
)
const (
@@ -28,7 +27,6 @@ func GetGPUInfo() GpuInfoList {
return []GpuInfo{
{
Library: "cpu",
Variant: runners.GetCPUCapability().String(),
memInfo: mem,
},
}
@@ -51,7 +49,6 @@ func GetCPUInfo() GpuInfoList {
return []GpuInfo{
{
Library: "cpu",
Variant: runners.GetCPUCapability().String(),
memInfo: mem,
},
}

56
discover/path.go Normal file
View File

@@ -0,0 +1,56 @@
package discover
import (
"os"
"path/filepath"
"runtime"
)
// LibPath is a path to lookup dynamic libraries
// in development it's usually 'build/lib/ollama'
// in distribution builds it's 'lib/ollama' on Windows
// '../lib/ollama' on Linux and the executable's directory on macOS
// note: distribution builds, additional GPU-specific libraries are
// found in subdirectories of the returned path, such as
// 'cuda_v11', 'cuda_v12', 'rocm', etc.
var LibOllamaPath string = func() string {
exe, err := os.Executable()
if err != nil {
return ""
}
if eval, err := filepath.EvalSymlinks(exe); err == nil {
exe = eval
}
var libPath string
switch runtime.GOOS {
case "windows":
libPath = filepath.Join(filepath.Dir(exe), "lib", "ollama")
case "linux":
libPath = filepath.Join(filepath.Dir(exe), "..", "lib", "ollama")
case "darwin":
libPath = filepath.Dir(exe)
}
cwd, err := os.Getwd()
if err != nil {
return ""
}
paths := []string{
libPath,
// build paths for development
filepath.Join(filepath.Dir(exe), "build", "lib", "ollama"),
filepath.Join(cwd, "build", "lib", "ollama"),
}
for _, p := range paths {
if _, err := os.Stat(p); err == nil {
return p
}
}
return filepath.Dir(exe)
}()

View File

@@ -5,7 +5,6 @@ import (
"log/slog"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/runners"
)
type memInfo struct {
@@ -107,7 +106,7 @@ func (l GpuInfoList) ByLibrary() []GpuInfoList {
for _, info := range l {
found := false
requested := info.Library
if info.Variant != runners.CPUCapabilityNone.String() {
if info.Variant != "" {
requested += "_" + info.Variant
}
for i, lib := range libs {

View File

@@ -2,7 +2,7 @@
### Getting Started
* [Quickstart](../README.md#quickstart)
* [Examples](../examples)
* [Examples](./examples.md)
* [Importing models](./import.md)
* [Linux Documentation](./linux.md)
* [Windows Documentation](./windows.md)

View File

@@ -31,7 +31,7 @@ Certain endpoints stream responses as JSON objects. Streaming can be disabled by
## Generate a completion
```shell
```
POST /api/generate
```
@@ -306,7 +306,7 @@ curl http://localhost:11434/api/generate -d '{
#### Response
```
```json
{
"model": "llava",
"created_at": "2023-11-03T15:36:02.583064Z",
@@ -485,7 +485,7 @@ A single JSON object is returned:
## Generate a chat completion
```shell
```
POST /api/chat
```
@@ -495,14 +495,14 @@ Generate the next message in a chat with a provided model. This is a streaming e
- `model`: (required) the [model name](#model-names)
- `messages`: the messages of the chat, this can be used to keep a chat memory
- `tools`: tools for the model to use if supported. Requires `stream` to be set to `false`
- `tools`: list of tools in JSON for the model to use if supported
The `message` object has the following fields:
- `role`: the role of the message, either `system`, `user`, `assistant`, or `tool`
- `content`: the content of the message
- `images` (optional): a list of images to include in the message (for multimodal models such as `llava`)
- `tool_calls` (optional): a list of tools the model wants to use
- `tool_calls` (optional): a list of tools in JSON that the model wants to use
Advanced parameters (optional):
@@ -795,7 +795,7 @@ curl http://localhost:11434/api/chat -d '{
##### Request
```
```shell
curl http://localhost:11434/api/chat -d '{
"model": "llama3.2",
"messages": [
@@ -870,7 +870,7 @@ If the messages array is empty, the model will be loaded into memory.
##### Request
```
```shell
curl http://localhost:11434/api/chat -d '{
"model": "llama3.2",
"messages": []
@@ -878,6 +878,7 @@ curl http://localhost:11434/api/chat -d '{
```
##### Response
```json
{
"model": "llama3.2",
@@ -897,7 +898,7 @@ If the messages array is empty and the `keep_alive` parameter is set to `0`, a m
##### Request
```
```shell
curl http://localhost:11434/api/chat -d '{
"model": "llama3.2",
"messages": [],
@@ -924,7 +925,7 @@ A single JSON object is returned:
## Create a Model
```shell
```
POST /api/create
```
@@ -1020,7 +1021,7 @@ curl http://localhost:11434/api/create -d '{
A stream of JSON objects is returned:
```
```json
{"status":"quantizing F16 model to Q4_K_M"}
{"status":"creating new layer sha256:667b0c1932bc6ffc593ed1d03f895bf2dc8dc6df21db3042284a6f4416b06a29"}
{"status":"using existing layer sha256:11ce4ee3e170f6adebac9a991c22e22ab3f8530e154ee669954c4bc73061c258"}
@@ -1051,7 +1052,7 @@ curl http://localhost:11434/api/create -d '{
A stream of JSON objects is returned:
```
```json
{"status":"parsing GGUF"}
{"status":"using existing layer sha256:432f310a77f4650a88d0fd59ecdd7cebed8d684bafea53cbff0473542964f0c3"}
{"status":"writing manifest"}
@@ -1118,7 +1119,7 @@ Return 200 OK if the blob exists, 404 Not Found if it does not.
## Push a Blob
```shell
```
POST /api/blobs/:digest
```
@@ -1142,7 +1143,7 @@ Return 201 Created if the blob was successfully created, 400 Bad Request if the
## List Local Models
```shell
```
GET /api/tags
```
@@ -1195,7 +1196,7 @@ A single JSON object will be returned.
## Show Model Information
```shell
```
POST /api/show
```
@@ -1261,7 +1262,7 @@ curl http://localhost:11434/api/show -d '{
## Copy a Model
```shell
```
POST /api/copy
```
@@ -1284,7 +1285,7 @@ Returns a 200 OK if successful, or a 404 Not Found if the source model doesn't e
## Delete a Model
```shell
```
DELETE /api/delete
```
@@ -1310,7 +1311,7 @@ Returns a 200 OK if successful, 404 Not Found if the model to be deleted doesn't
## Pull a Model
```shell
```
POST /api/pull
```
@@ -1382,7 +1383,7 @@ if `stream` is set to false, then the response is a single JSON object:
## Push a Model
```shell
```
POST /api/push
```
@@ -1447,7 +1448,7 @@ If `stream` is set to `false`, then the response is a single JSON object:
## Generate Embeddings
```shell
```
POST /api/embed
```
@@ -1515,7 +1516,7 @@ curl http://localhost:11434/api/embed -d '{
```
## List Running Models
```shell
```
GET /api/ps
```
@@ -1562,7 +1563,7 @@ A single JSON object will be returned.
> Note: this endpoint has been superseded by `/api/embed`
```shell
```
POST /api/embeddings
```
@@ -1602,7 +1603,7 @@ curl http://localhost:11434/api/embeddings -d '{
## Version
```shell
```
GET /api/version
```

View File

@@ -1,165 +1,131 @@
# Development
Install required tools:
Install prerequisites:
- go version 1.22 or higher
- OS specific C/C++ compiler (see below)
- GNU Make
- [Go](https://go.dev/doc/install)
- C/C++ Compiler e.g. Clang on macOS, [TDM-GCC](https://github.com/jmeubank/tdm-gcc/releases/latest) (Windows amd64) or [llvm-mingw](https://github.com/mstorsjo/llvm-mingw) (Windows arm64), GCC/Clang on Linux.
Then build and run Ollama from the root directory of the repository:
## Overview
Ollama uses a mix of Go and C/C++ code to interface with GPUs. The C/C++ code is compiled with both CGO and GPU library specific compilers. A set of GNU Makefiles are used to compile the project. GPU Libraries are auto-detected based on the typical environment variables used by the respective libraries, but can be overridden if necessary. The default make target will build the runners and primary Go Ollama application that will run within the repo directory. Throughout the examples below `-j 5` is suggested for 5 parallel jobs to speed up the build. You can adjust the job count based on your CPU Core count to reduce build times. If you want to relocate the built binaries, use the `dist` target and recursively copy the files in `./dist/$OS-$ARCH/` to your desired location. To learn more about the other make targets use `make help`
Once you have built the GPU/CPU runners, you can compile the main application with `go build .`
### MacOS
[Download Go](https://go.dev/dl/)
```bash
make -j 5
```shell
go run . serve
```
Now you can run `ollama`:
## macOS (Apple Silicon)
```bash
./ollama
macOS Apple Silicon supports Metal which is built-in to the Ollama binary. No additional steps are required.
## macOS (Intel)
Install prerequisites:
- [CMake](https://cmake.org/download/) or `brew install cmake`
Then, configure and build the project:
```shell
cmake -B build
cmake --build build
```
#### Xcode 15 warnings
Lastly, run Ollama:
If you are using Xcode newer than version 14, you may see a warning during `go build` about `ld: warning: ignoring duplicate libraries: '-lobjc'` due to Golang issue https://github.com/golang/go/issues/67799 which can be safely ignored. You can suppress the warning with `export CGO_LDFLAGS="-Wl,-no_warn_duplicate_libraries"`
### Linux
#### Linux CUDA (NVIDIA)
_Your operating system distribution may already have packages for NVIDIA CUDA. Distro packages are often preferable, but instructions are distro-specific. Please consult distro-specific docs for dependencies if available!_
Install `make`, `gcc` and `golang` as well as [NVIDIA CUDA](https://developer.nvidia.com/cuda-downloads)
development and runtime packages.
Typically the makefile will auto-detect CUDA, however, if your Linux distro
or installation approach uses alternative paths, you can specify the location by
overriding `CUDA_PATH` to the location of the CUDA toolkit. You can customize
a set of target CUDA architectures by setting `CUDA_ARCHITECTURES` (e.g. `CUDA_ARCHITECTURES=50;60;70`)
```
make -j 5
```shell
go run . serve
```
If both v11 and v12 tookkits are detected, runners for both major versions will be built by default. You can build just v12 with `make cuda_v12`
## Windows
#### Older Linux CUDA (NVIDIA)
Install prerequisites:
To support older GPUs with Compute Capability 3.5 or 3.7, you will need to use an older version of the Driver from [Unix Driver Archive](https://www.nvidia.com/en-us/drivers/unix/) (tested with 470) and [CUDA Toolkit Archive](https://developer.nvidia.com/cuda-toolkit-archive) (tested with cuda V11). When you build Ollama, you will need to set two make variable to adjust the minimum compute capability Ollama supports via `make -j 5 CUDA_ARCHITECTURES="35;37;50;52" EXTRA_GOLDFLAGS="\"-X=github.com/ollama/ollama/discover.CudaComputeMajorMin=3\" \"-X=github.com/ollama/ollama/discover.CudaComputeMinorMin=5\""`. To find the Compute Capability of your older GPU, refer to [GPU Compute Capability](https://developer.nvidia.com/cuda-gpus).
- [CMake](https://cmake.org/download/)
- [Visual Studio 2022](https://visualstudio.microsoft.com/downloads/) including the Native Desktop Workload
- (Optional) AMD GPU support
- [ROCm](https://rocm.github.io/install.html)
- [Ninja](https://github.com/ninja-build/ninja/releases)
- (Optional) NVIDIA GPU support
- [CUDA SDK](https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network)
#### Linux ROCm (AMD)
> [!IMPORTANT]
> Ensure prerequisites are in `PATH` before running CMake.
_Your operating system distribution may already have packages for AMD ROCm. Distro packages are often preferable, but instructions are distro-specific. Please consult distro-specific docs for dependencies if available!_
> [!IMPORTANT]
> ROCm is not compatible with Visual Studio CMake generators. Use `-GNinja` when configuring the project.
Install [ROCm](https://rocm.docs.amd.com/en/latest/) development packages first, as well as `make`, `gcc`, and `golang`.
> [!IMPORTANT]
> CUDA is only compatible with Visual Studio CMake generators.
Typically the build scripts will auto-detect ROCm, however, if your Linux distro
or installation approach uses unusual paths, you can specify the location by
specifying an environment variable `HIP_PATH` to the location of the ROCm
install (typically `/opt/rocm`). You can also customize
the AMD GPU targets by setting HIP_ARCHS (e.g. `HIP_ARCHS=gfx1101;gfx1102`)
Then, configure and build the project:
```
make -j 5
```shell
cmake -B build
cmake --build build --config Release
```
ROCm requires elevated privileges to access the GPU at runtime. On most distros you can add your user account to the `render` group, or run as root.
Lastly, run Ollama:
#### Containerized Linux Build
If you have Docker and buildx available, you can build linux binaries with `./scripts/build_linux.sh` which has the CUDA and ROCm dependencies included. The resulting artifacts are placed in `./dist` and by default the script builds both arm64 and amd64 binaries. If you want to build only amd64, you can build with `PLATFORM=linux/amd64 ./scripts/build_linux.sh`
### Windows
The following tools are required as a minimal development environment to build CPU inference support.
- Go version 1.22 or higher
- https://go.dev/dl/
- Git
- https://git-scm.com/download/win
- clang with gcc compat and Make. There are multiple options on how to go about installing these tools on Windows. We have verified the following, but others may work as well:
- [MSYS2](https://www.msys2.org/)
- After installing, from an MSYS2 terminal, run `pacman -S mingw-w64-clang-x86_64-gcc-compat mingw-w64-clang-x86_64-clang make` to install the required tools
- Assuming you used the default install prefix for msys2 above, add `C:\msys64\clang64\bin` and `c:\msys64\usr\bin` to your environment variable `PATH` where you will perform the build steps below (e.g. system-wide, account-level, powershell, cmd, etc.)
> [!NOTE]
> Due to bugs in the GCC C++ library for unicode support, Ollama should be built with clang on windows.
```
make -j 5
```shell
go run . serve
```
#### GPU Support
## Windows (ARM)
The GPU tools require the Microsoft native build tools. To build either CUDA or ROCm, you must first install MSVC via Visual Studio:
Windows ARM does not support additional acceleration libraries at this time.
- Make sure to select `Desktop development with C++` as a Workload during the Visual Studio install
- You must complete the Visual Studio install and run it once **BEFORE** installing CUDA or ROCm for the tools to properly register
- Add the location of the **64 bit (x64)** compiler (`cl.exe`) to your `PATH`
- Note: the default Developer Shell may configure the 32 bit (x86) compiler which will lead to build failures. Ollama requires a 64 bit toolchain.
## Linux
#### Windows CUDA (NVIDIA)
Install prerequisites:
In addition to the common Windows development tools and MSVC described above:
- [CMake](https://cmake.org/download/) or `sudo apt install cmake` or `sudo dnf install cmake`
- (Optional) AMD GPU support
- [ROCm](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/quick-start.html)
- (Optional) NVIDIA GPU support
- [CUDA SDK](https://developer.nvidia.com/cuda-downloads)
- [NVIDIA CUDA](https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html)
> [!IMPORTANT]
> Ensure prerequisites are in `PATH` before running CMake.
#### Windows ROCm (AMD Radeon)
In addition to the common Windows development tools and MSVC described above:
Then, configure and build the project:
- [AMD HIP](https://www.amd.com/en/developer/resources/rocm-hub/hip-sdk.html)
#### Windows arm64
The default `Developer PowerShell for VS 2022` may default to x86 which is not what you want. To ensure you get an arm64 development environment, start a plain PowerShell terminal and run:
```powershell
import-module 'C:\\Program Files\\Microsoft Visual Studio\\2022\\Community\\Common7\\Tools\\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -Arch arm64 -vsinstallpath 'C:\\Program Files\\Microsoft Visual Studio\\2022\\Community' -skipautomaticlocation
```shell
cmake -B build
cmake --build build
```
You can confirm with `write-host $env:VSCMD_ARG_TGT_ARCH`
Lastly, run Ollama:
Follow the instructions at https://www.msys2.org/wiki/arm64/ to set up an arm64 msys2 environment. Ollama requires gcc and mingw32-make to compile, which is not currently available on Windows arm64, but a gcc compatibility adapter is available via `mingw-w64-clang-aarch64-gcc-compat`. At a minimum you will need to install the following:
```
pacman -S mingw-w64-clang-aarch64-clang mingw-w64-clang-aarch64-gcc-compat mingw-w64-clang-aarch64-make make
```shell
go run . serve
```
You will need to ensure your PATH includes go, cmake, gcc and clang mingw32-make to build ollama from source. (typically `C:\msys64\clangarm64\bin\`)
## Docker
## Advanced CPU Vector Settings
On x86, running `make` will compile several CPU runners which can run on different CPU families. At runtime, Ollama will auto-detect the best variation to load. If GPU libraries are present at build time, Ollama also compiles GPU runners with the `AVX` CPU vector feature enabled. This provides a good performance balance when loading large models that split across GPU and CPU with broad compatibility. Some users may prefer no vector extensions (e.g. older Xeon/Celeron processors, or hypervisors that mask the vector features) while other users may prefer turning on many more vector extensions to further improve performance for split model loads.
To customize the set of CPU vector features enabled for a CPU runner and all GPU runners, use CUSTOM_CPU_FLAGS during the build.
To build without any vector flags:
```
make CUSTOM_CPU_FLAGS=""
```shell
docker build .
```
To build with both AVX and AVX2:
```
make CUSTOM_CPU_FLAGS=avx,avx2
### ROCm
```shell
docker build --build-arg FLAVOR=rocm .
```
To build with AVX512 features turned on:
## Running tests
```
make CUSTOM_CPU_FLAGS=avx,avx2,avx512,avx512vbmi,avx512vnni,avx512bf16
To run tests, use `go test`:
```shell
go test ./...
```
> [!NOTE]
> If you are experimenting with different flags, make sure to do a `make clean` between each change to ensure everything is rebuilt with the new compiler flags
## Library detection
Ollama looks for acceleration libraries in the following paths relative to the `ollama` executable:
* `./lib/ollama` (Windows)
* `../lib/ollama` (Linux)
* `.` (macOS)
* `build/lib/ollama` (for development)
If the libraries are not found, Ollama will not run with any acceleration libraries.

View File

@@ -2,7 +2,7 @@
### CPU only
```bash
```shell
docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
```
@@ -11,42 +11,46 @@ Install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-
#### Install with Apt
1. Configure the repository
```bash
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey \
| sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg
curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list \
| sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' \
| sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
sudo apt-get update
```
```shell
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey \
| sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg
curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list \
| sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' \
| sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
sudo apt-get update
```
2. Install the NVIDIA Container Toolkit packages
```bash
sudo apt-get install -y nvidia-container-toolkit
```
```shell
sudo apt-get install -y nvidia-container-toolkit
```
#### Install with Yum or Dnf
1. Configure the repository
```bash
curl -s -L https://nvidia.github.io/libnvidia-container/stable/rpm/nvidia-container-toolkit.repo \
| sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo
```
```shell
curl -s -L https://nvidia.github.io/libnvidia-container/stable/rpm/nvidia-container-toolkit.repo \
| sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo
```
2. Install the NVIDIA Container Toolkit packages
```bash
sudo yum install -y nvidia-container-toolkit
```
```shell
sudo yum install -y nvidia-container-toolkit
```
#### Configure Docker to use Nvidia driver
```
```shell
sudo nvidia-ctk runtime configure --runtime=docker
sudo systemctl restart docker
```
#### Start the container
```bash
```shell
docker run -d --gpus=all -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
```
@@ -57,7 +61,7 @@ docker run -d --gpus=all -v ollama:/root/.ollama -p 11434:11434 --name ollama ol
To run Ollama using Docker with AMD GPUs, use the `rocm` tag and the following command:
```
```shell
docker run -d --device /dev/kfd --device /dev/dri -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama:rocm
```
@@ -65,7 +69,7 @@ docker run -d --device /dev/kfd --device /dev/dri -v ollama:/root/.ollama -p 114
Now you can run a model:
```
```shell
docker exec -it ollama ollama run llama3.2
```

View File

@@ -24,7 +24,7 @@ By default, Ollama uses a context window size of 2048 tokens.
To change this when using `ollama run`, use `/set parameter`:
```
```shell
/set parameter num_ctx 4096
```
@@ -46,10 +46,15 @@ Use the `ollama ps` command to see what models are currently loaded into memory.
```shell
ollama ps
NAME ID SIZE PROCESSOR UNTIL
llama3:70b bcfb190ca3a7 42 GB 100% GPU 4 minutes from now
```
> **Output**:
>
> ```
> NAME ID SIZE PROCESSOR UNTIL
> llama3:70b bcfb190ca3a7 42 GB 100% GPU 4 minutes from now
> ```
The `Processor` column will show which memory the model was loaded in to:
* `100% GPU` means the model was loaded entirely into the GPU
* `100% CPU` means the model was loaded entirely in system memory
@@ -66,7 +71,7 @@ If Ollama is run as a macOS application, environment variables should be set usi
1. For each environment variable, call `launchctl setenv`.
```bash
launchctl setenv OLLAMA_HOST "0.0.0.0"
launchctl setenv OLLAMA_HOST "0.0.0.0:11434"
```
2. Restart Ollama application.
@@ -81,14 +86,14 @@ If Ollama is run as a systemd service, environment variables should be set using
```ini
[Service]
Environment="OLLAMA_HOST=0.0.0.0"
Environment="OLLAMA_HOST=0.0.0.0:11434"
```
3. Save and exit.
4. Reload `systemd` and restart Ollama:
```bash
```shell
systemctl daemon-reload
systemctl restart ollama
```
@@ -221,16 +226,19 @@ properties.
If you are using the API you can preload a model by sending the Ollama server an empty request. This works with both the `/api/generate` and `/api/chat` API endpoints.
To preload the mistral model using the generate endpoint, use:
```shell
curl http://localhost:11434/api/generate -d '{"model": "mistral"}'
```
To use the chat completions endpoint, use:
```shell
curl http://localhost:11434/api/chat -d '{"model": "mistral"}'
```
To preload a model using the CLI, use the command:
```shell
ollama run llama3.2 ""
```
@@ -250,11 +258,13 @@ If you're using the API, use the `keep_alive` parameter with the `/api/generate`
* '0' which will unload the model immediately after generating a response
For example, to preload a model and leave it in memory use:
```shell
curl http://localhost:11434/api/generate -d '{"model": "llama3.2", "keep_alive": -1}'
```
To unload the model and free up memory use:
```shell
curl http://localhost:11434/api/generate -d '{"model": "llama3.2", "keep_alive": 0}'
```

View File

@@ -7,7 +7,7 @@ Check your compute compatibility to see if your card is supported:
| Compute Capability | Family | Cards |
| ------------------ | ------------------- | ----------------------------------------------------------------------------------------------------------- |
| 9.0 | NVIDIA | `H100` |
| 9.0 | NVIDIA | `H200` `H100` |
| 8.9 | GeForce RTX 40xx | `RTX 4090` `RTX 4080 SUPER` `RTX 4080` `RTX 4070 Ti SUPER` `RTX 4070 Ti` `RTX 4070 SUPER` `RTX 4070` `RTX 4060 Ti` `RTX 4060` |
| | NVIDIA Professional | `L4` `L40` `RTX 6000` |
| 8.6 | GeForce RTX 30xx | `RTX 3090 Ti` `RTX 3090` `RTX 3080 Ti` `RTX 3080` `RTX 3070 Ti` `RTX 3070` `RTX 3060 Ti` `RTX 3060` `RTX 3050 Ti` `RTX 3050` |
@@ -38,7 +38,7 @@ Numeric IDs may be used, however ordering may vary, so UUIDs are more reliable.
You can discover the UUID of your GPUs by running `nvidia-smi -L` If you want to
ignore the GPUs and force CPU usage, use an invalid GPU ID (e.g., "-1")
### Laptop Suspend Resume
### Linux Suspend Resume
On linux, after a suspend/resume cycle, sometimes Ollama will fail to discover
your NVIDIA GPU, and fallback to running on the CPU. You can workaround this

View File

@@ -20,13 +20,13 @@ Make sure that you use the same base model in the `FROM` command as you used to
Now run `ollama create` from the directory where the `Modelfile` was created:
```bash
```shell
ollama create my-model
```
Lastly, test the model:
```bash
```shell
ollama run my-model
```

View File

@@ -119,7 +119,7 @@ sudo systemctl status ollama
To customize the installation of Ollama, you can edit the systemd service file or the environment variables by running:
```
```shell
sudo systemctl edit ollama
```
@@ -152,7 +152,7 @@ Use `OLLAMA_VERSION` environment variable with the install script to install a s
For example:
```shell
curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION=0.3.9 sh
curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION=0.5.7 sh
```
## Viewing logs
@@ -186,3 +186,9 @@ sudo rm -r /usr/share/ollama
sudo userdel ollama
sudo groupdel ollama
```
Remove installed libraries:
```shell
sudo rm -rf /usr/local/lib/ollama
```

View File

@@ -28,7 +28,7 @@ A model file is the blueprint to create and share models with Ollama.
The format of the `Modelfile`:
```modelfile
```
# comment
INSTRUCTION arguments
```
@@ -49,7 +49,7 @@ INSTRUCTION arguments
An example of a `Modelfile` creating a mario blueprint:
```modelfile
```
FROM llama3.2
# sets the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1
@@ -67,28 +67,32 @@ To use this:
3. `ollama run choose-a-model-name`
4. Start using the model!
More examples are available in the [examples directory](../examples).
To view the Modelfile of a given model, use the `ollama show --modelfile` command.
```bash
> ollama show --modelfile llama3.2
# Modelfile generated by "ollama show"
# To build a new Modelfile based on this one, replace the FROM line with:
# FROM llama3.2:latest
FROM /Users/pdevine/.ollama/models/blobs/sha256-00e1317cbf74d901080d7100f57580ba8dd8de57203072dc6f668324ba545f29
TEMPLATE """{{ if .System }}<|start_header_id|>system<|end_header_id|>
```shell
ollama show --modelfile llama3.2
```
{{ .System }}<|eot_id|>{{ end }}{{ if .Prompt }}<|start_header_id|>user<|end_header_id|>
> **Output**:
>
> ```
> # Modelfile generated by "ollama show"
> # To build a new Modelfile based on this one, replace the FROM line with:
> # FROM llama3.2:latest
> FROM /Users/pdevine/.ollama/models/blobs/sha256-00e1317cbf74d901080d7100f57580ba8dd8de57203072dc6f668324ba545f29
> TEMPLATE """{{ if .System }}<|start_header_id|>system<|end_header_id|>
>
> {{ .System }}<|eot_id|>{{ end }}{{ if .Prompt }}<|start_header_id|>user<|end_header_id|>
>
> {{ .Prompt }}<|eot_id|>{{ end }}<|start_header_id|>assistant<|end_header_id|>
>
> {{ .Response }}<|eot_id|>"""
> PARAMETER stop "<|start_header_id|>"
> PARAMETER stop "<|end_header_id|>"
> PARAMETER stop "<|eot_id|>"
> PARAMETER stop "<|reserved_special_token"
> ```
{{ .Prompt }}<|eot_id|>{{ end }}<|start_header_id|>assistant<|end_header_id|>
{{ .Response }}<|eot_id|>"""
PARAMETER stop "<|start_header_id|>"
PARAMETER stop "<|end_header_id|>"
PARAMETER stop "<|eot_id|>"
PARAMETER stop "<|reserved_special_token"
```
## Instructions
@@ -96,13 +100,13 @@ To view the Modelfile of a given model, use the `ollama show --modelfile` comman
The `FROM` instruction defines the base model to use when creating a model.
```modelfile
```
FROM <model name>:<tag>
```
#### Build from existing model
```modelfile
```
FROM llama3.2
```
@@ -113,7 +117,7 @@ Additional models can be found at:
#### Build from a Safetensors model
```modelfile
```
FROM <model directory>
```
@@ -127,7 +131,7 @@ Currently supported model architectures:
#### Build from a GGUF file
```modelfile
```
FROM ./ollama-model.gguf
```
@@ -138,7 +142,7 @@ The GGUF file location should be specified as an absolute path or relative to th
The `PARAMETER` instruction defines a parameter that can be set when the model is run.
```modelfile
```
PARAMETER <parameter> <parametervalue>
```
@@ -155,7 +159,6 @@ PARAMETER <parameter> <parametervalue>
| temperature | The temperature of the model. Increasing the temperature will make the model answer more creatively. (Default: 0.8) | float | temperature 0.7 |
| seed | Sets the random number seed to use for generation. Setting this to a specific number will make the model generate the same text for the same prompt. (Default: 0) | int | seed 42 |
| stop | Sets the stop sequences to use. When this pattern is encountered the LLM will stop generating text and return. Multiple stop patterns may be set by specifying multiple separate `stop` parameters in a modelfile. | string | stop "AI assistant:" |
| tfs_z | Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting. (default: 1) | float | tfs_z 1 |
| num_predict | Maximum number of tokens to predict when generating text. (Default: -1, infinite generation) | int | num_predict 42 |
| top_k | Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40) | int | top_k 40 |
| top_p | Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9) | float | top_p 0.9 |
@@ -186,7 +189,7 @@ TEMPLATE """{{ if .System }}<|im_start|>system
The `SYSTEM` instruction specifies the system message to be used in the template, if applicable.
```modelfile
```
SYSTEM """<system message>"""
```
@@ -196,7 +199,7 @@ The `ADAPTER` instruction specifies a fine tuned LoRA adapter that should apply
#### Safetensor adapter
```modelfile
```
ADAPTER <path to safetensor adapter>
```
@@ -207,7 +210,7 @@ Currently supported Safetensor adapters:
#### GGUF adapter
```modelfile
```
ADAPTER ./ollama-lora.gguf
```
@@ -215,7 +218,7 @@ ADAPTER ./ollama-lora.gguf
The `LICENSE` instruction allows you to specify the legal license under which the model used with this Modelfile is shared or distributed.
```modelfile
```
LICENSE """
<license text>
"""
@@ -225,7 +228,7 @@ LICENSE """
The `MESSAGE` instruction allows you to specify a message history for the model to use when responding. Use multiple iterations of the MESSAGE command to build up a conversation which will guide the model to answer in a similar way.
```modelfile
```
MESSAGE <role> <message>
```
@@ -240,7 +243,7 @@ MESSAGE <role> <message>
#### Example conversation
```modelfile
```
MESSAGE user Is Toronto in Canada?
MESSAGE assistant yes
MESSAGE user Is Sacramento in Canada?

View File

@@ -1,6 +1,7 @@
# OpenAI compatibility
> **Note:** OpenAI compatibility is experimental and is subject to major adjustments including breaking changes. For fully-featured access to the Ollama API, see the Ollama [Python library](https://github.com/ollama/ollama-python), [JavaScript library](https://github.com/ollama/ollama-js) and [REST API](https://github.com/ollama/ollama/blob/main/docs/api.md).
> [!NOTE]
> OpenAI compatibility is experimental and is subject to major adjustments including breaking changes. For fully-featured access to the Ollama API, see the Ollama [Python library](https://github.com/ollama/ollama-python), [JavaScript library](https://github.com/ollama/ollama-js) and [REST API](https://github.com/ollama/ollama/blob/main/docs/api.md).
Ollama provides experimental compatibility with parts of the [OpenAI API](https://platform.openai.com/docs/api-reference) to help connect existing applications to Ollama.
@@ -59,8 +60,10 @@ embeddings = client.embeddings.create(
input=["why is the sky blue?", "why is the grass green?"],
)
```
#### Structured outputs
```py
```python
from pydantic import BaseModel
from openai import OpenAI
@@ -144,7 +147,7 @@ const embedding = await openai.embeddings.create({
### `curl`
``` shell
```shell
curl http://localhost:11434/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
@@ -319,7 +322,7 @@ ollama pull llama3.2
For tooling that relies on default OpenAI model names such as `gpt-3.5-turbo`, use `ollama cp` to copy an existing model name to a temporary name:
```
```shell
ollama cp llama3.2 gpt-3.5-turbo
```
@@ -343,7 +346,7 @@ curl http://localhost:11434/v1/chat/completions \
The OpenAI API does not have a way of setting the context size for a model. If you need to change the context size, create a `Modelfile` which looks like:
```modelfile
```
FROM <some model>
PARAMETER num_ctx <context size>
```

View File

@@ -17,6 +17,7 @@ When you run Ollama in a **container**, the logs go to stdout/stderr in the cont
```shell
docker logs <container-name>
```
(Use `docker ps` to find the container name)
If manually running `ollama serve` in a terminal, the logs will be on that terminal.
@@ -28,6 +29,7 @@ When you run Ollama on **Windows**, there are a few different locations. You can
- `explorer %TEMP%` where temporary executable files are stored in one or more `ollama*` directories
To enable additional debug logging to help troubleshoot problems, first **Quit the running app from the tray menu** then in a powershell terminal
```powershell
$env:OLLAMA_DEBUG="1"
& "ollama app.exe"
@@ -49,12 +51,13 @@ Dynamic LLM libraries [rocm_v6 cpu cpu_avx cpu_avx2 cuda_v11 rocm_v5]
You can set OLLAMA_LLM_LIBRARY to any of the available LLM libraries to bypass autodetection, so for example, if you have a CUDA card, but want to force the CPU LLM library with AVX2 vector support, use:
```
```shell
OLLAMA_LLM_LIBRARY="cpu_avx2" ollama serve
```
You can see what features your CPU has with the following.
```
```shell
cat /proc/cpuinfo| grep flags | head -1
```
@@ -62,8 +65,8 @@ cat /proc/cpuinfo| grep flags | head -1
If you run into problems on Linux and want to install an older version, or you'd like to try out a pre-release before it's officially released, you can tell the install script which version to install.
```sh
curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION="0.1.29" sh
```shell
curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION=0.5.7 sh
```
## Linux tmp noexec

View File

@@ -47,6 +47,7 @@ If Ollama is already running, Quit the tray application and relaunch it from the
## API Access
Here's a quick example showing API access from `powershell`
```powershell
(Invoke-WebRequest -method POST -Body '{"model":"llama3.2", "prompt":"Why is the sky blue?", "stream": false}' -uri http://localhost:11434/api/generate ).Content | ConvertFrom-json
```
@@ -54,7 +55,7 @@ Here's a quick example showing API access from `powershell`
## Troubleshooting
Ollama on Windows stores files in a few different locations. You can view them in
the explorer window by hitting `<cmd>+R` and type in:
the explorer window by hitting `<Ctrl>+R` and type in:
- `explorer %LOCALAPPDATA%\Ollama` contains logs, and downloaded updates
- *app.log* contains most resent logs from the GUI application
- *server.log* contains the most recent server logs

View File

@@ -165,6 +165,8 @@ var (
IntelGPU = Bool("OLLAMA_INTEL_GPU")
// MultiUserCache optimizes prompt caching for multi-user scenarios
MultiUserCache = Bool("OLLAMA_MULTIUSER_CACHE")
// Enable the new Ollama engine
NewEngine = Bool("OLLAMA_NEW_ENGINE")
)
func String(s string) func() string {
@@ -250,6 +252,7 @@ func AsMap() map[string]EnvVar {
"OLLAMA_ORIGINS": {"OLLAMA_ORIGINS", Origins(), "A comma separated list of allowed origins"},
"OLLAMA_SCHED_SPREAD": {"OLLAMA_SCHED_SPREAD", SchedSpread(), "Always schedule model across all GPUs"},
"OLLAMA_MULTIUSER_CACHE": {"OLLAMA_MULTIUSER_CACHE", MultiUserCache(), "Optimize prompt caching for multi-user scenarios"},
"OLLAMA_NEW_ENGINE": {"OLLAMA_NEW_ENGINE", NewEngine(), "Enable the new Ollama engine"},
// Informational
"HTTP_PROXY": {"HTTP_PROXY", String("HTTP_PROXY")(), "HTTP proxy"},
@@ -288,12 +291,3 @@ func Values() map[string]string {
func Var(key string) string {
return strings.Trim(strings.TrimSpace(os.Getenv(key)), "\"'")
}
// On windows, we keep the binary at the top directory, but
// other platforms use a "bin" directory, so this returns ".."
func LibRelativeToExe() string {
if runtime.GOOS == "windows" {
return "."
}
return ".."
}

View File

@@ -40,8 +40,6 @@ func HumanBytes(b int64) string {
}
switch {
case value >= 100:
return fmt.Sprintf("%d %s", int(value), unit)
case value >= 10:
return fmt.Sprintf("%d %s", int(value), unit)
case value != math.Trunc(value):

91
format/bytes_test.go Normal file
View File

@@ -0,0 +1,91 @@
package format
import (
"testing"
)
func TestHumanBytes(t *testing.T) {
type testCase struct {
input int64
expected string
}
tests := []testCase{
// Test bytes (B)
{0, "0 B"},
{1, "1 B"},
{999, "999 B"},
// Test kilobytes (KB)
{1000, "1 KB"},
{1500, "1.5 KB"},
{999999, "999 KB"},
// Test megabytes (MB)
{1000000, "1 MB"},
{1500000, "1.5 MB"},
{999999999, "999 MB"},
// Test gigabytes (GB)
{1000000000, "1 GB"},
{1500000000, "1.5 GB"},
{999999999999, "999 GB"},
// Test terabytes (TB)
{1000000000000, "1 TB"},
{1500000000000, "1.5 TB"},
{1999999999999, "2.0 TB"},
// Test fractional values
{1234, "1.2 KB"},
{1234567, "1.2 MB"},
{1234567890, "1.2 GB"},
}
for _, tc := range tests {
t.Run(tc.expected, func(t *testing.T) {
result := HumanBytes(tc.input)
if result != tc.expected {
t.Errorf("Expected %s, got %s", tc.expected, result)
}
})
}
}
func TestHumanBytes2(t *testing.T) {
type testCase struct {
input uint64
expected string
}
tests := []testCase{
// Test bytes (B)
{0, "0 B"},
{1, "1 B"},
{1023, "1023 B"},
// Test kibibytes (KiB)
{1024, "1.0 KiB"},
{1536, "1.5 KiB"},
{1048575, "1024.0 KiB"},
// Test mebibytes (MiB)
{1048576, "1.0 MiB"},
{1572864, "1.5 MiB"},
{1073741823, "1024.0 MiB"},
// Test gibibytes (GiB)
{1073741824, "1.0 GiB"},
{1610612736, "1.5 GiB"},
{2147483648, "2.0 GiB"},
}
for _, tc := range tests {
t.Run(tc.expected, func(t *testing.T) {
result := HumanBytes2(tc.input)
if result != tc.expected {
t.Errorf("Expected %s, got %s", tc.expected, result)
}
})
}
}

View File

@@ -12,6 +12,9 @@ func TestHumanNumber(t *testing.T) {
testCases := []testCase{
{0, "0"},
{999, "999"},
{1000, "1K"},
{1001, "1K"},
{1000000, "1M"},
{125000000, "125M"},
{500500000, "500.50M"},

View File

@@ -153,19 +153,17 @@ func (s Tensors) Items(prefix ...string) []*Tensor {
return items
}
func (ts Tensors) Layers() map[string]Layer {
func (ts Tensors) GroupLayers() map[string]Layer {
layers := make(map[string]Layer)
for _, t := range ts.items {
parts := strings.Split(t.Name, ".")
if i := slices.Index(parts, "blk"); i > 0 {
parts = append([]string{
strings.Join(parts[:i], "."),
strings.Join(parts[i:i+2], "."),
}, parts[i+2:]...)
} else if i == 0 {
parts = append([]string{
strings.Join(parts[i:i+2], "."),
}, parts[i+2:]...)
if index := slices.IndexFunc(parts, func(s string) bool { return s == "blk" || s == "mm" }); index != -1 {
if len(parts) > index+2 {
// blk and mm should have a number after them, join it
parts = append(
[]string{strings.Join(parts[:index+2], ".")},
parts[index+2:]...)
}
}
if _, ok := layers[parts[0]]; !ok {
@@ -377,22 +375,22 @@ func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
}, offset, nil
}
func (llm GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialOffload, fullOffload uint64) {
embedding := llm.KV().EmbeddingLength()
heads := llm.KV().HeadCount()
headsKV := llm.KV().HeadCountKV()
vocab := uint64(llm.KV()["tokenizer.ggml.tokens"].(*array).size)
func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialOffload, fullOffload uint64) {
embedding := f.KV().EmbeddingLength()
heads := f.KV().HeadCount()
headsKV := f.KV().HeadCountKV()
vocab := uint64(f.KV()["tokenizer.ggml.tokens"].(*array).size)
embeddingHeads := llm.KV().EmbeddingHeadCount()
embeddingHeadsK := llm.KV().EmbeddingHeadCountK()
embeddingHeadsV := llm.KV().EmbeddingHeadCountV()
embeddingHeads := f.KV().EmbeddingHeadCount()
embeddingHeadsK := f.KV().EmbeddingHeadCountK()
embeddingHeadsV := f.KV().EmbeddingHeadCountV()
layers := llm.Tensors().Layers()
layers := f.Tensors().GroupLayers()
bytesPerElement := kvCacheBytesPerElement(kvCacheType)
kv = uint64(float64(context*llm.KV().BlockCount()*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
kv = uint64(float64(context*f.KV().BlockCount()*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
switch llm.KV().Architecture() {
switch f.KV().Architecture() {
case "llama":
fullOffload = max(
4*batch*(1+4*embedding+context*(1+heads)),
@@ -407,7 +405,7 @@ func (llm GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partia
if ffnGateExpsWeight, ok := layers["blk.0"]["ffn_gate_exps.weight"]; ok {
// mixtral 8x22b
ff := uint64(llm.KV()["llama.feed_forward_length"].(uint32))
ff := uint64(f.KV()["llama.feed_forward_length"].(uint32))
partialOffload = max(
3*ffnGateExpsWeight.Size()+4*batch*(2*ff+headsKV+embedding+context+embeddingHeads*headsKV),
4*(context*batch*heads+context*embeddingHeads*headsKV+batch*1024+embeddingHeads*headsKV*batch),
@@ -424,11 +422,11 @@ func (llm GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partia
case "mllama":
var visionTokens, tiles uint64 = 1601, 4
if crossAttentionLayers, ok := llm.KV()["mllama.attention.cross_attention_layers"].(*array); ok {
if crossAttentionLayers, ok := f.KV()["mllama.attention.cross_attention_layers"].(*array); ok {
kv = headsKV *
(embeddingHeadsK + embeddingHeadsV) * // one for K, one for V
(2* // sizeof(float16)
(llm.KV().BlockCount()-uint64(crossAttentionLayers.size))* // num non-cross attention layers
(f.KV().BlockCount()-uint64(crossAttentionLayers.size))* // num non-cross attention layers
context +
4* // sizeof(float32)
uint64(crossAttentionLayers.size)* // num cross attention layers
@@ -443,7 +441,7 @@ func (llm GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partia
)
var ropeFreqsCount uint64
if ropeFreqs, ok := llm.Tensors().Layers()["rope_freqs"]; ok {
if ropeFreqs, ok := f.Tensors().GroupLayers()["rope_freqs"]; ok {
if ropeFreqsWeights, ok := ropeFreqs["weights"]; ok {
ropeFreqsCount = ropeFreqsWeights.parameters()
}
@@ -547,20 +545,20 @@ func (llm GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partia
}
// SupportsKVCacheType checks if the requested cache type is supported
func (llm GGML) SupportsKVCacheType(cacheType string) bool {
func (f GGML) SupportsKVCacheType(cacheType string) bool {
return slices.Contains([]string{"f16", "q8_0", "q4_0"}, cacheType)
}
// SupportsFlashAttention checks if the model supports flash attention
func (llm GGML) SupportsFlashAttention() bool {
_, isEmbedding := llm.KV()[fmt.Sprintf("%s.pooling_type", llm.KV().Architecture())]
func (f GGML) SupportsFlashAttention() bool {
_, isEmbedding := f.KV()[fmt.Sprintf("%s.pooling_type", f.KV().Architecture())]
if isEmbedding {
return false
}
// Check head counts match and are non-zero
headCountK := llm.KV().EmbeddingHeadCountK()
headCountV := llm.KV().EmbeddingHeadCountV()
headCountK := f.KV().EmbeddingHeadCountK()
headCountV := f.KV().EmbeddingHeadCountV()
return headCountK != 0 && headCountV != 0 && headCountK == headCountV
}

159
fs/ggml/ggml_test.go Normal file
View File

@@ -0,0 +1,159 @@
package ggml
import (
"maps"
"slices"
"strings"
"testing"
"github.com/google/go-cmp/cmp"
)
func TestTensorLayers(t *testing.T) {
tensors := make(map[string]*Tensor)
for _, name := range []string{
"token_embd.weight",
"blk.0.attn_k.weight",
"blk.0.attn_output.weight",
"blk.0.attn_q.weight",
"blk.0.attn_v.weight",
"blk.0.attn_norm.weight",
"blk.0.ffn_down.weight",
"blk.0.ffn_gate.weight",
"blk.0.ffn_up.weight",
"blk.0.ffn_norm.weight",
"output_norm.weight",
"mm.0.bias",
"mm.0.weight",
"v.blk.0.attn_k.weight",
"v.blk.0.attn_output.weight",
"v.blk.0.attn_q.weight",
"v.blk.0.attn_v.weight",
"v.blk.0.attn_norm.weight",
"v.blk.0.ffn_down.weight",
"v.blk.0.ffn_gate.weight",
"v.blk.0.ffn_up.weight",
"v.blk.0.ffn_norm.weight",
"v.patch_embd.weight",
"v.position_embd.gate",
"v.position_embd.weight",
} {
tensors[name] = &Tensor{Name: name}
}
cases := []struct {
name string
items []*Tensor
want map[string]Layer
}{
{
name: "text",
items: slices.Collect(func(yield func(*Tensor) bool) {
for k, v := range tensors {
if !strings.HasPrefix(k, "mm.") && !strings.HasPrefix(k, "v.") {
if !yield(v) {
return
}
}
}
}),
want: map[string]Layer{
"blk.0": {
"attn_k.weight": tensors["blk.0.attn_k.weight"],
"attn_q.weight": tensors["blk.0.attn_q.weight"],
"attn_v.weight": tensors["blk.0.attn_v.weight"],
"attn_output.weight": tensors["blk.0.attn_output.weight"],
"attn_norm.weight": tensors["blk.0.attn_norm.weight"],
"ffn_down.weight": tensors["blk.0.ffn_down.weight"],
"ffn_gate.weight": tensors["blk.0.ffn_gate.weight"],
"ffn_up.weight": tensors["blk.0.ffn_up.weight"],
"ffn_norm.weight": tensors["blk.0.ffn_norm.weight"],
},
"token_embd": {"weight": tensors["token_embd.weight"]},
"output_norm": {"weight": tensors["output_norm.weight"]},
},
},
{
name: "vision",
items: slices.Collect(func(yield func(*Tensor) bool) {
for k, v := range tensors {
if strings.HasPrefix(k, "mm.") || strings.HasPrefix(k, "v.") {
if !yield(v) {
return
}
}
}
}),
want: map[string]Layer{
"mm.0": {
"bias": tensors["mm.0.bias"],
"weight": tensors["mm.0.weight"],
},
"v.blk.0": {
"attn_k.weight": tensors["v.blk.0.attn_k.weight"],
"attn_q.weight": tensors["v.blk.0.attn_q.weight"],
"attn_v.weight": tensors["v.blk.0.attn_v.weight"],
"attn_output.weight": tensors["v.blk.0.attn_output.weight"],
"attn_norm.weight": tensors["v.blk.0.attn_norm.weight"],
"ffn_down.weight": tensors["v.blk.0.ffn_down.weight"],
"ffn_gate.weight": tensors["v.blk.0.ffn_gate.weight"],
"ffn_up.weight": tensors["v.blk.0.ffn_up.weight"],
"ffn_norm.weight": tensors["v.blk.0.ffn_norm.weight"],
},
"v": {
"patch_embd.weight": tensors["v.patch_embd.weight"],
"position_embd.gate": tensors["v.position_embd.gate"],
"position_embd.weight": tensors["v.position_embd.weight"],
},
},
},
{
name: "vision and text",
items: slices.Collect(maps.Values(tensors)),
want: map[string]Layer{
"blk.0": {
"attn_k.weight": tensors["blk.0.attn_k.weight"],
"attn_q.weight": tensors["blk.0.attn_q.weight"],
"attn_v.weight": tensors["blk.0.attn_v.weight"],
"attn_output.weight": tensors["blk.0.attn_output.weight"],
"attn_norm.weight": tensors["blk.0.attn_norm.weight"],
"ffn_down.weight": tensors["blk.0.ffn_down.weight"],
"ffn_gate.weight": tensors["blk.0.ffn_gate.weight"],
"ffn_up.weight": tensors["blk.0.ffn_up.weight"],
"ffn_norm.weight": tensors["blk.0.ffn_norm.weight"],
},
"token_embd": {"weight": tensors["token_embd.weight"]},
"output_norm": {"weight": tensors["output_norm.weight"]},
"mm.0": {
"bias": tensors["mm.0.bias"],
"weight": tensors["mm.0.weight"],
},
"v.blk.0": {
"attn_k.weight": tensors["v.blk.0.attn_k.weight"],
"attn_q.weight": tensors["v.blk.0.attn_q.weight"],
"attn_v.weight": tensors["v.blk.0.attn_v.weight"],
"attn_output.weight": tensors["v.blk.0.attn_output.weight"],
"attn_norm.weight": tensors["v.blk.0.attn_norm.weight"],
"ffn_down.weight": tensors["v.blk.0.ffn_down.weight"],
"ffn_gate.weight": tensors["v.blk.0.ffn_gate.weight"],
"ffn_up.weight": tensors["v.blk.0.ffn_up.weight"],
"ffn_norm.weight": tensors["v.blk.0.ffn_norm.weight"],
},
"v": {
"patch_embd.weight": tensors["v.patch_embd.weight"],
"position_embd.gate": tensors["v.position_embd.gate"],
"position_embd.weight": tensors["v.position_embd.weight"],
},
},
},
}
for _, tt := range cases {
t.Run(tt.name, func(t *testing.T) {
got := Tensors{items: tt.items}.GroupLayers()
if diff := cmp.Diff(got, tt.want); diff != "" {
t.Errorf("unexpected layers (-got +want):\n%s", diff)
}
})
}
}

View File

@@ -32,9 +32,10 @@ const (
fileTypeIQ1_S
fileTypeIQ4_NL
fileTypeIQ3_S
fileTypeIQ3_M
fileTypeIQ2_S
fileTypeIQ4_XS
fileTypeIQ2_M
fileTypeIQ4_XS
fileTypeIQ1_M
fileTypeBF16
@@ -93,12 +94,14 @@ func ParseFileType(s string) (fileType, error) {
return fileTypeIQ4_NL, nil
case "IQ3_S":
return fileTypeIQ3_S, nil
case "IQ3_M":
return fileTypeIQ3_M, nil
case "IQ2_S":
return fileTypeIQ2_S, nil
case "IQ4_XS":
return fileTypeIQ4_XS, nil
case "IQ2_M":
return fileTypeIQ2_M, nil
case "IQ4_XS":
return fileTypeIQ4_XS, nil
case "IQ1_M":
return fileTypeIQ1_M, nil
case "BF16":
@@ -160,6 +163,8 @@ func (t fileType) String() string {
return "IQ4_NL"
case fileTypeIQ3_S:
return "IQ3_S"
case fileTypeIQ3_M:
return "IQ3_M"
case fileTypeIQ2_S:
return "IQ2_S"
case fileTypeIQ4_XS:

3
go.mod
View File

@@ -24,7 +24,6 @@ require (
github.com/nlpodyssey/gopickle v0.3.0
github.com/pdevine/tensor v0.0.0-20240510204454-f88f4562727c
golang.org/x/image v0.22.0
golang.org/x/tools v0.28.0
gonum.org/v1/gonum v0.15.0
)
@@ -72,7 +71,7 @@ require (
golang.org/x/arch v0.8.0 // indirect
golang.org/x/crypto v0.31.0
golang.org/x/exp v0.0.0-20231110203233-9a3e6036ecaa
golang.org/x/net v0.32.0 // indirect
golang.org/x/net v0.25.0 // indirect
golang.org/x/sys v0.28.0
golang.org/x/term v0.27.0
golang.org/x/text v0.21.0

6
go.sum
View File

@@ -257,8 +257,8 @@ golang.org/x/net v0.0.0-20200822124328-c89045814202/go.mod h1:/O7V0waA8r7cgGh81R
golang.org/x/net v0.0.0-20201021035429-f5854403a974/go.mod h1:sp8m0HH+o8qH0wwXwYZr8TS3Oi6o0r6Gce1SSxlDquU=
golang.org/x/net v0.0.0-20210405180319-a5a99cb37ef4/go.mod h1:p54w0d4576C0XHj96bSt6lcn1PtDYWL6XObtHCRCNQM=
golang.org/x/net v0.0.0-20210614182718-04defd469f4e/go.mod h1:9nx3DQGgdP8bBQD5qxJ1jj9UTztislL4KSBs9R2vV5Y=
golang.org/x/net v0.32.0 h1:ZqPmj8Kzc+Y6e0+skZsuACbx+wzMgo5MQsJh9Qd6aYI=
golang.org/x/net v0.32.0/go.mod h1:CwU0IoeOlnQQWJ6ioyFrfRuomB8GKF6KbYXZVyeXNfs=
golang.org/x/net v0.25.0 h1:d/OCCoBEUq33pjydKrGQhw7IlUPI2Oylr+8qLx49kac=
golang.org/x/net v0.25.0/go.mod h1:JkAGAh7GEvH74S6FOH42FLoXpXbE/aqXSrIQjXgsiwM=
golang.org/x/oauth2 v0.0.0-20180821212333-d2e6202438be/go.mod h1:N/0e6XlmueqKjAGxoOufVs8QHGRruUQn6yWY3a++T0U=
golang.org/x/oauth2 v0.0.0-20200107190931-bf48bf16ab8d/go.mod h1:gOpvHmFTYa4IltrdGE7lF6nIHvwfUNPOp7c8zoXwtLw=
golang.org/x/sync v0.0.0-20180314180146-1d60e4601c6f/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
@@ -309,8 +309,6 @@ golang.org/x/tools v0.0.0-20200130002326-2f3ba24bd6e7/go.mod h1:TB2adYChydJhpapK
golang.org/x/tools v0.0.0-20200619180055-7c47624df98f/go.mod h1:EkVYQZoAsY45+roYkvgYkIh4xh/qjgUK9TdY2XT94GE=
golang.org/x/tools v0.0.0-20210106214847-113979e3529a/go.mod h1:emZCQorbCU4vsT4fOWvOPXz4eW1wZW4PmDk9uLelYpA=
golang.org/x/tools v0.1.4/go.mod h1:o0xws9oXOQQZyjljx8fwUC0k7L1pTE6eaCbjGeHmOkk=
golang.org/x/tools v0.28.0 h1:WuB6qZ4RPCQo5aP3WdKZS7i595EdWqWR8vqJTlwTVK8=
golang.org/x/tools v0.28.0/go.mod h1:dcIOrVd3mfQKTgrDVQHqCPMWy6lnhfhtX3hLXYVLfRw=
golang.org/x/xerrors v0.0.0-20190717185122-a985d3407aa7/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20191011141410-1b5146add898/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20191204190536-9bdfabe68543/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=

View File

@@ -1,22 +0,0 @@
//go:build go1.24
package grammar
import "testing"
func BenchmarkFromSchema(b *testing.B) {
for tt := range testCases(b) {
b.Run("", func(b *testing.B) {
s := []byte(tt.schema)
b.ReportAllocs()
for b.Loop() {
_, err := FromSchema(nil, s)
if err != nil {
b.Fatalf("GrammarFromSchema: %v", err)
}
}
})
return
}
}

View File

@@ -1,227 +0,0 @@
package grammar
import (
"bytes"
"encoding/json"
"fmt"
"iter"
"strconv"
"github.com/ollama/ollama/grammar/jsonschema"
)
const jsonTerms = `
# Unicode
#
# Unicode characters can be specified directly in the grammar, for example
# hiragana ::= [ぁ-ゟ], or with escapes: 8-bit (\xXX), 16-bit (\uXXXX) or 32-bit
# (\UXXXXXXXX).
unicode ::= \x{hex}{2} | \u{hex}{4} | \U{hex}{8}
# JSON grammar from RFC 7159
null ::= "null"
object ::= "{" (kv ("," kv)*)? "}"
array ::= "[" (value ("," value)*)? "]"
kv ::= string ":" value
integer ::= "0" | [1-9] [0-9]*
number ::= "-"? integer frac? exp?
frac ::= "." [0-9]+
exp ::= ("e" | "E") ("+" | "-") [0-9]+
string ::= "\"" char* "\""
escape ::= ["/" | "b" | "f" | "n" | "r" | "t" | unicode]
char ::= [^"\\] | escape
space ::= (" " | "\t" | "\n" | "\r")*
hex ::= [0-9] | [a-f] | [A-F]
boolean ::= "true" | "false"
value ::= object | array | string | number | boolean | "null"
# User-defined
`
// FromSchema generates a grammar from a JSON schema.
func FromSchema(buf []byte, jsonSchema []byte) ([]byte, error) {
var s *jsonschema.Schema
if err := json.Unmarshal(jsonSchema, &s); err != nil {
return nil, err
}
var g builder
// "root" is the only rule that is guaranteed to exist, so we start
// with its length for padding, and then adjust it as we go.
g.pad = len("root")
for id := range dependencies("root", s) {
g.pad = max(g.pad, len(id))
}
g.b.WriteString(jsonTerms)
ids := make(map[*jsonschema.Schema]string)
for id, s := range dependencies("root", s) {
ids[s] = id
g.define(id)
if err := fromSchema(&g, ids, s); err != nil {
return nil, err
}
}
g.define("root")
if err := fromSchema(&g, ids, s); err != nil {
return nil, err
}
g.define("") // finalize the last rule
return g.b.Bytes(), nil
}
func fromSchema(g *builder, ids map[*jsonschema.Schema]string, s *jsonschema.Schema) error {
switch typ := s.EffectiveType(); typ {
case "array":
if len(s.PrefixItems) == 0 && s.Items == nil {
g.u("array")
} else {
g.q("[")
for i, s := range s.PrefixItems {
if i > 0 {
g.q(",")
}
g.u(ids[s])
}
if s.Items != nil {
g.u("(")
if len(s.PrefixItems) > 0 {
g.q(",")
}
g.u(ids[s.Items])
g.u(")*")
}
g.q("]")
}
case "object":
if len(s.Properties) == 0 {
g.u("object")
} else {
g.q("{")
for i, p := range s.Properties {
name := ids[p]
if i > 0 {
g.q(",")
}
g.q(p.Name)
g.q(":")
g.u(name)
}
g.q("}")
}
case "number":
buildConstrainedNumber(g, s)
case "string":
if len(s.Enum) == 0 {
g.u("string")
} else {
g.u("(")
for i, e := range s.Enum {
if i > 0 {
g.q("|")
}
g.q(string(e))
}
g.u(")")
}
case "boolean", "value", "null", "integer":
g.u(typ)
default:
return fmt.Errorf("%s: unsupported type %q", s.Name, typ)
}
return nil
}
// dependencies returns a sequence of all child dependencies of the schema in
// post-order.
//
// The first value is the id/pointer to the dependency, and the second value
// is the schema.
func dependencies(id string, s *jsonschema.Schema) iter.Seq2[string, *jsonschema.Schema] {
return func(yield func(string, *jsonschema.Schema) bool) {
for i, p := range s.Properties {
id := fmt.Sprintf("%s_%d", id, i)
for did, d := range dependencies(id, p) {
if !yield(did, d) {
return
}
}
if !yield(id, p) {
return
}
}
for i, p := range s.PrefixItems {
id := fmt.Sprintf("tuple_%d", i)
for did, d := range dependencies(id, p) {
id := fmt.Sprintf("%s_%s", id, did)
if !yield(id, d) {
return
}
}
if !yield(id, p) {
return
}
}
if s.Items != nil {
id := fmt.Sprintf("%s_tuple_%d", id, len(s.PrefixItems))
for did, d := range dependencies(id, s.Items) {
if !yield(did, d) {
return
}
}
if !yield(id, s.Items) {
return
}
}
}
}
type builder struct {
b bytes.Buffer
pad int
rules int
items int
}
// define terminates the current rule, if any, and then either starts a new
// rule or does nothing else if the name is empty.
func (b *builder) define(name string) {
if b.rules > 0 {
b.b.WriteString(";\n")
}
if name == "" {
return
}
fmt.Fprintf(&b.b, "% -*s", b.pad, name)
b.b.WriteString(" ::=")
b.rules++
b.items = 0
}
// quote appends a terminal to the current rule.
func (b *builder) q(s string) {
if b.items > 0 {
b.b.WriteString(" ")
}
b.b.WriteString(" ")
b.b.WriteString(strconv.Quote(s))
}
// u appends a non-terminal to the current rule.
func (b *builder) u(s string) {
if b.items > 0 {
b.b.WriteString(" ")
}
b.b.WriteString(" ")
b.b.WriteString(s)
}
func buildConstrainedNumber(b *builder, s *jsonschema.Schema) {
if s.Minimum == 0 && s.Maximum == 0 {
b.u("TODO")
} else {
b.u("number")
}
}

View File

@@ -1,75 +0,0 @@
package grammar
import (
"bufio"
"cmp"
"iter"
"strings"
"testing"
_ "embed"
"github.com/ollama/ollama/grammar/internal/diff"
)
func TestFromSchema(t *testing.T) {
for tt := range testCases(t) {
t.Run(tt.name, func(t *testing.T) {
g, err := FromSchema(nil, []byte(tt.schema))
if err != nil {
t.Fatalf("FromSchema: %v", err)
}
got := string(g)
got = strings.TrimPrefix(got, jsonTerms)
if got != tt.want {
t.Logf("schema:\n%s", tt.schema)
t.Fatal(string(diff.Diff("got", []byte(got), "want", []byte(tt.want))))
}
})
}
}
type testCase struct {
name string
schema string
want string
}
//go:embed testdata/schemas.txt
var tests string
func testCases(t testing.TB) iter.Seq[testCase] {
t.Helper()
return func(yield func(testCase) bool) {
t.Helper()
sc := bufio.NewScanner(strings.NewReader(tests))
name := ""
for sc.Scan() {
line := strings.TrimSpace(sc.Text())
if line == "" {
name = ""
continue
}
if line[0] == '#' {
name = cmp.Or(name, strings.TrimSpace(line[1:]))
continue
}
s := sc.Text()
g := ""
for sc.Scan() {
line = strings.TrimSpace(sc.Text())
if line == "" || line[0] == '#' {
break
}
g += sc.Text() + "\n"
}
if !yield(testCase{name, s, g}) {
return
}
name = strings.TrimSpace(strings.TrimPrefix(line, "#"))
}
if err := sc.Err(); err != nil {
t.Fatalf("error reading tests: %v", err)
}
}
}

View File

@@ -1,261 +0,0 @@
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package diff
import (
"bytes"
"fmt"
"sort"
"strings"
)
// A pair is a pair of values tracked for both the x and y side of a diff.
// It is typically a pair of line indexes.
type pair struct{ x, y int }
// Diff returns an anchored diff of the two texts old and new
// in the “unified diff” format. If old and new are identical,
// Diff returns a nil slice (no output).
//
// Unix diff implementations typically look for a diff with
// the smallest number of lines inserted and removed,
// which can in the worst case take time quadratic in the
// number of lines in the texts. As a result, many implementations
// either can be made to run for a long time or cut off the search
// after a predetermined amount of work.
//
// In contrast, this implementation looks for a diff with the
// smallest number of “unique” lines inserted and removed,
// where unique means a line that appears just once in both old and new.
// We call this an “anchored diff” because the unique lines anchor
// the chosen matching regions. An anchored diff is usually clearer
// than a standard diff, because the algorithm does not try to
// reuse unrelated blank lines or closing braces.
// The algorithm also guarantees to run in O(n log n) time
// instead of the standard O(n²) time.
//
// Some systems call this approach a “patience diff,” named for
// the “patience sorting” algorithm, itself named for a solitaire card game.
// We avoid that name for two reasons. First, the name has been used
// for a few different variants of the algorithm, so it is imprecise.
// Second, the name is frequently interpreted as meaning that you have
// to wait longer (to be patient) for the diff, meaning that it is a slower algorithm,
// when in fact the algorithm is faster than the standard one.
func Diff(oldName string, old []byte, newName string, new []byte) []byte {
if bytes.Equal(old, new) {
return nil
}
x := lines(old)
y := lines(new)
// Print diff header.
var out bytes.Buffer
fmt.Fprintf(&out, "diff %s %s\n", oldName, newName)
fmt.Fprintf(&out, "--- %s\n", oldName)
fmt.Fprintf(&out, "+++ %s\n", newName)
// Loop over matches to consider,
// expanding each match to include surrounding lines,
// and then printing diff chunks.
// To avoid setup/teardown cases outside the loop,
// tgs returns a leading {0,0} and trailing {len(x), len(y)} pair
// in the sequence of matches.
var (
done pair // printed up to x[:done.x] and y[:done.y]
chunk pair // start lines of current chunk
count pair // number of lines from each side in current chunk
ctext []string // lines for current chunk
)
for _, m := range tgs(x, y) {
if m.x < done.x {
// Already handled scanning forward from earlier match.
continue
}
// Expand matching lines as far as possible,
// establishing that x[start.x:end.x] == y[start.y:end.y].
// Note that on the first (or last) iteration we may (or definitely do)
// have an empty match: start.x==end.x and start.y==end.y.
start := m
for start.x > done.x && start.y > done.y && x[start.x-1] == y[start.y-1] {
start.x--
start.y--
}
end := m
for end.x < len(x) && end.y < len(y) && x[end.x] == y[end.y] {
end.x++
end.y++
}
// Emit the mismatched lines before start into this chunk.
// (No effect on first sentinel iteration, when start = {0,0}.)
for _, s := range x[done.x:start.x] {
ctext = append(ctext, "-"+s)
count.x++
}
for _, s := range y[done.y:start.y] {
ctext = append(ctext, "+"+s)
count.y++
}
// If we're not at EOF and have too few common lines,
// the chunk includes all the common lines and continues.
const C = 3 // number of context lines
if (end.x < len(x) || end.y < len(y)) &&
(end.x-start.x < C || (len(ctext) > 0 && end.x-start.x < 2*C)) {
for _, s := range x[start.x:end.x] {
ctext = append(ctext, " "+s)
count.x++
count.y++
}
done = end
continue
}
// End chunk with common lines for context.
if len(ctext) > 0 {
n := end.x - start.x
if n > C {
n = C
}
for _, s := range x[start.x : start.x+n] {
ctext = append(ctext, " "+s)
count.x++
count.y++
}
done = pair{start.x + n, start.y + n}
// Format and emit chunk.
// Convert line numbers to 1-indexed.
// Special case: empty file shows up as 0,0 not 1,0.
if count.x > 0 {
chunk.x++
}
if count.y > 0 {
chunk.y++
}
fmt.Fprintf(&out, "@@ -%d,%d +%d,%d @@\n", chunk.x, count.x, chunk.y, count.y)
for _, s := range ctext {
out.WriteString(s)
}
count.x = 0
count.y = 0
ctext = ctext[:0]
}
// If we reached EOF, we're done.
if end.x >= len(x) && end.y >= len(y) {
break
}
// Otherwise start a new chunk.
chunk = pair{end.x - C, end.y - C}
for _, s := range x[chunk.x:end.x] {
ctext = append(ctext, " "+s)
count.x++
count.y++
}
done = end
}
return out.Bytes()
}
// lines returns the lines in the file x, including newlines.
// If the file does not end in a newline, one is supplied
// along with a warning about the missing newline.
func lines(x []byte) []string {
l := strings.SplitAfter(string(x), "\n")
if l[len(l)-1] == "" {
l = l[:len(l)-1]
} else {
// Treat last line as having a message about the missing newline attached,
// using the same text as BSD/GNU diff (including the leading backslash).
l[len(l)-1] += "\n\\ No newline at end of file\n"
}
return l
}
// tgs returns the pairs of indexes of the longest common subsequence
// of unique lines in x and y, where a unique line is one that appears
// once in x and once in y.
//
// The longest common subsequence algorithm is as described in
// Thomas G. Szymanski, “A Special Case of the Maximal Common
// Subsequence Problem,” Princeton TR #170 (January 1975),
// available at https://research.swtch.com/tgs170.pdf.
func tgs(x, y []string) []pair {
// Count the number of times each string appears in a and b.
// We only care about 0, 1, many, counted as 0, -1, -2
// for the x side and 0, -4, -8 for the y side.
// Using negative numbers now lets us distinguish positive line numbers later.
m := make(map[string]int)
for _, s := range x {
if c := m[s]; c > -2 {
m[s] = c - 1
}
}
for _, s := range y {
if c := m[s]; c > -8 {
m[s] = c - 4
}
}
// Now unique strings can be identified by m[s] = -1+-4.
//
// Gather the indexes of those strings in x and y, building:
// xi[i] = increasing indexes of unique strings in x.
// yi[i] = increasing indexes of unique strings in y.
// inv[i] = index j such that x[xi[i]] = y[yi[j]].
var xi, yi, inv []int
for i, s := range y {
if m[s] == -1+-4 {
m[s] = len(yi)
yi = append(yi, i)
}
}
for i, s := range x {
if j, ok := m[s]; ok && j >= 0 {
xi = append(xi, i)
inv = append(inv, j)
}
}
// Apply Algorithm A from Szymanski's paper.
// In those terms, A = J = inv and B = [0, n).
// We add sentinel pairs {0,0}, and {len(x),len(y)}
// to the returned sequence, to help the processing loop.
J := inv
n := len(xi)
T := make([]int, n)
L := make([]int, n)
for i := range T {
T[i] = n + 1
}
for i := range n {
k := sort.Search(n, func(k int) bool {
return T[k] >= J[i]
})
T[k] = J[i]
L[i] = k + 1
}
k := 0
for _, v := range L {
if k < v {
k = v
}
}
seq := make([]pair, 2+k)
seq[1+k] = pair{len(x), len(y)} // sentinel at end
lastj := n
for i := n - 1; i >= 0; i-- {
if L[i] == k && J[i] < lastj {
seq[k] = pair{xi[i], yi[J[i]]}
k--
}
}
seq[0] = pair{0, 0} // sentinel at start
return seq
}

View File

@@ -1,44 +0,0 @@
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package diff
import (
"bytes"
"path/filepath"
"testing"
"golang.org/x/tools/txtar"
)
func clean(text []byte) []byte {
text = bytes.ReplaceAll(text, []byte("$\n"), []byte("\n"))
text = bytes.TrimSuffix(text, []byte("^D\n"))
return text
}
func Test(t *testing.T) {
files, _ := filepath.Glob("testdata/*.txt")
if len(files) == 0 {
t.Fatalf("no testdata")
}
for _, file := range files {
t.Run(filepath.Base(file), func(t *testing.T) {
a, err := txtar.ParseFile(file)
if err != nil {
t.Fatal(err)
}
if len(a.Files) != 3 || a.Files[2].Name != "diff" {
t.Fatalf("%s: want three files, third named \"diff\"", file)
}
diffs := Diff(a.Files[0].Name, clean(a.Files[0].Data), a.Files[1].Name, clean(a.Files[1].Data))
want := clean(a.Files[2].Data)
if !bytes.Equal(diffs, want) {
t.Fatalf("%s: have:\n%s\nwant:\n%s\n%s", file,
diffs, want, Diff("have", diffs, "want", want))
}
})
}
}

View File

@@ -1,13 +0,0 @@
-- old --
-- new --
a
b
c
-- diff --
diff old new
--- old
+++ new
@@ -0,0 +1,3 @@
+a
+b
+c

View File

@@ -1,13 +0,0 @@
-- old --
a
b
c
-- new --
-- diff --
diff old new
--- old
+++ new
@@ -1,3 +0,0 @@
-a
-b
-c

View File

@@ -1,35 +0,0 @@
Example from Hunt and McIlroy, “An Algorithm for Differential File Comparison.”
https://www.cs.dartmouth.edu/~doug/diff.pdf
-- old --
a
b
c
d
e
f
g
-- new --
w
a
b
x
y
z
e
-- diff --
diff old new
--- old
+++ new
@@ -1,7 +1,7 @@
+w
a
b
-c
-d
+x
+y
+z
e
-f
-g

View File

@@ -1,40 +0,0 @@
-- old --
a
b
c
d
e
f
-- new --
a
B
C
d
e
f
-- diff --
diff old new
--- old
+++ new
@@ -1,8 +1,8 @@
a
$
-b
-
-c
+B
+
+C
$
d
$

View File

@@ -1,38 +0,0 @@
-- old --
1
2
3
4
5
6
7
eight
nine
ten
eleven
-- new --
1
2
3
4
5
6
7
8
9
10
-- diff --
diff old new
--- old
+++ new
@@ -5,7 +5,6 @@
5
6
7
-eight
-nine
-ten
-eleven
+8
+9
+10

View File

@@ -1,9 +0,0 @@
-- old --
a
b
c^D
-- new --
a
b
c^D
-- diff --

View File

@@ -1,18 +0,0 @@
-- old --
a
b
c
-- new --
a
b
c^D
-- diff --
diff old new
--- old
+++ new
@@ -1,3 +1,3 @@
a
b
-c
+c
\ No newline at end of file

View File

@@ -1,18 +0,0 @@
-- old --
a
b
c^D
-- new --
a
b
c
-- diff --
diff old new
--- old
+++ new
@@ -1,3 +1,3 @@
a
b
-c
\ No newline at end of file
+c

View File

@@ -1,62 +0,0 @@
-- old --
1
2
3
4
5
6
7
8
9
10
11
12
13
14
14½
15
16
17
18
19
20
-- new --
1
2
3
4
5
6
8
9
10
11
12
13
14
17
18
19
20
-- diff --
diff old new
--- old
+++ new
@@ -4,7 +4,6 @@
4
5
6
-7
8
9
10
@@ -12,9 +11,6 @@
12
13
14
-14½
-15
-16
17
18
19

View File

@@ -1,5 +0,0 @@
-- old --
hello world
-- new --
hello world
-- diff --

View File

@@ -1,34 +0,0 @@
-- old --
e
pi
4
5
6
7
8
9
10
-- new --
1
2
3
4
5
6
7
8
9
10
-- diff --
diff old new
--- old
+++ new
@@ -1,5 +1,6 @@
-e
-pi
+1
+2
+3
4
5
6

View File

@@ -1,40 +0,0 @@
Another example from Hunt and McIlroy,
“An Algorithm for Differential File Comparison.”
https://www.cs.dartmouth.edu/~doug/diff.pdf
Anchored diff gives up on finding anything,
since there are no unique lines.
-- old --
a
b
c
a
b
b
a
-- new --
c
a
b
a
b
c
-- diff --
diff old new
--- old
+++ new
@@ -1,7 +1,6 @@
-a
-b
-c
-a
-b
-b
-a
+c
+a
+b
+a
+b
+c

View File

@@ -1,171 +0,0 @@
package jsonschema
import (
"bytes"
"encoding/json"
"errors"
)
// Schema holds a JSON schema.
type Schema struct {
// Name is the name of the property. For the parent/root property, this
// is "root". For child properties, this is the name of the property.
Name string `json:"-"`
// Type is the type of the property.
//
// TODO: Union types (e.g. make this a []string).
Type string
// PrefixItems is a list of schemas for each item in a tuple. By
// default, the tuple is "closed." unless Items is set to true or a
// valid Schema.
PrefixItems []*Schema
// Items is the schema for each item in a list.
//
// If it is missing, or its JSON value is "null" or "false", it is nil.
// If the JSON value is "true", it is set to the empty Schema. If the
// JSON value is an object, it will be decoded as a Schema.
Items *Schema
// MinItems specifies the minimum number of items allowed in a list.
MinItems int
// MaxItems specifies the maximum number of items allowed in a list.
MaxItems int
// Properties is the schema for each property of an object.
Properties []*Schema
// Format is the format of the property. This is used to validate the
// property against a specific format.
//
// It is the callers responsibility to validate the property against
// the format.
Format string
// Minimum specifies the minimum value for numeric properties.
Minimum float64
// Maximum specifies the maximum value for numeric properties.
Maximum float64
// Enum is a list of valid values for the property.
Enum []json.RawMessage
}
func (s *Schema) UnmarshalJSON(data []byte) error {
type S Schema
w := struct {
Properties props
Items items
*S
}{
S: (*S)(s),
}
if err := json.Unmarshal(data, &w); err != nil {
return err
}
if w.Items.set {
s.Items = &w.Items.Schema
}
s.Properties = w.Properties
return nil
}
type items struct {
Schema
set bool
}
func (s *items) UnmarshalJSON(data []byte) error {
switch b := data[0]; b {
case 't':
*s = items{set: true}
case '{':
type I items
if err := json.Unmarshal(data, (*I)(s)); err != nil {
return err
}
s.set = true
case 'n', 'f':
default:
return errors.New("invalid Items")
}
return nil
}
// EffectiveType returns the effective type of the schema. If the Type field is
// not empty, it is returned; otherwise:
//
// - If the schema has both Properties and Items, it returns an empty string.
// - If the schema has Properties, it returns "object".
// - If the schema has Items, it returns "array".
// - If the schema has neither Properties nor Items, it returns "value".
//
// The returned string is never empty.
func (d *Schema) EffectiveType() string {
if d.Type == "" {
if len(d.Properties) > 0 {
return "object"
}
if len(d.PrefixItems) > 0 || d.Items != nil {
return "array"
}
return "value"
}
return d.Type
}
// props is an ordered list of properties. The order of the properties
// is the order in which they were defined in the schema.
type props []*Schema
var _ json.Unmarshaler = (*props)(nil)
func (v *props) UnmarshalJSON(data []byte) error {
if len(data) == 0 {
return nil
}
if data[0] != '{' {
return errors.New("expected object")
}
d := json.NewDecoder(bytes.NewReader(data))
// TODO(bmizerany): Consider DisallowUnknownFields. Currently, we, like
// llama.cpp, ignore unknown fields, which could be lead to unexpected
// behavior for clients of this package, since they may not be aware
// that "additionalFields", "itemsPrefix", etc, are being ignored.
//
// For now, just do what llama.cpp does.
t, err := d.Token()
if err != nil {
return err
}
if t != json.Delim('{') {
return errors.New("expected object")
}
for d.More() {
// Use the first token (map key) as the property name, then
// decode the rest of the object fields into a Schema and
// append.
t, err := d.Token()
if err != nil {
return err
}
if t == json.Delim('}') {
return nil
}
s := &Schema{
Name: t.(string),
}
if err := d.Decode(s); err != nil {
return err
}
*v = append(*v, s)
}
return nil
}

View File

@@ -1,104 +0,0 @@
package jsonschema
import (
"encoding/json"
"reflect"
"strings"
"testing"
"github.com/google/go-cmp/cmp"
)
const testSchemaBasic = `
{
"properties": {
"tupleClosedEmpty": { "prefixItems": [] },
"tupleClosedMissing": { "prefixItems": [{}] },
"tupleClosedNull": { "prefixItems": [{}], "items": null },
"tupleClosedFalse": { "prefixItems": [{}], "items": false },
"tupleOpenTrue": { "prefixItems": [{}], "items": true },
"tupleOpenEmpty": { "prefixItems": [{}], "items": {} },
"tupleOpenTyped": { "prefixItems": [{}], "items": {"type": "boolean"} },
"tupleOpenMax": { "prefixItems": [{}], "items": true, "maxItems": 3},
"array": { "items": {"type": "number"} },
"null": { "type": "null" },
"string": { "type": "string" },
"boolean": { "type": "boolean" }
}
}
`
func TestSchemaUnmarshal(t *testing.T) {
var got *Schema
if err := json.Unmarshal([]byte(testSchemaBasic), &got); err != nil {
t.Fatalf("Unmarshal: %v", err)
}
want := &Schema{
Properties: []*Schema{
{Name: "tupleClosedEmpty", PrefixItems: []*Schema{}, Items: nil},
{Name: "tupleClosedMissing", PrefixItems: []*Schema{{}}, Items: nil},
{Name: "tupleClosedNull", PrefixItems: []*Schema{{}}, Items: nil},
{Name: "tupleClosedFalse", PrefixItems: []*Schema{{}}, Items: nil},
{Name: "tupleOpenTrue", PrefixItems: []*Schema{{}}, Items: &Schema{}},
{Name: "tupleOpenEmpty", PrefixItems: []*Schema{{}}, Items: &Schema{}},
{Name: "tupleOpenTyped", PrefixItems: []*Schema{{}}, Items: &Schema{Type: "boolean"}},
{Name: "tupleOpenMax", PrefixItems: []*Schema{{}}, Items: &Schema{}, MaxItems: 3},
{Name: "array", Items: &Schema{Type: "number"}},
{Name: "null", Type: "null"},
{Name: "string", Type: "string"},
{Name: "boolean", Type: "boolean"},
},
}
if diff := cmp.Diff(want, got); diff != "" {
t.Errorf("(-want, +got)\n%s", diff)
}
}
func TestEffectiveType(t *testing.T) {
const schema = `
{"properties": {
"o": {"type": "object"},
"a": {"type": "array"},
"n": {"type": "number"},
"s": {"type": "string"},
"z": {"type": "null"},
"b": {"type": "boolean"},
"t0": {"prefixItems": [{}], "items": {"type": "number"}},
"t1": {"items": {"type": "number"}, "maxItems": 3},
"v": {"maxItems": 3}
}}
`
var s *Schema
if err := json.Unmarshal([]byte(schema), &s); err != nil {
t.Fatalf("json.Unmarshal: %v", err)
}
var got []string
for _, p := range s.Properties {
got = append(got, p.EffectiveType())
}
want := strings.Fields(`
object
array
number
string
null
boolean
array
array
value
`)
if !reflect.DeepEqual(want, got) {
t.Errorf("\ngot:\n\t%v\nwant:\n\t%v", got, want)
}
}

View File

@@ -1,76 +0,0 @@
# This file holds tests for JSON schema to EBNF grammar conversions.
#
# The format is a JSON schema, followed by the expected EBNF grammar. Each test
# MAY be preceded by a comment that describes the test (e.g. the test name), followed by
# the JSON schema and the expected EBNF grammar. If no comment is present, the test
# name the tests number in the file (e.g. "#0", "#1", etc.)
#
# Blank lines signify the end or start of a new test. Comments can be added
# anywhere in the file, but they must be preceded by a '#' character and start at
# the beginning of the line.
# default
{}
root ::= value;
{"properties": {}}
root ::= value;
# array
{"properties": {"a": {"type": "array", "items": {"type": "string"}}}}
root_0_tuple_0 ::= string;
root_0 ::= "[" ( root_0_tuple_0 )* "]";
root ::= "{" "a" ":" root_0 "}";
# array with nested array
{"type": "array", "items": {"type": "array", "items": {"type": "string"}}}
root_tuple_0_tuple_0 ::= string;
root_tuple_0 ::= "[" ( root_tuple_0_tuple_0 )* "]";
root ::= "[" ( root_tuple_0 )* "]";
# object
{"properties": {"e": {}}}
root_0 ::= value;
root ::= "{" "e" ":" root_0 "}";
# object with nested object
{"properties": {"o": {"type": "object", "properties": {"e": {}}}}}
root_0_0 ::= value;
root_0 ::= "{" "e" ":" root_0_0 "}";
root ::= "{" "o" ":" root_0 "}";
# boolean
{"type": "boolean"}
root ::= boolean;
# number
{"properties": {"n": {"type": "number", "minimum": 123, "maximum": 4567}}}
root_0 ::= number;
root ::= "{" "n" ":" root_0 "}";
# string
{"type": "string"}
root ::= string;
# string with enum
{"type": "string", "enum": ["a", "b", "c"]}
root ::= ( "\"a\"" "|" "\"b\"" "|" "\"c\"" );
# spaces in key
{"properties": {"a b": {}}}
root_0 ::= value;
root ::= "{" "a b" ":" root_0 "}";
# issue7978
{ "type": "object", "properties": { "steps": { "type": "array", "items": { "type": "object", "properties": { "explanation": { "type": "string" }, "output": { "type": "string" } }, "required": [ "explanation", "output" ], "additionalProperties": false } }, "final_answer": { "type": "string" } }, "required": [ "steps", "final_answer" ], "additionalProperties": false }
root_0_tuple_0_0 ::= string;
root_0_tuple_0_1 ::= string;
root_0_tuple_0 ::= "{" "explanation" ":" root_0_tuple_0_0 "," "output" ":" root_0_tuple_0_1 "}";
root_0 ::= "[" ( root_0_tuple_0 )* "]";
root_1 ::= string;
root ::= "{" "steps" ":" root_0 "," "final_answer" ":" root_1 "}";
# !! # special characters in key
# !! {"properties": {"a!b": {}}}
# !! !invalid character '!' in key
# !!

54
kvcache/cache.go Normal file
View File

@@ -0,0 +1,54 @@
package kvcache
import (
"errors"
"github.com/ollama/ollama/ml"
)
var (
ErrKvCacheFull = errors.New("could not find a kv cache slot")
ErrNotSupported = errors.New("model does not support operation")
)
type Cache interface {
// ** used by model implementations **
// SetLayer sets the active layer of the cache
SetLayer(layer int)
// Get returns the history of key and value tensors plus a mask
//
// The shape of the tensors is documented in the specific
// cache implementation used.
Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor)
// Put stores a batch of key and value in the cache
//
// The shape of the tensors is documented in the specific
// cache implementation used.
Put(ctx ml.Context, key, value ml.Tensor)
// ** cache management **
// Init sets up runtime parameters
Init(backend ml.Backend, dtype ml.DType, capacity int32)
// Close closes the cache and frees resources associated with it
Close()
// StartForward is called before the start of the model's forward pass.
// For each token in the coming batch, there must be a corresponding
// entry in positions and seqs.
StartForward(ctx ml.Context, positions []int32, seqs []int) error
// CopyPrefix copies tokens in the range [0, len) from srcSeq to dstSeq
CopyPrefix(srcSeq, dstSeq int, len int32)
// Remove deletes tokens in the range [beginIndex, endIndex) from seq. Set
// endIndex to math.MaxInt32 to remove everything starting at beginIndex.
//
// If an error occurs, the entire context for the sequence should be
// removed by calling Remove(seq, 0, math.MaxInt32)
Remove(seq int, beginIndex, endIndex int32) error
}

455
kvcache/causal.go Normal file
View File

@@ -0,0 +1,455 @@
package kvcache
import (
"errors"
"fmt"
"log/slog"
"math"
"slices"
"github.com/ollama/ollama/ml"
)
type shiftFn func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error)
// Causal cache stores K and V tensors according to their position in the
// sequence. Returns the history and a mask for attending to past tokens
//
// The tensors are of shape embed dim, kv heads, batch size
// The mask is of shape history size, batch size
type Causal struct {
DType ml.DType
Capacity int32
windowSize int32
// ** current forward pass **
// the active layer for Get and Put
curLayer int
// starting location for data storage for this batch
curLoc int
// size of the current batch
curBatchSize int
// mask of the cache as used by this batch
curMask ml.Tensor
// locations in the cache that are needed for this batch
curCellRange cellRange
// ** cache metadata **
// for each possible location in the cache, stores the position and set of sequences
// that reference the data there
cells []cacheCell
// maps from sequence to the range of locations where it is stored in the cache
cellRanges map[int]cellRange
// ** cache data storage **
shiftFn shiftFn
backend ml.Backend
cacheCtx ml.Context
keys, values []ml.Tensor
}
type cacheCell struct {
pos int32
sequences []int
}
type cellRange struct {
min int
max int
}
func NewCausalCache(shift shiftFn) *Causal {
return &Causal{windowSize: math.MaxInt32, shiftFn: shift}
}
func NewSWACache(windowSize int32, shift shiftFn) *Causal {
return &Causal{windowSize: windowSize, shiftFn: shift}
}
func (c *Causal) Init(backend ml.Backend, dtype ml.DType, capacity int32) {
c.DType = dtype
c.Capacity = capacity
c.cells = make([]cacheCell, capacity)
c.cellRanges = make(map[int]cellRange)
c.backend = backend
c.cacheCtx = backend.NewContext()
}
func (c *Causal) Close() {
c.cacheCtx.Close()
}
func (c *Causal) StartForward(ctx ml.Context, positions []int32, seqs []int) error {
c.curBatchSize = len(positions)
var err error
c.curLoc, err = c.findStartLoc()
if errors.Is(err, ErrKvCacheFull) {
c.defrag()
c.curLoc, err = c.findStartLoc()
}
if err != nil {
return err
}
c.curCellRange = newRange()
for i, pos := range positions {
seq := seqs[i]
c.cells[c.curLoc+i] = cacheCell{pos: pos, sequences: []int{seq}}
seqRange, ok := c.cellRanges[seq]
if !ok {
seqRange = newRange()
}
if c.curLoc+i > seqRange.max {
seqRange.max = c.curLoc + i
}
if seqRange.max > c.curCellRange.max {
c.curCellRange.max = seqRange.max
}
if c.curLoc+i < seqRange.min {
seqRange.min = c.curLoc + i
}
if seqRange.min < c.curCellRange.min {
c.curCellRange.min = seqRange.min
}
c.cellRanges[seq] = seqRange
}
c.curMask, err = c.buildMask(ctx, positions, seqs)
return err
}
func newRange() cellRange {
return cellRange{
min: math.MaxInt,
max: 0,
}
}
// Find the first contiguous block of at least curBatchSize
func (c *Causal) findStartLoc() (int, error) {
var start, count int
for i := range c.cells {
if len(c.cells[i].sequences) == 0 {
count++
if count >= c.curBatchSize {
return start, nil
}
} else {
start = i + 1
count = 0
}
}
return 0, fmt.Errorf("%w (length: %v)", ErrKvCacheFull, c.Capacity)
}
// Builds a mask of history x batch indicating whether for each token in the batch the
// token in the history should apply. This is based on both the sequence and causality (the
// position of the history is not ahead of the token in the batch).
func (c *Causal) buildMask(ctx ml.Context, positions []int32, seqs []int) (ml.Tensor, error) {
// TODO(jessegross): This does not do padding, which is required for flash attention
len := c.curCellRange.max - c.curCellRange.min + 1
mask := make([]float32, c.curBatchSize*len)
for i := range c.curBatchSize {
for j := c.curCellRange.min; j <= c.curCellRange.max; j++ {
if !slices.Contains(c.cells[j].sequences, seqs[i]) || c.cells[j].pos > positions[i] ||
c.cells[j].pos < positions[i]-c.windowSize {
mask[i*len+(j-c.curCellRange.min)] = float32(math.Inf(-1))
}
}
}
return ctx.FromFloatSlice(mask, len, c.curBatchSize)
}
func moveCell(ctx ml.Context, objs []ml.Tensor, src, dst, len int) {
for _, obj := range objs {
if obj == nil {
continue
}
srcView := obj.View(ctx, obj.Stride(2)*src, obj.Dim(0)*obj.Dim(1)*len)
dstView := obj.View(ctx, obj.Stride(2)*dst, obj.Dim(0)*obj.Dim(1)*len)
ctx.Forward(srcView.Copy(ctx, dstView))
}
}
func (c *Causal) defrag() {
slog.Debug("defragmenting kv cache")
// Defrag strategy:
// - Search for empty holes at the beginning of the cache,
// filling them with active data starting at the end
// - If there are contiguous elements that need to be moved,
// combine them into a single operation by holding new moves
// until we see that the next one is non-contiguous
// - Fill up the context with the maximum number of operations it
// can hold then compute that and continue with a new context
//
// We could try to optimize placement by grouping blocks from
// the same sequences together but most likely the next forward
// pass will disrupt this anyways, so the real world benefit
// seems limited as this time.
ctx := c.backend.NewContext()
// For every move, 6 tensors are required per layer (2 views and a
// copy for each of k and v).
layers := 0
for _, key := range c.keys {
if key == nil {
continue
}
layers++
}
maxMoves := ctx.MaxTensors() / (6 * layers)
moves := 0
var pendingSrc, pendingDst, pendingLen int
src := len(c.cells) - 1
for dst := 0; dst < src; dst++ {
if len(c.cells[dst].sequences) == 0 {
for ; src > dst; src-- {
if len(c.cells[src].sequences) != 0 {
c.cells[dst] = c.cells[src]
c.cells[src] = cacheCell{}
if pendingLen > 0 {
if src == pendingSrc-pendingLen && dst == pendingDst+pendingLen {
pendingSrc = src
pendingLen++
break
} else {
moveCell(ctx, c.keys, pendingSrc, pendingDst, pendingLen)
moveCell(ctx, c.values, pendingSrc, pendingDst, pendingLen)
moves++
}
}
pendingSrc = src
pendingDst = dst
pendingLen = 1
break
}
}
}
if moves >= maxMoves {
ctx.Compute()
ctx.Close()
ctx = c.backend.NewContext()
moves = 0
}
}
if pendingLen > 0 {
moveCell(ctx, c.keys, pendingSrc, pendingDst, pendingLen)
moveCell(ctx, c.values, pendingSrc, pendingDst, pendingLen)
moves++
}
if moves > 0 {
ctx.Compute()
}
ctx.Close()
// Reset range metadata
for seq := range c.cellRanges {
seqRange := newRange()
for i, cell := range c.cells {
if slices.Contains(cell.sequences, seq) {
if i < seqRange.min {
seqRange.min = i
}
if i > seqRange.max {
seqRange.max = i
}
}
}
c.cellRanges[seq] = seqRange
}
}
func (c *Causal) SetLayer(layer int) {
if layer >= len(c.keys) {
c.keys = append(c.keys, make([]ml.Tensor, layer-len(c.keys)+1)...)
c.values = append(c.values, make([]ml.Tensor, layer-len(c.values)+1)...)
}
c.curLayer = layer
}
func (c *Causal) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
key := c.keys[c.curLayer]
value := c.values[c.curLayer]
key = key.View(ctx, key.Stride(2)*c.curCellRange.min,
key.Dim(0), key.Stride(1),
key.Dim(1), key.Stride(2),
c.curMask.Dim(0),
)
value = value.View(ctx, key.Stride(2)*c.curCellRange.min,
value.Dim(0), value.Stride(1),
value.Dim(1), value.Stride(2),
c.curMask.Dim(0),
)
return key, value, c.curMask
}
func (c *Causal) Put(ctx ml.Context, key, value ml.Tensor) {
if c.curBatchSize != key.Dim(2) {
panic(fmt.Errorf("inconsistent batch sizes (layer: %v, batch size: %v layer batch size: %v)", c.curLayer, c.curBatchSize, key.Dim(2)))
}
if c.keys[c.curLayer] == nil || c.values[c.curLayer] == nil {
c.keys[c.curLayer] = c.cacheCtx.Zeros(c.DType, key.Dim(0), key.Dim(1), int(c.Capacity))
c.values[c.curLayer] = c.cacheCtx.Zeros(c.DType, value.Dim(0), value.Dim(1), int(c.Capacity))
}
ctx.Forward(key.Copy(ctx, c.keys[c.curLayer].View(ctx, c.keys[c.curLayer].Stride(2)*c.curLoc, key.Dim(0)*key.Dim(1)*key.Dim(2))))
ctx.Forward(value.Copy(ctx, c.values[c.curLayer].View(ctx, c.values[c.curLayer].Stride(2)*c.curLoc, value.Dim(0)*value.Dim(1)*value.Dim(2))))
}
func (c *Causal) CopyPrefix(srcSeq, dstSeq int, len int32) {
seqRange := newRange()
for i := range c.cells {
// Remove the contents of dstSeq so that we only have the copied prefix, metadata will be reset at the end
if slices.Contains(c.cells[i].sequences, dstSeq) {
c.cells[i].sequences = slices.DeleteFunc(c.cells[i].sequences, func(s int) bool { return s == dstSeq })
}
if slices.Contains(c.cells[i].sequences, srcSeq) && c.cells[i].pos < len {
c.cells[i].sequences = append(c.cells[i].sequences, dstSeq)
if i < seqRange.min {
seqRange.min = i
}
if i > seqRange.max {
seqRange.max = i
}
}
}
c.cellRanges[dstSeq] = seqRange
}
func (c *Causal) shift(seq int, beginIndex, offset int32) error {
if c.shiftFn == nil {
return ErrNotSupported
}
ctx := c.backend.NewContext()
defer ctx.Close()
seqRange := c.cellRanges[seq]
size := seqRange.max - seqRange.min + 1
offsets := make([]int32, size)
for i := range offsets {
cell := c.cells[seqRange.min+i]
if slices.Contains(cell.sequences, seq) && cell.pos >= beginIndex {
offsets[i] = offset
}
}
kShift, err := ctx.FromIntSlice(offsets, len(offsets))
if err != nil {
return err
}
for i, key := range c.keys {
if key == nil {
continue
}
key = key.View(ctx, key.Stride(2)*seqRange.min,
key.Dim(0), key.Stride(1),
key.Dim(1), key.Stride(2),
size,
)
roped, err := c.shiftFn(ctx, i, key, kShift)
if err != nil {
return err
}
ctx.Forward(roped.Copy(ctx, key))
}
ctx.Compute()
return nil
}
func (c *Causal) Remove(seq int, beginIndex, endIndex int32) error {
var offset int32
if endIndex != math.MaxInt32 {
offset = beginIndex - endIndex
}
seqRange := newRange()
for i := range c.cells {
if slices.Contains(c.cells[i].sequences, seq) {
if c.cells[i].pos >= beginIndex && c.cells[i].pos < endIndex {
c.cells[i].sequences = slices.DeleteFunc(c.cells[i].sequences, func(s int) bool { return s == seq })
} else {
if c.cells[i].pos >= endIndex {
if slices.ContainsFunc(c.cells[i].sequences, func(s int) bool { return s != seq }) {
// TODO(jessegross): Need to be careful about data shared between sequences
return errors.New("shifting on cells shared by multiple sequences not yet implemented")
}
c.cells[i].pos += offset
}
if i < seqRange.min {
seqRange.min = i
}
if i > seqRange.max {
seqRange.max = i
}
}
}
}
if seqRange == newRange() {
delete(c.cellRanges, seq)
return nil
}
c.cellRanges[seq] = seqRange
if endIndex != math.MaxInt32 {
err := c.shift(seq, endIndex+offset, offset)
if err != nil {
return err
}
}
return nil
}

510
kvcache/causal_test.go Normal file
View File

@@ -0,0 +1,510 @@
package kvcache
import (
"math"
"slices"
"testing"
"github.com/ollama/ollama/ml"
)
type testCase struct {
name string
in []float32
inShape []int
seqs []int
pos []int32
expected []float32
expectedShape []int
expectedMask []float32
}
func TestStore(t *testing.T) {
backend := &testBackend{}
cache := NewCausalCache(nil)
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 16)
tests := []testCase{
{
name: "FirstBatch",
in: []float32{111, 211, 121, 221, 131, 231, 112, 212, 122, 222, 132, 232, 113, 213, 123, 223, 133, 233, 114, 214, 124, 224, 134, 234},
inShape: []int{2, 3, 4},
seqs: []int{0, 0, 0, 0},
pos: []int32{0, 1, 2, 3},
expected: []float32{111, 211, 121, 221, 131, 231, 112, 212, 122, 222, 132, 232, 113, 213, 123, 223, 133, 233, 114, 214, 124, 224, 134, 234},
expectedShape: []int{2, 3, 4},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), 0, 0, 0, 0},
},
{
name: "SecondBatch",
in: []float32{115, 215, 125, 225, 135, 235},
inShape: []int{2, 3, 1},
seqs: []int{0},
pos: []int32{4},
expected: []float32{111, 211, 121, 221, 131, 231, 112, 212, 122, 222, 132, 232, 113, 213, 123, 223, 133, 233, 114, 214, 124, 224, 134, 234, 115, 215, 125, 225, 135, 235},
expectedShape: []int{2, 3, 5},
expectedMask: []float32{0, 0, 0, 0, 0},
},
}
testCache(t, backend, cache, tests)
}
func TestSWA(t *testing.T) {
backend := &testBackend{}
cache := NewSWACache(1, nil)
defer cache.Close()
cache.Init(backend, ml.DTypeF32, 16)
tests := []testCase{
{
name: "SlidingWindow",
in: []float32{1, 2, 3, 4},
inShape: []int{1, 1, 4},
seqs: []int{0, 0, 0, 0},
pos: []int32{0, 1, 2, 3},
expected: []float32{1, 2, 3, 4},
expectedShape: []int{1, 1, 4},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
},
}
testCache(t, backend, cache, tests)
}
func TestSequences(t *testing.T) {
backend := &testBackend{}
cache := NewCausalCache(nil)
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 16)
tests := []testCase{
{
name: "FirstBatch",
in: []float32{1, 2, 3, 4},
inShape: []int{1, 1, 4},
seqs: []int{0, 0, 1, 1},
pos: []int32{0, 1, 0, 1},
expected: []float32{1, 2, 3, 4},
expectedShape: []int{1, 1, 4},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
},
{
name: "SecondBatch",
in: []float32{5, 6},
inShape: []int{1, 1, 2},
seqs: []int{0, 1},
pos: []int32{2, 2},
expected: []float32{1, 2, 3, 4, 5, 6},
expectedShape: []int{1, 1, 6},
expectedMask: []float32{0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), 0},
},
}
testCache(t, backend, cache, tests)
}
func TestRemove(t *testing.T) {
backend := &testBackend{}
cache := NewCausalCache(func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return key.Add(ctx, shift), nil
})
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 16)
tests := []testCase{
{
name: "FirstBatch",
in: []float32{1, 2, 3, 4},
inShape: []int{1, 1, 4},
seqs: []int{0, 0, 1, 1},
pos: []int32{0, 1, 0, 1},
expected: []float32{1, 2, 3, 4},
expectedShape: []int{1, 1, 4},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
},
}
testCache(t, backend, cache, tests)
err := cache.Remove(0, 1, math.MaxInt32)
if err != nil {
panic(err)
}
tests = []testCase{
{
name: "RemoveEnd",
in: []float32{5, 6},
inShape: []int{1, 1, 2},
seqs: []int{0, 1},
pos: []int32{1, 2},
expected: []float32{1, 2, 3, 4, 5, 6},
expectedShape: []int{1, 1, 6},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), 0},
},
}
testCache(t, backend, cache, tests)
err = cache.Remove(0, 0, 1)
if err != nil {
panic(err)
}
tests = []testCase{
{
name: "RemoveMiddle",
in: []float32{7, 8},
inShape: []int{1, 1, 2},
seqs: []int{0, 0},
pos: []int32{1, 2},
expected: []float32{7, 8, 3, 4, 4},
expectedShape: []int{1, 1, 5},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0},
},
}
testCache(t, backend, cache, tests)
}
func TestDefrag(t *testing.T) {
backend := &testBackend{}
cache := NewCausalCache(func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return key.Add(ctx, shift), nil
})
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 16)
tests := []testCase{
{
name: "FirstBatch",
in: []float32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
inShape: []int{1, 1, 16},
seqs: []int{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
pos: []int32{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
expected: []float32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
expectedShape: []int{1, 1, 16},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
},
}
testCache(t, backend, cache, tests)
err := cache.Remove(0, 2, 4)
if err != nil {
panic(err)
}
err = cache.Remove(0, 13, math.MaxInt32)
if err != nil {
panic(err)
}
tests = []testCase{
{
name: "Defrag",
in: []float32{17, 18, 19},
inShape: []int{1, 1, 3},
seqs: []int{0, 0, 0},
pos: []int32{16, 17, 18},
expected: []float32{1, 2, 12, 13, 3, 4, 5, 6, 7, 8, 9, 10, 11, 17, 18, 19},
expectedShape: []int{1, 1, 16},
expectedMask: []float32{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
},
}
testCache(t, backend, cache, tests)
}
func TestCopy(t *testing.T) {
backend := &testBackend{}
cache := NewCausalCache(func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) { return key, nil })
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 16)
tests := []testCase{
{
name: "FirstBatch",
in: []float32{1, 2, 3, 4},
inShape: []int{1, 1, 4},
seqs: []int{0, 0, 0, 0},
pos: []int32{0, 1, 2, 3},
expected: []float32{1, 2, 3, 4},
expectedShape: []int{1, 1, 4},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), 0, 0, 0, 0},
},
}
testCache(t, backend, cache, tests)
cache.CopyPrefix(0, 1, 2)
tests = []testCase{
{
name: "Copy",
in: []float32{5, 6},
inShape: []int{1, 1, 2},
seqs: []int{1, 1},
pos: []int32{3, 4},
expected: []float32{1, 2, 3, 4, 5, 6},
expectedShape: []int{1, 1, 6},
expectedMask: []float32{0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
},
}
testCache(t, backend, cache, tests)
}
func testCache(t *testing.T, backend ml.Backend, cache Cache, tests []testCase) {
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
context := backend.NewContext()
defer context.Close()
err := cache.StartForward(context, test.pos, test.seqs)
if err != nil {
panic(err)
}
cache.SetLayer(0)
tensor, _ := context.FromFloatSlice(test.in, test.inShape...)
cache.Put(context, tensor, tensor)
out, _, mask := cache.Get(context)
context.Forward(out)
context.Forward(mask)
context.Compute(out, mask)
if !slices.Equal(out.Floats(), test.expected) || !slices.Equal(out.Shape(), test.expectedShape) || !slices.Equal(mask.Floats(), test.expectedMask) {
t.Errorf("TestCache: have %v (shape %v); want %v (shape %v); mask: have %v (shape %v) want %v", out.Floats(), out.Shape(), test.expected, test.expectedShape, mask.Floats(), mask.Shape(), test.expectedMask)
}
})
}
}
type testBackend struct{}
func (b *testBackend) Config() ml.Config {
panic("not implemented")
}
func (b *testBackend) Get(name string) ml.Tensor {
panic("not implemented")
}
func (b *testBackend) NewContext() ml.Context {
return &testContext{}
}
func (b *testBackend) SystemInfo() string {
return "not implemented"
}
type testContext struct{}
func (c *testContext) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
total := 0
if len(shape) > 0 {
total = 1
for _, s := range shape {
total *= s
}
}
return &testTensor{dtype: dtype, elementSize: 4, data: make([]float32, total), shape: shape}
}
func (c *testContext) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
t := c.Zeros(ml.DTypeF32, shape...).(*testTensor)
copy(t.data, s)
return t, nil
}
func (c *testContext) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
f := make([]float32, len(s))
for i := range f {
f[i] = float32(s[i])
}
out, _ := c.FromFloatSlice(f, shape...)
out.(*testTensor).dtype = ml.DTypeI32
return out, nil
}
func (c *testContext) Forward(ml.Tensor) {}
func (c *testContext) Compute(...ml.Tensor) {}
func (c *testContext) MaxTensors() int {
return 10
}
func (c *testContext) Close() {}
type testTensor struct {
dtype ml.DType
elementSize int
data []float32
shape []int
}
func (t *testTensor) Dim(n int) int {
return t.shape[n]
}
func (t *testTensor) Stride(n int) int {
stride := t.elementSize
for i := range n {
stride *= t.shape[i]
}
return stride
}
func (t *testTensor) Shape() []int {
return t.shape
}
func (t *testTensor) DType() ml.DType {
return t.dtype
}
func (t *testTensor) Bytes() []byte {
panic("not implemented")
}
func (t *testTensor) Floats() []float32 {
out := make([]float32, len(t.data))
copy(out, t.data)
return out
}
func (t *testTensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
out := ctx.Zeros(t.DType(), t.Shape()...).(*testTensor)
for i := range out.data {
out.data[i] = t.data[i] + t2.(*testTensor).data[i]
}
return out
}
func (t *testTensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) MulmatFullPrec(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Softmax(ctx ml.Context) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) LayerNorm(ctx ml.Context, weight, bias ml.Tensor, eps float32) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) RMSNorm(ctx ml.Context, weight ml.Tensor, eps float32) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Scale(ctx ml.Context, s float64) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Conv2D(ctx ml.Context, weight ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, dim uint32, base, scale float32) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Tanh(ctx ml.Context) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) GELU(ctx ml.Context) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) SILU(ctx ml.Context) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
offset /= t.elementSize
var s []int
switch len(shape) {
case 1:
s = []int{shape[0]}
case 5:
s = []int{shape[0], shape[2], shape[4]}
default:
panic("unsupported number of dimensions")
}
context := &testContext{}
view := context.Zeros(t.dtype, s...).(*testTensor)
view.data = t.data[offset : offset+len(view.data)]
return view
}
func (t *testTensor) Permute(ctx ml.Context, shape ...int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Contiguous(ctx ml.Context) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Unpad(ctx ml.Context, shape ...int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
copy(t2.(*testTensor).data, t.data)
return nil
}

97
kvcache/encoder.go Normal file
View File

@@ -0,0 +1,97 @@
package kvcache
import (
"github.com/ollama/ollama/ml"
)
// Encoder cache stores K and V tensors that are position independent
//
// The tensors can be of any shape and will be returned as they were stored
// The mask is currently always nil
//
// Not currently safe for multiple sequences
type EncoderCache struct {
// ** current forward pass **
// the active layer for Get and Put
curLayer int
// if something is stored during this pass, this
// will be the position (but there is no guarantee
// anything will be stored)
curPos int32
// ** cache metadata **
// was something stored in the cache?
encoderCached bool
// position of the cached data
encoderPos int32
// ** cache data storage **
cacheCtx ml.Context
keys, values []ml.Tensor
}
func NewEncoderCache() *EncoderCache {
return &EncoderCache{}
}
func (c *EncoderCache) Init(backend ml.Backend, dtype ml.DType, capacity int32) {
c.cacheCtx = backend.NewContext()
}
func (c *EncoderCache) Close() {
c.cacheCtx.Close()
}
func (c *EncoderCache) StartForward(ctx ml.Context, positions []int32, seqs []int) error {
// The image is always in the first position
c.curPos = positions[0]
return nil
}
func (c *EncoderCache) SetLayer(layer int) {
if layer >= len(c.keys) {
c.keys = append(c.keys, make([]ml.Tensor, layer-len(c.keys)+1)...)
c.values = append(c.values, make([]ml.Tensor, layer-len(c.values)+1)...)
}
c.curLayer = layer
}
func (c *EncoderCache) EncoderCached() bool {
return c.encoderCached
}
func (c *EncoderCache) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
return c.keys[c.curLayer], c.values[c.curLayer], nil
}
func (c *EncoderCache) Put(ctx ml.Context, key, value ml.Tensor) {
c.encoderPos = c.curPos
c.encoderCached = true
if c.keys[c.curLayer] == nil || c.values[c.curLayer] == nil {
c.keys[c.curLayer] = c.cacheCtx.Zeros(key.DType(), key.Shape()...)
c.values[c.curLayer] = c.cacheCtx.Zeros(value.DType(), value.Shape()...)
}
ctx.Forward(key.Copy(ctx, c.keys[c.curLayer]))
ctx.Forward(value.Copy(ctx, c.values[c.curLayer]))
}
func (c *EncoderCache) CopyPrefix(srcSeq, dstSeq int, len int32) {
panic("encoder cache does not support multiple sequences")
}
func (c *EncoderCache) Remove(seq int, beginIndex, endIndex int32) error {
if c.encoderPos >= beginIndex && c.encoderPos < endIndex {
c.encoderCached = false
}
return nil
}

93
kvcache/wrapper.go Normal file
View File

@@ -0,0 +1,93 @@
package kvcache
import (
"math"
"github.com/ollama/ollama/ml"
)
// Wrapper cache is a container for multiple types of caches,
// such as for the encoding and decoding portions of a model.
type WrapperCache struct {
// caches we are wrapping
caches []Cache
// cache to be used for this layer
curType int
}
func NewWrapperCache(caches ...Cache) *WrapperCache {
return &WrapperCache{
caches: caches,
}
}
func (c *WrapperCache) Init(backend ml.Backend, dtype ml.DType, capacity int32) {
for _, cache := range c.caches {
cache.Init(backend, dtype, capacity)
}
}
func (c *WrapperCache) Close() {
for _, cache := range c.caches {
cache.Close()
}
}
func (c *WrapperCache) StartForward(ctx ml.Context, positions []int32, seqs []int) error {
for i, cache := range c.caches {
err := cache.StartForward(ctx, positions, seqs)
if err != nil {
// unwind on error - Remove with endIndex set to math.MaxInt32 does not fail
for j := i - 1; j >= 0; j-- {
for k := range positions {
_ = c.caches[j].Remove(seqs[k], positions[k], math.MaxInt32)
}
}
return err
}
}
c.curType = 0
return nil
}
func (c *WrapperCache) SetLayer(layer int) {
for _, cache := range c.caches {
cache.SetLayer(layer)
}
}
func (c *WrapperCache) SetLayerType(layerType int) {
c.curType = layerType
}
func (c *WrapperCache) UnderlyingCache() Cache {
return c.caches[c.curType]
}
func (c *WrapperCache) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
return c.caches[c.curType].Get(ctx)
}
func (c *WrapperCache) Put(ctx ml.Context, key, value ml.Tensor) {
c.caches[c.curType].Put(ctx, key, value)
}
func (c *WrapperCache) CopyPrefix(srcSeq, dstSeq int, len int32) {
for _, cache := range c.caches {
cache.CopyPrefix(srcSeq, dstSeq, len)
}
}
func (c *WrapperCache) Remove(seq int, beginIndex, endIndex int32) error {
// If the one of these fails, the caller is supposed to retry with endIndex set to math.MaxInt32, which should not fail
for _, cache := range c.caches {
err := cache.Remove(seq, beginIndex, endIndex)
if err != nil {
return err
}
}
return nil
}

View File

@@ -1,156 +1,52 @@
# `llama`
This package integrates the [llama.cpp](https://github.com/ggerganov/llama.cpp) library as a Go package and makes it easy to build it with tags for different CPU and GPU processors.
Supported:
- [x] CPU
- [x] avx, avx2
- [x] macOS Metal
- [x] Windows CUDA
- [x] Windows ROCm
- [x] Linux CUDA
- [x] Linux ROCm
- [x] Llava
Extra build steps are required for CUDA and ROCm on Windows since `nvcc` and `hipcc` both require using msvc as the host compiler. For these shared libraries are created:
- `ggml_cuda.dll` on Windows or `ggml_cuda.so` on Linux
- `ggml_hipblas.dll` on Windows or `ggml_hipblas.so` on Linux
> Note: it's important that memory is allocated and freed by the same compiler (e.g. entirely by code compiled with msvc or mingw). Issues from this should be rare, but there are some places where pointers are returned by the CUDA or HIP runtimes and freed elsewhere, causing a a crash. In a future change the same runtime should be used in both cases to avoid crashes.
## Building
```
go build .
```
### AVX
```shell
go build -tags avx .
```
### AVX2
```shell
# go doesn't recognize `-mfma` as a valid compiler flag
# see https://github.com/golang/go/issues/17895
go env -w "CGO_CPPFLAGS_ALLOW=-mfma|-mf16c"
go build -tags=avx,avx2 .
```
## Linux
### CUDA
Install the [CUDA toolkit v11.3.1](https://developer.nvidia.com/cuda-11-3-1-download-archive):
```shell
make ggml_cuda.so
go build -tags avx,cuda .
```
### ROCm
Install [ROCm](https://rocm.docs.amd.com/en/latest/).
```shell
make ggml_hipblas.so
go build -tags avx,rocm .
```
## Windows
Download [w64devkit](https://github.com/skeeto/w64devkit/releases/latest) for a simple MinGW development environment.
### CUDA
Install the [CUDA toolkit v11.3.1](https://developer.nvidia.com/cuda-11-3-1-download-archive) then build the cuda code:
```shell
make ggml_cuda.dll
go build -tags avx,cuda .
```
### ROCm
Install [ROCm](https://rocm.docs.amd.com/en/latest/).
```shell
make ggml_hipblas.dll
go build -tags avx,rocm .
```
## Building runners
```shell
# build all runners for this platform
make -j
```
This package provides Go bindings to [llama.cpp](https://github.com/ggerganov/llama.cpp).
## Vendoring
Ollama currently vendors [llama.cpp](https://github.com/ggerganov/llama.cpp/) and [ggml](https://github.com/ggerganov/ggml) through a vendoring model. While we generally strive to contribute changes back upstream to avoid drift, we cary a small set of patches which are applied to the tracking commit. A set of make targets are available to aid developers in updating to a newer tracking commit, or to work on changes.
Ollama vendors [llama.cpp](https://github.com/ggerganov/llama.cpp/) and [ggml](https://github.com/ggerganov/llama.cpp/tree/master/ggml/src). While we generally strive to contribute changes back upstream to avoid drift, we carry a small set of patches which are applied to the tracking commit.
If you update the vendoring code, start by running the following command to establish the tracking llama.cpp repo in the `./vendor/` directory.
```
make apply-patches
```shell
make -f Makefile.sync apply-patches
```
### Updating Base Commit
**Pin to new base commit**
To update to a newer base commit, select the upstream git tag or commit and update `llama/vendoring`
#### Applying patches
To change the base commit, update `FETCH_HEAD` in Makefile.sync.
When updating to a newer base commit, the existing patches may not apply cleanly and require manual merge resolution.
Start by applying the patches. If any of the patches have conflicts, the `git am` will stop at the first failure.
```
make apply-patches
```shell
make -f Makefile.sync apply-patches
```
If you see an error message about a conflict, go into the `./vendor/` directory, and perform merge resolution using your preferred tool to the patch commit which failed. Save the file(s) and continue the patch series with `git am --continue` . If any additional patches fail, follow the same pattern until the full patch series is applied. Once finished, run a final `create-patches` and `sync` target to ensure everything is updated.
If there are conflicts, you will see an error message. Resolve the conflicts in `./vendor/`, and continue the patch series with `git am --continue` and rerun `make -f Makefile.sync apply-patches`. Repeat until all patches are successfully applied.
```
make create-patches sync
```
Once all patches are applied, commit the changes to the tracking repository.
Build and test Ollama, and make any necessary changes to the Go code based on the new base commit. Submit your PR to the Ollama repo.
```shell
make -f Makefile.sync format-patches sync
```
### Generating Patches
When working on new fixes or features that impact vendored code, use the following model. First get a clean tracking repo with all current patches applied:
```shell
make -f Makefile.sync clean apply-patches
```
make apply-patches
```
Now edit the upstream native code in the `./vendor/` directory. You do not need to commit every change in order to build, a dirty working tree in the tracking repo is OK while developing. Simply save in your editor, and run the following to refresh the vendored code with your changes, build the backend(s) and build ollama:
```
make sync
make -j 8
go build .
```
> [!IMPORTANT]
> Do **NOT** run `apply-patches` while you're iterating as that will reset the tracking repo. It will detect a dirty tree and abort, but if your tree is clean and you accidentally ran this target, use `git reflog` to recover your commit(s).
Iterate until you're ready to submit PRs. Once your code is ready, commit a change in the `./vendor/` directory, then generate the patches for ollama with
```shell
make -f Makefile.sync format-patches
```
make create-patches
```
> [!IMPORTANT]
> Once you have completed this step, it is safe to run `apply-patches` since your change is preserved in the patches.
In your `./vendor/` directory, create a branch, and cherry-pick the new commit to that branch, then submit a PR upstream to llama.cpp.

2
llama/build-info.cpp generated vendored
View File

@@ -1,4 +1,4 @@
int LLAMA_BUILD_NUMBER = 0;
char const *LLAMA_COMMIT = "ba1cb19cdd0d92e012e0f6e009e0620f854b6afd";
char const *LLAMA_COMMIT = "46e3556e01b824e52395fb050b29804b6cff2a7c";
char const *LLAMA_COMPILER = "";
char const *LLAMA_BUILD_TARGET = "";

4
llama/build-info.cpp.in Normal file
View File

@@ -0,0 +1,4 @@
int LLAMA_BUILD_NUMBER = 0;
char const *LLAMA_COMMIT = "@FETCH_HEAD@";
char const *LLAMA_COMPILER = "";
char const *LLAMA_BUILD_TARGET = "";

View File

@@ -1235,35 +1235,15 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
}
}
#ifdef GGML_USE_CUDA
new_clip->backend = ggml_backend_cuda_init(0);
LOG_INF("%s: CLIP using CUDA backend\n", __func__);
#endif
#ifdef GGML_USE_METAL
new_clip->backend = ggml_backend_metal_init();
LOG_INF("%s: CLIP using Metal backend\n", __func__);
#endif
#ifdef GGML_USE_CANN
new_clip->backend = ggml_backend_cann_init(0);
LOG_INF("%s: CLIP using CANN backend\n", __func__);
#endif
#ifdef GGML_USE_VULKAN
new_clip->backend = ggml_backend_vk_init(0);
LOG_INF("%s: CLIP using Vulkan backend\n", __func__);
#endif
#ifdef GGML_USE_SYCL
new_clip->backend = ggml_backend_sycl_init(0);
LOG_INF("%s: CLIP using SYCL backend\n", __func__);
#endif
if (!new_clip->backend) {
new_clip->backend = ggml_backend_cpu_init();
LOG_INF("%s: CLIP using CPU backend\n", __func__);
ggml_backend_t backend = ggml_backend_init_best();
if (backend == nullptr) {
LOG_ERR("%s: failed to initialize backend\n", __func__);
clip_free(new_clip);
gguf_free(ctx);
return nullptr;
}
LOG_INF("%s: using %s backend\n", __func__, ggml_backend_name(backend));
new_clip->backend = backend;
// model size and capabilities
{

View File

@@ -3,5 +3,6 @@ package llama
// #cgo CXXFLAGS: -std=c++17
// #cgo CPPFLAGS: -I${SRCDIR}/../include
// #cgo CPPFLAGS: -I${SRCDIR}/../../../ml/backend/ggml/ggml/include
// #cgo windows CPPFLAGS: -D_WIN32_WINNT=0x0602
import "C"
import _ "github.com/ollama/ollama/ml/backend/ggml/ggml/src"

View File

@@ -199,21 +199,25 @@ func (c *Context) KvCacheDefrag() {
// Get the embeddings for a sequence id
func (c *Context) GetEmbeddingsSeq(seqId int) []float32 {
embeddings := unsafe.Pointer(C.llama_get_embeddings_seq(c.c, C.int(seqId)))
if embeddings == nil {
e := unsafe.Pointer(C.llama_get_embeddings_seq(c.c, C.int(seqId)))
if e == nil {
return nil
}
return unsafe.Slice((*float32)(embeddings), c.Model().NEmbd())
embeddings := make([]float32, c.Model().NEmbd())
_ = copy(embeddings, unsafe.Slice((*float32)(e), c.Model().NEmbd()))
return embeddings
}
func (c *Context) GetEmbeddingsIth(i int) []float32 {
embeddings := unsafe.Pointer(C.llama_get_embeddings_ith(c.c, C.int32_t(i)))
if embeddings == nil {
e := unsafe.Pointer(C.llama_get_embeddings_ith(c.c, C.int32_t(i)))
if e == nil {
return nil
}
return unsafe.Slice((*float32)(embeddings), c.Model().NEmbd())
embeddings := make([]float32, c.Model().NEmbd())
_ = copy(embeddings, unsafe.Slice((*float32)(e), c.Model().NEmbd()))
return embeddings
}
type ModelParams struct {

31
llama/mllama.cpp vendored
View File

@@ -558,30 +558,15 @@ struct mllama_ctx *mllama_model_load(const char *fname, const int verbosity = 1)
mllama_ctx *new_mllama = new mllama_ctx{};
#ifdef GGML_USE_CUDA
new_mllama->backend = ggml_backend_cuda_init(0);
LOG("vision using CUDA backend");
#endif
#ifdef GGML_USE_METAL
new_mllama->backend = ggml_backend_metal_init();
LOG("vision using Metal backend");
#endif
#ifdef GGML_USE_CANN
new_mllama->backend = ggml_backend_cann_init(0);
LOG("vision using CANN backend");
#endif
#ifdef GGML_USE_VULKAN
new_mllama->backend = ggml_backend_vk_init(0);
LOG("vision using Vulkan backend");
#endif
if (!new_mllama->backend) {
new_mllama->backend = ggml_backend_cpu_init();
LOG("vision using CPU backend");
ggml_backend_t backend = ggml_backend_init_best();
if (backend == nullptr) {
LOG("%s: failed to initialize backend\n", __func__);
mllama_free(new_mllama);
gguf_free(ctx);
return nullptr;
}
LOG("%s: using %s backend\n", __func__, ggml_backend_name(backend));
new_mllama->backend = backend;
// load tensors
{

View File

@@ -1,14 +1,14 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: jmorganca <jmorganca@gmail.com>
Date: Sat, 4 Jan 2025 22:52:48 -0800
Subject: [PATCH] re-enable gpu for clip
Subject: [PATCH] use dynamic backend loading for clip
---
examples/llava/clip.cpp | 86 ++++++++++++++++++++---------------------
1 file changed, 43 insertions(+), 43 deletions(-)
examples/llava/clip.cpp | 74 +++++++++++++++--------------------------
1 file changed, 27 insertions(+), 47 deletions(-)
diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp
index b3c1829f..718052e1 100644
index b3c1829f..86b91d5c 100644
--- a/examples/llava/clip.cpp
+++ b/examples/llava/clip.cpp
@@ -8,25 +8,25 @@
@@ -56,7 +56,7 @@ index b3c1829f..718052e1 100644
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
@@ -1235,30 +1235,30 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
@@ -1235,35 +1235,15 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
}
}
@@ -84,30 +84,19 @@ index b3c1829f..718052e1 100644
-// new_clip->backend = ggml_backend_sycl_init(0);
-// LOG_INF("%s: CLIP using SYCL backend\n", __func__);
-//#endif
+#ifdef GGML_USE_CUDA
+ new_clip->backend = ggml_backend_cuda_init(0);
+ LOG_INF("%s: CLIP using CUDA backend\n", __func__);
+#endif
+
+#ifdef GGML_USE_METAL
+ new_clip->backend = ggml_backend_metal_init();
+ LOG_INF("%s: CLIP using Metal backend\n", __func__);
+#endif
+
+#ifdef GGML_USE_CANN
+ new_clip->backend = ggml_backend_cann_init(0);
+ LOG_INF("%s: CLIP using CANN backend\n", __func__);
+#endif
+
+#ifdef GGML_USE_VULKAN
+ new_clip->backend = ggml_backend_vk_init(0);
+ LOG_INF("%s: CLIP using Vulkan backend\n", __func__);
+#endif
+
+#ifdef GGML_USE_SYCL
+ new_clip->backend = ggml_backend_sycl_init(0);
+ LOG_INF("%s: CLIP using SYCL backend\n", __func__);
+#endif
-
- if (!new_clip->backend) {
- new_clip->backend = ggml_backend_cpu_init();
- LOG_INF("%s: CLIP using CPU backend\n", __func__);
+ ggml_backend_t backend = ggml_backend_init_best();
+ if (backend == nullptr) {
+ LOG_ERR("%s: failed to initialize backend\n", __func__);
+ clip_free(new_clip);
+ gguf_free(ctx);
+ return nullptr;
}
+ LOG_INF("%s: using %s backend\n", __func__, ggml_backend_name(backend));
+ new_clip->backend = backend;
if (!new_clip->backend) {
new_clip->backend = ggml_backend_cpu_init();
// model size and capabilities
{

View File

@@ -8,7 +8,7 @@ Subject: [PATCH] sort devices by score
1 file changed, 13 insertions(+), 8 deletions(-)
diff --git a/ggml/src/ggml-backend-reg.cpp b/ggml/src/ggml-backend-reg.cpp
index 899d16f2..ac5cda07 100644
index 899d16f2..135f7df0 100644
--- a/ggml/src/ggml-backend-reg.cpp
+++ b/ggml/src/ggml-backend-reg.cpp
@@ -150,7 +150,7 @@ struct ggml_backend_reg_entry {
@@ -29,7 +29,7 @@ index 899d16f2..ac5cda07 100644
if (!reg) {
return;
}
@@ -206,15 +206,15 @@ struct ggml_backend_registry {
@@ -206,15 +206,20 @@ struct ggml_backend_registry {
#endif
backends.push_back({ reg, std::move(handle) });
for (size_t i = 0; i < ggml_backend_reg_dev_count(reg); i++) {
@@ -45,10 +45,15 @@ index 899d16f2..ac5cda07 100644
#endif
- devices.push_back(device);
+ devices.push_back({device, score});
+ std::stable_sort(devices.begin(), devices.end(),
+ [](const auto & a, const auto & b) {
+ return a.second > b.second;
+ }
+ );
}
ggml_backend_reg_t load_backend(const std::wstring & path, bool silent) {
@@ -257,7 +257,7 @@ struct ggml_backend_registry {
@@ -257,7 +262,7 @@ struct ggml_backend_registry {
GGML_LOG_INFO("%s: loaded %s backend from %s\n", __func__, ggml_backend_reg_name(reg), utf16_to_utf8(path).c_str());
@@ -57,7 +62,7 @@ index 899d16f2..ac5cda07 100644
return reg;
}
@@ -280,7 +280,7 @@ struct ggml_backend_registry {
@@ -280,7 +285,7 @@ struct ggml_backend_registry {
// remove devices
devices.erase(
std::remove_if(devices.begin(), devices.end(),
@@ -66,17 +71,12 @@ index 899d16f2..ac5cda07 100644
devices.end());
// remove backend
@@ -338,7 +338,12 @@ size_t ggml_backend_dev_count() {
@@ -338,7 +343,7 @@ size_t ggml_backend_dev_count() {
ggml_backend_dev_t ggml_backend_dev_get(size_t index) {
GGML_ASSERT(index < ggml_backend_dev_count());
- return get_reg().devices[index];
+ auto devices = get_reg().devices;
+ if (!std::is_heap(devices.begin(), devices.end())) {
+ std::make_heap(devices.begin(), devices.end(), [](const auto & a, const auto & b) { return a.second < b.second; });
+ }
+
+ return devices[index].first;
+ return get_reg().devices[index].first;
}
ggml_backend_dev_t ggml_backend_dev_by_name(const char * name) {

View File

@@ -0,0 +1,29 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Michael Yang <mxyng@pm.me>
Date: Tue, 14 Jan 2025 15:59:04 -0800
Subject: [PATCH] add phony target ggml-cpu for all cpu variants
---
ggml/src/CMakeLists.txt | 2 ++
1 file changed, 2 insertions(+)
diff --git a/ggml/src/CMakeLists.txt b/ggml/src/CMakeLists.txt
index 84101c32..72b488dd 100644
--- a/ggml/src/CMakeLists.txt
+++ b/ggml/src/CMakeLists.txt
@@ -278,6 +278,7 @@ function(ggml_add_cpu_backend_variant tag_name)
endforeach()
ggml_add_cpu_backend_variant_impl(${tag_name})
+ add_dependencies(ggml-cpu ggml-cpu-${tag_name})
endfunction()
ggml_add_backend(CPU)
@@ -286,6 +287,7 @@ if (GGML_CPU_ALL_VARIANTS)
if (NOT GGML_BACKEND_DL)
message(FATAL_ERROR "GGML_CPU_ALL_VARIANTS requires GGML_BACKEND_DL")
endif()
+ add_custom_target(ggml-cpu)
ggml_add_cpu_backend_variant(sandybridge AVX)
ggml_add_cpu_backend_variant(haswell AVX F16C AVX2 FMA)
ggml_add_cpu_backend_variant(skylakex AVX F16C AVX2 FMA AVX512)

View File

@@ -0,0 +1,55 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: jmorganca <jmorganca@gmail.com>
Date: Sun, 9 Feb 2025 17:22:15 -0800
Subject: [PATCH] remove sgemm global variables
removes the 'iq4nlt' global variable in sgemm.cpp that causes
a runtime crash when calling dlopen on ggml-cpu libraries as
its initialization depends on AVX instructions the host machine
may not have
---
ggml/src/ggml-cpu/llamafile/sgemm.cpp | 17 +++++++++--------
1 file changed, 9 insertions(+), 8 deletions(-)
diff --git a/ggml/src/ggml-cpu/llamafile/sgemm.cpp b/ggml/src/ggml-cpu/llamafile/sgemm.cpp
index 8fce576c..3f260ce5 100644
--- a/ggml/src/ggml-cpu/llamafile/sgemm.cpp
+++ b/ggml/src/ggml-cpu/llamafile/sgemm.cpp
@@ -279,14 +279,6 @@ template <> inline __m256bh load(const float *p) {
}
#endif
-////////////////////////////////////////////////////////////////////////////////////////////////////
-// CONSTANTS
-
-#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
-static const int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
-static const __m128i iq4nlt = _mm_loadu_si128((const __m128i *) kvalues_iq4nl);
-#endif
-
////////////////////////////////////////////////////////////////////////////////////////////////////
// FLOATING POINT MATRIX MULTIPLICATION
@@ -613,6 +605,14 @@ class tinyBLAS_Q0_AVX {
TC *C, int64_t ldc,
int ith, int nth)
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
+ const int8_t kvalues_iq4nl[16] = {
+ -127, -104, -83, -65,
+ -49, -35, -22, -10,
+ 1, 13, 25, 38,
+ 53, 69, 89, 113
+ };
+
+ iq4nlt = _mm_loadu_si128((const __m128i *)kvalues_iq4nl);
}
void matmul(int64_t m, int64_t n) {
@@ -1037,6 +1037,7 @@ class tinyBLAS_Q0_AVX {
const int64_t ldc;
const int ith;
const int nth;
+ __m128i iq4nlt;
};
#endif // __AVX__

View File

@@ -0,0 +1,69 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Michael Yang <mxyng@pm.me>
Date: Tue, 11 Feb 2025 14:06:36 -0800
Subject: [PATCH] try/catch backend load
---
ggml/src/ggml-backend-reg.cpp | 45 ++++++++++++++++++-----------------
1 file changed, 23 insertions(+), 22 deletions(-)
diff --git a/ggml/src/ggml-backend-reg.cpp b/ggml/src/ggml-backend-reg.cpp
index 135f7df0..84b21dd8 100644
--- a/ggml/src/ggml-backend-reg.cpp
+++ b/ggml/src/ggml-backend-reg.cpp
@@ -512,32 +512,33 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
}
fs::directory_iterator dir_it(search_path, fs::directory_options::skip_permission_denied);
for (const auto & entry : dir_it) {
- if (entry.is_regular_file()) {
- std::wstring filename = entry.path().filename().wstring();
- std::wstring ext = entry.path().extension().wstring();
- if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
- dl_handle_ptr handle { dl_load_library(entry.path().wstring()) };
- if (!handle && !silent) {
- GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
- }
- if (handle) {
+ try {
+ if (entry.is_regular_file()) {
+ std::wstring filename = entry.path().filename().wstring();
+ std::wstring ext = entry.path().extension().wstring();
+ if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
+ dl_handle_ptr handle { dl_load_library(entry.path().wstring()) };
+ if (!handle) {
+ GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
+ continue;
+ }
+
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
- if (score_fn) {
- int s = score_fn();
-#ifndef NDEBUG
- GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), s);
-#endif
- if (s > best_score) {
- best_score = s;
- best_path = entry.path().wstring();
- }
- } else {
- if (!silent) {
- GGML_LOG_INFO("%s: failed to find ggml_backend_score in %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
- }
+ if (!score_fn) {
+ GGML_LOG_DEBUG("%s: failed to find ggml_backend_score in %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
+ continue;
+ }
+
+ int s = score_fn();
+ GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), s);
+ if (s > best_score) {
+ best_score = s;
+ best_path = entry.path().wstring();
}
}
}
+ } catch (const std::exception & e) {
+ GGML_LOG_ERROR("%s: failed to load %s: %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), e.what());
}
}
}

View File

@@ -116,7 +116,7 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
opts.NumCtx = max(opts.NumCtx, 2048)
}
layers := f.Tensors().Layers()
layers := f.Tensors().GroupLayers()
// add one layer worth of memory as a buffer
if blk0, ok := layers["blk.0"]; ok {
layerSize = blk0.Size()
@@ -410,7 +410,7 @@ func projectorMemoryRequirements(filename string) (weights, graphSize uint64) {
return 0, 0
}
for _, layer := range ggml.Tensors().Layers() {
for _, layer := range ggml.Tensors().GroupLayers() {
weights += layer.Size()
}
@@ -431,7 +431,7 @@ func projectorMemoryRequirements(filename string) (weights, graphSize uint64) {
headCount := kv("attention.head_count")
numPatches := (imageSize / kv("patch_size")) * (imageSize / kv("patch_size"))
if _, ok := ggml.Tensors().Layers()["v"]["class_embd"]; ok {
if _, ok := ggml.Tensors().GroupLayers()["v"]["class_embd"]; ok {
numPatches++
}

View File

@@ -29,7 +29,6 @@ import (
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/grammar"
"github.com/ollama/ollama/llama"
)
@@ -102,12 +101,8 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapt
gpus = discover.GetCPUInfo()
}
var estimate MemoryEstimate
if len(gpus) == 1 && gpus[0].Library == "cpu" {
estimate = EstimateGPULayers(gpus, f, projectors, opts)
} else {
estimate = EstimateGPULayers(gpus, f, projectors, opts)
estimate := EstimateGPULayers(gpus, f, projectors, opts)
if len(gpus) > 1 || gpus[0].Library != "cpu" {
switch {
case gpus[0].Library == "metal" && estimate.VRAMSize > systemTotalMemory:
// disable partial offloading when model is greater than total system memory as this
@@ -234,149 +229,207 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapt
params = append(params, "--multiuser-cache")
}
exe, err := os.Executable()
if err != nil {
return nil, err
}
// Find an availableServers port, retry on each iteration in case the failure was a port conflict race
port := 0
if a, err := net.ResolveTCPAddr("tcp", "localhost:0"); err == nil {
var l *net.TCPListener
if l, err = net.ListenTCP("tcp", a); err == nil {
port = l.Addr().(*net.TCPAddr).Port
l.Close()
libs := make(map[string]string)
if entries, err := os.ReadDir(discover.LibOllamaPath); err == nil {
for _, entry := range entries {
libs[entry.Name()] = filepath.Join(discover.LibOllamaPath, entry.Name())
}
}
if port == 0 {
slog.Debug("ResolveTCPAddr failed ", "error", err)
port = rand.Intn(65535-49152) + 49152 // get a random port in the ephemeral range
}
finalParams := []string{"runner"}
finalParams = append(finalParams, params...)
finalParams = append(finalParams, "--port", strconv.Itoa(port))
pathEnv := "LD_LIBRARY_PATH"
if runtime.GOOS == "windows" {
pathEnv = "PATH"
}
// Start with the server directory for the LD_LIBRARY_PATH/PATH
libraryPaths := []string{filepath.Dir(exe)}
if libraryPath, ok := os.LookupEnv(pathEnv); ok {
// favor our bundled library dependencies over system libraries
libraryPaths = append(libraryPaths, filepath.SplitList(libraryPath)...)
lib := gpus[0].RunnerName()
requested := envconfig.LLMLibrary()
if libs[requested] != "" {
slog.Info("using requested gpu library", "requested", requested)
lib = requested
}
// Note: we always put the dependency path first
// since this was the exact version we compiled/linked against
if gpus[0].DependencyPath != nil {
// assume gpus from the same library have the same dependency path
libraryPaths = append(gpus[0].DependencyPath, libraryPaths...)
var compatible []string
for k := range libs {
// exact match first
if k == lib {
compatible = append([]string{k}, compatible...)
continue
}
// then match the family (e.g. 'cuda')
if strings.Split(k, "_")[0] == strings.Split(lib, "_")[0] {
compatible = append(compatible, k)
}
}
slog.Debug("compatible gpu libraries", "compatible", compatible)
// TODO - once fully switched to the Go runner, load the model here for tokenize/detokenize cgo access
s := &llmServer{
port: port,
cmd: exec.Command(exe, finalParams...),
status: NewStatusWriter(os.Stderr),
options: opts,
modelPath: model,
estimate: estimate,
numParallel: numParallel,
sem: semaphore.NewWeighted(int64(numParallel)),
totalLayers: f.KV().BlockCount() + 1,
gpus: gpus,
done: make(chan error, 1),
}
// iterate through compatible GPU libraries such as 'cuda_v12', 'cuda_v11', 'rocm', etc.
// adding each library's respective path to the LD_LIBRARY_PATH, until finally running
// without any LD_LIBRARY_PATH flags
for {
port := 0
if a, err := net.ResolveTCPAddr("tcp", "localhost:0"); err == nil {
var l *net.TCPListener
if l, err = net.ListenTCP("tcp", a); err == nil {
port = l.Addr().(*net.TCPAddr).Port
l.Close()
}
}
if port == 0 {
slog.Debug("ResolveTCPAddr failed, using random port")
port = rand.Intn(65535-49152) + 49152 // get a random port in the ephemeral range
}
finalParams := []string{"runner"}
if envconfig.NewEngine() {
finalParams = append(finalParams, "--ollama-engine")
}
finalParams = append(finalParams, params...)
finalParams = append(finalParams, "--port", strconv.Itoa(port))
s.cmd.Env = os.Environ()
s.cmd.Stdout = os.Stdout
s.cmd.Stderr = s.status
s.cmd.SysProcAttr = LlamaServerSysProcAttr
var pathEnv string
switch runtime.GOOS {
case "windows":
pathEnv = "PATH"
case "darwin":
pathEnv = "DYLD_LIBRARY_PATH"
default:
pathEnv = "LD_LIBRARY_PATH"
}
envWorkarounds := [][2]string{}
for _, gpu := range gpus {
envWorkarounds = append(envWorkarounds, gpu.EnvWorkarounds...)
}
visibleDevicesEnv, visibleDevicesEnvVal := gpus.GetVisibleDevicesEnv()
pathEnvVal := strings.Join(libraryPaths, string(filepath.ListSeparator))
var libraryPaths []string
if libraryPath, ok := os.LookupEnv(pathEnv); ok {
libraryPaths = append(libraryPaths, filepath.SplitList(libraryPath)...)
}
// Update or add the path and visible devices variable with our adjusted version
pathNeeded := true
devicesNeeded := visibleDevicesEnv != ""
for i := range s.cmd.Env {
cmp := strings.SplitN(s.cmd.Env[i], "=", 2)
if strings.EqualFold(cmp[0], pathEnv) {
s.cmd.Env[i] = pathEnv + "=" + pathEnvVal
pathNeeded = false
} else if devicesNeeded && strings.EqualFold(cmp[0], visibleDevicesEnv) {
s.cmd.Env[i] = visibleDevicesEnv + "=" + visibleDevicesEnvVal
devicesNeeded = false
} else if len(envWorkarounds) != 0 {
for _, kv := range envWorkarounds {
if strings.EqualFold(cmp[0], kv[0]) {
s.cmd.Env[i] = kv[0] + "=" + kv[1]
if len(compatible) > 0 {
c := compatible[0]
if libpath, ok := libs[c]; ok {
slog.Debug("adding gpu library", "path", libpath)
libraryPaths = append(libraryPaths, libpath)
}
}
// Note: we always put the dependency path first
// since this was the exact version we compiled/linked against
if gpus[0].DependencyPath != nil {
slog.Debug("adding gpu dependency paths", "paths", gpus[0].DependencyPath)
// assume gpus from the same library have the same dependency path
libraryPaths = append(gpus[0].DependencyPath, libraryPaths...)
}
// finally, add the root library path
libraryPaths = append(libraryPaths, discover.LibOllamaPath)
exe, err := os.Executable()
if err != nil {
return nil, fmt.Errorf("unable to lookup executable path: %w", err)
}
if eval, err := filepath.EvalSymlinks(exe); err == nil {
exe = eval
}
// TODO - once fully switched to the Go runner, load the model here for tokenize/detokenize cgo access
s := &llmServer{
port: port,
cmd: exec.Command(exe, finalParams...),
status: NewStatusWriter(os.Stderr),
options: opts,
modelPath: model,
estimate: estimate,
numParallel: numParallel,
sem: semaphore.NewWeighted(int64(numParallel)),
totalLayers: f.KV().BlockCount() + 1,
gpus: gpus,
done: make(chan error, 1),
}
s.cmd.Env = os.Environ()
s.cmd.Stdout = os.Stdout
s.cmd.Stderr = s.status
s.cmd.SysProcAttr = LlamaServerSysProcAttr
envWorkarounds := [][2]string{}
for _, gpu := range gpus {
envWorkarounds = append(envWorkarounds, gpu.EnvWorkarounds...)
}
visibleDevicesEnv, visibleDevicesEnvVal := gpus.GetVisibleDevicesEnv()
pathEnvVal := strings.Join(libraryPaths, string(filepath.ListSeparator))
// Update or add the path and visible devices variable with our adjusted version
pathNeeded := true
devicesNeeded := visibleDevicesEnv != ""
for i := range s.cmd.Env {
cmp := strings.SplitN(s.cmd.Env[i], "=", 2)
if strings.EqualFold(cmp[0], pathEnv) {
s.cmd.Env[i] = pathEnv + "=" + pathEnvVal
pathNeeded = false
} else if devicesNeeded && strings.EqualFold(cmp[0], visibleDevicesEnv) {
s.cmd.Env[i] = visibleDevicesEnv + "=" + visibleDevicesEnvVal
devicesNeeded = false
} else if len(envWorkarounds) != 0 {
for _, kv := range envWorkarounds {
if strings.EqualFold(cmp[0], kv[0]) {
s.cmd.Env[i] = kv[0] + "=" + kv[1]
}
}
}
}
}
if pathNeeded {
s.cmd.Env = append(s.cmd.Env, pathEnv+"="+pathEnvVal)
}
if devicesNeeded {
s.cmd.Env = append(s.cmd.Env, visibleDevicesEnv+"="+visibleDevicesEnvVal)
}
if pathNeeded {
s.cmd.Env = append(s.cmd.Env, pathEnv+"="+pathEnvVal)
}
if devicesNeeded {
s.cmd.Env = append(s.cmd.Env, visibleDevicesEnv+"="+visibleDevicesEnvVal)
}
slog.Info("starting llama server", "cmd", s.cmd.String())
if envconfig.Debug() {
filteredEnv := []string{}
for _, ev := range s.cmd.Env {
if strings.HasPrefix(ev, "CUDA_") ||
strings.HasPrefix(ev, "ROCR_") ||
strings.HasPrefix(ev, "ROCM_") ||
strings.HasPrefix(ev, "HIP_") ||
strings.HasPrefix(ev, "GPU_") ||
strings.HasPrefix(ev, "HSA_") ||
strings.HasPrefix(ev, "GGML_") ||
strings.HasPrefix(ev, "PATH=") ||
strings.HasPrefix(ev, "LD_LIBRARY_PATH=") {
filteredEnv = append(filteredEnv, ev)
slog.Info("starting llama server", "cmd", s.cmd.String())
if envconfig.Debug() {
filteredEnv := []string{}
for _, ev := range s.cmd.Env {
if strings.HasPrefix(ev, "CUDA_") ||
strings.HasPrefix(ev, "ROCR_") ||
strings.HasPrefix(ev, "ROCM_") ||
strings.HasPrefix(ev, "HIP_") ||
strings.HasPrefix(ev, "GPU_") ||
strings.HasPrefix(ev, "HSA_") ||
strings.HasPrefix(ev, "GGML_") ||
strings.HasPrefix(ev, "PATH=") ||
strings.HasPrefix(ev, "LD_LIBRARY_PATH=") ||
strings.HasPrefix(ev, "DYLD_LIBRARY_PATH=") {
filteredEnv = append(filteredEnv, ev)
}
}
}
// Log at debug as the environment is inherited and might contain sensitive information
slog.Debug("subprocess", "environment", filteredEnv)
}
if err = s.cmd.Start(); err != nil {
// Detect permission denied and augment the message about noexec
if errors.Is(err, os.ErrPermission) {
return nil, fmt.Errorf("unable to start server %w. %s may have noexec set. Set OLLAMA_TMPDIR for server to a writable executable directory", err, exe)
// Log at debug as the environment is inherited and might contain sensitive information
slog.Debug("subprocess", "environment", filteredEnv)
}
msg := ""
if s.status != nil && s.status.LastErrMsg != "" {
msg = s.status.LastErrMsg
}
return nil, fmt.Errorf("error starting the external llama server: %v %s", err, msg)
}
// reap subprocess when it exits
go func() {
err := s.cmd.Wait()
// Favor a more detailed message over the process exit status
if err != nil && s.status != nil && s.status.LastErrMsg != "" {
slog.Debug("llama runner terminated", "error", err)
if strings.Contains(s.status.LastErrMsg, "unknown model") {
s.status.LastErrMsg = "this model is not supported by your version of Ollama. You may need to upgrade"
if err = s.cmd.Start(); err != nil {
var msg string
if s.status != nil && s.status.LastErrMsg != "" {
msg = s.status.LastErrMsg
}
err := fmt.Errorf("error starting runner: %v %s", err, msg)
if len(compatible) == 0 {
return nil, err
}
s.done <- errors.New(s.status.LastErrMsg)
} else {
s.done <- err
}
}()
return s, nil
slog.Warn("unable to start runner with compatible gpu", "error", err, "compatible", compatible)
compatible = compatible[1:]
continue
}
// reap subprocess when it exits
go func() {
err := s.cmd.Wait()
// Favor a more detailed message over the process exit status
if err != nil && s.status != nil && s.status.LastErrMsg != "" {
slog.Error("llama runner terminated", "error", err)
if strings.Contains(s.status.LastErrMsg, "unknown model") {
s.status.LastErrMsg = "this model is not supported by your version of Ollama. You may need to upgrade"
}
s.done <- errors.New(s.status.LastErrMsg)
} else {
s.done <- err
}
}()
return s, nil
}
}
type ServerStatus int
@@ -661,9 +714,9 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
}
// User provided a JSON schema
g, err := grammar.FromSchema(nil, req.Format)
if err != nil {
return fmt.Errorf("invalid JSON schema in format: %w", err)
g := llama.SchemaToGrammar(req.Format)
if g == nil {
return fmt.Errorf("invalid JSON schema in format")
}
request["grammar"] = string(g)
}
@@ -683,6 +736,7 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
if req.Options.NumPredict < 0 || req.Options.NumPredict > 10*s.options.NumCtx {
req.Options.NumPredict = 10 * s.options.NumCtx
}
// Make sure the server is ready
status, err := s.getServerStatusRetry(ctx)
if err != nil {

View File

@@ -6,14 +6,14 @@ This app builds upon Ollama to provide a desktop experience for running models.
First, build the `ollama` binary:
```
```shell
cd ..
go build .
```
Then run the desktop app with `npm start`:
```
```shell
cd macapp
npm install
npm start

View File

@@ -18,8 +18,8 @@ const config: ForgeConfig = {
asar: true,
icon: './assets/icon.icns',
extraResource: [
'../dist/ollama',
'../dist/darwin-amd64/lib',
path.join(__dirname, '../dist/darwin/ollama'),
...fs.readdirSync(path.join(__dirname, '../dist/darwin-amd64/lib/ollama')).map(f => path.join(__dirname, '../dist/darwin-amd64/lib/ollama', f)),
path.join(__dirname, './assets/iconTemplate.png'),
path.join(__dirname, './assets/iconTemplate@2x.png'),
path.join(__dirname, './assets/iconUpdateTemplate.png'),
@@ -43,7 +43,7 @@ const config: ForgeConfig = {
}
: {}),
osxUniversal: {
x64ArchFiles: '**/ollama*',
x64ArchFiles: '*',
},
},
rebuildConfig: {},

14
main.go
View File

@@ -2,6 +2,8 @@ package main
import (
"context"
"os"
"os/signal"
"github.com/spf13/cobra"
@@ -9,5 +11,15 @@ import (
)
func main() {
cobra.CheckErr(cmd.NewCLI().ExecuteContext(context.Background()))
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
sigChan := make(chan os.Signal, 1)
signal.Notify(sigChan, os.Interrupt)
go func() {
<-sigChan
cancel()
}()
cobra.CheckErr(cmd.NewCLI().ExecuteContext(ctx))
}

View File

@@ -5,6 +5,7 @@ import (
"encoding/binary"
"fmt"
"os"
"strconv"
"strings"
)
@@ -22,6 +23,7 @@ type Backend interface {
Config() Config
Get(name string) Tensor
NewContext() Context
SystemInfo() string
}
var backends = make(map[string]func(*os.File) (Backend, error))
@@ -48,15 +50,16 @@ type Context interface {
FromIntSlice(s []int32, shape ...int) (Tensor, error)
Forward(Tensor)
Compute(Tensor) Tensor
Close() error
Compute(...Tensor)
MaxTensors() int
Close()
}
type Tensor interface {
Dim(n int) int64
Stride(n int) int64
Dim(n int) int
Stride(n int) int
Shape() []int64
Shape() []int
DType() DType
Bytes() []byte
@@ -65,6 +68,7 @@ type Tensor interface {
Add(ctx Context, t2 Tensor) Tensor
Mul(ctx Context, t2 Tensor) Tensor
Mulmat(ctx Context, t2 Tensor) Tensor
MulmatFullPrec(ctx Context, t2 Tensor) Tensor
Softmax(ctx Context) Tensor
LayerNorm(ctx Context, weight, bias Tensor, eps float32) Tensor
@@ -78,13 +82,13 @@ type Tensor interface {
GELU(ctx Context) Tensor
SILU(ctx Context) Tensor
Reshape(ctx Context, shape ...int64) Tensor
Reshape(ctx Context, shape ...int) Tensor
View(ctx Context, offset int, shape ...int) Tensor
Permute(ctx Context, shape ...int) Tensor
Contiguous(ctx Context) Tensor
Pad(ctx Context, shape ...int64) Tensor
Unpad(ctx Context, shape ...int64) Tensor
Pad(ctx Context, shape ...int) Tensor
Unpad(ctx Context, shape ...int) Tensor
Stack(ctx Context, dim int, s ...Tensor) Tensor
Concat(ctx Context, t2 Tensor, dim int) Tensor
@@ -110,13 +114,13 @@ func mul[T number](s ...T) T {
type DumpOptions struct {
// Items is the number of elements to print at the beginning and end of each dimension.
Items int64
Items int
// Precision is the number of decimal places to print. Applies to float32 and float64.
Precision int
}
func Dump(t Tensor, opts ...DumpOptions) string {
func Dump(ctx Context, t Tensor, opts ...DumpOptions) string {
if len(opts) < 1 {
opts = append(opts, DumpOptions{
Items: 3,
@@ -126,18 +130,28 @@ func Dump(t Tensor, opts ...DumpOptions) string {
switch t.DType() {
case DTypeF32:
return dump[[]float32](t, opts[0])
return dump[[]float32](ctx, t, opts[0].Items, func(f float32) string {
return strconv.FormatFloat(float64(f), 'f', opts[0].Precision, 32)
})
case DTypeF16:
f32 := ctx.Zeros(DTypeF32, t.Shape()...)
f32 = t.Copy(ctx, f32)
return dump[[]float32](ctx, f32, opts[0].Items, func(f float32) string {
return strconv.FormatFloat(float64(f), 'f', opts[0].Precision, 32)
})
case DTypeI32:
return dump[[]int32](t, opts[0])
return dump[[]int32](ctx, t, opts[0].Items, func(i int32) string {
return strconv.FormatInt(int64(i), 10)
})
default:
return "<unsupported>"
}
}
func dump[S ~[]E, E number](t Tensor, opts DumpOptions) string {
bts := t.Bytes()
if bts == nil {
return "<nil>"
func dump[S ~[]E, E number](ctx Context, t Tensor, items int, fn func(E) string) string {
if t.Bytes() == nil {
ctx.Forward(t)
ctx.Compute(t)
}
s := make(S, mul(t.Shape()...))
@@ -148,16 +162,16 @@ func dump[S ~[]E, E number](t Tensor, opts DumpOptions) string {
shape := t.Shape()
var sb strings.Builder
var f func([]int64, int64)
f = func(dims []int64, stride int64) {
var f func([]int, int)
f = func(dims []int, stride int) {
prefix := strings.Repeat(" ", len(shape)-len(dims)+1)
fmt.Fprint(&sb, "[")
defer func() { fmt.Fprint(&sb, "]") }()
for i := int64(0); i < dims[0]; i++ {
if i >= opts.Items && i < dims[0]-opts.Items {
for i := 0; i < dims[0]; i++ {
if i >= items && i < dims[0]-items {
fmt.Fprint(&sb, "..., ")
// skip to next printable element
skip := dims[0] - 2*opts.Items
skip := dims[0] - 2*items
if len(dims) > 1 {
stride += mul(append(dims[1:], skip)...)
fmt.Fprint(&sb, strings.Repeat("\n", len(dims)-1), prefix)
@@ -170,7 +184,7 @@ func dump[S ~[]E, E number](t Tensor, opts DumpOptions) string {
fmt.Fprint(&sb, ",", strings.Repeat("\n", len(dims)-1), prefix)
}
} else {
fmt.Fprint(&sb, s[stride+i])
fmt.Fprint(&sb, fn(s[stride+i]))
if i < dims[0]-1 {
fmt.Fprint(&sb, ", ")
}
@@ -185,7 +199,8 @@ func dump[S ~[]E, E number](t Tensor, opts DumpOptions) string {
type DType int
const (
DTypeF32 DType = iota
DTypeOther DType = iota
DTypeF32
DTypeF16
DTypeI32
DTypeOther
)

View File

@@ -1,16 +1,30 @@
package ggml
// #cgo CPPFLAGS: -I${SRCDIR}/ggml/include
// #include <stdlib.h>
// #include <stdint.h>
// #include "ggml.h"
// #include "ggml-cpu.h"
// #include "ggml-backend.h"
/*
#cgo CPPFLAGS: -I${SRCDIR}/ggml/include
#include <stdlib.h>
#include <stdint.h>
#include "ggml.h"
#include "ggml-cpu.h"
#include "ggml-backend.h"
static struct ggml_backend_feature * getBackendFeatures(void *fp, ggml_backend_reg_t reg) {return ((ggml_backend_get_features_t)(fp))(reg);}
static struct ggml_backend_feature * getNextBackendFeatures(struct ggml_backend_feature * feature) { return &feature[1];}
typedef enum {COMP_UNKNOWN,COMP_GCC,COMP_CLANG} COMPILER;
COMPILER inline get_compiler() {
#if defined(__clang__)
return COMP_CLANG;
#elif defined(__GNUC__)
return COMP_GCC;
#else
return UNKNOWN_COMPILER;
#endif
}
*/
import "C"
import (
"bytes"
"encoding/binary"
"fmt"
"io"
"log/slog"
@@ -23,7 +37,7 @@ import (
"github.com/ollama/ollama/ml"
"golang.org/x/sync/errgroup"
"github.com/ollama/ollama/ml/backend/ggml/ggml/src"
ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
)
type device struct {
@@ -198,10 +212,9 @@ func (b *Backend) Get(name string) ml.Tensor {
func (b *Backend) NewContext() ml.Context {
nodes := max(8192, len(b.meta.Tensors().Items())*5)
bts := make([]byte, C.size_t(nodes)*C.ggml_tensor_overhead()+C.ggml_graph_overhead_custom(C.size_t(nodes), false))
c := C.ggml_init(C.struct_ggml_init_params{
mem_buffer: unsafe.Pointer(&bts[0]),
mem_size: C.size_t(len(bts)),
mem_buffer: nil,
mem_size: C.size_t(nodes)*C.ggml_tensor_overhead() + C.ggml_graph_overhead_custom(C.size_t(nodes), false),
no_alloc: true,
})
@@ -243,15 +256,35 @@ func (c *Context) Forward(t ml.Tensor) {
C.ggml_build_forward_expand(c.graph, t.(*Tensor).t)
}
func (c *Context) Compute(t ml.Tensor) ml.Tensor {
c.Forward(t)
func (c *Context) Compute(tensors ...ml.Tensor) {
C.ggml_backend_sched_graph_compute_async(c.sched, c.graph)
backend := C.ggml_backend_sched_get_tensor_backend(c.sched, t.(*Tensor).t)
needSync := true
sync := func() {
if needSync {
C.ggml_backend_sched_synchronize(c.sched)
needSync = false
}
}
t.(*Tensor).data = make([]byte, C.ggml_nbytes(t.(*Tensor).t))
C.ggml_backend_tensor_get_async(backend, t.(*Tensor).t, unsafe.Pointer(&t.(*Tensor).data[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
return t
for _, t := range tensors {
if C.ggml_nbytes(t.(*Tensor).t) > 0 {
t.(*Tensor).sync = sync
}
}
}
func (c *Context) MaxTensors() int {
return c.nodes
}
func shapeToGGML(shape []int) *C.int64_t {
sh := make([]C.int64_t, len(shape))
for i, s := range shape {
sh[i] = (C.int64_t)(s)
}
return &sh[0]
}
func (c Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
@@ -268,9 +301,11 @@ func (c Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
var t *C.struct_ggml_tensor
switch dtype {
case ml.DTypeF32:
t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_F32, C.int(len(shape)), (*C.int64_t)(unsafe.Pointer(&shape[0])))
t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_F32, C.int(len(shape)), shapeToGGML(shape))
case ml.DTypeF16:
t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_F16, C.int(len(shape)), shapeToGGML(shape))
case ml.DTypeI32:
t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_I32, C.int(len(shape)), (*C.int64_t)(unsafe.Pointer(&shape[0])))
t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_I32, C.int(len(shape)), shapeToGGML(shape))
default:
panic("unsupported dtype")
}
@@ -283,6 +318,13 @@ func (c Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
func fromSlice[S ~[]E, E float32 | int32](ctx Context, s S, shape []int, dtype uint32) (ml.Tensor, error) {
n := len(s)
if n == 0 {
var shape C.int64_t = 0
t := C.ggml_new_tensor(ctx.ctx, dtype, 1, &shape)
return &Tensor{t: t}, nil
}
for _, v := range shape {
n /= v
}
@@ -291,7 +333,7 @@ func fromSlice[S ~[]E, E float32 | int32](ctx Context, s S, shape []int, dtype u
return nil, fmt.Errorf("invalid shape %v for %d elements", shape, len(s))
}
t := C.ggml_new_tensor(ctx.ctx, dtype, C.int(len(shape)), (*C.int64_t)(unsafe.Pointer(&shape[0])))
t := C.ggml_new_tensor(ctx.ctx, dtype, C.int(len(shape)), shapeToGGML(shape))
b := C.ggml_backend_alloc_buffer(ctx.backend, C.ggml_nbytes(t))
C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
C.ggml_backend_tensor_set(t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t))
@@ -306,15 +348,16 @@ func (c Context) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
return fromSlice(c, s, shape, C.GGML_TYPE_I32)
}
func (c *Context) Close() error {
C.ggml_backend_sched_free(c.sched)
C.ggml_free(c.ctx)
return nil
func (c *Context) Close() {
if c != nil {
C.ggml_backend_sched_free(c.sched)
C.ggml_free(c.ctx)
}
}
type Tensor struct {
t *C.struct_ggml_tensor
data []byte
sync func()
}
func (t *Tensor) LogValue() slog.Value {
@@ -325,16 +368,16 @@ func (t *Tensor) LogValue() slog.Value {
)
}
func (t *Tensor) Dim(n int) int64 {
return int64(t.t.ne[n])
func (t *Tensor) Dim(n int) int {
return int(t.t.ne[n])
}
func (t *Tensor) Stride(n int) int64 {
return int64(t.t.nb[n])
func (t *Tensor) Stride(n int) int {
return int(t.t.nb[n])
}
func (t *Tensor) Shape() []int64 {
shape := make([]int64, C.ggml_n_dims(t.t))
func (t *Tensor) Shape() []int {
shape := make([]int, C.ggml_n_dims(t.t))
for i := range shape {
shape[i] = t.Dim(i)
}
@@ -342,18 +385,23 @@ func (t *Tensor) Shape() []int64 {
return shape
}
func (t *Tensor) Bytes() []byte {
if bts := C.ggml_get_data(t.t); bts != nil {
return C.GoBytes(bts, C.int(C.ggml_nbytes(t.t)))
func (t *Tensor) Bytes() (data []byte) {
if t.sync != nil {
data = make([]byte, C.ggml_nbytes(t.t))
t.sync()
C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
}
return nil
return
}
func (t *Tensor) Floats() (f32s []float32) {
if t.data != nil {
f32s = make([]float32, C.ggml_nelements(t.t))
_ = binary.Read(bytes.NewReader(t.data), binary.LittleEndian, f32s)
func (t *Tensor) Floats() (data []float32) {
if t.sync != nil {
data = make([]float32, C.ggml_nelements(t.t))
t.sync()
C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
}
return
@@ -363,6 +411,8 @@ func (t *Tensor) DType() ml.DType {
switch t.t._type {
case C.GGML_TYPE_F32:
return ml.DTypeF32
case C.GGML_TYPE_F16:
return ml.DTypeF16
case C.GGML_TYPE_I32:
return ml.DTypeI32
default:
@@ -408,6 +458,15 @@ func (t *Tensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
}
}
func (t *Tensor) MulmatFullPrec(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
mul := C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t)
C.ggml_mul_mat_set_prec(mul, C.GGML_PREC_F32)
return &Tensor{
t: mul,
}
}
func (t *Tensor) LayerNorm(ctx ml.Context, w, b ml.Tensor, eps float32) ml.Tensor {
tt := (&Tensor{t: C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
if b != nil {
@@ -421,7 +480,7 @@ func (t *Tensor) RMSNorm(ctx ml.Context, w ml.Tensor, eps float32) ml.Tensor {
return (&Tensor{t: C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
}
func (t *Tensor) Pad(ctx ml.Context, shape ...int64) ml.Tensor {
func (t *Tensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
if len(shape) != 4 {
panic("expected 4 dimensions")
}
@@ -453,7 +512,7 @@ func (t *Tensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
}
}
func (t *Tensor) Reshape(ctx ml.Context, shape ...int64) ml.Tensor {
func (t *Tensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor {
switch len(shape) {
case 1:
return &Tensor{
@@ -494,7 +553,7 @@ func (t *Tensor) Tanh(ctx ml.Context) ml.Tensor {
}
}
func (t *Tensor) Unpad(ctx ml.Context, shape ...int64) ml.Tensor {
func (t *Tensor) Unpad(ctx ml.Context, shape ...int) ml.Tensor {
if len(shape) != 4 {
panic("expected 4 dimensions")
}
@@ -545,9 +604,14 @@ func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDi
ropeFactors = &Tensor{}
}
dequant := t.t
if C.ggml_is_quantized(t.t._type) {
dequant = C.ggml_cast(ctx.(*Context).ctx, t.t, C.GGML_TYPE_F32)
}
return &Tensor{
t: C.ggml_rope_ext(
ctx.(*Context).ctx, t.t, positionIDs.(*Tensor).t, ropeFactors.(*Tensor).t,
ctx.(*Context).ctx, dequant, positionIDs.(*Tensor).t, ropeFactors.(*Tensor).t,
C.int(ropeDim),
131072, // YaRN n_ctx_train
ropeTypeNorm, // ROPE_TYPE_NORM
@@ -578,3 +642,34 @@ func (t *Tensor) Conv2D(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int
t: C.ggml_conv_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1)),
}
}
func (b *Backend) SystemInfo() string {
var compiler string
switch C.get_compiler() {
case C.COMP_UNKNOWN:
compiler = "cgo(unknown_compiler)"
case C.COMP_GCC:
compiler = "cgo(gcc)"
case C.COMP_CLANG:
compiler = "cgo(clang)"
}
var s string
for i := range C.ggml_backend_reg_count() {
reg := C.ggml_backend_reg_get(i)
fName := C.CString("ggml_backend_get_features")
defer C.free(unsafe.Pointer(fName))
get_features_fn := C.ggml_backend_reg_get_proc_address(reg, fName)
if get_features_fn != nil {
s += C.GoString(C.ggml_backend_reg_name(reg))
s += " : "
for features := C.getBackendFeatures(get_features_fn, reg); features.name != nil; features = C.getNextBackendFeatures(features) {
s += C.GoString(features.name)
s += " = "
s += C.GoString(features.value)
s += " | "
}
}
}
return s + compiler
}

View File

@@ -1,7 +1,9 @@
protect **/*.go
protect **/*-embed.*
protect *.go
protect *-embed.*
include include/
include src/
include src/CMakeLists.txt
include src/**/CMakeLists.txt
include src/ggml-blas/
include src/ggml-cpu/
include src/ggml-cpu/amx/
@@ -10,12 +12,11 @@ include src/ggml-cuda/
include src/ggml-cuda/template-instances/
include src/ggml-hip/
include src/ggml-metal/
include **/CMakeLists.txt
include **/*.c
include **/*.h
include **/*.cpp
include **/*.cu
include **/*.cuh
include **/*.m
include **/*.metal
include *.c
include *.h
include *.cpp
include *.cu
include *.cuh
include *.m
include *.metal
exclude *

View File

@@ -1,262 +0,0 @@
cmake_minimum_required(VERSION 3.14) # for add_link_options and implicit target directories.
project("ggml" C CXX)
include(CheckIncludeFileCXX)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
if (NOT XCODE AND NOT MSVC AND NOT CMAKE_BUILD_TYPE)
set(CMAKE_BUILD_TYPE Release CACHE STRING "Build type" FORCE)
set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS "Debug" "Release" "MinSizeRel" "RelWithDebInfo")
endif()
if (CMAKE_SOURCE_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR)
set(GGML_STANDALONE ON)
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
# configure project version
# TODO
else()
set(GGML_STANDALONE OFF)
endif()
if (EMSCRIPTEN)
set(BUILD_SHARED_LIBS_DEFAULT OFF)
option(GGML_WASM_SINGLE_FILE "ggml: embed WASM inside the generated ggml.js" ON)
else()
if (MINGW)
set(BUILD_SHARED_LIBS_DEFAULT OFF)
else()
set(BUILD_SHARED_LIBS_DEFAULT ON)
endif()
endif()
# remove the lib prefix on win32 mingw
if (WIN32)
set(CMAKE_STATIC_LIBRARY_PREFIX "")
set(CMAKE_SHARED_LIBRARY_PREFIX "")
set(CMAKE_SHARED_MODULE_PREFIX "")
endif()
option(BUILD_SHARED_LIBS "ggml: build shared libraries" ${BUILD_SHARED_LIBS_DEFAULT})
option(GGML_BACKEND_DL "ggml: build backends as dynamic libraries (requires BUILD_SHARED_LIBS)" OFF)
#
# option list
#
# TODO: mark all options as advanced when not GGML_STANDALONE
if (APPLE)
set(GGML_METAL_DEFAULT ON)
set(GGML_BLAS_DEFAULT ON)
set(GGML_BLAS_VENDOR_DEFAULT "Apple")
else()
set(GGML_METAL_DEFAULT OFF)
set(GGML_BLAS_DEFAULT OFF)
set(GGML_BLAS_VENDOR_DEFAULT "Generic")
endif()
if (CMAKE_CROSSCOMPILING)
set(GGML_NATIVE_DEFAULT OFF)
else()
set(GGML_NATIVE_DEFAULT ON)
endif()
# defaults
if (NOT GGML_LLAMAFILE_DEFAULT)
set(GGML_LLAMAFILE_DEFAULT OFF)
endif()
if (NOT GGML_CUDA_GRAPHS_DEFAULT)
set(GGML_CUDA_GRAPHS_DEFAULT OFF)
endif()
# general
option(GGML_STATIC "ggml: static link libraries" OFF)
option(GGML_NATIVE "ggml: optimize the build for the current system" ${GGML_NATIVE_DEFAULT})
option(GGML_LTO "ggml: enable link time optimization" OFF)
option(GGML_CCACHE "ggml: use ccache if available" ON)
# debug
option(GGML_ALL_WARNINGS "ggml: enable all compiler warnings" ON)
option(GGML_ALL_WARNINGS_3RD_PARTY "ggml: enable all compiler warnings in 3rd party libs" OFF)
option(GGML_GPROF "ggml: enable gprof" OFF)
# build
option(GGML_FATAL_WARNINGS "ggml: enable -Werror flag" OFF)
# sanitizers
option(GGML_SANITIZE_THREAD "ggml: enable thread sanitizer" OFF)
option(GGML_SANITIZE_ADDRESS "ggml: enable address sanitizer" OFF)
option(GGML_SANITIZE_UNDEFINED "ggml: enable undefined sanitizer" OFF)
# instruction set specific
if (GGML_NATIVE OR NOT GGML_NATIVE_DEFAULT)
set(INS_ENB OFF)
else()
set(INS_ENB ON)
endif()
option(GGML_CPU_HBM "ggml: use memkind for CPU HBM" OFF)
option(GGML_CPU_AARCH64 "ggml: use runtime weight conversion of Q4_0 to Q4_X_X" ON)
option(GGML_AVX "ggml: enable AVX" ${INS_ENB})
option(GGML_AVX_VNNI "ggml: enable AVX-VNNI" OFF)
option(GGML_AVX2 "ggml: enable AVX2" ${INS_ENB})
option(GGML_AVX512 "ggml: enable AVX512F" OFF)
option(GGML_AVX512_VBMI "ggml: enable AVX512-VBMI" OFF)
option(GGML_AVX512_VNNI "ggml: enable AVX512-VNNI" OFF)
option(GGML_AVX512_BF16 "ggml: enable AVX512-BF16" OFF)
if (NOT MSVC)
# in MSVC F16C and FMA is implied with AVX2/AVX512
option(GGML_FMA "ggml: enable FMA" ${INS_ENB})
option(GGML_F16C "ggml: enable F16C" ${INS_ENB})
# MSVC does not seem to support AMX
option(GGML_AMX_TILE "ggml: enable AMX-TILE" OFF)
option(GGML_AMX_INT8 "ggml: enable AMX-INT8" OFF)
option(GGML_AMX_BF16 "ggml: enable AMX-BF16" OFF)
endif()
option(GGML_LASX "ggml: enable lasx" ON)
option(GGML_LSX "ggml: enable lsx" ON)
option(GGML_RVV "ggml: enable rvv" ON)
option(GGML_CPU_ALL_VARIANTS "ggml: build all variants of the CPU backend (requires GGML_BACKEND_DL)" OFF)
set(GGML_CPU_ARM_ARCH "" CACHE STRING "ggml: CPU architecture for ARM")
if (WIN32)
set(GGML_WIN_VER "0x602" CACHE STRING "ggml: Windows version")
endif()
# ggml core
set(GGML_SCHED_MAX_COPIES "4" CACHE STRING "ggml: max input copies for pipeline parallelism")
option(GGML_CPU "ggml: enable CPU backend" ON)
# 3rd party libs / backends
option(GGML_ACCELERATE "ggml: enable Accelerate framework" ON)
option(GGML_BLAS "ggml: use BLAS" ${GGML_BLAS_DEFAULT})
set(GGML_BLAS_VENDOR ${GGML_BLAS_VENDOR_DEFAULT} CACHE STRING
"ggml: BLAS library vendor")
option(GGML_LLAMAFILE "ggml: use LLAMAFILE" ${GGML_LLAMAFILE_DEFAULT})
option(GGML_CUDA "ggml: use CUDA" OFF)
option(GGML_MUSA "ggml: use MUSA" OFF)
option(GGML_CUDA_FORCE_MMQ "ggml: use mmq kernels instead of cuBLAS" OFF)
option(GGML_CUDA_FORCE_CUBLAS "ggml: always use cuBLAS instead of mmq kernels" OFF)
option(GGML_CUDA_F16 "ggml: use 16 bit floats for some calculations" OFF)
set (GGML_CUDA_PEER_MAX_BATCH_SIZE "128" CACHE STRING
"ggml: max. batch size for using peer access")
option(GGML_CUDA_NO_PEER_COPY "ggml: do not use peer to peer copies" OFF)
option(GGML_CUDA_NO_VMM "ggml: do not try to use CUDA VMM" OFF)
option(GGML_CUDA_FA_ALL_QUANTS "ggml: compile all quants for FlashAttention" OFF)
option(GGML_CUDA_GRAPHS "ggml: use CUDA graphs (llama.cpp only)" ${GGML_CUDA_GRAPHS_DEFAULT})
option(GGML_HIP "ggml: use HIP" OFF)
option(GGML_HIP_UMA "ggml: use HIP unified memory architecture" OFF)
option(GGML_VULKAN "ggml: use Vulkan" OFF)
option(GGML_VULKAN_CHECK_RESULTS "ggml: run Vulkan op checks" OFF)
option(GGML_VULKAN_DEBUG "ggml: enable Vulkan debug output" OFF)
option(GGML_VULKAN_MEMORY_DEBUG "ggml: enable Vulkan memory debug output" OFF)
option(GGML_VULKAN_SHADER_DEBUG_INFO "ggml: enable Vulkan shader debug info" OFF)
option(GGML_VULKAN_PERF "ggml: enable Vulkan perf output" OFF)
option(GGML_VULKAN_VALIDATE "ggml: enable Vulkan validation" OFF)
option(GGML_VULKAN_RUN_TESTS "ggml: run Vulkan tests" OFF)
option(GGML_KOMPUTE "ggml: use Kompute" OFF)
option(GGML_METAL "ggml: use Metal" ${GGML_METAL_DEFAULT})
option(GGML_METAL_USE_BF16 "ggml: use bfloat if available" OFF)
option(GGML_METAL_NDEBUG "ggml: disable Metal debugging" OFF)
option(GGML_METAL_SHADER_DEBUG "ggml: compile Metal with -fno-fast-math" OFF)
option(GGML_METAL_EMBED_LIBRARY "ggml: embed Metal library" ${GGML_METAL})
set (GGML_METAL_MACOSX_VERSION_MIN "" CACHE STRING
"ggml: metal minimum macOS version")
set (GGML_METAL_STD "" CACHE STRING "ggml: metal standard version (-std flag)")
option(GGML_OPENMP "ggml: use OpenMP" ON)
option(GGML_RPC "ggml: use RPC" OFF)
option(GGML_SYCL "ggml: use SYCL" OFF)
option(GGML_SYCL_F16 "ggml: use 16 bit floats for sycl calculations" OFF)
set (GGML_SYCL_TARGET "INTEL" CACHE STRING
"ggml: sycl target device")
set (GGML_SYCL_DEVICE_ARCH "" CACHE STRING
"ggml: sycl device architecture")
option(GGML_OPENCL "ggml: use OpenCL" OFF)
option(GGML_OPENCL_PROFILING "ggml: use OpenCL profiling (increases overhead)" OFF)
option(GGML_OPENCL_EMBED_KERNELS "ggml: embed kernels" ON)
option(GGML_OPENCL_USE_ADRENO_KERNELS "ggml: use optimized kernels for Adreno" ON)
# extra artifacts
option(GGML_BUILD_TESTS "ggml: build tests" ${GGML_STANDALONE})
option(GGML_BUILD_EXAMPLES "ggml: build examples" ${GGML_STANDALONE})
#
# dependencies
#
set(CMAKE_C_STANDARD 11)
set(CMAKE_C_STANDARD_REQUIRED true)
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED true)
set(THREADS_PREFER_PTHREAD_FLAG ON)
find_package(Threads REQUIRED)
#
# build the library
#
add_subdirectory(src)
#
# tests and examples
#
if (GGML_BUILD_TESTS)
enable_testing()
add_subdirectory(tests)
endif ()
if (GGML_BUILD_EXAMPLES)
add_subdirectory(examples)
endif ()
#
# install
#
include(GNUInstallDirs)
include(CMakePackageConfigHelpers)
# all public headers
set(GGML_PUBLIC_HEADERS
include/ggml.h
include/ggml-cpu.h
include/ggml-alloc.h
include/ggml-backend.h
include/ggml-blas.h
include/ggml-cann.h
include/ggml-cuda.h
include/ggml-kompute.h
include/ggml-opt.h
include/ggml-metal.h
include/ggml-rpc.h
include/ggml-sycl.h
include/ggml-vulkan.h)
set_target_properties(ggml PROPERTIES PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}")
#if (GGML_METAL)
# set_target_properties(ggml PROPERTIES RESOURCE "${CMAKE_CURRENT_SOURCE_DIR}/src/ggml-metal.metal")
#endif()
install(TARGETS ggml LIBRARY PUBLIC_HEADER)
install(TARGETS ggml-base LIBRARY)
if (GGML_STANDALONE)
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/ggml.pc.in
${CMAKE_CURRENT_BINARY_DIR}/ggml.pc
@ONLY)
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/ggml.pc
DESTINATION share/pkgconfig)
endif()

View File

@@ -278,6 +278,7 @@ function(ggml_add_cpu_backend_variant tag_name)
endforeach()
ggml_add_cpu_backend_variant_impl(${tag_name})
add_dependencies(ggml-cpu ggml-cpu-${tag_name})
endfunction()
ggml_add_backend(CPU)
@@ -286,6 +287,7 @@ if (GGML_CPU_ALL_VARIANTS)
if (NOT GGML_BACKEND_DL)
message(FATAL_ERROR "GGML_CPU_ALL_VARIANTS requires GGML_BACKEND_DL")
endif()
add_custom_target(ggml-cpu)
ggml_add_cpu_backend_variant(sandybridge AVX)
ggml_add_cpu_backend_variant(haswell AVX F16C AVX2 FMA)
ggml_add_cpu_backend_variant(skylakex AVX F16C AVX2 FMA AVX512)

Some files were not shown because too many files have changed in this diff Show More