Compare commits

..

43 Commits

Author SHA1 Message Date
Michael Yang
1c198977ec ci: fix linux archive (#8862)
the find returns intermediate directories which pulls the parent
directories. it also omits files under lib/ollama.

switch back to globbing
2025-02-05 19:45:58 -08:00
zyphixor
330b6c50b0 readme: add simple-discord-ai to community integrations (#8659) 2025-02-05 18:35:04 -08:00
Diego Pereira
928911bc68 runner: avoid buffer overwrite when generating multiple embeddings (#8714)
Shield the code processing the embedding result
from subsequent calls that may overwrite the same
buffer to process a second input when retrieving
model embeddings.
2025-02-05 16:53:33 -08:00
Michael Yang
5b446cc815 chore: update gitattributes (#8860)
* chore: update gitattributes
* chore: add build info source
2025-02-05 16:37:18 -08:00
Daniel Lok
451c1596af readme: add MLflow Tracing as an observability integration (#8811) 2025-02-05 16:04:24 -08:00
Michael Yang
932bded12f chore: add optional field for server logs 2025-02-05 15:55:32 -08:00
Michael Yang
070ad913ac ci: fix linux archive 2025-02-05 15:08:02 -08:00
Azis Alvriyanto
8d8b9f83ae format: byte formatting test coverage (#8692)
Removed redundant checks and streamlined the switch-case structure.
Added test cases for both HumanBytes and HumanBytes2 to cover a wide range of scenarios.
2025-02-05 12:23:07 -08:00
Jeffrey Morgan
f00d359a67 docs: add section in development.md on library detection (#8855) 2025-02-05 11:16:27 -08:00
Yashwanth A
291def6adb server: increase timeout in stall detection from 5s to 30s (#8831)
In some cases, downloads slow due to disk i/o or other factors,
causing the download to restart a part. This causes the download
to "reverse" in percent completion. By increasing the timeout to 30s,
this should happen less frequently.
2025-02-05 10:00:26 -08:00
Jeffrey Morgan
cd3fbf1c49 llama: use dynamic backend loading for mllama and clip (#8835) 2025-02-05 09:46:56 -08:00
Jeffrey Morgan
c852b8e021 server: always print upload/download part info (#8832) 2025-02-04 19:30:49 -08:00
William
d8932c55e7 server: fix out of bounds exception on model download (#8746) 2025-02-04 18:52:47 -08:00
Michael Yang
63f0269f7f ci: split docker build by platform
this improves build reliability and concurrency
2025-02-04 17:04:27 -08:00
Jeffrey Morgan
4759ecae19 ml/backend/ggml: fix library loading on macOS amd64 (#8827) 2025-02-04 15:05:39 -08:00
Michael Yang
65b7ecac7b fix extra quote 2025-02-04 08:35:30 -08:00
Michael Yang
f9d2d89135 fix linux archive 2025-02-03 16:12:33 -08:00
Michael Yang
669dc31cf3 fix build 2025-02-03 15:10:51 -08:00
Tilman Griesel
d4d338c224 readme: add Chipper to community integrations (#8803) 2025-02-03 14:18:19 -08:00
Melroy van den Berg
bfdeffc375 docs: use OLLAMA_VERSION=0.5.7 for install version override (#8802) 2025-02-03 13:54:08 -08:00
Michael Yang
e806184023 fix release workflow 2025-02-03 13:19:57 -08:00
Jeffrey Morgan
50566113ac llm: do not error if LibOllamaPath does not exist (#8801) 2025-02-03 12:27:48 -08:00
Davide Bertoni
ad22ace439 docs: add missing json and shell code blocks in api.md (#8766) 2025-02-02 13:12:55 -08:00
Anıl Kaynar
f4321a421c readme: add MinimalNextOllamaChat to community integrations (#8767) 2025-02-02 12:56:10 -08:00
Michael Yang
475333d533 fix docker build-args
env context is not accessible from job.*.strategy. since it's in the
environment, just tell docker to use the environment variable[1]

[1]: https://docs.docker.com/reference/cli/docker/buildx/build/#build-arg
2025-01-31 14:56:02 -08:00
Michael Yang
39fd89308c build: set CFLAGS=-O3 specifically for cpu.go 2025-01-31 10:25:39 -08:00
Michael Yang
548a9f56a6 Revert "cgo: use O3"
This reverts commit bea1f1fac6.
2025-01-31 10:25:39 -08:00
Michael Yang
3f0cb36bdb build: set goflags in linux release 2025-01-30 13:07:32 -08:00
Michael Yang
bea1f1fac6 cgo: use O3 2025-01-30 12:21:50 -08:00
Jeffrey Morgan
5d75d837ef discover: fix default LibOllamaPath value (#8702) 2025-01-30 12:21:38 -08:00
Parth Sareen
711648c9bb docs: update api.md with streaming with tools is enabled (#8676) 2025-01-29 15:14:30 -08:00
Michael Yang
dcfb7a105c next build (#8539)
* add build to .dockerignore

* test: only build one arch

* add build to .gitignore

* fix ccache path

* filter amdgpu targets

* only filter if autodetecting

* Don't clobber gpu list for default runner

This ensures the GPU specific environment variables are set properly

* explicitly set CXX compiler for HIP

* Update build_windows.ps1

This isn't complete, but is close.  Dependencies are missing, and it only builds the "default" preset.

* build: add ollama subdir

* add .git to .dockerignore

* docs: update development.md

* update build_darwin.sh

* remove unused scripts

* llm: add cwd and build/lib/ollama to library paths

* default DYLD_LIBRARY_PATH to LD_LIBRARY_PATH in runner on macOS

* add additional cmake output vars for msvc

* interim edits to make server detection logic work with dll directories like lib/ollama/cuda_v12

* remove unncessary filepath.Dir, cleanup

* add hardware-specific directory to path

* use absolute server path

* build: linux arm

* cmake install targets

* remove unused files

* ml: visit each library path once

* build: skip cpu variants on arm

* build: install cpu targets

* build: fix workflow

* shorter names

* fix rocblas install

* docs: clean up development.md

* consistent build dir removal in development.md

* silence -Wimplicit-function-declaration build warnings in ggml-cpu

* update readme

* update development readme

* llm: update library lookup logic now that there is one runner (#8587)

* tweak development.md

* update docs

* add windows cuda/rocm tests

---------

Co-authored-by: jmorganca <jmorganca@gmail.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-01-29 15:03:38 -08:00
Xiaofu Huang
2ef3c803a1 readme: add AI Toolkit for VSCode to community integrations (#8604) 2025-01-27 00:36:23 -08:00
Matěj Štágl
453e4d090b readme: add LlmTornado to community integrations (#8551) 2025-01-25 01:04:07 -08:00
Daniel Jalkut
ca2f9843c8 docs: remove reference to the deleted examples folder (#8524) 2025-01-22 22:52:15 -08:00
frob
294b6f5a22 docs: remove tfs_z option from documentation (#8515) 2025-01-21 09:28:59 -08:00
EndoTheDev
7bb356c680 docs: update suspend header in gpu.md (#8487) 2025-01-19 18:45:35 -08:00
Jannik Maierhöfer
021817e59a readme: add link to Langfuse (#8455) 2025-01-16 22:41:12 -08:00
Patrick Devine
a420a453b4 fix default modelfile for create (#8452) 2025-01-16 01:14:04 -08:00
Jeffrey Morgan
42cf4db601 parser: fix parsing Modelfiles with multiple FROM commands (#8449) 2025-01-16 00:14:04 -08:00
Josh
93a8daf285 convert: import support for command-r models from safetensors (#6063)
---------

Co-authored-by: Patrick Devine <patrick@infrahq.com>
2025-01-15 16:31:22 -08:00
Gloryjaw
a041b4df7c docs: fix path to examples (#8438) 2025-01-15 11:49:12 -08:00
Patrick Devine
2539f2dbf9 Fix absolute path names + gguf detection (#8428) 2025-01-14 19:01:24 -08:00
157 changed files with 2710 additions and 9315 deletions

View File

@@ -3,7 +3,9 @@ ollama
app
macapp
dist
build
.env
.cache
test_data
llama/build
.git

4
.gitattributes vendored
View File

@@ -15,6 +15,10 @@ ml/backend/**/*.cu linguist-vendored
ml/backend/**/*.cuh linguist-vendored
ml/backend/**/*.m linguist-vendored
ml/backend/**/*.metal linguist-vendored
ml/backend/**/CMakeLists.txt linguist-vendored
llama/build-info.cpp linguist-generated
ml/backend/ggml/ggml/src/ggml-metal/ggml-metal-embed.s linguist-generated
* text=auto
*.go text eol=lf

View File

@@ -9,6 +9,14 @@ body:
description: What happened? What did you expect to happen?
validations:
required: true
- type: textarea
id: logs
attributes:
label: Relevant log output
description: Please copy and paste any relevant log output. See [Troubleshooting Guide](https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md#how-to-troubleshoot-issues) for details.
render: shell
validations:
required: false
- type: dropdown
id: os
attributes:

File diff suppressed because it is too large Load Diff

View File

@@ -40,28 +40,106 @@ jobs:
linux:
needs: [changes]
if: ${{ needs.changes.outputs.changed == 'True' }}
if: needs.changes.outputs.changed == 'True'
strategy:
matrix:
include:
- container: nvidia/cuda:11.8.0-devel-ubuntu22.04
preset: CUDA
- container: rocm/dev-ubuntu-22.04:6.1.2
preset: ROCm
- preset: CPU
- preset: CUDA
container: nvidia/cuda:11.8.0-devel-ubuntu22.04
flags: '-DCMAKE_CUDA_ARCHITECTURES=87'
- preset: ROCm
container: rocm/dev-ubuntu-22.04:6.1.2
extra-packages: rocm-libs
runs-on: ubuntu-latest
flags: '-DAMDGPU_TARGETS=gfx1010 -DCMAKE_PREFIX_PATH=/opt/rocm'
runs-on: linux
container: ${{ matrix.container }}
steps:
- uses: actions/checkout@v4
- run: |
apt-get update
apt-get install -y cmake pkg-config ${{ matrix.extra-packages }}
[ -n "${{ matrix.container }}" ] || sudo=sudo
$sudo apt-get update
$sudo apt-get install -y cmake ccache ${{ matrix.extra-packages }}
env:
DEBIAN_FRONTEND: noninteractive
- uses: actions/cache@v4
with:
path: /github/home/.cache/ccache
key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }}
- run: |
cmake --preset ${{ matrix.preset }}
cmake --preset ${{ matrix.preset }} ${{ matrix.flags }}
cmake --build --preset ${{ matrix.preset }} --parallel
windows:
needs: [changes]
if: needs.changes.outputs.changed == 'True'
strategy:
matrix:
include:
- preset: CPU
- preset: CUDA
install: https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_522.06_windows.exe
flags: '-DCMAKE_CUDA_ARCHITECTURES=87'
- preset: ROCm
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe
flags: '-DAMDGPU_TARGETS=gfx1010'
runs-on: windows
steps:
- run: |
choco install -y --no-progress ccache ninja
ccache -o cache_dir=${{ github.workspace }}\.ccache
- if: matrix.preset == 'CUDA' || matrix.preset == 'ROCm'
id: cache-install
uses: actions/cache/restore@v4
with:
path: |
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA
C:\Program Files\AMD\ROCm
key: ${{ matrix.install }}
- if: matrix.preset == 'CUDA'
name: Install CUDA ${{ matrix.cuda-version }}
run: |
$ErrorActionPreference = "Stop"
if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') {
Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe"
Start-Process -FilePath .\install.exe -ArgumentList (@("-s", "cudart_11.8", "nvcc_11.8", "cublas_11.8", "cublas_dev_11.8")) -NoNewWindow -Wait
}
$cudaPath = (Resolve-Path "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\*").path
echo "$cudaPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- if: matrix.preset == 'ROCm'
name: Install ROCm ${{ matrix.rocm-version }}
run: |
$ErrorActionPreference = "Stop"
if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') {
Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe"
Start-Process -FilePath .\install.exe -ArgumentList '-install' -NoNewWindow -Wait
}
$hipPath = (Resolve-Path "C:\Program Files\AMD\ROCm\*").path
echo "$hipPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "CC=$hipPath\bin\clang.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "CXX=$hipPath\bin\clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
- if: ${{ !cancelled() && steps.cache-install.outputs.cache-hit != 'true' }}
uses: actions/cache/save@v4
with:
path: |
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA
C:\Program Files\AMD\ROCm
key: ${{ matrix.install }}
- uses: actions/checkout@v4
- uses: actions/cache@v4
with:
path: ${{ github.workspace }}\.ccache
key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }}
- run: |
Import-Module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -VsInstallPath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -SkipAutomaticLocation -DevCmdArguments '-arch=x64 -no_logo'
cmake --preset "${{ matrix.preset }}" ${{ matrix.flags }}
cmake --build --parallel --preset "${{ matrix.preset }}"
env:
CMAKE_GENERATOR: Ninja
test:
strategy:
matrix:
@@ -85,5 +163,5 @@ jobs:
- uses: actions/checkout@v4
- name: Verify patches apply cleanly and do not change files
run: |
make -f Makefile2 clean checkout sync
make -f Makefile.sync clean sync
git diff --compact-summary --exit-code

5
.gitignore vendored
View File

@@ -4,12 +4,13 @@
.venv
.swp
dist
build
ollama
.cache
*.exe
.idea
test_data
*.crt
llama/build
__debug_bin*
llama/vendor
llama/build
llama/vendor

View File

@@ -19,11 +19,30 @@ set(GGML_CCACHE ON)
set(GGML_BACKEND_DL ON)
set(GGML_BACKEND_SHARED ON)
set(GGML_SCHED_MAX_COPIES 4)
set(GGML_CPU_ALL_VARIANTS ON)
set(GGML_CUDA_PEER_MAX_BATCH_SIZE 128)
set(GGML_LLAMAFILE ON)
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/lib)
set(GGML_LLAMAFILE ON)
set(GGML_CUDA_PEER_MAX_BATCH_SIZE 128)
set(GGML_CUDA_GRAPHS ON)
if((NOT CMAKE_OSX_ARCHITECTURES MATCHES "arm64")
OR (NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_SYSTEM_PROCESSOR MATCHES "arm|aarch64|ARM64|ARMv[0-9]+"))
set(GGML_CPU_ALL_VARIANTS ON)
endif()
if (CMAKE_OSX_ARCHITECTURES MATCHES "x86_64")
set(CMAKE_BUILD_RPATH "@loader_path")
set(CMAKE_INSTALL_RPATH "@loader_path")
endif()
set(OLLAMA_BUILD_DIR ${CMAKE_BINARY_DIR}/lib/ollama)
set(OLLAMA_INSTALL_DIR ${CMAKE_INSTALL_PREFIX}/lib/ollama)
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${OLLAMA_BUILD_DIR})
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY_DEBUG ${OLLAMA_BUILD_DIR})
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY_RELEASE ${OLLAMA_BUILD_DIR})
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${OLLAMA_BUILD_DIR})
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY_DEBUG ${OLLAMA_BUILD_DIR})
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY_RELEASE ${OLLAMA_BUILD_DIR})
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src)
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/include)
@@ -34,12 +53,65 @@ set(GGML_CPU ON)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src)
set_property(TARGET ggml PROPERTY EXCLUDE_FROM_ALL TRUE)
get_target_property(CPU_VARIANTS ggml-cpu MANUALLY_ADDED_DEPENDENCIES)
if(NOT CPU_VARIANTS)
set(CPU_VARIANTS "ggml-cpu")
endif()
install(TARGETS ggml-base ${CPU_VARIANTS}
RUNTIME_DEPENDENCIES
PRE_EXCLUDE_REGEXES ".*"
RUNTIME DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT CPU
LIBRARY DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT CPU
FRAMEWORK DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT CPU
)
check_language(CUDA)
if(CMAKE_CUDA_COMPILER)
if(CMAKE_VERSION VERSION_GREATER_EQUAL "3.24" AND NOT CMAKE_CUDA_ARCHITECTURES)
set(CMAKE_CUDA_ARCHITECTURES "native")
endif()
find_package(CUDAToolkit)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cuda)
set(OLLAMA_CUDA_INSTALL_DIR ${OLLAMA_INSTALL_DIR}/cuda_v${CUDAToolkit_VERSION_MAJOR})
install(TARGETS ggml-cuda
RUNTIME_DEPENDENCIES
DIRECTORIES ${CUDAToolkit_BIN_DIR} ${CUDAToolkit_LIBRARY_DIR}
PRE_INCLUDE_REGEXES cublas cublasLt cudart
PRE_EXCLUDE_REGEXES ".*"
RUNTIME DESTINATION ${OLLAMA_CUDA_INSTALL_DIR} COMPONENT CUDA
LIBRARY DESTINATION ${OLLAMA_CUDA_INSTALL_DIR} COMPONENT CUDA
)
endif()
check_language(HIP)
if(CMAKE_HIP_COMPILER)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-hip)
set(HIP_PLATFORM "amd")
find_package(hip REQUIRED)
if(NOT AMDGPU_TARGETS)
list(FILTER AMDGPU_TARGETS INCLUDE REGEX "^gfx(900|94[012]|101[02]|1030|110[012])$")
endif()
if(AMDGPU_TARGETS)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-hip)
set(OLLAMA_HIP_INSTALL_DIR ${OLLAMA_INSTALL_DIR}/rocm)
install(TARGETS ggml-hip
RUNTIME_DEPENDENCIES
DIRECTORIES ${HIP_BIN_INSTALL_DIR} ${HIP_LIB_INSTALL_DIR}
PRE_INCLUDE_REGEXES amdhip64 hipblas rocblas amd_comgr hsa_runtime64 rocprofiler-register drm_amdgpu drm numa
PRE_EXCLUDE_REGEXES ".*"
POST_EXCLUDE_REGEXES "system32"
RUNTIME DESTINATION ${OLLAMA_HIP_INSTALL_DIR} COMPONENT HIP
LIBRARY DESTINATION ${OLLAMA_HIP_INSTALL_DIR} COMPONENT HIP
)
foreach(HIP_LIB_BIN_INSTALL_DIR IN ITEMS ${HIP_BIN_INSTALL_DIR} ${HIP_LIB_INSTALL_DIR})
if(EXISTS ${HIP_LIB_BIN_INSTALL_DIR}/rocblas)
install(DIRECTORY ${HIP_LIB_BIN_INSTALL_DIR}/rocblas DESTINATION ${OLLAMA_HIP_INSTALL_DIR} COMPONENT HIP)
break()
endif()
endforeach()
endif()
endif()

View File

@@ -4,10 +4,15 @@
{
"name": "Default",
"binaryDir": "${sourceDir}/build",
"installDir": "${sourceDir}/dist",
"cacheVariables": {
"CMAKE_BUILD_TYPE": "Release"
}
},
{
"name": "CPU",
"inherits": [ "Default" ]
},
{
"name": "CUDA",
"inherits": [ "Default" ]
@@ -42,20 +47,29 @@
},
{
"name": "ROCm",
"inherits": [ "Default" ]
"inherits": [ "Default" ],
"cacheVariables": {
"CMAKE_HIP_PLATFORM": "amd"
}
},
{
"name": "ROCm 6",
"inherits": [ "ROCm" ],
"cacheVariables": {
"CMAKE_HIP_ARCHITECTURES": "gfx900;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102"
"AMDGPU_TARGETS": "gfx900;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102"
}
}
],
"buildPresets": [
{
"name": "Default",
"configurePreset": "Default"
"configurePreset": "Default",
"configuration": "Release"
},
{
"name": "CPU",
"configurePreset": "Default",
"targets": [ "ggml-cpu" ]
},
{
"name": "CUDA",

View File

@@ -1,201 +1,128 @@
ARG GOLANG_VERSION=1.22.8
ARG CUDA_VERSION_11=11.3.1
ARG CUDA_VERSION_12=12.4.0
ARG ROCM_VERSION=6.1.2
ARG JETPACK_6=r36.2.0
ARG JETPACK_5=r35.4.1
# vim: filetype=dockerfile
### To create a local image for building linux binaries on mac or windows with efficient incremental builds
#
# docker build --platform linux/amd64 -t builder-amd64 -f Dockerfile --target unified-builder-amd64 .
# docker run --platform linux/amd64 --rm -it -v $(pwd):/go/src/github.com/ollama/ollama/ builder-amd64
#
### Then incremental builds will be much faster in this container
#
# make -j 10 dist
#
FROM --platform=linux/amd64 rocm/dev-centos-7:${ROCM_VERSION}-complete AS unified-builder-amd64
ARG GOLANG_VERSION
ARG CUDA_VERSION_11
ARG CUDA_VERSION_12
COPY ./scripts/rh_linux_deps.sh /
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:/usr/local/cuda/bin:$PATH
ENV LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/cuda/lib64
RUN GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
RUN yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel7/x86_64/cuda-rhel7.repo && \
dnf clean all && \
dnf install -y \
zsh \
cuda-toolkit-$(echo ${CUDA_VERSION_11} | cut -f1-2 -d. | sed -e "s/\./-/g") \
cuda-toolkit-$(echo ${CUDA_VERSION_12} | cut -f1-2 -d. | sed -e "s/\./-/g")
# TODO intel oneapi goes here...
ENV GOARCH amd64
ENV CGO_ENABLED 1
WORKDIR /go/src/github.com/ollama/ollama/
ENTRYPOINT [ "zsh" ]
ARG FLAVOR=${TARGETARCH}
### To create a local image for building linux binaries on mac or linux/arm64 with efficient incremental builds
# Note: this does not contain jetson variants
#
# docker build --platform linux/arm64 -t builder-arm64 -f Dockerfile --target unified-builder-arm64 .
# docker run --platform linux/arm64 --rm -it -v $(pwd):/go/src/github.com/ollama/ollama/ builder-arm64
#
FROM --platform=linux/arm64 rockylinux:8 AS unified-builder-arm64
ARG GOLANG_VERSION
ARG CUDA_VERSION_11
ARG CUDA_VERSION_12
COPY ./scripts/rh_linux_deps.sh /
RUN GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
RUN yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/sbsa/cuda-rhel8.repo && \
dnf config-manager --set-enabled appstream && \
dnf clean all && \
dnf install -y \
zsh \
cuda-toolkit-$(echo ${CUDA_VERSION_11} | cut -f1-2 -d. | sed -e "s/\./-/g") \
cuda-toolkit-$(echo ${CUDA_VERSION_12} | cut -f1-2 -d. | sed -e "s/\./-/g")
ENV PATH /opt/rh/gcc-toolset-10/root/usr/bin:$PATH:/usr/local/cuda/bin
ENV LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/cuda/lib64
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs:/opt/amdgpu/lib64
ENV GOARCH arm64
ENV CGO_ENABLED 1
WORKDIR /go/src/github.com/ollama/ollama/
ENTRYPOINT [ "zsh" ]
ARG ROCMVERSION=6.1.2
ARG JETPACK5VERSION=r35.4.1
ARG JETPACK6VERSION=r36.2.0
ARG CMAKEVERSION=3.31.2
FROM --platform=linux/amd64 unified-builder-amd64 AS build-amd64
COPY . .
ARG OLLAMA_SKIP_CUDA_GENERATE
ARG OLLAMA_SKIP_ROCM_GENERATE
ARG OLLAMA_FAST_BUILD
ARG VERSION
ARG CUSTOM_CPU_FLAGS
FROM --platform=linux/amd64 rocm/dev-centos-7:${ROCMVERSION}-complete AS base-amd64
RUN sed -i -e 's/mirror.centos.org/vault.centos.org/g' -e 's/^#.*baseurl=http/baseurl=http/g' -e 's/^mirrorlist=http/#mirrorlist=http/g' /etc/yum.repos.d/*.repo \
&& yum install -y yum-utils devtoolset-10-gcc devtoolset-10-gcc-c++ \
&& yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel7/x86_64/cuda-rhel7.repo \
&& curl -s -L https://github.com/ccache/ccache/releases/download/v4.10.2/ccache-4.10.2-linux-x86_64.tar.xz | tar -Jx -C /usr/local/bin --strip-components 1
ENV PATH=/opt/rh/devtoolset-10/root/usr/bin:/opt/rh/devtoolset-11/root/usr/bin:$PATH
FROM --platform=linux/arm64 rockylinux:8 AS base-arm64
# install epel-release for ccache
RUN yum install -y yum-utils epel-release \
&& yum install -y clang ccache \
&& yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/sbsa/cuda-rhel8.repo
ENV CC=clang CXX=clang++
FROM base-${TARGETARCH} AS base
ARG CMAKEVERSION
RUN curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKEVERSION}/cmake-${CMAKEVERSION}-linux-$(uname -m).tar.gz | tar xz -C /usr/local --strip-components 1
COPY CMakeLists.txt CMakePresets.json .
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
ENV LDFLAGS=-s
FROM base AS cpu
# amd64 uses gcc which requires devtoolset-11 for AVX extensions while arm64 uses clang
RUN if [ "$(uname -m)" = "x86_64" ]; then yum install -y devtoolset-11-gcc devtoolset-11-gcc-c++; fi
ENV PATH=/opt/rh/devtoolset-11/root/usr/bin:$PATH
RUN --mount=type=cache,target=/root/.ccache \
if grep "^flags" /proc/cpuinfo|grep avx>/dev/null; then \
make -j $(nproc) dist ; \
else \
make -j 5 dist ; \
fi
RUN cd dist/linux-$GOARCH && \
tar -cf - . | pigz --best > ../ollama-linux-$GOARCH.tgz
RUN if [ -z ${OLLAMA_SKIP_ROCM_GENERATE} ] ; then \
cd dist/linux-$GOARCH-rocm && \
tar -cf - . | pigz --best > ../ollama-linux-$GOARCH-rocm.tgz ;\
fi
cmake --preset 'CPU' \
&& cmake --build --parallel --preset 'CPU' \
&& cmake --install build --component CPU --strip --parallel 8
# Jetsons need to be built in discrete stages
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK_5} AS runners-jetpack5-arm64
ARG GOLANG_VERSION
RUN apt-get update && apt-get install -y git curl ccache && \
curl -s -L https://dl.google.com/go/go${GOLANG_VERSION}.linux-arm64.tar.gz | tar xz -C /usr/local && \
ln -s /usr/local/go/bin/go /usr/local/bin/go && \
ln -s /usr/local/go/bin/gofmt /usr/local/bin/gofmt && \
apt-get clean && rm -rf /var/lib/apt/lists/*
WORKDIR /go/src/github.com/ollama/ollama/
COPY . .
ARG CGO_CFLAGS
ENV GOARCH arm64
ARG VERSION
FROM base AS cuda-11
ARG CUDA11VERSION=11.3
RUN yum install -y cuda-toolkit-${CUDA11VERSION//./-}
ENV PATH=/usr/local/cuda-11/bin:$PATH
RUN --mount=type=cache,target=/root/.ccache \
make -j 5 dist_cuda_v11 \
CUDA_ARCHITECTURES="72;87" \
GPU_RUNNER_VARIANT=_jetpack5 \
DIST_LIB_DIR=/go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack5/lib/ollama \
DIST_GPU_RUNNER_DEPS_DIR=/go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack5/lib/ollama/cuda_jetpack5
cmake --preset 'CUDA 11' \
&& cmake --build --parallel --preset 'CUDA 11' \
&& cmake --install build --component CUDA --strip --parallel 8
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK_6} AS runners-jetpack6-arm64
ARG GOLANG_VERSION
RUN apt-get update && apt-get install -y git curl ccache && \
curl -s -L https://dl.google.com/go/go${GOLANG_VERSION}.linux-arm64.tar.gz | tar xz -C /usr/local && \
ln -s /usr/local/go/bin/go /usr/local/bin/go && \
ln -s /usr/local/go/bin/gofmt /usr/local/bin/gofmt && \
apt-get clean && rm -rf /var/lib/apt/lists/*
WORKDIR /go/src/github.com/ollama/ollama/
COPY . .
ARG CGO_CFLAGS
ENV GOARCH arm64
ARG VERSION
FROM base AS cuda-12
ARG CUDA12VERSION=12.4
RUN yum install -y cuda-toolkit-${CUDA12VERSION//./-}
ENV PATH=/usr/local/cuda-12/bin:$PATH
RUN --mount=type=cache,target=/root/.ccache \
make -j 5 dist_cuda_v12 \
CUDA_ARCHITECTURES="87" \
GPU_RUNNER_VARIANT=_jetpack6 \
DIST_LIB_DIR=/go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack6/lib/ollama \
DIST_GPU_RUNNER_DEPS_DIR=/go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack6/lib/ollama/cuda_jetpack6
cmake --preset 'CUDA 12' \
&& cmake --build --parallel --preset 'CUDA 12' \
&& cmake --install build --component CUDA --strip --parallel 8
FROM --platform=linux/arm64 unified-builder-arm64 AS build-arm64
COPY . .
ARG OLLAMA_SKIP_CUDA_GENERATE
ARG OLLAMA_FAST_BUILD
ARG VERSION
FROM base AS rocm-6
RUN --mount=type=cache,target=/root/.ccache \
make -j 5 dist
COPY --from=runners-jetpack5-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
COPY --from=runners-jetpack6-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
RUN cd dist/linux-$GOARCH && \
tar -cf - . | pigz --best > ../ollama-linux-$GOARCH.tgz
RUN cd dist/linux-$GOARCH-jetpack5 && \
tar -cf - . | pigz --best > ../ollama-linux-$GOARCH-jetpack5.tgz
RUN cd dist/linux-$GOARCH-jetpack6 && \
tar -cf - . | pigz --best > ../ollama-linux-$GOARCH-jetpack6.tgz
cmake --preset 'ROCm 6' \
&& cmake --build --parallel --preset 'ROCm 6' \
&& cmake --install build --component HIP --strip --parallel 8
FROM --platform=linux/amd64 scratch AS dist-amd64
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/ollama-linux-*.tgz /
FROM --platform=linux/arm64 scratch AS dist-arm64
COPY --from=build-arm64 /go/src/github.com/ollama/ollama/dist/ollama-linux-*.tgz /
FROM dist-$TARGETARCH AS dist
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK5VERSION} AS jetpack-5
ARG CMAKEVERSION
RUN apt-get update && apt-get install -y curl ccache \
&& curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKEVERSION}/cmake-${CMAKEVERSION}-linux-$(uname -m).tar.gz | tar xz -C /usr/local --strip-components 1
COPY CMakeLists.txt CMakePresets.json .
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'JetPack 5' \
&& cmake --build --parallel --preset 'JetPack 5' \
&& cmake --install build --component CUDA --strip --parallel 8
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK6VERSION} AS jetpack-6
ARG CMAKEVERSION
RUN apt-get update && apt-get install -y curl ccache \
&& curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKEVERSION}/cmake-${CMAKEVERSION}-linux-$(uname -m).tar.gz | tar xz -C /usr/local --strip-components 1
COPY CMakeLists.txt CMakePresets.json .
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'JetPack 6' \
&& cmake --build --parallel --preset 'JetPack 6' \
&& cmake --install build --component CUDA --strip --parallel 8
# For amd64 container images, filter out cuda/rocm to minimize size
FROM build-amd64 AS runners-cuda-amd64
RUN rm -rf \
./dist/linux-amd64/lib/ollama/libggml_hipblas.so \
./dist/linux-amd64/lib/ollama/runners/rocm*
FROM base AS build
ARG GOVERSION=1.23.4
RUN curl -fsSL https://golang.org/dl/go${GOVERSION}.linux-$(case $(uname -m) in x86_64) echo amd64 ;; aarch64) echo arm64 ;; esac).tar.gz | tar xz -C /usr/local
ENV PATH=/usr/local/go/bin:$PATH
WORKDIR /go/src/github.com/ollama/ollama
COPY . .
ARG GOFLAGS="'-ldflags=-w -s'"
ENV CGO_ENABLED=1
RUN --mount=type=cache,target=/root/.cache/go-build \
go build -trimpath -buildmode=pie -o /bin/ollama .
FROM build-amd64 AS runners-rocm-amd64
RUN rm -rf \
./dist/linux-amd64/lib/ollama/libggml_cuda*.so \
./dist/linux-amd64/lib/ollama/libcu*.so* \
./dist/linux-amd64/lib/ollama/runners/cuda*
FROM --platform=linux/amd64 scratch AS amd64
COPY --from=cuda-11 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_v11
COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12
FROM --platform=linux/amd64 ubuntu:22.04 AS runtime-amd64
RUN apt-get update && \
apt-get install -y ca-certificates && \
apt-get clean && rm -rf /var/lib/apt/lists/*
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/bin/ /bin/
COPY --from=runners-cuda-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
FROM --platform=linux/arm64 scratch AS arm64
COPY --from=cuda-11 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_v11
COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12
COPY --from=jetpack-5 dist/lib/ollama/cuda_v11 lib/ollama/cuda_jetpack5
COPY --from=jetpack-6 dist/lib/ollama/cuda_v12 lib/ollama/cuda_jetpack6
FROM --platform=linux/arm64 ubuntu:22.04 AS runtime-arm64
RUN apt-get update && \
apt-get install -y ca-certificates && \
apt-get clean && rm -rf /var/lib/apt/lists/*
COPY --from=build-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/bin/ /bin/
COPY --from=build-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
COPY --from=runners-jetpack5-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack5/lib/ /lib/
COPY --from=runners-jetpack6-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack6/lib/ /lib/
FROM --platform=linux/arm64 scratch AS rocm
COPY --from=rocm-6 dist/lib/ollama/rocm /lib/ollama/rocm
FROM ${FLAVOR} AS archive
COPY --from=cpu dist/lib/ollama /lib/ollama
COPY --from=build /bin/ollama /bin/ollama
# ROCm libraries larger so we keep it distinct from the CPU/CUDA image
FROM --platform=linux/amd64 ubuntu:22.04 AS runtime-rocm
# Frontload the rocm libraries which are large, and rarely change to increase chance of a common layer
# across releases
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64-rocm/lib/ /lib/
RUN apt-get update && \
apt-get install -y ca-certificates && \
apt-get clean && rm -rf /var/lib/apt/lists/*
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/bin/ /bin/
COPY --from=runners-rocm-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
EXPOSE 11434
ENV OLLAMA_HOST 0.0.0.0
ENTRYPOINT ["/bin/ollama"]
CMD ["serve"]
FROM runtime-$TARGETARCH
EXPOSE 11434
ENV OLLAMA_HOST 0.0.0.0
FROM ubuntu:20.04
RUN apt-get update \
&& apt-get install -y ca-certificates \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*
COPY --from=archive /bin /usr/bin
ENV PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
COPY --from=archive /lib/ollama /usr/lib/ollama
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
ENV NVIDIA_VISIBLE_DEVICES=all
ENV OLLAMA_HOST=0.0.0.0:11434
EXPOSE 11434
ENTRYPOINT ["/bin/ollama"]
CMD ["serve"]

View File

@@ -1,66 +0,0 @@
ARG CUDA_11_VERSION=11.3
ARG CUDA_12_VERSION=12.4
ARG ROCM_VERSION=6.1.2
ARG JETPACK_5_VERSION=r35.4.1
ARG JETPACK_6_VERSION=r36.2.0
ARG CMAKE_VERSION=3.31.2
FROM --platform=linux/amd64 rocm/dev-centos-7:${ROCM_VERSION}-complete AS base
ARG CMAKE_VERSION
RUN curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKE_VERSION}/cmake-${CMAKE_VERSION}-linux-x86_64.tar.gz | tar xz -C /usr --strip-components 1
RUN sed -i -e 's/mirror.centos.org/vault.centos.org/g' -e 's/^#.*baseurl=http/baseurl=http/g' -e 's/^mirrorlist=http/#mirrorlist=http/g' /etc/yum.repos.d/*.repo \
&& yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel7/x86_64/cuda-rhel7.repo
# FROM --platform=linux/arm64 rockylinux:8 AS base
# ARG CMAKE_VERSION
# RUN curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKE_VERSION}/cmake-${CMAKE_VERSION}-linux-aarch64.tar.gz | tar xz -C /usr --strip-components 1
# RUN yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/sbsa/cuda-rhel8.repo
FROM base AS amd64
ARG CUDA_11_VERSION
ARG CUDA_12_VERSION
RUN yum install -y cuda-toolkit-${CUDA_11_VERSION//./-} \
&& yum install -y cuda-toolkit-${CUDA_12_VERSION//./-}
COPY CMakeLists.txt CMakeLists.txt
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
FROM --platform=linux/amd64 amd64 AS cuda_11
ENV PATH=/usr/local/cuda-${CUDA_11_VERSION}/bin:$PATH
RUN cmake -S . -B build -DCMAKE_CUDA_ARCHITECTURES="50;52;53;60;61;62;70;72;75;80;86"
RUN cmake --build build --target ggml-cuda -j
FROM --platform=linux/amd64 amd64 AS cuda_12
ENV PATH=/usr/local/cuda-${CUDA_12_VERSION}/bin:$PATH
RUN cmake -S . -B build -DCMAKE_CUDA_ARCHITECTURES="60;61;62;70;72;75;80;86;87;89;90;90a"
RUN cmake --build build --target ggml-cuda -j
FROM --platform=linux/amd64 amd64 AS rocm
RUN cmake -S . -B build -DCMAKE_HIP_ARCHITECTURES="gfx900;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102"
RUN cmake --build build --target ggml-hip -j
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK_5_VERSION} AS jetpack_5
ARG CMAKE_VERSION
RUN curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKE_VERSION}/cmake-${CMAKE_VERSION}-linux-aarch64.tar.gz | tar xz -C /usr --strip-components 1
COPY CMakeLists.txt .
COPY ml/backend/ggml/ggml .
RUN cmake -S . -B build \
-DCMAKE_CUDA_ARCHITECTURES="72;87"
RUN cmake --build build --target ggml-cuda
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK_6_VERSION} AS jetpack_6
ARG CMAKE_VERSION
RUN curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKE_VERSION}/cmake-${CMAKE_VERSION}-linux-aarch64.tar.gz | tar xz -C /usr --strip-components 1
COPY CMakeLists.txt .
COPY ml/backend/ggml/ggml .
RUN cmake -S . -B build \
-DCMAKE_CUDA_ARCHITECTURES="87"
RUN cmake --build build --target ggml-cuda
FROM --platform=linux/amd64 golang:1.23
COPY --from=cuda_11 build/ml/backend/ggml/ggml/src/ggml-cuda/libggml-cuda.so libggml-cuda-11.so
COPY --from=cuda_12 build/ml/backend/ggml/ggml/src/ggml-cuda/libggml-cuda.so libggml-cuda-12.so
COPY --from=rocm build/ml/backend/ggml/ggml/src/ggml-hip/libggml-hip.so libggml-hip.so
# FROM --platform=linux/arm64 golang:1.23
# COPY --from=jetpack_5 build/ml/backend/ggml/ggml/src/ggml-cuda/libggml-cuda.so libggml-cuda-jetpack-5.so
# COPY --from=jetpack_6 build/ml/backend/ggml/ggml/src/ggml-cuda/libggml-cuda.so libggml-cuda-jetpack-6.so

60
Makefile.sync Normal file
View File

@@ -0,0 +1,60 @@
UPSTREAM=https://github.com/ggerganov/llama.cpp.git
WORKDIR=llama/vendor
FETCH_HEAD=46e3556e01b824e52395fb050b29804b6cff2a7c
.PHONY: help
help:
@echo "Available targets:"
@echo " sync Sync with upstream repositories"
@echo " checkout Checkout upstream repository"
@echo " apply-patches Apply patches to local repository"
@echo " format-patches Format patches from local repository"
@echo " clean Clean local repository"
@echo
@echo "Example:"
@echo " make -f $(lastword $(MAKEFILE_LIST)) clean sync"
.PHONY: sync
sync: llama/build-info.cpp llama/llama.cpp ml/backend/ggml/ggml apply-patches
.PHONY: llama/build-info.cpp
llama/build-info.cpp: llama/build-info.cpp.in
sed -e 's|@FETCH_HEAD@|$(FETCH_HEAD)|' $< > $@
.PHONY: llama/llama.cpp
llama/llama.cpp: llama/vendor/ apply-patches
rsync -arvzc -f "merge $@/.rsync-filter" $< $@
.PHONY: ml/backend/ggml/ggml apply-patches
ml/backend/ggml/ggml: llama/vendor/ggml/ apply-patches
rsync -arvzc -f "merge $@/.rsync-filter" $< $@
PATCHES=$(wildcard llama/patches/*.patch)
.PHONY: apply-patches
.NOTPARALLEL:
apply-patches: $(addsuffix ed, $(PATCHES))
%.patched: %.patch
@if git -c user.name=nobody -c 'user.email=<>' -C $(WORKDIR) am -3 $(realpath $<); then touch $@; else git -C $(WORKDIR) am --abort; exit 1; fi
.PHONY: checkout
checkout: $(WORKDIR)
git -C $(WORKDIR) fetch
git -C $(WORKDIR) checkout -f $(FETCH_HEAD)
$(WORKDIR):
git clone $(UPSTREAM) $(WORKDIR)
.PHONE: format-patches
format-patches: llama/patches
git -C $(WORKDIR) format-patch \
--no-signature \
--no-numbered \
--zero-commit \
-o $(realpath $<) \
$(FETCH_HEAD)
.PHONE: clean
clean: checkout
$(RM) $(addsuffix ed, $(PATCHES))

View File

@@ -1,46 +0,0 @@
UPSTREAM=https://github.com/ggerganov/llama.cpp.git
WORKDIR=llama/vendor
FETCH_HEAD=46e3556e01b824e52395fb050b29804b6cff2a7c
all: sync
.PHONY: sync
sync: llama/llama.cpp ml/backend/ggml/ggml
.PHONY: llama/llama.cpp
llama/llama.cpp: llama/vendor/ apply_patches
rsync -arvzc -f "merge $@/.rsync-filter" $< $@
.PHONY: ml/backend/ggml/ggml apply_patches
ml/backend/ggml/ggml: llama/vendor/ggml/ apply_patches
rsync -arvzc -f "merge $@/.rsync-filter" $< $@
PATCHES=$(wildcard llama/patches/*.patch)
.PHONY: apply_patches
.NOTPARALLEL:
apply_patches: $(addsuffix ed, $(PATCHES))
%.patched: %.patch
@if git -c user.name=nobody -c 'user.email=<>' -C $(WORKDIR) am -3 $(realpath $<); then touch $@; else git -C $(WORKDIR) am --abort; exit 1; fi
.PHONY: checkout
checkout: $(WORKDIR)
git -C $(WORKDIR) fetch
git -C $(WORKDIR) checkout -f $(FETCH_HEAD)
$(WORKDIR):
git clone $(UPSTREAM) $(WORKDIR)
.PHONE: format_patches
format_patches: llama/patches
git -C $(WORKDIR) format-patch \
--no-signature \
--no-numbered \
--zero-commit \
-o $(realpath $<) \
$(FETCH_HEAD)
.PHONE: clean
clean: checkout
$(RM) $(addsuffix ed, $(PATCHES))

View File

@@ -369,6 +369,9 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Minima](https://github.com/dmayboroda/minima) (RAG with on-premises or fully local workflow)
- [aidful-ollama-model-delete](https://github.com/AidfulAI/aidful-ollama-model-delete) (User interface for simplified model cleanup)
- [Perplexica](https://github.com/ItzCrazyKns/Perplexica) (An AI-powered search engine & an open-source alternative to Perplexity AI)
- [AI Toolkit for Visual Studio Code](https://aka.ms/ai-tooklit/ollama-docs) (Microsoft-official VSCode extension to chat, test, evaluate models with Ollama support, and use them in your AI applications.)
- [MinimalNextOllamaChat](https://github.com/anilkay/MinimalNextOllamaChat) (Minimal Web UI for Chat and Model Control)
- [Chipper](https://github.com/TilmanGriesel/chipper) AI interface for tinkerers (Ollama, Haystack RAG, Python)
### Cloud
@@ -481,6 +484,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [GoLamify](https://github.com/prasad89/golamify)
- [Ollama for Haskell](https://github.com/tusharad/ollama-haskell)
- [multi-llm-ts](https://github.com/nbonamy/multi-llm-ts) (A Typescript/JavaScript library allowing access to different LLM in unified API)
- [LlmTornado](https://github.com/lofcz/llmtornado) (C# library providing a unified interface for major FOSS & Commercial inference APIs)
### Mobile
@@ -531,6 +535,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [TextCraft](https://github.com/suncloudsmoon/TextCraft) (Copilot in Word alternative using Ollama)
- [Alfred Ollama](https://github.com/zeitlings/alfred-ollama) (Alfred Workflow)
- [TextLLaMA](https://github.com/adarshM84/TextLLaMA) A Chrome Extension that helps you write emails, correct grammar, and translate into any language
- [Simple-Discord-AI](https://github.com/zyphixor/simple-discord-ai)
### Supported backends
@@ -539,4 +544,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
### Observability
- [OpenLIT](https://github.com/openlit/openlit) is an OpenTelemetry-native tool for monitoring Ollama Applications & GPUs using traces and metrics.
- [HoneyHive](https://docs.honeyhive.ai/integrations/ollama) is an AI observability and evaluation platform for AI agents. Use HoneyHive to evaluate agent performance, interrogate failures, and monitor quality in production.
- [HoneyHive](https://docs.honeyhive.ai/integrations/ollama) is an AI observability and evaluation platform for AI agents. Use HoneyHive to evaluate agent performance, interrogate failures, and monitor quality in production.
- [Langfuse](https://langfuse.com/docs/integrations/ollama) is an open source LLM observability platform that enables teams to collaboratively monitor, evaluate and debug AI applications.
- [MLflow Tracing](https://mlflow.org/docs/latest/llms/tracing/index.html#automatic-tracing) is an open source LLM observability tool with a convenient API to log and visualize traces, making it easy to debug and evaluate GenAI applications.

63
cache/cache.go vendored
View File

@@ -1,63 +0,0 @@
package cache
import (
"github.com/ollama/ollama/ml"
)
type Options struct {
Position int
}
type Cache interface {
Sub(i int) Cache
Put(ctx ml.Context, key, value ml.Tensor, opts Options) (ml.Tensor, ml.Tensor)
}
type Simple struct {
DType ml.DType
Capacity int
keys, values []ml.Tensor
}
func (c *Simple) Sub(i int) Cache {
if i >= len(c.keys) {
c.keys = append(c.keys, make([]ml.Tensor, i-len(c.keys)+1)...)
c.values = append(c.values, make([]ml.Tensor, i-len(c.values)+1)...)
}
return &Simple{
keys: c.keys[i : i+1],
values: c.values[i : i+1],
Capacity: c.Capacity,
DType: c.DType,
}
}
func (c *Simple) Put(ctx ml.Context, key, value ml.Tensor, opts Options) (ml.Tensor, ml.Tensor) {
if c.keys[0] == nil || c.values[0] == nil {
c.keys[0] = ctx.Zeros(c.DType, int(key.Dim(0)*key.Dim(1))*c.Capacity)
c.values[0] = ctx.Zeros(c.DType, int(value.Dim(0)*value.Dim(1))*c.Capacity)
}
ctx.Forward(key.Copy(ctx, c.keys[0].View(ctx, int(key.Stride(2))*opts.Position, int(key.Dim(0)*key.Dim(1)*key.Dim(2)))))
ctx.Forward(value.Copy(ctx, c.values[0].View(ctx, int(value.Stride(2))*opts.Position, int(value.Dim(0)*value.Dim(1)*value.Dim(2)))))
n := min(c.Capacity, int(key.Dim(2))+opts.Position)
key = c.keys[0].View(ctx, 0,
int(key.Dim(0)), int(key.Stride(1)),
int(key.Dim(1)), int(key.Stride(2)),
n,
)
value = c.values[0].View(ctx, 0,
int(value.Dim(0)), int(value.Stride(1)),
int(value.Dim(1)), int(value.Stride(2)),
n,
)
// TODO shift context if necessary
return key, value
}

View File

@@ -59,7 +59,7 @@ func getModelfileName(cmd *cobra.Command) (string, error) {
_, err = os.Stat(absName)
if err != nil {
return filename, err
return "", err
}
return absName, nil

View File

@@ -279,7 +279,7 @@ func TestGetModelfileName(t *testing.T) {
name: "no modelfile specified, no modelfile exists",
modelfileName: "",
fileExists: false,
expectedName: "Modelfile",
expectedName: "",
expectedErr: os.ErrNotExist,
},
{
@@ -293,7 +293,7 @@ func TestGetModelfileName(t *testing.T) {
name: "modelfile specified, no modelfile exists",
modelfileName: "crazyfile",
fileExists: false,
expectedName: "crazyfile",
expectedName: "",
expectedErr: os.ErrNotExist,
},
{

View File

@@ -9,7 +9,7 @@ import (
"log/slog"
"strings"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/llm"
)
type ModelParameters struct {
@@ -27,8 +27,8 @@ type AdapterParameters struct {
} `json:"lora_parameters"`
}
func (ModelParameters) KV(t *Tokenizer) ggml.KV {
kv := ggml.KV{
func (ModelParameters) KV(t *Tokenizer) llm.KV {
kv := llm.KV{
"general.file_type": uint32(1),
"general.quantization_version": uint32(2),
"tokenizer.ggml.pre": t.Pre,
@@ -54,7 +54,7 @@ func (ModelParameters) KV(t *Tokenizer) ggml.KV {
return kv
}
func (p AdapterParameters) KV() ggml.KV {
func (p AdapterParameters) KV() llm.KV {
var alpha float32
if p.LoraParameters.Alpha == 0 {
alpha = float32(p.Alpha)
@@ -62,7 +62,7 @@ func (p AdapterParameters) KV() ggml.KV {
alpha = p.LoraParameters.Alpha
}
kv := ggml.KV{
kv := llm.KV{
"adapter.lora.alpha": alpha,
"adapter.type": "lora",
"general.file_type": uint32(1),
@@ -79,19 +79,19 @@ func (ModelParameters) specialTokenTypes() []string {
}
}
func (ModelParameters) writeFile(ws io.WriteSeeker, kv ggml.KV, ts []ggml.Tensor) error {
return ggml.WriteGGUF(ws, kv, ts)
func (ModelParameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
return llm.WriteGGUF(ws, kv, ts)
}
func (AdapterParameters) writeFile(ws io.WriteSeeker, kv ggml.KV, ts []ggml.Tensor) error {
return ggml.WriteGGUF(ws, kv, ts)
func (AdapterParameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
return llm.WriteGGUF(ws, kv, ts)
}
type ModelConverter interface {
// KV maps parameters to LLM key-values
KV(*Tokenizer) ggml.KV
KV(*Tokenizer) llm.KV
// Tensors maps input tensors to LLM tensors. Model specific modifications can be done here.
Tensors([]Tensor) []ggml.Tensor
Tensors([]Tensor) []llm.Tensor
// Replacements returns a list of string pairs to replace in tensor names.
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
Replacements() []string
@@ -99,7 +99,7 @@ type ModelConverter interface {
// specialTokenTypes returns any special token types the model uses
specialTokenTypes() []string
// writeFile writes the model to the provided io.WriteSeeker
writeFile(io.WriteSeeker, ggml.KV, []ggml.Tensor) error
writeFile(io.WriteSeeker, llm.KV, []llm.Tensor) error
}
type moreParser interface {
@@ -108,17 +108,17 @@ type moreParser interface {
type AdapterConverter interface {
// KV maps parameters to LLM key-values
KV(ggml.KV) ggml.KV
KV(llm.KV) llm.KV
// Tensors maps input tensors to LLM tensors. Adapter specific modifications can be done here.
Tensors([]Tensor) []ggml.Tensor
Tensors([]Tensor) []llm.Tensor
// Replacements returns a list of string pairs to replace in tensor names.
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
Replacements() []string
writeFile(io.WriteSeeker, ggml.KV, []ggml.Tensor) error
writeFile(io.WriteSeeker, llm.KV, []llm.Tensor) error
}
func ConvertAdapter(fsys fs.FS, ws io.WriteSeeker, baseKV ggml.KV) error {
func ConvertAdapter(fsys fs.FS, ws io.WriteSeeker, baseKV llm.KV) error {
bts, err := fs.ReadFile(fsys, "adapter_config.json")
if err != nil {
return err
@@ -191,6 +191,8 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
conv = &qwen2Model{}
case "BertModel":
conv = &bertModel{}
case "CohereForCausalLM":
conv = &commandrModel{}
default:
return errors.New("unsupported architecture")
}

View File

@@ -8,7 +8,7 @@ import (
"slices"
"strings"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/llm"
)
type bertModel struct {
@@ -85,7 +85,7 @@ func (p *bertModel) parseMore(fsys fs.FS) error {
return nil
}
func (p *bertModel) KV(t *Tokenizer) ggml.KV {
func (p *bertModel) KV(t *Tokenizer) llm.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "bert"
kv["bert.attention.causal"] = false
@@ -132,8 +132,8 @@ func (p *bertModel) KV(t *Tokenizer) ggml.KV {
return kv
}
func (p *bertModel) Tensors(ts []Tensor) []ggml.Tensor {
var out []ggml.Tensor
func (p *bertModel) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
for _, t := range ts {
if slices.Contains([]string{
"embeddings.position_ids",
@@ -143,7 +143,7 @@ func (p *bertModel) Tensors(ts []Tensor) []ggml.Tensor {
continue
}
out = append(out, ggml.Tensor{
out = append(out, llm.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),

View File

@@ -0,0 +1,76 @@
package convert
import (
"cmp"
"github.com/ollama/ollama/llm"
)
type commandrModel struct {
ModelParameters
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
HiddenLayers uint32 `json:"num_hidden_layers"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
LayerNormEPS float32 `json:"layer_norm_eps"`
RopeTheta float32 `json:"rope_theta"`
UseQKNorm bool `json:"use_qk_norm"`
MaxLength uint32 `json:"model_max_length"`
LogitScale float32 `json:"logit_scale"`
NCtx uint32 `json:"n_ctx"`
}
var _ ModelConverter = (*commandrModel)(nil)
func (p *commandrModel) KV(t *Tokenizer) llm.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "command-r"
kv["general.name"] = "command-r"
kv["command-r.context_length"] = cmp.Or(p.MaxLength, p.MaxPositionEmbeddings, p.NCtx)
kv["command-r.embedding_length"] = p.HiddenSize
kv["command-r.block_count"] = p.HiddenLayers
kv["command-r.feed_forward_length"] = p.IntermediateSize
kv["command-r.attention.head_count"] = p.NumAttentionHeads
kv["command-r.attention.head_count_kv"] = p.NumKeyValueHeads
kv["command-r.attention.layer_norm_epsilon"] = p.LayerNormEPS
kv["command-r.rope.freq_base"] = p.RopeTheta
kv["command-r.max_position_embeddings"] = cmp.Or(p.MaxLength, p.MaxPositionEmbeddings)
kv["command-r.logit_scale"] = p.LogitScale
kv["command-r.rope.scaling.type"] = "none"
return kv
}
func (p *commandrModel) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
for _, t := range ts {
out = append(out, llm.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (p *commandrModel) Replacements() []string {
return []string{
"self_attn.q_norm", "attn_q_norm",
"self_attn.k_norm", "attn_k_norm",
"model.layers", "blk",
"input_layernorm", "attn_norm",
"mlp.down_proj", "ffn_down",
"mlp.gate_proj", "ffn_gate",
"mlp.up_proj", "ffn_up",
"self_attn.k_proj", "attn_k",
"self_attn.o_proj", "attn_output",
"self_attn.q_proj", "attn_q",
"self_attn.v_proj", "attn_v",
"model.norm", "output_norm",
"model.embed_tokens", "token_embd",
}
}

View File

@@ -6,7 +6,7 @@ import (
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/llm"
)
type gemmaModel struct {
@@ -23,7 +23,7 @@ type gemmaModel struct {
var _ ModelConverter = (*gemmaModel)(nil)
func (p *gemmaModel) KV(t *Tokenizer) ggml.KV {
func (p *gemmaModel) KV(t *Tokenizer) llm.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "gemma"
kv["gemma.context_length"] = p.MaxPositionEmbeddings
@@ -42,14 +42,14 @@ func (p *gemmaModel) KV(t *Tokenizer) ggml.KV {
return kv
}
func (p *gemmaModel) Tensors(ts []Tensor) []ggml.Tensor {
var out []ggml.Tensor
func (p *gemmaModel) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
for _, t := range ts {
if strings.HasSuffix(t.Name(), "_norm.weight") {
t.SetRepacker(p.addOne)
}
out = append(out, ggml.Tensor{
out = append(out, llm.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),

View File

@@ -1,6 +1,8 @@
package convert
import "github.com/ollama/ollama/fs/ggml"
import (
"github.com/ollama/ollama/llm"
)
type gemma2Model struct {
gemmaModel
@@ -9,7 +11,7 @@ type gemma2Model struct {
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
}
func (p *gemma2Model) KV(t *Tokenizer) ggml.KV {
func (p *gemma2Model) KV(t *Tokenizer) llm.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "gemma2"
kv["gemma2.context_length"] = p.MaxPositionEmbeddings

View File

@@ -6,7 +6,7 @@ import (
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/llm"
)
type gemma2Adapter struct {
@@ -15,14 +15,14 @@ type gemma2Adapter struct {
var _ AdapterConverter = (*gemma2Adapter)(nil)
func (p *gemma2Adapter) KV(baseKV ggml.KV) ggml.KV {
func (p *gemma2Adapter) KV(baseKV llm.KV) llm.KV {
kv := p.AdapterParameters.KV()
kv["general.architecture"] = "gemma2"
return kv
}
func (p *gemma2Adapter) Tensors(ts []Tensor) []ggml.Tensor {
var out []ggml.Tensor
func (p *gemma2Adapter) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
for _, t := range ts {
shape := t.Shape()
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
@@ -31,7 +31,7 @@ func (p *gemma2Adapter) Tensors(ts []Tensor) []ggml.Tensor {
t.SetRepacker(p.repack)
}
out = append(out, ggml.Tensor{
out = append(out, llm.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),

View File

@@ -9,7 +9,7 @@ import (
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/llm"
)
type llamaModel struct {
@@ -46,7 +46,7 @@ type llamaModel struct {
var _ ModelConverter = (*llamaModel)(nil)
func (p *llamaModel) KV(t *Tokenizer) ggml.KV {
func (p *llamaModel) KV(t *Tokenizer) llm.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "llama"
kv["llama.vocab_size"] = p.VocabSize
@@ -120,11 +120,11 @@ func (p *llamaModel) KV(t *Tokenizer) ggml.KV {
return kv
}
func (p *llamaModel) Tensors(ts []Tensor) []ggml.Tensor {
var out []ggml.Tensor
func (p *llamaModel) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
if p.RopeScaling.factors != nil {
out = append(out, ggml.Tensor{
out = append(out, llm.Tensor{
Name: "rope_freqs.weight",
Kind: 0,
Shape: []uint64{uint64(len(p.RopeScaling.factors))},
@@ -138,7 +138,7 @@ func (p *llamaModel) Tensors(ts []Tensor) []ggml.Tensor {
t.SetRepacker(p.repack)
}
out = append(out, ggml.Tensor{
out = append(out, llm.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),

View File

@@ -7,7 +7,7 @@ import (
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/llm"
)
type llamaAdapter struct {
@@ -18,7 +18,7 @@ type llamaAdapter struct {
var _ AdapterConverter = (*llamaAdapter)(nil)
func (p *llamaAdapter) KV(baseKV ggml.KV) ggml.KV {
func (p *llamaAdapter) KV(baseKV llm.KV) llm.KV {
kv := p.AdapterParameters.KV()
kv["general.architecture"] = "llama"
kv["llama.attention.head_count"] = baseKV["llama.attention.head_count"]
@@ -29,8 +29,8 @@ func (p *llamaAdapter) KV(baseKV ggml.KV) ggml.KV {
return kv
}
func (p *llamaAdapter) Tensors(ts []Tensor) []ggml.Tensor {
var out []ggml.Tensor
func (p *llamaAdapter) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
for _, t := range ts {
shape := t.Shape()
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
@@ -41,7 +41,7 @@ func (p *llamaAdapter) Tensors(ts []Tensor) []ggml.Tensor {
t.SetRepacker(p.repack)
}
out = append(out, ggml.Tensor{
out = append(out, llm.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: shape,

View File

@@ -6,7 +6,7 @@ import (
"slices"
"strings"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/llm"
)
type mixtralModel struct {
@@ -15,7 +15,7 @@ type mixtralModel struct {
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
}
func (p *mixtralModel) KV(t *Tokenizer) ggml.KV {
func (p *mixtralModel) KV(t *Tokenizer) llm.KV {
kv := p.llamaModel.KV(t)
if p.NumLocalExperts > 0 {
@@ -29,7 +29,7 @@ func (p *mixtralModel) KV(t *Tokenizer) ggml.KV {
return kv
}
func (p *mixtralModel) Tensors(ts []Tensor) []ggml.Tensor {
func (p *mixtralModel) Tensors(ts []Tensor) []llm.Tensor {
oldnew := []string{
"model.layers", "blk",
"w1", "ffn_gate_exps",
@@ -56,10 +56,10 @@ func (p *mixtralModel) Tensors(ts []Tensor) []ggml.Tensor {
return true
})
var out []ggml.Tensor
var out []llm.Tensor
for n, e := range experts {
// TODO(mxyng): sanity check experts
out = append(out, ggml.Tensor{
out = append(out, llm.Tensor{
Name: n,
Kind: e[0].Kind(),
Shape: append([]uint64{uint64(len(e))}, e[0].Shape()...),

View File

@@ -8,7 +8,7 @@ import (
"strings"
"sync"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/llm"
)
type phi3Model struct {
@@ -37,7 +37,7 @@ type phi3Model struct {
var _ ModelConverter = (*phi3Model)(nil)
func (p *phi3Model) KV(t *Tokenizer) ggml.KV {
func (p *phi3Model) KV(t *Tokenizer) llm.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "phi3"
kv["phi3.context_length"] = p.MaxPositionEmbeddings
@@ -68,19 +68,19 @@ func (p *phi3Model) KV(t *Tokenizer) ggml.KV {
return kv
}
func (p *phi3Model) Tensors(ts []Tensor) []ggml.Tensor {
func (p *phi3Model) Tensors(ts []Tensor) []llm.Tensor {
var addRopeFactors sync.Once
out := make([]ggml.Tensor, 0, len(ts)+2)
out := make([]llm.Tensor, 0, len(ts)+2)
for _, t := range ts {
if strings.HasPrefix(t.Name(), "blk.0.") {
addRopeFactors.Do(func() {
out = append(out, ggml.Tensor{
out = append(out, llm.Tensor{
Name: "rope_factors_long.weight",
Kind: 0,
Shape: []uint64{uint64(len(p.RopeScaling.LongFactor))},
WriterTo: p.RopeScaling.LongFactor,
}, ggml.Tensor{
}, llm.Tensor{
Name: "rope_factors_short.weight",
Kind: 0,
Shape: []uint64{uint64(len(p.RopeScaling.ShortFactor))},
@@ -89,7 +89,7 @@ func (p *phi3Model) Tensors(ts []Tensor) []ggml.Tensor {
})
}
out = append(out, ggml.Tensor{
out = append(out, llm.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),

View File

@@ -1,7 +1,6 @@
package convert
import "github.com/ollama/ollama/fs/ggml"
import "github.com/ollama/ollama/llm"
type qwen2Model struct {
ModelParameters
@@ -22,7 +21,7 @@ type qwen2Model struct {
var _ ModelConverter = (*qwen2Model)(nil)
func (q *qwen2Model) KV(t *Tokenizer) ggml.KV {
func (q *qwen2Model) KV(t *Tokenizer) llm.KV {
kv := q.ModelParameters.KV(t)
kv["general.architecture"] = "qwen2"
kv["qwen2.block_count"] = q.HiddenLayers
@@ -46,10 +45,10 @@ func (q *qwen2Model) KV(t *Tokenizer) ggml.KV {
return kv
}
func (q *qwen2Model) Tensors(ts []Tensor) []ggml.Tensor {
var out []ggml.Tensor
func (q *qwen2Model) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
for _, t := range ts {
out = append(out, ggml.Tensor{
out = append(out, llm.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),

View File

@@ -20,7 +20,7 @@ import (
"golang.org/x/exp/maps"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/llm"
)
type tensorData struct {
@@ -29,7 +29,7 @@ type tensorData struct {
Shape []int `json:"shape"`
}
func convertFull(t *testing.T, fsys fs.FS) (*os.File, ggml.KV, ggml.Tensors) {
func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, *llm.Tensors) {
t.Helper()
f, err := os.CreateTemp(t.TempDir(), "f16")
@@ -48,7 +48,7 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, ggml.KV, ggml.Tensors) {
}
t.Cleanup(func() { r.Close() })
m, _, err := ggml.Decode(r, math.MaxInt)
m, _, err := llm.DecodeGGML(r, math.MaxInt)
if err != nil {
t.Fatal(err)
}
@@ -60,7 +60,7 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, ggml.KV, ggml.Tensors) {
return r, m.KV(), m.Tensors()
}
func generateResultsJSON(t *testing.T, f *os.File, kv ggml.KV, tensors ggml.Tensors) map[string]string {
func generateResultsJSON(t *testing.T, f *os.File, kv llm.KV, tensors *llm.Tensors) map[string]string {
actual := make(map[string]string)
for k, v := range kv {
if s, ok := v.(json.Marshaler); !ok {
@@ -75,7 +75,7 @@ func generateResultsJSON(t *testing.T, f *os.File, kv ggml.KV, tensors ggml.Tens
}
}
for _, tensor := range tensors.Items() {
for _, tensor := range tensors.Items {
sha256sum := sha256.New()
sr := io.NewSectionReader(f, int64(tensors.Offset+tensor.Offset), int64(tensor.Size()))
if _, err := io.Copy(sha256sum, sr); err != nil {
@@ -109,6 +109,7 @@ func TestConvertModel(t *testing.T) {
"all-MiniLM-L6-v2",
"gemma-2-9b-it",
"Qwen2.5-0.5B-Instruct",
"c4ai-command-r-v01",
}
for i := range cases {
@@ -331,7 +332,7 @@ func TestConvertAdapter(t *testing.T) {
}
defer r.Close()
m, _, err := ggml.Decode(r, math.MaxInt)
m, _, err := llm.DecodeGGML(r, math.MaxInt)
if err != nil {
t.Fatal(err)
}

344
convert/testdata/c4ai-command-r-v01.json vendored Normal file
View File

@@ -0,0 +1,344 @@
{
"general.architecture": "command-r",
"general.name": "command-r",
"command-r.attention.head_count": "64",
"command-r.attention.head_count_kv": "64",
"command-r.attention.layer_norm_epsilon": "1e-05",
"command-r.block_count": "40",
"command-r.context_length": "131072",
"command-r.embedding_length": "8192",
"command-r.feed_forward_length": "22528",
"command-r.logit_scale": "0.0625",
"command-r.rope.freq_base": "8e+06",
"command-r.rope.scaling.type": "none",
"tokenizer.ggml.add_bos_token": "true",
"tokenizer.ggml.add_eos_token": "false",
"tokenizer.ggml.bos_token_id": "5",
"tokenizer.ggml.eos_token_id": "255001",
"tokenizer.ggml.merges": "902a060cac8884a5793d2a857dd2e53a259de46c8d08c4deb243c239671e1350",
"tokenizer.ggml.model": "gpt2",
"tokenizer.ggml.padding_token_id": "0",
"tokenizer.ggml.token_type": "b7a352ccd1c99d4413bcf452c2db707b0526d0e1216616b865560fab80296462",
"tokenizer.ggml.tokens": "815ac90ff23565081522d7258f46648c8a0619eb847a9c7c31b238a9b984e4ae",
"blk.0.attn_k.weight": "6fcfdb466f9ceb1229404ce4ec4e480751b8d00da12707a11783dad7256cb864",
"blk.0.attn_norm.weight": "6063317f731371864049c7704a70772f1eb632194201ebdc2ed0f8e483507c72",
"blk.0.attn_output.weight": "920f49716a1e2fc73b6794ec777947f1c122701e63ed302422ac89e90f06e9da",
"blk.0.attn_q.weight": "ddbcd7cde197e632564ac58e4f25d9e3a8ca52917329eeb6081eb41a797932ab",
"blk.0.attn_v.weight": "318fc02a189d87420f0cbf57f47f11e00c21ec1ed472ce0a2a895b44f7fa0fca",
"blk.0.ffn_down.weight": "aa71975b6eb1f4c77b03d2ac4a194cf8d95718efac741bb12f0f3ff79a27f9bc",
"blk.0.ffn_gate.weight": "42967702fa0bc738b88dc50007ace26dbe74a5a9e0978124dd093f818241a9e1",
"blk.0.ffn_up.weight": "5282c8788b086bd30f46525e7995a17464882a72703fd27165491afdd8bfd4af",
"blk.1.attn_k.weight": "cd248882e64fd2c3402c44790ebe12440133dc671b6893fdad0564c461973adc",
"blk.1.attn_norm.weight": "ba84e1c8fd30af6ec94208db4078befac8c921aad3acb887812887f3282ea2be",
"blk.1.attn_output.weight": "2efa3ef7c5666ccceb05e339b83ad680cc0d2c3ec78203f5da5959f23a80e14f",
"blk.1.attn_q.weight": "5106f2e255358a1303c22e8b5f0ec044852bb30a866c52cabefd30017a7a6b7d",
"blk.1.attn_v.weight": "a211a634a1a5df1d5f973645438be0461dd922210f9747c6b04e386c7f1ebe95",
"blk.1.ffn_down.weight": "37093afe48d32c578ec956c9ed85242cd000d6aa979e60526aafa10c822dbb10",
"blk.1.ffn_gate.weight": "469860819e9159caefb1aad0bc66db790f3393f05fd87b08e52256a7ed256543",
"blk.1.ffn_up.weight": "736742c97d35d1a011f9cafd3c0ce947ad559bb2fba6da73c816f6bfd0fa9aeb",
"blk.2.attn_k.weight": "92c219d92804d832ab404bd6dc7339c90877bb7cf405dd030c121f8b27757739",
"blk.2.attn_norm.weight": "61e4466069474b76b6d1e702566420eb669faf3556b00ff7b824784aca13a2d6",
"blk.2.attn_output.weight": "d2fb38a2b2171fd91caf037faa585a62225819aa232d86fd4f7f9d2c3c8a45e9",
"blk.2.attn_q.weight": "f6faf5cc6844e3daa4f9f68d90f5458c64879de68a7728860e38374e30c3429d",
"blk.2.attn_v.weight": "f340ef8f7341d987a6f37c0e9afe0aef5be67be00c0ce5f57612daf73319cce1",
"blk.2.ffn_down.weight": "c7be61a701d779860b621b143fb6365b607bf99ec7c0f153b07908ac8120885a",
"blk.2.ffn_gate.weight": "b64f0878187bd3392abfa4c3e8ad2f8b4c133903e54246747ff8f3b4639ad83e",
"blk.2.ffn_up.weight": "50b11c712652e90ee7428dbb45cffebb80662ac982bc72bd9eafff361b5eb5a8",
"blk.3.attn_k.weight": "2b7bcbe9ee5c9c630c8c8d7483887e78b73581016f4cbb6933db2a147a25f431",
"blk.3.attn_norm.weight": "0181dac7f4eee7252980323e8032cf339bef2046ce0a16c0fd72af7c98a8a37b",
"blk.3.attn_output.weight": "aef8843b636ce231da9e7c9acbee197883cc15df0e2887709324c6a50f16da7b",
"blk.3.attn_q.weight": "55404130fa10e81322d33eb378aa0de31a92990ce7730f1338c0ace0406bb1b1",
"blk.3.attn_v.weight": "76f7fb8040d82b957d689ce34fea2302a6640ad5bbaa0052ad2b7ebce270c33d",
"blk.3.ffn_down.weight": "648628933eff3b357c3729c33c5b1ae51c28e59b9c19acd1601a2ff7c5d5d9a5",
"blk.3.ffn_gate.weight": "6a588885d16e98d5f50ebed05af089154f680085ca9c97691e5b489088630a4a",
"blk.3.ffn_up.weight": "e12455a1d702f4986e1a663493e3d5102b367af74d45557522002a35d63ecac2",
"blk.4.attn_k.weight": "40d943380a8a85e4eab147934bf6e16f23cc8ab753f6636526382c074d182288",
"blk.4.attn_norm.weight": "4ab2c098983d4599fe540eef624c4df954adb7473faebda7471ef0ba4134814c",
"blk.4.attn_output.weight": "d14b91e40f58bf4a3c8c2eca0b12bb541de406574af39027d56f6c588a147082",
"blk.4.attn_q.weight": "e1224960a3562107488589f883fa32414bae41712fa8dbd47c5f3e3a7801452f",
"blk.4.attn_v.weight": "063f297bc4aa6e709fc32c4c32e35af7d07d80e83cb939b76adbba858006c03d",
"blk.4.ffn_down.weight": "f88a18020c5e1caaa29596895eb348e76ee5bfad27ed57651a86cd8cd1f9b5aa",
"blk.4.ffn_gate.weight": "48e7e1eed3fb52e92e61d3557dd0ec002418327090e034ce4322fd68542266f8",
"blk.4.ffn_up.weight": "1ca8a7aa17355b6ce0d9ad5539fdad3899fa47fd359c285fbfb31f19f47bf073",
"blk.5.attn_k.weight": "2bdf15f8e73d068d972380f25d207004cf0bf3b5bfa46946803ba6fba07d9175",
"blk.5.attn_norm.weight": "60448d7cde6e1b6467aa31bdea012e39cdb08c88081cee7d102dca4f93f766ef",
"blk.5.attn_output.weight": "f9f687d7c457537f9fca8a4087a59f1c3bebfaf5537b94e42c831a13224f7799",
"blk.5.attn_q.weight": "987db7a2ad68657a92625e1980effbb1f79697c2183f2b9f3b3a0570c51b0ab9",
"blk.5.attn_v.weight": "cf696891148f3e4783ad1d20f93462ae091eb8651c656bba9b662253b6263e02",
"blk.5.ffn_down.weight": "c0662b0bd0929136005fb9d691fdd9b2c33867d9ce9622339a6a456b720b059a",
"blk.5.ffn_gate.weight": "200bbdfab615d7a3a84719b6ced7751e3ce52757ef212d96f87798bc1de5e987",
"blk.5.ffn_up.weight": "df5d23e7e035fb1b9d163da7ddfdfe38da6a37e86e96534dc02ad20f011b55b3",
"blk.6.attn_k.weight": "c0dae2d272a7c5a2fa004bbb8475dbab362fc1f6d008e73d5a4434a9382ac6ba",
"blk.6.attn_norm.weight": "51c57ac8b55e04354d5dca6bb9c0cf4177639d3b038e80209e33036209688f64",
"blk.6.attn_output.weight": "229d97892c62f85bcdf431675250e01c976ad69ffa450b01fb543bf88f14a2fb",
"blk.6.attn_q.weight": "c20e49621821bd46ed156e6823864a5bda4f317750e71ab8dc54e44eb48cf7c2",
"blk.6.attn_v.weight": "53ceb1a2ee43fce3c7b5b33c58a9fc5ee7f44dc1c6f29bc9dbefc37582102dc9",
"blk.6.ffn_down.weight": "7923c943b7629d560a032d1efa210d1d75c6692140f1be94464ee7ed24f44ed0",
"blk.6.ffn_gate.weight": "57593d350361af753a6a39f53b066282634c0fb44f396f6f2966a574b01d8f8c",
"blk.6.ffn_up.weight": "327b6a7a387098b8899d3ded04a4d4e7c658ca61b80d4e7b17594be232721602",
"blk.7.attn_k.weight": "9ca48b87a10116fd8868e62b76f211d4bb91f166096be9061439ee2e1c3a5c20",
"blk.7.attn_norm.weight": "cd56cfcc4e2ad6b96e23ea7b0d32b4caf236107d99a0b22c56760b62e63c8cfd",
"blk.7.attn_output.weight": "7352b509a03cae2491ffc060e577d189341a0f861233f18c96f9d275dc4234bf",
"blk.7.attn_q.weight": "2b3791c8c008c33ddbe12bedba8191322ceea2dcce5cf0eb7a93d40ad254e672",
"blk.7.attn_v.weight": "3ae721d52466487a3d48150581e57f6d64ea1e83ab929f23b28c3d777422eeb6",
"blk.7.ffn_down.weight": "3b6fa8ececdb3c34af3a5363863d6f94289c1c95bf47fce3a3ddcf184c5f0848",
"blk.7.ffn_gate.weight": "dbd7df6c5ae5eb4adb859f0d36453813a4e289a359a1ba8f72d67fcbf21c3e22",
"blk.7.ffn_up.weight": "de68380a334b4c5cfd4c318b0e9854aec59bd79aa0f0c30af3f56414f83482b0",
"blk.8.attn_k.weight": "7303c4e4480abc72a7ee271811311199245fb5c2ea27a2bd3b8cad3a53a03c27",
"blk.8.attn_norm.weight": "2e3d1921898d1b943ce1a1b6818546c8b471d6d542da24f51a8b514b8c3dd4ef",
"blk.8.attn_output.weight": "30421520887b66bf97a18dbcdc283bc8d0b60590b612fd638a319a6eae923227",
"blk.8.attn_q.weight": "73e064d5433c9b500068a1c31744dbd53f4ade298fb450a0e8c97f62cf1f8a8d",
"blk.8.attn_v.weight": "27e21f8b9a9a8533e8178ca34a72aa1d786393d57302b7806dcdf3e51de511a8",
"blk.8.ffn_down.weight": "bf694bd8e00047982108000e7b3dee7b225db8b19abc595e5697b6bbefd92e7c",
"blk.8.ffn_gate.weight": "d55fdbf8606d9141b774b0500c58944fd1253b9e69d1f765eaa9a680b9f2ca40",
"blk.8.ffn_up.weight": "1ae3f580655e7c8e8dd6c34fa4ac574fdfc5e3f1a8536da0c5442d3a2976f0e7",
"blk.9.attn_k.weight": "b18080626012d8aabcf78542d6c7bf31c712bf55a70172fbfe173fcf34481036",
"blk.9.attn_norm.weight": "2e3620620dc09998c6d3063a7d5de5433fbbae8c11e5b00d13f145d39140e162",
"blk.9.attn_output.weight": "69c3c0e27ef1c0fc933eeb7b612b70909f18cde238873c0d576a2ba9714ef174",
"blk.9.attn_q.weight": "68330e5aa28a28873c9a6e67f032186ef651df2df5844e0f27094ba349fbe4ab",
"blk.9.attn_v.weight": "3df8d45a102be082d0793a51cb82aa62a43cd0e9d047ba4115ca0f2414b39325",
"blk.9.ffn_down.weight": "1d6cc162b73745b135b4f040a0aac3c06d5135a3dc5b2421e7ee2af48662fd7f",
"blk.9.ffn_gate.weight": "034a9d40fb1e32b534b45f4bccd65cbe43c4a6a3f5d01132bd245ca0005de5fc",
"blk.9.ffn_up.weight": "c838c38d0e1a0ac0da17eb2a66023ed31929f07d8fcfe1cc546df26096c91f0c",
"blk.10.attn_k.weight": "a78507cb72f744b86ceaa032596e74e5571c822d0226d334881169addb32cbd5",
"blk.10.attn_norm.weight": "35f48d0b28ee0e6b4cad4e983925737562d64824be5b168b3e26df3d6b260cf1",
"blk.10.attn_output.weight": "53712db06796de39b131323e7abf9a58551b6d52da6db66a471580386d396252",
"blk.10.attn_q.weight": "efe08429ba196026b81cd1c471e1c7418afd9e966659feb3936b674aa0803b58",
"blk.10.attn_v.weight": "7ec6055e134f89da0cbe79ec9f13ef2e442ac584b1f03c3e13e7d0cdad0078bd",
"blk.10.ffn_down.weight": "37e66af4bcd1f3079e841e892255b8255070655901864ea3a8c602a7f681a640",
"blk.10.ffn_gate.weight": "1825282bc34830d371c6edcc3c1e73e6ecc1e10f4aea0122dbb7acc1d6f7b1bc",
"blk.10.ffn_up.weight": "819b3b276a4d4c14a35ed6682d5ef18a5e8ed468e5ce3f12e8c75ec18ac20ec4",
"blk.11.attn_k.weight": "5327e6a2af82dfff0619a14971f5864a15553c36fead84e1af42c7630f2729c6",
"blk.11.attn_norm.weight": "fec363b3c4a43036d2c635fb8aa9e122dd87ee79811839f2f6cd955be3373e7b",
"blk.11.attn_output.weight": "ccf7b38f18ee8798b8a6a35018e2df3eb3e007de62876befb68025dd66c79763",
"blk.11.attn_q.weight": "da8c4a1c824ffe174e39f126cd72f7ef83c56aff1259d452a1212de80f98f5e9",
"blk.11.attn_v.weight": "d17ae6bb77f03982b55d341eb67acb5969e9ad3da5994b96eafc09793dcfe3a0",
"blk.11.ffn_down.weight": "a6bac521e2791345f22c57205fa1c2f2f687794dfd24d0e98d50ae0d0eb6088a",
"blk.11.ffn_gate.weight": "5ed902c488cb51ba5635f3df08258c5f84f31a679a00211ea5f9d8b824ef6d9d",
"blk.11.ffn_up.weight": "ee9f1437eb890d2cf9df2574afa1cecf20aafdd847cd75b152d7eb74419afd34",
"blk.12.attn_k.weight": "5a069c06e1019b0f889088e67458f7a11ec77fa190ada6069e46211f62219947",
"blk.12.attn_norm.weight": "194d7e5fcc8c49aea62daf1940532419cf3c505afdce6be377286b677db5db8f",
"blk.12.attn_output.weight": "6534995fd4d6fecb55e317add4b1723aba4d825e1e9471d0b08813dfdc247176",
"blk.12.attn_q.weight": "4ab51ca519b5995581fa34f846276feca3b907ef2b51f192f6cc0b3263c3f5a2",
"blk.12.attn_v.weight": "5652ca3fa81ef9a1ac1543d71fc6813f8517f8ec54b25c701f6f98061614830f",
"blk.12.ffn_down.weight": "4b2c263f54c88516b8eb273bb8d9615b01c5c8b484dc70358adb91b50b300edd",
"blk.12.ffn_gate.weight": "8f50c3c3e3e8568991d6c1b0e74b500cf4f208e7700bbb8e87c3f6a6d359b6b5",
"blk.12.ffn_up.weight": "1c1a581fec1fbe959e1427fa513f400100b5e1ee9d83932630be9905fb49c231",
"blk.13.attn_k.weight": "efd7a38c46f08d8376d82974f33c644e3a02220e142d63b1704718699a8a884c",
"blk.13.attn_norm.weight": "d28fa4f1bd75abbd063b0e622e08f579c89cd0c0c5ce63c1952ec9f944f8ee13",
"blk.13.attn_output.weight": "71e0068a639288718bdb70a6cfdefd50bc8b3ec3993347a65129e70001ca5827",
"blk.13.attn_q.weight": "b97077adc92cff07a2e07d80ee38f214ad8713571c69cd5c70ebd43dc501ac87",
"blk.13.attn_v.weight": "79b3e2749ab4b459c81e96e322b215f1e8af645eb346e176c326bd00cf6ed2fd",
"blk.13.ffn_down.weight": "9f8687d11effa1db7cfecf7bec5631734bcf2962aad74a9f519144491e08ec85",
"blk.13.ffn_gate.weight": "7d14dfa0543852e7777fe8fff29ca533744cbcf1ebcf10067e5adfc4eb345e65",
"blk.13.ffn_up.weight": "852b9527b97fdab211ff3f832a660ee1d93ccb56906144c50f01319a6e8ee615",
"blk.14.attn_k.weight": "79e926b20f36f66d58226cb358881f2f68ae7b468787d33cafae5110287a14a0",
"blk.14.attn_norm.weight": "97d481b63deb0df6142c2c6cd23043720c62eb609e390f47a7113751c79974ec",
"blk.14.attn_output.weight": "aa6e94d7176d5c79fbb89b96e5f13ce75702ce3dd23ee52986446da436a6c3d6",
"blk.14.attn_q.weight": "214becb6d1bb460da9fb8ace0f99b9a5afa9edf7aa7acc19606c7401b11d6305",
"blk.14.attn_v.weight": "488b0e6d7f1a7a2ed0972aaa6d10ef9c775ee5373460324efcf5b3e3da9311df",
"blk.14.ffn_down.weight": "29c7ad16cf9542e30996a1a01ab95b844533b28051f04cc7949c371afb796471",
"blk.14.ffn_gate.weight": "b7ef208f2b054803665b377f5a5980c122c026841809cf855c6ba06d1c3a885a",
"blk.14.ffn_up.weight": "76a5cc28100748d79c4398ce7b9176aab4d661548b6293a82f99144812e5b70e",
"blk.15.attn_k.weight": "a6b8f9e98ab878fa7ebc5d080978ebf2d050acc2ab2fa8ea9188eb10e27702c8",
"blk.15.attn_norm.weight": "a26d07a9752d6dccb68e3a8a2a49fd0752cdd0a415e05547819bc37d9ba63d5e",
"blk.15.attn_output.weight": "c63616c69048ccbee801e05be4f56d21fda21aa0cc470f41d57c31b4d9283a4d",
"blk.15.attn_q.weight": "fd595a67bf96c6ba16eb148a9d02fa52fa3c1d33ed10be28a08f851409fd6e64",
"blk.15.attn_v.weight": "1c5c9d33fa07c05d5f4ed0032c6c4aa83d863f0d31c94a66109d239dcd03cea3",
"blk.15.ffn_down.weight": "585ea62ab8aff7d7d212ea5c1a03226fda6b68370c890b776834af70c948dcbc",
"blk.15.ffn_gate.weight": "a13c63f86f879b03a573d5dd2a25cfd1f4dc73e8132e6454ecc23e538b4cdf6f",
"blk.15.ffn_up.weight": "f7112450f57c12fcd511f049e0dc0b541625a107a7901c3261ed9e984299f65c",
"blk.16.attn_k.weight": "2d2c8b11dd71fba6d1c106aa1673c113a5448653cca7eab897c8739212ed5003",
"blk.16.attn_norm.weight": "95c2ec7be9469690e18a9a1779684acb3e9da44b13e263a0da840305646fbf8a",
"blk.16.attn_output.weight": "31a65046e677f54dae654ded4e733479fcc0f7283d83076b7dc7cbcae8528230",
"blk.16.attn_q.weight": "bfc6292b9c6d49b7118d08060242a138182eb182d136ba5dfaf469437c16081d",
"blk.16.attn_v.weight": "68f81d037340217d87c7853ff4d6edfbc46d9e827ee6d5bff7c3f6238e3a95ad",
"blk.16.ffn_down.weight": "bbd6629691950cef4d5113e1c6670e91b216a9b872cb92cee02dfda4d6c4f7b8",
"blk.16.ffn_gate.weight": "63cb56f282b7401ed6c76e5bb6fdf1bf68a64f9af0c82c014209b55bcb5191d0",
"blk.16.ffn_up.weight": "b54f39a2541063cbfb6f713aa81c3b69a04100e999aa2ebbeec195dc382eceec",
"blk.17.attn_k.weight": "3d9ba49799cc56664ec30a002bcad61eb651294212a68c3ddb573eb042aef5a4",
"blk.17.attn_norm.weight": "42ee0db4b9d63257bca0012a30b12737ead1caafeb5ed3d93c8f48ffec4b46de",
"blk.17.attn_output.weight": "a38fd100f05c9041c592bc739e287de0b10d08ef2bda41a879225bdca9002f71",
"blk.17.attn_q.weight": "8a3bee285b0180a9eb35662e449ee4cbe16d992bdd48fb3a94bc4a347728cfa2",
"blk.17.attn_v.weight": "d7f8f1b8b863494ed4392a1656775912e9b264ad36016547b12e832a1d6757d6",
"blk.17.ffn_down.weight": "bb7ee58f61da8630972e25b621996fbe8ec06f4dc9ab1e268ab5b120c526ca28",
"blk.17.ffn_gate.weight": "6b652dbf167fee09a45ebfd78d500ff6548fb2756dbe5343ffec3f7e6207179f",
"blk.17.ffn_up.weight": "3b67f727e55e742715de978fab80457781e7a3762bc48f79d13b45dcb8de664c",
"blk.18.attn_k.weight": "ff7fe57c57b90c6fcc0aefc39ec24593c3a7d1ea1c23770480075a015450e0f5",
"blk.18.attn_norm.weight": "1d40faca082d2633ef0ccf19e121870dd6c7c3e2154607c7f3543fa96e99cb2d",
"blk.18.attn_output.weight": "9adfecaaa397a92db4687efd5fcabfa0daef9e6b0493763b7ff5ebc185c43a6c",
"blk.18.attn_q.weight": "ad1803eb9b291948639277afe981e666b07167eb3fcae903ba5b73bf86d8f50b",
"blk.18.attn_v.weight": "308cf23399adccf27401a4ab60d74dac6fb9d4cd4b9c5940d9145118d1881b34",
"blk.18.ffn_down.weight": "7de4ac9a561fb580619b745687dfd7ca8a69ef70471dee978741b80e9ff7bead",
"blk.18.ffn_gate.weight": "0c66970f696b33bd5ee8f1f2fbcb41fd78fa5ccabdc927e11a4d5a4089f19c69",
"blk.18.ffn_up.weight": "66a42e988e8a1f468fabf976c48e9e4bb045eaac6916ef16555ac101cd674abc",
"blk.19.attn_k.weight": "a928ab50390bacbcebe2e4b66922498134ce22d7b93beaa87d6cf4ab52eb7174",
"blk.19.attn_norm.weight": "b4a02c55b46c2a96aec9c64a254087cf48e6c1d4b6f31782c77a46fc4daebad1",
"blk.19.attn_output.weight": "b768319c641dff1eac5d1f8ceb960c9899c795bf2b24c1d6bf70aa24fda45f77",
"blk.19.attn_q.weight": "79ef3f57d187d3954a26362096e1b6c222d76f537dff73e034d6e9999935b8bc",
"blk.19.attn_v.weight": "ce13d6b13e24fcb2d5bc6a2662e5bd295b31b12db10a6d0307f86cf29b8d5001",
"blk.19.ffn_down.weight": "cf90d7e2137482cfd50934a8223ad774621d08554969da80a9712df5e6227eb0",
"blk.19.ffn_gate.weight": "71ce30150f003b6eeb3bf7464e05b6ae615f135110d8e47f0a47fd973e537c0f",
"blk.19.ffn_up.weight": "7f92aca0cc29866633feec701ec01a85a8ee2fd4e2b9630173a6cffb1d9d50ee",
"blk.20.attn_k.weight": "a2df23159d6fb74ef28e14b61028fe8b00a693a2fc9234a980be74f20b958682",
"blk.20.attn_norm.weight": "c6cd5f1b096fc5efa4eb59ca1c8c4bd28730f3dcedd59a63601663eccc6724ed",
"blk.20.attn_output.weight": "896a8a166d0f006d4b09867ae4345426303cbc3fb13a18d3d4e1bde00f16dbdf",
"blk.20.attn_q.weight": "01eb79588fe61baea0da43e99f4dc5939590e1bafd01e12dadb8326f102bfea2",
"blk.20.attn_v.weight": "bd39630fdd5a7c859ac1addaf53e63faf524c3f32f5f4896d86b6e746b1d5c06",
"blk.20.ffn_down.weight": "0304a5d39957a0e3f031c4bcc4549a135d396c8d97c8d276fd1c823ce86560c2",
"blk.20.ffn_gate.weight": "117b79d595b1dca0c8b37586beaecc4d84411507276212dc286cde7fc36c9bef",
"blk.20.ffn_up.weight": "6e799346db145c125f01783539749d3828fcc451cd4f10c5352f047a47e28714",
"blk.21.attn_k.weight": "1c37e4c0664147e775bb006b226b9553e3421140cd96288ea755f81731ab80ba",
"blk.21.attn_norm.weight": "00ae783a29000ccda5e4bdbff03df0752fb82805dc3f9b987500ebd80714476e",
"blk.21.attn_output.weight": "7588b84f9fb19f15095b5265c60b4a4e7ae74bcc47d4607dfa5d0bfab6f136cb",
"blk.21.attn_q.weight": "a65f1c0dd06d45bb97532d3e932689c1eecfe7359089b39174a96a149335cbc1",
"blk.21.attn_v.weight": "4220b77e7d5e8709b4eef33a679b5dad11f297085ef44c9977f9e54ef08f7a2d",
"blk.21.ffn_down.weight": "b8c082a0530d4b5328e67db0df84c5498f2af956de23c639fa0198ffea853950",
"blk.21.ffn_gate.weight": "cd1b656ee72d00e9835ef667c19ef89a88de261eb8eb7c0e936e0f9ddf83ef9f",
"blk.21.ffn_up.weight": "dc445f73e36ec7a3bd86884186b728f8e0187f32848c3b8b69d4d41f8571bf31",
"blk.22.attn_k.weight": "e37cf0b893ec8b9ee8c78dd139b8d9c45cb997a3bc0c3d93a70ca1c3f6af8859",
"blk.22.attn_norm.weight": "248a27838d3c46cc03a5c312facc84e2e0e2c990ef8401e93da25918497f88d1",
"blk.22.attn_output.weight": "fc191a18f6d18332c66761f7ab28008bfe295dd1f5c8741a2488442f9e00d0f5",
"blk.22.attn_q.weight": "4b193a2ab8bc2b085db18f2bf3eeba26e02b537b2cdd738160c8f14b165d0f5a",
"blk.22.attn_v.weight": "7a60ce5ccac7e045e55ba1e1e85bd2a0f93f8c781daee96c5223665e22f0c666",
"blk.22.ffn_down.weight": "e0a34fb4244e2c7168f3dbaa1904c15d339ec39999cdf27128bbaf619ee0a237",
"blk.22.ffn_gate.weight": "8bac872d4b8549c8812f927efa309f1792b524f33601095fff61b826de5a5615",
"blk.22.ffn_up.weight": "b67fa2b94dd901b6ec64c0853ce8ca2d86fe9cb1cc6d2f15fbbbe0e691c0c648",
"blk.23.attn_k.weight": "2c32e66ad01942b819ac09a197c71579fe66f02226a264fdd72ad1e02c67a27e",
"blk.23.attn_norm.weight": "825fdc94deb439cb93c713eeb077c1052b90ed658d6d464fc4ad3d611e911d48",
"blk.23.attn_output.weight": "95ca6707a95b8750b0c7c5d379d368f0f2e7ebef631954e7d4d8ec0f41f13a3a",
"blk.23.attn_q.weight": "6eccc84faca5fac015d1b26e2854501edcfd292a302228fe14cf99f5eb59a34b",
"blk.23.attn_v.weight": "b343ac3d226040f1033ee049668aa1d89b1774bc18431965682e5dbdce78ccdc",
"blk.23.ffn_down.weight": "9fc599befea8d3b1e342d564a110074f66d2542df406c4b90b6bdc5828fbb2b2",
"blk.23.ffn_gate.weight": "488556c1b0c9f0b20b0c99b4bac2e0f4046b81edb601d7b91e7e5b3bab47d667",
"blk.23.ffn_up.weight": "1088e291d7008dd9c7c2dd6830af686a8a84b724d123a016209bd5156d6898f1",
"blk.24.attn_k.weight": "a923fbe35e61e009a53927d7828818e0592bb737d6a1106c4b0b5a1efc367e07",
"blk.24.attn_norm.weight": "9b51aaaa939cefafdd9b13a7e5b74ac7fa2d603427e55a16a909d6f3f353750a",
"blk.24.attn_output.weight": "1beb2baba56f8409466434b037771248c2f620ec5f53e15f44c271d5a2d9ecf4",
"blk.24.attn_q.weight": "4b0194fe5bfae0c6bf6131dcf8cb6e2b994f6ea10b27cb03574f0f4f8cc0c950",
"blk.24.attn_v.weight": "6ac34b1ab0f66226d85bca1194a7c212cd93d384ecbc8b8395de48aec0970a61",
"blk.24.ffn_down.weight": "5508f74cb732a662c2936b32ac5e90742d172b9f961a747b0e5cba0e5906a89d",
"blk.24.ffn_gate.weight": "095e39b8584403835f9bb1ac33e0e81f54175575e4800273d281b845bff381e7",
"blk.24.ffn_up.weight": "2d43ec21637dda12973de367b0113ee9840b0d815bf6fce042f7c3f270b0b530",
"blk.25.attn_k.weight": "9e2aee029f3d2c7f67dfc7926e72c8228fb978382c8e5a4701bbf82c93801419",
"blk.25.attn_norm.weight": "220cd7164fb4cdbe22d26058e4153b26c27c7b5ce2bec8e95bf2c0ea08d23103",
"blk.25.attn_output.weight": "a17f4a5dc6aa51f03dbd75602d98e9491767c205cdc2c3a5f8667fc54bbf7c64",
"blk.25.attn_q.weight": "f60827496835c440c794bf57ce9780704d10a59d8229886bf75ebb18900ba4ef",
"blk.25.attn_v.weight": "9cac217e9e9f4f4c85f14ee51165a77c580165bd4a34b202389169bbe61a1ced",
"blk.25.ffn_down.weight": "a0f36949b663e80849581dfb71e7babcc73580793bbcb0c80ab26d5a6e000359",
"blk.25.ffn_gate.weight": "df4d1be4d50d6afe5ad3ef0d0e0fac76a33e85c963dea769641d612dd53e7d13",
"blk.25.ffn_up.weight": "992da76be762632e25ebc5ef4d03728eece1b43f7c4e31827df19ca724aea694",
"blk.26.attn_k.weight": "34199ff856ac32a500c754539d070258574192a34ecba87a182897cb59fdff52",
"blk.26.attn_norm.weight": "a8e9dfb2dae5d22b5c0aec5f3675991c0e3c3e6a44153db2579136b73f456e00",
"blk.26.attn_output.weight": "1c4f257ffb0d7db0f11cfb275e38b4af736917b43ad82de1badce3f1d227da4d",
"blk.26.attn_q.weight": "33d55786274c2e718cf61e8fbecf3dfa5ee0c208f0b716d42b061f55459acb3c",
"blk.26.attn_v.weight": "684b636939cd4ffcfec5a6238a0790ffa43d853c95783af9b9e8275e74071a7a",
"blk.26.ffn_down.weight": "89d0bf066db154e6d312b5433aed1714f6a28b40f4c52e3e1530ee07703303c8",
"blk.26.ffn_gate.weight": "393d649bebe5e2940e1b043649f6c860b4b8b9f380f30e9da1744a830f358156",
"blk.26.ffn_up.weight": "179edc85ababd9d8440cc6093eecd1004290aa1cb96434b26ecf7585b6cca17b",
"blk.27.attn_k.weight": "334841445a7f1e14731b08f56eb0b1f0938c63823d28bc6d078c4c5f05b36f19",
"blk.27.attn_norm.weight": "57344471bbda2e9deffdfdb2dd05a07aa47f8761e24de53525588639145bf551",
"blk.27.attn_output.weight": "506126af9ee54b535d49f97e36f630e74834f480329f098d6d62e96246d8d65a",
"blk.27.attn_q.weight": "dd984df1acb4783849e25ba7ae378bfd385cd9efc540fb798cd5bdd873f0118f",
"blk.27.attn_v.weight": "b4b3fe9a4455d34c297ff20a2f537b647cef424741d840a747b265f23d320ac0",
"blk.27.ffn_down.weight": "621fdb185ba0d35ba5476dae73d2c81ec1482a0e878d5bfd5c3b29fe837af013",
"blk.27.ffn_gate.weight": "e4fbab45f2ec506fa374103251a0bdb7baa6f576080bdd796f3e9db92098e08f",
"blk.27.ffn_up.weight": "a0c57e463e988002bbd6a6c6792baa21a65e6f89ae303a2c301951b0ae6e4bbe",
"blk.28.attn_k.weight": "bac36cbd52ec5056841663865e1291ddab4b47ef9a2544dd285d4503bfb0e4a0",
"blk.28.attn_norm.weight": "5774a9df2bbb2e86d1f70179c7b92d81e1f401160148b3328fb64db6646a5425",
"blk.28.attn_output.weight": "e8712622d1569557000c75f26c3f55fad267fd300463c2c2cfe3afbfa1c8f908",
"blk.28.attn_q.weight": "11677751fddee52cc739699c02836f7be54d96038be4240be5d4f53d00161608",
"blk.28.attn_v.weight": "e5ee459b8958d65e1445997b9aa1e90e2f5d17761ebcf5357313119a45322507",
"blk.28.ffn_down.weight": "3934518f9f85292da8475fe38a8edcbfc4e24ac56c351b472d6351f98750871e",
"blk.28.ffn_gate.weight": "6ba735d57e98d0847e487f25ffaa25256deaa8abec76f428cb70bd9774279d83",
"blk.28.ffn_up.weight": "977fae6e1e5353114fc645dd98429464749758765cbc6e6457593d596e57850c",
"blk.29.attn_k.weight": "8122a457307d580ad6f1e0acea09a2f593d97f595ba0d6737f5fea16d2433642",
"blk.29.attn_norm.weight": "d626f721e05aa1202439b01027031d4caf1adace61ed37870a277cb6297c77cc",
"blk.29.attn_output.weight": "7fb7122ab1b6b1e6615ca746897da27bc52c92cb70d3147183cdde61795b72b3",
"blk.29.attn_q.weight": "be43e94ff6b6e391024dc824101efa0ddf4005d5b002ac26cb03765c0c73c2fa",
"blk.29.attn_v.weight": "af93c85ebff908f74f9935b81bde0516ca487c84139868a1ce079c3ae20036b1",
"blk.29.ffn_down.weight": "39dae12340ed3120bd19c495fe0872b559613641e41fde69d02d8631900b84c0",
"blk.29.ffn_gate.weight": "36fd482439840ef197c9f3b8905d86acfcea49bcf018544106ca465d4bf8d5c7",
"blk.29.ffn_up.weight": "5243fbdfdc1e2a1dd84b6210a9869d18a014db9088897e345240cdc99990bd5d",
"blk.30.attn_k.weight": "948f263616bd3788b2b968baafd69b9c5bd1b77578665f096c4b7e247b4cea42",
"blk.30.attn_norm.weight": "e168df981e744874ff303faf2eb470e5f6868c2040ba5f383f6c5148669975e7",
"blk.30.attn_output.weight": "4cf0ccca04b792573b756655a24fc89cfb1f272da8305633f0bc66ef14990b93",
"blk.30.attn_q.weight": "21e07d6cba6c50d65350289258209717174a13c42be57e8141d69712cbaf32c1",
"blk.30.attn_v.weight": "65a8ca29c7237b3182ccf03e2fc94e84f9a53d0e160fb679ab401c853170dd9c",
"blk.30.ffn_down.weight": "8b00500a6d00d84058f6658ee1d6f06fb4fcae2f90d4341792259362923b3c13",
"blk.30.ffn_gate.weight": "5bc0e19ab7a31b50ac2118ad1b36e31055271a322cd8ff661d47c3ac0210703c",
"blk.30.ffn_up.weight": "f37a0561955725bd59ee2d064fa9f4e00a12a1b620b624db3bc3add5330bc321",
"blk.31.attn_k.weight": "9a5663edda227f5d87533897146764f8e8a7481b9e71fae197c39204f8463221",
"blk.31.attn_norm.weight": "060a4f438a1ee5e220b5b5278ad2f5c085a428bf38c515766781815597c87529",
"blk.31.attn_output.weight": "6ada5d3cad9dea4780ffbb43302bb6ccc2f24eddd0fc4f5f84c9ce0fc0c6e5dd",
"blk.31.attn_q.weight": "bb5d08c08603907981ad388d5d8b70fcc9b98034ba264b8474c8890cc0297af0",
"blk.31.attn_v.weight": "e01b4252ea9c6a889c32b21144b441a347464d04536ef4f6572425be55759796",
"blk.31.ffn_down.weight": "8ba4d679c36e93ba65ba03180385ef35ea86b3b7cdf2fded9df59369f1c09630",
"blk.31.ffn_gate.weight": "e5b41dc93645f8b5e8eebae3ada3ea43a18f97ce2654228655170b07b463ccb0",
"blk.31.ffn_up.weight": "25b88cdddc8b547af294ed107d3d1312e90b983cae87936fa6062ecd8ea02539",
"blk.32.attn_k.weight": "4bcf86dc0858c8ca2fbdf6aa76674d43eb698f78979fdc1a38f556a7af1facc4",
"blk.32.attn_norm.weight": "cdcc12f3b8b9773c6722736bfb748a2729230b21478cbcc4104859d3148df815",
"blk.32.attn_output.weight": "d43f1196822995ed89a9365c97054753a8b30ce20b6e273c8edcc42673a1e141",
"blk.32.attn_q.weight": "ebf2972bb3865cbc5be4840113a322089752038344beab2a0122c7cb4fb399b6",
"blk.32.attn_v.weight": "714db81704ff34fa137512903c1013acee7877467473e46600728b9240582eb7",
"blk.32.ffn_down.weight": "2cde3da1258bb170a79d5d3cdfe10c86a71eb34b77da46b74c5ed71e7f4fe274",
"blk.32.ffn_gate.weight": "c7e1ed792532613ff9d4e5834b6536e2e0f47df2303bc0fdaa90aac0c1f4e8db",
"blk.32.ffn_up.weight": "d8d6f13fe66a716e28f79101a29817f0c0d6f99969a6f017d51bafd1a16c600c",
"blk.33.attn_k.weight": "a0a28f6cbca88da00cab2ca37094d9b0503bf9defdae77b91895b911c408cbb6",
"blk.33.attn_norm.weight": "0251200c24cc8445607ace6dc8c5aa0566567997262b7cca53a11ac23cc564b2",
"blk.33.attn_output.weight": "b2423205bdf6a1096d43c44d8d12f1a84fcd4e1bb70fcf6dc8542b8b8a71a13c",
"blk.33.attn_q.weight": "00b425c3ef71065ce5e0234e702bf38143b4952da78a85f52ab2c2e3073d97ab",
"blk.33.attn_v.weight": "035edd2335df816c42c765a5e66b9d9b9e15a822a8dc1863508145499c942c14",
"blk.33.ffn_down.weight": "4894a923a3db75bae4496ba3ce5f28796ad31fe33996a066271fb8654964310e",
"blk.33.ffn_gate.weight": "8f6c819b8bbfbe3357fae89e1ac5a3d58be85b3b04be3bacf7b62775869046ff",
"blk.33.ffn_up.weight": "257c3544b5b544fd5d839665bf5caf107a329b59dbc3751efcaa24ae63c56179",
"blk.34.attn_k.weight": "b6cd8bba892e38dac4a2ebc3ba1bce49e71b967fc436fde30c6d76f54a18935f",
"blk.34.attn_norm.weight": "2b3c8e60a064cba9955752bbbbdd92c71ba5c2f1bd721097bdbe88b5abc68787",
"blk.34.attn_output.weight": "8cc272551c9aaca9db5a660c6927bab94a0243d74a30b2bc165f06bd577714ea",
"blk.34.attn_q.weight": "74b561eb4792484e6a94b58fe2583848c3ae28ff2f1bf3d02939a0cfdfa49990",
"blk.34.attn_v.weight": "dba19e24ff05154dc5a1f55c023729303a583d13d68732ce22ea74d4410dc8f0",
"blk.34.ffn_down.weight": "76eca5dfeb274c35774e0bf9f22ee420ed9085c8e99aa2cd5a236e4918b44c61",
"blk.34.ffn_gate.weight": "9af0862d5fcbc24732846488e653db8242a467765c0cdbc00332b3a40256b4a6",
"blk.34.ffn_up.weight": "2a03126bf73587eaba99ece2066103d12e47bcd4ce30ff6c17b2f383b81d40df",
"blk.35.attn_k.weight": "52513fc0cd4e997a842729af7d21dd09399bce0a339558374738be266d0fa2f0",
"blk.35.attn_norm.weight": "e5281fa911964263ccf1630b14762edbd41d0b9472d6ec695fc600fed4892c35",
"blk.35.attn_output.weight": "b391d6705d5dc6f48326b5fd16573f679edf64109d86fb729a498819676590ca",
"blk.35.attn_q.weight": "d16446921966db9b0e0539626ad22a2511ace780e59379d6a4162d8c5441440b",
"blk.35.attn_v.weight": "9d8cdf23ffdb0c5c74106843390b94b24c9f33ef0eb9998d39f78c73390101ea",
"blk.35.ffn_down.weight": "938eb6301f7bbf162d7dd965682a5ed11d0a4a530c6fedd7e5469ce80012fc17",
"blk.35.ffn_gate.weight": "5ad84f5a0c8edcfea1ecf1a3e3d21d85ceda0c4ad9e3c6ca68885eeff8ed3c2f",
"blk.35.ffn_up.weight": "1c4330d9dc71bf4c98812c34356c51f520f47610a534152aa6d29284b758090d",
"blk.36.attn_k.weight": "ef720655e5ca2465f13db2dfc4732fb4ef2c9d53acde52f514fd4f301e974081",
"blk.36.attn_norm.weight": "88f4b9310b3c8c2644e3029160cd35678c79dfa59280430e03f5c29a6fe84a58",
"blk.36.attn_output.weight": "aec6f915fffd7bb72cd783273e871b4f09605950089d45e72059d1316b6c4b01",
"blk.36.attn_q.weight": "72f9408a2405d42f8db6ce5fcf1d26a3660b6f225fc60e77d0277109cfcb82ed",
"blk.36.attn_v.weight": "0f3b3d851dc44b3893ef53f6cca5b4acc9658bacfe1cc2d13c3d704ddd409b67",
"blk.36.ffn_down.weight": "470aec48ce8c5129a6654d9fd26fcae72776f9fc1429a8bb05818072a876475d",
"blk.36.ffn_gate.weight": "7f5f296d09cf55679767b5d15de3eff489c456782119f25204be4b1647f18dcf",
"blk.36.ffn_up.weight": "b7ef74a1f7ffb4982711d93f1787be3a70edc3d2358d5203c41d8900508037d4",
"blk.37.attn_k.weight": "c4ffa5412e4ff2dcfe1aed991c1f54169fd171a4c7638e4b9f21a1ca64c5e1d6",
"blk.37.attn_norm.weight": "4eb6c888d841cccfacf5b963f8611120f6ff24b84af0b5714fd9ab36dcda422f",
"blk.37.attn_output.weight": "db2a7bbf9682f9f6eea672dae8e150738f1bf74dbc80edc7022017a3f040c8ac",
"blk.37.attn_q.weight": "e38c0462aff139afcbab289189823527e453abc9e541154adde5e7af88cacf0b",
"blk.37.attn_v.weight": "952eb2492ed452a72f96bcc12d4b2affad9dfdf46ee39ce4a5d7b57a5dc301e5",
"blk.37.ffn_down.weight": "25f23a8fbc44febf6dc4848fd7fe03a580e2822bd3b3b5a51f4990826bfe3e4e",
"blk.37.ffn_gate.weight": "707da5eb40118b035305d3262444382351f170a20a537386a70e90c5a83a7817",
"blk.37.ffn_up.weight": "d2d2ba5cfc4ef47338dd7384219e22bf030a5a2209e0354d88f5bbaaafd20e87",
"blk.38.attn_k.weight": "abc4bb189dedf7ce661e79028427623a4f91ac091c2cd60e31b58bc62b1cda71",
"blk.38.attn_norm.weight": "9f4803a7d03fd40fcb83d85f84eb1d5682ea4e5bb084f210c02850675d804c3d",
"blk.38.attn_output.weight": "77cb66007f1a41df7135d0e7f900ceb499c2f667dfc3f1a6ac01a3203bbd3ccf",
"blk.38.attn_q.weight": "d94a8b26cd375bf2bcaa76597e314aa8268ee50a479d00931e5e0e021feadb5d",
"blk.38.attn_v.weight": "660c907888bc5016dc69b7d35fe6f55c7ded697c93be0e2d332a2f17aff88758",
"blk.38.ffn_down.weight": "6f06173bae5b00ffaf88ef383619a8b9c6a8d0d5c6494695d17f6c1de1a68a13",
"blk.38.ffn_gate.weight": "89f99be149d03f116527bfcabe073c50001c874de40fb6e817f6619027f3cd05",
"blk.38.ffn_up.weight": "8d57557c8d5e2d2688b73f01dddf1ce8d5194990cda6358153320aea88aac7f8",
"blk.39.attn_k.weight": "21be09c988b46c8393e6c2ec9230f3b5136eb7607dd1953ba92d0811c2f0dd75",
"blk.39.attn_norm.weight": "ba7c1912dd1c4e2d16917201f62396fd0600e4a451137eaddff255548c209abd",
"blk.39.attn_output.weight": "acfaf4abb3fd27fd899b5563c3877f176b597d8f6cdb2f2fd3f3a0bd4da15ed6",
"blk.39.attn_q.weight": "e8adbc140d4c8f0db2a27ca584c5531d5b1e080555fe627e34d80d0814a92bed",
"blk.39.attn_v.weight": "92f96b0e1f724e73a0f90a76c145654418844c04a6d4b14c05eb5af8a62bf8dc",
"blk.39.ffn_down.weight": "4d9ee7c65fc16fe95d10c47b79ac6a525741947600a64b5fcea5d300a82c50de",
"blk.39.ffn_gate.weight": "7e18507989f39b32191133d2657c2ee3b74f42f070579204d727eb72215793d1",
"blk.39.ffn_up.weight": "22cda752269c9757ba918abede1df95bb0f83a5c772dea13c8deea3d5f2723d9",
"output_norm.weight": "2858cf0e39d32caf52b7861378ace076000241e147f10b9eb21d8a5cd149e3cb"
}

View File

@@ -9,8 +9,6 @@ import (
"path/filepath"
"runtime"
"strings"
"github.com/ollama/ollama/envconfig"
)
// Determine if the given ROCm lib directory is usable by checking for existence of some glob patterns
@@ -41,13 +39,10 @@ func commonAMDValidateLibDir() (string, error) {
// Favor our bundled version
// Installer payload location if we're running the installed binary
exe, err := os.Executable()
if err == nil {
rocmTargetDir := filepath.Join(filepath.Dir(exe), envconfig.LibRelativeToExe(), "lib", "ollama")
if rocmLibUsable(rocmTargetDir) {
slog.Debug("detected ROCM next to ollama executable " + rocmTargetDir)
return rocmTargetDir, nil
}
rocmTargetDir := filepath.Join(LibOllamaPath, "rocm")
if rocmLibUsable(rocmTargetDir) {
slog.Debug("detected ROCM next to ollama executable " + rocmTargetDir)
return rocmTargetDir, nil
}
// Prefer explicit HIP env var

View File

@@ -77,8 +77,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
gfxOverride := envconfig.HsaOverrideGfxVersion()
var supported []string
depPaths := LibraryDirs()
libDir := ""
var libDir string
// The amdgpu driver always exposes the host CPU(s) first, but we have to skip them and subtract
// from the other IDs to get alignment with the HIP libraries expectations (zero is the first GPU, not the CPU)
@@ -353,9 +352,8 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
})
return nil, err
}
depPaths = append(depPaths, libDir)
}
gpuInfo.DependencyPath = depPaths
gpuInfo.DependencyPath = []string{libDir}
if gfxOverride == "" {
// Only load supported list once

View File

@@ -5,7 +5,6 @@ import (
"errors"
"fmt"
"log/slog"
"os"
"path/filepath"
"slices"
"strconv"
@@ -50,14 +49,13 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
slog.Info(err.Error())
return nil, err
}
depPaths := LibraryDirs()
libDir, err := AMDValidateLibDir()
if err != nil {
err = fmt.Errorf("unable to verify rocm library: %w", err)
slog.Warn(err.Error())
return nil, err
}
depPaths = append(depPaths, libDir)
var supported []string
gfxOverride := envconfig.HsaOverrideGfxVersion()
@@ -113,7 +111,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
UnreliableFreeMemory: true,
ID: strconv.Itoa(i), // TODO this is probably wrong if we specify visible devices
DependencyPath: depPaths,
DependencyPath: []string{libDir},
MinimumMemory: rocmMinimumMemory,
Name: name,
Compute: gfx,
@@ -164,9 +162,7 @@ func AMDValidateLibDir() (string, error) {
}
// Installer payload (if we're running from some other location)
localAppData := os.Getenv("LOCALAPPDATA")
appDir := filepath.Join(localAppData, "Programs", "Ollama")
rocmTargetDir := filepath.Join(appDir, envconfig.LibRelativeToExe(), "lib", "ollama")
rocmTargetDir := filepath.Join(LibOllamaPath, "rocm")
if rocmLibUsable(rocmTargetDir) {
slog.Debug("detected ollama installed ROCm at " + rocmTargetDir)
return rocmTargetDir, nil

View File

@@ -23,7 +23,6 @@ import (
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/runners"
)
type cudaHandles struct {
@@ -101,15 +100,7 @@ func initCudaHandles() *cudaHandles {
// Aligned with driver, we can't carry as payloads
nvcudaMgmtPatterns := NvcudaGlobs
if runtime.GOOS == "windows" {
localAppData := os.Getenv("LOCALAPPDATA")
cudartMgmtPatterns = []string{filepath.Join(localAppData, "Programs", "Ollama", CudartMgmtName)}
}
libDirs := LibraryDirs()
for _, d := range libDirs {
cudartMgmtPatterns = append(cudartMgmtPatterns, filepath.Join(d, CudartMgmtName))
}
cudartMgmtPatterns = append(cudartMgmtPatterns, filepath.Join(LibOllamaPath, "cuda_v*", CudartMgmtName))
cudartMgmtPatterns = append(cudartMgmtPatterns, CudartGlobs...)
if len(NvmlGlobs) > 0 {
@@ -240,7 +231,7 @@ func GetGPUInfo() GpuInfoList {
if err != nil {
slog.Warn("error looking up system memory", "error", err)
}
depPaths := LibraryDirs()
details, err := GetCPUDetails()
if err != nil {
slog.Warn("failed to lookup CPU details", "error", err)
@@ -248,11 +239,9 @@ func GetGPUInfo() GpuInfoList {
cpus = []CPUInfo{
{
GpuInfo: GpuInfo{
memInfo: mem,
Library: "cpu",
Variant: runners.GetCPUCapability().String(),
ID: "0",
DependencyPath: depPaths,
memInfo: mem,
Library: "cpu",
ID: "0",
},
CPUs: details,
},
@@ -294,17 +283,13 @@ func GetGPUInfo() GpuInfoList {
gpuInfo.DriverMajor = driverMajor
gpuInfo.DriverMinor = driverMinor
variant := cudaVariant(gpuInfo)
if depPaths != nil {
gpuInfo.DependencyPath = depPaths
// Check for variant specific directory
if variant != "" {
for _, d := range depPaths {
if _, err := os.Stat(filepath.Join(d, "cuda_"+variant)); err == nil {
// Put the variant directory first in the search path to avoid runtime linking to the wrong library
gpuInfo.DependencyPath = append([]string{filepath.Join(d, "cuda_"+variant)}, gpuInfo.DependencyPath...)
break
}
}
// Start with our bundled libraries
if variant != "" {
variantPath := filepath.Join(LibOllamaPath, "cuda_"+variant)
if _, err := os.Stat(variantPath); err == nil {
// Put the variant directory first in the search path to avoid runtime linking to the wrong library
gpuInfo.DependencyPath = append([]string{variantPath}, gpuInfo.DependencyPath...)
}
}
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
@@ -376,7 +361,7 @@ func GetGPUInfo() GpuInfoList {
gpuInfo.FreeMemory = uint64(memInfo.free)
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
gpuInfo.DependencyPath = depPaths
gpuInfo.DependencyPath = []string{LibOllamaPath}
oneapiGPUs = append(oneapiGPUs, gpuInfo)
}
}
@@ -512,33 +497,30 @@ func GetGPUInfo() GpuInfoList {
func FindGPULibs(baseLibName string, defaultPatterns []string) []string {
// Multiple GPU libraries may exist, and some may not work, so keep trying until we exhaust them
var ldPaths []string
gpuLibPaths := []string{}
slog.Debug("Searching for GPU library", "name", baseLibName)
// Start with our bundled libraries
patterns := []string{}
for _, d := range LibraryDirs() {
patterns = append(patterns, filepath.Join(d, baseLibName))
}
// search our bundled libraries first
patterns := []string{filepath.Join(LibOllamaPath, baseLibName)}
var ldPaths []string
switch runtime.GOOS {
case "windows":
ldPaths = strings.Split(os.Getenv("PATH"), ";")
ldPaths = strings.Split(os.Getenv("PATH"), string(os.PathListSeparator))
case "linux":
ldPaths = strings.Split(os.Getenv("LD_LIBRARY_PATH"), ":")
default:
return gpuLibPaths
ldPaths = strings.Split(os.Getenv("LD_LIBRARY_PATH"), string(os.PathListSeparator))
}
// Then with whatever we find in the PATH/LD_LIBRARY_PATH
for _, ldPath := range ldPaths {
d, err := filepath.Abs(ldPath)
// then search the system's LD_LIBRARY_PATH
for _, p := range ldPaths {
p, err := filepath.Abs(p)
if err != nil {
continue
}
patterns = append(patterns, filepath.Join(d, baseLibName))
patterns = append(patterns, filepath.Join(p, baseLibName))
}
// finally, search the default patterns provided by the caller
patterns = append(patterns, defaultPatterns...)
slog.Debug("gpu library search", "globs", patterns)
for _, pattern := range patterns {
@@ -715,23 +697,6 @@ func (l GpuInfoList) GetVisibleDevicesEnv() (string, string) {
}
}
func LibraryDirs() []string {
// dependencies can exist wherever we found the runners (e.g. build tree for developers) and relative to the executable
// This can be simplified once we no longer carry runners as payloads
exe, err := os.Executable()
if err != nil {
slog.Warn("failed to lookup executable path", "error", err)
return nil
}
lib := filepath.Join(filepath.Dir(exe), envconfig.LibRelativeToExe(), "lib", "ollama")
if _, err := os.Stat(lib); err != nil {
return nil
}
return []string{lib}
}
func GetSystemInfo() SystemInfo {
gpus := GetGPUInfo()
gpuMutex.Lock()

View File

@@ -15,7 +15,6 @@ import (
"syscall"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/runners"
)
const (
@@ -28,7 +27,6 @@ func GetGPUInfo() GpuInfoList {
return []GpuInfo{
{
Library: "cpu",
Variant: runners.GetCPUCapability().String(),
memInfo: mem,
},
}
@@ -51,7 +49,6 @@ func GetCPUInfo() GpuInfoList {
return []GpuInfo{
{
Library: "cpu",
Variant: runners.GetCPUCapability().String(),
memInfo: mem,
},
}

57
discover/path.go Normal file
View File

@@ -0,0 +1,57 @@
package discover
import (
"os"
"path/filepath"
"runtime"
)
// LibPath is a path to lookup dynamic libraries
// in development it's usually 'build/lib/ollama'
// in distribution builds it's 'lib/ollama' on Windows
// '../lib/ollama' on Linux and the executable's directory on macOS
// note: distribution builds, additional GPU-specific libraries are
// found in subdirectories of the returned path, such as
// 'cuda_v11', 'cuda_v12', 'rocm', etc.
var LibOllamaPath string = func() string {
exe, err := os.Executable()
if err != nil {
return ""
}
exe, err = filepath.EvalSymlinks(exe)
if err != nil {
return ""
}
var libPath string
switch runtime.GOOS {
case "windows":
libPath = filepath.Join(filepath.Dir(exe), "lib", "ollama")
case "linux":
libPath = filepath.Join(filepath.Dir(exe), "..", "lib", "ollama")
case "darwin":
libPath = filepath.Dir(exe)
}
cwd, err := os.Getwd()
if err != nil {
return ""
}
paths := []string{
libPath,
// build paths for development
filepath.Join(filepath.Dir(exe), "build", "lib", "ollama"),
filepath.Join(cwd, "build", "lib", "ollama"),
}
for _, p := range paths {
if _, err := os.Stat(p); err == nil {
return p
}
}
return filepath.Dir(exe)
}()

View File

@@ -5,7 +5,6 @@ import (
"log/slog"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/runners"
)
type memInfo struct {
@@ -107,7 +106,7 @@ func (l GpuInfoList) ByLibrary() []GpuInfoList {
for _, info := range l {
found := false
requested := info.Library
if info.Variant != runners.CPUCapabilityNone.String() {
if info.Variant != "" {
requested += "_" + info.Variant
}
for i, lib := range libs {

View File

@@ -2,7 +2,7 @@
### Getting Started
* [Quickstart](../README.md#quickstart)
* [Examples](../examples)
* [Examples](./examples.md)
* [Importing models](./import.md)
* [Linux Documentation](./linux.md)
* [Windows Documentation](./windows.md)

View File

@@ -306,7 +306,7 @@ curl http://localhost:11434/api/generate -d '{
#### Response
```
```json
{
"model": "llava",
"created_at": "2023-11-03T15:36:02.583064Z",
@@ -495,14 +495,14 @@ Generate the next message in a chat with a provided model. This is a streaming e
- `model`: (required) the [model name](#model-names)
- `messages`: the messages of the chat, this can be used to keep a chat memory
- `tools`: tools for the model to use if supported. Requires `stream` to be set to `false`
- `tools`: list of tools in JSON for the model to use if supported
The `message` object has the following fields:
- `role`: the role of the message, either `system`, `user`, `assistant`, or `tool`
- `content`: the content of the message
- `images` (optional): a list of images to include in the message (for multimodal models such as `llava`)
- `tool_calls` (optional): a list of tools the model wants to use
- `tool_calls` (optional): a list of tools in JSON that the model wants to use
Advanced parameters (optional):
@@ -795,7 +795,7 @@ curl http://localhost:11434/api/chat -d '{
##### Request
```
```shell
curl http://localhost:11434/api/chat -d '{
"model": "llama3.2",
"messages": [
@@ -870,7 +870,7 @@ If the messages array is empty, the model will be loaded into memory.
##### Request
```
```shell
curl http://localhost:11434/api/chat -d '{
"model": "llama3.2",
"messages": []
@@ -897,7 +897,7 @@ If the messages array is empty and the `keep_alive` parameter is set to `0`, a m
##### Request
```
```shell
curl http://localhost:11434/api/chat -d '{
"model": "llama3.2",
"messages": [],

View File

@@ -1,165 +1,131 @@
# Development
Install required tools:
Install prerequisites:
- go version 1.22 or higher
- OS specific C/C++ compiler (see below)
- GNU Make
- [Go](https://go.dev/doc/install)
- C/C++ Compiler e.g. Clang on macOS, [TDM-GCC](https://jmeubank.github.io/tdm-gcc/download/) (Windows amd64) or [llvm-mingw](https://github.com/mstorsjo/llvm-mingw) (Windows arm64), GCC/Clang on Linux.
## Overview
Ollama uses a mix of Go and C/C++ code to interface with GPUs. The C/C++ code is compiled with both CGO and GPU library specific compilers. A set of GNU Makefiles are used to compile the project. GPU Libraries are auto-detected based on the typical environment variables used by the respective libraries, but can be overridden if necessary. The default make target will build the runners and primary Go Ollama application that will run within the repo directory. Throughout the examples below `-j 5` is suggested for 5 parallel jobs to speed up the build. You can adjust the job count based on your CPU Core count to reduce build times. If you want to relocate the built binaries, use the `dist` target and recursively copy the files in `./dist/$OS-$ARCH/` to your desired location. To learn more about the other make targets use `make help`
Once you have built the GPU/CPU runners, you can compile the main application with `go build .`
### MacOS
[Download Go](https://go.dev/dl/)
```bash
make -j 5
```
Now you can run `ollama`:
```bash
./ollama
```
#### Xcode 15 warnings
If you are using Xcode newer than version 14, you may see a warning during `go build` about `ld: warning: ignoring duplicate libraries: '-lobjc'` due to Golang issue https://github.com/golang/go/issues/67799 which can be safely ignored. You can suppress the warning with `export CGO_LDFLAGS="-Wl,-no_warn_duplicate_libraries"`
### Linux
#### Linux CUDA (NVIDIA)
_Your operating system distribution may already have packages for NVIDIA CUDA. Distro packages are often preferable, but instructions are distro-specific. Please consult distro-specific docs for dependencies if available!_
Install `make`, `gcc` and `golang` as well as [NVIDIA CUDA](https://developer.nvidia.com/cuda-downloads)
development and runtime packages.
Typically the makefile will auto-detect CUDA, however, if your Linux distro
or installation approach uses alternative paths, you can specify the location by
overriding `CUDA_PATH` to the location of the CUDA toolkit. You can customize
a set of target CUDA architectures by setting `CUDA_ARCHITECTURES` (e.g. `CUDA_ARCHITECTURES=50;60;70`)
Then build and run Ollama from the root directory of the repository:
```
make -j 5
go run . serve
```
If both v11 and v12 tookkits are detected, runners for both major versions will be built by default. You can build just v12 with `make cuda_v12`
## macOS (Apple Silicon)
#### Older Linux CUDA (NVIDIA)
macOS Apple Silicon supports Metal which is built-in to the Ollama binary. No additional steps are required.
To support older GPUs with Compute Capability 3.5 or 3.7, you will need to use an older version of the Driver from [Unix Driver Archive](https://www.nvidia.com/en-us/drivers/unix/) (tested with 470) and [CUDA Toolkit Archive](https://developer.nvidia.com/cuda-toolkit-archive) (tested with cuda V11). When you build Ollama, you will need to set two make variable to adjust the minimum compute capability Ollama supports via `make -j 5 CUDA_ARCHITECTURES="35;37;50;52" EXTRA_GOLDFLAGS="\"-X=github.com/ollama/ollama/discover.CudaComputeMajorMin=3\" \"-X=github.com/ollama/ollama/discover.CudaComputeMinorMin=5\""`. To find the Compute Capability of your older GPU, refer to [GPU Compute Capability](https://developer.nvidia.com/cuda-gpus).
## macOS (Intel)
#### Linux ROCm (AMD)
Install prerequisites:
_Your operating system distribution may already have packages for AMD ROCm. Distro packages are often preferable, but instructions are distro-specific. Please consult distro-specific docs for dependencies if available!_
- [CMake](https://cmake.org/download/) or `brew install cmake`
Install [ROCm](https://rocm.docs.amd.com/en/latest/) development packages first, as well as `make`, `gcc`, and `golang`.
Typically the build scripts will auto-detect ROCm, however, if your Linux distro
or installation approach uses unusual paths, you can specify the location by
specifying an environment variable `HIP_PATH` to the location of the ROCm
install (typically `/opt/rocm`). You can also customize
the AMD GPU targets by setting HIP_ARCHS (e.g. `HIP_ARCHS=gfx1101;gfx1102`)
Then, configure and build the project:
```
make -j 5
cmake -B build
cmake --build build
```
ROCm requires elevated privileges to access the GPU at runtime. On most distros you can add your user account to the `render` group, or run as root.
#### Containerized Linux Build
If you have Docker and buildx available, you can build linux binaries with `./scripts/build_linux.sh` which has the CUDA and ROCm dependencies included. The resulting artifacts are placed in `./dist` and by default the script builds both arm64 and amd64 binaries. If you want to build only amd64, you can build with `PLATFORM=linux/amd64 ./scripts/build_linux.sh`
### Windows
The following tools are required as a minimal development environment to build CPU inference support.
- Go version 1.22 or higher
- https://go.dev/dl/
- Git
- https://git-scm.com/download/win
- clang with gcc compat and Make. There are multiple options on how to go about installing these tools on Windows. We have verified the following, but others may work as well:
- [MSYS2](https://www.msys2.org/)
- After installing, from an MSYS2 terminal, run `pacman -S mingw-w64-clang-x86_64-gcc-compat mingw-w64-clang-x86_64-clang make` to install the required tools
- Assuming you used the default install prefix for msys2 above, add `C:\msys64\clang64\bin` and `c:\msys64\usr\bin` to your environment variable `PATH` where you will perform the build steps below (e.g. system-wide, account-level, powershell, cmd, etc.)
> [!NOTE]
> Due to bugs in the GCC C++ library for unicode support, Ollama should be built with clang on windows.
Lastly, run Ollama:
```
make -j 5
go run . serve
```
#### GPU Support
## Windows
The GPU tools require the Microsoft native build tools. To build either CUDA or ROCm, you must first install MSVC via Visual Studio:
Install prerequisites:
- Make sure to select `Desktop development with C++` as a Workload during the Visual Studio install
- You must complete the Visual Studio install and run it once **BEFORE** installing CUDA or ROCm for the tools to properly register
- Add the location of the **64 bit (x64)** compiler (`cl.exe`) to your `PATH`
- Note: the default Developer Shell may configure the 32 bit (x86) compiler which will lead to build failures. Ollama requires a 64 bit toolchain.
- [CMake](https://cmake.org/download/)
- [Visual Studio 2022](https://visualstudio.microsoft.com/downloads/) including the Native Desktop Workload
- (Optional) AMD GPU support
- [ROCm](https://rocm.github.io/install.html)
- [Ninja](https://github.com/ninja-build/ninja/releases)
- (Optional) NVIDIA GPU support
- [CUDA SDK](https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network)
#### Windows CUDA (NVIDIA)
> [!IMPORTANT]
> Ensure prerequisites are in `PATH` before running CMake.
In addition to the common Windows development tools and MSVC described above:
> [!IMPORTANT]
> ROCm is not compatible with Visual Studio CMake generators. Use `-GNinja` when configuring the project.
- [NVIDIA CUDA](https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html)
> [!IMPORTANT]
> CUDA is only compatible with Visual Studio CMake generators.
#### Windows ROCm (AMD Radeon)
In addition to the common Windows development tools and MSVC described above:
- [AMD HIP](https://www.amd.com/en/developer/resources/rocm-hub/hip-sdk.html)
#### Windows arm64
The default `Developer PowerShell for VS 2022` may default to x86 which is not what you want. To ensure you get an arm64 development environment, start a plain PowerShell terminal and run:
```powershell
import-module 'C:\\Program Files\\Microsoft Visual Studio\\2022\\Community\\Common7\\Tools\\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -Arch arm64 -vsinstallpath 'C:\\Program Files\\Microsoft Visual Studio\\2022\\Community' -skipautomaticlocation
```
You can confirm with `write-host $env:VSCMD_ARG_TGT_ARCH`
Follow the instructions at https://www.msys2.org/wiki/arm64/ to set up an arm64 msys2 environment. Ollama requires gcc and mingw32-make to compile, which is not currently available on Windows arm64, but a gcc compatibility adapter is available via `mingw-w64-clang-aarch64-gcc-compat`. At a minimum you will need to install the following:
Then, configure and build the project:
```
pacman -S mingw-w64-clang-aarch64-clang mingw-w64-clang-aarch64-gcc-compat mingw-w64-clang-aarch64-make make
cmake -B build
cmake --build build --config Release
```
You will need to ensure your PATH includes go, cmake, gcc and clang mingw32-make to build ollama from source. (typically `C:\msys64\clangarm64\bin\`)
## Advanced CPU Vector Settings
On x86, running `make` will compile several CPU runners which can run on different CPU families. At runtime, Ollama will auto-detect the best variation to load. If GPU libraries are present at build time, Ollama also compiles GPU runners with the `AVX` CPU vector feature enabled. This provides a good performance balance when loading large models that split across GPU and CPU with broad compatibility. Some users may prefer no vector extensions (e.g. older Xeon/Celeron processors, or hypervisors that mask the vector features) while other users may prefer turning on many more vector extensions to further improve performance for split model loads.
To customize the set of CPU vector features enabled for a CPU runner and all GPU runners, use CUSTOM_CPU_FLAGS during the build.
To build without any vector flags:
Lastly, run Ollama:
```
make CUSTOM_CPU_FLAGS=""
go run . serve
```
To build with both AVX and AVX2:
```
make CUSTOM_CPU_FLAGS=avx,avx2
```
## Windows (ARM)
To build with AVX512 features turned on:
Windows ARM does not support additional acceleration libraries at this time.
## Linux
Install prerequisites:
- [CMake](https://cmake.org/download/) or `sudo apt install cmake` or `sudo dnf install cmake`
- (Optional) AMD GPU support
- [ROCm](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/quick-start.html)
- (Optional) NVIDIA GPU support
- [CUDA SDK](https://developer.nvidia.com/cuda-downloads)
> [!IMPORTANT]
> Ensure prerequisites are in `PATH` before running CMake.
Then, configure and build the project:
```
make CUSTOM_CPU_FLAGS=avx,avx2,avx512,avx512vbmi,avx512vnni,avx512bf16
cmake -B build
cmake --build build
```
> [!NOTE]
> If you are experimenting with different flags, make sure to do a `make clean` between each change to ensure everything is rebuilt with the new compiler flags
Lastly, run Ollama:
```
go run . serve
```
## Docker
```
docker build .
```
### ROCm
```
docker build --build-arg FLAVOR=rocm .
```
## Running tests
To run tests, use `go test`:
```
go test ./...
```
## Library detection
Ollama looks for acceleration libraries in the following paths relative to the `ollama` executable:
* `./lib/ollama` (Windows)
* `../lib/ollama` (Linux)
* `.` (macOS)
* `build/lib/ollama` (for development)
If the libraries are not found, Ollama will not run with any acceleration libraries.

View File

@@ -38,7 +38,7 @@ Numeric IDs may be used, however ordering may vary, so UUIDs are more reliable.
You can discover the UUID of your GPUs by running `nvidia-smi -L` If you want to
ignore the GPUs and force CPU usage, use an invalid GPU ID (e.g., "-1")
### Laptop Suspend Resume
### Linux Suspend Resume
On linux, after a suspend/resume cycle, sometimes Ollama will fail to discover
your NVIDIA GPU, and fallback to running on the CPU. You can workaround this

View File

@@ -152,7 +152,7 @@ Use `OLLAMA_VERSION` environment variable with the install script to install a s
For example:
```shell
curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION=0.3.9 sh
curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION=0.5.7 sh
```
## Viewing logs

View File

@@ -67,8 +67,6 @@ To use this:
3. `ollama run choose-a-model-name`
4. Start using the model!
More examples are available in the [examples directory](../examples).
To view the Modelfile of a given model, use the `ollama show --modelfile` command.
```bash
@@ -155,7 +153,6 @@ PARAMETER <parameter> <parametervalue>
| temperature | The temperature of the model. Increasing the temperature will make the model answer more creatively. (Default: 0.8) | float | temperature 0.7 |
| seed | Sets the random number seed to use for generation. Setting this to a specific number will make the model generate the same text for the same prompt. (Default: 0) | int | seed 42 |
| stop | Sets the stop sequences to use. When this pattern is encountered the LLM will stop generating text and return. Multiple stop patterns may be set by specifying multiple separate `stop` parameters in a modelfile. | string | stop "AI assistant:" |
| tfs_z | Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting. (default: 1) | float | tfs_z 1 |
| num_predict | Maximum number of tokens to predict when generating text. (Default: -1, infinite generation) | int | num_predict 42 |
| top_k | Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40) | int | top_k 40 |
| top_p | Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9) | float | top_p 0.9 |

View File

@@ -288,12 +288,3 @@ func Values() map[string]string {
func Var(key string) string {
return strings.Trim(strings.TrimSpace(os.Getenv(key)), "\"'")
}
// On windows, we keep the binary at the top directory, but
// other platforms use a "bin" directory, so this returns ".."
func LibRelativeToExe() string {
if runtime.GOOS == "windows" {
return "."
}
return ".."
}

91
format/byte_test.go Normal file
View File

@@ -0,0 +1,91 @@
package format
import (
"testing"
)
func TestHumanBytes(t *testing.T) {
type testCase struct {
input int64
expected string
}
tests := []testCase{
// Test bytes (B)
{0, "0 B"},
{1, "1 B"},
{999, "999 B"},
// Test kilobytes (KB)
{1000, "1 KB"},
{1500, "1.5 KB"},
{999999, "999 KB"},
// Test megabytes (MB)
{1000000, "1 MB"},
{1500000, "1.5 MB"},
{999999999, "999 MB"},
// Test gigabytes (GB)
{1000000000, "1 GB"},
{1500000000, "1.5 GB"},
{999999999999, "999 GB"},
// Test terabytes (TB)
{1000000000000, "1 TB"},
{1500000000000, "1.5 TB"},
{1999999999999, "2.0 TB"},
// Test fractional values
{1234, "1.2 KB"},
{1234567, "1.2 MB"},
{1234567890, "1.2 GB"},
}
for _, tc := range tests {
t.Run(tc.expected, func(t *testing.T) {
result := HumanBytes(tc.input)
if result != tc.expected {
t.Errorf("Expected %s, got %s", tc.expected, result)
}
})
}
}
func TestHumanBytes2(t *testing.T) {
type testCase struct {
input uint64
expected string
}
tests := []testCase{
// Test bytes (B)
{0, "0 B"},
{1, "1 B"},
{1023, "1023 B"},
// Test kibibytes (KiB)
{1024, "1.0 KiB"},
{1536, "1.5 KiB"},
{1048575, "1024.0 KiB"},
// Test mebibytes (MiB)
{1048576, "1.0 MiB"},
{1572864, "1.5 MiB"},
{1073741823, "1024.0 MiB"},
// Test gibibytes (GiB)
{1073741824, "1.0 GiB"},
{1610612736, "1.5 GiB"},
{2147483648, "2.0 GiB"},
}
for _, tc := range tests {
t.Run(tc.expected, func(t *testing.T) {
result := HumanBytes2(tc.input)
if result != tc.expected {
t.Errorf("Expected %s, got %s", tc.expected, result)
}
})
}
}

View File

@@ -40,8 +40,6 @@ func HumanBytes(b int64) string {
}
switch {
case value >= 100:
return fmt.Sprintf("%d %s", int(value), unit)
case value >= 10:
return fmt.Sprintf("%d %s", int(value), unit)
case value != math.Trunc(value):

3
go.mod
View File

@@ -24,7 +24,6 @@ require (
github.com/nlpodyssey/gopickle v0.3.0
github.com/pdevine/tensor v0.0.0-20240510204454-f88f4562727c
golang.org/x/image v0.22.0
golang.org/x/tools v0.28.0
gonum.org/v1/gonum v0.15.0
)
@@ -72,7 +71,7 @@ require (
golang.org/x/arch v0.8.0 // indirect
golang.org/x/crypto v0.31.0
golang.org/x/exp v0.0.0-20231110203233-9a3e6036ecaa
golang.org/x/net v0.32.0 // indirect
golang.org/x/net v0.25.0 // indirect
golang.org/x/sys v0.28.0
golang.org/x/term v0.27.0
golang.org/x/text v0.21.0

6
go.sum
View File

@@ -257,8 +257,8 @@ golang.org/x/net v0.0.0-20200822124328-c89045814202/go.mod h1:/O7V0waA8r7cgGh81R
golang.org/x/net v0.0.0-20201021035429-f5854403a974/go.mod h1:sp8m0HH+o8qH0wwXwYZr8TS3Oi6o0r6Gce1SSxlDquU=
golang.org/x/net v0.0.0-20210405180319-a5a99cb37ef4/go.mod h1:p54w0d4576C0XHj96bSt6lcn1PtDYWL6XObtHCRCNQM=
golang.org/x/net v0.0.0-20210614182718-04defd469f4e/go.mod h1:9nx3DQGgdP8bBQD5qxJ1jj9UTztislL4KSBs9R2vV5Y=
golang.org/x/net v0.32.0 h1:ZqPmj8Kzc+Y6e0+skZsuACbx+wzMgo5MQsJh9Qd6aYI=
golang.org/x/net v0.32.0/go.mod h1:CwU0IoeOlnQQWJ6ioyFrfRuomB8GKF6KbYXZVyeXNfs=
golang.org/x/net v0.25.0 h1:d/OCCoBEUq33pjydKrGQhw7IlUPI2Oylr+8qLx49kac=
golang.org/x/net v0.25.0/go.mod h1:JkAGAh7GEvH74S6FOH42FLoXpXbE/aqXSrIQjXgsiwM=
golang.org/x/oauth2 v0.0.0-20180821212333-d2e6202438be/go.mod h1:N/0e6XlmueqKjAGxoOufVs8QHGRruUQn6yWY3a++T0U=
golang.org/x/oauth2 v0.0.0-20200107190931-bf48bf16ab8d/go.mod h1:gOpvHmFTYa4IltrdGE7lF6nIHvwfUNPOp7c8zoXwtLw=
golang.org/x/sync v0.0.0-20180314180146-1d60e4601c6f/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
@@ -309,8 +309,6 @@ golang.org/x/tools v0.0.0-20200130002326-2f3ba24bd6e7/go.mod h1:TB2adYChydJhpapK
golang.org/x/tools v0.0.0-20200619180055-7c47624df98f/go.mod h1:EkVYQZoAsY45+roYkvgYkIh4xh/qjgUK9TdY2XT94GE=
golang.org/x/tools v0.0.0-20210106214847-113979e3529a/go.mod h1:emZCQorbCU4vsT4fOWvOPXz4eW1wZW4PmDk9uLelYpA=
golang.org/x/tools v0.1.4/go.mod h1:o0xws9oXOQQZyjljx8fwUC0k7L1pTE6eaCbjGeHmOkk=
golang.org/x/tools v0.28.0 h1:WuB6qZ4RPCQo5aP3WdKZS7i595EdWqWR8vqJTlwTVK8=
golang.org/x/tools v0.28.0/go.mod h1:dcIOrVd3mfQKTgrDVQHqCPMWy6lnhfhtX3hLXYVLfRw=
golang.org/x/xerrors v0.0.0-20190717185122-a985d3407aa7/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20191011141410-1b5146add898/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20191204190536-9bdfabe68543/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=

View File

@@ -1,22 +0,0 @@
//go:build go1.24
package grammar
import "testing"
func BenchmarkFromSchema(b *testing.B) {
for tt := range testCases(b) {
b.Run("", func(b *testing.B) {
s := []byte(tt.schema)
b.ReportAllocs()
for b.Loop() {
_, err := FromSchema(nil, s)
if err != nil {
b.Fatalf("GrammarFromSchema: %v", err)
}
}
})
return
}
}

View File

@@ -1,227 +0,0 @@
package grammar
import (
"bytes"
"encoding/json"
"fmt"
"iter"
"strconv"
"github.com/ollama/ollama/grammar/jsonschema"
)
const jsonTerms = `
# Unicode
#
# Unicode characters can be specified directly in the grammar, for example
# hiragana ::= [ぁ-ゟ], or with escapes: 8-bit (\xXX), 16-bit (\uXXXX) or 32-bit
# (\UXXXXXXXX).
unicode ::= \x{hex}{2} | \u{hex}{4} | \U{hex}{8}
# JSON grammar from RFC 7159
null ::= "null"
object ::= "{" (kv ("," kv)*)? "}"
array ::= "[" (value ("," value)*)? "]"
kv ::= string ":" value
integer ::= "0" | [1-9] [0-9]*
number ::= "-"? integer frac? exp?
frac ::= "." [0-9]+
exp ::= ("e" | "E") ("+" | "-") [0-9]+
string ::= "\"" char* "\""
escape ::= ["/" | "b" | "f" | "n" | "r" | "t" | unicode]
char ::= [^"\\] | escape
space ::= (" " | "\t" | "\n" | "\r")*
hex ::= [0-9] | [a-f] | [A-F]
boolean ::= "true" | "false"
value ::= object | array | string | number | boolean | "null"
# User-defined
`
// FromSchema generates a grammar from a JSON schema.
func FromSchema(buf []byte, jsonSchema []byte) ([]byte, error) {
var s *jsonschema.Schema
if err := json.Unmarshal(jsonSchema, &s); err != nil {
return nil, err
}
var g builder
// "root" is the only rule that is guaranteed to exist, so we start
// with its length for padding, and then adjust it as we go.
g.pad = len("root")
for id := range dependencies("root", s) {
g.pad = max(g.pad, len(id))
}
g.b.WriteString(jsonTerms)
ids := make(map[*jsonschema.Schema]string)
for id, s := range dependencies("root", s) {
ids[s] = id
g.define(id)
if err := fromSchema(&g, ids, s); err != nil {
return nil, err
}
}
g.define("root")
if err := fromSchema(&g, ids, s); err != nil {
return nil, err
}
g.define("") // finalize the last rule
return g.b.Bytes(), nil
}
func fromSchema(g *builder, ids map[*jsonschema.Schema]string, s *jsonschema.Schema) error {
switch typ := s.EffectiveType(); typ {
case "array":
if len(s.PrefixItems) == 0 && s.Items == nil {
g.u("array")
} else {
g.q("[")
for i, s := range s.PrefixItems {
if i > 0 {
g.q(",")
}
g.u(ids[s])
}
if s.Items != nil {
g.u("(")
if len(s.PrefixItems) > 0 {
g.q(",")
}
g.u(ids[s.Items])
g.u(")*")
}
g.q("]")
}
case "object":
if len(s.Properties) == 0 {
g.u("object")
} else {
g.q("{")
for i, p := range s.Properties {
name := ids[p]
if i > 0 {
g.q(",")
}
g.q(p.Name)
g.q(":")
g.u(name)
}
g.q("}")
}
case "number":
buildConstrainedNumber(g, s)
case "string":
if len(s.Enum) == 0 {
g.u("string")
} else {
g.u("(")
for i, e := range s.Enum {
if i > 0 {
g.q("|")
}
g.q(string(e))
}
g.u(")")
}
case "boolean", "value", "null", "integer":
g.u(typ)
default:
return fmt.Errorf("%s: unsupported type %q", s.Name, typ)
}
return nil
}
// dependencies returns a sequence of all child dependencies of the schema in
// post-order.
//
// The first value is the id/pointer to the dependency, and the second value
// is the schema.
func dependencies(id string, s *jsonschema.Schema) iter.Seq2[string, *jsonschema.Schema] {
return func(yield func(string, *jsonschema.Schema) bool) {
for i, p := range s.Properties {
id := fmt.Sprintf("%s_%d", id, i)
for did, d := range dependencies(id, p) {
if !yield(did, d) {
return
}
}
if !yield(id, p) {
return
}
}
for i, p := range s.PrefixItems {
id := fmt.Sprintf("tuple_%d", i)
for did, d := range dependencies(id, p) {
id := fmt.Sprintf("%s_%s", id, did)
if !yield(id, d) {
return
}
}
if !yield(id, p) {
return
}
}
if s.Items != nil {
id := fmt.Sprintf("%s_tuple_%d", id, len(s.PrefixItems))
for did, d := range dependencies(id, s.Items) {
if !yield(did, d) {
return
}
}
if !yield(id, s.Items) {
return
}
}
}
}
type builder struct {
b bytes.Buffer
pad int
rules int
items int
}
// define terminates the current rule, if any, and then either starts a new
// rule or does nothing else if the name is empty.
func (b *builder) define(name string) {
if b.rules > 0 {
b.b.WriteString(";\n")
}
if name == "" {
return
}
fmt.Fprintf(&b.b, "% -*s", b.pad, name)
b.b.WriteString(" ::=")
b.rules++
b.items = 0
}
// quote appends a terminal to the current rule.
func (b *builder) q(s string) {
if b.items > 0 {
b.b.WriteString(" ")
}
b.b.WriteString(" ")
b.b.WriteString(strconv.Quote(s))
}
// u appends a non-terminal to the current rule.
func (b *builder) u(s string) {
if b.items > 0 {
b.b.WriteString(" ")
}
b.b.WriteString(" ")
b.b.WriteString(s)
}
func buildConstrainedNumber(b *builder, s *jsonschema.Schema) {
if s.Minimum == 0 && s.Maximum == 0 {
b.u("TODO")
} else {
b.u("number")
}
}

View File

@@ -1,75 +0,0 @@
package grammar
import (
"bufio"
"cmp"
"iter"
"strings"
"testing"
_ "embed"
"github.com/ollama/ollama/grammar/internal/diff"
)
func TestFromSchema(t *testing.T) {
for tt := range testCases(t) {
t.Run(tt.name, func(t *testing.T) {
g, err := FromSchema(nil, []byte(tt.schema))
if err != nil {
t.Fatalf("FromSchema: %v", err)
}
got := string(g)
got = strings.TrimPrefix(got, jsonTerms)
if got != tt.want {
t.Logf("schema:\n%s", tt.schema)
t.Fatal(string(diff.Diff("got", []byte(got), "want", []byte(tt.want))))
}
})
}
}
type testCase struct {
name string
schema string
want string
}
//go:embed testdata/schemas.txt
var tests string
func testCases(t testing.TB) iter.Seq[testCase] {
t.Helper()
return func(yield func(testCase) bool) {
t.Helper()
sc := bufio.NewScanner(strings.NewReader(tests))
name := ""
for sc.Scan() {
line := strings.TrimSpace(sc.Text())
if line == "" {
name = ""
continue
}
if line[0] == '#' {
name = cmp.Or(name, strings.TrimSpace(line[1:]))
continue
}
s := sc.Text()
g := ""
for sc.Scan() {
line = strings.TrimSpace(sc.Text())
if line == "" || line[0] == '#' {
break
}
g += sc.Text() + "\n"
}
if !yield(testCase{name, s, g}) {
return
}
name = strings.TrimSpace(strings.TrimPrefix(line, "#"))
}
if err := sc.Err(); err != nil {
t.Fatalf("error reading tests: %v", err)
}
}
}

View File

@@ -1,261 +0,0 @@
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package diff
import (
"bytes"
"fmt"
"sort"
"strings"
)
// A pair is a pair of values tracked for both the x and y side of a diff.
// It is typically a pair of line indexes.
type pair struct{ x, y int }
// Diff returns an anchored diff of the two texts old and new
// in the “unified diff” format. If old and new are identical,
// Diff returns a nil slice (no output).
//
// Unix diff implementations typically look for a diff with
// the smallest number of lines inserted and removed,
// which can in the worst case take time quadratic in the
// number of lines in the texts. As a result, many implementations
// either can be made to run for a long time or cut off the search
// after a predetermined amount of work.
//
// In contrast, this implementation looks for a diff with the
// smallest number of “unique” lines inserted and removed,
// where unique means a line that appears just once in both old and new.
// We call this an “anchored diff” because the unique lines anchor
// the chosen matching regions. An anchored diff is usually clearer
// than a standard diff, because the algorithm does not try to
// reuse unrelated blank lines or closing braces.
// The algorithm also guarantees to run in O(n log n) time
// instead of the standard O(n²) time.
//
// Some systems call this approach a “patience diff,” named for
// the “patience sorting” algorithm, itself named for a solitaire card game.
// We avoid that name for two reasons. First, the name has been used
// for a few different variants of the algorithm, so it is imprecise.
// Second, the name is frequently interpreted as meaning that you have
// to wait longer (to be patient) for the diff, meaning that it is a slower algorithm,
// when in fact the algorithm is faster than the standard one.
func Diff(oldName string, old []byte, newName string, new []byte) []byte {
if bytes.Equal(old, new) {
return nil
}
x := lines(old)
y := lines(new)
// Print diff header.
var out bytes.Buffer
fmt.Fprintf(&out, "diff %s %s\n", oldName, newName)
fmt.Fprintf(&out, "--- %s\n", oldName)
fmt.Fprintf(&out, "+++ %s\n", newName)
// Loop over matches to consider,
// expanding each match to include surrounding lines,
// and then printing diff chunks.
// To avoid setup/teardown cases outside the loop,
// tgs returns a leading {0,0} and trailing {len(x), len(y)} pair
// in the sequence of matches.
var (
done pair // printed up to x[:done.x] and y[:done.y]
chunk pair // start lines of current chunk
count pair // number of lines from each side in current chunk
ctext []string // lines for current chunk
)
for _, m := range tgs(x, y) {
if m.x < done.x {
// Already handled scanning forward from earlier match.
continue
}
// Expand matching lines as far as possible,
// establishing that x[start.x:end.x] == y[start.y:end.y].
// Note that on the first (or last) iteration we may (or definitely do)
// have an empty match: start.x==end.x and start.y==end.y.
start := m
for start.x > done.x && start.y > done.y && x[start.x-1] == y[start.y-1] {
start.x--
start.y--
}
end := m
for end.x < len(x) && end.y < len(y) && x[end.x] == y[end.y] {
end.x++
end.y++
}
// Emit the mismatched lines before start into this chunk.
// (No effect on first sentinel iteration, when start = {0,0}.)
for _, s := range x[done.x:start.x] {
ctext = append(ctext, "-"+s)
count.x++
}
for _, s := range y[done.y:start.y] {
ctext = append(ctext, "+"+s)
count.y++
}
// If we're not at EOF and have too few common lines,
// the chunk includes all the common lines and continues.
const C = 3 // number of context lines
if (end.x < len(x) || end.y < len(y)) &&
(end.x-start.x < C || (len(ctext) > 0 && end.x-start.x < 2*C)) {
for _, s := range x[start.x:end.x] {
ctext = append(ctext, " "+s)
count.x++
count.y++
}
done = end
continue
}
// End chunk with common lines for context.
if len(ctext) > 0 {
n := end.x - start.x
if n > C {
n = C
}
for _, s := range x[start.x : start.x+n] {
ctext = append(ctext, " "+s)
count.x++
count.y++
}
done = pair{start.x + n, start.y + n}
// Format and emit chunk.
// Convert line numbers to 1-indexed.
// Special case: empty file shows up as 0,0 not 1,0.
if count.x > 0 {
chunk.x++
}
if count.y > 0 {
chunk.y++
}
fmt.Fprintf(&out, "@@ -%d,%d +%d,%d @@\n", chunk.x, count.x, chunk.y, count.y)
for _, s := range ctext {
out.WriteString(s)
}
count.x = 0
count.y = 0
ctext = ctext[:0]
}
// If we reached EOF, we're done.
if end.x >= len(x) && end.y >= len(y) {
break
}
// Otherwise start a new chunk.
chunk = pair{end.x - C, end.y - C}
for _, s := range x[chunk.x:end.x] {
ctext = append(ctext, " "+s)
count.x++
count.y++
}
done = end
}
return out.Bytes()
}
// lines returns the lines in the file x, including newlines.
// If the file does not end in a newline, one is supplied
// along with a warning about the missing newline.
func lines(x []byte) []string {
l := strings.SplitAfter(string(x), "\n")
if l[len(l)-1] == "" {
l = l[:len(l)-1]
} else {
// Treat last line as having a message about the missing newline attached,
// using the same text as BSD/GNU diff (including the leading backslash).
l[len(l)-1] += "\n\\ No newline at end of file\n"
}
return l
}
// tgs returns the pairs of indexes of the longest common subsequence
// of unique lines in x and y, where a unique line is one that appears
// once in x and once in y.
//
// The longest common subsequence algorithm is as described in
// Thomas G. Szymanski, “A Special Case of the Maximal Common
// Subsequence Problem,” Princeton TR #170 (January 1975),
// available at https://research.swtch.com/tgs170.pdf.
func tgs(x, y []string) []pair {
// Count the number of times each string appears in a and b.
// We only care about 0, 1, many, counted as 0, -1, -2
// for the x side and 0, -4, -8 for the y side.
// Using negative numbers now lets us distinguish positive line numbers later.
m := make(map[string]int)
for _, s := range x {
if c := m[s]; c > -2 {
m[s] = c - 1
}
}
for _, s := range y {
if c := m[s]; c > -8 {
m[s] = c - 4
}
}
// Now unique strings can be identified by m[s] = -1+-4.
//
// Gather the indexes of those strings in x and y, building:
// xi[i] = increasing indexes of unique strings in x.
// yi[i] = increasing indexes of unique strings in y.
// inv[i] = index j such that x[xi[i]] = y[yi[j]].
var xi, yi, inv []int
for i, s := range y {
if m[s] == -1+-4 {
m[s] = len(yi)
yi = append(yi, i)
}
}
for i, s := range x {
if j, ok := m[s]; ok && j >= 0 {
xi = append(xi, i)
inv = append(inv, j)
}
}
// Apply Algorithm A from Szymanski's paper.
// In those terms, A = J = inv and B = [0, n).
// We add sentinel pairs {0,0}, and {len(x),len(y)}
// to the returned sequence, to help the processing loop.
J := inv
n := len(xi)
T := make([]int, n)
L := make([]int, n)
for i := range T {
T[i] = n + 1
}
for i := range n {
k := sort.Search(n, func(k int) bool {
return T[k] >= J[i]
})
T[k] = J[i]
L[i] = k + 1
}
k := 0
for _, v := range L {
if k < v {
k = v
}
}
seq := make([]pair, 2+k)
seq[1+k] = pair{len(x), len(y)} // sentinel at end
lastj := n
for i := n - 1; i >= 0; i-- {
if L[i] == k && J[i] < lastj {
seq[k] = pair{xi[i], yi[J[i]]}
k--
}
}
seq[0] = pair{0, 0} // sentinel at start
return seq
}

View File

@@ -1,44 +0,0 @@
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package diff
import (
"bytes"
"path/filepath"
"testing"
"golang.org/x/tools/txtar"
)
func clean(text []byte) []byte {
text = bytes.ReplaceAll(text, []byte("$\n"), []byte("\n"))
text = bytes.TrimSuffix(text, []byte("^D\n"))
return text
}
func Test(t *testing.T) {
files, _ := filepath.Glob("testdata/*.txt")
if len(files) == 0 {
t.Fatalf("no testdata")
}
for _, file := range files {
t.Run(filepath.Base(file), func(t *testing.T) {
a, err := txtar.ParseFile(file)
if err != nil {
t.Fatal(err)
}
if len(a.Files) != 3 || a.Files[2].Name != "diff" {
t.Fatalf("%s: want three files, third named \"diff\"", file)
}
diffs := Diff(a.Files[0].Name, clean(a.Files[0].Data), a.Files[1].Name, clean(a.Files[1].Data))
want := clean(a.Files[2].Data)
if !bytes.Equal(diffs, want) {
t.Fatalf("%s: have:\n%s\nwant:\n%s\n%s", file,
diffs, want, Diff("have", diffs, "want", want))
}
})
}
}

View File

@@ -1,13 +0,0 @@
-- old --
-- new --
a
b
c
-- diff --
diff old new
--- old
+++ new
@@ -0,0 +1,3 @@
+a
+b
+c

View File

@@ -1,13 +0,0 @@
-- old --
a
b
c
-- new --
-- diff --
diff old new
--- old
+++ new
@@ -1,3 +0,0 @@
-a
-b
-c

View File

@@ -1,35 +0,0 @@
Example from Hunt and McIlroy, “An Algorithm for Differential File Comparison.”
https://www.cs.dartmouth.edu/~doug/diff.pdf
-- old --
a
b
c
d
e
f
g
-- new --
w
a
b
x
y
z
e
-- diff --
diff old new
--- old
+++ new
@@ -1,7 +1,7 @@
+w
a
b
-c
-d
+x
+y
+z
e
-f
-g

View File

@@ -1,40 +0,0 @@
-- old --
a
b
c
d
e
f
-- new --
a
B
C
d
e
f
-- diff --
diff old new
--- old
+++ new
@@ -1,8 +1,8 @@
a
$
-b
-
-c
+B
+
+C
$
d
$

View File

@@ -1,38 +0,0 @@
-- old --
1
2
3
4
5
6
7
eight
nine
ten
eleven
-- new --
1
2
3
4
5
6
7
8
9
10
-- diff --
diff old new
--- old
+++ new
@@ -5,7 +5,6 @@
5
6
7
-eight
-nine
-ten
-eleven
+8
+9
+10

View File

@@ -1,9 +0,0 @@
-- old --
a
b
c^D
-- new --
a
b
c^D
-- diff --

View File

@@ -1,18 +0,0 @@
-- old --
a
b
c
-- new --
a
b
c^D
-- diff --
diff old new
--- old
+++ new
@@ -1,3 +1,3 @@
a
b
-c
+c
\ No newline at end of file

View File

@@ -1,18 +0,0 @@
-- old --
a
b
c^D
-- new --
a
b
c
-- diff --
diff old new
--- old
+++ new
@@ -1,3 +1,3 @@
a
b
-c
\ No newline at end of file
+c

View File

@@ -1,62 +0,0 @@
-- old --
1
2
3
4
5
6
7
8
9
10
11
12
13
14
14½
15
16
17
18
19
20
-- new --
1
2
3
4
5
6
8
9
10
11
12
13
14
17
18
19
20
-- diff --
diff old new
--- old
+++ new
@@ -4,7 +4,6 @@
4
5
6
-7
8
9
10
@@ -12,9 +11,6 @@
12
13
14
-14½
-15
-16
17
18
19

View File

@@ -1,5 +0,0 @@
-- old --
hello world
-- new --
hello world
-- diff --

View File

@@ -1,34 +0,0 @@
-- old --
e
pi
4
5
6
7
8
9
10
-- new --
1
2
3
4
5
6
7
8
9
10
-- diff --
diff old new
--- old
+++ new
@@ -1,5 +1,6 @@
-e
-pi
+1
+2
+3
4
5
6

View File

@@ -1,40 +0,0 @@
Another example from Hunt and McIlroy,
“An Algorithm for Differential File Comparison.”
https://www.cs.dartmouth.edu/~doug/diff.pdf
Anchored diff gives up on finding anything,
since there are no unique lines.
-- old --
a
b
c
a
b
b
a
-- new --
c
a
b
a
b
c
-- diff --
diff old new
--- old
+++ new
@@ -1,7 +1,6 @@
-a
-b
-c
-a
-b
-b
-a
+c
+a
+b
+a
+b
+c

View File

@@ -1,171 +0,0 @@
package jsonschema
import (
"bytes"
"encoding/json"
"errors"
)
// Schema holds a JSON schema.
type Schema struct {
// Name is the name of the property. For the parent/root property, this
// is "root". For child properties, this is the name of the property.
Name string `json:"-"`
// Type is the type of the property.
//
// TODO: Union types (e.g. make this a []string).
Type string
// PrefixItems is a list of schemas for each item in a tuple. By
// default, the tuple is "closed." unless Items is set to true or a
// valid Schema.
PrefixItems []*Schema
// Items is the schema for each item in a list.
//
// If it is missing, or its JSON value is "null" or "false", it is nil.
// If the JSON value is "true", it is set to the empty Schema. If the
// JSON value is an object, it will be decoded as a Schema.
Items *Schema
// MinItems specifies the minimum number of items allowed in a list.
MinItems int
// MaxItems specifies the maximum number of items allowed in a list.
MaxItems int
// Properties is the schema for each property of an object.
Properties []*Schema
// Format is the format of the property. This is used to validate the
// property against a specific format.
//
// It is the callers responsibility to validate the property against
// the format.
Format string
// Minimum specifies the minimum value for numeric properties.
Minimum float64
// Maximum specifies the maximum value for numeric properties.
Maximum float64
// Enum is a list of valid values for the property.
Enum []json.RawMessage
}
func (s *Schema) UnmarshalJSON(data []byte) error {
type S Schema
w := struct {
Properties props
Items items
*S
}{
S: (*S)(s),
}
if err := json.Unmarshal(data, &w); err != nil {
return err
}
if w.Items.set {
s.Items = &w.Items.Schema
}
s.Properties = w.Properties
return nil
}
type items struct {
Schema
set bool
}
func (s *items) UnmarshalJSON(data []byte) error {
switch b := data[0]; b {
case 't':
*s = items{set: true}
case '{':
type I items
if err := json.Unmarshal(data, (*I)(s)); err != nil {
return err
}
s.set = true
case 'n', 'f':
default:
return errors.New("invalid Items")
}
return nil
}
// EffectiveType returns the effective type of the schema. If the Type field is
// not empty, it is returned; otherwise:
//
// - If the schema has both Properties and Items, it returns an empty string.
// - If the schema has Properties, it returns "object".
// - If the schema has Items, it returns "array".
// - If the schema has neither Properties nor Items, it returns "value".
//
// The returned string is never empty.
func (d *Schema) EffectiveType() string {
if d.Type == "" {
if len(d.Properties) > 0 {
return "object"
}
if len(d.PrefixItems) > 0 || d.Items != nil {
return "array"
}
return "value"
}
return d.Type
}
// props is an ordered list of properties. The order of the properties
// is the order in which they were defined in the schema.
type props []*Schema
var _ json.Unmarshaler = (*props)(nil)
func (v *props) UnmarshalJSON(data []byte) error {
if len(data) == 0 {
return nil
}
if data[0] != '{' {
return errors.New("expected object")
}
d := json.NewDecoder(bytes.NewReader(data))
// TODO(bmizerany): Consider DisallowUnknownFields. Currently, we, like
// llama.cpp, ignore unknown fields, which could be lead to unexpected
// behavior for clients of this package, since they may not be aware
// that "additionalFields", "itemsPrefix", etc, are being ignored.
//
// For now, just do what llama.cpp does.
t, err := d.Token()
if err != nil {
return err
}
if t != json.Delim('{') {
return errors.New("expected object")
}
for d.More() {
// Use the first token (map key) as the property name, then
// decode the rest of the object fields into a Schema and
// append.
t, err := d.Token()
if err != nil {
return err
}
if t == json.Delim('}') {
return nil
}
s := &Schema{
Name: t.(string),
}
if err := d.Decode(s); err != nil {
return err
}
*v = append(*v, s)
}
return nil
}

View File

@@ -1,104 +0,0 @@
package jsonschema
import (
"encoding/json"
"reflect"
"strings"
"testing"
"github.com/google/go-cmp/cmp"
)
const testSchemaBasic = `
{
"properties": {
"tupleClosedEmpty": { "prefixItems": [] },
"tupleClosedMissing": { "prefixItems": [{}] },
"tupleClosedNull": { "prefixItems": [{}], "items": null },
"tupleClosedFalse": { "prefixItems": [{}], "items": false },
"tupleOpenTrue": { "prefixItems": [{}], "items": true },
"tupleOpenEmpty": { "prefixItems": [{}], "items": {} },
"tupleOpenTyped": { "prefixItems": [{}], "items": {"type": "boolean"} },
"tupleOpenMax": { "prefixItems": [{}], "items": true, "maxItems": 3},
"array": { "items": {"type": "number"} },
"null": { "type": "null" },
"string": { "type": "string" },
"boolean": { "type": "boolean" }
}
}
`
func TestSchemaUnmarshal(t *testing.T) {
var got *Schema
if err := json.Unmarshal([]byte(testSchemaBasic), &got); err != nil {
t.Fatalf("Unmarshal: %v", err)
}
want := &Schema{
Properties: []*Schema{
{Name: "tupleClosedEmpty", PrefixItems: []*Schema{}, Items: nil},
{Name: "tupleClosedMissing", PrefixItems: []*Schema{{}}, Items: nil},
{Name: "tupleClosedNull", PrefixItems: []*Schema{{}}, Items: nil},
{Name: "tupleClosedFalse", PrefixItems: []*Schema{{}}, Items: nil},
{Name: "tupleOpenTrue", PrefixItems: []*Schema{{}}, Items: &Schema{}},
{Name: "tupleOpenEmpty", PrefixItems: []*Schema{{}}, Items: &Schema{}},
{Name: "tupleOpenTyped", PrefixItems: []*Schema{{}}, Items: &Schema{Type: "boolean"}},
{Name: "tupleOpenMax", PrefixItems: []*Schema{{}}, Items: &Schema{}, MaxItems: 3},
{Name: "array", Items: &Schema{Type: "number"}},
{Name: "null", Type: "null"},
{Name: "string", Type: "string"},
{Name: "boolean", Type: "boolean"},
},
}
if diff := cmp.Diff(want, got); diff != "" {
t.Errorf("(-want, +got)\n%s", diff)
}
}
func TestEffectiveType(t *testing.T) {
const schema = `
{"properties": {
"o": {"type": "object"},
"a": {"type": "array"},
"n": {"type": "number"},
"s": {"type": "string"},
"z": {"type": "null"},
"b": {"type": "boolean"},
"t0": {"prefixItems": [{}], "items": {"type": "number"}},
"t1": {"items": {"type": "number"}, "maxItems": 3},
"v": {"maxItems": 3}
}}
`
var s *Schema
if err := json.Unmarshal([]byte(schema), &s); err != nil {
t.Fatalf("json.Unmarshal: %v", err)
}
var got []string
for _, p := range s.Properties {
got = append(got, p.EffectiveType())
}
want := strings.Fields(`
object
array
number
string
null
boolean
array
array
value
`)
if !reflect.DeepEqual(want, got) {
t.Errorf("\ngot:\n\t%v\nwant:\n\t%v", got, want)
}
}

View File

@@ -1,76 +0,0 @@
# This file holds tests for JSON schema to EBNF grammar conversions.
#
# The format is a JSON schema, followed by the expected EBNF grammar. Each test
# MAY be preceded by a comment that describes the test (e.g. the test name), followed by
# the JSON schema and the expected EBNF grammar. If no comment is present, the test
# name the tests number in the file (e.g. "#0", "#1", etc.)
#
# Blank lines signify the end or start of a new test. Comments can be added
# anywhere in the file, but they must be preceded by a '#' character and start at
# the beginning of the line.
# default
{}
root ::= value;
{"properties": {}}
root ::= value;
# array
{"properties": {"a": {"type": "array", "items": {"type": "string"}}}}
root_0_tuple_0 ::= string;
root_0 ::= "[" ( root_0_tuple_0 )* "]";
root ::= "{" "a" ":" root_0 "}";
# array with nested array
{"type": "array", "items": {"type": "array", "items": {"type": "string"}}}
root_tuple_0_tuple_0 ::= string;
root_tuple_0 ::= "[" ( root_tuple_0_tuple_0 )* "]";
root ::= "[" ( root_tuple_0 )* "]";
# object
{"properties": {"e": {}}}
root_0 ::= value;
root ::= "{" "e" ":" root_0 "}";
# object with nested object
{"properties": {"o": {"type": "object", "properties": {"e": {}}}}}
root_0_0 ::= value;
root_0 ::= "{" "e" ":" root_0_0 "}";
root ::= "{" "o" ":" root_0 "}";
# boolean
{"type": "boolean"}
root ::= boolean;
# number
{"properties": {"n": {"type": "number", "minimum": 123, "maximum": 4567}}}
root_0 ::= number;
root ::= "{" "n" ":" root_0 "}";
# string
{"type": "string"}
root ::= string;
# string with enum
{"type": "string", "enum": ["a", "b", "c"]}
root ::= ( "\"a\"" "|" "\"b\"" "|" "\"c\"" );
# spaces in key
{"properties": {"a b": {}}}
root_0 ::= value;
root ::= "{" "a b" ":" root_0 "}";
# issue7978
{ "type": "object", "properties": { "steps": { "type": "array", "items": { "type": "object", "properties": { "explanation": { "type": "string" }, "output": { "type": "string" } }, "required": [ "explanation", "output" ], "additionalProperties": false } }, "final_answer": { "type": "string" } }, "required": [ "steps", "final_answer" ], "additionalProperties": false }
root_0_tuple_0_0 ::= string;
root_0_tuple_0_1 ::= string;
root_0_tuple_0 ::= "{" "explanation" ":" root_0_tuple_0_0 "," "output" ":" root_0_tuple_0_1 "}";
root_0 ::= "[" ( root_0_tuple_0 )* "]";
root_1 ::= string;
root ::= "{" "steps" ":" root_0 "," "final_answer" ":" root_1 "}";
# !! # special characters in key
# !! {"properties": {"a!b": {}}}
# !! !invalid character '!' in key
# !!

View File

@@ -1,157 +1,53 @@
# `llama`
This package integrates the [llama.cpp](https://github.com/ggerganov/llama.cpp) library as a Go package and makes it easy to build it with tags for different CPU and GPU processors.
Supported:
- [x] CPU
- [x] avx, avx2
- [x] macOS Metal
- [x] Windows CUDA
- [x] Windows ROCm
- [x] Linux CUDA
- [x] Linux ROCm
- [x] Llava
Extra build steps are required for CUDA and ROCm on Windows since `nvcc` and `hipcc` both require using msvc as the host compiler. For these shared libraries are created:
- `ggml_cuda.dll` on Windows or `ggml_cuda.so` on Linux
- `ggml_hipblas.dll` on Windows or `ggml_hipblas.so` on Linux
> Note: it's important that memory is allocated and freed by the same compiler (e.g. entirely by code compiled with msvc or mingw). Issues from this should be rare, but there are some places where pointers are returned by the CUDA or HIP runtimes and freed elsewhere, causing a a crash. In a future change the same runtime should be used in both cases to avoid crashes.
## Building
```
go build .
```
### AVX
```shell
go build -tags avx .
```
### AVX2
```shell
# go doesn't recognize `-mfma` as a valid compiler flag
# see https://github.com/golang/go/issues/17895
go env -w "CGO_CPPFLAGS_ALLOW=-mfma|-mf16c"
go build -tags=avx,avx2 .
```
## Linux
### CUDA
Install the [CUDA toolkit v11.3.1](https://developer.nvidia.com/cuda-11-3-1-download-archive):
```shell
make ggml_cuda.so
go build -tags avx,cuda .
```
### ROCm
Install [ROCm](https://rocm.docs.amd.com/en/latest/).
```shell
make ggml_hipblas.so
go build -tags avx,rocm .
```
## Windows
Download [w64devkit](https://github.com/skeeto/w64devkit/releases/latest) for a simple MinGW development environment.
### CUDA
Install the [CUDA toolkit v11.3.1](https://developer.nvidia.com/cuda-11-3-1-download-archive) then build the cuda code:
```shell
make ggml_cuda.dll
go build -tags avx,cuda .
```
### ROCm
Install [ROCm](https://rocm.docs.amd.com/en/latest/).
```shell
make ggml_hipblas.dll
go build -tags avx,rocm .
```
## Building runners
```shell
# build all runners for this platform
make -j
```
This package provides Go bindings to [llama.cpp](https://github.com/ggerganov/llama.cpp).
## Vendoring
Ollama currently vendors [llama.cpp](https://github.com/ggerganov/llama.cpp/) and [ggml](https://github.com/ggerganov/ggml) through a vendoring model. While we generally strive to contribute changes back upstream to avoid drift, we cary a small set of patches which are applied to the tracking commit. A set of make targets are available to aid developers in updating to a newer tracking commit, or to work on changes.
Ollama vendors [llama.cpp](https://github.com/ggerganov/llama.cpp/) and [ggml](https://github.com/ggerganov/llama.cpp/tree/master/ggml/src). While we generally strive to contribute changes back upstream to avoid drift, we carry a small set of patches which are applied to the tracking commit.
If you update the vendoring code, start by running the following command to establish the tracking llama.cpp repo in the `./vendor/` directory.
```
make apply-patches
make -f Makefile.sync apply-patches
```
### Updating Base Commit
**Pin to new base commit**
To update to a newer base commit, select the upstream git tag or commit and update `llama/vendoring`
#### Applying patches
To change the base commit, update `FETCH_HEAD` in Makefile.sync.
When updating to a newer base commit, the existing patches may not apply cleanly and require manual merge resolution.
Start by applying the patches. If any of the patches have conflicts, the `git am` will stop at the first failure.
```
make apply-patches
make -f Makefile.sync apply-patches
```
If you see an error message about a conflict, go into the `./vendor/` directory, and perform merge resolution using your preferred tool to the patch commit which failed. Save the file(s) and continue the patch series with `git am --continue` . If any additional patches fail, follow the same pattern until the full patch series is applied. Once finished, run a final `create-patches` and `sync` target to ensure everything is updated.
If there are conflicts, you will see an error message. Resolve the conflicts in `./vendor/`, and continue the patch series with `git am --continue` and rerun `make -f Makefile.sync apply-patches`. Repeat until all patches are successfully applied.
Once all patches are applied, commit the changes to the tracking repository.
```
make create-patches sync
make -f Makefile.sync format-patches sync
```
Build and test Ollama, and make any necessary changes to the Go code based on the new base commit. Submit your PR to the Ollama repo.
### Generating Patches
When working on new fixes or features that impact vendored code, use the following model. First get a clean tracking repo with all current patches applied:
```
make apply-patches
make -f Makefile.sync clean apply-patches
```
Now edit the upstream native code in the `./vendor/` directory. You do not need to commit every change in order to build, a dirty working tree in the tracking repo is OK while developing. Simply save in your editor, and run the following to refresh the vendored code with your changes, build the backend(s) and build ollama:
```
make sync
make -j 8
go build .
```
> [!IMPORTANT]
> Do **NOT** run `apply-patches` while you're iterating as that will reset the tracking repo. It will detect a dirty tree and abort, but if your tree is clean and you accidentally ran this target, use `git reflog` to recover your commit(s).
Iterate until you're ready to submit PRs. Once your code is ready, commit a change in the `./vendor/` directory, then generate the patches for ollama with
```
make create-patches
make -f Makefile.sync format-patches
```
> [!IMPORTANT]
> Once you have completed this step, it is safe to run `apply-patches` since your change is preserved in the patches.
In your `./vendor/` directory, create a branch, and cherry-pick the new commit to that branch, then submit a PR upstream to llama.cpp.
Commit the changes in the ollama repo and submit a PR to Ollama, which will include the vendored code update with your change, along with the patches.

2
llama/build-info.cpp generated vendored
View File

@@ -1,4 +1,4 @@
int LLAMA_BUILD_NUMBER = 0;
char const *LLAMA_COMMIT = "ba1cb19cdd0d92e012e0f6e009e0620f854b6afd";
char const *LLAMA_COMMIT = "46e3556e01b824e52395fb050b29804b6cff2a7c";
char const *LLAMA_COMPILER = "";
char const *LLAMA_BUILD_TARGET = "";

4
llama/build-info.cpp.in Normal file
View File

@@ -0,0 +1,4 @@
int LLAMA_BUILD_NUMBER = 0;
char const *LLAMA_COMMIT = "@FETCH_HEAD@";
char const *LLAMA_COMPILER = "";
char const *LLAMA_BUILD_TARGET = "";

View File

@@ -1235,35 +1235,15 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
}
}
#ifdef GGML_USE_CUDA
new_clip->backend = ggml_backend_cuda_init(0);
LOG_INF("%s: CLIP using CUDA backend\n", __func__);
#endif
#ifdef GGML_USE_METAL
new_clip->backend = ggml_backend_metal_init();
LOG_INF("%s: CLIP using Metal backend\n", __func__);
#endif
#ifdef GGML_USE_CANN
new_clip->backend = ggml_backend_cann_init(0);
LOG_INF("%s: CLIP using CANN backend\n", __func__);
#endif
#ifdef GGML_USE_VULKAN
new_clip->backend = ggml_backend_vk_init(0);
LOG_INF("%s: CLIP using Vulkan backend\n", __func__);
#endif
#ifdef GGML_USE_SYCL
new_clip->backend = ggml_backend_sycl_init(0);
LOG_INF("%s: CLIP using SYCL backend\n", __func__);
#endif
if (!new_clip->backend) {
new_clip->backend = ggml_backend_cpu_init();
LOG_INF("%s: CLIP using CPU backend\n", __func__);
ggml_backend_t backend = ggml_backend_init_best();
if (backend == nullptr) {
LOG_ERR("%s: failed to initialize backend\n", __func__);
clip_free(new_clip);
gguf_free(ctx);
return nullptr;
}
LOG_INF("%s: using %s backend\n", __func__, ggml_backend_name(backend));
new_clip->backend = backend;
// model size and capabilities
{

View File

@@ -3,5 +3,6 @@ package llama
// #cgo CXXFLAGS: -std=c++17
// #cgo CPPFLAGS: -I${SRCDIR}/../include
// #cgo CPPFLAGS: -I${SRCDIR}/../../../ml/backend/ggml/ggml/include
// #cgo windows CPPFLAGS: -D_WIN32_WINNT=0x0602
import "C"
import _ "github.com/ollama/ollama/ml/backend/ggml/ggml/src"

View File

@@ -199,21 +199,25 @@ func (c *Context) KvCacheDefrag() {
// Get the embeddings for a sequence id
func (c *Context) GetEmbeddingsSeq(seqId int) []float32 {
embeddings := unsafe.Pointer(C.llama_get_embeddings_seq(c.c, C.int(seqId)))
if embeddings == nil {
e := unsafe.Pointer(C.llama_get_embeddings_seq(c.c, C.int(seqId)))
if e == nil {
return nil
}
return unsafe.Slice((*float32)(embeddings), c.Model().NEmbd())
embeddings := make([]float32, c.Model().NEmbd())
_ = copy(embeddings, unsafe.Slice((*float32)(e), c.Model().NEmbd()))
return embeddings
}
func (c *Context) GetEmbeddingsIth(i int) []float32 {
embeddings := unsafe.Pointer(C.llama_get_embeddings_ith(c.c, C.int32_t(i)))
if embeddings == nil {
e := unsafe.Pointer(C.llama_get_embeddings_ith(c.c, C.int32_t(i)))
if e == nil {
return nil
}
return unsafe.Slice((*float32)(embeddings), c.Model().NEmbd())
embeddings := make([]float32, c.Model().NEmbd())
_ = copy(embeddings, unsafe.Slice((*float32)(e), c.Model().NEmbd()))
return embeddings
}
type ModelParams struct {

31
llama/mllama.cpp vendored
View File

@@ -558,30 +558,15 @@ struct mllama_ctx *mllama_model_load(const char *fname, const int verbosity = 1)
mllama_ctx *new_mllama = new mllama_ctx{};
#ifdef GGML_USE_CUDA
new_mllama->backend = ggml_backend_cuda_init(0);
LOG("vision using CUDA backend");
#endif
#ifdef GGML_USE_METAL
new_mllama->backend = ggml_backend_metal_init();
LOG("vision using Metal backend");
#endif
#ifdef GGML_USE_CANN
new_mllama->backend = ggml_backend_cann_init(0);
LOG("vision using CANN backend");
#endif
#ifdef GGML_USE_VULKAN
new_mllama->backend = ggml_backend_vk_init(0);
LOG("vision using Vulkan backend");
#endif
if (!new_mllama->backend) {
new_mllama->backend = ggml_backend_cpu_init();
LOG("vision using CPU backend");
ggml_backend_t backend = ggml_backend_init_best();
if (backend == nullptr) {
LOG("%s: failed to initialize backend\n", __func__);
mllama_free(new_mllama);
gguf_free(ctx);
return nullptr;
}
LOG("%s: using %s backend\n", __func__, ggml_backend_name(backend));
new_mllama->backend = backend;
// load tensors
{

View File

@@ -1,14 +1,14 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: jmorganca <jmorganca@gmail.com>
Date: Sat, 4 Jan 2025 22:52:48 -0800
Subject: [PATCH] re-enable gpu for clip
Subject: [PATCH] use dynamic backend loading for clip
---
examples/llava/clip.cpp | 86 ++++++++++++++++++++---------------------
1 file changed, 43 insertions(+), 43 deletions(-)
examples/llava/clip.cpp | 74 +++++++++++++++--------------------------
1 file changed, 27 insertions(+), 47 deletions(-)
diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp
index b3c1829f..718052e1 100644
index b3c1829f..86b91d5c 100644
--- a/examples/llava/clip.cpp
+++ b/examples/llava/clip.cpp
@@ -8,25 +8,25 @@
@@ -56,7 +56,7 @@ index b3c1829f..718052e1 100644
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
@@ -1235,30 +1235,30 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
@@ -1235,35 +1235,15 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
}
}
@@ -84,30 +84,19 @@ index b3c1829f..718052e1 100644
-// new_clip->backend = ggml_backend_sycl_init(0);
-// LOG_INF("%s: CLIP using SYCL backend\n", __func__);
-//#endif
+#ifdef GGML_USE_CUDA
+ new_clip->backend = ggml_backend_cuda_init(0);
+ LOG_INF("%s: CLIP using CUDA backend\n", __func__);
+#endif
+
+#ifdef GGML_USE_METAL
+ new_clip->backend = ggml_backend_metal_init();
+ LOG_INF("%s: CLIP using Metal backend\n", __func__);
+#endif
+
+#ifdef GGML_USE_CANN
+ new_clip->backend = ggml_backend_cann_init(0);
+ LOG_INF("%s: CLIP using CANN backend\n", __func__);
+#endif
+
+#ifdef GGML_USE_VULKAN
+ new_clip->backend = ggml_backend_vk_init(0);
+ LOG_INF("%s: CLIP using Vulkan backend\n", __func__);
+#endif
+
+#ifdef GGML_USE_SYCL
+ new_clip->backend = ggml_backend_sycl_init(0);
+ LOG_INF("%s: CLIP using SYCL backend\n", __func__);
+#endif
-
- if (!new_clip->backend) {
- new_clip->backend = ggml_backend_cpu_init();
- LOG_INF("%s: CLIP using CPU backend\n", __func__);
+ ggml_backend_t backend = ggml_backend_init_best();
+ if (backend == nullptr) {
+ LOG_ERR("%s: failed to initialize backend\n", __func__);
+ clip_free(new_clip);
+ gguf_free(ctx);
+ return nullptr;
}
+ LOG_INF("%s: using %s backend\n", __func__, ggml_backend_name(backend));
+ new_clip->backend = backend;
if (!new_clip->backend) {
new_clip->backend = ggml_backend_cpu_init();
// model size and capabilities
{

View File

@@ -0,0 +1,29 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Michael Yang <mxyng@pm.me>
Date: Tue, 14 Jan 2025 15:59:04 -0800
Subject: [PATCH] add phony target ggml-cpu for all cpu variants
---
ggml/src/CMakeLists.txt | 2 ++
1 file changed, 2 insertions(+)
diff --git a/ggml/src/CMakeLists.txt b/ggml/src/CMakeLists.txt
index 84101c32..72b488dd 100644
--- a/ggml/src/CMakeLists.txt
+++ b/ggml/src/CMakeLists.txt
@@ -278,6 +278,7 @@ function(ggml_add_cpu_backend_variant tag_name)
endforeach()
ggml_add_cpu_backend_variant_impl(${tag_name})
+ add_dependencies(ggml-cpu ggml-cpu-${tag_name})
endfunction()
ggml_add_backend(CPU)
@@ -286,6 +287,7 @@ if (GGML_CPU_ALL_VARIANTS)
if (NOT GGML_BACKEND_DL)
message(FATAL_ERROR "GGML_CPU_ALL_VARIANTS requires GGML_BACKEND_DL")
endif()
+ add_custom_target(ggml-cpu)
ggml_add_cpu_backend_variant(sandybridge AVX)
ggml_add_cpu_backend_variant(haswell AVX F16C AVX2 FMA)
ggml_add_cpu_backend_variant(skylakex AVX F16C AVX2 FMA AVX512)

View File

@@ -443,7 +443,6 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
s.lc.Synchronize()
}
var totalSamplingTime time.Duration
for i, seq := range s.seqs {
if seq == nil {
continue
@@ -478,12 +477,8 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
}
// sample a token
samplingStart := time.Now()
token := seq.samplingCtx.Sample(s.lc, seq.iBatch)
seq.samplingCtx.Accept(token, true)
samplingTime := time.Since(samplingStart)
totalSamplingTime += samplingTime
slog.Info("sampling time", "time", samplingTime)
piece := s.model.TokenToPiece(token)
seq.numPredicted++
@@ -640,7 +635,6 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
samplingParams.Seed = uint32(req.Seed)
samplingParams.Grammar = req.Grammar
start := time.Now()
seq, err := s.NewSequence(req.Prompt, req.Images, NewSequenceParams{
numPredict: req.NumPredict,
stop: req.Stop,
@@ -648,7 +642,6 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
samplingParams: &samplingParams,
embedding: false,
})
slog.Info("new sequence created", "duration", time.Since(start))
if err != nil {
http.Error(w, fmt.Sprintf("Failed to create new sequence: %v", err), http.StatusInternalServerError)
return

View File

@@ -1,4 +1,4 @@
package ggml
package llm
import "fmt"
@@ -32,9 +32,10 @@ const (
fileTypeIQ1_S
fileTypeIQ4_NL
fileTypeIQ3_S
fileTypeIQ3_M
fileTypeIQ2_S
fileTypeIQ4_XS
fileTypeIQ2_M
fileTypeIQ4_XS
fileTypeIQ1_M
fileTypeBF16
@@ -93,6 +94,8 @@ func ParseFileType(s string) (fileType, error) {
return fileTypeIQ4_NL, nil
case "IQ3_S":
return fileTypeIQ3_S, nil
case "IQ3_M":
return fileTypeIQ3_M, nil
case "IQ2_S":
return fileTypeIQ2_S, nil
case "IQ4_XS":
@@ -160,6 +163,8 @@ func (t fileType) String() string {
return "IQ4_NL"
case fileTypeIQ3_S:
return "IQ3_S"
case fileTypeIQ3_M:
return "IQ3_M"
case fileTypeIQ2_S:
return "IQ2_S"
case fileTypeIQ4_XS:

149
llm/ggla.go Normal file
View File

@@ -0,0 +1,149 @@
package llm
import (
"encoding/binary"
"errors"
"io"
"slices"
)
type containerGGLA struct {
version uint32
}
func (c *containerGGLA) Name() string {
return "ggla"
}
func (c *containerGGLA) Decode(rs io.ReadSeeker) (model, error) {
if err := binary.Read(rs, binary.LittleEndian, &c.version); err != nil {
return nil, err
}
switch c.version {
case 1:
default:
return nil, errors.New("invalid version")
}
model := newGGLA(c)
err := model.decode(rs)
return model, err
}
type ggla struct {
*containerGGLA
kv KV
tensors []*Tensor
tensorOffset uint64
}
func newGGLA(container *containerGGLA) *ggla {
return &ggla{
containerGGLA: container,
kv: make(KV),
}
}
func (llm *ggla) KV() KV {
return llm.kv
}
func (llm *ggla) Tensors() *Tensors {
return &Tensors{
Items: llm.tensors,
Offset: llm.tensorOffset,
}
}
func (llm *ggla) decode(rs io.ReadSeeker) (retErr error) {
var r uint32
if err := binary.Read(rs, binary.LittleEndian, &r); err != nil {
return err
}
llm.kv["r"] = r
var alpha uint32
if err := binary.Read(rs, binary.LittleEndian, &alpha); err != nil {
return err
}
llm.kv["alpha"] = alpha
offset, err := rs.Seek(0, io.SeekCurrent)
if err != nil {
return err
}
llm.tensorOffset = uint64(offset)
for {
var dims uint32
if err := binary.Read(rs, binary.LittleEndian, &dims); err != nil {
if errors.Is(err, io.EOF) {
return nil
}
return err
}
defer func() {
if errors.Is(retErr, io.EOF) {
retErr = io.ErrUnexpectedEOF
}
}()
var namesize uint32
if err := binary.Read(rs, binary.LittleEndian, &namesize); err != nil {
return err
}
var t Tensor
if err := binary.Read(rs, binary.LittleEndian, &t.Kind); err != nil {
return err
}
t.Shape = make([]uint64, dims)
for i := 0; uint32(i) < dims; i++ {
var shape32 uint32
if err := binary.Read(rs, binary.LittleEndian, &shape32); err != nil {
return err
}
t.Shape[i] = uint64(shape32)
}
// ggla tensor shape is reversed
// ref: https://github.com/ggerganov/llama.cpp/blob/29ae62d2ae163e2b68aa0ad3bf2ab4636de0c957/convert-lora-to-ggml.py#L44
slices.Reverse(t.Shape)
name := make([]byte, namesize)
if err := binary.Read(rs, binary.LittleEndian, &name); err != nil {
return err
}
t.Name = string(name)
offset, err := rs.Seek(0, io.SeekCurrent)
if err != nil {
return err
}
if _, err := rs.Seek((offset+31)&-32-offset, io.SeekCurrent); err != nil {
return err
}
offset, err = rs.Seek(0, io.SeekCurrent)
if err != nil {
return err
}
t.Offset = uint64(offset)
if _, err := rs.Seek(int64(t.Size()), io.SeekCurrent); err != nil {
return err
}
llm.tensors = append(llm.tensors, &t)
}
}

View File

@@ -1,15 +1,15 @@
package ggml
package llm
import (
"encoding/binary"
"errors"
"fmt"
"io"
"log/slog"
"slices"
"strings"
"sync"
"github.com/ollama/ollama/fs/util/bufioutil"
"github.com/ollama/ollama/util/bufioutil"
)
type GGML struct {
@@ -19,168 +19,145 @@ type GGML struct {
type model interface {
KV() KV
Tensors() Tensors
Tensors() *Tensors
}
type KV map[string]any
func (kv KV) u64(key string) uint64 {
switch v := kv[key].(type) {
case uint64:
return v
case uint32:
return uint64(v)
case float64:
return uint64(v)
default:
return 0
}
}
func (kv KV) Architecture() string {
return kv.String("general.architecture", "unknown")
if s, ok := kv["general.architecture"].(string); ok {
return s
}
return "unknown"
}
func (kv KV) Kind() string {
return kv.String("general.type", "unknown")
if s, ok := kv["general.type"].(string); ok {
return s
}
return "unknown"
}
func (kv KV) ParameterCount() uint64 {
return keyValue[uint64](kv, "general.parameter_count")
return kv.u64("general.parameter_count")
}
func (kv KV) FileType() fileType {
if t := kv.Uint("general.file_type"); t > 0 {
return fileType(t)
if u64 := kv.u64("general.file_type"); u64 > 0 {
return fileType(uint32(u64))
}
return fileTypeUnknown
}
func (kv KV) BlockCount() uint64 {
return uint64(kv.Uint("block_count"))
}
func (kv KV) EmbeddingLength() uint64 {
return uint64(kv.Uint("embedding_length"))
return kv.u64(fmt.Sprintf("%s.block_count", kv.Architecture()))
}
func (kv KV) HeadCount() uint64 {
return uint64(kv.Uint("attention.head_count"))
return kv.u64(fmt.Sprintf("%s.attention.head_count", kv.Architecture()))
}
func (kv KV) HeadCountKV() uint64 {
return uint64(kv.Uint("attention.head_count_kv", 1))
if headCountKV := kv.u64(fmt.Sprintf("%s.attention.head_count_kv", kv.Architecture())); headCountKV > 0 {
return headCountKV
}
return 1
}
func (kv KV) EmbeddingHeadCount() uint64 {
if heads := kv.HeadCount(); heads > 0 {
return kv.EmbeddingLength() / heads
return kv.EmbeddingLength() / kv.HeadCount()
}
return 0
}
func (kv KV) EmbeddingHeadCountK() uint64 {
return uint64(kv.Uint("attention.key_length", uint32(kv.EmbeddingHeadCount())))
if k := kv.u64(fmt.Sprintf("%s.attention.key_length", kv.Architecture())); k > 0 {
return k
}
return kv.EmbeddingHeadCount()
}
func (kv KV) EmbeddingHeadCountV() uint64 {
return uint64(kv.Uint("attention.value_length", uint32(kv.EmbeddingHeadCount())))
if v := kv.u64(fmt.Sprintf("%s.attention.value_length", kv.Architecture())); v > 0 {
return v
}
return kv.EmbeddingHeadCount()
}
func (kv KV) GQA() uint64 {
return kv.HeadCount() / kv.HeadCountKV()
}
func (kv KV) EmbeddingLength() uint64 {
return kv.u64(fmt.Sprintf("%s.embedding_length", kv.Architecture()))
}
func (kv KV) ContextLength() uint64 {
return uint64(kv.Uint("context_length"))
return kv.u64(fmt.Sprintf("%s.context_length", kv.Architecture()))
}
func (kv KV) ChatTemplate() string {
return kv.String("tokenizer.chat_template")
}
func (kv KV) String(key string, defaultValue ...string) string {
return keyValue(kv, key, append(defaultValue, "")...)
}
func (kv KV) Uint(key string, defaultValue ...uint32) uint32 {
return keyValue(kv, key, append(defaultValue, 0)...)
}
func (kv KV) Float(key string, defaultValue ...float32) float32 {
return keyValue(kv, key, append(defaultValue, 0)...)
}
func (kv KV) Strings(key string, defaultValue ...[]string) []string {
r := keyValue(kv, key, &array{})
s := make([]string, r.size)
for i := range r.size {
s[i] = r.values[i].(string)
}
s, _ := kv["tokenizer.chat_template"].(string)
return s
}
func (kv KV) Uints(key string, defaultValue ...[]uint32) []uint32 {
r := keyValue(kv, key, &array{})
s := make([]uint32, r.size)
for i := range r.size {
s[i] = uint32(r.values[i].(int32))
}
return s
}
func keyValue[T string | uint32 | uint64 | float32 | *array](kv KV, key string, defaultValue ...T) T {
if !strings.HasPrefix(key, "tokenizer.") && !strings.HasPrefix(key, "general.") {
key = kv.Architecture() + "." + key
}
if val, ok := kv[key]; ok {
return val.(T)
}
slog.Warn("key not found", "key", key, "default", defaultValue[0])
return defaultValue[0]
}
type Tensors struct {
items []*Tensor
Items []*Tensor
Offset uint64
layers map[string]Layer
layersOnce sync.Once
}
func (s Tensors) Items(prefix ...string) []*Tensor {
if len(prefix) == 0 {
return s.items
}
func (ts *Tensors) Layers() map[string]Layer {
ts.layersOnce.Do(func() {
ts.layers = make(map[string]Layer)
for _, t := range ts.Items {
parts := strings.Split(t.Name, ".")
if index := slices.IndexFunc(parts, func(s string) bool { return s == "blk" || s == "mm" }); index != -1 {
if len(parts) > index+2 {
// blk and mm should have a number after them, join it
parts = append(
[]string{strings.Join(parts[:index+2], ".")},
parts[index+2:]...)
}
}
var items []*Tensor
for _, t := range s.items {
if strings.HasPrefix(t.Name, prefix[0]) {
items = append(items, t)
if _, ok := ts.layers[parts[0]]; !ok {
ts.layers[parts[0]] = make(Layer)
}
ts.layers[parts[0]][strings.Join(parts[1:], ".")] = t
}
}
})
return items
}
func (ts Tensors) Layers() map[string]Layer {
layers := make(map[string]Layer)
for _, t := range ts.items {
parts := strings.Split(t.Name, ".")
if i := slices.Index(parts, "blk"); i > 0 {
parts = append([]string{
strings.Join(parts[:i], "."),
strings.Join(parts[i:i+2], "."),
}, parts[i+2:]...)
} else if i == 0 {
parts = append([]string{
strings.Join(parts[i:i+2], "."),
}, parts[i+2:]...)
}
if _, ok := layers[parts[0]]; !ok {
layers[parts[0]] = make(Layer)
}
layers[parts[0]][strings.Join(parts[1:], ".")] = t
}
return layers
return ts.layers
}
type Layer map[string]*Tensor
func (l Layer) Size() (size uint64) {
func (l Layer) size() (size uint64) {
for _, t := range l {
size += t.Size()
}
@@ -278,6 +255,8 @@ func (t Tensor) typeSize() uint64 {
return 8
case 29: // IQ1_M
return blockSize/8 + blockSize/16 + blockSize/32
case 30: // BF16
return 2
default:
return 0
}
@@ -316,7 +295,7 @@ const (
var ErrUnsupportedFormat = errors.New("unsupported model format")
func DetectContentType(b []byte) string {
func DetectGGMLType(b []byte) string {
switch binary.LittleEndian.Uint32(b[:4]) {
case FILE_MAGIC_GGML:
return "ggml"
@@ -333,12 +312,12 @@ func DetectContentType(b []byte) string {
}
}
// Decode decodes a GGML model from the given reader.
// DecodeGGML decodes a GGML model from the given reader.
//
// It collects array values for arrays with a size less than or equal to
// maxArraySize. If maxArraySize is 0, the default value of 1024 is used. If
// the maxArraySize is negative, all arrays are collected.
func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
func DecodeGGML(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
if maxArraySize == 0 {
maxArraySize = 1024
}
@@ -352,6 +331,10 @@ func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
var c container
switch magic {
case FILE_MAGIC_GGML, FILE_MAGIC_GGMF, FILE_MAGIC_GGJT:
return nil, 0, ErrUnsupportedFormat
case FILE_MAGIC_GGLA:
c = &containerGGLA{}
case FILE_MAGIC_GGUF_LE:
c = &containerGGUF{ByteOrder: binary.LittleEndian, maxArraySize: maxArraySize}
case FILE_MAGIC_GGUF_BE:
@@ -547,20 +530,21 @@ func (llm GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partia
}
// SupportsKVCacheType checks if the requested cache type is supported
func (llm GGML) SupportsKVCacheType(cacheType string) bool {
return slices.Contains([]string{"f16", "q8_0", "q4_0"}, cacheType)
func (ggml GGML) SupportsKVCacheType(cacheType string) bool {
validKVCacheTypes := []string{"f16", "q8_0", "q4_0"}
return slices.Contains(validKVCacheTypes, cacheType)
}
// SupportsFlashAttention checks if the model supports flash attention
func (llm GGML) SupportsFlashAttention() bool {
_, isEmbedding := llm.KV()[fmt.Sprintf("%s.pooling_type", llm.KV().Architecture())]
func (ggml GGML) SupportsFlashAttention() bool {
_, isEmbedding := ggml.KV()[fmt.Sprintf("%s.pooling_type", ggml.KV().Architecture())]
if isEmbedding {
return false
}
// Check head counts match and are non-zero
headCountK := llm.KV().EmbeddingHeadCountK()
headCountV := llm.KV().EmbeddingHeadCountV()
headCountK := ggml.KV().EmbeddingHeadCountK()
headCountV := ggml.KV().EmbeddingHeadCountV()
return headCountK != 0 && headCountV != 0 && headCountK == headCountV
}

1
llm/ggml_test.go Normal file
View File

@@ -0,0 +1 @@
package llm

View File

@@ -1,4 +1,4 @@
package ggml
package llm
import (
"bytes"
@@ -8,9 +8,10 @@ import (
"fmt"
"io"
"log/slog"
"maps"
"slices"
"strings"
"golang.org/x/exp/maps"
)
type containerGGUF struct {
@@ -109,9 +110,9 @@ func (llm *gguf) KV() KV {
return llm.kv
}
func (llm *gguf) Tensors() Tensors {
return Tensors{
items: llm.tensors,
func (llm *gguf) Tensors() *Tensors {
return &Tensors{
Items: llm.tensors,
Offset: llm.tensorOffset,
}
}
@@ -522,7 +523,7 @@ func WriteGGUF(ws io.WriteSeeker, kv KV, ts []Tensor) error {
return err
}
keys := slices.Collect(maps.Keys(kv))
keys := maps.Keys(kv)
slices.Sort(keys)
for _, key := range keys {

View File

@@ -11,19 +11,18 @@ import (
"github.com/ollama/ollama/discover"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/fs/ggml"
)
// This algorithm looks for a complete fit to determine if we need to unload other models
func PredictServerFit(allGpus discover.GpuInfoList, f *ggml.GGML, adapters, projectors []string, opts api.Options) (bool, uint64) {
func PredictServerFit(allGpus discover.GpuInfoList, ggml *GGML, adapters, projectors []string, opts api.Options) (bool, uint64) {
// Split up the GPUs by type and try them
var estimatedVRAM uint64
for _, gpus := range allGpus.ByLibrary() {
var layerCount int
estimate := EstimateGPULayers(gpus, f, projectors, opts)
estimate := EstimateGPULayers(gpus, ggml, projectors, opts)
layerCount, estimatedVRAM = estimate.Layers, estimate.VRAMSize
if opts.NumGPU < 0 {
if layerCount > 0 && layerCount >= int(f.KV().BlockCount()+1) {
if layerCount > 0 && layerCount >= int(ggml.KV().BlockCount()+1) {
return true, estimatedVRAM
}
} else {
@@ -71,7 +70,7 @@ type MemoryEstimate struct {
// Given a model and one or more GPU targets, predict how many layers and bytes we can load, and the total size
// The GPUs provided must all be the same Library
func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []string, opts api.Options) MemoryEstimate {
func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string, opts api.Options) MemoryEstimate {
// Graph size for a partial offload, applies to all GPUs
var graphPartialOffload uint64
@@ -116,31 +115,33 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
opts.NumCtx = max(opts.NumCtx, 2048)
}
layers := f.Tensors().Layers()
layers := ggml.Tensors().Layers()
// add one layer worth of memory as a buffer
if blk0, ok := layers["blk.0"]; ok {
layerSize = blk0.Size()
layerSize = blk0.size()
} else {
slog.Warn("model missing blk.0 layer size")
}
var kvct string
if envconfig.FlashAttention() &&
fa := envconfig.FlashAttention() &&
discover.GetGPUInfo().FlashAttentionSupported() &&
f.SupportsFlashAttention() {
ggml.SupportsFlashAttention()
var kvct string
if fa {
requested := strings.ToLower(envconfig.KvCacheType())
if requested != "" && f.SupportsKVCacheType(requested) {
if requested != "" && ggml.SupportsKVCacheType(requested) {
kvct = requested
}
}
kv, graphPartialOffload, graphFullOffload := f.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)), kvct)
kv, graphPartialOffload, graphFullOffload := ggml.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)), kvct)
// KV is proportional to the number of layers
layerSize += kv / f.KV().BlockCount()
layerSize += kv / ggml.KV().BlockCount()
if graphPartialOffload == 0 {
graphPartialOffload = f.KV().GQA() * kv / 6
graphPartialOffload = ggml.KV().GQA() * kv / 6
}
if graphFullOffload == 0 {
graphFullOffload = graphPartialOffload
@@ -155,12 +156,12 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
}
if layer, ok := layers["output_norm"]; ok {
memoryLayerOutput += layer.Size()
memoryLayerOutput += layer.size()
}
if layer, ok := layers["output"]; ok {
memoryLayerOutput += layer.Size()
memoryLayerOutput += layer.size()
} else if layer, ok := layers["token_embd"]; ok {
memoryLayerOutput += layer.Size()
memoryLayerOutput += layer.size()
}
// Output layer handled at the end if we have space
@@ -210,11 +211,11 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
}
// For all the layers, find where they can fit on the GPU(s)
for i := range int(f.KV().BlockCount()) {
for i := range int(ggml.KV().BlockCount()) {
// Some models have inconsistent layer sizes
if blk, ok := layers[fmt.Sprintf("blk.%d", i)]; ok {
layerSize = blk.Size()
layerSize += kv / f.KV().BlockCount()
layerSize = blk.size()
layerSize += kv / ggml.KV().BlockCount()
}
memoryWeights += layerSize
@@ -237,10 +238,10 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
}
}
}
if layerCount >= int(f.KV().BlockCount()) {
if layerCount >= int(ggml.KV().BlockCount()) {
fullyLoaded = true
} else {
for i := layerCount; i < int(f.KV().BlockCount()); i++ {
for i := layerCount; i < int(ggml.KV().BlockCount()); i++ {
overflow += layerSize
}
}
@@ -258,7 +259,7 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
}
}
if layerCount < int(f.KV().BlockCount())+1 {
if layerCount < int(ggml.KV().BlockCount())+1 {
fullyLoaded = false
overflow += memoryLayerOutput
}
@@ -310,7 +311,7 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
inferenceLibrary: gpus[0].Library,
layersRequested: opts.NumGPU,
layersModel: int(f.KV().BlockCount()) + 1,
layersModel: int(ggml.KV().BlockCount()) + 1,
availableList: availableList,
kv: kv,
allocationsList: allocationsList,
@@ -338,9 +339,22 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
return estimate
}
func (m MemoryEstimate) LogValue() slog.Value {
attrs := []slog.Attr{
slog.String("library", m.inferenceLibrary),
func (m MemoryEstimate) log() {
overhead := envconfig.GpuOverhead()
log := slog.With()
if m.projectorWeights > 0 {
log = log.With(
slog.Group(
"projector",
"weights", format.HumanBytes2(m.projectorWeights),
"graph", format.HumanBytes2(m.projectorGraph),
),
)
}
log.Info(
"offload to "+m.inferenceLibrary,
slog.Group(
"layers",
// requested number of layers to offload
@@ -356,7 +370,7 @@ func (m MemoryEstimate) LogValue() slog.Value {
"memory",
// memory available by GPU for offloading
"available", m.availableList,
"gpu_overhead", format.HumanBytes2(envconfig.GpuOverhead()),
"gpu_overhead", format.HumanBytes2(overhead),
slog.Group(
"required",
// memory required for full offloading
@@ -385,17 +399,7 @@ func (m MemoryEstimate) LogValue() slog.Value {
"partial", format.HumanBytes2(m.graphPartialOffload),
),
),
}
if m.projectorWeights > 0 {
attrs = append(attrs, slog.Group(
"projector",
"weights", format.HumanBytes2(m.projectorWeights),
"graph", format.HumanBytes2(m.projectorGraph),
))
}
return slog.GroupValue(attrs...)
)
}
func projectorMemoryRequirements(filename string) (weights, graphSize uint64) {
@@ -405,13 +409,13 @@ func projectorMemoryRequirements(filename string) (weights, graphSize uint64) {
}
defer file.Close()
ggml, _, err := ggml.Decode(file, 0)
ggml, _, err := DecodeGGML(file, 0)
if err != nil {
return 0, 0
}
for _, layer := range ggml.Tensors().Layers() {
weights += layer.Size()
weights += layer.size()
}
switch arch := ggml.KV().Architecture(); arch {

View File

@@ -11,7 +11,6 @@ import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/discover"
"github.com/ollama/ollama/fs/ggml"
)
func TestEstimateGPULayers(t *testing.T) {
@@ -24,7 +23,7 @@ func TestEstimateGPULayers(t *testing.T) {
defer f.Close()
inputLayerCount := 5
tensors := []ggml.Tensor{
tensors := []Tensor{
{Name: "blk.0.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
{Name: "blk.1.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
{Name: "blk.2.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
@@ -33,7 +32,7 @@ func TestEstimateGPULayers(t *testing.T) {
{Name: "output.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
}
assert.Len(t, tensors, inputLayerCount+1)
err = ggml.WriteGGUF(f, ggml.KV{
err = WriteGGUF(f, KV{
"general.architecture": "llama",
"llama.context_length": uint32(32),
"llama.embedding_length": uint32(4096),

View File

@@ -28,8 +28,6 @@ import (
"github.com/ollama/ollama/discover"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/grammar"
"github.com/ollama/ollama/llama"
)
@@ -73,7 +71,7 @@ type llmServer struct {
// It collects array values for arrays with a size less than or equal to
// maxArraySize. If maxArraySize is 0, the default value of 1024 is used. If
// the maxArraySize is negative, all arrays are collected.
func LoadModel(model string, maxArraySize int) (*ggml.GGML, error) {
func LoadModel(model string, maxArraySize int) (*GGML, error) {
if _, err := os.Stat(model); err != nil {
return nil, err
}
@@ -84,17 +82,21 @@ func LoadModel(model string, maxArraySize int) (*ggml.GGML, error) {
}
defer f.Close()
ggml, _, err := ggml.Decode(f, maxArraySize)
ggml, _, err := DecodeGGML(f, maxArraySize)
return ggml, err
}
// NewLlamaServer will run a server for the given GPUs
// The gpu list must be a single family.
func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapters, projectors []string, opts api.Options, numParallel int) (LlamaServer, error) {
func NewLlamaServer(gpus discover.GpuInfoList, model string, ggml *GGML, adapters, projectors []string, opts api.Options, numParallel int) (LlamaServer, error) {
var systemTotalMemory uint64
var systemFreeMemory uint64
var systemSwapFreeMemory uint64
systemInfo := discover.GetSystemInfo()
systemTotalMemory := systemInfo.System.TotalMemory
systemFreeMemory := systemInfo.System.FreeMemory
systemSwapFreeMemory := systemInfo.System.FreeSwap
systemTotalMemory = systemInfo.System.TotalMemory
systemFreeMemory = systemInfo.System.FreeMemory
systemSwapFreeMemory = systemInfo.System.FreeSwap
slog.Info("system memory", "total", format.HumanBytes2(systemTotalMemory), "free", format.HumanBytes2(systemFreeMemory), "free_swap", format.HumanBytes2(systemSwapFreeMemory))
// If the user wants zero GPU layers, reset the gpu list to be CPU/system ram info
@@ -102,12 +104,8 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapt
gpus = discover.GetCPUInfo()
}
var estimate MemoryEstimate
if len(gpus) == 1 && gpus[0].Library == "cpu" {
estimate = EstimateGPULayers(gpus, f, projectors, opts)
} else {
estimate = EstimateGPULayers(gpus, f, projectors, opts)
estimate := EstimateGPULayers(gpus, ggml, projectors, opts)
if len(gpus) > 1 || gpus[0].Library != "cpu" {
switch {
case gpus[0].Library == "metal" && estimate.VRAMSize > systemTotalMemory:
// disable partial offloading when model is greater than total system memory as this
@@ -132,7 +130,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapt
}
}
slog.Info("offload", "", estimate)
estimate.log()
params := []string{
"--model", model,
@@ -176,7 +174,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapt
fa = false
}
if fa && !f.SupportsFlashAttention() {
if fa && !ggml.SupportsFlashAttention() {
slog.Warn("flash attention enabled but not supported by model")
fa = false
}
@@ -189,7 +187,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapt
// Flash Attention also supports kv cache quantization
// Enable if the requested and kv cache type is supported by the model
if kvct != "" && f.SupportsKVCacheType(kvct) {
if kvct != "" && ggml.SupportsKVCacheType(kvct) {
params = append(params, "--kv-cache-type", kvct)
} else {
slog.Warn("kv cache type not supported by model", "type", kvct)
@@ -202,7 +200,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapt
for _, g := range gpus {
if g.Library == "metal" &&
uint64(opts.NumGPU) > 0 &&
uint64(opts.NumGPU) < f.KV().BlockCount()+1 {
uint64(opts.NumGPU) < ggml.KV().BlockCount()+1 {
opts.UseMMap = new(bool)
*opts.UseMMap = false
}
@@ -234,149 +232,205 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapt
params = append(params, "--multiuser-cache")
}
exe, err := os.Executable()
if err != nil {
return nil, err
}
// Find an availableServers port, retry on each iteration in case the failure was a port conflict race
port := 0
if a, err := net.ResolveTCPAddr("tcp", "localhost:0"); err == nil {
var l *net.TCPListener
if l, err = net.ListenTCP("tcp", a); err == nil {
port = l.Addr().(*net.TCPAddr).Port
l.Close()
libs := make(map[string]string)
if entries, err := os.ReadDir(discover.LibOllamaPath); err == nil {
for _, entry := range entries {
libs[entry.Name()] = filepath.Join(discover.LibOllamaPath, entry.Name())
}
}
if port == 0 {
slog.Debug("ResolveTCPAddr failed ", "error", err)
port = rand.Intn(65535-49152) + 49152 // get a random port in the ephemeral range
}
finalParams := []string{"runner"}
finalParams = append(finalParams, params...)
finalParams = append(finalParams, "--port", strconv.Itoa(port))
pathEnv := "LD_LIBRARY_PATH"
if runtime.GOOS == "windows" {
pathEnv = "PATH"
}
// Start with the server directory for the LD_LIBRARY_PATH/PATH
libraryPaths := []string{filepath.Dir(exe)}
if libraryPath, ok := os.LookupEnv(pathEnv); ok {
// favor our bundled library dependencies over system libraries
libraryPaths = append(libraryPaths, filepath.SplitList(libraryPath)...)
lib := gpus[0].RunnerName()
requested := envconfig.LLMLibrary()
if libs[requested] != "" {
slog.Info("using requested gpu library", "requested", requested)
lib = requested
}
// Note: we always put the dependency path first
// since this was the exact version we compiled/linked against
if gpus[0].DependencyPath != nil {
// assume gpus from the same library have the same dependency path
libraryPaths = append(gpus[0].DependencyPath, libraryPaths...)
var compatible []string
for k := range libs {
// exact match first
if k == lib {
compatible = append([]string{k}, compatible...)
continue
}
// then match the family (e.g. 'cuda')
if strings.Split(k, "_")[0] == strings.Split(lib, "_")[0] {
compatible = append(compatible, k)
}
}
slog.Debug("compatible gpu libraries", "compatible", compatible)
// TODO - once fully switched to the Go runner, load the model here for tokenize/detokenize cgo access
s := &llmServer{
port: port,
cmd: exec.Command(exe, finalParams...),
status: NewStatusWriter(os.Stderr),
options: opts,
modelPath: model,
estimate: estimate,
numParallel: numParallel,
sem: semaphore.NewWeighted(int64(numParallel)),
totalLayers: f.KV().BlockCount() + 1,
gpus: gpus,
done: make(chan error, 1),
}
// iterate through compatible GPU libraries such as 'cuda_v12', 'cuda_v11', 'rocm', etc.
// adding each library's respective path to the LD_LIBRARY_PATH, until finally running
// without any LD_LIBRARY_PATH flags
for {
port := 0
if a, err := net.ResolveTCPAddr("tcp", "localhost:0"); err == nil {
var l *net.TCPListener
if l, err = net.ListenTCP("tcp", a); err == nil {
port = l.Addr().(*net.TCPAddr).Port
l.Close()
}
}
if port == 0 {
slog.Debug("ResolveTCPAddr failed, using random port")
port = rand.Intn(65535-49152) + 49152 // get a random port in the ephemeral range
}
finalParams := []string{"runner"}
finalParams = append(finalParams, params...)
finalParams = append(finalParams, "--port", strconv.Itoa(port))
s.cmd.Env = os.Environ()
s.cmd.Stdout = os.Stdout
s.cmd.Stderr = s.status
s.cmd.SysProcAttr = LlamaServerSysProcAttr
var pathEnv string
switch runtime.GOOS {
case "windows":
pathEnv = "PATH"
case "darwin":
pathEnv = "DYLD_LIBRARY_PATH"
default:
pathEnv = "LD_LIBRARY_PATH"
}
envWorkarounds := [][2]string{}
for _, gpu := range gpus {
envWorkarounds = append(envWorkarounds, gpu.EnvWorkarounds...)
}
visibleDevicesEnv, visibleDevicesEnvVal := gpus.GetVisibleDevicesEnv()
pathEnvVal := strings.Join(libraryPaths, string(filepath.ListSeparator))
var libraryPaths []string
if libraryPath, ok := os.LookupEnv(pathEnv); ok {
libraryPaths = append(libraryPaths, filepath.SplitList(libraryPath)...)
}
// Update or add the path and visible devices variable with our adjusted version
pathNeeded := true
devicesNeeded := visibleDevicesEnv != ""
for i := range s.cmd.Env {
cmp := strings.SplitN(s.cmd.Env[i], "=", 2)
if strings.EqualFold(cmp[0], pathEnv) {
s.cmd.Env[i] = pathEnv + "=" + pathEnvVal
pathNeeded = false
} else if devicesNeeded && strings.EqualFold(cmp[0], visibleDevicesEnv) {
s.cmd.Env[i] = visibleDevicesEnv + "=" + visibleDevicesEnvVal
devicesNeeded = false
} else if len(envWorkarounds) != 0 {
for _, kv := range envWorkarounds {
if strings.EqualFold(cmp[0], kv[0]) {
s.cmd.Env[i] = kv[0] + "=" + kv[1]
if len(compatible) > 0 {
c := compatible[0]
if libpath, ok := libs[c]; ok {
slog.Debug("adding gpu library", "path", libpath)
libraryPaths = append(libraryPaths, libpath)
}
}
// Note: we always put the dependency path first
// since this was the exact version we compiled/linked against
if gpus[0].DependencyPath != nil {
slog.Debug("adding gpu dependency paths", "paths", gpus[0].DependencyPath)
// assume gpus from the same library have the same dependency path
libraryPaths = append(gpus[0].DependencyPath, libraryPaths...)
}
// finally, add the root library path
libraryPaths = append(libraryPaths, discover.LibOllamaPath)
exe, err := os.Executable()
if err != nil {
return nil, fmt.Errorf("unable to lookup executable path: %w", err)
}
exe, err = filepath.EvalSymlinks(exe)
if err != nil {
return nil, fmt.Errorf("unable to evaluate symlinks for executable path: %w", err)
}
// TODO - once fully switched to the Go runner, load the model here for tokenize/detokenize cgo access
s := &llmServer{
port: port,
cmd: exec.Command(exe, finalParams...),
status: NewStatusWriter(os.Stderr),
options: opts,
modelPath: model,
estimate: estimate,
numParallel: numParallel,
sem: semaphore.NewWeighted(int64(numParallel)),
totalLayers: ggml.KV().BlockCount() + 1,
gpus: gpus,
done: make(chan error, 1),
}
s.cmd.Env = os.Environ()
s.cmd.Stdout = os.Stdout
s.cmd.Stderr = s.status
s.cmd.SysProcAttr = LlamaServerSysProcAttr
envWorkarounds := [][2]string{}
for _, gpu := range gpus {
envWorkarounds = append(envWorkarounds, gpu.EnvWorkarounds...)
}
visibleDevicesEnv, visibleDevicesEnvVal := gpus.GetVisibleDevicesEnv()
pathEnvVal := strings.Join(libraryPaths, string(filepath.ListSeparator))
// Update or add the path and visible devices variable with our adjusted version
pathNeeded := true
devicesNeeded := visibleDevicesEnv != ""
for i := range s.cmd.Env {
cmp := strings.SplitN(s.cmd.Env[i], "=", 2)
if strings.EqualFold(cmp[0], pathEnv) {
s.cmd.Env[i] = pathEnv + "=" + pathEnvVal
pathNeeded = false
} else if devicesNeeded && strings.EqualFold(cmp[0], visibleDevicesEnv) {
s.cmd.Env[i] = visibleDevicesEnv + "=" + visibleDevicesEnvVal
devicesNeeded = false
} else if len(envWorkarounds) != 0 {
for _, kv := range envWorkarounds {
if strings.EqualFold(cmp[0], kv[0]) {
s.cmd.Env[i] = kv[0] + "=" + kv[1]
}
}
}
}
}
if pathNeeded {
s.cmd.Env = append(s.cmd.Env, pathEnv+"="+pathEnvVal)
}
if devicesNeeded {
s.cmd.Env = append(s.cmd.Env, visibleDevicesEnv+"="+visibleDevicesEnvVal)
}
if pathNeeded {
s.cmd.Env = append(s.cmd.Env, pathEnv+"="+pathEnvVal)
}
if devicesNeeded {
s.cmd.Env = append(s.cmd.Env, visibleDevicesEnv+"="+visibleDevicesEnvVal)
}
slog.Info("starting llama server", "cmd", s.cmd.String())
if envconfig.Debug() {
filteredEnv := []string{}
for _, ev := range s.cmd.Env {
if strings.HasPrefix(ev, "CUDA_") ||
strings.HasPrefix(ev, "ROCR_") ||
strings.HasPrefix(ev, "ROCM_") ||
strings.HasPrefix(ev, "HIP_") ||
strings.HasPrefix(ev, "GPU_") ||
strings.HasPrefix(ev, "HSA_") ||
strings.HasPrefix(ev, "GGML_") ||
strings.HasPrefix(ev, "PATH=") ||
strings.HasPrefix(ev, "LD_LIBRARY_PATH=") {
filteredEnv = append(filteredEnv, ev)
slog.Info("starting llama server", "cmd", s.cmd.String())
if envconfig.Debug() {
filteredEnv := []string{}
for _, ev := range s.cmd.Env {
if strings.HasPrefix(ev, "CUDA_") ||
strings.HasPrefix(ev, "ROCR_") ||
strings.HasPrefix(ev, "ROCM_") ||
strings.HasPrefix(ev, "HIP_") ||
strings.HasPrefix(ev, "GPU_") ||
strings.HasPrefix(ev, "HSA_") ||
strings.HasPrefix(ev, "GGML_") ||
strings.HasPrefix(ev, "PATH=") ||
strings.HasPrefix(ev, "LD_LIBRARY_PATH=") ||
strings.HasPrefix(ev, "DYLD_LIBRARY_PATH=") {
filteredEnv = append(filteredEnv, ev)
}
}
}
// Log at debug as the environment is inherited and might contain sensitive information
slog.Debug("subprocess", "environment", filteredEnv)
}
if err = s.cmd.Start(); err != nil {
// Detect permission denied and augment the message about noexec
if errors.Is(err, os.ErrPermission) {
return nil, fmt.Errorf("unable to start server %w. %s may have noexec set. Set OLLAMA_TMPDIR for server to a writable executable directory", err, exe)
// Log at debug as the environment is inherited and might contain sensitive information
slog.Debug("subprocess", "environment", filteredEnv)
}
msg := ""
if s.status != nil && s.status.LastErrMsg != "" {
msg = s.status.LastErrMsg
}
return nil, fmt.Errorf("error starting the external llama server: %v %s", err, msg)
}
// reap subprocess when it exits
go func() {
err := s.cmd.Wait()
// Favor a more detailed message over the process exit status
if err != nil && s.status != nil && s.status.LastErrMsg != "" {
slog.Debug("llama runner terminated", "error", err)
if strings.Contains(s.status.LastErrMsg, "unknown model") {
s.status.LastErrMsg = "this model is not supported by your version of Ollama. You may need to upgrade"
if err = s.cmd.Start(); err != nil {
var msg string
if s.status != nil && s.status.LastErrMsg != "" {
msg = s.status.LastErrMsg
}
err := fmt.Errorf("error starting runner: %v %s", err, msg)
if len(compatible) == 0 {
return nil, err
}
s.done <- errors.New(s.status.LastErrMsg)
} else {
s.done <- err
}
}()
return s, nil
slog.Warn("unable to start runner with compatible gpu", "error", err, "compatible", compatible)
compatible = compatible[1:]
continue
}
// reap subprocess when it exits
go func() {
err := s.cmd.Wait()
// Favor a more detailed message over the process exit status
if err != nil && s.status != nil && s.status.LastErrMsg != "" {
slog.Error("llama runner terminated", "error", err)
if strings.Contains(s.status.LastErrMsg, "unknown model") {
s.status.LastErrMsg = "this model is not supported by your version of Ollama. You may need to upgrade"
}
s.done <- errors.New(s.status.LastErrMsg)
} else {
s.done <- err
}
}()
return s, nil
}
}
type ServerStatus int
@@ -661,9 +715,9 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
}
// User provided a JSON schema
g, err := grammar.FromSchema(nil, req.Format)
if err != nil {
return fmt.Errorf("invalid JSON schema in format: %w", err)
g := llama.SchemaToGrammar(req.Format)
if g == nil {
return fmt.Errorf("invalid JSON schema in format")
}
request["grammar"] = string(g)
}
@@ -683,6 +737,7 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
if req.Options.NumPredict < 0 || req.Options.NumPredict > 10*s.options.NumCtx {
req.Options.NumPredict = 10 * s.options.NumCtx
}
// Make sure the server is ready
status, err := s.getServerStatusRetry(ctx)
if err != nil {

View File

@@ -18,8 +18,8 @@ const config: ForgeConfig = {
asar: true,
icon: './assets/icon.icns',
extraResource: [
'../dist/ollama',
'../dist/darwin-amd64/lib',
path.join(__dirname, '../dist/darwin/ollama'),
...fs.readdirSync(path.join(__dirname, '../dist/darwin-amd64/lib/ollama')).map(f => path.join(__dirname, '../dist/darwin-amd64/lib/ollama', f)),
path.join(__dirname, './assets/iconTemplate.png'),
path.join(__dirname, './assets/iconTemplate@2x.png'),
path.join(__dirname, './assets/iconUpdateTemplate.png'),
@@ -43,7 +43,7 @@ const config: ForgeConfig = {
}
: {}),
osxUniversal: {
x64ArchFiles: '**/ollama*',
x64ArchFiles: '*',
},
},
rebuildConfig: {},

View File

@@ -1,191 +0,0 @@
package ml
import (
"bytes"
"encoding/binary"
"fmt"
"os"
"strings"
)
type Config interface {
Architecture() string
String(string, ...string) string
Uint(string, ...uint32) uint32
Float(string, ...float32) float32
Strings(string, ...[]string) []string
Uints(string, ...[]uint32) []uint32
}
type Backend interface {
Config() Config
Get(name string) Tensor
NewContext() Context
}
var backends = make(map[string]func(*os.File) (Backend, error))
func RegisterBackend(name string, f func(*os.File) (Backend, error)) {
if _, ok := backends[name]; ok {
panic("backend: backend already registered")
}
backends[name] = f
}
func NewBackend(f *os.File) (Backend, error) {
if backend, ok := backends["ggml"]; ok {
return backend(f)
}
return nil, fmt.Errorf("unsupported backend")
}
type Context interface {
Zeros(dtype DType, shape ...int) Tensor
FromFloatSlice(s []float32, shape ...int) (Tensor, error)
FromIntSlice(s []int32, shape ...int) (Tensor, error)
Forward(Tensor)
Compute(Tensor) Tensor
Close() error
}
type Tensor interface {
Dim(n int) int64
Stride(n int) int64
Shape() []int64
DType() DType
Bytes() []byte
Floats() []float32
Add(ctx Context, t2 Tensor) Tensor
Mul(ctx Context, t2 Tensor) Tensor
Mulmat(ctx Context, t2 Tensor) Tensor
Softmax(ctx Context) Tensor
LayerNorm(ctx Context, weight, bias Tensor, eps float32) Tensor
RMSNorm(ctx Context, weight Tensor, eps float32) Tensor
Scale(ctx Context, s float64) Tensor
Conv2D(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
RoPE(ctx Context, positionIDs, ropeFactors Tensor, dim uint32, base, scale float32) Tensor
Tanh(ctx Context) Tensor
GELU(ctx Context) Tensor
SILU(ctx Context) Tensor
Reshape(ctx Context, shape ...int64) Tensor
View(ctx Context, offset int, shape ...int) Tensor
Permute(ctx Context, shape ...int) Tensor
Contiguous(ctx Context) Tensor
Pad(ctx Context, shape ...int64) Tensor
Unpad(ctx Context, shape ...int64) Tensor
Stack(ctx Context, dim int, s ...Tensor) Tensor
Concat(ctx Context, t2 Tensor, dim int) Tensor
Rows(ctx Context, t2 Tensor) Tensor
Copy(ctx Context, t2 Tensor) Tensor
}
type number interface {
~int | ~int8 | ~int16 | ~int32 | ~int64 |
~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 |
~float32 | ~float64 |
~complex64 | ~complex128
}
func mul[T number](s ...T) T {
p := T(1)
for _, v := range s {
p *= v
}
return p
}
type DumpOptions struct {
// Items is the number of elements to print at the beginning and end of each dimension.
Items int64
// Precision is the number of decimal places to print. Applies to float32 and float64.
Precision int
}
func Dump(t Tensor, opts ...DumpOptions) string {
if len(opts) < 1 {
opts = append(opts, DumpOptions{
Items: 3,
Precision: 4,
})
}
switch t.DType() {
case DTypeF32:
return dump[[]float32](t, opts[0])
case DTypeI32:
return dump[[]int32](t, opts[0])
default:
return "<unsupported>"
}
}
func dump[S ~[]E, E number](t Tensor, opts DumpOptions) string {
bts := t.Bytes()
if bts == nil {
return "<nil>"
}
s := make(S, mul(t.Shape()...))
if err := binary.Read(bytes.NewBuffer(t.Bytes()), binary.LittleEndian, &s); err != nil {
panic(err)
}
shape := t.Shape()
var sb strings.Builder
var f func([]int64, int64)
f = func(dims []int64, stride int64) {
prefix := strings.Repeat(" ", len(shape)-len(dims)+1)
fmt.Fprint(&sb, "[")
defer func() { fmt.Fprint(&sb, "]") }()
for i := int64(0); i < dims[0]; i++ {
if i >= opts.Items && i < dims[0]-opts.Items {
fmt.Fprint(&sb, "..., ")
// skip to next printable element
skip := dims[0] - 2*opts.Items
if len(dims) > 1 {
stride += mul(append(dims[1:], skip)...)
fmt.Fprint(&sb, strings.Repeat("\n", len(dims)-1), prefix)
}
i += skip - 1
} else if len(dims) > 1 {
f(dims[1:], stride)
stride += mul(dims[1:]...)
if i < dims[0]-1 {
fmt.Fprint(&sb, ",", strings.Repeat("\n", len(dims)-1), prefix)
}
} else {
fmt.Fprint(&sb, s[stride+i])
if i < dims[0]-1 {
fmt.Fprint(&sb, ", ")
}
}
}
}
f(shape, 0)
return sb.String()
}
type DType int
const (
DTypeF32 DType = iota
DTypeI32
DTypeOther
)

View File

@@ -1,5 +0,0 @@
package backend
import (
_ "github.com/ollama/ollama/ml/backend/ggml"
)

View File

@@ -1,580 +0,0 @@
package ggml
// #cgo CPPFLAGS: -I${SRCDIR}/ggml/include
// #include <stdlib.h>
// #include <stdint.h>
// #include "ggml.h"
// #include "ggml-cpu.h"
// #include "ggml-backend.h"
import "C"
import (
"bytes"
"encoding/binary"
"fmt"
"io"
"log/slog"
"os"
"sync"
"unsafe"
"github.com/ollama/ollama/format"
fs "github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/ml"
"golang.org/x/sync/errgroup"
"github.com/ollama/ollama/ml/backend/ggml/ggml/src"
)
type device struct {
d *C.struct_ggml_backend_device
}
func (d device) LogValue() slog.Value {
var free, total uint64
C.ggml_backend_dev_memory(d.d, (*C.size_t)(&free), (*C.size_t)(&total))
kind := "unknown"
switch C.ggml_backend_dev_type(d.d) {
case C.GGML_BACKEND_DEVICE_TYPE_CPU:
kind = "cpu"
case C.GGML_BACKEND_DEVICE_TYPE_GPU:
kind = "gpu"
case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
kind = "accel"
}
return slog.GroupValue(
slog.String("name", C.GoString(C.ggml_backend_dev_name(d.d))),
slog.String("description", C.GoString(C.ggml_backend_dev_description(d.d))),
slog.String("kind", kind),
slog.String("free", format.HumanBytes2(free)),
slog.String("total", format.HumanBytes2(total)),
)
}
var devices = sync.OnceValue(func() []device {
ggml.OnceLoad()
s := make([]device, C.ggml_backend_dev_count())
for i := range s {
s[i] = device{C.ggml_backend_dev_get(C.size_t(i))}
}
return s
})
type Backend struct {
meta *fs.GGML
cpus, gpus []Context
tensors map[string]*Context
}
func New(r *os.File) (ml.Backend, error) {
meta, n, err := fs.Decode(r, -1)
if err != nil {
return nil, err
}
slog.Info(
"",
"architecture", meta.KV().Architecture(),
"file_type", meta.KV().FileType(),
"name", meta.KV().String("general.name"),
"description", meta.KV().String("general.description"),
"num_tensors", len(meta.Tensors().Items()),
"num_key_values", len(meta.KV()),
)
var cpus, gpus []Context
for _, d := range devices() {
switch C.ggml_backend_dev_type(d.d) {
case C.GGML_BACKEND_DEVICE_TYPE_CPU,
C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
slog.Info("cpu", "device", d)
cpus = append(cpus, Context{
ctx: C.ggml_init(C.struct_ggml_init_params{
mem_size: C.size_t(int(C.ggml_tensor_overhead()) * (len(meta.Tensors().Items()) + 1 + int(meta.KV().BlockCount())*2)),
no_alloc: true,
}),
backend: C.ggml_backend_dev_init(d.d, nil),
})
case C.GGML_BACKEND_DEVICE_TYPE_GPU:
slog.Info("gpu", "device", d)
gpus = append(gpus, Context{
ctx: C.ggml_init(C.struct_ggml_init_params{
mem_size: C.size_t(int(C.ggml_tensor_overhead()) * (len(meta.Tensors().Items()) + 1 + int(meta.KV().BlockCount())*2)),
no_alloc: true,
}),
backend: C.ggml_backend_dev_init(d.d, nil),
})
}
}
ctxFunc := func(s []Context) (*Context, error) {
for _, e := range s {
return &e, nil
}
return nil, fmt.Errorf("no devices available")
}
tensors := make(map[*fs.Tensor]*Context, len(meta.Tensors().Items()))
for _, t := range meta.Tensors().Items() {
c, err := ctxFunc(append(gpus, cpus...))
if err != nil {
return nil, err
}
func() {
tt := C.ggml_new_tensor(c.ctx, t.Kind, C.int(len(t.Shape)), (*C.int64_t)(unsafe.Pointer(&t.Shape[0])))
cname := C.CString(t.Name)
defer C.free(unsafe.Pointer(cname))
C.ggml_set_name(tt, cname)
tensors[t] = c
}()
}
for _, b := range append(gpus, cpus...) {
C.ggml_backend_alloc_ctx_tensors(b.ctx, b.backend)
}
sr := io.NewSectionReader(r, int64(meta.Tensors().Offset), n-int64(meta.Tensors().Offset))
var g errgroup.Group
for t, c := range tensors {
g.Go(func() error {
bts := make([]byte, t.Size())
n, err := io.ReadFull(io.NewSectionReader(sr, int64(t.Offset), int64(t.Size())), bts)
if err != nil {
return err
}
if n != int(t.Size()) {
return fmt.Errorf("expected %d bytes, got %d", t.Size(), n)
}
cname := C.CString(t.Name)
defer C.free(unsafe.Pointer(cname))
C.ggml_backend_tensor_set(C.ggml_get_tensor(c.ctx, cname), unsafe.Pointer(&bts[0]), 0, C.size_t(n))
return nil
})
}
if err := g.Wait(); err != nil {
return nil, err
}
return &Backend{
meta: meta,
cpus: cpus,
gpus: gpus,
}, nil
}
func init() {
ml.RegisterBackend("ggml", New)
}
func (b *Backend) Config() ml.Config {
return b.meta.KV()
}
func (b *Backend) Get(name string) ml.Tensor {
cname := C.CString(name)
defer C.free(unsafe.Pointer(cname))
for _, c := range append(b.gpus, b.cpus...) {
if t := C.ggml_get_tensor(c.ctx, cname); t != nil {
return &Tensor{t: t}
}
}
return nil
}
func (b *Backend) NewContext() ml.Context {
nodes := max(8192, len(b.meta.Tensors().Items())*5)
bts := make([]byte, C.size_t(nodes)*C.ggml_tensor_overhead()+C.ggml_graph_overhead_custom(C.size_t(nodes), false))
c := C.ggml_init(C.struct_ggml_init_params{
mem_buffer: unsafe.Pointer(&bts[0]),
mem_size: C.size_t(len(bts)),
no_alloc: true,
})
backends := make([]*C.struct_ggml_backend, len(b.gpus)+len(b.cpus))
bufts := make([]*C.struct_ggml_backend_buffer_type, len(b.gpus)+len(b.cpus))
for i, c := range append(b.gpus, b.cpus...) {
backends[i] = c.backend
bufts[i] = C.ggml_backend_get_default_buffer_type(c.backend)
}
return &Context{
ctx: c,
backend: backends[0],
nodes: nodes,
sched: C.ggml_backend_sched_new(
(*C.ggml_backend_t)(unsafe.Pointer(&backends[0])),
(*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&bufts[0])),
C.int(len(backends)),
C.size_t(nodes),
true,
),
}
}
type Context struct {
ctx *C.struct_ggml_context
backend *C.struct_ggml_backend
sched *C.struct_ggml_backend_sched
graph *C.struct_ggml_cgraph
nodes int
}
func (c *Context) Forward(t ml.Tensor) {
if c.graph == nil {
c.graph = C.ggml_new_graph_custom(c.ctx, C.size_t(c.nodes), false)
}
C.ggml_build_forward_expand(c.graph, t.(*Tensor).t)
}
func (c *Context) Compute(t ml.Tensor) ml.Tensor {
c.Forward(t)
C.ggml_backend_sched_graph_compute_async(c.sched, c.graph)
backend := C.ggml_backend_sched_get_tensor_backend(c.sched, t.(*Tensor).t)
t.(*Tensor).data = make([]byte, C.ggml_nbytes(t.(*Tensor).t))
C.ggml_backend_tensor_get_async(backend, t.(*Tensor).t, unsafe.Pointer(&t.(*Tensor).data[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
return t
}
func (c Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
if len(shape) < 1 || len(shape) > 4 {
panic("unsupported number of dimensions")
}
for _, dim := range shape {
if dim < 1 {
panic("invalid shape")
}
}
var t *C.struct_ggml_tensor
switch dtype {
case ml.DTypeF32:
t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_F32, C.int(len(shape)), (*C.int64_t)(unsafe.Pointer(&shape[0])))
case ml.DTypeI32:
t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_I32, C.int(len(shape)), (*C.int64_t)(unsafe.Pointer(&shape[0])))
default:
panic("unsupported dtype")
}
b := C.ggml_backend_alloc_buffer(c.backend, C.ggml_nbytes(t))
C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
C.ggml_set_zero(t)
return &Tensor{t: t}
}
func fromSlice[S ~[]E, E float32 | int32](ctx Context, s S, shape []int, dtype uint32) (ml.Tensor, error) {
n := len(s)
for _, v := range shape {
n /= v
}
if n != 1 {
return nil, fmt.Errorf("invalid shape %v for %d elements", shape, len(s))
}
t := C.ggml_new_tensor(ctx.ctx, dtype, C.int(len(shape)), (*C.int64_t)(unsafe.Pointer(&shape[0])))
b := C.ggml_backend_alloc_buffer(ctx.backend, C.ggml_nbytes(t))
C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
C.ggml_backend_tensor_set(t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t))
return &Tensor{t: t}, nil
}
func (c Context) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
return fromSlice(c, s, shape, C.GGML_TYPE_F32)
}
func (c Context) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
return fromSlice(c, s, shape, C.GGML_TYPE_I32)
}
func (c *Context) Close() error {
C.ggml_backend_sched_free(c.sched)
C.ggml_free(c.ctx)
return nil
}
type Tensor struct {
t *C.struct_ggml_tensor
data []byte
}
func (t *Tensor) LogValue() slog.Value {
return slog.GroupValue(
slog.String("name", C.GoString(C.ggml_get_name(t.t))),
slog.String("type", C.GoString(C.ggml_type_name(t.t._type))),
slog.Any("shape", t.Shape()),
)
}
func (t *Tensor) Dim(n int) int64 {
return int64(t.t.ne[n])
}
func (t *Tensor) Stride(n int) int64 {
return int64(t.t.nb[n])
}
func (t *Tensor) Shape() []int64 {
shape := make([]int64, C.ggml_n_dims(t.t))
for i := range shape {
shape[i] = t.Dim(i)
}
return shape
}
func (t *Tensor) Bytes() []byte {
if bts := C.ggml_get_data(t.t); bts != nil {
return C.GoBytes(bts, C.int(C.ggml_nbytes(t.t)))
}
return nil
}
func (t *Tensor) Floats() (f32s []float32) {
if t.data != nil {
f32s = make([]float32, C.ggml_nelements(t.t))
_ = binary.Read(bytes.NewReader(t.data), binary.LittleEndian, f32s)
}
return
}
func (t *Tensor) DType() ml.DType {
switch t.t._type {
case C.GGML_TYPE_F32:
return ml.DTypeF32
case C.GGML_TYPE_I32:
return ml.DTypeI32
default:
return ml.DTypeOther
}
}
func (t *Tensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
t: C.ggml_add(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
func (t *Tensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
if len(s) > 0 {
return t.Concat(ctx, s[0].Stack(ctx, dim, s[1:]...), dim)
}
return t
}
func (t *Tensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor {
return &Tensor{
t: C.ggml_concat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(dim)),
}
}
func (t *Tensor) Contiguous(ctx ml.Context) ml.Tensor {
return &Tensor{
t: C.ggml_cont(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
t: C.ggml_mul(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
func (t *Tensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
t: C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
func (t *Tensor) LayerNorm(ctx ml.Context, w, b ml.Tensor, eps float32) ml.Tensor {
tt := (&Tensor{t: C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
if b != nil {
tt = tt.Add(ctx, b)
}
return tt
}
func (t *Tensor) RMSNorm(ctx ml.Context, w ml.Tensor, eps float32) ml.Tensor {
return (&Tensor{t: C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
}
func (t *Tensor) Pad(ctx ml.Context, shape ...int64) ml.Tensor {
if len(shape) != 4 {
panic("expected 4 dimensions")
}
return &Tensor{
t: C.ggml_pad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
}
}
func (t *Tensor) Permute(ctx ml.Context, shape ...int) ml.Tensor {
if len(shape) != 4 {
panic("expected 4 dimensions")
}
return &Tensor{
t: C.ggml_permute(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
}
}
func (t *Tensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
t: C.ggml_get_rows(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
func (t *Tensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
t: C.ggml_cpy(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
func (t *Tensor) Reshape(ctx ml.Context, shape ...int64) ml.Tensor {
switch len(shape) {
case 1:
return &Tensor{
t: C.ggml_reshape_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0])),
}
case 2:
return &Tensor{
t: C.ggml_reshape_2d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1])),
}
case 3:
return &Tensor{
t: C.ggml_reshape_3d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2])),
}
case 4:
return &Tensor{
t: C.ggml_reshape_4d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2]), C.int64_t(shape[3])),
}
default:
panic("unsupported number of dimensions")
}
}
func (t *Tensor) Scale(ctx ml.Context, s float64) ml.Tensor {
return &Tensor{
t: C.ggml_scale(ctx.(*Context).ctx, t.t, (C.float)(s)),
}
}
func (t *Tensor) Softmax(ctx ml.Context) ml.Tensor {
return &Tensor{
t: C.ggml_soft_max(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Tanh(ctx ml.Context) ml.Tensor {
return &Tensor{
t: C.ggml_tanh_inplace(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Unpad(ctx ml.Context, shape ...int64) ml.Tensor {
if len(shape) != 4 {
panic("expected 4 dimensions")
}
return &Tensor{
t: C.ggml_unpad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
}
}
func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
switch len(shape) {
case 1:
return &Tensor{
t: C.ggml_view_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.size_t(offset)),
}
case 3:
return &Tensor{
t: C.ggml_view_2d(ctx.(*Context).ctx, t.t,
C.int64_t(shape[0]), C.int64_t(shape[2]),
C.size_t(shape[1]),
C.size_t(offset)),
}
case 5:
return &Tensor{
t: C.ggml_view_3d(ctx.(*Context).ctx, t.t,
C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]),
C.size_t(shape[1]), C.size_t(shape[3]),
C.size_t(offset)),
}
case 7:
return &Tensor{
t: C.ggml_view_4d(ctx.(*Context).ctx, t.t,
C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]), C.int64_t(shape[6]),
C.size_t(shape[1]), C.size_t(shape[3]), C.size_t(shape[5]),
C.size_t(offset)),
}
default:
panic("unsupported number of dimensions")
}
}
const (
ropeTypeNorm C.int = iota
)
func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDim uint32, ropeBase, ropeScale float32) ml.Tensor {
if ropeFactors == nil {
ropeFactors = &Tensor{}
}
return &Tensor{
t: C.ggml_rope_ext(
ctx.(*Context).ctx, t.t, positionIDs.(*Tensor).t, ropeFactors.(*Tensor).t,
C.int(ropeDim),
131072, // YaRN n_ctx_train
ropeTypeNorm, // ROPE_TYPE_NORM
C.float(ropeBase),
C.float(ropeScale),
0., // YaRN ext_factor
1., // YaRN attn_factor
32., // YaRN beta_fast
1., // YaRN beta_slow
),
}
}
func (t *Tensor) GELU(ctx ml.Context) ml.Tensor {
return &Tensor{
t: C.ggml_gelu_inplace(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) SILU(ctx ml.Context) ml.Tensor {
return &Tensor{
t: C.ggml_silu_inplace(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Conv2D(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
return &Tensor{
t: C.ggml_conv_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1)),
}
}

View File

@@ -1,7 +1,9 @@
protect **/*.go
protect **/*-embed.*
protect *.go
protect *-embed.*
include include/
include src/
include src/CMakeLists.txt
include src/**/CMakeLists.txt
include src/ggml-blas/
include src/ggml-cpu/
include src/ggml-cpu/amx/
@@ -10,12 +12,11 @@ include src/ggml-cuda/
include src/ggml-cuda/template-instances/
include src/ggml-hip/
include src/ggml-metal/
include **/CMakeLists.txt
include **/*.c
include **/*.h
include **/*.cpp
include **/*.cu
include **/*.cuh
include **/*.m
include **/*.metal
include *.c
include *.h
include *.cpp
include *.cu
include *.cuh
include *.m
include *.metal
exclude *

View File

@@ -1,262 +0,0 @@
cmake_minimum_required(VERSION 3.14) # for add_link_options and implicit target directories.
project("ggml" C CXX)
include(CheckIncludeFileCXX)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
if (NOT XCODE AND NOT MSVC AND NOT CMAKE_BUILD_TYPE)
set(CMAKE_BUILD_TYPE Release CACHE STRING "Build type" FORCE)
set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS "Debug" "Release" "MinSizeRel" "RelWithDebInfo")
endif()
if (CMAKE_SOURCE_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR)
set(GGML_STANDALONE ON)
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
# configure project version
# TODO
else()
set(GGML_STANDALONE OFF)
endif()
if (EMSCRIPTEN)
set(BUILD_SHARED_LIBS_DEFAULT OFF)
option(GGML_WASM_SINGLE_FILE "ggml: embed WASM inside the generated ggml.js" ON)
else()
if (MINGW)
set(BUILD_SHARED_LIBS_DEFAULT OFF)
else()
set(BUILD_SHARED_LIBS_DEFAULT ON)
endif()
endif()
# remove the lib prefix on win32 mingw
if (WIN32)
set(CMAKE_STATIC_LIBRARY_PREFIX "")
set(CMAKE_SHARED_LIBRARY_PREFIX "")
set(CMAKE_SHARED_MODULE_PREFIX "")
endif()
option(BUILD_SHARED_LIBS "ggml: build shared libraries" ${BUILD_SHARED_LIBS_DEFAULT})
option(GGML_BACKEND_DL "ggml: build backends as dynamic libraries (requires BUILD_SHARED_LIBS)" OFF)
#
# option list
#
# TODO: mark all options as advanced when not GGML_STANDALONE
if (APPLE)
set(GGML_METAL_DEFAULT ON)
set(GGML_BLAS_DEFAULT ON)
set(GGML_BLAS_VENDOR_DEFAULT "Apple")
else()
set(GGML_METAL_DEFAULT OFF)
set(GGML_BLAS_DEFAULT OFF)
set(GGML_BLAS_VENDOR_DEFAULT "Generic")
endif()
if (CMAKE_CROSSCOMPILING)
set(GGML_NATIVE_DEFAULT OFF)
else()
set(GGML_NATIVE_DEFAULT ON)
endif()
# defaults
if (NOT GGML_LLAMAFILE_DEFAULT)
set(GGML_LLAMAFILE_DEFAULT OFF)
endif()
if (NOT GGML_CUDA_GRAPHS_DEFAULT)
set(GGML_CUDA_GRAPHS_DEFAULT OFF)
endif()
# general
option(GGML_STATIC "ggml: static link libraries" OFF)
option(GGML_NATIVE "ggml: optimize the build for the current system" ${GGML_NATIVE_DEFAULT})
option(GGML_LTO "ggml: enable link time optimization" OFF)
option(GGML_CCACHE "ggml: use ccache if available" ON)
# debug
option(GGML_ALL_WARNINGS "ggml: enable all compiler warnings" ON)
option(GGML_ALL_WARNINGS_3RD_PARTY "ggml: enable all compiler warnings in 3rd party libs" OFF)
option(GGML_GPROF "ggml: enable gprof" OFF)
# build
option(GGML_FATAL_WARNINGS "ggml: enable -Werror flag" OFF)
# sanitizers
option(GGML_SANITIZE_THREAD "ggml: enable thread sanitizer" OFF)
option(GGML_SANITIZE_ADDRESS "ggml: enable address sanitizer" OFF)
option(GGML_SANITIZE_UNDEFINED "ggml: enable undefined sanitizer" OFF)
# instruction set specific
if (GGML_NATIVE OR NOT GGML_NATIVE_DEFAULT)
set(INS_ENB OFF)
else()
set(INS_ENB ON)
endif()
option(GGML_CPU_HBM "ggml: use memkind for CPU HBM" OFF)
option(GGML_CPU_AARCH64 "ggml: use runtime weight conversion of Q4_0 to Q4_X_X" ON)
option(GGML_AVX "ggml: enable AVX" ${INS_ENB})
option(GGML_AVX_VNNI "ggml: enable AVX-VNNI" OFF)
option(GGML_AVX2 "ggml: enable AVX2" ${INS_ENB})
option(GGML_AVX512 "ggml: enable AVX512F" OFF)
option(GGML_AVX512_VBMI "ggml: enable AVX512-VBMI" OFF)
option(GGML_AVX512_VNNI "ggml: enable AVX512-VNNI" OFF)
option(GGML_AVX512_BF16 "ggml: enable AVX512-BF16" OFF)
if (NOT MSVC)
# in MSVC F16C and FMA is implied with AVX2/AVX512
option(GGML_FMA "ggml: enable FMA" ${INS_ENB})
option(GGML_F16C "ggml: enable F16C" ${INS_ENB})
# MSVC does not seem to support AMX
option(GGML_AMX_TILE "ggml: enable AMX-TILE" OFF)
option(GGML_AMX_INT8 "ggml: enable AMX-INT8" OFF)
option(GGML_AMX_BF16 "ggml: enable AMX-BF16" OFF)
endif()
option(GGML_LASX "ggml: enable lasx" ON)
option(GGML_LSX "ggml: enable lsx" ON)
option(GGML_RVV "ggml: enable rvv" ON)
option(GGML_CPU_ALL_VARIANTS "ggml: build all variants of the CPU backend (requires GGML_BACKEND_DL)" OFF)
set(GGML_CPU_ARM_ARCH "" CACHE STRING "ggml: CPU architecture for ARM")
if (WIN32)
set(GGML_WIN_VER "0x602" CACHE STRING "ggml: Windows version")
endif()
# ggml core
set(GGML_SCHED_MAX_COPIES "4" CACHE STRING "ggml: max input copies for pipeline parallelism")
option(GGML_CPU "ggml: enable CPU backend" ON)
# 3rd party libs / backends
option(GGML_ACCELERATE "ggml: enable Accelerate framework" ON)
option(GGML_BLAS "ggml: use BLAS" ${GGML_BLAS_DEFAULT})
set(GGML_BLAS_VENDOR ${GGML_BLAS_VENDOR_DEFAULT} CACHE STRING
"ggml: BLAS library vendor")
option(GGML_LLAMAFILE "ggml: use LLAMAFILE" ${GGML_LLAMAFILE_DEFAULT})
option(GGML_CUDA "ggml: use CUDA" OFF)
option(GGML_MUSA "ggml: use MUSA" OFF)
option(GGML_CUDA_FORCE_MMQ "ggml: use mmq kernels instead of cuBLAS" OFF)
option(GGML_CUDA_FORCE_CUBLAS "ggml: always use cuBLAS instead of mmq kernels" OFF)
option(GGML_CUDA_F16 "ggml: use 16 bit floats for some calculations" OFF)
set (GGML_CUDA_PEER_MAX_BATCH_SIZE "128" CACHE STRING
"ggml: max. batch size for using peer access")
option(GGML_CUDA_NO_PEER_COPY "ggml: do not use peer to peer copies" OFF)
option(GGML_CUDA_NO_VMM "ggml: do not try to use CUDA VMM" OFF)
option(GGML_CUDA_FA_ALL_QUANTS "ggml: compile all quants for FlashAttention" OFF)
option(GGML_CUDA_GRAPHS "ggml: use CUDA graphs (llama.cpp only)" ${GGML_CUDA_GRAPHS_DEFAULT})
option(GGML_HIP "ggml: use HIP" OFF)
option(GGML_HIP_UMA "ggml: use HIP unified memory architecture" OFF)
option(GGML_VULKAN "ggml: use Vulkan" OFF)
option(GGML_VULKAN_CHECK_RESULTS "ggml: run Vulkan op checks" OFF)
option(GGML_VULKAN_DEBUG "ggml: enable Vulkan debug output" OFF)
option(GGML_VULKAN_MEMORY_DEBUG "ggml: enable Vulkan memory debug output" OFF)
option(GGML_VULKAN_SHADER_DEBUG_INFO "ggml: enable Vulkan shader debug info" OFF)
option(GGML_VULKAN_PERF "ggml: enable Vulkan perf output" OFF)
option(GGML_VULKAN_VALIDATE "ggml: enable Vulkan validation" OFF)
option(GGML_VULKAN_RUN_TESTS "ggml: run Vulkan tests" OFF)
option(GGML_KOMPUTE "ggml: use Kompute" OFF)
option(GGML_METAL "ggml: use Metal" ${GGML_METAL_DEFAULT})
option(GGML_METAL_USE_BF16 "ggml: use bfloat if available" OFF)
option(GGML_METAL_NDEBUG "ggml: disable Metal debugging" OFF)
option(GGML_METAL_SHADER_DEBUG "ggml: compile Metal with -fno-fast-math" OFF)
option(GGML_METAL_EMBED_LIBRARY "ggml: embed Metal library" ${GGML_METAL})
set (GGML_METAL_MACOSX_VERSION_MIN "" CACHE STRING
"ggml: metal minimum macOS version")
set (GGML_METAL_STD "" CACHE STRING "ggml: metal standard version (-std flag)")
option(GGML_OPENMP "ggml: use OpenMP" ON)
option(GGML_RPC "ggml: use RPC" OFF)
option(GGML_SYCL "ggml: use SYCL" OFF)
option(GGML_SYCL_F16 "ggml: use 16 bit floats for sycl calculations" OFF)
set (GGML_SYCL_TARGET "INTEL" CACHE STRING
"ggml: sycl target device")
set (GGML_SYCL_DEVICE_ARCH "" CACHE STRING
"ggml: sycl device architecture")
option(GGML_OPENCL "ggml: use OpenCL" OFF)
option(GGML_OPENCL_PROFILING "ggml: use OpenCL profiling (increases overhead)" OFF)
option(GGML_OPENCL_EMBED_KERNELS "ggml: embed kernels" ON)
option(GGML_OPENCL_USE_ADRENO_KERNELS "ggml: use optimized kernels for Adreno" ON)
# extra artifacts
option(GGML_BUILD_TESTS "ggml: build tests" ${GGML_STANDALONE})
option(GGML_BUILD_EXAMPLES "ggml: build examples" ${GGML_STANDALONE})
#
# dependencies
#
set(CMAKE_C_STANDARD 11)
set(CMAKE_C_STANDARD_REQUIRED true)
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED true)
set(THREADS_PREFER_PTHREAD_FLAG ON)
find_package(Threads REQUIRED)
#
# build the library
#
add_subdirectory(src)
#
# tests and examples
#
if (GGML_BUILD_TESTS)
enable_testing()
add_subdirectory(tests)
endif ()
if (GGML_BUILD_EXAMPLES)
add_subdirectory(examples)
endif ()
#
# install
#
include(GNUInstallDirs)
include(CMakePackageConfigHelpers)
# all public headers
set(GGML_PUBLIC_HEADERS
include/ggml.h
include/ggml-cpu.h
include/ggml-alloc.h
include/ggml-backend.h
include/ggml-blas.h
include/ggml-cann.h
include/ggml-cuda.h
include/ggml-kompute.h
include/ggml-opt.h
include/ggml-metal.h
include/ggml-rpc.h
include/ggml-sycl.h
include/ggml-vulkan.h)
set_target_properties(ggml PROPERTIES PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}")
#if (GGML_METAL)
# set_target_properties(ggml PROPERTIES RESOURCE "${CMAKE_CURRENT_SOURCE_DIR}/src/ggml-metal.metal")
#endif()
install(TARGETS ggml LIBRARY PUBLIC_HEADER)
install(TARGETS ggml-base LIBRARY)
if (GGML_STANDALONE)
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/ggml.pc.in
${CMAKE_CURRENT_BINARY_DIR}/ggml.pc
@ONLY)
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/ggml.pc
DESTINATION share/pkgconfig)
endif()

View File

@@ -278,6 +278,7 @@ function(ggml_add_cpu_backend_variant tag_name)
endforeach()
ggml_add_cpu_backend_variant_impl(${tag_name})
add_dependencies(ggml-cpu ggml-cpu-${tag_name})
endfunction()
ggml_add_backend(CPU)
@@ -286,6 +287,7 @@ if (GGML_CPU_ALL_VARIANTS)
if (NOT GGML_BACKEND_DL)
message(FATAL_ERROR "GGML_CPU_ALL_VARIANTS requires GGML_BACKEND_DL")
endif()
add_custom_target(ggml-cpu)
ggml_add_cpu_backend_variant(sandybridge AVX)
ggml_add_cpu_backend_variant(haswell AVX F16C AVX2 FMA)
ggml_add_cpu_backend_variant(skylakex AVX F16C AVX2 FMA AVX512)

View File

@@ -1,5 +1,6 @@
package cpu
// #cgo CFLAGS: -O3 -Wno-implicit-function-declaration
// #cgo CXXFLAGS: -std=c++17
// #cgo CPPFLAGS: -I${SRCDIR}/amx -I${SRCDIR}/llamafile -I${SRCDIR}/.. -I${SRCDIR}/../../include
// #cgo CPPFLAGS: -DGGML_USE_LLAMAFILE

View File

@@ -1,77 +0,0 @@
#!/usr/bin/env python3
from glob import glob
import os
TYPES_KV = ["GGML_TYPE_Q4_0", "GGML_TYPE_Q4_1", "GGML_TYPE_Q5_0", "GGML_TYPE_Q5_1", "GGML_TYPE_Q8_0", "GGML_TYPE_F16"]
SOURCE_FATTN_VEC = """// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../fattn-vec-f{vkq_size}.cuh"
DECL_FATTN_VEC_F{vkq_size}_CASE({head_size}, {type_k}, {type_v});
"""
SOURCE_FATTN_WMMA_START = """// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../fattn-wmma-f16.cuh"
"""
SOURCE_FATTN_WMMA_CASE = "DECL_FATTN_WMMA_F16_CASE({head_size}, {cols_per_block}, {kq_acc_t});\n"
TYPES_MMQ = [
"GGML_TYPE_Q4_0", "GGML_TYPE_Q4_1", "GGML_TYPE_Q5_0", "GGML_TYPE_Q5_1", "GGML_TYPE_Q8_0",
"GGML_TYPE_Q2_K", "GGML_TYPE_Q3_K", "GGML_TYPE_Q4_K", "GGML_TYPE_Q5_K", "GGML_TYPE_Q6_K",
"GGML_TYPE_IQ2_XXS", "GGML_TYPE_IQ2_XS", "GGML_TYPE_IQ2_S", "GGML_TYPE_IQ3_XXS", "GGML_TYPE_IQ3_S",
"GGML_TYPE_IQ1_S", "GGML_TYPE_IQ4_NL", "GGML_TYPE_IQ4_XS"
]
SOURCE_MMQ = """// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../mmq.cuh"
DECL_MMQ_CASE({type});
"""
def get_short_name(long_quant_name):
return long_quant_name.replace("GGML_TYPE_", "").lower()
def get_head_sizes(type_k, type_v):
if type_k == "GGML_TYPE_F16" and type_v == "GGML_TYPE_F16":
return [64, 128, 256]
if type_k == "GGML_TYPE_F16":
return [64, 128]
return [128]
for filename in glob("*.cu"):
os.remove(filename)
for vkq_size in [16, 32]:
for type_k in TYPES_KV:
for type_v in TYPES_KV:
for head_size in get_head_sizes(type_k, type_v):
with open(f"fattn-vec-f{vkq_size}-instance-hs{head_size}-{get_short_name(type_k)}-{get_short_name(type_v)}.cu", "w") as f:
f.write(SOURCE_FATTN_VEC.format(vkq_size=vkq_size, head_size=head_size, type_k=type_k, type_v=type_v))
for kq_acc_t in ["half", "float"]:
for cols_per_block in [8, 16, 32]:
if kq_acc_t == "float" and cols_per_block == 8:
continue
with open(f"fattn-wmma-f16-instance-kq{kq_acc_t}-cpb{cols_per_block}.cu", "w") as f:
f.write(SOURCE_FATTN_WMMA_START)
for head_size in [64, 80, 96, 112, 128, 256]:
if cols_per_block == 8 and head_size % 32 != 0: # wmma fragment is 8x32
continue
if kq_acc_t == "float" and cols_per_block == 32 and head_size == 256: # register spilling, bad performance
continue
f.write(SOURCE_FATTN_WMMA_CASE.format(kq_acc_t=kq_acc_t, cols_per_block=cols_per_block, head_size=head_size))
for type in TYPES_MMQ:
with open(f"mmq-instance-{get_short_name(type)}.cu", "w") as f:
f.write(SOURCE_MMQ.format(type=type))

View File

@@ -3,6 +3,7 @@ package ggml
// #cgo CXXFLAGS: -std=c++17
// #cgo CPPFLAGS: -DNDEBUG -DGGML_USE_CPU
// #cgo CPPFLAGS: -I${SRCDIR}/../include -I${SRCDIR}/ggml-cpu
// #cgo windows LDFLAGS: -lmsvcrt -static -static-libgcc -static-libstdc++
// #include <stdlib.h>
// #include "ggml-backend.h"
// extern void sink(int level, char *text, void *user_data);
@@ -40,28 +41,53 @@ func sink(level C.int, text *C.char, _ unsafe.Pointer) {
}
var OnceLoad = sync.OnceFunc(func() {
var lib struct{ name, defaultValue string }
exe, err := os.Executable()
if err != nil {
slog.Warn("failed to get executable path", "error", err)
exe = "."
}
// PATH, LD_LIBRARY_PATH, and DYLD_LIBRARY_PATH are often
// set by the parent process, however, use a default value
// if the environment variable is not set.
var name, value string
switch runtime.GOOS {
case "darwin", "linux":
lib.name = "LD_LIBRARY_PATH"
lib.defaultValue = "/usr/local/lib:/usr/lib"
case "darwin":
// On macOS, DYLD_LIBRARY_PATH is often not set, so
// we use the directory of the executable as the default.
name = "DYLD_LIBRARY_PATH"
value = filepath.Dir(exe)
case "windows":
lib.name = "PATH"
lib.defaultValue = "."
name = "PATH"
value = filepath.Join(filepath.Dir(exe), "lib", "ollama")
default:
return
name = "LD_LIBRARY_PATH"
value = filepath.Join(filepath.Dir(exe), "..", "lib", "ollama")
}
paths, ok := os.LookupEnv(lib.name)
paths, ok := os.LookupEnv(name)
if !ok {
paths = lib.defaultValue
paths = value
}
for _, path := range filepath.SplitList(paths) {
func() {
cpath := C.CString(path)
defer C.free(unsafe.Pointer(cpath))
C.ggml_backend_load_all_from_path(cpath)
}()
split := filepath.SplitList(paths)
visited := make(map[string]struct{}, len(split))
for _, path := range split {
abspath, err := filepath.Abs(path)
if err != nil {
slog.Error("failed to get absolute path", "error", err)
continue
}
if _, ok := visited[abspath]; !ok {
func() {
slog.Debug("ggml backend load all from path", "path", abspath)
cpath := C.CString(abspath)
defer C.free(unsafe.Pointer(cpath))
C.ggml_backend_load_all_from_path(cpath)
}()
visited[abspath] = struct{}{}
}
}
})

View File

@@ -1,11 +0,0 @@
package nn
import "github.com/ollama/ollama/ml"
type Conv2D struct {
Weight ml.Tensor `gguf:"weight"`
}
func (m *Conv2D) Forward(ctx ml.Context, t ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
return m.Weight.Conv2D(ctx, t, s0, s1, p0, p1, d0, d1)
}

View File

@@ -1,11 +0,0 @@
package nn
import "github.com/ollama/ollama/ml"
type Embedding struct {
Weight ml.Tensor `gguf:"weight"`
}
func (m *Embedding) Forward(ctx ml.Context, hiddenState ml.Tensor) ml.Tensor {
return m.Weight.Rows(ctx, hiddenState)
}

View File

@@ -1,17 +0,0 @@
package nn
import "github.com/ollama/ollama/ml"
type Linear struct {
Weight ml.Tensor `gguf:"weight"`
Bias ml.Tensor `gguf:"bias"`
}
func (m *Linear) Forward(ctx ml.Context, t ml.Tensor) ml.Tensor {
t = m.Weight.Mulmat(ctx, t)
if m.Bias != nil {
t = t.Add(ctx, m.Bias)
}
return t
}

View File

@@ -1,22 +0,0 @@
package nn
import (
"github.com/ollama/ollama/ml"
)
type LayerNorm struct {
Weight ml.Tensor `gguf:"weight"`
Bias ml.Tensor `gguf:"bias"`
}
func (m *LayerNorm) Forward(ctx ml.Context, t ml.Tensor, eps float32) ml.Tensor {
return t.LayerNorm(ctx, m.Weight, m.Bias, eps)
}
type RMSNorm struct {
Weight ml.Tensor `gguf:"weight"`
}
func (m *RMSNorm) Forward(ctx ml.Context, t ml.Tensor, eps float32) ml.Tensor {
return t.RMSNorm(ctx, m.Weight, eps)
}

View File

@@ -1,212 +0,0 @@
package main
import (
"errors"
"flag"
"fmt"
"image"
"io"
"log/slog"
"os"
"path/filepath"
"strings"
"time"
"github.com/ollama/ollama/cache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model"
_ "github.com/ollama/ollama/model/llama"
_ "github.com/ollama/ollama/model/mllama"
"github.com/ollama/ollama/sample"
)
var args struct {
n int
debug bool
image string
cache bool
}
func temp() error {
// start := time.Now()
flag.IntVar(&args.n, "n", 10, "number of samples")
flag.BoolVar(&args.debug, "debug", false, "enable debug logging")
flag.StringVar(&args.image, "image", "", "path to image file")
flag.BoolVar(&args.cache, "cache", false, "enable KV cache")
flag.Parse()
var prompt string
if n := len(flag.Args()); n == 1 {
bts, err := io.ReadAll(os.Stdin)
if err != nil {
return err
}
prompt = string(bts)
} else if n > 1 {
prompt = strings.Join(flag.Args()[1:], " ")
} else {
return fmt.Errorf("usage: %s path/to/file <prompt\n", filepath.Base(os.Args[0]))
}
level := slog.LevelInfo
if args.debug {
level = slog.LevelDebug
}
slog.SetDefault(slog.New(slog.NewTextHandler(os.Stderr, &slog.HandlerOptions{
Level: level,
AddSource: true,
ReplaceAttr: func(_ []string, attr slog.Attr) slog.Attr {
if attr.Key == slog.SourceKey {
source := attr.Value.Any().(*slog.Source)
source.File = filepath.Base(source.File)
}
return attr
},
})))
m, err := model.New(flag.Arg(0))
if err != nil {
return err
}
inputIDs, err := m.(model.TextProcessor).Encode(prompt)
if err != nil {
return err
}
var opts []model.OptionsFunc
if args.cache {
opts = append(opts, model.WithCache(&cache.Simple{
Capacity: 2048,
DType: ml.DTypeF32,
}))
}
if args.image != "" {
if err := func() error {
f, err := os.Open(args.image)
if err != nil {
return err
}
defer f.Close()
img, _, err := image.Decode(f)
if err != nil {
return err
}
opts = append(opts, model.WithImage(img))
return nil
}(); err != nil {
return err
}
}
// Schema for a list of friends with their info
// Maps to JSON like:
// {
// "name": "string",
// "age": integer,
// "is_available": boolean
// }
schema := &sample.Schema{
Name: "root",
Type: "object",
Properties: []*sample.Schema{
{Name: "name", Type: "string"},
{Name: "age", Type: "integer"},
{Name: "is_available", Type: "boolean"},
},
}
// fmt.Println("schema", schema)
// schema = nil
jsonTransform, err := sample.NewJSONSampler(m.(model.TextProcessor), schema)
if err != nil {
return err
}
transforms := []sample.Transform{
jsonTransform,
}
var offset int
var stringBuffer string
// var ttft time.Duration
var totalSamplingTime time.Duration
count := 0
for range args.n {
logits, err := model.Forward(m, append(opts, model.WithInputIDs(inputIDs), model.WithOffset(offset))...)
if err != nil {
return err
}
samplingStart := time.Now()
sampler := sample.Greedy()
sampledIdx, err := sampler.Sample(logits.Floats(), transforms...)
if err != nil {
return err
}
samplingTime := time.Since(samplingStart)
totalSamplingTime += samplingTime
// fmt.Println("sampling time", samplingTime)
// fmt.Printf("Sample time: %vms\n", finishTime.Sub(sampleTime).Milliseconds())
var outputIDs []int32
if !m.(model.TextProcessor).Is(uint32(sampledIdx), model.SpecialEOS) {
outputIDs = append(outputIDs, int32(sampledIdx))
}
if len(outputIDs) == 0 {
break
}
s, err := m.(model.TextProcessor).Decode(outputIDs)
if errors.Is(err, io.EOF) {
break
} else if err != nil {
return err
}
// if ttft == 0 {
// ttft = time.Since(start)
// fmt.Printf("Time to first token: %vms\n", ttft.Milliseconds())
// }
// fmt.Printf("--- token: %q\n", s)
// fmt.Printf("--- outputIDs: %v\n", outputIDs)
stringBuffer += s
count++
fmt.Println("--- stringBuffer", stringBuffer)
outputIDs, err = jsonTransform.UpdateState(outputIDs)
if err != nil {
return err
}
// can do fun shifting stuff here if needed
inputIDs = append(inputIDs, outputIDs...)
if args.cache {
offset = len(inputIDs) - 1
}
}
fmt.Println("\n------ Output: ------")
fmt.Println(stringBuffer)
fmt.Println("--------------------")
fmt.Println("sample average time", totalSamplingTime/time.Duration(count))
return nil
}
func main() {
if err := temp(); err != nil {
fmt.Println("err", err)
os.Exit(1)
}
}

Some files were not shown because too many files have changed in this diff Show More