Compare commits

...

88 Commits

Author SHA1 Message Date
Roy Han
d77a174eb4 defaut timeout 2024-06-27 14:58:31 -07:00
Michael
2cc7d05012 update readme for gemma 2 (#5333)
* update readme for gemma 2
2024-06-27 12:45:16 -04:00
Michael Yang
123a722a6f zip: prevent extracting files into parent dirs (#5314) 2024-06-26 21:38:21 -07:00
Jeffrey Morgan
4d311eb731 llm: architecture patch (#5316) 2024-06-26 21:38:12 -07:00
Blake Mizerany
cb42e607c5 llm: speed up gguf decoding by a lot (#5246)
Previously, some costly things were causing the loading of GGUF files
and their metadata and tensor information to be VERY slow:

  * Too many allocations when decoding strings
  * Hitting disk for each read of each key and value, resulting in a
    not-okay amount of syscalls/disk I/O.

The show API is now down to 33ms from 800ms+ for llama3 on a macbook pro
m3.

This commit also prevents collecting large arrays of values when
decoding GGUFs (if desired). When such keys are encountered, their
values are null, and are encoded as such in JSON.

Also, this fixes a broken test that was not encoding valid GGUF.
2024-06-24 21:47:52 -07:00
Blake Mizerany
2aa91a937b cmd: defer stating model info until necessary (#5248)
This commit changes the 'ollama run' command to defer fetching model
information until it really needs it. That is, when in interactive mode.

It also removes one such case where the model information is fetch in
duplicate, just before calling generateInteractive and then again, first
thing, in generateInteractive.

This positively impacts the performance of the command:

    ; time ./before run llama3 'hi'
    Hi! It's nice to meet you. Is there something I can help you with, or would you like to chat?

    ./before run llama3 'hi'  0.02s user 0.01s system 2% cpu 1.168 total
    ; time ./before run llama3 'hi'
    Hi! It's nice to meet you. Is there something I can help you with, or would you like to chat?

    ./before run llama3 'hi'  0.02s user 0.01s system 2% cpu 1.220 total
    ; time ./before run llama3 'hi'
    Hi! It's nice to meet you. Is there something I can help you with, or would you like to chat?

    ./before run llama3 'hi'  0.02s user 0.01s system 2% cpu 1.217 total
    ; time ./after run llama3 'hi'
    Hi! It's nice to meet you. Is there something I can help you with, or would you like to chat?

    ./after run llama3 'hi'  0.02s user 0.01s system 4% cpu 0.652 total
    ; time ./after run llama3 'hi'
    Hi! It's nice to meet you. Is there something I can help you with, or would you like to chat?

    ./after run llama3 'hi'  0.01s user 0.01s system 5% cpu 0.498 total
    ; time ./after run llama3 'hi'
    Hi! It's nice to meet you. Is there something I can help you with or would you like to chat?

    ./after run llama3 'hi'  0.01s user 0.01s system 3% cpu 0.479 total
    ; time ./after run llama3 'hi'
    Hi! It's nice to meet you. Is there something I can help you with, or would you like to chat?

    ./after run llama3 'hi'  0.02s user 0.01s system 5% cpu 0.507 total
    ; time ./after run llama3 'hi'
    Hi! It's nice to meet you. Is there something I can help you with, or would you like to chat?

    ./after run llama3 'hi'  0.02s user 0.01s system 5% cpu 0.507 total
2024-06-24 20:14:03 -07:00
Daniel Hiltgen
ccef9431c8 Merge pull request #5205 from dhiltgen/modelfile_use_mmap
Fix use_mmap parsing for modelfiles
2024-06-21 16:30:36 -07:00
royjhan
9a9e7d83c4 Docs (#5149) 2024-06-21 15:52:09 -07:00
Michael Yang
189a43caa2 Merge pull request #5206 from ollama/mxyng/quantize
fix: quantization with template
2024-06-21 13:44:34 -07:00
Michael Yang
e835ef1836 fix: quantization with template 2024-06-21 13:39:25 -07:00
Daniel Hiltgen
7e7749224c Fix use_mmap parsing for modelfiles
Add the new tristate parsing logic for the code path for modelfiles,
as well as a unit test.
2024-06-21 12:27:19 -07:00
Daniel Hiltgen
c7c2f3bc22 Merge pull request #5194 from dhiltgen/linux_mmap_auto
Refine mmap default logic on linux
2024-06-20 11:44:08 -07:00
Daniel Hiltgen
54a79d6a8a Merge pull request #5125 from dhiltgen/fedora39
Bump latest fedora cuda repo to 39
2024-06-20 11:27:24 -07:00
Daniel Hiltgen
5bf5aeec01 Refine mmap default logic on linux
If we try to use mmap when the model is larger than the system free space, loading is slower than the no-mmap approach.
2024-06-20 11:07:04 -07:00
Michael Yang
e01e535cbb Merge pull request #5192 from ollama/mxyng/kv
handle asymmetric embedding KVs
2024-06-20 10:46:24 -07:00
Josh
0195d6a2f8 Merge pull request #5188 from ollama/jyan/tmpdir2
fix: skip os.removeAll() if PID does not exist
2024-06-20 10:40:59 -07:00
Michael Yang
8e0641a9bf handle asymmetric embedding KVs 2024-06-20 09:57:27 -07:00
Josh Yan
662568d453 err!=nil check 2024-06-20 09:30:59 -07:00
Josh Yan
4ebb66c662 reformat error check 2024-06-20 09:23:43 -07:00
Josh Yan
23e899f32d skip os.removeAll() if PID does not exist 2024-06-20 08:51:35 -07:00
royjhan
fedf71635e Extend api/show and ollama show to return more model info (#4881)
* API Show Extended

* Initial Draft of Information

Co-Authored-By: Patrick Devine <pdevine@sonic.net>

* Clean Up

* Descriptive arg error messages and other fixes

* Second Draft of Show with Projectors Included

* Remove Chat Template

* Touches

* Prevent wrapping from files

* Verbose functionality

* Docs

* Address Feedback

* Lint

* Resolve Conflicts

* Function Name

* Tests for api/show model info

* Show Test File

* Add Projector Test

* Clean routes

* Projector Check

* Move Show Test

* Touches

* Doc update

---------

Co-authored-by: Patrick Devine <pdevine@sonic.net>
2024-06-19 14:19:02 -07:00
Daniel Hiltgen
97c59be653 Merge pull request #5074 from dhiltgen/app_log_rotation
Implement log rotation for tray app
2024-06-19 13:02:24 -07:00
Daniel Hiltgen
9d8a4988e8 Implement log rotation for tray app 2024-06-19 12:53:34 -07:00
Michael Yang
1ae0750a21 Merge pull request #5147 from ollama/mxyng/cleanup
remove confusing log message
2024-06-19 12:50:31 -07:00
Michael Yang
9d91e5e587 remove confusing log message 2024-06-19 11:14:11 -07:00
Daniel Hiltgen
96624aa412 Merge pull request #5072 from dhiltgen/windows_path
Move libraries out of users path
2024-06-19 09:13:39 -07:00
Daniel Hiltgen
10f33b8537 Merge pull request #5146 from dhiltgen/backout
Put back temporary intel GPU env var
2024-06-19 09:12:45 -07:00
Daniel Hiltgen
4a633cc295 Merge pull request #5145 from dhiltgen/bad_loads
Fix bad symbol load detection
2024-06-19 09:12:33 -07:00
Daniel Hiltgen
d34d88e417 Revert "Revert "gpu: add env var for detecting Intel oneapi gpus (#5076)""
This reverts commit 755b4e4fc2.
2024-06-19 08:57:41 -07:00
Daniel Hiltgen
52ce350b7a Fix bad symbol load detection
pointer deref's weren't correct on a few libraries, which explains
some crashes on older systems or miswired symlinks for discovery libraries.
2024-06-19 08:39:07 -07:00
Daniel Hiltgen
2abebb2cbe Merge pull request #5128 from zhewang1-intc/fix_levelzero_empty_symbol_detect
Fix levelzero empty symbol detect
2024-06-19 08:33:16 -07:00
Blake Mizerany
380e06e5be types/model: remove Digest
The Digest type in its current form is awkward to work with and presents
challenges with regard to how it serializes via String using the '-'
prefix.

We currently only use this in ollama.com, so we'll move our specific
needs around digest parsing and validation there.
2024-06-18 20:28:11 -07:00
Wang,Zhe
badf975e45 get real func ptr. 2024-06-19 09:00:51 +08:00
Wang,Zhe
755b4e4fc2 Revert "gpu: add env var for detecting Intel oneapi gpus (#5076)"
This reverts commit 163cd3e77c.
2024-06-19 08:59:58 +08:00
Daniel Hiltgen
1a1c99e334 Bump latest fedora cuda repo to 39 2024-06-18 17:13:54 -07:00
Michael Yang
21adf8b6d2 Merge pull request #5121 from ollama/mxyng/deepseekv2
deepseek v2 graph
2024-06-18 16:30:58 -07:00
Michael Yang
e873841cbb deepseek v2 graph 2024-06-18 15:35:12 -07:00
Daniel Hiltgen
26d0bf9236 Merge pull request #5117 from dhiltgen/fix_prediction
Handle models with divergent layer sizes
2024-06-18 11:36:51 -07:00
Daniel Hiltgen
359b15a597 Handle models with divergent layer sizes
The recent refactoring of the memory prediction assumed all layers
are the same size, but for some models (like deepseek-coder-v2) this
is not the case, so our predictions were significantly off.
2024-06-18 11:05:34 -07:00
Daniel Hiltgen
b55958a587 Merge pull request #5106 from dhiltgen/clean_logs
Tighten up memory prediction logging
2024-06-18 09:24:38 -07:00
Daniel Hiltgen
7784ca33ce Tighten up memory prediction logging
Prior to this change, we logged the memory prediction multiple times
as the scheduler iterates to find a suitable configuration, which can be
confusing since only the last log before the server starts is actually valid.
This now logs once just before starting the server on the final configuration.
It also reports what library instead of always saying "offloading to gpu" when
using CPU.
2024-06-18 09:15:35 -07:00
Daniel Hiltgen
c9c8c98bf6 Merge pull request #5105 from dhiltgen/cuda_mmap
Adjust mmap logic for cuda windows for faster model load
2024-06-17 17:07:30 -07:00
Daniel Hiltgen
171796791f Adjust mmap logic for cuda windows for faster model load
On Windows, recent llama.cpp changes make mmap slower in most
cases, so default to off.  This also implements a tri-state for
use_mmap so we can detect the difference between a user provided
value of true/false, or unspecified.
2024-06-17 16:54:30 -07:00
Jeffrey Morgan
176d0f7075 Update import.md 2024-06-17 19:44:14 -04:00
Daniel Hiltgen
8ed51cac37 Merge pull request #5103 from dhiltgen/faster_win_build
Revert powershell jobs, but keep nvcc and cmake parallelism
2024-06-17 14:23:18 -07:00
Daniel Hiltgen
c9e6f0542d Merge pull request #5069 from dhiltgen/ci_release
Implement custom github release action
2024-06-17 13:59:37 -07:00
Daniel Hiltgen
b0930626c5 Add back lower level parallel flags
nvcc supports parallelism (threads) and cmake + make can use -j,
while msbuild requires /p:CL_MPcount=8
2024-06-17 13:44:46 -07:00
Daniel Hiltgen
e890be4814 Revert "More parallelism on windows generate"
This reverts commit 0577af98f4.
2024-06-17 13:32:46 -07:00
Daniel Hiltgen
b2799f111b Move libraries out of users path
We update the PATH on windows to get the CLI mapped, but this has
an unintended side effect of causing other apps that may use our bundled
DLLs to get terminated when we upgrade.
2024-06-17 13:12:18 -07:00
Jeffrey Morgan
152fc202f5 llm: update llama.cpp commit to 7c26775 (#4896)
* llm: update llama.cpp submodule to `7c26775`

* disable `LLAMA_BLAS` for now

* `-DLLAMA_OPENMP=off`
2024-06-17 15:56:16 -04:00
Lei Jitang
4ad0d4d6d3 Fix a build warning (#5096)
Signed-off-by: Lei Jitang <leijitang@outlook.com>
2024-06-17 14:47:48 -04:00
Jeffrey Morgan
163cd3e77c gpu: add env var for detecting Intel oneapi gpus (#5076)
* gpu: add env var for detecting intel oneapi gpus

* fix build error
2024-06-16 20:09:05 -04:00
Daniel Hiltgen
4c2c8f93dd Merge pull request #5080 from dhiltgen/debug_intel_crash
Add some more debugging logs for intel discovery
2024-06-16 14:42:41 -07:00
Daniel Hiltgen
fd1e6e0590 Add some more debugging logs for intel discovery
Also removes an unused overall count variable
2024-06-16 07:42:52 -07:00
royjhan
89c79bec8c Add ModifiedAt Field to /api/show (#5033)
* Add Mod Time to Show

* Error Handling
2024-06-15 20:53:56 -07:00
Jeffrey Morgan
c7b77004e3 docs: add missing powershell package to windows development instructions (#5075)
* docs: add missing instruction for powershell build

The powershell script for building Ollama on Windows now requires the `ThreadJob` module. Add this to the instructions and dependency list.

* Update development.md
2024-06-15 23:08:09 -04:00
Daniel Hiltgen
07d143f412 Merge pull request #5058 from coolljt0725/fix_build_warning
gpu: Fix build warning
2024-06-15 11:52:36 -07:00
Daniel Hiltgen
a12283e2ff Implement custom github release action
This implements the release logic we want via gh cli
to support updating releases with rc tags in place and retain
release notes and other community reactions.
2024-06-15 11:36:56 -07:00
Daniel Hiltgen
4b0050cf0e Merge pull request #5037 from dhiltgen/faster_win_build
More parallelism on windows generate
2024-06-15 08:03:05 -07:00
Daniel Hiltgen
0577af98f4 More parallelism on windows generate
Make the build faster
2024-06-15 07:44:55 -07:00
Daniel Hiltgen
17ce203a26 Merge pull request #4875 from dhiltgen/rocm_gfx900_workaround
Rocm gfx900 workaround
2024-06-15 07:38:58 -07:00
Daniel Hiltgen
d76555ffb5 Merge pull request #4874 from dhiltgen/rocm_v6_bump
Rocm v6 bump
2024-06-15 07:38:32 -07:00
Daniel Hiltgen
2786dff5d3 Merge pull request #4264 from dhiltgen/show_gpu_visible_settings
Centralize GPU configuration vars
2024-06-15 07:33:52 -07:00
Lei Jitang
225f0d1219 gpu: Fix build warning
Signed-off-by: Lei Jitang <leijitang@outlook.com>
2024-06-15 14:26:23 +08:00
Daniel Hiltgen
532db58311 Merge pull request #4972 from jayson-cloude/main
fix: "Skip searching for network devices"
2024-06-14 17:04:40 -07:00
Daniel Hiltgen
6be309e1bd Centralize GPU configuration vars
This should aid in troubleshooting by capturing and reporting the GPU
settings at startup in the logs along with all the other server settings.
2024-06-14 15:59:10 -07:00
Daniel Hiltgen
da3bf23354 Workaround gfx900 SDMA bugs
Implement support for GPU env var workarounds, and leverage
this for the Vega RX 56 which needs
HSA_ENABLE_SDMA=0 set to work properly
2024-06-14 15:38:13 -07:00
Daniel Hiltgen
26ab67732b Bump ROCm linux to 6.1.1 2024-06-14 15:37:54 -07:00
Daniel Hiltgen
45cacbaf05 Merge pull request #4517 from dhiltgen/gpu_incremental
Enhanced GPU discovery and multi-gpu support with concurrency
2024-06-14 15:35:00 -07:00
Daniel Hiltgen
17df6520c8 Remove mmap related output calc logic 2024-06-14 14:55:50 -07:00
Daniel Hiltgen
6f351bf586 review comments and coverage 2024-06-14 14:55:50 -07:00
Daniel Hiltgen
ff4f0cbd1d Prevent multiple concurrent loads on the same gpus
While models are loading, the VRAM metrics are dynamic, so try
to load on a GPU that doesn't have a model actively loading, or wait
to avoid races that lead to OOMs
2024-06-14 14:51:40 -07:00
Daniel Hiltgen
fc37c192ae Refine CPU load behavior with system memory visibility 2024-06-14 14:51:40 -07:00
Daniel Hiltgen
434dfe30c5 Reintroduce nvidia nvml library for windows
This library will give us the most reliable free VRAM reporting on windows
to enable concurrent model scheduling.
2024-06-14 14:51:40 -07:00
Daniel Hiltgen
4e2b7e181d Refactor intel gpu discovery 2024-06-14 14:51:40 -07:00
Daniel Hiltgen
48702dd149 Harden unload for empty runners 2024-06-14 14:51:40 -07:00
Daniel Hiltgen
68dfc6236a refined test timing
adjust timing on some tests so they don't timeout on small/slow GPUs
2024-06-14 14:51:40 -07:00
Daniel Hiltgen
5e8ff556cb Support forced spreading for multi GPU
Our default behavior today is to try to fit into a single GPU if possible.
Some users would prefer the old behavior of always spreading across
multiple GPUs even if the model can fit into one.  This exposes that
tunable behavior.
2024-06-14 14:51:40 -07:00
Daniel Hiltgen
6fd04ca922 Improve multi-gpu handling at the limit
Still not complete, needs some refinement to our prediction to understand the
discrete GPUs available space so we can see how many layers fit in each one
since we can't split one layer across multiple GPUs we can't treat free space
as one logical block
2024-06-14 14:51:40 -07:00
Daniel Hiltgen
206797bda4 Fix concurrency integration test to work locally
This worked remotely but wound up trying to spawn multiple servers
locally which doesn't work
2024-06-14 14:51:40 -07:00
Daniel Hiltgen
43ed358f9a Refine GPU discovery to bootstrap once
Now that we call the GPU discovery routines many times to
update memory, this splits initial discovery from free memory
updating.
2024-06-14 14:51:40 -07:00
Daniel Hiltgen
b32ebb4f29 Use DRM driver for VRAM info for amd
The amdgpu drivers free VRAM reporting omits some other apps, so leverage the
upstream DRM driver which keeps better tabs on things
2024-06-14 14:51:40 -07:00
Daniel Hiltgen
fb9cdfa723 Fix server.cpp for the new cuda build macros 2024-06-14 14:51:40 -07:00
Daniel Hiltgen
efac488675 Revert "Limit GPU lib search for now (#4777)"
This reverts commit 476fb8e892.
2024-06-14 14:51:40 -07:00
Jeffrey Morgan
6b800aa7b7 openai: do not set temperature to 0 when setting seed (#5045) 2024-06-14 13:43:56 -07:00
Jeffrey Morgan
dd7c9ebeaf server: longer timeout in TestRequests (#5046) 2024-06-14 09:48:25 -07:00
Patrick Devine
4dc7fb9525 update 40xx gpu compat matrix (#5036) 2024-06-13 17:10:33 -07:00
jayson-cloude
157f09acdf fix: "Skip searching for network devices"
On an Ubuntu 24.04 computer with vmware installed, the sudo lshw command will get stuck. "Network interfaces" is always displayed
2024-06-11 16:11:35 +08:00
74 changed files with 3417 additions and 1184 deletions

View File

@@ -437,6 +437,7 @@ jobs:
env: env:
OLLAMA_SKIP_IMAGE_BUILD: '1' OLLAMA_SKIP_IMAGE_BUILD: '1'
PUSH: '1' PUSH: '1'
GH_TOKEN: ${{ github.token }}
steps: steps:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
- name: Set Version - name: Set Version
@@ -460,15 +461,20 @@ jobs:
ls -lh dist/ ls -lh dist/
(cd dist; sha256sum * > sha256sum.txt) (cd dist; sha256sum * > sha256sum.txt)
cat dist/sha256sum.txt cat dist/sha256sum.txt
- uses: ncipollo/release-action@v1 - name: Create or update Release
with: run: |
name: ${{ env.RELEASE_VERSION }} echo "Looking for existing release for ${{ env.RELEASE_VERSION }}"
allowUpdates: true OLD_TAG=$(gh release ls --json name,tagName | jq -r ".[] | select(.name == \"${{ env.RELEASE_VERSION }}\") | .tagName")
artifacts: 'dist/*' if [ -n "$OLD_TAG" ]; then
draft: true echo "Updating release ${{ env.RELEASE_VERSION }} to point to new tag ${GITHUB_REF_NAME}"
prerelease: true gh release edit ${OLD_TAG} --tag ${GITHUB_REF_NAME}
omitBodyDuringUpdate: true else
generateReleaseNotes: true echo "Creating new release ${{ env.RELEASE_VERSION }} pointing to tag ${GITHUB_REF_NAME}"
omitDraftDuringUpdate: true gh release create ${GITHUB_REF_NAME} \
omitPrereleaseDuringUpdate: true --title ${{ env.RELEASE_VERSION }} \
replacesArtifacts: true --draft \
--generate-notes \
--prerelease
fi
echo "Uploading artifacts for tag ${GITHUB_REF_NAME}"
gh release upload ${GITHUB_REF_NAME} dist/* --clobber

View File

@@ -124,7 +124,7 @@ jobs:
strategy: strategy:
matrix: matrix:
rocm-version: rocm-version:
- '6.0.2' - '6.1.1'
runs-on: linux runs-on: linux
container: rocm/dev-ubuntu-20.04:${{ matrix.rocm-version }} container: rocm/dev-ubuntu-20.04:${{ matrix.rocm-version }}
steps: steps:

View File

@@ -2,7 +2,7 @@ ARG GOLANG_VERSION=1.22.1
ARG CMAKE_VERSION=3.22.1 ARG CMAKE_VERSION=3.22.1
# this CUDA_VERSION corresponds with the one specified in docs/gpu.md # this CUDA_VERSION corresponds with the one specified in docs/gpu.md
ARG CUDA_VERSION=11.3.1 ARG CUDA_VERSION=11.3.1
ARG ROCM_VERSION=6.0.2 ARG ROCM_VERSION=6.1.1
# Copy the minimal context we need to run the generate scripts # Copy the minimal context we need to run the generate scripts
FROM scratch AS llm-code FROM scratch AS llm-code

View File

@@ -53,8 +53,8 @@ Here are some example models that can be downloaded:
| Llama 3 | 70B | 40GB | `ollama run llama3:70b` | | Llama 3 | 70B | 40GB | `ollama run llama3:70b` |
| Phi 3 Mini | 3.8B | 2.3GB | `ollama run phi3` | | Phi 3 Mini | 3.8B | 2.3GB | `ollama run phi3` |
| Phi 3 Medium | 14B | 7.9GB | `ollama run phi3:medium` | | Phi 3 Medium | 14B | 7.9GB | `ollama run phi3:medium` |
| Gemma | 2B | 1.4GB | `ollama run gemma:2b` | | Gemma 2 | 9B | 5.5GB | `ollama run gemma2` |
| Gemma | 7B | 4.8GB | `ollama run gemma:7b` | | Gemma 2 | 27B | 16GB | `ollama run gemma2:27b` |
| Mistral | 7B | 4.1GB | `ollama run mistral` | | Mistral | 7B | 4.1GB | `ollama run mistral` |
| Moondream 2 | 1.4B | 829MB | `ollama run moondream` | | Moondream 2 | 1.4B | 829MB | `ollama run moondream` |
| Neural Chat | 7B | 4.1GB | `ollama run neural-chat` | | Neural Chat | 7B | 4.1GB | `ollama run neural-chat` |
@@ -182,6 +182,12 @@ $ ollama run llama3 "Summarize this file: $(cat README.md)"
Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications. Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.
``` ```
### Show model information
```
ollama show llama3
```
### List models on your computer ### List models on your computer
``` ```

View File

@@ -159,18 +159,49 @@ type Options struct {
// Runner options which must be set when the model is loaded into memory // Runner options which must be set when the model is loaded into memory
type Runner struct { type Runner struct {
UseNUMA bool `json:"numa,omitempty"` UseNUMA bool `json:"numa,omitempty"`
NumCtx int `json:"num_ctx,omitempty"` NumCtx int `json:"num_ctx,omitempty"`
NumBatch int `json:"num_batch,omitempty"` NumBatch int `json:"num_batch,omitempty"`
NumGPU int `json:"num_gpu,omitempty"` NumGPU int `json:"num_gpu,omitempty"`
MainGPU int `json:"main_gpu,omitempty"` MainGPU int `json:"main_gpu,omitempty"`
LowVRAM bool `json:"low_vram,omitempty"` LowVRAM bool `json:"low_vram,omitempty"`
F16KV bool `json:"f16_kv,omitempty"` F16KV bool `json:"f16_kv,omitempty"`
LogitsAll bool `json:"logits_all,omitempty"` LogitsAll bool `json:"logits_all,omitempty"`
VocabOnly bool `json:"vocab_only,omitempty"` VocabOnly bool `json:"vocab_only,omitempty"`
UseMMap bool `json:"use_mmap,omitempty"` UseMMap TriState `json:"use_mmap,omitempty"`
UseMLock bool `json:"use_mlock,omitempty"` UseMLock bool `json:"use_mlock,omitempty"`
NumThread int `json:"num_thread,omitempty"` NumThread int `json:"num_thread,omitempty"`
}
type TriState int
const (
TriStateUndefined TriState = -1
TriStateFalse TriState = 0
TriStateTrue TriState = 1
)
func (b *TriState) UnmarshalJSON(data []byte) error {
var v bool
if err := json.Unmarshal(data, &v); err != nil {
return err
}
if v {
*b = TriStateTrue
}
*b = TriStateFalse
return nil
}
func (b *TriState) MarshalJSON() ([]byte, error) {
if *b == TriStateUndefined {
return nil, nil
}
var v bool
if *b == TriStateTrue {
v = true
}
return json.Marshal(v)
} }
// EmbeddingRequest is the request passed to [Client.Embeddings]. // EmbeddingRequest is the request passed to [Client.Embeddings].
@@ -222,6 +253,7 @@ type ShowRequest struct {
Model string `json:"model"` Model string `json:"model"`
System string `json:"system"` System string `json:"system"`
Template string `json:"template"` Template string `json:"template"`
Verbose bool `json:"verbose"`
Options map[string]interface{} `json:"options"` Options map[string]interface{} `json:"options"`
@@ -231,13 +263,16 @@ type ShowRequest struct {
// ShowResponse is the response returned from [Client.Show]. // ShowResponse is the response returned from [Client.Show].
type ShowResponse struct { type ShowResponse struct {
License string `json:"license,omitempty"` License string `json:"license,omitempty"`
Modelfile string `json:"modelfile,omitempty"` Modelfile string `json:"modelfile,omitempty"`
Parameters string `json:"parameters,omitempty"` Parameters string `json:"parameters,omitempty"`
Template string `json:"template,omitempty"` Template string `json:"template,omitempty"`
System string `json:"system,omitempty"` System string `json:"system,omitempty"`
Details ModelDetails `json:"details,omitempty"` Details ModelDetails `json:"details,omitempty"`
Messages []Message `json:"messages,omitempty"` Messages []Message `json:"messages,omitempty"`
ModelInfo map[string]any `json:"model_info,omitempty"`
ProjectorInfo map[string]any `json:"projector_info,omitempty"`
ModifiedAt time.Time `json:"modified_at,omitempty"`
} }
// CopyRequest is the request passed to [Client.Copy]. // CopyRequest is the request passed to [Client.Copy].
@@ -402,6 +437,19 @@ func (opts *Options) FromMap(m map[string]interface{}) error {
continue continue
} }
if reflect.PointerTo(field.Type()) == reflect.TypeOf((*TriState)(nil)) {
val, ok := val.(bool)
if !ok {
return fmt.Errorf("option %q must be of type boolean", key)
}
if val {
field.SetInt(int64(TriStateTrue))
} else {
field.SetInt(int64(TriStateFalse))
}
continue
}
switch field.Kind() { switch field.Kind() {
case reflect.Int: case reflect.Int:
switch t := val.(type) { switch t := val.(type) {
@@ -490,7 +538,7 @@ func DefaultOptions() Options {
LowVRAM: false, LowVRAM: false,
F16KV: true, F16KV: true,
UseMLock: false, UseMLock: false,
UseMMap: true, UseMMap: TriStateUndefined,
UseNUMA: false, UseNUMA: false,
}, },
} }
@@ -560,6 +608,19 @@ func FormatParams(params map[string][]string) (map[string]interface{}, error) {
} else { } else {
field := valueOpts.FieldByName(opt.Name) field := valueOpts.FieldByName(opt.Name)
if field.IsValid() && field.CanSet() { if field.IsValid() && field.CanSet() {
if reflect.PointerTo(field.Type()) == reflect.TypeOf((*TriState)(nil)) {
boolVal, err := strconv.ParseBool(vals[0])
if err != nil {
return nil, fmt.Errorf("invalid bool value %s", vals)
}
if boolVal {
out[key] = TriStateTrue
} else {
out[key] = TriStateFalse
}
continue
}
switch field.Kind() { switch field.Kind() {
case reflect.Float32: case reflect.Float32:
floatVal, err := strconv.ParseFloat(vals[0], 32) floatVal, err := strconv.ParseFloat(vals[0], 32)

View File

@@ -2,6 +2,7 @@ package api
import ( import (
"encoding/json" "encoding/json"
"fmt"
"math" "math"
"testing" "testing"
"time" "time"
@@ -105,3 +106,101 @@ func TestDurationMarshalUnmarshal(t *testing.T) {
}) })
} }
} }
func TestUseMmapParsingFromJSON(t *testing.T) {
tests := []struct {
name string
req string
exp TriState
}{
{
name: "Undefined",
req: `{ }`,
exp: TriStateUndefined,
},
{
name: "True",
req: `{ "use_mmap": true }`,
exp: TriStateTrue,
},
{
name: "False",
req: `{ "use_mmap": false }`,
exp: TriStateFalse,
},
}
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
var oMap map[string]interface{}
err := json.Unmarshal([]byte(test.req), &oMap)
require.NoError(t, err)
opts := DefaultOptions()
err = opts.FromMap(oMap)
require.NoError(t, err)
assert.Equal(t, test.exp, opts.UseMMap)
})
}
}
func TestUseMmapFormatParams(t *testing.T) {
tests := []struct {
name string
req map[string][]string
exp TriState
err error
}{
{
name: "True",
req: map[string][]string{
"use_mmap": []string{"true"},
},
exp: TriStateTrue,
err: nil,
},
{
name: "False",
req: map[string][]string{
"use_mmap": []string{"false"},
},
exp: TriStateFalse,
err: nil,
},
{
name: "Numeric True",
req: map[string][]string{
"use_mmap": []string{"1"},
},
exp: TriStateTrue,
err: nil,
},
{
name: "Numeric False",
req: map[string][]string{
"use_mmap": []string{"0"},
},
exp: TriStateFalse,
err: nil,
},
{
name: "invalid string",
req: map[string][]string{
"use_mmap": []string{"foo"},
},
exp: TriStateUndefined,
err: fmt.Errorf("invalid bool value [foo]"),
},
}
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
resp, err := FormatParams(test.req)
require.Equal(t, err, test.err)
respVal, ok := resp["use_mmap"]
if test.exp != TriStateUndefined {
assert.True(t, ok, "resp: %v", resp)
assert.Equal(t, test.exp, respVal)
}
})
}
}

View File

@@ -5,6 +5,8 @@ import (
"log/slog" "log/slog"
"os" "os"
"path/filepath" "path/filepath"
"strconv"
"strings"
"github.com/ollama/ollama/envconfig" "github.com/ollama/ollama/envconfig"
) )
@@ -24,6 +26,7 @@ func InitLogging() {
logFile = os.Stderr logFile = os.Stderr
// TODO - write one-line to the app.log file saying we're running in console mode to help avoid confusion // TODO - write one-line to the app.log file saying we're running in console mode to help avoid confusion
} else { } else {
rotateLogs(AppLogFile)
logFile, err = os.OpenFile(AppLogFile, os.O_APPEND|os.O_WRONLY|os.O_CREATE, 0755) logFile, err = os.OpenFile(AppLogFile, os.O_APPEND|os.O_WRONLY|os.O_CREATE, 0755)
if err != nil { if err != nil {
slog.Error(fmt.Sprintf("failed to create server log %v", err)) slog.Error(fmt.Sprintf("failed to create server log %v", err))
@@ -46,3 +49,32 @@ func InitLogging() {
slog.Info("ollama app started") slog.Info("ollama app started")
} }
func rotateLogs(logFile string) {
if _, err := os.Stat(logFile); os.IsNotExist(err) {
return
}
index := strings.LastIndex(logFile, ".")
pre := logFile[:index]
post := "." + logFile[index+1:]
for i := LogRotationCount; i > 0; i-- {
older := pre + "-" + strconv.Itoa(i) + post
newer := pre + "-" + strconv.Itoa(i-1) + post
if i == 1 {
newer = pre + post
}
if _, err := os.Stat(newer); err == nil {
if _, err := os.Stat(older); err == nil {
err := os.Remove(older)
if err != nil {
slog.Warn("Failed to remove older log", "older", older, "error", err)
continue
}
}
err := os.Rename(newer, older)
if err != nil {
slog.Warn("Failed to rotate log", "older", older, "newer", newer, "error", err)
}
}
}
}

View File

@@ -0,0 +1,44 @@
package lifecycle
import (
"os"
"path/filepath"
"strconv"
"testing"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
)
func TestRotateLogs(t *testing.T) {
logDir := t.TempDir()
logFile := filepath.Join(logDir, "testlog.log")
// No log exists
rotateLogs(logFile)
require.NoError(t, os.WriteFile(logFile, []byte("1"), 0644))
assert.FileExists(t, logFile)
// First rotation
rotateLogs(logFile)
assert.FileExists(t, filepath.Join(logDir, "testlog-1.log"))
assert.NoFileExists(t, filepath.Join(logDir, "testlog-2.log"))
assert.NoFileExists(t, logFile)
// Should be a no-op without a new log
rotateLogs(logFile)
assert.FileExists(t, filepath.Join(logDir, "testlog-1.log"))
assert.NoFileExists(t, filepath.Join(logDir, "testlog-2.log"))
assert.NoFileExists(t, logFile)
for i := 2; i <= LogRotationCount+1; i++ {
require.NoError(t, os.WriteFile(logFile, []byte(strconv.Itoa(i)), 0644))
assert.FileExists(t, logFile)
rotateLogs(logFile)
assert.NoFileExists(t, logFile)
for j := 1; j < i; j++ {
assert.FileExists(t, filepath.Join(logDir, "testlog-"+strconv.Itoa(j)+".log"))
}
assert.NoFileExists(t, filepath.Join(logDir, "testlog-"+strconv.Itoa(i+1)+".log"))
}
}

View File

@@ -16,11 +16,12 @@ var (
AppDir = "/opt/Ollama" AppDir = "/opt/Ollama"
AppDataDir = "/opt/Ollama" AppDataDir = "/opt/Ollama"
// TODO - should there be a distinct log dir? // TODO - should there be a distinct log dir?
UpdateStageDir = "/tmp" UpdateStageDir = "/tmp"
AppLogFile = "/tmp/ollama_app.log" AppLogFile = "/tmp/ollama_app.log"
ServerLogFile = "/tmp/ollama.log" ServerLogFile = "/tmp/ollama.log"
UpgradeLogFile = "/tmp/ollama_update.log" UpgradeLogFile = "/tmp/ollama_update.log"
Installer = "OllamaSetup.exe" Installer = "OllamaSetup.exe"
LogRotationCount = 5
) )
func init() { func init() {

View File

@@ -54,7 +54,7 @@ func start(ctx context.Context, command string) (*exec.Cmd, error) {
return nil, fmt.Errorf("failed to spawn server stderr pipe: %w", err) return nil, fmt.Errorf("failed to spawn server stderr pipe: %w", err)
} }
// TODO - rotation rotateLogs(ServerLogFile)
logFile, err := os.OpenFile(ServerLogFile, os.O_APPEND|os.O_WRONLY|os.O_CREATE, 0755) logFile, err := os.OpenFile(ServerLogFile, os.O_APPEND|os.O_WRONLY|os.O_CREATE, 0755)
if err != nil { if err != nil {
return nil, fmt.Errorf("failed to create server log: %w", err) return nil, fmt.Errorf("failed to create server log: %w", err)

View File

@@ -88,10 +88,15 @@ DialogFontSize=12
[Files] [Files]
Source: ".\app.exe"; DestDir: "{app}"; DestName: "{#MyAppExeName}" ; Flags: ignoreversion 64bit Source: ".\app.exe"; DestDir: "{app}"; DestName: "{#MyAppExeName}" ; Flags: ignoreversion 64bit
Source: "..\ollama.exe"; DestDir: "{app}"; Flags: ignoreversion 64bit Source: "..\ollama.exe"; DestDir: "{app}"; Flags: ignoreversion 64bit
Source: "..\dist\windows-{#ARCH}\*.dll"; DestDir: "{app}"; Flags: ignoreversion 64bit
Source: "..\dist\windows-{#ARCH}\ollama_runners\*"; DestDir: "{app}\ollama_runners"; Flags: ignoreversion 64bit recursesubdirs Source: "..\dist\windows-{#ARCH}\ollama_runners\*"; DestDir: "{app}\ollama_runners"; Flags: ignoreversion 64bit recursesubdirs
Source: "..\dist\ollama_welcome.ps1"; DestDir: "{app}"; Flags: ignoreversion Source: "..\dist\ollama_welcome.ps1"; DestDir: "{app}"; Flags: ignoreversion
Source: ".\assets\app.ico"; DestDir: "{app}"; Flags: ignoreversion Source: ".\assets\app.ico"; DestDir: "{app}"; Flags: ignoreversion
#if DirExists("..\dist\windows-amd64\cuda")
Source: "..\dist\windows-amd64\cuda\*"; DestDir: "{app}\cuda\"; Flags: ignoreversion recursesubdirs
#endif
#if DirExists("..\dist\windows-amd64\oneapi")
Source: "..\dist\windows-amd64\oneapi\*"; DestDir: "{app}\oneapi\"; Flags: ignoreversion recursesubdirs
#endif
#if DirExists("..\dist\windows-amd64\rocm") #if DirExists("..\dist\windows-amd64\rocm")
Source: "..\dist\windows-amd64\rocm\*"; DestDir: "{app}\rocm\"; Flags: ignoreversion recursesubdirs Source: "..\dist\windows-amd64\rocm\*"; DestDir: "{app}\rocm\"; Flags: ignoreversion recursesubdirs
#endif #endif

View File

@@ -162,9 +162,6 @@ func tempZipFiles(path string) (string, error) {
} }
defer tempfile.Close() defer tempfile.Close()
zipfile := zip.NewWriter(tempfile)
defer zipfile.Close()
detectContentType := func(path string) (string, error) { detectContentType := func(path string) (string, error) {
f, err := os.Open(path) f, err := os.Open(path)
if err != nil { if err != nil {
@@ -233,6 +230,9 @@ func tempZipFiles(path string) (string, error) {
files = append(files, tks...) files = append(files, tks...)
} }
zipfile := zip.NewWriter(tempfile)
defer zipfile.Close()
for _, file := range files { for _, file := range files {
f, err := os.Open(file) f, err := os.Open(file)
if err != nil { if err != nil {
@@ -287,38 +287,12 @@ func createBlob(cmd *cobra.Command, client *api.Client, path string) (string, er
} }
func RunHandler(cmd *cobra.Command, args []string) error { func RunHandler(cmd *cobra.Command, args []string) error {
client, err := api.ClientFromEnvironment()
if err != nil {
return err
}
name := args[0]
// check if the model exists on the server
show, err := client.Show(cmd.Context(), &api.ShowRequest{Name: name})
var statusError api.StatusError
switch {
case errors.As(err, &statusError) && statusError.StatusCode == http.StatusNotFound:
if err := PullHandler(cmd, []string{name}); err != nil {
return err
}
show, err = client.Show(cmd.Context(), &api.ShowRequest{Name: name})
if err != nil {
return err
}
case err != nil:
return err
}
interactive := true interactive := true
opts := runOptions{ opts := runOptions{
Model: args[0], Model: args[0],
WordWrap: os.Getenv("TERM") == "xterm-256color", WordWrap: os.Getenv("TERM") == "xterm-256color",
Options: map[string]interface{}{}, Options: map[string]interface{}{},
MultiModal: slices.Contains(show.Details.Families, "clip"),
ParentModel: show.Details.ParentModel,
} }
format, err := cmd.Flags().GetString("format") format, err := cmd.Flags().GetString("format")
@@ -362,11 +336,38 @@ func RunHandler(cmd *cobra.Command, args []string) error {
} }
opts.WordWrap = !nowrap opts.WordWrap = !nowrap
if !interactive { // Fill out the rest of the options based on information about the
return generate(cmd, opts) // model.
client, err := api.ClientFromEnvironment()
if err != nil {
return err
} }
return generateInteractive(cmd, opts) name := args[0]
info, err := func() (*api.ShowResponse, error) {
showReq := &api.ShowRequest{Name: name}
info, err := client.Show(cmd.Context(), showReq)
var se api.StatusError
if errors.As(err, &se) && se.StatusCode == http.StatusNotFound {
if err := PullHandler(cmd, []string{name}); err != nil {
return nil, err
}
return client.Show(cmd.Context(), &api.ShowRequest{Name: name})
}
return info, err
}()
if err != nil {
return err
}
opts.MultiModal = slices.Contains(info.Details.Families, "clip")
opts.ParentModel = info.Details.ParentModel
opts.Messages = append(opts.Messages, info.Messages...)
if interactive {
return generateInteractive(cmd, opts)
}
return generate(cmd, opts)
} }
func errFromUnknownKey(unknownKeyErr error) error { func errFromUnknownKey(unknownKeyErr error) error {
@@ -579,10 +580,6 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
return err return err
} }
if len(args) != 1 {
return errors.New("missing model name")
}
license, errLicense := cmd.Flags().GetBool("license") license, errLicense := cmd.Flags().GetBool("license")
modelfile, errModelfile := cmd.Flags().GetBool("modelfile") modelfile, errModelfile := cmd.Flags().GetBool("modelfile")
parameters, errParams := cmd.Flags().GetBool("parameters") parameters, errParams := cmd.Flags().GetBool("parameters")
@@ -625,8 +622,29 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
if flagsSet > 1 { if flagsSet > 1 {
return errors.New("only one of '--license', '--modelfile', '--parameters', '--system', or '--template' can be specified") return errors.New("only one of '--license', '--modelfile', '--parameters', '--system', or '--template' can be specified")
} else if flagsSet == 0 { }
return errors.New("one of '--license', '--modelfile', '--parameters', '--system', or '--template' must be specified")
if flagsSet == 1 {
req := api.ShowRequest{Name: args[0]}
resp, err := client.Show(cmd.Context(), &req)
if err != nil {
return err
}
switch showType {
case "license":
fmt.Println(resp.License)
case "modelfile":
fmt.Println(resp.Modelfile)
case "parameters":
fmt.Println(resp.Parameters)
case "system":
fmt.Println(resp.System)
case "template":
fmt.Println(resp.Template)
}
return nil
} }
req := api.ShowRequest{Name: args[0]} req := api.ShowRequest{Name: args[0]}
@@ -635,22 +653,114 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
return err return err
} }
switch showType { arch := resp.ModelInfo["general.architecture"].(string)
case "license":
fmt.Println(resp.License) modelData := [][]string{
case "modelfile": {"arch", arch},
fmt.Println(resp.Modelfile) {"parameters", resp.Details.ParameterSize},
case "parameters": {"quantization", resp.Details.QuantizationLevel},
fmt.Println(resp.Parameters) {"context length", fmt.Sprintf("%v", resp.ModelInfo[fmt.Sprintf("%s.context_length", arch)].(float64))},
case "system": {"embedding length", fmt.Sprintf("%v", resp.ModelInfo[fmt.Sprintf("%s.embedding_length", arch)].(float64))},
fmt.Println(resp.System)
case "template":
fmt.Println(resp.Template)
} }
mainTableData := [][]string{
{"Model"},
{renderSubTable(modelData, false)},
}
if resp.ProjectorInfo != nil {
projectorData := [][]string{
{"arch", "clip"},
{"parameters", format.HumanNumber(uint64(resp.ProjectorInfo["general.parameter_count"].(float64)))},
{"projector type", resp.ProjectorInfo["clip.projector_type"].(string)},
{"embedding length", fmt.Sprintf("%v", resp.ProjectorInfo["clip.vision.embedding_length"].(float64))},
{"projection dimensionality", fmt.Sprintf("%v", resp.ProjectorInfo["clip.vision.projection_dim"].(float64))},
}
mainTableData = append(mainTableData,
[]string{"Projector"},
[]string{renderSubTable(projectorData, false)},
)
}
if resp.Parameters != "" {
mainTableData = append(mainTableData, []string{"Parameters"}, []string{formatParams(resp.Parameters)})
}
if resp.System != "" {
mainTableData = append(mainTableData, []string{"System"}, []string{renderSubTable(twoLines(resp.System), true)})
}
if resp.License != "" {
mainTableData = append(mainTableData, []string{"License"}, []string{renderSubTable(twoLines(resp.License), true)})
}
table := tablewriter.NewWriter(os.Stdout)
table.SetAutoWrapText(false)
table.SetBorder(false)
table.SetAlignment(tablewriter.ALIGN_LEFT)
for _, v := range mainTableData {
table.Append(v)
}
table.Render()
return nil return nil
} }
func renderSubTable(data [][]string, file bool) string {
var buf bytes.Buffer
table := tablewriter.NewWriter(&buf)
table.SetAutoWrapText(!file)
table.SetBorder(false)
table.SetNoWhiteSpace(true)
table.SetTablePadding("\t")
table.SetAlignment(tablewriter.ALIGN_LEFT)
for _, v := range data {
table.Append(v)
}
table.Render()
renderedTable := buf.String()
lines := strings.Split(renderedTable, "\n")
for i, line := range lines {
lines[i] = "\t" + line
}
return strings.Join(lines, "\n")
}
func twoLines(s string) [][]string {
lines := strings.Split(s, "\n")
res := [][]string{}
count := 0
for _, line := range lines {
line = strings.TrimSpace(line)
if line != "" {
count++
res = append(res, []string{line})
if count == 2 {
return res
}
}
}
return res
}
func formatParams(s string) string {
lines := strings.Split(s, "\n")
table := [][]string{}
for _, line := range lines {
table = append(table, strings.Fields(line))
}
return renderSubTable(table, false)
}
func CopyHandler(cmd *cobra.Command, args []string) error { func CopyHandler(cmd *cobra.Command, args []string) error {
client, err := api.ClientFromEnvironment() client, err := api.ClientFromEnvironment()
if err != nil { if err != nil {

View File

@@ -31,65 +31,40 @@ const (
) )
func loadModel(cmd *cobra.Command, opts *runOptions) error { func loadModel(cmd *cobra.Command, opts *runOptions) error {
client, err := api.ClientFromEnvironment()
if err != nil {
return err
}
p := progress.NewProgress(os.Stderr) p := progress.NewProgress(os.Stderr)
defer p.StopAndClear() defer p.StopAndClear()
spinner := progress.NewSpinner("") spinner := progress.NewSpinner("")
p.Add("", spinner) p.Add("", spinner)
showReq := api.ShowRequest{Name: opts.Model} client, err := api.ClientFromEnvironment()
showResp, err := client.Show(cmd.Context(), &showReq)
if err != nil { if err != nil {
return err return err
} }
opts.MultiModal = slices.Contains(showResp.Details.Families, "clip")
opts.ParentModel = showResp.Details.ParentModel
if len(showResp.Messages) > 0 {
opts.Messages = append(opts.Messages, showResp.Messages...)
}
chatReq := &api.ChatRequest{ chatReq := &api.ChatRequest{
Model: opts.Model, Model: opts.Model,
Messages: []api.Message{}, KeepAlive: opts.KeepAlive,
} }
if opts.KeepAlive != nil { return client.Chat(cmd.Context(), chatReq, func(resp api.ChatResponse) error {
chatReq.KeepAlive = opts.KeepAlive
}
err = client.Chat(cmd.Context(), chatReq, func(resp api.ChatResponse) error {
p.StopAndClear() p.StopAndClear()
if len(opts.Messages) > 0 { for _, msg := range opts.Messages {
for _, msg := range opts.Messages { switch msg.Role {
switch msg.Role { case "user":
case "user": fmt.Printf(">>> %s\n", msg.Content)
fmt.Printf(">>> %s\n", msg.Content) case "assistant":
case "assistant": state := &displayResponseState{}
state := &displayResponseState{} displayResponse(msg.Content, opts.WordWrap, state)
displayResponse(msg.Content, opts.WordWrap, state) fmt.Println()
fmt.Println() fmt.Println()
fmt.Println()
}
} }
} }
return nil return nil
}) })
if err != nil {
return err
}
return nil
} }
func generateInteractive(cmd *cobra.Command, opts runOptions) error { func generateInteractive(cmd *cobra.Command, opts runOptions) error {
opts.Messages = make([]api.Message, 0)
err := loadModel(cmd, &opts) err := loadModel(cmd, &opts)
if err != nil { if err != nil {
return err return err

View File

@@ -777,11 +777,12 @@ A single JSON object will be returned.
POST /api/show POST /api/show
``` ```
Show information about a model including details, modelfile, template, parameters, license, and system prompt. Show information about a model including details, modelfile, template, parameters, license, system prompt.
### Parameters ### Parameters
- `name`: name of the model to show - `name`: name of the model to show
- `verbose`: (optional) if set to `true`, returns full data for verbose response fields
### Examples ### Examples
@@ -798,14 +799,40 @@ curl http://localhost:11434/api/show -d '{
```json ```json
{ {
"modelfile": "# Modelfile generated by \"ollama show\"\n# To build a new Modelfile based on this one, replace the FROM line with:\n# FROM llava:latest\n\nFROM /Users/matt/.ollama/models/blobs/sha256:200765e1283640ffbd013184bf496e261032fa75b99498a9613be4e94d63ad52\nTEMPLATE \"\"\"{{ .System }}\nUSER: {{ .Prompt }}\nASSISTANT: \"\"\"\nPARAMETER num_ctx 4096\nPARAMETER stop \"\u003c/s\u003e\"\nPARAMETER stop \"USER:\"\nPARAMETER stop \"ASSISTANT:\"", "modelfile": "# Modelfile generated by \"ollama show\"\n# To build a new Modelfile based on this one, replace the FROM line with:\n# FROM llava:latest\n\nFROM /Users/matt/.ollama/models/blobs/sha256:200765e1283640ffbd013184bf496e261032fa75b99498a9613be4e94d63ad52\nTEMPLATE \"\"\"{{ .System }}\nUSER: {{ .Prompt }}\nASSISTANT: \"\"\"\nPARAMETER num_ctx 4096\nPARAMETER stop \"\u003c/s\u003e\"\nPARAMETER stop \"USER:\"\nPARAMETER stop \"ASSISTANT:\"",
"parameters": "num_ctx 4096\nstop \u003c/s\u003e\nstop USER:\nstop ASSISTANT:", "parameters": "num_keep 24\nstop \"<|start_header_id|>\"\nstop \"<|end_header_id|>\"\nstop \"<|eot_id|>\"",
"template": "{{ .System }}\nUSER: {{ .Prompt }}\nASSISTANT: ", "template": "{{ if .System }}<|start_header_id|>system<|end_header_id|>\n\n{{ .System }}<|eot_id|>{{ end }}{{ if .Prompt }}<|start_header_id|>user<|end_header_id|>\n\n{{ .Prompt }}<|eot_id|>{{ end }}<|start_header_id|>assistant<|end_header_id|>\n\n{{ .Response }}<|eot_id|>",
"details": { "details": {
"parent_model": "",
"format": "gguf", "format": "gguf",
"family": "llama", "family": "llama",
"families": ["llama", "clip"], "families": [
"parameter_size": "7B", "llama"
],
"parameter_size": "8.0B",
"quantization_level": "Q4_0" "quantization_level": "Q4_0"
},
"model_info": {
"general.architecture": "llama",
"general.file_type": 2,
"general.parameter_count": 8030261248,
"general.quantization_version": 2,
"llama.attention.head_count": 32,
"llama.attention.head_count_kv": 8,
"llama.attention.layer_norm_rms_epsilon": 0.00001,
"llama.block_count": 32,
"llama.context_length": 8192,
"llama.embedding_length": 4096,
"llama.feed_forward_length": 14336,
"llama.rope.dimension_count": 128,
"llama.rope.freq_base": 500000,
"llama.vocab_size": 128256,
"tokenizer.ggml.bos_token_id": 128000,
"tokenizer.ggml.eos_token_id": 128009,
"tokenizer.ggml.merges": [], // populates if `verbose=true`
"tokenizer.ggml.model": "gpt2",
"tokenizer.ggml.pre": "llama-bpe",
"tokenizer.ggml.token_type": [], // populates if `verbose=true`
"tokenizer.ggml.tokens": [] // populates if `verbose=true`
} }
} }
``` ```

View File

@@ -114,15 +114,18 @@ If you have Docker available, you can build linux binaries with `./scripts/build
### Windows ### Windows
Note: The windows build for Ollama is still under development. Note: The Windows build for Ollama is still under development.
Install required tools: First, install required tools:
- MSVC toolchain - C/C++ and cmake as minimal requirements - MSVC toolchain - C/C++ and cmake as minimal requirements
- Go version 1.22 or higher - Go version 1.22 or higher
- MinGW (pick one variant) with GCC. - MinGW (pick one variant) with GCC.
- [MinGW-w64](https://www.mingw-w64.org/) - [MinGW-w64](https://www.mingw-w64.org/)
- [MSYS2](https://www.msys2.org/) - [MSYS2](https://www.msys2.org/)
- The `ThreadJob` Powershell module: `Install-Module -Name ThreadJob -Scope CurrentUser`
Then, build the `ollama` binary:
```powershell ```powershell
$env:CGO_ENABLED="1" $env:CGO_ENABLED="1"

View File

@@ -8,7 +8,7 @@ Check your compute compatibility to see if your card is supported:
| Compute Capability | Family | Cards | | Compute Capability | Family | Cards |
| ------------------ | ------------------- | ----------------------------------------------------------------------------------------------------------- | | ------------------ | ------------------- | ----------------------------------------------------------------------------------------------------------- |
| 9.0 | NVIDIA | `H100` | | 9.0 | NVIDIA | `H100` |
| 8.9 | GeForce RTX 40xx | `RTX 4090` `RTX 4080` `RTX 4070 Ti` `RTX 4060 Ti` | | 8.9 | GeForce RTX 40xx | `RTX 4090` `RTX 4080 SUPER` `RTX 4080` `RTX 4070 Ti SUPER` `RTX 4070 Ti` `RTX 4070 SUPER` `RTX 4070` `RTX 4060 Ti` `RTX 4060` |
| | NVIDIA Professional | `L4` `L40` `RTX 6000` | | | NVIDIA Professional | `L4` `L40` `RTX 6000` |
| 8.6 | GeForce RTX 30xx | `RTX 3090 Ti` `RTX 3090` `RTX 3080 Ti` `RTX 3080` `RTX 3070 Ti` `RTX 3070` `RTX 3060 Ti` `RTX 3060` | | 8.6 | GeForce RTX 30xx | `RTX 3090 Ti` `RTX 3090` `RTX 3080 Ti` `RTX 3080` `RTX 3070 Ti` `RTX 3070` `RTX 3060 Ti` `RTX 3060` |
| | NVIDIA Professional | `A40` `RTX A6000` `RTX A5000` `RTX A4000` `RTX A3000` `RTX A2000` `A10` `A16` `A2` | | | NVIDIA Professional | `A40` `RTX A6000` `RTX A5000` `RTX A4000` `RTX A3000` `RTX A2000` `A10` `A16` `A2` |

View File

@@ -47,19 +47,13 @@ success
### Supported Quantizations ### Supported Quantizations
<details>
<summary>Legacy Quantization</summary>
- `Q4_0` - `Q4_0`
- `Q4_1` - `Q4_1`
- `Q5_0` - `Q5_0`
- `Q5_1` - `Q5_1`
- `Q8_0` - `Q8_0`
</details> #### K-means Quantizations
<details>
<summary>K-means Quantization</summary>`
- `Q3_K_S` - `Q3_K_S`
- `Q3_K_M` - `Q3_K_M`
@@ -70,11 +64,6 @@ success
- `Q5_K_M` - `Q5_K_M`
- `Q6_K` - `Q6_K`
</details>
> [!NOTE]
> Activation-aware Weight Quantization (i.e. IQ) are not currently supported for automatic quantization however you can still import the quantized model into Ollama, see [Import GGUF](#import-gguf).
## Template Detection ## Template Detection
> [!NOTE] > [!NOTE]

View File

@@ -104,7 +104,6 @@ curl http://localhost:11434/v1/chat/completions \
#### Notes #### Notes
- Setting `seed` will always set `temperature` to `0`
- `finish_reason` will always be `stop` - `finish_reason` will always be `stop`
- `usage.prompt_tokens` will be 0 for completions where prompt evaluation is cached - `usage.prompt_tokens` will be 0 for completions where prompt evaluation is cached

View File

@@ -22,7 +22,7 @@ docker logs <container-name>
If manually running `ollama serve` in a terminal, the logs will be on that terminal. If manually running `ollama serve` in a terminal, the logs will be on that terminal.
When you run Ollama on **Windows**, there are a few different locations. You can view them in the explorer window by hitting `<cmd>+R` and type in: When you run Ollama on **Windows**, there are a few different locations. You can view them in the explorer window by hitting `<cmd>+R` and type in:
- `explorer %LOCALAPPDATA%\Ollama` to view logs - `explorer %LOCALAPPDATA%\Ollama` to view logs. The most recent server logs will be in `server.log` and older logs will be in `server-#.log`
- `explorer %LOCALAPPDATA%\Programs\Ollama` to browse the binaries (The installer adds this to your user PATH) - `explorer %LOCALAPPDATA%\Programs\Ollama` to browse the binaries (The installer adds this to your user PATH)
- `explorer %HOMEPATH%\.ollama` to browse where models and configuration is stored - `explorer %HOMEPATH%\.ollama` to browse where models and configuration is stored
- `explorer %TEMP%` where temporary executable files are stored in one or more `ollama*` directories - `explorer %TEMP%` where temporary executable files are stored in one or more `ollama*` directories

View File

@@ -39,8 +39,8 @@ server.
Ollama on Windows stores files in a few different locations. You can view them in Ollama on Windows stores files in a few different locations. You can view them in
the explorer window by hitting `<cmd>+R` and type in: the explorer window by hitting `<cmd>+R` and type in:
- `explorer %LOCALAPPDATA%\Ollama` contains logs, and downloaded updates - `explorer %LOCALAPPDATA%\Ollama` contains logs, and downloaded updates
- *app.log* contains logs from the GUI application - *app.log* contains most resent logs from the GUI application
- *server.log* contains the server logs - *server.log* contains the most recent server logs
- *upgrade.log* contains log output for upgrades - *upgrade.log* contains log output for upgrades
- `explorer %LOCALAPPDATA%\Programs\Ollama` contains the binaries (The installer adds this to your user PATH) - `explorer %LOCALAPPDATA%\Programs\Ollama` contains the binaries (The installer adds this to your user PATH)
- `explorer %HOMEPATH%\.ollama` contains models and configuration - `explorer %HOMEPATH%\.ollama` contains models and configuration

View File

@@ -53,8 +53,23 @@ var (
NumParallel int NumParallel int
// Set via OLLAMA_RUNNERS_DIR in the environment // Set via OLLAMA_RUNNERS_DIR in the environment
RunnersDir string RunnersDir string
// Set via OLLAMA_SCHED_SPREAD in the environment
SchedSpread bool
// Set via OLLAMA_TMPDIR in the environment // Set via OLLAMA_TMPDIR in the environment
TmpDir string TmpDir string
// Set via OLLAMA_INTEL_GPU in the environment
IntelGpu bool
// Set via CUDA_VISIBLE_DEVICES in the environment
CudaVisibleDevices string
// Set via HIP_VISIBLE_DEVICES in the environment
HipVisibleDevices string
// Set via ROCR_VISIBLE_DEVICES in the environment
RocrVisibleDevices string
// Set via GPU_DEVICE_ORDINAL in the environment
GpuDeviceOrdinal string
// Set via HSA_OVERRIDE_GFX_VERSION in the environment
HsaOverrideGfxVersion string
) )
type EnvVar struct { type EnvVar struct {
@@ -64,7 +79,7 @@ type EnvVar struct {
} }
func AsMap() map[string]EnvVar { func AsMap() map[string]EnvVar {
return map[string]EnvVar{ ret := map[string]EnvVar{
"OLLAMA_DEBUG": {"OLLAMA_DEBUG", Debug, "Show additional debug information (e.g. OLLAMA_DEBUG=1)"}, "OLLAMA_DEBUG": {"OLLAMA_DEBUG", Debug, "Show additional debug information (e.g. OLLAMA_DEBUG=1)"},
"OLLAMA_FLASH_ATTENTION": {"OLLAMA_FLASH_ATTENTION", FlashAttention, "Enabled flash attention"}, "OLLAMA_FLASH_ATTENTION": {"OLLAMA_FLASH_ATTENTION", FlashAttention, "Enabled flash attention"},
"OLLAMA_HOST": {"OLLAMA_HOST", Host, "IP Address for the ollama server (default 127.0.0.1:11434)"}, "OLLAMA_HOST": {"OLLAMA_HOST", Host, "IP Address for the ollama server (default 127.0.0.1:11434)"},
@@ -79,8 +94,18 @@ func AsMap() map[string]EnvVar {
"OLLAMA_NUM_PARALLEL": {"OLLAMA_NUM_PARALLEL", NumParallel, "Maximum number of parallel requests (default 1)"}, "OLLAMA_NUM_PARALLEL": {"OLLAMA_NUM_PARALLEL", NumParallel, "Maximum number of parallel requests (default 1)"},
"OLLAMA_ORIGINS": {"OLLAMA_ORIGINS", AllowOrigins, "A comma separated list of allowed origins"}, "OLLAMA_ORIGINS": {"OLLAMA_ORIGINS", AllowOrigins, "A comma separated list of allowed origins"},
"OLLAMA_RUNNERS_DIR": {"OLLAMA_RUNNERS_DIR", RunnersDir, "Location for runners"}, "OLLAMA_RUNNERS_DIR": {"OLLAMA_RUNNERS_DIR", RunnersDir, "Location for runners"},
"OLLAMA_SCHED_SPREAD": {"OLLAMA_SCHED_SPREAD", SchedSpread, "Always schedule model across all GPUs"},
"OLLAMA_TMPDIR": {"OLLAMA_TMPDIR", TmpDir, "Location for temporary files"}, "OLLAMA_TMPDIR": {"OLLAMA_TMPDIR", TmpDir, "Location for temporary files"},
} }
if runtime.GOOS != "darwin" {
ret["CUDA_VISIBLE_DEVICES"] = EnvVar{"CUDA_VISIBLE_DEVICES", CudaVisibleDevices, "Set which NVIDIA devices are visible"}
ret["HIP_VISIBLE_DEVICES"] = EnvVar{"HIP_VISIBLE_DEVICES", HipVisibleDevices, "Set which AMD devices are visible"}
ret["ROCR_VISIBLE_DEVICES"] = EnvVar{"ROCR_VISIBLE_DEVICES", RocrVisibleDevices, "Set which AMD devices are visible"}
ret["GPU_DEVICE_ORDINAL"] = EnvVar{"GPU_DEVICE_ORDINAL", GpuDeviceOrdinal, "Set which AMD devices are visible"}
ret["HSA_OVERRIDE_GFX_VERSION"] = EnvVar{"HSA_OVERRIDE_GFX_VERSION", HsaOverrideGfxVersion, "Override the gfx used for all detected AMD GPUs"}
ret["OLLAMA_INTEL_GPU"] = EnvVar{"OLLAMA_INTEL_GPU", IntelGpu, "Enable experimental Intel GPU detection"}
}
return ret
} }
func Values() map[string]string { func Values() map[string]string {
@@ -191,6 +216,15 @@ func LoadConfig() {
NoHistory = true NoHistory = true
} }
if spread := clean("OLLAMA_SCHED_SPREAD"); spread != "" {
s, err := strconv.ParseBool(spread)
if err == nil {
SchedSpread = s
} else {
SchedSpread = true
}
}
if noprune := clean("OLLAMA_NOPRUNE"); noprune != "" { if noprune := clean("OLLAMA_NOPRUNE"); noprune != "" {
NoPrune = true NoPrune = true
} }
@@ -244,6 +278,16 @@ func LoadConfig() {
if err != nil { if err != nil {
slog.Error("invalid setting", "OLLAMA_HOST", Host, "error", err, "using default port", Host.Port) slog.Error("invalid setting", "OLLAMA_HOST", Host, "error", err, "using default port", Host.Port)
} }
if set, err := strconv.ParseBool(clean("OLLAMA_INTEL_GPU")); err == nil {
IntelGpu = set
}
CudaVisibleDevices = clean("CUDA_VISIBLE_DEVICES")
HipVisibleDevices = clean("HIP_VISIBLE_DEVICES")
RocrVisibleDevices = clean("ROCR_VISIBLE_DEVICES")
GpuDeviceOrdinal = clean("GPU_DEVICE_ORDINAL")
HsaOverrideGfxVersion = clean("HSA_OVERRIDE_GFX_VERSION")
} }
func getModelsDir() (string, error) { func getModelsDir() (string, error) {

View File

@@ -13,6 +13,7 @@ import (
"strconv" "strconv"
"strings" "strings"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format" "github.com/ollama/ollama/format"
) )
@@ -25,7 +26,16 @@ const (
// Prefix with the node dir // Prefix with the node dir
GPUTotalMemoryFileGlob = "mem_banks/*/properties" // size_in_bytes line GPUTotalMemoryFileGlob = "mem_banks/*/properties" // size_in_bytes line
GPUUsedMemoryFileGlob = "mem_banks/*/used_memory"
// Direct Rendering Manager sysfs location
DRMDeviceDirGlob = "/sys/class/drm/card*/device"
DRMTotalMemoryFile = "mem_info_vram_total"
DRMUsedMemoryFile = "mem_info_vram_used"
// In hex; properties file is in decimal
DRMUniqueIDFile = "unique_id"
DRMVendorFile = "vendor"
DRMDeviceFile = "device"
) )
var ( var (
@@ -35,8 +45,8 @@ var (
) )
// Gather GPU information from the amdgpu driver if any supported GPUs are detected // Gather GPU information from the amdgpu driver if any supported GPUs are detected
func AMDGetGPUInfo() []GpuInfo { func AMDGetGPUInfo() []RocmGPUInfo {
resp := []GpuInfo{} resp := []RocmGPUInfo{}
if !AMDDetected() { if !AMDDetected() {
return resp return resp
} }
@@ -50,9 +60,9 @@ func AMDGetGPUInfo() []GpuInfo {
// Determine if the user has already pre-selected which GPUs to look at, then ignore the others // Determine if the user has already pre-selected which GPUs to look at, then ignore the others
var visibleDevices []string var visibleDevices []string
hipVD := os.Getenv("HIP_VISIBLE_DEVICES") // zero based index only hipVD := envconfig.HipVisibleDevices // zero based index only
rocrVD := os.Getenv("ROCR_VISIBLE_DEVICES") // zero based index or UUID, but consumer cards seem to not support UUID rocrVD := envconfig.RocrVisibleDevices // zero based index or UUID, but consumer cards seem to not support UUID
gpuDO := os.Getenv("GPU_DEVICE_ORDINAL") // zero based index gpuDO := envconfig.GpuDeviceOrdinal // zero based index
switch { switch {
// TODO is this priorty order right? // TODO is this priorty order right?
case hipVD != "": case hipVD != "":
@@ -65,7 +75,7 @@ func AMDGetGPUInfo() []GpuInfo {
visibleDevices = strings.Split(gpuDO, ",") visibleDevices = strings.Split(gpuDO, ",")
} }
gfxOverride := os.Getenv("HSA_OVERRIDE_GFX_VERSION") gfxOverride := envconfig.HsaOverrideGfxVersion
var supported []string var supported []string
libDir := "" libDir := ""
@@ -90,7 +100,7 @@ func AMDGetGPUInfo() []GpuInfo {
scanner := bufio.NewScanner(fp) scanner := bufio.NewScanner(fp)
isCPU := false isCPU := false
var major, minor, patch uint64 var major, minor, patch uint64
var vendor, device uint64 var vendor, device, uniqueID uint64
for scanner.Scan() { for scanner.Scan() {
line := strings.TrimSpace(scanner.Text()) line := strings.TrimSpace(scanner.Text())
// Note: we could also use "cpu_cores_count X" where X is greater than zero to detect CPUs // Note: we could also use "cpu_cores_count X" where X is greater than zero to detect CPUs
@@ -121,30 +131,43 @@ func AMDGetGPUInfo() []GpuInfo {
} else if strings.HasPrefix(line, "vendor_id") { } else if strings.HasPrefix(line, "vendor_id") {
ver := strings.Fields(line) ver := strings.Fields(line)
if len(ver) != 2 { if len(ver) != 2 {
slog.Debug("malformed vendor_id", "vendor_id", line) slog.Debug("malformed", "vendor_id", line)
continue continue
} }
vendor, err = strconv.ParseUint(ver[1], 10, 32) vendor, err = strconv.ParseUint(ver[1], 10, 64)
if err != nil { if err != nil {
slog.Debug("malformed vendor_id" + line) slog.Debug("malformed", "vendor_id", line, "error", err)
} }
} else if strings.HasPrefix(line, "device_id") { } else if strings.HasPrefix(line, "device_id") {
ver := strings.Fields(line) ver := strings.Fields(line)
if len(ver) != 2 { if len(ver) != 2 {
slog.Debug("malformed device_id", "device_id", line) slog.Debug("malformed", "device_id", line)
continue continue
} }
device, err = strconv.ParseUint(ver[1], 10, 32) device, err = strconv.ParseUint(ver[1], 10, 64)
if err != nil { if err != nil {
slog.Debug("malformed device_id" + line) slog.Debug("malformed", "device_id", line, "error", err)
}
} else if strings.HasPrefix(line, "unique_id") {
ver := strings.Fields(line)
if len(ver) != 2 {
slog.Debug("malformed", "unique_id", line)
continue
}
uniqueID, err = strconv.ParseUint(ver[1], 10, 64)
if err != nil {
slog.Debug("malformed", "unique_id", line, "error", err)
} }
} }
// TODO - any other properties we want to extract and record? // TODO - any other properties we want to extract and record?
// vendor_id + device_id -> pci lookup for "Name" // vendor_id + device_id -> pci lookup for "Name"
// Other metrics that may help us understand relative performance between multiple GPUs // Other metrics that may help us understand relative performance between multiple GPUs
} }
// Note: while ./mem_banks/*/used_memory exists, it doesn't appear to take other VRAM consumers
// into consideration, so we instead map the device over to the DRM driver sysfs nodes which
// do reliably report VRAM usage.
if isCPU { if isCPU {
cpuCount++ cpuCount++
continue continue
@@ -156,7 +179,7 @@ func AMDGetGPUInfo() []GpuInfo {
// Shouldn't happen, but just in case... // Shouldn't happen, but just in case...
if gpuID < 0 { if gpuID < 0 {
slog.Error("unexpected amdgpu sysfs data resulted in negative GPU ID, please set OLLAMA_DEBUG=1 and report an issue") slog.Error("unexpected amdgpu sysfs data resulted in negative GPU ID, please set OLLAMA_DEBUG=1 and report an issue")
return []GpuInfo{} return nil
} }
if int(major) < RocmComputeMin { if int(major) < RocmComputeMin {
@@ -167,65 +190,68 @@ func AMDGetGPUInfo() []GpuInfo {
// Look up the memory for the current node // Look up the memory for the current node
totalMemory := uint64(0) totalMemory := uint64(0)
usedMemory := uint64(0) usedMemory := uint64(0)
propGlob := filepath.Join(AMDNodesSysfsDir, strconv.Itoa(nodeID), GPUTotalMemoryFileGlob) var usedFile string
propFiles, err := filepath.Glob(propGlob) mapping := []struct {
if err != nil { id uint64
slog.Warn("error looking up total GPU memory", "glob", propGlob, "error", err) filename string
}{
{vendor, DRMVendorFile},
{device, DRMDeviceFile},
{uniqueID, DRMUniqueIDFile}, // Not all devices will report this
} }
// 1 or more memory banks - sum the values of all of them slog.Debug("mapping amdgpu to drm sysfs nodes", "amdgpu", match, "vendor", vendor, "device", device, "unique_id", uniqueID)
for _, propFile := range propFiles { // Map over to DRM location to find the total/free memory
fp, err := os.Open(propFile) drmMatches, _ := filepath.Glob(DRMDeviceDirGlob)
if err != nil { for _, devDir := range drmMatches {
slog.Warn("failed to open sysfs node", "file", propFile, "erroir", err) matched := true
continue for _, m := range mapping {
} if m.id == 0 {
defer fp.Close() // Null ID means it didn't populate, so we can't use it to match
scanner := bufio.NewScanner(fp) continue
for scanner.Scan() { }
line := strings.TrimSpace(scanner.Text()) filename := filepath.Join(devDir, m.filename)
if strings.HasPrefix(line, "size_in_bytes") { buf, err := os.ReadFile(filename)
ver := strings.Fields(line) if err != nil {
if len(ver) != 2 { slog.Debug("failed to read sysfs node", "file", filename, "error", err)
slog.Warn("malformed " + line) matched = false
continue break
} }
bankSizeInBytes, err := strconv.ParseUint(ver[1], 10, 64) // values here are in hex, strip off the lead 0x and parse so we can compare the numeric (decimal) values in amdgpu
if err != nil { cmp, err := strconv.ParseUint(strings.TrimPrefix(strings.TrimSpace(string(buf)), "0x"), 16, 64)
slog.Warn("malformed int " + line) if err != nil {
continue slog.Debug("failed to parse sysfs node", "file", filename, "error", err)
} matched = false
totalMemory += bankSizeInBytes break
}
if cmp != m.id {
matched = false
break
} }
} }
} if !matched {
if totalMemory == 0 {
slog.Warn("amdgpu reports zero total memory", "gpu", gpuID)
continue
}
usedGlob := filepath.Join(AMDNodesSysfsDir, strconv.Itoa(nodeID), GPUUsedMemoryFileGlob)
usedFiles, err := filepath.Glob(usedGlob)
if err != nil {
slog.Warn("error looking up used GPU memory", "glob", usedGlob, "error", err)
continue
}
for _, usedFile := range usedFiles {
fp, err := os.Open(usedFile)
if err != nil {
slog.Warn("failed to open sysfs node", "file", usedFile, "error", err)
continue continue
} }
defer fp.Close()
data, err := io.ReadAll(fp) // Found the matching DRM directory
slog.Debug("matched", "amdgpu", match, "drm", devDir)
totalFile := filepath.Join(devDir, DRMTotalMemoryFile)
buf, err := os.ReadFile(totalFile)
if err != nil { if err != nil {
slog.Warn("failed to read sysfs node", "file", usedFile, "error", err) slog.Debug("failed to read sysfs node", "file", totalFile, "error", err)
continue break
} }
used, err := strconv.ParseUint(strings.TrimSpace(string(data)), 10, 64) totalMemory, err = strconv.ParseUint(strings.TrimSpace(string(buf)), 10, 64)
if err != nil { if err != nil {
slog.Warn("malformed used memory", "data", string(data), "error", err) slog.Debug("failed to parse sysfs node", "file", totalFile, "error", err)
continue break
} }
usedMemory += used
usedFile = filepath.Join(devDir, DRMUsedMemoryFile)
usedMemory, err = getFreeMemory(usedFile)
if err != nil {
slog.Debug("failed to update used memory", "error", err)
}
break
} }
// iGPU detection, remove this check once we can support an iGPU variant of the rocm library // iGPU detection, remove this check once we can support an iGPU variant of the rocm library
@@ -241,18 +267,21 @@ func AMDGetGPUInfo() []GpuInfo {
slog.Debug("amdgpu memory", "gpu", gpuID, "total", format.HumanBytes2(totalMemory)) slog.Debug("amdgpu memory", "gpu", gpuID, "total", format.HumanBytes2(totalMemory))
slog.Debug("amdgpu memory", "gpu", gpuID, "available", format.HumanBytes2(totalMemory-usedMemory)) slog.Debug("amdgpu memory", "gpu", gpuID, "available", format.HumanBytes2(totalMemory-usedMemory))
gpuInfo := GpuInfo{ gpuInfo := RocmGPUInfo{
Library: "rocm", GpuInfo: GpuInfo{
memInfo: memInfo{ Library: "rocm",
TotalMemory: totalMemory, memInfo: memInfo{
FreeMemory: (totalMemory - usedMemory), TotalMemory: totalMemory,
FreeMemory: (totalMemory - usedMemory),
},
ID: strconv.Itoa(gpuID),
Name: name,
Compute: fmt.Sprintf("gfx%d%x%x", major, minor, patch),
MinimumMemory: rocmMinimumMemory,
DriverMajor: driverMajor,
DriverMinor: driverMinor,
}, },
ID: fmt.Sprintf("%d", gpuID), usedFilepath: usedFile,
Name: name,
Compute: fmt.Sprintf("gfx%d%x%x", major, minor, patch),
MinimumMemory: rocmMinimumMemory,
DriverMajor: driverMajor,
DriverMinor: driverMinor,
} }
// If the user wants to filter to a subset of devices, filter out if we aren't a match // If the user wants to filter to a subset of devices, filter out if we aren't a match
@@ -276,7 +305,7 @@ func AMDGetGPUInfo() []GpuInfo {
libDir, err = AMDValidateLibDir() libDir, err = AMDValidateLibDir()
if err != nil { if err != nil {
slog.Warn("unable to verify rocm library, will use cpu", "error", err) slog.Warn("unable to verify rocm library, will use cpu", "error", err)
return []GpuInfo{} return nil
} }
} }
gpuInfo.DependencyPath = libDir gpuInfo.DependencyPath = libDir
@@ -287,7 +316,7 @@ func AMDGetGPUInfo() []GpuInfo {
supported, err = GetSupportedGFX(libDir) supported, err = GetSupportedGFX(libDir)
if err != nil { if err != nil {
slog.Warn("failed to lookup supported GFX types, falling back to CPU mode", "error", err) slog.Warn("failed to lookup supported GFX types, falling back to CPU mode", "error", err)
return []GpuInfo{} return nil
} }
slog.Debug("rocm supported GPUs", "types", supported) slog.Debug("rocm supported GPUs", "types", supported)
} }
@@ -304,6 +333,11 @@ func AMDGetGPUInfo() []GpuInfo {
slog.Info("skipping rocm gfx compatibility check", "HSA_OVERRIDE_GFX_VERSION", gfxOverride) slog.Info("skipping rocm gfx compatibility check", "HSA_OVERRIDE_GFX_VERSION", gfxOverride)
} }
// Check for env var workarounds
if name == "1002:687f" { // Vega RX 56
gpuInfo.EnvWorkarounds = append(gpuInfo.EnvWorkarounds, [2]string{"HSA_ENABLE_SDMA", "0"})
}
// The GPU has passed all the verification steps and is supported // The GPU has passed all the verification steps and is supported
resp = append(resp, gpuInfo) resp = append(resp, gpuInfo)
} }
@@ -378,3 +412,31 @@ func AMDDriverVersion() (driverMajor, driverMinor int, err error) {
} }
return driverMajor, driverMinor, nil return driverMajor, driverMinor, nil
} }
func (gpus RocmGPUInfoList) RefreshFreeMemory() error {
if len(gpus) == 0 {
return nil
}
for i := range gpus {
usedMemory, err := getFreeMemory(gpus[i].usedFilepath)
if err != nil {
return err
}
slog.Debug("updating rocm free memory", "gpu", gpus[i].ID, "name", gpus[i].Name, "before", format.HumanBytes2(gpus[i].FreeMemory), "now", format.HumanBytes2(gpus[i].TotalMemory-usedMemory))
gpus[i].FreeMemory = gpus[i].TotalMemory - usedMemory
}
return nil
}
func getFreeMemory(usedFile string) (uint64, error) {
buf, err := os.ReadFile(usedFile)
if err != nil {
return 0, fmt.Errorf("failed to read sysfs node %s %w", usedFile, err)
}
usedMemory, err := strconv.ParseUint(strings.TrimSpace(string(buf)), 10, 64)
if err != nil {
slog.Debug("failed to parse sysfs node", "file", usedFile, "error", err)
return 0, fmt.Errorf("failed to parse sysfs node %s %w", usedFile, err)
}
return usedMemory, nil
}

View File

@@ -7,8 +7,10 @@ import (
"os" "os"
"path/filepath" "path/filepath"
"slices" "slices"
"strconv"
"strings" "strings"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format" "github.com/ollama/ollama/format"
) )
@@ -24,8 +26,8 @@ var (
RocmStandardLocations = []string{"C:\\Program Files\\AMD\\ROCm\\5.7\\bin"} // TODO glob? RocmStandardLocations = []string{"C:\\Program Files\\AMD\\ROCm\\5.7\\bin"} // TODO glob?
) )
func AMDGetGPUInfo() []GpuInfo { func AMDGetGPUInfo() []RocmGPUInfo {
resp := []GpuInfo{} resp := []RocmGPUInfo{}
hl, err := NewHipLib() hl, err := NewHipLib()
if err != nil { if err != nil {
slog.Debug(err.Error()) slog.Debug(err.Error())
@@ -52,7 +54,7 @@ func AMDGetGPUInfo() []GpuInfo {
} }
var supported []string var supported []string
gfxOverride := os.Getenv("HSA_OVERRIDE_GFX_VERSION") gfxOverride := envconfig.HsaOverrideGfxVersion
if gfxOverride == "" { if gfxOverride == "" {
supported, err = GetSupportedGFX(libDir) supported, err = GetSupportedGFX(libDir)
if err != nil { if err != nil {
@@ -117,21 +119,24 @@ func AMDGetGPUInfo() []GpuInfo {
// v5.7 only reports VRAM used by this process, so it's completely wrong and unusable // v5.7 only reports VRAM used by this process, so it's completely wrong and unusable
slog.Debug("amdgpu memory", "gpu", i, "total", format.HumanBytes2(totalMemory)) slog.Debug("amdgpu memory", "gpu", i, "total", format.HumanBytes2(totalMemory))
slog.Debug("amdgpu memory", "gpu", i, "available", format.HumanBytes2(freeMemory)) slog.Debug("amdgpu memory", "gpu", i, "available", format.HumanBytes2(freeMemory))
gpuInfo := GpuInfo{ gpuInfo := RocmGPUInfo{
Library: "rocm", GpuInfo: GpuInfo{
memInfo: memInfo{ Library: "rocm",
TotalMemory: totalMemory, memInfo: memInfo{
FreeMemory: freeMemory, TotalMemory: totalMemory,
}, FreeMemory: freeMemory,
ID: fmt.Sprintf("%d", i), // TODO this is probably wrong if we specify visible devices },
DependencyPath: libDir, ID: strconv.Itoa(i), // TODO this is probably wrong if we specify visible devices
MinimumMemory: rocmMinimumMemory, DependencyPath: libDir,
Name: name, MinimumMemory: rocmMinimumMemory,
Compute: gfx, Name: name,
Compute: gfx,
// TODO - this information isn't accurate on windows, so don't report it until we find the right way to retrieve // TODO - this information isn't accurate on windows, so don't report it until we find the right way to retrieve
// DriverMajor: driverMajor, // DriverMajor: driverMajor,
// DriverMinor: driverMinor, // DriverMinor: driverMinor,
},
index: i,
} }
resp = append(resp, gpuInfo) resp = append(resp, gpuInfo)
@@ -159,3 +164,30 @@ func AMDValidateLibDir() (string, error) {
slog.Warn("amdgpu detected, but no compatible rocm library found. Please install ROCm") slog.Warn("amdgpu detected, but no compatible rocm library found. Please install ROCm")
return "", fmt.Errorf("no suitable rocm found, falling back to CPU") return "", fmt.Errorf("no suitable rocm found, falling back to CPU")
} }
func (gpus RocmGPUInfoList) RefreshFreeMemory() error {
if len(gpus) == 0 {
return nil
}
hl, err := NewHipLib()
if err != nil {
slog.Debug(err.Error())
return nil
}
defer hl.Release()
for i := range gpus {
err := hl.HipSetDevice(gpus[i].index)
if err != nil {
return err
}
freeMemory, _, err := hl.HipMemGetInfo()
if err != nil {
slog.Warn("get mem info", "id", i, "error", err)
continue
}
slog.Debug("updating rocm free memory", "gpu", gpus[i].ID, "name", gpus[i].Name, "before", format.HumanBytes2(gpus[i].FreeMemory), "now", format.HumanBytes2(freeMemory))
gpus[i].FreeMemory = freeMemory
}
return nil
}

View File

@@ -77,20 +77,27 @@ func cleanupTmpDirs() {
continue continue
} }
raw, err := os.ReadFile(filepath.Join(d, "ollama.pid")) raw, err := os.ReadFile(filepath.Join(d, "ollama.pid"))
if err == nil {
pid, err := strconv.Atoi(string(raw))
if err == nil {
if proc, err := os.FindProcess(pid); err == nil && !errors.Is(proc.Signal(syscall.Signal(0)), os.ErrProcessDone) {
// Another running ollama, ignore this tmpdir
continue
}
}
} else {
slog.Debug("failed to open ollama.pid", "path", d, "error", err)
}
err = os.RemoveAll(d)
if err != nil { if err != nil {
slog.Debug("unable to cleanup stale tmpdir", "path", d, "error", err) slog.Warn("failed to read ollama.pid", "path", d, "error", err)
// No pid, ignore this tmpdir
continue
}
pid, err := strconv.Atoi(string(raw))
if err != nil {
slog.Warn("failed to parse pid", "path", d, "error", err)
continue
}
proc, err := os.FindProcess(pid)
if err == nil && !errors.Is(proc.Signal(syscall.Signal(0)), os.ErrProcessDone) {
slog.Warn("found running ollama", "pid", pid, "path", d)
// Another running ollama, ignore this tmpdir
continue
}
if err := os.Remove(d); err != nil {
slog.Warn("unable to cleanup stale tmpdir", "path", d, "error", err)
} }
} }
} }

View File

@@ -1,21 +1,16 @@
package gpu package gpu
import ( import (
"log/slog"
"golang.org/x/sys/cpu" "golang.org/x/sys/cpu"
) )
func GetCPUVariant() string { func GetCPUCapability() CPUCapability {
if cpu.X86.HasAVX2 { if cpu.X86.HasAVX2 {
slog.Debug("CPU has AVX2") return CPUCapabilityAVX2
return "avx2"
} }
if cpu.X86.HasAVX { if cpu.X86.HasAVX {
slog.Debug("CPU has AVX") return CPUCapabilityAVX
return "avx"
} }
slog.Debug("CPU does not have vector extensions")
// else LCD // else LCD
return "" return CPUCapabilityNone
} }

View File

@@ -24,19 +24,37 @@ import (
"github.com/ollama/ollama/format" "github.com/ollama/ollama/format"
) )
type handles struct { type cudaHandles struct {
deviceCount int deviceCount int
cudart *C.cudart_handle_t cudart *C.cudart_handle_t
nvcuda *C.nvcuda_handle_t nvcuda *C.nvcuda_handle_t
nvml *C.nvml_handle_t
}
type oneapiHandles struct {
oneapi *C.oneapi_handle_t oneapi *C.oneapi_handle_t
deviceCount int
} }
const ( const (
cudaMinimumMemory = 457 * format.MebiByte cudaMinimumMemory = 457 * format.MebiByte
rocmMinimumMemory = 457 * format.MebiByte rocmMinimumMemory = 457 * format.MebiByte
// TODO OneAPI minimum memory
) )
var gpuMutex sync.Mutex var (
gpuMutex sync.Mutex
bootstrapped bool
cpuCapability CPUCapability
cpus []CPUInfo
cudaGPUs []CudaGPUInfo
nvcudaLibPath string
cudartLibPath string
oneapiLibPath string
nvmlLibPath string
rocmGPUs []RocmGPUInfo
oneapiGPUs []OneapiGPUInfo
)
// With our current CUDA compile flags, older than 5.0 will not work properly // With our current CUDA compile flags, older than 5.0 will not work properly
var CudaComputeMin = [2]C.int{5, 0} var CudaComputeMin = [2]C.int{5, 0}
@@ -46,113 +64,113 @@ var RocmComputeMin = 9
// TODO find a better way to detect iGPU instead of minimum memory // TODO find a better way to detect iGPU instead of minimum memory
const IGPUMemLimit = 1 * format.GibiByte // 512G is what they typically report, so anything less than 1G must be iGPU const IGPUMemLimit = 1 * format.GibiByte // 512G is what they typically report, so anything less than 1G must be iGPU
var CudartLinuxGlobs = []string{
"/usr/local/cuda/lib64/libcudart.so*",
"/usr/lib/x86_64-linux-gnu/nvidia/current/libcudart.so*",
"/usr/lib/x86_64-linux-gnu/libcudart.so*",
"/usr/lib/wsl/lib/libcudart.so*",
"/usr/lib/wsl/drivers/*/libcudart.so*",
"/opt/cuda/lib64/libcudart.so*",
"/usr/local/cuda*/targets/aarch64-linux/lib/libcudart.so*",
"/usr/lib/aarch64-linux-gnu/nvidia/current/libcudart.so*",
"/usr/lib/aarch64-linux-gnu/libcudart.so*",
"/usr/local/cuda/lib*/libcudart.so*",
"/usr/lib*/libcudart.so*",
"/usr/local/lib*/libcudart.so*",
}
var CudartWindowsGlobs = []string{
"c:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v*\\bin\\cudart64_*.dll",
}
var NvcudaLinuxGlobs = []string{
"/usr/local/cuda*/targets/*/lib/libcuda.so*",
"/usr/lib/*-linux-gnu/nvidia/current/libcuda.so*",
"/usr/lib/*-linux-gnu/libcuda.so*",
"/usr/lib/wsl/lib/libcuda.so*",
"/usr/lib/wsl/drivers/*/libcuda.so*",
"/opt/cuda/lib*/libcuda.so*",
"/usr/local/cuda/lib*/libcuda.so*",
"/usr/lib*/libcuda.so*",
"/usr/local/lib*/libcuda.so*",
}
var NvcudaWindowsGlobs = []string{
"c:\\windows\\system*\\nvcuda.dll",
}
var OneapiWindowsGlobs = []string{
"c:\\Windows\\System32\\DriverStore\\FileRepository\\*\\ze_intel_gpu64.dll",
}
var OneapiLinuxGlobs = []string{
"/usr/lib/x86_64-linux-gnu/libze_intel_gpu.so*",
"/usr/lib*/libze_intel_gpu.so*",
}
// Jetson devices have JETSON_JETPACK="x.y.z" factory set to the Jetpack version installed. // Jetson devices have JETSON_JETPACK="x.y.z" factory set to the Jetpack version installed.
// Included to drive logic for reducing Ollama-allocated overhead on L4T/Jetson devices. // Included to drive logic for reducing Ollama-allocated overhead on L4T/Jetson devices.
var CudaTegra string = os.Getenv("JETSON_JETPACK") var CudaTegra string = os.Getenv("JETSON_JETPACK")
// Note: gpuMutex must already be held // Note: gpuMutex must already be held
func initGPUHandles() *handles { func initCudaHandles() *cudaHandles {
// TODO - if the ollama build is CPU only, don't do these checks as they're irrelevant and confusing // TODO - if the ollama build is CPU only, don't do these checks as they're irrelevant and confusing
gpuHandles := &handles{} cHandles := &cudaHandles{}
var cudartMgmtName string // Short Circuit if we already know which library to use
var cudartMgmtPatterns []string if nvmlLibPath != "" {
var nvcudaMgmtName string cHandles.nvml, _ = LoadNVMLMgmt([]string{nvmlLibPath})
var nvcudaMgmtPatterns []string return cHandles
}
tmpDir, _ := PayloadsDir() if nvcudaLibPath != "" {
switch runtime.GOOS { cHandles.deviceCount, cHandles.nvcuda, _ = LoadNVCUDAMgmt([]string{nvcudaLibPath})
case "windows": return cHandles
cudartMgmtName = "cudart64_*.dll" }
localAppData := os.Getenv("LOCALAPPDATA") if cudartLibPath != "" {
cudartMgmtPatterns = []string{filepath.Join(localAppData, "Programs", "Ollama", cudartMgmtName)} cHandles.deviceCount, cHandles.cudart, _ = LoadCUDARTMgmt([]string{cudartLibPath})
cudartMgmtPatterns = append(cudartMgmtPatterns, CudartWindowsGlobs...) return cHandles
// Aligned with driver, we can't carry as payloads
nvcudaMgmtName = "nvcuda.dll"
nvcudaMgmtPatterns = NvcudaWindowsGlobs
case "linux":
cudartMgmtName = "libcudart.so*"
if tmpDir != "" {
// TODO - add "payloads" for subprocess
cudartMgmtPatterns = []string{filepath.Join(tmpDir, "cuda*", cudartMgmtName)}
}
cudartMgmtPatterns = append(cudartMgmtPatterns, CudartLinuxGlobs...)
// Aligned with driver, we can't carry as payloads
nvcudaMgmtName = "libcuda.so*"
nvcudaMgmtPatterns = NvcudaLinuxGlobs
default:
return gpuHandles
} }
slog.Debug("Detecting GPUs") slog.Debug("searching for GPU discovery libraries for NVIDIA")
nvcudaLibPaths := FindGPULibs(nvcudaMgmtName, nvcudaMgmtPatterns) var cudartMgmtPatterns []string
// Aligned with driver, we can't carry as payloads
nvcudaMgmtPatterns := NvcudaGlobs
if runtime.GOOS == "windows" {
localAppData := os.Getenv("LOCALAPPDATA")
cudartMgmtPatterns = []string{filepath.Join(localAppData, "Programs", "Ollama", CudartMgmtName)}
}
tmpDir, _ := PayloadsDir()
if tmpDir != "" {
// TODO - add "payloads" for subprocess
cudartMgmtPatterns = []string{filepath.Join(tmpDir, "cuda*", CudartMgmtName)}
}
cudartMgmtPatterns = append(cudartMgmtPatterns, CudartGlobs...)
if len(NvmlGlobs) > 0 {
nvmlLibPaths := FindGPULibs(NvmlMgmtName, NvmlGlobs)
if len(nvmlLibPaths) > 0 {
nvml, libPath := LoadNVMLMgmt(nvmlLibPaths)
if nvml != nil {
slog.Debug("nvidia-ml loaded", "library", libPath)
cHandles.nvml = nvml
nvmlLibPath = libPath
}
}
}
nvcudaLibPaths := FindGPULibs(NvcudaMgmtName, nvcudaMgmtPatterns)
if len(nvcudaLibPaths) > 0 { if len(nvcudaLibPaths) > 0 {
deviceCount, nvcuda, libPath := LoadNVCUDAMgmt(nvcudaLibPaths) deviceCount, nvcuda, libPath := LoadNVCUDAMgmt(nvcudaLibPaths)
if nvcuda != nil { if nvcuda != nil {
slog.Debug("detected GPUs", "count", deviceCount, "library", libPath) slog.Debug("detected GPUs", "count", deviceCount, "library", libPath)
gpuHandles.nvcuda = nvcuda cHandles.nvcuda = nvcuda
gpuHandles.deviceCount = deviceCount cHandles.deviceCount = deviceCount
return gpuHandles nvcudaLibPath = libPath
return cHandles
} }
} }
cudartLibPaths := FindGPULibs(cudartMgmtName, cudartMgmtPatterns) cudartLibPaths := FindGPULibs(CudartMgmtName, cudartMgmtPatterns)
if len(cudartLibPaths) > 0 { if len(cudartLibPaths) > 0 {
deviceCount, cudart, libPath := LoadCUDARTMgmt(cudartLibPaths) deviceCount, cudart, libPath := LoadCUDARTMgmt(cudartLibPaths)
if cudart != nil { if cudart != nil {
slog.Debug("detected GPUs", "library", libPath, "count", deviceCount) slog.Debug("detected GPUs", "library", libPath, "count", deviceCount)
gpuHandles.cudart = cudart cHandles.cudart = cudart
gpuHandles.deviceCount = deviceCount cHandles.deviceCount = deviceCount
return gpuHandles cudartLibPath = libPath
return cHandles
} }
} }
return gpuHandles return cHandles
}
// Note: gpuMutex must already be held
func initOneAPIHandles() *oneapiHandles {
oHandles := &oneapiHandles{}
// Short Circuit if we already know which library to use
if oneapiLibPath != "" {
oHandles.deviceCount, oHandles.oneapi, _ = LoadOneapiMgmt([]string{oneapiLibPath})
return oHandles
}
oneapiLibPaths := FindGPULibs(OneapiMgmtName, OneapiGlobs)
if len(oneapiLibPaths) > 0 {
oHandles.deviceCount, oHandles.oneapi, oneapiLibPath = LoadOneapiMgmt(oneapiLibPaths)
}
return oHandles
}
func GetCPUInfo() GpuInfoList {
gpuMutex.Lock()
if !bootstrapped {
gpuMutex.Unlock()
GetGPUInfo()
} else {
gpuMutex.Unlock()
}
return GpuInfoList{cpus[0].GpuInfo}
} }
func GetGPUInfo() GpuInfoList { func GetGPUInfo() GpuInfoList {
@@ -160,112 +178,255 @@ func GetGPUInfo() GpuInfoList {
// GPUs so we can report warnings if we see Nvidia/AMD but fail to load the libraries // GPUs so we can report warnings if we see Nvidia/AMD but fail to load the libraries
gpuMutex.Lock() gpuMutex.Lock()
defer gpuMutex.Unlock() defer gpuMutex.Unlock()
needRefresh := true
gpuHandles := initGPUHandles() var cHandles *cudaHandles
var oHandles *oneapiHandles
defer func() { defer func() {
if gpuHandles.cudart != nil { if cHandles != nil {
C.cudart_release(*gpuHandles.cudart) if cHandles.cudart != nil {
C.cudart_release(*cHandles.cudart)
}
if cHandles.nvcuda != nil {
C.nvcuda_release(*cHandles.nvcuda)
}
if cHandles.nvml != nil {
C.nvml_release(*cHandles.nvml)
}
} }
if gpuHandles.nvcuda != nil { if oHandles != nil {
C.nvcuda_release(*gpuHandles.nvcuda) if oHandles.oneapi != nil {
// TODO - is this needed?
C.oneapi_release(*oHandles.oneapi)
}
} }
}() }()
// All our GPU builds on x86 have AVX enabled, so fallback to CPU if we don't detect at least AVX if !bootstrapped {
cpuVariant := GetCPUVariant() slog.Debug("Detecting GPUs")
if cpuVariant == "" && runtime.GOARCH == "amd64" { needRefresh = false
slog.Warn("CPU does not have AVX or AVX2, disabling GPU support.") cpuCapability = GetCPUCapability()
} var memInfo C.mem_info_t
// On windows we bundle the nvidia library one level above the runner dir mem, err := GetCPUMem()
depPath := "" if err != nil {
if runtime.GOOS == "windows" && envconfig.RunnersDir != "" { slog.Warn("error looking up system memory", "error", err)
depPath = filepath.Dir(envconfig.RunnersDir)
}
var memInfo C.mem_info_t
resp := []GpuInfo{}
// NVIDIA first
for i := range gpuHandles.deviceCount {
// TODO once we support CPU compilation variants of GPU libraries refine this...
if cpuVariant == "" && runtime.GOARCH == "amd64" {
continue
} }
if gpuHandles.cudart != nil || gpuHandles.nvcuda != nil { cpus = []CPUInfo{CPUInfo{
gpuInfo := GpuInfo{ GpuInfo: GpuInfo{
Library: "cuda", memInfo: mem,
Library: "cpu",
Variant: cpuCapability,
ID: "0",
},
}}
// Fallback to CPU mode if we're lacking required vector extensions on x86
if cpuCapability < GPURunnerCPUCapability && runtime.GOARCH == "amd64" {
slog.Warn("CPU does not have minimum vector extensions, GPU inference disabled", "required", GPURunnerCPUCapability, "detected", cpuCapability)
bootstrapped = true
// No need to do any GPU discovery, since we can't run on them
return GpuInfoList{cpus[0].GpuInfo}
}
// On windows we bundle the nvidia library one level above the runner dir
depPath := ""
if runtime.GOOS == "windows" && envconfig.RunnersDir != "" {
depPath = filepath.Join(filepath.Dir(envconfig.RunnersDir), "cuda")
}
// Load ALL libraries
cHandles = initCudaHandles()
// NVIDIA
for i := range cHandles.deviceCount {
if cHandles.cudart != nil || cHandles.nvcuda != nil {
gpuInfo := CudaGPUInfo{
GpuInfo: GpuInfo{
Library: "cuda",
},
index: i,
}
var driverMajor int
var driverMinor int
if cHandles.cudart != nil {
C.cudart_bootstrap(*cHandles.cudart, C.int(i), &memInfo)
} else {
C.nvcuda_bootstrap(*cHandles.nvcuda, C.int(i), &memInfo)
driverMajor = int(cHandles.nvcuda.driver_major)
driverMinor = int(cHandles.nvcuda.driver_minor)
}
if memInfo.err != nil {
slog.Info("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
C.free(unsafe.Pointer(memInfo.err))
continue
}
if memInfo.major < CudaComputeMin[0] || (memInfo.major == CudaComputeMin[0] && memInfo.minor < CudaComputeMin[1]) {
slog.Info(fmt.Sprintf("[%d] CUDA GPU is too old. Compute Capability detected: %d.%d", i, memInfo.major, memInfo.minor))
continue
}
gpuInfo.TotalMemory = uint64(memInfo.total)
gpuInfo.FreeMemory = uint64(memInfo.free)
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
gpuInfo.Compute = fmt.Sprintf("%d.%d", memInfo.major, memInfo.minor)
gpuInfo.MinimumMemory = cudaMinimumMemory
gpuInfo.DependencyPath = depPath
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
gpuInfo.DriverMajor = driverMajor
gpuInfo.DriverMinor = driverMinor
// TODO potentially sort on our own algorithm instead of what the underlying GPU library does...
cudaGPUs = append(cudaGPUs, gpuInfo)
} }
var driverMajor int }
var driverMinor int
if gpuHandles.cudart != nil { // Intel
C.cudart_check_vram(*gpuHandles.cudart, C.int(i), &memInfo) if envconfig.IntelGpu {
oHandles = initOneAPIHandles()
// On windows we bundle the oneapi library one level above the runner dir
depPath = ""
if runtime.GOOS == "windows" && envconfig.RunnersDir != "" {
depPath = filepath.Join(filepath.Dir(envconfig.RunnersDir), "oneapi")
}
for d := range oHandles.oneapi.num_drivers {
if oHandles.oneapi == nil {
// shouldn't happen
slog.Warn("nil oneapi handle with driver count", "count", int(oHandles.oneapi.num_drivers))
continue
}
devCount := C.oneapi_get_device_count(*oHandles.oneapi, C.int(d))
for i := range devCount {
gpuInfo := OneapiGPUInfo{
GpuInfo: GpuInfo{
Library: "oneapi",
},
driverIndex: int(d),
gpuIndex: int(i),
}
// TODO - split bootstrapping from updating free memory
C.oneapi_check_vram(*oHandles.oneapi, C.int(d), i, &memInfo)
// TODO - convert this to MinimumMemory based on testing...
var totalFreeMem float64 = float64(memInfo.free) * 0.95 // work-around: leave some reserve vram for mkl lib used in ggml-sycl backend.
memInfo.free = C.uint64_t(totalFreeMem)
gpuInfo.TotalMemory = uint64(memInfo.total)
gpuInfo.FreeMemory = uint64(memInfo.free)
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
gpuInfo.DependencyPath = depPath
oneapiGPUs = append(oneapiGPUs, gpuInfo)
}
}
}
rocmGPUs = AMDGetGPUInfo()
bootstrapped = true
}
// For detected GPUs, load library if not loaded
// Refresh free memory usage
if needRefresh {
mem, err := GetCPUMem()
if err != nil {
slog.Warn("error looking up system memory", "error", err)
} else {
slog.Debug("updating system memory data",
slog.Group(
"before",
"total", format.HumanBytes2(cpus[0].TotalMemory),
"free", format.HumanBytes2(cpus[0].FreeMemory),
),
slog.Group(
"now",
"total", format.HumanBytes2(mem.TotalMemory),
"free", format.HumanBytes2(mem.FreeMemory),
),
)
cpus[0].FreeMemory = mem.FreeMemory
}
var memInfo C.mem_info_t
if cHandles == nil && len(cudaGPUs) > 0 {
cHandles = initCudaHandles()
}
for i, gpu := range cudaGPUs {
if cHandles.nvml != nil {
C.nvml_get_free(*cHandles.nvml, C.int(gpu.index), &memInfo.free, &memInfo.total, &memInfo.used)
} else if cHandles.cudart != nil {
C.cudart_bootstrap(*cHandles.cudart, C.int(gpu.index), &memInfo)
} else if cHandles.nvcuda != nil {
C.nvcuda_get_free(*cHandles.nvcuda, C.int(gpu.index), &memInfo.free, &memInfo.total)
memInfo.used = memInfo.total - memInfo.free
} else { } else {
C.nvcuda_check_vram(*gpuHandles.nvcuda, C.int(i), &memInfo) // shouldn't happen
driverMajor = int(gpuHandles.nvcuda.driver_major) slog.Warn("no valid cuda library loaded to refresh vram usage")
driverMinor = int(gpuHandles.nvcuda.driver_minor) break
} }
if memInfo.err != nil { if memInfo.err != nil {
slog.Info("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err)) slog.Warn("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
C.free(unsafe.Pointer(memInfo.err)) C.free(unsafe.Pointer(memInfo.err))
continue continue
} }
if memInfo.major < CudaComputeMin[0] || (memInfo.major == CudaComputeMin[0] && memInfo.minor < CudaComputeMin[1]) { if memInfo.free == 0 {
slog.Info(fmt.Sprintf("[%d] CUDA GPU is too old. Compute Capability detected: %d.%d", i, memInfo.major, memInfo.minor)) slog.Warn("error looking up nvidia GPU memory")
continue continue
} }
gpuInfo.TotalMemory = uint64(memInfo.total) slog.Debug("updating cuda memory data",
gpuInfo.FreeMemory = uint64(memInfo.free) "gpu", gpu.ID,
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0]) "name", gpu.Name,
gpuInfo.Compute = fmt.Sprintf("%d.%d", memInfo.major, memInfo.minor) slog.Group(
gpuInfo.MinimumMemory = cudaMinimumMemory "before",
gpuInfo.DependencyPath = depPath "total", format.HumanBytes2(gpu.TotalMemory),
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0]) "free", format.HumanBytes2(gpu.FreeMemory),
gpuInfo.DriverMajor = driverMajor ),
gpuInfo.DriverMinor = driverMinor slog.Group(
"now",
"total", format.HumanBytes2(uint64(memInfo.total)),
"free", format.HumanBytes2(uint64(memInfo.free)),
"used", format.HumanBytes2(uint64(memInfo.used)),
),
)
cudaGPUs[i].FreeMemory = uint64(memInfo.free)
}
// TODO potentially sort on our own algorithm instead of what the underlying GPU library does... if oHandles == nil && len(oneapiGPUs) > 0 {
resp = append(resp, gpuInfo) oHandles = initOneAPIHandles()
}
for i, gpu := range oneapiGPUs {
if oHandles.oneapi == nil {
// shouldn't happen
slog.Warn("nil oneapi handle with device count", "count", oHandles.deviceCount)
continue
}
C.oneapi_check_vram(*oHandles.oneapi, C.int(gpu.driverIndex), C.int(gpu.gpuIndex), &memInfo)
// TODO - convert this to MinimumMemory based on testing...
var totalFreeMem float64 = float64(memInfo.free) * 0.95 // work-around: leave some reserve vram for mkl lib used in ggml-sycl backend.
memInfo.free = C.uint64_t(totalFreeMem)
oneapiGPUs[i].FreeMemory = uint64(memInfo.free)
}
err = RocmGPUInfoList(rocmGPUs).RefreshFreeMemory()
if err != nil {
slog.Debug("problem refreshing ROCm free memory", "error", err)
} }
} }
// Then AMD resp := []GpuInfo{}
resp = append(resp, AMDGetGPUInfo()...) for _, gpu := range cudaGPUs {
resp = append(resp, gpu.GpuInfo)
}
for _, gpu := range rocmGPUs {
resp = append(resp, gpu.GpuInfo)
}
for _, gpu := range oneapiGPUs {
resp = append(resp, gpu.GpuInfo)
}
if len(resp) == 0 { if len(resp) == 0 {
C.cpu_check_ram(&memInfo) resp = append(resp, cpus[0].GpuInfo)
if memInfo.err != nil {
slog.Info("error looking up CPU memory", "error", C.GoString(memInfo.err))
C.free(unsafe.Pointer(memInfo.err))
return resp
}
gpuInfo := GpuInfo{
Library: "cpu",
Variant: cpuVariant,
}
gpuInfo.TotalMemory = uint64(memInfo.total)
gpuInfo.FreeMemory = uint64(memInfo.free)
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
resp = append(resp, gpuInfo)
} }
return resp return resp
} }
func GetCPUMem() (memInfo, error) {
var ret memInfo
var info C.mem_info_t
C.cpu_check_ram(&info)
if info.err != nil {
defer C.free(unsafe.Pointer(info.err))
return ret, fmt.Errorf(C.GoString(info.err))
}
ret.FreeMemory = uint64(info.free)
ret.TotalMemory = uint64(info.total)
return ret, nil
}
func FindGPULibs(baseLibName string, defaultPatterns []string) []string { func FindGPULibs(baseLibName string, defaultPatterns []string) []string {
// Multiple GPU libraries may exist, and some may not work, so keep trying until we exhaust them // Multiple GPU libraries may exist, and some may not work, so keep trying until we exhaust them
var ldPaths []string var ldPaths []string
@@ -362,8 +523,26 @@ func LoadNVCUDAMgmt(nvcudaLibPaths []string) (int, *C.nvcuda_handle_t, string) {
return 0, nil, "" return 0, nil, ""
} }
func LoadNVMLMgmt(nvmlLibPaths []string) (*C.nvml_handle_t, string) {
var resp C.nvml_init_resp_t
resp.ch.verbose = getVerboseState()
for _, libPath := range nvmlLibPaths {
lib := C.CString(libPath)
defer C.free(unsafe.Pointer(lib))
C.nvml_init(lib, &resp)
if resp.err != nil {
slog.Info(fmt.Sprintf("Unable to load NVML management library %s: %s", libPath, C.GoString(resp.err)))
C.free(unsafe.Pointer(resp.err))
} else {
return &resp.ch, libPath
}
}
return nil, ""
}
func LoadOneapiMgmt(oneapiLibPaths []string) (int, *C.oneapi_handle_t, string) { func LoadOneapiMgmt(oneapiLibPaths []string) (int, *C.oneapi_handle_t, string) {
var resp C.oneapi_init_resp_t var resp C.oneapi_init_resp_t
num_devices := 0
resp.oh.verbose = getVerboseState() resp.oh.verbose = getVerboseState()
for _, libPath := range oneapiLibPaths { for _, libPath := range oneapiLibPaths {
lib := C.CString(libPath) lib := C.CString(libPath)
@@ -373,7 +552,10 @@ func LoadOneapiMgmt(oneapiLibPaths []string) (int, *C.oneapi_handle_t, string) {
slog.Debug("Unable to load oneAPI management library", "library", libPath, "error", C.GoString(resp.err)) slog.Debug("Unable to load oneAPI management library", "library", libPath, "error", C.GoString(resp.err))
C.free(unsafe.Pointer(resp.err)) C.free(unsafe.Pointer(resp.err))
} else { } else {
return int(resp.num_devices), &resp.oh, libPath for i := range resp.oh.num_drivers {
num_devices += int(C.oneapi_get_device_count(resp.oh, C.int(i)))
}
return num_devices, &resp.oh, libPath
} }
} }
return 0, nil, "" return 0, nil, ""

View File

@@ -24,7 +24,7 @@ func GetGPUInfo() GpuInfoList {
return []GpuInfo{ return []GpuInfo{
{ {
Library: "cpu", Library: "cpu",
Variant: GetCPUVariant(), Variant: GetCPUCapability(),
memInfo: mem, memInfo: mem,
}, },
} }
@@ -42,6 +42,17 @@ func GetGPUInfo() GpuInfoList {
return []GpuInfo{info} return []GpuInfo{info}
} }
func GetCPUInfo() GpuInfoList {
mem, _ := GetCPUMem()
return []GpuInfo{
{
Library: "cpu",
Variant: GetCPUCapability(),
memInfo: mem,
},
}
}
func GetCPUMem() (memInfo, error) { func GetCPUMem() (memInfo, error) {
return memInfo{ return memInfo{
TotalMemory: uint64(C.getPhysicalMemory()), TotalMemory: uint64(C.getPhysicalMemory()),

View File

@@ -47,6 +47,7 @@ typedef struct mem_info {
char gpu_name[GPU_NAME_LEN]; char gpu_name[GPU_NAME_LEN];
uint64_t total; uint64_t total;
uint64_t free; uint64_t free;
uint64_t used;
// Compute Capability // Compute Capability
int major; int major;
@@ -62,6 +63,7 @@ void cpu_check_ram(mem_info_t *resp);
#include "gpu_info_cudart.h" #include "gpu_info_cudart.h"
#include "gpu_info_nvcuda.h" #include "gpu_info_nvcuda.h"
#include "gpu_info_nvml.h"
#include "gpu_info_oneapi.h" #include "gpu_info_oneapi.h"
#endif // __GPU_INFO_H__ #endif // __GPU_INFO_H__

View File

@@ -1,45 +0,0 @@
#include "gpu_info.h"
// Fallbacks for CPU mode
#ifdef _WIN32
#include <sysinfoapi.h>
void cpu_check_ram(mem_info_t *resp) {
resp->err = NULL;
MEMORYSTATUSEX info;
info.dwLength = sizeof(info);
if (GlobalMemoryStatusEx(&info) != 0) {
resp->total = info.ullTotalPhys;
resp->free = info.ullAvailPhys;
snprintf(&resp->gpu_id[0], GPU_ID_LEN, "0");
} else {
resp->err = LOAD_ERR();
}
return;
}
#elif __linux__
#include <errno.h>
#include <string.h>
#include <sys/sysinfo.h>
void cpu_check_ram(mem_info_t *resp) {
struct sysinfo info;
resp->err = NULL;
if (sysinfo(&info) != 0) {
resp->err = strdup(strerror(errno));
} else {
resp->total = info.totalram * info.mem_unit;
resp->free = info.freeram * info.mem_unit;
snprintf(&resp->gpu_id[0], GPU_ID_LEN, "0");
}
return;
}
#elif __APPLE__
// TODO consider an Apple implementation that does something useful
// mem_info_t cpu_check_ram() {
// mem_info_t resp = {0, 0, NULL};
// return resp;
// }
#else
#error "Unsupported platform"
#endif

View File

@@ -40,7 +40,7 @@ void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp) {
for (i = 0; l[i].s != NULL; i++) { for (i = 0; l[i].s != NULL; i++) {
*l[i].p = LOAD_SYMBOL(resp->ch.handle, l[i].s); *l[i].p = LOAD_SYMBOL(resp->ch.handle, l[i].s);
if (!l[i].p) { if (!*(l[i].p)) {
char *msg = LOAD_ERR(); char *msg = LOAD_ERR();
LOG(resp->ch.verbose, "dlerr: %s\n", msg); LOG(resp->ch.verbose, "dlerr: %s\n", msg);
UNLOAD_LIBRARY(resp->ch.handle); UNLOAD_LIBRARY(resp->ch.handle);
@@ -94,7 +94,7 @@ void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp) {
} }
void cudart_check_vram(cudart_handle_t h, int i, mem_info_t *resp) { void cudart_bootstrap(cudart_handle_t h, int i, mem_info_t *resp) {
resp->err = NULL; resp->err = NULL;
cudartMemory_t memInfo = {0,0,0}; cudartMemory_t memInfo = {0,0,0};
cudartReturn_t ret; cudartReturn_t ret;
@@ -166,9 +166,11 @@ void cudart_check_vram(cudart_handle_t h, int i, mem_info_t *resp) {
resp->total = memInfo.total; resp->total = memInfo.total;
resp->free = memInfo.free; resp->free = memInfo.free;
resp->used = memInfo.used;
LOG(h.verbose, "[%s] CUDA totalMem %lu\n", resp->gpu_id, resp->total); LOG(h.verbose, "[%s] CUDA totalMem %lu\n", resp->gpu_id, resp->total);
LOG(h.verbose, "[%s] CUDA freeMem %lu\n", resp->gpu_id, resp->free); LOG(h.verbose, "[%s] CUDA freeMem %lu\n", resp->gpu_id, resp->free);
LOG(h.verbose, "[%s] CUDA usedMem %lu\n", resp->gpu_id, resp->used);
LOG(h.verbose, "[%s] Compute Capability %d.%d\n", resp->gpu_id, resp->major, resp->minor); LOG(h.verbose, "[%s] Compute Capability %d.%d\n", resp->gpu_id, resp->major, resp->minor);
} }

View File

@@ -140,7 +140,8 @@ typedef struct cudart_init_resp {
} cudart_init_resp_t; } cudart_init_resp_t;
void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp); void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp);
void cudart_check_vram(cudart_handle_t ch, int device_id, mem_info_t *resp); void cudart_bootstrap(cudart_handle_t ch, int device_id, mem_info_t *resp);
// TODO - if we keep this library longer term, add cudart_get_free
void cudart_release(cudart_handle_t ch); void cudart_release(cudart_handle_t ch);
#endif // __GPU_INFO_CUDART_H__ #endif // __GPU_INFO_CUDART_H__

View File

@@ -43,7 +43,7 @@ void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
for (i = 0; l[i].s != NULL; i++) { for (i = 0; l[i].s != NULL; i++) {
*l[i].p = LOAD_SYMBOL(resp->ch.handle, l[i].s); *l[i].p = LOAD_SYMBOL(resp->ch.handle, l[i].s);
if (!*l[i].p) { if (!*(l[i].p)) {
char *msg = LOAD_ERR(); char *msg = LOAD_ERR();
LOG(resp->ch.verbose, "dlerr: %s\n", msg); LOG(resp->ch.verbose, "dlerr: %s\n", msg);
UNLOAD_LIBRARY(resp->ch.handle); UNLOAD_LIBRARY(resp->ch.handle);
@@ -96,7 +96,7 @@ void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
} }
const int buflen = 256; const int buflen = 256;
void nvcuda_check_vram(nvcuda_handle_t h, int i, mem_info_t *resp) { void nvcuda_bootstrap(nvcuda_handle_t h, int i, mem_info_t *resp) {
resp->err = NULL; resp->err = NULL;
nvcudaMemory_t memInfo = {0,0}; nvcudaMemory_t memInfo = {0,0};
CUresult ret; CUresult ret;
@@ -168,7 +168,7 @@ void nvcuda_check_vram(nvcuda_handle_t h, int i, mem_info_t *resp) {
// To get memory we have to set (and release) a context // To get memory we have to set (and release) a context
ret = (*h.cuCtxCreate_v3)(&ctx, NULL, 0, 0, device); ret = (*h.cuCtxCreate_v3)(&ctx, NULL, 0, 0, device);
if (ret != CUDA_SUCCESS) { if (ret != CUDA_SUCCESS) {
snprintf(buf, buflen, "nvcuda failed to get primary device context %d", ret); snprintf(buf, buflen, "nvcuda failed to get device context %d", ret);
resp->err = strdup(buf); resp->err = strdup(buf);
return; return;
} }
@@ -193,7 +193,42 @@ void nvcuda_check_vram(nvcuda_handle_t h, int i, mem_info_t *resp) {
ret = (*h.cuCtxDestroy)(ctx); ret = (*h.cuCtxDestroy)(ctx);
if (ret != CUDA_SUCCESS) { if (ret != CUDA_SUCCESS) {
LOG(1, "nvcuda failed to release primary device context %d", ret); LOG(1, "nvcuda failed to release device context %d", ret);
}
}
void nvcuda_get_free(nvcuda_handle_t h, int i, uint64_t *free, uint64_t *total) {
CUresult ret;
CUcontext ctx = NULL;
CUdevice device = -1;
*free = 0;
*total = 0;
ret = (*h.cuDeviceGet)(&device, i);
if (ret != CUDA_SUCCESS) {
LOG(1, "nvcuda device failed to initialize");
return;
}
// To get memory we have to set (and release) a context
ret = (*h.cuCtxCreate_v3)(&ctx, NULL, 0, 0, device);
if (ret != CUDA_SUCCESS) {
LOG(1, "nvcuda failed to get device context %d", ret);
return;
}
ret = (*h.cuMemGetInfo_v2)(free, total);
if (ret != CUDA_SUCCESS) {
LOG(1, "nvcuda device memory info lookup failure %d", ret);
// Best effort on failure...
(*h.cuCtxDestroy)(ctx);
return;
}
ret = (*h.cuCtxDestroy)(ctx);
if (ret != CUDA_SUCCESS) {
LOG(1, "nvcuda failed to release device context %d", ret);
} }
} }

View File

@@ -67,7 +67,8 @@ typedef struct nvcuda_init_resp {
} nvcuda_init_resp_t; } nvcuda_init_resp_t;
void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp); void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp);
void nvcuda_check_vram(nvcuda_handle_t ch, int device_id, mem_info_t *resp); void nvcuda_bootstrap(nvcuda_handle_t ch, int device_id, mem_info_t *resp);
void nvcuda_get_free(nvcuda_handle_t ch, int device_id, uint64_t *free, uint64_t *total);
void nvcuda_release(nvcuda_handle_t ch); void nvcuda_release(nvcuda_handle_t ch);
#endif // __GPU_INFO_NVCUDA_H__ #endif // __GPU_INFO_NVCUDA_H__

104
gpu/gpu_info_nvml.c Normal file
View File

@@ -0,0 +1,104 @@
#ifndef __APPLE__ // TODO - maybe consider nvidia support on intel macs?
#include <string.h>
#include "gpu_info_nvml.h"
void nvml_init(char *nvml_lib_path, nvml_init_resp_t *resp) {
nvmlReturn_t ret;
resp->err = NULL;
const int buflen = 256;
char buf[buflen + 1];
int i;
struct lookup {
char *s;
void **p;
} l[] = {
{"nvmlInit_v2", (void *)&resp->ch.nvmlInit_v2},
{"nvmlShutdown", (void *)&resp->ch.nvmlShutdown},
{"nvmlDeviceGetHandleByIndex", (void *)&resp->ch.nvmlDeviceGetHandleByIndex},
{"nvmlDeviceGetMemoryInfo", (void *)&resp->ch.nvmlDeviceGetMemoryInfo},
{NULL, NULL},
};
resp->ch.handle = LOAD_LIBRARY(nvml_lib_path, RTLD_LAZY);
if (!resp->ch.handle) {
char *msg = LOAD_ERR();
LOG(resp->ch.verbose, "library %s load err: %s\n", nvml_lib_path, msg);
snprintf(buf, buflen,
"Unable to load %s library to query for Nvidia GPUs: %s",
nvml_lib_path, msg);
free(msg);
resp->err = strdup(buf);
return;
}
// TODO once we've squashed the remaining corner cases remove this log
// LOG(resp->ch.verbose, "wiring nvidia management library functions in %s\n", nvml_lib_path);
for (i = 0; l[i].s != NULL; i++) {
// TODO once we've squashed the remaining corner cases remove this log
// LOG(resp->ch.verbose, "dlsym: %s\n", l[i].s);
*l[i].p = LOAD_SYMBOL(resp->ch.handle, l[i].s);
if (!*(l[i].p)) {
resp->ch.handle = NULL;
char *msg = LOAD_ERR();
LOG(resp->ch.verbose, "dlerr: %s\n", msg);
UNLOAD_LIBRARY(resp->ch.handle);
snprintf(buf, buflen, "symbol lookup for %s failed: %s", l[i].s,
msg);
free(msg);
resp->err = strdup(buf);
return;
}
}
ret = (*resp->ch.nvmlInit_v2)();
if (ret != NVML_SUCCESS) {
LOG(resp->ch.verbose, "nvmlInit_v2 err: %d\n", ret);
UNLOAD_LIBRARY(resp->ch.handle);
resp->ch.handle = NULL;
snprintf(buf, buflen, "nvml vram init failure: %d", ret);
resp->err = strdup(buf);
return;
}
}
void nvml_get_free(nvml_handle_t h, int device_id, uint64_t *free, uint64_t *total, uint64_t *used) {
nvmlDevice_t device;
nvmlMemory_t memInfo = {0};
nvmlReturn_t ret;
ret = (*h.nvmlDeviceGetHandleByIndex)(device_id, &device);
if (ret != NVML_SUCCESS) {
LOG(1, "unable to get device handle %d: %d", device_id, ret);
*free = 0;
return;
}
ret = (*h.nvmlDeviceGetMemoryInfo)(device, &memInfo);
if (ret != NVML_SUCCESS) {
LOG(1, "device memory info lookup failure %d: %d", device_id, ret);
*free = 0;
return;
}
*free = memInfo.free;
*total = memInfo.total;
*used = memInfo.used;
}
void nvml_release(nvml_handle_t h) {
LOG(h.verbose, "releasing nvml library\n");
nvmlReturn_t ret;
ret = (*h.nvmlShutdown)();
if (ret != NVML_SUCCESS) {
LOG(1, "error during nvmlShutdown %d", ret);
}
UNLOAD_LIBRARY(h.handle);
h.handle = NULL;
}
#endif // __APPLE__

48
gpu/gpu_info_nvml.h Normal file
View File

@@ -0,0 +1,48 @@
#ifndef __APPLE__
#ifndef __GPU_INFO_NVML_H__
#define __GPU_INFO_NVML_H__
#include "gpu_info.h"
// Just enough typedef's to dlopen/dlsym for memory information
typedef enum nvmlReturn_enum {
NVML_SUCCESS = 0,
// Other values omitted for now...
} nvmlReturn_t;
typedef void *nvmlDevice_t; // Opaque is sufficient
typedef struct nvmlMemory_st {
unsigned long long total;
unsigned long long free;
unsigned long long used;
} nvmlMemory_t;
typedef enum nvmlBrandType_enum
{
NVML_BRAND_UNKNOWN = 0,
} nvmlBrandType_t;
typedef struct nvml_handle {
void *handle;
uint16_t verbose;
nvmlReturn_t (*nvmlInit_v2)(void);
nvmlReturn_t (*nvmlShutdown)(void);
nvmlReturn_t (*nvmlDeviceGetHandleByIndex)(unsigned int, nvmlDevice_t *);
nvmlReturn_t (*nvmlDeviceGetMemoryInfo)(nvmlDevice_t, nvmlMemory_t *);
} nvml_handle_t;
typedef struct nvml_init_resp {
char *err; // If err is non-null handle is invalid
nvml_handle_t ch;
} nvml_init_resp_t;
typedef struct nvml_compute_capability {
char *err;
int major;
int minor;
} nvml_compute_capability_t;
void nvml_init(char *nvml_lib_path, nvml_init_resp_t *resp);
void nvml_get_free(nvml_handle_t ch, int device_id, uint64_t *free, uint64_t *total, uint64_t *used);
void nvml_release(nvml_handle_t ch);
#endif // __GPU_INFO_NVML_H__
#endif // __APPLE__

View File

@@ -4,15 +4,17 @@
#include <string.h> #include <string.h>
void oneapi_init(char *oneapi_lib_path, oneapi_init_resp_t *resp) void oneapi_init(char *oneapi_lib_path, oneapi_init_resp_t *resp) {
{
ze_result_t ret; ze_result_t ret;
resp->err = NULL; resp->err = NULL;
resp->oh.devices = NULL;
resp->oh.num_devices = NULL;
resp->oh.drivers = NULL;
resp->oh.num_drivers = 0;
const int buflen = 256; const int buflen = 256;
char buf[buflen + 1]; char buf[buflen + 1];
int i; int i, d;
struct lookup struct lookup {
{
char *s; char *s;
void **p; void **p;
} l[] = { } l[] = {
@@ -28,8 +30,7 @@ void oneapi_init(char *oneapi_lib_path, oneapi_init_resp_t *resp)
}; };
resp->oh.handle = LOAD_LIBRARY(oneapi_lib_path, RTLD_LAZY); resp->oh.handle = LOAD_LIBRARY(oneapi_lib_path, RTLD_LAZY);
if (!resp->oh.handle) if (!resp->oh.handle) {
{
char *msg = LOAD_ERR(); char *msg = LOAD_ERR();
snprintf(buf, buflen, snprintf(buf, buflen,
"Unable to load %s library to query for Intel GPUs: %s\n", "Unable to load %s library to query for Intel GPUs: %s\n",
@@ -44,14 +45,12 @@ void oneapi_init(char *oneapi_lib_path, oneapi_init_resp_t *resp)
"wiring Level-Zero management library functions in %s\n", "wiring Level-Zero management library functions in %s\n",
oneapi_lib_path); oneapi_lib_path);
for (i = 0; l[i].s != NULL; i++) for (i = 0; l[i].s != NULL; i++) {
{
// TODO once we've squashed the remaining corner cases remove this log // TODO once we've squashed the remaining corner cases remove this log
LOG(resp->oh.verbose, "dlsym: %s\n", l[i].s); LOG(resp->oh.verbose, "dlsym: %s\n", l[i].s);
*l[i].p = LOAD_SYMBOL(resp->oh.handle, l[i].s); *l[i].p = LOAD_SYMBOL(resp->oh.handle, l[i].s);
if (!l[i].p) if (!*(l[i].p)) {
{
resp->oh.handle = NULL; resp->oh.handle = NULL;
char *msg = LOAD_ERR(); char *msg = LOAD_ERR();
LOG(resp->oh.verbose, "dlerr: %s\n", msg); LOG(resp->oh.verbose, "dlerr: %s\n", msg);
@@ -63,23 +62,70 @@ void oneapi_init(char *oneapi_lib_path, oneapi_init_resp_t *resp)
} }
} }
LOG(resp->oh.verbose, "calling zesInit\n");
ret = (*resp->oh.zesInit)(0); ret = (*resp->oh.zesInit)(0);
if (ret != ZE_RESULT_SUCCESS) if (ret != ZE_RESULT_SUCCESS) {
{ LOG(resp->oh.verbose, "zesInit err: %x\n", ret);
LOG(resp->oh.verbose, "zesInit err: %d\n", ret); snprintf(buf, buflen, "oneapi vram init failure: %x", ret);
UNLOAD_LIBRARY(resp->oh.handle);
resp->oh.handle = NULL;
snprintf(buf, buflen, "oneapi vram init failure: %d", ret);
resp->err = strdup(buf); resp->err = strdup(buf);
oneapi_release(resp->oh);
return;
} }
(*resp->oh.zesDriverGet)(&resp->num_devices, NULL); LOG(resp->oh.verbose, "calling zesDriverGet\n");
ret = (*resp->oh.zesDriverGet)(&resp->oh.num_drivers, NULL);
if (ret != ZE_RESULT_SUCCESS) {
LOG(resp->oh.verbose, "zesDriverGet err: %x\n", ret);
snprintf(buf, buflen, "unable to get driver count: %x", ret);
resp->err = strdup(buf);
oneapi_release(resp->oh);
return;
}
LOG(resp->oh.verbose, "oneapi driver count: %d\n", resp->oh.num_drivers);
resp->oh.drivers = malloc(resp->oh.num_drivers * sizeof(zes_driver_handle_t));
resp->oh.num_devices = malloc(resp->oh.num_drivers * sizeof(uint32_t));
memset(&resp->oh.num_devices[0], 0, resp->oh.num_drivers * sizeof(uint32_t));
resp->oh.devices =
malloc(resp->oh.num_drivers * sizeof(zes_device_handle_t *));
ret = (*resp->oh.zesDriverGet)(&resp->oh.num_drivers, &resp->oh.drivers[0]);
if (ret != ZE_RESULT_SUCCESS) {
LOG(resp->oh.verbose, "zesDriverGet err: %x\n", ret);
snprintf(buf, buflen, "unable to get driver count: %x", ret);
resp->err = strdup(buf);
oneapi_release(resp->oh);
return;
}
for (d = 0; d < resp->oh.num_drivers; d++) {
LOG(resp->oh.verbose, "calling zesDeviceGet count %d: %p\n", d, resp->oh.drivers[d]);
ret = (*resp->oh.zesDeviceGet)(resp->oh.drivers[d],
&resp->oh.num_devices[d], NULL);
if (ret != ZE_RESULT_SUCCESS) {
LOG(resp->oh.verbose, "zesDeviceGet err: %x\n", ret);
snprintf(buf, buflen, "unable to get device count: %x", ret);
resp->err = strdup(buf);
oneapi_release(resp->oh);
return;
}
resp->oh.devices[d] =
malloc(resp->oh.num_devices[d] * sizeof(zes_device_handle_t));
ret = (*resp->oh.zesDeviceGet)(
resp->oh.drivers[d], &resp->oh.num_devices[d], resp->oh.devices[d]);
if (ret != ZE_RESULT_SUCCESS) {
LOG(resp->oh.verbose, "zesDeviceGet err: %x\n", ret);
snprintf(buf, buflen, "unable to get device count: %x", ret);
resp->err = strdup(buf);
oneapi_release(resp->oh);
return;
}
}
return; return;
} }
void oneapi_check_vram(oneapi_handle_t h, mem_info_t *resp) void oneapi_check_vram(oneapi_handle_t h, int driver, int device,
{ mem_info_t *resp) {
ze_result_t ret; ze_result_t ret;
resp->err = NULL; resp->err = NULL;
uint64_t totalMem = 0; uint64_t totalMem = 0;
@@ -88,127 +134,126 @@ void oneapi_check_vram(oneapi_handle_t h, mem_info_t *resp)
char buf[buflen + 1]; char buf[buflen + 1];
int i, d, m; int i, d, m;
if (h.handle == NULL) if (h.handle == NULL) {
{
resp->err = strdup("Level-Zero handle not initialized"); resp->err = strdup("Level-Zero handle not initialized");
return; return;
} }
uint32_t driversCount = 0; if (driver > h.num_drivers || device > h.num_devices[driver]) {
ret = (*h.zesDriverGet)(&driversCount, NULL); resp->err = strdup("driver of device index out of bounds");
if (ret != ZE_RESULT_SUCCESS)
{
snprintf(buf, buflen, "unable to get driver count: %d", ret);
resp->err = strdup(buf);
return; return;
} }
LOG(h.verbose, "discovered %d Level-Zero drivers\n", driversCount);
zes_driver_handle_t *allDrivers =
malloc(driversCount * sizeof(zes_driver_handle_t));
(*h.zesDriverGet)(&driversCount, allDrivers);
resp->total = 0; resp->total = 0;
resp->free = 0; resp->free = 0;
for (d = 0; d < driversCount; d++) zes_device_ext_properties_t ext_props;
{ ext_props.stype = ZES_STRUCTURE_TYPE_DEVICE_EXT_PROPERTIES;
uint32_t deviceCount = 0; ext_props.pNext = NULL;
ret = (*h.zesDeviceGet)(allDrivers[d], &deviceCount, NULL);
if (ret != ZE_RESULT_SUCCESS) zes_device_properties_t props;
{ props.stype = ZES_STRUCTURE_TYPE_DEVICE_PROPERTIES;
snprintf(buf, buflen, "unable to get device count: %d", ret); props.pNext = &ext_props;
ret = (*h.zesDeviceGetProperties)(h.devices[driver][device], &props);
if (ret != ZE_RESULT_SUCCESS) {
snprintf(buf, buflen, "unable to get device properties: %d", ret);
resp->err = strdup(buf);
return;
}
snprintf(&resp->gpu_name[0], GPU_NAME_LEN, "%s", props.modelName);
// TODO this needs to map to ONEAPI_DEVICE_SELECTOR syntax
// (this is probably wrong...)
// TODO - the driver isn't included - what if there are multiple drivers?
snprintf(&resp->gpu_id[0], GPU_ID_LEN, "%d", device);
if (h.verbose) {
// When in verbose mode, report more information about
// the card we discover.
LOG(h.verbose, "[%d:%d] oneAPI device name: %s\n", driver, device,
props.modelName);
LOG(h.verbose, "[%d:%d] oneAPI brand: %s\n", driver, device,
props.brandName);
LOG(h.verbose, "[%d:%d] oneAPI vendor: %s\n", driver, device,
props.vendorName);
LOG(h.verbose, "[%d:%d] oneAPI S/N: %s\n", driver, device,
props.serialNumber);
LOG(h.verbose, "[%d:%d] oneAPI board number: %s\n", driver, device,
props.boardNumber);
}
// TODO
// Compute Capability equivalent in resp->major, resp->minor, resp->patch
uint32_t memCount = 0;
ret = (*h.zesDeviceEnumMemoryModules)(h.devices[driver][device], &memCount,
NULL);
if (ret != ZE_RESULT_SUCCESS) {
snprintf(buf, buflen, "unable to enumerate Level-Zero memory modules: %x",
ret);
resp->err = strdup(buf);
return;
}
LOG(h.verbose, "discovered %d Level-Zero memory modules\n", memCount);
zes_mem_handle_t *mems = malloc(memCount * sizeof(zes_mem_handle_t));
(*h.zesDeviceEnumMemoryModules)(h.devices[driver][device], &memCount, mems);
for (m = 0; m < memCount; m++) {
zes_mem_state_t state;
state.stype = ZES_STRUCTURE_TYPE_MEM_STATE;
state.pNext = NULL;
ret = (*h.zesMemoryGetState)(mems[m], &state);
if (ret != ZE_RESULT_SUCCESS) {
snprintf(buf, buflen, "unable to get memory state: %x", ret);
resp->err = strdup(buf); resp->err = strdup(buf);
free(allDrivers); free(mems);
return; return;
} }
LOG(h.verbose, "discovered %d Level-Zero devices\n", deviceCount); resp->total += state.size;
resp->free += state.free;
zes_device_handle_t *devices =
malloc(deviceCount * sizeof(zes_device_handle_t));
(*h.zesDeviceGet)(allDrivers[d], &deviceCount, devices);
for (i = 0; i < deviceCount; i++)
{
zes_device_ext_properties_t ext_props;
ext_props.stype = ZES_STRUCTURE_TYPE_DEVICE_EXT_PROPERTIES;
ext_props.pNext = NULL;
zes_device_properties_t props;
props.stype = ZES_STRUCTURE_TYPE_DEVICE_PROPERTIES;
props.pNext = &ext_props;
ret = (*h.zesDeviceGetProperties)(devices[i], &props);
if (ret != ZE_RESULT_SUCCESS)
{
snprintf(buf, buflen, "unable to get device properties: %d", ret);
resp->err = strdup(buf);
free(allDrivers);
free(devices);
return;
}
if (h.verbose)
{
// When in verbose mode, report more information about
// the card we discover.
LOG(h.verbose, "[%d] oneAPI device name: %s\n", i,
props.modelName);
LOG(h.verbose, "[%d] oneAPI brand: %s\n", i,
props.brandName);
LOG(h.verbose, "[%d] oneAPI vendor: %s\n", i,
props.vendorName);
LOG(h.verbose, "[%d] oneAPI S/N: %s\n", i,
props.serialNumber);
LOG(h.verbose, "[%d] oneAPI board number: %s\n", i,
props.boardNumber);
}
uint32_t memCount = 0;
ret = (*h.zesDeviceEnumMemoryModules)(devices[i], &memCount, NULL);
if (ret != ZE_RESULT_SUCCESS)
{
snprintf(buf, buflen,
"unable to enumerate Level-Zero memory modules: %d", ret);
resp->err = strdup(buf);
free(allDrivers);
free(devices);
return;
}
LOG(h.verbose, "discovered %d Level-Zero memory modules\n", memCount);
zes_mem_handle_t *mems = malloc(memCount * sizeof(zes_mem_handle_t));
(*h.zesDeviceEnumMemoryModules)(devices[i], &memCount, mems);
for (m = 0; m < memCount; m++)
{
zes_mem_state_t state;
state.stype = ZES_STRUCTURE_TYPE_MEM_STATE;
state.pNext = NULL;
ret = (*h.zesMemoryGetState)(mems[m], &state);
if (ret != ZE_RESULT_SUCCESS)
{
snprintf(buf, buflen, "unable to get memory state: %d", ret);
resp->err = strdup(buf);
free(allDrivers);
free(devices);
free(mems);
return;
}
resp->total += state.size;
resp->free += state.free;
}
free(mems);
}
free(devices);
} }
free(allDrivers); free(mems);
}
void oneapi_release(oneapi_handle_t h) {
int d;
LOG(h.verbose, "releasing oneapi library\n");
for (d = 0; d < h.num_drivers; d++) {
if (h.devices != NULL && h.devices[d] != NULL) {
free(h.devices[d]);
}
}
if (h.devices != NULL) {
free(h.devices);
h.devices = NULL;
}
if (h.num_devices != NULL) {
free(h.num_devices);
h.num_devices = NULL;
}
if (h.drivers != NULL) {
free(h.drivers);
h.drivers = NULL;
}
h.num_drivers = 0;
UNLOAD_LIBRARY(h.handle);
h.handle = NULL;
}
int oneapi_get_device_count(oneapi_handle_t h, int driver) {
if (h.handle == NULL || h.num_devices == NULL) {
return 0;
}
if (driver > h.num_drivers) {
return 0;
}
return (int)h.num_devices[driver];
} }
#endif // __APPLE__ #endif // __APPLE__

View File

@@ -9,8 +9,7 @@
#define ZE_BIT(_i) (1 << _i) #define ZE_BIT(_i) (1 << _i)
// Just enough typedef's to dlopen/dlsym for memory information // Just enough typedef's to dlopen/dlsym for memory information
typedef enum ze_result_t typedef enum ze_result_t {
{
ZE_RESULT_SUCCESS = 0, ZE_RESULT_SUCCESS = 0,
// Other values omitted for now... // Other values omitted for now...
} ze_result_t; } ze_result_t;
@@ -20,13 +19,11 @@ typedef struct _zes_driver_handle_t *zes_driver_handle_t;
typedef struct _zes_device_handle_t *zes_device_handle_t; typedef struct _zes_device_handle_t *zes_device_handle_t;
typedef struct _zes_mem_handle_t *zes_mem_handle_t; typedef struct _zes_mem_handle_t *zes_mem_handle_t;
typedef enum _ze_structure_type_t typedef enum _ze_structure_type_t {
{
ZE_STRUCTURE_TYPE_FORCE_UINT32 = 0x7fffffff ZE_STRUCTURE_TYPE_FORCE_UINT32 = 0x7fffffff
} ze_structure_type_t; } ze_structure_type_t;
typedef enum _zes_structure_type_t typedef enum _zes_structure_type_t {
{
ZES_STRUCTURE_TYPE_DEVICE_PROPERTIES = 0x1, ZES_STRUCTURE_TYPE_DEVICE_PROPERTIES = 0x1,
ZES_STRUCTURE_TYPE_MEM_PROPERTIES = 0xb, ZES_STRUCTURE_TYPE_MEM_PROPERTIES = 0xb,
ZES_STRUCTURE_TYPE_MEM_STATE = 0x1e, ZES_STRUCTURE_TYPE_MEM_STATE = 0x1e,
@@ -34,35 +31,29 @@ typedef enum _zes_structure_type_t
ZES_STRUCTURE_TYPE_FORCE_UINT32 = 0x7fffffff ZES_STRUCTURE_TYPE_FORCE_UINT32 = 0x7fffffff
} zes_structure_type_t; } zes_structure_type_t;
typedef enum _zes_mem_type_t typedef enum _zes_mem_type_t {
{
ZES_MEM_TYPE_FORCE_UINT32 = 0x7fffffff ZES_MEM_TYPE_FORCE_UINT32 = 0x7fffffff
} zes_mem_type_t; } zes_mem_type_t;
typedef enum _zes_mem_loc_t typedef enum _zes_mem_loc_t {
{
ZES_MEM_LOC_SYSTEM = 0, ZES_MEM_LOC_SYSTEM = 0,
ZES_MEM_LOC_DEVICE = 1, ZES_MEM_LOC_DEVICE = 1,
ZES_MEM_LOC_FORCE_UINT32 = 0x7fffffff ZES_MEM_LOC_FORCE_UINT32 = 0x7fffffff
} zes_mem_loc_t; } zes_mem_loc_t;
typedef enum _zes_mem_health_t typedef enum _zes_mem_health_t {
{
ZES_MEM_HEALTH_FORCE_UINT32 = 0x7fffffff ZES_MEM_HEALTH_FORCE_UINT32 = 0x7fffffff
} zes_mem_health_t; } zes_mem_health_t;
typedef struct _ze_device_uuid_t typedef struct _ze_device_uuid_t {
{
uint8_t id[ZE_MAX_DEVICE_UUID_SIZE]; uint8_t id[ZE_MAX_DEVICE_UUID_SIZE];
} ze_device_uuid_t; } ze_device_uuid_t;
typedef struct _zes_uuid_t typedef struct _zes_uuid_t {
{
uint8_t id[ZE_MAX_DEVICE_UUID_SIZE]; uint8_t id[ZE_MAX_DEVICE_UUID_SIZE];
} zes_uuid_t; } zes_uuid_t;
typedef enum _ze_device_type_t typedef enum _ze_device_type_t {
{
ZE_DEVICE_TYPE_GPU = 1, ZE_DEVICE_TYPE_GPU = 1,
ZE_DEVICE_TYPE_CPU = 2, ZE_DEVICE_TYPE_CPU = 2,
ZE_DEVICE_TYPE_FPGA = 3, ZE_DEVICE_TYPE_FPGA = 3,
@@ -71,8 +62,7 @@ typedef enum _ze_device_type_t
ZE_DEVICE_TYPE_FORCE_UINT32 = 0x7fffffff ZE_DEVICE_TYPE_FORCE_UINT32 = 0x7fffffff
} ze_device_type_t; } ze_device_type_t;
typedef enum _zes_device_type_t typedef enum _zes_device_type_t {
{
ZES_DEVICE_TYPE_GPU = 1, ZES_DEVICE_TYPE_GPU = 1,
ZES_DEVICE_TYPE_CPU = 2, ZES_DEVICE_TYPE_CPU = 2,
ZES_DEVICE_TYPE_FPGA = 3, ZES_DEVICE_TYPE_FPGA = 3,
@@ -82,8 +72,7 @@ typedef enum _zes_device_type_t
} zes_device_type_t; } zes_device_type_t;
typedef uint32_t ze_device_property_flags_t; typedef uint32_t ze_device_property_flags_t;
typedef enum _ze_device_property_flag_t typedef enum _ze_device_property_flag_t {
{
ZE_DEVICE_PROPERTY_FLAG_INTEGRATED = ZE_BIT(0), ZE_DEVICE_PROPERTY_FLAG_INTEGRATED = ZE_BIT(0),
ZE_DEVICE_PROPERTY_FLAG_SUBDEVICE = ZE_BIT(1), ZE_DEVICE_PROPERTY_FLAG_SUBDEVICE = ZE_BIT(1),
ZE_DEVICE_PROPERTY_FLAG_ECC = ZE_BIT(2), ZE_DEVICE_PROPERTY_FLAG_ECC = ZE_BIT(2),
@@ -92,8 +81,7 @@ typedef enum _ze_device_property_flag_t
} ze_device_property_flag_t; } ze_device_property_flag_t;
typedef uint32_t zes_device_property_flags_t; typedef uint32_t zes_device_property_flags_t;
typedef enum _zes_device_property_flag_t typedef enum _zes_device_property_flag_t {
{
ZES_DEVICE_PROPERTY_FLAG_INTEGRATED = ZE_BIT(0), ZES_DEVICE_PROPERTY_FLAG_INTEGRATED = ZE_BIT(0),
ZES_DEVICE_PROPERTY_FLAG_SUBDEVICE = ZE_BIT(1), ZES_DEVICE_PROPERTY_FLAG_SUBDEVICE = ZE_BIT(1),
ZES_DEVICE_PROPERTY_FLAG_ECC = ZE_BIT(2), ZES_DEVICE_PROPERTY_FLAG_ECC = ZE_BIT(2),
@@ -101,8 +89,7 @@ typedef enum _zes_device_property_flag_t
ZES_DEVICE_PROPERTY_FLAG_FORCE_UINT32 = 0x7fffffff ZES_DEVICE_PROPERTY_FLAG_FORCE_UINT32 = 0x7fffffff
} zes_device_property_flag_t; } zes_device_property_flag_t;
typedef struct _ze_device_properties_t typedef struct _ze_device_properties_t {
{
ze_structure_type_t stype; ze_structure_type_t stype;
void *pNext; void *pNext;
ze_device_type_t type; ze_device_type_t type;
@@ -126,8 +113,7 @@ typedef struct _ze_device_properties_t
char name[ZE_MAX_DEVICE_NAME]; char name[ZE_MAX_DEVICE_NAME];
} ze_device_properties_t; } ze_device_properties_t;
typedef struct _zes_device_properties_t typedef struct _zes_device_properties_t {
{
zes_structure_type_t stype; zes_structure_type_t stype;
void *pNext; void *pNext;
ze_device_properties_t core; ze_device_properties_t core;
@@ -140,8 +126,7 @@ typedef struct _zes_device_properties_t
char driverVersion[ZES_STRING_PROPERTY_SIZE]; char driverVersion[ZES_STRING_PROPERTY_SIZE];
} zes_device_properties_t; } zes_device_properties_t;
typedef struct _zes_device_ext_properties_t typedef struct _zes_device_ext_properties_t {
{
zes_structure_type_t stype; zes_structure_type_t stype;
void *pNext; void *pNext;
zes_uuid_t uuid; zes_uuid_t uuid;
@@ -149,8 +134,7 @@ typedef struct _zes_device_ext_properties_t
zes_device_property_flags_t flags; zes_device_property_flags_t flags;
} zes_device_ext_properties_t; } zes_device_ext_properties_t;
typedef struct _zes_mem_properties_t typedef struct _zes_mem_properties_t {
{
zes_structure_type_t stype; zes_structure_type_t stype;
void *pNext; void *pNext;
zes_mem_type_t type; zes_mem_type_t type;
@@ -162,8 +146,7 @@ typedef struct _zes_mem_properties_t
int32_t numChannels; int32_t numChannels;
} zes_mem_properties_t; } zes_mem_properties_t;
typedef struct _zes_mem_state_t typedef struct _zes_mem_state_t {
{
zes_structure_type_t stype; zes_structure_type_t stype;
const void *pNext; const void *pNext;
zes_mem_health_t health; zes_mem_health_t health;
@@ -171,10 +154,19 @@ typedef struct _zes_mem_state_t
uint64_t size; uint64_t size;
} zes_mem_state_t; } zes_mem_state_t;
typedef struct oneapi_handle typedef struct oneapi_handle {
{
void *handle; void *handle;
uint16_t verbose; uint16_t verbose;
uint32_t num_drivers;
zes_driver_handle_t *drivers;
uint32_t *num_devices;
zes_device_handle_t **devices;
// TODO Driver major, minor information
// int driver_major;
// int driver_minor;
ze_result_t (*zesInit)(int); ze_result_t (*zesInit)(int);
ze_result_t (*zesDriverGet)(uint32_t *pCount, zes_driver_handle_t *phDrivers); ze_result_t (*zesDriverGet)(uint32_t *pCount, zes_driver_handle_t *phDrivers);
ze_result_t (*zesDeviceGet)(zes_driver_handle_t hDriver, uint32_t *pCount, ze_result_t (*zesDeviceGet)(zes_driver_handle_t hDriver, uint32_t *pCount,
@@ -191,21 +183,21 @@ typedef struct oneapi_handle
} oneapi_handle_t; } oneapi_handle_t;
typedef struct oneapi_init_resp typedef struct oneapi_init_resp {
{
char *err; // If err is non-null handle is invalid char *err; // If err is non-null handle is invalid
int num_devices;
oneapi_handle_t oh; oneapi_handle_t oh;
} oneapi_init_resp_t; } oneapi_init_resp_t;
typedef struct oneapi_version_resp typedef struct oneapi_version_resp {
{
ze_result_t status; ze_result_t status;
char *str; // Contains version or error string if status != 0 char *str; // Contains version or error string if status != 0
} oneapi_version_resp_t; } oneapi_version_resp_t;
void oneapi_init(char *oneapi_lib_path, oneapi_init_resp_t *resp); void oneapi_init(char *oneapi_lib_path, oneapi_init_resp_t *resp);
void oneapi_check_vram(oneapi_handle_t rh, mem_info_t *resp); void oneapi_check_vram(oneapi_handle_t h, int driver, int device,
mem_info_t *resp);
void oneapi_release(oneapi_handle_t h);
int oneapi_get_device_count(oneapi_handle_t h, int driver);
#endif // __GPU_INFO_INTEL_H__ #endif // __GPU_INFO_INTEL_H__
#endif // __APPLE__ #endif // __APPLE__

89
gpu/gpu_linux.go Normal file
View File

@@ -0,0 +1,89 @@
package gpu
import (
"bufio"
"fmt"
"os"
"strings"
"github.com/ollama/ollama/format"
)
var CudartGlobs = []string{
"/usr/local/cuda/lib64/libcudart.so*",
"/usr/lib/x86_64-linux-gnu/nvidia/current/libcudart.so*",
"/usr/lib/x86_64-linux-gnu/libcudart.so*",
"/usr/lib/wsl/lib/libcudart.so*",
"/usr/lib/wsl/drivers/*/libcudart.so*",
"/opt/cuda/lib64/libcudart.so*",
"/usr/local/cuda*/targets/aarch64-linux/lib/libcudart.so*",
"/usr/lib/aarch64-linux-gnu/nvidia/current/libcudart.so*",
"/usr/lib/aarch64-linux-gnu/libcudart.so*",
"/usr/local/cuda/lib*/libcudart.so*",
"/usr/lib*/libcudart.so*",
"/usr/local/lib*/libcudart.so*",
}
var NvmlGlobs = []string{}
var NvcudaGlobs = []string{
"/usr/local/cuda*/targets/*/lib/libcuda.so*",
"/usr/lib/*-linux-gnu/nvidia/current/libcuda.so*",
"/usr/lib/*-linux-gnu/libcuda.so*",
"/usr/lib/wsl/lib/libcuda.so*",
"/usr/lib/wsl/drivers/*/libcuda.so*",
"/opt/cuda/lib*/libcuda.so*",
"/usr/local/cuda/lib*/libcuda.so*",
"/usr/lib*/libcuda.so*",
"/usr/local/lib*/libcuda.so*",
}
var OneapiGlobs = []string{
"/usr/lib/x86_64-linux-gnu/libze_intel_gpu.so*",
"/usr/lib*/libze_intel_gpu.so*",
}
var CudartMgmtName = "libcudart.so*"
var NvcudaMgmtName = "libcuda.so*"
var NvmlMgmtName = "" // not currently wired on linux
var OneapiMgmtName = "libze_intel_gpu.so"
func GetCPUMem() (memInfo, error) {
var mem memInfo
var total, available, free, buffers, cached uint64
f, err := os.Open("/proc/meminfo")
if err != nil {
return mem, err
}
defer f.Close()
s := bufio.NewScanner(f)
for s.Scan() {
line := s.Text()
switch {
case strings.HasPrefix(line, "MemTotal:"):
_, err = fmt.Sscanf(line, "MemTotal:%d", &total)
case strings.HasPrefix(line, "MemAvailable:"):
_, err = fmt.Sscanf(line, "MemAvailable:%d", &available)
case strings.HasPrefix(line, "MemFree:"):
_, err = fmt.Sscanf(line, "MemFree:%d", &free)
case strings.HasPrefix(line, "Buffers:"):
_, err = fmt.Sscanf(line, "Buffers:%d", &buffers)
case strings.HasPrefix(line, "Cached:"):
_, err = fmt.Sscanf(line, "Cached:%d", &cached)
default:
continue
}
if err != nil {
return mem, err
}
if total > 0 && available > 0 {
mem.TotalMemory = total * format.KibiByte
mem.FreeMemory = available * format.KibiByte
return mem, nil
}
}
mem.TotalMemory = total * format.KibiByte
mem.FreeMemory = (free + buffers + cached) * format.KibiByte
return mem, nil
}

55
gpu/gpu_windows.go Normal file
View File

@@ -0,0 +1,55 @@
package gpu
import (
"fmt"
"syscall"
"unsafe"
)
type MEMORYSTATUSEX struct {
length uint32
MemoryLoad uint32
TotalPhys uint64
AvailPhys uint64
TotalPageFile uint64
AvailPageFile uint64
TotalVirtual uint64
AvailVirtual uint64
AvailExtendedVirtual uint64
}
var (
k32 = syscall.NewLazyDLL("kernel32.dll")
globalMemoryStatusExProc = k32.NewProc("GlobalMemoryStatusEx")
sizeofMemoryStatusEx = uint32(unsafe.Sizeof(MEMORYSTATUSEX{}))
)
var CudartGlobs = []string{
"c:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v*\\bin\\cudart64_*.dll",
}
var NvmlGlobs = []string{
"c:\\Windows\\System32\\nvml.dll",
}
var NvcudaGlobs = []string{
"c:\\windows\\system*\\nvcuda.dll",
}
var OneapiGlobs = []string{
"c:\\Windows\\System32\\DriverStore\\FileRepository\\*\\ze_intel_gpu64.dll",
}
var CudartMgmtName = "cudart64_*.dll"
var NvcudaMgmtName = "nvcuda.dll"
var NvmlMgmtName = "nvml.dll"
var OneapiMgmtName = "ze_intel_gpu64.dll"
func GetCPUMem() (memInfo, error) {
memStatus := MEMORYSTATUSEX{length: sizeofMemoryStatusEx}
r1, _, err := globalMemoryStatusExProc.Call(uintptr(unsafe.Pointer(&memStatus)))
if r1 == 0 {
return memInfo{}, fmt.Errorf("GlobalMemoryStatusEx failed: %w", err)
}
return memInfo{TotalMemory: memStatus.TotalPhys, FreeMemory: memStatus.AvailPhys}, nil
}

View File

@@ -18,7 +18,7 @@ type GpuInfo struct {
Library string `json:"library,omitempty"` Library string `json:"library,omitempty"`
// Optional variant to select (e.g. versions, cpu feature flags) // Optional variant to select (e.g. versions, cpu feature flags)
Variant string `json:"variant,omitempty"` Variant CPUCapability `json:"variant"`
// MinimumMemory represents the minimum memory required to use the GPU // MinimumMemory represents the minimum memory required to use the GPU
MinimumMemory uint64 `json:"-"` MinimumMemory uint64 `json:"-"`
@@ -26,6 +26,9 @@ type GpuInfo struct {
// Any extra PATH/LD_LIBRARY_PATH dependencies required for the Library to operate properly // Any extra PATH/LD_LIBRARY_PATH dependencies required for the Library to operate properly
DependencyPath string `json:"lib_path,omitempty"` DependencyPath string `json:"lib_path,omitempty"`
// Extra environment variables specific to the GPU as list of [key,value]
EnvWorkarounds [][2]string `json:"envs,omitempty"`
// GPU information // GPU information
ID string `json:"gpu_id"` // string to use for selection of this specific GPU ID string `json:"gpu_id"` // string to use for selection of this specific GPU
Name string `json:"name"` // user friendly name if available Name string `json:"name"` // user friendly name if available
@@ -38,6 +41,30 @@ type GpuInfo struct {
// TODO other performance capability info to help in scheduling decisions // TODO other performance capability info to help in scheduling decisions
} }
type CPUInfo struct {
GpuInfo
}
type CudaGPUInfo struct {
GpuInfo
index int //nolint:unused,nolintlint
}
type CudaGPUInfoList []CudaGPUInfo
type RocmGPUInfo struct {
GpuInfo
usedFilepath string //nolint:unused,nolintlint
index int //nolint:unused,nolintlint
}
type RocmGPUInfoList []RocmGPUInfo
type OneapiGPUInfo struct {
GpuInfo
driverIndex int //nolint:unused,nolintlint
gpuIndex int //nolint:unused,nolintlint
}
type OneapiGPUInfoList []OneapiGPUInfo
type GpuInfoList []GpuInfo type GpuInfoList []GpuInfo
// Split up the set of gpu info's by Library and variant // Split up the set of gpu info's by Library and variant
@@ -47,8 +74,8 @@ func (l GpuInfoList) ByLibrary() []GpuInfoList {
for _, info := range l { for _, info := range l {
found := false found := false
requested := info.Library requested := info.Library
if info.Variant != "" { if info.Variant != CPUCapabilityNone {
requested += "_" + info.Variant requested += "_" + info.Variant.String()
} }
for i, lib := range libs { for i, lib := range libs {
if lib == requested { if lib == requested {
@@ -86,3 +113,26 @@ type ByFreeMemory []GpuInfo
func (a ByFreeMemory) Len() int { return len(a) } func (a ByFreeMemory) Len() int { return len(a) }
func (a ByFreeMemory) Swap(i, j int) { a[i], a[j] = a[j], a[i] } func (a ByFreeMemory) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a ByFreeMemory) Less(i, j int) bool { return a[i].FreeMemory < a[j].FreeMemory } func (a ByFreeMemory) Less(i, j int) bool { return a[i].FreeMemory < a[j].FreeMemory }
type CPUCapability uint32
// Override at build time when building base GPU runners
var GPURunnerCPUCapability = CPUCapabilityAVX
const (
CPUCapabilityNone CPUCapability = iota
CPUCapabilityAVX
CPUCapabilityAVX2
// TODO AVX512
)
func (c CPUCapability) String() string {
switch c {
case CPUCapabilityAVX:
return "avx"
case CPUCapabilityAVX2:
return "avx2"
default:
return "no vector extensions"
}
}

View File

@@ -19,17 +19,19 @@ func TestMultiModelConcurrency(t *testing.T) {
var ( var (
req = [2]api.GenerateRequest{ req = [2]api.GenerateRequest{
{ {
Model: "orca-mini", Model: "orca-mini",
Prompt: "why is the ocean blue?", Prompt: "why is the ocean blue?",
Stream: &stream, Stream: &stream,
KeepAlive: &api.Duration{Duration: 10 * time.Second},
Options: map[string]interface{}{ Options: map[string]interface{}{
"seed": 42, "seed": 42,
"temperature": 0.0, "temperature": 0.0,
}, },
}, { }, {
Model: "tinydolphin", Model: "tinydolphin",
Prompt: "what is the origin of the us thanksgiving holiday?", Prompt: "what is the origin of the us thanksgiving holiday?",
Stream: &stream, Stream: &stream,
KeepAlive: &api.Duration{Duration: 10 * time.Second},
Options: map[string]interface{}{ Options: map[string]interface{}{
"seed": 42, "seed": 42,
"temperature": 0.0, "temperature": 0.0,
@@ -38,42 +40,64 @@ func TestMultiModelConcurrency(t *testing.T) {
} }
resp = [2][]string{ resp = [2][]string{
[]string{"sunlight"}, []string{"sunlight"},
[]string{"england", "english", "massachusetts", "pilgrims"}, []string{"england", "english", "massachusetts", "pilgrims", "british"},
} }
) )
var wg sync.WaitGroup var wg sync.WaitGroup
wg.Add(len(req)) wg.Add(len(req))
ctx, cancel := context.WithTimeout(context.Background(), time.Second*120) ctx, cancel := context.WithTimeout(context.Background(), time.Second*240)
defer cancel() defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
for i := 0; i < len(req); i++ {
require.NoError(t, PullIfMissing(ctx, client, req[i].Model))
}
for i := 0; i < len(req); i++ { for i := 0; i < len(req); i++ {
go func(i int) { go func(i int) {
defer wg.Done() defer wg.Done()
GenerateTestHelper(ctx, t, req[i], resp[i]) DoGenerate(ctx, t, client, req[i], resp[i], 60*time.Second, 10*time.Second)
}(i) }(i)
} }
wg.Wait() wg.Wait()
} }
func TestIntegrationConcurrentPredictOrcaMini(t *testing.T) { func TestIntegrationConcurrentPredictOrcaMini(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), 10*time.Minute) // GTX 750 2G card takes ~9 minutes req, resp := GenerateRequests()
reqLimit := len(req)
iterLimit := 5
vram := os.Getenv("OLLAMA_MAX_VRAM")
if vram != "" {
max, err := strconv.ParseUint(vram, 10, 64)
require.NoError(t, err)
// Don't hammer on small VRAM cards...
if max < 4*1024*1024*1024 {
reqLimit = min(reqLimit, 2)
iterLimit = 2
}
}
ctx, cancel := context.WithTimeout(context.Background(), 9*time.Minute)
defer cancel() defer cancel()
client, _, cleanup := InitServerConnection(ctx, t) client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup() defer cleanup()
req, resp := GenerateRequests()
// Get the server running (if applicable) warm the model up with a single initial request // Get the server running (if applicable) warm the model up with a single initial request
DoGenerate(ctx, t, client, req[0], resp[0], 60*time.Second, 5*time.Second) DoGenerate(ctx, t, client, req[0], resp[0], 60*time.Second, 10*time.Second)
var wg sync.WaitGroup var wg sync.WaitGroup
wg.Add(len(req)) wg.Add(reqLimit)
for i := 0; i < len(req); i++ { for i := 0; i < reqLimit; i++ {
go func(i int) { go func(i int) {
defer wg.Done() defer wg.Done()
for j := 0; j < 5; j++ { for j := 0; j < iterLimit; j++ {
slog.Info("Starting", "req", i, "iter", j) slog.Info("Starting", "req", i, "iter", j)
// On slower GPUs it can take a while to process the 4 concurrent requests // On slower GPUs it can take a while to process the concurrent requests
// so we allow a much longer initial timeout // so we allow a much longer initial timeout
DoGenerate(ctx, t, client, req[i], resp[i], 90*time.Second, 5*time.Second) DoGenerate(ctx, t, client, req[i], resp[i], 120*time.Second, 20*time.Second)
} }
}(i) }(i)
} }
@@ -221,5 +245,23 @@ func TestMultiModelStress(t *testing.T) {
} }
}(i) }(i)
} }
go func() {
for {
time.Sleep(2 * time.Second)
select {
case <-ctx.Done():
return
default:
models, err := client.ListRunning(ctx)
if err != nil {
slog.Warn("failed to list running models", "error", err)
continue
}
for _, m := range models.Models {
slog.Info("loaded model snapshot", "model", m)
}
}
}
}()
wg.Wait() wg.Wait()
} }

View File

@@ -11,7 +11,8 @@ import (
) )
func TestContextExhaustion(t *testing.T) { func TestContextExhaustion(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute) // TODO maybe shorter? // Longer needed for small footprint GPUs
ctx, cancel := context.WithTimeout(context.Background(), 6*time.Minute)
defer cancel() defer cancel()
// Set up the test data // Set up the test data
req := api.GenerateRequest{ req := api.GenerateRequest{

View File

@@ -32,7 +32,11 @@ func TestIntegrationMultimodal(t *testing.T) {
resp := "the ollam" resp := "the ollam"
ctx, cancel := context.WithTimeout(context.Background(), 3*time.Minute) ctx, cancel := context.WithTimeout(context.Background(), 3*time.Minute)
defer cancel() defer cancel()
GenerateTestHelper(ctx, t, req, []string{resp}) client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
require.NoError(t, PullIfMissing(ctx, client, req.Model))
// llava models on CPU can be quite slow to start,
DoGenerate(ctx, t, client, req, []string{resp}, 120*time.Second, 30*time.Second)
} }
const imageEncoding = `iVBORw0KGgoAAAANSUhEUgAAANIAAAB4CAYAAACHHqzKAAAAAXNSR0IArs4c6QAAAIRlWElmTU0AKgAAAAgABQESAAMAAAABAAEAAAEaAAUAAAABAAAASgEb const imageEncoding = `iVBORw0KGgoAAAANSUhEUgAAANIAAAB4CAYAAACHHqzKAAAAAXNSR0IArs4c6QAAAIRlWElmTU0AKgAAAAgABQESAAMAAAABAAEAAAEaAAUAAAABAAAASgEb

View File

@@ -140,7 +140,7 @@ func PullIfMissing(ctx context.Context, client *api.Client, modelName string) er
showCtx, cancel := context.WithDeadlineCause( showCtx, cancel := context.WithDeadlineCause(
ctx, ctx,
time.Now().Add(5*time.Second), time.Now().Add(10*time.Second),
fmt.Errorf("show for existing model %s took too long", modelName), fmt.Errorf("show for existing model %s took too long", modelName),
) )
defer cancel() defer cancel()
@@ -287,41 +287,46 @@ func DoGenerate(ctx context.Context, t *testing.T, client *api.Client, genReq ap
func GenerateRequests() ([]api.GenerateRequest, [][]string) { func GenerateRequests() ([]api.GenerateRequest, [][]string) {
return []api.GenerateRequest{ return []api.GenerateRequest{
{ {
Model: "orca-mini", Model: "orca-mini",
Prompt: "why is the ocean blue?", Prompt: "why is the ocean blue?",
Stream: &stream, Stream: &stream,
KeepAlive: &api.Duration{Duration: 10 * time.Second},
Options: map[string]interface{}{ Options: map[string]interface{}{
"seed": 42, "seed": 42,
"temperature": 0.0, "temperature": 0.0,
}, },
}, { }, {
Model: "orca-mini", Model: "orca-mini",
Prompt: "why is the color of dirt brown?", Prompt: "why is the color of dirt brown?",
Stream: &stream, Stream: &stream,
KeepAlive: &api.Duration{Duration: 10 * time.Second},
Options: map[string]interface{}{ Options: map[string]interface{}{
"seed": 42, "seed": 42,
"temperature": 0.0, "temperature": 0.0,
}, },
}, { }, {
Model: "orca-mini", Model: "orca-mini",
Prompt: "what is the origin of the us thanksgiving holiday?", Prompt: "what is the origin of the us thanksgiving holiday?",
Stream: &stream, Stream: &stream,
KeepAlive: &api.Duration{Duration: 10 * time.Second},
Options: map[string]interface{}{ Options: map[string]interface{}{
"seed": 42, "seed": 42,
"temperature": 0.0, "temperature": 0.0,
}, },
}, { }, {
Model: "orca-mini", Model: "orca-mini",
Prompt: "what is the origin of independence day?", Prompt: "what is the origin of independence day?",
Stream: &stream, Stream: &stream,
KeepAlive: &api.Duration{Duration: 10 * time.Second},
Options: map[string]interface{}{ Options: map[string]interface{}{
"seed": 42, "seed": 42,
"temperature": 0.0, "temperature": 0.0,
}, },
}, { }, {
Model: "orca-mini", Model: "orca-mini",
Prompt: "what is the composition of air?", Prompt: "what is the composition of air?",
Stream: &stream, Stream: &stream,
KeepAlive: &api.Duration{Duration: 10 * time.Second},
Options: map[string]interface{}{ Options: map[string]interface{}{
"seed": 42, "seed": 42,
"temperature": 0.0, "temperature": 0.0,
@@ -331,7 +336,7 @@ func GenerateRequests() ([]api.GenerateRequest, [][]string) {
[][]string{ [][]string{
[]string{"sunlight"}, []string{"sunlight"},
[]string{"soil", "organic", "earth", "black", "tan"}, []string{"soil", "organic", "earth", "black", "tan"},
[]string{"england", "english", "massachusetts", "pilgrims"}, []string{"england", "english", "massachusetts", "pilgrims", "british"},
[]string{"fourth", "july", "declaration", "independence"}, []string{"fourth", "july", "declaration", "independence"},
[]string{"nitrogen", "oxygen", "carbon", "dioxide"}, []string{"nitrogen", "oxygen", "carbon", "dioxide"},
} }

View File

@@ -56,7 +56,6 @@ struct server_params {
std::string hostname = "127.0.0.1"; std::string hostname = "127.0.0.1";
std::vector<std::string> api_keys; std::vector<std::string> api_keys;
std::string public_path = "examples/server/public"; std::string public_path = "examples/server/public";
std::string chat_template = "";
int32_t port = 8080; int32_t port = 8080;
int32_t read_timeout = 600; int32_t read_timeout = 600;
int32_t write_timeout = 600; int32_t write_timeout = 600;
@@ -427,16 +426,6 @@ struct llama_server_context
return true; return true;
} }
void validate_model_chat_template(server_params & sparams) {
llama_chat_message chat[] = {{"user", "test"}};
std::vector<char> buf(1);
int res = llama_chat_apply_template(model, nullptr, chat, 1, true, buf.data(), buf.size());
if (res < 0) {
LOG_ERROR("The chat template comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses", {});
sparams.chat_template = "chatml";
}
}
void initialize() { void initialize() {
// create slots // create slots
all_slots_are_idle = true; all_slots_are_idle = true;
@@ -2335,9 +2324,9 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, g
invalid_param = true; invalid_param = true;
break; break;
} }
#ifndef GGML_USE_CUBLAS #ifndef GGML_USE_CUDA
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Setting the split mode has no effect.\n"); fprintf(stderr, "warning: llama.cpp was compiled without CUDA. Setting the split mode has no effect.\n");
#endif // GGML_USE_CUBLAS #endif // GGML_USE_CUDA
} }
else if (arg == "--tensor-split" || arg == "-ts") else if (arg == "--tensor-split" || arg == "-ts")
{ {
@@ -2346,7 +2335,7 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, g
invalid_param = true; invalid_param = true;
break; break;
} }
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL) #if defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL)
std::string arg_next = argv[i]; std::string arg_next = argv[i];
// split string by , and / // split string by , and /
@@ -2367,8 +2356,8 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, g
} }
} }
#else #else
LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n", {}); LOG_WARNING("llama.cpp was compiled without CUDA. It is not possible to set a tensor split.\n", {});
#endif // GGML_USE_CUBLAS #endif // GGML_USE_CUDA
} }
else if (arg == "--main-gpu" || arg == "-mg") else if (arg == "--main-gpu" || arg == "-mg")
{ {
@@ -2377,7 +2366,7 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, g
invalid_param = true; invalid_param = true;
break; break;
} }
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL) #if defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL)
params.main_gpu = std::stoi(argv[i]); params.main_gpu = std::stoi(argv[i]);
#else #else
LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.", {}); LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.", {});
@@ -2535,7 +2524,6 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, g
invalid_param = true; invalid_param = true;
break; break;
} }
sparams.chat_template = argv[i];
} }
else if (arg == "--override-kv") else if (arg == "--override-kv")
{ {
@@ -3008,11 +2996,6 @@ int main(int argc, char **argv) {
} }
const auto model_meta = llama.model_meta(); const auto model_meta = llama.model_meta();
if (sparams.chat_template.empty()) { // custom chat template is not supplied
// check if the template comes with the model is supported by us
llama.validate_model_chat_template(sparams);
}
// Middleware for API key validation // Middleware for API key validation
auto validate_api_key = [&sparams](const httplib::Request &req, httplib::Response &res) -> bool { auto validate_api_key = [&sparams](const httplib::Request &req, httplib::Response &res) -> bool {
// If API key is not set, skip validation // If API key is not set, skip validation

View File

@@ -18,7 +18,7 @@ sign() {
fi fi
} }
COMMON_DARWIN_DEFS="-DCMAKE_OSX_DEPLOYMENT_TARGET=11.3 -DLLAMA_METAL_MACOSX_VERSION_MIN=11.3 -DCMAKE_SYSTEM_NAME=Darwin -DLLAMA_METAL_EMBED_LIBRARY=on" COMMON_DARWIN_DEFS="-DCMAKE_OSX_DEPLOYMENT_TARGET=11.3 -DLLAMA_METAL_MACOSX_VERSION_MIN=11.3 -DCMAKE_SYSTEM_NAME=Darwin -DLLAMA_METAL_EMBED_LIBRARY=on -DLLAMA_OPENMP=off"
case "${GOARCH}" in case "${GOARCH}" in
"amd64") "amd64")
@@ -27,7 +27,7 @@ case "${GOARCH}" in
# Static build for linking into the Go binary # Static build for linking into the Go binary
init_vars init_vars
CMAKE_TARGETS="--target llama --target ggml" CMAKE_TARGETS="--target llama --target ggml"
CMAKE_DEFS="${COMMON_CPU_DEFS} -DBUILD_SHARED_LIBS=off -DLLAMA_ACCELERATE=off -DLLAMA_AVX=off -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}" CMAKE_DEFS="${COMMON_CPU_DEFS} -DBUILD_SHARED_LIBS=off -DLLAMA_BLAS=off -DLLAMA_ACCELERATE=off -DLLAMA_AVX=off -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}"
BUILD_DIR="../build/darwin/${ARCH}_static" BUILD_DIR="../build/darwin/${ARCH}_static"
echo "Building static library" echo "Building static library"
build build
@@ -37,7 +37,7 @@ case "${GOARCH}" in
# CPU first for the default library, set up as lowest common denominator for maximum compatibility (including Rosetta) # CPU first for the default library, set up as lowest common denominator for maximum compatibility (including Rosetta)
# #
init_vars init_vars
CMAKE_DEFS="${COMMON_CPU_DEFS} -DLLAMA_ACCELERATE=off -DLLAMA_AVX=off -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}" CMAKE_DEFS="${COMMON_CPU_DEFS} -DLLAMA_ACCELERATE=off -DLLAMA_BLAS=off -DLLAMA_AVX=off -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}"
BUILD_DIR="../build/darwin/${ARCH}/cpu" BUILD_DIR="../build/darwin/${ARCH}/cpu"
echo "Building LCD CPU" echo "Building LCD CPU"
build build
@@ -49,7 +49,7 @@ case "${GOARCH}" in
# Approximately 400% faster than LCD on same CPU # Approximately 400% faster than LCD on same CPU
# #
init_vars init_vars
CMAKE_DEFS="${COMMON_CPU_DEFS} -DLLAMA_ACCELERATE=off -DLLAMA_AVX=on -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}" CMAKE_DEFS="${COMMON_CPU_DEFS} -DLLAMA_ACCELERATE=off -DLLAMA_BLAS=off -DLLAMA_AVX=on -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}"
BUILD_DIR="../build/darwin/${ARCH}/cpu_avx" BUILD_DIR="../build/darwin/${ARCH}/cpu_avx"
echo "Building AVX CPU" echo "Building AVX CPU"
build build
@@ -61,7 +61,7 @@ case "${GOARCH}" in
# Approximately 10% faster than AVX on same CPU # Approximately 10% faster than AVX on same CPU
# #
init_vars init_vars
CMAKE_DEFS="${COMMON_CPU_DEFS} -DLLAMA_ACCELERATE=on -DLLAMA_AVX=on -DLLAMA_AVX2=on -DLLAMA_AVX512=off -DLLAMA_FMA=on -DLLAMA_F16C=on ${CMAKE_DEFS}" CMAKE_DEFS="${COMMON_CPU_DEFS} -DLLAMA_ACCELERATE=on -DLLAMA_BLAS=off -DLLAMA_AVX=on -DLLAMA_AVX2=on -DLLAMA_AVX512=off -DLLAMA_FMA=on -DLLAMA_F16C=on ${CMAKE_DEFS}"
BUILD_DIR="../build/darwin/${ARCH}/cpu_avx2" BUILD_DIR="../build/darwin/${ARCH}/cpu_avx2"
echo "Building AVX2 CPU" echo "Building AVX2 CPU"
EXTRA_LIBS="${EXTRA_LIBS} -framework Accelerate -framework Foundation" EXTRA_LIBS="${EXTRA_LIBS} -framework Accelerate -framework Foundation"
@@ -75,7 +75,7 @@ case "${GOARCH}" in
# Static build for linking into the Go binary # Static build for linking into the Go binary
init_vars init_vars
CMAKE_TARGETS="--target llama --target ggml" CMAKE_TARGETS="--target llama --target ggml"
CMAKE_DEFS="-DCMAKE_OSX_DEPLOYMENT_TARGET=11.3 -DCMAKE_SYSTEM_NAME=Darwin -DBUILD_SHARED_LIBS=off -DCMAKE_SYSTEM_PROCESSOR=${ARCH} -DCMAKE_OSX_ARCHITECTURES=${ARCH} -DLLAMA_METAL=off -DLLAMA_ACCELERATE=off -DLLAMA_AVX=off -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}" CMAKE_DEFS="-DCMAKE_OSX_DEPLOYMENT_TARGET=11.3 -DLLAMA_BLAS=off -DCMAKE_SYSTEM_NAME=Darwin -DBUILD_SHARED_LIBS=off -DCMAKE_SYSTEM_PROCESSOR=${ARCH} -DCMAKE_OSX_ARCHITECTURES=${ARCH} -DLLAMA_METAL=off -DLLAMA_ACCELERATE=off -DLLAMA_AVX=off -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}"
BUILD_DIR="../build/darwin/${ARCH}_static" BUILD_DIR="../build/darwin/${ARCH}_static"
echo "Building static library" echo "Building static library"
build build

View File

@@ -51,7 +51,7 @@ if [ -z "${CUDACXX}" ]; then
export CUDACXX=$(command -v nvcc) export CUDACXX=$(command -v nvcc)
fi fi
fi fi
COMMON_CMAKE_DEFS="-DCMAKE_POSITION_INDEPENDENT_CODE=on -DLLAMA_NATIVE=off -DLLAMA_AVX=on -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off" COMMON_CMAKE_DEFS="-DCMAKE_POSITION_INDEPENDENT_CODE=on -DLLAMA_NATIVE=off -DLLAMA_AVX=on -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off -DLLAMA_OPENMP=off"
source $(dirname $0)/gen_common.sh source $(dirname $0)/gen_common.sh
init_vars init_vars
git_module_setup git_module_setup
@@ -64,7 +64,7 @@ if [ -z "${OLLAMA_SKIP_STATIC_GENERATE}" -o "${OLLAMA_CPU_TARGET}" = "static" ];
# Static build for linking into the Go binary # Static build for linking into the Go binary
init_vars init_vars
CMAKE_TARGETS="--target llama --target ggml" CMAKE_TARGETS="--target llama --target ggml"
CMAKE_DEFS="-DBUILD_SHARED_LIBS=off -DLLAMA_NATIVE=off -DLLAMA_AVX=off -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}" CMAKE_DEFS="-DBUILD_SHARED_LIBS=off -DLLAMA_NATIVE=off -DLLAMA_AVX=off -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off -DLLAMA_OPENMP=off ${CMAKE_DEFS}"
BUILD_DIR="../build/linux/${ARCH}_static" BUILD_DIR="../build/linux/${ARCH}_static"
echo "Building static library" echo "Building static library"
build build
@@ -93,7 +93,7 @@ if [ -z "${OLLAMA_SKIP_CPU_GENERATE}" ]; then
# -DLLAMA_AVX512_VBMI -- 2018 Intel Cannon Lake # -DLLAMA_AVX512_VBMI -- 2018 Intel Cannon Lake
# -DLLAMA_AVX512_VNNI -- 2021 Intel Alder Lake # -DLLAMA_AVX512_VNNI -- 2021 Intel Alder Lake
COMMON_CPU_DEFS="-DCMAKE_POSITION_INDEPENDENT_CODE=on -DLLAMA_NATIVE=off" COMMON_CPU_DEFS="-DCMAKE_POSITION_INDEPENDENT_CODE=on -DLLAMA_NATIVE=off -DLLAMA_OPENMP=off"
if [ -z "${OLLAMA_CPU_TARGET}" -o "${OLLAMA_CPU_TARGET}" = "cpu" ]; then if [ -z "${OLLAMA_CPU_TARGET}" -o "${OLLAMA_CPU_TARGET}" = "cpu" ]; then
# #
# CPU first for the default library, set up as lowest common denominator for maximum compatibility (including Rosetta) # CPU first for the default library, set up as lowest common denominator for maximum compatibility (including Rosetta)
@@ -178,7 +178,7 @@ if [ -z "${OLLAMA_SKIP_CUDA_GENERATE}" -a -d "${CUDA_LIB_DIR}" ]; then
CMAKE_CUDA_DEFS="-DLLAMA_CUDA=on -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES} ${OLLAMA_CUSTOM_CUDA_DEFS}" CMAKE_CUDA_DEFS="-DLLAMA_CUDA=on -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES} ${OLLAMA_CUSTOM_CUDA_DEFS}"
echo "Building custom CUDA GPU" echo "Building custom CUDA GPU"
else else
CMAKE_CUDA_DEFS="-DLLAMA_CUDA=on -DLLAMA_CUDA_FORCE_MMQ=on -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES}" CMAKE_CUDA_DEFS="-DLLAMA_CUDA=on -DCMAKE_CUDA_FLAGS=-t8 -DLLAMA_CUDA_FORCE_MMQ=on -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES}"
fi fi
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} ${ARM64_DEFS} ${CMAKE_CUDA_DEFS}" CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} ${ARM64_DEFS} ${CMAKE_CUDA_DEFS}"
BUILD_DIR="../build/linux/${ARCH}/cuda${CUDA_VARIANT}" BUILD_DIR="../build/linux/${ARCH}/cuda${CUDA_VARIANT}"

View File

@@ -39,7 +39,8 @@ function init_vars {
} }
$script:cmakeDefs = @( $script:cmakeDefs = @(
"-DBUILD_SHARED_LIBS=on", "-DBUILD_SHARED_LIBS=on",
"-DLLAMA_NATIVE=off" "-DLLAMA_NATIVE=off",
"-DLLAMA_OPENMP=off"
) )
$script:commonCpuDefs = @("-DCMAKE_POSITION_INDEPENDENT_CODE=on") $script:commonCpuDefs = @("-DCMAKE_POSITION_INDEPENDENT_CODE=on")
$script:ARCH = $Env:PROCESSOR_ARCHITECTURE.ToLower() $script:ARCH = $Env:PROCESSOR_ARCHITECTURE.ToLower()
@@ -122,8 +123,13 @@ function build {
& cmake --version & cmake --version
& cmake -S "${script:llamacppDir}" -B $script:buildDir $script:cmakeDefs & cmake -S "${script:llamacppDir}" -B $script:buildDir $script:cmakeDefs
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)} if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
write-host "building with: cmake --build $script:buildDir --config $script:config $($script:cmakeTargets | ForEach-Object { `"--target`", $_ })" if ($cmakeDefs -contains "-G") {
& cmake --build $script:buildDir --config $script:config ($script:cmakeTargets | ForEach-Object { "--target", $_ }) $extra=@("-j8")
} else {
$extra= @("--", "/p:CL_MPcount=8")
}
write-host "building with: cmake --build $script:buildDir --config $script:config $($script:cmakeTargets | ForEach-Object { `"--target`", $_ }) $extra"
& cmake --build $script:buildDir --config $script:config ($script:cmakeTargets | ForEach-Object { "--target", $_ }) $extra
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)} if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
# Rearrange output to be consistent between different generators # Rearrange output to be consistent between different generators
if ($null -ne ${script:config} -And (test-path -path "${script:buildDir}/bin/${script:config}" ) ) { if ($null -ne ${script:config} -And (test-path -path "${script:buildDir}/bin/${script:config}" ) ) {
@@ -203,7 +209,8 @@ function build_static() {
"-DLLAMA_AVX2=off", "-DLLAMA_AVX2=off",
"-DLLAMA_AVX512=off", "-DLLAMA_AVX512=off",
"-DLLAMA_F16C=off", "-DLLAMA_F16C=off",
"-DLLAMA_FMA=off") "-DLLAMA_FMA=off",
"-DLLAMA_OPENMP=off")
$script:buildDir="../build/windows/${script:ARCH}_static" $script:buildDir="../build/windows/${script:ARCH}_static"
write-host "Building static library" write-host "Building static library"
build build
@@ -270,7 +277,15 @@ function build_cuda() {
init_vars init_vars
$script:buildDir="../build/windows/${script:ARCH}/cuda$script:CUDA_VARIANT" $script:buildDir="../build/windows/${script:ARCH}/cuda$script:CUDA_VARIANT"
$script:distDir="$script:DIST_BASE\cuda$script:CUDA_VARIANT" $script:distDir="$script:DIST_BASE\cuda$script:CUDA_VARIANT"
$script:cmakeDefs += @("-A", "x64", "-DLLAMA_CUDA=ON", "-DLLAMA_AVX=on", "-DLLAMA_AVX2=off", "-DCUDAToolkit_INCLUDE_DIR=$script:CUDA_INCLUDE_DIR", "-DCMAKE_CUDA_ARCHITECTURES=${script:CMAKE_CUDA_ARCHITECTURES}") $script:cmakeDefs += @(
"-A", "x64",
"-DLLAMA_CUDA=ON",
"-DLLAMA_AVX=on",
"-DLLAMA_AVX2=off",
"-DCUDAToolkit_INCLUDE_DIR=$script:CUDA_INCLUDE_DIR",
"-DCMAKE_CUDA_FLAGS=-t8",
"-DCMAKE_CUDA_ARCHITECTURES=${script:CMAKE_CUDA_ARCHITECTURES}"
)
if ($null -ne $env:OLLAMA_CUSTOM_CUDA_DEFS) { if ($null -ne $env:OLLAMA_CUSTOM_CUDA_DEFS) {
write-host "OLLAMA_CUSTOM_CUDA_DEFS=`"${env:OLLAMA_CUSTOM_CUDA_DEFS}`"" write-host "OLLAMA_CUSTOM_CUDA_DEFS=`"${env:OLLAMA_CUSTOM_CUDA_DEFS}`""
$script:cmakeDefs +=@("${env:OLLAMA_CUSTOM_CUDA_DEFS}") $script:cmakeDefs +=@("${env:OLLAMA_CUSTOM_CUDA_DEFS}")
@@ -280,10 +295,12 @@ function build_cuda() {
sign sign
install install
write-host "copying CUDA dependencies to ${script:SRC_DIR}\dist\windows-${script:ARCH}\" rm -ea 0 -recurse -force -path "${script:SRC_DIR}\dist\windows-${script:ARCH}\cuda\"
cp "${script:CUDA_LIB_DIR}\cudart64_*.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\" md "${script:SRC_DIR}\dist\windows-${script:ARCH}\cuda\" -ea 0 > $null
cp "${script:CUDA_LIB_DIR}\cublas64_*.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\" write-host "copying CUDA dependencies to ${script:SRC_DIR}\dist\windows-${script:ARCH}\cuda\"
cp "${script:CUDA_LIB_DIR}\cublasLt64_*.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\" cp "${script:CUDA_LIB_DIR}\cudart64_*.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\cuda\"
cp "${script:CUDA_LIB_DIR}\cublas64_*.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\cuda\"
cp "${script:CUDA_LIB_DIR}\cublasLt64_*.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\cuda\"
} else { } else {
write-host "Skipping CUDA generation step" write-host "Skipping CUDA generation step"
} }
@@ -317,16 +334,18 @@ function build_oneapi() {
sign sign
install install
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\libirngmd.dll" "${script:distDir}" rm -ea 0 -recurse -force -path "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\libmmd.dll" "${script:distDir}" md "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\" -ea 0 > $null
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\pi_level_zero.dll" "${script:distDir}" cp "${env:ONEAPI_ROOT}\compiler\latest\bin\libirngmd.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\pi_unified_runtime.dll" "${script:distDir}" cp "${env:ONEAPI_ROOT}\compiler\latest\bin\libmmd.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\pi_win_proxy_loader.dll" "${script:distDir}" cp "${env:ONEAPI_ROOT}\compiler\latest\bin\pi_level_zero.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\svml_dispmd.dll" "${script:distDir}" cp "${env:ONEAPI_ROOT}\compiler\latest\bin\pi_unified_runtime.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\sycl7.dll" "${script:distDir}" cp "${env:ONEAPI_ROOT}\compiler\latest\bin\pi_win_proxy_loader.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
cp "${env:ONEAPI_ROOT}\mkl\latest\bin\mkl_core.2.dll" "${script:distDir}" cp "${env:ONEAPI_ROOT}\compiler\latest\bin\svml_dispmd.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
cp "${env:ONEAPI_ROOT}\mkl\latest\bin\mkl_sycl_blas.4.dll" "${script:distDir}" cp "${env:ONEAPI_ROOT}\compiler\latest\bin\sycl7.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
cp "${env:ONEAPI_ROOT}\mkl\latest\bin\mkl_tbb_thread.2.dll" "${script:distDir}" cp "${env:ONEAPI_ROOT}\mkl\latest\bin\mkl_core.2.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
cp "${env:ONEAPI_ROOT}\mkl\latest\bin\mkl_sycl_blas.4.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
cp "${env:ONEAPI_ROOT}\mkl\latest\bin\mkl_tbb_thread.2.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
} else { } else {
Write-Host "Skipping oneAPI generation step" Write-Host "Skipping oneAPI generation step"
} }

View File

@@ -53,7 +53,7 @@ func (llm *ggla) Tensors() Tensors {
return llm.tensors return llm.tensors
} }
func (llm *ggla) decode(rs io.ReadSeeker) error { func (llm *ggla) decode(rs io.ReadSeeker) (retErr error) {
var r uint32 var r uint32
if err := binary.Read(rs, binary.LittleEndian, &r); err != nil { if err := binary.Read(rs, binary.LittleEndian, &r); err != nil {
return err return err
@@ -69,9 +69,18 @@ func (llm *ggla) decode(rs io.ReadSeeker) error {
for { for {
var dims uint32 var dims uint32
if err := binary.Read(rs, binary.LittleEndian, &dims); err != nil { if err := binary.Read(rs, binary.LittleEndian, &dims); err != nil {
if errors.Is(err, io.EOF) {
return nil
}
return err return err
} }
defer func() {
if errors.Is(retErr, io.EOF) {
retErr = io.ErrUnexpectedEOF
}
}()
var namesize uint32 var namesize uint32
if err := binary.Read(rs, binary.LittleEndian, &namesize); err != nil { if err := binary.Read(rs, binary.LittleEndian, &namesize); err != nil {
return err return err
@@ -108,7 +117,7 @@ func (llm *ggla) decode(rs io.ReadSeeker) error {
return err return err
} }
if _, err := rs.Seek((offset+31)&-32, io.SeekStart); err != nil { if _, err := rs.Seek((offset+31)&-32-offset, io.SeekCurrent); err != nil {
return err return err
} }

View File

@@ -6,6 +6,8 @@ import (
"fmt" "fmt"
"io" "io"
"strings" "strings"
"github.com/ollama/ollama/util/bufioutil"
) )
type GGML struct { type GGML struct {
@@ -69,6 +71,30 @@ func (kv KV) HeadCountKV() uint64 {
return 1 return 1
} }
func (kv KV) EmbeddingHeadCount() uint64 {
if heads := kv.HeadCount(); heads > 0 {
return kv.EmbeddingLength() / kv.HeadCount()
}
return 0
}
func (kv KV) EmbeddingHeadCountK() uint64 {
if k := kv.u64(fmt.Sprintf("%s.attention.key_length", kv.Architecture())); k > 0 {
return k
}
return kv.EmbeddingHeadCount()
}
func (kv KV) EmbeddingHeadCountV() uint64 {
if v := kv.u64(fmt.Sprintf("%s.attention.value_length", kv.Architecture())); v > 0 {
return v
}
return kv.EmbeddingHeadCount()
}
func (kv KV) GQA() uint64 { func (kv KV) GQA() uint64 {
return kv.HeadCount() / kv.HeadCountKV() return kv.HeadCount() / kv.HeadCountKV()
} }
@@ -254,7 +280,18 @@ func DetectGGMLType(b []byte) string {
} }
} }
func DecodeGGML(rs io.ReadSeeker) (*GGML, int64, error) { // DecodeGGML decodes a GGML model from the given reader.
//
// It collects array values for arrays with a size less than or equal to
// maxArraySize. If maxArraySize is 0, the default value of 1024 is used. If
// the maxArraySize is negative, all arrays are collected.
func DecodeGGML(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
if maxArraySize == 0 {
maxArraySize = 1024
}
rs = bufioutil.NewBufferedSeeker(rs, 32<<10)
var magic uint32 var magic uint32
if err := binary.Read(rs, binary.LittleEndian, &magic); err != nil { if err := binary.Read(rs, binary.LittleEndian, &magic); err != nil {
return nil, 0, err return nil, 0, err
@@ -267,17 +304,15 @@ func DecodeGGML(rs io.ReadSeeker) (*GGML, int64, error) {
case FILE_MAGIC_GGLA: case FILE_MAGIC_GGLA:
c = &containerGGLA{} c = &containerGGLA{}
case FILE_MAGIC_GGUF_LE: case FILE_MAGIC_GGUF_LE:
c = &containerGGUF{ByteOrder: binary.LittleEndian} c = &containerGGUF{ByteOrder: binary.LittleEndian, maxArraySize: maxArraySize}
case FILE_MAGIC_GGUF_BE: case FILE_MAGIC_GGUF_BE:
c = &containerGGUF{ByteOrder: binary.BigEndian} c = &containerGGUF{ByteOrder: binary.BigEndian, maxArraySize: maxArraySize}
default: default:
return nil, 0, errors.New("invalid file magic") return nil, 0, errors.New("invalid file magic")
} }
model, err := c.Decode(rs) model, err := c.Decode(rs)
if errors.Is(err, io.EOF) { if err != nil {
// noop
} else if err != nil {
return nil, 0, err return nil, 0, err
} }
@@ -297,7 +332,10 @@ func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload ui
embedding := llm.KV().EmbeddingLength() embedding := llm.KV().EmbeddingLength()
heads := llm.KV().HeadCount() heads := llm.KV().HeadCount()
headsKV := llm.KV().HeadCountKV() headsKV := llm.KV().HeadCountKV()
vocab := uint64(len(llm.KV()["tokenizer.ggml.tokens"].([]any))) vocab := uint64(llm.KV()["tokenizer.ggml.tokens"].(*array).size)
embeddingHeads := llm.KV().EmbeddingHeadCount()
embeddingHeadsK := llm.KV().EmbeddingHeadCountK()
layers := llm.Tensors().Layers() layers := llm.Tensors().Layers()
@@ -307,7 +345,8 @@ func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload ui
partialOffload = 4 * batch * embedding partialOffload = 4 * batch * embedding
partialOffload += max( partialOffload += max(
4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*heads+embedding/heads*headsKV), // 4*batch*(4+6*embedding+context*(2*heads)+llm.KV().GQA()),
4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*heads+embeddingHeads*headsKV),
4*batch*(embedding+vocab)+embedding*vocab*105/128, 4*batch*(embedding+vocab)+embedding*vocab*105/128,
) )
@@ -315,15 +354,15 @@ func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload ui
// mixtral 8x22b // mixtral 8x22b
ff := uint64(llm.KV()["llama.feed_forward_length"].(uint32)) ff := uint64(llm.KV()["llama.feed_forward_length"].(uint32))
partialOffload = max( partialOffload = max(
3*ffnGateExpsWeight.Size()+4*batch*(2*ff+headsKV+embedding+context+embedding/heads*headsKV), 3*ffnGateExpsWeight.Size()+4*batch*(2*ff+headsKV+embedding+context+embeddingHeads*headsKV),
4*(context*batch*heads+context*embedding/heads*headsKV+batch*1024+embedding/heads*headsKV*batch), 4*(context*batch*heads+context*embeddingHeads*headsKV+batch*1024+embeddingHeads*headsKV*batch),
) )
} else if ffnGateWeight, ok := layers["blk.0"]["ffn_gate.0.weight"]; ok { } else if ffnGateWeight, ok := layers["blk.0"]["ffn_gate.0.weight"]; ok {
// mixtral 8x7b // mixtral 8x7b
ffnGateWeight1 := ffnGateWeight.Shape[1] ffnGateWeight1 := ffnGateWeight.Shape[1]
fullOffload = 4 * batch * (2 + 3*embedding + context*(1+heads) + 2*headsKV + ffnGateWeight1) fullOffload = 4 * batch * (2 + 3*embedding + context*(1+heads) + 2*headsKV + ffnGateWeight1)
partialOffload = max( partialOffload = max(
4*batch*(3+embedding/heads*headsKV+embedding+context*(1+heads)+ffnGateWeight1)+(embedding*embedding+3*embedding*headsKV*ffnGateWeight1)*9/16, 4*batch*(3+embeddingHeads*headsKV+embedding+context*(1+heads)+ffnGateWeight1)+(embedding*embedding+3*embedding*headsKV*ffnGateWeight1)*9/16,
4*batch*(1+2*embedding+context*(1+heads))+embedding*(6*context*headsKV/heads+embedding*9/16), 4*batch*(1+2*embedding+context*(1+heads))+embedding*(6*context*headsKV/heads+embedding*9/16),
) )
} }
@@ -366,6 +405,16 @@ func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload ui
4*batch*(vocab+2*embedding), 4*batch*(vocab+2*embedding),
fullOffload, fullOffload,
) )
case "deepseek2":
fullOffload = max(
4*batch*(3*embedding+vocab),
4*batch*(3*embedding+2+context*(1+headsKV)+2*embeddingHeadsK*headsKV),
)
partialOffload = max(
4*batch*(3*embedding+vocab)+embedding*vocab*105/128,
4*batch*(2*embedding+1+2*embeddingHeadsK*headsKV+context+context*headsKV)+4*embeddingHeadsK*context*headsKV+embedding*embeddingHeadsK*headsKV*9/16,
)
} }
return return

1
llm/ggml_test.go Normal file
View File

@@ -0,0 +1 @@
package llm

View File

@@ -3,11 +3,10 @@ package llm
import ( import (
"bytes" "bytes"
"encoding/binary" "encoding/binary"
"encoding/json"
"fmt" "fmt"
"io" "io"
"strings" "strings"
"log/slog"
) )
type containerGGUF struct { type containerGGUF struct {
@@ -29,6 +28,12 @@ type containerGGUF struct {
NumTensor uint64 NumTensor uint64
NumKV uint64 NumKV uint64
} }
maxArraySize int
}
func (c *containerGGUF) canCollectArray(size int) bool {
return c.maxArraySize < 0 || size <= c.maxArraySize
} }
func (c *containerGGUF) Name() string { func (c *containerGGUF) Name() string {
@@ -54,7 +59,6 @@ func (c *containerGGUF) Decode(rs io.ReadSeeker) (model, error) {
} }
model := newGGUF(c) model := newGGUF(c)
slog.Debug(fmt.Sprintf("model = %#v", model))
if err := model.Decode(rs); err != nil { if err := model.Decode(rs); err != nil {
return nil, err return nil, err
} }
@@ -85,6 +89,8 @@ type gguf struct {
tensors []*Tensor tensors []*Tensor
parameters uint64 parameters uint64
scratch [16 << 10]byte
} }
func newGGUF(container *containerGGUF) *gguf { func newGGUF(container *containerGGUF) *gguf {
@@ -181,34 +187,34 @@ func (llm *gguf) Decode(rs io.ReadSeeker) error {
} }
// decode tensors // decode tensors
for i := 0; uint64(i) < llm.numTensor(); i++ { for range llm.numTensor() {
name, err := readGGUFString(llm, rs) name, err := readGGUFString(llm, rs)
if err != nil { if err != nil {
return err return fmt.Errorf("failed to read tensor name: %w", err)
} }
// dims is the number of dimensions in the tensor // dims is the number of dimensions in the tensor
dims, err := readGGUF[uint32](llm, rs) dims, err := readGGUF[uint32](llm, rs)
if err != nil { if err != nil {
return err return fmt.Errorf("failed to read tensor dimensions: %w", err)
} }
shape := [4]uint64{1, 1, 1, 1} shape := [4]uint64{1, 1, 1, 1}
for i := 0; uint32(i) < dims; i++ { for i := 0; uint32(i) < dims; i++ {
shape[i], err = readGGUF[uint64](llm, rs) shape[i], err = readGGUF[uint64](llm, rs)
if err != nil { if err != nil {
return err return fmt.Errorf("failed to read tensor shape: %w", err)
} }
} }
kind, err := readGGUF[uint32](llm, rs) kind, err := readGGUF[uint32](llm, rs)
if err != nil { if err != nil {
return err return fmt.Errorf("failed to read tensor kind: %w", err)
} }
offset, err := readGGUF[uint64](llm, rs) offset, err := readGGUF[uint64](llm, rs)
if err != nil { if err != nil {
return err return fmt.Errorf("failed to read tensor offset: %w", err)
} }
tensor := Tensor{ tensor := Tensor{
@@ -230,24 +236,19 @@ func (llm *gguf) Decode(rs io.ReadSeeker) error {
alignment = 32 alignment = 32
} }
offset, err := rs.Seek(0, io.SeekCurrent)
if err != nil {
return err
}
padding := llm.padding(offset, int64(alignment))
if _, err := rs.Seek(padding, io.SeekCurrent); err != nil {
return err
}
for _, tensor := range llm.tensors { for _, tensor := range llm.tensors {
if _, err := rs.Seek(int64(tensor.Size()), io.SeekCurrent); err != nil { offset, err := rs.Seek(0, io.SeekCurrent)
return err if err != nil {
return fmt.Errorf("failed to get current offset: %w", err)
} }
padding := llm.padding(int64(tensor.Size()), int64(alignment)) padding := llm.padding(offset, int64(alignment))
if _, err := rs.Seek(padding, io.SeekCurrent); err != nil { if _, err := rs.Seek(padding, io.SeekCurrent); err != nil {
return err return fmt.Errorf("failed to seek to init padding: %w", err)
}
if _, err := rs.Seek(int64(tensor.Size()), io.SeekCurrent); err != nil {
return fmt.Errorf("failed to seek to tensor: %w", err)
} }
} }
@@ -285,22 +286,48 @@ func readGGUFV1String(llm *gguf, r io.Reader) (string, error) {
return b.String(), nil return b.String(), nil
} }
func discardGGUFString(llm *gguf, r io.Reader) error {
buf := llm.scratch[:8]
_, err := io.ReadFull(r, buf)
if err != nil {
return err
}
size := int(llm.ByteOrder.Uint64(buf))
for size > 0 {
n, err := r.Read(llm.scratch[:min(size, cap(llm.scratch))])
if err != nil {
return err
}
size -= n
}
return nil
}
func readGGUFString(llm *gguf, r io.Reader) (string, error) { func readGGUFString(llm *gguf, r io.Reader) (string, error) {
if llm.Version == 1 { if llm.Version == 1 {
return readGGUFV1String(llm, r) return readGGUFV1String(llm, r)
} }
var length uint64 buf := llm.scratch[:8]
if err := binary.Read(r, llm.ByteOrder, &length); err != nil { _, err := io.ReadFull(r, buf)
if err != nil {
return "", err return "", err
} }
var b bytes.Buffer length := int(llm.ByteOrder.Uint64(buf))
if _, err := io.CopyN(&b, r, int64(length)); err != nil { if length > len(llm.scratch) {
buf = make([]byte, length)
} else {
buf = llm.scratch[:length]
}
clear(buf)
_, err = io.ReadFull(r, buf)
if err != nil {
return "", err return "", err
} }
return string(buf), nil
return b.String(), nil
} }
func writeGGUFString(llm *gguf, w io.Writer, s string) error { func writeGGUFString(llm *gguf, w io.Writer, s string) error {
@@ -316,7 +343,16 @@ func writeGGUFString(llm *gguf, w io.Writer, s string) error {
return err return err
} }
func readGGUFV1Array(llm *gguf, r io.Reader) (a []any, err error) { type array struct {
size int
values []any
}
func (a *array) MarshalJSON() ([]byte, error) {
return json.Marshal(a.values)
}
func readGGUFV1Array(llm *gguf, r io.Reader) (*array, error) {
t, err := readGGUF[uint32](llm, r) t, err := readGGUF[uint32](llm, r)
if err != nil { if err != nil {
return nil, err return nil, err
@@ -327,7 +363,12 @@ func readGGUFV1Array(llm *gguf, r io.Reader) (a []any, err error) {
return nil, err return nil, err
} }
for i := 0; uint32(i) < n; i++ { a := &array{size: int(n)}
if llm.canCollectArray(int(n)) {
a.values = make([]any, 0, int(n))
}
for i := range n {
var e any var e any
switch t { switch t {
case ggufTypeUint8: case ggufTypeUint8:
@@ -361,13 +402,15 @@ func readGGUFV1Array(llm *gguf, r io.Reader) (a []any, err error) {
return nil, err return nil, err
} }
a = append(a, e) if a.values != nil {
a.values[i] = e
}
} }
return return a, nil
} }
func readGGUFArray(llm *gguf, r io.Reader) (a []any, err error) { func readGGUFArray(llm *gguf, r io.Reader) (*array, error) {
if llm.Version == 1 { if llm.Version == 1 {
return readGGUFV1Array(llm, r) return readGGUFV1Array(llm, r)
} }
@@ -382,7 +425,12 @@ func readGGUFArray(llm *gguf, r io.Reader) (a []any, err error) {
return nil, err return nil, err
} }
for i := 0; uint64(i) < n; i++ { a := &array{size: int(n)}
if llm.canCollectArray(int(n)) {
a.values = make([]any, int(n))
}
for i := range n {
var e any var e any
switch t { switch t {
case ggufTypeUint8: case ggufTypeUint8:
@@ -408,7 +456,11 @@ func readGGUFArray(llm *gguf, r io.Reader) (a []any, err error) {
case ggufTypeBool: case ggufTypeBool:
e, err = readGGUF[bool](llm, r) e, err = readGGUF[bool](llm, r)
case ggufTypeString: case ggufTypeString:
e, err = readGGUFString(llm, r) if a.values != nil {
e, err = readGGUFString(llm, r)
} else {
err = discardGGUFString(llm, r)
}
default: default:
return nil, fmt.Errorf("invalid array type: %d", t) return nil, fmt.Errorf("invalid array type: %d", t)
} }
@@ -416,10 +468,12 @@ func readGGUFArray(llm *gguf, r io.Reader) (a []any, err error) {
return nil, err return nil, err
} }
a = append(a, e) if a.values != nil {
a.values[i] = e
}
} }
return return a, nil
} }
func writeGGUFArray[S ~[]E, E any](llm *gguf, w io.Writer, t uint32, s S) error { func writeGGUFArray[S ~[]E, E any](llm *gguf, w io.Writer, t uint32, s S) error {

View File

@@ -3,9 +3,10 @@ package llm
import ( import (
"fmt" "fmt"
"log/slog" "log/slog"
"strconv"
"strings"
"github.com/ollama/ollama/api" "github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format" "github.com/ollama/ollama/format"
"github.com/ollama/ollama/gpu" "github.com/ollama/ollama/gpu"
) )
@@ -16,7 +17,8 @@ func PredictServerFit(allGpus gpu.GpuInfoList, ggml *GGML, adapters, projectors
var estimatedVRAM uint64 var estimatedVRAM uint64
for _, gpus := range allGpus.ByLibrary() { for _, gpus := range allGpus.ByLibrary() {
var layerCount int var layerCount int
layerCount, estimatedVRAM, _ = EstimateGPULayers(gpus, ggml, projectors, opts) estimate := EstimateGPULayers(gpus, ggml, projectors, opts)
layerCount, estimatedVRAM = estimate.Layers, estimate.VRAMSize
if opts.NumGPU < 0 { if opts.NumGPU < 0 {
if layerCount > 0 && layerCount >= int(ggml.KV().BlockCount()+1) { if layerCount > 0 && layerCount >= int(ggml.KV().BlockCount()+1) {
return true, estimatedVRAM return true, estimatedVRAM
@@ -30,24 +32,76 @@ func PredictServerFit(allGpus gpu.GpuInfoList, ggml *GGML, adapters, projectors
return false, estimatedVRAM return false, estimatedVRAM
} }
type MemoryEstimate struct {
// How many layers we predict we can load
Layers int
// The size of the graph which occupies the main GPU
Graph uint64
// How much VRAM will be allocated given the number of layers we predict
VRAMSize uint64
// The total size of the model if loaded into VRAM. If all layers are loaded, VRAMSize == TotalSize
TotalSize uint64
// For multi-GPU scenarios, this provides the tensor split parameter
TensorSplit string
// For multi-GPU scenarios, this is the size in bytes per GPU
GPUSizes []uint64
// internal fields for logging purposes
inferenceLibrary string
layersRequested int
layersModel int
availableList []string
kv uint64
allocationsList []string
memoryWeights uint64
memoryLayerOutput uint64
graphFullOffload uint64
graphPartialOffload uint64
}
// Given a model and one or more GPU targets, predict how many layers and bytes we can load, and the total size // Given a model and one or more GPU targets, predict how many layers and bytes we can load, and the total size
// The GPUs provided must all be the same Library // The GPUs provided must all be the same Library
func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts api.Options) (int, uint64, uint64) { func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts api.Options) MemoryEstimate {
var memoryAvailable uint64 // Graph size for a partial offload, applies to all GPUs
for _, info := range gpus { var graphPartialOffload uint64
memoryAvailable += info.FreeMemory
}
if envconfig.MaxVRAM > 0 {
memoryAvailable = envconfig.MaxVRAM
}
slog.Debug("evaluating", "library", gpus[0].Library, "gpu_count", len(gpus), "available", format.HumanBytes2(memoryAvailable)) // Graph size when all layers are offloaded, applies to all GPUs
var graphFullOffload uint64
// TODO - this is probably wrong, first GPU vs secondaries will have different overheads // Final graph offload once we know full or partial
memoryMinimum := gpus[0].MinimumMemory var graphOffload uint64
// Projectors loaded into GPU0 only
var projectorSize uint64
// Conditional output size on GPU 0
var memoryLayerOutput uint64
// The sizes of a layer
var layerSize uint64
// The sum of all the layer sizes (just for logging)
var memoryWeights uint64
// True if all the layers are loaded
var fullyLoaded bool
// Overflow that didn't fit into the GPU
var overflow uint64
availableList := make([]string, len(gpus))
for i, gpu := range gpus {
availableList[i] = format.HumanBytes2(gpu.FreeMemory)
}
slog.Debug("evaluating", "library", gpus[0].Library, "gpu_count", len(gpus), "available", availableList)
for _, projector := range projectors { for _, projector := range projectors {
memoryMinimum += projectorMemoryRequirements(projector) projectorSize += projectorMemoryRequirements(projector)
// multimodal models require at least 2048 context // multimodal models require at least 2048 context
opts.NumCtx = max(opts.NumCtx, 2048) opts.NumCtx = max(opts.NumCtx, 2048)
@@ -56,127 +110,246 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
layers := ggml.Tensors().Layers() layers := ggml.Tensors().Layers()
// add one layer worth of memory as a buffer // add one layer worth of memory as a buffer
if blk0, ok := layers["blk.0"]; ok { if blk0, ok := layers["blk.0"]; ok {
memoryMinimum += blk0.size() layerSize = blk0.size()
} else {
slog.Warn("model missing blk.0 layer size")
} }
// fp16 k,v = (1 (k) + 1 (v)) * sizeof(float16) * n_ctx * n_layer * n_embd / n_head * n_head_kv // fp16 k,v = sizeof(float16) * n_ctx * n_layer * (n_embd_head_k + n_embd_head_v) * n_head_kv
var kv uint64 = 2 * 2 * uint64(opts.NumCtx) * ggml.KV().BlockCount() * ggml.KV().EmbeddingLength() / ggml.KV().HeadCount() * ggml.KV().HeadCountKV() var kv uint64 = 2 * uint64(opts.NumCtx) * ggml.KV().BlockCount() * (ggml.KV().EmbeddingHeadCountK() + ggml.KV().EmbeddingHeadCountV()) * ggml.KV().HeadCountKV()
graphPartialOffload, graphFullOffload := ggml.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch))) // KV is proportional to the number of layers
layerSize += kv / ggml.KV().BlockCount()
graphPartialOffload, graphFullOffload = ggml.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)))
if graphPartialOffload == 0 { if graphPartialOffload == 0 {
graphPartialOffload = ggml.KV().GQA() * kv / 6 graphPartialOffload = ggml.KV().GQA() * kv / 6
} }
if graphFullOffload == 0 { if graphFullOffload == 0 {
graphFullOffload = graphPartialOffload graphFullOffload = graphPartialOffload
} }
graphFullOffload *= uint64(len(gpus))
graphPartialOffload *= uint64(len(gpus))
// on metal there's no partial offload overhead // on metal there's no partial offload overhead
if gpus[0].Library == "metal" { if gpus[0].Library == "metal" {
graphPartialOffload = graphFullOffload graphPartialOffload = graphFullOffload
} else if len(gpus) > 1 {
// multigpu should always use the partial graph size
graphFullOffload = graphPartialOffload
} }
// memoryRequiredTotal represents the memory required for full GPU offloading (all layers)
memoryRequiredTotal := memoryMinimum + graphFullOffload
// memoryRequiredPartial represents the memory required for partial GPU offloading (n > 0, n < layers)
memoryRequiredPartial := memoryMinimum + graphPartialOffload
var memoryLayerOutput uint64
if layer, ok := layers["output_norm"]; ok { if layer, ok := layers["output_norm"]; ok {
memoryLayerOutput += layer.size() memoryLayerOutput += layer.size()
} }
if layer, ok := layers["output"]; ok { if layer, ok := layers["output"]; ok {
memoryLayerOutput += layer.size() memoryLayerOutput += layer.size()
} else if layer, ok := layers["token_embd"]; ok { } else if layer, ok := layers["token_embd"]; ok {
memoryLayerOutput += layer.size() memoryLayerOutput += layer.size()
} }
if gpus[0].Library == "metal" && opts.UseMMap { // Output layer handled at the end if we have space
// memory is preallocated for output tensors gpuZeroOverhead := projectorSize
memoryRequiredTotal += memoryLayerOutput
memoryRequiredPartial += memoryLayerOutput // Reduce set of GPUs to only those that have sufficient space to fit overhead and at least one layer
var layerCount int
layerCounts := make([]int, len(gpus))
gpuAllocations := make([]uint64, len(gpus))
type gs struct {
i int
g *gpu.GpuInfo
}
gpusWithSpace := []gs{}
for i := range gpus {
var gzo uint64
if len(gpusWithSpace) == 0 {
gzo = gpuZeroOverhead
}
// Only include GPUs that can fit the graph, gpu minimum, the layer buffer and at least more layer
if gpus[i].FreeMemory < gzo+max(graphPartialOffload, graphFullOffload)+gpus[i].MinimumMemory+2*layerSize {
slog.Debug("gpu has too little memory to allocate any layers", "gpu", gpus[i])
continue
}
gpusWithSpace = append(gpusWithSpace, gs{i, &gpus[i]})
gpuAllocations[i] += gpus[i].MinimumMemory + layerSize // We hold off on graph until we know partial vs. full
} }
var layerCount int var gpuZeroID int
if len(gpusWithSpace) > 0 {
gpuZeroID = gpusWithSpace[0].i
gpuAllocations[gpuZeroID] += gpuZeroOverhead
}
// For all the layers, find where they can fit on the GPU(s)
for i := range int(ggml.KV().BlockCount()) { for i := range int(ggml.KV().BlockCount()) {
// Some models have inconsistent layer sizes
if blk, ok := layers[fmt.Sprintf("blk.%d", i)]; ok { if blk, ok := layers[fmt.Sprintf("blk.%d", i)]; ok {
memoryLayer := blk.size() layerSize = blk.size()
layerSize += kv / ggml.KV().BlockCount()
}
memoryWeights += layerSize
// KV is proportional to the number of layers if opts.NumGPU >= 0 && layerCount >= opts.NumGPU {
memoryLayer += kv / ggml.KV().BlockCount() // Stop allocating on GPU(s) once we hit the users target NumGPU
continue
}
memoryRequiredTotal += memoryLayer // distribute the layers across the GPU(s) that have space
if (opts.NumGPU >= 0 && layerCount+1 <= opts.NumGPU) || (opts.NumGPU < 0 && memoryAvailable > memoryRequiredPartial+memoryLayer) { for j := len(gpusWithSpace); j > 0; j-- {
memoryRequiredPartial += memoryLayer g := gpusWithSpace[i%j]
used := gpuAllocations[g.i] + max(graphPartialOffload, graphFullOffload)
if g.g.FreeMemory > used+layerSize {
gpuAllocations[g.i] += layerSize
layerCounts[g.i]++
layerCount++ layerCount++
break
} else {
gpusWithSpace = append(gpusWithSpace[:i%j], gpusWithSpace[i%j+1:]...)
} }
} }
} }
if layerCount >= int(ggml.KV().BlockCount()) {
if gpus[0].Library != "metal" || !opts.UseMMap { fullyLoaded = true
// memory was not preallocated for output tensors } else {
memoryRequiredTotal += memoryLayerOutput for i := layerCount; i < int(ggml.KV().BlockCount()); i++ {
overflow += layerSize
}
} }
if (opts.NumGPU >= 0 && layerCount+1 <= opts.NumGPU) || (opts.NumGPU < 0 && memoryAvailable > memoryRequiredTotal) { // Determine if we need to consider output then find where it fits
layerCount = int(ggml.KV().BlockCount()) + 1 if memoryLayerOutput > 0 && (opts.NumGPU < 0 || layerCount < opts.NumGPU) {
memoryRequiredPartial = memoryRequiredTotal for j := len(gpusWithSpace); j > 0; j-- {
g := gpusWithSpace[layerCount%j]
used := gpuAllocations[g.i] + max(graphPartialOffload, graphFullOffload)
if g.g.FreeMemory > used+memoryLayerOutput {
gpuAllocations[g.i] += memoryLayerOutput
layerCounts[g.i]++
layerCount++
break
}
}
if layerCount < int(ggml.KV().BlockCount())+1 {
fullyLoaded = false
overflow += memoryLayerOutput
}
} }
memoryWeights := memoryRequiredTotal - memoryMinimum - graphFullOffload - kv // Add the applicable (full or partial) graph allocations
for i := range gpus {
if layerCounts[i] <= 0 {
continue
}
if fullyLoaded {
gpuAllocations[i] += graphFullOffload
} else {
gpuAllocations[i] += graphPartialOffload
}
}
if fullyLoaded {
graphOffload = graphFullOffload
} else {
graphOffload = graphPartialOffload
}
// Summaries for the log
var memoryRequiredPartial, memoryRequiredTotal uint64
for i := range gpuAllocations {
memoryRequiredPartial += gpuAllocations[i]
}
memoryRequiredTotal = memoryRequiredPartial + overflow
tensorSplit := ""
if len(gpus) > 1 {
splits := make([]string, len(gpus))
for i, count := range layerCounts {
splits[i] = strconv.Itoa(count)
}
tensorSplit = strings.Join(splits, ",")
}
allocationsList := []string{}
for _, a := range gpuAllocations {
allocationsList = append(allocationsList, format.HumanBytes2(a))
}
estimate := MemoryEstimate{
TotalSize: memoryRequiredTotal,
Layers: 0,
Graph: 0,
VRAMSize: 0,
GPUSizes: []uint64{},
inferenceLibrary: gpus[0].Library,
layersRequested: opts.NumGPU,
layersModel: int(ggml.KV().BlockCount()) + 1,
availableList: availableList,
kv: kv,
allocationsList: allocationsList,
memoryWeights: memoryWeights,
memoryLayerOutput: memoryLayerOutput,
graphFullOffload: graphFullOffload,
graphPartialOffload: graphPartialOffload,
}
if gpus[0].Library == "cpu" {
return estimate
}
if layerCount == 0 {
slog.Debug("insufficient VRAM to load any model layers")
return estimate
}
estimate.Layers = layerCount
estimate.Graph = graphOffload
estimate.VRAMSize = memoryRequiredPartial
estimate.TotalSize = memoryRequiredTotal
estimate.TensorSplit = tensorSplit
estimate.GPUSizes = gpuAllocations
return estimate
}
func (m MemoryEstimate) log() {
slog.Info( slog.Info(
"offload to gpu", "offload to "+m.inferenceLibrary,
slog.Group( slog.Group(
"layers", "layers",
// requested number of layers to offload // requested number of layers to offload
"requested", opts.NumGPU, "requested", m.layersRequested,
// The number of layers the model has (including output)
"model", m.layersModel,
// estimated number of layers that can be offloaded // estimated number of layers that can be offloaded
"real", layerCount, "offload", m.Layers,
// multi-gpu split for tensors
"split", m.TensorSplit,
), ),
slog.Group( slog.Group(
"memory", "memory",
// memory available for offloading // memory available by GPU for offloading
"available", format.HumanBytes2(memoryAvailable), "available", m.availableList,
slog.Group( slog.Group(
"required", "required",
// memory required for full offloading // memory required for full offloading
"full", format.HumanBytes2(memoryRequiredTotal), "full", format.HumanBytes2(m.TotalSize),
// memory required to offload layers.estimate layers // memory required to offload layers.estimate layers
"partial", format.HumanBytes2(memoryRequiredPartial), "partial", format.HumanBytes2(m.VRAMSize),
// memory of KV cache // memory of KV cache
"kv", format.HumanBytes2(kv), "kv", format.HumanBytes2(m.kv),
// Allocations across the GPUs
"allocations", m.allocationsList,
), ),
slog.Group( slog.Group(
"weights", "weights",
// memory of the weights // memory of the weights
"total", format.HumanBytes2(memoryWeights), "total", format.HumanBytes2(m.memoryWeights),
// memory of repeating layers // memory of repeating layers
"repeating", format.HumanBytes2(memoryWeights-memoryLayerOutput), "repeating", format.HumanBytes2(m.memoryWeights-m.memoryLayerOutput),
// memory of non-repeating layers // memory of non-repeating layers
"nonrepeating", format.HumanBytes2(memoryLayerOutput), "nonrepeating", format.HumanBytes2(m.memoryLayerOutput),
), ),
slog.Group( slog.Group(
"graph", "graph",
// memory of graph when fully offloaded // memory of graph when fully offloaded
"full", format.HumanBytes2(graphFullOffload), "full", format.HumanBytes2(m.graphFullOffload),
// memory of graph when not fully offloaded // memory of graph when not fully offloaded
"partial", format.HumanBytes2(graphPartialOffload), "partial", format.HumanBytes2(m.graphPartialOffload),
), ),
), ),
) )
if gpus[0].Library == "cpu" {
return 0, 0, memoryRequiredTotal
}
if memoryRequiredPartial > memoryAvailable {
slog.Debug("insufficient VRAM to load any model layers")
return 0, 0, memoryRequiredTotal
}
return layerCount, memoryRequiredPartial, memoryRequiredTotal
} }

130
llm/memory_test.go Normal file
View File

@@ -0,0 +1,130 @@
package llm
import (
"bytes"
"encoding/binary"
"fmt"
"os"
"testing"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/gpu"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
)
func TestEstimateGPULayers(t *testing.T) {
envconfig.Debug = true
modelName := "dummy"
f, err := os.CreateTemp(t.TempDir(), modelName)
require.NoError(t, err)
defer f.Close()
gguf := NewGGUFV3(binary.LittleEndian)
inputLayerCount := 5
tensors := []Tensor{
{Name: "blk.0.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
{Name: "blk.1.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
{Name: "blk.2.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
{Name: "blk.3.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
{Name: "blk.4.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
{Name: "output.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
}
assert.Len(t, tensors, inputLayerCount+1)
err = gguf.Encode(f, KV{
"general.architecture": "llama",
"general.name": "name",
"llama.context_length": uint32(32),
"llama.embedding_length": uint32(4096),
"llama.block_count": uint32(inputLayerCount),
"llama.attention.head_count": uint32(32),
"llama.attention.head_count_kv": uint32(32),
"tokenizer.ggml.tokens": []string{" "},
"tokenizer.ggml.scores": []float32{0},
"tokenizer.ggml.token_type": []int32{0},
}, tensors)
require.NoError(t, err)
ggml, err := LoadModel(f.Name(), 0)
if err != nil {
t.Fatal(err)
}
// Simple CPU scenario
gpus := []gpu.GpuInfo{
{
Library: "cpu",
},
}
projectors := []string{}
opts := api.DefaultOptions()
t.Run("cpu", func(t *testing.T) {
estimate := EstimateGPULayers(gpus, ggml, projectors, opts)
assert.Equal(t, 0, estimate.Layers)
assert.Equal(t, uint64(0), estimate.Graph)
})
// derived from the dummy ggml file above
graphPartialOffload := uint64(202377216)
graphFullOffload := uint64(171968512)
layerSize := uint64(33554436)
projectorSize := uint64(0)
memoryLayerOutput := uint64(4)
// Dual CUDA scenario with assymetry
gpuMinimumMemory := uint64(2048)
gpus = []gpu.GpuInfo{
{
Library: "cuda",
MinimumMemory: gpuMinimumMemory,
},
{
Library: "cuda",
MinimumMemory: gpuMinimumMemory,
},
}
// Nested array: GPU0 layer space, GPU1 layer space, expected gpu0, expected gpu1
for i, s := range []struct {
layer0, layer1 uint64
expect0, expect1 uint64
}{
{1, 1, 1, 1},
{2, 1, 2, 1},
{2, 2, 2, 2},
{1, 2, 1, 2},
{3, 3, 3, 3},
{4, 4, 3, 3},
{6, 6, 3, 3},
{0, 3, 0, 3},
} {
t.Run(fmt.Sprintf("%v", s), func(t *testing.T) {
gpus[0].FreeMemory = 0
gpus[1].FreeMemory = 0
gpus[0].FreeMemory += projectorSize
if s.layer0 > 0 {
gpus[0].FreeMemory += memoryLayerOutput
} else {
gpus[1].FreeMemory += memoryLayerOutput
}
gpus[0].FreeMemory += gpuMinimumMemory + layerSize + s.layer0*layerSize + 1
gpus[1].FreeMemory += gpuMinimumMemory + layerSize + s.layer1*layerSize + 1
gpus[0].FreeMemory += max(graphFullOffload, graphPartialOffload)
gpus[1].FreeMemory += max(graphFullOffload, graphPartialOffload)
estimate := EstimateGPULayers(gpus, ggml, projectors, opts)
assert.Equal(t, int(s.expect0+s.expect1), estimate.Layers, "scenario %d: %v", i, s)
assert.Equal(t, fmt.Sprintf("%d,%d", s.expect0, s.expect1), estimate.TensorSplit, "scenario %d: %v", i, s)
var layerSums uint64
for _, b := range estimate.GPUSizes {
layerSums += b
}
if estimate.Layers < inputLayerCount+1 {
assert.Less(t, estimate.VRAMSize, estimate.TotalSize, "scenario %d: %v %+v", i, s, estimate)
assert.Equal(t, estimate.VRAMSize, layerSums, "scenario %d: %v %+v", i, s, estimate)
} else {
assert.Equal(t, estimate.VRAMSize, estimate.TotalSize, "scenario %d: %v %+v", i, s, estimate)
assert.Equal(t, estimate.TotalSize, layerSums, "scenario %d: %v %+v", i, s, estimate)
}
})
}
}

View File

@@ -1,8 +1,8 @@
diff --git a/common/common.cpp b/common/common.cpp diff --git a/common/common.cpp b/common/common.cpp
index ba1ecf0e..cead57cc 100644 index 73ff0e85..6adb1a92 100644
--- a/common/common.cpp --- a/common/common.cpp
+++ b/common/common.cpp +++ b/common/common.cpp
@@ -1836,6 +1836,8 @@ struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & @@ -2447,6 +2447,8 @@ struct llama_model_params llama_model_params_from_gpt_params(const gpt_params &
mparams.use_mmap = params.use_mmap; mparams.use_mmap = params.use_mmap;
mparams.use_mlock = params.use_mlock; mparams.use_mlock = params.use_mlock;
mparams.check_tensors = params.check_tensors; mparams.check_tensors = params.check_tensors;
@@ -12,20 +12,20 @@ index ba1ecf0e..cead57cc 100644
mparams.kv_overrides = NULL; mparams.kv_overrides = NULL;
} else { } else {
diff --git a/common/common.h b/common/common.h diff --git a/common/common.h b/common/common.h
index d80344f2..71e84834 100644 index 58ed72f4..0bb2605e 100644
--- a/common/common.h --- a/common/common.h
+++ b/common/common.h +++ b/common/common.h
@@ -174,6 +174,13 @@ struct gpt_params { @@ -180,6 +180,13 @@ struct gpt_params {
// multimodal models (see examples/llava)
std::string mmproj = ""; // path to multimodal projector std::string mmproj = ""; // path to multimodal projector
std::vector<std::string> image; // path to image file(s) std::vector<std::string> image; // path to image file(s)
+
+ // Called with a progress value between 0.0 and 1.0. Pass NULL to disable. + // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
+ // If the provided progress_callback returns true, model loading continues. + // If the provided progress_callback returns true, model loading continues.
+ // If it returns false, model loading is immediately aborted. + // If it returns false, model loading is immediately aborted.
+ llama_progress_callback progress_callback = NULL; + llama_progress_callback progress_callback = NULL;
+ // context pointer passed to the progress callback + // context pointer passed to the progress callback
+ void * progress_callback_user_data; + void * progress_callback_user_data;
}; +
// server params
void gpt_params_handle_model_default(gpt_params & params); int32_t port = 8080; // server listens on this network port
int32_t timeout_read = 600; // http read timeout in seconds

View File

@@ -1,8 +1,8 @@
diff --git a/llama.cpp b/llama.cpp diff --git a/llama.cpp b/llama.cpp
index 40d2ec2c..74f3ee9c 100644 index 61948751..4b72a293 100644
--- a/llama.cpp --- a/llama.cpp
+++ b/llama.cpp +++ b/llama.cpp
@@ -4642,16 +4642,7 @@ static void llm_load_vocab( @@ -4824,16 +4824,7 @@ static void llm_load_vocab(
// for now, only BPE models have pre-tokenizers // for now, only BPE models have pre-tokenizers
if (vocab.type == LLAMA_VOCAB_TYPE_BPE) { if (vocab.type == LLAMA_VOCAB_TYPE_BPE) {
@@ -15,14 +15,14 @@ index 40d2ec2c..74f3ee9c 100644
- LLAMA_LOG_WARN("%s: ************************************ \n", __func__); - LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
- LLAMA_LOG_WARN("%s: \n", __func__); - LLAMA_LOG_WARN("%s: \n", __func__);
- vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT; - vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
- } else if ( - } else if (tokenizer_pre == "default") {
+ if ( + if (tokenizer_pre == "default") {
tokenizer_pre == "default") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT; vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
} else if ( } else if (
@@ -4703,7 +4694,8 @@ static void llm_load_vocab( tokenizer_pre == "llama3" ||
tokenizer_pre == "smaug-bpe") { @@ -4888,7 +4879,8 @@ static void llm_load_vocab(
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_SMAUG; tokenizer_pre == "poro-chat") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_PORO;
} else { } else {
- throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str())); - throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
+ LLAMA_LOG_WARN("%s: missing or unrecognized pre-tokenizer type, using: 'default'\n", __func__); + LLAMA_LOG_WARN("%s: missing or unrecognized pre-tokenizer type, using: 'default'\n", __func__);

305
llm/patches/07-gemma.diff Normal file
View File

@@ -0,0 +1,305 @@
From 5cadb45f39d001ffbad95b690d6cf0abcb4a6d96 Mon Sep 17 00:00:00 2001
From: Ollama maintainers <hello@ollama.com>
Date: Wed, 26 Jun 2024 16:18:09 -0700
Subject: [PATCH] Architecture support
---
llama.cpp | 194 +++++++++++++++++++++++++++++++++++++++++++++++++++++-
1 file changed, 193 insertions(+), 1 deletion(-)
diff --git a/llama.cpp b/llama.cpp
index 61948751..3b4196f5 100644
--- a/llama.cpp
+++ b/llama.cpp
@@ -217,6 +217,7 @@ enum llm_arch {
LLM_ARCH_INTERNLM2,
LLM_ARCH_MINICPM,
LLM_ARCH_GEMMA,
+ LLM_ARCH_GEMMA2,
LLM_ARCH_STARCODER2,
LLM_ARCH_MAMBA,
LLM_ARCH_XVERSE,
@@ -255,6 +256,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_INTERNLM2, "internlm2" },
{ LLM_ARCH_MINICPM, "minicpm" },
{ LLM_ARCH_GEMMA, "gemma" },
+ { LLM_ARCH_GEMMA2, "gemma2" },
{ LLM_ARCH_STARCODER2, "starcoder2" },
{ LLM_ARCH_MAMBA, "mamba" },
{ LLM_ARCH_XVERSE, "xverse" },
@@ -464,10 +466,12 @@ enum llm_tensor {
LLM_TENSOR_ATTN_NORM,
LLM_TENSOR_ATTN_NORM_2,
LLM_TENSOR_ATTN_OUT_NORM,
+ LLM_TENSOR_ATTN_POST_NORM,
LLM_TENSOR_ATTN_ROT_EMBD,
LLM_TENSOR_FFN_GATE_INP,
LLM_TENSOR_FFN_GATE_INP_SHEXP,
LLM_TENSOR_FFN_NORM,
+ LLM_TENSOR_FFN_POST_NORM,
LLM_TENSOR_FFN_GATE,
LLM_TENSOR_FFN_DOWN,
LLM_TENSOR_FFN_UP,
@@ -960,6 +964,24 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
+ {
+ LLM_ARCH_GEMMA2,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ { LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
+ },
+ },
{
LLM_ARCH_STARCODER2,
{
@@ -1941,6 +1963,8 @@ enum e_model {
MODEL_8x22B,
MODEL_16x12B,
MODEL_10B_128x3_66B,
+ MODEL_9B,
+ MODEL_27B,
};
static const size_t kiB = 1024;
@@ -2114,6 +2138,7 @@ struct llama_layer {
struct ggml_tensor * attn_out_norm_b;
struct ggml_tensor * attn_q_a_norm;
struct ggml_tensor * attn_kv_a_norm;
+ struct ggml_tensor * attn_post_norm;
// attention
struct ggml_tensor * wq;
@@ -2136,6 +2161,7 @@ struct llama_layer {
// normalization
struct ggml_tensor * ffn_norm;
struct ggml_tensor * ffn_norm_b;
+ struct ggml_tensor * ffn_post_norm;
struct ggml_tensor * layer_out_norm;
struct ggml_tensor * layer_out_norm_b;
struct ggml_tensor * ffn_norm_exps;
@@ -4529,6 +4555,16 @@ static void llm_load_hparams(
}
} break;
case LLM_ARCH_GEMMA:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+
+ switch (hparams.n_layer) {
+ case 18: model.type = e_model::MODEL_9B; break;
+ case 28: model.type = e_model::MODEL_27B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
+ case LLM_ARCH_GEMMA2:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
@@ -6305,6 +6341,40 @@ static bool llm_load_tensors(
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
}
} break;
+ case LLM_ARCH_GEMMA2:
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+ // output
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+ model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
+
+ const int64_t n_ff = hparams.n_ff;
+ const int64_t n_embd_head_k = hparams.n_embd_head_k;
+ const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
+ const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
+
+ for (uint32_t i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});
+ layer.attn_post_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd});
+
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
+ layer.ffn_post_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd});
+ }
+ } break;
case LLM_ARCH_STARCODER2:
{
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
@@ -10614,6 +10684,123 @@ struct llm_build_context {
return gf;
}
+ struct ggml_cgraph * build_gemma2() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ const int64_t n_embd_head_k = hparams.n_embd_head_k;
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
+ cb(inpL, "inp_scaled", -1);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ for (int il = 0; il < n_layer; ++il) {
+ // norm
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // self-attention
+ {
+ // compute Q and K and RoPE them
+ struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
+ cb(Qcur, "Qcur", il);
+
+ struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
+ cb(Kcur, "Kcur", il);
+
+ struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
+ cb(Vcur, "Vcur", il);
+
+ Qcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos, nullptr,
+ n_embd_head_k, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow);
+ cb(Qcur, "Qcur", il);
+
+ Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
+ cb(Qcur, "Qcur_scaled", il);
+
+ Kcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, nullptr,
+ n_embd_head_k, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow);
+ cb(Kcur, "Kcur", il);
+
+ cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
+ model.layers[il].wo, NULL,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+ }
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.layers[il].attn_post_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_post_norm", il);
+
+ struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
+ cb(sa_out, "sa_out", il);
+
+ cur = llm_build_norm(ctx0, sa_out, hparams,
+ model.layers[il].ffn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ // feed-forward network
+ {
+ cur = llm_build_ffn(ctx0, cur,
+ model.layers[il].ffn_up, NULL,
+ model.layers[il].ffn_gate, NULL,
+ model.layers[il].ffn_down, NULL,
+ NULL,
+ LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
+ cb(cur, "ffn_out", il);
+ }
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.layers[il].ffn_post_norm, NULL,
+ LLM_NORM_RMS, cb, -1);
+ cb(cur, "ffn_post_norm", -1);
+
+ cur = ggml_add(ctx0, cur, sa_out);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.output_norm, NULL,
+ LLM_NORM_RMS, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ // lm_head
+ cur = ggml_mul_mat(ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
struct ggml_cgraph * build_starcoder2() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
@@ -11847,6 +12034,10 @@ static struct ggml_cgraph * llama_build_graph(
{
result = llm.build_gemma();
} break;
+ case LLM_ARCH_GEMMA2:
+ {
+ result = llm.build_gemma2();
+ } break;
case LLM_ARCH_STARCODER2:
{
result = llm.build_starcoder2();
@@ -16671,6 +16862,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
case LLM_ARCH_PHI2:
case LLM_ARCH_PHI3:
case LLM_ARCH_GEMMA:
+ case LLM_ARCH_GEMMA2:
case LLM_ARCH_STARCODER2:
case LLM_ARCH_GPTNEOX:
return LLAMA_ROPE_TYPE_NEOX;
@@ -18551,7 +18743,7 @@ static int32_t llama_chat_apply_template_internal(
if (add_ass) {
ss << "<s>assistant\n";
}
- } else if (tmpl == "gemma" || tmpl.find("<start_of_turn>") != std::string::npos) {
+ } else if (tmpl == "gemma" || tmpl == "gemma2" || tmpl.find("<start_of_turn>") != std::string::npos) {
// google/gemma-7b-it
std::string system_prompt = "";
for (auto message : chat) {
--
2.45.2

View File

@@ -58,7 +58,7 @@ func availableServers() map[string]string {
} }
// glob payloadsDir for files that start with ollama_ // glob payloadsDir for files that start with ollama_
pattern := filepath.Join(payloadsDir, "*") pattern := filepath.Join(payloadsDir, "*", "ollama_*")
files, err := filepath.Glob(pattern) files, err := filepath.Glob(pattern)
if err != nil { if err != nil {
@@ -69,7 +69,7 @@ func availableServers() map[string]string {
servers := make(map[string]string) servers := make(map[string]string)
for _, file := range files { for _, file := range files {
slog.Debug("availableServers : found", "file", file) slog.Debug("availableServers : found", "file", file)
servers[filepath.Base(file)] = file servers[filepath.Base(filepath.Dir(file))] = filepath.Dir(file)
} }
return servers return servers
@@ -82,8 +82,8 @@ func serversForGpu(info gpu.GpuInfo) []string {
// glob workDir for files that start with ollama_ // glob workDir for files that start with ollama_
availableServers := availableServers() availableServers := availableServers()
requested := info.Library requested := info.Library
if info.Variant != "" { if info.Variant != gpu.CPUCapabilityNone {
requested += "_" + info.Variant requested += "_" + info.Variant.String()
} }
servers := []string{} servers := []string{}
@@ -117,14 +117,14 @@ func serversForGpu(info gpu.GpuInfo) []string {
// Load up the best CPU variant if not primary requested // Load up the best CPU variant if not primary requested
if info.Library != "cpu" { if info.Library != "cpu" {
variant := gpu.GetCPUVariant() variant := gpu.GetCPUCapability()
// If no variant, then we fall back to default // If no variant, then we fall back to default
// If we have a variant, try that if we find an exact match // If we have a variant, try that if we find an exact match
// Attempting to run the wrong CPU instructions will panic the // Attempting to run the wrong CPU instructions will panic the
// process // process
if variant != "" { if variant != gpu.CPUCapabilityNone {
for cmp := range availableServers { for cmp := range availableServers {
if cmp == "cpu_"+variant { if cmp == "cpu_"+variant.String() {
servers = append(servers, cmp) servers = append(servers, cmp)
break break
} }
@@ -146,11 +146,11 @@ func serverForCpu() string {
if runtime.GOOS == "darwin" && runtime.GOARCH == "arm64" { if runtime.GOOS == "darwin" && runtime.GOARCH == "arm64" {
return "metal" return "metal"
} }
variant := gpu.GetCPUVariant() variant := gpu.GetCPUCapability()
availableServers := availableServers() availableServers := availableServers()
if variant != "" { if variant != gpu.CPUCapabilityNone {
for cmp := range availableServers { for cmp := range availableServers {
if cmp == "cpu_"+variant { if cmp == "cpu_"+variant.String() {
return cmp return cmp
} }
} }

View File

@@ -37,8 +37,9 @@ type LlamaServer interface {
Tokenize(ctx context.Context, content string) ([]int, error) Tokenize(ctx context.Context, content string) ([]int, error)
Detokenize(ctx context.Context, tokens []int) (string, error) Detokenize(ctx context.Context, tokens []int) (string, error)
Close() error Close() error
EstimatedVRAM() uint64 EstimatedVRAM() uint64 // Total VRAM across all GPUs
EstimatedTotal() uint64 EstimatedTotal() uint64
EstimatedVRAMByGPU(gpuID string) uint64
} }
// llmServer is an instance of the llama.cpp server // llmServer is an instance of the llama.cpp server
@@ -49,18 +50,22 @@ type llmServer struct {
status *StatusWriter status *StatusWriter
options api.Options options api.Options
// TODO - this should be broken down by GPU estimate MemoryEstimate
estimatedVRAM uint64 // Estimated usage of VRAM by the loaded model totalLayers uint64
estimatedTotal uint64 // Total size of model // gpuCount int
totalLayers uint64 gpus gpu.GpuInfoList // Recorded just before the model loaded, free space will be incorrect
gpuCount int loadDuration time.Duration // Record how long it took the model to load
loadDuration time.Duration // Record how long it took the model to load loadProgress float32
loadProgress float32
sem *semaphore.Weighted sem *semaphore.Weighted
} }
func LoadModel(model string) (*GGML, error) { // LoadModel will load a model from disk. The model must be in the GGML format.
//
// It collects array values for arrays with a size less than or equal to
// maxArraySize. If maxArraySize is 0, the default value of 1024 is used. If
// the maxArraySize is negative, all arrays are collected.
func LoadModel(model string, maxArraySize int) (*GGML, error) {
if _, err := os.Stat(model); err != nil { if _, err := os.Stat(model); err != nil {
return nil, err return nil, err
} }
@@ -71,7 +76,7 @@ func LoadModel(model string) (*GGML, error) {
} }
defer f.Close() defer f.Close()
ggml, _, err := DecodeGGML(f) ggml, _, err := DecodeGGML(f, maxArraySize)
return ggml, err return ggml, err
} }
@@ -80,43 +85,45 @@ func LoadModel(model string) (*GGML, error) {
func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, projectors []string, opts api.Options) (LlamaServer, error) { func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, projectors []string, opts api.Options) (LlamaServer, error) {
var err error var err error
var cpuRunner string var cpuRunner string
var estimatedVRAM uint64 var estimate MemoryEstimate
var estimatedTotal uint64 var systemTotalMemory uint64
var systemMemory uint64 var systemFreeMemory uint64
gpuCount := len(gpus)
if (len(gpus) == 1 && gpus[0].Library == "cpu") || opts.NumGPU == 0 {
// TODO evaluate system memory to see if we should block the load, or force an unload of another CPU runner
cpuRunner = serverForCpu() systemMemInfo, err := gpu.GetCPUMem()
gpuCount = 0 if err != nil {
_, _, estimatedTotal = EstimateGPULayers(gpus, ggml, projectors, opts) slog.Error("failed to lookup system memory", "error", err)
} else { } else {
if gpus[0].Library == "metal" { systemTotalMemory = systemMemInfo.TotalMemory
memInfo, err := gpu.GetCPUMem() systemFreeMemory = systemMemInfo.FreeMemory
if err != nil { slog.Debug("system memory", "total", format.HumanBytes2(systemTotalMemory), "free", systemFreeMemory)
slog.Error("failed to lookup system memory", "error", err) }
} else {
systemMemory = memInfo.TotalMemory // If the user wants zero GPU layers, reset the gpu list to be CPU/system ram info
slog.Debug("system memory", "total", format.HumanBytes2(systemMemory)) if opts.NumGPU == 0 {
} gpus = gpu.GetCPUInfo()
} }
var layers int if len(gpus) == 1 && gpus[0].Library == "cpu" {
layers, estimatedVRAM, estimatedTotal = EstimateGPULayers(gpus, ggml, projectors, opts) cpuRunner = serverForCpu()
estimate = EstimateGPULayers(gpus, ggml, projectors, opts)
} else {
estimate = EstimateGPULayers(gpus, ggml, projectors, opts)
switch { switch {
case gpus[0].Library == "metal" && estimatedVRAM > systemMemory: case gpus[0].Library == "metal" && estimate.VRAMSize > systemTotalMemory:
// disable partial offloading when model is greater than total system memory as this // disable partial offloading when model is greater than total system memory as this
// can lead to locking up the system // can lead to locking up the system
opts.NumGPU = 0 opts.NumGPU = 0
case gpus[0].Library != "metal" && layers == 0: case gpus[0].Library != "metal" && estimate.Layers == 0:
// Don't bother loading into the GPU if no layers can fit // Don't bother loading into the GPU if no layers can fit
cpuRunner = serverForCpu() cpuRunner = serverForCpu()
gpuCount = 0 gpus = gpu.GetCPUInfo()
case opts.NumGPU < 0 && layers > 0 && gpus[0].Library != "cpu": case opts.NumGPU < 0 && estimate.Layers > 0 && gpus[0].Library != "cpu":
opts.NumGPU = layers opts.NumGPU = estimate.Layers
} }
} }
estimate.log()
// Loop through potential servers // Loop through potential servers
finalErr := errors.New("no suitable llama servers found") finalErr := errors.New("no suitable llama servers found")
@@ -159,6 +166,8 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
params = append(params, "--log-disable") params = append(params, "--log-disable")
params = append(params, "--timeout", fmt.Sprintf("%d", 600))
if opts.NumGPU >= 0 { if opts.NumGPU >= 0 {
params = append(params, "--n-gpu-layers", fmt.Sprintf("%d", opts.NumGPU)) params = append(params, "--n-gpu-layers", fmt.Sprintf("%d", opts.NumGPU))
} }
@@ -201,7 +210,7 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
if g.Library == "metal" && if g.Library == "metal" &&
uint64(opts.NumGPU) > 0 && uint64(opts.NumGPU) > 0 &&
uint64(opts.NumGPU) < ggml.KV().BlockCount()+1 { uint64(opts.NumGPU) < ggml.KV().BlockCount()+1 {
opts.UseMMap = false opts.UseMMap = api.TriStateFalse
} }
} }
@@ -209,7 +218,11 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
params = append(params, "--flash-attn") params = append(params, "--flash-attn")
} }
if !opts.UseMMap { // Windows CUDA should not use mmap for best performance
// Linux with a model larger than free space, mmap leads to thrashing
if (runtime.GOOS == "windows" && gpus[0].Library == "cuda" && opts.UseMMap == api.TriStateUndefined) ||
(runtime.GOOS == "linux" && systemFreeMemory < estimate.TotalSize && opts.UseMMap == api.TriStateUndefined) ||
opts.UseMMap == api.TriStateFalse {
params = append(params, "--no-mmap") params = append(params, "--no-mmap")
} }
@@ -232,6 +245,14 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
params = append(params, "--parallel", fmt.Sprintf("%d", numParallel)) params = append(params, "--parallel", fmt.Sprintf("%d", numParallel))
if estimate.TensorSplit != "" {
params = append(params, "--tensor-split", estimate.TensorSplit)
}
if estimate.TensorSplit != "" {
params = append(params, "--tensor-split", estimate.TensorSplit)
}
for i := range len(servers) { for i := range len(servers) {
dir := availableServers[servers[i]] dir := availableServers[servers[i]]
if dir == "" { if dir == "" {
@@ -242,8 +263,7 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
} }
if strings.HasPrefix(servers[i], "cpu") { if strings.HasPrefix(servers[i], "cpu") {
// TODO if we tried a gpu runner first, and it failed, record the error and bubble that back up gpus = gpu.GetCPUInfo()
gpuCount = 0
} }
// Find an availableServers port, retry on each iteration in case the failure was a port conflict race // Find an availableServers port, retry on each iteration in case the failure was a port conflict race
@@ -265,8 +285,8 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
if runtime.GOOS == "windows" { if runtime.GOOS == "windows" {
pathEnv = "PATH" pathEnv = "PATH"
} }
// prepend the server directory to LD_LIBRARY_PATH/PATH // prepend the server directory to LD_LIBRARY_PATH/PATH and the parent dir for common dependencies
libraryPaths := []string{dir} libraryPaths := []string{dir, filepath.Dir(dir)}
if libraryPath, ok := os.LookupEnv(pathEnv); ok { if libraryPath, ok := os.LookupEnv(pathEnv); ok {
// Append our runner directory to the path // Append our runner directory to the path
@@ -299,22 +319,25 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
} }
s := &llmServer{ s := &llmServer{
port: port, port: port,
cmd: exec.Command(server, finalParams...), cmd: exec.Command(server, finalParams...),
status: NewStatusWriter(os.Stderr), status: NewStatusWriter(os.Stderr),
options: opts, options: opts,
estimatedVRAM: estimatedVRAM, estimate: estimate,
estimatedTotal: estimatedTotal, sem: semaphore.NewWeighted(int64(numParallel)),
sem: semaphore.NewWeighted(int64(numParallel)), totalLayers: ggml.KV().BlockCount() + 1,
totalLayers: ggml.KV().BlockCount() + 1, gpus: gpus,
gpuCount: gpuCount, done: make(chan error, 1),
done: make(chan error, 1),
} }
s.cmd.Env = os.Environ() s.cmd.Env = os.Environ()
s.cmd.Stdout = os.Stdout s.cmd.Stdout = os.Stdout
s.cmd.Stderr = s.status s.cmd.Stderr = s.status
envWorkarounds := [][2]string{}
for _, gpu := range gpus {
envWorkarounds = append(envWorkarounds, gpu.EnvWorkarounds...)
}
visibleDevicesEnv, visibleDevicesEnvVal := gpus.GetVisibleDevicesEnv() visibleDevicesEnv, visibleDevicesEnvVal := gpus.GetVisibleDevicesEnv()
pathEnvVal := strings.Join(libraryPaths, string(filepath.ListSeparator)) pathEnvVal := strings.Join(libraryPaths, string(filepath.ListSeparator))
@@ -329,6 +352,12 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
} else if devicesNeeded && strings.EqualFold(cmp[0], visibleDevicesEnv) { } else if devicesNeeded && strings.EqualFold(cmp[0], visibleDevicesEnv) {
s.cmd.Env[i] = visibleDevicesEnv + "=" + visibleDevicesEnvVal s.cmd.Env[i] = visibleDevicesEnv + "=" + visibleDevicesEnvVal
devicesNeeded = false devicesNeeded = false
} else if len(envWorkarounds) != 0 {
for _, kv := range envWorkarounds {
if strings.EqualFold(cmp[0], kv[0]) {
s.cmd.Env[i] = kv[0] + "=" + kv[1]
}
}
} }
} }
if pathNeeded { if pathNeeded {
@@ -390,7 +419,7 @@ func projectorMemoryRequirements(filename string) uint64 {
} }
defer file.Close() defer file.Close()
ggml, _, err := DecodeGGML(file) ggml, _, err := DecodeGGML(file, 0)
if err != nil { if err != nil {
return 0 return 0
} }
@@ -1004,11 +1033,20 @@ func (s *llmServer) Close() error {
} }
func (s *llmServer) EstimatedVRAM() uint64 { func (s *llmServer) EstimatedVRAM() uint64 {
return s.estimatedVRAM return s.estimate.VRAMSize
} }
func (s *llmServer) EstimatedTotal() uint64 { func (s *llmServer) EstimatedTotal() uint64 {
return s.estimatedTotal return s.estimate.TotalSize
}
func (s *llmServer) EstimatedVRAMByGPU(gpuID string) uint64 {
for i, gpu := range s.gpus {
if gpu.ID == gpuID {
return s.estimate.GPUSizes[i]
}
}
return 0
} }
func parseDurationMs(ms float64) time.Duration { func parseDurationMs(ms float64) time.Duration {

View File

@@ -178,9 +178,6 @@ func fromRequest(r ChatCompletionRequest) api.ChatRequest {
if r.Seed != nil { if r.Seed != nil {
options["seed"] = *r.Seed options["seed"] = *r.Seed
// temperature=0 is required for reproducible outputs
options["temperature"] = 0.0
} }
if r.FrequencyPenalty != nil { if r.FrequencyPenalty != nil {

View File

@@ -103,19 +103,19 @@ function buildApp() {
function gatherDependencies() { function gatherDependencies() {
write-host "Gathering runtime dependencies" write-host "Gathering runtime dependencies"
cd "${script:SRC_DIR}" cd "${script:SRC_DIR}"
md "${script:DEPS_DIR}" -ea 0 > $null md "${script:DEPS_DIR}\ollama_runners" -ea 0 > $null
# TODO - this varies based on host build system and MSVC version - drive from dumpbin output # TODO - this varies based on host build system and MSVC version - drive from dumpbin output
# currently works for Win11 + MSVC 2019 + Cuda V11 # currently works for Win11 + MSVC 2019 + Cuda V11
cp "${env:VCToolsRedistDir}\x64\Microsoft.VC*.CRT\msvcp140.dll" "${script:DEPS_DIR}\" cp "${env:VCToolsRedistDir}\x64\Microsoft.VC*.CRT\msvcp140.dll" "${script:DEPS_DIR}\ollama_runners\"
cp "${env:VCToolsRedistDir}\x64\Microsoft.VC*.CRT\vcruntime140.dll" "${script:DEPS_DIR}\" cp "${env:VCToolsRedistDir}\x64\Microsoft.VC*.CRT\vcruntime140.dll" "${script:DEPS_DIR}\ollama_runners\"
cp "${env:VCToolsRedistDir}\x64\Microsoft.VC*.CRT\vcruntime140_1.dll" "${script:DEPS_DIR}\" cp "${env:VCToolsRedistDir}\x64\Microsoft.VC*.CRT\vcruntime140_1.dll" "${script:DEPS_DIR}\ollama_runners\"
cp "${script:SRC_DIR}\app\ollama_welcome.ps1" "${script:SRC_DIR}\dist\" cp "${script:SRC_DIR}\app\ollama_welcome.ps1" "${script:SRC_DIR}\dist\"
if ("${env:KEY_CONTAINER}") { if ("${env:KEY_CONTAINER}") {
write-host "about to sign" write-host "about to sign"
foreach ($file in (get-childitem "${script:DEPS_DIR}/cu*.dll") + @("${script:SRC_DIR}\dist\ollama_welcome.ps1")){ foreach ($file in (get-childitem "${script:DEPS_DIR}\cuda\cu*.dll") + @("${script:SRC_DIR}\dist\ollama_welcome.ps1")){
write-host "signing $file" write-host "signing $file"
& "${script:SignTool}" sign /v /fd sha256 /t http://timestamp.digicert.com /f "${script:OLLAMA_CERT}" ` & "${script:SignTool}" sign /v /fd sha256 /t http://timestamp.digicert.com /f "${script:OLLAMA_CERT}" `
/csp "Google Cloud KMS Provider" /kc ${env:KEY_CONTAINER} $file /csp "Google Cloud KMS Provider" /kc ${env:KEY_CONTAINER} $file

View File

@@ -159,8 +159,8 @@ check_gpu() {
esac ;; esac ;;
lshw) lshw)
case $2 in case $2 in
nvidia) available lshw && $SUDO lshw -c display -numeric | grep -q 'vendor: .* \[10DE\]' || return 1 ;; nvidia) available lshw && $SUDO lshw -c display -numeric -disable network | grep -q 'vendor: .* \[10DE\]' || return 1 ;;
amdgpu) available lshw && $SUDO lshw -c display -numeric | grep -q 'vendor: .* \[1002\]' || return 1 ;; amdgpu) available lshw && $SUDO lshw -c display -numeric -disable network | grep -q 'vendor: .* \[1002\]' || return 1 ;;
esac ;; esac ;;
nvidia-smi) available nvidia-smi || return 1 ;; nvidia-smi) available nvidia-smi || return 1 ;;
esac esac
@@ -279,7 +279,7 @@ if ! check_gpu nvidia-smi || [ -z "$(nvidia-smi | grep -o "CUDA Version: [0-9]*\
case $OS_NAME in case $OS_NAME in
centos|rhel) install_cuda_driver_yum 'rhel' $(echo $OS_VERSION | cut -d '.' -f 1) ;; centos|rhel) install_cuda_driver_yum 'rhel' $(echo $OS_VERSION | cut -d '.' -f 1) ;;
rocky) install_cuda_driver_yum 'rhel' $(echo $OS_VERSION | cut -c1) ;; rocky) install_cuda_driver_yum 'rhel' $(echo $OS_VERSION | cut -c1) ;;
fedora) [ $OS_VERSION -lt '37' ] && install_cuda_driver_yum $OS_NAME $OS_VERSION || install_cuda_driver_yum $OS_NAME '37';; fedora) [ $OS_VERSION -lt '39' ] && install_cuda_driver_yum $OS_NAME $OS_VERSION || install_cuda_driver_yum $OS_NAME '39';;
amzn) install_cuda_driver_yum 'fedora' '37' ;; amzn) install_cuda_driver_yum 'fedora' '37' ;;
debian) install_cuda_driver_apt $OS_NAME $OS_VERSION ;; debian) install_cuda_driver_apt $OS_NAME $OS_VERSION ;;
ubuntu) install_cuda_driver_apt $OS_NAME $(echo $OS_VERSION | sed 's/\.//') ;; ubuntu) install_cuda_driver_apt $OS_NAME $(echo $OS_VERSION | sed 's/\.//') ;;

View File

@@ -414,17 +414,22 @@ func CreateModel(ctx context.Context, name model.Name, modelFileDir, quantizatio
return err return err
} }
layers, err := parseFromFile(ctx, temp, "", fn) layer, err := NewLayer(temp, baseLayer.MediaType)
if err != nil { if err != nil {
return err return err
} }
if len(layers) != 1 { if _, err := temp.Seek(0, io.SeekStart); err != nil {
return errors.New("quantization failed") return err
} }
baseLayer.Layer = layers[0].Layer ggml, _, err := llm.DecodeGGML(temp, 0)
baseLayer.GGML = layers[0].GGML if err != nil {
return err
}
baseLayer.Layer = layer
baseLayer.GGML = ggml
} }
} }

View File

@@ -11,6 +11,7 @@ import (
"net/http" "net/http"
"os" "os"
"path/filepath" "path/filepath"
"strings"
"github.com/ollama/ollama/api" "github.com/ollama/ollama/api"
"github.com/ollama/ollama/convert" "github.com/ollama/ollama/convert"
@@ -63,7 +64,7 @@ func parseFromModel(ctx context.Context, name model.Name, fn func(api.ProgressRe
} }
defer blob.Close() defer blob.Close()
ggml, _, err := llm.DecodeGGML(blob) ggml, _, err := llm.DecodeGGML(blob, 0)
if err != nil { if err != nil {
return nil, err return nil, err
} }
@@ -77,62 +78,80 @@ func parseFromModel(ctx context.Context, name model.Name, fn func(api.ProgressRe
return layers, nil return layers, nil
} }
func parseFromZipFile(_ context.Context, file *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) { func extractFromZipFile(p string, file *os.File, fn func(api.ProgressResponse)) error {
stat, err := file.Stat() stat, err := file.Stat()
if err != nil { if err != nil {
return nil, err return err
} }
r, err := zip.NewReader(file, stat.Size()) r, err := zip.NewReader(file, stat.Size())
if err != nil { if err != nil {
return nil, err return err
} }
tempdir, err := os.MkdirTemp(filepath.Dir(file.Name()), "")
if err != nil {
return nil, err
}
defer os.RemoveAll(tempdir)
fn(api.ProgressResponse{Status: "unpacking model metadata"}) fn(api.ProgressResponse{Status: "unpacking model metadata"})
for _, f := range r.File { for _, f := range r.File {
n := filepath.Join(p, f.Name)
if !strings.HasPrefix(n, p) {
slog.Warn("skipped extracting file outside of context", "name", f.Name)
continue
}
if err := os.MkdirAll(filepath.Dir(n), 0o750); err != nil {
return err
}
// TODO(mxyng): this should not write out all files to disk // TODO(mxyng): this should not write out all files to disk
outfile, err := os.Create(filepath.Join(tempdir, f.Name)) outfile, err := os.Create(n)
if err != nil { if err != nil {
return nil, err return err
} }
defer outfile.Close() defer outfile.Close()
infile, err := f.Open() infile, err := f.Open()
if err != nil { if err != nil {
return nil, err return err
} }
defer infile.Close() defer infile.Close()
if _, err = io.Copy(outfile, infile); err != nil { if _, err = io.Copy(outfile, infile); err != nil {
return nil, err return err
} }
if err := outfile.Close(); err != nil { if err := outfile.Close(); err != nil {
return nil, err return err
} }
if err := infile.Close(); err != nil { if err := infile.Close(); err != nil {
return nil, err return err
} }
} }
mf, err := convert.GetModelFormat(tempdir) return nil
}
func parseFromZipFile(_ context.Context, file *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) {
tempDir, err := os.MkdirTemp(filepath.Dir(file.Name()), "")
if err != nil {
return nil, err
}
defer os.RemoveAll(tempDir)
if err := extractFromZipFile(tempDir, file, fn); err != nil {
return nil, err
}
mf, err := convert.GetModelFormat(tempDir)
if err != nil { if err != nil {
return nil, err return nil, err
} }
params, err := mf.GetParams(tempdir) params, err := mf.GetParams(tempDir)
if err != nil { if err != nil {
return nil, err return nil, err
} }
mArch, err := mf.GetModelArch("", tempdir, params) mArch, err := mf.GetModelArch("", tempDir, params)
if err != nil { if err != nil {
return nil, err return nil, err
} }
@@ -150,7 +169,7 @@ func parseFromZipFile(_ context.Context, file *os.File, digest string, fn func(a
// TODO(mxyng): this should write directly into a layer // TODO(mxyng): this should write directly into a layer
// e.g. NewLayer(arch.Reader(), "application/vnd.ollama.image.model") // e.g. NewLayer(arch.Reader(), "application/vnd.ollama.image.model")
temp, err := os.CreateTemp(tempdir, "fp16") temp, err := os.CreateTemp(tempDir, "fp16")
if err != nil { if err != nil {
return nil, err return nil, err
} }
@@ -176,7 +195,7 @@ func parseFromZipFile(_ context.Context, file *os.File, digest string, fn func(a
} }
defer bin.Close() defer bin.Close()
ggml, _, err := llm.DecodeGGML(bin) ggml, _, err := llm.DecodeGGML(bin, 0)
if err != nil { if err != nil {
return nil, err return nil, err
} }
@@ -210,7 +229,7 @@ func parseFromFile(ctx context.Context, file *os.File, digest string, fn func(ap
var offset int64 var offset int64
for offset < stat.Size() { for offset < stat.Size() {
ggml, n, err := llm.DecodeGGML(file) ggml, n, err := llm.DecodeGGML(file, 0)
if errors.Is(err, io.EOF) { if errors.Is(err, io.EOF) {
break break
} else if err != nil { } else if err != nil {

92
server/model_test.go Normal file
View File

@@ -0,0 +1,92 @@
package server
import (
"archive/zip"
"bytes"
"io"
"os"
"path/filepath"
"slices"
"testing"
"github.com/ollama/ollama/api"
)
func createZipFile(t *testing.T, name string) *os.File {
t.Helper()
f, err := os.CreateTemp(t.TempDir(), "")
if err != nil {
t.Fatal(err)
}
zf := zip.NewWriter(f)
defer zf.Close()
zh, err := zf.CreateHeader(&zip.FileHeader{Name: name})
if err != nil {
t.Fatal(err)
}
if _, err := io.Copy(zh, bytes.NewReader([]byte(""))); err != nil {
t.Fatal(err)
}
return f
}
func TestExtractFromZipFile(t *testing.T) {
cases := []struct {
name string
expect []string
}{
{
name: "good",
expect: []string{"good"},
},
{
name: filepath.Join("..", "..", "..", "..", "..", "..", "..", "..", "..", "..", "..", "..", "..", "..", "..", "..", "bad"),
},
}
for _, tt := range cases {
t.Run(tt.name, func(t *testing.T) {
f := createZipFile(t, tt.name)
defer f.Close()
tempDir := t.TempDir()
if err := extractFromZipFile(tempDir, f, func(api.ProgressResponse) {}); err != nil {
t.Fatal(err)
}
var matches []string
if err := filepath.Walk(tempDir, func(p string, fi os.FileInfo, err error) error {
if err != nil {
return err
}
if !fi.IsDir() {
matches = append(matches, p)
}
return nil
}); err != nil {
t.Fatal(err)
}
var actual []string
for _, match := range matches {
rel, err := filepath.Rel(tempDir, match)
if err != nil {
t.Error(err)
}
actual = append(actual, rel)
}
if !slices.Equal(actual, tt.expect) {
t.Fatalf("expected %d files, got %d", len(tt.expect), len(matches))
}
})
}
}

View File

@@ -646,9 +646,12 @@ func (s *Server) ShowModelHandler(c *gin.Context) {
resp, err := GetModelInfo(req) resp, err := GetModelInfo(req)
if err != nil { if err != nil {
if os.IsNotExist(err) { switch {
case os.IsNotExist(err):
c.JSON(http.StatusNotFound, gin.H{"error": fmt.Sprintf("model '%s' not found", req.Model)}) c.JSON(http.StatusNotFound, gin.H{"error": fmt.Sprintf("model '%s' not found", req.Model)})
} else { case err.Error() == "invalid model name":
c.JSON(http.StatusBadRequest, gin.H{"error": err.Error()})
default:
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()}) c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
} }
return return
@@ -658,44 +661,55 @@ func (s *Server) ShowModelHandler(c *gin.Context) {
} }
func GetModelInfo(req api.ShowRequest) (*api.ShowResponse, error) { func GetModelInfo(req api.ShowRequest) (*api.ShowResponse, error) {
model, err := GetModel(req.Model) m, err := GetModel(req.Model)
if err != nil { if err != nil {
return nil, err return nil, err
} }
modelDetails := api.ModelDetails{ modelDetails := api.ModelDetails{
ParentModel: model.ParentModel, ParentModel: m.ParentModel,
Format: model.Config.ModelFormat, Format: m.Config.ModelFormat,
Family: model.Config.ModelFamily, Family: m.Config.ModelFamily,
Families: model.Config.ModelFamilies, Families: m.Config.ModelFamilies,
ParameterSize: model.Config.ModelType, ParameterSize: m.Config.ModelType,
QuantizationLevel: model.Config.FileType, QuantizationLevel: m.Config.FileType,
} }
if req.System != "" { if req.System != "" {
model.System = req.System m.System = req.System
} }
if req.Template != "" { if req.Template != "" {
model.Template = req.Template m.Template = req.Template
} }
msgs := make([]api.Message, 0) msgs := make([]api.Message, 0)
for _, msg := range model.Messages { for _, msg := range m.Messages {
msgs = append(msgs, api.Message{Role: msg.Role, Content: msg.Content}) msgs = append(msgs, api.Message{Role: msg.Role, Content: msg.Content})
} }
n := model.ParseName(req.Model)
if !n.IsValid() {
return nil, fmt.Errorf("invalid model name")
}
manifest, err := ParseNamedManifest(n)
if err != nil {
return nil, err
}
resp := &api.ShowResponse{ resp := &api.ShowResponse{
License: strings.Join(model.License, "\n"), License: strings.Join(m.License, "\n"),
System: model.System, System: m.System,
Template: model.Template, Template: m.Template,
Details: modelDetails, Details: modelDetails,
Messages: msgs, Messages: msgs,
ModifiedAt: manifest.fi.ModTime(),
} }
var params []string var params []string
cs := 30 cs := 30
for k, v := range model.Options { for k, v := range m.Options {
switch val := v.(type) { switch val := v.(type) {
case []interface{}: case []interface{}:
for _, nv := range val { for _, nv := range val {
@@ -709,20 +723,59 @@ func GetModelInfo(req api.ShowRequest) (*api.ShowResponse, error) {
for k, v := range req.Options { for k, v := range req.Options {
if _, ok := req.Options[k]; ok { if _, ok := req.Options[k]; ok {
model.Options[k] = v m.Options[k] = v
} }
} }
var sb strings.Builder var sb strings.Builder
fmt.Fprintln(&sb, "# Modelfile generated by \"ollama show\"") fmt.Fprintln(&sb, "# Modelfile generated by \"ollama show\"")
fmt.Fprintln(&sb, "# To build a new Modelfile based on this, replace FROM with:") fmt.Fprintln(&sb, "# To build a new Modelfile based on this, replace FROM with:")
fmt.Fprintf(&sb, "# FROM %s\n\n", model.ShortName) fmt.Fprintf(&sb, "# FROM %s\n\n", m.ShortName)
fmt.Fprint(&sb, model.String()) fmt.Fprint(&sb, m.String())
resp.Modelfile = sb.String() resp.Modelfile = sb.String()
kvData, err := getKVData(m.ModelPath, req.Verbose)
if err != nil {
return nil, err
}
delete(kvData, "general.name")
delete(kvData, "tokenizer.chat_template")
resp.ModelInfo = kvData
if len(m.ProjectorPaths) > 0 {
projectorData, err := getKVData(m.ProjectorPaths[0], req.Verbose)
if err != nil {
return nil, err
}
resp.ProjectorInfo = projectorData
}
return resp, nil return resp, nil
} }
func getKVData(digest string, verbose bool) (llm.KV, error) {
maxArraySize := 0
if verbose {
maxArraySize = -1
}
kvData, err := llm.LoadModel(digest, maxArraySize)
if err != nil {
return nil, err
}
kv := kvData.KV()
if !verbose {
for k := range kv {
if t, ok := kv[k].([]any); len(t) > 5 && ok {
kv[k] = []any{}
}
}
}
return kv, nil
}
func (s *Server) ListModelsHandler(c *gin.Context) { func (s *Server) ListModelsHandler(c *gin.Context) {
ms, err := Manifests() ms, err := Manifests()
if err != nil { if err != nil {
@@ -1052,11 +1105,20 @@ func Serve(ln net.Listener) error {
schedCtx, schedDone := context.WithCancel(ctx) schedCtx, schedDone := context.WithCancel(ctx)
sched := InitScheduler(schedCtx) sched := InitScheduler(schedCtx)
s := &Server{addr: ln.Addr(), sched: sched} s := &Server{addr: ln.Addr(), sched: sched}
r := s.GenerateRoutes()
http.Handle("/", s.GenerateRoutes())
slog.Info(fmt.Sprintf("Listening on %s (version %s)", ln.Addr(), version.Version)) slog.Info(fmt.Sprintf("Listening on %s (version %s)", ln.Addr(), version.Version))
srvr := &http.Server{ srvr := &http.Server{
Handler: r, // Use http.DefaultServeMux so we get net/http/pprof for
// free.
//
// TODO(bmizerany): Decide if we want to make this
// configurable so it is not exposed by default, or allow
// users to bind it to a different port. This was a quick
// and easy way to get pprof, but it may not be the best
// way.
Handler: nil,
} }
// listen for a ctrl+c and stop any loaded llm // listen for a ctrl+c and stop any loaded llm

View File

@@ -19,6 +19,7 @@ import (
"github.com/ollama/ollama/api" "github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig" "github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/parser" "github.com/ollama/ollama/parser"
"github.com/ollama/ollama/types/model" "github.com/ollama/ollama/types/model"
"github.com/ollama/ollama/version" "github.com/ollama/ollama/version"
@@ -212,6 +213,7 @@ func Test_Routes(t *testing.T) {
"top_p 0.9", "top_p 0.9",
} }
assert.Equal(t, expectedParams, params) assert.Equal(t, expectedParams, params)
assert.InDelta(t, 0, showResp.ModelInfo["general.parameter_count"], 1e-9, "Parameter count should be 0")
}, },
}, },
} }
@@ -325,3 +327,40 @@ func TestCase(t *testing.T) {
}) })
} }
} }
func TestShow(t *testing.T) {
t.Setenv("OLLAMA_MODELS", t.TempDir())
envconfig.LoadConfig()
var s Server
createRequest(t, s.CreateModelHandler, api.CreateRequest{
Name: "show-model",
Modelfile: fmt.Sprintf(
"FROM %s\nFROM %s",
createBinFile(t, llm.KV{"general.architecture": "test"}, nil),
createBinFile(t, llm.KV{"general.architecture": "clip"}, nil),
),
})
w := createRequest(t, s.ShowModelHandler, api.ShowRequest{
Name: "show-model",
})
if w.Code != http.StatusOK {
t.Fatalf("expected status code 200, actual %d", w.Code)
}
var resp api.ShowResponse
if err := json.NewDecoder(w.Body).Decode(&resp); err != nil {
t.Fatal(err)
}
if resp.ModelInfo["general.architecture"] != "test" {
t.Fatal("Expected model architecture to be 'test', but got", resp.ModelInfo["general.architecture"])
}
if resp.ProjectorInfo["general.architecture"] != "clip" {
t.Fatal("Expected projector architecture to be 'clip', but got", resp.ProjectorInfo["general.architecture"])
}
}

View File

@@ -7,7 +7,6 @@ import (
"log/slog" "log/slog"
"reflect" "reflect"
"runtime" "runtime"
"slices"
"sort" "sort"
"strings" "strings"
"sync" "sync"
@@ -27,6 +26,7 @@ type LlmRequest struct {
sessionDuration time.Duration sessionDuration time.Duration
successCh chan *runnerRef successCh chan *runnerRef
errCh chan error errCh chan error
schedAttempts uint
} }
type Scheduler struct { type Scheduler struct {
@@ -38,9 +38,11 @@ type Scheduler struct {
loaded map[string]*runnerRef loaded map[string]*runnerRef
loadedMu sync.Mutex loadedMu sync.Mutex
loadFn func(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList) loadFn func(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList)
newServerFn func(gpus gpu.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options) (llm.LlamaServer, error) newServerFn func(gpus gpu.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options) (llm.LlamaServer, error)
getGpuFn func() gpu.GpuInfoList getGpuFn func() gpu.GpuInfoList
getCpuFn func() gpu.GpuInfoList
reschedDelay time.Duration
} }
var ErrMaxQueue = fmt.Errorf("server busy, please try again. maximum pending requests exceeded") var ErrMaxQueue = fmt.Errorf("server busy, please try again. maximum pending requests exceeded")
@@ -54,6 +56,8 @@ func InitScheduler(ctx context.Context) *Scheduler {
loaded: make(map[string]*runnerRef), loaded: make(map[string]*runnerRef),
newServerFn: llm.NewLlamaServer, newServerFn: llm.NewLlamaServer,
getGpuFn: gpu.GetGPUInfo, getGpuFn: gpu.GetGPUInfo,
getCpuFn: gpu.GetCPUInfo,
reschedDelay: 250 * time.Millisecond,
} }
sched.loadFn = sched.load sched.loadFn = sched.load
return sched return sched
@@ -105,6 +109,7 @@ func (s *Scheduler) processPending(ctx context.Context) {
return return
case pending := <-s.pendingReqCh: case pending := <-s.pendingReqCh:
// Block other requests until we get this pending request running // Block other requests until we get this pending request running
pending.schedAttempts++
if pending.ctx.Err() != nil { if pending.ctx.Err() != nil {
slog.Debug("pending request cancelled or timed out, skipping scheduling") slog.Debug("pending request cancelled or timed out, skipping scheduling")
@@ -131,25 +136,36 @@ func (s *Scheduler) processPending(ctx context.Context) {
} else { } else {
// Either no models are loaded or below envconfig.MaxRunners // Either no models are loaded or below envconfig.MaxRunners
// Get a refreshed GPU list // Get a refreshed GPU list
gpus := s.getGpuFn() var gpus gpu.GpuInfoList
if pending.opts.NumGPU == 0 {
gpus = s.getCpuFn()
} else {
gpus = s.getGpuFn()
}
// Load model for fitting // Load model for fitting
ggml, err := llm.LoadModel(pending.model.ModelPath) ggml, err := llm.LoadModel(pending.model.ModelPath, 0)
if err != nil { if err != nil {
pending.errCh <- err pending.errCh <- err
break break
} }
// If we're CPU only mode, just limit by envconfig.MaxRunners above // Evaluate if the model will fit in the available system memory, or if we should unload a model first
// TODO handle system memory exhaustion if len(gpus) == 1 && gpus[0].Library == "cpu" {
if (len(gpus) == 1 && gpus[0].Library == "cpu") || pending.opts.NumGPU == 0 { if loadedCount == 0 {
slog.Debug("cpu mode with existing models, loading") slog.Debug("cpu mode with first model, loading")
s.loadFn(pending, ggml, gpus) s.loadFn(pending, ggml, gpus)
break break
} }
runnerToExpire = s.maybeFindCPURunnerToUnload(pending, ggml, gpus)
// No models loaded. Load the model but prefer the best fit. if runnerToExpire == nil {
if loadedCount == 0 { slog.Debug("cpu mode with available system memory or first model, loading")
s.loadFn(pending, ggml, gpus)
break
}
// else we need to expire a runner
} else if loadedCount == 0 {
// No models loaded. Load the model but prefer the best fit.
slog.Debug("loading first model", "model", pending.model.ModelPath) slog.Debug("loading first model", "model", pending.model.ModelPath)
g := pickBestFitGPUs(pending, ggml, gpus) g := pickBestFitGPUs(pending, ggml, gpus)
if g != nil { if g != nil {
@@ -159,16 +175,44 @@ func (s *Scheduler) processPending(ctx context.Context) {
break break
} }
// More than one loaded model, so we have to see if the new one fits if runnerToExpire == nil {
// Update free memory from currently loaded models // More than one loaded model, so we have to see if the
s.updateFreeSpace(gpus) // new one fits
gpus = pickBestFitGPUs(pending, ggml, gpus) //
if gpus != nil { // We want to avoid loading on any GPUs that have other
slog.Debug("new model fits with existing models, loading") // models still loading on them to avoid potential races
s.loadFn(pending, ggml, gpus) // with VRAM consumption ramping up during load
break availGpus := s.filterGPUsWithoutLoadingModels(gpus)
// Update free memory from currently loaded models
s.updateFreeSpace(availGpus)
fitGpus := pickBestFitGPUs(pending, ggml, availGpus)
if fitGpus != nil {
slog.Debug("new model fits with existing models, loading")
s.loadFn(pending, ggml, fitGpus)
break
}
// We couldn't find a set of GPUs to fully load the new
// model. If no other models are loading (both GPU lists
// are the same) then we need to unload another model to
// make room
if len(availGpus) < len(gpus) {
// There are other requests pending, and this one
// needs more time, so put it on the back of the
// queue so that we might satisfy other pending
// requests that aren't blocked
go func() {
// Process in a go routine to avoid deadlocking
// the scheduler if our queue is full
slog.Debug("delaying scheduling while other models finish loading", "attempts", pending.schedAttempts, "model", pending.model.ModelPath)
time.Sleep(s.reschedDelay)
s.pendingReqCh <- pending
}()
break
}
runnerToExpire = s.findRunnerToUnload()
} }
runnerToExpire = s.findRunnerToUnload()
} }
if runnerToExpire == nil { if runnerToExpire == nil {
@@ -368,17 +412,9 @@ func (s *Scheduler) updateFreeSpace(allGpus gpu.GpuInfoList) {
s.loadedMu.Lock() s.loadedMu.Lock()
for _, r := range s.loaded { for _, r := range s.loaded {
r.refMu.Lock() r.refMu.Lock()
gpuIDs := make([]string, 0, len(r.gpus))
if r.llama != nil { if r.llama != nil {
// TODO this should be broken down by GPU instead of assuming uniform spread
estimatedVRAMPerGPU := r.llama.EstimatedVRAM() / uint64(len(r.gpus))
for _, gpu := range r.gpus {
gpuIDs = append(gpuIDs, gpu.ID)
}
for _, gpu := range allGpus { for _, gpu := range allGpus {
if slices.Contains(gpuIDs, gpu.ID) { predMap[predKey{gpu.Library, gpu.ID}] += r.llama.EstimatedVRAMByGPU(gpu.ID)
predMap[predKey{gpu.Library, gpu.ID}] += estimatedVRAMPerGPU
}
} }
} else { } else {
slog.Warn("unexpected nil runner reference, memory prediction may be incorrect") slog.Warn("unexpected nil runner reference, memory prediction may be incorrect")
@@ -401,11 +437,36 @@ func (s *Scheduler) updateFreeSpace(allGpus gpu.GpuInfoList) {
// after we start our first runner, then we'll never acount for that, so picking the smallest free value seems prudent. // after we start our first runner, then we'll never acount for that, so picking the smallest free value seems prudent.
allGpus[i].FreeMemory = allGpus[i].TotalMemory - p allGpus[i].FreeMemory = allGpus[i].TotalMemory - p
} }
slog.Info("updated VRAM", "gpu", allGpus[i].ID, "library", allGpus[i].Library, "total", format.HumanBytes2(allGpus[i].TotalMemory), "available", format.HumanBytes2(allGpus[i].FreeMemory)) slog.Info("updated VRAM based on existing loaded models", "gpu", allGpus[i].ID, "library", allGpus[i].Library, "total", format.HumanBytes2(allGpus[i].TotalMemory), "available", format.HumanBytes2(allGpus[i].FreeMemory))
} }
} }
} }
// While models are loading the VRAM consumption numbers will be indeterminate, so we have
// to avoid scheduling another model on the same GPU(s) that haven't stabilized.
// This routine returns the set of GPUs that do not have an active loading model.
// If all GPUs have loading models, an empty list will be returned (not a single CPU entry)
func (s *Scheduler) filterGPUsWithoutLoadingModels(allGpus gpu.GpuInfoList) gpu.GpuInfoList {
ret := append(gpu.GpuInfoList{}, allGpus...)
s.loadedMu.Lock()
defer s.loadedMu.Unlock()
for _, runner := range s.loaded {
if runner.loading {
slog.Debug("overlapping loads detected", "gpus", runner.gpus, "model", runner.modelPath)
for _, busyGPU := range runner.gpus {
for i := range ret {
if ret[i].ID == busyGPU.ID {
ret = append(ret[:i], ret[i+1:]...)
break
}
}
}
}
}
return ret
}
// TODO consolidate sched_types.go
type runnerRef struct { type runnerRef struct {
refMu sync.Mutex refMu sync.Mutex
// refCond sync.Cond // Signaled on transition from 1 -> 0 refCount // refCond sync.Cond // Signaled on transition from 1 -> 0 refCount
@@ -487,8 +548,11 @@ func (runner *runnerRef) needsReload(ctx context.Context, req *LlmRequest) bool
func (runner *runnerRef) waitForVRAMRecovery() chan interface{} { func (runner *runnerRef) waitForVRAMRecovery() chan interface{} {
finished := make(chan interface{}, 1) finished := make(chan interface{}, 1)
// CPU or Metal don't need checking, so no waiting required, windows can page VRAM, and the APIs we query tend to be optimistic on free space // CPU or Metal don't need checking, so no waiting required
if (len(runner.gpus) == 1 && (runner.gpus[0].Library == "cpu" || runner.gpus[0].Library == "metal")) || runtime.GOOS == "windows" { // windows can page VRAM, only cuda currently can report accurate used vram usage
if len(runner.gpus) == 0 ||
(len(runner.gpus) == 1 && (runner.gpus[0].Library == "cpu" || runner.gpus[0].Library == "metal")) ||
(runtime.GOOS == "windows" && runner.gpus[0].Library != "cuda") {
finished <- struct{}{} finished <- struct{}{}
return finished return finished
} }
@@ -508,7 +572,7 @@ func (runner *runnerRef) waitForVRAMRecovery() chan interface{} {
for { for {
<-ticker.C <-ticker.C
if time.Now().After(expiresAt) { if time.Now().After(expiresAt) {
slog.Warn("gpu VRAM usage didn't recover within timeout", "seconds", time.Since(start).Seconds()) slog.Warn("gpu VRAM usage didn't recover within timeout", "seconds", time.Since(start).Seconds(), "model", runner.modelPath)
finished <- struct{}{} finished <- struct{}{}
} }
@@ -521,7 +585,7 @@ func (runner *runnerRef) waitForVRAMRecovery() chan interface{} {
} }
// If we're within ~80% of the estimated memory usage recovered, bail out // If we're within ~80% of the estimated memory usage recovered, bail out
if float32(freeMemoryNow-freeMemoryBefore) > float32(runner.estimatedVRAM)*0.8 { if float32(freeMemoryNow-freeMemoryBefore) > float32(runner.estimatedVRAM)*0.8 {
slog.Debug(fmt.Sprintf("gpu VRAM free memory converged after %0.2f seconds", time.Since(start).Seconds())) slog.Debug(fmt.Sprintf("gpu VRAM free memory converged after %0.2f seconds", time.Since(start).Seconds()), "model", runner.modelPath)
finished <- struct{}{} finished <- struct{}{}
return return
} }
@@ -558,10 +622,12 @@ func pickBestFitGPUs(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList) gpu.
sort.Sort(sort.Reverse(gpu.ByFreeMemory(sgl))) sort.Sort(sort.Reverse(gpu.ByFreeMemory(sgl)))
// First attempt to fit the model into a single GPU // First attempt to fit the model into a single GPU
for _, g := range sgl { if !envconfig.SchedSpread {
if ok, estimatedVRAM = llm.PredictServerFit([]gpu.GpuInfo{g}, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok { for _, g := range sgl {
slog.Debug("new model will fit in available VRAM in single GPU, loading", "model", req.model.ModelPath, "gpu", g.ID, "available", g.FreeMemory, "required", format.HumanBytes2(estimatedVRAM)) if ok, estimatedVRAM = llm.PredictServerFit([]gpu.GpuInfo{g}, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok {
return []gpu.GpuInfo{g} slog.Debug("new model will fit in available VRAM in single GPU, loading", "model", req.model.ModelPath, "gpu", g.ID, "available", g.FreeMemory, "required", format.HumanBytes2(estimatedVRAM))
return []gpu.GpuInfo{g}
}
} }
} }
@@ -586,6 +652,10 @@ func (s *Scheduler) findRunnerToUnload() *runnerRef {
runnerList = append(runnerList, r) runnerList = append(runnerList, r)
} }
s.loadedMu.Unlock() s.loadedMu.Unlock()
if len(runnerList) == 0 {
slog.Debug("no loaded runner to unload")
return nil
}
// In the future we can enhance the algorithm to be smarter about picking the optimal runner to unload // In the future we can enhance the algorithm to be smarter about picking the optimal runner to unload
// e.g., if we have multiple options, will one make room for the request? // e.g., if we have multiple options, will one make room for the request?
@@ -616,3 +686,18 @@ func (s *Scheduler) unloadAllRunners() {
} }
} }
} }
// If other runners are loaded, make sure the pending request will fit in system memory
// If not, pick a runner to unload, else return nil and the request can be loaded
func (s *Scheduler) maybeFindCPURunnerToUnload(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList) *runnerRef {
slog.Debug("evaluating if CPU model load will fit in available system memory")
estimate := llm.EstimateGPULayers(gpus, ggml, req.model.ProjectorPaths, req.opts)
if estimate.TotalSize <= gpus[0].FreeMemory {
slog.Debug("cpu inference mode, model fits in available system memory", "model", format.HumanBytes2(estimate.TotalSize), "available", format.HumanBytes2(gpus[0].FreeMemory))
return nil
}
// TODO - optimization: try to find CPU only runners first, or partial offloads with enough in system memory to make room
return s.findRunnerToUnload()
}

View File

@@ -60,7 +60,7 @@ func TestLoad(t *testing.T) {
err := <-req.errCh err := <-req.errCh
require.Contains(t, err.Error(), "this model may be incompatible") require.Contains(t, err.Error(), "this model may be incompatible")
server := &mockLlm{estimatedVRAM: 10} server := &mockLlm{estimatedVRAM: 10, estimatedVRAMByGPU: map[string]uint64{}}
s.newServerFn = func(gpus gpu.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options) (llm.LlamaServer, error) { s.newServerFn = func(gpus gpu.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options) (llm.LlamaServer, error) {
return server, nil return server, nil
} }
@@ -128,13 +128,14 @@ func newScenario(t *testing.T, ctx context.Context, modelName string, estimatedV
"tokenizer.ggml.scores": []float32{0}, "tokenizer.ggml.scores": []float32{0},
"tokenizer.ggml.token_type": []int32{0}, "tokenizer.ggml.token_type": []int32{0},
}, []llm.Tensor{ }, []llm.Tensor{
{Name: "blk.0.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: &bytes.Reader{}}, {Name: "blk.0.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
{Name: "output.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
}) })
require.NoError(t, err) require.NoError(t, err)
fname := f.Name() fname := f.Name()
model := &Model{Name: modelName, ModelPath: fname} model := &Model{Name: modelName, ModelPath: fname}
scenario.ggml, err = llm.LoadModel(model.ModelPath) scenario.ggml, err = llm.LoadModel(model.ModelPath, 0)
require.NoError(t, err) require.NoError(t, err)
scenario.req = &LlmRequest{ scenario.req = &LlmRequest{
@@ -145,17 +146,17 @@ func newScenario(t *testing.T, ctx context.Context, modelName string, estimatedV
successCh: make(chan *runnerRef, 1), successCh: make(chan *runnerRef, 1),
errCh: make(chan error, 1), errCh: make(chan error, 1),
} }
scenario.srv = &mockLlm{estimatedVRAM: estimatedVRAM} scenario.srv = &mockLlm{estimatedVRAM: estimatedVRAM, estimatedVRAMByGPU: map[string]uint64{"": estimatedVRAM}}
return scenario return scenario
} }
func TestRequests(t *testing.T) { func TestRequests(t *testing.T) {
ctx, done := context.WithTimeout(context.Background(), time.Second) ctx, done := context.WithTimeout(context.Background(), 10*time.Second)
defer done() defer done()
// Same model, same request // Same model, same request
scenario1a := newScenario(t, ctx, "ollama-model-1", 10) scenario1a := newScenario(t, ctx, "ollama-model-1", 10)
scenario1a.req.sessionDuration = 0 scenario1a.req.sessionDuration = 5 * time.Millisecond
scenario1b := newScenario(t, ctx, "ollama-model-1", 11) scenario1b := newScenario(t, ctx, "ollama-model-1", 11)
scenario1b.req.model = scenario1a.req.model scenario1b.req.model = scenario1a.req.model
scenario1b.ggml = scenario1a.ggml scenario1b.ggml = scenario1a.ggml
@@ -166,6 +167,7 @@ func TestRequests(t *testing.T) {
tmpModel := *scenario1a.req.model tmpModel := *scenario1a.req.model
scenario2a.req.model = &tmpModel scenario2a.req.model = &tmpModel
scenario2a.ggml = scenario1a.ggml scenario2a.ggml = scenario1a.ggml
scenario2a.req.sessionDuration = 5 * time.Millisecond
// Multiple loaded models // Multiple loaded models
scenario3a := newScenario(t, ctx, "ollama-model-3a", 1*format.GigaByte) scenario3a := newScenario(t, ctx, "ollama-model-3a", 1*format.GigaByte)
@@ -181,6 +183,12 @@ func TestRequests(t *testing.T) {
g.FreeMemory = 12 * format.GigaByte g.FreeMemory = 12 * format.GigaByte
return []gpu.GpuInfo{g} return []gpu.GpuInfo{g}
} }
s.getCpuFn = func() gpu.GpuInfoList {
g := gpu.GpuInfo{Library: "cpu"}
g.TotalMemory = 32 * format.GigaByte
g.FreeMemory = 26 * format.GigaByte
return []gpu.GpuInfo{g}
}
s.newServerFn = scenario1a.newServer s.newServerFn = scenario1a.newServer
slog.Info("scenario1a") slog.Info("scenario1a")
s.pendingReqCh <- scenario1a.req s.pendingReqCh <- scenario1a.req
@@ -309,7 +317,6 @@ func TestGetRunner(t *testing.T) {
ctx, done := context.WithTimeout(context.Background(), 100*time.Millisecond) ctx, done := context.WithTimeout(context.Background(), 100*time.Millisecond)
defer done() defer done()
// Same model, same request
scenario1a := newScenario(t, ctx, "ollama-model-1a", 10) scenario1a := newScenario(t, ctx, "ollama-model-1a", 10)
scenario1a.req.sessionDuration = 0 scenario1a.req.sessionDuration = 0
scenario1b := newScenario(t, ctx, "ollama-model-1b", 10) scenario1b := newScenario(t, ctx, "ollama-model-1b", 10)
@@ -419,7 +426,7 @@ func TestUseLoadedRunner(t *testing.T) {
sessionDuration: 2, sessionDuration: 2,
} }
finished := make(chan *LlmRequest) finished := make(chan *LlmRequest)
llm1 := &mockLlm{} llm1 := &mockLlm{estimatedVRAMByGPU: map[string]uint64{}}
r1 := &runnerRef{llama: llm1, sessionDuration: 1} r1 := &runnerRef{llama: llm1, sessionDuration: 1}
req.useLoadedRunner(r1, finished) req.useLoadedRunner(r1, finished)
require.Equal(t, uint(1), r1.refCount) require.Equal(t, uint(1), r1.refCount)
@@ -452,8 +459,8 @@ func TestUpdateFreeSpace(t *testing.T) {
gpus[0].FreeMemory = 900 gpus[0].FreeMemory = 900
gpus[1].TotalMemory = 2000 gpus[1].TotalMemory = 2000
gpus[1].FreeMemory = 1900 gpus[1].FreeMemory = 1900
llm1 := &mockLlm{estimatedVRAM: 100} llm1 := &mockLlm{estimatedVRAMByGPU: map[string]uint64{"1": 50, "2": 50}}
llm2 := &mockLlm{estimatedVRAM: 200} llm2 := &mockLlm{estimatedVRAMByGPU: map[string]uint64{"1": 125, "2": 75}}
r1 := &runnerRef{llama: llm1, gpus: gpus} r1 := &runnerRef{llama: llm1, gpus: gpus}
r2 := &runnerRef{llama: llm2, gpus: gpus} r2 := &runnerRef{llama: llm2, gpus: gpus}
@@ -464,8 +471,42 @@ func TestUpdateFreeSpace(t *testing.T) {
s.loadedMu.Unlock() s.loadedMu.Unlock()
s.updateFreeSpace(gpus) s.updateFreeSpace(gpus)
require.Equal(t, uint64(850), gpus[0].FreeMemory) require.Equal(t, uint64(1000-50-125), gpus[0].FreeMemory)
require.Equal(t, uint64(1850), gpus[1].FreeMemory) require.Equal(t, uint64(2000-50-75), gpus[1].FreeMemory)
}
func TestFilterGPUsWithoutLoadingModels(t *testing.T) {
ctx, done := context.WithTimeout(context.Background(), 100*time.Millisecond)
defer done()
gpus := gpu.GpuInfoList{
{
Library: "cuda",
ID: "0",
},
{
Library: "cuda",
ID: "1",
},
}
r1 := &runnerRef{gpus: gpu.GpuInfoList{gpus[0]}, loading: true}
s := InitScheduler(ctx)
s.loadedMu.Lock()
s.loaded["a"] = r1
s.loadedMu.Unlock()
tmp := s.filterGPUsWithoutLoadingModels(gpus)
require.Len(t, tmp, 1)
require.Equal(t, "1", tmp[0].ID)
r1.gpus = gpu.GpuInfoList{gpus[1]}
tmp = s.filterGPUsWithoutLoadingModels(gpus)
require.Len(t, tmp, 1)
require.Equal(t, "0", tmp[0].ID)
r1.gpus = gpu.GpuInfoList{}
tmp = s.filterGPUsWithoutLoadingModels(gpus)
require.Len(t, tmp, 2)
} }
func TestFindRunnerToUnload(t *testing.T) { func TestFindRunnerToUnload(t *testing.T) {
@@ -492,7 +533,7 @@ func TestNeedsReload(t *testing.T) {
ctx, done := context.WithTimeout(context.Background(), 100*time.Millisecond) ctx, done := context.WithTimeout(context.Background(), 100*time.Millisecond)
defer done() defer done()
llm := &mockLlm{} llm := &mockLlm{estimatedVRAMByGPU: map[string]uint64{}}
do := api.DefaultOptions() do := api.DefaultOptions()
runner := &runnerRef{ runner := &runnerRef{
model: &Model{AdapterPaths: []string{"adapter1"}, ProjectorPaths: []string{"projector1"}}, model: &Model{AdapterPaths: []string{"adapter1"}, ProjectorPaths: []string{"projector1"}},
@@ -535,8 +576,8 @@ func TestUnloadAllRunners(t *testing.T) {
ctx, done := context.WithTimeout(context.Background(), 100*time.Millisecond) ctx, done := context.WithTimeout(context.Background(), 100*time.Millisecond)
defer done() defer done()
llm1 := &mockLlm{} llm1 := &mockLlm{estimatedVRAMByGPU: map[string]uint64{}}
llm2 := &mockLlm{} llm2 := &mockLlm{estimatedVRAMByGPU: map[string]uint64{}}
s := InitScheduler(ctx) s := InitScheduler(ctx)
s.unloadAllRunners() s.unloadAllRunners()
@@ -554,7 +595,7 @@ func TestUnloadAllRunners(t *testing.T) {
} }
func TestUnload(t *testing.T) { func TestUnload(t *testing.T) {
llm1 := &mockLlm{} llm1 := &mockLlm{estimatedVRAMByGPU: map[string]uint64{}}
r1 := &runnerRef{llama: llm1} r1 := &runnerRef{llama: llm1}
r2 := &runnerRef{model: &Model{AdapterPaths: []string{"A"}}} r2 := &runnerRef{model: &Model{AdapterPaths: []string{"A"}}}
r1.unload() r1.unload()
@@ -564,19 +605,20 @@ func TestUnload(t *testing.T) {
} }
type mockLlm struct { type mockLlm struct {
pingResp error pingResp error
waitResp error waitResp error
completionResp error completionResp error
embeddingResp []float64 embeddingResp []float64
embeddingRespErr error embeddingRespErr error
tokenizeResp []int tokenizeResp []int
tokenizeRespErr error tokenizeRespErr error
detokenizeResp string detokenizeResp string
detonekizeRespErr error detonekizeRespErr error
closeResp error closeResp error
closeCalled bool closeCalled bool
estimatedVRAM uint64 estimatedVRAM uint64
estimatedTotal uint64 estimatedTotal uint64
estimatedVRAMByGPU map[string]uint64
} }
func (s *mockLlm) Ping(ctx context.Context) error { return s.pingResp } func (s *mockLlm) Ping(ctx context.Context) error { return s.pingResp }
@@ -597,5 +639,6 @@ func (s *mockLlm) Close() error {
s.closeCalled = true s.closeCalled = true
return s.closeResp return s.closeResp
} }
func (s *mockLlm) EstimatedVRAM() uint64 { return s.estimatedVRAM } func (s *mockLlm) EstimatedVRAM() uint64 { return s.estimatedVRAM }
func (s *mockLlm) EstimatedTotal() uint64 { return s.estimatedTotal } func (s *mockLlm) EstimatedTotal() uint64 { return s.estimatedTotal }
func (s *mockLlm) EstimatedVRAMByGPU(gpuid string) uint64 { return s.estimatedVRAMByGPU[gpuid] }

View File

@@ -4,7 +4,6 @@ package model
import ( import (
"cmp" "cmp"
"encoding/hex"
"errors" "errors"
"fmt" "fmt"
"log/slog" "log/slog"
@@ -371,57 +370,3 @@ func cutPromised(s, sep string) (before, after string, ok bool) {
} }
return cmp.Or(before, MissingPart), cmp.Or(after, MissingPart), true return cmp.Or(before, MissingPart), cmp.Or(after, MissingPart), true
} }
type DigestType byte
const (
DigestTypeInvalid DigestType = iota
DigestTypeSHA256
)
func (t DigestType) String() string {
switch t {
case DigestTypeSHA256:
return "sha256"
default:
return "invalid"
}
}
type Digest struct {
Type DigestType
Sum [32]byte
}
func ParseDigest(s string) (Digest, error) {
i := strings.IndexAny(s, "-:")
if i < 0 {
return Digest{}, fmt.Errorf("invalid digest %q", s)
}
typ, encSum := s[:i], s[i+1:]
if typ != "sha256" {
return Digest{}, fmt.Errorf("unsupported digest type %q", typ)
}
d := Digest{
Type: DigestTypeSHA256,
}
n, err := hex.Decode(d.Sum[:], []byte(encSum))
if err != nil {
return Digest{}, err
}
if n != 32 {
return Digest{}, fmt.Errorf("digest %q decoded to %d bytes; want 32", encSum, n)
}
return d, nil
}
func (d Digest) String() string {
if d.Type == DigestTypeInvalid {
return ""
}
return fmt.Sprintf("sha256-%x", d.Sum)
}
func (d Digest) IsValid() bool {
return d.Type != DigestTypeInvalid
}

View File

@@ -284,40 +284,6 @@ func TestFilepathAllocs(t *testing.T) {
} }
} }
const (
validSha256 = "sha256-1000000000000000000000000000000000000000000000000000000000000000"
validSha256Old = "sha256:1000000000000000000000000000000000000000000000000000000000000000"
)
func TestParseDigest(t *testing.T) {
cases := []struct {
in string
want string
}{
{"", ""}, // empty
{"sha123-12", ""}, // invalid type
{"sha256-", ""}, // invalid sum
{"sha256-123", ""}, // invalid odd length sum
{validSha256, validSha256},
{validSha256Old, validSha256},
}
for _, tt := range cases {
t.Run(tt.in, func(t *testing.T) {
got, err := ParseDigest(tt.in)
if err != nil {
if tt.want != "" {
t.Errorf("parseDigest(%q) = %v; want %v", tt.in, err, tt.want)
}
return
}
if got.String() != tt.want {
t.Errorf("parseDigest(%q).String() = %q; want %q", tt.in, got, tt.want)
}
})
}
}
func TestParseNameFromFilepath(t *testing.T) { func TestParseNameFromFilepath(t *testing.T) {
cases := map[string]Name{ cases := map[string]Name{
filepath.Join("host", "namespace", "model", "tag"): {Host: "host", Namespace: "namespace", Model: "model", Tag: "tag"}, filepath.Join("host", "namespace", "model", "tag"): {Host: "host", Namespace: "namespace", Model: "model", Tag: "tag"},

View File

@@ -0,0 +1,34 @@
package bufioutil
import (
"bufio"
"io"
)
type BufferedSeeker struct {
rs io.ReadSeeker
br *bufio.Reader
}
func NewBufferedSeeker(rs io.ReadSeeker, size int) *BufferedSeeker {
return &BufferedSeeker{
rs: rs,
br: bufio.NewReaderSize(rs, size),
}
}
func (b *BufferedSeeker) Read(p []byte) (int, error) {
return b.br.Read(p)
}
func (b *BufferedSeeker) Seek(offset int64, whence int) (int64, error) {
if whence == io.SeekCurrent {
offset -= int64(b.br.Buffered())
}
n, err := b.rs.Seek(offset, whence)
if err != nil {
return 0, err
}
b.br.Reset(b.rs)
return n, nil
}

View File

@@ -0,0 +1,64 @@
package bufioutil
import (
"bytes"
"io"
"strings"
"testing"
)
func TestBufferedSeeker(t *testing.T) {
const alphabet = "abcdefghijklmnopqrstuvwxyz"
bs := NewBufferedSeeker(strings.NewReader(alphabet), 0) // minReadBufferSize = 16
checkRead := func(buf []byte, expected string) {
t.Helper()
_, err := bs.Read(buf)
if err != nil {
t.Fatal(err)
}
if !bytes.Equal(buf, []byte(expected)) {
t.Fatalf("expected %s, got %s", expected, buf)
}
}
// Read the first 5 bytes
buf := make([]byte, 5)
checkRead(buf, "abcde")
// Seek back to the beginning
_, err := bs.Seek(0, io.SeekStart)
if err != nil {
t.Fatal(err)
}
// read 'a'
checkRead(buf[:1], "a")
if bs.br.Buffered() == 0 {
t.Fatalf("totally unexpected sanity check failed")
}
// Seek past 'b'
_, err = bs.Seek(1, io.SeekCurrent)
if err != nil {
t.Fatal(err)
}
checkRead(buf, "cdefg")
// Seek back to the beginning
_, err = bs.Seek(0, io.SeekStart)
if err != nil {
t.Fatal(err)
}
checkRead(buf, "abcde")
// Seek to the end
_, err = bs.Seek(-5, io.SeekEnd)
if err != nil {
t.Fatal(err)
}
checkRead(buf, "vwxyz")
}