Compare commits

..

22 Commits

Author SHA1 Message Date
royjhan
c0648233f2 api embed docs (#5282) 2024-07-22 13:37:08 -07:00
Jeffrey Morgan
d835368eb8 convert: capture head_dim for mistral (#5818) 2024-07-22 16:16:22 -04:00
Daniel Hiltgen
5784c05397 Merge pull request #5854 from dhiltgen/win_exit_status
Refine error reporting for subprocess crash
2024-07-22 10:40:22 -07:00
Daniel Hiltgen
f14aa5435d Merge pull request #5855 from dhiltgen/remove_max_vram
Remove no longer supported max vram var
2024-07-22 10:35:29 -07:00
Jeffrey Morgan
f8fedbda20 Update llama.cpp submodule commit to d94c6e0c (#5805) 2024-07-22 12:42:00 -04:00
Jeffrey Morgan
b3e5491e41 server: collect nested tool call objects when parsing (#5824) 2024-07-22 12:38:03 -04:00
Daniel Hiltgen
cc269ba094 Remove no longer supported max vram var
The OLLAMA_MAX_VRAM env var was a temporary workaround for OOM
scenarios.  With Concurrency this was no longer wired up, and the simplistic
value doesn't map to multi-GPU setups.  Users can still set `num_gpu`
to limit memory usage to avoid OOM if we get our predictions wrong.
2024-07-22 09:08:11 -07:00
Daniel Hiltgen
a3c20e3f18 Refine error reporting for subprocess crash
On windows, the exit status winds up being the search term many
users search for and end up piling in on issues that are unrelated.
This refines the reporting so that if we have a more detailed message
we'll suppress the exit status portion of the message.
2024-07-22 08:52:16 -07:00
Jeffrey Morgan
80ee9b5e47 Remove out of space test temporarily (#5825) 2024-07-21 00:22:11 -04:00
Jeffrey Morgan
5534f2cc6a llm: consider head_dim in llama arch (#5817) 2024-07-20 21:48:12 -04:00
Daniel Hiltgen
d321297d8a Merge pull request #5815 from dhiltgen/win_rocm_gfx_features
Adjust windows ROCm discovery
2024-07-20 16:02:55 -07:00
Daniel Hiltgen
06e5d74e34 Merge pull request #5506 from dhiltgen/sched_tests
Refine scheduler unit tests for reliability
2024-07-20 15:48:39 -07:00
Daniel Hiltgen
5d707e6fd5 Merge pull request #5583 from dhiltgen/integration_improvements
Fix context exhaustion integration test for small gpus
2024-07-20 15:48:21 -07:00
Daniel Hiltgen
283948c83b Adjust windows ROCm discovery
The v5 hip library returns unsupported GPUs which wont enumerate at
inference time in the runner so this makes sure we align discovery.  The
gfx906 cards are no longer supported so we shouldn't compile with that
GPU type as it wont enumerate at runtime.
2024-07-20 15:17:50 -07:00
Jeffrey Morgan
1475eab95f add patch for tekken (#5807) 2024-07-20 13:41:21 -04:00
Jeffrey Morgan
20090f3172 preserve last assistant message (#5802) 2024-07-19 20:19:26 -07:00
Jeffrey Morgan
69a2d4ccff Fix generate test flakyness (#5804) 2024-07-19 19:11:25 -07:00
Josh
e8b954c646 server: validate template (#5734)
add template validation to modelfile
2024-07-19 15:24:29 -07:00
royjhan
c57317cbf0 OpenAI: Function Based Testing (#5752)
* distinguish error forwarding

* more coverage

* rm comment
2024-07-19 11:37:12 -07:00
royjhan
51b2fd299c adjust openai chat msg processing (#5729) 2024-07-19 11:19:20 -07:00
Daniel Hiltgen
73e2c8f68f Fix context exhaustion integration test for small gpus
On the smaller GPUs, the initial model load of llama2 took over 30s (the
default timeout for the DoGenerate helper)
2024-07-09 16:24:14 -07:00
Daniel Hiltgen
f4408219e9 Refine scheduler unit tests for reliability
This breaks up some of the test scenarios to create a
more reliable set of tests, as well as adding a little more
coverage.
2024-07-09 16:00:08 -07:00
31 changed files with 1128 additions and 392 deletions

View File

@@ -1344,7 +1344,6 @@ func NewCLI() *cobra.Command {
envVars["OLLAMA_TMPDIR"],
envVars["OLLAMA_FLASH_ATTENTION"],
envVars["OLLAMA_LLM_LIBRARY"],
envVars["OLLAMA_MAX_VRAM"],
})
default:
appendEnvDocs(cmd, envs)

View File

@@ -71,6 +71,11 @@ func (m *MistralModel) WriteGGUF(ws io.WriteSeeker) error {
"tokenizer.ggml.unknown_token_id": uint32(0),
}
if m.Params.HeadDimension > 0 {
kv["llama.attention.key_length"] = uint32(m.Params.HeadDimension)
kv["llama.attention.value_length"] = uint32(m.Params.HeadDimension)
}
return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors)
}

View File

@@ -1026,7 +1026,7 @@ If `stream` is set to `false`, then the response is a single JSON object:
## Generate Embeddings
```shell
POST /api/embeddings
POST /api/embed
```
Generate embeddings from a model
@@ -1034,10 +1034,11 @@ Generate embeddings from a model
### Parameters
- `model`: name of model to generate embeddings from
- `prompt`: text to generate embeddings for
- `input`: text or list of text to generate embeddings for
Advanced parameters:
- `truncate`: truncates the end of each input to fit within context length. Returns error if `false` and context length is exceeded. Defaults to `true`
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
@@ -1046,9 +1047,9 @@ Advanced parameters:
#### Request
```shell
curl http://localhost:11434/api/embeddings -d '{
curl http://localhost:11434/api/embed -d '{
"model": "all-minilm",
"prompt": "Here is an article about llamas..."
"input": "Why is the sky blue?"
}'
```
@@ -1056,10 +1057,35 @@ curl http://localhost:11434/api/embeddings -d '{
```json
{
"embedding": [
0.5670403838157654, 0.009260174818336964, 0.23178744316101074, -0.2916173040866852, -0.8924556970596313,
0.8785552978515625, -0.34576427936553955, 0.5742510557174683, -0.04222835972905159, -0.137906014919281
]
"model": "all-minilm",
"embeddings": [[
0.010071029, -0.0017594862, 0.05007221, 0.04692972, 0.054916814,
0.008599704, 0.105441414, -0.025878139, 0.12958129, 0.031952348
]]
}
```
#### Request (Multiple input)
```shell
curl http://localhost:11434/api/embed -d '{
"model": "all-minilm",
"input": ["Why is the sky blue?", "Why is the grass green?"]
}'
```
#### Response
```json
{
"model": "all-minilm",
"embeddings": [[
0.010071029, -0.0017594862, 0.05007221, 0.04692972, 0.054916814,
0.008599704, 0.105441414, -0.025878139, 0.12958129, 0.031952348
],[
-0.0098027075, 0.06042469, 0.025257962, -0.006364387, 0.07272725,
0.017194884, 0.09032035, -0.051705178, 0.09951512, 0.09072481
]]
}
```
@@ -1106,3 +1132,45 @@ A single JSON object will be returned.
]
}
```
## Generate Embedding
> Note: this endpoint has been superseded by `/api/embed`
```shell
POST /api/embeddings
```
Generate embeddings from a model
### Parameters
- `model`: name of model to generate embeddings from
- `prompt`: text to generate embeddings for
Advanced parameters:
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
### Examples
#### Request
```shell
curl http://localhost:11434/api/embeddings -d '{
"model": "all-minilm",
"prompt": "Here is an article about llamas..."
}'
```
#### Response
```json
{
"embedding": [
0.5670403838157654, 0.009260174818336964, 0.23178744316101074, -0.2916173040866852, -0.8924556970596313,
0.8785552978515625, -0.34576427936553955, 0.5742510557174683, -0.04222835972905159, -0.137906014919281
]
}
```

View File

@@ -46,13 +46,24 @@ sudo modprobe nvidia_uvm`
## AMD Radeon
Ollama supports the following AMD GPUs:
### Linux Support
| Family | Cards and accelerators |
| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------- |
| AMD Radeon RX | `7900 XTX` `7900 XT` `7900 GRE` `7800 XT` `7700 XT` `7600 XT` `7600` `6950 XT` `6900 XTX` `6900XT` `6800 XT` `6800` `Vega 64` `Vega 56` |
| AMD Radeon PRO | `W7900` `W7800` `W7700` `W7600` `W7500` `W6900X` `W6800X Duo` `W6800X` `W6800` `V620` `V420` `V340` `V320` `Vega II Duo` `Vega II` `VII` `SSG` |
| AMD Instinct | `MI300X` `MI300A` `MI300` `MI250X` `MI250` `MI210` `MI200` `MI100` `MI60` `MI50` |
### Overrides
### Windows Support
With ROCm v6.1, the following GPUs are supported on Windows.
| Family | Cards and accelerators |
| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------- |
| AMD Radeon RX | `7900 XTX` `7900 XT` `7900 GRE` `7800 XT` `7700 XT` `7600 XT` `7600` `6950 XT` `6900 XTX` `6900XT` `6800 XT` `6800` |
| AMD Radeon PRO | `W7900` `W7800` `W7700` `W7600` `W7500` `W6900X` `W6800X Duo` `W6800X` `W6800` `V620` |
### Overrides on Linux
Ollama leverages the AMD ROCm library, which does not support all AMD GPUs. In
some cases you can force the system to try to use a similar LLVM target that is
close. For example The Radeon RX 5400 is `gfx1034` (also known as 10.3.4)
@@ -63,7 +74,7 @@ would set `HSA_OVERRIDE_GFX_VERSION="10.3.0"` as an environment variable for the
server. If you have an unsupported AMD GPU you can experiment using the list of
supported types below.
At this time, the known supported GPU types are the following LLVM Targets.
At this time, the known supported GPU types on linux are the following LLVM Targets.
This table shows some example GPUs that map to these LLVM targets:
| **LLVM Target** | **An Example GPU** |
|-----------------|---------------------|

View File

@@ -43,8 +43,6 @@ var (
MaxRunners int
// Set via OLLAMA_MAX_QUEUE in the environment
MaxQueuedRequests int
// Set via OLLAMA_MAX_VRAM in the environment
MaxVRAM uint64
// Set via OLLAMA_MODELS in the environment
ModelsDir string
// Set via OLLAMA_NOHISTORY in the environment
@@ -89,7 +87,6 @@ func AsMap() map[string]EnvVar {
"OLLAMA_LLM_LIBRARY": {"OLLAMA_LLM_LIBRARY", LLMLibrary, "Set LLM library to bypass autodetection"},
"OLLAMA_MAX_LOADED_MODELS": {"OLLAMA_MAX_LOADED_MODELS", MaxRunners, "Maximum number of loaded models per GPU"},
"OLLAMA_MAX_QUEUE": {"OLLAMA_MAX_QUEUE", MaxQueuedRequests, "Maximum number of queued requests"},
"OLLAMA_MAX_VRAM": {"OLLAMA_MAX_VRAM", MaxVRAM, "Maximum VRAM"},
"OLLAMA_MODELS": {"OLLAMA_MODELS", ModelsDir, "The path to the models directory"},
"OLLAMA_NOHISTORY": {"OLLAMA_NOHISTORY", NoHistory, "Do not preserve readline history"},
"OLLAMA_NOPRUNE": {"OLLAMA_NOPRUNE", NoPrune, "Do not prune model blobs on startup"},
@@ -194,16 +191,6 @@ func LoadConfig() {
TmpDir = clean("OLLAMA_TMPDIR")
userLimit := clean("OLLAMA_MAX_VRAM")
if userLimit != "" {
avail, err := strconv.ParseUint(userLimit, 10, 64)
if err != nil {
slog.Error("invalid setting, ignoring", "OLLAMA_MAX_VRAM", userLimit, "error", err)
} else {
MaxVRAM = avail
}
}
LLMLibrary = clean("OLLAMA_LLM_LIBRARY")
if onp := clean("OLLAMA_NUM_PARALLEL"); onp != "" {

View File

@@ -33,9 +33,10 @@ type HipLib struct {
}
func NewHipLib() (*HipLib, error) {
h, err := windows.LoadLibrary("amdhip64.dll")
// At runtime we depend on v6, so discover GPUs with the same library for a consistent set of GPUs
h, err := windows.LoadLibrary("amdhip64_6.dll")
if err != nil {
return nil, fmt.Errorf("unable to load amdhip64.dll: %w", err)
return nil, fmt.Errorf("unable to load amdhip64_6.dll, please make sure to upgrade to the latest amd driver: %w", err)
}
hl := &HipLib{}
hl.dll = h

View File

@@ -92,7 +92,8 @@ func AMDGetGPUInfo() []RocmGPUInfo {
continue
}
if gfxOverride == "" {
if !slices.Contains[[]string, string](supported, gfx) {
// Strip off Target Features when comparing
if !slices.Contains[[]string, string](supported, strings.Split(gfx, ":")[0]) {
slog.Warn("amdgpu is not supported", "gpu", i, "gpu_type", gfx, "library", libDir, "supported_types", supported)
// TODO - consider discrete markdown just for ROCM troubleshooting?
slog.Warn("See https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md for HSA_OVERRIDE_GFX_VERSION usage")

View File

@@ -69,7 +69,7 @@ func TestIntegrationConcurrentPredictOrcaMini(t *testing.T) {
reqLimit := len(req)
iterLimit := 5
vram := os.Getenv("OLLAMA_MAX_VRAM")
vram := os.Getenv("OLLAMA_MAX_VRAM") // TODO - discover actual VRAM
if vram != "" {
max, err := strconv.ParseUint(vram, 10, 64)
require.NoError(t, err)
@@ -106,7 +106,7 @@ func TestIntegrationConcurrentPredictOrcaMini(t *testing.T) {
// Stress the system if we know how much VRAM it has, and attempt to load more models than will fit
func TestMultiModelStress(t *testing.T) {
vram := os.Getenv("OLLAMA_MAX_VRAM")
vram := os.Getenv("OLLAMA_MAX_VRAM") // TODO - discover actual VRAM
if vram == "" {
t.Skip("OLLAMA_MAX_VRAM not specified, can't pick the right models for the stress test")
}

View File

@@ -12,7 +12,7 @@ import (
func TestContextExhaustion(t *testing.T) {
// Longer needed for small footprint GPUs
ctx, cancel := context.WithTimeout(context.Background(), 6*time.Minute)
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Minute)
defer cancel()
// Set up the test data
req := api.GenerateRequest{
@@ -25,5 +25,10 @@ func TestContextExhaustion(t *testing.T) {
"num_ctx": 128,
},
}
GenerateTestHelper(ctx, t, req, []string{"once", "upon", "lived"})
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
if err := PullIfMissing(ctx, client, req.Model); err != nil {
t.Fatalf("PullIfMissing failed: %v", err)
}
DoGenerate(ctx, t, client, req, []string{"once", "upon", "lived"}, 120*time.Second, 10*time.Second)
}

View File

@@ -7,8 +7,8 @@ function amdGPUs {
return $env:AMDGPU_TARGETS
}
# Current supported rocblas list from ROCm v6.1.2 on windows
# https://rocm.docs.amd.com/projects/install-on-windows/en/latest/reference/system-requirements.html#windows-supported-gpus
$GPU_LIST = @(
"gfx906:xnack-"
"gfx1030"
"gfx1100"
"gfx1101"

View File

@@ -1,8 +1,8 @@
diff --git a/src/llama.cpp b/src/llama.cpp
index 2b9ace28..172640e2 100644
index 8fe51971..7113ba64 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -5357,16 +5357,7 @@ static void llm_load_vocab(
@@ -5433,16 +5433,7 @@ static void llm_load_vocab(
if (vocab.type == LLAMA_VOCAB_TYPE_BPE) {
vocab.tokenizer_add_space_prefix = false;
vocab.tokenizer_clean_spaces = true;
@@ -20,9 +20,9 @@ index 2b9ace28..172640e2 100644
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
} else if (
tokenizer_pre == "llama3" ||
@@ -5439,7 +5430,8 @@ static void llm_load_vocab(
tokenizer_pre == "jais") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_JAIS;
@@ -5526,7 +5517,8 @@ static void llm_load_vocab(
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_SMOLLM;
vocab.tokenizer_clean_spaces = false;
} else {
- throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
+ LLAMA_LOG_WARN("%s: missing or unrecognized pre-tokenizer type, using: 'default'\n", __func__);

View File

@@ -1,13 +0,0 @@
diff --git a/src/llama.cpp b/src/llama.cpp
index 40d2ec2c..f34eb79a 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -6943,7 +6943,7 @@ static struct ggml_tensor * llm_build_kqv(
struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
cb(kq, "kq", il);
- if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX) {
+ if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX || model.arch == LLM_ARCH_QWEN2) {
// for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
// ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
ggml_mul_mat_set_prec(kq, GGML_PREC_F32);

360
llm/patches/09-lora.diff Normal file
View File

@@ -0,0 +1,360 @@
diff --git a/common/common.cpp b/common/common.cpp
index dbb724fb..c26fe6ee 100644
--- a/common/common.cpp
+++ b/common/common.cpp
@@ -2087,14 +2087,29 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
for (unsigned int i = 0; i < params.lora_adapter.size(); ++i) {
const std::string & lora_adapter = std::get<0>(params.lora_adapter[i]);
float lora_scale = std::get<1>(params.lora_adapter[i]);
+
+ // try to load as gguf
auto adapter = llama_lora_adapter_init(model, lora_adapter.c_str());
if (adapter == nullptr) {
- fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
- llama_free(lctx);
- llama_free_model(model);
- return std::make_tuple(nullptr, nullptr);
+ fprintf(stderr, "%s: error: failed to apply lora adapter, trying ggla\n", __func__);
+
+ // if that fails, try loading as ggla for compatibility
+ int err = llama_model_apply_lora_from_file(model,
+ lora_adapter.c_str(),
+ lora_scale,
+ ((i > 0) || params.lora_base.empty())
+ ? NULL
+ : params.lora_base.c_str(),
+ params.n_threads);
+ if (err != 0) {
+ fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
+ llama_free(lctx);
+ llama_free_model(model);
+ return std::make_tuple(nullptr, nullptr);
+ }
+ } else {
+ llama_lora_adapter_set(lctx, adapter, lora_scale);
}
- llama_lora_adapter_set(lctx, adapter, lora_scale);
}
if (params.ignore_eos) {
diff --git a/include/llama.h b/include/llama.h
index 93fd77ca..b0fb37a6 100644
--- a/include/llama.h
+++ b/include/llama.h
@@ -1160,6 +1160,20 @@ extern "C" {
LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx);
+ // Apply a LoRA adapter to a loaded model
+ // path_base_model is the path to a higher quality model to use as a base for
+ // the layers modified by the adapter. Can be NULL to use the current loaded model.
+ // The model needs to be reloaded before applying a new adapter, otherwise the adapter
+ // will be applied on top of the previous one
+ // Returns 0 on success
+ LLAMA_API int32_t llama_model_apply_lora_from_file(
+ const struct llama_model * model,
+ const char * path_lora,
+ float scale,
+ const char * path_base_model,
+ int32_t n_threads);
+
+
#ifdef __cplusplus
}
#endif
diff --git a/src/llama.cpp b/src/llama.cpp
index 80a0dd0f..9d7b0e17 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -21880,3 +21880,290 @@ static void llama_log_callback_default(ggml_log_level level, const char * text,
fputs(text, stderr);
fflush(stderr);
}
+
+static int llama_apply_lora_from_file_internal(
+ const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
+) {
+ LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
+
+ const int64_t t_start_lora_us = ggml_time_us();
+
+ llama_file fin(path_lora, "rb");
+
+ // verify magic and version
+ {
+ uint32_t magic = fin.read_u32();
+ if (magic != LLAMA_FILE_MAGIC_GGLA) {
+ LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
+ return 1;
+ }
+
+ uint32_t format_version = fin.read_u32();
+ if (format_version != 1) {
+ LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
+ return 1;
+ }
+ }
+
+ int32_t lora_r = fin.read_u32();
+ int32_t lora_alpha = fin.read_u32();
+ float scaling = scale * (float)lora_alpha / (float)lora_r;
+
+ LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
+
+ // load base model
+ std::unique_ptr<llama_model_loader> ml;
+ if (path_base_model) {
+ LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
+ ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*check_tensors*/ false, /*kv_overrides*/ nullptr));
+ ml->init_mappings(/*prefetch*/ false); // no prefetching
+ }
+
+ struct tensor_meta {
+ std::string name;
+ ggml_type type;
+ int32_t ne[2];
+ size_t offset;
+ };
+ std::map<std::string, tensor_meta> tensor_meta_map;
+
+ // load all tensor meta
+ while (true) {
+ if (fin.tell() == fin.size) {
+ // eof
+ break;
+ }
+
+ int32_t n_dims;
+ int32_t name_len;
+ int32_t ftype;
+
+ fin.read_raw(&n_dims, sizeof(n_dims));
+ fin.read_raw(&name_len, sizeof(name_len));
+ fin.read_raw(&ftype, sizeof(ftype));
+
+ if (n_dims != 1 && n_dims != 2) {
+ LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
+ return 1;
+ }
+
+ int32_t ne[2] = { 1, 1 };
+ for (int i = 0; i < n_dims; ++i) {
+ fin.read_raw(&ne[i], sizeof(ne[i]));
+ }
+
+ std::string name;
+ {
+ GGML_ASSERT(name_len < GGML_MAX_NAME);
+ char buf[GGML_MAX_NAME];
+ fin.read_raw(buf, name_len);
+ name = std::string(buf, name_len);
+ }
+
+ // check for lora suffix
+ std::string lora_suffix;
+ if (name.length() > 6) {
+ lora_suffix = name.substr(name.length() - 6);
+ }
+ if (lora_suffix != ".loraA" && lora_suffix != ".loraB") {
+ LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
+ return 1;
+ }
+
+ // tensor type
+ ggml_type wtype;
+ switch (ftype) {
+ case 0: wtype = GGML_TYPE_F32; break;
+ case 1: wtype = GGML_TYPE_F16; break;
+ default:
+ {
+ LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
+ __func__, ftype);
+ return 1;
+ }
+ }
+
+ // data offset
+ size_t offset = fin.tell();
+ offset = (offset + 31) & -32;
+
+ // skip tensor data
+ fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET);
+
+ tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset });
+ }
+
+ bool warned = false;
+ int n_tensors = 0;
+
+ // apply
+ ggml_backend_t backend_cpu = ggml_backend_cpu_init();
+ if (backend_cpu == nullptr) {
+ LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__);
+ return 1;
+ }
+ ggml_backend_cpu_set_n_threads(backend_cpu, n_threads);
+
+ std::vector<no_init<uint8_t>> read_buf;
+ for (const auto & it : model.tensors_by_name) {
+ const std::string & base_name = it.first;
+ ggml_tensor * model_t = it.second;
+
+ if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() ||
+ tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) {
+ continue;
+ }
+
+ tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA");
+ tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB");
+
+ ggml_init_params lora_init_params = {
+ /* .mem_size */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
+ /* .mem_buffer */ nullptr,
+ /* .no_alloc */ true,
+ };
+ ggml_context * lora_ctx = ggml_init(lora_init_params);
+ if (lora_ctx == nullptr) {
+ LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__);
+ ggml_backend_free(backend_cpu);
+ return 1;
+ }
+
+ // create tensors
+ ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]);
+ ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]);
+ ggml_set_name(loraA, metaA.name.c_str());
+ ggml_set_name(loraB, metaB.name.c_str());
+
+ ggml_tensor * base_t;
+ if (ml) {
+ if (!ml->get_tensor_meta(base_name.c_str())) {
+ LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
+ return 1;
+ }
+ base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str()));
+ } else {
+ base_t = ggml_dup_tensor(lora_ctx, model_t);
+ }
+ ggml_set_name(base_t, base_name.c_str());
+
+ // allocate in backend buffer
+ ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
+ if (lora_buf == nullptr) {
+ LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__);
+ return 1;
+ }
+
+ // load tensor data
+ auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
+ read_buf.resize(ggml_nbytes(tensor));
+ fin.seek(tensor_meta.offset, SEEK_SET);
+ fin.read_raw(read_buf.data(), ggml_nbytes(tensor));
+ ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size());
+ };
+ load_tensor(metaA, loraA);
+ load_tensor(metaB, loraB);
+
+ // load base model tensor data
+ if (ml) {
+ ml->load_data_for(base_t);
+ } else {
+ ggml_backend_tensor_copy(model_t, base_t);
+ }
+
+ if (ggml_is_quantized(base_t->type) && !warned) {
+ LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
+ "use a f16 or f32 base model with --lora-base\n", __func__);
+ warned = true;
+ }
+
+ if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
+ LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
+ " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
+ ggml_free(lora_ctx);
+ ggml_backend_buffer_free(lora_buf);
+ ggml_backend_free(backend_cpu);
+ return 1;
+ }
+
+ auto build_lora_graph = [&]() {
+ // w = w + BA*s
+ ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
+ ggml_set_name(BA, "BA");
+
+ if (scaling != 1.0f) {
+ BA = ggml_scale(lora_ctx, BA, scaling);
+ ggml_set_name(BA, "BA_scaled");
+ }
+
+ ggml_tensor * r;
+ r = ggml_add_inplace(lora_ctx, base_t, BA);
+ ggml_set_name(r, "r_add");
+
+ if (base_t->type != model_t->type) {
+ // convert the result to the model type
+ r = ggml_cast(lora_ctx, r, model_t->type);
+ ggml_set_name(r, "r_cast");
+ }
+
+ return r;
+ };
+
+ ggml_cgraph * gf = ggml_new_graph(lora_ctx);
+ ggml_tensor * r = build_lora_graph();
+ ggml_build_forward_expand(gf, r);
+
+ ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
+ if (graph_buf == nullptr) {
+ LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__);
+ ggml_free(lora_ctx);
+ ggml_backend_buffer_free(lora_buf);
+ ggml_backend_free(backend_cpu);
+ return 1;
+ }
+
+ ggml_backend_graph_compute(backend_cpu, gf);
+
+ ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r));
+
+#if 0
+ // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU
+ //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE);
+
+ // sched compute
+ ggml_build_forward_expand(gf, build_graph());
+ ggml_backend_sched_init_measure(sched, gf);
+
+ // create the graph again, since the previous one was destroyed by the measure
+ ggml_graph_clear(gf);
+ ggml_build_forward_expand(gf, build_graph());
+ ggml_backend_sched_graph_compute(sched, gf);
+ ggml_backend_sched_free(sched);
+#endif
+
+ ggml_backend_buffer_free(lora_buf);
+ ggml_backend_buffer_free(graph_buf);
+ ggml_free(lora_ctx);
+
+ n_tensors++;
+ if (n_tensors % 4 == 0) {
+ LLAMA_LOG_INFO(".");
+ }
+ }
+
+ ggml_backend_free(backend_cpu);
+
+ const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
+ LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
+
+ return 0;
+}
+
+int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
+ try {
+ return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
+ } catch (const std::exception & err) {
+ LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
+ return 1;
+ }
+}
\ No newline at end of file

View File

@@ -385,8 +385,10 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
filteredEnv := []string{}
for _, ev := range s.cmd.Env {
if strings.HasPrefix(ev, "CUDA_") ||
strings.HasPrefix(ev, "ROCR_") ||
strings.HasPrefix(ev, "ROCM_") ||
strings.HasPrefix(ev, "HIP_") ||
strings.HasPrefix(ev, "GPU_") ||
strings.HasPrefix(ev, "HSA_") ||
strings.HasPrefix(ev, "GGML_") ||
strings.HasPrefix(ev, "PATH=") ||
@@ -415,7 +417,17 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
// reap subprocess when it exits
go func() {
s.done <- s.cmd.Wait()
err := s.cmd.Wait()
// Favor a more detailed message over the process exit status
if err != nil && s.status != nil && s.status.LastErrMsg != "" {
slog.Debug("llama runner terminated", "error", err)
if strings.Contains(s.status.LastErrMsg, "unknown model") {
s.status.LastErrMsg = "this model is not supported by your version of Ollama. You may need to upgrade"
}
s.done <- fmt.Errorf(s.status.LastErrMsg)
} else {
s.done <- err
}
}()
return s, nil
@@ -578,14 +590,7 @@ func (s *llmServer) WaitUntilRunning(ctx context.Context) error {
slog.Warn("client connection closed before server finished loading, aborting load")
return fmt.Errorf("timed out waiting for llama runner to start: %w", ctx.Err())
case err := <-s.done:
msg := ""
if s.status != nil && s.status.LastErrMsg != "" {
msg = s.status.LastErrMsg
}
if strings.Contains(msg, "unknown model") {
return fmt.Errorf("this model is not supported by your version of Ollama. You may need to upgrade")
}
return fmt.Errorf("llama runner process has terminated: %v %s", err, msg)
return fmt.Errorf("llama runner process has terminated: %w", err)
default:
}
if time.Now().After(stallTimer) {

View File

@@ -351,7 +351,6 @@ func fromChatRequest(r ChatCompletionRequest) (*api.ChatRequest, error) {
case string:
messages = append(messages, api.Message{Role: msg.Role, Content: content})
case []any:
message := api.Message{Role: msg.Role}
for _, c := range content {
data, ok := c.(map[string]any)
if !ok {
@@ -363,7 +362,7 @@ func fromChatRequest(r ChatCompletionRequest) (*api.ChatRequest, error) {
if !ok {
return nil, fmt.Errorf("invalid message format")
}
message.Content = text
messages = append(messages, api.Message{Role: msg.Role, Content: text})
case "image_url":
var url string
if urlMap, ok := data["image_url"].(map[string]any); ok {
@@ -395,12 +394,12 @@ func fromChatRequest(r ChatCompletionRequest) (*api.ChatRequest, error) {
if err != nil {
return nil, fmt.Errorf("invalid message format")
}
message.Images = append(message.Images, img)
messages = append(messages, api.Message{Role: msg.Role, Images: []api.ImageData{img}})
default:
return nil, fmt.Errorf("invalid message format")
}
}
messages = append(messages, message)
default:
if msg.ToolCalls == nil {
return nil, fmt.Errorf("invalid message content type: %T", content)
@@ -878,6 +877,7 @@ func ChatMiddleware() gin.HandlerFunc {
chatReq, err := fromChatRequest(req)
if err != nil {
c.AbortWithStatusJSON(http.StatusBadRequest, NewError(http.StatusBadRequest, err.Error()))
return
}
if err := json.NewEncoder(&b).Encode(chatReq); err != nil {

View File

@@ -20,113 +20,59 @@ const prefix = `data:image/jpeg;base64,`
const image = `iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR42mNk+A8AAQUBAScY42YAAAAASUVORK5CYII=`
const imageURL = prefix + image
func TestMiddlewareRequests(t *testing.T) {
func prepareRequest(req *http.Request, body any) {
bodyBytes, _ := json.Marshal(body)
req.Body = io.NopCloser(bytes.NewReader(bodyBytes))
req.Header.Set("Content-Type", "application/json")
}
func captureRequestMiddleware(capturedRequest any) gin.HandlerFunc {
return func(c *gin.Context) {
bodyBytes, _ := io.ReadAll(c.Request.Body)
c.Request.Body = io.NopCloser(bytes.NewReader(bodyBytes))
err := json.Unmarshal(bodyBytes, capturedRequest)
if err != nil {
c.AbortWithStatusJSON(http.StatusInternalServerError, "failed to unmarshal request")
}
c.Next()
}
}
func TestChatMiddleware(t *testing.T) {
type testCase struct {
Name string
Method string
Path string
Handler func() gin.HandlerFunc
Setup func(t *testing.T, req *http.Request)
Expected func(t *testing.T, req *http.Request)
Expected func(t *testing.T, req *api.ChatRequest, resp *httptest.ResponseRecorder)
}
var capturedRequest *http.Request
captureRequestMiddleware := func() gin.HandlerFunc {
return func(c *gin.Context) {
bodyBytes, _ := io.ReadAll(c.Request.Body)
c.Request.Body = io.NopCloser(bytes.NewReader(bodyBytes))
capturedRequest = c.Request
c.Next()
}
}
var capturedRequest *api.ChatRequest
testCases := []testCase{
{
Name: "chat handler",
Method: http.MethodPost,
Path: "/api/chat",
Handler: ChatMiddleware,
Name: "chat handler",
Setup: func(t *testing.T, req *http.Request) {
body := ChatCompletionRequest{
Model: "test-model",
Messages: []Message{{Role: "user", Content: "Hello"}},
}
bodyBytes, _ := json.Marshal(body)
req.Body = io.NopCloser(bytes.NewReader(bodyBytes))
req.Header.Set("Content-Type", "application/json")
prepareRequest(req, body)
},
Expected: func(t *testing.T, req *http.Request) {
var chatReq api.ChatRequest
if err := json.NewDecoder(req.Body).Decode(&chatReq); err != nil {
t.Fatal(err)
Expected: func(t *testing.T, req *api.ChatRequest, resp *httptest.ResponseRecorder) {
if resp.Code != http.StatusOK {
t.Fatalf("expected 200, got %d", resp.Code)
}
if chatReq.Messages[0].Role != "user" {
t.Fatalf("expected 'user', got %s", chatReq.Messages[0].Role)
if req.Messages[0].Role != "user" {
t.Fatalf("expected 'user', got %s", req.Messages[0].Role)
}
if chatReq.Messages[0].Content != "Hello" {
t.Fatalf("expected 'Hello', got %s", chatReq.Messages[0].Content)
if req.Messages[0].Content != "Hello" {
t.Fatalf("expected 'Hello', got %s", req.Messages[0].Content)
}
},
},
{
Name: "completions handler",
Method: http.MethodPost,
Path: "/api/generate",
Handler: CompletionsMiddleware,
Setup: func(t *testing.T, req *http.Request) {
temp := float32(0.8)
body := CompletionRequest{
Model: "test-model",
Prompt: "Hello",
Temperature: &temp,
Stop: []string{"\n", "stop"},
Suffix: "suffix",
}
bodyBytes, _ := json.Marshal(body)
req.Body = io.NopCloser(bytes.NewReader(bodyBytes))
req.Header.Set("Content-Type", "application/json")
},
Expected: func(t *testing.T, req *http.Request) {
var genReq api.GenerateRequest
if err := json.NewDecoder(req.Body).Decode(&genReq); err != nil {
t.Fatal(err)
}
if genReq.Prompt != "Hello" {
t.Fatalf("expected 'Hello', got %s", genReq.Prompt)
}
if genReq.Options["temperature"] != 1.6 {
t.Fatalf("expected 1.6, got %f", genReq.Options["temperature"])
}
stopTokens, ok := genReq.Options["stop"].([]any)
if !ok {
t.Fatalf("expected stop tokens to be a list")
}
if stopTokens[0] != "\n" || stopTokens[1] != "stop" {
t.Fatalf("expected ['\\n', 'stop'], got %v", stopTokens)
}
if genReq.Suffix != "suffix" {
t.Fatalf("expected 'suffix', got %s", genReq.Suffix)
}
},
},
{
Name: "chat handler with image content",
Method: http.MethodPost,
Path: "/api/chat",
Handler: ChatMiddleware,
Name: "chat handler with image content",
Setup: func(t *testing.T, req *http.Request) {
body := ChatCompletionRequest{
Model: "test-model",
@@ -139,87 +85,254 @@ func TestMiddlewareRequests(t *testing.T) {
},
},
}
bodyBytes, _ := json.Marshal(body)
req.Body = io.NopCloser(bytes.NewReader(bodyBytes))
req.Header.Set("Content-Type", "application/json")
prepareRequest(req, body)
},
Expected: func(t *testing.T, req *http.Request) {
var chatReq api.ChatRequest
if err := json.NewDecoder(req.Body).Decode(&chatReq); err != nil {
t.Fatal(err)
Expected: func(t *testing.T, req *api.ChatRequest, resp *httptest.ResponseRecorder) {
if resp.Code != http.StatusOK {
t.Fatalf("expected 200, got %d", resp.Code)
}
if chatReq.Messages[0].Role != "user" {
t.Fatalf("expected 'user', got %s", chatReq.Messages[0].Role)
if req.Messages[0].Role != "user" {
t.Fatalf("expected 'user', got %s", req.Messages[0].Role)
}
if chatReq.Messages[0].Content != "Hello" {
t.Fatalf("expected 'Hello', got %s", chatReq.Messages[0].Content)
if req.Messages[0].Content != "Hello" {
t.Fatalf("expected 'Hello', got %s", req.Messages[0].Content)
}
img, _ := base64.StdEncoding.DecodeString(imageURL[len(prefix):])
if !bytes.Equal(chatReq.Messages[0].Images[0], img) {
t.Fatalf("expected image encoding, got %s", chatReq.Messages[0].Images[0])
if req.Messages[1].Role != "user" {
t.Fatalf("expected 'user', got %s", req.Messages[1].Role)
}
if !bytes.Equal(req.Messages[1].Images[0], img) {
t.Fatalf("expected image encoding, got %s", req.Messages[1].Images[0])
}
},
},
{
Name: "embed handler single input",
Method: http.MethodPost,
Path: "/api/embed",
Handler: EmbeddingsMiddleware,
Name: "chat handler with tools",
Setup: func(t *testing.T, req *http.Request) {
body := ChatCompletionRequest{
Model: "test-model",
Messages: []Message{
{Role: "user", Content: "What's the weather like in Paris Today?"},
{Role: "assistant", ToolCalls: []ToolCall{{
ID: "id",
Type: "function",
Function: struct {
Name string `json:"name"`
Arguments string `json:"arguments"`
}{
Name: "get_current_weather",
Arguments: "{\"location\": \"Paris, France\", \"format\": \"celsius\"}",
},
}}},
},
}
prepareRequest(req, body)
},
Expected: func(t *testing.T, req *api.ChatRequest, resp *httptest.ResponseRecorder) {
if resp.Code != 200 {
t.Fatalf("expected 200, got %d", resp.Code)
}
if req.Messages[0].Content != "What's the weather like in Paris Today?" {
t.Fatalf("expected What's the weather like in Paris Today?, got %s", req.Messages[0].Content)
}
if req.Messages[1].ToolCalls[0].Function.Arguments["location"] != "Paris, France" {
t.Fatalf("expected 'Paris, France', got %v", req.Messages[1].ToolCalls[0].Function.Arguments["location"])
}
if req.Messages[1].ToolCalls[0].Function.Arguments["format"] != "celsius" {
t.Fatalf("expected celsius, got %v", req.Messages[1].ToolCalls[0].Function.Arguments["format"])
}
},
},
{
Name: "chat handler error forwarding",
Setup: func(t *testing.T, req *http.Request) {
body := ChatCompletionRequest{
Model: "test-model",
Messages: []Message{{Role: "user", Content: 2}},
}
prepareRequest(req, body)
},
Expected: func(t *testing.T, req *api.ChatRequest, resp *httptest.ResponseRecorder) {
if resp.Code != http.StatusBadRequest {
t.Fatalf("expected 400, got %d", resp.Code)
}
if !strings.Contains(resp.Body.String(), "invalid message content type") {
t.Fatalf("error was not forwarded")
}
},
},
}
endpoint := func(c *gin.Context) {
c.Status(http.StatusOK)
}
gin.SetMode(gin.TestMode)
router := gin.New()
router.Use(ChatMiddleware(), captureRequestMiddleware(&capturedRequest))
router.Handle(http.MethodPost, "/api/chat", endpoint)
for _, tc := range testCases {
t.Run(tc.Name, func(t *testing.T) {
req, _ := http.NewRequest(http.MethodPost, "/api/chat", nil)
tc.Setup(t, req)
resp := httptest.NewRecorder()
router.ServeHTTP(resp, req)
tc.Expected(t, capturedRequest, resp)
capturedRequest = nil
})
}
}
func TestCompletionsMiddleware(t *testing.T) {
type testCase struct {
Name string
Setup func(t *testing.T, req *http.Request)
Expected func(t *testing.T, req *api.GenerateRequest, resp *httptest.ResponseRecorder)
}
var capturedRequest *api.GenerateRequest
testCases := []testCase{
{
Name: "completions handler",
Setup: func(t *testing.T, req *http.Request) {
temp := float32(0.8)
body := CompletionRequest{
Model: "test-model",
Prompt: "Hello",
Temperature: &temp,
Stop: []string{"\n", "stop"},
Suffix: "suffix",
}
prepareRequest(req, body)
},
Expected: func(t *testing.T, req *api.GenerateRequest, resp *httptest.ResponseRecorder) {
if req.Prompt != "Hello" {
t.Fatalf("expected 'Hello', got %s", req.Prompt)
}
if req.Options["temperature"] != 1.6 {
t.Fatalf("expected 1.6, got %f", req.Options["temperature"])
}
stopTokens, ok := req.Options["stop"].([]any)
if !ok {
t.Fatalf("expected stop tokens to be a list")
}
if stopTokens[0] != "\n" || stopTokens[1] != "stop" {
t.Fatalf("expected ['\\n', 'stop'], got %v", stopTokens)
}
if req.Suffix != "suffix" {
t.Fatalf("expected 'suffix', got %s", req.Suffix)
}
},
},
{
Name: "completions handler error forwarding",
Setup: func(t *testing.T, req *http.Request) {
body := CompletionRequest{
Model: "test-model",
Prompt: "Hello",
Temperature: nil,
Stop: []int{1, 2},
Suffix: "suffix",
}
prepareRequest(req, body)
},
Expected: func(t *testing.T, req *api.GenerateRequest, resp *httptest.ResponseRecorder) {
if resp.Code != http.StatusBadRequest {
t.Fatalf("expected 400, got %d", resp.Code)
}
if !strings.Contains(resp.Body.String(), "invalid type for 'stop' field") {
t.Fatalf("error was not forwarded")
}
},
},
}
endpoint := func(c *gin.Context) {
c.Status(http.StatusOK)
}
gin.SetMode(gin.TestMode)
router := gin.New()
router.Use(CompletionsMiddleware(), captureRequestMiddleware(&capturedRequest))
router.Handle(http.MethodPost, "/api/generate", endpoint)
for _, tc := range testCases {
t.Run(tc.Name, func(t *testing.T) {
req, _ := http.NewRequest(http.MethodPost, "/api/generate", nil)
tc.Setup(t, req)
resp := httptest.NewRecorder()
router.ServeHTTP(resp, req)
tc.Expected(t, capturedRequest, resp)
capturedRequest = nil
})
}
}
func TestEmbeddingsMiddleware(t *testing.T) {
type testCase struct {
Name string
Setup func(t *testing.T, req *http.Request)
Expected func(t *testing.T, req *api.EmbedRequest, resp *httptest.ResponseRecorder)
}
var capturedRequest *api.EmbedRequest
testCases := []testCase{
{
Name: "embed handler single input",
Setup: func(t *testing.T, req *http.Request) {
body := EmbedRequest{
Input: "Hello",
Model: "test-model",
}
bodyBytes, _ := json.Marshal(body)
req.Body = io.NopCloser(bytes.NewReader(bodyBytes))
req.Header.Set("Content-Type", "application/json")
prepareRequest(req, body)
},
Expected: func(t *testing.T, req *http.Request) {
var embedReq api.EmbedRequest
if err := json.NewDecoder(req.Body).Decode(&embedReq); err != nil {
t.Fatal(err)
Expected: func(t *testing.T, req *api.EmbedRequest, resp *httptest.ResponseRecorder) {
if req.Input != "Hello" {
t.Fatalf("expected 'Hello', got %s", req.Input)
}
if embedReq.Input != "Hello" {
t.Fatalf("expected 'Hello', got %s", embedReq.Input)
}
if embedReq.Model != "test-model" {
t.Fatalf("expected 'test-model', got %s", embedReq.Model)
if req.Model != "test-model" {
t.Fatalf("expected 'test-model', got %s", req.Model)
}
},
},
{
Name: "embed handler batch input",
Method: http.MethodPost,
Path: "/api/embed",
Handler: EmbeddingsMiddleware,
Name: "embed handler batch input",
Setup: func(t *testing.T, req *http.Request) {
body := EmbedRequest{
Input: []string{"Hello", "World"},
Model: "test-model",
}
bodyBytes, _ := json.Marshal(body)
req.Body = io.NopCloser(bytes.NewReader(bodyBytes))
req.Header.Set("Content-Type", "application/json")
prepareRequest(req, body)
},
Expected: func(t *testing.T, req *http.Request) {
var embedReq api.EmbedRequest
if err := json.NewDecoder(req.Body).Decode(&embedReq); err != nil {
t.Fatal(err)
}
input, ok := embedReq.Input.([]any)
Expected: func(t *testing.T, req *api.EmbedRequest, resp *httptest.ResponseRecorder) {
input, ok := req.Input.([]any)
if !ok {
t.Fatalf("expected input to be a list")
@@ -233,36 +346,52 @@ func TestMiddlewareRequests(t *testing.T) {
t.Fatalf("expected 'World', got %s", input[1])
}
if embedReq.Model != "test-model" {
t.Fatalf("expected 'test-model', got %s", embedReq.Model)
if req.Model != "test-model" {
t.Fatalf("expected 'test-model', got %s", req.Model)
}
},
},
{
Name: "embed handler error forwarding",
Setup: func(t *testing.T, req *http.Request) {
body := EmbedRequest{
Model: "test-model",
}
prepareRequest(req, body)
},
Expected: func(t *testing.T, req *api.EmbedRequest, resp *httptest.ResponseRecorder) {
if resp.Code != http.StatusBadRequest {
t.Fatalf("expected 400, got %d", resp.Code)
}
if !strings.Contains(resp.Body.String(), "invalid input") {
t.Fatalf("error was not forwarded")
}
},
},
}
gin.SetMode(gin.TestMode)
router := gin.New()
endpoint := func(c *gin.Context) {
c.Status(http.StatusOK)
}
gin.SetMode(gin.TestMode)
router := gin.New()
router.Use(EmbeddingsMiddleware(), captureRequestMiddleware(&capturedRequest))
router.Handle(http.MethodPost, "/api/embed", endpoint)
for _, tc := range testCases {
t.Run(tc.Name, func(t *testing.T) {
router = gin.New()
router.Use(captureRequestMiddleware())
router.Use(tc.Handler())
router.Handle(tc.Method, tc.Path, endpoint)
req, _ := http.NewRequest(tc.Method, tc.Path, nil)
req, _ := http.NewRequest(http.MethodPost, "/api/embed", nil)
if tc.Setup != nil {
tc.Setup(t, req)
}
tc.Setup(t, req)
resp := httptest.NewRecorder()
router.ServeHTTP(resp, req)
tc.Expected(t, capturedRequest)
tc.Expected(t, capturedRequest, resp)
capturedRequest = nil
})
}
}
@@ -280,36 +409,6 @@ func TestMiddlewareResponses(t *testing.T) {
}
testCases := []testCase{
{
Name: "completions handler error forwarding",
Method: http.MethodPost,
Path: "/api/generate",
TestPath: "/api/generate",
Handler: CompletionsMiddleware,
Endpoint: func(c *gin.Context) {
c.JSON(http.StatusBadRequest, gin.H{"error": "invalid request"})
},
Setup: func(t *testing.T, req *http.Request) {
body := CompletionRequest{
Model: "test-model",
Prompt: "Hello",
}
bodyBytes, _ := json.Marshal(body)
req.Body = io.NopCloser(bytes.NewReader(bodyBytes))
req.Header.Set("Content-Type", "application/json")
},
Expected: func(t *testing.T, resp *httptest.ResponseRecorder) {
if resp.Code != http.StatusBadRequest {
t.Fatalf("expected 400, got %d", resp.Code)
}
if !strings.Contains(resp.Body.String(), `"invalid request"`) {
t.Fatalf("error was not forwarded")
}
},
},
{
Name: "list handler",
Method: http.MethodGet,
@@ -326,8 +425,6 @@ func TestMiddlewareResponses(t *testing.T) {
})
},
Expected: func(t *testing.T, resp *httptest.ResponseRecorder) {
assert.Equal(t, http.StatusOK, resp.Code)
var listResp ListCompletion
if err := json.NewDecoder(resp.Body).Decode(&listResp); err != nil {
t.Fatal(err)
@@ -391,6 +488,8 @@ func TestMiddlewareResponses(t *testing.T) {
resp := httptest.NewRecorder()
router.ServeHTTP(resp, req)
assert.Equal(t, http.StatusOK, resp.Code)
tc.Expected(t, resp)
})
}

View File

@@ -492,6 +492,12 @@ func CreateModel(ctx context.Context, name model.Name, modelFileDir, quantizatio
layers = append(layers, baseLayer.Layer)
}
case "license", "template", "system":
if c.Name == "template" {
if _, err := template.Parse(c.Args); err != nil {
return fmt.Errorf("%w: %s", errBadTemplate, err)
}
}
if c.Name != "license" {
// replace
layers = slices.DeleteFunc(layers, func(layer *Layer) bool {

View File

@@ -344,6 +344,10 @@ func (m *Model) parseToolCalls(s string) ([]api.ToolCall, bool) {
}
}
if name == "" || arguments == "" {
return nil, false
}
var objs []map[string]any
for offset := 0; offset < len(s); {
var obj map[string]any
@@ -361,23 +365,40 @@ func (m *Model) parseToolCalls(s string) ([]api.ToolCall, bool) {
return nil, false
} else {
offset += int(decoder.InputOffset())
objs = append(objs, obj)
// collect all nested objects
var collect func(any) []map[string]any
collect = func(obj any) (all []map[string]any) {
switch o := obj.(type) {
case map[string]any:
all = append(all, o)
for _, v := range o {
all = append(all, collect(v)...)
}
case []any:
for _, v := range o {
all = append(all, collect(v)...)
}
}
return all
}
objs = append(objs, collect(obj)...)
}
}
var toolCalls []api.ToolCall
for _, kv := range objs {
var call api.ToolCall
for k, v := range kv {
switch k {
case name:
call.Function.Name = v.(string)
case arguments:
call.Function.Arguments = v.(map[string]any)
}
n, nok := kv[name].(string)
a, aok := kv[arguments].(map[string]any)
if nok && aok {
toolCalls = append(toolCalls, api.ToolCall{
Function: api.ToolCallFunction{
Name: n,
Arguments: a,
},
})
}
toolCalls = append(toolCalls, call)
}
return toolCalls, len(toolCalls) > 0

View File

@@ -166,6 +166,7 @@ The temperature in San Francisco, CA is 70°F and in Toronto, Canada is 20°C.`,
{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}}
{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}
</tool_call>`, true},
{"xlam", `{"tool_calls": [{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}]}`, true},
}
var tools []api.Tool

View File

@@ -56,6 +56,7 @@ func init() {
}
var errRequired = errors.New("is required")
var errBadTemplate = errors.New("template error")
func modelOptions(model *Model, requestOpts map[string]interface{}) (api.Options, error) {
opts := api.DefaultOptions()
@@ -609,6 +610,9 @@ func (s *Server) CreateModelHandler(c *gin.Context) {
quantization := cmp.Or(r.Quantize, r.Quantization)
if err := CreateModel(ctx, name, filepath.Dir(r.Path), strings.ToUpper(quantization), f, fn); err != nil {
if errors.Is(err, errBadTemplate) {
ch <- gin.H{"error": err.Error(), "status": http.StatusBadRequest}
}
ch <- gin.H{"error": err.Error()}
}
}()
@@ -1196,11 +1200,15 @@ func waitForStream(c *gin.Context, ch chan interface{}) {
return
}
case gin.H:
status, ok := r["status"].(int)
if !ok {
status = http.StatusInternalServerError
}
if errorMsg, ok := r["error"].(string); ok {
c.JSON(http.StatusInternalServerError, gin.H{"error": errorMsg})
c.JSON(status, gin.H{"error": errorMsg})
return
} else {
c.JSON(http.StatusInternalServerError, gin.H{"error": "unexpected error format in progress response"})
c.JSON(status, gin.H{"error": "unexpected error format in progress response"})
return
}
default:

View File

@@ -491,6 +491,42 @@ func TestCreateTemplateSystem(t *testing.T) {
if string(system) != "Say bye!" {
t.Errorf("expected \"Say bye!\", actual %s", system)
}
t.Run("incomplete template", func(t *testing.T) {
w := createRequest(t, s.CreateModelHandler, api.CreateRequest{
Name: "test",
Modelfile: fmt.Sprintf("FROM %s\nTEMPLATE {{ .Prompt", createBinFile(t, nil, nil)),
Stream: &stream,
})
if w.Code != http.StatusBadRequest {
t.Fatalf("expected status code 400, actual %d", w.Code)
}
})
t.Run("template with unclosed if", func(t *testing.T) {
w := createRequest(t, s.CreateModelHandler, api.CreateRequest{
Name: "test",
Modelfile: fmt.Sprintf("FROM %s\nTEMPLATE {{ if .Prompt }}", createBinFile(t, nil, nil)),
Stream: &stream,
})
if w.Code != http.StatusBadRequest {
t.Fatalf("expected status code 400, actual %d", w.Code)
}
})
t.Run("template with undefined function", func(t *testing.T) {
w := createRequest(t, s.CreateModelHandler, api.CreateRequest{
Name: "test",
Modelfile: fmt.Sprintf("FROM %s\nTEMPLATE {{ Prompt }}", createBinFile(t, nil, nil)),
Stream: &stream,
})
if w.Code != http.StatusBadRequest {
t.Fatalf("expected status code 400, actual %d", w.Code)
}
})
}
func TestCreateLicenses(t *testing.T) {

View File

@@ -73,8 +73,8 @@ func TestGenerateChat(t *testing.T) {
getCpuFn: gpu.GetCPUInfo,
reschedDelay: 250 * time.Millisecond,
loadFn: func(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel int) {
// add 10ms delay to simulate loading
time.Sleep(10 * time.Millisecond)
// add small delay to simulate loading
time.Sleep(time.Millisecond)
req.successCh <- &runnerRef{
llama: &mock,
}
@@ -371,6 +371,8 @@ func TestGenerate(t *testing.T) {
getCpuFn: gpu.GetCPUInfo,
reschedDelay: 250 * time.Millisecond,
loadFn: func(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel int) {
// add small delay to simulate loading
time.Sleep(time.Millisecond)
req.successCh <- &runnerRef{
llama: &mock,
}

View File

@@ -94,7 +94,7 @@ func TestLoad(t *testing.T) {
require.Len(t, s.expiredCh, 1)
}
type bundle struct {
type reqBundle struct {
ctx context.Context //nolint:containedctx
ctxDone func()
srv *mockLlm
@@ -102,13 +102,13 @@ type bundle struct {
ggml *llm.GGML
}
func (scenario *bundle) newServer(gpus gpu.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error) {
func (scenario *reqBundle) newServer(gpus gpu.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error) {
return scenario.srv, nil
}
func newScenario(t *testing.T, ctx context.Context, modelName string, estimatedVRAM uint64) *bundle {
scenario := &bundle{}
scenario.ctx, scenario.ctxDone = context.WithCancel(ctx)
func newScenarioRequest(t *testing.T, ctx context.Context, modelName string, estimatedVRAM uint64, duration *api.Duration) *reqBundle {
b := &reqBundle{}
b.ctx, b.ctxDone = context.WithCancel(ctx)
t.Helper()
f, err := os.CreateTemp(t.TempDir(), modelName)
@@ -135,124 +135,154 @@ func newScenario(t *testing.T, ctx context.Context, modelName string, estimatedV
fname := f.Name()
model := &Model{Name: modelName, ModelPath: fname}
scenario.ggml, err = llm.LoadModel(model.ModelPath, 0)
b.ggml, err = llm.LoadModel(model.ModelPath, 0)
require.NoError(t, err)
scenario.req = &LlmRequest{
ctx: scenario.ctx,
if duration == nil {
duration = &api.Duration{Duration: 5 * time.Millisecond}
}
b.req = &LlmRequest{
ctx: b.ctx,
model: model,
opts: api.DefaultOptions(),
sessionDuration: &api.Duration{Duration: 5 * time.Millisecond},
sessionDuration: duration,
successCh: make(chan *runnerRef, 1),
errCh: make(chan error, 1),
}
scenario.srv = &mockLlm{estimatedVRAM: estimatedVRAM, estimatedVRAMByGPU: map[string]uint64{"": estimatedVRAM}}
return scenario
b.srv = &mockLlm{estimatedVRAM: estimatedVRAM, estimatedVRAMByGPU: map[string]uint64{"": estimatedVRAM}}
return b
}
func TestRequests(t *testing.T) {
ctx, done := context.WithTimeout(context.Background(), 10*time.Second)
func getGpuFn() gpu.GpuInfoList {
g := gpu.GpuInfo{Library: "metal"}
g.TotalMemory = 24 * format.GigaByte
g.FreeMemory = 12 * format.GigaByte
return []gpu.GpuInfo{g}
}
func getCpuFn() gpu.GpuInfoList {
g := gpu.GpuInfo{Library: "cpu"}
g.TotalMemory = 32 * format.GigaByte
g.FreeMemory = 26 * format.GigaByte
return []gpu.GpuInfo{g}
}
func TestRequestsSameModelSameRequest(t *testing.T) {
ctx, done := context.WithTimeout(context.Background(), 500*time.Millisecond)
defer done()
// Same model, same request
scenario1a := newScenario(t, ctx, "ollama-model-1", 10)
scenario1a.req.sessionDuration = &api.Duration{Duration: 5 * time.Millisecond}
scenario1b := newScenario(t, ctx, "ollama-model-1", 11)
scenario1b.req.model = scenario1a.req.model
scenario1b.ggml = scenario1a.ggml
scenario1b.req.sessionDuration = &api.Duration{Duration: 0}
// simple reload of same model
scenario2a := newScenario(t, ctx, "ollama-model-1", 20)
tmpModel := *scenario1a.req.model
scenario2a.req.model = &tmpModel
scenario2a.ggml = scenario1a.ggml
scenario2a.req.sessionDuration = &api.Duration{Duration: 5 * time.Millisecond}
// Multiple loaded models
scenario3a := newScenario(t, ctx, "ollama-model-3a", 1*format.GigaByte)
scenario3b := newScenario(t, ctx, "ollama-model-3b", 24*format.GigaByte)
scenario3c := newScenario(t, ctx, "ollama-model-4a", 30)
scenario3c.req.opts.NumGPU = 0 // CPU load, will be allowed
scenario3d := newScenario(t, ctx, "ollama-model-3c", 30) // Needs prior unloaded
s := InitScheduler(ctx)
s.getGpuFn = func() gpu.GpuInfoList {
g := gpu.GpuInfo{Library: "metal"}
g.TotalMemory = 24 * format.GigaByte
g.FreeMemory = 12 * format.GigaByte
return []gpu.GpuInfo{g}
}
s.getCpuFn = func() gpu.GpuInfoList {
g := gpu.GpuInfo{Library: "cpu"}
g.TotalMemory = 32 * format.GigaByte
g.FreeMemory = 26 * format.GigaByte
return []gpu.GpuInfo{g}
}
s.newServerFn = scenario1a.newServer
slog.Info("scenario1a")
s.pendingReqCh <- scenario1a.req
s.getGpuFn = getGpuFn
s.getCpuFn = getCpuFn
a := newScenarioRequest(t, ctx, "ollama-model-1", 10, &api.Duration{Duration: 5 * time.Millisecond})
b := newScenarioRequest(t, ctx, "ollama-model-1", 11, &api.Duration{Duration: 0})
b.req.model = a.req.model
b.ggml = a.ggml
s.newServerFn = a.newServer
slog.Info("a")
s.pendingReqCh <- a.req
require.Len(t, s.pendingReqCh, 1)
s.Run(ctx)
select {
case resp := <-scenario1a.req.successCh:
require.Equal(t, resp.llama, scenario1a.srv)
case resp := <-a.req.successCh:
require.Equal(t, resp.llama, a.srv)
require.Empty(t, s.pendingReqCh)
require.Empty(t, scenario1a.req.errCh)
case err := <-scenario1a.req.errCh:
require.Empty(t, a.req.errCh)
case err := <-a.req.errCh:
t.Fatal(err.Error())
case <-ctx.Done():
t.Fatal("timeout")
}
// Same runner as first request due to not needing a reload
s.newServerFn = scenario1b.newServer
slog.Info("scenario1b")
s.pendingReqCh <- scenario1b.req
s.newServerFn = b.newServer
slog.Info("b")
s.pendingReqCh <- b.req
select {
case resp := <-scenario1b.req.successCh:
require.Equal(t, resp.llama, scenario1a.srv)
case resp := <-b.req.successCh:
require.Equal(t, resp.llama, a.srv)
require.Empty(t, s.pendingReqCh)
require.Empty(t, scenario1b.req.errCh)
case err := <-scenario1b.req.errCh:
require.Empty(t, b.req.errCh)
case err := <-b.req.errCh:
t.Fatal(err.Error())
case <-ctx.Done():
t.Fatal("timeout")
}
}
func TestRequestsSimpleReloadSameModel(t *testing.T) {
ctx, done := context.WithTimeout(context.Background(), 500*time.Millisecond)
defer done()
s := InitScheduler(ctx)
s.getGpuFn = getGpuFn
s.getCpuFn = getCpuFn
a := newScenarioRequest(t, ctx, "ollama-model-1", 10, &api.Duration{Duration: 5 * time.Millisecond})
b := newScenarioRequest(t, ctx, "ollama-model-1", 20, &api.Duration{Duration: 5 * time.Millisecond})
tmpModel := *a.req.model
b.req.model = &tmpModel
b.ggml = a.ggml
s.newServerFn = a.newServer
slog.Info("a")
s.pendingReqCh <- a.req
require.Len(t, s.pendingReqCh, 1)
s.Run(ctx)
select {
case resp := <-a.req.successCh:
require.Equal(t, resp.llama, a.srv)
require.Empty(t, s.pendingReqCh)
require.Empty(t, a.req.errCh)
case err := <-a.req.errCh:
t.Fatal(err.Error())
case <-ctx.Done():
t.Fatal("timeout")
}
// Trigger a reload
s.newServerFn = scenario2a.newServer
scenario2a.req.model.AdapterPaths = []string{"new"}
slog.Info("scenario2a")
s.pendingReqCh <- scenario2a.req
s.newServerFn = b.newServer
b.req.model.AdapterPaths = []string{"new"}
slog.Info("b")
s.pendingReqCh <- b.req
// finish first two requests, so model can reload
time.Sleep(1 * time.Millisecond)
scenario1a.ctxDone()
scenario1b.ctxDone()
a.ctxDone()
select {
case resp := <-scenario2a.req.successCh:
require.Equal(t, resp.llama, scenario2a.srv)
case resp := <-b.req.successCh:
require.Equal(t, resp.llama, b.srv)
require.Empty(t, s.pendingReqCh)
require.Empty(t, scenario2a.req.errCh)
case err := <-scenario2a.req.errCh:
require.Empty(t, b.req.errCh)
case err := <-b.req.errCh:
t.Fatal(err.Error())
case <-ctx.Done():
t.Fatal("timeout")
}
}
func TestRequestsMultipleLoadedModels(t *testing.T) {
ctx, done := context.WithTimeout(context.Background(), 500*time.Millisecond)
defer done()
s := InitScheduler(ctx)
s.getGpuFn = getGpuFn
s.getCpuFn = getCpuFn
// Multiple loaded models
a := newScenarioRequest(t, ctx, "ollama-model-3a", 1*format.GigaByte, nil)
b := newScenarioRequest(t, ctx, "ollama-model-3b", 24*format.GigaByte, nil)
c := newScenarioRequest(t, ctx, "ollama-model-4a", 30, nil)
c.req.opts.NumGPU = 0 // CPU load, will be allowed
d := newScenarioRequest(t, ctx, "ollama-model-3c", 30, nil) // Needs prior unloaded
envconfig.MaxRunners = 1
s.newServerFn = scenario3a.newServer
slog.Info("scenario3a")
s.pendingReqCh <- scenario3a.req
// finish prior request, so new model can load
time.Sleep(1 * time.Millisecond)
scenario2a.ctxDone()
s.newServerFn = a.newServer
slog.Info("a")
s.pendingReqCh <- a.req
s.Run(ctx)
select {
case resp := <-scenario3a.req.successCh:
require.Equal(t, resp.llama, scenario3a.srv)
case resp := <-a.req.successCh:
require.Equal(t, resp.llama, a.srv)
require.Empty(t, s.pendingReqCh)
require.Empty(t, scenario3a.req.errCh)
case err := <-scenario3a.req.errCh:
require.Empty(t, a.req.errCh)
case err := <-a.req.errCh:
t.Fatal(err.Error())
case <-ctx.Done():
t.Fatal("timeout")
@@ -262,15 +292,15 @@ func TestRequests(t *testing.T) {
s.loadedMu.Unlock()
envconfig.MaxRunners = 0
s.newServerFn = scenario3b.newServer
slog.Info("scenario3b")
s.pendingReqCh <- scenario3b.req
s.newServerFn = b.newServer
slog.Info("b")
s.pendingReqCh <- b.req
select {
case resp := <-scenario3b.req.successCh:
require.Equal(t, resp.llama, scenario3b.srv)
case resp := <-b.req.successCh:
require.Equal(t, resp.llama, b.srv)
require.Empty(t, s.pendingReqCh)
require.Empty(t, scenario3b.req.errCh)
case err := <-scenario3b.req.errCh:
require.Empty(t, b.req.errCh)
case err := <-b.req.errCh:
t.Fatal(err.Error())
case <-ctx.Done():
t.Fatal("timeout")
@@ -280,15 +310,15 @@ func TestRequests(t *testing.T) {
s.loadedMu.Unlock()
// This is a CPU load with NumGPU = 0 so it should load
s.newServerFn = scenario3c.newServer
slog.Info("scenario3c")
s.pendingReqCh <- scenario3c.req
s.newServerFn = c.newServer
slog.Info("c")
s.pendingReqCh <- c.req
select {
case resp := <-scenario3c.req.successCh:
require.Equal(t, resp.llama, scenario3c.srv)
case resp := <-c.req.successCh:
require.Equal(t, resp.llama, c.srv)
require.Empty(t, s.pendingReqCh)
require.Empty(t, scenario3c.req.errCh)
case err := <-scenario3c.req.errCh:
require.Empty(t, c.req.errCh)
case err := <-c.req.errCh:
t.Fatal(err.Error())
case <-ctx.Done():
t.Fatal("timeout")
@@ -298,25 +328,25 @@ func TestRequests(t *testing.T) {
s.loadedMu.Unlock()
// Try to load a model that wont fit
s.newServerFn = scenario3d.newServer
slog.Info("scenario3d")
s.newServerFn = d.newServer
slog.Info("d")
s.loadedMu.Lock()
require.Len(t, s.loaded, 3)
s.loadedMu.Unlock()
scenario3a.ctxDone() // Won't help since this one isn't big enough to make room
a.ctxDone() // Won't help since this one isn't big enough to make room
time.Sleep(2 * time.Millisecond)
s.pendingReqCh <- scenario3d.req
s.pendingReqCh <- d.req
// finish prior request, so new model can load
time.Sleep(6 * time.Millisecond)
s.loadedMu.Lock()
require.Len(t, s.loaded, 2)
s.loadedMu.Unlock()
scenario3b.ctxDone()
b.ctxDone()
select {
case resp := <-scenario3d.req.successCh:
require.Equal(t, resp.llama, scenario3d.srv)
case resp := <-d.req.successCh:
require.Equal(t, resp.llama, d.srv)
require.Empty(t, s.pendingReqCh)
require.Empty(t, scenario3d.req.errCh)
require.Empty(t, d.req.errCh)
case <-ctx.Done():
t.Fatal("timeout")
}
@@ -329,26 +359,19 @@ func TestGetRunner(t *testing.T) {
ctx, done := context.WithTimeout(context.Background(), 100*time.Millisecond)
defer done()
scenario1a := newScenario(t, ctx, "ollama-model-1a", 10)
scenario1a.req.sessionDuration = &api.Duration{Duration: 0}
scenario1b := newScenario(t, ctx, "ollama-model-1b", 10)
scenario1b.req.sessionDuration = &api.Duration{Duration: 0}
scenario1c := newScenario(t, ctx, "ollama-model-1c", 10)
scenario1c.req.sessionDuration = &api.Duration{Duration: 0}
a := newScenarioRequest(t, ctx, "ollama-model-1a", 10, &api.Duration{Duration: 2 * time.Millisecond})
b := newScenarioRequest(t, ctx, "ollama-model-1b", 10, &api.Duration{Duration: 2 * time.Millisecond})
c := newScenarioRequest(t, ctx, "ollama-model-1c", 10, &api.Duration{Duration: 2 * time.Millisecond})
envconfig.MaxQueuedRequests = 1
s := InitScheduler(ctx)
s.getGpuFn = func() gpu.GpuInfoList {
g := gpu.GpuInfo{Library: "metal"}
g.TotalMemory = 24 * format.GigaByte
g.FreeMemory = 12 * format.GigaByte
return []gpu.GpuInfo{g}
}
s.newServerFn = scenario1a.newServer
slog.Info("scenario1a")
successCh1a, errCh1a := s.GetRunner(scenario1a.ctx, scenario1a.req.model, scenario1a.req.opts, scenario1a.req.sessionDuration)
s.getGpuFn = getGpuFn
s.getCpuFn = getCpuFn
s.newServerFn = a.newServer
slog.Info("a")
successCh1a, errCh1a := s.GetRunner(a.ctx, a.req.model, a.req.opts, a.req.sessionDuration)
require.Len(t, s.pendingReqCh, 1)
slog.Info("scenario1b")
successCh1b, errCh1b := s.GetRunner(scenario1b.ctx, scenario1b.req.model, scenario1b.req.opts, scenario1b.req.sessionDuration)
slog.Info("b")
successCh1b, errCh1b := s.GetRunner(b.ctx, b.req.model, b.req.opts, b.req.sessionDuration)
require.Len(t, s.pendingReqCh, 1)
require.Empty(t, successCh1b)
require.Len(t, errCh1b, 1)
@@ -357,22 +380,24 @@ func TestGetRunner(t *testing.T) {
s.Run(ctx)
select {
case resp := <-successCh1a:
require.Equal(t, resp.llama, scenario1a.srv)
require.Equal(t, resp.llama, a.srv)
require.Empty(t, s.pendingReqCh)
require.Empty(t, errCh1a)
case err := <-errCh1a:
t.Fatal(err.Error())
case <-ctx.Done():
t.Fatal("timeout")
}
scenario1a.ctxDone()
a.ctxDone() // Set "a" model to idle so it can unload
s.loadedMu.Lock()
require.Len(t, s.loaded, 1)
s.loadedMu.Unlock()
scenario1c.req.model.ModelPath = "bad path"
slog.Info("scenario1c")
successCh1c, errCh1c := s.GetRunner(scenario1c.ctx, scenario1c.req.model, scenario1c.req.opts, scenario1c.req.sessionDuration)
c.req.model.ModelPath = "bad path"
slog.Info("c")
successCh1c, errCh1c := s.GetRunner(c.ctx, c.req.model, c.req.opts, c.req.sessionDuration)
// Starts in pending channel, then should be quickly processsed to return an error
time.Sleep(5 * time.Millisecond)
time.Sleep(20 * time.Millisecond) // Long enough for the "a" model to expire and unload
require.Empty(t, successCh1c)
s.loadedMu.Lock()
require.Empty(t, s.loaded)
@@ -380,7 +405,7 @@ func TestGetRunner(t *testing.T) {
require.Len(t, errCh1c, 1)
err = <-errCh1c
require.Contains(t, err.Error(), "bad path")
scenario1b.ctxDone()
b.ctxDone()
}
// TODO - add one scenario that triggers the bogus finished event with positive ref count
@@ -389,7 +414,7 @@ func TestPrematureExpired(t *testing.T) {
defer done()
// Same model, same request
scenario1a := newScenario(t, ctx, "ollama-model-1a", 10)
scenario1a := newScenarioRequest(t, ctx, "ollama-model-1a", 10, nil)
s := InitScheduler(ctx)
s.getGpuFn = func() gpu.GpuInfoList {
g := gpu.GpuInfo{Library: "metal"}
@@ -411,6 +436,8 @@ func TestPrematureExpired(t *testing.T) {
s.loadedMu.Unlock()
slog.Info("sending premature expired event now")
s.expiredCh <- resp // Shouldn't happen in real life, but make sure its safe
case err := <-errCh1a:
t.Fatal(err.Error())
case <-ctx.Done():
t.Fatal("timeout")
}
@@ -446,6 +473,8 @@ func TestUseLoadedRunner(t *testing.T) {
select {
case success := <-req.successCh:
require.Equal(t, r1, success)
case err := <-req.errCh:
t.Fatal(err.Error())
case <-ctx.Done():
t.Fatal("timeout")
}
@@ -625,8 +654,7 @@ func TestAlreadyCanceled(t *testing.T) {
defer done()
dctx, done2 := context.WithCancel(ctx)
done2()
scenario1a := newScenario(t, dctx, "ollama-model-1", 10)
scenario1a.req.sessionDuration = &api.Duration{Duration: 0}
scenario1a := newScenarioRequest(t, dctx, "ollama-model-1", 10, &api.Duration{Duration: 0})
s := InitScheduler(ctx)
slog.Info("scenario1a")
s.pendingReqCh <- scenario1a.req

45
server/testdata/tools/xlam.gotmpl vendored Normal file
View File

@@ -0,0 +1,45 @@
{{- if .System }}{{ .System }}
{{ end }}
{{- range $i, $_ := .Messages }}
{{- if eq .Role "user" }}### Instruction:
{{- if and $.Tools (le (len (slice $.Messages $i)) 2) }}
[BEGIN OF TASK INSTRUCTION]
You are an expert in composing functions. You are given a question and a set of possible functions.
Based on the question, you will need to make one or more function/tool calls to achieve the purpose.
If none of the functions can be used, point it out and refuse to answer.
If the given question lacks the parameters required by the function, also point it out.
[END OF TASK INSTRUCTION]
[BEGIN OF AVAILABLE TOOLS]
{{ $.Tools }}
[END OF AVAILABLE TOOLS]
[BEGIN OF FORMAT INSTRUCTION]
The output MUST strictly adhere to the following JSON format, and NO other text MUST be included.
The example format is as follows. Please make sure the parameter type is correct. If no function call is needed, please make tool_calls an empty list '[]'.
```
{
"tool_calls": [
{"name": "func_name1", "arguments": {"argument1": "value1", "argument2": "value2"}},
... (more tool calls as required)
]
}
```
[END OF FORMAT INSTRUCTION]
[BEGIN OF QUERY]
{{ .Content }}
[END OF QUERY]
{{ else }}
{{ .Content }}
{{ end }}
{{- else if .ToolCalls }}### Response:
{"tool_calls": [{{ range .ToolCalls }}{"name": "{{ .Function.Name }}", "arguments": {{ .Function.Arguments }}}{{ end }}]}
<|EOT|>
{{ else if eq .Role "assistant" }}### Response:
{{ .Content }}
<|EOT|>
{{ end }}
{{- end }}### Response:

40
server/testdata/tools/xlam.out vendored Normal file
View File

@@ -0,0 +1,40 @@
You are a knowledgable assistant. You can answer questions and perform tasks.
### Instruction:
What's the weather like today in Paris?
### Response:
{"tool_calls": [{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Paris, France"}}]}
<|EOT|>
### Response:
The current temperature in Paris, France is 22 degrees Celsius.
<|EOT|>
### Instruction:
[BEGIN OF TASK INSTRUCTION]
You are an expert in composing functions. You are given a question and a set of possible functions.
Based on the question, you will need to make one or more function/tool calls to achieve the purpose.
If none of the functions can be used, point it out and refuse to answer.
If the given question lacks the parameters required by the function, also point it out.
[END OF TASK INSTRUCTION]
[BEGIN OF AVAILABLE TOOLS]
[{"type":"function","function":{"name":"get_current_weather","description":"Get the current weather","parameters":{"type":"object","required":["location","format"],"properties":{"format":{"type":"string","description":"The temperature unit to use. Infer this from the users location.","enum":["celsius","fahrenheit"]},"location":{"type":"string","description":"The city and state, e.g. San Francisco, CA"}}}}}]
[END OF AVAILABLE TOOLS]
[BEGIN OF FORMAT INSTRUCTION]
The output MUST strictly adhere to the following JSON format, and NO other text MUST be included.
The example format is as follows. Please make sure the parameter type is correct. If no function call is needed, please make tool_calls an empty list '[]'.
```
{
"tool_calls": [
{"name": "func_name1", "arguments": {"argument1": "value1", "argument2": "value2"}},
... (more tool calls as required)
]
}
```
[END OF FORMAT INSTRUCTION]
[BEGIN OF QUERY]
What's the weather like today in San Francisco and Toronto?
[END OF QUERY]
### Response:

View File

@@ -264,6 +264,7 @@ func (t *Template) Execute(w io.Writer, v Values) error {
nodes := deleteNode(t.Template.Root.Copy(), func(n parse.Node) bool {
if field, ok := n.(*parse.FieldNode); ok && slices.Contains(field.Ident, "Response") {
cut = true
return false
}
return cut
@@ -273,7 +274,7 @@ func (t *Template) Execute(w io.Writer, v Values) error {
if err := template.Must(template.New("").AddParseTree("", &tree)).Execute(&b, map[string]any{
"System": system,
"Prompt": prompt,
"Response": "",
"Response": response,
}); err != nil {
return err
}

View File

@@ -260,6 +260,26 @@ func TestExecuteWithMessages(t *testing.T) {
Hello friend![/INST] Hello human![INST] What is your name?[/INST] `,
},
{
"mistral assistant",
[]template{
{"no response", `[INST] {{ .Prompt }}[/INST] `},
{"response", `[INST] {{ .Prompt }}[/INST] {{ .Response }}`},
{"messages", `
{{- range $i, $m := .Messages }}
{{- if eq .Role "user" }}[INST] {{ .Content }}[/INST] {{ else if eq .Role "assistant" }}{{ .Content }}{{ end }}
{{- end }}`},
},
Values{
Messages: []api.Message{
{Role: "user", Content: "Hello friend!"},
{Role: "assistant", Content: "Hello human!"},
{Role: "user", Content: "What is your name?"},
{Role: "assistant", Content: "My name is Ollama and I"},
},
},
`[INST] Hello friend![/INST] Hello human![INST] What is your name?[/INST] My name is Ollama and I`,
},
{
"chatml",
[]template{