Compare commits

..

203 Commits

Author SHA1 Message Date
Daniel Hiltgen
652c273f0e Merge pull request #5049 from dhiltgen/cuda_v12
Cuda v12
2024-08-19 11:14:24 -07:00
Daniel Hiltgen
88e7705079 Merge pull request #6402 from rick-github/numParallel
Override numParallel in pickBestPartialFitByLibrary() only if unset.
2024-08-19 11:07:22 -07:00
Daniel Hiltgen
f9e31da946 Review comments 2024-08-19 10:36:15 -07:00
Daniel Hiltgen
88bb9e3328 Adjust layout to bin+lib/ollama 2024-08-19 09:38:53 -07:00
Daniel Hiltgen
3b19cdba2a Remove Jetpack 2024-08-19 09:38:53 -07:00
Daniel Hiltgen
927d98a6cd Add windows cuda v12 + v11 support 2024-08-19 09:38:53 -07:00
Daniel Hiltgen
f6c811b320 Enable cuda v12 flags 2024-08-19 09:38:53 -07:00
Daniel Hiltgen
4fe3a556fa Add cuda v12 variant and selection logic
Based on compute capability and driver version, pick
v12 or v11 cuda variants.
2024-08-19 09:38:53 -07:00
Daniel Hiltgen
fc3b4cda89 Report GPU variant in log 2024-08-19 09:38:53 -07:00
Daniel Hiltgen
d470ebe78b Add Jetson cuda variants for arm
This adds new variants for arm64 specific to Jetson platforms
2024-08-19 09:38:53 -07:00
Daniel Hiltgen
c7bcb00319 Wire up ccache and pigz in the docker based build
This should help speed things up a little
2024-08-19 09:38:53 -07:00
Daniel Hiltgen
74d45f0102 Refactor linux packaging
This adjusts linux to follow a similar model to windows with a discrete archive
(zip/tgz) to cary the primary executable, and dependent libraries. Runners are
still carried as payloads inside the main binary

Darwin retain the payload model where the go binary is fully self contained.
2024-08-19 09:38:53 -07:00
Jeffrey Morgan
9fddef3731 server: limit upload parts to 16 (#6411) 2024-08-19 09:20:52 -07:00
Richard Lyons
885cf45087 Fix white space. 2024-08-18 03:07:16 +02:00
Richard Lyons
9352eeb752 Reset NumCtx. 2024-08-18 02:55:01 +02:00
Richard Lyons
0ad0e738cd Override numParallel only if unset. 2024-08-18 01:43:26 +02:00
Daniel Hiltgen
d29cd4c2ed Merge pull request #6381 from eust-w/main
fix: Add tooltip to system tray icon
2024-08-15 15:31:15 -07:00
eust-w
a84c05cf91 fix: Add tooltip to system tray icon
- Updated setIcon method to include tooltip text for the system tray icon.
- Added NIF_TIP flag and set the tooltip text using UTF16 encoding.

Resolves: #6372
2024-08-16 06:00:12 +08:00
Michael Yang
e3d7f32af7 Merge pull request #6363 from ollama/mxyng/fix-noprune
fix: noprune on pull
2024-08-15 12:20:38 -07:00
Michael Yang
3a75e74e34 only skip invalid json manifests 2024-08-15 10:29:14 -07:00
Michael Yang
237dccba1e skip invalid manifest files 2024-08-14 16:55:45 -07:00
Michael Yang
b3f75fc812 fix noprune 2024-08-14 15:48:51 -07:00
Jeffrey Morgan
8200c371ae add CONTRIBUTING.md (#6349) 2024-08-14 15:19:50 -07:00
longtao
0a8d6ea86d Fix typo and improve readability (#5964)
* Fix typo and improve readability

Summary:
* Rename updatAvailableMenuID to updateAvailableMenuID
* Replace unused cmd parameter with _ in RunServer function
* Fix typos in comments

(cherry picked from commit 5b8715f0b04773369e8eb1f9e6737995a0ab3ba7)

* Update api/client.go

Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com>

---------

Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com>
2024-08-13 17:54:19 -07:00
Blake Mizerany
8e1050f366 server: reduce max connections used in download (#6347)
The previous value of 64 was WAY too high and unnecessary. It reached
diminishing returns and blew past it. This is a more reasonable number
for _most_ normal cases. For users on cloud servers with excellent
network quality, this will keep screaming for them, without hitting our
CDN limits. For users with relatively poor network quality, this will
keep them from saturating their network and causing other issues.
2024-08-13 16:47:35 -07:00
Bruce MacDonald
eda8a32a09 update chatml template format to latest in docs (#6344) 2024-08-13 16:39:18 -07:00
Michael Yang
a0a40aa20c Merge pull request #6346 from ollama/mxyng/lint 2024-08-13 14:58:35 -07:00
Michael Yang
2697d7f5aa lint
- fixes printf: non-constant format string in call to fmt.Printf
- fixes SA1032: arguments have the wrong order
- disables testifylint
2024-08-13 14:36:33 -07:00
Pamela Fox
1f32276178 Update openai.md to remove extra checkbox (#6345) 2024-08-13 13:36:05 -07:00
Daniel Hiltgen
4c4fe3f87f Merge pull request #6343 from dhiltgen/revert_win_go_version
Go back to a pinned Go version
2024-08-13 11:53:49 -07:00
Daniel Hiltgen
feedf49c71 Go back to a pinned Go version
Go version 1.22.6 is triggering AV false positives, so go back to 1.22.5
2024-08-13 11:45:44 -07:00
royjhan
8b00a415ab Load Embedding Model on Empty Input (#6325)
* load on empty input

* no load on invalid input
2024-08-13 10:19:56 -07:00
Michael Yang
01b80e9ffc Merge pull request #5443 from ollama/mxyng/convert-phi3
add conversion for microsoft phi 3 mini/medium 4k, 128k
2024-08-12 15:47:58 -07:00
Michael Yang
bd5e432630 update import.md 2024-08-12 15:13:29 -07:00
Bruce MacDonald
aec77d6a05 support new "longrope" attention factor 2024-08-12 15:13:29 -07:00
Michael Yang
6ffb5cb017 add conversion for microsoft phi 3 mini/medium 4k, 128 2024-08-12 15:13:29 -07:00
Josh
f7e3b9190f cmd: spinner progress for transfer model data (#6100) 2024-08-12 11:46:32 -07:00
Josh
980dd15f81 cmd: speed up gguf creates (#6324) 2024-08-12 11:46:09 -07:00
royjhan
01d544d373 OpenAI: Simplify input output in testing (#5858)
* simplify input output

* direct comp

* in line image

* rm error pointer type

* update response testing

* lint
2024-08-12 10:33:34 -07:00
Josh
1dc3ef3aa9 Revert "server: speed up single gguf creates (#5898)" (#6323)
This reverts commit 8aac22438e.
2024-08-12 09:57:51 -07:00
Josh
8aac22438e server: speed up single gguf creates (#5898) 2024-08-12 09:28:55 -07:00
Jeffrey Morgan
15c2d8fe14 server: parallelize embeddings in API web handler instead of in subprocess runner (#6220)
For simplicity, perform parallelization of embedding requests in the API handler instead of offloading this to the subprocess runner. This keeps the scheduling story simpler as it builds on existing parallel requests, similar to existing text completion functionality.
2024-08-11 11:57:10 -07:00
Daniel Hiltgen
25906d72d1 llm: prevent loading too large models on windows (#5926)
Don't allow loading models that would lead to memory exhaustion (across vram, system memory and disk paging). This check was already applied on Linux but should also be applied on Windows as well.
2024-08-11 11:30:20 -07:00
CognitiveTech
023451ce47 add integration obook-summary (#6305) 2024-08-10 18:43:08 -07:00
Jesse Gross
9b53e39d8e Merge pull request #6258 from coolljt0725/fix_typo
server/download.go: Fix a typo in log
2024-08-09 17:19:48 -07:00
Michael Yang
97fae2df95 Merge pull request #6235 from Nicholas42/fix_line_endings
Set *.png and *.ico to be treated as binary files.
2024-08-09 17:06:30 -07:00
Michael Yang
160d9d4900 Merge pull request #6171 from ollama/mxyng/remove-temp
removeall to remove non-empty temp dirs
2024-08-09 15:47:13 -07:00
Nicholas Schwab
d4e6407464 Restrict text files with explicit line feeds to *.go.
This partially reverts b732beba6a. It
seems like explicitly setting all files to use line feeds was done due
to issues with the go linter, hence it can be restricted to those files
(https://github.com/ollama/ollama/pull/6235#issuecomment-2278745953).
2024-08-09 23:14:13 +02:00
Daniel Hiltgen
b7f7d8cd15 Merge pull request #6291 from dhiltgen/no_sparse_fail
Don't hard fail on sparse setup error
2024-08-09 12:30:25 -07:00
Daniel Hiltgen
2fa1db4345 Don't hard fail on sparse setup error
It seems this can fail in some casees, but proceed
with the download anyway.
2024-08-09 12:16:19 -07:00
Daniel Hiltgen
71b0945fc6 Merge pull request #6290 from dhiltgen/intel_npe
Harden intel boostrap for nil pointers
2024-08-09 12:14:42 -07:00
Daniel Hiltgen
5bca2e60a7 Harden intel boostrap for nil pointers 2024-08-09 11:31:38 -07:00
Nicholas42
67472e0e89 Also flag *.icns as binary 2024-08-09 13:41:20 +02:00
Daniel Hiltgen
e9aa5117c4 Merge pull request #6133 from dhiltgen/cuda_repo
Adjust arm cuda repo paths
2024-08-08 12:33:35 -07:00
Daniel Hiltgen
2473bdba5e Merge pull request #6182 from dhiltgen/more_patterns
Catch one more error log
2024-08-08 12:33:17 -07:00
Jesse Gross
7d1c0047fa Merge pull request #6247 from ollama/jessegross/layers
Store layers inside manifests consistently as values.
2024-08-08 10:46:43 -07:00
Jitang Lei
7b61eba471 server/download.go: Fix a typo in log
Signed-off-by: Jitang Lei <leijitang@outlook.com>
2024-08-08 20:28:01 +08:00
Jesse Gross
7edaf6e7e8 manifest: Store layers inside manifests consistently as values.
Commit 1829fb61 ("manifest: Fix crash on startup when trying to clean up
unused files (#5840)") changed the config layer stored in manifests
from a pointer to a value. This was done in order to avoid potential
nil pointer dereferences after it is deserialized from JSON in the
event that the field is missing.

This changes the Layers slice to also be stored by value. This enables
consistency in handling across the two objects.
2024-08-07 17:03:06 -07:00
Jesse Gross
97ec8cfd4e image: Clarify argument to WriteManifest is config
When creating a model the config layer is appended to the list of
layers and then the last layer is used as the config when writing the
manifest. This change directly uses the config layer to write the
manifest. There is no behavior change but it is less error prone.
2024-08-07 16:58:42 -07:00
royjhan
5b3a21b578 add metrics to docs (#6079) 2024-08-07 14:43:44 -07:00
Kyle Kelley
ad0c19dde4 Use llama3.1 in tools example (#5985)
* Use llama3.1 in tools example

* Update api.md
2024-08-07 17:20:50 -04:00
Jesse Gross
69eb06c40e Merge pull request #6145 from ollama/jessegross/bug5840
Fix crash on startup when trying to clean up unused files (#5840)
2024-08-07 11:24:15 -07:00
Jesse Gross
1829fb61bd manifest: Fix crash on startup when trying to clean up unused files (#5840)
Currently if the config field is missing in the manifest file (or
corrupted), Ollama will crash when it tries to read it. This can
happen at startup or when pulling new models.

This data is mostly just used for showing model information so we
can be tolerant of it not being present - it is not required to
run the models. Besides avoiding crashing, this also gives us the
ability to restructure the config in the future by pulling it
into the main manifest file.
2024-08-07 10:30:44 -07:00
Nicholas Schwab
ce67706037 Set *.png and *.ico to be treated as binary files.
The change b732beba6 makes all files text files and sets lf as eol. This
will automatically change all files to have lf if they are touched by
git (e.g. via git status). This change cannot be stashed and makes it
hard to work with the repo (rebase and checkout don't really work). See
also #6183.

Here, we set the offending files (*.png and *.ico, but that might be
more in the future) to be treated as binary files and not be changed by
git.
2024-08-07 18:20:11 +02:00
Jesse Gross
685a53534b manifest: Don't prune layers if we can't open a manifest file
If there is an error when opening a manifest file (corrupted, permission denied, etc.)
then the referenced layers will not be included in the list of active
layers. This causes them to be deleted when pruning happens at startup
or a model is pulled.

In such a situation, we should prefer to preserve data in the hopes that
it can be recovered rather than being agressive about deletion.
2024-08-06 23:11:19 -07:00
Jeffrey Morgan
de4fc29773 llm: reserve required number of slots for embeddings (#6219) 2024-08-06 23:20:49 -04:00
Jeffrey Morgan
e04c7012c2 update llama.cpp submodule to 1e6f6554 (#6208) 2024-08-06 15:11:45 -04:00
Chua Chee Seng
d4a7216c82 Fixed invalid option provided not displaying the invalid option name problem. (#6202) 2024-08-06 14:37:16 -04:00
Daniel Hiltgen
a4fdd03c3b Merge pull request #6207 from dhiltgen/sparse_win
Ensure sparse files on windows during download
2024-08-06 11:06:06 -07:00
Daniel Hiltgen
fc85f50a2b Ensure sparse files on windows during download
The file.Truncate call on windows will write the whole file
unless you set the sparse flag, leading to heavy I/O at the
beginning of download.  This should improve our
I/O behavior on windows and put less stress on the users disk.
2024-08-06 10:58:08 -07:00
royjhan
86b907f82a sort batch results (#6189) 2024-08-05 16:55:34 -07:00
Michael Yang
10d49bce70 Merge pull request #6190 from ollama/mxyng/fix-integration
fix concurrency test
2024-08-05 16:45:49 -07:00
Michael Yang
7ed367419e fix concurrency test 2024-08-05 16:36:16 -07:00
Daniel Hiltgen
50ee8b5f56 Merge pull request #6186 from dhiltgen/numa
Implement linux NUMA detection
2024-08-05 15:20:06 -07:00
Michael Yang
03bdac0595 Merge pull request #6146 from ollama/mxyng/testing
use testing tempdirs
2024-08-05 13:00:05 -07:00
Daniel Hiltgen
f457d63400 Implement linux NUMA detection
If the system has multiple numa nodes, enable numa support in llama.cpp
If we detect numactl in the path, use that, else use the basic "distribute" mode.
2024-08-05 12:56:20 -07:00
Daniel Hiltgen
04210aa6dd Catch one more error log 2024-08-05 09:28:07 -07:00
Michael Yang
43f9d92008 close pid file 2024-08-05 00:41:16 -07:00
Michael Yang
ed6c8bfe57 removeall to remove non-empty temp dirs 2024-08-05 00:41:16 -07:00
Michael Yang
39f2bc6bfc Merge pull request #6167 from ollama/mxyng/line-feed
line feed
2024-08-05 00:06:28 -07:00
frob
b73b0940ef Disable paging for journalctl (#6154)
Users using `journalctl` to get logs for issue logging sometimes don't realize that paging is causing information to be missed.
2024-08-05 00:10:53 -04:00
Michael Yang
6a07344786 line feed 2024-08-04 17:25:41 -07:00
sryu1
8b920f35a4 Add Gemma 2 2b (#6151) 2024-08-04 10:58:39 -04:00
Ivan Charapanau
4221e39867 Reference ollama integration with Harbor (#6147) 2024-08-02 17:03:46 -07:00
Michael Yang
a091fadfda use testing tempdirs 2024-08-02 16:04:06 -07:00
Michael Yang
77ccbf04dc Merge pull request #6128 from ollama/mxyng/lint
enable gofmt/gofumpt/goimports/tenv
2024-08-02 14:58:40 -07:00
royjhan
4addf6b587 Update OpenAI Compatibility Docs with /v1/completions (#5311)
* Update docs

* token bug corrected

* Update docs/openai.md

* Update docs/openai.md

* add suffix

* merge conflicts

* merge conflicts
2024-08-02 13:16:23 -07:00
royjhan
85c7f11170 Update docs (#5310) 2024-08-02 13:05:57 -07:00
Daniel Hiltgen
df3802a65f Adjust arm cuda repo paths
Ubuntu distros fail to install cuda drivers since aarch64 isn't valid
2024-08-01 17:22:25 -07:00
Michael Yang
b732beba6a lint 2024-08-01 17:06:06 -07:00
Kim Hallberg
ce1fb4447e Fix models/{model} URL (#6132) 2024-08-01 16:31:47 -07:00
royjhan
558a54b098 Update OpenAI Compatibility Docs with /v1/embeddings (#5470)
* docs without usage

* no usage

* rm metric note
2024-08-01 16:00:29 -07:00
royjhan
ed52833bb1 Add to docs (#5309) 2024-08-01 15:58:13 -07:00
royjhan
6f133a0bdd OpenAI: Add Usage to v1/embeddings (#5886)
* add prompt tokens to embed response

* rm slog

* metrics

* types

* prompt n

* clean up

* reset submodule

* add tokens to v1/embeddings

* separate usage
2024-08-01 15:49:37 -07:00
royjhan
f561eecfb8 Update OpenAI Compatibility Docs with /v1/models (#5151)
* OpenAI Docs

* Update docs/openai.md

Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com>

* Remove newline

---------

Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com>
2024-08-01 15:48:44 -07:00
Michael Yang
ff7c9060ec Merge pull request #6115 from slouffka/fix-context
Fix context in /api/generate grows too much (#5980).
2024-08-01 15:13:59 -07:00
Michael Yang
0ff42e84b0 Merge pull request #4756 from ollama/mxyng/convert2
refactor convert
2024-08-01 14:16:30 -07:00
Vyacheslav Moskalev
8a9f946ca7 Refactor and format code. 2024-08-02 03:50:05 +07:00
Vyacheslav Moskalev
3b5210548e Refactor code. Remove extra variable. 2024-08-01 19:56:15 +07:00
Vyacheslav Moskalev
b0c216584c Better types and naming closer to style. 2024-08-01 19:43:44 +07:00
Vyacheslav Moskalev
49a5483139 Change the order of context and prompt. 2024-08-01 19:25:56 +07:00
Vyacheslav Moskalev
6bc5c13758 Fix extra context concatenation in generate handler (#5980). 2024-08-01 15:45:58 +07:00
Michael Yang
3e614260af Merge pull request #6109 from ollama/mxyng/fix-modelfile
fix modelfile message quotes
2024-07-31 17:05:43 -07:00
Michael Yang
d87b4a488e fix modelfile message quotes 2024-07-31 16:52:09 -07:00
Michael Yang
4c14855ad7 Merge pull request #6106 from ollama/mxyng/default-sliding-window-attention
patches: phi3 optional sliding window attention
2024-07-31 16:12:06 -07:00
Blake Mizerany
dc77bbcfa4 server: fix json marshalling of downloadBlobPart (#6108) 2024-07-31 16:01:24 -07:00
Michael Yang
d8e2664c33 convert: fix parse functions 2024-07-31 15:58:55 -07:00
Michael Yang
eafc607abb convert: only extract large files 2024-07-31 15:58:55 -07:00
Michael Yang
781fc2d576 Update convert/reader_safetensors.go
Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com>
2024-07-31 15:58:55 -07:00
Michael Yang
df993fa37b comments 2024-07-31 15:58:55 -07:00
Michael Yang
5e9db9fb0b refactor convert 2024-07-31 15:58:33 -07:00
Michael Yang
0f3271db88 patches: phi3 default sliding window attention 2024-07-31 14:58:34 -07:00
Michael Yang
6b252918fb update convert test to check result data 2024-07-31 10:59:38 -07:00
Michael Yang
c4c84b7a0d Merge pull request #5196 from ollama/mxyng/messages-2
include modelfile messages
2024-07-31 10:18:17 -07:00
Michael Yang
5c1912769e Merge pull request #5473 from ollama/mxyng/environ
fix: environ lookup
2024-07-31 10:18:05 -07:00
Daniel Nguyen
71399aa682 Added BoltAI as a desktop UI for Ollama (#6096) 2024-07-31 08:44:58 -07:00
Jeffrey Morgan
463a8aa273 Create SECURITY.md 2024-07-30 21:01:12 -07:00
Michael
3579b4966a Update README to include Firebase Genkit (#6083)
Firebase Genkit
2024-07-30 18:40:09 -07:00
Jeffrey Morgan
5d66578356 Update README.md
Better example for multi-modal input
2024-07-30 18:08:34 -07:00
jmorganca
afa8d6e9d5 patch gemma support 2024-07-30 18:07:29 -07:00
royjhan
1b44d873e7 Add Metrics to api\embed response (#5709)
* add prompt tokens to embed response

* rm slog

* metrics

* types

* prompt n

* clean up

* reset submodule

* update tests

* test name

* list metrics
2024-07-30 13:12:21 -07:00
Daniel Hiltgen
cef2c6054d Merge pull request #5859 from dhiltgen/homogeneous_gpus
Prevent partial loading on mixed GPU brands
2024-07-30 11:06:42 -07:00
Daniel Hiltgen
345420998e Prevent partial loading on mixed GPU brands
In mult-brand GPU setups, if we couldn't fully load the model we
would fall through the scheduler and mistakenly try to load across
a mix of brands.  This makes sure we find the set of GPU(s) that
best fit for the partial load.
2024-07-30 11:00:55 -07:00
Kim Hallberg
0be8baad2b Update and Fix example models (#6065)
* Update example models

* Remove unused README.md
2024-07-29 23:56:37 -07:00
Daniel Hiltgen
1a83581a8e Merge pull request #5895 from dhiltgen/sched_faq
Better explain multi-gpu behavior
2024-07-29 14:25:41 -07:00
Daniel Hiltgen
37926eb991 Merge pull request #5927 from dhiltgen/high_cpu_count
Ensure amd gpu nodes are numerically sorted
2024-07-29 14:24:57 -07:00
Daniel Hiltgen
3d4634fdff Merge pull request #5934 from dhiltgen/missing_cuda_repo
Report better error on cuda unsupported os/arch
2024-07-29 14:24:20 -07:00
royjhan
365431d406 return tool calls finish reason for openai (#5995)
* hot fix

* backend stream support

* clean up

* finish reason

* move to openai
2024-07-29 13:56:57 -07:00
Daniel Hiltgen
161e12cecf Merge pull request #5932 from dhiltgen/win_font
Explain font problems on windows 10
2024-07-29 13:40:24 -07:00
Jeffrey Morgan
46e6327e0f api: add stringifier for Tool (#5891) 2024-07-29 13:35:16 -07:00
Jeffrey Morgan
68ee42f995 update llama.cpp submodule to 6eeaeba1 (#6039) 2024-07-29 13:20:26 -07:00
Ikko Eltociear Ashimine
f26aef9a8b docs: update README.md (#6059)
HuggingFace -> Hugging Face
2024-07-29 10:53:30 -07:00
Michael Yang
38d9036b59 Merge pull request #5992 from ollama/mxyng/save
fix: model save
2024-07-29 09:53:19 -07:00
Veit Heller
6f26e9322f Fix typo in image docs (#6041) 2024-07-29 08:50:53 -07:00
Jeffrey Morgan
0e4d653687 upate to llama3.1 elsewhere in repo (#6032) 2024-07-28 19:56:02 -07:00
Michael
2c01610616 update readme to llama3.1 (#5933) 2024-07-28 14:21:38 -07:00
Tibor Schmidt
f3d7a481b7 feat: add support for min_p (resolve #1142) (#1825) 2024-07-27 14:37:40 -07:00
Jeffrey Morgan
f2a96c7d77 llm: keep patch for llama 3 rope factors (#5987) 2024-07-26 15:20:52 -07:00
Daniel Hiltgen
e8a66680d1 Merge pull request #5705 from dhiltgen/win_errormode
Enable windows error dialog for subprocess
2024-07-26 14:49:34 -07:00
Michael Yang
079b2c3b03 Merge pull request #5999 from ollama/mxyng/fix-push
fix nil deref in auth.go
2024-07-26 14:28:34 -07:00
Blake Mizerany
750c1c55f7 server: fix race conditions during download (#5994)
This fixes various data races scattered throughout the download/pull
client where the client was accessing the download state concurrently.

This commit is mostly a hot-fix and will be replaced by a new client one
day soon.

Also, remove the unnecessary opts argument from downloadChunk.
2024-07-26 14:24:24 -07:00
Michael Yang
a622c47bd3 fix nil deref in auth.go 2024-07-26 14:14:48 -07:00
Michael Yang
ec4c35fe99 Merge pull request #5512 from ollama/mxyng/detect-stop
autodetect stop parameters from template
2024-07-26 13:48:23 -07:00
Michael Yang
a250c2cb13 display messages 2024-07-26 13:39:57 -07:00
Michael Yang
3d9de805b7 fix: model save
stop parameter is saved as a slice which is incompatible with modelfile
parsing
2024-07-26 13:23:06 -07:00
Michael Yang
15af558423 include modelfile messages 2024-07-26 11:40:11 -07:00
Jeffrey Morgan
f5e3939220 Update api.md (#5968) 2024-07-25 23:10:18 -04:00
Jeffrey Morgan
ae27d9dcfd Update openai.md 2024-07-25 20:27:33 -04:00
Michael Yang
37096790a7 Merge pull request #5552 from ollama/mxyng/messages-docs
docs
2024-07-25 16:26:19 -07:00
Michael Yang
997c903884 Update docs/template.md
Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com>
2024-07-25 16:23:40 -07:00
Blake Mizerany
c8af3c2d96 server: reuse original download URL for images (#5962)
This changes the registry client to reuse the original download URL
it gets on the first redirect response for all subsequent requests,
preventing thundering herd issues when hot new LLMs are released.
2024-07-25 15:58:30 -07:00
Jeffrey Morgan
455e61170d Update openai.md 2024-07-25 18:34:47 -04:00
royjhan
4de1370a9d openai tools doc (#5617) 2024-07-25 18:34:06 -04:00
Jeffrey Morgan
bbf8f102ee Revert "llm(llama): pass rope factors (#5924)" (#5963)
This reverts commit bb46bbcf5e.
2024-07-25 18:24:55 -04:00
Daniel Hiltgen
ce3c93b08f Report better error on cuda unsupported os/arch
If we detect an NVIDIA GPU, but nvidia doesn't support the os/arch,
this will report a better error for the user and point them to docs
to self-install the drivers if possible.
2024-07-24 17:09:20 -07:00
Daniel Hiltgen
6c2129d5d0 Explain font problems on windows 10 2024-07-24 15:22:00 -07:00
Daniel Hiltgen
7c2a157ca4 Ensure amd gpu nodes are numerically sorted
For systems that enumerate over 10 CPUs the default lexicographical
sort order interleaves CPUs and GPUs.
2024-07-24 13:43:26 -07:00
Michael Yang
bb46bbcf5e llm(llama): pass rope factors (#5924) 2024-07-24 16:05:59 -04:00
royjhan
ac33aa7d37 Fix Embed Test Flakes (#5893)
* float cmp

* increase tolerance
2024-07-24 11:15:46 -07:00
Daniel Hiltgen
830fdd2715 Better explain multi-gpu behavior 2024-07-23 15:16:38 -07:00
Ajay Chintala
a6cd8f6169 Update README.md to add LLMStack integration (#5799) 2024-07-23 14:40:23 -04:00
Daniel Hiltgen
c78089263a Merge pull request #5864 from dhiltgen/bump_go
Bump Go patch version
2024-07-22 16:34:18 -07:00
Daniel Hiltgen
3e5ea035d5 Merge pull request #5757 from lreed-mdsol/lreed/bump-go-version-fix-vulnerabilities
bump go version to 1.22.5 to fix security vulnerabilities in docker
2024-07-22 16:32:43 -07:00
Daniel Hiltgen
5d604eec5b Bump Go patch version 2024-07-22 16:16:28 -07:00
Josh
db0968f30c fix dupe err message (#5857) 2024-07-22 15:48:15 -07:00
Daniel Hiltgen
e12fff8810 Enable windows error dialog for subprocess startup
Make sure if something goes wrong spawning the process, the user gets
enough info to be able to try to self correct, or at least file a bug
with details so we can fix it.  Once the process starts, we immediately
change back to the recommended setting to prevent the blocking dialog.
This ensures if the model fails to load (OOM, unsupported model type,
etc.) the process will exit quickly and we can scan the stdout/stderr
of the subprocess for the reason to report via API.
2024-07-22 14:07:27 -07:00
Michael Yang
9b60a038e5 update api.md 2024-07-22 13:49:51 -07:00
Michael Yang
83a0cb8d88 docs 2024-07-22 13:38:09 -07:00
royjhan
c0648233f2 api embed docs (#5282) 2024-07-22 13:37:08 -07:00
Jeffrey Morgan
d835368eb8 convert: capture head_dim for mistral (#5818) 2024-07-22 16:16:22 -04:00
Michael Yang
85d9d73a72 comments 2024-07-22 11:49:03 -07:00
Michael Yang
78140a712c cleanup tests 2024-07-22 11:49:03 -07:00
Michael Yang
1954ec5917 uint64 2024-07-22 11:49:02 -07:00
Michael Yang
0f1910129f int 2024-07-22 11:30:07 -07:00
Michael Yang
e2c3f6b3e2 string 2024-07-22 11:27:52 -07:00
Michael Yang
8570c1c0ef keepalive 2024-07-22 11:27:22 -07:00
Michael Yang
55cd3ddcca bool 2024-07-22 11:27:21 -07:00
Michael Yang
66fe77f084 models 2024-07-22 11:26:12 -07:00
Michael Yang
d1a5227cad origins 2024-07-22 11:25:30 -07:00
Michael Yang
4f1afd575d host 2024-07-22 11:25:30 -07:00
Michael Yang
35b89b2eab rfc: dynamic environ lookup 2024-07-22 11:25:30 -07:00
Daniel Hiltgen
5784c05397 Merge pull request #5854 from dhiltgen/win_exit_status
Refine error reporting for subprocess crash
2024-07-22 10:40:22 -07:00
Daniel Hiltgen
f14aa5435d Merge pull request #5855 from dhiltgen/remove_max_vram
Remove no longer supported max vram var
2024-07-22 10:35:29 -07:00
Jeffrey Morgan
f8fedbda20 Update llama.cpp submodule commit to d94c6e0c (#5805) 2024-07-22 12:42:00 -04:00
Jeffrey Morgan
b3e5491e41 server: collect nested tool call objects when parsing (#5824) 2024-07-22 12:38:03 -04:00
Daniel Hiltgen
cc269ba094 Remove no longer supported max vram var
The OLLAMA_MAX_VRAM env var was a temporary workaround for OOM
scenarios.  With Concurrency this was no longer wired up, and the simplistic
value doesn't map to multi-GPU setups.  Users can still set `num_gpu`
to limit memory usage to avoid OOM if we get our predictions wrong.
2024-07-22 09:08:11 -07:00
Daniel Hiltgen
a3c20e3f18 Refine error reporting for subprocess crash
On windows, the exit status winds up being the search term many
users search for and end up piling in on issues that are unrelated.
This refines the reporting so that if we have a more detailed message
we'll suppress the exit status portion of the message.
2024-07-22 08:52:16 -07:00
Jeffrey Morgan
80ee9b5e47 Remove out of space test temporarily (#5825) 2024-07-21 00:22:11 -04:00
Jeffrey Morgan
5534f2cc6a llm: consider head_dim in llama arch (#5817) 2024-07-20 21:48:12 -04:00
Daniel Hiltgen
d321297d8a Merge pull request #5815 from dhiltgen/win_rocm_gfx_features
Adjust windows ROCm discovery
2024-07-20 16:02:55 -07:00
Daniel Hiltgen
06e5d74e34 Merge pull request #5506 from dhiltgen/sched_tests
Refine scheduler unit tests for reliability
2024-07-20 15:48:39 -07:00
Daniel Hiltgen
5d707e6fd5 Merge pull request #5583 from dhiltgen/integration_improvements
Fix context exhaustion integration test for small gpus
2024-07-20 15:48:21 -07:00
Daniel Hiltgen
283948c83b Adjust windows ROCm discovery
The v5 hip library returns unsupported GPUs which wont enumerate at
inference time in the runner so this makes sure we align discovery.  The
gfx906 cards are no longer supported so we shouldn't compile with that
GPU type as it wont enumerate at runtime.
2024-07-20 15:17:50 -07:00
Jeffrey Morgan
1475eab95f add patch for tekken (#5807) 2024-07-20 13:41:21 -04:00
Jeffrey Morgan
20090f3172 preserve last assistant message (#5802) 2024-07-19 20:19:26 -07:00
Jeffrey Morgan
69a2d4ccff Fix generate test flakyness (#5804) 2024-07-19 19:11:25 -07:00
Josh
e8b954c646 server: validate template (#5734)
add template validation to modelfile
2024-07-19 15:24:29 -07:00
royjhan
c57317cbf0 OpenAI: Function Based Testing (#5752)
* distinguish error forwarding

* more coverage

* rm comment
2024-07-19 11:37:12 -07:00
royjhan
51b2fd299c adjust openai chat msg processing (#5729) 2024-07-19 11:19:20 -07:00
lreed
f02f83660c bump go version to 1.22.5 to fix security vulnerabilities 2024-07-17 21:44:19 +00:00
Michael Yang
ebc529cbb3 autodetect stop parameters from template 2024-07-12 16:01:23 -07:00
Daniel Hiltgen
73e2c8f68f Fix context exhaustion integration test for small gpus
On the smaller GPUs, the initial model load of llama2 took over 30s (the
default timeout for the DoGenerate helper)
2024-07-09 16:24:14 -07:00
Daniel Hiltgen
f4408219e9 Refine scheduler unit tests for reliability
This breaks up some of the test scenarios to create a
more reliable set of tests, as well as adding a little more
coverage.
2024-07-09 16:00:08 -07:00
201 changed files with 7227 additions and 3792 deletions

2
.gitattributes vendored
View File

@@ -1 +1,3 @@
llm/ext_server/* linguist-vendored
* text=auto
*.go text eol=lf

View File

@@ -187,6 +187,13 @@ jobs:
generate-windows-cuda:
environment: release
runs-on: windows
strategy:
matrix:
cuda:
- version: "11"
url: 'https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe'
- version: "12"
url: 'https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_551.61_windows.exe'
env:
KEY_CONTAINER: ${{ vars.KEY_CONTAINER }}
steps:
@@ -220,11 +227,11 @@ jobs:
with:
go-version-file: go.mod
cache: true
- name: 'Install CUDA'
- name: 'Install CUDA ${{ matrix.cuda.version }}'
run: |
$ErrorActionPreference = "Stop"
write-host "downloading CUDA Installer"
Invoke-WebRequest -Uri "https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe" -OutFile "${env:RUNNER_TEMP}\cuda-install.exe"
Invoke-WebRequest -Uri "${{ matrix.cuda.url }}" -OutFile "${env:RUNNER_TEMP}\cuda-install.exe"
write-host "Installing CUDA"
Start-Process "${env:RUNNER_TEMP}\cuda-install.exe" -ArgumentList '-s' -NoNewWindow -Wait
write-host "Completed CUDA"
@@ -256,7 +263,7 @@ jobs:
cp "${NVIDIA_DIR}\cublasLt64_*.dll" "dist\deps\"
- uses: actions/upload-artifact@v4
with:
name: generate-windows-cuda
name: generate-windows-cuda-${{ matrix.cuda.version }}
path: |
llm/build/**/bin/*
dist/windows-amd64/**
@@ -265,6 +272,7 @@ jobs:
name: windows-cuda-deps
path: dist/deps/*
# Import the prior generation steps and build the final windows assets
build-windows:
environment: release
@@ -314,7 +322,10 @@ jobs:
name: generate-windows-cpu
- uses: actions/download-artifact@v4
with:
name: generate-windows-cuda
name: generate-windows-cuda-11
- uses: actions/download-artifact@v4
with:
name: generate-windows-cuda-12
- uses: actions/download-artifact@v4
with:
name: windows-cuda-deps
@@ -363,7 +374,6 @@ jobs:
- run: |
./scripts/build_linux.sh
./scripts/build_docker.sh
mv dist/deps/* dist/
- uses: actions/upload-artifact@v4
with:
name: dist-linux-amd64

View File

@@ -273,7 +273,7 @@ jobs:
if: ${{ startsWith(matrix.os, 'macos-') }}
- uses: golangci/golangci-lint-action@v6
with:
args: --timeout 8m0s -v ${{ startsWith(matrix.os, 'windows-') && '' || '--disable gofmt --disable goimports' }}
args: --timeout 8m0s -v
test:
strategy:
matrix:

View File

@@ -7,22 +7,31 @@ linters:
- bodyclose
- containedctx
- contextcheck
- errcheck
- exportloopref
- gci
- gocheckcompilerdirectives
# conditionally enable this on linux/macos
# - gofmt
# - goimports
- gofmt
- gofumpt
- gosimple
- govet
- ineffassign
- intrange
- makezero
- misspell
- nilerr
- nolintlint
- nosprintfhostport
- testifylint
- staticcheck
- tenv
- unconvert
- unused
- usestdlibvars
- wastedassign
- whitespace
- usestdlibvars
linters-settings:
gci:
sections: [standard, default, localmodule]
severity:
default-severity: error
rules:

37
CONTRIBUTING.md Normal file
View File

@@ -0,0 +1,37 @@
# Contributing to Ollama
Thank you for your interest in contributing to Ollama! Here are a few guidelines to help get you started.
## Set up
See the [development documentation](./docs/development.md) for instructions on how to build and run Ollama locally.
## Pull requests
### Ideal issues
* [Bugs](https://github.com/ollama/ollama/issues?q=is%3Aissue+is%3Aopen+label%3Abug): issues where Ollama stops working or where it results in an unexpected error.
* [Performance](https://github.com/ollama/ollama/issues?q=is%3Aissue+is%3Aopen+label%3Aperformance): issues to make Ollama faster at model inference, downloading or uploading.
* [Security](https://github.com/ollama/ollama/blob/main/SECURITY.md): issues that could lead to a security vulnerability. As mentioned in [SECURITY.md](https://github.com/ollama/ollama/blob/main/SECURITY.md), please do not disclose security vulnerabilities publicly.
### Issues that are harder to review
* New features: new features (e.g. API fields, environment variables) add surface area to Ollama and make it harder to maintain in the long run as they cannot be removed without potentially breaking users in the future.
* Refactoring: large code improvements are important, but can be harder or take longer to review and merge.
* Documentation: small updates to fill in or dorrect missing documentation is helpful, however large documentation additions can be hard to maintain over time.
### Issues that may not be accepted
* Changes that break backwards compatibility in Ollama's API (including the OpenAI-compatible API)
* Changes that add significant friction to the user experience
* Changes that create a large future maintenance burden for maintainers and contributors
### Best practices
* Commit messages: please leave both a title and a description in your commit messages. The title should be a short summary of the changes, with a leading word that explains the section of the code being changed (e.g. `api: fix parsing of prompt field`) . In the description, leave a short 2-3 sentences that explain more about the change and its impact.
* Tests: please add test coverage to changes where possible.
* Minimize dependencies: avoid adding new dependencies unless absolutely necessary.
## Need help?
If you need help with anything, feel free to reach out to us on our [Discord server](https://discord.gg/ollama).

View File

@@ -1,7 +1,9 @@
ARG GOLANG_VERSION=1.22.1
ARG GOLANG_VERSION=1.22.5
ARG CMAKE_VERSION=3.22.1
# this CUDA_VERSION corresponds with the one specified in docs/gpu.md
ARG CUDA_VERSION=11.3.1
ARG CUDA_VERSION_11=11.3.1
ARG CUDA_V11_ARCHITECTURES="50;52;53;60;61;62;70;72;75;80;86"
ARG CUDA_VERSION_12=12.4.0
ARG CUDA_V12_ARCHITECTURES="60;61;62;70;72;75;80;86;87;89;90;90a"
ARG ROCM_VERSION=6.1.2
# Copy the minimal context we need to run the generate scripts
@@ -10,7 +12,7 @@ COPY .git .git
COPY .gitmodules .gitmodules
COPY llm llm
FROM --platform=linux/amd64 nvidia/cuda:$CUDA_VERSION-devel-centos7 AS cuda-build-amd64
FROM --platform=linux/amd64 nvidia/cuda:$CUDA_VERSION_11-devel-centos7 AS cuda-11-build-amd64
ARG CMAKE_VERSION
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
@@ -18,9 +20,34 @@ ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
ARG CGO_CFLAGS
RUN OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_SKIP_CPU_GENERATE=1 sh gen_linux.sh
ARG CUDA_V11_ARCHITECTURES
ENV GOARCH amd64
RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_SKIP_STATIC_GENERATE=1 \
OLLAMA_SKIP_CPU_GENERATE=1 \
CMAKE_CUDA_ARCHITECTURES="${CUDA_V11_ARCHITECTURES}" \
CUDA_VARIANT="_v11" \
bash gen_linux.sh
FROM --platform=linux/arm64 nvidia/cuda:$CUDA_VERSION-devel-rockylinux8 AS cuda-build-arm64
FROM --platform=linux/amd64 nvidia/cuda:$CUDA_VERSION_12-devel-centos7 AS cuda-12-build-amd64
ARG CMAKE_VERSION
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
ARG CGO_CFLAGS
ARG CUDA_V12_ARCHITECTURES
ENV GOARCH amd64
RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_SKIP_STATIC_GENERATE=1 \
OLLAMA_SKIP_CPU_GENERATE=1 \
CMAKE_CUDA_ARCHITECTURES="${CUDA_V12_ARCHITECTURES}" \
CUDA_VARIANT="_v12" \
OLLAMA_CUSTOM_CUDA_DEFS="-DGGML_CUDA_USE_GRAPHS=on" \
bash gen_linux.sh
FROM --platform=linux/arm64 nvidia/cuda:$CUDA_VERSION_11-devel-rockylinux8 AS cuda-11-build-server-arm64
ARG CMAKE_VERSION
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
@@ -28,7 +55,32 @@ ENV PATH /opt/rh/gcc-toolset-10/root/usr/bin:$PATH
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
ARG CGO_CFLAGS
RUN OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_SKIP_CPU_GENERATE=1 sh gen_linux.sh
ARG CUDA_V11_ARCHITECTURES
ENV GOARCH arm64
RUN OLLAMA_SKIP_STATIC_GENERATE=1 \
OLLAMA_SKIP_CPU_GENERATE=1 \
CMAKE_CUDA_ARCHITECTURES="${CUDA_V11_ARCHITECTURES}" \
CUDA_VARIANT="_v11" \
bash gen_linux.sh
FROM --platform=linux/arm64 nvidia/cuda:$CUDA_VERSION_12-devel-rockylinux8 AS cuda-12-build-server-arm64
ARG CMAKE_VERSION
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
ENV PATH /opt/rh/gcc-toolset-10/root/usr/bin:$PATH
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
ARG CGO_CFLAGS
ARG CUDA_V12_ARCHITECTURES
ENV GOARCH arm64
RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_SKIP_STATIC_GENERATE=1 \
OLLAMA_SKIP_CPU_GENERATE=1 \
CMAKE_CUDA_ARCHITECTURES="${CUDA_V12_ARCHITECTURES}" \
CUDA_VARIANT="_v12" \
OLLAMA_CUSTOM_CUDA_DEFS="-DGGML_CUDA_USE_GRAPHS=on" \
bash gen_linux.sh
FROM --platform=linux/amd64 rocm/dev-centos-7:${ROCM_VERSION}-complete AS rocm-build-amd64
ARG CMAKE_VERSION
@@ -40,15 +92,11 @@ COPY --from=llm-code / /go/src/github.com/ollama/ollama/
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
ARG CGO_CFLAGS
ARG AMDGPU_TARGETS
RUN OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_SKIP_CPU_GENERATE=1 sh gen_linux.sh
RUN mkdir /tmp/scratch && \
for dep in $(zcat /go/src/github.com/ollama/ollama/llm/build/linux/x86_64/rocm*/bin/deps.txt.gz) ; do \
cp ${dep} /tmp/scratch/ || exit 1 ; \
done && \
(cd /opt/rocm/lib && tar cf - rocblas/library) | (cd /tmp/scratch/ && tar xf - ) && \
mkdir -p /go/src/github.com/ollama/ollama/dist/deps/ && \
(cd /tmp/scratch/ && tar czvf /go/src/github.com/ollama/ollama/dist/deps/ollama-linux-amd64-rocm.tgz . )
ENV GOARCH amd64
RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_SKIP_CPU_GENERATE=1 bash gen_linux.sh
RUN mkdir -p ../../dist/linux-amd64/lib/ollama && \
(cd /opt/rocm/lib && tar cf - rocblas/library) | (cd ../../dist/linux-amd64/lib/ollama && tar xf - )
FROM --platform=linux/amd64 centos:7 AS cpu-builder-amd64
ARG CMAKE_VERSION
@@ -59,16 +107,21 @@ ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
ARG OLLAMA_CUSTOM_CPU_DEFS
ARG CGO_CFLAGS
ENV GOARCH amd64
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
FROM --platform=linux/amd64 cpu-builder-amd64 AS static-build-amd64
RUN OLLAMA_CPU_TARGET="static" sh gen_linux.sh
RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_CPU_TARGET="static" bash gen_linux.sh
FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu-build-amd64
RUN OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu" sh gen_linux.sh
RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu" bash gen_linux.sh
FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu_avx-build-amd64
RUN OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu_avx" sh gen_linux.sh
RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu_avx" bash gen_linux.sh
FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu_avx2-build-amd64
RUN OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu_avx2" sh gen_linux.sh
RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu_avx2" bash gen_linux.sh
FROM --platform=linux/arm64 rockylinux:8 AS cpu-builder-arm64
ARG CMAKE_VERSION
@@ -79,12 +132,15 @@ ENV PATH /opt/rh/gcc-toolset-10/root/usr/bin:$PATH
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
ARG OLLAMA_CUSTOM_CPU_DEFS
ARG CGO_CFLAGS
ENV GOARCH arm64
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
FROM --platform=linux/arm64 cpu-builder-arm64 AS static-build-arm64
RUN OLLAMA_CPU_TARGET="static" sh gen_linux.sh
RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_CPU_TARGET="static" bash gen_linux.sh
FROM --platform=linux/arm64 cpu-builder-arm64 AS cpu-build-arm64
RUN OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu" sh gen_linux.sh
RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu" bash gen_linux.sh
# Intermediate stage used for ./scripts/build_linux.sh
@@ -95,12 +151,16 @@ COPY . .
COPY --from=static-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
COPY --from=cpu_avx-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
COPY --from=cpu_avx2-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
COPY --from=cuda-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
COPY --from=cuda-11-build-amd64 /go/src/github.com/ollama/ollama/dist/ dist/
COPY --from=cuda-11-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
COPY --from=cuda-12-build-amd64 /go/src/github.com/ollama/ollama/dist/ dist/
COPY --from=cuda-12-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
COPY --from=rocm-build-amd64 /go/src/github.com/ollama/ollama/dist/ dist/
COPY --from=rocm-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
COPY --from=rocm-build-amd64 /go/src/github.com/ollama/ollama/dist/deps/ ./dist/deps/
ARG GOFLAGS
ARG CGO_CFLAGS
RUN go build -trimpath .
RUN --mount=type=cache,target=/root/.ccache \
go build -trimpath -o dist/linux-amd64/bin/ollama .
# Intermediate stage used for ./scripts/build_linux.sh
FROM --platform=linux/arm64 cpu-build-arm64 AS build-arm64
@@ -109,23 +169,36 @@ ARG GOLANG_VERSION
WORKDIR /go/src/github.com/ollama/ollama
COPY . .
COPY --from=static-build-arm64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
COPY --from=cuda-build-arm64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
COPY --from=cuda-11-build-server-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
COPY --from=cuda-11-build-server-arm64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
COPY --from=cuda-12-build-server-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
COPY --from=cuda-12-build-server-arm64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
ARG GOFLAGS
ARG CGO_CFLAGS
RUN go build -trimpath .
RUN --mount=type=cache,target=/root/.ccache \
go build -trimpath -o dist/linux-arm64/bin/ollama .
# Strip out ROCm dependencies to keep the primary image lean
FROM --platform=linux/amd64 ubuntu:22.04 as amd64-libs-without-rocm
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /scratch/
RUN cd /scratch/ollama/ && rm -rf rocblas libamd* libdrm* libroc* libhip* libhsa*
# Runtime stages
FROM --platform=linux/amd64 ubuntu:22.04 as runtime-amd64
COPY --from=amd64-libs-without-rocm /scratch/ /lib/
RUN apt-get update && apt-get install -y ca-certificates
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/ollama /bin/ollama
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/bin/ /bin/
FROM --platform=linux/arm64 ubuntu:22.04 as runtime-arm64
COPY --from=build-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
RUN apt-get update && apt-get install -y ca-certificates
COPY --from=build-arm64 /go/src/github.com/ollama/ollama/ollama /bin/ollama
COPY --from=build-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/bin/ /bin/
# Radeon images are much larger so we keep it distinct from the CPU/CUDA image
FROM --platform=linux/amd64 rocm/dev-centos-7:${ROCM_VERSION}-complete as runtime-rocm
RUN update-pciids
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/ollama /bin/ollama
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/bin/ /bin/
RUN ln -s /opt/rocm/lib /lib/ollama
EXPOSE 11434
ENV OLLAMA_HOST 0.0.0.0

View File

@@ -35,10 +35,10 @@ The official [Ollama Docker image](https://hub.docker.com/r/ollama/ollama) `olla
## Quickstart
To run and chat with [Llama 3](https://ollama.com/library/llama3):
To run and chat with [Llama 3.1](https://ollama.com/library/llama3.1):
```
ollama run llama3
ollama run llama3.1
```
## Model library
@@ -49,10 +49,12 @@ Here are some example models that can be downloaded:
| Model | Parameters | Size | Download |
| ------------------ | ---------- | ----- | ------------------------------ |
| Llama 3 | 8B | 4.7GB | `ollama run llama3` |
| Llama 3 | 70B | 40GB | `ollama run llama3:70b` |
| Llama 3.1 | 8B | 4.7GB | `ollama run llama3.1` |
| Llama 3.1 | 70B | 40GB | `ollama run llama3.1:70b` |
| Llama 3.1 | 405B | 231GB | `ollama run llama3.1:405b` |
| Phi 3 Mini | 3.8B | 2.3GB | `ollama run phi3` |
| Phi 3 Medium | 14B | 7.9GB | `ollama run phi3:medium` |
| Gemma 2 | 2B | 1.6GB | `ollama run gemma2:2b` |
| Gemma 2 | 9B | 5.5GB | `ollama run gemma2` |
| Gemma 2 | 27B | 16GB | `ollama run gemma2:27b` |
| Mistral | 7B | 4.1GB | `ollama run mistral` |
@@ -64,7 +66,8 @@ Here are some example models that can be downloaded:
| LLaVA | 7B | 4.5GB | `ollama run llava` |
| Solar | 10.7B | 6.1GB | `ollama run solar` |
> Note: You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
> [!NOTE]
> You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
## Customize a model
@@ -96,16 +99,16 @@ See the [guide](docs/import.md) on importing models for more information.
### Customize a prompt
Models from the Ollama library can be customized with a prompt. For example, to customize the `llama3` model:
Models from the Ollama library can be customized with a prompt. For example, to customize the `llama3.1` model:
```
ollama pull llama3
ollama pull llama3.1
```
Create a `Modelfile`:
```
FROM llama3
FROM llama3.1
# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1
@@ -140,7 +143,7 @@ ollama create mymodel -f ./Modelfile
### Pull a model
```
ollama pull llama3
ollama pull llama3.1
```
> This command can also be used to update a local model. Only the diff will be pulled.
@@ -148,13 +151,13 @@ ollama pull llama3
### Remove a model
```
ollama rm llama3
ollama rm llama3.1
```
### Copy a model
```
ollama cp llama3 my-model
ollama cp llama3.1 my-model
```
### Multiline input
@@ -171,21 +174,21 @@ I'm a basic program that prints the famous "Hello, world!" message to the consol
### Multimodal models
```
>>> What's in this image? /Users/jmorgan/Desktop/smile.png
ollama run llava "What's in this image? /Users/jmorgan/Desktop/smile.png"
The image features a yellow smiley face, which is likely the central focus of the picture.
```
### Pass the prompt as an argument
```
$ ollama run llama3 "Summarize this file: $(cat README.md)"
$ ollama run llama3.1 "Summarize this file: $(cat README.md)"
Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.
```
### Show model information
```
ollama show llama3
ollama show llama3.1
```
### List models on your computer
@@ -213,7 +216,7 @@ Next, start the server:
Finally, in a separate shell, run a model:
```
./ollama run llama3
./ollama run llama3.1
```
## REST API
@@ -224,7 +227,7 @@ Ollama has a REST API for running and managing models.
```
curl http://localhost:11434/api/generate -d '{
"model": "llama3",
"model": "llama3.1",
"prompt":"Why is the sky blue?"
}'
```
@@ -233,7 +236,7 @@ curl http://localhost:11434/api/generate -d '{
```
curl http://localhost:11434/api/chat -d '{
"model": "llama3",
"model": "llama3.1",
"messages": [
{ "role": "user", "content": "why is the sky blue?" }
]
@@ -296,6 +299,9 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Kerlig AI](https://www.kerlig.com/) (AI writing assistant for macOS)
- [AI Studio](https://github.com/MindWorkAI/AI-Studio)
- [Sidellama](https://github.com/gyopak/sidellama) (browser-based LLM client)
- [LLMStack](https://github.com/trypromptly/LLMStack) (No-code multi-agent framework to build LLM agents and workflows)
- [BoltAI for Mac](https://boltai.com) (AI Chat Client for Mac)
- [Harbor](https://github.com/av/harbor) (Containerized LLM Toolkit with Ollama as default backend)
### Terminal
@@ -319,6 +325,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [tlm](https://github.com/yusufcanb/tlm)
- [podman-ollama](https://github.com/ericcurtin/podman-ollama)
- [gollama](https://github.com/sammcj/gollama)
- [Ollama eBook Summary](https://github.com/cognitivetech/ollama-ebook-summary/)
### Database
@@ -334,6 +341,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
### Libraries
- [LangChain](https://python.langchain.com/docs/integrations/llms/ollama) and [LangChain.js](https://js.langchain.com/docs/modules/model_io/models/llms/integrations/ollama) with [example](https://js.langchain.com/docs/use_cases/question_answering/local_retrieval_qa)
- [Firebase Genkit](https://firebase.google.com/docs/genkit/plugins/ollama)
- [LangChainGo](https://github.com/tmc/langchaingo/) with [example](https://github.com/tmc/langchaingo/tree/main/examples/ollama-completion-example)
- [LangChain4j](https://github.com/langchain4j/langchain4j) with [example](https://github.com/langchain4j/langchain4j-examples/tree/main/ollama-examples/src/main/java)
- [LangChainRust](https://github.com/Abraxas-365/langchain-rust) with [example](https://github.com/Abraxas-365/langchain-rust/blob/main/examples/llm_ollama.rs)
@@ -387,7 +395,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Llama Coder](https://github.com/ex3ndr/llama-coder) (Copilot alternative using Ollama)
- [Ollama Copilot](https://github.com/bernardo-bruning/ollama-copilot) (Proxy that allows you to use ollama as a copilot like Github copilot)
- [twinny](https://github.com/rjmacarthy/twinny) (Copilot and Copilot chat alternative using Ollama)
- [Wingman-AI](https://github.com/RussellCanfield/wingman-ai) (Copilot code and chat alternative using Ollama and HuggingFace)
- [Wingman-AI](https://github.com/RussellCanfield/wingman-ai) (Copilot code and chat alternative using Ollama and Hugging Face)
- [Page Assist](https://github.com/n4ze3m/page-assist) (Chrome Extension)
- [AI Telegram Bot](https://github.com/tusharhero/aitelegrambot) (Telegram bot using Ollama in backend)
- [AI ST Completion](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) (Sublime Text 4 AI assistant plugin with Ollama support)

25
SECURITY.md Normal file
View File

@@ -0,0 +1,25 @@
# Security
The Ollama maintainer team takes security seriously and will actively work to resolve security issues.
## Reporting a vulnerability
If you discover a security vulnerability, please do not open a public issue. Instead, please report it by emailing hello@ollama.com. We ask that you give us sufficient time to investigate and address the vulnerability before disclosing it publicly.
Please include the following details in your report:
- A description of the vulnerability
- Steps to reproduce the issue
- Your assessment of the potential impact
- Any possible mitigations
## Security best practices
While the maintainer team does their best to secure Ollama, users are encouraged to implement their own security best practices, such as:
- Regularly updating to the latest version of Ollama
- Securing access to hosted instances of Ollama
- Monitoring systems for unusual activity
## Contact
For any other questions or concerns related to security, please contact us at hello@ollama.com

View File

@@ -18,9 +18,9 @@ import (
"bytes"
"context"
"encoding/json"
"errors"
"fmt"
"io"
"net"
"net/http"
"net/url"
"runtime"
@@ -63,13 +63,8 @@ func checkError(resp *http.Response, body []byte) error {
// If the variable is not specified, a default ollama host and port will be
// used.
func ClientFromEnvironment() (*Client, error) {
ollamaHost := envconfig.Host
return &Client{
base: &url.URL{
Scheme: ollamaHost.Scheme,
Host: net.JoinHostPort(ollamaHost.Host, ollamaHost.Port),
},
base: envconfig.Host(),
http: http.DefaultClient,
}, nil
}
@@ -178,7 +173,7 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
}
if errorResponse.Error != "" {
return fmt.Errorf(errorResponse.Error)
return errors.New(errorResponse.Error)
}
if response.StatusCode >= http.StatusBadRequest {
@@ -303,7 +298,7 @@ func (c *Client) List(ctx context.Context) (*ListResponse, error) {
return &lr, nil
}
// List running models.
// ListRunning lists running models.
func (c *Client) ListRunning(ctx context.Context) (*ProcessResponse, error) {
var lr ProcessResponse
if err := c.do(ctx, http.MethodGet, "/api/ps", nil, &lr); err != nil {
@@ -338,7 +333,7 @@ func (c *Client) Show(ctx context.Context, req *ShowRequest) (*ShowResponse, err
return &resp, nil
}
// Hearbeat checks if the server has started and is responsive; if yes, it
// Heartbeat checks if the server has started and is responsive; if yes, it
// returns nil, otherwise an error.
func (c *Client) Heartbeat(ctx context.Context) error {
if err := c.do(ctx, http.MethodHead, "/", nil, nil); err != nil {

View File

@@ -2,8 +2,6 @@ package api
import (
"testing"
"github.com/ollama/ollama/envconfig"
)
func TestClientFromEnvironment(t *testing.T) {
@@ -33,7 +31,6 @@ func TestClientFromEnvironment(t *testing.T) {
for k, v := range testCases {
t.Run(k, func(t *testing.T) {
t.Setenv("OLLAMA_HOST", v.value)
envconfig.LoadConfig()
client, err := ClientFromEnvironment()
if err != v.err {

View File

@@ -114,6 +114,11 @@ func (t Tools) String() string {
return string(bts)
}
func (t Tool) String() string {
bts, _ := json.Marshal(t)
return string(bts)
}
// Message is a single message in a chat sequence. The message contains the
// role ("system", "user", or "assistant"), the content and an optional list
// of images.
@@ -209,6 +214,7 @@ type Options struct {
NumPredict int `json:"num_predict,omitempty"`
TopK int `json:"top_k,omitempty"`
TopP float32 `json:"top_p,omitempty"`
MinP float32 `json:"min_p,omitempty"`
TFSZ float32 `json:"tfs_z,omitempty"`
TypicalP float32 `json:"typical_p,omitempty"`
RepeatLastN int `json:"repeat_last_n,omitempty"`
@@ -225,7 +231,6 @@ type Options struct {
// Runner options which must be set when the model is loaded into memory
type Runner struct {
UseNUMA bool `json:"numa,omitempty"`
NumCtx int `json:"num_ctx,omitempty"`
NumBatch int `json:"num_batch,omitempty"`
NumGPU int `json:"num_gpu,omitempty"`
@@ -261,6 +266,10 @@ type EmbedRequest struct {
type EmbedResponse struct {
Model string `json:"model"`
Embeddings [][]float32 `json:"embeddings"`
TotalDuration time.Duration `json:"total_duration,omitempty"`
LoadDuration time.Duration `json:"load_duration,omitempty"`
PromptEvalCount int `json:"prompt_eval_count,omitempty"`
}
// EmbeddingRequest is the request passed to [Client.Embeddings].
@@ -495,7 +504,7 @@ func (opts *Options) FromMap(m map[string]interface{}) error {
for key, val := range m {
opt, ok := jsonOpts[key]
if !ok {
slog.Warn("invalid option provided", "option", opt.Name)
slog.Warn("invalid option provided", "option", key)
continue
}
@@ -605,7 +614,6 @@ func DefaultOptions() Options {
F16KV: true,
UseMLock: false,
UseMMap: nil,
UseNUMA: false,
},
}
}

View File

@@ -2,7 +2,7 @@ package api
import (
"encoding/json"
"fmt"
"errors"
"math"
"testing"
"time"
@@ -192,7 +192,7 @@ func TestUseMmapFormatParams(t *testing.T) {
"use_mmap": {"foo"},
},
exp: nil,
err: fmt.Errorf("invalid bool value [foo]"),
err: errors.New("invalid bool value [foo]"),
},
}

View File

@@ -2,8 +2,8 @@
package lifecycle
import "fmt"
import "errors"
func GetStarted() error {
return fmt.Errorf("GetStarted not implemented")
return errors.New("not implemented")
}

View File

@@ -34,7 +34,6 @@ func GetStarted() error {
Sys: &syscall.SysProcAttr{CreationFlags: CREATE_NEW_CONSOLE, HideWindow: false},
}
proc, err := os.StartProcess(args[0], args, attrs)
if err != nil {
return fmt.Errorf("unable to start getting started shell %w", err)
}

View File

@@ -14,7 +14,7 @@ import (
func InitLogging() {
level := slog.LevelInfo
if envconfig.Debug {
if envconfig.Debug() {
level = slog.LevelDebug
}
@@ -27,7 +27,7 @@ func InitLogging() {
// TODO - write one-line to the app.log file saying we're running in console mode to help avoid confusion
} else {
rotateLogs(AppLogFile)
logFile, err = os.OpenFile(AppLogFile, os.O_APPEND|os.O_WRONLY|os.O_CREATE, 0755)
logFile, err = os.OpenFile(AppLogFile, os.O_APPEND|os.O_WRONLY|os.O_CREATE, 0o755)
if err != nil {
slog.Error(fmt.Sprintf("failed to create server log %v", err))
return

View File

@@ -5,5 +5,5 @@ package lifecycle
import "log/slog"
func ShowLogs() {
slog.Warn("ShowLogs not yet implemented")
slog.Warn("not implemented")
}

View File

@@ -17,7 +17,7 @@ func TestRotateLogs(t *testing.T) {
// No log exists
rotateLogs(logFile)
require.NoError(t, os.WriteFile(logFile, []byte("1"), 0644))
require.NoError(t, os.WriteFile(logFile, []byte("1"), 0o644))
assert.FileExists(t, logFile)
// First rotation
rotateLogs(logFile)
@@ -32,7 +32,7 @@ func TestRotateLogs(t *testing.T) {
assert.NoFileExists(t, logFile)
for i := 2; i <= LogRotationCount+1; i++ {
require.NoError(t, os.WriteFile(logFile, []byte(strconv.Itoa(i)), 0644))
require.NoError(t, os.WriteFile(logFile, []byte(strconv.Itoa(i)), 0o644))
assert.FileExists(t, logFile)
rotateLogs(logFile)
assert.NoFileExists(t, logFile)

View File

@@ -55,7 +55,7 @@ func start(ctx context.Context, command string) (*exec.Cmd, error) {
}
rotateLogs(ServerLogFile)
logFile, err := os.OpenFile(ServerLogFile, os.O_APPEND|os.O_WRONLY|os.O_CREATE, 0755)
logFile, err := os.OpenFile(ServerLogFile, os.O_APPEND|os.O_WRONLY|os.O_CREATE, 0o755)
if err != nil {
return nil, fmt.Errorf("failed to create server log: %w", err)
}

View File

@@ -15,6 +15,7 @@ import (
"path"
"path/filepath"
"runtime"
"strconv"
"strings"
"time"
@@ -46,7 +47,7 @@ func IsNewReleaseAvailable(ctx context.Context) (bool, UpdateResponse) {
query.Add("os", runtime.GOOS)
query.Add("arch", runtime.GOARCH)
query.Add("version", version.Version)
query.Add("ts", fmt.Sprintf("%d", time.Now().Unix()))
query.Add("ts", strconv.FormatInt(time.Now().Unix(), 10))
nonce, err := auth.NewNonce(rand.Reader, 16)
if err != nil {

View File

@@ -4,9 +4,9 @@ package lifecycle
import (
"context"
"fmt"
"errors"
)
func DoUpgrade(cancel context.CancelFunc, done chan int) error {
return fmt.Errorf("DoUpgrade not yet implemented")
return errors.New("not implemented")
}

View File

@@ -2,6 +2,7 @@ package lifecycle
import (
"context"
"errors"
"fmt"
"log/slog"
"os"
@@ -15,7 +16,7 @@ func DoUpgrade(cancel context.CancelFunc, done chan int) error {
return fmt.Errorf("failed to lookup downloads: %s", err)
}
if len(files) == 0 {
return fmt.Errorf("no update downloads found")
return errors.New("no update downloads found")
} else if len(files) > 1 {
// Shouldn't happen
slog.Warn(fmt.Sprintf("multiple downloads found, using first one %v", files))
@@ -64,7 +65,7 @@ func DoUpgrade(cancel context.CancelFunc, done chan int) error {
}
} else {
// TODO - some details about why it didn't start, or is this a pedantic error case?
return fmt.Errorf("installer process did not start")
return errors.New("installer process did not start")
}
// TODO should we linger for a moment and check to make sure it's actually running by checking the pid?

View File

@@ -87,20 +87,11 @@ DialogFontSize=12
[Files]
Source: ".\app.exe"; DestDir: "{app}"; DestName: "{#MyAppExeName}" ; Flags: ignoreversion 64bit
Source: "..\ollama.exe"; DestDir: "{app}"; Flags: ignoreversion 64bit
Source: "..\dist\windows-{#ARCH}\ollama_runners\*"; DestDir: "{app}\ollama_runners"; Flags: ignoreversion 64bit recursesubdirs
Source: "..\ollama.exe"; DestDir: "{app}\bin"; Flags: ignoreversion 64bit
Source: "..\dist\windows-{#ARCH}\lib\ollama\runners\*"; DestDir: "{app}\lib\ollama\runners"; Flags: ignoreversion 64bit recursesubdirs
Source: "..\dist\ollama_welcome.ps1"; DestDir: "{app}"; Flags: ignoreversion
Source: ".\assets\app.ico"; DestDir: "{app}"; Flags: ignoreversion
#if DirExists("..\dist\windows-amd64\cuda")
Source: "..\dist\windows-amd64\cuda\*"; DestDir: "{app}\cuda\"; Flags: ignoreversion recursesubdirs
#endif
#if DirExists("..\dist\windows-amd64\oneapi")
Source: "..\dist\windows-amd64\oneapi\*"; DestDir: "{app}\oneapi\"; Flags: ignoreversion recursesubdirs
#endif
#if DirExists("..\dist\windows-amd64\rocm")
Source: "..\dist\windows-amd64\rocm\*"; DestDir: "{app}\rocm\"; Flags: ignoreversion recursesubdirs
#endif
Source: "..\dist\windows-amd64\lib\ollama\*"; DestDir: "{app}\lib\ollama\"; Flags: ignoreversion recursesubdirs
[Icons]
Name: "{group}\{#MyAppName}"; Filename: "{app}\{#MyAppExeName}"; IconFilename: "{app}\app.ico"
@@ -108,7 +99,7 @@ Name: "{userstartup}\{#MyAppName}"; Filename: "{app}\{#MyAppExeName}"; IconFilen
Name: "{userprograms}\{#MyAppName}"; Filename: "{app}\{#MyAppExeName}"; IconFilename: "{app}\app.ico"
[Run]
Filename: "{cmd}"; Parameters: "/C set PATH={app};%PATH% & ""{app}\{#MyAppExeName}"""; Flags: postinstall nowait runhidden
Filename: "{cmd}"; Parameters: "/C set PATH={app}\bin;%PATH% & ""{app}\{#MyAppExeName}"""; Flags: postinstall nowait runhidden
[UninstallRun]
; Filename: "{cmd}"; Parameters: "/C ""taskkill /im ''{#MyAppExeName}'' /f /t"; Flags: runhidden
@@ -138,13 +129,13 @@ SetupAppRunningError=Another Ollama installer is running.%n%nPlease cancel or fi
;FinishedHeadingLabel=Run your first model
;FinishedLabel=%nRun this command in a PowerShell or cmd terminal.%n%n%n ollama run llama3
;FinishedLabel=%nRun this command in a PowerShell or cmd terminal.%n%n%n ollama run llama3.1
;ClickFinish=%n
[Registry]
Root: HKCU; Subkey: "Environment"; \
ValueType: expandsz; ValueName: "Path"; ValueData: "{olddata};{app}"; \
Check: NeedsAddPath('{app}')
ValueType: expandsz; ValueName: "Path"; ValueData: "{olddata};{app}\bin"; \
Check: NeedsAddPath('{app}\bin')
[Code]

View File

@@ -4,5 +4,5 @@ write-host "Welcome to Ollama!"
write-host ""
write-host "Run your first model:"
write-host ""
write-host "`tollama run llama3"
write-host "`tollama run llama3.1"
write-host ""

View File

@@ -3,11 +3,11 @@
package tray
import (
"fmt"
"errors"
"github.com/ollama/ollama/app/tray/commontray"
)
func InitPlatformTray(icon, updateIcon []byte) (commontray.OllamaTray, error) {
return nil, fmt.Errorf("NOT IMPLEMENTED YET")
return nil, errors.New("not implemented")
}

View File

@@ -11,9 +11,7 @@ import (
"golang.org/x/sys/windows"
)
var (
quitOnce sync.Once
)
var quitOnce sync.Once
func (t *winTray) Run() {
nativeLoop()

View File

@@ -11,12 +11,12 @@ import (
)
const (
updatAvailableMenuID = 1
updateMenuID = updatAvailableMenuID + 1
separatorMenuID = updateMenuID + 1
diagLogsMenuID = separatorMenuID + 1
diagSeparatorMenuID = diagLogsMenuID + 1
quitMenuID = diagSeparatorMenuID + 1
updateAvailableMenuID = 1
updateMenuID = updateAvailableMenuID + 1
separatorMenuID = updateMenuID + 1
diagLogsMenuID = separatorMenuID + 1
diagSeparatorMenuID = diagLogsMenuID + 1
quitMenuID = diagSeparatorMenuID + 1
)
func (t *winTray) initMenus() error {
@@ -35,7 +35,7 @@ func (t *winTray) initMenus() error {
func (t *winTray) UpdateAvailable(ver string) error {
if !t.updateNotified {
slog.Debug("updating menu and sending notification for new update")
if err := t.addOrUpdateMenuItem(updatAvailableMenuID, 0, updateAvailableMenuTitle, true); err != nil {
if err := t.addOrUpdateMenuItem(updateAvailableMenuID, 0, updateAvailableMenuTitle, true); err != nil {
return fmt.Errorf("unable to create menu entries %w", err)
}
if err := t.addOrUpdateMenuItem(updateMenuID, 0, updateMenutTitle, false); err != nil {

View File

@@ -11,10 +11,12 @@ import (
"path/filepath"
"sort"
"sync"
"syscall"
"unsafe"
"github.com/ollama/ollama/app/tray/commontray"
"golang.org/x/sys/windows"
"github.com/ollama/ollama/app/tray/commontray"
)
// Helpful sources: https://github.com/golang/exp/blob/master/shiny/driver/internal/win32
@@ -414,7 +416,7 @@ func iconBytesToFilePath(iconBytes []byte) (string, error) {
iconFilePath := filepath.Join(os.TempDir(), "ollama_temp_icon_"+dataHash)
if _, err := os.Stat(iconFilePath); os.IsNotExist(err) {
if err := os.WriteFile(iconFilePath, iconBytes, 0644); err != nil {
if err := os.WriteFile(iconFilePath, iconBytes, 0o644); err != nil {
return "", err
}
}
@@ -432,7 +434,12 @@ func (t *winTray) setIcon(src string) error {
t.muNID.Lock()
defer t.muNID.Unlock()
t.nid.Icon = h
t.nid.Flags |= NIF_ICON
t.nid.Flags |= NIF_ICON | NIF_TIP
if toolTipUTF16, err := syscall.UTF16FromString(commontray.ToolTip); err == nil {
copy(t.nid.Tip[:], toolTipUTF16)
} else {
return err
}
t.nid.Size = uint32(unsafe.Sizeof(*t.nid))
return t.nid.modify()

View File

@@ -61,6 +61,7 @@ const (
MIIM_SUBMENU = 0x00000004
MIM_APPLYTOSUBMENUS = 0x80000000
NIF_ICON = 0x00000002
NIF_TIP = 0x00000004
NIF_INFO = 0x00000010
NIF_MESSAGE = 0x00000001
SW_HIDE = 0

View File

@@ -5,6 +5,7 @@ import (
"context"
"crypto/rand"
"encoding/base64"
"errors"
"fmt"
"io"
"log/slog"
@@ -78,7 +79,7 @@ func Sign(ctx context.Context, bts []byte) (string, error) {
publicKey := ssh.MarshalAuthorizedKey(privateKey.PublicKey())
parts := bytes.Split(publicKey, []byte(" "))
if len(parts) < 2 {
return "", fmt.Errorf("malformed public key")
return "", errors.New("malformed public key")
}
signedData, err := privateKey.Sign(rand.Reader, bts)

View File

@@ -22,6 +22,7 @@ import (
"runtime"
"slices"
"strings"
"sync/atomic"
"syscall"
"time"
@@ -78,6 +79,7 @@ func CreateHandler(cmd *cobra.Command, args []string) error {
status := "transferring model data"
spinner := progress.NewSpinner(status)
p.Add(status, spinner)
defer p.Stop()
for i := range modelfile.Commands {
switch modelfile.Commands[i].Name {
@@ -112,7 +114,7 @@ func CreateHandler(cmd *cobra.Command, args []string) error {
path = tempfile
}
digest, err := createBlob(cmd, client, path)
digest, err := createBlob(cmd, client, path, spinner)
if err != nil {
return err
}
@@ -263,13 +265,20 @@ func tempZipFiles(path string) (string, error) {
return tempfile.Name(), nil
}
func createBlob(cmd *cobra.Command, client *api.Client, path string) (string, error) {
func createBlob(cmd *cobra.Command, client *api.Client, path string, spinner *progress.Spinner) (string, error) {
bin, err := os.Open(path)
if err != nil {
return "", err
}
defer bin.Close()
// Get file info to retrieve the size
fileInfo, err := bin.Stat()
if err != nil {
return "", err
}
fileSize := fileInfo.Size()
hash := sha256.New()
if _, err := io.Copy(hash, bin); err != nil {
return "", err
@@ -279,13 +288,43 @@ func createBlob(cmd *cobra.Command, client *api.Client, path string) (string, er
return "", err
}
var pw progressWriter
status := "transferring model data 0%"
spinner.SetMessage(status)
done := make(chan struct{})
defer close(done)
go func() {
ticker := time.NewTicker(60 * time.Millisecond)
defer ticker.Stop()
for {
select {
case <-ticker.C:
spinner.SetMessage(fmt.Sprintf("transferring model data %d%%", int(100*pw.n.Load()/fileSize)))
case <-done:
spinner.SetMessage("transferring model data 100%")
return
}
}
}()
digest := fmt.Sprintf("sha256:%x", hash.Sum(nil))
if err = client.CreateBlob(cmd.Context(), digest, bin); err != nil {
if err = client.CreateBlob(cmd.Context(), digest, io.TeeReader(bin, &pw)); err != nil {
return "", err
}
return digest, nil
}
type progressWriter struct {
n atomic.Int64
}
func (w *progressWriter) Write(p []byte) (n int, err error) {
w.n.Add(int64(len(p)))
return len(p), nil
}
func RunHandler(cmd *cobra.Command, args []string) error {
interactive := true
@@ -362,9 +401,24 @@ func RunHandler(cmd *cobra.Command, args []string) error {
opts.MultiModal = slices.Contains(info.Details.Families, "clip")
opts.ParentModel = info.Details.ParentModel
opts.Messages = append(opts.Messages, info.Messages...)
if interactive {
if err := loadModel(cmd, &opts); err != nil {
return err
}
for _, msg := range info.Messages {
switch msg.Role {
case "user":
fmt.Printf(">>> %s\n", msg.Content)
case "assistant":
state := &displayResponseState{}
displayResponse(msg.Content, opts.WordWrap, state)
fmt.Println()
fmt.Println()
}
}
return generateInteractive(cmd, opts)
}
return generate(cmd, opts)
@@ -1071,12 +1125,12 @@ func generate(cmd *cobra.Command, opts runOptions) error {
return nil
}
func RunServer(cmd *cobra.Command, _ []string) error {
func RunServer(_ *cobra.Command, _ []string) error {
if err := initializeKeypair(); err != nil {
return err
}
ln, err := net.Listen("tcp", net.JoinHostPort(envconfig.Host.Host, envconfig.Host.Port))
ln, err := net.Listen("tcp", envconfig.Host().Host)
if err != nil {
return err
}
@@ -1145,7 +1199,7 @@ func checkServerHeartbeat(cmd *cobra.Command, _ []string) error {
return err
}
if err := startApp(cmd.Context(), client); err != nil {
return fmt.Errorf("could not connect to ollama app, is it running?")
return errors.New("could not connect to ollama app, is it running?")
}
}
return nil
@@ -1341,10 +1395,10 @@ func NewCLI() *cobra.Command {
envVars["OLLAMA_NUM_PARALLEL"],
envVars["OLLAMA_NOPRUNE"],
envVars["OLLAMA_ORIGINS"],
envVars["OLLAMA_SCHED_SPREAD"],
envVars["OLLAMA_TMPDIR"],
envVars["OLLAMA_FLASH_ATTENTION"],
envVars["OLLAMA_LLM_LIBRARY"],
envVars["OLLAMA_MAX_VRAM"],
})
default:
appendEnvDocs(cmd, envs)

View File

@@ -1,6 +1,7 @@
package cmd
import (
"cmp"
"errors"
"fmt"
"io"
@@ -9,13 +10,14 @@ import (
"path/filepath"
"regexp"
"slices"
"sort"
"strings"
"github.com/spf13/cobra"
"golang.org/x/exp/maps"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/parser"
"github.com/ollama/ollama/progress"
"github.com/ollama/ollama/readline"
"github.com/ollama/ollama/types/errtypes"
@@ -46,29 +48,10 @@ func loadModel(cmd *cobra.Command, opts *runOptions) error {
KeepAlive: opts.KeepAlive,
}
return client.Chat(cmd.Context(), chatReq, func(resp api.ChatResponse) error {
p.StopAndClear()
for _, msg := range opts.Messages {
switch msg.Role {
case "user":
fmt.Printf(">>> %s\n", msg.Content)
case "assistant":
state := &displayResponseState{}
displayResponse(msg.Content, opts.WordWrap, state)
fmt.Println()
fmt.Println()
}
}
return nil
})
return client.Chat(cmd.Context(), chatReq, func(api.ChatResponse) error { return nil })
}
func generateInteractive(cmd *cobra.Command, opts runOptions) error {
err := loadModel(cmd, &opts)
if err != nil {
return err
}
usage := func() {
fmt.Fprintln(os.Stderr, "Available Commands:")
fmt.Fprintln(os.Stderr, " /set Set session variables")
@@ -138,6 +121,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
fmt.Fprintln(os.Stderr, " /set parameter num_predict <int> Max number of tokens to predict")
fmt.Fprintln(os.Stderr, " /set parameter top_k <int> Pick from top k num of tokens")
fmt.Fprintln(os.Stderr, " /set parameter top_p <float> Pick token based on sum of probabilities")
fmt.Fprintln(os.Stderr, " /set parameter min_p <float> Pick token based on top token probability * min_p")
fmt.Fprintln(os.Stderr, " /set parameter num_ctx <int> Set the context size")
fmt.Fprintln(os.Stderr, " /set parameter temperature <float> Set creativity level")
fmt.Fprintln(os.Stderr, " /set parameter repeat_penalty <float> How strongly to penalize repetitions")
@@ -157,7 +141,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
return err
}
if envconfig.NoHistory {
if envconfig.NoHistory() {
scanner.HistoryDisable()
}
@@ -375,9 +359,9 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
return err
}
req := &api.ShowRequest{
Name: opts.Model,
System: opts.System,
Options: opts.Options,
Name: opts.Model,
System: opts.System,
Options: opts.Options,
}
resp, err := client.Show(cmd.Context(), req)
if err != nil {
@@ -506,31 +490,35 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
}
func buildModelfile(opts runOptions) string {
var mf strings.Builder
model := opts.ParentModel
if model == "" {
model = opts.Model
}
fmt.Fprintf(&mf, "FROM %s\n", model)
var f parser.File
f.Commands = append(f.Commands, parser.Command{Name: "model", Args: cmp.Or(opts.ParentModel, opts.Model)})
if opts.System != "" {
fmt.Fprintf(&mf, "SYSTEM \"\"\"%s\"\"\"\n", opts.System)
f.Commands = append(f.Commands, parser.Command{Name: "system", Args: opts.System})
}
keys := make([]string, 0)
for k := range opts.Options {
keys = append(keys, k)
}
sort.Strings(keys)
keys := maps.Keys(opts.Options)
slices.Sort(keys)
for _, k := range keys {
fmt.Fprintf(&mf, "PARAMETER %s %v\n", k, opts.Options[k])
v := opts.Options[k]
var cmds []parser.Command
switch t := v.(type) {
case []string:
for _, s := range t {
cmds = append(cmds, parser.Command{Name: k, Args: s})
}
default:
cmds = append(cmds, parser.Command{Name: k, Args: fmt.Sprintf("%v", t)})
}
f.Commands = append(f.Commands, cmds...)
}
fmt.Fprintln(&mf)
for _, msg := range opts.Messages {
fmt.Fprintf(&mf, "MESSAGE %s \"\"\"%s\"\"\"\n", msg.Role, msg.Content)
f.Commands = append(f.Commands, parser.Command{Name: "message", Args: fmt.Sprintf("%s: %s", msg.Role, msg.Content)})
}
return mf.String()
return f.String()
}
func normalizeFilePath(fp string) string {
@@ -616,7 +604,7 @@ func getImageData(filePath string) ([]byte, error) {
// Check if the file size exceeds 100MB
var maxSize int64 = 100 * 1024 * 1024 // 100MB in bytes
if info.Size() > maxSize {
return nil, fmt.Errorf("file size exceeds maximum limit (100MB)")
return nil, errors.New("file size exceeds maximum limit (100MB)")
}
buf = make([]byte, info.Size())

View File

@@ -1,12 +1,10 @@
package cmd
import (
"bytes"
"testing"
"text/template"
"github.com/google/go-cmp/cmp"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
"github.com/ollama/ollama/api"
)
@@ -57,58 +55,53 @@ d:\path with\spaces\seven.svg inbetween7 c:\users\jdoe\eight.png inbetween8
func TestModelfileBuilder(t *testing.T) {
opts := runOptions{
Model: "hork",
System: "You are part horse and part shark, but all hork. Do horklike things",
Model: "hork",
System: "You are part horse and part shark, but all hork. Do horklike things",
Messages: []api.Message{
{Role: "user", Content: "Hey there hork!"},
{Role: "assistant", Content: "Yes it is true, I am half horse, half shark."},
},
Options: map[string]interface{}{},
Options: map[string]any{
"temperature": 0.9,
"seed": 42,
"penalize_newline": false,
"stop": []string{"hi", "there"},
},
}
opts.Options["temperature"] = 0.9
opts.Options["seed"] = 42
opts.Options["penalize_newline"] = false
opts.Options["stop"] = []string{"hi", "there"}
mf := buildModelfile(opts)
expectedModelfile := `FROM {{.Model}}
SYSTEM """{{.System}}"""
t.Run("model", func(t *testing.T) {
expect := `FROM hork
SYSTEM You are part horse and part shark, but all hork. Do horklike things
PARAMETER penalize_newline false
PARAMETER seed 42
PARAMETER stop [hi there]
PARAMETER stop hi
PARAMETER stop there
PARAMETER temperature 0.9
MESSAGE user """Hey there hork!"""
MESSAGE assistant """Yes it is true, I am half horse, half shark."""
MESSAGE user Hey there hork!
MESSAGE assistant Yes it is true, I am half horse, half shark.
`
tmpl, err := template.New("").Parse(expectedModelfile)
require.NoError(t, err)
actual := buildModelfile(opts)
if diff := cmp.Diff(expect, actual); diff != "" {
t.Errorf("mismatch (-want +got):\n%s", diff)
}
})
var buf bytes.Buffer
err = tmpl.Execute(&buf, opts)
require.NoError(t, err)
assert.Equal(t, buf.String(), mf)
opts.ParentModel = "horseshark"
mf = buildModelfile(opts)
expectedModelfile = `FROM {{.ParentModel}}
SYSTEM """{{.System}}"""
t.Run("parent model", func(t *testing.T) {
opts.ParentModel = "horseshark"
expect := `FROM horseshark
SYSTEM You are part horse and part shark, but all hork. Do horklike things
PARAMETER penalize_newline false
PARAMETER seed 42
PARAMETER stop [hi there]
PARAMETER stop hi
PARAMETER stop there
PARAMETER temperature 0.9
MESSAGE user """Hey there hork!"""
MESSAGE assistant """Yes it is true, I am half horse, half shark."""
MESSAGE user Hey there hork!
MESSAGE assistant Yes it is true, I am half horse, half shark.
`
tmpl, err = template.New("").Parse(expectedModelfile)
require.NoError(t, err)
var parentBuf bytes.Buffer
err = tmpl.Execute(&parentBuf, opts)
require.NoError(t, err)
assert.Equal(t, parentBuf.String(), mf)
actual := buildModelfile(opts)
if diff := cmp.Diff(expect, actual); diff != "" {
t.Errorf("mismatch (-want +got):\n%s", diff)
}
})
}

View File

@@ -2,7 +2,7 @@ package cmd
import (
"context"
"fmt"
"errors"
"os"
"os/exec"
"strings"
@@ -20,7 +20,7 @@ func startApp(ctx context.Context, client *api.Client) error {
return err
}
if !strings.Contains(link, "Ollama.app") {
return fmt.Errorf("could not find ollama app")
return errors.New("could not find ollama app")
}
path := strings.Split(link, "Ollama.app")
if err := exec.Command("/usr/bin/open", "-a", path[0]+"Ollama.app").Run(); err != nil {

View File

@@ -4,11 +4,11 @@ package cmd
import (
"context"
"fmt"
"errors"
"github.com/ollama/ollama/api"
)
func startApp(ctx context.Context, client *api.Client) error {
return fmt.Errorf("could not connect to ollama server, run 'ollama serve' to start it")
return errors.New("could not connect to ollama server, run 'ollama serve' to start it")
}

View File

@@ -31,7 +31,7 @@ func startApp(ctx context.Context, client *api.Client) error {
// Finally look in the path
appExe, err = exec.LookPath(AppName)
if err != nil {
return fmt.Errorf("could not locate ollama app")
return errors.New("could not locate ollama app")
}
}
}

View File

@@ -1,200 +1,128 @@
package convert
import (
"cmp"
"encoding/binary"
"encoding/json"
"errors"
"fmt"
"io"
"io/fs"
"log/slog"
"os"
"path/filepath"
"slices"
"strings"
"google.golang.org/protobuf/proto"
"github.com/ollama/ollama/convert/sentencepiece"
"github.com/ollama/ollama/llm"
)
const (
_ int32 = iota
tokenTypeNormal
tokenTypeUnknown
tokenTypeControl
tokenTypeUserDefined
tokenTypeUnused
tokenTypeByte
)
type Params struct {
Architectures []string `json:"architectures"`
VocabSize int `json:"vocab_size"`
HiddenSize int `json:"hidden_size"` // n_embd
HiddenLayers int `json:"num_hidden_layers"` // n_layer
ContextSize int `json:"max_position_embeddings"`
IntermediateSize int `json:"intermediate_size"`
AttentionHeads int `json:"num_attention_heads"` // n_head
KeyValHeads int `json:"num_key_value_heads"`
NormEPS float64 `json:"rms_norm_eps"`
BoSTokenID int `json:"bos_token_id"`
EoSTokenID int `json:"eos_token_id"`
HeadDimension int `json:"head_dim"`
PaddingTokenID int `json:"pad_token_id"`
RopeFrequencyBase float64 `json:"rope_theta"`
Experts int `json:"num_local_experts"`
ExpertsUsed int `json:"num_experts_per_tok"`
PreTokenizer string
ByteOrder
type Parameters struct {
Architectures []string `json:"architectures"`
VocabSize uint32 `json:"vocab_size"`
}
type ByteOrder interface {
binary.ByteOrder
binary.AppendByteOrder
func (Parameters) KV(t *Tokenizer) llm.KV {
kv := llm.KV{
"general.file_type": uint32(1),
"general.quantization_version": uint32(2),
"tokenizer.ggml.pre": t.Pre,
"tokenizer.ggml.model": t.Vocabulary.Model,
"tokenizer.ggml.tokens": t.Vocabulary.Tokens,
"tokenizer.ggml.scores": t.Vocabulary.Scores,
"tokenizer.ggml.token_type": t.Vocabulary.Types,
}
if len(t.Merges) > 0 {
kv["tokenizer.ggml.merges"] = t.Merges
}
if t.Template != "" {
kv["tokenizer.chat_template"] = t.Template
}
for _, sv := range t.SpecialVocabulary {
kv[fmt.Sprintf("tokenizer.ggml.%s_token_id", sv.Key())] = uint32(sv.ID)
kv[fmt.Sprintf("tokenizer.ggml.add_%s_token", sv.Key())] = sv.AddToken
}
return kv
}
type ModelArch interface {
GetTensors() error
LoadVocab() error
WriteGGUF(io.WriteSeeker) error
func (Parameters) specialTokenTypes() []string {
return []string{
"bos", "eos", "unk", "sep", "pad", "cls", "mask",
}
}
type ModelFormat interface {
GetLayerName(string) (string, error)
GetTensors(string, *Params) ([]llm.Tensor, error)
GetParams(string) (*Params, error)
GetModelArch(string, string, *Params) (ModelArch, error)
func (Parameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
return llm.WriteGGUF(ws, kv, ts)
}
type ModelData struct {
Path string
Name string
Params *Params
Vocab *Vocab
Tensors []llm.Tensor
Format ModelFormat
type Converter interface {
// KV maps parameters to LLM key-values
KV(*Tokenizer) llm.KV
// Tensors maps input tensors to LLM tensors. Model specific modifications can be done here.
Tensors([]Tensor) []llm.Tensor
// tensorName returns the LLM tensor name for a specific input name
tensorName(string) string
// specialTokenTypes returns any special token types the model uses
specialTokenTypes() []string
writeFile(io.WriteSeeker, llm.KV, []llm.Tensor) error
}
func GetModelFormat(dirname string) (ModelFormat, error) {
files, err := filepath.Glob(filepath.Join(dirname, "*"))
// Convert writes an Ollama compatible model to the provided io.WriteSeeker based on configurations
// and files it finds in the input path.
// Supported input model formats include safetensors.
// Supported input tokenizers files include tokenizer.json (preferred) and tokenizer.model.
func Convert(fsys fs.FS, ws io.WriteSeeker) error {
bts, err := fs.ReadFile(fsys, "config.json")
if err != nil {
return nil, err
return err
}
for _, fn := range files {
if strings.HasSuffix(fn, ".safetensors") {
return &SafetensorFormat{}, nil
} else if strings.HasSuffix(fn, ".bin") || strings.HasSuffix(fn, ".pth") {
slog.Debug("model is torch")
return &TorchFormat{}, nil
}
var p Parameters
if err := json.Unmarshal(bts, &p); err != nil {
return err
}
return nil, fmt.Errorf("couldn't determine model format")
}
if len(p.Architectures) < 1 {
return errors.New("unknown architecture")
}
// Details on gguf's tokenizer can be found at:
// https://github.com/ggerganov/ggml/blob/master/docs/gguf.md#tokenizer
type Vocab struct {
Tokens []string
Scores []float32
Types []int32
Merges []string
}
var conv Converter
switch p.Architectures[0] {
case "LlamaForCausalLM", "MistralForCausalLM":
conv = &llama{}
case "MixtralForCausalLM":
conv = &mixtral{}
case "GemmaForCausalLM":
conv = &gemma{}
case "Phi3ForCausalLM":
conv = &phi3{}
default:
return errors.New("unsupported architecture")
}
func LoadSentencePieceTokens(dirpath string, params *Params) (*Vocab, error) {
slog.Info(fmt.Sprintf("reading vocab from %s", filepath.Join(dirpath, "tokenizer.model")))
in, err := os.ReadFile(filepath.Join(dirpath, "tokenizer.model"))
if err := json.Unmarshal(bts, conv); err != nil {
return err
}
t, err := parseTokenizer(fsys, conv.specialTokenTypes())
if err != nil {
return nil, err
return err
}
// To regenerate sentencepiece from the protobufs use:
// protoc -I=./ --go_out=./ sentencepiece_model.proto
modelProto := &sentencepiece.ModelProto{}
if err := proto.Unmarshal(in, modelProto); err != nil {
return nil, err
}
v := &Vocab{
Tokens: make([]string, 0),
Scores: make([]float32, 0),
Types: make([]int32, 0),
}
pieces := modelProto.GetPieces()
for _, p := range pieces {
v.Tokens = append(v.Tokens, p.GetPiece())
v.Scores = append(v.Scores, p.GetScore())
t := p.GetType()
switch t {
case sentencepiece.ModelProto_SentencePiece_UNKNOWN:
case sentencepiece.ModelProto_SentencePiece_CONTROL:
case sentencepiece.ModelProto_SentencePiece_UNUSED:
case sentencepiece.ModelProto_SentencePiece_BYTE:
default:
t = sentencepiece.ModelProto_SentencePiece_NORMAL
if vocabSize := int(p.VocabSize); vocabSize > len(t.Vocabulary.Tokens) {
slog.Warn("vocabulary is smaller than expected, padding with dummy tokens", "expect", p.VocabSize, "actual", len(t.Vocabulary.Tokens))
for i := range vocabSize - len(t.Vocabulary.Tokens) {
t.Vocabulary.Tokens = append(t.Vocabulary.Tokens, fmt.Sprintf("[PAD%d]", i))
t.Vocabulary.Scores = append(t.Vocabulary.Scores, -1)
t.Vocabulary.Types = append(t.Vocabulary.Types, tokenTypeUserDefined)
}
v.Types = append(v.Types, int32(t))
} else {
slog.Debug("vocabulary", "size", len(t.Vocabulary.Tokens))
}
slog.Info(fmt.Sprintf("vocab size: %d", len(v.Tokens)))
// add any additional tokens
addIn, err := os.ReadFile(filepath.Join(dirpath, "added_tokens.json"))
if os.IsNotExist(err) {
return v, nil
} else if err != nil {
return nil, err
ts, err := parseTensors(fsys)
if err != nil {
return err
}
slog.Info("reading user defined tokens")
var extraTokenData map[string]int
if err := json.Unmarshal(addIn, &extraTokenData); err != nil {
return nil, err
}
type token struct {
key string
pos int
}
extraTokens := make([]token, 0)
for k, id := range extraTokenData {
extraTokens = append(extraTokens, token{k, id})
}
slices.SortFunc(extraTokens, func(a, b token) int {
return cmp.Compare(a.pos, b.pos)
})
numToks := len(v.Tokens)
for cnt, t := range extraTokens {
// the token id should match the specific index for the total number of tokens
if t.pos != cnt+numToks {
return nil, fmt.Errorf("token ID '%d' for '%s' doesn't match total token size", t.pos, t.key)
}
v.Tokens = append(v.Tokens, t.key)
v.Scores = append(v.Scores, -1000.0)
v.Types = append(v.Types, tokenTypeUserDefined)
}
slog.Info(fmt.Sprintf("vocab size w/ extra tokens: %d", len(v.Tokens)))
if params.VocabSize > len(v.Tokens) {
missingTokens := params.VocabSize - len(v.Tokens)
slog.Warn(fmt.Sprintf("vocab is missing %d tokens", missingTokens))
for cnt := range missingTokens {
v.Tokens = append(v.Tokens, fmt.Sprintf("<dummy%05d>", cnt+1))
v.Scores = append(v.Scores, -1)
v.Types = append(v.Types, tokenTypeUserDefined)
}
}
return v, nil
return conv.writeFile(ws, conv.KV(t), conv.Tensors(ts))
}

103
convert/convert_gemma.go Normal file
View File

@@ -0,0 +1,103 @@
package convert
import (
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/llm"
)
type gemma struct {
Parameters
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
HiddenLayers uint32 `json:"num_hidden_layers"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RMSNormEPS float32 `json:"rms_norm_eps"`
HeadDim uint32 `json:"head_dim"`
}
var _ Converter = (*gemma)(nil)
func (p *gemma) KV(t *Tokenizer) llm.KV {
kv := p.Parameters.KV(t)
kv["general.architecture"] = "gemma"
kv["general.name"] = "gemma"
kv["gemma.context_length"] = p.MaxPositionEmbeddings
kv["gemma.embedding_length"] = p.HiddenSize
kv["gemma.block_count"] = p.HiddenLayers
kv["gemma.feed_forward_length"] = p.IntermediateSize
kv["gemma.attention.head_count"] = p.NumAttentionHeads
kv["gemma.attention.head_count_kv"] = p.NumKeyValueHeads
kv["gemma.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
kv["gemma.attention.key_length"] = p.HeadDim
kv["gemma.attention.value_length"] = p.HeadDim
kv["tokenizer.ggml.eot_token_id"] = uint32(107)
kv["tokenizer.ggml.middle_token_id"] = uint32(68)
kv["tokenizer.ggml.prefix_token_id"] = uint32(67)
kv["tokenizer.ggml.suffix_token_id"] = uint32(69)
return kv
}
func (p *gemma) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
for _, t := range ts {
name := p.tensorName(t.Name())
if strings.HasSuffix(name, "_norm.weight") {
t.SetRepacker(p.addOne)
}
out = append(out, llm.Tensor{
Name: name,
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (p *gemma) tensorName(n string) string {
return strings.NewReplacer(
"model.embed_tokens", "token_embd",
"model.norm", "output_norm",
"model.layers", "blk",
"input_layernorm", "attn_norm",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"mlp.gate_proj", "ffn_gate",
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
"post_attention_layernorm", "ffn_norm",
"block_sparse_moe.gate", "ffn_inp",
).Replace(n)
}
func (*gemma) addOne(_ string, data []float32, shape []uint64) ([]float32, error) {
n := tensor.New(tensor.WithShape(int(shape[0])), tensor.WithBacking(data))
ones := tensor.Ones(tensor.Float32, int(shape[0]))
n, err := n.Add(ones)
if err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 0)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}

179
convert/convert_llama.go Normal file
View File

@@ -0,0 +1,179 @@
package convert
import (
"cmp"
"fmt"
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/llm"
)
type llama struct {
Parameters
NLayers uint32 `json:"n_layers"`
NumHiddenLayers uint32 `json:"num_hidden_layers"`
NLayer uint32 `json:"n_layer"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
NCtx uint32 `json:"n_ctx"`
HiddenSize uint32 `json:"hidden_size"`
NEmbd uint32 `json:"n_embd"`
IntermediateSize uint32 `json:"intermediate_size"`
NInner uint32 `json:"n_inner"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NHead uint32 `json:"n_head"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RopeTheta float32 `json:"rope_theta"`
RopeScaling struct {
Type string `json:"type"`
Factor float32 `json:"factor"`
} `json:"rope_scaling"`
RMSNormEPS float32 `json:"rms_norm_eps"`
LayerNormEPS float32 `json:"layer_norm_eps"`
LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
NormEpsilon float32 `json:"norm_epsilon"`
HeadDim uint32 `json:"head_dim"`
}
var _ Converter = (*llama)(nil)
func (p *llama) KV(t *Tokenizer) llm.KV {
kv := p.Parameters.KV(t)
kv["general.architecture"] = "llama"
kv["general.name"] = "llama"
kv["llama.vocab_size"] = p.VocabSize
kv["llama.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer)
if contextLength := cmp.Or(p.MaxPositionEmbeddings, p.NCtx); contextLength > 0 {
kv["llama.context_length"] = contextLength
}
if embeddingLength := cmp.Or(p.HiddenSize, p.NEmbd); embeddingLength > 0 {
kv["llama.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd)
}
if feedForwardLength := cmp.Or(p.IntermediateSize, p.NInner); feedForwardLength > 0 {
kv["llama.feed_forward_length"] = cmp.Or(p.IntermediateSize, p.NInner)
}
if headCount := cmp.Or(p.NumAttentionHeads, p.NHead); headCount > 0 {
kv["llama.attention.head_count"] = cmp.Or(p.NumAttentionHeads, p.NHead)
kv["llama.rope.dimension_count"] = p.HiddenSize / headCount
}
if p.RopeTheta > 0 {
kv["llama.rope.freq_base"] = p.RopeTheta
}
if p.RopeScaling.Type == "linear" {
kv["llama.rope.scaling.type"] = p.RopeScaling.Type
kv["llama.rope.scaling.factor"] = p.RopeScaling.Factor
}
if p.NumKeyValueHeads > 0 {
kv["llama.attention.head_count_kv"] = p.NumKeyValueHeads
}
if p.RMSNormEPS > 0 {
kv["llama.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
}
if layerNormEpsilon := cmp.Or(p.LayerNormEPS, p.LayerNormEpsilon, p.NormEpsilon); layerNormEpsilon > 0 {
kv["llama.attention.layer_norm_epsilon"] = layerNormEpsilon
}
if p.HeadDim > 0 {
kv["llama.attention.key_length"] = p.HeadDim
kv["llama.attention.value_length"] = p.HeadDim
}
return kv
}
func (p *llama) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
for _, t := range ts {
name := p.tensorName(t.Name())
if strings.HasSuffix(name, "attn_q.weight") ||
strings.HasSuffix(name, "attn_k.weight") {
t.SetRepacker(p.repack)
}
out = append(out, llm.Tensor{
Name: name,
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (p *llama) tensorName(n string) string {
return strings.NewReplacer(
"lm_head", "output",
"model.embed_tokens", "token_embd",
"model.norm", "output_norm",
"model.layers", "blk",
"input_layernorm", "attn_norm",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"mlp.gate_proj", "ffn_gate",
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
"post_attention_layernorm", "ffn_norm",
// mixtral
"block_sparse_moe.gate", "ffn_gate_inp",
).Replace(n)
}
func (p *llama) repack(name string, data []float32, shape []uint64) ([]float32, error) {
var dims []int
for _, dim := range shape {
dims = append(dims, int(dim))
}
var heads uint32
if strings.HasSuffix(name, "q_proj.weight") {
heads = p.NumAttentionHeads
} else if strings.HasSuffix(name, "k_proj.weight") {
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
} else {
return nil, fmt.Errorf("unknown tensor for repack: %s", name)
}
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
return nil, err
}
if err := n.T(0, 2, 1, 3); err != nil {
return nil, err
}
if err := n.Reshape(dims...); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 1)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}

View File

@@ -0,0 +1,89 @@
package convert
import (
"fmt"
"io"
"slices"
"strings"
"github.com/ollama/ollama/llm"
)
type mixtral struct {
llama
NumLocalExperts uint32 `json:"num_local_experts"`
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
}
var _ Converter = (*mixtral)(nil)
func (p *mixtral) KV(t *Tokenizer) llm.KV {
kv := p.llama.KV(t)
if p.NumLocalExperts > 0 {
kv["llama.expert_count"] = p.NumLocalExperts
}
if p.NumExpertsPerToken > 0 {
kv["llama.expert_used_count"] = p.NumExpertsPerToken
}
return kv
}
func (p *mixtral) Tensors(ts []Tensor) []llm.Tensor {
oldnew := []string{
"model.layers", "blk",
"w1", "ffn_gate_exps",
"w2", "ffn_down_exps",
"w3", "ffn_up_exps",
}
for i := range p.NumLocalExperts {
oldnew = append(oldnew, fmt.Sprintf(".block_sparse_moe.experts.%d.", i), ".")
}
// group experts of the same layer (model.layers.%d) and type (w[123]) into a single tensor
namer := strings.NewReplacer(oldnew...)
experts := make(map[string]experts)
// merge experts into a single tensor while removing them from ts
ts = slices.DeleteFunc(ts, func(t Tensor) bool {
if !strings.Contains(t.Name(), ".block_sparse_moe.experts.") {
return false
}
name := namer.Replace(t.Name())
experts[name] = append(experts[name], t)
return true
})
var out []llm.Tensor
for n, e := range experts {
// TODO(mxyng): sanity check experts
out = append(out, llm.Tensor{
Name: n,
Kind: e[0].Kind(),
Shape: append([]uint64{uint64(len(e))}, e[0].Shape()...),
WriterTo: e,
})
}
return append(out, p.llama.Tensors(ts)...)
}
type experts []Tensor
func (e experts) WriteTo(w io.Writer) (int64, error) {
// TODO(mxyng): experts _should_ be numerically sorted by expert but this should check
for _, t := range e {
// the canonical merged experts tensor stacks all experts along a new, 0 axis,
// e.g. `tensor.Stack(0, e[0], e[1:]...)`, which requires allocating temporary buffers
// this accomplishes the same thing by writing each expert tensor in sequence
if _, err := t.WriteTo(w); err != nil {
return 0, err
}
}
return 0, nil
}

125
convert/convert_phi3.go Normal file
View File

@@ -0,0 +1,125 @@
package convert
import (
"cmp"
"encoding/binary"
"io"
"math"
"strings"
"sync"
"github.com/ollama/ollama/llm"
)
type phi3 struct {
Parameters
NumHiddenLayers uint32 `json:"num_hidden_layers"`
NLayers uint32 `json:"n_layers"`
HiddenSize uint32 `json:"hidden_size"`
NEmbd uint32 `json:"n_embd"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NHead uint32 `json:"n_head"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
NHeadKV uint32 `json:"n_head_kv"`
RopeTheta float32 `json:"rope_theta"`
RopeScaling struct {
Type string `json:"type"`
LongFactor ropeFactor `json:"long_factor"`
ShortFactor ropeFactor `json:"short_factor"`
} `json:"rope_scaling"`
RMSNormEPS float32 `json:"rms_norm_eps"`
NPositions uint32 `json:"n_positions"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
SlidingWindow uint32 `json:"sliding_window"`
}
var _ Converter = (*phi3)(nil)
func (p *phi3) KV(t *Tokenizer) llm.KV {
kv := p.Parameters.KV(t)
kv["general.architecture"] = "phi3"
kv["general.name"] = "phi3"
kv["phi3.context_length"] = p.MaxPositionEmbeddings
kv["phi3.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd)
kv["phi3.feed_forward_length"] = p.IntermediateSize
kv["phi3.block_count"] = cmp.Or(p.NumHiddenLayers, p.NLayers)
kv["phi3.attention.head_count"] = cmp.Or(p.NumAttentionHeads, p.NHead)
kv["phi3.attention.head_count_kv"] = cmp.Or(p.NumKeyValueHeads, p.NHeadKV)
kv["phi3.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
kv["phi3.rope.dimension_count"] = p.HiddenSize / cmp.Or(p.NumAttentionHeads, p.NHead)
kv["phi3.rope.freq_base"] = p.RopeTheta
kv["phi3.rope.scaling.original_context_length"] = p.OriginalMaxPositionEmbeddings
kv["phi3.attention.sliding_window"] = p.SlidingWindow
scale := float64(p.MaxPositionEmbeddings) / float64(p.OriginalMaxPositionEmbeddings)
switch p.RopeScaling.Type {
case "":
// no scaling
case "su", "longrope":
kv["phi3.rope.scaling.attn_factor"] = float32(max(math.Sqrt(1+math.Log(scale)/math.Log(float64(p.OriginalMaxPositionEmbeddings))), 1.0))
case "yarn":
kv["phi3.rope.scaling.attn_factor"] = float32(max(0.1*math.Log(scale)+1.0, 1.0))
default:
panic("unknown rope scaling type")
}
return kv
}
func (p *phi3) Tensors(ts []Tensor) []llm.Tensor {
var addRopeFactors sync.Once
out := make([]llm.Tensor, 0, len(ts)+2)
for _, t := range ts {
name := p.tensorName(t.Name())
if strings.HasPrefix(name, "blk.0.") {
addRopeFactors.Do(func() {
out = append(out, llm.Tensor{
Name: "rope_factors_long.weight",
Kind: 0,
Shape: []uint64{uint64(len(p.RopeScaling.LongFactor))},
WriterTo: p.RopeScaling.LongFactor,
}, llm.Tensor{
Name: "rope_factors_short.weight",
Kind: 0,
Shape: []uint64{uint64(len(p.RopeScaling.ShortFactor))},
WriterTo: p.RopeScaling.ShortFactor,
})
})
}
out = append(out, llm.Tensor{
Name: name,
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (p *phi3) tensorName(n string) string {
return strings.NewReplacer(
"lm_head", "output",
"model.embed_tokens", "token_embd",
"model.norm", "output_norm",
"model.layers", "blk",
"input_layernorm", "attn_norm",
"self_attn.qkv_proj", "attn_qkv",
"self_attn.o_proj", "attn_output",
"mlp.down_proj", "ffn_down",
"mlp.gate_up_proj", "ffn_up",
"post_attention_layernorm", "ffn_norm",
).Replace(n)
}
type ropeFactor []float32
func (r ropeFactor) WriteTo(w io.Writer) (int64, error) {
err := binary.Write(w, binary.LittleEndian, r)
return 0, err
}

View File

@@ -1,48 +1,35 @@
//go:build slow
package convert
import (
"crypto/sha256"
"encoding/hex"
"encoding/json"
"flag"
"fmt"
"io"
"io/fs"
"log/slog"
"math"
"os"
"path/filepath"
"slices"
"testing"
"golang.org/x/exp/maps"
"github.com/ollama/ollama/llm"
)
func convertFull(t *testing.T, p string) (llm.KV, llm.Tensors) {
func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, llm.Tensors) {
t.Helper()
mf, err := GetModelFormat(p)
if err != nil {
t.Fatal(err)
}
params, err := mf.GetParams(p)
if err != nil {
t.Fatal(err)
}
arch, err := mf.GetModelArch("", p, params)
if err != nil {
t.Fatal(err)
}
if err := arch.LoadVocab(); err != nil {
t.Fatal(err)
}
if err := arch.GetTensors(); err != nil {
t.Fatal(err)
}
f, err := os.CreateTemp(t.TempDir(), "f16")
if err != nil {
t.Fatal(err)
}
defer f.Close()
if err := arch.WriteGGUF(f); err != nil {
if err := Convert(fsys, f); err != nil {
t.Fatal(err)
}
@@ -50,53 +37,93 @@ func convertFull(t *testing.T, p string) (llm.KV, llm.Tensors) {
if err != nil {
t.Fatal(err)
}
defer r.Close()
t.Cleanup(func() { r.Close() })
m, _, err := llm.DecodeGGML(r)
m, _, err := llm.DecodeGGML(r, math.MaxInt)
if err != nil {
t.Fatal(err)
}
return m.KV(), m.Tensors()
if _, err := r.Seek(0, io.SeekStart); err != nil {
t.Fatal(err)
}
return r, m.KV(), m.Tensors()
}
func TestMain(m *testing.M) {
var level slog.Level
flag.TextVar(&level, "level", slog.LevelInfo, "log level")
flag.Parse()
slog.SetLogLoggerLevel(level)
os.Exit(m.Run())
}
func TestConvertFull(t *testing.T) {
cases := []struct {
path string
arch string
tensors int
layers int
}{
{"Meta-Llama-3-8B-Instruct", "llama", 291, 35},
{"Mistral-7B-Instruct-v0.2", "llama", 291, 35},
{"Mixtral-8x7B-Instruct-v0.1", "llama", 291, 35},
{"gemma-2b-it", "gemma", 164, 20},
cases := []string{
"Meta-Llama-3-8B-Instruct",
"Mistral-7B-Instruct-v0.2",
"Mixtral-8x7B-Instruct-v0.1",
"gemma-2b-it",
// microsoft/Phi-3-mini-128-instruct@d548c233192db00165d842bf8edff054bb3212f8
"Phi-3-mini-128k-instruct",
}
for _, tt := range cases {
t.Run(tt.path, func(t *testing.T) {
p := filepath.Join("testdata", tt.path)
if _, err := os.Stat(p); err != nil {
for i := range cases {
tt := cases[i]
t.Run(tt, func(t *testing.T) {
t.Parallel()
p := filepath.Join("testdata", tt)
if testing.Short() {
t.Skip("skipping in short mode")
} else if _, err := os.Stat(p); err != nil {
t.Skipf("%s not found", p)
}
kv, tensors := convertFull(t, p)
f, kv, tensors := convertFull(t, os.DirFS(p))
actual := make(map[string]string)
for k, v := range kv {
if s, ok := v.(json.Marshaler); !ok {
actual[k] = fmt.Sprintf("%v", v)
} else {
bts, err := json.Marshal(s)
if err != nil {
t.Fatal(err)
}
if kv.Architecture() != tt.arch {
t.Fatalf("expected llama, got %s", kv.Architecture())
actual[k] = fmt.Sprintf("%x", sha256.Sum256(bts))
}
}
if kv.FileType().String() != "F16" {
t.Fatalf("expected F16, got %s", kv.FileType())
for _, tensor := range tensors.Items {
sha256sum := sha256.New()
sr := io.NewSectionReader(f, int64(tensors.Offset+tensor.Offset), int64(tensor.Size()))
if _, err := io.Copy(sha256sum, sr); err != nil {
t.Fatal(err)
}
actual[tensor.Name] = hex.EncodeToString(sha256sum.Sum(nil))
}
if len(tensors) != tt.tensors {
t.Fatalf("expected %d tensors, got %d", tt.tensors, len(tensors))
expectFile, err := os.Open(filepath.Join("testdata", fmt.Sprintf("%s.json", tt)))
if err != nil {
t.Fatal(err)
}
layers := tensors.Layers()
if len(layers) != tt.layers {
t.Fatalf("expected %d layers, got %d", tt.layers, len(layers))
var expect map[string]string
if err := json.NewDecoder(expectFile).Decode(&expect); err != nil {
t.Fatal(err)
}
keys := maps.Keys(expect)
slices.Sort(keys)
for _, k := range keys {
if v, ok := actual[k]; !ok {
t.Errorf("missing %s", k)
} else if v != expect[k] {
t.Errorf("unexpected %s: want %s, got %s", k, expect[k], v)
}
}
})
}

58
convert/fs.go Normal file
View File

@@ -0,0 +1,58 @@
package convert
import (
"archive/zip"
"errors"
"io"
"io/fs"
"os"
"path/filepath"
)
type ZipReader struct {
r *zip.Reader
p string
// limit is the maximum size of a file that can be read directly
// from the zip archive. Files larger than this size will be extracted
limit int64
}
func NewZipReader(r *zip.Reader, p string, limit int64) fs.FS {
return &ZipReader{r, p, limit}
}
func (z *ZipReader) Open(name string) (fs.File, error) {
r, err := z.r.Open(name)
if err != nil {
return nil, err
}
defer r.Close()
if fi, err := r.Stat(); err != nil {
return nil, err
} else if fi.Size() < z.limit {
return r, nil
}
if !filepath.IsLocal(name) {
return nil, zip.ErrInsecurePath
}
n := filepath.Join(z.p, name)
if _, err := os.Stat(n); errors.Is(err, os.ErrNotExist) {
w, err := os.Create(n)
if err != nil {
return nil, err
}
defer w.Close()
if _, err := io.Copy(w, r); err != nil {
return nil, err
}
} else if err != nil {
return nil, err
}
return os.Open(n)
}

View File

@@ -1,102 +0,0 @@
package convert
import (
"fmt"
"io"
"log/slog"
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/llm"
)
type GemmaModel struct {
ModelData
}
func addOnes(data []float32, vectorSize int) ([]float32, error) {
n := tensor.New(tensor.WithShape(vectorSize), tensor.WithBacking(data))
ones := tensor.Ones(tensor.Float32, vectorSize)
n, err := n.Add(ones)
if err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 0)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}
func (m *GemmaModel) GetTensors() error {
t, err := m.Format.GetTensors(m.Path, m.Params)
if err != nil {
return err
}
slog.Debug(fmt.Sprintf("Total tensors: %d", len(t)))
for _, l := range t {
if strings.HasSuffix(l.Name, "norm.weight") {
wt := l.WriterTo.(safetensorWriterTo)
wt.repacker = m.Repack
l.WriterTo = wt
}
m.Tensors = append(m.Tensors, l)
}
return nil
}
func (m *GemmaModel) LoadVocab() error {
v, err := LoadSentencePieceTokens(m.Path, m.Params)
if err != nil {
return err
}
m.Vocab = v
return nil
}
func (m *GemmaModel) Repack(_ string, data []float32, shape []uint64) ([]float32, error) {
return addOnes(data, int(shape[0]))
}
func (m *GemmaModel) WriteGGUF(ws io.WriteSeeker) error {
kv := llm.KV{
"general.architecture": "gemma",
"general.name": m.Name,
"gemma.context_length": uint32(m.Params.ContextSize),
"gemma.embedding_length": uint32(m.Params.HiddenSize),
"gemma.block_count": uint32(m.Params.HiddenLayers),
"gemma.feed_forward_length": uint32(m.Params.IntermediateSize),
"gemma.attention.head_count": uint32(m.Params.AttentionHeads),
"gemma.attention.head_count_kv": uint32(m.Params.KeyValHeads),
"gemma.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS),
"gemma.attention.key_length": uint32(m.Params.HeadDimension),
"gemma.attention.value_length": uint32(m.Params.HeadDimension),
"general.file_type": uint32(1),
"tokenizer.ggml.model": "llama",
"tokenizer.ggml.tokens": m.Vocab.Tokens,
"tokenizer.ggml.scores": m.Vocab.Scores,
"tokenizer.ggml.token_type": m.Vocab.Types,
"tokenizer.ggml.bos_token_id": uint32(m.Params.BoSTokenID),
"tokenizer.ggml.eos_token_id": uint32(m.Params.EoSTokenID),
"tokenizer.ggml.padding_token_id": uint32(m.Params.PaddingTokenID),
"tokenizer.ggml.unknown_token_id": uint32(3),
"tokenizer.ggml.add_bos_token": true,
"tokenizer.ggml.add_eos_token": false,
}
return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors)
}

View File

@@ -1,159 +0,0 @@
package convert
import (
"cmp"
"errors"
"fmt"
"io"
"os"
"path/filepath"
"regexp"
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/llm"
)
type LlamaModel struct {
ModelData
}
func (m *LlamaModel) GetTensors() error {
t, err := m.Format.GetTensors(m.Path, m.Params)
if err != nil {
return err
}
pattern := `^blk\.[0-9]+\.attn_(?P<layer>q|k)\.weight$`
re, err := regexp.Compile(pattern)
if err != nil {
return err
}
for _, l := range t {
matches := re.FindAllStringSubmatch(l.Name, -1)
if len(matches) > 0 {
switch m.Format.(type) {
case *TorchFormat:
wt := l.WriterTo.(torchWriterTo)
wt.repacker = m.Repack
l.WriterTo = wt
case *SafetensorFormat:
wt := l.WriterTo.(safetensorWriterTo)
wt.repacker = m.Repack
l.WriterTo = wt
}
}
m.Tensors = append(m.Tensors, l)
}
return nil
}
func (m *LlamaModel) LoadVocab() (err error) {
pre, ts, merges, err := parseTokens(filepath.Join(m.Path, "tokenizer.json"))
if errors.Is(err, os.ErrNotExist) {
return nil
} else if err != nil {
return err
}
m.Vocab = &Vocab{}
for _, t := range ts {
m.Vocab.Tokens = append(m.Vocab.Tokens, t.Content)
m.Vocab.Types = append(m.Vocab.Types, t.Type())
}
m.Vocab.Merges = merges
m.Params.PreTokenizer = pre
return nil
}
func (m *LlamaModel) WriteGGUF(ws io.WriteSeeker) error {
kv := llm.KV{
"general.architecture": "llama",
"general.name": m.Name,
"llama.vocab_size": uint32(len(m.Vocab.Tokens)),
"llama.context_length": uint32(m.Params.ContextSize),
"llama.embedding_length": uint32(m.Params.HiddenSize),
"llama.block_count": uint32(m.Params.HiddenLayers),
"llama.feed_forward_length": uint32(m.Params.IntermediateSize),
"llama.rope.freq_base": float32(m.Params.RopeFrequencyBase),
"llama.rope.dimension_count": uint32(m.Params.HiddenSize / m.Params.AttentionHeads),
"llama.attention.head_count": uint32(m.Params.AttentionHeads),
"llama.attention.head_count_kv": uint32(m.Params.KeyValHeads),
"llama.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS),
"general.file_type": uint32(1),
"tokenizer.ggml.model": "gpt2",
"tokenizer.ggml.pre": m.Params.PreTokenizer,
"tokenizer.ggml.tokens": m.Vocab.Tokens,
"tokenizer.ggml.token_type": m.Vocab.Types,
"tokenizer.ggml.bos_token_id": uint32(m.Params.BoSTokenID),
"tokenizer.ggml.eos_token_id": uint32(m.Params.EoSTokenID),
"tokenizer.ggml.unknown_token_id": uint32(0),
}
if len(m.Vocab.Merges) > 0 {
kv["tokenizer.ggml.merges"] = m.Vocab.Merges
} else {
kv["tokenizer.ggml.scores"] = m.Vocab.Scores
}
return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors)
}
func (m *LlamaModel) Repack(name string, data []float32, shape []uint64) ([]float32, error) {
return llamaRepack(name, m.Params, data, shape)
}
func llamaRepack(name string, params *Params, data []float32, shape []uint64) ([]float32, error) {
var dims []int
for _, dim := range shape {
if dim != 0 {
dims = append(dims, int(dim))
}
}
var heads int
switch {
case strings.HasSuffix(name, "attn_q.weight"):
heads = params.AttentionHeads
case strings.HasSuffix(name, "attn_k.weight"):
heads = cmp.Or(params.KeyValHeads, params.AttentionHeads)
default:
return nil, fmt.Errorf("unknown tensor name: %s", name)
}
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
if err := n.Reshape(append([]int{heads, 2, dims[0] / heads / 2}, dims[1:]...)...); err != nil {
return nil, err
}
if err := n.T(0, 2, 1, 3); err != nil {
return nil, err
}
if err := n.Reshape(dims...); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 1)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}

View File

@@ -1,79 +0,0 @@
package convert
import (
"io"
"regexp"
"github.com/ollama/ollama/llm"
)
type MistralModel struct {
ModelData
}
func (m *MistralModel) GetTensors() error {
t, err := m.Format.GetTensors(m.Path, m.Params)
if err != nil {
return err
}
pattern := `^blk\.[0-9]+\.attn_(?P<layer>q|k)\.weight$`
re, err := regexp.Compile(pattern)
if err != nil {
return err
}
for _, l := range t {
matches := re.FindAllStringSubmatch(l.Name, -1)
if len(matches) > 0 {
wt := l.WriterTo.(safetensorWriterTo)
wt.repacker = m.Repack
l.WriterTo = wt
}
m.Tensors = append(m.Tensors, l)
}
return nil
}
func (m *MistralModel) LoadVocab() error {
v, err := LoadSentencePieceTokens(m.Path, m.Params)
if err != nil {
return err
}
m.Vocab = v
return nil
}
func (m *MistralModel) WriteGGUF(ws io.WriteSeeker) error {
kv := llm.KV{
"general.architecture": "llama",
"general.name": m.Name,
"llama.context_length": uint32(m.Params.ContextSize),
"llama.embedding_length": uint32(m.Params.HiddenSize),
"llama.block_count": uint32(m.Params.HiddenLayers),
"llama.feed_forward_length": uint32(m.Params.IntermediateSize),
"llama.rope.dimension_count": uint32(m.Params.HiddenSize / m.Params.AttentionHeads),
"llama.attention.head_count": uint32(m.Params.AttentionHeads),
"llama.attention.head_count_kv": uint32(m.Params.KeyValHeads),
"llama.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS),
"general.file_type": uint32(1),
"tokenizer.ggml.model": "llama",
"tokenizer.ggml.tokens": m.Vocab.Tokens,
"tokenizer.ggml.scores": m.Vocab.Scores,
"tokenizer.ggml.token_type": m.Vocab.Types,
"tokenizer.ggml.bos_token_id": uint32(m.Params.BoSTokenID),
"tokenizer.ggml.eos_token_id": uint32(m.Params.EoSTokenID),
"tokenizer.ggml.add_bos_token": true,
"tokenizer.ggml.add_eos_token": false,
"tokenizer.ggml.unknown_token_id": uint32(0),
}
return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors)
}
func (m *MistralModel) Repack(name string, data []float32, shape []uint64) ([]float32, error) {
return llamaRepack(name, m.Params, data, shape)
}

View File

@@ -1,87 +0,0 @@
package convert
import (
"io"
"regexp"
"github.com/ollama/ollama/llm"
)
type MixtralModel struct {
ModelData
}
func (m *MixtralModel) GetTensors() error {
t, err := m.Format.GetTensors(m.Path, m.Params)
if err != nil {
return err
}
pattern := `^blk\.[0-9]+\.attn_(?P<layer>q|k)\.weight$`
re, err := regexp.Compile(pattern)
if err != nil {
return err
}
for _, l := range t {
matches := re.FindAllStringSubmatch(l.Name, -1)
if len(matches) > 0 {
wt := l.WriterTo.(safetensorWriterTo)
wt.repacker = m.Repack
l.WriterTo = wt
}
m.Tensors = append(m.Tensors, l)
}
return nil
}
func (m *MixtralModel) LoadVocab() error {
v, err := LoadSentencePieceTokens(m.Path, m.Params)
if err != nil {
return err
}
m.Vocab = v
return nil
}
func (m *MixtralModel) WriteGGUF(ws io.WriteSeeker) error {
kv := llm.KV{
"general.architecture": "llama",
"general.name": m.Name,
"llama.block_count": uint32(m.Params.HiddenLayers),
"llama.context_length": uint32(m.Params.ContextSize),
"llama.embedding_length": uint32(m.Params.HiddenSize),
"llama.feed_forward_length": uint32(m.Params.IntermediateSize),
"llama.attention.head_count": uint32(m.Params.AttentionHeads),
"llama.attention.head_count_kv": uint32(m.Params.KeyValHeads),
"llama.rope.freq_base": float32(m.Params.RopeFrequencyBase),
"llama.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS),
"llama.expert_count": uint32(m.Params.Experts),
"llama.expert_used_count": uint32(m.Params.ExpertsUsed),
"llama.vocab_size": uint32(len(m.Vocab.Tokens)),
"llama.rope.dimension_count": uint32(m.Params.HiddenSize / m.Params.AttentionHeads),
"general.file_type": uint32(1),
"tokenizer.ggml.model": "llama",
"tokenizer.ggml.tokens": m.Vocab.Tokens,
"tokenizer.ggml.scores": m.Vocab.Scores,
"tokenizer.ggml.token_type": m.Vocab.Types,
"tokenizer.ggml.bos_token_id": uint32(m.Params.BoSTokenID),
"tokenizer.ggml.eos_token_id": uint32(m.Params.EoSTokenID),
"tokenizer.ggml.unknown_token_id": uint32(0),
"tokenizer.ggml.add_bos_token": true,
"tokenizer.ggml.add_eos_token": false,
}
return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors)
}
func (m *MixtralModel) Repack(name string, data []float32, shape []uint64) ([]float32, error) {
return llamaRepack(name, m.Params, data, shape)
}

82
convert/reader.go Normal file
View File

@@ -0,0 +1,82 @@
package convert
import (
"errors"
"io"
"io/fs"
"strings"
)
type Tensor interface {
Name() string
Shape() []uint64
Kind() uint32
SetRepacker(repacker)
WriteTo(io.Writer) (int64, error)
}
type tensorBase struct {
name string
shape []uint64
repacker
}
func (t tensorBase) Name() string {
return t.name
}
func (t tensorBase) Shape() []uint64 {
return t.shape
}
const (
tensorKindF32 uint32 = iota
tensorKindF16
)
func (t tensorBase) Kind() uint32 {
if strings.HasSuffix(t.name, ".block_sparse_moe.gate.weight") {
return 0
}
switch len(t.shape) {
case 0:
panic("invalid tensor shape")
case 1:
return tensorKindF32
default:
return tensorKindF16
}
}
func (t *tensorBase) SetRepacker(fn repacker) {
t.repacker = fn
}
type repacker func(string, []float32, []uint64) ([]float32, error)
func parseTensors(fsys fs.FS) ([]Tensor, error) {
patterns := []struct {
Pattern string
Func func(fs.FS, ...string) ([]Tensor, error)
}{
{"model-*-of-*.safetensors", parseSafetensors},
{"model.safetensors", parseSafetensors},
{"pytorch_model-*-of-*.bin", parseTorch},
{"pytorch_model.bin", parseTorch},
{"consolidated.*.pth", parseTorch},
}
for _, pattern := range patterns {
matches, err := fs.Glob(fsys, pattern.Pattern)
if err != nil {
return nil, err
}
if len(matches) > 0 {
return pattern.Func(fsys, matches...)
}
}
return nil, errors.New("unknown tensor format")
}

View File

@@ -0,0 +1,150 @@
package convert
import (
"bytes"
"encoding/binary"
"encoding/json"
"fmt"
"io"
"io/fs"
"slices"
"github.com/d4l3k/go-bfloat16"
"github.com/x448/float16"
"golang.org/x/exp/maps"
)
type safetensorMetadata struct {
Type string `json:"dtype"`
Shape []uint64 `json:"shape"`
Offsets []int64 `json:"data_offsets"`
}
func parseSafetensors(fsys fs.FS, ps ...string) ([]Tensor, error) {
var ts []Tensor
for _, p := range ps {
f, err := fsys.Open(p)
if err != nil {
return nil, err
}
defer f.Close()
var n int64
if err := binary.Read(f, binary.LittleEndian, &n); err != nil {
return nil, err
}
b := bytes.NewBuffer(make([]byte, 0, n))
if _, err = io.CopyN(b, f, n); err != nil {
return nil, err
}
var headers map[string]safetensorMetadata
if err := json.NewDecoder(b).Decode(&headers); err != nil {
return nil, err
}
keys := maps.Keys(headers)
slices.Sort(keys)
for _, key := range keys {
if value := headers[key]; value.Type != "" {
ts = append(ts, safetensor{
fs: fsys,
path: p,
dtype: value.Type,
offset: safetensorsPad(n, value.Offsets[0]),
size: safetensorsPad(n, value.Offsets[1]) - safetensorsPad(n, value.Offsets[0]),
tensorBase: &tensorBase{
name: key,
shape: value.Shape,
},
})
}
}
}
return ts, nil
}
// safetensorsPad returns the padded size of the safetensors file given a length n and offset s
func safetensorsPad(n, offset int64) int64 {
return 8 + n + offset
}
type safetensor struct {
fs fs.FS
path string
dtype string
offset int64
size int64
*tensorBase
}
func (st safetensor) WriteTo(w io.Writer) (int64, error) {
f, err := st.fs.Open(st.path)
if err != nil {
return 0, err
}
defer f.Close()
if seeker, ok := f.(io.Seeker); ok {
if _, err := seeker.Seek(st.offset, io.SeekStart); err != nil {
return 0, err
}
} else {
if _, err := io.CopyN(io.Discard, f, st.offset); err != nil {
return 0, err
}
}
var f32s []float32
switch st.dtype {
case "F32":
f32s = make([]float32, st.size/4)
if err = binary.Read(f, binary.LittleEndian, f32s); err != nil {
return 0, err
}
case "F16":
u16s := make([]uint16, st.size/2)
if err = binary.Read(f, binary.LittleEndian, u16s); err != nil {
return 0, err
}
f32s = make([]float32, len(u16s))
for i := range u16s {
f32s[i] = float16.Frombits(u16s[i]).Float32()
}
case "BF16":
u8s := make([]uint8, st.size)
if err = binary.Read(f, binary.LittleEndian, u8s); err != nil {
return 0, err
}
f32s = bfloat16.DecodeFloat32(u8s)
default:
return 0, fmt.Errorf("unknown data type: %s", st.dtype)
}
if st.repacker != nil {
f32s, err = st.repacker(st.Name(), f32s, st.Shape())
if err != nil {
return 0, err
}
}
switch st.Kind() {
case tensorKindF32:
return 0, binary.Write(w, binary.LittleEndian, f32s)
case tensorKindF16:
f16s := make([]uint16, len(f32s))
for i := range f32s {
f16s[i] = float16.Fromfloat32(f32s[i]).Bits()
}
return 0, binary.Write(w, binary.LittleEndian, f16s)
default:
return 0, fmt.Errorf("unknown storage type: %d", st.Kind())
}
}

47
convert/reader_torch.go Normal file
View File

@@ -0,0 +1,47 @@
package convert
import (
"io"
"io/fs"
"github.com/nlpodyssey/gopickle/pytorch"
"github.com/nlpodyssey/gopickle/types"
)
func parseTorch(fsys fs.FS, ps ...string) ([]Tensor, error) {
var ts []Tensor
for _, p := range ps {
pt, err := pytorch.Load(p)
if err != nil {
return nil, err
}
for _, k := range pt.(*types.Dict).Keys() {
t := pt.(*types.Dict).MustGet(k)
var shape []uint64
for dim := range t.(*pytorch.Tensor).Size {
shape = append(shape, uint64(dim))
}
ts = append(ts, torch{
storage: t.(*pytorch.Tensor).Source,
tensorBase: &tensorBase{
name: k.(string),
shape: shape,
},
})
}
}
return ts, nil
}
type torch struct {
storage pytorch.StorageInterface
*tensorBase
}
func (pt torch) WriteTo(w io.Writer) (int64, error) {
return 0, nil
}

View File

@@ -1,309 +0,0 @@
package convert
import (
"bytes"
"encoding/binary"
"encoding/json"
"fmt"
"io"
"os"
"path/filepath"
"regexp"
"slices"
"strings"
"github.com/d4l3k/go-bfloat16"
"github.com/x448/float16"
"github.com/ollama/ollama/llm"
)
type safetensorWriterTo struct {
t *llm.Tensor
params *Params
bo ByteOrder
filename string
dtype string
offset, size int64
repacker func(string, []float32, []uint64) ([]float32, error)
}
type safetensorMetadata struct {
Type string `json:"dtype"`
Shape []uint64 `json:"shape"`
Offsets []int64 `json:"data_offsets"`
}
type SafetensorFormat struct{}
func (m *SafetensorFormat) GetTensors(dirpath string, params *Params) ([]llm.Tensor, error) {
var tensors []llm.Tensor
matches, err := filepath.Glob(filepath.Join(dirpath, "*.safetensors"))
if err != nil {
return nil, err
}
var offset uint64
for _, f := range matches {
var t []llm.Tensor
var err error
t, offset, err = m.readTensors(f, offset, params)
if err != nil {
return nil, err
}
tensors = append(tensors, t...)
}
return tensors, nil
}
func (m *SafetensorFormat) readTensors(fn string, offset uint64, params *Params) ([]llm.Tensor, uint64, error) {
f, err := os.Open(fn)
if err != nil {
return nil, 0, err
}
defer f.Close()
var n int64
if err := binary.Read(f, binary.LittleEndian, &n); err != nil {
return nil, 0, err
}
b := bytes.NewBuffer(make([]byte, 0, n))
if _, err = io.CopyN(b, f, n); err != nil {
return nil, 0, err
}
var headers map[string]safetensorMetadata
if err := json.NewDecoder(b).Decode(&headers); err != nil {
return nil, 0, err
}
var keys []string
for key := range headers {
if !strings.HasSuffix(key, "self_attn.rotary_embd.inv_freq") {
keys = append(keys, key)
}
}
slices.Sort(keys)
var tensors []llm.Tensor
for _, key := range keys {
value := headers[key]
var kind uint32
switch len(value.Shape) {
case 0:
// valuedata
continue
case 2:
kind = 1
}
name, err := m.GetLayerName(key)
if err != nil {
return nil, 0, err
}
shape := make([]uint64, len(value.Shape))
copy(shape, value.Shape)
pad := func(s int64) int64 {
return 8 + n + s
}
t := llm.Tensor{
Name: name,
Kind: kind,
Offset: offset,
Shape: shape,
}
t.WriterTo = safetensorWriterTo{
t: &t,
params: params,
bo: params.ByteOrder,
filename: fn,
dtype: value.Type,
offset: pad(value.Offsets[0]),
size: pad(value.Offsets[1]) - pad(value.Offsets[0]),
}
offset += t.Size()
tensors = append(tensors, t)
}
return tensors, offset, nil
}
func (m *SafetensorFormat) GetParams(dirpath string) (*Params, error) {
f, err := os.Open(filepath.Join(dirpath, "config.json"))
if err != nil {
return nil, err
}
defer f.Close()
var params Params
if err := json.NewDecoder(f).Decode(&params); err != nil {
return nil, err
}
params.ByteOrder = binary.LittleEndian
return &params, nil
}
func (m *SafetensorFormat) GetLayerName(n string) (string, error) {
directMap := map[string]string{
"model.embed_tokens.weight": "token_embd.weight",
"lm_head.weight": "output.weight",
"model.norm.weight": "output_norm.weight",
}
tMap := map[string]string{
"model.layers.(\\d+).input_layernorm.weight": "blk.$1.attn_norm.weight",
"model.layers.(\\d+).mlp.down_proj.weight": "blk.$1.ffn_down.weight",
"model.layers.(\\d+).mlp.gate_proj.weight": "blk.$1.ffn_gate.weight",
"model.layers.(\\d+).mlp.up_proj.weight": "blk.$1.ffn_up.weight",
"model.layers.(\\d+).post_attention_layernorm.weight": "blk.$1.ffn_norm.weight",
"model.layers.(\\d+).self_attn.k_proj.weight": "blk.$1.attn_k.weight",
"model.layers.(\\d+).self_attn.o_proj.weight": "blk.$1.attn_output.weight",
"model.layers.(\\d+).self_attn.q_proj.weight": "blk.$1.attn_q.weight",
"model.layers.(\\d+).self_attn.v_proj.weight": "blk.$1.attn_v.weight",
"model.layers.(\\d+).block_sparse_moe.gate.weight": "blk.$1.ffn_gate_inp.weight",
"model.layers.(\\d+).block_sparse_moe.experts.(\\d+).w1.weight": "blk.$1.ffn_gate.$2.weight",
"model.layers.(\\d+).block_sparse_moe.experts.(\\d+).w2.weight": "blk.$1.ffn_down.$2.weight",
"model.layers.(\\d+).block_sparse_moe.experts.(\\d+).w3.weight": "blk.$1.ffn_up.$2.weight",
}
v, ok := directMap[n]
if ok {
return v, nil
}
// quick hack to rename the layers to gguf format
for k, v := range tMap {
re := regexp.MustCompile(k)
newName := re.ReplaceAllString(n, v)
if newName != n {
return newName, nil
}
}
return "", fmt.Errorf("couldn't find a layer name for '%s'", n)
}
func (r safetensorWriterTo) WriteTo(w io.Writer) (n int64, err error) {
f, err := os.Open(r.filename)
if err != nil {
return 0, err
}
defer f.Close()
if _, err = f.Seek(r.offset, io.SeekStart); err != nil {
return 0, err
}
var f32s []float32
switch r.dtype {
case "F32":
f32s = make([]float32, r.size/4)
if err = binary.Read(f, r.bo, f32s); err != nil {
return 0, err
}
case "F16":
u16s := make([]uint16, r.size/2)
if err = binary.Read(f, r.bo, u16s); err != nil {
return 0, err
}
for _, b := range u16s {
f32s = append(f32s, float16.Frombits(b).Float32())
}
case "BF16":
u8s := make([]uint8, r.size)
if err = binary.Read(f, r.bo, u8s); err != nil {
return 0, err
}
f32s = bfloat16.DecodeFloat32(u8s)
default:
return 0, fmt.Errorf("unknown data type: %s", r.dtype)
}
if r.repacker != nil {
f32s, err = r.repacker(r.t.Name, f32s, r.t.Shape)
if err != nil {
return 0, err
}
}
switch r.t.Kind {
case 0:
return 0, binary.Write(w, r.bo, f32s)
case 1:
f16s := make([]uint16, len(f32s))
for i := range f32s {
f16s[i] = float16.Fromfloat32(f32s[i]).Bits()
}
return 0, binary.Write(w, r.bo, f16s)
default:
return 0, fmt.Errorf("unknown storage type: %d", r.t.Kind)
}
}
func (m *SafetensorFormat) GetModelArch(name, dirPath string, params *Params) (ModelArch, error) {
switch len(params.Architectures) {
case 0:
return nil, fmt.Errorf("No architecture specified to convert")
case 1:
switch params.Architectures[0] {
case "LlamaForCausalLM":
return &LlamaModel{
ModelData{
Name: name,
Path: dirPath,
Params: params,
Format: m,
},
}, nil
case "MistralForCausalLM":
return &MistralModel{
ModelData{
Name: name,
Path: dirPath,
Params: params,
Format: m,
},
}, nil
case "MixtralForCausalLM":
return &MixtralModel{
ModelData{
Name: name,
Path: dirPath,
Params: params,
Format: m,
},
}, nil
case "GemmaForCausalLM":
return &GemmaModel{
ModelData{
Name: name,
Path: dirPath,
Params: params,
Format: m,
},
}, nil
default:
return nil, fmt.Errorf("Models based on '%s' are not yet supported", params.Architectures[0])
}
}
return nil, fmt.Errorf("Unknown error")
}

View File

@@ -0,0 +1,313 @@
{
"general.architecture": "llama",
"general.file_type": "1",
"general.quantization_version": "2",
"llama.block_count": "32",
"llama.context_length": "8192",
"llama.embedding_length": "4096",
"llama.feed_forward_length": "14336",
"llama.rope.dimension_count": "128",
"llama.rope.freq_base": "500000",
"llama.vocab_size": "128256",
"llama.attention.head_count": "32",
"llama.attention.head_count_kv": "8",
"llama.attention.layer_norm_rms_epsilon": "1e-05",
"tokenizer.ggml.model": "gpt2",
"tokenizer.ggml.pre": "llama-bpe",
"tokenizer.ggml.bos_token_id": "128000",
"tokenizer.ggml.eos_token_id": "128009",
"tokenizer.ggml.merges": "d0cbac1fcc9dcf03724b8db5c9bfb593ae1cf68fb9bc72eb1d15274dcbbf618b",
"tokenizer.ggml.token_type": "d70a88809fd7da6f1f028622685cd64268a7a922c5d343c96f25b66327358978",
"tokenizer.ggml.tokens": "765b529dbcbc42dd202ce657341c63807b51f3b07e09898f6aa6196326865d5a",
"token_embd.weight": "b53102a11d9064bbd404833e3464b1b13e08ce73300b442312cccde2f19b2698",
"blk.0.attn_norm.weight": "7318df3cca9e8d153ff0a503026a1265e63d20b2a8c1dd7a2769585082b5d1ee",
"blk.0.ffn_down.weight": "b950806a1fc722c9fad7fd0b20c3c0a7fb50f14395e1e7663a590bfd62e20900",
"blk.0.ffn_gate.weight": "e73e580af6d4f08e060a74a3c25efdf5d3bed99e183d95a5a85ae859014839fd",
"blk.0.ffn_up.weight": "c8158af679ef99746da1befb67eebb19489e0bbe6ce7d97e13e348508244e516",
"blk.0.ffn_norm.weight": "7ec69c3c31e95e49a3359003b0033f6b9e85561a3e3fd83e7476661ecdd756bb",
"blk.0.attn_k.weight": "2732303257bac969b4964e0e32ec08b5a7f5c031bb02bf6ac4467b3ea0ebcf1e",
"blk.0.attn_output.weight": "ecda1d43b4ccc91cd5b366d7e7a275353990ac78561a07c83d9c77031aba12dc",
"blk.0.attn_q.weight": "569b1f5faf92b6f00910cf7effb2d5862f91038ce5c3b0019fc10e5d79fbd5e1",
"blk.0.attn_v.weight": "aa8416c5ef7e32fb54a1f20d6ac651656845d4af240564b397c39bd83e06e3b8",
"blk.1.attn_norm.weight": "03327e02862908c2a44b2f52decdb924bf4201f400b46f8037a9cb2e1d7a61ff",
"blk.1.ffn_down.weight": "5a83a87603f38c99f8e1e370a2d5f967bb45ac51d881a609304a7811027321e0",
"blk.1.ffn_gate.weight": "31da0572c79e655186c721c231376f85e56cdcc6257c28d08c8c5b40d5c22b40",
"blk.1.ffn_up.weight": "e0c811d64ca155c8de10a868e72015d43888834804614ee1aa2953129ffbc90f",
"blk.1.ffn_norm.weight": "5861f313d6137d6f0f904d423df47fffc6069e224ff746e1b637ac9c7f0af862",
"blk.1.attn_k.weight": "5fbbec0acca6457b9416ebdcd90e526885d0224537b7628f6be376a7f275313d",
"blk.1.attn_output.weight": "b237c9763fa3f75166a6f70b70f1566e77d0d89dfa164ed1b3137393e90575c3",
"blk.1.attn_q.weight": "c0a9cf4a98b4882b16f3eb2b49d933793dcc5357abb246fd3fe3134ed2b12e1c",
"blk.1.attn_v.weight": "96867111727200cac1af7865189dd41fd62b47584e5e5f33a91f1d34509cbd40",
"blk.2.attn_norm.weight": "f392f8a88ee3a95b1cc19c40dd4ef66317037b0faaa1800f610779e129ee0539",
"blk.2.ffn_down.weight": "73823eef46632aedcc8c1cb08a736b6aa97ca97842cd1fdfc5567d8dec459662",
"blk.2.ffn_gate.weight": "f4909ae19fc3848b00bb8b9050122e74f8e903b89e22937036f4cc9fea20a718",
"blk.2.ffn_up.weight": "16f4904a3d814ea68f00519724fc4943e48444a84c786bda39aa5efc298a7d84",
"blk.2.ffn_norm.weight": "e3ccdf56e75cb969f6f69c39caf6daf7c4e70e89e25df0f4d2e4bc60e159aafe",
"blk.2.attn_k.weight": "c3beb1e0a11bcf007ef0f0d8f6bdd3082d8b29090cd29597846b5d51e308a8e5",
"blk.2.attn_output.weight": "bb9f66c32cff51154fea92933c2cd62549236f8cb1a767f9ef28d3f99809b343",
"blk.2.attn_q.weight": "8eba394132eef2a05c5a92d62d2376000f7948448d7a2dc74e6b608203add20d",
"blk.2.attn_v.weight": "88f61f77c53567c617db3eef8f30621109a750e679f6784f7911739bd42c2f02",
"blk.3.attn_norm.weight": "7b996675b7ca75fa24107b3ebe0788653ede0f49ac83b8659d71ff54d591f81a",
"blk.3.ffn_down.weight": "2cb332bc05e4821962fdc9dcbcc7cc12630f32117711b687d18fb53c0bc4fbf4",
"blk.3.ffn_gate.weight": "340b387c7f208c8f0a6db904ef8d87c1e84b7d6ad57177abd32d86c8d18b760f",
"blk.3.ffn_up.weight": "07484433f8a7ee061c55aa0de2ecc009f769b0617c9c0ec096e9bb2946df9f0e",
"blk.3.ffn_norm.weight": "4f1a4ade36b393af341240bc894a2aab09cff7e4d56dc4658445deb107f9371b",
"blk.3.attn_k.weight": "483dcd96acb4528df84b9842970994630dbd82b8715ace394aa8b39fcf8d6291",
"blk.3.attn_output.weight": "beaff0810687923585642ee11d929cbf3b43dc6f87f30ddb552c222ab57bdbb3",
"blk.3.attn_q.weight": "0739355002f6fce520863add697e0ff25fc88215322dc3f993be7bb68dcce7e8",
"blk.3.attn_v.weight": "c216d17b6d90ee3e07f82598b8161fae34de2f392dbb0f745b682b578c324767",
"blk.4.attn_norm.weight": "91ab405bc4ba15bf63af233f266aa43aaab43789a9e6596e14a357c2ac7df217",
"blk.4.ffn_down.weight": "620f34ee75cdc73aecb8949af5fbb0d2437fd81422b6d8eb7acfc52addb9fc68",
"blk.4.ffn_gate.weight": "f6feec7bc9acadf35ec22532f8998d8e50f31afedabb19263590dcf8b9a92eee",
"blk.4.ffn_up.weight": "4a72af7cd28fd07b038f6cc4406678d120517280236ea85d9e76eff40ab2cc22",
"blk.4.ffn_norm.weight": "1805b37b44d5d682bdbd2fadeafb763ee001617d7870848cc487079ee34b21f9",
"blk.4.attn_k.weight": "a1e4f9d97cdf4c1b0d177cf00c4e32d1be30c1984a239b3c9bd73f8848888853",
"blk.4.attn_output.weight": "a1547e2497c423b0aff0eee71d9300d6fdf4e4986679418b6e637b69a9a6720b",
"blk.4.attn_q.weight": "0677483a9264ea6803d03d304d87a54632242cb516e8b76b6e3e8284c2f4de04",
"blk.4.attn_v.weight": "02691ba3af344fcc1969428ab0df811ac94aaa2fd91b0dc4ec1ac0a58806980d",
"blk.5.attn_norm.weight": "ba9c028335e5c895b87a5bd1448ca429248f9746ed97bdcb8679923206117156",
"blk.5.ffn_down.weight": "ccfdc9006acad1940a6bc05042a3947f1066acd671e0bb53b7684e9eea9ef5c9",
"blk.5.ffn_gate.weight": "623157679f1e742ccc3807c0b0153ddc8450104de75ec62f1370ec3807c09cf4",
"blk.5.ffn_up.weight": "05748804c65091f963729b58b085f58351891cac8a2861f5eae26b06aa60b2a0",
"blk.5.ffn_norm.weight": "84bae55af2efc8b8429f09056c8c04990c466dae31cb3f9356038b8957f1b406",
"blk.5.attn_k.weight": "8c766180c726b037d587fc52371de6e3307140c52409011609d1225624b6a3eb",
"blk.5.attn_output.weight": "490b582b3b1dc151ae55aee8b6743dad6c01fb49e43afefb6e68394b74be3d73",
"blk.5.attn_q.weight": "6f7b8ca4d9025ec836a44bbcca46be30c66b471a9fb62943ddff8288b3731409",
"blk.5.attn_v.weight": "9f70df3ba00c9e723214b3da83ff435a2163fff5915f75515c9664c05c866c27",
"blk.6.attn_norm.weight": "1a4a66613a682df6f061fc7c4d986f9f7e9175b62f0c42fc1ef31db536bd5942",
"blk.6.ffn_down.weight": "c56f25e4e49b443dbc82d88311ee63bc1f5002cc67e52f4787fd5f003aedeac1",
"blk.6.ffn_gate.weight": "31a5cf1aa9b831a81588d508550f51fc425f9517c43254d4ef7096d38029cf04",
"blk.6.ffn_up.weight": "ce135f3a1163e0c9297a615bdbe68a67ead21edce8debbfa9f6e15e6af8d4c94",
"blk.6.ffn_norm.weight": "4e328ce0648c94e732bc40501858ef6262ad1161e2e407b0cdcf4813fa9d45d8",
"blk.6.attn_k.weight": "1eb1c4c9f9c4c7ff7f5429075e0dc6a7782bed55109fa88df209a817dd8ef960",
"blk.6.attn_output.weight": "3d32986b56873b88655ee1edabdd413fdd9ab18b82108c9ce90bdbc2d3a6f3a3",
"blk.6.attn_q.weight": "8432f583b3a2809c99c393f9beb077cb0534dd5d247c17108f2986cadc6651f6",
"blk.6.attn_v.weight": "5045381513815bb91839dbac8335ffe49bbc7b0008369de7ea97eb676c5e2b36",
"blk.7.attn_norm.weight": "3dabd003638ec2499bfc8a48c49eef34276caab4fe76894eb963207848c2fdaf",
"blk.7.ffn_down.weight": "194fae858608bdcffd235be59ab119d0b91c8549f864ea06dae69249e099935f",
"blk.7.ffn_gate.weight": "00b24c29c30246892bce0791be804a89701d4c1332777e0bcdad5d9d5666604f",
"blk.7.ffn_up.weight": "44d7082a5280080c90cef9e19d410391de34f212ca0736377769b8ddd0c82d5e",
"blk.7.ffn_norm.weight": "21fe8a7fd6911c64e0d15a788b3b4cb6d71dd6ec51de65f760ee89afbb6ae53e",
"blk.7.attn_k.weight": "57a149eec5f6744a9526cd3925ac073f9d12db0fbcb5afe042ef4dc846458c44",
"blk.7.attn_output.weight": "0e9c28a3e81a2880251ce5eed77bcb8be8aaa1a51c9cb6de820b47ed83849fc2",
"blk.7.attn_q.weight": "15ee75263ee4e2a43eb322bc159ae004bb7d77e3a7e63ee4ddab700430693fff",
"blk.7.attn_v.weight": "440aa970bba4bff429fd7b7b1de21f2ad14fb2952b776cfa4acee68d7c6e9b8f",
"blk.8.attn_norm.weight": "af5b44825633c42c1ae964c82bb2be6a242d3a751f0a91f1bae4f593e8f5b6ec",
"blk.8.ffn_down.weight": "b11c14c76adca94fa200496dd2c10743becb23aab6642443ef1ae6d8710edbc1",
"blk.8.ffn_gate.weight": "7bb03d3325bf8637ae2fa1296b0651356515578d46a7c5ca65c7a923d7de27bc",
"blk.8.ffn_up.weight": "b956ef0a0669b5a9c9bf3a8da2d1c24f52d331cfb7354f6d7c51bd65be355e30",
"blk.8.ffn_norm.weight": "c78c3d748302edfef76f71ea5cb2055c94352122eee8b9b1173779a1814d224e",
"blk.8.attn_k.weight": "c0fba6a596ed9c1c32a7055c31a935a8b31e42b77282ee47c1f03ee3bde736b5",
"blk.8.attn_output.weight": "83cf9947080c5d8d571f04a842bc3dcfe7bbb0195fb25b346e22635e8649f2d4",
"blk.8.attn_q.weight": "47409350a576b333d97b7c877d69f47f46df504f3765102dfc0be9e521c7ecd6",
"blk.8.attn_v.weight": "1999dff91404fdcf1ecb34d9eaaaa9244ec7658a74dec8feb7cfd1fddba0347e",
"blk.9.attn_norm.weight": "1e6e29d5c3889ab4e1b0a5b9998cba60179b0f1fca133515df49cbc19d092593",
"blk.9.ffn_down.weight": "acb898a6490adff592e10b4c62d70edc5941661ee6da44658500e9205357c8e9",
"blk.9.ffn_gate.weight": "4cff63013593aadc3ffbaaa6ed70ffdba1224cd43c3644bf6f4162b5ac1ab542",
"blk.9.ffn_up.weight": "f985b5a2d6cf4fe32c7256301c3c89b8ad22b59e516342c52da42d8110766a4e",
"blk.9.ffn_norm.weight": "0d659c538bc6b21ed0018f107ab674a7424a00a42946c80e07208b479b21918f",
"blk.9.attn_k.weight": "f67611d888780d1b38c1c146b361c65310c8183bdf64fd73e2259985c6e8517f",
"blk.9.attn_output.weight": "f12ca1fa62a02ddc3f77f798bfb5707e0c50bf18ee0eaa67025521a98355f26b",
"blk.9.attn_q.weight": "3865185f4361a645b086ad47b72904c095313fb1c624e511647bf1a7dfc1c476",
"blk.9.attn_v.weight": "92125bbfed63544ab56052bd1e4aa453bbf34c795249ee54cde54907c8c6d1d3",
"blk.10.attn_norm.weight": "5d6bfbe545bcc2fcb2fc75c68f64b1f4c918badaf53e0156fe2d88aa977b2f94",
"blk.10.ffn_down.weight": "1dd9da8b0d2696ab5531fbca8a29c7d67567620a9d3e5fc2a19ec5d7e4c6cc8a",
"blk.10.ffn_gate.weight": "6e55e7f014edaebda0ac6819a426221d3b025c27312a2e18cc5806f31e3db226",
"blk.10.ffn_up.weight": "d80dde54af5db51241345ee8d64c1972608644f4deeac1e8195dc423bf27474a",
"blk.10.ffn_norm.weight": "f6ca65951d58ae3379eee8247bec34ebd0db05674cc9295593573841b8a55df3",
"blk.10.attn_k.weight": "b58e350bd6b49aba0fba4e4dd6865de3a2a0651ab865dbf2419b627b53ffc187",
"blk.10.attn_output.weight": "6b26a986e12fe66ec286a21d7d5af5eaa1bfe6f2bf502165d270e4497235a54a",
"blk.10.attn_q.weight": "3440e0e5b7e0d1e426424ae5a33f4e057be623249e9035ea12e57dbe5d3893c4",
"blk.10.attn_v.weight": "ebfadcfe14bcd6dee933053df0a67e12e7a196d5cc45728c1ffb2a2daedd5ca2",
"blk.11.attn_norm.weight": "3ed057b9576cd2de84507ef64c7646dc478c651efca4c2024cbe91a4f3fbf0bc",
"blk.11.ffn_down.weight": "8ff1c2487d22f5c499761e4eb721418f141f960160d0bab779595a34e4d68898",
"blk.11.ffn_gate.weight": "9c74e4507c7e45bf39b7cc7402198cd1dd77e3fff8c625b0413acaeb16efeb9f",
"blk.11.ffn_up.weight": "4367158007161d29939e00a322bb6776016e43f648a94f9b08a96a477aae75be",
"blk.11.ffn_norm.weight": "1cc0288c1491072121f4c9a0af20be0e13af49895696a3320e4fcac608768de3",
"blk.11.attn_k.weight": "066f5b3c144fce1366835e1ebf376f768b333b8ae29f5b478c42d1d0c809c855",
"blk.11.attn_output.weight": "e0d9f3d3f2c54aed59c02713ea4fb562799ddbacbe67ca3998dfc887bc44e47b",
"blk.11.attn_q.weight": "28d3ecc8a88cb3815e89a7f7a7d043da7a71f702b337a126e4d3a2ac1cd6370f",
"blk.11.attn_v.weight": "7c5cdef10ee73bca0a3b9f6ece5f0a0155664e0ce3d8de90ccdccfab5545e5e7",
"blk.12.attn_norm.weight": "973b133301a1af760cd7b3a7955371ea0a750808b442deb6adaf7b98482bd0c6",
"blk.12.ffn_down.weight": "d6c87b4b4ca03f75546ddd6a9e7fca720585a309188723c1ace8122438d4b200",
"blk.12.ffn_gate.weight": "2189a6e0cab1540bd05d6089b922aa8fd694be51255654933c165f302a0c955f",
"blk.12.ffn_up.weight": "5affbec19b58d092b9305721e3552481fe2eff51269ea3ed91cda3b9ef84d4df",
"blk.12.ffn_norm.weight": "f650fd42a34e950f758b4a130e7b8b1a712b1dcbede0291bb8edde47aaed0ef6",
"blk.12.attn_k.weight": "59b1e86f10450a7cc188beefc0856d2dcf44e8d7fdd9cd8859c30ec1ebaf24b6",
"blk.12.attn_output.weight": "446b0d36b2f66bd72a2323f4f4e9d85a0f621e9a58872e89a27248d6b1123238",
"blk.12.attn_q.weight": "3ed6bfd39f040301ed99fad882d3e569769d594259f9948445bef0e44ec881fb",
"blk.12.attn_v.weight": "e73652cd5d0029b1931be3ba9d82508f6696dce5a29d085476a54fb7a2ddbabc",
"blk.13.attn_norm.weight": "491b85278c0bd67bd31b9b8a9720902c244bd067e53a4a03641b7c0994782e82",
"blk.13.ffn_down.weight": "ad71cc248a85e9ced49307a24a9bfae01d387e979a7689c82ff59998e09741f3",
"blk.13.ffn_gate.weight": "0a55984d53971fab97575ee0ef5882013be7fdecfa76e3fbebb5dc85a07a14d4",
"blk.13.ffn_up.weight": "378b697b35e2e53c0de98e8e29b73d42ae3ec112ec16129aa5997a9e2f3b5943",
"blk.13.ffn_norm.weight": "f8aff2f69ab286210fad45a62b03f8d10b38f96a420d7baadf6b95d7b0b0bcd2",
"blk.13.attn_k.weight": "25ceb841afb1034831bea7f4d6a6c578def2ce4d4c412c780ef147dc9a598360",
"blk.13.attn_output.weight": "a242b322889c6bdaa14b67a7bab593db39df8eea3721638ef639abbb74d482e3",
"blk.13.attn_q.weight": "d80be9945a369439e835c55cfb0e97828b8a66bb7ced534d9059c92487bf20a9",
"blk.13.attn_v.weight": "ac33274cf9b67979d9ecdc967a55175afe0c9c4aeeff6391433cd9840c818706",
"blk.14.attn_norm.weight": "12a1e1091de5b2da12c9e7c0b1c8e6f09ce2a749733cf7d5240445b8e21cd093",
"blk.14.ffn_down.weight": "cfd41965c88266e32bc2dcdadda512499c35519e8686fefb9a7f249ab2291eb5",
"blk.14.ffn_gate.weight": "8dcfe774f07a095c7c6cf0a901c9df70d938bad7b5ba347fbc8f694e7603c0d1",
"blk.14.ffn_up.weight": "c7995577fe4a72ea0fb17c4a7b6b87b959072bbfdd5edacc6c367d43465809ae",
"blk.14.ffn_norm.weight": "81c41ebde41739e7016ffec31d2256217b825dc3cae049a935f5f61a60d22003",
"blk.14.attn_k.weight": "fb708bdebe4384f5c4b479c110028554f4d122f166b8091eda7d8d65e6780eb8",
"blk.14.attn_output.weight": "f5295caf2dfdc60553dcabe17537a80577e8b153c902247daac058df23542514",
"blk.14.attn_q.weight": "c12b7a3601c68c63ab5dc9d2599ebf3f3a10abc2c59d3a2126fffd5818f2763b",
"blk.14.attn_v.weight": "1ce968d9149bf0d5e237d52cc6d6433565b4bbf03252a736262bb00a2b34a687",
"blk.15.attn_norm.weight": "266fd2c36d7dcefc6b6bb7f1c9374c41f2bab5d6c84a063b6f91c4f682dad3c4",
"blk.15.ffn_down.weight": "6154886e9ef0a6cc08ab0d264a35f497e6f0987efdac992ed04e87088bea7801",
"blk.15.ffn_gate.weight": "183d9fd3c1b5657840099053d2fd3f72ad953b1de523296159b7761f20491a76",
"blk.15.ffn_up.weight": "51546d4498842ae2340ee226a0888d5f61e7d2ca4d052dfa06a77b0451242d3d",
"blk.15.ffn_norm.weight": "ef7378091a41a25a5f58bf1bf9d3bc64ea562e7f421e1c232b1f177c30fd3500",
"blk.15.attn_k.weight": "8d556ab8d9639324141774999b6eed0e91d7ee645bf3e7a3dcd200b2e7a00751",
"blk.15.attn_output.weight": "54aa6ba87def7cbe18b0c6ab3aff5c351cb3b6ca4a0d7b2cd5f75a1312991429",
"blk.15.attn_q.weight": "10731b0dc031ea8e0ef37bd7f010e0a78518a10a6df05a8bae48e3148b73ef3e",
"blk.15.attn_v.weight": "cbbe50c2ed7224866d3cf9b489c599f3ec41a4ea1aa3181e9f4e87e1fa0cefec",
"blk.16.attn_norm.weight": "387058eb39d4b28c04cf1368247417f1faeae8ae79d894c9f293457e0eaa00b0",
"blk.16.ffn_down.weight": "2cb26ccee585e933401ad5c82ed36ddacb3289efa0b28f8cf91b020ffbd9c333",
"blk.16.ffn_gate.weight": "d745985efb5bab42304e5d509024631efe35f92f2b2ec4931ead6db97ca9727e",
"blk.16.ffn_up.weight": "7a67bd195e0642828ca36eb7818149bb70c2c25f82de07e2b5807c520daf540e",
"blk.16.ffn_norm.weight": "7cefd061c8182482a89272f8a4e88a954b12609a62716923ca1cb3593b1c1651",
"blk.16.attn_k.weight": "d7968a2de67e755b4533e061aaad1cb62f8882af92dcad67f99d6d5112513439",
"blk.16.attn_output.weight": "9e9ab5788272ca3394ea89eadbce8c86ecc3fd75b7899184d6191c134ad9aae0",
"blk.16.attn_q.weight": "ef81c261b536c1a3a093b33f44cf2d42b86e5aa2d821674f07a0c80e992ed925",
"blk.16.attn_v.weight": "aef38e7958301b4a437cbdd2fbae6197f677b09269ec1eaf63188cd5da428d25",
"blk.17.attn_norm.weight": "28f6b289f1bc3131041e9f791b7a2a3a48baee0dfea27bf7051ebbb7ed364d80",
"blk.17.ffn_down.weight": "1a502829aafc6a9bd6bc81f12573bf8632d5c8c659f0dfb13c8b2411f3b1ec05",
"blk.17.ffn_gate.weight": "ddfd8aa0eb98846ebc9afe31366249159f46ae9815199dd70161527ed241ac4d",
"blk.17.ffn_up.weight": "4211a3cc247071bd361b30de2131d02382f552855062bf3b3e004c17992e5d09",
"blk.17.ffn_norm.weight": "647e5fa99a5b0d232af36d15816539f4d27e60a50a341b00aa88bb6e4474f8b9",
"blk.17.attn_k.weight": "d9125ff33a19c502c0f8846433ffc24395048582fc2f463d34a0301a82156f02",
"blk.17.attn_output.weight": "3d64fbb1cfef04444827f37c35fd9ad3413eb2165094d339ef89f00503f09de4",
"blk.17.attn_q.weight": "e5b29424028f578beca385fd82e29f37adedf3037cd51e5889d5a1ffb0428ca7",
"blk.17.attn_v.weight": "1809c5aaf2ac04c5d65539097564ad62796e87d24bb8b9ce5b095561a61d908a",
"blk.18.attn_norm.weight": "99daca58d001c627523d3adfbca1d95f04e590382a326866544d57989d5f4835",
"blk.18.ffn_down.weight": "84f30231ce6ca0f10227541dfc602d6418c1a210386b0c4926ef1656e7d4635c",
"blk.18.ffn_gate.weight": "ca5bbe4468b541740e54f69b9e08fcc8e478c344b70551dab21b1206acfbaadb",
"blk.18.ffn_up.weight": "0b3067b9dded31686dcfdc1e247eae3974a28a61ac59e9862758dbfaad64e8f7",
"blk.18.ffn_norm.weight": "8154a102232dbc0f90ce77ae5c1ff8f26f8b6e4dcf326e9ec1645749669e7960",
"blk.18.attn_k.weight": "25abb26021ccc481471a30e0d4cbeb7e1db29828417ec5136edeb93fecf09ac4",
"blk.18.attn_output.weight": "d87d481d9b046b68efa06ccdd4ed8cbf61e692d61114b75b7fad5ed75f5d87b2",
"blk.18.attn_q.weight": "cc6400379e15766992ff1293be79dc67682c28e9e15155a78109f4b64653b164",
"blk.18.attn_v.weight": "45c75cb1dd496aea3173aafe2575b841dd1d02cbe010b3198099731eb98f531c",
"blk.19.attn_norm.weight": "65389efc75297684773284ef8e5f8789a4504b636c9f33b8a32e0ee42499fa72",
"blk.19.ffn_down.weight": "4eefab7e939f64a17e4a214ca3c77a6fa110d94f677e2d6401086f70fc538b04",
"blk.19.ffn_gate.weight": "f1c0a59cafda66f466ab585b0b8b4861b58abe87a67cea1f6a488492242edfdf",
"blk.19.ffn_up.weight": "c42d045eef588db4a0e56960a57e110e1ff92eb8041107d19899165fd3b90f17",
"blk.19.ffn_norm.weight": "a8f33eda6d5d62ff5f333ad9771783caff556641f4e7df713451385676f441fa",
"blk.19.attn_k.weight": "0bab5d9e9083492bfb05a5a3bb23b79c0e7b99ef6a6644817b4d57d5c453b8a5",
"blk.19.attn_output.weight": "c99c551d70eafad0f7aea98fb6f9251635897168eb3895f76abf0d4ea3b3aa6f",
"blk.19.attn_q.weight": "c98bde95627c3b54c9443813ca50b4e14f518319681db6bbf7b2332ba26e9a60",
"blk.19.attn_v.weight": "ff3a490518cf64904db89ce0dc7d6eb89e870f1440e41883c6b55a221f82de84",
"blk.20.ffn_gate.weight": "761f0e317229cafe9d3754048ab038a0a84e9a287b196ab65f633139f2d29aba",
"blk.20.attn_k.weight": "45d13439b41066d282e8490a726785abf513605f46c79bd0c840f6419d27e790",
"blk.20.attn_output.weight": "a3b958d84b4a097844179b7d55c18fd0e4f319cb15e918c6fde33b68de1bcac6",
"blk.20.attn_q.weight": "127ab8e7d8c3f882874904196a02712bab42e6744fde45871b67350609d19f5e",
"blk.20.attn_v.weight": "5f0ad2d14a8ae42dd3bbeccfb33295687a14055fa92c54bc946249373c1c9f17",
"blk.20.attn_norm.weight": "77300b1755edc8c70089e0f45efa646056b9add7d8568b2324d2f3e62b64971a",
"blk.20.ffn_down.weight": "ab93d0e075b42e9017b701a070d561e698050d90aac4b4b9919256fbe50c3204",
"blk.20.ffn_up.weight": "4fd6628a07acc57a48d1ef83f81b7d7aa0bce569c1160a99d307284f8821322c",
"blk.20.ffn_norm.weight": "2a9e46b9e48e8e55215de56592e1f189530037c1c94a1428e3d6f106c7f26fb2",
"blk.21.attn_norm.weight": "4b3b5912c7bc61eb9da8e47d4651f896e85d9e59c4ecaa65df7acf3c21737298",
"blk.21.ffn_down.weight": "7146f931663d93b8771cd84405cd4802ea6560d0729b0d6d44588203c095bc53",
"blk.21.ffn_gate.weight": "b44ec5d64388fa40b90b3e9976d97a8b6800fa3b97584f32e64b03daffb8601f",
"blk.21.ffn_up.weight": "0cf3643fd23c685e17062cd11e116e17ce57a405e5e78953bab94cd62fe48789",
"blk.21.ffn_norm.weight": "4ef2cdb53da166df70b39f3e6b17af51848cfa5ea3c27ad6a1ae2a1bb1da1ce9",
"blk.21.attn_k.weight": "5d40f32a706f670c19972b14176bf660d5b045e3637b110dbf8d7de4ff32101a",
"blk.21.attn_output.weight": "18afaa916752ce16c9653ec0ec7e2fe60be55faa2aa5025d147be184adb75cac",
"blk.21.attn_q.weight": "2621daa5f858931514a4b2f0fe8d81cf9b96f541e6af99bfa7539e9bde8e34ee",
"blk.21.attn_v.weight": "63226dafc54c899bbce4aa49efceeedd8908e94faa613450fdda91f332b62864",
"blk.22.attn_norm.weight": "cf3058daab4d2c04387e7d169d1553bb8e7358eea66285ec067703f6ce62043a",
"blk.22.ffn_down.weight": "6a58d5fd220abdbac6cee7ba048abab794731af318f04982c2506df59413d0b3",
"blk.22.ffn_gate.weight": "d5614535324b03c7b91727a903b2a72f8d07ad17f7aa8b61ea173cf9b895069e",
"blk.22.ffn_up.weight": "ec20da3949566e93f66cabb67f8cd7eab399047ec6ebf5d43edfaf3669b82296",
"blk.22.ffn_norm.weight": "84c82f38f53a649972a44466fc476bf764e064ce18de870291edc302f3700e28",
"blk.22.attn_k.weight": "a3d2ecc37fde7c201176bb8abadf27f0d8ede9679a6034913e03d9db924fda12",
"blk.22.attn_output.weight": "5a3b8bb433f43a387df43dd371bdf80ddfac986dfeaf38e9bac1d7a0ec6628de",
"blk.22.attn_q.weight": "3a875cec661b4859f30a8fd2c866811184b25b68c9e36fe2663d299caf8b59c6",
"blk.22.attn_v.weight": "8717a83b79035058dcfd3ef6f8e5b36e71d77379e5a239e1899eef8766fb7703",
"blk.23.attn_norm.weight": "2b4a68a0a2f023dd646e4755c9bef17c2f631901154afd839edac7ac006ec99c",
"blk.23.ffn_down.weight": "29499b1586c6fc4883c9b7a9c8cf388035146b5aecf90c5c4c8c8e082c71e7d7",
"blk.23.ffn_gate.weight": "7d6554036d21c587b9b556428054f9c15cbef96d24b257f906fcef4ae38bd9c8",
"blk.23.ffn_up.weight": "19761ecb288d6ebd44b681c4535661583b1e19dc29e96d0c007333cd8f00aacf",
"blk.23.ffn_norm.weight": "37dc35500790a4ca33807b39cf7af65065e535dc25b9e94f3ed2759f61887ac9",
"blk.23.attn_k.weight": "717547d00323817b0cb40a72ec5f8cf42ecd1f9e3e42715c2cc5e38f07fffffe",
"blk.23.attn_output.weight": "a24786feb6a905fdf166d7500133757cbe494779d4ebcba9eb03046b319557df",
"blk.23.attn_q.weight": "6a2c4a98f138b928d22136efa163562691d3b4ed526d52d46a2fa2694a8f3965",
"blk.23.attn_v.weight": "c6e6081eb9c38a7fda023085957b460e9ea321e1fff408b38c2b58595c39979c",
"blk.24.attn_norm.weight": "5e6283f891e538670425f3e244b08dc6f96f33dfa4aefa913f8eb17212421850",
"blk.24.ffn_down.weight": "e09eb170f389deea0a4a1cbfdb52c12490768a2c60491b7bef8a4c445e2a08f5",
"blk.24.ffn_gate.weight": "af29d815cf49a38fc2ebd0bf9b2dd9933d023a29f2d766981acb9a1b53f09117",
"blk.24.ffn_up.weight": "36ccd9333426666de9d3088bd4dcdf5b624b09dca9e3a83a22fc0383f2d950fa",
"blk.24.ffn_norm.weight": "a88e1692318826db6ac42582d182e51a3c698c655d0e21e04fa086318832d07b",
"blk.24.attn_k.weight": "f7d61d6d1225289bcc502e3bbb0168b4584add0253218c1b77ac92ccef9a1c2e",
"blk.24.attn_output.weight": "85a1363b3ccc87312094c2195022687c16b0dad7fafb9e80bb4ec474d53c29ac",
"blk.24.attn_q.weight": "53482a2c008f42f4fad779ca323addc3712040149dfc12f782417756388a72bb",
"blk.24.attn_v.weight": "67498272369af7dd10097c73b07f731b565cfc9a559e711cc0d526389e7b44e2",
"blk.25.attn_norm.weight": "98dd617def5cb7825ee4833132ca2da2121245921585e1d9e36b93344adc321b",
"blk.25.ffn_down.weight": "7fd477d6c50aed5f424a878dd284343379cffbee8a34c0b6e55100c8305fa13f",
"blk.25.ffn_gate.weight": "f892c9806c8ec22e8aa746734ac9213428c534921cf161239e1d249fdb5d1ec0",
"blk.25.ffn_up.weight": "528bed14c9bf9762f790525ee40412545221f4321d2a2323fa8e73c58b7643c5",
"blk.25.ffn_norm.weight": "ca5831966672e7be6a578feeb631ec3570d3b5afe12860819ccb96e896ffc346",
"blk.25.attn_k.weight": "610d3068cc9b20401f0c3a0efea39a279dd9f564fde19baf3403b2ec2319e4c4",
"blk.25.attn_output.weight": "798aaf702e53b657265ac3b5e6caf3a0ab515bdadfeb1a3a156b4f3bfba76666",
"blk.25.attn_q.weight": "8a7fa25248de83029fb97b51d036a01baebe31fcb4be121ab00dd8b7de209b10",
"blk.25.attn_v.weight": "2a53d5e9f8a1218c66958c6388d3b37400a9af7956c785024ca44bfbc3c7d371",
"blk.26.attn_norm.weight": "5f44fc043481eb0771f3e6d2420bcbcf73140afb9a9feb8eddb6575452acebee",
"blk.26.ffn_down.weight": "944a60a409d0d5b6a851e33c69aca152454b691711a8b96f5bcc488772ab2833",
"blk.26.ffn_gate.weight": "2a0ca4abb3de5593e6693d8be69b63d6d1a639855ac8332a75f520353f030c62",
"blk.26.ffn_up.weight": "0b1df496163f9ac07bf89375d3eb441b51a81d41b47d769a04a61efc18dbe35b",
"blk.26.ffn_norm.weight": "56b8dd046e9be6ea71f7efd80dbd14e7fb1aa020d3cd38e063275f3873fd12f8",
"blk.26.attn_k.weight": "b1dabfabb970e6971c7ea6e53c63cf7ef56341e6a2edd9cf177785cad9af2f9a",
"blk.26.attn_output.weight": "39532c7e836baad164a655fb97ec5114ea4da37ffba9fdea2684f6e4450e6f84",
"blk.26.attn_q.weight": "8f48bf6aaa1252bc149e98af2be1777a5c0d2c3274c6d314171ea9344a41b604",
"blk.26.attn_v.weight": "02fb145f7fd905133750e90571effacadddfd3f4966552dc59982ac3900ab8c4",
"blk.27.attn_norm.weight": "654d168fc3cab716d91261f5719f180b7d697218401633b4878a759f1b5283f2",
"blk.27.ffn_down.weight": "2823272bec3a1c12f02cc4cb24aa4031abd7e9dbe0b02676e2305b21671818f0",
"blk.27.ffn_gate.weight": "b1a1d40cd02f97182cac17a79971d1934ee0daf3aa0bf11303568c636e208a64",
"blk.27.ffn_up.weight": "ed62ec72a020d070e64eb7b50237b32213944727b5b2427f45d989f50df5fb2a",
"blk.27.ffn_norm.weight": "c69649ac65d694b306a905dee8b03b89eec1ed188b1eaaf38f8e29d4b12e38a0",
"blk.27.attn_k.weight": "cc57bbf413f1fd227128dc66efc8590c73634cbd6f96d01ec4878b5e7ca6a925",
"blk.27.attn_output.weight": "cac407ad02361d53207b3c7e25ceab84dcb4347b8087055162e2efe14d11d84a",
"blk.27.attn_q.weight": "0af18e07cee12015761c07c94407024f4f4d77d97bdb24163db0e16669e2cef3",
"blk.27.attn_v.weight": "a1d08fbdfa40af773c5adcf93bd68b78a44ed144e3fc6bbeb8af02e937527eb6",
"blk.28.attn_norm.weight": "f39a51f814512b040a1082143150e4a49ff730f85cef49d7f77fc79d83e91f40",
"blk.28.ffn_down.weight": "74f29ed51055d1c1adb8f0660bbe538a27e016c65650f2d67efc6f1c84fa1b45",
"blk.28.ffn_gate.weight": "ae48bb16487ded6781c60aafc0bf738fb4ae15729952906f247d216592ce249a",
"blk.28.ffn_up.weight": "543009727718ac22f11ee4b17815f68ea6f15ba1f3e7ed5ecdb755cf6417565b",
"blk.28.ffn_norm.weight": "b8f9e54c322079ff20a82b88948cdc2916c22c7db40b9a9ed6d3cbe89efb727e",
"blk.28.attn_k.weight": "55d055ba653b728d6e784f9e013786fed07115c9fdf23367e3941386d5e77db8",
"blk.28.attn_output.weight": "155101c03ddbf18f4fd0694bfc982f33c7bae25c9b087d6f5273c2bfbffcf2c9",
"blk.28.attn_q.weight": "1ed19bfdd22e9c14eca014739982492e9516d411515a8585f65cf754d849e53f",
"blk.28.attn_v.weight": "11ba854dd575c025d37256eee9041f6d1bd2b549a083d6409a09bfc1542913f3",
"blk.29.attn_norm.weight": "02b0bf5e2fcefd11a153cc988c81ba672682e4844fcf6442423e21a0e10d566d",
"blk.29.ffn_down.weight": "594bb692ec2779938721ff4748666ca8370e0e4fe85229503f616438b8884f5f",
"blk.29.ffn_gate.weight": "8bedcf47e91dcb2cf4093de56b048ee411faab6ff472f89ab2c9c113a08e6967",
"blk.29.ffn_up.weight": "e241a547b5fd6dfca8200b8141e21c1c487a96cbc4e5855f181a7ed1be91b642",
"blk.29.ffn_norm.weight": "e63eba5e4c6b288bfd9f15e46e236086456c8b7f1f9c732c0b5de84962a2e7cc",
"blk.29.attn_k.weight": "afe5979d5bcf211aebb526620f5974bcb0a2c39c8be71e815575c55d6385e3aa",
"blk.29.attn_output.weight": "9c944ed44b124b014906fc240afd3b90aed56bbd9567f2eddfd5b7a685b3cb48",
"blk.29.attn_q.weight": "e234e08e5c1bd9245a2edc8d63e9933b6b879f97c01392209cad4f55f05f3ada",
"blk.29.attn_v.weight": "5cb8e3e5f954e775c5a5e4de7a9a62b17e9c6931bb0ff0e2f82c4126fd3e1a1c",
"blk.30.attn_norm.weight": "a65483ee51a0b214144ec8a14f28ea5437586e9e12ebe342a57d1f8627ee12af",
"blk.30.ffn_down.weight": "417959da77ceb33ead4271cbb9428b195196173a893c44e52880a7ec61b4856b",
"blk.30.ffn_gate.weight": "a0d503ffcbe45dc927600bb98c9f6082487e65cb577ab545add400d666a87638",
"blk.30.ffn_up.weight": "f8ab957b82ffcd10b21303cb5e866209b6fe95f827b1b94e9a949207952d12c0",
"blk.30.ffn_norm.weight": "210c7ceb0514a9ef27b5d4d1b3aff6dde43f1af0345a050d71097940e0e73e03",
"blk.30.attn_k.weight": "16861b9abcf5a3fe73c93d977ca45a1e6daa65be0fd85c2cff53486ce2033afa",
"blk.30.attn_output.weight": "ca541fb2e57e2257118c35784845b0c731278af8db3036ac53d71aa1681fdbdc",
"blk.30.attn_q.weight": "f7834917748e26bb456b945e230bc926c228e93696bc01fbc2b134bdeeac71a1",
"blk.30.attn_v.weight": "9292783171dbe5eb689d17c9bda11e537f0e9b328fced6986c938d61ed590e81",
"blk.31.ffn_gate.weight": "e4766a04bcd8f937ba883c6a144101e546747804ca66c35c97281d6ccb47b566",
"blk.31.ffn_up.weight": "cc1e666116f7e6b06736db4aa4b81003c583f54f4d9200bfa48842249940e16a",
"blk.31.attn_k.weight": "fc80b57557687504efae7d24265cb7dc39b8f826bb3d897a11783012dbedc44f",
"blk.31.attn_output.weight": "215617f50a1f5d9b2250b82f3652b35a9e9aa0ad9ef2b485d73965a14b2b872a",
"blk.31.attn_q.weight": "274b4f1dfb0bdec28632705677049fb3e327ce6d9e1f3baaad1560439039982f",
"blk.31.attn_v.weight": "e641b8b926f9dfcbbf6b6da1c02555525ac4b1c306d96f20cfbba7d6662c4e56",
"blk.31.attn_norm.weight": "b3243c361d4041ddb892ce6862dd5091f57d87357e3c67e177451b85d8baf34d",
"blk.31.ffn_down.weight": "0a00cd3ecd5e91624a27f9e239b1de425d5ba3cfff82c256a11a4ad434abf3c2",
"blk.31.ffn_norm.weight": "2a0d67ea2bb1303975712243f07273c92fce83baa11b1cd6d8e42e74ea3c810b",
"output.weight": "768615f077fb797967844571c58b94d7c399d884d115be3ab4b0154504cae892",
"output_norm.weight": "7cc5b7ce10e5082000fa00bfa68af8c7c5da218e59e2c41cf2f1499d40ca229e"
}

View File

@@ -0,0 +1,313 @@
{
"general.architecture": "llama",
"general.file_type": "1",
"general.quantization_version": "2",
"llama.block_count": "32",
"llama.context_length": "32768",
"llama.embedding_length": "4096",
"llama.feed_forward_length": "14336",
"llama.attention.head_count": "32",
"llama.attention.head_count_kv": "8",
"llama.attention.layer_norm_rms_epsilon": "1e-05",
"llama.rope.dimension_count": "128",
"tokenizer.ggml.model": "llama",
"tokenizer.ggml.add_bos_token": "true",
"tokenizer.ggml.add_eos_token": "false",
"tokenizer.ggml.bos_token_id": "1",
"tokenizer.ggml.eos_token_id": "2",
"tokenizer.ggml.unknown_token_id": "0",
"tokenizer.ggml.scores": "e3d3eea80bb41a1213f2d0aa3e8a38581d1f19323be77dbd779c9c7e3b72e676",
"tokenizer.ggml.token_type": "6040635e6bd38d98af06698feb75c1802bad35180ee6ae0a503e38c0f60fd71e",
"tokenizer.ggml.tokens": "604ac4bfbd019e430d7b6cdf18c6c0cd5b967900601f0307f714ec7773aa5ca6",
"token_embd.weight": "cde834ccac5e94324b25cb81b02d27312cac0c551b55a7e1d555d90bf6cb6e81",
"blk.0.attn_k.weight": "458bfdd9715c66e017c2447b1ed3c582963a3111479314e664faad8c914f42be",
"blk.0.attn_norm.weight": "e1fd60b95f713bae7b7e3ca933c64ae6c9cd1e8d808000204bbfdc19f0ba635b",
"blk.0.attn_output.weight": "df13b6a157d9d4f96c53b012b3b9bcd207d0c94144cbd22ae3ec13bb07d6c373",
"blk.0.attn_q.weight": "13b4126b4245bf06c915a93317c42b8174e05053535ec99dc576541e4cec7c25",
"blk.0.attn_v.weight": "5b1781d3a341214511b27eb4e268674ea3ea829dbdf8ae5a6bb89b3c0b33fafd",
"blk.0.ffn_down.weight": "49186f5d8148d316b07458841d13a2e66587f4af69b776188a809591ed9c070d",
"blk.0.ffn_gate.weight": "4397e30ece09136f00f4ff84ff49e5241b765a374deb8c5a12e897e2bf73473e",
"blk.0.ffn_norm.weight": "43260589aac3850a779bca3f9649f793bbfbe5db538361cb743b3830217f8287",
"blk.0.ffn_up.weight": "fd7ac918240a07566f6967527ffca58fcf433a30b78fdd6d84b2136d4ebd9987",
"blk.1.attn_k.weight": "209839566c7d235bdc20565a4766378b6ee8553133a5a3315abe8a85baa80712",
"blk.1.attn_norm.weight": "58c52986f7c69784ba327cb7f350923420782bee17fa39b1fbd13839d4005357",
"blk.1.attn_output.weight": "5067cc628449682665dfcf59b16e58fe2a9d2a81cb099f0fcd42f4f8670c6740",
"blk.1.attn_q.weight": "f410f9f0dd5edc09401af597d02e2a4c727f1502ec3ec3898321617b36c6df6b",
"blk.1.attn_v.weight": "d40fa49e07c102c0644e130e7909eaa93ed0d54e2edddc0759e721d58a4e4f5e",
"blk.1.ffn_down.weight": "594b1eff6ed4defbdd819fabbe2d48764984f08878a860bdb808511d5a25b8db",
"blk.1.ffn_gate.weight": "4cda97541e388a5bb607ce4cc8b3db1da7045830a630e7ba4d17807befcff346",
"blk.1.ffn_norm.weight": "66c13d7481be65b97aa474735ddc9674f33d512ddda76fa6fb45c7464b09f1ed",
"blk.1.ffn_up.weight": "1adc6de288ba4cc1237833ca8b4eb81107149842e38bc452e18e5cfe284338a2",
"blk.2.attn_k.weight": "5420423559f236ab22d85a00849f31e0cc6e9c7dd879de724393d8cd2b379153",
"blk.2.attn_norm.weight": "495fe1ab40cc52aa054ddd4f0c2d2790f4326c8d103296b1b38f3b1060db2a24",
"blk.2.attn_output.weight": "ccb83e7085381f558bfd65588c525ad2671feddcbc3887afb4038ad9c7aac348",
"blk.2.attn_q.weight": "2e8f77478392bc93c2a391f2e0f4a173a952bbab88a7aca099c6ee909726409a",
"blk.2.attn_v.weight": "d64512590f3b7ebbb9e77c2eb97fbda90b00d45c944f2b174f03a2cb11007567",
"blk.2.ffn_down.weight": "1de5084a05dcaa6b1bd926e83517dbe9ebe7fde79235fe56018b3028b1aa6397",
"blk.2.ffn_gate.weight": "cbea526b557f49aad8c976973cf367fcd12175b900f551984f498b9e07e4b7fd",
"blk.2.ffn_norm.weight": "530aa49b10c7eae08899d143409240deb95dae4e1d5bf78cea3b26393cff3ba1",
"blk.2.ffn_up.weight": "13a5fc19b96b4dcc1e9bd01998c8272ebe52034c1933ed123a506b711fae9a5c",
"blk.3.attn_k.weight": "1913b63a73305941d8cdc472e7f101c633d3357a78602eac0a4b49a744261075",
"blk.3.attn_norm.weight": "9c11bed5ab41f4adbfdae4ead65b525c8f19443e656a8c61ba412a4e1ad1193b",
"blk.3.attn_output.weight": "bb0b42c1d34779c5943272ed71f1dbb31ad8edd75f8bcd5c868f88505ac3a610",
"blk.3.attn_q.weight": "3461a1fe4e49f5319ea047cae98ccdb46528a3ec23831183fe87610b48c94948",
"blk.3.attn_v.weight": "82aa30be6a61526a41fb79bb28a2617416f5909f0477aa9e95e16be9370fcb38",
"blk.3.ffn_down.weight": "68521011ae03f5e3b0966127111afa8ee9f2eaeeef8d3a0b86b633e0332e9fbf",
"blk.3.ffn_gate.weight": "1e89e26338fd364bb679695968c65106382f15ad55c95cbb5ec9bdfeb766f432",
"blk.3.ffn_norm.weight": "c81932529a5a8c417c27b888dbe95fff8b447c2ea5f6f560444ec5d50b93832c",
"blk.3.ffn_up.weight": "305021735afd8669afefd713f56137248d5e817e60471a112ad06b7fa07ffe88",
"blk.4.attn_k.weight": "cc26ba5c5c28082a79e6abfe61186029e80b145252ca6a7924c437f0bcf2d51b",
"blk.4.attn_norm.weight": "302d251fdcc91f7468cf33f80b49484251d8917d7018ad264ab3a85c8ecf9ddd",
"blk.4.attn_output.weight": "a012f5bee3520cd4ce51f0076c132ebc3653309f304032ad051aa308f55f36de",
"blk.4.attn_q.weight": "3c8d607e447f5ef21e73af71e3c0d32fae16f91f31faae34ff06912cf9cb68fa",
"blk.4.attn_v.weight": "49f6c81a634ce46d71c2350206ecbd231b1732af96e4e4e67693c41a07e007d8",
"blk.4.ffn_down.weight": "e89504f311a4a34dc819a67b761022f14d71c43df3ead4f892c87aaa8e9f0adf",
"blk.4.ffn_gate.weight": "18b22f079a2fbaefe3572eec61fdcd996fd747724e2f0ff4f08cfcb43eb7bfb6",
"blk.4.ffn_norm.weight": "22415a492c168a0878912b05c854a631228b01c3ea8842e1d75989ec46c18a65",
"blk.4.ffn_up.weight": "f57379eae2874d8853f14ddf0f0fcc4ff1338574d5ed5d7e88331d5fb84f5642",
"blk.5.attn_k.weight": "d627af853c40bddf9762ce3988008c1ff17f2686fa8f73a0b5da38010147c316",
"blk.5.attn_norm.weight": "9ce01092c7f7f1c3ef72d6b794da12d77aa1f6a24fb96ba1b9bd5a0bcc3e2443",
"blk.5.attn_output.weight": "0388da8064c4b6b795ce2d8079e8a36535e82b2c9cf794e38ce8ae460aae726d",
"blk.5.attn_q.weight": "039b7ce1c909761fdf475c06cf14cabe5a90199282c89e4dcf460e95a4b6275d",
"blk.5.attn_v.weight": "c47bfd8d2496bdb6e00e03b903e15fd0ee806a515094ec257e43cc433147ab7e",
"blk.5.ffn_down.weight": "1d62e6708974bae318cbf00a8bf621d9ba0537e549ce4710a536520a8d14168e",
"blk.5.ffn_gate.weight": "8b42b1b11c92db19985094cbb50434e3a7c9cfea71ee6f21ea79eae7c49284a5",
"blk.5.ffn_norm.weight": "e0bc520f1505e687ec391d632a381d38d8ebcdec19f614a11a2000ab573e8b7b",
"blk.5.ffn_up.weight": "8cdcd17d2ea89bb9ab902dbc6bf3f827fa4ee029c6bf19eecbdefd146d8b6f2f",
"blk.6.attn_k.weight": "5dc6bcff89794d1756bf57ec665b58622d9352130d31082a6c66e1a079f99932",
"blk.6.attn_norm.weight": "13b26008abe0f119b5104b9d78ebd5e797d3cdd68122b93d73a3b4831a54d085",
"blk.6.attn_output.weight": "f5a49917ea70c3fb311ccfffbfafa63ab18416a5d55e5429b70ce8bfba57c075",
"blk.6.attn_q.weight": "d9c2f652c87dbd09ec3822e12876648fa32e86553ac25afab723b1cd9f8cef90",
"blk.6.attn_v.weight": "5ecc5fe67609a35151011cb526f45c56fc0a999079ae0ff37c755ca03c68c555",
"blk.6.ffn_down.weight": "0ec125ae0ecb2d9277fdb1b04f17efee94e37d0ae37311057c212ca2db3fe6d1",
"blk.6.ffn_gate.weight": "fa4d6d38355ee8aa3b80b476d65ae7e343c9b7770d7b097fc848ee8a6e091d1f",
"blk.6.ffn_norm.weight": "30e8f7defc627532e1739dc76d31223d45767391a431f925b63dabe334b0f392",
"blk.6.ffn_up.weight": "6b97cc32b290fa9087806b5d65aa6dc1760737730c8c71394cc4f30c2157f9ab",
"blk.7.attn_k.weight": "0231cb127cb7c3714cd72b8f39343891d7715a9bab2237ade9e7bc5f4ed2e68a",
"blk.7.attn_norm.weight": "7c3187f07eead7d219d98ab2daf87905e88d5f1ace109b6f5fa55dce3914981f",
"blk.7.attn_output.weight": "2f30ad972c284ae7c8eb0482053433495ebe8fe9c5ee2c28b4bc4ed1f33050fe",
"blk.7.attn_q.weight": "3a2b4b8d61cc9956d304fa9f82a9e65b4bb9fda2196670b16df7e0d8c43eff2c",
"blk.7.attn_v.weight": "d2aab97d0dcf0f61dd2f32848f7a8a99c423a4948a660a660a03a546972b8db8",
"blk.7.ffn_down.weight": "2270d520468c5549cd30023ff9c452a277058310104c4239a616373fc5a94387",
"blk.7.ffn_gate.weight": "4134a3ef71b3eac8f76b6f1a2e58625b3bae48081f175994bc3ed7d8b0d4f2d0",
"blk.7.ffn_norm.weight": "42df4abd4b8769b16f3930068f96960af1b061f1aeb7505384f272233b2badff",
"blk.7.ffn_up.weight": "c920549054ec16ff8c73a72f5d837cf4e11885e44db57c1c1c584c18fbd7a9a5",
"blk.8.attn_k.weight": "01c609bd3bf31ce65688f1f640ee413740e821330134d4ed1877a3065d1527d5",
"blk.8.attn_norm.weight": "48857411f769b00290f4e4f2e593e092781fdc2503f80c1e3eeda1b85a20f74d",
"blk.8.attn_output.weight": "90fb273f8df83744554bd59236515c16c5a5a698ca3fbedc17cc89ddcee354ff",
"blk.8.attn_q.weight": "ade617ac4653c7f00593dbb51837a468afef20a14eaab3780fb96ac3d6714369",
"blk.8.attn_v.weight": "c2c37496494864fee5c527d1fe1f88529d31c73f9cbd02ef9b2e9b23611ea50f",
"blk.8.ffn_down.weight": "2da58572e9ad79087c03cbb0c23c9ef69f93ec221fd5fe4ed92fb93871d23ffa",
"blk.8.ffn_gate.weight": "4483294e628edaa4901708e73e92c917bdd93b780fa01aa74aed57166f2bbf0a",
"blk.8.ffn_norm.weight": "c0cbb7a4f8123b62f0c4652a687f3b394802bc32870dc446eefb709e42043a7f",
"blk.8.ffn_up.weight": "9eaf8a2060cb9224cd585997cd671866c4051ad885c2c6d9fdc7056c2a5c0d89",
"blk.9.attn_k.weight": "5dd36c45fbc9c50fd35c36cd75576288506971eac5c5311d4f5c16ef60099645",
"blk.9.attn_norm.weight": "3c8ca64f2f75ed7c8fc1da010c23be787648139a96ca0ef3ad10be7b14942b8d",
"blk.9.attn_output.weight": "6277e1f833024f53c409be919ec76d34464a78b278c8f9dbf79e777746e3b995",
"blk.9.attn_q.weight": "87352b70d9e328c2d51d59090cf5ea5a046529864a890d0bc8986447a0a5c006",
"blk.9.attn_v.weight": "2efdf01161d7a82a9117cc2d87d37dba5ffefcf730781cb94fcc95130e48ff9e",
"blk.9.ffn_down.weight": "e7658a2ca984961c7ace16acb679387bedb1fef656b5330bbbf588db19673a75",
"blk.9.ffn_gate.weight": "773cd330d4ff5d64be8af00adf2e2722fae4e33fc26bb9d03549f6f4b3b0fe57",
"blk.9.ffn_norm.weight": "c8b86cd5c43b332f72060b807091c33a258e5dac01358ff4733b916cd34c9c97",
"blk.9.ffn_up.weight": "d8cc3bcff18bd46124ba2aa7caacc71220b44eeef6fccb993b4c6cb53e8f2c3a",
"blk.10.attn_k.weight": "964bdf3b4e77b915a216f750ff7b0f2eb1dd6bfa071358aef21010b90111044d",
"blk.10.attn_norm.weight": "59ed411d91d14775764eb514acb0895a75a10cbbfbc1c15d453bc50f8046cb7f",
"blk.10.attn_output.weight": "4d35a2a44cfe4ac0a83fd3ab0dcf1f5a0bf54cdb3b7be9fc353ed32c8a3eb81c",
"blk.10.attn_q.weight": "defff5339450dd881ac352f5c459293f39e07b9619ebd10ed632d79a3f310278",
"blk.10.attn_v.weight": "b9803e8d6a54acea58f662d4c0a5c8ebdf986676de7dfe12d4b288937881ce93",
"blk.10.ffn_down.weight": "eba856be64e4be20b92fb4639a783454dd92427250759df92a337e39f1971c08",
"blk.10.ffn_gate.weight": "2d5c509b066584db4de3632b01234e86edcde35409c5ebce18957dc80fe465e3",
"blk.10.ffn_norm.weight": "ecb9a8679945ff0273856624ce435dd250ffe5a440ea0861a5c84f0e4c44d2c6",
"blk.10.ffn_up.weight": "e76ec7e993f399af02958778c643aa78368e3067846714165eb5aba9d5f547f5",
"blk.11.attn_k.weight": "29c6d1f34bd3ba2f0904e57b32a5bf8dcb2834d439159a33edf234ce0b775677",
"blk.11.attn_norm.weight": "b5817b275149cd2abe18a6a10e19854605fc58fd364666744362ceee8cfe49f4",
"blk.11.attn_output.weight": "1e05653220e237cbe0cc770033e183c9a0eed5680510997409b16186c6691950",
"blk.11.attn_q.weight": "03db725ae669151e4d536e50285b3b047ad097f52475df208ed3e790e31a44be",
"blk.11.attn_v.weight": "27cdf1d4e971326c451a4615a0b79a8c7fe9508f9b76c0d52fa01971fc7eb403",
"blk.11.ffn_down.weight": "176938cd7c2966094f614cace8ba568b10532e45a0d438f80eccd19b6c2a7f87",
"blk.11.ffn_gate.weight": "9782339915dd6fa70013628a01524ee1d01ad8beab04068da7ac6a5ee7603a60",
"blk.11.ffn_norm.weight": "8245f6391e3be97811c0ff27f0d8f484ecc82a468a837c893f059745bfcd95eb",
"blk.11.ffn_up.weight": "15616ddde096d0d25e906375c548b6de4bd5576d1f6b68eefdc29f14e183af42",
"blk.12.attn_k.weight": "66dd21604993edd1b1fe547bcaa06f5bb7e31c9204902d147a227e4badf7feec",
"blk.12.attn_norm.weight": "23a69f85dd8a0904b9839cc5d0afcda299b74e82ae2642106224a1c820f2b761",
"blk.12.attn_output.weight": "4a98d132e376beb274a39d4ea9b6a1b870ad5c66625439d7ff6f45c229c3ca04",
"blk.12.attn_q.weight": "1c6c309d63afcfde32fe37257e300a78e25d01117e33490801107c0e75d1ea66",
"blk.12.attn_v.weight": "723d9e4ebe4e2b1974afa01d8f512b52933698fa36717dd47b37b07760c50a10",
"blk.12.ffn_down.weight": "00e0fb09e1f1fbbf3803f1dee373eaae7a93756b6e13063ab77f9927bc6f996a",
"blk.12.ffn_gate.weight": "89159f7f97aefb1e100107e3ac2d694e1008ad873f79bb953d60c2c1bb22724d",
"blk.12.ffn_norm.weight": "5f70aebd0e43a39d6373d8658cc670c13aadd7818831d3d84f761d5f688442f0",
"blk.12.ffn_up.weight": "faec21b446f061eb4dca561a3180712724347b77a71eb312e7afe9be9e89fa04",
"blk.13.attn_k.weight": "3d440825d19eac3b1753b34d94fee2b3a3cb6636c10b2703ffcf688d3c1eded3",
"blk.13.attn_norm.weight": "47b575e57e410738ad13fd3c74bb49c06b3d31030910834ece509cd1a5c6d9be",
"blk.13.attn_output.weight": "05436d8e613f4475741c1798a7c371b53d61b229507fa04fe23c504ba1f0e12a",
"blk.13.attn_q.weight": "002b5024ce520da41256e3ded5cdc60e5ae07ad9b202cb19d76ab511efd02b1b",
"blk.13.attn_v.weight": "c1f2d6763587c50312cee0d7140fa2c7ee326f5b172bc99b2d8946e08329cabd",
"blk.13.ffn_down.weight": "b5c4e0d8a3ff96cd76a135e415b89f02d28c28f7f3c16a36af31ef0ab8773da5",
"blk.13.ffn_gate.weight": "ae06e9e3d2e1f64c7ad23a4009dc904c2eccd7241f9f91c4974ab2504f116be0",
"blk.13.ffn_norm.weight": "e44a22321bcbcb4a3c345b504e939e8071370f54a8cd702fabdb40b97e0d7683",
"blk.13.ffn_up.weight": "7e6f366d538e21ad431264b12c011892d0be9dfe4c4da9f730af677f920641ba",
"blk.14.attn_k.weight": "95492d6417952ec24b2cab87bceb750fc7e95ac6b1944fc328a3852d980164be",
"blk.14.attn_norm.weight": "6b7b09e1c51addcdbb160ea59edf032531421c520ec5645fe1ff9ca4180cef54",
"blk.14.attn_output.weight": "75887474e4d72c218e6ab0f69f1bf3ec3dc414d51b36fc59df00cdb23421bb6a",
"blk.14.attn_q.weight": "940e33f76e48c21215d19e8a21234c8246d4d084381a7d9806aecb24b071d5bd",
"blk.14.attn_v.weight": "c58601cf5a9833f80f7f9a5b2656e8eab5eb133211446ebd48f8be15fed4ebb9",
"blk.14.ffn_down.weight": "f9f886e7f9b2a54d717b08947a25a0a93e8c2a5b8bcd5a907c06817c8ee3ac11",
"blk.14.ffn_gate.weight": "727ed0ee68594a3f59d704ed3240b6929f083b9c36650fb848d182315737245c",
"blk.14.ffn_norm.weight": "bd2471008ff1b2bae9aa26bea019393fb2bbc5b9493b8cec3ebd2c280fca24ca",
"blk.14.ffn_up.weight": "b006446769f51e4f93b503c4727deae897bc1fc7f4fad49f85024b63c4548d38",
"blk.15.attn_k.weight": "23bb70f9035356624039547a603e46be7d1e4403616eafc2451cc09c5373d522",
"blk.15.attn_norm.weight": "718cb371ca052eeb3bfac6ac506abb887df125271821fd171797a7f2d8dd6313",
"blk.15.attn_output.weight": "c76a2695a204b43a8e5acfa5720590b5d449a9ad9e082cbe3e80fab5903ea16a",
"blk.15.attn_q.weight": "2b3e4037b9e91bdd26d6e8d904cf39f948192dcf09bb6445cb55ca058d4f4626",
"blk.15.attn_v.weight": "7c15e89b6acafc8619e86aa9d412f5893ab17843ff2cfaf40eea9637b24910c6",
"blk.15.ffn_down.weight": "e16fd4bdc6d1c1209c6b633454df4992870c8cefb2cb0e8c92a7e489e9fb5d19",
"blk.15.ffn_gate.weight": "95a46bea366c260337c537fde06b4cbeaeec52484a69c3390bb1d178eb0525c9",
"blk.15.ffn_norm.weight": "37730293f704da265dc6d1896b3be00c39c0a41dab07f573af39dc30a481d623",
"blk.15.ffn_up.weight": "ba74a199da2d0875d7410824238c4ffafbda3993568812284a72b8800df91f15",
"blk.16.attn_k.weight": "f58f79a2a91c9a763adefce0c53a71eb5ce6bd8442f4af554b04b58083bff27e",
"blk.16.attn_norm.weight": "0c16e41b95e81978e0e0e3b338e2afe2d297426578cacee94de15df74e94eaad",
"blk.16.attn_output.weight": "ead22fc337514e4add49aee19720008558e52090466866e849671953a1fccba4",
"blk.16.attn_q.weight": "ef59c4e8fe8918c1add43d7e9c6fb3ef799dd3e1bdd731ec7b6a4a6f97c86048",
"blk.16.attn_v.weight": "902e6b84c2b64241470b13e6f412f859f66b4b223bcfb9c15d5cb1106b07ef3b",
"blk.16.ffn_down.weight": "2ad6e9eb4d8372c32a554395d460d17cfb02d6dbcb757cc962b6bfa36db4f5ee",
"blk.16.ffn_gate.weight": "825b2d50fcce3dbe6a5d8d8a50a95466f83ca4a10343efe67894c20b4628fb15",
"blk.16.ffn_norm.weight": "3bf6ac90befb0e17e077c8ea9454a8485a30f89f2d761ec7751b60c90aed1af9",
"blk.16.ffn_up.weight": "9fbdd08739b32411f5ab0252174d386bab19eb0b17884862f760429b7d41d78c",
"blk.17.attn_k.weight": "4033398718bf3674830ed1b73071ed8482b6dd4ef27f31a6c5fbb998321b6c07",
"blk.17.attn_norm.weight": "714f2e8ac9592966a0f1c02ee979eee8f84586405b992e8ee9543e840199ffa1",
"blk.17.attn_output.weight": "b6bbb618597d767b8f535117be68f92911e4a71d4eb4d8b5d943444151445ece",
"blk.17.attn_q.weight": "b84a0dc00ceb515faa2628125dcec502eed923077b21cfe900a4ff16c2e5f9ed",
"blk.17.attn_v.weight": "4387c7d6a17da9cc7a6bca8f4a75618b20407d570792056283a8e93b6ec65f18",
"blk.17.ffn_down.weight": "47db95c6f1e12b399c3eaf9ddba261782dd71173dd163b52af96541cf87b5196",
"blk.17.ffn_gate.weight": "59abaded0aedfd12f01df81f7a811e84db6a227f51b60abe9a247ca726e87392",
"blk.17.ffn_norm.weight": "b7e86445be5c7b722e01ddb98d5c7527ca86cb827ce0354f2c269e0f2558751e",
"blk.17.ffn_up.weight": "8e31c293bac649d2f60da4b3fc4a3acdce1111ec6058d8805eeeb242443011de",
"blk.18.attn_k.weight": "5ce762ab7b032511c131df81093b587871718c7097f79d8e07d707571f18a47b",
"blk.18.attn_norm.weight": "1f52cdc7af1f4dc1f0ef6ad1ad02e18cda32133654e57cfa9c72ada9c0b1d995",
"blk.18.attn_output.weight": "6486957f30bf8a88516e25772c6650f98b13923f490a2865a8752e36439d1cfa",
"blk.18.attn_q.weight": "93621c8abf69d2ca29c5207180eb628fb2b544d89de6c4a7fb0699be95534899",
"blk.18.attn_v.weight": "11604083b5a74828ac1d226af015ad5dc0215a1fdca44fa7131c2163c02d8156",
"blk.18.ffn_down.weight": "8f9997feb94385f106915df810239c9753b31efda2bf14bdf18a9fbbeec8233d",
"blk.18.ffn_gate.weight": "427c213b3a4e94af703429daf2f65766f70424d8230c123e7e712a18bceb5ecb",
"blk.18.ffn_norm.weight": "c45d305c4ea6a54013ba112f12dafaade064a32cf01317373464a3618d8ba44a",
"blk.18.ffn_up.weight": "a2811f2e73ac9eb9cce91a21a454e84e230a155244e2cd73f2c12aad3c9b8cfd",
"blk.19.attn_k.weight": "b2daed159925eac58c291e2f1e2000beed21002b03c9e1bc7e7a52e22240666c",
"blk.19.attn_norm.weight": "6307306ede2ab5bffa1bcac3f8b139354678c0376b1d9f5530c1fcb4268cfeb4",
"blk.19.attn_output.weight": "ebb98218b2a9c84d3fb6baeb02c5df264b7ab80d994d1098ba1cd47aa398effe",
"blk.19.attn_q.weight": "4f10df2ad09177e7528e9456039b670d07db22940a49417101b725d239c16724",
"blk.19.attn_v.weight": "30f1efc5114badaeaafa91fa466dc7fa14b1616db433c6f563ab851f7333a5dd",
"blk.19.ffn_down.weight": "be5ec7fe6b48855cd0015b0e430d1b70c620de87a7ff188c7c1afef546d7b6bd",
"blk.19.ffn_gate.weight": "10dffea4213881f8a9b583ee0fd370e033756d32255ed15053f794375b9400e9",
"blk.19.ffn_norm.weight": "e75cd24ade45dca78fdb0cbcaaa2d4a17d83a5a73dcc94ce0ec2d68fbdb2a881",
"blk.19.ffn_up.weight": "63e81bdb951410ffa81bcfba1b94a679ec9ebae59cd1623ce2651ed5d4c78bfd",
"blk.20.attn_k.weight": "c2fc5ad39e9bdd45e73c6e54aecc474388d944c4be1ee1921b7fcd035bad02e0",
"blk.20.attn_norm.weight": "aaa9169171937bdce20c1f057e94e9252f221cabacf1ced12e11b9586f23d308",
"blk.20.attn_output.weight": "a9f4fb496e4bc053e3f6cf2e72e22d4cd2b545ef6c32f7e782c2ef6ebcc21d4b",
"blk.20.attn_q.weight": "5a07ac619ed251494170b213921ef3fcc4c2712839da262516d9d5b8ea1ff185",
"blk.20.attn_v.weight": "d6689473105d241eacb17f09f06000ee237336916cf5ec4f48271c5b41bcb8e7",
"blk.20.ffn_down.weight": "74be38db51df736f26ede7c6b52ea787e385f181cb66231e2cced4556a25c9b8",
"blk.20.ffn_gate.weight": "ea91e06dc3d051c0ba0243b5a8bb40edbf254eadfb54fda7247e05cfdd88cbe2",
"blk.20.ffn_norm.weight": "5fbd357b3d6f44a7a91e8a4fc246b24303891b7957e0f3c32818ae5dc16ddd8d",
"blk.20.ffn_up.weight": "fe3290333e056af4ed12942ac72aeba97a6b562e2db05e79cd35dd07eab5b101",
"blk.21.attn_k.weight": "201ec6ee95f06ea5eb80fe86fd07bd016d3ae9ab6abd25d631834414e14a010e",
"blk.21.attn_norm.weight": "ea8154f93e06485828475a00b98cc397ac84768dd70e06ecc0c075b5712d7276",
"blk.21.attn_output.weight": "9f8af74d531478fd304723fd8e4e01578db598441b80dc7c960cb801dbbc501e",
"blk.21.attn_q.weight": "277de9953a8d3cff894ffd06c15ad0ee1407e319df0c1a693d4f45fa9c74ac7f",
"blk.21.attn_v.weight": "6bfdc16cfb898909b7788ddd39dd04b928f31d6732772195d53c558004638dca",
"blk.21.ffn_down.weight": "173877146cb94801157796ee9e5eecf3f46acb3b5e797f90b83a3fc22395eb30",
"blk.21.ffn_gate.weight": "53146713e2ca1be80496024077a028f6b6d749b02e71003c349e113b436f48f4",
"blk.21.ffn_norm.weight": "b28b97e18ab20a5c553ba422f7d7f6014f5902f1d62a69abd20d9fe19a5f9462",
"blk.21.ffn_up.weight": "5c39d0ac4d602b8ec8909dade93b2efcd6b6d9d84a19b252d76bb66dcfaab87c",
"blk.22.attn_k.weight": "01f26272c82917a87a3ccf922fa1d521a952b05de878241b7efe3525b617ac87",
"blk.22.attn_norm.weight": "5ffc96249d8873b506e9eb7158bdfd07fa1429e53c1951430ca7505d25f11c76",
"blk.22.attn_output.weight": "9c2201569358f720244b9c9497e4da02585a167b1414c8a506b85ad75ba990d0",
"blk.22.attn_q.weight": "906036eb4ddf027f6d920f9356a6a2a5e529b96f4e1231a0496d46b4434a5842",
"blk.22.attn_v.weight": "30ede8b0d166003a4b8a81fc99437f557719fc36e5c4dd510c9f161f36a47e73",
"blk.22.ffn_down.weight": "d04c164beabab30e1837b843e18852260efccfbb9d96a34ddd816e6fb3ba23c5",
"blk.22.ffn_gate.weight": "19c889db6b19179f0a62d5981a1506592c65de83760d67afbe00d202202750a8",
"blk.22.ffn_norm.weight": "4885eff2d851b32dbd306bd632c725857e6d164f0fa8b3d5857e572e6ef98ee9",
"blk.22.ffn_up.weight": "365594d8db8e95cf87cc33ac23947942dc326110175cc8ec5a07b5c7059089a7",
"blk.23.attn_k.weight": "badfea1569da0fc6ab817c5727ca3a69b07d9cfd622fb8be5e66678d5b3f7ae2",
"blk.23.attn_norm.weight": "8968f78a379ac3ca5458b4ed4251e8d9112aca6d6dd1ef6440b4bb0b380375a4",
"blk.23.attn_output.weight": "93e43393c03956287b1fe31e9735ff1cfe84f4ae56b83dbaebe96275e4e11831",
"blk.23.attn_q.weight": "aaff73c725a8700ae66bf26ac8869dfe96738eff23a8ff340de2ab53400a5795",
"blk.23.attn_v.weight": "3a86a8dcf14a746ed1411f5a7e634064bc4dfd6511c24cfeccfb2c9ebb6b4101",
"blk.23.ffn_down.weight": "d4da6f37bd7ef69bb203f7b0dd59f50bce37432c70627e6cf274ab81548af5cf",
"blk.23.ffn_gate.weight": "5b6072936c4a693923bb4e3d1473fd45545cb02fc07799aca458ef0449a04061",
"blk.23.ffn_norm.weight": "cd76e37025f84773180298ddb15e0d4ba9cfc7d832e19c791049daa47c6d9c10",
"blk.23.ffn_up.weight": "cde43b99b83124a13b2e4753d12674b3a61dfb34c04703007ced3e8e2aee1801",
"blk.24.attn_k.weight": "457379edc4cce4cbbe107385079019bc922264fdfc7bd1d1ae84343a81460c66",
"blk.24.attn_norm.weight": "0ce0dfab2edeede5da419fa7833db78e36222cf25c358d08f3ec664310f031fb",
"blk.24.attn_output.weight": "0cf91c2fd40c204d2fd4b9c85b69281e5ad4ea8442972fcd44b5fc8e835ffdf8",
"blk.24.attn_q.weight": "87ede30c09eafec6a4e6285674c1bc4637140b168b2da4ed34f36fdb6e176cc9",
"blk.24.attn_v.weight": "4c0b078b2798ca35d6d2c2258fe499820d2bc88700654ba4016e4b028f563590",
"blk.24.ffn_down.weight": "cdb8540c32b1ab988f984484928d39f6841f2131c1cebe90ad9456737fccbcaf",
"blk.24.ffn_gate.weight": "da2e0e913648b5526bd2bbb344038dd067639343aed3b413662b064b0db7556e",
"blk.24.ffn_norm.weight": "8940bd781c610d75eb2be63cfc8d869a3af05e53c963dc7fd4c6f653df5a80ab",
"blk.24.ffn_up.weight": "90cbac2a58801abe11ed6c24560aa4acb949f79429f2aa8ff129ac05868bb87d",
"blk.25.attn_k.weight": "90607131e36998e990ce718ad05cbecd1bcaed010931401ce6baa3b0d93ebce6",
"blk.25.attn_norm.weight": "fbf679c85656c04a6cf8fedd5412c1ace22960e6c2d47f2d43997827811fbb97",
"blk.25.attn_output.weight": "08412724ee7a2086514406e6f68fb9f622e10bac25b0c373b294709f4b09bd2b",
"blk.25.attn_q.weight": "9c1238e98a2747654a0d4371d3e7ea8b979867f609dc42482544f25591e85c7f",
"blk.25.attn_v.weight": "a57796a535c6cb09581cbafd6a91dc14adc8cca2a2465a7ffd0aec546cd84074",
"blk.25.ffn_down.weight": "f7e34e8a6391b480da08b52640613ccadce268373934b409759743a1735b74d6",
"blk.25.ffn_gate.weight": "b8d0b2f4612678b5ce42bd4a683f8024514b75fb5ebf6b22c600811e95582ee4",
"blk.25.ffn_norm.weight": "cde1fdba2369d315f3c6940a997c471ec891924e642505db580d732763bd7b75",
"blk.25.ffn_up.weight": "72e700c32ac8b9c47559c2222e45888a480b527ea512075423c5dc01678e2bb3",
"blk.26.attn_k.weight": "6ac83b3414ae75bf3a9055c32e49d2c40fe611ab21f8444f03d2f465d18122c9",
"blk.26.attn_norm.weight": "55f9d6dc9d75973dc75136ecb9d991b4398097ac133070873fb96ec76a6f60bc",
"blk.26.attn_output.weight": "ebc4fcbd15b33263e50ed2ad45740867cce15bc90e1216623babcb1820734509",
"blk.26.attn_q.weight": "080f057521073e412936fe3fee64fd574c8128fa4a148b879d3e598fe4954581",
"blk.26.attn_v.weight": "0fa2830d6746487ac91b243716e4302361f891e4e008eddd14abec47c7809d5e",
"blk.26.ffn_down.weight": "cb2ab8af1653adc57111ada49d2825c6995e338c8208455b92de10e580f60f31",
"blk.26.ffn_gate.weight": "231ce30966086bce2dc0e0afd34a22a1958cfda7a57c41b3b8e9444c5dfde8a6",
"blk.26.ffn_norm.weight": "35d959d25d17b00617590f5d5831bf705c385c51e46297a14375a700effca6af",
"blk.26.ffn_up.weight": "367680c8d332538b467d1ef87cfeb36cc5c6af564c5023c5fb50e728e3438287",
"blk.27.attn_k.weight": "0bfcb351c6d17aeac5b55a915074fbdf00f11c4bda98babb196ac8804805746b",
"blk.27.attn_norm.weight": "5d598a88c2e75ba59dd7ba4fee940bdec92d72038f1286536d2dfb71d008a09c",
"blk.27.attn_output.weight": "23a9da7347336479f6a10ded14cb3f46e06b5bd56dc4b0fbc526c688552ec840",
"blk.27.attn_q.weight": "b83319dba9055f069208e9c9d66da08bc6874f23e575288fcd81697d1777aa54",
"blk.27.attn_v.weight": "36ed34ccb2f36fdf16b2c2dd225a98ea6b7b0e376e7791191136ccd7bd7a4add",
"blk.27.ffn_down.weight": "5488e1d3a58c71b5e9ddda430540b4776b268cfe1457cbc1c2622dedd9e4526e",
"blk.27.ffn_gate.weight": "4ff48011ee0bac39af704849d9132a2410392c87a509c684f2062f6b76b498fb",
"blk.27.ffn_norm.weight": "32afe99675983da3de2961d1b5ca41c98970a356823597fe29e91f6e86abf0e8",
"blk.27.ffn_up.weight": "1eae3088a75629571fdbf6a20f141bc2bb2ed3f5ba2b9fd1d949f80695e442a1",
"blk.28.attn_k.weight": "c4e80af714962d6f9040d2c09f316f4a1cbc3a2e994e19902d7c653cf3c73dba",
"blk.28.attn_norm.weight": "c1ecf85dedc1c83d5d402bb7c94fb8b9c11f1a3e5f64e7680f80912d4a560794",
"blk.28.attn_output.weight": "72ba47c061b21f5ebc5213a455eaf6fc49c8f8e04ff9ce37e6ed4921b629161d",
"blk.28.attn_q.weight": "c4abc47234307f44b8ca789aa6668e298158fa4b459b2c1e84bd581806591cc1",
"blk.28.attn_v.weight": "aeba950799d4950e491ad0fcbe30334e39b8975177990a2cb339031c45ac153c",
"blk.28.ffn_down.weight": "4e84ce382a37b994fb8608df451a60040559e3f4f3241c3b3cb8989a3ed50d83",
"blk.28.ffn_gate.weight": "04df157acdc8e8534ad60acc2d2a4dd3a7a6610f6382535ec728994fa6f83f83",
"blk.28.ffn_norm.weight": "4d0386dae2bd1c1a9d0f9730718333e3a486c3bc6a5c5d482193c75d39832c80",
"blk.28.ffn_up.weight": "fec60bb0a3daf182a14bd8311fe6dd1e3fd020c5fc273e2549cdb1a2d6b79b05",
"blk.29.attn_k.weight": "b0532a263aa5a4e2a7a80adc83fc5dec974493bd18da7f953e7ebfc3f3a19aae",
"blk.29.attn_norm.weight": "593fc3b4000c35b7a59dace09ca1756c08be0105b2edd354a0e1c16c82898859",
"blk.29.attn_output.weight": "315b896f9f0cbacd0ca8937384c3a3a227efa908cb8c3a9125ec00c480e32b9b",
"blk.29.attn_q.weight": "d482d45386d4ad3394f08e9dff233ee3a70d0427d65c0b8fa05905da7e25ca53",
"blk.29.attn_v.weight": "cd3b5a6e2852da796902930a6a84bc87fc6a7c7bf51f8fc23758d12a39013b36",
"blk.29.ffn_down.weight": "5b3dba6f9753bd1b1ebcba65ef5373dd62c38e755c44b7231b95d93d45761f89",
"blk.29.ffn_gate.weight": "8610d9d2db15c256243ffcca3ffd31786d0ada0af0e7c7aa3fd20524370ab036",
"blk.29.ffn_norm.weight": "1a2ef2d38b7ac3e51190b9ccb8b6552ba83ab290e523356a7f851ddb35dedca2",
"blk.29.ffn_up.weight": "a5fdd15811bde16dc27677cf1a4c97daab4c28cb12a9530f1a0e573134fdb69c",
"blk.30.attn_k.weight": "1efeb0b5f4b45a85cdf47300f892ac77ac1f38000ec3653565d1303d1fb8c743",
"blk.30.attn_norm.weight": "c73934c182c7fe80838ec1d0b92f50a583f75f7a3d78d822f009b58ad2c80e65",
"blk.30.attn_output.weight": "3a0fd89de2d274614750345d827a9c886a4f97b343a13cdf680390505df596a3",
"blk.30.attn_q.weight": "711e113362bdb067db843c66236704eb1cd3fc5f40e3767143e96d510686ef4e",
"blk.30.attn_v.weight": "82b12a9a74fd3d91b73cc2e841e2b3f0a5197ccd2998afa17020995f880d2267",
"blk.30.ffn_down.weight": "af9f4b1287c0d824ae22d6e335d19e04a70135b835be7caa2435f1d85e931993",
"blk.30.ffn_gate.weight": "e2ab3e6f15f5c50fca66c084cb6a57a2b6b82406d65150e82ea0437b93dd9a46",
"blk.30.ffn_norm.weight": "c1b9c325c83f00e177386a4d7e769945f2995e60950c4a576c0a2c4ab9703d04",
"blk.30.ffn_up.weight": "9b94a21efd419715d82071b490d3b635cf1e8da080620dcc39e5bde976d7e9a6",
"blk.31.attn_k.weight": "0db0d82e3ddcc2c06209f5f013e1d72a84a996c40bf00186be485b909cc268e8",
"blk.31.attn_norm.weight": "2b8b7239471f57140c5cdfe06bd224a4f6326282f99736e44fba4c7b120ac101",
"blk.31.attn_output.weight": "a310b048840cc3ff2be4b84796340e8e2cdf05ec89d14bd3655c109b2bfa9fcd",
"blk.31.attn_q.weight": "f45e0cd95645175ea82813455356d171838539bc3f7676d877c698f2af0a0eda",
"blk.31.attn_v.weight": "8bde008e809112aa7e7c23e9c3099087bcc557313b01306c87efa0a4a30805ba",
"blk.31.ffn_down.weight": "8266fec7e203fbfad7033120861e44984581ff8b6851d01dfb7b81c5d8fa90ec",
"blk.31.ffn_gate.weight": "b73bc0aa5baf006d9ef6403104891b8133671b0992398fe038380b67e0d7e2cf",
"blk.31.ffn_norm.weight": "9c62cc27a7b6017c1df8ad49bff249a8245e8895c6754f402cd44623fda83268",
"blk.31.ffn_up.weight": "5b970a4694ea3171a0167f6e1636d9f00268bc1c9640430ffc35218494884adb",
"output.weight": "74fa0ef08c57a30e633e7117b1e9c805f833e2e5e21434bc79ddf9c92c6d7330",
"output_norm.weight": "59b8a59fd3fbf39353506116e43e5e76edd0cbf2a2873d869da4cf27a04997c3"
}

View File

@@ -0,0 +1,348 @@
{
"general.architecture": "llama",
"general.file_type": "1",
"general.quantization_version": "2",
"llama.block_count": "32",
"llama.context_length": "32768",
"llama.embedding_length": "4096",
"llama.feed_forward_length": "14336",
"llama.rope.dimension_count": "128",
"llama.rope.freq_base": "1e+06",
"llama.attention.head_count": "32",
"llama.attention.head_count_kv": "8",
"llama.attention.layer_norm_rms_epsilon": "1e-05",
"llama.expert_count": "8",
"llama.expert_used_count": "2",
"tokenizer.ggml.model": "llama",
"tokenizer.ggml.add_bos_token": "true",
"tokenizer.ggml.add_eos_token": "false",
"tokenizer.ggml.bos_token_id": "1",
"tokenizer.ggml.eos_token_id": "2",
"tokenizer.ggml.unknown_token_id": "0",
"tokenizer.ggml.scores": "e3d3eea80bb41a1213f2d0aa3e8a38581d1f19323be77dbd779c9c7e3b72e676",
"tokenizer.ggml.token_type": "6040635e6bd38d98af06698feb75c1802bad35180ee6ae0a503e38c0f60fd71e",
"tokenizer.ggml.tokens": "604ac4bfbd019e430d7b6cdf18c6c0cd5b967900601f0307f714ec7773aa5ca6",
"token_embd.weight": "1d1d1d39a867d5a4bfb32792a47247d2638c10c95a6259391d02843583505cc4",
"blk.0.ffn_gate_exps.weight": "2e5cd43ac3f26c44f071926ff6c3f239ecc52a34bc9a5b5906d3d4c1bf2fbbfa",
"blk.0.ffn_down_exps.weight": "a4dfc7e7c96e7402eb70279601675b956bb7331da8101e63fe5c0a611b6972e5",
"blk.0.ffn_up_exps.weight": "2d5d87b378b2319c344ed2c642598b6f7cb6beeb582a8ea51abc9ae690d473c3",
"blk.0.ffn_gate_inp.weight": "a46aaf5aba7401ce6e41f158242b4879d34901661f3ede85496cbd0ce79d6314",
"blk.0.attn_norm.weight": "3fe37d913bdd2b65076bcdd6efe64a37b0b03cacbb1b80b9f7089068aa35f38c",
"blk.0.ffn_norm.weight": "5e14308a3c894734eb204c8f558bdc817e94bbd5b4e9cb4094e91ba388c8f7f2",
"blk.0.attn_k.weight": "73d943dcac0911e87bd771f4aa1c901e1bfe1aed293af06e1a67812159859f67",
"blk.0.attn_output.weight": "4c5f754c855e262e8d4c94c6fbbb57af06399dc0e170d7d99a1a17fc9aab9227",
"blk.0.attn_q.weight": "d6fd7403c873d49c05f6f03208f30d99ad34cb3b71c9990c47334d502a8e4c7b",
"blk.0.attn_v.weight": "cf17cf64b2d683bd9de6cebaf60e5c264df6fdc38fe719dde9d54c80334f6366",
"blk.1.ffn_gate_inp.weight": "0d524de81cd915816b4e714bf595ad6946a9130b3de731cd89428b2781230809",
"blk.1.attn_k.weight": "2ea47f412992b374c70674730fe84700e0c8cce177086ce9b6635e42408964bd",
"blk.1.attn_output.weight": "b4b2520794d54113e86c8ff678eacfc62e35be4395a594a6c8c22b4383ebcc0c",
"blk.1.attn_q.weight": "5db930c98c4f91f6eab57eb974c72210b158e366d23d6d2890b2759c053bee33",
"blk.1.attn_v.weight": "079bdde09668394bf7af9f8bc175017b4f48f0ab64e6dd855a4d7561d1693c0f",
"blk.1.ffn_gate_exps.weight": "146a62de19f9ab093deb101f9640534ffc3dc40d69f508be12fc0475d01b0c7a",
"blk.1.ffn_down_exps.weight": "949da94a3c0f375160672a979e85f7def284264b10d48d038238aad5f5ece793",
"blk.1.ffn_up_exps.weight": "7016a3f467d9e3f2f4b4019579ed86b757469cd367f2b225483305376b4bb3c1",
"blk.1.attn_norm.weight": "1614d1e6ed537737275eb888666c7bac533f4eefbe73dec92b591045ca9e1afd",
"blk.1.ffn_norm.weight": "405a455fa7d1ec36894652ceb554bbcb09a07fd6405f42741e66dc4a4665c19c",
"blk.2.ffn_gate_exps.weight": "90d5003fc7421f44220c0842d43128955e91488f6f785fe570b62d81b719e964",
"blk.2.ffn_down_exps.weight": "ecdc2b5a8b504ef0a7833acff47d69b0c1fa9c22126de1bb120ff5e48c3d6e2c",
"blk.2.ffn_up_exps.weight": "2cbd9485a32460d315eb50a2f3b00863fd77245bfe885b7565efac1cdb1f191e",
"blk.2.ffn_gate_inp.weight": "0d0a17a1a2c7a61f2cca49ecbb479154dc93a870873257bc4f225e7607f2e2c2",
"blk.2.attn_norm.weight": "b2e4c5a977f87a6f880896bd73596234c9b83622fa0d7add5892501e3155913c",
"blk.2.ffn_norm.weight": "0ab875b4280afa922376cfc7b9aa3f7071c9432ea1254091ce7de3749df0e8e6",
"blk.2.attn_k.weight": "bb884af51fb51550acfef54ccf1b58ce8284e587806e6a2f88c8265e1ad05a5e",
"blk.2.attn_output.weight": "0f03099ba1ef342ea61af9cd71d028123bbd8b1dd7d7fd9b509aef77815427d9",
"blk.2.attn_q.weight": "8fad0d29eb4c9d24e564774ee3316b9eb7a4c4985e4567111d2c836c830f6cf3",
"blk.2.attn_v.weight": "fe04c847ff677632401a94e7b6b6fdca60391ab21cb23bd791533115de6303a1",
"blk.3.ffn_gate_inp.weight": "29e3aaa724590c070e614af8288939603d2641b0ef11e8c0f476bebb2776673c",
"blk.3.attn_k.weight": "231cc5631def10f7f292d8862d6125ff555164cd70480ac76362149fad204497",
"blk.3.attn_output.weight": "86467a605c62852e05fda1a7ef43150df2cf715fe59785dbcba09f1c27cfa086",
"blk.3.attn_q.weight": "901822402453922225c2d6ac79616691d48217635d5ff7338daa971d5ddee210",
"blk.3.attn_v.weight": "27030784f44375720df2f090933645a31a022d3fb3b14573e5ca0b78f44070c1",
"blk.3.ffn_gate_exps.weight": "231ba59cc0b988d125d77bf627aa3f04636684870af88f081f3944b48a160d86",
"blk.3.ffn_down_exps.weight": "530c3ab44ae4d66e8afa4d10c153ba5dfcdfb7321989a988e62e9d12e7234625",
"blk.3.ffn_up_exps.weight": "b85c2d4d9d11332e702b3c0a6610d4f525f9a93e5d12f5c7c55c592c40755e75",
"blk.3.attn_norm.weight": "05dbb6d88cfa6b199f9d705ccbda97c0ef13f9ec875c595398a1a42d009a4555",
"blk.3.ffn_norm.weight": "6880b1c27d46969ce36fac049c05dc8b89e4bb47dc89df357e32df7e18fc512e",
"blk.4.ffn_gate_exps.weight": "a883b4f225b760c5a2f6605dc5e2167ab85bb398c70bf64ceb539fcbd6128dcd",
"blk.4.ffn_down_exps.weight": "d291bb656aae77947d4b525e2819bf4112afece53ff31de9dab999af1f65f9c4",
"blk.4.ffn_up_exps.weight": "38592afb8ba3dcfb26970f906174f7d3fa62da44fa4be4fc6912a19030ea9164",
"blk.4.ffn_gate_inp.weight": "1596cb74e8fd6c3080b937b06468bb397b0dbb661e6d180a6bcbdc43e8bfd0c6",
"blk.4.attn_norm.weight": "f90c83c5ff4366281d283384efc941620542b9cfdea160d678dc54a75e33f758",
"blk.4.ffn_norm.weight": "d28d8c49d1746b7cc085562d1074905fd14023844de823dc4fb22202bb280790",
"blk.4.attn_k.weight": "792bbf412cc357140fdaba543e547a9b2f7582919e307bbd9a80c7d6d8f5f1f9",
"blk.4.attn_output.weight": "d98e4a062d2631d9c315f1990d5f6ca9a88e7e0e46387f611ccb0353f876aa12",
"blk.4.attn_q.weight": "1a11a55a91d9f748a72176ff6b1c174844df406e00d1b66b9aa64dc6ee4bcd1d",
"blk.4.attn_v.weight": "04cb3c02b12a6313c7ac7044513441083d534fb4c5a3f63bbaa58f7edbd2fadb",
"blk.5.ffn_gate_inp.weight": "cbd5cdf015d33a2da6703eb74c22fcb97581fb9175435173b6dc4f9e8364320d",
"blk.5.attn_k.weight": "4fdf3405e4d657403f5647b51233521310ee984b4b81bbcd901cb3e6ab76b7ff",
"blk.5.attn_output.weight": "4a25662c46979a29600ed77e1907cf81fb16ef30e724c155444e54ccb76af481",
"blk.5.attn_q.weight": "e2acb30e30b97300039bb20ad0878f05159d5657fa811748a51d5b6fb35d631e",
"blk.5.attn_v.weight": "306504b6a26aa123c63dbbed3f4ced0ed2ee8fb6a30bf0093539b817539f5ece",
"blk.5.ffn_gate_exps.weight": "7e34df9b9944dbeea5e8565786d3aa6937314a4b87acd4d0874687877c5a39fd",
"blk.5.ffn_down_exps.weight": "c4b7a57a42b5ac0a8ae27dcd5cb2646d7a7cc7123126d44a56ab128e85f60b13",
"blk.5.ffn_up_exps.weight": "09d47593b6dd6c664a9155bff02fc2eb7ac4a70219a88162d05c802a01d3c6ba",
"blk.5.attn_norm.weight": "58804a036d6ac4c1fe357b8b6a97a5c37cae1c2f06ee0086c041d449c1c6ef6a",
"blk.5.ffn_norm.weight": "d872dee6789f0826211aa46ca9d0869e3e96bcace9e77d6559a7b6f3e524f3ca",
"blk.6.ffn_gate_inp.weight": "fb1eae732e974d6c1d020a5b4ef98c5f33016f984701bcea656f999a99daad66",
"blk.6.attn_k.weight": "55e9c59c5051ab5519b3a7962e1b5fa96a3c0251cb6200dc2f177885ad2de470",
"blk.6.attn_output.weight": "f3c834a8d0027370350e2b6294d95434d31432e57be6313b013c15a56303d61c",
"blk.6.attn_q.weight": "efaefe5f11c2140dc7cb532b0832c2a0b363a165cbda21f00fadae77efca377b",
"blk.6.attn_v.weight": "900bd734d75616d846a90a121c97e081c956a3d1ab012f66dd0bc62c43e1ec3c",
"blk.6.ffn_gate_exps.weight": "312a99661b1468fcaed2474621116f1681432755e973f3ee79d01912974fd424",
"blk.6.ffn_down_exps.weight": "ac9cd7db67a2ef0d2b5def86873673d05e48d49d147dd944469dbb8e2d4c46f6",
"blk.6.ffn_up_exps.weight": "57613e7e09579400a1a09fee4445acfbfe83f2f327fdf317877787d96ada6b84",
"blk.6.attn_norm.weight": "0e8801e09885c633bc01a9a5b85d4e878d30158a4eb41a937dc5b760ebd044cb",
"blk.6.ffn_norm.weight": "b8c58062ac93072f878446b0e7f958c737aa47fb769fc3a8f593133d12db2dd1",
"blk.7.ffn_gate_exps.weight": "1ef611732ff13edfa8d30981ed9dac00c15ceba9fc012ed0b199e9280a849948",
"blk.7.ffn_down_exps.weight": "856c6811945c7b0fa461ca17811cfa43436b4cdf5326bad23cbc30883486d7cc",
"blk.7.ffn_up_exps.weight": "6725e3e33994302ee13fa5ec163631ce2dcaa08aadde8fc166c2265d4561c5c5",
"blk.7.ffn_gate_inp.weight": "36b49d7f80c1003dc392b2c1b9960cd49889dd69e77b26b9e4b13d01f3d0a32a",
"blk.7.attn_norm.weight": "7a0ec49acc5e20ee71c6f80ca02f4f1e564c485e0ae0621309e7c2eb0c616cf0",
"blk.7.ffn_norm.weight": "eeae035c39ab6e64bc06a4baa1bf6e50d4c8b8797cb0ad8abd48be86974802c0",
"blk.7.attn_k.weight": "e8f78c1def01a7a38d2d9bf7becb17755e28fefe4927856f7890fbee52840187",
"blk.7.attn_output.weight": "5367f05ac3bb49ef8745ba5902e1bdd4442415a3ebff2c7e1a3918d7be6fe948",
"blk.7.attn_q.weight": "37c95fc5acc55a4f6e5f02cab9be60e4fe54c08b65f98f4455741b4aa542ff4e",
"blk.7.attn_v.weight": "c89f1343486ba55814233511e94090f7365662a8a4214aa4c278cdadc79196c2",
"blk.8.ffn_gate_inp.weight": "4e239afe8c7afb8de3a005757c887cf14b1622ca2d224227591cb0e5301f4c17",
"blk.8.attn_k.weight": "2ad0229f30fdcc1e85ce64e00d8f75902238294844a81d5af43e14ba75c02983",
"blk.8.attn_output.weight": "2e44a4722acb3b521b81d0b910f8ca2f6c286d874a92ddd02150566454061699",
"blk.8.attn_q.weight": "1cd2b09cb2f43e08de776b5f7eac197a5a6d4ffdfd52b21baa36319450147bd0",
"blk.8.attn_v.weight": "5a22c57ebfd33ac500cbcfd321d5b5b1783f8728801db6f3f8bed51c7183e4db",
"blk.8.ffn_gate_exps.weight": "91063fe56cb4f3ff3b41052bb5046fcf8ef61516a603ee90aab893a9d68c15a7",
"blk.8.ffn_down_exps.weight": "d4c3abc8f1d1b462f67f70bd8f404b3fcf45dceeaa8527fa120527254c383c90",
"blk.8.ffn_up_exps.weight": "76a1a1f08ec577716a2e7027b45293e9205751126424f1bebe1de89c78f087d5",
"blk.8.attn_norm.weight": "f980d774da39eb76c52358afac3e38cb4c81cb323deaabbe5c41822e3f17a98e",
"blk.8.ffn_norm.weight": "1c937658cf90f1a85db9a5f26e077730fdd4b694607dbeeb825c5fb2bc407e0b",
"blk.9.ffn_gate_exps.weight": "a2532471ecb7896d5c78e5a34e10cfaf4125265e1595166c8d0d0dfbe2a3187f",
"blk.9.ffn_down_exps.weight": "b47921a28412d48fee450b8b9d97cee42344a2e69f06d407fd9523d7adf13333",
"blk.9.ffn_up_exps.weight": "7c461bd1b2a73b439cff6a10d94afa01e8b06f7e6f09d9a6f28e3876aef48bce",
"blk.9.ffn_gate_inp.weight": "1648dfb08b5c06d7953a5a97ecb764995fae9487fb729a1c867023b2538149d0",
"blk.9.attn_norm.weight": "8635db0f299882a63b7cfcd1d4259c9e53fab22c31d3d054de36b1001380b31b",
"blk.9.ffn_norm.weight": "f9309aa323062d174c463613afef9b0a33501b510bfaa58a8e0e866d12ffef3c",
"blk.9.attn_k.weight": "dfe62030441e947a588512d18d9c6e4ed72c2f71c227d622c095e4263b23dadf",
"blk.9.attn_output.weight": "1977beb75c6349c50ba7dd3865d7c0a9c5c5ddc854413147b0eec98ac4fda351",
"blk.9.attn_q.weight": "eb132596719605cd6bd1782487f121994629e115190edd69240b12af66e734f5",
"blk.9.attn_v.weight": "9e708f15d332d7c5187b0693b1a977eb30a2fa10bf7df48ed9d7537c0aa6ed99",
"blk.10.ffn_gate_inp.weight": "97503a5d166c1925f9b65c0eed980753d411714d66896f3d0fad5286c7aba702",
"blk.10.attn_k.weight": "1ebdd222336bd25b48df1b138cdbe09021c4a5562ea7cb78cadd1255d2be3a39",
"blk.10.attn_output.weight": "5e98faa38e9d514b9057e1c8342c509cbe1083defd518e506f6bad89117d1f5a",
"blk.10.attn_q.weight": "3323a26c87d936d1dd87c577d0b763459fced726679612c874b3de5fc6d969c5",
"blk.10.attn_v.weight": "d5fa73cb56aca388e205f44455e4b4f676fdc12ed7fac4542fbb3b41ecea59ad",
"blk.10.ffn_gate_exps.weight": "225021b53782800906cd13b70be3a4161e8b300b97f984a959ccad6a6e8adcbd",
"blk.10.ffn_down_exps.weight": "f08eb91526bd22f5fd0402fe925d6141cdbb308a1ced0330858d0c85c71f5ef3",
"blk.10.ffn_up_exps.weight": "a9f688350c3b53eaada5103b5848bd9a3d7d6b327a70fa16c24bf28ece933eac",
"blk.10.attn_norm.weight": "5ba426c9dfc79805015ccd76cd1068b0ad3bb7a8453e14bb1d35486f122d8f95",
"blk.10.ffn_norm.weight": "98891d6acbc3986b2581b7a3af9f5946a392d9188972c6a8b15d4e745a4f2482",
"blk.11.ffn_gate_inp.weight": "b2365a60566e7dace892e1cb0e62eb73ce387352601723e847052b34874feaa6",
"blk.11.attn_k.weight": "0efbc1d1430505543ff71532a4fcda821aeac616ef6c1dca40e00d4f2ff70bea",
"blk.11.attn_output.weight": "3d5bd4d9a41236f30d4293edb9ae27beaa113ffb31b4fbfadff3a4c370dfd3e6",
"blk.11.attn_q.weight": "aa11e9db14dd9c77951511443077c2a1a78070753d7bd3d9811038473f69e325",
"blk.11.attn_v.weight": "5adc567f377aa11d1763d35f50e53fb2896a8b03b623ac36acc45efa2486d512",
"blk.11.ffn_gate_exps.weight": "71d07d982aabfab9eed3c733d49c20f023bf475368fc71db5084d91beadc4b47",
"blk.11.ffn_down_exps.weight": "9a06e61461e48b3925a9f7d9cca634d048c8b62163d7bc5c43e35899f959319e",
"blk.11.ffn_up_exps.weight": "bc05494d0dcec61021b3ac0c5bc1bf502736cadf48224e213bc139d562699a89",
"blk.11.attn_norm.weight": "a5758a10bdd0404ae1470e8e9db903985d4d07f60553c5001a5e7b660d4f7ada",
"blk.11.ffn_norm.weight": "814ae037563aad3771787316bec4806c95bf6f5991dd6474b4b1e5cc13dc18ee",
"blk.12.ffn_gate_exps.weight": "3a68b831ba1606fb9ef6dffed4732032447ecef23ea563ff4e79317586c7eb49",
"blk.12.ffn_down_exps.weight": "268b25e13f4b7beab08686e83705a41b21d15251809ee4784526f78a580da829",
"blk.12.ffn_up_exps.weight": "9105751a5b5b42ca2614d0456f24f779d2e2ac8cdff0f96842aa7ae2b70f341e",
"blk.12.ffn_gate_inp.weight": "d0de1558cc1d458c5c504f63ddc59785c323df7330474bb0644c346104b40a3a",
"blk.12.attn_norm.weight": "859a4c8113678e2e202d10299850e0cfb52eb11ea50bcbf4fe3ff39bdd394154",
"blk.12.ffn_norm.weight": "7fbf4c459c1760218877e9ee3f5ad49e960956a4369bcfe96c143f04ff9ddf97",
"blk.12.attn_k.weight": "0a7e254fdf3730a57372b6ff421a613eabaea68cdefd64800857941411318374",
"blk.12.attn_output.weight": "ceb763fc15d88af149d8fb78e82db2b7dab3aeae584af8cf7611a12356a397e5",
"blk.12.attn_q.weight": "a43402d23c46cb2d3cb3c2a98c81b19d10026b7e6742370fed6b2880b6e049b5",
"blk.12.attn_v.weight": "3bc24f2c0480ce91ef72993ee8f1cf962f7359e12183424583ffa1246bf3db52",
"blk.13.ffn_gate_inp.weight": "a6d68c82bfe66d8bab68f980f5f18268a9e2c0cd6b8832ed39010e0de198ae05",
"blk.13.attn_k.weight": "0166c39546b37dc2e01b2b396ba43e183f797dd04eaa51a6d103d8b58ee4bace",
"blk.13.attn_output.weight": "2ce5eb198deab9557475a58b69b11e9874b547e05c23f223c6e42fa35ddca069",
"blk.13.attn_q.weight": "745c1bbdf434284a7fae98f45e821c076dd9c2a2467dba6a9d8cf0041e419dbc",
"blk.13.attn_v.weight": "9ece68d5ac64d1421ea7aa32e1cff9cc1fecf5175f4c4da858dd31d8633e3337",
"blk.13.ffn_gate_exps.weight": "ccfdcb4670b131689de12d396a010b5ea737795cf5c15a14a304d720b3c7c899",
"blk.13.ffn_down_exps.weight": "8b8fb328664764f1aaa5cbdec336d5654e981e965a02ef622bde5f07ea1c164d",
"blk.13.ffn_up_exps.weight": "d2ace0236c2fb3365fdc85499d676a7f65813c48e5085348b1df1799922766ec",
"blk.13.attn_norm.weight": "1ed29d7d89ce52d7cb4d57e895ff7115430466e917136c049c385c030ed44e9c",
"blk.13.ffn_norm.weight": "a194fc542597a4dcfdfaec5e3cba2a2b2b21b21edfc87c39c0d7f7651355bc4d",
"blk.14.ffn_gate_exps.weight": "a625e3574e5e740e7f8e2f9c40390f2f382c720aab5b10534e298002dd8d1fb9",
"blk.14.ffn_down_exps.weight": "bc366f015b83c865946afd74c8a884943e0ea2c671314a0b7bb72f21a44d2f78",
"blk.14.ffn_up_exps.weight": "ee3199bf2086de77b49f57f487676be8ee70e102a2fb5a5ef8ddbbc28a9eff41",
"blk.14.ffn_gate_inp.weight": "2b437870c850fa2e2044d032bb02908af634356e37466fdae260b933e48ee8b4",
"blk.14.attn_norm.weight": "cd8344d193a1cbd42bd898e17f4bcb1ca0b2918420fbdafa9249a6f2b7f4ae06",
"blk.14.ffn_norm.weight": "70eec40374e558fed5b07257283cf36342b6b0129285a00007deb59c32c9f7c8",
"blk.14.attn_k.weight": "4053bdb507e0543d724b632570bac86b31707696d90a0db44c49b2a082e0d599",
"blk.14.attn_output.weight": "0182632cb0e06a07241b8293d25d109fbc1862e1e337d435f908e8681e2eb1ab",
"blk.14.attn_q.weight": "ffc7794a4c1b6f793c842dba969435330a7a80b9212e457b4b2ac33e68b41241",
"blk.14.attn_v.weight": "6411805292d528e61bbaad8f9aab9dd073529a17946c057fb06864fad9cf3211",
"blk.15.ffn_gate_inp.weight": "77d0744567c76e6abb67f81ba9c715b2b544841186d5b948309571eff213bafb",
"blk.15.attn_k.weight": "1f7957954ea4c6521c257b35a360e868ffa02bdb3de91f146d5e06bb4a545c98",
"blk.15.attn_output.weight": "d7809d36bd8d3342240c46fd87bcc7f9821a222f48d9a95e45ae50460265d3cf",
"blk.15.attn_q.weight": "25f509313ae4d8401b871904059f472a26f5714e7c791c725de77a1a522c976e",
"blk.15.attn_v.weight": "96fedf5a591fc0f020e6de10fd72ff12b3ef9cf70cd21dabaa0d3e7b06f54e73",
"blk.15.ffn_gate_exps.weight": "8f950d976b2fd9a3d213b84123cf114c1377efde9352767fb2ddee89e177c8ef",
"blk.15.ffn_down_exps.weight": "6fd09d1557bb94b06efbd4f6a1ca4be532a202ba290e9315bc8da3d12a5c4c4a",
"blk.15.ffn_up_exps.weight": "cbeb59ae7b0266a928dc7e3a6e70a9330b92f9ee1b17ee1ed91022108204a33c",
"blk.15.attn_norm.weight": "2005330911ac2edc7b6d27aca021c67d30d16eb632e49b1a13f30fdb2717aed0",
"blk.15.ffn_norm.weight": "0e9198f3b548eb78acc8961f2b3350d238d26cec110933ba753a8cf0035c501c",
"blk.16.ffn_gate_inp.weight": "a41d1f99d739c8b150c3945b6949763988d0c6a4c5a2b5855592ca1a48ed23d5",
"blk.16.attn_k.weight": "b624e2ec88c2d3047f60530fb87e72cb4a5e655a9663f6f3e9b09e5ad32cddaa",
"blk.16.attn_output.weight": "687759ea75e45108526ffc1573d6fdf084728079bfc2dc89b9979e76280f43c4",
"blk.16.attn_q.weight": "beff3a45c7e9ec82ffc6d3c701126be28654d10aabd747d03441210491fd31b6",
"blk.16.attn_v.weight": "43a349b13f0b9d040cacecd942bcb168c030fef8c75c987d59a4fce6c14e855b",
"blk.16.ffn_gate_exps.weight": "793406d6c13d727c82bb7b692ca98d65ca975baee69fc57be5378d77c5a19b62",
"blk.16.ffn_down_exps.weight": "9bad3dd150d0230404b7f886ac7ff8803225757e813f195cdb26bad245243b4d",
"blk.16.ffn_up_exps.weight": "7449d663023fea3496475bf0a9c1de7272ad0ce9adcb3265e8e424badaa674dc",
"blk.16.attn_norm.weight": "a424ce34c195a401df1ce37ac4f2794e8a6720b1ee8acb21428e2b68c65e0125",
"blk.16.ffn_norm.weight": "405a68bb8e16e1064df2de55ca3cd9ceddda1d9fc0af007a9bd7cad4b2676248",
"blk.17.ffn_gate_exps.weight": "97c6e5321491ca5dc039ee88da0eb0e78f347372785411809af84b3298cb19dd",
"blk.17.ffn_down_exps.weight": "1617ac19788a1be19bac69277408761e6bdf5719d63a8c7fea14d41cc27641b5",
"blk.17.ffn_up_exps.weight": "4ead1c365f112581c10610ea3f63d2a1474311d2503d2060fed4b458ef337f5d",
"blk.17.ffn_gate_inp.weight": "ed4b3393f2523f2b5e0fc7680a1caa2842e605728a529b5af68a7fa8d7abf940",
"blk.17.attn_norm.weight": "beac17ef86a7fb2b5840cc72f7a95a5e3d6bd24e7fa698e0b0ebb9bdac45c561",
"blk.17.ffn_norm.weight": "81cb58ec6d6dc02a0b4ede10adc336dc865fa76f982d4eab0e4a37b40f5b0fac",
"blk.17.attn_k.weight": "eab569e5ea8c8b05e5a6a209fba031129453c2e28181eee3e736b3b04b36bbec",
"blk.17.attn_output.weight": "f85b70f01438ce8fe5d10599b113f30bf18dee2bbae0657d3eba295870001db3",
"blk.17.attn_q.weight": "887ceebfbf6a2b94b43d2df4439ac3a5bbc29311d4b28addc04d525546032047",
"blk.17.attn_v.weight": "2df9414d65014c06a93da22ba3a668be7b83e2e8008e98d7771f7dfebed98298",
"blk.18.ffn_gate_inp.weight": "9b07741a0950fc667e5fd25937e33bc22e1f764f80eb4ff3119f005327ae0f6e",
"blk.18.attn_k.weight": "8649598dbb63938744c39bcda5ce8c31773e29c573be8d4d2c114f5030f8d3e8",
"blk.18.attn_output.weight": "f8e391adb92622298ca834d5d1eda48b69c3b1c51c5a584ef6c54a725c298d75",
"blk.18.attn_q.weight": "84bf8708a2eed618f48f69c178ed7dd11fa4c468102376e72e910ebd037d131f",
"blk.18.attn_v.weight": "31db3cd773f09548c2c1b1eac2718e46364a7810970fe9c433fad9d8de5397eb",
"blk.18.ffn_gate_exps.weight": "be2a2ba378002f1b61f86c273a69eede9b93786d5ce96b4fee1861f730dca4c4",
"blk.18.ffn_down_exps.weight": "d35196159e37705db50a5343e3989f7335477f1a4add67ef42ad64a638cd07ae",
"blk.18.ffn_up_exps.weight": "c6ceedd86e97913a6dcadc838e7abb762d629fb8dd55f15cf02fd9bd66d2ba78",
"blk.18.attn_norm.weight": "41f0b1ad83d6e3cb9fbe0d27878c2e7ad4a351b9f554a6bc9117c01745cdf6e5",
"blk.18.ffn_norm.weight": "96646204bd0d82f25dc77faba4dbd86b1332e449313e6684e00122da8be99057",
"blk.19.ffn_gate_exps.weight": "c6eb7f61e7938bda0492dbc05e51e8f631c99224fe18e99861fc4fc53ba9e9ff",
"blk.19.ffn_down_exps.weight": "4384803da3a3a3d44120d7dd192fe2c9bbd9a1a0cb492dbec1fdd7565230f1e8",
"blk.19.ffn_up_exps.weight": "22d73de2fbb8bb0f1bd2caf17fad8a355c47d914143f7f6e6d0128f66f074a60",
"blk.19.ffn_gate_inp.weight": "9a0cc4a2301a5634022fbce41189021bf0d1a961792d2d9330fd35556d18e5bd",
"blk.19.attn_norm.weight": "c5cc56ec5df9a1f7d5ad71fbda49f1433132e58895d45cb44c73420bd61ebd6b",
"blk.19.ffn_norm.weight": "77e17de741742ef2482fc7872fd423c8e3c1454dc4d2be89ee939084b6d78bc0",
"blk.19.attn_k.weight": "a92ea36ce2e3569656306aeefb835ccd5d1b03b33a86e0d3d030644cc923b813",
"blk.19.attn_output.weight": "5e2a912b37855f84ea964907a1a86d609cbdd79efa0c93c3e8e2fc07caf7c226",
"blk.19.attn_q.weight": "4ef3a5913292ac3c1a6fd3e9e53d011021f2b41d0276cf849706d1ca925cf7a7",
"blk.19.attn_v.weight": "42981b75b68ae852cee638b5433605c147da4392aaa6d7a06e756115b0171f39",
"blk.20.ffn_gate_inp.weight": "71381b9879a7c80b9f7b475abc0aa31b8cd71ccc00856ebe89764a2acb9df2dc",
"blk.20.attn_k.weight": "1928b7ebc054eb3967929ed6fb446314d5352f4aaf8b475ce55c6345019f2ea4",
"blk.20.attn_output.weight": "6071ecd9ca91af0d2ba93fef4a1a56f3b243dd70f862a21a2d164d56f386043b",
"blk.20.attn_q.weight": "002e95042a40f36ceed5829e3d0c8072e5f5e4ee86a089e2902b2348fed24dd5",
"blk.20.attn_v.weight": "42f509cdb1c0e298f89f896e349be86952c5168e49b3f83bb17badbcb7596d57",
"blk.20.ffn_gate_exps.weight": "a684a3ffe4b0a57c819a5fa9cb3521de223f392732927271e97ce925b6e33765",
"blk.20.ffn_down_exps.weight": "e3081a7bc7ba750d8a4886bc8ca4f231b55db4ca082b54b4106c7531964725cb",
"blk.20.ffn_up_exps.weight": "fad0fd5eca36ab154788da28be8ec25bb5d6db06c9d133db89e96df358a2f6a2",
"blk.20.attn_norm.weight": "c3e3f2429715ae95e884ef1246b0b461b23c5cc0ed08beecf70a14cddd184820",
"blk.20.ffn_norm.weight": "ff31f609dda65ca496b0584fabea6550e42edd05ebf229812aa6b7bb5ede15e6",
"blk.21.ffn_gate_exps.weight": "366f09ef0ecfb86808eb3296cc9abdb957951d27f6533c03f1422b54061da660",
"blk.21.ffn_down_exps.weight": "3fc495947d27fcca7fc0893c8a96e5d48ba27b2c8c58f8fcfb8dcfcd5539741c",
"blk.21.ffn_up_exps.weight": "6713ed51410bcc8283cbb001c4ad784098f25701e8021f4fa4f411e186859c4a",
"blk.21.ffn_gate_inp.weight": "6d4c92c01ec801647134d907bf1108878156df266a6107abc10526332b328b93",
"blk.21.attn_norm.weight": "27605719ae2df24f4f2e85a730927cab20367631612cb501631f6bbf38eb1209",
"blk.21.ffn_norm.weight": "ca80ee8177db185b15a4a378c1cb6f7143c76546a7f1726bda23f329323d4ffa",
"blk.21.attn_k.weight": "9e49f743d4a5bda9b4bd9c40c2ca37cdae5aec7e54cb193897ac8b4945ada14d",
"blk.21.attn_output.weight": "ab923540879753feaed152f5950f69cdd83d8f2413ca873f5f038b63ab0aea12",
"blk.21.attn_q.weight": "62617fc3f1c9d2aa672a4d91a121c7a91b92d145b65e75f0b06b4bb7c825dc36",
"blk.21.attn_v.weight": "15f8b2e72f8e8e992f2f6b3e93238a9d7be7bd6136f91c9d04b4b4cd0cd60369",
"blk.22.ffn_gate_inp.weight": "3ddb1773d9257b68add7a2a4e94dad25ed926803e02707863dd742ab9b2dc179",
"blk.22.attn_k.weight": "680e45a9e8d5feddee5266e119dc053bf80718fa9af1cf6803e6f493b265f1eb",
"blk.22.attn_output.weight": "0d5fae3402fb2c5aa3a860010e3973fc8e3168d1015f7a76b7b2964681693206",
"blk.22.attn_q.weight": "eee7e3d426ab533bd18d62c9aa142eedbde394bed07db58313e0fccc82a23237",
"blk.22.attn_v.weight": "26b5be1fe3c2b6824c5a648a3e4bdf17691904526fca158fbc3ebb627b67e2f4",
"blk.22.ffn_gate_exps.weight": "32ab7a7735313d60f6a75229b1aeee940b6aee176c9648536bf5921b0dc2929a",
"blk.22.ffn_down_exps.weight": "67590808f6a67777d3eb7976c31fe616d388b98fecbb12253b72d1241d70753f",
"blk.22.ffn_up_exps.weight": "fc245c0183e6d90829ff5e71a4ec93e4860b3d4c1a17b9dda2fb64f5f5c9ed32",
"blk.22.attn_norm.weight": "128e99d206d4d6724758ec97468af767fa0aea592149c324b731659c1e74a1a8",
"blk.22.ffn_norm.weight": "e45f498033f0cffa15da0eff2c47b4472e43fcf8921729fc4eeb2e3a6b3c78e2",
"blk.23.ffn_gate_inp.weight": "d63e686f5325fbc89fa242c2c52a3b8ff54f867dca914c9ae6eea13e9d6f46e5",
"blk.23.attn_k.weight": "f71f5a577f46ea12b1818f3a5ff4b85ddc45f9a2afb0fa2e041d71a3e31c6779",
"blk.23.attn_output.weight": "92b13563c1e0eac0d748fb67b235dfd7a64c8f16e2dafb316885744582e23b4b",
"blk.23.attn_q.weight": "2f9b9c35dc4f912f3f51c06e2d68f417b51a0de0a84aac530a64f9d3d7b0a2dd",
"blk.23.attn_v.weight": "268e40813806e74a5c364b19556d087bf8374e76e7b6fcf55c381eb7da13ccd1",
"blk.23.ffn_gate_exps.weight": "12f857e7a7ce228afac34d99b602c8d6fe96984f2a21118f459a58cb767ee65e",
"blk.23.ffn_down_exps.weight": "cdb082c16599c3bb36a28066dcc122d9529b54fa91b6cf0153437ec960a5e16d",
"blk.23.ffn_up_exps.weight": "f4b99f6f44d7b8b5a305894e88633bf5938fc1f6303a2b2092399da9c8b64d7c",
"blk.23.attn_norm.weight": "a691392210383915916b4d3886d5e4d56e7855e27e37e414fbd73bf66b3712e6",
"blk.23.ffn_norm.weight": "0c3dc72f667e5ae19b69bfa9f2bd2a01a57681f89ef9527bad4eb0d8c7b70da8",
"blk.24.ffn_gate_exps.weight": "86baca2a3157994df7fd8ced5e08436d5c1810dc29c0715637c36de723e0e7d1",
"blk.24.ffn_down_exps.weight": "ac5d559562b35c34993e34b071f66d15c65be5907797078c2d2a49aba54e3192",
"blk.24.ffn_up_exps.weight": "fce0a099cf09777f44fbab3606ceb75f7fae6f0b80725f9e871654b8cdf9262a",
"blk.24.ffn_gate_inp.weight": "e7c6800c0cfc56b565b2d35ad6f1dbfdb70dd0b05b338bc8da2286ffc3678d79",
"blk.24.attn_norm.weight": "dc6cc18ec52d102d015153c4a1132f9d7a504e29cbdec81c5edbf3b9e65815e1",
"blk.24.ffn_norm.weight": "480d5a1397af5e0e657f1e67d20ec0cdef5724e71246a326843321b87ffabd33",
"blk.24.attn_k.weight": "338c0597954a9b95a782545b2fe36469553e73f86ae2d2b5697767b28e1c7daa",
"blk.24.attn_output.weight": "a77d23b79933c67e52f1eef7f83a3dff4f767ce0bbcc39572f8cec4acd457643",
"blk.24.attn_q.weight": "45c9478593002be1998e96e70668aafa2dd3972380fbc1df12fb05c24ba959e0",
"blk.24.attn_v.weight": "515729420885408a6a9614bc27cda393ed907521318d14d21335d39a3eff0b61",
"blk.25.ffn_gate_inp.weight": "aae4ac40e9ab3925241f9d784b54b38851d9bc999a6c3bc03fc3f17c9b28a67c",
"blk.25.attn_k.weight": "4ab4808d02396c35b00b426f536015673b71c17ae6cd55bbc2e6bfe7a4c59d0c",
"blk.25.attn_output.weight": "1990bb982b77e0c947cd1a8ef0b36227ee1259e6dbbc2829e5c136edf88675eb",
"blk.25.attn_q.weight": "a1490f3048e8c0ec8784f8550c43adf5cc8d0f2f90131c934713fe4b1b015bd7",
"blk.25.attn_v.weight": "f15e53c6d45b3b6f58808fa968425d65e0b26b7f9b268127a77abb1227c67431",
"blk.25.ffn_gate_exps.weight": "656662447ff54f56ee80f78a1b9483f7efdc40f7375d0cd8a9c72ccf21f77e7b",
"blk.25.ffn_down_exps.weight": "db06f101bccbaef19cced0f6c185166e18202465f4a42cddfd535fbe5cbabb4a",
"blk.25.ffn_up_exps.weight": "584a7b02456f27fe1d8d3c7ccd21d426b6ea887795a3ed77f704596a1e3841d7",
"blk.25.attn_norm.weight": "8f0f3597982930fd237e9d609776c64f2b909a455b21678f83a7ebd4bbb83e64",
"blk.25.ffn_norm.weight": "3e7079c32582afba0c55e032f254adc18d2997705eec860185e9a6dd3d82f07e",
"blk.26.ffn_gate_exps.weight": "e70341691b583b86489812b29b77aa41eb658b1865733d6118da54c66e3bfcc6",
"blk.26.ffn_down_exps.weight": "5c1b812d11dfb064af816ced5ab6463bf9722eefdfc341b8a93705d5038fd781",
"blk.26.ffn_up_exps.weight": "e18118362ae54ef7432781c83884f9fb230a9d934e342aabeda8822ea5f71fb6",
"blk.26.ffn_gate_inp.weight": "cd1c5f6710166b9567c6b74c97b2348b191c60aa860958c6bc264ab095261dff",
"blk.26.attn_norm.weight": "71d087531af2520bda2e676c489e8529cef5db8aeea1eec0a937a8b4f2fa2e54",
"blk.26.ffn_norm.weight": "7f704e936fda28eb5c2cc339f0f6a5f78170b5aa43c01265b21668870d819c82",
"blk.26.attn_k.weight": "1cc62a0ce0ae251275d898c52c4a9fba5995fca10955d2011d10dd1a59e1afb8",
"blk.26.attn_output.weight": "636e881b1505f9cef656a4be98bec6a4765321d51f9bf1dac8933397cf44b765",
"blk.26.attn_q.weight": "89a3c4d202d7d6adebb9e0c1bcfd8b775f6456386f1be25e86e43acc949c1e16",
"blk.26.attn_v.weight": "ff2cc963b597cdf1a21703f3e7022af3bb4c65a34a19e19d9309a7c5e198b5bd",
"blk.27.ffn_gate_inp.weight": "6150139498fefe380bb99d11e72028da47a15ecb73dfc5b2774f726f4bed8f9e",
"blk.27.attn_k.weight": "f286eb9e5c56c7b801a497aedc40158c2a27877d7f9fb59b3fc67834798902d2",
"blk.27.attn_output.weight": "5dc3d3a05f9f7729509147fd09c16fb53f85f520cdab5cb69abf4bae3fd460c7",
"blk.27.attn_q.weight": "8462e40f86b24251960d6f35a9ea99b8793a01937faf1aec2859f2e5395dbb61",
"blk.27.attn_v.weight": "bac1a99e38e25953f8315f7212eb9777dc216cadb09b959977885ae62724ceca",
"blk.27.ffn_gate_exps.weight": "6a15eca7f0f6ecfd93db2e55c63875348ec4a78c4ff643ec46df9e958c0101e4",
"blk.27.ffn_down_exps.weight": "2e1c91247c4359e2073a8e5f26fd7f6426da7be3ed5bc65dcfff701f0a5022b2",
"blk.27.ffn_up_exps.weight": "65d6f5c553c9332085eae4aeadf25090b5d7768212ea7b08ed698102c21b29a1",
"blk.27.attn_norm.weight": "7fab8ae63ec8e91ce625cd130ab96d8427dad3a7413bb21b25ec5f408c5b9f5a",
"blk.27.ffn_norm.weight": "532720546b0fdcd423a02ca6e3e9d8aacb84b1b3e8269968f88a47fe2a69bab4",
"blk.28.ffn_gate_inp.weight": "a305ea58d98962d9dcf0c53ad2389b7acc8936fb35a0e3fc9410e7767cd49dea",
"blk.28.attn_k.weight": "8315e8a2e4f78dfdf36d4fc18fffc74bc95fe42c3ae4f9af2b6c874612c0f71b",
"blk.28.attn_output.weight": "9b5fdedd32d39ef46a22cca7cd5355d7b93bd07ea305f466a8aad6ca5a4f3778",
"blk.28.attn_q.weight": "4e8fb96997c30e231c437130f410d7c91d541a816f6c568b5f3bfdb4b8dece74",
"blk.28.attn_v.weight": "1fec739cf3bd7b4913f72ca358d4cf31391c304de44ac0ae31ecb825beaa7cfd",
"blk.28.ffn_gate_exps.weight": "9f259789d535e09268266b9a8020f32d6a6779966c909d91d3a10574f06238a2",
"blk.28.ffn_down_exps.weight": "516d3f8abaedb01b9916a4b67d4672159769138ef2850158bc1b32c41e31f0e8",
"blk.28.ffn_up_exps.weight": "f2f1d88d2c31ed588806fb5ad981d68f5134d7284c4fc022fd018de2eef437fc",
"blk.28.attn_norm.weight": "960fd005598deadaebd969996f4367a9dbfad90539a863674fe95730935acc64",
"blk.28.ffn_norm.weight": "e1993b37ced93d4049e9af2c47b0d9207d8f7e6f2cc3a52f57bef30bc806d805",
"blk.29.ffn_gate_exps.weight": "58927146338f443513337476b3cd30e6341742f096c2beb5890d400f10121298",
"blk.29.ffn_down_exps.weight": "03a3386e4f0b75a28c5608e23b2de8f0de25f21954e4aa7fc343431bde9db07e",
"blk.29.ffn_up_exps.weight": "6916b7490a7ae7b04a5d81cc1e7ac9b20c483434f3b186b12d87fe176bf1567b",
"blk.29.ffn_gate_inp.weight": "98e710e467a3d567abe4ce29d78b8e8dc033148762290c0c5e1ae4d78efd8c78",
"blk.29.attn_norm.weight": "4e64cb307d37be20d55f38c94faf7e451d11df5e60df347906cbaf9c5441be71",
"blk.29.ffn_norm.weight": "696c23a52f742679bd44440d687a4c44b4302d57f1e9dc5610d23374336187e7",
"blk.29.attn_k.weight": "e85253652fd6120c623634ba66b725bf7cd491318b54ccdad2c7df8851d64c0a",
"blk.29.attn_output.weight": "4f650a71efb150d1f24cd4d114d4187bf570ac424da3b92ea6455abdf1aea705",
"blk.29.attn_q.weight": "69fa7da901026ebcbbbc848455b425458b7e3295007d7fc093acf4b38e2166ea",
"blk.29.attn_v.weight": "17e2e7590b317b21f106de546aafd955579703d1e95d6aea044ee72ec3a514c9",
"blk.30.ffn_gate_inp.weight": "3a03284b4aa60d59d4a2ec86253469b61fc656372afca427cb77a5332fbcc62c",
"blk.30.attn_k.weight": "d518cfd0db9708e769eb1399e87ee49357dc54d5afdbac3d4c0ca46c64e789eb",
"blk.30.attn_output.weight": "9b44378714d784c5ef9ab604359091baca4e0ec222afa139b7f840eaefb371fd",
"blk.30.attn_q.weight": "cbb95365bbfbcad0c9cd99b4eebb5a5d32de68ce08e4063b5ec3e792b7548044",
"blk.30.attn_v.weight": "e7985c04fe1740e35a9598f43b67b0922b4fc2d00b68a92a9f917b82c3248de1",
"blk.30.ffn_gate_exps.weight": "8ac4bbd07935d98f895ba94dc174e5ad5046c3c222b53729d60f987c05e7eb70",
"blk.30.ffn_down_exps.weight": "dd672cc71e82abf05064a18121b8e55fe1a4f19bc1d7cb9a142f4add54bc336e",
"blk.30.ffn_up_exps.weight": "12282f664a2a12aa25e2deac58946108715ebb978bafed5274cef24569107646",
"blk.30.attn_norm.weight": "1a33458fee054c6c9c896a4bb0a4e1fbfa0293b2408c7dd2b81d692e966e7273",
"blk.30.ffn_norm.weight": "311e33b68051f507f1478ed8f2693fddb846170ddb7285a91be43f795c2ce31e",
"blk.31.ffn_gate_exps.weight": "8af43d9867a51cd8392fb48b981b0ceee0ae979c491c07d711b3b56b5162c786",
"blk.31.ffn_down_exps.weight": "5579cb7758c1600b19d1f540deffe081b575962e37437b3b2efb2fb0a2924e40",
"blk.31.ffn_up_exps.weight": "f2e7c005276b3a001fb40753f027fa10b4d5a346f43cf4b4bbdeec6e74e1cf6a",
"blk.31.ffn_gate_inp.weight": "89885dc0e30b6b16a90c0331d7fa3174671e941364e8102d934f02132237e61b",
"blk.31.attn_norm.weight": "99e4e9bf86a9edf8c404153a7e8a82324ba79da462622196e2faba161bd95172",
"blk.31.ffn_norm.weight": "55335997cf6de781bf332b943de96ff4646966b05d9fee86b76ea897e27b6ca7",
"blk.31.attn_k.weight": "cee570762b78da6316b637892cc4b080e40f57af5551ffb1866b9a8e80e96628",
"blk.31.attn_output.weight": "fa321ff55ec7819ead7b819fd45215262f39744569765ba2113c989c03588802",
"blk.31.attn_q.weight": "9e2c409b878f8a2a1436874abf428fceb1c534b21f9ad4dd6f532b8a469007f0",
"blk.31.attn_v.weight": "a845d0be68ba537b4a775bfba4d897faf7c82a811a2612b0b7420cc4f3574cb8",
"output.weight": "16101cbb74b54cda9ebc07ca3c762e3263a56efb3cc011156184b95807d7cf13",
"output_norm.weight": "d7aa61585baedd60157aafe157930785742c55989c288573566a971b02423564"
}

View File

@@ -0,0 +1,225 @@
{
"general.architecture": "phi3",
"general.file_type": "1",
"general.quantization_version": "2",
"phi3.block_count": "32",
"phi3.context_length": "131072",
"phi3.embedding_length": "3072",
"phi3.feed_forward_length": "8192",
"phi3.rope.scaling.original_context_length": "4096",
"phi3.rope.dimension_count": "96",
"phi3.rope.freq_base": "10000",
"phi3.rope.scaling.attn_factor": "1.1902381",
"phi3.attention.head_count": "32",
"phi3.attention.head_count_kv": "32",
"phi3.attention.layer_norm_rms_epsilon": "1e-05",
"phi3.attention.sliding_window": "262144",
"tokenizer.ggml.model": "llama",
"tokenizer.ggml.pre": "default",
"tokenizer.ggml.add_bos_token": "false",
"tokenizer.ggml.add_eos_token": "false",
"tokenizer.ggml.bos_token_id": "1",
"tokenizer.ggml.eos_token_id": "32000",
"tokenizer.ggml.unknown_token_id": "0",
"tokenizer.ggml.padding_token_id": "32000",
"tokenizer.ggml.scores": "6e37bcde2adc7e350e87c496eddd7a2124329c1dc66c5bf3ad3997253e4f7a62",
"tokenizer.ggml.token_type": "b6ecf55ec64ee67d87750bdb8d757a2c58bf78377e9f4219f5689a6c4dea57ce",
"tokenizer.ggml.tokens": "d168da3ddd3eee820916945fcb9baf24dd3cde42f606cffa2d19e7c8a8743918",
"blk.0.attn_norm.weight": "216aeb2c9e0c271f899e1ef2a63cceeb8f41e97642e84fada54b1d3c1c11cf25",
"blk.0.attn_output.weight": "b597d56f7188ffc1fafc273fadc59d41738cffd677ae98c61a62c3285b3a3099",
"blk.0.attn_qkv.weight": "d28a6b44e13f59be5483e4be2bedb544e346168d720aca27f47d1a5a722be91e",
"blk.0.ffn_down.weight": "4a691370e5a61fcbbf540fbcbf4c0f1d15dec0364528c0e916d0744f6262b63b",
"blk.0.ffn_norm.weight": "0c00af2b4a3128bec64a0cbb1084b042fdbe13d9ad0d03bd577f9449dfead338",
"blk.0.ffn_up.weight": "b32b52f790c1c083bfb8a3126dc1111cfeeb28dc8c584a930a1e5334cb176bf4",
"blk.1.attn_norm.weight": "68748011503c6c029e8e69a84a8e5a89338f378769627b6dbf7f93d715c292e1",
"blk.1.attn_output.weight": "2267344add13b048ca59e4377c86dc512be8046a57156901fa32a20fa74e4ee0",
"blk.1.attn_qkv.weight": "9109d2e3d7a2eacfda5226587b8be124a3bf44b972da7ebb17aa15795897eacc",
"blk.1.ffn_down.weight": "d675df4df4dd039c0c339ad6445d39eddd2004db6bf35bed6314c7497245a633",
"blk.1.ffn_norm.weight": "3b5767ae977bc8baaa06b06efdbea193b6b3ba605ce76d77a76ce317e935500c",
"blk.1.ffn_up.weight": "80dfd6d9d234b00334c89b8e0a02f81899c2efd377321c34ba5ba51a5f61b5ff",
"blk.2.attn_norm.weight": "6a6743b057e5088f145bc179e92c9bfb41163e7295d7b81c62e23dd89d2b59c4",
"blk.2.attn_output.weight": "bc5491ea54e0db81462d7d9b7d25cbdda380c2db8de041bd1c4ab7b76a1d19c3",
"blk.2.attn_qkv.weight": "a61287a9852e2f5aca9c100b471d98398b2913a3497c743de3c70ec9ddd7087f",
"blk.2.ffn_down.weight": "4fddcc382c8dceeab027fe43d8d44e67edb5e8ce4b9a1b7f773c87770380ade1",
"blk.2.ffn_norm.weight": "07e05f82b3f63f711db3b684ca79aed25c0657917e66f88af47348a82065c227",
"blk.2.ffn_up.weight": "4835a682ef1826c12df01ae7663fc45f9c82bc8e64b665f13fb7da8e201ec0fb",
"blk.3.attn_norm.weight": "f22aba7c03999ba7136f39cda747a39715e498699dc1716cd97fc5dfc58d1b1c",
"blk.3.attn_output.weight": "53b579855366fd786c5126b2b30aac4d583ca7bda56833c4865f5cadb5c18c6d",
"blk.3.attn_qkv.weight": "bb56aba78158123140fcea59c69ac562ca208f6d3086819417cdad8c50f333ad",
"blk.3.ffn_down.weight": "97280897a7cd86db2830c004bccc5bc094f50e293baded0189159a2019145a6e",
"blk.3.ffn_norm.weight": "10a8c99f8b57a960e8e0a1133c4a26f9148403d1b9bff2eff114917de996f3b5",
"blk.3.ffn_up.weight": "7324046c915e75d621b2043597a245a428d8eea31869135e6257a861491d8dcc",
"blk.4.attn_norm.weight": "507d8e164de94646edbfe33def8e8fbf7c9a6ee3fbaedb5000f72d9f51ec5e36",
"blk.4.attn_output.weight": "bbb3429e6efa98c150e0fdbf48c16180cbf0d0cbc1b3c253c6c319d78f4593a2",
"blk.4.attn_qkv.weight": "b95ee5be0786d3901273d806c339fe6c20e6bfffd2a20672a9f56af80921e8ab",
"blk.4.ffn_down.weight": "806bbf91df92a5a22bd5aa1ffb7fc2869f7293ffc7704771c290ecc583b27975",
"blk.4.ffn_norm.weight": "cfc2930a81df7aee3a5e7f726a15c1182233e868bf0d9d37f6b6ae6d8c15c234",
"blk.4.ffn_up.weight": "c3390c69533de2c8424e8069323ccc5d0c4543111535da04cf2c7d26745576aa",
"blk.5.attn_norm.weight": "0d71c4fbcefabbd021569442853d2fe90668b19409ae2805a718a829ca60beab",
"blk.5.attn_output.weight": "10ebd93629112bf2df5c30dd0953a4a5e9020306768283181ed426934d47e14f",
"blk.5.attn_qkv.weight": "5cb05633369f12d4b00e0ff787736bd846856682115720ebc6cce05270c334f6",
"blk.5.ffn_down.weight": "e28bcc5094212eafc7476dbc5b7a520d25b79578cbf4229d698e2655956a80ad",
"blk.5.ffn_norm.weight": "b6f2c4cf9f34bb4d59989f96165c14a67dc1e266ad0a6d0fcc49f1add929e6ff",
"blk.5.ffn_up.weight": "0f9ef99423cc07ebedc0e9cfa95809f2d7108d910bb4ef97ebc0b0309c440750",
"blk.6.attn_norm.weight": "b3edcc47a42218234f7564d7470611b49401a41ae8cd42123f86557c69f5d7f2",
"blk.6.attn_output.weight": "eb9b7d257b388bb5b8fe0515e5c6873317239cb94cda236e4b6ada2a6c57c65c",
"blk.6.attn_qkv.weight": "eb968081f478c52f07bd9c2761741e982dba33cc4eeadeea3557d391b9ac2106",
"blk.6.ffn_down.weight": "1b8588bb7463206290322695577dcfced300895d6e6f4b26966c53a9ae2f0f84",
"blk.6.ffn_norm.weight": "1219c04b7770983c77814200eefe743f46d15328ea2b12711e44f8103eab08d3",
"blk.6.ffn_up.weight": "197ef287239fec47c55677f0fbb66eaf0644f775bc382de843971730721394f6",
"blk.7.attn_norm.weight": "b630ad08c80d564ed1c024384818e9fd3f22a36cd7a14aa96e7e2759a8285099",
"blk.7.attn_output.weight": "970255aa750828a47d6b9d399f9612b5bf25aefe7dadbcba41fc416d0d4067c1",
"blk.7.attn_qkv.weight": "ebb157c880293e6de8d629f263ba8853ed1dbdc02c311d43432bb8cfbb310739",
"blk.7.ffn_down.weight": "24bcd4db4cba844c89f878b81843c373dbbc0675e889d32c5b12e63384a7b670",
"blk.7.ffn_norm.weight": "b9c6f71001808ee873ce7db8056e4b53fb4cccec8b7f0f312899b575fae39d39",
"blk.7.ffn_up.weight": "979f1828d227455c26015a2a11afe9dd05f2bb97a8ba6b38c8dab3f50e627401",
"blk.8.attn_norm.weight": "4e8e347e3775010b7112ee630f2f4f2383be7ff64e6ca6154b9b22566552eaa6",
"blk.8.attn_output.weight": "65a44babf44a435a1829945211b3168f9ec78ac3cb7a049a733e93d11f0d6659",
"blk.8.attn_qkv.weight": "343ed07671da400b040812a4058482fa38284b5d9af9becfed07417fe26ce747",
"blk.8.ffn_down.weight": "7fb7e073e3c2c503c4e9d60efa0988fed7398d900cc003695fe3fffd3e188b82",
"blk.8.ffn_norm.weight": "b07c1f655d8593e3892a2cf73f8a0c19ce8e5cb613fafbe7cbd430da8ce4c57d",
"blk.8.ffn_up.weight": "8b26e14de54b3fdc2e2d3ea41720f9d9c236a93688c3b7fd7bf43f5fbb327c9b",
"blk.9.attn_norm.weight": "46394d408a8e316916177e6aa261de32e137a82d729c0b1800b072f0c38c39b6",
"blk.9.attn_output.weight": "d57f3d46107947a7073373a0b35d6ecf7759b5df15406f4a3590a60666af6b16",
"blk.9.attn_qkv.weight": "14bb8ace8c5453148f4b536e9f4279c813f31136716947256f5cca333448639c",
"blk.9.ffn_down.weight": "2b8d98e2b5ed68338f6e4de43bf7de0c4858cc69103cd5177725f7444eec7694",
"blk.9.ffn_norm.weight": "41a499dfd418cc4c6b8c12313f673f7e2cd4a3f9c4065eb6c4feb5eed02fb542",
"blk.9.ffn_up.weight": "143aab7533a64b17fbe201490a6f674bc7f0bd370c094500b2e100419073d1c2",
"blk.10.attn_norm.weight": "ebb670aafd36816a794347287269d8f1a5b19c1e3c0a1e38023bc19fdba9b073",
"blk.10.attn_output.weight": "b5d65bbc0ed5e49fdd9d754bc18163cd042a285024d0cf6f954c503bc8c877cb",
"blk.10.attn_qkv.weight": "f06b15bac88da798fa34a62b03eaac0dbe8b846020516603c387541f2d8dd672",
"blk.10.ffn_down.weight": "fb091fcd1b4de25d1bea94d1755e255cb02914a030d23e3a234e57b8d46bde6e",
"blk.10.ffn_norm.weight": "eb347bdf9c40414af87e13a8e72e40b31f004b50f7cb366f1a219ced60a61355",
"blk.10.ffn_up.weight": "ed2d52fc881a173f404fe8a1067862c9856d6c3e0d2e90a330a7aa394e3f84d1",
"blk.11.attn_norm.weight": "64e252603cf010a0e502ca39fdf8d0a196a79aec67c0d2bb9213fc0cb80c47d4",
"blk.11.attn_output.weight": "228e33e21c69f52efc74fdfc831bc9af271e44b2a29a3dced1d64e667ce36eb5",
"blk.11.attn_qkv.weight": "ab9ce6d4ef9e42ee0da3f20a7708a3bbc5e79e967b05fa86ba946a05e2eb63eb",
"blk.11.ffn_down.weight": "0ca133b7835c98dc77c25d64e4eb7873778bdb5e4d22d8b80f920f46865b43bd",
"blk.11.ffn_norm.weight": "02455741a0dfd161c79aa1ecc381901721f229fdcda5615622a629631fb61cfd",
"blk.11.ffn_up.weight": "9fecdcc099fbb8e23c6b1ea9294702a027f4a58d265543ec5e7be79b8f63b354",
"blk.12.attn_norm.weight": "783bb459911b1b3609a9b2bdfe272f1670add73b5471da738e07ac47e2e07dfd",
"blk.12.attn_output.weight": "1e1a914c9e48b857206ac5a1f7cead994bc1ea91d5d4fff8c834d73f2e38ef5d",
"blk.12.attn_qkv.weight": "5953e7185ccb87fb4dae8f9426ec86315d4c7794326e8ab59b3a95d4af2189f0",
"blk.12.ffn_down.weight": "a3eecf0f394f86e2cfb48a5940a5c50ca86d71883b2f79fcc642a935fabce0d4",
"blk.12.ffn_norm.weight": "0a4272e41373c23bd72f10d2d82930aa3a1480aac75832bfbf01cebf0b86b6a4",
"blk.12.ffn_up.weight": "06f42776de3a7ceac3025f26a7a8bd20e062233cce2bdaa2183470dc4b30b87d",
"blk.13.attn_norm.weight": "5915da60fb03e201fa649faba780e5fdf1c761c262b206e5415cf83181f65780",
"blk.13.attn_output.weight": "4dbf6eab074fa3835fd32bd631a8208e511037d5056d2fd3015735cca7674ef7",
"blk.13.attn_qkv.weight": "d3d8339a1c4782d9e73d77fdebe154d3c5b83ac40c9175b3e91a4977d08f876b",
"blk.13.ffn_down.weight": "de6772b46a55e1fd42b007637dfbf68b6598e5d5b61622da0935002e1e192d3a",
"blk.13.ffn_norm.weight": "5a640ea3b8c7be49c95a58a2327e10d8e8d9d142504bde5c8091613e5b961d7a",
"blk.13.ffn_up.weight": "f35e3545e4bd3531b2e843b5efd31dee0c13c807ee6386e65473ba67bbec30d0",
"blk.14.attn_norm.weight": "9b34986450b7c98b4927e81e61a816f9e84b1addc7c14926402100037aad6678",
"blk.14.attn_output.weight": "155d52efb23d366016d861a251d4d1f4a0c13699188c50d50dba016a0d8bfcd9",
"blk.14.attn_qkv.weight": "8e1415084e1f33c73a777f19e752489f4dd312cca047733e5ea643cd4a955e04",
"blk.14.ffn_down.weight": "a2a142226b94baa01ccb65bdea2b7418e49085c1d9c3c63e544e3112c58a25da",
"blk.14.ffn_norm.weight": "8aecfd9b0ae6affaea31a80c5c9a4a14b31deaa0db7bd8f6da2a64d23447921c",
"blk.14.ffn_up.weight": "0c1407237b8c1bd02f193346b5681926fe698a5055eac6a7450451b0f991707c",
"blk.15.attn_norm.weight": "e037bd19880bfa83d983200fb0c7866f8ad16c3ff5cc4b4f3a37ca7373870ff6",
"blk.15.attn_output.weight": "045fe4fc95cc129a1b92771b179c11b12845c4c088786c607f17bd98857e68e1",
"blk.15.attn_qkv.weight": "7621b7559705cab1d4dea1c69f76dbf9dc1c8837a203b656f484703b9c1b70ce",
"blk.15.ffn_down.weight": "7e5ac20e290bc60761e1cd972354fde225b7fa861048d44d9a0dd9b046d55f58",
"blk.15.ffn_norm.weight": "b6d830d88f1db1825687973c8c2b1a24c6fa84f07af8d0e3ef9c86009baca0b2",
"blk.15.ffn_up.weight": "dcda0957cd04fc45476774dba2bbf9aa89d6b05d5ca7b10ae6f73ad2c49b1cd3",
"blk.16.attn_norm.weight": "4ee9b70ba15cb2a08240f93990e90f5068c48fceb481f8e2186bec8b7214eb3f",
"blk.16.attn_output.weight": "315cfe5536658d2498192b2980eade15b2c9a4ff220e4011911457b1727fa103",
"blk.16.attn_qkv.weight": "3c8122e3ad637583b9dcde8ff3a323267d3014bb1f0f9771e5322260ca9ecc8d",
"blk.16.ffn_down.weight": "3b5fbebd5ee2b86cad96fb8a9b45a8770d08f82c1c8b74d7061e866f7020a18d",
"blk.16.ffn_norm.weight": "ffab69f20bda372de6e5878f0539163e2fc6ba113621ded95705fc3b1465c9f0",
"blk.16.ffn_up.weight": "0935ea3d258da42d6258406365f39f58ddaabfe97ea5977580db3635188f24a1",
"blk.17.attn_norm.weight": "f030441733f3d147b4a06a1eb4aeb8465c7c24d9c53bf4c48fe7e134d3629803",
"blk.17.attn_output.weight": "07a955ef09e8dc766ac0df647d0b2c69f23c4c69a7137654b4aad80303ed0eda",
"blk.17.attn_qkv.weight": "1c10688061e21e2fe12ad0cb54bf03895c1f83c3b0df743a42f548b52cbca1b2",
"blk.17.ffn_down.weight": "ebb9cc9836f41d88fdae2aa9a4355514e4edaec8d1577ffeb947a35204e77f52",
"blk.17.ffn_norm.weight": "50aff44f6528b13db5389f2ddcdb7676244947610bd7ffbff3f881c968c2a0d4",
"blk.17.ffn_up.weight": "d716537949582be33bde6b02e38f5a70081c9642a9fb05a61312126718b8d148",
"blk.18.attn_norm.weight": "0ea695c4e53d637902f46663a6ee42adc493c36794476acc7dbddaa05b13840d",
"blk.18.attn_output.weight": "5fd35b500221a612eb4f4bddf0e9b6b7db4d7733032a75f8802fb2d884647c2e",
"blk.18.attn_qkv.weight": "b0da37fd030fe69581f990bf23bfd35467a1bbe558af6de7c0924f6b72e92317",
"blk.18.ffn_down.weight": "b355c33f44b328f4bb977567de8f7544db4b005d7a8fbded658518ecf3c5a153",
"blk.18.ffn_norm.weight": "58b3fe9094079989a86e0387143259e1cc35952d24dc3df290c4ba6df44f5c51",
"blk.18.ffn_up.weight": "2ce530954c342c30ed2ead5353f931960bfae1d278868504c0efb973560fabbe",
"blk.19.attn_norm.weight": "533e9aed66feea8f0392aa81f9e293240e1f009a5334253915fb60c2749b615d",
"blk.19.attn_output.weight": "84f2d00f98a4113a779d3b5d1c3e7c914eb47784d3ab13b290367c124c2994aa",
"blk.19.attn_qkv.weight": "fbe6b9f53b07fa7537d3b3d452d20a9bc666f9fd41ec2091dd28bc2f70fc668f",
"blk.19.ffn_down.weight": "b30199e098c8bb3f890183d8b18471e80b62b604729b277ad62488dd71e1206b",
"blk.19.ffn_norm.weight": "c81373e41cd340b7badb19f9517c77c4250b4eb9a02dc758b8b49b652487d7ff",
"blk.19.ffn_up.weight": "5a5cb083ca7725720e3a890f7fa46354760e8007a8188849a092e305694a75e3",
"blk.20.attn_norm.weight": "4953091b4477e354357a8e743ba0a1900633e52f1599ee082a0c9b0b2b5cd978",
"blk.20.attn_output.weight": "62d54f7749cd6856097b2632066a322b0296df915fe66f382c5b5981be0d4f23",
"blk.20.attn_qkv.weight": "406de9e35b0729ebe902d7a47905cc7fb29a921431ed35dbef0c03e5690a1329",
"blk.20.ffn_down.weight": "62fb678b0d1261e19a4903a2b347d67afcc8acff01feb33a687a35a2d1e6f9a5",
"blk.20.ffn_norm.weight": "cd9d36b7e71e55c8925b97bb09c28219f182626bcff094878ae39c3db887a14b",
"blk.20.ffn_up.weight": "b9276771d79d3e932e73ccc520c3f8476342b9ef312ed2ee1e0da822e6e3ad18",
"blk.21.attn_norm.weight": "66d8c8a35e13ce9c2a0e75b670150e2c31484a55c2316df46075312196178ed3",
"blk.21.attn_output.weight": "12ab46c9382648f9b3350fdd92a6be6352743d62d6b520d7e2024e0c838588f5",
"blk.21.attn_qkv.weight": "a7909676ee1675ca23cd29a5fdd226df8dd9d68f94c6c9bbb51dd9fd38504008",
"blk.21.ffn_down.weight": "6fb317279c6542e82f97d5a12a60fac1bd0fa0405154f9fbe265e2fe39bd49cc",
"blk.21.ffn_norm.weight": "c0f703eb3ff161b5ba4490d87d8684b8a6c47a8f433e12f418333b9db439010a",
"blk.21.ffn_up.weight": "6dbdb80ef0c35e364bbce12d40d5e74c7963c7b55d58d9579567a07ffce7b863",
"blk.22.attn_norm.weight": "f94237433bf03d675cb2f655b81ca91a1ce2447bc6b00b13d6b0ccfe2d411eff",
"blk.22.attn_output.weight": "e821f95995ce497c01e63ca64f737713b1b65f11df1903e51d444aa516f33f71",
"blk.22.attn_qkv.weight": "1b0f717c73afb5eb4c82a1708c4e85c969e8a2a8770d9ddb78b1870a2d8a781e",
"blk.22.ffn_down.weight": "0f33f7a3cdc685484be99aa0c03642b0b20850a27d1fddbe054b13a9382f3ccb",
"blk.22.ffn_norm.weight": "9df285cf211ddd7df2b36a50489af574755c7d4d98b29a05cd04566ae613c8dc",
"blk.22.ffn_up.weight": "63ac300e1efb34041dd0136cf43ea622fac6f0caccce1cd9262f5e08d2cf179c",
"blk.23.attn_norm.weight": "5f72d9e88689b4027b28f5f8f26cd3abb03635ceea7ec98a4c91a9fc691f6707",
"blk.23.attn_output.weight": "6ecf04ff61125c5fc768f8656497152149373daf321ee9c957e8f7245a1184d1",
"blk.23.attn_qkv.weight": "a9d9978806724c2959f2cf386c233831f08e1e933dbf2b32665e788d9d512ea4",
"blk.23.ffn_down.weight": "72c7d17886a3da17fa0daa456aa5e877b2ef5b8b403182b870d9ca5ca9c70347",
"blk.23.ffn_norm.weight": "971e4b712e3025a13419b5b57d674b5e4ab7f18f74b57b9afc4671623da90c4b",
"blk.23.ffn_up.weight": "df2b5c7dbd5834545b815073af0c7355b065124e6d6f0fee78d8fa5b2076dc3e",
"blk.24.attn_norm.weight": "c41957c4a79ad3b16f6e11daec1c7f530b9f3f4b618e1e4367c3b67787ac4ab6",
"blk.24.attn_output.weight": "ef7d61f5fc88ac6f31bf60cb5f4d2d6b8df42d38825807112361a7224b0dee3b",
"blk.24.attn_qkv.weight": "3e6a58fe7d49c90bb6971efbad3371c32256881173ea5aee4b0c296cb206490f",
"blk.24.ffn_down.weight": "f43619144047de42fed81dfa495f1815d3cb771330e574043e2b67620819292c",
"blk.24.ffn_norm.weight": "5501d4a2a98c8ca6b42e77b53b221dbc08f530f6a067256d787534ec6fe028bd",
"blk.24.ffn_up.weight": "d64c8b0e509e2b1118f6000176f8956cacecdbb200c7e95ed93fb78b6e26c84a",
"blk.25.attn_norm.weight": "502fa3c302d371f61c5791f4615b73018ffb1daa09b6499b227116581244c5d4",
"blk.25.attn_output.weight": "ad8391d4e9c980856f2547aa945b2b6a407a6382158dc1ddd4f08d94ecc24be6",
"blk.25.attn_qkv.weight": "42e8983780d4a01a02c54ad23d4df21eea437f119a10af5a9c12a76a42d308c1",
"blk.25.ffn_down.weight": "302dd010d4e0ab4eeaee89090409ea0dddeeeed3236415eb8f97c942497eea91",
"blk.25.ffn_norm.weight": "fb34c1ee5bca96986c08834df0a0c047ba041c1123ac1f563e9d64312bf82d6a",
"blk.25.ffn_up.weight": "10739a8de156816d93c92b935386540bfa976bdbef204f0312960f6fc657582f",
"blk.26.attn_norm.weight": "7036c711609128c4e55968ff3681d3043338879a5737efd6c2ac9e1a2a61f1a0",
"blk.26.attn_output.weight": "db5db45dead5cb911fa01da59832f121b7c18b2d167bf53741c40819f24d346c",
"blk.26.attn_qkv.weight": "cae34c6b7f82ed14348d5ed30a79919c383737c1694a9cb9c0de609d3b0c1d0a",
"blk.26.ffn_down.weight": "491ec3a4da9b4f49f8ebc6be658ce397a9b801ae9fb35e82177e47808c65e5d0",
"blk.26.ffn_norm.weight": "fd7059d75d7f0e5288511ddeeb0f772eb3cae3ccfe4226b877015834edc3c386",
"blk.26.ffn_up.weight": "ea1ee1274c56458ce056d2205e5bb6e5422ce4cb0ad58006b8141749b97a0c39",
"blk.27.attn_norm.weight": "cc362c9a937609265052cd38544af17a1a7448cea086d4c801139e1fc865832d",
"blk.27.attn_output.weight": "ba757a81dabde9cb1b069d1bb616fe79649a1724f756567ec61caed1304fe6cf",
"blk.27.attn_qkv.weight": "1ab8d7d02d87756c12c2275636823aa5ede3d683178225c4cac4bd892c319bd4",
"blk.27.ffn_down.weight": "deb1c711c8a66acf4dcd2d088e1548f8e08f296f755e4067d6557fa55afde88c",
"blk.27.ffn_norm.weight": "fc6242d8cb8a4a37a8ddb7e41e7e60a63d4a89edf36acb35df052f10b9c91ece",
"blk.27.ffn_up.weight": "8df39b09c4801f343aca78f2918a1f6db78c8c55e591eda4c69eadb74c26e180",
"blk.28.attn_norm.weight": "75b539308f77e3cefdc6d98484d8b5cbf0538f0c2869a77b7373a145a18bc850",
"blk.28.attn_output.weight": "ae128940eb60a6d2e121762ef4b3e9dcf9eb3e105b249507fa7f12de0e19822c",
"blk.28.attn_qkv.weight": "bdda781c288e9326c240e33905f8e621b6a2ad902e620739d34f93fcd6f933de",
"blk.28.ffn_down.weight": "f1d6e6d1c286b1138bfd7e53fe477f399ae93bc2c04e35416f84218ed7247965",
"blk.28.ffn_norm.weight": "3f837ce82c8b9bde0d61d08b6f5fe5574886ea5328dbdc53f2929f18da8b4087",
"blk.28.ffn_up.weight": "2af027002e31d1b6cfedbdb30a2b9d7213f3aa691167c353913adfd48fda31e4",
"blk.29.attn_norm.weight": "61e8003b5329462ffe0fe172f2b160260de006aed858332d49d75504b6b6aa7a",
"blk.29.attn_output.weight": "ca44542a72a37476dc73dbdcc01f5b7497cb3ebc4ea230a55c9634ccd8e56ad4",
"blk.29.attn_qkv.weight": "abb3d9d6abe57872ae3daa51935d43264093ded5ce63b49d1e280ee5758be0e4",
"blk.29.ffn_down.weight": "6764b895fce881df097489c263446f0106de36217997660c15984b3ee22a5a06",
"blk.29.ffn_norm.weight": "89e03e9a33fc0e6e31ba9f0c2bd7c5734a118c5602bb90148793e08a80e8d0ae",
"blk.29.ffn_up.weight": "fa7ad57a84954f4121653152efed1a871d8adb20a1ea9086e3e849ce359d7d2e",
"blk.30.attn_norm.weight": "91a697aca1e42af54f806a20211031c3369e8d0bd58df1b0147fe24954e1f5a4",
"blk.30.attn_output.weight": "36063fcf766c89ac75be56f688cc63cefe5f2c733fbf4378ea9956ad386fa148",
"blk.30.attn_qkv.weight": "2cacd1161f1121a2c0b979930134f4666f73fb8d7237b3b0659ae091b15955a6",
"blk.30.ffn_down.weight": "9f3fcb6217100595850c05dc98f9ab2a263afdb6ab28df2fcb08aeff512057d7",
"blk.30.ffn_norm.weight": "6c600bc1fc7de39d4f8917b81fc7d1d5ed2a9b56492234c13a4bd6028c30d880",
"blk.30.ffn_up.weight": "73cabd1bb011956b2689ea3338bb76642ef3a57c197377d666d2ab5f56317668",
"blk.31.attn_norm.weight": "72d3e1cc771380645fa75a899858c95f39857a4f3f1ed60fe1578df383b8bc53",
"blk.31.attn_output.weight": "40089cdd29994dc19a1d89fa15902a89cfeca3540f12dc9bf4d00ef82506e456",
"blk.31.attn_qkv.weight": "1d0bb40e9258071ae14290a53c619a8e331dda07354d2a02ef45766c029ae5e4",
"blk.31.ffn_down.weight": "8defa0e06335b793fa8be03883f0a322d6c5b33f52c69c943c35c60d16e42c0a",
"blk.31.ffn_norm.weight": "33c55d9d0c496ccfb130361fe131649346e098abaaac39c0519507e5d846721d",
"blk.31.ffn_up.weight": "599f6503f61c692c1f82001973d35119f9688db5e6be9d9c298411491c93f09b",
"output.weight": "14b8dc662bfa3308ebb2e102c562d8e52c15670e538f20f3216a9c310ca9dd41",
"output_norm.weight": "7f2294ba94ce65681df6c7ddd8698799199b9d77dc83c10bdad5c3999f0fdb82",
"rope_factors_long.weight": "e34d378664e354652c38f47d10dafb0498ccc2fb042d39ff7fef768146fff22b",
"rope_factors_short.weight": "9379146a4988f373d362fe47b06c75e7fe7c54aa4dc9558758df79b7a87471fd",
"token_embd.weight": "19a03c1fb5ac0baee93b0a7d8b0f26e9a9b011e229b694afc50ebfc13d84f8bf"
}

188
convert/testdata/gemma-2b-it.json vendored Normal file
View File

@@ -0,0 +1,188 @@
{
"general.architecture": "gemma",
"general.file_type": "1",
"general.quantization_version": "2",
"gemma.block_count": "18",
"gemma.context_length": "8192",
"gemma.embedding_length": "2048",
"gemma.feed_forward_length": "16384",
"gemma.attention.head_count": "8",
"gemma.attention.head_count_kv": "1",
"gemma.attention.key_length": "256",
"gemma.attention.value_length": "256",
"gemma.attention.layer_norm_rms_epsilon": "1e-06",
"tokenizer.ggml.model": "llama",
"tokenizer.ggml.add_bos_token": "true",
"tokenizer.ggml.add_eos_token": "false",
"tokenizer.ggml.bos_token_id": "2",
"tokenizer.ggml.eos_token_id": "1",
"tokenizer.ggml.padding_token_id": "0",
"tokenizer.ggml.unknown_token_id": "3",
"tokenizer.ggml.scores": "0872465d173867d755d3ee728f882b9dc2057a0bfd596fe1e3d131522f1250d8",
"tokenizer.ggml.token_type": "485e40bf3d715a4764818fc097d6a2a41db872d82ee714bc500872a3437ff48d",
"tokenizer.ggml.tokens": "c6e66de1841f04de8b8d236d461ab720a4c9b9b5414dc293a09c6e10eab45fda",
"token_embd.weight": "17b87ab2c01c80657855a5413d0457b4a041afaeda0cc785080e44e2f04acf07",
"blk.0.attn_k.weight": "28ac0da05754ad2714ae95da28a5ad191192140b30b8fd22d108d4700c9d989f",
"blk.0.attn_norm.weight": "3f9d5675d1ab0eb8a816719dac9fab81f2e95c52be02c34263339acbc087febb",
"blk.0.attn_output.weight": "703295c2c63990ff896778685c678f145298886f680f3ed5dc2a7ad54c293265",
"blk.0.attn_q.weight": "69c2d0e4870e9d722a190d356203c9605575a16863466c3d1747966ef1cf5791",
"blk.0.attn_v.weight": "95219c9c07b5ffe9a9a01e456d845eef2b11f4fc12c93dbbba479db395444c13",
"blk.0.ffn_down.weight": "a2feb5eb3d572c57c5bafbf0ab506862df1160fe40965dcfe4b9fd855c08bed7",
"blk.0.ffn_gate.weight": "fcca072c445c31f4dc4d5dfaa785b1bdf7271342442099b74fd17268b5829fbf",
"blk.0.ffn_norm.weight": "7621f95dbd245cade6fffd6b08797d69d8e3954e960f0b5551b90d967ab95448",
"blk.0.ffn_up.weight": "14a9bcdd451403c67136391e1b6e53b3b1830f00199bd911dbcc56d8749c14f4",
"blk.1.attn_k.weight": "c70f73c5df20579cb44d971164b48b5f0d8d5abdb38b381e7a8b880ba12aa406",
"blk.1.attn_norm.weight": "88b6b91f93a1ef83425a7c7dc2a2fbd3b22704a04c64a80061df376ac8c33626",
"blk.1.attn_output.weight": "f031a537490c452be3b3bb51e6b7949a636405756e160976a1c070a792ea00ee",
"blk.1.attn_q.weight": "bdb23214b1cf9cfd30f863a0a5868e52c6809d93b7e8f44df096a94204d9896a",
"blk.1.attn_v.weight": "e9bbc0b05f2c872fb1403f8f938cd1612b502229ee401f12593b1164c61acc00",
"blk.1.ffn_down.weight": "5ff53811038b661a7b8f2bfdf213bebfb185ec1a6060b662f063714f33584d79",
"blk.1.ffn_gate.weight": "205085c8c951a5c7543b1495183cd96028fb49f67464b3e9862a2693a6077a33",
"blk.1.ffn_norm.weight": "798f354fc85afce9625f5d10093a585a966831698a0560e6c9b97ce659eb4b22",
"blk.1.ffn_up.weight": "db92dc5684cb6e90940e13f4d1da555ed20ba4f8cab1e990ddfd7553e2e91315",
"blk.2.attn_k.weight": "ef5ce360c4eed6d00d03ca4761e0f8e4b0af4509978468314be14f3d46621044",
"blk.2.attn_norm.weight": "6dadbc05dbd0d3fabb4216affa60a3de1378a82d2859dc90b338cbe70f50d455",
"blk.2.attn_output.weight": "6bbf87a966f691bbfd7c8d25629aa4e6710107bd431a667434861febb391edc5",
"blk.2.attn_q.weight": "4e575c09ae2de417ce9057ce8b073680e860a24aae13a472b68f101b760752e5",
"blk.2.attn_v.weight": "cd33f7f01141e9439afdaf2ea1aaced9feaa335e32a58daa136ebd555d4d96f4",
"blk.2.ffn_down.weight": "b970ff1b0b6494165defe2fbfa1d31425766ed71e64de9ec4e66ac3955c8bc5f",
"blk.2.ffn_gate.weight": "dbb3e1360402e0e369b101995bb686b73f95d4a7673f061be85d64d15dfb0061",
"blk.2.ffn_norm.weight": "bfb7980105d8ac9647710454f57a5cdac50598a0f6f4884e16f1d94b00844687",
"blk.2.ffn_up.weight": "50ef89339b275a438b664686f6227dd9b6e43853ed6856ec9e33ef4bbd90bda1",
"blk.3.attn_k.weight": "be942ea98151434eebcd2c1da4b00e0146152fe524a530689b1fd491cb833d21",
"blk.3.attn_norm.weight": "0df2f218daf609c289fb7c60c5f375fa99c0d4e04381ad5a494a19144edd8e20",
"blk.3.attn_output.weight": "c2184aaf86aa2cb8f47be49f60b165834e97205f39c6ee1dfd19fd4411a156ce",
"blk.3.attn_q.weight": "4f86e2a0a4221c1c84ff9c409ac89893cb95d7208cf65bf1e98e24e01125f991",
"blk.3.attn_v.weight": "abfdb8a60c349dadde641d1afc9542025e24fbf41a3238bfa9675e0b1f1e4b68",
"blk.3.ffn_down.weight": "58821a8d87008d47d122427911c6fad5272aca70c448bbae223256a74bacd07e",
"blk.3.ffn_gate.weight": "776e051f1a0ddd5c4934e69186683a75ca9a3c8c0f61911bba321fed1dd287d2",
"blk.3.ffn_norm.weight": "7f380f29335e28be90bfcfae6f6d69fdf5751211b36d2dd62aa5541ed113e4f2",
"blk.3.ffn_up.weight": "fc5ae8d488894cbd4951059675468d227da27871d26e925c9941863841c097ee",
"blk.4.attn_k.weight": "14833b078cc4c5137bdd5fdc0538047974ca147a99b0282e1b144440c78bc1db",
"blk.4.attn_norm.weight": "0a69957d4a15599fb80ad4753558020804925221457d9a5052926754d3768065",
"blk.4.attn_output.weight": "887a49b6130fb6297cf10767207c3dd97191b2cf63723449af9c27bca8dbeda0",
"blk.4.attn_q.weight": "51fd577b76764824dd6f0d4891c137ebe4736f591b5ca2793c5fff2be49abbde",
"blk.4.attn_v.weight": "1a623c43cf9c509d1b7ea0d1a5c04d0af4809665f9f9e93b7d6dba8c5df178fa",
"blk.4.ffn_down.weight": "5d61e8856d8941d2b1fd138116d015f63840d0fa1e31e20e20a5ceca1536ceec",
"blk.4.ffn_gate.weight": "06640f7273764f8ca5df7e386547417916b6cd7d565a8343153113239a94b0a1",
"blk.4.ffn_norm.weight": "91a6c6c41b894228e361435ecbc5058dca34d4911a23da5b56de219299c964d3",
"blk.4.ffn_up.weight": "d016dac1055e36d6a10b6317e57f98a904709ea892ef3194342f4d2f6326561e",
"blk.5.attn_k.weight": "987146afe124131500808cc0da33c06d207433656d41df6e6d8c99118a83bac5",
"blk.5.attn_norm.weight": "6b354938966f2608a2fb8d0f5b363ed0d8b0967c2ec8d0abd5c625b413042ded",
"blk.5.attn_output.weight": "cdcbfe02c6ff79d5326882b017a02099f5af71beedf6b1b3eb4de01e3a844536",
"blk.5.attn_q.weight": "b910d0cff781d3efb42eab0a302f46f286b2de717079175680d5b42bf8c309c8",
"blk.5.attn_v.weight": "66d3a279f747412f9f4b0e8abad44540c122ab2e811a7ee74c1f33bc36caade9",
"blk.5.ffn_down.weight": "c9b0efd2212981f16d956d8571f054b68780ad01f4917033647e359b557a4653",
"blk.5.ffn_gate.weight": "fe96b94109ca141c01f6a04788e20783019ca6ec334aa1f3134810bdb499e557",
"blk.5.ffn_norm.weight": "aa7b016e832e7055a36c6e20de58ea1936f995f390401fff1c5fc65906064e49",
"blk.5.ffn_up.weight": "555ce27c4873d3375394f38ad3b45e3d8848f9d5642dc1602383d0f0a33c2a14",
"blk.6.attn_k.weight": "88280d461db324c4f36475ce396793063e61a27283ec64511b0480890fb5b3b4",
"blk.6.attn_norm.weight": "af8f460c411f660d33196286d208f1845fd5a2b45f7b56549a4df31e7515447a",
"blk.6.attn_output.weight": "dd9996fb0a256e8375ad3917705258a33fce006bcea0f536caae420a77974d8b",
"blk.6.attn_q.weight": "7a4841541191e037cfb9b07930c4d8cab451809658b182f0ada6ccde9615c003",
"blk.6.attn_v.weight": "ae81e6a592b64d701a9d40233e986039a56cba8d8d24f61aea93c6393cf3078a",
"blk.6.ffn_down.weight": "622dd1ce1706355cbc659a8ab2c4509678ffe0f3ad34258e5e25ed2a5d951bcd",
"blk.6.ffn_gate.weight": "8389a735c0bd5591010f8ced9805a2a12c749f6df0d3c18ad4d05c2a302e7168",
"blk.6.ffn_norm.weight": "621f5346400382474d61358397bd58fb1459b07c53e376e4bca15e08b3f9b3fb",
"blk.6.ffn_up.weight": "8d834e4c42f13c251dfee36cf89e12f1bd400680d00d5c2e6cac0459e9ce2f7f",
"blk.7.attn_k.weight": "8bd0412de65a3e64901ef8fe6a28c95e116bf39dc9aa22f0126b9d36688e5ea7",
"blk.7.attn_norm.weight": "056d8e56be4e87d6dc6f900762f0dc6fde07bfdc50dd85bfc510415e2bba3f3d",
"blk.7.attn_output.weight": "27972eda51da53d416ff95aed78149a2c5a287b47d2cd46f2f544ca692ecb3bb",
"blk.7.attn_q.weight": "41eca977b9371f7932800c11a9c45b931310196919e2a0651b847703b180fc7f",
"blk.7.attn_v.weight": "13c74fd7e07f08883a09fb070a1fe5bbdd2341b4cb8d1cac07c4b637049b5774",
"blk.7.ffn_down.weight": "9e75db42468800849a9a7da603d0072c5e86c8ed2b4d8b20a312a51fb86a7a10",
"blk.7.ffn_gate.weight": "db6bdc3117f910088aaf7db51f2da63ea5bd933de36af5599c215bfb26f7db2b",
"blk.7.ffn_norm.weight": "48bb82b49bfc8679a1e77f282ee182d952db7a3c11be7ef9a102ee2ddd8011e2",
"blk.7.ffn_up.weight": "feebea87175817a0f3585ec0af09dc873d94c203581ae97a712eb356d3b49efe",
"blk.8.attn_k.weight": "d5640ad71b6af68d88e17bf8e7fc26c907d2262605457a84247dd9afc2884d69",
"blk.8.attn_norm.weight": "75b850c481a69083ae09d0207ba7317b37c735a39fcf5fef5400e6c84fb1257f",
"blk.8.attn_output.weight": "cbd669dbdea2bdd90f9f0cc97566b3dffff3c56cecb4f47290ceef30da83b2d6",
"blk.8.attn_q.weight": "9edcb63087a431bac361822497e6ecdaa06d9ea4a1a754e36da7ba9f8db81c7c",
"blk.8.attn_v.weight": "3fb72c2c4f95a83626aa3e30062f9450b09ab37c7871e229f18bbc5cf744633c",
"blk.8.ffn_down.weight": "bd69d2c9172974fff154441b237b4787fb53b2d185325442d5048130ef5bc4ef",
"blk.8.ffn_gate.weight": "d04689c80553edd011d1cbaa5d570fffa7fa91e88b66cf1352d89ab60b72f908",
"blk.8.ffn_norm.weight": "e49984183b735b7f2c4e4730c289eed9394056d2e283a00fd83ea0915df31a73",
"blk.8.ffn_up.weight": "8fe62a1ce8e847e567add6c6f6bf2922bc467495b5eb4c116b3cb85b85b3b211",
"blk.9.attn_k.weight": "d90904959e5004cf0d6e729c6bff18cc33c094798b802473c1ec55ab8d276183",
"blk.9.attn_norm.weight": "79277f290cc07411115d8fa138045edf4a17b3416ab2145409cbe8ab829fd4ee",
"blk.9.attn_output.weight": "5a21bf2e1f09a81405025f96d4153ffb630158e17269cff8ffff935c38ceb1a7",
"blk.9.attn_q.weight": "51b1d0febc3b350945be4504f55afa4347517bde0f710e1a4b88e6b17e71e7c7",
"blk.9.attn_v.weight": "aab7e1db0a8b50a03036356791ffce736ab010d15674c96eaef8049d80076054",
"blk.9.ffn_down.weight": "cbf43ec84becb40c9359a181ab0e641fd7faae7d34b549501f7cfb7afdc3d764",
"blk.9.ffn_gate.weight": "dce0e8661c778327bed7f03b6790d26710764188aed9dc746e6e05863891fa57",
"blk.9.ffn_norm.weight": "6d41642104f995c77bf31122b13237caebda3e7fcccb1367ce91db36b015e923",
"blk.9.ffn_up.weight": "82fe4c67bf24e7b2d6f6e05f7b1234c2bf90c3932951091a9066211b8e15ecbb",
"blk.10.attn_k.weight": "f6a9ed8fd8d3229b5d03175c413ffc56a07f2ce7236271986361dd3d8993f9aa",
"blk.10.attn_norm.weight": "cebbef89f0326ca8e02df3867a571e4d61c20c2a12f295f98ae590d62bc86010",
"blk.10.attn_output.weight": "34f5efb86accb4f06347d83a32558ea8eab3039d128969161a741ebacbb656ff",
"blk.10.attn_q.weight": "1e0efe27df2d5d50f7157253ba2cfd436d6781c3dc78ca176d0c16a210b5b763",
"blk.10.attn_v.weight": "8f085bf50a2b0f83cd6cdda3c8ef5a9e204a36348ed95871aac725d1f68640cf",
"blk.10.ffn_down.weight": "bf3b3cb4cace435809ac7b4cc933f20853af12f1f272d3dcefe7f19c0f203b8b",
"blk.10.ffn_gate.weight": "d3df7a1413b1c5adf1a1dcda9e5225a15c89874bae53bb6137ad1ea42fca2d34",
"blk.10.ffn_norm.weight": "a1da603b0480471b5ed8e862148cecd5fed918f8304d6933ab0bdb25b8d2fb8f",
"blk.10.ffn_up.weight": "bffbba605922e972dc47dda88a0b4659aa52236c76e5fe861a949e6d9a367492",
"blk.11.attn_k.weight": "9f31c63d66cd32c29b1eb8bb829d0c8525ce2ae936e0eefdaab6335a2d12a3df",
"blk.11.attn_norm.weight": "0bde1a266d8b2e8f202bb7e2e88b19147ca83021901f6d3cae77a4df5548c754",
"blk.11.attn_output.weight": "e10725c7cf746ed4a7e472cf7aea6cb564e5db6a1d5197adc980d650a387ccea",
"blk.11.attn_q.weight": "05ee758a7d065802630f8c65dca424364c1c8825e389aa33f9405c45e8a50cce",
"blk.11.attn_v.weight": "0c3ae7090f11775d24c51120db6e305db6aff706493e7ee123dcab74485ba789",
"blk.11.ffn_down.weight": "7ba40b8e12c09c5fb2006b77a771cb01ce894e88a3b3e1877f927a5b89c91709",
"blk.11.ffn_gate.weight": "db76388a023b98097972d354ba1c6a5e26efdeb1c596b9c28bf2cd8f6596975e",
"blk.11.ffn_norm.weight": "a38c3ae1b89a68ddc7b72c99c5b28be7fe3787c4fad9904d0c43d64eaf00c474",
"blk.11.ffn_up.weight": "13c8142f9cf1eddc658babf978daf3515c4ccc45f849f3e7e3930aa18a8480a0",
"blk.12.attn_k.weight": "f03241c36ac87cb57429a2ef22186b8d7d0b590a8b173beb01fa13d93772f3b1",
"blk.12.attn_norm.weight": "4568f654e6d65104d586e7c16ba960c83428698ce103022b7e0be15e2884e13b",
"blk.12.attn_output.weight": "04867603f82f91e41306e09b33ecda0104b3ee4834061f2c0bbdc8da33c72509",
"blk.12.attn_q.weight": "70fe04b9a8e08b6100cc8d6b58bf4cbbad15ca1de82d63baca5d352ba6c4cbae",
"blk.12.attn_v.weight": "15cb28db61a86c98687991d7e611bc92a1fcc6007f3432149cfb5fe518a4f65e",
"blk.12.ffn_down.weight": "6d10c790a4e3dc44c2dc36d96251ae97cdf30a4fa04d4c43e31bfbd038e6a7b7",
"blk.12.ffn_gate.weight": "3462a2d8f6b4743b25e24da51b90018ac2858d05ac7e582bcb69063cfdac1104",
"blk.12.ffn_norm.weight": "1f96392c1faa34e34ae5dea55a6a86c5aa4c79758952075d53d28de89dd88456",
"blk.12.ffn_up.weight": "d22eacc612a7411953d948483c5fb201e11722955ee0754da866e7bec578ac6d",
"blk.13.attn_k.weight": "5864977e6b733ea942647d6feed5c76156c48c200649c22e4e11b9e5860e57f3",
"blk.13.attn_norm.weight": "87e053535144723db4145aa5402acc54331b7696752d852bb9fc542ff33f0fb5",
"blk.13.attn_output.weight": "078145f5ad83f8b14f97a869346f7fd1583b24d1e3edadaa95d3da4242973f8f",
"blk.13.attn_q.weight": "3b8caf35504cbc4d1a7dd6e011a95760703b7f71e2218b030b1254f811362dd7",
"blk.13.attn_v.weight": "4fdf8365a603e043e5b40c4a21c84ac167f9be62794178f9d8a608dfe5653bf9",
"blk.13.ffn_down.weight": "a07d3abbfcacf48ba028df2cab895be32cc15022d23389a745286e79c1b1d1fd",
"blk.13.ffn_gate.weight": "1d2ab39666aa2909acc96787432a3ed13b19d25170f74665fadff9b17bbaffb1",
"blk.13.ffn_norm.weight": "4f2e809fda5f3eadf52578ee50e0ba36e53be91e55dce418c12dfe595f5f18e7",
"blk.13.ffn_up.weight": "8783d2720c2c37ca176a5801e0b3ef1f9cc9cf3ef1cd37af423aaf6b2a27e2bd",
"blk.14.attn_k.weight": "ce9428e2b55d43ae0c6690dbd56182f99adc427694ba8236b405cc8ea5035e86",
"blk.14.attn_norm.weight": "6abb35f9db8251d6ae954bda147c6ada2371b0574d11702e828f3c6ac99b7cc0",
"blk.14.attn_output.weight": "fe3880916d0ceb5bff672c88bbefb7060a545be609bf049beb2024b38221836d",
"blk.14.attn_q.weight": "7c8ad81be6f4a350931fd108b5f7c9e366e8c26ef62d1d85ffef5dca8fd893f8",
"blk.14.attn_v.weight": "e4bdedffacbebe38567a0734dfd67db90e911d9a9669fcde9a7c4ad8a0066c52",
"blk.14.ffn_down.weight": "ef6694dff1e05820aac0cd2b22f39ac7788b4967afc9250775575554c66aab2c",
"blk.14.ffn_gate.weight": "db63c4179e2db704bc505e2b4696e055b593e295a1b7c4c586fc793bdd5aab19",
"blk.14.ffn_norm.weight": "2796a62d832a9710148f95d533320492a33e712b2e5218659c548705bd11684d",
"blk.14.ffn_up.weight": "3f78c78d8c2d54df45f799d4ff902316628af296834afe4ceed63d4a324ff03e",
"blk.15.attn_k.weight": "6e810ee3859e07695645ee0c9a5efc7962668984a5f0a9325f47e462743b447c",
"blk.15.attn_norm.weight": "0956b576ae96db0b28cb09f761f801cfd9281432284664f0fe181c8d9c55d1ec",
"blk.15.attn_output.weight": "03a17f7e94208177aace5cc41b7f54670ba57873b7274ff6e23caf58cce110ca",
"blk.15.attn_q.weight": "b8edafe7d2216a6f8b4ae4905a906475490e6ea418f6e1d3cec563dbdc6fab91",
"blk.15.attn_v.weight": "f8ae8cae0f4cfa34a459824eba57350c3c248104ba5607e7d9dc7d7c39aaf4a6",
"blk.15.ffn_down.weight": "8d02eb439da852246d2ca67e9b7b6de0b090b80744355e64728a23e41926505b",
"blk.15.ffn_gate.weight": "ed5bf361c67db8731f186b775826f21c33bdb521111fd2d922539719a770239f",
"blk.15.ffn_norm.weight": "5942ca3c73209ac9a0c8bfd9b4aab7f7be7aee9aa12d9c35833493b44af76767",
"blk.15.ffn_up.weight": "f4bebf4ad99ec5f911327dec347be6c595814885309c7bc5647ce28c7f4d1cf5",
"blk.16.attn_k.weight": "756a534c19364448e0958b8948fe33891c6ccda0fbb4dfa2024e1f532a87804b",
"blk.16.attn_norm.weight": "386b7b9e4e6509f6af9c022d942b6c6c6cc136aeed8751ecb037c74d7c4bfb93",
"blk.16.attn_output.weight": "3ba1a766a25830b84d7c22178203635f9c5624caad290bc5e5d73da5d5e7a2ec",
"blk.16.attn_q.weight": "d39b0c91e1fda7685d50a0f7cc8d18c44b5bdc90a142c7fda0bc329cca1afa74",
"blk.16.attn_v.weight": "98b33fcb0ee3483cff1b06ecb44d7b7ffb4d34c268248e4d73dfdf82b2065b2f",
"blk.16.ffn_down.weight": "14006f5e4acb2f9416271ae562e299359cd2585739c7fc77ccbca54495563948",
"blk.16.ffn_gate.weight": "12f8abae2d301d8f88bedb6af98b1daecc7b0b8d05148594f931f30958d77aca",
"blk.16.ffn_norm.weight": "129a15a046ee96d06de288bd43c80f77a6b0fb3a159c7367154c6e4aaf362672",
"blk.16.ffn_up.weight": "b4a5911a45f3871ef1d4efb7dc7108645a564b70f818eccf45beebef2e844ee9",
"blk.17.attn_k.weight": "5e1bfcff0146ebdde3817b656952892eb671e14e75afc92fa53f84f8eecbec4c",
"blk.17.attn_norm.weight": "60bc988fab7c4b29ee9de599df41a8de00caa94fcd74677da011fac82f60f465",
"blk.17.attn_output.weight": "ba49b40d6a0b5685f749c24b0edbed3adc44dbe13b5d5e5fa1e56169fc746555",
"blk.17.attn_q.weight": "82bb415d24efcd14d03ace03f907bb70db6a204c76a0bdd1892e0fba165db87d",
"blk.17.attn_v.weight": "73dbe54beb91a899884e275ea81ffc5187a20cb7d5b68d5c299b783096999d94",
"blk.17.ffn_down.weight": "7c086166241e0664f8963fd1ca4ed74c737abfb2525ec20f8435821ff50158f3",
"blk.17.ffn_gate.weight": "51a32f78244d42a539f619c5ce661db9e6cf41636280a826d439b5444edcd28c",
"blk.17.ffn_norm.weight": "c4bb247fccd1ecc84875028af63dd20aaf5cbd17eb94a9bc36679c09285dccab",
"blk.17.ffn_up.weight": "b5886182790bc6fbadd63de9bc4ffee416f3b69a66280d197ab8c18edf769abf",
"output_norm.weight": "481f3097d0a20412e35b3a739b1b958487bcd41ff67744baa3c9acbddd2ee4d4"
}

View File

@@ -3,19 +3,150 @@ package convert
import (
"cmp"
"crypto/sha256"
"encoding/hex"
"encoding/json"
"errors"
"fmt"
"io/fs"
"log/slog"
"os"
"slices"
)
"golang.org/x/exp/maps"
const (
_ int32 = iota
tokenTypeNormal
tokenTypeUnknown
tokenTypeControl
tokenTypeUserDefined
tokenTypeUnused
tokenTypeByte
)
type Tokenizer struct {
Version string `json:"version"`
AddedTokens []Token `json:"added_tokens"`
Model TokenizerModel `json:"model"`
*Vocabulary
SpecialVocabulary []*SpecialVocabulary
Merges []string
Pre string
Template string
}
func parseTokenizer(fsys fs.FS, specialTokenTypes []string) (*Tokenizer, error) {
v, err := parseVocabulary(fsys)
if err != nil {
return nil, err
}
t := &Tokenizer{
Vocabulary: v,
Pre: "default",
}
addedTokens := make(map[string]token)
if f, err := fsys.Open("tokenizer.json"); errors.Is(err, os.ErrNotExist) {
} else if err != nil {
return nil, err
} else {
defer f.Close()
var tt tokenizer
if err := json.NewDecoder(f).Decode(&tt); err != nil {
return nil, err
}
for _, t := range tt.AddedTokens {
addedTokens[t.Content] = t
}
t.Merges = tt.Model.Merges
sha256sum := sha256.New()
for _, pt := range tt.PreTokenizer.PreTokenizers {
switch pt.Type {
case "Split":
if pt.Pattern.Regex != "" {
// create a checksum of all Split pretokenizers which should be sufficient
// to identify the pretokenizer
sha256sum.Write([]byte(pt.Pattern.Regex))
}
}
}
switch digest := hex.EncodeToString(sha256sum.Sum(nil)); digest {
case "d98f9631be1e9607a9848c26c1f9eac1aa9fc21ac6ba82a2fc0741af9780a48f":
t.Pre = "llama-bpe"
case "03df5c5863ad70781dcfdef491ead25140f895fe8010964be0daefe27be32b02":
t.Pre = "deepseek-llm"
case "21cde974d587f0d54dc8d56b183cc1e6239600172035c68fbd6d4b9f8da0576e":
t.Pre = "deepseek-coder"
case "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855":
// noop, empty pretokenizer
default:
slog.Warn("unknown pretokenizer, using default", "digest", digest)
}
}
if f, err := fsys.Open("tokenizer_config.json"); errors.Is(err, os.ErrNotExist) {
} else if err != nil {
return nil, err
} else {
defer f.Close()
var p map[string]json.RawMessage
if err := json.NewDecoder(f).Decode(&p); err != nil {
return nil, err
}
if template, ok := p["chat_template"]; ok {
if err := json.Unmarshal(template, &t.Template); err != nil {
return nil, err
}
}
for _, st := range specialTokenTypes {
sv := SpecialVocabulary{Type: st}
if bts, ok := p[fmt.Sprintf("add_%s_token", st)]; ok {
if err := json.Unmarshal(bts, &sv.AddToken); err != nil {
return nil, err
}
}
if bts, ok := p[fmt.Sprintf("%s_token", st)]; ok {
var content string
if err := json.Unmarshal(bts, &content); err != nil {
var mm map[string]any
if err := json.Unmarshal(bts, &mm); err != nil {
continue
}
content, ok = mm["content"].(string)
if !ok {
continue
}
}
sv.Content = content
}
if id, ok := addedTokens[sv.Content]; ok {
sv.ID = id.ID
t.SpecialVocabulary = append(t.SpecialVocabulary, &sv)
}
}
}
return t, nil
}
type tokenizer struct {
Version string `json:"version"`
AddedTokens []token `json:"added_tokens"`
Model struct {
Type string `json:"type"`
Vocab map[string]int `json:"vocab"`
Merges []string `json:"merges"`
} `json:"model"`
PreTokenizer struct {
PreTokenizers []struct {
@@ -27,80 +158,108 @@ type Tokenizer struct {
} `json:"pre_tokenizer"`
}
type TokenizerModel struct {
Type string `json:"type"`
Vocab map[string]int `json:"vocab"`
Merges []string `json:"merges"`
Tokens []Token
}
type Token struct {
type token struct {
ID int `json:"id"`
Content string `json:"content"`
Special bool `json:"special"`
UserDefined bool
}
func (t *Token) Type() int32 {
switch {
case t.Special:
return tokenTypeControl
case t.UserDefined:
return tokenTypeUserDefined
default:
return tokenTypeNormal
}
type Vocabulary struct {
Model string
Tokens []string
Scores []float32
Types []int32
}
func (t *Tokenizer) maxID() int {
return max(
slices.Max(maps.Values(t.Model.Vocab)),
slices.MaxFunc(t.AddedTokens, func(a, b Token) int {
return cmp.Compare(a.ID, b.ID)
}).ID,
)
}
func parseTokens(dirpath string) (pre string, tokens []Token, merges []string, err error) {
f, err := os.Open(dirpath)
func parseVocabularyFromTokenizer(fsys fs.FS) (*Vocabulary, error) {
f, err := fsys.Open("tokenizer.json")
if err != nil {
panic(err)
return nil, err
}
defer f.Close()
var t Tokenizer
var t tokenizer
if err := json.NewDecoder(f).Decode(&t); err != nil {
return "", nil, nil, err
return nil, err
}
tokens = make([]Token, t.maxID()+1)
var tokens []token
for k, v := range t.Model.Vocab {
tokens[v] = Token{ID: v, Content: k, Special: false, UserDefined: false}
tokens = append(tokens, token{
ID: v,
Content: k,
})
}
for _, v := range t.AddedTokens {
v.UserDefined = true
tokens[v.ID] = v
for _, t := range t.AddedTokens {
t.UserDefined = true
tokens = append(tokens, t)
}
sha256sum := sha256.New()
for _, pt := range t.PreTokenizer.PreTokenizers {
if pt.Type == "Split" && pt.Pattern.Regex != "" {
sha256sum.Write([]byte(pt.Pattern.Regex))
slices.SortFunc(tokens, func(i, j token) int {
return cmp.Compare(i.ID, j.ID)
})
v := Vocabulary{Model: "gpt2"}
for _, t := range tokens {
v.Tokens = append(v.Tokens, t.Content)
v.Scores = append(v.Scores, float32(t.ID))
switch {
case t.Special:
v.Types = append(v.Types, tokenTypeControl)
case t.UserDefined:
v.Types = append(v.Types, tokenTypeUserDefined)
default:
v.Types = append(v.Types, tokenTypeNormal)
}
}
switch digest := fmt.Sprintf("%x", sha256sum.Sum(nil)); digest {
case "d98f9631be1e9607a9848c26c1f9eac1aa9fc21ac6ba82a2fc0741af9780a48f":
pre = "llama-bpe"
case "03df5c5863ad70781dcfdef491ead25140f895fe8010964be0daefe27be32b02":
pre = "deepseek-llm"
case "21cde974d587f0d54dc8d56b183cc1e6239600172035c68fbd6d4b9f8da0576e":
pre = "deepseek-coder"
default:
slog.Warn("unknown pretokenizer, using default", "digest", digest)
pre = "default"
return &v, nil
}
func parseVocabulary(fsys fs.FS) (*Vocabulary, error) {
patterns := []struct {
Pattern string
Func func(fs.FS) (*Vocabulary, error)
}{
{"tokenizer.model", parseSentencePiece},
{"tokenizer.json", parseVocabularyFromTokenizer},
}
return pre, tokens, t.Model.Merges, nil
for _, pattern := range patterns {
if _, err := fs.Stat(fsys, pattern.Pattern); errors.Is(err, os.ErrNotExist) {
continue
} else if err != nil {
return nil, err
}
return pattern.Func(fsys)
}
return nil, errors.New("unknown tensor format")
}
type SpecialVocabulary struct {
Type string
ID int
Content string
AddToken bool
}
func (sv SpecialVocabulary) Key() string {
switch t := sv.Type; t {
case "bos", "eos", "cls", "mask":
return t
case "unk":
return "unknown"
case "sep":
//nolint:misspell // this is an upstream typo
return "seperator"
case "pad":
return "padding"
}
panic("unknown special vocabulary type")
}

83
convert/tokenizer_spm.go Normal file
View File

@@ -0,0 +1,83 @@
package convert
import (
"cmp"
"encoding/json"
"errors"
"fmt"
"io/fs"
"os"
"slices"
"google.golang.org/protobuf/proto"
"github.com/ollama/ollama/convert/sentencepiece"
)
func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
bts, err := fs.ReadFile(fsys, "tokenizer.model")
if err != nil {
return nil, err
}
var spm sentencepiece.ModelProto
if err := proto.Unmarshal(bts, &spm); err != nil {
return nil, err
}
v := Vocabulary{Model: "llama"}
for _, piece := range spm.GetPieces() {
v.Tokens = append(v.Tokens, piece.GetPiece())
v.Scores = append(v.Scores, piece.GetScore())
switch t := piece.GetType(); t {
case sentencepiece.ModelProto_SentencePiece_UNKNOWN,
sentencepiece.ModelProto_SentencePiece_CONTROL,
sentencepiece.ModelProto_SentencePiece_UNUSED,
sentencepiece.ModelProto_SentencePiece_BYTE:
v.Types = append(v.Types, int32(t))
default:
v.Types = append(v.Types, int32(sentencepiece.ModelProto_SentencePiece_NORMAL))
}
}
f, err := fsys.Open("added_tokens.json")
if errors.Is(err, os.ErrNotExist) {
return &v, nil
} else if err != nil {
return nil, err
}
defer f.Close()
var atm map[string]int
if err := json.NewDecoder(f).Decode(&atm); err != nil {
return nil, err
}
type t struct {
id int
content string
}
var ts []t
for content, id := range atm {
ts = append(ts, t{id, content})
}
slices.SortFunc(ts, func(i, j t) int {
return cmp.Compare(i.id, j.id)
})
n := len(v.Tokens)
for i, t := range ts {
if t.id != i+n {
return nil, fmt.Errorf("invalid token id: %d", t.id)
}
v.Tokens = append(v.Tokens, t.content)
v.Scores = append(v.Scores, -1000.0)
v.Types = append(v.Types, tokenTypeUserDefined)
}
return &v, nil
}

View File

@@ -1,287 +0,0 @@
package convert
import (
"encoding/binary"
"encoding/json"
"fmt"
"io"
"log/slog"
"os"
"path/filepath"
"regexp"
"strings"
"github.com/nlpodyssey/gopickle/pytorch"
"github.com/nlpodyssey/gopickle/types"
"github.com/x448/float16"
"github.com/ollama/ollama/llm"
)
type torchWriterTo struct {
t *llm.Tensor
params *Params
bo ByteOrder
storage pytorch.StorageInterface
repacker func(string, []float32, []uint64) ([]float32, error)
}
type TorchFormat struct{}
func (tf *TorchFormat) GetTensors(dirpath string, params *Params) ([]llm.Tensor, error) {
slog.Debug("getting torch tensors")
var files []string
if pt, _ := filepath.Glob(filepath.Join(dirpath, "consolidated*.pth")); len(pt) > 0 {
files = append(files, pt...)
} else if pt, _ := filepath.Glob(filepath.Join(dirpath, "pytorch_model*.pth")); len(pt) > 0 {
files = append(files, pt...)
}
var offset uint64
var tensors []llm.Tensor
for _, fn := range files {
m, err := pytorch.Load(fn)
if err != nil {
slog.Error(fmt.Sprintf("error unpickling: %q", err))
return []llm.Tensor{}, err
}
for _, k := range m.(*types.Dict).Keys() {
if strings.HasSuffix(k.(string), "self_attn.rotary_emb.inv_freq") {
continue
}
t, _ := m.(*types.Dict).Get(k)
tshape := t.(*pytorch.Tensor).Size
var size uint64
var kind uint32
switch len(tshape) {
case 0:
continue
case 1:
// convert to float32
kind = 0
size = uint64(tshape[0] * 4)
case 2:
// convert to float16
kind = 1
size = uint64(tshape[0] * tshape[1] * 2)
}
ggufName, err := tf.GetLayerName(k.(string))
if err != nil {
slog.Error(err.Error())
return nil, err
}
slog.Debug(fmt.Sprintf("'%35s': '%30s' %10d [%#v]", k.(string), ggufName, size, tshape))
shape := []uint64{0, 0, 0, 0}
for i := range tshape {
shape[i] = uint64(tshape[i])
}
tensor := llm.Tensor{
Name: ggufName,
Kind: kind,
Offset: offset, // calculate the offset
Shape: shape,
}
tensor.WriterTo = torchWriterTo{
t: &tensor,
params: params,
bo: params.ByteOrder,
storage: t.(*pytorch.Tensor).Source,
}
tensors = append(tensors, tensor)
offset += size
}
}
return tensors, nil
}
func getAltParams(dirpath string) (*Params, error) {
f, err := os.Open(filepath.Join(dirpath, "params.json"))
if err != nil {
slog.Error("no params.json")
return nil, err
}
defer f.Close()
type TorchParams struct {
HiddenSize int `json:"dim"`
AttentionHeads int `json:"n_heads"`
KeyValHeads int `json:"n_kv_heads"`
HiddenLayers int `json:"n_layers"`
RopeTheta float64 `json:"rope_theta"`
NormEPS float64 `json:"norm_eps"`
}
var tparams TorchParams
d := json.NewDecoder(f)
err = d.Decode(&tparams)
if err != nil {
return nil, err
}
params := &Params{
Architectures: []string{"LlamaForCausalLM"},
HiddenSize: tparams.HiddenSize,
AttentionHeads: tparams.AttentionHeads,
KeyValHeads: tparams.KeyValHeads,
HiddenLayers: tparams.HiddenLayers,
NormEPS: tparams.NormEPS,
}
switch {
case tparams.RopeTheta == 1000000:
// Codellama
params.ContextSize = 16384
case tparams.NormEPS == 1e-06:
// llama2
slog.Debug("Found llama2 - setting context size to 4096")
params.ContextSize = 4096
default:
params.ContextSize = 2048
}
params.ByteOrder = binary.LittleEndian
return params, nil
}
func (m *TorchFormat) GetParams(dirpath string) (*Params, error) {
f, err := os.Open(filepath.Join(dirpath, "config.json"))
if err != nil {
if os.IsNotExist(err) {
// try params.json instead
return getAltParams(dirpath)
} else {
return nil, err
}
}
var params Params
d := json.NewDecoder(f)
err = d.Decode(&params)
if err != nil {
return nil, err
}
params.ByteOrder = binary.LittleEndian
return &params, nil
}
func (m *TorchFormat) GetLayerName(n string) (string, error) {
directMap := map[string]string{
"tok_embeddings.weight": "token_embd.weight",
"output.weight": "output.weight",
"norm.weight": "output_norm.weight",
"rope.freqs": "rope_freqs.weight",
"model.embed_tokens.weight": "token_embd.weight",
"lm_head.weight": "output.weight",
"model.norm.weight": "output_norm.weight",
}
lMap := map[string]string{
"layers.(\\d+).attention_norm.weight": "blk.$1.attn_norm.weight",
"layers.(\\d+).attention_output_norm.weight": "blk.$1.attn_norm.weight",
"layers.(\\d+).feed_forward.w2.weight": "blk.$1.ffn_down.weight",
"layers.(\\d+).feed_forward.w1.weight": "blk.$1.ffn_gate.weight",
"layers.(\\d+).feed_forward.w3.weight": "blk.$1.ffn_up.weight",
"layers.(\\d+).ffn_norm.weight": "blk.$1.ffn_norm.weight",
"layers.(\\d+).attention.wk.weight": "blk.$1.attn_k.weight",
"layers.(\\d+).attention.wo.weight": "blk.$1.attn_output.weight",
"layers.(\\d+).attention.wq.weight": "blk.$1.attn_q.weight",
"layers.(\\d+).attention.wv.weight": "blk.$1.attn_v.weight",
"model.layers.(\\d+).input_layernorm.weight": "blk.$1.attn_norm.weight",
"model.layers.(\\d+).mlp.down_proj.weight": "blk.$1.ffn_down.weight",
"model.layers.(\\d+).mlp.gate_proj.weight": "blk.$1.ffn_gate.weight",
"model.layers.(\\d+).mlp.up_proj.weight": "blk.$1.ffn_up.weight",
"model.layers.(\\d+).post_attention_layernorm.weight": "blk.$1.ffn_norm.weight",
"model.layers.(\\d+).self_attn.k_proj.weight": "blk.$1.attn_k.weight",
"model.layers.(\\d+).self_attn.o_proj.weight": "blk.$1.attn_output.weight",
"model.layers.(\\d+).self_attn.q_proj.weight": "blk.$1.attn_q.weight",
"model.layers.(\\d+).self_attn.v_proj.weight": "blk.$1.attn_v.weight",
}
v, ok := directMap[n]
if ok {
return v, nil
}
// quick hack to rename the layers to gguf format
for k, v := range lMap {
re := regexp.MustCompile(k)
newName := re.ReplaceAllString(n, v)
if newName != n {
return newName, nil
}
}
return "", fmt.Errorf("couldn't find a layer name for '%s'", n)
}
func (r torchWriterTo) WriteTo(w io.Writer) (n int64, err error) {
var f32s []float32
switch s := r.storage.(type) {
case *pytorch.FloatStorage:
f32s = s.Data
case *pytorch.HalfStorage:
f32s = s.Data
case *pytorch.BFloat16Storage:
f32s = s.Data
default:
return 0, fmt.Errorf("unknown data type: %T", s)
}
if r.repacker != nil {
f32s, err = r.repacker(r.t.Name, f32s, r.t.Shape)
if err != nil {
return 0, err
}
}
switch r.t.Kind {
case 0:
return 0, binary.Write(w, r.bo, f32s)
case 1:
f16s := make([]uint16, len(f32s))
for i := range f32s {
f16s[i] = float16.Fromfloat32(f32s[i]).Bits()
}
return 0, binary.Write(w, r.bo, f16s)
default:
return 0, fmt.Errorf("unknown storage type: %d", r.t.Kind)
}
}
func (m *TorchFormat) GetModelArch(name, dirPath string, params *Params) (ModelArch, error) {
switch len(params.Architectures) {
case 0:
return nil, fmt.Errorf("No architecture specified to convert")
case 1:
switch params.Architectures[0] {
case "LlamaForCausalLM":
return &LlamaModel{
ModelData{
Name: name,
Path: dirPath,
Params: params,
Format: m,
},
}, nil
default:
return nil, fmt.Errorf("Models based on '%s' are not yet supported", params.Architectures[0])
}
}
return nil, fmt.Errorf("Unknown error")
}

View File

@@ -40,6 +40,7 @@ Generate a response for a given prompt with a provided model. This is a streamin
- `model`: (required) the [model name](#model-names)
- `prompt`: the prompt to generate a response for
- `suffix`: the text after the model response
- `images`: (optional) a list of base64-encoded images (for multimodal models such as `llava`)
Advanced parameters (optional):
@@ -57,7 +58,8 @@ Advanced parameters (optional):
Enable JSON mode by setting the `format` parameter to `json`. This will structure the response as a valid JSON object. See the JSON mode [example](#request-json-mode) below.
> Note: it's important to instruct the model to use JSON in the `prompt`. Otherwise, the model may generate large amounts whitespace.
> [!IMPORTANT]
> It's important to instruct the model to use JSON in the `prompt`. Otherwise, the model may generate large amounts whitespace.
### Examples
@@ -148,8 +150,44 @@ If `stream` is set to `false`, the response will be a single JSON object:
}
```
#### Request (with suffix)
##### Request
```shell
curl http://localhost:11434/api/generate -d '{
"model": "codellama:code",
"prompt": "def compute_gcd(a, b):",
"suffix": " return result",
"options": {
"temperature": 0
},
"stream": false
}'
```
##### Response
```json
{
"model": "codellama:code",
"created_at": "2024-07-22T20:47:51.147561Z",
"response": "\n if a == 0:\n return b\n else:\n return compute_gcd(b % a, a)\n\ndef compute_lcm(a, b):\n result = (a * b) / compute_gcd(a, b)\n",
"done": true,
"done_reason": "stop",
"context": [...],
"total_duration": 1162761250,
"load_duration": 6683708,
"prompt_eval_count": 17,
"prompt_eval_duration": 201222000,
"eval_count": 63,
"eval_duration": 953997000
}
```
#### Request (JSON mode)
> [!IMPORTANT]
> When `format` is set to `json`, the output will always be a well-formed JSON object. It's important to also instruct the model to respond in JSON.
##### Request
@@ -298,6 +336,7 @@ curl http://localhost:11434/api/generate -d '{
"num_predict": 100,
"top_k": 20,
"top_p": 0.9,
"min_p": 0.0,
"tfs_z": 0.5,
"typical_p": 0.7,
"repeat_last_n": 33,
@@ -380,12 +419,14 @@ Generate the next message in a chat with a provided model. This is a streaming e
- `model`: (required) the [model name](#model-names)
- `messages`: the messages of the chat, this can be used to keep a chat memory
- `tools`: tools for the model to use if supported. Requires `stream` to be set to `false`
The `message` object has the following fields:
- `role`: the role of the message, either `system`, `user` or `assistant`
- `role`: the role of the message, either `system`, `user`, `assistant`, or `tool`
- `content`: the content of the message
- `images` (optional): a list of images to include in the message (for multimodal models such as `llava`)
- `tool_calls` (optional): a list of tools the model wants to use
Advanced parameters (optional):
@@ -546,7 +587,7 @@ Final response:
##### Request
Send a chat message with a conversation history.
Send a chat message with images. The images should be provided as an array, with the individual images encoded in Base64.
```shell
curl http://localhost:11434/api/chat -d '{
@@ -622,6 +663,79 @@ curl http://localhost:11434/api/chat -d '{
}
```
#### Chat request (with tools)
##### Request
```
curl http://localhost:11434/api/chat -d '{
"model": "llama3.1",
"messages": [
{
"role": "user",
"content": "What is the weather today in Paris?"
}
],
"stream": false,
"tools": [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather for a location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The location to get the weather for, e.g. San Francisco, CA"
},
"format": {
"type": "string",
"description": "The format to return the weather in, e.g. 'celsius' or 'fahrenheit'",
"enum": ["celsius", "fahrenheit"]
}
},
"required": ["location", "format"]
}
}
}
]
}'
```
##### Response
```json
{
"model": "llama3.1",
"created_at": "2024-07-22T20:33:28.123648Z",
"message": {
"role": "assistant",
"content": "",
"tool_calls": [
{
"function": {
"name": "get_current_weather",
"arguments": {
"format": "celsius",
"location": "Paris, FR"
}
}
}
]
},
"done_reason": "stop",
"done": true,
"total_duration": 885095291,
"load_duration": 3753500,
"prompt_eval_count": 122,
"prompt_eval_duration": 328493000,
"eval_count": 33,
"eval_duration": 552222000
}
```
## Create a Model
```shell
@@ -1026,7 +1140,7 @@ If `stream` is set to `false`, then the response is a single JSON object:
## Generate Embeddings
```shell
POST /api/embeddings
POST /api/embed
```
Generate embeddings from a model
@@ -1034,10 +1148,11 @@ Generate embeddings from a model
### Parameters
- `model`: name of model to generate embeddings from
- `prompt`: text to generate embeddings for
- `input`: text or list of text to generate embeddings for
Advanced parameters:
- `truncate`: truncates the end of each input to fit within context length. Returns error if `false` and context length is exceeded. Defaults to `true`
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
@@ -1046,9 +1161,9 @@ Advanced parameters:
#### Request
```shell
curl http://localhost:11434/api/embeddings -d '{
curl http://localhost:11434/api/embed -d '{
"model": "all-minilm",
"prompt": "Here is an article about llamas..."
"input": "Why is the sky blue?"
}'
```
@@ -1056,10 +1171,38 @@ curl http://localhost:11434/api/embeddings -d '{
```json
{
"embedding": [
0.5670403838157654, 0.009260174818336964, 0.23178744316101074, -0.2916173040866852, -0.8924556970596313,
0.8785552978515625, -0.34576427936553955, 0.5742510557174683, -0.04222835972905159, -0.137906014919281
]
"model": "all-minilm",
"embeddings": [[
0.010071029, -0.0017594862, 0.05007221, 0.04692972, 0.054916814,
0.008599704, 0.105441414, -0.025878139, 0.12958129, 0.031952348
]],
"total_duration": 14143917,
"load_duration": 1019500,
"prompt_eval_count": 8
}
```
#### Request (Multiple input)
```shell
curl http://localhost:11434/api/embed -d '{
"model": "all-minilm",
"input": ["Why is the sky blue?", "Why is the grass green?"]
}'
```
#### Response
```json
{
"model": "all-minilm",
"embeddings": [[
0.010071029, -0.0017594862, 0.05007221, 0.04692972, 0.054916814,
0.008599704, 0.105441414, -0.025878139, 0.12958129, 0.031952348
],[
-0.0098027075, 0.06042469, 0.025257962, -0.006364387, 0.07272725,
0.017194884, 0.09032035, -0.051705178, 0.09951512, 0.09072481
]]
}
```
@@ -1106,3 +1249,45 @@ A single JSON object will be returned.
]
}
```
## Generate Embedding
> Note: this endpoint has been superseded by `/api/embed`
```shell
POST /api/embeddings
```
Generate embeddings from a model
### Parameters
- `model`: name of model to generate embeddings from
- `prompt`: text to generate embeddings for
Advanced parameters:
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
### Examples
#### Request
```shell
curl http://localhost:11434/api/embeddings -d '{
"model": "all-minilm",
"prompt": "Here is an article about llamas..."
}'
```
#### Response
```json
{
"embedding": [
0.5670403838157654, 0.009260174818336964, 0.23178744316101074, -0.2916173040866852, -0.8924556970596313,
0.8785552978515625, -0.34576427936553955, 0.5742510557174683, -0.04222835972905159, -0.137906014919281
]
}
```

View File

@@ -1,71 +1,71 @@
# Ollama Docker image
### CPU only
```bash
docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
```
### Nvidia GPU
Install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html#installation).
#### Install with Apt
1. Configure the repository
```bash
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey \
| sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg
curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list \
| sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' \
| sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
sudo apt-get update
```
2. Install the NVIDIA Container Toolkit packages
```bash
sudo apt-get install -y nvidia-container-toolkit
```
#### Install with Yum or Dnf
1. Configure the repository
```bash
curl -s -L https://nvidia.github.io/libnvidia-container/stable/rpm/nvidia-container-toolkit.repo \
| sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo
```
2. Install the NVIDIA Container Toolkit packages
```bash
sudo yum install -y nvidia-container-toolkit
```
#### Configure Docker to use Nvidia driver
```
sudo nvidia-ctk runtime configure --runtime=docker
sudo systemctl restart docker
```
#### Start the container
```bash
docker run -d --gpus=all -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
```
### AMD GPU
To run Ollama using Docker with AMD GPUs, use the `rocm` tag and the following command:
```
docker run -d --device /dev/kfd --device /dev/dri -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama:rocm
```
### Run model locally
Now you can run a model:
```
docker exec -it ollama ollama run llama3
```
### Try different models
More models can be found on the [Ollama library](https://ollama.com/library).
# Ollama Docker image
### CPU only
```bash
docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
```
### Nvidia GPU
Install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html#installation).
#### Install with Apt
1. Configure the repository
```bash
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey \
| sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg
curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list \
| sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' \
| sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
sudo apt-get update
```
2. Install the NVIDIA Container Toolkit packages
```bash
sudo apt-get install -y nvidia-container-toolkit
```
#### Install with Yum or Dnf
1. Configure the repository
```bash
curl -s -L https://nvidia.github.io/libnvidia-container/stable/rpm/nvidia-container-toolkit.repo \
| sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo
```
2. Install the NVIDIA Container Toolkit packages
```bash
sudo yum install -y nvidia-container-toolkit
```
#### Configure Docker to use Nvidia driver
```
sudo nvidia-ctk runtime configure --runtime=docker
sudo systemctl restart docker
```
#### Start the container
```bash
docker run -d --gpus=all -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
```
### AMD GPU
To run Ollama using Docker with AMD GPUs, use the `rocm` tag and the following command:
```
docker run -d --device /dev/kfd --device /dev/dri -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama:rocm
```
### Run model locally
Now you can run a model:
```
docker exec -it ollama ollama run llama3.1
```
### Try different models
More models can be found on the [Ollama library](https://ollama.com/library).

View File

@@ -227,7 +227,7 @@ curl http://localhost:11434/api/chat -d '{"model": "mistral"}'
To preload a model using the CLI, use the command:
```shell
ollama run llama3 ""
ollama run llama3.1 ""
```
## How do I keep a model loaded in memory or make it unload immediately?
@@ -272,4 +272,8 @@ The following server settings may be used to adjust how Ollama handles concurren
- `OLLAMA_NUM_PARALLEL` - The maximum number of parallel requests each model will process at the same time. The default will auto-select either 4 or 1 based on available memory.
- `OLLAMA_MAX_QUEUE` - The maximum number of requests Ollama will queue when busy before rejecting additional requests. The default is 512
Note: Windows with Radeon GPUs currently default to 1 model maximum due to limitations in ROCm v5.7 for available VRAM reporting. Once ROCm v6.2 is available, Windows Radeon will follow the defaults above. You may enable concurrent model loads on Radeon on Windows, but ensure you don't load more models than will fit into your GPUs VRAM.
Note: Windows with Radeon GPUs currently default to 1 model maximum due to limitations in ROCm v5.7 for available VRAM reporting. Once ROCm v6.2 is available, Windows Radeon will follow the defaults above. You may enable concurrent model loads on Radeon on Windows, but ensure you don't load more models than will fit into your GPUs VRAM.
## How does Ollama load models on multiple GPUs?
Installing multiple GPUs of the same brand can be a great way to increase your available VRAM to load larger models. When you load a new model, Ollama evaluates the required VRAM for the model against what is currently available. If the model will entirely fit on any single GPU, Ollama will load the model on that GPU. This typically provides the best performance as it reduces the amount of data transfering across the PCI bus during inference. If the model does not fit entirely on one GPU, then it will be spread across all the available GPUs.

View File

@@ -46,13 +46,24 @@ sudo modprobe nvidia_uvm`
## AMD Radeon
Ollama supports the following AMD GPUs:
### Linux Support
| Family | Cards and accelerators |
| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------- |
| AMD Radeon RX | `7900 XTX` `7900 XT` `7900 GRE` `7800 XT` `7700 XT` `7600 XT` `7600` `6950 XT` `6900 XTX` `6900XT` `6800 XT` `6800` `Vega 64` `Vega 56` |
| AMD Radeon PRO | `W7900` `W7800` `W7700` `W7600` `W7500` `W6900X` `W6800X Duo` `W6800X` `W6800` `V620` `V420` `V340` `V320` `Vega II Duo` `Vega II` `VII` `SSG` |
| AMD Instinct | `MI300X` `MI300A` `MI300` `MI250X` `MI250` `MI210` `MI200` `MI100` `MI60` `MI50` |
### Overrides
### Windows Support
With ROCm v6.1, the following GPUs are supported on Windows.
| Family | Cards and accelerators |
| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------- |
| AMD Radeon RX | `7900 XTX` `7900 XT` `7900 GRE` `7800 XT` `7700 XT` `7600 XT` `7600` `6950 XT` `6900 XTX` `6900XT` `6800 XT` `6800` |
| AMD Radeon PRO | `W7900` `W7800` `W7700` `W7600` `W7500` `W6900X` `W6800X Duo` `W6800X` `W6800` `V620` |
### Overrides on Linux
Ollama leverages the AMD ROCm library, which does not support all AMD GPUs. In
some cases you can force the system to try to use a similar LLVM target that is
close. For example The Radeon RX 5400 is `gfx1034` (also known as 10.3.4)
@@ -63,7 +74,7 @@ would set `HSA_OVERRIDE_GFX_VERSION="10.3.0"` as an environment variable for the
server. If you have an unsupported AMD GPU you can experiment using the list of
supported types below.
At this time, the known supported GPU types are the following LLVM Targets.
At this time, the known supported GPU types on linux are the following LLVM Targets.
This table shows some example GPUs that map to these LLVM targets:
| **LLVM Target** | **An Example GPU** |
|-----------------|---------------------|

View File

@@ -16,7 +16,9 @@ If the model being imported is one of these architectures, it can be imported di
- LlamaForCausalLM
- MistralForCausalLM
- MixtralForCausalLM
- GemmaForCausalLM
- Phi3ForCausalLM
```dockerfile
FROM /path/to/safetensors/directory

View File

@@ -20,13 +20,12 @@ GPU.
## Manual install
### Download the `ollama` binary
### Download `ollama`
Ollama is distributed as a self-contained binary. Download it to a directory in your PATH:
Download and extract the Linux package:
```bash
sudo curl -L https://ollama.com/download/ollama-linux-amd64 -o /usr/bin/ollama
sudo chmod +x /usr/bin/ollama
curl -fsSL https://ollama.com/download/ollama-linux-amd64.tgz | sudo tar zx -C /usr
```
### Adding Ollama as a startup service (recommended)
@@ -96,8 +95,7 @@ curl -fsSL https://ollama.com/install.sh | sh
Or by downloading the ollama binary:
```bash
sudo curl -L https://ollama.com/download/ollama-linux-amd64 -o /usr/bin/ollama
sudo chmod +x /usr/bin/ollama
curl -fsSL https://ollama.com/download/ollama-linux-amd64.tgz | sudo tar zx -C /usr
```
## Installing specific versions

View File

@@ -1,6 +1,7 @@
# Ollama Model File
> Note: `Modelfile` syntax is in development
> [!NOTE]
> `Modelfile` syntax is in development
A model file is the blueprint to create and share models with Ollama.
@@ -140,6 +141,7 @@ PARAMETER <parameter> <parametervalue>
| num_predict | Maximum number of tokens to predict when generating text. (Default: 128, -1 = infinite generation, -2 = fill context) | int | num_predict 42 |
| top_k | Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40) | int | top_k 40 |
| top_p | Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9) | float | top_p 0.9 |
| min_p | Alternative to the top_p, and aims to ensure a balance of quality and variety. The parameter *p* represents the minimum probability for a token to be considered, relative to the probability of the most likely token. For example, with *p*=0.05 and the most likely token having a probability of 0.9, logits with a value less than 0.045 are filtered out. (Default: 0.0) | float | min_p 0.05 |
### TEMPLATE

View File

@@ -27,6 +27,37 @@ chat_completion = client.chat.completions.create(
],
model='llama3',
)
response = client.chat.completions.create(
model="llava",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": "iVBORw0KGgoAAAANSUhEUgAAAG0AAABmCAYAAADBPx+VAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAA3VSURBVHgB7Z27r0zdG8fX743i1bi1ikMoFMQloXRpKFFIqI7LH4BEQ+NWIkjQuSWCRIEoULk0gsK1kCBI0IhrQVT7tz/7zZo888yz1r7MnDl7z5xvsjkzs2fP3uu71nNfa7lkAsm7d++Sffv2JbNmzUqcc8m0adOSzZs3Z+/XES4ZckAWJEGWPiCxjsQNLWmQsWjRIpMseaxcuTKpG/7HP27I8P79e7dq1ars/yL4/v27S0ejqwv+cUOGEGGpKHR37tzJCEpHV9tnT58+dXXCJDdECBE2Ojrqjh071hpNECjx4cMHVycM1Uhbv359B2F79+51586daxN/+pyRkRFXKyRDAqxEp4yMlDDzXG1NPnnyJKkThoK0VFd1ELZu3TrzXKxKfW7dMBQ6bcuWLW2v0VlHjx41z717927ba22U9APcw7Nnz1oGEPeL3m3p2mTAYYnFmMOMXybPPXv2bNIPpFZr1NHn4HMw0KRBjg9NuRw95s8PEcz/6DZELQd/09C9QGq5RsmSRybqkwHGjh07OsJSsYYm3ijPpyHzoiacg35MLdDSIS/O1yM778jOTwYUkKNHWUzUWaOsylE00MyI0fcnOwIdjvtNdW/HZwNLGg+sR1kMepSNJXmIwxBZiG8tDTpEZzKg0GItNsosY8USkxDhD0Rinuiko2gfL/RbiD2LZAjU9zKQJj8RDR0vJBR1/Phx9+PHj9Z7REF4nTZkxzX4LCXHrV271qXkBAPGfP/atWvu/PnzHe4C97F48eIsRLZ9+3a3f/9+87dwP1JxaF7/3r17ba+5l4EcaVo0lj3SBq5kGTJSQmLWMjgYNei2GPT1MuMqGTDEFHzeQSP2wi/jGnkmPJ/nhccs44jvDAxpVcxnq0F6eT8h4ni/iIWpR5lPyA6ETkNXoSukvpJAD3AsXLiwpZs49+fPn5ke4j10TqYvegSfn0OnafC+Tv9ooA/JPkgQysqQNBzagXY55nO/oa1F7qvIPWkRL12WRpMWUvpVDYmxAPehxWSe8ZEXL20sadYIozfmNch4QJPAfeJgW3rNsnzphBKNJM2KKODo1rVOMRYik5ETy3ix4qWNI81qAAirizgMIc+yhTytx0JWZuNI03qsrgWlGtwjoS9XwgUhWGyhUaRZZQNNIEwCiXD16tXcAHUs79co0vSD8rrJCIW98pzvxpAWyyo3HYwqS0+H0BjStClcZJT5coMm6D2LOF8TolGJtK9fvyZpyiC5ePFi9nc/oJU4eiEP0jVoAnHa9wyJycITMP78+eMeP37sXrx44d6+fdt6f82aNdkx1pg9e3Zb5W+RSRE+n+VjksQWifvVaTKFhn5O8my63K8Qabdv33b379/PiAP//vuvW7BggZszZ072/+TJk91YgkafPn166zXB1rQHFvouAWHq9z3SEevSUerqCn2/dDCeta2jxYbr69evk4MHDyY7d+7MjhMnTiTPnz9Pfv/+nfQT2ggpO2dMF8cghuoM7Ygj5iWCqRlGFml0QC/ftGmTmzt3rmsaKDsgBSPh0/8yPeLLBihLkOKJc0jp8H8vUzcxIA1k6QJ/c78tWEyj5P3o4u9+jywNPdJi5rAH9x0KHcl4Hg570eQp3+vHXGyrmEeigzQsQsjavXt38ujRo44LQuDDhw+TW7duRS1HGgMxhNXHgflaNTOsHyKvHK5Ijo2jbFjJBQK9YwFd6RVMzfgRBmEfP37suBBm/p49e1qjEP2mwTViNRo0VJWH1deMXcNK08uUjVUu7s/zRaL+oLNxz1bpANco4npUgX4G2eFbpDFyQoQxojBCpEGSytmOH8qrH5Q9vuzD6ofQylkCUmh8DBAr+q8JCyVNtWQIidKQE9wNtLSQnS4jDSsxNHogzFuQBw4cyM61UKVsjfr3ooBkPSqqQHesUPWVtzi9/vQi1T+rJj7WiTz4Pt/l3LxUkr5P2VYZaZ4URpsE+st/dujQoaBBYokbrz/8TJNQYLSonrPS9kUaSkPeZyj1AWSj+d+VBoy1pIWVNed8P0Ll/ee5HdGRhrHhR5GGN0r4LGZBaj8oFDJitBTJzIZgFcmU0Y8ytWMZMzJOaXUSrUs5RxKnrxmbb5YXO9VGUhtpXldhEUogFr3IzIsvlpmdosVcGVGXFWp2oU9kLFL3dEkSz6NHEY1sjSRdIuDFWEhd8KxFqsRi1uM/nz9/zpxnwlESONdg6dKlbsaMGS4EHFHtjFIDHwKOo46l4TxSuxgDzi+rE2jg+BaFruOX4HXa0Nnf1lwAPufZeF8/r6zD97WK2qFnGjBxTw5qNGPxT+5T/r7/7RawFC3j4vTp09koCxkeHjqbHJqArmH5UrFKKksnxrK7FuRIs8STfBZv+luugXZ2pR/pP9Ois4z+TiMzUUkUjD0iEi1fzX8GmXyuxUBRcaUfykV0YZnlJGKQpOiGB76x5GeWkWWJc3mOrK6S7xdND+W5N6XyaRgtWJFe13GkaZnKOsYqGdOVVVbGupsyA/l7emTLHi7vwTdirNEt0qxnzAvBFcnQF16xh/TMpUuXHDowhlA9vQVraQhkudRdzOnK+04ZSP3DUhVSP61YsaLtd/ks7ZgtPcXqPqEafHkdqa84X6aCeL7YWlv6edGFHb+ZFICPlljHhg0bKuk0CSvVznWsotRu433alNdFrqG45ejoaPCaUkWERpLXjzFL2Rpllp7PJU2a/v7Ab8N05/9t27Z16KUqoFGsxnI9EosS2niSYg9SpU6B4JgTrvVW1flt1sT+0ADIJU2maXzcUTraGCRaL1Wp9rUMk16PMom8QhruxzvZIegJjFU7LLCePfS8uaQdPny4jTTL0dbee5mYokQsXTIWNY46kuMbnt8Kmec+LGWtOVIl9cT1rCB0V8WqkjAsRwta93TbwNYoGKsUSChN44lgBNCoHLHzquYKrU6qZ8lolCIN0Rh6cP0Q3U6I6IXILYOQI513hJaSKAorFpuHXJNfVlpRtmYBk1Su1obZr5dnKAO+L10Hrj3WZW+E3qh6IszE37F6EB+68mGpvKm4eb9bFrlzrok7fvr0Kfv727dvWRmdVTJHw0qiiCUSZ6wCK+7XL/AcsgNyL74DQQ730sv78Su7+t/A36MdY0sW5o40ahslXr58aZ5HtZB8GH64m9EmMZ7FpYw4T6QnrZfgenrhFxaSiSGXtPnz57e9TkNZLvTjeqhr734CNtrK41L40sUQckmj1lGKQ0rC37x544r8eNXRpnVE3ZZY7zXo8NomiO0ZUCj2uHz58rbXoZ6gc0uA+F6ZeKS/jhRDUq8MKrTho9fEkihMmhxtBI1DxKFY9XLpVcSkfoi8JGnToZO5sU5aiDQIW716ddt7ZLYtMQlhECdBGXZZMWldY5BHm5xgAroWj4C0hbYkSc/jBmggIrXJWlZM6pSETsEPGqZOndr2uuuR5rF169a2HoHPdurUKZM4CO1WTPqaDaAd+GFGKdIQkxAn9RuEWcTRyN2KSUgiSgF5aWzPTeA/lN5rZubMmR2bE4SIC4nJoltgAV/dVefZm72AtctUCJU2CMJ327hxY9t7EHbkyJFseq+EJSY16RPo3Dkq1kkr7+q0bNmyDuLQcZBEPYmHVdOBiJyIlrRDq41YPWfXOxUysi5fvtyaj+2BpcnsUV/oSoEMOk2CQGlr4ckhBwaetBhjCwH0ZHtJROPJkyc7UjcYLDjmrH7ADTEBXFfOYmB0k9oYBOjJ8b4aOYSe7QkKcYhFlq3QYLQhSidNmtS2RATwy8YOM3EQJsUjKiaWZ+vZToUQgzhkHXudb/PW5YMHD9yZM2faPsMwoc7RciYJXbGuBqJ1UIGKKLv915jsvgtJxCZDubdXr165mzdvtr1Hz5LONA8jrUwKPqsmVesKa49S3Q4WxmRPUEYdTjgiUcfUwLx589ySJUva3oMkP6IYddq6HMS4o55xBJBUeRjzfa4Zdeg56QZ43LhxoyPo7Lf1kNt7oO8wWAbNwaYjIv5lhyS7kRf96dvm5Jah8vfvX3flyhX35cuX6HfzFHOToS1H4BenCaHvO8pr8iDuwoUL7tevX+b5ZdbBair0xkFIlFDlW4ZknEClsp/TzXyAKVOmmHWFVSbDNw1l1+4f90U6IY/q4V27dpnE9bJ+v87QEydjqx/UamVVPRG+mwkNTYN+9tjkwzEx+atCm/X9WvWtDtAb68Wy9LXa1UmvCDDIpPkyOQ5ZwSzJ4jMrvFcr0rSjOUh+GcT4LSg5ugkW1Io0/SCDQBojh0hPlaJdah+tkVYrnTZowP8iq1F1TgMBBauufyB33x1v+NWFYmT5KmppgHC+NkAgbmRkpD3yn9QIseXymoTQFGQmIOKTxiZIWpvAatenVqRVXf2nTrAWMsPnKrMZHz6bJq5jvce6QK8J1cQNgKxlJapMPdZSR64/UivS9NztpkVEdKcrs5alhhWP9NeqlfWopzhZScI6QxseegZRGeg5a8C3Re1Mfl1ScP36ddcUaMuv24iOJtz7sbUjTS4qBvKmstYJoUauiuD3k5qhyr7QdUHMeCgLa1Ear9NquemdXgmum4fvJ6w1lqsuDhNrg1qSpleJK7K3TF0Q2jSd94uSZ60kK1e3qyVpQK6PVWXp2/FC3mp6jBhKKOiY2h3gtUV64TWM6wDETRPLDfSakXmH3w8g9Jlug8ZtTt4kVF0kLUYYmCCtD/DrQ5YhMGbA9L3ucdjh0y8kOHW5gU/VEEmJTcL4Pz/f7mgoAbYkAAAAAElFTkSuQmCC",
},
],
}
],
max_tokens=300,
)
completion = client.completions.create(
model="llama3",
prompt="Say this is a test",
)
list_completion = client.models.list()
model = client.models.retrieve("llama3")
embeddings = client.embeddings.create(
model="all-minilm",
input=["why is the sky blue?", "why is the grass green?"],
)
```
### OpenAI JavaScript library
@@ -42,14 +73,44 @@ const openai = new OpenAI({
})
const chatCompletion = await openai.chat.completions.create({
messages: [{ role: 'user', content: 'Say this is a test' }],
model: 'llama3',
messages: [{ role: 'user', content: 'Say this is a test' }],
model: 'llama3',
})
const response = await openai.chat.completions.create({
model: "llava",
messages: [
{
role: "user",
content: [
{ type: "text", text: "What's in this image?" },
{
type: "image_url",
image_url: "iVBORw0KGgoAAAANSUhEUgAAAG0AAABmCAYAAADBPx+VAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAA3VSURBVHgB7Z27r0zdG8fX743i1bi1ikMoFMQloXRpKFFIqI7LH4BEQ+NWIkjQuSWCRIEoULk0gsK1kCBI0IhrQVT7tz/7zZo888yz1r7MnDl7z5xvsjkzs2fP3uu71nNfa7lkAsm7d++Sffv2JbNmzUqcc8m0adOSzZs3Z+/XES4ZckAWJEGWPiCxjsQNLWmQsWjRIpMseaxcuTKpG/7HP27I8P79e7dq1ars/yL4/v27S0ejqwv+cUOGEGGpKHR37tzJCEpHV9tnT58+dXXCJDdECBE2Ojrqjh071hpNECjx4cMHVycM1Uhbv359B2F79+51586daxN/+pyRkRFXKyRDAqxEp4yMlDDzXG1NPnnyJKkThoK0VFd1ELZu3TrzXKxKfW7dMBQ6bcuWLW2v0VlHjx41z717927ba22U9APcw7Nnz1oGEPeL3m3p2mTAYYnFmMOMXybPPXv2bNIPpFZr1NHn4HMw0KRBjg9NuRw95s8PEcz/6DZELQd/09C9QGq5RsmSRybqkwHGjh07OsJSsYYm3ijPpyHzoiacg35MLdDSIS/O1yM778jOTwYUkKNHWUzUWaOsylE00MyI0fcnOwIdjvtNdW/HZwNLGg+sR1kMepSNJXmIwxBZiG8tDTpEZzKg0GItNsosY8USkxDhD0Rinuiko2gfL/RbiD2LZAjU9zKQJj8RDR0vJBR1/Phx9+PHj9Z7REF4nTZkxzX4LCXHrV271qXkBAPGfP/atWvu/PnzHe4C97F48eIsRLZ9+3a3f/9+87dwP1JxaF7/3r17ba+5l4EcaVo0lj3SBq5kGTJSQmLWMjgYNei2GPT1MuMqGTDEFHzeQSP2wi/jGnkmPJ/nhccs44jvDAxpVcxnq0F6eT8h4ni/iIWpR5lPyA6ETkNXoSukvpJAD3AsXLiwpZs49+fPn5ke4j10TqYvegSfn0OnafC+Tv9ooA/JPkgQysqQNBzagXY55nO/oa1F7qvIPWkRL12WRpMWUvpVDYmxAPehxWSe8ZEXL20sadYIozfmNch4QJPAfeJgW3rNsnzphBKNJM2KKODo1rVOMRYik5ETy3ix4qWNI81qAAirizgMIc+yhTytx0JWZuNI03qsrgWlGtwjoS9XwgUhWGyhUaRZZQNNIEwCiXD16tXcAHUs79co0vSD8rrJCIW98pzvxpAWyyo3HYwqS0+H0BjStClcZJT5coMm6D2LOF8TolGJtK9fvyZpyiC5ePFi9nc/oJU4eiEP0jVoAnHa9wyJycITMP78+eMeP37sXrx44d6+fdt6f82aNdkx1pg9e3Zb5W+RSRE+n+VjksQWifvVaTKFhn5O8my63K8Qabdv33b379/PiAP//vuvW7BggZszZ072/+TJk91YgkafPn166zXB1rQHFvouAWHq9z3SEevSUerqCn2/dDCeta2jxYbr69evk4MHDyY7d+7MjhMnTiTPnz9Pfv/+nfQT2ggpO2dMF8cghuoM7Ygj5iWCqRlGFml0QC/ftGmTmzt3rmsaKDsgBSPh0/8yPeLLBihLkOKJc0jp8H8vUzcxIA1k6QJ/c78tWEyj5P3o4u9+jywNPdJi5rAH9x0KHcl4Hg570eQp3+vHXGyrmEeigzQsQsjavXt38ujRo44LQuDDhw+TW7duRS1HGgMxhNXHgflaNTOsHyKvHK5Ijo2jbFjJBQK9YwFd6RVMzfgRBmEfP37suBBm/p49e1qjEP2mwTViNRo0VJWH1deMXcNK08uUjVUu7s/zRaL+oLNxz1bpANco4npUgX4G2eFbpDFyQoQxojBCpEGSytmOH8qrH5Q9vuzD6ofQylkCUmh8DBAr+q8JCyVNtWQIidKQE9wNtLSQnS4jDSsxNHogzFuQBw4cyM61UKVsjfr3ooBkPSqqQHesUPWVtzi9/vQi1T+rJj7WiTz4Pt/l3LxUkr5P2VYZaZ4URpsE+st/dujQoaBBYokbrz/8TJNQYLSonrPS9kUaSkPeZyj1AWSj+d+VBoy1pIWVNed8P0Ll/ee5HdGRhrHhR5GGN0r4LGZBaj8oFDJitBTJzIZgFcmU0Y8ytWMZMzJOaXUSrUs5RxKnrxmbb5YXO9VGUhtpXldhEUogFr3IzIsvlpmdosVcGVGXFWp2oU9kLFL3dEkSz6NHEY1sjSRdIuDFWEhd8KxFqsRi1uM/nz9/zpxnwlESONdg6dKlbsaMGS4EHFHtjFIDHwKOo46l4TxSuxgDzi+rE2jg+BaFruOX4HXa0Nnf1lwAPufZeF8/r6zD97WK2qFnGjBxTw5qNGPxT+5T/r7/7RawFC3j4vTp09koCxkeHjqbHJqArmH5UrFKKksnxrK7FuRIs8STfBZv+luugXZ2pR/pP9Ois4z+TiMzUUkUjD0iEi1fzX8GmXyuxUBRcaUfykV0YZnlJGKQpOiGB76x5GeWkWWJc3mOrK6S7xdND+W5N6XyaRgtWJFe13GkaZnKOsYqGdOVVVbGupsyA/l7emTLHi7vwTdirNEt0qxnzAvBFcnQF16xh/TMpUuXHDowhlA9vQVraQhkudRdzOnK+04ZSP3DUhVSP61YsaLtd/ks7ZgtPcXqPqEafHkdqa84X6aCeL7YWlv6edGFHb+ZFICPlljHhg0bKuk0CSvVznWsotRu433alNdFrqG45ejoaPCaUkWERpLXjzFL2Rpllp7PJU2a/v7Ab8N05/9t27Z16KUqoFGsxnI9EosS2niSYg9SpU6B4JgTrvVW1flt1sT+0ADIJU2maXzcUTraGCRaL1Wp9rUMk16PMom8QhruxzvZIegJjFU7LLCePfS8uaQdPny4jTTL0dbee5mYokQsXTIWNY46kuMbnt8Kmec+LGWtOVIl9cT1rCB0V8WqkjAsRwta93TbwNYoGKsUSChN44lgBNCoHLHzquYKrU6qZ8lolCIN0Rh6cP0Q3U6I6IXILYOQI513hJaSKAorFpuHXJNfVlpRtmYBk1Su1obZr5dnKAO+L10Hrj3WZW+E3qh6IszE37F6EB+68mGpvKm4eb9bFrlzrok7fvr0Kfv727dvWRmdVTJHw0qiiCUSZ6wCK+7XL/AcsgNyL74DQQ730sv78Su7+t/A36MdY0sW5o40ahslXr58aZ5HtZB8GH64m9EmMZ7FpYw4T6QnrZfgenrhFxaSiSGXtPnz57e9TkNZLvTjeqhr734CNtrK41L40sUQckmj1lGKQ0rC37x544r8eNXRpnVE3ZZY7zXo8NomiO0ZUCj2uHz58rbXoZ6gc0uA+F6ZeKS/jhRDUq8MKrTho9fEkihMmhxtBI1DxKFY9XLpVcSkfoi8JGnToZO5sU5aiDQIW716ddt7ZLYtMQlhECdBGXZZMWldY5BHm5xgAroWj4C0hbYkSc/jBmggIrXJWlZM6pSETsEPGqZOndr2uuuR5rF169a2HoHPdurUKZM4CO1WTPqaDaAd+GFGKdIQkxAn9RuEWcTRyN2KSUgiSgF5aWzPTeA/lN5rZubMmR2bE4SIC4nJoltgAV/dVefZm72AtctUCJU2CMJ327hxY9t7EHbkyJFseq+EJSY16RPo3Dkq1kkr7+q0bNmyDuLQcZBEPYmHVdOBiJyIlrRDq41YPWfXOxUysi5fvtyaj+2BpcnsUV/oSoEMOk2CQGlr4ckhBwaetBhjCwH0ZHtJROPJkyc7UjcYLDjmrH7ADTEBXFfOYmB0k9oYBOjJ8b4aOYSe7QkKcYhFlq3QYLQhSidNmtS2RATwy8YOM3EQJsUjKiaWZ+vZToUQgzhkHXudb/PW5YMHD9yZM2faPsMwoc7RciYJXbGuBqJ1UIGKKLv915jsvgtJxCZDubdXr165mzdvtr1Hz5LONA8jrUwKPqsmVesKa49S3Q4WxmRPUEYdTjgiUcfUwLx589ySJUva3oMkP6IYddq6HMS4o55xBJBUeRjzfa4Zdeg56QZ43LhxoyPo7Lf1kNt7oO8wWAbNwaYjIv5lhyS7kRf96dvm5Jah8vfvX3flyhX35cuX6HfzFHOToS1H4BenCaHvO8pr8iDuwoUL7tevX+b5ZdbBair0xkFIlFDlW4ZknEClsp/TzXyAKVOmmHWFVSbDNw1l1+4f90U6IY/q4V27dpnE9bJ+v87QEydjqx/UamVVPRG+mwkNTYN+9tjkwzEx+atCm/X9WvWtDtAb68Wy9LXa1UmvCDDIpPkyOQ5ZwSzJ4jMrvFcr0rSjOUh+GcT4LSg5ugkW1Io0/SCDQBojh0hPlaJdah+tkVYrnTZowP8iq1F1TgMBBauufyB33x1v+NWFYmT5KmppgHC+NkAgbmRkpD3yn9QIseXymoTQFGQmIOKTxiZIWpvAatenVqRVXf2nTrAWMsPnKrMZHz6bJq5jvce6QK8J1cQNgKxlJapMPdZSR64/UivS9NztpkVEdKcrs5alhhWP9NeqlfWopzhZScI6QxseegZRGeg5a8C3Re1Mfl1ScP36ddcUaMuv24iOJtz7sbUjTS4qBvKmstYJoUauiuD3k5qhyr7QdUHMeCgLa1Ear9NquemdXgmum4fvJ6w1lqsuDhNrg1qSpleJK7K3TF0Q2jSd94uSZ60kK1e3qyVpQK6PVWXp2/FC3mp6jBhKKOiY2h3gtUV64TWM6wDETRPLDfSakXmH3w8g9Jlug8ZtTt4kVF0kLUYYmCCtD/DrQ5YhMGbA9L3ucdjh0y8kOHW5gU/VEEmJTcL4Pz/f7mgoAbYkAAAAAElFTkSuQmCC",
},
],
},
],
})
const completion = await openai.completions.create({
model: "llama3",
prompt: "Say this is a test.",
})
const listCompletion = await openai.models.list()
const model = await openai.models.retrieve("llama3")
const embedding = await openai.embeddings.create({
model: "all-minilm",
input: ["why is the sky blue?", "why is the grass green?"],
})
```
### `curl`
```
``` shell
curl http://localhost:11434/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
@@ -66,6 +127,47 @@ curl http://localhost:11434/v1/chat/completions \
]
}'
curl http://localhost:11434/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "llava",
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "What'\''s in this image?"
},
{
"type": "image_url",
"image_url": {
"url": "iVBORw0KGgoAAAANSUhEUgAAAG0AAABmCAYAAADBPx+VAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAA3VSURBVHgB7Z27r0zdG8fX743i1bi1ikMoFMQloXRpKFFIqI7LH4BEQ+NWIkjQuSWCRIEoULk0gsK1kCBI0IhrQVT7tz/7zZo888yz1r7MnDl7z5xvsjkzs2fP3uu71nNfa7lkAsm7d++Sffv2JbNmzUqcc8m0adOSzZs3Z+/XES4ZckAWJEGWPiCxjsQNLWmQsWjRIpMseaxcuTKpG/7HP27I8P79e7dq1ars/yL4/v27S0ejqwv+cUOGEGGpKHR37tzJCEpHV9tnT58+dXXCJDdECBE2Ojrqjh071hpNECjx4cMHVycM1Uhbv359B2F79+51586daxN/+pyRkRFXKyRDAqxEp4yMlDDzXG1NPnnyJKkThoK0VFd1ELZu3TrzXKxKfW7dMBQ6bcuWLW2v0VlHjx41z717927ba22U9APcw7Nnz1oGEPeL3m3p2mTAYYnFmMOMXybPPXv2bNIPpFZr1NHn4HMw0KRBjg9NuRw95s8PEcz/6DZELQd/09C9QGq5RsmSRybqkwHGjh07OsJSsYYm3ijPpyHzoiacg35MLdDSIS/O1yM778jOTwYUkKNHWUzUWaOsylE00MyI0fcnOwIdjvtNdW/HZwNLGg+sR1kMepSNJXmIwxBZiG8tDTpEZzKg0GItNsosY8USkxDhD0Rinuiko2gfL/RbiD2LZAjU9zKQJj8RDR0vJBR1/Phx9+PHj9Z7REF4nTZkxzX4LCXHrV271qXkBAPGfP/atWvu/PnzHe4C97F48eIsRLZ9+3a3f/9+87dwP1JxaF7/3r17ba+5l4EcaVo0lj3SBq5kGTJSQmLWMjgYNei2GPT1MuMqGTDEFHzeQSP2wi/jGnkmPJ/nhccs44jvDAxpVcxnq0F6eT8h4ni/iIWpR5lPyA6ETkNXoSukvpJAD3AsXLiwpZs49+fPn5ke4j10TqYvegSfn0OnafC+Tv9ooA/JPkgQysqQNBzagXY55nO/oa1F7qvIPWkRL12WRpMWUvpVDYmxAPehxWSe8ZEXL20sadYIozfmNch4QJPAfeJgW3rNsnzphBKNJM2KKODo1rVOMRYik5ETy3ix4qWNI81qAAirizgMIc+yhTytx0JWZuNI03qsrgWlGtwjoS9XwgUhWGyhUaRZZQNNIEwCiXD16tXcAHUs79co0vSD8rrJCIW98pzvxpAWyyo3HYwqS0+H0BjStClcZJT5coMm6D2LOF8TolGJtK9fvyZpyiC5ePFi9nc/oJU4eiEP0jVoAnHa9wyJycITMP78+eMeP37sXrx44d6+fdt6f82aNdkx1pg9e3Zb5W+RSRE+n+VjksQWifvVaTKFhn5O8my63K8Qabdv33b379/PiAP//vuvW7BggZszZ072/+TJk91YgkafPn166zXB1rQHFvouAWHq9z3SEevSUerqCn2/dDCeta2jxYbr69evk4MHDyY7d+7MjhMnTiTPnz9Pfv/+nfQT2ggpO2dMF8cghuoM7Ygj5iWCqRlGFml0QC/ftGmTmzt3rmsaKDsgBSPh0/8yPeLLBihLkOKJc0jp8H8vUzcxIA1k6QJ/c78tWEyj5P3o4u9+jywNPdJi5rAH9x0KHcl4Hg570eQp3+vHXGyrmEeigzQsQsjavXt38ujRo44LQuDDhw+TW7duRS1HGgMxhNXHgflaNTOsHyKvHK5Ijo2jbFjJBQK9YwFd6RVMzfgRBmEfP37suBBm/p49e1qjEP2mwTViNRo0VJWH1deMXcNK08uUjVUu7s/zRaL+oLNxz1bpANco4npUgX4G2eFbpDFyQoQxojBCpEGSytmOH8qrH5Q9vuzD6ofQylkCUmh8DBAr+q8JCyVNtWQIidKQE9wNtLSQnS4jDSsxNHogzFuQBw4cyM61UKVsjfr3ooBkPSqqQHesUPWVtzi9/vQi1T+rJj7WiTz4Pt/l3LxUkr5P2VYZaZ4URpsE+st/dujQoaBBYokbrz/8TJNQYLSonrPS9kUaSkPeZyj1AWSj+d+VBoy1pIWVNed8P0Ll/ee5HdGRhrHhR5GGN0r4LGZBaj8oFDJitBTJzIZgFcmU0Y8ytWMZMzJOaXUSrUs5RxKnrxmbb5YXO9VGUhtpXldhEUogFr3IzIsvlpmdosVcGVGXFWp2oU9kLFL3dEkSz6NHEY1sjSRdIuDFWEhd8KxFqsRi1uM/nz9/zpxnwlESONdg6dKlbsaMGS4EHFHtjFIDHwKOo46l4TxSuxgDzi+rE2jg+BaFruOX4HXa0Nnf1lwAPufZeF8/r6zD97WK2qFnGjBxTw5qNGPxT+5T/r7/7RawFC3j4vTp09koCxkeHjqbHJqArmH5UrFKKksnxrK7FuRIs8STfBZv+luugXZ2pR/pP9Ois4z+TiMzUUkUjD0iEi1fzX8GmXyuxUBRcaUfykV0YZnlJGKQpOiGB76x5GeWkWWJc3mOrK6S7xdND+W5N6XyaRgtWJFe13GkaZnKOsYqGdOVVVbGupsyA/l7emTLHi7vwTdirNEt0qxnzAvBFcnQF16xh/TMpUuXHDowhlA9vQVraQhkudRdzOnK+04ZSP3DUhVSP61YsaLtd/ks7ZgtPcXqPqEafHkdqa84X6aCeL7YWlv6edGFHb+ZFICPlljHhg0bKuk0CSvVznWsotRu433alNdFrqG45ejoaPCaUkWERpLXjzFL2Rpllp7PJU2a/v7Ab8N05/9t27Z16KUqoFGsxnI9EosS2niSYg9SpU6B4JgTrvVW1flt1sT+0ADIJU2maXzcUTraGCRaL1Wp9rUMk16PMom8QhruxzvZIegJjFU7LLCePfS8uaQdPny4jTTL0dbee5mYokQsXTIWNY46kuMbnt8Kmec+LGWtOVIl9cT1rCB0V8WqkjAsRwta93TbwNYoGKsUSChN44lgBNCoHLHzquYKrU6qZ8lolCIN0Rh6cP0Q3U6I6IXILYOQI513hJaSKAorFpuHXJNfVlpRtmYBk1Su1obZr5dnKAO+L10Hrj3WZW+E3qh6IszE37F6EB+68mGpvKm4eb9bFrlzrok7fvr0Kfv727dvWRmdVTJHw0qiiCUSZ6wCK+7XL/AcsgNyL74DQQ730sv78Su7+t/A36MdY0sW5o40ahslXr58aZ5HtZB8GH64m9EmMZ7FpYw4T6QnrZfgenrhFxaSiSGXtPnz57e9TkNZLvTjeqhr734CNtrK41L40sUQckmj1lGKQ0rC37x544r8eNXRpnVE3ZZY7zXo8NomiO0ZUCj2uHz58rbXoZ6gc0uA+F6ZeKS/jhRDUq8MKrTho9fEkihMmhxtBI1DxKFY9XLpVcSkfoi8JGnToZO5sU5aiDQIW716ddt7ZLYtMQlhECdBGXZZMWldY5BHm5xgAroWj4C0hbYkSc/jBmggIrXJWlZM6pSETsEPGqZOndr2uuuR5rF169a2HoHPdurUKZM4CO1WTPqaDaAd+GFGKdIQkxAn9RuEWcTRyN2KSUgiSgF5aWzPTeA/lN5rZubMmR2bE4SIC4nJoltgAV/dVefZm72AtctUCJU2CMJ327hxY9t7EHbkyJFseq+EJSY16RPo3Dkq1kkr7+q0bNmyDuLQcZBEPYmHVdOBiJyIlrRDq41YPWfXOxUysi5fvtyaj+2BpcnsUV/oSoEMOk2CQGlr4ckhBwaetBhjCwH0ZHtJROPJkyc7UjcYLDjmrH7ADTEBXFfOYmB0k9oYBOjJ8b4aOYSe7QkKcYhFlq3QYLQhSidNmtS2RATwy8YOM3EQJsUjKiaWZ+vZToUQgzhkHXudb/PW5YMHD9yZM2faPsMwoc7RciYJXbGuBqJ1UIGKKLv915jsvgtJxCZDubdXr165mzdvtr1Hz5LONA8jrUwKPqsmVesKa49S3Q4WxmRPUEYdTjgiUcfUwLx589ySJUva3oMkP6IYddq6HMS4o55xBJBUeRjzfa4Zdeg56QZ43LhxoyPo7Lf1kNt7oO8wWAbNwaYjIv5lhyS7kRf96dvm5Jah8vfvX3flyhX35cuX6HfzFHOToS1H4BenCaHvO8pr8iDuwoUL7tevX+b5ZdbBair0xkFIlFDlW4ZknEClsp/TzXyAKVOmmHWFVSbDNw1l1+4f90U6IY/q4V27dpnE9bJ+v87QEydjqx/UamVVPRG+mwkNTYN+9tjkwzEx+atCm/X9WvWtDtAb68Wy9LXa1UmvCDDIpPkyOQ5ZwSzJ4jMrvFcr0rSjOUh+GcT4LSg5ugkW1Io0/SCDQBojh0hPlaJdah+tkVYrnTZowP8iq1F1TgMBBauufyB33x1v+NWFYmT5KmppgHC+NkAgbmRkpD3yn9QIseXymoTQFGQmIOKTxiZIWpvAatenVqRVXf2nTrAWMsPnKrMZHz6bJq5jvce6QK8J1cQNgKxlJapMPdZSR64/UivS9NztpkVEdKcrs5alhhWP9NeqlfWopzhZScI6QxseegZRGeg5a8C3Re1Mfl1ScP36ddcUaMuv24iOJtz7sbUjTS4qBvKmstYJoUauiuD3k5qhyr7QdUHMeCgLa1Ear9NquemdXgmum4fvJ6w1lqsuDhNrg1qSpleJK7K3TF0Q2jSd94uSZ60kK1e3qyVpQK6PVWXp2/FC3mp6jBhKKOiY2h3gtUV64TWM6wDETRPLDfSakXmH3w8g9Jlug8ZtTt4kVF0kLUYYmCCtD/DrQ5YhMGbA9L3ucdjh0y8kOHW5gU/VEEmJTcL4Pz/f7mgoAbYkAAAAAElFTkSuQmCC"
}
}
]
}
],
"max_tokens": 300
}'
curl http://localhost:11434/v1/completions \
-H "Content-Type: application/json" \
-d '{
"model": "llama3",
"prompt": "Say this is a test"
}'
curl http://localhost:11434/v1/models
curl http://localhost:11434/v1/models/llama3
curl http://localhost:11434/v1/embeddings \
-H "Content-Type: application/json" \
-d '{
"model": "all-minilm",
"input": ["why is the sky blue?", "why is the grass green?"]
}'
```
## Endpoints
@@ -78,8 +180,8 @@ curl http://localhost:11434/v1/chat/completions \
- [x] Streaming
- [x] JSON mode
- [x] Reproducible outputs
- [ ] Vision
- [ ] Function calling
- [x] Vision
- [x] Tools (streaming support coming soon)
- [ ] Logprobs
#### Supported request fields
@@ -87,7 +189,10 @@ curl http://localhost:11434/v1/chat/completions \
- [x] `model`
- [x] `messages`
- [x] Text `content`
- [ ] Array of `content` parts
- [x] Image `content`
- [x] Base64 encoded image
- [ ] Image URL
- [x] Array of `content` parts
- [x] `frequency_penalty`
- [x] `presence_penalty`
- [x] `response_format`
@@ -97,12 +202,73 @@ curl http://localhost:11434/v1/chat/completions \
- [x] `temperature`
- [x] `top_p`
- [x] `max_tokens`
- [ ] `logit_bias`
- [ ] `tools`
- [x] `tools`
- [ ] `tool_choice`
- [ ] `logit_bias`
- [ ] `user`
- [ ] `n`
### `/v1/completions`
#### Supported features
- [x] Completions
- [x] Streaming
- [x] JSON mode
- [x] Reproducible outputs
- [ ] Logprobs
#### Supported request fields
- [x] `model`
- [x] `prompt`
- [x] `frequency_penalty`
- [x] `presence_penalty`
- [x] `seed`
- [x] `stop`
- [x] `stream`
- [x] `temperature`
- [x] `top_p`
- [x] `max_tokens`
- [x] `suffix`
- [ ] `best_of`
- [ ] `echo`
- [ ] `logit_bias`
- [ ] `user`
- [ ] `n`
#### Notes
- `prompt` currently only accepts a string
### `/v1/models`
#### Notes
- `created` corresponds to when the model was last modified
- `owned_by` corresponds to the ollama username, defaulting to `"library"`
### `/v1/models/{model}`
#### Notes
- `created` corresponds to when the model was last modified
- `owned_by` corresponds to the ollama username, defaulting to `"library"`
### `/v1/embeddings`
#### Supported request fields
- [x] `model`
- [x] `input`
- [x] string
- [x] array of strings
- [ ] array of tokens
- [ ] array of token arrays
- [ ] `encoding format`
- [ ] `dimensions`
- [ ] `user`
## Models
Before using a model, pull it locally `ollama pull`:

167
docs/template.md Normal file
View File

@@ -0,0 +1,167 @@
# Template
Ollama provides a powerful templating engine backed by Go's built-in templating engine to construct prompts for your large language model. This feature is a valuable tool to get the most out of your models.
## Basic Template Structure
A basic Go template consists of three main parts:
* **Layout**: The overall structure of the template.
* **Variables**: Placeholders for dynamic data that will be replaced with actual values when the template is rendered.
* **Functions**: Custom functions or logic that can be used to manipulate the template's content.
Here's an example of a simple chat template:
```gotmpl
{{- range .Messages }}
{{ .Role }}: {{ .Content }}
{{- end }}
```
In this example, we have:
* A basic messages structure (layout)
* Three variables: `Messages`, `Role`, and `Content` (variables)
* A custom function (action) that iterates over an array of items (`range .Messages`) and displays each item
## Adding templates to your model
By default, models imported into Ollama have a default template of `{{ .Prompt }}`, i.e. user inputs are sent verbatim to the LLM. This is appropriate for text or code completion models but lacks essential markers for chat or instruction models.
Omitting a template in these models puts the responsibility of correctly templating input onto the user. Adding a template allows users to easily get the best results from the model.
To add templates in your model, you'll need to add a `TEMPLATE` command to the Modelfile. Here's an example using Meta's Llama 3.
```dockerfile
FROM llama3
TEMPLATE """{{- if .System }}<|start_header_id|>system<|end_header_id|>
{{ .System }}<|eot_id|>
{{- end }}
{{- range .Messages }}<|start_header_id|>{{ .Role }}<|end_header_id|>
{{ .Content }}<|eot_id|>
{{- end }}<|start_header_id|>assistant<|end_header_id|>
"""
```
## Variables
`System` (string): system prompt
`Prompt` (string): user prompt
`Response` (string): assistant response
`Suffix` (string): text inserted after the assistant's response
`Messages` (list): list of messages
`Messages[].Role` (string): role which can be one of `system`, `user`, `assistant`, or `tool`
`Messages[].Content` (string): message content
`Messages[].ToolCalls` (list): list of tools the model wants to call
`Messages[].ToolCalls[].Function` (object): function to call
`Messages[].ToolCalls[].Function.Name` (string): function name
`Messages[].ToolCalls[].Function.Arguments` (map): mapping of argument name to argument value
`Tools` (list): list of tools the model can access
`Tools[].Type` (string): schema type. `type` is always `function`
`Tools[].Function` (object): function definition
`Tools[].Function.Name` (string): function name
`Tools[].Function.Description` (string): function description
`Tools[].Function.Parameters` (object): function parameters
`Tools[].Function.Parameters.Type` (string): schema type. `type` is always `object`
`Tools[].Function.Parameters.Required` (list): list of required properties
`Tools[].Function.Parameters.Properties` (map): mapping of property name to property definition
`Tools[].Function.Parameters.Properties[].Type` (string): property type
`Tools[].Function.Parameters.Properties[].Description` (string): property description
`Tools[].Function.Parameters.Properties[].Enum` (list): list of valid values
## Tips and Best Practices
Keep the following tips and best practices in mind when working with Go templates:
* **Be mindful of dot**: Control flow structures like `range` and `with` changes the value `.`
* **Out-of-scope variables**: Use `$.` to reference variables not currently in scope, starting from the root
* **Whitespace control**: Use `-` to trim leading (`{{-`) and trailing (`-}}`) whitespace
## Examples
### Example Messages
#### ChatML
ChatML is a popular template format. It can be used for models such as Databrick's DBRX, Intel's Neural Chat, and Microsoft's Orca 2.
```gotmpl
{{- range .Messages }}<|im_start|>{{ .Role }}
{{ .Content }}<|im_end|>
{{ end }}<|im_start|>assistant
```
### Example Tools
Tools support can be added to a model by adding a `{{ .Tools }}` node to the template. This feature is useful for models trained to call external tools and can a powerful tool for retrieving real-time data or performing complex tasks.
#### Mistral
Mistral v0.3 and Mixtral 8x22B supports tool calling.
```gotmpl
{{- range $index, $_ := .Messages }}
{{- if eq .Role "user" }}
{{- if and (le (len (slice $.Messages $index)) 2) $.Tools }}[AVAILABLE_TOOLS] {{ json $.Tools }}[/AVAILABLE_TOOLS]
{{- end }}[INST] {{ if and (eq (len (slice $.Messages $index)) 1) $.System }}{{ $.System }}
{{ end }}{{ .Content }}[/INST]
{{- else if eq .Role "assistant" }}
{{- if .Content }} {{ .Content }}</s>
{{- else if .ToolCalls }}[TOOL_CALLS] [
{{- range .ToolCalls }}{"name": "{{ .Function.Name }}", "arguments": {{ json .Function.Arguments }}}
{{- end }}]</s>
{{- end }}
{{- else if eq .Role "tool" }}[TOOL_RESULTS] {"content": {{ .Content }}}[/TOOL_RESULTS]
{{- end }}
{{- end }}
```
### Example Fill-in-Middle
Fill-in-middle support can be added to a model by adding a `{{ .Suffix }}` node to the template. This feature is useful for models that are trained to generate text in the middle of user input, such as code completion models.
#### CodeLlama
CodeLlama [7B](https://ollama.com/library/codellama:7b-code) and [13B](https://ollama.com/library/codellama:13b-code) code completion models support fill-in-middle.
```gotmpl
<PRE> {{ .Prompt }} <SUF>{{ .Suffix }} <MID>
```
> [!NOTE]
> CodeLlama 34B and 70B code completion and all instruct and Python fine-tuned models do not support fill-in-middle.
#### Codestral
Codestral [22B](https://ollama.com/library/codestral:22b) supports fill-in-middle.
```gotmpl
[SUFFIX]{{ .Suffix }}[PREFIX] {{ .Prompt }}
```

View File

@@ -9,7 +9,7 @@ cat ~/.ollama/logs/server.log
On **Linux** systems with systemd, the logs can be found with this command:
```shell
journalctl -u ollama
journalctl -u ollama --no-pager
```
When you run Ollama in a **container**, the logs go to stdout/stderr in the container:

View File

@@ -15,7 +15,7 @@ import { Ollama } from "@langchain/community/llms/ollama";
const ollama = new Ollama({
baseUrl: "http://localhost:11434",
model: "llama3",
model: "llama3.1",
});
const answer = await ollama.invoke(`why is the sky blue?`);
@@ -23,7 +23,7 @@ const answer = await ollama.invoke(`why is the sky blue?`);
console.log(answer);
```
That will get us the same thing as if we ran `ollama run llama3 "why is the sky blue"` in the terminal. But we want to load a document from the web to ask a question against. **Cheerio** is a great library for ingesting a webpage, and **LangChain** uses it in their **CheerioWebBaseLoader**. So let's install **Cheerio** and build that part of the app.
That will get us the same thing as if we ran `ollama run llama3.1 "why is the sky blue"` in the terminal. But we want to load a document from the web to ask a question against. **Cheerio** is a great library for ingesting a webpage, and **LangChain** uses it in their **CheerioWebBaseLoader**. So let's install **Cheerio** and build that part of the app.
```bash
npm install cheerio

View File

@@ -23,6 +23,8 @@ Logs will often be helpful in diagnosing the problem (see
* NVIDIA 452.39 or newer Drivers if you have an NVIDIA card
* AMD Radeon Driver https://www.amd.com/en/support if you have a Radeon card
Ollama uses unicode characters for progress indication, which may render as unknown squares in some older terminal fonts in Windows 10. If you see this, try changing your terminal font settings.
## API Access
Here's a quick example showing API access from `powershell`

View File

@@ -1,11 +1,11 @@
package envconfig
import (
"errors"
"fmt"
"log/slog"
"math"
"net"
"net/url"
"os"
"path/filepath"
"runtime"
@@ -14,309 +14,16 @@ import (
"time"
)
type OllamaHost struct {
Scheme string
Host string
Port string
}
func (o OllamaHost) String() string {
return fmt.Sprintf("%s://%s:%s", o.Scheme, o.Host, o.Port)
}
var ErrInvalidHostPort = errors.New("invalid port specified in OLLAMA_HOST")
var (
// Set via OLLAMA_ORIGINS in the environment
AllowOrigins []string
// Set via OLLAMA_DEBUG in the environment
Debug bool
// Experimental flash attention
FlashAttention bool
// Set via OLLAMA_HOST in the environment
Host *OllamaHost
// Set via OLLAMA_KEEP_ALIVE in the environment
KeepAlive time.Duration
// Set via OLLAMA_LLM_LIBRARY in the environment
LLMLibrary string
// Set via OLLAMA_MAX_LOADED_MODELS in the environment
MaxRunners int
// Set via OLLAMA_MAX_QUEUE in the environment
MaxQueuedRequests int
// Set via OLLAMA_MAX_VRAM in the environment
MaxVRAM uint64
// Set via OLLAMA_MODELS in the environment
ModelsDir string
// Set via OLLAMA_NOHISTORY in the environment
NoHistory bool
// Set via OLLAMA_NOPRUNE in the environment
NoPrune bool
// Set via OLLAMA_NUM_PARALLEL in the environment
NumParallel int
// Set via OLLAMA_RUNNERS_DIR in the environment
RunnersDir string
// Set via OLLAMA_SCHED_SPREAD in the environment
SchedSpread bool
// Set via OLLAMA_TMPDIR in the environment
TmpDir string
// Set via OLLAMA_INTEL_GPU in the environment
IntelGpu bool
// Set via CUDA_VISIBLE_DEVICES in the environment
CudaVisibleDevices string
// Set via HIP_VISIBLE_DEVICES in the environment
HipVisibleDevices string
// Set via ROCR_VISIBLE_DEVICES in the environment
RocrVisibleDevices string
// Set via GPU_DEVICE_ORDINAL in the environment
GpuDeviceOrdinal string
// Set via HSA_OVERRIDE_GFX_VERSION in the environment
HsaOverrideGfxVersion string
)
type EnvVar struct {
Name string
Value any
Description string
}
func AsMap() map[string]EnvVar {
ret := map[string]EnvVar{
"OLLAMA_DEBUG": {"OLLAMA_DEBUG", Debug, "Show additional debug information (e.g. OLLAMA_DEBUG=1)"},
"OLLAMA_FLASH_ATTENTION": {"OLLAMA_FLASH_ATTENTION", FlashAttention, "Enabled flash attention"},
"OLLAMA_HOST": {"OLLAMA_HOST", Host, "IP Address for the ollama server (default 127.0.0.1:11434)"},
"OLLAMA_KEEP_ALIVE": {"OLLAMA_KEEP_ALIVE", KeepAlive, "The duration that models stay loaded in memory (default \"5m\")"},
"OLLAMA_LLM_LIBRARY": {"OLLAMA_LLM_LIBRARY", LLMLibrary, "Set LLM library to bypass autodetection"},
"OLLAMA_MAX_LOADED_MODELS": {"OLLAMA_MAX_LOADED_MODELS", MaxRunners, "Maximum number of loaded models per GPU"},
"OLLAMA_MAX_QUEUE": {"OLLAMA_MAX_QUEUE", MaxQueuedRequests, "Maximum number of queued requests"},
"OLLAMA_MAX_VRAM": {"OLLAMA_MAX_VRAM", MaxVRAM, "Maximum VRAM"},
"OLLAMA_MODELS": {"OLLAMA_MODELS", ModelsDir, "The path to the models directory"},
"OLLAMA_NOHISTORY": {"OLLAMA_NOHISTORY", NoHistory, "Do not preserve readline history"},
"OLLAMA_NOPRUNE": {"OLLAMA_NOPRUNE", NoPrune, "Do not prune model blobs on startup"},
"OLLAMA_NUM_PARALLEL": {"OLLAMA_NUM_PARALLEL", NumParallel, "Maximum number of parallel requests"},
"OLLAMA_ORIGINS": {"OLLAMA_ORIGINS", AllowOrigins, "A comma separated list of allowed origins"},
"OLLAMA_RUNNERS_DIR": {"OLLAMA_RUNNERS_DIR", RunnersDir, "Location for runners"},
"OLLAMA_SCHED_SPREAD": {"OLLAMA_SCHED_SPREAD", SchedSpread, "Always schedule model across all GPUs"},
"OLLAMA_TMPDIR": {"OLLAMA_TMPDIR", TmpDir, "Location for temporary files"},
}
if runtime.GOOS != "darwin" {
ret["CUDA_VISIBLE_DEVICES"] = EnvVar{"CUDA_VISIBLE_DEVICES", CudaVisibleDevices, "Set which NVIDIA devices are visible"}
ret["HIP_VISIBLE_DEVICES"] = EnvVar{"HIP_VISIBLE_DEVICES", HipVisibleDevices, "Set which AMD devices are visible"}
ret["ROCR_VISIBLE_DEVICES"] = EnvVar{"ROCR_VISIBLE_DEVICES", RocrVisibleDevices, "Set which AMD devices are visible"}
ret["GPU_DEVICE_ORDINAL"] = EnvVar{"GPU_DEVICE_ORDINAL", GpuDeviceOrdinal, "Set which AMD devices are visible"}
ret["HSA_OVERRIDE_GFX_VERSION"] = EnvVar{"HSA_OVERRIDE_GFX_VERSION", HsaOverrideGfxVersion, "Override the gfx used for all detected AMD GPUs"}
ret["OLLAMA_INTEL_GPU"] = EnvVar{"OLLAMA_INTEL_GPU", IntelGpu, "Enable experimental Intel GPU detection"}
}
return ret
}
func Values() map[string]string {
vals := make(map[string]string)
for k, v := range AsMap() {
vals[k] = fmt.Sprintf("%v", v.Value)
}
return vals
}
var defaultAllowOrigins = []string{
"localhost",
"127.0.0.1",
"0.0.0.0",
}
// Clean quotes and spaces from the value
func clean(key string) string {
return strings.Trim(os.Getenv(key), "\"' ")
}
func init() {
// default values
NumParallel = 0 // Autoselect
MaxRunners = 0 // Autoselect
MaxQueuedRequests = 512
KeepAlive = 5 * time.Minute
LoadConfig()
}
func LoadConfig() {
if debug := clean("OLLAMA_DEBUG"); debug != "" {
d, err := strconv.ParseBool(debug)
if err == nil {
Debug = d
} else {
Debug = true
}
}
if fa := clean("OLLAMA_FLASH_ATTENTION"); fa != "" {
d, err := strconv.ParseBool(fa)
if err == nil {
FlashAttention = d
}
}
RunnersDir = clean("OLLAMA_RUNNERS_DIR")
if runtime.GOOS == "windows" && RunnersDir == "" {
// On Windows we do not carry the payloads inside the main executable
appExe, err := os.Executable()
if err != nil {
slog.Error("failed to lookup executable path", "error", err)
}
cwd, err := os.Getwd()
if err != nil {
slog.Error("failed to lookup working directory", "error", err)
}
var paths []string
for _, root := range []string{filepath.Dir(appExe), cwd} {
paths = append(paths,
root,
filepath.Join(root, "windows-"+runtime.GOARCH),
filepath.Join(root, "dist", "windows-"+runtime.GOARCH),
)
}
// Try a few variations to improve developer experience when building from source in the local tree
for _, p := range paths {
candidate := filepath.Join(p, "ollama_runners")
_, err := os.Stat(candidate)
if err == nil {
RunnersDir = candidate
break
}
}
if RunnersDir == "" {
slog.Error("unable to locate llm runner directory. Set OLLAMA_RUNNERS_DIR to the location of 'ollama_runners'")
}
}
TmpDir = clean("OLLAMA_TMPDIR")
userLimit := clean("OLLAMA_MAX_VRAM")
if userLimit != "" {
avail, err := strconv.ParseUint(userLimit, 10, 64)
if err != nil {
slog.Error("invalid setting, ignoring", "OLLAMA_MAX_VRAM", userLimit, "error", err)
} else {
MaxVRAM = avail
}
}
LLMLibrary = clean("OLLAMA_LLM_LIBRARY")
if onp := clean("OLLAMA_NUM_PARALLEL"); onp != "" {
val, err := strconv.Atoi(onp)
if err != nil {
slog.Error("invalid setting, ignoring", "OLLAMA_NUM_PARALLEL", onp, "error", err)
} else {
NumParallel = val
}
}
if nohistory := clean("OLLAMA_NOHISTORY"); nohistory != "" {
NoHistory = true
}
if spread := clean("OLLAMA_SCHED_SPREAD"); spread != "" {
s, err := strconv.ParseBool(spread)
if err == nil {
SchedSpread = s
} else {
SchedSpread = true
}
}
if noprune := clean("OLLAMA_NOPRUNE"); noprune != "" {
NoPrune = true
}
if origins := clean("OLLAMA_ORIGINS"); origins != "" {
AllowOrigins = strings.Split(origins, ",")
}
for _, allowOrigin := range defaultAllowOrigins {
AllowOrigins = append(AllowOrigins,
fmt.Sprintf("http://%s", allowOrigin),
fmt.Sprintf("https://%s", allowOrigin),
fmt.Sprintf("http://%s", net.JoinHostPort(allowOrigin, "*")),
fmt.Sprintf("https://%s", net.JoinHostPort(allowOrigin, "*")),
)
}
AllowOrigins = append(AllowOrigins,
"app://*",
"file://*",
"tauri://*",
)
maxRunners := clean("OLLAMA_MAX_LOADED_MODELS")
if maxRunners != "" {
m, err := strconv.Atoi(maxRunners)
if err != nil {
slog.Error("invalid setting, ignoring", "OLLAMA_MAX_LOADED_MODELS", maxRunners, "error", err)
} else {
MaxRunners = m
}
}
if onp := os.Getenv("OLLAMA_MAX_QUEUE"); onp != "" {
p, err := strconv.Atoi(onp)
if err != nil || p <= 0 {
slog.Error("invalid setting, ignoring", "OLLAMA_MAX_QUEUE", onp, "error", err)
} else {
MaxQueuedRequests = p
}
}
ka := clean("OLLAMA_KEEP_ALIVE")
if ka != "" {
loadKeepAlive(ka)
}
var err error
ModelsDir, err = getModelsDir()
if err != nil {
slog.Error("invalid setting", "OLLAMA_MODELS", ModelsDir, "error", err)
}
Host, err = getOllamaHost()
if err != nil {
slog.Error("invalid setting", "OLLAMA_HOST", Host, "error", err, "using default port", Host.Port)
}
if set, err := strconv.ParseBool(clean("OLLAMA_INTEL_GPU")); err == nil {
IntelGpu = set
}
CudaVisibleDevices = clean("CUDA_VISIBLE_DEVICES")
HipVisibleDevices = clean("HIP_VISIBLE_DEVICES")
RocrVisibleDevices = clean("ROCR_VISIBLE_DEVICES")
GpuDeviceOrdinal = clean("GPU_DEVICE_ORDINAL")
HsaOverrideGfxVersion = clean("HSA_OVERRIDE_GFX_VERSION")
}
func getModelsDir() (string, error) {
if models, exists := os.LookupEnv("OLLAMA_MODELS"); exists {
return models, nil
}
home, err := os.UserHomeDir()
if err != nil {
return "", err
}
return filepath.Join(home, ".ollama", "models"), nil
}
func getOllamaHost() (*OllamaHost, error) {
// Host returns the scheme and host. Host can be configured via the OLLAMA_HOST environment variable.
// Default is scheme "http" and host "127.0.0.1:11434"
func Host() *url.URL {
defaultPort := "11434"
hostVar := os.Getenv("OLLAMA_HOST")
hostVar = strings.TrimSpace(strings.Trim(strings.TrimSpace(hostVar), "\"'"))
scheme, hostport, ok := strings.Cut(hostVar, "://")
s := strings.TrimSpace(Var("OLLAMA_HOST"))
scheme, hostport, ok := strings.Cut(s, "://")
switch {
case !ok:
scheme, hostport = "http", hostVar
scheme, hostport = "http", s
case scheme == "http":
defaultPort = "80"
case scheme == "https":
@@ -336,38 +43,242 @@ func getOllamaHost() (*OllamaHost, error) {
}
}
if portNum, err := strconv.ParseInt(port, 10, 32); err != nil || portNum > 65535 || portNum < 0 {
return &OllamaHost{
if n, err := strconv.ParseInt(port, 10, 32); err != nil || n > 65535 || n < 0 {
slog.Warn("invalid port, using default", "port", port, "default", defaultPort)
return &url.URL{
Scheme: scheme,
Host: host,
Port: defaultPort,
}, ErrInvalidHostPort
Host: net.JoinHostPort(host, defaultPort),
}
}
return &OllamaHost{
return &url.URL{
Scheme: scheme,
Host: host,
Port: port,
}, nil
Host: net.JoinHostPort(host, port),
}
}
func loadKeepAlive(ka string) {
v, err := strconv.Atoi(ka)
// Origins returns a list of allowed origins. Origins can be configured via the OLLAMA_ORIGINS environment variable.
func Origins() (origins []string) {
if s := Var("OLLAMA_ORIGINS"); s != "" {
origins = strings.Split(s, ",")
}
for _, origin := range []string{"localhost", "127.0.0.1", "0.0.0.0"} {
origins = append(origins,
fmt.Sprintf("http://%s", origin),
fmt.Sprintf("https://%s", origin),
fmt.Sprintf("http://%s", net.JoinHostPort(origin, "*")),
fmt.Sprintf("https://%s", net.JoinHostPort(origin, "*")),
)
}
origins = append(origins,
"app://*",
"file://*",
"tauri://*",
)
return origins
}
// Models returns the path to the models directory. Models directory can be configured via the OLLAMA_MODELS environment variable.
// Default is $HOME/.ollama/models
func Models() string {
if s := Var("OLLAMA_MODELS"); s != "" {
return s
}
home, err := os.UserHomeDir()
if err != nil {
d, err := time.ParseDuration(ka)
if err == nil {
if d < 0 {
KeepAlive = time.Duration(math.MaxInt64)
panic(err)
}
return filepath.Join(home, ".ollama", "models")
}
// KeepAlive returns the duration that models stay loaded in memory. KeepAlive can be configured via the OLLAMA_KEEP_ALIVE environment variable.
// Negative values are treated as infinite. Zero is treated as no keep alive.
// Default is 5 minutes.
func KeepAlive() (keepAlive time.Duration) {
keepAlive = 5 * time.Minute
if s := Var("OLLAMA_KEEP_ALIVE"); s != "" {
if d, err := time.ParseDuration(s); err == nil {
keepAlive = d
} else if n, err := strconv.ParseInt(s, 10, 64); err == nil {
keepAlive = time.Duration(n) * time.Second
}
}
if keepAlive < 0 {
return time.Duration(math.MaxInt64)
}
return keepAlive
}
func Bool(k string) func() bool {
return func() bool {
if s := Var(k); s != "" {
b, err := strconv.ParseBool(s)
if err != nil {
return true
}
return b
}
return false
}
}
var (
// Debug enabled additional debug information.
Debug = Bool("OLLAMA_DEBUG")
// FlashAttention enables the experimental flash attention feature.
FlashAttention = Bool("OLLAMA_FLASH_ATTENTION")
// NoHistory disables readline history.
NoHistory = Bool("OLLAMA_NOHISTORY")
// NoPrune disables pruning of model blobs on startup.
NoPrune = Bool("OLLAMA_NOPRUNE")
// SchedSpread allows scheduling models across all GPUs.
SchedSpread = Bool("OLLAMA_SCHED_SPREAD")
// IntelGPU enables experimental Intel GPU detection.
IntelGPU = Bool("OLLAMA_INTEL_GPU")
)
func String(s string) func() string {
return func() string {
return Var(s)
}
}
var (
LLMLibrary = String("OLLAMA_LLM_LIBRARY")
TmpDir = String("OLLAMA_TMPDIR")
CudaVisibleDevices = String("CUDA_VISIBLE_DEVICES")
HipVisibleDevices = String("HIP_VISIBLE_DEVICES")
RocrVisibleDevices = String("ROCR_VISIBLE_DEVICES")
GpuDeviceOrdinal = String("GPU_DEVICE_ORDINAL")
HsaOverrideGfxVersion = String("HSA_OVERRIDE_GFX_VERSION")
)
func RunnersDir() (p string) {
if p := Var("OLLAMA_RUNNERS_DIR"); p != "" {
return p
}
if runtime.GOOS != "windows" {
return
}
defer func() {
if p == "" {
slog.Error("unable to locate llm runner directory. Set OLLAMA_RUNNERS_DIR to the location of 'ollama/runners'")
}
}()
// On Windows we do not carry the payloads inside the main executable
exe, err := os.Executable()
if err != nil {
return
}
cwd, err := os.Getwd()
if err != nil {
return
}
var paths []string
for _, root := range []string{filepath.Dir(exe), filepath.Join(filepath.Dir(exe), ".."), cwd} {
paths = append(paths,
root,
filepath.Join(root, runtime.GOOS+"-"+runtime.GOARCH),
filepath.Join(root, "dist", runtime.GOOS+"-"+runtime.GOARCH),
)
}
// Try a few variations to improve developer experience when building from source in the local tree
for _, path := range paths {
candidate := filepath.Join(path, "lib", "ollama", "runners")
if _, err := os.Stat(candidate); err == nil {
p = candidate
break
}
}
return p
}
func Uint(key string, defaultValue uint) func() uint {
return func() uint {
if s := Var(key); s != "" {
if n, err := strconv.ParseUint(s, 10, 64); err != nil {
slog.Warn("invalid environment variable, using default", "key", key, "value", s, "default", defaultValue)
} else {
KeepAlive = d
return uint(n)
}
}
} else {
d := time.Duration(v) * time.Second
if d < 0 {
KeepAlive = time.Duration(math.MaxInt64)
} else {
KeepAlive = d
}
return defaultValue
}
}
var (
// NumParallel sets the number of parallel model requests. NumParallel can be configured via the OLLAMA_NUM_PARALLEL environment variable.
NumParallel = Uint("OLLAMA_NUM_PARALLEL", 0)
// MaxRunners sets the maximum number of loaded models. MaxRunners can be configured via the OLLAMA_MAX_LOADED_MODELS environment variable.
MaxRunners = Uint("OLLAMA_MAX_LOADED_MODELS", 0)
// MaxQueue sets the maximum number of queued requests. MaxQueue can be configured via the OLLAMA_MAX_QUEUE environment variable.
MaxQueue = Uint("OLLAMA_MAX_QUEUE", 512)
// MaxVRAM sets a maximum VRAM override in bytes. MaxVRAM can be configured via the OLLAMA_MAX_VRAM environment variable.
MaxVRAM = Uint("OLLAMA_MAX_VRAM", 0)
)
type EnvVar struct {
Name string
Value any
Description string
}
func AsMap() map[string]EnvVar {
ret := map[string]EnvVar{
"OLLAMA_DEBUG": {"OLLAMA_DEBUG", Debug(), "Show additional debug information (e.g. OLLAMA_DEBUG=1)"},
"OLLAMA_FLASH_ATTENTION": {"OLLAMA_FLASH_ATTENTION", FlashAttention(), "Enabled flash attention"},
"OLLAMA_HOST": {"OLLAMA_HOST", Host(), "IP Address for the ollama server (default 127.0.0.1:11434)"},
"OLLAMA_KEEP_ALIVE": {"OLLAMA_KEEP_ALIVE", KeepAlive(), "The duration that models stay loaded in memory (default \"5m\")"},
"OLLAMA_LLM_LIBRARY": {"OLLAMA_LLM_LIBRARY", LLMLibrary(), "Set LLM library to bypass autodetection"},
"OLLAMA_MAX_LOADED_MODELS": {"OLLAMA_MAX_LOADED_MODELS", MaxRunners(), "Maximum number of loaded models per GPU"},
"OLLAMA_MAX_QUEUE": {"OLLAMA_MAX_QUEUE", MaxQueue(), "Maximum number of queued requests"},
"OLLAMA_MODELS": {"OLLAMA_MODELS", Models(), "The path to the models directory"},
"OLLAMA_NOHISTORY": {"OLLAMA_NOHISTORY", NoHistory(), "Do not preserve readline history"},
"OLLAMA_NOPRUNE": {"OLLAMA_NOPRUNE", NoPrune(), "Do not prune model blobs on startup"},
"OLLAMA_NUM_PARALLEL": {"OLLAMA_NUM_PARALLEL", NumParallel(), "Maximum number of parallel requests"},
"OLLAMA_ORIGINS": {"OLLAMA_ORIGINS", Origins(), "A comma separated list of allowed origins"},
"OLLAMA_RUNNERS_DIR": {"OLLAMA_RUNNERS_DIR", RunnersDir(), "Location for runners"},
"OLLAMA_SCHED_SPREAD": {"OLLAMA_SCHED_SPREAD", SchedSpread(), "Always schedule model across all GPUs"},
"OLLAMA_TMPDIR": {"OLLAMA_TMPDIR", TmpDir(), "Location for temporary files"},
}
if runtime.GOOS != "darwin" {
ret["CUDA_VISIBLE_DEVICES"] = EnvVar{"CUDA_VISIBLE_DEVICES", CudaVisibleDevices(), "Set which NVIDIA devices are visible"}
ret["HIP_VISIBLE_DEVICES"] = EnvVar{"HIP_VISIBLE_DEVICES", HipVisibleDevices(), "Set which AMD devices are visible"}
ret["ROCR_VISIBLE_DEVICES"] = EnvVar{"ROCR_VISIBLE_DEVICES", RocrVisibleDevices(), "Set which AMD devices are visible"}
ret["GPU_DEVICE_ORDINAL"] = EnvVar{"GPU_DEVICE_ORDINAL", GpuDeviceOrdinal(), "Set which AMD devices are visible"}
ret["HSA_OVERRIDE_GFX_VERSION"] = EnvVar{"HSA_OVERRIDE_GFX_VERSION", HsaOverrideGfxVersion(), "Override the gfx used for all detected AMD GPUs"}
ret["OLLAMA_INTEL_GPU"] = EnvVar{"OLLAMA_INTEL_GPU", IntelGPU(), "Enable experimental Intel GPU detection"}
}
return ret
}
func Values() map[string]string {
vals := make(map[string]string)
for k, v := range AsMap() {
vals[k] = fmt.Sprintf("%v", v.Value)
}
return vals
}
// Var returns an environment variable stripped of leading and trailing quotes or spaces
func Var(key string) string {
return strings.Trim(strings.TrimSpace(os.Getenv(key)), "\"'")
}

View File

@@ -1,87 +1,234 @@
package envconfig
import (
"fmt"
"math"
"net"
"testing"
"time"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
"github.com/google/go-cmp/cmp"
)
func TestConfig(t *testing.T) {
Debug = false // Reset whatever was loaded in init()
t.Setenv("OLLAMA_DEBUG", "")
LoadConfig()
require.False(t, Debug)
t.Setenv("OLLAMA_DEBUG", "false")
LoadConfig()
require.False(t, Debug)
t.Setenv("OLLAMA_DEBUG", "1")
LoadConfig()
require.True(t, Debug)
t.Setenv("OLLAMA_FLASH_ATTENTION", "1")
LoadConfig()
require.True(t, FlashAttention)
t.Setenv("OLLAMA_KEEP_ALIVE", "")
LoadConfig()
require.Equal(t, 5*time.Minute, KeepAlive)
t.Setenv("OLLAMA_KEEP_ALIVE", "3")
LoadConfig()
require.Equal(t, 3*time.Second, KeepAlive)
t.Setenv("OLLAMA_KEEP_ALIVE", "1h")
LoadConfig()
require.Equal(t, 1*time.Hour, KeepAlive)
t.Setenv("OLLAMA_KEEP_ALIVE", "-1s")
LoadConfig()
require.Equal(t, time.Duration(math.MaxInt64), KeepAlive)
t.Setenv("OLLAMA_KEEP_ALIVE", "-1")
LoadConfig()
require.Equal(t, time.Duration(math.MaxInt64), KeepAlive)
}
func TestClientFromEnvironment(t *testing.T) {
type testCase struct {
func TestHost(t *testing.T) {
cases := map[string]struct {
value string
expect string
err error
}{
"empty": {"", "127.0.0.1:11434"},
"only address": {"1.2.3.4", "1.2.3.4:11434"},
"only port": {":1234", ":1234"},
"address and port": {"1.2.3.4:1234", "1.2.3.4:1234"},
"hostname": {"example.com", "example.com:11434"},
"hostname and port": {"example.com:1234", "example.com:1234"},
"zero port": {":0", ":0"},
"too large port": {":66000", ":11434"},
"too small port": {":-1", ":11434"},
"ipv6 localhost": {"[::1]", "[::1]:11434"},
"ipv6 world open": {"[::]", "[::]:11434"},
"ipv6 no brackets": {"::1", "[::1]:11434"},
"ipv6 + port": {"[::1]:1337", "[::1]:1337"},
"extra space": {" 1.2.3.4 ", "1.2.3.4:11434"},
"extra quotes": {"\"1.2.3.4\"", "1.2.3.4:11434"},
"extra space+quotes": {" \" 1.2.3.4 \" ", "1.2.3.4:11434"},
"extra single quotes": {"'1.2.3.4'", "1.2.3.4:11434"},
"http": {"http://1.2.3.4", "1.2.3.4:80"},
"http port": {"http://1.2.3.4:4321", "1.2.3.4:4321"},
"https": {"https://1.2.3.4", "1.2.3.4:443"},
"https port": {"https://1.2.3.4:4321", "1.2.3.4:4321"},
}
hostTestCases := map[string]*testCase{
"empty": {value: "", expect: "127.0.0.1:11434"},
"only address": {value: "1.2.3.4", expect: "1.2.3.4:11434"},
"only port": {value: ":1234", expect: ":1234"},
"address and port": {value: "1.2.3.4:1234", expect: "1.2.3.4:1234"},
"hostname": {value: "example.com", expect: "example.com:11434"},
"hostname and port": {value: "example.com:1234", expect: "example.com:1234"},
"zero port": {value: ":0", expect: ":0"},
"too large port": {value: ":66000", err: ErrInvalidHostPort},
"too small port": {value: ":-1", err: ErrInvalidHostPort},
"ipv6 localhost": {value: "[::1]", expect: "[::1]:11434"},
"ipv6 world open": {value: "[::]", expect: "[::]:11434"},
"ipv6 no brackets": {value: "::1", expect: "[::1]:11434"},
"ipv6 + port": {value: "[::1]:1337", expect: "[::1]:1337"},
"extra space": {value: " 1.2.3.4 ", expect: "1.2.3.4:11434"},
"extra quotes": {value: "\"1.2.3.4\"", expect: "1.2.3.4:11434"},
"extra space+quotes": {value: " \" 1.2.3.4 \" ", expect: "1.2.3.4:11434"},
"extra single quotes": {value: "'1.2.3.4'", expect: "1.2.3.4:11434"},
}
for k, v := range hostTestCases {
t.Run(k, func(t *testing.T) {
t.Setenv("OLLAMA_HOST", v.value)
LoadConfig()
oh, err := getOllamaHost()
if err != v.err {
t.Fatalf("expected %s, got %s", v.err, err)
}
if err == nil {
host := net.JoinHostPort(oh.Host, oh.Port)
assert.Equal(t, v.expect, host, fmt.Sprintf("%s: expected %s, got %s", k, v.expect, host))
for name, tt := range cases {
t.Run(name, func(t *testing.T) {
t.Setenv("OLLAMA_HOST", tt.value)
if host := Host(); host.Host != tt.expect {
t.Errorf("%s: expected %s, got %s", name, tt.expect, host.Host)
}
})
}
}
func TestOrigins(t *testing.T) {
cases := []struct {
value string
expect []string
}{
{"", []string{
"http://localhost",
"https://localhost",
"http://localhost:*",
"https://localhost:*",
"http://127.0.0.1",
"https://127.0.0.1",
"http://127.0.0.1:*",
"https://127.0.0.1:*",
"http://0.0.0.0",
"https://0.0.0.0",
"http://0.0.0.0:*",
"https://0.0.0.0:*",
"app://*",
"file://*",
"tauri://*",
}},
{"http://10.0.0.1", []string{
"http://10.0.0.1",
"http://localhost",
"https://localhost",
"http://localhost:*",
"https://localhost:*",
"http://127.0.0.1",
"https://127.0.0.1",
"http://127.0.0.1:*",
"https://127.0.0.1:*",
"http://0.0.0.0",
"https://0.0.0.0",
"http://0.0.0.0:*",
"https://0.0.0.0:*",
"app://*",
"file://*",
"tauri://*",
}},
{"http://172.16.0.1,https://192.168.0.1", []string{
"http://172.16.0.1",
"https://192.168.0.1",
"http://localhost",
"https://localhost",
"http://localhost:*",
"https://localhost:*",
"http://127.0.0.1",
"https://127.0.0.1",
"http://127.0.0.1:*",
"https://127.0.0.1:*",
"http://0.0.0.0",
"https://0.0.0.0",
"http://0.0.0.0:*",
"https://0.0.0.0:*",
"app://*",
"file://*",
"tauri://*",
}},
{"http://totally.safe,http://definitely.legit", []string{
"http://totally.safe",
"http://definitely.legit",
"http://localhost",
"https://localhost",
"http://localhost:*",
"https://localhost:*",
"http://127.0.0.1",
"https://127.0.0.1",
"http://127.0.0.1:*",
"https://127.0.0.1:*",
"http://0.0.0.0",
"https://0.0.0.0",
"http://0.0.0.0:*",
"https://0.0.0.0:*",
"app://*",
"file://*",
"tauri://*",
}},
}
for _, tt := range cases {
t.Run(tt.value, func(t *testing.T) {
t.Setenv("OLLAMA_ORIGINS", tt.value)
if diff := cmp.Diff(Origins(), tt.expect); diff != "" {
t.Errorf("%s: mismatch (-want +got):\n%s", tt.value, diff)
}
})
}
}
func TestBool(t *testing.T) {
cases := map[string]bool{
"": false,
"true": true,
"false": false,
"1": true,
"0": false,
// invalid values
"random": true,
"something": true,
}
for k, v := range cases {
t.Run(k, func(t *testing.T) {
t.Setenv("OLLAMA_BOOL", k)
if b := Bool("OLLAMA_BOOL")(); b != v {
t.Errorf("%s: expected %t, got %t", k, v, b)
}
})
}
}
func TestUint(t *testing.T) {
cases := map[string]uint{
"0": 0,
"1": 1,
"1337": 1337,
// default values
"": 11434,
"-1": 11434,
"0o10": 11434,
"0x10": 11434,
"string": 11434,
}
for k, v := range cases {
t.Run(k, func(t *testing.T) {
t.Setenv("OLLAMA_UINT", k)
if i := Uint("OLLAMA_UINT", 11434)(); i != v {
t.Errorf("%s: expected %d, got %d", k, v, i)
}
})
}
}
func TestKeepAlive(t *testing.T) {
cases := map[string]time.Duration{
"": 5 * time.Minute,
"1s": time.Second,
"1m": time.Minute,
"1h": time.Hour,
"5m0s": 5 * time.Minute,
"1h2m3s": 1*time.Hour + 2*time.Minute + 3*time.Second,
"0": time.Duration(0),
"60": 60 * time.Second,
"120": 2 * time.Minute,
"3600": time.Hour,
"-0": time.Duration(0),
"-1": time.Duration(math.MaxInt64),
"-1m": time.Duration(math.MaxInt64),
// invalid values
" ": 5 * time.Minute,
"???": 5 * time.Minute,
"1d": 5 * time.Minute,
"1y": 5 * time.Minute,
"1w": 5 * time.Minute,
}
for tt, expect := range cases {
t.Run(tt, func(t *testing.T) {
t.Setenv("OLLAMA_KEEP_ALIVE", tt)
if actual := KeepAlive(); actual != expect {
t.Errorf("%s: expected %s, got %s", tt, expect, actual)
}
})
}
}
func TestVar(t *testing.T) {
cases := map[string]string{
"value": "value",
" value ": "value",
" 'value' ": "value",
` "value" `: "value",
" ' value ' ": " value ",
` " value " `: " value ",
}
for k, v := range cases {
t.Run(k, func(t *testing.T) {
t.Setenv("OLLAMA_VAR", k)
if s := Var("OLLAMA_VAR"); s != v {
t.Errorf("%s: expected %q, got %q", k, v, s)
}
})
}

View File

@@ -35,7 +35,7 @@ func main() {
ctx := context.Background()
req := &api.ChatRequest{
Model: "llama3",
Model: "llama3.1",
Messages: messages,
}

View File

@@ -16,7 +16,7 @@ func main() {
// By default, GenerateRequest is streaming.
req := &api.GenerateRequest{
Model: "gemma",
Model: "gemma2",
Prompt: "how many planets are there?",
}

View File

@@ -15,7 +15,7 @@ func main() {
}
req := &api.GenerateRequest{
Model: "gemma",
Model: "gemma2",
Prompt: "how many planets are there?",
// set streaming to false

View File

@@ -4,6 +4,14 @@ This example provides an interface for asking questions to a PDF document.
## Setup
1. Ensure you have the `llama3.1` model installed:
```
ollama pull llama3.1
```
2. Install the Python Requirements.
```
pip install -r requirements.txt
```

View File

@@ -51,7 +51,7 @@ while True:
template=template,
)
llm = Ollama(model="llama3:8b", callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]))
llm = Ollama(model="llama3.1", callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]))
qa_chain = RetrievalQA.from_chain_type(
llm,
retriever=vectorstore.as_retriever(),

View File

@@ -4,10 +4,10 @@ This example summarizes the website, [https://ollama.com/blog/run-llama2-uncenso
## Running the Example
1. Ensure you have the `llama2` model installed:
1. Ensure you have the `llama3.1` model installed:
```bash
ollama pull llama2
ollama pull llama3.1
```
2. Install the Python Requirements.

View File

@@ -5,8 +5,8 @@ from langchain.chains.summarize import load_summarize_chain
loader = WebBaseLoader("https://ollama.com/blog/run-llama2-uncensored-locally")
docs = loader.load()
llm = Ollama(model="llama3")
llm = Ollama(model="llama3.1")
chain = load_summarize_chain(llm, chain_type="stuff")
result = chain.invoke(docs)
result = chain.invoke(docs)
print(result)

View File

@@ -4,10 +4,10 @@ This example is a basic "hello world" of using LangChain with Ollama.
## Running the Example
1. Ensure you have the `llama3` model installed:
1. Ensure you have the `llama3.1` model installed:
```bash
ollama pull llama3
ollama pull llama3.1
```
2. Install the Python Requirements.

View File

@@ -1,6 +1,6 @@
from langchain.llms import Ollama
input = input("What is your question?")
llm = Ollama(model="llama3")
llm = Ollama(model="llama3.1")
res = llm.predict(input)
print (res)

View File

@@ -1,4 +1,4 @@
FROM llama3
FROM llama3.1
PARAMETER temperature 1
SYSTEM """
You are Mario from super mario bros, acting as an assistant.

View File

@@ -2,12 +2,12 @@
# Example character: Mario
This example shows how to create a basic character using Llama3 as the base model.
This example shows how to create a basic character using Llama3.1 as the base model.
To run this example:
1. Download the Modelfile
2. `ollama pull llama3` to get the base model used in the model file.
2. `ollama pull llama3.1` to get the base model used in the model file.
3. `ollama create NAME -f ./Modelfile`
4. `ollama run NAME`
@@ -18,7 +18,7 @@ Ask it some questions like "Who are you?" or "Is Peach in trouble again?"
What the model file looks like:
```
FROM llama3
FROM llama3.1
PARAMETER temperature 1
SYSTEM """
You are Mario from Super Mario Bros, acting as an assistant.

View File

@@ -4,7 +4,7 @@ imageName = input("Enter the name of the image: ")
client = docker.from_env()
s = requests.Session()
output=""
with s.post('http://localhost:11434/api/generate', json={'model': 'dockerit', 'prompt': inputDescription}, stream=True) as r:
with s.post('http://localhost:11434/api/generate', json={'model': 'mattw/dockerit', 'prompt': inputDescription}, stream=True) as r:
for line in r.iter_lines():
if line:
j = json.loads(line)

View File

@@ -2,7 +2,7 @@ import requests
import json
import random
model = "llama3"
model = "llama3.1"
template = {
"firstName": "",
"lastName": "",

View File

@@ -12,7 +12,7 @@ countries = [
"France",
]
country = random.choice(countries)
model = "llama3"
model = "llama3.1"
prompt = f"generate one realistically believable sample data set of a persons first name, last name, address in {country}, and phone number. Do not use common names. Respond using JSON. Key names should have no backslashes, values should use plain ascii with no special characters."

View File

@@ -6,10 +6,10 @@ There are two python scripts in this example. `randomaddresses.py` generates ran
## Running the Example
1. Ensure you have the `llama3` model installed:
1. Ensure you have the `llama3.1` model installed:
```bash
ollama pull llama3
ollama pull llama3.1
```
2. Install the Python Requirements.

View File

@@ -2,7 +2,7 @@ import json
import requests
# NOTE: ollama must be running for this to work, start the ollama app or run `ollama serve`
model = "llama3" # TODO: update this for whatever model you wish to use
model = "llama3.1" # TODO: update this for whatever model you wish to use
def chat(messages):

View File

@@ -4,10 +4,10 @@ The **chat** endpoint is one of two ways to generate text from an LLM with Ollam
## Running the Example
1. Ensure you have the `llama3` model installed:
1. Ensure you have the `llama3.1` model installed:
```bash
ollama pull llama3
ollama pull llama3.1
```
2. Install the Python Requirements.

View File

@@ -1,6 +1,6 @@
import * as readline from "readline";
const model = "llama3";
const model = "llama3.1";
type Message = {
role: "assistant" | "user" | "system";
content: string;

View File

@@ -3,6 +3,7 @@ package format
import (
"fmt"
"math"
"strconv"
)
const (
@@ -28,6 +29,6 @@ func HumanNumber(b uint64) string {
case b >= Thousand:
return fmt.Sprintf("%.0fK", float64(b)/Thousand)
default:
return fmt.Sprintf("%d", b)
return strconv.FormatUint(b, 10)
}
}

2
go.mod
View File

@@ -1,6 +1,6 @@
module github.com/ollama/ollama
go 1.22.0
go 1.22.5
require (
github.com/containerd/console v1.0.3

View File

@@ -3,7 +3,7 @@
package gpu
import (
"fmt"
"errors"
"log/slog"
"os"
"path/filepath"
@@ -54,7 +54,7 @@ func commonAMDValidateLibDir() (string, error) {
// Installer payload location if we're running the installed binary
exe, err := os.Executable()
if err == nil {
rocmTargetDir := filepath.Join(filepath.Dir(exe), "rocm")
rocmTargetDir := filepath.Join(filepath.Dir(exe), "..", "lib", "ollama")
if rocmLibUsable(rocmTargetDir) {
slog.Debug("detected ROCM next to ollama executable " + rocmTargetDir)
return rocmTargetDir, nil
@@ -95,5 +95,5 @@ func commonAMDValidateLibDir() (string, error) {
}
}
return "", fmt.Errorf("no suitable rocm found, falling back to CPU")
return "", errors.New("no suitable rocm found, falling back to CPU")
}

View File

@@ -1,6 +1,7 @@
package gpu
import (
"errors"
"fmt"
"log/slog"
"syscall"
@@ -33,9 +34,10 @@ type HipLib struct {
}
func NewHipLib() (*HipLib, error) {
h, err := windows.LoadLibrary("amdhip64.dll")
// At runtime we depend on v6, so discover GPUs with the same library for a consistent set of GPUs
h, err := windows.LoadLibrary("amdhip64_6.dll")
if err != nil {
return nil, fmt.Errorf("unable to load amdhip64.dll: %w", err)
return nil, fmt.Errorf("unable to load amdhip64_6.dll, please make sure to upgrade to the latest amd driver: %w", err)
}
hl := &HipLib{}
hl.dll = h
@@ -75,7 +77,7 @@ func (hl *HipLib) Release() {
func (hl *HipLib) AMDDriverVersion() (driverMajor, driverMinor int, err error) {
if hl.dll == 0 {
return 0, 0, fmt.Errorf("dll has been unloaded")
return 0, 0, errors.New("dll has been unloaded")
}
var version int
status, _, err := syscall.SyscallN(hl.hipDriverGetVersion, uintptr(unsafe.Pointer(&version)))
@@ -109,7 +111,7 @@ func (hl *HipLib) HipGetDeviceCount() int {
func (hl *HipLib) HipSetDevice(device int) error {
if hl.dll == 0 {
return fmt.Errorf("dll has been unloaded")
return errors.New("dll has been unloaded")
}
status, _, err := syscall.SyscallN(hl.hipSetDevice, uintptr(device))
if status != hipSuccess {
@@ -120,7 +122,7 @@ func (hl *HipLib) HipSetDevice(device int) error {
func (hl *HipLib) HipGetDeviceProperties(device int) (*hipDevicePropMinimal, error) {
if hl.dll == 0 {
return nil, fmt.Errorf("dll has been unloaded")
return nil, errors.New("dll has been unloaded")
}
var props hipDevicePropMinimal
status, _, err := syscall.SyscallN(hl.hipGetDeviceProperties, uintptr(unsafe.Pointer(&props)), uintptr(device))
@@ -133,7 +135,7 @@ func (hl *HipLib) HipGetDeviceProperties(device int) (*hipDevicePropMinimal, err
// free, total, err
func (hl *HipLib) HipMemGetInfo() (uint64, uint64, error) {
if hl.dll == 0 {
return 0, 0, fmt.Errorf("dll has been unloaded")
return 0, 0, errors.New("dll has been unloaded")
}
var totalMemory uint64
var freeMemory uint64

View File

@@ -10,6 +10,7 @@ import (
"path/filepath"
"regexp"
"slices"
"sort"
"strconv"
"strings"
@@ -60,9 +61,9 @@ func AMDGetGPUInfo() []RocmGPUInfo {
// Determine if the user has already pre-selected which GPUs to look at, then ignore the others
var visibleDevices []string
hipVD := envconfig.HipVisibleDevices // zero based index only
rocrVD := envconfig.RocrVisibleDevices // zero based index or UUID, but consumer cards seem to not support UUID
gpuDO := envconfig.GpuDeviceOrdinal // zero based index
hipVD := envconfig.HipVisibleDevices() // zero based index only
rocrVD := envconfig.RocrVisibleDevices() // zero based index or UUID, but consumer cards seem to not support UUID
gpuDO := envconfig.GpuDeviceOrdinal() // zero based index
switch {
// TODO is this priorty order right?
case hipVD != "":
@@ -75,13 +76,27 @@ func AMDGetGPUInfo() []RocmGPUInfo {
visibleDevices = strings.Split(gpuDO, ",")
}
gfxOverride := envconfig.HsaOverrideGfxVersion
gfxOverride := envconfig.HsaOverrideGfxVersion()
var supported []string
libDir := ""
// The amdgpu driver always exposes the host CPU(s) first, but we have to skip them and subtract
// from the other IDs to get alignment with the HIP libraries expectations (zero is the first GPU, not the CPU)
matches, _ := filepath.Glob(GPUPropertiesFileGlob)
sort.Slice(matches, func(i, j int) bool {
// /sys/class/kfd/kfd/topology/nodes/<number>/properties
a, err := strconv.ParseInt(filepath.Base(filepath.Dir(matches[i])), 10, 64)
if err != nil {
slog.Debug("parse err", "error", err, "match", matches[i])
return false
}
b, err := strconv.ParseInt(filepath.Base(filepath.Dir(matches[j])), 10, 64)
if err != nil {
slog.Debug("parse err", "error", err, "match", matches[i])
return false
}
return a < b
})
cpuCount := 0
for _, match := range matches {
slog.Debug("evaluating amdgpu node " + match)
@@ -378,7 +393,7 @@ func AMDValidateLibDir() (string, error) {
// If we still haven't found a usable rocm, the user will have to install it on their own
slog.Warn("amdgpu detected, but no compatible rocm library found. Either install rocm v6, or follow manual install instructions at https://github.com/ollama/ollama/blob/main/docs/linux.md#manual-install")
return "", fmt.Errorf("no suitable rocm found, falling back to CPU")
return "", errors.New("no suitable rocm found, falling back to CPU")
}
func AMDDriverVersion() (driverMajor, driverMinor int, err error) {

View File

@@ -2,7 +2,7 @@ package gpu
import (
"bytes"
"fmt"
"errors"
"log/slog"
"os"
"path/filepath"
@@ -53,7 +53,7 @@ func AMDGetGPUInfo() []RocmGPUInfo {
}
var supported []string
gfxOverride := envconfig.HsaOverrideGfxVersion
gfxOverride := envconfig.HsaOverrideGfxVersion()
if gfxOverride == "" {
supported, err = GetSupportedGFX(libDir)
if err != nil {
@@ -85,14 +85,15 @@ func AMDGetGPUInfo() []RocmGPUInfo {
n = bytes.IndexByte(props.GcnArchName[:], 0)
gfx := string(props.GcnArchName[:n])
slog.Debug("hip device", "id", i, "name", name, "gfx", gfx)
//slog.Info(fmt.Sprintf("[%d] Integrated: %d", i, props.iGPU)) // DOESN'T REPORT CORRECTLY! Always 0
// slog.Info(fmt.Sprintf("[%d] Integrated: %d", i, props.iGPU)) // DOESN'T REPORT CORRECTLY! Always 0
// TODO Why isn't props.iGPU accurate!?
if strings.EqualFold(name, iGPUName) {
slog.Info("unsupported Radeon iGPU detected skipping", "id", i, "name", name, "gfx", gfx)
continue
}
if gfxOverride == "" {
if !slices.Contains[[]string, string](supported, gfx) {
// Strip off Target Features when comparing
if !slices.Contains[[]string, string](supported, strings.Split(gfx, ":")[0]) {
slog.Warn("amdgpu is not supported", "gpu", i, "gpu_type", gfx, "library", libDir, "supported_types", supported)
// TODO - consider discrete markdown just for ROCM troubleshooting?
slog.Warn("See https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md for HSA_OVERRIDE_GFX_VERSION usage")
@@ -152,7 +153,7 @@ func AMDValidateLibDir() (string, error) {
// Installer payload (if we're running from some other location)
localAppData := os.Getenv("LOCALAPPDATA")
appDir := filepath.Join(localAppData, "Programs", "Ollama")
rocmTargetDir := filepath.Join(appDir, "rocm")
rocmTargetDir := filepath.Join(appDir, "..", "lib", "ollama")
if rocmLibUsable(rocmTargetDir) {
slog.Debug("detected ollama installed ROCm at " + rocmTargetDir)
return rocmTargetDir, nil
@@ -160,7 +161,7 @@ func AMDValidateLibDir() (string, error) {
// Should not happen on windows since we include it in the installer, but stand-alone binary might hit this
slog.Warn("amdgpu detected, but no compatible rocm library found. Please install ROCm")
return "", fmt.Errorf("no suitable rocm found, falling back to CPU")
return "", errors.New("no suitable rocm found, falling back to CPU")
}
func (gpus RocmGPUInfoList) RefreshFreeMemory() error {

View File

@@ -26,7 +26,7 @@ func PayloadsDir() (string, error) {
defer lock.Unlock()
var err error
if payloadsDir == "" {
runnersDir := envconfig.RunnersDir
runnersDir := envconfig.RunnersDir()
if runnersDir != "" {
payloadsDir = runnersDir
@@ -35,27 +35,23 @@ func PayloadsDir() (string, error) {
// The remainder only applies on non-windows where we still carry payloads in the main executable
cleanupTmpDirs()
tmpDir := envconfig.TmpDir
tmpDir := envconfig.TmpDir()
if tmpDir == "" {
tmpDir, err = os.MkdirTemp("", "ollama")
if err != nil {
return "", fmt.Errorf("failed to generate tmp dir: %w", err)
}
} else {
err = os.MkdirAll(tmpDir, 0755)
err = os.MkdirAll(tmpDir, 0o755)
if err != nil {
return "", fmt.Errorf("failed to generate tmp dir %s: %w", tmpDir, err)
}
}
// Track our pid so we can clean up orphaned tmpdirs
pidFilePath := filepath.Join(tmpDir, "ollama.pid")
pidFile, err := os.OpenFile(pidFilePath, os.O_CREATE|os.O_TRUNC|os.O_WRONLY, os.ModePerm)
if err != nil {
return "", err
}
if _, err := pidFile.Write([]byte(fmt.Sprint(os.Getpid()))); err != nil {
return "", err
n := filepath.Join(tmpDir, "ollama.pid")
if err := os.WriteFile(n, []byte(strconv.Itoa(os.Getpid())), 0o644); err != nil {
return "", fmt.Errorf("failed to write pid file %s: %w", n, err)
}
// We create a distinct subdirectory for payloads within the tmpdir
@@ -67,37 +63,44 @@ func PayloadsDir() (string, error) {
// Best effort to clean up prior tmpdirs
func cleanupTmpDirs() {
dirs, err := filepath.Glob(filepath.Join(os.TempDir(), "ollama*"))
matches, err := filepath.Glob(filepath.Join(os.TempDir(), "ollama*", "ollama.pid"))
if err != nil {
return
}
for _, d := range dirs {
info, err := os.Stat(d)
if err != nil || !info.IsDir() {
for _, match := range matches {
raw, err := os.ReadFile(match)
if errors.Is(err, os.ErrNotExist) {
slog.Debug("not a ollama runtime directory, skipping", "path", match)
continue
}
raw, err := os.ReadFile(filepath.Join(d, "ollama.pid"))
if err != nil {
slog.Warn("failed to read ollama.pid", "path", d, "error", err)
// No pid, ignore this tmpdir
} else if err != nil {
slog.Warn("could not read ollama.pid, skipping", "path", match, "error", err)
continue
}
pid, err := strconv.Atoi(string(raw))
if err != nil {
slog.Warn("failed to parse pid", "path", d, "error", err)
slog.Warn("invalid pid, skipping", "path", match, "error", err)
continue
}
proc, err := os.FindProcess(pid)
if err == nil && !errors.Is(proc.Signal(syscall.Signal(0)), os.ErrProcessDone) {
slog.Warn("found running ollama", "pid", pid, "path", d)
// Another running ollama, ignore this tmpdir
p, err := os.FindProcess(pid)
if err == nil && !errors.Is(p.Signal(syscall.Signal(0)), os.ErrProcessDone) {
slog.Warn("process still running, skipping", "pid", pid, "path", match)
continue
}
if err := os.Remove(d); err != nil {
slog.Warn("unable to cleanup stale tmpdir", "path", d, "error", err)
if err := os.Remove(match); err != nil {
slog.Warn("could not cleanup stale pidfile", "path", match, "error", err)
}
runners := filepath.Join(filepath.Dir(match), "runners")
if err := os.RemoveAll(runners); err != nil {
slog.Warn("could not cleanup stale runners", "path", runners, "error", err)
}
if err := os.Remove(filepath.Dir(match)); err != nil {
slog.Warn("could not cleanup stale tmpdir", "path", filepath.Dir(match), "error", err)
}
}
}
@@ -105,7 +108,7 @@ func cleanupTmpDirs() {
func Cleanup() {
lock.Lock()
defer lock.Unlock()
runnersDir := envconfig.RunnersDir
runnersDir := envconfig.RunnersDir()
if payloadsDir != "" && runnersDir == "" && runtime.GOOS != "windows" {
// We want to fully clean up the tmpdir parent of the payloads dir
tmpDir := filepath.Clean(filepath.Join(payloadsDir, ".."))

View File

@@ -1,6 +1,11 @@
package gpu
import (
"os"
"path/filepath"
"runtime"
"strings"
"golang.org/x/sys/cpu"
)
@@ -14,3 +19,19 @@ func GetCPUCapability() CPUCapability {
// else LCD
return CPUCapabilityNone
}
func IsNUMA() bool {
if runtime.GOOS != "linux" {
// numa support in llama.cpp is linux only
return false
}
ids := map[string]interface{}{}
packageIds, _ := filepath.Glob("/sys/devices/system/cpu/cpu*/topology/physical_package_id")
for _, packageId := range packageIds {
id, err := os.ReadFile(packageId)
if err == nil {
ids[strings.TrimSpace(string(id))] = struct{}{}
}
}
return len(ids) > 1
}

View File

@@ -4,9 +4,17 @@ package gpu
import (
"log/slog"
"os"
"regexp"
"runtime"
"strconv"
"strings"
)
// Jetson devices have JETSON_JETPACK="x.y.z" factory set to the Jetpack version installed.
// Included to drive logic for reducing Ollama-allocated overhead on L4T/Jetson devices.
var CudaTegra string = os.Getenv("JETSON_JETPACK")
func cudaGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
ids := []string{}
for _, info := range gpuInfo {
@@ -19,3 +27,38 @@ func cudaGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
}
return "CUDA_VISIBLE_DEVICES", strings.Join(ids, ",")
}
func cudaVariant(gpuInfo CudaGPUInfo) string {
if runtime.GOARCH == "arm64" && runtime.GOOS == "linux" {
if CudaTegra != "" {
ver := strings.Split(CudaTegra, ".")
if len(ver) > 0 {
return "jetpack" + ver[0]
}
} else if data, err := os.ReadFile("/etc/nv_tegra_release"); err == nil {
r := regexp.MustCompile(` R(\d+) `)
m := r.FindSubmatch(data)
if len(m) != 2 {
slog.Info("Unexpected format for /etc/nv_tegra_release. Set JETSON_JETPACK to select version")
} else {
if l4t, err := strconv.Atoi(string(m[1])); err == nil {
// Note: mapping from L4t -> JP is inconsistent (can't just subtract 30)
// https://developer.nvidia.com/embedded/jetpack-archive
switch l4t {
case 35:
return "jetpack5"
case 36:
return "jetpack6"
default:
slog.Info("unsupported L4T version", "nv_tegra_release", string(data))
}
}
}
}
}
if gpuInfo.computeMajor < 6 || gpuInfo.DriverMajor < 12 {
return "v11"
}
return "v12"
}

Some files were not shown because too many files have changed in this diff Show More