Compare commits

...

119 Commits

Author SHA1 Message Date
ParthSareen
f257f1fd04 sample: do all sorting in topK 2025-03-12 14:20:18 -04:00
ParthSareen
8b1ae03302 sample: simplify top_k=0 sorting 2025-03-12 14:20:18 -04:00
ParthSareen
db10a7da88 sample: use container/heap for top_k 2025-03-12 14:20:11 -04:00
Michael Yang
aee28501b5 Merge pull request #9661 from ollama/gemma
engine: add gemma support
2025-03-11 15:07:50 -07:00
jmorganca
83f0ec8269 all: address linter errors 2025-03-11 14:49:20 -07:00
jmorganca
c6b6938b3a kvcache: fix tests by adding AvgPool2D stub 2025-03-11 14:49:20 -07:00
jmorganca
fb4664fcec model: add more spm tokenizer tests 2025-03-11 14:49:20 -07:00
jmorganca
20e3593863 model: validate left and right pairs before merging them 2025-03-11 14:49:20 -07:00
Michael Yang
63a394068c use 2d pooling 2025-03-11 14:49:20 -07:00
Daniel Hiltgen
ab39e08eb9 llm: auto detect models that require Ollama Engine (#1) 2025-03-11 14:49:20 -07:00
jmorganca
11bfa62796 add trailing \n\n after <end_of_image> to match reference implementation 2025-03-11 14:49:20 -07:00
jmorganca
f63e62e546 reduce kernel size, add TODO for loading from config 2025-03-11 14:49:20 -07:00
jmorganca
65b0f329d1 Revert "Allow models to force a new batch"
This reverts commit c7eae586b899083acebcd9b3847b89ea78c2850c.
2025-03-11 14:49:20 -07:00
Jesse Gross
06007c0a18 Allow models to force a new batch
This is useful for a few things:
 - Work around bugs, such as having 2 images in one batch
 - Keep the image in a single batch for fully connected attention
 - Improve performance by not evaluating embeddings multiple times
2025-03-11 14:49:20 -07:00
Jesse Gross
a8e83a7654 Disable causal attention based on batch index
Currently we are using positions, which are relative to a
sequence and may not be unique.
2025-03-11 14:49:20 -07:00
Jesse Gross
475005504e Restrict Gemma to a single image per request 2025-03-11 14:49:20 -07:00
Jesse Gross
2c40c4d35e Fix follow up images and images split across batches 2025-03-11 14:49:19 -07:00
Michael Yang
e95278932b use non-causal mask only for image positions 2025-03-11 14:49:19 -07:00
Michael Yang
9d2a20a763 use non-causal mask for inputs with images 2025-03-11 14:49:19 -07:00
Patrick Devine
2e54d72fc3 fix gemma3 1b conversion 2025-03-11 14:49:19 -07:00
Michael Yang
6b32a2d549 compat with upstream gguf 2025-03-11 14:49:19 -07:00
Michael Yang
c5cbe4fc2a fallback to cpu 2025-03-11 14:49:19 -07:00
Michael Yang
f888912870 fix vision encoder 2025-03-11 14:49:19 -07:00
Michael Yang
9e4642e9b3 ollama debug tensor 2025-03-11 14:49:19 -07:00
Michael Yang
6b0486c216 duplicate token_embd to output 2025-03-11 14:49:19 -07:00
Michael Yang
d368c039f0 skip repacking vision tensors 2025-03-11 14:49:19 -07:00
Patrick Devine
9b54267e69 fix configs 2025-03-11 14:49:19 -07:00
Michael Yang
46bb0169c4 update model 2025-03-11 14:49:19 -07:00
Michael Yang
8934324b72 use fast attention 2025-03-11 14:49:18 -07:00
Jesse Gross
0e886595bf Fix tests and drift from main 2025-03-11 14:49:18 -07:00
Patrick Devine
c62861f4fa fix conversion 2025-03-11 14:49:18 -07:00
Michael Yang
0df1800436 set non-causal attention 2025-03-11 14:49:18 -07:00
Patrick Devine
631fecc6d9 temporary work around for converting spm 2025-03-11 14:49:18 -07:00
Jesse Gross
4346c2409d fix drift from main 2025-03-11 14:49:18 -07:00
Michael Yang
4b037a97dc add gemma vision encoder 2025-03-11 14:49:17 -07:00
Patrick Devine
5f74d1fd47 gemma2 impl 2025-03-11 14:35:08 -07:00
Daniel Hiltgen
4dcf80167a Build release for windows with local script (#9636) 2025-03-11 08:34:20 -07:00
Michael Yang
26a26998fb Merge pull request #9590 from ollama/mxyng/dump-pad
fix: pad tensor item if ge zero
2025-03-10 16:34:55 -07:00
Michael Yang
9926eae015 fix: pad tensor item if ge zero
this produces a nicer output since both positive and negative values
produces the same width
2025-03-10 16:18:12 -07:00
Vincent Koc
8585b7b151 docs: add opik to observability integrations (#9626) 2025-03-10 16:15:10 -07:00
Parth Sareen
7e34f4fbfa sample: add numerical stability to temperature/softmax transform (#9631) 2025-03-10 14:43:53 -07:00
Michael Yang
fe776293f7 Merge pull request #9569 from dwt/patch-1
Better WantedBy declaration
2025-03-10 14:09:37 -07:00
frob
d8a5d96b98 docs: Add OLLAMA_CONTEXT_LENGTH to FAQ. (#9545) 2025-03-10 11:02:54 -07:00
Xiaowei Zhu
757668c42f docs: add SwiftChat (#9540) 2025-03-10 11:01:09 -07:00
Sam
96ec8afd09 docs(tool): add mcp-llm (#9537) 2025-03-10 09:52:02 -07:00
Jeffrey Morgan
e093db92c4 sample: temporarily use grammars for constrained generation in new engine (#9586) 2025-03-10 16:17:39 +01:00
Jesse Gross
a1cda80bcb model: Update encoder cache to use multimodal input processing handler
The encoder cache needs to know the position of images in the input
stream so that it knows when to delete them. Previously images didn't
have a position, so we implied one by breaking batches before an
image and then assuming the image was in the first position. However,
multimodal objects are now given explicit positions in the input
stream, so we can use that instead.

Breaking batches was also a way to simulate a cross attention mask
for mllama. However, given that it only supports a single sequence
and a single image, this mask doesn't serve any real purpose.
Removing the batch break does not appear to affect the quality of
the output.

Most of this is simply moving the input data structures to a new
package to avoid import cycles.
2025-03-09 17:05:26 -07:00
Jesse Gross
4614fafae0 ollamarunner: Don't panic for unimplemented features at runtime.
It's ok to fail on startup but we shouldn't panic during runtime
based on user input. Downgrade the panic to a warning.
2025-03-08 18:58:18 -08:00
Jesse Gross
4100ed7bdd ml: Add support for quantized KV cache
Similar to the llama engine, quantizing the KV cache requires
flash attention to be enabled through the Ollama server.
2025-03-07 18:43:39 -08:00
Jesse Gross
f52b2615ef kvcache: Set context for shift offsets 2025-03-07 18:43:39 -08:00
Jesse Gross
25f9b152f9 ggml-backend: Ensure allocation meet backend requirements
Backends can impose additional alignment requirements on buffer sizes.
We should ensure that we meet these or allocations can fail.
2025-03-07 18:43:39 -08:00
Jesse Gross
6da8b6a879 kvcache: Support non-causal attention
Models can disable causality for all or part of their processing
while continuing to store data in the KV cache.
2025-03-07 18:39:27 -08:00
Jesse Gross
0daaaef8c9 ollamarunner: Quiet debug logging and panic on unimplemented features
Debug logging of every token has previously caused test timeouts
on slower machines.
2025-03-07 18:38:02 -08:00
Jesse Gross
98272fbd58 additional review comments 2025-03-07 14:08:21 -08:00
Michael Yang
b27e8f3f10 ml/backend/ggml: use backend buffer type
this ensures the tensor is created on the right buffer type for backends
such as cpu
2025-03-07 14:08:21 -08:00
Michael Yang
45df786f09 comments 2025-03-07 14:08:21 -08:00
Michael Yang
daaf42e4a4 ml/backend/ggml: clean up 2025-03-07 14:08:21 -08:00
Michael Yang
2dc60d4620 ml/backend/ggml: offload vision to cpu
temporary until tensor loading can accurately account for vision models
2025-03-07 14:08:21 -08:00
Michael Yang
b5312f30e8 ml/backend/ggml: handle tensor split 2025-03-07 14:08:21 -08:00
Michael Yang
26c2e0bd35 ml/backend/ggml: handle user specified cpu offloading 2025-03-07 14:08:21 -08:00
Michael Yang
bf920883d5 ml/backend/ggml: set cpu n_threads 2025-03-07 14:08:21 -08:00
Michael Yang
58b9ec1f6b kvcache: update tests 2025-03-07 14:08:21 -08:00
Michael Yang
7bae7fa5ce ml/backend/ggml: create tensor on specific backend
some tensors should be created on specific backends to reduce number of
copies and improve performance
2025-03-07 14:08:21 -08:00
Michael Yang
764e199d67 kvcache: create cache ctx per layer
each cache layer creates and maintains its own context instead of using
a large context for all layers
2025-03-07 14:08:21 -08:00
Michael Yang
bfce55db3d model: load non-repeated tensors into multiple backends
some tensors are expected to be used in repeating layers but are not
themselves repeated. this change copies these tensors into the same
backends as their repeating counterparts to minimize copying tensors
between backends
2025-03-07 14:08:21 -08:00
Michael Yang
bab6f34dc0 ml/backend/ggml: update model loading for hybrid/multi backends
use a similar strategy as llama.cpp for deciding where tensors should be
allocated. this will be improved later to be aware of usable memory
before assigning the tensor
2025-03-07 14:08:21 -08:00
Parth Sareen
0682dae027 sample: improve ollama engine sampler performance (#9374)
This change bring in various interface cleanups along with greatly improving the performance of the sampler.

Tested with llama3.2 on local machine.
Improves performance from ~ 70 tokens/s -> 135 tokens/s with topK(40) enabled.
Without topK performance is ~ 110 tokens/s
2025-03-07 12:37:48 -08:00
Breaker
1f6986e919 readme: add QwQ to the supported models list (#9565) 2025-03-07 09:30:07 -08:00
Jeffrey Morgan
4289c74359 llama: fix kv loading on snowflake-arctic-embed models (#9536) 2025-03-07 09:25:34 -08:00
‮rekcäH nitraM‮
25248f4bd5 Better WantedBy declaration
The problem with default.target is that it always points to the target that is currently started. So if you boot into single user mode or the rescue mode still Ollama tries to start.

I noticed this because either tried (and failed) to start all the time during a system update, where Ollama definitely is not wanted.
2025-03-07 10:26:31 +01:00
Jesse Gross
a7e63b82be ollamarunner: Improve multimodal input handling
Various vision models have different requirements for how they
receive their inputs. For example:
 - Mllama wants images together with text and the image embeddings
   don't themselves have positions or get stored in the main KV cache
 - Llava-style models feed in embeddings similar to tokens and
   images correspond to a varying number of tokens in the cache.

In addition, the strategy for providing inputs must support batching
and multiple sequences, which are managed by the runner. At the same
time, we want to keep data handling fully in the model so that new
architectures are not bottlenecked by runner code which does not
understand their particular requirements.

This provides a method for models to edit the input stream so that
it meets their needs while still being in a format that the runner
understands. This allows the runner to avoid special processing
for different models.

In addition, this fixes a regression where non-vision models may
try to incorrectly interpret images.
2025-03-06 16:54:16 -08:00
Jesse Gross
b70fc4d51e model: Don't unconditionally add special tokens
We sometimes tokenize partial strings. For example, with
multimodal inputs, we split the input string around the images
and then tokenize each piece. In these cases, we should only add
the special tokens on the first piece.
2025-03-06 16:54:16 -08:00
Blake Mizerany
e2252d0fc6 server/internal/registry: take over pulls from server package (#9485)
This commit replaces the old pull implementation in the server package
with the new, faster, more robust pull implementation in the registry
package.

The new endpoint, and now the remove endpoint too, are behind the
feature gate "client2" enabled only by setting the OLLAMA_EXPERIMENT
environment variable include "client2".

Currently, the progress indication is wired to perform the same as the
previous implementation to avoid making changes to the CLI, and because
the status reports happen at the start of the download, and the end of
the write to disk, the progress indication is not as smooth as it could
be. This is a known issue and will be addressed in a future change.

This implementation may be ~0.5-1.0% slower in rare cases, depending on
network and disk speed, but is generally MUCH faster and more robust
than the its predecessor in all other cases.
2025-03-05 14:48:18 -08:00
Daniel Hiltgen
cae5d4d4ea Win: doc new rocm zip file (#9367)
To stay under the 2G github artifact limit, we're splitting ROCm
out like we do on linux.
2025-03-05 14:11:21 -08:00
Michael Yang
05a01fdecb ml/backend/ggml: consolidate system info logging
- output backend system info when initializing the backend. this ensures
  this information is always present without needing to be called
  explicitly
- convert to structured logging
- enumerate devices rather than backends since devices are ordered
- track device indices grouped by device name
2025-03-04 15:14:31 -08:00
aritra saha
8fe6f69f28 docs: add granite-3.2 to the readme 2025-03-04 11:10:56 -08:00
Daniel Hiltgen
1fdb351c37 New engine: vision models and auto-fallback (#9113)
* Include unified vision layers in memory prediction

For newer vision models with a single gguf, include
the projection estimates.

* Adjust CLI to handle both styles of vision model metadata

* Wire up new tokenizers for new engine

If we're loading the new engine, utilize the new model
text processor instead of calling into cgo wrappers for
llama.cpp.  This also cleans up some tech debt from the
older tokenization flow for the C++ server which was
no longer used.

This also adjusts the grammar handling logic to pass
through to the new engine instead of utilizing the cgo
schema to grammar call.

* Lay foundation for auto selection of new engine
2025-03-04 09:03:46 -08:00
Blake Mizerany
7a01ad7614 server/internal/registry: reintroduce pruning on model deletion (#9489)
This reintroduces aggressive pruning on model deletion as a temporary
measure until a more controlled garbage collection (GC) mechanism is
implemented.

Issues with the current approach:

1. Users may accidentally delete a model (`ollama rm llama3.3` instead
   of `ollama rm llama3.2`), requiring a full re-download unless another
   model references the same blobs.

2. Users may assume a deleted model is still referenced elsewhere, but
   due to prior updates or deletions, the references no longer exist,
   leading to unnecessary re-downloads.

Soon, we should implement a structured GC mechanism to retain
unreferenced blobs for a configurable period before removal, which will
run on "ollama rm" and other commands we deem appropriate.

Users that want to immediately remove unreferenced blobs can use a new
prune command that will allow them to specify the age and class of blobs
to remove.

Example usage:

    # Run basic blob GC
    $ ollama prune

    # Remove unreferenced blobs older than 7 days
    $ ollama prune --age 7d

    # Remove all blobs, referenced or not, older than 7 days (and their manifests?)
    $ ollama prune --age 7d --all

    # Remove all unreferenced blobs immediately
    $ ollama prune --age 0 --all

    # Remove all blobs
    $ ollama prune --age 0 --all

This should provide a safer and more predictable cleanup process.
2025-03-03 19:11:16 -08:00
Blake Mizerany
55ab9f371a server/.../backoff,syncs: don't break builds without synctest (#9484)
Previously, developers without the synctest experiment enabled would see
build failures when running tests in some server/internal/internal
packages using the synctest package. This change makes the transition to
use of the package less painful but guards the use of the synctest
package with build tags.

synctest is enabled in CI. If a new change will break a synctest
package, it will break in CI, even if it does not break locally.

The developer docs have been updated to help with any confusion about
why package tests pass locally but fail in CI.
2025-03-03 16:45:40 -08:00
KindBrave
fefbf8f74b docs: add Ollama Android Chat community integration 2025-03-03 16:38:32 -08:00
Michael Yang
b428ddd796 docker: use go version from go.mod 2025-03-03 13:02:02 -08:00
Michael Yang
ba7d31240e fix: own lib/ollama directory
expand backend loading error handling to catch more problems and log
them instead of panicing
2025-03-03 13:01:18 -08:00
CYJiang
d25efe3954 cmd: add default err return for stop (#9458) 2025-03-03 12:13:41 -08:00
Mark
36dfb906bb docs: don't use self-closing tag for anchor element (#9456) 2025-03-03 11:56:34 -08:00
aritra saha
a6f0f908b9 docs: update phi3-mini to phi4-mini (#9424)
* Update README.md

removed phi 3 mini and added phi4-mini

* Update README.md

---------

Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
2025-03-03 11:09:21 -08:00
İbrahim Çetin
3b1ddb2b3a docs: add reins to community integrations (#9411) 2025-03-03 11:06:30 -08:00
Jeffrey Morgan
1579c4f06d build: install binutils alongside gcc in Dockerfile (#9475) 2025-03-03 01:20:49 -08:00
Blake Mizerany
3519dd1c6e server/internal/client/ollama: hold DiskCache on Registry (#9463)
Previously, using a Registry required a DiskCache to be passed in for
use in various methods. This was a bit cumbersome, as the DiskCache is
required for most operations, and the DefaultCache is used in most of
those cases. This change makes the DiskCache an optional field on the
Registry struct.

This also changes DefaultCache to initialize on first use. This is to
not burden clients with the cost of creating a new cache per use, or
having to hold onto a cache for the lifetime of the Registry.

Also, slip in some minor docs updates for Trace.
2025-03-02 20:55:44 -08:00
Jeffrey Morgan
e41c4cbea7 build: install ccache manually in Dockerfile (#9464)
Reverts ccache installation to be done manually via curl instead of
using the dnf package manager as this has side effects of prepending
ccache's install directory to the front of the PATH
2025-03-02 16:48:31 -08:00
Blake Mizerany
ee048b76d4 server/internal/client/ollama: handle extended names in client/ollama (#9454)
The extended name format is a superset of the name format that only the
client needs to know about, not the server or other dependents of the
name package, so move the split logic into the client package.

Also, take advantage of knowing about the extended name format to allow
the client to use the extended name format when unlinking to verify they
are unlinking the manifest with the content they intend.
2025-03-02 13:30:41 -08:00
Soulter
af68d60a58 readme: add AstrBot to community integrations (#9442) 2025-03-01 21:58:34 -08:00
Jesse Gross
21aa666a1e ml: Enable support for flash attention
The GGML flash attention kernel has specific requirements for
padding and permutation. This adds support to the KV cache
for conforming to these requirements so that flash attention
can be enabled.

Flash attention can be used in the same situations as the llama
engine and is enabled by the user in the same way.
2025-03-01 20:53:23 -08:00
Jesse Gross
ee141cc821 ml: Empty tensor constructor for tensors
In cases where we allocate a tensor and then fully overwrite it with
copied data, it is wasteful to first zero out the memory.
2025-03-01 20:53:23 -08:00
Jesse Gross
55e5776c44 ggml-backend: Store parent backend as part of tensor
It can be important for a tensor to know what backend it came from -
for example, to know if flash attention is enabled.
2025-03-01 20:53:23 -08:00
Jesse Gross
854a9195f3 attention: Remove unnecessary contiguous operations
Prior to performing attention, we need to permute query, key
and value. Currently we call Contiguous after each of these
permutations, which is correct but expensive. Avoiding the
3 calls to Contiguous increases performance by over 20%.

The permutations of query and key do not violate the continuity
rules for mulmat and the Contiguous call can be simply removed.

Value requires a different permutation and does require Contiguous.
However, we can use the copy into the cache as a way to perform this
without further overhead.

To support this and avoid unexpected tensor shapes that are seen by
models, we need tighter integration between attention, cache
and backend. Future optimization will also likely need this structure
 - for example, flash attention has special padding requirements in
the cache and other backends may have their own needs.

This further contains the operations that go into attention so that
these and other optimizations can be handled transparently. Models
that have special requirements for attention can still implement
their own version of it.
2025-03-01 20:53:23 -08:00
Jeffrey Morgan
96a97adf9b build: use correct GGML_HIP_NO_VMM compiler definition for ggml-hip (#9451) 2025-03-01 17:00:31 -08:00
Jeffrey Morgan
e75c6126e9 build: set GGML_CUDA_NO_VMM for ggml-hip target (#9449) 2025-03-01 14:02:19 -08:00
Blake Mizerany
cda6f5c66c server/internal/internal/names: validate names (#9400)
This commit is a step towards a goal to make names less ceremonial
outside of the registry client. Clients of the registry package can
treat names as opaque strings, and the registry package will handle
parsing, validating, and normalizing names.

Ideally we end up with the names package tucked away in an internal
package for good. We'll see how things go.

Also, this package name is not permanent. This another step in the
on-going process of refactoring the server code, and at some point it
will most likely be renamed/moved.
2025-03-01 13:15:14 -08:00
Bruce MacDonald
bebb6823c0 server: validate local path on safetensor create (#9379)
More validation during the safetensor creation process.
Properly handle relative paths (like ./model.safetensors) while rejecting absolute paths
Add comprehensive test coverage for various paths
No functionality changes for valid inputs - existing workflows remain unaffected
Leverages Go 1.24's new os.Root functionality for secure containment
2025-02-28 16:10:43 -08:00
Michael Yang
31e472baa4 runner: defer context cancel
defer the cancel to guarantee it runs
2025-02-28 22:27:28 +00:00
Michael Yang
657685e85d fix: replace deprecated functions 2025-02-28 21:29:34 +00:00
Jeffrey Morgan
a14912858e build: add compute capability 12.0 to CUDA 12 preset (#9426)
Focuses initial Blackwell support on compute capability 12.0
which includes the 50x series of GeForce cards. In the future
additional compute capabilities may be added
2025-02-28 13:12:31 -08:00
Blake Mizerany
eed11ded30 server/.../safetensors: fix offsets and include all model parts (#9427)
Also, require the -as flag to be set when importing a model. This
prevents the confusing error message "invalid name".

Also, allow short names to be used when importing a model and
auto-complete the name with the default mask.
2025-02-28 13:08:10 -08:00
Michael Yang
b42aba40ed cuda: enable flash attention
ggml added an option to disable flash attention so explicitly enable it
2025-02-28 19:40:34 +00:00
王贺
25885e5335 docs: Add 1Panel to Community Integrations (#9312) 2025-02-28 09:53:03 -08:00
Jeffrey Morgan
98d44fa39d llama: add phi4 mini support (#9403) 2025-02-27 19:30:32 -08:00
Blake Mizerany
2099e2d267 CONTRIBUTING: provide clarity on good commit messages, and bad (#9405)
Also, our commit messages have been getting better, but we can do
better, and be more consistent. This adds more clarity on how to write
commit messages and provides examples of good and bad messages.

Also, our contributing guide was lacking helpful guidance on how to
start change proposals. This commit adds the start of that section.

Soon, we should add a proposal template to the issue tracker with a link
back to the proposal section, which should also be expanded upon.
2025-02-27 19:22:26 -08:00
Bruce MacDonald
0c1041ad85 runner: default to greedy sampler for performance (#9407)
As are adding support for weighted sampling we have seen some performance
regressions, bypassing the sampler logic for now and defaulting to greedy
until we can benchmark the new sampler logic.
2025-02-27 16:41:20 -08:00
Parth Sareen
c245b0406f sample: remove transforms from greedy sampling (#9377) 2025-02-27 15:44:53 -08:00
Michael Yang
8b194b7520 kvcache: update tests 2025-02-27 22:27:16 +00:00
Michael Yang
3e8b8a1933 ml: update Context.Forward interface
update Context.Forward to accept multiple tensors to match
Context.Compute signature

update Context.Forward to return Context such that it can be chained
with Context.Compute
2025-02-27 22:27:16 +00:00
Blake Mizerany
41dc280491 server/internal/registry: implement CloseNotify and Flush (for now) (#9402)
This fixes panics introduced in 2412adf42b
when Gin ungracefully assumes that the http.ResponseWriter implements
http.CloseNotifier and http.Flusher, which our new statusCodeRecorder
does not. This is a temporary fix until we can pour the rest of the Gin
out.
2025-02-27 14:00:37 -08:00
Michael Yang
53d2990d9b model: add bos token if configured 2025-02-27 21:04:59 +00:00
Jesse Gross
e185c08ad9 go.mod: Use full version for go 1.24.0
Otherwise on Linux I get:
go: download go1.24 for linux/amd64: toolchain not available
2025-02-27 13:01:32 -08:00
Blake Mizerany
2412adf42b server/internal: replace model delete API with new registry handler. (#9347)
This commit introduces a new API implementation for handling
interactions with the registry and the local model cache. The new API is
located in server/internal/registry. The package name is "registry" and
should be considered temporary; it is hidden and not bleeding outside of
the server package. As the commits roll in, we'll start consuming more
of the API and then let reverse osmosis take effect, at which point it
will surface closer to the root level packages as much as needed.
2025-02-27 12:04:53 -08:00
Steven Hartland
be2ac1ed93 docs: fix api examples link (#9360)
Fix the examples link in the go package documentation for the API.
2025-02-27 10:51:12 -08:00
Eries Trisnadi
dc13813a03 server: allow vscode-file origins (#9313) 2025-02-27 10:39:43 -08:00
Michael Yang
d6af13efed runner: simplify tensor split parsing 2025-02-27 18:36:46 +00:00
Michael Yang
a59f665235 ml/backend/ggml: fix debug logging 2025-02-27 18:30:57 +00:00
107 changed files with 6136 additions and 1810 deletions

View File

@@ -23,6 +23,7 @@ set(GGML_SCHED_MAX_COPIES 4)
set(GGML_LLAMAFILE ON)
set(GGML_CUDA_PEER_MAX_BATCH_SIZE 128)
set(GGML_CUDA_GRAPHS ON)
set(GGML_CUDA_FA ON)
if((CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_OSX_ARCHITECTURES MATCHES "arm64")
OR (NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_SYSTEM_PROCESSOR MATCHES "arm|aarch64|ARM64|ARMv[0-9]+"))
@@ -105,9 +106,11 @@ if(CMAKE_HIP_COMPILER)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-hip)
if (WIN32)
target_compile_definitions(ggml-hip PRIVATE GGML_CUDA_NO_PEER_COPY=1)
target_compile_definitions(ggml-hip PRIVATE GGML_CUDA_NO_PEER_COPY)
endif()
target_compile_definitions(ggml-hip PRIVATE GGML_HIP_NO_VMM)
set(OLLAMA_HIP_INSTALL_DIR ${OLLAMA_INSTALL_DIR}/rocm)
install(TARGETS ggml-hip
RUNTIME_DEPENDENCIES

View File

@@ -28,7 +28,7 @@
"name": "CUDA 12",
"inherits": [ "CUDA" ],
"cacheVariables": {
"CMAKE_CUDA_ARCHITECTURES": "50;60;61;70;75;80;86;87;89;90;90a;100"
"CMAKE_CUDA_ARCHITECTURES": "50;60;61;70;75;80;86;87;89;90;90a;120"
}
},
{

View File

@@ -6,8 +6,6 @@ Thank you for your interest in contributing to Ollama! Here are a few guidelines
See the [development documentation](./docs/development.md) for instructions on how to build and run Ollama locally.
## Pull requests
### Ideal issues
* [Bugs](https://github.com/ollama/ollama/issues?q=is%3Aissue+is%3Aopen+label%3Abug): issues where Ollama stops working or where it results in an unexpected error.
@@ -26,11 +24,64 @@ See the [development documentation](./docs/development.md) for instructions on h
* Changes that add significant friction to the user experience
* Changes that create a large future maintenance burden for maintainers and contributors
### Best practices
## Proposing a (non-trivial) change
* Commit messages: please leave both a title and a description in your commit messages. The title should be a short summary of the changes, with a leading word that explains the section of the code being changed (e.g. `api: fix parsing of prompt field`) . In the description, leave a short 2-3 sentences that explain more about the change and its impact.
* Tests: please add test coverage to changes where possible.
* Minimize dependencies: avoid adding new dependencies unless absolutely necessary.
> By "non-trivial", we mean a change that is not a bug fix or small
> documentation update. If you are unsure, please ask us on our [Discord
> server](https://discord.gg/ollama).
Before opening a non-trivial Pull Request, please open an issue to discuss the change and
get feedback from the maintainers. This helps us understand the context of the
change and how it fits into Ollama's roadmap and prevents us from duplicating
work or you from spending time on a change that we may not be able to accept.
Tips for proposals:
* Explain the problem you are trying to solve, not what you are trying to do.
* Explain why the change is important.
* Explain how the change will be used.
* Explain how the change will be tested.
Additionally, for bonus points: Provide draft documentation you would expect to
see if the change were accepted.
## Pull requests
**Commit messages**
The title should look like:
<package>: <short description>
The package is the most affected Go package. If the change does not affect Go
code, then use the directory name instead. Changes to a single well-known
file in the root directory may use the file name.
The short description should start with a lowercase letter and be a
continuation of the sentence:
"This changes Ollama to..."
Examples:
llm/backend/mlx: support the llama architecture
CONTRIBUTING: provide clairity on good commit messages, and bad
Bad Examples:
feat: add more emoji
fix: was not using famous web framework
chore: generify code
**Tests**
Please include tests. Strive to test behavior, not implementation.
**New dependencies**
Dependencies should be added sparingly. If you are adding a new dependency,
please explain why it is necessary and what other ways you attempted that
did not work without it.
## Need help?

View File

@@ -12,7 +12,7 @@ FROM --platform=linux/amd64 rocm/dev-almalinux-8:${ROCMVERSION}-complete AS base
RUN yum install -y yum-utils \
&& yum-config-manager --add-repo https://dl.rockylinux.org/vault/rocky/8.5/AppStream/\$basearch/os/ \
&& rpm --import https://dl.rockylinux.org/pub/rocky/RPM-GPG-KEY-Rocky-8 \
&& dnf install -y yum-utils ccache gcc-toolset-10-gcc-10.2.1-8.2.el8 gcc-toolset-10-gcc-c++-10.2.1-8.2.el8 \
&& dnf install -y yum-utils ccache gcc-toolset-10-gcc-10.2.1-8.2.el8 gcc-toolset-10-gcc-c++-10.2.1-8.2.el8 gcc-toolset-10-binutils-2.35-11.el8 \
&& yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/x86_64/cuda-rhel8.repo
ENV PATH=/opt/rh/gcc-toolset-10/root/usr/bin:$PATH
@@ -86,10 +86,11 @@ RUN --mount=type=cache,target=/root/.ccache \
&& cmake --install build --component CUDA --strip --parallel 8
FROM base AS build
ARG GOVERSION=1.23.4
RUN curl -fsSL https://golang.org/dl/go${GOVERSION}.linux-$(case $(uname -m) in x86_64) echo amd64 ;; aarch64) echo arm64 ;; esac).tar.gz | tar xz -C /usr/local
ENV PATH=/usr/local/go/bin:$PATH
WORKDIR /go/src/github.com/ollama/ollama
COPY go.mod go.sum .
RUN curl -fsSL https://golang.org/dl/go$(awk '/^go/ { print $2 }' go.mod).linux-$(case $(uname -m) in x86_64) echo amd64 ;; aarch64) echo arm64 ;; esac).tar.gz | tar xz -C /usr/local
ENV PATH=/usr/local/go/bin:$PATH
RUN go mod download
COPY . .
ARG GOFLAGS="'-ldflags=-w -s'"
ENV CGO_ENABLED=1

View File

@@ -1,5 +1,5 @@
<div align="center">
  <a href="https://ollama.com" />
  <a href="https://ollama.com">
<img alt="ollama" height="200px" src="https://github.com/ollama/ollama/assets/3325447/0d0b44e2-8f4a-4e99-9b52-a5c1c741c8f7">
</a>
</div>
@@ -54,6 +54,7 @@ Here are some example models that can be downloaded:
| Model | Parameters | Size | Download |
| ------------------ | ---------- | ----- | -------------------------------- |
| QwQ | 32B | 20GB | `ollama run qwq` |
| DeepSeek-R1 | 7B | 4.7GB | `ollama run deepseek-r1` |
| DeepSeek-R1 | 671B | 404GB | `ollama run deepseek-r1:671b` |
| Llama 3.3 | 70B | 43GB | `ollama run llama3.3` |
@@ -64,7 +65,7 @@ Here are some example models that can be downloaded:
| Llama 3.1 | 8B | 4.7GB | `ollama run llama3.1` |
| Llama 3.1 | 405B | 231GB | `ollama run llama3.1:405b` |
| Phi 4 | 14B | 9.1GB | `ollama run phi4` |
| Phi 3 Mini | 3.8B | 2.3GB | `ollama run phi3` |
| Phi 4 Mini | 3.8B | 2.5GB | `ollama run phi4-mini` |
| Gemma 2 | 2B | 1.6GB | `ollama run gemma2:2b` |
| Gemma 2 | 9B | 5.5GB | `ollama run gemma2` |
| Gemma 2 | 27B | 16GB | `ollama run gemma2:27b` |
@@ -75,7 +76,7 @@ Here are some example models that can be downloaded:
| Code Llama | 7B | 3.8GB | `ollama run codellama` |
| Llama 2 Uncensored | 7B | 3.8GB | `ollama run llama2-uncensored` |
| LLaVA | 7B | 4.5GB | `ollama run llava` |
| Solar | 10.7B | 6.1GB | `ollama run solar` |
| Granite-3.2 | 8B | 4.9GB | `ollama run granite3.2` |
> [!NOTE]
> You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
@@ -275,6 +276,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
### Web & Desktop
- [Open WebUI](https://github.com/open-webui/open-webui)
- [SwiftChat (macOS with ReactNative)](https://github.com/aws-samples/swift-chat)
- [Enchanted (macOS native)](https://github.com/AugustDev/enchanted)
- [Hollama](https://github.com/fmaclen/hollama)
- [Lollms-Webui](https://github.com/ParisNeo/lollms-webui)
@@ -386,6 +388,9 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [MaxKB](https://github.com/1Panel-dev/MaxKB/) (Ready-to-use & flexible RAG Chatbot)
- [yla](https://github.com/danielekp/yla) (Web interface to freely interact with your customized models)
- [LangBot](https://github.com/RockChinQ/LangBot) (LLM-based instant messaging bots platform, with Agents, RAG features, supports multiple platforms)
- [1Panel](https://github.com/1Panel-dev/1Panel/) (Web-based Linux Server Management Tool)
- [AstrBot](https://github.com/Soulter/AstrBot/) (User-friendly LLM-based multi-platform chatbot with a WebUI, supporting RAG, LLM agents, and plugins integration)
- [Reins](https://github.com/ibrahimcetin/reins) (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)
### Cloud
@@ -429,6 +434,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
### Apple Vision Pro
- [SwiftChat](https://github.com/aws-samples/swift-chat) (Cross-platform AI chat app supporting Apple Vision Pro via "Designed for iPad")
- [Enchanted](https://github.com/AugustDev/enchanted)
### Database
@@ -506,10 +512,13 @@ See the [API documentation](./docs/api.md) for all endpoints.
### Mobile
- [SwiftChat](https://github.com/aws-samples/swift-chat) (Lightning-fast Cross-platform AI chat app with native UI for Android, iOS and iPad)
- [Enchanted](https://github.com/AugustDev/enchanted)
- [Maid](https://github.com/Mobile-Artificial-Intelligence/maid)
- [Ollama App](https://github.com/JHubi1/ollama-app) (Modern and easy-to-use multi-platform client for Ollama)
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)
- [Ollama Android Chat](https://github.com/sunshine0523/OllamaServer) (No need for Termux, start the Ollama service with one click on an Android device)
- [Reins](https://github.com/ibrahimcetin/reins) (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)
### Extensions & Plugins
@@ -555,12 +564,14 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [TextLLaMA](https://github.com/adarshM84/TextLLaMA) A Chrome Extension that helps you write emails, correct grammar, and translate into any language
- [Simple-Discord-AI](https://github.com/zyphixor/simple-discord-ai)
- [LLM Telegram Bot](https://github.com/innightwolfsleep/llm_telegram_bot) (telegram bot, primary for RP. Oobabooga-like buttons, [A1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui) API integration e.t.c)
- [mcp-llm](https://github.com/sammcj/mcp-llm) (MCP Server to allow LLMs to call other LLMs)
### Supported backends
- [llama.cpp](https://github.com/ggerganov/llama.cpp) project founded by Georgi Gerganov.
### Observability
- [Opik](https://www.comet.com/docs/opik/cookbook/ollama) is an open-source platform to debug, evaluate, and monitor your LLM applications, RAG systems, and agentic workflows with comprehensive tracing, automated evaluations, and production-ready dashboards. Opik supports native intergration to Ollama.
- [Lunary](https://lunary.ai/docs/integrations/ollama) is the leading open-source LLM observability platform. It provides a variety of enterprise-grade features such as real-time analytics, prompt templates management, PII masking, and comprehensive agent tracing.
- [OpenLIT](https://github.com/openlit/openlit) is an OpenTelemetry-native tool for monitoring Ollama Applications & GPUs using traces and metrics.
- [HoneyHive](https://docs.honeyhive.ai/integrations/ollama) is an AI observability and evaluation platform for AI agents. Use HoneyHive to evaluate agent performance, interrogate failures, and monitor quality in production.

View File

@@ -10,7 +10,7 @@
// repository].
//
// [the API documentation]: https://github.com/ollama/ollama/blob/main/docs/api.md
// [in the GitHub repository]: https://github.com/ollama/ollama/tree/main/examples
// [in the GitHub repository]: https://github.com/ollama/ollama/tree/main/api/examples
package api
import (

View File

@@ -361,9 +361,9 @@ type CopyRequest struct {
// PullRequest is the request passed to [Client.Pull].
type PullRequest struct {
Model string `json:"model"`
Insecure bool `json:"insecure,omitempty"`
Username string `json:"username"`
Password string `json:"password"`
Insecure bool `json:"insecure,omitempty"` // Deprecated: ignored
Username string `json:"username"` // Deprecated: ignored
Password string `json:"password"` // Deprecated: ignored
Stream *bool `json:"stream,omitempty"`
// Deprecated: set the model name with Model instead

View File

@@ -34,7 +34,6 @@ import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/llama"
"github.com/ollama/ollama/parser"
"github.com/ollama/ollama/progress"
"github.com/ollama/ollama/runner"
@@ -256,6 +255,7 @@ func StopHandler(cmd *cobra.Command, args []string) error {
if strings.Contains(err.Error(), "not found") {
return fmt.Errorf("couldn't find model \"%s\" to stop", args[0])
}
return err
}
return nil
}
@@ -338,10 +338,16 @@ func RunHandler(cmd *cobra.Command, args []string) error {
return err
}
// TODO(jessegross): We should either find another way to know if this is
// a vision model or remove the logic. Also consider that other modalities will
// need different behavior anyways.
opts.MultiModal = len(info.ProjectorInfo) != 0 || envconfig.NewEngine()
if len(info.ProjectorInfo) != 0 {
opts.MultiModal = true
}
for k := range info.ModelInfo {
if strings.Contains(k, ".vision.") {
opts.MultiModal = true
break
}
}
opts.ParentModel = info.Details.ParentModel
if interactive {
@@ -1274,7 +1280,6 @@ func NewCLI() *cobra.Command {
runnerCmd := &cobra.Command{
Use: "runner",
Short: llama.PrintSystemInfo(),
Hidden: true,
RunE: func(cmd *cobra.Command, args []string) error {
return runner.Execute(os.Args[1:])

View File

@@ -13,8 +13,13 @@ import (
)
type ModelParameters struct {
Architectures []string `json:"architectures"`
VocabSize uint32 `json:"vocab_size"`
Architectures []string `json:"architectures"`
VocabSize uint32 `json:"vocab_size"`
TextModel TextParameters `json:"text_config"`
}
type TextParameters struct {
VocabSize uint32 `json:"vocab_size"`
}
type AdapterParameters struct {
@@ -185,6 +190,8 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
conv = &gemmaModel{}
case "Gemma2ForCausalLM":
conv = &gemma2Model{}
case "Gemma3ForCausalLM", "Gemma3ForConditionalGeneration":
conv = &gemma3Model{Architecture: p.Architectures[0]}
case "Phi3ForCausalLM":
conv = &phi3Model{}
case "Qwen2ForCausalLM":
@@ -213,7 +220,14 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
}
vocabSize := int(p.VocabSize)
if vocabSize == 0 {
tVocabSize := int(p.TextModel.VocabSize)
vocabSize = tVocabSize
}
switch {
case vocabSize == 0:
slog.Warn("vocabulary size was not explicitly set by the model", "default size", len(t.Vocabulary.Tokens))
case vocabSize > len(t.Vocabulary.Tokens):
slog.Warn("vocabulary is smaller than expected, padding with dummy tokens", "expect", vocabSize, "actual", len(t.Vocabulary.Tokens))
for i := range vocabSize - len(t.Vocabulary.Tokens) {

View File

@@ -45,7 +45,7 @@ func (p *gemmaModel) KV(t *Tokenizer) ggml.KV {
func (p *gemmaModel) Tensors(ts []Tensor) []ggml.Tensor {
var out []ggml.Tensor
for _, t := range ts {
if strings.HasSuffix(t.Name(), "_norm.weight") {
if !strings.HasPrefix(t.Name(), "v.") && strings.HasSuffix(t.Name(), "_norm.weight") {
t.SetRepacker(p.addOne)
}

142
convert/convert_gemma3.go Normal file
View File

@@ -0,0 +1,142 @@
package convert
import (
"cmp"
"github.com/ollama/ollama/fs/ggml"
)
type gemma3Model struct {
gemmaModel
Architecture string
TextModel struct {
HeadDim uint32 `json:"head_dim"`
HiddenSize uint32 `json:"hidden_size"`
HiddenLayers uint32 `json:"num_hidden_layers"`
IntermediateSize uint32 `json:"intermediate_size"`
SlidingWindow uint32 `json:"sliding_window"`
} `json:"text_config"`
VisionModel struct {
NumAttentionHeads uint32 `json:"num_attention_heads"` // attention.head_count 16
LayerNormEpsilon float32 `json:"layer_norm_eps"` // attention.layer_norm_epsilon 1e-05
NumHiddenLayers uint32 `json:"num_hidden_layers"` // block_count 32
HiddenSize uint32 `json:"hidden_size"` // embedding_length 1280
IntermediateSize uint32 `json:"intermediate_size"` // feed_forward_length 5120
ImageSize uint32 `json:"image_size"` // image_size 560
NumChannels uint32 `json:"num_channels"` // num_channels 3
PatchSize uint32 `json:"patch_size"` // patch_size 14
} `json:"vision_config"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RMSNormEPS float32 `json:"rms_norm_eps"`
HeadDim uint32 `json:"head_dim"`
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
RopeLocalTheta float32 `json:"rope_local_base_freq"`
RopeGlobalTheta float32 `json:"rope_global_base_freq"`
SlidingWindow uint32 `json:"sliding_window"`
MultiModalTokensPerImage uint32 `json:"mm_tokens_per_image"`
}
const (
gemma4BLayerCount = 34
gemma12BLayerCount = 48
gemma27BLayerCount = 62
)
func (p *gemma3Model) KV(t *Tokenizer) ggml.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "gemma3"
numBlocks := cmp.Or(p.HiddenLayers, p.TextModel.HiddenLayers)
kv["gemma3.block_count"] = numBlocks
var (
numHeads uint32
numKVHeads uint32
)
switch numBlocks {
case gemma4BLayerCount:
numHeads = 8
numKVHeads = 4
case gemma12BLayerCount:
numHeads = 16
numKVHeads = 8
case gemma27BLayerCount:
numHeads = 32
numKVHeads = 16
default:
numHeads = p.NumAttentionHeads
numKVHeads = p.NumKeyValueHeads
}
kv["gemma3.attention.head_count"] = numHeads
kv["gemma3.attention.head_count_kv"] = numKVHeads
switch p.Architecture {
case "Gemma3ForCausalLM":
kv["gemma3.context_length"] = p.MaxPositionEmbeddings
kv["gemma3.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
kv["gemma3.attention.key_length"] = p.HeadDim
kv["gemma3.attention.value_length"] = p.HeadDim
kv["gemma3.attention.sliding_window"] = p.SlidingWindow
kv["gemma3.final_logit_softcapping"] = cmp.Or(p.FinalLogitSoftcap, 30)
kv["gemma3.rope.local.freq_base"] = cmp.Or(p.RopeLocalTheta, 10000.0)
kv["gemma3.rope.global.freq_base"] = cmp.Or(p.RopeGlobalTheta, 1000000.0)
kv["gemma3.embedding_length"] = p.HiddenSize
kv["gemma3.feed_forward_length"] = p.IntermediateSize
default:
kv["gemma3.context_length"] = cmp.Or(p.MaxPositionEmbeddings, 8192)
kv["gemma3.embedding_length"] = p.TextModel.HiddenSize
kv["gemma3.feed_forward_length"] = p.TextModel.IntermediateSize
kv["gemma3.attention.sliding_window"] = p.TextModel.SlidingWindow
kv["gemma3.vision.block_count"] = p.VisionModel.NumHiddenLayers
kv["gemma3.vision.embedding_length"] = p.VisionModel.HiddenSize
kv["gemma3.vision.feed_forward_length"] = p.VisionModel.IntermediateSize
kv["gemma3.vision.image_size"] = p.VisionModel.ImageSize
kv["gemma3.vision.patch_size"] = p.VisionModel.PatchSize
kv["gemma3.vision.num_channels"] = cmp.Or(p.VisionModel.NumChannels, 3)
kv["gemma3.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
kv["gemma3.vision.attention.layer_norm_epsilon"] = cmp.Or(p.VisionModel.LayerNormEpsilon, 1e-6)
kv["gemma3.attention.key_length"] = cmp.Or(p.TextModel.HeadDim, 256)
kv["gemma3.attention.value_length"] = cmp.Or(p.TextModel.HeadDim, 256)
}
if p.MultiModalTokensPerImage > 0 {
kv["gemma3.mm.tokens_per_image"] = p.MultiModalTokensPerImage
}
return kv
}
func (p *gemma3Model) Replacements() []string {
return []string{
"lm_head", "output",
"model.embed_tokens", "token_embd",
"model.norm", "output_norm",
"vision_tower.vision_model.embeddings", "v",
"vision_tower.vision_model", "v",
"vision_model.vision_model.embeddings", "v",
"vision_model.vision_model", "v",
"language_model.", "",
"model.layers", "blk",
"encoder.layers", "blk",
"input_layernorm", "attn_norm",
"self_attn.q_proj", "attn_q",
"self_attn.q_norm", "attn_q_norm",
"self_attn.k_proj", "attn_k",
"self_attn.k_norm", "attn_k_norm",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"self_attn.out_proj", "attn_output",
"mlp.gate_proj", "ffn_gate",
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
"post_attention_layernorm", "post_attention_norm",
"pre_feedforward_layernorm", "ffn_norm",
"post_feedforward_layernorm", "post_ffw_norm",
"input_projection_weight", "input_projection.weight",
"multi_modal_projector", "mm",
}
}

View File

@@ -6,7 +6,9 @@ import (
"errors"
"fmt"
"io/fs"
"log/slog"
"os"
"reflect"
"slices"
"google.golang.org/protobuf/proto"
@@ -15,6 +17,8 @@ import (
)
func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
slog.Debug("using spm vocabulary")
ast, err := parseAdditionalSpecialTokens(fsys)
if err != nil {
return nil, err
@@ -43,10 +47,19 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
v.Types = append(v.Types, int32(t))
default:
tt := int32(sentencepiece.ModelProto_SentencePiece_NORMAL)
if slices.Contains(ast, piece.GetPiece()) {
// temporary fix to handle gemma3 broken configs
if slices.Contains([]string{"<end_of_turn>", "<start_of_turn>"}, piece.GetPiece()) {
tt = int32(sentencepiece.ModelProto_SentencePiece_CONTROL)
}
for _, t := range ast {
if t.Content == piece.GetPiece() {
tt = int32(sentencepiece.ModelProto_SentencePiece_CONTROL)
break
}
}
v.Types = append(v.Types, tt)
}
}
@@ -78,10 +91,16 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
return cmp.Compare(i.id, j.id)
})
n := len(v.Tokens)
for i, t := range ts {
if t.id != i+n {
return nil, fmt.Errorf("invalid token id: %d", t.id)
for _, t := range ts {
if t.id < len(v.Tokens) {
if v.Tokens[t.id] == t.content {
slog.Warn("tokenizer", "duplicate token", t.content, "id", t.id)
continue
}
return nil, fmt.Errorf("token mismatch: %s != %s at pos [%d]", t.content, v.Tokens[t.id], t.id)
}
if t.id != len(v.Tokens) {
return nil, fmt.Errorf("invalid token id: [%d] as pos [%d]", t.id, len(v.Tokens))
}
v.Tokens = append(v.Tokens, t.content)
@@ -92,7 +111,15 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
return &v, nil
}
func parseAdditionalSpecialTokens(fsys fs.FS) ([]string, error) {
type specialToken struct {
Content string `json:"content"`
Lstrip bool `json:"lstrip"`
Normalized bool `json:"normalized"`
Rstrip bool `json:"rstrip"`
SingleWord bool `json:"single_word"`
}
func parseAdditionalSpecialTokens(fsys fs.FS) ([]specialToken, error) {
f, err := fsys.Open("special_tokens_map.json")
if errors.Is(err, os.ErrNotExist) {
return nil, nil
@@ -102,12 +129,43 @@ func parseAdditionalSpecialTokens(fsys fs.FS) ([]string, error) {
defer f.Close()
var m struct {
AdditionalSpecialTokens []string `json:"additional_special_tokens"`
AdditionalSpecialTokens any `json:"additional_special_tokens"`
}
if err := json.NewDecoder(f).Decode(&m); err != nil {
return nil, err
}
return m.AdditionalSpecialTokens, nil
var ast []specialToken
switch st := m.AdditionalSpecialTokens.(type) {
case []string:
for _, s := range st {
ast = append(ast, specialToken{Content: s})
}
case []any:
for _, s := range st {
// marshal and unmarshal the object to get the special token
tMap := s.(map[string]any)
data, err := json.Marshal(tMap)
if err != nil {
return nil, err
}
var token specialToken
err = json.Unmarshal(data, &token)
if err != nil {
return nil, err
}
ast = append(ast, token)
}
default:
slog.Warn("special token", "unknown token", reflect.TypeOf(st))
}
slog.Debug("spm tokenizer", "additional tokens", ast)
return ast, nil
}

View File

@@ -118,6 +118,35 @@ To run tests, use `go test`:
go test ./...
```
> NOTE: In rare cirumstances, you may nedd to change a package using the new
> "synctest" package in go1.24.
>
> If you do not have the "synctest" package enabled, you will not see build or
> test failures resulting from your change(s), if any, locally, but CI will
> break.
>
> If you see failures in CI, you can either keep pushing changes to see if the
> CI build passes, or you can enable the "synctest" package locally to see the
> failures before pushing.
>
> To enable the "synctest" package for testing, run the following command:
>
> ```shell
> GOEXPERIMENT=synctest go test ./...
> ```
>
> If you wish to enable synctest for all go commands, you can set the
> `GOEXPERIMENT` environment variable in your shell profile or by using:
>
> ```shell
> go env -w GOEXPERIMENT=synctest
> ```
>
> Which will enable the "synctest" package for all go commands without needing
> to set it for all shell sessions.
>
> The synctest package is not required for production builds.
## Library detection
Ollama looks for acceleration libraries in the following paths relative to the `ollama` executable:

View File

@@ -20,7 +20,7 @@ Please refer to the [GPU docs](./gpu.md).
## How can I specify the context window size?
By default, Ollama uses a context window size of 2048 tokens.
By default, Ollama uses a context window size of 2048 tokens. This can be overridden with the `OLLAMA_CONTEXT_LENGTH` environment variable. For example, to set the default context length to 8K, use: `OLLAMA_CONTEXT_LENGTH=8192 ollama serve`.
To change this when using `ollama run`, use `/set parameter`:

View File

@@ -75,7 +75,7 @@ RestartSec=3
Environment="PATH=$PATH"
[Install]
WantedBy=default.target
WantedBy=multi-user.target
```
Then start the service:

View File

@@ -81,9 +81,11 @@ help you keep up to date.
If you'd like to install or integrate Ollama as a service, a standalone
`ollama-windows-amd64.zip` zip file is available containing only the Ollama CLI
and GPU library dependencies for Nvidia and AMD. This allows for embedding
Ollama in existing applications, or running it as a system service via `ollama
serve` with tools such as [NSSM](https://nssm.cc/).
and GPU library dependencies for Nvidia. If you have an AMD GPU, also download
and extract the additional ROCm package `ollama-windows-amd64-rocm.zip` into the
same directory. This allows for embedding Ollama in existing applications, or
running it as a system service via `ollama serve` with tools such as
[NSSM](https://nssm.cc/).
> [!NOTE]
> If you are upgrading from a prior version, you should remove the old directories first.

View File

@@ -73,6 +73,7 @@ func AllowedOrigins() (origins []string) {
"file://*",
"tauri://*",
"vscode-webview://*",
"vscode-file://*",
)
return origins

View File

@@ -69,6 +69,7 @@ func TestOrigins(t *testing.T) {
"file://*",
"tauri://*",
"vscode-webview://*",
"vscode-file://*",
}},
{"http://10.0.0.1", []string{
"http://10.0.0.1",
@@ -88,6 +89,7 @@ func TestOrigins(t *testing.T) {
"file://*",
"tauri://*",
"vscode-webview://*",
"vscode-file://*",
}},
{"http://172.16.0.1,https://192.168.0.1", []string{
"http://172.16.0.1",
@@ -108,6 +110,7 @@ func TestOrigins(t *testing.T) {
"file://*",
"tauri://*",
"vscode-webview://*",
"vscode-file://*",
}},
{"http://totally.safe,http://definitely.legit", []string{
"http://totally.safe",
@@ -128,6 +131,7 @@ func TestOrigins(t *testing.T) {
"file://*",
"tauri://*",
"vscode-webview://*",
"vscode-file://*",
}},
}
for _, tt := range cases {

View File

@@ -100,6 +100,10 @@ func (kv KV) Float(key string, defaultValue ...float32) float32 {
return keyValue(kv, key, append(defaultValue, 0)...)
}
func (kv KV) Bool(key string, defaultValue ...bool) bool {
return keyValue(kv, key, append(defaultValue, false)...)
}
func (kv KV) Strings(key string, defaultValue ...[]string) []string {
r := keyValue(kv, key, &array{})
s := make([]string, r.size)
@@ -120,7 +124,20 @@ func (kv KV) Uints(key string, defaultValue ...[]uint32) []uint32 {
return s
}
func keyValue[T string | uint32 | uint64 | float32 | *array](kv KV, key string, defaultValue ...T) T {
func (kv KV) Floats(key string, defaultValue ...[]float32) []float32 {
r := keyValue(kv, key, &array{})
s := make([]float32, r.size)
for i := range r.size {
s[i] = float32(r.values[i].(float32))
}
return s
}
func (kv KV) OllamaEngineRequired() bool {
return kv.Architecture() == "gemma3"
}
func keyValue[T string | uint32 | uint64 | float32 | *array | bool](kv KV, key string, defaultValue ...T) T {
if !strings.HasPrefix(key, "tokenizer.") && !strings.HasPrefix(key, "general.") {
key = kv.Architecture() + "." + key
}
@@ -472,7 +489,7 @@ func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialO
// vocab graph
4*batch*(embedding+vocab)+embedding*vocab*105/128,
)
case "gemma", "gemma2":
case "gemma", "gemma2", "gemma3":
fullOffload = max(
4*batch*(embedding+vocab),
4*batch*(2+context+context*heads+2*embedding+2*embeddingHeadsK*heads),
@@ -561,6 +578,43 @@ func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialO
return
}
func (llm GGML) VisionGraphSize() (weights, graphSize uint64) {
switch llm.KV().Architecture() {
case "mllama":
for _, layer := range llm.Tensors().GroupLayers()["v"] {
weights += layer.Size()
}
kv := func(n string) uint64 {
if v, ok := llm.KV()["mllama.vision."+n].(uint32); ok {
return uint64(v)
}
return 0
}
imageSize := kv("image_size")
maxNumTiles := kv("max_num_tiles")
embeddingLength := kv("embedding_length")
headCount := kv("attention.head_count")
numPatches := (imageSize / kv("patch_size")) * (imageSize / kv("patch_size"))
if _, ok := llm.Tensors().GroupLayers()["v"]["class_embd"]; ok {
numPatches++
}
numPaddedPatches := numPatches + 8 - (numPatches%8)%8
graphSize = 4 * (8 +
imageSize*imageSize*kv("num_channels")*maxNumTiles +
embeddingLength*numPatches*maxNumTiles +
9*embeddingLength*numPaddedPatches*maxNumTiles +
numPaddedPatches*maxNumTiles*numPaddedPatches*maxNumTiles*headCount)
}
return weights, graphSize
}
// SupportsKVCacheType checks if the requested cache type is supported
func (f GGML) SupportsKVCacheType(cacheType string) bool {
return slices.Contains([]string{"f16", "q8_0", "q4_0"}, cacheType)

19
go.mod
View File

@@ -1,6 +1,6 @@
module github.com/ollama/ollama
go 1.24
go 1.24.0
require (
github.com/containerd/console v1.0.3
@@ -11,7 +11,7 @@ require (
github.com/spf13/cobra v1.7.0
github.com/stretchr/testify v1.9.0
github.com/x448/float16 v0.8.4
golang.org/x/sync v0.10.0
golang.org/x/sync v0.11.0
)
require (
@@ -24,7 +24,7 @@ require (
github.com/nlpodyssey/gopickle v0.3.0
github.com/pdevine/tensor v0.0.0-20240510204454-f88f4562727c
golang.org/x/image v0.22.0
gonum.org/v1/gonum v0.15.0
golang.org/x/tools v0.30.0
)
require (
@@ -44,6 +44,7 @@ require (
github.com/xtgo/set v1.0.0 // indirect
go4.org/unsafe/assume-no-moving-gc v0.0.0-20231121144256-b99613f794b6 // indirect
golang.org/x/xerrors v0.0.0-20200804184101-5ec99f83aff1 // indirect
gonum.org/v1/gonum v0.15.0 // indirect
gorgonia.org/vecf32 v0.9.0 // indirect
gorgonia.org/vecf64 v0.9.0 // indirect
)
@@ -69,12 +70,12 @@ require (
github.com/twitchyliquid64/golang-asm v0.15.1 // indirect
github.com/ugorji/go/codec v1.2.12 // indirect
golang.org/x/arch v0.8.0 // indirect
golang.org/x/crypto v0.31.0
golang.org/x/exp v0.0.0-20231110203233-9a3e6036ecaa
golang.org/x/net v0.25.0 // indirect
golang.org/x/sys v0.28.0
golang.org/x/term v0.27.0
golang.org/x/text v0.21.0
golang.org/x/crypto v0.33.0
golang.org/x/exp v0.0.0-20250218142911-aa4b98e5adaa
golang.org/x/net v0.35.0 // indirect
golang.org/x/sys v0.30.0
golang.org/x/term v0.29.0
golang.org/x/text v0.22.0
google.golang.org/protobuf v1.34.1
gopkg.in/yaml.v3 v3.0.1 // indirect
)

30
go.sum
View File

@@ -214,16 +214,16 @@ golang.org/x/crypto v0.0.0-20190308221718-c2843e01d9a2/go.mod h1:djNgcEr1/C05ACk
golang.org/x/crypto v0.0.0-20190510104115-cbcb75029529/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
golang.org/x/crypto v0.0.0-20191011191535-87dc89f01550/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
golang.org/x/crypto v0.0.0-20200622213623-75b288015ac9/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto=
golang.org/x/crypto v0.31.0 h1:ihbySMvVjLAeSH1IbfcRTkD/iNscyz8rGzjF/E5hV6U=
golang.org/x/crypto v0.31.0/go.mod h1:kDsLvtWBEx7MV9tJOj9bnXsPbxwJQ6csT/x4KIN4Ssk=
golang.org/x/crypto v0.33.0 h1:IOBPskki6Lysi0lo9qQvbxiQ+FvsCC/YWOecCHAixus=
golang.org/x/crypto v0.33.0/go.mod h1:bVdXmD7IV/4GdElGPozy6U7lWdRXA4qyRVGJV57uQ5M=
golang.org/x/exp v0.0.0-20180321215751-8460e604b9de/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
golang.org/x/exp v0.0.0-20180807140117-3d87b88a115f/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
golang.org/x/exp v0.0.0-20190121172915-509febef88a4/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
golang.org/x/exp v0.0.0-20190125153040-c74c464bbbf2/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
golang.org/x/exp v0.0.0-20190306152737-a1d7652674e8/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
golang.org/x/exp v0.0.0-20191002040644-a1355ae1e2c3/go.mod h1:NOZ3BPKG0ec/BKJQgnvsSFpcKLM5xXVWnvZS97DWHgE=
golang.org/x/exp v0.0.0-20231110203233-9a3e6036ecaa h1:FRnLl4eNAQl8hwxVVC17teOw8kdjVDVAiFMtgUdTSRQ=
golang.org/x/exp v0.0.0-20231110203233-9a3e6036ecaa/go.mod h1:zk2irFbV9DP96SEBUUAy67IdHUaZuSnrz1n472HUCLE=
golang.org/x/exp v0.0.0-20250218142911-aa4b98e5adaa h1:t2QcU6V556bFjYgu4L6C+6VrCPyJZ+eyRsABUPs1mz4=
golang.org/x/exp v0.0.0-20250218142911-aa4b98e5adaa/go.mod h1:BHOTPb3L19zxehTsLoJXVaTktb06DFgmdW6Wb9s8jqk=
golang.org/x/image v0.0.0-20180708004352-c73c2afc3b81/go.mod h1:ux5Hcp/YLpHSI86hEcLt0YII63i6oz57MZXIpbrjZUs=
golang.org/x/image v0.0.0-20190227222117-0694c2d4d067/go.mod h1:kZ7UVZpmo3dzQBMxlp+ypCbDeSB+sBbTgSJuh5dn5js=
golang.org/x/image v0.0.0-20190802002840-cff245a6509b/go.mod h1:FeLwcggjj3mMvU+oOTbSwawSJRM1uh48EjtB4UJZlP0=
@@ -257,8 +257,8 @@ golang.org/x/net v0.0.0-20200822124328-c89045814202/go.mod h1:/O7V0waA8r7cgGh81R
golang.org/x/net v0.0.0-20201021035429-f5854403a974/go.mod h1:sp8m0HH+o8qH0wwXwYZr8TS3Oi6o0r6Gce1SSxlDquU=
golang.org/x/net v0.0.0-20210405180319-a5a99cb37ef4/go.mod h1:p54w0d4576C0XHj96bSt6lcn1PtDYWL6XObtHCRCNQM=
golang.org/x/net v0.0.0-20210614182718-04defd469f4e/go.mod h1:9nx3DQGgdP8bBQD5qxJ1jj9UTztislL4KSBs9R2vV5Y=
golang.org/x/net v0.25.0 h1:d/OCCoBEUq33pjydKrGQhw7IlUPI2Oylr+8qLx49kac=
golang.org/x/net v0.25.0/go.mod h1:JkAGAh7GEvH74S6FOH42FLoXpXbE/aqXSrIQjXgsiwM=
golang.org/x/net v0.35.0 h1:T5GQRQb2y08kTAByq9L4/bz8cipCdA8FbRTXewonqY8=
golang.org/x/net v0.35.0/go.mod h1:EglIi67kWsHKlRzzVMUD93VMSWGFOMSZgxFjparz1Qk=
golang.org/x/oauth2 v0.0.0-20180821212333-d2e6202438be/go.mod h1:N/0e6XlmueqKjAGxoOufVs8QHGRruUQn6yWY3a++T0U=
golang.org/x/oauth2 v0.0.0-20200107190931-bf48bf16ab8d/go.mod h1:gOpvHmFTYa4IltrdGE7lF6nIHvwfUNPOp7c8zoXwtLw=
golang.org/x/sync v0.0.0-20180314180146-1d60e4601c6f/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
@@ -268,8 +268,8 @@ golang.org/x/sync v0.0.0-20190423024810-112230192c58/go.mod h1:RxMgew5VJxzue5/jJ
golang.org/x/sync v0.0.0-20190911185100-cd5d95a43a6e/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20201020160332-67f06af15bc9/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20210220032951-036812b2e83c/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.10.0 h1:3NQrjDixjgGwUOCaF8w2+VYHv0Ve/vGYSbdkTa98gmQ=
golang.org/x/sync v0.10.0/go.mod h1:Czt+wKu1gCyEFDUtn0jG5QVvpJ6rzVqr5aXyt9drQfk=
golang.org/x/sync v0.11.0 h1:GGz8+XQP4FvTTrjZPzNKTMFtSXH80RAzG+5ghFPgK9w=
golang.org/x/sync v0.11.0/go.mod h1:Czt+wKu1gCyEFDUtn0jG5QVvpJ6rzVqr5aXyt9drQfk=
golang.org/x/sys v0.0.0-20180830151530-49385e6e1522/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20190215142949-d0b11bdaac8a/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20190312061237-fead79001313/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
@@ -285,17 +285,17 @@ golang.org/x/sys v0.0.0-20210510120138-977fb7262007/go.mod h1:oPkhp1MJrh7nUepCBc
golang.org/x/sys v0.0.0-20210630005230-0f9fa26af87c/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.5.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.6.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.28.0 h1:Fksou7UEQUWlKvIdsqzJmUmCX3cZuD2+P3XyyzwMhlA=
golang.org/x/sys v0.28.0/go.mod h1:/VUhepiaJMQUp4+oa/7Zr1D23ma6VTLIYjOOTFZPUcA=
golang.org/x/sys v0.30.0 h1:QjkSwP/36a20jFYWkSue1YwXzLmsV5Gfq7Eiy72C1uc=
golang.org/x/sys v0.30.0/go.mod h1:/VUhepiaJMQUp4+oa/7Zr1D23ma6VTLIYjOOTFZPUcA=
golang.org/x/term v0.0.0-20201126162022-7de9c90e9dd1/go.mod h1:bj7SfCRtBDWHUb9snDiAeCFNEtKQo2Wmx5Cou7ajbmo=
golang.org/x/term v0.27.0 h1:WP60Sv1nlK1T6SupCHbXzSaN0b9wUmsPoRS9b61A23Q=
golang.org/x/term v0.27.0/go.mod h1:iMsnZpn0cago0GOrHO2+Y7u7JPn5AylBrcoWkElMTSM=
golang.org/x/term v0.29.0 h1:L6pJp37ocefwRRtYPKSWOWzOtWSxVajvz2ldH/xi3iU=
golang.org/x/term v0.29.0/go.mod h1:6bl4lRlvVuDgSf3179VpIxBF0o10JUpXWOnI7nErv7s=
golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
golang.org/x/text v0.3.3/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
golang.org/x/text v0.3.5/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
golang.org/x/text v0.3.6/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
golang.org/x/text v0.21.0 h1:zyQAAkrwaneQ066sspRyJaG9VNi/YJ1NfzcGB3hZ/qo=
golang.org/x/text v0.21.0/go.mod h1:4IBbMaMmOPCJ8SecivzSH54+73PCFmPWxNTLm+vZkEQ=
golang.org/x/text v0.22.0 h1:bofq7m3/HAFvbF51jz3Q9wLg3jkvSPuiZu/pD1XwgtM=
golang.org/x/text v0.22.0/go.mod h1:YRoo4H8PVmsu+E3Ou7cqLVH8oXWIHVoX0jqUWALQhfY=
golang.org/x/tools v0.0.0-20180525024113-a5b4c53f6e8b/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
golang.org/x/tools v0.0.0-20180917221912-90fa682c2a6e/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
golang.org/x/tools v0.0.0-20190114222345-bf090417da8b/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
@@ -309,6 +309,8 @@ golang.org/x/tools v0.0.0-20200130002326-2f3ba24bd6e7/go.mod h1:TB2adYChydJhpapK
golang.org/x/tools v0.0.0-20200619180055-7c47624df98f/go.mod h1:EkVYQZoAsY45+roYkvgYkIh4xh/qjgUK9TdY2XT94GE=
golang.org/x/tools v0.0.0-20210106214847-113979e3529a/go.mod h1:emZCQorbCU4vsT4fOWvOPXz4eW1wZW4PmDk9uLelYpA=
golang.org/x/tools v0.1.4/go.mod h1:o0xws9oXOQQZyjljx8fwUC0k7L1pTE6eaCbjGeHmOkk=
golang.org/x/tools v0.30.0 h1:BgcpHewrV5AUp2G9MebG4XPFI1E2W41zU1SaqVA9vJY=
golang.org/x/tools v0.30.0/go.mod h1:c347cR/OJfw5TI+GfX7RUPNMdDRRbjvYTS0jPyvsVtY=
golang.org/x/xerrors v0.0.0-20190717185122-a985d3407aa7/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20191011141410-1b5146add898/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20191204190536-9bdfabe68543/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=

View File

@@ -4,6 +4,7 @@ import (
"errors"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model/input"
)
var (
@@ -29,6 +30,17 @@ type Cache interface {
// cache implementation used.
Put(ctx ml.Context, key, value ml.Tensor)
// SetConfig controls optimizations (mostly backend-specific) that may transform
// the output of the cache to work better with specific kernels. If not called,
// the backend settings will be used. This works well when calling Attention.
//
// The config can be overridden by models, especially if they require vanilla
// output when implementing their own version of attention. To do this, pass
// an empty ml.CacheConfig.
//
// Most models will not need to use this.
SetConfig(ml.CacheConfig)
// ** cache management **
// Init sets up runtime parameters
@@ -40,7 +52,7 @@ type Cache interface {
// StartForward is called before the start of the model's forward pass.
// For each token in the coming batch, there must be a corresponding
// entry in positions and seqs.
StartForward(ctx ml.Context, positions []int32, seqs []int) error
StartForward(ctx ml.Context, opts input.Options) error
// CopyPrefix copies tokens in the range [0, len) from srcSeq to dstSeq
CopyPrefix(srcSeq, dstSeq int, len int32)

View File

@@ -8,6 +8,7 @@ import (
"slices"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model/input"
)
type shiftFn func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error)
@@ -22,6 +23,11 @@ type Causal struct {
Capacity int32
windowSize int32
opts CausalOptions
// config controls mostly backend-specific optimizations
config *ml.CacheConfig
// ** current forward pass **
// the active layer for Get and Put
@@ -39,6 +45,12 @@ type Causal struct {
// locations in the cache that are needed for this batch
curCellRange cellRange
// curSequences is the sequences corresponding to this pass's entries in the cache
curSequences []int
// curPositions is the positions corresponding to this pass's entries in the cache
curPositions []int32
// ** cache metadata **
// for each possible location in the cache, stores the position and set of sequences
@@ -52,8 +64,8 @@ type Causal struct {
shiftFn shiftFn
backend ml.Backend
cacheCtx ml.Context
keys, values []ml.Tensor
ctxs map[int]ml.Context
keys, values map[int]ml.Tensor
}
type cacheCell struct {
@@ -67,28 +79,72 @@ type cellRange struct {
}
func NewCausalCache(shift shiftFn) *Causal {
return &Causal{windowSize: math.MaxInt32, shiftFn: shift}
return &Causal{
windowSize: math.MaxInt32,
shiftFn: shift,
ctxs: make(map[int]ml.Context),
keys: make(map[int]ml.Tensor),
values: make(map[int]ml.Tensor),
}
}
func NewSWACache(windowSize int32, shift shiftFn) *Causal {
return &Causal{windowSize: windowSize, shiftFn: shift}
return &Causal{
windowSize: windowSize,
shiftFn: shift,
ctxs: make(map[int]ml.Context),
keys: make(map[int]ml.Tensor),
values: make(map[int]ml.Tensor),
}
}
func (c *Causal) Init(backend ml.Backend, dtype ml.DType, capacity int32) {
if c.config == nil {
var config ml.CacheConfig
if cc, ok := backend.(ml.BackendCacheConfig); ok {
config = cc.CacheConfig()
}
c.config = &config
}
if c.config.CachePadding == 0 {
c.config.CachePadding = 1
}
if c.config.MaskBatchPadding == 0 {
c.config.MaskBatchPadding = 1
}
if c.config.MaskDType == ml.DTypeOther {
c.config.MaskDType = ml.DTypeF32
}
c.DType = dtype
c.Capacity = capacity
c.cells = make([]cacheCell, capacity)
c.Capacity = int32(roundUp(int(capacity), c.config.CachePadding))
c.cells = make([]cacheCell, c.Capacity)
c.cellRanges = make(map[int]cellRange)
c.backend = backend
c.cacheCtx = backend.NewContext()
}
func (c *Causal) SetConfig(config ml.CacheConfig) {
if c.config != nil {
panic("config cannot be changed after being previously set, either by the model or backend")
}
c.config = &config
}
func (c *Causal) Close() {
c.cacheCtx.Close()
for _, ctx := range c.ctxs {
ctx.Close()
}
}
func (c *Causal) StartForward(ctx ml.Context, positions []int32, seqs []int) error {
c.curBatchSize = len(positions)
func (c *Causal) StartForward(ctx ml.Context, opts input.Options) error {
c.curBatchSize = len(opts.Positions)
c.curSequences = opts.Sequences
c.curPositions = opts.Positions
c.opts.Except = nil
var err error
c.curLoc, err = c.findStartLoc()
@@ -101,8 +157,8 @@ func (c *Causal) StartForward(ctx ml.Context, positions []int32, seqs []int) err
}
c.curCellRange = newRange()
for i, pos := range positions {
seq := seqs[i]
for i, pos := range opts.Positions {
seq := opts.Sequences[i]
c.cells[c.curLoc+i] = cacheCell{pos: pos, sequences: []int{seq}}
@@ -127,7 +183,7 @@ func (c *Causal) StartForward(ctx ml.Context, positions []int32, seqs []int) err
c.cellRanges[seq] = seqRange
}
c.curMask, err = c.buildMask(ctx, positions, seqs)
c.curMask, err = c.buildMask(ctx)
return err
}
@@ -157,36 +213,91 @@ func (c *Causal) findStartLoc() (int, error) {
return 0, fmt.Errorf("%w (length: %v)", ErrKvCacheFull, c.Capacity)
}
func roundDown(length, pad int) int {
return (length / pad) * pad
}
func roundUp(length, pad int) int {
return ((length + pad - 1) / pad) * pad
}
// Builds a mask of history x batch indicating whether for each token in the batch the
// token in the history should apply. This is based on both the sequence and causality (the
// position of the history is not ahead of the token in the batch).
func (c *Causal) buildMask(ctx ml.Context, positions []int32, seqs []int) (ml.Tensor, error) {
// TODO(jessegross): This does not do padding, which is required for flash attention
len := c.curCellRange.max - c.curCellRange.min + 1
mask := make([]float32, c.curBatchSize*len)
func (c *Causal) buildMask(ctx ml.Context) (ml.Tensor, error) {
// Align and pad the two dimensions as required by the backend
batchSize := roundUp(c.curBatchSize, c.config.MaskBatchPadding)
c.curCellRange.min = roundDown(c.curCellRange.min, c.config.CachePadding)
c.curCellRange.max = roundUp(c.curCellRange.max+1, c.config.CachePadding) - 1
length := c.curCellRange.max - c.curCellRange.min + 1
mask := make([]float32, batchSize*length)
for i := range c.curBatchSize {
enabled := !slices.Contains(c.opts.Except, i)
for j := c.curCellRange.min; j <= c.curCellRange.max; j++ {
if !slices.Contains(c.cells[j].sequences, seqs[i]) || c.cells[j].pos > positions[i] ||
c.cells[j].pos < positions[i]-c.windowSize {
mask[i*len+(j-c.curCellRange.min)] = float32(math.Inf(-1))
if !slices.Contains(c.cells[j].sequences, c.curSequences[i]) ||
(enabled && c.cells[j].pos > c.curPositions[i]) ||
c.cells[j].pos < c.curPositions[i]-c.windowSize {
mask[i*length+(j-c.curCellRange.min)] = float32(math.Inf(-1))
}
}
}
return ctx.FromFloatSlice(mask, len, c.curBatchSize)
// Mask out any padding tokens we added. For padding that we added to the cache history, this
// has already been masked out because the sequence doesn't match.
for i := c.curBatchSize * length; i < len(mask); i++ {
mask[i] = float32(math.Inf(-1))
}
maskTensor, err := ctx.Input().FromFloatSlice(mask, length, batchSize)
if err != nil {
return nil, err
}
if c.config.MaskDType != ml.DTypeF32 {
out := ctx.Input().Empty(c.config.MaskDType, maskTensor.Shape()...)
ctx.Forward(maskTensor.Copy(ctx, out))
maskTensor = out
}
return maskTensor, nil
}
func moveCell(ctx ml.Context, objs []ml.Tensor, src, dst, len int) {
for _, obj := range objs {
if obj == nil {
func (c *Causal) moveCells(ctx ml.Context, src, dst, len int) {
for i, key := range c.keys {
if key == nil {
continue
}
srcView := obj.View(ctx, obj.Stride(2)*src, obj.Dim(0)*obj.Dim(1)*len)
dstView := obj.View(ctx, obj.Stride(2)*dst, obj.Dim(0)*obj.Dim(1)*len)
kHeadDim := key.Dim(0)
numKVHeads := key.Dim(1)
rowSize := key.Stride(2)
ctx.Forward(srcView.Copy(ctx, dstView))
kSrcView := key.View(ctx, rowSize*src, kHeadDim*numKVHeads*len)
kDstView := key.View(ctx, rowSize*dst, kHeadDim*numKVHeads*len)
value := c.values[i]
var vSrcView, vDstView ml.Tensor
if c.config.PermutedV {
vHeadDim := value.Dim(1)
elemSize := value.Stride(0)
vSrcView = value.View(ctx, elemSize*src, len, int(c.Capacity)*elemSize, vHeadDim*numKVHeads)
vDstView = value.View(ctx, elemSize*dst, len, int(c.Capacity)*elemSize, vHeadDim*numKVHeads)
} else {
vHeadDim := value.Dim(0)
rowSize := value.Stride(2)
vSrcView = value.View(ctx, rowSize*src, vHeadDim*numKVHeads*len)
vDstView = value.View(ctx, rowSize*dst, vHeadDim*numKVHeads*len)
}
ctx.Forward(
kSrcView.Copy(ctx, kDstView),
vSrcView.Copy(ctx, vDstView),
)
}
}
@@ -219,7 +330,7 @@ func (c *Causal) defrag() {
layers++
}
maxMoves := ctx.MaxTensors() / (6 * layers)
maxMoves := ctx.MaxGraphNodes() / (6 * layers)
moves := 0
var pendingSrc, pendingDst, pendingLen int
@@ -238,8 +349,7 @@ func (c *Causal) defrag() {
pendingLen++
break
} else {
moveCell(ctx, c.keys, pendingSrc, pendingDst, pendingLen)
moveCell(ctx, c.values, pendingSrc, pendingDst, pendingLen)
c.moveCells(ctx, pendingSrc, pendingDst, pendingLen)
moves++
}
}
@@ -263,8 +373,7 @@ func (c *Causal) defrag() {
}
if pendingLen > 0 {
moveCell(ctx, c.keys, pendingSrc, pendingDst, pendingLen)
moveCell(ctx, c.values, pendingSrc, pendingDst, pendingLen)
c.moveCells(ctx, pendingSrc, pendingDst, pendingLen)
moves++
}
@@ -293,45 +402,107 @@ func (c *Causal) defrag() {
}
func (c *Causal) SetLayer(layer int) {
if layer >= len(c.keys) {
c.keys = append(c.keys, make([]ml.Tensor, layer-len(c.keys)+1)...)
c.values = append(c.values, make([]ml.Tensor, layer-len(c.values)+1)...)
}
c.curLayer = layer
}
type CausalOptions struct {
// Enabled controls whether the causal mask is generated for a particular index in a batch
Except []int
}
// SetCausal disables causal mask generation for a particular range of indicies in
// the current batch for subsequent calls to Get. The state resets for the next forward pass.
func (c *Causal) SetCausal(ctx ml.Context, opts CausalOptions) {
if !slices.Equal(c.opts.Except, opts.Except) {
c.opts = opts
if ctx != nil {
var err error
c.curMask, err = c.buildMask(ctx)
if err != nil {
// This error should never occur because we have previously built a mask with the same shape
panic(fmt.Errorf("SetCausal: %w", err))
}
}
}
}
func (c *Causal) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
key := c.keys[c.curLayer]
value := c.values[c.curLayer]
key = key.View(ctx, key.Stride(2)*c.curCellRange.min,
key.Dim(0), key.Stride(1),
key.Dim(1), key.Stride(2),
c.curMask.Dim(0),
kHeadDim := key.Dim(0)
numKVHeads := key.Dim(1)
rowSize := key.Stride(2)
cachedSize := c.curMask.Dim(0)
key = key.View(ctx, rowSize*c.curCellRange.min,
kHeadDim, key.Stride(1),
numKVHeads, key.Stride(2),
cachedSize,
)
value = value.View(ctx, key.Stride(2)*c.curCellRange.min,
value.Dim(0), value.Stride(1),
value.Dim(1), value.Stride(2),
c.curMask.Dim(0),
)
if c.config.PermutedV {
vHeadDim := value.Dim(1)
elemSize := value.Stride(0)
value = value.View(ctx, elemSize*c.curCellRange.min,
cachedSize, value.Stride(1),
vHeadDim, value.Stride(2),
numKVHeads,
)
} else {
vHeadDim := value.Dim(0)
rowSize := value.Stride(2)
value = value.View(ctx, rowSize*c.curCellRange.min,
vHeadDim, value.Stride(1),
numKVHeads, value.Stride(2),
cachedSize,
)
}
return key, value, c.curMask
}
func (c *Causal) Put(ctx ml.Context, key, value ml.Tensor) {
if c.curBatchSize != key.Dim(2) {
panic(fmt.Errorf("inconsistent batch sizes (layer: %v, batch size: %v layer batch size: %v)", c.curLayer, c.curBatchSize, key.Dim(2)))
kHeadDim := key.Dim(0)
vHeadDim := value.Dim(0)
numKVHeads := key.Dim(1)
batchSize := key.Dim(2)
if c.curBatchSize != batchSize {
panic(fmt.Errorf("inconsistent batch sizes (layer: %v, batch size: %v layer batch size: %v)", c.curLayer, c.curBatchSize, batchSize))
}
if c.keys[c.curLayer] == nil || c.values[c.curLayer] == nil {
c.keys[c.curLayer] = c.cacheCtx.Zeros(c.DType, key.Dim(0), key.Dim(1), int(c.Capacity))
c.values[c.curLayer] = c.cacheCtx.Zeros(c.DType, value.Dim(0), value.Dim(1), int(c.Capacity))
if _, ok := c.ctxs[c.curLayer]; !ok {
c.ctxs[c.curLayer] = c.backend.NewContextSize(2).Layer(c.curLayer)
}
ctx.Forward(key.Copy(ctx, c.keys[c.curLayer].View(ctx, c.keys[c.curLayer].Stride(2)*c.curLoc, key.Dim(0)*key.Dim(1)*key.Dim(2))))
ctx.Forward(value.Copy(ctx, c.values[c.curLayer].View(ctx, c.values[c.curLayer].Stride(2)*c.curLoc, value.Dim(0)*value.Dim(1)*value.Dim(2))))
if _, ok := c.keys[c.curLayer]; !ok {
c.keys[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, kHeadDim, numKVHeads, int(c.Capacity))
}
if _, ok := c.values[c.curLayer]; !ok {
if c.config.PermutedV {
c.values[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, int(c.Capacity), vHeadDim, numKVHeads)
} else {
c.values[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, vHeadDim, numKVHeads, int(c.Capacity))
}
}
rowSize := c.keys[c.curLayer].Stride(2)
ctx.Forward(key.Copy(ctx, c.keys[c.curLayer].View(ctx, rowSize*c.curLoc, kHeadDim*numKVHeads*batchSize)))
if c.config.PermutedV {
elemSize := c.values[c.curLayer].Stride(0)
value = value.Permute(ctx, 1, 2, 0, 3)
ctx.Forward(value.Copy(ctx, c.values[c.curLayer].View(ctx, elemSize*c.curLoc, batchSize, int(c.Capacity)*elemSize, vHeadDim*numKVHeads)))
} else {
rowSize := c.values[c.curLayer].Stride(2)
ctx.Forward(value.Copy(ctx, c.values[c.curLayer].View(ctx, rowSize*c.curLoc, vHeadDim*numKVHeads*batchSize)))
}
}
func (c *Causal) CopyPrefix(srcSeq, dstSeq int, len int32) {
@@ -377,7 +548,7 @@ func (c *Causal) shift(seq int, beginIndex, offset int32) error {
}
}
kShift, err := ctx.FromIntSlice(offsets, len(offsets))
kShift, err := ctx.Input().FromIntSlice(offsets, len(offsets))
if err != nil {
return err
}
@@ -387,9 +558,13 @@ func (c *Causal) shift(seq int, beginIndex, offset int32) error {
continue
}
key = key.View(ctx, key.Stride(2)*seqRange.min,
key.Dim(0), key.Stride(1),
key.Dim(1), key.Stride(2),
kHeadDim := key.Dim(0)
numKVHeads := key.Dim(1)
rowSize := key.Stride(2)
key = key.View(ctx, rowSize*seqRange.min,
kHeadDim, key.Stride(1),
numKVHeads, key.Stride(2),
size,
)

View File

@@ -6,6 +6,7 @@ import (
"testing"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model/input"
)
type testCase struct {
@@ -269,7 +270,7 @@ func testCache(t *testing.T, backend ml.Backend, cache Cache, tests []testCase)
context := backend.NewContext()
defer context.Close()
err := cache.StartForward(context, test.pos, test.seqs)
err := cache.StartForward(context, input.Options{Positions: test.pos, Sequences: test.seqs})
if err != nil {
panic(err)
}
@@ -280,9 +281,7 @@ func testCache(t *testing.T, backend ml.Backend, cache Cache, tests []testCase)
out, _, mask := cache.Get(context)
context.Forward(out)
context.Forward(mask)
context.Compute(out, mask)
context.Forward(out, mask).Compute(out, mask)
if !slices.Equal(out.Floats(), test.expected) || !slices.Equal(out.Shape(), test.expectedShape) || !slices.Equal(mask.Floats(), test.expectedMask) {
t.Errorf("TestCache: have %v (shape %v); want %v (shape %v); mask: have %v (shape %v) want %v", out.Floats(), out.Shape(), test.expected, test.expectedShape, mask.Floats(), mask.Shape(), test.expectedMask)
@@ -305,13 +304,17 @@ func (b *testBackend) NewContext() ml.Context {
return &testContext{}
}
func (b *testBackend) NewContextSize(int) ml.Context {
return &testContext{}
}
func (b *testBackend) SystemInfo() string {
return "not implemented"
}
type testContext struct{}
func (c *testContext) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
func (c *testContext) Empty(dtype ml.DType, shape ...int) ml.Tensor {
total := 0
if len(shape) > 0 {
@@ -324,8 +327,12 @@ func (c *testContext) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
return &testTensor{dtype: dtype, elementSize: 4, data: make([]float32, total), shape: shape}
}
func (c *testContext) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
return c.Empty(dtype, shape...)
}
func (c *testContext) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
t := c.Zeros(ml.DTypeF32, shape...).(*testTensor)
t := c.Empty(ml.DTypeF32, shape...).(*testTensor)
copy(t.data, s)
@@ -344,11 +351,15 @@ func (c *testContext) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
return out, nil
}
func (c *testContext) Forward(ml.Tensor) {}
func (c *testContext) Input() ml.Context { return c }
func (c *testContext) Output() ml.Context { return c }
func (c *testContext) Layer(int) ml.Context { return c }
func (c *testContext) Forward(...ml.Tensor) ml.Context { return c }
func (c *testContext) Compute(...ml.Tensor) {}
func (c *testContext) MaxTensors() int {
func (c *testContext) MaxGraphNodes() int {
return 10
}
@@ -393,7 +404,7 @@ func (t *testTensor) Floats() []float32 {
}
func (t *testTensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
out := ctx.Zeros(t.DType(), t.Shape()...).(*testTensor)
out := ctx.Empty(t.DType(), t.Shape()...).(*testTensor)
for i := range out.data {
out.data[i] = t.data[i] + t2.(*testTensor).data[i]
@@ -430,11 +441,19 @@ func (t *testTensor) Scale(ctx ml.Context, s float64) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) AvgPool1D(ctx ml.Context, k, s, p int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) AvgPool2D(ctx ml.Context, k, s int, p float32) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Conv2D(ctx ml.Context, weight ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, dim uint32, base, scale float32) ml.Tensor {
func (t *testTensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, dim, ropeType uint32, base, scale float32) ml.Tensor {
panic("not implemented")
}
@@ -470,7 +489,7 @@ func (t *testTensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
context := &testContext{}
view := context.Zeros(t.dtype, s...).(*testTensor)
view := context.Empty(t.dtype, s...).(*testTensor)
view.data = t.data[offset : offset+len(view.data)]
return view
@@ -484,6 +503,10 @@ func (t *testTensor) Contiguous(ctx ml.Context) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Set(ctx ml.Context, t2 ml.Tensor, offset int, strides ...int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
panic("not implemented")
}

View File

@@ -1,7 +1,10 @@
package kvcache
import (
"fmt"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model/input"
)
// Encoder cache stores K and V tensors that are position independent
@@ -11,6 +14,9 @@ import (
//
// Not currently safe for multiple sequences
type EncoderCache struct {
// config controls mostly backend-specific optimizations
config *ml.CacheConfig
// ** current forward pass **
// the active layer for Get and Put
@@ -30,36 +36,59 @@ type EncoderCache struct {
encoderPos int32
// ** cache data storage **
cacheCtx ml.Context
keys, values []ml.Tensor
backend ml.Backend
ctxs map[int]ml.Context
keys, values map[int]ml.Tensor
}
func NewEncoderCache() *EncoderCache {
return &EncoderCache{}
return &EncoderCache{
ctxs: make(map[int]ml.Context),
keys: make(map[int]ml.Tensor),
values: make(map[int]ml.Tensor),
}
}
func (c *EncoderCache) Init(backend ml.Backend, dtype ml.DType, capacity int32) {
c.cacheCtx = backend.NewContext()
if c.config == nil {
var config ml.CacheConfig
if cc, ok := backend.(ml.BackendCacheConfig); ok {
config = cc.CacheConfig()
}
c.config = &config
}
if c.config.CachePadding != 0 && c.config.CachePadding != 1 {
panic(fmt.Errorf("encoder cache is unable to enforce requested CachePadding (%v)", c.config.CachePadding))
}
c.backend = backend
}
func (c *EncoderCache) SetConfig(config ml.CacheConfig) {
if c.config != nil {
panic("config cannot be changed after being previously set, either by the model or backend")
}
c.config = &config
}
func (c *EncoderCache) Close() {
c.cacheCtx.Close()
for _, ctx := range c.ctxs {
ctx.Close()
}
}
func (c *EncoderCache) StartForward(ctx ml.Context, positions []int32, seqs []int) error {
// The image is always in the first position
c.curPos = positions[0]
func (c *EncoderCache) StartForward(ctx ml.Context, opts input.Options) error {
// We work with the most recent image
if len(opts.Multimodal) > 0 {
c.curPos = opts.Positions[opts.Multimodal[len(opts.Multimodal)-1].Index]
}
return nil
}
func (c *EncoderCache) SetLayer(layer int) {
if layer >= len(c.keys) {
c.keys = append(c.keys, make([]ml.Tensor, layer-len(c.keys)+1)...)
c.values = append(c.values, make([]ml.Tensor, layer-len(c.values)+1)...)
}
c.curLayer = layer
}
@@ -75,13 +104,26 @@ func (c *EncoderCache) Put(ctx ml.Context, key, value ml.Tensor) {
c.encoderPos = c.curPos
c.encoderCached = true
if c.keys[c.curLayer] == nil || c.values[c.curLayer] == nil {
c.keys[c.curLayer] = c.cacheCtx.Zeros(key.DType(), key.Shape()...)
c.values[c.curLayer] = c.cacheCtx.Zeros(value.DType(), value.Shape()...)
if c.config.PermutedV {
value = value.Permute(ctx, 1, 2, 0, 3)
}
ctx.Forward(key.Copy(ctx, c.keys[c.curLayer]))
ctx.Forward(value.Copy(ctx, c.values[c.curLayer]))
if _, ok := c.ctxs[c.curLayer]; !ok {
c.ctxs[c.curLayer] = c.backend.NewContextSize(2).Layer(c.curLayer)
}
if _, ok := c.keys[c.curLayer]; !ok {
c.keys[c.curLayer] = c.ctxs[c.curLayer].Empty(key.DType(), key.Shape()...)
}
if _, ok := c.values[c.curLayer]; !ok {
c.values[c.curLayer] = c.ctxs[c.curLayer].Empty(value.DType(), value.Shape()...)
}
ctx.Forward(
key.Copy(ctx, c.keys[c.curLayer]),
value.Copy(ctx, c.values[c.curLayer]),
)
}
func (c *EncoderCache) CopyPrefix(srcSeq, dstSeq int, len int32) {

View File

@@ -4,6 +4,7 @@ import (
"math"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model/input"
)
// Wrapper cache is a container for multiple types of caches,
@@ -28,20 +29,26 @@ func (c *WrapperCache) Init(backend ml.Backend, dtype ml.DType, capacity int32)
}
}
func (c *WrapperCache) SetConfig(config ml.CacheConfig) {
for _, cache := range c.caches {
cache.SetConfig(config)
}
}
func (c *WrapperCache) Close() {
for _, cache := range c.caches {
cache.Close()
}
}
func (c *WrapperCache) StartForward(ctx ml.Context, positions []int32, seqs []int) error {
func (c *WrapperCache) StartForward(ctx ml.Context, opts input.Options) error {
for i, cache := range c.caches {
err := cache.StartForward(ctx, positions, seqs)
err := cache.StartForward(ctx, opts)
if err != nil {
// unwind on error - Remove with endIndex set to math.MaxInt32 does not fail
for j := i - 1; j >= 0; j-- {
for k := range positions {
_ = c.caches[j].Remove(seqs[k], positions[k], math.MaxInt32)
for k := range opts.Positions {
_ = c.caches[j].Remove(opts.Sequences[k], opts.Positions[k], math.MaxInt32)
}
}
return err

View File

@@ -105,6 +105,7 @@ extern "C" {
LLAMA_VOCAB_PRE_TYPE_CHAMELEON = 26,
LLAMA_VOCAB_PRE_TYPE_MINERVA = 27,
LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM = 28,
LLAMA_VOCAB_PRE_TYPE_GPT4O = 29,
};
enum llama_rope_type {

View File

@@ -2283,7 +2283,11 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
// output
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, 0);
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
// if output is NULL, init from the input tok embed
if (output == NULL) {
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
}
for (int i = 0; i < n_layer; ++i) {
auto & layer = layers[i];
@@ -2298,8 +2302,8 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff }, 0);
layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
}
} break;
case LLM_ARCH_PHIMOE:

View File

@@ -392,6 +392,13 @@ struct llm_tokenizer_bpe : llm_tokenizer {
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
};
break;
case LLAMA_VOCAB_PRE_TYPE_GPT4O:
// original regex from tokenizer.json
// [^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+
regex_exprs = {
"[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))*((?=[\\p{L}])([^A-Z]))+(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])?|[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))+((?=[\\p{L}])([^A-Z]))*(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])?|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
};
break;
default:
// default regex for BPE tokenization pre-processing
regex_exprs = {
@@ -1436,7 +1443,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
const int precompiled_charsmap_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP).c_str());
if (precompiled_charsmap_keyidx != -1) {
size_t n_precompiled_charsmap = gguf_get_arr_n(ctx, precompiled_charsmap_keyidx);
size_t n_precompiled_charsmap = gguf_get_arr_data_n(ctx, precompiled_charsmap_keyidx);
const char * pc = (const char *) gguf_get_arr_data(ctx, precompiled_charsmap_keyidx);
precompiled_charsmap.assign(pc, pc + n_precompiled_charsmap);
#ifdef IS_BIG_ENDIAN
@@ -1583,6 +1590,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
} else if (
tokenizer_pre == "megrez") {
pre_type = LLAMA_VOCAB_PRE_TYPE_QWEN2;
} else if (
tokenizer_pre == "gpt-4o") {
pre_type = LLAMA_VOCAB_PRE_TYPE_GPT4O;
clean_spaces = false;
} else {
LLAMA_LOG_WARN("%s: missing or unrecognized pre-tokenizer type, using: 'default'\n", __func__);
pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;

View File

@@ -21,77 +21,45 @@ package llama
extern bool llamaProgressCallback(float progress, void *user_data);
extern void llamaLog(int level, char* text, void* user_data);
typedef enum {COMP_UNKNOWN,COMP_GCC,COMP_CLANG} COMPILER;
COMPILER inline get_compiler() {
#if defined(__clang__)
return COMP_CLANG;
#elif defined(__GNUC__)
return COMP_GCC;
#else
return UNKNOWN_COMPILER;
#endif
}
*/
import "C"
import (
"context"
_ "embed"
"errors"
"fmt"
"log/slog"
"os"
"runtime"
"runtime/cgo"
"slices"
"strings"
"sync/atomic"
"unsafe"
_ "github.com/ollama/ollama/llama/llama.cpp/common"
_ "github.com/ollama/ollama/llama/llama.cpp/examples/llava"
_ "github.com/ollama/ollama/llama/llama.cpp/src"
"github.com/ollama/ollama/ml/backend/ggml/ggml/src"
ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
)
func init() {
C.llama_log_set(C.ggml_log_callback(C.llamaLog), nil)
}
//export llamaLog
func llamaLog(level C.int, text *C.char, _ unsafe.Pointer) {
// slog levels zeros INFO and are multiples of 4
if slog.Default().Enabled(context.TODO(), slog.Level(int(level-C.GGML_LOG_LEVEL_INFO)*4)) {
fmt.Fprint(os.Stderr, C.GoString(text))
}
}
func BackendInit() {
ggml.OnceLoad()
C.llama_backend_init()
}
func PrintSystemInfo() string {
var compiler string
switch C.get_compiler() {
case C.COMP_UNKNOWN:
compiler = "cgo(unknown_compiler)"
case C.COMP_GCC:
compiler = "cgo(gcc)"
case C.COMP_CLANG:
compiler = "cgo(clang)"
}
return C.GoString(C.llama_print_system_info()) + compiler
}
var logLevel atomic.Int32
func init() {
logLevel.Store(int32(C.GGML_LOG_LEVEL_INFO))
C.llama_log_set((C.ggml_log_callback)(C.llamaLog), nil)
}
func EnableDebug() {
logLevel.Store(int32(C.GGML_LOG_LEVEL_DEBUG))
}
//export llamaLog
func llamaLog(level int32, text *C.char, _ unsafe.Pointer) {
if level < logLevel.Load() {
return
}
fmt.Fprint(os.Stderr, C.GoString(text))
}
func GetModelArch(modelPath string) (string, error) {
mp := C.CString(modelPath)
defer C.free(unsafe.Pointer(mp))
@@ -269,7 +237,7 @@ func LoadModelFromFile(modelPath string, params ModelParams) (*Model, error) {
cparams.progress_callback_user_data = unsafe.Pointer(&handle)
}
m := Model{c: C.llama_load_model_from_file(C.CString(modelPath), cparams)}
m := Model{c: C.llama_model_load_from_file(C.CString(modelPath), cparams)}
if m.c == nil {
return nil, fmt.Errorf("unable to load model: %s", modelPath)
}
@@ -277,13 +245,27 @@ func LoadModelFromFile(modelPath string, params ModelParams) (*Model, error) {
return &m, nil
}
func LoadVocabFromFile(path string) (*Vocab, error) {
mp := C.CString(path)
defer C.free(unsafe.Pointer(mp))
v := Vocab{c: C.llama_load_vocab_from_file(mp)}
if v.c == nil {
return nil, fmt.Errorf("unable to load vocab: %s", path)
}
return &v, nil
}
func FreeVocab(vocab *Vocab) {
C.llama_free_vocab(vocab.c)
}
func FreeModel(model *Model) {
C.llama_free_model(model.c)
C.llama_model_free(model.c)
}
func NewContextWithModel(model *Model, params ContextParams) (*Context, error) {
c := Context{
c: C.llama_new_context_with_model(model.c, params.c),
c: C.llama_init_from_model(model.c, params.c),
numThreads: int(params.c.n_threads),
}
if c.c == nil {
@@ -294,15 +276,15 @@ func NewContextWithModel(model *Model, params ContextParams) (*Context, error) {
}
func (m *Model) NumVocab() int {
return int(C.llama_n_vocab(m.Vocab()))
return int(C.llama_vocab_n_tokens(m.Vocab()))
}
func (m *Model) TokenIsEog(token int) bool {
return bool(C.llama_token_is_eog(m.Vocab(), C.llama_token(token)))
return bool(C.llama_vocab_is_eog(m.Vocab(), C.llama_token(token)))
}
func (m *Model) AddBOSToken() bool {
return bool(C.llama_add_bos_token(m.Vocab()))
return bool(C.llama_vocab_get_add_bos(m.Vocab()))
}
func (m *Model) ApplyLoraFromFile(context *Context, loraPath string, scale float32, threads int) error {
@@ -325,6 +307,10 @@ func (m *Model) ApplyLoraFromFile(context *Context, loraPath string, scale float
return nil
}
type Vocab struct {
c *C.struct_llama_vocab
}
func (m *Model) Vocab() *C.struct_llama_vocab {
return C.llama_model_get_vocab(m.c)
}
@@ -485,7 +471,7 @@ func (m *Model) Tokenize(text string, addSpecial bool, parseSpecial bool) ([]int
}
func (m *Model) NEmbd() int {
return int(C.llama_n_embd(m.c))
return int(C.llama_model_n_embd(m.c))
}
func Quantize(infile, outfile string, ftype uint32) error {
@@ -701,3 +687,53 @@ func SchemaToGrammar(schema []byte) []byte {
}
return buf[:n]
}
type Sampler struct {
c *C.struct_llama_sampler
}
func NewGrammarSampler(vocab *Vocab, grammar string) *Sampler {
cGrammar := C.CString(grammar)
cRoot := C.CString("root")
defer C.free(unsafe.Pointer(cGrammar))
defer C.free(unsafe.Pointer(cRoot))
sampler := &Sampler{c: C.llama_sampler_init_grammar(vocab.c, cGrammar, cRoot)}
return sampler
}
func (s *Sampler) Accept(token int32) {
C.llama_sampler_accept(s.c, C.llama_token(token))
}
type TokenData struct {
Id int32
Logit float32
}
func (s *Sampler) Apply(tokens []TokenData) {
tds := make([]C.struct_llama_token_data, len(tokens))
for i, token := range tokens {
tds[i] = C.struct_llama_token_data{
id: C.int32_t(token.Id),
logit: C.float(token.Logit),
p: C.float(0.0),
}
}
tda := &C.llama_token_data_array{
data: (*C.struct_llama_token_data)(unsafe.Pointer(&tds[0])),
size: C.size_t(len(tokens)),
selected: C.int64_t(-1),
sorted: C.bool(false),
}
var pinner runtime.Pinner
pinner.Pin(&tds[0])
defer pinner.Unpin()
C.llama_sampler_apply(s.c, tda)
for i := range tokens {
tokens[i].Logit = float32(tds[i].logit)
}
}

View File

@@ -1,69 +0,0 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Michael Yang <mxyng@pm.me>
Date: Tue, 11 Feb 2025 14:06:36 -0800
Subject: [PATCH] try/catch backend load
---
ggml/src/ggml-backend-reg.cpp | 45 ++++++++++++++++++-----------------
1 file changed, 23 insertions(+), 22 deletions(-)
diff --git a/ggml/src/ggml-backend-reg.cpp b/ggml/src/ggml-backend-reg.cpp
index 98d5e14d..1c19129a 100644
--- a/ggml/src/ggml-backend-reg.cpp
+++ b/ggml/src/ggml-backend-reg.cpp
@@ -512,32 +512,33 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
}
fs::directory_iterator dir_it(search_path, fs::directory_options::skip_permission_denied);
for (const auto & entry : dir_it) {
- if (entry.is_regular_file()) {
- std::wstring filename = entry.path().filename().wstring();
- std::wstring ext = entry.path().extension().wstring();
- if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
- dl_handle_ptr handle { dl_load_library(entry.path().wstring()) };
- if (!handle && !silent) {
- GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
- }
- if (handle) {
+ try {
+ if (entry.is_regular_file()) {
+ std::wstring filename = entry.path().filename().wstring();
+ std::wstring ext = entry.path().extension().wstring();
+ if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
+ dl_handle_ptr handle { dl_load_library(entry.path().wstring()) };
+ if (!handle) {
+ GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
+ continue;
+ }
+
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
- if (score_fn) {
- int s = score_fn();
-#ifndef NDEBUG
- GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), s);
-#endif
- if (s > best_score) {
- best_score = s;
- best_path = entry.path().wstring();
- }
- } else {
- if (!silent) {
- GGML_LOG_INFO("%s: failed to find ggml_backend_score in %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
- }
+ if (!score_fn) {
+ GGML_LOG_DEBUG("%s: failed to find ggml_backend_score in %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
+ continue;
+ }
+
+ int s = score_fn();
+ GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), s);
+ if (s > best_score) {
+ best_score = s;
+ best_path = entry.path().wstring();
}
}
}
+ } catch (const std::exception & e) {
+ GGML_LOG_ERROR("%s: failed to load %s: %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), e.what());
}
}
}

View File

@@ -4,11 +4,11 @@ Date: Sun, 16 Feb 2025 20:00:22 -0500
Subject: [PATCH] use std::filesystem::path instead of wstring
---
ggml/src/ggml-backend-reg.cpp | 144 ++++++++++++++--------------------
1 file changed, 58 insertions(+), 86 deletions(-)
ggml/src/ggml-backend-reg.cpp | 199 +++++++++++++++-------------------
1 file changed, 88 insertions(+), 111 deletions(-)
diff --git a/ggml/src/ggml-backend-reg.cpp b/ggml/src/ggml-backend-reg.cpp
index 1c19129a..c854e6bb 100644
index 98d5e14d..799af5f3 100644
--- a/ggml/src/ggml-backend-reg.cpp
+++ b/ggml/src/ggml-backend-reg.cpp
@@ -66,26 +66,6 @@
@@ -264,47 +264,55 @@ index 1c19129a..c854e6bb 100644
for (const auto & search_path : search_paths) {
if (!fs::exists(search_path)) {
continue;
@@ -514,31 +486,31 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
@@ -513,29 +485,26 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
fs::directory_iterator dir_it(search_path, fs::directory_options::skip_permission_denied);
for (const auto & entry : dir_it) {
try {
if (entry.is_regular_file()) {
- std::wstring filename = entry.path().filename().wstring();
- std::wstring ext = entry.path().extension().wstring();
+ std::string filename = entry.path().filename().string();
+ std::string ext = entry.path().extension().string();
if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
- dl_handle_ptr handle { dl_load_library(entry.path().wstring()) };
+ dl_handle_ptr handle { dl_load_library(entry.path()) };
if (!handle) {
- GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
+ GGML_LOG_ERROR("%s: failed to load %s\n", __func__, path_to_string(entry.path()).c_str());
continue;
}
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
if (!score_fn) {
- GGML_LOG_DEBUG("%s: failed to find ggml_backend_score in %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
+ GGML_LOG_DEBUG("%s: failed to find ggml_backend_score in %s\n", __func__, path_to_string(entry.path()).c_str());
continue;
}
int s = score_fn();
- GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), s);
+ GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, path_to_string(entry.path()).c_str(), s);
if (s > best_score) {
best_score = s;
- best_path = entry.path().wstring();
+ best_path = entry.path();
}
if (entry.is_regular_file()) {
- std::wstring filename = entry.path().filename().wstring();
- std::wstring ext = entry.path().extension().wstring();
+ std::string filename = entry.path().filename().string();
+ std::string ext = entry.path().extension().string();
if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
- dl_handle_ptr handle { dl_load_library(entry.path().wstring()) };
- if (!handle && !silent) {
- GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
+ dl_handle_ptr handle { dl_load_library(entry.path()) };
+ if (!handle) {
+ GGML_LOG_ERROR("%s: failed to load %s\n", __func__, path_to_string(entry.path()).c_str());
+ continue;
}
- if (handle) {
- auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
- if (score_fn) {
- int s = score_fn();
-#ifndef NDEBUG
- GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), s);
-#endif
- if (s > best_score) {
- best_score = s;
- best_path = entry.path().wstring();
- }
- } else {
- if (!silent) {
- GGML_LOG_INFO("%s: failed to find ggml_backend_score in %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
- }
- }
+
+ auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
+ if (!score_fn) {
+ GGML_LOG_DEBUG("%s: failed to find ggml_backend_score in %s\n", __func__, path_to_string(entry.path()).c_str());
+ continue;
+ }
+
+ int s = score_fn();
+ GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, path_to_string(entry.path()).c_str(), s);
+ if (s > best_score) {
+ best_score = s;
+ best_path = entry.path();
}
}
} catch (const std::exception & e) {
- GGML_LOG_ERROR("%s: failed to load %s: %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), e.what());
+ GGML_LOG_ERROR("%s: failed to load %s: %s\n", __func__, path_to_string(entry.path()).c_str(), e.what());
}
}
}
@@ -546,7 +518,7 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
@@ -545,7 +514,7 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
if (best_score == 0) {
// try to load the base backend
for (const auto & search_path : search_paths) {
@@ -313,3 +321,49 @@ index 1c19129a..c854e6bb 100644
if (fs::exists(path)) {
return get_reg().load_backend(path, silent);
}
@@ -560,6 +529,14 @@ void ggml_backend_load_all() {
ggml_backend_load_all_from_path(nullptr);
}
+static void ggml_backend_try_load_best(const char * name, bool silent, const char * user_search_path) {
+ try {
+ ggml_backend_load_best(name, silent, user_search_path);
+ } catch (const std::exception & e) {
+ GGML_LOG_DEBUG("%s: failed to load %s: %s\n", __func__, name, e.what());
+ }
+}
+
void ggml_backend_load_all_from_path(const char * dir_path) {
#ifdef NDEBUG
bool silent = true;
@@ -567,18 +544,18 @@ void ggml_backend_load_all_from_path(const char * dir_path) {
bool silent = false;
#endif
- ggml_backend_load_best("blas", silent, dir_path);
- ggml_backend_load_best("cann", silent, dir_path);
- ggml_backend_load_best("cuda", silent, dir_path);
- ggml_backend_load_best("hip", silent, dir_path);
- ggml_backend_load_best("kompute", silent, dir_path);
- ggml_backend_load_best("metal", silent, dir_path);
- ggml_backend_load_best("rpc", silent, dir_path);
- ggml_backend_load_best("sycl", silent, dir_path);
- ggml_backend_load_best("vulkan", silent, dir_path);
- ggml_backend_load_best("opencl", silent, dir_path);
- ggml_backend_load_best("musa", silent, dir_path);
- ggml_backend_load_best("cpu", silent, dir_path);
+ ggml_backend_try_load_best("blas", silent, dir_path);
+ ggml_backend_try_load_best("cann", silent, dir_path);
+ ggml_backend_try_load_best("cuda", silent, dir_path);
+ ggml_backend_try_load_best("hip", silent, dir_path);
+ ggml_backend_try_load_best("kompute", silent, dir_path);
+ ggml_backend_try_load_best("metal", silent, dir_path);
+ ggml_backend_try_load_best("rpc", silent, dir_path);
+ ggml_backend_try_load_best("sycl", silent, dir_path);
+ ggml_backend_try_load_best("vulkan", silent, dir_path);
+ ggml_backend_try_load_best("opencl", silent, dir_path);
+ ggml_backend_try_load_best("musa", silent, dir_path);
+ ggml_backend_try_load_best("cpu", silent, dir_path);
// check the environment variable GGML_BACKEND_PATH to load an out-of-tree backend
const char * backend_path = std::getenv("GGML_BACKEND_PATH");
if (backend_path) {

View File

@@ -0,0 +1,80 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: jmorganca <jmorganca@gmail.com>
Date: Thu, 27 Feb 2025 15:12:26 -0800
Subject: [PATCH] add phi4 support
---
include/llama.h | 1 +
src/llama-model.cpp | 10 +++++++---
src/llama-vocab.cpp | 11 +++++++++++
3 files changed, 19 insertions(+), 3 deletions(-)
diff --git a/include/llama.h b/include/llama.h
index cc948005..16774711 100644
--- a/include/llama.h
+++ b/include/llama.h
@@ -105,6 +105,7 @@ extern "C" {
LLAMA_VOCAB_PRE_TYPE_CHAMELEON = 26,
LLAMA_VOCAB_PRE_TYPE_MINERVA = 27,
LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM = 28,
+ LLAMA_VOCAB_PRE_TYPE_GPT4O = 29,
};
enum llama_rope_type {
diff --git a/src/llama-model.cpp b/src/llama-model.cpp
index 21819080..ab1a07d1 100644
--- a/src/llama-model.cpp
+++ b/src/llama-model.cpp
@@ -2283,7 +2283,11 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
// output
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, 0);
+ output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
+ // if output is NULL, init from the input tok embed
+ if (output == NULL) {
+ output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
+ }
for (int i = 0; i < n_layer; ++i) {
auto & layer = layers[i];
@@ -2298,8 +2302,8 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff }, 0);
- layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
+ layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
+ layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
}
} break;
case LLM_ARCH_PHIMOE:
diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp
index 1ca827eb..c7ff28be 100644
--- a/src/llama-vocab.cpp
+++ b/src/llama-vocab.cpp
@@ -392,6 +392,13 @@ struct llm_tokenizer_bpe : llm_tokenizer {
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
};
break;
+ case LLAMA_VOCAB_PRE_TYPE_GPT4O:
+ // original regex from tokenizer.json
+ // [^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+
+ regex_exprs = {
+ "[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))*((?=[\\p{L}])([^A-Z]))+(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])?|[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))+((?=[\\p{L}])([^A-Z]))*(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])?|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
+ };
+ break;
default:
// default regex for BPE tokenization pre-processing
regex_exprs = {
@@ -1583,6 +1590,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
} else if (
tokenizer_pre == "megrez") {
pre_type = LLAMA_VOCAB_PRE_TYPE_QWEN2;
+ } else if (
+ tokenizer_pre == "gpt-4o") {
+ pre_type = LLAMA_VOCAB_PRE_TYPE_GPT4O;
+ clean_spaces = false;
} else {
LLAMA_LOG_WARN("%s: missing or unrecognized pre-tokenizer type, using: 'default'\n", __func__);
pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;

View File

@@ -0,0 +1,64 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: jmorganca <jmorganca@gmail.com>
Date: Wed, 5 Mar 2025 17:41:07 -0800
Subject: [PATCH] fix string arr kv loading
---
ggml/include/gguf.h | 1 +
ggml/src/gguf.cpp | 7 +++++--
src/llama-vocab.cpp | 2 +-
3 files changed, 7 insertions(+), 3 deletions(-)
diff --git a/ggml/include/gguf.h b/ggml/include/gguf.h
index 79ee2020..3efb22f0 100644
--- a/ggml/include/gguf.h
+++ b/ggml/include/gguf.h
@@ -114,6 +114,7 @@ extern "C" {
// get raw pointer to the first element of the array with the given key_id
// for bool arrays, note that they are always stored as int8 on all platforms (usually this makes no difference)
GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int64_t key_id);
+ GGML_API size_t gguf_get_arr_data_n(const struct gguf_context * ctx, int64_t key_id);
// get ith C string from array with given key_id
GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int64_t key_id, size_t i);
diff --git a/ggml/src/gguf.cpp b/ggml/src/gguf.cpp
index ab13669c..f75b923f 100644
--- a/ggml/src/gguf.cpp
+++ b/ggml/src/gguf.cpp
@@ -777,10 +777,14 @@ enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int64_t key_id
const void * gguf_get_arr_data(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING);
return ctx->kv[key_id].data.data();
}
+size_t gguf_get_arr_data_n(const struct gguf_context * ctx, int64_t key_id) {
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
+ return ctx->kv[key_id].data.size();
+}
+
const char * gguf_get_arr_str(const struct gguf_context * ctx, int64_t key_id, size_t i) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_type() == GGUF_TYPE_STRING);
@@ -874,7 +878,6 @@ const char * gguf_get_val_str(const struct gguf_context * ctx, int64_t key_id) {
const void * gguf_get_val_data(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
- GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING);
return ctx->kv[key_id].data.data();
}
diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp
index c7ff28be..7a185443 100644
--- a/src/llama-vocab.cpp
+++ b/src/llama-vocab.cpp
@@ -1443,7 +1443,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
const int precompiled_charsmap_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP).c_str());
if (precompiled_charsmap_keyidx != -1) {
- size_t n_precompiled_charsmap = gguf_get_arr_n(ctx, precompiled_charsmap_keyidx);
+ size_t n_precompiled_charsmap = gguf_get_arr_data_n(ctx, precompiled_charsmap_keyidx);
const char * pc = (const char *) gguf_get_arr_data(ctx, precompiled_charsmap_keyidx);
precompiled_charsmap.assign(pc, pc + n_precompiled_charsmap);
#ifdef IS_BIG_ENDIAN

View File

@@ -0,0 +1,33 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Michael Yang <mxyng@pm.me>
Date: Sun, 9 Mar 2025 14:44:16 -0700
Subject: [PATCH] ollama debug tensor
---
ggml/src/ggml-cpu/ggml-cpu.c | 6 ++++++
1 file changed, 6 insertions(+)
diff --git a/ggml/src/ggml-cpu/ggml-cpu.c b/ggml/src/ggml-cpu/ggml-cpu.c
index 2f606d82..ec60e8fc 100644
--- a/ggml/src/ggml-cpu/ggml-cpu.c
+++ b/ggml/src/ggml-cpu/ggml-cpu.c
@@ -11,6 +11,8 @@
#include "ggml-threading.h"
#include "ggml.h"
+#include "ollama-debug.h"
+
#if defined(_MSC_VER) || defined(__MINGW32__)
#include <malloc.h> // using malloc.h with MSC/MINGW
#elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
@@ -14103,6 +14105,10 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
ggml_compute_forward(&params, node);
+#ifdef OLLAMA_DEBUG
+ ollama_debug(node, true);
+#endif
+
if (state->ith == 0 && cplan->abort_callback &&
cplan->abort_callback(cplan->abort_callback_data)) {
atomic_store_explicit(&tp->abort, node_n + 1, memory_order_relaxed);

View File

@@ -2,6 +2,9 @@
#include "sampling.h"
#include "sampling_ext.h"
#include "json-schema-to-grammar.h"
#include "llama.h"
#include "llama-model.h"
#include "llama-model-loader.h"
struct common_sampler *common_sampler_cinit(const struct llama_model *model, struct common_sampler_cparams *params) {
try {
@@ -64,3 +67,22 @@ int schema_to_grammar(const char *json_schema, char *grammar, size_t max_len)
return 0;
}
}
struct llama_vocab * llama_load_vocab_from_file(const char * fname) {
llama_vocab * vocab = new llama_vocab();
try {
const auto kv = LLM_KV(LLM_ARCH_UNKNOWN);
std::vector<std::string> splits = {};
llama_model_loader ml(std::string(fname), splits, false, false, nullptr);
vocab->load(ml, kv);
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
return nullptr;
}
return vocab;
}
void llama_free_vocab(struct llama_vocab * vocab) {
delete vocab;
}

View File

@@ -35,6 +35,9 @@ extern "C"
int schema_to_grammar(const char *json_schema, char *grammar, size_t max_len);
struct llama_vocab * llama_load_vocab_from_file(const char * fname);
void llama_free_vocab(struct llama_vocab * vocab);
#ifdef __cplusplus
}
#endif

View File

@@ -115,6 +115,9 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
// multimodal models require at least 2048 context
opts.NumCtx = max(opts.NumCtx, 2048)
}
if projectorWeights == 0 && projectorGraph == 0 {
projectorWeights, projectorGraph = f.VisionGraphSize()
}
layers := f.Tensors().GroupLayers()
// add one layer worth of memory as a buffer

View File

@@ -30,6 +30,7 @@ import (
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/llama"
"github.com/ollama/ollama/model"
)
type LlamaServer interface {
@@ -54,8 +55,15 @@ type llmServer struct {
options api.Options
numParallel int
modelPath string
modelLock sync.Mutex // Temporary until we switch fully to Go server
model *llama.Model // If non-nil, the runner is a new Go server
// llamaModel is an instance of the cgo llama.cpp model definition
// nil if this server is running the new engine
llamaModel *llama.Model
llamaModelLock sync.Mutex
// textProcessor handles text encoding/decoding for the model in the Ollama engine
// nil if this server is running the llama.cpp based engine
textProcessor model.TextProcessor
estimate MemoryEstimate
totalLayers uint64
@@ -89,7 +97,7 @@ func LoadModel(model string, maxArraySize int) (*ggml.GGML, error) {
// NewLlamaServer will run a server for the given GPUs
// The gpu list must be a single family.
func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapters, projectors []string, opts api.Options, numParallel int) (LlamaServer, error) {
func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, adapters, projectors []string, opts api.Options, numParallel int) (LlamaServer, error) {
systemInfo := discover.GetSystemInfo()
systemTotalMemory := systemInfo.System.TotalMemory
systemFreeMemory := systemInfo.System.FreeMemory
@@ -130,7 +138,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapt
slog.Info("offload", "", estimate)
params := []string{
"--model", model,
"--model", modelPath,
"--ctx-size", strconv.Itoa(opts.NumCtx),
"--batch-size", strconv.Itoa(opts.NumBatch),
}
@@ -153,11 +161,6 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapt
}
}
if len(projectors) > 0 {
// TODO: applying multiple projectors is not supported by the llama.cpp server yet
params = append(params, "--mmproj", projectors[0])
}
defaultThreads := systemInfo.GetOptimalThreadCount()
if opts.NumThread > 0 {
params = append(params, "--threads", strconv.Itoa(opts.NumThread))
@@ -257,6 +260,34 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapt
}
}
slog.Debug("compatible gpu libraries", "compatible", compatible)
exe, err := os.Executable()
if err != nil {
return nil, fmt.Errorf("unable to lookup executable path: %w", err)
}
if eval, err := filepath.EvalSymlinks(exe); err == nil {
exe = eval
}
var llamaModel *llama.Model
var textProcessor model.TextProcessor
if envconfig.NewEngine() || f.KV().OllamaEngineRequired() {
textProcessor, err = model.NewTextProcessor(modelPath)
if err != nil {
// To prepare for opt-out mode, instead of treating this as an error, we fallback to the old runner
slog.Debug("model not yet supported by Ollama engine, switching to compatibility mode", "model", modelPath, "error", err)
}
}
if textProcessor == nil {
llamaModel, err = llama.LoadModelFromFile(modelPath, llama.ModelParams{VocabOnly: true})
if err != nil {
return nil, err
}
}
if len(projectors) > 0 && llamaModel != nil {
params = append(params, "--mmproj", projectors[0])
}
// iterate through compatible GPU libraries such as 'cuda_v12', 'cuda_v11', 'rocm', etc.
// adding each library's respective path to the LD_LIBRARY_PATH, until finally running
@@ -275,7 +306,9 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapt
port = rand.Intn(65535-49152) + 49152 // get a random port in the ephemeral range
}
finalParams := []string{"runner"}
if envconfig.NewEngine() {
if textProcessor != nil {
// New engine
// TODO - if we have failure to load scenarios, add logic to retry with the old runner
finalParams = append(finalParams, "--ollama-engine")
}
finalParams = append(finalParams, params...)
@@ -315,28 +348,20 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapt
// finally, add the root library path
libraryPaths = append(libraryPaths, discover.LibOllamaPath)
exe, err := os.Executable()
if err != nil {
return nil, fmt.Errorf("unable to lookup executable path: %w", err)
}
if eval, err := filepath.EvalSymlinks(exe); err == nil {
exe = eval
}
// TODO - once fully switched to the Go runner, load the model here for tokenize/detokenize cgo access
s := &llmServer{
port: port,
cmd: exec.Command(exe, finalParams...),
status: NewStatusWriter(os.Stderr),
options: opts,
modelPath: model,
estimate: estimate,
numParallel: numParallel,
sem: semaphore.NewWeighted(int64(numParallel)),
totalLayers: f.KV().BlockCount() + 1,
gpus: gpus,
done: make(chan error, 1),
port: port,
cmd: exec.Command(exe, finalParams...),
status: NewStatusWriter(os.Stderr),
options: opts,
modelPath: modelPath,
llamaModel: llamaModel,
textProcessor: textProcessor,
estimate: estimate,
numParallel: numParallel,
sem: semaphore.NewWeighted(int64(numParallel)),
totalLayers: f.KV().BlockCount() + 1,
gpus: gpus,
done: make(chan error, 1),
}
s.cmd.Env = os.Environ()
@@ -405,6 +430,9 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapt
}
err := fmt.Errorf("error starting runner: %v %s", err, msg)
if len(compatible) == 0 {
if llamaModel != nil {
llama.FreeModel(llamaModel)
}
return nil, err
}
@@ -933,64 +961,25 @@ type TokenizeResponse struct {
}
func (s *llmServer) Tokenize(ctx context.Context, content string) ([]int, error) {
s.modelLock.Lock()
defer s.modelLock.Unlock()
if s.model != nil {
return s.model.Tokenize(content, false, true)
}
s.llamaModelLock.Lock()
defer s.llamaModelLock.Unlock()
// Make sure the server is ready
status, err := s.getServerStatus(ctx)
if err != nil {
return nil, err
} else if status != ServerStatusReady && status != ServerStatusNoSlotsAvailable {
return nil, fmt.Errorf("unexpected server status: %s", status.ToString())
if s.llamaModel != nil {
return s.llamaModel.Tokenize(content, false, true)
}
data, err := json.Marshal(TokenizeRequest{Content: content})
if err != nil {
return nil, fmt.Errorf("marshaling encode data: %w", err)
}
req, err := http.NewRequestWithContext(ctx, http.MethodPost, fmt.Sprintf("http://127.0.0.1:%d/tokenize", s.port), bytes.NewBuffer(data))
if err != nil {
return nil, fmt.Errorf("encode request: %w", err)
}
req.Header.Set("Content-Type", "application/json")
resp, err := http.DefaultClient.Do(req)
if err != nil {
return nil, fmt.Errorf("do encode request: %w", err)
}
defer resp.Body.Close()
if resp.StatusCode == http.StatusNotFound {
if s.model == nil {
slog.Debug("new runner detected, loading model for cgo tokenization")
m, err := llama.LoadModelFromFile(s.modelPath, llama.ModelParams{VocabOnly: true})
if err != nil {
return nil, err
}
s.model = m
if s.textProcessor != nil {
tokens, err := s.textProcessor.Encode(content, false)
if err != nil {
return nil, err
}
return s.model.Tokenize(content, false, true)
toks := make([]int, len(tokens))
for i, t := range tokens {
toks[i] = int(t)
}
return toks, nil
}
body, err := io.ReadAll(resp.Body)
if err != nil {
return nil, fmt.Errorf("read encode request: %w", err)
}
if resp.StatusCode >= 400 {
log.Printf("llm encode error: %s", body)
return nil, fmt.Errorf("%s", body)
}
var encoded TokenizeResponse
if err := json.Unmarshal(body, &encoded); err != nil {
return nil, fmt.Errorf("unmarshal encode response: %w", err)
}
return encoded.Tokens, nil
// not reached
return nil, fmt.Errorf("no tokenizer configured")
}
type DetokenizeRequest struct {
@@ -1002,80 +991,38 @@ type DetokenizeResponse struct {
}
func (s *llmServer) Detokenize(ctx context.Context, tokens []int) (string, error) {
s.modelLock.Lock()
defer s.modelLock.Unlock()
if s.model != nil {
s.llamaModelLock.Lock()
defer s.llamaModelLock.Unlock()
if s.llamaModel != nil {
var resp string
for _, token := range tokens {
resp += s.model.TokenToPiece(token)
resp += s.llamaModel.TokenToPiece(token)
}
return resp, nil
}
// Make sure the server is ready
status, err := s.getServerStatus(ctx)
if err != nil {
return "", err
} else if status != ServerStatusReady && status != ServerStatusNoSlotsAvailable {
return "", fmt.Errorf("unexpected server status: %s", status.ToString())
}
data, err := json.Marshal(DetokenizeRequest{Tokens: tokens})
if err != nil {
return "", fmt.Errorf("marshaling decode data: %w", err)
}
req, err := http.NewRequestWithContext(ctx, http.MethodPost, fmt.Sprintf("http://127.0.0.1:%d/detokenize", s.port), bytes.NewBuffer(data))
if err != nil {
return "", fmt.Errorf("decode request: %w", err)
}
req.Header.Set("Content-Type", "application/json")
resp, err := http.DefaultClient.Do(req)
if err != nil {
return "", fmt.Errorf("do decode request: %w", err)
}
defer resp.Body.Close()
if resp.StatusCode == http.StatusNotFound {
if s.model == nil {
slog.Debug("new runner detected, loading model for cgo tokenization")
m, err := llama.LoadModelFromFile(s.modelPath, llama.ModelParams{VocabOnly: true})
if err != nil {
return "", err
}
s.model = m
if s.textProcessor != nil {
toks := make([]int32, len(tokens))
for i, t := range tokens {
toks[i] = int32(t)
}
var resp string
for _, token := range tokens {
resp += s.model.TokenToPiece(token)
content, err := s.textProcessor.Decode(toks)
if err != nil {
return "", err
}
return resp, nil
return content, nil
}
body, err := io.ReadAll(resp.Body)
if err != nil {
return "", fmt.Errorf("read decode request: %w", err)
}
if resp.StatusCode >= 400 {
log.Printf("llm decode error: %s", body)
return "", fmt.Errorf("%s", body)
}
var decoded DetokenizeResponse
if err := json.Unmarshal(body, &decoded); err != nil {
return "", fmt.Errorf("unmarshal encode response: %w", err)
}
return decoded.Content, nil
// not reached
return "", fmt.Errorf("no tokenizer configured")
}
func (s *llmServer) Close() error {
s.modelLock.Lock()
if s.model != nil {
llama.FreeModel(s.model)
s.model = nil
s.llamaModelLock.Lock()
if s.llamaModel != nil {
llama.FreeModel(s.llamaModel)
s.llamaModel = nil
}
s.modelLock.Unlock()
s.llamaModelLock.Unlock()
if s.cmd != nil {
slog.Debug("stopping llama server")

View File

@@ -5,6 +5,7 @@ import (
"encoding/binary"
"fmt"
"os"
"slices"
"strconv"
"strings"
)
@@ -14,16 +15,47 @@ type Config interface {
String(string, ...string) string
Uint(string, ...uint32) uint32
Float(string, ...float32) float32
Bool(string, ...bool) bool
Strings(string, ...[]string) []string
Uints(string, ...[]uint32) []uint32
Floats(string, ...[]float32) []float32
}
type Backend interface {
Config() Config
Get(name string) Tensor
NewContext() Context
SystemInfo() string
NewContextSize(size int) Context
}
// BackendCacheConfig should be implemented by backends that need special output
// from the cache to meet specific requirements. It is frequently implemented in
// conjunction with ScaledDotProductAttention.
type BackendCacheConfig interface {
CacheConfig() CacheConfig
}
// CacheConfig controls optimizations (mostly backend-specific) that may transform
// the output the cache to work better with specific kernels.
type CacheConfig struct {
// CachePadding specifies the multiple for the number of tokens of cache history
// that will be returned from cache Get for k, v and mask. The capacity of the
// cache itself will also be increased to a multiple of this size if needed.
CachePadding int
// PermutedV performs Permute(ctx, 1, 2, 0, 3) on v tensors stored via Put
// and return the permuted version via Get. This uses the cache copy operation
// to avoid a Contiguous call on the permuted tensor.
PermutedV bool
// MaskDType specifies the data type for generating the mask. If unset it will
// default to DTypeF32.
MaskDType DType
// MaskBatchPadding specifies the multiple for the batch size dimension in the mask.
// Any position that does not correspond to an actual token will be filled with -Inf.
MaskBatchPadding int
}
// BackendParams controls how the backend loads and executes models
@@ -39,6 +71,9 @@ type BackendParams struct {
// TensorSplit is the fraction of the model to offload to each GPU
TensorSplit []float32
// FlashAttention indicates that we should use a fused flash attention kernel
FlashAttention bool
}
var backends = make(map[string]func(*os.File, BackendParams) (Backend, error))
@@ -60,14 +95,24 @@ func NewBackend(f *os.File, params BackendParams) (Backend, error) {
}
type Context interface {
Empty(dtype DType, shape ...int) Tensor
Zeros(dtype DType, shape ...int) Tensor
FromFloatSlice(s []float32, shape ...int) (Tensor, error)
FromIntSlice(s []int32, shape ...int) (Tensor, error)
Forward(Tensor)
Forward(...Tensor) Context
Compute(...Tensor)
MaxTensors() int
MaxGraphNodes() int
Close()
// Input returns a context appropriate for creating input tensors
Input() Context
// Output returns a context appropriate for creating output tensors
Output() Context
// Layer returns a context appropriate for creating intermediate tensors
Layer(int) Context
}
type Tensor interface {
@@ -90,8 +135,10 @@ type Tensor interface {
RMSNorm(ctx Context, weight Tensor, eps float32) Tensor
Scale(ctx Context, s float64) Tensor
AvgPool2D(ctx Context, k, s int, p float32) Tensor
Conv2D(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
RoPE(ctx Context, positionIDs, ropeFactors Tensor, dim uint32, base, scale float32) Tensor
RoPE(ctx Context, positionIDs, ropeFactors Tensor, dim, ropeType uint32, base, scale float32) Tensor
Tanh(ctx Context) Tensor
GELU(ctx Context) Tensor
@@ -101,6 +148,7 @@ type Tensor interface {
View(ctx Context, offset int, shape ...int) Tensor
Permute(ctx Context, shape ...int) Tensor
Contiguous(ctx Context) Tensor
Set(ctx Context, t2 Tensor, offset int, strides ...int) Tensor
Pad(ctx Context, shape ...int) Tensor
Unpad(ctx Context, shape ...int) Tensor
@@ -115,6 +163,10 @@ type Tensor interface {
// operation equivalent to following code on a tensor named
// query:
//
// query = query.Permute(ctx, 0, 2, 1, 3)
// key = key.Permute(ctx, 0, 2, 1, 3)
// value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
//
// kq := key.MulmatFullPrec(ctx, query)
//
// kq = kq.Scale(ctx, scale)
@@ -168,8 +220,8 @@ func Dump(ctx Context, t Tensor, opts ...DumpOptions) string {
return dump[[]float32](ctx, t, opts[0].Items, func(f float32) string {
return strconv.FormatFloat(float64(f), 'f', opts[0].Precision, 32)
})
case DTypeF16:
f32 := ctx.Zeros(DTypeF32, t.Shape()...)
case DTypeF16, DTypeQ80, DTypeQ40:
f32 := ctx.Empty(DTypeF32, t.Shape()...)
f32 = t.Copy(ctx, f32)
return dump[[]float32](ctx, f32, opts[0].Items, func(f float32) string {
return strconv.FormatFloat(float64(f), 'f', opts[0].Precision, 32)
@@ -185,8 +237,7 @@ func Dump(ctx Context, t Tensor, opts ...DumpOptions) string {
func dump[S ~[]E, E number](ctx Context, t Tensor, items int, fn func(E) string) string {
if t.Bytes() == nil {
ctx.Forward(t)
ctx.Compute(t)
ctx.Forward(t).Compute(t)
}
s := make(S, mul(t.Shape()...))
@@ -195,16 +246,17 @@ func dump[S ~[]E, E number](ctx Context, t Tensor, items int, fn func(E) string)
}
shape := t.Shape()
slices.Reverse(shape)
var sb strings.Builder
var f func([]int, int)
f = func(dims []int, stride int) {
prefix := strings.Repeat(" ", len(shape)-len(dims)+1)
fmt.Fprint(&sb, "[")
defer func() { fmt.Fprint(&sb, "]") }()
sb.WriteString("[")
defer func() { sb.WriteString("]") }()
for i := 0; i < dims[0]; i++ {
if i >= items && i < dims[0]-items {
fmt.Fprint(&sb, "..., ")
sb.WriteString("..., ")
// skip to next printable element
skip := dims[0] - 2*items
if len(dims) > 1 {
@@ -219,9 +271,14 @@ func dump[S ~[]E, E number](ctx Context, t Tensor, items int, fn func(E) string)
fmt.Fprint(&sb, ",", strings.Repeat("\n", len(dims)-1), prefix)
}
} else {
fmt.Fprint(&sb, fn(s[stride+i]))
text := fn(s[stride+i])
if len(text) > 0 && text[0] != '-' {
sb.WriteString(" ")
}
sb.WriteString(text)
if i < dims[0]-1 {
fmt.Fprint(&sb, ", ")
sb.WriteString(", ")
}
}
}
@@ -237,5 +294,7 @@ const (
DTypeOther DType = iota
DTypeF32
DTypeF16
DTypeQ80
DTypeQ40
DTypeI32
)

File diff suppressed because it is too large Load Diff

View File

@@ -114,6 +114,7 @@ extern "C" {
// get raw pointer to the first element of the array with the given key_id
// for bool arrays, note that they are always stored as int8 on all platforms (usually this makes no difference)
GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int64_t key_id);
GGML_API size_t gguf_get_arr_data_n(const struct gguf_context * ctx, int64_t key_id);
// get ith C string from array with given key_id
GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int64_t key_id, size_t i);

View File

@@ -0,0 +1,11 @@
#include "ggml.h"
#ifdef __cplusplus
extern "C" {
#endif
void ollama_debug(const struct ggml_tensor *tensor, bool verbose);
#ifdef __cplusplus
}
#endif

View File

@@ -484,33 +484,29 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
}
fs::directory_iterator dir_it(search_path, fs::directory_options::skip_permission_denied);
for (const auto & entry : dir_it) {
try {
if (entry.is_regular_file()) {
std::string filename = entry.path().filename().string();
std::string ext = entry.path().extension().string();
if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
dl_handle_ptr handle { dl_load_library(entry.path()) };
if (!handle) {
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, path_to_string(entry.path()).c_str());
continue;
}
if (entry.is_regular_file()) {
std::string filename = entry.path().filename().string();
std::string ext = entry.path().extension().string();
if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
dl_handle_ptr handle { dl_load_library(entry.path()) };
if (!handle) {
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, path_to_string(entry.path()).c_str());
continue;
}
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
if (!score_fn) {
GGML_LOG_DEBUG("%s: failed to find ggml_backend_score in %s\n", __func__, path_to_string(entry.path()).c_str());
continue;
}
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
if (!score_fn) {
GGML_LOG_DEBUG("%s: failed to find ggml_backend_score in %s\n", __func__, path_to_string(entry.path()).c_str());
continue;
}
int s = score_fn();
GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, path_to_string(entry.path()).c_str(), s);
if (s > best_score) {
best_score = s;
best_path = entry.path();
}
int s = score_fn();
GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, path_to_string(entry.path()).c_str(), s);
if (s > best_score) {
best_score = s;
best_path = entry.path();
}
}
} catch (const std::exception & e) {
GGML_LOG_ERROR("%s: failed to load %s: %s\n", __func__, path_to_string(entry.path()).c_str(), e.what());
}
}
}
@@ -533,6 +529,14 @@ void ggml_backend_load_all() {
ggml_backend_load_all_from_path(nullptr);
}
static void ggml_backend_try_load_best(const char * name, bool silent, const char * user_search_path) {
try {
ggml_backend_load_best(name, silent, user_search_path);
} catch (const std::exception & e) {
GGML_LOG_DEBUG("%s: failed to load %s: %s\n", __func__, name, e.what());
}
}
void ggml_backend_load_all_from_path(const char * dir_path) {
#ifdef NDEBUG
bool silent = true;
@@ -540,18 +544,18 @@ void ggml_backend_load_all_from_path(const char * dir_path) {
bool silent = false;
#endif
ggml_backend_load_best("blas", silent, dir_path);
ggml_backend_load_best("cann", silent, dir_path);
ggml_backend_load_best("cuda", silent, dir_path);
ggml_backend_load_best("hip", silent, dir_path);
ggml_backend_load_best("kompute", silent, dir_path);
ggml_backend_load_best("metal", silent, dir_path);
ggml_backend_load_best("rpc", silent, dir_path);
ggml_backend_load_best("sycl", silent, dir_path);
ggml_backend_load_best("vulkan", silent, dir_path);
ggml_backend_load_best("opencl", silent, dir_path);
ggml_backend_load_best("musa", silent, dir_path);
ggml_backend_load_best("cpu", silent, dir_path);
ggml_backend_try_load_best("blas", silent, dir_path);
ggml_backend_try_load_best("cann", silent, dir_path);
ggml_backend_try_load_best("cuda", silent, dir_path);
ggml_backend_try_load_best("hip", silent, dir_path);
ggml_backend_try_load_best("kompute", silent, dir_path);
ggml_backend_try_load_best("metal", silent, dir_path);
ggml_backend_try_load_best("rpc", silent, dir_path);
ggml_backend_try_load_best("sycl", silent, dir_path);
ggml_backend_try_load_best("vulkan", silent, dir_path);
ggml_backend_try_load_best("opencl", silent, dir_path);
ggml_backend_try_load_best("musa", silent, dir_path);
ggml_backend_try_load_best("cpu", silent, dir_path);
// check the environment variable GGML_BACKEND_PATH to load an out-of-tree backend
const char * backend_path = std::getenv("GGML_BACKEND_PATH");
if (backend_path) {

View File

@@ -0,0 +1,6 @@
//go:build debug
package cpu
// #cgo CPPFLAGS: -DOLLAMA_DEBUG
import "C"

View File

@@ -11,6 +11,8 @@
#include "ggml-threading.h"
#include "ggml.h"
#include "ollama-debug.h"
#if defined(_MSC_VER) || defined(__MINGW32__)
#include <malloc.h> // using malloc.h with MSC/MINGW
#elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
@@ -14103,6 +14105,10 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
ggml_compute_forward(&params, node);
#ifdef OLLAMA_DEBUG
ollama_debug(node, true);
#endif
if (state->ith == 0 && cplan->abort_callback &&
cplan->abort_callback(cplan->abort_callback_data)) {
atomic_store_explicit(&tp->abort, node_n + 1, memory_order_relaxed);

View File

@@ -7,13 +7,30 @@ package ggml
// #include <stdlib.h>
// #include "ggml-backend.h"
// extern void sink(int level, char *text, void *user_data);
// static struct ggml_backend_feature * first_feature(ggml_backend_get_features_t fp, ggml_backend_reg_t reg) { return fp(reg); }
// static struct ggml_backend_feature * next_feature(struct ggml_backend_feature * feature) { return &feature[1]; }
/*
typedef enum { COMPILER_CLANG, COMPILER_GNUC, COMPILER_UNKNOWN } COMPILER;
static COMPILER compiler_name(void) {
#if defined(__clang__)
return COMPILER_CLANG;
#elif defined(__GNUC__)
return COMPILER_GNUC;
#else
return COMPILER_UNKNOWN;
#endif
}
*/
import "C"
import (
"context"
"fmt"
"log/slog"
"os"
"path/filepath"
"runtime"
"strconv"
"strings"
"sync"
"unsafe"
@@ -22,21 +39,14 @@ import (
)
func init() {
C.ggml_log_set((C.ggml_log_callback)(C.sink), nil)
C.ggml_log_set(C.ggml_log_callback(C.sink), nil)
}
//export sink
func sink(level C.int, text *C.char, _ unsafe.Pointer) {
msg := strings.TrimSpace(C.GoString(text))
switch level {
case C.GGML_LOG_LEVEL_DEBUG:
slog.Debug(msg)
case C.GGML_LOG_LEVEL_INFO:
slog.Info(msg)
case C.GGML_LOG_LEVEL_WARN:
slog.Warn(msg)
case C.GGML_LOG_LEVEL_ERROR:
slog.Error(msg)
// slog levels zeros INFO and are multiples of 4
if slog.Default().Enabled(context.TODO(), slog.Level(int(level-C.GGML_LOG_LEVEL_INFO)*4)) {
fmt.Fprint(os.Stderr, C.GoString(text))
}
}
@@ -95,4 +105,43 @@ var OnceLoad = sync.OnceFunc(func() {
visited[abspath] = struct{}{}
}
}
slog.Info("system", "", system{})
})
type system struct{}
func (system) LogValue() slog.Value {
var attrs []slog.Attr
names := make(map[string]int)
for i := range C.ggml_backend_dev_count() {
r := C.ggml_backend_dev_backend_reg(C.ggml_backend_dev_get(i))
func() {
fName := C.CString("ggml_backend_get_features")
defer C.free(unsafe.Pointer(fName))
if fn := C.ggml_backend_reg_get_proc_address(r, fName); fn != nil {
var features []any
for f := C.first_feature(C.ggml_backend_get_features_t(fn), r); f.name != nil; f = C.next_feature(f) {
features = append(features, C.GoString(f.name), C.GoString(f.value))
}
name := C.GoString(C.ggml_backend_reg_name(r))
attrs = append(attrs, slog.Group(name+"."+strconv.Itoa(names[name]), features...))
names[name] += 1
}
}()
}
switch C.compiler_name() {
case C.COMPILER_CLANG:
attrs = append(attrs, slog.String("compiler", "cgo(clang)"))
case C.COMPILER_GNUC:
attrs = append(attrs, slog.String("compiler", "cgo(gcc)"))
default:
attrs = append(attrs, slog.String("compiler", "cgo(unknown)"))
}
return slog.GroupValue(attrs...)
}

View File

@@ -777,10 +777,14 @@ enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int64_t key_id
const void * gguf_get_arr_data(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING);
return ctx->kv[key_id].data.data();
}
size_t gguf_get_arr_data_n(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
return ctx->kv[key_id].data.size();
}
const char * gguf_get_arr_str(const struct gguf_context * ctx, int64_t key_id, size_t i) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_type() == GGUF_TYPE_STRING);
@@ -874,7 +878,6 @@ const char * gguf_get_val_str(const struct gguf_context * ctx, int64_t key_id) {
const void * gguf_get_val_data(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING);
return ctx->kv[key_id].data.data();
}

115
ml/backend/ggml/ggml/src/ollama-debug.c vendored Normal file
View File

@@ -0,0 +1,115 @@
#include <string.h>
#include "ollama-debug.h"
static int mul(int64_t *dims, int ndims) {
int result = 1;
for (int i = 0; i < ndims; i++) {
result *= dims[i];
}
return result;
}
static void repeat(char c, int n) {
for (int i = 0; i < n; i++) {
fprintf(stderr, "%c", c);
}
}
static void print_tensor(const void *tensor, void (*cb)(const void *, int),
int shape,
int64_t *dims, int ndims, int stride,
int nitems, int pad) {
fprintf(stderr, "[");
for (int i = 0; i < dims[0]; i++) {
if (i >= nitems && i < dims[0] - nitems) {
fprintf(stderr, "... (%lld more), ", dims[0] - 2 * nitems);
int skip = dims[0] - 2 * nitems;
if (ndims > 1) {
stride += mul(dims + 1, ndims - 1) * skip;
repeat('\n', ndims - 1);
repeat(' ', shape - ndims + 1 + pad);
}
i += skip - 1;
} else if (ndims > 1) {
print_tensor(tensor, cb, shape, dims + 1, ndims - 1, stride,
nitems, pad);
stride += mul(dims + 1, ndims - 1);
if (i < dims[0] - 1) {
fprintf(stderr, ", ");
repeat('\n', ndims - 1);
repeat(' ', shape - ndims + 1 + pad);
}
} else {
cb(tensor, stride + i);
if (i < dims[0] - 1) {
fprintf(stderr, ", ");
}
}
}
fprintf(stderr, "]");
}
static void print_tensor_f16(const void *tensor, int i) {
float value = ggml_fp16_to_fp32(((const ggml_fp16_t *)tensor)[i]);
fprintf(stderr, "%s%f", value < 0 ? "" : " ", value);
}
static void print_tensor_f32(const void *tensor, int i) {
float value = ((const float *)tensor)[i];
fprintf(stderr, "%s%f", value < 0 ? "" : " ", value);
}
static void print_tensor_i32(const void *tensor, int i) {
int32_t value = ((const int32_t *)tensor)[i];
fprintf(stderr, "%s%d", value < 0 ? "" : " ", value);
}
static void ollama_debug_tensor(const struct ggml_tensor *tensor, bool verbose, const char *prefix, int indent) {
fprintf(stderr, "%s%s %s (%s): [%lld %lld %lld %lld]\n", prefix, tensor->name,
ggml_op_name(tensor->op), ggml_type_name(tensor->type), tensor->ne[0],
tensor->ne[1], tensor->ne[2], tensor->ne[3]);
if (!verbose) {
return;
}
for (int i = 0; i < indent; i++) {
fprintf(stderr, " ");
}
switch (tensor->type) {
case GGML_TYPE_F16:
print_tensor(ggml_get_data(tensor), print_tensor_f16, ggml_n_dims(tensor),
(int64_t *)tensor->ne, ggml_n_dims(tensor), 0, 3, indent);
break;
case GGML_TYPE_F32:
print_tensor(ggml_get_data(tensor), print_tensor_f32, ggml_n_dims(tensor),
(int64_t *)tensor->ne, ggml_n_dims(tensor), 0, 3, indent);
break;
case GGML_TYPE_I32:
print_tensor(ggml_get_data(tensor), print_tensor_i32, ggml_n_dims(tensor),
(int64_t *)tensor->ne, ggml_n_dims(tensor), 0, 3, indent);
break;
default:
fprintf(stderr, "<unsupported type>\n");
return;
}
fprintf(stderr, "\n");
}
void ollama_debug(const struct ggml_tensor *tensor, bool verbose) {
ollama_debug_tensor(tensor, verbose, ">>> ", 4);
for (int i = 0; i < GGML_MAX_SRC && tensor->src[i] != NULL; ++i) {
char src[8];
const int n = snprintf(src, sizeof(src), " src%d ", i);
if (n >= sizeof(src)) {
src[sizeof(src) - 1] = '\0';
}
ollama_debug_tensor(tensor->src[i], verbose, src, 4);
}
}

View File

@@ -0,0 +1,7 @@
//go:build !debug
package ggml
func Threads(n int) int {
return n
}

View File

@@ -0,0 +1,7 @@
//go:build debug
package ggml
func Threads(_ int) int {
return 1
}

View File

@@ -3,6 +3,7 @@ package nn
import (
"fmt"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
)
@@ -11,40 +12,50 @@ import (
//
// Parameters:
// - ctx: Context for tensor operations
// - query: Query tensor (Q) with shape [d_k, seq_len_q, heads]
// - key: Key tensor (K) with shape [d_k, seq_len_k, kv_heads]
// - value: Value tensor (V) with shape [seq_len_k, d_v, kv_heads]
// - mask: Optional attention mask that is added to the attention score. If
// provided, should broadcast to [seq_len_k, seq_len_q, heads]
// - query: Query tensor (Q) with shape [d_k, heads, seq_len_q]
// - key: Key tensor (K) with shape [d_k, kv_heads, seq_len_k], can be nil to read from cache only
// - value: Value tensor (V) with shape [d_v, kv_heads, seq_len_k], can be nil to read from cache only
// - scale: Scaling factor, typically 1/√d_k where d_k is the key dimension
// - cache: KV cache to store key/value and get past history, can be nil to only use provided key/value
//
// Returns:
//
// Attention output with shape [d_v, heads, seq_len_q]
func Attention(ctx ml.Context, query, key, value, mask ml.Tensor, scale float64) ml.Tensor {
if query.Dim(0) != key.Dim(0) {
panic(fmt.Errorf("d_k in attention operation does not match between query(%v) and key(%v)", query.Dim(0), key.Dim(0)))
func Attention(ctx ml.Context, query, key, value ml.Tensor, scale float64, cache kvcache.Cache) ml.Tensor {
if key != nil && value != nil {
if query.Dim(0) != key.Dim(0) {
panic(fmt.Errorf("d_k in attention operation does not match between query(%v) and key(%v)", query.Dim(0), key.Dim(0)))
}
if key.Dim(1) != value.Dim(1) {
panic(fmt.Errorf("kv_heads in attention operation does not match between key(%v) and value(%v)", key.Dim(1), value.Dim(1)))
}
if key.Dim(2) != value.Dim(2) {
panic(fmt.Errorf("seq_len_k in attention operation does not match between key(%v) and value(%v)", key.Dim(2), value.Dim(2)))
}
if cache != nil {
cache.Put(ctx, key, value)
}
} else if cache == nil {
panic("key & value tensors must be provided if cache is nil")
}
if mask != nil && query.Dim(1) != mask.Dim(1) {
panic(fmt.Errorf("seq_len_q in attention operation does not match between query(%v) and mask(%v)", query.Dim(1), mask.Dim(1)))
var mask ml.Tensor
if cache != nil {
key, value, mask = cache.Get(ctx)
}
if key.Dim(1) != value.Dim(0) {
panic(fmt.Errorf("seq_len_k in attention operation does not match between key(%v) and value(%v)", key.Dim(1), value.Dim(0)))
}
if mask != nil && key.Dim(1) != mask.Dim(0) {
panic(fmt.Errorf("seq_len_k in attention operation does not match between key(%v) and mask(%v)", key.Dim(1), mask.Dim(0)))
}
if key.Dim(2) != value.Dim(2) {
panic(fmt.Errorf("kv_heads in attention operation does not match between key(%v) and value(%v)", key.Dim(2), value.Dim(2)))
}
if sdpa, ok := query.(ml.ScaledDotProductAttention); ok {
// Only use the fast SDPA implementation if we have a cache, since that's what
// will do any expected backend-specific transformations for us
if sdpa, ok := query.(ml.ScaledDotProductAttention); ok && cache != nil {
return sdpa.ScaledDotProductAttention(ctx, key, value, mask, scale)
} else {
query = query.Permute(ctx, 0, 2, 1, 3)
key = key.Permute(ctx, 0, 2, 1, 3)
value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
kq := key.MulmatFullPrec(ctx, query)
kq = kq.Scale(ctx, scale)

37
model/input/input.go Normal file
View File

@@ -0,0 +1,37 @@
package input
// Input represents one token in the input stream
type Input struct {
// Token is a single element of text.
Token int32
// Multimodal is opaque data representing a non-text
// element such as an image (or part of one if the image
// can be processed in pieces). It may be either together
// with Token or on its own.
Multimodal any
// MultimodalHash is a unique representation of the data
// stored in Multimodal, used for caching and comparing
// equality.
MultimodalHash uint64
}
// MultimodalIndex is a multimodal element (such as an image)
// together with an index into the slice of Inputs with the
// corresponding token. Note that the index is not the same
// as the position - to find that use the index with the
// Positions slice.
type MultimodalIndex struct {
Index int
Multimodal any
}
// Options contains the inputs for a model forward pass
type Options struct {
Inputs []int32
Multimodal []MultimodalIndex
Positions []int32
Sequences []int
Outputs []int32
}

View File

@@ -3,7 +3,6 @@ package model
import (
"errors"
"fmt"
"image"
_ "image/jpeg"
_ "image/png"
"log/slog"
@@ -16,23 +15,50 @@ import (
_ "golang.org/x/image/tiff"
_ "golang.org/x/image/webp"
fs "github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
_ "github.com/ollama/ollama/ml/backend"
"github.com/ollama/ollama/model/input"
)
// Options contains the inputs for a model forward pass
type Options struct {
Inputs []int32
Positions []int32
Sequences []int
Outputs []int32
// Model implements a specific model architecture, defining the forward pass and any model-specific configuration
type Model interface {
Forward(ml.Context, input.Options) (ml.Tensor, error)
Images []image.Image
Backend() ml.Backend
Config() config
}
type config struct {
Cache kvcache.Cache
// MultimodalProcessor must be implemented by multimodal models.
type MultimodalProcessor interface {
// EncodeMultimodal processes a single input (such as an image) and
// generates an output (typically an embedding) that can be used by the model.
//
// The return value is most typically an ml.Tensor, however, different
// type are possible, such as an object containing a tensor plus
// additional metadata, a slice of tensors or even just the original input.
//
// The result may be cached by the runner.
EncodeMultimodal(ml.Context, []byte) (any, error)
// PostTokenize is called after tokenization to allow the model to edit the
// input stream to correctly arrange multimodal elements.
//
// The input is a slice of tokens with the results of EncodeMultimodal interleaved
// in the order that the user provided them. Each element of the slice will be
// either a single token or single multimodal object.
//
// The model must ensure that inputs are stored according to how they will be
// processed and stored in the cache. For example, Llava-style models should insert
// placeholder tokens equal to the feature size of the corresponding image with
// the image itself attached to and split across these tokens. When Forward is called
// a partial subset of these tokens may be submitted according to the batch size.
//
// This function is also responsible for updating MultimodalHash for any Multimodal
// that is modified to ensure that there is a unique hash value that accurately
// represents the contents.
PostTokenize(ml.Context, []input.Input) ([]input.Input, error)
}
// Base implements the common fields and methods for all models
@@ -41,6 +67,10 @@ type Base struct {
config
}
type config struct {
Cache kvcache.Cache
}
// Backend returns the underlying backend that will run the model
func (m *Base) Backend() ml.Backend {
return m.b
@@ -50,14 +80,6 @@ func (m *Base) Config() config {
return m.config
}
// Model implements a specific model architecture, defining the forward pass and any model-specific configuration
type Model interface {
Forward(ml.Context, Options) (ml.Tensor, error)
Backend() ml.Backend
Config() config
}
var models = make(map[string]func(ml.Config) (Model, error))
// Register registers a model constructor for the given architecture
@@ -100,6 +122,36 @@ func New(modelPath string, params ml.BackendParams) (Model, error) {
return m, nil
}
func NewTextProcessor(s string) (TextProcessor, error) {
r, err := os.Open(s)
if err != nil {
return nil, err
}
defer r.Close()
meta, _, err := fs.Decode(r, -1)
if err != nil {
return nil, err
}
return getTextProcessor(meta.KV())
}
func getTextProcessor(kv fs.KV) (TextProcessor, error) {
arch := kv.Architecture()
f, ok := models[arch]
if !ok {
return nil, fmt.Errorf("unsupported model architecture %q", arch)
}
m, err := f(kv)
if err != nil {
return nil, err
}
tp, ok := m.(TextProcessor)
if !ok {
return nil, fmt.Errorf("%v is not a TextProcessor", m)
}
return tp, nil
}
func populateFields(base Base, v reflect.Value, tags ...Tag) reflect.Value {
t := v.Type()
@@ -226,7 +278,7 @@ func canNil(t reflect.Type) bool {
t.Kind() == reflect.Slice
}
func Forward(ctx ml.Context, m Model, opts Options) (ml.Tensor, error) {
func Forward(ctx ml.Context, m Model, opts input.Options) (ml.Tensor, error) {
if len(opts.Positions) != len(opts.Sequences) {
return nil, fmt.Errorf("length of positions (%v) must match length of seqs (%v)", len(opts.Positions), len(opts.Sequences))
}
@@ -237,7 +289,7 @@ func Forward(ctx ml.Context, m Model, opts Options) (ml.Tensor, error) {
cache := m.Config().Cache
if cache != nil {
err := cache.StartForward(ctx, opts.Positions, opts.Sequences)
err := cache.StartForward(ctx, opts)
if err != nil {
return nil, err
}
@@ -248,8 +300,7 @@ func Forward(ctx ml.Context, m Model, opts Options) (ml.Tensor, error) {
return nil, err
}
ctx.Forward(t)
ctx.Compute(t)
ctx.Forward(t).Compute(t)
return t, nil
}

View File

@@ -3,12 +3,15 @@ package model
import (
"reflect"
"slices"
"strings"
"testing"
"github.com/google/go-cmp/cmp"
fs "github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/backend/ggml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model/input"
)
func TestParseTags(t *testing.T) {
@@ -134,3 +137,40 @@ func TestPopulateFieldsAlternateName(t *testing.T) {
t.Errorf("populateFields() set incorrect values (-want +got):\n%s", diff)
}
}
func TestGetTextProcessor(t *testing.T) {
tp, err := getTextProcessor(fs.KV{})
if err == nil {
t.Error("expected error")
} else if !strings.Contains(err.Error(), "unsupported model architecture") {
t.Errorf("unexpected error: %v", err)
} else if tp != nil {
t.Error("expected nil tp")
}
models["dummy"] = func(ml.Config) (Model, error) {
return notTextProcessorModel{}, nil
}
tp, err = getTextProcessor(fs.KV{"general.architecture": "dummy"})
if err == nil {
t.Error("expected error")
} else if !strings.Contains(err.Error(), "not a TextProcessor") {
t.Errorf("unexpected error: %v", err)
} else if tp != nil {
t.Error("expected nil tp")
}
}
type notTextProcessorModel struct{}
func (notTextProcessorModel) Forward(ml.Context, input.Options) (ml.Tensor, error) {
panic("unimplemented")
}
func (notTextProcessorModel) Backend() ml.Backend {
panic("unimplemented")
}
func (notTextProcessorModel) Config() config {
panic("unimplemented")
}

View File

@@ -0,0 +1,220 @@
package gemma2
import (
"math"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Options struct {
hiddenSize, numHeads, numKVHeads int
attnKeyLen, attnValLen int
eps, ropeBase, ropeScale float32
attnLogitSoftcap float32
finalLogitSoftcap float32
largeModelScaling bool
}
type Model struct {
model.Base
model.SentencePieceModel
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []Layer `gguf:"blk"`
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
Output *nn.Linear `gguf:"output,alt:token_embd"` // just set to token_embd?
*Options
}
const (
gemma27BLayerCount = 46
)
func New(c ml.Config) (model.Model, error) {
m := Model{
SentencePieceModel: model.NewSentencePieceModel(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Uints("tokenizer.ggml.token_type"),
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
},
),
Layers: make([]Layer, c.Uint("block_count")),
Options: &Options{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
attnKeyLen: int(c.Uint("attention.key_length")),
attnValLen: int(c.Uint("attention.value_length")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base", 10000.0),
ropeScale: c.Float("rope.freq_scale", 1.0),
attnLogitSoftcap: c.Float("attn_logit_softcapping"),
finalLogitSoftcap: c.Float("final_logit_softcapping"),
},
}
slidingWindowLen := int32(c.Uint("attention.sliding_window"))
m.Cache = kvcache.NewWrapperCache(kvcache.NewSWACache(slidingWindowLen, m.Shift), kvcache.NewCausalCache(m.Shift))
m.Cache.SetConfig(ml.CacheConfig{})
return &m, nil
}
type SelfAttention struct {
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
}
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
batchSize := hiddenState.Dim(1)
ropeType := uint32(2)
q := sa.Query.Forward(ctx, hiddenState)
q = q.Reshape(ctx, opts.attnKeyLen, opts.numHeads, batchSize)
q = q.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, opts.ropeBase, opts.ropeScale)
if opts.largeModelScaling {
q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.hiddenSize/opts.numHeads)))
} else {
q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.attnKeyLen)))
}
k := sa.Key.Forward(ctx, hiddenState)
k = k.Reshape(ctx, opts.attnKeyLen, opts.numKVHeads, batchSize)
k = k.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, opts.ropeBase, opts.ropeScale)
v := sa.Value.Forward(ctx, hiddenState)
v = v.Reshape(ctx, opts.attnValLen, opts.numKVHeads, batchSize)
cache.Put(ctx, k, v)
k, v, mask := cache.Get(ctx)
q = q.Permute(ctx, 0, 2, 1, 3)
k = k.Permute(ctx, 0, 2, 1, 3)
v = v.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
kq := k.Mulmat(ctx, q)
// logit softcap
kq = kq.Scale(ctx, 1.0/float64(opts.attnLogitSoftcap))
kq = kq.Tanh(ctx)
kq = kq.Scale(ctx, float64(opts.attnLogitSoftcap))
kq = kq.Add(ctx, mask)
kq = kq.Softmax(ctx)
kqv := v.Mulmat(ctx, kq)
kqv = kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
kqv = kqv.Reshape(ctx, opts.attnValLen*opts.numHeads, batchSize)
return sa.Output.Forward(ctx, kqv)
}
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return key.RoPE(ctx, shift, nil, uint32(m.Options.attnKeyLen), uint32(2), m.Options.ropeBase, m.Options.ropeScale), nil
}
type MLP struct {
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
Gate *nn.Linear `gguf:"ffn_gate"`
}
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
hiddenState = mlp.Gate.Forward(ctx, hiddenState).GELU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
return mlp.Down.Forward(ctx, hiddenState)
}
type Layer struct {
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
SelfAttention *SelfAttention
PostAttentionNorm *nn.RMSNorm `gguf:"post_attention_norm"`
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
MLP *MLP
PostMLPNorm *nn.RMSNorm `gguf:"post_ffw_norm"`
}
func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
residual := hiddenState
hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)
hiddenState = l.PostAttentionNorm.Forward(ctx, hiddenState, opts.eps)
// In the final layer (outputs != nil), optimize by pruning to just the token positions
// we need logits for.
if outputs != nil {
hiddenState = hiddenState.Rows(ctx, outputs)
residual = residual.Rows(ctx, outputs)
}
hiddenState = hiddenState.Add(ctx, residual)
residual = hiddenState
hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
hiddenState = l.PostMLPNorm.Forward(ctx, hiddenState, opts.eps)
return hiddenState.Add(ctx, residual)
}
func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
if err != nil {
return nil, err
}
positions, err := ctx.Input().FromIntSlice(opts.Positions, len(opts.Positions))
if err != nil {
return nil, err
}
outputs, err := ctx.Output().FromIntSlice(opts.Outputs, len(opts.Outputs))
if err != nil {
return nil, err
}
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.Options.hiddenSize)))
if len(m.Layers) == gemma27BLayerCount {
m.Options.largeModelScaling = true
}
for i, layer := range m.Layers {
cacheType := i % 2
m.Cache.SetLayer(i)
wc := m.Cache.(*kvcache.WrapperCache)
wc.SetLayerType(cacheType)
var lastLayerOutputs ml.Tensor
if i == len(m.Layers)-1 {
lastLayerOutputs = outputs
}
hiddenState = layer.Forward(ctx, hiddenState, positions, lastLayerOutputs, m.Cache, m.Options)
}
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
hiddenState = m.Output.Forward(ctx, hiddenState)
// final logit softcap
hiddenState = hiddenState.Scale(ctx, 1.0/float64(m.Options.finalLogitSoftcap))
hiddenState = hiddenState.Tanh(ctx)
hiddenState = hiddenState.Scale(ctx, float64(m.Options.finalLogitSoftcap))
return hiddenState.Rows(ctx, outputs), nil
}
func init() {
model.Register("gemma2", New)
}

View File

@@ -0,0 +1,173 @@
package gemma3
import (
"bytes"
"encoding/binary"
"hash/fnv"
"image"
"math"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Model struct {
model.Base
model.SentencePieceModel
*VisionModel `gguf:"v,vision"`
*TextModel
*MultiModalProjector `gguf:"mm"`
ImageProcessor
}
var _ model.MultimodalProcessor = (*Model)(nil)
type MultiModalProjector struct {
SoftEmbNorm *nn.RMSNorm `gguf:"mm_soft_emb_norm"`
InputProjection *nn.Linear `gguf:"mm_input_projection"`
tokensPerImage int
}
func (p *MultiModalProjector) Forward(ctx ml.Context, visionOutputs ml.Tensor, imageSize, patchSize int, eps float32) ml.Tensor {
l := visionOutputs.Dim(0)
visionOutputs = visionOutputs.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
patchesPerImage := imageSize / patchSize
visionOutputs = visionOutputs.Reshape(ctx, patchesPerImage, patchesPerImage, l)
kernelSize := patchesPerImage / int(math.Sqrt(float64(p.tokensPerImage)))
visionOutputs = visionOutputs.AvgPool2D(ctx, kernelSize, kernelSize, 0)
visionOutputs = visionOutputs.Reshape(ctx, visionOutputs.Dim(0)*visionOutputs.Dim(1), l)
visionOutputs = visionOutputs.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
visionOutputs = p.SoftEmbNorm.Forward(ctx, visionOutputs, eps)
// TODO: inputProjection must be transposed since they're incompatible with visionOutputs
visionOutputs = p.InputProjection.Weight.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx).Mulmat(ctx, visionOutputs)
return visionOutputs
}
func New(c ml.Config) (model.Model, error) {
m := Model{
SentencePieceModel: model.NewSentencePieceModel(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Uints("tokenizer.ggml.token_type"),
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
EOS: int32(1),
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOT: int32(106),
AddEOT: c.Bool("tokenizer.ggml.add_eot_token", false),
},
),
ImageProcessor: newImageProcessor(c),
VisionModel: newVisionModel(c),
TextModel: newTextModel(c),
MultiModalProjector: &MultiModalProjector{
tokensPerImage: int(c.Uint("mm_tokens_per_image", 256)),
},
}
slidingWindowLen := int32(c.Uint("attention.sliding_window"))
m.Cache = kvcache.NewWrapperCache(kvcache.NewSWACache(slidingWindowLen, m.Shift), kvcache.NewCausalCache(m.Shift))
return &m, nil
}
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, error) {
image, _, err := image.Decode(bytes.NewReader(multimodalData))
if err != nil {
return nil, err
}
f32s, err := m.ImageProcessor.ProcessImage(image)
if err != nil {
return nil, err
}
pixelValues, err := ctx.Input().FromFloatSlice(f32s,
m.ImageProcessor.imageSize,
m.ImageProcessor.imageSize,
m.ImageProcessor.numChannels,
)
if err != nil {
return nil, err
}
visionOutputs := m.VisionModel.Forward(ctx, pixelValues)
visionOutputs = m.MultiModalProjector.Forward(ctx, visionOutputs, m.imageSize, m.patchSize, m.VisionModel.eps)
return visionOutputs, nil
}
type imageToken struct {
embedding ml.Tensor
index int
}
func (m *Model) PostTokenize(ctx ml.Context, inputs []input.Input) ([]input.Input, error) {
var result []input.Input
fnvHash := fnv.New64a()
for _, inp := range inputs {
if inp.Multimodal == nil {
result = append(result, inp)
} else {
imageInputs := []input.Input{
{Token: 108}, // "\n\n"
{Token: 255999}, // "<start_of_image>""
}
result = append(result, imageInputs...)
// add image embeddings
inputMultimodal := inp.Multimodal.(ml.Tensor)
for i := range inputMultimodal.Dim(1) {
fnvHash.Reset()
binary.Write(fnvHash, binary.NativeEndian, inp.MultimodalHash)
fnvHash.Write([]byte{byte(i)})
imageToken := imageToken{embedding: inputMultimodal, index: i}
result = append(result, input.Input{Multimodal: imageToken, MultimodalHash: fnvHash.Sum64()})
}
result = append(result,
input.Input{Token: 256000}, // <end_of_image>
input.Input{Token: 108}, // "\n\n"
)
}
}
return result, nil
}
func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
if err != nil {
return nil, err
}
positions, err := ctx.Input().FromIntSlice(opts.Positions, len(opts.Positions))
if err != nil {
return nil, err
}
outputs, err := ctx.Output().FromIntSlice(opts.Outputs, len(opts.Outputs))
if err != nil {
return nil, err
}
return m.TextModel.Forward(ctx, inputs, positions, outputs, opts, m.Cache), nil
}
func init() {
model.Register("gemma3", New)
}

View File

@@ -0,0 +1,254 @@
package gemma3
import (
"math"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type TextOptions struct {
hiddenSize, numHeads, numKVHeads int
attnKeyLen, attnValLen int
eps, ropeScale float32
ropeLocalBase, ropeGlobalBase float32
finalLogitSoftcap float32
largeModelScaling bool
}
type TextModel struct {
model.Base
model.SentencePieceModel
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []TextLayer `gguf:"blk"`
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
Output *nn.Linear `gguf:"output,alt:token_embd"`
*TextOptions
}
const (
gemmaGlobalCacheCount = 6
gemma27BLayerCount = 62
)
const (
cacheTypeSWA = iota
cacheTypeCausal
)
func newTextModel(c ml.Config) *TextModel {
numBlocks := int(c.Uint("block_count"))
m := TextModel{
SentencePieceModel: model.NewSentencePieceModel(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Uints("tokenizer.ggml.token_type"),
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
},
),
Layers: make([]TextLayer, numBlocks),
TextOptions: &TextOptions{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
attnKeyLen: int(c.Uint("attention.key_length", 256)),
attnValLen: int(c.Uint("attention.value_length", 256)),
eps: c.Float("attention.layer_norm_rms_epsilon", 1e-06),
ropeLocalBase: c.Float("rope.local.freq_base", 10000.0),
ropeGlobalBase: c.Float("rope.global.freq_base", 1000000.0),
ropeScale: c.Float("rope.freq_scale", 1.0),
finalLogitSoftcap: c.Float("final_logit_softcapping", 30.0),
},
}
if numBlocks == gemma27BLayerCount {
m.largeModelScaling = true
}
return &m
}
type TextSelfAttention struct {
Query *nn.Linear `gguf:"attn_q"`
QueryNorm *nn.RMSNorm `gguf:"attn_q_norm"`
Key *nn.Linear `gguf:"attn_k"`
KeyNorm *nn.RMSNorm `gguf:"attn_k_norm"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
}
func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
batchSize := hiddenState.Dim(1)
ropeType := uint32(2)
ropeBase := opts.ropeLocalBase
if (layer+1)%gemmaGlobalCacheCount == 0 {
ropeBase = opts.ropeGlobalBase
}
q := sa.Query.Forward(ctx, hiddenState)
q = q.Reshape(ctx, opts.attnKeyLen, opts.numHeads, batchSize)
q = sa.QueryNorm.Forward(ctx, q, opts.eps)
q = q.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, ropeBase, opts.ropeScale)
if opts.largeModelScaling {
q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.hiddenSize/opts.numHeads)))
} else {
q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.attnKeyLen)))
}
k := sa.Key.Forward(ctx, hiddenState)
k = k.Reshape(ctx, opts.attnKeyLen, opts.numKVHeads, batchSize)
k = sa.KeyNorm.Forward(ctx, k, opts.eps)
k = k.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, ropeBase, opts.ropeScale)
v := sa.Value.Forward(ctx, hiddenState)
v = v.Reshape(ctx, opts.attnValLen, opts.numKVHeads, batchSize)
scaleFactor := 1.0
kqv := nn.Attention(ctx, q, k, v, scaleFactor, cache)
kqv = kqv.Reshape(ctx, opts.attnValLen*opts.numHeads, batchSize)
return sa.Output.Forward(ctx, kqv)
}
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
ropeBase := m.TextOptions.ropeLocalBase
if (layer+1)%gemmaGlobalCacheCount == 0 {
ropeBase = m.TextOptions.ropeGlobalBase
}
return key.RoPE(ctx, shift, nil, uint32(m.TextOptions.attnKeyLen), uint32(2), ropeBase, m.TextOptions.ropeScale), nil
}
type TextMLP struct {
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
Gate *nn.Linear `gguf:"ffn_gate"`
}
func (mlp *TextMLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextOptions) ml.Tensor {
hiddenState = mlp.Gate.Forward(ctx, hiddenState).GELU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
return mlp.Down.Forward(ctx, hiddenState)
}
type TextLayer struct {
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
SelfAttention *TextSelfAttention
PostAttentionNorm *nn.RMSNorm `gguf:"post_attention_norm"`
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
MLP *TextMLP
PostMLPNorm *nn.RMSNorm `gguf:"post_ffw_norm"`
}
func (l *TextLayer) Forward(ctx ml.Context, layer int, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
residual := hiddenState
hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = l.SelfAttention.Forward(ctx, layer, hiddenState, positionIDs, cache, opts)
hiddenState = l.PostAttentionNorm.Forward(ctx, hiddenState, opts.eps)
// In the final layer (outputs != nil), optimize by pruning to just the token positions
// we need logits for.
if outputs != nil {
hiddenState = hiddenState.Rows(ctx, outputs)
residual = residual.Rows(ctx, outputs)
}
hiddenState = hiddenState.Add(ctx, residual)
residual = hiddenState
hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
hiddenState = l.PostMLPNorm.Forward(ctx, hiddenState, opts.eps)
return hiddenState.Add(ctx, residual)
}
func setImageEmbeddings(ctx ml.Context, hiddenState ml.Tensor, multimodal []input.MultimodalIndex) []int {
var embedding ml.Tensor
var src, dst, length int
var except []int
for _, image := range multimodal {
imageToken := image.Multimodal.(imageToken)
imageSrc := imageToken.index
imageDst := image.Index
if embedding == nil {
embedding = imageToken.embedding
src = imageSrc
dst = imageDst
length = 1
} else if embedding == imageToken.embedding && imageSrc+1 == src && imageDst+1 == dst {
src = imageSrc
dst = imageDst
length++
} else if embedding == imageToken.embedding && src+length == imageSrc && dst+length == imageDst {
length++
} else {
visionOutputs := embedding.View(ctx, src*embedding.Stride(1), length*embedding.Dim(0))
ctx.Forward(visionOutputs.Copy(ctx, hiddenState.View(ctx, dst*hiddenState.Stride(1), length*hiddenState.Dim(0))))
embedding = imageToken.embedding
src = imageSrc
dst = imageDst
length = 1
}
except = append(except, imageDst)
}
if embedding != nil {
visionOutputs := embedding.View(ctx, src*embedding.Stride(1), length*embedding.Dim(0))
ctx.Forward(visionOutputs.Copy(ctx, hiddenState.View(ctx, dst*hiddenState.Stride(1), length*hiddenState.Dim(0))))
}
return except
}
func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor, opts input.Options, cache kvcache.Cache) ml.Tensor {
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.TextOptions.hiddenSize)))
except := setImageEmbeddings(ctx, hiddenState, opts.Multimodal)
for i, layer := range m.Layers {
// gemma alternates between the sliding window (local) and causal (global)
// kv cache every 6 layers
cacheType := cacheTypeSWA
if (i+1)%gemmaGlobalCacheCount == 0 {
cacheType = cacheTypeCausal
}
cache.SetLayer(i)
wc := cache.(*kvcache.WrapperCache)
wc.SetLayerType(cacheType)
if causal, ok := wc.UnderlyingCache().(*kvcache.Causal); ok {
causal.SetCausal(ctx, kvcache.CausalOptions{Except: except})
}
var lastLayerOutputs ml.Tensor
if i == len(m.Layers)-1 {
lastLayerOutputs = outputs
}
hiddenState = layer.Forward(ctx, i, hiddenState, positions, lastLayerOutputs, cache, m.TextOptions)
}
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
hiddenState = m.Output.Forward(ctx, hiddenState)
// final logit softcap
hiddenState = hiddenState.Scale(ctx, 1.0/float64(m.TextOptions.finalLogitSoftcap))
hiddenState = hiddenState.Tanh(ctx)
return hiddenState.Scale(ctx, float64(m.TextOptions.finalLogitSoftcap))
}

View File

@@ -0,0 +1,127 @@
package gemma3
import (
"math"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
)
var batchSize int = 1
type VisionSelfAttention struct {
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
}
func (sa *VisionSelfAttention) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *VisionModelOptions) ml.Tensor {
headDim := opts.hiddenSize / opts.numHeads
query := sa.Query.Forward(ctx, hiddenState)
key := sa.Key.Forward(ctx, hiddenState)
value := sa.Value.Forward(ctx, hiddenState)
query = query.Reshape(ctx, headDim, opts.numHeads, query.Dim(1), batchSize)
key = key.Reshape(ctx, headDim, opts.numHeads, key.Dim(1), batchSize)
value = value.Reshape(ctx, headDim, opts.numHeads, value.Dim(1), batchSize)
attention := nn.Attention(ctx, query, key, value, 1.0/math.Sqrt(float64(headDim)), nil)
attention = attention.Reshape(ctx, opts.hiddenSize, attention.Dim(2), batchSize)
hiddenState = sa.Output.Forward(ctx, attention)
return hiddenState
}
type VisionMLP struct {
FC1 *nn.Linear `gguf:"fc1"`
FC2 *nn.Linear `gguf:"fc2"`
}
func (mlp *VisionMLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *VisionModelOptions) ml.Tensor {
hiddenState = mlp.FC1.Forward(ctx, hiddenState).GELU(ctx)
hiddenState = mlp.FC2.Forward(ctx, hiddenState)
return hiddenState
}
type VisionEncoderLayer struct {
LayerNorm1 *nn.LayerNorm `gguf:"layer_norm1"`
SelfAttention *VisionSelfAttention
LayerNorm2 *nn.LayerNorm `gguf:"layer_norm2"`
MLP *VisionMLP `gguf:"mlp"`
}
func (e *VisionEncoderLayer) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *VisionModelOptions) ml.Tensor {
residual := hiddenState
// self attention
hiddenState = e.LayerNorm1.Forward(ctx, hiddenState, opts.eps)
hiddenState = e.SelfAttention.Forward(ctx, hiddenState, opts)
hiddenState = hiddenState.Add(ctx, residual)
residual = hiddenState
// feed forward
hiddenState = e.LayerNorm2.Forward(ctx, hiddenState, opts.eps)
hiddenState = e.MLP.Forward(ctx, hiddenState, opts)
return hiddenState.Add(ctx, residual)
}
type VisionModelOptions struct {
hiddenSize, numHeads int
imageSize, patchSize int
eps float32
}
type VisionModel struct {
PatchEmbedding *nn.Conv2D `gguf:"patch_embedding"`
PositionEmbedding *nn.Embedding `gguf:"position_embedding"`
PostLayerNorm *nn.LayerNorm `gguf:"post_layernorm"`
Layers []VisionEncoderLayer `gguf:"blk"`
*VisionModelOptions
}
func (m *VisionModel) Forward(ctx ml.Context, pixelValues ml.Tensor) ml.Tensor {
numPatches := (m.imageSize / m.patchSize) * (m.imageSize / m.patchSize)
hiddenState := m.PatchEmbedding.Forward(ctx, pixelValues, m.patchSize, m.patchSize, 0, 0, 1, 1)
hiddenState = hiddenState.Reshape(ctx, numPatches, m.hiddenSize)
hiddenState = hiddenState.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
positions := make([]int32, numPatches)
for i := range positions {
positions[i] = int32(i)
}
positionIDs, err := ctx.Input().FromIntSlice(positions, len(positions))
if err != nil {
panic(err)
}
hiddenState = hiddenState.Add(ctx, m.PositionEmbedding.Forward(ctx, positionIDs))
for _, layer := range m.Layers {
hiddenState = layer.Forward(ctx, hiddenState, m.VisionModelOptions)
}
hiddenState = m.PostLayerNorm.Forward(ctx, hiddenState, m.eps)
return hiddenState
}
func newVisionModel(c ml.Config) *VisionModel {
return &VisionModel{
Layers: make([]VisionEncoderLayer, c.Uint("vision.block_count")),
VisionModelOptions: &VisionModelOptions{
hiddenSize: int(c.Uint("vision.embedding_length")),
numHeads: int(c.Uint("vision.attention.head_count")),
imageSize: int(c.Uint("vision.image_size")),
patchSize: int(c.Uint("vision.patch_size")),
eps: c.Float("vision.attention.layer_norm_epsilon"),
},
}
}

View File

@@ -0,0 +1,58 @@
package gemma3
import (
"image"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model/imageproc"
)
type ImageProcessor struct {
imageSize, patchSize, numChannels int
}
func newImageProcessor(c ml.Config) ImageProcessor {
return ImageProcessor{
imageSize: int(c.Uint("vision.image_size")),
patchSize: int(c.Uint("vision.patch_size")),
numChannels: int(c.Uint("vision.num_channels")),
}
}
func (p *ImageProcessor) pack(img image.Image, mean, std [3]float32) []float32 {
var pixelVals, rVals, gVals, bVals []float32
bounds := img.Bounds()
for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
for x := bounds.Min.X; x < bounds.Max.X; x++ {
c := img.At(x, y)
r, g, b, _ := c.RGBA()
rVal := float32(r>>8) / 255.0
gVal := float32(g>>8) / 255.0
bVal := float32(b>>8) / 255.0
rVal = (rVal - mean[0]) / std[0]
gVal = (gVal - mean[1]) / std[1]
bVal = (bVal - mean[2]) / std[2]
rVals = append(rVals, rVal)
gVals = append(gVals, gVal)
bVals = append(bVals, bVal)
}
}
pixelVals = append(pixelVals, rVals...)
pixelVals = append(pixelVals, gVals...)
pixelVals = append(pixelVals, bVals...)
return pixelVals
}
func (p ImageProcessor) ProcessImage(img image.Image) ([]float32, error) {
outputSize := image.Point{p.imageSize, p.imageSize}
newImage := imageproc.Composite(img)
newImage = imageproc.Resize(newImage, outputSize, imageproc.ResizeBilinear)
data := p.pack(newImage, imageproc.ImageNetStandardMean, imageproc.ImageNetStandardSTD)
return data, nil
}

View File

@@ -1,16 +1,18 @@
package llama
import (
"fmt"
"math"
"strings"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Options struct {
RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
hiddenSize, numHeads, numKVHeads int
eps, ropeBase, ropeScale float32
ropeDim uint32
@@ -29,6 +31,10 @@ type Model struct {
}
func New(c ml.Config) (model.Model, error) {
if !strings.EqualFold(c.String("tokenizer.ggml.model"), "gpt2") {
return nil, fmt.Errorf("tokenizer %s not yet supported", c.String("tokenizer.ggml.model"))
}
m := Model{
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
@@ -37,7 +43,9 @@ func New(c ml.Config) (model.Model, error) {
Types: c.Uints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
},
),
Layers: make([]Layer, c.Uint("block_count")),
@@ -58,43 +66,38 @@ func New(c ml.Config) (model.Model, error) {
}
type SelfAttention struct {
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
}
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
batchSize := hiddenState.Dim(1)
headDim := opts.hiddenSize / opts.numHeads
ropeType := uint32(0)
q := sa.Query.Forward(ctx, hiddenState)
q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
q = q.RoPE(ctx, positionIDs, opts.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)
q = q.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
k := sa.Key.Forward(ctx, hiddenState)
k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
k = k.RoPE(ctx, positionIDs, opts.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)
k = k.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
v := sa.Value.Forward(ctx, hiddenState)
v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
cache.Put(ctx, k, v)
k, v, mask := cache.Get(ctx)
q = q.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
k = k.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
v = v.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
scaleFactor := 1.0 / math.Sqrt(float64(headDim))
kqv := nn.Attention(ctx, q, k, v, mask, scaleFactor)
kqv := nn.Attention(ctx, q, k, v, scaleFactor, cache)
kqv = kqv.Reshape(ctx, opts.hiddenSize, batchSize)
return sa.Output.Forward(ctx, kqv)
}
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return key.RoPE(ctx, shift, m.Options.RopeFactors, m.Options.ropeDim, m.Options.ropeBase, m.Options.ropeScale), nil
return key.RoPE(ctx, shift, m.Layers[layer].SelfAttention.RopeFactors, uint32(0), m.ropeDim, m.ropeBase, m.ropeScale), nil
}
type MLP struct {
@@ -136,18 +139,18 @@ func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Ten
return hiddenState.Add(ctx, residual)
}
func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
inputs, err := ctx.FromIntSlice(opts.Inputs, len(opts.Inputs))
func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
if err != nil {
return nil, err
}
positions, err := ctx.FromIntSlice(opts.Positions, len(opts.Positions))
positions, err := ctx.Input().FromIntSlice(opts.Positions, len(opts.Positions))
if err != nil {
return nil, err
}
outputs, err := ctx.FromIntSlice(opts.Outputs, len(opts.Outputs))
outputs, err := ctx.Output().FromIntSlice(opts.Outputs, len(opts.Outputs))
if err != nil {
return nil, err
}

View File

@@ -1,10 +1,18 @@
package mllama
import (
"bytes"
"encoding/binary"
"fmt"
"hash/fnv"
"image"
"slices"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Model struct {
@@ -25,6 +33,10 @@ const (
)
func New(c ml.Config) (model.Model, error) {
// Verify unified config
if c.Uint("vision.block_count") == 0 {
return nil, fmt.Errorf("non-unified vision model not supported")
}
m := Model{
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
@@ -33,7 +45,9 @@ func New(c ml.Config) (model.Model, error) {
Types: c.Uints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
},
),
ImageProcessor: newImageProcessor(c),
@@ -41,59 +55,99 @@ func New(c ml.Config) (model.Model, error) {
TextModel: newTextModel(c),
}
m.Cache = kvcache.NewWrapperCache(kvcache.NewEncoderCache(), kvcache.NewCausalCache(m.TextModel.Shift))
encoderCache := kvcache.NewEncoderCache()
encoderCache.SetConfig(ml.CacheConfig{})
m.Cache = kvcache.NewWrapperCache(encoderCache, kvcache.NewCausalCache(m.TextModel.Shift))
return &m, nil
}
func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, error) {
image, _, err := image.Decode(bytes.NewReader(multimodalData))
if err != nil {
return nil, err
}
f32s, aspectRatioID, err := m.ImageProcessor.ProcessImage(image)
if err != nil {
return nil, err
}
pixelValues, err := ctx.Input().FromFloatSlice(f32s,
m.ImageProcessor.imageSize,
m.ImageProcessor.imageSize,
m.ImageProcessor.numChannels,
m.ImageProcessor.maxNumTiles,
)
if err != nil {
return nil, err
}
aspectRatio, err := ctx.Input().FromIntSlice([]int32{int32(aspectRatioID)}, 1)
if err != nil {
return nil, err
}
positions := make([]int32, 1601)
for i := range positions {
positions[i] = int32(i)
}
positionIDs, err := ctx.Input().FromIntSlice(positions, len(positions))
if err != nil {
return nil, err
}
crossAttentionStates := m.VisionModel.Forward(ctx, pixelValues, positionIDs, aspectRatio)
return m.Projector.Forward(ctx, crossAttentionStates), nil
}
func (m *Model) PostTokenize(ctx ml.Context, inputs []input.Input) ([]input.Input, error) {
var images []input.Input
fnvHash := fnv.New64a()
for i := range inputs {
if inputs[i].Multimodal == nil {
if len(images) > 0 {
inputs[i].Multimodal = images[0].Multimodal
inputs[i].MultimodalHash = images[0].MultimodalHash
for j := 1; j < len(images); j++ {
inputs[i].Multimodal = inputs[i].Multimodal.(ml.Tensor).Concat(ctx, images[j].Multimodal.(ml.Tensor), 3)
fnvHash.Reset()
binary.Write(fnvHash, binary.NativeEndian, inputs[i].MultimodalHash)
binary.Write(fnvHash, binary.NativeEndian, inputs[j].MultimodalHash)
inputs[i].MultimodalHash = fnvHash.Sum64()
}
images = nil
}
} else {
images = append(images, inputs[i])
inputs[i].Token = -1
}
}
inputs = slices.DeleteFunc(inputs, func(input input.Input) bool { return input.Token == -1 })
return inputs, nil
}
func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
var crossAttentionStates ml.Tensor
if opts.Images != nil {
f32s, aspectRatioID, err := m.ImageProcessor.ProcessImage(opts.Images[0])
if err != nil {
return nil, err
}
pixelValues, err := ctx.FromFloatSlice(f32s,
m.ImageProcessor.imageSize,
m.ImageProcessor.imageSize,
m.ImageProcessor.numChannels,
m.ImageProcessor.maxNumTiles,
)
if err != nil {
return nil, err
}
aspectRatio, err := ctx.FromIntSlice([]int32{int32(aspectRatioID)}, 1)
if err != nil {
return nil, err
}
positions := make([]int32, 1601)
for i := range positions {
positions[i] = int32(i)
}
positionIDs, err := ctx.FromIntSlice(positions, len(positions))
if err != nil {
return nil, err
}
crossAttentionStates = m.VisionModel.Forward(ctx, pixelValues, positionIDs, aspectRatio)
crossAttentionStates = m.Projector.Forward(ctx, crossAttentionStates)
if len(opts.Multimodal) > 0 {
crossAttentionStates = opts.Multimodal[len(opts.Multimodal)-1].Multimodal.(ml.Tensor)
}
inputs, err := ctx.FromIntSlice(opts.Inputs, len(opts.Inputs))
inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
if err != nil {
return nil, err
}
positions, err := ctx.FromIntSlice(opts.Positions, len(opts.Positions))
positions, err := ctx.Input().FromIntSlice(opts.Positions, len(opts.Positions))
if err != nil {
return nil, err
}
outputs, err := ctx.FromIntSlice(opts.Outputs, len(opts.Outputs))
outputs, err := ctx.Output().FromIntSlice(opts.Outputs, len(opts.Outputs))
if err != nil {
return nil, err
}

View File

@@ -10,36 +10,31 @@ import (
)
type TextSelfAttention struct {
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
}
func (sa *TextSelfAttention) Forward(ctx ml.Context, hiddenState, positions, _ ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
batchSize := hiddenState.Dim(1)
headDim := opts.hiddenSize / opts.numHeads
ropeType := uint32(0)
query := sa.Query.Forward(ctx, hiddenState)
query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
query = query.RoPE(ctx, positions, opts.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)
query = query.RoPE(ctx, positions, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
key := sa.Key.Forward(ctx, hiddenState)
key = key.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
key = key.RoPE(ctx, positions, opts.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)
key = key.RoPE(ctx, positions, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
value := sa.Value.Forward(ctx, hiddenState)
value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
cache.Put(ctx, key, value)
key, value, mask := cache.Get(ctx)
query = query.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
key = key.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
scaleFactor := 1.0 / math.Sqrt(float64(headDim))
attention := nn.Attention(ctx, query, key, value, mask, scaleFactor)
attention := nn.Attention(ctx, query, key, value, scaleFactor, cache)
attention = attention.Reshape(ctx, opts.hiddenSize, batchSize)
return sa.Output.Forward(ctx, attention)
@@ -47,7 +42,11 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, hiddenState, positions, _ m
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
// This will only get called for layers in the cache, which are just the self attention layers
return key.RoPE(ctx, shift, m.RopeFactors, m.ropeDim, m.ropeBase, m.ropeScale), nil
if sa, ok := m.Transformer.Layers[layer].(*TextSelfAttentionDecoderLayer); ok {
return key.RoPE(ctx, shift, sa.SelfAttention.RopeFactors, m.ropeDim, uint32(0), m.ropeBase, m.ropeScale), nil
}
return key, nil
}
type TextMLP struct {
@@ -107,7 +106,7 @@ func (ca *TextCrossAttention) Forward(ctx ml.Context, hiddenState, crossAttentio
query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
query = ca.QueryNorm.Forward(ctx, query, opts.eps)
var key, value, mask ml.Tensor
var key, value ml.Tensor
if crossAttentionStates != nil {
numVisionTokens, numTiles := crossAttentionStates.Dim(1), crossAttentionStates.Dim(2)
@@ -119,16 +118,23 @@ func (ca *TextCrossAttention) Forward(ctx ml.Context, hiddenState, crossAttentio
value = value.Reshape(ctx, headDim, opts.numKVHeads, numVisionTokens*numTiles)
cache.Put(ctx, key, value)
} else {
key, value, mask = cache.Get(ctx)
}
query = query.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
key = key.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
key, value, _ = cache.Get(ctx)
scaleFactor := 1.0 / math.Sqrt(float64(headDim))
attention := nn.Attention(ctx, query, key, value, mask, scaleFactor)
query = query.Permute(ctx, 0, 2, 1, 3)
key = key.Permute(ctx, 0, 2, 1, 3)
value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
kq := key.MulmatFullPrec(ctx, query)
kq = kq.Scale(ctx, scaleFactor)
kq = kq.Softmax(ctx)
kqv := value.Mulmat(ctx, kq)
attention := kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
attention = attention.Reshape(ctx, opts.hiddenSize, batchSize)
return ca.Output.Forward(ctx, attention)
@@ -191,8 +197,6 @@ func (d *TextDecoder) Forward(ctx ml.Context, hiddenState, positionIDs, outputs,
}
type TextModelOptions struct {
RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
hiddenSize, numHeads, numKVHeads int
eps, ropeBase, ropeScale float32
ropeDim uint32

View File

@@ -144,8 +144,6 @@ func (p *ImageProcessor) splitToTiles(img image.Image, numTilesSize image.Point)
return images
}
// remove the "alpha" channel by drawing over a prefilled image
//
// remove the "alpha" channel by drawing over a prefilled image
//
//nolint:unused

View File

@@ -1,6 +1,8 @@
package models
import (
_ "github.com/ollama/ollama/model/models/gemma2"
_ "github.com/ollama/ollama/model/models/gemma3"
_ "github.com/ollama/ollama/model/models/llama"
_ "github.com/ollama/ollama/model/models/mllama"
)

View File

@@ -4,6 +4,7 @@ import (
"cmp"
"iter"
"log/slog"
"slices"
"strings"
"sync"
@@ -18,8 +19,17 @@ const (
SpecialEOS
)
const (
TOKEN_TYPE_NORMAL = iota + 1
TOKEN_TYPE_UNKNOWN
TOKEN_TYPE_CONTROL
TOKEN_TYPE_USER_DEFINED
TOKEN_TYPE_UNUSED
TOKEN_TYPE_BYTE
)
type TextProcessor interface {
Encode(string) ([]int32, error)
Encode(s string, addSpecial bool) ([]int32, error)
Decode([]int32) (string, error)
Is(int32, Special) bool
}
@@ -27,10 +37,11 @@ type TextProcessor interface {
type Vocabulary struct {
Values []string
Types []uint32
Scores []uint32
Scores []float32
Merges []string
BOS, EOS int32
BOS, EOS, EOT int32
AddBOS, AddEOS, AddEOT bool
specialOnce sync.Once
special []string
@@ -47,7 +58,7 @@ func (v *Vocabulary) Is(id int32, special Special) bool {
case SpecialBOS:
return id == v.BOS
case SpecialEOS:
return id == v.EOS
return id == v.EOS || id == v.EOT
default:
return false
}
@@ -75,7 +86,9 @@ func (v *Vocabulary) Decode(id int32) string {
func (v *Vocabulary) SpecialVocabulary() []string {
v.specialOnce.Do(func() {
for i := range v.Values {
if v.Types[i] == 3 {
if slices.Contains([]int{105, 106}, i) {
v.special = append(v.special, v.Values[i])
} else if v.Types[i] == TOKEN_TYPE_CONTROL {
v.special = append(v.special, v.Values[i])
}
}
@@ -143,7 +156,7 @@ type merge struct {
runes []rune
}
func (bpe BytePairEncoding) Encode(s string) ([]int32, error) {
func (bpe BytePairEncoding) Encode(s string, addSpecial bool) ([]int32, error) {
fragments := []fragment{{value: s}}
for _, special := range bpe.vocab.SpecialVocabulary() {
// TODO: process special tokens concurrently
@@ -176,7 +189,6 @@ func (bpe BytePairEncoding) Encode(s string) ([]int32, error) {
for _, frag := range fragments {
if len(frag.ids) > 0 {
ids = append(ids, frag.ids...)
slog.Debug("encoded", "text", frag.value, "ids", frag.ids, "special", true)
continue
}
@@ -200,7 +212,6 @@ func (bpe BytePairEncoding) Encode(s string) ([]int32, error) {
// short circuit if the fragment is in the vocabulary
if id := bpe.vocab.Encode(sb.String()); id >= 0 {
ids = append(ids, id)
slog.Debug("encoded", "text", sb.String(), "ids", []int32{id})
continue
}
@@ -274,13 +285,32 @@ func (bpe BytePairEncoding) Encode(s string) ([]int32, error) {
// TODO: handle the edge case where the rune isn't in the vocabulary
if id := bpe.vocab.Encode(string(merge.runes)); id >= 0 {
ids = append(ids, id)
slog.Debug("encoded", "text", string(merge.runes), "ids", []int32{id})
}
}
}
}
}
if addSpecial && len(ids) > 0 {
if bpe.vocab.AddBOS {
if ids[0] == bpe.vocab.BOS {
slog.Warn("adding bos token to prompt which already has it", "id", bpe.vocab.BOS)
}
slog.Debug("adding bos token to prompt", "id", bpe.vocab.BOS)
ids = append([]int32{bpe.vocab.BOS}, ids...)
}
if bpe.vocab.AddEOS {
if ids[len(ids)-1] == bpe.vocab.EOS {
slog.Warn("adding eos token to prompt which already has it", "id", bpe.vocab.EOS)
}
slog.Debug("adding eos token to prompt", "id", bpe.vocab.EOS)
ids = append(ids, bpe.vocab.EOS)
}
}
return ids, nil
}
@@ -308,6 +338,5 @@ func (bpe BytePairEncoding) Decode(ids []int32) (string, error) {
}
}
slog.Debug("decoded", "ids", ids, "text", sb.String())
return sb.String(), nil
}

246
model/process_text_spm.go Normal file
View File

@@ -0,0 +1,246 @@
package model
import (
"iter"
"log/slog"
"strings"
"github.com/dlclark/regexp2"
queue "github.com/emirpasic/gods/v2/queues/priorityqueue"
)
const spmWhitespaceSep = "▁"
func replaceWhitespaceBySeperator(s string) string {
return strings.ReplaceAll(s, " ", spmWhitespaceSep)
}
type SentencePieceModel struct {
maxTokenLen int
pre *regexp2.Regexp
vocab *Vocabulary
}
var _ TextProcessor = (*SentencePieceModel)(nil)
func NewSentencePieceModel(pre string, vocab *Vocabulary) SentencePieceModel {
slog.Debug("Tokens", "num tokens", len(vocab.Values), "vals", vocab.Values[:5], "scores", vocab.Scores[:5], "types", vocab.Types[:5])
counter := map[int]int{}
var maxTokenLen int
for cnt := range vocab.Types {
switch vocab.Types[cnt] {
case TOKEN_TYPE_NORMAL, TOKEN_TYPE_USER_DEFINED, TOKEN_TYPE_UNUSED:
maxTokenLen = max(maxTokenLen, len(vocab.Values[cnt]))
fallthrough
default:
counter[int(vocab.Types[cnt])] += 1
}
}
slog.Debug("Token counts", "normal", counter[TOKEN_TYPE_NORMAL], "unknown", counter[TOKEN_TYPE_UNKNOWN], "control", counter[TOKEN_TYPE_CONTROL],
"user defined", counter[TOKEN_TYPE_USER_DEFINED], "unused", counter[TOKEN_TYPE_UNUSED], "byte", counter[TOKEN_TYPE_BYTE],
"max token len", maxTokenLen)
return SentencePieceModel{
maxTokenLen: maxTokenLen,
pre: regexp2.MustCompile(pre, regexp2.Unicode|regexp2.RE2),
vocab: vocab,
}
}
func (spm SentencePieceModel) Is(id int32, special Special) bool {
return spm.vocab.Is(id, special)
}
func (spm *SentencePieceModel) split(s string) iter.Seq[string] {
return func(yield func(string) bool) {
for m, _ := spm.pre.FindStringMatch(s); m != nil; m, _ = spm.pre.FindNextMatch(m) {
if !yield(m.String()) {
break
}
}
}
}
func (spm SentencePieceModel) Encode(s string, addSpecial bool) ([]int32, error) {
fragments := []fragment{{value: s}}
for _, special := range spm.vocab.SpecialVocabulary() {
// TODO: process special tokens concurrently
id := spm.vocab.Encode(special)
for i := 0; i < len(fragments); i++ {
frag := fragments[i]
if len(frag.ids) > 0 {
continue
}
var middle []fragment
switch i := strings.Index(frag.value, special); {
case i < 0:
middle = append(middle, frag)
case i > 0:
middle = append(middle, fragment{value: frag.value[:i]})
fallthrough
default:
middle = append(middle, fragment{value: special, ids: []int32{id}})
if rest := frag.value[i+len(special):]; rest != "" {
middle = append(middle, fragment{value: rest})
}
}
fragments = append(fragments[:i], append(middle, fragments[i+1:]...)...)
}
}
slog.Debug("fragments", "frags", fragments)
var ids []int32
for _, frag := range fragments {
if len(frag.ids) > 0 {
ids = append(ids, frag.ids...)
continue
}
for split := range spm.split(frag.value) {
split = replaceWhitespaceBySeperator(split)
var sb strings.Builder
sb.Write([]byte(split))
if id := spm.vocab.Encode(sb.String()); id >= 0 {
ids = append(ids, id)
continue
}
runes := []rune(sb.String())
pq := queue.NewWith(func(a, b any) int {
priA := a.(*candidate)
priB := b.(*candidate)
if priA.score > priB.score || (priA.score == priB.score && priA.a < priB.a) {
return -1
}
return 1
})
merges := make([]merge, len(runes))
for r := range runes {
merges[r] = merge{
p: r - 1,
n: r + 1,
runes: []rune{runes[r]},
}
}
slog.Debug("tokenizer", "merges", merges)
pairwise := func(a, b int) *candidate {
if a < 0 || b >= len(runes) {
return nil
}
left, right := string(merges[a].runes), string(merges[b].runes)
if id := spm.vocab.Encode(left + right); id >= 0 {
return &candidate{
a: a,
b: b,
score: spm.vocab.Scores[id],
}
}
return nil
}
for i := range len(runes) - 1 {
if pair := pairwise(i, i+1); pair != nil {
pq.Enqueue(pair)
}
}
pqv := pq.Values()
for _, v := range pqv {
e := v.(*candidate)
slog.Debug("candidate", "candidate", e)
}
for !pq.Empty() {
v, _ := pq.Dequeue()
pair := v.(*candidate)
left, right := merges[pair.a], merges[pair.b]
slog.Debug("pair", "left", left, "right", right)
if len(left.runes) == 0 || len(right.runes) == 0 {
continue
}
if id := spm.vocab.Encode(string(left.runes) + string(right.runes)); id < 0 {
continue
}
merges[pair.a].runes = append(left.runes, right.runes...)
merges[pair.b].runes = nil
merges[pair.a].n = right.n
if right.n < len(merges) {
merges[right.n].p = pair.a
}
if pair := pairwise(merges[pair.a].p, pair.a); pair != nil {
pq.Enqueue(pair)
}
if pair := pairwise(pair.a, merges[pair.a].n); pair != nil {
pq.Enqueue(pair)
}
}
slog.Debug("merges", "merges", merges)
for _, merge := range merges {
if len(merge.runes) > 0 {
if id := spm.vocab.Encode(string(merge.runes)); id >= 0 {
ids = append(ids, id)
} else {
slog.Debug("missing token", "token", string(merge.runes))
}
}
}
}
}
if addSpecial && len(ids) > 0 {
if spm.vocab.AddBOS {
if ids[0] == spm.vocab.BOS {
slog.Warn("adding bos token to prompt which already has it", "id", spm.vocab.BOS)
}
slog.Debug("adding bos token to prompt", "id", spm.vocab.BOS)
ids = append([]int32{spm.vocab.BOS}, ids...)
}
if spm.vocab.AddEOS {
if ids[len(ids)-1] == spm.vocab.EOS {
slog.Warn("adding eos token to prompt which already has it", "id", spm.vocab.EOS)
}
slog.Debug("adding eos token to prompt", "id", spm.vocab.EOS)
ids = append(ids, spm.vocab.EOS)
}
}
return ids, nil
}
type candidate struct {
a, b int
score float32
}
func (spm SentencePieceModel) Decode(ids []int32) (string, error) {
var sb strings.Builder
for _, id := range ids {
data := spm.vocab.Decode(id)
data = strings.ReplaceAll(data, spmWhitespaceSep, " ")
if _, err := sb.WriteString(data); err != nil {
return "", err
}
}
slog.Debug("decoded", "ids", ids, "text", sb.String())
return sb.String(), nil
}

View File

@@ -0,0 +1,118 @@
package model
import (
"log/slog"
"os"
"path/filepath"
"slices"
"testing"
"google.golang.org/protobuf/proto"
"github.com/ollama/ollama/convert/sentencepiece"
)
func loadSentencePieceVocab(t *testing.T) SentencePieceModel {
t.Helper()
bts, err := os.ReadFile(filepath.Join("testdata", "gemma2", "tokenizer.model"))
if err != nil {
t.Fatal(err)
}
var spm sentencepiece.ModelProto
if err := proto.Unmarshal(bts, &spm); err != nil {
t.Fatal(err)
}
preTokenizer := `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`
var v Vocabulary
for _, piece := range spm.GetPieces() {
v.Values = append(v.Values, piece.GetPiece())
v.Scores = append(v.Scores, piece.GetScore())
switch t := piece.GetType(); t {
case sentencepiece.ModelProto_SentencePiece_UNKNOWN,
sentencepiece.ModelProto_SentencePiece_CONTROL,
sentencepiece.ModelProto_SentencePiece_UNUSED,
sentencepiece.ModelProto_SentencePiece_BYTE:
v.Types = append(v.Types, uint32(t))
default:
tt := uint32(sentencepiece.ModelProto_SentencePiece_NORMAL)
// todo parse the special tokens file
// - this will roundtrip correctly but the <start_of_turn> and
// <end_of_turn> tokens aren't processed
v.Types = append(v.Types, tt)
}
}
return NewSentencePieceModel(preTokenizer, &v)
}
func TestSentencePieceEncode(t *testing.T) {
logger := slog.New(slog.NewTextHandler(os.Stdout, &slog.HandlerOptions{Level: slog.LevelDebug}))
slog.SetDefault(logger)
tokenizer := loadSentencePieceVocab(t)
t.Run("basic roundtrip", func(t *testing.T) {
t.Parallel()
cases := []string{
"hello",
"hello ",
"hello ",
" hello",
" hello ",
" hello ",
"hello world",
"请考试我的软件12345",
"你好",
"Hello 你好 world!",
"Special characters: !@#$%^&*()_+-=[]{}|;':\",./<>?",
"Multilingual: 你好 こんにちは Привет Hola مرحبا",
"Numbers and symbols: 123456789 +- */",
"Special tokens: <bos> text <eos>",
"Code snippets: func main() { fmt.Println(\"Hello World\") }",
"Long text: " + "Lorem ipsum dolor sit amet, consectetur adipiscing elit. " +
"Sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. " +
"Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris.",
}
for _, want := range cases {
ids, err := tokenizer.Encode(want, true)
if err != nil {
t.Fatal(err)
}
if got, err := tokenizer.Decode(ids); err != nil {
t.Fatal(err)
} else if got != want {
t.Errorf("got %q, want %q [%#v]", got, want, ids)
}
}
})
t.Run("special tokens", func(t *testing.T) {
type candidate struct {
token string
ids []int32
}
cases := []candidate{
{"<bos>", []int32{2}},
{"<eos>", []int32{1}},
}
for _, want := range cases {
ids, err := tokenizer.Encode(want.token, true)
if err != nil {
t.Fatal(err)
}
if !slices.Equal(ids, want.ids) {
t.Errorf("got %#v, want %#v", ids, want.ids)
}
}
})
}

View File

@@ -74,7 +74,7 @@ func TestLlama(t *testing.T) {
t.Run("simple", func(t *testing.T) {
t.Parallel()
ids, err := tokenizer.Encode("hello world")
ids, err := tokenizer.Encode("hello world", true)
if err != nil {
t.Error(err)
}
@@ -92,7 +92,7 @@ func TestLlama(t *testing.T) {
t.Errorf("got %q, want hello world", s)
}
ids, err = tokenizer.Encode("hello <|end_of_text|>")
ids, err = tokenizer.Encode("hello <|end_of_text|>", true)
if err != nil {
t.Error(err)
}
@@ -126,7 +126,7 @@ func TestLlama(t *testing.T) {
}
for s, want := range cases {
ids, err := tokenizer.Encode(s)
ids, err := tokenizer.Encode(s, true)
if err != nil {
t.Error(err)
}
@@ -152,7 +152,7 @@ func TestLlama(t *testing.T) {
}
for _, want := range cases {
ids, err := tokenizer.Encode(want)
ids, err := tokenizer.Encode(want, true)
if err != nil {
t.Error(err)
}
@@ -176,7 +176,7 @@ func TestLlama(t *testing.T) {
}
for s, want := range cases {
ids, err := tokenizer.Encode(s)
ids, err := tokenizer.Encode(s, true)
if err != nil {
t.Fatal(err)
}
@@ -222,7 +222,7 @@ func BenchmarkBytePairEncoding(b *testing.B) {
b.Run("encode"+strconv.Itoa(n), func(b *testing.B) {
b.ResetTimer()
for range b.N {
_, err := tokenizer.Encode(string(bts))
_, err := tokenizer.Encode(string(bts), true)
if err != nil {
b.Fatal(err)
}
@@ -230,7 +230,7 @@ func BenchmarkBytePairEncoding(b *testing.B) {
})
b.Run("decode"+strconv.Itoa(n), func(b *testing.B) {
ids, err := tokenizer.Encode(string(bts))
ids, err := tokenizer.Encode(string(bts), true)
if err != nil {
b.Fatal(err)
}

BIN
model/testdata/gemma2/tokenizer.model vendored Normal file

Binary file not shown.

View File

@@ -915,7 +915,6 @@ func Execute(args []string) error {
level := slog.LevelInfo
if *verbose {
level = slog.LevelDebug
llama.EnableDebug()
}
handler := slog.NewTextHandler(os.Stderr, &slog.HandlerOptions{
Level: level,
@@ -932,7 +931,6 @@ func Execute(args []string) error {
slog.Info("starting go runner")
llama.BackendInit()
slog.Info("system", "info", llama.PrintSystemInfo(), "threads", *threads)
server := &Server{
batchSize: *batchSize,
@@ -944,12 +942,11 @@ func Execute(args []string) error {
var tensorSplitFloats []float32
if *tensorSplit != "" {
stringFloats := regexp.MustCompile(",").Split(*tensorSplit, -1)
tensorSplitFloats = make([]float32, 0, len(stringFloats))
for _, s := range stringFloats {
splits := strings.Split(*tensorSplit, ",")
tensorSplitFloats = make([]float32, len(splits))
for i, s := range splits {
f, _ := strconv.ParseFloat(s, 32)
tensorSplitFloats = append(tensorSplitFloats, float32(f))
tensorSplitFloats[i] = float32(f)
}
}
@@ -970,13 +967,14 @@ func Execute(args []string) error {
server.cond = sync.NewCond(&server.mu)
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
go server.run(ctx)
addr := "127.0.0.1:" + strconv.Itoa(*port)
listener, err := net.Listen("tcp", addr)
if err != nil {
fmt.Println("Listen error:", err)
cancel()
return err
}
defer listener.Close()
@@ -996,6 +994,5 @@ func Execute(args []string) error {
return err
}
cancel()
return nil
}

View File

@@ -5,12 +5,12 @@ import (
"fmt"
"log/slog"
"math"
"reflect"
"time"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type InputCache struct {
@@ -39,10 +39,7 @@ func NewInputCache(model model.Model, kvCacheType string, kvSize int32, numSlots
slots := make([]InputCacheSlot, numSlots)
for i := range slots {
slots[i] = InputCacheSlot{
Id: i,
Inputs: make([]input, 0),
}
slots[i] = InputCacheSlot{Id: i}
}
cache := model.Config().Cache
@@ -62,9 +59,9 @@ func NewInputCache(model model.Model, kvCacheType string, kvSize int32, numSlots
func kvCacheTypeFromStr(s string) ml.DType {
switch s {
case "q8_0":
panic("kv cache quantization not yet implemented")
return ml.DTypeQ80
case "q4_0":
panic("kv cache quantization not yet implemented")
return ml.DTypeQ40
default:
return ml.DTypeF16
}
@@ -83,7 +80,7 @@ type InputCacheSlot struct {
Id int
// Inputs that are stored in the KV cache
Inputs []input
Inputs []input.Input
// is this cache actively being processed as part of a sequence?
InUse bool
@@ -92,7 +89,7 @@ type InputCacheSlot struct {
lastUsed time.Time
}
func (c *InputCache) LoadCacheSlot(prompt []input, cachePrompt bool) (*InputCacheSlot, []input, error) {
func (c *InputCache) LoadCacheSlot(prompt []input.Input, cachePrompt bool) (*InputCacheSlot, []input.Input, error) {
var slot *InputCacheSlot
var numPast int32
var err error
@@ -143,7 +140,7 @@ func (c *InputCache) LoadCacheSlot(prompt []input, cachePrompt bool) (*InputCach
return slot, prompt, nil
}
func (c *InputCache) findLongestCacheSlot(prompt []input) (*InputCacheSlot, int32, error) {
func (c *InputCache) findLongestCacheSlot(prompt []input.Input) (*InputCacheSlot, int32, error) {
longest := int32(-1)
var longestSlot *InputCacheSlot
@@ -166,7 +163,7 @@ func (c *InputCache) findLongestCacheSlot(prompt []input) (*InputCacheSlot, int3
return longestSlot, longest, nil
}
func (c *InputCache) findBestCacheSlot(prompt []input) (*InputCacheSlot, int32, error) {
func (c *InputCache) findBestCacheSlot(prompt []input.Input) (*InputCacheSlot, int32, error) {
oldest := time.Now()
var oldestSlot *InputCacheSlot
@@ -202,7 +199,7 @@ func (c *InputCache) findBestCacheSlot(prompt []input) (*InputCacheSlot, int32,
if longest > 0 && longestSlot != oldestSlot {
slog.Debug("forking cache slot", "src", longestSlot.Id, "dst", oldestSlot.Id, "inputs", longest, "total",
len(longestSlot.Inputs))
oldestSlot.Inputs = make([]input, longest)
oldestSlot.Inputs = make([]input.Input, longest)
copy(oldestSlot.Inputs, longestSlot.Inputs[:longest])
if c.cache != nil {
c.cache.CopyPrefix(longestSlot.Id, oldestSlot.Id, longest)
@@ -212,7 +209,7 @@ func (c *InputCache) findBestCacheSlot(prompt []input) (*InputCacheSlot, int32,
return oldestSlot, longest, nil
}
func countCommonPrefix(a []input, b []input) int32 {
func countCommonPrefix(a []input.Input, b []input.Input) int32 {
var count int32
for i := range a {
@@ -220,7 +217,7 @@ func countCommonPrefix(a []input, b []input) int32 {
break
}
if !reflect.DeepEqual(a[i], b[i]) {
if a[i].Token != b[i].Token || a[i].MultimodalHash != b[i].MultimodalHash {
break
}

View File

@@ -4,6 +4,8 @@ import (
"image"
"testing"
"time"
"github.com/ollama/ollama/model/input"
)
func TestCountCommon(t *testing.T) {
@@ -13,44 +15,50 @@ func TestCountCommon(t *testing.T) {
tests := []struct {
name string
t1 []input
t2 []input
t1 []input.Input
t2 []input.Input
expected int32
}{
{
name: "Equal",
t1: []input{{token: 1}, {token: 2}, {token: 3}},
t2: []input{{token: 1}, {token: 2}, {token: 3}},
t1: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
t2: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
expected: 3,
},
{
name: "Prefix",
t1: []input{{token: 1}},
t2: []input{{token: 1}, {token: 2}, {token: 3}},
t1: []input.Input{{Token: 1}},
t2: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
expected: 1,
},
{
name: "Image Prefix",
t1: []input{{image: imgA}},
t2: []input{{image: imgA}, {image: imgB}, {image: imgC}},
t1: []input.Input{{Multimodal: imgA, MultimodalHash: 1}},
t2: []input.Input{{Multimodal: imgA, MultimodalHash: 1}, {Multimodal: imgB, MultimodalHash: 2}, {Multimodal: imgC, MultimodalHash: 3}},
expected: 1,
},
{
name: "Mixed",
t1: []input{{token: 1}, {image: imgA}},
t2: []input{{token: 1}, {image: imgA}, {token: 5}},
t1: []input.Input{{Token: 1}, {Multimodal: imgA, MultimodalHash: 1}},
t2: []input.Input{{Token: 1}, {Multimodal: imgA, MultimodalHash: 1}, {Token: 5}},
expected: 2,
},
{
name: "Mixed, Same Length",
t1: []input.Input{{Token: 1}, {Multimodal: imgA, MultimodalHash: 1}},
t2: []input.Input{{Token: 1}, {Multimodal: imgB, MultimodalHash: 2}},
expected: 1,
},
{
name: "Empty",
t1: []input{},
t2: []input{{token: 1}, {token: 2}, {token: 3}},
t1: []input.Input{},
t2: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
expected: 0,
},
{
name: "Both Empty",
t1: []input{},
t2: []input{},
t1: []input.Input{},
t2: []input.Input{},
expected: 0,
},
}
@@ -74,7 +82,7 @@ func TestFindCacheSlot(t *testing.T) {
tests := []struct {
name string
cache InputCache
prompt []input
prompt []input.Input
longest expected
best expected
}{
@@ -83,18 +91,18 @@ func TestFindCacheSlot(t *testing.T) {
cache: InputCache{slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input{},
Inputs: []input.Input{},
InUse: false,
lastUsed: time.Time{},
},
{
Id: 1,
Inputs: []input{},
Inputs: []input.Input{},
InUse: false,
lastUsed: time.Time{},
},
}},
prompt: []input{{token: 1}},
prompt: []input.Input{{Token: 1}},
longest: expected{result: 0, len: 0},
best: expected{result: 0, len: 0},
},
@@ -103,18 +111,18 @@ func TestFindCacheSlot(t *testing.T) {
cache: InputCache{slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input{{token: 1}},
Inputs: []input.Input{{Token: 1}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []input{{token: 1}, {token: 2}},
Inputs: []input.Input{{Token: 1}, {Token: 2}},
InUse: false,
lastUsed: time.Now().Add(-2 * time.Second),
},
}},
prompt: []input{{token: 1}, {token: 2}},
prompt: []input.Input{{Token: 1}, {Token: 2}},
longest: expected{result: 1, len: 2},
best: expected{result: 1, len: 2},
},
@@ -123,18 +131,18 @@ func TestFindCacheSlot(t *testing.T) {
cache: InputCache{slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input{{token: 1}, {token: 2}},
Inputs: []input.Input{{Token: 1}, {Token: 2}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []input{},
Inputs: []input.Input{},
InUse: false,
lastUsed: time.Time{},
},
}},
prompt: []input{{token: 2}},
prompt: []input.Input{{Token: 2}},
longest: expected{result: 0, len: 0},
best: expected{result: 1, len: 0},
},
@@ -144,19 +152,19 @@ func TestFindCacheSlot(t *testing.T) {
slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input{{token: 1}, {token: 2}},
Inputs: []input.Input{{Token: 1}, {Token: 2}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []input{},
Inputs: []input.Input{},
InUse: false,
lastUsed: time.Time{},
},
},
},
prompt: []input{{token: 1}},
prompt: []input.Input{{Token: 1}},
longest: expected{result: 0, len: 1},
best: expected{result: 1, len: 1},
},
@@ -165,18 +173,18 @@ func TestFindCacheSlot(t *testing.T) {
cache: InputCache{slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input{{token: 1}},
Inputs: []input.Input{{Token: 1}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []input{{token: 1}, {token: 2}},
Inputs: []input.Input{{Token: 1}, {Token: 2}},
InUse: false,
lastUsed: time.Now().Add(-2 * time.Second),
},
}},
prompt: []input{{token: 2}, {token: 3}},
prompt: []input.Input{{Token: 2}, {Token: 3}},
longest: expected{result: 0, len: 0},
best: expected{result: 1, len: 0},
},
@@ -185,18 +193,18 @@ func TestFindCacheSlot(t *testing.T) {
cache: InputCache{slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input{{token: 1}, {token: 2}},
Inputs: []input.Input{{Token: 1}, {Token: 2}},
InUse: true,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []input{{token: 1}},
Inputs: []input.Input{{Token: 1}},
InUse: false,
lastUsed: time.Now().Add(-2 * time.Second),
},
}},
prompt: []input{{token: 1}, {token: 2}},
prompt: []input.Input{{Token: 1}, {Token: 2}},
longest: expected{result: 1, len: 1},
best: expected{result: 1, len: 2},
},

View File

@@ -1,13 +1,12 @@
package ollamarunner
import (
"bytes"
"context"
"encoding/json"
"errors"
"flag"
"fmt"
"image"
"hash/maphash"
"log"
"log/slog"
"net"
@@ -27,28 +26,26 @@ import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/runner/common"
"github.com/ollama/ollama/sample"
_ "github.com/ollama/ollama/model/models"
)
// input is an element of the prompt to process, either a token or an image
type input struct {
token int32
image image.Image
}
type Sequence struct {
// ctx for allocating tensors that last the lifetime of the sequence, such as
// multimodal embeddings
ctx ml.Context
// batch index
iBatch int
// prompt inputs left to evaluate
inputs []input
inputs []input.Input
// inputs that have been added to a batch but not yet submitted to Forward
pendingInputs []input
pendingInputs []input.Input
// tokens that have been generated but not returned yet (e.g. for stop sequences)
pendingResponses []string
@@ -101,8 +98,9 @@ func (s *Server) NewSequence(prompt string, images []ImageData, params NewSequen
s.ready.Wait()
startTime := time.Now()
ctx := s.model.Backend().NewContext()
inputs, err := s.inputs(prompt, images)
inputs, err := s.inputs(ctx, prompt, images)
if err != nil {
return nil, fmt.Errorf("failed to process inputs: %w", err)
} else if len(inputs) == 0 {
@@ -128,6 +126,7 @@ func (s *Server) NewSequence(prompt string, images []ImageData, params NewSequen
// TODO(jessegross): Ingest cached history for grammar
return &Sequence{
ctx: ctx,
inputs: inputs,
numPromptInputs: len(inputs),
startProcessingTime: startTime,
@@ -146,28 +145,31 @@ func (s *Server) NewSequence(prompt string, images []ImageData, params NewSequen
// inputs processes the prompt and images into a list of inputs
// by splitting the prompt on [img-<n>] tags, tokenizing text and
// decoding images
func (s *Server) inputs(prompt string, images []ImageData) ([]input, error) {
var inputs []input
func (s *Server) inputs(ctx ml.Context, prompt string, images []ImageData) ([]input.Input, error) {
var inputs []input.Input
var parts []string
var matches [][]string
// TODO(jessegross): This can sometimes trigger for matching text in the
// user's prompt. We previously tried to avoid it by only looking for images
// on image models. We don't have a clear indication now but it would be better
// to properly escape it in any case.
re := regexp.MustCompile(`\[img-(\d+)\]`)
parts = re.Split(prompt, -1)
matches = re.FindAllStringSubmatch(prompt, -1)
multimodalProcessor, visionModel := s.model.(model.MultimodalProcessor)
if visionModel {
re := regexp.MustCompile(`\[img-(\d+)\]`)
parts = re.Split(prompt, -1)
matches = re.FindAllStringSubmatch(prompt, -1)
} else {
parts = []string{prompt}
}
postTokenize := false
for i, part := range parts {
// text - tokenize
tokens, err := s.model.(model.TextProcessor).Encode(part)
tokens, err := s.model.(model.TextProcessor).Encode(part, i == 0)
if err != nil {
return nil, err
}
for _, t := range tokens {
inputs = append(inputs, input{token: t})
inputs = append(inputs, input.Input{Token: t})
}
// image - decode and store
@@ -186,12 +188,25 @@ func (s *Server) inputs(prompt string, images []ImageData) ([]input, error) {
return nil, fmt.Errorf("invalid image index: %d", n)
}
image, _, err := image.Decode(bytes.NewReader(images[imageIndex].Data))
imageEmbeddings, err := multimodalProcessor.EncodeMultimodal(ctx, images[imageIndex].Data)
if err != nil {
return nil, err
}
inputs = append(inputs, input{image: image})
s.multimodalHash.Reset()
_, _ = s.multimodalHash.Write(images[imageIndex].Data)
imageHash := s.multimodalHash.Sum64()
inputs = append(inputs, input.Input{Multimodal: imageEmbeddings, MultimodalHash: imageHash})
postTokenize = true
}
}
if visionModel && postTokenize {
var err error
inputs, err = multimodalProcessor.PostTokenize(ctx, inputs)
if err != nil {
return nil, err
}
}
@@ -236,8 +251,15 @@ type Server struct {
// KV cache
cache *InputCache
// next sequence for prompt processing to avoid starvation
nextSeq int
// multimodalHash generates hashes for comparing equality
// of non-text data
multimodalHash maphash.Hash
// vocab is a llama.cpp vocab required for gammar-based
// constrained generation (json mode, structured outputs)
// TODO: this is temporary until Ollama sampling supports
// constrained generation
vocab *sample.Vocab
}
func (s *Server) allNil() bool {
@@ -283,6 +305,7 @@ func (s *Server) removeSequence(seqIndex int, reason string) {
close(seq.responses)
close(seq.embedding)
seq.cache.InUse = false
seq.ctx.Close()
s.seqs[seqIndex] = nil
s.seqsSem.Release(1)
}
@@ -310,30 +333,25 @@ func (s *Server) processBatch() error {
}
defer s.mu.Unlock()
var options model.Options
imgSeq := -1
seqIdx := s.nextSeq - 1
for range s.seqs {
seqIdx = (seqIdx + 1) % len(s.seqs)
seq := s.seqs[seqIdx]
var options input.Options
for i, seq := range s.seqs {
if seq == nil {
continue
}
// if past the num predict limit
if seq.numPredict > 0 && seq.numPredicted >= seq.numPredict {
s.removeSequence(seqIdx, "limit")
s.removeSequence(i, "limit")
continue
}
if !s.cache.enabled {
seq.inputs = append(seq.cache.Inputs, seq.inputs...)
seq.cache.Inputs = []input{}
seq.cache.Inputs = []input.Input{}
}
for i, input := range seq.inputs {
for j, inp := range seq.inputs {
if int32(len(seq.cache.Inputs)+len(seq.pendingInputs)+1) > s.cache.numCtx {
if len(seq.pendingInputs) == 0 {
err := s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
@@ -345,37 +363,23 @@ func (s *Server) processBatch() error {
}
}
if i >= s.batchSize {
if j >= s.batchSize {
break
}
// TODO(jessegross): Image inputs need to be rethought - it's
// it doesn't work well for different types of models or multiple sequences
if input.image != nil {
if len(seq.pendingInputs) != len(options.Images) {
break
}
if imgSeq != seqIdx && imgSeq != -1 {
s.nextSeq = seqIdx
break
}
imgSeq = seqIdx
options.Images = append(options.Images, input.image)
seq.pendingInputs = append(seq.pendingInputs, input)
continue
options.Inputs = append(options.Inputs, inp.Token)
if inp.Multimodal != nil {
options.Multimodal = append(options.Multimodal, input.MultimodalIndex{Index: len(options.Inputs) - 1, Multimodal: inp.Multimodal})
}
options.Inputs = append(options.Inputs, input.token)
options.Positions = append(options.Positions, int32(len(seq.cache.Inputs)+len(seq.pendingInputs)))
options.Sequences = append(options.Sequences, seq.cache.Id)
seq.iBatch = len(options.Outputs)
if i+1 == len(seq.inputs) {
if j+1 == len(seq.inputs) {
options.Outputs = append(options.Outputs, int32(len(options.Inputs)-1))
}
seq.pendingInputs = append(seq.pendingInputs, input)
seq.pendingInputs = append(seq.pendingInputs, inp)
}
seq.inputs = seq.inputs[len(seq.pendingInputs):]
@@ -403,7 +407,7 @@ func (s *Server) processBatch() error {
// After calling Forward, pending inputs are now in the cache
if len(seq.pendingInputs) > 0 {
seq.cache.Inputs = append(seq.cache.Inputs, seq.pendingInputs...)
seq.pendingInputs = []input{}
seq.pendingInputs = []input.Input{}
}
// don't sample prompt processing
@@ -422,6 +426,7 @@ func (s *Server) processBatch() error {
// if done processing the prompt, generate an embedding and return
if seq.embeddingOnly {
// TODO(jessegross): Embedding support
slog.Warn("generation of embedding outputs not yet supported")
s.removeSequence(i, "")
continue
}
@@ -449,7 +454,7 @@ func (s *Server) processBatch() error {
return err
}
seq.inputs = []input{{token: token}}
seq.inputs = []input.Input{{Token: token}}
seq.pendingResponses = append(seq.pendingResponses, piece)
sequence := strings.Join(seq.pendingResponses, "")
@@ -575,17 +580,24 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
return
}
sampler, err := sample.NewSampler(
var grammar *sample.Grammar
var err error
if req.Grammar != "" {
grammar, err = sample.NewGrammar(s.vocab, req.Grammar)
if err != nil {
http.Error(w, "failed to load model vocabulary required for format", http.StatusInternalServerError)
return
}
}
sampler := sample.NewSampler(
req.Temperature,
req.TopK,
req.TopP,
req.MinP,
req.Seed,
grammar,
)
if err != nil {
http.Error(w, fmt.Sprintf("Failed to create sampler: %v", err), http.StatusInternalServerError)
return
}
seq, err := s.NewSequence(req.Prompt, req.Images, NewSequenceParams{
numPredict: req.NumPredict,
@@ -798,7 +810,7 @@ func (s *Server) loadModel(
panic(err)
}
slog.Info("system", "info", s.model.Backend().SystemInfo(), "threads", params.NumThreads)
s.vocab = sample.NewVocab(mpath)
// TODO(jessegross): LoRA loading
if lpath.String() != "" {
@@ -830,7 +842,7 @@ func Execute(args []string) error {
batchSize := fs.Int("batch-size", 512, "Batch size")
numGPULayers := fs.Int("n-gpu-layers", 0, "Number of layers to offload to GPU")
mainGPU := fs.Int("main-gpu", 0, "Main GPU")
_ = fs.Bool("flash-attn", false, "Enable flash attention")
flashAttention := fs.Bool("flash-attn", false, "Enable flash attention")
kvSize := fs.Int("ctx-size", 2048, "Context (or KV cache) size")
kvCacheType := fs.String("kv-cache-type", "", "quantization type for KV cache (default: f16)")
port := fs.Int("port", 8080, "Port to expose the server on")
@@ -875,26 +887,25 @@ func Execute(args []string) error {
}
// TODO(jessegross): Parameters that need to be implemented:
// flash-attn
// no-mmap
// mlock
var tensorSplitFloats []float32
if *tensorSplit != "" {
stringFloats := regexp.MustCompile(",").Split(*tensorSplit, -1)
tensorSplitFloats = make([]float32, 0, len(stringFloats))
for _, s := range stringFloats {
splits := strings.Split(*tensorSplit, ",")
tensorSplitFloats = make([]float32, len(splits))
for i, s := range splits {
f, _ := strconv.ParseFloat(s, 32)
tensorSplitFloats = append(tensorSplitFloats, float32(f))
tensorSplitFloats[i] = float32(f)
}
}
params := ml.BackendParams{
NumThreads: *threads,
NumGPULayers: *numGPULayers,
MainGPU: *mainGPU,
TensorSplit: tensorSplitFloats,
NumThreads: *threads,
NumGPULayers: *numGPULayers,
MainGPU: *mainGPU,
TensorSplit: tensorSplitFloats,
FlashAttention: *flashAttention,
}
server.ready.Add(1)
@@ -903,13 +914,14 @@ func Execute(args []string) error {
server.cond = sync.NewCond(&server.mu)
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
go server.run(ctx)
addr := "127.0.0.1:" + strconv.Itoa(*port)
listener, err := net.Listen("tcp", addr)
if err != nil {
fmt.Println("Listen error:", err)
cancel()
return err
}
defer listener.Close()
@@ -929,6 +941,5 @@ func Execute(args []string) error {
return err
}
cancel()
return nil
}

View File

@@ -3,137 +3,223 @@ package sample
import (
"errors"
"math"
"math/rand/v2"
"slices"
"sync"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/stat/sampleuv"
"github.com/ollama/ollama/llama"
)
type Sampler interface {
Sample([]float32) (int32, error)
// token represents information about a single token during sampling
type token struct {
id int32 // The token's unique identifier
value float32 // The raw logit or probability from the model
}
type weighted struct {
src rand.Source
transforms []Transform
type Sampler struct {
rng *rand.Rand
topK int
topP float32
minP float32
temperature float32
grammar *Grammar
}
// TODO(parthsareen): remove uv sample dependency https://github.com/ollama/ollama/issues/9279
func Weighted(seed *uint64, transforms ...Transform) Sampler {
var src rand.Source
if seed != nil {
src = rand.NewSource(*seed)
func (s *Sampler) Sample(logits []float32) (int32, error) {
tokens := make([]token, len(logits))
for i := range logits {
tokens[i].id = int32(i)
tokens[i].value = logits[i]
}
return weighted{src: src, transforms: transforms}
t, err := s.sample(tokens)
if err != nil {
return -1, err
}
if s.grammar != nil {
// optimization: first check if the max logit is accepted by the grammar
// if the max logit is rejected, apply the grammar to all logits (slower)
top := []token{t}
s.grammar.Apply(top)
if !math.IsInf(float64(top[0].value), -1) {
s.grammar.Accept(top[0].id)
return top[0].id, nil
}
// since .sample has side effects of modifying the tokens
// we need to reset them before applying the grammar and
// sampling again
for i := range logits {
tokens[i].id = int32(i)
tokens[i].value = logits[i]
}
s.grammar.Apply(tokens)
t, err = s.sample(tokens)
if err != nil {
return -1, err
}
s.grammar.Accept(t.id)
}
return t.id, nil
}
func (s weighted) Sample(logits []float32) (int32, error) {
logits64 := make([]float64, len(logits))
for i, v := range logits {
logits64[i] = float64(v)
}
for _, t := range s.transforms {
logits64 = t.Apply(logits64)
}
logitsCopy := make([]float64, 0, len(logits))
indices := make([]int, 0, len(logits))
for i, logit := range logits64 {
if !math.IsInf(logit, -1) {
logitsCopy = append(logitsCopy, logit)
indices = append(indices, i)
// greedy returns the highest probability token from the tokens
func greedy(tokens []token) token {
max := tokens[0]
for i := 1; i < len(tokens); i++ {
if tokens[i].value > max.value {
max = tokens[i]
}
}
if len(logitsCopy) == 0 {
return -1, errors.New("no valid logits found for weighed sampling")
}
probs := softmax(logitsCopy)
w := sampleuv.NewWeighted(probs, s.src)
if idx, ok := w.Take(); ok {
return int32(indices[idx]), nil
}
return -1, errors.New("weighed sampler failed, no valid token found")
return max
}
type greedy struct {
transforms []Transform
}
func Greedy(transforms ...Transform) Sampler {
return greedy{transforms: transforms}
}
func (s greedy) Sample(logits []float32) (int32, error) {
logits64 := make([]float64, len(logits))
for i, v := range logits {
logits64[i] = float64(v)
// sample returns the highest probability token from the tokens
// given sampler parameters. It also has side effects of modifying the tokens
func (s *Sampler) sample(tokens []token) (token, error) {
if s.temperature == 0 {
return greedy(tokens), nil
}
for _, t := range s.transforms {
logits64 = t.Apply(logits64)
// topK also sorts the tokens in descending order of logits
tokens = topK(tokens, s.topK)
// token logit values are updated to probabilities
tokens = temperature(tokens, s.temperature)
tokens = topP(tokens, s.topP)
tokens = minP(tokens, s.minP)
// TODO: this should fall back to greedy sampling
// or topP, topK values etc should be such that
// there are always tokens to sample from
if len(tokens) == 0 {
return token{}, errors.New("no tokens to sample from")
}
var maxIdx int
var maxLogit float64
for i, logit := range logits64 {
if logit > maxLogit {
maxLogit = logit
maxIdx = i
var r float32
if s.rng != nil {
r = s.rng.Float32()
} else {
r = rand.Float32()
}
// Calculate cumulative sum of probabilities
var sum float32
for i := range tokens {
sum += tokens[i].value
tokens[i].value = sum
}
r *= tokens[len(tokens)-1].value
idx, _ := slices.BinarySearchFunc(tokens, r, func(token token, target float32) int {
if token.value < target {
return -1
}
}
return 1
})
if maxLogit == math.Inf(-1) {
return -1, errors.New("no valid logits found for greedy sampling")
}
return int32(maxIdx), nil
return tokens[idx], nil
}
// TODO(parthsareen): update sampler interface to use json unmarshal https://github.com/ollama/ollama/issues/9278
func NewSampler(temperature float32, topK int, topP float32, minP float32, seed int) (Sampler, error) {
transforms := []Transform{}
if temperature < 0 || temperature > 2 {
return nil, errors.New("temperature must be between 0 and 2")
func NewSampler(temperature float32, topK int, topP float32, minP float32, seed int, grammar *Grammar) Sampler {
var rng *rand.Rand
if seed != -1 {
// PCG requires two parameters: sequence and stream
// Use original seed for sequence
sequence := uint64(seed)
// Use golden ratio hash to generate statistically independent seeds
rng = rand.New(rand.NewPCG(sequence, sequence^0x9E3779B9))
}
if temperature < 0.0 {
temperature = 0.0
}
if temperature != 0 {
transforms = append(transforms, Temperature(temperature))
if topP < 0.0 {
topP = 0.0
}
if topP >= 1.0 {
topP = 1.0
}
if topK != 0 {
if topK <= 0 {
return nil, errors.New("topK must be greater than 0")
}
transforms = append(transforms, TopK(topK))
if minP < 0.0 {
minP = 0.0
}
if minP >= 1.0 {
minP = 1.0
}
if topP != 0 {
if topP < 0 || topP >= 1 {
return nil, errors.New("topP must be between 0 and 1")
}
transforms = append(transforms, TopP(topP))
return Sampler{
rng: rng,
topK: topK,
topP: topP,
minP: minP,
temperature: temperature,
grammar: grammar,
}
if minP != 0 {
if minP < 0 || minP >= 1 {
return nil, errors.New("minP must be between 0 and 1")
}
transforms = append(transforms, MinP(minP))
}
if len(transforms) == 0 {
return nil, errors.New("at least one transform is required")
}
if temperature == 0 {
return Greedy(transforms...), nil
}
if seed != 0 {
seed64 := uint64(seed)
return Weighted(&seed64, transforms...), nil
}
return Weighted(nil, transforms...), nil
}
type Grammar struct {
vocab *Vocab
grammar string
sampler *llama.Sampler
}
func NewGrammar(vocab *Vocab, grammar string) (*Grammar, error) {
v, err := vocab.Load()
if err != nil {
return nil, err
}
return &Grammar{
vocab: vocab,
grammar: grammar,
sampler: llama.NewGrammarSampler(v, grammar),
}, nil
}
func (g *Grammar) Apply(tokens []token) {
tds := make([]llama.TokenData, len(tokens))
for i, token := range tokens {
tds[i].Id = token.id
tds[i].Logit = token.value
}
g.sampler.Apply(tds)
for i := range tokens {
tokens[i].value = tds[i].Logit
}
}
func (g *Grammar) Accept(token int32) {
g.sampler.Accept(token)
}
type Vocab struct {
once sync.Once
vocab *llama.Vocab
err error
path string
}
func NewVocab(path string) *Vocab {
return &Vocab{path: path}
}
// Load returns the lazily-loaded vocabulary
func (v *Vocab) Load() (*llama.Vocab, error) {
v.once.Do(func() {
vocab, err := llama.LoadVocabFromFile(v.path)
if err != nil {
v.err = err
return
}
v.vocab = vocab
})
return v.vocab, v.err
}

View File

@@ -0,0 +1,92 @@
package sample
import (
"fmt"
"math/rand"
"testing"
)
func BenchmarkWeightedSampler(b *testing.B) {
sizes := []int{10, 100, 1000, 10000}
for _, size := range sizes {
b.Run(fmt.Sprintf("Size %d", size), func(b *testing.B) {
logits := make([]float32, size)
for i := range logits {
logits[i] = float32(rand.Float64()*10 - 5)
}
sampler := NewSampler(0.8, 0, 0, 0, 42, nil)
b.ResetTimer()
for b.Loop() {
sampler.Sample(logits)
}
})
}
configs := []struct {
name string
temperature float32
topK int
topP float32
minP float32
seed int
}{
{"Greedy", 0, -1, 0, 0, -1},
{"Temperature", 0.8, -1, 0, 0, -1},
{"TopK", 0.8, 50, 0, 0, -1},
{"TopP", 0.8, -1, 0.9, 0, -1},
{"MinP", 0.8, -1, 0, 0.05, -1},
{"WithSeed", 0.8, 50, 0, 0, 42},
}
// Fixed size for common vocab size
size := 128000
logits := make([]float32, size)
for i := range logits {
logits[i] = float32(rand.Float64()*10 - 5)
}
for _, tc := range configs {
b.Run("Config"+tc.name, func(b *testing.B) {
sampler := NewSampler(tc.temperature, tc.topK, tc.topP, tc.minP, tc.seed, nil)
sampler.Sample(logits)
b.ResetTimer()
for b.Loop() {
sampler.Sample(logits)
}
})
}
// Test with combined transforms separately - topK influences performance greatly
b.Run("TransformCombined", func(b *testing.B) {
sampler := NewSampler(0.8, 50, 0.9, 0.05, 42, nil)
b.ResetTimer()
for b.Loop() {
sampler.Sample(logits)
}
})
}
func BenchmarkGreedySampler(b *testing.B) {
sizes := []int{10, 100, 1000, 10000, 100000}
for _, size := range sizes {
b.Run(fmt.Sprintf("Size %d", size), func(b *testing.B) {
logits := make([]float32, size)
for i := range logits {
logits[i] = float32(rand.Float64()*10 - 5)
}
sampler := NewSampler(0, -1, 0, 0, -1, nil)
b.ResetTimer()
for b.Loop() {
sampler.Sample(logits)
}
})
}
}

View File

@@ -1,15 +1,14 @@
package sample
import (
"math"
"math/rand/v2"
"testing"
"github.com/google/go-cmp/cmp"
)
func TestWeighted(t *testing.T) {
got, err := Weighted(nil).Sample([]float32{float32(math.Inf(-1)), 2, float32(math.Inf(-1)), float32(math.Inf(-1))})
logits := []float32{-10, 3, -10, -10}
sampler := NewSampler(0, 0, 0, 0, 0, nil)
got, err := sampler.Sample(logits)
if err != nil {
t.Error(err)
return
@@ -19,207 +18,26 @@ func TestWeighted(t *testing.T) {
t.Errorf("index mismatch: want %d, got %d", want, got)
}
got, err = Weighted(nil).Sample([]float32{float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1))})
if err == nil {
t.Error("expected error for no valid tokens, got index", got)
}
seed := uint64(42)
got, err = Weighted(&seed).Sample([]float32{1, 2, 3, 4})
logits = []float32{-100, -10, 0, 10}
sampler = NewSampler(0, 0, 0, 0, 0, nil)
got, err = sampler.Sample(logits)
if err != nil {
t.Error(err)
return
}
// With seed 42, we expect a consistent sample
want = int32(3) // This will be deterministic due to the seed
want = int32(3) // Should pick highest probability with this r value
if want != got {
t.Errorf("index mismatch: want %d, got %d", want, got)
}
}
type testTransform struct {
id int
callOrder *[]int
}
func (ts *testTransform) Apply(logits []float64) []float64 {
if ts.callOrder != nil {
*ts.callOrder = append(*ts.callOrder, ts.id)
}
return logits
}
func TestSample(t *testing.T) {
input := []float32{1, 2, 3, 4}
var callOrder []int
mock1 := &testTransform{
id: 1,
callOrder: &callOrder,
}
mock2 := &testTransform{
id: 2,
callOrder: &callOrder,
}
mock3 := &testTransform{
id: 3,
callOrder: &callOrder,
}
got, err := Greedy(mock1, mock2, mock3).Sample(input)
if err != nil {
t.Error(err)
return
}
want := int32(3) // Greedy sampler should pick highest logit
if want != got {
t.Errorf("index mismatch: want %d, got %d", want, got)
}
wantOrder := []int{1, 2, 3}
if diff := cmp.Diff(wantOrder, callOrder); diff != "" {
t.Errorf("call order mismatch (-want +got):\n%s", diff)
}
callOrder = nil
_, err = Weighted(nil, mock1, mock2, mock3).Sample(input)
if err != nil {
t.Error(err)
return
}
wantOrder = []int{1, 2, 3}
if diff := cmp.Diff(wantOrder, callOrder); diff != "" {
t.Errorf("call order mismatch (-want +got):\n%s", diff)
}
}
func TestNewSampler(t *testing.T) {
tests := []struct {
name string
temperature float32
topK int
topP float32
minP float32
seed int
wantErr bool
}{
{
name: "no transforms",
wantErr: true,
},
{
name: "temperature",
temperature: 0.5,
wantErr: false,
},
{
name: "invalid temperature negative",
temperature: -1,
wantErr: true,
},
{
name: "invalid temperature too high",
temperature: 2.1,
wantErr: true,
},
{
name: "top k",
topK: 10,
wantErr: false,
},
{
name: "invalid top k negative",
topK: -1,
wantErr: true,
},
{
name: "top p",
topP: 0.9,
wantErr: false,
},
{
name: "invalid top p negative",
topP: -0.1,
wantErr: true,
},
{
name: "invalid top p one",
topP: 1.0,
wantErr: true,
},
{
name: "min p",
minP: 0.2,
wantErr: false,
},
{
name: "invalid min p negative",
minP: -0.1,
wantErr: true,
},
{
name: "invalid min p one",
minP: 1.0,
wantErr: true,
},
{
name: "seed",
seed: 42,
wantErr: true, // seed alone is not valid without other transforms
},
{
name: "default values",
temperature: 0.8,
topK: 40,
topP: 0.9,
minP: 0.0,
seed: 0,
wantErr: false,
},
{
name: "all zeroes",
temperature: 0.0,
topK: 0,
topP: 0.0,
minP: 0.0,
seed: 0,
wantErr: true, // all zeroes means no transforms
},
{
name: "all transforms",
temperature: 0.8,
topK: 50,
topP: 0.95,
minP: 0.1,
seed: 42,
wantErr: false,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
_, err := NewSampler(tt.temperature, tt.topK, tt.topP, tt.minP, tt.seed)
if (err != nil) != tt.wantErr {
t.Errorf("NewSampler() error = %v, wantErr %v", err, tt.wantErr)
}
})
}
}
func BenchmarkSample(b *testing.B) {
transforms := []Transform{
Temperature(0.5),
TopK(10),
TopP(0.9),
MinP(0.2),
}
samplers := map[string]Sampler{
"Greedy": Greedy(transforms...),
"Weighted": Weighted(nil, transforms...),
"Greedy": NewSampler(0, 0, 0, 0, 0, nil), // Use NewSampler with temp=0 for greedy
"Weighted": NewSampler(0.5, 10, 0.9, 0.2, -1, nil),
}
// Generate random logits for benchmarking
logits := make([]float32, 1<<16)
for i := range logits {
logits[i] = rand.Float32()
@@ -228,9 +46,9 @@ func BenchmarkSample(b *testing.B) {
for name, s := range samplers {
b.Run(name, func(b *testing.B) {
b.ResetTimer()
for range b.N {
for b.Loop() {
if _, err := s.Sample(logits); err != nil {
b.Error(err)
b.Fatalf("error sampling: %v", err)
}
}
})

View File

@@ -1,120 +1,136 @@
package sample
import (
"cmp"
"container/heap"
"math"
"slices"
pq "github.com/emirpasic/gods/v2/queues/priorityqueue"
)
type Transform interface {
Apply([]float64) []float64
// tokenHeap implements heap.Interface and holds tokens as a min-heap to track k largest elements
type tokenHeap []token
func (h tokenHeap) Len() int { return len(h) }
func (h tokenHeap) Less(i, j int) bool { return h[i].value < h[j].value }
func (h tokenHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h *tokenHeap) Push(x any) {
*h = append(*h, x.(token))
}
// TODO(parthsareen): potentially cache softmax values
func softmax(logits []float64) []float64 {
var sum float64
probs := make([]float64, len(logits))
for i, v := range logits {
probs[i] = math.Exp(v)
sum += probs[i]
}
for i := range probs {
probs[i] /= sum
}
return probs
func (h *tokenHeap) Pop() any {
old := *h
n := len(old)
x := old[n-1]
*h = old[0 : n-1]
return x
}
type Temperature float64
func (t Temperature) Apply(logits []float64) []float64 {
temp := math.Max(float64(t), 1e-7)
// subtracting max logit to avoid under/overflow
maxLogit := slices.Max(logits)
for i := range logits {
logits[i] = (logits[i] - maxLogit) / temp
}
return logits
}
type logitMap struct {
index int
logit float64
}
type TopK int
// TODO(parthsareen): avoid having to check all logits after this transform
func (k TopK) Apply(logits []float64) []float64 {
if int(k) >= len(logits) {
return logits
}
q := pq.NewWith(func(a, b logitMap) int {
return -cmp.Compare(a.logit, b.logit)
})
for i, logit := range logits {
q.Enqueue(logitMap{index: i, logit: logit})
}
validLogits := make(map[int]float64)
for range k {
logitMap, _ := q.Dequeue()
validLogits[logitMap.index] = logitMap.logit
}
for i := range logits {
if _, ok := validLogits[i]; !ok {
logits[i] = math.Inf(-1)
// temperature applies scaling and softmax to the logits
func temperature(ts []token, temp float32) []token {
// Find max logit for numerical stability
maxLogit := float32(math.Inf(-1))
for _, t := range ts {
if t.value > maxLogit {
maxLogit = t.value
}
}
return logits
}
type TopP float64
func (p TopP) Apply(logits []float64) []float64 {
probs := softmax(logits)
indices := make([]int, len(probs))
for i := range indices {
indices[i] = i
// Apply temperature and compute exp(x - max)
temp = max(temp, 1e-7)
var sum float32
for i, v := range ts {
ts[i].value = float32(math.Exp(float64((v.value - maxLogit) / temp)))
sum += ts[i].value
}
// sort in descending order
slices.SortFunc(indices, func(i, j int) int {
return cmp.Compare(probs[j], probs[i])
})
// Normalize
for i := range ts {
ts[i].value /= sum
}
var sum float64
for i, idx := range indices {
sum += probs[idx]
if sum > float64(p) {
for _, idx := range indices[i+1:] {
logits[idx] = math.Inf(-1)
return ts
}
// topK limits the number of tokens considered to the k highest logits
func topK(ts []token, k int) []token {
if k >= len(ts) || k <= 0 {
slices.SortFunc(ts, func(a, b token) int {
switch {
case a.value < b.value:
return 1
case a.value > b.value:
return -1
default:
return 0
}
break
}
})
return ts
}
return logits
}
type MinP float64
// Initialize min-heap with first k elements
h := make(tokenHeap, k)
copy(h, ts[:k])
heap.Init(&h)
func (p MinP) Apply(logits []float64) []float64 {
probs := softmax(logits)
threshold := slices.Max(probs) * float64(p)
for i, prob := range probs {
if prob < threshold {
logits[i] = math.Inf(-1)
// Process remaining elements
for i := k; i < len(ts); i++ {
if ts[i].value > h[0].value {
heap.Pop(&h)
heap.Push(&h, ts[i])
}
}
return logits
// Convert heap to sorted slice in descending order
result := make([]token, len(h))
for i := k - 1; i >= 0; i-- {
result[i] = heap.Pop(&h).(token)
}
return result
}
// topP limits tokens to those with cumulative probability p
func topP(ts []token, p float32) []token {
if p == 1.0 {
return ts
}
// Find cutoff index where cumulative sum exceeds p
var sum float32
for i, t := range ts {
sum += t.value
if sum > float32(p) {
ts = ts[:i+1]
return ts
}
}
return ts
}
// minP limits tokens to those with cumulative probability p
func minP(ts []token, p float32) []token {
if p == 1.0 {
return ts
}
maxProb := float32(math.Inf(-1))
for _, token := range ts {
if token.value > maxProb {
maxProb = token.value
}
}
threshold := maxProb * float32(p)
// Filter tokens in-place
validTokens := ts[:0]
for i, token := range ts {
if token.value >= threshold {
validTokens = append(validTokens, ts[i])
}
}
ts = validTokens
return ts
}

View File

@@ -4,77 +4,194 @@ import (
"math"
"math/rand/v2"
"testing"
"github.com/google/go-cmp/cmp"
)
func TestTemperature(t *testing.T) {
got := Temperature(0.5).Apply([]float64{2, -1, 4, -3, 1, -2, 0})
want := []float64{-4, -10, 0, -14, -6, -12, -8}
if diff := cmp.Diff(want, got); diff != "" {
t.Errorf("logits mismatch (-want +got):\n%s", diff)
// Helper to convert float32 slice to logit slice
func toTokens(values []float32) []token {
tokens := make([]token, len(values))
for i, v := range values {
tokens[i] = token{
id: int32(i),
value: v,
}
}
return tokens
}
// Helper to compare logit slices
func compareLogits(t *testing.T, name string, want []float32, got []token) {
t.Helper()
if len(want) != len(got) {
t.Errorf("%s: length mismatch: want %d, got %d", name, len(want), len(got))
return
}
for i := range want {
if math.Abs(float64(got[i].value-want[i])) > 1e-6 {
t.Errorf("%s: index %d: want %f, got %f", name, i, want[i], got[i].value)
}
}
}
func TestSoftmax(t *testing.T) {
got := softmax([]float64{-3, -2, -1, 0, 1, 2, 4})
func TestTemperatureAndSoftmax(t *testing.T) {
input := []float32{1, 4, -2, 0}
got := temperature(toTokens(input), 0.5)
want := []float64{0.000751406628089903, 0.0020425349829204676, 0.005552185728064613, 0.015092405572827691, 0.04102541181635154, 0.11151863144543739, 0.8240174238263085}
if diff := cmp.Diff(want, got); diff != "" {
t.Errorf("probs mismatch (-want +got):\n%s", diff)
// Check probabilities sum to 1
var sum float32
for _, token := range got {
sum += token.value
}
if math.Abs(float64(sum-1.0)) > 1e-6 {
t.Errorf("probabilities don't sum to 1: got %f", sum)
}
got = temperature(toTokens(input), 1)
// Check probabilities sum to 1
sum = 0.0
for _, token := range got {
sum += token.value
}
if math.Abs(float64(sum-1.0)) > 1e-6 {
t.Errorf("probabilities don't sum to 1: got %f", sum)
}
}
func TestTopK(t *testing.T) {
got := TopK(3).Apply([]float64{-3, -2, -1, 0, 1, 2, 4})
want := []float64{math.Inf(-1), math.Inf(-1), math.Inf(-1), math.Inf(-1), 1, 2, 4}
if diff := cmp.Diff(want, got); diff != "" {
t.Errorf("logits mismatch (-want +got):\n%s", diff)
input := []float32{0.026986899, 0.043722924, 0.036774673, 0.27755088, 0.0046718004, 0.08582123, 0.20409796, 0.00412893, 0.15720603, 0.045046154, 0.0030491839, 0.01681367}
// Test k=5
got := topK(toTokens(input), 5)
if len(got) != 5 {
t.Errorf("topK(5): wrong length: want 5, got %d", len(got))
}
// Should keep highest 3 values in descending order
want := []float32{0.27755088, 0.20409796, 0.15720603, 0.08582123, 0.045046154}
compareLogits(t, "topK(3)", want, got)
got = topK(toTokens(input), 20)
if len(got) != len(input) {
t.Errorf("topK(20): wrong length: want %d, got %d", len(input), len(got))
}
got = TopK(10).Apply([]float64{-3, -2, -1, 0, 1, 2, 4})
want = []float64{-3, -2, -1, 0, 1, 2, 4}
if diff := cmp.Diff(want, got); diff != "" {
t.Errorf("logits mismatch (-want +got):\n%s", diff)
// Test k=-1
input = []float32{0.026986899, 0.043722924, 0.036774673, 0.27755088, 0.0046718004, 0.08582123, 0.20409796, 0.00412893, 0.15720603, 0.045046154, 0.0030491839, 0.01681367}
want = []float32{0.27755088, 0.20409796, 0.15720603, 0.08582123, 0.045046154, 0.043722924, 0.036774673, 0.026986899, 0.01681367, 0.0046718004, 0.00412893, 0.0030491839}
got = topK(toTokens(input), -1)
if len(got) != len(input) {
t.Errorf("topK(-1): wrong length: want %d, got %d", len(input), len(got))
}
compareLogits(t, "topK(-1)", want, got)
// Test k=0
input = []float32{0.026986899, 0.043722924, 0.036774673, 0.27755088, 0.0046718004, 0.08582123, 0.20409796, 0.00412893, 0.15720603, 0.045046154, 0.0030491839, 0.01681367}
want = []float32{0.27755088, 0.20409796, 0.15720603, 0.08582123, 0.045046154, 0.043722924, 0.036774673, 0.026986899, 0.01681367, 0.0046718004, 0.00412893, 0.0030491839}
got = topK(toTokens(input), 0)
if len(got) != len(input) {
t.Errorf("topK(-1): wrong length: want %d, got %d", len(input), len(got))
}
compareLogits(t, "topK(-1)", want, got)
}
func TestTopP(t *testing.T) {
got := TopP(0.9).Apply([]float64{-3, -2, -1, 0, 1, 2, 4})
want := []float64{math.Inf(-1), math.Inf(-1), math.Inf(-1), math.Inf(-1), math.Inf(-1), 2, 4}
if diff := cmp.Diff(want, got); diff != "" {
t.Errorf("logits mismatch (-want +got):\n%s", diff)
input := []float32{-3, -2, -1, 0, 1, 2, 4}
tokens := toTokens(input)
// First apply temperature and softmax to get probabilities
tokens = temperature(tokens, 1)
tokens = topK(tokens, 20)
// Then apply topP
got := topP(tokens, 0.95)
// Should keep tokens until cumsum > 0.95
if len(got) > 3 {
t.Errorf("topP(0.95): kept too many tokens: got %d", len(got))
t.Logf("got: %v", got)
}
}
func TestMinP(t *testing.T) {
got := MinP(0.2).Apply([]float64{-3, -2, -1, 0, 1, 2, 4, 3})
want := []float64{math.Inf(-1), math.Inf(-1), math.Inf(-1), math.Inf(-1), math.Inf(-1), math.Inf(-1), 4, 3}
if diff := cmp.Diff(want, got); diff != "" {
t.Errorf("logits mismatch (-want +got):\n%s", diff)
input := []float32{-3, -2, -1, 0, 1, 2, 4, 3}
tokens := toTokens(input)
// First apply temperature and softmax
tokens = temperature(tokens, 1)
// Then apply minP
got := minP(tokens, 0.2)
// Should keep tokens with prob >= 0.2 * max_prob
if len(got) > 3 {
t.Errorf("minP(0.2): kept too many tokens: got %d", len(got))
}
}
func BenchmarkTransform(b *testing.B) {
transforms := map[string]Transform{
"Temperature": Temperature(0.5),
"TopK": TopK(10),
"TopP": TopP(0.9),
"MinP": MinP(0.2),
func TestSortLogits(t *testing.T) {
input := []float32{0.026986899, 0.043722924, 0.036774673, 0.27755088, 0.0046718004, 0.08582123, 0.20409796, 0.00412893, 0.15720603, 0.045046154, 0.0030491839, 0.01681367}
tokens := toTokens(input)
tokens = topK(tokens, 20)
for i := 1; i < len(tokens); i++ {
if tokens[i].value > tokens[i-1].value {
t.Errorf("sortLogits: tokens not sorted in descending order at index %d: %f > %f",
i, tokens[i].value, tokens[i-1].value)
}
}
logits := make([]float64, 1<<16)
for i := range logits {
logits[i] = rand.Float64()
}
for name, transform := range transforms {
b.Run(name, func(b *testing.B) {
b.ResetTimer()
for range b.N {
transform.Apply(logits)
}
})
}
want := []float32{0.27755088, 0.20409796, 0.15720603, 0.08582123, 0.045046154, 0.043722924, 0.036774673, 0.026986899, 0.01681367, 0.0046718004, 0.00412893, 0.0030491839}
compareLogits(t, "sortLogits", want, tokens)
}
func BenchmarkTransforms(b *testing.B) {
// Generate random logits
tokens := make([]token, 1<<16)
for i := range tokens {
tokens[i] = token{
id: int32(i),
value: rand.Float32(),
}
}
tokensCopy := make([]token, len(tokens))
b.Run("Temperature", func(b *testing.B) {
b.ResetTimer()
for b.Loop() {
copy(tokensCopy, tokens)
temperature(tokensCopy, 0.5)
}
})
b.Run("TopK", func(b *testing.B) {
b.ResetTimer()
for b.Loop() {
copy(tokensCopy, tokens)
topK(tokensCopy, 10)
}
})
b.Run("TopP", func(b *testing.B) {
b.ResetTimer()
for b.Loop() {
copy(tokensCopy, tokens)
topP(tokensCopy, 0.9)
}
})
b.Run("MinP", func(b *testing.B) {
b.ResetTimer()
for b.Loop() {
copy(tokensCopy, tokens)
minP(tokensCopy, 0.2)
}
})
b.Run("SortTokens", func(b *testing.B) {
b.ResetTimer()
for b.Loop() {
copy(tokensCopy, tokens)
topK(tokensCopy, 200000)
}
})
}

View File

@@ -80,13 +80,14 @@ function checkEnv() {
function buildOllama() {
mkdir -Force -path "${script:DIST_DIR}\"
if ($script:ARCH -ne "arm64") {
Remove-Item -ea 0 -recurse -force -path "${script:SRC_DIR}\dist\windows-${script:ARCH}"
New-Item "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\" -ItemType Directory -ea 0
& cmake --fresh --preset CPU --install-prefix $script:DIST_DIR
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
& cmake --build --preset CPU --parallel $script:JOBS
& cmake --build --preset CPU --config Release --parallel $script:JOBS
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
& cmake --install build --component CPU --strip
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
@@ -101,7 +102,7 @@ function buildOllama() {
# to avoid 2022 (or newer) from being used as the default
& cmake --fresh --preset "CUDA 11" -G "Visual Studio 16 2019" --install-prefix $script:DIST_DIR
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
& cmake --build --preset "CUDA 11" --parallel $script:JOBS
& cmake --build --preset "CUDA 11" --config Release --parallel $script:JOBS
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
& cmake --install build --component "CUDA" --strip
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
@@ -112,7 +113,7 @@ function buildOllama() {
write-host "Building CUDA v12 backend libraries"
& cmake --fresh --preset "CUDA 12" --install-prefix $script:DIST_DIR
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
& cmake --build --preset "CUDA 12" --parallel $script:JOBS
& cmake --build --preset "CUDA 12" --config Release --parallel $script:JOBS
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
& cmake --install build --component "CUDA" --strip
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
@@ -131,7 +132,7 @@ function buildOllama() {
$env:HIPCXX=""
$env:HIP_PLATFORM=""
$env:CMAKE_PREFIX_PATH=""
& cmake --build --preset "ROCm" --parallel $script:JOBS
& cmake --build --preset "ROCm" --config Release --parallel $script:JOBS
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
& cmake --install build --component "HIP" --strip
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}

View File

@@ -77,11 +77,12 @@ if [ -d "$OLLAMA_INSTALL_DIR/lib/ollama" ] ; then
fi
status "Installing ollama to $OLLAMA_INSTALL_DIR"
$SUDO install -o0 -g0 -m755 -d $BINDIR
$SUDO install -o0 -g0 -m755 -d "$OLLAMA_INSTALL_DIR"
$SUDO install -o0 -g0 -m755 -d "$OLLAMA_INSTALL_DIR/lib/ollama"
status "Downloading Linux ${ARCH} bundle"
curl --fail --show-error --location --progress-bar \
"https://ollama.com/download/ollama-linux-${ARCH}.tgz${VER_PARAM}" | \
$SUDO tar -xzf - -C "$OLLAMA_INSTALL_DIR"
if [ "$OLLAMA_INSTALL_DIR/bin/ollama" != "$BINDIR/ollama" ] ; then
status "Making ollama accessible in the PATH in $BINDIR"
$SUDO ln -sf "$OLLAMA_INSTALL_DIR/ollama" "$BINDIR/ollama"

View File

@@ -8,6 +8,7 @@ import (
"errors"
"fmt"
"io"
"io/fs"
"log/slog"
"net/http"
"os"
@@ -34,6 +35,7 @@ var (
errOnlyGGUFSupported = errors.New("supplied file was not in GGUF format")
errUnknownType = errors.New("unknown type")
errNeitherFromOrFiles = errors.New("neither 'from' or 'files' was specified")
errFilePath = errors.New("file path must be relative")
)
func (s *Server) CreateHandler(c *gin.Context) {
@@ -46,6 +48,13 @@ func (s *Server) CreateHandler(c *gin.Context) {
return
}
for v := range r.Files {
if !fs.ValidPath(v) {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": errFilePath.Error()})
return
}
}
name := model.ParseName(cmp.Or(r.Model, r.Name))
if !name.IsValid() {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": errtypes.InvalidModelNameErrMsg})
@@ -104,7 +113,7 @@ func (s *Server) CreateHandler(c *gin.Context) {
if r.Adapters != nil {
adapterLayers, err = convertModelFromFiles(r.Adapters, baseLayers, true, fn)
if err != nil {
for _, badReq := range []error{errNoFilesProvided, errOnlyOneAdapterSupported, errOnlyGGUFSupported, errUnknownType} {
for _, badReq := range []error{errNoFilesProvided, errOnlyOneAdapterSupported, errOnlyGGUFSupported, errUnknownType, errFilePath} {
if errors.Is(err, badReq) {
ch <- gin.H{"error": err.Error(), "status": http.StatusBadRequest}
return
@@ -221,8 +230,22 @@ func convertFromSafetensors(files map[string]string, baseLayers []*layerGGML, is
return nil, err
}
defer os.RemoveAll(tmpDir)
// Set up a root to validate paths
root, err := os.OpenRoot(tmpDir)
if err != nil {
return nil, err
}
defer root.Close()
for fp, digest := range files {
if !fs.ValidPath(fp) {
return nil, fmt.Errorf("%w: %s", errFilePath, fp)
}
if _, err := root.Stat(fp); err != nil && !errors.Is(err, fs.ErrNotExist) {
// Path is likely outside the root
return nil, fmt.Errorf("%w: %s: %s", errFilePath, err, fp)
}
blobPath, err := GetBlobsPath(digest)
if err != nil {
return nil, err
@@ -270,6 +293,7 @@ func convertFromSafetensors(files map[string]string, baseLayers []*layerGGML, is
if err != nil {
return nil, err
}
defer bin.Close()
f, _, err := ggml.Decode(bin, 0)
if err != nil {

106
server/create_test.go Normal file
View File

@@ -0,0 +1,106 @@
package server
import (
"bytes"
"encoding/binary"
"errors"
"os"
"path/filepath"
"strings"
"testing"
"github.com/ollama/ollama/api"
)
func TestConvertFromSafetensors(t *testing.T) {
t.Setenv("OLLAMA_MODELS", t.TempDir())
// Helper function to create a new layer and return its digest
makeTemp := func(content string) string {
l, err := NewLayer(strings.NewReader(content), "application/octet-stream")
if err != nil {
t.Fatalf("Failed to create layer: %v", err)
}
return l.Digest
}
// Create a safetensors compatible file with empty JSON content
var buf bytes.Buffer
headerSize := int64(len("{}"))
binary.Write(&buf, binary.LittleEndian, headerSize)
buf.WriteString("{}")
model := makeTemp(buf.String())
config := makeTemp(`{
"architectures": ["LlamaForCausalLM"],
"vocab_size": 32000
}`)
tokenizer := makeTemp(`{
"version": "1.0",
"truncation": null,
"padding": null,
"added_tokens": [
{
"id": 0,
"content": "<|endoftext|>",
"single_word": false,
"lstrip": false,
"rstrip": false,
"normalized": false,
"special": true
}
]
}`)
tests := []struct {
name string
filePath string
wantErr error
}{
// Invalid
{
name: "InvalidRelativePathShallow",
filePath: filepath.Join("..", "file.safetensors"),
wantErr: errFilePath,
},
{
name: "InvalidRelativePathDeep",
filePath: filepath.Join("..", "..", "..", "..", "..", "..", "data", "file.txt"),
wantErr: errFilePath,
},
{
name: "InvalidNestedPath",
filePath: filepath.Join("dir", "..", "..", "..", "..", "..", "other.safetensors"),
wantErr: errFilePath,
},
{
name: "AbsolutePathOutsideRoot",
filePath: filepath.Join(os.TempDir(), "model.safetensors"),
wantErr: errFilePath, // Should fail since it's outside tmpDir
},
{
name: "ValidRelativePath",
filePath: "model.safetensors",
wantErr: nil,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
// Create the minimum required file map for convertFromSafetensors
files := map[string]string{
tt.filePath: model,
"config.json": config,
"tokenizer.json": tokenizer,
}
_, err := convertFromSafetensors(files, nil, false, func(resp api.ProgressResponse) {})
if (tt.wantErr == nil && err != nil) ||
(tt.wantErr != nil && err == nil) ||
(tt.wantErr != nil && !errors.Is(err, tt.wantErr)) {
t.Errorf("convertFromSafetensors() error = %v, wantErr %v", err, tt.wantErr)
}
})
}
}

View File

@@ -279,6 +279,18 @@ func (c *DiskCache) Get(d Digest) (Entry, error) {
// It returns an error if either the name or digest is invalid, or if link
// creation encounters any issues.
func (c *DiskCache) Link(name string, d Digest) error {
// TODO(bmizerany): Move link handling from cache to registry.
//
// We originally placed links in the cache due to its storage
// knowledge. However, the registry likely offers better context for
// naming concerns, and our API design shouldn't be tightly coupled to
// our on-disk format.
//
// Links work effectively when independent from physical location -
// they can reference content with matching SHA regardless of storage
// location. In an upcoming change, we plan to shift this
// responsibility to the registry where it better aligns with the
// system's conceptual model.
manifest, err := c.manifestPath(name)
if err != nil {
return err
@@ -304,21 +316,19 @@ func (c *DiskCache) Link(name string, d Digest) error {
return c.copyNamedFile(manifest, f, d, info.Size())
}
// Unlink removes the any link for name. If the link does not exist, nothing
// happens, and no error is returned.
//
// It returns an error if the name is invalid or if the link removal encounters
// any issues.
func (c *DiskCache) Unlink(name string) error {
// Unlink unlinks the manifest by name from the cache. If the name is not
// found. If a manifest is removed ok will be true, otherwise false. If an
// error occurs, it returns ok false, and the error.
func (c *DiskCache) Unlink(name string) (ok bool, _ error) {
manifest, err := c.manifestPath(name)
if err != nil {
return err
return false, err
}
err = os.Remove(manifest)
if errors.Is(err, fs.ErrNotExist) {
return nil
return false, nil
}
return err
return true, err
}
// GetFile returns the absolute path to the file, in the cache, for the given

View File

@@ -13,7 +13,7 @@ import (
"testing"
"time"
"github.com/ollama/ollama/server/internal/internal/testutil"
"github.com/ollama/ollama/server/internal/testutil"
)
func init() {
@@ -479,8 +479,11 @@ func testManifestNameReuse(t *testing.T) {
}
// relink with different case
err = c.Unlink("h/n/m:t")
unlinked, err := c.Unlink("h/n/m:t")
check(err)
if !unlinked {
t.Fatal("expected unlinked")
}
err = c.Link("h/n/m:T", d1)
check(err)

View File

@@ -86,7 +86,7 @@ func useCaseInsensitiveTempDir(t *testing.T) bool {
// link to docs on that topic.
lines := strings.Split(volumeHint, "\n")
for _, line := range lines {
t.Log(line)
t.Skip(line)
}
}
return false

View File

@@ -19,12 +19,15 @@ import (
"fmt"
"io"
"io/fs"
"log/slog"
"net/http"
"os"
"path/filepath"
"runtime"
"slices"
"strconv"
"strings"
"sync"
"sync/atomic"
"time"
@@ -42,9 +45,9 @@ import (
// Errors
var (
// ErrManifestNotFound is returned when a manifest is not found in the
// ErrModelNotFound is returned when a manifest is not found in the
// cache or registry.
ErrManifestNotFound = errors.New("manifest not found")
ErrModelNotFound = errors.New("model not found")
// ErrManifestInvalid is returned when a manifest found in a local or
// remote cache is invalid.
@@ -52,7 +55,7 @@ var (
// ErrMissingModel is returned when the model part of a name is missing
// or invalid.
ErrNameInvalid = errors.New("invalid name; must be in the form {scheme://}{host/}{namespace/}[model]{:tag}{@digest}")
ErrNameInvalid = errors.New("invalid or missing name")
// ErrCached is passed to [Trace.PushUpdate] when a layer already
// exists. It is a non-fatal error and is never returned by [Registry.Push].
@@ -71,39 +74,88 @@ const (
DefaultMaxChunkSize = 8 << 20
)
// DefaultCache returns a new disk cache for storing models. If the
// OLLAMA_MODELS environment variable is set, it uses that directory;
// otherwise, it uses $HOME/.ollama/models.
func DefaultCache() (*blob.DiskCache, error) {
var defaultCache = sync.OnceValues(func() (*blob.DiskCache, error) {
dir := os.Getenv("OLLAMA_MODELS")
if dir == "" {
home, err := os.UserHomeDir()
if err != nil {
return nil, err
}
home, _ := os.UserHomeDir()
home = cmp.Or(home, ".")
dir = filepath.Join(home, ".ollama", "models")
}
return blob.Open(dir)
})
// DefaultCache returns the default cache used by the registry. It is
// configured from the OLLAMA_MODELS environment variable, or defaults to
// $HOME/.ollama/models, or, if an error occurs obtaining the home directory,
// it uses the current working directory.
func DefaultCache() (*blob.DiskCache, error) {
return defaultCache()
}
// Error is the standard error returned by Ollama APIs.
// Error is the standard error returned by Ollama APIs. It can represent a
// single or multiple error response.
//
// Single error responses have the following format:
//
// {"code": "optional_code","error":"error message"}
//
// Multiple error responses have the following format:
//
// {"errors": [{"code": "optional_code","message":"error message"}]}
//
// Note, that the error field is used in single error responses, while the
// message field is used in multiple error responses.
//
// In both cases, the code field is optional and may be empty.
type Error struct {
Status int `json:"-"`
Status int `json:"-"` // TODO(bmizerany): remove this
Code string `json:"code"`
Message string `json:"message"`
}
func (e *Error) Error() string {
return fmt.Sprintf("registry responded with status %d: %s %s", e.Status, e.Code, e.Message)
var b strings.Builder
b.WriteString("registry responded with status ")
b.WriteString(strconv.Itoa(e.Status))
if e.Code != "" {
b.WriteString(": code ")
b.WriteString(e.Code)
}
if e.Message != "" {
b.WriteString(": ")
b.WriteString(e.Message)
}
return b.String()
}
func (e *Error) LogValue() slog.Value {
return slog.GroupValue(
slog.Int("status", e.Status),
slog.String("code", e.Code),
slog.String("message", e.Message),
)
}
// UnmarshalJSON implements json.Unmarshaler.
func (e *Error) UnmarshalJSON(b []byte) error {
type E Error
var v struct{ Errors []E }
var v struct {
// Single error
Code string
Error string
// Multiple errors
Errors []E
}
if err := json.Unmarshal(b, &v); err != nil {
return err
}
if v.Error != "" {
// Single error case
e.Code = v.Code
e.Message = v.Error
return nil
}
if len(v.Errors) == 0 {
return fmt.Errorf("no messages in error response: %s", string(b))
}
@@ -111,18 +163,30 @@ func (e *Error) UnmarshalJSON(b []byte) error {
return nil
}
// TODO(bmizerany): make configurable on [Registry]
var defaultName = func() names.Name {
n := names.Parse("ollama.com/library/_:latest")
const DefaultMask = "registry.ollama.ai/library/_:latest"
var defaultMask = func() names.Name {
n := names.Parse(DefaultMask)
if !n.IsFullyQualified() {
panic("default name is not fully qualified")
panic("default mask is not fully qualified")
}
return n
}()
// CompleteName returns a fully qualified name by merging the given name with
// the default mask. If the name is already fully qualified, it is returned
// unchanged.
func CompleteName(name string) string {
return names.Merge(names.Parse(name), defaultMask).String()
}
// Registry is a client for performing push and pull operations against an
// Ollama registry.
type Registry struct {
// Cache is the cache used to store models. If nil, [DefaultCache] is
// used.
Cache *blob.DiskCache
// UserAgent is the User-Agent header to send with requests to the
// registry. If empty, the User-Agent is determined by HTTPClient.
UserAgent string
@@ -160,21 +224,44 @@ type Registry struct {
//
// It is only used when a layer is larger than [MaxChunkingThreshold].
MaxChunkSize int64
// Mask, if set, is the name used to convert non-fully qualified names
// to fully qualified names. If empty, [DefaultMask] is used.
Mask string
}
// RegistryFromEnv returns a new Registry configured from the environment. The
func (r *Registry) cache() (*blob.DiskCache, error) {
if r.Cache != nil {
return r.Cache, nil
}
return defaultCache()
}
func (r *Registry) parseName(name string) (names.Name, error) {
mask := defaultMask
if r.Mask != "" {
mask = names.Parse(r.Mask)
}
n := names.Merge(names.Parse(name), mask)
if !n.IsFullyQualified() {
return names.Name{}, fmt.Errorf("%w: %q", ErrNameInvalid, name)
}
return n, nil
}
// DefaultRegistry returns a new Registry configured from the environment. The
// key is read from $HOME/.ollama/id_ed25519, MaxStreams is set to the
// value of OLLAMA_REGISTRY_MAXSTREAMS, and ChunkingDirectory is set to the
// system's temporary directory.
//
// It returns an error if any configuration in the environment is invalid.
func RegistryFromEnv() (*Registry, error) {
func DefaultRegistry() (*Registry, error) {
home, err := os.UserHomeDir()
if err != nil {
return nil, err
}
keyPEM, err := os.ReadFile(filepath.Join(home, ".ollama/id_ed25519"))
if err != nil {
if err != nil && errors.Is(err, fs.ErrNotExist) {
return nil, err
}
@@ -194,42 +281,6 @@ func RegistryFromEnv() (*Registry, error) {
return &rc, nil
}
type PushParams struct {
// From is an optional destination name for the model. If empty, the
// destination name is the same as the source name.
From string
}
// parseName parses name using [names.ParseExtended] and then merges the name with the
// default name, and checks that the name is fully qualified. If a digest is
// present, it parse and returns it with the other fields as their zero values.
//
// It returns an error if the name is not fully qualified, or if the digest, if
// any, is invalid.
//
// The scheme is returned as provided by [names.ParseExtended].
func parseName(s string) (scheme string, n names.Name, d blob.Digest, err error) {
scheme, n, ds := names.ParseExtended(s)
n = names.Merge(n, defaultName)
if ds != "" {
// Digest is present. Validate it.
d, err = blob.ParseDigest(ds)
if err != nil {
return "", names.Name{}, blob.Digest{}, err
}
}
// The name check is deferred until after the digest check because we
// say that digests take precedence over names, and so should there
// errors when being parsed.
if !n.IsFullyQualified() {
return "", names.Name{}, blob.Digest{}, ErrNameInvalid
}
scheme = cmp.Or(scheme, "https")
return scheme, n, d, nil
}
func (r *Registry) maxStreams() int {
n := cmp.Or(r.MaxStreams, runtime.GOMAXPROCS(0))
@@ -249,13 +300,24 @@ func (r *Registry) maxChunkSize() int64 {
return cmp.Or(r.MaxChunkSize, DefaultMaxChunkSize)
}
type PushParams struct {
// From is an optional destination name for the model. If empty, the
// destination name is the same as the source name.
From string
}
// Push pushes the model with the name in the cache to the remote registry.
func (r *Registry) Push(ctx context.Context, c *blob.DiskCache, name string, p *PushParams) error {
func (r *Registry) Push(ctx context.Context, name string, p *PushParams) error {
if p == nil {
p = &PushParams{}
}
m, err := ResolveLocal(c, cmp.Or(p.From, name))
c, err := r.cache()
if err != nil {
return err
}
m, err := r.ResolveLocal(cmp.Or(p.From, name))
if err != nil {
return err
}
@@ -278,7 +340,7 @@ func (r *Registry) Push(ctx context.Context, c *blob.DiskCache, name string, p *
t := traceFromContext(ctx)
scheme, n, _, err := parseName(name)
scheme, n, _, err := r.parseNameExtended(name)
if err != nil {
// This should never happen since ResolveLocal should have
// already validated the name.
@@ -304,7 +366,7 @@ func (r *Registry) Push(ctx context.Context, c *blob.DiskCache, name string, p *
n.Model(),
l.Digest,
)
res, err := r.doOK(ctx, "POST", startURL, nil)
res, err := r.send(ctx, "POST", startURL, nil)
if err != nil {
return err
}
@@ -328,7 +390,7 @@ func (r *Registry) Push(ctx context.Context, c *blob.DiskCache, name string, p *
}
req.ContentLength = l.Size
res, err = doOK(r.client(), req)
res, err = sendRequest(r.client(), req)
if err == nil {
res.Body.Close()
}
@@ -348,7 +410,7 @@ func (r *Registry) Push(ctx context.Context, c *blob.DiskCache, name string, p *
n.Model(),
n.Tag(),
)
res, err := r.doOK(ctx, "PUT", path, bytes.NewReader(m.Data))
res, err := r.send(ctx, "PUT", path, bytes.NewReader(m.Data))
if err == nil {
res.Body.Close()
}
@@ -371,8 +433,8 @@ func canRetry(err error) bool {
// chunks of the specified size, and then reassembled and verified. This is
// typically slower than splitting the model up across layers, and is mostly
// utilized for layers of type equal to "application/vnd.ollama.image".
func (r *Registry) Pull(ctx context.Context, c *blob.DiskCache, name string) error {
scheme, n, _, err := parseName(name)
func (r *Registry) Pull(ctx context.Context, name string) error {
scheme, n, _, err := r.parseNameExtended(name)
if err != nil {
return err
}
@@ -385,6 +447,11 @@ func (r *Registry) Pull(ctx context.Context, c *blob.DiskCache, name string) err
return fmt.Errorf("%w: no layers", ErrManifestInvalid)
}
c, err := r.cache()
if err != nil {
return err
}
exists := func(l *Layer) bool {
info, err := c.Get(l.Digest)
return err == nil && info.Size == l.Size
@@ -392,10 +459,15 @@ func (r *Registry) Pull(ctx context.Context, c *blob.DiskCache, name string) err
t := traceFromContext(ctx)
var g errgroup.Group
g, ctx := errgroup.WithContext(ctx)
g.SetLimit(r.maxStreams())
for _, l := range m.Layers {
layers := m.Layers
if m.Config != nil && m.Config.Digest.IsValid() {
layers = append(layers, m.Config)
}
for _, l := range layers {
if exists(l) {
t.update(l, l.Size, ErrCached)
continue
@@ -412,7 +484,9 @@ func (r *Registry) Pull(ctx context.Context, c *blob.DiskCache, name string) err
if l.Size <= r.maxChunkingThreshold() {
g.Go(func() error {
res, err := doOK(r.client(), req)
// TODO(bmizerany): retry/backoff like below in
// the chunking case
res, err := sendRequest(r.client(), req)
if err != nil {
return err
}
@@ -438,19 +512,21 @@ func (r *Registry) Pull(ctx context.Context, c *blob.DiskCache, name string) err
// fire an initial request to get the final URL and
// then use that URL for the chunk requests.
req.Header.Set("Range", "bytes=0-0")
res, err := doOK(r.client(), req)
res, err := sendRequest(r.client(), req)
if err != nil {
return err
}
res.Body.Close()
req = res.Request.WithContext(req.Context())
streamNo := 0
tws := make([]*bufio.Writer, r.maxStreams()-1)
wp := writerPool{size: r.maxChunkSize()}
for chunk := range chunks.Of(l.Size, r.maxChunkSize()) {
if ctx.Err() != nil {
break
}
ticket := q.Take()
bufIdx := streamNo % len(tws)
streamNo++
g.Go(func() (err error) {
defer func() {
if err != nil {
@@ -464,23 +540,18 @@ func (r *Registry) Pull(ctx context.Context, c *blob.DiskCache, name string) err
if err != nil {
return err
}
err := func() error {
req := req.Clone(req.Context())
req.Header.Set("Range", fmt.Sprintf("bytes=%s", chunk))
res, err := doOK(r.client(), req)
res, err := sendRequest(r.client(), req)
if err != nil {
return err
}
defer res.Body.Close()
tw := tws[bufIdx]
if tw == nil {
tw = bufio.NewWriterSize(nil, int(r.maxChunkSize()))
tws[bufIdx] = tw
}
tw := wp.get()
tw.Reset(ticket)
defer tw.Reset(nil) // release ticket
defer wp.put(tw)
_, err = io.CopyN(tw, res.Body, chunk.Size())
if err != nil {
@@ -520,11 +591,28 @@ func (r *Registry) Pull(ctx context.Context, c *blob.DiskCache, name string) err
return c.Link(m.Name, md)
}
// Unlink is like [blob.DiskCache.Unlink], but makes name fully qualified
// before attempting to unlink the model.
func (r *Registry) Unlink(name string) (ok bool, _ error) {
n, err := r.parseName(name)
if err != nil {
return false, err
}
c, err := r.cache()
if err != nil {
return false, err
}
return c.Unlink(n.String())
}
// Manifest represents a [ollama.com/manifest].
type Manifest struct {
Name string `json:"-"` // the canonical name of the model
Data []byte `json:"-"` // the raw data of the manifest
Layers []*Layer `json:"layers"`
// For legacy reasons, we still have to download the config layer.
Config *Layer `json:"config"`
}
var emptyDigest, _ = blob.ParseDigest("sha256:0000000000000000000000000000000000000000000000000000000000000000")
@@ -588,14 +676,18 @@ type Layer struct {
Size int64 `json:"size"`
}
// ResolveLocal resolves a name to a Manifest in the local cache. The name is
// parsed using [names.ParseExtended] but the scheme is ignored.
func ResolveLocal(c *blob.DiskCache, name string) (*Manifest, error) {
_, n, d, err := parseName(name)
// ResolveLocal resolves a name to a Manifest in the local cache.
func (r *Registry) ResolveLocal(name string) (*Manifest, error) {
_, n, d, err := r.parseNameExtended(name)
if err != nil {
return nil, err
}
c, err := r.cache()
if err != nil {
return nil, err
}
if !d.IsValid() {
// No digest, so resolve the manifest by name.
d, err = c.Resolve(n.String())
if err != nil {
return nil, err
@@ -604,7 +696,7 @@ func ResolveLocal(c *blob.DiskCache, name string) (*Manifest, error) {
data, err := os.ReadFile(c.GetFile(d))
if err != nil {
if errors.Is(err, fs.ErrNotExist) {
return nil, fmt.Errorf("%w: %s", ErrManifestNotFound, name)
return nil, fmt.Errorf("%w: %s", ErrModelNotFound, name)
}
return nil, err
}
@@ -617,7 +709,7 @@ func ResolveLocal(c *blob.DiskCache, name string) (*Manifest, error) {
// Resolve resolves a name to a Manifest in the remote registry.
func (r *Registry) Resolve(ctx context.Context, name string) (*Manifest, error) {
scheme, n, d, err := parseName(name)
scheme, n, d, err := r.parseNameExtended(name)
if err != nil {
return nil, err
}
@@ -627,7 +719,7 @@ func (r *Registry) Resolve(ctx context.Context, name string) (*Manifest, error)
manifestURL = fmt.Sprintf("%s://%s/v2/%s/%s/blobs/%s", scheme, n.Host(), n.Namespace(), n.Model(), d)
}
res, err := r.doOK(ctx, "GET", manifestURL, nil)
res, err := r.send(ctx, "GET", manifestURL, nil)
if err != nil {
return nil, err
}
@@ -652,7 +744,7 @@ func (r *Registry) client() *http.Client {
}
// newRequest constructs a new request, ready to use, with the given method,
// url, and body, presigned with client Key and UserAgent.
// url, and body, pre-signed with client [Key] and [UserAgent].
func (r *Registry) newRequest(ctx context.Context, method, url string, body io.Reader) (*http.Request, error) {
req, err := http.NewRequestWithContext(ctx, method, url, body)
if err != nil {
@@ -671,11 +763,17 @@ func (r *Registry) newRequest(ctx context.Context, method, url string, body io.R
return req, nil
}
// doOK makes a request with the given client and request, and returns the
// sendRequest makes a request with the given client and request, and returns the
// response if the status code is 200. If the status code is not 200, an Error
// is parsed from the response body and returned. If any other error occurs, it
// is returned.
func doOK(c *http.Client, r *http.Request) (*http.Response, error) {
func sendRequest(c *http.Client, r *http.Request) (_ *http.Response, err error) {
defer func() {
if err != nil {
err = fmt.Errorf("request error %s: %w", r.URL, err)
}
}()
if r.URL.Scheme == "https+insecure" {
// TODO(bmizerany): clone client.Transport, set
// InsecureSkipVerify, etc.
@@ -718,20 +816,26 @@ func doOK(c *http.Client, r *http.Request) (*http.Response, error) {
// Use the raw body if we can't parse it as an error object.
re.Message = string(out)
}
// coerce MANIFEST_UNKNOWN to ErrManifestNotFound
if strings.EqualFold(re.Code, "MANIFEST_UNKNOWN") {
return nil, ErrModelNotFound
}
re.Status = res.StatusCode
return nil, &re
}
return res, nil
}
// doOK is a convenience method for making a request with newRequest and
// passing it to doOK with r.client().
func (r *Registry) doOK(ctx context.Context, method, path string, body io.Reader) (*http.Response, error) {
// send is a convenience method for making a request with newRequest and
// passing it to send with r.client().
func (r *Registry) send(ctx context.Context, method, path string, body io.Reader) (*http.Response, error) {
req, err := r.newRequest(ctx, method, path, body)
if err != nil {
return nil, err
}
return doOK(r.client(), req)
return sendRequest(r.client(), req)
}
// makeAuthToken creates an Ollama auth token for the given private key.
@@ -800,3 +904,114 @@ func maybeUnexpectedEOF(err error) error {
}
return err
}
type publicError struct {
wrapped error
message string
}
func withPublicMessagef(err error, message string, args ...any) error {
return publicError{wrapped: err, message: fmt.Sprintf(message, args...)}
}
func (e publicError) Error() string { return e.message }
func (e publicError) Unwrap() error { return e.wrapped }
var supportedSchemes = []string{
"http",
"https",
"https+insecure",
}
var supportedSchemesMessage = fmt.Sprintf("supported schemes are %v", strings.Join(supportedSchemes, ", "))
// parseNameExtended parses and validates an extended name, returning the scheme, name,
// and digest.
//
// If the scheme is empty, scheme will be "https". If an unsupported scheme is
// given, [ErrNameInvalid] wrapped with a display friendly message is returned.
//
// If the digest is invalid, [ErrNameInvalid] wrapped with a display friendly
// message is returned.
//
// If the name is not, once merged with the mask, fully qualified,
// [ErrNameInvalid] wrapped with a display friendly message is returned.
func (r *Registry) parseNameExtended(s string) (scheme string, _ names.Name, _ blob.Digest, _ error) {
scheme, name, digest := splitExtended(s)
scheme = cmp.Or(scheme, "https")
if !slices.Contains(supportedSchemes, scheme) {
err := withPublicMessagef(ErrNameInvalid, "unsupported scheme: %q: %s", scheme, supportedSchemesMessage)
return "", names.Name{}, blob.Digest{}, err
}
var d blob.Digest
if digest != "" {
var err error
d, err = blob.ParseDigest(digest)
if err != nil {
err = withPublicMessagef(ErrNameInvalid, "invalid digest: %q", digest)
return "", names.Name{}, blob.Digest{}, err
}
if name == "" {
// We have can resolve a manifest from a digest only,
// so skip name validation and return the scheme and
// digest.
return scheme, names.Name{}, d, nil
}
}
n, err := r.parseName(name)
if err != nil {
return "", names.Name{}, blob.Digest{}, err
}
return scheme, n, d, nil
}
// splitExtended splits an extended name string into its scheme, name, and digest
// parts.
//
// Examples:
//
// http://ollama.com/bmizerany/smol:latest@digest
// https://ollama.com/bmizerany/smol:latest
// ollama.com/bmizerany/smol:latest@digest // returns "https" scheme.
// model@digest
// @digest
func splitExtended(s string) (scheme, name, digest string) {
i := strings.Index(s, "://")
if i >= 0 {
scheme = s[:i]
s = s[i+3:]
}
i = strings.LastIndex(s, "@")
if i >= 0 {
digest = s[i+1:]
s = s[:i]
}
return scheme, s, digest
}
type writerPool struct {
size int64 // set by the caller
mu sync.Mutex
ws []*bufio.Writer
}
func (p *writerPool) get() *bufio.Writer {
p.mu.Lock()
defer p.mu.Unlock()
if len(p.ws) == 0 {
return bufio.NewWriterSize(nil, int(p.size))
}
w := p.ws[len(p.ws)-1]
p.ws = p.ws[:len(p.ws)-1]
return w
}
func (p *writerPool) put(w *bufio.Writer) {
p.mu.Lock()
defer p.mu.Unlock()
w.Reset(nil)
p.ws = append(p.ws, w)
}

View File

@@ -2,6 +2,7 @@ package ollama
import (
"bytes"
"cmp"
"context"
"encoding/json"
"errors"
@@ -21,7 +22,7 @@ import (
"github.com/ollama/ollama/server/internal/cache/blob"
"github.com/ollama/ollama/server/internal/chunks"
"github.com/ollama/ollama/server/internal/internal/testutil"
"github.com/ollama/ollama/server/internal/testutil"
)
func TestManifestMarshalJSON(t *testing.T) {
@@ -37,20 +38,6 @@ func TestManifestMarshalJSON(t *testing.T) {
}
}
func link(c *blob.DiskCache, name string, manifest string) {
_, n, _, err := parseName(name)
if err != nil {
panic(err)
}
d, err := c.Import(bytes.NewReader([]byte(manifest)), int64(len(manifest)))
if err != nil {
panic(err)
}
if err := c.Link(n.String(), d); err != nil {
panic(err)
}
}
var errRoundTrip = errors.New("forced roundtrip error")
type recordRoundTripper http.HandlerFunc
@@ -86,6 +73,7 @@ func (rr recordRoundTripper) RoundTrip(req *http.Request) (*http.Response, error
// To simulate a network error, pass a handler that returns a 499 status code.
func newClient(t *testing.T, h http.HandlerFunc) (*Registry, *blob.DiskCache) {
t.Helper()
c, err := blob.Open(t.TempDir())
if err != nil {
t.Fatal(err)
@@ -98,30 +86,46 @@ func newClient(t *testing.T, h http.HandlerFunc) (*Registry, *blob.DiskCache) {
}
}
r := &Registry{
Cache: c,
HTTPClient: &http.Client{
Transport: recordRoundTripper(h),
},
}
link := func(name string, manifest string) {
n, err := r.parseName(name)
if err != nil {
panic(err)
}
d, err := c.Import(bytes.NewReader([]byte(manifest)), int64(len(manifest)))
if err != nil {
panic(err)
}
if err := c.Link(n.String(), d); err != nil {
panic(err)
}
}
commit := func(name string, layers ...*Layer) {
t.Helper()
data, err := json.Marshal(&Manifest{Layers: layers})
if err != nil {
t.Fatal(err)
}
link(c, name, string(data))
link(name, string(data))
}
link(c, "empty", "")
link("empty", "")
commit("zero")
commit("single", mklayer("exists"))
commit("multiple", mklayer("exists"), mklayer("present"))
commit("notfound", &Layer{Digest: blob.DigestFromBytes("notfound"), Size: int64(len("notfound"))})
commit("null", nil)
commit("sizemismatch", mklayer("exists"), &Layer{Digest: blob.DigestFromBytes("present"), Size: 499})
link(c, "invalid", "!!!!!")
link("invalid", "!!!!!")
rc := &Registry{
HTTPClient: &http.Client{
Transport: recordRoundTripper(h),
},
}
return rc, c
return r, c
}
func okHandler(w http.ResponseWriter, r *http.Request) {
@@ -144,84 +148,61 @@ func importBytes(t *testing.T, c *blob.DiskCache, data string) blob.Digest {
return d
}
func TestRegistryPushInvalidNames(t *testing.T) {
rc, c := newClient(t, nil)
cases := []struct {
name string
err error
}{
{"", ErrNameInvalid},
{"@", ErrNameInvalid},
{"@x", blob.ErrInvalidDigest},
}
for _, tt := range cases {
t.Run(tt.name, func(t *testing.T) {
// Create a new registry and push a new image.
err := rc.Push(t.Context(), c, tt.name, nil)
if !errors.Is(err, tt.err) {
t.Errorf("err = %v; want %v", err, tt.err)
}
})
}
}
func withTraceUnexpected(ctx context.Context) (context.Context, *Trace) {
t := &Trace{Update: func(*Layer, int64, error) { panic("unexpected") }}
return WithTrace(ctx, t), t
}
func TestPushZero(t *testing.T) {
rc, c := newClient(t, okHandler)
err := rc.Push(t.Context(), c, "empty", nil)
rc, _ := newClient(t, okHandler)
err := rc.Push(t.Context(), "empty", nil)
if !errors.Is(err, ErrManifestInvalid) {
t.Errorf("err = %v; want %v", err, ErrManifestInvalid)
}
}
func TestPushSingle(t *testing.T) {
rc, c := newClient(t, okHandler)
err := rc.Push(t.Context(), c, "single", nil)
rc, _ := newClient(t, okHandler)
err := rc.Push(t.Context(), "single", nil)
testutil.Check(t, err)
}
func TestPushMultiple(t *testing.T) {
rc, c := newClient(t, okHandler)
err := rc.Push(t.Context(), c, "multiple", nil)
rc, _ := newClient(t, okHandler)
err := rc.Push(t.Context(), "multiple", nil)
testutil.Check(t, err)
}
func TestPushNotFound(t *testing.T) {
rc, c := newClient(t, func(w http.ResponseWriter, r *http.Request) {
rc, _ := newClient(t, func(w http.ResponseWriter, r *http.Request) {
t.Errorf("unexpected request: %v", r)
})
err := rc.Push(t.Context(), c, "notfound", nil)
err := rc.Push(t.Context(), "notfound", nil)
if !errors.Is(err, fs.ErrNotExist) {
t.Errorf("err = %v; want %v", err, fs.ErrNotExist)
}
}
func TestPushNullLayer(t *testing.T) {
rc, c := newClient(t, nil)
err := rc.Push(t.Context(), c, "null", nil)
rc, _ := newClient(t, nil)
err := rc.Push(t.Context(), "null", nil)
if err == nil || !strings.Contains(err.Error(), "invalid manifest") {
t.Errorf("err = %v; want invalid manifest", err)
}
}
func TestPushSizeMismatch(t *testing.T) {
rc, c := newClient(t, nil)
rc, _ := newClient(t, nil)
ctx, _ := withTraceUnexpected(t.Context())
got := rc.Push(ctx, c, "sizemismatch", nil)
got := rc.Push(ctx, "sizemismatch", nil)
if got == nil || !strings.Contains(got.Error(), "size mismatch") {
t.Errorf("err = %v; want size mismatch", got)
}
}
func TestPushInvalid(t *testing.T) {
rc, c := newClient(t, nil)
err := rc.Push(t.Context(), c, "invalid", nil)
rc, _ := newClient(t, nil)
err := rc.Push(t.Context(), "invalid", nil)
if err == nil || !strings.Contains(err.Error(), "invalid manifest") {
t.Errorf("err = %v; want invalid manifest", err)
}
@@ -229,7 +210,7 @@ func TestPushInvalid(t *testing.T) {
func TestPushExistsAtRemote(t *testing.T) {
var pushed bool
rc, c := newClient(t, func(w http.ResponseWriter, r *http.Request) {
rc, _ := newClient(t, func(w http.ResponseWriter, r *http.Request) {
if strings.Contains(r.URL.Path, "/uploads/") {
if !pushed {
// First push. Return an uploadURL.
@@ -257,35 +238,35 @@ func TestPushExistsAtRemote(t *testing.T) {
check := testutil.Checker(t)
err := rc.Push(ctx, c, "single", nil)
err := rc.Push(ctx, "single", nil)
check(err)
if !errors.Is(errors.Join(errs...), nil) {
t.Errorf("errs = %v; want %v", errs, []error{ErrCached})
}
err = rc.Push(ctx, c, "single", nil)
err = rc.Push(ctx, "single", nil)
check(err)
}
func TestPushRemoteError(t *testing.T) {
rc, c := newClient(t, func(w http.ResponseWriter, r *http.Request) {
rc, _ := newClient(t, func(w http.ResponseWriter, r *http.Request) {
if strings.Contains(r.URL.Path, "/blobs/") {
w.WriteHeader(500)
io.WriteString(w, `{"errors":[{"code":"blob_error"}]}`)
return
}
})
got := rc.Push(t.Context(), c, "single", nil)
got := rc.Push(t.Context(), "single", nil)
checkErrCode(t, got, 500, "blob_error")
}
func TestPushLocationError(t *testing.T) {
rc, c := newClient(t, func(w http.ResponseWriter, r *http.Request) {
rc, _ := newClient(t, func(w http.ResponseWriter, r *http.Request) {
w.Header().Set("Location", ":///x")
w.WriteHeader(http.StatusAccepted)
})
got := rc.Push(t.Context(), c, "single", nil)
got := rc.Push(t.Context(), "single", nil)
wantContains := "invalid upload URL"
if got == nil || !strings.Contains(got.Error(), wantContains) {
t.Errorf("err = %v; want to contain %v", got, wantContains)
@@ -293,14 +274,14 @@ func TestPushLocationError(t *testing.T) {
}
func TestPushUploadRoundtripError(t *testing.T) {
rc, c := newClient(t, func(w http.ResponseWriter, r *http.Request) {
rc, _ := newClient(t, func(w http.ResponseWriter, r *http.Request) {
if r.Host == "blob.store" {
w.WriteHeader(499) // force RoundTrip error on upload
return
}
w.Header().Set("Location", "http://blob.store/blobs/123")
})
got := rc.Push(t.Context(), c, "single", nil)
got := rc.Push(t.Context(), "single", nil)
if !errors.Is(got, errRoundTrip) {
t.Errorf("got = %v; want %v", got, errRoundTrip)
}
@@ -316,20 +297,20 @@ func TestPushUploadFileOpenError(t *testing.T) {
os.Remove(c.GetFile(l.Digest))
},
})
got := rc.Push(ctx, c, "single", nil)
got := rc.Push(ctx, "single", nil)
if !errors.Is(got, fs.ErrNotExist) {
t.Errorf("got = %v; want fs.ErrNotExist", got)
}
}
func TestPushCommitRoundtripError(t *testing.T) {
rc, c := newClient(t, func(w http.ResponseWriter, r *http.Request) {
rc, _ := newClient(t, func(w http.ResponseWriter, r *http.Request) {
if strings.Contains(r.URL.Path, "/blobs/") {
panic("unexpected")
}
w.WriteHeader(499) // force RoundTrip error
})
err := rc.Push(t.Context(), c, "zero", nil)
err := rc.Push(t.Context(), "zero", nil)
if !errors.Is(err, errRoundTrip) {
t.Errorf("err = %v; want %v", err, errRoundTrip)
}
@@ -343,8 +324,8 @@ func checkNotExist(t *testing.T, err error) {
}
func TestRegistryPullInvalidName(t *testing.T) {
rc, c := newClient(t, nil)
err := rc.Pull(t.Context(), c, "://")
rc, _ := newClient(t, nil)
err := rc.Pull(t.Context(), "://")
if !errors.Is(err, ErrNameInvalid) {
t.Errorf("err = %v; want %v", err, ErrNameInvalid)
}
@@ -359,10 +340,10 @@ func TestRegistryPullInvalidManifest(t *testing.T) {
}
for _, resp := range cases {
rc, c := newClient(t, func(w http.ResponseWriter, r *http.Request) {
rc, _ := newClient(t, func(w http.ResponseWriter, r *http.Request) {
io.WriteString(w, resp)
})
err := rc.Pull(t.Context(), c, "x")
err := rc.Pull(t.Context(), "x")
if !errors.Is(err, ErrManifestInvalid) {
t.Errorf("err = %v; want invalid manifest", err)
}
@@ -385,18 +366,18 @@ func TestRegistryPullNotCached(t *testing.T) {
})
// Confirm that the layer does not exist locally
_, err := ResolveLocal(c, "model")
_, err := rc.ResolveLocal("model")
checkNotExist(t, err)
_, err = c.Get(d)
checkNotExist(t, err)
err = rc.Pull(t.Context(), c, "model")
err = rc.Pull(t.Context(), "model")
check(err)
mw, err := rc.Resolve(t.Context(), "model")
check(err)
mg, err := ResolveLocal(c, "model")
mg, err := rc.ResolveLocal("model")
check(err)
if !reflect.DeepEqual(mw, mg) {
t.Errorf("mw = %v; mg = %v", mw, mg)
@@ -421,7 +402,7 @@ func TestRegistryPullNotCached(t *testing.T) {
func TestRegistryPullCached(t *testing.T) {
cached := blob.DigestFromBytes("exists")
rc, c := newClient(t, func(w http.ResponseWriter, r *http.Request) {
rc, _ := newClient(t, func(w http.ResponseWriter, r *http.Request) {
if strings.Contains(r.URL.Path, "/blobs/") {
w.WriteHeader(499) // should not be called
return
@@ -444,7 +425,7 @@ func TestRegistryPullCached(t *testing.T) {
ctx, cancel := context.WithTimeout(ctx, 3*time.Second)
defer cancel()
err := rc.Pull(ctx, c, "single")
err := rc.Pull(ctx, "single")
testutil.Check(t, err)
want := []int64{6}
@@ -457,30 +438,30 @@ func TestRegistryPullCached(t *testing.T) {
}
func TestRegistryPullManifestNotFound(t *testing.T) {
rc, c := newClient(t, func(w http.ResponseWriter, r *http.Request) {
rc, _ := newClient(t, func(w http.ResponseWriter, r *http.Request) {
w.WriteHeader(http.StatusNotFound)
})
err := rc.Pull(t.Context(), c, "notfound")
err := rc.Pull(t.Context(), "notfound")
checkErrCode(t, err, 404, "")
}
func TestRegistryPullResolveRemoteError(t *testing.T) {
rc, c := newClient(t, func(w http.ResponseWriter, r *http.Request) {
rc, _ := newClient(t, func(w http.ResponseWriter, r *http.Request) {
w.WriteHeader(http.StatusInternalServerError)
io.WriteString(w, `{"errors":[{"code":"an_error"}]}`)
})
err := rc.Pull(t.Context(), c, "single")
err := rc.Pull(t.Context(), "single")
checkErrCode(t, err, 500, "an_error")
}
func TestRegistryPullResolveRoundtripError(t *testing.T) {
rc, c := newClient(t, func(w http.ResponseWriter, r *http.Request) {
rc, _ := newClient(t, func(w http.ResponseWriter, r *http.Request) {
if strings.Contains(r.URL.Path, "/manifests/") {
w.WriteHeader(499) // force RoundTrip error
return
}
})
err := rc.Pull(t.Context(), c, "single")
err := rc.Pull(t.Context(), "single")
if !errors.Is(err, errRoundTrip) {
t.Errorf("err = %v; want %v", err, errRoundTrip)
}
@@ -533,7 +514,7 @@ func TestRegistryPullMixedCachedNotCached(t *testing.T) {
// Check that we pull all layers that we can.
err := rc.Pull(ctx, c, "mixed")
err := rc.Pull(ctx, "mixed")
if err != nil {
t.Fatal(err)
}
@@ -551,7 +532,7 @@ func TestRegistryPullMixedCachedNotCached(t *testing.T) {
}
func TestRegistryPullChunking(t *testing.T) {
rc, c := newClient(t, func(w http.ResponseWriter, r *http.Request) {
rc, _ := newClient(t, func(w http.ResponseWriter, r *http.Request) {
t.Log("request:", r.URL.Host, r.Method, r.URL.Path, r.Header.Get("Range"))
if r.URL.Host != "blob.store" {
// The production registry redirects to the blob store.
@@ -589,7 +570,7 @@ func TestRegistryPullChunking(t *testing.T) {
},
})
err := rc.Pull(ctx, c, "remote")
err := rc.Pull(ctx, "remote")
testutil.Check(t, err)
want := []int64{0, 3, 6}
@@ -621,13 +602,13 @@ func TestInsecureSkipVerify(t *testing.T) {
}))
defer s.Close()
const name = "ollama.com/library/insecure"
const name = "library/insecure"
var rc Registry
url := fmt.Sprintf("https://%s/%s", s.Listener.Addr(), name)
_, err := rc.Resolve(t.Context(), url)
if err == nil || !strings.Contains(err.Error(), "failed to verify") {
t.Errorf("err = %v; want cert verifiction failure", err)
t.Errorf("err = %v; want cert verification failure", err)
}
url = fmt.Sprintf("https+insecure://%s/%s", s.Listener.Addr(), name)
@@ -654,3 +635,184 @@ func TestCanRetry(t *testing.T) {
}
}
}
func TestErrorUnmarshal(t *testing.T) {
cases := []struct {
name string
data string
want *Error
wantErr bool
}{
{
name: "errors empty",
data: `{"errors":[]}`,
wantErr: true,
},
{
name: "errors empty",
data: `{"errors":[]}`,
wantErr: true,
},
{
name: "errors single",
data: `{"errors":[{"code":"blob_unknown"}]}`,
want: &Error{Code: "blob_unknown", Message: ""},
},
{
name: "errors multiple",
data: `{"errors":[{"code":"blob_unknown"},{"code":"blob_error"}]}`,
want: &Error{Code: "blob_unknown", Message: ""},
},
{
name: "error empty",
data: `{"error":""}`,
wantErr: true,
},
{
name: "error very empty",
data: `{}`,
wantErr: true,
},
{
name: "error message",
data: `{"error":"message", "code":"code"}`,
want: &Error{Code: "code", Message: "message"},
},
{
name: "invalid value",
data: `{"error": 1}`,
wantErr: true,
},
}
for _, tt := range cases {
t.Run(tt.name, func(t *testing.T) {
var got Error
err := json.Unmarshal([]byte(tt.data), &got)
if err != nil {
if tt.wantErr {
return
}
t.Errorf("Unmarshal() error = %v", err)
// fallthrough and check got
}
if tt.want == nil {
tt.want = &Error{}
}
if !reflect.DeepEqual(got, *tt.want) {
t.Errorf("got = %v; want %v", got, *tt.want)
}
})
}
}
// TestParseNameErrors tests that parseName returns errors messages with enough
// detail for users to debug naming issues they may encounter. Previous to this
// test, the error messages were not very helpful and each problem was reported
// as the same message.
//
// It is only for testing error messages, not that all invalids and valids are
// covered. Those are in other tests for names.Name and blob.Digest.
func TestParseNameExtendedErrors(t *testing.T) {
cases := []struct {
name string
err error
want string
}{}
var r Registry
for _, tt := range cases {
_, _, _, err := r.parseNameExtended(tt.name)
if !errors.Is(err, tt.err) {
t.Errorf("[%s]: err = %v; want %v", tt.name, err, tt.err)
}
if err != nil && !strings.Contains(err.Error(), tt.want) {
t.Errorf("[%s]: err =\n\t%v\nwant\n\t%v", tt.name, err, tt.want)
}
}
}
func TestParseNameExtended(t *testing.T) {
cases := []struct {
in string
scheme string
name string
digest string
err string
}{
{in: "http://m", scheme: "http", name: "m"},
{in: "https+insecure://m", scheme: "https+insecure", name: "m"},
{in: "http+insecure://m", err: "unsupported scheme"},
{in: "http://m@sha256:1111111111111111111111111111111111111111111111111111111111111111", scheme: "http", name: "m", digest: "sha256:1111111111111111111111111111111111111111111111111111111111111111"},
{in: "", err: "invalid or missing name"},
{in: "m", scheme: "https", name: "m"},
{in: "://", err: "invalid or missing name"},
{in: "@sha256:deadbeef", err: "invalid digest"},
{in: "@sha256:deadbeef@sha256:deadbeef", err: "invalid digest"},
}
for _, tt := range cases {
t.Run(tt.in, func(t *testing.T) {
var r Registry
scheme, n, digest, err := r.parseNameExtended(tt.in)
if err != nil {
if tt.err == "" {
t.Errorf("err = %v; want nil", err)
} else if !strings.Contains(err.Error(), tt.err) {
t.Errorf("err = %v; want %q", err, tt.err)
}
} else if tt.err != "" {
t.Errorf("err = nil; want %q", tt.err)
}
if err == nil && !n.IsFullyQualified() {
t.Errorf("name = %q; want fully qualified", n)
}
if scheme != tt.scheme {
t.Errorf("scheme = %q; want %q", scheme, tt.scheme)
}
// smoke-test name is superset of tt.name
if !strings.Contains(n.String(), tt.name) {
t.Errorf("name = %q; want %q", n, tt.name)
}
tt.digest = cmp.Or(tt.digest, (&blob.Digest{}).String())
if digest.String() != tt.digest {
t.Errorf("digest = %q; want %q", digest, tt.digest)
}
})
}
}
func TestUnlink(t *testing.T) {
t.Run("found by name", func(t *testing.T) {
rc, _ := newClient(t, nil)
// confirm linked
_, err := rc.ResolveLocal("single")
if err != nil {
t.Errorf("unexpected error: %v", err)
}
// unlink
_, err = rc.Unlink("single")
testutil.Check(t, err)
// confirm unlinked
_, err = rc.ResolveLocal("single")
if !errors.Is(err, fs.ErrNotExist) {
t.Errorf("err = %v; want fs.ErrNotExist", err)
}
})
t.Run("not found by name", func(t *testing.T) {
rc, _ := newClient(t, nil)
ok, err := rc.Unlink("manifestNotFound")
if err != nil {
t.Fatal(err)
}
if ok {
t.Error("expected not found")
}
})
}

View File

@@ -6,13 +6,20 @@ import (
// Trace is a set of functions that are called to report progress during blob
// downloads and uploads.
//
// Use [WithTrace] to attach a Trace to a context for use with [Registry.Push]
// and [Registry.Pull].
type Trace struct {
// Update is called during [Registry.Push] and [Registry.Pull] to
// report the progress of blob uploads and downloads.
//
// It is called once at the beginning of the download with a zero n and
// then once per read operation with the number of bytes read so far,
// and an error if any.
// The n argument is the number of bytes transferred so far, and err is
// any error that has occurred. If n == 0, and err is nil, the download
// or upload has just started. If err is [ErrCached], the download or
// upload has been skipped because the blob is already present in the
// local cache or remote registry, respectively. Otherwise, if err is
// non-nil, the download or upload has failed. When l.Size == n, and
// err is nil, the download or upload has completed.
//
// A function assigned must be safe for concurrent use. The function is
// called synchronously and so should not block or take long to run.

View File

@@ -86,6 +86,8 @@ func (m *Model) readTensors(fname string) ([]*Tensor, error) {
return nil, err
}
endOfHeader := 8 + headerSize // 8 bytes for header size plus the header itself
// TODO(bmizerany): do something with metadata? This could be another
// header read if needed. We also need to figure out if the metadata is
// present in only one .safetensors file or if each file may have their
@@ -95,7 +97,8 @@ func (m *Model) readTensors(fname string) ([]*Tensor, error) {
tt := make([]*Tensor, 0, len(raws))
for name, raw := range raws {
if !strings.HasPrefix(name, "model.layer") {
if name == "__metadata__" {
// TODO(bmizerany): do something with metadata?
continue
}
var v struct {
@@ -112,7 +115,8 @@ func (m *Model) readTensors(fname string) ([]*Tensor, error) {
// TODO(bmizerany): after collecting, validate all offests make
// tensors contiguous?
begin, end := v.Offsets[0], v.Offsets[1]
begin := endOfHeader + v.Offsets[0]
end := endOfHeader + v.Offsets[1]
if err := checkBeginEnd(finfo.Size(), begin, end); err != nil {
return nil, err
}

View File

@@ -63,25 +63,28 @@ func main() {
}
flag.Parse()
c, err := ollama.DefaultCache()
if err != nil {
log.Fatal(err)
}
rc, err := ollama.RegistryFromEnv()
if err != nil {
log.Fatal(err)
}
ctx := context.Background()
err = func() error {
err := func() error {
switch cmd := flag.Arg(0); cmd {
case "pull":
return cmdPull(ctx, rc, c)
rc, err := ollama.DefaultRegistry()
if err != nil {
log.Fatal(err)
}
return cmdPull(ctx, rc)
case "push":
return cmdPush(ctx, rc, c)
rc, err := ollama.DefaultRegistry()
if err != nil {
log.Fatal(err)
}
return cmdPush(ctx, rc)
case "import":
c, err := ollama.DefaultCache()
if err != nil {
log.Fatal(err)
}
return cmdImport(ctx, c)
default:
if cmd == "" {
@@ -99,7 +102,7 @@ func main() {
}
}
func cmdPull(ctx context.Context, rc *ollama.Registry, c *blob.DiskCache) error {
func cmdPull(ctx context.Context, rc *ollama.Registry) error {
model := flag.Arg(1)
if model == "" {
flag.Usage()
@@ -145,7 +148,7 @@ func cmdPull(ctx context.Context, rc *ollama.Registry, c *blob.DiskCache) error
errc := make(chan error)
go func() {
errc <- rc.Pull(ctx, c, model)
errc <- rc.Pull(ctx, model)
}()
t := time.NewTicker(time.Second)
@@ -161,7 +164,7 @@ func cmdPull(ctx context.Context, rc *ollama.Registry, c *blob.DiskCache) error
}
}
func cmdPush(ctx context.Context, rc *ollama.Registry, c *blob.DiskCache) error {
func cmdPush(ctx context.Context, rc *ollama.Registry) error {
args := flag.Args()[1:]
flag := flag.NewFlagSet("push", flag.ExitOnError)
flagFrom := flag.String("from", "", "Use the manifest from a model by another name.")
@@ -177,7 +180,7 @@ func cmdPush(ctx context.Context, rc *ollama.Registry, c *blob.DiskCache) error
}
from := cmp.Or(*flagFrom, model)
m, err := ollama.ResolveLocal(c, from)
m, err := rc.ResolveLocal(from)
if err != nil {
return err
}
@@ -203,7 +206,7 @@ func cmdPush(ctx context.Context, rc *ollama.Registry, c *blob.DiskCache) error
},
})
return rc.Push(ctx, c, model, &ollama.PushParams{
return rc.Push(ctx, model, &ollama.PushParams{
From: from,
})
}
@@ -228,6 +231,10 @@ func cmdImport(ctx context.Context, c *blob.DiskCache) error {
flag.PrintDefaults()
}
flag.Parse(args)
if *flagAs == "" {
return fmt.Errorf("missing -as flag")
}
as := ollama.CompleteName(*flagAs)
dir := cmp.Or(flag.Arg(0), ".")
fmt.Fprintf(os.Stderr, "Reading %s\n", dir)
@@ -311,7 +318,7 @@ func cmdImport(ctx context.Context, c *blob.DiskCache) error {
if err != nil {
return err
}
return c.Link(*flagAs, d)
return c.Link(as, d)
}()
}()
@@ -340,6 +347,8 @@ func cmdImport(ctx context.Context, c *blob.DiskCache) error {
writeProgress()
case err := <-done:
writeProgress()
fmt.Println()
fmt.Println("Successfully imported", as)
return err
}
}

View File

@@ -1,3 +1,5 @@
//go:build goexperiment.synctest
package backoff
import (

View File

@@ -8,7 +8,7 @@ import (
"github.com/ollama/ollama/server/internal/internal/stringsx"
)
const MaxNameLength = 50 + 1 + 50 + 1 + 50 // <namespace>/<model>:<tag>
const MaxNameLength = 350 + 1 + 80 + 1 + 80 + 1 + 80 // <host>/<namespace>/<model>:<tag>
type Name struct {
// Make incomparable to enfoce use of Compare / Equal for
@@ -25,19 +25,12 @@ type Name struct {
// format of a valid name string is:
//
// s:
// { host } "/" { namespace } "/" { model } ":" { tag } "@" { digest }
// { host } "/" { namespace } "/" { model } ":" { tag }
// { host } "/" { namespace } "/" { model } "@" { digest }
// { host } "/" { namespace } "/" { model }
// { namespace } "/" { model } ":" { tag } "@" { digest }
// { namespace } "/" { model } ":" { tag }
// { namespace } "/" { model } "@" { digest }
// { namespace } "/" { model }
// { model } ":" { tag } "@" { digest }
// { model } ":" { tag }
// { model } "@" { digest }
// { model }
// "@" { digest }
// host:
// pattern: { alphanum | "_" } { alphanum | "_" | "-" | "." | ":" }*
// length: [1, 350]
@@ -50,9 +43,6 @@ type Name struct {
// tag:
// pattern: { alphanum | "_" } { alphanum | "-" | "_" | "." }*
// length: [1, 80]
// digest:
// pattern: { alphanum | "_" } { alphanum | "-" | ":" }*
// length: [1, 80]
//
// The name returned is not guaranteed to be valid. If it is not valid, the
// field values are left in an undefined state. Use [Name.IsValid] to check
@@ -82,23 +72,17 @@ func Parse(s string) Name {
}
}
// ParseExtended parses and returns any scheme, Name, and digest from from s in
// the the form [scheme://][name][@digest]. All parts are optional.
//
// If the scheme is present, it must be followed by "://". The digest is
// prefixed by "@" and comes after the name. The name is parsed using [Parse].
//
// The scheme and digest are stripped before the name is parsed by [Parse].
//
// For convience, the scheme is never empty. If the scheme is not present, the
// returned scheme is "https".
// Split splits an extended name string into its scheme, name, and digest
// parts.
//
// Examples:
//
// http://ollama.com/bmizerany/smol:latest@digest
// https://ollama.com/bmizerany/smol:latest
// ollama.com/bmizerany/smol:latest@digest // returns "https" scheme.
func ParseExtended(s string) (scheme string, _ Name, digest string) {
// model@digest
// @digest
func Split(s string) (scheme, name, digest string) {
i := strings.Index(s, "://")
if i >= 0 {
scheme = s[:i]
@@ -109,21 +93,7 @@ func ParseExtended(s string) (scheme string, _ Name, digest string) {
digest = s[i+1:]
s = s[:i]
}
return scheme, Parse(s), digest
}
func FormatExtended(scheme string, n Name, digest string) string {
var b strings.Builder
if scheme != "" {
b.WriteString(scheme)
b.WriteString("://")
}
b.WriteString(n.String())
if digest != "" {
b.WriteByte('@')
b.WriteString(digest)
}
return b.String()
return scheme, s, digest
}
// Merge merges two names into a single name. Non-empty host, namespace, and
@@ -141,39 +111,68 @@ func Merge(a, b Name) Name {
// IsValid returns true if the name is valid.
func (n Name) IsValid() bool {
if n.h != "" && !isValidHost(n.h) {
if n.h != "" && !isValidPart(partHost, n.h) {
return false
}
if n.n != "" && !isValidNamespace(n.n) {
if n.n != "" && !isValidPart(partNamespace, n.n) {
return false
}
if n.m != "" && !isValidModel(n.m) {
if n.t != "" && !isValidPart(partTag, n.t) {
return false
}
if n.t != "" && !isValidTag(n.t) {
return false
}
return true
// at bare minimum, model must be present and valid
return n.m != "" && isValidPart(partModel, n.m)
}
func (n Name) IsFullyQualified() bool {
return n.IsValid() && n.h != "" && n.n != "" && n.m != "" && n.t != ""
}
func isValidHost(_ string) bool {
return true // TODO: implement
const (
partHost = iota
partNamespace
partModel
partTag
)
func isValidPart(kind int, s string) bool {
maxlen := 80
if kind == partHost {
maxlen = 350
}
if len(s) > maxlen {
return false
}
for i := range s {
if i == 0 {
if !isAlphanumericOrUnderscore(s[i]) {
return false
}
continue
}
switch s[i] {
case '_', '-':
case '.':
if kind == partNamespace {
return false
}
case ':':
if kind != partHost {
return false
}
default:
if !isAlphanumericOrUnderscore(s[i]) {
return false
}
}
}
return true
}
func isValidNamespace(_ string) bool {
return true // TODO: implement
}
func isValidModel(_ string) bool {
return true // TODO: implement
}
func isValidTag(_ string) bool {
return true // TODO: implement
func isAlphanumericOrUnderscore(c byte) bool {
return c >= 'A' && c <= 'Z' || c >= 'a' && c <= 'z' || c >= '0' && c <= '9' || c == '_'
}
func (n Name) Host() string { return n.h }

View File

@@ -81,15 +81,11 @@ func TestParseExtended(t *testing.T) {
}
for _, tt := range cases {
t.Run(tt.in, func(t *testing.T) {
scheme, name, digest := ParseExtended(tt.in)
if scheme != tt.wantScheme || name.Compare(tt.wantName) != 0 || digest != tt.wantDigest {
scheme, name, digest := Split(tt.in)
n := Parse(name)
if scheme != tt.wantScheme || n.Compare(tt.wantName) != 0 || digest != tt.wantDigest {
t.Errorf("ParseExtended(%q) = %q, %#v, %q, want %q, %#v, %q", tt.in, scheme, name, digest, tt.wantScheme, tt.wantName, tt.wantDigest)
}
// Round trip
if got := FormatExtended(scheme, name, digest); got != tt.in {
t.Errorf("FormatExtended(%q, %q, %q) = %q", scheme, name, digest, got)
}
})
}
}
@@ -150,3 +146,75 @@ func BenchmarkParseName(b *testing.B) {
junkName = Parse("h/n/m:t")
}
}
const (
part80 = "88888888888888888888888888888888888888888888888888888888888888888888888888888888"
part350 = "33333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333"
)
var testCases = map[string]bool{ // name -> valid
"": false,
"_why/_the/_lucky:_stiff": true,
// minimal
"h/n/m:t": true,
"host/namespace/model:tag": true,
"host/namespace/model": true,
"namespace/model": true,
"model": true,
// long (but valid)
part80 + "/" + part80 + "/" + part80 + ":" + part80: true,
part350 + "/" + part80 + "/" + part80 + ":" + part80: true,
// too long
part80 + "/" + part80 + "/" + part80 + ":" + part350: false,
"x" + part350 + "/" + part80 + "/" + part80 + ":" + part80: false,
"h/nn/mm:t": true, // bare minimum part sizes
// unqualified
"m": true,
"n/m:": true,
"h/n/m": true,
"@t": false,
"m@d": false,
// invalids
"^": false,
"mm:": true,
"/nn/mm": true,
"//": false, // empty model
"//mm": true,
"hh//": false, // empty model
"//mm:@": false,
"00@": false,
"@": false,
// not starting with alphanum
"-hh/nn/mm:tt": false,
"hh/-nn/mm:tt": false,
"hh/nn/-mm:tt": false,
"hh/nn/mm:-tt": false,
// smells like a flag
"-h": false,
// hosts
"host:https/namespace/model:tag": true,
// colon in non-host part before tag
"host/name:space/model:tag": false,
}
func TestParseNameValidation(t *testing.T) {
for s, valid := range testCases {
got := Parse(s)
if got.IsValid() != valid {
t.Logf("got: %v", got)
t.Errorf("Parse(%q).IsValid() = %v; want !%[2]v", s, got.IsValid())
}
}
}

View File

@@ -1,3 +1,5 @@
//go:build goexperiment.synctest
package syncs
import (

View File

@@ -0,0 +1,337 @@
// Package registry provides an http.Handler for handling local Ollama API
// requests for performing tasks related to the ollama.com model registry and
// the local disk cache.
package registry
import (
"cmp"
"encoding/json"
"errors"
"fmt"
"io"
"log/slog"
"net/http"
"sync"
"time"
"github.com/ollama/ollama/server/internal/cache/blob"
"github.com/ollama/ollama/server/internal/client/ollama"
)
// Local is an http.Handler for handling local Ollama API requests for
// performing tasks related to the ollama.com model registry combined with the
// local disk cache.
//
// It is not concern of Local, or this package, to handle model creation, which
// proceeds any registry operations for models it produces.
//
// NOTE: The package built for dealing with model creation should use
// [DefaultCache] to access the blob store and not attempt to read or write
// directly to the blob disk cache.
type Local struct {
Client *ollama.Registry // required
Logger *slog.Logger // required
// Fallback, if set, is used to handle requests that are not handled by
// this handler.
Fallback http.Handler
// Prune, if set, is called to prune the local disk cache after a model
// is deleted.
Prune func() error // optional
}
// serverError is like ollama.Error, but with a Status field for the HTTP
// response code. We want to avoid adding that field to ollama.Error because it
// would always be 0 to clients (we don't want to leak the status code in
// errors), and so it would be confusing to have a field that is always 0.
type serverError struct {
Status int `json:"-"`
// TODO(bmizerany): Decide if we want to keep this and maybe
// bring back later.
Code string `json:"code"`
Message string `json:"error"`
}
func (e serverError) Error() string {
return e.Message
}
// Common API errors
var (
errMethodNotAllowed = &serverError{405, "method_not_allowed", "method not allowed"}
errNotFound = &serverError{404, "not_found", "not found"}
errInternalError = &serverError{500, "internal_error", "internal server error"}
)
type statusCodeRecorder struct {
_status int // use status() to get the status code
http.ResponseWriter
}
func (r *statusCodeRecorder) WriteHeader(status int) {
if r._status == 0 {
r._status = status
}
r.ResponseWriter.WriteHeader(status)
}
var (
_ http.ResponseWriter = (*statusCodeRecorder)(nil)
_ http.CloseNotifier = (*statusCodeRecorder)(nil)
_ http.Flusher = (*statusCodeRecorder)(nil)
)
// CloseNotify implements the http.CloseNotifier interface, for Gin. Remove with Gin.
//
// It panics if the underlying ResponseWriter is not a CloseNotifier.
func (r *statusCodeRecorder) CloseNotify() <-chan bool {
return r.ResponseWriter.(http.CloseNotifier).CloseNotify()
}
// Flush implements the http.Flusher interface, for Gin. Remove with Gin.
//
// It panics if the underlying ResponseWriter is not a Flusher.
func (r *statusCodeRecorder) Flush() {
r.ResponseWriter.(http.Flusher).Flush()
}
func (r *statusCodeRecorder) status() int {
return cmp.Or(r._status, 200)
}
func (s *Local) ServeHTTP(w http.ResponseWriter, r *http.Request) {
rec := &statusCodeRecorder{ResponseWriter: w}
s.serveHTTP(rec, r)
}
func (s *Local) serveHTTP(rec *statusCodeRecorder, r *http.Request) {
var errattr slog.Attr
proxied, err := func() (bool, error) {
switch r.URL.Path {
case "/api/delete":
return false, s.handleDelete(rec, r)
case "/api/pull":
return false, s.handlePull(rec, r)
default:
if s.Fallback != nil {
s.Fallback.ServeHTTP(rec, r)
return true, nil
}
return false, errNotFound
}
}()
if err != nil {
// We always log the error, so fill in the error log attribute
errattr = slog.String("error", err.Error())
var e *serverError
switch {
case errors.As(err, &e):
case errors.Is(err, ollama.ErrNameInvalid):
e = &serverError{400, "bad_request", err.Error()}
default:
e = errInternalError
}
data, err := json.Marshal(e)
if err != nil {
// unreachable
panic(err)
}
rec.Header().Set("Content-Type", "application/json")
rec.WriteHeader(e.Status)
rec.Write(data)
// fallthrough to log
}
if !proxied {
// we're only responsible for logging if we handled the request
var level slog.Level
if rec.status() >= 500 {
level = slog.LevelError
} else if rec.status() >= 400 {
level = slog.LevelWarn
}
s.Logger.LogAttrs(r.Context(), level, "http",
errattr, // report first in line to make it easy to find
// TODO(bmizerany): Write a test to ensure that we are logging
// all of this correctly. That also goes for the level+error
// logic above.
slog.Int("status", rec.status()),
slog.String("method", r.Method),
slog.String("path", r.URL.Path),
slog.Int64("content-length", r.ContentLength),
slog.String("remote", r.RemoteAddr),
slog.String("proto", r.Proto),
slog.String("query", r.URL.RawQuery),
)
}
}
type params struct {
DeprecatedName string `json:"name"` // Use [params.model]
Model string `json:"model"` // Use [params.model]
// AllowNonTLS is a flag that indicates a client using HTTP
// is doing so, deliberately.
//
// Deprecated: This field is ignored and only present for this
// deprecation message. It should be removed in a future release.
//
// Users can just use http or https+insecure to show intent to
// communicate they want to do insecure things, without awkward and
// confusing flags such as this.
AllowNonTLS bool `json:"insecure"`
// ProgressStream is a flag that indicates the client is expecting a stream of
// progress updates.
ProgressStream bool `json:"stream"`
}
// model returns the model name for both old and new API requests.
func (p params) model() string {
return cmp.Or(p.Model, p.DeprecatedName)
}
func (s *Local) handleDelete(_ http.ResponseWriter, r *http.Request) error {
if r.Method != "DELETE" {
return errMethodNotAllowed
}
p, err := decodeUserJSON[*params](r.Body)
if err != nil {
return err
}
ok, err := s.Client.Unlink(p.model())
if err != nil {
return err
}
if !ok {
return &serverError{404, "not_found", "model not found"}
}
if s.Prune == nil {
return nil
}
return s.Prune()
}
type progressUpdateJSON struct {
Status string `json:"status"`
Digest blob.Digest `json:"digest,omitempty,omitzero"`
Total int64 `json:"total,omitempty,omitzero"`
Completed int64 `json:"completed,omitempty,omitzero"`
}
func (s *Local) handlePull(w http.ResponseWriter, r *http.Request) error {
if r.Method != "POST" {
return errMethodNotAllowed
}
p, err := decodeUserJSON[*params](r.Body)
if err != nil {
return err
}
maybeFlush := func() {
fl, _ := w.(http.Flusher)
if fl != nil {
fl.Flush()
}
}
defer maybeFlush()
var mu sync.Mutex
enc := json.NewEncoder(w)
enc.Encode(progressUpdateJSON{Status: "pulling manifest"})
ctx := ollama.WithTrace(r.Context(), &ollama.Trace{
Update: func(l *ollama.Layer, n int64, err error) {
mu.Lock()
defer mu.Unlock()
// TODO(bmizerany): coalesce these updates; writing per
// update is expensive
enc.Encode(progressUpdateJSON{
Digest: l.Digest,
Status: "pulling",
Total: l.Size,
Completed: n,
})
},
})
done := make(chan error, 1)
go func() {
// TODO(bmizerany): continue to support non-streaming responses
done <- s.Client.Pull(ctx, p.model())
}()
func() {
t := time.NewTicker(100 * time.Millisecond)
defer t.Stop()
for {
select {
case <-t.C:
mu.Lock()
maybeFlush()
mu.Unlock()
case err := <-done:
if err != nil {
var status string
if errors.Is(err, ollama.ErrModelNotFound) {
status = fmt.Sprintf("error: model %q not found", p.model())
enc.Encode(progressUpdateJSON{Status: status})
} else {
status = fmt.Sprintf("error: %v", err)
enc.Encode(progressUpdateJSON{Status: status})
}
return
}
// These final updates are not strictly necessary, because they have
// already happened at this point. Our pull handler code used to do
// these steps after, not during, the pull, and they were slow, so we
// wanted to provide feedback to users what was happening. For now, we
// keep them to not jar users who are used to seeing them. We can phase
// them out with a new and nicer UX later. One without progress bars
// and digests that no one cares about.
enc.Encode(progressUpdateJSON{Status: "verifying layers"})
enc.Encode(progressUpdateJSON{Status: "writing manifest"})
enc.Encode(progressUpdateJSON{Status: "success"})
return
}
}
}()
return nil
}
func decodeUserJSON[T any](r io.Reader) (T, error) {
var v T
err := json.NewDecoder(r).Decode(&v)
if err == nil {
return v, nil
}
var zero T
// Not sure why, but I can't seem to be able to use:
//
// errors.As(err, &json.UnmarshalTypeError{})
//
// This is working fine in stdlib, so I'm not sure what rules changed
// and why this no longer works here. So, we do it the verbose way.
var a *json.UnmarshalTypeError
var b *json.SyntaxError
if errors.As(err, &a) || errors.As(err, &b) {
err = &serverError{Status: 400, Message: err.Error(), Code: "bad_request"}
}
if errors.Is(err, io.EOF) {
err = &serverError{Status: 400, Message: "empty request body", Code: "bad_request"}
}
return zero, err
}

View File

@@ -0,0 +1,287 @@
package registry
import (
"bytes"
"context"
"encoding/json"
"fmt"
"io"
"io/fs"
"net"
"net/http"
"net/http/httptest"
"os"
"regexp"
"strings"
"sync"
"testing"
"github.com/ollama/ollama/server/internal/cache/blob"
"github.com/ollama/ollama/server/internal/client/ollama"
"github.com/ollama/ollama/server/internal/testutil"
"golang.org/x/tools/txtar"
_ "embed"
)
type panicTransport struct{}
func (t *panicTransport) RoundTrip(r *http.Request) (*http.Response, error) {
panic("unexpected RoundTrip call")
}
var panicOnRoundTrip = &http.Client{Transport: &panicTransport{}}
// bytesResetter is an interface for types that can be reset and return a byte
// slice, only. This is to prevent inadvertent use of bytes.Buffer.Read/Write
// etc for the purpose of checking logs.
type bytesResetter interface {
Bytes() []byte
Reset()
}
func newTestServer(t *testing.T, upstreamRegistry http.HandlerFunc) *Local {
t.Helper()
dir := t.TempDir()
err := os.CopyFS(dir, os.DirFS("testdata/models"))
if err != nil {
t.Fatal(err)
}
c, err := blob.Open(dir)
if err != nil {
t.Fatal(err)
}
client := panicOnRoundTrip
if upstreamRegistry != nil {
s := httptest.NewTLSServer(upstreamRegistry)
t.Cleanup(s.Close)
tr := s.Client().Transport.(*http.Transport).Clone()
tr.DialContext = func(ctx context.Context, _, _ string) (net.Conn, error) {
var d net.Dialer
return d.DialContext(ctx, "tcp", s.Listener.Addr().String())
}
client = &http.Client{Transport: tr}
}
rc := &ollama.Registry{
Cache: c,
HTTPClient: client,
Mask: "example.com/library/_:latest",
}
l := &Local{
Client: rc,
Logger: testutil.Slogger(t),
}
return l
}
func (s *Local) send(t *testing.T, method, path, body string) *httptest.ResponseRecorder {
t.Helper()
req := httptest.NewRequestWithContext(t.Context(), method, path, strings.NewReader(body))
return s.sendRequest(t, req)
}
func (s *Local) sendRequest(t *testing.T, req *http.Request) *httptest.ResponseRecorder {
t.Helper()
w := httptest.NewRecorder()
s.ServeHTTP(w, req)
return w
}
type invalidReader struct{}
func (r *invalidReader) Read(p []byte) (int, error) {
return 0, os.ErrInvalid
}
// captureLogs is a helper to capture logs from the server. It returns a
// shallow copy of the server with a new logger and a bytesResetter for the
// logs.
func captureLogs(t *testing.T, s *Local) (*Local, bytesResetter) {
t.Helper()
log, logs := testutil.SlogBuffer()
l := *s // shallow copy
l.Logger = log
return &l, logs
}
func TestServerDelete(t *testing.T) {
check := testutil.Checker(t)
s := newTestServer(t, nil)
_, err := s.Client.ResolveLocal("smol")
check(err)
got := s.send(t, "DELETE", "/api/delete", `{"model": "smol"}`)
if got.Code != 200 {
t.Fatalf("Code = %d; want 200", got.Code)
}
_, err = s.Client.ResolveLocal("smol")
if err == nil {
t.Fatal("expected smol to have been deleted")
}
got = s.send(t, "DELETE", "/api/delete", `!`)
checkErrorResponse(t, got, 400, "bad_request", "invalid character '!' looking for beginning of value")
got = s.send(t, "GET", "/api/delete", `{"model": "smol"}`)
checkErrorResponse(t, got, 405, "method_not_allowed", "method not allowed")
got = s.send(t, "DELETE", "/api/delete", ``)
checkErrorResponse(t, got, 400, "bad_request", "empty request body")
got = s.send(t, "DELETE", "/api/delete", `{"model": "://"}`)
checkErrorResponse(t, got, 400, "bad_request", "invalid or missing name")
got = s.send(t, "DELETE", "/unknown_path", `{}`) // valid body
checkErrorResponse(t, got, 404, "not_found", "not found")
s, logs := captureLogs(t, s)
req := httptest.NewRequestWithContext(t.Context(), "DELETE", "/api/delete", &invalidReader{})
got = s.sendRequest(t, req)
checkErrorResponse(t, got, 500, "internal_error", "internal server error")
ok, err := regexp.Match(`ERROR.*error="invalid argument"`, logs.Bytes())
check(err)
if !ok {
t.Logf("logs:\n%s", logs)
t.Fatalf("expected log to contain ERROR with invalid argument")
}
}
//go:embed testdata/registry.txt
var registryTXT []byte
var registryFS = sync.OnceValue(func() fs.FS {
// Txtar gets hung up on \r\n line endings, so we need to convert them
// to \n when parsing the txtar on Windows.
data := bytes.ReplaceAll(registryTXT, []byte("\r\n"), []byte("\n"))
a := txtar.Parse(data)
fmt.Printf("%q\n", a.Comment)
fsys, err := txtar.FS(a)
if err != nil {
panic(err)
}
return fsys
})
func TestServerPull(t *testing.T) {
modelsHandler := http.FileServerFS(registryFS())
s := newTestServer(t, func(w http.ResponseWriter, r *http.Request) {
switch r.URL.Path {
case "/v2/library/BOOM/manifests/latest":
w.WriteHeader(999)
io.WriteString(w, `{"error": "boom"}`)
case "/v2/library/unknown/manifests/latest":
w.WriteHeader(404)
io.WriteString(w, `{"errors": [{"code": "MANIFEST_UNKNOWN", "message": "manifest unknown"}]}`)
default:
t.Logf("serving file: %s", r.URL.Path)
modelsHandler.ServeHTTP(w, r)
}
})
checkResponse := func(got *httptest.ResponseRecorder, wantlines string) {
t.Helper()
if got.Code != 200 {
t.Fatalf("Code = %d; want 200", got.Code)
}
gotlines := got.Body.String()
t.Logf("got:\n%s", gotlines)
for want := range strings.Lines(wantlines) {
want = strings.TrimSpace(want)
want, unwanted := strings.CutPrefix(want, "!")
want = strings.TrimSpace(want)
if !unwanted && !strings.Contains(gotlines, want) {
t.Fatalf("! missing %q in body", want)
}
if unwanted && strings.Contains(gotlines, want) {
t.Fatalf("! unexpected %q in body", want)
}
}
}
got := s.send(t, "POST", "/api/pull", `{"model": "BOOM"}`)
checkResponse(got, `
{"status":"pulling manifest"}
{"status":"error: request error https://example.com/v2/library/BOOM/manifests/latest: registry responded with status 999: boom"}
`)
got = s.send(t, "POST", "/api/pull", `{"model": "smol"}`)
checkResponse(got, `
{"status":"pulling manifest"}
{"status":"pulling","digest":"sha256:68e0ec597aee59d35f8dc44942d7b17d471ade10d3aca07a5bb7177713950312","total":5}
{"status":"pulling","digest":"sha256:ca3d163bab055381827226140568f3bef7eaac187cebd76878e0b63e9e442356","total":3}
{"status":"pulling","digest":"sha256:68e0ec597aee59d35f8dc44942d7b17d471ade10d3aca07a5bb7177713950312","total":5,"completed":5}
{"status":"pulling","digest":"sha256:ca3d163bab055381827226140568f3bef7eaac187cebd76878e0b63e9e442356","total":3,"completed":3}
{"status":"verifying layers"}
{"status":"writing manifest"}
{"status":"success"}
`)
got = s.send(t, "POST", "/api/pull", `{"model": "unknown"}`)
checkResponse(got, `
{"status":"pulling manifest"}
{"status":"error: model \"unknown\" not found"}
`)
got = s.send(t, "DELETE", "/api/pull", `{"model": "smol"}`)
checkErrorResponse(t, got, 405, "method_not_allowed", "method not allowed")
got = s.send(t, "POST", "/api/pull", `!`)
checkErrorResponse(t, got, 400, "bad_request", "invalid character '!' looking for beginning of value")
got = s.send(t, "POST", "/api/pull", ``)
checkErrorResponse(t, got, 400, "bad_request", "empty request body")
got = s.send(t, "POST", "/api/pull", `{"model": "://"}`)
checkResponse(got, `
{"status":"pulling manifest"}
{"status":"error: invalid or missing name: \"\""}
!verifying
!writing
!success
`)
}
func TestServerUnknownPath(t *testing.T) {
s := newTestServer(t, nil)
got := s.send(t, "DELETE", "/api/unknown", `{}`)
checkErrorResponse(t, got, 404, "not_found", "not found")
}
func checkErrorResponse(t *testing.T, got *httptest.ResponseRecorder, status int, code, msg string) {
t.Helper()
var printedBody bool
errorf := func(format string, args ...any) {
t.Helper()
if !printedBody {
t.Logf("BODY:\n%s", got.Body.String())
printedBody = true
}
t.Errorf(format, args...)
}
if got.Code != status {
errorf("Code = %d; want %d", got.Code, status)
}
// unmarshal the error as *ollama.Error (proving *serverError is an *ollama.Error)
var e *ollama.Error
if err := json.Unmarshal(got.Body.Bytes(), &e); err != nil {
errorf("unmarshal error: %v", err)
t.FailNow()
}
if e.Code != code {
errorf("Code = %q; want %q", e.Code, code)
}
if !strings.Contains(e.Message, msg) {
errorf("Message = %q; want to contain %q", e.Message, msg)
}
}

Some files were not shown because too many files have changed in this diff Show More