Compare commits
119 Commits
v0.5.13-rc
...
parth/samp
Author | SHA1 | Date | |
---|---|---|---|
![]() |
f257f1fd04 | ||
![]() |
8b1ae03302 | ||
![]() |
db10a7da88 | ||
![]() |
aee28501b5 | ||
![]() |
83f0ec8269 | ||
![]() |
c6b6938b3a | ||
![]() |
fb4664fcec | ||
![]() |
20e3593863 | ||
![]() |
63a394068c | ||
![]() |
ab39e08eb9 | ||
![]() |
11bfa62796 | ||
![]() |
f63e62e546 | ||
![]() |
65b0f329d1 | ||
![]() |
06007c0a18 | ||
![]() |
a8e83a7654 | ||
![]() |
475005504e | ||
![]() |
2c40c4d35e | ||
![]() |
e95278932b | ||
![]() |
9d2a20a763 | ||
![]() |
2e54d72fc3 | ||
![]() |
6b32a2d549 | ||
![]() |
c5cbe4fc2a | ||
![]() |
f888912870 | ||
![]() |
9e4642e9b3 | ||
![]() |
6b0486c216 | ||
![]() |
d368c039f0 | ||
![]() |
9b54267e69 | ||
![]() |
46bb0169c4 | ||
![]() |
8934324b72 | ||
![]() |
0e886595bf | ||
![]() |
c62861f4fa | ||
![]() |
0df1800436 | ||
![]() |
631fecc6d9 | ||
![]() |
4346c2409d | ||
![]() |
4b037a97dc | ||
![]() |
5f74d1fd47 | ||
![]() |
4dcf80167a | ||
![]() |
26a26998fb | ||
![]() |
9926eae015 | ||
![]() |
8585b7b151 | ||
![]() |
7e34f4fbfa | ||
![]() |
fe776293f7 | ||
![]() |
d8a5d96b98 | ||
![]() |
757668c42f | ||
![]() |
96ec8afd09 | ||
![]() |
e093db92c4 | ||
![]() |
a1cda80bcb | ||
![]() |
4614fafae0 | ||
![]() |
4100ed7bdd | ||
![]() |
f52b2615ef | ||
![]() |
25f9b152f9 | ||
![]() |
6da8b6a879 | ||
![]() |
0daaaef8c9 | ||
![]() |
98272fbd58 | ||
![]() |
b27e8f3f10 | ||
![]() |
45df786f09 | ||
![]() |
daaf42e4a4 | ||
![]() |
2dc60d4620 | ||
![]() |
b5312f30e8 | ||
![]() |
26c2e0bd35 | ||
![]() |
bf920883d5 | ||
![]() |
58b9ec1f6b | ||
![]() |
7bae7fa5ce | ||
![]() |
764e199d67 | ||
![]() |
bfce55db3d | ||
![]() |
bab6f34dc0 | ||
![]() |
0682dae027 | ||
![]() |
1f6986e919 | ||
![]() |
4289c74359 | ||
![]() |
25248f4bd5 | ||
![]() |
a7e63b82be | ||
![]() |
b70fc4d51e | ||
![]() |
e2252d0fc6 | ||
![]() |
cae5d4d4ea | ||
![]() |
05a01fdecb | ||
![]() |
8fe6f69f28 | ||
![]() |
1fdb351c37 | ||
![]() |
7a01ad7614 | ||
![]() |
55ab9f371a | ||
![]() |
fefbf8f74b | ||
![]() |
b428ddd796 | ||
![]() |
ba7d31240e | ||
![]() |
d25efe3954 | ||
![]() |
36dfb906bb | ||
![]() |
a6f0f908b9 | ||
![]() |
3b1ddb2b3a | ||
![]() |
1579c4f06d | ||
![]() |
3519dd1c6e | ||
![]() |
e41c4cbea7 | ||
![]() |
ee048b76d4 | ||
![]() |
af68d60a58 | ||
![]() |
21aa666a1e | ||
![]() |
ee141cc821 | ||
![]() |
55e5776c44 | ||
![]() |
854a9195f3 | ||
![]() |
96a97adf9b | ||
![]() |
e75c6126e9 | ||
![]() |
cda6f5c66c | ||
![]() |
bebb6823c0 | ||
![]() |
31e472baa4 | ||
![]() |
657685e85d | ||
![]() |
a14912858e | ||
![]() |
eed11ded30 | ||
![]() |
b42aba40ed | ||
![]() |
25885e5335 | ||
![]() |
98d44fa39d | ||
![]() |
2099e2d267 | ||
![]() |
0c1041ad85 | ||
![]() |
c245b0406f | ||
![]() |
8b194b7520 | ||
![]() |
3e8b8a1933 | ||
![]() |
41dc280491 | ||
![]() |
53d2990d9b | ||
![]() |
e185c08ad9 | ||
![]() |
2412adf42b | ||
![]() |
be2ac1ed93 | ||
![]() |
dc13813a03 | ||
![]() |
d6af13efed | ||
![]() |
a59f665235 |
@@ -23,6 +23,7 @@ set(GGML_SCHED_MAX_COPIES 4)
|
||||
set(GGML_LLAMAFILE ON)
|
||||
set(GGML_CUDA_PEER_MAX_BATCH_SIZE 128)
|
||||
set(GGML_CUDA_GRAPHS ON)
|
||||
set(GGML_CUDA_FA ON)
|
||||
|
||||
if((CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_OSX_ARCHITECTURES MATCHES "arm64")
|
||||
OR (NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_SYSTEM_PROCESSOR MATCHES "arm|aarch64|ARM64|ARMv[0-9]+"))
|
||||
@@ -105,9 +106,11 @@ if(CMAKE_HIP_COMPILER)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-hip)
|
||||
|
||||
if (WIN32)
|
||||
target_compile_definitions(ggml-hip PRIVATE GGML_CUDA_NO_PEER_COPY=1)
|
||||
target_compile_definitions(ggml-hip PRIVATE GGML_CUDA_NO_PEER_COPY)
|
||||
endif()
|
||||
|
||||
target_compile_definitions(ggml-hip PRIVATE GGML_HIP_NO_VMM)
|
||||
|
||||
set(OLLAMA_HIP_INSTALL_DIR ${OLLAMA_INSTALL_DIR}/rocm)
|
||||
install(TARGETS ggml-hip
|
||||
RUNTIME_DEPENDENCIES
|
||||
|
@@ -28,7 +28,7 @@
|
||||
"name": "CUDA 12",
|
||||
"inherits": [ "CUDA" ],
|
||||
"cacheVariables": {
|
||||
"CMAKE_CUDA_ARCHITECTURES": "50;60;61;70;75;80;86;87;89;90;90a;100"
|
||||
"CMAKE_CUDA_ARCHITECTURES": "50;60;61;70;75;80;86;87;89;90;90a;120"
|
||||
}
|
||||
},
|
||||
{
|
||||
|
@@ -6,8 +6,6 @@ Thank you for your interest in contributing to Ollama! Here are a few guidelines
|
||||
|
||||
See the [development documentation](./docs/development.md) for instructions on how to build and run Ollama locally.
|
||||
|
||||
## Pull requests
|
||||
|
||||
### Ideal issues
|
||||
|
||||
* [Bugs](https://github.com/ollama/ollama/issues?q=is%3Aissue+is%3Aopen+label%3Abug): issues where Ollama stops working or where it results in an unexpected error.
|
||||
@@ -26,11 +24,64 @@ See the [development documentation](./docs/development.md) for instructions on h
|
||||
* Changes that add significant friction to the user experience
|
||||
* Changes that create a large future maintenance burden for maintainers and contributors
|
||||
|
||||
### Best practices
|
||||
## Proposing a (non-trivial) change
|
||||
|
||||
* Commit messages: please leave both a title and a description in your commit messages. The title should be a short summary of the changes, with a leading word that explains the section of the code being changed (e.g. `api: fix parsing of prompt field`) . In the description, leave a short 2-3 sentences that explain more about the change and its impact.
|
||||
* Tests: please add test coverage to changes where possible.
|
||||
* Minimize dependencies: avoid adding new dependencies unless absolutely necessary.
|
||||
> By "non-trivial", we mean a change that is not a bug fix or small
|
||||
> documentation update. If you are unsure, please ask us on our [Discord
|
||||
> server](https://discord.gg/ollama).
|
||||
|
||||
Before opening a non-trivial Pull Request, please open an issue to discuss the change and
|
||||
get feedback from the maintainers. This helps us understand the context of the
|
||||
change and how it fits into Ollama's roadmap and prevents us from duplicating
|
||||
work or you from spending time on a change that we may not be able to accept.
|
||||
|
||||
Tips for proposals:
|
||||
|
||||
* Explain the problem you are trying to solve, not what you are trying to do.
|
||||
* Explain why the change is important.
|
||||
* Explain how the change will be used.
|
||||
* Explain how the change will be tested.
|
||||
|
||||
Additionally, for bonus points: Provide draft documentation you would expect to
|
||||
see if the change were accepted.
|
||||
|
||||
## Pull requests
|
||||
|
||||
**Commit messages**
|
||||
|
||||
The title should look like:
|
||||
|
||||
<package>: <short description>
|
||||
|
||||
The package is the most affected Go package. If the change does not affect Go
|
||||
code, then use the directory name instead. Changes to a single well-known
|
||||
file in the root directory may use the file name.
|
||||
|
||||
The short description should start with a lowercase letter and be a
|
||||
continuation of the sentence:
|
||||
|
||||
"This changes Ollama to..."
|
||||
|
||||
Examples:
|
||||
|
||||
llm/backend/mlx: support the llama architecture
|
||||
CONTRIBUTING: provide clairity on good commit messages, and bad
|
||||
|
||||
Bad Examples:
|
||||
|
||||
feat: add more emoji
|
||||
fix: was not using famous web framework
|
||||
chore: generify code
|
||||
|
||||
**Tests**
|
||||
|
||||
Please include tests. Strive to test behavior, not implementation.
|
||||
|
||||
**New dependencies**
|
||||
|
||||
Dependencies should be added sparingly. If you are adding a new dependency,
|
||||
please explain why it is necessary and what other ways you attempted that
|
||||
did not work without it.
|
||||
|
||||
## Need help?
|
||||
|
||||
|
@@ -12,7 +12,7 @@ FROM --platform=linux/amd64 rocm/dev-almalinux-8:${ROCMVERSION}-complete AS base
|
||||
RUN yum install -y yum-utils \
|
||||
&& yum-config-manager --add-repo https://dl.rockylinux.org/vault/rocky/8.5/AppStream/\$basearch/os/ \
|
||||
&& rpm --import https://dl.rockylinux.org/pub/rocky/RPM-GPG-KEY-Rocky-8 \
|
||||
&& dnf install -y yum-utils ccache gcc-toolset-10-gcc-10.2.1-8.2.el8 gcc-toolset-10-gcc-c++-10.2.1-8.2.el8 \
|
||||
&& dnf install -y yum-utils ccache gcc-toolset-10-gcc-10.2.1-8.2.el8 gcc-toolset-10-gcc-c++-10.2.1-8.2.el8 gcc-toolset-10-binutils-2.35-11.el8 \
|
||||
&& yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/x86_64/cuda-rhel8.repo
|
||||
ENV PATH=/opt/rh/gcc-toolset-10/root/usr/bin:$PATH
|
||||
|
||||
@@ -86,10 +86,11 @@ RUN --mount=type=cache,target=/root/.ccache \
|
||||
&& cmake --install build --component CUDA --strip --parallel 8
|
||||
|
||||
FROM base AS build
|
||||
ARG GOVERSION=1.23.4
|
||||
RUN curl -fsSL https://golang.org/dl/go${GOVERSION}.linux-$(case $(uname -m) in x86_64) echo amd64 ;; aarch64) echo arm64 ;; esac).tar.gz | tar xz -C /usr/local
|
||||
ENV PATH=/usr/local/go/bin:$PATH
|
||||
WORKDIR /go/src/github.com/ollama/ollama
|
||||
COPY go.mod go.sum .
|
||||
RUN curl -fsSL https://golang.org/dl/go$(awk '/^go/ { print $2 }' go.mod).linux-$(case $(uname -m) in x86_64) echo amd64 ;; aarch64) echo arm64 ;; esac).tar.gz | tar xz -C /usr/local
|
||||
ENV PATH=/usr/local/go/bin:$PATH
|
||||
RUN go mod download
|
||||
COPY . .
|
||||
ARG GOFLAGS="'-ldflags=-w -s'"
|
||||
ENV CGO_ENABLED=1
|
||||
|
17
README.md
17
README.md
@@ -1,5 +1,5 @@
|
||||
<div align="center">
|
||||
<a href="https://ollama.com" />
|
||||
<a href="https://ollama.com">
|
||||
<img alt="ollama" height="200px" src="https://github.com/ollama/ollama/assets/3325447/0d0b44e2-8f4a-4e99-9b52-a5c1c741c8f7">
|
||||
</a>
|
||||
</div>
|
||||
@@ -54,6 +54,7 @@ Here are some example models that can be downloaded:
|
||||
|
||||
| Model | Parameters | Size | Download |
|
||||
| ------------------ | ---------- | ----- | -------------------------------- |
|
||||
| QwQ | 32B | 20GB | `ollama run qwq` |
|
||||
| DeepSeek-R1 | 7B | 4.7GB | `ollama run deepseek-r1` |
|
||||
| DeepSeek-R1 | 671B | 404GB | `ollama run deepseek-r1:671b` |
|
||||
| Llama 3.3 | 70B | 43GB | `ollama run llama3.3` |
|
||||
@@ -64,7 +65,7 @@ Here are some example models that can be downloaded:
|
||||
| Llama 3.1 | 8B | 4.7GB | `ollama run llama3.1` |
|
||||
| Llama 3.1 | 405B | 231GB | `ollama run llama3.1:405b` |
|
||||
| Phi 4 | 14B | 9.1GB | `ollama run phi4` |
|
||||
| Phi 3 Mini | 3.8B | 2.3GB | `ollama run phi3` |
|
||||
| Phi 4 Mini | 3.8B | 2.5GB | `ollama run phi4-mini` |
|
||||
| Gemma 2 | 2B | 1.6GB | `ollama run gemma2:2b` |
|
||||
| Gemma 2 | 9B | 5.5GB | `ollama run gemma2` |
|
||||
| Gemma 2 | 27B | 16GB | `ollama run gemma2:27b` |
|
||||
@@ -75,7 +76,7 @@ Here are some example models that can be downloaded:
|
||||
| Code Llama | 7B | 3.8GB | `ollama run codellama` |
|
||||
| Llama 2 Uncensored | 7B | 3.8GB | `ollama run llama2-uncensored` |
|
||||
| LLaVA | 7B | 4.5GB | `ollama run llava` |
|
||||
| Solar | 10.7B | 6.1GB | `ollama run solar` |
|
||||
| Granite-3.2 | 8B | 4.9GB | `ollama run granite3.2` |
|
||||
|
||||
> [!NOTE]
|
||||
> You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
|
||||
@@ -275,6 +276,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
### Web & Desktop
|
||||
|
||||
- [Open WebUI](https://github.com/open-webui/open-webui)
|
||||
- [SwiftChat (macOS with ReactNative)](https://github.com/aws-samples/swift-chat)
|
||||
- [Enchanted (macOS native)](https://github.com/AugustDev/enchanted)
|
||||
- [Hollama](https://github.com/fmaclen/hollama)
|
||||
- [Lollms-Webui](https://github.com/ParisNeo/lollms-webui)
|
||||
@@ -386,6 +388,9 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [MaxKB](https://github.com/1Panel-dev/MaxKB/) (Ready-to-use & flexible RAG Chatbot)
|
||||
- [yla](https://github.com/danielekp/yla) (Web interface to freely interact with your customized models)
|
||||
- [LangBot](https://github.com/RockChinQ/LangBot) (LLM-based instant messaging bots platform, with Agents, RAG features, supports multiple platforms)
|
||||
- [1Panel](https://github.com/1Panel-dev/1Panel/) (Web-based Linux Server Management Tool)
|
||||
- [AstrBot](https://github.com/Soulter/AstrBot/) (User-friendly LLM-based multi-platform chatbot with a WebUI, supporting RAG, LLM agents, and plugins integration)
|
||||
- [Reins](https://github.com/ibrahimcetin/reins) (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)
|
||||
|
||||
### Cloud
|
||||
|
||||
@@ -429,6 +434,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
|
||||
### Apple Vision Pro
|
||||
|
||||
- [SwiftChat](https://github.com/aws-samples/swift-chat) (Cross-platform AI chat app supporting Apple Vision Pro via "Designed for iPad")
|
||||
- [Enchanted](https://github.com/AugustDev/enchanted)
|
||||
|
||||
### Database
|
||||
@@ -506,10 +512,13 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
|
||||
### Mobile
|
||||
|
||||
- [SwiftChat](https://github.com/aws-samples/swift-chat) (Lightning-fast Cross-platform AI chat app with native UI for Android, iOS and iPad)
|
||||
- [Enchanted](https://github.com/AugustDev/enchanted)
|
||||
- [Maid](https://github.com/Mobile-Artificial-Intelligence/maid)
|
||||
- [Ollama App](https://github.com/JHubi1/ollama-app) (Modern and easy-to-use multi-platform client for Ollama)
|
||||
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)
|
||||
- [Ollama Android Chat](https://github.com/sunshine0523/OllamaServer) (No need for Termux, start the Ollama service with one click on an Android device)
|
||||
- [Reins](https://github.com/ibrahimcetin/reins) (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)
|
||||
|
||||
### Extensions & Plugins
|
||||
|
||||
@@ -555,12 +564,14 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [TextLLaMA](https://github.com/adarshM84/TextLLaMA) A Chrome Extension that helps you write emails, correct grammar, and translate into any language
|
||||
- [Simple-Discord-AI](https://github.com/zyphixor/simple-discord-ai)
|
||||
- [LLM Telegram Bot](https://github.com/innightwolfsleep/llm_telegram_bot) (telegram bot, primary for RP. Oobabooga-like buttons, [A1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui) API integration e.t.c)
|
||||
- [mcp-llm](https://github.com/sammcj/mcp-llm) (MCP Server to allow LLMs to call other LLMs)
|
||||
|
||||
### Supported backends
|
||||
|
||||
- [llama.cpp](https://github.com/ggerganov/llama.cpp) project founded by Georgi Gerganov.
|
||||
|
||||
### Observability
|
||||
- [Opik](https://www.comet.com/docs/opik/cookbook/ollama) is an open-source platform to debug, evaluate, and monitor your LLM applications, RAG systems, and agentic workflows with comprehensive tracing, automated evaluations, and production-ready dashboards. Opik supports native intergration to Ollama.
|
||||
- [Lunary](https://lunary.ai/docs/integrations/ollama) is the leading open-source LLM observability platform. It provides a variety of enterprise-grade features such as real-time analytics, prompt templates management, PII masking, and comprehensive agent tracing.
|
||||
- [OpenLIT](https://github.com/openlit/openlit) is an OpenTelemetry-native tool for monitoring Ollama Applications & GPUs using traces and metrics.
|
||||
- [HoneyHive](https://docs.honeyhive.ai/integrations/ollama) is an AI observability and evaluation platform for AI agents. Use HoneyHive to evaluate agent performance, interrogate failures, and monitor quality in production.
|
||||
|
@@ -10,7 +10,7 @@
|
||||
// repository].
|
||||
//
|
||||
// [the API documentation]: https://github.com/ollama/ollama/blob/main/docs/api.md
|
||||
// [in the GitHub repository]: https://github.com/ollama/ollama/tree/main/examples
|
||||
// [in the GitHub repository]: https://github.com/ollama/ollama/tree/main/api/examples
|
||||
package api
|
||||
|
||||
import (
|
||||
|
@@ -361,9 +361,9 @@ type CopyRequest struct {
|
||||
// PullRequest is the request passed to [Client.Pull].
|
||||
type PullRequest struct {
|
||||
Model string `json:"model"`
|
||||
Insecure bool `json:"insecure,omitempty"`
|
||||
Username string `json:"username"`
|
||||
Password string `json:"password"`
|
||||
Insecure bool `json:"insecure,omitempty"` // Deprecated: ignored
|
||||
Username string `json:"username"` // Deprecated: ignored
|
||||
Password string `json:"password"` // Deprecated: ignored
|
||||
Stream *bool `json:"stream,omitempty"`
|
||||
|
||||
// Deprecated: set the model name with Model instead
|
||||
|
17
cmd/cmd.go
17
cmd/cmd.go
@@ -34,7 +34,6 @@ import (
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/format"
|
||||
"github.com/ollama/ollama/llama"
|
||||
"github.com/ollama/ollama/parser"
|
||||
"github.com/ollama/ollama/progress"
|
||||
"github.com/ollama/ollama/runner"
|
||||
@@ -256,6 +255,7 @@ func StopHandler(cmd *cobra.Command, args []string) error {
|
||||
if strings.Contains(err.Error(), "not found") {
|
||||
return fmt.Errorf("couldn't find model \"%s\" to stop", args[0])
|
||||
}
|
||||
return err
|
||||
}
|
||||
return nil
|
||||
}
|
||||
@@ -338,10 +338,16 @@ func RunHandler(cmd *cobra.Command, args []string) error {
|
||||
return err
|
||||
}
|
||||
|
||||
// TODO(jessegross): We should either find another way to know if this is
|
||||
// a vision model or remove the logic. Also consider that other modalities will
|
||||
// need different behavior anyways.
|
||||
opts.MultiModal = len(info.ProjectorInfo) != 0 || envconfig.NewEngine()
|
||||
if len(info.ProjectorInfo) != 0 {
|
||||
opts.MultiModal = true
|
||||
}
|
||||
for k := range info.ModelInfo {
|
||||
if strings.Contains(k, ".vision.") {
|
||||
opts.MultiModal = true
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
opts.ParentModel = info.Details.ParentModel
|
||||
|
||||
if interactive {
|
||||
@@ -1274,7 +1280,6 @@ func NewCLI() *cobra.Command {
|
||||
|
||||
runnerCmd := &cobra.Command{
|
||||
Use: "runner",
|
||||
Short: llama.PrintSystemInfo(),
|
||||
Hidden: true,
|
||||
RunE: func(cmd *cobra.Command, args []string) error {
|
||||
return runner.Execute(os.Args[1:])
|
||||
|
@@ -13,8 +13,13 @@ import (
|
||||
)
|
||||
|
||||
type ModelParameters struct {
|
||||
Architectures []string `json:"architectures"`
|
||||
VocabSize uint32 `json:"vocab_size"`
|
||||
Architectures []string `json:"architectures"`
|
||||
VocabSize uint32 `json:"vocab_size"`
|
||||
TextModel TextParameters `json:"text_config"`
|
||||
}
|
||||
|
||||
type TextParameters struct {
|
||||
VocabSize uint32 `json:"vocab_size"`
|
||||
}
|
||||
|
||||
type AdapterParameters struct {
|
||||
@@ -185,6 +190,8 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
|
||||
conv = &gemmaModel{}
|
||||
case "Gemma2ForCausalLM":
|
||||
conv = &gemma2Model{}
|
||||
case "Gemma3ForCausalLM", "Gemma3ForConditionalGeneration":
|
||||
conv = &gemma3Model{Architecture: p.Architectures[0]}
|
||||
case "Phi3ForCausalLM":
|
||||
conv = &phi3Model{}
|
||||
case "Qwen2ForCausalLM":
|
||||
@@ -213,7 +220,14 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
|
||||
}
|
||||
|
||||
vocabSize := int(p.VocabSize)
|
||||
if vocabSize == 0 {
|
||||
tVocabSize := int(p.TextModel.VocabSize)
|
||||
vocabSize = tVocabSize
|
||||
}
|
||||
|
||||
switch {
|
||||
case vocabSize == 0:
|
||||
slog.Warn("vocabulary size was not explicitly set by the model", "default size", len(t.Vocabulary.Tokens))
|
||||
case vocabSize > len(t.Vocabulary.Tokens):
|
||||
slog.Warn("vocabulary is smaller than expected, padding with dummy tokens", "expect", vocabSize, "actual", len(t.Vocabulary.Tokens))
|
||||
for i := range vocabSize - len(t.Vocabulary.Tokens) {
|
||||
|
@@ -45,7 +45,7 @@ func (p *gemmaModel) KV(t *Tokenizer) ggml.KV {
|
||||
func (p *gemmaModel) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
var out []ggml.Tensor
|
||||
for _, t := range ts {
|
||||
if strings.HasSuffix(t.Name(), "_norm.weight") {
|
||||
if !strings.HasPrefix(t.Name(), "v.") && strings.HasSuffix(t.Name(), "_norm.weight") {
|
||||
t.SetRepacker(p.addOne)
|
||||
}
|
||||
|
||||
|
142
convert/convert_gemma3.go
Normal file
142
convert/convert_gemma3.go
Normal file
@@ -0,0 +1,142 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type gemma3Model struct {
|
||||
gemmaModel
|
||||
Architecture string
|
||||
TextModel struct {
|
||||
HeadDim uint32 `json:"head_dim"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
HiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
SlidingWindow uint32 `json:"sliding_window"`
|
||||
} `json:"text_config"`
|
||||
VisionModel struct {
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"` // attention.head_count 16
|
||||
LayerNormEpsilon float32 `json:"layer_norm_eps"` // attention.layer_norm_epsilon 1e-05
|
||||
NumHiddenLayers uint32 `json:"num_hidden_layers"` // block_count 32
|
||||
HiddenSize uint32 `json:"hidden_size"` // embedding_length 1280
|
||||
IntermediateSize uint32 `json:"intermediate_size"` // feed_forward_length 5120
|
||||
ImageSize uint32 `json:"image_size"` // image_size 560
|
||||
NumChannels uint32 `json:"num_channels"` // num_channels 3
|
||||
PatchSize uint32 `json:"patch_size"` // patch_size 14
|
||||
} `json:"vision_config"`
|
||||
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||
HeadDim uint32 `json:"head_dim"`
|
||||
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
|
||||
RopeLocalTheta float32 `json:"rope_local_base_freq"`
|
||||
RopeGlobalTheta float32 `json:"rope_global_base_freq"`
|
||||
SlidingWindow uint32 `json:"sliding_window"`
|
||||
MultiModalTokensPerImage uint32 `json:"mm_tokens_per_image"`
|
||||
}
|
||||
|
||||
const (
|
||||
gemma4BLayerCount = 34
|
||||
gemma12BLayerCount = 48
|
||||
gemma27BLayerCount = 62
|
||||
)
|
||||
|
||||
func (p *gemma3Model) KV(t *Tokenizer) ggml.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "gemma3"
|
||||
|
||||
numBlocks := cmp.Or(p.HiddenLayers, p.TextModel.HiddenLayers)
|
||||
kv["gemma3.block_count"] = numBlocks
|
||||
|
||||
var (
|
||||
numHeads uint32
|
||||
numKVHeads uint32
|
||||
)
|
||||
|
||||
switch numBlocks {
|
||||
case gemma4BLayerCount:
|
||||
numHeads = 8
|
||||
numKVHeads = 4
|
||||
case gemma12BLayerCount:
|
||||
numHeads = 16
|
||||
numKVHeads = 8
|
||||
case gemma27BLayerCount:
|
||||
numHeads = 32
|
||||
numKVHeads = 16
|
||||
default:
|
||||
numHeads = p.NumAttentionHeads
|
||||
numKVHeads = p.NumKeyValueHeads
|
||||
}
|
||||
|
||||
kv["gemma3.attention.head_count"] = numHeads
|
||||
kv["gemma3.attention.head_count_kv"] = numKVHeads
|
||||
|
||||
switch p.Architecture {
|
||||
case "Gemma3ForCausalLM":
|
||||
kv["gemma3.context_length"] = p.MaxPositionEmbeddings
|
||||
kv["gemma3.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
|
||||
kv["gemma3.attention.key_length"] = p.HeadDim
|
||||
kv["gemma3.attention.value_length"] = p.HeadDim
|
||||
kv["gemma3.attention.sliding_window"] = p.SlidingWindow
|
||||
kv["gemma3.final_logit_softcapping"] = cmp.Or(p.FinalLogitSoftcap, 30)
|
||||
kv["gemma3.rope.local.freq_base"] = cmp.Or(p.RopeLocalTheta, 10000.0)
|
||||
kv["gemma3.rope.global.freq_base"] = cmp.Or(p.RopeGlobalTheta, 1000000.0)
|
||||
kv["gemma3.embedding_length"] = p.HiddenSize
|
||||
kv["gemma3.feed_forward_length"] = p.IntermediateSize
|
||||
default:
|
||||
kv["gemma3.context_length"] = cmp.Or(p.MaxPositionEmbeddings, 8192)
|
||||
kv["gemma3.embedding_length"] = p.TextModel.HiddenSize
|
||||
kv["gemma3.feed_forward_length"] = p.TextModel.IntermediateSize
|
||||
kv["gemma3.attention.sliding_window"] = p.TextModel.SlidingWindow
|
||||
kv["gemma3.vision.block_count"] = p.VisionModel.NumHiddenLayers
|
||||
kv["gemma3.vision.embedding_length"] = p.VisionModel.HiddenSize
|
||||
kv["gemma3.vision.feed_forward_length"] = p.VisionModel.IntermediateSize
|
||||
kv["gemma3.vision.image_size"] = p.VisionModel.ImageSize
|
||||
kv["gemma3.vision.patch_size"] = p.VisionModel.PatchSize
|
||||
kv["gemma3.vision.num_channels"] = cmp.Or(p.VisionModel.NumChannels, 3)
|
||||
kv["gemma3.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
|
||||
kv["gemma3.vision.attention.layer_norm_epsilon"] = cmp.Or(p.VisionModel.LayerNormEpsilon, 1e-6)
|
||||
kv["gemma3.attention.key_length"] = cmp.Or(p.TextModel.HeadDim, 256)
|
||||
kv["gemma3.attention.value_length"] = cmp.Or(p.TextModel.HeadDim, 256)
|
||||
}
|
||||
|
||||
if p.MultiModalTokensPerImage > 0 {
|
||||
kv["gemma3.mm.tokens_per_image"] = p.MultiModalTokensPerImage
|
||||
}
|
||||
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *gemma3Model) Replacements() []string {
|
||||
return []string{
|
||||
"lm_head", "output",
|
||||
"model.embed_tokens", "token_embd",
|
||||
"model.norm", "output_norm",
|
||||
"vision_tower.vision_model.embeddings", "v",
|
||||
"vision_tower.vision_model", "v",
|
||||
"vision_model.vision_model.embeddings", "v",
|
||||
"vision_model.vision_model", "v",
|
||||
"language_model.", "",
|
||||
"model.layers", "blk",
|
||||
"encoder.layers", "blk",
|
||||
"input_layernorm", "attn_norm",
|
||||
"self_attn.q_proj", "attn_q",
|
||||
"self_attn.q_norm", "attn_q_norm",
|
||||
"self_attn.k_proj", "attn_k",
|
||||
"self_attn.k_norm", "attn_k_norm",
|
||||
"self_attn.v_proj", "attn_v",
|
||||
"self_attn.o_proj", "attn_output",
|
||||
"self_attn.out_proj", "attn_output",
|
||||
"mlp.gate_proj", "ffn_gate",
|
||||
"mlp.down_proj", "ffn_down",
|
||||
"mlp.up_proj", "ffn_up",
|
||||
"post_attention_layernorm", "post_attention_norm",
|
||||
"pre_feedforward_layernorm", "ffn_norm",
|
||||
"post_feedforward_layernorm", "post_ffw_norm",
|
||||
"input_projection_weight", "input_projection.weight",
|
||||
"multi_modal_projector", "mm",
|
||||
}
|
||||
}
|
@@ -6,7 +6,9 @@ import (
|
||||
"errors"
|
||||
"fmt"
|
||||
"io/fs"
|
||||
"log/slog"
|
||||
"os"
|
||||
"reflect"
|
||||
"slices"
|
||||
|
||||
"google.golang.org/protobuf/proto"
|
||||
@@ -15,6 +17,8 @@ import (
|
||||
)
|
||||
|
||||
func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
|
||||
slog.Debug("using spm vocabulary")
|
||||
|
||||
ast, err := parseAdditionalSpecialTokens(fsys)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
@@ -43,10 +47,19 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
|
||||
v.Types = append(v.Types, int32(t))
|
||||
default:
|
||||
tt := int32(sentencepiece.ModelProto_SentencePiece_NORMAL)
|
||||
if slices.Contains(ast, piece.GetPiece()) {
|
||||
|
||||
// temporary fix to handle gemma3 broken configs
|
||||
if slices.Contains([]string{"<end_of_turn>", "<start_of_turn>"}, piece.GetPiece()) {
|
||||
tt = int32(sentencepiece.ModelProto_SentencePiece_CONTROL)
|
||||
}
|
||||
|
||||
for _, t := range ast {
|
||||
if t.Content == piece.GetPiece() {
|
||||
tt = int32(sentencepiece.ModelProto_SentencePiece_CONTROL)
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
v.Types = append(v.Types, tt)
|
||||
}
|
||||
}
|
||||
@@ -78,10 +91,16 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
|
||||
return cmp.Compare(i.id, j.id)
|
||||
})
|
||||
|
||||
n := len(v.Tokens)
|
||||
for i, t := range ts {
|
||||
if t.id != i+n {
|
||||
return nil, fmt.Errorf("invalid token id: %d", t.id)
|
||||
for _, t := range ts {
|
||||
if t.id < len(v.Tokens) {
|
||||
if v.Tokens[t.id] == t.content {
|
||||
slog.Warn("tokenizer", "duplicate token", t.content, "id", t.id)
|
||||
continue
|
||||
}
|
||||
return nil, fmt.Errorf("token mismatch: %s != %s at pos [%d]", t.content, v.Tokens[t.id], t.id)
|
||||
}
|
||||
if t.id != len(v.Tokens) {
|
||||
return nil, fmt.Errorf("invalid token id: [%d] as pos [%d]", t.id, len(v.Tokens))
|
||||
}
|
||||
|
||||
v.Tokens = append(v.Tokens, t.content)
|
||||
@@ -92,7 +111,15 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
|
||||
return &v, nil
|
||||
}
|
||||
|
||||
func parseAdditionalSpecialTokens(fsys fs.FS) ([]string, error) {
|
||||
type specialToken struct {
|
||||
Content string `json:"content"`
|
||||
Lstrip bool `json:"lstrip"`
|
||||
Normalized bool `json:"normalized"`
|
||||
Rstrip bool `json:"rstrip"`
|
||||
SingleWord bool `json:"single_word"`
|
||||
}
|
||||
|
||||
func parseAdditionalSpecialTokens(fsys fs.FS) ([]specialToken, error) {
|
||||
f, err := fsys.Open("special_tokens_map.json")
|
||||
if errors.Is(err, os.ErrNotExist) {
|
||||
return nil, nil
|
||||
@@ -102,12 +129,43 @@ func parseAdditionalSpecialTokens(fsys fs.FS) ([]string, error) {
|
||||
defer f.Close()
|
||||
|
||||
var m struct {
|
||||
AdditionalSpecialTokens []string `json:"additional_special_tokens"`
|
||||
AdditionalSpecialTokens any `json:"additional_special_tokens"`
|
||||
}
|
||||
|
||||
if err := json.NewDecoder(f).Decode(&m); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return m.AdditionalSpecialTokens, nil
|
||||
var ast []specialToken
|
||||
|
||||
switch st := m.AdditionalSpecialTokens.(type) {
|
||||
case []string:
|
||||
for _, s := range st {
|
||||
ast = append(ast, specialToken{Content: s})
|
||||
}
|
||||
case []any:
|
||||
for _, s := range st {
|
||||
// marshal and unmarshal the object to get the special token
|
||||
tMap := s.(map[string]any)
|
||||
data, err := json.Marshal(tMap)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var token specialToken
|
||||
err = json.Unmarshal(data, &token)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
ast = append(ast, token)
|
||||
}
|
||||
|
||||
default:
|
||||
slog.Warn("special token", "unknown token", reflect.TypeOf(st))
|
||||
}
|
||||
|
||||
slog.Debug("spm tokenizer", "additional tokens", ast)
|
||||
|
||||
return ast, nil
|
||||
}
|
||||
|
@@ -118,6 +118,35 @@ To run tests, use `go test`:
|
||||
go test ./...
|
||||
```
|
||||
|
||||
> NOTE: In rare cirumstances, you may nedd to change a package using the new
|
||||
> "synctest" package in go1.24.
|
||||
>
|
||||
> If you do not have the "synctest" package enabled, you will not see build or
|
||||
> test failures resulting from your change(s), if any, locally, but CI will
|
||||
> break.
|
||||
>
|
||||
> If you see failures in CI, you can either keep pushing changes to see if the
|
||||
> CI build passes, or you can enable the "synctest" package locally to see the
|
||||
> failures before pushing.
|
||||
>
|
||||
> To enable the "synctest" package for testing, run the following command:
|
||||
>
|
||||
> ```shell
|
||||
> GOEXPERIMENT=synctest go test ./...
|
||||
> ```
|
||||
>
|
||||
> If you wish to enable synctest for all go commands, you can set the
|
||||
> `GOEXPERIMENT` environment variable in your shell profile or by using:
|
||||
>
|
||||
> ```shell
|
||||
> go env -w GOEXPERIMENT=synctest
|
||||
> ```
|
||||
>
|
||||
> Which will enable the "synctest" package for all go commands without needing
|
||||
> to set it for all shell sessions.
|
||||
>
|
||||
> The synctest package is not required for production builds.
|
||||
|
||||
## Library detection
|
||||
|
||||
Ollama looks for acceleration libraries in the following paths relative to the `ollama` executable:
|
||||
|
@@ -20,7 +20,7 @@ Please refer to the [GPU docs](./gpu.md).
|
||||
|
||||
## How can I specify the context window size?
|
||||
|
||||
By default, Ollama uses a context window size of 2048 tokens.
|
||||
By default, Ollama uses a context window size of 2048 tokens. This can be overridden with the `OLLAMA_CONTEXT_LENGTH` environment variable. For example, to set the default context length to 8K, use: `OLLAMA_CONTEXT_LENGTH=8192 ollama serve`.
|
||||
|
||||
To change this when using `ollama run`, use `/set parameter`:
|
||||
|
||||
|
@@ -75,7 +75,7 @@ RestartSec=3
|
||||
Environment="PATH=$PATH"
|
||||
|
||||
[Install]
|
||||
WantedBy=default.target
|
||||
WantedBy=multi-user.target
|
||||
```
|
||||
|
||||
Then start the service:
|
||||
|
@@ -81,9 +81,11 @@ help you keep up to date.
|
||||
|
||||
If you'd like to install or integrate Ollama as a service, a standalone
|
||||
`ollama-windows-amd64.zip` zip file is available containing only the Ollama CLI
|
||||
and GPU library dependencies for Nvidia and AMD. This allows for embedding
|
||||
Ollama in existing applications, or running it as a system service via `ollama
|
||||
serve` with tools such as [NSSM](https://nssm.cc/).
|
||||
and GPU library dependencies for Nvidia. If you have an AMD GPU, also download
|
||||
and extract the additional ROCm package `ollama-windows-amd64-rocm.zip` into the
|
||||
same directory. This allows for embedding Ollama in existing applications, or
|
||||
running it as a system service via `ollama serve` with tools such as
|
||||
[NSSM](https://nssm.cc/).
|
||||
|
||||
> [!NOTE]
|
||||
> If you are upgrading from a prior version, you should remove the old directories first.
|
||||
|
@@ -73,6 +73,7 @@ func AllowedOrigins() (origins []string) {
|
||||
"file://*",
|
||||
"tauri://*",
|
||||
"vscode-webview://*",
|
||||
"vscode-file://*",
|
||||
)
|
||||
|
||||
return origins
|
||||
|
@@ -69,6 +69,7 @@ func TestOrigins(t *testing.T) {
|
||||
"file://*",
|
||||
"tauri://*",
|
||||
"vscode-webview://*",
|
||||
"vscode-file://*",
|
||||
}},
|
||||
{"http://10.0.0.1", []string{
|
||||
"http://10.0.0.1",
|
||||
@@ -88,6 +89,7 @@ func TestOrigins(t *testing.T) {
|
||||
"file://*",
|
||||
"tauri://*",
|
||||
"vscode-webview://*",
|
||||
"vscode-file://*",
|
||||
}},
|
||||
{"http://172.16.0.1,https://192.168.0.1", []string{
|
||||
"http://172.16.0.1",
|
||||
@@ -108,6 +110,7 @@ func TestOrigins(t *testing.T) {
|
||||
"file://*",
|
||||
"tauri://*",
|
||||
"vscode-webview://*",
|
||||
"vscode-file://*",
|
||||
}},
|
||||
{"http://totally.safe,http://definitely.legit", []string{
|
||||
"http://totally.safe",
|
||||
@@ -128,6 +131,7 @@ func TestOrigins(t *testing.T) {
|
||||
"file://*",
|
||||
"tauri://*",
|
||||
"vscode-webview://*",
|
||||
"vscode-file://*",
|
||||
}},
|
||||
}
|
||||
for _, tt := range cases {
|
||||
|
@@ -100,6 +100,10 @@ func (kv KV) Float(key string, defaultValue ...float32) float32 {
|
||||
return keyValue(kv, key, append(defaultValue, 0)...)
|
||||
}
|
||||
|
||||
func (kv KV) Bool(key string, defaultValue ...bool) bool {
|
||||
return keyValue(kv, key, append(defaultValue, false)...)
|
||||
}
|
||||
|
||||
func (kv KV) Strings(key string, defaultValue ...[]string) []string {
|
||||
r := keyValue(kv, key, &array{})
|
||||
s := make([]string, r.size)
|
||||
@@ -120,7 +124,20 @@ func (kv KV) Uints(key string, defaultValue ...[]uint32) []uint32 {
|
||||
return s
|
||||
}
|
||||
|
||||
func keyValue[T string | uint32 | uint64 | float32 | *array](kv KV, key string, defaultValue ...T) T {
|
||||
func (kv KV) Floats(key string, defaultValue ...[]float32) []float32 {
|
||||
r := keyValue(kv, key, &array{})
|
||||
s := make([]float32, r.size)
|
||||
for i := range r.size {
|
||||
s[i] = float32(r.values[i].(float32))
|
||||
}
|
||||
return s
|
||||
}
|
||||
|
||||
func (kv KV) OllamaEngineRequired() bool {
|
||||
return kv.Architecture() == "gemma3"
|
||||
}
|
||||
|
||||
func keyValue[T string | uint32 | uint64 | float32 | *array | bool](kv KV, key string, defaultValue ...T) T {
|
||||
if !strings.HasPrefix(key, "tokenizer.") && !strings.HasPrefix(key, "general.") {
|
||||
key = kv.Architecture() + "." + key
|
||||
}
|
||||
@@ -472,7 +489,7 @@ func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialO
|
||||
// vocab graph
|
||||
4*batch*(embedding+vocab)+embedding*vocab*105/128,
|
||||
)
|
||||
case "gemma", "gemma2":
|
||||
case "gemma", "gemma2", "gemma3":
|
||||
fullOffload = max(
|
||||
4*batch*(embedding+vocab),
|
||||
4*batch*(2+context+context*heads+2*embedding+2*embeddingHeadsK*heads),
|
||||
@@ -561,6 +578,43 @@ func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialO
|
||||
return
|
||||
}
|
||||
|
||||
func (llm GGML) VisionGraphSize() (weights, graphSize uint64) {
|
||||
switch llm.KV().Architecture() {
|
||||
case "mllama":
|
||||
for _, layer := range llm.Tensors().GroupLayers()["v"] {
|
||||
weights += layer.Size()
|
||||
}
|
||||
|
||||
kv := func(n string) uint64 {
|
||||
if v, ok := llm.KV()["mllama.vision."+n].(uint32); ok {
|
||||
return uint64(v)
|
||||
}
|
||||
|
||||
return 0
|
||||
}
|
||||
|
||||
imageSize := kv("image_size")
|
||||
|
||||
maxNumTiles := kv("max_num_tiles")
|
||||
embeddingLength := kv("embedding_length")
|
||||
headCount := kv("attention.head_count")
|
||||
|
||||
numPatches := (imageSize / kv("patch_size")) * (imageSize / kv("patch_size"))
|
||||
if _, ok := llm.Tensors().GroupLayers()["v"]["class_embd"]; ok {
|
||||
numPatches++
|
||||
}
|
||||
|
||||
numPaddedPatches := numPatches + 8 - (numPatches%8)%8
|
||||
|
||||
graphSize = 4 * (8 +
|
||||
imageSize*imageSize*kv("num_channels")*maxNumTiles +
|
||||
embeddingLength*numPatches*maxNumTiles +
|
||||
9*embeddingLength*numPaddedPatches*maxNumTiles +
|
||||
numPaddedPatches*maxNumTiles*numPaddedPatches*maxNumTiles*headCount)
|
||||
}
|
||||
return weights, graphSize
|
||||
}
|
||||
|
||||
// SupportsKVCacheType checks if the requested cache type is supported
|
||||
func (f GGML) SupportsKVCacheType(cacheType string) bool {
|
||||
return slices.Contains([]string{"f16", "q8_0", "q4_0"}, cacheType)
|
||||
|
19
go.mod
19
go.mod
@@ -1,6 +1,6 @@
|
||||
module github.com/ollama/ollama
|
||||
|
||||
go 1.24
|
||||
go 1.24.0
|
||||
|
||||
require (
|
||||
github.com/containerd/console v1.0.3
|
||||
@@ -11,7 +11,7 @@ require (
|
||||
github.com/spf13/cobra v1.7.0
|
||||
github.com/stretchr/testify v1.9.0
|
||||
github.com/x448/float16 v0.8.4
|
||||
golang.org/x/sync v0.10.0
|
||||
golang.org/x/sync v0.11.0
|
||||
)
|
||||
|
||||
require (
|
||||
@@ -24,7 +24,7 @@ require (
|
||||
github.com/nlpodyssey/gopickle v0.3.0
|
||||
github.com/pdevine/tensor v0.0.0-20240510204454-f88f4562727c
|
||||
golang.org/x/image v0.22.0
|
||||
gonum.org/v1/gonum v0.15.0
|
||||
golang.org/x/tools v0.30.0
|
||||
)
|
||||
|
||||
require (
|
||||
@@ -44,6 +44,7 @@ require (
|
||||
github.com/xtgo/set v1.0.0 // indirect
|
||||
go4.org/unsafe/assume-no-moving-gc v0.0.0-20231121144256-b99613f794b6 // indirect
|
||||
golang.org/x/xerrors v0.0.0-20200804184101-5ec99f83aff1 // indirect
|
||||
gonum.org/v1/gonum v0.15.0 // indirect
|
||||
gorgonia.org/vecf32 v0.9.0 // indirect
|
||||
gorgonia.org/vecf64 v0.9.0 // indirect
|
||||
)
|
||||
@@ -69,12 +70,12 @@ require (
|
||||
github.com/twitchyliquid64/golang-asm v0.15.1 // indirect
|
||||
github.com/ugorji/go/codec v1.2.12 // indirect
|
||||
golang.org/x/arch v0.8.0 // indirect
|
||||
golang.org/x/crypto v0.31.0
|
||||
golang.org/x/exp v0.0.0-20231110203233-9a3e6036ecaa
|
||||
golang.org/x/net v0.25.0 // indirect
|
||||
golang.org/x/sys v0.28.0
|
||||
golang.org/x/term v0.27.0
|
||||
golang.org/x/text v0.21.0
|
||||
golang.org/x/crypto v0.33.0
|
||||
golang.org/x/exp v0.0.0-20250218142911-aa4b98e5adaa
|
||||
golang.org/x/net v0.35.0 // indirect
|
||||
golang.org/x/sys v0.30.0
|
||||
golang.org/x/term v0.29.0
|
||||
golang.org/x/text v0.22.0
|
||||
google.golang.org/protobuf v1.34.1
|
||||
gopkg.in/yaml.v3 v3.0.1 // indirect
|
||||
)
|
||||
|
30
go.sum
30
go.sum
@@ -214,16 +214,16 @@ golang.org/x/crypto v0.0.0-20190308221718-c2843e01d9a2/go.mod h1:djNgcEr1/C05ACk
|
||||
golang.org/x/crypto v0.0.0-20190510104115-cbcb75029529/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
|
||||
golang.org/x/crypto v0.0.0-20191011191535-87dc89f01550/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
|
||||
golang.org/x/crypto v0.0.0-20200622213623-75b288015ac9/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto=
|
||||
golang.org/x/crypto v0.31.0 h1:ihbySMvVjLAeSH1IbfcRTkD/iNscyz8rGzjF/E5hV6U=
|
||||
golang.org/x/crypto v0.31.0/go.mod h1:kDsLvtWBEx7MV9tJOj9bnXsPbxwJQ6csT/x4KIN4Ssk=
|
||||
golang.org/x/crypto v0.33.0 h1:IOBPskki6Lysi0lo9qQvbxiQ+FvsCC/YWOecCHAixus=
|
||||
golang.org/x/crypto v0.33.0/go.mod h1:bVdXmD7IV/4GdElGPozy6U7lWdRXA4qyRVGJV57uQ5M=
|
||||
golang.org/x/exp v0.0.0-20180321215751-8460e604b9de/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
|
||||
golang.org/x/exp v0.0.0-20180807140117-3d87b88a115f/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
|
||||
golang.org/x/exp v0.0.0-20190121172915-509febef88a4/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
|
||||
golang.org/x/exp v0.0.0-20190125153040-c74c464bbbf2/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
|
||||
golang.org/x/exp v0.0.0-20190306152737-a1d7652674e8/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
|
||||
golang.org/x/exp v0.0.0-20191002040644-a1355ae1e2c3/go.mod h1:NOZ3BPKG0ec/BKJQgnvsSFpcKLM5xXVWnvZS97DWHgE=
|
||||
golang.org/x/exp v0.0.0-20231110203233-9a3e6036ecaa h1:FRnLl4eNAQl8hwxVVC17teOw8kdjVDVAiFMtgUdTSRQ=
|
||||
golang.org/x/exp v0.0.0-20231110203233-9a3e6036ecaa/go.mod h1:zk2irFbV9DP96SEBUUAy67IdHUaZuSnrz1n472HUCLE=
|
||||
golang.org/x/exp v0.0.0-20250218142911-aa4b98e5adaa h1:t2QcU6V556bFjYgu4L6C+6VrCPyJZ+eyRsABUPs1mz4=
|
||||
golang.org/x/exp v0.0.0-20250218142911-aa4b98e5adaa/go.mod h1:BHOTPb3L19zxehTsLoJXVaTktb06DFgmdW6Wb9s8jqk=
|
||||
golang.org/x/image v0.0.0-20180708004352-c73c2afc3b81/go.mod h1:ux5Hcp/YLpHSI86hEcLt0YII63i6oz57MZXIpbrjZUs=
|
||||
golang.org/x/image v0.0.0-20190227222117-0694c2d4d067/go.mod h1:kZ7UVZpmo3dzQBMxlp+ypCbDeSB+sBbTgSJuh5dn5js=
|
||||
golang.org/x/image v0.0.0-20190802002840-cff245a6509b/go.mod h1:FeLwcggjj3mMvU+oOTbSwawSJRM1uh48EjtB4UJZlP0=
|
||||
@@ -257,8 +257,8 @@ golang.org/x/net v0.0.0-20200822124328-c89045814202/go.mod h1:/O7V0waA8r7cgGh81R
|
||||
golang.org/x/net v0.0.0-20201021035429-f5854403a974/go.mod h1:sp8m0HH+o8qH0wwXwYZr8TS3Oi6o0r6Gce1SSxlDquU=
|
||||
golang.org/x/net v0.0.0-20210405180319-a5a99cb37ef4/go.mod h1:p54w0d4576C0XHj96bSt6lcn1PtDYWL6XObtHCRCNQM=
|
||||
golang.org/x/net v0.0.0-20210614182718-04defd469f4e/go.mod h1:9nx3DQGgdP8bBQD5qxJ1jj9UTztislL4KSBs9R2vV5Y=
|
||||
golang.org/x/net v0.25.0 h1:d/OCCoBEUq33pjydKrGQhw7IlUPI2Oylr+8qLx49kac=
|
||||
golang.org/x/net v0.25.0/go.mod h1:JkAGAh7GEvH74S6FOH42FLoXpXbE/aqXSrIQjXgsiwM=
|
||||
golang.org/x/net v0.35.0 h1:T5GQRQb2y08kTAByq9L4/bz8cipCdA8FbRTXewonqY8=
|
||||
golang.org/x/net v0.35.0/go.mod h1:EglIi67kWsHKlRzzVMUD93VMSWGFOMSZgxFjparz1Qk=
|
||||
golang.org/x/oauth2 v0.0.0-20180821212333-d2e6202438be/go.mod h1:N/0e6XlmueqKjAGxoOufVs8QHGRruUQn6yWY3a++T0U=
|
||||
golang.org/x/oauth2 v0.0.0-20200107190931-bf48bf16ab8d/go.mod h1:gOpvHmFTYa4IltrdGE7lF6nIHvwfUNPOp7c8zoXwtLw=
|
||||
golang.org/x/sync v0.0.0-20180314180146-1d60e4601c6f/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
|
||||
@@ -268,8 +268,8 @@ golang.org/x/sync v0.0.0-20190423024810-112230192c58/go.mod h1:RxMgew5VJxzue5/jJ
|
||||
golang.org/x/sync v0.0.0-20190911185100-cd5d95a43a6e/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
|
||||
golang.org/x/sync v0.0.0-20201020160332-67f06af15bc9/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
|
||||
golang.org/x/sync v0.0.0-20210220032951-036812b2e83c/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
|
||||
golang.org/x/sync v0.10.0 h1:3NQrjDixjgGwUOCaF8w2+VYHv0Ve/vGYSbdkTa98gmQ=
|
||||
golang.org/x/sync v0.10.0/go.mod h1:Czt+wKu1gCyEFDUtn0jG5QVvpJ6rzVqr5aXyt9drQfk=
|
||||
golang.org/x/sync v0.11.0 h1:GGz8+XQP4FvTTrjZPzNKTMFtSXH80RAzG+5ghFPgK9w=
|
||||
golang.org/x/sync v0.11.0/go.mod h1:Czt+wKu1gCyEFDUtn0jG5QVvpJ6rzVqr5aXyt9drQfk=
|
||||
golang.org/x/sys v0.0.0-20180830151530-49385e6e1522/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
|
||||
golang.org/x/sys v0.0.0-20190215142949-d0b11bdaac8a/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
|
||||
golang.org/x/sys v0.0.0-20190312061237-fead79001313/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
|
||||
@@ -285,17 +285,17 @@ golang.org/x/sys v0.0.0-20210510120138-977fb7262007/go.mod h1:oPkhp1MJrh7nUepCBc
|
||||
golang.org/x/sys v0.0.0-20210630005230-0f9fa26af87c/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
||||
golang.org/x/sys v0.5.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
||||
golang.org/x/sys v0.6.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
||||
golang.org/x/sys v0.28.0 h1:Fksou7UEQUWlKvIdsqzJmUmCX3cZuD2+P3XyyzwMhlA=
|
||||
golang.org/x/sys v0.28.0/go.mod h1:/VUhepiaJMQUp4+oa/7Zr1D23ma6VTLIYjOOTFZPUcA=
|
||||
golang.org/x/sys v0.30.0 h1:QjkSwP/36a20jFYWkSue1YwXzLmsV5Gfq7Eiy72C1uc=
|
||||
golang.org/x/sys v0.30.0/go.mod h1:/VUhepiaJMQUp4+oa/7Zr1D23ma6VTLIYjOOTFZPUcA=
|
||||
golang.org/x/term v0.0.0-20201126162022-7de9c90e9dd1/go.mod h1:bj7SfCRtBDWHUb9snDiAeCFNEtKQo2Wmx5Cou7ajbmo=
|
||||
golang.org/x/term v0.27.0 h1:WP60Sv1nlK1T6SupCHbXzSaN0b9wUmsPoRS9b61A23Q=
|
||||
golang.org/x/term v0.27.0/go.mod h1:iMsnZpn0cago0GOrHO2+Y7u7JPn5AylBrcoWkElMTSM=
|
||||
golang.org/x/term v0.29.0 h1:L6pJp37ocefwRRtYPKSWOWzOtWSxVajvz2ldH/xi3iU=
|
||||
golang.org/x/term v0.29.0/go.mod h1:6bl4lRlvVuDgSf3179VpIxBF0o10JUpXWOnI7nErv7s=
|
||||
golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
|
||||
golang.org/x/text v0.3.3/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
|
||||
golang.org/x/text v0.3.5/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
|
||||
golang.org/x/text v0.3.6/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
|
||||
golang.org/x/text v0.21.0 h1:zyQAAkrwaneQ066sspRyJaG9VNi/YJ1NfzcGB3hZ/qo=
|
||||
golang.org/x/text v0.21.0/go.mod h1:4IBbMaMmOPCJ8SecivzSH54+73PCFmPWxNTLm+vZkEQ=
|
||||
golang.org/x/text v0.22.0 h1:bofq7m3/HAFvbF51jz3Q9wLg3jkvSPuiZu/pD1XwgtM=
|
||||
golang.org/x/text v0.22.0/go.mod h1:YRoo4H8PVmsu+E3Ou7cqLVH8oXWIHVoX0jqUWALQhfY=
|
||||
golang.org/x/tools v0.0.0-20180525024113-a5b4c53f6e8b/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
|
||||
golang.org/x/tools v0.0.0-20180917221912-90fa682c2a6e/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
|
||||
golang.org/x/tools v0.0.0-20190114222345-bf090417da8b/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
|
||||
@@ -309,6 +309,8 @@ golang.org/x/tools v0.0.0-20200130002326-2f3ba24bd6e7/go.mod h1:TB2adYChydJhpapK
|
||||
golang.org/x/tools v0.0.0-20200619180055-7c47624df98f/go.mod h1:EkVYQZoAsY45+roYkvgYkIh4xh/qjgUK9TdY2XT94GE=
|
||||
golang.org/x/tools v0.0.0-20210106214847-113979e3529a/go.mod h1:emZCQorbCU4vsT4fOWvOPXz4eW1wZW4PmDk9uLelYpA=
|
||||
golang.org/x/tools v0.1.4/go.mod h1:o0xws9oXOQQZyjljx8fwUC0k7L1pTE6eaCbjGeHmOkk=
|
||||
golang.org/x/tools v0.30.0 h1:BgcpHewrV5AUp2G9MebG4XPFI1E2W41zU1SaqVA9vJY=
|
||||
golang.org/x/tools v0.30.0/go.mod h1:c347cR/OJfw5TI+GfX7RUPNMdDRRbjvYTS0jPyvsVtY=
|
||||
golang.org/x/xerrors v0.0.0-20190717185122-a985d3407aa7/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
|
||||
golang.org/x/xerrors v0.0.0-20191011141410-1b5146add898/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
|
||||
golang.org/x/xerrors v0.0.0-20191204190536-9bdfabe68543/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
|
||||
|
@@ -4,6 +4,7 @@ import (
|
||||
"errors"
|
||||
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
var (
|
||||
@@ -29,6 +30,17 @@ type Cache interface {
|
||||
// cache implementation used.
|
||||
Put(ctx ml.Context, key, value ml.Tensor)
|
||||
|
||||
// SetConfig controls optimizations (mostly backend-specific) that may transform
|
||||
// the output of the cache to work better with specific kernels. If not called,
|
||||
// the backend settings will be used. This works well when calling Attention.
|
||||
//
|
||||
// The config can be overridden by models, especially if they require vanilla
|
||||
// output when implementing their own version of attention. To do this, pass
|
||||
// an empty ml.CacheConfig.
|
||||
//
|
||||
// Most models will not need to use this.
|
||||
SetConfig(ml.CacheConfig)
|
||||
|
||||
// ** cache management **
|
||||
|
||||
// Init sets up runtime parameters
|
||||
@@ -40,7 +52,7 @@ type Cache interface {
|
||||
// StartForward is called before the start of the model's forward pass.
|
||||
// For each token in the coming batch, there must be a corresponding
|
||||
// entry in positions and seqs.
|
||||
StartForward(ctx ml.Context, positions []int32, seqs []int) error
|
||||
StartForward(ctx ml.Context, opts input.Options) error
|
||||
|
||||
// CopyPrefix copies tokens in the range [0, len) from srcSeq to dstSeq
|
||||
CopyPrefix(srcSeq, dstSeq int, len int32)
|
||||
|
@@ -8,6 +8,7 @@ import (
|
||||
"slices"
|
||||
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
type shiftFn func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error)
|
||||
@@ -22,6 +23,11 @@ type Causal struct {
|
||||
Capacity int32
|
||||
windowSize int32
|
||||
|
||||
opts CausalOptions
|
||||
|
||||
// config controls mostly backend-specific optimizations
|
||||
config *ml.CacheConfig
|
||||
|
||||
// ** current forward pass **
|
||||
|
||||
// the active layer for Get and Put
|
||||
@@ -39,6 +45,12 @@ type Causal struct {
|
||||
// locations in the cache that are needed for this batch
|
||||
curCellRange cellRange
|
||||
|
||||
// curSequences is the sequences corresponding to this pass's entries in the cache
|
||||
curSequences []int
|
||||
|
||||
// curPositions is the positions corresponding to this pass's entries in the cache
|
||||
curPositions []int32
|
||||
|
||||
// ** cache metadata **
|
||||
|
||||
// for each possible location in the cache, stores the position and set of sequences
|
||||
@@ -52,8 +64,8 @@ type Causal struct {
|
||||
|
||||
shiftFn shiftFn
|
||||
backend ml.Backend
|
||||
cacheCtx ml.Context
|
||||
keys, values []ml.Tensor
|
||||
ctxs map[int]ml.Context
|
||||
keys, values map[int]ml.Tensor
|
||||
}
|
||||
|
||||
type cacheCell struct {
|
||||
@@ -67,28 +79,72 @@ type cellRange struct {
|
||||
}
|
||||
|
||||
func NewCausalCache(shift shiftFn) *Causal {
|
||||
return &Causal{windowSize: math.MaxInt32, shiftFn: shift}
|
||||
return &Causal{
|
||||
windowSize: math.MaxInt32,
|
||||
shiftFn: shift,
|
||||
ctxs: make(map[int]ml.Context),
|
||||
keys: make(map[int]ml.Tensor),
|
||||
values: make(map[int]ml.Tensor),
|
||||
}
|
||||
}
|
||||
|
||||
func NewSWACache(windowSize int32, shift shiftFn) *Causal {
|
||||
return &Causal{windowSize: windowSize, shiftFn: shift}
|
||||
return &Causal{
|
||||
windowSize: windowSize,
|
||||
shiftFn: shift,
|
||||
ctxs: make(map[int]ml.Context),
|
||||
keys: make(map[int]ml.Tensor),
|
||||
values: make(map[int]ml.Tensor),
|
||||
}
|
||||
}
|
||||
|
||||
func (c *Causal) Init(backend ml.Backend, dtype ml.DType, capacity int32) {
|
||||
if c.config == nil {
|
||||
var config ml.CacheConfig
|
||||
if cc, ok := backend.(ml.BackendCacheConfig); ok {
|
||||
config = cc.CacheConfig()
|
||||
}
|
||||
c.config = &config
|
||||
}
|
||||
|
||||
if c.config.CachePadding == 0 {
|
||||
c.config.CachePadding = 1
|
||||
}
|
||||
|
||||
if c.config.MaskBatchPadding == 0 {
|
||||
c.config.MaskBatchPadding = 1
|
||||
}
|
||||
|
||||
if c.config.MaskDType == ml.DTypeOther {
|
||||
c.config.MaskDType = ml.DTypeF32
|
||||
}
|
||||
|
||||
c.DType = dtype
|
||||
c.Capacity = capacity
|
||||
c.cells = make([]cacheCell, capacity)
|
||||
c.Capacity = int32(roundUp(int(capacity), c.config.CachePadding))
|
||||
c.cells = make([]cacheCell, c.Capacity)
|
||||
c.cellRanges = make(map[int]cellRange)
|
||||
c.backend = backend
|
||||
c.cacheCtx = backend.NewContext()
|
||||
}
|
||||
|
||||
func (c *Causal) SetConfig(config ml.CacheConfig) {
|
||||
if c.config != nil {
|
||||
panic("config cannot be changed after being previously set, either by the model or backend")
|
||||
}
|
||||
|
||||
c.config = &config
|
||||
}
|
||||
|
||||
func (c *Causal) Close() {
|
||||
c.cacheCtx.Close()
|
||||
for _, ctx := range c.ctxs {
|
||||
ctx.Close()
|
||||
}
|
||||
}
|
||||
|
||||
func (c *Causal) StartForward(ctx ml.Context, positions []int32, seqs []int) error {
|
||||
c.curBatchSize = len(positions)
|
||||
func (c *Causal) StartForward(ctx ml.Context, opts input.Options) error {
|
||||
c.curBatchSize = len(opts.Positions)
|
||||
c.curSequences = opts.Sequences
|
||||
c.curPositions = opts.Positions
|
||||
c.opts.Except = nil
|
||||
|
||||
var err error
|
||||
c.curLoc, err = c.findStartLoc()
|
||||
@@ -101,8 +157,8 @@ func (c *Causal) StartForward(ctx ml.Context, positions []int32, seqs []int) err
|
||||
}
|
||||
|
||||
c.curCellRange = newRange()
|
||||
for i, pos := range positions {
|
||||
seq := seqs[i]
|
||||
for i, pos := range opts.Positions {
|
||||
seq := opts.Sequences[i]
|
||||
|
||||
c.cells[c.curLoc+i] = cacheCell{pos: pos, sequences: []int{seq}}
|
||||
|
||||
@@ -127,7 +183,7 @@ func (c *Causal) StartForward(ctx ml.Context, positions []int32, seqs []int) err
|
||||
c.cellRanges[seq] = seqRange
|
||||
}
|
||||
|
||||
c.curMask, err = c.buildMask(ctx, positions, seqs)
|
||||
c.curMask, err = c.buildMask(ctx)
|
||||
|
||||
return err
|
||||
}
|
||||
@@ -157,36 +213,91 @@ func (c *Causal) findStartLoc() (int, error) {
|
||||
return 0, fmt.Errorf("%w (length: %v)", ErrKvCacheFull, c.Capacity)
|
||||
}
|
||||
|
||||
func roundDown(length, pad int) int {
|
||||
return (length / pad) * pad
|
||||
}
|
||||
|
||||
func roundUp(length, pad int) int {
|
||||
return ((length + pad - 1) / pad) * pad
|
||||
}
|
||||
|
||||
// Builds a mask of history x batch indicating whether for each token in the batch the
|
||||
// token in the history should apply. This is based on both the sequence and causality (the
|
||||
// position of the history is not ahead of the token in the batch).
|
||||
func (c *Causal) buildMask(ctx ml.Context, positions []int32, seqs []int) (ml.Tensor, error) {
|
||||
// TODO(jessegross): This does not do padding, which is required for flash attention
|
||||
len := c.curCellRange.max - c.curCellRange.min + 1
|
||||
mask := make([]float32, c.curBatchSize*len)
|
||||
func (c *Causal) buildMask(ctx ml.Context) (ml.Tensor, error) {
|
||||
// Align and pad the two dimensions as required by the backend
|
||||
batchSize := roundUp(c.curBatchSize, c.config.MaskBatchPadding)
|
||||
|
||||
c.curCellRange.min = roundDown(c.curCellRange.min, c.config.CachePadding)
|
||||
c.curCellRange.max = roundUp(c.curCellRange.max+1, c.config.CachePadding) - 1
|
||||
|
||||
length := c.curCellRange.max - c.curCellRange.min + 1
|
||||
mask := make([]float32, batchSize*length)
|
||||
|
||||
for i := range c.curBatchSize {
|
||||
enabled := !slices.Contains(c.opts.Except, i)
|
||||
for j := c.curCellRange.min; j <= c.curCellRange.max; j++ {
|
||||
if !slices.Contains(c.cells[j].sequences, seqs[i]) || c.cells[j].pos > positions[i] ||
|
||||
c.cells[j].pos < positions[i]-c.windowSize {
|
||||
mask[i*len+(j-c.curCellRange.min)] = float32(math.Inf(-1))
|
||||
if !slices.Contains(c.cells[j].sequences, c.curSequences[i]) ||
|
||||
(enabled && c.cells[j].pos > c.curPositions[i]) ||
|
||||
c.cells[j].pos < c.curPositions[i]-c.windowSize {
|
||||
mask[i*length+(j-c.curCellRange.min)] = float32(math.Inf(-1))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return ctx.FromFloatSlice(mask, len, c.curBatchSize)
|
||||
// Mask out any padding tokens we added. For padding that we added to the cache history, this
|
||||
// has already been masked out because the sequence doesn't match.
|
||||
for i := c.curBatchSize * length; i < len(mask); i++ {
|
||||
mask[i] = float32(math.Inf(-1))
|
||||
}
|
||||
|
||||
maskTensor, err := ctx.Input().FromFloatSlice(mask, length, batchSize)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if c.config.MaskDType != ml.DTypeF32 {
|
||||
out := ctx.Input().Empty(c.config.MaskDType, maskTensor.Shape()...)
|
||||
ctx.Forward(maskTensor.Copy(ctx, out))
|
||||
maskTensor = out
|
||||
}
|
||||
|
||||
return maskTensor, nil
|
||||
}
|
||||
|
||||
func moveCell(ctx ml.Context, objs []ml.Tensor, src, dst, len int) {
|
||||
for _, obj := range objs {
|
||||
if obj == nil {
|
||||
func (c *Causal) moveCells(ctx ml.Context, src, dst, len int) {
|
||||
for i, key := range c.keys {
|
||||
if key == nil {
|
||||
continue
|
||||
}
|
||||
|
||||
srcView := obj.View(ctx, obj.Stride(2)*src, obj.Dim(0)*obj.Dim(1)*len)
|
||||
dstView := obj.View(ctx, obj.Stride(2)*dst, obj.Dim(0)*obj.Dim(1)*len)
|
||||
kHeadDim := key.Dim(0)
|
||||
numKVHeads := key.Dim(1)
|
||||
rowSize := key.Stride(2)
|
||||
|
||||
ctx.Forward(srcView.Copy(ctx, dstView))
|
||||
kSrcView := key.View(ctx, rowSize*src, kHeadDim*numKVHeads*len)
|
||||
kDstView := key.View(ctx, rowSize*dst, kHeadDim*numKVHeads*len)
|
||||
|
||||
value := c.values[i]
|
||||
var vSrcView, vDstView ml.Tensor
|
||||
if c.config.PermutedV {
|
||||
vHeadDim := value.Dim(1)
|
||||
elemSize := value.Stride(0)
|
||||
|
||||
vSrcView = value.View(ctx, elemSize*src, len, int(c.Capacity)*elemSize, vHeadDim*numKVHeads)
|
||||
vDstView = value.View(ctx, elemSize*dst, len, int(c.Capacity)*elemSize, vHeadDim*numKVHeads)
|
||||
} else {
|
||||
vHeadDim := value.Dim(0)
|
||||
rowSize := value.Stride(2)
|
||||
|
||||
vSrcView = value.View(ctx, rowSize*src, vHeadDim*numKVHeads*len)
|
||||
vDstView = value.View(ctx, rowSize*dst, vHeadDim*numKVHeads*len)
|
||||
}
|
||||
|
||||
ctx.Forward(
|
||||
kSrcView.Copy(ctx, kDstView),
|
||||
vSrcView.Copy(ctx, vDstView),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -219,7 +330,7 @@ func (c *Causal) defrag() {
|
||||
layers++
|
||||
}
|
||||
|
||||
maxMoves := ctx.MaxTensors() / (6 * layers)
|
||||
maxMoves := ctx.MaxGraphNodes() / (6 * layers)
|
||||
moves := 0
|
||||
|
||||
var pendingSrc, pendingDst, pendingLen int
|
||||
@@ -238,8 +349,7 @@ func (c *Causal) defrag() {
|
||||
pendingLen++
|
||||
break
|
||||
} else {
|
||||
moveCell(ctx, c.keys, pendingSrc, pendingDst, pendingLen)
|
||||
moveCell(ctx, c.values, pendingSrc, pendingDst, pendingLen)
|
||||
c.moveCells(ctx, pendingSrc, pendingDst, pendingLen)
|
||||
moves++
|
||||
}
|
||||
}
|
||||
@@ -263,8 +373,7 @@ func (c *Causal) defrag() {
|
||||
}
|
||||
|
||||
if pendingLen > 0 {
|
||||
moveCell(ctx, c.keys, pendingSrc, pendingDst, pendingLen)
|
||||
moveCell(ctx, c.values, pendingSrc, pendingDst, pendingLen)
|
||||
c.moveCells(ctx, pendingSrc, pendingDst, pendingLen)
|
||||
moves++
|
||||
}
|
||||
|
||||
@@ -293,45 +402,107 @@ func (c *Causal) defrag() {
|
||||
}
|
||||
|
||||
func (c *Causal) SetLayer(layer int) {
|
||||
if layer >= len(c.keys) {
|
||||
c.keys = append(c.keys, make([]ml.Tensor, layer-len(c.keys)+1)...)
|
||||
c.values = append(c.values, make([]ml.Tensor, layer-len(c.values)+1)...)
|
||||
}
|
||||
|
||||
c.curLayer = layer
|
||||
}
|
||||
|
||||
type CausalOptions struct {
|
||||
// Enabled controls whether the causal mask is generated for a particular index in a batch
|
||||
Except []int
|
||||
}
|
||||
|
||||
// SetCausal disables causal mask generation for a particular range of indicies in
|
||||
// the current batch for subsequent calls to Get. The state resets for the next forward pass.
|
||||
func (c *Causal) SetCausal(ctx ml.Context, opts CausalOptions) {
|
||||
if !slices.Equal(c.opts.Except, opts.Except) {
|
||||
c.opts = opts
|
||||
if ctx != nil {
|
||||
var err error
|
||||
c.curMask, err = c.buildMask(ctx)
|
||||
if err != nil {
|
||||
// This error should never occur because we have previously built a mask with the same shape
|
||||
panic(fmt.Errorf("SetCausal: %w", err))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (c *Causal) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
|
||||
key := c.keys[c.curLayer]
|
||||
value := c.values[c.curLayer]
|
||||
|
||||
key = key.View(ctx, key.Stride(2)*c.curCellRange.min,
|
||||
key.Dim(0), key.Stride(1),
|
||||
key.Dim(1), key.Stride(2),
|
||||
c.curMask.Dim(0),
|
||||
kHeadDim := key.Dim(0)
|
||||
numKVHeads := key.Dim(1)
|
||||
rowSize := key.Stride(2)
|
||||
cachedSize := c.curMask.Dim(0)
|
||||
|
||||
key = key.View(ctx, rowSize*c.curCellRange.min,
|
||||
kHeadDim, key.Stride(1),
|
||||
numKVHeads, key.Stride(2),
|
||||
cachedSize,
|
||||
)
|
||||
|
||||
value = value.View(ctx, key.Stride(2)*c.curCellRange.min,
|
||||
value.Dim(0), value.Stride(1),
|
||||
value.Dim(1), value.Stride(2),
|
||||
c.curMask.Dim(0),
|
||||
)
|
||||
if c.config.PermutedV {
|
||||
vHeadDim := value.Dim(1)
|
||||
elemSize := value.Stride(0)
|
||||
|
||||
value = value.View(ctx, elemSize*c.curCellRange.min,
|
||||
cachedSize, value.Stride(1),
|
||||
vHeadDim, value.Stride(2),
|
||||
numKVHeads,
|
||||
)
|
||||
} else {
|
||||
vHeadDim := value.Dim(0)
|
||||
rowSize := value.Stride(2)
|
||||
|
||||
value = value.View(ctx, rowSize*c.curCellRange.min,
|
||||
vHeadDim, value.Stride(1),
|
||||
numKVHeads, value.Stride(2),
|
||||
cachedSize,
|
||||
)
|
||||
}
|
||||
|
||||
return key, value, c.curMask
|
||||
}
|
||||
|
||||
func (c *Causal) Put(ctx ml.Context, key, value ml.Tensor) {
|
||||
if c.curBatchSize != key.Dim(2) {
|
||||
panic(fmt.Errorf("inconsistent batch sizes (layer: %v, batch size: %v layer batch size: %v)", c.curLayer, c.curBatchSize, key.Dim(2)))
|
||||
kHeadDim := key.Dim(0)
|
||||
vHeadDim := value.Dim(0)
|
||||
numKVHeads := key.Dim(1)
|
||||
batchSize := key.Dim(2)
|
||||
|
||||
if c.curBatchSize != batchSize {
|
||||
panic(fmt.Errorf("inconsistent batch sizes (layer: %v, batch size: %v layer batch size: %v)", c.curLayer, c.curBatchSize, batchSize))
|
||||
}
|
||||
|
||||
if c.keys[c.curLayer] == nil || c.values[c.curLayer] == nil {
|
||||
c.keys[c.curLayer] = c.cacheCtx.Zeros(c.DType, key.Dim(0), key.Dim(1), int(c.Capacity))
|
||||
c.values[c.curLayer] = c.cacheCtx.Zeros(c.DType, value.Dim(0), value.Dim(1), int(c.Capacity))
|
||||
if _, ok := c.ctxs[c.curLayer]; !ok {
|
||||
c.ctxs[c.curLayer] = c.backend.NewContextSize(2).Layer(c.curLayer)
|
||||
}
|
||||
|
||||
ctx.Forward(key.Copy(ctx, c.keys[c.curLayer].View(ctx, c.keys[c.curLayer].Stride(2)*c.curLoc, key.Dim(0)*key.Dim(1)*key.Dim(2))))
|
||||
ctx.Forward(value.Copy(ctx, c.values[c.curLayer].View(ctx, c.values[c.curLayer].Stride(2)*c.curLoc, value.Dim(0)*value.Dim(1)*value.Dim(2))))
|
||||
if _, ok := c.keys[c.curLayer]; !ok {
|
||||
c.keys[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, kHeadDim, numKVHeads, int(c.Capacity))
|
||||
}
|
||||
|
||||
if _, ok := c.values[c.curLayer]; !ok {
|
||||
if c.config.PermutedV {
|
||||
c.values[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, int(c.Capacity), vHeadDim, numKVHeads)
|
||||
} else {
|
||||
c.values[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, vHeadDim, numKVHeads, int(c.Capacity))
|
||||
}
|
||||
}
|
||||
|
||||
rowSize := c.keys[c.curLayer].Stride(2)
|
||||
ctx.Forward(key.Copy(ctx, c.keys[c.curLayer].View(ctx, rowSize*c.curLoc, kHeadDim*numKVHeads*batchSize)))
|
||||
|
||||
if c.config.PermutedV {
|
||||
elemSize := c.values[c.curLayer].Stride(0)
|
||||
|
||||
value = value.Permute(ctx, 1, 2, 0, 3)
|
||||
ctx.Forward(value.Copy(ctx, c.values[c.curLayer].View(ctx, elemSize*c.curLoc, batchSize, int(c.Capacity)*elemSize, vHeadDim*numKVHeads)))
|
||||
} else {
|
||||
rowSize := c.values[c.curLayer].Stride(2)
|
||||
|
||||
ctx.Forward(value.Copy(ctx, c.values[c.curLayer].View(ctx, rowSize*c.curLoc, vHeadDim*numKVHeads*batchSize)))
|
||||
}
|
||||
}
|
||||
|
||||
func (c *Causal) CopyPrefix(srcSeq, dstSeq int, len int32) {
|
||||
@@ -377,7 +548,7 @@ func (c *Causal) shift(seq int, beginIndex, offset int32) error {
|
||||
}
|
||||
}
|
||||
|
||||
kShift, err := ctx.FromIntSlice(offsets, len(offsets))
|
||||
kShift, err := ctx.Input().FromIntSlice(offsets, len(offsets))
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
@@ -387,9 +558,13 @@ func (c *Causal) shift(seq int, beginIndex, offset int32) error {
|
||||
continue
|
||||
}
|
||||
|
||||
key = key.View(ctx, key.Stride(2)*seqRange.min,
|
||||
key.Dim(0), key.Stride(1),
|
||||
key.Dim(1), key.Stride(2),
|
||||
kHeadDim := key.Dim(0)
|
||||
numKVHeads := key.Dim(1)
|
||||
rowSize := key.Stride(2)
|
||||
|
||||
key = key.View(ctx, rowSize*seqRange.min,
|
||||
kHeadDim, key.Stride(1),
|
||||
numKVHeads, key.Stride(2),
|
||||
size,
|
||||
)
|
||||
|
||||
|
@@ -6,6 +6,7 @@ import (
|
||||
"testing"
|
||||
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
type testCase struct {
|
||||
@@ -269,7 +270,7 @@ func testCache(t *testing.T, backend ml.Backend, cache Cache, tests []testCase)
|
||||
context := backend.NewContext()
|
||||
defer context.Close()
|
||||
|
||||
err := cache.StartForward(context, test.pos, test.seqs)
|
||||
err := cache.StartForward(context, input.Options{Positions: test.pos, Sequences: test.seqs})
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
@@ -280,9 +281,7 @@ func testCache(t *testing.T, backend ml.Backend, cache Cache, tests []testCase)
|
||||
|
||||
out, _, mask := cache.Get(context)
|
||||
|
||||
context.Forward(out)
|
||||
context.Forward(mask)
|
||||
context.Compute(out, mask)
|
||||
context.Forward(out, mask).Compute(out, mask)
|
||||
|
||||
if !slices.Equal(out.Floats(), test.expected) || !slices.Equal(out.Shape(), test.expectedShape) || !slices.Equal(mask.Floats(), test.expectedMask) {
|
||||
t.Errorf("TestCache: have %v (shape %v); want %v (shape %v); mask: have %v (shape %v) want %v", out.Floats(), out.Shape(), test.expected, test.expectedShape, mask.Floats(), mask.Shape(), test.expectedMask)
|
||||
@@ -305,13 +304,17 @@ func (b *testBackend) NewContext() ml.Context {
|
||||
return &testContext{}
|
||||
}
|
||||
|
||||
func (b *testBackend) NewContextSize(int) ml.Context {
|
||||
return &testContext{}
|
||||
}
|
||||
|
||||
func (b *testBackend) SystemInfo() string {
|
||||
return "not implemented"
|
||||
}
|
||||
|
||||
type testContext struct{}
|
||||
|
||||
func (c *testContext) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
|
||||
func (c *testContext) Empty(dtype ml.DType, shape ...int) ml.Tensor {
|
||||
total := 0
|
||||
|
||||
if len(shape) > 0 {
|
||||
@@ -324,8 +327,12 @@ func (c *testContext) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
|
||||
return &testTensor{dtype: dtype, elementSize: 4, data: make([]float32, total), shape: shape}
|
||||
}
|
||||
|
||||
func (c *testContext) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
|
||||
return c.Empty(dtype, shape...)
|
||||
}
|
||||
|
||||
func (c *testContext) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
|
||||
t := c.Zeros(ml.DTypeF32, shape...).(*testTensor)
|
||||
t := c.Empty(ml.DTypeF32, shape...).(*testTensor)
|
||||
|
||||
copy(t.data, s)
|
||||
|
||||
@@ -344,11 +351,15 @@ func (c *testContext) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
|
||||
return out, nil
|
||||
}
|
||||
|
||||
func (c *testContext) Forward(ml.Tensor) {}
|
||||
func (c *testContext) Input() ml.Context { return c }
|
||||
func (c *testContext) Output() ml.Context { return c }
|
||||
func (c *testContext) Layer(int) ml.Context { return c }
|
||||
|
||||
func (c *testContext) Forward(...ml.Tensor) ml.Context { return c }
|
||||
|
||||
func (c *testContext) Compute(...ml.Tensor) {}
|
||||
|
||||
func (c *testContext) MaxTensors() int {
|
||||
func (c *testContext) MaxGraphNodes() int {
|
||||
return 10
|
||||
}
|
||||
|
||||
@@ -393,7 +404,7 @@ func (t *testTensor) Floats() []float32 {
|
||||
}
|
||||
|
||||
func (t *testTensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
||||
out := ctx.Zeros(t.DType(), t.Shape()...).(*testTensor)
|
||||
out := ctx.Empty(t.DType(), t.Shape()...).(*testTensor)
|
||||
|
||||
for i := range out.data {
|
||||
out.data[i] = t.data[i] + t2.(*testTensor).data[i]
|
||||
@@ -430,11 +441,19 @@ func (t *testTensor) Scale(ctx ml.Context, s float64) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) AvgPool1D(ctx ml.Context, k, s, p int) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) AvgPool2D(ctx ml.Context, k, s int, p float32) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) Conv2D(ctx ml.Context, weight ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, dim uint32, base, scale float32) ml.Tensor {
|
||||
func (t *testTensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, dim, ropeType uint32, base, scale float32) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
@@ -470,7 +489,7 @@ func (t *testTensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
|
||||
|
||||
context := &testContext{}
|
||||
|
||||
view := context.Zeros(t.dtype, s...).(*testTensor)
|
||||
view := context.Empty(t.dtype, s...).(*testTensor)
|
||||
view.data = t.data[offset : offset+len(view.data)]
|
||||
|
||||
return view
|
||||
@@ -484,6 +503,10 @@ func (t *testTensor) Contiguous(ctx ml.Context) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) Set(ctx ml.Context, t2 ml.Tensor, offset int, strides ...int) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
@@ -1,7 +1,10 @@
|
||||
package kvcache
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
// Encoder cache stores K and V tensors that are position independent
|
||||
@@ -11,6 +14,9 @@ import (
|
||||
//
|
||||
// Not currently safe for multiple sequences
|
||||
type EncoderCache struct {
|
||||
// config controls mostly backend-specific optimizations
|
||||
config *ml.CacheConfig
|
||||
|
||||
// ** current forward pass **
|
||||
|
||||
// the active layer for Get and Put
|
||||
@@ -30,36 +36,59 @@ type EncoderCache struct {
|
||||
encoderPos int32
|
||||
|
||||
// ** cache data storage **
|
||||
|
||||
cacheCtx ml.Context
|
||||
keys, values []ml.Tensor
|
||||
backend ml.Backend
|
||||
ctxs map[int]ml.Context
|
||||
keys, values map[int]ml.Tensor
|
||||
}
|
||||
|
||||
func NewEncoderCache() *EncoderCache {
|
||||
return &EncoderCache{}
|
||||
return &EncoderCache{
|
||||
ctxs: make(map[int]ml.Context),
|
||||
keys: make(map[int]ml.Tensor),
|
||||
values: make(map[int]ml.Tensor),
|
||||
}
|
||||
}
|
||||
|
||||
func (c *EncoderCache) Init(backend ml.Backend, dtype ml.DType, capacity int32) {
|
||||
c.cacheCtx = backend.NewContext()
|
||||
if c.config == nil {
|
||||
var config ml.CacheConfig
|
||||
if cc, ok := backend.(ml.BackendCacheConfig); ok {
|
||||
config = cc.CacheConfig()
|
||||
}
|
||||
c.config = &config
|
||||
}
|
||||
|
||||
if c.config.CachePadding != 0 && c.config.CachePadding != 1 {
|
||||
panic(fmt.Errorf("encoder cache is unable to enforce requested CachePadding (%v)", c.config.CachePadding))
|
||||
}
|
||||
|
||||
c.backend = backend
|
||||
}
|
||||
|
||||
func (c *EncoderCache) SetConfig(config ml.CacheConfig) {
|
||||
if c.config != nil {
|
||||
panic("config cannot be changed after being previously set, either by the model or backend")
|
||||
}
|
||||
|
||||
c.config = &config
|
||||
}
|
||||
|
||||
func (c *EncoderCache) Close() {
|
||||
c.cacheCtx.Close()
|
||||
for _, ctx := range c.ctxs {
|
||||
ctx.Close()
|
||||
}
|
||||
}
|
||||
|
||||
func (c *EncoderCache) StartForward(ctx ml.Context, positions []int32, seqs []int) error {
|
||||
// The image is always in the first position
|
||||
c.curPos = positions[0]
|
||||
func (c *EncoderCache) StartForward(ctx ml.Context, opts input.Options) error {
|
||||
// We work with the most recent image
|
||||
if len(opts.Multimodal) > 0 {
|
||||
c.curPos = opts.Positions[opts.Multimodal[len(opts.Multimodal)-1].Index]
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (c *EncoderCache) SetLayer(layer int) {
|
||||
if layer >= len(c.keys) {
|
||||
c.keys = append(c.keys, make([]ml.Tensor, layer-len(c.keys)+1)...)
|
||||
c.values = append(c.values, make([]ml.Tensor, layer-len(c.values)+1)...)
|
||||
}
|
||||
|
||||
c.curLayer = layer
|
||||
}
|
||||
|
||||
@@ -75,13 +104,26 @@ func (c *EncoderCache) Put(ctx ml.Context, key, value ml.Tensor) {
|
||||
c.encoderPos = c.curPos
|
||||
c.encoderCached = true
|
||||
|
||||
if c.keys[c.curLayer] == nil || c.values[c.curLayer] == nil {
|
||||
c.keys[c.curLayer] = c.cacheCtx.Zeros(key.DType(), key.Shape()...)
|
||||
c.values[c.curLayer] = c.cacheCtx.Zeros(value.DType(), value.Shape()...)
|
||||
if c.config.PermutedV {
|
||||
value = value.Permute(ctx, 1, 2, 0, 3)
|
||||
}
|
||||
|
||||
ctx.Forward(key.Copy(ctx, c.keys[c.curLayer]))
|
||||
ctx.Forward(value.Copy(ctx, c.values[c.curLayer]))
|
||||
if _, ok := c.ctxs[c.curLayer]; !ok {
|
||||
c.ctxs[c.curLayer] = c.backend.NewContextSize(2).Layer(c.curLayer)
|
||||
}
|
||||
|
||||
if _, ok := c.keys[c.curLayer]; !ok {
|
||||
c.keys[c.curLayer] = c.ctxs[c.curLayer].Empty(key.DType(), key.Shape()...)
|
||||
}
|
||||
|
||||
if _, ok := c.values[c.curLayer]; !ok {
|
||||
c.values[c.curLayer] = c.ctxs[c.curLayer].Empty(value.DType(), value.Shape()...)
|
||||
}
|
||||
|
||||
ctx.Forward(
|
||||
key.Copy(ctx, c.keys[c.curLayer]),
|
||||
value.Copy(ctx, c.values[c.curLayer]),
|
||||
)
|
||||
}
|
||||
|
||||
func (c *EncoderCache) CopyPrefix(srcSeq, dstSeq int, len int32) {
|
||||
|
@@ -4,6 +4,7 @@ import (
|
||||
"math"
|
||||
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
// Wrapper cache is a container for multiple types of caches,
|
||||
@@ -28,20 +29,26 @@ func (c *WrapperCache) Init(backend ml.Backend, dtype ml.DType, capacity int32)
|
||||
}
|
||||
}
|
||||
|
||||
func (c *WrapperCache) SetConfig(config ml.CacheConfig) {
|
||||
for _, cache := range c.caches {
|
||||
cache.SetConfig(config)
|
||||
}
|
||||
}
|
||||
|
||||
func (c *WrapperCache) Close() {
|
||||
for _, cache := range c.caches {
|
||||
cache.Close()
|
||||
}
|
||||
}
|
||||
|
||||
func (c *WrapperCache) StartForward(ctx ml.Context, positions []int32, seqs []int) error {
|
||||
func (c *WrapperCache) StartForward(ctx ml.Context, opts input.Options) error {
|
||||
for i, cache := range c.caches {
|
||||
err := cache.StartForward(ctx, positions, seqs)
|
||||
err := cache.StartForward(ctx, opts)
|
||||
if err != nil {
|
||||
// unwind on error - Remove with endIndex set to math.MaxInt32 does not fail
|
||||
for j := i - 1; j >= 0; j-- {
|
||||
for k := range positions {
|
||||
_ = c.caches[j].Remove(seqs[k], positions[k], math.MaxInt32)
|
||||
for k := range opts.Positions {
|
||||
_ = c.caches[j].Remove(opts.Sequences[k], opts.Positions[k], math.MaxInt32)
|
||||
}
|
||||
}
|
||||
return err
|
||||
|
1
llama/llama.cpp/include/llama.h
vendored
1
llama/llama.cpp/include/llama.h
vendored
@@ -105,6 +105,7 @@ extern "C" {
|
||||
LLAMA_VOCAB_PRE_TYPE_CHAMELEON = 26,
|
||||
LLAMA_VOCAB_PRE_TYPE_MINERVA = 27,
|
||||
LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM = 28,
|
||||
LLAMA_VOCAB_PRE_TYPE_GPT4O = 29,
|
||||
};
|
||||
|
||||
enum llama_rope_type {
|
||||
|
10
llama/llama.cpp/src/llama-model.cpp
vendored
10
llama/llama.cpp/src/llama-model.cpp
vendored
@@ -2283,7 +2283,11 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
|
||||
// output
|
||||
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
|
||||
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, 0);
|
||||
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
|
||||
// if output is NULL, init from the input tok embed
|
||||
if (output == NULL) {
|
||||
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
|
||||
}
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
auto & layer = layers[i];
|
||||
@@ -2298,8 +2302,8 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
|
||||
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff }, 0);
|
||||
|
||||
layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
|
||||
layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
|
||||
layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
|
||||
layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_PHIMOE:
|
||||
|
13
llama/llama.cpp/src/llama-vocab.cpp
vendored
13
llama/llama.cpp/src/llama-vocab.cpp
vendored
@@ -392,6 +392,13 @@ struct llm_tokenizer_bpe : llm_tokenizer {
|
||||
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
|
||||
};
|
||||
break;
|
||||
case LLAMA_VOCAB_PRE_TYPE_GPT4O:
|
||||
// original regex from tokenizer.json
|
||||
// [^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+
|
||||
regex_exprs = {
|
||||
"[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))*((?=[\\p{L}])([^A-Z]))+(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])?|[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))+((?=[\\p{L}])([^A-Z]))*(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])?|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
|
||||
};
|
||||
break;
|
||||
default:
|
||||
// default regex for BPE tokenization pre-processing
|
||||
regex_exprs = {
|
||||
@@ -1436,7 +1443,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
||||
|
||||
const int precompiled_charsmap_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP).c_str());
|
||||
if (precompiled_charsmap_keyidx != -1) {
|
||||
size_t n_precompiled_charsmap = gguf_get_arr_n(ctx, precompiled_charsmap_keyidx);
|
||||
size_t n_precompiled_charsmap = gguf_get_arr_data_n(ctx, precompiled_charsmap_keyidx);
|
||||
const char * pc = (const char *) gguf_get_arr_data(ctx, precompiled_charsmap_keyidx);
|
||||
precompiled_charsmap.assign(pc, pc + n_precompiled_charsmap);
|
||||
#ifdef IS_BIG_ENDIAN
|
||||
@@ -1583,6 +1590,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
||||
} else if (
|
||||
tokenizer_pre == "megrez") {
|
||||
pre_type = LLAMA_VOCAB_PRE_TYPE_QWEN2;
|
||||
} else if (
|
||||
tokenizer_pre == "gpt-4o") {
|
||||
pre_type = LLAMA_VOCAB_PRE_TYPE_GPT4O;
|
||||
clean_spaces = false;
|
||||
} else {
|
||||
LLAMA_LOG_WARN("%s: missing or unrecognized pre-tokenizer type, using: 'default'\n", __func__);
|
||||
pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
||||
|
144
llama/llama.go
144
llama/llama.go
@@ -21,77 +21,45 @@ package llama
|
||||
|
||||
extern bool llamaProgressCallback(float progress, void *user_data);
|
||||
extern void llamaLog(int level, char* text, void* user_data);
|
||||
|
||||
typedef enum {COMP_UNKNOWN,COMP_GCC,COMP_CLANG} COMPILER;
|
||||
COMPILER inline get_compiler() {
|
||||
#if defined(__clang__)
|
||||
return COMP_CLANG;
|
||||
#elif defined(__GNUC__)
|
||||
return COMP_GCC;
|
||||
#else
|
||||
return UNKNOWN_COMPILER;
|
||||
#endif
|
||||
}
|
||||
|
||||
*/
|
||||
import "C"
|
||||
|
||||
import (
|
||||
"context"
|
||||
_ "embed"
|
||||
"errors"
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"os"
|
||||
"runtime"
|
||||
"runtime/cgo"
|
||||
"slices"
|
||||
"strings"
|
||||
"sync/atomic"
|
||||
"unsafe"
|
||||
|
||||
_ "github.com/ollama/ollama/llama/llama.cpp/common"
|
||||
_ "github.com/ollama/ollama/llama/llama.cpp/examples/llava"
|
||||
_ "github.com/ollama/ollama/llama/llama.cpp/src"
|
||||
"github.com/ollama/ollama/ml/backend/ggml/ggml/src"
|
||||
ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
|
||||
)
|
||||
|
||||
func init() {
|
||||
C.llama_log_set(C.ggml_log_callback(C.llamaLog), nil)
|
||||
}
|
||||
|
||||
//export llamaLog
|
||||
func llamaLog(level C.int, text *C.char, _ unsafe.Pointer) {
|
||||
// slog levels zeros INFO and are multiples of 4
|
||||
if slog.Default().Enabled(context.TODO(), slog.Level(int(level-C.GGML_LOG_LEVEL_INFO)*4)) {
|
||||
fmt.Fprint(os.Stderr, C.GoString(text))
|
||||
}
|
||||
}
|
||||
|
||||
func BackendInit() {
|
||||
ggml.OnceLoad()
|
||||
C.llama_backend_init()
|
||||
}
|
||||
|
||||
func PrintSystemInfo() string {
|
||||
var compiler string
|
||||
switch C.get_compiler() {
|
||||
case C.COMP_UNKNOWN:
|
||||
compiler = "cgo(unknown_compiler)"
|
||||
case C.COMP_GCC:
|
||||
compiler = "cgo(gcc)"
|
||||
case C.COMP_CLANG:
|
||||
compiler = "cgo(clang)"
|
||||
}
|
||||
return C.GoString(C.llama_print_system_info()) + compiler
|
||||
}
|
||||
|
||||
var logLevel atomic.Int32
|
||||
|
||||
func init() {
|
||||
logLevel.Store(int32(C.GGML_LOG_LEVEL_INFO))
|
||||
C.llama_log_set((C.ggml_log_callback)(C.llamaLog), nil)
|
||||
}
|
||||
|
||||
func EnableDebug() {
|
||||
logLevel.Store(int32(C.GGML_LOG_LEVEL_DEBUG))
|
||||
}
|
||||
|
||||
//export llamaLog
|
||||
func llamaLog(level int32, text *C.char, _ unsafe.Pointer) {
|
||||
if level < logLevel.Load() {
|
||||
return
|
||||
}
|
||||
|
||||
fmt.Fprint(os.Stderr, C.GoString(text))
|
||||
}
|
||||
|
||||
func GetModelArch(modelPath string) (string, error) {
|
||||
mp := C.CString(modelPath)
|
||||
defer C.free(unsafe.Pointer(mp))
|
||||
@@ -269,7 +237,7 @@ func LoadModelFromFile(modelPath string, params ModelParams) (*Model, error) {
|
||||
cparams.progress_callback_user_data = unsafe.Pointer(&handle)
|
||||
}
|
||||
|
||||
m := Model{c: C.llama_load_model_from_file(C.CString(modelPath), cparams)}
|
||||
m := Model{c: C.llama_model_load_from_file(C.CString(modelPath), cparams)}
|
||||
if m.c == nil {
|
||||
return nil, fmt.Errorf("unable to load model: %s", modelPath)
|
||||
}
|
||||
@@ -277,13 +245,27 @@ func LoadModelFromFile(modelPath string, params ModelParams) (*Model, error) {
|
||||
return &m, nil
|
||||
}
|
||||
|
||||
func LoadVocabFromFile(path string) (*Vocab, error) {
|
||||
mp := C.CString(path)
|
||||
defer C.free(unsafe.Pointer(mp))
|
||||
v := Vocab{c: C.llama_load_vocab_from_file(mp)}
|
||||
if v.c == nil {
|
||||
return nil, fmt.Errorf("unable to load vocab: %s", path)
|
||||
}
|
||||
return &v, nil
|
||||
}
|
||||
|
||||
func FreeVocab(vocab *Vocab) {
|
||||
C.llama_free_vocab(vocab.c)
|
||||
}
|
||||
|
||||
func FreeModel(model *Model) {
|
||||
C.llama_free_model(model.c)
|
||||
C.llama_model_free(model.c)
|
||||
}
|
||||
|
||||
func NewContextWithModel(model *Model, params ContextParams) (*Context, error) {
|
||||
c := Context{
|
||||
c: C.llama_new_context_with_model(model.c, params.c),
|
||||
c: C.llama_init_from_model(model.c, params.c),
|
||||
numThreads: int(params.c.n_threads),
|
||||
}
|
||||
if c.c == nil {
|
||||
@@ -294,15 +276,15 @@ func NewContextWithModel(model *Model, params ContextParams) (*Context, error) {
|
||||
}
|
||||
|
||||
func (m *Model) NumVocab() int {
|
||||
return int(C.llama_n_vocab(m.Vocab()))
|
||||
return int(C.llama_vocab_n_tokens(m.Vocab()))
|
||||
}
|
||||
|
||||
func (m *Model) TokenIsEog(token int) bool {
|
||||
return bool(C.llama_token_is_eog(m.Vocab(), C.llama_token(token)))
|
||||
return bool(C.llama_vocab_is_eog(m.Vocab(), C.llama_token(token)))
|
||||
}
|
||||
|
||||
func (m *Model) AddBOSToken() bool {
|
||||
return bool(C.llama_add_bos_token(m.Vocab()))
|
||||
return bool(C.llama_vocab_get_add_bos(m.Vocab()))
|
||||
}
|
||||
|
||||
func (m *Model) ApplyLoraFromFile(context *Context, loraPath string, scale float32, threads int) error {
|
||||
@@ -325,6 +307,10 @@ func (m *Model) ApplyLoraFromFile(context *Context, loraPath string, scale float
|
||||
return nil
|
||||
}
|
||||
|
||||
type Vocab struct {
|
||||
c *C.struct_llama_vocab
|
||||
}
|
||||
|
||||
func (m *Model) Vocab() *C.struct_llama_vocab {
|
||||
return C.llama_model_get_vocab(m.c)
|
||||
}
|
||||
@@ -485,7 +471,7 @@ func (m *Model) Tokenize(text string, addSpecial bool, parseSpecial bool) ([]int
|
||||
}
|
||||
|
||||
func (m *Model) NEmbd() int {
|
||||
return int(C.llama_n_embd(m.c))
|
||||
return int(C.llama_model_n_embd(m.c))
|
||||
}
|
||||
|
||||
func Quantize(infile, outfile string, ftype uint32) error {
|
||||
@@ -701,3 +687,53 @@ func SchemaToGrammar(schema []byte) []byte {
|
||||
}
|
||||
return buf[:n]
|
||||
}
|
||||
|
||||
type Sampler struct {
|
||||
c *C.struct_llama_sampler
|
||||
}
|
||||
|
||||
func NewGrammarSampler(vocab *Vocab, grammar string) *Sampler {
|
||||
cGrammar := C.CString(grammar)
|
||||
cRoot := C.CString("root")
|
||||
defer C.free(unsafe.Pointer(cGrammar))
|
||||
defer C.free(unsafe.Pointer(cRoot))
|
||||
|
||||
sampler := &Sampler{c: C.llama_sampler_init_grammar(vocab.c, cGrammar, cRoot)}
|
||||
|
||||
return sampler
|
||||
}
|
||||
|
||||
func (s *Sampler) Accept(token int32) {
|
||||
C.llama_sampler_accept(s.c, C.llama_token(token))
|
||||
}
|
||||
|
||||
type TokenData struct {
|
||||
Id int32
|
||||
Logit float32
|
||||
}
|
||||
|
||||
func (s *Sampler) Apply(tokens []TokenData) {
|
||||
tds := make([]C.struct_llama_token_data, len(tokens))
|
||||
for i, token := range tokens {
|
||||
tds[i] = C.struct_llama_token_data{
|
||||
id: C.int32_t(token.Id),
|
||||
logit: C.float(token.Logit),
|
||||
p: C.float(0.0),
|
||||
}
|
||||
}
|
||||
tda := &C.llama_token_data_array{
|
||||
data: (*C.struct_llama_token_data)(unsafe.Pointer(&tds[0])),
|
||||
size: C.size_t(len(tokens)),
|
||||
selected: C.int64_t(-1),
|
||||
sorted: C.bool(false),
|
||||
}
|
||||
|
||||
var pinner runtime.Pinner
|
||||
pinner.Pin(&tds[0])
|
||||
defer pinner.Unpin()
|
||||
|
||||
C.llama_sampler_apply(s.c, tda)
|
||||
for i := range tokens {
|
||||
tokens[i].Logit = float32(tds[i].logit)
|
||||
}
|
||||
}
|
||||
|
@@ -1,69 +0,0 @@
|
||||
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
||||
From: Michael Yang <mxyng@pm.me>
|
||||
Date: Tue, 11 Feb 2025 14:06:36 -0800
|
||||
Subject: [PATCH] try/catch backend load
|
||||
|
||||
---
|
||||
ggml/src/ggml-backend-reg.cpp | 45 ++++++++++++++++++-----------------
|
||||
1 file changed, 23 insertions(+), 22 deletions(-)
|
||||
|
||||
diff --git a/ggml/src/ggml-backend-reg.cpp b/ggml/src/ggml-backend-reg.cpp
|
||||
index 98d5e14d..1c19129a 100644
|
||||
--- a/ggml/src/ggml-backend-reg.cpp
|
||||
+++ b/ggml/src/ggml-backend-reg.cpp
|
||||
@@ -512,32 +512,33 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
|
||||
}
|
||||
fs::directory_iterator dir_it(search_path, fs::directory_options::skip_permission_denied);
|
||||
for (const auto & entry : dir_it) {
|
||||
- if (entry.is_regular_file()) {
|
||||
- std::wstring filename = entry.path().filename().wstring();
|
||||
- std::wstring ext = entry.path().extension().wstring();
|
||||
- if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
|
||||
- dl_handle_ptr handle { dl_load_library(entry.path().wstring()) };
|
||||
- if (!handle && !silent) {
|
||||
- GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
|
||||
- }
|
||||
- if (handle) {
|
||||
+ try {
|
||||
+ if (entry.is_regular_file()) {
|
||||
+ std::wstring filename = entry.path().filename().wstring();
|
||||
+ std::wstring ext = entry.path().extension().wstring();
|
||||
+ if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
|
||||
+ dl_handle_ptr handle { dl_load_library(entry.path().wstring()) };
|
||||
+ if (!handle) {
|
||||
+ GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
|
||||
+ continue;
|
||||
+ }
|
||||
+
|
||||
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
|
||||
- if (score_fn) {
|
||||
- int s = score_fn();
|
||||
-#ifndef NDEBUG
|
||||
- GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), s);
|
||||
-#endif
|
||||
- if (s > best_score) {
|
||||
- best_score = s;
|
||||
- best_path = entry.path().wstring();
|
||||
- }
|
||||
- } else {
|
||||
- if (!silent) {
|
||||
- GGML_LOG_INFO("%s: failed to find ggml_backend_score in %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
|
||||
- }
|
||||
+ if (!score_fn) {
|
||||
+ GGML_LOG_DEBUG("%s: failed to find ggml_backend_score in %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
|
||||
+ continue;
|
||||
+ }
|
||||
+
|
||||
+ int s = score_fn();
|
||||
+ GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), s);
|
||||
+ if (s > best_score) {
|
||||
+ best_score = s;
|
||||
+ best_path = entry.path().wstring();
|
||||
}
|
||||
}
|
||||
}
|
||||
+ } catch (const std::exception & e) {
|
||||
+ GGML_LOG_ERROR("%s: failed to load %s: %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), e.what());
|
||||
}
|
||||
}
|
||||
}
|
@@ -4,11 +4,11 @@ Date: Sun, 16 Feb 2025 20:00:22 -0500
|
||||
Subject: [PATCH] use std::filesystem::path instead of wstring
|
||||
|
||||
---
|
||||
ggml/src/ggml-backend-reg.cpp | 144 ++++++++++++++--------------------
|
||||
1 file changed, 58 insertions(+), 86 deletions(-)
|
||||
ggml/src/ggml-backend-reg.cpp | 199 +++++++++++++++-------------------
|
||||
1 file changed, 88 insertions(+), 111 deletions(-)
|
||||
|
||||
diff --git a/ggml/src/ggml-backend-reg.cpp b/ggml/src/ggml-backend-reg.cpp
|
||||
index 1c19129a..c854e6bb 100644
|
||||
index 98d5e14d..799af5f3 100644
|
||||
--- a/ggml/src/ggml-backend-reg.cpp
|
||||
+++ b/ggml/src/ggml-backend-reg.cpp
|
||||
@@ -66,26 +66,6 @@
|
||||
@@ -264,47 +264,55 @@ index 1c19129a..c854e6bb 100644
|
||||
for (const auto & search_path : search_paths) {
|
||||
if (!fs::exists(search_path)) {
|
||||
continue;
|
||||
@@ -514,31 +486,31 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
|
||||
@@ -513,29 +485,26 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
|
||||
fs::directory_iterator dir_it(search_path, fs::directory_options::skip_permission_denied);
|
||||
for (const auto & entry : dir_it) {
|
||||
try {
|
||||
if (entry.is_regular_file()) {
|
||||
- std::wstring filename = entry.path().filename().wstring();
|
||||
- std::wstring ext = entry.path().extension().wstring();
|
||||
+ std::string filename = entry.path().filename().string();
|
||||
+ std::string ext = entry.path().extension().string();
|
||||
if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
|
||||
- dl_handle_ptr handle { dl_load_library(entry.path().wstring()) };
|
||||
+ dl_handle_ptr handle { dl_load_library(entry.path()) };
|
||||
if (!handle) {
|
||||
- GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
|
||||
+ GGML_LOG_ERROR("%s: failed to load %s\n", __func__, path_to_string(entry.path()).c_str());
|
||||
continue;
|
||||
}
|
||||
|
||||
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
|
||||
if (!score_fn) {
|
||||
- GGML_LOG_DEBUG("%s: failed to find ggml_backend_score in %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
|
||||
+ GGML_LOG_DEBUG("%s: failed to find ggml_backend_score in %s\n", __func__, path_to_string(entry.path()).c_str());
|
||||
continue;
|
||||
}
|
||||
|
||||
int s = score_fn();
|
||||
- GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), s);
|
||||
+ GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, path_to_string(entry.path()).c_str(), s);
|
||||
if (s > best_score) {
|
||||
best_score = s;
|
||||
- best_path = entry.path().wstring();
|
||||
+ best_path = entry.path();
|
||||
}
|
||||
if (entry.is_regular_file()) {
|
||||
- std::wstring filename = entry.path().filename().wstring();
|
||||
- std::wstring ext = entry.path().extension().wstring();
|
||||
+ std::string filename = entry.path().filename().string();
|
||||
+ std::string ext = entry.path().extension().string();
|
||||
if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
|
||||
- dl_handle_ptr handle { dl_load_library(entry.path().wstring()) };
|
||||
- if (!handle && !silent) {
|
||||
- GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
|
||||
+ dl_handle_ptr handle { dl_load_library(entry.path()) };
|
||||
+ if (!handle) {
|
||||
+ GGML_LOG_ERROR("%s: failed to load %s\n", __func__, path_to_string(entry.path()).c_str());
|
||||
+ continue;
|
||||
}
|
||||
- if (handle) {
|
||||
- auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
|
||||
- if (score_fn) {
|
||||
- int s = score_fn();
|
||||
-#ifndef NDEBUG
|
||||
- GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), s);
|
||||
-#endif
|
||||
- if (s > best_score) {
|
||||
- best_score = s;
|
||||
- best_path = entry.path().wstring();
|
||||
- }
|
||||
- } else {
|
||||
- if (!silent) {
|
||||
- GGML_LOG_INFO("%s: failed to find ggml_backend_score in %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
|
||||
- }
|
||||
- }
|
||||
+
|
||||
+ auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
|
||||
+ if (!score_fn) {
|
||||
+ GGML_LOG_DEBUG("%s: failed to find ggml_backend_score in %s\n", __func__, path_to_string(entry.path()).c_str());
|
||||
+ continue;
|
||||
+ }
|
||||
+
|
||||
+ int s = score_fn();
|
||||
+ GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, path_to_string(entry.path()).c_str(), s);
|
||||
+ if (s > best_score) {
|
||||
+ best_score = s;
|
||||
+ best_path = entry.path();
|
||||
}
|
||||
}
|
||||
} catch (const std::exception & e) {
|
||||
- GGML_LOG_ERROR("%s: failed to load %s: %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), e.what());
|
||||
+ GGML_LOG_ERROR("%s: failed to load %s: %s\n", __func__, path_to_string(entry.path()).c_str(), e.what());
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -546,7 +518,7 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
|
||||
@@ -545,7 +514,7 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
|
||||
if (best_score == 0) {
|
||||
// try to load the base backend
|
||||
for (const auto & search_path : search_paths) {
|
||||
@@ -313,3 +321,49 @@ index 1c19129a..c854e6bb 100644
|
||||
if (fs::exists(path)) {
|
||||
return get_reg().load_backend(path, silent);
|
||||
}
|
||||
@@ -560,6 +529,14 @@ void ggml_backend_load_all() {
|
||||
ggml_backend_load_all_from_path(nullptr);
|
||||
}
|
||||
|
||||
+static void ggml_backend_try_load_best(const char * name, bool silent, const char * user_search_path) {
|
||||
+ try {
|
||||
+ ggml_backend_load_best(name, silent, user_search_path);
|
||||
+ } catch (const std::exception & e) {
|
||||
+ GGML_LOG_DEBUG("%s: failed to load %s: %s\n", __func__, name, e.what());
|
||||
+ }
|
||||
+}
|
||||
+
|
||||
void ggml_backend_load_all_from_path(const char * dir_path) {
|
||||
#ifdef NDEBUG
|
||||
bool silent = true;
|
||||
@@ -567,18 +544,18 @@ void ggml_backend_load_all_from_path(const char * dir_path) {
|
||||
bool silent = false;
|
||||
#endif
|
||||
|
||||
- ggml_backend_load_best("blas", silent, dir_path);
|
||||
- ggml_backend_load_best("cann", silent, dir_path);
|
||||
- ggml_backend_load_best("cuda", silent, dir_path);
|
||||
- ggml_backend_load_best("hip", silent, dir_path);
|
||||
- ggml_backend_load_best("kompute", silent, dir_path);
|
||||
- ggml_backend_load_best("metal", silent, dir_path);
|
||||
- ggml_backend_load_best("rpc", silent, dir_path);
|
||||
- ggml_backend_load_best("sycl", silent, dir_path);
|
||||
- ggml_backend_load_best("vulkan", silent, dir_path);
|
||||
- ggml_backend_load_best("opencl", silent, dir_path);
|
||||
- ggml_backend_load_best("musa", silent, dir_path);
|
||||
- ggml_backend_load_best("cpu", silent, dir_path);
|
||||
+ ggml_backend_try_load_best("blas", silent, dir_path);
|
||||
+ ggml_backend_try_load_best("cann", silent, dir_path);
|
||||
+ ggml_backend_try_load_best("cuda", silent, dir_path);
|
||||
+ ggml_backend_try_load_best("hip", silent, dir_path);
|
||||
+ ggml_backend_try_load_best("kompute", silent, dir_path);
|
||||
+ ggml_backend_try_load_best("metal", silent, dir_path);
|
||||
+ ggml_backend_try_load_best("rpc", silent, dir_path);
|
||||
+ ggml_backend_try_load_best("sycl", silent, dir_path);
|
||||
+ ggml_backend_try_load_best("vulkan", silent, dir_path);
|
||||
+ ggml_backend_try_load_best("opencl", silent, dir_path);
|
||||
+ ggml_backend_try_load_best("musa", silent, dir_path);
|
||||
+ ggml_backend_try_load_best("cpu", silent, dir_path);
|
||||
// check the environment variable GGML_BACKEND_PATH to load an out-of-tree backend
|
||||
const char * backend_path = std::getenv("GGML_BACKEND_PATH");
|
||||
if (backend_path) {
|
80
llama/patches/0018-add-phi4-support.patch
Normal file
80
llama/patches/0018-add-phi4-support.patch
Normal file
@@ -0,0 +1,80 @@
|
||||
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
||||
From: jmorganca <jmorganca@gmail.com>
|
||||
Date: Thu, 27 Feb 2025 15:12:26 -0800
|
||||
Subject: [PATCH] add phi4 support
|
||||
|
||||
---
|
||||
include/llama.h | 1 +
|
||||
src/llama-model.cpp | 10 +++++++---
|
||||
src/llama-vocab.cpp | 11 +++++++++++
|
||||
3 files changed, 19 insertions(+), 3 deletions(-)
|
||||
|
||||
diff --git a/include/llama.h b/include/llama.h
|
||||
index cc948005..16774711 100644
|
||||
--- a/include/llama.h
|
||||
+++ b/include/llama.h
|
||||
@@ -105,6 +105,7 @@ extern "C" {
|
||||
LLAMA_VOCAB_PRE_TYPE_CHAMELEON = 26,
|
||||
LLAMA_VOCAB_PRE_TYPE_MINERVA = 27,
|
||||
LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM = 28,
|
||||
+ LLAMA_VOCAB_PRE_TYPE_GPT4O = 29,
|
||||
};
|
||||
|
||||
enum llama_rope_type {
|
||||
diff --git a/src/llama-model.cpp b/src/llama-model.cpp
|
||||
index 21819080..ab1a07d1 100644
|
||||
--- a/src/llama-model.cpp
|
||||
+++ b/src/llama-model.cpp
|
||||
@@ -2283,7 +2283,11 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
|
||||
// output
|
||||
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
|
||||
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, 0);
|
||||
+ output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
|
||||
+ // if output is NULL, init from the input tok embed
|
||||
+ if (output == NULL) {
|
||||
+ output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
|
||||
+ }
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
auto & layer = layers[i];
|
||||
@@ -2298,8 +2302,8 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
|
||||
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff }, 0);
|
||||
|
||||
- layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
|
||||
- layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
|
||||
+ layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
|
||||
+ layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_PHIMOE:
|
||||
diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp
|
||||
index 1ca827eb..c7ff28be 100644
|
||||
--- a/src/llama-vocab.cpp
|
||||
+++ b/src/llama-vocab.cpp
|
||||
@@ -392,6 +392,13 @@ struct llm_tokenizer_bpe : llm_tokenizer {
|
||||
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
|
||||
};
|
||||
break;
|
||||
+ case LLAMA_VOCAB_PRE_TYPE_GPT4O:
|
||||
+ // original regex from tokenizer.json
|
||||
+ // [^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+
|
||||
+ regex_exprs = {
|
||||
+ "[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))*((?=[\\p{L}])([^A-Z]))+(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])?|[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))+((?=[\\p{L}])([^A-Z]))*(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])?|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
|
||||
+ };
|
||||
+ break;
|
||||
default:
|
||||
// default regex for BPE tokenization pre-processing
|
||||
regex_exprs = {
|
||||
@@ -1583,6 +1590,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
||||
} else if (
|
||||
tokenizer_pre == "megrez") {
|
||||
pre_type = LLAMA_VOCAB_PRE_TYPE_QWEN2;
|
||||
+ } else if (
|
||||
+ tokenizer_pre == "gpt-4o") {
|
||||
+ pre_type = LLAMA_VOCAB_PRE_TYPE_GPT4O;
|
||||
+ clean_spaces = false;
|
||||
} else {
|
||||
LLAMA_LOG_WARN("%s: missing or unrecognized pre-tokenizer type, using: 'default'\n", __func__);
|
||||
pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
64
llama/patches/0019-fix-string-arr-kv-loading.patch
Normal file
64
llama/patches/0019-fix-string-arr-kv-loading.patch
Normal file
@@ -0,0 +1,64 @@
|
||||
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
||||
From: jmorganca <jmorganca@gmail.com>
|
||||
Date: Wed, 5 Mar 2025 17:41:07 -0800
|
||||
Subject: [PATCH] fix string arr kv loading
|
||||
|
||||
---
|
||||
ggml/include/gguf.h | 1 +
|
||||
ggml/src/gguf.cpp | 7 +++++--
|
||||
src/llama-vocab.cpp | 2 +-
|
||||
3 files changed, 7 insertions(+), 3 deletions(-)
|
||||
|
||||
diff --git a/ggml/include/gguf.h b/ggml/include/gguf.h
|
||||
index 79ee2020..3efb22f0 100644
|
||||
--- a/ggml/include/gguf.h
|
||||
+++ b/ggml/include/gguf.h
|
||||
@@ -114,6 +114,7 @@ extern "C" {
|
||||
// get raw pointer to the first element of the array with the given key_id
|
||||
// for bool arrays, note that they are always stored as int8 on all platforms (usually this makes no difference)
|
||||
GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int64_t key_id);
|
||||
+ GGML_API size_t gguf_get_arr_data_n(const struct gguf_context * ctx, int64_t key_id);
|
||||
|
||||
// get ith C string from array with given key_id
|
||||
GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int64_t key_id, size_t i);
|
||||
diff --git a/ggml/src/gguf.cpp b/ggml/src/gguf.cpp
|
||||
index ab13669c..f75b923f 100644
|
||||
--- a/ggml/src/gguf.cpp
|
||||
+++ b/ggml/src/gguf.cpp
|
||||
@@ -777,10 +777,14 @@ enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int64_t key_id
|
||||
|
||||
const void * gguf_get_arr_data(const struct gguf_context * ctx, int64_t key_id) {
|
||||
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||||
- GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING);
|
||||
return ctx->kv[key_id].data.data();
|
||||
}
|
||||
|
||||
+size_t gguf_get_arr_data_n(const struct gguf_context * ctx, int64_t key_id) {
|
||||
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||||
+ return ctx->kv[key_id].data.size();
|
||||
+}
|
||||
+
|
||||
const char * gguf_get_arr_str(const struct gguf_context * ctx, int64_t key_id, size_t i) {
|
||||
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||||
GGML_ASSERT(ctx->kv[key_id].get_type() == GGUF_TYPE_STRING);
|
||||
@@ -874,7 +878,6 @@ const char * gguf_get_val_str(const struct gguf_context * ctx, int64_t key_id) {
|
||||
const void * gguf_get_val_data(const struct gguf_context * ctx, int64_t key_id) {
|
||||
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||||
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
|
||||
- GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING);
|
||||
return ctx->kv[key_id].data.data();
|
||||
}
|
||||
|
||||
diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp
|
||||
index c7ff28be..7a185443 100644
|
||||
--- a/src/llama-vocab.cpp
|
||||
+++ b/src/llama-vocab.cpp
|
||||
@@ -1443,7 +1443,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
||||
|
||||
const int precompiled_charsmap_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP).c_str());
|
||||
if (precompiled_charsmap_keyidx != -1) {
|
||||
- size_t n_precompiled_charsmap = gguf_get_arr_n(ctx, precompiled_charsmap_keyidx);
|
||||
+ size_t n_precompiled_charsmap = gguf_get_arr_data_n(ctx, precompiled_charsmap_keyidx);
|
||||
const char * pc = (const char *) gguf_get_arr_data(ctx, precompiled_charsmap_keyidx);
|
||||
precompiled_charsmap.assign(pc, pc + n_precompiled_charsmap);
|
||||
#ifdef IS_BIG_ENDIAN
|
33
llama/patches/0020-ollama-debug-tensor.patch
Normal file
33
llama/patches/0020-ollama-debug-tensor.patch
Normal file
@@ -0,0 +1,33 @@
|
||||
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
||||
From: Michael Yang <mxyng@pm.me>
|
||||
Date: Sun, 9 Mar 2025 14:44:16 -0700
|
||||
Subject: [PATCH] ollama debug tensor
|
||||
|
||||
---
|
||||
ggml/src/ggml-cpu/ggml-cpu.c | 6 ++++++
|
||||
1 file changed, 6 insertions(+)
|
||||
|
||||
diff --git a/ggml/src/ggml-cpu/ggml-cpu.c b/ggml/src/ggml-cpu/ggml-cpu.c
|
||||
index 2f606d82..ec60e8fc 100644
|
||||
--- a/ggml/src/ggml-cpu/ggml-cpu.c
|
||||
+++ b/ggml/src/ggml-cpu/ggml-cpu.c
|
||||
@@ -11,6 +11,8 @@
|
||||
#include "ggml-threading.h"
|
||||
#include "ggml.h"
|
||||
|
||||
+#include "ollama-debug.h"
|
||||
+
|
||||
#if defined(_MSC_VER) || defined(__MINGW32__)
|
||||
#include <malloc.h> // using malloc.h with MSC/MINGW
|
||||
#elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
|
||||
@@ -14103,6 +14105,10 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
|
||||
|
||||
ggml_compute_forward(¶ms, node);
|
||||
|
||||
+#ifdef OLLAMA_DEBUG
|
||||
+ ollama_debug(node, true);
|
||||
+#endif
|
||||
+
|
||||
if (state->ith == 0 && cplan->abort_callback &&
|
||||
cplan->abort_callback(cplan->abort_callback_data)) {
|
||||
atomic_store_explicit(&tp->abort, node_n + 1, memory_order_relaxed);
|
22
llama/sampling_ext.cpp
vendored
22
llama/sampling_ext.cpp
vendored
@@ -2,6 +2,9 @@
|
||||
#include "sampling.h"
|
||||
#include "sampling_ext.h"
|
||||
#include "json-schema-to-grammar.h"
|
||||
#include "llama.h"
|
||||
#include "llama-model.h"
|
||||
#include "llama-model-loader.h"
|
||||
|
||||
struct common_sampler *common_sampler_cinit(const struct llama_model *model, struct common_sampler_cparams *params) {
|
||||
try {
|
||||
@@ -64,3 +67,22 @@ int schema_to_grammar(const char *json_schema, char *grammar, size_t max_len)
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
struct llama_vocab * llama_load_vocab_from_file(const char * fname) {
|
||||
llama_vocab * vocab = new llama_vocab();
|
||||
try {
|
||||
const auto kv = LLM_KV(LLM_ARCH_UNKNOWN);
|
||||
std::vector<std::string> splits = {};
|
||||
llama_model_loader ml(std::string(fname), splits, false, false, nullptr);
|
||||
vocab->load(ml, kv);
|
||||
} catch (const std::exception & err) {
|
||||
LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
return vocab;
|
||||
}
|
||||
|
||||
void llama_free_vocab(struct llama_vocab * vocab) {
|
||||
delete vocab;
|
||||
}
|
||||
|
3
llama/sampling_ext.h
vendored
3
llama/sampling_ext.h
vendored
@@ -35,6 +35,9 @@ extern "C"
|
||||
|
||||
int schema_to_grammar(const char *json_schema, char *grammar, size_t max_len);
|
||||
|
||||
struct llama_vocab * llama_load_vocab_from_file(const char * fname);
|
||||
void llama_free_vocab(struct llama_vocab * vocab);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
@@ -115,6 +115,9 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
|
||||
// multimodal models require at least 2048 context
|
||||
opts.NumCtx = max(opts.NumCtx, 2048)
|
||||
}
|
||||
if projectorWeights == 0 && projectorGraph == 0 {
|
||||
projectorWeights, projectorGraph = f.VisionGraphSize()
|
||||
}
|
||||
|
||||
layers := f.Tensors().GroupLayers()
|
||||
// add one layer worth of memory as a buffer
|
||||
|
241
llm/server.go
241
llm/server.go
@@ -30,6 +30,7 @@ import (
|
||||
"github.com/ollama/ollama/format"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/ollama/ollama/llama"
|
||||
"github.com/ollama/ollama/model"
|
||||
)
|
||||
|
||||
type LlamaServer interface {
|
||||
@@ -54,8 +55,15 @@ type llmServer struct {
|
||||
options api.Options
|
||||
numParallel int
|
||||
modelPath string
|
||||
modelLock sync.Mutex // Temporary until we switch fully to Go server
|
||||
model *llama.Model // If non-nil, the runner is a new Go server
|
||||
|
||||
// llamaModel is an instance of the cgo llama.cpp model definition
|
||||
// nil if this server is running the new engine
|
||||
llamaModel *llama.Model
|
||||
llamaModelLock sync.Mutex
|
||||
|
||||
// textProcessor handles text encoding/decoding for the model in the Ollama engine
|
||||
// nil if this server is running the llama.cpp based engine
|
||||
textProcessor model.TextProcessor
|
||||
|
||||
estimate MemoryEstimate
|
||||
totalLayers uint64
|
||||
@@ -89,7 +97,7 @@ func LoadModel(model string, maxArraySize int) (*ggml.GGML, error) {
|
||||
|
||||
// NewLlamaServer will run a server for the given GPUs
|
||||
// The gpu list must be a single family.
|
||||
func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapters, projectors []string, opts api.Options, numParallel int) (LlamaServer, error) {
|
||||
func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, adapters, projectors []string, opts api.Options, numParallel int) (LlamaServer, error) {
|
||||
systemInfo := discover.GetSystemInfo()
|
||||
systemTotalMemory := systemInfo.System.TotalMemory
|
||||
systemFreeMemory := systemInfo.System.FreeMemory
|
||||
@@ -130,7 +138,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapt
|
||||
slog.Info("offload", "", estimate)
|
||||
|
||||
params := []string{
|
||||
"--model", model,
|
||||
"--model", modelPath,
|
||||
"--ctx-size", strconv.Itoa(opts.NumCtx),
|
||||
"--batch-size", strconv.Itoa(opts.NumBatch),
|
||||
}
|
||||
@@ -153,11 +161,6 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapt
|
||||
}
|
||||
}
|
||||
|
||||
if len(projectors) > 0 {
|
||||
// TODO: applying multiple projectors is not supported by the llama.cpp server yet
|
||||
params = append(params, "--mmproj", projectors[0])
|
||||
}
|
||||
|
||||
defaultThreads := systemInfo.GetOptimalThreadCount()
|
||||
if opts.NumThread > 0 {
|
||||
params = append(params, "--threads", strconv.Itoa(opts.NumThread))
|
||||
@@ -257,6 +260,34 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapt
|
||||
}
|
||||
}
|
||||
slog.Debug("compatible gpu libraries", "compatible", compatible)
|
||||
exe, err := os.Executable()
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("unable to lookup executable path: %w", err)
|
||||
}
|
||||
|
||||
if eval, err := filepath.EvalSymlinks(exe); err == nil {
|
||||
exe = eval
|
||||
}
|
||||
|
||||
var llamaModel *llama.Model
|
||||
var textProcessor model.TextProcessor
|
||||
if envconfig.NewEngine() || f.KV().OllamaEngineRequired() {
|
||||
textProcessor, err = model.NewTextProcessor(modelPath)
|
||||
if err != nil {
|
||||
// To prepare for opt-out mode, instead of treating this as an error, we fallback to the old runner
|
||||
slog.Debug("model not yet supported by Ollama engine, switching to compatibility mode", "model", modelPath, "error", err)
|
||||
}
|
||||
}
|
||||
if textProcessor == nil {
|
||||
llamaModel, err = llama.LoadModelFromFile(modelPath, llama.ModelParams{VocabOnly: true})
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
|
||||
if len(projectors) > 0 && llamaModel != nil {
|
||||
params = append(params, "--mmproj", projectors[0])
|
||||
}
|
||||
|
||||
// iterate through compatible GPU libraries such as 'cuda_v12', 'cuda_v11', 'rocm', etc.
|
||||
// adding each library's respective path to the LD_LIBRARY_PATH, until finally running
|
||||
@@ -275,7 +306,9 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapt
|
||||
port = rand.Intn(65535-49152) + 49152 // get a random port in the ephemeral range
|
||||
}
|
||||
finalParams := []string{"runner"}
|
||||
if envconfig.NewEngine() {
|
||||
if textProcessor != nil {
|
||||
// New engine
|
||||
// TODO - if we have failure to load scenarios, add logic to retry with the old runner
|
||||
finalParams = append(finalParams, "--ollama-engine")
|
||||
}
|
||||
finalParams = append(finalParams, params...)
|
||||
@@ -315,28 +348,20 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapt
|
||||
// finally, add the root library path
|
||||
libraryPaths = append(libraryPaths, discover.LibOllamaPath)
|
||||
|
||||
exe, err := os.Executable()
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("unable to lookup executable path: %w", err)
|
||||
}
|
||||
|
||||
if eval, err := filepath.EvalSymlinks(exe); err == nil {
|
||||
exe = eval
|
||||
}
|
||||
|
||||
// TODO - once fully switched to the Go runner, load the model here for tokenize/detokenize cgo access
|
||||
s := &llmServer{
|
||||
port: port,
|
||||
cmd: exec.Command(exe, finalParams...),
|
||||
status: NewStatusWriter(os.Stderr),
|
||||
options: opts,
|
||||
modelPath: model,
|
||||
estimate: estimate,
|
||||
numParallel: numParallel,
|
||||
sem: semaphore.NewWeighted(int64(numParallel)),
|
||||
totalLayers: f.KV().BlockCount() + 1,
|
||||
gpus: gpus,
|
||||
done: make(chan error, 1),
|
||||
port: port,
|
||||
cmd: exec.Command(exe, finalParams...),
|
||||
status: NewStatusWriter(os.Stderr),
|
||||
options: opts,
|
||||
modelPath: modelPath,
|
||||
llamaModel: llamaModel,
|
||||
textProcessor: textProcessor,
|
||||
estimate: estimate,
|
||||
numParallel: numParallel,
|
||||
sem: semaphore.NewWeighted(int64(numParallel)),
|
||||
totalLayers: f.KV().BlockCount() + 1,
|
||||
gpus: gpus,
|
||||
done: make(chan error, 1),
|
||||
}
|
||||
|
||||
s.cmd.Env = os.Environ()
|
||||
@@ -405,6 +430,9 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapt
|
||||
}
|
||||
err := fmt.Errorf("error starting runner: %v %s", err, msg)
|
||||
if len(compatible) == 0 {
|
||||
if llamaModel != nil {
|
||||
llama.FreeModel(llamaModel)
|
||||
}
|
||||
return nil, err
|
||||
}
|
||||
|
||||
@@ -933,64 +961,25 @@ type TokenizeResponse struct {
|
||||
}
|
||||
|
||||
func (s *llmServer) Tokenize(ctx context.Context, content string) ([]int, error) {
|
||||
s.modelLock.Lock()
|
||||
defer s.modelLock.Unlock()
|
||||
if s.model != nil {
|
||||
return s.model.Tokenize(content, false, true)
|
||||
}
|
||||
s.llamaModelLock.Lock()
|
||||
defer s.llamaModelLock.Unlock()
|
||||
|
||||
// Make sure the server is ready
|
||||
status, err := s.getServerStatus(ctx)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
} else if status != ServerStatusReady && status != ServerStatusNoSlotsAvailable {
|
||||
return nil, fmt.Errorf("unexpected server status: %s", status.ToString())
|
||||
if s.llamaModel != nil {
|
||||
return s.llamaModel.Tokenize(content, false, true)
|
||||
}
|
||||
|
||||
data, err := json.Marshal(TokenizeRequest{Content: content})
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("marshaling encode data: %w", err)
|
||||
}
|
||||
|
||||
req, err := http.NewRequestWithContext(ctx, http.MethodPost, fmt.Sprintf("http://127.0.0.1:%d/tokenize", s.port), bytes.NewBuffer(data))
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("encode request: %w", err)
|
||||
}
|
||||
req.Header.Set("Content-Type", "application/json")
|
||||
|
||||
resp, err := http.DefaultClient.Do(req)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("do encode request: %w", err)
|
||||
}
|
||||
defer resp.Body.Close()
|
||||
if resp.StatusCode == http.StatusNotFound {
|
||||
if s.model == nil {
|
||||
slog.Debug("new runner detected, loading model for cgo tokenization")
|
||||
m, err := llama.LoadModelFromFile(s.modelPath, llama.ModelParams{VocabOnly: true})
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
s.model = m
|
||||
if s.textProcessor != nil {
|
||||
tokens, err := s.textProcessor.Encode(content, false)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return s.model.Tokenize(content, false, true)
|
||||
toks := make([]int, len(tokens))
|
||||
for i, t := range tokens {
|
||||
toks[i] = int(t)
|
||||
}
|
||||
return toks, nil
|
||||
}
|
||||
|
||||
body, err := io.ReadAll(resp.Body)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("read encode request: %w", err)
|
||||
}
|
||||
|
||||
if resp.StatusCode >= 400 {
|
||||
log.Printf("llm encode error: %s", body)
|
||||
return nil, fmt.Errorf("%s", body)
|
||||
}
|
||||
|
||||
var encoded TokenizeResponse
|
||||
if err := json.Unmarshal(body, &encoded); err != nil {
|
||||
return nil, fmt.Errorf("unmarshal encode response: %w", err)
|
||||
}
|
||||
|
||||
return encoded.Tokens, nil
|
||||
// not reached
|
||||
return nil, fmt.Errorf("no tokenizer configured")
|
||||
}
|
||||
|
||||
type DetokenizeRequest struct {
|
||||
@@ -1002,80 +991,38 @@ type DetokenizeResponse struct {
|
||||
}
|
||||
|
||||
func (s *llmServer) Detokenize(ctx context.Context, tokens []int) (string, error) {
|
||||
s.modelLock.Lock()
|
||||
defer s.modelLock.Unlock()
|
||||
if s.model != nil {
|
||||
s.llamaModelLock.Lock()
|
||||
defer s.llamaModelLock.Unlock()
|
||||
|
||||
if s.llamaModel != nil {
|
||||
var resp string
|
||||
for _, token := range tokens {
|
||||
resp += s.model.TokenToPiece(token)
|
||||
resp += s.llamaModel.TokenToPiece(token)
|
||||
}
|
||||
return resp, nil
|
||||
}
|
||||
// Make sure the server is ready
|
||||
status, err := s.getServerStatus(ctx)
|
||||
if err != nil {
|
||||
return "", err
|
||||
} else if status != ServerStatusReady && status != ServerStatusNoSlotsAvailable {
|
||||
return "", fmt.Errorf("unexpected server status: %s", status.ToString())
|
||||
}
|
||||
|
||||
data, err := json.Marshal(DetokenizeRequest{Tokens: tokens})
|
||||
if err != nil {
|
||||
return "", fmt.Errorf("marshaling decode data: %w", err)
|
||||
}
|
||||
|
||||
req, err := http.NewRequestWithContext(ctx, http.MethodPost, fmt.Sprintf("http://127.0.0.1:%d/detokenize", s.port), bytes.NewBuffer(data))
|
||||
if err != nil {
|
||||
return "", fmt.Errorf("decode request: %w", err)
|
||||
}
|
||||
req.Header.Set("Content-Type", "application/json")
|
||||
|
||||
resp, err := http.DefaultClient.Do(req)
|
||||
if err != nil {
|
||||
return "", fmt.Errorf("do decode request: %w", err)
|
||||
}
|
||||
defer resp.Body.Close()
|
||||
if resp.StatusCode == http.StatusNotFound {
|
||||
if s.model == nil {
|
||||
slog.Debug("new runner detected, loading model for cgo tokenization")
|
||||
m, err := llama.LoadModelFromFile(s.modelPath, llama.ModelParams{VocabOnly: true})
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
s.model = m
|
||||
if s.textProcessor != nil {
|
||||
toks := make([]int32, len(tokens))
|
||||
for i, t := range tokens {
|
||||
toks[i] = int32(t)
|
||||
}
|
||||
var resp string
|
||||
for _, token := range tokens {
|
||||
resp += s.model.TokenToPiece(token)
|
||||
content, err := s.textProcessor.Decode(toks)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
return resp, nil
|
||||
return content, nil
|
||||
}
|
||||
|
||||
body, err := io.ReadAll(resp.Body)
|
||||
if err != nil {
|
||||
return "", fmt.Errorf("read decode request: %w", err)
|
||||
}
|
||||
|
||||
if resp.StatusCode >= 400 {
|
||||
log.Printf("llm decode error: %s", body)
|
||||
return "", fmt.Errorf("%s", body)
|
||||
}
|
||||
|
||||
var decoded DetokenizeResponse
|
||||
if err := json.Unmarshal(body, &decoded); err != nil {
|
||||
return "", fmt.Errorf("unmarshal encode response: %w", err)
|
||||
}
|
||||
|
||||
return decoded.Content, nil
|
||||
// not reached
|
||||
return "", fmt.Errorf("no tokenizer configured")
|
||||
}
|
||||
|
||||
func (s *llmServer) Close() error {
|
||||
s.modelLock.Lock()
|
||||
if s.model != nil {
|
||||
llama.FreeModel(s.model)
|
||||
s.model = nil
|
||||
s.llamaModelLock.Lock()
|
||||
if s.llamaModel != nil {
|
||||
llama.FreeModel(s.llamaModel)
|
||||
s.llamaModel = nil
|
||||
}
|
||||
s.modelLock.Unlock()
|
||||
s.llamaModelLock.Unlock()
|
||||
|
||||
if s.cmd != nil {
|
||||
slog.Debug("stopping llama server")
|
||||
|
@@ -5,6 +5,7 @@ import (
|
||||
"encoding/binary"
|
||||
"fmt"
|
||||
"os"
|
||||
"slices"
|
||||
"strconv"
|
||||
"strings"
|
||||
)
|
||||
@@ -14,16 +15,47 @@ type Config interface {
|
||||
String(string, ...string) string
|
||||
Uint(string, ...uint32) uint32
|
||||
Float(string, ...float32) float32
|
||||
Bool(string, ...bool) bool
|
||||
|
||||
Strings(string, ...[]string) []string
|
||||
Uints(string, ...[]uint32) []uint32
|
||||
Floats(string, ...[]float32) []float32
|
||||
}
|
||||
|
||||
type Backend interface {
|
||||
Config() Config
|
||||
Get(name string) Tensor
|
||||
NewContext() Context
|
||||
SystemInfo() string
|
||||
NewContextSize(size int) Context
|
||||
}
|
||||
|
||||
// BackendCacheConfig should be implemented by backends that need special output
|
||||
// from the cache to meet specific requirements. It is frequently implemented in
|
||||
// conjunction with ScaledDotProductAttention.
|
||||
type BackendCacheConfig interface {
|
||||
CacheConfig() CacheConfig
|
||||
}
|
||||
|
||||
// CacheConfig controls optimizations (mostly backend-specific) that may transform
|
||||
// the output the cache to work better with specific kernels.
|
||||
type CacheConfig struct {
|
||||
// CachePadding specifies the multiple for the number of tokens of cache history
|
||||
// that will be returned from cache Get for k, v and mask. The capacity of the
|
||||
// cache itself will also be increased to a multiple of this size if needed.
|
||||
CachePadding int
|
||||
|
||||
// PermutedV performs Permute(ctx, 1, 2, 0, 3) on v tensors stored via Put
|
||||
// and return the permuted version via Get. This uses the cache copy operation
|
||||
// to avoid a Contiguous call on the permuted tensor.
|
||||
PermutedV bool
|
||||
|
||||
// MaskDType specifies the data type for generating the mask. If unset it will
|
||||
// default to DTypeF32.
|
||||
MaskDType DType
|
||||
|
||||
// MaskBatchPadding specifies the multiple for the batch size dimension in the mask.
|
||||
// Any position that does not correspond to an actual token will be filled with -Inf.
|
||||
MaskBatchPadding int
|
||||
}
|
||||
|
||||
// BackendParams controls how the backend loads and executes models
|
||||
@@ -39,6 +71,9 @@ type BackendParams struct {
|
||||
|
||||
// TensorSplit is the fraction of the model to offload to each GPU
|
||||
TensorSplit []float32
|
||||
|
||||
// FlashAttention indicates that we should use a fused flash attention kernel
|
||||
FlashAttention bool
|
||||
}
|
||||
|
||||
var backends = make(map[string]func(*os.File, BackendParams) (Backend, error))
|
||||
@@ -60,14 +95,24 @@ func NewBackend(f *os.File, params BackendParams) (Backend, error) {
|
||||
}
|
||||
|
||||
type Context interface {
|
||||
Empty(dtype DType, shape ...int) Tensor
|
||||
Zeros(dtype DType, shape ...int) Tensor
|
||||
FromFloatSlice(s []float32, shape ...int) (Tensor, error)
|
||||
FromIntSlice(s []int32, shape ...int) (Tensor, error)
|
||||
|
||||
Forward(Tensor)
|
||||
Forward(...Tensor) Context
|
||||
Compute(...Tensor)
|
||||
MaxTensors() int
|
||||
MaxGraphNodes() int
|
||||
Close()
|
||||
|
||||
// Input returns a context appropriate for creating input tensors
|
||||
Input() Context
|
||||
|
||||
// Output returns a context appropriate for creating output tensors
|
||||
Output() Context
|
||||
|
||||
// Layer returns a context appropriate for creating intermediate tensors
|
||||
Layer(int) Context
|
||||
}
|
||||
|
||||
type Tensor interface {
|
||||
@@ -90,8 +135,10 @@ type Tensor interface {
|
||||
RMSNorm(ctx Context, weight Tensor, eps float32) Tensor
|
||||
Scale(ctx Context, s float64) Tensor
|
||||
|
||||
AvgPool2D(ctx Context, k, s int, p float32) Tensor
|
||||
Conv2D(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
|
||||
RoPE(ctx Context, positionIDs, ropeFactors Tensor, dim uint32, base, scale float32) Tensor
|
||||
|
||||
RoPE(ctx Context, positionIDs, ropeFactors Tensor, dim, ropeType uint32, base, scale float32) Tensor
|
||||
|
||||
Tanh(ctx Context) Tensor
|
||||
GELU(ctx Context) Tensor
|
||||
@@ -101,6 +148,7 @@ type Tensor interface {
|
||||
View(ctx Context, offset int, shape ...int) Tensor
|
||||
Permute(ctx Context, shape ...int) Tensor
|
||||
Contiguous(ctx Context) Tensor
|
||||
Set(ctx Context, t2 Tensor, offset int, strides ...int) Tensor
|
||||
|
||||
Pad(ctx Context, shape ...int) Tensor
|
||||
Unpad(ctx Context, shape ...int) Tensor
|
||||
@@ -115,6 +163,10 @@ type Tensor interface {
|
||||
// operation equivalent to following code on a tensor named
|
||||
// query:
|
||||
//
|
||||
// query = query.Permute(ctx, 0, 2, 1, 3)
|
||||
// key = key.Permute(ctx, 0, 2, 1, 3)
|
||||
// value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
|
||||
//
|
||||
// kq := key.MulmatFullPrec(ctx, query)
|
||||
//
|
||||
// kq = kq.Scale(ctx, scale)
|
||||
@@ -168,8 +220,8 @@ func Dump(ctx Context, t Tensor, opts ...DumpOptions) string {
|
||||
return dump[[]float32](ctx, t, opts[0].Items, func(f float32) string {
|
||||
return strconv.FormatFloat(float64(f), 'f', opts[0].Precision, 32)
|
||||
})
|
||||
case DTypeF16:
|
||||
f32 := ctx.Zeros(DTypeF32, t.Shape()...)
|
||||
case DTypeF16, DTypeQ80, DTypeQ40:
|
||||
f32 := ctx.Empty(DTypeF32, t.Shape()...)
|
||||
f32 = t.Copy(ctx, f32)
|
||||
return dump[[]float32](ctx, f32, opts[0].Items, func(f float32) string {
|
||||
return strconv.FormatFloat(float64(f), 'f', opts[0].Precision, 32)
|
||||
@@ -185,8 +237,7 @@ func Dump(ctx Context, t Tensor, opts ...DumpOptions) string {
|
||||
|
||||
func dump[S ~[]E, E number](ctx Context, t Tensor, items int, fn func(E) string) string {
|
||||
if t.Bytes() == nil {
|
||||
ctx.Forward(t)
|
||||
ctx.Compute(t)
|
||||
ctx.Forward(t).Compute(t)
|
||||
}
|
||||
|
||||
s := make(S, mul(t.Shape()...))
|
||||
@@ -195,16 +246,17 @@ func dump[S ~[]E, E number](ctx Context, t Tensor, items int, fn func(E) string)
|
||||
}
|
||||
|
||||
shape := t.Shape()
|
||||
slices.Reverse(shape)
|
||||
|
||||
var sb strings.Builder
|
||||
var f func([]int, int)
|
||||
f = func(dims []int, stride int) {
|
||||
prefix := strings.Repeat(" ", len(shape)-len(dims)+1)
|
||||
fmt.Fprint(&sb, "[")
|
||||
defer func() { fmt.Fprint(&sb, "]") }()
|
||||
sb.WriteString("[")
|
||||
defer func() { sb.WriteString("]") }()
|
||||
for i := 0; i < dims[0]; i++ {
|
||||
if i >= items && i < dims[0]-items {
|
||||
fmt.Fprint(&sb, "..., ")
|
||||
sb.WriteString("..., ")
|
||||
// skip to next printable element
|
||||
skip := dims[0] - 2*items
|
||||
if len(dims) > 1 {
|
||||
@@ -219,9 +271,14 @@ func dump[S ~[]E, E number](ctx Context, t Tensor, items int, fn func(E) string)
|
||||
fmt.Fprint(&sb, ",", strings.Repeat("\n", len(dims)-1), prefix)
|
||||
}
|
||||
} else {
|
||||
fmt.Fprint(&sb, fn(s[stride+i]))
|
||||
text := fn(s[stride+i])
|
||||
if len(text) > 0 && text[0] != '-' {
|
||||
sb.WriteString(" ")
|
||||
}
|
||||
|
||||
sb.WriteString(text)
|
||||
if i < dims[0]-1 {
|
||||
fmt.Fprint(&sb, ", ")
|
||||
sb.WriteString(", ")
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -237,5 +294,7 @@ const (
|
||||
DTypeOther DType = iota
|
||||
DTypeF32
|
||||
DTypeF16
|
||||
DTypeQ80
|
||||
DTypeQ40
|
||||
DTypeI32
|
||||
)
|
||||
|
File diff suppressed because it is too large
Load Diff
1
ml/backend/ggml/ggml/include/gguf.h
vendored
1
ml/backend/ggml/ggml/include/gguf.h
vendored
@@ -114,6 +114,7 @@ extern "C" {
|
||||
// get raw pointer to the first element of the array with the given key_id
|
||||
// for bool arrays, note that they are always stored as int8 on all platforms (usually this makes no difference)
|
||||
GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int64_t key_id);
|
||||
GGML_API size_t gguf_get_arr_data_n(const struct gguf_context * ctx, int64_t key_id);
|
||||
|
||||
// get ith C string from array with given key_id
|
||||
GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int64_t key_id, size_t i);
|
||||
|
11
ml/backend/ggml/ggml/include/ollama-debug.h
vendored
Normal file
11
ml/backend/ggml/ggml/include/ollama-debug.h
vendored
Normal file
@@ -0,0 +1,11 @@
|
||||
#include "ggml.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
void ollama_debug(const struct ggml_tensor *tensor, bool verbose);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
74
ml/backend/ggml/ggml/src/ggml-backend-reg.cpp
vendored
74
ml/backend/ggml/ggml/src/ggml-backend-reg.cpp
vendored
@@ -484,33 +484,29 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
|
||||
}
|
||||
fs::directory_iterator dir_it(search_path, fs::directory_options::skip_permission_denied);
|
||||
for (const auto & entry : dir_it) {
|
||||
try {
|
||||
if (entry.is_regular_file()) {
|
||||
std::string filename = entry.path().filename().string();
|
||||
std::string ext = entry.path().extension().string();
|
||||
if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
|
||||
dl_handle_ptr handle { dl_load_library(entry.path()) };
|
||||
if (!handle) {
|
||||
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, path_to_string(entry.path()).c_str());
|
||||
continue;
|
||||
}
|
||||
if (entry.is_regular_file()) {
|
||||
std::string filename = entry.path().filename().string();
|
||||
std::string ext = entry.path().extension().string();
|
||||
if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
|
||||
dl_handle_ptr handle { dl_load_library(entry.path()) };
|
||||
if (!handle) {
|
||||
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, path_to_string(entry.path()).c_str());
|
||||
continue;
|
||||
}
|
||||
|
||||
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
|
||||
if (!score_fn) {
|
||||
GGML_LOG_DEBUG("%s: failed to find ggml_backend_score in %s\n", __func__, path_to_string(entry.path()).c_str());
|
||||
continue;
|
||||
}
|
||||
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
|
||||
if (!score_fn) {
|
||||
GGML_LOG_DEBUG("%s: failed to find ggml_backend_score in %s\n", __func__, path_to_string(entry.path()).c_str());
|
||||
continue;
|
||||
}
|
||||
|
||||
int s = score_fn();
|
||||
GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, path_to_string(entry.path()).c_str(), s);
|
||||
if (s > best_score) {
|
||||
best_score = s;
|
||||
best_path = entry.path();
|
||||
}
|
||||
int s = score_fn();
|
||||
GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, path_to_string(entry.path()).c_str(), s);
|
||||
if (s > best_score) {
|
||||
best_score = s;
|
||||
best_path = entry.path();
|
||||
}
|
||||
}
|
||||
} catch (const std::exception & e) {
|
||||
GGML_LOG_ERROR("%s: failed to load %s: %s\n", __func__, path_to_string(entry.path()).c_str(), e.what());
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -533,6 +529,14 @@ void ggml_backend_load_all() {
|
||||
ggml_backend_load_all_from_path(nullptr);
|
||||
}
|
||||
|
||||
static void ggml_backend_try_load_best(const char * name, bool silent, const char * user_search_path) {
|
||||
try {
|
||||
ggml_backend_load_best(name, silent, user_search_path);
|
||||
} catch (const std::exception & e) {
|
||||
GGML_LOG_DEBUG("%s: failed to load %s: %s\n", __func__, name, e.what());
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_backend_load_all_from_path(const char * dir_path) {
|
||||
#ifdef NDEBUG
|
||||
bool silent = true;
|
||||
@@ -540,18 +544,18 @@ void ggml_backend_load_all_from_path(const char * dir_path) {
|
||||
bool silent = false;
|
||||
#endif
|
||||
|
||||
ggml_backend_load_best("blas", silent, dir_path);
|
||||
ggml_backend_load_best("cann", silent, dir_path);
|
||||
ggml_backend_load_best("cuda", silent, dir_path);
|
||||
ggml_backend_load_best("hip", silent, dir_path);
|
||||
ggml_backend_load_best("kompute", silent, dir_path);
|
||||
ggml_backend_load_best("metal", silent, dir_path);
|
||||
ggml_backend_load_best("rpc", silent, dir_path);
|
||||
ggml_backend_load_best("sycl", silent, dir_path);
|
||||
ggml_backend_load_best("vulkan", silent, dir_path);
|
||||
ggml_backend_load_best("opencl", silent, dir_path);
|
||||
ggml_backend_load_best("musa", silent, dir_path);
|
||||
ggml_backend_load_best("cpu", silent, dir_path);
|
||||
ggml_backend_try_load_best("blas", silent, dir_path);
|
||||
ggml_backend_try_load_best("cann", silent, dir_path);
|
||||
ggml_backend_try_load_best("cuda", silent, dir_path);
|
||||
ggml_backend_try_load_best("hip", silent, dir_path);
|
||||
ggml_backend_try_load_best("kompute", silent, dir_path);
|
||||
ggml_backend_try_load_best("metal", silent, dir_path);
|
||||
ggml_backend_try_load_best("rpc", silent, dir_path);
|
||||
ggml_backend_try_load_best("sycl", silent, dir_path);
|
||||
ggml_backend_try_load_best("vulkan", silent, dir_path);
|
||||
ggml_backend_try_load_best("opencl", silent, dir_path);
|
||||
ggml_backend_try_load_best("musa", silent, dir_path);
|
||||
ggml_backend_try_load_best("cpu", silent, dir_path);
|
||||
// check the environment variable GGML_BACKEND_PATH to load an out-of-tree backend
|
||||
const char * backend_path = std::getenv("GGML_BACKEND_PATH");
|
||||
if (backend_path) {
|
||||
|
6
ml/backend/ggml/ggml/src/ggml-cpu/cpu_debug.go
Normal file
6
ml/backend/ggml/ggml/src/ggml-cpu/cpu_debug.go
Normal file
@@ -0,0 +1,6 @@
|
||||
//go:build debug
|
||||
|
||||
package cpu
|
||||
|
||||
// #cgo CPPFLAGS: -DOLLAMA_DEBUG
|
||||
import "C"
|
6
ml/backend/ggml/ggml/src/ggml-cpu/ggml-cpu.c
vendored
6
ml/backend/ggml/ggml/src/ggml-cpu/ggml-cpu.c
vendored
@@ -11,6 +11,8 @@
|
||||
#include "ggml-threading.h"
|
||||
#include "ggml.h"
|
||||
|
||||
#include "ollama-debug.h"
|
||||
|
||||
#if defined(_MSC_VER) || defined(__MINGW32__)
|
||||
#include <malloc.h> // using malloc.h with MSC/MINGW
|
||||
#elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
|
||||
@@ -14103,6 +14105,10 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
|
||||
|
||||
ggml_compute_forward(¶ms, node);
|
||||
|
||||
#ifdef OLLAMA_DEBUG
|
||||
ollama_debug(node, true);
|
||||
#endif
|
||||
|
||||
if (state->ith == 0 && cplan->abort_callback &&
|
||||
cplan->abort_callback(cplan->abort_callback_data)) {
|
||||
atomic_store_explicit(&tp->abort, node_n + 1, memory_order_relaxed);
|
||||
|
@@ -7,13 +7,30 @@ package ggml
|
||||
// #include <stdlib.h>
|
||||
// #include "ggml-backend.h"
|
||||
// extern void sink(int level, char *text, void *user_data);
|
||||
// static struct ggml_backend_feature * first_feature(ggml_backend_get_features_t fp, ggml_backend_reg_t reg) { return fp(reg); }
|
||||
// static struct ggml_backend_feature * next_feature(struct ggml_backend_feature * feature) { return &feature[1]; }
|
||||
/*
|
||||
typedef enum { COMPILER_CLANG, COMPILER_GNUC, COMPILER_UNKNOWN } COMPILER;
|
||||
static COMPILER compiler_name(void) {
|
||||
#if defined(__clang__)
|
||||
return COMPILER_CLANG;
|
||||
#elif defined(__GNUC__)
|
||||
return COMPILER_GNUC;
|
||||
#else
|
||||
return COMPILER_UNKNOWN;
|
||||
#endif
|
||||
}
|
||||
*/
|
||||
import "C"
|
||||
|
||||
import (
|
||||
"context"
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"runtime"
|
||||
"strconv"
|
||||
"strings"
|
||||
"sync"
|
||||
"unsafe"
|
||||
@@ -22,21 +39,14 @@ import (
|
||||
)
|
||||
|
||||
func init() {
|
||||
C.ggml_log_set((C.ggml_log_callback)(C.sink), nil)
|
||||
C.ggml_log_set(C.ggml_log_callback(C.sink), nil)
|
||||
}
|
||||
|
||||
//export sink
|
||||
func sink(level C.int, text *C.char, _ unsafe.Pointer) {
|
||||
msg := strings.TrimSpace(C.GoString(text))
|
||||
switch level {
|
||||
case C.GGML_LOG_LEVEL_DEBUG:
|
||||
slog.Debug(msg)
|
||||
case C.GGML_LOG_LEVEL_INFO:
|
||||
slog.Info(msg)
|
||||
case C.GGML_LOG_LEVEL_WARN:
|
||||
slog.Warn(msg)
|
||||
case C.GGML_LOG_LEVEL_ERROR:
|
||||
slog.Error(msg)
|
||||
// slog levels zeros INFO and are multiples of 4
|
||||
if slog.Default().Enabled(context.TODO(), slog.Level(int(level-C.GGML_LOG_LEVEL_INFO)*4)) {
|
||||
fmt.Fprint(os.Stderr, C.GoString(text))
|
||||
}
|
||||
}
|
||||
|
||||
@@ -95,4 +105,43 @@ var OnceLoad = sync.OnceFunc(func() {
|
||||
visited[abspath] = struct{}{}
|
||||
}
|
||||
}
|
||||
|
||||
slog.Info("system", "", system{})
|
||||
})
|
||||
|
||||
type system struct{}
|
||||
|
||||
func (system) LogValue() slog.Value {
|
||||
var attrs []slog.Attr
|
||||
names := make(map[string]int)
|
||||
for i := range C.ggml_backend_dev_count() {
|
||||
r := C.ggml_backend_dev_backend_reg(C.ggml_backend_dev_get(i))
|
||||
|
||||
func() {
|
||||
fName := C.CString("ggml_backend_get_features")
|
||||
defer C.free(unsafe.Pointer(fName))
|
||||
|
||||
if fn := C.ggml_backend_reg_get_proc_address(r, fName); fn != nil {
|
||||
var features []any
|
||||
for f := C.first_feature(C.ggml_backend_get_features_t(fn), r); f.name != nil; f = C.next_feature(f) {
|
||||
features = append(features, C.GoString(f.name), C.GoString(f.value))
|
||||
}
|
||||
|
||||
name := C.GoString(C.ggml_backend_reg_name(r))
|
||||
attrs = append(attrs, slog.Group(name+"."+strconv.Itoa(names[name]), features...))
|
||||
names[name] += 1
|
||||
}
|
||||
}()
|
||||
}
|
||||
|
||||
switch C.compiler_name() {
|
||||
case C.COMPILER_CLANG:
|
||||
attrs = append(attrs, slog.String("compiler", "cgo(clang)"))
|
||||
case C.COMPILER_GNUC:
|
||||
attrs = append(attrs, slog.String("compiler", "cgo(gcc)"))
|
||||
default:
|
||||
attrs = append(attrs, slog.String("compiler", "cgo(unknown)"))
|
||||
}
|
||||
|
||||
return slog.GroupValue(attrs...)
|
||||
}
|
||||
|
7
ml/backend/ggml/ggml/src/gguf.cpp
vendored
7
ml/backend/ggml/ggml/src/gguf.cpp
vendored
@@ -777,10 +777,14 @@ enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int64_t key_id
|
||||
|
||||
const void * gguf_get_arr_data(const struct gguf_context * ctx, int64_t key_id) {
|
||||
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||||
GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING);
|
||||
return ctx->kv[key_id].data.data();
|
||||
}
|
||||
|
||||
size_t gguf_get_arr_data_n(const struct gguf_context * ctx, int64_t key_id) {
|
||||
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||||
return ctx->kv[key_id].data.size();
|
||||
}
|
||||
|
||||
const char * gguf_get_arr_str(const struct gguf_context * ctx, int64_t key_id, size_t i) {
|
||||
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||||
GGML_ASSERT(ctx->kv[key_id].get_type() == GGUF_TYPE_STRING);
|
||||
@@ -874,7 +878,6 @@ const char * gguf_get_val_str(const struct gguf_context * ctx, int64_t key_id) {
|
||||
const void * gguf_get_val_data(const struct gguf_context * ctx, int64_t key_id) {
|
||||
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||||
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
|
||||
GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING);
|
||||
return ctx->kv[key_id].data.data();
|
||||
}
|
||||
|
||||
|
115
ml/backend/ggml/ggml/src/ollama-debug.c
vendored
Normal file
115
ml/backend/ggml/ggml/src/ollama-debug.c
vendored
Normal file
@@ -0,0 +1,115 @@
|
||||
#include <string.h>
|
||||
|
||||
#include "ollama-debug.h"
|
||||
|
||||
static int mul(int64_t *dims, int ndims) {
|
||||
int result = 1;
|
||||
for (int i = 0; i < ndims; i++) {
|
||||
result *= dims[i];
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static void repeat(char c, int n) {
|
||||
for (int i = 0; i < n; i++) {
|
||||
fprintf(stderr, "%c", c);
|
||||
}
|
||||
}
|
||||
|
||||
static void print_tensor(const void *tensor, void (*cb)(const void *, int),
|
||||
int shape,
|
||||
int64_t *dims, int ndims, int stride,
|
||||
int nitems, int pad) {
|
||||
fprintf(stderr, "[");
|
||||
for (int i = 0; i < dims[0]; i++) {
|
||||
if (i >= nitems && i < dims[0] - nitems) {
|
||||
fprintf(stderr, "... (%lld more), ", dims[0] - 2 * nitems);
|
||||
int skip = dims[0] - 2 * nitems;
|
||||
if (ndims > 1) {
|
||||
stride += mul(dims + 1, ndims - 1) * skip;
|
||||
repeat('\n', ndims - 1);
|
||||
repeat(' ', shape - ndims + 1 + pad);
|
||||
}
|
||||
i += skip - 1;
|
||||
} else if (ndims > 1) {
|
||||
print_tensor(tensor, cb, shape, dims + 1, ndims - 1, stride,
|
||||
nitems, pad);
|
||||
stride += mul(dims + 1, ndims - 1);
|
||||
if (i < dims[0] - 1) {
|
||||
fprintf(stderr, ", ");
|
||||
repeat('\n', ndims - 1);
|
||||
repeat(' ', shape - ndims + 1 + pad);
|
||||
}
|
||||
} else {
|
||||
cb(tensor, stride + i);
|
||||
if (i < dims[0] - 1) {
|
||||
fprintf(stderr, ", ");
|
||||
}
|
||||
}
|
||||
}
|
||||
fprintf(stderr, "]");
|
||||
}
|
||||
|
||||
static void print_tensor_f16(const void *tensor, int i) {
|
||||
float value = ggml_fp16_to_fp32(((const ggml_fp16_t *)tensor)[i]);
|
||||
fprintf(stderr, "%s%f", value < 0 ? "" : " ", value);
|
||||
}
|
||||
|
||||
static void print_tensor_f32(const void *tensor, int i) {
|
||||
float value = ((const float *)tensor)[i];
|
||||
fprintf(stderr, "%s%f", value < 0 ? "" : " ", value);
|
||||
}
|
||||
|
||||
static void print_tensor_i32(const void *tensor, int i) {
|
||||
int32_t value = ((const int32_t *)tensor)[i];
|
||||
fprintf(stderr, "%s%d", value < 0 ? "" : " ", value);
|
||||
}
|
||||
|
||||
static void ollama_debug_tensor(const struct ggml_tensor *tensor, bool verbose, const char *prefix, int indent) {
|
||||
fprintf(stderr, "%s%s %s (%s): [%lld %lld %lld %lld]\n", prefix, tensor->name,
|
||||
ggml_op_name(tensor->op), ggml_type_name(tensor->type), tensor->ne[0],
|
||||
tensor->ne[1], tensor->ne[2], tensor->ne[3]);
|
||||
|
||||
if (!verbose) {
|
||||
return;
|
||||
}
|
||||
|
||||
for (int i = 0; i < indent; i++) {
|
||||
fprintf(stderr, " ");
|
||||
}
|
||||
|
||||
switch (tensor->type) {
|
||||
case GGML_TYPE_F16:
|
||||
print_tensor(ggml_get_data(tensor), print_tensor_f16, ggml_n_dims(tensor),
|
||||
(int64_t *)tensor->ne, ggml_n_dims(tensor), 0, 3, indent);
|
||||
break;
|
||||
case GGML_TYPE_F32:
|
||||
print_tensor(ggml_get_data(tensor), print_tensor_f32, ggml_n_dims(tensor),
|
||||
(int64_t *)tensor->ne, ggml_n_dims(tensor), 0, 3, indent);
|
||||
break;
|
||||
case GGML_TYPE_I32:
|
||||
print_tensor(ggml_get_data(tensor), print_tensor_i32, ggml_n_dims(tensor),
|
||||
(int64_t *)tensor->ne, ggml_n_dims(tensor), 0, 3, indent);
|
||||
break;
|
||||
default:
|
||||
fprintf(stderr, "<unsupported type>\n");
|
||||
return;
|
||||
}
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
void ollama_debug(const struct ggml_tensor *tensor, bool verbose) {
|
||||
ollama_debug_tensor(tensor, verbose, ">>> ", 4);
|
||||
|
||||
for (int i = 0; i < GGML_MAX_SRC && tensor->src[i] != NULL; ++i) {
|
||||
char src[8];
|
||||
const int n = snprintf(src, sizeof(src), " src%d ", i);
|
||||
if (n >= sizeof(src)) {
|
||||
src[sizeof(src) - 1] = '\0';
|
||||
}
|
||||
|
||||
ollama_debug_tensor(tensor->src[i], verbose, src, 4);
|
||||
}
|
||||
}
|
7
ml/backend/ggml/threads.go
Normal file
7
ml/backend/ggml/threads.go
Normal file
@@ -0,0 +1,7 @@
|
||||
//go:build !debug
|
||||
|
||||
package ggml
|
||||
|
||||
func Threads(n int) int {
|
||||
return n
|
||||
}
|
7
ml/backend/ggml/threads_debug.go
Normal file
7
ml/backend/ggml/threads_debug.go
Normal file
@@ -0,0 +1,7 @@
|
||||
//go:build debug
|
||||
|
||||
package ggml
|
||||
|
||||
func Threads(_ int) int {
|
||||
return 1
|
||||
}
|
@@ -3,6 +3,7 @@ package nn
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
)
|
||||
|
||||
@@ -11,40 +12,50 @@ import (
|
||||
//
|
||||
// Parameters:
|
||||
// - ctx: Context for tensor operations
|
||||
// - query: Query tensor (Q) with shape [d_k, seq_len_q, heads]
|
||||
// - key: Key tensor (K) with shape [d_k, seq_len_k, kv_heads]
|
||||
// - value: Value tensor (V) with shape [seq_len_k, d_v, kv_heads]
|
||||
// - mask: Optional attention mask that is added to the attention score. If
|
||||
// provided, should broadcast to [seq_len_k, seq_len_q, heads]
|
||||
// - query: Query tensor (Q) with shape [d_k, heads, seq_len_q]
|
||||
// - key: Key tensor (K) with shape [d_k, kv_heads, seq_len_k], can be nil to read from cache only
|
||||
// - value: Value tensor (V) with shape [d_v, kv_heads, seq_len_k], can be nil to read from cache only
|
||||
// - scale: Scaling factor, typically 1/√d_k where d_k is the key dimension
|
||||
// - cache: KV cache to store key/value and get past history, can be nil to only use provided key/value
|
||||
//
|
||||
// Returns:
|
||||
//
|
||||
// Attention output with shape [d_v, heads, seq_len_q]
|
||||
func Attention(ctx ml.Context, query, key, value, mask ml.Tensor, scale float64) ml.Tensor {
|
||||
if query.Dim(0) != key.Dim(0) {
|
||||
panic(fmt.Errorf("d_k in attention operation does not match between query(%v) and key(%v)", query.Dim(0), key.Dim(0)))
|
||||
func Attention(ctx ml.Context, query, key, value ml.Tensor, scale float64, cache kvcache.Cache) ml.Tensor {
|
||||
if key != nil && value != nil {
|
||||
if query.Dim(0) != key.Dim(0) {
|
||||
panic(fmt.Errorf("d_k in attention operation does not match between query(%v) and key(%v)", query.Dim(0), key.Dim(0)))
|
||||
}
|
||||
|
||||
if key.Dim(1) != value.Dim(1) {
|
||||
panic(fmt.Errorf("kv_heads in attention operation does not match between key(%v) and value(%v)", key.Dim(1), value.Dim(1)))
|
||||
}
|
||||
|
||||
if key.Dim(2) != value.Dim(2) {
|
||||
panic(fmt.Errorf("seq_len_k in attention operation does not match between key(%v) and value(%v)", key.Dim(2), value.Dim(2)))
|
||||
}
|
||||
|
||||
if cache != nil {
|
||||
cache.Put(ctx, key, value)
|
||||
}
|
||||
} else if cache == nil {
|
||||
panic("key & value tensors must be provided if cache is nil")
|
||||
}
|
||||
|
||||
if mask != nil && query.Dim(1) != mask.Dim(1) {
|
||||
panic(fmt.Errorf("seq_len_q in attention operation does not match between query(%v) and mask(%v)", query.Dim(1), mask.Dim(1)))
|
||||
var mask ml.Tensor
|
||||
if cache != nil {
|
||||
key, value, mask = cache.Get(ctx)
|
||||
}
|
||||
|
||||
if key.Dim(1) != value.Dim(0) {
|
||||
panic(fmt.Errorf("seq_len_k in attention operation does not match between key(%v) and value(%v)", key.Dim(1), value.Dim(0)))
|
||||
}
|
||||
|
||||
if mask != nil && key.Dim(1) != mask.Dim(0) {
|
||||
panic(fmt.Errorf("seq_len_k in attention operation does not match between key(%v) and mask(%v)", key.Dim(1), mask.Dim(0)))
|
||||
}
|
||||
|
||||
if key.Dim(2) != value.Dim(2) {
|
||||
panic(fmt.Errorf("kv_heads in attention operation does not match between key(%v) and value(%v)", key.Dim(2), value.Dim(2)))
|
||||
}
|
||||
|
||||
if sdpa, ok := query.(ml.ScaledDotProductAttention); ok {
|
||||
// Only use the fast SDPA implementation if we have a cache, since that's what
|
||||
// will do any expected backend-specific transformations for us
|
||||
if sdpa, ok := query.(ml.ScaledDotProductAttention); ok && cache != nil {
|
||||
return sdpa.ScaledDotProductAttention(ctx, key, value, mask, scale)
|
||||
} else {
|
||||
query = query.Permute(ctx, 0, 2, 1, 3)
|
||||
key = key.Permute(ctx, 0, 2, 1, 3)
|
||||
value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
|
||||
|
||||
kq := key.MulmatFullPrec(ctx, query)
|
||||
|
||||
kq = kq.Scale(ctx, scale)
|
||||
|
37
model/input/input.go
Normal file
37
model/input/input.go
Normal file
@@ -0,0 +1,37 @@
|
||||
package input
|
||||
|
||||
// Input represents one token in the input stream
|
||||
type Input struct {
|
||||
// Token is a single element of text.
|
||||
Token int32
|
||||
|
||||
// Multimodal is opaque data representing a non-text
|
||||
// element such as an image (or part of one if the image
|
||||
// can be processed in pieces). It may be either together
|
||||
// with Token or on its own.
|
||||
Multimodal any
|
||||
|
||||
// MultimodalHash is a unique representation of the data
|
||||
// stored in Multimodal, used for caching and comparing
|
||||
// equality.
|
||||
MultimodalHash uint64
|
||||
}
|
||||
|
||||
// MultimodalIndex is a multimodal element (such as an image)
|
||||
// together with an index into the slice of Inputs with the
|
||||
// corresponding token. Note that the index is not the same
|
||||
// as the position - to find that use the index with the
|
||||
// Positions slice.
|
||||
type MultimodalIndex struct {
|
||||
Index int
|
||||
Multimodal any
|
||||
}
|
||||
|
||||
// Options contains the inputs for a model forward pass
|
||||
type Options struct {
|
||||
Inputs []int32
|
||||
Multimodal []MultimodalIndex
|
||||
Positions []int32
|
||||
Sequences []int
|
||||
Outputs []int32
|
||||
}
|
@@ -3,7 +3,6 @@ package model
|
||||
import (
|
||||
"errors"
|
||||
"fmt"
|
||||
"image"
|
||||
_ "image/jpeg"
|
||||
_ "image/png"
|
||||
"log/slog"
|
||||
@@ -16,23 +15,50 @@ import (
|
||||
_ "golang.org/x/image/tiff"
|
||||
_ "golang.org/x/image/webp"
|
||||
|
||||
fs "github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
_ "github.com/ollama/ollama/ml/backend"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
// Options contains the inputs for a model forward pass
|
||||
type Options struct {
|
||||
Inputs []int32
|
||||
Positions []int32
|
||||
Sequences []int
|
||||
Outputs []int32
|
||||
// Model implements a specific model architecture, defining the forward pass and any model-specific configuration
|
||||
type Model interface {
|
||||
Forward(ml.Context, input.Options) (ml.Tensor, error)
|
||||
|
||||
Images []image.Image
|
||||
Backend() ml.Backend
|
||||
Config() config
|
||||
}
|
||||
|
||||
type config struct {
|
||||
Cache kvcache.Cache
|
||||
// MultimodalProcessor must be implemented by multimodal models.
|
||||
type MultimodalProcessor interface {
|
||||
// EncodeMultimodal processes a single input (such as an image) and
|
||||
// generates an output (typically an embedding) that can be used by the model.
|
||||
//
|
||||
// The return value is most typically an ml.Tensor, however, different
|
||||
// type are possible, such as an object containing a tensor plus
|
||||
// additional metadata, a slice of tensors or even just the original input.
|
||||
//
|
||||
// The result may be cached by the runner.
|
||||
EncodeMultimodal(ml.Context, []byte) (any, error)
|
||||
|
||||
// PostTokenize is called after tokenization to allow the model to edit the
|
||||
// input stream to correctly arrange multimodal elements.
|
||||
//
|
||||
// The input is a slice of tokens with the results of EncodeMultimodal interleaved
|
||||
// in the order that the user provided them. Each element of the slice will be
|
||||
// either a single token or single multimodal object.
|
||||
//
|
||||
// The model must ensure that inputs are stored according to how they will be
|
||||
// processed and stored in the cache. For example, Llava-style models should insert
|
||||
// placeholder tokens equal to the feature size of the corresponding image with
|
||||
// the image itself attached to and split across these tokens. When Forward is called
|
||||
// a partial subset of these tokens may be submitted according to the batch size.
|
||||
//
|
||||
// This function is also responsible for updating MultimodalHash for any Multimodal
|
||||
// that is modified to ensure that there is a unique hash value that accurately
|
||||
// represents the contents.
|
||||
PostTokenize(ml.Context, []input.Input) ([]input.Input, error)
|
||||
}
|
||||
|
||||
// Base implements the common fields and methods for all models
|
||||
@@ -41,6 +67,10 @@ type Base struct {
|
||||
config
|
||||
}
|
||||
|
||||
type config struct {
|
||||
Cache kvcache.Cache
|
||||
}
|
||||
|
||||
// Backend returns the underlying backend that will run the model
|
||||
func (m *Base) Backend() ml.Backend {
|
||||
return m.b
|
||||
@@ -50,14 +80,6 @@ func (m *Base) Config() config {
|
||||
return m.config
|
||||
}
|
||||
|
||||
// Model implements a specific model architecture, defining the forward pass and any model-specific configuration
|
||||
type Model interface {
|
||||
Forward(ml.Context, Options) (ml.Tensor, error)
|
||||
|
||||
Backend() ml.Backend
|
||||
Config() config
|
||||
}
|
||||
|
||||
var models = make(map[string]func(ml.Config) (Model, error))
|
||||
|
||||
// Register registers a model constructor for the given architecture
|
||||
@@ -100,6 +122,36 @@ func New(modelPath string, params ml.BackendParams) (Model, error) {
|
||||
return m, nil
|
||||
}
|
||||
|
||||
func NewTextProcessor(s string) (TextProcessor, error) {
|
||||
r, err := os.Open(s)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
defer r.Close()
|
||||
meta, _, err := fs.Decode(r, -1)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return getTextProcessor(meta.KV())
|
||||
}
|
||||
|
||||
func getTextProcessor(kv fs.KV) (TextProcessor, error) {
|
||||
arch := kv.Architecture()
|
||||
f, ok := models[arch]
|
||||
if !ok {
|
||||
return nil, fmt.Errorf("unsupported model architecture %q", arch)
|
||||
}
|
||||
m, err := f(kv)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
tp, ok := m.(TextProcessor)
|
||||
if !ok {
|
||||
return nil, fmt.Errorf("%v is not a TextProcessor", m)
|
||||
}
|
||||
return tp, nil
|
||||
}
|
||||
|
||||
func populateFields(base Base, v reflect.Value, tags ...Tag) reflect.Value {
|
||||
t := v.Type()
|
||||
|
||||
@@ -226,7 +278,7 @@ func canNil(t reflect.Type) bool {
|
||||
t.Kind() == reflect.Slice
|
||||
}
|
||||
|
||||
func Forward(ctx ml.Context, m Model, opts Options) (ml.Tensor, error) {
|
||||
func Forward(ctx ml.Context, m Model, opts input.Options) (ml.Tensor, error) {
|
||||
if len(opts.Positions) != len(opts.Sequences) {
|
||||
return nil, fmt.Errorf("length of positions (%v) must match length of seqs (%v)", len(opts.Positions), len(opts.Sequences))
|
||||
}
|
||||
@@ -237,7 +289,7 @@ func Forward(ctx ml.Context, m Model, opts Options) (ml.Tensor, error) {
|
||||
|
||||
cache := m.Config().Cache
|
||||
if cache != nil {
|
||||
err := cache.StartForward(ctx, opts.Positions, opts.Sequences)
|
||||
err := cache.StartForward(ctx, opts)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
@@ -248,8 +300,7 @@ func Forward(ctx ml.Context, m Model, opts Options) (ml.Tensor, error) {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
ctx.Forward(t)
|
||||
ctx.Compute(t)
|
||||
ctx.Forward(t).Compute(t)
|
||||
|
||||
return t, nil
|
||||
}
|
||||
|
@@ -3,12 +3,15 @@ package model
|
||||
import (
|
||||
"reflect"
|
||||
"slices"
|
||||
"strings"
|
||||
"testing"
|
||||
|
||||
"github.com/google/go-cmp/cmp"
|
||||
fs "github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/backend/ggml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
func TestParseTags(t *testing.T) {
|
||||
@@ -134,3 +137,40 @@ func TestPopulateFieldsAlternateName(t *testing.T) {
|
||||
t.Errorf("populateFields() set incorrect values (-want +got):\n%s", diff)
|
||||
}
|
||||
}
|
||||
|
||||
func TestGetTextProcessor(t *testing.T) {
|
||||
tp, err := getTextProcessor(fs.KV{})
|
||||
if err == nil {
|
||||
t.Error("expected error")
|
||||
} else if !strings.Contains(err.Error(), "unsupported model architecture") {
|
||||
t.Errorf("unexpected error: %v", err)
|
||||
} else if tp != nil {
|
||||
t.Error("expected nil tp")
|
||||
}
|
||||
|
||||
models["dummy"] = func(ml.Config) (Model, error) {
|
||||
return notTextProcessorModel{}, nil
|
||||
}
|
||||
tp, err = getTextProcessor(fs.KV{"general.architecture": "dummy"})
|
||||
if err == nil {
|
||||
t.Error("expected error")
|
||||
} else if !strings.Contains(err.Error(), "not a TextProcessor") {
|
||||
t.Errorf("unexpected error: %v", err)
|
||||
} else if tp != nil {
|
||||
t.Error("expected nil tp")
|
||||
}
|
||||
}
|
||||
|
||||
type notTextProcessorModel struct{}
|
||||
|
||||
func (notTextProcessorModel) Forward(ml.Context, input.Options) (ml.Tensor, error) {
|
||||
panic("unimplemented")
|
||||
}
|
||||
|
||||
func (notTextProcessorModel) Backend() ml.Backend {
|
||||
panic("unimplemented")
|
||||
}
|
||||
|
||||
func (notTextProcessorModel) Config() config {
|
||||
panic("unimplemented")
|
||||
}
|
||||
|
220
model/models/gemma2/model.go
Normal file
220
model/models/gemma2/model.go
Normal file
@@ -0,0 +1,220 @@
|
||||
package gemma2
|
||||
|
||||
import (
|
||||
"math"
|
||||
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/model"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
type Options struct {
|
||||
hiddenSize, numHeads, numKVHeads int
|
||||
attnKeyLen, attnValLen int
|
||||
eps, ropeBase, ropeScale float32
|
||||
attnLogitSoftcap float32
|
||||
finalLogitSoftcap float32
|
||||
largeModelScaling bool
|
||||
}
|
||||
|
||||
type Model struct {
|
||||
model.Base
|
||||
model.SentencePieceModel
|
||||
|
||||
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
|
||||
Layers []Layer `gguf:"blk"`
|
||||
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
|
||||
Output *nn.Linear `gguf:"output,alt:token_embd"` // just set to token_embd?
|
||||
|
||||
*Options
|
||||
}
|
||||
|
||||
const (
|
||||
gemma27BLayerCount = 46
|
||||
)
|
||||
|
||||
func New(c ml.Config) (model.Model, error) {
|
||||
m := Model{
|
||||
SentencePieceModel: model.NewSentencePieceModel(
|
||||
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
|
||||
&model.Vocabulary{
|
||||
Values: c.Strings("tokenizer.ggml.tokens"),
|
||||
Scores: c.Floats("tokenizer.ggml.scores"),
|
||||
Types: c.Uints("tokenizer.ggml.token_type"),
|
||||
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
|
||||
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
|
||||
},
|
||||
),
|
||||
Layers: make([]Layer, c.Uint("block_count")),
|
||||
Options: &Options{
|
||||
hiddenSize: int(c.Uint("embedding_length")),
|
||||
numHeads: int(c.Uint("attention.head_count")),
|
||||
numKVHeads: int(c.Uint("attention.head_count_kv")),
|
||||
attnKeyLen: int(c.Uint("attention.key_length")),
|
||||
attnValLen: int(c.Uint("attention.value_length")),
|
||||
eps: c.Float("attention.layer_norm_rms_epsilon"),
|
||||
ropeBase: c.Float("rope.freq_base", 10000.0),
|
||||
ropeScale: c.Float("rope.freq_scale", 1.0),
|
||||
attnLogitSoftcap: c.Float("attn_logit_softcapping"),
|
||||
finalLogitSoftcap: c.Float("final_logit_softcapping"),
|
||||
},
|
||||
}
|
||||
|
||||
slidingWindowLen := int32(c.Uint("attention.sliding_window"))
|
||||
m.Cache = kvcache.NewWrapperCache(kvcache.NewSWACache(slidingWindowLen, m.Shift), kvcache.NewCausalCache(m.Shift))
|
||||
m.Cache.SetConfig(ml.CacheConfig{})
|
||||
|
||||
return &m, nil
|
||||
}
|
||||
|
||||
type SelfAttention struct {
|
||||
Query *nn.Linear `gguf:"attn_q"`
|
||||
Key *nn.Linear `gguf:"attn_k"`
|
||||
Value *nn.Linear `gguf:"attn_v"`
|
||||
Output *nn.Linear `gguf:"attn_output"`
|
||||
}
|
||||
|
||||
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
|
||||
batchSize := hiddenState.Dim(1)
|
||||
ropeType := uint32(2)
|
||||
|
||||
q := sa.Query.Forward(ctx, hiddenState)
|
||||
q = q.Reshape(ctx, opts.attnKeyLen, opts.numHeads, batchSize)
|
||||
q = q.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, opts.ropeBase, opts.ropeScale)
|
||||
|
||||
if opts.largeModelScaling {
|
||||
q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.hiddenSize/opts.numHeads)))
|
||||
} else {
|
||||
q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.attnKeyLen)))
|
||||
}
|
||||
|
||||
k := sa.Key.Forward(ctx, hiddenState)
|
||||
k = k.Reshape(ctx, opts.attnKeyLen, opts.numKVHeads, batchSize)
|
||||
k = k.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, opts.ropeBase, opts.ropeScale)
|
||||
|
||||
v := sa.Value.Forward(ctx, hiddenState)
|
||||
v = v.Reshape(ctx, opts.attnValLen, opts.numKVHeads, batchSize)
|
||||
|
||||
cache.Put(ctx, k, v)
|
||||
k, v, mask := cache.Get(ctx)
|
||||
|
||||
q = q.Permute(ctx, 0, 2, 1, 3)
|
||||
k = k.Permute(ctx, 0, 2, 1, 3)
|
||||
v = v.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
|
||||
|
||||
kq := k.Mulmat(ctx, q)
|
||||
|
||||
// logit softcap
|
||||
kq = kq.Scale(ctx, 1.0/float64(opts.attnLogitSoftcap))
|
||||
kq = kq.Tanh(ctx)
|
||||
kq = kq.Scale(ctx, float64(opts.attnLogitSoftcap))
|
||||
|
||||
kq = kq.Add(ctx, mask)
|
||||
kq = kq.Softmax(ctx)
|
||||
|
||||
kqv := v.Mulmat(ctx, kq)
|
||||
kqv = kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
||||
kqv = kqv.Reshape(ctx, opts.attnValLen*opts.numHeads, batchSize)
|
||||
|
||||
return sa.Output.Forward(ctx, kqv)
|
||||
}
|
||||
|
||||
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||
return key.RoPE(ctx, shift, nil, uint32(m.Options.attnKeyLen), uint32(2), m.Options.ropeBase, m.Options.ropeScale), nil
|
||||
}
|
||||
|
||||
type MLP struct {
|
||||
Up *nn.Linear `gguf:"ffn_up"`
|
||||
Down *nn.Linear `gguf:"ffn_down"`
|
||||
Gate *nn.Linear `gguf:"ffn_gate"`
|
||||
}
|
||||
|
||||
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
|
||||
hiddenState = mlp.Gate.Forward(ctx, hiddenState).GELU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
|
||||
return mlp.Down.Forward(ctx, hiddenState)
|
||||
}
|
||||
|
||||
type Layer struct {
|
||||
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
|
||||
SelfAttention *SelfAttention
|
||||
PostAttentionNorm *nn.RMSNorm `gguf:"post_attention_norm"`
|
||||
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
|
||||
MLP *MLP
|
||||
PostMLPNorm *nn.RMSNorm `gguf:"post_ffw_norm"`
|
||||
}
|
||||
|
||||
func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
|
||||
residual := hiddenState
|
||||
|
||||
hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
|
||||
hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)
|
||||
hiddenState = l.PostAttentionNorm.Forward(ctx, hiddenState, opts.eps)
|
||||
|
||||
// In the final layer (outputs != nil), optimize by pruning to just the token positions
|
||||
// we need logits for.
|
||||
if outputs != nil {
|
||||
hiddenState = hiddenState.Rows(ctx, outputs)
|
||||
residual = residual.Rows(ctx, outputs)
|
||||
}
|
||||
|
||||
hiddenState = hiddenState.Add(ctx, residual)
|
||||
residual = hiddenState
|
||||
|
||||
hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
|
||||
hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
|
||||
hiddenState = l.PostMLPNorm.Forward(ctx, hiddenState, opts.eps)
|
||||
return hiddenState.Add(ctx, residual)
|
||||
}
|
||||
|
||||
func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
|
||||
inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
positions, err := ctx.Input().FromIntSlice(opts.Positions, len(opts.Positions))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
outputs, err := ctx.Output().FromIntSlice(opts.Outputs, len(opts.Outputs))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
|
||||
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.Options.hiddenSize)))
|
||||
|
||||
if len(m.Layers) == gemma27BLayerCount {
|
||||
m.Options.largeModelScaling = true
|
||||
}
|
||||
|
||||
for i, layer := range m.Layers {
|
||||
cacheType := i % 2
|
||||
m.Cache.SetLayer(i)
|
||||
wc := m.Cache.(*kvcache.WrapperCache)
|
||||
wc.SetLayerType(cacheType)
|
||||
|
||||
var lastLayerOutputs ml.Tensor
|
||||
if i == len(m.Layers)-1 {
|
||||
lastLayerOutputs = outputs
|
||||
}
|
||||
|
||||
hiddenState = layer.Forward(ctx, hiddenState, positions, lastLayerOutputs, m.Cache, m.Options)
|
||||
}
|
||||
|
||||
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
|
||||
hiddenState = m.Output.Forward(ctx, hiddenState)
|
||||
|
||||
// final logit softcap
|
||||
hiddenState = hiddenState.Scale(ctx, 1.0/float64(m.Options.finalLogitSoftcap))
|
||||
hiddenState = hiddenState.Tanh(ctx)
|
||||
hiddenState = hiddenState.Scale(ctx, float64(m.Options.finalLogitSoftcap))
|
||||
return hiddenState.Rows(ctx, outputs), nil
|
||||
}
|
||||
|
||||
func init() {
|
||||
model.Register("gemma2", New)
|
||||
}
|
173
model/models/gemma3/model.go
Normal file
173
model/models/gemma3/model.go
Normal file
@@ -0,0 +1,173 @@
|
||||
package gemma3
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/binary"
|
||||
"hash/fnv"
|
||||
"image"
|
||||
"math"
|
||||
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/model"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
type Model struct {
|
||||
model.Base
|
||||
model.SentencePieceModel
|
||||
|
||||
*VisionModel `gguf:"v,vision"`
|
||||
*TextModel
|
||||
|
||||
*MultiModalProjector `gguf:"mm"`
|
||||
|
||||
ImageProcessor
|
||||
}
|
||||
|
||||
var _ model.MultimodalProcessor = (*Model)(nil)
|
||||
|
||||
type MultiModalProjector struct {
|
||||
SoftEmbNorm *nn.RMSNorm `gguf:"mm_soft_emb_norm"`
|
||||
InputProjection *nn.Linear `gguf:"mm_input_projection"`
|
||||
|
||||
tokensPerImage int
|
||||
}
|
||||
|
||||
func (p *MultiModalProjector) Forward(ctx ml.Context, visionOutputs ml.Tensor, imageSize, patchSize int, eps float32) ml.Tensor {
|
||||
l := visionOutputs.Dim(0)
|
||||
|
||||
visionOutputs = visionOutputs.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
|
||||
patchesPerImage := imageSize / patchSize
|
||||
visionOutputs = visionOutputs.Reshape(ctx, patchesPerImage, patchesPerImage, l)
|
||||
|
||||
kernelSize := patchesPerImage / int(math.Sqrt(float64(p.tokensPerImage)))
|
||||
visionOutputs = visionOutputs.AvgPool2D(ctx, kernelSize, kernelSize, 0)
|
||||
visionOutputs = visionOutputs.Reshape(ctx, visionOutputs.Dim(0)*visionOutputs.Dim(1), l)
|
||||
visionOutputs = visionOutputs.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
|
||||
visionOutputs = p.SoftEmbNorm.Forward(ctx, visionOutputs, eps)
|
||||
|
||||
// TODO: inputProjection must be transposed since they're incompatible with visionOutputs
|
||||
visionOutputs = p.InputProjection.Weight.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx).Mulmat(ctx, visionOutputs)
|
||||
return visionOutputs
|
||||
}
|
||||
|
||||
func New(c ml.Config) (model.Model, error) {
|
||||
m := Model{
|
||||
SentencePieceModel: model.NewSentencePieceModel(
|
||||
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
|
||||
&model.Vocabulary{
|
||||
Values: c.Strings("tokenizer.ggml.tokens"),
|
||||
Scores: c.Floats("tokenizer.ggml.scores"),
|
||||
Types: c.Uints("tokenizer.ggml.token_type"),
|
||||
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
|
||||
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
|
||||
EOS: int32(1),
|
||||
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
|
||||
EOT: int32(106),
|
||||
AddEOT: c.Bool("tokenizer.ggml.add_eot_token", false),
|
||||
},
|
||||
),
|
||||
ImageProcessor: newImageProcessor(c),
|
||||
VisionModel: newVisionModel(c),
|
||||
TextModel: newTextModel(c),
|
||||
MultiModalProjector: &MultiModalProjector{
|
||||
tokensPerImage: int(c.Uint("mm_tokens_per_image", 256)),
|
||||
},
|
||||
}
|
||||
|
||||
slidingWindowLen := int32(c.Uint("attention.sliding_window"))
|
||||
m.Cache = kvcache.NewWrapperCache(kvcache.NewSWACache(slidingWindowLen, m.Shift), kvcache.NewCausalCache(m.Shift))
|
||||
|
||||
return &m, nil
|
||||
}
|
||||
|
||||
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, error) {
|
||||
image, _, err := image.Decode(bytes.NewReader(multimodalData))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
f32s, err := m.ImageProcessor.ProcessImage(image)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
pixelValues, err := ctx.Input().FromFloatSlice(f32s,
|
||||
m.ImageProcessor.imageSize,
|
||||
m.ImageProcessor.imageSize,
|
||||
m.ImageProcessor.numChannels,
|
||||
)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
visionOutputs := m.VisionModel.Forward(ctx, pixelValues)
|
||||
visionOutputs = m.MultiModalProjector.Forward(ctx, visionOutputs, m.imageSize, m.patchSize, m.VisionModel.eps)
|
||||
return visionOutputs, nil
|
||||
}
|
||||
|
||||
type imageToken struct {
|
||||
embedding ml.Tensor
|
||||
index int
|
||||
}
|
||||
|
||||
func (m *Model) PostTokenize(ctx ml.Context, inputs []input.Input) ([]input.Input, error) {
|
||||
var result []input.Input
|
||||
fnvHash := fnv.New64a()
|
||||
|
||||
for _, inp := range inputs {
|
||||
if inp.Multimodal == nil {
|
||||
result = append(result, inp)
|
||||
} else {
|
||||
imageInputs := []input.Input{
|
||||
{Token: 108}, // "\n\n"
|
||||
{Token: 255999}, // "<start_of_image>""
|
||||
}
|
||||
result = append(result, imageInputs...)
|
||||
|
||||
// add image embeddings
|
||||
inputMultimodal := inp.Multimodal.(ml.Tensor)
|
||||
|
||||
for i := range inputMultimodal.Dim(1) {
|
||||
fnvHash.Reset()
|
||||
binary.Write(fnvHash, binary.NativeEndian, inp.MultimodalHash)
|
||||
fnvHash.Write([]byte{byte(i)})
|
||||
|
||||
imageToken := imageToken{embedding: inputMultimodal, index: i}
|
||||
result = append(result, input.Input{Multimodal: imageToken, MultimodalHash: fnvHash.Sum64()})
|
||||
}
|
||||
|
||||
result = append(result,
|
||||
input.Input{Token: 256000}, // <end_of_image>
|
||||
input.Input{Token: 108}, // "\n\n"
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
return result, nil
|
||||
}
|
||||
|
||||
func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
|
||||
inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
positions, err := ctx.Input().FromIntSlice(opts.Positions, len(opts.Positions))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
outputs, err := ctx.Output().FromIntSlice(opts.Outputs, len(opts.Outputs))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return m.TextModel.Forward(ctx, inputs, positions, outputs, opts, m.Cache), nil
|
||||
}
|
||||
|
||||
func init() {
|
||||
model.Register("gemma3", New)
|
||||
}
|
254
model/models/gemma3/model_text.go
Normal file
254
model/models/gemma3/model_text.go
Normal file
@@ -0,0 +1,254 @@
|
||||
package gemma3
|
||||
|
||||
import (
|
||||
"math"
|
||||
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/model"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
type TextOptions struct {
|
||||
hiddenSize, numHeads, numKVHeads int
|
||||
attnKeyLen, attnValLen int
|
||||
eps, ropeScale float32
|
||||
ropeLocalBase, ropeGlobalBase float32
|
||||
finalLogitSoftcap float32
|
||||
largeModelScaling bool
|
||||
}
|
||||
|
||||
type TextModel struct {
|
||||
model.Base
|
||||
model.SentencePieceModel
|
||||
|
||||
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
|
||||
Layers []TextLayer `gguf:"blk"`
|
||||
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
|
||||
Output *nn.Linear `gguf:"output,alt:token_embd"`
|
||||
|
||||
*TextOptions
|
||||
}
|
||||
|
||||
const (
|
||||
gemmaGlobalCacheCount = 6
|
||||
gemma27BLayerCount = 62
|
||||
)
|
||||
|
||||
const (
|
||||
cacheTypeSWA = iota
|
||||
cacheTypeCausal
|
||||
)
|
||||
|
||||
func newTextModel(c ml.Config) *TextModel {
|
||||
numBlocks := int(c.Uint("block_count"))
|
||||
|
||||
m := TextModel{
|
||||
SentencePieceModel: model.NewSentencePieceModel(
|
||||
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
|
||||
&model.Vocabulary{
|
||||
Values: c.Strings("tokenizer.ggml.tokens"),
|
||||
Scores: c.Floats("tokenizer.ggml.scores"),
|
||||
Types: c.Uints("tokenizer.ggml.token_type"),
|
||||
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
|
||||
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
|
||||
},
|
||||
),
|
||||
Layers: make([]TextLayer, numBlocks),
|
||||
TextOptions: &TextOptions{
|
||||
hiddenSize: int(c.Uint("embedding_length")),
|
||||
numHeads: int(c.Uint("attention.head_count")),
|
||||
numKVHeads: int(c.Uint("attention.head_count_kv")),
|
||||
attnKeyLen: int(c.Uint("attention.key_length", 256)),
|
||||
attnValLen: int(c.Uint("attention.value_length", 256)),
|
||||
eps: c.Float("attention.layer_norm_rms_epsilon", 1e-06),
|
||||
ropeLocalBase: c.Float("rope.local.freq_base", 10000.0),
|
||||
ropeGlobalBase: c.Float("rope.global.freq_base", 1000000.0),
|
||||
ropeScale: c.Float("rope.freq_scale", 1.0),
|
||||
finalLogitSoftcap: c.Float("final_logit_softcapping", 30.0),
|
||||
},
|
||||
}
|
||||
|
||||
if numBlocks == gemma27BLayerCount {
|
||||
m.largeModelScaling = true
|
||||
}
|
||||
|
||||
return &m
|
||||
}
|
||||
|
||||
type TextSelfAttention struct {
|
||||
Query *nn.Linear `gguf:"attn_q"`
|
||||
QueryNorm *nn.RMSNorm `gguf:"attn_q_norm"`
|
||||
Key *nn.Linear `gguf:"attn_k"`
|
||||
KeyNorm *nn.RMSNorm `gguf:"attn_k_norm"`
|
||||
Value *nn.Linear `gguf:"attn_v"`
|
||||
Output *nn.Linear `gguf:"attn_output"`
|
||||
}
|
||||
|
||||
func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
|
||||
batchSize := hiddenState.Dim(1)
|
||||
ropeType := uint32(2)
|
||||
|
||||
ropeBase := opts.ropeLocalBase
|
||||
if (layer+1)%gemmaGlobalCacheCount == 0 {
|
||||
ropeBase = opts.ropeGlobalBase
|
||||
}
|
||||
|
||||
q := sa.Query.Forward(ctx, hiddenState)
|
||||
q = q.Reshape(ctx, opts.attnKeyLen, opts.numHeads, batchSize)
|
||||
q = sa.QueryNorm.Forward(ctx, q, opts.eps)
|
||||
q = q.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, ropeBase, opts.ropeScale)
|
||||
|
||||
if opts.largeModelScaling {
|
||||
q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.hiddenSize/opts.numHeads)))
|
||||
} else {
|
||||
q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.attnKeyLen)))
|
||||
}
|
||||
|
||||
k := sa.Key.Forward(ctx, hiddenState)
|
||||
k = k.Reshape(ctx, opts.attnKeyLen, opts.numKVHeads, batchSize)
|
||||
k = sa.KeyNorm.Forward(ctx, k, opts.eps)
|
||||
k = k.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, ropeBase, opts.ropeScale)
|
||||
|
||||
v := sa.Value.Forward(ctx, hiddenState)
|
||||
v = v.Reshape(ctx, opts.attnValLen, opts.numKVHeads, batchSize)
|
||||
|
||||
scaleFactor := 1.0
|
||||
kqv := nn.Attention(ctx, q, k, v, scaleFactor, cache)
|
||||
kqv = kqv.Reshape(ctx, opts.attnValLen*opts.numHeads, batchSize)
|
||||
|
||||
return sa.Output.Forward(ctx, kqv)
|
||||
}
|
||||
|
||||
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||
ropeBase := m.TextOptions.ropeLocalBase
|
||||
if (layer+1)%gemmaGlobalCacheCount == 0 {
|
||||
ropeBase = m.TextOptions.ropeGlobalBase
|
||||
}
|
||||
|
||||
return key.RoPE(ctx, shift, nil, uint32(m.TextOptions.attnKeyLen), uint32(2), ropeBase, m.TextOptions.ropeScale), nil
|
||||
}
|
||||
|
||||
type TextMLP struct {
|
||||
Up *nn.Linear `gguf:"ffn_up"`
|
||||
Down *nn.Linear `gguf:"ffn_down"`
|
||||
Gate *nn.Linear `gguf:"ffn_gate"`
|
||||
}
|
||||
|
||||
func (mlp *TextMLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextOptions) ml.Tensor {
|
||||
hiddenState = mlp.Gate.Forward(ctx, hiddenState).GELU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
|
||||
return mlp.Down.Forward(ctx, hiddenState)
|
||||
}
|
||||
|
||||
type TextLayer struct {
|
||||
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
|
||||
SelfAttention *TextSelfAttention
|
||||
PostAttentionNorm *nn.RMSNorm `gguf:"post_attention_norm"`
|
||||
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
|
||||
MLP *TextMLP
|
||||
PostMLPNorm *nn.RMSNorm `gguf:"post_ffw_norm"`
|
||||
}
|
||||
|
||||
func (l *TextLayer) Forward(ctx ml.Context, layer int, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
|
||||
residual := hiddenState
|
||||
|
||||
hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
|
||||
hiddenState = l.SelfAttention.Forward(ctx, layer, hiddenState, positionIDs, cache, opts)
|
||||
hiddenState = l.PostAttentionNorm.Forward(ctx, hiddenState, opts.eps)
|
||||
|
||||
// In the final layer (outputs != nil), optimize by pruning to just the token positions
|
||||
// we need logits for.
|
||||
if outputs != nil {
|
||||
hiddenState = hiddenState.Rows(ctx, outputs)
|
||||
residual = residual.Rows(ctx, outputs)
|
||||
}
|
||||
|
||||
hiddenState = hiddenState.Add(ctx, residual)
|
||||
residual = hiddenState
|
||||
|
||||
hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
|
||||
hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
|
||||
hiddenState = l.PostMLPNorm.Forward(ctx, hiddenState, opts.eps)
|
||||
return hiddenState.Add(ctx, residual)
|
||||
}
|
||||
|
||||
func setImageEmbeddings(ctx ml.Context, hiddenState ml.Tensor, multimodal []input.MultimodalIndex) []int {
|
||||
var embedding ml.Tensor
|
||||
var src, dst, length int
|
||||
var except []int
|
||||
|
||||
for _, image := range multimodal {
|
||||
imageToken := image.Multimodal.(imageToken)
|
||||
imageSrc := imageToken.index
|
||||
imageDst := image.Index
|
||||
|
||||
if embedding == nil {
|
||||
embedding = imageToken.embedding
|
||||
src = imageSrc
|
||||
dst = imageDst
|
||||
length = 1
|
||||
} else if embedding == imageToken.embedding && imageSrc+1 == src && imageDst+1 == dst {
|
||||
src = imageSrc
|
||||
dst = imageDst
|
||||
length++
|
||||
} else if embedding == imageToken.embedding && src+length == imageSrc && dst+length == imageDst {
|
||||
length++
|
||||
} else {
|
||||
visionOutputs := embedding.View(ctx, src*embedding.Stride(1), length*embedding.Dim(0))
|
||||
ctx.Forward(visionOutputs.Copy(ctx, hiddenState.View(ctx, dst*hiddenState.Stride(1), length*hiddenState.Dim(0))))
|
||||
|
||||
embedding = imageToken.embedding
|
||||
src = imageSrc
|
||||
dst = imageDst
|
||||
length = 1
|
||||
}
|
||||
|
||||
except = append(except, imageDst)
|
||||
}
|
||||
|
||||
if embedding != nil {
|
||||
visionOutputs := embedding.View(ctx, src*embedding.Stride(1), length*embedding.Dim(0))
|
||||
ctx.Forward(visionOutputs.Copy(ctx, hiddenState.View(ctx, dst*hiddenState.Stride(1), length*hiddenState.Dim(0))))
|
||||
}
|
||||
|
||||
return except
|
||||
}
|
||||
|
||||
func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor, opts input.Options, cache kvcache.Cache) ml.Tensor {
|
||||
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
|
||||
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.TextOptions.hiddenSize)))
|
||||
|
||||
except := setImageEmbeddings(ctx, hiddenState, opts.Multimodal)
|
||||
|
||||
for i, layer := range m.Layers {
|
||||
// gemma alternates between the sliding window (local) and causal (global)
|
||||
// kv cache every 6 layers
|
||||
cacheType := cacheTypeSWA
|
||||
if (i+1)%gemmaGlobalCacheCount == 0 {
|
||||
cacheType = cacheTypeCausal
|
||||
}
|
||||
cache.SetLayer(i)
|
||||
wc := cache.(*kvcache.WrapperCache)
|
||||
wc.SetLayerType(cacheType)
|
||||
|
||||
if causal, ok := wc.UnderlyingCache().(*kvcache.Causal); ok {
|
||||
causal.SetCausal(ctx, kvcache.CausalOptions{Except: except})
|
||||
}
|
||||
|
||||
var lastLayerOutputs ml.Tensor
|
||||
if i == len(m.Layers)-1 {
|
||||
lastLayerOutputs = outputs
|
||||
}
|
||||
|
||||
hiddenState = layer.Forward(ctx, i, hiddenState, positions, lastLayerOutputs, cache, m.TextOptions)
|
||||
}
|
||||
|
||||
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
|
||||
hiddenState = m.Output.Forward(ctx, hiddenState)
|
||||
|
||||
// final logit softcap
|
||||
hiddenState = hiddenState.Scale(ctx, 1.0/float64(m.TextOptions.finalLogitSoftcap))
|
||||
hiddenState = hiddenState.Tanh(ctx)
|
||||
return hiddenState.Scale(ctx, float64(m.TextOptions.finalLogitSoftcap))
|
||||
}
|
127
model/models/gemma3/model_vision.go
Normal file
127
model/models/gemma3/model_vision.go
Normal file
@@ -0,0 +1,127 @@
|
||||
package gemma3
|
||||
|
||||
import (
|
||||
"math"
|
||||
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
)
|
||||
|
||||
var batchSize int = 1
|
||||
|
||||
type VisionSelfAttention struct {
|
||||
Query *nn.Linear `gguf:"attn_q"`
|
||||
Key *nn.Linear `gguf:"attn_k"`
|
||||
Value *nn.Linear `gguf:"attn_v"`
|
||||
Output *nn.Linear `gguf:"attn_output"`
|
||||
}
|
||||
|
||||
func (sa *VisionSelfAttention) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *VisionModelOptions) ml.Tensor {
|
||||
headDim := opts.hiddenSize / opts.numHeads
|
||||
|
||||
query := sa.Query.Forward(ctx, hiddenState)
|
||||
key := sa.Key.Forward(ctx, hiddenState)
|
||||
value := sa.Value.Forward(ctx, hiddenState)
|
||||
|
||||
query = query.Reshape(ctx, headDim, opts.numHeads, query.Dim(1), batchSize)
|
||||
key = key.Reshape(ctx, headDim, opts.numHeads, key.Dim(1), batchSize)
|
||||
value = value.Reshape(ctx, headDim, opts.numHeads, value.Dim(1), batchSize)
|
||||
|
||||
attention := nn.Attention(ctx, query, key, value, 1.0/math.Sqrt(float64(headDim)), nil)
|
||||
attention = attention.Reshape(ctx, opts.hiddenSize, attention.Dim(2), batchSize)
|
||||
|
||||
hiddenState = sa.Output.Forward(ctx, attention)
|
||||
return hiddenState
|
||||
}
|
||||
|
||||
type VisionMLP struct {
|
||||
FC1 *nn.Linear `gguf:"fc1"`
|
||||
FC2 *nn.Linear `gguf:"fc2"`
|
||||
}
|
||||
|
||||
func (mlp *VisionMLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *VisionModelOptions) ml.Tensor {
|
||||
hiddenState = mlp.FC1.Forward(ctx, hiddenState).GELU(ctx)
|
||||
hiddenState = mlp.FC2.Forward(ctx, hiddenState)
|
||||
return hiddenState
|
||||
}
|
||||
|
||||
type VisionEncoderLayer struct {
|
||||
LayerNorm1 *nn.LayerNorm `gguf:"layer_norm1"`
|
||||
SelfAttention *VisionSelfAttention
|
||||
|
||||
LayerNorm2 *nn.LayerNorm `gguf:"layer_norm2"`
|
||||
MLP *VisionMLP `gguf:"mlp"`
|
||||
}
|
||||
|
||||
func (e *VisionEncoderLayer) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *VisionModelOptions) ml.Tensor {
|
||||
residual := hiddenState
|
||||
|
||||
// self attention
|
||||
hiddenState = e.LayerNorm1.Forward(ctx, hiddenState, opts.eps)
|
||||
hiddenState = e.SelfAttention.Forward(ctx, hiddenState, opts)
|
||||
hiddenState = hiddenState.Add(ctx, residual)
|
||||
residual = hiddenState
|
||||
|
||||
// feed forward
|
||||
hiddenState = e.LayerNorm2.Forward(ctx, hiddenState, opts.eps)
|
||||
hiddenState = e.MLP.Forward(ctx, hiddenState, opts)
|
||||
return hiddenState.Add(ctx, residual)
|
||||
}
|
||||
|
||||
type VisionModelOptions struct {
|
||||
hiddenSize, numHeads int
|
||||
imageSize, patchSize int
|
||||
eps float32
|
||||
}
|
||||
|
||||
type VisionModel struct {
|
||||
PatchEmbedding *nn.Conv2D `gguf:"patch_embedding"`
|
||||
PositionEmbedding *nn.Embedding `gguf:"position_embedding"`
|
||||
PostLayerNorm *nn.LayerNorm `gguf:"post_layernorm"`
|
||||
|
||||
Layers []VisionEncoderLayer `gguf:"blk"`
|
||||
|
||||
*VisionModelOptions
|
||||
}
|
||||
|
||||
func (m *VisionModel) Forward(ctx ml.Context, pixelValues ml.Tensor) ml.Tensor {
|
||||
numPatches := (m.imageSize / m.patchSize) * (m.imageSize / m.patchSize)
|
||||
|
||||
hiddenState := m.PatchEmbedding.Forward(ctx, pixelValues, m.patchSize, m.patchSize, 0, 0, 1, 1)
|
||||
hiddenState = hiddenState.Reshape(ctx, numPatches, m.hiddenSize)
|
||||
hiddenState = hiddenState.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
|
||||
|
||||
positions := make([]int32, numPatches)
|
||||
for i := range positions {
|
||||
positions[i] = int32(i)
|
||||
}
|
||||
|
||||
positionIDs, err := ctx.Input().FromIntSlice(positions, len(positions))
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
hiddenState = hiddenState.Add(ctx, m.PositionEmbedding.Forward(ctx, positionIDs))
|
||||
|
||||
for _, layer := range m.Layers {
|
||||
hiddenState = layer.Forward(ctx, hiddenState, m.VisionModelOptions)
|
||||
}
|
||||
|
||||
hiddenState = m.PostLayerNorm.Forward(ctx, hiddenState, m.eps)
|
||||
return hiddenState
|
||||
}
|
||||
|
||||
func newVisionModel(c ml.Config) *VisionModel {
|
||||
return &VisionModel{
|
||||
Layers: make([]VisionEncoderLayer, c.Uint("vision.block_count")),
|
||||
VisionModelOptions: &VisionModelOptions{
|
||||
hiddenSize: int(c.Uint("vision.embedding_length")),
|
||||
numHeads: int(c.Uint("vision.attention.head_count")),
|
||||
|
||||
imageSize: int(c.Uint("vision.image_size")),
|
||||
patchSize: int(c.Uint("vision.patch_size")),
|
||||
|
||||
eps: c.Float("vision.attention.layer_norm_epsilon"),
|
||||
},
|
||||
}
|
||||
}
|
58
model/models/gemma3/process_image.go
Normal file
58
model/models/gemma3/process_image.go
Normal file
@@ -0,0 +1,58 @@
|
||||
package gemma3
|
||||
|
||||
import (
|
||||
"image"
|
||||
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/model/imageproc"
|
||||
)
|
||||
|
||||
type ImageProcessor struct {
|
||||
imageSize, patchSize, numChannels int
|
||||
}
|
||||
|
||||
func newImageProcessor(c ml.Config) ImageProcessor {
|
||||
return ImageProcessor{
|
||||
imageSize: int(c.Uint("vision.image_size")),
|
||||
patchSize: int(c.Uint("vision.patch_size")),
|
||||
numChannels: int(c.Uint("vision.num_channels")),
|
||||
}
|
||||
}
|
||||
|
||||
func (p *ImageProcessor) pack(img image.Image, mean, std [3]float32) []float32 {
|
||||
var pixelVals, rVals, gVals, bVals []float32
|
||||
|
||||
bounds := img.Bounds()
|
||||
for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
|
||||
for x := bounds.Min.X; x < bounds.Max.X; x++ {
|
||||
c := img.At(x, y)
|
||||
r, g, b, _ := c.RGBA()
|
||||
rVal := float32(r>>8) / 255.0
|
||||
gVal := float32(g>>8) / 255.0
|
||||
bVal := float32(b>>8) / 255.0
|
||||
|
||||
rVal = (rVal - mean[0]) / std[0]
|
||||
gVal = (gVal - mean[1]) / std[1]
|
||||
bVal = (bVal - mean[2]) / std[2]
|
||||
|
||||
rVals = append(rVals, rVal)
|
||||
gVals = append(gVals, gVal)
|
||||
bVals = append(bVals, bVal)
|
||||
}
|
||||
}
|
||||
|
||||
pixelVals = append(pixelVals, rVals...)
|
||||
pixelVals = append(pixelVals, gVals...)
|
||||
pixelVals = append(pixelVals, bVals...)
|
||||
|
||||
return pixelVals
|
||||
}
|
||||
|
||||
func (p ImageProcessor) ProcessImage(img image.Image) ([]float32, error) {
|
||||
outputSize := image.Point{p.imageSize, p.imageSize}
|
||||
newImage := imageproc.Composite(img)
|
||||
newImage = imageproc.Resize(newImage, outputSize, imageproc.ResizeBilinear)
|
||||
|
||||
data := p.pack(newImage, imageproc.ImageNetStandardMean, imageproc.ImageNetStandardSTD)
|
||||
return data, nil
|
||||
}
|
@@ -1,16 +1,18 @@
|
||||
package llama
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"math"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/model"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
type Options struct {
|
||||
RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
|
||||
hiddenSize, numHeads, numKVHeads int
|
||||
eps, ropeBase, ropeScale float32
|
||||
ropeDim uint32
|
||||
@@ -29,6 +31,10 @@ type Model struct {
|
||||
}
|
||||
|
||||
func New(c ml.Config) (model.Model, error) {
|
||||
if !strings.EqualFold(c.String("tokenizer.ggml.model"), "gpt2") {
|
||||
return nil, fmt.Errorf("tokenizer %s not yet supported", c.String("tokenizer.ggml.model"))
|
||||
}
|
||||
|
||||
m := Model{
|
||||
BytePairEncoding: model.NewBytePairEncoding(
|
||||
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
|
||||
@@ -37,7 +43,9 @@ func New(c ml.Config) (model.Model, error) {
|
||||
Types: c.Uints("tokenizer.ggml.token_type"),
|
||||
Merges: c.Strings("tokenizer.ggml.merges"),
|
||||
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
|
||||
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
|
||||
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
|
||||
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
|
||||
},
|
||||
),
|
||||
Layers: make([]Layer, c.Uint("block_count")),
|
||||
@@ -58,43 +66,38 @@ func New(c ml.Config) (model.Model, error) {
|
||||
}
|
||||
|
||||
type SelfAttention struct {
|
||||
Query *nn.Linear `gguf:"attn_q"`
|
||||
Key *nn.Linear `gguf:"attn_k"`
|
||||
Value *nn.Linear `gguf:"attn_v"`
|
||||
Output *nn.Linear `gguf:"attn_output"`
|
||||
Query *nn.Linear `gguf:"attn_q"`
|
||||
Key *nn.Linear `gguf:"attn_k"`
|
||||
Value *nn.Linear `gguf:"attn_v"`
|
||||
Output *nn.Linear `gguf:"attn_output"`
|
||||
RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
|
||||
}
|
||||
|
||||
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
|
||||
batchSize := hiddenState.Dim(1)
|
||||
headDim := opts.hiddenSize / opts.numHeads
|
||||
ropeType := uint32(0)
|
||||
|
||||
q := sa.Query.Forward(ctx, hiddenState)
|
||||
q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
|
||||
q = q.RoPE(ctx, positionIDs, opts.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)
|
||||
q = q.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
|
||||
|
||||
k := sa.Key.Forward(ctx, hiddenState)
|
||||
k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
k = k.RoPE(ctx, positionIDs, opts.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)
|
||||
k = k.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
|
||||
|
||||
v := sa.Value.Forward(ctx, hiddenState)
|
||||
v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
|
||||
cache.Put(ctx, k, v)
|
||||
k, v, mask := cache.Get(ctx)
|
||||
|
||||
q = q.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
||||
k = k.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
||||
v = v.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
|
||||
|
||||
scaleFactor := 1.0 / math.Sqrt(float64(headDim))
|
||||
kqv := nn.Attention(ctx, q, k, v, mask, scaleFactor)
|
||||
kqv := nn.Attention(ctx, q, k, v, scaleFactor, cache)
|
||||
kqv = kqv.Reshape(ctx, opts.hiddenSize, batchSize)
|
||||
|
||||
return sa.Output.Forward(ctx, kqv)
|
||||
}
|
||||
|
||||
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||
return key.RoPE(ctx, shift, m.Options.RopeFactors, m.Options.ropeDim, m.Options.ropeBase, m.Options.ropeScale), nil
|
||||
return key.RoPE(ctx, shift, m.Layers[layer].SelfAttention.RopeFactors, uint32(0), m.ropeDim, m.ropeBase, m.ropeScale), nil
|
||||
}
|
||||
|
||||
type MLP struct {
|
||||
@@ -136,18 +139,18 @@ func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Ten
|
||||
return hiddenState.Add(ctx, residual)
|
||||
}
|
||||
|
||||
func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
|
||||
inputs, err := ctx.FromIntSlice(opts.Inputs, len(opts.Inputs))
|
||||
func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
|
||||
inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
positions, err := ctx.FromIntSlice(opts.Positions, len(opts.Positions))
|
||||
positions, err := ctx.Input().FromIntSlice(opts.Positions, len(opts.Positions))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
outputs, err := ctx.FromIntSlice(opts.Outputs, len(opts.Outputs))
|
||||
outputs, err := ctx.Output().FromIntSlice(opts.Outputs, len(opts.Outputs))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
@@ -1,10 +1,18 @@
|
||||
package mllama
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/binary"
|
||||
"fmt"
|
||||
"hash/fnv"
|
||||
"image"
|
||||
"slices"
|
||||
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/model"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
type Model struct {
|
||||
@@ -25,6 +33,10 @@ const (
|
||||
)
|
||||
|
||||
func New(c ml.Config) (model.Model, error) {
|
||||
// Verify unified config
|
||||
if c.Uint("vision.block_count") == 0 {
|
||||
return nil, fmt.Errorf("non-unified vision model not supported")
|
||||
}
|
||||
m := Model{
|
||||
BytePairEncoding: model.NewBytePairEncoding(
|
||||
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
|
||||
@@ -33,7 +45,9 @@ func New(c ml.Config) (model.Model, error) {
|
||||
Types: c.Uints("tokenizer.ggml.token_type"),
|
||||
Merges: c.Strings("tokenizer.ggml.merges"),
|
||||
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
|
||||
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
|
||||
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
|
||||
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
|
||||
},
|
||||
),
|
||||
ImageProcessor: newImageProcessor(c),
|
||||
@@ -41,59 +55,99 @@ func New(c ml.Config) (model.Model, error) {
|
||||
TextModel: newTextModel(c),
|
||||
}
|
||||
|
||||
m.Cache = kvcache.NewWrapperCache(kvcache.NewEncoderCache(), kvcache.NewCausalCache(m.TextModel.Shift))
|
||||
encoderCache := kvcache.NewEncoderCache()
|
||||
encoderCache.SetConfig(ml.CacheConfig{})
|
||||
m.Cache = kvcache.NewWrapperCache(encoderCache, kvcache.NewCausalCache(m.TextModel.Shift))
|
||||
|
||||
return &m, nil
|
||||
}
|
||||
|
||||
func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
|
||||
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, error) {
|
||||
image, _, err := image.Decode(bytes.NewReader(multimodalData))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
f32s, aspectRatioID, err := m.ImageProcessor.ProcessImage(image)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
pixelValues, err := ctx.Input().FromFloatSlice(f32s,
|
||||
m.ImageProcessor.imageSize,
|
||||
m.ImageProcessor.imageSize,
|
||||
m.ImageProcessor.numChannels,
|
||||
m.ImageProcessor.maxNumTiles,
|
||||
)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
aspectRatio, err := ctx.Input().FromIntSlice([]int32{int32(aspectRatioID)}, 1)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
positions := make([]int32, 1601)
|
||||
for i := range positions {
|
||||
positions[i] = int32(i)
|
||||
}
|
||||
|
||||
positionIDs, err := ctx.Input().FromIntSlice(positions, len(positions))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
crossAttentionStates := m.VisionModel.Forward(ctx, pixelValues, positionIDs, aspectRatio)
|
||||
return m.Projector.Forward(ctx, crossAttentionStates), nil
|
||||
}
|
||||
|
||||
func (m *Model) PostTokenize(ctx ml.Context, inputs []input.Input) ([]input.Input, error) {
|
||||
var images []input.Input
|
||||
fnvHash := fnv.New64a()
|
||||
|
||||
for i := range inputs {
|
||||
if inputs[i].Multimodal == nil {
|
||||
if len(images) > 0 {
|
||||
inputs[i].Multimodal = images[0].Multimodal
|
||||
inputs[i].MultimodalHash = images[0].MultimodalHash
|
||||
for j := 1; j < len(images); j++ {
|
||||
inputs[i].Multimodal = inputs[i].Multimodal.(ml.Tensor).Concat(ctx, images[j].Multimodal.(ml.Tensor), 3)
|
||||
fnvHash.Reset()
|
||||
binary.Write(fnvHash, binary.NativeEndian, inputs[i].MultimodalHash)
|
||||
binary.Write(fnvHash, binary.NativeEndian, inputs[j].MultimodalHash)
|
||||
inputs[i].MultimodalHash = fnvHash.Sum64()
|
||||
}
|
||||
images = nil
|
||||
}
|
||||
} else {
|
||||
images = append(images, inputs[i])
|
||||
inputs[i].Token = -1
|
||||
}
|
||||
}
|
||||
|
||||
inputs = slices.DeleteFunc(inputs, func(input input.Input) bool { return input.Token == -1 })
|
||||
|
||||
return inputs, nil
|
||||
}
|
||||
|
||||
func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
|
||||
var crossAttentionStates ml.Tensor
|
||||
if opts.Images != nil {
|
||||
f32s, aspectRatioID, err := m.ImageProcessor.ProcessImage(opts.Images[0])
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
pixelValues, err := ctx.FromFloatSlice(f32s,
|
||||
m.ImageProcessor.imageSize,
|
||||
m.ImageProcessor.imageSize,
|
||||
m.ImageProcessor.numChannels,
|
||||
m.ImageProcessor.maxNumTiles,
|
||||
)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
aspectRatio, err := ctx.FromIntSlice([]int32{int32(aspectRatioID)}, 1)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
positions := make([]int32, 1601)
|
||||
for i := range positions {
|
||||
positions[i] = int32(i)
|
||||
}
|
||||
|
||||
positionIDs, err := ctx.FromIntSlice(positions, len(positions))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
crossAttentionStates = m.VisionModel.Forward(ctx, pixelValues, positionIDs, aspectRatio)
|
||||
crossAttentionStates = m.Projector.Forward(ctx, crossAttentionStates)
|
||||
if len(opts.Multimodal) > 0 {
|
||||
crossAttentionStates = opts.Multimodal[len(opts.Multimodal)-1].Multimodal.(ml.Tensor)
|
||||
}
|
||||
|
||||
inputs, err := ctx.FromIntSlice(opts.Inputs, len(opts.Inputs))
|
||||
inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
positions, err := ctx.FromIntSlice(opts.Positions, len(opts.Positions))
|
||||
positions, err := ctx.Input().FromIntSlice(opts.Positions, len(opts.Positions))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
outputs, err := ctx.FromIntSlice(opts.Outputs, len(opts.Outputs))
|
||||
outputs, err := ctx.Output().FromIntSlice(opts.Outputs, len(opts.Outputs))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
@@ -10,36 +10,31 @@ import (
|
||||
)
|
||||
|
||||
type TextSelfAttention struct {
|
||||
Query *nn.Linear `gguf:"attn_q"`
|
||||
Key *nn.Linear `gguf:"attn_k"`
|
||||
Value *nn.Linear `gguf:"attn_v"`
|
||||
Output *nn.Linear `gguf:"attn_output"`
|
||||
Query *nn.Linear `gguf:"attn_q"`
|
||||
Key *nn.Linear `gguf:"attn_k"`
|
||||
Value *nn.Linear `gguf:"attn_v"`
|
||||
Output *nn.Linear `gguf:"attn_output"`
|
||||
RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
|
||||
}
|
||||
|
||||
func (sa *TextSelfAttention) Forward(ctx ml.Context, hiddenState, positions, _ ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
|
||||
batchSize := hiddenState.Dim(1)
|
||||
headDim := opts.hiddenSize / opts.numHeads
|
||||
ropeType := uint32(0)
|
||||
|
||||
query := sa.Query.Forward(ctx, hiddenState)
|
||||
query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
|
||||
query = query.RoPE(ctx, positions, opts.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)
|
||||
query = query.RoPE(ctx, positions, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
|
||||
|
||||
key := sa.Key.Forward(ctx, hiddenState)
|
||||
key = key.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
key = key.RoPE(ctx, positions, opts.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)
|
||||
key = key.RoPE(ctx, positions, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
|
||||
|
||||
value := sa.Value.Forward(ctx, hiddenState)
|
||||
value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
|
||||
cache.Put(ctx, key, value)
|
||||
key, value, mask := cache.Get(ctx)
|
||||
|
||||
query = query.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
||||
key = key.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
||||
value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
|
||||
|
||||
scaleFactor := 1.0 / math.Sqrt(float64(headDim))
|
||||
attention := nn.Attention(ctx, query, key, value, mask, scaleFactor)
|
||||
attention := nn.Attention(ctx, query, key, value, scaleFactor, cache)
|
||||
attention = attention.Reshape(ctx, opts.hiddenSize, batchSize)
|
||||
|
||||
return sa.Output.Forward(ctx, attention)
|
||||
@@ -47,7 +42,11 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, hiddenState, positions, _ m
|
||||
|
||||
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||
// This will only get called for layers in the cache, which are just the self attention layers
|
||||
return key.RoPE(ctx, shift, m.RopeFactors, m.ropeDim, m.ropeBase, m.ropeScale), nil
|
||||
if sa, ok := m.Transformer.Layers[layer].(*TextSelfAttentionDecoderLayer); ok {
|
||||
return key.RoPE(ctx, shift, sa.SelfAttention.RopeFactors, m.ropeDim, uint32(0), m.ropeBase, m.ropeScale), nil
|
||||
}
|
||||
|
||||
return key, nil
|
||||
}
|
||||
|
||||
type TextMLP struct {
|
||||
@@ -107,7 +106,7 @@ func (ca *TextCrossAttention) Forward(ctx ml.Context, hiddenState, crossAttentio
|
||||
query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
|
||||
query = ca.QueryNorm.Forward(ctx, query, opts.eps)
|
||||
|
||||
var key, value, mask ml.Tensor
|
||||
var key, value ml.Tensor
|
||||
if crossAttentionStates != nil {
|
||||
numVisionTokens, numTiles := crossAttentionStates.Dim(1), crossAttentionStates.Dim(2)
|
||||
|
||||
@@ -119,16 +118,23 @@ func (ca *TextCrossAttention) Forward(ctx ml.Context, hiddenState, crossAttentio
|
||||
value = value.Reshape(ctx, headDim, opts.numKVHeads, numVisionTokens*numTiles)
|
||||
|
||||
cache.Put(ctx, key, value)
|
||||
} else {
|
||||
key, value, mask = cache.Get(ctx)
|
||||
}
|
||||
|
||||
query = query.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
||||
key = key.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
||||
value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
|
||||
key, value, _ = cache.Get(ctx)
|
||||
|
||||
scaleFactor := 1.0 / math.Sqrt(float64(headDim))
|
||||
attention := nn.Attention(ctx, query, key, value, mask, scaleFactor)
|
||||
|
||||
query = query.Permute(ctx, 0, 2, 1, 3)
|
||||
key = key.Permute(ctx, 0, 2, 1, 3)
|
||||
value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
|
||||
|
||||
kq := key.MulmatFullPrec(ctx, query)
|
||||
|
||||
kq = kq.Scale(ctx, scaleFactor)
|
||||
kq = kq.Softmax(ctx)
|
||||
|
||||
kqv := value.Mulmat(ctx, kq)
|
||||
attention := kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
||||
attention = attention.Reshape(ctx, opts.hiddenSize, batchSize)
|
||||
|
||||
return ca.Output.Forward(ctx, attention)
|
||||
@@ -191,8 +197,6 @@ func (d *TextDecoder) Forward(ctx ml.Context, hiddenState, positionIDs, outputs,
|
||||
}
|
||||
|
||||
type TextModelOptions struct {
|
||||
RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
|
||||
|
||||
hiddenSize, numHeads, numKVHeads int
|
||||
eps, ropeBase, ropeScale float32
|
||||
ropeDim uint32
|
||||
|
@@ -144,8 +144,6 @@ func (p *ImageProcessor) splitToTiles(img image.Image, numTilesSize image.Point)
|
||||
return images
|
||||
}
|
||||
|
||||
// remove the "alpha" channel by drawing over a prefilled image
|
||||
//
|
||||
// remove the "alpha" channel by drawing over a prefilled image
|
||||
//
|
||||
//nolint:unused
|
||||
|
@@ -1,6 +1,8 @@
|
||||
package models
|
||||
|
||||
import (
|
||||
_ "github.com/ollama/ollama/model/models/gemma2"
|
||||
_ "github.com/ollama/ollama/model/models/gemma3"
|
||||
_ "github.com/ollama/ollama/model/models/llama"
|
||||
_ "github.com/ollama/ollama/model/models/mllama"
|
||||
)
|
||||
|
@@ -4,6 +4,7 @@ import (
|
||||
"cmp"
|
||||
"iter"
|
||||
"log/slog"
|
||||
"slices"
|
||||
"strings"
|
||||
"sync"
|
||||
|
||||
@@ -18,8 +19,17 @@ const (
|
||||
SpecialEOS
|
||||
)
|
||||
|
||||
const (
|
||||
TOKEN_TYPE_NORMAL = iota + 1
|
||||
TOKEN_TYPE_UNKNOWN
|
||||
TOKEN_TYPE_CONTROL
|
||||
TOKEN_TYPE_USER_DEFINED
|
||||
TOKEN_TYPE_UNUSED
|
||||
TOKEN_TYPE_BYTE
|
||||
)
|
||||
|
||||
type TextProcessor interface {
|
||||
Encode(string) ([]int32, error)
|
||||
Encode(s string, addSpecial bool) ([]int32, error)
|
||||
Decode([]int32) (string, error)
|
||||
Is(int32, Special) bool
|
||||
}
|
||||
@@ -27,10 +37,11 @@ type TextProcessor interface {
|
||||
type Vocabulary struct {
|
||||
Values []string
|
||||
Types []uint32
|
||||
Scores []uint32
|
||||
Scores []float32
|
||||
Merges []string
|
||||
|
||||
BOS, EOS int32
|
||||
BOS, EOS, EOT int32
|
||||
AddBOS, AddEOS, AddEOT bool
|
||||
|
||||
specialOnce sync.Once
|
||||
special []string
|
||||
@@ -47,7 +58,7 @@ func (v *Vocabulary) Is(id int32, special Special) bool {
|
||||
case SpecialBOS:
|
||||
return id == v.BOS
|
||||
case SpecialEOS:
|
||||
return id == v.EOS
|
||||
return id == v.EOS || id == v.EOT
|
||||
default:
|
||||
return false
|
||||
}
|
||||
@@ -75,7 +86,9 @@ func (v *Vocabulary) Decode(id int32) string {
|
||||
func (v *Vocabulary) SpecialVocabulary() []string {
|
||||
v.specialOnce.Do(func() {
|
||||
for i := range v.Values {
|
||||
if v.Types[i] == 3 {
|
||||
if slices.Contains([]int{105, 106}, i) {
|
||||
v.special = append(v.special, v.Values[i])
|
||||
} else if v.Types[i] == TOKEN_TYPE_CONTROL {
|
||||
v.special = append(v.special, v.Values[i])
|
||||
}
|
||||
}
|
||||
@@ -143,7 +156,7 @@ type merge struct {
|
||||
runes []rune
|
||||
}
|
||||
|
||||
func (bpe BytePairEncoding) Encode(s string) ([]int32, error) {
|
||||
func (bpe BytePairEncoding) Encode(s string, addSpecial bool) ([]int32, error) {
|
||||
fragments := []fragment{{value: s}}
|
||||
for _, special := range bpe.vocab.SpecialVocabulary() {
|
||||
// TODO: process special tokens concurrently
|
||||
@@ -176,7 +189,6 @@ func (bpe BytePairEncoding) Encode(s string) ([]int32, error) {
|
||||
for _, frag := range fragments {
|
||||
if len(frag.ids) > 0 {
|
||||
ids = append(ids, frag.ids...)
|
||||
slog.Debug("encoded", "text", frag.value, "ids", frag.ids, "special", true)
|
||||
continue
|
||||
}
|
||||
|
||||
@@ -200,7 +212,6 @@ func (bpe BytePairEncoding) Encode(s string) ([]int32, error) {
|
||||
// short circuit if the fragment is in the vocabulary
|
||||
if id := bpe.vocab.Encode(sb.String()); id >= 0 {
|
||||
ids = append(ids, id)
|
||||
slog.Debug("encoded", "text", sb.String(), "ids", []int32{id})
|
||||
continue
|
||||
}
|
||||
|
||||
@@ -274,13 +285,32 @@ func (bpe BytePairEncoding) Encode(s string) ([]int32, error) {
|
||||
// TODO: handle the edge case where the rune isn't in the vocabulary
|
||||
if id := bpe.vocab.Encode(string(merge.runes)); id >= 0 {
|
||||
ids = append(ids, id)
|
||||
slog.Debug("encoded", "text", string(merge.runes), "ids", []int32{id})
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if addSpecial && len(ids) > 0 {
|
||||
if bpe.vocab.AddBOS {
|
||||
if ids[0] == bpe.vocab.BOS {
|
||||
slog.Warn("adding bos token to prompt which already has it", "id", bpe.vocab.BOS)
|
||||
}
|
||||
|
||||
slog.Debug("adding bos token to prompt", "id", bpe.vocab.BOS)
|
||||
ids = append([]int32{bpe.vocab.BOS}, ids...)
|
||||
}
|
||||
|
||||
if bpe.vocab.AddEOS {
|
||||
if ids[len(ids)-1] == bpe.vocab.EOS {
|
||||
slog.Warn("adding eos token to prompt which already has it", "id", bpe.vocab.EOS)
|
||||
}
|
||||
|
||||
slog.Debug("adding eos token to prompt", "id", bpe.vocab.EOS)
|
||||
ids = append(ids, bpe.vocab.EOS)
|
||||
}
|
||||
}
|
||||
|
||||
return ids, nil
|
||||
}
|
||||
|
||||
@@ -308,6 +338,5 @@ func (bpe BytePairEncoding) Decode(ids []int32) (string, error) {
|
||||
}
|
||||
}
|
||||
|
||||
slog.Debug("decoded", "ids", ids, "text", sb.String())
|
||||
return sb.String(), nil
|
||||
}
|
||||
|
246
model/process_text_spm.go
Normal file
246
model/process_text_spm.go
Normal file
@@ -0,0 +1,246 @@
|
||||
package model
|
||||
|
||||
import (
|
||||
"iter"
|
||||
"log/slog"
|
||||
"strings"
|
||||
|
||||
"github.com/dlclark/regexp2"
|
||||
queue "github.com/emirpasic/gods/v2/queues/priorityqueue"
|
||||
)
|
||||
|
||||
const spmWhitespaceSep = "▁"
|
||||
|
||||
func replaceWhitespaceBySeperator(s string) string {
|
||||
return strings.ReplaceAll(s, " ", spmWhitespaceSep)
|
||||
}
|
||||
|
||||
type SentencePieceModel struct {
|
||||
maxTokenLen int
|
||||
pre *regexp2.Regexp
|
||||
vocab *Vocabulary
|
||||
}
|
||||
|
||||
var _ TextProcessor = (*SentencePieceModel)(nil)
|
||||
|
||||
func NewSentencePieceModel(pre string, vocab *Vocabulary) SentencePieceModel {
|
||||
slog.Debug("Tokens", "num tokens", len(vocab.Values), "vals", vocab.Values[:5], "scores", vocab.Scores[:5], "types", vocab.Types[:5])
|
||||
|
||||
counter := map[int]int{}
|
||||
var maxTokenLen int
|
||||
for cnt := range vocab.Types {
|
||||
switch vocab.Types[cnt] {
|
||||
case TOKEN_TYPE_NORMAL, TOKEN_TYPE_USER_DEFINED, TOKEN_TYPE_UNUSED:
|
||||
maxTokenLen = max(maxTokenLen, len(vocab.Values[cnt]))
|
||||
fallthrough
|
||||
default:
|
||||
counter[int(vocab.Types[cnt])] += 1
|
||||
}
|
||||
}
|
||||
|
||||
slog.Debug("Token counts", "normal", counter[TOKEN_TYPE_NORMAL], "unknown", counter[TOKEN_TYPE_UNKNOWN], "control", counter[TOKEN_TYPE_CONTROL],
|
||||
"user defined", counter[TOKEN_TYPE_USER_DEFINED], "unused", counter[TOKEN_TYPE_UNUSED], "byte", counter[TOKEN_TYPE_BYTE],
|
||||
"max token len", maxTokenLen)
|
||||
|
||||
return SentencePieceModel{
|
||||
maxTokenLen: maxTokenLen,
|
||||
pre: regexp2.MustCompile(pre, regexp2.Unicode|regexp2.RE2),
|
||||
vocab: vocab,
|
||||
}
|
||||
}
|
||||
|
||||
func (spm SentencePieceModel) Is(id int32, special Special) bool {
|
||||
return spm.vocab.Is(id, special)
|
||||
}
|
||||
|
||||
func (spm *SentencePieceModel) split(s string) iter.Seq[string] {
|
||||
return func(yield func(string) bool) {
|
||||
for m, _ := spm.pre.FindStringMatch(s); m != nil; m, _ = spm.pre.FindNextMatch(m) {
|
||||
if !yield(m.String()) {
|
||||
break
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (spm SentencePieceModel) Encode(s string, addSpecial bool) ([]int32, error) {
|
||||
fragments := []fragment{{value: s}}
|
||||
for _, special := range spm.vocab.SpecialVocabulary() {
|
||||
// TODO: process special tokens concurrently
|
||||
id := spm.vocab.Encode(special)
|
||||
for i := 0; i < len(fragments); i++ {
|
||||
frag := fragments[i]
|
||||
if len(frag.ids) > 0 {
|
||||
continue
|
||||
}
|
||||
|
||||
var middle []fragment
|
||||
switch i := strings.Index(frag.value, special); {
|
||||
case i < 0:
|
||||
middle = append(middle, frag)
|
||||
case i > 0:
|
||||
middle = append(middle, fragment{value: frag.value[:i]})
|
||||
fallthrough
|
||||
default:
|
||||
middle = append(middle, fragment{value: special, ids: []int32{id}})
|
||||
if rest := frag.value[i+len(special):]; rest != "" {
|
||||
middle = append(middle, fragment{value: rest})
|
||||
}
|
||||
}
|
||||
|
||||
fragments = append(fragments[:i], append(middle, fragments[i+1:]...)...)
|
||||
}
|
||||
}
|
||||
slog.Debug("fragments", "frags", fragments)
|
||||
|
||||
var ids []int32
|
||||
for _, frag := range fragments {
|
||||
if len(frag.ids) > 0 {
|
||||
ids = append(ids, frag.ids...)
|
||||
continue
|
||||
}
|
||||
|
||||
for split := range spm.split(frag.value) {
|
||||
split = replaceWhitespaceBySeperator(split)
|
||||
|
||||
var sb strings.Builder
|
||||
sb.Write([]byte(split))
|
||||
if id := spm.vocab.Encode(sb.String()); id >= 0 {
|
||||
ids = append(ids, id)
|
||||
continue
|
||||
}
|
||||
|
||||
runes := []rune(sb.String())
|
||||
pq := queue.NewWith(func(a, b any) int {
|
||||
priA := a.(*candidate)
|
||||
priB := b.(*candidate)
|
||||
if priA.score > priB.score || (priA.score == priB.score && priA.a < priB.a) {
|
||||
return -1
|
||||
}
|
||||
return 1
|
||||
})
|
||||
|
||||
merges := make([]merge, len(runes))
|
||||
for r := range runes {
|
||||
merges[r] = merge{
|
||||
p: r - 1,
|
||||
n: r + 1,
|
||||
runes: []rune{runes[r]},
|
||||
}
|
||||
}
|
||||
|
||||
slog.Debug("tokenizer", "merges", merges)
|
||||
|
||||
pairwise := func(a, b int) *candidate {
|
||||
if a < 0 || b >= len(runes) {
|
||||
return nil
|
||||
}
|
||||
|
||||
left, right := string(merges[a].runes), string(merges[b].runes)
|
||||
if id := spm.vocab.Encode(left + right); id >= 0 {
|
||||
return &candidate{
|
||||
a: a,
|
||||
b: b,
|
||||
score: spm.vocab.Scores[id],
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
for i := range len(runes) - 1 {
|
||||
if pair := pairwise(i, i+1); pair != nil {
|
||||
pq.Enqueue(pair)
|
||||
}
|
||||
}
|
||||
|
||||
pqv := pq.Values()
|
||||
for _, v := range pqv {
|
||||
e := v.(*candidate)
|
||||
slog.Debug("candidate", "candidate", e)
|
||||
}
|
||||
|
||||
for !pq.Empty() {
|
||||
v, _ := pq.Dequeue()
|
||||
pair := v.(*candidate)
|
||||
left, right := merges[pair.a], merges[pair.b]
|
||||
|
||||
slog.Debug("pair", "left", left, "right", right)
|
||||
if len(left.runes) == 0 || len(right.runes) == 0 {
|
||||
continue
|
||||
}
|
||||
|
||||
if id := spm.vocab.Encode(string(left.runes) + string(right.runes)); id < 0 {
|
||||
continue
|
||||
}
|
||||
|
||||
merges[pair.a].runes = append(left.runes, right.runes...)
|
||||
merges[pair.b].runes = nil
|
||||
merges[pair.a].n = right.n
|
||||
if right.n < len(merges) {
|
||||
merges[right.n].p = pair.a
|
||||
}
|
||||
|
||||
if pair := pairwise(merges[pair.a].p, pair.a); pair != nil {
|
||||
pq.Enqueue(pair)
|
||||
}
|
||||
|
||||
if pair := pairwise(pair.a, merges[pair.a].n); pair != nil {
|
||||
pq.Enqueue(pair)
|
||||
}
|
||||
}
|
||||
|
||||
slog.Debug("merges", "merges", merges)
|
||||
|
||||
for _, merge := range merges {
|
||||
if len(merge.runes) > 0 {
|
||||
if id := spm.vocab.Encode(string(merge.runes)); id >= 0 {
|
||||
ids = append(ids, id)
|
||||
} else {
|
||||
slog.Debug("missing token", "token", string(merge.runes))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if addSpecial && len(ids) > 0 {
|
||||
if spm.vocab.AddBOS {
|
||||
if ids[0] == spm.vocab.BOS {
|
||||
slog.Warn("adding bos token to prompt which already has it", "id", spm.vocab.BOS)
|
||||
}
|
||||
|
||||
slog.Debug("adding bos token to prompt", "id", spm.vocab.BOS)
|
||||
ids = append([]int32{spm.vocab.BOS}, ids...)
|
||||
}
|
||||
|
||||
if spm.vocab.AddEOS {
|
||||
if ids[len(ids)-1] == spm.vocab.EOS {
|
||||
slog.Warn("adding eos token to prompt which already has it", "id", spm.vocab.EOS)
|
||||
}
|
||||
|
||||
slog.Debug("adding eos token to prompt", "id", spm.vocab.EOS)
|
||||
ids = append(ids, spm.vocab.EOS)
|
||||
}
|
||||
}
|
||||
|
||||
return ids, nil
|
||||
}
|
||||
|
||||
type candidate struct {
|
||||
a, b int
|
||||
score float32
|
||||
}
|
||||
|
||||
func (spm SentencePieceModel) Decode(ids []int32) (string, error) {
|
||||
var sb strings.Builder
|
||||
for _, id := range ids {
|
||||
data := spm.vocab.Decode(id)
|
||||
data = strings.ReplaceAll(data, spmWhitespaceSep, " ")
|
||||
if _, err := sb.WriteString(data); err != nil {
|
||||
return "", err
|
||||
}
|
||||
}
|
||||
|
||||
slog.Debug("decoded", "ids", ids, "text", sb.String())
|
||||
return sb.String(), nil
|
||||
}
|
118
model/process_text_spm_test.go
Normal file
118
model/process_text_spm_test.go
Normal file
@@ -0,0 +1,118 @@
|
||||
package model
|
||||
|
||||
import (
|
||||
"log/slog"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"slices"
|
||||
"testing"
|
||||
|
||||
"google.golang.org/protobuf/proto"
|
||||
|
||||
"github.com/ollama/ollama/convert/sentencepiece"
|
||||
)
|
||||
|
||||
func loadSentencePieceVocab(t *testing.T) SentencePieceModel {
|
||||
t.Helper()
|
||||
|
||||
bts, err := os.ReadFile(filepath.Join("testdata", "gemma2", "tokenizer.model"))
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
var spm sentencepiece.ModelProto
|
||||
if err := proto.Unmarshal(bts, &spm); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
preTokenizer := `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`
|
||||
|
||||
var v Vocabulary
|
||||
|
||||
for _, piece := range spm.GetPieces() {
|
||||
v.Values = append(v.Values, piece.GetPiece())
|
||||
v.Scores = append(v.Scores, piece.GetScore())
|
||||
switch t := piece.GetType(); t {
|
||||
case sentencepiece.ModelProto_SentencePiece_UNKNOWN,
|
||||
sentencepiece.ModelProto_SentencePiece_CONTROL,
|
||||
sentencepiece.ModelProto_SentencePiece_UNUSED,
|
||||
sentencepiece.ModelProto_SentencePiece_BYTE:
|
||||
v.Types = append(v.Types, uint32(t))
|
||||
default:
|
||||
tt := uint32(sentencepiece.ModelProto_SentencePiece_NORMAL)
|
||||
// todo parse the special tokens file
|
||||
// - this will roundtrip correctly but the <start_of_turn> and
|
||||
// <end_of_turn> tokens aren't processed
|
||||
v.Types = append(v.Types, tt)
|
||||
}
|
||||
}
|
||||
|
||||
return NewSentencePieceModel(preTokenizer, &v)
|
||||
}
|
||||
|
||||
func TestSentencePieceEncode(t *testing.T) {
|
||||
logger := slog.New(slog.NewTextHandler(os.Stdout, &slog.HandlerOptions{Level: slog.LevelDebug}))
|
||||
slog.SetDefault(logger)
|
||||
|
||||
tokenizer := loadSentencePieceVocab(t)
|
||||
|
||||
t.Run("basic roundtrip", func(t *testing.T) {
|
||||
t.Parallel()
|
||||
|
||||
cases := []string{
|
||||
"hello",
|
||||
"hello ",
|
||||
"hello ",
|
||||
" hello",
|
||||
" hello ",
|
||||
" hello ",
|
||||
"hello world",
|
||||
"请考试我的软件!12345",
|
||||
"你好",
|
||||
"Hello 你好 world!",
|
||||
"Special characters: !@#$%^&*()_+-=[]{}|;':\",./<>?",
|
||||
"Multilingual: 你好 こんにちは Привет Hola مرحبا",
|
||||
"Numbers and symbols: 123456789 +- */",
|
||||
"Special tokens: <bos> text <eos>",
|
||||
"Code snippets: func main() { fmt.Println(\"Hello World\") }",
|
||||
"Long text: " + "Lorem ipsum dolor sit amet, consectetur adipiscing elit. " +
|
||||
"Sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. " +
|
||||
"Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris.",
|
||||
}
|
||||
|
||||
for _, want := range cases {
|
||||
ids, err := tokenizer.Encode(want, true)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if got, err := tokenizer.Decode(ids); err != nil {
|
||||
t.Fatal(err)
|
||||
} else if got != want {
|
||||
t.Errorf("got %q, want %q [%#v]", got, want, ids)
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("special tokens", func(t *testing.T) {
|
||||
type candidate struct {
|
||||
token string
|
||||
ids []int32
|
||||
}
|
||||
|
||||
cases := []candidate{
|
||||
{"<bos>", []int32{2}},
|
||||
{"<eos>", []int32{1}},
|
||||
}
|
||||
|
||||
for _, want := range cases {
|
||||
ids, err := tokenizer.Encode(want.token, true)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
if !slices.Equal(ids, want.ids) {
|
||||
t.Errorf("got %#v, want %#v", ids, want.ids)
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
@@ -74,7 +74,7 @@ func TestLlama(t *testing.T) {
|
||||
t.Run("simple", func(t *testing.T) {
|
||||
t.Parallel()
|
||||
|
||||
ids, err := tokenizer.Encode("hello world")
|
||||
ids, err := tokenizer.Encode("hello world", true)
|
||||
if err != nil {
|
||||
t.Error(err)
|
||||
}
|
||||
@@ -92,7 +92,7 @@ func TestLlama(t *testing.T) {
|
||||
t.Errorf("got %q, want hello world", s)
|
||||
}
|
||||
|
||||
ids, err = tokenizer.Encode("hello <|end_of_text|>")
|
||||
ids, err = tokenizer.Encode("hello <|end_of_text|>", true)
|
||||
if err != nil {
|
||||
t.Error(err)
|
||||
}
|
||||
@@ -126,7 +126,7 @@ func TestLlama(t *testing.T) {
|
||||
}
|
||||
|
||||
for s, want := range cases {
|
||||
ids, err := tokenizer.Encode(s)
|
||||
ids, err := tokenizer.Encode(s, true)
|
||||
if err != nil {
|
||||
t.Error(err)
|
||||
}
|
||||
@@ -152,7 +152,7 @@ func TestLlama(t *testing.T) {
|
||||
}
|
||||
|
||||
for _, want := range cases {
|
||||
ids, err := tokenizer.Encode(want)
|
||||
ids, err := tokenizer.Encode(want, true)
|
||||
if err != nil {
|
||||
t.Error(err)
|
||||
}
|
||||
@@ -176,7 +176,7 @@ func TestLlama(t *testing.T) {
|
||||
}
|
||||
|
||||
for s, want := range cases {
|
||||
ids, err := tokenizer.Encode(s)
|
||||
ids, err := tokenizer.Encode(s, true)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
@@ -222,7 +222,7 @@ func BenchmarkBytePairEncoding(b *testing.B) {
|
||||
b.Run("encode"+strconv.Itoa(n), func(b *testing.B) {
|
||||
b.ResetTimer()
|
||||
for range b.N {
|
||||
_, err := tokenizer.Encode(string(bts))
|
||||
_, err := tokenizer.Encode(string(bts), true)
|
||||
if err != nil {
|
||||
b.Fatal(err)
|
||||
}
|
||||
@@ -230,7 +230,7 @@ func BenchmarkBytePairEncoding(b *testing.B) {
|
||||
})
|
||||
|
||||
b.Run("decode"+strconv.Itoa(n), func(b *testing.B) {
|
||||
ids, err := tokenizer.Encode(string(bts))
|
||||
ids, err := tokenizer.Encode(string(bts), true)
|
||||
if err != nil {
|
||||
b.Fatal(err)
|
||||
}
|
||||
|
BIN
model/testdata/gemma2/tokenizer.model
vendored
Normal file
BIN
model/testdata/gemma2/tokenizer.model
vendored
Normal file
Binary file not shown.
@@ -915,7 +915,6 @@ func Execute(args []string) error {
|
||||
level := slog.LevelInfo
|
||||
if *verbose {
|
||||
level = slog.LevelDebug
|
||||
llama.EnableDebug()
|
||||
}
|
||||
handler := slog.NewTextHandler(os.Stderr, &slog.HandlerOptions{
|
||||
Level: level,
|
||||
@@ -932,7 +931,6 @@ func Execute(args []string) error {
|
||||
slog.Info("starting go runner")
|
||||
|
||||
llama.BackendInit()
|
||||
slog.Info("system", "info", llama.PrintSystemInfo(), "threads", *threads)
|
||||
|
||||
server := &Server{
|
||||
batchSize: *batchSize,
|
||||
@@ -944,12 +942,11 @@ func Execute(args []string) error {
|
||||
|
||||
var tensorSplitFloats []float32
|
||||
if *tensorSplit != "" {
|
||||
stringFloats := regexp.MustCompile(",").Split(*tensorSplit, -1)
|
||||
|
||||
tensorSplitFloats = make([]float32, 0, len(stringFloats))
|
||||
for _, s := range stringFloats {
|
||||
splits := strings.Split(*tensorSplit, ",")
|
||||
tensorSplitFloats = make([]float32, len(splits))
|
||||
for i, s := range splits {
|
||||
f, _ := strconv.ParseFloat(s, 32)
|
||||
tensorSplitFloats = append(tensorSplitFloats, float32(f))
|
||||
tensorSplitFloats[i] = float32(f)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -970,13 +967,14 @@ func Execute(args []string) error {
|
||||
server.cond = sync.NewCond(&server.mu)
|
||||
|
||||
ctx, cancel := context.WithCancel(context.Background())
|
||||
defer cancel()
|
||||
|
||||
go server.run(ctx)
|
||||
|
||||
addr := "127.0.0.1:" + strconv.Itoa(*port)
|
||||
listener, err := net.Listen("tcp", addr)
|
||||
if err != nil {
|
||||
fmt.Println("Listen error:", err)
|
||||
cancel()
|
||||
return err
|
||||
}
|
||||
defer listener.Close()
|
||||
@@ -996,6 +994,5 @@ func Execute(args []string) error {
|
||||
return err
|
||||
}
|
||||
|
||||
cancel()
|
||||
return nil
|
||||
}
|
||||
|
@@ -5,12 +5,12 @@ import (
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"math"
|
||||
"reflect"
|
||||
"time"
|
||||
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/model"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
type InputCache struct {
|
||||
@@ -39,10 +39,7 @@ func NewInputCache(model model.Model, kvCacheType string, kvSize int32, numSlots
|
||||
slots := make([]InputCacheSlot, numSlots)
|
||||
|
||||
for i := range slots {
|
||||
slots[i] = InputCacheSlot{
|
||||
Id: i,
|
||||
Inputs: make([]input, 0),
|
||||
}
|
||||
slots[i] = InputCacheSlot{Id: i}
|
||||
}
|
||||
|
||||
cache := model.Config().Cache
|
||||
@@ -62,9 +59,9 @@ func NewInputCache(model model.Model, kvCacheType string, kvSize int32, numSlots
|
||||
func kvCacheTypeFromStr(s string) ml.DType {
|
||||
switch s {
|
||||
case "q8_0":
|
||||
panic("kv cache quantization not yet implemented")
|
||||
return ml.DTypeQ80
|
||||
case "q4_0":
|
||||
panic("kv cache quantization not yet implemented")
|
||||
return ml.DTypeQ40
|
||||
default:
|
||||
return ml.DTypeF16
|
||||
}
|
||||
@@ -83,7 +80,7 @@ type InputCacheSlot struct {
|
||||
Id int
|
||||
|
||||
// Inputs that are stored in the KV cache
|
||||
Inputs []input
|
||||
Inputs []input.Input
|
||||
|
||||
// is this cache actively being processed as part of a sequence?
|
||||
InUse bool
|
||||
@@ -92,7 +89,7 @@ type InputCacheSlot struct {
|
||||
lastUsed time.Time
|
||||
}
|
||||
|
||||
func (c *InputCache) LoadCacheSlot(prompt []input, cachePrompt bool) (*InputCacheSlot, []input, error) {
|
||||
func (c *InputCache) LoadCacheSlot(prompt []input.Input, cachePrompt bool) (*InputCacheSlot, []input.Input, error) {
|
||||
var slot *InputCacheSlot
|
||||
var numPast int32
|
||||
var err error
|
||||
@@ -143,7 +140,7 @@ func (c *InputCache) LoadCacheSlot(prompt []input, cachePrompt bool) (*InputCach
|
||||
return slot, prompt, nil
|
||||
}
|
||||
|
||||
func (c *InputCache) findLongestCacheSlot(prompt []input) (*InputCacheSlot, int32, error) {
|
||||
func (c *InputCache) findLongestCacheSlot(prompt []input.Input) (*InputCacheSlot, int32, error) {
|
||||
longest := int32(-1)
|
||||
var longestSlot *InputCacheSlot
|
||||
|
||||
@@ -166,7 +163,7 @@ func (c *InputCache) findLongestCacheSlot(prompt []input) (*InputCacheSlot, int3
|
||||
return longestSlot, longest, nil
|
||||
}
|
||||
|
||||
func (c *InputCache) findBestCacheSlot(prompt []input) (*InputCacheSlot, int32, error) {
|
||||
func (c *InputCache) findBestCacheSlot(prompt []input.Input) (*InputCacheSlot, int32, error) {
|
||||
oldest := time.Now()
|
||||
var oldestSlot *InputCacheSlot
|
||||
|
||||
@@ -202,7 +199,7 @@ func (c *InputCache) findBestCacheSlot(prompt []input) (*InputCacheSlot, int32,
|
||||
if longest > 0 && longestSlot != oldestSlot {
|
||||
slog.Debug("forking cache slot", "src", longestSlot.Id, "dst", oldestSlot.Id, "inputs", longest, "total",
|
||||
len(longestSlot.Inputs))
|
||||
oldestSlot.Inputs = make([]input, longest)
|
||||
oldestSlot.Inputs = make([]input.Input, longest)
|
||||
copy(oldestSlot.Inputs, longestSlot.Inputs[:longest])
|
||||
if c.cache != nil {
|
||||
c.cache.CopyPrefix(longestSlot.Id, oldestSlot.Id, longest)
|
||||
@@ -212,7 +209,7 @@ func (c *InputCache) findBestCacheSlot(prompt []input) (*InputCacheSlot, int32,
|
||||
return oldestSlot, longest, nil
|
||||
}
|
||||
|
||||
func countCommonPrefix(a []input, b []input) int32 {
|
||||
func countCommonPrefix(a []input.Input, b []input.Input) int32 {
|
||||
var count int32
|
||||
|
||||
for i := range a {
|
||||
@@ -220,7 +217,7 @@ func countCommonPrefix(a []input, b []input) int32 {
|
||||
break
|
||||
}
|
||||
|
||||
if !reflect.DeepEqual(a[i], b[i]) {
|
||||
if a[i].Token != b[i].Token || a[i].MultimodalHash != b[i].MultimodalHash {
|
||||
break
|
||||
}
|
||||
|
||||
|
@@ -4,6 +4,8 @@ import (
|
||||
"image"
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
func TestCountCommon(t *testing.T) {
|
||||
@@ -13,44 +15,50 @@ func TestCountCommon(t *testing.T) {
|
||||
|
||||
tests := []struct {
|
||||
name string
|
||||
t1 []input
|
||||
t2 []input
|
||||
t1 []input.Input
|
||||
t2 []input.Input
|
||||
expected int32
|
||||
}{
|
||||
{
|
||||
name: "Equal",
|
||||
t1: []input{{token: 1}, {token: 2}, {token: 3}},
|
||||
t2: []input{{token: 1}, {token: 2}, {token: 3}},
|
||||
t1: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
|
||||
t2: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
|
||||
expected: 3,
|
||||
},
|
||||
{
|
||||
name: "Prefix",
|
||||
t1: []input{{token: 1}},
|
||||
t2: []input{{token: 1}, {token: 2}, {token: 3}},
|
||||
t1: []input.Input{{Token: 1}},
|
||||
t2: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
|
||||
expected: 1,
|
||||
},
|
||||
{
|
||||
name: "Image Prefix",
|
||||
t1: []input{{image: imgA}},
|
||||
t2: []input{{image: imgA}, {image: imgB}, {image: imgC}},
|
||||
t1: []input.Input{{Multimodal: imgA, MultimodalHash: 1}},
|
||||
t2: []input.Input{{Multimodal: imgA, MultimodalHash: 1}, {Multimodal: imgB, MultimodalHash: 2}, {Multimodal: imgC, MultimodalHash: 3}},
|
||||
expected: 1,
|
||||
},
|
||||
{
|
||||
name: "Mixed",
|
||||
t1: []input{{token: 1}, {image: imgA}},
|
||||
t2: []input{{token: 1}, {image: imgA}, {token: 5}},
|
||||
t1: []input.Input{{Token: 1}, {Multimodal: imgA, MultimodalHash: 1}},
|
||||
t2: []input.Input{{Token: 1}, {Multimodal: imgA, MultimodalHash: 1}, {Token: 5}},
|
||||
expected: 2,
|
||||
},
|
||||
{
|
||||
name: "Mixed, Same Length",
|
||||
t1: []input.Input{{Token: 1}, {Multimodal: imgA, MultimodalHash: 1}},
|
||||
t2: []input.Input{{Token: 1}, {Multimodal: imgB, MultimodalHash: 2}},
|
||||
expected: 1,
|
||||
},
|
||||
{
|
||||
name: "Empty",
|
||||
t1: []input{},
|
||||
t2: []input{{token: 1}, {token: 2}, {token: 3}},
|
||||
t1: []input.Input{},
|
||||
t2: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
|
||||
expected: 0,
|
||||
},
|
||||
{
|
||||
name: "Both Empty",
|
||||
t1: []input{},
|
||||
t2: []input{},
|
||||
t1: []input.Input{},
|
||||
t2: []input.Input{},
|
||||
expected: 0,
|
||||
},
|
||||
}
|
||||
@@ -74,7 +82,7 @@ func TestFindCacheSlot(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
cache InputCache
|
||||
prompt []input
|
||||
prompt []input.Input
|
||||
longest expected
|
||||
best expected
|
||||
}{
|
||||
@@ -83,18 +91,18 @@ func TestFindCacheSlot(t *testing.T) {
|
||||
cache: InputCache{slots: []InputCacheSlot{
|
||||
{
|
||||
Id: 0,
|
||||
Inputs: []input{},
|
||||
Inputs: []input.Input{},
|
||||
InUse: false,
|
||||
lastUsed: time.Time{},
|
||||
},
|
||||
{
|
||||
Id: 1,
|
||||
Inputs: []input{},
|
||||
Inputs: []input.Input{},
|
||||
InUse: false,
|
||||
lastUsed: time.Time{},
|
||||
},
|
||||
}},
|
||||
prompt: []input{{token: 1}},
|
||||
prompt: []input.Input{{Token: 1}},
|
||||
longest: expected{result: 0, len: 0},
|
||||
best: expected{result: 0, len: 0},
|
||||
},
|
||||
@@ -103,18 +111,18 @@ func TestFindCacheSlot(t *testing.T) {
|
||||
cache: InputCache{slots: []InputCacheSlot{
|
||||
{
|
||||
Id: 0,
|
||||
Inputs: []input{{token: 1}},
|
||||
Inputs: []input.Input{{Token: 1}},
|
||||
InUse: false,
|
||||
lastUsed: time.Now().Add(-time.Second),
|
||||
},
|
||||
{
|
||||
Id: 1,
|
||||
Inputs: []input{{token: 1}, {token: 2}},
|
||||
Inputs: []input.Input{{Token: 1}, {Token: 2}},
|
||||
InUse: false,
|
||||
lastUsed: time.Now().Add(-2 * time.Second),
|
||||
},
|
||||
}},
|
||||
prompt: []input{{token: 1}, {token: 2}},
|
||||
prompt: []input.Input{{Token: 1}, {Token: 2}},
|
||||
longest: expected{result: 1, len: 2},
|
||||
best: expected{result: 1, len: 2},
|
||||
},
|
||||
@@ -123,18 +131,18 @@ func TestFindCacheSlot(t *testing.T) {
|
||||
cache: InputCache{slots: []InputCacheSlot{
|
||||
{
|
||||
Id: 0,
|
||||
Inputs: []input{{token: 1}, {token: 2}},
|
||||
Inputs: []input.Input{{Token: 1}, {Token: 2}},
|
||||
InUse: false,
|
||||
lastUsed: time.Now().Add(-time.Second),
|
||||
},
|
||||
{
|
||||
Id: 1,
|
||||
Inputs: []input{},
|
||||
Inputs: []input.Input{},
|
||||
InUse: false,
|
||||
lastUsed: time.Time{},
|
||||
},
|
||||
}},
|
||||
prompt: []input{{token: 2}},
|
||||
prompt: []input.Input{{Token: 2}},
|
||||
longest: expected{result: 0, len: 0},
|
||||
best: expected{result: 1, len: 0},
|
||||
},
|
||||
@@ -144,19 +152,19 @@ func TestFindCacheSlot(t *testing.T) {
|
||||
slots: []InputCacheSlot{
|
||||
{
|
||||
Id: 0,
|
||||
Inputs: []input{{token: 1}, {token: 2}},
|
||||
Inputs: []input.Input{{Token: 1}, {Token: 2}},
|
||||
InUse: false,
|
||||
lastUsed: time.Now().Add(-time.Second),
|
||||
},
|
||||
{
|
||||
Id: 1,
|
||||
Inputs: []input{},
|
||||
Inputs: []input.Input{},
|
||||
InUse: false,
|
||||
lastUsed: time.Time{},
|
||||
},
|
||||
},
|
||||
},
|
||||
prompt: []input{{token: 1}},
|
||||
prompt: []input.Input{{Token: 1}},
|
||||
longest: expected{result: 0, len: 1},
|
||||
best: expected{result: 1, len: 1},
|
||||
},
|
||||
@@ -165,18 +173,18 @@ func TestFindCacheSlot(t *testing.T) {
|
||||
cache: InputCache{slots: []InputCacheSlot{
|
||||
{
|
||||
Id: 0,
|
||||
Inputs: []input{{token: 1}},
|
||||
Inputs: []input.Input{{Token: 1}},
|
||||
InUse: false,
|
||||
lastUsed: time.Now().Add(-time.Second),
|
||||
},
|
||||
{
|
||||
Id: 1,
|
||||
Inputs: []input{{token: 1}, {token: 2}},
|
||||
Inputs: []input.Input{{Token: 1}, {Token: 2}},
|
||||
InUse: false,
|
||||
lastUsed: time.Now().Add(-2 * time.Second),
|
||||
},
|
||||
}},
|
||||
prompt: []input{{token: 2}, {token: 3}},
|
||||
prompt: []input.Input{{Token: 2}, {Token: 3}},
|
||||
longest: expected{result: 0, len: 0},
|
||||
best: expected{result: 1, len: 0},
|
||||
},
|
||||
@@ -185,18 +193,18 @@ func TestFindCacheSlot(t *testing.T) {
|
||||
cache: InputCache{slots: []InputCacheSlot{
|
||||
{
|
||||
Id: 0,
|
||||
Inputs: []input{{token: 1}, {token: 2}},
|
||||
Inputs: []input.Input{{Token: 1}, {Token: 2}},
|
||||
InUse: true,
|
||||
lastUsed: time.Now().Add(-time.Second),
|
||||
},
|
||||
{
|
||||
Id: 1,
|
||||
Inputs: []input{{token: 1}},
|
||||
Inputs: []input.Input{{Token: 1}},
|
||||
InUse: false,
|
||||
lastUsed: time.Now().Add(-2 * time.Second),
|
||||
},
|
||||
}},
|
||||
prompt: []input{{token: 1}, {token: 2}},
|
||||
prompt: []input.Input{{Token: 1}, {Token: 2}},
|
||||
longest: expected{result: 1, len: 1},
|
||||
best: expected{result: 1, len: 2},
|
||||
},
|
||||
|
@@ -1,13 +1,12 @@
|
||||
package ollamarunner
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"context"
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"flag"
|
||||
"fmt"
|
||||
"image"
|
||||
"hash/maphash"
|
||||
"log"
|
||||
"log/slog"
|
||||
"net"
|
||||
@@ -27,28 +26,26 @@ import (
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/model"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
"github.com/ollama/ollama/runner/common"
|
||||
"github.com/ollama/ollama/sample"
|
||||
|
||||
_ "github.com/ollama/ollama/model/models"
|
||||
)
|
||||
|
||||
// input is an element of the prompt to process, either a token or an image
|
||||
type input struct {
|
||||
token int32
|
||||
|
||||
image image.Image
|
||||
}
|
||||
|
||||
type Sequence struct {
|
||||
// ctx for allocating tensors that last the lifetime of the sequence, such as
|
||||
// multimodal embeddings
|
||||
ctx ml.Context
|
||||
|
||||
// batch index
|
||||
iBatch int
|
||||
|
||||
// prompt inputs left to evaluate
|
||||
inputs []input
|
||||
inputs []input.Input
|
||||
|
||||
// inputs that have been added to a batch but not yet submitted to Forward
|
||||
pendingInputs []input
|
||||
pendingInputs []input.Input
|
||||
|
||||
// tokens that have been generated but not returned yet (e.g. for stop sequences)
|
||||
pendingResponses []string
|
||||
@@ -101,8 +98,9 @@ func (s *Server) NewSequence(prompt string, images []ImageData, params NewSequen
|
||||
s.ready.Wait()
|
||||
|
||||
startTime := time.Now()
|
||||
ctx := s.model.Backend().NewContext()
|
||||
|
||||
inputs, err := s.inputs(prompt, images)
|
||||
inputs, err := s.inputs(ctx, prompt, images)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("failed to process inputs: %w", err)
|
||||
} else if len(inputs) == 0 {
|
||||
@@ -128,6 +126,7 @@ func (s *Server) NewSequence(prompt string, images []ImageData, params NewSequen
|
||||
// TODO(jessegross): Ingest cached history for grammar
|
||||
|
||||
return &Sequence{
|
||||
ctx: ctx,
|
||||
inputs: inputs,
|
||||
numPromptInputs: len(inputs),
|
||||
startProcessingTime: startTime,
|
||||
@@ -146,28 +145,31 @@ func (s *Server) NewSequence(prompt string, images []ImageData, params NewSequen
|
||||
// inputs processes the prompt and images into a list of inputs
|
||||
// by splitting the prompt on [img-<n>] tags, tokenizing text and
|
||||
// decoding images
|
||||
func (s *Server) inputs(prompt string, images []ImageData) ([]input, error) {
|
||||
var inputs []input
|
||||
func (s *Server) inputs(ctx ml.Context, prompt string, images []ImageData) ([]input.Input, error) {
|
||||
var inputs []input.Input
|
||||
var parts []string
|
||||
var matches [][]string
|
||||
|
||||
// TODO(jessegross): This can sometimes trigger for matching text in the
|
||||
// user's prompt. We previously tried to avoid it by only looking for images
|
||||
// on image models. We don't have a clear indication now but it would be better
|
||||
// to properly escape it in any case.
|
||||
re := regexp.MustCompile(`\[img-(\d+)\]`)
|
||||
parts = re.Split(prompt, -1)
|
||||
matches = re.FindAllStringSubmatch(prompt, -1)
|
||||
multimodalProcessor, visionModel := s.model.(model.MultimodalProcessor)
|
||||
|
||||
if visionModel {
|
||||
re := regexp.MustCompile(`\[img-(\d+)\]`)
|
||||
parts = re.Split(prompt, -1)
|
||||
matches = re.FindAllStringSubmatch(prompt, -1)
|
||||
} else {
|
||||
parts = []string{prompt}
|
||||
}
|
||||
|
||||
postTokenize := false
|
||||
for i, part := range parts {
|
||||
// text - tokenize
|
||||
tokens, err := s.model.(model.TextProcessor).Encode(part)
|
||||
tokens, err := s.model.(model.TextProcessor).Encode(part, i == 0)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
for _, t := range tokens {
|
||||
inputs = append(inputs, input{token: t})
|
||||
inputs = append(inputs, input.Input{Token: t})
|
||||
}
|
||||
|
||||
// image - decode and store
|
||||
@@ -186,12 +188,25 @@ func (s *Server) inputs(prompt string, images []ImageData) ([]input, error) {
|
||||
return nil, fmt.Errorf("invalid image index: %d", n)
|
||||
}
|
||||
|
||||
image, _, err := image.Decode(bytes.NewReader(images[imageIndex].Data))
|
||||
imageEmbeddings, err := multimodalProcessor.EncodeMultimodal(ctx, images[imageIndex].Data)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
inputs = append(inputs, input{image: image})
|
||||
s.multimodalHash.Reset()
|
||||
_, _ = s.multimodalHash.Write(images[imageIndex].Data)
|
||||
imageHash := s.multimodalHash.Sum64()
|
||||
|
||||
inputs = append(inputs, input.Input{Multimodal: imageEmbeddings, MultimodalHash: imageHash})
|
||||
postTokenize = true
|
||||
}
|
||||
}
|
||||
|
||||
if visionModel && postTokenize {
|
||||
var err error
|
||||
inputs, err = multimodalProcessor.PostTokenize(ctx, inputs)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
|
||||
@@ -236,8 +251,15 @@ type Server struct {
|
||||
// KV cache
|
||||
cache *InputCache
|
||||
|
||||
// next sequence for prompt processing to avoid starvation
|
||||
nextSeq int
|
||||
// multimodalHash generates hashes for comparing equality
|
||||
// of non-text data
|
||||
multimodalHash maphash.Hash
|
||||
|
||||
// vocab is a llama.cpp vocab required for gammar-based
|
||||
// constrained generation (json mode, structured outputs)
|
||||
// TODO: this is temporary until Ollama sampling supports
|
||||
// constrained generation
|
||||
vocab *sample.Vocab
|
||||
}
|
||||
|
||||
func (s *Server) allNil() bool {
|
||||
@@ -283,6 +305,7 @@ func (s *Server) removeSequence(seqIndex int, reason string) {
|
||||
close(seq.responses)
|
||||
close(seq.embedding)
|
||||
seq.cache.InUse = false
|
||||
seq.ctx.Close()
|
||||
s.seqs[seqIndex] = nil
|
||||
s.seqsSem.Release(1)
|
||||
}
|
||||
@@ -310,30 +333,25 @@ func (s *Server) processBatch() error {
|
||||
}
|
||||
defer s.mu.Unlock()
|
||||
|
||||
var options model.Options
|
||||
imgSeq := -1
|
||||
|
||||
seqIdx := s.nextSeq - 1
|
||||
for range s.seqs {
|
||||
seqIdx = (seqIdx + 1) % len(s.seqs)
|
||||
seq := s.seqs[seqIdx]
|
||||
var options input.Options
|
||||
|
||||
for i, seq := range s.seqs {
|
||||
if seq == nil {
|
||||
continue
|
||||
}
|
||||
|
||||
// if past the num predict limit
|
||||
if seq.numPredict > 0 && seq.numPredicted >= seq.numPredict {
|
||||
s.removeSequence(seqIdx, "limit")
|
||||
s.removeSequence(i, "limit")
|
||||
continue
|
||||
}
|
||||
|
||||
if !s.cache.enabled {
|
||||
seq.inputs = append(seq.cache.Inputs, seq.inputs...)
|
||||
seq.cache.Inputs = []input{}
|
||||
seq.cache.Inputs = []input.Input{}
|
||||
}
|
||||
|
||||
for i, input := range seq.inputs {
|
||||
for j, inp := range seq.inputs {
|
||||
if int32(len(seq.cache.Inputs)+len(seq.pendingInputs)+1) > s.cache.numCtx {
|
||||
if len(seq.pendingInputs) == 0 {
|
||||
err := s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
|
||||
@@ -345,37 +363,23 @@ func (s *Server) processBatch() error {
|
||||
}
|
||||
}
|
||||
|
||||
if i >= s.batchSize {
|
||||
if j >= s.batchSize {
|
||||
break
|
||||
}
|
||||
|
||||
// TODO(jessegross): Image inputs need to be rethought - it's
|
||||
// it doesn't work well for different types of models or multiple sequences
|
||||
if input.image != nil {
|
||||
if len(seq.pendingInputs) != len(options.Images) {
|
||||
break
|
||||
}
|
||||
|
||||
if imgSeq != seqIdx && imgSeq != -1 {
|
||||
s.nextSeq = seqIdx
|
||||
break
|
||||
}
|
||||
|
||||
imgSeq = seqIdx
|
||||
options.Images = append(options.Images, input.image)
|
||||
seq.pendingInputs = append(seq.pendingInputs, input)
|
||||
continue
|
||||
options.Inputs = append(options.Inputs, inp.Token)
|
||||
if inp.Multimodal != nil {
|
||||
options.Multimodal = append(options.Multimodal, input.MultimodalIndex{Index: len(options.Inputs) - 1, Multimodal: inp.Multimodal})
|
||||
}
|
||||
|
||||
options.Inputs = append(options.Inputs, input.token)
|
||||
options.Positions = append(options.Positions, int32(len(seq.cache.Inputs)+len(seq.pendingInputs)))
|
||||
options.Sequences = append(options.Sequences, seq.cache.Id)
|
||||
|
||||
seq.iBatch = len(options.Outputs)
|
||||
if i+1 == len(seq.inputs) {
|
||||
if j+1 == len(seq.inputs) {
|
||||
options.Outputs = append(options.Outputs, int32(len(options.Inputs)-1))
|
||||
}
|
||||
seq.pendingInputs = append(seq.pendingInputs, input)
|
||||
seq.pendingInputs = append(seq.pendingInputs, inp)
|
||||
}
|
||||
|
||||
seq.inputs = seq.inputs[len(seq.pendingInputs):]
|
||||
@@ -403,7 +407,7 @@ func (s *Server) processBatch() error {
|
||||
// After calling Forward, pending inputs are now in the cache
|
||||
if len(seq.pendingInputs) > 0 {
|
||||
seq.cache.Inputs = append(seq.cache.Inputs, seq.pendingInputs...)
|
||||
seq.pendingInputs = []input{}
|
||||
seq.pendingInputs = []input.Input{}
|
||||
}
|
||||
|
||||
// don't sample prompt processing
|
||||
@@ -422,6 +426,7 @@ func (s *Server) processBatch() error {
|
||||
// if done processing the prompt, generate an embedding and return
|
||||
if seq.embeddingOnly {
|
||||
// TODO(jessegross): Embedding support
|
||||
slog.Warn("generation of embedding outputs not yet supported")
|
||||
s.removeSequence(i, "")
|
||||
continue
|
||||
}
|
||||
@@ -449,7 +454,7 @@ func (s *Server) processBatch() error {
|
||||
return err
|
||||
}
|
||||
|
||||
seq.inputs = []input{{token: token}}
|
||||
seq.inputs = []input.Input{{Token: token}}
|
||||
|
||||
seq.pendingResponses = append(seq.pendingResponses, piece)
|
||||
sequence := strings.Join(seq.pendingResponses, "")
|
||||
@@ -575,17 +580,24 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
|
||||
return
|
||||
}
|
||||
|
||||
sampler, err := sample.NewSampler(
|
||||
var grammar *sample.Grammar
|
||||
var err error
|
||||
if req.Grammar != "" {
|
||||
grammar, err = sample.NewGrammar(s.vocab, req.Grammar)
|
||||
if err != nil {
|
||||
http.Error(w, "failed to load model vocabulary required for format", http.StatusInternalServerError)
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
sampler := sample.NewSampler(
|
||||
req.Temperature,
|
||||
req.TopK,
|
||||
req.TopP,
|
||||
req.MinP,
|
||||
req.Seed,
|
||||
grammar,
|
||||
)
|
||||
if err != nil {
|
||||
http.Error(w, fmt.Sprintf("Failed to create sampler: %v", err), http.StatusInternalServerError)
|
||||
return
|
||||
}
|
||||
|
||||
seq, err := s.NewSequence(req.Prompt, req.Images, NewSequenceParams{
|
||||
numPredict: req.NumPredict,
|
||||
@@ -798,7 +810,7 @@ func (s *Server) loadModel(
|
||||
panic(err)
|
||||
}
|
||||
|
||||
slog.Info("system", "info", s.model.Backend().SystemInfo(), "threads", params.NumThreads)
|
||||
s.vocab = sample.NewVocab(mpath)
|
||||
|
||||
// TODO(jessegross): LoRA loading
|
||||
if lpath.String() != "" {
|
||||
@@ -830,7 +842,7 @@ func Execute(args []string) error {
|
||||
batchSize := fs.Int("batch-size", 512, "Batch size")
|
||||
numGPULayers := fs.Int("n-gpu-layers", 0, "Number of layers to offload to GPU")
|
||||
mainGPU := fs.Int("main-gpu", 0, "Main GPU")
|
||||
_ = fs.Bool("flash-attn", false, "Enable flash attention")
|
||||
flashAttention := fs.Bool("flash-attn", false, "Enable flash attention")
|
||||
kvSize := fs.Int("ctx-size", 2048, "Context (or KV cache) size")
|
||||
kvCacheType := fs.String("kv-cache-type", "", "quantization type for KV cache (default: f16)")
|
||||
port := fs.Int("port", 8080, "Port to expose the server on")
|
||||
@@ -875,26 +887,25 @@ func Execute(args []string) error {
|
||||
}
|
||||
|
||||
// TODO(jessegross): Parameters that need to be implemented:
|
||||
// flash-attn
|
||||
// no-mmap
|
||||
// mlock
|
||||
|
||||
var tensorSplitFloats []float32
|
||||
if *tensorSplit != "" {
|
||||
stringFloats := regexp.MustCompile(",").Split(*tensorSplit, -1)
|
||||
|
||||
tensorSplitFloats = make([]float32, 0, len(stringFloats))
|
||||
for _, s := range stringFloats {
|
||||
splits := strings.Split(*tensorSplit, ",")
|
||||
tensorSplitFloats = make([]float32, len(splits))
|
||||
for i, s := range splits {
|
||||
f, _ := strconv.ParseFloat(s, 32)
|
||||
tensorSplitFloats = append(tensorSplitFloats, float32(f))
|
||||
tensorSplitFloats[i] = float32(f)
|
||||
}
|
||||
}
|
||||
|
||||
params := ml.BackendParams{
|
||||
NumThreads: *threads,
|
||||
NumGPULayers: *numGPULayers,
|
||||
MainGPU: *mainGPU,
|
||||
TensorSplit: tensorSplitFloats,
|
||||
NumThreads: *threads,
|
||||
NumGPULayers: *numGPULayers,
|
||||
MainGPU: *mainGPU,
|
||||
TensorSplit: tensorSplitFloats,
|
||||
FlashAttention: *flashAttention,
|
||||
}
|
||||
|
||||
server.ready.Add(1)
|
||||
@@ -903,13 +914,14 @@ func Execute(args []string) error {
|
||||
server.cond = sync.NewCond(&server.mu)
|
||||
|
||||
ctx, cancel := context.WithCancel(context.Background())
|
||||
defer cancel()
|
||||
|
||||
go server.run(ctx)
|
||||
|
||||
addr := "127.0.0.1:" + strconv.Itoa(*port)
|
||||
listener, err := net.Listen("tcp", addr)
|
||||
if err != nil {
|
||||
fmt.Println("Listen error:", err)
|
||||
cancel()
|
||||
return err
|
||||
}
|
||||
defer listener.Close()
|
||||
@@ -929,6 +941,5 @@ func Execute(args []string) error {
|
||||
return err
|
||||
}
|
||||
|
||||
cancel()
|
||||
return nil
|
||||
}
|
||||
|
@@ -3,137 +3,223 @@ package sample
|
||||
import (
|
||||
"errors"
|
||||
"math"
|
||||
"math/rand/v2"
|
||||
"slices"
|
||||
"sync"
|
||||
|
||||
"golang.org/x/exp/rand"
|
||||
"gonum.org/v1/gonum/stat/sampleuv"
|
||||
"github.com/ollama/ollama/llama"
|
||||
)
|
||||
|
||||
type Sampler interface {
|
||||
Sample([]float32) (int32, error)
|
||||
// token represents information about a single token during sampling
|
||||
type token struct {
|
||||
id int32 // The token's unique identifier
|
||||
value float32 // The raw logit or probability from the model
|
||||
}
|
||||
|
||||
type weighted struct {
|
||||
src rand.Source
|
||||
transforms []Transform
|
||||
type Sampler struct {
|
||||
rng *rand.Rand
|
||||
topK int
|
||||
topP float32
|
||||
minP float32
|
||||
temperature float32
|
||||
grammar *Grammar
|
||||
}
|
||||
|
||||
// TODO(parthsareen): remove uv sample dependency https://github.com/ollama/ollama/issues/9279
|
||||
func Weighted(seed *uint64, transforms ...Transform) Sampler {
|
||||
var src rand.Source
|
||||
if seed != nil {
|
||||
src = rand.NewSource(*seed)
|
||||
func (s *Sampler) Sample(logits []float32) (int32, error) {
|
||||
tokens := make([]token, len(logits))
|
||||
for i := range logits {
|
||||
tokens[i].id = int32(i)
|
||||
tokens[i].value = logits[i]
|
||||
}
|
||||
return weighted{src: src, transforms: transforms}
|
||||
|
||||
t, err := s.sample(tokens)
|
||||
if err != nil {
|
||||
return -1, err
|
||||
}
|
||||
|
||||
if s.grammar != nil {
|
||||
// optimization: first check if the max logit is accepted by the grammar
|
||||
// if the max logit is rejected, apply the grammar to all logits (slower)
|
||||
top := []token{t}
|
||||
s.grammar.Apply(top)
|
||||
if !math.IsInf(float64(top[0].value), -1) {
|
||||
s.grammar.Accept(top[0].id)
|
||||
return top[0].id, nil
|
||||
}
|
||||
|
||||
// since .sample has side effects of modifying the tokens
|
||||
// we need to reset them before applying the grammar and
|
||||
// sampling again
|
||||
for i := range logits {
|
||||
tokens[i].id = int32(i)
|
||||
tokens[i].value = logits[i]
|
||||
}
|
||||
s.grammar.Apply(tokens)
|
||||
t, err = s.sample(tokens)
|
||||
if err != nil {
|
||||
return -1, err
|
||||
}
|
||||
s.grammar.Accept(t.id)
|
||||
}
|
||||
|
||||
return t.id, nil
|
||||
}
|
||||
|
||||
func (s weighted) Sample(logits []float32) (int32, error) {
|
||||
logits64 := make([]float64, len(logits))
|
||||
for i, v := range logits {
|
||||
logits64[i] = float64(v)
|
||||
}
|
||||
|
||||
for _, t := range s.transforms {
|
||||
logits64 = t.Apply(logits64)
|
||||
}
|
||||
|
||||
logitsCopy := make([]float64, 0, len(logits))
|
||||
indices := make([]int, 0, len(logits))
|
||||
for i, logit := range logits64 {
|
||||
if !math.IsInf(logit, -1) {
|
||||
logitsCopy = append(logitsCopy, logit)
|
||||
indices = append(indices, i)
|
||||
// greedy returns the highest probability token from the tokens
|
||||
func greedy(tokens []token) token {
|
||||
max := tokens[0]
|
||||
for i := 1; i < len(tokens); i++ {
|
||||
if tokens[i].value > max.value {
|
||||
max = tokens[i]
|
||||
}
|
||||
}
|
||||
|
||||
if len(logitsCopy) == 0 {
|
||||
return -1, errors.New("no valid logits found for weighed sampling")
|
||||
}
|
||||
|
||||
probs := softmax(logitsCopy)
|
||||
w := sampleuv.NewWeighted(probs, s.src)
|
||||
if idx, ok := w.Take(); ok {
|
||||
return int32(indices[idx]), nil
|
||||
}
|
||||
return -1, errors.New("weighed sampler failed, no valid token found")
|
||||
return max
|
||||
}
|
||||
|
||||
type greedy struct {
|
||||
transforms []Transform
|
||||
}
|
||||
|
||||
func Greedy(transforms ...Transform) Sampler {
|
||||
return greedy{transforms: transforms}
|
||||
}
|
||||
|
||||
func (s greedy) Sample(logits []float32) (int32, error) {
|
||||
logits64 := make([]float64, len(logits))
|
||||
for i, v := range logits {
|
||||
logits64[i] = float64(v)
|
||||
// sample returns the highest probability token from the tokens
|
||||
// given sampler parameters. It also has side effects of modifying the tokens
|
||||
func (s *Sampler) sample(tokens []token) (token, error) {
|
||||
if s.temperature == 0 {
|
||||
return greedy(tokens), nil
|
||||
}
|
||||
|
||||
for _, t := range s.transforms {
|
||||
logits64 = t.Apply(logits64)
|
||||
// topK also sorts the tokens in descending order of logits
|
||||
tokens = topK(tokens, s.topK)
|
||||
|
||||
// token logit values are updated to probabilities
|
||||
tokens = temperature(tokens, s.temperature)
|
||||
|
||||
tokens = topP(tokens, s.topP)
|
||||
tokens = minP(tokens, s.minP)
|
||||
|
||||
// TODO: this should fall back to greedy sampling
|
||||
// or topP, topK values etc should be such that
|
||||
// there are always tokens to sample from
|
||||
if len(tokens) == 0 {
|
||||
return token{}, errors.New("no tokens to sample from")
|
||||
}
|
||||
|
||||
var maxIdx int
|
||||
var maxLogit float64
|
||||
for i, logit := range logits64 {
|
||||
if logit > maxLogit {
|
||||
maxLogit = logit
|
||||
maxIdx = i
|
||||
var r float32
|
||||
if s.rng != nil {
|
||||
r = s.rng.Float32()
|
||||
} else {
|
||||
r = rand.Float32()
|
||||
}
|
||||
|
||||
// Calculate cumulative sum of probabilities
|
||||
var sum float32
|
||||
for i := range tokens {
|
||||
sum += tokens[i].value
|
||||
tokens[i].value = sum
|
||||
}
|
||||
r *= tokens[len(tokens)-1].value
|
||||
|
||||
idx, _ := slices.BinarySearchFunc(tokens, r, func(token token, target float32) int {
|
||||
if token.value < target {
|
||||
return -1
|
||||
}
|
||||
}
|
||||
return 1
|
||||
})
|
||||
|
||||
if maxLogit == math.Inf(-1) {
|
||||
return -1, errors.New("no valid logits found for greedy sampling")
|
||||
}
|
||||
|
||||
return int32(maxIdx), nil
|
||||
return tokens[idx], nil
|
||||
}
|
||||
|
||||
// TODO(parthsareen): update sampler interface to use json unmarshal https://github.com/ollama/ollama/issues/9278
|
||||
func NewSampler(temperature float32, topK int, topP float32, minP float32, seed int) (Sampler, error) {
|
||||
transforms := []Transform{}
|
||||
if temperature < 0 || temperature > 2 {
|
||||
return nil, errors.New("temperature must be between 0 and 2")
|
||||
func NewSampler(temperature float32, topK int, topP float32, minP float32, seed int, grammar *Grammar) Sampler {
|
||||
var rng *rand.Rand
|
||||
if seed != -1 {
|
||||
// PCG requires two parameters: sequence and stream
|
||||
// Use original seed for sequence
|
||||
sequence := uint64(seed)
|
||||
// Use golden ratio hash to generate statistically independent seeds
|
||||
rng = rand.New(rand.NewPCG(sequence, sequence^0x9E3779B9))
|
||||
}
|
||||
if temperature < 0.0 {
|
||||
temperature = 0.0
|
||||
}
|
||||
|
||||
if temperature != 0 {
|
||||
transforms = append(transforms, Temperature(temperature))
|
||||
if topP < 0.0 {
|
||||
topP = 0.0
|
||||
}
|
||||
if topP >= 1.0 {
|
||||
topP = 1.0
|
||||
}
|
||||
|
||||
if topK != 0 {
|
||||
if topK <= 0 {
|
||||
return nil, errors.New("topK must be greater than 0")
|
||||
}
|
||||
transforms = append(transforms, TopK(topK))
|
||||
if minP < 0.0 {
|
||||
minP = 0.0
|
||||
}
|
||||
if minP >= 1.0 {
|
||||
minP = 1.0
|
||||
}
|
||||
|
||||
if topP != 0 {
|
||||
if topP < 0 || topP >= 1 {
|
||||
return nil, errors.New("topP must be between 0 and 1")
|
||||
}
|
||||
transforms = append(transforms, TopP(topP))
|
||||
return Sampler{
|
||||
rng: rng,
|
||||
topK: topK,
|
||||
topP: topP,
|
||||
minP: minP,
|
||||
temperature: temperature,
|
||||
grammar: grammar,
|
||||
}
|
||||
|
||||
if minP != 0 {
|
||||
if minP < 0 || minP >= 1 {
|
||||
return nil, errors.New("minP must be between 0 and 1")
|
||||
}
|
||||
transforms = append(transforms, MinP(minP))
|
||||
}
|
||||
|
||||
if len(transforms) == 0 {
|
||||
return nil, errors.New("at least one transform is required")
|
||||
}
|
||||
|
||||
if temperature == 0 {
|
||||
return Greedy(transforms...), nil
|
||||
}
|
||||
|
||||
if seed != 0 {
|
||||
seed64 := uint64(seed)
|
||||
return Weighted(&seed64, transforms...), nil
|
||||
}
|
||||
return Weighted(nil, transforms...), nil
|
||||
}
|
||||
|
||||
type Grammar struct {
|
||||
vocab *Vocab
|
||||
grammar string
|
||||
sampler *llama.Sampler
|
||||
}
|
||||
|
||||
func NewGrammar(vocab *Vocab, grammar string) (*Grammar, error) {
|
||||
v, err := vocab.Load()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return &Grammar{
|
||||
vocab: vocab,
|
||||
grammar: grammar,
|
||||
sampler: llama.NewGrammarSampler(v, grammar),
|
||||
}, nil
|
||||
}
|
||||
|
||||
func (g *Grammar) Apply(tokens []token) {
|
||||
tds := make([]llama.TokenData, len(tokens))
|
||||
for i, token := range tokens {
|
||||
tds[i].Id = token.id
|
||||
tds[i].Logit = token.value
|
||||
}
|
||||
|
||||
g.sampler.Apply(tds)
|
||||
|
||||
for i := range tokens {
|
||||
tokens[i].value = tds[i].Logit
|
||||
}
|
||||
}
|
||||
|
||||
func (g *Grammar) Accept(token int32) {
|
||||
g.sampler.Accept(token)
|
||||
}
|
||||
|
||||
type Vocab struct {
|
||||
once sync.Once
|
||||
vocab *llama.Vocab
|
||||
err error
|
||||
path string
|
||||
}
|
||||
|
||||
func NewVocab(path string) *Vocab {
|
||||
return &Vocab{path: path}
|
||||
}
|
||||
|
||||
// Load returns the lazily-loaded vocabulary
|
||||
func (v *Vocab) Load() (*llama.Vocab, error) {
|
||||
v.once.Do(func() {
|
||||
vocab, err := llama.LoadVocabFromFile(v.path)
|
||||
if err != nil {
|
||||
v.err = err
|
||||
return
|
||||
}
|
||||
v.vocab = vocab
|
||||
})
|
||||
return v.vocab, v.err
|
||||
}
|
||||
|
92
sample/samplers_benchmark_test.go
Normal file
92
sample/samplers_benchmark_test.go
Normal file
@@ -0,0 +1,92 @@
|
||||
package sample
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"math/rand"
|
||||
"testing"
|
||||
)
|
||||
|
||||
func BenchmarkWeightedSampler(b *testing.B) {
|
||||
sizes := []int{10, 100, 1000, 10000}
|
||||
|
||||
for _, size := range sizes {
|
||||
b.Run(fmt.Sprintf("Size %d", size), func(b *testing.B) {
|
||||
logits := make([]float32, size)
|
||||
for i := range logits {
|
||||
logits[i] = float32(rand.Float64()*10 - 5)
|
||||
}
|
||||
|
||||
sampler := NewSampler(0.8, 0, 0, 0, 42, nil)
|
||||
b.ResetTimer()
|
||||
for b.Loop() {
|
||||
sampler.Sample(logits)
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
configs := []struct {
|
||||
name string
|
||||
temperature float32
|
||||
topK int
|
||||
topP float32
|
||||
minP float32
|
||||
seed int
|
||||
}{
|
||||
{"Greedy", 0, -1, 0, 0, -1},
|
||||
{"Temperature", 0.8, -1, 0, 0, -1},
|
||||
{"TopK", 0.8, 50, 0, 0, -1},
|
||||
{"TopP", 0.8, -1, 0.9, 0, -1},
|
||||
{"MinP", 0.8, -1, 0, 0.05, -1},
|
||||
{"WithSeed", 0.8, 50, 0, 0, 42},
|
||||
}
|
||||
|
||||
// Fixed size for common vocab size
|
||||
size := 128000
|
||||
logits := make([]float32, size)
|
||||
for i := range logits {
|
||||
logits[i] = float32(rand.Float64()*10 - 5)
|
||||
}
|
||||
|
||||
for _, tc := range configs {
|
||||
b.Run("Config"+tc.name, func(b *testing.B) {
|
||||
sampler := NewSampler(tc.temperature, tc.topK, tc.topP, tc.minP, tc.seed, nil)
|
||||
sampler.Sample(logits)
|
||||
|
||||
b.ResetTimer()
|
||||
|
||||
for b.Loop() {
|
||||
sampler.Sample(logits)
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
// Test with combined transforms separately - topK influences performance greatly
|
||||
b.Run("TransformCombined", func(b *testing.B) {
|
||||
sampler := NewSampler(0.8, 50, 0.9, 0.05, 42, nil)
|
||||
b.ResetTimer()
|
||||
|
||||
for b.Loop() {
|
||||
sampler.Sample(logits)
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
func BenchmarkGreedySampler(b *testing.B) {
|
||||
sizes := []int{10, 100, 1000, 10000, 100000}
|
||||
|
||||
for _, size := range sizes {
|
||||
b.Run(fmt.Sprintf("Size %d", size), func(b *testing.B) {
|
||||
logits := make([]float32, size)
|
||||
for i := range logits {
|
||||
logits[i] = float32(rand.Float64()*10 - 5)
|
||||
}
|
||||
|
||||
sampler := NewSampler(0, -1, 0, 0, -1, nil)
|
||||
b.ResetTimer()
|
||||
|
||||
for b.Loop() {
|
||||
sampler.Sample(logits)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
@@ -1,15 +1,14 @@
|
||||
package sample
|
||||
|
||||
import (
|
||||
"math"
|
||||
"math/rand/v2"
|
||||
"testing"
|
||||
|
||||
"github.com/google/go-cmp/cmp"
|
||||
)
|
||||
|
||||
func TestWeighted(t *testing.T) {
|
||||
got, err := Weighted(nil).Sample([]float32{float32(math.Inf(-1)), 2, float32(math.Inf(-1)), float32(math.Inf(-1))})
|
||||
logits := []float32{-10, 3, -10, -10}
|
||||
sampler := NewSampler(0, 0, 0, 0, 0, nil)
|
||||
got, err := sampler.Sample(logits)
|
||||
if err != nil {
|
||||
t.Error(err)
|
||||
return
|
||||
@@ -19,207 +18,26 @@ func TestWeighted(t *testing.T) {
|
||||
t.Errorf("index mismatch: want %d, got %d", want, got)
|
||||
}
|
||||
|
||||
got, err = Weighted(nil).Sample([]float32{float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1))})
|
||||
if err == nil {
|
||||
t.Error("expected error for no valid tokens, got index", got)
|
||||
}
|
||||
|
||||
seed := uint64(42)
|
||||
got, err = Weighted(&seed).Sample([]float32{1, 2, 3, 4})
|
||||
logits = []float32{-100, -10, 0, 10}
|
||||
sampler = NewSampler(0, 0, 0, 0, 0, nil)
|
||||
got, err = sampler.Sample(logits)
|
||||
if err != nil {
|
||||
t.Error(err)
|
||||
return
|
||||
}
|
||||
// With seed 42, we expect a consistent sample
|
||||
want = int32(3) // This will be deterministic due to the seed
|
||||
want = int32(3) // Should pick highest probability with this r value
|
||||
if want != got {
|
||||
t.Errorf("index mismatch: want %d, got %d", want, got)
|
||||
}
|
||||
}
|
||||
|
||||
type testTransform struct {
|
||||
id int
|
||||
callOrder *[]int
|
||||
}
|
||||
|
||||
func (ts *testTransform) Apply(logits []float64) []float64 {
|
||||
if ts.callOrder != nil {
|
||||
*ts.callOrder = append(*ts.callOrder, ts.id)
|
||||
}
|
||||
return logits
|
||||
}
|
||||
|
||||
func TestSample(t *testing.T) {
|
||||
input := []float32{1, 2, 3, 4}
|
||||
|
||||
var callOrder []int
|
||||
mock1 := &testTransform{
|
||||
id: 1,
|
||||
callOrder: &callOrder,
|
||||
}
|
||||
mock2 := &testTransform{
|
||||
id: 2,
|
||||
callOrder: &callOrder,
|
||||
}
|
||||
mock3 := &testTransform{
|
||||
id: 3,
|
||||
callOrder: &callOrder,
|
||||
}
|
||||
|
||||
got, err := Greedy(mock1, mock2, mock3).Sample(input)
|
||||
if err != nil {
|
||||
t.Error(err)
|
||||
return
|
||||
}
|
||||
|
||||
want := int32(3) // Greedy sampler should pick highest logit
|
||||
if want != got {
|
||||
t.Errorf("index mismatch: want %d, got %d", want, got)
|
||||
}
|
||||
wantOrder := []int{1, 2, 3}
|
||||
if diff := cmp.Diff(wantOrder, callOrder); diff != "" {
|
||||
t.Errorf("call order mismatch (-want +got):\n%s", diff)
|
||||
}
|
||||
|
||||
callOrder = nil
|
||||
|
||||
_, err = Weighted(nil, mock1, mock2, mock3).Sample(input)
|
||||
if err != nil {
|
||||
t.Error(err)
|
||||
return
|
||||
}
|
||||
wantOrder = []int{1, 2, 3}
|
||||
if diff := cmp.Diff(wantOrder, callOrder); diff != "" {
|
||||
t.Errorf("call order mismatch (-want +got):\n%s", diff)
|
||||
}
|
||||
}
|
||||
|
||||
func TestNewSampler(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
temperature float32
|
||||
topK int
|
||||
topP float32
|
||||
minP float32
|
||||
seed int
|
||||
wantErr bool
|
||||
}{
|
||||
{
|
||||
name: "no transforms",
|
||||
wantErr: true,
|
||||
},
|
||||
{
|
||||
name: "temperature",
|
||||
temperature: 0.5,
|
||||
wantErr: false,
|
||||
},
|
||||
{
|
||||
name: "invalid temperature negative",
|
||||
temperature: -1,
|
||||
wantErr: true,
|
||||
},
|
||||
{
|
||||
name: "invalid temperature too high",
|
||||
temperature: 2.1,
|
||||
wantErr: true,
|
||||
},
|
||||
{
|
||||
name: "top k",
|
||||
topK: 10,
|
||||
wantErr: false,
|
||||
},
|
||||
{
|
||||
name: "invalid top k negative",
|
||||
topK: -1,
|
||||
wantErr: true,
|
||||
},
|
||||
{
|
||||
name: "top p",
|
||||
topP: 0.9,
|
||||
wantErr: false,
|
||||
},
|
||||
{
|
||||
name: "invalid top p negative",
|
||||
topP: -0.1,
|
||||
wantErr: true,
|
||||
},
|
||||
{
|
||||
name: "invalid top p one",
|
||||
topP: 1.0,
|
||||
wantErr: true,
|
||||
},
|
||||
{
|
||||
name: "min p",
|
||||
minP: 0.2,
|
||||
wantErr: false,
|
||||
},
|
||||
{
|
||||
name: "invalid min p negative",
|
||||
minP: -0.1,
|
||||
wantErr: true,
|
||||
},
|
||||
{
|
||||
name: "invalid min p one",
|
||||
minP: 1.0,
|
||||
wantErr: true,
|
||||
},
|
||||
{
|
||||
name: "seed",
|
||||
seed: 42,
|
||||
wantErr: true, // seed alone is not valid without other transforms
|
||||
},
|
||||
{
|
||||
name: "default values",
|
||||
temperature: 0.8,
|
||||
topK: 40,
|
||||
topP: 0.9,
|
||||
minP: 0.0,
|
||||
seed: 0,
|
||||
wantErr: false,
|
||||
},
|
||||
{
|
||||
name: "all zeroes",
|
||||
temperature: 0.0,
|
||||
topK: 0,
|
||||
topP: 0.0,
|
||||
minP: 0.0,
|
||||
seed: 0,
|
||||
wantErr: true, // all zeroes means no transforms
|
||||
},
|
||||
{
|
||||
name: "all transforms",
|
||||
temperature: 0.8,
|
||||
topK: 50,
|
||||
topP: 0.95,
|
||||
minP: 0.1,
|
||||
seed: 42,
|
||||
wantErr: false,
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
_, err := NewSampler(tt.temperature, tt.topK, tt.topP, tt.minP, tt.seed)
|
||||
if (err != nil) != tt.wantErr {
|
||||
t.Errorf("NewSampler() error = %v, wantErr %v", err, tt.wantErr)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkSample(b *testing.B) {
|
||||
transforms := []Transform{
|
||||
Temperature(0.5),
|
||||
TopK(10),
|
||||
TopP(0.9),
|
||||
MinP(0.2),
|
||||
}
|
||||
|
||||
samplers := map[string]Sampler{
|
||||
"Greedy": Greedy(transforms...),
|
||||
"Weighted": Weighted(nil, transforms...),
|
||||
"Greedy": NewSampler(0, 0, 0, 0, 0, nil), // Use NewSampler with temp=0 for greedy
|
||||
"Weighted": NewSampler(0.5, 10, 0.9, 0.2, -1, nil),
|
||||
}
|
||||
|
||||
// Generate random logits for benchmarking
|
||||
logits := make([]float32, 1<<16)
|
||||
for i := range logits {
|
||||
logits[i] = rand.Float32()
|
||||
@@ -228,9 +46,9 @@ func BenchmarkSample(b *testing.B) {
|
||||
for name, s := range samplers {
|
||||
b.Run(name, func(b *testing.B) {
|
||||
b.ResetTimer()
|
||||
for range b.N {
|
||||
for b.Loop() {
|
||||
if _, err := s.Sample(logits); err != nil {
|
||||
b.Error(err)
|
||||
b.Fatalf("error sampling: %v", err)
|
||||
}
|
||||
}
|
||||
})
|
||||
|
@@ -1,120 +1,136 @@
|
||||
package sample
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
"container/heap"
|
||||
"math"
|
||||
"slices"
|
||||
|
||||
pq "github.com/emirpasic/gods/v2/queues/priorityqueue"
|
||||
)
|
||||
|
||||
type Transform interface {
|
||||
Apply([]float64) []float64
|
||||
// tokenHeap implements heap.Interface and holds tokens as a min-heap to track k largest elements
|
||||
type tokenHeap []token
|
||||
|
||||
func (h tokenHeap) Len() int { return len(h) }
|
||||
func (h tokenHeap) Less(i, j int) bool { return h[i].value < h[j].value }
|
||||
func (h tokenHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
|
||||
|
||||
func (h *tokenHeap) Push(x any) {
|
||||
*h = append(*h, x.(token))
|
||||
}
|
||||
|
||||
// TODO(parthsareen): potentially cache softmax values
|
||||
func softmax(logits []float64) []float64 {
|
||||
var sum float64
|
||||
probs := make([]float64, len(logits))
|
||||
for i, v := range logits {
|
||||
probs[i] = math.Exp(v)
|
||||
sum += probs[i]
|
||||
}
|
||||
|
||||
for i := range probs {
|
||||
probs[i] /= sum
|
||||
}
|
||||
|
||||
return probs
|
||||
func (h *tokenHeap) Pop() any {
|
||||
old := *h
|
||||
n := len(old)
|
||||
x := old[n-1]
|
||||
*h = old[0 : n-1]
|
||||
return x
|
||||
}
|
||||
|
||||
type Temperature float64
|
||||
|
||||
func (t Temperature) Apply(logits []float64) []float64 {
|
||||
temp := math.Max(float64(t), 1e-7)
|
||||
|
||||
// subtracting max logit to avoid under/overflow
|
||||
maxLogit := slices.Max(logits)
|
||||
for i := range logits {
|
||||
logits[i] = (logits[i] - maxLogit) / temp
|
||||
}
|
||||
|
||||
return logits
|
||||
}
|
||||
|
||||
type logitMap struct {
|
||||
index int
|
||||
logit float64
|
||||
}
|
||||
|
||||
type TopK int
|
||||
|
||||
// TODO(parthsareen): avoid having to check all logits after this transform
|
||||
func (k TopK) Apply(logits []float64) []float64 {
|
||||
if int(k) >= len(logits) {
|
||||
return logits
|
||||
}
|
||||
q := pq.NewWith(func(a, b logitMap) int {
|
||||
return -cmp.Compare(a.logit, b.logit)
|
||||
})
|
||||
|
||||
for i, logit := range logits {
|
||||
q.Enqueue(logitMap{index: i, logit: logit})
|
||||
}
|
||||
|
||||
validLogits := make(map[int]float64)
|
||||
for range k {
|
||||
logitMap, _ := q.Dequeue()
|
||||
validLogits[logitMap.index] = logitMap.logit
|
||||
}
|
||||
|
||||
for i := range logits {
|
||||
if _, ok := validLogits[i]; !ok {
|
||||
logits[i] = math.Inf(-1)
|
||||
// temperature applies scaling and softmax to the logits
|
||||
func temperature(ts []token, temp float32) []token {
|
||||
// Find max logit for numerical stability
|
||||
maxLogit := float32(math.Inf(-1))
|
||||
for _, t := range ts {
|
||||
if t.value > maxLogit {
|
||||
maxLogit = t.value
|
||||
}
|
||||
}
|
||||
|
||||
return logits
|
||||
}
|
||||
|
||||
type TopP float64
|
||||
|
||||
func (p TopP) Apply(logits []float64) []float64 {
|
||||
probs := softmax(logits)
|
||||
indices := make([]int, len(probs))
|
||||
for i := range indices {
|
||||
indices[i] = i
|
||||
// Apply temperature and compute exp(x - max)
|
||||
temp = max(temp, 1e-7)
|
||||
var sum float32
|
||||
for i, v := range ts {
|
||||
ts[i].value = float32(math.Exp(float64((v.value - maxLogit) / temp)))
|
||||
sum += ts[i].value
|
||||
}
|
||||
|
||||
// sort in descending order
|
||||
slices.SortFunc(indices, func(i, j int) int {
|
||||
return cmp.Compare(probs[j], probs[i])
|
||||
})
|
||||
// Normalize
|
||||
for i := range ts {
|
||||
ts[i].value /= sum
|
||||
}
|
||||
|
||||
var sum float64
|
||||
for i, idx := range indices {
|
||||
sum += probs[idx]
|
||||
if sum > float64(p) {
|
||||
for _, idx := range indices[i+1:] {
|
||||
logits[idx] = math.Inf(-1)
|
||||
return ts
|
||||
}
|
||||
|
||||
// topK limits the number of tokens considered to the k highest logits
|
||||
func topK(ts []token, k int) []token {
|
||||
if k >= len(ts) || k <= 0 {
|
||||
slices.SortFunc(ts, func(a, b token) int {
|
||||
switch {
|
||||
case a.value < b.value:
|
||||
return 1
|
||||
case a.value > b.value:
|
||||
return -1
|
||||
default:
|
||||
return 0
|
||||
}
|
||||
break
|
||||
}
|
||||
})
|
||||
return ts
|
||||
}
|
||||
return logits
|
||||
}
|
||||
|
||||
type MinP float64
|
||||
// Initialize min-heap with first k elements
|
||||
h := make(tokenHeap, k)
|
||||
copy(h, ts[:k])
|
||||
heap.Init(&h)
|
||||
|
||||
func (p MinP) Apply(logits []float64) []float64 {
|
||||
probs := softmax(logits)
|
||||
threshold := slices.Max(probs) * float64(p)
|
||||
|
||||
for i, prob := range probs {
|
||||
if prob < threshold {
|
||||
logits[i] = math.Inf(-1)
|
||||
// Process remaining elements
|
||||
for i := k; i < len(ts); i++ {
|
||||
if ts[i].value > h[0].value {
|
||||
heap.Pop(&h)
|
||||
heap.Push(&h, ts[i])
|
||||
}
|
||||
}
|
||||
|
||||
return logits
|
||||
// Convert heap to sorted slice in descending order
|
||||
result := make([]token, len(h))
|
||||
for i := k - 1; i >= 0; i-- {
|
||||
result[i] = heap.Pop(&h).(token)
|
||||
}
|
||||
|
||||
return result
|
||||
}
|
||||
|
||||
// topP limits tokens to those with cumulative probability p
|
||||
func topP(ts []token, p float32) []token {
|
||||
if p == 1.0 {
|
||||
return ts
|
||||
}
|
||||
|
||||
// Find cutoff index where cumulative sum exceeds p
|
||||
var sum float32
|
||||
for i, t := range ts {
|
||||
sum += t.value
|
||||
if sum > float32(p) {
|
||||
ts = ts[:i+1]
|
||||
return ts
|
||||
}
|
||||
}
|
||||
|
||||
return ts
|
||||
}
|
||||
|
||||
// minP limits tokens to those with cumulative probability p
|
||||
func minP(ts []token, p float32) []token {
|
||||
if p == 1.0 {
|
||||
return ts
|
||||
}
|
||||
|
||||
maxProb := float32(math.Inf(-1))
|
||||
for _, token := range ts {
|
||||
if token.value > maxProb {
|
||||
maxProb = token.value
|
||||
}
|
||||
}
|
||||
|
||||
threshold := maxProb * float32(p)
|
||||
|
||||
// Filter tokens in-place
|
||||
validTokens := ts[:0]
|
||||
for i, token := range ts {
|
||||
if token.value >= threshold {
|
||||
validTokens = append(validTokens, ts[i])
|
||||
}
|
||||
}
|
||||
|
||||
ts = validTokens
|
||||
return ts
|
||||
}
|
||||
|
@@ -4,77 +4,194 @@ import (
|
||||
"math"
|
||||
"math/rand/v2"
|
||||
"testing"
|
||||
|
||||
"github.com/google/go-cmp/cmp"
|
||||
)
|
||||
|
||||
func TestTemperature(t *testing.T) {
|
||||
got := Temperature(0.5).Apply([]float64{2, -1, 4, -3, 1, -2, 0})
|
||||
want := []float64{-4, -10, 0, -14, -6, -12, -8}
|
||||
if diff := cmp.Diff(want, got); diff != "" {
|
||||
t.Errorf("logits mismatch (-want +got):\n%s", diff)
|
||||
// Helper to convert float32 slice to logit slice
|
||||
func toTokens(values []float32) []token {
|
||||
tokens := make([]token, len(values))
|
||||
for i, v := range values {
|
||||
tokens[i] = token{
|
||||
id: int32(i),
|
||||
value: v,
|
||||
}
|
||||
}
|
||||
return tokens
|
||||
}
|
||||
|
||||
// Helper to compare logit slices
|
||||
func compareLogits(t *testing.T, name string, want []float32, got []token) {
|
||||
t.Helper()
|
||||
if len(want) != len(got) {
|
||||
t.Errorf("%s: length mismatch: want %d, got %d", name, len(want), len(got))
|
||||
return
|
||||
}
|
||||
for i := range want {
|
||||
if math.Abs(float64(got[i].value-want[i])) > 1e-6 {
|
||||
t.Errorf("%s: index %d: want %f, got %f", name, i, want[i], got[i].value)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestSoftmax(t *testing.T) {
|
||||
got := softmax([]float64{-3, -2, -1, 0, 1, 2, 4})
|
||||
func TestTemperatureAndSoftmax(t *testing.T) {
|
||||
input := []float32{1, 4, -2, 0}
|
||||
got := temperature(toTokens(input), 0.5)
|
||||
|
||||
want := []float64{0.000751406628089903, 0.0020425349829204676, 0.005552185728064613, 0.015092405572827691, 0.04102541181635154, 0.11151863144543739, 0.8240174238263085}
|
||||
if diff := cmp.Diff(want, got); diff != "" {
|
||||
t.Errorf("probs mismatch (-want +got):\n%s", diff)
|
||||
// Check probabilities sum to 1
|
||||
var sum float32
|
||||
for _, token := range got {
|
||||
sum += token.value
|
||||
}
|
||||
if math.Abs(float64(sum-1.0)) > 1e-6 {
|
||||
t.Errorf("probabilities don't sum to 1: got %f", sum)
|
||||
}
|
||||
|
||||
got = temperature(toTokens(input), 1)
|
||||
// Check probabilities sum to 1
|
||||
sum = 0.0
|
||||
for _, token := range got {
|
||||
sum += token.value
|
||||
}
|
||||
if math.Abs(float64(sum-1.0)) > 1e-6 {
|
||||
t.Errorf("probabilities don't sum to 1: got %f", sum)
|
||||
}
|
||||
}
|
||||
|
||||
func TestTopK(t *testing.T) {
|
||||
got := TopK(3).Apply([]float64{-3, -2, -1, 0, 1, 2, 4})
|
||||
want := []float64{math.Inf(-1), math.Inf(-1), math.Inf(-1), math.Inf(-1), 1, 2, 4}
|
||||
if diff := cmp.Diff(want, got); diff != "" {
|
||||
t.Errorf("logits mismatch (-want +got):\n%s", diff)
|
||||
input := []float32{0.026986899, 0.043722924, 0.036774673, 0.27755088, 0.0046718004, 0.08582123, 0.20409796, 0.00412893, 0.15720603, 0.045046154, 0.0030491839, 0.01681367}
|
||||
|
||||
// Test k=5
|
||||
got := topK(toTokens(input), 5)
|
||||
if len(got) != 5 {
|
||||
t.Errorf("topK(5): wrong length: want 5, got %d", len(got))
|
||||
}
|
||||
// Should keep highest 3 values in descending order
|
||||
want := []float32{0.27755088, 0.20409796, 0.15720603, 0.08582123, 0.045046154}
|
||||
compareLogits(t, "topK(3)", want, got)
|
||||
|
||||
got = topK(toTokens(input), 20)
|
||||
if len(got) != len(input) {
|
||||
t.Errorf("topK(20): wrong length: want %d, got %d", len(input), len(got))
|
||||
}
|
||||
|
||||
got = TopK(10).Apply([]float64{-3, -2, -1, 0, 1, 2, 4})
|
||||
|
||||
want = []float64{-3, -2, -1, 0, 1, 2, 4}
|
||||
if diff := cmp.Diff(want, got); diff != "" {
|
||||
t.Errorf("logits mismatch (-want +got):\n%s", diff)
|
||||
// Test k=-1
|
||||
input = []float32{0.026986899, 0.043722924, 0.036774673, 0.27755088, 0.0046718004, 0.08582123, 0.20409796, 0.00412893, 0.15720603, 0.045046154, 0.0030491839, 0.01681367}
|
||||
want = []float32{0.27755088, 0.20409796, 0.15720603, 0.08582123, 0.045046154, 0.043722924, 0.036774673, 0.026986899, 0.01681367, 0.0046718004, 0.00412893, 0.0030491839}
|
||||
got = topK(toTokens(input), -1)
|
||||
if len(got) != len(input) {
|
||||
t.Errorf("topK(-1): wrong length: want %d, got %d", len(input), len(got))
|
||||
}
|
||||
compareLogits(t, "topK(-1)", want, got)
|
||||
|
||||
// Test k=0
|
||||
input = []float32{0.026986899, 0.043722924, 0.036774673, 0.27755088, 0.0046718004, 0.08582123, 0.20409796, 0.00412893, 0.15720603, 0.045046154, 0.0030491839, 0.01681367}
|
||||
want = []float32{0.27755088, 0.20409796, 0.15720603, 0.08582123, 0.045046154, 0.043722924, 0.036774673, 0.026986899, 0.01681367, 0.0046718004, 0.00412893, 0.0030491839}
|
||||
got = topK(toTokens(input), 0)
|
||||
if len(got) != len(input) {
|
||||
t.Errorf("topK(-1): wrong length: want %d, got %d", len(input), len(got))
|
||||
}
|
||||
compareLogits(t, "topK(-1)", want, got)
|
||||
}
|
||||
|
||||
func TestTopP(t *testing.T) {
|
||||
got := TopP(0.9).Apply([]float64{-3, -2, -1, 0, 1, 2, 4})
|
||||
want := []float64{math.Inf(-1), math.Inf(-1), math.Inf(-1), math.Inf(-1), math.Inf(-1), 2, 4}
|
||||
if diff := cmp.Diff(want, got); diff != "" {
|
||||
t.Errorf("logits mismatch (-want +got):\n%s", diff)
|
||||
input := []float32{-3, -2, -1, 0, 1, 2, 4}
|
||||
tokens := toTokens(input)
|
||||
|
||||
// First apply temperature and softmax to get probabilities
|
||||
tokens = temperature(tokens, 1)
|
||||
tokens = topK(tokens, 20)
|
||||
|
||||
// Then apply topP
|
||||
got := topP(tokens, 0.95)
|
||||
|
||||
// Should keep tokens until cumsum > 0.95
|
||||
if len(got) > 3 {
|
||||
t.Errorf("topP(0.95): kept too many tokens: got %d", len(got))
|
||||
t.Logf("got: %v", got)
|
||||
}
|
||||
}
|
||||
|
||||
func TestMinP(t *testing.T) {
|
||||
got := MinP(0.2).Apply([]float64{-3, -2, -1, 0, 1, 2, 4, 3})
|
||||
want := []float64{math.Inf(-1), math.Inf(-1), math.Inf(-1), math.Inf(-1), math.Inf(-1), math.Inf(-1), 4, 3}
|
||||
if diff := cmp.Diff(want, got); diff != "" {
|
||||
t.Errorf("logits mismatch (-want +got):\n%s", diff)
|
||||
input := []float32{-3, -2, -1, 0, 1, 2, 4, 3}
|
||||
tokens := toTokens(input)
|
||||
|
||||
// First apply temperature and softmax
|
||||
tokens = temperature(tokens, 1)
|
||||
|
||||
// Then apply minP
|
||||
got := minP(tokens, 0.2)
|
||||
|
||||
// Should keep tokens with prob >= 0.2 * max_prob
|
||||
if len(got) > 3 {
|
||||
t.Errorf("minP(0.2): kept too many tokens: got %d", len(got))
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkTransform(b *testing.B) {
|
||||
transforms := map[string]Transform{
|
||||
"Temperature": Temperature(0.5),
|
||||
"TopK": TopK(10),
|
||||
"TopP": TopP(0.9),
|
||||
"MinP": MinP(0.2),
|
||||
func TestSortLogits(t *testing.T) {
|
||||
input := []float32{0.026986899, 0.043722924, 0.036774673, 0.27755088, 0.0046718004, 0.08582123, 0.20409796, 0.00412893, 0.15720603, 0.045046154, 0.0030491839, 0.01681367}
|
||||
tokens := toTokens(input)
|
||||
|
||||
tokens = topK(tokens, 20)
|
||||
|
||||
for i := 1; i < len(tokens); i++ {
|
||||
if tokens[i].value > tokens[i-1].value {
|
||||
t.Errorf("sortLogits: tokens not sorted in descending order at index %d: %f > %f",
|
||||
i, tokens[i].value, tokens[i-1].value)
|
||||
}
|
||||
}
|
||||
|
||||
logits := make([]float64, 1<<16)
|
||||
for i := range logits {
|
||||
logits[i] = rand.Float64()
|
||||
}
|
||||
|
||||
for name, transform := range transforms {
|
||||
b.Run(name, func(b *testing.B) {
|
||||
b.ResetTimer()
|
||||
for range b.N {
|
||||
transform.Apply(logits)
|
||||
}
|
||||
})
|
||||
}
|
||||
want := []float32{0.27755088, 0.20409796, 0.15720603, 0.08582123, 0.045046154, 0.043722924, 0.036774673, 0.026986899, 0.01681367, 0.0046718004, 0.00412893, 0.0030491839}
|
||||
compareLogits(t, "sortLogits", want, tokens)
|
||||
}
|
||||
|
||||
func BenchmarkTransforms(b *testing.B) {
|
||||
// Generate random logits
|
||||
tokens := make([]token, 1<<16)
|
||||
for i := range tokens {
|
||||
tokens[i] = token{
|
||||
id: int32(i),
|
||||
value: rand.Float32(),
|
||||
}
|
||||
}
|
||||
|
||||
tokensCopy := make([]token, len(tokens))
|
||||
|
||||
b.Run("Temperature", func(b *testing.B) {
|
||||
b.ResetTimer()
|
||||
for b.Loop() {
|
||||
copy(tokensCopy, tokens)
|
||||
temperature(tokensCopy, 0.5)
|
||||
}
|
||||
})
|
||||
|
||||
b.Run("TopK", func(b *testing.B) {
|
||||
b.ResetTimer()
|
||||
for b.Loop() {
|
||||
copy(tokensCopy, tokens)
|
||||
topK(tokensCopy, 10)
|
||||
}
|
||||
})
|
||||
|
||||
b.Run("TopP", func(b *testing.B) {
|
||||
b.ResetTimer()
|
||||
for b.Loop() {
|
||||
copy(tokensCopy, tokens)
|
||||
topP(tokensCopy, 0.9)
|
||||
}
|
||||
})
|
||||
|
||||
b.Run("MinP", func(b *testing.B) {
|
||||
b.ResetTimer()
|
||||
for b.Loop() {
|
||||
copy(tokensCopy, tokens)
|
||||
minP(tokensCopy, 0.2)
|
||||
}
|
||||
})
|
||||
|
||||
b.Run("SortTokens", func(b *testing.B) {
|
||||
b.ResetTimer()
|
||||
for b.Loop() {
|
||||
copy(tokensCopy, tokens)
|
||||
topK(tokensCopy, 200000)
|
||||
}
|
||||
})
|
||||
}
|
||||
|
@@ -80,13 +80,14 @@ function checkEnv() {
|
||||
|
||||
|
||||
function buildOllama() {
|
||||
mkdir -Force -path "${script:DIST_DIR}\"
|
||||
if ($script:ARCH -ne "arm64") {
|
||||
Remove-Item -ea 0 -recurse -force -path "${script:SRC_DIR}\dist\windows-${script:ARCH}"
|
||||
New-Item "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\" -ItemType Directory -ea 0
|
||||
|
||||
& cmake --fresh --preset CPU --install-prefix $script:DIST_DIR
|
||||
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
|
||||
& cmake --build --preset CPU --parallel $script:JOBS
|
||||
& cmake --build --preset CPU --config Release --parallel $script:JOBS
|
||||
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
|
||||
& cmake --install build --component CPU --strip
|
||||
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
|
||||
@@ -101,7 +102,7 @@ function buildOllama() {
|
||||
# to avoid 2022 (or newer) from being used as the default
|
||||
& cmake --fresh --preset "CUDA 11" -G "Visual Studio 16 2019" --install-prefix $script:DIST_DIR
|
||||
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
|
||||
& cmake --build --preset "CUDA 11" --parallel $script:JOBS
|
||||
& cmake --build --preset "CUDA 11" --config Release --parallel $script:JOBS
|
||||
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
|
||||
& cmake --install build --component "CUDA" --strip
|
||||
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
|
||||
@@ -112,7 +113,7 @@ function buildOllama() {
|
||||
write-host "Building CUDA v12 backend libraries"
|
||||
& cmake --fresh --preset "CUDA 12" --install-prefix $script:DIST_DIR
|
||||
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
|
||||
& cmake --build --preset "CUDA 12" --parallel $script:JOBS
|
||||
& cmake --build --preset "CUDA 12" --config Release --parallel $script:JOBS
|
||||
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
|
||||
& cmake --install build --component "CUDA" --strip
|
||||
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
|
||||
@@ -131,7 +132,7 @@ function buildOllama() {
|
||||
$env:HIPCXX=""
|
||||
$env:HIP_PLATFORM=""
|
||||
$env:CMAKE_PREFIX_PATH=""
|
||||
& cmake --build --preset "ROCm" --parallel $script:JOBS
|
||||
& cmake --build --preset "ROCm" --config Release --parallel $script:JOBS
|
||||
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
|
||||
& cmake --install build --component "HIP" --strip
|
||||
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
|
||||
|
@@ -77,11 +77,12 @@ if [ -d "$OLLAMA_INSTALL_DIR/lib/ollama" ] ; then
|
||||
fi
|
||||
status "Installing ollama to $OLLAMA_INSTALL_DIR"
|
||||
$SUDO install -o0 -g0 -m755 -d $BINDIR
|
||||
$SUDO install -o0 -g0 -m755 -d "$OLLAMA_INSTALL_DIR"
|
||||
$SUDO install -o0 -g0 -m755 -d "$OLLAMA_INSTALL_DIR/lib/ollama"
|
||||
status "Downloading Linux ${ARCH} bundle"
|
||||
curl --fail --show-error --location --progress-bar \
|
||||
"https://ollama.com/download/ollama-linux-${ARCH}.tgz${VER_PARAM}" | \
|
||||
$SUDO tar -xzf - -C "$OLLAMA_INSTALL_DIR"
|
||||
|
||||
if [ "$OLLAMA_INSTALL_DIR/bin/ollama" != "$BINDIR/ollama" ] ; then
|
||||
status "Making ollama accessible in the PATH in $BINDIR"
|
||||
$SUDO ln -sf "$OLLAMA_INSTALL_DIR/ollama" "$BINDIR/ollama"
|
||||
|
@@ -8,6 +8,7 @@ import (
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"io/fs"
|
||||
"log/slog"
|
||||
"net/http"
|
||||
"os"
|
||||
@@ -34,6 +35,7 @@ var (
|
||||
errOnlyGGUFSupported = errors.New("supplied file was not in GGUF format")
|
||||
errUnknownType = errors.New("unknown type")
|
||||
errNeitherFromOrFiles = errors.New("neither 'from' or 'files' was specified")
|
||||
errFilePath = errors.New("file path must be relative")
|
||||
)
|
||||
|
||||
func (s *Server) CreateHandler(c *gin.Context) {
|
||||
@@ -46,6 +48,13 @@ func (s *Server) CreateHandler(c *gin.Context) {
|
||||
return
|
||||
}
|
||||
|
||||
for v := range r.Files {
|
||||
if !fs.ValidPath(v) {
|
||||
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": errFilePath.Error()})
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
name := model.ParseName(cmp.Or(r.Model, r.Name))
|
||||
if !name.IsValid() {
|
||||
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": errtypes.InvalidModelNameErrMsg})
|
||||
@@ -104,7 +113,7 @@ func (s *Server) CreateHandler(c *gin.Context) {
|
||||
if r.Adapters != nil {
|
||||
adapterLayers, err = convertModelFromFiles(r.Adapters, baseLayers, true, fn)
|
||||
if err != nil {
|
||||
for _, badReq := range []error{errNoFilesProvided, errOnlyOneAdapterSupported, errOnlyGGUFSupported, errUnknownType} {
|
||||
for _, badReq := range []error{errNoFilesProvided, errOnlyOneAdapterSupported, errOnlyGGUFSupported, errUnknownType, errFilePath} {
|
||||
if errors.Is(err, badReq) {
|
||||
ch <- gin.H{"error": err.Error(), "status": http.StatusBadRequest}
|
||||
return
|
||||
@@ -221,8 +230,22 @@ func convertFromSafetensors(files map[string]string, baseLayers []*layerGGML, is
|
||||
return nil, err
|
||||
}
|
||||
defer os.RemoveAll(tmpDir)
|
||||
// Set up a root to validate paths
|
||||
root, err := os.OpenRoot(tmpDir)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
defer root.Close()
|
||||
|
||||
for fp, digest := range files {
|
||||
if !fs.ValidPath(fp) {
|
||||
return nil, fmt.Errorf("%w: %s", errFilePath, fp)
|
||||
}
|
||||
if _, err := root.Stat(fp); err != nil && !errors.Is(err, fs.ErrNotExist) {
|
||||
// Path is likely outside the root
|
||||
return nil, fmt.Errorf("%w: %s: %s", errFilePath, err, fp)
|
||||
}
|
||||
|
||||
blobPath, err := GetBlobsPath(digest)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
@@ -270,6 +293,7 @@ func convertFromSafetensors(files map[string]string, baseLayers []*layerGGML, is
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
defer bin.Close()
|
||||
|
||||
f, _, err := ggml.Decode(bin, 0)
|
||||
if err != nil {
|
||||
|
106
server/create_test.go
Normal file
106
server/create_test.go
Normal file
@@ -0,0 +1,106 @@
|
||||
package server
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/binary"
|
||||
"errors"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"strings"
|
||||
"testing"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
)
|
||||
|
||||
func TestConvertFromSafetensors(t *testing.T) {
|
||||
t.Setenv("OLLAMA_MODELS", t.TempDir())
|
||||
|
||||
// Helper function to create a new layer and return its digest
|
||||
makeTemp := func(content string) string {
|
||||
l, err := NewLayer(strings.NewReader(content), "application/octet-stream")
|
||||
if err != nil {
|
||||
t.Fatalf("Failed to create layer: %v", err)
|
||||
}
|
||||
return l.Digest
|
||||
}
|
||||
|
||||
// Create a safetensors compatible file with empty JSON content
|
||||
var buf bytes.Buffer
|
||||
headerSize := int64(len("{}"))
|
||||
binary.Write(&buf, binary.LittleEndian, headerSize)
|
||||
buf.WriteString("{}")
|
||||
|
||||
model := makeTemp(buf.String())
|
||||
config := makeTemp(`{
|
||||
"architectures": ["LlamaForCausalLM"],
|
||||
"vocab_size": 32000
|
||||
}`)
|
||||
tokenizer := makeTemp(`{
|
||||
"version": "1.0",
|
||||
"truncation": null,
|
||||
"padding": null,
|
||||
"added_tokens": [
|
||||
{
|
||||
"id": 0,
|
||||
"content": "<|endoftext|>",
|
||||
"single_word": false,
|
||||
"lstrip": false,
|
||||
"rstrip": false,
|
||||
"normalized": false,
|
||||
"special": true
|
||||
}
|
||||
]
|
||||
}`)
|
||||
|
||||
tests := []struct {
|
||||
name string
|
||||
filePath string
|
||||
wantErr error
|
||||
}{
|
||||
// Invalid
|
||||
{
|
||||
name: "InvalidRelativePathShallow",
|
||||
filePath: filepath.Join("..", "file.safetensors"),
|
||||
wantErr: errFilePath,
|
||||
},
|
||||
{
|
||||
name: "InvalidRelativePathDeep",
|
||||
filePath: filepath.Join("..", "..", "..", "..", "..", "..", "data", "file.txt"),
|
||||
wantErr: errFilePath,
|
||||
},
|
||||
{
|
||||
name: "InvalidNestedPath",
|
||||
filePath: filepath.Join("dir", "..", "..", "..", "..", "..", "other.safetensors"),
|
||||
wantErr: errFilePath,
|
||||
},
|
||||
{
|
||||
name: "AbsolutePathOutsideRoot",
|
||||
filePath: filepath.Join(os.TempDir(), "model.safetensors"),
|
||||
wantErr: errFilePath, // Should fail since it's outside tmpDir
|
||||
},
|
||||
{
|
||||
name: "ValidRelativePath",
|
||||
filePath: "model.safetensors",
|
||||
wantErr: nil,
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
// Create the minimum required file map for convertFromSafetensors
|
||||
files := map[string]string{
|
||||
tt.filePath: model,
|
||||
"config.json": config,
|
||||
"tokenizer.json": tokenizer,
|
||||
}
|
||||
|
||||
_, err := convertFromSafetensors(files, nil, false, func(resp api.ProgressResponse) {})
|
||||
|
||||
if (tt.wantErr == nil && err != nil) ||
|
||||
(tt.wantErr != nil && err == nil) ||
|
||||
(tt.wantErr != nil && !errors.Is(err, tt.wantErr)) {
|
||||
t.Errorf("convertFromSafetensors() error = %v, wantErr %v", err, tt.wantErr)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
28
server/internal/cache/blob/cache.go
vendored
28
server/internal/cache/blob/cache.go
vendored
@@ -279,6 +279,18 @@ func (c *DiskCache) Get(d Digest) (Entry, error) {
|
||||
// It returns an error if either the name or digest is invalid, or if link
|
||||
// creation encounters any issues.
|
||||
func (c *DiskCache) Link(name string, d Digest) error {
|
||||
// TODO(bmizerany): Move link handling from cache to registry.
|
||||
//
|
||||
// We originally placed links in the cache due to its storage
|
||||
// knowledge. However, the registry likely offers better context for
|
||||
// naming concerns, and our API design shouldn't be tightly coupled to
|
||||
// our on-disk format.
|
||||
//
|
||||
// Links work effectively when independent from physical location -
|
||||
// they can reference content with matching SHA regardless of storage
|
||||
// location. In an upcoming change, we plan to shift this
|
||||
// responsibility to the registry where it better aligns with the
|
||||
// system's conceptual model.
|
||||
manifest, err := c.manifestPath(name)
|
||||
if err != nil {
|
||||
return err
|
||||
@@ -304,21 +316,19 @@ func (c *DiskCache) Link(name string, d Digest) error {
|
||||
return c.copyNamedFile(manifest, f, d, info.Size())
|
||||
}
|
||||
|
||||
// Unlink removes the any link for name. If the link does not exist, nothing
|
||||
// happens, and no error is returned.
|
||||
//
|
||||
// It returns an error if the name is invalid or if the link removal encounters
|
||||
// any issues.
|
||||
func (c *DiskCache) Unlink(name string) error {
|
||||
// Unlink unlinks the manifest by name from the cache. If the name is not
|
||||
// found. If a manifest is removed ok will be true, otherwise false. If an
|
||||
// error occurs, it returns ok false, and the error.
|
||||
func (c *DiskCache) Unlink(name string) (ok bool, _ error) {
|
||||
manifest, err := c.manifestPath(name)
|
||||
if err != nil {
|
||||
return err
|
||||
return false, err
|
||||
}
|
||||
err = os.Remove(manifest)
|
||||
if errors.Is(err, fs.ErrNotExist) {
|
||||
return nil
|
||||
return false, nil
|
||||
}
|
||||
return err
|
||||
return true, err
|
||||
}
|
||||
|
||||
// GetFile returns the absolute path to the file, in the cache, for the given
|
||||
|
7
server/internal/cache/blob/cache_test.go
vendored
7
server/internal/cache/blob/cache_test.go
vendored
@@ -13,7 +13,7 @@ import (
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
"github.com/ollama/ollama/server/internal/internal/testutil"
|
||||
"github.com/ollama/ollama/server/internal/testutil"
|
||||
)
|
||||
|
||||
func init() {
|
||||
@@ -479,8 +479,11 @@ func testManifestNameReuse(t *testing.T) {
|
||||
}
|
||||
|
||||
// relink with different case
|
||||
err = c.Unlink("h/n/m:t")
|
||||
unlinked, err := c.Unlink("h/n/m:t")
|
||||
check(err)
|
||||
if !unlinked {
|
||||
t.Fatal("expected unlinked")
|
||||
}
|
||||
err = c.Link("h/n/m:T", d1)
|
||||
check(err)
|
||||
|
||||
|
2
server/internal/cache/blob/casecheck_test.go
vendored
2
server/internal/cache/blob/casecheck_test.go
vendored
@@ -86,7 +86,7 @@ func useCaseInsensitiveTempDir(t *testing.T) bool {
|
||||
// link to docs on that topic.
|
||||
lines := strings.Split(volumeHint, "\n")
|
||||
for _, line := range lines {
|
||||
t.Log(line)
|
||||
t.Skip(line)
|
||||
}
|
||||
}
|
||||
return false
|
||||
|
@@ -19,12 +19,15 @@ import (
|
||||
"fmt"
|
||||
"io"
|
||||
"io/fs"
|
||||
"log/slog"
|
||||
"net/http"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"runtime"
|
||||
"slices"
|
||||
"strconv"
|
||||
"strings"
|
||||
"sync"
|
||||
"sync/atomic"
|
||||
"time"
|
||||
|
||||
@@ -42,9 +45,9 @@ import (
|
||||
|
||||
// Errors
|
||||
var (
|
||||
// ErrManifestNotFound is returned when a manifest is not found in the
|
||||
// ErrModelNotFound is returned when a manifest is not found in the
|
||||
// cache or registry.
|
||||
ErrManifestNotFound = errors.New("manifest not found")
|
||||
ErrModelNotFound = errors.New("model not found")
|
||||
|
||||
// ErrManifestInvalid is returned when a manifest found in a local or
|
||||
// remote cache is invalid.
|
||||
@@ -52,7 +55,7 @@ var (
|
||||
|
||||
// ErrMissingModel is returned when the model part of a name is missing
|
||||
// or invalid.
|
||||
ErrNameInvalid = errors.New("invalid name; must be in the form {scheme://}{host/}{namespace/}[model]{:tag}{@digest}")
|
||||
ErrNameInvalid = errors.New("invalid or missing name")
|
||||
|
||||
// ErrCached is passed to [Trace.PushUpdate] when a layer already
|
||||
// exists. It is a non-fatal error and is never returned by [Registry.Push].
|
||||
@@ -71,39 +74,88 @@ const (
|
||||
DefaultMaxChunkSize = 8 << 20
|
||||
)
|
||||
|
||||
// DefaultCache returns a new disk cache for storing models. If the
|
||||
// OLLAMA_MODELS environment variable is set, it uses that directory;
|
||||
// otherwise, it uses $HOME/.ollama/models.
|
||||
func DefaultCache() (*blob.DiskCache, error) {
|
||||
var defaultCache = sync.OnceValues(func() (*blob.DiskCache, error) {
|
||||
dir := os.Getenv("OLLAMA_MODELS")
|
||||
if dir == "" {
|
||||
home, err := os.UserHomeDir()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
home, _ := os.UserHomeDir()
|
||||
home = cmp.Or(home, ".")
|
||||
dir = filepath.Join(home, ".ollama", "models")
|
||||
}
|
||||
return blob.Open(dir)
|
||||
})
|
||||
|
||||
// DefaultCache returns the default cache used by the registry. It is
|
||||
// configured from the OLLAMA_MODELS environment variable, or defaults to
|
||||
// $HOME/.ollama/models, or, if an error occurs obtaining the home directory,
|
||||
// it uses the current working directory.
|
||||
func DefaultCache() (*blob.DiskCache, error) {
|
||||
return defaultCache()
|
||||
}
|
||||
|
||||
// Error is the standard error returned by Ollama APIs.
|
||||
// Error is the standard error returned by Ollama APIs. It can represent a
|
||||
// single or multiple error response.
|
||||
//
|
||||
// Single error responses have the following format:
|
||||
//
|
||||
// {"code": "optional_code","error":"error message"}
|
||||
//
|
||||
// Multiple error responses have the following format:
|
||||
//
|
||||
// {"errors": [{"code": "optional_code","message":"error message"}]}
|
||||
//
|
||||
// Note, that the error field is used in single error responses, while the
|
||||
// message field is used in multiple error responses.
|
||||
//
|
||||
// In both cases, the code field is optional and may be empty.
|
||||
type Error struct {
|
||||
Status int `json:"-"`
|
||||
Status int `json:"-"` // TODO(bmizerany): remove this
|
||||
Code string `json:"code"`
|
||||
Message string `json:"message"`
|
||||
}
|
||||
|
||||
func (e *Error) Error() string {
|
||||
return fmt.Sprintf("registry responded with status %d: %s %s", e.Status, e.Code, e.Message)
|
||||
var b strings.Builder
|
||||
b.WriteString("registry responded with status ")
|
||||
b.WriteString(strconv.Itoa(e.Status))
|
||||
if e.Code != "" {
|
||||
b.WriteString(": code ")
|
||||
b.WriteString(e.Code)
|
||||
}
|
||||
if e.Message != "" {
|
||||
b.WriteString(": ")
|
||||
b.WriteString(e.Message)
|
||||
}
|
||||
return b.String()
|
||||
}
|
||||
|
||||
func (e *Error) LogValue() slog.Value {
|
||||
return slog.GroupValue(
|
||||
slog.Int("status", e.Status),
|
||||
slog.String("code", e.Code),
|
||||
slog.String("message", e.Message),
|
||||
)
|
||||
}
|
||||
|
||||
// UnmarshalJSON implements json.Unmarshaler.
|
||||
func (e *Error) UnmarshalJSON(b []byte) error {
|
||||
type E Error
|
||||
var v struct{ Errors []E }
|
||||
var v struct {
|
||||
// Single error
|
||||
Code string
|
||||
Error string
|
||||
|
||||
// Multiple errors
|
||||
Errors []E
|
||||
}
|
||||
if err := json.Unmarshal(b, &v); err != nil {
|
||||
return err
|
||||
}
|
||||
if v.Error != "" {
|
||||
// Single error case
|
||||
e.Code = v.Code
|
||||
e.Message = v.Error
|
||||
return nil
|
||||
}
|
||||
if len(v.Errors) == 0 {
|
||||
return fmt.Errorf("no messages in error response: %s", string(b))
|
||||
}
|
||||
@@ -111,18 +163,30 @@ func (e *Error) UnmarshalJSON(b []byte) error {
|
||||
return nil
|
||||
}
|
||||
|
||||
// TODO(bmizerany): make configurable on [Registry]
|
||||
var defaultName = func() names.Name {
|
||||
n := names.Parse("ollama.com/library/_:latest")
|
||||
const DefaultMask = "registry.ollama.ai/library/_:latest"
|
||||
|
||||
var defaultMask = func() names.Name {
|
||||
n := names.Parse(DefaultMask)
|
||||
if !n.IsFullyQualified() {
|
||||
panic("default name is not fully qualified")
|
||||
panic("default mask is not fully qualified")
|
||||
}
|
||||
return n
|
||||
}()
|
||||
|
||||
// CompleteName returns a fully qualified name by merging the given name with
|
||||
// the default mask. If the name is already fully qualified, it is returned
|
||||
// unchanged.
|
||||
func CompleteName(name string) string {
|
||||
return names.Merge(names.Parse(name), defaultMask).String()
|
||||
}
|
||||
|
||||
// Registry is a client for performing push and pull operations against an
|
||||
// Ollama registry.
|
||||
type Registry struct {
|
||||
// Cache is the cache used to store models. If nil, [DefaultCache] is
|
||||
// used.
|
||||
Cache *blob.DiskCache
|
||||
|
||||
// UserAgent is the User-Agent header to send with requests to the
|
||||
// registry. If empty, the User-Agent is determined by HTTPClient.
|
||||
UserAgent string
|
||||
@@ -160,21 +224,44 @@ type Registry struct {
|
||||
//
|
||||
// It is only used when a layer is larger than [MaxChunkingThreshold].
|
||||
MaxChunkSize int64
|
||||
|
||||
// Mask, if set, is the name used to convert non-fully qualified names
|
||||
// to fully qualified names. If empty, [DefaultMask] is used.
|
||||
Mask string
|
||||
}
|
||||
|
||||
// RegistryFromEnv returns a new Registry configured from the environment. The
|
||||
func (r *Registry) cache() (*blob.DiskCache, error) {
|
||||
if r.Cache != nil {
|
||||
return r.Cache, nil
|
||||
}
|
||||
return defaultCache()
|
||||
}
|
||||
|
||||
func (r *Registry) parseName(name string) (names.Name, error) {
|
||||
mask := defaultMask
|
||||
if r.Mask != "" {
|
||||
mask = names.Parse(r.Mask)
|
||||
}
|
||||
n := names.Merge(names.Parse(name), mask)
|
||||
if !n.IsFullyQualified() {
|
||||
return names.Name{}, fmt.Errorf("%w: %q", ErrNameInvalid, name)
|
||||
}
|
||||
return n, nil
|
||||
}
|
||||
|
||||
// DefaultRegistry returns a new Registry configured from the environment. The
|
||||
// key is read from $HOME/.ollama/id_ed25519, MaxStreams is set to the
|
||||
// value of OLLAMA_REGISTRY_MAXSTREAMS, and ChunkingDirectory is set to the
|
||||
// system's temporary directory.
|
||||
//
|
||||
// It returns an error if any configuration in the environment is invalid.
|
||||
func RegistryFromEnv() (*Registry, error) {
|
||||
func DefaultRegistry() (*Registry, error) {
|
||||
home, err := os.UserHomeDir()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
keyPEM, err := os.ReadFile(filepath.Join(home, ".ollama/id_ed25519"))
|
||||
if err != nil {
|
||||
if err != nil && errors.Is(err, fs.ErrNotExist) {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
@@ -194,42 +281,6 @@ func RegistryFromEnv() (*Registry, error) {
|
||||
return &rc, nil
|
||||
}
|
||||
|
||||
type PushParams struct {
|
||||
// From is an optional destination name for the model. If empty, the
|
||||
// destination name is the same as the source name.
|
||||
From string
|
||||
}
|
||||
|
||||
// parseName parses name using [names.ParseExtended] and then merges the name with the
|
||||
// default name, and checks that the name is fully qualified. If a digest is
|
||||
// present, it parse and returns it with the other fields as their zero values.
|
||||
//
|
||||
// It returns an error if the name is not fully qualified, or if the digest, if
|
||||
// any, is invalid.
|
||||
//
|
||||
// The scheme is returned as provided by [names.ParseExtended].
|
||||
func parseName(s string) (scheme string, n names.Name, d blob.Digest, err error) {
|
||||
scheme, n, ds := names.ParseExtended(s)
|
||||
n = names.Merge(n, defaultName)
|
||||
if ds != "" {
|
||||
// Digest is present. Validate it.
|
||||
d, err = blob.ParseDigest(ds)
|
||||
if err != nil {
|
||||
return "", names.Name{}, blob.Digest{}, err
|
||||
}
|
||||
}
|
||||
|
||||
// The name check is deferred until after the digest check because we
|
||||
// say that digests take precedence over names, and so should there
|
||||
// errors when being parsed.
|
||||
if !n.IsFullyQualified() {
|
||||
return "", names.Name{}, blob.Digest{}, ErrNameInvalid
|
||||
}
|
||||
|
||||
scheme = cmp.Or(scheme, "https")
|
||||
return scheme, n, d, nil
|
||||
}
|
||||
|
||||
func (r *Registry) maxStreams() int {
|
||||
n := cmp.Or(r.MaxStreams, runtime.GOMAXPROCS(0))
|
||||
|
||||
@@ -249,13 +300,24 @@ func (r *Registry) maxChunkSize() int64 {
|
||||
return cmp.Or(r.MaxChunkSize, DefaultMaxChunkSize)
|
||||
}
|
||||
|
||||
type PushParams struct {
|
||||
// From is an optional destination name for the model. If empty, the
|
||||
// destination name is the same as the source name.
|
||||
From string
|
||||
}
|
||||
|
||||
// Push pushes the model with the name in the cache to the remote registry.
|
||||
func (r *Registry) Push(ctx context.Context, c *blob.DiskCache, name string, p *PushParams) error {
|
||||
func (r *Registry) Push(ctx context.Context, name string, p *PushParams) error {
|
||||
if p == nil {
|
||||
p = &PushParams{}
|
||||
}
|
||||
|
||||
m, err := ResolveLocal(c, cmp.Or(p.From, name))
|
||||
c, err := r.cache()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
m, err := r.ResolveLocal(cmp.Or(p.From, name))
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
@@ -278,7 +340,7 @@ func (r *Registry) Push(ctx context.Context, c *blob.DiskCache, name string, p *
|
||||
|
||||
t := traceFromContext(ctx)
|
||||
|
||||
scheme, n, _, err := parseName(name)
|
||||
scheme, n, _, err := r.parseNameExtended(name)
|
||||
if err != nil {
|
||||
// This should never happen since ResolveLocal should have
|
||||
// already validated the name.
|
||||
@@ -304,7 +366,7 @@ func (r *Registry) Push(ctx context.Context, c *blob.DiskCache, name string, p *
|
||||
n.Model(),
|
||||
l.Digest,
|
||||
)
|
||||
res, err := r.doOK(ctx, "POST", startURL, nil)
|
||||
res, err := r.send(ctx, "POST", startURL, nil)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
@@ -328,7 +390,7 @@ func (r *Registry) Push(ctx context.Context, c *blob.DiskCache, name string, p *
|
||||
}
|
||||
req.ContentLength = l.Size
|
||||
|
||||
res, err = doOK(r.client(), req)
|
||||
res, err = sendRequest(r.client(), req)
|
||||
if err == nil {
|
||||
res.Body.Close()
|
||||
}
|
||||
@@ -348,7 +410,7 @@ func (r *Registry) Push(ctx context.Context, c *blob.DiskCache, name string, p *
|
||||
n.Model(),
|
||||
n.Tag(),
|
||||
)
|
||||
res, err := r.doOK(ctx, "PUT", path, bytes.NewReader(m.Data))
|
||||
res, err := r.send(ctx, "PUT", path, bytes.NewReader(m.Data))
|
||||
if err == nil {
|
||||
res.Body.Close()
|
||||
}
|
||||
@@ -371,8 +433,8 @@ func canRetry(err error) bool {
|
||||
// chunks of the specified size, and then reassembled and verified. This is
|
||||
// typically slower than splitting the model up across layers, and is mostly
|
||||
// utilized for layers of type equal to "application/vnd.ollama.image".
|
||||
func (r *Registry) Pull(ctx context.Context, c *blob.DiskCache, name string) error {
|
||||
scheme, n, _, err := parseName(name)
|
||||
func (r *Registry) Pull(ctx context.Context, name string) error {
|
||||
scheme, n, _, err := r.parseNameExtended(name)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
@@ -385,6 +447,11 @@ func (r *Registry) Pull(ctx context.Context, c *blob.DiskCache, name string) err
|
||||
return fmt.Errorf("%w: no layers", ErrManifestInvalid)
|
||||
}
|
||||
|
||||
c, err := r.cache()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
exists := func(l *Layer) bool {
|
||||
info, err := c.Get(l.Digest)
|
||||
return err == nil && info.Size == l.Size
|
||||
@@ -392,10 +459,15 @@ func (r *Registry) Pull(ctx context.Context, c *blob.DiskCache, name string) err
|
||||
|
||||
t := traceFromContext(ctx)
|
||||
|
||||
var g errgroup.Group
|
||||
g, ctx := errgroup.WithContext(ctx)
|
||||
g.SetLimit(r.maxStreams())
|
||||
|
||||
for _, l := range m.Layers {
|
||||
layers := m.Layers
|
||||
if m.Config != nil && m.Config.Digest.IsValid() {
|
||||
layers = append(layers, m.Config)
|
||||
}
|
||||
|
||||
for _, l := range layers {
|
||||
if exists(l) {
|
||||
t.update(l, l.Size, ErrCached)
|
||||
continue
|
||||
@@ -412,7 +484,9 @@ func (r *Registry) Pull(ctx context.Context, c *blob.DiskCache, name string) err
|
||||
|
||||
if l.Size <= r.maxChunkingThreshold() {
|
||||
g.Go(func() error {
|
||||
res, err := doOK(r.client(), req)
|
||||
// TODO(bmizerany): retry/backoff like below in
|
||||
// the chunking case
|
||||
res, err := sendRequest(r.client(), req)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
@@ -438,19 +512,21 @@ func (r *Registry) Pull(ctx context.Context, c *blob.DiskCache, name string) err
|
||||
// fire an initial request to get the final URL and
|
||||
// then use that URL for the chunk requests.
|
||||
req.Header.Set("Range", "bytes=0-0")
|
||||
res, err := doOK(r.client(), req)
|
||||
res, err := sendRequest(r.client(), req)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
res.Body.Close()
|
||||
req = res.Request.WithContext(req.Context())
|
||||
|
||||
streamNo := 0
|
||||
tws := make([]*bufio.Writer, r.maxStreams()-1)
|
||||
wp := writerPool{size: r.maxChunkSize()}
|
||||
|
||||
for chunk := range chunks.Of(l.Size, r.maxChunkSize()) {
|
||||
if ctx.Err() != nil {
|
||||
break
|
||||
}
|
||||
|
||||
ticket := q.Take()
|
||||
bufIdx := streamNo % len(tws)
|
||||
streamNo++
|
||||
g.Go(func() (err error) {
|
||||
defer func() {
|
||||
if err != nil {
|
||||
@@ -464,23 +540,18 @@ func (r *Registry) Pull(ctx context.Context, c *blob.DiskCache, name string) err
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
err := func() error {
|
||||
req := req.Clone(req.Context())
|
||||
req.Header.Set("Range", fmt.Sprintf("bytes=%s", chunk))
|
||||
res, err := doOK(r.client(), req)
|
||||
res, err := sendRequest(r.client(), req)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
defer res.Body.Close()
|
||||
|
||||
tw := tws[bufIdx]
|
||||
if tw == nil {
|
||||
tw = bufio.NewWriterSize(nil, int(r.maxChunkSize()))
|
||||
tws[bufIdx] = tw
|
||||
}
|
||||
tw := wp.get()
|
||||
tw.Reset(ticket)
|
||||
defer tw.Reset(nil) // release ticket
|
||||
defer wp.put(tw)
|
||||
|
||||
_, err = io.CopyN(tw, res.Body, chunk.Size())
|
||||
if err != nil {
|
||||
@@ -520,11 +591,28 @@ func (r *Registry) Pull(ctx context.Context, c *blob.DiskCache, name string) err
|
||||
return c.Link(m.Name, md)
|
||||
}
|
||||
|
||||
// Unlink is like [blob.DiskCache.Unlink], but makes name fully qualified
|
||||
// before attempting to unlink the model.
|
||||
func (r *Registry) Unlink(name string) (ok bool, _ error) {
|
||||
n, err := r.parseName(name)
|
||||
if err != nil {
|
||||
return false, err
|
||||
}
|
||||
c, err := r.cache()
|
||||
if err != nil {
|
||||
return false, err
|
||||
}
|
||||
return c.Unlink(n.String())
|
||||
}
|
||||
|
||||
// Manifest represents a [ollama.com/manifest].
|
||||
type Manifest struct {
|
||||
Name string `json:"-"` // the canonical name of the model
|
||||
Data []byte `json:"-"` // the raw data of the manifest
|
||||
Layers []*Layer `json:"layers"`
|
||||
|
||||
// For legacy reasons, we still have to download the config layer.
|
||||
Config *Layer `json:"config"`
|
||||
}
|
||||
|
||||
var emptyDigest, _ = blob.ParseDigest("sha256:0000000000000000000000000000000000000000000000000000000000000000")
|
||||
@@ -588,14 +676,18 @@ type Layer struct {
|
||||
Size int64 `json:"size"`
|
||||
}
|
||||
|
||||
// ResolveLocal resolves a name to a Manifest in the local cache. The name is
|
||||
// parsed using [names.ParseExtended] but the scheme is ignored.
|
||||
func ResolveLocal(c *blob.DiskCache, name string) (*Manifest, error) {
|
||||
_, n, d, err := parseName(name)
|
||||
// ResolveLocal resolves a name to a Manifest in the local cache.
|
||||
func (r *Registry) ResolveLocal(name string) (*Manifest, error) {
|
||||
_, n, d, err := r.parseNameExtended(name)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
c, err := r.cache()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if !d.IsValid() {
|
||||
// No digest, so resolve the manifest by name.
|
||||
d, err = c.Resolve(n.String())
|
||||
if err != nil {
|
||||
return nil, err
|
||||
@@ -604,7 +696,7 @@ func ResolveLocal(c *blob.DiskCache, name string) (*Manifest, error) {
|
||||
data, err := os.ReadFile(c.GetFile(d))
|
||||
if err != nil {
|
||||
if errors.Is(err, fs.ErrNotExist) {
|
||||
return nil, fmt.Errorf("%w: %s", ErrManifestNotFound, name)
|
||||
return nil, fmt.Errorf("%w: %s", ErrModelNotFound, name)
|
||||
}
|
||||
return nil, err
|
||||
}
|
||||
@@ -617,7 +709,7 @@ func ResolveLocal(c *blob.DiskCache, name string) (*Manifest, error) {
|
||||
|
||||
// Resolve resolves a name to a Manifest in the remote registry.
|
||||
func (r *Registry) Resolve(ctx context.Context, name string) (*Manifest, error) {
|
||||
scheme, n, d, err := parseName(name)
|
||||
scheme, n, d, err := r.parseNameExtended(name)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
@@ -627,7 +719,7 @@ func (r *Registry) Resolve(ctx context.Context, name string) (*Manifest, error)
|
||||
manifestURL = fmt.Sprintf("%s://%s/v2/%s/%s/blobs/%s", scheme, n.Host(), n.Namespace(), n.Model(), d)
|
||||
}
|
||||
|
||||
res, err := r.doOK(ctx, "GET", manifestURL, nil)
|
||||
res, err := r.send(ctx, "GET", manifestURL, nil)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
@@ -652,7 +744,7 @@ func (r *Registry) client() *http.Client {
|
||||
}
|
||||
|
||||
// newRequest constructs a new request, ready to use, with the given method,
|
||||
// url, and body, presigned with client Key and UserAgent.
|
||||
// url, and body, pre-signed with client [Key] and [UserAgent].
|
||||
func (r *Registry) newRequest(ctx context.Context, method, url string, body io.Reader) (*http.Request, error) {
|
||||
req, err := http.NewRequestWithContext(ctx, method, url, body)
|
||||
if err != nil {
|
||||
@@ -671,11 +763,17 @@ func (r *Registry) newRequest(ctx context.Context, method, url string, body io.R
|
||||
return req, nil
|
||||
}
|
||||
|
||||
// doOK makes a request with the given client and request, and returns the
|
||||
// sendRequest makes a request with the given client and request, and returns the
|
||||
// response if the status code is 200. If the status code is not 200, an Error
|
||||
// is parsed from the response body and returned. If any other error occurs, it
|
||||
// is returned.
|
||||
func doOK(c *http.Client, r *http.Request) (*http.Response, error) {
|
||||
func sendRequest(c *http.Client, r *http.Request) (_ *http.Response, err error) {
|
||||
defer func() {
|
||||
if err != nil {
|
||||
err = fmt.Errorf("request error %s: %w", r.URL, err)
|
||||
}
|
||||
}()
|
||||
|
||||
if r.URL.Scheme == "https+insecure" {
|
||||
// TODO(bmizerany): clone client.Transport, set
|
||||
// InsecureSkipVerify, etc.
|
||||
@@ -718,20 +816,26 @@ func doOK(c *http.Client, r *http.Request) (*http.Response, error) {
|
||||
// Use the raw body if we can't parse it as an error object.
|
||||
re.Message = string(out)
|
||||
}
|
||||
|
||||
// coerce MANIFEST_UNKNOWN to ErrManifestNotFound
|
||||
if strings.EqualFold(re.Code, "MANIFEST_UNKNOWN") {
|
||||
return nil, ErrModelNotFound
|
||||
}
|
||||
|
||||
re.Status = res.StatusCode
|
||||
return nil, &re
|
||||
}
|
||||
return res, nil
|
||||
}
|
||||
|
||||
// doOK is a convenience method for making a request with newRequest and
|
||||
// passing it to doOK with r.client().
|
||||
func (r *Registry) doOK(ctx context.Context, method, path string, body io.Reader) (*http.Response, error) {
|
||||
// send is a convenience method for making a request with newRequest and
|
||||
// passing it to send with r.client().
|
||||
func (r *Registry) send(ctx context.Context, method, path string, body io.Reader) (*http.Response, error) {
|
||||
req, err := r.newRequest(ctx, method, path, body)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return doOK(r.client(), req)
|
||||
return sendRequest(r.client(), req)
|
||||
}
|
||||
|
||||
// makeAuthToken creates an Ollama auth token for the given private key.
|
||||
@@ -800,3 +904,114 @@ func maybeUnexpectedEOF(err error) error {
|
||||
}
|
||||
return err
|
||||
}
|
||||
|
||||
type publicError struct {
|
||||
wrapped error
|
||||
message string
|
||||
}
|
||||
|
||||
func withPublicMessagef(err error, message string, args ...any) error {
|
||||
return publicError{wrapped: err, message: fmt.Sprintf(message, args...)}
|
||||
}
|
||||
|
||||
func (e publicError) Error() string { return e.message }
|
||||
func (e publicError) Unwrap() error { return e.wrapped }
|
||||
|
||||
var supportedSchemes = []string{
|
||||
"http",
|
||||
"https",
|
||||
"https+insecure",
|
||||
}
|
||||
|
||||
var supportedSchemesMessage = fmt.Sprintf("supported schemes are %v", strings.Join(supportedSchemes, ", "))
|
||||
|
||||
// parseNameExtended parses and validates an extended name, returning the scheme, name,
|
||||
// and digest.
|
||||
//
|
||||
// If the scheme is empty, scheme will be "https". If an unsupported scheme is
|
||||
// given, [ErrNameInvalid] wrapped with a display friendly message is returned.
|
||||
//
|
||||
// If the digest is invalid, [ErrNameInvalid] wrapped with a display friendly
|
||||
// message is returned.
|
||||
//
|
||||
// If the name is not, once merged with the mask, fully qualified,
|
||||
// [ErrNameInvalid] wrapped with a display friendly message is returned.
|
||||
func (r *Registry) parseNameExtended(s string) (scheme string, _ names.Name, _ blob.Digest, _ error) {
|
||||
scheme, name, digest := splitExtended(s)
|
||||
scheme = cmp.Or(scheme, "https")
|
||||
if !slices.Contains(supportedSchemes, scheme) {
|
||||
err := withPublicMessagef(ErrNameInvalid, "unsupported scheme: %q: %s", scheme, supportedSchemesMessage)
|
||||
return "", names.Name{}, blob.Digest{}, err
|
||||
}
|
||||
|
||||
var d blob.Digest
|
||||
if digest != "" {
|
||||
var err error
|
||||
d, err = blob.ParseDigest(digest)
|
||||
if err != nil {
|
||||
err = withPublicMessagef(ErrNameInvalid, "invalid digest: %q", digest)
|
||||
return "", names.Name{}, blob.Digest{}, err
|
||||
}
|
||||
if name == "" {
|
||||
// We have can resolve a manifest from a digest only,
|
||||
// so skip name validation and return the scheme and
|
||||
// digest.
|
||||
return scheme, names.Name{}, d, nil
|
||||
}
|
||||
}
|
||||
|
||||
n, err := r.parseName(name)
|
||||
if err != nil {
|
||||
return "", names.Name{}, blob.Digest{}, err
|
||||
}
|
||||
return scheme, n, d, nil
|
||||
}
|
||||
|
||||
// splitExtended splits an extended name string into its scheme, name, and digest
|
||||
// parts.
|
||||
//
|
||||
// Examples:
|
||||
//
|
||||
// http://ollama.com/bmizerany/smol:latest@digest
|
||||
// https://ollama.com/bmizerany/smol:latest
|
||||
// ollama.com/bmizerany/smol:latest@digest // returns "https" scheme.
|
||||
// model@digest
|
||||
// @digest
|
||||
func splitExtended(s string) (scheme, name, digest string) {
|
||||
i := strings.Index(s, "://")
|
||||
if i >= 0 {
|
||||
scheme = s[:i]
|
||||
s = s[i+3:]
|
||||
}
|
||||
i = strings.LastIndex(s, "@")
|
||||
if i >= 0 {
|
||||
digest = s[i+1:]
|
||||
s = s[:i]
|
||||
}
|
||||
return scheme, s, digest
|
||||
}
|
||||
|
||||
type writerPool struct {
|
||||
size int64 // set by the caller
|
||||
|
||||
mu sync.Mutex
|
||||
ws []*bufio.Writer
|
||||
}
|
||||
|
||||
func (p *writerPool) get() *bufio.Writer {
|
||||
p.mu.Lock()
|
||||
defer p.mu.Unlock()
|
||||
if len(p.ws) == 0 {
|
||||
return bufio.NewWriterSize(nil, int(p.size))
|
||||
}
|
||||
w := p.ws[len(p.ws)-1]
|
||||
p.ws = p.ws[:len(p.ws)-1]
|
||||
return w
|
||||
}
|
||||
|
||||
func (p *writerPool) put(w *bufio.Writer) {
|
||||
p.mu.Lock()
|
||||
defer p.mu.Unlock()
|
||||
w.Reset(nil)
|
||||
p.ws = append(p.ws, w)
|
||||
}
|
||||
|
@@ -2,6 +2,7 @@ package ollama
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"cmp"
|
||||
"context"
|
||||
"encoding/json"
|
||||
"errors"
|
||||
@@ -21,7 +22,7 @@ import (
|
||||
|
||||
"github.com/ollama/ollama/server/internal/cache/blob"
|
||||
"github.com/ollama/ollama/server/internal/chunks"
|
||||
"github.com/ollama/ollama/server/internal/internal/testutil"
|
||||
"github.com/ollama/ollama/server/internal/testutil"
|
||||
)
|
||||
|
||||
func TestManifestMarshalJSON(t *testing.T) {
|
||||
@@ -37,20 +38,6 @@ func TestManifestMarshalJSON(t *testing.T) {
|
||||
}
|
||||
}
|
||||
|
||||
func link(c *blob.DiskCache, name string, manifest string) {
|
||||
_, n, _, err := parseName(name)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
d, err := c.Import(bytes.NewReader([]byte(manifest)), int64(len(manifest)))
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
if err := c.Link(n.String(), d); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
||||
|
||||
var errRoundTrip = errors.New("forced roundtrip error")
|
||||
|
||||
type recordRoundTripper http.HandlerFunc
|
||||
@@ -86,6 +73,7 @@ func (rr recordRoundTripper) RoundTrip(req *http.Request) (*http.Response, error
|
||||
// To simulate a network error, pass a handler that returns a 499 status code.
|
||||
func newClient(t *testing.T, h http.HandlerFunc) (*Registry, *blob.DiskCache) {
|
||||
t.Helper()
|
||||
|
||||
c, err := blob.Open(t.TempDir())
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
@@ -98,30 +86,46 @@ func newClient(t *testing.T, h http.HandlerFunc) (*Registry, *blob.DiskCache) {
|
||||
}
|
||||
}
|
||||
|
||||
r := &Registry{
|
||||
Cache: c,
|
||||
HTTPClient: &http.Client{
|
||||
Transport: recordRoundTripper(h),
|
||||
},
|
||||
}
|
||||
|
||||
link := func(name string, manifest string) {
|
||||
n, err := r.parseName(name)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
d, err := c.Import(bytes.NewReader([]byte(manifest)), int64(len(manifest)))
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
if err := c.Link(n.String(), d); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
||||
|
||||
commit := func(name string, layers ...*Layer) {
|
||||
t.Helper()
|
||||
data, err := json.Marshal(&Manifest{Layers: layers})
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
link(c, name, string(data))
|
||||
link(name, string(data))
|
||||
}
|
||||
|
||||
link(c, "empty", "")
|
||||
link("empty", "")
|
||||
commit("zero")
|
||||
commit("single", mklayer("exists"))
|
||||
commit("multiple", mklayer("exists"), mklayer("present"))
|
||||
commit("notfound", &Layer{Digest: blob.DigestFromBytes("notfound"), Size: int64(len("notfound"))})
|
||||
commit("null", nil)
|
||||
commit("sizemismatch", mklayer("exists"), &Layer{Digest: blob.DigestFromBytes("present"), Size: 499})
|
||||
link(c, "invalid", "!!!!!")
|
||||
link("invalid", "!!!!!")
|
||||
|
||||
rc := &Registry{
|
||||
HTTPClient: &http.Client{
|
||||
Transport: recordRoundTripper(h),
|
||||
},
|
||||
}
|
||||
return rc, c
|
||||
return r, c
|
||||
}
|
||||
|
||||
func okHandler(w http.ResponseWriter, r *http.Request) {
|
||||
@@ -144,84 +148,61 @@ func importBytes(t *testing.T, c *blob.DiskCache, data string) blob.Digest {
|
||||
return d
|
||||
}
|
||||
|
||||
func TestRegistryPushInvalidNames(t *testing.T) {
|
||||
rc, c := newClient(t, nil)
|
||||
|
||||
cases := []struct {
|
||||
name string
|
||||
err error
|
||||
}{
|
||||
{"", ErrNameInvalid},
|
||||
{"@", ErrNameInvalid},
|
||||
{"@x", blob.ErrInvalidDigest},
|
||||
}
|
||||
|
||||
for _, tt := range cases {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
// Create a new registry and push a new image.
|
||||
err := rc.Push(t.Context(), c, tt.name, nil)
|
||||
if !errors.Is(err, tt.err) {
|
||||
t.Errorf("err = %v; want %v", err, tt.err)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func withTraceUnexpected(ctx context.Context) (context.Context, *Trace) {
|
||||
t := &Trace{Update: func(*Layer, int64, error) { panic("unexpected") }}
|
||||
return WithTrace(ctx, t), t
|
||||
}
|
||||
|
||||
func TestPushZero(t *testing.T) {
|
||||
rc, c := newClient(t, okHandler)
|
||||
err := rc.Push(t.Context(), c, "empty", nil)
|
||||
rc, _ := newClient(t, okHandler)
|
||||
err := rc.Push(t.Context(), "empty", nil)
|
||||
if !errors.Is(err, ErrManifestInvalid) {
|
||||
t.Errorf("err = %v; want %v", err, ErrManifestInvalid)
|
||||
}
|
||||
}
|
||||
|
||||
func TestPushSingle(t *testing.T) {
|
||||
rc, c := newClient(t, okHandler)
|
||||
err := rc.Push(t.Context(), c, "single", nil)
|
||||
rc, _ := newClient(t, okHandler)
|
||||
err := rc.Push(t.Context(), "single", nil)
|
||||
testutil.Check(t, err)
|
||||
}
|
||||
|
||||
func TestPushMultiple(t *testing.T) {
|
||||
rc, c := newClient(t, okHandler)
|
||||
err := rc.Push(t.Context(), c, "multiple", nil)
|
||||
rc, _ := newClient(t, okHandler)
|
||||
err := rc.Push(t.Context(), "multiple", nil)
|
||||
testutil.Check(t, err)
|
||||
}
|
||||
|
||||
func TestPushNotFound(t *testing.T) {
|
||||
rc, c := newClient(t, func(w http.ResponseWriter, r *http.Request) {
|
||||
rc, _ := newClient(t, func(w http.ResponseWriter, r *http.Request) {
|
||||
t.Errorf("unexpected request: %v", r)
|
||||
})
|
||||
err := rc.Push(t.Context(), c, "notfound", nil)
|
||||
err := rc.Push(t.Context(), "notfound", nil)
|
||||
if !errors.Is(err, fs.ErrNotExist) {
|
||||
t.Errorf("err = %v; want %v", err, fs.ErrNotExist)
|
||||
}
|
||||
}
|
||||
|
||||
func TestPushNullLayer(t *testing.T) {
|
||||
rc, c := newClient(t, nil)
|
||||
err := rc.Push(t.Context(), c, "null", nil)
|
||||
rc, _ := newClient(t, nil)
|
||||
err := rc.Push(t.Context(), "null", nil)
|
||||
if err == nil || !strings.Contains(err.Error(), "invalid manifest") {
|
||||
t.Errorf("err = %v; want invalid manifest", err)
|
||||
}
|
||||
}
|
||||
|
||||
func TestPushSizeMismatch(t *testing.T) {
|
||||
rc, c := newClient(t, nil)
|
||||
rc, _ := newClient(t, nil)
|
||||
ctx, _ := withTraceUnexpected(t.Context())
|
||||
got := rc.Push(ctx, c, "sizemismatch", nil)
|
||||
got := rc.Push(ctx, "sizemismatch", nil)
|
||||
if got == nil || !strings.Contains(got.Error(), "size mismatch") {
|
||||
t.Errorf("err = %v; want size mismatch", got)
|
||||
}
|
||||
}
|
||||
|
||||
func TestPushInvalid(t *testing.T) {
|
||||
rc, c := newClient(t, nil)
|
||||
err := rc.Push(t.Context(), c, "invalid", nil)
|
||||
rc, _ := newClient(t, nil)
|
||||
err := rc.Push(t.Context(), "invalid", nil)
|
||||
if err == nil || !strings.Contains(err.Error(), "invalid manifest") {
|
||||
t.Errorf("err = %v; want invalid manifest", err)
|
||||
}
|
||||
@@ -229,7 +210,7 @@ func TestPushInvalid(t *testing.T) {
|
||||
|
||||
func TestPushExistsAtRemote(t *testing.T) {
|
||||
var pushed bool
|
||||
rc, c := newClient(t, func(w http.ResponseWriter, r *http.Request) {
|
||||
rc, _ := newClient(t, func(w http.ResponseWriter, r *http.Request) {
|
||||
if strings.Contains(r.URL.Path, "/uploads/") {
|
||||
if !pushed {
|
||||
// First push. Return an uploadURL.
|
||||
@@ -257,35 +238,35 @@ func TestPushExistsAtRemote(t *testing.T) {
|
||||
|
||||
check := testutil.Checker(t)
|
||||
|
||||
err := rc.Push(ctx, c, "single", nil)
|
||||
err := rc.Push(ctx, "single", nil)
|
||||
check(err)
|
||||
|
||||
if !errors.Is(errors.Join(errs...), nil) {
|
||||
t.Errorf("errs = %v; want %v", errs, []error{ErrCached})
|
||||
}
|
||||
|
||||
err = rc.Push(ctx, c, "single", nil)
|
||||
err = rc.Push(ctx, "single", nil)
|
||||
check(err)
|
||||
}
|
||||
|
||||
func TestPushRemoteError(t *testing.T) {
|
||||
rc, c := newClient(t, func(w http.ResponseWriter, r *http.Request) {
|
||||
rc, _ := newClient(t, func(w http.ResponseWriter, r *http.Request) {
|
||||
if strings.Contains(r.URL.Path, "/blobs/") {
|
||||
w.WriteHeader(500)
|
||||
io.WriteString(w, `{"errors":[{"code":"blob_error"}]}`)
|
||||
return
|
||||
}
|
||||
})
|
||||
got := rc.Push(t.Context(), c, "single", nil)
|
||||
got := rc.Push(t.Context(), "single", nil)
|
||||
checkErrCode(t, got, 500, "blob_error")
|
||||
}
|
||||
|
||||
func TestPushLocationError(t *testing.T) {
|
||||
rc, c := newClient(t, func(w http.ResponseWriter, r *http.Request) {
|
||||
rc, _ := newClient(t, func(w http.ResponseWriter, r *http.Request) {
|
||||
w.Header().Set("Location", ":///x")
|
||||
w.WriteHeader(http.StatusAccepted)
|
||||
})
|
||||
got := rc.Push(t.Context(), c, "single", nil)
|
||||
got := rc.Push(t.Context(), "single", nil)
|
||||
wantContains := "invalid upload URL"
|
||||
if got == nil || !strings.Contains(got.Error(), wantContains) {
|
||||
t.Errorf("err = %v; want to contain %v", got, wantContains)
|
||||
@@ -293,14 +274,14 @@ func TestPushLocationError(t *testing.T) {
|
||||
}
|
||||
|
||||
func TestPushUploadRoundtripError(t *testing.T) {
|
||||
rc, c := newClient(t, func(w http.ResponseWriter, r *http.Request) {
|
||||
rc, _ := newClient(t, func(w http.ResponseWriter, r *http.Request) {
|
||||
if r.Host == "blob.store" {
|
||||
w.WriteHeader(499) // force RoundTrip error on upload
|
||||
return
|
||||
}
|
||||
w.Header().Set("Location", "http://blob.store/blobs/123")
|
||||
})
|
||||
got := rc.Push(t.Context(), c, "single", nil)
|
||||
got := rc.Push(t.Context(), "single", nil)
|
||||
if !errors.Is(got, errRoundTrip) {
|
||||
t.Errorf("got = %v; want %v", got, errRoundTrip)
|
||||
}
|
||||
@@ -316,20 +297,20 @@ func TestPushUploadFileOpenError(t *testing.T) {
|
||||
os.Remove(c.GetFile(l.Digest))
|
||||
},
|
||||
})
|
||||
got := rc.Push(ctx, c, "single", nil)
|
||||
got := rc.Push(ctx, "single", nil)
|
||||
if !errors.Is(got, fs.ErrNotExist) {
|
||||
t.Errorf("got = %v; want fs.ErrNotExist", got)
|
||||
}
|
||||
}
|
||||
|
||||
func TestPushCommitRoundtripError(t *testing.T) {
|
||||
rc, c := newClient(t, func(w http.ResponseWriter, r *http.Request) {
|
||||
rc, _ := newClient(t, func(w http.ResponseWriter, r *http.Request) {
|
||||
if strings.Contains(r.URL.Path, "/blobs/") {
|
||||
panic("unexpected")
|
||||
}
|
||||
w.WriteHeader(499) // force RoundTrip error
|
||||
})
|
||||
err := rc.Push(t.Context(), c, "zero", nil)
|
||||
err := rc.Push(t.Context(), "zero", nil)
|
||||
if !errors.Is(err, errRoundTrip) {
|
||||
t.Errorf("err = %v; want %v", err, errRoundTrip)
|
||||
}
|
||||
@@ -343,8 +324,8 @@ func checkNotExist(t *testing.T, err error) {
|
||||
}
|
||||
|
||||
func TestRegistryPullInvalidName(t *testing.T) {
|
||||
rc, c := newClient(t, nil)
|
||||
err := rc.Pull(t.Context(), c, "://")
|
||||
rc, _ := newClient(t, nil)
|
||||
err := rc.Pull(t.Context(), "://")
|
||||
if !errors.Is(err, ErrNameInvalid) {
|
||||
t.Errorf("err = %v; want %v", err, ErrNameInvalid)
|
||||
}
|
||||
@@ -359,10 +340,10 @@ func TestRegistryPullInvalidManifest(t *testing.T) {
|
||||
}
|
||||
|
||||
for _, resp := range cases {
|
||||
rc, c := newClient(t, func(w http.ResponseWriter, r *http.Request) {
|
||||
rc, _ := newClient(t, func(w http.ResponseWriter, r *http.Request) {
|
||||
io.WriteString(w, resp)
|
||||
})
|
||||
err := rc.Pull(t.Context(), c, "x")
|
||||
err := rc.Pull(t.Context(), "x")
|
||||
if !errors.Is(err, ErrManifestInvalid) {
|
||||
t.Errorf("err = %v; want invalid manifest", err)
|
||||
}
|
||||
@@ -385,18 +366,18 @@ func TestRegistryPullNotCached(t *testing.T) {
|
||||
})
|
||||
|
||||
// Confirm that the layer does not exist locally
|
||||
_, err := ResolveLocal(c, "model")
|
||||
_, err := rc.ResolveLocal("model")
|
||||
checkNotExist(t, err)
|
||||
|
||||
_, err = c.Get(d)
|
||||
checkNotExist(t, err)
|
||||
|
||||
err = rc.Pull(t.Context(), c, "model")
|
||||
err = rc.Pull(t.Context(), "model")
|
||||
check(err)
|
||||
|
||||
mw, err := rc.Resolve(t.Context(), "model")
|
||||
check(err)
|
||||
mg, err := ResolveLocal(c, "model")
|
||||
mg, err := rc.ResolveLocal("model")
|
||||
check(err)
|
||||
if !reflect.DeepEqual(mw, mg) {
|
||||
t.Errorf("mw = %v; mg = %v", mw, mg)
|
||||
@@ -421,7 +402,7 @@ func TestRegistryPullNotCached(t *testing.T) {
|
||||
|
||||
func TestRegistryPullCached(t *testing.T) {
|
||||
cached := blob.DigestFromBytes("exists")
|
||||
rc, c := newClient(t, func(w http.ResponseWriter, r *http.Request) {
|
||||
rc, _ := newClient(t, func(w http.ResponseWriter, r *http.Request) {
|
||||
if strings.Contains(r.URL.Path, "/blobs/") {
|
||||
w.WriteHeader(499) // should not be called
|
||||
return
|
||||
@@ -444,7 +425,7 @@ func TestRegistryPullCached(t *testing.T) {
|
||||
ctx, cancel := context.WithTimeout(ctx, 3*time.Second)
|
||||
defer cancel()
|
||||
|
||||
err := rc.Pull(ctx, c, "single")
|
||||
err := rc.Pull(ctx, "single")
|
||||
testutil.Check(t, err)
|
||||
|
||||
want := []int64{6}
|
||||
@@ -457,30 +438,30 @@ func TestRegistryPullCached(t *testing.T) {
|
||||
}
|
||||
|
||||
func TestRegistryPullManifestNotFound(t *testing.T) {
|
||||
rc, c := newClient(t, func(w http.ResponseWriter, r *http.Request) {
|
||||
rc, _ := newClient(t, func(w http.ResponseWriter, r *http.Request) {
|
||||
w.WriteHeader(http.StatusNotFound)
|
||||
})
|
||||
err := rc.Pull(t.Context(), c, "notfound")
|
||||
err := rc.Pull(t.Context(), "notfound")
|
||||
checkErrCode(t, err, 404, "")
|
||||
}
|
||||
|
||||
func TestRegistryPullResolveRemoteError(t *testing.T) {
|
||||
rc, c := newClient(t, func(w http.ResponseWriter, r *http.Request) {
|
||||
rc, _ := newClient(t, func(w http.ResponseWriter, r *http.Request) {
|
||||
w.WriteHeader(http.StatusInternalServerError)
|
||||
io.WriteString(w, `{"errors":[{"code":"an_error"}]}`)
|
||||
})
|
||||
err := rc.Pull(t.Context(), c, "single")
|
||||
err := rc.Pull(t.Context(), "single")
|
||||
checkErrCode(t, err, 500, "an_error")
|
||||
}
|
||||
|
||||
func TestRegistryPullResolveRoundtripError(t *testing.T) {
|
||||
rc, c := newClient(t, func(w http.ResponseWriter, r *http.Request) {
|
||||
rc, _ := newClient(t, func(w http.ResponseWriter, r *http.Request) {
|
||||
if strings.Contains(r.URL.Path, "/manifests/") {
|
||||
w.WriteHeader(499) // force RoundTrip error
|
||||
return
|
||||
}
|
||||
})
|
||||
err := rc.Pull(t.Context(), c, "single")
|
||||
err := rc.Pull(t.Context(), "single")
|
||||
if !errors.Is(err, errRoundTrip) {
|
||||
t.Errorf("err = %v; want %v", err, errRoundTrip)
|
||||
}
|
||||
@@ -533,7 +514,7 @@ func TestRegistryPullMixedCachedNotCached(t *testing.T) {
|
||||
|
||||
// Check that we pull all layers that we can.
|
||||
|
||||
err := rc.Pull(ctx, c, "mixed")
|
||||
err := rc.Pull(ctx, "mixed")
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
@@ -551,7 +532,7 @@ func TestRegistryPullMixedCachedNotCached(t *testing.T) {
|
||||
}
|
||||
|
||||
func TestRegistryPullChunking(t *testing.T) {
|
||||
rc, c := newClient(t, func(w http.ResponseWriter, r *http.Request) {
|
||||
rc, _ := newClient(t, func(w http.ResponseWriter, r *http.Request) {
|
||||
t.Log("request:", r.URL.Host, r.Method, r.URL.Path, r.Header.Get("Range"))
|
||||
if r.URL.Host != "blob.store" {
|
||||
// The production registry redirects to the blob store.
|
||||
@@ -589,7 +570,7 @@ func TestRegistryPullChunking(t *testing.T) {
|
||||
},
|
||||
})
|
||||
|
||||
err := rc.Pull(ctx, c, "remote")
|
||||
err := rc.Pull(ctx, "remote")
|
||||
testutil.Check(t, err)
|
||||
|
||||
want := []int64{0, 3, 6}
|
||||
@@ -621,13 +602,13 @@ func TestInsecureSkipVerify(t *testing.T) {
|
||||
}))
|
||||
defer s.Close()
|
||||
|
||||
const name = "ollama.com/library/insecure"
|
||||
const name = "library/insecure"
|
||||
|
||||
var rc Registry
|
||||
url := fmt.Sprintf("https://%s/%s", s.Listener.Addr(), name)
|
||||
_, err := rc.Resolve(t.Context(), url)
|
||||
if err == nil || !strings.Contains(err.Error(), "failed to verify") {
|
||||
t.Errorf("err = %v; want cert verifiction failure", err)
|
||||
t.Errorf("err = %v; want cert verification failure", err)
|
||||
}
|
||||
|
||||
url = fmt.Sprintf("https+insecure://%s/%s", s.Listener.Addr(), name)
|
||||
@@ -654,3 +635,184 @@ func TestCanRetry(t *testing.T) {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestErrorUnmarshal(t *testing.T) {
|
||||
cases := []struct {
|
||||
name string
|
||||
data string
|
||||
want *Error
|
||||
wantErr bool
|
||||
}{
|
||||
{
|
||||
name: "errors empty",
|
||||
data: `{"errors":[]}`,
|
||||
wantErr: true,
|
||||
},
|
||||
{
|
||||
name: "errors empty",
|
||||
data: `{"errors":[]}`,
|
||||
wantErr: true,
|
||||
},
|
||||
{
|
||||
name: "errors single",
|
||||
data: `{"errors":[{"code":"blob_unknown"}]}`,
|
||||
want: &Error{Code: "blob_unknown", Message: ""},
|
||||
},
|
||||
{
|
||||
name: "errors multiple",
|
||||
data: `{"errors":[{"code":"blob_unknown"},{"code":"blob_error"}]}`,
|
||||
want: &Error{Code: "blob_unknown", Message: ""},
|
||||
},
|
||||
{
|
||||
name: "error empty",
|
||||
data: `{"error":""}`,
|
||||
wantErr: true,
|
||||
},
|
||||
{
|
||||
name: "error very empty",
|
||||
data: `{}`,
|
||||
wantErr: true,
|
||||
},
|
||||
{
|
||||
name: "error message",
|
||||
data: `{"error":"message", "code":"code"}`,
|
||||
want: &Error{Code: "code", Message: "message"},
|
||||
},
|
||||
{
|
||||
name: "invalid value",
|
||||
data: `{"error": 1}`,
|
||||
wantErr: true,
|
||||
},
|
||||
}
|
||||
for _, tt := range cases {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
var got Error
|
||||
err := json.Unmarshal([]byte(tt.data), &got)
|
||||
if err != nil {
|
||||
if tt.wantErr {
|
||||
return
|
||||
}
|
||||
t.Errorf("Unmarshal() error = %v", err)
|
||||
// fallthrough and check got
|
||||
}
|
||||
if tt.want == nil {
|
||||
tt.want = &Error{}
|
||||
}
|
||||
if !reflect.DeepEqual(got, *tt.want) {
|
||||
t.Errorf("got = %v; want %v", got, *tt.want)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
// TestParseNameErrors tests that parseName returns errors messages with enough
|
||||
// detail for users to debug naming issues they may encounter. Previous to this
|
||||
// test, the error messages were not very helpful and each problem was reported
|
||||
// as the same message.
|
||||
//
|
||||
// It is only for testing error messages, not that all invalids and valids are
|
||||
// covered. Those are in other tests for names.Name and blob.Digest.
|
||||
func TestParseNameExtendedErrors(t *testing.T) {
|
||||
cases := []struct {
|
||||
name string
|
||||
err error
|
||||
want string
|
||||
}{}
|
||||
|
||||
var r Registry
|
||||
for _, tt := range cases {
|
||||
_, _, _, err := r.parseNameExtended(tt.name)
|
||||
if !errors.Is(err, tt.err) {
|
||||
t.Errorf("[%s]: err = %v; want %v", tt.name, err, tt.err)
|
||||
}
|
||||
if err != nil && !strings.Contains(err.Error(), tt.want) {
|
||||
t.Errorf("[%s]: err =\n\t%v\nwant\n\t%v", tt.name, err, tt.want)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestParseNameExtended(t *testing.T) {
|
||||
cases := []struct {
|
||||
in string
|
||||
scheme string
|
||||
name string
|
||||
digest string
|
||||
err string
|
||||
}{
|
||||
{in: "http://m", scheme: "http", name: "m"},
|
||||
{in: "https+insecure://m", scheme: "https+insecure", name: "m"},
|
||||
{in: "http+insecure://m", err: "unsupported scheme"},
|
||||
|
||||
{in: "http://m@sha256:1111111111111111111111111111111111111111111111111111111111111111", scheme: "http", name: "m", digest: "sha256:1111111111111111111111111111111111111111111111111111111111111111"},
|
||||
|
||||
{in: "", err: "invalid or missing name"},
|
||||
{in: "m", scheme: "https", name: "m"},
|
||||
{in: "://", err: "invalid or missing name"},
|
||||
{in: "@sha256:deadbeef", err: "invalid digest"},
|
||||
{in: "@sha256:deadbeef@sha256:deadbeef", err: "invalid digest"},
|
||||
}
|
||||
for _, tt := range cases {
|
||||
t.Run(tt.in, func(t *testing.T) {
|
||||
var r Registry
|
||||
scheme, n, digest, err := r.parseNameExtended(tt.in)
|
||||
if err != nil {
|
||||
if tt.err == "" {
|
||||
t.Errorf("err = %v; want nil", err)
|
||||
} else if !strings.Contains(err.Error(), tt.err) {
|
||||
t.Errorf("err = %v; want %q", err, tt.err)
|
||||
}
|
||||
} else if tt.err != "" {
|
||||
t.Errorf("err = nil; want %q", tt.err)
|
||||
}
|
||||
if err == nil && !n.IsFullyQualified() {
|
||||
t.Errorf("name = %q; want fully qualified", n)
|
||||
}
|
||||
|
||||
if scheme != tt.scheme {
|
||||
t.Errorf("scheme = %q; want %q", scheme, tt.scheme)
|
||||
}
|
||||
|
||||
// smoke-test name is superset of tt.name
|
||||
if !strings.Contains(n.String(), tt.name) {
|
||||
t.Errorf("name = %q; want %q", n, tt.name)
|
||||
}
|
||||
|
||||
tt.digest = cmp.Or(tt.digest, (&blob.Digest{}).String())
|
||||
if digest.String() != tt.digest {
|
||||
t.Errorf("digest = %q; want %q", digest, tt.digest)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestUnlink(t *testing.T) {
|
||||
t.Run("found by name", func(t *testing.T) {
|
||||
rc, _ := newClient(t, nil)
|
||||
|
||||
// confirm linked
|
||||
_, err := rc.ResolveLocal("single")
|
||||
if err != nil {
|
||||
t.Errorf("unexpected error: %v", err)
|
||||
}
|
||||
|
||||
// unlink
|
||||
_, err = rc.Unlink("single")
|
||||
testutil.Check(t, err)
|
||||
|
||||
// confirm unlinked
|
||||
_, err = rc.ResolveLocal("single")
|
||||
if !errors.Is(err, fs.ErrNotExist) {
|
||||
t.Errorf("err = %v; want fs.ErrNotExist", err)
|
||||
}
|
||||
})
|
||||
t.Run("not found by name", func(t *testing.T) {
|
||||
rc, _ := newClient(t, nil)
|
||||
ok, err := rc.Unlink("manifestNotFound")
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
if ok {
|
||||
t.Error("expected not found")
|
||||
}
|
||||
})
|
||||
}
|
||||
|
@@ -6,13 +6,20 @@ import (
|
||||
|
||||
// Trace is a set of functions that are called to report progress during blob
|
||||
// downloads and uploads.
|
||||
//
|
||||
// Use [WithTrace] to attach a Trace to a context for use with [Registry.Push]
|
||||
// and [Registry.Pull].
|
||||
type Trace struct {
|
||||
// Update is called during [Registry.Push] and [Registry.Pull] to
|
||||
// report the progress of blob uploads and downloads.
|
||||
//
|
||||
// It is called once at the beginning of the download with a zero n and
|
||||
// then once per read operation with the number of bytes read so far,
|
||||
// and an error if any.
|
||||
// The n argument is the number of bytes transferred so far, and err is
|
||||
// any error that has occurred. If n == 0, and err is nil, the download
|
||||
// or upload has just started. If err is [ErrCached], the download or
|
||||
// upload has been skipped because the blob is already present in the
|
||||
// local cache or remote registry, respectively. Otherwise, if err is
|
||||
// non-nil, the download or upload has failed. When l.Size == n, and
|
||||
// err is nil, the download or upload has completed.
|
||||
//
|
||||
// A function assigned must be safe for concurrent use. The function is
|
||||
// called synchronously and so should not block or take long to run.
|
||||
|
@@ -86,6 +86,8 @@ func (m *Model) readTensors(fname string) ([]*Tensor, error) {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
endOfHeader := 8 + headerSize // 8 bytes for header size plus the header itself
|
||||
|
||||
// TODO(bmizerany): do something with metadata? This could be another
|
||||
// header read if needed. We also need to figure out if the metadata is
|
||||
// present in only one .safetensors file or if each file may have their
|
||||
@@ -95,7 +97,8 @@ func (m *Model) readTensors(fname string) ([]*Tensor, error) {
|
||||
|
||||
tt := make([]*Tensor, 0, len(raws))
|
||||
for name, raw := range raws {
|
||||
if !strings.HasPrefix(name, "model.layer") {
|
||||
if name == "__metadata__" {
|
||||
// TODO(bmizerany): do something with metadata?
|
||||
continue
|
||||
}
|
||||
var v struct {
|
||||
@@ -112,7 +115,8 @@ func (m *Model) readTensors(fname string) ([]*Tensor, error) {
|
||||
|
||||
// TODO(bmizerany): after collecting, validate all offests make
|
||||
// tensors contiguous?
|
||||
begin, end := v.Offsets[0], v.Offsets[1]
|
||||
begin := endOfHeader + v.Offsets[0]
|
||||
end := endOfHeader + v.Offsets[1]
|
||||
if err := checkBeginEnd(finfo.Size(), begin, end); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
@@ -63,25 +63,28 @@ func main() {
|
||||
}
|
||||
flag.Parse()
|
||||
|
||||
c, err := ollama.DefaultCache()
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
|
||||
rc, err := ollama.RegistryFromEnv()
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
|
||||
ctx := context.Background()
|
||||
|
||||
err = func() error {
|
||||
err := func() error {
|
||||
switch cmd := flag.Arg(0); cmd {
|
||||
case "pull":
|
||||
return cmdPull(ctx, rc, c)
|
||||
rc, err := ollama.DefaultRegistry()
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
|
||||
return cmdPull(ctx, rc)
|
||||
case "push":
|
||||
return cmdPush(ctx, rc, c)
|
||||
rc, err := ollama.DefaultRegistry()
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
return cmdPush(ctx, rc)
|
||||
case "import":
|
||||
c, err := ollama.DefaultCache()
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
return cmdImport(ctx, c)
|
||||
default:
|
||||
if cmd == "" {
|
||||
@@ -99,7 +102,7 @@ func main() {
|
||||
}
|
||||
}
|
||||
|
||||
func cmdPull(ctx context.Context, rc *ollama.Registry, c *blob.DiskCache) error {
|
||||
func cmdPull(ctx context.Context, rc *ollama.Registry) error {
|
||||
model := flag.Arg(1)
|
||||
if model == "" {
|
||||
flag.Usage()
|
||||
@@ -145,7 +148,7 @@ func cmdPull(ctx context.Context, rc *ollama.Registry, c *blob.DiskCache) error
|
||||
|
||||
errc := make(chan error)
|
||||
go func() {
|
||||
errc <- rc.Pull(ctx, c, model)
|
||||
errc <- rc.Pull(ctx, model)
|
||||
}()
|
||||
|
||||
t := time.NewTicker(time.Second)
|
||||
@@ -161,7 +164,7 @@ func cmdPull(ctx context.Context, rc *ollama.Registry, c *blob.DiskCache) error
|
||||
}
|
||||
}
|
||||
|
||||
func cmdPush(ctx context.Context, rc *ollama.Registry, c *blob.DiskCache) error {
|
||||
func cmdPush(ctx context.Context, rc *ollama.Registry) error {
|
||||
args := flag.Args()[1:]
|
||||
flag := flag.NewFlagSet("push", flag.ExitOnError)
|
||||
flagFrom := flag.String("from", "", "Use the manifest from a model by another name.")
|
||||
@@ -177,7 +180,7 @@ func cmdPush(ctx context.Context, rc *ollama.Registry, c *blob.DiskCache) error
|
||||
}
|
||||
|
||||
from := cmp.Or(*flagFrom, model)
|
||||
m, err := ollama.ResolveLocal(c, from)
|
||||
m, err := rc.ResolveLocal(from)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
@@ -203,7 +206,7 @@ func cmdPush(ctx context.Context, rc *ollama.Registry, c *blob.DiskCache) error
|
||||
},
|
||||
})
|
||||
|
||||
return rc.Push(ctx, c, model, &ollama.PushParams{
|
||||
return rc.Push(ctx, model, &ollama.PushParams{
|
||||
From: from,
|
||||
})
|
||||
}
|
||||
@@ -228,6 +231,10 @@ func cmdImport(ctx context.Context, c *blob.DiskCache) error {
|
||||
flag.PrintDefaults()
|
||||
}
|
||||
flag.Parse(args)
|
||||
if *flagAs == "" {
|
||||
return fmt.Errorf("missing -as flag")
|
||||
}
|
||||
as := ollama.CompleteName(*flagAs)
|
||||
|
||||
dir := cmp.Or(flag.Arg(0), ".")
|
||||
fmt.Fprintf(os.Stderr, "Reading %s\n", dir)
|
||||
@@ -311,7 +318,7 @@ func cmdImport(ctx context.Context, c *blob.DiskCache) error {
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
return c.Link(*flagAs, d)
|
||||
return c.Link(as, d)
|
||||
}()
|
||||
}()
|
||||
|
||||
@@ -340,6 +347,8 @@ func cmdImport(ctx context.Context, c *blob.DiskCache) error {
|
||||
writeProgress()
|
||||
case err := <-done:
|
||||
writeProgress()
|
||||
fmt.Println()
|
||||
fmt.Println("Successfully imported", as)
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
@@ -1,3 +1,5 @@
|
||||
//go:build goexperiment.synctest
|
||||
|
||||
package backoff
|
||||
|
||||
import (
|
||||
|
@@ -8,7 +8,7 @@ import (
|
||||
"github.com/ollama/ollama/server/internal/internal/stringsx"
|
||||
)
|
||||
|
||||
const MaxNameLength = 50 + 1 + 50 + 1 + 50 // <namespace>/<model>:<tag>
|
||||
const MaxNameLength = 350 + 1 + 80 + 1 + 80 + 1 + 80 // <host>/<namespace>/<model>:<tag>
|
||||
|
||||
type Name struct {
|
||||
// Make incomparable to enfoce use of Compare / Equal for
|
||||
@@ -25,19 +25,12 @@ type Name struct {
|
||||
// format of a valid name string is:
|
||||
//
|
||||
// s:
|
||||
// { host } "/" { namespace } "/" { model } ":" { tag } "@" { digest }
|
||||
// { host } "/" { namespace } "/" { model } ":" { tag }
|
||||
// { host } "/" { namespace } "/" { model } "@" { digest }
|
||||
// { host } "/" { namespace } "/" { model }
|
||||
// { namespace } "/" { model } ":" { tag } "@" { digest }
|
||||
// { namespace } "/" { model } ":" { tag }
|
||||
// { namespace } "/" { model } "@" { digest }
|
||||
// { namespace } "/" { model }
|
||||
// { model } ":" { tag } "@" { digest }
|
||||
// { model } ":" { tag }
|
||||
// { model } "@" { digest }
|
||||
// { model }
|
||||
// "@" { digest }
|
||||
// host:
|
||||
// pattern: { alphanum | "_" } { alphanum | "_" | "-" | "." | ":" }*
|
||||
// length: [1, 350]
|
||||
@@ -50,9 +43,6 @@ type Name struct {
|
||||
// tag:
|
||||
// pattern: { alphanum | "_" } { alphanum | "-" | "_" | "." }*
|
||||
// length: [1, 80]
|
||||
// digest:
|
||||
// pattern: { alphanum | "_" } { alphanum | "-" | ":" }*
|
||||
// length: [1, 80]
|
||||
//
|
||||
// The name returned is not guaranteed to be valid. If it is not valid, the
|
||||
// field values are left in an undefined state. Use [Name.IsValid] to check
|
||||
@@ -82,23 +72,17 @@ func Parse(s string) Name {
|
||||
}
|
||||
}
|
||||
|
||||
// ParseExtended parses and returns any scheme, Name, and digest from from s in
|
||||
// the the form [scheme://][name][@digest]. All parts are optional.
|
||||
//
|
||||
// If the scheme is present, it must be followed by "://". The digest is
|
||||
// prefixed by "@" and comes after the name. The name is parsed using [Parse].
|
||||
//
|
||||
// The scheme and digest are stripped before the name is parsed by [Parse].
|
||||
//
|
||||
// For convience, the scheme is never empty. If the scheme is not present, the
|
||||
// returned scheme is "https".
|
||||
// Split splits an extended name string into its scheme, name, and digest
|
||||
// parts.
|
||||
//
|
||||
// Examples:
|
||||
//
|
||||
// http://ollama.com/bmizerany/smol:latest@digest
|
||||
// https://ollama.com/bmizerany/smol:latest
|
||||
// ollama.com/bmizerany/smol:latest@digest // returns "https" scheme.
|
||||
func ParseExtended(s string) (scheme string, _ Name, digest string) {
|
||||
// model@digest
|
||||
// @digest
|
||||
func Split(s string) (scheme, name, digest string) {
|
||||
i := strings.Index(s, "://")
|
||||
if i >= 0 {
|
||||
scheme = s[:i]
|
||||
@@ -109,21 +93,7 @@ func ParseExtended(s string) (scheme string, _ Name, digest string) {
|
||||
digest = s[i+1:]
|
||||
s = s[:i]
|
||||
}
|
||||
return scheme, Parse(s), digest
|
||||
}
|
||||
|
||||
func FormatExtended(scheme string, n Name, digest string) string {
|
||||
var b strings.Builder
|
||||
if scheme != "" {
|
||||
b.WriteString(scheme)
|
||||
b.WriteString("://")
|
||||
}
|
||||
b.WriteString(n.String())
|
||||
if digest != "" {
|
||||
b.WriteByte('@')
|
||||
b.WriteString(digest)
|
||||
}
|
||||
return b.String()
|
||||
return scheme, s, digest
|
||||
}
|
||||
|
||||
// Merge merges two names into a single name. Non-empty host, namespace, and
|
||||
@@ -141,39 +111,68 @@ func Merge(a, b Name) Name {
|
||||
|
||||
// IsValid returns true if the name is valid.
|
||||
func (n Name) IsValid() bool {
|
||||
if n.h != "" && !isValidHost(n.h) {
|
||||
if n.h != "" && !isValidPart(partHost, n.h) {
|
||||
return false
|
||||
}
|
||||
if n.n != "" && !isValidNamespace(n.n) {
|
||||
if n.n != "" && !isValidPart(partNamespace, n.n) {
|
||||
return false
|
||||
}
|
||||
if n.m != "" && !isValidModel(n.m) {
|
||||
if n.t != "" && !isValidPart(partTag, n.t) {
|
||||
return false
|
||||
}
|
||||
if n.t != "" && !isValidTag(n.t) {
|
||||
return false
|
||||
}
|
||||
return true
|
||||
|
||||
// at bare minimum, model must be present and valid
|
||||
return n.m != "" && isValidPart(partModel, n.m)
|
||||
}
|
||||
|
||||
func (n Name) IsFullyQualified() bool {
|
||||
return n.IsValid() && n.h != "" && n.n != "" && n.m != "" && n.t != ""
|
||||
}
|
||||
|
||||
func isValidHost(_ string) bool {
|
||||
return true // TODO: implement
|
||||
const (
|
||||
partHost = iota
|
||||
partNamespace
|
||||
partModel
|
||||
partTag
|
||||
)
|
||||
|
||||
func isValidPart(kind int, s string) bool {
|
||||
maxlen := 80
|
||||
if kind == partHost {
|
||||
maxlen = 350
|
||||
}
|
||||
if len(s) > maxlen {
|
||||
return false
|
||||
}
|
||||
|
||||
for i := range s {
|
||||
if i == 0 {
|
||||
if !isAlphanumericOrUnderscore(s[i]) {
|
||||
return false
|
||||
}
|
||||
continue
|
||||
}
|
||||
switch s[i] {
|
||||
case '_', '-':
|
||||
case '.':
|
||||
if kind == partNamespace {
|
||||
return false
|
||||
}
|
||||
case ':':
|
||||
if kind != partHost {
|
||||
return false
|
||||
}
|
||||
default:
|
||||
if !isAlphanumericOrUnderscore(s[i]) {
|
||||
return false
|
||||
}
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
func isValidNamespace(_ string) bool {
|
||||
return true // TODO: implement
|
||||
}
|
||||
|
||||
func isValidModel(_ string) bool {
|
||||
return true // TODO: implement
|
||||
}
|
||||
|
||||
func isValidTag(_ string) bool {
|
||||
return true // TODO: implement
|
||||
func isAlphanumericOrUnderscore(c byte) bool {
|
||||
return c >= 'A' && c <= 'Z' || c >= 'a' && c <= 'z' || c >= '0' && c <= '9' || c == '_'
|
||||
}
|
||||
|
||||
func (n Name) Host() string { return n.h }
|
||||
|
@@ -81,15 +81,11 @@ func TestParseExtended(t *testing.T) {
|
||||
}
|
||||
for _, tt := range cases {
|
||||
t.Run(tt.in, func(t *testing.T) {
|
||||
scheme, name, digest := ParseExtended(tt.in)
|
||||
if scheme != tt.wantScheme || name.Compare(tt.wantName) != 0 || digest != tt.wantDigest {
|
||||
scheme, name, digest := Split(tt.in)
|
||||
n := Parse(name)
|
||||
if scheme != tt.wantScheme || n.Compare(tt.wantName) != 0 || digest != tt.wantDigest {
|
||||
t.Errorf("ParseExtended(%q) = %q, %#v, %q, want %q, %#v, %q", tt.in, scheme, name, digest, tt.wantScheme, tt.wantName, tt.wantDigest)
|
||||
}
|
||||
|
||||
// Round trip
|
||||
if got := FormatExtended(scheme, name, digest); got != tt.in {
|
||||
t.Errorf("FormatExtended(%q, %q, %q) = %q", scheme, name, digest, got)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
@@ -150,3 +146,75 @@ func BenchmarkParseName(b *testing.B) {
|
||||
junkName = Parse("h/n/m:t")
|
||||
}
|
||||
}
|
||||
|
||||
const (
|
||||
part80 = "88888888888888888888888888888888888888888888888888888888888888888888888888888888"
|
||||
part350 = "33333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333"
|
||||
)
|
||||
|
||||
var testCases = map[string]bool{ // name -> valid
|
||||
"": false,
|
||||
|
||||
"_why/_the/_lucky:_stiff": true,
|
||||
|
||||
// minimal
|
||||
"h/n/m:t": true,
|
||||
|
||||
"host/namespace/model:tag": true,
|
||||
"host/namespace/model": true,
|
||||
"namespace/model": true,
|
||||
"model": true,
|
||||
|
||||
// long (but valid)
|
||||
part80 + "/" + part80 + "/" + part80 + ":" + part80: true,
|
||||
part350 + "/" + part80 + "/" + part80 + ":" + part80: true,
|
||||
|
||||
// too long
|
||||
part80 + "/" + part80 + "/" + part80 + ":" + part350: false,
|
||||
"x" + part350 + "/" + part80 + "/" + part80 + ":" + part80: false,
|
||||
|
||||
"h/nn/mm:t": true, // bare minimum part sizes
|
||||
|
||||
// unqualified
|
||||
"m": true,
|
||||
"n/m:": true,
|
||||
"h/n/m": true,
|
||||
"@t": false,
|
||||
"m@d": false,
|
||||
|
||||
// invalids
|
||||
"^": false,
|
||||
"mm:": true,
|
||||
"/nn/mm": true,
|
||||
"//": false, // empty model
|
||||
"//mm": true,
|
||||
"hh//": false, // empty model
|
||||
"//mm:@": false,
|
||||
"00@": false,
|
||||
"@": false,
|
||||
|
||||
// not starting with alphanum
|
||||
"-hh/nn/mm:tt": false,
|
||||
"hh/-nn/mm:tt": false,
|
||||
"hh/nn/-mm:tt": false,
|
||||
"hh/nn/mm:-tt": false,
|
||||
|
||||
// smells like a flag
|
||||
"-h": false,
|
||||
|
||||
// hosts
|
||||
"host:https/namespace/model:tag": true,
|
||||
|
||||
// colon in non-host part before tag
|
||||
"host/name:space/model:tag": false,
|
||||
}
|
||||
|
||||
func TestParseNameValidation(t *testing.T) {
|
||||
for s, valid := range testCases {
|
||||
got := Parse(s)
|
||||
if got.IsValid() != valid {
|
||||
t.Logf("got: %v", got)
|
||||
t.Errorf("Parse(%q).IsValid() = %v; want !%[2]v", s, got.IsValid())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@@ -1,3 +1,5 @@
|
||||
//go:build goexperiment.synctest
|
||||
|
||||
package syncs
|
||||
|
||||
import (
|
||||
|
337
server/internal/registry/server.go
Normal file
337
server/internal/registry/server.go
Normal file
@@ -0,0 +1,337 @@
|
||||
// Package registry provides an http.Handler for handling local Ollama API
|
||||
// requests for performing tasks related to the ollama.com model registry and
|
||||
// the local disk cache.
|
||||
package registry
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"log/slog"
|
||||
"net/http"
|
||||
"sync"
|
||||
"time"
|
||||
|
||||
"github.com/ollama/ollama/server/internal/cache/blob"
|
||||
"github.com/ollama/ollama/server/internal/client/ollama"
|
||||
)
|
||||
|
||||
// Local is an http.Handler for handling local Ollama API requests for
|
||||
// performing tasks related to the ollama.com model registry combined with the
|
||||
// local disk cache.
|
||||
//
|
||||
// It is not concern of Local, or this package, to handle model creation, which
|
||||
// proceeds any registry operations for models it produces.
|
||||
//
|
||||
// NOTE: The package built for dealing with model creation should use
|
||||
// [DefaultCache] to access the blob store and not attempt to read or write
|
||||
// directly to the blob disk cache.
|
||||
type Local struct {
|
||||
Client *ollama.Registry // required
|
||||
Logger *slog.Logger // required
|
||||
|
||||
// Fallback, if set, is used to handle requests that are not handled by
|
||||
// this handler.
|
||||
Fallback http.Handler
|
||||
|
||||
// Prune, if set, is called to prune the local disk cache after a model
|
||||
// is deleted.
|
||||
Prune func() error // optional
|
||||
}
|
||||
|
||||
// serverError is like ollama.Error, but with a Status field for the HTTP
|
||||
// response code. We want to avoid adding that field to ollama.Error because it
|
||||
// would always be 0 to clients (we don't want to leak the status code in
|
||||
// errors), and so it would be confusing to have a field that is always 0.
|
||||
type serverError struct {
|
||||
Status int `json:"-"`
|
||||
|
||||
// TODO(bmizerany): Decide if we want to keep this and maybe
|
||||
// bring back later.
|
||||
Code string `json:"code"`
|
||||
|
||||
Message string `json:"error"`
|
||||
}
|
||||
|
||||
func (e serverError) Error() string {
|
||||
return e.Message
|
||||
}
|
||||
|
||||
// Common API errors
|
||||
var (
|
||||
errMethodNotAllowed = &serverError{405, "method_not_allowed", "method not allowed"}
|
||||
errNotFound = &serverError{404, "not_found", "not found"}
|
||||
errInternalError = &serverError{500, "internal_error", "internal server error"}
|
||||
)
|
||||
|
||||
type statusCodeRecorder struct {
|
||||
_status int // use status() to get the status code
|
||||
http.ResponseWriter
|
||||
}
|
||||
|
||||
func (r *statusCodeRecorder) WriteHeader(status int) {
|
||||
if r._status == 0 {
|
||||
r._status = status
|
||||
}
|
||||
r.ResponseWriter.WriteHeader(status)
|
||||
}
|
||||
|
||||
var (
|
||||
_ http.ResponseWriter = (*statusCodeRecorder)(nil)
|
||||
_ http.CloseNotifier = (*statusCodeRecorder)(nil)
|
||||
_ http.Flusher = (*statusCodeRecorder)(nil)
|
||||
)
|
||||
|
||||
// CloseNotify implements the http.CloseNotifier interface, for Gin. Remove with Gin.
|
||||
//
|
||||
// It panics if the underlying ResponseWriter is not a CloseNotifier.
|
||||
func (r *statusCodeRecorder) CloseNotify() <-chan bool {
|
||||
return r.ResponseWriter.(http.CloseNotifier).CloseNotify()
|
||||
}
|
||||
|
||||
// Flush implements the http.Flusher interface, for Gin. Remove with Gin.
|
||||
//
|
||||
// It panics if the underlying ResponseWriter is not a Flusher.
|
||||
func (r *statusCodeRecorder) Flush() {
|
||||
r.ResponseWriter.(http.Flusher).Flush()
|
||||
}
|
||||
|
||||
func (r *statusCodeRecorder) status() int {
|
||||
return cmp.Or(r._status, 200)
|
||||
}
|
||||
|
||||
func (s *Local) ServeHTTP(w http.ResponseWriter, r *http.Request) {
|
||||
rec := &statusCodeRecorder{ResponseWriter: w}
|
||||
s.serveHTTP(rec, r)
|
||||
}
|
||||
|
||||
func (s *Local) serveHTTP(rec *statusCodeRecorder, r *http.Request) {
|
||||
var errattr slog.Attr
|
||||
proxied, err := func() (bool, error) {
|
||||
switch r.URL.Path {
|
||||
case "/api/delete":
|
||||
return false, s.handleDelete(rec, r)
|
||||
case "/api/pull":
|
||||
return false, s.handlePull(rec, r)
|
||||
default:
|
||||
if s.Fallback != nil {
|
||||
s.Fallback.ServeHTTP(rec, r)
|
||||
return true, nil
|
||||
}
|
||||
return false, errNotFound
|
||||
}
|
||||
}()
|
||||
if err != nil {
|
||||
// We always log the error, so fill in the error log attribute
|
||||
errattr = slog.String("error", err.Error())
|
||||
|
||||
var e *serverError
|
||||
switch {
|
||||
case errors.As(err, &e):
|
||||
case errors.Is(err, ollama.ErrNameInvalid):
|
||||
e = &serverError{400, "bad_request", err.Error()}
|
||||
default:
|
||||
e = errInternalError
|
||||
}
|
||||
|
||||
data, err := json.Marshal(e)
|
||||
if err != nil {
|
||||
// unreachable
|
||||
panic(err)
|
||||
}
|
||||
rec.Header().Set("Content-Type", "application/json")
|
||||
rec.WriteHeader(e.Status)
|
||||
rec.Write(data)
|
||||
|
||||
// fallthrough to log
|
||||
}
|
||||
|
||||
if !proxied {
|
||||
// we're only responsible for logging if we handled the request
|
||||
var level slog.Level
|
||||
if rec.status() >= 500 {
|
||||
level = slog.LevelError
|
||||
} else if rec.status() >= 400 {
|
||||
level = slog.LevelWarn
|
||||
}
|
||||
|
||||
s.Logger.LogAttrs(r.Context(), level, "http",
|
||||
errattr, // report first in line to make it easy to find
|
||||
|
||||
// TODO(bmizerany): Write a test to ensure that we are logging
|
||||
// all of this correctly. That also goes for the level+error
|
||||
// logic above.
|
||||
slog.Int("status", rec.status()),
|
||||
slog.String("method", r.Method),
|
||||
slog.String("path", r.URL.Path),
|
||||
slog.Int64("content-length", r.ContentLength),
|
||||
slog.String("remote", r.RemoteAddr),
|
||||
slog.String("proto", r.Proto),
|
||||
slog.String("query", r.URL.RawQuery),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
type params struct {
|
||||
DeprecatedName string `json:"name"` // Use [params.model]
|
||||
Model string `json:"model"` // Use [params.model]
|
||||
|
||||
// AllowNonTLS is a flag that indicates a client using HTTP
|
||||
// is doing so, deliberately.
|
||||
//
|
||||
// Deprecated: This field is ignored and only present for this
|
||||
// deprecation message. It should be removed in a future release.
|
||||
//
|
||||
// Users can just use http or https+insecure to show intent to
|
||||
// communicate they want to do insecure things, without awkward and
|
||||
// confusing flags such as this.
|
||||
AllowNonTLS bool `json:"insecure"`
|
||||
|
||||
// ProgressStream is a flag that indicates the client is expecting a stream of
|
||||
// progress updates.
|
||||
ProgressStream bool `json:"stream"`
|
||||
}
|
||||
|
||||
// model returns the model name for both old and new API requests.
|
||||
func (p params) model() string {
|
||||
return cmp.Or(p.Model, p.DeprecatedName)
|
||||
}
|
||||
|
||||
func (s *Local) handleDelete(_ http.ResponseWriter, r *http.Request) error {
|
||||
if r.Method != "DELETE" {
|
||||
return errMethodNotAllowed
|
||||
}
|
||||
p, err := decodeUserJSON[*params](r.Body)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
ok, err := s.Client.Unlink(p.model())
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
if !ok {
|
||||
return &serverError{404, "not_found", "model not found"}
|
||||
}
|
||||
if s.Prune == nil {
|
||||
return nil
|
||||
}
|
||||
return s.Prune()
|
||||
}
|
||||
|
||||
type progressUpdateJSON struct {
|
||||
Status string `json:"status"`
|
||||
Digest blob.Digest `json:"digest,omitempty,omitzero"`
|
||||
Total int64 `json:"total,omitempty,omitzero"`
|
||||
Completed int64 `json:"completed,omitempty,omitzero"`
|
||||
}
|
||||
|
||||
func (s *Local) handlePull(w http.ResponseWriter, r *http.Request) error {
|
||||
if r.Method != "POST" {
|
||||
return errMethodNotAllowed
|
||||
}
|
||||
|
||||
p, err := decodeUserJSON[*params](r.Body)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
maybeFlush := func() {
|
||||
fl, _ := w.(http.Flusher)
|
||||
if fl != nil {
|
||||
fl.Flush()
|
||||
}
|
||||
}
|
||||
defer maybeFlush()
|
||||
|
||||
var mu sync.Mutex
|
||||
enc := json.NewEncoder(w)
|
||||
enc.Encode(progressUpdateJSON{Status: "pulling manifest"})
|
||||
|
||||
ctx := ollama.WithTrace(r.Context(), &ollama.Trace{
|
||||
Update: func(l *ollama.Layer, n int64, err error) {
|
||||
mu.Lock()
|
||||
defer mu.Unlock()
|
||||
|
||||
// TODO(bmizerany): coalesce these updates; writing per
|
||||
// update is expensive
|
||||
enc.Encode(progressUpdateJSON{
|
||||
Digest: l.Digest,
|
||||
Status: "pulling",
|
||||
Total: l.Size,
|
||||
Completed: n,
|
||||
})
|
||||
},
|
||||
})
|
||||
|
||||
done := make(chan error, 1)
|
||||
go func() {
|
||||
// TODO(bmizerany): continue to support non-streaming responses
|
||||
done <- s.Client.Pull(ctx, p.model())
|
||||
}()
|
||||
|
||||
func() {
|
||||
t := time.NewTicker(100 * time.Millisecond)
|
||||
defer t.Stop()
|
||||
for {
|
||||
select {
|
||||
case <-t.C:
|
||||
mu.Lock()
|
||||
maybeFlush()
|
||||
mu.Unlock()
|
||||
case err := <-done:
|
||||
if err != nil {
|
||||
var status string
|
||||
if errors.Is(err, ollama.ErrModelNotFound) {
|
||||
status = fmt.Sprintf("error: model %q not found", p.model())
|
||||
enc.Encode(progressUpdateJSON{Status: status})
|
||||
} else {
|
||||
status = fmt.Sprintf("error: %v", err)
|
||||
enc.Encode(progressUpdateJSON{Status: status})
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// These final updates are not strictly necessary, because they have
|
||||
// already happened at this point. Our pull handler code used to do
|
||||
// these steps after, not during, the pull, and they were slow, so we
|
||||
// wanted to provide feedback to users what was happening. For now, we
|
||||
// keep them to not jar users who are used to seeing them. We can phase
|
||||
// them out with a new and nicer UX later. One without progress bars
|
||||
// and digests that no one cares about.
|
||||
enc.Encode(progressUpdateJSON{Status: "verifying layers"})
|
||||
enc.Encode(progressUpdateJSON{Status: "writing manifest"})
|
||||
enc.Encode(progressUpdateJSON{Status: "success"})
|
||||
return
|
||||
}
|
||||
}
|
||||
}()
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func decodeUserJSON[T any](r io.Reader) (T, error) {
|
||||
var v T
|
||||
err := json.NewDecoder(r).Decode(&v)
|
||||
if err == nil {
|
||||
return v, nil
|
||||
}
|
||||
var zero T
|
||||
|
||||
// Not sure why, but I can't seem to be able to use:
|
||||
//
|
||||
// errors.As(err, &json.UnmarshalTypeError{})
|
||||
//
|
||||
// This is working fine in stdlib, so I'm not sure what rules changed
|
||||
// and why this no longer works here. So, we do it the verbose way.
|
||||
var a *json.UnmarshalTypeError
|
||||
var b *json.SyntaxError
|
||||
if errors.As(err, &a) || errors.As(err, &b) {
|
||||
err = &serverError{Status: 400, Message: err.Error(), Code: "bad_request"}
|
||||
}
|
||||
if errors.Is(err, io.EOF) {
|
||||
err = &serverError{Status: 400, Message: "empty request body", Code: "bad_request"}
|
||||
}
|
||||
return zero, err
|
||||
}
|
287
server/internal/registry/server_test.go
Normal file
287
server/internal/registry/server_test.go
Normal file
@@ -0,0 +1,287 @@
|
||||
package registry
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"context"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"io"
|
||||
"io/fs"
|
||||
"net"
|
||||
"net/http"
|
||||
"net/http/httptest"
|
||||
"os"
|
||||
"regexp"
|
||||
"strings"
|
||||
"sync"
|
||||
"testing"
|
||||
|
||||
"github.com/ollama/ollama/server/internal/cache/blob"
|
||||
"github.com/ollama/ollama/server/internal/client/ollama"
|
||||
"github.com/ollama/ollama/server/internal/testutil"
|
||||
"golang.org/x/tools/txtar"
|
||||
|
||||
_ "embed"
|
||||
)
|
||||
|
||||
type panicTransport struct{}
|
||||
|
||||
func (t *panicTransport) RoundTrip(r *http.Request) (*http.Response, error) {
|
||||
panic("unexpected RoundTrip call")
|
||||
}
|
||||
|
||||
var panicOnRoundTrip = &http.Client{Transport: &panicTransport{}}
|
||||
|
||||
// bytesResetter is an interface for types that can be reset and return a byte
|
||||
// slice, only. This is to prevent inadvertent use of bytes.Buffer.Read/Write
|
||||
// etc for the purpose of checking logs.
|
||||
type bytesResetter interface {
|
||||
Bytes() []byte
|
||||
Reset()
|
||||
}
|
||||
|
||||
func newTestServer(t *testing.T, upstreamRegistry http.HandlerFunc) *Local {
|
||||
t.Helper()
|
||||
dir := t.TempDir()
|
||||
err := os.CopyFS(dir, os.DirFS("testdata/models"))
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
c, err := blob.Open(dir)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
client := panicOnRoundTrip
|
||||
if upstreamRegistry != nil {
|
||||
s := httptest.NewTLSServer(upstreamRegistry)
|
||||
t.Cleanup(s.Close)
|
||||
tr := s.Client().Transport.(*http.Transport).Clone()
|
||||
tr.DialContext = func(ctx context.Context, _, _ string) (net.Conn, error) {
|
||||
var d net.Dialer
|
||||
return d.DialContext(ctx, "tcp", s.Listener.Addr().String())
|
||||
}
|
||||
client = &http.Client{Transport: tr}
|
||||
}
|
||||
|
||||
rc := &ollama.Registry{
|
||||
Cache: c,
|
||||
HTTPClient: client,
|
||||
Mask: "example.com/library/_:latest",
|
||||
}
|
||||
|
||||
l := &Local{
|
||||
Client: rc,
|
||||
Logger: testutil.Slogger(t),
|
||||
}
|
||||
return l
|
||||
}
|
||||
|
||||
func (s *Local) send(t *testing.T, method, path, body string) *httptest.ResponseRecorder {
|
||||
t.Helper()
|
||||
req := httptest.NewRequestWithContext(t.Context(), method, path, strings.NewReader(body))
|
||||
return s.sendRequest(t, req)
|
||||
}
|
||||
|
||||
func (s *Local) sendRequest(t *testing.T, req *http.Request) *httptest.ResponseRecorder {
|
||||
t.Helper()
|
||||
w := httptest.NewRecorder()
|
||||
s.ServeHTTP(w, req)
|
||||
return w
|
||||
}
|
||||
|
||||
type invalidReader struct{}
|
||||
|
||||
func (r *invalidReader) Read(p []byte) (int, error) {
|
||||
return 0, os.ErrInvalid
|
||||
}
|
||||
|
||||
// captureLogs is a helper to capture logs from the server. It returns a
|
||||
// shallow copy of the server with a new logger and a bytesResetter for the
|
||||
// logs.
|
||||
func captureLogs(t *testing.T, s *Local) (*Local, bytesResetter) {
|
||||
t.Helper()
|
||||
log, logs := testutil.SlogBuffer()
|
||||
l := *s // shallow copy
|
||||
l.Logger = log
|
||||
return &l, logs
|
||||
}
|
||||
|
||||
func TestServerDelete(t *testing.T) {
|
||||
check := testutil.Checker(t)
|
||||
|
||||
s := newTestServer(t, nil)
|
||||
|
||||
_, err := s.Client.ResolveLocal("smol")
|
||||
check(err)
|
||||
|
||||
got := s.send(t, "DELETE", "/api/delete", `{"model": "smol"}`)
|
||||
if got.Code != 200 {
|
||||
t.Fatalf("Code = %d; want 200", got.Code)
|
||||
}
|
||||
|
||||
_, err = s.Client.ResolveLocal("smol")
|
||||
if err == nil {
|
||||
t.Fatal("expected smol to have been deleted")
|
||||
}
|
||||
|
||||
got = s.send(t, "DELETE", "/api/delete", `!`)
|
||||
checkErrorResponse(t, got, 400, "bad_request", "invalid character '!' looking for beginning of value")
|
||||
|
||||
got = s.send(t, "GET", "/api/delete", `{"model": "smol"}`)
|
||||
checkErrorResponse(t, got, 405, "method_not_allowed", "method not allowed")
|
||||
|
||||
got = s.send(t, "DELETE", "/api/delete", ``)
|
||||
checkErrorResponse(t, got, 400, "bad_request", "empty request body")
|
||||
|
||||
got = s.send(t, "DELETE", "/api/delete", `{"model": "://"}`)
|
||||
checkErrorResponse(t, got, 400, "bad_request", "invalid or missing name")
|
||||
|
||||
got = s.send(t, "DELETE", "/unknown_path", `{}`) // valid body
|
||||
checkErrorResponse(t, got, 404, "not_found", "not found")
|
||||
|
||||
s, logs := captureLogs(t, s)
|
||||
req := httptest.NewRequestWithContext(t.Context(), "DELETE", "/api/delete", &invalidReader{})
|
||||
got = s.sendRequest(t, req)
|
||||
checkErrorResponse(t, got, 500, "internal_error", "internal server error")
|
||||
ok, err := regexp.Match(`ERROR.*error="invalid argument"`, logs.Bytes())
|
||||
check(err)
|
||||
if !ok {
|
||||
t.Logf("logs:\n%s", logs)
|
||||
t.Fatalf("expected log to contain ERROR with invalid argument")
|
||||
}
|
||||
}
|
||||
|
||||
//go:embed testdata/registry.txt
|
||||
var registryTXT []byte
|
||||
|
||||
var registryFS = sync.OnceValue(func() fs.FS {
|
||||
// Txtar gets hung up on \r\n line endings, so we need to convert them
|
||||
// to \n when parsing the txtar on Windows.
|
||||
data := bytes.ReplaceAll(registryTXT, []byte("\r\n"), []byte("\n"))
|
||||
a := txtar.Parse(data)
|
||||
fmt.Printf("%q\n", a.Comment)
|
||||
fsys, err := txtar.FS(a)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
return fsys
|
||||
})
|
||||
|
||||
func TestServerPull(t *testing.T) {
|
||||
modelsHandler := http.FileServerFS(registryFS())
|
||||
s := newTestServer(t, func(w http.ResponseWriter, r *http.Request) {
|
||||
switch r.URL.Path {
|
||||
case "/v2/library/BOOM/manifests/latest":
|
||||
w.WriteHeader(999)
|
||||
io.WriteString(w, `{"error": "boom"}`)
|
||||
case "/v2/library/unknown/manifests/latest":
|
||||
w.WriteHeader(404)
|
||||
io.WriteString(w, `{"errors": [{"code": "MANIFEST_UNKNOWN", "message": "manifest unknown"}]}`)
|
||||
default:
|
||||
t.Logf("serving file: %s", r.URL.Path)
|
||||
modelsHandler.ServeHTTP(w, r)
|
||||
}
|
||||
})
|
||||
|
||||
checkResponse := func(got *httptest.ResponseRecorder, wantlines string) {
|
||||
t.Helper()
|
||||
|
||||
if got.Code != 200 {
|
||||
t.Fatalf("Code = %d; want 200", got.Code)
|
||||
}
|
||||
gotlines := got.Body.String()
|
||||
t.Logf("got:\n%s", gotlines)
|
||||
for want := range strings.Lines(wantlines) {
|
||||
want = strings.TrimSpace(want)
|
||||
want, unwanted := strings.CutPrefix(want, "!")
|
||||
want = strings.TrimSpace(want)
|
||||
if !unwanted && !strings.Contains(gotlines, want) {
|
||||
t.Fatalf("! missing %q in body", want)
|
||||
}
|
||||
if unwanted && strings.Contains(gotlines, want) {
|
||||
t.Fatalf("! unexpected %q in body", want)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
got := s.send(t, "POST", "/api/pull", `{"model": "BOOM"}`)
|
||||
checkResponse(got, `
|
||||
{"status":"pulling manifest"}
|
||||
{"status":"error: request error https://example.com/v2/library/BOOM/manifests/latest: registry responded with status 999: boom"}
|
||||
`)
|
||||
|
||||
got = s.send(t, "POST", "/api/pull", `{"model": "smol"}`)
|
||||
checkResponse(got, `
|
||||
{"status":"pulling manifest"}
|
||||
{"status":"pulling","digest":"sha256:68e0ec597aee59d35f8dc44942d7b17d471ade10d3aca07a5bb7177713950312","total":5}
|
||||
{"status":"pulling","digest":"sha256:ca3d163bab055381827226140568f3bef7eaac187cebd76878e0b63e9e442356","total":3}
|
||||
{"status":"pulling","digest":"sha256:68e0ec597aee59d35f8dc44942d7b17d471ade10d3aca07a5bb7177713950312","total":5,"completed":5}
|
||||
{"status":"pulling","digest":"sha256:ca3d163bab055381827226140568f3bef7eaac187cebd76878e0b63e9e442356","total":3,"completed":3}
|
||||
{"status":"verifying layers"}
|
||||
{"status":"writing manifest"}
|
||||
{"status":"success"}
|
||||
`)
|
||||
|
||||
got = s.send(t, "POST", "/api/pull", `{"model": "unknown"}`)
|
||||
checkResponse(got, `
|
||||
{"status":"pulling manifest"}
|
||||
{"status":"error: model \"unknown\" not found"}
|
||||
`)
|
||||
|
||||
got = s.send(t, "DELETE", "/api/pull", `{"model": "smol"}`)
|
||||
checkErrorResponse(t, got, 405, "method_not_allowed", "method not allowed")
|
||||
|
||||
got = s.send(t, "POST", "/api/pull", `!`)
|
||||
checkErrorResponse(t, got, 400, "bad_request", "invalid character '!' looking for beginning of value")
|
||||
|
||||
got = s.send(t, "POST", "/api/pull", ``)
|
||||
checkErrorResponse(t, got, 400, "bad_request", "empty request body")
|
||||
|
||||
got = s.send(t, "POST", "/api/pull", `{"model": "://"}`)
|
||||
checkResponse(got, `
|
||||
{"status":"pulling manifest"}
|
||||
{"status":"error: invalid or missing name: \"\""}
|
||||
|
||||
!verifying
|
||||
!writing
|
||||
!success
|
||||
`)
|
||||
}
|
||||
|
||||
func TestServerUnknownPath(t *testing.T) {
|
||||
s := newTestServer(t, nil)
|
||||
got := s.send(t, "DELETE", "/api/unknown", `{}`)
|
||||
checkErrorResponse(t, got, 404, "not_found", "not found")
|
||||
}
|
||||
|
||||
func checkErrorResponse(t *testing.T, got *httptest.ResponseRecorder, status int, code, msg string) {
|
||||
t.Helper()
|
||||
|
||||
var printedBody bool
|
||||
errorf := func(format string, args ...any) {
|
||||
t.Helper()
|
||||
if !printedBody {
|
||||
t.Logf("BODY:\n%s", got.Body.String())
|
||||
printedBody = true
|
||||
}
|
||||
t.Errorf(format, args...)
|
||||
}
|
||||
|
||||
if got.Code != status {
|
||||
errorf("Code = %d; want %d", got.Code, status)
|
||||
}
|
||||
|
||||
// unmarshal the error as *ollama.Error (proving *serverError is an *ollama.Error)
|
||||
var e *ollama.Error
|
||||
if err := json.Unmarshal(got.Body.Bytes(), &e); err != nil {
|
||||
errorf("unmarshal error: %v", err)
|
||||
t.FailNow()
|
||||
}
|
||||
if e.Code != code {
|
||||
errorf("Code = %q; want %q", e.Code, code)
|
||||
}
|
||||
if !strings.Contains(e.Message, msg) {
|
||||
errorf("Message = %q; want to contain %q", e.Message, msg)
|
||||
}
|
||||
}
|
Binary file not shown.
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user