Compare commits

..

256 Commits

Author SHA1 Message Date
Michael Yang
4b34930a31 Merge pull request #9897 from ollama/mxyng/chunk-load
ml/backend/ggml: load tensors in 128KiB chunks
2025-03-21 14:47:13 -07:00
Michael Yang
74bd09652d ml/backend/ggml: load tensors in 32KiB chunks 2025-03-21 14:43:52 -07:00
Bruce MacDonald
fb6252d786 benchmark: performance of running ollama server (#8643) 2025-03-21 13:08:20 -07:00
Blake Mizerany
c794fef2f2 server/internal/client/ollama: persist through chunk download errors (#9923) 2025-03-21 13:03:43 -07:00
Parth Sareen
00ebda8cc4 Revert "parser: remove role validation from Modelfile parser" (#9917)
This reverts commit ffbfe833da.
2025-03-21 12:38:09 -07:00
Parth Sareen
d14ce75b95 docs: update final response for /api/chat stream (#9919) 2025-03-21 12:35:47 -07:00
Jesse Gross
2d6eac9084 kvcache: Optimize sliding window attention
Currently sliding window attention allocates and uses the full
context size and just masks out any tokens that are outside of the
window. However, we really only need (roughly) the sliding window
size.

At large context sizes this improves two things:
 - Memory allocated - since the fully context size is allocated up front,
   memory requirements drop substantially. On Gemma3:4b with a 32k
   context window, total memory usage (including weights and non-sliding
   layers) drops from ~20GB to ~8GB.
 - Computation - ranges that are completely outside of the sliding
   window are now removed from the tensors that are returned from the
   cache rather than simply being masked out. This results in more
   efficient processing, scaling with the size of the context that
   has actually been used.

Notable, this does not update the scheduler for any model to be aware of
the smaller memory requirements. This is difficult for Gemma3 because
the layers are heterogeneous between sliding and non-sliding attention.
As a result, while actual memory consumption will be reduced, the
scheduler will over-estimate the requirements of the model. This means
that splitting between GPUs or GPUs and CPUs will still be suboptimal.

Bug #9730
2025-03-21 11:20:19 -07:00
Jesse Gross
3ed7ad3ab3 kvcache: Pass granular cache size into implementations
Currently the runner computes the kv size needed and creates a
cache of that size. This is the context size times number of
parallel sequences.

Cache implementations can make better decisions about their memory
usage, so instead pass in the required capacity, number of sequences
and maximum batch size. For now, the causal cache just uses this to
compute the size in the same way as before.
2025-03-21 11:20:19 -07:00
Patrick Devine
6d1103048e fix: show correct bool value for kv in verbose show information (#9928) 2025-03-21 11:13:54 -07:00
Jesse Gross
0ff28758b3 ollamarunner: Provide mechanism for backends to report loading progress
This enables the runner to report progress back to the Ollama server,
both for showing status to the user and also to prevent the server
from killing the runner if it thinks things have stalled.

Most of the infrastructure was already there, this extends it to
be available to the backends.
2025-03-21 10:44:26 -07:00
Jesse Gross
d3e9ca3eda kvcache: Account for source tensors in defrag operation count
Defragging the KV cache can generate a lot of operations, so we
need to be careful that we don't overflow the number that the graph
can support. We currently account for all of the nodes that we add
to the graph for each move but we also need to include the original
cache tensors as well.

Fixes #9904
2025-03-21 10:42:19 -07:00
Jesse Gross
0fbfcf3c9c model: Pass input tensor instead of raw data to models
Rather than directly giving the input data to models, we can
pass a tensor instead. In the short term, this saves some duplicated
code.

Longer term, we will want to overlap setting up the next batch with
processing of the current one. In this case, we will only have the
shape of tensor but it will not be loaded with data at the time of
graph generation. By passing only a tensor to models now, we set up
this possibility and prevent them from relying on data that they won't
have in the future.

Although the same could be done for Positions and Outputs, in some
cases we either need the raw input data or don't use them at all.
Therefore, for now we leave them as they are and allow models to
convert them to tensors as needed.
2025-03-20 13:28:13 -07:00
Jesse Gross
0c220935bd input: Rename Options to Batch
Options is no longer very descriptive of this struct.
2025-03-20 13:28:13 -07:00
rylativity
ffbfe833da parser: remove role validation from Modelfile parser (#9874)
* updates parser/parser.go to allow arbitrary roles in Modelfile MESSAGE blocks
2025-03-20 13:11:17 -07:00
Parth Sareen
42a14f7f63 sample: add error handling for empty logits (#9740) 2025-03-20 11:11:18 -07:00
Patrick Devine
f8c3dbe5b5 templates: add autotemplate for gemma3 (#9880)
This change allows the gemma3 template to be autodetected during `ollama
create`.
2025-03-20 00:15:30 -07:00
Jesse Gross
b078dd157c gemma2: Remove second call to Rows
Looks like a merge conflict that broke the model.
2025-03-19 17:28:49 -07:00
Blake Mizerany
2ddacd7516 server/internal/client/ollama: confirm all chunksums were received (#9893)
If the chunksums response is missing a chunk, the client should fail
the download. This changes the client to check that all bytes are
accounted for in the chunksums response.

It is possible there are overlaps or gaps in the chunksums response and
so the size is not the only thing left to check, but this provides
enough coverage for now. We may want to check that chunks are contiguous
later.
2025-03-19 14:59:57 -07:00
Jeffrey Morgan
da0e345200 ml: use input context for extracting outputs (#9875) 2025-03-18 18:08:19 -07:00
Bruce MacDonald
df94175a0f ggml: return error on failure to read tensor data (#9872)
When converting a ggml model if there is a failure to read tensor data a nil error value was being returned. It should be assigned to the actual error from reading.
2025-03-18 16:51:33 -07:00
Bruce MacDonald
61a8825216 convert: return name of unsupported architecture (#9862)
When a model's architecture cannot be converted return the name of the unsupported arch in the error message.
2025-03-18 10:38:28 -07:00
Michael Yang
021dcf089d Merge pull request #9824 from ollama/mxyng/sched
conditionally enable parallel pipelines
2025-03-17 15:41:37 -07:00
Jesse Gross
bf24498b1e ollamarunner: Check for minBatch of context space when shifting
Models can specify that a group of inputs need to be handled a single
batch. However, context shifting didn't respect this and could trigger
a break anyways. In this case, we should instead trigger a context
shift earlier so that it occurs before the grouped batch.

Note that there still some corner cases:
 - A long prompt that exceeds the context window can get truncated
   in the middle of an image. With the current models, this will
   result in the model not recognizing the image at all, which is
   pretty much the expected result with truncation.
 - The context window is set less than the minimum batch size. The
   only solution to this is to refuse to load the model with these
   settings. However, this can never occur with current models and
   default settings.

Since users are unlikely to run into these scenarios, fixing them is
left as a follow up.
2025-03-17 15:33:16 -07:00
Bruce MacDonald
95e271d98f runner: remove cache prompt flag from ollama runner (#9826)
We do not need to bypass the prompt caching in the ollama runner yet, as
only embedding models needed to bypass the prompt caching. When embedding
models are implemented they can skip initializing this cache completely.
2025-03-17 15:11:15 -07:00
Jeffrey Morgan
364629b8d6 ml/backend/ggml: allocate memory with malloc when loading model (#9822) 2025-03-17 13:32:40 -07:00
Parth Sareen
108fe02165 sample: make mutations in transforms explicit (#9743)
* updated minP to use early exit making use of sorted tokens
2025-03-17 11:24:18 -07:00
Michael Yang
4561fff36e conditionally enable parallel pipelines 2025-03-17 09:46:07 -07:00
Daniel Hiltgen
50b5962042 Add support for ROCm gfx1151 (#9773) 2025-03-17 09:33:57 -07:00
Louis Beaumont
e27e4a3c1b readme: add screenpipe to community integrations (#9786) 2025-03-16 21:56:42 -04:00
zeo
088514bbd4 readme: add Ellama to list of community integrations (#9800) 2025-03-16 21:54:43 -04:00
Patrick Devine
2c8b484643 fix: correctly save in interactive mode (#9788)
This fixes the case where a FROM line in previous modelfile points to a
file which may/may not be present in a different ollama instance. We
shouldn't be relying on the filename though and instead just check if
the FROM line was instead a valid model name and point to that instead.
2025-03-15 12:09:02 -07:00
Blake Mizerany
8294676150 server/internal/client/ollama: set User-Agent for registry client (#9775)
This sets the agent header in DefaultRegistry to include the version of
the client, OS, and architecture in the previous format, with a minor
twist.

Note: The version is obtained from the build info, instead of the
version in version.Version, which should not longer be necessary, but we
can remove in a future commit. Using the build info is more accurate and
also provides extra build information if the build is not tagged, and if
it is "dirty". Previously, the version was just "0.0.0" with no other
helpful information. The ollama.com registry and others handle this
swimmingly.
2025-03-14 18:33:07 -07:00
Patrick Devine
ef378ad673 gemma3 quantization (#9776) 2025-03-14 17:41:07 -07:00
Daniel Hiltgen
2d2247e59e Align versions for local builds (#9635)
Darwin was using a different pattern for the version string
than linux or windows.
2025-03-14 15:44:08 -07:00
Jesse Gross
7bf793a600 gemma3: Allow multiple image in a single input
Previously processing multiple images in a batch would trigger
segfaults so sending images together was disabled as a way to
mitigate this. The trigger was processing one image on the CPU
and one on the GPU.

This can no longer happen:
 - The vision encoder is now on the GPU so both images would be
   processed on the GPU.
 - We require images to be fully contained in a batch and each
   image including its special tokens is over half the batch size.
   As a result, we will never get two images in the same batch.

Fixes #9731
2025-03-14 15:38:54 -07:00
Jesse Gross
282bfaaa95 ollamarunner: Use a separate context per multimodal input
Currently there is a single context per sequence, shared all by
all multimodal inputs. Since we build a vision encoder graph per
image, with a large number of inputs we can eventually hit the
maximum number of graph nodes per context.

This changes to use a separate context for each image, ensuring
that available resource limits are consistent.
2025-03-14 15:38:54 -07:00
Jesse Gross
9679f40146 ml: Allow models to constrain inputs to a single batch
Models may require that a set of inputs all be processed as part
of the same batch. For example, if an image has multiple patches
with fully connected attention between them, we should not split
the batch in the middle of an image.

Fixes #9697
2025-03-14 15:38:54 -07:00
Bruce MacDonald
3892c3a703 llm: remove internal subprocess req and resp types (#9324)
This commit refactors the LLM subsystem by removing internal subprocess
request and response types. It consolidates duplicate type definitions
across the codebase, moving them to centralized locations. The change also
standardizes interfaces between components, simplifies the ServerStatusResp
struct, and moves the ParseDurationMs function to a common package. This
cleanup reduces code duplication between different runner implementations
(llamarunner and ollamarunner).
2025-03-14 15:21:53 -07:00
Blake Mizerany
4e320b8b90 server/internal/chunks: remove chunks package (#9755) 2025-03-14 08:57:59 -07:00
Blake Mizerany
eb2b22b042 server/internal/client: use chunksums for concurrent blob verification (#9746)
Replace large-chunk blob downloads with parallel small-chunk
verification to solve timeout and performance issues. Registry users
experienced progressively slowing download speeds as large-chunk
transfers aged, often timing out completely.

The previous approach downloaded blobs in a few large chunks but
required a separate, single-threaded pass to read the entire blob back
from disk for verification after download completion.

This change uses the new chunksums API to fetch many smaller
chunk+digest pairs, allowing concurrent downloads and immediate
verification as each chunk arrives. Chunks are written directly to their
final positions, eliminating the entire separate verification pass.

The result is more reliable downloads that maintain speed throughout the
transfer process and significantly faster overall completion, especially
over unstable connections or with large blobs.
2025-03-13 22:18:29 -07:00
Michael Yang
4ea4d2b189 Merge pull request #9703 from ollama/mxyng/gemma3-memory
count gemma3 vision tensors
2025-03-13 16:56:34 -07:00
Michael Yang
8d76fa23ef count non-repeating vision layers 2025-03-13 16:53:29 -07:00
Bradley Erickson
74b44fdf8f docs: Add OLLAMA_ORIGINS for browser extension support (#9643) 2025-03-13 16:35:20 -07:00
Michael Yang
65b88c544f fix divide by zero 2025-03-13 16:35:00 -07:00
Michael Yang
a422ba39c9 roughly count gemma3 graph
the largest operation is by far (q @ k) so just count that for
simplicity
2025-03-13 16:35:00 -07:00
Michael Yang
d2ec22371e count all vision tensors 2025-03-13 16:35:00 -07:00
Michael Yang
033cec232a count gemma3 vision tensors 2025-03-13 16:34:42 -07:00
Michael Yang
543240fb5f Merge pull request #9741 from ollama/mxyng/visionless
fix: error if image requested without vision model
2025-03-13 15:03:25 -07:00
Patrick Devine
4bed739259 add verbose mode to the show command (#9640)
Add metadata and tensor information to the show command to be able to
see more information about a model. This outputs the same data as
shown on the model details page on ollama.com
2025-03-13 14:24:27 -07:00
Patrick Devine
80c7ce381b fix: change default context size for gemma3 (#9744) 2025-03-13 13:59:19 -07:00
Michael Yang
ccfd41c4f0 Merge pull request #9742 from ollama/mxyng/engine-error-embeddings
fix: error on models that don't support embeddings
2025-03-13 13:12:33 -07:00
Michael Yang
3e102b7dad Update model/model.go
Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com>
2025-03-13 13:11:52 -07:00
Michael Yang
ec46f3286c engine: error on embeddings; not currently implemented 2025-03-13 11:40:55 -07:00
Michael Yang
5e2e0b46b1 fix: error if image requested without vision model 2025-03-13 10:52:09 -07:00
Michael Yang
45a13b1dec Merge pull request #9688 from Shane-XB-Qian/debug_mistype_lld
ollama-debug.c: correct mistype
2025-03-13 10:12:44 -07:00
Parth Sareen
5c0b663969 sample: separate softmax and temperature transforms (#9732) 2025-03-13 09:53:27 -07:00
shane.xb.qian
30d7a59ba8 ollama-debug.c: change 'ld' to 'PRIi64'
* macOS has different definition per info from @mxyng
2025-03-13 17:10:37 +08:00
ParthSareen
4aeb67ef4c sample: do all sorting in topK 2025-03-12 11:59:17 -07:00
ParthSareen
3ba91634c1 sample: simplify top_k=0 sorting 2025-03-12 11:59:17 -07:00
ParthSareen
1b7433b71e sample: use container/heap for top_k 2025-03-12 11:59:17 -07:00
Bruce MacDonald
a70820daa0 models/gemma3: remove final logit softcap (#9692)
Softcap isn't in the whitepaper/implementation for the language model so we should remove it. There is no discernible difference in output with it removed.
2025-03-12 10:17:57 -07:00
Shane-XB-Qian
6b45b1d6b4 cli: adding support ctrl-n/p like general cli (#9136)
Signed-off-by: shane.xb.qian <shane.qian@foxmail.com>
2025-03-12 08:51:56 -07:00
shane.xb.qian
85ab552028 ollama-debug.c: correct mistype
Signed-off-by: shane.xb.qian <shane.qian@foxmail.com>
2025-03-12 22:32:30 +08:00
frob
b3af953a55 cli: don't exit for invalid model during /load. (#9576)
Co-authored-by: Richard Lyons <frob@cloudstaff.com>
2025-03-11 23:42:53 -07:00
Michael
ad4e0bf3be Adding Gemma 3 to readme (#9671) 2025-03-12 07:39:25 +01:00
Michael Yang
aee28501b5 Merge pull request #9661 from ollama/gemma
engine: add gemma support
2025-03-11 15:07:50 -07:00
jmorganca
83f0ec8269 all: address linter errors 2025-03-11 14:49:20 -07:00
jmorganca
c6b6938b3a kvcache: fix tests by adding AvgPool2D stub 2025-03-11 14:49:20 -07:00
jmorganca
fb4664fcec model: add more spm tokenizer tests 2025-03-11 14:49:20 -07:00
jmorganca
20e3593863 model: validate left and right pairs before merging them 2025-03-11 14:49:20 -07:00
Michael Yang
63a394068c use 2d pooling 2025-03-11 14:49:20 -07:00
Daniel Hiltgen
ab39e08eb9 llm: auto detect models that require Ollama Engine (#1) 2025-03-11 14:49:20 -07:00
jmorganca
11bfa62796 add trailing \n\n after <end_of_image> to match reference implementation 2025-03-11 14:49:20 -07:00
jmorganca
f63e62e546 reduce kernel size, add TODO for loading from config 2025-03-11 14:49:20 -07:00
jmorganca
65b0f329d1 Revert "Allow models to force a new batch"
This reverts commit c7eae586b899083acebcd9b3847b89ea78c2850c.
2025-03-11 14:49:20 -07:00
Jesse Gross
06007c0a18 Allow models to force a new batch
This is useful for a few things:
 - Work around bugs, such as having 2 images in one batch
 - Keep the image in a single batch for fully connected attention
 - Improve performance by not evaluating embeddings multiple times
2025-03-11 14:49:20 -07:00
Jesse Gross
a8e83a7654 Disable causal attention based on batch index
Currently we are using positions, which are relative to a
sequence and may not be unique.
2025-03-11 14:49:20 -07:00
Jesse Gross
475005504e Restrict Gemma to a single image per request 2025-03-11 14:49:20 -07:00
Jesse Gross
2c40c4d35e Fix follow up images and images split across batches 2025-03-11 14:49:19 -07:00
Michael Yang
e95278932b use non-causal mask only for image positions 2025-03-11 14:49:19 -07:00
Michael Yang
9d2a20a763 use non-causal mask for inputs with images 2025-03-11 14:49:19 -07:00
Patrick Devine
2e54d72fc3 fix gemma3 1b conversion 2025-03-11 14:49:19 -07:00
Michael Yang
6b32a2d549 compat with upstream gguf 2025-03-11 14:49:19 -07:00
Michael Yang
c5cbe4fc2a fallback to cpu 2025-03-11 14:49:19 -07:00
Michael Yang
f888912870 fix vision encoder 2025-03-11 14:49:19 -07:00
Michael Yang
9e4642e9b3 ollama debug tensor 2025-03-11 14:49:19 -07:00
Michael Yang
6b0486c216 duplicate token_embd to output 2025-03-11 14:49:19 -07:00
Michael Yang
d368c039f0 skip repacking vision tensors 2025-03-11 14:49:19 -07:00
Patrick Devine
9b54267e69 fix configs 2025-03-11 14:49:19 -07:00
Michael Yang
46bb0169c4 update model 2025-03-11 14:49:19 -07:00
Michael Yang
8934324b72 use fast attention 2025-03-11 14:49:18 -07:00
Jesse Gross
0e886595bf Fix tests and drift from main 2025-03-11 14:49:18 -07:00
Patrick Devine
c62861f4fa fix conversion 2025-03-11 14:49:18 -07:00
Michael Yang
0df1800436 set non-causal attention 2025-03-11 14:49:18 -07:00
Patrick Devine
631fecc6d9 temporary work around for converting spm 2025-03-11 14:49:18 -07:00
Jesse Gross
4346c2409d fix drift from main 2025-03-11 14:49:18 -07:00
Michael Yang
4b037a97dc add gemma vision encoder 2025-03-11 14:49:17 -07:00
Patrick Devine
5f74d1fd47 gemma2 impl 2025-03-11 14:35:08 -07:00
Daniel Hiltgen
4dcf80167a Build release for windows with local script (#9636) 2025-03-11 08:34:20 -07:00
Michael Yang
26a26998fb Merge pull request #9590 from ollama/mxyng/dump-pad
fix: pad tensor item if ge zero
2025-03-10 16:34:55 -07:00
Michael Yang
9926eae015 fix: pad tensor item if ge zero
this produces a nicer output since both positive and negative values
produces the same width
2025-03-10 16:18:12 -07:00
Vincent Koc
8585b7b151 docs: add opik to observability integrations (#9626) 2025-03-10 16:15:10 -07:00
Parth Sareen
7e34f4fbfa sample: add numerical stability to temperature/softmax transform (#9631) 2025-03-10 14:43:53 -07:00
Michael Yang
fe776293f7 Merge pull request #9569 from dwt/patch-1
Better WantedBy declaration
2025-03-10 14:09:37 -07:00
frob
d8a5d96b98 docs: Add OLLAMA_CONTEXT_LENGTH to FAQ. (#9545) 2025-03-10 11:02:54 -07:00
Xiaowei Zhu
757668c42f docs: add SwiftChat (#9540) 2025-03-10 11:01:09 -07:00
Sam
96ec8afd09 docs(tool): add mcp-llm (#9537) 2025-03-10 09:52:02 -07:00
Jeffrey Morgan
e093db92c4 sample: temporarily use grammars for constrained generation in new engine (#9586) 2025-03-10 16:17:39 +01:00
Jesse Gross
a1cda80bcb model: Update encoder cache to use multimodal input processing handler
The encoder cache needs to know the position of images in the input
stream so that it knows when to delete them. Previously images didn't
have a position, so we implied one by breaking batches before an
image and then assuming the image was in the first position. However,
multimodal objects are now given explicit positions in the input
stream, so we can use that instead.

Breaking batches was also a way to simulate a cross attention mask
for mllama. However, given that it only supports a single sequence
and a single image, this mask doesn't serve any real purpose.
Removing the batch break does not appear to affect the quality of
the output.

Most of this is simply moving the input data structures to a new
package to avoid import cycles.
2025-03-09 17:05:26 -07:00
Jesse Gross
4614fafae0 ollamarunner: Don't panic for unimplemented features at runtime.
It's ok to fail on startup but we shouldn't panic during runtime
based on user input. Downgrade the panic to a warning.
2025-03-08 18:58:18 -08:00
Jesse Gross
4100ed7bdd ml: Add support for quantized KV cache
Similar to the llama engine, quantizing the KV cache requires
flash attention to be enabled through the Ollama server.
2025-03-07 18:43:39 -08:00
Jesse Gross
f52b2615ef kvcache: Set context for shift offsets 2025-03-07 18:43:39 -08:00
Jesse Gross
25f9b152f9 ggml-backend: Ensure allocation meet backend requirements
Backends can impose additional alignment requirements on buffer sizes.
We should ensure that we meet these or allocations can fail.
2025-03-07 18:43:39 -08:00
Jesse Gross
6da8b6a879 kvcache: Support non-causal attention
Models can disable causality for all or part of their processing
while continuing to store data in the KV cache.
2025-03-07 18:39:27 -08:00
Jesse Gross
0daaaef8c9 ollamarunner: Quiet debug logging and panic on unimplemented features
Debug logging of every token has previously caused test timeouts
on slower machines.
2025-03-07 18:38:02 -08:00
Jesse Gross
98272fbd58 additional review comments 2025-03-07 14:08:21 -08:00
Michael Yang
b27e8f3f10 ml/backend/ggml: use backend buffer type
this ensures the tensor is created on the right buffer type for backends
such as cpu
2025-03-07 14:08:21 -08:00
Michael Yang
45df786f09 comments 2025-03-07 14:08:21 -08:00
Michael Yang
daaf42e4a4 ml/backend/ggml: clean up 2025-03-07 14:08:21 -08:00
Michael Yang
2dc60d4620 ml/backend/ggml: offload vision to cpu
temporary until tensor loading can accurately account for vision models
2025-03-07 14:08:21 -08:00
Michael Yang
b5312f30e8 ml/backend/ggml: handle tensor split 2025-03-07 14:08:21 -08:00
Michael Yang
26c2e0bd35 ml/backend/ggml: handle user specified cpu offloading 2025-03-07 14:08:21 -08:00
Michael Yang
bf920883d5 ml/backend/ggml: set cpu n_threads 2025-03-07 14:08:21 -08:00
Michael Yang
58b9ec1f6b kvcache: update tests 2025-03-07 14:08:21 -08:00
Michael Yang
7bae7fa5ce ml/backend/ggml: create tensor on specific backend
some tensors should be created on specific backends to reduce number of
copies and improve performance
2025-03-07 14:08:21 -08:00
Michael Yang
764e199d67 kvcache: create cache ctx per layer
each cache layer creates and maintains its own context instead of using
a large context for all layers
2025-03-07 14:08:21 -08:00
Michael Yang
bfce55db3d model: load non-repeated tensors into multiple backends
some tensors are expected to be used in repeating layers but are not
themselves repeated. this change copies these tensors into the same
backends as their repeating counterparts to minimize copying tensors
between backends
2025-03-07 14:08:21 -08:00
Michael Yang
bab6f34dc0 ml/backend/ggml: update model loading for hybrid/multi backends
use a similar strategy as llama.cpp for deciding where tensors should be
allocated. this will be improved later to be aware of usable memory
before assigning the tensor
2025-03-07 14:08:21 -08:00
Parth Sareen
0682dae027 sample: improve ollama engine sampler performance (#9374)
This change bring in various interface cleanups along with greatly improving the performance of the sampler.

Tested with llama3.2 on local machine.
Improves performance from ~ 70 tokens/s -> 135 tokens/s with topK(40) enabled.
Without topK performance is ~ 110 tokens/s
2025-03-07 12:37:48 -08:00
Breaker
1f6986e919 readme: add QwQ to the supported models list (#9565) 2025-03-07 09:30:07 -08:00
Jeffrey Morgan
4289c74359 llama: fix kv loading on snowflake-arctic-embed models (#9536) 2025-03-07 09:25:34 -08:00
‮rekcäH nitraM‮
25248f4bd5 Better WantedBy declaration
The problem with default.target is that it always points to the target that is currently started. So if you boot into single user mode or the rescue mode still Ollama tries to start.

I noticed this because either tried (and failed) to start all the time during a system update, where Ollama definitely is not wanted.
2025-03-07 10:26:31 +01:00
Jesse Gross
a7e63b82be ollamarunner: Improve multimodal input handling
Various vision models have different requirements for how they
receive their inputs. For example:
 - Mllama wants images together with text and the image embeddings
   don't themselves have positions or get stored in the main KV cache
 - Llava-style models feed in embeddings similar to tokens and
   images correspond to a varying number of tokens in the cache.

In addition, the strategy for providing inputs must support batching
and multiple sequences, which are managed by the runner. At the same
time, we want to keep data handling fully in the model so that new
architectures are not bottlenecked by runner code which does not
understand their particular requirements.

This provides a method for models to edit the input stream so that
it meets their needs while still being in a format that the runner
understands. This allows the runner to avoid special processing
for different models.

In addition, this fixes a regression where non-vision models may
try to incorrectly interpret images.
2025-03-06 16:54:16 -08:00
Jesse Gross
b70fc4d51e model: Don't unconditionally add special tokens
We sometimes tokenize partial strings. For example, with
multimodal inputs, we split the input string around the images
and then tokenize each piece. In these cases, we should only add
the special tokens on the first piece.
2025-03-06 16:54:16 -08:00
Blake Mizerany
e2252d0fc6 server/internal/registry: take over pulls from server package (#9485)
This commit replaces the old pull implementation in the server package
with the new, faster, more robust pull implementation in the registry
package.

The new endpoint, and now the remove endpoint too, are behind the
feature gate "client2" enabled only by setting the OLLAMA_EXPERIMENT
environment variable include "client2".

Currently, the progress indication is wired to perform the same as the
previous implementation to avoid making changes to the CLI, and because
the status reports happen at the start of the download, and the end of
the write to disk, the progress indication is not as smooth as it could
be. This is a known issue and will be addressed in a future change.

This implementation may be ~0.5-1.0% slower in rare cases, depending on
network and disk speed, but is generally MUCH faster and more robust
than the its predecessor in all other cases.
2025-03-05 14:48:18 -08:00
Daniel Hiltgen
cae5d4d4ea Win: doc new rocm zip file (#9367)
To stay under the 2G github artifact limit, we're splitting ROCm
out like we do on linux.
2025-03-05 14:11:21 -08:00
Michael Yang
05a01fdecb ml/backend/ggml: consolidate system info logging
- output backend system info when initializing the backend. this ensures
  this information is always present without needing to be called
  explicitly
- convert to structured logging
- enumerate devices rather than backends since devices are ordered
- track device indices grouped by device name
2025-03-04 15:14:31 -08:00
aritra saha
8fe6f69f28 docs: add granite-3.2 to the readme 2025-03-04 11:10:56 -08:00
Daniel Hiltgen
1fdb351c37 New engine: vision models and auto-fallback (#9113)
* Include unified vision layers in memory prediction

For newer vision models with a single gguf, include
the projection estimates.

* Adjust CLI to handle both styles of vision model metadata

* Wire up new tokenizers for new engine

If we're loading the new engine, utilize the new model
text processor instead of calling into cgo wrappers for
llama.cpp.  This also cleans up some tech debt from the
older tokenization flow for the C++ server which was
no longer used.

This also adjusts the grammar handling logic to pass
through to the new engine instead of utilizing the cgo
schema to grammar call.

* Lay foundation for auto selection of new engine
2025-03-04 09:03:46 -08:00
Blake Mizerany
7a01ad7614 server/internal/registry: reintroduce pruning on model deletion (#9489)
This reintroduces aggressive pruning on model deletion as a temporary
measure until a more controlled garbage collection (GC) mechanism is
implemented.

Issues with the current approach:

1. Users may accidentally delete a model (`ollama rm llama3.3` instead
   of `ollama rm llama3.2`), requiring a full re-download unless another
   model references the same blobs.

2. Users may assume a deleted model is still referenced elsewhere, but
   due to prior updates or deletions, the references no longer exist,
   leading to unnecessary re-downloads.

Soon, we should implement a structured GC mechanism to retain
unreferenced blobs for a configurable period before removal, which will
run on "ollama rm" and other commands we deem appropriate.

Users that want to immediately remove unreferenced blobs can use a new
prune command that will allow them to specify the age and class of blobs
to remove.

Example usage:

    # Run basic blob GC
    $ ollama prune

    # Remove unreferenced blobs older than 7 days
    $ ollama prune --age 7d

    # Remove all blobs, referenced or not, older than 7 days (and their manifests?)
    $ ollama prune --age 7d --all

    # Remove all unreferenced blobs immediately
    $ ollama prune --age 0 --all

    # Remove all blobs
    $ ollama prune --age 0 --all

This should provide a safer and more predictable cleanup process.
2025-03-03 19:11:16 -08:00
Blake Mizerany
55ab9f371a server/.../backoff,syncs: don't break builds without synctest (#9484)
Previously, developers without the synctest experiment enabled would see
build failures when running tests in some server/internal/internal
packages using the synctest package. This change makes the transition to
use of the package less painful but guards the use of the synctest
package with build tags.

synctest is enabled in CI. If a new change will break a synctest
package, it will break in CI, even if it does not break locally.

The developer docs have been updated to help with any confusion about
why package tests pass locally but fail in CI.
2025-03-03 16:45:40 -08:00
KindBrave
fefbf8f74b docs: add Ollama Android Chat community integration 2025-03-03 16:38:32 -08:00
Michael Yang
b428ddd796 docker: use go version from go.mod 2025-03-03 13:02:02 -08:00
Michael Yang
ba7d31240e fix: own lib/ollama directory
expand backend loading error handling to catch more problems and log
them instead of panicing
2025-03-03 13:01:18 -08:00
CYJiang
d25efe3954 cmd: add default err return for stop (#9458) 2025-03-03 12:13:41 -08:00
Mark
36dfb906bb docs: don't use self-closing tag for anchor element (#9456) 2025-03-03 11:56:34 -08:00
aritra saha
a6f0f908b9 docs: update phi3-mini to phi4-mini (#9424)
* Update README.md

removed phi 3 mini and added phi4-mini

* Update README.md

---------

Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
2025-03-03 11:09:21 -08:00
İbrahim Çetin
3b1ddb2b3a docs: add reins to community integrations (#9411) 2025-03-03 11:06:30 -08:00
Jeffrey Morgan
1579c4f06d build: install binutils alongside gcc in Dockerfile (#9475) 2025-03-03 01:20:49 -08:00
Blake Mizerany
3519dd1c6e server/internal/client/ollama: hold DiskCache on Registry (#9463)
Previously, using a Registry required a DiskCache to be passed in for
use in various methods. This was a bit cumbersome, as the DiskCache is
required for most operations, and the DefaultCache is used in most of
those cases. This change makes the DiskCache an optional field on the
Registry struct.

This also changes DefaultCache to initialize on first use. This is to
not burden clients with the cost of creating a new cache per use, or
having to hold onto a cache for the lifetime of the Registry.

Also, slip in some minor docs updates for Trace.
2025-03-02 20:55:44 -08:00
Jeffrey Morgan
e41c4cbea7 build: install ccache manually in Dockerfile (#9464)
Reverts ccache installation to be done manually via curl instead of
using the dnf package manager as this has side effects of prepending
ccache's install directory to the front of the PATH
2025-03-02 16:48:31 -08:00
Blake Mizerany
ee048b76d4 server/internal/client/ollama: handle extended names in client/ollama (#9454)
The extended name format is a superset of the name format that only the
client needs to know about, not the server or other dependents of the
name package, so move the split logic into the client package.

Also, take advantage of knowing about the extended name format to allow
the client to use the extended name format when unlinking to verify they
are unlinking the manifest with the content they intend.
2025-03-02 13:30:41 -08:00
Soulter
af68d60a58 readme: add AstrBot to community integrations (#9442) 2025-03-01 21:58:34 -08:00
Jesse Gross
21aa666a1e ml: Enable support for flash attention
The GGML flash attention kernel has specific requirements for
padding and permutation. This adds support to the KV cache
for conforming to these requirements so that flash attention
can be enabled.

Flash attention can be used in the same situations as the llama
engine and is enabled by the user in the same way.
2025-03-01 20:53:23 -08:00
Jesse Gross
ee141cc821 ml: Empty tensor constructor for tensors
In cases where we allocate a tensor and then fully overwrite it with
copied data, it is wasteful to first zero out the memory.
2025-03-01 20:53:23 -08:00
Jesse Gross
55e5776c44 ggml-backend: Store parent backend as part of tensor
It can be important for a tensor to know what backend it came from -
for example, to know if flash attention is enabled.
2025-03-01 20:53:23 -08:00
Jesse Gross
854a9195f3 attention: Remove unnecessary contiguous operations
Prior to performing attention, we need to permute query, key
and value. Currently we call Contiguous after each of these
permutations, which is correct but expensive. Avoiding the
3 calls to Contiguous increases performance by over 20%.

The permutations of query and key do not violate the continuity
rules for mulmat and the Contiguous call can be simply removed.

Value requires a different permutation and does require Contiguous.
However, we can use the copy into the cache as a way to perform this
without further overhead.

To support this and avoid unexpected tensor shapes that are seen by
models, we need tighter integration between attention, cache
and backend. Future optimization will also likely need this structure
 - for example, flash attention has special padding requirements in
the cache and other backends may have their own needs.

This further contains the operations that go into attention so that
these and other optimizations can be handled transparently. Models
that have special requirements for attention can still implement
their own version of it.
2025-03-01 20:53:23 -08:00
Jeffrey Morgan
96a97adf9b build: use correct GGML_HIP_NO_VMM compiler definition for ggml-hip (#9451) 2025-03-01 17:00:31 -08:00
Jeffrey Morgan
e75c6126e9 build: set GGML_CUDA_NO_VMM for ggml-hip target (#9449) 2025-03-01 14:02:19 -08:00
Blake Mizerany
cda6f5c66c server/internal/internal/names: validate names (#9400)
This commit is a step towards a goal to make names less ceremonial
outside of the registry client. Clients of the registry package can
treat names as opaque strings, and the registry package will handle
parsing, validating, and normalizing names.

Ideally we end up with the names package tucked away in an internal
package for good. We'll see how things go.

Also, this package name is not permanent. This another step in the
on-going process of refactoring the server code, and at some point it
will most likely be renamed/moved.
2025-03-01 13:15:14 -08:00
Bruce MacDonald
bebb6823c0 server: validate local path on safetensor create (#9379)
More validation during the safetensor creation process.
Properly handle relative paths (like ./model.safetensors) while rejecting absolute paths
Add comprehensive test coverage for various paths
No functionality changes for valid inputs - existing workflows remain unaffected
Leverages Go 1.24's new os.Root functionality for secure containment
2025-02-28 16:10:43 -08:00
Michael Yang
31e472baa4 runner: defer context cancel
defer the cancel to guarantee it runs
2025-02-28 22:27:28 +00:00
Michael Yang
657685e85d fix: replace deprecated functions 2025-02-28 21:29:34 +00:00
Jeffrey Morgan
a14912858e build: add compute capability 12.0 to CUDA 12 preset (#9426)
Focuses initial Blackwell support on compute capability 12.0
which includes the 50x series of GeForce cards. In the future
additional compute capabilities may be added
2025-02-28 13:12:31 -08:00
Blake Mizerany
eed11ded30 server/.../safetensors: fix offsets and include all model parts (#9427)
Also, require the -as flag to be set when importing a model. This
prevents the confusing error message "invalid name".

Also, allow short names to be used when importing a model and
auto-complete the name with the default mask.
2025-02-28 13:08:10 -08:00
Michael Yang
b42aba40ed cuda: enable flash attention
ggml added an option to disable flash attention so explicitly enable it
2025-02-28 19:40:34 +00:00
王贺
25885e5335 docs: Add 1Panel to Community Integrations (#9312) 2025-02-28 09:53:03 -08:00
Jeffrey Morgan
98d44fa39d llama: add phi4 mini support (#9403) 2025-02-27 19:30:32 -08:00
Blake Mizerany
2099e2d267 CONTRIBUTING: provide clarity on good commit messages, and bad (#9405)
Also, our commit messages have been getting better, but we can do
better, and be more consistent. This adds more clarity on how to write
commit messages and provides examples of good and bad messages.

Also, our contributing guide was lacking helpful guidance on how to
start change proposals. This commit adds the start of that section.

Soon, we should add a proposal template to the issue tracker with a link
back to the proposal section, which should also be expanded upon.
2025-02-27 19:22:26 -08:00
Bruce MacDonald
0c1041ad85 runner: default to greedy sampler for performance (#9407)
As are adding support for weighted sampling we have seen some performance
regressions, bypassing the sampler logic for now and defaulting to greedy
until we can benchmark the new sampler logic.
2025-02-27 16:41:20 -08:00
Parth Sareen
c245b0406f sample: remove transforms from greedy sampling (#9377) 2025-02-27 15:44:53 -08:00
Michael Yang
8b194b7520 kvcache: update tests 2025-02-27 22:27:16 +00:00
Michael Yang
3e8b8a1933 ml: update Context.Forward interface
update Context.Forward to accept multiple tensors to match
Context.Compute signature

update Context.Forward to return Context such that it can be chained
with Context.Compute
2025-02-27 22:27:16 +00:00
Blake Mizerany
41dc280491 server/internal/registry: implement CloseNotify and Flush (for now) (#9402)
This fixes panics introduced in 2412adf42b
when Gin ungracefully assumes that the http.ResponseWriter implements
http.CloseNotifier and http.Flusher, which our new statusCodeRecorder
does not. This is a temporary fix until we can pour the rest of the Gin
out.
2025-02-27 14:00:37 -08:00
Michael Yang
53d2990d9b model: add bos token if configured 2025-02-27 21:04:59 +00:00
Jesse Gross
e185c08ad9 go.mod: Use full version for go 1.24.0
Otherwise on Linux I get:
go: download go1.24 for linux/amd64: toolchain not available
2025-02-27 13:01:32 -08:00
Blake Mizerany
2412adf42b server/internal: replace model delete API with new registry handler. (#9347)
This commit introduces a new API implementation for handling
interactions with the registry and the local model cache. The new API is
located in server/internal/registry. The package name is "registry" and
should be considered temporary; it is hidden and not bleeding outside of
the server package. As the commits roll in, we'll start consuming more
of the API and then let reverse osmosis take effect, at which point it
will surface closer to the root level packages as much as needed.
2025-02-27 12:04:53 -08:00
Steven Hartland
be2ac1ed93 docs: fix api examples link (#9360)
Fix the examples link in the go package documentation for the API.
2025-02-27 10:51:12 -08:00
Eries Trisnadi
dc13813a03 server: allow vscode-file origins (#9313) 2025-02-27 10:39:43 -08:00
Michael Yang
d6af13efed runner: simplify tensor split parsing 2025-02-27 18:36:46 +00:00
Michael Yang
a59f665235 ml/backend/ggml: fix debug logging 2025-02-27 18:30:57 +00:00
Daniel Hiltgen
688925aca9 Windows ARM build (#9120)
* Windows ARM build

Skip cmake, and note it's unused in the developer docs.

* Win: only check for ninja when we need it

On windows ARM, the cim lookup fails, but we don't need ninja anyway.
2025-02-27 09:02:25 -08:00
Blake Mizerany
76e903cf9d .github/workflows: swap order of go test and golangci-lint (#9389)
The linter is secondary to the tests, so it should run after the tests,
exposing test failures faster.
2025-02-26 23:03:48 -08:00
Jeffrey Morgan
a5272130c4 ml/backend/ggml: follow on fixes after updating vendored code (#9388)
Fixes sync filters and lowers CUDA version to 11.3 in test.yaml
2025-02-26 22:33:53 -08:00
Jeffrey Morgan
d7d7e99662 llama: update llama.cpp vendor code to commit d7cfe1ff (#9356) 2025-02-26 20:34:44 -08:00
Gordon Kamer
2db96c18e7 readme: add Nichey to community integrations (#9370) 2025-02-26 10:40:53 -08:00
Daniel Hiltgen
e12af460ed Add cuda Blackwell architecture for v12 (#9350)
* Add cuda Blackwell architecture for v12

* Win: Split rocm out to separate zip file

* Reduce CC matrix

The 6.2 and 7.2 architectures only appear on Jetsons, so they were wasting space.
The 5.0 should be forward compatible with 5.2 and 5.3.
2025-02-26 09:20:52 -08:00
Jeffrey Morgan
3ad4bc8afe llama: removed unused 'vendoring' file (#9351) 2025-02-25 14:33:03 -08:00
Blake Mizerany
0d694793f2 .github: always run tests, and other helpful fixes (#9348)
During work on our new registry client, I ran into frustrations with CI
where a misspelling in a comment caused the linter to fail, which caused
the tests to not run, which caused the build to not be cached, which
caused the next run to be slow, which caused me to be sad.

This commit address these issues, and pulls in some helpful changes
we've had in CI on ollama.com for some time now.

They are:

* Always run tests, even if the other checks fail.

Tests are the most important part of CI, and should always run. Failures
in tests can be correlated with failures in other checks, and can help
surface the root cause of the failure sooner. This is especially
important when the failure is platform specific, and the tests are not
platform independent.

* Check that `go generate` is clean.

This prevents 'go generate' abuse regressions. This codebase used to use
it to generate platform specific binary build artifacts. Let's make sure
that does not happen again and this powerful tool is used correctly, and
the generated code is checked in.

Also, while adding `go generate` the check, it was revealed that the
generated metal code was putting dates in the comments, resulting in
non-deterministic builds. This is a bad practice, and this commit fixes
that. Git tells us the most important date: the commit date along with
other associated changes.

* Check that `go mod tidy` is clean.

A new job to check that `go mod tidy` is clean was added, to prevent
easily preventable merge conflicts or go.mod changes being deferred to a
future PR that is unrelated to the change that caused the go.mod to
change.

* More robust caching.

We now cache the go build cache, and the go mod download cache
independently. This is because the download cache contains zips that can
be unpacked in parallel faster than they can be fetched and extracted by
tar. This speeds up the build significantly.

The linter is hostile enough. It does not need to also punish us with
longer build times due to small failures like misspellings.
2025-02-25 14:28:07 -08:00
Daniel Hiltgen
e91ae3d47d Update ROCm (6.3 linux, 6.2 windows) and CUDA v12.8 (#9304)
* Bump cuda and rocm versions

Update ROCm to linux:6.3 win:6.2 and CUDA v12 to 12.8.
Yum has some silent failure modes, so largely switch to dnf.

* Fix windows build script
2025-02-25 13:47:36 -08:00
José Pekkarinen
6ecd7f64ba docker: upgrade rocm to 6.3.3 (#8211)
centos-7 images have been deprecated upstream and replaced with
almalinux-8 images instead, requiring some small extra work.

Signed-off-by: José Pekkarinen <jose.pekkarinen@foxhound.fi>
2025-02-25 13:38:08 -08:00
Chuanhui Liu
888855675e docs: rocm install link (#9346) 2025-02-25 13:15:47 -08:00
Michael Yang
b16367b4b2 fix: add back bf16 support
this was accidentally removed when moving fs/ggml from its previous
location
2025-02-25 19:26:14 +00:00
Pavol Rusnak
a499390648 build: support Compute Capability 5.0, 5.2 and 5.3 for CUDA 12.x (#8567)
CUDA 12.x still supports Compute Capability 5.0, 5.2 and 5.3,
so let's build for these architectures as well
2025-02-25 09:54:19 -08:00
frob
4df98f3eb5 Move cgroups fix out of AMD section. (#9072)
Co-authored-by: Richard Lyons <frob@cloudstaff.com>
2025-02-25 08:52:50 -08:00
Blake Mizerany
348b3e0983 server/internal: copy bmizerany/ollama-go to internal package (#9294)
This commit copies (without history) the bmizerany/ollama-go repository
with the intention of integrating it into the ollama as a replacement
for the pushing, and pulling of models, and management of the cache they
are pushed and pulled from.

New homes for these packages will be determined as they are integrated
and we have a better understanding of proper package boundaries.
2025-02-24 22:39:44 -08:00
Parth Sareen
0b7e1676eb sample: add sampling package for new engine (#8410) 2025-02-24 17:19:01 -08:00
Parth Sareen
314573bfe8 config: allow setting context length through env var (#8938)
* envconfig: allow setting context length through env var
2025-02-24 13:26:35 -08:00
Blake Mizerany
4604b10306 go.mod: bump to go1.24 (#9242) 2025-02-24 13:11:46 -08:00
Jeffrey Morgan
8c13cfa4dd ml/backend/ggml: fix crash on windows paths with wide characters (#9305) 2025-02-23 19:13:53 -08:00
Jeffrey Morgan
7cfd4aee4d docs: add additional ROCm docs for building (#9066) 2025-02-22 11:22:59 -08:00
Blake Mizerany
68bac1e0a6 server: group routes by category and purpose (#9270)
The route assembly in Handler lacked clear organization making it
difficult scan for routes and their relationships to each other. This
commit aims to fix that by reordering the assembly of routes to group
them by category and purpose.

Also, be more specific about what "config" refers to (it is about CORS
if you were wondering... I was.)
2025-02-21 21:02:26 -08:00
Jesse Gross
f53f4198c3 ml: Abstract attention out of model definitions
There are two benefits to doing this:
 - Provide a library function that models can use, reducing code for
   each model implementation
 - Enables a single place to drop in optimized implementations of
   attention based on the backend or other factors. One is provided for
   GGML.

On CUDA this improves token generation rate by about 3%. It does not
have a significant effect on Metal.

Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-02-21 13:16:21 -08:00
Michael Yang
2192a28eed ml/backend/ggml: fix rms norm 2025-02-21 18:34:19 +00:00
Junyan Qin (Chin)
5d81c1a184 docs: add RockChinQ/LangBot to integrations list (#9272) 2025-02-21 09:36:55 -08:00
Jesse Gross
5c5535c064 models: Prune unused outputs earlier in the forward pass
Currently Rows is called as the last step in a model computation
to get the values for the output tokens. However, if we move it
earlier in the process then we can trim out computations that
never get used. This is similar to how models are defined in
llama.cpp.

Changing the model definition in this way improves token generation
performance by approximately 8%.
2025-02-20 14:49:47 -08:00
Jesse Gross
e5bcc51ae1 ggml-backend: Don't recreate the scheduler for each context
We don't need to create and destroy the GGML scheduler for every
context. This introduces extra CPU overhead for every forward
pass and extra memory for contexts that don't actually get scheduled
(for example, KV caches). We can instead just have one scheduler
for the backend and reset it each time we call Compute.

This improves token generation performance by 1-2% and removes
scheduler create/destroy from profile traces.
2025-02-20 14:49:47 -08:00
Jesse Gross
bd6a7d5e64 ollamarunner: Pass runner performance parameters to backends
Currently the following parameters are in the runner but not used:
 - numGPULayers
 - mainGPU
 - threads
 - tensorSplit

This passes them through to the backend, which is where they would
actually get used. However, the GGML backend does not yet do anything
with them.
2025-02-20 13:27:57 -08:00
Bruce MacDonald
14b5a9a150 api: document client stream behavior with a test (#8996)
Added unit tests to verify error handling behavior in the Client.stream and Client.do methods.
Tests cover various error scenarios including:
- Error responses with status codes >= 400
- Error messages with successful status codes
- Empty error messages
- Successful responses
2025-02-20 13:19:58 -08:00
Michael Yang
ba9ec3d05e ci: use clang for windows cpu builds
clang outputs are faster. we were previously building with clang via gcc
wrapper in cgo but this was missed during the build updates so there was
a drop in performance
2025-02-20 20:22:36 +00:00
frob
7c168b08c9 server: add missing function parens to debug log (#9255) 2025-02-20 12:10:15 -08:00
danielekp
3d4cc7833c docs: Add yla to community integrations 2025-02-20 11:34:24 -08:00
Lucas Hahn
351a85d9ea openai: add 'timeout' to allowable x-stainless headers (#9237) 2025-02-19 21:56:18 -08:00
Michael Yang
bda4ef6c56 reorder patches 2025-02-20 03:49:24 +00:00
Michael Yang
1e438b237c Merge pull request #9203 from ollama/mxyng/sapphirerapids
build: remove backend build for sapphirerapids
2025-02-19 21:42:00 +00:00
yuiseki
d721a02e7d test: add test cases for ListHandler (#9146) 2025-02-19 13:24:27 -08:00
zyxucp
778603a818 docs: Add AntSK to Community Integrations (#9214) 2025-02-19 13:22:48 -08:00
maninhill
3c874df46e docs: Add MaxKB to Community Integrations (#9212) 2025-02-19 13:20:09 -08:00
Jeffrey Morgan
d2eb226c91 llama: add patch to fix ggml backend reg on Linux with utf-8 characters in the path (#9159) 2025-02-18 22:46:17 -05:00
Michael Yang
e13e7c8d94 Merge pull request #9079 from jeremyschlatter/main
cmd: fix flickering in progress bar
2025-02-18 22:59:29 +00:00
Jeremy Schlatter
78f403ff45 address code review comments 2025-02-18 14:50:09 -08:00
Michael Yang
5f8c03189e build: remove backend build for sapphirerapids
sapphire rapids has amx support but it ends up having a negative
performance impact.

emerald rapids also has amx support with a positive performance impact
however there's no reasonable way in ggml to differentiate between the
two. the impact is small (~6%) so disable amx entirely for simplicity
2025-02-18 14:47:58 -08:00
Michael Yang
08a299e1d0 cmake: avoid building intel backends on linux 2025-02-18 22:17:00 +00:00
Michael Yang
7b5d916a9a ci: set owner/group in tarball
set owner and group when building the linux tarball so extracted files
are consistent. this is the behaviour of release tarballs in version
0.5.7 and lower
2025-02-18 20:11:09 +00:00
benhaotang
33ad61b112 Add OpenDeepResearcher-via-searxng to Community Integrations (#9138) 2025-02-18 11:39:11 -08:00
L. Jiang
716e365615 test: add test cases for HumanNumber (#9108) 2025-02-18 11:35:26 -08:00
innightwolfsleep
3b4424ff98 readme: add LLM Telegram Bot to community integrations (#9150) 2025-02-18 10:04:30 -05:00
Jeremy Schlatter
f9c7ead160 cmd: eliminate flickering with synchronized output 2025-02-17 20:01:03 -08:00
Jeremy Schlatter
5930aaeb1a cmd: fix cursor flickering in progress bar
The previous commit fixed flickering in the progress bar itself. Cursor
flickering is harder to address.

Cursor flickering could be fixed by hiding the cursor altogether while
the progress bar is displayed. The downside of this is that if the
program is killed in such a way that it can't clean up its state, it
would leave the cursor invisible.

Instead, this commit introduces an output buffer. All of the escape
codes and content for a single progress update are written to a buffer,
which is then flushed to the terminal all at once. This significantly
decreases the time during which the terminal has seen the cursor-hiding
code but has not yet seen the cursor-showing code, thus minimizing (but
not 100% eliminating) cursor flickering.

For more context, see:
https://gitlab.gnome.org/GNOME/vte/-/issues/2837#note_2269501
2025-02-17 14:56:57 -08:00
Jeremy Schlatter
faf67db089 cmd: fix progress bar flickering
Previous code cleared the display before writing new content, creating a
window where the terminal could (and in some cases did) render empty lines.

Instead, we now write new content over the old content, only clearing
the trailing end of lines for cases where the new line is shorter.

Fixes #1664
2025-02-17 13:39:02 -08:00
James-William-Kincaid-III
0667baddc6 docs: fix incorrect shortcut key in windows.md (#9098) 2025-02-15 15:38:24 -05:00
Bruce MacDonald
d006e1e09b model: document high-level model interface (#9122) 2025-02-14 16:01:00 -08:00
Daniel Hiltgen
df2680b4b9 Wire up system info log for new engine (#9123) 2025-02-14 15:55:33 -08:00
Jesse Gross
010313bb63 llamarunner: Init GGML before printing system info
We currently print system info before the GGML backends are loaded.
This results in only getting information about the default lowest
common denominator runner. If we move up the GGML init then we can
see what we are actually running.

Before:
time=2025-02-14T11:15:07.606-08:00 level=INFO source=runner.go:935 msg=system info="CPU : LLAMAFILE = 1 | CPU : LLAMAFILE = 1 | cgo(gcc)" threads=24

After:
time=2025-02-14T11:16:02.936-08:00 level=INFO source=runner.go:935 msg=system info="CPU : LLAMAFILE = 1 | CPU : LLAMAFILE = 1 | CUDA : ARCHS = 890 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | LLAMAFILE = 1 | cgo(gcc)" threads=24
2025-02-14 11:41:53 -08:00
Jeffrey Morgan
5296f487a8 llm: attempt to evaluate symlinks, but do not fail (#9089)
provides a better approach to #9088 that will attempt to
evaluate symlinks (important for macOS where 'ollama' is
often a symlink), but use the result of os.Executable()
as a fallback in scenarios where filepath.EvalSymlinks
fails due to permission erorrs or other issues
2025-02-13 22:37:59 -08:00
Jeffrey Morgan
f05774b04c llm: do not evaluate symlink for exe path lookup (#9088)
In some cases, the directories in the executable path read by
filepath.EvalSymlinks are not accessible, resulting in permission
errors which results in an error when running models. It also
doesn't work well on long paths on windows, also resulting in
errors. This change removes filepath.EvalSymlinks when accessing
os.Executable() altogether
2025-02-13 22:13:00 -08:00
Jeffrey Morgan
6600bd7d91 ml/backend/ggml: stable sort devices by score (#9081) 2025-02-13 18:42:36 -08:00
Jesse Gross
ed443a0393 Runner for Ollama engine
This provides integration with the new Ollama engine
(5824541 next ollama runner (#7913)) and the rest of the Ollama
infrastructure such as the runner and Ollama server.

In addition, it also builds out the KV cache infrastructure to
support requirements of how Ollama runs models such as:
 - Parallel processing
 - Memory management for defragmentation and shifting
 - Multi-modal modals

Both old and new engines continue to be supported. By default, only
the old engine is used. To enable the new engine:

Start the server with the OLLAMA_NEW_ENGINE environment variable set:
OLLAMA_NEW_ENGINE=1 ./ollama serve

Start a model that is supported by the Ollama engine. This one is Llama 3.1 8b Q4_K_M:
./ollama run jessegross/llama3.1
2025-02-13 17:09:26 -08:00
Jesse Gross
6945617af5 models: Move model into their own directory
This allows there to be a file that is a list of models that is
not mixed into the runner code.
2025-02-13 17:09:26 -08:00
Jesse Gross
7916f55009 vocab: Use int32 for special tokens
Special tokens are currently read as uint32 from the model metadata.
However, all other parts of the system (including the tokenizer) use
int32 to represent tokens so it is impossible to represent the high
portion of the unsigned range. For consistency and to avoid casts,
we should just use int32 everywhere.
2025-02-13 17:09:26 -08:00
Jesse Gross
d650ad398f model: Load tensors behind an interface
Currently, if a model uses an interface for its data structures (as mllama
does) then the tensor data in the structs implementing that interface will
not get loaded.
2025-02-13 17:09:26 -08:00
Jesse Gross
d223f3b697 ggml-backend: Close on nil should be a no-op 2025-02-13 17:09:26 -08:00
Jesse Gross
60830695c2 ggml-backend: Ensure data is available after async computation
We need to sync before retrieving data after async computation.
It is also important to ensure that the Go buffer is not moved by
the GC across function calls so we do a synchronous copy.
2025-02-13 17:09:26 -08:00
Jesse Gross
01d9a46854 ggml-backend: Let GGML allocate context memory
Passing in a Go buffer is not safe because the garbage collector could
free or move the memory while the context is still open. However, if
we pass in the size and a nil pointer then GGML will allocate it from
the C side.
2025-02-13 17:09:26 -08:00
Jesse Gross
d773b7d671 backend: API to support full precision matmul
Most tensor backends try to optimize performance by using a lower
precision for matmuls. However, some operations (such as kq) on
some models are sensitive to this and require full precision.
2025-02-13 17:09:26 -08:00
Jesse Gross
4d4463b2bd backend: Support graph computation that does not return an output
There are two cases where we may not have an output after computing:
 - Prompt processing where the length of the input exceeds the batch
   size
 - Internal memory management operations such as cache defrag and shift
2025-02-13 17:09:26 -08:00
Jesse Gross
0e38297f87 backend: Consistently use int (vs. int64) for tensor shapes
Currently there is a mixture of int and int64 used when dealing with
tensor dimensions and shapes, which causes unnecessary conversions -
they all should be the same type.

In general, most interfaces (such as Pytorch) use int64 for
generality but most implementations (such as CUDA) use int32 for
performance. There isn't much benefit to us to being more flexible
than the implementations we are likely to run on.

In addition, as a practical matter, a model with a tensor with a single
dimension larger than 32 bits is unlikely to run on a 32-bit machine.
2025-02-13 17:09:26 -08:00
Jesse Gross
7e13f568dc backend: Don't return an error on Close
It is not common to return errors with close/free operations - most
people won't check it and even if they did there's probably not much
that can do. It's better to not give implementations false expectations.
2025-02-13 17:09:26 -08:00
Michael Yang
58245413f4 next ollama runner (#7913)
feat: add new Ollama engine using ggml through cgo

This change introduces a new way to run pretrained models. It introduces 3 high level interfaces and a bunch of smaller helper interfaces to facilitate this.

- `model.Model` defines the interface for a model architecture. Models such as `llama` and `mllama`, which are provided as examples, can implement the model's forward propagation in the `Forward` method. This method will be called to generate completions. This interface can be found in `model/model.go`
- `ml.Backend` defines the interface for a backend tensor library, in this case `ggml`. Among other things, a Backend is responsible for loading a pretrained model into hardware (GPU, CPU, etc) and providing an interface for Models to access loaded tensors. This interface can be found in `ml/backend.go`
- `ml.Tensor` defines the interface for a tensor and tensor operations

This is the first implementation of the new engine. Follow up PRs will implement more features:

- non-greedy sampling (#8410)
- integration with Ollama and KV caching (#8301)
- more model support (#9080) with more coming soon

Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
2025-02-13 16:31:21 -08:00
Bùi Đức Nhật
8cf16063a5 docs: add ollamazing to the README.md (#9075) 2025-02-13 10:47:09 -08:00
frob
3a4449e2f1 docs: add H200 as supported device. (#9076)
Co-authored-by: Richard Lyons <frob@cloudstaff.com>
2025-02-13 10:44:23 -08:00
Anuraag (Rag) Agrawal
10d59d5f90 openai: finish_reason as tool_calls for streaming with tools (#7963) 2025-02-13 10:20:12 -08:00
Jeffrey Morgan
a4f69a0191 build: add -DGGML_CUDA_NO_PEER_COPY=ON for rocm builds on windows (#9060) 2025-02-13 00:23:17 -08:00
Clinton
82658c3eec readme: add Homebrew to package managers section (#9052) 2025-02-12 11:17:39 -08:00
bloominstrong
378d6e1e6a docs: fix nix package link (#9045)
removing the channel tag from the url so it will always go to the current stable channel.
2025-02-12 09:16:26 -08:00
Hugues Chocart
afa55bc70c doc: fix link for Abso (#9043) 2025-02-12 09:15:08 -08:00
338 changed files with 509110 additions and 12471 deletions

View File

@@ -111,13 +111,13 @@ jobs:
- os: windows
arch: amd64
preset: 'CUDA 12'
install: https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_551.61_windows.exe
cuda-version: '12.4'
install: https://developer.download.nvidia.com/compute/cuda/12.8.0/local_installers/cuda_12.8.0_571.96_windows.exe
cuda-version: '12.8'
- os: windows
arch: amd64
preset: 'ROCm 6'
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe
rocm-version: '6.1'
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q4-WinSvr2022-For-HIP.exe
rocm-version: '6.2'
runs-on: ${{ matrix.arch == 'arm64' && format('{0}-{1}', matrix.os, matrix.arch) || matrix.os }}
environment: release
env:
@@ -160,6 +160,10 @@ jobs:
echo "$hipPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "CC=$hipPath\bin\clang.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "CXX=$hipPath\bin\clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
- if: matrix.preset == 'CPU'
run: |
echo "CC=clang.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "CXX=clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
- if: ${{ !cancelled() && steps.cache-install.outputs.cache-hit != 'true' }}
uses: actions/cache/save@v4
with:
@@ -329,7 +333,9 @@ jobs:
done
working-directory: dist/${{ matrix.os }}-${{ matrix.arch }}
- run: |
for ARCHIVE in dist/${{ matrix.os }}-${{ matrix.arch }}/*.tar.in; do tar c -C dist/${{ matrix.os }}-${{ matrix.arch }} -T $ARCHIVE | pigz -9vc >$(basename ${ARCHIVE//.*/}.tgz); done
for ARCHIVE in dist/${{ matrix.os }}-${{ matrix.arch }}/*.tar.in; do
tar c -C dist/${{ matrix.os }}-${{ matrix.arch }} -T $ARCHIVE --owner 0 --group 0 | pigz -9vc >$(basename ${ARCHIVE//.*/}.tgz);
done
- uses: actions/upload-artifact@v4
with:
name: dist-${{ matrix.os }}-${{ matrix.arch }}-${{ matrix.target }}

View File

@@ -78,10 +78,10 @@ jobs:
include:
- preset: CPU
- preset: CUDA
install: https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_522.06_windows.exe
flags: '-DCMAKE_CUDA_ARCHITECTURES=87'
install: https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe
flags: '-DCMAKE_CUDA_ARCHITECTURES=80'
- preset: ROCm
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q4-WinSvr2022-For-HIP.exe
flags: '-DAMDGPU_TARGETS=gfx1010'
runs-on: windows
steps:
@@ -102,7 +102,7 @@ jobs:
$ErrorActionPreference = "Stop"
if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') {
Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe"
Start-Process -FilePath .\install.exe -ArgumentList (@("-s", "cudart_11.8", "nvcc_11.8", "cublas_11.8", "cublas_dev_11.8")) -NoNewWindow -Wait
Start-Process -FilePath .\install.exe -ArgumentList (@("-s", "cudart_11.3", "nvcc_11.3", "cublas_11.3", "cublas_dev_11.3")) -NoNewWindow -Wait
}
$cudaPath = (Resolve-Path "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\*").path
@@ -140,6 +140,13 @@ jobs:
env:
CMAKE_GENERATOR: Ninja
go_mod_tidy:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: check that 'go mod tidy' is clean
run: go mod tidy --diff || (echo "Please run 'go mod tidy'." && exit 1)
test:
strategy:
matrix:
@@ -147,15 +154,82 @@ jobs:
runs-on: ${{ matrix.os }}
env:
CGO_ENABLED: '1'
GOEXPERIMENT: 'synctest'
steps:
- uses: actions/checkout@v4
- uses: actions/setup-go@v5
- name: checkout
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # 4.2.2
- name: cache restore
uses: actions/cache/restore@1bd1e32a3bdc45362d1e726936510720a7c30a57 # v4.2.0
with:
# Note: unlike the other setups, this is only grabbing the mod download
# cache, rather than the whole mod directory, as the download cache
# contains zips that can be unpacked in parallel faster than they can be
# fetched and extracted by tar
path: |
~/.cache/go-build
~/go/pkg/mod/cache
~\AppData\Local\go-build
# NOTE: The -3- here should be incremented when the scheme of data to be
# cached changes (e.g. path above changes).
key: ${{ github.job }}-${{ runner.os }}-${{ matrix.goarch }}-${{ matrix.buildflags }}-go-3-${{ hashFiles('**/go.sum') }}-${{ github.run_id }}
restore-keys: |
${{ github.job }}-${{ runner.os }}-${{ matrix.goarch }}-${{ matrix.buildflags }}-go-3-${{ hashFiles('**/go.sum') }}
${{ github.job }}-${{ runner.os }}-${{ matrix.goarch }}-${{ matrix.buildflags }}-go-3-
- name: Setup Go
uses: actions/setup-go@v5
with:
# The caching strategy of setup-go is less than ideal, and wastes
# time by not saving artifacts due to small failures like the linter
# complaining, etc. This means subsequent have to rebuild their world
# again until all checks pass. For instance, if you mispell a word,
# you're punished until you fix it. This is more hostile than
# helpful.
cache: false
go-version-file: go.mod
# It is tempting to run this in a platform independent way, but the past
# shows this codebase will see introductions of platform specific code
# generation, and so we need to check this per platform to ensure we
# don't abuse go generate on specific platforms.
- name: check that 'go generate' is clean
if: always()
run: |
go generate ./...
git diff --name-only --exit-code || (echo "Please run 'go generate ./...'." && exit 1)
- name: go test
if: always()
run: go test -count=1 -benchtime=1x ./...
# TODO(bmizerany): replace this heavy tool with just the
# tools/checks/binaries we want and then make them all run in parallel
# across jobs, not on a single tiny vm on Github Actions.
- uses: golangci/golangci-lint-action@v6
with:
args: --timeout 10m0s -v
- run: go test ./...
- name: cache save
# Always save the cache, even if the job fails. The artifacts produced
# during the building of test binaries are not all for naught. They can
# be used to speed up subsequent runs.
if: always()
uses: actions/cache/save@1bd1e32a3bdc45362d1e726936510720a7c30a57 # v4.2.0
with:
# Note: unlike the other setups, this is only grabbing the mod download
# cache, rather than the whole mod directory, as the download cache
# contains zips that can be unpacked in parallel faster than they can be
# fetched and extracted by tar
path: |
~/.cache/go-build
~/go/pkg/mod/cache
~\AppData\Local\go-build
# NOTE: The -3- here should be incremented when the scheme of data to be
# cached changes (e.g. path above changes).
key: ${{ github.job }}-${{ runner.os }}-${{ matrix.goarch }}-${{ matrix.buildflags }}-go-3-${{ hashFiles('**/go.sum') }}-${{ github.run_id }}
patches:
runs-on: ubuntu-latest

2
.gitignore vendored
View File

@@ -5,7 +5,6 @@
.swp
dist
build
ollama
.cache
*.exe
.idea
@@ -14,3 +13,4 @@ test_data
__debug_bin*
llama/build
llama/vendor
/ollama

View File

@@ -6,8 +6,6 @@ linters:
- bidichk
- bodyclose
- containedctx
- contextcheck
- errcheck
- gocheckcompilerdirectives
- gofmt
- gofumpt
@@ -23,10 +21,11 @@ linters:
- staticcheck
- tenv
- unconvert
- unused
- usestdlibvars
- wastedassign
- whitespace
disable:
- usestdlibvars
- errcheck
linters-settings:
staticcheck:
checks:
@@ -39,5 +38,4 @@ severity:
- gofmt
- goimports
- intrange
- usestdlibvars
severity: info

View File

@@ -23,8 +23,9 @@ set(GGML_SCHED_MAX_COPIES 4)
set(GGML_LLAMAFILE ON)
set(GGML_CUDA_PEER_MAX_BATCH_SIZE 128)
set(GGML_CUDA_GRAPHS ON)
set(GGML_CUDA_FA ON)
if((NOT CMAKE_OSX_ARCHITECTURES MATCHES "arm64")
if((CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_OSX_ARCHITECTURES MATCHES "arm64")
OR (NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_SYSTEM_PROCESSOR MATCHES "arm|aarch64|ARM64|ARMv[0-9]+"))
set(GGML_CPU_ALL_VARIANTS ON)
endif()
@@ -104,6 +105,12 @@ if(CMAKE_HIP_COMPILER)
if(AMDGPU_TARGETS)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-hip)
if (WIN32)
target_compile_definitions(ggml-hip PRIVATE GGML_CUDA_NO_PEER_COPY)
endif()
target_compile_definitions(ggml-hip PRIVATE GGML_HIP_NO_VMM)
set(OLLAMA_HIP_INSTALL_DIR ${OLLAMA_INSTALL_DIR}/rocm)
install(TARGETS ggml-hip
RUNTIME_DEPENDENCIES

View File

@@ -21,14 +21,14 @@
"name": "CUDA 11",
"inherits": [ "CUDA" ],
"cacheVariables": {
"CMAKE_CUDA_ARCHITECTURES": "50;52;53;60;61;62;70;72;75;80;86"
"CMAKE_CUDA_ARCHITECTURES": "50;52;53;60;61;70;75;80;86"
}
},
{
"name": "CUDA 12",
"inherits": [ "CUDA" ],
"cacheVariables": {
"CMAKE_CUDA_ARCHITECTURES": "60;61;62;70;72;75;80;86;87;89;90;90a"
"CMAKE_CUDA_ARCHITECTURES": "50;60;61;70;75;80;86;87;89;90;90a;120"
}
},
{
@@ -56,7 +56,7 @@
"name": "ROCm 6",
"inherits": [ "ROCm" ],
"cacheVariables": {
"AMDGPU_TARGETS": "gfx900;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-"
"AMDGPU_TARGETS": "gfx900;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102;gfx1151;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-"
}
}
],

View File

@@ -6,8 +6,6 @@ Thank you for your interest in contributing to Ollama! Here are a few guidelines
See the [development documentation](./docs/development.md) for instructions on how to build and run Ollama locally.
## Pull requests
### Ideal issues
* [Bugs](https://github.com/ollama/ollama/issues?q=is%3Aissue+is%3Aopen+label%3Abug): issues where Ollama stops working or where it results in an unexpected error.
@@ -26,11 +24,64 @@ See the [development documentation](./docs/development.md) for instructions on h
* Changes that add significant friction to the user experience
* Changes that create a large future maintenance burden for maintainers and contributors
### Best practices
## Proposing a (non-trivial) change
* Commit messages: please leave both a title and a description in your commit messages. The title should be a short summary of the changes, with a leading word that explains the section of the code being changed (e.g. `api: fix parsing of prompt field`) . In the description, leave a short 2-3 sentences that explain more about the change and its impact.
* Tests: please add test coverage to changes where possible.
* Minimize dependencies: avoid adding new dependencies unless absolutely necessary.
> By "non-trivial", we mean a change that is not a bug fix or small
> documentation update. If you are unsure, please ask us on our [Discord
> server](https://discord.gg/ollama).
Before opening a non-trivial Pull Request, please open an issue to discuss the change and
get feedback from the maintainers. This helps us understand the context of the
change and how it fits into Ollama's roadmap and prevents us from duplicating
work or you from spending time on a change that we may not be able to accept.
Tips for proposals:
* Explain the problem you are trying to solve, not what you are trying to do.
* Explain why the change is important.
* Explain how the change will be used.
* Explain how the change will be tested.
Additionally, for bonus points: Provide draft documentation you would expect to
see if the change were accepted.
## Pull requests
**Commit messages**
The title should look like:
<package>: <short description>
The package is the most affected Go package. If the change does not affect Go
code, then use the directory name instead. Changes to a single well-known
file in the root directory may use the file name.
The short description should start with a lowercase letter and be a
continuation of the sentence:
"This changes Ollama to..."
Examples:
llm/backend/mlx: support the llama architecture
CONTRIBUTING: provide clairity on good commit messages, and bad
Bad Examples:
feat: add more emoji
fix: was not using famous web framework
chore: generify code
**Tests**
Please include tests. Strive to test behavior, not implementation.
**New dependencies**
Dependencies should be added sparingly. If you are adding a new dependency,
please explain why it is necessary and what other ways you attempted that
did not work without it.
## Need help?

View File

@@ -2,22 +2,24 @@
ARG FLAVOR=${TARGETARCH}
ARG ROCMVERSION=6.1.2
ARG ROCMVERSION=6.3.3
ARG JETPACK5VERSION=r35.4.1
ARG JETPACK6VERSION=r36.2.0
ARG JETPACK6VERSION=r36.4.0
ARG CMAKEVERSION=3.31.2
FROM --platform=linux/amd64 rocm/dev-centos-7:${ROCMVERSION}-complete AS base-amd64
RUN sed -i -e 's/mirror.centos.org/vault.centos.org/g' -e 's/^#.*baseurl=http/baseurl=http/g' -e 's/^mirrorlist=http/#mirrorlist=http/g' /etc/yum.repos.d/*.repo \
&& yum install -y yum-utils devtoolset-10-gcc devtoolset-10-gcc-c++ \
&& yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel7/x86_64/cuda-rhel7.repo \
&& curl -s -L https://github.com/ccache/ccache/releases/download/v4.10.2/ccache-4.10.2-linux-x86_64.tar.xz | tar -Jx -C /usr/local/bin --strip-components 1
ENV PATH=/opt/rh/devtoolset-10/root/usr/bin:/opt/rh/devtoolset-11/root/usr/bin:$PATH
# CUDA v11 requires gcc v10. v10.3 has regressions, so the rockylinux 8.5 AppStream has the latest compatible version
FROM --platform=linux/amd64 rocm/dev-almalinux-8:${ROCMVERSION}-complete AS base-amd64
RUN yum install -y yum-utils \
&& yum-config-manager --add-repo https://dl.rockylinux.org/vault/rocky/8.5/AppStream/\$basearch/os/ \
&& rpm --import https://dl.rockylinux.org/pub/rocky/RPM-GPG-KEY-Rocky-8 \
&& dnf install -y yum-utils ccache gcc-toolset-10-gcc-10.2.1-8.2.el8 gcc-toolset-10-gcc-c++-10.2.1-8.2.el8 gcc-toolset-10-binutils-2.35-11.el8 \
&& yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/x86_64/cuda-rhel8.repo
ENV PATH=/opt/rh/gcc-toolset-10/root/usr/bin:$PATH
FROM --platform=linux/arm64 rockylinux:8 AS base-arm64
FROM --platform=linux/arm64 almalinux:8 AS base-arm64
# install epel-release for ccache
RUN yum install -y yum-utils epel-release \
&& yum install -y clang ccache \
&& dnf install -y clang ccache \
&& yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/sbsa/cuda-rhel8.repo
ENV CC=clang CXX=clang++
@@ -29,9 +31,8 @@ COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
ENV LDFLAGS=-s
FROM base AS cpu
# amd64 uses gcc which requires devtoolset-11 for AVX extensions while arm64 uses clang
RUN if [ "$(uname -m)" = "x86_64" ]; then yum install -y devtoolset-11-gcc devtoolset-11-gcc-c++; fi
ENV PATH=/opt/rh/devtoolset-11/root/usr/bin:$PATH
RUN dnf install -y gcc-toolset-11-gcc gcc-toolset-11-gcc-c++
ENV PATH=/opt/rh/gcc-toolset-11/root/usr/bin:$PATH
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CPU' \
&& cmake --build --parallel --preset 'CPU' \
@@ -39,7 +40,7 @@ RUN --mount=type=cache,target=/root/.ccache \
FROM base AS cuda-11
ARG CUDA11VERSION=11.3
RUN yum install -y cuda-toolkit-${CUDA11VERSION//./-}
RUN dnf install -y cuda-toolkit-${CUDA11VERSION//./-}
ENV PATH=/usr/local/cuda-11/bin:$PATH
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CUDA 11' \
@@ -47,8 +48,8 @@ RUN --mount=type=cache,target=/root/.ccache \
&& cmake --install build --component CUDA --strip --parallel 8
FROM base AS cuda-12
ARG CUDA12VERSION=12.4
RUN yum install -y cuda-toolkit-${CUDA12VERSION//./-}
ARG CUDA12VERSION=12.8
RUN dnf install -y cuda-toolkit-${CUDA12VERSION//./-}
ENV PATH=/usr/local/cuda-12/bin:$PATH
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CUDA 12' \
@@ -56,6 +57,7 @@ RUN --mount=type=cache,target=/root/.ccache \
&& cmake --install build --component CUDA --strip --parallel 8
FROM base AS rocm-6
ENV PATH=/opt/rocm/hcc/bin:/opt/rocm/hip/bin:/opt/rocm/bin:/opt/rocm/hcc/bin:$PATH
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'ROCm 6' \
&& cmake --build --parallel --preset 'ROCm 6' \
@@ -84,10 +86,11 @@ RUN --mount=type=cache,target=/root/.ccache \
&& cmake --install build --component CUDA --strip --parallel 8
FROM base AS build
ARG GOVERSION=1.23.4
RUN curl -fsSL https://golang.org/dl/go${GOVERSION}.linux-$(case $(uname -m) in x86_64) echo amd64 ;; aarch64) echo arm64 ;; esac).tar.gz | tar xz -C /usr/local
ENV PATH=/usr/local/go/bin:$PATH
WORKDIR /go/src/github.com/ollama/ollama
COPY go.mod go.sum .
RUN curl -fsSL https://golang.org/dl/go$(awk '/^go/ { print $2 }' go.mod).linux-$(case $(uname -m) in x86_64) echo amd64 ;; aarch64) echo arm64 ;; esac).tar.gz | tar xz -C /usr/local
ENV PATH=/usr/local/go/bin:$PATH
RUN go mod download
COPY . .
ARG GOFLAGS="'-ldflags=-w -s'"
ENV CGO_ENABLED=1
@@ -104,7 +107,7 @@ COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12
COPY --from=jetpack-5 dist/lib/ollama/cuda_v11 lib/ollama/cuda_jetpack5
COPY --from=jetpack-6 dist/lib/ollama/cuda_v12 lib/ollama/cuda_jetpack6
FROM --platform=linux/arm64 scratch AS rocm
FROM scratch AS rocm
COPY --from=rocm-6 dist/lib/ollama/rocm /lib/ollama/rocm
FROM ${FLAVOR} AS archive

View File

@@ -1,6 +1,6 @@
UPSTREAM=https://github.com/ggerganov/llama.cpp.git
WORKDIR=llama/vendor
FETCH_HEAD=46e3556e01b824e52395fb050b29804b6cff2a7c
FETCH_HEAD=d7cfe1ffe0f435d0048a6058d529daf76e072d9c
.PHONY: help
help:

View File

@@ -1,5 +1,5 @@
<div align="center">
  <a href="https://ollama.com" />
  <a href="https://ollama.com">
<img alt="ollama" height="200px" src="https://github.com/ollama/ollama/assets/3325447/0d0b44e2-8f4a-4e99-9b52-a5c1c741c8f7">
</a>
</div>
@@ -54,6 +54,11 @@ Here are some example models that can be downloaded:
| Model | Parameters | Size | Download |
| ------------------ | ---------- | ----- | -------------------------------- |
| Gemma 3 | 1B | 815MB | `ollama run gemma3:1b` |
| Gemma 3 | 4B | 3.3GB | `ollama run gemma3` |
| Gemma 3 | 12B | 8.1GB | `ollama run gemma3:12b` |
| Gemma 3 | 27B | 17GB | `ollama run gemma3:27b` |
| QwQ | 32B | 20GB | `ollama run qwq` |
| DeepSeek-R1 | 7B | 4.7GB | `ollama run deepseek-r1` |
| DeepSeek-R1 | 671B | 404GB | `ollama run deepseek-r1:671b` |
| Llama 3.3 | 70B | 43GB | `ollama run llama3.3` |
@@ -64,10 +69,7 @@ Here are some example models that can be downloaded:
| Llama 3.1 | 8B | 4.7GB | `ollama run llama3.1` |
| Llama 3.1 | 405B | 231GB | `ollama run llama3.1:405b` |
| Phi 4 | 14B | 9.1GB | `ollama run phi4` |
| Phi 3 Mini | 3.8B | 2.3GB | `ollama run phi3` |
| Gemma 2 | 2B | 1.6GB | `ollama run gemma2:2b` |
| Gemma 2 | 9B | 5.5GB | `ollama run gemma2` |
| Gemma 2 | 27B | 16GB | `ollama run gemma2:27b` |
| Phi 4 Mini | 3.8B | 2.5GB | `ollama run phi4-mini` |
| Mistral | 7B | 4.1GB | `ollama run mistral` |
| Moondream 2 | 1.4B | 829MB | `ollama run moondream` |
| Neural Chat | 7B | 4.1GB | `ollama run neural-chat` |
@@ -75,7 +77,7 @@ Here are some example models that can be downloaded:
| Code Llama | 7B | 3.8GB | `ollama run codellama` |
| Llama 2 Uncensored | 7B | 3.8GB | `ollama run llama2-uncensored` |
| LLaVA | 7B | 4.5GB | `ollama run llava` |
| Solar | 10.7B | 6.1GB | `ollama run solar` |
| Granite-3.2 | 8B | 4.9GB | `ollama run granite3.2` |
> [!NOTE]
> You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
@@ -275,6 +277,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
### Web & Desktop
- [Open WebUI](https://github.com/open-webui/open-webui)
- [SwiftChat (macOS with ReactNative)](https://github.com/aws-samples/swift-chat)
- [Enchanted (macOS native)](https://github.com/AugustDev/enchanted)
- [Hollama](https://github.com/fmaclen/hollama)
- [Lollms-Webui](https://github.com/ParisNeo/lollms-webui)
@@ -380,6 +383,17 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Chipper](https://github.com/TilmanGriesel/chipper) AI interface for tinkerers (Ollama, Haystack RAG, Python)
- [ChibiChat](https://github.com/CosmicEventHorizon/ChibiChat) (Kotlin-based Android app to chat with Ollama and Koboldcpp API endpoints)
- [LocalLLM](https://github.com/qusaismael/localllm) (Minimal Web-App to run ollama models on it with a GUI)
- [Ollamazing](https://github.com/buiducnhat/ollamazing) (Web extension to run Ollama models)
- [OpenDeepResearcher-via-searxng](https://github.com/benhaotang/OpenDeepResearcher-via-searxng) (A Deep Research equivent endpoint with Ollama support for running locally)
- [AntSK](https://github.com/AIDotNet/AntSK) (Out-of-the-box & Adaptable RAG Chatbot)
- [MaxKB](https://github.com/1Panel-dev/MaxKB/) (Ready-to-use & flexible RAG Chatbot)
- [yla](https://github.com/danielekp/yla) (Web interface to freely interact with your customized models)
- [LangBot](https://github.com/RockChinQ/LangBot) (LLM-based instant messaging bots platform, with Agents, RAG features, supports multiple platforms)
- [1Panel](https://github.com/1Panel-dev/1Panel/) (Web-based Linux Server Management Tool)
- [AstrBot](https://github.com/Soulter/AstrBot/) (User-friendly LLM-based multi-platform chatbot with a WebUI, supporting RAG, LLM agents, and plugins integration)
- [Reins](https://github.com/ibrahimcetin/reins) (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)
- [Ellama](https://github.com/zeozeozeo/ellama) (Friendly native app to chat with an Ollama instance)
- [screenpipe](https://github.com/mediar-ai/screenpipe) Build agents powered by your screen history
### Cloud
@@ -423,6 +437,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
### Apple Vision Pro
- [SwiftChat](https://github.com/aws-samples/swift-chat) (Cross-platform AI chat app supporting Apple Vision Pro via "Designed for iPad")
- [Enchanted](https://github.com/AugustDev/enchanted)
### Database
@@ -437,9 +452,10 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Pacman](https://archlinux.org/packages/extra/x86_64/ollama/)
- [Gentoo](https://github.com/gentoo/guru/tree/master/app-misc/ollama)
- [Homebrew](https://formulae.brew.sh/formula/ollama)
- [Helm Chart](https://artifacthub.io/packages/helm/ollama-helm/ollama)
- [Guix channel](https://codeberg.org/tusharhero/ollama-guix)
- [Nix package](https://search.nixos.org/packages?channel=24.05&show=ollama&from=0&size=50&sort=relevance&type=packages&query=ollama)
- [Nix package](https://search.nixos.org/packages?show=ollama&from=0&size=50&sort=relevance&type=packages&query=ollama)
- [Flox](https://flox.dev/blog/ollama-part-one)
### Libraries
@@ -494,14 +510,18 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [multi-llm-ts](https://github.com/nbonamy/multi-llm-ts) (A Typescript/JavaScript library allowing access to different LLM in unified API)
- [LlmTornado](https://github.com/lofcz/llmtornado) (C# library providing a unified interface for major FOSS & Commercial inference APIs)
- [Ollama for Zig](https://github.com/dravenk/ollama-zig)
- [Abso](https://github.com/lunary-ai/abso/blob/main/README.md#ollama) (OpenAI-compatible TypeScript SDK for any LLM provider)
- [Abso](https://github.com/lunary-ai/abso) (OpenAI-compatible TypeScript SDK for any LLM provider)
- [Nichey](https://github.com/goodreasonai/nichey) is a Python package for generating custom wikis for your research topic
### Mobile
- [SwiftChat](https://github.com/aws-samples/swift-chat) (Lightning-fast Cross-platform AI chat app with native UI for Android, iOS and iPad)
- [Enchanted](https://github.com/AugustDev/enchanted)
- [Maid](https://github.com/Mobile-Artificial-Intelligence/maid)
- [Ollama App](https://github.com/JHubi1/ollama-app) (Modern and easy-to-use multi-platform client for Ollama)
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)
- [Ollama Android Chat](https://github.com/sunshine0523/OllamaServer) (No need for Termux, start the Ollama service with one click on an Android device)
- [Reins](https://github.com/ibrahimcetin/reins) (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)
### Extensions & Plugins
@@ -546,12 +566,15 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Alfred Ollama](https://github.com/zeitlings/alfred-ollama) (Alfred Workflow)
- [TextLLaMA](https://github.com/adarshM84/TextLLaMA) A Chrome Extension that helps you write emails, correct grammar, and translate into any language
- [Simple-Discord-AI](https://github.com/zyphixor/simple-discord-ai)
- [LLM Telegram Bot](https://github.com/innightwolfsleep/llm_telegram_bot) (telegram bot, primary for RP. Oobabooga-like buttons, [A1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui) API integration e.t.c)
- [mcp-llm](https://github.com/sammcj/mcp-llm) (MCP Server to allow LLMs to call other LLMs)
### Supported backends
- [llama.cpp](https://github.com/ggerganov/llama.cpp) project founded by Georgi Gerganov.
### Observability
- [Opik](https://www.comet.com/docs/opik/cookbook/ollama) is an open-source platform to debug, evaluate, and monitor your LLM applications, RAG systems, and agentic workflows with comprehensive tracing, automated evaluations, and production-ready dashboards. Opik supports native intergration to Ollama.
- [Lunary](https://lunary.ai/docs/integrations/ollama) is the leading open-source LLM observability platform. It provides a variety of enterprise-grade features such as real-time analytics, prompt templates management, PII masking, and comprehensive agent tracing.
- [OpenLIT](https://github.com/openlit/openlit) is an OpenTelemetry-native tool for monitoring Ollama Applications & GPUs using traces and metrics.
- [HoneyHive](https://docs.honeyhive.ai/integrations/ollama) is an AI observability and evaluation platform for AI agents. Use HoneyHive to evaluate agent performance, interrogate failures, and monitor quality in production.

View File

@@ -10,7 +10,7 @@
// repository].
//
// [the API documentation]: https://github.com/ollama/ollama/blob/main/docs/api.md
// [in the GitHub repository]: https://github.com/ollama/ollama/tree/main/examples
// [in the GitHub repository]: https://github.com/ollama/ollama/tree/main/api/examples
package api
import (
@@ -132,7 +132,7 @@ func (c *Client) do(ctx context.Context, method, path string, reqData, respData
const maxBufferSize = 512 * format.KiloByte
func (c *Client) stream(ctx context.Context, method, path string, data any, fn func([]byte) error) error {
var buf *bytes.Buffer
var buf io.Reader
if data != nil {
bts, err := json.Marshal(data)
if err != nil {

View File

@@ -1,6 +1,13 @@
package api
import (
"context"
"encoding/json"
"fmt"
"net/http"
"net/http/httptest"
"net/url"
"strings"
"testing"
)
@@ -43,3 +50,206 @@ func TestClientFromEnvironment(t *testing.T) {
})
}
}
// testError represents an internal error type with status code and message
// this is used since the error response from the server is not a standard error struct
type testError struct {
message string
statusCode int
}
func (e testError) Error() string {
return e.message
}
func TestClientStream(t *testing.T) {
testCases := []struct {
name string
responses []any
wantErr string
}{
{
name: "immediate error response",
responses: []any{
testError{
message: "test error message",
statusCode: http.StatusBadRequest,
},
},
wantErr: "test error message",
},
{
name: "error after successful chunks, ok response",
responses: []any{
ChatResponse{Message: Message{Content: "partial response 1"}},
ChatResponse{Message: Message{Content: "partial response 2"}},
testError{
message: "mid-stream error",
statusCode: http.StatusOK,
},
},
wantErr: "mid-stream error",
},
{
name: "successful stream completion",
responses: []any{
ChatResponse{Message: Message{Content: "chunk 1"}},
ChatResponse{Message: Message{Content: "chunk 2"}},
ChatResponse{
Message: Message{Content: "final chunk"},
Done: true,
DoneReason: "stop",
},
},
},
}
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
ts := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
flusher, ok := w.(http.Flusher)
if !ok {
t.Fatal("expected http.Flusher")
}
w.Header().Set("Content-Type", "application/x-ndjson")
for _, resp := range tc.responses {
if errResp, ok := resp.(testError); ok {
w.WriteHeader(errResp.statusCode)
err := json.NewEncoder(w).Encode(map[string]string{
"error": errResp.message,
})
if err != nil {
t.Fatal("failed to encode error response:", err)
}
return
}
if err := json.NewEncoder(w).Encode(resp); err != nil {
t.Fatalf("failed to encode response: %v", err)
}
flusher.Flush()
}
}))
defer ts.Close()
client := NewClient(&url.URL{Scheme: "http", Host: ts.Listener.Addr().String()}, http.DefaultClient)
var receivedChunks []ChatResponse
err := client.stream(context.Background(), http.MethodPost, "/v1/chat", nil, func(chunk []byte) error {
var resp ChatResponse
if err := json.Unmarshal(chunk, &resp); err != nil {
return fmt.Errorf("failed to unmarshal chunk: %w", err)
}
receivedChunks = append(receivedChunks, resp)
return nil
})
if tc.wantErr != "" {
if err == nil {
t.Fatal("expected error but got nil")
}
if !strings.Contains(err.Error(), tc.wantErr) {
t.Errorf("expected error containing %q, got %v", tc.wantErr, err)
}
return
}
if err != nil {
t.Errorf("unexpected error: %v", err)
}
})
}
}
func TestClientDo(t *testing.T) {
testCases := []struct {
name string
response any
wantErr string
}{
{
name: "immediate error response",
response: testError{
message: "test error message",
statusCode: http.StatusBadRequest,
},
wantErr: "test error message",
},
{
name: "server error response",
response: testError{
message: "internal error",
statusCode: http.StatusInternalServerError,
},
wantErr: "internal error",
},
{
name: "successful response",
response: struct {
ID string `json:"id"`
Success bool `json:"success"`
}{
ID: "msg_123",
Success: true,
},
},
}
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
ts := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
if errResp, ok := tc.response.(testError); ok {
w.WriteHeader(errResp.statusCode)
err := json.NewEncoder(w).Encode(map[string]string{
"error": errResp.message,
})
if err != nil {
t.Fatal("failed to encode error response:", err)
}
return
}
w.Header().Set("Content-Type", "application/json")
if err := json.NewEncoder(w).Encode(tc.response); err != nil {
t.Fatalf("failed to encode response: %v", err)
}
}))
defer ts.Close()
client := NewClient(&url.URL{Scheme: "http", Host: ts.Listener.Addr().String()}, http.DefaultClient)
var resp struct {
ID string `json:"id"`
Success bool `json:"success"`
}
err := client.do(context.Background(), http.MethodPost, "/v1/messages", nil, &resp)
if tc.wantErr != "" {
if err == nil {
t.Fatalf("got nil, want error %q", tc.wantErr)
}
if err.Error() != tc.wantErr {
t.Errorf("error message mismatch: got %q, want %q", err.Error(), tc.wantErr)
}
return
}
if err != nil {
t.Fatalf("got error %q, want nil", err)
}
if expectedResp, ok := tc.response.(struct {
ID string `json:"id"`
Success bool `json:"success"`
}); ok {
if resp.ID != expectedResp.ID {
t.Errorf("response ID mismatch: got %q, want %q", resp.ID, expectedResp.ID)
}
if resp.Success != expectedResp.Success {
t.Errorf("response Success mismatch: got %v, want %v", resp.Success, expectedResp.Success)
}
}
})
}
}

View File

@@ -10,6 +10,8 @@ import (
"strconv"
"strings"
"time"
"github.com/ollama/ollama/envconfig"
)
// StatusError is an error with an HTTP status code and message.
@@ -347,6 +349,7 @@ type ShowResponse struct {
Messages []Message `json:"messages,omitempty"`
ModelInfo map[string]any `json:"model_info,omitempty"`
ProjectorInfo map[string]any `json:"projector_info,omitempty"`
Tensors []Tensor `json:"tensors,omitempty"`
ModifiedAt time.Time `json:"modified_at,omitempty"`
}
@@ -359,9 +362,9 @@ type CopyRequest struct {
// PullRequest is the request passed to [Client.Pull].
type PullRequest struct {
Model string `json:"model"`
Insecure bool `json:"insecure,omitempty"`
Username string `json:"username"`
Password string `json:"password"`
Insecure bool `json:"insecure,omitempty"` // Deprecated: ignored
Username string `json:"username"` // Deprecated: ignored
Password string `json:"password"` // Deprecated: ignored
Stream *bool `json:"stream,omitempty"`
// Deprecated: set the model name with Model instead
@@ -465,6 +468,13 @@ type ModelDetails struct {
QuantizationLevel string `json:"quantization_level"`
}
// Tensor describes the metadata for a given tensor.
type Tensor struct {
Name string `json:"name"`
Type string `json:"type"`
Shape []uint64 `json:"shape"`
}
func (m *Metrics) Summary() {
if m.TotalDuration > 0 {
fmt.Fprintf(os.Stderr, "total duration: %v\n", m.TotalDuration)
@@ -609,7 +619,7 @@ func DefaultOptions() Options {
Runner: Runner{
// options set when the model is loaded
NumCtx: 2048,
NumCtx: int(envconfig.ContextLength()),
NumBatch: 512,
NumGPU: -1, // -1 here indicates that NumGPU should be set dynamically
NumThread: 0, // let the runtime decide

View File

@@ -0,0 +1,178 @@
package benchmark
import (
"context"
"flag"
"fmt"
"testing"
"time"
"github.com/ollama/ollama/api"
)
// Command line flags
var modelFlag string
func init() {
flag.StringVar(&modelFlag, "m", "", "Name of the model to benchmark")
flag.Lookup("m").DefValue = "model"
}
// modelName returns the model name from flags, failing the test if not set
func modelName(b *testing.B) string {
if modelFlag == "" {
b.Fatal("Error: -m flag is required for benchmark tests")
}
return modelFlag
}
type TestCase struct {
name string
prompt string
maxTokens int
}
// runGenerateBenchmark contains the common generate and metrics logic
func runGenerateBenchmark(b *testing.B, ctx context.Context, client *api.Client, req *api.GenerateRequest) {
start := time.Now()
var ttft time.Duration
var metrics api.Metrics
err := client.Generate(ctx, req, func(resp api.GenerateResponse) error {
if ttft == 0 && resp.Response != "" {
ttft = time.Since(start)
}
if resp.Done {
metrics = resp.Metrics
}
return nil
})
// Report custom metrics as part of the benchmark results
b.ReportMetric(float64(ttft.Milliseconds()), "ttft_ms")
b.ReportMetric(float64(metrics.LoadDuration.Milliseconds()), "load_ms")
// Token throughput metrics
promptThroughput := float64(metrics.PromptEvalCount) / metrics.PromptEvalDuration.Seconds()
genThroughput := float64(metrics.EvalCount) / metrics.EvalDuration.Seconds()
b.ReportMetric(promptThroughput, "prompt_tok/s")
b.ReportMetric(genThroughput, "gen_tok/s")
// Token counts
b.ReportMetric(float64(metrics.PromptEvalCount), "prompt_tokens")
b.ReportMetric(float64(metrics.EvalCount), "gen_tokens")
if err != nil {
b.Fatal(err)
}
}
// BenchmarkColdStart runs benchmarks with model loading from cold state
func BenchmarkColdStart(b *testing.B) {
client := setup(b)
tests := []TestCase{
{"short_prompt", "Write a long story", 100},
{"medium_prompt", "Write a detailed economic analysis", 500},
{"long_prompt", "Write a comprehensive AI research paper", 1000},
}
m := modelName(b)
for _, tt := range tests {
b.Run(fmt.Sprintf("%s/cold/%s", m, tt.name), func(b *testing.B) {
ctx := context.Background()
// Set number of tokens as our throughput metric
b.SetBytes(int64(tt.maxTokens))
for b.Loop() {
b.StopTimer()
// Ensure model is unloaded before each iteration
unload(client, m, b)
b.StartTimer()
req := &api.GenerateRequest{
Model: m,
Prompt: tt.prompt,
Options: map[string]interface{}{"num_predict": tt.maxTokens, "temperature": 0.1},
}
runGenerateBenchmark(b, ctx, client, req)
}
})
}
}
// BenchmarkWarmStart runs benchmarks with pre-loaded model
func BenchmarkWarmStart(b *testing.B) {
client := setup(b)
tests := []TestCase{
{"short_prompt", "Write a long story", 100},
{"medium_prompt", "Write a detailed economic analysis", 500},
{"long_prompt", "Write a comprehensive AI research paper", 1000},
}
m := modelName(b)
for _, tt := range tests {
b.Run(fmt.Sprintf("%s/warm/%s", m, tt.name), func(b *testing.B) {
ctx := context.Background()
// Pre-warm the model
warmup(client, m, tt.prompt, b)
// Set number of tokens as our throughput metric
b.SetBytes(int64(tt.maxTokens))
for b.Loop() {
req := &api.GenerateRequest{
Model: m,
Prompt: tt.prompt,
Options: map[string]any{"num_predict": tt.maxTokens, "temperature": 0.1},
}
runGenerateBenchmark(b, ctx, client, req)
}
})
}
}
// setup verifies server and model availability
func setup(b *testing.B) *api.Client {
client, err := api.ClientFromEnvironment()
if err != nil {
b.Fatal(err)
}
if _, err := client.Show(context.Background(), &api.ShowRequest{Model: modelName(b)}); err != nil {
b.Fatalf("Model unavailable: %v", err)
}
return client
}
// warmup ensures the model is loaded and warmed up
func warmup(client *api.Client, model string, prompt string, b *testing.B) {
for range 3 {
err := client.Generate(
context.Background(),
&api.GenerateRequest{
Model: model,
Prompt: prompt,
Options: map[string]interface{}{"num_predict": 50, "temperature": 0.1},
},
func(api.GenerateResponse) error { return nil },
)
if err != nil {
b.Logf("Error during model warm-up: %v", err)
}
}
}
// unload forces model unloading using KeepAlive: 0 parameter
func unload(client *api.Client, model string, b *testing.B) {
req := &api.GenerateRequest{
Model: model,
KeepAlive: &api.Duration{Duration: 0},
}
if err := client.Generate(context.Background(), req, func(api.GenerateResponse) error { return nil }); err != nil {
b.Logf("Unload error: %v", err)
}
time.Sleep(1 * time.Second)
}

View File

@@ -18,6 +18,7 @@ import (
"os/signal"
"path/filepath"
"runtime"
"sort"
"strconv"
"strings"
"sync/atomic"
@@ -34,10 +35,9 @@ import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/llama"
"github.com/ollama/ollama/llama/runner"
"github.com/ollama/ollama/parser"
"github.com/ollama/ollama/progress"
"github.com/ollama/ollama/runner"
"github.com/ollama/ollama/server"
"github.com/ollama/ollama/types/model"
"github.com/ollama/ollama/version"
@@ -256,6 +256,7 @@ func StopHandler(cmd *cobra.Command, args []string) error {
if strings.Contains(err.Error(), "not found") {
return fmt.Errorf("couldn't find model \"%s\" to stop", args[0])
}
return err
}
return nil
}
@@ -338,7 +339,16 @@ func RunHandler(cmd *cobra.Command, args []string) error {
return err
}
opts.MultiModal = len(info.ProjectorInfo) != 0
if len(info.ProjectorInfo) != 0 {
opts.MultiModal = true
}
for k := range info.ModelInfo {
if strings.Contains(k, ".vision.") {
opts.MultiModal = true
break
}
}
opts.ParentModel = info.Details.ParentModel
if interactive {
@@ -559,8 +569,9 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
parameters, errParams := cmd.Flags().GetBool("parameters")
system, errSystem := cmd.Flags().GetBool("system")
template, errTemplate := cmd.Flags().GetBool("template")
verbose, errVerbose := cmd.Flags().GetBool("verbose")
for _, boolErr := range []error{errLicense, errModelfile, errParams, errSystem, errTemplate} {
for _, boolErr := range []error{errLicense, errModelfile, errParams, errSystem, errTemplate, errVerbose} {
if boolErr != nil {
return errors.New("error retrieving flags")
}
@@ -598,7 +609,7 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
return errors.New("only one of '--license', '--modelfile', '--parameters', '--system', or '--template' can be specified")
}
req := api.ShowRequest{Name: args[0]}
req := api.ShowRequest{Name: args[0], Verbose: verbose}
resp, err := client.Show(cmd.Context(), &req)
if err != nil {
return err
@@ -621,10 +632,10 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
return nil
}
return showInfo(resp, os.Stdout)
return showInfo(resp, verbose, os.Stdout)
}
func showInfo(resp *api.ShowResponse, w io.Writer) error {
func showInfo(resp *api.ShowResponse, verbose bool, w io.Writer) error {
tableRender := func(header string, rows func() [][]string) {
fmt.Fprintln(w, " ", header)
table := tablewriter.NewWriter(w)
@@ -681,6 +692,47 @@ func showInfo(resp *api.ShowResponse, w io.Writer) error {
})
}
if resp.ModelInfo != nil && verbose {
tableRender("Metadata", func() (rows [][]string) {
keys := make([]string, 0, len(resp.ModelInfo))
for k := range resp.ModelInfo {
keys = append(keys, k)
}
sort.Strings(keys)
for _, k := range keys {
var v string
switch vData := resp.ModelInfo[k].(type) {
case bool:
v = fmt.Sprintf("%t", vData)
case string:
v = vData
case float64:
v = fmt.Sprintf("%g", vData)
case []any:
n := 3
if len(vData) < n {
n = len(vData)
}
v = fmt.Sprintf("%v", vData[:n])
default:
v = fmt.Sprintf("%T", vData)
}
rows = append(rows, []string{"", k, v})
}
return
})
}
if len(resp.Tensors) > 0 && verbose {
tableRender("Tensors", func() (rows [][]string) {
for _, t := range resp.Tensors {
rows = append(rows, []string{"", t.Name, t.Type, fmt.Sprint(t.Shape)})
}
return
})
}
head := func(s string, n int) (rows [][]string) {
scanner := bufio.NewScanner(strings.NewReader(s))
for scanner.Scan() && (len(rows) < n || n < 0) {
@@ -1187,6 +1239,7 @@ func NewCLI() *cobra.Command {
showCmd.Flags().Bool("parameters", false, "Show parameters of a model")
showCmd.Flags().Bool("template", false, "Show template of a model")
showCmd.Flags().Bool("system", false, "Show system message of a model")
showCmd.Flags().BoolP("verbose", "v", false, "Show detailed model information")
runCmd := &cobra.Command{
Use: "run MODEL [PROMPT]",
@@ -1271,7 +1324,6 @@ func NewCLI() *cobra.Command {
runnerCmd := &cobra.Command{
Use: "runner",
Short: llama.PrintSystemInfo(),
Hidden: true,
RunE: func(cmd *cobra.Command, args []string) error {
return runner.Execute(os.Args[1:])

View File

@@ -10,6 +10,7 @@ import (
"os"
"strings"
"testing"
"time"
"github.com/google/go-cmp/cmp"
"github.com/spf13/cobra"
@@ -26,7 +27,7 @@ func TestShowInfo(t *testing.T) {
ParameterSize: "7B",
QuantizationLevel: "FP16",
},
}, &b); err != nil {
}, false, &b); err != nil {
t.Fatal(err)
}
@@ -56,7 +57,7 @@ func TestShowInfo(t *testing.T) {
ParameterSize: "7B",
QuantizationLevel: "FP16",
},
}, &b); err != nil {
}, false, &b); err != nil {
t.Fatal(err)
}
@@ -67,6 +68,60 @@ func TestShowInfo(t *testing.T) {
embedding length 0
quantization FP16
`
if diff := cmp.Diff(expect, b.String()); diff != "" {
t.Errorf("unexpected output (-want +got):\n%s", diff)
}
})
t.Run("verbose model", func(t *testing.T) {
var b bytes.Buffer
if err := showInfo(&api.ShowResponse{
Details: api.ModelDetails{
Family: "test",
ParameterSize: "8B",
QuantizationLevel: "FP16",
},
Parameters: `
stop up`,
ModelInfo: map[string]any{
"general.architecture": "test",
"general.parameter_count": float64(8_000_000_000),
"some.true_bool": true,
"some.false_bool": false,
"test.context_length": float64(1000),
"test.embedding_length": float64(11434),
},
Tensors: []api.Tensor{
{Name: "blk.0.attn_k.weight", Type: "BF16", Shape: []uint64{42, 3117}},
{Name: "blk.0.attn_q.weight", Type: "FP16", Shape: []uint64{3117, 42}},
},
}, true, &b); err != nil {
t.Fatal(err)
}
expect := ` Model
architecture test
parameters 8B
context length 1000
embedding length 11434
quantization FP16
Parameters
stop up
Metadata
general.architecture test
general.parameter_count 8e+09
some.false_bool false
some.true_bool true
test.context_length 1000
test.embedding_length 11434
Tensors
blk.0.attn_k.weight BF16 [42 3117]
blk.0.attn_q.weight FP16 [3117 42]
`
if diff := cmp.Diff(expect, b.String()); diff != "" {
t.Errorf("unexpected output (-want +got):\n%s", diff)
@@ -88,7 +143,7 @@ func TestShowInfo(t *testing.T) {
stop you
stop up
temperature 99`,
}, &b); err != nil {
}, false, &b); err != nil {
t.Fatal(err)
}
@@ -125,7 +180,7 @@ func TestShowInfo(t *testing.T) {
"clip.vision.embedding_length": float64(0),
"clip.vision.projection_dim": float64(0),
},
}, &b); err != nil {
}, false, &b); err != nil {
t.Fatal(err)
}
@@ -158,7 +213,7 @@ func TestShowInfo(t *testing.T) {
Ahoy, matey!
Weigh anchor!
`,
}, &b); err != nil {
}, false, &b); err != nil {
t.Fatal(err)
}
@@ -187,7 +242,7 @@ Weigh anchor!
QuantizationLevel: "FP16",
},
License: license,
}, &b); err != nil {
}, false, &b); err != nil {
t.Fatal(err)
}
@@ -490,6 +545,96 @@ func TestPushHandler(t *testing.T) {
}
}
func TestListHandler(t *testing.T) {
tests := []struct {
name string
args []string
serverResponse []api.ListModelResponse
expectedError string
expectedOutput string
}{
{
name: "list all models",
args: []string{},
serverResponse: []api.ListModelResponse{
{Name: "model1", Digest: "sha256:abc123", Size: 1024, ModifiedAt: time.Now().Add(-24 * time.Hour)},
{Name: "model2", Digest: "sha256:def456", Size: 2048, ModifiedAt: time.Now().Add(-48 * time.Hour)},
},
expectedOutput: "NAME ID SIZE MODIFIED \n" +
"model1 sha256:abc12 1.0 KB 24 hours ago \n" +
"model2 sha256:def45 2.0 KB 2 days ago \n",
},
{
name: "filter models by prefix",
args: []string{"model1"},
serverResponse: []api.ListModelResponse{
{Name: "model1", Digest: "sha256:abc123", Size: 1024, ModifiedAt: time.Now().Add(-24 * time.Hour)},
{Name: "model2", Digest: "sha256:def456", Size: 2048, ModifiedAt: time.Now().Add(-24 * time.Hour)},
},
expectedOutput: "NAME ID SIZE MODIFIED \n" +
"model1 sha256:abc12 1.0 KB 24 hours ago \n",
},
{
name: "server error",
args: []string{},
expectedError: "server error",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
mockServer := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
if r.URL.Path != "/api/tags" || r.Method != http.MethodGet {
t.Errorf("unexpected request to %s %s", r.Method, r.URL.Path)
http.Error(w, "not found", http.StatusNotFound)
return
}
if tt.expectedError != "" {
http.Error(w, tt.expectedError, http.StatusInternalServerError)
return
}
response := api.ListResponse{Models: tt.serverResponse}
if err := json.NewEncoder(w).Encode(response); err != nil {
t.Fatal(err)
}
}))
defer mockServer.Close()
t.Setenv("OLLAMA_HOST", mockServer.URL)
cmd := &cobra.Command{}
cmd.SetContext(context.TODO())
// Capture stdout
oldStdout := os.Stdout
r, w, _ := os.Pipe()
os.Stdout = w
err := ListHandler(cmd, tt.args)
// Restore stdout and get output
w.Close()
os.Stdout = oldStdout
output, _ := io.ReadAll(r)
if tt.expectedError == "" {
if err != nil {
t.Errorf("expected no error, got %v", err)
}
if got := string(output); got != tt.expectedOutput {
t.Errorf("expected output:\n%s\ngot:\n%s", tt.expectedOutput, got)
}
} else {
if err == nil || !strings.Contains(err.Error(), tt.expectedError) {
t.Errorf("expected error containing %q, got %v", tt.expectedError, err)
}
}
})
}
}
func TestCreateHandler(t *testing.T) {
tests := []struct {
name string
@@ -616,3 +761,132 @@ func TestCreateHandler(t *testing.T) {
})
}
}
func TestNewCreateRequest(t *testing.T) {
tests := []struct {
name string
from string
opts runOptions
expected *api.CreateRequest
}{
{
"basic test",
"newmodel",
runOptions{
Model: "mymodel",
ParentModel: "",
Prompt: "You are a fun AI agent",
Messages: []api.Message{},
WordWrap: true,
},
&api.CreateRequest{
From: "mymodel",
Model: "newmodel",
},
},
{
"parent model test",
"newmodel",
runOptions{
Model: "mymodel",
ParentModel: "parentmodel",
Messages: []api.Message{},
WordWrap: true,
},
&api.CreateRequest{
From: "parentmodel",
Model: "newmodel",
},
},
{
"parent model as filepath test",
"newmodel",
runOptions{
Model: "mymodel",
ParentModel: "/some/file/like/etc/passwd",
Messages: []api.Message{},
WordWrap: true,
},
&api.CreateRequest{
From: "mymodel",
Model: "newmodel",
},
},
{
"parent model as windows filepath test",
"newmodel",
runOptions{
Model: "mymodel",
ParentModel: "D:\\some\\file\\like\\etc\\passwd",
Messages: []api.Message{},
WordWrap: true,
},
&api.CreateRequest{
From: "mymodel",
Model: "newmodel",
},
},
{
"options test",
"newmodel",
runOptions{
Model: "mymodel",
ParentModel: "parentmodel",
Options: map[string]any{
"temperature": 1.0,
},
},
&api.CreateRequest{
From: "parentmodel",
Model: "newmodel",
Parameters: map[string]any{
"temperature": 1.0,
},
},
},
{
"messages test",
"newmodel",
runOptions{
Model: "mymodel",
ParentModel: "parentmodel",
System: "You are a fun AI agent",
Messages: []api.Message{
{
Role: "user",
Content: "hello there!",
},
{
Role: "assistant",
Content: "hello to you!",
},
},
WordWrap: true,
},
&api.CreateRequest{
From: "parentmodel",
Model: "newmodel",
System: "You are a fun AI agent",
Messages: []api.Message{
{
Role: "user",
Content: "hello there!",
},
{
Role: "assistant",
Content: "hello to you!",
},
},
},
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
actual := NewCreateRequest(tt.from, tt.opts)
if !cmp.Equal(actual, tt.expected) {
t.Errorf("expected output %#v, got %#v", tt.expected, actual)
}
})
}
}

View File

@@ -18,6 +18,7 @@ import (
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/readline"
"github.com/ollama/ollama/types/errtypes"
"github.com/ollama/ollama/types/model"
)
type MultilineState int
@@ -195,6 +196,10 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
opts.Messages = []api.Message{}
fmt.Printf("Loading model '%s'\n", opts.Model)
if err := loadOrUnloadModel(cmd, &opts); err != nil {
if strings.Contains(err.Error(), "not found") {
fmt.Printf("error: %v\n", err)
continue
}
return err
}
continue
@@ -343,7 +348,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
switch args[1] {
case "info":
_ = showInfo(resp, os.Stderr)
_ = showInfo(resp, false, os.Stderr)
case "license":
if resp.License == "" {
fmt.Println("No license was specified for this model.")
@@ -455,9 +460,16 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
}
func NewCreateRequest(name string, opts runOptions) *api.CreateRequest {
parentModel := opts.ParentModel
modelName := model.ParseName(parentModel)
if !modelName.IsValid() {
parentModel = ""
}
req := &api.CreateRequest{
Name: name,
From: cmp.Or(opts.ParentModel, opts.Model),
Model: name,
From: cmp.Or(parentModel, opts.Model),
}
if opts.System != "" {

View File

@@ -4,7 +4,7 @@ import (
"fmt"
"os"
"github.com/ollama/ollama/llama/runner"
"github.com/ollama/ollama/runner"
)
func main() {

View File

@@ -9,12 +9,17 @@ import (
"log/slog"
"strings"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/fs/ggml"
)
type ModelParameters struct {
Architectures []string `json:"architectures"`
VocabSize uint32 `json:"vocab_size"`
Architectures []string `json:"architectures"`
VocabSize uint32 `json:"vocab_size"`
TextModel TextParameters `json:"text_config"`
}
type TextParameters struct {
VocabSize uint32 `json:"vocab_size"`
}
type AdapterParameters struct {
@@ -27,8 +32,8 @@ type AdapterParameters struct {
} `json:"lora_parameters"`
}
func (ModelParameters) KV(t *Tokenizer) llm.KV {
kv := llm.KV{
func (ModelParameters) KV(t *Tokenizer) ggml.KV {
kv := ggml.KV{
"general.file_type": uint32(1),
"general.quantization_version": uint32(2),
"tokenizer.ggml.pre": t.Pre,
@@ -54,7 +59,7 @@ func (ModelParameters) KV(t *Tokenizer) llm.KV {
return kv
}
func (p AdapterParameters) KV() llm.KV {
func (p AdapterParameters) KV() ggml.KV {
var alpha float32
if p.LoraParameters.Alpha == 0 {
alpha = float32(p.Alpha)
@@ -62,7 +67,7 @@ func (p AdapterParameters) KV() llm.KV {
alpha = p.LoraParameters.Alpha
}
kv := llm.KV{
kv := ggml.KV{
"adapter.lora.alpha": alpha,
"adapter.type": "lora",
"general.file_type": uint32(1),
@@ -79,19 +84,19 @@ func (ModelParameters) specialTokenTypes() []string {
}
}
func (ModelParameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
return llm.WriteGGUF(ws, kv, ts)
func (ModelParameters) writeFile(ws io.WriteSeeker, kv ggml.KV, ts []ggml.Tensor) error {
return ggml.WriteGGUF(ws, kv, ts)
}
func (AdapterParameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
return llm.WriteGGUF(ws, kv, ts)
func (AdapterParameters) writeFile(ws io.WriteSeeker, kv ggml.KV, ts []ggml.Tensor) error {
return ggml.WriteGGUF(ws, kv, ts)
}
type ModelConverter interface {
// KV maps parameters to LLM key-values
KV(*Tokenizer) llm.KV
KV(*Tokenizer) ggml.KV
// Tensors maps input tensors to LLM tensors. Model specific modifications can be done here.
Tensors([]Tensor) []llm.Tensor
Tensors([]Tensor) []ggml.Tensor
// Replacements returns a list of string pairs to replace in tensor names.
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
Replacements() []string
@@ -99,7 +104,7 @@ type ModelConverter interface {
// specialTokenTypes returns any special token types the model uses
specialTokenTypes() []string
// writeFile writes the model to the provided io.WriteSeeker
writeFile(io.WriteSeeker, llm.KV, []llm.Tensor) error
writeFile(io.WriteSeeker, ggml.KV, []ggml.Tensor) error
}
type moreParser interface {
@@ -108,17 +113,17 @@ type moreParser interface {
type AdapterConverter interface {
// KV maps parameters to LLM key-values
KV(llm.KV) llm.KV
KV(ggml.KV) ggml.KV
// Tensors maps input tensors to LLM tensors. Adapter specific modifications can be done here.
Tensors([]Tensor) []llm.Tensor
Tensors([]Tensor) []ggml.Tensor
// Replacements returns a list of string pairs to replace in tensor names.
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
Replacements() []string
writeFile(io.WriteSeeker, llm.KV, []llm.Tensor) error
writeFile(io.WriteSeeker, ggml.KV, []ggml.Tensor) error
}
func ConvertAdapter(fsys fs.FS, ws io.WriteSeeker, baseKV llm.KV) error {
func ConvertAdapter(fsys fs.FS, ws io.WriteSeeker, baseKV ggml.KV) error {
bts, err := fs.ReadFile(fsys, "adapter_config.json")
if err != nil {
return err
@@ -185,6 +190,8 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
conv = &gemmaModel{}
case "Gemma2ForCausalLM":
conv = &gemma2Model{}
case "Gemma3ForCausalLM", "Gemma3ForConditionalGeneration":
conv = &gemma3Model{Architecture: p.Architectures[0]}
case "Phi3ForCausalLM":
conv = &phi3Model{}
case "Qwen2ForCausalLM":
@@ -194,7 +201,7 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
case "CohereForCausalLM":
conv = &commandrModel{}
default:
return errors.New("unsupported architecture")
return fmt.Errorf("unsupported architecture %q", p.Architectures[0])
}
if err := json.Unmarshal(bts, conv); err != nil {
@@ -213,7 +220,14 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
}
vocabSize := int(p.VocabSize)
if vocabSize == 0 {
tVocabSize := int(p.TextModel.VocabSize)
vocabSize = tVocabSize
}
switch {
case vocabSize == 0:
slog.Warn("vocabulary size was not explicitly set by the model", "default size", len(t.Vocabulary.Tokens))
case vocabSize > len(t.Vocabulary.Tokens):
slog.Warn("vocabulary is smaller than expected, padding with dummy tokens", "expect", vocabSize, "actual", len(t.Vocabulary.Tokens))
for i := range vocabSize - len(t.Vocabulary.Tokens) {

View File

@@ -8,7 +8,7 @@ import (
"slices"
"strings"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/fs/ggml"
)
type bertModel struct {
@@ -85,7 +85,7 @@ func (p *bertModel) parseMore(fsys fs.FS) error {
return nil
}
func (p *bertModel) KV(t *Tokenizer) llm.KV {
func (p *bertModel) KV(t *Tokenizer) ggml.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "bert"
kv["bert.attention.causal"] = false
@@ -132,8 +132,8 @@ func (p *bertModel) KV(t *Tokenizer) llm.KV {
return kv
}
func (p *bertModel) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
func (p *bertModel) Tensors(ts []Tensor) []ggml.Tensor {
var out []ggml.Tensor
for _, t := range ts {
if slices.Contains([]string{
"embeddings.position_ids",
@@ -143,7 +143,7 @@ func (p *bertModel) Tensors(ts []Tensor) []llm.Tensor {
continue
}
out = append(out, llm.Tensor{
out = append(out, ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),

View File

@@ -3,7 +3,7 @@ package convert
import (
"cmp"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/fs/ggml"
)
type commandrModel struct {
@@ -24,7 +24,7 @@ type commandrModel struct {
var _ ModelConverter = (*commandrModel)(nil)
func (p *commandrModel) KV(t *Tokenizer) llm.KV {
func (p *commandrModel) KV(t *Tokenizer) ggml.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "command-r"
kv["general.name"] = "command-r"
@@ -43,10 +43,10 @@ func (p *commandrModel) KV(t *Tokenizer) llm.KV {
return kv
}
func (p *commandrModel) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
func (p *commandrModel) Tensors(ts []Tensor) []ggml.Tensor {
var out []ggml.Tensor
for _, t := range ts {
out = append(out, llm.Tensor{
out = append(out, ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),

View File

@@ -6,7 +6,7 @@ import (
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/fs/ggml"
)
type gemmaModel struct {
@@ -23,7 +23,7 @@ type gemmaModel struct {
var _ ModelConverter = (*gemmaModel)(nil)
func (p *gemmaModel) KV(t *Tokenizer) llm.KV {
func (p *gemmaModel) KV(t *Tokenizer) ggml.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "gemma"
kv["gemma.context_length"] = p.MaxPositionEmbeddings
@@ -42,14 +42,14 @@ func (p *gemmaModel) KV(t *Tokenizer) llm.KV {
return kv
}
func (p *gemmaModel) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
func (p *gemmaModel) Tensors(ts []Tensor) []ggml.Tensor {
var out []ggml.Tensor
for _, t := range ts {
if strings.HasSuffix(t.Name(), "_norm.weight") {
if !strings.HasPrefix(t.Name(), "v.") && strings.HasSuffix(t.Name(), "_norm.weight") {
t.SetRepacker(p.addOne)
}
out = append(out, llm.Tensor{
out = append(out, ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),

View File

@@ -1,8 +1,6 @@
package convert
import (
"github.com/ollama/ollama/llm"
)
import "github.com/ollama/ollama/fs/ggml"
type gemma2Model struct {
gemmaModel
@@ -11,7 +9,7 @@ type gemma2Model struct {
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
}
func (p *gemma2Model) KV(t *Tokenizer) llm.KV {
func (p *gemma2Model) KV(t *Tokenizer) ggml.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "gemma2"
kv["gemma2.context_length"] = p.MaxPositionEmbeddings

View File

@@ -6,7 +6,7 @@ import (
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/fs/ggml"
)
type gemma2Adapter struct {
@@ -15,14 +15,14 @@ type gemma2Adapter struct {
var _ AdapterConverter = (*gemma2Adapter)(nil)
func (p *gemma2Adapter) KV(baseKV llm.KV) llm.KV {
func (p *gemma2Adapter) KV(baseKV ggml.KV) ggml.KV {
kv := p.AdapterParameters.KV()
kv["general.architecture"] = "gemma2"
return kv
}
func (p *gemma2Adapter) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
func (p *gemma2Adapter) Tensors(ts []Tensor) []ggml.Tensor {
var out []ggml.Tensor
for _, t := range ts {
shape := t.Shape()
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
@@ -31,7 +31,7 @@ func (p *gemma2Adapter) Tensors(ts []Tensor) []llm.Tensor {
t.SetRepacker(p.repack)
}
out = append(out, llm.Tensor{
out = append(out, ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),

142
convert/convert_gemma3.go Normal file
View File

@@ -0,0 +1,142 @@
package convert
import (
"cmp"
"github.com/ollama/ollama/fs/ggml"
)
type gemma3Model struct {
gemmaModel
Architecture string
TextModel struct {
HeadDim uint32 `json:"head_dim"`
HiddenSize uint32 `json:"hidden_size"`
HiddenLayers uint32 `json:"num_hidden_layers"`
IntermediateSize uint32 `json:"intermediate_size"`
SlidingWindow uint32 `json:"sliding_window"`
} `json:"text_config"`
VisionModel struct {
NumAttentionHeads uint32 `json:"num_attention_heads"` // attention.head_count 16
LayerNormEpsilon float32 `json:"layer_norm_eps"` // attention.layer_norm_epsilon 1e-05
NumHiddenLayers uint32 `json:"num_hidden_layers"` // block_count 32
HiddenSize uint32 `json:"hidden_size"` // embedding_length 1280
IntermediateSize uint32 `json:"intermediate_size"` // feed_forward_length 5120
ImageSize uint32 `json:"image_size"` // image_size 560
NumChannels uint32 `json:"num_channels"` // num_channels 3
PatchSize uint32 `json:"patch_size"` // patch_size 14
} `json:"vision_config"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RMSNormEPS float32 `json:"rms_norm_eps"`
HeadDim uint32 `json:"head_dim"`
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
RopeLocalTheta float32 `json:"rope_local_base_freq"`
RopeGlobalTheta float32 `json:"rope_global_base_freq"`
SlidingWindow uint32 `json:"sliding_window"`
MultiModalTokensPerImage uint32 `json:"mm_tokens_per_image"`
}
const (
gemma4BLayerCount = 34
gemma12BLayerCount = 48
gemma27BLayerCount = 62
)
func (p *gemma3Model) KV(t *Tokenizer) ggml.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "gemma3"
numBlocks := cmp.Or(p.HiddenLayers, p.TextModel.HiddenLayers)
kv["gemma3.block_count"] = numBlocks
var (
numHeads uint32
numKVHeads uint32
)
switch numBlocks {
case gemma4BLayerCount:
numHeads = 8
numKVHeads = 4
case gemma12BLayerCount:
numHeads = 16
numKVHeads = 8
case gemma27BLayerCount:
numHeads = 32
numKVHeads = 16
default:
numHeads = p.NumAttentionHeads
numKVHeads = p.NumKeyValueHeads
}
kv["gemma3.attention.head_count"] = numHeads
kv["gemma3.attention.head_count_kv"] = numKVHeads
switch p.Architecture {
case "Gemma3ForCausalLM":
kv["gemma3.context_length"] = p.MaxPositionEmbeddings
kv["gemma3.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
kv["gemma3.attention.key_length"] = p.HeadDim
kv["gemma3.attention.value_length"] = p.HeadDim
kv["gemma3.attention.sliding_window"] = p.SlidingWindow
kv["gemma3.final_logit_softcapping"] = cmp.Or(p.FinalLogitSoftcap, 30)
kv["gemma3.rope.local.freq_base"] = cmp.Or(p.RopeLocalTheta, 10000.0)
kv["gemma3.rope.global.freq_base"] = cmp.Or(p.RopeGlobalTheta, 1000000.0)
kv["gemma3.embedding_length"] = p.HiddenSize
kv["gemma3.feed_forward_length"] = p.IntermediateSize
default:
kv["gemma3.context_length"] = cmp.Or(p.MaxPositionEmbeddings, 131072)
kv["gemma3.embedding_length"] = p.TextModel.HiddenSize
kv["gemma3.feed_forward_length"] = p.TextModel.IntermediateSize
kv["gemma3.attention.sliding_window"] = p.TextModel.SlidingWindow
kv["gemma3.vision.block_count"] = p.VisionModel.NumHiddenLayers
kv["gemma3.vision.embedding_length"] = p.VisionModel.HiddenSize
kv["gemma3.vision.feed_forward_length"] = p.VisionModel.IntermediateSize
kv["gemma3.vision.image_size"] = p.VisionModel.ImageSize
kv["gemma3.vision.patch_size"] = p.VisionModel.PatchSize
kv["gemma3.vision.num_channels"] = cmp.Or(p.VisionModel.NumChannels, 3)
kv["gemma3.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
kv["gemma3.vision.attention.layer_norm_epsilon"] = cmp.Or(p.VisionModel.LayerNormEpsilon, 1e-6)
kv["gemma3.attention.key_length"] = cmp.Or(p.TextModel.HeadDim, 256)
kv["gemma3.attention.value_length"] = cmp.Or(p.TextModel.HeadDim, 256)
}
if p.MultiModalTokensPerImage > 0 {
kv["gemma3.mm.tokens_per_image"] = p.MultiModalTokensPerImage
}
return kv
}
func (p *gemma3Model) Replacements() []string {
return []string{
"lm_head", "output",
"model.embed_tokens", "token_embd",
"model.norm", "output_norm",
"vision_tower.vision_model.embeddings", "v",
"vision_tower.vision_model", "v",
"vision_model.vision_model.embeddings", "v",
"vision_model.vision_model", "v",
"language_model.", "",
"model.layers", "blk",
"encoder.layers", "blk",
"input_layernorm", "attn_norm",
"self_attn.q_proj", "attn_q",
"self_attn.q_norm", "attn_q_norm",
"self_attn.k_proj", "attn_k",
"self_attn.k_norm", "attn_k_norm",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"self_attn.out_proj", "attn_output",
"mlp.gate_proj", "ffn_gate",
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
"post_attention_layernorm", "post_attention_norm",
"pre_feedforward_layernorm", "ffn_norm",
"post_feedforward_layernorm", "post_ffw_norm",
"input_projection_weight", "input_projection.weight",
"multi_modal_projector", "mm",
}
}

View File

@@ -9,7 +9,7 @@ import (
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/fs/ggml"
)
type llamaModel struct {
@@ -46,7 +46,7 @@ type llamaModel struct {
var _ ModelConverter = (*llamaModel)(nil)
func (p *llamaModel) KV(t *Tokenizer) llm.KV {
func (p *llamaModel) KV(t *Tokenizer) ggml.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "llama"
kv["llama.vocab_size"] = p.VocabSize
@@ -120,11 +120,11 @@ func (p *llamaModel) KV(t *Tokenizer) llm.KV {
return kv
}
func (p *llamaModel) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
func (p *llamaModel) Tensors(ts []Tensor) []ggml.Tensor {
var out []ggml.Tensor
if p.RopeScaling.factors != nil {
out = append(out, llm.Tensor{
out = append(out, ggml.Tensor{
Name: "rope_freqs.weight",
Kind: 0,
Shape: []uint64{uint64(len(p.RopeScaling.factors))},
@@ -138,7 +138,7 @@ func (p *llamaModel) Tensors(ts []Tensor) []llm.Tensor {
t.SetRepacker(p.repack)
}
out = append(out, llm.Tensor{
out = append(out, ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),

View File

@@ -7,7 +7,7 @@ import (
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/fs/ggml"
)
type llamaAdapter struct {
@@ -18,7 +18,7 @@ type llamaAdapter struct {
var _ AdapterConverter = (*llamaAdapter)(nil)
func (p *llamaAdapter) KV(baseKV llm.KV) llm.KV {
func (p *llamaAdapter) KV(baseKV ggml.KV) ggml.KV {
kv := p.AdapterParameters.KV()
kv["general.architecture"] = "llama"
kv["llama.attention.head_count"] = baseKV["llama.attention.head_count"]
@@ -29,8 +29,8 @@ func (p *llamaAdapter) KV(baseKV llm.KV) llm.KV {
return kv
}
func (p *llamaAdapter) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
func (p *llamaAdapter) Tensors(ts []Tensor) []ggml.Tensor {
var out []ggml.Tensor
for _, t := range ts {
shape := t.Shape()
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
@@ -41,7 +41,7 @@ func (p *llamaAdapter) Tensors(ts []Tensor) []llm.Tensor {
t.SetRepacker(p.repack)
}
out = append(out, llm.Tensor{
out = append(out, ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: shape,

View File

@@ -6,7 +6,7 @@ import (
"slices"
"strings"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/fs/ggml"
)
type mixtralModel struct {
@@ -15,7 +15,7 @@ type mixtralModel struct {
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
}
func (p *mixtralModel) KV(t *Tokenizer) llm.KV {
func (p *mixtralModel) KV(t *Tokenizer) ggml.KV {
kv := p.llamaModel.KV(t)
if p.NumLocalExperts > 0 {
@@ -29,7 +29,7 @@ func (p *mixtralModel) KV(t *Tokenizer) llm.KV {
return kv
}
func (p *mixtralModel) Tensors(ts []Tensor) []llm.Tensor {
func (p *mixtralModel) Tensors(ts []Tensor) []ggml.Tensor {
oldnew := []string{
"model.layers", "blk",
"w1", "ffn_gate_exps",
@@ -56,10 +56,10 @@ func (p *mixtralModel) Tensors(ts []Tensor) []llm.Tensor {
return true
})
var out []llm.Tensor
var out []ggml.Tensor
for n, e := range experts {
// TODO(mxyng): sanity check experts
out = append(out, llm.Tensor{
out = append(out, ggml.Tensor{
Name: n,
Kind: e[0].Kind(),
Shape: append([]uint64{uint64(len(e))}, e[0].Shape()...),

View File

@@ -8,7 +8,7 @@ import (
"strings"
"sync"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/fs/ggml"
)
type phi3Model struct {
@@ -37,7 +37,7 @@ type phi3Model struct {
var _ ModelConverter = (*phi3Model)(nil)
func (p *phi3Model) KV(t *Tokenizer) llm.KV {
func (p *phi3Model) KV(t *Tokenizer) ggml.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "phi3"
kv["phi3.context_length"] = p.MaxPositionEmbeddings
@@ -68,19 +68,19 @@ func (p *phi3Model) KV(t *Tokenizer) llm.KV {
return kv
}
func (p *phi3Model) Tensors(ts []Tensor) []llm.Tensor {
func (p *phi3Model) Tensors(ts []Tensor) []ggml.Tensor {
var addRopeFactors sync.Once
out := make([]llm.Tensor, 0, len(ts)+2)
out := make([]ggml.Tensor, 0, len(ts)+2)
for _, t := range ts {
if strings.HasPrefix(t.Name(), "blk.0.") {
addRopeFactors.Do(func() {
out = append(out, llm.Tensor{
out = append(out, ggml.Tensor{
Name: "rope_factors_long.weight",
Kind: 0,
Shape: []uint64{uint64(len(p.RopeScaling.LongFactor))},
WriterTo: p.RopeScaling.LongFactor,
}, llm.Tensor{
}, ggml.Tensor{
Name: "rope_factors_short.weight",
Kind: 0,
Shape: []uint64{uint64(len(p.RopeScaling.ShortFactor))},
@@ -89,7 +89,7 @@ func (p *phi3Model) Tensors(ts []Tensor) []llm.Tensor {
})
}
out = append(out, llm.Tensor{
out = append(out, ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),

View File

@@ -1,6 +1,6 @@
package convert
import "github.com/ollama/ollama/llm"
import "github.com/ollama/ollama/fs/ggml"
type qwen2Model struct {
ModelParameters
@@ -21,7 +21,7 @@ type qwen2Model struct {
var _ ModelConverter = (*qwen2Model)(nil)
func (q *qwen2Model) KV(t *Tokenizer) llm.KV {
func (q *qwen2Model) KV(t *Tokenizer) ggml.KV {
kv := q.ModelParameters.KV(t)
kv["general.architecture"] = "qwen2"
kv["qwen2.block_count"] = q.HiddenLayers
@@ -45,10 +45,10 @@ func (q *qwen2Model) KV(t *Tokenizer) llm.KV {
return kv
}
func (q *qwen2Model) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
func (q *qwen2Model) Tensors(ts []Tensor) []ggml.Tensor {
var out []ggml.Tensor
for _, t := range ts {
out = append(out, llm.Tensor{
out = append(out, ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),

View File

@@ -20,7 +20,7 @@ import (
"golang.org/x/exp/maps"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/fs/ggml"
)
type tensorData struct {
@@ -29,7 +29,7 @@ type tensorData struct {
Shape []int `json:"shape"`
}
func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, *llm.Tensors) {
func convertFull(t *testing.T, fsys fs.FS) (*os.File, ggml.KV, ggml.Tensors) {
t.Helper()
f, err := os.CreateTemp(t.TempDir(), "f16")
@@ -48,7 +48,7 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, *llm.Tensors) {
}
t.Cleanup(func() { r.Close() })
m, _, err := llm.DecodeGGML(r, math.MaxInt)
m, _, err := ggml.Decode(r, math.MaxInt)
if err != nil {
t.Fatal(err)
}
@@ -60,7 +60,7 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, *llm.Tensors) {
return r, m.KV(), m.Tensors()
}
func generateResultsJSON(t *testing.T, f *os.File, kv llm.KV, tensors *llm.Tensors) map[string]string {
func generateResultsJSON(t *testing.T, f *os.File, kv ggml.KV, tensors ggml.Tensors) map[string]string {
actual := make(map[string]string)
for k, v := range kv {
if s, ok := v.(json.Marshaler); !ok {
@@ -75,7 +75,7 @@ func generateResultsJSON(t *testing.T, f *os.File, kv llm.KV, tensors *llm.Tenso
}
}
for _, tensor := range tensors.Items {
for _, tensor := range tensors.Items() {
sha256sum := sha256.New()
sr := io.NewSectionReader(f, int64(tensors.Offset+tensor.Offset), int64(tensor.Size()))
if _, err := io.Copy(sha256sum, sr); err != nil {
@@ -332,7 +332,7 @@ func TestConvertAdapter(t *testing.T) {
}
defer r.Close()
m, _, err := llm.DecodeGGML(r, math.MaxInt)
m, _, err := ggml.Decode(r, math.MaxInt)
if err != nil {
t.Fatal(err)
}

View File

@@ -6,7 +6,9 @@ import (
"errors"
"fmt"
"io/fs"
"log/slog"
"os"
"reflect"
"slices"
"google.golang.org/protobuf/proto"
@@ -15,6 +17,8 @@ import (
)
func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
slog.Debug("using spm vocabulary")
ast, err := parseAdditionalSpecialTokens(fsys)
if err != nil {
return nil, err
@@ -43,10 +47,19 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
v.Types = append(v.Types, int32(t))
default:
tt := int32(sentencepiece.ModelProto_SentencePiece_NORMAL)
if slices.Contains(ast, piece.GetPiece()) {
// temporary fix to handle gemma3 broken configs
if slices.Contains([]string{"<end_of_turn>", "<start_of_turn>"}, piece.GetPiece()) {
tt = int32(sentencepiece.ModelProto_SentencePiece_CONTROL)
}
for _, t := range ast {
if t.Content == piece.GetPiece() {
tt = int32(sentencepiece.ModelProto_SentencePiece_CONTROL)
break
}
}
v.Types = append(v.Types, tt)
}
}
@@ -78,10 +91,16 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
return cmp.Compare(i.id, j.id)
})
n := len(v.Tokens)
for i, t := range ts {
if t.id != i+n {
return nil, fmt.Errorf("invalid token id: %d", t.id)
for _, t := range ts {
if t.id < len(v.Tokens) {
if v.Tokens[t.id] == t.content {
slog.Warn("tokenizer", "duplicate token", t.content, "id", t.id)
continue
}
return nil, fmt.Errorf("token mismatch: %s != %s at pos [%d]", t.content, v.Tokens[t.id], t.id)
}
if t.id != len(v.Tokens) {
return nil, fmt.Errorf("invalid token id: [%d] as pos [%d]", t.id, len(v.Tokens))
}
v.Tokens = append(v.Tokens, t.content)
@@ -92,7 +111,15 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
return &v, nil
}
func parseAdditionalSpecialTokens(fsys fs.FS) ([]string, error) {
type specialToken struct {
Content string `json:"content"`
Lstrip bool `json:"lstrip"`
Normalized bool `json:"normalized"`
Rstrip bool `json:"rstrip"`
SingleWord bool `json:"single_word"`
}
func parseAdditionalSpecialTokens(fsys fs.FS) ([]specialToken, error) {
f, err := fsys.Open("special_tokens_map.json")
if errors.Is(err, os.ErrNotExist) {
return nil, nil
@@ -102,12 +129,43 @@ func parseAdditionalSpecialTokens(fsys fs.FS) ([]string, error) {
defer f.Close()
var m struct {
AdditionalSpecialTokens []string `json:"additional_special_tokens"`
AdditionalSpecialTokens any `json:"additional_special_tokens"`
}
if err := json.NewDecoder(f).Decode(&m); err != nil {
return nil, err
}
return m.AdditionalSpecialTokens, nil
var ast []specialToken
switch st := m.AdditionalSpecialTokens.(type) {
case []string:
for _, s := range st {
ast = append(ast, specialToken{Content: s})
}
case []any:
for _, s := range st {
// marshal and unmarshal the object to get the special token
tMap := s.(map[string]any)
data, err := json.Marshal(tMap)
if err != nil {
return nil, err
}
var token specialToken
err = json.Unmarshal(data, &token)
if err != nil {
return nil, err
}
ast = append(ast, token)
}
default:
slog.Warn("special token", "unknown token", reflect.TypeOf(st))
}
slog.Debug("spm tokenizer", "additional tokens", ast)
return ast, nil
}

View File

@@ -57,7 +57,8 @@ func cudaVariant(gpuInfo CudaGPUInfo) string {
}
}
if gpuInfo.computeMajor < 6 || gpuInfo.DriverMajor < 12 || (gpuInfo.DriverMajor == 12 && gpuInfo.DriverMinor == 0) {
// driver 12.0 has problems with the cuda v12 library, so run v11 on those older drivers
if gpuInfo.DriverMajor < 12 || (gpuInfo.DriverMajor == 12 && gpuInfo.DriverMinor == 0) {
return "v11"
}
return "v12"

View File

@@ -19,9 +19,8 @@ var LibOllamaPath string = func() string {
return ""
}
exe, err = filepath.EvalSymlinks(exe)
if err != nil {
return ""
if eval, err := filepath.EvalSymlinks(exe); err == nil {
exe = eval
}
var libPath string

View File

@@ -558,6 +558,10 @@ Final response:
{
"model": "llama3.2",
"created_at": "2023-08-04T19:22:45.499127Z",
"message": {
"role": "assistant",
"content": ""
},
"done": true,
"total_duration": 4883583458,
"load_duration": 1334875,

59
docs/benchmark.md Normal file
View File

@@ -0,0 +1,59 @@
# Benchmark
Go benchmark tests that measure end-to-end performance of a running Ollama server. Run these tests to evaluate model inference performance on your hardware and measure the impact of code changes.
## When to use
Run these benchmarks when:
- Making changes to the model inference engine
- Modifying model loading/unloading logic
- Changing prompt processing or token generation code
- Implementing a new model architecture
- Testing performance across different hardware setups
## Prerequisites
- Ollama server running locally with `ollama serve` on `127.0.0.1:11434`
## Usage and Examples
>[!NOTE]
>All commands must be run from the root directory of the Ollama project.
Basic syntax:
```bash
go test -bench=. ./benchmark/... -m $MODEL_NAME
```
Required flags:
- `-bench=.`: Run all benchmarks
- `-m`: Model name to benchmark
Optional flags:
- `-count N`: Number of times to run the benchmark (useful for statistical analysis)
- `-timeout T`: Maximum time for the benchmark to run (e.g. "10m" for 10 minutes)
Common usage patterns:
Single benchmark run with a model specified:
```bash
go test -bench=. ./benchmark/... -m llama3.3
```
## Output metrics
The benchmark reports several key metrics:
- `gen_tok/s`: Generated tokens per second
- `prompt_tok/s`: Prompt processing tokens per second
- `ttft_ms`: Time to first token in milliseconds
- `load_ms`: Model load time in milliseconds
- `gen_tokens`: Total tokens generated
- `prompt_tokens`: Total prompt tokens processed
Each benchmark runs two scenarios:
- Cold start: Model is loaded from disk for each test
- Warm start: Model is pre-loaded in memory
Three prompt lengths are tested for each scenario:
- Short prompt (100 tokens)
- Medium prompt (500 tokens)
- Long prompt (1000 tokens)

View File

@@ -41,20 +41,11 @@ Install prerequisites:
- [CMake](https://cmake.org/download/)
- [Visual Studio 2022](https://visualstudio.microsoft.com/downloads/) including the Native Desktop Workload
- (Optional) AMD GPU support
- [ROCm](https://rocm.github.io/install.html)
- [ROCm](https://rocm.docs.amd.com/en/latest/)
- [Ninja](https://github.com/ninja-build/ninja/releases)
- (Optional) NVIDIA GPU support
- [CUDA SDK](https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network)
> [!IMPORTANT]
> Ensure prerequisites are in `PATH` before running CMake.
> [!IMPORTANT]
> ROCm is not compatible with Visual Studio CMake generators. Use `-GNinja` when configuring the project.
> [!IMPORTANT]
> CUDA is only compatible with Visual Studio CMake generators.
Then, configure and build the project:
```shell
@@ -62,6 +53,14 @@ cmake -B build
cmake --build build --config Release
```
> [!IMPORTANT]
> Building for ROCm requires additional flags:
> ```
> cmake -B build -G Ninja -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++
> cmake --build build --config Release
> ```
Lastly, run Ollama:
```shell
@@ -70,7 +69,7 @@ go run . serve
## Windows (ARM)
Windows ARM does not support additional acceleration libraries at this time.
Windows ARM does not support additional acceleration libraries at this time. Do not use cmake, simply `go run` or `go build`.
## Linux
@@ -119,6 +118,35 @@ To run tests, use `go test`:
go test ./...
```
> NOTE: In rare cirumstances, you may nedd to change a package using the new
> "synctest" package in go1.24.
>
> If you do not have the "synctest" package enabled, you will not see build or
> test failures resulting from your change(s), if any, locally, but CI will
> break.
>
> If you see failures in CI, you can either keep pushing changes to see if the
> CI build passes, or you can enable the "synctest" package locally to see the
> failures before pushing.
>
> To enable the "synctest" package for testing, run the following command:
>
> ```shell
> GOEXPERIMENT=synctest go test ./...
> ```
>
> If you wish to enable synctest for all go commands, you can set the
> `GOEXPERIMENT` environment variable in your shell profile or by using:
>
> ```shell
> go env -w GOEXPERIMENT=synctest
> ```
>
> Which will enable the "synctest" package for all go commands without needing
> to set it for all shell sessions.
>
> The synctest package is not required for production builds.
## Library detection
Ollama looks for acceleration libraries in the following paths relative to the `ollama` executable:
@@ -128,4 +156,4 @@ Ollama looks for acceleration libraries in the following paths relative to the `
* `.` (macOS)
* `build/lib/ollama` (for development)
If the libraries are not found, Ollama will not run with any acceleration libraries.
If the libraries are not found, Ollama will not run with any acceleration libraries.

View File

@@ -20,7 +20,7 @@ Please refer to the [GPU docs](./gpu.md).
## How can I specify the context window size?
By default, Ollama uses a context window size of 2048 tokens.
By default, Ollama uses a context window size of 2048 tokens. This can be overridden with the `OLLAMA_CONTEXT_LENGTH` environment variable. For example, to set the default context length to 8K, use: `OLLAMA_CONTEXT_LENGTH=8192 ollama serve`.
To change this when using `ollama run`, use `/set parameter`:
@@ -187,6 +187,13 @@ cloudflared tunnel --url http://localhost:11434 --http-host-header="localhost:11
Ollama allows cross-origin requests from `127.0.0.1` and `0.0.0.0` by default. Additional origins can be configured with `OLLAMA_ORIGINS`.
For browser extensions, you'll need to explicitly allow the extension's origin pattern. Set `OLLAMA_ORIGINS` to include `chrome-extension://*`, `moz-extension://*`, and `safari-web-extension://*` if you wish to allow all browser extensions access, or specific extensions as needed:
```
# Allow all Chrome, Firefox, and Safari extensions
OLLAMA_ORIGINS=chrome-extension://*,moz-extension://*,safari-web-extension://* ollama serve
```
Refer to the section [above](#how-do-i-configure-ollama-server) for how to set environment variables on your platform.
## Where are models stored?

View File

@@ -7,7 +7,7 @@ Check your compute compatibility to see if your card is supported:
| Compute Capability | Family | Cards |
| ------------------ | ------------------- | ----------------------------------------------------------------------------------------------------------- |
| 9.0 | NVIDIA | `H100` |
| 9.0 | NVIDIA | `H200` `H100` |
| 8.9 | GeForce RTX 40xx | `RTX 4090` `RTX 4080 SUPER` `RTX 4080` `RTX 4070 Ti SUPER` `RTX 4070 Ti` `RTX 4070 SUPER` `RTX 4070` `RTX 4060 Ti` `RTX 4060` |
| | NVIDIA Professional | `L4` `L40` `RTX 6000` |
| 8.6 | GeForce RTX 30xx | `RTX 3090 Ti` `RTX 3090` `RTX 3080 Ti` `RTX 3080` `RTX 3070 Ti` `RTX 3070` `RTX 3060 Ti` `RTX 3060` `RTX 3050 Ti` `RTX 3050` |

View File

@@ -75,7 +75,7 @@ RestartSec=3
Environment="PATH=$PATH"
[Install]
WantedBy=default.target
WantedBy=multi-user.target
```
Then start the service:

View File

@@ -73,6 +73,10 @@ curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION=0.5.7 sh
If your system is configured with the "noexec" flag where Ollama stores its temporary executable files, you can specify an alternate location by setting OLLAMA_TMPDIR to a location writable by the user ollama runs as. For example OLLAMA_TMPDIR=/usr/share/ollama/
## Linux docker
If Ollama initially works on the GPU in a docker container, but then switches to running on CPU after some period of time with errors in the server log reporting GPU discovery failures, this can be resolved by disabling systemd cgroup management in Docker. Edit `/etc/docker/daemon.json` on the host and add `"exec-opts": ["native.cgroupdriver=cgroupfs"]` to the docker configuration.
## NVIDIA GPU Discovery
When Ollama starts up, it takes inventory of the GPUs present in the system to determine compatibility and how much VRAM is available. Sometimes this discovery can fail to find your GPUs. In general, running the latest driver will yield the best results.
@@ -100,8 +104,6 @@ On linux, AMD GPU access typically requires `video` and/or `render` group member
When running in a container, in some Linux distributions and container runtimes, the ollama process may be unable to access the GPU. Use `ls -lnd /dev/kfd /dev/dri /dev/dri/*` on the host system to determine the **numeric** group IDs on your system, and pass additional `--group-add ...` arguments to the container so it can access the required devices. For example, in the following output `crw-rw---- 1 0 44 226, 0 Sep 16 16:55 /dev/dri/card0` the group ID column is `44`
If Ollama initially works on the GPU in a docker container, but then switches to running on CPU after some period of time with errors in the server log reporting GPU discovery failures, this can be resolved by disabling systemd cgroup management in Docker. Edit `/etc/docker/daemon.json` on the host and add `"exec-opts": ["native.cgroupdriver=cgroupfs"]` to the docker configuration.
If you are experiencing problems getting Ollama to correctly discover or use your GPU for inference, the following may help isolate the failure.
- `AMD_LOG_LEVEL=3` Enable info log levels in the AMD HIP/ROCm libraries. This can help show more detailed error codes that can help troubleshoot problems
- `OLLAMA_DEBUG=1` During GPU discovery additional information will be reported

View File

@@ -55,7 +55,7 @@ Here's a quick example showing API access from `powershell`
## Troubleshooting
Ollama on Windows stores files in a few different locations. You can view them in
the explorer window by hitting `<cmd>+R` and type in:
the explorer window by hitting `<Ctrl>+R` and type in:
- `explorer %LOCALAPPDATA%\Ollama` contains logs, and downloaded updates
- *app.log* contains most resent logs from the GUI application
- *server.log* contains the most recent server logs
@@ -81,9 +81,11 @@ help you keep up to date.
If you'd like to install or integrate Ollama as a service, a standalone
`ollama-windows-amd64.zip` zip file is available containing only the Ollama CLI
and GPU library dependencies for Nvidia and AMD. This allows for embedding
Ollama in existing applications, or running it as a system service via `ollama
serve` with tools such as [NSSM](https://nssm.cc/).
and GPU library dependencies for Nvidia. If you have an AMD GPU, also download
and extract the additional ROCm package `ollama-windows-amd64-rocm.zip` into the
same directory. This allows for embedding Ollama in existing applications, or
running it as a system service via `ollama serve` with tools such as
[NSSM](https://nssm.cc/).
> [!NOTE]
> If you are upgrading from a prior version, you should remove the old directories first.

View File

@@ -53,8 +53,8 @@ func Host() *url.URL {
}
}
// Origins returns a list of allowed origins. Origins can be configured via the OLLAMA_ORIGINS environment variable.
func Origins() (origins []string) {
// AllowedOrigins returns a list of allowed origins. AllowedOrigins can be configured via the OLLAMA_ORIGINS environment variable.
func AllowedOrigins() (origins []string) {
if s := Var("OLLAMA_ORIGINS"); s != "" {
origins = strings.Split(s, ",")
}
@@ -73,6 +73,7 @@ func Origins() (origins []string) {
"file://*",
"tauri://*",
"vscode-webview://*",
"vscode-file://*",
)
return origins
@@ -165,6 +166,10 @@ var (
IntelGPU = Bool("OLLAMA_INTEL_GPU")
// MultiUserCache optimizes prompt caching for multi-user scenarios
MultiUserCache = Bool("OLLAMA_MULTIUSER_CACHE")
// Enable the new Ollama engine
NewEngine = Bool("OLLAMA_NEW_ENGINE")
// ContextLength sets the default context length
ContextLength = Uint("OLLAMA_CONTEXT_LENGTH", 2048)
)
func String(s string) func() string {
@@ -247,9 +252,11 @@ func AsMap() map[string]EnvVar {
"OLLAMA_NOHISTORY": {"OLLAMA_NOHISTORY", NoHistory(), "Do not preserve readline history"},
"OLLAMA_NOPRUNE": {"OLLAMA_NOPRUNE", NoPrune(), "Do not prune model blobs on startup"},
"OLLAMA_NUM_PARALLEL": {"OLLAMA_NUM_PARALLEL", NumParallel(), "Maximum number of parallel requests"},
"OLLAMA_ORIGINS": {"OLLAMA_ORIGINS", Origins(), "A comma separated list of allowed origins"},
"OLLAMA_ORIGINS": {"OLLAMA_ORIGINS", AllowedOrigins(), "A comma separated list of allowed origins"},
"OLLAMA_SCHED_SPREAD": {"OLLAMA_SCHED_SPREAD", SchedSpread(), "Always schedule model across all GPUs"},
"OLLAMA_MULTIUSER_CACHE": {"OLLAMA_MULTIUSER_CACHE", MultiUserCache(), "Optimize prompt caching for multi-user scenarios"},
"OLLAMA_CONTEXT_LENGTH": {"OLLAMA_CONTEXT_LENGTH", ContextLength(), "Context length to use unless otherwise specified (default: 2048)"},
"OLLAMA_NEW_ENGINE": {"OLLAMA_NEW_ENGINE", NewEngine(), "Enable the new Ollama engine"},
// Informational
"HTTP_PROXY": {"HTTP_PROXY", String("HTTP_PROXY")(), "HTTP proxy"},

View File

@@ -69,6 +69,7 @@ func TestOrigins(t *testing.T) {
"file://*",
"tauri://*",
"vscode-webview://*",
"vscode-file://*",
}},
{"http://10.0.0.1", []string{
"http://10.0.0.1",
@@ -88,6 +89,7 @@ func TestOrigins(t *testing.T) {
"file://*",
"tauri://*",
"vscode-webview://*",
"vscode-file://*",
}},
{"http://172.16.0.1,https://192.168.0.1", []string{
"http://172.16.0.1",
@@ -108,6 +110,7 @@ func TestOrigins(t *testing.T) {
"file://*",
"tauri://*",
"vscode-webview://*",
"vscode-file://*",
}},
{"http://totally.safe,http://definitely.legit", []string{
"http://totally.safe",
@@ -128,13 +131,14 @@ func TestOrigins(t *testing.T) {
"file://*",
"tauri://*",
"vscode-webview://*",
"vscode-file://*",
}},
}
for _, tt := range cases {
t.Run(tt.value, func(t *testing.T) {
t.Setenv("OLLAMA_ORIGINS", tt.value)
if diff := cmp.Diff(Origins(), tt.expect); diff != "" {
if diff := cmp.Diff(AllowedOrigins(), tt.expect); diff != "" {
t.Errorf("%s: mismatch (-want +got):\n%s", tt.value, diff)
}
})
@@ -272,3 +276,19 @@ func TestVar(t *testing.T) {
})
}
}
func TestContextLength(t *testing.T) {
cases := map[string]uint{
"": 2048,
"4096": 4096,
}
for k, v := range cases {
t.Run(k, func(t *testing.T) {
t.Setenv("OLLAMA_CONTEXT_LENGTH", k)
if i := ContextLength(); i != v {
t.Errorf("%s: expected %d, got %d", k, v, i)
}
})
}
}

View File

@@ -12,6 +12,9 @@ func TestHumanNumber(t *testing.T) {
testCases := []testCase{
{0, "0"},
{999, "999"},
{1000, "1K"},
{1001, "1K"},
{1000000, "1M"},
{125000000, "125M"},
{500500000, "500.50M"},

View File

@@ -1,15 +1,15 @@
package llm
package ggml
import (
"encoding/binary"
"errors"
"fmt"
"io"
"log/slog"
"slices"
"strings"
"sync"
"github.com/ollama/ollama/util/bufioutil"
"github.com/ollama/ollama/fs/util/bufioutil"
)
type GGML struct {
@@ -19,145 +19,183 @@ type GGML struct {
type model interface {
KV() KV
Tensors() *Tensors
Tensors() Tensors
}
type KV map[string]any
func (kv KV) u64(key string) uint64 {
switch v := kv[key].(type) {
case uint64:
return v
case uint32:
return uint64(v)
case float64:
return uint64(v)
default:
return 0
}
}
func (kv KV) Architecture() string {
if s, ok := kv["general.architecture"].(string); ok {
return s
}
return "unknown"
return kv.String("general.architecture", "unknown")
}
func (kv KV) Kind() string {
if s, ok := kv["general.type"].(string); ok {
return s
}
return "unknown"
return kv.String("general.type", "unknown")
}
func (kv KV) ParameterCount() uint64 {
return kv.u64("general.parameter_count")
return keyValue[uint64](kv, "general.parameter_count")
}
func (kv KV) FileType() fileType {
if u64 := kv.u64("general.file_type"); u64 > 0 {
return fileType(uint32(u64))
if t := kv.Uint("general.file_type"); t > 0 {
return fileType(t)
}
return fileTypeUnknown
}
func (kv KV) BlockCount() uint64 {
return kv.u64(fmt.Sprintf("%s.block_count", kv.Architecture()))
return uint64(kv.Uint("block_count"))
}
func (kv KV) EmbeddingLength() uint64 {
return uint64(kv.Uint("embedding_length"))
}
func (kv KV) HeadCount() uint64 {
return kv.u64(fmt.Sprintf("%s.attention.head_count", kv.Architecture()))
return uint64(kv.Uint("attention.head_count"))
}
func (kv KV) HeadCountKV() uint64 {
if headCountKV := kv.u64(fmt.Sprintf("%s.attention.head_count_kv", kv.Architecture())); headCountKV > 0 {
return headCountKV
}
return 1
return uint64(kv.Uint("attention.head_count_kv", 1))
}
func (kv KV) EmbeddingHeadCount() uint64 {
if heads := kv.HeadCount(); heads > 0 {
return kv.EmbeddingLength() / kv.HeadCount()
return kv.EmbeddingLength() / heads
}
return 0
}
func (kv KV) EmbeddingHeadCountK() uint64 {
if k := kv.u64(fmt.Sprintf("%s.attention.key_length", kv.Architecture())); k > 0 {
return k
}
return kv.EmbeddingHeadCount()
return uint64(kv.Uint("attention.key_length", uint32(kv.EmbeddingHeadCount())))
}
func (kv KV) EmbeddingHeadCountV() uint64 {
if v := kv.u64(fmt.Sprintf("%s.attention.value_length", kv.Architecture())); v > 0 {
return v
}
return kv.EmbeddingHeadCount()
return uint64(kv.Uint("attention.value_length", uint32(kv.EmbeddingHeadCount())))
}
func (kv KV) GQA() uint64 {
return kv.HeadCount() / kv.HeadCountKV()
}
func (kv KV) EmbeddingLength() uint64 {
return kv.u64(fmt.Sprintf("%s.embedding_length", kv.Architecture()))
}
func (kv KV) ContextLength() uint64 {
return kv.u64(fmt.Sprintf("%s.context_length", kv.Architecture()))
return uint64(kv.Uint("context_length"))
}
func (kv KV) ChatTemplate() string {
s, _ := kv["tokenizer.chat_template"].(string)
return kv.String("tokenizer.chat_template")
}
func (kv KV) String(key string, defaultValue ...string) string {
return keyValue(kv, key, append(defaultValue, "")...)
}
func (kv KV) Uint(key string, defaultValue ...uint32) uint32 {
return keyValue(kv, key, append(defaultValue, 0)...)
}
func (kv KV) Float(key string, defaultValue ...float32) float32 {
return keyValue(kv, key, append(defaultValue, 0)...)
}
func (kv KV) Bool(key string, defaultValue ...bool) bool {
return keyValue(kv, key, append(defaultValue, false)...)
}
func (kv KV) Strings(key string, defaultValue ...[]string) []string {
r := keyValue(kv, key, &array{})
s := make([]string, r.size)
for i := range r.size {
s[i] = r.values[i].(string)
}
return s
}
type Tensors struct {
Items []*Tensor
Offset uint64
func (kv KV) Uints(key string, defaultValue ...[]uint32) []uint32 {
r := keyValue(kv, key, &array{})
s := make([]uint32, r.size)
for i := range r.size {
s[i] = uint32(r.values[i].(int32))
}
layers map[string]Layer
layersOnce sync.Once
return s
}
func (ts *Tensors) Layers() map[string]Layer {
ts.layersOnce.Do(func() {
ts.layers = make(map[string]Layer)
for _, t := range ts.Items {
parts := strings.Split(t.Name, ".")
if index := slices.IndexFunc(parts, func(s string) bool { return s == "blk" || s == "mm" }); index != -1 {
if len(parts) > index+2 {
// blk and mm should have a number after them, join it
parts = append(
[]string{strings.Join(parts[:index+2], ".")},
parts[index+2:]...)
}
}
func (kv KV) Floats(key string, defaultValue ...[]float32) []float32 {
r := keyValue(kv, key, &array{})
s := make([]float32, r.size)
for i := range r.size {
s[i] = float32(r.values[i].(float32))
}
return s
}
if _, ok := ts.layers[parts[0]]; !ok {
ts.layers[parts[0]] = make(Layer)
}
func (kv KV) OllamaEngineRequired() bool {
return kv.Architecture() == "gemma3"
}
ts.layers[parts[0]][strings.Join(parts[1:], ".")] = t
func keyValue[T string | uint32 | uint64 | float32 | *array | bool](kv KV, key string, defaultValue ...T) T {
if !strings.HasPrefix(key, "tokenizer.") && !strings.HasPrefix(key, "general.") {
key = kv.Architecture() + "." + key
}
if val, ok := kv[key]; ok {
return val.(T)
}
slog.Warn("key not found", "key", key, "default", defaultValue[0])
return defaultValue[0]
}
type Tensors struct {
items []*Tensor
Offset uint64
}
func (s Tensors) Items(prefix ...string) []*Tensor {
if len(prefix) == 0 {
return s.items
}
var items []*Tensor
for _, t := range s.items {
if strings.HasPrefix(t.Name, prefix[0]) {
items = append(items, t)
}
})
}
return ts.layers
return items
}
func (ts Tensors) GroupLayers() map[string]Layer {
layers := make(map[string]Layer)
for _, t := range ts.items {
parts := strings.Split(t.Name, ".")
if index := slices.IndexFunc(parts, func(s string) bool { return s == "blk" || s == "mm" }); index != -1 {
if len(parts) > index+2 {
// blk and mm should have a number after them, join it
parts = append(
[]string{strings.Join(parts[:index+2], ".")},
parts[index+2:]...)
}
}
if _, ok := layers[parts[0]]; !ok {
layers[parts[0]] = make(Layer)
}
layers[parts[0]][strings.Join(parts[1:], ".")] = t
}
return layers
}
type Layer map[string]*Tensor
func (l Layer) size() (size uint64) {
func (l Layer) Size() (size uint64) {
for _, t := range l {
size += t.Size()
}
@@ -186,11 +224,26 @@ func (t Tensor) block() (n int) {
func (t Tensor) blockSize() uint64 {
switch t.Kind {
case 0, 1, 24, 25, 26, 27, 28, 30: // F32, F16, I8, I16, I32, I64, F64, BF16
case
0, // F32
1, // F16
24, // I8
25, // I16
26, // I32
27, // I64
28, // F64
30: // BF16
return 1
case 2, 3, 4, 5, 6, 7, 8, 9, 20: // Q4_0, Q4_1, Q5_0, Q5_1, Q8_0, Q8_1, IQ4_NL
case
2, // Q4_0
3, // Q4_1
6, // Q5_0
7, // Q5_1
8, // Q8_0
9, // Q8_1
20: // IQ4_NL
return 32
default: // All others
default:
return 256
}
}
@@ -214,7 +267,7 @@ func (t Tensor) typeSize() uint64 {
case 8: // Q8_0
return 2 + blockSize
case 9: // Q8_1
return 4 + 4 + blockSize
return 2 + 2 + blockSize
case 10: // Q2_K
return blockSize/16 + blockSize/4 + 2 + 2
case 11: // Q3_K
@@ -226,7 +279,7 @@ func (t Tensor) typeSize() uint64 {
case 14: // Q6_K
return blockSize/2 + blockSize/4 + blockSize/16 + 2
case 15: // Q8_K
return 2 + blockSize + 2*blockSize/16
return 4 + blockSize + 2*blockSize/16
case 16: // IQ2_XXS
return 2 + 2*blockSize/8
case 17: // IQ2_XS
@@ -274,6 +327,10 @@ func (t Tensor) Size() uint64 {
return t.parameters() * t.typeSize() / t.blockSize()
}
func (t Tensor) Type() string {
return fileType(t.Kind).String()
}
type container interface {
Name() string
Decode(io.ReadSeeker) (model, error)
@@ -295,7 +352,7 @@ const (
var ErrUnsupportedFormat = errors.New("unsupported model format")
func DetectGGMLType(b []byte) string {
func DetectContentType(b []byte) string {
switch binary.LittleEndian.Uint32(b[:4]) {
case FILE_MAGIC_GGML:
return "ggml"
@@ -312,12 +369,12 @@ func DetectGGMLType(b []byte) string {
}
}
// DecodeGGML decodes a GGML model from the given reader.
// Decode decodes a GGML model from the given reader.
//
// It collects array values for arrays with a size less than or equal to
// maxArraySize. If maxArraySize is 0, the default value of 1024 is used. If
// the maxArraySize is negative, all arrays are collected.
func DecodeGGML(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
if maxArraySize == 0 {
maxArraySize = 1024
}
@@ -331,10 +388,6 @@ func DecodeGGML(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
var c container
switch magic {
case FILE_MAGIC_GGML, FILE_MAGIC_GGMF, FILE_MAGIC_GGJT:
return nil, 0, ErrUnsupportedFormat
case FILE_MAGIC_GGLA:
c = &containerGGLA{}
case FILE_MAGIC_GGUF_LE:
c = &containerGGUF{ByteOrder: binary.LittleEndian, maxArraySize: maxArraySize}
case FILE_MAGIC_GGUF_BE:
@@ -360,22 +413,22 @@ func DecodeGGML(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
}, offset, nil
}
func (llm GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialOffload, fullOffload uint64) {
embedding := llm.KV().EmbeddingLength()
heads := llm.KV().HeadCount()
headsKV := llm.KV().HeadCountKV()
vocab := uint64(llm.KV()["tokenizer.ggml.tokens"].(*array).size)
func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialOffload, fullOffload uint64) {
embedding := f.KV().EmbeddingLength()
heads := f.KV().HeadCount()
headsKV := f.KV().HeadCountKV()
vocab := uint64(f.KV()["tokenizer.ggml.tokens"].(*array).size)
embeddingHeads := llm.KV().EmbeddingHeadCount()
embeddingHeadsK := llm.KV().EmbeddingHeadCountK()
embeddingHeadsV := llm.KV().EmbeddingHeadCountV()
embeddingHeads := f.KV().EmbeddingHeadCount()
embeddingHeadsK := f.KV().EmbeddingHeadCountK()
embeddingHeadsV := f.KV().EmbeddingHeadCountV()
layers := llm.Tensors().Layers()
layers := f.Tensors().GroupLayers()
bytesPerElement := kvCacheBytesPerElement(kvCacheType)
kv = uint64(float64(context*llm.KV().BlockCount()*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
kv = uint64(float64(context*f.KV().BlockCount()*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
switch llm.KV().Architecture() {
switch f.KV().Architecture() {
case "llama":
fullOffload = max(
4*batch*(1+4*embedding+context*(1+heads)),
@@ -390,7 +443,7 @@ func (llm GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partia
if ffnGateExpsWeight, ok := layers["blk.0"]["ffn_gate_exps.weight"]; ok {
// mixtral 8x22b
ff := uint64(llm.KV()["llama.feed_forward_length"].(uint32))
ff := uint64(f.KV()["llama.feed_forward_length"].(uint32))
partialOffload = max(
3*ffnGateExpsWeight.Size()+4*batch*(2*ff+headsKV+embedding+context+embeddingHeads*headsKV),
4*(context*batch*heads+context*embeddingHeads*headsKV+batch*1024+embeddingHeads*headsKV*batch),
@@ -407,11 +460,11 @@ func (llm GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partia
case "mllama":
var visionTokens, tiles uint64 = 1601, 4
if crossAttentionLayers, ok := llm.KV()["mllama.attention.cross_attention_layers"].(*array); ok {
if crossAttentionLayers, ok := f.KV()["mllama.attention.cross_attention_layers"].(*array); ok {
kv = headsKV *
(embeddingHeadsK + embeddingHeadsV) * // one for K, one for V
(2* // sizeof(float16)
(llm.KV().BlockCount()-uint64(crossAttentionLayers.size))* // num non-cross attention layers
(f.KV().BlockCount()-uint64(crossAttentionLayers.size))* // num non-cross attention layers
context +
4* // sizeof(float32)
uint64(crossAttentionLayers.size)* // num cross attention layers
@@ -426,7 +479,7 @@ func (llm GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partia
)
var ropeFreqsCount uint64
if ropeFreqs, ok := llm.Tensors().Layers()["rope_freqs"]; ok {
if ropeFreqs, ok := f.Tensors().GroupLayers()["rope_freqs"]; ok {
if ropeFreqsWeights, ok := ropeFreqs["weights"]; ok {
ropeFreqsCount = ropeFreqsWeights.parameters()
}
@@ -440,7 +493,7 @@ func (llm GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partia
// vocab graph
4*batch*(embedding+vocab)+embedding*vocab*105/128,
)
case "gemma", "gemma2":
case "gemma", "gemma2", "gemma3":
fullOffload = max(
4*batch*(embedding+vocab),
4*batch*(2+context+context*heads+2*embedding+2*embeddingHeadsK*heads),
@@ -529,22 +582,71 @@ func (llm GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partia
return
}
func (llm GGML) VisionGraphSize() (weights, graphSize uint64) {
if llm.KV().Uint("vision.block_count") == 0 {
return
}
for name, layer := range llm.Tensors().GroupLayers() {
if name == "v" || strings.HasPrefix(name, "v.") {
for _, tensor := range layer {
weights += tensor.Size()
}
}
}
imageSize := uint64(llm.KV().Uint("vision.image_size"))
patchSize := uint64(llm.KV().Uint("vision.patch_size"))
if patchSize == 0 {
slog.Warn("unknown patch size for vision model")
return
}
numChannels := uint64(llm.KV().Uint("vision.num_channels"))
numPatches := (imageSize / patchSize) * (imageSize / patchSize)
if _, ok := llm.Tensors().GroupLayers()["v"]["class_embd"]; ok {
numPatches++
}
headCount := uint64(llm.KV().Uint("vision.attention.head_count"))
embeddingLength := uint64(llm.KV().Uint("vision.embedding_length"))
switch llm.KV().Architecture() {
case "mllama":
numPaddedPatches := numPatches + 8 - (numPatches%8)%8
maxNumTiles := uint64(llm.KV().Uint("vision.max_num_tiles"))
graphSize = 4 * (8 +
imageSize*imageSize*numChannels*maxNumTiles +
embeddingLength*numPatches*maxNumTiles +
9*embeddingLength*numPaddedPatches*maxNumTiles +
numPaddedPatches*maxNumTiles*numPaddedPatches*maxNumTiles*headCount)
case "gemma3":
graphSize = 4 * (imageSize*imageSize*numChannels +
embeddingLength*patchSize +
numPatches*numPatches*headCount)
}
return weights, graphSize
}
// SupportsKVCacheType checks if the requested cache type is supported
func (ggml GGML) SupportsKVCacheType(cacheType string) bool {
validKVCacheTypes := []string{"f16", "q8_0", "q4_0"}
return slices.Contains(validKVCacheTypes, cacheType)
func (f GGML) SupportsKVCacheType(cacheType string) bool {
return slices.Contains([]string{"f16", "q8_0", "q4_0"}, cacheType)
}
// SupportsFlashAttention checks if the model supports flash attention
func (ggml GGML) SupportsFlashAttention() bool {
_, isEmbedding := ggml.KV()[fmt.Sprintf("%s.pooling_type", ggml.KV().Architecture())]
func (f GGML) SupportsFlashAttention() bool {
_, isEmbedding := f.KV()[fmt.Sprintf("%s.pooling_type", f.KV().Architecture())]
if isEmbedding {
return false
}
// Check head counts match and are non-zero
headCountK := ggml.KV().EmbeddingHeadCountK()
headCountV := ggml.KV().EmbeddingHeadCountV()
headCountK := f.KV().EmbeddingHeadCountK()
headCountV := f.KV().EmbeddingHeadCountV()
return headCountK != 0 && headCountV != 0 && headCountK == headCountV
}

212
fs/ggml/ggml_test.go Normal file
View File

@@ -0,0 +1,212 @@
package ggml
import (
"maps"
"slices"
"strconv"
"strings"
"testing"
"github.com/google/go-cmp/cmp"
)
func TestTensorLayers(t *testing.T) {
tensors := make(map[string]*Tensor)
for _, name := range []string{
"token_embd.weight",
"blk.0.attn_k.weight",
"blk.0.attn_output.weight",
"blk.0.attn_q.weight",
"blk.0.attn_v.weight",
"blk.0.attn_norm.weight",
"blk.0.ffn_down.weight",
"blk.0.ffn_gate.weight",
"blk.0.ffn_up.weight",
"blk.0.ffn_norm.weight",
"output_norm.weight",
"mm.0.bias",
"mm.0.weight",
"v.blk.0.attn_k.weight",
"v.blk.0.attn_output.weight",
"v.blk.0.attn_q.weight",
"v.blk.0.attn_v.weight",
"v.blk.0.attn_norm.weight",
"v.blk.0.ffn_down.weight",
"v.blk.0.ffn_gate.weight",
"v.blk.0.ffn_up.weight",
"v.blk.0.ffn_norm.weight",
"v.patch_embd.weight",
"v.position_embd.gate",
"v.position_embd.weight",
} {
tensors[name] = &Tensor{Name: name}
}
cases := []struct {
name string
items []*Tensor
want map[string]Layer
}{
{
name: "text",
items: slices.Collect(func(yield func(*Tensor) bool) {
for k, v := range tensors {
if !strings.HasPrefix(k, "mm.") && !strings.HasPrefix(k, "v.") {
if !yield(v) {
return
}
}
}
}),
want: map[string]Layer{
"blk.0": {
"attn_k.weight": tensors["blk.0.attn_k.weight"],
"attn_q.weight": tensors["blk.0.attn_q.weight"],
"attn_v.weight": tensors["blk.0.attn_v.weight"],
"attn_output.weight": tensors["blk.0.attn_output.weight"],
"attn_norm.weight": tensors["blk.0.attn_norm.weight"],
"ffn_down.weight": tensors["blk.0.ffn_down.weight"],
"ffn_gate.weight": tensors["blk.0.ffn_gate.weight"],
"ffn_up.weight": tensors["blk.0.ffn_up.weight"],
"ffn_norm.weight": tensors["blk.0.ffn_norm.weight"],
},
"token_embd": {"weight": tensors["token_embd.weight"]},
"output_norm": {"weight": tensors["output_norm.weight"]},
},
},
{
name: "vision",
items: slices.Collect(func(yield func(*Tensor) bool) {
for k, v := range tensors {
if strings.HasPrefix(k, "mm.") || strings.HasPrefix(k, "v.") {
if !yield(v) {
return
}
}
}
}),
want: map[string]Layer{
"mm.0": {
"bias": tensors["mm.0.bias"],
"weight": tensors["mm.0.weight"],
},
"v.blk.0": {
"attn_k.weight": tensors["v.blk.0.attn_k.weight"],
"attn_q.weight": tensors["v.blk.0.attn_q.weight"],
"attn_v.weight": tensors["v.blk.0.attn_v.weight"],
"attn_output.weight": tensors["v.blk.0.attn_output.weight"],
"attn_norm.weight": tensors["v.blk.0.attn_norm.weight"],
"ffn_down.weight": tensors["v.blk.0.ffn_down.weight"],
"ffn_gate.weight": tensors["v.blk.0.ffn_gate.weight"],
"ffn_up.weight": tensors["v.blk.0.ffn_up.weight"],
"ffn_norm.weight": tensors["v.blk.0.ffn_norm.weight"],
},
"v": {
"patch_embd.weight": tensors["v.patch_embd.weight"],
"position_embd.gate": tensors["v.position_embd.gate"],
"position_embd.weight": tensors["v.position_embd.weight"],
},
},
},
{
name: "vision and text",
items: slices.Collect(maps.Values(tensors)),
want: map[string]Layer{
"blk.0": {
"attn_k.weight": tensors["blk.0.attn_k.weight"],
"attn_q.weight": tensors["blk.0.attn_q.weight"],
"attn_v.weight": tensors["blk.0.attn_v.weight"],
"attn_output.weight": tensors["blk.0.attn_output.weight"],
"attn_norm.weight": tensors["blk.0.attn_norm.weight"],
"ffn_down.weight": tensors["blk.0.ffn_down.weight"],
"ffn_gate.weight": tensors["blk.0.ffn_gate.weight"],
"ffn_up.weight": tensors["blk.0.ffn_up.weight"],
"ffn_norm.weight": tensors["blk.0.ffn_norm.weight"],
},
"token_embd": {"weight": tensors["token_embd.weight"]},
"output_norm": {"weight": tensors["output_norm.weight"]},
"mm.0": {
"bias": tensors["mm.0.bias"],
"weight": tensors["mm.0.weight"],
},
"v.blk.0": {
"attn_k.weight": tensors["v.blk.0.attn_k.weight"],
"attn_q.weight": tensors["v.blk.0.attn_q.weight"],
"attn_v.weight": tensors["v.blk.0.attn_v.weight"],
"attn_output.weight": tensors["v.blk.0.attn_output.weight"],
"attn_norm.weight": tensors["v.blk.0.attn_norm.weight"],
"ffn_down.weight": tensors["v.blk.0.ffn_down.weight"],
"ffn_gate.weight": tensors["v.blk.0.ffn_gate.weight"],
"ffn_up.weight": tensors["v.blk.0.ffn_up.weight"],
"ffn_norm.weight": tensors["v.blk.0.ffn_norm.weight"],
},
"v": {
"patch_embd.weight": tensors["v.patch_embd.weight"],
"position_embd.gate": tensors["v.position_embd.gate"],
"position_embd.weight": tensors["v.position_embd.weight"],
},
},
},
}
for _, tt := range cases {
t.Run(tt.name, func(t *testing.T) {
got := Tensors{items: tt.items}.GroupLayers()
if diff := cmp.Diff(got, tt.want); diff != "" {
t.Errorf("unexpected layers (-got +want):\n%s", diff)
}
})
}
}
// ref: https://github.com/ggml-org/llama.cpp/blob/a82c9e7c23ef6db48cebfa194dc9cebbc4ac3552/ggml/src/ggml.c#L572
func TestTensorTypes(t *testing.T) {
cases := []struct {
kind uint32
blockSize uint64
typeSize uint64
}{
{0, 1, 4},
{1, 1, 2},
{2, 32, 18},
{3, 32, 20},
{6, 32, 22},
{7, 32, 24},
{8, 32, 34},
{9, 32, 36},
{10, 256, 84},
{11, 256, 110},
{12, 256, 144},
{13, 256, 176},
{14, 256, 210},
{15, 256, 292},
{16, 256, 66},
{17, 256, 74},
{18, 256, 98},
{19, 256, 50},
{20, 32, 18},
{21, 256, 110},
{22, 256, 82},
{23, 256, 136},
{24, 1, 1},
{25, 1, 2},
{26, 1, 4},
{27, 1, 8},
{28, 1, 8},
{29, 256, 56},
{30, 1, 2},
}
for _, tt := range cases {
t.Run(strconv.Itoa(int(tt.kind)), func(t *testing.T) {
tensor := Tensor{Kind: tt.kind}
if tensor.blockSize() != tt.blockSize {
t.Errorf("unexpected block size: got=%d want=%d", tensor.blockSize(), tt.blockSize)
}
if tensor.typeSize() != tt.typeSize {
t.Errorf("unexpected type size: got=%d want=%d", tensor.typeSize(), tt.typeSize)
}
})
}
}

View File

@@ -1,4 +1,4 @@
package llm
package ggml
import (
"bytes"
@@ -8,10 +8,9 @@ import (
"fmt"
"io"
"log/slog"
"maps"
"slices"
"strings"
"golang.org/x/exp/maps"
)
type containerGGUF struct {
@@ -110,9 +109,9 @@ func (llm *gguf) KV() KV {
return llm.kv
}
func (llm *gguf) Tensors() *Tensors {
return &Tensors{
Items: llm.tensors,
func (llm *gguf) Tensors() Tensors {
return Tensors{
items: llm.tensors,
Offset: llm.tensorOffset,
}
}
@@ -523,7 +522,7 @@ func WriteGGUF(ws io.WriteSeeker, kv KV, ts []Tensor) error {
return err
}
keys := maps.Keys(kv)
keys := slices.Collect(maps.Keys(kv))
slices.Sort(keys)
for _, key := range keys {

View File

@@ -1,4 +1,4 @@
package llm
package ggml
import "fmt"
@@ -98,10 +98,10 @@ func ParseFileType(s string) (fileType, error) {
return fileTypeIQ3_M, nil
case "IQ2_S":
return fileTypeIQ2_S, nil
case "IQ4_XS":
return fileTypeIQ4_XS, nil
case "IQ2_M":
return fileTypeIQ2_M, nil
case "IQ4_XS":
return fileTypeIQ4_XS, nil
case "IQ1_M":
return fileTypeIQ1_M, nil
case "BF16":

19
go.mod
View File

@@ -1,6 +1,6 @@
module github.com/ollama/ollama
go 1.23.4
go 1.24.0
require (
github.com/containerd/console v1.0.3
@@ -11,7 +11,7 @@ require (
github.com/spf13/cobra v1.7.0
github.com/stretchr/testify v1.9.0
github.com/x448/float16 v0.8.4
golang.org/x/sync v0.10.0
golang.org/x/sync v0.11.0
)
require (
@@ -24,7 +24,7 @@ require (
github.com/nlpodyssey/gopickle v0.3.0
github.com/pdevine/tensor v0.0.0-20240510204454-f88f4562727c
golang.org/x/image v0.22.0
gonum.org/v1/gonum v0.15.0
golang.org/x/tools v0.30.0
)
require (
@@ -44,6 +44,7 @@ require (
github.com/xtgo/set v1.0.0 // indirect
go4.org/unsafe/assume-no-moving-gc v0.0.0-20231121144256-b99613f794b6 // indirect
golang.org/x/xerrors v0.0.0-20200804184101-5ec99f83aff1 // indirect
gonum.org/v1/gonum v0.15.0 // indirect
gorgonia.org/vecf32 v0.9.0 // indirect
gorgonia.org/vecf64 v0.9.0 // indirect
)
@@ -69,12 +70,12 @@ require (
github.com/twitchyliquid64/golang-asm v0.15.1 // indirect
github.com/ugorji/go/codec v1.2.12 // indirect
golang.org/x/arch v0.8.0 // indirect
golang.org/x/crypto v0.31.0
golang.org/x/exp v0.0.0-20231110203233-9a3e6036ecaa
golang.org/x/net v0.25.0 // indirect
golang.org/x/sys v0.28.0
golang.org/x/term v0.27.0
golang.org/x/text v0.21.0
golang.org/x/crypto v0.33.0
golang.org/x/exp v0.0.0-20250218142911-aa4b98e5adaa
golang.org/x/net v0.35.0 // indirect
golang.org/x/sys v0.30.0
golang.org/x/term v0.29.0
golang.org/x/text v0.22.0
google.golang.org/protobuf v1.34.1
gopkg.in/yaml.v3 v3.0.1 // indirect
)

30
go.sum
View File

@@ -214,16 +214,16 @@ golang.org/x/crypto v0.0.0-20190308221718-c2843e01d9a2/go.mod h1:djNgcEr1/C05ACk
golang.org/x/crypto v0.0.0-20190510104115-cbcb75029529/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
golang.org/x/crypto v0.0.0-20191011191535-87dc89f01550/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
golang.org/x/crypto v0.0.0-20200622213623-75b288015ac9/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto=
golang.org/x/crypto v0.31.0 h1:ihbySMvVjLAeSH1IbfcRTkD/iNscyz8rGzjF/E5hV6U=
golang.org/x/crypto v0.31.0/go.mod h1:kDsLvtWBEx7MV9tJOj9bnXsPbxwJQ6csT/x4KIN4Ssk=
golang.org/x/crypto v0.33.0 h1:IOBPskki6Lysi0lo9qQvbxiQ+FvsCC/YWOecCHAixus=
golang.org/x/crypto v0.33.0/go.mod h1:bVdXmD7IV/4GdElGPozy6U7lWdRXA4qyRVGJV57uQ5M=
golang.org/x/exp v0.0.0-20180321215751-8460e604b9de/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
golang.org/x/exp v0.0.0-20180807140117-3d87b88a115f/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
golang.org/x/exp v0.0.0-20190121172915-509febef88a4/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
golang.org/x/exp v0.0.0-20190125153040-c74c464bbbf2/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
golang.org/x/exp v0.0.0-20190306152737-a1d7652674e8/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
golang.org/x/exp v0.0.0-20191002040644-a1355ae1e2c3/go.mod h1:NOZ3BPKG0ec/BKJQgnvsSFpcKLM5xXVWnvZS97DWHgE=
golang.org/x/exp v0.0.0-20231110203233-9a3e6036ecaa h1:FRnLl4eNAQl8hwxVVC17teOw8kdjVDVAiFMtgUdTSRQ=
golang.org/x/exp v0.0.0-20231110203233-9a3e6036ecaa/go.mod h1:zk2irFbV9DP96SEBUUAy67IdHUaZuSnrz1n472HUCLE=
golang.org/x/exp v0.0.0-20250218142911-aa4b98e5adaa h1:t2QcU6V556bFjYgu4L6C+6VrCPyJZ+eyRsABUPs1mz4=
golang.org/x/exp v0.0.0-20250218142911-aa4b98e5adaa/go.mod h1:BHOTPb3L19zxehTsLoJXVaTktb06DFgmdW6Wb9s8jqk=
golang.org/x/image v0.0.0-20180708004352-c73c2afc3b81/go.mod h1:ux5Hcp/YLpHSI86hEcLt0YII63i6oz57MZXIpbrjZUs=
golang.org/x/image v0.0.0-20190227222117-0694c2d4d067/go.mod h1:kZ7UVZpmo3dzQBMxlp+ypCbDeSB+sBbTgSJuh5dn5js=
golang.org/x/image v0.0.0-20190802002840-cff245a6509b/go.mod h1:FeLwcggjj3mMvU+oOTbSwawSJRM1uh48EjtB4UJZlP0=
@@ -257,8 +257,8 @@ golang.org/x/net v0.0.0-20200822124328-c89045814202/go.mod h1:/O7V0waA8r7cgGh81R
golang.org/x/net v0.0.0-20201021035429-f5854403a974/go.mod h1:sp8m0HH+o8qH0wwXwYZr8TS3Oi6o0r6Gce1SSxlDquU=
golang.org/x/net v0.0.0-20210405180319-a5a99cb37ef4/go.mod h1:p54w0d4576C0XHj96bSt6lcn1PtDYWL6XObtHCRCNQM=
golang.org/x/net v0.0.0-20210614182718-04defd469f4e/go.mod h1:9nx3DQGgdP8bBQD5qxJ1jj9UTztislL4KSBs9R2vV5Y=
golang.org/x/net v0.25.0 h1:d/OCCoBEUq33pjydKrGQhw7IlUPI2Oylr+8qLx49kac=
golang.org/x/net v0.25.0/go.mod h1:JkAGAh7GEvH74S6FOH42FLoXpXbE/aqXSrIQjXgsiwM=
golang.org/x/net v0.35.0 h1:T5GQRQb2y08kTAByq9L4/bz8cipCdA8FbRTXewonqY8=
golang.org/x/net v0.35.0/go.mod h1:EglIi67kWsHKlRzzVMUD93VMSWGFOMSZgxFjparz1Qk=
golang.org/x/oauth2 v0.0.0-20180821212333-d2e6202438be/go.mod h1:N/0e6XlmueqKjAGxoOufVs8QHGRruUQn6yWY3a++T0U=
golang.org/x/oauth2 v0.0.0-20200107190931-bf48bf16ab8d/go.mod h1:gOpvHmFTYa4IltrdGE7lF6nIHvwfUNPOp7c8zoXwtLw=
golang.org/x/sync v0.0.0-20180314180146-1d60e4601c6f/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
@@ -268,8 +268,8 @@ golang.org/x/sync v0.0.0-20190423024810-112230192c58/go.mod h1:RxMgew5VJxzue5/jJ
golang.org/x/sync v0.0.0-20190911185100-cd5d95a43a6e/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20201020160332-67f06af15bc9/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20210220032951-036812b2e83c/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.10.0 h1:3NQrjDixjgGwUOCaF8w2+VYHv0Ve/vGYSbdkTa98gmQ=
golang.org/x/sync v0.10.0/go.mod h1:Czt+wKu1gCyEFDUtn0jG5QVvpJ6rzVqr5aXyt9drQfk=
golang.org/x/sync v0.11.0 h1:GGz8+XQP4FvTTrjZPzNKTMFtSXH80RAzG+5ghFPgK9w=
golang.org/x/sync v0.11.0/go.mod h1:Czt+wKu1gCyEFDUtn0jG5QVvpJ6rzVqr5aXyt9drQfk=
golang.org/x/sys v0.0.0-20180830151530-49385e6e1522/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20190215142949-d0b11bdaac8a/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20190312061237-fead79001313/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
@@ -285,17 +285,17 @@ golang.org/x/sys v0.0.0-20210510120138-977fb7262007/go.mod h1:oPkhp1MJrh7nUepCBc
golang.org/x/sys v0.0.0-20210630005230-0f9fa26af87c/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.5.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.6.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.28.0 h1:Fksou7UEQUWlKvIdsqzJmUmCX3cZuD2+P3XyyzwMhlA=
golang.org/x/sys v0.28.0/go.mod h1:/VUhepiaJMQUp4+oa/7Zr1D23ma6VTLIYjOOTFZPUcA=
golang.org/x/sys v0.30.0 h1:QjkSwP/36a20jFYWkSue1YwXzLmsV5Gfq7Eiy72C1uc=
golang.org/x/sys v0.30.0/go.mod h1:/VUhepiaJMQUp4+oa/7Zr1D23ma6VTLIYjOOTFZPUcA=
golang.org/x/term v0.0.0-20201126162022-7de9c90e9dd1/go.mod h1:bj7SfCRtBDWHUb9snDiAeCFNEtKQo2Wmx5Cou7ajbmo=
golang.org/x/term v0.27.0 h1:WP60Sv1nlK1T6SupCHbXzSaN0b9wUmsPoRS9b61A23Q=
golang.org/x/term v0.27.0/go.mod h1:iMsnZpn0cago0GOrHO2+Y7u7JPn5AylBrcoWkElMTSM=
golang.org/x/term v0.29.0 h1:L6pJp37ocefwRRtYPKSWOWzOtWSxVajvz2ldH/xi3iU=
golang.org/x/term v0.29.0/go.mod h1:6bl4lRlvVuDgSf3179VpIxBF0o10JUpXWOnI7nErv7s=
golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
golang.org/x/text v0.3.3/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
golang.org/x/text v0.3.5/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
golang.org/x/text v0.3.6/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
golang.org/x/text v0.21.0 h1:zyQAAkrwaneQ066sspRyJaG9VNi/YJ1NfzcGB3hZ/qo=
golang.org/x/text v0.21.0/go.mod h1:4IBbMaMmOPCJ8SecivzSH54+73PCFmPWxNTLm+vZkEQ=
golang.org/x/text v0.22.0 h1:bofq7m3/HAFvbF51jz3Q9wLg3jkvSPuiZu/pD1XwgtM=
golang.org/x/text v0.22.0/go.mod h1:YRoo4H8PVmsu+E3Ou7cqLVH8oXWIHVoX0jqUWALQhfY=
golang.org/x/tools v0.0.0-20180525024113-a5b4c53f6e8b/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
golang.org/x/tools v0.0.0-20180917221912-90fa682c2a6e/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
golang.org/x/tools v0.0.0-20190114222345-bf090417da8b/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
@@ -309,6 +309,8 @@ golang.org/x/tools v0.0.0-20200130002326-2f3ba24bd6e7/go.mod h1:TB2adYChydJhpapK
golang.org/x/tools v0.0.0-20200619180055-7c47624df98f/go.mod h1:EkVYQZoAsY45+roYkvgYkIh4xh/qjgUK9TdY2XT94GE=
golang.org/x/tools v0.0.0-20210106214847-113979e3529a/go.mod h1:emZCQorbCU4vsT4fOWvOPXz4eW1wZW4PmDk9uLelYpA=
golang.org/x/tools v0.1.4/go.mod h1:o0xws9oXOQQZyjljx8fwUC0k7L1pTE6eaCbjGeHmOkk=
golang.org/x/tools v0.30.0 h1:BgcpHewrV5AUp2G9MebG4XPFI1E2W41zU1SaqVA9vJY=
golang.org/x/tools v0.30.0/go.mod h1:c347cR/OJfw5TI+GfX7RUPNMdDRRbjvYTS0jPyvsVtY=
golang.org/x/xerrors v0.0.0-20190717185122-a985d3407aa7/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20191011141410-1b5146add898/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20191204190536-9bdfabe68543/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=

View File

@@ -66,6 +66,35 @@ func TestIntegrationMllama(t *testing.T) {
DoGenerate(ctx, t, client, req, []string{resp}, 240*time.Second, 30*time.Second)
}
func TestIntegrationSplitBatch(t *testing.T) {
image, err := base64.StdEncoding.DecodeString(imageEncoding)
require.NoError(t, err)
req := api.GenerateRequest{
Model: "gemma3:4b",
// Fill up a chunk of the batch so the image will partially spill over into the next one
System: "Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed aliquet, justo in malesuada lobortis, odio ligula volutpat quam, quis faucibus ipsum magna quis sapien. Aliquam in venenatis diam, eu viverra magna. Phasellus imperdiet hendrerit volutpat. Vivamus sem ex, facilisis placerat felis non, dictum elementum est. Phasellus aliquam imperdiet lacus, eget placerat ligula sodales vel. Pellentesque nec auctor mi. Curabitur arcu nisi, faucibus eget nunc id, viverra interdum mi. Curabitur ornare ipsum ex, ac euismod ex aliquam in. Vestibulum id magna at purus accumsan fermentum. Proin scelerisque posuere nunc quis interdum. Maecenas sed mollis nisl. Etiam vitae ipsum interdum, placerat est quis, tincidunt velit. Nullam tempor nibh non lorem volutpat efficitur. Cras laoreet diam imperdiet ipsum auctor bibendum. Suspendisse ultrices urna sed metus sagittis suscipit. Quisque ullamcorper aliquam nibh ut mollis. Aenean dapibus mauris pharetra, venenatis elit ac, hendrerit odio. Cras vestibulum erat tempor, lobortis justo eu, lobortis ipsum. Nam laoreet dapibus sem. Proin vel diam ultrices, elementum ante et, ornare lectus. Proin eu accumsan nisl. Praesent ac ex vitae ipsum vulputate tristique facilisis sit amet lacus. Nullam faucibus magna a pellentesque pretium. Nunc lacinia ullamcorper sollicitudin. Donec vitae accumsan turpis, sed porttitor est. Donec porttitor mi vitae augue faucibus, vel mollis diam tincidunt.",
Prompt: "what does the text in this image say?",
Stream: &stream,
Options: map[string]interface{}{
"seed": 42,
"temperature": 0.0,
},
Images: []api.ImageData{
image,
},
}
// Note: sometimes it returns "the ollamas" sometimes "the ollams"
resp := "the ollam"
ctx, cancel := context.WithTimeout(context.Background(), 3*time.Minute)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
require.NoError(t, PullIfMissing(ctx, client, req.Model))
// llava models on CPU can be quite slow to start,
DoGenerate(ctx, t, client, req, []string{resp}, 120*time.Second, 30*time.Second)
}
const imageEncoding = `iVBORw0KGgoAAAANSUhEUgAAANIAAAB4CAYAAACHHqzKAAAAAXNSR0IArs4c6QAAAIRlWElmTU0AKgAAAAgABQESAAMAAAABAAEAAAEaAAUAAAABAAAASgEb
AAUAAAABAAAAUgEoAAMAAAABAAIAAIdpAAQAAAABAAAAWgAAAAAAAABIAAAAAQAAAEgAAAABAAOgAQADAAAAAQABAACgAgAEAAAAAQAAANKgAwAEAAAAAQAA
AHgAAAAAXdsepgAAAAlwSFlzAAALEwAACxMBAJqcGAAAAVlpVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6

71
kvcache/cache.go Normal file
View File

@@ -0,0 +1,71 @@
package kvcache
import (
"errors"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model/input"
)
var (
ErrKvCacheFull = errors.New("could not find a kv cache slot")
ErrNotSupported = errors.New("model does not support operation")
)
type Cache interface {
// ** used by model implementations **
// SetLayer sets the active layer of the cache
SetLayer(layer int)
// Get returns the history of key and value tensors plus a mask
//
// The shape of the tensors is documented in the specific
// cache implementation used.
Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor)
// Put stores a batch of key and value in the cache
//
// The shape of the tensors is documented in the specific
// cache implementation used.
Put(ctx ml.Context, key, value ml.Tensor)
// SetConfig controls optimizations (mostly backend-specific) that may transform
// the output of the cache to work better with specific kernels. If not called,
// the backend settings will be used. This works well when calling Attention.
//
// The config can be overridden by models, especially if they require vanilla
// output when implementing their own version of attention. To do this, pass
// an empty ml.CacheConfig.
//
// Most models will not need to use this.
SetConfig(ml.CacheConfig)
// ** cache management **
// Init sets up runtime parameters.
// backend: Used to allocate cache data storage and execute management operations (such as defrag)
// dtype: The data type for storing cache entries
// maxSequences: The maximum number of sequences stored in the cache - across all batches
// capacity: The number of cache entries to store, per sequence
// maxBatch: The maximum number of tokens that can occur in a single batch
Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int)
// Close closes the cache and frees resources associated with it
Close()
// StartForward is called before the start of the model's forward pass.
// For each token in the coming batch, there must be a corresponding
// entry in positions and seqs.
StartForward(ctx ml.Context, batch input.Batch) error
// CopyPrefix copies tokens in the range [0, len) from srcSeq to dstSeq
CopyPrefix(srcSeq, dstSeq int, len int32)
// Remove deletes tokens in the range [beginIndex, endIndex) from seq. Set
// endIndex to math.MaxInt32 to remove everything starting at beginIndex.
//
// If an error occurs, the entire context for the sequence should be
// removed by calling Remove(seq, 0, math.MaxInt32)
Remove(seq int, beginIndex, endIndex int32) error
}

683
kvcache/causal.go Normal file
View File

@@ -0,0 +1,683 @@
package kvcache
import (
"errors"
"fmt"
"log/slog"
"math"
"slices"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model/input"
)
type shiftFn func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error)
// Causal cache stores K and V tensors according to their position in the
// sequence. Returns the history and a mask for attending to past tokens
//
// The tensors are of shape embed dim, kv heads, batch size
// The mask is of shape history size, batch size
type Causal struct {
DType ml.DType
windowSize int32
opts CausalOptions
// config controls mostly backend-specific optimizations
config *ml.CacheConfig
// ** current forward pass **
// the active layer for Get and Put
curLayer int
// starting location for data storage for this batch
curLoc int
// size of the current batch
curBatchSize int
// mask of the cache as used by this batch
curMask ml.Tensor
// locations in the cache that are needed for this batch
curCellRange cellRange
// curSequences is the sequences corresponding to this pass's entries in the cache
curSequences []int
// curPositions is the positions corresponding to this pass's entries in the cache
curPositions []int32
// ** cache metadata **
// for each possible location in the cache, stores the position and set of sequences
// that reference the data there
cells []cacheCell
// maps from sequence to the range of locations where it is stored in the cache
cellRanges map[int]cellRange
// ** cache data storage **
shiftFn shiftFn
backend ml.Backend
ctxs map[int]ml.Context
keys, values map[int]ml.Tensor
}
type cacheCell struct {
pos int32
sequences []int
}
type cellRange struct {
min int
max int
}
func NewCausalCache(shift shiftFn) *Causal {
return &Causal{
windowSize: math.MaxInt32,
shiftFn: shift,
ctxs: make(map[int]ml.Context),
keys: make(map[int]ml.Tensor),
values: make(map[int]ml.Tensor),
}
}
func NewSWACache(windowSize int32, shift shiftFn) *Causal {
return &Causal{
windowSize: windowSize,
shiftFn: shift,
ctxs: make(map[int]ml.Context),
keys: make(map[int]ml.Tensor),
values: make(map[int]ml.Tensor),
}
}
func (c *Causal) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int) {
if c.config == nil {
var config ml.CacheConfig
if cc, ok := backend.(ml.BackendCacheConfig); ok {
config = cc.CacheConfig()
}
c.config = &config
}
if c.config.CachePadding == 0 {
c.config.CachePadding = 1
}
if c.config.MaskBatchPadding == 0 {
c.config.MaskBatchPadding = 1
}
if c.config.MaskDType == ml.DTypeOther {
c.config.MaskDType = ml.DTypeF32
}
var cacheSize int
if c.windowSize == math.MaxInt32 || capacity < int(c.windowSize)+maxBatch {
cacheSize = maxSequences * capacity
} else {
cacheSize = maxSequences * (int(c.windowSize) + maxBatch)
}
cacheSize = roundUp(cacheSize, c.config.CachePadding)
c.cells = make([]cacheCell, cacheSize)
c.DType = dtype
c.cellRanges = make(map[int]cellRange)
c.backend = backend
}
func (c *Causal) SetConfig(config ml.CacheConfig) {
if c.config != nil {
panic("config cannot be changed after being previously set, either by the model or backend")
}
c.config = &config
}
func (c *Causal) Close() {
for _, ctx := range c.ctxs {
ctx.Close()
}
}
func (c *Causal) StartForward(ctx ml.Context, batch input.Batch) error {
c.curBatchSize = len(batch.Positions)
c.curSequences = batch.Sequences
c.curPositions = batch.Positions
c.opts.Except = nil
c.updateSlidingWindow()
var err error
c.curLoc, err = c.findStartLoc()
if errors.Is(err, ErrKvCacheFull) {
c.defrag()
c.curLoc, err = c.findStartLoc()
}
if err != nil {
return err
}
c.curCellRange = newRange()
for i, pos := range batch.Positions {
seq := batch.Sequences[i]
c.cells[c.curLoc+i] = cacheCell{pos: pos, sequences: []int{seq}}
seqRange, ok := c.cellRanges[seq]
if !ok {
seqRange = newRange()
}
if c.curLoc+i > seqRange.max {
seqRange.max = c.curLoc + i
}
if seqRange.max > c.curCellRange.max {
c.curCellRange.max = seqRange.max
}
if c.curLoc+i < seqRange.min {
seqRange.min = c.curLoc + i
}
if seqRange.min < c.curCellRange.min {
c.curCellRange.min = seqRange.min
}
c.cellRanges[seq] = seqRange
}
c.curMask, err = c.buildMask(ctx)
return err
}
func newRange() cellRange {
return cellRange{
min: math.MaxInt,
max: 0,
}
}
// Find the first contiguous block of at least curBatchSize
func (c *Causal) findStartLoc() (int, error) {
var start, count int
for i := range c.cells {
if len(c.cells[i].sequences) == 0 {
count++
if count >= c.curBatchSize {
return start, nil
}
} else {
start = i + 1
count = 0
}
}
return 0, fmt.Errorf("%w (length: %v)", ErrKvCacheFull, len(c.cells))
}
func (c *Causal) updateSlidingWindow() {
if c.windowSize == math.MaxInt32 {
return
}
// create a map of unique sequences to the lowest position in that sequence
lowestPos := make(map[int]int32)
for i := range c.curPositions {
seq := c.curSequences[i]
pos, ok := lowestPos[seq]
if !ok {
pos = c.curPositions[i]
} else if c.curPositions[i] < pos {
pos = c.curPositions[i]
}
lowestPos[seq] = pos
}
// delete any entries that are beyond the window of the oldest position in the sequence
for seq, pos := range lowestPos {
oldRange, ok := c.cellRanges[seq]
if !ok {
continue
}
newRange := newRange()
for i := oldRange.min; i <= oldRange.max; i++ {
if slices.Contains(c.cells[i].sequences, seq) {
if c.cells[i].pos < pos-c.windowSize {
c.cells[i].sequences = slices.DeleteFunc(c.cells[i].sequences, func(s int) bool { return s == seq })
} else {
newRange.min = min(newRange.min, i)
newRange.max = max(newRange.max, i)
}
}
}
c.cellRanges[seq] = newRange
}
}
func roundDown(length, pad int) int {
return (length / pad) * pad
}
func roundUp(length, pad int) int {
return ((length + pad - 1) / pad) * pad
}
// Builds a mask of history x batch indicating whether for each token in the batch the
// token in the history should apply. This is based on both the sequence and causality (the
// position of the history is not ahead of the token in the batch).
func (c *Causal) buildMask(ctx ml.Context) (ml.Tensor, error) {
// Align and pad the two dimensions as required by the backend
batchSize := roundUp(c.curBatchSize, c.config.MaskBatchPadding)
c.curCellRange.min = roundDown(c.curCellRange.min, c.config.CachePadding)
c.curCellRange.max = roundUp(c.curCellRange.max+1, c.config.CachePadding) - 1
length := c.curCellRange.max - c.curCellRange.min + 1
mask := make([]float32, batchSize*length)
for i := range c.curBatchSize {
enabled := !slices.Contains(c.opts.Except, i)
for j := c.curCellRange.min; j <= c.curCellRange.max; j++ {
if !slices.Contains(c.cells[j].sequences, c.curSequences[i]) ||
(enabled && c.cells[j].pos > c.curPositions[i]) ||
c.cells[j].pos < c.curPositions[i]-c.windowSize {
mask[i*length+(j-c.curCellRange.min)] = float32(math.Inf(-1))
}
}
}
// Mask out any padding tokens we added. For padding that we added to the cache history, this
// has already been masked out because the sequence doesn't match.
for i := c.curBatchSize * length; i < len(mask); i++ {
mask[i] = float32(math.Inf(-1))
}
maskTensor, err := ctx.Input().FromFloatSlice(mask, length, batchSize)
if err != nil {
return nil, err
}
if c.config.MaskDType != ml.DTypeF32 {
out := ctx.Input().Empty(c.config.MaskDType, maskTensor.Shape()...)
ctx.Forward(maskTensor.Copy(ctx, out))
maskTensor = out
}
return maskTensor, nil
}
func (c *Causal) moveCells(ctx ml.Context, src, dst, length int) {
for i, key := range c.keys {
if key == nil {
continue
}
kHeadDim := key.Dim(0)
numKVHeads := key.Dim(1)
rowSize := key.Stride(2)
kSrcView := key.View(ctx, rowSize*src, kHeadDim*numKVHeads*length)
kDstView := key.View(ctx, rowSize*dst, kHeadDim*numKVHeads*length)
value := c.values[i]
var vSrcView, vDstView ml.Tensor
if c.config.PermutedV {
vHeadDim := value.Dim(1)
elemSize := value.Stride(0)
vSrcView = value.View(ctx, elemSize*src, length, len(c.cells)*elemSize, vHeadDim*numKVHeads)
vDstView = value.View(ctx, elemSize*dst, length, len(c.cells)*elemSize, vHeadDim*numKVHeads)
} else {
vHeadDim := value.Dim(0)
rowSize := value.Stride(2)
vSrcView = value.View(ctx, rowSize*src, vHeadDim*numKVHeads*length)
vDstView = value.View(ctx, rowSize*dst, vHeadDim*numKVHeads*length)
}
ctx.Forward(
kSrcView.Copy(ctx, kDstView),
vSrcView.Copy(ctx, vDstView),
)
}
}
func (c *Causal) defrag() {
slog.Debug("defragmenting kv cache")
// Defrag strategy:
// - Search for empty holes at the beginning of the cache,
// filling them with active data starting at the end
// - If there are contiguous elements that need to be moved,
// combine them into a single operation by holding new moves
// until we see that the next one is non-contiguous
// - Fill up the context with the maximum number of operations it
// can hold then compute that and continue with a new context
//
// We could try to optimize placement by grouping blocks from
// the same sequences together but most likely the next forward
// pass will disrupt this anyways, so the real world benefit
// seems limited as this time.
ctx := c.backend.NewContext()
// For every move, 6 tensors are required per layer (2 views and a
// copy for each of k and v). We also need to refer to the original
// k and v cache tensors - once per layer, not per move.
layers := 0
for _, key := range c.keys {
if key == nil {
continue
}
layers++
}
maxMoves := (ctx.MaxGraphNodes() - 2*layers) / (6 * layers)
moves := 0
var pendingSrc, pendingDst, pendingLen int
src := len(c.cells) - 1
for dst := 0; dst < src; dst++ {
if len(c.cells[dst].sequences) == 0 {
for ; src > dst; src-- {
if len(c.cells[src].sequences) != 0 {
c.cells[dst] = c.cells[src]
c.cells[src] = cacheCell{}
if pendingLen > 0 {
if src == pendingSrc-pendingLen && dst == pendingDst+pendingLen {
pendingSrc = src
pendingLen++
break
} else {
c.moveCells(ctx, pendingSrc, pendingDst, pendingLen)
moves++
}
}
pendingSrc = src
pendingDst = dst
pendingLen = 1
break
}
}
}
if moves >= maxMoves {
ctx.Compute()
ctx.Close()
ctx = c.backend.NewContext()
moves = 0
}
}
if pendingLen > 0 {
c.moveCells(ctx, pendingSrc, pendingDst, pendingLen)
moves++
}
if moves > 0 {
ctx.Compute()
}
ctx.Close()
// Reset range metadata
for seq := range c.cellRanges {
seqRange := newRange()
for i, cell := range c.cells {
if slices.Contains(cell.sequences, seq) {
if i < seqRange.min {
seqRange.min = i
}
if i > seqRange.max {
seqRange.max = i
}
}
}
c.cellRanges[seq] = seqRange
}
}
func (c *Causal) SetLayer(layer int) {
c.curLayer = layer
}
type CausalOptions struct {
// Enabled controls whether the causal mask is generated for a particular index in a batch
Except []int
}
// SetCausal disables causal mask generation for a particular range of indicies in
// the current batch for subsequent calls to Get. The state resets for the next forward pass.
func (c *Causal) SetCausal(ctx ml.Context, opts CausalOptions) {
if !slices.Equal(c.opts.Except, opts.Except) {
c.opts = opts
if ctx != nil {
var err error
c.curMask, err = c.buildMask(ctx)
if err != nil {
// This error should never occur because we have previously built a mask with the same shape
panic(fmt.Errorf("SetCausal: %w", err))
}
}
}
}
func (c *Causal) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
key := c.keys[c.curLayer]
value := c.values[c.curLayer]
kHeadDim := key.Dim(0)
numKVHeads := key.Dim(1)
rowSize := key.Stride(2)
cachedSize := c.curMask.Dim(0)
key = key.View(ctx, rowSize*c.curCellRange.min,
kHeadDim, key.Stride(1),
numKVHeads, key.Stride(2),
cachedSize,
)
if c.config.PermutedV {
vHeadDim := value.Dim(1)
elemSize := value.Stride(0)
value = value.View(ctx, elemSize*c.curCellRange.min,
cachedSize, value.Stride(1),
vHeadDim, value.Stride(2),
numKVHeads,
)
} else {
vHeadDim := value.Dim(0)
rowSize := value.Stride(2)
value = value.View(ctx, rowSize*c.curCellRange.min,
vHeadDim, value.Stride(1),
numKVHeads, value.Stride(2),
cachedSize,
)
}
return key, value, c.curMask
}
func (c *Causal) Put(ctx ml.Context, key, value ml.Tensor) {
kHeadDim := key.Dim(0)
vHeadDim := value.Dim(0)
numKVHeads := key.Dim(1)
batchSize := key.Dim(2)
if c.curBatchSize != batchSize {
panic(fmt.Errorf("inconsistent batch sizes (layer: %v, batch size: %v layer batch size: %v)", c.curLayer, c.curBatchSize, batchSize))
}
if _, ok := c.ctxs[c.curLayer]; !ok {
c.ctxs[c.curLayer] = c.backend.NewContextSize(2).Layer(c.curLayer)
}
if _, ok := c.keys[c.curLayer]; !ok {
c.keys[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, kHeadDim, numKVHeads, len(c.cells))
}
if _, ok := c.values[c.curLayer]; !ok {
if c.config.PermutedV {
c.values[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, len(c.cells), vHeadDim, numKVHeads)
} else {
c.values[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, vHeadDim, numKVHeads, len(c.cells))
}
}
rowSize := c.keys[c.curLayer].Stride(2)
ctx.Forward(key.Copy(ctx, c.keys[c.curLayer].View(ctx, rowSize*c.curLoc, kHeadDim*numKVHeads*batchSize)))
if c.config.PermutedV {
elemSize := c.values[c.curLayer].Stride(0)
value = value.Permute(ctx, 1, 2, 0, 3)
ctx.Forward(value.Copy(ctx, c.values[c.curLayer].View(ctx, elemSize*c.curLoc, batchSize, len(c.cells)*elemSize, vHeadDim*numKVHeads)))
} else {
rowSize := c.values[c.curLayer].Stride(2)
ctx.Forward(value.Copy(ctx, c.values[c.curLayer].View(ctx, rowSize*c.curLoc, vHeadDim*numKVHeads*batchSize)))
}
}
func (c *Causal) CopyPrefix(srcSeq, dstSeq int, len int32) {
seqRange := newRange()
for i := range c.cells {
// Remove the contents of dstSeq so that we only have the copied prefix, metadata will be reset at the end
if slices.Contains(c.cells[i].sequences, dstSeq) {
c.cells[i].sequences = slices.DeleteFunc(c.cells[i].sequences, func(s int) bool { return s == dstSeq })
}
if slices.Contains(c.cells[i].sequences, srcSeq) && c.cells[i].pos < len {
c.cells[i].sequences = append(c.cells[i].sequences, dstSeq)
if i < seqRange.min {
seqRange.min = i
}
if i > seqRange.max {
seqRange.max = i
}
}
}
c.cellRanges[dstSeq] = seqRange
}
func (c *Causal) shift(seq int, beginIndex, offset int32) error {
if c.shiftFn == nil {
return ErrNotSupported
}
ctx := c.backend.NewContext()
defer ctx.Close()
seqRange := c.cellRanges[seq]
size := seqRange.max - seqRange.min + 1
offsets := make([]int32, size)
for i := range offsets {
cell := c.cells[seqRange.min+i]
if slices.Contains(cell.sequences, seq) && cell.pos >= beginIndex {
offsets[i] = offset
}
}
kShift, err := ctx.Input().FromIntSlice(offsets, len(offsets))
if err != nil {
return err
}
for i, key := range c.keys {
if key == nil {
continue
}
kHeadDim := key.Dim(0)
numKVHeads := key.Dim(1)
rowSize := key.Stride(2)
key = key.View(ctx, rowSize*seqRange.min,
kHeadDim, key.Stride(1),
numKVHeads, key.Stride(2),
size,
)
roped, err := c.shiftFn(ctx, i, key, kShift)
if err != nil {
return err
}
ctx.Forward(roped.Copy(ctx, key))
}
ctx.Compute()
return nil
}
func (c *Causal) Remove(seq int, beginIndex, endIndex int32) error {
var offset int32
if endIndex != math.MaxInt32 {
offset = beginIndex - endIndex
}
seqRange := newRange()
for i := range c.cells {
if slices.Contains(c.cells[i].sequences, seq) {
if c.cells[i].pos >= beginIndex && c.cells[i].pos < endIndex {
c.cells[i].sequences = slices.DeleteFunc(c.cells[i].sequences, func(s int) bool { return s == seq })
} else {
if c.cells[i].pos >= endIndex {
if slices.ContainsFunc(c.cells[i].sequences, func(s int) bool { return s != seq }) {
// TODO(jessegross): Need to be careful about data shared between sequences
return errors.New("shifting on cells shared by multiple sequences not yet implemented")
}
c.cells[i].pos += offset
}
if i < seqRange.min {
seqRange.min = i
}
if i > seqRange.max {
seqRange.max = i
}
}
}
}
if seqRange == newRange() {
delete(c.cellRanges, seq)
return nil
}
c.cellRanges[seq] = seqRange
if endIndex != math.MaxInt32 {
err := c.shift(seq, endIndex+offset, offset)
if err != nil {
return err
}
}
return nil
}

543
kvcache/causal_test.go Normal file
View File

@@ -0,0 +1,543 @@
package kvcache
import (
"math"
"slices"
"testing"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model/input"
)
type testCase struct {
name string
in []float32
inShape []int
seqs []int
pos []int32
expected []float32
expectedShape []int
expectedMask []float32
}
func TestStore(t *testing.T) {
backend := &testBackend{}
cache := NewCausalCache(nil)
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
tests := []testCase{
{
name: "FirstBatch",
in: []float32{111, 211, 121, 221, 131, 231, 112, 212, 122, 222, 132, 232, 113, 213, 123, 223, 133, 233, 114, 214, 124, 224, 134, 234},
inShape: []int{2, 3, 4},
seqs: []int{0, 0, 0, 0},
pos: []int32{0, 1, 2, 3},
expected: []float32{111, 211, 121, 221, 131, 231, 112, 212, 122, 222, 132, 232, 113, 213, 123, 223, 133, 233, 114, 214, 124, 224, 134, 234},
expectedShape: []int{2, 3, 4},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), 0, 0, 0, 0},
},
{
name: "SecondBatch",
in: []float32{115, 215, 125, 225, 135, 235},
inShape: []int{2, 3, 1},
seqs: []int{0},
pos: []int32{4},
expected: []float32{111, 211, 121, 221, 131, 231, 112, 212, 122, 222, 132, 232, 113, 213, 123, 223, 133, 233, 114, 214, 124, 224, 134, 234, 115, 215, 125, 225, 135, 235},
expectedShape: []int{2, 3, 5},
expectedMask: []float32{0, 0, 0, 0, 0},
},
}
testCache(t, backend, cache, tests)
}
func TestSWA(t *testing.T) {
backend := &testBackend{}
cache := NewSWACache(1, nil)
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
tests := []testCase{
{
name: "FirstBatch",
in: []float32{1, 2, 3, 4},
inShape: []int{1, 1, 4},
seqs: []int{0, 0, 0, 0},
pos: []int32{0, 1, 2, 3},
expected: []float32{1, 2, 3, 4},
expectedShape: []int{1, 1, 4},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
},
{
name: "SecondBatch",
in: []float32{5, 6},
inShape: []int{1, 1, 2},
seqs: []int{0, 0},
pos: []int32{4, 5},
expected: []float32{5, 6, 3, 4},
expectedShape: []int{1, 1, 4},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1))},
},
}
testCache(t, backend, cache, tests)
}
func TestSequences(t *testing.T) {
backend := &testBackend{}
cache := NewCausalCache(nil)
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
tests := []testCase{
{
name: "FirstBatch",
in: []float32{1, 2, 3, 4},
inShape: []int{1, 1, 4},
seqs: []int{0, 0, 1, 1},
pos: []int32{0, 1, 0, 1},
expected: []float32{1, 2, 3, 4},
expectedShape: []int{1, 1, 4},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
},
{
name: "SecondBatch",
in: []float32{5, 6},
inShape: []int{1, 1, 2},
seqs: []int{0, 1},
pos: []int32{2, 2},
expected: []float32{1, 2, 3, 4, 5, 6},
expectedShape: []int{1, 1, 6},
expectedMask: []float32{0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), 0},
},
}
testCache(t, backend, cache, tests)
}
func TestRemove(t *testing.T) {
backend := &testBackend{}
cache := NewCausalCache(func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return key.Add(ctx, shift), nil
})
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
tests := []testCase{
{
name: "FirstBatch",
in: []float32{1, 2, 3, 4},
inShape: []int{1, 1, 4},
seqs: []int{0, 0, 1, 1},
pos: []int32{0, 1, 0, 1},
expected: []float32{1, 2, 3, 4},
expectedShape: []int{1, 1, 4},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
},
}
testCache(t, backend, cache, tests)
err := cache.Remove(0, 1, math.MaxInt32)
if err != nil {
panic(err)
}
tests = []testCase{
{
name: "RemoveEnd",
in: []float32{5, 6},
inShape: []int{1, 1, 2},
seqs: []int{0, 1},
pos: []int32{1, 2},
expected: []float32{1, 2, 3, 4, 5, 6},
expectedShape: []int{1, 1, 6},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), 0},
},
}
testCache(t, backend, cache, tests)
err = cache.Remove(0, 0, 1)
if err != nil {
panic(err)
}
tests = []testCase{
{
name: "RemoveMiddle",
in: []float32{7, 8},
inShape: []int{1, 1, 2},
seqs: []int{0, 0},
pos: []int32{1, 2},
expected: []float32{7, 8, 3, 4, 4},
expectedShape: []int{1, 1, 5},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0},
},
}
testCache(t, backend, cache, tests)
}
func TestDefrag(t *testing.T) {
backend := &testBackend{}
cache := NewCausalCache(func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return key.Add(ctx, shift), nil
})
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
tests := []testCase{
{
name: "FirstBatch",
in: []float32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
inShape: []int{1, 1, 16},
seqs: []int{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
pos: []int32{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
expected: []float32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
expectedShape: []int{1, 1, 16},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
},
}
testCache(t, backend, cache, tests)
err := cache.Remove(0, 2, 4)
if err != nil {
panic(err)
}
err = cache.Remove(0, 13, math.MaxInt32)
if err != nil {
panic(err)
}
tests = []testCase{
{
name: "Defrag",
in: []float32{17, 18, 19},
inShape: []int{1, 1, 3},
seqs: []int{0, 0, 0},
pos: []int32{16, 17, 18},
expected: []float32{1, 2, 12, 13, 3, 4, 5, 6, 7, 8, 9, 10, 11, 17, 18, 19},
expectedShape: []int{1, 1, 16},
expectedMask: []float32{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
},
}
testCache(t, backend, cache, tests)
}
func TestCopy(t *testing.T) {
backend := &testBackend{}
cache := NewCausalCache(func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) { return key, nil })
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
tests := []testCase{
{
name: "FirstBatch",
in: []float32{1, 2, 3, 4},
inShape: []int{1, 1, 4},
seqs: []int{0, 0, 0, 0},
pos: []int32{0, 1, 2, 3},
expected: []float32{1, 2, 3, 4},
expectedShape: []int{1, 1, 4},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), 0, 0, 0, 0},
},
}
testCache(t, backend, cache, tests)
cache.CopyPrefix(0, 1, 2)
tests = []testCase{
{
name: "Copy",
in: []float32{5, 6},
inShape: []int{1, 1, 2},
seqs: []int{1, 1},
pos: []int32{3, 4},
expected: []float32{1, 2, 3, 4, 5, 6},
expectedShape: []int{1, 1, 6},
expectedMask: []float32{0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
},
}
testCache(t, backend, cache, tests)
}
func testCache(t *testing.T, backend ml.Backend, cache Cache, tests []testCase) {
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
context := backend.NewContext()
defer context.Close()
err := cache.StartForward(context, input.Batch{Positions: test.pos, Sequences: test.seqs})
if err != nil {
panic(err)
}
cache.SetLayer(0)
tensor, _ := context.FromFloatSlice(test.in, test.inShape...)
cache.Put(context, tensor, tensor)
out, _, mask := cache.Get(context)
context.Forward(out, mask).Compute(out, mask)
if !slices.Equal(out.Floats(), test.expected) || !slices.Equal(out.Shape(), test.expectedShape) || !slices.Equal(mask.Floats(), test.expectedMask) {
t.Errorf("TestCache: have %v (shape %v); want %v (shape %v); mask: have %v (shape %v) want %v", out.Floats(), out.Shape(), test.expected, test.expectedShape, mask.Floats(), mask.Shape(), test.expectedMask)
}
})
}
}
type testBackend struct{}
func (b *testBackend) Config() ml.Config {
panic("not implemented")
}
func (b *testBackend) Get(name string) ml.Tensor {
panic("not implemented")
}
func (b *testBackend) NewContext() ml.Context {
return &testContext{}
}
func (b *testBackend) NewContextSize(int) ml.Context {
return &testContext{}
}
func (b *testBackend) SystemInfo() string {
return "not implemented"
}
type testContext struct{}
func (c *testContext) Empty(dtype ml.DType, shape ...int) ml.Tensor {
total := 0
if len(shape) > 0 {
total = 1
for _, s := range shape {
total *= s
}
}
return &testTensor{dtype: dtype, elementSize: 4, data: make([]float32, total), shape: shape}
}
func (c *testContext) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
return c.Empty(dtype, shape...)
}
func (c *testContext) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
t := c.Empty(ml.DTypeF32, shape...).(*testTensor)
copy(t.data, s)
return t, nil
}
func (c *testContext) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
f := make([]float32, len(s))
for i := range f {
f[i] = float32(s[i])
}
out, _ := c.FromFloatSlice(f, shape...)
out.(*testTensor).dtype = ml.DTypeI32
return out, nil
}
func (c *testContext) Input() ml.Context { return c }
func (c *testContext) Output() ml.Context { return c }
func (c *testContext) Layer(int) ml.Context { return c }
func (c *testContext) Forward(...ml.Tensor) ml.Context { return c }
func (c *testContext) Compute(...ml.Tensor) {}
func (c *testContext) MaxGraphNodes() int {
return 10
}
func (c *testContext) Close() {}
type testTensor struct {
dtype ml.DType
elementSize int
data []float32
shape []int
}
func (t *testTensor) Dim(n int) int {
return t.shape[n]
}
func (t *testTensor) Stride(n int) int {
stride := t.elementSize
for i := range n {
stride *= t.shape[i]
}
return stride
}
func (t *testTensor) Shape() []int {
return t.shape
}
func (t *testTensor) DType() ml.DType {
return t.dtype
}
func (t *testTensor) Bytes() []byte {
panic("not implemented")
}
func (t *testTensor) Floats() []float32 {
out := make([]float32, len(t.data))
copy(out, t.data)
return out
}
func (t *testTensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
out := ctx.Empty(t.DType(), t.Shape()...).(*testTensor)
for i := range out.data {
out.data[i] = t.data[i] + t2.(*testTensor).data[i]
}
return out
}
func (t *testTensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) MulmatFullPrec(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Softmax(ctx ml.Context) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) LayerNorm(ctx ml.Context, weight, bias ml.Tensor, eps float32) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) RMSNorm(ctx ml.Context, weight ml.Tensor, eps float32) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Scale(ctx ml.Context, s float64) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) AvgPool1D(ctx ml.Context, k, s, p int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) AvgPool2D(ctx ml.Context, k, s int, p float32) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Conv2D(ctx ml.Context, weight ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, dim, ropeType uint32, base, scale float32) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Tanh(ctx ml.Context) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) GELU(ctx ml.Context) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) SILU(ctx ml.Context) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
offset /= t.elementSize
var s []int
switch len(shape) {
case 1:
s = []int{shape[0]}
case 5:
s = []int{shape[0], shape[2], shape[4]}
default:
panic("unsupported number of dimensions")
}
context := &testContext{}
view := context.Empty(t.dtype, s...).(*testTensor)
view.data = t.data[offset : offset+len(view.data)]
return view
}
func (t *testTensor) Permute(ctx ml.Context, shape ...int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Contiguous(ctx ml.Context) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Set(ctx ml.Context, t2 ml.Tensor, offset int, strides ...int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Unpad(ctx ml.Context, shape ...int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
copy(t2.(*testTensor).data, t.data)
return nil
}

143
kvcache/encoder.go Normal file
View File

@@ -0,0 +1,143 @@
package kvcache
import (
"fmt"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model/input"
)
// Encoder cache stores K and V tensors that are position independent
//
// The tensors can be of any shape and will be returned as they were stored
// The mask is currently always nil
//
// Not currently safe for multiple sequences
type EncoderCache struct {
// config controls mostly backend-specific optimizations
config *ml.CacheConfig
// ** current forward pass **
// the active layer for Get and Put
curLayer int
// if something is stored during this pass, this
// will be the position (but there is no guarantee
// anything will be stored)
curPos int32
// ** cache metadata **
// was something stored in the cache?
encoderCached bool
// position of the cached data
encoderPos int32
// ** cache data storage **
backend ml.Backend
ctxs map[int]ml.Context
keys, values map[int]ml.Tensor
}
func NewEncoderCache() *EncoderCache {
return &EncoderCache{
ctxs: make(map[int]ml.Context),
keys: make(map[int]ml.Tensor),
values: make(map[int]ml.Tensor),
}
}
func (c *EncoderCache) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int) {
if c.config == nil {
var config ml.CacheConfig
if cc, ok := backend.(ml.BackendCacheConfig); ok {
config = cc.CacheConfig()
}
c.config = &config
}
if maxSequences > 1 {
panic(fmt.Errorf("encoder cache does not support multiple sequences; requested: %v", maxSequences))
}
if c.config.CachePadding != 0 && c.config.CachePadding != 1 {
panic(fmt.Errorf("encoder cache is unable to enforce requested CachePadding (%v)", c.config.CachePadding))
}
c.backend = backend
}
func (c *EncoderCache) SetConfig(config ml.CacheConfig) {
if c.config != nil {
panic("config cannot be changed after being previously set, either by the model or backend")
}
c.config = &config
}
func (c *EncoderCache) Close() {
for _, ctx := range c.ctxs {
ctx.Close()
}
}
func (c *EncoderCache) StartForward(ctx ml.Context, batch input.Batch) error {
// We work with the most recent image
if len(batch.Multimodal) > 0 {
c.curPos = batch.Positions[batch.Multimodal[len(batch.Multimodal)-1].Index]
}
return nil
}
func (c *EncoderCache) SetLayer(layer int) {
c.curLayer = layer
}
func (c *EncoderCache) EncoderCached() bool {
return c.encoderCached
}
func (c *EncoderCache) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
return c.keys[c.curLayer], c.values[c.curLayer], nil
}
func (c *EncoderCache) Put(ctx ml.Context, key, value ml.Tensor) {
c.encoderPos = c.curPos
c.encoderCached = true
if c.config.PermutedV {
value = value.Permute(ctx, 1, 2, 0, 3)
}
if _, ok := c.ctxs[c.curLayer]; !ok {
c.ctxs[c.curLayer] = c.backend.NewContextSize(2).Layer(c.curLayer)
}
if _, ok := c.keys[c.curLayer]; !ok {
c.keys[c.curLayer] = c.ctxs[c.curLayer].Empty(key.DType(), key.Shape()...)
}
if _, ok := c.values[c.curLayer]; !ok {
c.values[c.curLayer] = c.ctxs[c.curLayer].Empty(value.DType(), value.Shape()...)
}
ctx.Forward(
key.Copy(ctx, c.keys[c.curLayer]),
value.Copy(ctx, c.values[c.curLayer]),
)
}
func (c *EncoderCache) CopyPrefix(srcSeq, dstSeq int, len int32) {
panic("encoder cache does not support multiple sequences")
}
func (c *EncoderCache) Remove(seq int, beginIndex, endIndex int32) error {
if c.encoderPos >= beginIndex && c.encoderPos < endIndex {
c.encoderCached = false
}
return nil
}

100
kvcache/wrapper.go Normal file
View File

@@ -0,0 +1,100 @@
package kvcache
import (
"math"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model/input"
)
// Wrapper cache is a container for multiple types of caches,
// such as for the encoding and decoding portions of a model.
type WrapperCache struct {
// caches we are wrapping
caches []Cache
// cache to be used for this layer
curType int
}
func NewWrapperCache(caches ...Cache) *WrapperCache {
return &WrapperCache{
caches: caches,
}
}
func (c *WrapperCache) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int) {
for _, cache := range c.caches {
cache.Init(backend, dtype, maxSequences, capacity, maxBatch)
}
}
func (c *WrapperCache) SetConfig(config ml.CacheConfig) {
for _, cache := range c.caches {
cache.SetConfig(config)
}
}
func (c *WrapperCache) Close() {
for _, cache := range c.caches {
cache.Close()
}
}
func (c *WrapperCache) StartForward(ctx ml.Context, batch input.Batch) error {
for i, cache := range c.caches {
err := cache.StartForward(ctx, batch)
if err != nil {
// unwind on error - Remove with endIndex set to math.MaxInt32 does not fail
for j := i - 1; j >= 0; j-- {
for k := range batch.Positions {
_ = c.caches[j].Remove(batch.Sequences[k], batch.Positions[k], math.MaxInt32)
}
}
return err
}
}
c.curType = 0
return nil
}
func (c *WrapperCache) SetLayer(layer int) {
for _, cache := range c.caches {
cache.SetLayer(layer)
}
}
func (c *WrapperCache) SetLayerType(layerType int) {
c.curType = layerType
}
func (c *WrapperCache) UnderlyingCache() Cache {
return c.caches[c.curType]
}
func (c *WrapperCache) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
return c.caches[c.curType].Get(ctx)
}
func (c *WrapperCache) Put(ctx ml.Context, key, value ml.Tensor) {
c.caches[c.curType].Put(ctx, key, value)
}
func (c *WrapperCache) CopyPrefix(srcSeq, dstSeq int, len int32) {
for _, cache := range c.caches {
cache.CopyPrefix(srcSeq, dstSeq, len)
}
}
func (c *WrapperCache) Remove(seq int, beginIndex, endIndex int32) error {
// If the one of these fails, the caller is supposed to retry with endIndex set to math.MaxInt32, which should not fail
for _, cache := range c.caches {
err := cache.Remove(seq, beginIndex, endIndex)
if err != nil {
return err
}
}
return nil
}

2
llama/build-info.cpp generated vendored
View File

@@ -1,4 +1,4 @@
int LLAMA_BUILD_NUMBER = 0;
char const *LLAMA_COMMIT = "46e3556e01b824e52395fb050b29804b6cff2a7c";
char const *LLAMA_COMMIT = "d7cfe1ffe0f435d0048a6058d529daf76e072d9c";
char const *LLAMA_COMPILER = "";
char const *LLAMA_BUILD_TARGET = "";

View File

@@ -2,6 +2,9 @@
#define _SILENCE_CXX17_CODECVT_HEADER_DEPRECATION_WARNING
#endif
#include "ggml.h"
#include "gguf.h"
#include "common.h"
#include "log.h"
// Change JSON_ASSERT from assert() to GGML_ASSERT:
@@ -70,6 +73,22 @@
#include <sys/syslimits.h>
#endif
#define LLAMA_CURL_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
//
// CURL utils
//
using curl_ptr = std::unique_ptr<CURL, decltype(&curl_easy_cleanup)>;
// cannot use unique_ptr for curl_slist, because we cannot update without destroying the old one
struct curl_slist_ptr {
struct curl_slist * ptr = nullptr;
~curl_slist_ptr() {
if (ptr) {
curl_slist_free_all(ptr);
}
}
};
#endif // LLAMA_USE_CURL
using json = nlohmann::ordered_json;
@@ -464,6 +483,48 @@ void string_replace_all(std::string & s, const std::string & search, const std::
s = std::move(builder);
}
std::string string_join(const std::vector<std::string> & values, const std::string & separator) {
std::ostringstream result;
for (size_t i = 0; i < values.size(); ++i) {
if (i > 0) {
result << separator;
}
result << values[i];
}
return result.str();
}
std::vector<std::string> string_split(const std::string & str, const std::string & delimiter) {
std::vector<std::string> parts;
size_t start = 0;
size_t end = str.find(delimiter);
while (end != std::string::npos) {
parts.push_back(str.substr(start, end - start));
start = end + delimiter.length();
end = str.find(delimiter, start);
}
parts.push_back(str.substr(start));
return parts;
}
std::string string_repeat(const std::string & str, size_t n) {
if (n == 0) {
return "";
}
std::string result;
result.reserve(str.length() * n);
for (size_t i = 0; i < n; ++i) {
result += str;
}
return result;
}
std::string string_from(bool value) {
return value ? "true" : "false";
}
@@ -846,7 +907,7 @@ struct common_init_result common_init_from_params(common_params & params) {
} else if (!params.model_url.empty()) {
model = common_load_model_from_url(params.model_url, params.model, params.hf_token, mparams);
} else {
model = llama_load_model_from_file(params.model.c_str(), mparams);
model = llama_model_load_from_file(params.model.c_str(), mparams);
}
if (model == NULL) {
@@ -854,26 +915,28 @@ struct common_init_result common_init_from_params(common_params & params) {
return iparams;
}
const llama_vocab * vocab = llama_model_get_vocab(model);
if (params.reranking) {
bool ok = true;
if (llama_token_bos(model) == LLAMA_TOKEN_NULL) {
LOG_WRN("%s: warning: model does not have a BOS token, reranking will not work\n", __func__);
if (llama_vocab_bos(vocab) == LLAMA_TOKEN_NULL) {
LOG_WRN("%s: warning: vocab does not have a BOS token, reranking will not work\n", __func__);
ok = false;
}
if (llama_token_eos(model) == LLAMA_TOKEN_NULL) {
LOG_WRN("%s: warning: model does not have an EOS token, reranking will not work\n", __func__);
if (llama_vocab_eos(vocab) == LLAMA_TOKEN_NULL) {
LOG_WRN("%s: warning: vocab does not have an EOS token, reranking will not work\n", __func__);
ok = false;
}
if (llama_token_sep(model) == LLAMA_TOKEN_NULL) {
LOG_WRN("%s: warning: model does not have a SEP token, reranking will not work\n", __func__);
if (llama_vocab_sep(vocab) == LLAMA_TOKEN_NULL) {
LOG_WRN("%s: warning: vocab does not have a SEP token, reranking will not work\n", __func__);
ok = false;
}
if (!ok) {
llama_free_model(model);
llama_model_free(model);
return iparams;
}
@@ -881,10 +944,10 @@ struct common_init_result common_init_from_params(common_params & params) {
auto cparams = common_context_params_to_llama(params);
llama_context * lctx = llama_new_context_with_model(model, cparams);
llama_context * lctx = llama_init_from_model(model, cparams);
if (lctx == NULL) {
LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.c_str());
llama_free_model(model);
llama_model_free(model);
return iparams;
}
@@ -895,25 +958,26 @@ struct common_init_result common_init_from_params(common_params & params) {
if (!params.control_vectors.empty()) {
if (params.control_vector_layer_start <= 0) params.control_vector_layer_start = 1;
if (params.control_vector_layer_end <= 0) params.control_vector_layer_end = llama_n_layer(model);
if (params.control_vector_layer_end <= 0) params.control_vector_layer_end = llama_model_n_layer(model);
const auto cvec = common_control_vector_load(params.control_vectors);
if (cvec.n_embd == -1) {
llama_free(lctx);
llama_free_model(model);
llama_model_free(model);
return iparams;
}
int err = llama_control_vector_apply(lctx,
cvec.data.data(),
cvec.data.size(),
cvec.n_embd,
params.control_vector_layer_start,
params.control_vector_layer_end);
int err = llama_apply_adapter_cvec(
lctx,
cvec.data.data(),
cvec.data.size(),
cvec.n_embd,
params.control_vector_layer_start,
params.control_vector_layer_end);
if (err) {
llama_free(lctx);
llama_free_model(model);
llama_model_free(model);
return iparams;
}
@@ -921,12 +985,12 @@ struct common_init_result common_init_from_params(common_params & params) {
// load and optionally apply lora adapters
for (auto & la : params.lora_adapters) {
llama_lora_adapter_ptr lora;
lora.reset(llama_lora_adapter_init(model, la.path.c_str()));
llama_adapter_lora_ptr lora;
lora.reset(llama_adapter_lora_init(model, la.path.c_str()));
if (lora == nullptr) {
LOG_ERR("%s: failed to apply lora adapter '%s'\n", __func__, la.path.c_str());
llama_free(lctx);
llama_free_model(model);
llama_model_free(model);
return iparams;
}
@@ -935,17 +999,17 @@ struct common_init_result common_init_from_params(common_params & params) {
}
if (!params.lora_init_without_apply) {
common_lora_adapters_apply(lctx, params.lora_adapters);
common_set_adapter_lora(lctx, params.lora_adapters);
}
if (params.sampling.ignore_eos && llama_token_eos(model) == LLAMA_TOKEN_NULL) {
LOG_WRN("%s: warning: model does not have an EOS token, ignoring --ignore-eos\n", __func__);
if (params.sampling.ignore_eos && llama_vocab_eos(vocab) == LLAMA_TOKEN_NULL) {
LOG_WRN("%s: warning: vocab does not have an EOS token, ignoring --ignore-eos\n", __func__);
params.sampling.ignore_eos = false;
}
if (params.sampling.ignore_eos) {
for (llama_token i = 0; i < llama_n_vocab(model); i++) {
if (llama_token_is_eog(model, i)) {
for (llama_token i = 0; i < llama_vocab_n_tokens(vocab); i++) {
if (llama_vocab_is_eog(vocab, i)) {
LOG_INF("%s: added %s logit bias = %f\n", __func__, common_token_to_piece(lctx, i).c_str(), -INFINITY);
params.sampling.logit_bias.push_back({i, -INFINITY});
}
@@ -966,8 +1030,9 @@ struct common_init_result common_init_from_params(common_params & params) {
LOG_WRN("%s: warming up the model with an empty run - please wait ... (--no-warmup to disable)\n", __func__);
std::vector<llama_token> tmp;
llama_token bos = llama_token_bos(model);
llama_token eos = llama_token_eos(model);
llama_token bos = llama_vocab_bos(vocab);
llama_token eos = llama_vocab_eos(vocab);
// some models (e.g. T5) don't have a BOS token
if (bos != LLAMA_TOKEN_NULL) {
tmp.push_back(bos);
@@ -982,7 +1047,7 @@ struct common_init_result common_init_from_params(common_params & params) {
if (llama_model_has_encoder(model)) {
llama_encode(lctx, llama_batch_get_one(tmp.data(), tmp.size()));
llama_token decoder_start_token_id = llama_model_decoder_start_token(model);
if (decoder_start_token_id == -1) {
if (decoder_start_token_id == LLAMA_TOKEN_NULL) {
decoder_start_token_id = bos;
}
tmp.clear();
@@ -1002,11 +1067,11 @@ struct common_init_result common_init_from_params(common_params & params) {
return iparams;
}
void common_lora_adapters_apply(struct llama_context * ctx, std::vector<common_lora_adapter_info> & lora) {
llama_lora_adapter_clear(ctx);
void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora) {
llama_clear_adapter_lora(ctx);
for (auto & la : lora) {
if (la.scale != 0.0f) {
llama_lora_adapter_set(ctx, la.ptr, la.scale);
llama_set_adapter_lora(ctx, la.ptr, la.scale);
}
}
}
@@ -1020,7 +1085,6 @@ struct llama_model_params common_model_params_to_llama(common_params & params) {
if (params.n_gpu_layers != -1) {
mparams.n_gpu_layers = params.n_gpu_layers;
}
mparams.rpc_servers = params.rpc_servers.c_str();
mparams.main_gpu = params.main_gpu;
mparams.split_mode = params.split_mode;
mparams.tensor_split = params.tensor_split;
@@ -1123,7 +1187,8 @@ static bool curl_perform_with_retry(const std::string & url, CURL * curl, int ma
static bool common_download_file(const std::string & url, const std::string & path, const std::string & hf_token) {
// Initialize libcurl
std::unique_ptr<CURL, decltype(&curl_easy_cleanup)> curl(curl_easy_init(), &curl_easy_cleanup);
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
curl_slist_ptr http_headers;
if (!curl) {
LOG_ERR("%s: error initializing libcurl\n", __func__);
return false;
@@ -1137,11 +1202,9 @@ static bool common_download_file(const std::string & url, const std::string & pa
// Check if hf-token or bearer-token was specified
if (!hf_token.empty()) {
std::string auth_header = "Authorization: Bearer ";
auth_header += hf_token.c_str();
struct curl_slist *http_headers = NULL;
http_headers = curl_slist_append(http_headers, auth_header.c_str());
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers);
std::string auth_header = "Authorization: Bearer " + hf_token;
http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
}
#if defined(_WIN32)
@@ -1411,7 +1474,7 @@ struct llama_model * common_load_model_from_url(
}
}
return llama_load_model_from_file(local_path.c_str(), params);
return llama_model_load_from_file(local_path.c_str(), params);
}
struct llama_model * common_load_model_from_hf(
@@ -1437,6 +1500,80 @@ struct llama_model * common_load_model_from_hf(
return common_load_model_from_url(model_url, local_path, hf_token, params);
}
/**
* Allow getting the HF file from the HF repo with tag (like ollama), for example:
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q4
* - bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q5_k_s
* Tag is optional, default to "latest" (meaning it checks for Q4_K_M first, then Q4, then if not found, return the first GGUF file in repo)
*
* Return pair of <repo, file> (with "repo" already having tag removed)
*
* Note: we use the Ollama-compatible HF API, but not using the blobId. Instead, we use the special "ggufFile" field which returns the value for "hf_file". This is done to be backward-compatible with existing cache files.
*/
std::pair<std::string, std::string> common_get_hf_file(const std::string & hf_repo_with_tag, const std::string & hf_token) {
auto parts = string_split<std::string>(hf_repo_with_tag, ':');
std::string tag = parts.size() > 1 ? parts.back() : "latest";
std::string hf_repo = parts[0];
if (string_split<std::string>(hf_repo, '/').size() != 2) {
throw std::invalid_argument("error: invalid HF repo format, expected <user>/<model>[:quant]\n");
}
// fetch model info from Hugging Face Hub API
json model_info;
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
curl_slist_ptr http_headers;
std::string res_str;
std::string url = "https://huggingface.co/v2/" + hf_repo + "/manifests/" + tag;
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L);
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * ptr, size_t size, size_t nmemb, void * data);
auto write_callback = [](void * ptr, size_t size, size_t nmemb, void * data) -> size_t {
static_cast<std::string *>(data)->append((char * ) ptr, size * nmemb);
return size * nmemb;
};
curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, &res_str);
#if defined(_WIN32)
curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
#endif
if (!hf_token.empty()) {
std::string auth_header = "Authorization: Bearer " + hf_token;
http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
}
// Important: the User-Agent must be "llama-cpp" to get the "ggufFile" field in the response
http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
http_headers.ptr = curl_slist_append(http_headers.ptr, "Accept: application/json");
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
CURLcode res = curl_easy_perform(curl.get());
if (res != CURLE_OK) {
throw std::runtime_error("error: cannot make GET request to HF API");
}
long res_code;
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &res_code);
if (res_code == 200) {
model_info = json::parse(res_str);
} else if (res_code == 401) {
throw std::runtime_error("error: model is private or does not exist; if you are accessing a gated model, please provide a valid HF token");
} else {
throw std::runtime_error(string_format("error from HF API, response code: %ld, data: %s", res_code, res_str.c_str()));
}
// check response
if (!model_info.contains("ggufFile")) {
throw std::runtime_error("error: model does not have ggufFile");
}
json & gguf_file = model_info.at("ggufFile");
if (!gguf_file.contains("rfilename")) {
throw std::runtime_error("error: ggufFile does not have rfilename");
}
return std::make_pair(hf_repo, gguf_file.at("rfilename"));
}
#else
struct llama_model * common_load_model_from_url(
@@ -1458,6 +1595,11 @@ struct llama_model * common_load_model_from_hf(
return nullptr;
}
std::pair<std::string, std::string> common_get_hf_file(const std::string &, const std::string &) {
LOG_WRN("%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__);
return std::make_pair("", "");
}
#endif // LLAMA_USE_CURL
//
@@ -1556,21 +1698,23 @@ std::vector<llama_token> common_tokenize(
const std::string & text,
bool add_special,
bool parse_special) {
return common_tokenize(llama_get_model(ctx), text, add_special, parse_special);
const llama_model * model = llama_get_model(ctx);
const llama_vocab * vocab = llama_model_get_vocab(model);
return common_tokenize(vocab, text, add_special, parse_special);
}
std::vector<llama_token> common_tokenize(
const struct llama_model * model,
const struct llama_vocab * vocab,
const std::string & text,
bool add_special,
bool parse_special) {
// upper limit for the number of tokens
int n_tokens = text.length() + 2 * add_special;
std::vector<llama_token> result(n_tokens);
n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
n_tokens = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
if (n_tokens < 0) {
result.resize(-n_tokens);
int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
int check = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
GGML_ASSERT(check == -n_tokens);
} else {
result.resize(n_tokens);
@@ -1579,12 +1723,18 @@ std::vector<llama_token> common_tokenize(
}
std::string common_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
const llama_model * model = llama_get_model(ctx);
const llama_vocab * vocab = llama_model_get_vocab(model);
return common_token_to_piece(vocab, token, special);
}
std::string common_token_to_piece(const struct llama_vocab * vocab, llama_token token, bool special) {
std::string piece;
piece.resize(piece.capacity()); // using string internal cache, 15 bytes + '\n'
const int n_chars = llama_token_to_piece(llama_get_model(ctx), token, &piece[0], piece.size(), 0, special);
const int n_chars = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special);
if (n_chars < 0) {
piece.resize(-n_chars);
int check = llama_token_to_piece(llama_get_model(ctx), token, &piece[0], piece.size(), 0, special);
int check = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special);
GGML_ASSERT(check == -n_chars);
}
else {
@@ -1594,13 +1744,19 @@ std::string common_token_to_piece(const struct llama_context * ctx, llama_token
return piece;
}
std::string common_detokenize(llama_context * ctx, const std::vector<llama_token> & tokens, bool special) {
std::string common_detokenize(const struct llama_context * ctx, const std::vector<llama_token> & tokens, bool special) {
const llama_model * model = llama_get_model(ctx);
const llama_vocab * vocab = llama_model_get_vocab(model);
return common_detokenize(vocab, tokens, special);
}
std::string common_detokenize(const struct llama_vocab * vocab, const std::vector<llama_token> & tokens, bool special) {
std::string text;
text.resize(std::max(text.capacity(), tokens.size()));
int32_t n_chars = llama_detokenize(llama_get_model(ctx), tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
int32_t n_chars = llama_detokenize(vocab, tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
if (n_chars < 0) {
text.resize(-n_chars);
n_chars = llama_detokenize(llama_get_model(ctx), tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
n_chars = llama_detokenize(vocab, tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
GGML_ASSERT(n_chars <= (int32_t)text.size()); // whitespace trimming is performed after per-token detokenization
}
@@ -1610,103 +1766,6 @@ std::string common_detokenize(llama_context * ctx, const std::vector<llama_token
return text;
}
//
// Chat template utils
//
std::string common_get_builtin_chat_template(const struct llama_model * model) {
static const char * template_key = "tokenizer.chat_template";
// call with NULL buffer to get the total size of the string
int32_t res = llama_model_meta_val_str(model, template_key, NULL, 0);
if (res > 0) {
std::vector<char> model_template(res + 1, 0);
llama_model_meta_val_str(model, template_key, model_template.data(), model_template.size());
return std::string(model_template.data(), model_template.size() - 1);
}
return "";
}
bool common_chat_verify_template(const std::string & tmpl) {
llama_chat_message chat[] = {{"user", "test"}};
int res = llama_chat_apply_template(nullptr, tmpl.c_str(), chat, 1, true, nullptr, 0);
return res >= 0;
}
std::string common_chat_apply_template(const struct llama_model * model,
const std::string & tmpl,
const std::vector<common_chat_msg> & msgs,
bool add_ass) {
int alloc_size = 0;
bool fallback = false; // indicate if we must fallback to default chatml
std::vector<llama_chat_message> chat;
for (auto & msg : msgs) {
chat.push_back({msg.role.c_str(), msg.content.c_str()});
alloc_size += (msg.role.size() + msg.content.size()) * 1.25;
}
const char * ptr_tmpl = tmpl.empty() ? nullptr : tmpl.c_str();
std::vector<char> buf(alloc_size);
// run the first time to get the total output length
int32_t res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), add_ass, buf.data(), buf.size());
// error: chat template is not supported
if (res < 0) {
if (ptr_tmpl != nullptr) {
// if the custom "tmpl" is not supported, we throw an error
// this is a bit redundant (for good), since we're not sure if user validated the custom template with llama_chat_verify_template()
throw std::runtime_error("this custom template is not supported");
} else {
// If the built-in template is not supported, we default to chatml
res = llama_chat_apply_template(nullptr, "chatml", chat.data(), chat.size(), add_ass, buf.data(), buf.size());
fallback = true;
}
}
// if it turns out that our buffer is too small, we resize it
if ((size_t) res > buf.size()) {
buf.resize(res);
res = llama_chat_apply_template(
fallback ? nullptr : model,
fallback ? "chatml" : ptr_tmpl,
chat.data(), chat.size(), add_ass, buf.data(), buf.size());
}
std::string formatted_chat(buf.data(), res);
return formatted_chat;
}
std::string common_chat_format_single(const struct llama_model * model,
const std::string & tmpl,
const std::vector<common_chat_msg> & past_msg,
const common_chat_msg & new_msg,
bool add_ass) {
std::ostringstream ss;
auto fmt_past_msg = past_msg.empty() ? "" : common_chat_apply_template(model, tmpl, past_msg, false);
std::vector<common_chat_msg> chat_new(past_msg);
// if the past_msg ends with a newline, we must preserve it in the formatted version
if (add_ass && !fmt_past_msg.empty() && fmt_past_msg.back() == '\n') {
ss << "\n";
};
// format chat with new_msg
chat_new.push_back(new_msg);
auto fmt_new_msg = common_chat_apply_template(model, tmpl, chat_new, add_ass);
// get the diff part
ss << fmt_new_msg.substr(fmt_past_msg.size(), fmt_new_msg.size() - fmt_past_msg.size());
return ss.str();
}
std::string common_chat_format_example(const struct llama_model * model,
const std::string & tmpl) {
std::vector<common_chat_msg> msgs = {
{"system", "You are a helpful assistant"},
{"user", "Hello"},
{"assistant", "Hi there"},
{"user", "How are you?"},
};
return common_chat_apply_template(model, tmpl, msgs, true);
}
//
// KV cache utils
//

View File

@@ -4,6 +4,7 @@
#include "llama-cpp.h"
#include <set>
#include <string>
#include <vector>
#include <sstream>
@@ -24,11 +25,11 @@
#define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
struct common_lora_adapter_info {
struct common_adapter_lora_info {
std::string path;
float scale;
struct llama_lora_adapter * ptr;
struct llama_adapter_lora * ptr;
};
using llama_tokens = std::vector<llama_token>;
@@ -103,6 +104,17 @@ enum dimre_method {
DIMRE_METHOD_MEAN,
};
enum common_conversation_mode {
COMMON_CONVERSATION_MODE_DISABLED = 0,
COMMON_CONVERSATION_MODE_ENABLED = 1,
COMMON_CONVERSATION_MODE_AUTO = 2,
};
struct common_grammar_trigger {
std::string word;
bool at_start;
};
// sampling parameters
struct common_params_sampling {
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
@@ -128,6 +140,7 @@ struct common_params_sampling {
int32_t dry_allowed_length = 2; // tokens extending repetitions beyond this receive penalty
int32_t dry_penalty_last_n = -1; // how many tokens to scan for repetitions (0 = disable penalty, -1 = context size)
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
float top_n_sigma = -1.00f;// -1.0 = disabled
float mirostat_tau = 5.00f; // target entropy
float mirostat_eta = 0.10f; // learning rate
bool ignore_eos = false;
@@ -148,7 +161,11 @@ struct common_params_sampling {
COMMON_SAMPLER_TYPE_TEMPERATURE,
};
std::string grammar; // optional BNF-like grammar to constrain sampling
std::string grammar; // optional BNF-like grammar to constrain sampling
bool grammar_lazy = false;
std::vector<common_grammar_trigger> grammar_trigger_words; // optional trigger words to trigger lazy grammar
std::vector<llama_token> grammar_trigger_tokens; // optional trigger tokens to trigger lazy grammar and print trigger special tokens.
std::set<llama_token> preserved_tokens;
std::vector<llama_logit_bias> logit_bias; // logit biases to apply
@@ -161,15 +178,19 @@ struct common_params_speculative {
int32_t n_ctx = 0; // draft context size
int32_t n_max = 16; // maximum number of tokens to draft during speculative decoding
int32_t n_min = 5; // minimum number of draft tokens to use for speculative decoding
int32_t n_min = 0; // minimum number of draft tokens to use for speculative decoding
int32_t n_gpu_layers = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
float p_split = 0.1f; // speculative decoding split probability
float p_min = 0.9f; // minimum speculative decoding probability (greedy)
float p_min = 0.75f; // minimum speculative decoding probability (greedy)
struct cpu_params cpuparams;
struct cpu_params cpuparams_batch;
std::string model = ""; // draft model for speculative decoding // NOLINT
std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT
std::string model = ""; // draft model for speculative decoding // NOLINT
std::string model_url = ""; // model url to download // NOLINT
};
struct common_params_vocoder {
@@ -178,6 +199,13 @@ struct common_params_vocoder {
std::string model = ""; // model path // NOLINT
std::string model_url = ""; // model url to download // NOLINT
bool use_guide_tokens = false; // enable guide tokens to improve TTS accuracy // NOLINT
};
enum common_reasoning_format {
COMMON_REASONING_FORMAT_NONE,
COMMON_REASONING_FORMAT_DEEPSEEK, // Extract thinking tag contents and return as `message.reasoning_content`
};
struct common_params {
@@ -240,14 +268,13 @@ struct common_params {
std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding // NOLINT
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT
std::string logits_file = ""; // file for saving *all* logits // NOLINT
std::string rpc_servers = ""; // comma separated list of RPC servers // NOLINT
std::vector<std::string> in_files; // all input files
std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
std::vector<llama_model_kv_override> kv_overrides;
bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_lora_adapter_apply)
std::vector<common_lora_adapter_info> lora_adapters; // lora adapter path with user defined scale
bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_adapter_lora_apply)
std::vector<common_adapter_lora_info> lora_adapters; // lora adapter path with user defined scale
std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale
@@ -271,11 +298,11 @@ struct common_params {
bool kl_divergence = false; // compute KL divergence
bool usage = false; // print usage
bool completion = false; // print source-able completion script
bool use_color = false; // use color to distinguish generations and inputs
bool special = false; // enable special token output
bool interactive = false; // interactive mode
bool interactive_first = false; // wait for user input immediately
bool conversation = false; // conversation mode (does not print special tokens and suffix/prefix)
bool prompt_cache_all = false; // save user input and generations to prompt cache
bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
@@ -301,6 +328,8 @@ struct common_params {
ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K
ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V
common_conversation_mode conversation_mode = COMMON_CONVERSATION_MODE_AUTO;
// multimodal models (see examples/llava)
std::string mmproj = ""; // path to multimodal projector // NOLINT
std::vector<std::string> image; // path to image file(s)
@@ -322,7 +351,9 @@ struct common_params {
std::string hostname = "127.0.0.1";
std::string public_path = ""; // NOLINT
std::string chat_template = ""; // NOLINT
bool use_jinja = false; // NOLINT
bool enable_chat_template = true;
common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK;
std::vector<std::string> api_keys;
@@ -401,13 +432,13 @@ bool set_process_priority(enum ggml_sched_priority prio);
//
#ifdef __GNUC__
#ifdef __MINGW32__
#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
# if defined(__MINGW32__) && !defined(__clang__)
# define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
# else
# define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
# endif
#else
#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
#endif
#else
#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...)
# define LLAMA_COMMON_ATTRIBUTE_FORMAT(...)
#endif
LLAMA_COMMON_ATTRIBUTE_FORMAT(1, 2)
@@ -416,6 +447,10 @@ std::string string_format(const char * fmt, ...);
std::string string_strip(const std::string & str);
std::string string_get_sortable_timestamp();
std::string string_join(const std::vector<std::string> & values, const std::string & separator);
std::vector<std::string> string_split(const std::string & str, const std::string & delimiter);
std::string string_repeat(const std::string & str, size_t n);
void string_replace_all(std::string & s, const std::string & search, const std::string & replace);
template<class T>
@@ -454,6 +489,11 @@ static bool string_starts_with(const std::string & str,
return str.rfind(prefix, 0) == 0;
}
static bool string_ends_with(const std::string & str,
const std::string & suffix) { // While we wait for C++20's std::string::ends_with...
return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0;
}
bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
void string_process_escapes(std::string & input);
@@ -481,7 +521,7 @@ struct common_init_result {
llama_model_ptr model;
llama_context_ptr context;
std::vector<llama_lora_adapter_ptr> lora;
std::vector<llama_adapter_lora_ptr> lora;
};
struct common_init_result common_init_from_params(common_params & params);
@@ -495,6 +535,7 @@ struct llama_model * common_load_model_from_url(
const std::string & local_path,
const std::string & hf_token,
const struct llama_model_params & params);
struct llama_model * common_load_model_from_hf(
const std::string & repo,
const std::string & remote_path,
@@ -502,8 +543,12 @@ struct llama_model * common_load_model_from_hf(
const std::string & hf_token,
const struct llama_model_params & params);
std::pair<std::string, std::string> common_get_hf_file(
const std::string & hf_repo_with_tag,
const std::string & hf_token);
// clear LoRA adapters from context, then apply new list of adapters
void common_lora_adapters_apply(struct llama_context * ctx, std::vector<common_lora_adapter_info> & lora);
void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora);
//
// Batch utils
@@ -541,7 +586,7 @@ std::vector<llama_token> common_tokenize(
bool parse_special = false);
std::vector<llama_token> common_tokenize(
const struct llama_model * model,
const struct llama_vocab * vocab,
const std::string & text,
bool add_special,
bool parse_special = false);
@@ -553,48 +598,23 @@ std::string common_token_to_piece(
llama_token token,
bool special = true);
std::string common_token_to_piece(
const struct llama_vocab * vocab,
llama_token token,
bool special = true);
// detokenizes a vector of tokens into a string
// should work similar to Python's `tokenizer.decode`
// optionally renders special/control tokens
std::string common_detokenize(
llama_context * ctx,
const struct llama_context * ctx,
const std::vector<llama_token> & tokens,
bool special = true);
//
// Chat template utils
//
// same with llama_chat_message, but uses std::string
struct common_chat_msg {
std::string role;
std::string content;
};
// Get the built-in chat template for the model. Return empty string if not present.
std::string common_get_builtin_chat_template(const struct llama_model * model);
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
bool common_chat_verify_template(const std::string & tmpl);
// CPP wrapper for llama_chat_apply_template
// If the built-in template is not supported, we default to chatml
// If the custom "tmpl" is not supported, we throw an error
std::string common_chat_apply_template(const struct llama_model * model,
const std::string & tmpl,
const std::vector<common_chat_msg> & chat,
bool add_ass);
// Format single message, while taking into account the position of that message in chat history
std::string common_chat_format_single(const struct llama_model * model,
const std::string & tmpl,
const std::vector<common_chat_msg> & past_msg,
const common_chat_msg & new_msg,
bool add_ass);
// Returns an example of formatted chat
std::string common_chat_format_example(const struct llama_model * model,
const std::string & tmpl);
std::string common_detokenize(
const struct llama_vocab * vocab,
const std::vector<llama_token> & tokens,
bool special = true);
//
// KV cache utils

View File

@@ -1,4 +1,6 @@
#include "json-schema-to-grammar.h"
#include "common.h"
#include <algorithm>
#include <fstream>
#include <map>
@@ -11,11 +13,6 @@
using json = nlohmann::ordered_json;
template <typename Iterator>
static std::string join(Iterator begin, Iterator end, const std::string & separator);
static std::string repeat(const std::string & str, size_t n);
static std::string build_repetition(const std::string & item_rule, int min_items, int max_items, const std::string & separator_rule = "") {
auto has_max = max_items != std::numeric_limits<int>::max();
@@ -128,8 +125,8 @@ static void _build_min_max_int(int min_value, int max_value, std::stringstream &
if (sub_len > 0) {
auto from_sub = from.substr(i + 1);
auto to_sub = to.substr(i + 1);
auto sub_zeros = repeat("0", sub_len);
auto sub_nines = repeat("9", sub_len);
auto sub_zeros = string_repeat("0", sub_len);
auto sub_nines = string_repeat("9", sub_len);
auto to_reached = false;
out << "(";
@@ -188,8 +185,8 @@ static void _build_min_max_int(int min_value, int max_value, std::stringstream &
auto max_digits = max_s.length();
for (auto digits = min_digits; digits < max_digits; digits++) {
uniform_range(min_s, repeat("9", digits));
min_s = "1" + repeat("0", digits);
uniform_range(min_s, string_repeat("9", digits));
min_s = "1" + string_repeat("0", digits);
out << " | ";
}
uniform_range(min_s, max_s);
@@ -318,49 +315,6 @@ std::unordered_map<char, std::string> GRAMMAR_LITERAL_ESCAPES = {
std::unordered_set<char> NON_LITERAL_SET = {'|', '.', '(', ')', '[', ']', '{', '}', '*', '+', '?'};
std::unordered_set<char> ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS = {'^', '$', '.', '[', ']', '(', ')', '|', '{', '}', '*', '+', '?'};
template <typename Iterator>
std::string join(Iterator begin, Iterator end, const std::string & separator) {
std::ostringstream result;
if (begin != end) {
result << *begin;
for (Iterator it = begin + 1; it != end; ++it) {
result << separator << *it;
}
}
return result.str();
}
static std::vector<std::string> split(const std::string & str, const std::string & delimiter) {
std::vector<std::string> tokens;
size_t start = 0;
size_t end = str.find(delimiter);
while (end != std::string::npos) {
tokens.push_back(str.substr(start, end - start));
start = end + delimiter.length();
end = str.find(delimiter, start);
}
tokens.push_back(str.substr(start));
return tokens;
}
static std::string repeat(const std::string & str, size_t n) {
if (n == 0) {
return "";
}
std::string result;
result.reserve(str.length() * n);
for (size_t i = 0; i < n; ++i) {
result += str;
}
return result;
}
static std::string replacePattern(const std::string & input, const std::regex & regex, const std::function<std::string(const std::smatch &)> & replacement) {
std::smatch match;
std::string result;
@@ -389,6 +343,7 @@ static std::string format_literal(const std::string & literal) {
class SchemaConverter {
private:
friend std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options);
std::function<json(const std::string &)> _fetch_json;
bool _dotall;
std::unordered_map<std::string, std::string> _rules;
@@ -418,7 +373,7 @@ private:
for (size_t i = 0; i < alt_schemas.size(); i++) {
rules.push_back(visit(alt_schemas[i], name + (name.empty() ? "alternative-" : "-") + std::to_string(i)));
}
return join(rules.begin(), rules.end(), " | ");
return string_join(rules, " | ");
}
std::string _visit_pattern(const std::string & pattern, const std::string & name) {
@@ -481,7 +436,7 @@ private:
for (const auto & item : ret) {
results.push_back(to_rule(item));
}
return std::make_pair(join(results.begin(), results.end(), " "), false);
return std::make_pair(string_join(results, " "), false);
};
while (i < length) {
@@ -539,7 +494,7 @@ private:
}
curly_brackets += '}';
i++;
auto nums = split(curly_brackets.substr(1, curly_brackets.length() - 2), ",");
auto nums = string_split(curly_brackets.substr(1, curly_brackets.length() - 2), ",");
int min_times = 0;
int max_times = std::numeric_limits<int>::max();
try {
@@ -809,10 +764,11 @@ private:
public:
SchemaConverter(
const std::function<json(const std::string &)> & fetch_json,
bool dotall)
bool dotall,
bool compact_spaces)
: _fetch_json(fetch_json), _dotall(dotall)
{
_rules["space"] = SPACE_RULE;
_rules["space"] = compact_spaces ? "\" \"?" : SPACE_RULE;
}
void resolve_refs(json & schema, const std::string & url) {
@@ -854,7 +810,7 @@ public:
return;
}
std::string pointer = ref.substr(ref.find('#') + 1);
std::vector<std::string> tokens = split(pointer, "/");
std::vector<std::string> tokens = string_split(pointer, "/");
for (size_t i = 1; i < tokens.size(); ++i) {
std::string sel = tokens[i];
if (target.is_null() || !target.contains(sel)) {
@@ -905,7 +861,7 @@ public:
for (const auto & v : schema["enum"]) {
enum_values.push_back(_generate_constant_rule(v));
}
return _add_rule(rule_name, "(" + join(enum_values.begin(), enum_values.end(), " | ") + ") space");
return _add_rule(rule_name, "(" + string_join(enum_values, " | ") + ") space");
} else if ((schema_type.is_null() || schema_type == "object")
&& (schema.contains("properties") ||
(schema.contains("additionalProperties") && schema["additionalProperties"] != true))) {
@@ -1019,10 +975,10 @@ public:
void check_errors() {
if (!_errors.empty()) {
throw std::runtime_error("JSON schema conversion failed:\n" + join(_errors.begin(), _errors.end(), "\n"));
throw std::runtime_error("JSON schema conversion failed:\n" + string_join(_errors, "\n"));
}
if (!_warnings.empty()) {
fprintf(stderr, "WARNING: JSON schema conversion was incomplete: %s\n", join(_warnings.begin(), _warnings.end(), "; ").c_str());
fprintf(stderr, "WARNING: JSON schema conversion was incomplete: %s\n", string_join(_warnings, "; ").c_str());
}
}
@@ -1035,11 +991,35 @@ public:
}
};
std::string json_schema_to_grammar(const json & schema) {
SchemaConverter converter([](const std::string &) { return json::object(); }, /* dotall= */ false);
auto copy = schema;
converter.resolve_refs(copy, "input");
converter.visit(copy, "");
std::string json_schema_to_grammar(const json & schema, bool force_gbnf) {
#ifdef LLAMA_USE_LLGUIDANCE
if (!force_gbnf) {
return "%llguidance {}\nstart: %json " + schema.dump();
}
#else
(void)force_gbnf;
#endif // LLAMA_USE_LLGUIDANCE
return build_grammar([&](const common_grammar_builder & callbacks) {
auto copy = schema;
callbacks.resolve_refs(copy);
callbacks.add_schema("", copy);
});
}
std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options) {
SchemaConverter converter([&](const std::string &) { return json(); }, options.dotall, options.compact_spaces);
common_grammar_builder builder {
/* .add_rule = */ [&](const std::string & name, const std::string & rule) {
return converter._add_rule(name, rule);
},
/* .add_schema = */ [&](const std::string & name, const nlohmann::ordered_json & schema) {
return converter.visit(schema, name == "root" ? "" : name);
},
/* .resolve_refs = */ [&](nlohmann::ordered_json & schema) {
converter.resolve_refs(schema, "");
}
};
cb(builder);
converter.check_errors();
return converter.format_grammar();
}

View File

@@ -5,4 +5,18 @@
#define JSON_ASSERT GGML_ASSERT
#include "json.hpp"
std::string json_schema_to_grammar(const nlohmann::ordered_json& schema);
std::string json_schema_to_grammar(const nlohmann::ordered_json & schema,
bool force_gbnf = false);
struct common_grammar_builder {
std::function<std::string(const std::string &, const std::string &)> add_rule;
std::function<std::string(const std::string &, const nlohmann::ordered_json &)> add_schema;
std::function<void(nlohmann::ordered_json &)> resolve_refs;
};
struct common_grammar_options {
bool dotall = false;
bool compact_spaces = false;
};
std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options = {});

View File

@@ -1,5 +1,6 @@
#include "log.h"
#include <chrono>
#include <condition_variable>
#include <cstdarg>
#include <cstdio>
@@ -14,16 +15,6 @@ void common_log_set_verbosity_thold(int verbosity) {
common_log_verbosity_thold = verbosity;
}
#define LOG_COL_DEFAULT "\033[0m"
#define LOG_COL_BOLD "\033[1m"
#define LOG_COL_RED "\033[31m"
#define LOG_COL_GREEN "\033[32m"
#define LOG_COL_YELLOW "\033[33m"
#define LOG_COL_BLUE "\033[34m"
#define LOG_COL_MAGENTA "\033[35m"
#define LOG_COL_CYAN "\033[36m"
#define LOG_COL_WHITE "\033[37m"
static int64_t t_us() {
return std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::system_clock::now().time_since_epoch()).count();
}
@@ -206,6 +197,7 @@ public:
vsnprintf(entry.msg.data(), entry.msg.size(), ss.str().c_str(), args_copy);
}
#endif
va_end(args_copy);
}
entry.level = level;

View File

@@ -2,9 +2,20 @@
#include "ggml.h" // for ggml_log_level
#define LOG_CLR_TO_EOL "\033[K\r"
#define LOG_COL_DEFAULT "\033[0m"
#define LOG_COL_BOLD "\033[1m"
#define LOG_COL_RED "\033[31m"
#define LOG_COL_GREEN "\033[32m"
#define LOG_COL_YELLOW "\033[33m"
#define LOG_COL_BLUE "\033[34m"
#define LOG_COL_MAGENTA "\033[35m"
#define LOG_COL_CYAN "\033[36m"
#define LOG_COL_WHITE "\033[37m"
#ifndef __GNUC__
# define LOG_ATTRIBUTE_FORMAT(...)
#elif defined(__MINGW32__)
#elif defined(__MINGW32__) && !defined(__clang__)
# define LOG_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
#else
# define LOG_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))

View File

@@ -113,7 +113,10 @@ struct common_sampler {
void set_logits(struct llama_context * ctx, int idx) {
const auto * logits = llama_get_logits_ith(ctx, idx);
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
const llama_model * model = llama_get_model(ctx);
const llama_vocab * vocab = llama_model_get_vocab(model);
const int n_vocab = llama_vocab_n_tokens(vocab);
cur.resize(n_vocab);
@@ -131,24 +134,47 @@ std::string common_params_sampling::print() const {
snprintf(result, sizeof(result),
"\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
"\tdry_multiplier = %.3f, dry_base = %.3f, dry_allowed_length = %d, dry_penalty_last_n = %d\n"
"\ttop_k = %d, top_p = %.3f, min_p = %.3f, xtc_probability = %.3f, xtc_threshold = %.3f, typical_p = %.3f, temp = %.3f\n"
"\ttop_k = %d, top_p = %.3f, min_p = %.3f, xtc_probability = %.3f, xtc_threshold = %.3f, typical_p = %.3f, top_n_sigma = %.3f, temp = %.3f\n"
"\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
penalty_last_n, penalty_repeat, penalty_freq, penalty_present,
dry_multiplier, dry_base, dry_allowed_length, dry_penalty_last_n,
top_k, top_p, min_p, xtc_probability, xtc_threshold, typ_p, temp,
top_k, top_p, min_p, xtc_probability, xtc_threshold, typ_p, top_n_sigma, temp,
mirostat, mirostat_eta, mirostat_tau);
return std::string(result);
}
struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_params_sampling & params) {
const llama_vocab * vocab = llama_model_get_vocab(model);
llama_sampler_chain_params lparams = llama_sampler_chain_default_params();
lparams.no_perf = params.no_perf;
struct llama_sampler * grmr;
if (params.grammar.compare(0, 11, "%llguidance") == 0) {
#ifdef LLAMA_USE_LLGUIDANCE
grmr = llama_sampler_init_llg(vocab, "lark", params.grammar.c_str());
#else
GGML_ABORT("llguidance (cmake -DLLAMA_LLGUIDANCE=ON) is not enabled");
#endif // LLAMA_USE_LLGUIDANCE
} else {
std::vector<const char *> trigger_words;
trigger_words.reserve(params.grammar_trigger_words.size());
for (const auto & str : params.grammar_trigger_words) {
trigger_words.push_back(str.word.c_str());
}
grmr = params.grammar_lazy
? llama_sampler_init_grammar_lazy(vocab, params.grammar.c_str(), "root",
trigger_words.data(), trigger_words.size(),
params.grammar_trigger_tokens.data(), params.grammar_trigger_tokens.size())
: llama_sampler_init_grammar(vocab, params.grammar.c_str(), "root");
}
auto * result = new common_sampler {
/* .params = */ params,
/* .grmr = */ llama_sampler_init_grammar(model, params.grammar.c_str(), "root"),
/* .grmr = */ grmr,
/* .chain = */ llama_sampler_chain_init(lparams),
/* .prev = */ ring_buffer<llama_token>(std::max(32, params.n_prev)),
/* .cur = */ {},
@@ -157,56 +183,62 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
llama_sampler_chain_add(result->chain,
llama_sampler_init_logit_bias(
llama_n_vocab(model),
llama_vocab_n_tokens(vocab),
params.logit_bias.size(),
params.logit_bias.data()));
if (params.mirostat == 0) {
for (const auto & cnstr : params.samplers) {
switch (cnstr) {
case COMMON_SAMPLER_TYPE_DRY:
{
std::vector<const char *> c_breakers;
c_breakers.reserve(params.dry_sequence_breakers.size());
for (const auto & str : params.dry_sequence_breakers) {
c_breakers.push_back(str.c_str());
}
if (params.top_n_sigma >= 0) {
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
llama_sampler_chain_add(result->chain, llama_sampler_init_temp (params.temp));
llama_sampler_chain_add(result->chain, llama_sampler_init_top_n_sigma (params.top_n_sigma));
} else {
for (const auto & cnstr : params.samplers) {
switch (cnstr) {
case COMMON_SAMPLER_TYPE_DRY:
{
std::vector<const char *> c_breakers;
c_breakers.reserve(params.dry_sequence_breakers.size());
for (const auto & str : params.dry_sequence_breakers) {
c_breakers.push_back(str.c_str());
}
llama_sampler_chain_add(result->chain, llama_sampler_init_dry (model, params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
}
break;
case COMMON_SAMPLER_TYPE_TOP_K:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
break;
case COMMON_SAMPLER_TYPE_TOP_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_MIN_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_XTC:
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
break;
case COMMON_SAMPLER_TYPE_TYPICAL_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_TEMPERATURE:
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
break;
case COMMON_SAMPLER_TYPE_INFILL:
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (model));
break;
case COMMON_SAMPLER_TYPE_PENALTIES:
llama_sampler_chain_add(result->chain, llama_sampler_init_penalties(params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
break;
default:
GGML_ASSERT(false && "unknown sampler type");
llama_sampler_chain_add(result->chain, llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
}
break;
case COMMON_SAMPLER_TYPE_TOP_K:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
break;
case COMMON_SAMPLER_TYPE_TOP_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_MIN_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_XTC:
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
break;
case COMMON_SAMPLER_TYPE_TYPICAL_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_TEMPERATURE:
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
break;
case COMMON_SAMPLER_TYPE_INFILL:
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (vocab));
break;
case COMMON_SAMPLER_TYPE_PENALTIES:
llama_sampler_chain_add(result->chain, llama_sampler_init_penalties(params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
break;
default:
GGML_ASSERT(false && "unknown sampler type");
}
}
}
llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
} else if (params.mirostat == 1) {
llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat(llama_n_vocab(model), params.seed, params.mirostat_tau, params.mirostat_eta, 100));
llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat(llama_vocab_n_tokens(vocab), params.seed, params.mirostat_tau, params.mirostat_eta, 100));
} else if (params.mirostat == 2) {
llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat_v2(params.seed, params.mirostat_tau, params.mirostat_eta));

View File

@@ -102,3 +102,6 @@ std::string common_sampler_type_to_str(enum common_sampler_type cnstr);
std::vector<enum common_sampler_type> common_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
std::vector<enum common_sampler_type> common_sampler_types_from_chars(const std::string & chars);
llama_sampler * llama_sampler_init_llg(const llama_vocab * vocab,
const char * grammar_kind, const char * grammar_data);

View File

@@ -7,6 +7,7 @@
#include "ggml-cpu.h"
#include "ggml-alloc.h"
#include "ggml-backend.h"
#include "gguf.h"
#ifdef GGML_USE_CUDA
#include "ggml-cuda.h"
@@ -39,6 +40,7 @@
#include <map>
#include <regex>
#include <stdexcept>
#include <unordered_set>
#include <vector>
#include <sstream>
#include <cinttypes>
@@ -114,6 +116,7 @@ static std::string format(const char * fmt, ...) {
#define KEY_HAS_VIS_ENC "clip.has_vision_encoder"
#define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector"
#define KEY_HAS_MINICPMV_PROJ "clip.has_minicpmv_projector"
#define KEY_HAS_GLM_PROJ "clip.has_glm_projector"
#define KEY_MINICPMV_VERSION "clip.minicpmv_version"
#define KEY_HAS_QWEN2VL_MERGER "clip.has_qwen2vl_merger"
#define KEY_USE_GELU "clip.use_gelu"
@@ -131,6 +134,7 @@ static std::string format(const char * fmt, ...) {
#define KEY_IMAGE_MEAN "clip.vision.image_mean"
#define KEY_IMAGE_STD "clip.vision.image_std"
#define KEY_PROJ_TYPE "clip.projector_type"
#define KEY_FEATURE_LAYER "clip.vision.feature_layer"
#define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type"
#define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints"
@@ -172,6 +176,15 @@ static std::string format(const char * fmt, ...) {
#define TN_MINICPMV_ATTN "resampler.attn.%s.%s"
#define TN_MINICPMV_LN "resampler.ln_%s.%s"
#define TN_GLM_ADAPER_CONV "adapter.conv.%s"
#define TN_GLM_ADAPTER_LINEAR "adapter.linear.linear.%s"
#define TN_GLM_ADAPTER_NORM_1 "adapter.linear.norm1.%s"
#define TN_GLM_ADAPTER_D_H_2_4H "adapter.linear.dense_h_to_4h.%s"
#define TN_GLM_ADAPTER_GATE "adapter.linear.gate.%s"
#define TN_GLM_ADAPTER_D_4H_2_H "adapter.linear.dense_4h_to_h.%s"
#define TN_GLM_BOI_W "adapter.boi"
#define TN_GLM_EOI_W "adapter.eoi"
enum projector_type {
PROJECTOR_TYPE_MLP,
@@ -179,6 +192,7 @@ enum projector_type {
PROJECTOR_TYPE_LDP,
PROJECTOR_TYPE_LDPV2,
PROJECTOR_TYPE_RESAMPLER,
PROJECTOR_TYPE_GLM_EDGE,
PROJECTOR_TYPE_MERGER,
PROJECTOR_TYPE_UNKNOWN,
};
@@ -188,6 +202,7 @@ static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
{ PROJECTOR_TYPE_LDP, "ldp" },
{ PROJECTOR_TYPE_LDPV2, "ldpv2"},
{ PROJECTOR_TYPE_RESAMPLER, "resampler"},
{ PROJECTOR_TYPE_GLM_EDGE, "adapter"},
{ PROJECTOR_TYPE_MERGER, "qwen2vl_merger"},
};
@@ -275,7 +290,7 @@ static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
{
const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
int arr_n = gguf_get_arr_n(ctx_gguf, i);
const void * data = gguf_get_arr_data(ctx_gguf, i);
const void * data = arr_type == GGUF_TYPE_STRING ? nullptr : gguf_get_arr_data(ctx_gguf, i);
std::stringstream ss;
ss << "[";
for (int j = 0; j < arr_n; j++) {
@@ -444,8 +459,9 @@ struct clip_hparams {
char mm_patch_merge_type[32] = "flat"; // spatial_unpad or flat (default)
int32_t image_grid_pinpoints[32];
std::vector<int32_t> image_grid_pinpoints;
int32_t image_crop_resolution;
std::unordered_set<int32_t> vision_feature_layer;
};
struct clip_layer {
@@ -512,6 +528,12 @@ struct clip_vision_model {
struct ggml_tensor * mm_4_w = NULL;
struct ggml_tensor * mm_4_b = NULL;
//GLMV-Edge projection
struct ggml_tensor * mm_model_adapter_conv_w;
struct ggml_tensor * mm_model_adapter_conv_b;
struct ggml_tensor * boi_w;
struct ggml_tensor * eoi_w;
// MobileVLM projection
struct ggml_tensor * mm_model_mlp_1_w;
struct ggml_tensor * mm_model_mlp_1_b;
@@ -572,12 +594,14 @@ struct clip_ctx {
bool has_vision_encoder = false;
bool has_llava_projector = false;
bool has_minicpmv_projector = false;
bool has_glm_projector = false;
bool has_qwen2vl_merger = false;
int minicpmv_version = 2;
struct clip_vision_model vision_model;
projector_type proj_type = PROJECTOR_TYPE_MLP;
int32_t max_feature_layer;
float image_mean[3];
float image_std[3];
bool use_gelu = false;
@@ -644,13 +668,12 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
const int hidden_size = hparams.hidden_size;
const int n_head = hparams.n_head;
const int d_head = hidden_size / n_head;
int n_layer = hparams.n_layer;
const float eps = hparams.eps;
int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
const int batch_size = imgs->size;
if (ctx->has_llava_projector || ctx->has_minicpmv_projector) {
if (ctx->has_llava_projector || ctx->has_minicpmv_projector || ctx->has_glm_projector) {
GGML_ASSERT(batch_size == 1);
}
@@ -730,6 +753,9 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
else if (ctx->minicpmv_version == 3) {
pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 3584, pos_w * pos_h, 1);
}
else if (ctx->minicpmv_version == 4) {
pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 3584, pos_w * pos_h, 1);
}
ggml_set_name(pos_embed, "pos_embed");
ggml_set_input(pos_embed);
}
@@ -742,14 +768,19 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b);
}
std::vector<struct ggml_tensor *> embedding_stack;
const auto & vision_feature_layer = hparams.vision_feature_layer;
// loop over layers
if (ctx->has_minicpmv_projector || ctx->has_qwen2vl_merger) {
// TODO: figure out why we doing thing in this way ???
n_layer += 1;
}
for (int il = 0; il < n_layer - 1; il++) {
for (int il = 0; il < ctx->max_feature_layer; il++) {
struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
// If this is an embedding feature layer, save the output.
// NOTE: 0 index here refers to the input to the encoder.
if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
embedding_stack.push_back(embeddings);
}
//const size_t nb_q_w = model.layers[il].q_w->nb[0];
// layernorm1
@@ -837,7 +868,6 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
cur = ggml_add(ctx0, embeddings, cur);
embeddings = cur;
}
// post-layernorm
@@ -848,6 +878,19 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
}
// final layer is a vision feature layer
if (vision_feature_layer.find(ctx->max_feature_layer) != vision_feature_layer.end()) {
embedding_stack.push_back(embeddings);
}
// If feature layers are explicitly set, stack them (if we have multiple)
if (!embedding_stack.empty()) {
embeddings = embedding_stack[0];
for (size_t i = 1; i < embedding_stack.size(); i++) {
embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
}
}
// llava projector
if (ctx->has_llava_projector) {
embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
@@ -1065,6 +1108,11 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
n_head = hidden_size/d_head;
num_query = 64;
}
else if (ctx->minicpmv_version == 4) {
hidden_size = 3584;
n_head = hidden_size/d_head;
num_query = 64;
}
struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q), model.mm_model_attn_q_b);
Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head));
@@ -1099,7 +1147,33 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
GGML_ASSERT(false);
}
}
else if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
// glm projector
else if (ctx->has_glm_projector) {
if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings,1,0,2,3));
embeddings = ggml_reshape_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
//GLU
{
embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
embeddings = ggml_norm(ctx0, embeddings, eps);
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
embeddings = ggml_gelu_inplace(ctx0, embeddings);
struct ggml_tensor * x = embeddings;
embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
embeddings = ggml_silu_inplace(ctx0, embeddings);
embeddings = ggml_mul(ctx0, embeddings,x);
embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
}
} else {
GGML_ABORT("fatel error");
}
} else if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size * 4, num_positions / 4, batch_size);
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
@@ -1268,6 +1342,11 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
new_clip->minicpmv_version = gguf_get_val_i32(ctx, idx);
}
idx = gguf_find_key(ctx, KEY_HAS_GLM_PROJ);
if (idx != -1) {
new_clip->has_glm_projector = gguf_get_val_bool(ctx, idx);
}
idx = gguf_find_key(ctx, KEY_HAS_QWEN2VL_MERGER);
if (idx != -1) {
new_clip->has_qwen2vl_merger = gguf_get_val_bool(ctx, idx);
@@ -1292,6 +1371,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
LOG_INF("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder);
LOG_INF("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector);
LOG_INF("%s: minicpmv_projector: %d\n", __func__, new_clip->has_minicpmv_projector);
LOG_INF("%s: glm_projector: %d\n", __func__, new_clip->has_glm_projector);
LOG_INF("%s: model size: %.2f MB\n", __func__, model_size / 1024.0 / 1024.0);
LOG_INF("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0);
}
@@ -1402,14 +1482,26 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
int idx = get_key_idx(ctx, KEY_IMAGE_GRID_PINPOINTS);
int n = gguf_get_arr_n(ctx, idx);
const int32_t * pinpoints = (const int32_t *)gguf_get_arr_data(ctx, idx);
for (int i = 0; i < 32 && i < n && pinpoints[i] != 0; ++i) {
hparams.image_grid_pinpoints[i] = pinpoints[i];
for (int i = 0; i < n; ++i) {
hparams.image_grid_pinpoints.push_back(pinpoints[i]);
}
if (n < 32)
hparams.image_grid_pinpoints[n] = 0;
} catch (std::runtime_error & /*e*/) {
hparams.image_grid_pinpoints[0]=0;
}
} catch (std::runtime_error & /*e*/) { }
// Load the vision feature layer indices if they are explicitly provided;
// if multiple vision feature layers are present, the values will be concatenated
// to form the final visual features.
// NOTE: gguf conversions should standardize the values of the vision feature layer to
// be non-negative, since we use -1 to mark values as unset here.
try {
int idx = get_key_idx(ctx, KEY_FEATURE_LAYER);
int n = gguf_get_arr_n(ctx, idx);
const int32_t * vision_feature_layer = (const int32_t *)gguf_get_arr_data(ctx, idx);
for (int i = 0; i < n; ++i) {
hparams.vision_feature_layer.insert(vision_feature_layer[i]);
}
} catch (std::runtime_error & /*e*/) { }
try {
int idx = get_key_idx(ctx, KEY_MM_PATCH_MERGE_TYPE);
@@ -1435,6 +1527,9 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
new_clip->image_std[i] = std_data[i];
}
// Calculate the deepest feature layer based on hparams and projector type
new_clip->max_feature_layer = get_deepest_feature_layer(new_clip);
if (verbosity >= 2) {
LOG_INF("\n%s: vision model hparams\n", __func__);
LOG_INF("image_size %d\n", hparams.image_size);
@@ -1448,8 +1543,13 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
LOG_INF("v_image_mean %f %f %f\n", new_clip->image_mean[0], new_clip->image_mean[1], new_clip->image_mean[2]);
LOG_INF("v_image_std %f %f %f\n", new_clip->image_std[0], new_clip->image_std[1], new_clip->image_std[2]);
LOG_INF("v_image_grid_pinpoints: ");
for (int i = 0; i < 32 && (hparams.image_grid_pinpoints[i] != 0); ++i) {
LOG_INF("%d ", hparams.image_grid_pinpoints[i]);
for (const auto & pp : hparams.image_grid_pinpoints) {
LOG_INF("%d ", pp);
}
LOG_INF("\n");
LOG_INF("v_vision_feature_layer: ");
for (const auto & feature_layer: hparams.vision_feature_layer) {
LOG_INF("%d ", feature_layer);
}
LOG_INF("\n");
LOG_INF("v_mm_patch_merge_type: %s\n", hparams.mm_patch_merge_type);
@@ -1584,6 +1684,18 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
vision_model.mm_model_ln_post_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "weight"));
vision_model.mm_model_ln_post_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "bias"));
}
else if (new_clip->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
vision_model.mm_model_adapter_conv_w = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPER_CONV, "weight"));
vision_model.mm_model_adapter_conv_b = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPER_CONV, "bias"));
vision_model.mm_model_mlp_0_w = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_LINEAR,"weight"));
vision_model.mm_model_ln_q_w = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_NORM_1,"weight"));
vision_model.mm_model_ln_q_b = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_NORM_1,"bias"));
vision_model.mm_model_mlp_1_w = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_D_H_2_4H,"weight"));
vision_model.mm_model_mlp_2_w = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_GATE,"weight"));
vision_model.mm_model_mlp_3_w = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_D_4H_2_H,"weight"));
vision_model.boi_w = get_tensor(new_clip->ctx_data, TN_GLM_BOI_W);
vision_model.eoi_w = get_tensor(new_clip->ctx_data, TN_GLM_EOI_W);
}
else if (new_clip->proj_type == PROJECTOR_TYPE_MERGER) {
vision_model.mm_0_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight"));
vision_model.mm_0_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias"));
@@ -1676,11 +1788,11 @@ void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) {
}
}
static void build_clip_img_from_data(const stbi_uc * data, int nx, int ny, clip_image_u8 * img) {
void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, struct clip_image_u8 * img) {
img->nx = nx;
img->ny = ny;
img->buf.resize(3 * nx * ny);
memcpy(img->buf.data(), data, img->buf.size());
memcpy(img->buf.data(), rgb_pixels, img->buf.size());
}
bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
@@ -1690,7 +1802,7 @@ bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
LOG_ERR("%s: failed to load image '%s'\n", __func__, fname);
return false;
}
build_clip_img_from_data(data, nx, ny, img);
clip_build_img_from_pixels(data, nx, ny, img);
stbi_image_free(data);
return true;
}
@@ -1702,7 +1814,7 @@ bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length
LOG_ERR("%s: failed to decode image bytes\n", __func__);
return false;
}
build_clip_img_from_data(data, nx, ny, img);
clip_build_img_from_pixels(data, nx, ny, img);
stbi_image_free(data);
return true;
}
@@ -2058,6 +2170,7 @@ static std::vector<std::vector<clip_image_u8 *>> uhd_slice_image(const clip_imag
images[images.size()-1].push_back(patch);
}
}
clip_image_u8_free(refine_image);
}
return images;
}
@@ -2096,6 +2209,13 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
clip_image_f32_free(res);
}
}
for (size_t i = 0; i < imgs.size(); ++i) {
for (size_t j = 0; j < imgs[i].size(); ++j) {
if (imgs[i][j] != nullptr) {
clip_image_u8_free(imgs[i][j]);
}
}
}
return true;
}
else if (ctx->has_qwen2vl_merger) {
@@ -2116,6 +2236,20 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
return true;
}
if (ctx->has_glm_projector) {
res_imgs->size = 1;
res_imgs->data = new clip_image_f32[res_imgs->size];
clip_image_u8 resized_image;
int32_t sz=ctx->vision_model.hparams.image_size;
bicubic_resize(*img, resized_image,sz,sz);
clip_image_f32 * res = clip_image_f32_init();
//clip_image_save_to_bmp(resized_image, "resized.bmp");
normalize_image_u8_to_f32(&resized_image, res, ctx->image_mean, ctx->image_std);
res_imgs->data[0] = *res;
clip_image_f32_free(res);
return true;
}
bool pad_to_square = true;
if (!ctx->has_vision_encoder) {
LOG_ERR("This gguf file seems to have no vision encoder\n");
@@ -2160,10 +2294,10 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
}
}
} else {
if (params.image_grid_pinpoints[0] != 0) {
if (!params.image_grid_pinpoints.empty()) {
// "spatial_unpad" with "anyres" processing for llava-1.6
std::vector<std::pair<int, int>> possible_resolutions;
for (int i = 0; i < 32 && params.image_grid_pinpoints[i] != 0; i+=2) {
for (size_t i = 0; i < params.image_grid_pinpoints.size(); i+=2) {
possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]});
}
std::pair<int, int> best_resolution = select_best_resolution({img->nx, img->ny}, possible_resolutions);
@@ -2301,7 +2435,8 @@ void clip_free(clip_ctx * ctx) {
}
size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
return clip_n_patches(ctx) * clip_n_mmproj_embd(ctx) * sizeof(float);
int extra_tokens = ctx->has_glm_projector ? 2 : 0;
return (clip_n_patches(ctx) + extra_tokens) * clip_n_mmproj_embd(ctx) * sizeof(float);
}
size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_h, int img_w) {
@@ -2328,7 +2463,14 @@ const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
}
const int32_t * clip_image_grid(const struct clip_ctx * ctx) {
return ctx->vision_model.hparams.image_grid_pinpoints;
if (ctx->vision_model.hparams.image_grid_pinpoints.size()) {
return &ctx->vision_model.hparams.image_grid_pinpoints.front();
}
return nullptr;
}
size_t get_clip_image_grid_size(const struct clip_ctx * ctx) {
return ctx->vision_model.hparams.image_grid_pinpoints.size();
}
int clip_n_patches(const struct clip_ctx * ctx) {
@@ -2343,7 +2485,7 @@ int clip_n_patches_by_img(const struct clip_ctx * ctx, struct clip_image_f32 * i
int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2) {
if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2 || ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
n_patches /= 4;
} else if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
if (ctx->minicpmv_version == 2) {
@@ -2352,6 +2494,9 @@ int clip_n_patches_by_img(const struct clip_ctx * ctx, struct clip_image_f32 * i
else if (ctx->minicpmv_version == 3) {
n_patches = 64;
}
else if (ctx->minicpmv_version == 4) {
n_patches = 64;
}
} else if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
int patch_size = params.patch_size * 2;
int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0);
@@ -2473,6 +2618,12 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
if (ctx->has_minicpmv_projector) {
GGML_ASSERT(batch_size == 1);
}
if (ctx->has_glm_projector) {
GGML_ASSERT(batch_size == 1);
ggml_tensor * boi = ctx->vision_model.boi_w;
ggml_backend_tensor_get(boi,vec,0,ggml_nbytes(boi));
vec = (float*)(vec+ggml_nelements(boi)); //offset for boi
}
// build the inference graph
ggml_cgraph * gf = clip_image_build_graph(ctx, imgs, ctx->load_image_size, true);
@@ -2531,8 +2682,8 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
// -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
int* positions_data = (int*)malloc(ggml_nbytes(positions));
int bucket_coords_h[70];
int bucket_coords_w[70];
int bucket_coords_h[1024];
int bucket_coords_w[1024];
for (int i = 0; i < pos_h; i++){
bucket_coords_h[i] = std::floor(70.0*i/pos_h);
}
@@ -2560,6 +2711,9 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
else if (ctx->minicpmv_version == 3) {
embed_dim = 3584;
}
else if (ctx->minicpmv_version == 4) {
embed_dim = 3584;
}
auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
float * pos_embed_data = (float *)malloc(ggml_nbytes(pos_embed));
@@ -2622,11 +2776,15 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
free(positions_data);
{
if (!ctx->has_glm_projector) {
struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches");
// The patches vector is used to get rows to index into the embeds with;
// we should skip dim 0 only if we have CLS to avoid going out of bounds
// when retrieving the rows.
int patch_offset = ctx->has_class_embedding ? 1 : 0;
int* patches_data = (int*)malloc(ggml_nbytes(patches));
for (int i = 0; i < num_patches; i++) {
patches_data[i] = i + 1;
patches_data[i] = i + patch_offset;
}
ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches));
free(patches_data);
@@ -2646,14 +2804,19 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
// copy the embeddings to the location passed by the user
ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
if (ctx->has_glm_projector) {
//eoi
ggml_tensor * eoi = ctx->vision_model.eoi_w;
int offset = ggml_nelements(embeddings);
ggml_backend_tensor_get(eoi, vec+offset, 0, ggml_nbytes(eoi));
}
return true;
}
bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype) {
ggml_type type = GGML_TYPE_Q4_1;
assert(itype < GGML_TYPE_COUNT);
type = static_cast<ggml_type>(itype);
ggml_type type = static_cast<ggml_type>(itype);
auto * ctx_clip = clip_model_load(fname_inp, 2);
@@ -2706,8 +2869,8 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
}
}
// quantize only 2D tensors
quantize &= (ggml_n_dims(cur) == 2);
// quantize only 2D tensors and bigger than block size
quantize &= (ggml_n_dims(cur) == 2) && cur->ne[0] > ggml_blck_size(type);
if (quantize) {
new_type = type;
@@ -2752,7 +2915,8 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
total_size_org += orig_size;
total_size_new += new_size;
gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size);
GGML_ASSERT(gguf_get_tensor_size(ctx_out, gguf_find_tensor(ctx_out, name.c_str())) == new_size);
gguf_set_tensor_data(ctx_out, name.c_str(), new_data);
fout.write((const char *)new_data, new_size);
size_t pad = GGML_PAD(new_size, gguf_get_alignment(ctx_out)) - new_size;
for (size_t j = 0; j < pad; ++j) {
@@ -2802,6 +2966,12 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
else if (ctx->minicpmv_version == 3) {
return 3584;
}
else if (ctx->minicpmv_version == 4) {
return 3584;
}
}
if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE){
return ctx->vision_model.mm_model_mlp_3_w->ne[1];
}
if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
return ctx->vision_model.mm_1_b->ne[0];
@@ -2818,10 +2988,35 @@ int clip_is_minicpmv(const struct clip_ctx * ctx) {
return 0;
}
bool clip_is_glm(const struct clip_ctx * ctx) {
return ctx->has_glm_projector;
}
bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
return ctx->has_qwen2vl_merger;
}
// Determine the number of encoder layers to iterate over
int get_deepest_feature_layer(const struct clip_ctx * ctx) {
// Get the index of the second to last layer; this is the
// default for models that have a llava projector
const auto & hparams = ctx->vision_model.hparams;
int n_layer = hparams.n_layer - 1;
int deepest_feature_layer = -1;
// Handle other projectors; incrementing here indicates that we
// should use the last encoder layer for the vision features.
if (ctx->has_minicpmv_projector || ctx->has_glm_projector || ctx->has_qwen2vl_merger) {
n_layer += 1;
}
// If we set explicit vision feature layers, only go up to the deepest one
for (const auto & feature_layer : hparams.vision_feature_layer) {
if (feature_layer > deepest_feature_layer) {
deepest_feature_layer = feature_layer;
}
}
return deepest_feature_layer < 0 ? n_layer : deepest_feature_layer;
}
bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
clip_image_f32 clip_img;

View File

@@ -55,6 +55,7 @@ CLIP_API int32_t clip_hidden_size(const struct clip_ctx * ctx);
CLIP_API const char * clip_patch_merge_type(const struct clip_ctx * ctx);
CLIP_API const int32_t * clip_image_grid(const struct clip_ctx * ctx);
CLIP_API size_t get_clip_image_grid_size(const struct clip_ctx * ctx);
CLIP_API int clip_n_patches (const struct clip_ctx * ctx);
CLIP_API int clip_n_patches_by_img (const struct clip_ctx * ctx, struct clip_image_f32 * img);
@@ -73,6 +74,9 @@ CLIP_API void clip_image_f32_free(struct clip_image_f32 * img);
CLIP_API void clip_image_u8_batch_free (struct clip_image_u8_batch * batch);
CLIP_API void clip_image_f32_batch_free(struct clip_image_f32_batch * batch);
/** build image from pixels decoded by other libraries instead of stb_image.h for better performance. The memory layout is RGBRGBRGB..., input buffer length must be 3*nx*ny bytes */
CLIP_API void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, struct clip_image_u8 * img);
CLIP_API bool clip_image_load_from_file(const char * fname, struct clip_image_u8 * img);
/** interpret bytes as an image file with length bytes_length, and use the result to populate img */
@@ -89,10 +93,14 @@ CLIP_API bool clip_image_batch_encode(struct clip_ctx * ctx, int n_threads, cons
CLIP_API bool clip_model_quantize(const char * fname_inp, const char * fname_out, int itype);
CLIP_API int clip_is_minicpmv(const struct clip_ctx * ctx);
CLIP_API bool clip_is_glm(const struct clip_ctx * ctx);
CLIP_API bool clip_is_qwen2vl(const struct clip_ctx * ctx);
CLIP_API int get_deepest_feature_layer(const struct clip_ctx * ctx);
CLIP_API bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec);
#ifdef __cplusplus
}
#endif

View File

@@ -216,7 +216,7 @@ static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *>
return true;
}
static clip_image_f32 * only_v2_5_reshape_by_patch(clip_image_f32 * image, int patch_size) {
static clip_image_f32 * reshape_by_patch(clip_image_f32 * image, int patch_size) {
int width = image->nx;
int height = image->ny;
int num_patches = (height / patch_size) * (width / patch_size);
@@ -277,13 +277,7 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]);
}
else {
int has_minicpmv_projector = clip_is_minicpmv(ctx_clip);
if (has_minicpmv_projector == 2) {
encoded = clip_image_encode(ctx_clip, n_threads, only_v2_5_reshape_by_patch(&img_res_v.data[i], patch_size), image_embd_v[i]);
}
else if (has_minicpmv_projector == 3) {
encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]);
}
encoded = clip_image_encode(ctx_clip, n_threads, reshape_by_patch(&img_res_v.data[i], patch_size), image_embd_v[i]);
}
if (!encoded) {
@@ -313,6 +307,23 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
load_image_size->height = img->ny;
clip_add_load_image_size(ctx_clip, load_image_size);
LOG_INF("%s: load_image_size %d %d\n", __func__, load_image_size->width, load_image_size->height);
delete[] img_res_v.data;
img_res_v.size = 0;
img_res_v.data = nullptr;
}
else if (clip_is_glm(ctx_clip)){
struct clip_image_size * load_image_size = clip_image_size_init();
load_image_size->width = img_res_v.data[0].nx;
load_image_size->height = img_res_v.data[0].ny;
clip_add_load_image_size(ctx_clip, load_image_size);
bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd);
int pos = int(load_image_size->width/clip_patch_size(ctx_clip)/2);
*n_img_pos = (pos * pos + 2);
if (!encoded){
LOG_ERR("Unable to encode image \n");
return false;
}
}
else if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) {
// flat / default llava-1.5 type embedding
@@ -342,9 +353,10 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
LOG_INF("%s: %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
const int32_t * image_grid = clip_image_grid(ctx_clip);
const size_t num_gridpoints = get_clip_image_grid_size(ctx_clip);
std::vector<std::pair<int, int>> grid_pinpoints;
for (int i = 0; i < 32 && image_grid[i] != 0; i += 2) {
for (size_t i = 0; i < num_gridpoints; i += 2) {
grid_pinpoints.push_back({image_grid[i], image_grid[i+1]});
}
@@ -384,7 +396,7 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx * ctx_clip) {
// make sure that the correct mmproj was used, i.e., compare apples to apples
int n_llama_embd = llama_n_embd(llama_get_model(ctx_llama));
int n_llama_embd = llama_model_n_embd(llama_get_model(ctx_llama));
auto n_image_embd = clip_n_mmproj_embd(ctx_clip);
if (n_image_embd != n_llama_embd) {
LOG_ERR("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_image_embd, n_llama_embd);
@@ -394,10 +406,14 @@ bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx *
}
bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) {
int num_max_patches = 6;
// Granite vision uses up to 10 patches + base patch
int num_max_patches = 11;
if (clip_is_minicpmv(ctx_clip)) {
num_max_patches = 10;
}
if (clip_is_glm(ctx_clip)) {
num_max_patches = 1;
}
float * image_embd;
if (clip_is_qwen2vl(ctx_clip)) {
// qwen2vl don't split image into chunks, so `num_max_patches` is not needed.
@@ -457,7 +473,7 @@ struct llava_embd_batch {
};
bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed, int n_batch, int * n_past) {
int n_embd = llama_n_embd(llama_get_model(ctx_llama));
int n_embd = llama_model_n_embd(llama_get_model(ctx_llama));
for (int i = 0; i < image_embed->n_image_pos; i += n_batch) {
int n_eval = image_embed->n_image_pos - i;

View File

@@ -9,7 +9,7 @@
#include "llama.h"
struct llama_model_deleter {
void operator()(llama_model * model) { llama_free_model(model); }
void operator()(llama_model * model) { llama_model_free(model); }
};
struct llama_context_deleter {
@@ -20,11 +20,11 @@ struct llama_sampler_deleter {
void operator()(llama_sampler * sampler) { llama_sampler_free(sampler); }
};
struct llama_lora_adapter_deleter {
void operator()(llama_lora_adapter * lora_adapter) { llama_lora_adapter_free(lora_adapter); }
struct llama_adapter_lora_deleter {
void operator()(llama_adapter_lora * adapter) { llama_adapter_lora_free(adapter); }
};
typedef std::unique_ptr<llama_model, llama_model_deleter> llama_model_ptr;
typedef std::unique_ptr<llama_context, llama_context_deleter> llama_context_ptr;
typedef std::unique_ptr<llama_sampler, llama_sampler_deleter> llama_sampler_ptr;
typedef std::unique_ptr<llama_lora_adapter, llama_lora_adapter_deleter> llama_lora_adapter_ptr;
typedef std::unique_ptr<llama_adapter_lora, llama_adapter_lora_deleter> llama_adapter_lora_ptr;

View File

@@ -34,7 +34,6 @@
#define LLAMA_DEFAULT_SEED 0xFFFFFFFF
// TODO: use everywhere in the implementation
#define LLAMA_TOKEN_NULL -1
#define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
@@ -57,7 +56,7 @@ extern "C" {
// TODO: show sample usage
//
// struct llama_vocab; // TODO: add in the future
struct llama_vocab;
struct llama_model;
struct llama_context;
struct llama_sampler;
@@ -106,6 +105,7 @@ extern "C" {
LLAMA_VOCAB_PRE_TYPE_CHAMELEON = 26,
LLAMA_VOCAB_PRE_TYPE_MINERVA = 27,
LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM = 28,
LLAMA_VOCAB_PRE_TYPE_GPT4O = 29,
};
enum llama_rope_type {
@@ -214,7 +214,7 @@ extern "C" {
LLAMA_SPLIT_MODE_ROW = 2, // split layers and KV across GPUs, use tensor parallelism if supported
};
// TODO: simplify (https://github.com/ggerganov/llama.cpp/pull/9294#pullrequestreview-2286561979)
// TODO: simplify (https://github.com/ggml-org/llama.cpp/pull/9294#pullrequestreview-2286561979)
typedef struct llama_token_data {
llama_token id; // token id
float logit; // log-odds of the token
@@ -290,9 +290,6 @@ extern "C" {
// proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
const float * tensor_split;
// comma separated list of RPC servers to use for offloading
const char * rpc_servers;
// Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
// If the provided progress_callback returns true, model loading continues.
// If it returns false, model loading is immediately aborted.
@@ -312,7 +309,7 @@ extern "C" {
};
// NOTE: changing the default values of parameters marked as [EXPERIMENTAL] may cause crashes or incorrect results in certain configurations
// https://github.com/ggerganov/llama.cpp/pull/7544
// https://github.com/ggml-org/llama.cpp/pull/7544
struct llama_context_params {
uint32_t n_ctx; // text context, 0 = from model
uint32_t n_batch; // logical maximum batch size that can be submitted to llama_decode
@@ -325,7 +322,7 @@ extern "C" {
enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id
enum llama_attention_type attention_type; // attention type to use for embeddings
// ref: https://github.com/ggerganov/llama.cpp/pull/2054
// ref: https://github.com/ggml-org/llama.cpp/pull/2054
float rope_freq_base; // RoPE base frequency, 0 = from model
float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
float yarn_ext_factor; // YaRN extrapolation mix factor, negative = from model
@@ -388,11 +385,10 @@ extern "C" {
} llama_chat_message;
// lora adapter
// TODO: rename to llama_adapter_lora
struct llama_lora_adapter;
struct llama_adapter_lora;
// Helpers for getting default parameters
// TODO: update API to start accepting pointers to params structs (https://github.com/ggerganov/llama.cpp/discussions/9172)
// TODO: update API to start accepting pointers to params structs (https://github.com/ggml-org/llama.cpp/discussions/9172)
LLAMA_API struct llama_model_params llama_model_default_params(void);
LLAMA_API struct llama_context_params llama_context_default_params(void);
LLAMA_API struct llama_sampler_chain_params llama_sampler_chain_default_params(void);
@@ -403,31 +399,53 @@ extern "C" {
// Call once at the start of the program
LLAMA_API void llama_backend_init(void);
// Call once at the end of the program - currently only used for MPI
LLAMA_API void llama_backend_free(void);
//optional:
LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa);
// Optional: an auto threadpool gets created in ggml if not passed explicitly
LLAMA_API void llama_attach_threadpool(
struct llama_context * ctx,
ggml_threadpool_t threadpool,
ggml_threadpool_t threadpool_batch);
struct llama_context * ctx,
ggml_threadpool_t threadpool,
ggml_threadpool_t threadpool_batch);
LLAMA_API void llama_detach_threadpool(struct llama_context * ctx);
// Call once at the end of the program - currently only used for MPI
LLAMA_API void llama_backend_free(void);
DEPRECATED(LLAMA_API struct llama_model * llama_load_model_from_file(
const char * path_model,
struct llama_model_params params),
"use llama_model_load_from_file instead");
LLAMA_API struct llama_model * llama_load_model_from_file(
// Load the model from a file
// If the file is split into multiple parts, the file name must follow this pattern: <name>-%05d-of-%05d.gguf
// If the split file name does not follow this pattern, use llama_model_load_from_splits
LLAMA_API struct llama_model * llama_model_load_from_file(
const char * path_model,
struct llama_model_params params);
// TODO: rename to llama_model_free
LLAMA_API void llama_free_model(struct llama_model * model);
// Load the model from multiple splits (support custom naming scheme)
// The paths must be in the correct order
LLAMA_API struct llama_model * llama_model_load_from_splits(
const char ** paths,
size_t n_paths,
struct llama_model_params params);
// TODO: rename to llama_init_from_model
LLAMA_API struct llama_context * llama_new_context_with_model(
DEPRECATED(LLAMA_API void llama_free_model(struct llama_model * model),
"use llama_model_free instead");
LLAMA_API void llama_model_free(struct llama_model * model);
LLAMA_API struct llama_context * llama_init_from_model(
struct llama_model * model,
struct llama_context_params params);
DEPRECATED(LLAMA_API struct llama_context * llama_new_context_with_model(
struct llama_model * model,
struct llama_context_params params),
"use llama_init_from_model instead");
// TODO (jmorganca): this should most likely be passed in as part of a batch
// and not set on the context for all batches.
LLAMA_API void llama_set_cross_attention(struct llama_context * ctx, bool cross_attn_state);
@@ -449,20 +467,31 @@ extern "C" {
LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
LLAMA_API int32_t llama_n_layer (const struct llama_model * model);
LLAMA_API int32_t llama_n_head (const struct llama_model * model);
DEPRECATED(LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model), "use llama_model_n_ctx_train instead");
DEPRECATED(LLAMA_API int32_t llama_n_embd (const struct llama_model * model), "use llama_model_n_embd instead");
DEPRECATED(LLAMA_API int32_t llama_n_layer (const struct llama_model * model), "use llama_model_n_layer instead");
DEPRECATED(LLAMA_API int32_t llama_n_head (const struct llama_model * model), "use llama_model_n_head instead");
LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
DEPRECATED(LLAMA_API int32_t llama_n_vocab (const struct llama_vocab * vocab), "use llama_vocab_n_tokens instead");
LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model);
LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
LLAMA_API const struct llama_model * llama_get_model (const struct llama_context * ctx);
LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
LLAMA_API const struct llama_vocab * llama_model_get_vocab(const struct llama_model * model);
LLAMA_API enum llama_rope_type llama_model_rope_type(const struct llama_model * model);
LLAMA_API int32_t llama_model_n_ctx_train(const struct llama_model * model);
LLAMA_API int32_t llama_model_n_embd (const struct llama_model * model);
LLAMA_API int32_t llama_model_n_layer (const struct llama_model * model);
LLAMA_API int32_t llama_model_n_head (const struct llama_model * model);
LLAMA_API int32_t llama_model_n_head_kv (const struct llama_model * model);
// Get the model's RoPE frequency scaling factor
LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
LLAMA_API float llama_model_rope_freq_scale_train(const struct llama_model * model);
LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_vocab * vocab);
LLAMA_API int32_t llama_vocab_n_tokens(const struct llama_vocab * vocab);
// Functions to access the model's GGUF metadata scalar values
// - The functions return the length of the string on success, or -1 on failure
@@ -488,6 +517,10 @@ extern "C" {
// Returns the total size of all the tensors in the model in bytes
LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
// Get the default chat template. Returns nullptr if not available
// If name is NULL, returns the default chat template
LLAMA_API const char * llama_model_chat_template(const struct llama_model * model, const char * name);
// Returns the total number of parameters in the model
LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
@@ -515,34 +548,31 @@ extern "C" {
//
// Load a LoRA adapter from file
// TODO: rename to llama_adapter_lora_init
LLAMA_API struct llama_lora_adapter * llama_lora_adapter_init(
LLAMA_API struct llama_adapter_lora * llama_adapter_lora_init(
struct llama_model * model,
const char * path_lora);
// Manually free a LoRA adapter
// Note: loaded adapters will be free when the associated model is deleted
LLAMA_API void llama_adapter_lora_free(struct llama_adapter_lora * adapter);
// The following functions operate on a llama_context, hence the naming: llama_verb_...
// Add a loaded LoRA adapter to given context
// This will not modify model's weight
// TODO: rename to llama_set_adapter_lora
LLAMA_API int32_t llama_lora_adapter_set(
LLAMA_API int32_t llama_set_adapter_lora(
struct llama_context * ctx,
struct llama_lora_adapter * adapter,
struct llama_adapter_lora * adapter,
float scale);
// Remove a specific LoRA adapter from given context
// Return -1 if the adapter is not present in the context
// TODO: rename to llama_rm_adapter_lora
LLAMA_API int32_t llama_lora_adapter_remove(
LLAMA_API int32_t llama_rm_adapter_lora(
struct llama_context * ctx,
struct llama_lora_adapter * adapter);
struct llama_adapter_lora * adapter);
// Remove all LoRA adapters from given context
// TODO: rename to llama_clear_adapter_lora
LLAMA_API void llama_lora_adapter_clear(struct llama_context * ctx);
// Manually free a LoRA adapter
// Note: loaded adapters will be free when the associated model is deleted
// TODO: rename to llama_adapter_lora_free
LLAMA_API void llama_lora_adapter_free(struct llama_lora_adapter * adapter);
LLAMA_API void llama_clear_adapter_lora(struct llama_context * ctx);
// Apply a loaded control vector to a llama_context, or if data is NULL, clear
// the currently loaded vector.
@@ -550,9 +580,8 @@ extern "C" {
// to an n_embd x n_layers buffer starting from layer 1.
// il_start and il_end are the layer range the vector should apply to (both inclusive)
// See llama_control_vector_load in common to load a control vector.
// TODO: rename to llama_adapter_cvec_apply
LLAMA_API int32_t llama_control_vector_apply(
struct llama_context * lctx,
LLAMA_API int32_t llama_apply_adapter_cvec(
struct llama_context * ctx,
const float * data,
size_t len,
int32_t n_embd,
@@ -908,41 +937,60 @@ extern "C" {
// Vocab
//
LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token);
LLAMA_API const char * llama_vocab_get_text(const struct llama_vocab * vocab, llama_token token);
LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);
LLAMA_API float llama_vocab_get_score(const struct llama_vocab * vocab, llama_token token);
LLAMA_API enum llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token);
LLAMA_API enum llama_token_attr llama_vocab_get_attr(const struct llama_vocab * vocab, llama_token token);
// Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)
LLAMA_API bool llama_token_is_eog(const struct llama_model * model, llama_token token);
LLAMA_API bool llama_vocab_is_eog(const struct llama_vocab * vocab, llama_token token);
// Identify if Token Id is a control token or a render-able token
LLAMA_API bool llama_token_is_control(const struct llama_model * model, llama_token token);
LLAMA_API bool llama_vocab_is_control(const struct llama_vocab * vocab, llama_token token);
// Special tokens
LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
LLAMA_API llama_token llama_token_eot(const struct llama_model * model); // end-of-turn
LLAMA_API llama_token llama_token_cls(const struct llama_model * model); // classification
LLAMA_API llama_token llama_token_sep(const struct llama_model * model); // sentence separator
LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
LLAMA_API llama_token llama_token_pad(const struct llama_model * model); // padding
LLAMA_API llama_token llama_vocab_bos(const struct llama_vocab * vocab); // beginning-of-sentence
LLAMA_API llama_token llama_vocab_eos(const struct llama_vocab * vocab); // end-of-sentence
LLAMA_API llama_token llama_vocab_eot(const struct llama_vocab * vocab); // end-of-turn
LLAMA_API llama_token llama_vocab_sep(const struct llama_vocab * vocab); // sentence separator
LLAMA_API llama_token llama_vocab_nl (const struct llama_vocab * vocab); // next-line
LLAMA_API llama_token llama_vocab_pad(const struct llama_vocab * vocab); // padding
LLAMA_API bool llama_add_bos_token(const struct llama_model * model);
LLAMA_API bool llama_add_eos_token(const struct llama_model * model);
LLAMA_API bool llama_vocab_get_add_bos(const struct llama_vocab * vocab);
LLAMA_API bool llama_vocab_get_add_eos(const struct llama_vocab * vocab);
// infill tokens
DEPRECATED(LLAMA_API llama_token llama_token_prefix(const struct llama_model * model), "use llama_token_fim_pre instead");
DEPRECATED(LLAMA_API llama_token llama_token_middle(const struct llama_model * model), "use llama_token_fim_mid instead");
DEPRECATED(LLAMA_API llama_token llama_token_suffix(const struct llama_model * model), "use llama_token_fim_suf instead");
LLAMA_API llama_token llama_vocab_fim_pre(const struct llama_vocab * vocab);
LLAMA_API llama_token llama_vocab_fim_suf(const struct llama_vocab * vocab);
LLAMA_API llama_token llama_vocab_fim_mid(const struct llama_vocab * vocab);
LLAMA_API llama_token llama_vocab_fim_pad(const struct llama_vocab * vocab);
LLAMA_API llama_token llama_vocab_fim_rep(const struct llama_vocab * vocab);
LLAMA_API llama_token llama_vocab_fim_sep(const struct llama_vocab * vocab);
LLAMA_API llama_token llama_token_fim_pre(const struct llama_model * model);
LLAMA_API llama_token llama_token_fim_suf(const struct llama_model * model);
LLAMA_API llama_token llama_token_fim_mid(const struct llama_model * model);
LLAMA_API llama_token llama_token_fim_pad(const struct llama_model * model);
LLAMA_API llama_token llama_token_fim_rep(const struct llama_model * model);
LLAMA_API llama_token llama_token_fim_sep(const struct llama_model * model);
DEPRECATED(LLAMA_API const char * llama_token_get_text(const struct llama_vocab * vocab, llama_token token), "use llama_vocab_get_text instead");
DEPRECATED(LLAMA_API float llama_token_get_score(const struct llama_vocab * vocab, llama_token token), "use llama_vocab_get_score instead");
DEPRECATED(LLAMA_API enum llama_token_attr llama_token_get_attr(const struct llama_vocab * vocab, llama_token token), "use llama_vocab_get_attr instead");
DEPRECATED(LLAMA_API bool llama_token_is_eog(const struct llama_vocab * vocab, llama_token token), "use llama_vocab_is_eog instead");
DEPRECATED(LLAMA_API bool llama_token_is_control(const struct llama_vocab * vocab, llama_token token), "use llama_vocab_is_control instead");
DEPRECATED(LLAMA_API llama_token llama_token_bos(const struct llama_vocab * vocab), "use llama_vocab_bos instead");
DEPRECATED(LLAMA_API llama_token llama_token_eos(const struct llama_vocab * vocab), "use llama_vocab_eos instead");
DEPRECATED(LLAMA_API llama_token llama_token_eot(const struct llama_vocab * vocab), "use llama_vocab_eot instead");
DEPRECATED(LLAMA_API llama_token llama_token_cls(const struct llama_vocab * vocab), "use llama_vocab_cls instead");
DEPRECATED(LLAMA_API llama_token llama_token_sep(const struct llama_vocab * vocab), "use llama_vocab_sep instead");
DEPRECATED(LLAMA_API llama_token llama_token_nl (const struct llama_vocab * vocab), "use llama_vocab_nl instead");
DEPRECATED(LLAMA_API llama_token llama_token_pad(const struct llama_vocab * vocab), "use llama_vocab_pad instead");
DEPRECATED(LLAMA_API bool llama_add_bos_token(const struct llama_vocab * vocab), "use llama_vocab_get_add_bos instead");
DEPRECATED(LLAMA_API bool llama_add_eos_token(const struct llama_vocab * vocab), "use llama_vocab_get_add_eos instead");
DEPRECATED(LLAMA_API llama_token llama_token_fim_pre(const struct llama_vocab * vocab), "use llama_vocab_fim_pre instead");
DEPRECATED(LLAMA_API llama_token llama_token_fim_suf(const struct llama_vocab * vocab), "use llama_vocab_fim_suf instead");
DEPRECATED(LLAMA_API llama_token llama_token_fim_mid(const struct llama_vocab * vocab), "use llama_vocab_fim_mid instead");
DEPRECATED(LLAMA_API llama_token llama_token_fim_pad(const struct llama_vocab * vocab), "use llama_vocab_fim_pad instead");
DEPRECATED(LLAMA_API llama_token llama_token_fim_rep(const struct llama_vocab * vocab), "use llama_vocab_fim_rep instead");
DEPRECATED(LLAMA_API llama_token llama_token_fim_sep(const struct llama_vocab * vocab), "use llama_vocab_fim_sep instead");
// CLS is equivalent to BOS
DEPRECATED(LLAMA_API llama_token llama_vocab_cls(const struct llama_vocab * vocab), // classification
"use llama_vocab_bos instead");
//
// Tokenization
@@ -958,7 +1006,7 @@ extern "C" {
/// @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated
/// as plaintext. Does not insert a leading space.
LLAMA_API int32_t llama_tokenize(
const struct llama_model * model,
const struct llama_vocab * vocab,
const char * text,
int32_t text_len,
llama_token * tokens,
@@ -972,7 +1020,7 @@ extern "C" {
// User can skip up to 'lstrip' leading spaces before copying (useful when encoding/decoding multiple tokens with 'add_space_prefix')
// @param special If true, special tokens are rendered in the output.
LLAMA_API int32_t llama_token_to_piece(
const struct llama_model * model,
const struct llama_vocab * vocab,
llama_token token,
char * buf,
int32_t length,
@@ -986,7 +1034,7 @@ extern "C" {
/// @param remove_special Allow to remove BOS and EOS tokens if model is configured to do so.
/// @param unparse_special If true, special tokens are rendered in the output.
LLAMA_API int32_t llama_detokenize(
const struct llama_model * model,
const struct llama_vocab * vocab,
const llama_token * tokens,
int32_t n_tokens,
char * text,
@@ -1000,7 +1048,7 @@ extern "C" {
/// Apply chat template. Inspired by hf apply_chat_template() on python.
/// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
/// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
/// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggml-org/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
/// @param tmpl A Jinja template to use for this chat. If this is nullptr, the models default chat template will be used instead.
/// @param chat Pointer to a list of multiple llama_chat_message
/// @param n_msg Number of llama_chat_message in this chat
@@ -1009,7 +1057,6 @@ extern "C" {
/// @param length The size of the allocated buffer
/// @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template.
LLAMA_API int32_t llama_chat_apply_template(
const struct llama_model * model,
const char * tmpl,
const struct llama_chat_message * chat,
size_t n_msg,
@@ -1057,7 +1104,6 @@ extern "C" {
// llama_sampler_free(smpl);
//
// TODO: In the future, llama_sampler will be utilized to offload the sampling to the backends (e.g. GPU).
// TODO: in the future, the entire sampling API that uses llama_model should start using llama_vocab
//
typedef void * llama_sampler_context_t;
@@ -1076,11 +1122,12 @@ extern "C" {
};
struct llama_sampler {
struct llama_sampler_i * iface;
llama_sampler_context_t ctx;
const struct llama_sampler_i * iface;
llama_sampler_context_t ctx;
};
// mirror of llama_sampler_i:
LLAMA_API struct llama_sampler * llama_sampler_init (const struct llama_sampler_i * iface, llama_sampler_context_t ctx);
LLAMA_API const char * llama_sampler_name (const struct llama_sampler * smpl);
LLAMA_API void llama_sampler_accept( struct llama_sampler * smpl, llama_token token);
LLAMA_API void llama_sampler_apply ( struct llama_sampler * smpl, llama_token_data_array * cur_p);
@@ -1110,7 +1157,7 @@ extern "C" {
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
/// NOTE: Avoid using on the full vocabulary as the sorting can become slow. For example, apply top-k or top-p sampling first.
DEPRECATED(LLAMA_API struct llama_sampler * llama_sampler_init_softmax (void),
"will be removed in the future (see https://github.com/ggerganov/llama.cpp/pull/9896#discussion_r1800920915)");
"will be removed in the future (see https://github.com/ggml-org/llama.cpp/pull/9896#discussion_r1800920915)");
/// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
LLAMA_API struct llama_sampler * llama_sampler_init_top_k (int32_t k);
@@ -1118,7 +1165,7 @@ extern "C" {
/// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
LLAMA_API struct llama_sampler * llama_sampler_init_top_p (float p, size_t min_keep);
/// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
/// @details Minimum P sampling as described in https://github.com/ggml-org/llama.cpp/pull/3841
LLAMA_API struct llama_sampler * llama_sampler_init_min_p (float p, size_t min_keep);
/// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
@@ -1133,6 +1180,9 @@ extern "C" {
/// @details XTC sampler as described in https://github.com/oobabooga/text-generation-webui/pull/6335
LLAMA_API struct llama_sampler * llama_sampler_init_xtc (float p, float t, size_t min_keep, uint32_t seed);
/// @details Top n sigma sampling as described in academic paper "Top-nσ: Not All Logits Are You Need" https://arxiv.org/pdf/2411.07641
LLAMA_API struct llama_sampler * llama_sampler_init_top_n_sigma(float n);
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
@@ -1157,10 +1207,22 @@ extern "C" {
float eta);
LLAMA_API struct llama_sampler * llama_sampler_init_grammar(
const struct llama_model * model,
const struct llama_vocab * vocab,
const char * grammar_str,
const char * grammar_root);
/// @details Lazy grammar sampler, introduced in https://github.com/ggml-org/llama.cpp/pull/9639
/// @param trigger_words A list of words that will trigger the grammar sampler. This may be updated to a loose regex syntax (w/ ^) in a near future.
/// @param trigger_tokens A list of tokens that will trigger the grammar sampler.
LLAMA_API struct llama_sampler * llama_sampler_init_grammar_lazy(
const struct llama_vocab * vocab,
const char * grammar_str,
const char * grammar_root,
const char ** trigger_words,
size_t num_trigger_words,
const llama_token * trigger_tokens,
size_t num_trigger_tokens);
/// NOTE: Avoid using on the full vocabulary as searching for repeated tokens can become slow. For example, apply top-k or top-p sampling first.
LLAMA_API struct llama_sampler * llama_sampler_init_penalties(
int32_t penalty_last_n, // last n tokens to penalize (0 = disable penalty, -1 = context size)
@@ -1169,8 +1231,9 @@ extern "C" {
float penalty_present); // 0.0 = disabled
/// @details DRY sampler, designed by p-e-w, as described in: https://github.com/oobabooga/text-generation-webui/pull/5677, porting Koboldcpp implementation authored by pi6am: https://github.com/LostRuins/koboldcpp/pull/982
LLAMA_API struct llama_sampler * llama_sampler_init_dry(
const struct llama_model * model,
LLAMA_API struct llama_sampler * llama_sampler_init_dry(
const struct llama_vocab * vocab,
int32_t n_ctx_train,
float dry_multiplier,
float dry_base,
int32_t dry_allowed_length,
@@ -1204,7 +1267,7 @@ extern "C" {
// 3. discard non-EOG tokens with low prob
// 4. if no tokens are left -> pick EOT
//
LLAMA_API struct llama_sampler * llama_sampler_init_infill(const struct llama_model * model);
LLAMA_API struct llama_sampler * llama_sampler_init_infill(const struct llama_vocab * vocab);
// Returns the seed used by the sampler if applicable, LLAMA_DEFAULT_SEED otherwise
LLAMA_API uint32_t llama_sampler_get_seed(const struct llama_sampler * smpl);

View File

@@ -1,5 +1,7 @@
#include "llama-adapter.h"
#include "llama-impl.h"
#include "llama-mmap.h"
#include "llama-model.h"
#include <algorithm>
@@ -9,7 +11,7 @@
// vec
struct ggml_tensor * llama_control_vector::tensor_for(int il) const {
struct ggml_tensor * llama_adapter_cvec::tensor_for(int il) const {
if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
return nullptr;
}
@@ -17,7 +19,7 @@ struct ggml_tensor * llama_control_vector::tensor_for(int il) const {
return tensors[il];
}
struct ggml_tensor * llama_control_vector::apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int il) const {
struct ggml_tensor * llama_adapter_cvec::apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int il) const {
ggml_tensor * layer_dir = tensor_for(il);
if (layer_dir != nullptr) {
cur = ggml_add(ctx, cur, layer_dir);
@@ -26,12 +28,12 @@ struct ggml_tensor * llama_control_vector::apply_to(struct ggml_context * ctx, s
return cur;
}
static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
bool llama_adapter_cvec::init(const llama_model & model) {
const auto & hparams = model.hparams;
GGML_ASSERT(cvec.tensors.empty());
GGML_ASSERT(cvec.ctxs.empty());
GGML_ASSERT(cvec.bufs.empty());
GGML_ASSERT(tensors.empty());
GGML_ASSERT(ctxs.empty());
GGML_ASSERT(bufs.empty());
// create a context for each buffer type
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
@@ -50,7 +52,7 @@ static bool llama_control_vector_init(struct llama_control_vector & cvec, const
}
ctx_map[buft] = ctx;
cvec.ctxs.emplace_back(ctx);
ctxs.emplace_back(ctx);
return ctx;
}
@@ -59,21 +61,21 @@ static bool llama_control_vector_init(struct llama_control_vector & cvec, const
};
// make tensors
cvec.tensors.reserve(hparams.n_layer);
cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
tensors.reserve(hparams.n_layer);
tensors.push_back(nullptr); // there's never a tensor for layer 0
for (size_t il = 1; il < hparams.n_layer; il++) {
ggml_backend_buffer_type_t buft = llama_model_select_buft(model, il);
ggml_backend_buffer_type_t buft = model.select_buft(il);
ggml_context * ctx = ctx_for_buft(buft);
if (!ctx) {
LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
return false;
}
ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
cvec.tensors.push_back(tensor);
tensors.push_back(tensor);
}
// allocate tensors / buffers and zero
cvec.bufs.reserve(ctx_map.size());
bufs.reserve(ctx_map.size());
for (auto it : ctx_map) {
ggml_backend_buffer_type_t buft = it.first;
ggml_context * ctx = it.second;
@@ -83,14 +85,13 @@ static bool llama_control_vector_init(struct llama_control_vector & cvec, const
return false;
}
ggml_backend_buffer_clear(buf, 0);
cvec.bufs.emplace_back(buf);
bufs.emplace_back(buf);
}
return true;
}
int32_t llama_control_vector_apply(
struct llama_control_vector & cvec,
int32_t llama_adapter_cvec::apply(
const llama_model & model,
const float * data,
size_t len,
@@ -101,8 +102,8 @@ int32_t llama_control_vector_apply(
if (data == nullptr) {
// disable the current control vector (but leave allocated for later)
cvec.layer_start = -1;
cvec.layer_end = -1;
layer_start = -1;
layer_end = -1;
return 0;
}
@@ -111,21 +112,21 @@ int32_t llama_control_vector_apply(
return 1;
}
if (cvec.tensors.empty()) {
if (!llama_control_vector_init(cvec, model)) {
if (tensors.empty()) {
if (!init(model)) {
return 1;
}
}
cvec.layer_start = il_start;
cvec.layer_end = il_end;
layer_start = il_start;
layer_end = il_end;
for (size_t il = 1; il < hparams.n_layer; il++) {
assert(cvec.tensors[il] != nullptr);
assert(tensors[il] != nullptr);
const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
if (off + n_embd <= len) {
ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
ggml_backend_tensor_set(tensors[il], data + off, 0, n_embd * ggml_element_size(tensors[il]));
}
}
@@ -134,7 +135,7 @@ int32_t llama_control_vector_apply(
// lora
llama_lora_weight * llama_lora_adapter::get_weight(struct ggml_tensor * w) {
llama_adapter_lora_weight * llama_adapter_lora::get_weight(struct ggml_tensor * w) {
const std::string name(w->name);
const auto pos = ab_map.find(name);
@@ -145,11 +146,7 @@ llama_lora_weight * llama_lora_adapter::get_weight(struct ggml_tensor * w) {
return nullptr;
}
void llama_lora_adapter_free(struct llama_lora_adapter * adapter) {
delete adapter;
}
static void llama_lora_adapter_init_impl(struct llama_model & model, const char * path_lora, struct llama_lora_adapter & adapter) {
static void llama_adapter_lora_init_impl(struct llama_model & model, const char * path_lora, struct llama_adapter_lora & adapter) {
LLAMA_LOG_INFO("%s: loading lora adapter from '%s' ...\n", __func__, path_lora);
ggml_context * ctx_init;
@@ -221,7 +218,7 @@ static void llama_lora_adapter_init_impl(struct llama_model & model, const char
};
// bundle lora_a and lora_b into pairs
std::map<std::string, llama_lora_weight> ab_map;
std::map<std::string, llama_adapter_lora_weight> ab_map;
auto str_endswith = [](const std::string & str, const std::string & suffix) {
return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0;
};
@@ -231,17 +228,21 @@ static void llama_lora_adapter_init_impl(struct llama_model & model, const char
if (str_endswith(name, ".lora_a")) {
replace_all(name, ".lora_a", "");
if (ab_map.find(name) == ab_map.end()) {
ab_map[name] = llama_lora_weight(cur, nullptr);
ab_map[name] = llama_adapter_lora_weight(cur, nullptr);
} else {
ab_map[name].a = cur;
}
} else if (str_endswith(name, ".lora_b")) {
replace_all(name, ".lora_b", "");
if (ab_map.find(name) == ab_map.end()) {
ab_map[name] = llama_lora_weight(nullptr, cur);
ab_map[name] = llama_adapter_lora_weight(nullptr, cur);
} else {
ab_map[name].b = cur;
}
} else if (str_endswith(name, "_norm.weight")) {
// TODO: add support for norm vector
// for now, we don't really care because most adapters still work fine without it
continue;
} else {
throw std::runtime_error("LoRA tensor '" + name + "' has unexpected suffix");
}
@@ -250,25 +251,33 @@ static void llama_lora_adapter_init_impl(struct llama_model & model, const char
// add tensors
for (auto & it : ab_map) {
const std::string & name = it.first;
llama_lora_weight & w = it.second;
llama_adapter_lora_weight & w = it.second;
bool is_token_embd = str_endswith(name, "token_embd.weight");
if (!w.a || !w.b) {
throw std::runtime_error("LoRA tensor pair for '" + name + "' is missing one component");
}
// device buft and device ctx
auto * model_tensor = llama_model_get_tensor(model, name.c_str());
const auto * model_tensor = model.get_tensor(name.c_str());
if (!model_tensor) {
throw std::runtime_error("LoRA tensor '" + name + "' does not exist in base model");
throw std::runtime_error("LoRA tensor '" + name + "' does not exist in base model (hint: maybe wrong base model?)");
}
struct ggml_context * dev_ctx = ctx_for_buft(ggml_backend_buffer_get_type(model_tensor->buffer));
// validate tensor shape
if (model_tensor->ne[0] != w.a->ne[0] || model_tensor->ne[1] != w.b->ne[1]) {
throw std::runtime_error("tensor '" + name + "' has incorrect shape");
}
if (w.a->ne[1] != w.b->ne[0]) {
throw std::runtime_error("lora_a tensor is not transposed (hint: adapter from \"finetune\" example is no longer supported)");
if (is_token_embd) {
// expect B to be non-transposed, A and B are flipped; see llm_build_inp_embd()
if (model_tensor->ne[0] != w.b->ne[1] || model_tensor->ne[1] != w.a->ne[1]) {
throw std::runtime_error("tensor '" + name + "' has incorrect shape (hint: maybe wrong base model?)");
}
} else {
if (model_tensor->ne[0] != w.a->ne[0] || model_tensor->ne[1] != w.b->ne[1]) {
throw std::runtime_error("tensor '" + name + "' has incorrect shape (hint: maybe wrong base model?)");
}
if (w.a->ne[1] != w.b->ne[0]) {
throw std::runtime_error("lora_a tensor is not transposed (hint: adapter from \"finetune\" example is no longer supported)");
}
}
// save tensor to adapter
@@ -276,7 +285,7 @@ static void llama_lora_adapter_init_impl(struct llama_model & model, const char
struct ggml_tensor * tensor_b = ggml_dup_tensor(dev_ctx, w.b);
ggml_set_name(tensor_a, w.a->name);
ggml_set_name(tensor_b, w.b->name);
adapter.ab_map[name] = llama_lora_weight(tensor_a, tensor_b);
adapter.ab_map[name] = llama_adapter_lora_weight(tensor_a, tensor_b);
}
// allocate tensors / buffers and zero
@@ -318,11 +327,11 @@ static void llama_lora_adapter_init_impl(struct llama_model & model, const char
LLAMA_LOG_INFO("%s: loaded %zu tensors from lora file\n", __func__, adapter.ab_map.size()*2);
}
struct llama_lora_adapter * llama_lora_adapter_init(struct llama_model * model, const char * path_lora) {
struct llama_lora_adapter * adapter = new llama_lora_adapter();
struct llama_adapter_lora * llama_adapter_lora_init(struct llama_model * model, const char * path_lora) {
struct llama_adapter_lora * adapter = new llama_adapter_lora();
try {
llama_lora_adapter_init_impl(*model, path_lora, *adapter);
llama_adapter_lora_init_impl(*model, path_lora, *adapter);
return adapter;
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
@@ -332,3 +341,7 @@ struct llama_lora_adapter * llama_lora_adapter_init(struct llama_model * model,
return nullptr;
}
void llama_adapter_lora_free(struct llama_adapter_lora * adapter) {
delete adapter;
}

View File

@@ -1,66 +1,74 @@
#pragma once
#include "llama-impl.h"
#include "llama-hparams.h"
#include "llama.h"
#include "ggml-cpp.h"
#include <string>
#include <unordered_map>
#include <vector>
// TODO: pimpl
//
// llama_adapter_cvec
//
// TODO: rename to llama_adapter_cvec
struct llama_control_vector {
std::vector<ggml_context_ptr> ctxs;
std::vector<ggml_backend_buffer_ptr> bufs;
struct llama_adapter_cvec {
struct ggml_tensor * tensor_for(int il) const;
std::vector<struct ggml_tensor *> tensors; // per layer
struct ggml_tensor * apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int il) const;
int32_t apply(
const llama_model & model,
const float * data,
size_t len,
int32_t n_embd,
int32_t il_start,
int32_t il_end);
private:
bool init(const llama_model & model);
int32_t layer_start = -1;
int32_t layer_end = -1;
struct ggml_tensor * tensor_for(int il) const;
std::vector<ggml_context_ptr> ctxs;
std::vector<ggml_backend_buffer_ptr> bufs;
struct ggml_tensor * apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int il) const;
std::vector<struct ggml_tensor *> tensors; // per layer
};
int32_t llama_control_vector_apply(
struct llama_control_vector & cvec,
const llama_model & model,
const float * data,
size_t len,
int32_t n_embd,
int32_t il_start,
int32_t il_end);
//
// llama_adapter_lora
//
// TODO: rename to llama_adapter_lora_weight
struct llama_lora_weight {
struct llama_adapter_lora_weight {
struct ggml_tensor * a = nullptr;
struct ggml_tensor * b = nullptr;
llama_lora_weight() = default;
llama_lora_weight(struct ggml_tensor * a, struct ggml_tensor * b) : a(a), b(b) {}
// get actual scale based on rank and alpha
float get_scale(float alpha, float adapter_scale) const {
const float rank = (float) b->ne[0];
const float scale = alpha ? adapter_scale * alpha / rank : adapter_scale;
return scale;
}
llama_adapter_lora_weight() = default;
llama_adapter_lora_weight(struct ggml_tensor * a, struct ggml_tensor * b) : a(a), b(b) {}
};
// TODO: rename to llama_adapter_lora
struct llama_lora_adapter {
struct llama_adapter_lora {
// map tensor name to lora_a_b
std::unordered_map<std::string, struct llama_lora_weight> ab_map;
std::unordered_map<std::string, struct llama_adapter_lora_weight> ab_map;
std::vector<ggml_context_ptr> ctxs;
std::vector<ggml_backend_buffer_ptr> bufs;
float alpha;
llama_lora_adapter() = default;
~llama_lora_adapter() = default;
llama_adapter_lora() = default;
~llama_adapter_lora() = default;
llama_lora_weight * get_weight(struct ggml_tensor * w);
llama_adapter_lora_weight * get_weight(struct ggml_tensor * w);
};

View File

@@ -28,6 +28,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_QWEN2VL, "qwen2vl" },
{ LLM_ARCH_PHI2, "phi2" },
{ LLM_ARCH_PHI3, "phi3" },
{ LLM_ARCH_PHIMOE, "phimoe" },
{ LLM_ARCH_PLAMO, "plamo" },
{ LLM_ARCH_CODESHELL, "codeshell" },
{ LLM_ARCH_ORION, "orion" },
@@ -36,6 +37,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_MINICPM3, "minicpm3" },
{ LLM_ARCH_GEMMA, "gemma" },
{ LLM_ARCH_GEMMA2, "gemma2" },
{ LLM_ARCH_GEMMA3, "gemma3" },
{ LLM_ARCH_STARCODER2, "starcoder2" },
{ LLM_ARCH_MAMBA, "mamba" },
{ LLM_ARCH_XVERSE, "xverse" },
@@ -57,6 +59,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_NEMOTRON, "nemotron" },
{ LLM_ARCH_EXAONE, "exaone" },
{ LLM_ARCH_RWKV6, "rwkv6" },
{ LLM_ARCH_RWKV6QWEN2, "rwkv6qwen2" },
{ LLM_ARCH_GRANITE, "granite" },
{ LLM_ARCH_GRANITE_MOE, "granitemoe" },
{ LLM_ARCH_CHAMELEON, "chameleon" },
@@ -107,25 +110,26 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_TIME_DECAY_EXTRA_DIM, "%s.time_decay_extra_dim" },
{ LLM_KV_RESIDUAL_SCALE, "%s.residual_scale" },
{ LLM_KV_EMBEDDING_SCALE, "%s.embedding_scale" },
{ LLM_KV_TOKEN_SHIFT_COUNT, "%s.token_shift_count" },
{ LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
{ LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
{ LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
{ LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
{ LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
{ LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
{ LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
{ LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
{ LLM_KV_ATTENTION_GROUPNORM_EPS, "%s.attention.group_norm_epsilon" },
{ LLM_KV_ATTENTION_GROUPNORM_GROUPS, "%s.attention.group_norm_groups" },
{ LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
{ LLM_KV_ATTENTION_Q_LORA_RANK, "%s.attention.q_lora_rank" },
{ LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" },
{ LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count" },
{ LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
{ LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
{ LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION, "%s.attention.block_skip_connection" },
{ LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS, "%s.attention.cross_attention_layers" },
{ LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
{ LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
{ LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
{ LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
{ LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
{ LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
{ LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
{ LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
{ LLM_KV_ATTENTION_GROUPNORM_EPS, "%s.attention.group_norm_epsilon" },
{ LLM_KV_ATTENTION_GROUPNORM_GROUPS, "%s.attention.group_norm_groups" },
{ LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
{ LLM_KV_ATTENTION_Q_LORA_RANK, "%s.attention.q_lora_rank" },
{ LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" },
{ LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count" },
{ LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
{ LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
{ LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION, "%s.attention.block_skip_connection" },
{ LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS, "%s.attention.cross_attention_layers" },
{ LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
{ LLM_KV_ROPE_DIMENSION_SECTIONS, "%s.rope.dimension_sections" },
@@ -179,6 +183,8 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP, "tokenizer.ggml.precompiled_charsmap" },
{ LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
{ LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
{ LLM_KV_TOKENIZER_CHAT_TEMPLATE, "tokenizer.chat_template" },
{ LLM_KV_TOKENIZER_CHAT_TEMPLATE_N, "tokenizer.chat_template.%s" },
{ LLM_KV_TOKENIZER_FIM_PRE_ID, "tokenizer.ggml.fim_pre_token_id" },
{ LLM_KV_TOKENIZER_FIM_SUF_ID, "tokenizer.ggml.fim_suf_token_id" },
{ LLM_KV_TOKENIZER_FIM_MID_ID, "tokenizer.ggml.fim_mid_token_id" },
@@ -622,6 +628,27 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_PHIMOE,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ROPE_FACTORS_LONG, "rope_factors_long" },
{ LLM_TENSOR_ROPE_FACTORS_SHORT, "rope_factors_short" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
},
},
{
LLM_ARCH_PLAMO,
{
@@ -778,6 +805,24 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
},
},
{
LLM_ARCH_GEMMA3,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
},
},
{
LLM_ARCH_STARCODER2,
{
@@ -1036,6 +1081,9 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
@@ -1182,6 +1230,7 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_TIME_MIX_LERP_V, "blk.%d.time_mix_lerp_v" },
{ LLM_TENSOR_TIME_MIX_LERP_R, "blk.%d.time_mix_lerp_r" },
{ LLM_TENSOR_TIME_MIX_LERP_G, "blk.%d.time_mix_lerp_g" },
{ LLM_TENSOR_TIME_MIX_LERP_FUSED, "blk.%d.time_mix_lerp_fused" },
{ LLM_TENSOR_TIME_MIX_FIRST, "blk.%d.time_mix_first" },
{ LLM_TENSOR_TIME_MIX_DECAY, "blk.%d.time_mix_decay" },
{ LLM_TENSOR_TIME_MIX_DECAY_W1, "blk.%d.time_mix_decay_w1" },
@@ -1199,6 +1248,32 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, "blk.%d.channel_mix_receptance" },
},
},
{
LLM_ARCH_RWKV6QWEN2,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_TIME_MIX_W1, "blk.%d.time_mix_w1" },
{ LLM_TENSOR_TIME_MIX_W2, "blk.%d.time_mix_w2" },
{ LLM_TENSOR_TIME_MIX_LERP_X, "blk.%d.time_mix_lerp_x" },
{ LLM_TENSOR_TIME_MIX_LERP_FUSED, "blk.%d.time_mix_lerp_fused" },
{ LLM_TENSOR_TIME_MIX_FIRST, "blk.%d.time_mix_first" },
{ LLM_TENSOR_TIME_MIX_DECAY, "blk.%d.time_mix_decay" },
{ LLM_TENSOR_TIME_MIX_DECAY_W1, "blk.%d.time_mix_decay_w1" },
{ LLM_TENSOR_TIME_MIX_DECAY_W2, "blk.%d.time_mix_decay_w2" },
{ LLM_TENSOR_TIME_MIX_KEY, "blk.%d.time_mix_key" },
{ LLM_TENSOR_TIME_MIX_VALUE, "blk.%d.time_mix_value" },
{ LLM_TENSOR_TIME_MIX_RECEPTANCE, "blk.%d.time_mix_receptance" },
{ LLM_TENSOR_TIME_MIX_GATE, "blk.%d.time_mix_gate" },
{ LLM_TENSOR_TIME_MIX_OUTPUT, "blk.%d.time_mix_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_GRANITE,
{
@@ -1253,6 +1328,24 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
},
},
{
LLM_ARCH_SOLAR,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_BSKCN_TV, "bskcn_tv" },
},
},
{
LLM_ARCH_WAVTOKENIZER_DEC,
{
@@ -1278,24 +1371,6 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_POS_NET_ATTN_OUT, "posnet.%d.attn_output" },
},
},
{
LLM_ARCH_SOLAR,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_BSKCN_TV, "bskcn_tv" },
},
},
{
LLM_ARCH_UNKNOWN,
{
@@ -1399,6 +1474,7 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
{LLM_TENSOR_TIME_MIX_LERP_V, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}},
{LLM_TENSOR_TIME_MIX_LERP_R, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}},
{LLM_TENSOR_TIME_MIX_LERP_G, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}},
{LLM_TENSOR_TIME_MIX_LERP_FUSED, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}},
{LLM_TENSOR_TIME_MIX_DECAY, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}},
{LLM_TENSOR_TIME_MIX_FIRST, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_RWKV_WKV6}},
{LLM_TENSOR_ATTN_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
@@ -1455,10 +1531,11 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
{LLM_TENSOR_CONVNEXT_GAMMA, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
};
LLM_KV::LLM_KV(llm_arch arch) : arch(arch) {}
LLM_KV::LLM_KV(llm_arch arch, const char * suffix) : arch(arch), suffix(suffix) {}
std::string LLM_KV::operator()(llm_kv kv) const {
return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
return suffix ? ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch), suffix)
: ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
}
std::string LLM_TN_IMPL::str() const {

View File

@@ -32,6 +32,7 @@ enum llm_arch {
LLM_ARCH_QWEN2VL,
LLM_ARCH_PHI2,
LLM_ARCH_PHI3,
LLM_ARCH_PHIMOE,
LLM_ARCH_PLAMO,
LLM_ARCH_CODESHELL,
LLM_ARCH_ORION,
@@ -40,6 +41,7 @@ enum llm_arch {
LLM_ARCH_MINICPM3,
LLM_ARCH_GEMMA,
LLM_ARCH_GEMMA2,
LLM_ARCH_GEMMA3,
LLM_ARCH_STARCODER2,
LLM_ARCH_MAMBA,
LLM_ARCH_XVERSE,
@@ -61,6 +63,7 @@ enum llm_arch {
LLM_ARCH_NEMOTRON,
LLM_ARCH_EXAONE,
LLM_ARCH_RWKV6,
LLM_ARCH_RWKV6QWEN2,
LLM_ARCH_GRANITE,
LLM_ARCH_GRANITE_MOE,
LLM_ARCH_CHAMELEON,
@@ -111,6 +114,7 @@ enum llm_kv {
LLM_KV_TIME_DECAY_EXTRA_DIM,
LLM_KV_RESIDUAL_SCALE,
LLM_KV_EMBEDDING_SCALE,
LLM_KV_TOKEN_SHIFT_COUNT,
LLM_KV_ATTENTION_HEAD_COUNT,
LLM_KV_ATTENTION_HEAD_COUNT_KV,
@@ -177,6 +181,8 @@ enum llm_kv {
LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP,
LLM_KV_TOKENIZER_HF_JSON,
LLM_KV_TOKENIZER_RWKV,
LLM_KV_TOKENIZER_CHAT_TEMPLATE,
LLM_KV_TOKENIZER_CHAT_TEMPLATE_N,
LLM_KV_TOKENIZER_FIM_PRE_ID,
LLM_KV_TOKENIZER_FIM_SUF_ID,
LLM_KV_TOKENIZER_FIM_MID_ID,
@@ -256,6 +262,7 @@ enum llm_tensor {
LLM_TENSOR_TIME_MIX_LERP_V,
LLM_TENSOR_TIME_MIX_LERP_R,
LLM_TENSOR_TIME_MIX_LERP_G,
LLM_TENSOR_TIME_MIX_LERP_FUSED,
LLM_TENSOR_TIME_MIX_FIRST,
LLM_TENSOR_TIME_MIX_DECAY,
LLM_TENSOR_TIME_MIX_DECAY_W1,
@@ -343,9 +350,10 @@ enum llm_tensor_layer {
};
struct LLM_KV {
LLM_KV(llm_arch arch);
LLM_KV(llm_arch arch, const char * suffix = nullptr);
llm_arch arch;
const char * suffix;
std::string operator()(llm_kv kv) const;
};

View File

@@ -35,6 +35,7 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
{ "mistral-v3-tekken", LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN },
{ "mistral-v7", LLM_CHAT_TEMPLATE_MISTRAL_V7 },
{ "phi3", LLM_CHAT_TEMPLATE_PHI_3 },
{ "phi4", LLM_CHAT_TEMPLATE_PHI_4 },
{ "falcon3", LLM_CHAT_TEMPLATE_FALCON_3 },
{ "zephyr", LLM_CHAT_TEMPLATE_ZEPHYR },
{ "monarch", LLM_CHAT_TEMPLATE_MONARCH },
@@ -50,6 +51,7 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
{ "llama3", LLM_CHAT_TEMPLATE_LLAMA_3 },
{ "chatglm3", LLM_CHAT_TEMPLATE_CHATGML_3 },
{ "chatglm4", LLM_CHAT_TEMPLATE_CHATGML_4 },
{ "glmedge", LLM_CHAT_TEMPLATE_GLMEDGE },
{ "minicpm", LLM_CHAT_TEMPLATE_MINICPM },
{ "exaone3", LLM_CHAT_TEMPLATE_EXAONE_3 },
{ "rwkv-world", LLM_CHAT_TEMPLATE_RWKV_WORLD },
@@ -73,7 +75,9 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
return tmpl.find(haystack) != std::string::npos;
};
if (tmpl_contains("<|im_start|>")) {
return LLM_CHAT_TEMPLATE_CHATML;
return tmpl_contains("<|im_sep|>")
? LLM_CHAT_TEMPLATE_PHI_4
: LLM_CHAT_TEMPLATE_CHATML;
} else if (tmpl.find("mistral") == 0 || tmpl_contains("[INST]")) {
if (tmpl_contains("[SYSTEM_PROMPT]")) {
return LLM_CHAT_TEMPLATE_MISTRAL_V7;
@@ -112,7 +116,7 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
} else if (tmpl_contains("<|assistant|>") && tmpl_contains("<|end|>")) {
return LLM_CHAT_TEMPLATE_PHI_3;
} else if (tmpl_contains("<|assistant|>") && tmpl_contains("<|user|>")) {
return LLM_CHAT_TEMPLATE_FALCON_3;
return tmpl_contains("</s>") ? LLM_CHAT_TEMPLATE_FALCON_3 : LLM_CHAT_TEMPLATE_GLMEDGE;
} else if (tmpl_contains("<|user|>") && tmpl_contains("<|endoftext|>")) {
return LLM_CHAT_TEMPLATE_ZEPHYR;
} else if (tmpl_contains("bos_token + message['role']")) {
@@ -149,7 +153,7 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
return LLM_CHAT_TEMPLATE_MINICPM;
} else if (tmpl_contains("'Assistant: ' + message['content'] + eos_token")) {
return LLM_CHAT_TEMPLATE_DEEPSEEK_2;
} else if (tmpl_contains(LU8("'<Assistant>' + message['content'] + '<end▁of▁sentence>'"))) {
} else if (tmpl_contains(LU8("<Assistant>")) && tmpl_contains(LU8("<User>")) && tmpl_contains(LU8("<end▁of▁sentence>"))) {
return LLM_CHAT_TEMPLATE_DEEPSEEK_3;
} else if (tmpl_contains("[|system|]") && tmpl_contains("[|assistant|]") && tmpl_contains("[|endofturn|]")) {
// ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/discussions/8#66bae61b1893d14ee8ed85bb
@@ -269,6 +273,14 @@ int32_t llm_chat_apply_template(
if (add_ass) {
ss << "<|assistant|>\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_PHI_4) {
// chatml template
for (auto message : chat) {
ss << "<|im_start|>" << message->role << "<|im_sep|>" << message->content << "<|im_end|>";
}
if (add_ass) {
ss << "<|im_start|>assistant<|im_sep|>";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_FALCON_3) {
// Falcon 3
for (auto message : chat) {
@@ -429,6 +441,14 @@ int32_t llm_chat_apply_template(
if (add_ass) {
ss << "<|assistant|>";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_GLMEDGE) {
for (auto message : chat) {
std::string role(message->role);
ss << "<|" << role << "|>" << "\n" << message->content;
}
if (add_ass) {
ss << "<|assistant|>";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_MINICPM) {
// MiniCPM-3B-OpenHermes-2.5-v2-GGUF
for (auto message : chat) {

View File

@@ -15,6 +15,7 @@ enum llm_chat_template {
LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN,
LLM_CHAT_TEMPLATE_MISTRAL_V7,
LLM_CHAT_TEMPLATE_PHI_3,
LLM_CHAT_TEMPLATE_PHI_4,
LLM_CHAT_TEMPLATE_FALCON_3,
LLM_CHAT_TEMPLATE_ZEPHYR,
LLM_CHAT_TEMPLATE_MONARCH,
@@ -30,6 +31,7 @@ enum llm_chat_template {
LLM_CHAT_TEMPLATE_LLAMA_3,
LLM_CHAT_TEMPLATE_CHATGML_3,
LLM_CHAT_TEMPLATE_CHATGML_4,
LLM_CHAT_TEMPLATE_GLMEDGE,
LLM_CHAT_TEMPLATE_MINICPM,
LLM_CHAT_TEMPLATE_EXAONE_3,
LLM_CHAT_TEMPLATE_RWKV_WORLD,

View File

@@ -1,5 +1,8 @@
#include "llama-context.h"
#include "llama-impl.h"
#include "llama-mmap.h"
#include <cassert>
#include <cmath>
#include <cstring>
@@ -513,7 +516,7 @@ size_t llama_output_reserve(struct llama_context & lctx, size_t n_outputs) {
auto * buft = ggml_backend_cpu_buffer_type();
// try to use the host buffer of the device where the output tensor is allocated for faster transfer to system memory
auto * output_dev = lctx.model.dev_output.dev;
auto * output_dev = lctx.model.dev_output();
auto * output_dev_host_buft = output_dev ? ggml_backend_dev_host_buffer_type(output_dev) : nullptr;
if (output_dev_host_buft) {
buft = output_dev_host_buft;

View File

@@ -22,12 +22,12 @@ struct llama_context {
const struct llama_model & model;
struct llama_cparams cparams;
struct llama_sbatch sbatch; // TODO: revisit if needed
struct llama_kv_cache kv_self;
struct llama_control_vector cvec;
struct llama_cparams cparams;
struct llama_sbatch sbatch; // TODO: revisit if needed
struct llama_kv_cache kv_self;
struct llama_adapter_cvec cvec;
std::unordered_map<struct llama_lora_adapter *, float> lora_adapters;
std::unordered_map<struct llama_adapter_lora *, float> lora;
std::vector<ggml_backend_ptr> backends;
std::vector<std::pair<ggml_backend_t, ggml_backend_set_n_threads_t>> set_n_threads_fns;

View File

@@ -345,194 +345,194 @@ const char * llama_grammar_parser::parse_sequence(
size_t last_sym_start = rule.size();
const char * pos = src;
auto handle_repetitions = [&](int min_times, int max_times) {
auto handle_repetitions = [&](int min_times, int max_times) {
if (last_sym_start == rule.size()) {
throw std::runtime_error(std::string("expecting preceding item to */+/?/{ at ") + pos);
}
if (last_sym_start == rule.size()) {
throw std::runtime_error(std::string("expecting preceding item to */+/?/{ at ") + pos);
}
// apply transformation to previous symbol (last_sym_start to end) according to
// the following rewrite rules:
// S{m,n} --> S S S (m times) S'(n-m)
// S'(x) ::= S S'(x-1) |
// (... n-m definitions of these S' rules ...)
// S'(1) ::= S |
// S{m,} --> S S S (m times) S'
// S' ::= S S' |
// S* --> S{0,}
// --> S' ::= S S' |
// S+ --> S{1,}
// --> S S'
// S' ::= S S' |
// S? --> S{0,1}
// --> S'
// S' ::= S |
// apply transformation to previous symbol (last_sym_start to end) according to
// the following rewrite rules:
// S{m,n} --> S S S (m times) S'(n-m)
// S'(x) ::= S S'(x-1) |
// (... n-m definitions of these S' rules ...)
// S'(1) ::= S |
// S{m,} --> S S S (m times) S'
// S' ::= S S' |
// S* --> S{0,}
// --> S' ::= S S' |
// S+ --> S{1,}
// --> S S'
// S' ::= S S' |
// S? --> S{0,1}
// --> S'
// S' ::= S |
llama_grammar_rule prev_rule(rule.begin() + last_sym_start, rule.end());
if (min_times == 0) {
rule.resize(last_sym_start);
} else {
// Repeat the previous elements (min_times - 1) times
for (int i = 1; i < min_times; i++) {
rule.insert(rule.end(), prev_rule.begin(), prev_rule.end());
}
}
uint32_t last_rec_rule_id = 0;
auto n_opt = max_times < 0 ? 1 : max_times - min_times;
llama_grammar_rule rec_rule(prev_rule);
for (int i = 0; i < n_opt; i++) {
rec_rule.resize(prev_rule.size());
uint32_t rec_rule_id = generate_symbol_id( rule_name);
if (i > 0 || max_times < 0) {
rec_rule.push_back({LLAMA_GRETYPE_RULE_REF, max_times < 0 ? rec_rule_id : last_rec_rule_id});
}
rec_rule.push_back({LLAMA_GRETYPE_ALT, 0});
rec_rule.push_back({LLAMA_GRETYPE_END, 0});
add_rule( rec_rule_id, rec_rule);
last_rec_rule_id = rec_rule_id;
}
if (n_opt > 0) {
rule.push_back({LLAMA_GRETYPE_RULE_REF, last_rec_rule_id});
}
};
while (*pos) {
if (*pos == '"') { // literal string
pos++;
last_sym_start = rule.size();
while (*pos != '"') {
if (!*pos) {
throw std::runtime_error("unexpected end of input");
}
auto char_pair = parse_char(pos);
pos = char_pair.second;
rule.push_back({LLAMA_GRETYPE_CHAR, char_pair.first});
}
pos = parse_space(pos + 1, is_nested);
} else if (*pos == '[') { // char range(s)
pos++;
enum llama_gretype start_type = LLAMA_GRETYPE_CHAR;
if (*pos == '^') {
pos++;
start_type = LLAMA_GRETYPE_CHAR_NOT;
}
last_sym_start = rule.size();
while (*pos != ']') {
if (!*pos) {
throw std::runtime_error("unexpected end of input");
}
auto char_pair = parse_char(pos);
pos = char_pair.second;
enum llama_gretype type = last_sym_start < rule.size()
? LLAMA_GRETYPE_CHAR_ALT
: start_type;
rule.push_back({type, char_pair.first});
if (pos[0] == '-' && pos[1] != ']') {
if (!pos[1]) {
throw std::runtime_error("unexpected end of input");
}
auto endchar_pair = parse_char(pos + 1);
pos = endchar_pair.second;
rule.push_back({LLAMA_GRETYPE_CHAR_RNG_UPPER, endchar_pair.first});
}
}
pos = parse_space(pos + 1, is_nested);
} else if (is_word_char(*pos)) { // rule reference
const char * name_end = parse_name(pos);
uint32_t ref_rule_id = get_symbol_id(pos, name_end - pos);
pos = parse_space(name_end, is_nested);
last_sym_start = rule.size();
rule.push_back({LLAMA_GRETYPE_RULE_REF, ref_rule_id});
} else if (*pos == '(') { // grouping
// parse nested alternates into synthesized rule
pos = parse_space(pos + 1, true);
uint32_t sub_rule_id = generate_symbol_id(rule_name);
pos = parse_alternates(pos, rule_name, sub_rule_id, true);
last_sym_start = rule.size();
// output reference to synthesized rule
rule.push_back({LLAMA_GRETYPE_RULE_REF, sub_rule_id});
if (*pos != ')') {
throw std::runtime_error(std::string("expecting ')' at ") + pos);
}
pos = parse_space(pos + 1, is_nested);
} else if (*pos == '.') { // any char
last_sym_start = rule.size();
rule.push_back({LLAMA_GRETYPE_CHAR_ANY, 0});
pos = parse_space(pos + 1, is_nested);
} else if (*pos == '*') {
pos = parse_space(pos + 1, is_nested);
handle_repetitions(0, -1);
} else if (*pos == '+') {
pos = parse_space(pos + 1, is_nested);
handle_repetitions(1, -1);
} else if (*pos == '?') {
pos = parse_space(pos + 1, is_nested);
handle_repetitions(0, 1);
} else if (*pos == '{') {
pos = parse_space(pos + 1, is_nested);
if (!is_digit_char(*pos)) {
throw std::runtime_error(std::string("expecting an int at ") + pos);
}
const char * int_end = parse_int(pos);
int min_times = std::stoul(std::string(pos, int_end - pos));
pos = parse_space(int_end, is_nested);
int max_times = -1;
if (*pos == '}') {
max_times = min_times;
pos = parse_space(pos + 1, is_nested);
} else if (*pos == ',') {
pos = parse_space(pos + 1, is_nested);
if (is_digit_char(*pos)) {
const char * int_end = parse_int(pos);
max_times = std::stoul(std::string(pos, int_end - pos));
pos = parse_space(int_end, is_nested);
}
if (*pos != '}') {
throw std::runtime_error(std::string("expecting '}' at ") + pos);
}
pos = parse_space(pos + 1, is_nested);
} else {
throw std::runtime_error(std::string("expecting ',' at ") + pos);
}
handle_repetitions(min_times, max_times);
} else {
break;
llama_grammar_rule prev_rule(rule.begin() + last_sym_start, rule.end());
if (min_times == 0) {
rule.resize(last_sym_start);
} else {
// Repeat the previous elements (min_times - 1) times
for (int i = 1; i < min_times; i++) {
rule.insert(rule.end(), prev_rule.begin(), prev_rule.end());
}
}
return pos;
uint32_t last_rec_rule_id = 0;
auto n_opt = max_times < 0 ? 1 : max_times - min_times;
llama_grammar_rule rec_rule(prev_rule);
for (int i = 0; i < n_opt; i++) {
rec_rule.resize(prev_rule.size());
uint32_t rec_rule_id = generate_symbol_id( rule_name);
if (i > 0 || max_times < 0) {
rec_rule.push_back({LLAMA_GRETYPE_RULE_REF, max_times < 0 ? rec_rule_id : last_rec_rule_id});
}
rec_rule.push_back({LLAMA_GRETYPE_ALT, 0});
rec_rule.push_back({LLAMA_GRETYPE_END, 0});
add_rule( rec_rule_id, rec_rule);
last_rec_rule_id = rec_rule_id;
}
if (n_opt > 0) {
rule.push_back({LLAMA_GRETYPE_RULE_REF, last_rec_rule_id});
}
};
while (*pos) {
if (*pos == '"') { // literal string
pos++;
last_sym_start = rule.size();
while (*pos != '"') {
if (!*pos) {
throw std::runtime_error("unexpected end of input");
}
auto char_pair = parse_char(pos);
pos = char_pair.second;
rule.push_back({LLAMA_GRETYPE_CHAR, char_pair.first});
}
pos = parse_space(pos + 1, is_nested);
} else if (*pos == '[') { // char range(s)
pos++;
enum llama_gretype start_type = LLAMA_GRETYPE_CHAR;
if (*pos == '^') {
pos++;
start_type = LLAMA_GRETYPE_CHAR_NOT;
}
last_sym_start = rule.size();
while (*pos != ']') {
if (!*pos) {
throw std::runtime_error("unexpected end of input");
}
auto char_pair = parse_char(pos);
pos = char_pair.second;
enum llama_gretype type = last_sym_start < rule.size()
? LLAMA_GRETYPE_CHAR_ALT
: start_type;
rule.push_back({type, char_pair.first});
if (pos[0] == '-' && pos[1] != ']') {
if (!pos[1]) {
throw std::runtime_error("unexpected end of input");
}
auto endchar_pair = parse_char(pos + 1);
pos = endchar_pair.second;
rule.push_back({LLAMA_GRETYPE_CHAR_RNG_UPPER, endchar_pair.first});
}
}
pos = parse_space(pos + 1, is_nested);
} else if (is_word_char(*pos)) { // rule reference
const char * name_end = parse_name(pos);
uint32_t ref_rule_id = get_symbol_id(pos, name_end - pos);
pos = parse_space(name_end, is_nested);
last_sym_start = rule.size();
rule.push_back({LLAMA_GRETYPE_RULE_REF, ref_rule_id});
} else if (*pos == '(') { // grouping
// parse nested alternates into synthesized rule
pos = parse_space(pos + 1, true);
uint32_t sub_rule_id = generate_symbol_id(rule_name);
pos = parse_alternates(pos, rule_name, sub_rule_id, true);
last_sym_start = rule.size();
// output reference to synthesized rule
rule.push_back({LLAMA_GRETYPE_RULE_REF, sub_rule_id});
if (*pos != ')') {
throw std::runtime_error(std::string("expecting ')' at ") + pos);
}
pos = parse_space(pos + 1, is_nested);
} else if (*pos == '.') { // any char
last_sym_start = rule.size();
rule.push_back({LLAMA_GRETYPE_CHAR_ANY, 0});
pos = parse_space(pos + 1, is_nested);
} else if (*pos == '*') {
pos = parse_space(pos + 1, is_nested);
handle_repetitions(0, -1);
} else if (*pos == '+') {
pos = parse_space(pos + 1, is_nested);
handle_repetitions(1, -1);
} else if (*pos == '?') {
pos = parse_space(pos + 1, is_nested);
handle_repetitions(0, 1);
} else if (*pos == '{') {
pos = parse_space(pos + 1, is_nested);
if (!is_digit_char(*pos)) {
throw std::runtime_error(std::string("expecting an int at ") + pos);
}
const char * int_end = parse_int(pos);
int min_times = std::stoul(std::string(pos, int_end - pos));
pos = parse_space(int_end, is_nested);
int max_times = -1;
if (*pos == '}') {
max_times = min_times;
pos = parse_space(pos + 1, is_nested);
} else if (*pos == ',') {
pos = parse_space(pos + 1, is_nested);
if (is_digit_char(*pos)) {
const char * int_end = parse_int(pos);
max_times = std::stoul(std::string(pos, int_end - pos));
pos = parse_space(int_end, is_nested);
}
if (*pos != '}') {
throw std::runtime_error(std::string("expecting '}' at ") + pos);
}
pos = parse_space(pos + 1, is_nested);
} else {
throw std::runtime_error(std::string("expecting ',' at ") + pos);
}
handle_repetitions(min_times, max_times);
} else {
break;
}
}
return pos;
}
const char * llama_grammar_parser::parse_rule(const char * src) {
const char * name_end = parse_name(src);
const char * pos = parse_space(name_end, false);
size_t name_len = name_end - src;
uint32_t rule_id = get_symbol_id(src, name_len);
const std::string name(src, name_len);
const char * name_end = parse_name(src);
const char * pos = parse_space(name_end, false);
size_t name_len = name_end - src;
uint32_t rule_id = get_symbol_id(src, name_len);
const std::string name(src, name_len);
if (!(pos[0] == ':' && pos[1] == ':' && pos[2] == '=')) {
throw std::runtime_error(std::string("expecting ::= at ") + pos);
}
pos = parse_space(pos + 3, true);
pos = parse_alternates(pos, name, rule_id, false);
if (*pos == '\r') {
pos += pos[1] == '\n' ? 2 : 1;
} else if (*pos == '\n') {
pos++;
} else if (*pos) {
throw std::runtime_error(std::string("expecting newline or end at ") + pos);
}
return parse_space(pos, true);
if (!(pos[0] == ':' && pos[1] == ':' && pos[2] == '=')) {
throw std::runtime_error(std::string("expecting ::= at ") + pos);
}
pos = parse_space(pos + 3, true);
pos = parse_alternates(pos, name, rule_id, false);
if (*pos == '\r') {
pos += pos[1] == '\n' ? 2 : 1;
} else if (*pos == '\n') {
pos++;
} else if (*pos) {
throw std::runtime_error(std::string("expecting newline or end at ") + pos);
}
return parse_space(pos, true);
}
bool llama_grammar_parser::parse(const char * src) {
try {
@@ -560,7 +560,7 @@ bool llama_grammar_parser::parse(const char * src) {
}
}
} catch (const std::exception & err) {
fprintf(stderr, "%s: error parsing grammar: %s\n", __func__, err.what());
fprintf(stderr, "%s: error parsing grammar: %s\n\n%s\n", __func__, err.what(), src);
rules.clear();
return false;
}
@@ -960,10 +960,28 @@ struct llama_grammar * llama_grammar_init_impl(
// Important: vec_rules has to be moved here, not copied, because stacks contains
// pointers to elements of vec_rules. If vec_rules were copied into llama_grammar
// then the pointers would be invalidated when the local vec_rules goes out of scope.
return new llama_grammar { vocab, std::move(vec_rules), std::move(stacks), {}, };
return new llama_grammar {
vocab,
std::move(vec_rules),
std::move(stacks),
/* .partial_utf8 = */ {},
/* .lazy =*/ false,
/* .awaiting_trigger = */ false,
/* .trigger_buffer = */ "",
/* .trigger_tokens = */ {},
/* .trigger_words = */ {},
};
}
struct llama_grammar * llama_grammar_init_impl(const struct llama_vocab * vocab, const char * grammar_str, const char * grammar_root) {
struct llama_grammar * llama_grammar_init_impl(
const struct llama_vocab * vocab,
const char * grammar_str,
const char * grammar_root,
bool lazy,
const char ** trigger_words,
size_t num_trigger_words,
const llama_token * trigger_tokens,
size_t num_trigger_tokens) {
llama_grammar_parser parser;
// if there is a grammar, parse it
@@ -1035,10 +1053,31 @@ struct llama_grammar * llama_grammar_init_impl(const struct llama_vocab * vocab,
}
} while (true);
std::vector<llama_token> vec_trigger_tokens;
std::vector<std::string> vec_trigger_words;
for (size_t i = 0; i < num_trigger_tokens; i++) {
GGML_ASSERT(trigger_tokens != nullptr);
vec_trigger_tokens.push_back(trigger_tokens[i]);
}
for (size_t i = 0; i < num_trigger_words; i++) {
GGML_ASSERT(trigger_words != nullptr);
vec_trigger_words.push_back(trigger_words[i]);
}
// Important: vec_rules has to be moved here, not copied, because stacks contains
// pointers to elements of vec_rules. If vec_rules were copied into llama_grammar
// then the pointers would be invalidated when the local vec_rules goes out of scope.
return new llama_grammar { vocab, std::move(vec_rules), std::move(stacks), {}, };
return new llama_grammar {
vocab,
std::move(vec_rules),
std::move(stacks),
/* .partial_utf8 = */ {},
/* .lazy = */ lazy,
/* .awaiting_trigger = */ lazy,
/* .trigger_buffer = */ "",
std::move(vec_trigger_tokens),
std::move(vec_trigger_words),
};
}
void llama_grammar_free_impl(struct llama_grammar * grammar) {
@@ -1055,6 +1094,11 @@ struct llama_grammar * llama_grammar_clone_impl(const struct llama_grammar & gra
grammar.rules,
grammar.stacks,
grammar.partial_utf8,
grammar.lazy,
grammar.awaiting_trigger,
grammar.trigger_buffer,
grammar.trigger_tokens,
grammar.trigger_words,
};
// redirect elements in stacks to point to new rules
@@ -1076,6 +1120,10 @@ struct llama_grammar * llama_grammar_clone_impl(const struct llama_grammar & gra
void llama_grammar_apply_impl(const struct llama_grammar & grammar, llama_token_data_array * cur_p) {
GGML_ASSERT(grammar.vocab != nullptr);
if (grammar.awaiting_trigger) {
return;
}
bool allow_eog = false;
for (const auto & stack : grammar.stacks) {
if (stack.empty()) {
@@ -1092,9 +1140,9 @@ void llama_grammar_apply_impl(const struct llama_grammar & grammar, llama_token_
for (size_t i = 0; i < cur_p->size; ++i) {
const llama_token id = cur_p->data[i].id;
const std::string & piece = grammar.vocab->cache_token_to_piece.at(id);
const std::string & piece = grammar.vocab->token_to_piece(id);
if (llama_token_is_eog_impl(*grammar.vocab, id)) {
if (grammar.vocab->is_eog(id)) {
if (!allow_eog) {
cur_p->data[i].logit = -INFINITY;
}
@@ -1115,7 +1163,35 @@ void llama_grammar_apply_impl(const struct llama_grammar & grammar, llama_token_
void llama_grammar_accept_impl(struct llama_grammar & grammar, llama_token token) {
GGML_ASSERT(grammar.vocab != nullptr);
if (llama_token_is_eog_impl(*grammar.vocab, token)) {
const auto & piece = grammar.vocab->token_to_piece(token);
if (grammar.awaiting_trigger) {
if (std::find(grammar.trigger_tokens.begin(), grammar.trigger_tokens.end(), token) != grammar.trigger_tokens.end()) {
grammar.awaiting_trigger = false;
grammar.trigger_buffer.clear();
llama_grammar_accept_str(grammar, piece);
LLAMA_LOG_DEBUG("Grammar triggered on token %u (`%s`)", token, piece.c_str());
return;
} else {
// TODO: consider a smarter incremental substring search algorithm (store last position to search from).
grammar.trigger_buffer += piece;
for (const auto & word : grammar.trigger_words) {
auto pos = grammar.trigger_buffer.find(word);
if (pos != std::string::npos) {
grammar.awaiting_trigger = false;
auto constrained_str = grammar.trigger_buffer.substr(pos);
grammar.trigger_buffer.clear();
llama_grammar_accept_str(grammar, constrained_str);
LLAMA_LOG_DEBUG("Grammar triggered on word `%s`", word.c_str());
return;
}
}
LLAMA_LOG_DEBUG("Grammar still awaiting trigger after token %d (`%s`)\n", token, piece.c_str());
return;
}
}
if (grammar.vocab->is_eog(token)) {
for (const auto & stack : grammar.stacks) {
if (stack.empty()) {
return;
@@ -1124,8 +1200,10 @@ void llama_grammar_accept_impl(struct llama_grammar & grammar, llama_token token
GGML_ABORT("fatal error");
}
const std::string & piece = grammar.vocab->cache_token_to_piece.at(token);
llama_grammar_accept_str(grammar, piece);
}
void llama_grammar_accept_str(struct llama_grammar & grammar, const std::string & piece) {
// Note terminating 0 in decoded string
const auto decoded = decode_utf8(piece, grammar.partial_utf8);
const auto & code_points = decoded.first;
@@ -1135,5 +1213,7 @@ void llama_grammar_accept_impl(struct llama_grammar & grammar, llama_token token
}
grammar.partial_utf8 = decoded.second;
GGML_ASSERT(!grammar.stacks.empty());
if (grammar.stacks.empty()) {
throw std::runtime_error("Unexpected empty grammar stack after accepting piece: " + piece);
}
}

View File

@@ -114,6 +114,15 @@ struct llama_grammar {
// buffer for partially generated UTF-8 sequence from accepted tokens
llama_partial_utf8 partial_utf8;
// lazy grammars wait for trigger words or tokens before constraining the sampling.
// we still have trigger_tokens for non-lazy grammars to force printing of special trigger tokens.
// (useful e.g. for tool_choice=required)
bool lazy = false;
bool awaiting_trigger = false; // Initialized to true for lazy grammars only
std::string trigger_buffer; // Output buffered by lazy grammar. Will be cleared once trigger is found.
std::vector<llama_token> trigger_tokens; // Tokens that trigger a lazy grammar, or tokens to force printing of (even if special).
std::vector<std::string> trigger_words;
};
//
@@ -127,7 +136,15 @@ struct llama_grammar * llama_grammar_init_impl(
size_t n_rules,
size_t start_rule_index);
struct llama_grammar * llama_grammar_init_impl(const struct llama_vocab * vocab, const char * grammar_str, const char * grammar_root);
struct llama_grammar * llama_grammar_init_impl(
const struct llama_vocab * vocab,
const char * grammar_str,
const char * grammar_root,
bool lazy,
const char ** trigger_words,
size_t num_trigger_words,
const llama_token * trigger_tokens,
size_t num_trigger_tokens);
void llama_grammar_free_impl(struct llama_grammar * grammar);
@@ -141,3 +158,7 @@ void llama_grammar_apply_impl(
void llama_grammar_accept_impl(
struct llama_grammar & grammar,
llama_token token);
void llama_grammar_accept_str(
struct llama_grammar & grammar,
const std::string & piece);

View File

@@ -54,7 +54,7 @@ uint32_t llama_hparams::n_embd_v_gqa(uint32_t il) const {
uint32_t llama_hparams::n_embd_k_s() const {
if (wkv_head_size != 0) {
// for RWKV models
return 2 * n_embd;
return token_shift_count * n_embd;
}
// TODO: maybe support other convolution strides than 1
@@ -82,4 +82,4 @@ bool llama_hparams::n_bskcn(uint32_t n, uint32_t il) const {
bool llama_hparams::cross_attention_layers(uint32_t il) const {
return std::find(cross_attn_layers.begin(), cross_attn_layers.end(), il) != cross_attn_layers.end();
}
}

View File

@@ -30,7 +30,6 @@ struct llama_hparams {
bool use_par_res;
bool swin_norm;
uint32_t n_vocab = 0;
uint32_t n_ctx_train; // context size the model was trained on
uint32_t n_embd;
uint32_t n_embd_features = 0;
@@ -41,8 +40,8 @@ struct llama_hparams {
uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
uint32_t n_expert = 0;
uint32_t n_expert_used = 0;
uint32_t n_vocab_type = 0; // for BERT-style token types
uint32_t n_rel_attn_bkts = 0;
uint32_t n_vocab = 0;
// for WavTokenizer
struct llama_hparams_posnet posnet;
@@ -79,6 +78,7 @@ struct llama_hparams {
uint32_t time_mix_extra_dim = 0;
uint32_t time_decay_extra_dim = 0;
uint32_t wkv_head_size = 0;
uint32_t token_shift_count = 2;
float rope_attn_factor = 1.0f;
float rope_freq_base_train;
@@ -141,7 +141,7 @@ struct llama_hparams {
// Block skip connection
bool n_bskcn(uint32_t n, uint32_t il) const;
// cross attention layers
// cross attention layers
bool cross_attention_layers(uint32_t il) const;
};

View File

@@ -1,5 +1,6 @@
#include "llama-impl.h"
#include "gguf.h"
#include "llama.h"
#include <cinttypes>
@@ -138,7 +139,7 @@ std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
{
const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
int arr_n = gguf_get_arr_n(ctx_gguf, i);
const void * data = gguf_get_arr_data(ctx_gguf, i);
const void * data = arr_type == GGUF_TYPE_STRING ? nullptr : gguf_get_arr_data(ctx_gguf, i);
std::stringstream ss;
ss << "[";
for (int j = 0; j < arr_n; j++) {

View File

@@ -6,13 +6,13 @@
#include <vector>
#ifdef __GNUC__
#ifdef __MINGW32__
#define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
# if defined(__MINGW32__) && !defined(__clang__)
# define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
# else
# define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
# endif
#else
#define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
#endif
#else
#define LLAMA_ATTRIBUTE_FORMAT(...)
# define LLAMA_ATTRIBUTE_FORMAT(...)
#endif
//

View File

@@ -72,39 +72,6 @@ bool llama_kv_cache_init(
cache.v_l.reserve(n_layer);
for (int i = 0; i < n_layer; i++) {
// for cross attention layers
if (model.arch == LLM_ARCH_MLLAMA && hparams.cross_attention_layers(i)) {
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s();
const llama_model::buft_list_t * buft_list;
if (offload) {
buft_list = model.dev_layer.at(i).buft_list;
} else {
buft_list = &model.cpu_buft_list;
}
ggml_backend_buffer_type_t buft = select_buft(*buft_list,
[&](ggml_context * ctx) {
ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
if (hparams.rope_type == LLAMA_ROPE_TYPE_NONE) {
return k;
}
ggml_tensor * p = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
return ggml_rope(ctx, k, p, hparams.n_rot, hparams.rope_type);
});
ggml_context * ctx = ctx_for_buft(buft);
if (!ctx) {
LLAMA_LOG_ERROR("%s: failed to create ggml context for kv cache\n", __func__);
return false;
}
ggml_tensor * k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_k, 6404, hparams.n_head_kv(i));
ggml_tensor * v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_v, 6404, hparams.n_head_kv(i));
ggml_format_name(k, "cache_k_l%d", i);
ggml_format_name(v, "cache_v_l%d", i);
cache.k_l.push_back(k);
cache.v_l.push_back(v);
continue;
}
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s();
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s();
@@ -112,7 +79,7 @@ bool llama_kv_cache_init(
ggml_backend_buffer_type_t buft;
if (offload) {
auto * dev = model.dev_layer.at(i).dev;
auto * dev = model.dev_layer(i);
buft = ggml_backend_dev_buffer_type(dev);
} else {
buft = ggml_backend_cpu_buffer_type();
@@ -124,8 +91,17 @@ bool llama_kv_cache_init(
return false;
}
ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
ggml_tensor * k, *v;
// for cross attention layers
if (model.arch == LLM_ARCH_MLLAMA && hparams.cross_attention_layers(i)) {
k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_k, 6404, hparams.n_head_kv(i));
v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_v, 6404, hparams.n_head_kv(i));
} else {
k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
}
ggml_format_name(k, "cache_k_l%d", i);
ggml_format_name(v, "cache_v_l%d", i);
cache.k_l.push_back(k);
@@ -152,10 +128,10 @@ bool llama_kv_cache_init(
struct llama_kv_cache_slot_info llama_kv_cache_find_slot(
struct llama_kv_cache & cache,
const struct llama_ubatch & batch) {
const uint32_t n_tokens = batch.n_tokens;
const uint32_t n_seqs = batch.n_seqs;
const uint32_t n_seq_tokens = batch.n_seq_tokens;
const struct llama_ubatch & ubatch) {
const uint32_t n_tokens = ubatch.n_tokens;
const uint32_t n_seqs = ubatch.n_seqs;
const uint32_t n_seq_tokens = ubatch.n_seq_tokens;
if (cache.recurrent) {
// For recurrent state architectures (like Mamba or RWKV),
@@ -163,16 +139,16 @@ struct llama_kv_cache_slot_info llama_kv_cache_find_slot(
// A slot should be always be contiguous.
// can only process batches with an equal number of new tokens in each sequence
GGML_ASSERT(batch.equal_seqs);
GGML_ASSERT(ubatch.equal_seqs);
int32_t min = cache.size - 1;
int32_t max = 0;
// everything should fit if all seq_ids are smaller than the max
for (uint32_t s = 0; s < n_seqs; ++s) {
const uint32_t n_seq_id = batch.n_seq_id[s];
const uint32_t n_seq_id = ubatch.n_seq_id[s];
for (uint32_t j = 0; j < n_seq_id; ++j) {
const llama_seq_id seq_id = batch.seq_id[s][j];
const llama_seq_id seq_id = ubatch.seq_id[s][j];
if (seq_id < 0 || (uint32_t) seq_id >= cache.size) {
// too big seq_id
@@ -231,7 +207,7 @@ struct llama_kv_cache_slot_info llama_kv_cache_find_slot(
// find usable cell range
for (uint32_t s = 0; s < n_seqs; ++s) {
const llama_seq_id seq_id = batch.seq_id[s][0];
const llama_seq_id seq_id = ubatch.seq_id[s][0];
llama_kv_cell & seq_meta = cache.cells[seq_id];
bool has_cell = false;
if (seq_meta.tail >= 0) {
@@ -270,7 +246,7 @@ struct llama_kv_cache_slot_info llama_kv_cache_find_slot(
// gather and re-order
for (uint32_t s = 0; s < n_seqs; ++s) {
int32_t dst_id = s + min;
int32_t src_id = cache.cells[batch.seq_id[s][0]].tail;
int32_t src_id = cache.cells[ubatch.seq_id[s][0]].tail;
if (dst_id != src_id) {
llama_kv_cell & dst_cell = cache.cells[dst_id];
llama_kv_cell & src_cell = cache.cells[src_id];
@@ -291,7 +267,7 @@ struct llama_kv_cache_slot_info llama_kv_cache_find_slot(
// update the pos of the used seqs
for (uint32_t s = 0; s < n_seqs; ++s) {
const llama_pos last_pos = batch.pos[n_seq_tokens * s + n_seq_tokens - 1];
const llama_pos last_pos = ubatch.pos[n_seq_tokens * s + n_seq_tokens - 1];
int32_t cell_id = s + min;
llama_kv_cell & cell = cache.cells[cell_id];
@@ -299,12 +275,12 @@ struct llama_kv_cache_slot_info llama_kv_cache_find_slot(
// What should happen when the pos backtracks or skips a value?
// Clearing the state mid-batch would require special-casing which isn't done.
LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d with %u new tokens\n",
__func__, last_pos, cell.pos, batch.seq_id[s][0], n_seq_tokens);
__func__, last_pos, cell.pos, ubatch.seq_id[s][0], n_seq_tokens);
}
cell.pos = last_pos;
cell.seq_id.clear();
for (int32_t j = 0; j < batch.n_seq_id[s]; ++j) {
const llama_seq_id seq_id = batch.seq_id[s][j];
for (int32_t j = 0; j < ubatch.n_seq_id[s]; ++j) {
const llama_seq_id seq_id = ubatch.seq_id[s][j];
cell.seq_id.insert(seq_id);
cache.cells[seq_id].tail = cell_id;
}
@@ -358,10 +334,10 @@ struct llama_kv_cache_slot_info llama_kv_cache_find_slot(
for (uint32_t s = 0; s < n_seqs; s++) {
for (uint32_t i = 0; i < n_seq_tokens; ++i) {
uint32_t k = s*n_seq_tokens + i;
cache.cells[cache.head + k].pos = batch.pos[k];
cache.cells[cache.head + k].pos = ubatch.pos[k];
for (int32_t j = 0; j < batch.n_seq_id[s]; j++) {
cache.cells[cache.head + k].seq_id.insert(batch.seq_id[s][j]);
for (int32_t j = 0; j < ubatch.n_seq_id[s]; j++) {
cache.cells[cache.head + k].seq_id.insert(ubatch.seq_id[s][j]);
}
}
}

View File

@@ -37,7 +37,7 @@ struct llama_kv_cache {
bool can_shift = false;
// Note: The value of head isn't only used to optimize searching
// for a free KV slot. llama_decode_internal also uses it, so it
// for a free KV slot. llama_decode_impl also uses it, so it
// cannot be freely changed after a slot has been allocated.
uint32_t head = 0;
uint32_t size = 0;

View File

@@ -7,6 +7,7 @@
#include <cstring>
#include <climits>
#include <stdexcept>
#include <cerrno>
#ifdef __has_include
#if __has_include(<unistd.h>)
@@ -35,7 +36,7 @@
// TODO: consider moving to llama-impl.h if needed in more places
#if defined(_WIN32)
std::string llama_format_win_err(DWORD err) {
static std::string llama_format_win_err(DWORD err) {
LPSTR buf;
size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
@@ -241,12 +242,16 @@ llama_file::~llama_file() = default;
size_t llama_file::tell() const { return pimpl->tell(); }
size_t llama_file::size() const { return pimpl->size; }
int llama_file::fileno() const {
int llama_file::file_id() const {
#ifdef _WIN32
return _fileno(pimpl->fp);
#else
#if defined(fileno)
return fileno(pimpl->fp);
#else
return ::fileno(pimpl->fp);
#endif
#endif
}
void llama_file::seek(size_t offset, int whence) const { pimpl->seek(offset, whence); }
@@ -265,7 +270,7 @@ struct llama_mmap::impl {
impl(struct llama_file * file, size_t prefetch, bool numa) {
size = file->size();
int fd = file->fileno();
int fd = file->file_id();
int flags = MAP_SHARED;
if (numa) { prefetch = 0; }
#ifdef __linux__
@@ -357,7 +362,7 @@ struct llama_mmap::impl {
size = file->size();
HANDLE hFile = (HANDLE) _get_osfhandle(file->fileno());
HANDLE hFile = (HANDLE) _get_osfhandle(file->file_id());
HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);

View File

@@ -1,5 +1,6 @@
#pragma once
#include <cstdint>
#include <memory>
#include <vector>
@@ -18,7 +19,7 @@ struct llama_file {
size_t tell() const;
size_t size() const;
int fileno() const;
int file_id() const; // fileno overload
void seek(size_t offset, int whence) const;

View File

@@ -7,6 +7,10 @@
#include <cstring>
#include <future>
static const size_t kiB = 1024;
static const size_t MiB = 1024*kiB;
static const size_t GiB = 1024*MiB;
const char * llama_file_version_name(llama_fver version) {
switch (version) {
case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
@@ -17,8 +21,78 @@ const char * llama_file_version_name(llama_fver version) {
return "unknown";
}
static std::string llama_model_ftype_name(llama_ftype ftype) {
if (ftype & LLAMA_FTYPE_GUESSED) {
return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
}
switch (ftype) {
case LLAMA_FTYPE_ALL_F32: return "all F32";
case LLAMA_FTYPE_MOSTLY_F16: return "F16";
case LLAMA_FTYPE_MOSTLY_BF16: return "BF16";
case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium";
case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
case LLAMA_FTYPE_MOSTLY_TQ1_0: return "TQ1_0 - 1.69 bpw ternary";
case LLAMA_FTYPE_MOSTLY_TQ2_0: return "TQ2_0 - 2.06 bpw ternary";
case LLAMA_FTYPE_MOSTLY_IQ2_XXS: return "IQ2_XXS - 2.0625 bpw";
case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw";
case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
case LLAMA_FTYPE_MOSTLY_IQ3_XXS: return "IQ3_XXS - 3.0625 bpw";
case LLAMA_FTYPE_MOSTLY_IQ1_S: return "IQ1_S - 1.5625 bpw";
case LLAMA_FTYPE_MOSTLY_IQ1_M: return "IQ1_M - 1.75 bpw";
case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
default: return "unknown, may not work";
}
}
// return a list of splits for a given path
// for example, given "<name>-00002-of-00004.gguf", returns list of all 4 splits
static std::vector<std::string> llama_get_list_splits(const std::string & path, const int idx, const int n_split) {
std::vector<std::string> paths;
std::string split_prefix;
std::vector<char> buf(llama_path_max(), 0);
{
int ret = llama_split_prefix(buf.data(), buf.size(), path.c_str(), idx, n_split);
if (!ret) {
throw std::runtime_error(format("invalid split file name: %s", path.c_str()));
}
split_prefix = std::string(buf.data(), ret);
}
if (split_prefix.empty()) {
throw std::runtime_error(format("invalid split file: %s", path.c_str()));
}
for (int idx = 0; idx < n_split; ++idx) {
int ret = llama_split_path(buf.data(), buf.size(), split_prefix.c_str(), idx, n_split);
paths.push_back(std::string(buf.data(), ret));
}
return paths;
}
namespace GGUFMeta {
template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)>
template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int64_t)>
struct GKV_Base_Type {
static constexpr gguf_type gt = gt_;
@@ -60,10 +134,11 @@ namespace GGUFMeta {
public:
static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
static ArrayInfo getter(const gguf_context *ctx, const int k) {
const enum gguf_type arr_type = gguf_get_arr_type(ctx, k);
return ArrayInfo {
gguf_get_arr_type(ctx, k),
arr_type,
size_t(gguf_get_arr_n(ctx, k)),
gguf_get_arr_data(ctx, k),
arr_type == GGUF_TYPE_STRING ? nullptr : gguf_get_arr_data(ctx, k),
};
}
};
@@ -368,7 +443,12 @@ namespace GGUFMeta {
template bool llama_model_loader::get_key_or_arr<std::array<uint32_t, 512>>(enum llm_kv kid, std::array<uint32_t, 512> & result, uint32_t n, bool required);
template bool llama_model_loader::get_key_or_arr<uint32_t>(const std::string & key, std::array<uint32_t, 512> & result, uint32_t n, bool required);
llama_model_loader::llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p) {
llama_model_loader::llama_model_loader(
const std::string & fname,
std::vector<std::string> & splits,
bool use_mmap,
bool check_tensors,
const struct llama_model_kv_override * param_overrides_p) {
int trace = 0;
if (getenv("LLAMA_TRACE")) {
trace = atoi(getenv("LLAMA_TRACE"));
@@ -380,6 +460,7 @@ llama_model_loader::llama_model_loader(const std::string & fname, bool use_mmap,
}
}
// Load the main GGUF
struct ggml_context * ctx = NULL;
struct gguf_init_params params = {
/*.no_alloc = */ true,
@@ -415,35 +496,54 @@ llama_model_loader::llama_model_loader(const std::string & fname, bool use_mmap,
// Load additional GGML contexts
if (n_split > 1) {
// make sure the main file is loaded first
uint16_t idx = 0;
get_key(llm_kv(LLM_KV_SPLIT_NO), idx);
const std::string kv_split_no = llm_kv(LLM_KV_SPLIT_NO);
get_key(kv_split_no, idx);
if (idx != 0) {
throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx));
throw std::runtime_error(format("illegal split file idx: %d (file: %s), model must be loaded with the first split", idx, fname.c_str()));
}
std::vector<char> split_prefix(llama_path_max(), 0);
if (!llama_split_prefix(split_prefix.data(), split_prefix.size(), fname.c_str(), idx, n_split)) {
throw std::runtime_error(format("invalid split file: %s", fname.c_str()));
// generate list of splits if needed
if (splits.empty()) {
splits = llama_get_list_splits(fname, idx, n_split);
}
// in case user give a custom list of splits, check if it matches the expected number
if (n_split != (uint16_t)splits.size()) {
throw std::runtime_error(format("invalid split count, given: %zu splits, but expected %d", splits.size(), n_split));
}
if (trace > 0) {
LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split);
}
std::vector<char> split_path(llama_path_max(), 0);
// load other splits
for (idx = 1; idx < n_split; idx++) {
llama_split_path(split_path.data(), split_path.size(), split_prefix.data(), idx, n_split);
const char * fname_split = splits[idx].c_str();
struct gguf_init_params split_params = {
/*.no_alloc = */ true,
/*.ctx = */ &ctx,
};
gguf_context_ptr ctx_gguf { gguf_init_from_file(split_path.data(), split_params) };
gguf_context_ptr ctx_gguf { gguf_init_from_file(fname_split, split_params) };
if (!ctx_gguf) {
throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path.data()));
throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, fname_split));
}
files.emplace_back(new llama_file(split_path.data(), "rb"));
// check idx
{
const int kid = gguf_find_key(ctx_gguf.get(), kv_split_no.c_str());
if (kid < 0) {
throw std::runtime_error(format("missing key %s in GGUF split %s", kv_split_no.c_str(), fname_split));
}
int idx_gguf = gguf_get_val_u16(ctx_gguf.get(), kid);
if (idx_gguf != idx) {
throw std::runtime_error(format("invalid split file idx: %d (file: %s), expected %d", idx_gguf, fname_split, idx));
}
}
files.emplace_back(new llama_file(fname_split, "rb"));
contexts.emplace_back(ctx);
// Save tensors data offset info of the shard.
@@ -556,7 +656,7 @@ llama_model_loader::llama_model_loader(const std::string & fname, bool use_mmap,
const enum gguf_type type = gguf_get_kv_type(meta.get(), i);
const std::string type_name =
type == GGUF_TYPE_ARRAY
? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta.get(), i)), gguf_get_arr_n(meta.get(), i))
? format("%s[%s,%zu]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta.get(), i)), gguf_get_arr_n(meta.get(), i))
: gguf_type_name(type);
std::string value = gguf_kv_to_str(meta.get(), i);
@@ -722,7 +822,7 @@ void llama_model_loader::init_mappings(bool prefetch, llama_mlocks * mlock_mmaps
for (const auto & file : files) {
auto * reg = ggml_backend_dev_backend_reg(ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU));
auto * is_numa_fn = (decltype(ggml_is_numa) *) ggml_backend_reg_get_proc_address(reg, "ggml_backend_cpu_is_numa");
std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, is_numa_fn()));
std::unique_ptr<llama_mmap> mapping = std::make_unique<llama_mmap>(file.get(), prefetch ? -1 : 0, is_numa_fn());
mmaps_used.emplace_back(mapping->size(), 0);
if (mlock_mmaps) {
std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
@@ -1011,3 +1111,17 @@ bool llama_model_loader::load_all_data(
return true;
}
std::string llama_model_loader::ftype_name() const {
return llama_model_ftype_name(ftype);
}
void llama_model_loader::print_info() const {
LLAMA_LOG_INFO("%s: file format = %s\n", __func__, llama_file_version_name(fver));
LLAMA_LOG_INFO("%s: file type = %s\n", __func__, llama_model_ftype_name(ftype).c_str());
if (n_bytes < GiB) {
LLAMA_LOG_INFO("%s: file size = %.2f MiB (%.2f BPW) \n", __func__, n_bytes/1024.0/1024.0, n_bytes*8.0/n_elements);
} else {
LLAMA_LOG_INFO("%s: file size = %.2f GiB (%.2f BPW) \n", __func__, n_bytes/1024.0/1024.0/1024.0, n_bytes*8.0/n_elements);
}
}

View File

@@ -90,7 +90,12 @@ struct llama_model_loader {
size_t size_data = 0;
std::vector<std::pair<size_t, size_t>> mmaps_used;
llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p);
llama_model_loader(
const std::string & fname,
std::vector<std::string> & splits, // optional, only need if the split does not follow naming scheme
bool use_mmap,
bool check_tensors,
const struct llama_model_kv_override * param_overrides_p);
template<typename T>
typename std::enable_if<std::is_integral<T>::value, bool>::type
@@ -155,4 +160,8 @@ struct llama_model_loader {
llama_mlocks * lmlocks,
llama_progress_callback progress_callback,
void * progress_callback_user_data);
std::string ftype_name() const;
void print_info() const;
};

File diff suppressed because it is too large Load Diff

View File

@@ -4,81 +4,83 @@
#include "llama-arch.h"
#include "llama-hparams.h"
#include "llama-vocab.h"
#include "llama-mmap.h"
#include "ggml-cpp.h"
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include <stdexcept>
struct llama_model_loader;
// available models
// TODO: this enum does not follow the enum naming convention
enum llm_type {
MODEL_UNKNOWN,
MODEL_14M,
MODEL_17M,
MODEL_22M,
MODEL_33M,
MODEL_60M,
MODEL_70M,
MODEL_80M,
MODEL_109M,
MODEL_137M,
MODEL_160M,
MODEL_220M,
MODEL_250M,
MODEL_270M,
MODEL_335M,
MODEL_410M,
MODEL_450M,
MODEL_770M,
MODEL_780M,
MODEL_0_5B,
MODEL_1B,
MODEL_1_3B,
MODEL_1_4B,
MODEL_1_5B,
MODEL_1_6B,
MODEL_2B,
MODEL_2_8B,
MODEL_3B,
MODEL_4B,
MODEL_6B,
MODEL_6_9B,
MODEL_7B,
MODEL_8B,
MODEL_9B,
MODEL_11B,
MODEL_12B,
MODEL_13B,
MODEL_14B,
MODEL_15B,
MODEL_16B,
MODEL_20B,
MODEL_22B,
MODEL_30B,
MODEL_32B,
MODEL_34B,
MODEL_35B,
MODEL_40B,
MODEL_65B,
MODEL_70B,
MODEL_90B,
MODEL_236B,
MODEL_314B,
MODEL_671B,
MODEL_SMALL,
MODEL_MEDIUM,
MODEL_LARGE,
MODEL_XL,
MODEL_A1_7B,
MODEL_A2_7B,
MODEL_8x7B,
MODEL_8x22B,
MODEL_16x12B,
MODEL_10B_128x3_66B,
MODEL_57B_A14B,
MODEL_27B,
LLM_TYPE_UNKNOWN,
LLM_TYPE_14M,
LLM_TYPE_17M,
LLM_TYPE_22M,
LLM_TYPE_33M,
LLM_TYPE_60M,
LLM_TYPE_70M,
LLM_TYPE_80M,
LLM_TYPE_109M,
LLM_TYPE_137M,
LLM_TYPE_160M,
LLM_TYPE_220M,
LLM_TYPE_250M,
LLM_TYPE_270M,
LLM_TYPE_335M,
LLM_TYPE_410M,
LLM_TYPE_450M,
LLM_TYPE_770M,
LLM_TYPE_780M,
LLM_TYPE_0_5B,
LLM_TYPE_1B,
LLM_TYPE_1_3B,
LLM_TYPE_1_4B,
LLM_TYPE_1_5B,
LLM_TYPE_1_6B,
LLM_TYPE_2B,
LLM_TYPE_2_8B,
LLM_TYPE_3B,
LLM_TYPE_4B,
LLM_TYPE_6B,
LLM_TYPE_6_9B,
LLM_TYPE_7B,
LLM_TYPE_8B,
LLM_TYPE_9B,
LLM_TYPE_11B,
LLM_TYPE_12B,
LLM_TYPE_13B,
LLM_TYPE_14B,
LLM_TYPE_15B,
LLM_TYPE_16B,
LLM_TYPE_20B,
LLM_TYPE_22B,
LLM_TYPE_30B,
LLM_TYPE_32B,
LLM_TYPE_34B,
LLM_TYPE_35B,
LLM_TYPE_40B,
LLM_TYPE_65B,
LLM_TYPE_70B,
LLM_TYPE_90B,
LLM_TYPE_236B,
LLM_TYPE_314B,
LLM_TYPE_671B,
LLM_TYPE_SMALL,
LLM_TYPE_MEDIUM,
LLM_TYPE_LARGE,
LLM_TYPE_XL,
LLM_TYPE_A1_7B,
LLM_TYPE_A2_7B,
LLM_TYPE_8x7B,
LLM_TYPE_8x22B,
LLM_TYPE_16x12B,
LLM_TYPE_16x3_8B,
LLM_TYPE_10B_128x3_66B,
LLM_TYPE_57B_A14B,
LLM_TYPE_27B,
};
struct llama_layer_posnet {
@@ -243,15 +245,19 @@ struct llama_layer {
struct ggml_tensor * time_mix_lerp_v = nullptr;
struct ggml_tensor * time_mix_lerp_r = nullptr;
struct ggml_tensor * time_mix_lerp_g = nullptr;
struct ggml_tensor * time_mix_lerp_fused = nullptr;
struct ggml_tensor * time_mix_first = nullptr;
struct ggml_tensor * time_mix_decay = nullptr;
struct ggml_tensor * time_mix_decay_w1 = nullptr;
struct ggml_tensor * time_mix_decay_w2 = nullptr;
struct ggml_tensor * time_mix_key = nullptr;
struct ggml_tensor * time_mix_value = nullptr;
struct ggml_tensor * time_mix_receptance = nullptr;
struct ggml_tensor * time_mix_gate = nullptr;
struct ggml_tensor * time_mix_first = nullptr;
struct ggml_tensor * time_mix_decay = nullptr;
struct ggml_tensor * time_mix_decay_w1 = nullptr;
struct ggml_tensor * time_mix_decay_w2 = nullptr;
struct ggml_tensor * time_mix_key = nullptr;
struct ggml_tensor * time_mix_key_b = nullptr;
struct ggml_tensor * time_mix_value = nullptr;
struct ggml_tensor * time_mix_value_b = nullptr;
struct ggml_tensor * time_mix_receptance = nullptr;
struct ggml_tensor * time_mix_receptance_b = nullptr;
struct ggml_tensor * time_mix_gate = nullptr;
struct ggml_tensor * time_mix_ln = nullptr;
struct ggml_tensor * time_mix_ln_b = nullptr;
@@ -280,7 +286,7 @@ struct llama_layer {
struct ggml_tensor * bskcn_tv = nullptr;
// cross attention
// cross attention
struct ggml_tensor * cross_attn_k_norm = nullptr;
struct ggml_tensor * cross_attn_k_proj = nullptr;
struct ggml_tensor * cross_attn_o_proj = nullptr;
@@ -296,11 +302,9 @@ struct llama_layer {
};
struct llama_model {
llm_type type = MODEL_UNKNOWN;
llm_type type = LLM_TYPE_UNKNOWN;
llm_arch arch = LLM_ARCH_UNKNOWN;
llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
std::string name = "n/a";
llama_hparams hparams = {};
@@ -329,117 +333,53 @@ struct llama_model {
std::vector<llama_layer> layers;
llama_model_params params;
// gguf metadata
std::unordered_map<std::string, std::string> gguf_kv;
llama_split_mode split_mode;
int main_gpu;
int n_gpu_layers;
std::vector<std::string> rpc_servers;
// list of devices used in this model
std::vector<ggml_backend_dev_t> devices;
// lists of buffer types used for each layer
using buft_list_t = std::vector<std::pair<ggml_backend_dev_t, ggml_backend_buffer_type_t>>;
buft_list_t cpu_buft_list;
std::map<ggml_backend_dev_t, buft_list_t> gpu_buft_list;
struct layer_dev {
ggml_backend_dev_t dev;
buft_list_t * buft_list;
};
layer_dev dev_input = {};
layer_dev dev_output = {};
std::vector<layer_dev> dev_layer;
// contexts where the model tensors metadata is stored
std::vector<ggml_context_ptr> ctxs;
// the model memory buffers for the tensor data
std::vector<ggml_backend_buffer_ptr> bufs;
// model memory mapped files
llama_mmaps mappings;
// objects representing data potentially being locked in memory
llama_mlocks mlock_bufs;
llama_mlocks mlock_mmaps;
// for quantize-stats only
std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
int64_t t_load_us = 0;
int64_t t_start_us = 0;
// total number of parameters in the model
uint64_t n_elements = 0;
explicit llama_model(const struct llama_model_params & params);
~llama_model();
// total size of all the tensors in the model in bytes
size_t n_bytes = 0;
void load_stats (llama_model_loader & ml);
void load_arch (llama_model_loader & ml);
void load_hparams(llama_model_loader & ml);
void load_vocab (llama_model_loader & ml);
bool load_tensors(llama_model_loader & ml); // returns false if cancelled by progress_callback
std::string arch_name() const;
std::string type_name() const;
std::string desc() const;
size_t size() const;
size_t max_nodes() const;
size_t n_devices() const;
// total number of parameters in the model
uint64_t n_elements() const;
void print_info() const;
ggml_backend_dev_t dev_layer(int il) const;
ggml_backend_dev_t dev_output() const;
ggml_backend_buffer_type_t select_buft(int il) const;
const struct ggml_tensor * get_tensor(const char * name) const;
private:
struct impl;
std::unique_ptr<impl> pimpl;
};
const char * llm_type_name(llm_type type);
std::string llama_model_arch_name (const llama_model & model);
std::string llama_model_type_name (const llama_model & model);
std::string llama_model_ftype_name(const llama_model & model);
template<typename F>
bool buft_supported(ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev, F & fn) {
ggml_init_params params = {
/*.mem_size =*/ ggml_tensor_overhead()*8,
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
ggml_context_ptr ctx { ggml_init(params) };
if (!ctx) {
throw std::runtime_error("failed to create ggml context");
}
ggml_backend_buffer_ptr buf { ggml_backend_buft_alloc_buffer(buft, 0) };
ggml_tensor * op_tensor = fn(ctx.get());
for (int i = 0; i < GGML_MAX_SRC; i++) {
if (op_tensor->src[i] != nullptr) {
op_tensor->src[i]->buffer = buf.get();
}
}
bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
return op_supported;
}
template<typename F>
ggml_backend_buffer_type_t select_buft(const llama_model::buft_list_t & buft_list, const F & fn) {
for (const auto & cur : buft_list) {
ggml_backend_dev_t cur_dev = cur.first;
ggml_backend_buffer_type_t cur_buft = cur.second;
if (buft_supported(cur_buft, cur_dev, fn)) {
return cur_buft;
}
}
throw std::runtime_error("no suitable buffer type found");
}
// used by llama_adapter_cvec
ggml_backend_buffer_type_t llama_model_select_buft(const llama_model & model, int il);
// used by llama_adapter_lora
struct ggml_tensor * llama_model_get_tensor(const struct llama_model & model, const char * name);
size_t llama_model_max_nodes(const llama_model & model);
struct llama_model_loader;
// TODO: become llama_model methods
void llm_load_stats (llama_model_loader & ml, llama_model & model);
void llm_load_arch (llama_model_loader & ml, llama_model & model);
void llm_load_hparams (llama_model_loader & ml, llama_model & model);
void llm_load_vocab (llama_model_loader & ml, llama_model & model);
void llm_load_print_meta(llama_model_loader & ml, llama_model & model);

View File

@@ -7,14 +7,12 @@
#include <algorithm>
#include <cmath>
#include <cstring>
#include <cinttypes>
#include <fstream>
#include <mutex>
#include <thread>
#include <unordered_map>
// TODO: replace with ggml API call
#define QK_K 256
static void zeros(std::ofstream & file, size_t n) {
char zero = 0;
for (size_t i = 0; i < n; ++i) {
@@ -22,7 +20,7 @@ static void zeros(std::ofstream & file, size_t n) {
}
}
struct quantize_state_internal {
struct quantize_state_impl {
const llama_model & model;
const llama_model_quantize_params * params;
@@ -43,13 +41,13 @@ struct quantize_state_internal {
// used to figure out if a model shares tok_embd with the output weight
bool has_output = false;
quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
quantize_state_impl(const llama_model & model, const llama_model_quantize_params * params)
: model(model)
, params(params)
{}
};
static void llama_tensor_dequantize_internal(
static void llama_tensor_dequantize_impl(
struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
const size_t nelements, const int nthread
) {
@@ -121,7 +119,7 @@ static void llama_tensor_dequantize_internal(
workers.clear();
}
static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
static ggml_type llama_tensor_get_type(quantize_state_impl & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
const std::string name = ggml_get_name(tensor);
// TODO: avoid hardcoded tensor names - use the TN_* constants
@@ -154,8 +152,10 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
new_type = qs.params->output_tensor_type;
} else {
int nx = tensor->ne[0];
if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
const int64_t nx = tensor->ne[0];
const int64_t qk_k = ggml_blck_size(new_type);
if (arch == LLM_ARCH_FALCON || nx % qk_k != 0) {
new_type = GGML_TYPE_Q8_0;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
@@ -235,7 +235,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
if (qs.model.type == MODEL_70B) {
if (qs.model.type == LLM_TYPE_70B) {
// In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
// 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
// nearly negligible increase in model size by quantizing this tensor with more bits:
@@ -367,20 +367,19 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
// if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
//}
bool convert_incompatible_tensor = false;
if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS ||
new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S ||
new_type == GGML_TYPE_IQ1_M) {
int nx = tensor->ne[0];
int ny = tensor->ne[1];
if (nx % QK_K != 0) {
LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
{
const int64_t nx = tensor->ne[0];
const int64_t ny = tensor->ne[1];
const int64_t qk_k = ggml_blck_size(new_type);
if (nx % qk_k != 0) {
LLAMA_LOG_WARN("\n\n%s : tensor cols %" PRId64 " x %" PRId64 " are not divisible by %" PRId64 ", required for %s", __func__, nx, ny, qk_k, ggml_type_name(new_type));
convert_incompatible_tensor = true;
} else {
++qs.n_k_quantized;
}
}
if (convert_incompatible_tensor) {
switch (new_type) {
case GGML_TYPE_TQ1_0:
@@ -410,7 +409,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
return new_type;
}
static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
static size_t llama_tensor_quantize_impl(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
if (nthread < 2) {
// single-thread
size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
@@ -464,7 +463,7 @@ static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const floa
return new_size;
}
static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
static void llama_model_quantize_impl(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
ggml_type default_type;
llama_ftype ftype = params->ftype;
@@ -526,18 +525,21 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
kv_overrides = v->data();
}
llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, kv_overrides);
std::vector<std::string> splits = {};
llama_model_loader ml(fname_inp, splits, use_mmap, /*check_tensors*/ true, kv_overrides);
ml.init_mappings(false); // no prefetching
llama_model model;
llm_load_arch (ml, model);
llm_load_hparams(ml, model);
llm_load_stats (ml, model);
llama_model model(llama_model_default_params());
struct quantize_state_internal qs(model, params);
model.load_arch (ml);
model.load_hparams(ml);
model.load_stats (ml);
struct quantize_state_impl qs(model, params);
if (params->only_copy) {
ftype = model.ftype;
ftype = ml.ftype;
}
const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
if (params->imatrix) {
@@ -621,7 +623,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
// sanity checks
// sanity checks for models that have attention layers
if (qs.n_attention_wv != 0)
{
const auto & n_head_kv_iter = model.hparams.n_head_kv_arr.begin();
// attention layers have a non-zero number of kv heads
@@ -734,6 +737,15 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
// This used to be a regex, but <regex> has an extreme cost to compile times.
bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
// don't quantize vision stuff
quantize &= name.find("v.blk.") == std::string::npos;
quantize &= name.find("mm.mm_input_projection.weight") == std::string::npos;
quantize &= name.find("mm.mm_soft_emb_norm.weight") == std::string::npos;
quantize &= name.find("v.patch_embedding.weight") == std::string::npos;
quantize &= name.find("v.position_embedding.weight") == std::string::npos;
quantize &= name.find("v.post_layernorm.weight") == std::string::npos;
// quantize only 2D and 3D tensors (experts)
quantize &= (ggml_n_dims(tensor) >= 2);
@@ -761,6 +773,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
quantize &= name.find("time_mix_w2.weight") == std::string::npos;
quantize &= name.find("time_mix_decay_w1.weight") == std::string::npos;
quantize &= name.find("time_mix_decay_w2.weight") == std::string::npos;
quantize &= name.find("time_mix_lerp_fused.weight") == std::string::npos;
// do not quantize relative position bias (T5)
quantize &= name.find("attn_rel_b.weight") == std::string::npos;
@@ -839,7 +852,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
} else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
} else {
llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread);
llama_tensor_dequantize_impl(tensor, f32_conv_buf, workers, nelements, nthread);
f32_data = (float *) f32_conv_buf.data();
}
@@ -868,7 +881,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
new_size += llama_tensor_quantize_impl(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
}
LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
}
@@ -877,7 +890,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
// update the gguf meta data as we go
gguf_set_tensor_type(ctx_outs[cur_split].get(), name.c_str(), new_type);
gguf_set_tensor_data(ctx_outs[cur_split].get(), name.c_str(), new_data, new_size);
GGML_ASSERT(gguf_get_tensor_size(ctx_outs[cur_split].get(), gguf_find_tensor(ctx_outs[cur_split].get(), name.c_str())) == new_size);
gguf_set_tensor_data(ctx_outs[cur_split].get(), name.c_str(), new_data);
// write tensor data + padding
fout.write((const char *) new_data, new_size);
@@ -921,7 +935,7 @@ uint32_t llama_model_quantize(
const char * fname_out,
const llama_model_quantize_params * params) {
try {
llama_model_quantize_internal(fname_inp, fname_out, params);
llama_model_quantize_impl(fname_inp, fname_out, params);
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
return 1;

View File

@@ -257,7 +257,7 @@ static void llama_sampler_top_k_impl(llama_token_data_array * cur_p, int32_t k)
for (int i = 0; i < (int)cur_p->size; ++i) {
const float val = cur_p->data[i].logit;
int ib = int(bucket_scale * val + bucket_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
ib = std::max(0, std::min(nbuckets-1, ib));
ib = std::max(0, std::min(nbuckets - 1, ib));
bucket_idx[i] = ib;
++histo[ib];
}
@@ -280,13 +280,13 @@ static void llama_sampler_top_k_impl(llama_token_data_array * cur_p, int32_t k)
for (int i = 0; i < (int)cur_p->size; ++i) {
int j = bucket_idx[i];
if (j >= ib) {
*bucket_ptrs[nbuckets-1-j]++ = cur_p->data[i];
*bucket_ptrs[nbuckets - 1 - j]++ = cur_p->data[i];
}
}
ptr = tmp_tokens.data();
int ndone = 0;
for (int j = nbuckets-1; j > ib; --j) {
for (int j = nbuckets - 1; j > ib; --j) {
std::sort(ptr, ptr + histo[j], comp);
ptr += histo[j];
ndone += histo[j];
@@ -316,6 +316,13 @@ static uint32_t get_rng_seed(uint32_t seed) {
// llama_sampler API
struct llama_sampler * llama_sampler_init(const struct llama_sampler_i * iface, llama_sampler_context_t ctx) {
return new llama_sampler {
/* .iface = */ iface,
/* .ctx = */ ctx,
};
}
const char * llama_sampler_name(const struct llama_sampler * smpl) {
if (!smpl->iface) {
return "(null)";
@@ -347,10 +354,10 @@ struct llama_sampler * llama_sampler_clone(const struct llama_sampler * smpl) {
}
if (smpl->ctx == nullptr) {
return new llama_sampler {
return llama_sampler_init(
/* .iface = */ smpl->iface,
/* .ctx = */ nullptr,
};
/* .ctx = */ nullptr
);
}
GGML_ABORT("the sampler does not support cloning");
@@ -371,7 +378,10 @@ void llama_sampler_free(struct llama_sampler * smpl) {
llama_token llama_sampler_sample(struct llama_sampler * smpl, struct llama_context * ctx, int32_t idx) {
const auto * logits = llama_get_logits_ith(ctx, idx);
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
const llama_model * model = llama_get_model(ctx);
const llama_vocab * vocab = llama_model_get_vocab(model);
const int n_vocab = llama_vocab_n_tokens(vocab);
// TODO: do not allocate each time
std::vector<llama_token_data> cur;
@@ -469,15 +479,15 @@ static struct llama_sampler_i llama_sampler_chain_i = {
};
struct llama_sampler * llama_sampler_chain_init(struct llama_sampler_chain_params params) {
return new llama_sampler {
return llama_sampler_init(
/* .iface = */ &llama_sampler_chain_i,
/* .ctx = */ new llama_sampler_chain {
/* .params = */ params,
/* .samplers = */ {},
/* .t_sample_us = */ 0,
/* .n_sample = */ 0,
},
};
}
);
}
void llama_sampler_chain_add(struct llama_sampler * chain, struct llama_sampler * smpl) {
@@ -543,10 +553,10 @@ static struct llama_sampler_i llama_sampler_greedy_i = {
};
struct llama_sampler * llama_sampler_init_greedy() {
return new llama_sampler {
return llama_sampler_init(
/* .iface = */ &llama_sampler_greedy_i,
/* .ctx = */ nullptr,
};
/* .ctx = */ nullptr
);
}
// dist
@@ -605,14 +615,14 @@ static struct llama_sampler_i llama_sampler_dist_i = {
struct llama_sampler * llama_sampler_init_dist(uint32_t seed) {
auto seed_cur = get_rng_seed(seed);
return new llama_sampler {
return llama_sampler_init(
/* .iface = */ &llama_sampler_dist_i,
/* .ctx = */ new llama_sampler_dist {
/* .seed = */ seed,
/* .seed_cur = */ seed_cur,
/* .rng = */ std::mt19937(seed_cur),
},
};
}
);
}
// softmax
@@ -635,10 +645,10 @@ static struct llama_sampler_i llama_sampler_softmax_i = {
};
struct llama_sampler * llama_sampler_init_softmax() {
return new llama_sampler {
return llama_sampler_init(
/* .iface = */ &llama_sampler_softmax_i,
/* .ctx = */ nullptr,
};
/* .ctx = */ nullptr
);
}
// top-k
@@ -675,12 +685,12 @@ static struct llama_sampler_i llama_sampler_top_k_i = {
};
struct llama_sampler * llama_sampler_init_top_k(int32_t k) {
return new llama_sampler {
return llama_sampler_init(
/* .iface = */ &llama_sampler_top_k_i,
/* .ctx = */ new llama_sampler_top_k {
/* .k = */ k,
},
};
}
);
}
// top-p
@@ -741,13 +751,13 @@ static struct llama_sampler_i llama_sampler_top_p_i = {
};
struct llama_sampler * llama_sampler_init_top_p(float p, size_t min_keep) {
return new llama_sampler {
return llama_sampler_init(
/* .iface = */ &llama_sampler_top_p_i,
/* .ctx = */ new llama_sampler_top_p {
/* .p = */ p,
/* .min_keep = */ min_keep,
},
};
}
);
}
// min-p
@@ -837,13 +847,13 @@ static struct llama_sampler_i llama_sampler_min_p_i = {
};
struct llama_sampler * llama_sampler_init_min_p(float p, size_t min_keep) {
return new llama_sampler {
return llama_sampler_init(
/* .iface = */ &llama_sampler_min_p_i,
/* .ctx = */ new llama_sampler_min_p {
/* .p = */ p,
/* .min_keep = */ min_keep,
},
};
}
);
}
// typical
@@ -936,13 +946,13 @@ static struct llama_sampler_i llama_sampler_typical_i = {
};
struct llama_sampler * llama_sampler_init_typical(float p, size_t min_keep) {
return new llama_sampler {
return llama_sampler_init(
/* .iface = */ &llama_sampler_typical_i,
/* .ctx = */ new llama_sampler_typical {
/* .p = */ p,
/* .min_keep = */ min_keep,
},
};
}
);
}
// temp
@@ -980,12 +990,12 @@ static struct llama_sampler_i llama_sampler_temp_i = {
};
struct llama_sampler * llama_sampler_init_temp(float temp) {
return new llama_sampler {
return llama_sampler_init(
/* .iface = */ &llama_sampler_temp_i,
/* .ctx = */ new llama_sampler_temp {
/*.temp = */ temp,
},
};
}
);
}
// temp-ext
@@ -1090,14 +1100,14 @@ static struct llama_sampler_i llama_sampler_temp_ext_i = {
};
struct llama_sampler * llama_sampler_init_temp_ext(float temp, float delta, float exponent) {
return new llama_sampler {
return llama_sampler_init(
/* .iface = */ &llama_sampler_temp_ext_i,
/* .ctx = */ new llama_sampler_temp_ext {
/* .temp = */ temp,
/* .delta = */ delta,
/* .exponent = */ exponent,
},
};
}
);
}
// xtc
@@ -1182,7 +1192,7 @@ static struct llama_sampler_i llama_sampler_xtc_i = {
struct llama_sampler * llama_sampler_init_xtc(float p, float t, size_t min_keep, uint32_t seed) {
auto seed_cur = get_rng_seed(seed);
return new llama_sampler {
return llama_sampler_init(
/* .iface = */ &llama_sampler_xtc_i,
/* .ctx = */ new llama_sampler_xtc {
/* .probability = */ p,
@@ -1191,8 +1201,8 @@ struct llama_sampler * llama_sampler_init_xtc(float p, float t, size_t min_keep,
/* .seed = */ seed,
/* .seed_cur = */ seed_cur,
/* .rng = */ std::mt19937(seed_cur),
},
};
}
);
}
// mirostat
@@ -1289,7 +1299,7 @@ static struct llama_sampler_i llama_sampler_mirostat_i = {
struct llama_sampler * llama_sampler_init_mirostat(int32_t n_vocab, uint32_t seed, float tau, float eta, int32_t m) {
auto seed_cur = get_rng_seed(seed);
return new llama_sampler {
return llama_sampler_init(
/* .iface = */ &llama_sampler_mirostat_i,
/* .ctx = */ new llama_sampler_mirostat {
/* .n_vocab = */ n_vocab,
@@ -1300,8 +1310,8 @@ struct llama_sampler * llama_sampler_init_mirostat(int32_t n_vocab, uint32_t see
/* .m = */ m,
/* .mu = */ 2.0f*tau,
/* .rng = */ std::mt19937(seed_cur),
},
};
}
);
}
// mirostat v2
@@ -1388,7 +1398,7 @@ static struct llama_sampler_i llama_sampler_mirostat_v2_i = {
struct llama_sampler * llama_sampler_init_mirostat_v2(uint32_t seed, float tau, float eta) {
auto seed_cur = get_rng_seed(seed);
return new llama_sampler {
return llama_sampler_init(
/* .iface = */ &llama_sampler_mirostat_v2_i,
/* .ctx = */ new llama_sampler_mirostat_v2 {
/* .seed = */ seed,
@@ -1397,8 +1407,8 @@ struct llama_sampler * llama_sampler_init_mirostat_v2(uint32_t seed, float tau,
/* .eta = */ eta,
/* .mu = */ 2.0f*tau,
/* .rng = */ std::mt19937(seed_cur),
},
};
}
);
}
// grammar
@@ -1430,13 +1440,30 @@ static void llama_sampler_grammar_apply(struct llama_sampler * smpl, llama_token
}
}
// Fwd declare to break reset --> init_impl --> llama_sampler_grammar_i --> reset cycle.
static struct llama_sampler * llama_sampler_init_grammar_impl(
const struct llama_vocab * vocab,
const char * grammar_str,
const char * grammar_root,
bool lazy,
const char ** trigger_words,
size_t num_trigger_words,
const llama_token * trigger_tokens,
size_t num_trigger_tokens);
static void llama_sampler_grammar_reset(struct llama_sampler * smpl) {
auto * ctx = (llama_sampler_grammar *) smpl->ctx;
if (!ctx->grammar) {
return;
}
auto * grammar_new = llama_grammar_init_impl(ctx->grammar->vocab, ctx->grammar_str.c_str(), ctx->grammar_root.c_str());
std::vector<const char *> trigger_words;
for (auto & word : ctx->grammar->trigger_words) {
trigger_words.push_back(word.c_str());
}
auto * grammar_new = llama_grammar_init_impl(ctx->grammar->vocab, ctx->grammar_str.c_str(), ctx->grammar_root.c_str(),
ctx->grammar->lazy, trigger_words.data(), trigger_words.size(),
ctx->grammar->trigger_tokens.data(), ctx->grammar->trigger_tokens.size());
llama_grammar_free_impl(ctx->grammar);
ctx->grammar = grammar_new;
@@ -1445,7 +1472,7 @@ static void llama_sampler_grammar_reset(struct llama_sampler * smpl) {
static struct llama_sampler * llama_sampler_grammar_clone(const struct llama_sampler * smpl) {
const auto * ctx = (const llama_sampler_grammar *) smpl->ctx;
auto * result = llama_sampler_init_grammar_impl(*ctx->vocab, nullptr, nullptr);
auto * result = llama_sampler_init_grammar_impl(ctx->vocab, nullptr, nullptr, false, nullptr, 0, nullptr, 0);
// copy the state
{
@@ -1481,29 +1508,55 @@ static struct llama_sampler_i llama_sampler_grammar_i = {
/* .free = */ llama_sampler_grammar_free,
};
struct llama_sampler * llama_sampler_init_grammar_impl(const struct llama_vocab & vocab, const char * grammar_str, const char * grammar_root) {
static struct llama_sampler * llama_sampler_init_grammar_impl(
const struct llama_vocab * vocab,
const char * grammar_str,
const char * grammar_root,
bool lazy,
const char ** trigger_words,
size_t num_trigger_words,
const llama_token * trigger_tokens,
size_t num_trigger_tokens) {
auto * ctx = new llama_sampler_grammar;
if (grammar_str != nullptr && grammar_str[0] != '\0') {
*ctx = {
/* .vocab = */ &vocab,
/* .vocab = */ vocab,
/* .grammar_str = */ grammar_str,
/* .grammar_root = */ grammar_root,
/* .grammar = */ llama_grammar_init_impl(&vocab, grammar_str, grammar_root),
/* .grammar = */ llama_grammar_init_impl(vocab, grammar_str, grammar_root, lazy, trigger_words, num_trigger_words, trigger_tokens, num_trigger_tokens),
};
} else {
*ctx = {
/* .vocab = */ &vocab,
/* .vocab = */ vocab,
/* .grammar_str = */ {},
/* .grammar_root = */ {},
/* .grammar = */ nullptr,
};
}
return new llama_sampler {
return llama_sampler_init(
/* .iface = */ &llama_sampler_grammar_i,
/* .ctx = */ ctx,
};
/* .ctx = */ ctx
);
}
struct llama_sampler * llama_sampler_init_grammar(
const struct llama_vocab * vocab,
const char * grammar_str,
const char * grammar_root) {
return llama_sampler_init_grammar_impl(vocab, grammar_str, grammar_root, /* lazy= */ false, nullptr, 0, nullptr, 0);
}
struct llama_sampler * llama_sampler_init_grammar_lazy(
const struct llama_vocab * vocab,
const char * grammar_str,
const char * grammar_root,
const char ** trigger_words,
size_t num_trigger_words,
const llama_token * trigger_tokens,
size_t num_trigger_tokens) {
return llama_sampler_init_grammar_impl(vocab, grammar_str, grammar_root, /* lazy= */ true, trigger_words, num_trigger_words, trigger_tokens, num_trigger_tokens);
}
// penalties
@@ -1632,7 +1685,7 @@ struct llama_sampler * llama_sampler_init_penalties(
float penalty_present) {
penalty_last_n = std::max(penalty_last_n, 0);
return new llama_sampler {
return llama_sampler_init(
/* .iface = */ &llama_sampler_penalties_i,
/* .ctx = */ new llama_sampler_penalties {
/* .penalty_last_n = */ penalty_last_n,
@@ -1641,8 +1694,75 @@ struct llama_sampler * llama_sampler_init_penalties(
/* .penalty_present = */ penalty_present,
/* .prev = */ ring_buffer<llama_token>(penalty_last_n),
/* .token_count = */ {},
},
};
}
);
}
// top-n-sigma
struct llama_sampler_top_n_sigma {
const float n;
};
static const char * llama_sampler_top_n_sigma_name(const struct llama_sampler * /*smpl*/) {
return "top-n-sigma";
}
static void llama_sampler_top_n_sigma_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
const auto * ctx = (llama_sampler_top_n_sigma *) smpl->ctx;
// find max logit and calculate mean
float max = cur_p->data[0].logit;
float logits_sum = 0;
for (size_t i = 0; i < cur_p->size; ++i) {
if (cur_p->data[i].logit > max) {
max = cur_p->data[i].logit;
}
logits_sum += cur_p->data[i].logit;
}
float mean = logits_sum/cur_p->size;
// calculate standard deviation
float acc = 0;
for (size_t i = 0; i < cur_p->size; ++i) {
acc += pow(cur_p->data[i].logit - mean, 2);
}
float std = sqrt(acc/cur_p->size);
//apply mask
for (size_t i = 0; i < cur_p->size; ++i) {
if (cur_p->data[i].logit < max - (ctx->n * std)) {
cur_p->data[i].logit = -INFINITY;
}
}
llama_sampler_softmax_impl(cur_p);
}
static struct llama_sampler * llama_sampler_top_n_sigma_clone(const struct llama_sampler * smpl) {
const auto * ctx = (const llama_sampler_top_n_sigma *) smpl->ctx;
return llama_sampler_init_top_n_sigma(ctx->n);
}
static void llama_sampler_top_n_sigma_free(struct llama_sampler * smpl) {
delete (llama_sampler_top_n_sigma *) smpl->ctx;
}
static struct llama_sampler_i llama_sampler_top_n_sigma_i = {
/* .name = */ llama_sampler_top_n_sigma_name,
/* .accept = */ nullptr,
/* .apply = */ llama_sampler_top_n_sigma_apply,
/* .reset = */ nullptr,
/* .clone = */ llama_sampler_top_n_sigma_clone,
/* .free = */ llama_sampler_top_n_sigma_free,
};
struct llama_sampler * llama_sampler_init_top_n_sigma(float n) {
return llama_sampler_init(
/* .iface = */ &llama_sampler_top_n_sigma_i,
/* .ctx = */ new llama_sampler_top_n_sigma {
/* .n = */ n,
}
);
}
// DRY
@@ -1663,8 +1783,8 @@ struct llama_sampler_dry {
// Ported from Koboldcpp, original PR: https://github.com/LostRuins/koboldcpp/pull/982 (Original author: pi6am)
static void get_overlapping_token_sequences(const llama_vocab & vocab, const std::string& str, std::unordered_multimap<llama_token, std::vector<llama_token>>& token_sequences, int max_tail_len = -1) {
for (llama_token token_id = 0; token_id < (llama_token)vocab.n_vocab; token_id++) {
std::string word = llama_detokenize(vocab, {token_id}, true);
for (llama_token token_id = 0; token_id < (llama_token) vocab.n_tokens(); token_id++) {
std::string word = vocab.detokenize({token_id}, true);
if (word.find(str) != std::string::npos) {
token_sequences.emplace(token_id, std::vector<llama_token>());
} else {
@@ -1681,7 +1801,7 @@ static void get_overlapping_token_sequences(const llama_vocab & vocab, const std
}
}
if (match) {
std::vector<llama_token> tokenization = llama_tokenize_internal(vocab, str.substr(i), false, false);
std::vector<llama_token> tokenization = vocab.tokenize(str.substr(i), false, false);
if (max_tail_len >= 0 && tokenization.size() > (size_t)max_tail_len) {
tokenization.resize(max_tail_len);
}
@@ -1832,7 +1952,7 @@ static void llama_sampler_dry_apply(struct llama_sampler * smpl, llama_token_dat
ctx->dry_repeat_count[last - k] = std::min(n, rep_limit);
if (n > 0) {
lt = k;
rt = k+n-1;
rt = k + n - 1;
}
} else {
// If k is inside the current Z-box, consider two cases.
@@ -1937,7 +2057,7 @@ static struct llama_sampler * llama_sampler_dry_clone(const struct llama_sampler
llama_vocab dummy_vocab;
// dummy vocab is passed because it is only needed for raw sequence breaker processing, which we have already done and will simply be copying
auto * result = llama_sampler_init_dry_impl(dummy_vocab, ctx->total_context_size, ctx->dry_multiplier, ctx->dry_base, ctx->dry_allowed_length, ctx->dry_penalty_last_n, NULL, 0);
auto * result = llama_sampler_init_dry(&dummy_vocab, ctx->total_context_size, ctx->dry_multiplier, ctx->dry_base, ctx->dry_allowed_length, ctx->dry_penalty_last_n, NULL, 0);
// Copy the state, including the processed breakers
{
@@ -1964,7 +2084,7 @@ static struct llama_sampler_i llama_sampler_dry_i = {
/* .free = */ llama_sampler_dry_free,
};
struct llama_sampler * llama_sampler_init_dry_impl(const struct llama_vocab & vocab, int32_t context_size, float dry_multiplier, float dry_base, int32_t dry_allowed_length, int32_t dry_penalty_last_n, const char** seq_breakers, size_t num_breakers) {
struct llama_sampler * llama_sampler_init_dry(const struct llama_vocab * vocab, int32_t context_size, float dry_multiplier, float dry_base, int32_t dry_allowed_length, int32_t dry_penalty_last_n, const char** seq_breakers, size_t num_breakers) {
int32_t effective_dry_penalty_last_n = (dry_penalty_last_n == -1) ? context_size : std::max(dry_penalty_last_n, 0);
std::unordered_multimap<llama_token, std::vector<llama_token>> processed_breakers;
const int MAX_CHAR_LEN = 40;
@@ -1991,11 +2111,11 @@ struct llama_sampler * llama_sampler_init_dry_impl(const struct llama_vocab & vo
sequence_break.resize(MAX_CHAR_LEN);
}
get_overlapping_token_sequences(vocab, sequence_break, processed_breakers, MAX_SEQ_LEN);
get_overlapping_token_sequences(*vocab, sequence_break, processed_breakers, MAX_SEQ_LEN);
}
}
return new llama_sampler {
return llama_sampler_init(
/* .iface = */ &llama_sampler_dry_i,
/* .ctx = */ new llama_sampler_dry {
/* .total_context_size = */ context_size,
@@ -2007,14 +2127,14 @@ struct llama_sampler * llama_sampler_init_dry_impl(const struct llama_vocab & vo
/* .dry_repeat_count = */ dry_enabled ? std::vector<int>(effective_dry_penalty_last_n, 0) : std::vector<int>{},
/* .dry_max_token_repeat = */ {},
/* .last_tokens = */ dry_enabled ? ring_buffer<llama_token>(effective_dry_penalty_last_n) : ring_buffer<llama_token>(0),
},
};
}
);
}
// wrapper for test-sampling.cpp
struct llama_sampler * llama_sampler_init_dry_testing(int32_t context_size, float dry_multiplier, float dry_base, int32_t dry_allowed_length, int32_t dry_penalty_last_n, const std::vector<std::vector<llama_token>>& seq_breakers) {
llama_vocab dummy_vocab;
auto * result = llama_sampler_init_dry_impl(dummy_vocab, context_size, dry_multiplier, dry_base, dry_allowed_length, dry_penalty_last_n, NULL, 0);
auto * result = llama_sampler_init_dry(&dummy_vocab, context_size, dry_multiplier, dry_base, dry_allowed_length, dry_penalty_last_n, NULL, 0);
auto * ctx = (llama_sampler_dry *) result->ctx;
// Process the token-based sequence breakers
@@ -2109,14 +2229,14 @@ struct llama_sampler * llama_sampler_init_logit_bias(
int32_t n_vocab,
int32_t n_logit_bias,
const llama_logit_bias * logit_bias) {
return new llama_sampler {
return llama_sampler_init(
/* .iface = */ &llama_sampler_logit_bias_i,
/* .ctx = */ new llama_sampler_logit_bias {
/* .n_vocab = */ n_vocab,
/* .logit_bias = */ std::vector<llama_logit_bias>(logit_bias, logit_bias + n_logit_bias),
/* .to_search = */ {},
},
};
}
);
}
// infill
@@ -2153,7 +2273,7 @@ static void llama_sampler_infill_apply(struct llama_sampler * smpl, llama_token_
float p_eog_sum = 0.0f;
for (size_t i = 0; i < cur_p->size; ++i) {
if (llama_token_is_eog_impl(*ctx->vocab, cur_p->data[i].id)) {
if (ctx->vocab->is_eog(cur_p->data[i].id)) {
p_eog_sum += cur_p->data[i].p;
} else {
p_txt_sum += cur_p->data[i].p;
@@ -2175,7 +2295,7 @@ static void llama_sampler_infill_apply(struct llama_sampler * smpl, llama_token_
float p_sum = 0.0f;
for (size_t i = 0; i < size_org; ++i) {
if (llama_token_is_eog_impl(*ctx->vocab, cur_p->data[i].id)) {
if (ctx->vocab->is_eog(cur_p->data[i].id)) {
p_sum += cur_p->data[i].p;
cur_p->data[cur_p->size++] = cur_p->data[i];
@@ -2203,17 +2323,17 @@ static void llama_sampler_infill_apply(struct llama_sampler * smpl, llama_token_
continue;
}
int len0 = llama_token_to_piece_impl(*ctx->vocab, cur_p->data[i0].id, ctx->buf0.data(), ctx->buf0.size(), 0, false);
int len0 = ctx->vocab->token_to_piece(cur_p->data[i0].id, ctx->buf0.data(), ctx->buf0.size(), 0, false);
if (len0 < 0) {
ctx->buf0.resize(len0);
len0 = llama_token_to_piece_impl(*ctx->vocab, cur_p->data[i0].id, ctx->buf0.data(), ctx->buf0.size(), 0, false);
len0 = ctx->vocab->token_to_piece(cur_p->data[i0].id, ctx->buf0.data(), ctx->buf0.size(), 0, false);
assert(len0 > 0);
}
int len1 = llama_token_to_piece_impl(*ctx->vocab, cur_p->data[i1].id, ctx->buf1.data(), ctx->buf1.size(), 0, false);
int len1 = ctx->vocab->token_to_piece(cur_p->data[i1].id, ctx->buf1.data(), ctx->buf1.size(), 0, false);
if (len1 < 0) {
ctx->buf1.resize(len1);
len1 = llama_token_to_piece_impl(*ctx->vocab, cur_p->data[i1].id, ctx->buf1.data(), ctx->buf1.size(), 0, false);
len1 = ctx->vocab->token_to_piece(cur_p->data[i1].id, ctx->buf1.data(), ctx->buf1.size(), 0, false);
assert(len1 > 0);
}
@@ -2248,7 +2368,7 @@ static void llama_sampler_infill_apply(struct llama_sampler * smpl, llama_token_
LOG_DBG_CUR("%s: n_combined = %zu, applying thold = %.3f\n", __func__, n_combined, thold);
for (size_t i = 0; i < size_org; ++i) {
const bool is_eog = llama_token_is_eog_impl(*ctx->vocab, cur_p->data[i].id);
const bool is_eog = ctx->vocab->is_eog(cur_p->data[i].id);
if (cur_p->data[i].p < thold && !is_eog) {
continue;
@@ -2269,7 +2389,7 @@ static void llama_sampler_infill_apply(struct llama_sampler * smpl, llama_token_
// if no non-EOG tokens are left -> reduce cur_p to single EOT token
if (n_non_eog == 0) {
cur_p->size = 1;
cur_p->data[0].id = llama_token_eot_impl(*ctx->vocab);
cur_p->data[0].id = ctx->vocab->token_eot();
cur_p->data[0].logit = 1.0f;
return;
@@ -2291,7 +2411,7 @@ static void llama_sampler_infill_apply(struct llama_sampler * smpl, llama_token_
LOG_DBG_CUR("%s: applying thold = %.3f\n", __func__, thold);
for (size_t i = 0; i < size_org; ++i) {
const bool is_eog = llama_token_is_eog_impl(*ctx->vocab, cur_p->data[i].id);
const bool is_eog = ctx->vocab->is_eog(cur_p->data[i].id);
if (cur_p->data[i].p < thold && !is_eog) {
continue;
@@ -2314,7 +2434,7 @@ static void llama_sampler_infill_apply(struct llama_sampler * smpl, llama_token_
static struct llama_sampler * llama_sampler_infill_clone(const struct llama_sampler * smpl) {
const auto * ctx = (const llama_sampler_infill *) smpl->ctx;
return llama_sampler_init_infill_impl(*ctx->vocab);
return llama_sampler_init_infill(ctx->vocab);
}
static void llama_sampler_infill_free(struct llama_sampler * smpl) {
@@ -2330,16 +2450,15 @@ static struct llama_sampler_i llama_sampler_infill_i = {
/* .free = */ llama_sampler_infill_free,
};
struct llama_sampler * llama_sampler_init_infill_impl(
const struct llama_vocab & vocab) {
return new llama_sampler {
struct llama_sampler * llama_sampler_init_infill(const struct llama_vocab * vocab) {
return llama_sampler_init(
/* .iface = */ &llama_sampler_infill_i,
/* .ctx = */ new llama_sampler_infill {
/* .vocab = */ &vocab,
/* .buf0 = */ std::vector<char>(512),
/* .buf1 = */ std::vector<char>(512),
},
};
/* .vocab = */ vocab,
/* .buf0 = */ std::vector<char>(512),
/* .buf1 = */ std::vector<char>(512),
}
);
}
// utils

View File

@@ -2,7 +2,9 @@
// TODO: rename llama-sampling.h/.cpp to llama-sampler.h/.cpp ?
#include "llama-grammar.h"
#include "llama.h"
#include <vector>
struct llama_vocab;
struct llama_grammar;
@@ -21,24 +23,6 @@ struct llama_sampler_chain {
mutable int32_t n_sample;
};
struct llama_sampler * llama_sampler_init_grammar_impl(
const struct llama_vocab & vocab,
const char * grammar_str,
const char * grammar_root);
struct llama_sampler * llama_sampler_init_infill_impl(
const struct llama_vocab & vocab);
struct llama_sampler * llama_sampler_init_dry_impl(
const struct llama_vocab & vocab,
int32_t context_size,
float dry_multiplier,
float dry_base,
int32_t dry_allowed_length,
int32_t dry_penalty_last_n,
const char ** seq_breakers,
size_t num_breakers);
struct llama_sampler * llama_sampler_init_dry_testing(
int32_t context_size,
float dry_multiplier,

File diff suppressed because it is too large Load Diff

View File

@@ -4,179 +4,122 @@
#include <string>
#include <vector>
#include <unordered_map>
#include <map>
#include <set>
#include <memory>
static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
switch (type) {
case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
case LLAMA_VOCAB_TYPE_SPM: return "SPM";
case LLAMA_VOCAB_TYPE_BPE: return "BPE";
case LLAMA_VOCAB_TYPE_WPM: return "WPM";
case LLAMA_VOCAB_TYPE_UGM: return "UGM";
case LLAMA_VOCAB_TYPE_RWKV: return "RWKV";
default: return "unknown";
}
}
struct llm_tokenizer;
struct LLM_KV;
struct llama_model_loader;
struct llama_vocab {
using id = llama_token;
using token = std::string;
using tattr = llama_token_attr;
struct token_data {
token text;
float score;
tattr attr;
std::string text;
float score;
llama_token_attr attr;
};
uint32_t n_vocab = 0; // TODO: not great because has to keep in sync with hparams.n_vocab
enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
enum llama_vocab_pre_type type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
int max_token_len = 0; // used for optimizing longest token search
std::unordered_map<token, id> token_to_id;
std::vector<token_data> id_to_token;
std::vector<id> cache_special_tokens;
std::vector<token> cache_token_to_piece; // llama_token_to_piece(special = true);
std::map<std::pair<std::string, std::string>, int> bpe_ranks;
// default LLaMA special tokens
// TODO: should we set all of these to LLAMA_TOKEN_NULL?
id special_bos_id = 1;
id special_eos_id = 2;
id special_eot_id = LLAMA_TOKEN_NULL;
id special_eom_id = LLAMA_TOKEN_NULL;
id special_unk_id = 0;
id special_sep_id = LLAMA_TOKEN_NULL;
id special_pad_id = LLAMA_TOKEN_NULL;
id special_cls_id = LLAMA_TOKEN_NULL; // TODO: revisit if this is really needed https://github.com/ggerganov/llama.cpp/pull/10930
id special_mask_id = LLAMA_TOKEN_NULL;
id linefeed_id = 13;
// fim tokens
id special_fim_pre_id = LLAMA_TOKEN_NULL;
id special_fim_suf_id = LLAMA_TOKEN_NULL;
id special_fim_mid_id = LLAMA_TOKEN_NULL;
id special_fim_pad_id = LLAMA_TOKEN_NULL;
id special_fim_rep_id = LLAMA_TOKEN_NULL; // repo
id special_fim_sep_id = LLAMA_TOKEN_NULL; // file separator
// set of all tokens that cause "end of generation"
std::set<id> special_eog_ids;
// tokenizer flags
bool tokenizer_add_space_prefix = false;
bool tokenizer_add_bos = false;
bool tokenizer_add_eos = false;
bool tokenizer_ignore_merges = false;
bool tokenizer_clean_spaces = false; // clean_up_tokenization_spaces
bool tokenizer_remove_extra_whitespaces = false;
bool tokenizer_escape_whitespaces = true;
bool tokenizer_treat_whitespace_as_suffix = false;
std::vector<char> precompiled_charsmap;
llm_tokenizer * tokenizer = nullptr;
llama_vocab() = default;
llama_vocab();
~llama_vocab();
void load(llama_model_loader & ml, const LLM_KV & kv);
enum llama_vocab_type get_type() const;
enum llama_vocab_pre_type get_pre_type() const;
uint32_t n_tokens() const;
uint32_t n_token_types() const;
std::string type_name() const;
bool is_normal (llama_token id) const;
bool is_unknown (llama_token id) const;
bool is_control (llama_token id) const;
bool is_byte (llama_token id) const;
bool is_user_defined(llama_token id) const;
bool is_unused (llama_token id) const;
bool is_eog (llama_token id) const;
uint8_t token_to_byte(llama_token id) const;
llama_token byte_to_token(uint8_t ch) const;
llama_token text_to_token(const std::string & text) const;
const token_data & get_token_data(llama_token id) const;
const char * token_get_text (llama_token id) const;
float token_get_score(llama_token id) const;
llama_token_attr token_get_attr (llama_token id) const;
llama_token token_bos() const;
llama_token token_eos() const;
llama_token token_eot() const;
llama_token token_eom() const;
llama_token token_unk() const;
llama_token token_sep() const;
llama_token token_nl () const;
llama_token token_pad() const;
llama_token token_prefix() const;
llama_token token_middle() const;
llama_token token_suffix() const;
llama_token token_fim_pre() const;
llama_token token_fim_suf() const;
llama_token token_fim_mid() const;
llama_token token_fim_pad() const;
llama_token token_fim_rep() const;
llama_token token_fim_sep() const;
bool get_add_space_prefix () const;
bool get_add_bos () const;
bool get_add_eos () const;
bool get_ignore_merges () const;
bool get_clean_spaces () const;
bool get_remove_extra_whitespaces () const;
bool get_escape_whitespaces () const;
bool get_treat_whitespace_as_suffix() const;
int max_token_len() const;
int find_bpe_rank(const std::string & token_left, const std::string & token_right) const;
void init_tokenizer();
int32_t tokenize(
const char * text,
int32_t text_len,
llama_token * tokens,
int32_t n_tokens_max,
bool add_special,
bool parse_special) const;
std::vector<llama_token> tokenize(
const std::string & raw_text,
bool add_special,
bool parse_special = false) const;
// does not write null-terminator to buf
int32_t token_to_piece(
llama_token token,
char * buf,
int32_t length,
int32_t lstrip,
bool special) const;
// use cached data
const std::string & token_to_piece(llama_token token) const;
int32_t detokenize(
const llama_token * tokens,
int32_t n_tokens,
char * text,
int32_t text_len_max,
bool remove_special,
bool unparse_special) const;
std::string detokenize(
const std::vector<llama_token> & tokens,
bool special) const;
void print_info() const;
private:
struct impl;
std::unique_ptr<impl> pimpl;
};
//
// internal API
//
// TODO: rename to llama_tokenize_impl
// TODO: This should probably be in llama.h
std::vector<llama_vocab::id> llama_tokenize_internal(
const llama_vocab & vocab,
std::string raw_text,
bool add_special,
bool parse_special = false);
// TODO: move the API below as member functions of llama_vocab
llama_token llama_byte_to_token_impl(const llama_vocab & vocab, uint8_t ch);
const char * llama_token_get_text_impl(const struct llama_vocab & vocab, llama_token token);
float llama_token_get_score_impl(const struct llama_vocab & vocab, llama_token token);
llama_token_attr llama_token_get_attr_impl(const struct llama_vocab & vocab, llama_token token);
bool llama_token_is_eog_impl(const struct llama_vocab & vocab, llama_token token);
bool llama_token_is_control_impl(const struct llama_vocab & vocab, llama_token token);
llama_token llama_token_bos_impl(const struct llama_vocab & vocab);
llama_token llama_token_eos_impl(const struct llama_vocab & vocab);
llama_token llama_token_eot_impl(const struct llama_vocab & vocab);
llama_token llama_token_eom_impl(const struct llama_vocab & vocab);
llama_token llama_token_cls_impl(const struct llama_vocab & vocab);
llama_token llama_token_sep_impl(const struct llama_vocab & vocab);
llama_token llama_token_nl_impl (const struct llama_vocab & vocab);
llama_token llama_token_pad_impl(const struct llama_vocab & vocab);
llama_token llama_token_prefix_impl(const struct llama_vocab & vocab);
llama_token llama_token_middle_impl(const struct llama_vocab & vocab);
llama_token llama_token_suffix_impl(const struct llama_vocab & vocab);
llama_token llama_token_fim_pre_impl(const struct llama_vocab & vocab);
llama_token llama_token_fim_suf_impl(const struct llama_vocab & vocab);
llama_token llama_token_fim_mid_impl(const struct llama_vocab & vocab);
llama_token llama_token_fim_pad_impl(const struct llama_vocab & vocab);
llama_token llama_token_fim_rep_impl(const struct llama_vocab & vocab);
llama_token llama_token_fim_sep_impl(const struct llama_vocab & vocab);
bool llama_add_bos_token_impl(const struct llama_vocab & vocab);
bool llama_add_eos_token_impl(const struct llama_vocab & vocab);
int32_t llama_tokenize_impl(
const struct llama_vocab & vocab,
const char * text,
int32_t text_len,
llama_token * tokens,
int32_t n_tokens_max,
bool add_special,
bool parse_special);
// does not write null-terminator to buf
int32_t llama_token_to_piece_impl(
const struct llama_vocab & vocab,
llama_token token,
char * buf,
int32_t length,
int32_t lstrip,
bool special);
// check if token0 is contained as a prefix in token1
bool llama_token_is_prefix_impl(
const struct llama_vocab & vocab,
llama_token token0,
llama_token token1);
int32_t llama_detokenize_impl(
const struct llama_vocab & vocab,
const llama_token * tokens,
int32_t n_tokens,
char * text,
int32_t text_len_max,
bool remove_special,
bool unparse_special);
std::string llama_detokenize(
const struct llama_vocab & vocab,
const std::vector<llama_token> & tokens,
bool special);

Some files were not shown because too many files have changed in this diff Show More