Compare commits
18 Commits
v0.6.1
...
pdevine/bf
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
c75b428249 | ||
|
|
021dcf089d | ||
|
|
bf24498b1e | ||
|
|
95e271d98f | ||
|
|
364629b8d6 | ||
|
|
108fe02165 | ||
|
|
4561fff36e | ||
|
|
50b5962042 | ||
|
|
e27e4a3c1b | ||
|
|
088514bbd4 | ||
|
|
2c8b484643 | ||
|
|
8294676150 | ||
|
|
ef378ad673 | ||
|
|
2d2247e59e | ||
|
|
7bf793a600 | ||
|
|
282bfaaa95 | ||
|
|
9679f40146 | ||
|
|
3892c3a703 |
@@ -56,7 +56,7 @@
|
||||
"name": "ROCm 6",
|
||||
"inherits": [ "ROCm" ],
|
||||
"cacheVariables": {
|
||||
"AMDGPU_TARGETS": "gfx900;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-"
|
||||
"AMDGPU_TARGETS": "gfx900;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102;gfx1151;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-"
|
||||
}
|
||||
}
|
||||
],
|
||||
|
||||
@@ -392,6 +392,8 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [1Panel](https://github.com/1Panel-dev/1Panel/) (Web-based Linux Server Management Tool)
|
||||
- [AstrBot](https://github.com/Soulter/AstrBot/) (User-friendly LLM-based multi-platform chatbot with a WebUI, supporting RAG, LLM agents, and plugins integration)
|
||||
- [Reins](https://github.com/ibrahimcetin/reins) (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)
|
||||
- [Ellama](https://github.com/zeozeozeo/ellama) (Friendly native app to chat with an Ollama instance)
|
||||
- [screenpipe](https://github.com/mediar-ai/screenpipe) Build agents powered by your screen history
|
||||
|
||||
### Cloud
|
||||
|
||||
|
||||
129
cmd/cmd_test.go
129
cmd/cmd_test.go
@@ -757,3 +757,132 @@ func TestCreateHandler(t *testing.T) {
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestNewCreateRequest(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
from string
|
||||
opts runOptions
|
||||
expected *api.CreateRequest
|
||||
}{
|
||||
{
|
||||
"basic test",
|
||||
"newmodel",
|
||||
runOptions{
|
||||
Model: "mymodel",
|
||||
ParentModel: "",
|
||||
Prompt: "You are a fun AI agent",
|
||||
Messages: []api.Message{},
|
||||
WordWrap: true,
|
||||
},
|
||||
&api.CreateRequest{
|
||||
From: "mymodel",
|
||||
Model: "newmodel",
|
||||
},
|
||||
},
|
||||
{
|
||||
"parent model test",
|
||||
"newmodel",
|
||||
runOptions{
|
||||
Model: "mymodel",
|
||||
ParentModel: "parentmodel",
|
||||
Messages: []api.Message{},
|
||||
WordWrap: true,
|
||||
},
|
||||
&api.CreateRequest{
|
||||
From: "parentmodel",
|
||||
Model: "newmodel",
|
||||
},
|
||||
},
|
||||
{
|
||||
"parent model as filepath test",
|
||||
"newmodel",
|
||||
runOptions{
|
||||
Model: "mymodel",
|
||||
ParentModel: "/some/file/like/etc/passwd",
|
||||
Messages: []api.Message{},
|
||||
WordWrap: true,
|
||||
},
|
||||
&api.CreateRequest{
|
||||
From: "mymodel",
|
||||
Model: "newmodel",
|
||||
},
|
||||
},
|
||||
{
|
||||
"parent model as windows filepath test",
|
||||
"newmodel",
|
||||
runOptions{
|
||||
Model: "mymodel",
|
||||
ParentModel: "D:\\some\\file\\like\\etc\\passwd",
|
||||
Messages: []api.Message{},
|
||||
WordWrap: true,
|
||||
},
|
||||
&api.CreateRequest{
|
||||
From: "mymodel",
|
||||
Model: "newmodel",
|
||||
},
|
||||
},
|
||||
{
|
||||
"options test",
|
||||
"newmodel",
|
||||
runOptions{
|
||||
Model: "mymodel",
|
||||
ParentModel: "parentmodel",
|
||||
Options: map[string]any{
|
||||
"temperature": 1.0,
|
||||
},
|
||||
},
|
||||
&api.CreateRequest{
|
||||
From: "parentmodel",
|
||||
Model: "newmodel",
|
||||
Parameters: map[string]any{
|
||||
"temperature": 1.0,
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
"messages test",
|
||||
"newmodel",
|
||||
runOptions{
|
||||
Model: "mymodel",
|
||||
ParentModel: "parentmodel",
|
||||
System: "You are a fun AI agent",
|
||||
Messages: []api.Message{
|
||||
{
|
||||
Role: "user",
|
||||
Content: "hello there!",
|
||||
},
|
||||
{
|
||||
Role: "assistant",
|
||||
Content: "hello to you!",
|
||||
},
|
||||
},
|
||||
WordWrap: true,
|
||||
},
|
||||
&api.CreateRequest{
|
||||
From: "parentmodel",
|
||||
Model: "newmodel",
|
||||
System: "You are a fun AI agent",
|
||||
Messages: []api.Message{
|
||||
{
|
||||
Role: "user",
|
||||
Content: "hello there!",
|
||||
},
|
||||
{
|
||||
Role: "assistant",
|
||||
Content: "hello to you!",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
actual := NewCreateRequest(tt.from, tt.opts)
|
||||
if !cmp.Equal(actual, tt.expected) {
|
||||
t.Errorf("expected output %#v, got %#v", tt.expected, actual)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
@@ -18,6 +18,7 @@ import (
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/readline"
|
||||
"github.com/ollama/ollama/types/errtypes"
|
||||
"github.com/ollama/ollama/types/model"
|
||||
)
|
||||
|
||||
type MultilineState int
|
||||
@@ -459,9 +460,16 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
}
|
||||
|
||||
func NewCreateRequest(name string, opts runOptions) *api.CreateRequest {
|
||||
parentModel := opts.ParentModel
|
||||
|
||||
modelName := model.ParseName(parentModel)
|
||||
if !modelName.IsValid() {
|
||||
parentModel = ""
|
||||
}
|
||||
|
||||
req := &api.CreateRequest{
|
||||
Name: name,
|
||||
From: cmp.Or(opts.ParentModel, opts.Model),
|
||||
Model: name,
|
||||
From: cmp.Or(parentModel, opts.Model),
|
||||
}
|
||||
|
||||
if opts.System != "" {
|
||||
|
||||
@@ -11,9 +11,10 @@ import (
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"github.com/d4l3k/go-bfloat16"
|
||||
"github.com/x448/float16"
|
||||
"golang.org/x/exp/maps"
|
||||
|
||||
"github.com/ollama/ollama/types/bfloat16"
|
||||
)
|
||||
|
||||
type safetensorMetadata struct {
|
||||
|
||||
1
go.mod
1
go.mod
@@ -16,7 +16,6 @@ require (
|
||||
|
||||
require (
|
||||
github.com/agnivade/levenshtein v1.1.1
|
||||
github.com/d4l3k/go-bfloat16 v0.0.0-20211005043715-690c3bdd05f1
|
||||
github.com/dlclark/regexp2 v1.11.4
|
||||
github.com/emirpasic/gods/v2 v2.0.0-alpha
|
||||
github.com/google/go-cmp v0.6.0
|
||||
|
||||
2
go.sum
2
go.sum
@@ -35,8 +35,6 @@ github.com/containerd/console v1.0.3 h1:lIr7SlA5PxZyMV30bDW0MGbiOPXwc63yRuCP0ARu
|
||||
github.com/containerd/console v1.0.3/go.mod h1:7LqA/THxQ86k76b8c/EMSiaJ3h1eZkMkXar0TQ1gf3U=
|
||||
github.com/cpuguy83/go-md2man/v2 v2.0.2/go.mod h1:tgQtvFlXSQOSOSIRvRPT7W67SCa46tRHOmNcaadrF8o=
|
||||
github.com/creack/pty v1.1.9/go.mod h1:oKZEueFk5CKHvIhNR5MUki03XCEU+Q6VDXinZuGJ33E=
|
||||
github.com/d4l3k/go-bfloat16 v0.0.0-20211005043715-690c3bdd05f1 h1:cBzrdJPAFBsgCrDPnZxlp1dF2+k4r1kVpD7+1S1PVjY=
|
||||
github.com/d4l3k/go-bfloat16 v0.0.0-20211005043715-690c3bdd05f1/go.mod h1:uw2gLcxEuYUlAd/EXyjc/v55nd3+47YAgWbSXVxPrNI=
|
||||
github.com/davecgh/go-spew v1.1.0/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
|
||||
github.com/davecgh/go-spew v1.1.1 h1:vj9j/u1bqnvCEfJOwUhtlOARqs3+rkHYY13jYWTU97c=
|
||||
github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
|
||||
|
||||
@@ -66,6 +66,35 @@ func TestIntegrationMllama(t *testing.T) {
|
||||
DoGenerate(ctx, t, client, req, []string{resp}, 240*time.Second, 30*time.Second)
|
||||
}
|
||||
|
||||
func TestIntegrationSplitBatch(t *testing.T) {
|
||||
image, err := base64.StdEncoding.DecodeString(imageEncoding)
|
||||
require.NoError(t, err)
|
||||
req := api.GenerateRequest{
|
||||
Model: "gemma3:4b",
|
||||
// Fill up a chunk of the batch so the image will partially spill over into the next one
|
||||
System: "Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed aliquet, justo in malesuada lobortis, odio ligula volutpat quam, quis faucibus ipsum magna quis sapien. Aliquam in venenatis diam, eu viverra magna. Phasellus imperdiet hendrerit volutpat. Vivamus sem ex, facilisis placerat felis non, dictum elementum est. Phasellus aliquam imperdiet lacus, eget placerat ligula sodales vel. Pellentesque nec auctor mi. Curabitur arcu nisi, faucibus eget nunc id, viverra interdum mi. Curabitur ornare ipsum ex, ac euismod ex aliquam in. Vestibulum id magna at purus accumsan fermentum. Proin scelerisque posuere nunc quis interdum. Maecenas sed mollis nisl. Etiam vitae ipsum interdum, placerat est quis, tincidunt velit. Nullam tempor nibh non lorem volutpat efficitur. Cras laoreet diam imperdiet ipsum auctor bibendum. Suspendisse ultrices urna sed metus sagittis suscipit. Quisque ullamcorper aliquam nibh ut mollis. Aenean dapibus mauris pharetra, venenatis elit ac, hendrerit odio. Cras vestibulum erat tempor, lobortis justo eu, lobortis ipsum. Nam laoreet dapibus sem. Proin vel diam ultrices, elementum ante et, ornare lectus. Proin eu accumsan nisl. Praesent ac ex vitae ipsum vulputate tristique facilisis sit amet lacus. Nullam faucibus magna a pellentesque pretium. Nunc lacinia ullamcorper sollicitudin. Donec vitae accumsan turpis, sed porttitor est. Donec porttitor mi vitae augue faucibus, vel mollis diam tincidunt.",
|
||||
Prompt: "what does the text in this image say?",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
Images: []api.ImageData{
|
||||
image,
|
||||
},
|
||||
}
|
||||
|
||||
// Note: sometimes it returns "the ollamas" sometimes "the ollams"
|
||||
resp := "the ollam"
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 3*time.Minute)
|
||||
defer cancel()
|
||||
client, _, cleanup := InitServerConnection(ctx, t)
|
||||
defer cleanup()
|
||||
require.NoError(t, PullIfMissing(ctx, client, req.Model))
|
||||
// llava models on CPU can be quite slow to start,
|
||||
DoGenerate(ctx, t, client, req, []string{resp}, 120*time.Second, 30*time.Second)
|
||||
}
|
||||
|
||||
const imageEncoding = `iVBORw0KGgoAAAANSUhEUgAAANIAAAB4CAYAAACHHqzKAAAAAXNSR0IArs4c6QAAAIRlWElmTU0AKgAAAAgABQESAAMAAAABAAEAAAEaAAUAAAABAAAASgEb
|
||||
AAUAAAABAAAAUgEoAAMAAAABAAIAAIdpAAQAAAABAAAAWgAAAAAAAABIAAAAAQAAAEgAAAABAAOgAQADAAAAAQABAACgAgAEAAAAAQAAANKgAwAEAAAAAQAA
|
||||
AHgAAAAAXdsepgAAAAlwSFlzAAALEwAACxMBAJqcGAAAAVlpVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6
|
||||
|
||||
19
llama/llama.cpp/src/llama-arch.cpp
vendored
19
llama/llama.cpp/src/llama-arch.cpp
vendored
@@ -37,6 +37,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_MINICPM3, "minicpm3" },
|
||||
{ LLM_ARCH_GEMMA, "gemma" },
|
||||
{ LLM_ARCH_GEMMA2, "gemma2" },
|
||||
{ LLM_ARCH_GEMMA3, "gemma3" },
|
||||
{ LLM_ARCH_STARCODER2, "starcoder2" },
|
||||
{ LLM_ARCH_MAMBA, "mamba" },
|
||||
{ LLM_ARCH_XVERSE, "xverse" },
|
||||
@@ -804,6 +805,24 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_GEMMA3,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
{ LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_STARCODER2,
|
||||
{
|
||||
|
||||
1
llama/llama.cpp/src/llama-arch.h
vendored
1
llama/llama.cpp/src/llama-arch.h
vendored
@@ -41,6 +41,7 @@ enum llm_arch {
|
||||
LLM_ARCH_MINICPM3,
|
||||
LLM_ARCH_GEMMA,
|
||||
LLM_ARCH_GEMMA2,
|
||||
LLM_ARCH_GEMMA3,
|
||||
LLM_ARCH_STARCODER2,
|
||||
LLM_ARCH_MAMBA,
|
||||
LLM_ARCH_XVERSE,
|
||||
|
||||
7
llama/llama.cpp/src/llama-model.cpp
vendored
7
llama/llama.cpp/src/llama-model.cpp
vendored
@@ -878,6 +878,9 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
default: type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_GEMMA3:
|
||||
{
|
||||
} break;
|
||||
case LLM_ARCH_STARCODER2:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||||
@@ -2537,6 +2540,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_GEMMA3:
|
||||
{
|
||||
} break;
|
||||
case LLM_ARCH_STARCODER2:
|
||||
{
|
||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
||||
@@ -4029,6 +4035,7 @@ enum llama_rope_type llama_model_rope_type(const struct llama_model * model) {
|
||||
case LLM_ARCH_PHIMOE:
|
||||
case LLM_ARCH_GEMMA:
|
||||
case LLM_ARCH_GEMMA2:
|
||||
case LLM_ARCH_GEMMA3:
|
||||
case LLM_ARCH_STARCODER2:
|
||||
case LLM_ARCH_OPENELM:
|
||||
case LLM_ARCH_GPTNEOX:
|
||||
|
||||
9
llama/llama.cpp/src/llama-quant.cpp
vendored
9
llama/llama.cpp/src/llama-quant.cpp
vendored
@@ -737,6 +737,15 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
|
||||
// This used to be a regex, but <regex> has an extreme cost to compile times.
|
||||
bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
|
||||
|
||||
// don't quantize vision stuff
|
||||
quantize &= name.find("v.blk.") == std::string::npos;
|
||||
|
||||
quantize &= name.find("mm.mm_input_projection.weight") == std::string::npos;
|
||||
quantize &= name.find("mm.mm_soft_emb_norm.weight") == std::string::npos;
|
||||
quantize &= name.find("v.patch_embedding.weight") == std::string::npos;
|
||||
quantize &= name.find("v.position_embedding.weight") == std::string::npos;
|
||||
quantize &= name.find("v.post_layernorm.weight") == std::string::npos;
|
||||
|
||||
// quantize only 2D and 3D tensors (experts)
|
||||
quantize &= (ggml_n_dims(tensor) >= 2);
|
||||
|
||||
|
||||
113
llama/patches/0021-gemma3-quantization.patch
Normal file
113
llama/patches/0021-gemma3-quantization.patch
Normal file
@@ -0,0 +1,113 @@
|
||||
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
||||
From: Patrick Devine <patrick@infrahq.com>
|
||||
Date: Fri, 14 Mar 2025 16:33:23 -0700
|
||||
Subject: [PATCH] gemma3 quantization
|
||||
|
||||
---
|
||||
src/llama-arch.cpp | 19 +++++++++++++++++++
|
||||
src/llama-arch.h | 1 +
|
||||
src/llama-model.cpp | 7 +++++++
|
||||
src/llama-quant.cpp | 9 +++++++++
|
||||
4 files changed, 36 insertions(+)
|
||||
|
||||
diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp
|
||||
index b6f20286..b443fcd3 100644
|
||||
--- a/src/llama-arch.cpp
|
||||
+++ b/src/llama-arch.cpp
|
||||
@@ -37,6 +37,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_MINICPM3, "minicpm3" },
|
||||
{ LLM_ARCH_GEMMA, "gemma" },
|
||||
{ LLM_ARCH_GEMMA2, "gemma2" },
|
||||
+ { LLM_ARCH_GEMMA3, "gemma3" },
|
||||
{ LLM_ARCH_STARCODER2, "starcoder2" },
|
||||
{ LLM_ARCH_MAMBA, "mamba" },
|
||||
{ LLM_ARCH_XVERSE, "xverse" },
|
||||
@@ -804,6 +805,24 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
|
||||
},
|
||||
},
|
||||
+ {
|
||||
+ LLM_ARCH_GEMMA3,
|
||||
+ {
|
||||
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
+ { LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
|
||||
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
+ { LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
|
||||
+ },
|
||||
+ },
|
||||
{
|
||||
LLM_ARCH_STARCODER2,
|
||||
{
|
||||
diff --git a/src/llama-arch.h b/src/llama-arch.h
|
||||
index ec742224..aad92a5d 100644
|
||||
--- a/src/llama-arch.h
|
||||
+++ b/src/llama-arch.h
|
||||
@@ -41,6 +41,7 @@ enum llm_arch {
|
||||
LLM_ARCH_MINICPM3,
|
||||
LLM_ARCH_GEMMA,
|
||||
LLM_ARCH_GEMMA2,
|
||||
+ LLM_ARCH_GEMMA3,
|
||||
LLM_ARCH_STARCODER2,
|
||||
LLM_ARCH_MAMBA,
|
||||
LLM_ARCH_XVERSE,
|
||||
diff --git a/src/llama-model.cpp b/src/llama-model.cpp
|
||||
index ab1a07d1..70183041 100644
|
||||
--- a/src/llama-model.cpp
|
||||
+++ b/src/llama-model.cpp
|
||||
@@ -878,6 +878,9 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
default: type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
+ case LLM_ARCH_GEMMA3:
|
||||
+ {
|
||||
+ } break;
|
||||
case LLM_ARCH_STARCODER2:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||||
@@ -2537,6 +2540,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
|
||||
}
|
||||
} break;
|
||||
+ case LLM_ARCH_GEMMA3:
|
||||
+ {
|
||||
+ } break;
|
||||
case LLM_ARCH_STARCODER2:
|
||||
{
|
||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
||||
@@ -4029,6 +4035,7 @@ enum llama_rope_type llama_model_rope_type(const struct llama_model * model) {
|
||||
case LLM_ARCH_PHIMOE:
|
||||
case LLM_ARCH_GEMMA:
|
||||
case LLM_ARCH_GEMMA2:
|
||||
+ case LLM_ARCH_GEMMA3:
|
||||
case LLM_ARCH_STARCODER2:
|
||||
case LLM_ARCH_OPENELM:
|
||||
case LLM_ARCH_GPTNEOX:
|
||||
diff --git a/src/llama-quant.cpp b/src/llama-quant.cpp
|
||||
index 6eb1da08..d2f3a510 100644
|
||||
--- a/src/llama-quant.cpp
|
||||
+++ b/src/llama-quant.cpp
|
||||
@@ -737,6 +737,15 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
|
||||
// This used to be a regex, but <regex> has an extreme cost to compile times.
|
||||
bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
|
||||
|
||||
+ // don't quantize vision stuff
|
||||
+ quantize &= name.find("v.blk.") == std::string::npos;
|
||||
+
|
||||
+ quantize &= name.find("mm.mm_input_projection.weight") == std::string::npos;
|
||||
+ quantize &= name.find("mm.mm_soft_emb_norm.weight") == std::string::npos;
|
||||
+ quantize &= name.find("v.patch_embedding.weight") == std::string::npos;
|
||||
+ quantize &= name.find("v.position_embedding.weight") == std::string::npos;
|
||||
+ quantize &= name.find("v.post_layernorm.weight") == std::string::npos;
|
||||
+
|
||||
// quantize only 2D and 3D tensors (experts)
|
||||
quantize &= (ggml_n_dims(tensor) >= 2);
|
||||
|
||||
136
llm/server.go
136
llm/server.go
@@ -402,7 +402,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, a
|
||||
s.cmd.Env = append(s.cmd.Env, visibleDevicesEnv+"="+visibleDevicesEnvVal)
|
||||
}
|
||||
|
||||
slog.Info("starting llama server", "cmd", s.cmd.String())
|
||||
slog.Info("starting llama server", "cmd", s.cmd)
|
||||
if envconfig.Debug() {
|
||||
filteredEnv := []string{}
|
||||
for _, ev := range s.cmd.Env {
|
||||
@@ -470,7 +470,7 @@ const ( // iota is reset to 0
|
||||
ServerStatusError
|
||||
)
|
||||
|
||||
func (s ServerStatus) ToString() string {
|
||||
func (s ServerStatus) String() string {
|
||||
switch s {
|
||||
case ServerStatusReady:
|
||||
return "llm server ready"
|
||||
@@ -485,12 +485,9 @@ func (s ServerStatus) ToString() string {
|
||||
}
|
||||
}
|
||||
|
||||
type ServerStatusResp struct {
|
||||
Status string `json:"status"`
|
||||
SlotsIdle int `json:"slots_idle"`
|
||||
SlotsProcessing int `json:"slots_processing"`
|
||||
Error string `json:"error"`
|
||||
Progress float32 `json:"progress"`
|
||||
type ServerStatusResponse struct {
|
||||
Status ServerStatus `json:"status"`
|
||||
Progress float32 `json:"progress"`
|
||||
}
|
||||
|
||||
func (s *llmServer) getServerStatus(ctx context.Context) (ServerStatus, error) {
|
||||
@@ -502,7 +499,7 @@ func (s *llmServer) getServerStatus(ctx context.Context) (ServerStatus, error) {
|
||||
}
|
||||
if s.cmd.ProcessState.ExitCode() == -1 {
|
||||
// Most likely a signal killed it, log some more details to try to help troubleshoot
|
||||
slog.Warn("llama runner process no longer running", "sys", s.cmd.ProcessState.Sys(), "string", s.cmd.ProcessState.String())
|
||||
slog.Warn("llama runner process no longer running", "sys", s.cmd.ProcessState.Sys(), "string", s.cmd.ProcessState)
|
||||
}
|
||||
return ServerStatusError, fmt.Errorf("llama runner process no longer running: %d %s", s.cmd.ProcessState.ExitCode(), msg)
|
||||
}
|
||||
@@ -527,21 +524,19 @@ func (s *llmServer) getServerStatus(ctx context.Context) (ServerStatus, error) {
|
||||
return ServerStatusError, fmt.Errorf("read health request: %w", err)
|
||||
}
|
||||
|
||||
var status ServerStatusResp
|
||||
if err := json.Unmarshal(body, &status); err != nil {
|
||||
var ssr ServerStatusResponse
|
||||
if err := json.Unmarshal(body, &ssr); err != nil {
|
||||
return ServerStatusError, fmt.Errorf("health unmarshal encode response: %w", err)
|
||||
}
|
||||
|
||||
switch status.Status {
|
||||
case "ok":
|
||||
return ServerStatusReady, nil
|
||||
case "no slot available":
|
||||
return ServerStatusNoSlotsAvailable, nil
|
||||
case "loading model":
|
||||
s.loadProgress = status.Progress
|
||||
return ServerStatusLoadingModel, nil
|
||||
switch ssr.Status {
|
||||
case ServerStatusLoadingModel:
|
||||
s.loadProgress = ssr.Progress
|
||||
return ssr.Status, nil
|
||||
case ServerStatusReady, ServerStatusNoSlotsAvailable:
|
||||
return ssr.Status, nil
|
||||
default:
|
||||
return ServerStatusError, fmt.Errorf("server error: %+v", status)
|
||||
return ssr.Status, fmt.Errorf("server error: %+v", ssr)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -616,7 +611,7 @@ func (s *llmServer) WaitUntilRunning(ctx context.Context) error {
|
||||
status, _ := s.getServerStatus(ctx)
|
||||
if lastStatus != status && status != ServerStatusReady {
|
||||
// Only log on status changes
|
||||
slog.Info("waiting for server to become available", "status", status.ToString())
|
||||
slog.Info("waiting for server to become available", "status", status)
|
||||
}
|
||||
switch status {
|
||||
case ServerStatusReady:
|
||||
@@ -630,7 +625,7 @@ func (s *llmServer) WaitUntilRunning(ctx context.Context) error {
|
||||
slog.Debug(fmt.Sprintf("model load progress %0.2f", s.loadProgress))
|
||||
stallTimer = time.Now().Add(stallDuration)
|
||||
} else if !fullyLoaded && int(s.loadProgress*100.0) >= 100 {
|
||||
slog.Debug("model load completed, waiting for server to become available", "status", status.ToString())
|
||||
slog.Debug("model load completed, waiting for server to become available", "status", status)
|
||||
stallTimer = time.Now().Add(stallDuration)
|
||||
fullyLoaded = true
|
||||
}
|
||||
@@ -671,63 +666,26 @@ type ImageData struct {
|
||||
AspectRatioID int `json:"aspect_ratio_id"`
|
||||
}
|
||||
|
||||
type completion struct {
|
||||
Content string `json:"content"`
|
||||
Model string `json:"model"`
|
||||
Prompt string `json:"prompt"`
|
||||
Stop bool `json:"stop"`
|
||||
StoppedLimit bool `json:"stopped_limit"`
|
||||
|
||||
Timings struct {
|
||||
PredictedN int `json:"predicted_n"`
|
||||
PredictedMS float64 `json:"predicted_ms"`
|
||||
PromptN int `json:"prompt_n"`
|
||||
PromptMS float64 `json:"prompt_ms"`
|
||||
}
|
||||
}
|
||||
|
||||
type CompletionRequest struct {
|
||||
Prompt string
|
||||
Format json.RawMessage
|
||||
Images []ImageData
|
||||
Options *api.Options
|
||||
|
||||
Grammar string // set before sending the request to the subprocess
|
||||
}
|
||||
|
||||
type CompletionResponse struct {
|
||||
Content string
|
||||
DoneReason string
|
||||
Done bool
|
||||
PromptEvalCount int
|
||||
PromptEvalDuration time.Duration
|
||||
EvalCount int
|
||||
EvalDuration time.Duration
|
||||
Content string `json:"content"`
|
||||
DoneReason string `json:"done_reason"`
|
||||
Done bool `json:"done"`
|
||||
PromptEvalCount int `json:"prompt_eval_count"`
|
||||
PromptEvalDuration time.Duration `json:"prompt_eval_duration"`
|
||||
EvalCount int `json:"eval_count"`
|
||||
EvalDuration time.Duration `json:"eval_duration"`
|
||||
}
|
||||
|
||||
func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error {
|
||||
request := map[string]any{
|
||||
"prompt": req.Prompt,
|
||||
"stream": true,
|
||||
"n_predict": req.Options.NumPredict,
|
||||
"n_keep": req.Options.NumKeep,
|
||||
"main_gpu": req.Options.MainGPU,
|
||||
"temperature": req.Options.Temperature,
|
||||
"top_k": req.Options.TopK,
|
||||
"top_p": req.Options.TopP,
|
||||
"min_p": req.Options.MinP,
|
||||
"typical_p": req.Options.TypicalP,
|
||||
"repeat_last_n": req.Options.RepeatLastN,
|
||||
"repeat_penalty": req.Options.RepeatPenalty,
|
||||
"presence_penalty": req.Options.PresencePenalty,
|
||||
"frequency_penalty": req.Options.FrequencyPenalty,
|
||||
"mirostat": req.Options.Mirostat,
|
||||
"mirostat_tau": req.Options.MirostatTau,
|
||||
"mirostat_eta": req.Options.MirostatEta,
|
||||
"seed": req.Options.Seed,
|
||||
"stop": req.Options.Stop,
|
||||
"image_data": req.Images,
|
||||
"cache_prompt": true,
|
||||
}
|
||||
|
||||
if len(req.Format) > 0 {
|
||||
switch string(req.Format) {
|
||||
case `null`, `""`:
|
||||
@@ -735,7 +693,7 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
|
||||
// these as "not set".
|
||||
break
|
||||
case `"json"`:
|
||||
request["grammar"] = grammarJSON
|
||||
req.Grammar = grammarJSON
|
||||
default:
|
||||
if req.Format[0] != '{' {
|
||||
return fmt.Errorf("invalid format: %q; expected \"json\" or a valid JSON Schema object", req.Format)
|
||||
@@ -746,10 +704,15 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
|
||||
if g == nil {
|
||||
return fmt.Errorf("invalid JSON schema in format")
|
||||
}
|
||||
request["grammar"] = string(g)
|
||||
req.Grammar = string(g)
|
||||
}
|
||||
}
|
||||
|
||||
if req.Options == nil {
|
||||
opts := api.DefaultOptions()
|
||||
req.Options = &opts
|
||||
}
|
||||
|
||||
if err := s.sem.Acquire(ctx, 1); err != nil {
|
||||
if errors.Is(err, context.Canceled) {
|
||||
slog.Info("aborting completion request due to client closing the connection")
|
||||
@@ -770,7 +733,7 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
|
||||
if err != nil {
|
||||
return err
|
||||
} else if status != ServerStatusReady {
|
||||
return fmt.Errorf("unexpected server status: %s", status.ToString())
|
||||
return fmt.Errorf("unexpected server status: %s", status)
|
||||
}
|
||||
|
||||
// Handling JSON marshaling with special characters unescaped.
|
||||
@@ -778,7 +741,7 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
|
||||
enc := json.NewEncoder(buffer)
|
||||
enc.SetEscapeHTML(false)
|
||||
|
||||
if err := enc.Encode(request); err != nil {
|
||||
if err := enc.Encode(req); err != nil {
|
||||
return fmt.Errorf("failed to marshal data: %v", err)
|
||||
}
|
||||
|
||||
@@ -829,7 +792,7 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
|
||||
evt = line
|
||||
}
|
||||
|
||||
var c completion
|
||||
var c CompletionResponse
|
||||
if err := json.Unmarshal(evt, &c); err != nil {
|
||||
return fmt.Errorf("error unmarshalling llm prediction response: %v", err)
|
||||
}
|
||||
@@ -853,20 +816,8 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
|
||||
})
|
||||
}
|
||||
|
||||
if c.Stop {
|
||||
doneReason := "stop"
|
||||
if c.StoppedLimit {
|
||||
doneReason = "length"
|
||||
}
|
||||
|
||||
fn(CompletionResponse{
|
||||
Done: true,
|
||||
DoneReason: doneReason,
|
||||
PromptEvalCount: c.Timings.PromptN,
|
||||
PromptEvalDuration: parseDurationMs(c.Timings.PromptMS),
|
||||
EvalCount: c.Timings.PredictedN,
|
||||
EvalDuration: parseDurationMs(c.Timings.PredictedMS),
|
||||
})
|
||||
if c.Done {
|
||||
fn(c)
|
||||
return nil
|
||||
}
|
||||
}
|
||||
@@ -914,7 +865,7 @@ func (s *llmServer) Embedding(ctx context.Context, input string) ([]float32, err
|
||||
if err != nil {
|
||||
return nil, err
|
||||
} else if status != ServerStatusReady {
|
||||
return nil, fmt.Errorf("unexpected server status: %s", status.ToString())
|
||||
return nil, fmt.Errorf("unexpected server status: %s", status)
|
||||
}
|
||||
|
||||
data, err := json.Marshal(EmbeddingRequest{Content: input})
|
||||
@@ -1059,12 +1010,3 @@ func (s *llmServer) EstimatedVRAMByGPU(gpuID string) uint64 {
|
||||
}
|
||||
return 0
|
||||
}
|
||||
|
||||
func parseDurationMs(ms float64) time.Duration {
|
||||
dur, err := time.ParseDuration(fmt.Sprintf("%fms", ms))
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
return dur
|
||||
}
|
||||
|
||||
@@ -312,17 +312,19 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
|
||||
return fmt.Errorf("unassigned tensor: %s", t.Name)
|
||||
}
|
||||
|
||||
bts := make([]byte, t.Size())
|
||||
n, err := io.ReadFull(io.NewSectionReader(sr, int64(t.Offset), int64(t.Size())), bts)
|
||||
if err != nil {
|
||||
return err
|
||||
bts := C.malloc(C.size_t(t.Size()))
|
||||
if bts == nil {
|
||||
return errors.New("failed to allocate tensor buffer")
|
||||
}
|
||||
defer C.free(bts)
|
||||
|
||||
buf := unsafe.Slice((*byte)(bts), t.Size())
|
||||
n, err := io.ReadFull(io.NewSectionReader(sr, int64(t.Offset), int64(t.Size())), buf)
|
||||
if err != nil || n != len(buf) {
|
||||
return errors.New("read failed")
|
||||
}
|
||||
|
||||
if n != len(bts) {
|
||||
return errors.New("short read")
|
||||
}
|
||||
|
||||
C.ggml_backend_tensor_set(tt, unsafe.Pointer(&bts[0]), 0, C.size_t(t.Size()))
|
||||
C.ggml_backend_tensor_set(tt, bts, 0, C.size_t(t.Size()))
|
||||
return nil
|
||||
})
|
||||
}
|
||||
@@ -371,7 +373,7 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
|
||||
(*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&schedBufts[0])),
|
||||
C.int(len(schedBackends)),
|
||||
C.size_t(maxGraphNodes),
|
||||
true,
|
||||
C._Bool(len(gpus) > 1 && slices.Contains(gpus, output.d)),
|
||||
),
|
||||
input: deviceBufferTypes[input.d],
|
||||
output: deviceBufferTypes[output.d],
|
||||
|
||||
@@ -15,6 +15,12 @@ type Input struct {
|
||||
// stored in Multimodal, used for caching and comparing
|
||||
// equality.
|
||||
MultimodalHash uint64
|
||||
|
||||
// SameBatch forces the following number of tokens to be processed
|
||||
// in a single batch, breaking and extending batches as needed.
|
||||
// Useful for things like images that must be processed in one
|
||||
// shot.
|
||||
SameBatch int
|
||||
}
|
||||
|
||||
// MultimodalIndex is a multimodal element (such as an image)
|
||||
|
||||
@@ -60,7 +60,7 @@ type MultimodalProcessor interface {
|
||||
// This function is also responsible for updating MultimodalHash for any Multimodal
|
||||
// that is modified to ensure that there is a unique hash value that accurately
|
||||
// represents the contents.
|
||||
PostTokenize(ml.Context, []input.Input) ([]input.Input, error)
|
||||
PostTokenize([]input.Input) ([]input.Input, error)
|
||||
}
|
||||
|
||||
// Base implements the common fields and methods for all models
|
||||
|
||||
@@ -2,10 +2,9 @@ package gemma3
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/binary"
|
||||
"hash/fnv"
|
||||
"image"
|
||||
"math"
|
||||
"slices"
|
||||
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
@@ -112,36 +111,23 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, er
|
||||
return visionOutputs, nil
|
||||
}
|
||||
|
||||
type imageToken struct {
|
||||
embedding ml.Tensor
|
||||
index int
|
||||
}
|
||||
|
||||
func (m *Model) PostTokenize(ctx ml.Context, inputs []input.Input) ([]input.Input, error) {
|
||||
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
|
||||
var result []input.Input
|
||||
fnvHash := fnv.New64a()
|
||||
|
||||
for _, inp := range inputs {
|
||||
if inp.Multimodal == nil {
|
||||
result = append(result, inp)
|
||||
} else {
|
||||
imageInputs := []input.Input{
|
||||
{Token: 108}, // "\n\n"
|
||||
{Token: 255999}, // "<start_of_image>""
|
||||
}
|
||||
result = append(result, imageInputs...)
|
||||
|
||||
// add image embeddings
|
||||
inputMultimodal := inp.Multimodal.(ml.Tensor)
|
||||
|
||||
for i := range inputMultimodal.Dim(1) {
|
||||
fnvHash.Reset()
|
||||
binary.Write(fnvHash, binary.NativeEndian, inp.MultimodalHash)
|
||||
fnvHash.Write([]byte{byte(i)})
|
||||
result = append(result,
|
||||
input.Input{Token: 108, SameBatch: inputMultimodal.Dim(1) + 3}, // "\n\n"
|
||||
input.Input{Token: 255999}, // "<start_of_image>""
|
||||
input.Input{Multimodal: inputMultimodal, MultimodalHash: inp.MultimodalHash}, // image data is on the first placeholder
|
||||
)
|
||||
|
||||
imageToken := imageToken{embedding: inputMultimodal, index: i}
|
||||
result = append(result, input.Input{Multimodal: imageToken, MultimodalHash: fnvHash.Sum64()})
|
||||
}
|
||||
// add image token placeholders
|
||||
result = append(result, slices.Repeat([]input.Input{{Token: 0}}, inputMultimodal.Dim(1)-1)...)
|
||||
|
||||
result = append(result,
|
||||
input.Input{Token: 256000}, // <end_of_image>
|
||||
|
||||
@@ -171,53 +171,20 @@ func (l *TextLayer) Forward(ctx ml.Context, layer int, hiddenState, positionIDs,
|
||||
return hiddenState.Add(ctx, residual)
|
||||
}
|
||||
|
||||
func setImageEmbeddings(ctx ml.Context, hiddenState ml.Tensor, multimodal []input.MultimodalIndex) []int {
|
||||
var embedding ml.Tensor
|
||||
var src, dst, length int
|
||||
var except []int
|
||||
|
||||
for _, image := range multimodal {
|
||||
imageToken := image.Multimodal.(imageToken)
|
||||
imageSrc := imageToken.index
|
||||
imageDst := image.Index
|
||||
|
||||
if embedding == nil {
|
||||
embedding = imageToken.embedding
|
||||
src = imageSrc
|
||||
dst = imageDst
|
||||
length = 1
|
||||
} else if embedding == imageToken.embedding && imageSrc+1 == src && imageDst+1 == dst {
|
||||
src = imageSrc
|
||||
dst = imageDst
|
||||
length++
|
||||
} else if embedding == imageToken.embedding && src+length == imageSrc && dst+length == imageDst {
|
||||
length++
|
||||
} else {
|
||||
visionOutputs := embedding.View(ctx, src*embedding.Stride(1), length*embedding.Dim(0))
|
||||
ctx.Forward(visionOutputs.Copy(ctx, hiddenState.View(ctx, dst*hiddenState.Stride(1), length*hiddenState.Dim(0))))
|
||||
|
||||
embedding = imageToken.embedding
|
||||
src = imageSrc
|
||||
dst = imageDst
|
||||
length = 1
|
||||
}
|
||||
|
||||
except = append(except, imageDst)
|
||||
}
|
||||
|
||||
if embedding != nil {
|
||||
visionOutputs := embedding.View(ctx, src*embedding.Stride(1), length*embedding.Dim(0))
|
||||
ctx.Forward(visionOutputs.Copy(ctx, hiddenState.View(ctx, dst*hiddenState.Stride(1), length*hiddenState.Dim(0))))
|
||||
}
|
||||
|
||||
return except
|
||||
}
|
||||
|
||||
func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor, opts input.Options, cache kvcache.Cache) ml.Tensor {
|
||||
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
|
||||
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.TextOptions.hiddenSize)))
|
||||
|
||||
except := setImageEmbeddings(ctx, hiddenState, opts.Multimodal)
|
||||
// set image embeddings
|
||||
var except []int
|
||||
for _, image := range opts.Multimodal {
|
||||
visionOutputs := image.Multimodal.(ml.Tensor)
|
||||
ctx.Forward(visionOutputs.Copy(ctx, hiddenState.View(ctx, image.Index*hiddenState.Stride(1), visionOutputs.Dim(0)*visionOutputs.Dim(1))))
|
||||
|
||||
for i := range visionOutputs.Dim(1) {
|
||||
except = append(except, image.Index+i)
|
||||
}
|
||||
}
|
||||
|
||||
for i, layer := range m.Layers {
|
||||
// gemma alternates between the sliding window (local) and causal (global)
|
||||
|
||||
@@ -106,17 +106,17 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, er
|
||||
return m.Projector.Forward(ctx, crossAttentionStates), nil
|
||||
}
|
||||
|
||||
func (m *Model) PostTokenize(ctx ml.Context, inputs []input.Input) ([]input.Input, error) {
|
||||
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
|
||||
var images []input.Input
|
||||
fnvHash := fnv.New64a()
|
||||
|
||||
for i := range inputs {
|
||||
if inputs[i].Multimodal == nil {
|
||||
if len(images) > 0 {
|
||||
inputs[i].Multimodal = images[0].Multimodal
|
||||
inputs[i].Multimodal = []ml.Tensor{images[0].Multimodal.(ml.Tensor)}
|
||||
inputs[i].MultimodalHash = images[0].MultimodalHash
|
||||
for j := 1; j < len(images); j++ {
|
||||
inputs[i].Multimodal = inputs[i].Multimodal.(ml.Tensor).Concat(ctx, images[j].Multimodal.(ml.Tensor), 3)
|
||||
inputs[i].Multimodal = append(inputs[i].Multimodal.([]ml.Tensor), images[0].Multimodal.(ml.Tensor))
|
||||
fnvHash.Reset()
|
||||
binary.Write(fnvHash, binary.NativeEndian, inputs[i].MultimodalHash)
|
||||
binary.Write(fnvHash, binary.NativeEndian, inputs[j].MultimodalHash)
|
||||
@@ -138,7 +138,10 @@ func (m *Model) PostTokenize(ctx ml.Context, inputs []input.Input) ([]input.Inpu
|
||||
func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
|
||||
var crossAttentionStates ml.Tensor
|
||||
if len(opts.Multimodal) > 0 {
|
||||
crossAttentionStates = opts.Multimodal[len(opts.Multimodal)-1].Multimodal.(ml.Tensor)
|
||||
images := opts.Multimodal[len(opts.Multimodal)-1].Multimodal.([]ml.Tensor)
|
||||
if len(images) > 0 {
|
||||
crossAttentionStates = images[len(images)-1]
|
||||
}
|
||||
}
|
||||
|
||||
inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
|
||||
|
||||
@@ -24,6 +24,7 @@ import (
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/llama"
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/runner/common"
|
||||
)
|
||||
|
||||
@@ -99,7 +100,7 @@ type NewSequenceParams struct {
|
||||
embedding bool
|
||||
}
|
||||
|
||||
func (s *Server) NewSequence(prompt string, images []ImageData, params NewSequenceParams) (*Sequence, error) {
|
||||
func (s *Server) NewSequence(prompt string, images []llm.ImageData, params NewSequenceParams) (*Sequence, error) {
|
||||
s.ready.Wait()
|
||||
|
||||
startTime := time.Now()
|
||||
@@ -163,7 +164,7 @@ func (s *Server) NewSequence(prompt string, images []ImageData, params NewSequen
|
||||
// inputs processes the prompt and images into a list of inputs
|
||||
// by splitting the prompt on [img-<n>] tags, tokenizing text and
|
||||
// generating image embeddings for each image
|
||||
func (s *Server) inputs(prompt string, images []ImageData) ([]input, error) {
|
||||
func (s *Server) inputs(prompt string, images []llm.ImageData) ([]input, error) {
|
||||
var inputs []input
|
||||
var parts []string
|
||||
var matches [][]string
|
||||
@@ -229,7 +230,7 @@ type Server struct {
|
||||
image *ImageContext
|
||||
|
||||
// status for external health reporting - loading, ready to serve, etc.
|
||||
status ServerStatus
|
||||
status llm.ServerStatus
|
||||
|
||||
// current progress on loading the model
|
||||
progress float32
|
||||
@@ -541,75 +542,18 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
|
||||
return nil
|
||||
}
|
||||
|
||||
// TODO (jmorganca): use structs from the api package to avoid duplication
|
||||
// this way the api acts as a proxy instead of using a different api for the
|
||||
// runner
|
||||
type Options struct {
|
||||
api.Runner
|
||||
|
||||
NumKeep int `json:"n_keep"`
|
||||
Seed int `json:"seed"`
|
||||
NumPredict int `json:"n_predict"`
|
||||
TopK int `json:"top_k"`
|
||||
TopP float32 `json:"top_p"`
|
||||
MinP float32 `json:"min_p"`
|
||||
TypicalP float32 `json:"typical_p"`
|
||||
RepeatLastN int `json:"repeat_last_n"`
|
||||
Temperature float32 `json:"temperature"`
|
||||
RepeatPenalty float32 `json:"repeat_penalty"`
|
||||
PresencePenalty float32 `json:"presence_penalty"`
|
||||
FrequencyPenalty float32 `json:"frequency_penalty"`
|
||||
Mirostat int `json:"mirostat"`
|
||||
MirostatTau float32 `json:"mirostat_tau"`
|
||||
MirostatEta float32 `json:"mirostat_eta"`
|
||||
Stop []string `json:"stop"`
|
||||
}
|
||||
|
||||
type ImageData struct {
|
||||
Data []byte `json:"data"`
|
||||
ID int `json:"id"`
|
||||
AspectRatioID int `json:"aspect_ratio_id"`
|
||||
}
|
||||
|
||||
type CompletionRequest struct {
|
||||
Prompt string `json:"prompt"`
|
||||
Images []ImageData `json:"image_data"`
|
||||
Grammar string `json:"grammar"`
|
||||
CachePrompt bool `json:"cache_prompt"`
|
||||
|
||||
Options
|
||||
}
|
||||
|
||||
type Timings struct {
|
||||
PredictedN int `json:"predicted_n"`
|
||||
PredictedMS float64 `json:"predicted_ms"`
|
||||
PromptN int `json:"prompt_n"`
|
||||
PromptMS float64 `json:"prompt_ms"`
|
||||
}
|
||||
|
||||
type CompletionResponse struct {
|
||||
Content string `json:"content"`
|
||||
Stop bool `json:"stop"`
|
||||
|
||||
Model string `json:"model,omitempty"`
|
||||
Prompt string `json:"prompt,omitempty"`
|
||||
StoppedLimit bool `json:"stopped_limit,omitempty"`
|
||||
PredictedN int `json:"predicted_n,omitempty"`
|
||||
PredictedMS float64 `json:"predicted_ms,omitempty"`
|
||||
PromptN int `json:"prompt_n,omitempty"`
|
||||
PromptMS float64 `json:"prompt_ms,omitempty"`
|
||||
|
||||
Timings Timings `json:"timings"`
|
||||
}
|
||||
|
||||
func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
|
||||
var req CompletionRequest
|
||||
req.Options = Options(api.DefaultOptions())
|
||||
var req llm.CompletionRequest
|
||||
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
|
||||
http.Error(w, "Bad request", http.StatusBadRequest)
|
||||
return
|
||||
}
|
||||
|
||||
if req.Options == nil {
|
||||
opts := api.DefaultOptions()
|
||||
req.Options = &opts
|
||||
}
|
||||
|
||||
// Set the headers to indicate streaming
|
||||
w.Header().Set("Content-Type", "application/json")
|
||||
w.Header().Set("Transfer-Encoding", "chunked")
|
||||
@@ -620,26 +564,28 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
|
||||
return
|
||||
}
|
||||
|
||||
var samplingParams llama.SamplingParams
|
||||
samplingParams.TopK = req.TopK
|
||||
samplingParams.TopP = req.TopP
|
||||
samplingParams.MinP = req.MinP
|
||||
samplingParams.TypicalP = req.TypicalP
|
||||
samplingParams.Temp = req.Temperature
|
||||
samplingParams.RepeatLastN = req.RepeatLastN
|
||||
samplingParams.PenaltyRepeat = req.RepeatPenalty
|
||||
samplingParams.PenaltyFreq = req.FrequencyPenalty
|
||||
samplingParams.PenaltyPresent = req.PresencePenalty
|
||||
samplingParams.Mirostat = req.Mirostat
|
||||
samplingParams.MirostatTau = req.MirostatTau
|
||||
samplingParams.MirostatEta = req.MirostatEta
|
||||
samplingParams.Seed = uint32(req.Seed)
|
||||
samplingParams.Grammar = req.Grammar
|
||||
// Extract options from the CompletionRequest
|
||||
samplingParams := llama.SamplingParams{
|
||||
TopK: req.Options.TopK,
|
||||
TopP: req.Options.TopP,
|
||||
MinP: req.Options.MinP,
|
||||
TypicalP: req.Options.TypicalP,
|
||||
Temp: req.Options.Temperature,
|
||||
RepeatLastN: req.Options.RepeatLastN,
|
||||
PenaltyRepeat: req.Options.RepeatPenalty,
|
||||
PenaltyFreq: req.Options.FrequencyPenalty,
|
||||
PenaltyPresent: req.Options.PresencePenalty,
|
||||
Mirostat: req.Options.Mirostat,
|
||||
MirostatTau: req.Options.MirostatTau,
|
||||
MirostatEta: req.Options.MirostatEta,
|
||||
Seed: uint32(req.Options.Seed),
|
||||
Grammar: req.Grammar,
|
||||
}
|
||||
|
||||
seq, err := s.NewSequence(req.Prompt, req.Images, NewSequenceParams{
|
||||
numPredict: req.NumPredict,
|
||||
stop: req.Stop,
|
||||
numKeep: req.NumKeep,
|
||||
numPredict: req.Options.NumPredict,
|
||||
stop: req.Options.Stop,
|
||||
numKeep: req.Options.NumKeep,
|
||||
samplingParams: &samplingParams,
|
||||
embedding: false,
|
||||
})
|
||||
@@ -662,7 +608,7 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
|
||||
found := false
|
||||
for i, sq := range s.seqs {
|
||||
if sq == nil {
|
||||
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
|
||||
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, true)
|
||||
if err != nil {
|
||||
s.mu.Unlock()
|
||||
http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
|
||||
@@ -691,7 +637,7 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
|
||||
return
|
||||
case content, ok := <-seq.responses:
|
||||
if ok {
|
||||
if err := json.NewEncoder(w).Encode(&CompletionResponse{
|
||||
if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
|
||||
Content: content,
|
||||
}); err != nil {
|
||||
http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
|
||||
@@ -702,15 +648,17 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
|
||||
flusher.Flush()
|
||||
} else {
|
||||
// Send the final response
|
||||
if err := json.NewEncoder(w).Encode(&CompletionResponse{
|
||||
Stop: true,
|
||||
StoppedLimit: seq.doneReason == "limit",
|
||||
Timings: Timings{
|
||||
PromptN: seq.numPromptInputs,
|
||||
PromptMS: float64(seq.startGenerationTime.Sub(seq.startProcessingTime).Milliseconds()),
|
||||
PredictedN: seq.numDecoded,
|
||||
PredictedMS: float64(time.Since(seq.startGenerationTime).Milliseconds()),
|
||||
},
|
||||
doneReason := "stop"
|
||||
if seq.doneReason == "limit" {
|
||||
doneReason = "length"
|
||||
}
|
||||
if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
|
||||
Done: true,
|
||||
DoneReason: doneReason,
|
||||
PromptEvalCount: seq.numPromptInputs,
|
||||
PromptEvalDuration: seq.startGenerationTime.Sub(seq.startProcessingTime),
|
||||
EvalCount: seq.numDecoded,
|
||||
EvalDuration: time.Since(seq.startGenerationTime),
|
||||
}); err != nil {
|
||||
http.Error(w, fmt.Sprintf("failed to encode final response: %v", err), http.StatusInternalServerError)
|
||||
}
|
||||
@@ -721,17 +669,8 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
|
||||
}
|
||||
}
|
||||
|
||||
type EmbeddingRequest struct {
|
||||
Content string `json:"content"`
|
||||
CachePrompt bool `json:"cache_prompt"`
|
||||
}
|
||||
|
||||
type EmbeddingResponse struct {
|
||||
Embedding []float32 `json:"embedding"`
|
||||
}
|
||||
|
||||
func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
|
||||
var req EmbeddingRequest
|
||||
var req llm.EmbeddingRequest
|
||||
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
|
||||
http.Error(w, fmt.Sprintf("bad request: %s", err), http.StatusBadRequest)
|
||||
return
|
||||
@@ -761,7 +700,7 @@ func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
|
||||
found := false
|
||||
for i, sq := range s.seqs {
|
||||
if sq == nil {
|
||||
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
|
||||
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, false)
|
||||
if err != nil {
|
||||
s.mu.Unlock()
|
||||
http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
|
||||
@@ -782,41 +721,17 @@ func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
|
||||
|
||||
embedding := <-seq.embedding
|
||||
|
||||
if err := json.NewEncoder(w).Encode(&EmbeddingResponse{
|
||||
if err := json.NewEncoder(w).Encode(&llm.EmbeddingResponse{
|
||||
Embedding: embedding,
|
||||
}); err != nil {
|
||||
http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
|
||||
}
|
||||
}
|
||||
|
||||
type HealthResponse struct {
|
||||
Status string `json:"status"`
|
||||
Progress float32 `json:"progress"`
|
||||
}
|
||||
|
||||
type ServerStatus int
|
||||
|
||||
const (
|
||||
ServerStatusReady ServerStatus = iota
|
||||
ServerStatusLoadingModel
|
||||
ServerStatusError
|
||||
)
|
||||
|
||||
func (s ServerStatus) ToString() string {
|
||||
switch s {
|
||||
case ServerStatusReady:
|
||||
return "ok"
|
||||
case ServerStatusLoadingModel:
|
||||
return "loading model"
|
||||
default:
|
||||
return "server error"
|
||||
}
|
||||
}
|
||||
|
||||
func (s *Server) health(w http.ResponseWriter, r *http.Request) {
|
||||
w.Header().Set("Content-Type", "application/json")
|
||||
if err := json.NewEncoder(w).Encode(&HealthResponse{
|
||||
Status: s.status.ToString(),
|
||||
if err := json.NewEncoder(w).Encode(&llm.ServerStatusResponse{
|
||||
Status: s.status,
|
||||
Progress: s.progress,
|
||||
}); err != nil {
|
||||
http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
|
||||
@@ -879,7 +794,7 @@ func (s *Server) loadModel(
|
||||
panic(err)
|
||||
}
|
||||
|
||||
s.status = ServerStatusReady
|
||||
s.status = llm.ServerStatusReady
|
||||
s.ready.Done()
|
||||
}
|
||||
|
||||
@@ -937,7 +852,7 @@ func Execute(args []string) error {
|
||||
parallel: *parallel,
|
||||
seqs: make([]*Sequence, *parallel),
|
||||
seqsSem: semaphore.NewWeighted(int64(*parallel)),
|
||||
status: ServerStatusLoadingModel,
|
||||
status: llm.ServerStatusLoadingModel,
|
||||
}
|
||||
|
||||
var tensorSplitFloats []float32
|
||||
|
||||
@@ -89,7 +89,7 @@ type InputCacheSlot struct {
|
||||
lastUsed time.Time
|
||||
}
|
||||
|
||||
func (c *InputCache) LoadCacheSlot(prompt []input.Input, cachePrompt bool) (*InputCacheSlot, []input.Input, error) {
|
||||
func (c *InputCache) LoadCacheSlot(prompt []input.Input) (*InputCacheSlot, []input.Input, error) {
|
||||
var slot *InputCacheSlot
|
||||
var numPast int32
|
||||
var err error
|
||||
@@ -107,10 +107,6 @@ func (c *InputCache) LoadCacheSlot(prompt []input.Input, cachePrompt bool) (*Inp
|
||||
return nil, nil, err
|
||||
}
|
||||
|
||||
if !cachePrompt {
|
||||
numPast = 0
|
||||
}
|
||||
|
||||
slot.InUse = true
|
||||
slot.lastUsed = time.Now()
|
||||
|
||||
|
||||
@@ -297,3 +297,131 @@ func TestShiftDiscard(t *testing.T) {
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestLoadCacheSlot(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
cache InputCache
|
||||
prompt []input.Input
|
||||
wantErr bool
|
||||
expectedSlotId int
|
||||
expectedPrompt int // expected length of remaining prompt
|
||||
}{
|
||||
{
|
||||
name: "Basic cache hit - single user",
|
||||
cache: InputCache{
|
||||
multiUserCache: false,
|
||||
slots: []InputCacheSlot{
|
||||
{
|
||||
Id: 0,
|
||||
Inputs: []input.Input{{Token: 1}, {Token: 2}},
|
||||
InUse: false,
|
||||
lastUsed: time.Now().Add(-time.Second),
|
||||
},
|
||||
{
|
||||
Id: 1,
|
||||
Inputs: []input.Input{},
|
||||
InUse: false,
|
||||
lastUsed: time.Now().Add(-2 * time.Second),
|
||||
},
|
||||
},
|
||||
},
|
||||
prompt: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
|
||||
wantErr: false,
|
||||
expectedSlotId: 0,
|
||||
expectedPrompt: 1, // Only token 3 remains
|
||||
},
|
||||
{
|
||||
name: "Basic cache hit - multi user",
|
||||
cache: InputCache{
|
||||
multiUserCache: true,
|
||||
slots: []InputCacheSlot{
|
||||
{
|
||||
Id: 0,
|
||||
Inputs: []input.Input{{Token: 1}, {Token: 2}},
|
||||
InUse: false,
|
||||
lastUsed: time.Now().Add(-time.Second),
|
||||
},
|
||||
{
|
||||
Id: 1,
|
||||
Inputs: []input.Input{},
|
||||
InUse: false,
|
||||
lastUsed: time.Now().Add(-2 * time.Second),
|
||||
},
|
||||
},
|
||||
},
|
||||
prompt: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
|
||||
wantErr: false,
|
||||
expectedSlotId: 0,
|
||||
expectedPrompt: 1, // Only token 3 remains
|
||||
},
|
||||
{
|
||||
name: "Exact match - leave one input",
|
||||
cache: InputCache{
|
||||
multiUserCache: false,
|
||||
slots: []InputCacheSlot{
|
||||
{
|
||||
Id: 0,
|
||||
Inputs: []input.Input{{Token: 1}, {Token: 2}},
|
||||
InUse: false,
|
||||
lastUsed: time.Now().Add(-time.Second),
|
||||
},
|
||||
},
|
||||
},
|
||||
prompt: []input.Input{{Token: 1}, {Token: 2}},
|
||||
wantErr: false,
|
||||
expectedSlotId: 0,
|
||||
expectedPrompt: 1, // Should leave 1 token for sampling
|
||||
},
|
||||
{
|
||||
name: "No available slots",
|
||||
cache: InputCache{
|
||||
multiUserCache: false,
|
||||
slots: []InputCacheSlot{
|
||||
{
|
||||
Id: 0,
|
||||
Inputs: []input.Input{{Token: 1}, {Token: 2}},
|
||||
InUse: true,
|
||||
lastUsed: time.Now().Add(-time.Second),
|
||||
},
|
||||
},
|
||||
},
|
||||
prompt: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
|
||||
wantErr: true,
|
||||
expectedSlotId: -1,
|
||||
expectedPrompt: -1,
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
slot, remainingPrompt, err := tt.cache.LoadCacheSlot(tt.prompt)
|
||||
|
||||
// Check error state
|
||||
if (err != nil) != tt.wantErr {
|
||||
t.Errorf("LoadCacheSlot() error = %v, wantErr %v", err, tt.wantErr)
|
||||
return
|
||||
}
|
||||
|
||||
if tt.wantErr {
|
||||
return // Skip further checks if we expected an error
|
||||
}
|
||||
|
||||
// Verify slot ID
|
||||
if slot.Id != tt.expectedSlotId {
|
||||
t.Errorf("LoadCacheSlot() slot ID = %v, expected %v", slot.Id, tt.expectedSlotId)
|
||||
}
|
||||
|
||||
// Verify slot is now marked in use
|
||||
if !slot.InUse {
|
||||
t.Errorf("LoadCacheSlot() slot not marked InUse")
|
||||
}
|
||||
|
||||
// Verify remaining prompt length
|
||||
if len(remainingPrompt) != tt.expectedPrompt {
|
||||
t.Errorf("LoadCacheSlot() remaining prompt length = %v, expected %v",
|
||||
len(remainingPrompt), tt.expectedPrompt)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
@@ -24,6 +24,7 @@ import (
|
||||
"golang.org/x/sync/semaphore"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/model"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
@@ -33,10 +34,14 @@ import (
|
||||
_ "github.com/ollama/ollama/model/models"
|
||||
)
|
||||
|
||||
type contextList struct {
|
||||
list []ml.Context
|
||||
}
|
||||
|
||||
type Sequence struct {
|
||||
// ctx for allocating tensors that last the lifetime of the sequence, such as
|
||||
// ctxs are used for allocating tensors that last the lifetime of the sequence, such as
|
||||
// multimodal embeddings
|
||||
ctx ml.Context
|
||||
ctxs *contextList
|
||||
|
||||
// batch index
|
||||
iBatch int
|
||||
@@ -94,13 +99,12 @@ type NewSequenceParams struct {
|
||||
embedding bool
|
||||
}
|
||||
|
||||
func (s *Server) NewSequence(prompt string, images []ImageData, params NewSequenceParams) (*Sequence, error) {
|
||||
func (s *Server) NewSequence(prompt string, images []llm.ImageData, params NewSequenceParams) (*Sequence, error) {
|
||||
s.ready.Wait()
|
||||
|
||||
startTime := time.Now()
|
||||
ctx := s.model.Backend().NewContext()
|
||||
|
||||
inputs, err := s.inputs(ctx, prompt, images)
|
||||
inputs, ctxs, err := s.inputs(prompt, images)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("failed to process inputs: %w", err)
|
||||
} else if len(inputs) == 0 {
|
||||
@@ -111,6 +115,9 @@ func (s *Server) NewSequence(prompt string, images []ImageData, params NewSequen
|
||||
params.numKeep = int32(len(inputs))
|
||||
}
|
||||
|
||||
// TODO(jessegross): We should ensure that we always leave minBatch of context space to shift,
|
||||
// otherwise we might truncate or split the batch against the model's wishes
|
||||
|
||||
// Ensure that at least 1 input can be discarded during shift
|
||||
params.numKeep = min(params.numKeep, s.cache.numCtx-1)
|
||||
|
||||
@@ -126,7 +133,7 @@ func (s *Server) NewSequence(prompt string, images []ImageData, params NewSequen
|
||||
// TODO(jessegross): Ingest cached history for grammar
|
||||
|
||||
return &Sequence{
|
||||
ctx: ctx,
|
||||
ctxs: ctxs,
|
||||
inputs: inputs,
|
||||
numPromptInputs: len(inputs),
|
||||
startProcessingTime: startTime,
|
||||
@@ -145,7 +152,7 @@ func (s *Server) NewSequence(prompt string, images []ImageData, params NewSequen
|
||||
// inputs processes the prompt and images into a list of inputs
|
||||
// by splitting the prompt on [img-<n>] tags, tokenizing text and
|
||||
// decoding images
|
||||
func (s *Server) inputs(ctx ml.Context, prompt string, images []ImageData) ([]input.Input, error) {
|
||||
func (s *Server) inputs(prompt string, images []llm.ImageData) ([]input.Input, *contextList, error) {
|
||||
var inputs []input.Input
|
||||
var parts []string
|
||||
var matches [][]string
|
||||
@@ -160,12 +167,19 @@ func (s *Server) inputs(ctx ml.Context, prompt string, images []ImageData) ([]in
|
||||
parts = []string{prompt}
|
||||
}
|
||||
|
||||
var contexts contextList
|
||||
runtime.AddCleanup(&contexts, func(ctxs []ml.Context) {
|
||||
for _, ctx := range ctxs {
|
||||
ctx.Close()
|
||||
}
|
||||
}, contexts.list)
|
||||
|
||||
postTokenize := false
|
||||
for i, part := range parts {
|
||||
// text - tokenize
|
||||
tokens, err := s.model.(model.TextProcessor).Encode(part, i == 0)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
return nil, nil, err
|
||||
}
|
||||
|
||||
for _, t := range tokens {
|
||||
@@ -185,12 +199,14 @@ func (s *Server) inputs(ctx ml.Context, prompt string, images []ImageData) ([]in
|
||||
}
|
||||
|
||||
if imageIndex < 0 {
|
||||
return nil, fmt.Errorf("invalid image index: %d", n)
|
||||
return nil, nil, fmt.Errorf("invalid image index: %d", n)
|
||||
}
|
||||
|
||||
ctx := s.model.Backend().NewContext()
|
||||
contexts.list = append(contexts.list, ctx)
|
||||
imageEmbeddings, err := multimodalProcessor.EncodeMultimodal(ctx, images[imageIndex].Data)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
return nil, nil, err
|
||||
}
|
||||
|
||||
s.multimodalHash.Reset()
|
||||
@@ -204,13 +220,13 @@ func (s *Server) inputs(ctx ml.Context, prompt string, images []ImageData) ([]in
|
||||
|
||||
if visionModel && postTokenize {
|
||||
var err error
|
||||
inputs, err = multimodalProcessor.PostTokenize(ctx, inputs)
|
||||
inputs, err = multimodalProcessor.PostTokenize(inputs)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
return nil, nil, err
|
||||
}
|
||||
}
|
||||
|
||||
return inputs, nil
|
||||
return inputs, &contexts, nil
|
||||
}
|
||||
|
||||
type Server struct {
|
||||
@@ -222,7 +238,7 @@ type Server struct {
|
||||
model model.Model
|
||||
|
||||
// status for external health reporting - loading, ready to serve, etc.
|
||||
status ServerStatus
|
||||
status llm.ServerStatus
|
||||
|
||||
// current progress on loading the model
|
||||
progress float32
|
||||
@@ -305,7 +321,6 @@ func (s *Server) removeSequence(seqIndex int, reason string) {
|
||||
close(seq.responses)
|
||||
close(seq.embedding)
|
||||
seq.cache.InUse = false
|
||||
seq.ctx.Close()
|
||||
s.seqs[seqIndex] = nil
|
||||
s.seqsSem.Release(1)
|
||||
}
|
||||
@@ -351,22 +366,35 @@ func (s *Server) processBatch() error {
|
||||
seq.cache.Inputs = []input.Input{}
|
||||
}
|
||||
|
||||
batchSize := s.batchSize
|
||||
|
||||
for j, inp := range seq.inputs {
|
||||
if int32(len(seq.cache.Inputs)+len(seq.pendingInputs)+1) > s.cache.numCtx {
|
||||
if len(seq.pendingInputs) == 0 {
|
||||
err := s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
} else {
|
||||
break
|
||||
}
|
||||
// If we are required to put following inputs into a single batch then extend the
|
||||
// batch size. Since we are only extending the size the minimum amount possible, this
|
||||
// will cause a break if we have pending inputs.
|
||||
minBatch := 1 + inp.SameBatch
|
||||
if minBatch > batchSize {
|
||||
batchSize = minBatch
|
||||
}
|
||||
|
||||
if j >= s.batchSize {
|
||||
if len(seq.pendingInputs)+minBatch > batchSize {
|
||||
break
|
||||
}
|
||||
|
||||
// If the sum of our working set (already processed tokens, tokens we added to this
|
||||
// batch, required following tokens) exceeds the context size, then trigger a shift
|
||||
// now so we don't have to do one later when we can't break the batch.
|
||||
if int32(len(seq.cache.Inputs)+len(seq.pendingInputs)+minBatch) > s.cache.numCtx {
|
||||
if len(seq.pendingInputs) != 0 {
|
||||
break
|
||||
}
|
||||
|
||||
err := s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
options.Inputs = append(options.Inputs, inp.Token)
|
||||
if inp.Multimodal != nil {
|
||||
options.Multimodal = append(options.Multimodal, input.MultimodalIndex{Index: len(options.Inputs) - 1, Multimodal: inp.Multimodal})
|
||||
@@ -501,75 +529,18 @@ func (s *Server) processBatch() error {
|
||||
return nil
|
||||
}
|
||||
|
||||
// TODO (jmorganca): use structs from the api package to avoid duplication
|
||||
// this way the api acts as a proxy instead of using a different api for the
|
||||
// runner
|
||||
type Options struct {
|
||||
api.Runner
|
||||
|
||||
NumKeep int `json:"n_keep"`
|
||||
Seed int `json:"seed"`
|
||||
NumPredict int `json:"n_predict"`
|
||||
TopK int `json:"top_k"`
|
||||
TopP float32 `json:"top_p"`
|
||||
MinP float32 `json:"min_p"`
|
||||
TypicalP float32 `json:"typical_p"`
|
||||
RepeatLastN int `json:"repeat_last_n"`
|
||||
Temperature float32 `json:"temperature"`
|
||||
RepeatPenalty float32 `json:"repeat_penalty"`
|
||||
PresencePenalty float32 `json:"presence_penalty"`
|
||||
FrequencyPenalty float32 `json:"frequency_penalty"`
|
||||
Mirostat int `json:"mirostat"`
|
||||
MirostatTau float32 `json:"mirostat_tau"`
|
||||
MirostatEta float32 `json:"mirostat_eta"`
|
||||
Stop []string `json:"stop"`
|
||||
}
|
||||
|
||||
type ImageData struct {
|
||||
Data []byte `json:"data"`
|
||||
ID int `json:"id"`
|
||||
AspectRatioID int `json:"aspect_ratio_id"`
|
||||
}
|
||||
|
||||
type CompletionRequest struct {
|
||||
Prompt string `json:"prompt"`
|
||||
Images []ImageData `json:"image_data"`
|
||||
Grammar string `json:"grammar"`
|
||||
CachePrompt bool `json:"cache_prompt"`
|
||||
|
||||
Options
|
||||
}
|
||||
|
||||
type Timings struct {
|
||||
PredictedN int `json:"predicted_n"`
|
||||
PredictedMS float64 `json:"predicted_ms"`
|
||||
PromptN int `json:"prompt_n"`
|
||||
PromptMS float64 `json:"prompt_ms"`
|
||||
}
|
||||
|
||||
type CompletionResponse struct {
|
||||
Content string `json:"content"`
|
||||
Stop bool `json:"stop"`
|
||||
|
||||
Model string `json:"model,omitempty"`
|
||||
Prompt string `json:"prompt,omitempty"`
|
||||
StoppedLimit bool `json:"stopped_limit,omitempty"`
|
||||
PredictedN int `json:"predicted_n,omitempty"`
|
||||
PredictedMS float64 `json:"predicted_ms,omitempty"`
|
||||
PromptN int `json:"prompt_n,omitempty"`
|
||||
PromptMS float64 `json:"prompt_ms,omitempty"`
|
||||
|
||||
Timings Timings `json:"timings"`
|
||||
}
|
||||
|
||||
func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
|
||||
var req CompletionRequest
|
||||
req.Options = Options(api.DefaultOptions())
|
||||
var req llm.CompletionRequest
|
||||
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
|
||||
http.Error(w, "Bad request", http.StatusBadRequest)
|
||||
return
|
||||
}
|
||||
|
||||
if req.Options == nil {
|
||||
opts := api.DefaultOptions()
|
||||
req.Options = &opts
|
||||
}
|
||||
|
||||
// Set the headers to indicate streaming
|
||||
w.Header().Set("Content-Type", "application/json")
|
||||
w.Header().Set("Transfer-Encoding", "chunked")
|
||||
@@ -591,18 +562,18 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
|
||||
}
|
||||
|
||||
sampler := sample.NewSampler(
|
||||
req.Temperature,
|
||||
req.TopK,
|
||||
req.TopP,
|
||||
req.MinP,
|
||||
req.Seed,
|
||||
req.Options.Temperature,
|
||||
req.Options.TopK,
|
||||
req.Options.TopP,
|
||||
req.Options.MinP,
|
||||
req.Options.Seed,
|
||||
grammar,
|
||||
)
|
||||
|
||||
seq, err := s.NewSequence(req.Prompt, req.Images, NewSequenceParams{
|
||||
numPredict: req.NumPredict,
|
||||
stop: req.Stop,
|
||||
numKeep: int32(req.NumKeep),
|
||||
numPredict: req.Options.NumPredict,
|
||||
stop: req.Options.Stop,
|
||||
numKeep: int32(req.Options.NumKeep),
|
||||
sampler: sampler,
|
||||
embedding: false,
|
||||
})
|
||||
@@ -625,7 +596,7 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
|
||||
found := false
|
||||
for i, sq := range s.seqs {
|
||||
if sq == nil {
|
||||
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
|
||||
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs)
|
||||
if err != nil {
|
||||
s.mu.Unlock()
|
||||
http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
|
||||
@@ -652,7 +623,7 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
|
||||
return
|
||||
case content, ok := <-seq.responses:
|
||||
if ok {
|
||||
if err := json.NewEncoder(w).Encode(&CompletionResponse{
|
||||
if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
|
||||
Content: content,
|
||||
}); err != nil {
|
||||
http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
|
||||
@@ -663,15 +634,17 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
|
||||
flusher.Flush()
|
||||
} else {
|
||||
// Send the final response
|
||||
if err := json.NewEncoder(w).Encode(&CompletionResponse{
|
||||
Stop: true,
|
||||
StoppedLimit: seq.doneReason == "limit",
|
||||
Timings: Timings{
|
||||
PromptN: seq.numPromptInputs,
|
||||
PromptMS: float64(seq.startGenerationTime.Sub(seq.startProcessingTime).Milliseconds()),
|
||||
PredictedN: seq.numPredicted,
|
||||
PredictedMS: float64(time.Since(seq.startGenerationTime).Milliseconds()),
|
||||
},
|
||||
doneReason := "stop"
|
||||
if seq.doneReason == "limit" {
|
||||
doneReason = "length"
|
||||
}
|
||||
if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
|
||||
Done: true,
|
||||
DoneReason: doneReason,
|
||||
PromptEvalCount: seq.numPromptInputs,
|
||||
PromptEvalDuration: seq.startGenerationTime.Sub(seq.startProcessingTime),
|
||||
EvalCount: seq.numPredicted,
|
||||
EvalDuration: time.Since(seq.startGenerationTime),
|
||||
}); err != nil {
|
||||
http.Error(w, fmt.Sprintf("failed to encode final response: %v", err), http.StatusInternalServerError)
|
||||
}
|
||||
@@ -682,43 +655,10 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
|
||||
}
|
||||
}
|
||||
|
||||
type EmbeddingRequest struct {
|
||||
Content string `json:"content"`
|
||||
CachePrompt bool `json:"cache_prompt"`
|
||||
}
|
||||
|
||||
type EmbeddingResponse struct {
|
||||
Embedding []float32 `json:"embedding"`
|
||||
}
|
||||
|
||||
type HealthResponse struct {
|
||||
Status string `json:"status"`
|
||||
Progress float32 `json:"progress"`
|
||||
}
|
||||
|
||||
type ServerStatus int
|
||||
|
||||
const (
|
||||
ServerStatusReady ServerStatus = iota
|
||||
ServerStatusLoadingModel
|
||||
ServerStatusError
|
||||
)
|
||||
|
||||
func (s ServerStatus) ToString() string {
|
||||
switch s {
|
||||
case ServerStatusReady:
|
||||
return "ok"
|
||||
case ServerStatusLoadingModel:
|
||||
return "loading model"
|
||||
default:
|
||||
return "server error"
|
||||
}
|
||||
}
|
||||
|
||||
func (s *Server) health(w http.ResponseWriter, r *http.Request) {
|
||||
w.Header().Set("Content-Type", "application/json")
|
||||
if err := json.NewEncoder(w).Encode(&HealthResponse{
|
||||
Status: s.status.ToString(),
|
||||
if err := json.NewEncoder(w).Encode(&llm.ServerStatusResponse{
|
||||
Status: s.status,
|
||||
Progress: s.progress,
|
||||
}); err != nil {
|
||||
http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
|
||||
@@ -772,7 +712,7 @@ func (s *Server) loadModel(
|
||||
s.seqs = make([]*Sequence, s.parallel)
|
||||
s.seqsSem = semaphore.NewWeighted(int64(s.parallel))
|
||||
|
||||
s.status = ServerStatusReady
|
||||
s.status = llm.ServerStatusReady
|
||||
s.ready.Done()
|
||||
}
|
||||
|
||||
@@ -824,7 +764,7 @@ func Execute(args []string) error {
|
||||
|
||||
server := &Server{
|
||||
batchSize: *batchSize,
|
||||
status: ServerStatusLoadingModel,
|
||||
status: llm.ServerStatusLoadingModel,
|
||||
}
|
||||
|
||||
// TODO(jessegross): Parameters that need to be implemented:
|
||||
|
||||
@@ -87,8 +87,9 @@ func (s *Sampler) sample(tokens []token) (token, error) {
|
||||
// topK also sorts the tokens in descending order of logits
|
||||
tokens = topK(tokens, s.topK)
|
||||
|
||||
tokens = temperature(tokens, s.temperature)
|
||||
tokens = softmax(tokens)
|
||||
// scale and normalize the tokens in place
|
||||
temperature(tokens, s.temperature)
|
||||
softmax(tokens)
|
||||
|
||||
tokens = topP(tokens, s.topP)
|
||||
tokens = minP(tokens, s.minP)
|
||||
|
||||
@@ -26,17 +26,16 @@ func (h *tokenHeap) Pop() any {
|
||||
}
|
||||
|
||||
// temperature applies scaling to the logits
|
||||
func temperature(ts []token, temp float32) []token {
|
||||
func temperature(ts []token, temp float32) {
|
||||
// Ensure temperature clipping near 0 to avoid numerical instability
|
||||
temp = max(temp, 1e-7)
|
||||
for i := range ts {
|
||||
ts[i].value = ts[i].value / temp
|
||||
}
|
||||
return ts
|
||||
}
|
||||
|
||||
// softmax applies normalization to the logits
|
||||
func softmax(ts []token) []token {
|
||||
func softmax(ts []token) {
|
||||
// Find max logit for numerical stability
|
||||
maxLogit := float32(math.Inf(-1))
|
||||
for _, t := range ts {
|
||||
@@ -56,8 +55,6 @@ func softmax(ts []token) []token {
|
||||
for i := range ts {
|
||||
ts[i].value /= sum
|
||||
}
|
||||
|
||||
return ts
|
||||
}
|
||||
|
||||
// topK limits the number of tokens considered to the k highest logits
|
||||
@@ -99,6 +96,7 @@ func topK(ts []token, k int) []token {
|
||||
}
|
||||
|
||||
// topP limits tokens to those with cumulative probability p
|
||||
// requires ts to be sorted in descending order of probabilities
|
||||
func topP(ts []token, p float32) []token {
|
||||
if p == 1.0 {
|
||||
return ts
|
||||
@@ -109,37 +107,24 @@ func topP(ts []token, p float32) []token {
|
||||
for i, t := range ts {
|
||||
sum += t.value
|
||||
if sum > float32(p) {
|
||||
ts = ts[:i+1]
|
||||
return ts
|
||||
return ts[:i+1]
|
||||
}
|
||||
}
|
||||
|
||||
return ts
|
||||
}
|
||||
|
||||
// minP limits tokens to those with cumulative probability p
|
||||
// minP filters tokens with probabilities >= p * max_prob
|
||||
// requires ts to be sorted in descending order of probabilities
|
||||
func minP(ts []token, p float32) []token {
|
||||
if p == 1.0 {
|
||||
return ts
|
||||
}
|
||||
maxProb := ts[0].value
|
||||
|
||||
maxProb := float32(math.Inf(-1))
|
||||
for _, token := range ts {
|
||||
if token.value > maxProb {
|
||||
maxProb = token.value
|
||||
threshold := maxProb * p
|
||||
|
||||
for i, t := range ts {
|
||||
if t.value < threshold {
|
||||
return ts[:i]
|
||||
}
|
||||
}
|
||||
|
||||
threshold := maxProb * float32(p)
|
||||
|
||||
// Filter tokens in-place
|
||||
validTokens := ts[:0]
|
||||
for i, token := range ts {
|
||||
if token.value >= threshold {
|
||||
validTokens = append(validTokens, ts[i])
|
||||
}
|
||||
}
|
||||
|
||||
ts = validTokens
|
||||
return ts
|
||||
}
|
||||
|
||||
@@ -34,17 +34,22 @@ func compareLogits(t *testing.T, name string, want []float32, got []token) {
|
||||
|
||||
func TestTemperature(t *testing.T) {
|
||||
input := []float32{1.0, 4.0, -2.0, 0.0}
|
||||
got := temperature(toTokens(input), 0.5)
|
||||
tokens := toTokens(input)
|
||||
temperature(tokens, 0.5)
|
||||
want := []float32{2.0, 8.0, -4.0, 0.0}
|
||||
compareLogits(t, "temperature(0.5)", want, got)
|
||||
compareLogits(t, "temperature(0.5)", want, tokens)
|
||||
|
||||
got = temperature(toTokens(input), 1.0)
|
||||
input = []float32{1.0, 4.0, -2.0, 0.0}
|
||||
tokens = toTokens(input)
|
||||
temperature(tokens, 1.0)
|
||||
want = []float32{1.0, 4.0, -2.0, 0.0}
|
||||
compareLogits(t, "temperature(1)", want, got)
|
||||
compareLogits(t, "temperature(1)", want, tokens)
|
||||
|
||||
got = temperature(toTokens(input), 0.0)
|
||||
input = []float32{1.0, 4.0, -2.0, 0.0}
|
||||
tokens = toTokens(input)
|
||||
temperature(tokens, 0.0)
|
||||
want = []float32{1e7, 4e7, -2e7, 0.0}
|
||||
compareLogits(t, "temperature(0)", want, got)
|
||||
compareLogits(t, "temperature(0)", want, tokens)
|
||||
}
|
||||
|
||||
func TestSoftmax(t *testing.T) {
|
||||
@@ -90,16 +95,17 @@ func TestSoftmax(t *testing.T) {
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
got := softmax(toTokens(tt.input))
|
||||
tokens := toTokens(tt.input)
|
||||
softmax(tokens)
|
||||
|
||||
if tt.expected != nil {
|
||||
compareLogits(t, tt.name, tt.expected, got)
|
||||
compareLogits(t, tt.name, tt.expected, tokens)
|
||||
return
|
||||
}
|
||||
|
||||
// Check probabilities sum to 1
|
||||
var sum float32
|
||||
for _, token := range got {
|
||||
for _, token := range tokens {
|
||||
sum += token.value
|
||||
if token.value < 0 || token.value > 1 {
|
||||
t.Errorf("probability out of range [0,1]: got %f", token.value)
|
||||
@@ -114,38 +120,44 @@ func TestSoftmax(t *testing.T) {
|
||||
|
||||
func TestTopK(t *testing.T) {
|
||||
input := []float32{0.026986899, 0.043722924, 0.036774673, 0.27755088, 0.0046718004, 0.08582123, 0.20409796, 0.00412893, 0.15720603, 0.045046154, 0.0030491839, 0.01681367}
|
||||
|
||||
// Test k=5
|
||||
got := topK(toTokens(input), 5)
|
||||
if len(got) != 5 {
|
||||
t.Errorf("topK(5): wrong length: want 5, got %d", len(got))
|
||||
tokens := toTokens(input)
|
||||
tokens = topK(tokens, 5)
|
||||
if len(tokens) != 5 {
|
||||
t.Errorf("topK(5): wrong length: want 5, got %d", len(tokens))
|
||||
}
|
||||
// Should keep highest 3 values in descending order
|
||||
want := []float32{0.27755088, 0.20409796, 0.15720603, 0.08582123, 0.045046154}
|
||||
compareLogits(t, "topK(3)", want, got)
|
||||
compareLogits(t, "topK(3)", want, tokens)
|
||||
|
||||
got = topK(toTokens(input), 20)
|
||||
if len(got) != len(input) {
|
||||
t.Errorf("topK(20): wrong length: want %d, got %d", len(input), len(got))
|
||||
tokens = toTokens(input)
|
||||
tokens = topK(tokens, 20)
|
||||
if len(tokens) != len(input) {
|
||||
t.Errorf("topK(20): wrong length: want %d, got %d", len(input), len(tokens))
|
||||
}
|
||||
|
||||
// Test k=-1
|
||||
input = []float32{0.026986899, 0.043722924, 0.036774673, 0.27755088, 0.0046718004, 0.08582123, 0.20409796, 0.00412893, 0.15720603, 0.045046154, 0.0030491839, 0.01681367}
|
||||
want = []float32{0.27755088, 0.20409796, 0.15720603, 0.08582123, 0.045046154, 0.043722924, 0.036774673, 0.026986899, 0.01681367, 0.0046718004, 0.00412893, 0.0030491839}
|
||||
got = topK(toTokens(input), -1)
|
||||
if len(got) != len(input) {
|
||||
t.Errorf("topK(-1): wrong length: want %d, got %d", len(input), len(got))
|
||||
tokens = toTokens(input)
|
||||
tokens = topK(tokens, -1)
|
||||
if len(tokens) != len(input) {
|
||||
t.Errorf("topK(-1): wrong length: want %d, got %d", len(input), len(tokens))
|
||||
}
|
||||
compareLogits(t, "topK(-1)", want, got)
|
||||
compareLogits(t, "topK(-1)", want, tokens)
|
||||
|
||||
// Test k=0
|
||||
input = []float32{0.026986899, 0.043722924, 0.036774673, 0.27755088, 0.0046718004, 0.08582123, 0.20409796, 0.00412893, 0.15720603, 0.045046154, 0.0030491839, 0.01681367}
|
||||
want = []float32{0.27755088, 0.20409796, 0.15720603, 0.08582123, 0.045046154, 0.043722924, 0.036774673, 0.026986899, 0.01681367, 0.0046718004, 0.00412893, 0.0030491839}
|
||||
got = topK(toTokens(input), 0)
|
||||
if len(got) != len(input) {
|
||||
t.Errorf("topK(-1): wrong length: want %d, got %d", len(input), len(got))
|
||||
tokens = toTokens(input)
|
||||
tokens = topK(tokens, 0)
|
||||
if len(tokens) != len(input) {
|
||||
t.Errorf("topK(-1): wrong length: want %d, got %d", len(input), len(tokens))
|
||||
}
|
||||
compareLogits(t, "topK(-1)", want, tokens)
|
||||
|
||||
input = []float32{-1e7, -2e7, -3e7, -4e7}
|
||||
tokens = toTokens(input)
|
||||
tokens = topK(tokens, 1)
|
||||
if len(tokens) < 1 {
|
||||
t.Error("topK should keep at least one token")
|
||||
}
|
||||
compareLogits(t, "topK(-1)", want, got)
|
||||
}
|
||||
|
||||
func TestTopP(t *testing.T) {
|
||||
@@ -153,16 +165,25 @@ func TestTopP(t *testing.T) {
|
||||
tokens := toTokens(input)
|
||||
|
||||
// First apply temperature and softmax to get probabilities
|
||||
tokens = softmax(tokens)
|
||||
softmax(tokens)
|
||||
tokens = topK(tokens, 20)
|
||||
|
||||
// Then apply topP
|
||||
got := topP(tokens, 0.95)
|
||||
tokens = topP(tokens, 0.95)
|
||||
|
||||
// Should keep tokens until cumsum > 0.95
|
||||
if len(got) > 3 {
|
||||
t.Errorf("topP(0.95): kept too many tokens: got %d", len(got))
|
||||
t.Logf("got: %v", got)
|
||||
if len(tokens) > 3 {
|
||||
t.Errorf("topP(0.95): kept too many tokens: got %d", len(tokens))
|
||||
t.Logf("got: %v", tokens)
|
||||
}
|
||||
|
||||
// Test edge case - ensure at least one token remains
|
||||
input = []float32{-1e6, -1e6, -1e6} // One dominant token
|
||||
tokens = toTokens(input)
|
||||
softmax(tokens)
|
||||
tokens = topP(tokens, 0.0) // Very small p
|
||||
if len(tokens) < 1 {
|
||||
t.Error("topP should keep at least one token")
|
||||
}
|
||||
}
|
||||
|
||||
@@ -171,14 +192,45 @@ func TestMinP(t *testing.T) {
|
||||
tokens := toTokens(input)
|
||||
|
||||
// First apply temperature and softmax
|
||||
tokens = softmax(tokens)
|
||||
tokens = topK(tokens, 20)
|
||||
softmax(tokens)
|
||||
|
||||
// Then apply minP
|
||||
got := minP(tokens, 0.2)
|
||||
tokens = minP(tokens, 1.0)
|
||||
|
||||
if len(tokens) != 1 {
|
||||
t.Errorf("minP(1.0): should keep all tokens, got %d, want %d", len(tokens), len(tokens))
|
||||
}
|
||||
|
||||
// Test with normal p value
|
||||
tokens = toTokens(input) // Reset tokens
|
||||
tokens = topK(tokens, 20)
|
||||
softmax(tokens)
|
||||
tokens = minP(tokens, 0.2)
|
||||
|
||||
// Should keep tokens with prob >= 0.2 * max_prob
|
||||
if len(got) > 3 {
|
||||
t.Errorf("minP(0.2): kept too many tokens: got %d", len(got))
|
||||
if len(tokens) > 3 {
|
||||
t.Errorf("minP(0.2): kept too many tokens: got %d", len(tokens))
|
||||
t.Logf("got: %v", tokens)
|
||||
}
|
||||
|
||||
// Test with zero p value
|
||||
tokens = toTokens(input) // Reset tokens
|
||||
tokens = topK(tokens, 20)
|
||||
softmax(tokens)
|
||||
tokens = minP(tokens, 0.0)
|
||||
|
||||
// Should keep only the highest probability token
|
||||
if len(tokens) != len(input) {
|
||||
t.Errorf("minP(0.0): should keep only one token, got %d", len(tokens))
|
||||
t.Logf("got: %v", tokens)
|
||||
}
|
||||
|
||||
input = []float32{1e-10, 1e-10, 1e-10}
|
||||
tokens = toTokens(input)
|
||||
softmax(tokens)
|
||||
tokens = minP(tokens, 1.0)
|
||||
if len(tokens) < 1 {
|
||||
t.Error("minP should keep at least one token even with extreme probabilities")
|
||||
}
|
||||
}
|
||||
|
||||
@@ -231,7 +283,7 @@ func BenchmarkTransforms(b *testing.B) {
|
||||
b.ResetTimer()
|
||||
for b.Loop() {
|
||||
copy(tokensCopy, tokens)
|
||||
topK(tokensCopy, 10)
|
||||
tokens = topK(tokensCopy, 10)
|
||||
}
|
||||
})
|
||||
|
||||
@@ -239,7 +291,7 @@ func BenchmarkTransforms(b *testing.B) {
|
||||
b.ResetTimer()
|
||||
for b.Loop() {
|
||||
copy(tokensCopy, tokens)
|
||||
topP(tokensCopy, 0.9)
|
||||
tokens = topP(tokensCopy, 0.9)
|
||||
}
|
||||
})
|
||||
|
||||
@@ -247,7 +299,7 @@ func BenchmarkTransforms(b *testing.B) {
|
||||
b.ResetTimer()
|
||||
for b.Loop() {
|
||||
copy(tokensCopy, tokens)
|
||||
minP(tokensCopy, 0.2)
|
||||
tokens = minP(tokensCopy, 0.2)
|
||||
}
|
||||
})
|
||||
|
||||
@@ -255,7 +307,7 @@ func BenchmarkTransforms(b *testing.B) {
|
||||
b.ResetTimer()
|
||||
for b.Loop() {
|
||||
copy(tokensCopy, tokens)
|
||||
topK(tokensCopy, 200000)
|
||||
tokens = topK(tokensCopy, 200000)
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
@@ -8,7 +8,7 @@ usage() {
|
||||
exit 1
|
||||
}
|
||||
|
||||
export VERSION=${VERSION:-$(git describe --tags --dirty)}
|
||||
export VERSION=${VERSION:-$(git describe --tags --first-parent --abbrev=7 --long --dirty --always | sed -e "s/^v//g")}
|
||||
export GOFLAGS="'-ldflags=-w -s \"-X=github.com/ollama/ollama/version.Version=${VERSION#v}\" \"-X=github.com/ollama/ollama/server.mode=release\"'"
|
||||
export CGO_CPPFLAGS='-mmacosx-version-min=11.3'
|
||||
|
||||
|
||||
@@ -25,6 +25,7 @@ import (
|
||||
"os"
|
||||
"path/filepath"
|
||||
"runtime"
|
||||
"runtime/debug"
|
||||
"slices"
|
||||
"strconv"
|
||||
"strings"
|
||||
@@ -259,6 +260,7 @@ func DefaultRegistry() (*Registry, error) {
|
||||
}
|
||||
|
||||
var rc Registry
|
||||
rc.UserAgent = UserAgent()
|
||||
rc.Key, err = ssh.ParseRawPrivateKey(keyPEM)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
@@ -274,6 +276,16 @@ func DefaultRegistry() (*Registry, error) {
|
||||
return &rc, nil
|
||||
}
|
||||
|
||||
func UserAgent() string {
|
||||
buildinfo, _ := debug.ReadBuildInfo()
|
||||
return fmt.Sprintf("ollama/%s (%s %s) Go/%s",
|
||||
buildinfo.Main.Version,
|
||||
runtime.GOARCH,
|
||||
runtime.GOOS,
|
||||
runtime.Version(),
|
||||
)
|
||||
}
|
||||
|
||||
func (r *Registry) maxStreams() int {
|
||||
return cmp.Or(r.MaxStreams, runtime.GOMAXPROCS(0))
|
||||
}
|
||||
|
||||
@@ -26,7 +26,6 @@ func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.
|
||||
var system []api.Message
|
||||
|
||||
isMllama := checkMllamaModelFamily(m)
|
||||
isGemma3 := checkGemma3ModelFamily(m)
|
||||
|
||||
var imageNumTokens int
|
||||
// TODO: Ideally we would compute this from the projector metadata but some pieces are implementation dependent
|
||||
@@ -41,7 +40,7 @@ func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.
|
||||
n := len(msgs) - 1
|
||||
// in reverse, find all messages that fit into context window
|
||||
for i := n; i >= 0; i-- {
|
||||
if (isMllama || isGemma3) && len(msgs[i].Images) > 1 {
|
||||
if isMllama && len(msgs[i].Images) > 1 {
|
||||
return "", nil, errTooManyImages
|
||||
}
|
||||
|
||||
@@ -158,12 +157,3 @@ func checkMllamaModelFamily(m *Model) bool {
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
func checkGemma3ModelFamily(m *Model) bool {
|
||||
for _, arch := range m.Config.ModelFamilies {
|
||||
if arch == "gemma3" {
|
||||
return true
|
||||
}
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
21
types/bfloat16/LICENSE
Normal file
21
types/bfloat16/LICENSE
Normal file
@@ -0,0 +1,21 @@
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2021 Tristan Rice
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
57
types/bfloat16/bfloat16.go
Normal file
57
types/bfloat16/bfloat16.go
Normal file
@@ -0,0 +1,57 @@
|
||||
// Vendored code from https://github.com/d4l3k/go-bfloat16
|
||||
// unsafe pointer replaced by "math"
|
||||
package bfloat16
|
||||
|
||||
import "math"
|
||||
|
||||
type BF16 uint16
|
||||
|
||||
func FromBytes(buf []byte) BF16 {
|
||||
return BF16(uint16(buf[0]) + uint16(buf[1])<<8)
|
||||
}
|
||||
|
||||
func ToBytes(b BF16) []byte {
|
||||
return []byte{byte(b & 0xFF), byte(b >> 8)}
|
||||
}
|
||||
|
||||
func Decode(buf []byte) []BF16 {
|
||||
var out []BF16
|
||||
for i := 0; i < len(buf); i += 2 {
|
||||
out = append(out, FromBytes(buf[i:]))
|
||||
}
|
||||
return out
|
||||
}
|
||||
|
||||
func Encode(f []BF16) []byte {
|
||||
var out []byte
|
||||
for _, a := range f {
|
||||
out = append(out, ToBytes(a)...)
|
||||
}
|
||||
return out
|
||||
}
|
||||
|
||||
func DecodeFloat32(buf []byte) []float32 {
|
||||
var out []float32
|
||||
for i := 0; i < len(buf); i += 2 {
|
||||
out = append(out, ToFloat32(FromBytes(buf[i:])))
|
||||
}
|
||||
return out
|
||||
}
|
||||
|
||||
func EncodeFloat32(f []float32) []byte {
|
||||
var out []byte
|
||||
for _, a := range f {
|
||||
out = append(out, ToBytes(FromFloat32(a))...)
|
||||
}
|
||||
return out
|
||||
}
|
||||
|
||||
func ToFloat32(b BF16) float32 {
|
||||
u32 := uint32(b) << 16
|
||||
return math.Float32frombits(u32)
|
||||
}
|
||||
|
||||
func FromFloat32(f float32) BF16 {
|
||||
u32 := math.Float32bits(f)
|
||||
return BF16(u32 >> 16)
|
||||
}
|
||||
53
types/bfloat16/bfloat16_test.go
Normal file
53
types/bfloat16/bfloat16_test.go
Normal file
@@ -0,0 +1,53 @@
|
||||
package bfloat16
|
||||
|
||||
import (
|
||||
"crypto/rand"
|
||||
"reflect"
|
||||
"testing"
|
||||
)
|
||||
|
||||
func randomBytes(n int) []byte {
|
||||
out := make([]byte, n)
|
||||
if _, err := rand.Read(out); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
return out
|
||||
}
|
||||
|
||||
func TestEncodeDecode(t *testing.T) {
|
||||
b := randomBytes(1024)
|
||||
bf16 := Decode(b)
|
||||
out := Encode(bf16)
|
||||
if !reflect.DeepEqual(b, out) {
|
||||
t.Fatalf("%+v != %+v", b, out)
|
||||
}
|
||||
}
|
||||
|
||||
func TestEncodeDecodeFloat32(t *testing.T) {
|
||||
b := randomBytes(1024)
|
||||
bf16 := DecodeFloat32(b)
|
||||
out := EncodeFloat32(bf16)
|
||||
if !reflect.DeepEqual(b, out) {
|
||||
t.Fatalf("%+v != %+v", b, out)
|
||||
}
|
||||
}
|
||||
|
||||
func TestBasicFloat32(t *testing.T) {
|
||||
var in float32 = 1.0
|
||||
out := ToFloat32(FromFloat32(in))
|
||||
if !reflect.DeepEqual(in, out) {
|
||||
t.Fatalf("%+v != %+v", in, out)
|
||||
}
|
||||
}
|
||||
|
||||
func TestComplexFloat32(t *testing.T) {
|
||||
var in float32 = 123456789123456789.123456789
|
||||
var want float32 = 123286039799267328.0
|
||||
out := ToFloat32(FromFloat32(in))
|
||||
if in == out {
|
||||
t.Fatalf("no loss of precision")
|
||||
}
|
||||
if out != want {
|
||||
t.Fatalf("%.16f != %.16f", want, out)
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user