Compare commits

...

64 Commits

Author SHA1 Message Date
Jeffrey Morgan
b51e0f397c model: fix issues with spm tokenizer for Gemma 3 (#10081) 2025-04-02 13:22:56 -07:00
jmorganca
b42970063d kvcache: Add check for values that fall out of sliding window cache
The sliding window cache trims entries that are outside the window for
the latest token. This works when we are extending the cache, such as
when the conversation continues. However, if we have a partial overlap
in conversation (including the BOS tokens), then we resume from a past
point in the conversation and the needed tokens are no longer stored
in memory. This verifies that the new window overlaps with the old one
before reusing the cache.

Co-authored-by: Jesse Gross <jesse@ollama.com>
2025-04-02 11:55:48 -07:00
Jesse Gross
493385eb3e ollamarunner: Don't truncate a SameBatch
When truncating inputs to the the context window at the beginning of
a sequence, we remove the minimum amount possible. However, this
may cause us to truncate to the middle of a set of inputs that
the model specified should not be split up. To avoid this, we
need to remove the rest of the partial batch.
2025-04-02 10:40:38 -07:00
Bruce MacDonald
9876c9faa4 chore(all): replace instances of interface with any (#10067)
Both interface{} and any (which is just an alias for interface{} introduced in Go 1.18) represent the empty interface that all types satisfy.
2025-04-02 09:44:27 -07:00
IsAurora6
4e415029b3 readme: add Casibase to community integrations (#10057) 2025-04-02 01:27:16 -07:00
Bruce MacDonald
e172f095ba api: return model capabilities from the show endpoint (#10066)
With support for multimodal models becoming more varied and common it is important for clients to be able to easily see what capabilities a model has. Retuning these from the show endpoint will allow clients to easily see what a model can do.
2025-04-01 15:21:46 -07:00
Ilian
c001b98087 docs: add TagSpaces to community integrations (#9983) 2025-03-31 17:28:59 -07:00
Abyss-c0re
23fc8e92eb docs: add DeepShell to community projects (#9955)
Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
2025-03-31 17:23:04 -07:00
湛露先生
4059a297a6 discover: /proc/cpuinfo file open and close. (#9950)
Signed-off-by: zhanluxianshen <zhanluxianshen@163.com>
2025-03-31 17:07:42 -07:00
Bruce MacDonald
66b2539238 runner: clear cache when shift is not possible (#9433)
Clear KV cache when shift operation is not supported by model.
Added KvCacheCanShift() check to handle models that can't perform cache shifts,
falling back to full cache clear while preserving logical token history to
maintain expected behavior when context window fills up.
2025-03-31 12:54:45 -07:00
Blake Mizerany
ef27d52e79 server/internal/client/ollama: cache completed chunks (#9933)
This change adds tracking of download chunks during the pull process so
that subsequent pulls can skip downloading already completed chunks.
This works across restarts of ollama.

Currently, download state will be lost if a prune is triggered during a
pull (e.g. restart or remove). This issue should be addressed in a
follow-up PR.
2025-03-30 23:54:54 -07:00
Jesse Gross
b2a465296d runner: Release semaphore and improve error messages on failures
If we have an error after creating a new sequence but before
finding a slot for it, we return without releasing the semaphore.
This reduces our parallel sequences and eventually leads to deadlock.

In practice this should never happen because once we have acquired
the semaphore, we should always be able to find a slot. However, the
code is clearly not correct.
2025-03-30 19:21:54 -07:00
Jesse Gross
5d097277ef ollamarunner: Ensure batch size limits are not exceeded
With the llama runner, we can generate up to NUM_PARALLEL batches
at once, which will then get broken up to into individual batches
to get executed by llama.cpp (i.e. we add up to 2048 tokens and
this gets split into 4 batches of 512 tokens at default settings).

This splitting can improve parallelism on multi-GPU systems because
the individual batches can move though the pipeline without blocking
on the first one to fully complete. However, we don't yet support
this in the Ollama runner, partially because it makes it hard to
enforce model-specified batch constraints, which didn't exist
previously.

The result is that we will try to execute the full, unsplit batch.
This could result in out of memory or insufficient KV cache space
errors.

This triggers batch breaking when the total inputs from all sequences
exceeds the batch size, rather than per-sequence. In order to ensure
fairness, it also reintroduces round-robinning around sequences so
that we don't let one busy sequence starve the others.
2025-03-30 19:21:01 -07:00
Leandro Borges Ferreira
071a9872cb readme: add Writeopia to community integrations (#10042) 2025-03-30 17:28:06 -07:00
CYJiang
0bd0454ea7 server: organize error types (#9465)
Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
2025-03-28 11:50:22 -07:00
Jesse Gross
01aa788722 ml: Remove Output from Context interface
Model implementations should use Input for all of their tensors
supplied to the model. This includes tensors that relate to the
outputs, which is confusing since there is also an Output funciton.

Since Output is only used internally in GGML and not used by any
model implementations, we can remove it from the interface to
reduce confusion.
2025-03-27 12:19:43 -07:00
saman-amd
ead27aa9fe Add gfx1200 & gfx1201 support on linux (#9878) 2025-03-27 07:35:19 -07:00
Parth Sareen
b816ff86c9 docs: make context length faq readable (#10006) 2025-03-26 17:34:18 -07:00
molbal
e5d84fb90b docs: add molbal/orca-cli to community integrations (#9909) 2025-03-26 13:39:01 -07:00
Hengky Steen
dd66712e31 docs: add ollamb to community projects 2025-03-26 13:38:05 -07:00
Jesse Gross
f66216e399 ggml: Support heterogeneous KV cache layer sizes in memory estimation
Gemma3 uses sliding windows for its context on 5/6 layers, significantly
reducing memory usage but leading to uneven usage across layers,
which makes allocation to the correct GPU difficult. We currently
estimate very conservatively by assuming all layers are consistent
at the max size.

Llama3.2-vision is also inconsistent between self attention and cross
attention layers - at moment, we calculate the correct total size
and then average this across layers. In some cases, this may lead
to crashes if a large layer is placed on a GPU sized by the average.

This allows memory estimation to calculate per-layer KV cache size
and take this account when placing layers onto GPUs. We already do
this for weights that vary per-tensor, so this is a logical extension.

Fixes #9730
Fixes #9890
2025-03-26 13:16:03 -07:00
Jesse Gross
f4f0992b6e llm: Fix debug logging for memory estimates 2025-03-26 13:16:03 -07:00
Jesse Gross
1feff61977 kvcache: Sliding window cache only needs a single batch total
When computing the size of the cache for sliding window attention,
we don't need to multiple the batch size by the number of parallel
sequences - the batch size is constant.

This also simplifies the check for whether to allocate the cache
size based on capacity or window size as the batch size is already
incorporated into the capacity when handled by the runner.
2025-03-26 13:16:03 -07:00
copeland3300
5e0b904e88 docs: add flags to example linux log output command (#9852) 2025-03-25 09:52:23 -07:00
Matheus C. França
131f0355a5 readme: add ollama-d library (#9907) 2025-03-24 09:25:58 -07:00
Blake Mizerany
ce929984a3 server/internal/client/ollama: fix file descriptor management in Pull (#9931)
Close chunked writers as soon as downloads complete, rather than
deferring closure until Pull exits. This prevents exhausting file
descriptors when pulling many layers.

Instead of unbounded defers, use a WaitGroup and background goroutine
to close each chunked writer as soon as its downloads finish.

Also rename 'total' to 'received' for clarity.
2025-03-21 16:16:38 -07:00
Michael Yang
4b34930a31 Merge pull request #9897 from ollama/mxyng/chunk-load
ml/backend/ggml: load tensors in 128KiB chunks
2025-03-21 14:47:13 -07:00
Michael Yang
74bd09652d ml/backend/ggml: load tensors in 32KiB chunks 2025-03-21 14:43:52 -07:00
Bruce MacDonald
fb6252d786 benchmark: performance of running ollama server (#8643) 2025-03-21 13:08:20 -07:00
Blake Mizerany
c794fef2f2 server/internal/client/ollama: persist through chunk download errors (#9923) 2025-03-21 13:03:43 -07:00
Parth Sareen
00ebda8cc4 Revert "parser: remove role validation from Modelfile parser" (#9917)
This reverts commit ffbfe833da.
2025-03-21 12:38:09 -07:00
Parth Sareen
d14ce75b95 docs: update final response for /api/chat stream (#9919) 2025-03-21 12:35:47 -07:00
Jesse Gross
2d6eac9084 kvcache: Optimize sliding window attention
Currently sliding window attention allocates and uses the full
context size and just masks out any tokens that are outside of the
window. However, we really only need (roughly) the sliding window
size.

At large context sizes this improves two things:
 - Memory allocated - since the fully context size is allocated up front,
   memory requirements drop substantially. On Gemma3:4b with a 32k
   context window, total memory usage (including weights and non-sliding
   layers) drops from ~20GB to ~8GB.
 - Computation - ranges that are completely outside of the sliding
   window are now removed from the tensors that are returned from the
   cache rather than simply being masked out. This results in more
   efficient processing, scaling with the size of the context that
   has actually been used.

Notable, this does not update the scheduler for any model to be aware of
the smaller memory requirements. This is difficult for Gemma3 because
the layers are heterogeneous between sliding and non-sliding attention.
As a result, while actual memory consumption will be reduced, the
scheduler will over-estimate the requirements of the model. This means
that splitting between GPUs or GPUs and CPUs will still be suboptimal.

Bug #9730
2025-03-21 11:20:19 -07:00
Jesse Gross
3ed7ad3ab3 kvcache: Pass granular cache size into implementations
Currently the runner computes the kv size needed and creates a
cache of that size. This is the context size times number of
parallel sequences.

Cache implementations can make better decisions about their memory
usage, so instead pass in the required capacity, number of sequences
and maximum batch size. For now, the causal cache just uses this to
compute the size in the same way as before.
2025-03-21 11:20:19 -07:00
Patrick Devine
6d1103048e fix: show correct bool value for kv in verbose show information (#9928) 2025-03-21 11:13:54 -07:00
Jesse Gross
0ff28758b3 ollamarunner: Provide mechanism for backends to report loading progress
This enables the runner to report progress back to the Ollama server,
both for showing status to the user and also to prevent the server
from killing the runner if it thinks things have stalled.

Most of the infrastructure was already there, this extends it to
be available to the backends.
2025-03-21 10:44:26 -07:00
Jesse Gross
d3e9ca3eda kvcache: Account for source tensors in defrag operation count
Defragging the KV cache can generate a lot of operations, so we
need to be careful that we don't overflow the number that the graph
can support. We currently account for all of the nodes that we add
to the graph for each move but we also need to include the original
cache tensors as well.

Fixes #9904
2025-03-21 10:42:19 -07:00
Jesse Gross
0fbfcf3c9c model: Pass input tensor instead of raw data to models
Rather than directly giving the input data to models, we can
pass a tensor instead. In the short term, this saves some duplicated
code.

Longer term, we will want to overlap setting up the next batch with
processing of the current one. In this case, we will only have the
shape of tensor but it will not be loaded with data at the time of
graph generation. By passing only a tensor to models now, we set up
this possibility and prevent them from relying on data that they won't
have in the future.

Although the same could be done for Positions and Outputs, in some
cases we either need the raw input data or don't use them at all.
Therefore, for now we leave them as they are and allow models to
convert them to tensors as needed.
2025-03-20 13:28:13 -07:00
Jesse Gross
0c220935bd input: Rename Options to Batch
Options is no longer very descriptive of this struct.
2025-03-20 13:28:13 -07:00
rylativity
ffbfe833da parser: remove role validation from Modelfile parser (#9874)
* updates parser/parser.go to allow arbitrary roles in Modelfile MESSAGE blocks
2025-03-20 13:11:17 -07:00
Parth Sareen
42a14f7f63 sample: add error handling for empty logits (#9740) 2025-03-20 11:11:18 -07:00
Patrick Devine
f8c3dbe5b5 templates: add autotemplate for gemma3 (#9880)
This change allows the gemma3 template to be autodetected during `ollama
create`.
2025-03-20 00:15:30 -07:00
Jesse Gross
b078dd157c gemma2: Remove second call to Rows
Looks like a merge conflict that broke the model.
2025-03-19 17:28:49 -07:00
Blake Mizerany
2ddacd7516 server/internal/client/ollama: confirm all chunksums were received (#9893)
If the chunksums response is missing a chunk, the client should fail
the download. This changes the client to check that all bytes are
accounted for in the chunksums response.

It is possible there are overlaps or gaps in the chunksums response and
so the size is not the only thing left to check, but this provides
enough coverage for now. We may want to check that chunks are contiguous
later.
2025-03-19 14:59:57 -07:00
Jeffrey Morgan
da0e345200 ml: use input context for extracting outputs (#9875) 2025-03-18 18:08:19 -07:00
Bruce MacDonald
df94175a0f ggml: return error on failure to read tensor data (#9872)
When converting a ggml model if there is a failure to read tensor data a nil error value was being returned. It should be assigned to the actual error from reading.
2025-03-18 16:51:33 -07:00
Bruce MacDonald
61a8825216 convert: return name of unsupported architecture (#9862)
When a model's architecture cannot be converted return the name of the unsupported arch in the error message.
2025-03-18 10:38:28 -07:00
Michael Yang
021dcf089d Merge pull request #9824 from ollama/mxyng/sched
conditionally enable parallel pipelines
2025-03-17 15:41:37 -07:00
Jesse Gross
bf24498b1e ollamarunner: Check for minBatch of context space when shifting
Models can specify that a group of inputs need to be handled a single
batch. However, context shifting didn't respect this and could trigger
a break anyways. In this case, we should instead trigger a context
shift earlier so that it occurs before the grouped batch.

Note that there still some corner cases:
 - A long prompt that exceeds the context window can get truncated
   in the middle of an image. With the current models, this will
   result in the model not recognizing the image at all, which is
   pretty much the expected result with truncation.
 - The context window is set less than the minimum batch size. The
   only solution to this is to refuse to load the model with these
   settings. However, this can never occur with current models and
   default settings.

Since users are unlikely to run into these scenarios, fixing them is
left as a follow up.
2025-03-17 15:33:16 -07:00
Bruce MacDonald
95e271d98f runner: remove cache prompt flag from ollama runner (#9826)
We do not need to bypass the prompt caching in the ollama runner yet, as
only embedding models needed to bypass the prompt caching. When embedding
models are implemented they can skip initializing this cache completely.
2025-03-17 15:11:15 -07:00
Jeffrey Morgan
364629b8d6 ml/backend/ggml: allocate memory with malloc when loading model (#9822) 2025-03-17 13:32:40 -07:00
Parth Sareen
108fe02165 sample: make mutations in transforms explicit (#9743)
* updated minP to use early exit making use of sorted tokens
2025-03-17 11:24:18 -07:00
Michael Yang
4561fff36e conditionally enable parallel pipelines 2025-03-17 09:46:07 -07:00
Daniel Hiltgen
50b5962042 Add support for ROCm gfx1151 (#9773) 2025-03-17 09:33:57 -07:00
Louis Beaumont
e27e4a3c1b readme: add screenpipe to community integrations (#9786) 2025-03-16 21:56:42 -04:00
zeo
088514bbd4 readme: add Ellama to list of community integrations (#9800) 2025-03-16 21:54:43 -04:00
Patrick Devine
2c8b484643 fix: correctly save in interactive mode (#9788)
This fixes the case where a FROM line in previous modelfile points to a
file which may/may not be present in a different ollama instance. We
shouldn't be relying on the filename though and instead just check if
the FROM line was instead a valid model name and point to that instead.
2025-03-15 12:09:02 -07:00
Blake Mizerany
8294676150 server/internal/client/ollama: set User-Agent for registry client (#9775)
This sets the agent header in DefaultRegistry to include the version of
the client, OS, and architecture in the previous format, with a minor
twist.

Note: The version is obtained from the build info, instead of the
version in version.Version, which should not longer be necessary, but we
can remove in a future commit. Using the build info is more accurate and
also provides extra build information if the build is not tagged, and if
it is "dirty". Previously, the version was just "0.0.0" with no other
helpful information. The ollama.com registry and others handle this
swimmingly.
2025-03-14 18:33:07 -07:00
Patrick Devine
ef378ad673 gemma3 quantization (#9776) 2025-03-14 17:41:07 -07:00
Daniel Hiltgen
2d2247e59e Align versions for local builds (#9635)
Darwin was using a different pattern for the version string
than linux or windows.
2025-03-14 15:44:08 -07:00
Jesse Gross
7bf793a600 gemma3: Allow multiple image in a single input
Previously processing multiple images in a batch would trigger
segfaults so sending images together was disabled as a way to
mitigate this. The trigger was processing one image on the CPU
and one on the GPU.

This can no longer happen:
 - The vision encoder is now on the GPU so both images would be
   processed on the GPU.
 - We require images to be fully contained in a batch and each
   image including its special tokens is over half the batch size.
   As a result, we will never get two images in the same batch.

Fixes #9731
2025-03-14 15:38:54 -07:00
Jesse Gross
282bfaaa95 ollamarunner: Use a separate context per multimodal input
Currently there is a single context per sequence, shared all by
all multimodal inputs. Since we build a vision encoder graph per
image, with a large number of inputs we can eventually hit the
maximum number of graph nodes per context.

This changes to use a separate context for each image, ensuring
that available resource limits are consistent.
2025-03-14 15:38:54 -07:00
Jesse Gross
9679f40146 ml: Allow models to constrain inputs to a single batch
Models may require that a set of inputs all be processed as part
of the same batch. For example, if an image has multiple patches
with fully connected attention between them, we should not split
the batch in the middle of an image.

Fixes #9697
2025-03-14 15:38:54 -07:00
Bruce MacDonald
3892c3a703 llm: remove internal subprocess req and resp types (#9324)
This commit refactors the LLM subsystem by removing internal subprocess
request and response types. It consolidates duplicate type definitions
across the codebase, moving them to centralized locations. The change also
standardizes interfaces between components, simplifies the ServerStatusResp
struct, and moves the ParseDurationMs function to a common package. This
cleanup reduces code duplication between different runner implementations
(llamarunner and ollamarunner).
2025-03-14 15:21:53 -07:00
88 changed files with 3329 additions and 1376 deletions

View File

@@ -86,9 +86,9 @@ if(CMAKE_CUDA_COMPILER)
)
endif()
set(WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX "^gfx(906|908|90a):xnack[+-]$"
set(WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX "^gfx(906|908|90a|1200|1201):xnack[+-]$"
CACHE STRING
"Regular expression describing AMDGPU_TARGETS not supported on Windows. Override to force building these targets. Default \"^gfx(906|908|90a):xnack[+-]$\"."
"Regular expression describing AMDGPU_TARGETS not supported on Windows. Override to force building these targets. Default \"^gfx(906|908|90a|1200|1201):xnack[+-]$\"."
)
check_language(HIP)
@@ -97,7 +97,7 @@ if(CMAKE_HIP_COMPILER)
find_package(hip REQUIRED)
if(NOT AMDGPU_TARGETS)
list(FILTER AMDGPU_TARGETS INCLUDE REGEX "^gfx(900|94[012]|101[02]|1030|110[012])$")
list(FILTER AMDGPU_TARGETS INCLUDE REGEX "^gfx(900|94[012]|101[02]|1030|110[012]|120[01])$")
elseif(WIN32 AND WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX)
list(FILTER AMDGPU_TARGETS EXCLUDE REGEX ${WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX})
endif()

View File

@@ -56,7 +56,7 @@
"name": "ROCm 6",
"inherits": [ "ROCm" ],
"cacheVariables": {
"AMDGPU_TARGETS": "gfx900;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-"
"AMDGPU_TARGETS": "gfx900;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102;gfx1151;gfx1200;gfx1201;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-"
}
}
],

View File

@@ -285,6 +285,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Bionic GPT](https://github.com/bionic-gpt/bionic-gpt)
- [HTML UI](https://github.com/rtcfirefly/ollama-ui)
- [Saddle](https://github.com/jikkuatwork/saddle)
- [TagSpaces](https://www.tagspaces.org) (A platform for file based apps, [utilizing Ollama](https://docs.tagspaces.org/ai/) for the generation of tags and descriptions)
- [Chatbot UI](https://github.com/ivanfioravanti/chatbot-ollama)
- [Chatbot UI v2](https://github.com/mckaywrigley/chatbot-ui)
- [Typescript UI](https://github.com/ollama-interface/Ollama-Gui?tab=readme-ov-file)
@@ -324,6 +325,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [RWKV-Runner](https://github.com/josStorer/RWKV-Runner) (RWKV offline LLM deployment tool, also usable as a client for ChatGPT and Ollama)
- [Ollama Grid Search](https://github.com/dezoito/ollama-grid-search) (app to evaluate and compare models)
- [Olpaka](https://github.com/Otacon/olpaka) (User-friendly Flutter Web App for Ollama)
- [Casibase](https://casibase.org) (An open source AI knowledge base and dialogue system combining the latest RAG, SSO, ollama support and multiple large language models.)
- [OllamaSpring](https://github.com/CrazyNeil/OllamaSpring) (Ollama Client for macOS)
- [LLocal.in](https://github.com/kartikm7/llocal) (Easy to use Electron Desktop Client for Ollama)
- [Shinkai Desktop](https://github.com/dcSpark/shinkai-apps) (Two click install Local AI using Ollama + Files + RAG)
@@ -392,6 +394,10 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [1Panel](https://github.com/1Panel-dev/1Panel/) (Web-based Linux Server Management Tool)
- [AstrBot](https://github.com/Soulter/AstrBot/) (User-friendly LLM-based multi-platform chatbot with a WebUI, supporting RAG, LLM agents, and plugins integration)
- [Reins](https://github.com/ibrahimcetin/reins) (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)
- [Ellama](https://github.com/zeozeozeo/ellama) (Friendly native app to chat with an Ollama instance)
- [screenpipe](https://github.com/mediar-ai/screenpipe) Build agents powered by your screen history
- [Ollamb](https://github.com/hengkysteen/ollamb) (Simple yet rich in features, cross-platform built with Flutter and designed for Ollama. Try the [web demo](https://hengkysteen.github.io/demo/ollamb/).)
- [Writeopia](https://github.com/Writeopia/Writeopia) (Text editor with integration with Ollama)
### Cloud
@@ -431,7 +437,9 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [SwollamaCLI](https://github.com/marcusziade/Swollama) bundled with the Swollama Swift package. [Demo](https://github.com/marcusziade/Swollama?tab=readme-ov-file#cli-usage)
- [aichat](https://github.com/sigoden/aichat) All-in-one LLM CLI tool featuring Shell Assistant, Chat-REPL, RAG, AI tools & agents, with access to OpenAI, Claude, Gemini, Ollama, Groq, and more.
- [PowershAI](https://github.com/rrg92/powershai) PowerShell module that brings AI to terminal on Windows, including support for Ollama
- [DeepShell](https://github.com/Abyss-c0re/deepshell) Your self-hosted AI assistant. Interactive Shell, Files and Folders analysis.
- [orbiton](https://github.com/xyproto/orbiton) Configuration-free text editor and IDE with support for tab completion with Ollama.
- [orca-cli](https://github.com/molbal/orca-cli) Ollama Registry CLI Application - Browse, pull and download models from Ollama Registry in your terminal.
### Apple Vision Pro
@@ -510,6 +518,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Ollama for Zig](https://github.com/dravenk/ollama-zig)
- [Abso](https://github.com/lunary-ai/abso) (OpenAI-compatible TypeScript SDK for any LLM provider)
- [Nichey](https://github.com/goodreasonai/nichey) is a Python package for generating custom wikis for your research topic
- [Ollama for D](https://github.com/kassane/ollama-d)
### Mobile

View File

@@ -12,6 +12,7 @@ import (
"time"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/types/model"
)
// StatusError is an error with an HTTP status code and message.
@@ -81,7 +82,7 @@ type GenerateRequest struct {
// Options lists model-specific options. For example, temperature can be
// set through this field, if the model supports it.
Options map[string]interface{} `json:"options"`
Options map[string]any `json:"options"`
}
// ChatRequest describes a request sent by [Client.Chat].
@@ -106,7 +107,7 @@ type ChatRequest struct {
Tools `json:"tools,omitempty"`
// Options lists model-specific options.
Options map[string]interface{} `json:"options"`
Options map[string]any `json:"options"`
}
type Tools []Tool
@@ -260,7 +261,7 @@ type EmbedRequest struct {
Truncate *bool `json:"truncate,omitempty"`
// Options lists model-specific options.
Options map[string]interface{} `json:"options"`
Options map[string]any `json:"options"`
}
// EmbedResponse is the response from [Client.Embed].
@@ -286,7 +287,7 @@ type EmbeddingRequest struct {
KeepAlive *Duration `json:"keep_alive,omitempty"`
// Options lists model-specific options.
Options map[string]interface{} `json:"options"`
Options map[string]any `json:"options"`
}
// EmbeddingResponse is the response from [Client.Embeddings].
@@ -332,7 +333,7 @@ type ShowRequest struct {
Template string `json:"template"`
Verbose bool `json:"verbose"`
Options map[string]interface{} `json:"options"`
Options map[string]any `json:"options"`
// Deprecated: set the model name with Model instead
Name string `json:"name"`
@@ -340,17 +341,18 @@ type ShowRequest struct {
// ShowResponse is the response returned from [Client.Show].
type ShowResponse struct {
License string `json:"license,omitempty"`
Modelfile string `json:"modelfile,omitempty"`
Parameters string `json:"parameters,omitempty"`
Template string `json:"template,omitempty"`
System string `json:"system,omitempty"`
Details ModelDetails `json:"details,omitempty"`
Messages []Message `json:"messages,omitempty"`
ModelInfo map[string]any `json:"model_info,omitempty"`
ProjectorInfo map[string]any `json:"projector_info,omitempty"`
Tensors []Tensor `json:"tensors,omitempty"`
ModifiedAt time.Time `json:"modified_at,omitempty"`
License string `json:"license,omitempty"`
Modelfile string `json:"modelfile,omitempty"`
Parameters string `json:"parameters,omitempty"`
Template string `json:"template,omitempty"`
System string `json:"system,omitempty"`
Details ModelDetails `json:"details,omitempty"`
Messages []Message `json:"messages,omitempty"`
ModelInfo map[string]any `json:"model_info,omitempty"`
ProjectorInfo map[string]any `json:"projector_info,omitempty"`
Tensors []Tensor `json:"tensors,omitempty"`
Capabilities []model.Capability `json:"capabilities,omitempty"`
ModifiedAt time.Time `json:"modified_at,omitempty"`
}
// CopyRequest is the request passed to [Client.Copy].
@@ -503,7 +505,7 @@ func (m *Metrics) Summary() {
}
}
func (opts *Options) FromMap(m map[string]interface{}) error {
func (opts *Options) FromMap(m map[string]any) error {
valueOpts := reflect.ValueOf(opts).Elem() // names of the fields in the options struct
typeOpts := reflect.TypeOf(opts).Elem() // types of the fields in the options struct
@@ -560,12 +562,12 @@ func (opts *Options) FromMap(m map[string]interface{}) error {
}
field.SetString(val)
case reflect.Slice:
// JSON unmarshals to []interface{}, not []string
val, ok := val.([]interface{})
// JSON unmarshals to []any, not []string
val, ok := val.([]any)
if !ok {
return fmt.Errorf("option %q must be of type array", key)
}
// convert []interface{} to []string
// convert []any to []string
slice := make([]string, len(val))
for i, item := range val {
str, ok := item.(string)
@@ -672,7 +674,7 @@ func (d *Duration) UnmarshalJSON(b []byte) (err error) {
}
// FormatParams converts specified parameter options to their correct types
func FormatParams(params map[string][]string) (map[string]interface{}, error) {
func FormatParams(params map[string][]string) (map[string]any, error) {
opts := Options{}
valueOpts := reflect.ValueOf(&opts).Elem() // names of the fields in the options struct
typeOpts := reflect.TypeOf(opts) // types of the fields in the options struct
@@ -686,7 +688,7 @@ func FormatParams(params map[string][]string) (map[string]interface{}, error) {
}
}
out := make(map[string]interface{})
out := make(map[string]any)
// iterate params and set values based on json struct tags
for key, vals := range params {
if opt, ok := jsonOpts[key]; !ok {

View File

@@ -134,7 +134,7 @@ func TestUseMmapParsingFromJSON(t *testing.T) {
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
var oMap map[string]interface{}
var oMap map[string]any
err := json.Unmarshal([]byte(test.req), &oMap)
require.NoError(t, err)
opts := DefaultOptions()

View File

@@ -0,0 +1,178 @@
package benchmark
import (
"context"
"flag"
"fmt"
"testing"
"time"
"github.com/ollama/ollama/api"
)
// Command line flags
var modelFlag string
func init() {
flag.StringVar(&modelFlag, "m", "", "Name of the model to benchmark")
flag.Lookup("m").DefValue = "model"
}
// modelName returns the model name from flags, failing the test if not set
func modelName(b *testing.B) string {
if modelFlag == "" {
b.Fatal("Error: -m flag is required for benchmark tests")
}
return modelFlag
}
type TestCase struct {
name string
prompt string
maxTokens int
}
// runGenerateBenchmark contains the common generate and metrics logic
func runGenerateBenchmark(b *testing.B, ctx context.Context, client *api.Client, req *api.GenerateRequest) {
start := time.Now()
var ttft time.Duration
var metrics api.Metrics
err := client.Generate(ctx, req, func(resp api.GenerateResponse) error {
if ttft == 0 && resp.Response != "" {
ttft = time.Since(start)
}
if resp.Done {
metrics = resp.Metrics
}
return nil
})
// Report custom metrics as part of the benchmark results
b.ReportMetric(float64(ttft.Milliseconds()), "ttft_ms")
b.ReportMetric(float64(metrics.LoadDuration.Milliseconds()), "load_ms")
// Token throughput metrics
promptThroughput := float64(metrics.PromptEvalCount) / metrics.PromptEvalDuration.Seconds()
genThroughput := float64(metrics.EvalCount) / metrics.EvalDuration.Seconds()
b.ReportMetric(promptThroughput, "prompt_tok/s")
b.ReportMetric(genThroughput, "gen_tok/s")
// Token counts
b.ReportMetric(float64(metrics.PromptEvalCount), "prompt_tokens")
b.ReportMetric(float64(metrics.EvalCount), "gen_tokens")
if err != nil {
b.Fatal(err)
}
}
// BenchmarkColdStart runs benchmarks with model loading from cold state
func BenchmarkColdStart(b *testing.B) {
client := setup(b)
tests := []TestCase{
{"short_prompt", "Write a long story", 100},
{"medium_prompt", "Write a detailed economic analysis", 500},
{"long_prompt", "Write a comprehensive AI research paper", 1000},
}
m := modelName(b)
for _, tt := range tests {
b.Run(fmt.Sprintf("%s/cold/%s", m, tt.name), func(b *testing.B) {
ctx := context.Background()
// Set number of tokens as our throughput metric
b.SetBytes(int64(tt.maxTokens))
for b.Loop() {
b.StopTimer()
// Ensure model is unloaded before each iteration
unload(client, m, b)
b.StartTimer()
req := &api.GenerateRequest{
Model: m,
Prompt: tt.prompt,
Options: map[string]any{"num_predict": tt.maxTokens, "temperature": 0.1},
}
runGenerateBenchmark(b, ctx, client, req)
}
})
}
}
// BenchmarkWarmStart runs benchmarks with pre-loaded model
func BenchmarkWarmStart(b *testing.B) {
client := setup(b)
tests := []TestCase{
{"short_prompt", "Write a long story", 100},
{"medium_prompt", "Write a detailed economic analysis", 500},
{"long_prompt", "Write a comprehensive AI research paper", 1000},
}
m := modelName(b)
for _, tt := range tests {
b.Run(fmt.Sprintf("%s/warm/%s", m, tt.name), func(b *testing.B) {
ctx := context.Background()
// Pre-warm the model
warmup(client, m, tt.prompt, b)
// Set number of tokens as our throughput metric
b.SetBytes(int64(tt.maxTokens))
for b.Loop() {
req := &api.GenerateRequest{
Model: m,
Prompt: tt.prompt,
Options: map[string]any{"num_predict": tt.maxTokens, "temperature": 0.1},
}
runGenerateBenchmark(b, ctx, client, req)
}
})
}
}
// setup verifies server and model availability
func setup(b *testing.B) *api.Client {
client, err := api.ClientFromEnvironment()
if err != nil {
b.Fatal(err)
}
if _, err := client.Show(context.Background(), &api.ShowRequest{Model: modelName(b)}); err != nil {
b.Fatalf("Model unavailable: %v", err)
}
return client
}
// warmup ensures the model is loaded and warmed up
func warmup(client *api.Client, model string, prompt string, b *testing.B) {
for range 3 {
err := client.Generate(
context.Background(),
&api.GenerateRequest{
Model: model,
Prompt: prompt,
Options: map[string]any{"num_predict": 50, "temperature": 0.1},
},
func(api.GenerateResponse) error { return nil },
)
if err != nil {
b.Logf("Error during model warm-up: %v", err)
}
}
}
// unload forces model unloading using KeepAlive: 0 parameter
func unload(client *api.Client, model string, b *testing.B) {
req := &api.GenerateRequest{
Model: model,
KeepAlive: &api.Duration{Duration: 0},
}
if err := client.Generate(context.Background(), req, func(api.GenerateResponse) error { return nil }); err != nil {
b.Logf("Unload error: %v", err)
}
time.Sleep(1 * time.Second)
}

View File

@@ -18,6 +18,7 @@ import (
"os/signal"
"path/filepath"
"runtime"
"slices"
"sort"
"strconv"
"strings"
@@ -267,7 +268,7 @@ func RunHandler(cmd *cobra.Command, args []string) error {
opts := runOptions{
Model: args[0],
WordWrap: os.Getenv("TERM") == "xterm-256color",
Options: map[string]interface{}{},
Options: map[string]any{},
}
format, err := cmd.Flags().GetString("format")
@@ -339,6 +340,11 @@ func RunHandler(cmd *cobra.Command, args []string) error {
return err
}
opts.MultiModal = slices.Contains(info.Capabilities, model.CapabilityVision)
// TODO: remove the projector info and vision info checks below,
// these are left in for backwards compatibility with older servers
// that don't have the capabilities field in the model info
if len(info.ProjectorInfo) != 0 {
opts.MultiModal = true
}
@@ -669,6 +675,15 @@ func showInfo(resp *api.ShowResponse, verbose bool, w io.Writer) error {
return
})
if len(resp.Capabilities) > 0 {
tableRender("Capabilities", func() (rows [][]string) {
for _, capability := range resp.Capabilities {
rows = append(rows, []string{"", capability.String()})
}
return
})
}
if resp.ProjectorInfo != nil {
tableRender("Projector", func() (rows [][]string) {
arch := resp.ProjectorInfo["general.architecture"].(string)
@@ -703,6 +718,8 @@ func showInfo(resp *api.ShowResponse, verbose bool, w io.Writer) error {
for _, k := range keys {
var v string
switch vData := resp.ModelInfo[k].(type) {
case bool:
v = fmt.Sprintf("%t", vData)
case string:
v = vData
case float64:
@@ -835,7 +852,7 @@ type runOptions struct {
Format string
System string
Images []api.ImageData
Options map[string]interface{}
Options map[string]any
MultiModal bool
KeepAlive *api.Duration
}

View File

@@ -16,6 +16,7 @@ import (
"github.com/spf13/cobra"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/types/model"
)
func TestShowInfo(t *testing.T) {
@@ -87,6 +88,8 @@ func TestShowInfo(t *testing.T) {
ModelInfo: map[string]any{
"general.architecture": "test",
"general.parameter_count": float64(8_000_000_000),
"some.true_bool": true,
"some.false_bool": false,
"test.context_length": float64(1000),
"test.embedding_length": float64(11434),
},
@@ -111,6 +114,8 @@ func TestShowInfo(t *testing.T) {
Metadata
general.architecture test
general.parameter_count 8e+09
some.false_bool false
some.true_bool true
test.context_length 1000
test.embedding_length 11434
@@ -256,6 +261,34 @@ Weigh anchor!
t.Errorf("unexpected output (-want +got):\n%s", diff)
}
})
t.Run("capabilities", func(t *testing.T) {
var b bytes.Buffer
if err := showInfo(&api.ShowResponse{
Details: api.ModelDetails{
Family: "test",
ParameterSize: "7B",
QuantizationLevel: "FP16",
},
Capabilities: []model.Capability{model.CapabilityVision, model.CapabilityTools},
}, false, &b); err != nil {
t.Fatal(err)
}
expect := " Model\n" +
" architecture test \n" +
" parameters 7B \n" +
" quantization FP16 \n" +
"\n" +
" Capabilities\n" +
" vision \n" +
" tools \n" +
"\n"
if diff := cmp.Diff(expect, b.String()); diff != "" {
t.Errorf("unexpected output (-want +got):\n%s", diff)
}
})
}
func TestDeleteHandler(t *testing.T) {
@@ -757,3 +790,132 @@ func TestCreateHandler(t *testing.T) {
})
}
}
func TestNewCreateRequest(t *testing.T) {
tests := []struct {
name string
from string
opts runOptions
expected *api.CreateRequest
}{
{
"basic test",
"newmodel",
runOptions{
Model: "mymodel",
ParentModel: "",
Prompt: "You are a fun AI agent",
Messages: []api.Message{},
WordWrap: true,
},
&api.CreateRequest{
From: "mymodel",
Model: "newmodel",
},
},
{
"parent model test",
"newmodel",
runOptions{
Model: "mymodel",
ParentModel: "parentmodel",
Messages: []api.Message{},
WordWrap: true,
},
&api.CreateRequest{
From: "parentmodel",
Model: "newmodel",
},
},
{
"parent model as filepath test",
"newmodel",
runOptions{
Model: "mymodel",
ParentModel: "/some/file/like/etc/passwd",
Messages: []api.Message{},
WordWrap: true,
},
&api.CreateRequest{
From: "mymodel",
Model: "newmodel",
},
},
{
"parent model as windows filepath test",
"newmodel",
runOptions{
Model: "mymodel",
ParentModel: "D:\\some\\file\\like\\etc\\passwd",
Messages: []api.Message{},
WordWrap: true,
},
&api.CreateRequest{
From: "mymodel",
Model: "newmodel",
},
},
{
"options test",
"newmodel",
runOptions{
Model: "mymodel",
ParentModel: "parentmodel",
Options: map[string]any{
"temperature": 1.0,
},
},
&api.CreateRequest{
From: "parentmodel",
Model: "newmodel",
Parameters: map[string]any{
"temperature": 1.0,
},
},
},
{
"messages test",
"newmodel",
runOptions{
Model: "mymodel",
ParentModel: "parentmodel",
System: "You are a fun AI agent",
Messages: []api.Message{
{
Role: "user",
Content: "hello there!",
},
{
Role: "assistant",
Content: "hello to you!",
},
},
WordWrap: true,
},
&api.CreateRequest{
From: "parentmodel",
Model: "newmodel",
System: "You are a fun AI agent",
Messages: []api.Message{
{
Role: "user",
Content: "hello there!",
},
{
Role: "assistant",
Content: "hello to you!",
},
},
},
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
actual := NewCreateRequest(tt.from, tt.opts)
if !cmp.Equal(actual, tt.expected) {
t.Errorf("expected output %#v, got %#v", tt.expected, actual)
}
})
}
}

View File

@@ -18,6 +18,7 @@ import (
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/readline"
"github.com/ollama/ollama/types/errtypes"
"github.com/ollama/ollama/types/model"
)
type MultilineState int
@@ -459,9 +460,16 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
}
func NewCreateRequest(name string, opts runOptions) *api.CreateRequest {
parentModel := opts.ParentModel
modelName := model.ParseName(parentModel)
if !modelName.IsValid() {
parentModel = ""
}
req := &api.CreateRequest{
Name: name,
From: cmp.Or(opts.ParentModel, opts.Model),
Model: name,
From: cmp.Or(parentModel, opts.Model),
}
if opts.System != "" {

View File

@@ -201,7 +201,7 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
case "CohereForCausalLM":
conv = &commandrModel{}
default:
return errors.New("unsupported architecture")
return fmt.Errorf("unsupported architecture %q", p.Architectures[0])
}
if err := json.Unmarshal(bts, conv); err != nil {

View File

@@ -1360,7 +1360,7 @@ func file_sentencepiece_model_proto_rawDescGZIP() []byte {
var file_sentencepiece_model_proto_enumTypes = make([]protoimpl.EnumInfo, 2)
var file_sentencepiece_model_proto_msgTypes = make([]protoimpl.MessageInfo, 6)
var file_sentencepiece_model_proto_goTypes = []interface{}{
var file_sentencepiece_model_proto_goTypes = []any{
(TrainerSpec_ModelType)(0), // 0: sentencepiece.TrainerSpec.ModelType
(ModelProto_SentencePiece_Type)(0), // 1: sentencepiece.ModelProto.SentencePiece.Type
(*TrainerSpec)(nil), // 2: sentencepiece.TrainerSpec
@@ -1392,7 +1392,7 @@ func file_sentencepiece_model_proto_init() {
return
}
if !protoimpl.UnsafeEnabled {
file_sentencepiece_model_proto_msgTypes[0].Exporter = func(v interface{}, i int) interface{} {
file_sentencepiece_model_proto_msgTypes[0].Exporter = func(v any, i int) any {
switch v := v.(*TrainerSpec); i {
case 0:
return &v.state
@@ -1406,7 +1406,7 @@ func file_sentencepiece_model_proto_init() {
return nil
}
}
file_sentencepiece_model_proto_msgTypes[1].Exporter = func(v interface{}, i int) interface{} {
file_sentencepiece_model_proto_msgTypes[1].Exporter = func(v any, i int) any {
switch v := v.(*NormalizerSpec); i {
case 0:
return &v.state
@@ -1420,7 +1420,7 @@ func file_sentencepiece_model_proto_init() {
return nil
}
}
file_sentencepiece_model_proto_msgTypes[2].Exporter = func(v interface{}, i int) interface{} {
file_sentencepiece_model_proto_msgTypes[2].Exporter = func(v any, i int) any {
switch v := v.(*SelfTestData); i {
case 0:
return &v.state
@@ -1434,7 +1434,7 @@ func file_sentencepiece_model_proto_init() {
return nil
}
}
file_sentencepiece_model_proto_msgTypes[3].Exporter = func(v interface{}, i int) interface{} {
file_sentencepiece_model_proto_msgTypes[3].Exporter = func(v any, i int) any {
switch v := v.(*ModelProto); i {
case 0:
return &v.state
@@ -1448,7 +1448,7 @@ func file_sentencepiece_model_proto_init() {
return nil
}
}
file_sentencepiece_model_proto_msgTypes[4].Exporter = func(v interface{}, i int) interface{} {
file_sentencepiece_model_proto_msgTypes[4].Exporter = func(v any, i int) any {
switch v := v.(*SelfTestData_Sample); i {
case 0:
return &v.state
@@ -1460,7 +1460,7 @@ func file_sentencepiece_model_proto_init() {
return nil
}
}
file_sentencepiece_model_proto_msgTypes[5].Exporter = func(v interface{}, i int) interface{} {
file_sentencepiece_model_proto_msgTypes[5].Exporter = func(v any, i int) any {
switch v := v.(*ModelProto_SentencePiece); i {
case 0:
return &v.state

View File

@@ -12,7 +12,7 @@ func IsNUMA() bool {
// numa support in llama.cpp is linux only
return false
}
ids := map[string]interface{}{}
ids := map[string]any{}
packageIds, _ := filepath.Glob("/sys/devices/system/cpu/cpu*/topology/physical_package_id")
for _, packageId := range packageIds {
id, err := os.ReadFile(packageId)

View File

@@ -111,6 +111,7 @@ func GetCPUDetails() ([]CPU, error) {
if err != nil {
return nil, err
}
defer file.Close()
return linuxCPUDetails(file)
}
@@ -168,13 +169,11 @@ func linuxCPUDetails(file io.Reader) ([]CPU, error) {
for id, s := range socketByID {
s.CoreCount = len(coreBySocket[id])
s.ThreadCount = 0
for _, tc := range threadsByCoreBySocket[id] {
s.ThreadCount += tc
}
// This only works if HT is enabled, consider a more reliable model, maybe cache size comparisons?
efficiencyCoreCount := 0
for _, threads := range threadsByCoreBySocket[id] {
s.ThreadCount += threads
if threads == 1 {
efficiencyCoreCount++
}

View File

@@ -558,6 +558,10 @@ Final response:
{
"model": "llama3.2",
"created_at": "2023-08-04T19:22:45.499127Z",
"message": {
"role": "assistant",
"content": ""
},
"done": true,
"total_duration": 4883583458,
"load_duration": 1334875,
@@ -1213,7 +1217,7 @@ Show information about a model including details, modelfile, template, parameter
```shell
curl http://localhost:11434/api/show -d '{
"model": "llama3.2"
"model": "llava"
}'
```
@@ -1256,7 +1260,11 @@ curl http://localhost:11434/api/show -d '{
"tokenizer.ggml.pre": "llama-bpe",
"tokenizer.ggml.token_type": [], // populates if `verbose=true`
"tokenizer.ggml.tokens": [] // populates if `verbose=true`
}
},
"capabilities": [
"completion",
"vision"
],
}
```

59
docs/benchmark.md Normal file
View File

@@ -0,0 +1,59 @@
# Benchmark
Go benchmark tests that measure end-to-end performance of a running Ollama server. Run these tests to evaluate model inference performance on your hardware and measure the impact of code changes.
## When to use
Run these benchmarks when:
- Making changes to the model inference engine
- Modifying model loading/unloading logic
- Changing prompt processing or token generation code
- Implementing a new model architecture
- Testing performance across different hardware setups
## Prerequisites
- Ollama server running locally with `ollama serve` on `127.0.0.1:11434`
## Usage and Examples
>[!NOTE]
>All commands must be run from the root directory of the Ollama project.
Basic syntax:
```bash
go test -bench=. ./benchmark/... -m $MODEL_NAME
```
Required flags:
- `-bench=.`: Run all benchmarks
- `-m`: Model name to benchmark
Optional flags:
- `-count N`: Number of times to run the benchmark (useful for statistical analysis)
- `-timeout T`: Maximum time for the benchmark to run (e.g. "10m" for 10 minutes)
Common usage patterns:
Single benchmark run with a model specified:
```bash
go test -bench=. ./benchmark/... -m llama3.3
```
## Output metrics
The benchmark reports several key metrics:
- `gen_tok/s`: Generated tokens per second
- `prompt_tok/s`: Prompt processing tokens per second
- `ttft_ms`: Time to first token in milliseconds
- `load_ms`: Model load time in milliseconds
- `gen_tokens`: Total tokens generated
- `prompt_tokens`: Total prompt tokens processed
Each benchmark runs two scenarios:
- Cold start: Model is loaded from disk for each test
- Warm start: Model is pre-loaded in memory
Three prompt lengths are tested for each scenario:
- Short prompt (100 tokens)
- Medium prompt (500 tokens)
- Long prompt (1000 tokens)

View File

@@ -20,7 +20,13 @@ Please refer to the [GPU docs](./gpu.md).
## How can I specify the context window size?
By default, Ollama uses a context window size of 2048 tokens. This can be overridden with the `OLLAMA_CONTEXT_LENGTH` environment variable. For example, to set the default context length to 8K, use: `OLLAMA_CONTEXT_LENGTH=8192 ollama serve`.
By default, Ollama uses a context window size of 2048 tokens.
This can be overridden with the `OLLAMA_CONTEXT_LENGTH` environment variable. For example, to set the default context window to 8K, use:
```shell
OLLAMA_CONTEXT_LENGTH=8192 ollama serve
```
To change this when using `ollama run`, use `/set parameter`:

View File

@@ -9,7 +9,7 @@ cat ~/.ollama/logs/server.log
On **Linux** systems with systemd, the logs can be found with this command:
```shell
journalctl -u ollama --no-pager
journalctl -u ollama --no-pager --follow --pager-end
```
When you run Ollama in a **container**, the logs go to stdout/stderr in the container:

View File

@@ -5,7 +5,7 @@ import (
"time"
)
func assertEqual(t *testing.T, a interface{}, b interface{}) {
func assertEqual(t *testing.T, a any, b any) {
if a != b {
t.Errorf("Assert failed, expected %v, got %v", b, a)
}

View File

@@ -413,7 +413,7 @@ func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
}, offset, nil
}
func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialOffload, fullOffload uint64) {
func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType string) (kv []uint64, partialOffload, fullOffload uint64) {
embedding := f.KV().EmbeddingLength()
heads := f.KV().HeadCount()
headsKV := f.KV().HeadCountKV()
@@ -426,7 +426,10 @@ func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialO
layers := f.Tensors().GroupLayers()
bytesPerElement := kvCacheBytesPerElement(kvCacheType)
kv = uint64(float64(context*f.KV().BlockCount()*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
kv = make([]uint64, f.KV().BlockCount())
for i := range kv {
kv[i] = uint64(float64(context*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
}
switch f.KV().Architecture() {
case "llama":
@@ -460,16 +463,14 @@ func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialO
case "mllama":
var visionTokens, tiles uint64 = 1601, 4
if crossAttentionLayers, ok := f.KV()["mllama.attention.cross_attention_layers"].(*array); ok {
kv = headsKV *
(embeddingHeadsK + embeddingHeadsV) * // one for K, one for V
(2* // sizeof(float16)
(f.KV().BlockCount()-uint64(crossAttentionLayers.size))* // num non-cross attention layers
context +
4* // sizeof(float32)
uint64(crossAttentionLayers.size)* // num cross attention layers
visionTokens*
tiles)
crossAttentionLayers := f.KV().Uints("attention.cross_attention_layers")
for i := range kv {
if slices.Contains(crossAttentionLayers, uint32(i)) {
kv[i] = headsKV * (embeddingHeadsK + embeddingHeadsV) *
4 * // sizeof(float32)
visionTokens *
tiles
}
}
fullOffload = max(
@@ -505,6 +506,20 @@ func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialO
4*embeddingHeadsK*context*8+
embedding*embeddingHeadsK*heads*9/16,
)
// Gemma2 also has sliding window attention but we only have an optimized implementation in the Ollama
// engine. Gemma3 always uses the Ollama engine.
if f.KV().Architecture() == "gemma3" {
const gemma3GlobalCacheCount = 6
slidingWindow := (uint64(numParallel) * uint64(f.KV().Uint("attention.sliding_window"))) + batch
for i := range kv {
// Every 6th layer is a global layer, which is the full context size that has already been set. The other
// layers are the smaller local (sliding) layers.
if (i+1)%gemma3GlobalCacheCount != 0 {
kv[i] = uint64(float64(slidingWindow*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
}
}
}
case "command-r":
fullOffload = max(
4*batch*(embedding+vocab),

View File

@@ -22,7 +22,7 @@ func TestOrcaMiniBlueSky(t *testing.T) {
Model: "orca-mini",
Prompt: "why is the sky blue?",
Stream: &stream,
Options: map[string]interface{}{
Options: map[string]any{
"temperature": 0,
"seed": 123,
},
@@ -39,7 +39,7 @@ func TestUnicode(t *testing.T) {
Model: "deepseek-coder-v2:16b-lite-instruct-q2_K",
Prompt: "天空为什么是蓝色的?",
Stream: &stream,
Options: map[string]interface{}{
Options: map[string]any{
"temperature": 0,
"seed": 123,
// Workaround deepseek context shifting bug
@@ -61,7 +61,7 @@ func TestExtendedUnicodeOutput(t *testing.T) {
Model: "gemma2:2b",
Prompt: "Output some smily face emoji",
Stream: &stream,
Options: map[string]interface{}{
Options: map[string]any{
"temperature": 0,
"seed": 123,
},
@@ -96,7 +96,7 @@ func TestUnicodeModelDir(t *testing.T) {
Model: "orca-mini",
Prompt: "why is the sky blue?",
Stream: &stream,
Options: map[string]interface{}{
Options: map[string]any{
"temperature": 0,
"seed": 123,
},

View File

@@ -25,7 +25,7 @@ func TestMultiModelConcurrency(t *testing.T) {
Prompt: "why is the ocean blue?",
Stream: &stream,
KeepAlive: &api.Duration{Duration: 10 * time.Second},
Options: map[string]interface{}{
Options: map[string]any{
"seed": 42,
"temperature": 0.0,
},
@@ -34,7 +34,7 @@ func TestMultiModelConcurrency(t *testing.T) {
Prompt: "what is the origin of the us thanksgiving holiday?",
Stream: &stream,
KeepAlive: &api.Duration{Duration: 10 * time.Second},
Options: map[string]interface{}{
Options: map[string]any{
"seed": 42,
"temperature": 0.0,
},

View File

@@ -23,7 +23,7 @@ func TestLongInputContext(t *testing.T) {
Model: "llama2",
Prompt: "Oh, dont speak to me of Austria. Perhaps I dont understand things, but Austria never has wished, and does not wish, for war. She is betraying us! Russia alone must save Europe. Our gracious sovereign recognizes his high vocation and will be true to it. That is the one thing I have faith in! Our good and wonderful sovereign has to perform the noblest role on earth, and he is so virtuous and noble that God will not forsake him. He will fulfill his vocation and crush the hydra of revolution, which has become more terrible than ever in the person of this murderer and villain! We alone must avenge the blood of the just one.... Whom, I ask you, can we rely on?... England with her commercial spirit will not and cannot understand the Emperor Alexanders loftiness of soul. She has refused to evacuate Malta. She wanted to find, and still seeks, some secret motive in our actions. What answer did Novosíltsev get? None. The English have not understood and cannot understand the self-abnegation of our Emperor who wants nothing for himself, but only desires the good of mankind. And what have they promised? Nothing! And what little they have promised they will not perform! Prussia has always declared that Buonaparte is invincible, and that all Europe is powerless before him.... And I dont believe a word that Hardenburg says, or Haugwitz either. This famous Prussian neutrality is just a trap. I have faith only in God and the lofty destiny of our adored monarch. He will save Europe! What country is this referring to?",
Stream: &stream,
Options: map[string]interface{}{
Options: map[string]any{
"temperature": 0,
"seed": 123,
"num_ctx": 128,
@@ -50,7 +50,7 @@ func TestContextExhaustion(t *testing.T) {
Model: "llama2",
Prompt: "Write me a story with a ton of emojis?",
Stream: &stream,
Options: map[string]interface{}{
Options: map[string]any{
"temperature": 0,
"seed": 123,
"num_ctx": 128,

View File

@@ -19,7 +19,7 @@ func TestIntegrationLlava(t *testing.T) {
Model: "llava:7b",
Prompt: "what does the text in this image say?",
Stream: &stream,
Options: map[string]interface{}{
Options: map[string]any{
"seed": 42,
"temperature": 0.0,
},
@@ -47,7 +47,7 @@ func TestIntegrationMllama(t *testing.T) {
Model: "x/llama3.2-vision",
Prompt: "what does the text in this image say?",
Stream: &stream,
Options: map[string]interface{}{
Options: map[string]any{
"seed": 42,
"temperature": 0.0,
},
@@ -66,6 +66,35 @@ func TestIntegrationMllama(t *testing.T) {
DoGenerate(ctx, t, client, req, []string{resp}, 240*time.Second, 30*time.Second)
}
func TestIntegrationSplitBatch(t *testing.T) {
image, err := base64.StdEncoding.DecodeString(imageEncoding)
require.NoError(t, err)
req := api.GenerateRequest{
Model: "gemma3:4b",
// Fill up a chunk of the batch so the image will partially spill over into the next one
System: "Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed aliquet, justo in malesuada lobortis, odio ligula volutpat quam, quis faucibus ipsum magna quis sapien. Aliquam in venenatis diam, eu viverra magna. Phasellus imperdiet hendrerit volutpat. Vivamus sem ex, facilisis placerat felis non, dictum elementum est. Phasellus aliquam imperdiet lacus, eget placerat ligula sodales vel. Pellentesque nec auctor mi. Curabitur arcu nisi, faucibus eget nunc id, viverra interdum mi. Curabitur ornare ipsum ex, ac euismod ex aliquam in. Vestibulum id magna at purus accumsan fermentum. Proin scelerisque posuere nunc quis interdum. Maecenas sed mollis nisl. Etiam vitae ipsum interdum, placerat est quis, tincidunt velit. Nullam tempor nibh non lorem volutpat efficitur. Cras laoreet diam imperdiet ipsum auctor bibendum. Suspendisse ultrices urna sed metus sagittis suscipit. Quisque ullamcorper aliquam nibh ut mollis. Aenean dapibus mauris pharetra, venenatis elit ac, hendrerit odio. Cras vestibulum erat tempor, lobortis justo eu, lobortis ipsum. Nam laoreet dapibus sem. Proin vel diam ultrices, elementum ante et, ornare lectus. Proin eu accumsan nisl. Praesent ac ex vitae ipsum vulputate tristique facilisis sit amet lacus. Nullam faucibus magna a pellentesque pretium. Nunc lacinia ullamcorper sollicitudin. Donec vitae accumsan turpis, sed porttitor est. Donec porttitor mi vitae augue faucibus, vel mollis diam tincidunt.",
Prompt: "what does the text in this image say?",
Stream: &stream,
Options: map[string]any{
"seed": 42,
"temperature": 0.0,
},
Images: []api.ImageData{
image,
},
}
// Note: sometimes it returns "the ollamas" sometimes "the ollams"
resp := "the ollam"
ctx, cancel := context.WithTimeout(context.Background(), 3*time.Minute)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
require.NoError(t, PullIfMissing(ctx, client, req.Model))
// llava models on CPU can be quite slow to start,
DoGenerate(ctx, t, client, req, []string{resp}, 120*time.Second, 30*time.Second)
}
const imageEncoding = `iVBORw0KGgoAAAANSUhEUgAAANIAAAB4CAYAAACHHqzKAAAAAXNSR0IArs4c6QAAAIRlWElmTU0AKgAAAAgABQESAAMAAAABAAEAAAEaAAUAAAABAAAASgEb
AAUAAAABAAAAUgEoAAMAAAABAAIAAIdpAAQAAAABAAAAWgAAAAAAAABIAAAAAQAAAEgAAAABAAOgAQADAAAAAQABAACgAgAEAAAAAQAAANKgAwAEAAAAAQAA
AHgAAAAAXdsepgAAAAlwSFlzAAALEwAACxMBAJqcGAAAAVlpVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6

View File

@@ -20,7 +20,7 @@ var (
Model: "orca-mini",
Prompt: "why is the ocean blue?",
Stream: &stream,
Options: map[string]interface{}{
Options: map[string]any{
"seed": 42,
"temperature": 0.0,
},
@@ -28,7 +28,7 @@ var (
Model: "orca-mini",
Prompt: "what is the origin of the us thanksgiving holiday?",
Stream: &stream,
Options: map[string]interface{}{
Options: map[string]any{
"seed": 42,
"temperature": 0.0,
},

View File

@@ -32,7 +32,7 @@ func TestMaxQueue(t *testing.T) {
req := api.GenerateRequest{
Model: "orca-mini",
Prompt: "write a long historical fiction story about christopher columbus. use at least 10 facts from his actual journey",
Options: map[string]interface{}{
Options: map[string]any{
"seed": 42,
"temperature": 0.0,
},

View File

@@ -291,7 +291,7 @@ func GenerateRequests() ([]api.GenerateRequest, [][]string) {
Prompt: "why is the ocean blue?",
Stream: &stream,
KeepAlive: &api.Duration{Duration: 10 * time.Second},
Options: map[string]interface{}{
Options: map[string]any{
"seed": 42,
"temperature": 0.0,
},
@@ -300,7 +300,7 @@ func GenerateRequests() ([]api.GenerateRequest, [][]string) {
Prompt: "why is the color of dirt brown?",
Stream: &stream,
KeepAlive: &api.Duration{Duration: 10 * time.Second},
Options: map[string]interface{}{
Options: map[string]any{
"seed": 42,
"temperature": 0.0,
},
@@ -309,7 +309,7 @@ func GenerateRequests() ([]api.GenerateRequest, [][]string) {
Prompt: "what is the origin of the us thanksgiving holiday?",
Stream: &stream,
KeepAlive: &api.Duration{Duration: 10 * time.Second},
Options: map[string]interface{}{
Options: map[string]any{
"seed": 42,
"temperature": 0.0,
},
@@ -318,7 +318,7 @@ func GenerateRequests() ([]api.GenerateRequest, [][]string) {
Prompt: "what is the origin of independence day?",
Stream: &stream,
KeepAlive: &api.Duration{Duration: 10 * time.Second},
Options: map[string]interface{}{
Options: map[string]any{
"seed": 42,
"temperature": 0.0,
},
@@ -327,7 +327,7 @@ func GenerateRequests() ([]api.GenerateRequest, [][]string) {
Prompt: "what is the composition of air?",
Stream: &stream,
KeepAlive: &api.Duration{Duration: 10 * time.Second},
Options: map[string]interface{}{
Options: map[string]any{
"seed": 42,
"temperature": 0.0,
},

View File

@@ -43,8 +43,13 @@ type Cache interface {
// ** cache management **
// Init sets up runtime parameters
Init(backend ml.Backend, dtype ml.DType, capacity int32)
// Init sets up runtime parameters.
// backend: Used to allocate cache data storage and execute management operations (such as defrag)
// dtype: The data type for storing cache entries
// maxSequences: The maximum number of sequences stored in the cache - across all batches
// capacity: The number of cache entries to store, per sequence
// maxBatch: The maximum number of tokens that can occur in a single batch
Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int)
// Close closes the cache and frees resources associated with it
Close()
@@ -52,11 +57,16 @@ type Cache interface {
// StartForward is called before the start of the model's forward pass.
// For each token in the coming batch, there must be a corresponding
// entry in positions and seqs.
StartForward(ctx ml.Context, opts input.Options) error
StartForward(ctx ml.Context, batch input.Batch) error
// CopyPrefix copies tokens in the range [0, len) from srcSeq to dstSeq
CopyPrefix(srcSeq, dstSeq int, len int32)
// CanResume returns true if the cache can continue with the next token at
// the given position and sequence. Assumes that the caller has already
// verified the contents of the cache.
CanResume(seq int, pos int32) bool
// Remove deletes tokens in the range [beginIndex, endIndex) from seq. Set
// endIndex to math.MaxInt32 to remove everything starting at beginIndex.
//

View File

@@ -20,7 +20,6 @@ type shiftFn func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, e
// The mask is of shape history size, batch size
type Causal struct {
DType ml.DType
Capacity int32
windowSize int32
opts CausalOptions
@@ -98,7 +97,7 @@ func NewSWACache(windowSize int32, shift shiftFn) *Causal {
}
}
func (c *Causal) Init(backend ml.Backend, dtype ml.DType, capacity int32) {
func (c *Causal) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int) {
if c.config == nil {
var config ml.CacheConfig
if cc, ok := backend.(ml.BackendCacheConfig); ok {
@@ -119,9 +118,16 @@ func (c *Causal) Init(backend ml.Backend, dtype ml.DType, capacity int32) {
c.config.MaskDType = ml.DTypeF32
}
var cacheSize int
if c.windowSize == math.MaxInt32 || capacity < int(c.windowSize) {
cacheSize = maxSequences * capacity
} else {
cacheSize = (maxSequences * int(c.windowSize)) + maxBatch
}
cacheSize = roundUp(cacheSize, c.config.CachePadding)
c.cells = make([]cacheCell, cacheSize)
c.DType = dtype
c.Capacity = int32(roundUp(int(capacity), c.config.CachePadding))
c.cells = make([]cacheCell, c.Capacity)
c.cellRanges = make(map[int]cellRange)
c.backend = backend
}
@@ -140,12 +146,14 @@ func (c *Causal) Close() {
}
}
func (c *Causal) StartForward(ctx ml.Context, opts input.Options) error {
c.curBatchSize = len(opts.Positions)
c.curSequences = opts.Sequences
c.curPositions = opts.Positions
func (c *Causal) StartForward(ctx ml.Context, batch input.Batch) error {
c.curBatchSize = len(batch.Positions)
c.curSequences = batch.Sequences
c.curPositions = batch.Positions
c.opts.Except = nil
c.updateSlidingWindow()
var err error
c.curLoc, err = c.findStartLoc()
if errors.Is(err, ErrKvCacheFull) {
@@ -157,8 +165,8 @@ func (c *Causal) StartForward(ctx ml.Context, opts input.Options) error {
}
c.curCellRange = newRange()
for i, pos := range opts.Positions {
seq := opts.Sequences[i]
for i, pos := range batch.Positions {
seq := batch.Sequences[i]
c.cells[c.curLoc+i] = cacheCell{pos: pos, sequences: []int{seq}}
@@ -210,7 +218,51 @@ func (c *Causal) findStartLoc() (int, error) {
}
}
return 0, fmt.Errorf("%w (length: %v)", ErrKvCacheFull, c.Capacity)
return 0, fmt.Errorf("%w (length: %v)", ErrKvCacheFull, len(c.cells))
}
func (c *Causal) updateSlidingWindow() {
if c.windowSize == math.MaxInt32 {
return
}
// create a map of unique sequences to the lowest position in that sequence
lowestPos := make(map[int]int32)
for i := range c.curPositions {
seq := c.curSequences[i]
pos, ok := lowestPos[seq]
if !ok {
pos = c.curPositions[i]
} else if c.curPositions[i] < pos {
pos = c.curPositions[i]
}
lowestPos[seq] = pos
}
// delete any entries that are beyond the window of the oldest position in the sequence
for seq, pos := range lowestPos {
oldRange, ok := c.cellRanges[seq]
if !ok {
continue
}
newRange := newRange()
for i := oldRange.min; i <= oldRange.max; i++ {
if slices.Contains(c.cells[i].sequences, seq) {
if c.cells[i].pos < pos-c.windowSize {
c.cells[i].sequences = slices.DeleteFunc(c.cells[i].sequences, func(s int) bool { return s == seq })
} else {
newRange.min = min(newRange.min, i)
newRange.max = max(newRange.max, i)
}
}
}
c.cellRanges[seq] = newRange
}
}
func roundDown(length, pad int) int {
@@ -265,7 +317,7 @@ func (c *Causal) buildMask(ctx ml.Context) (ml.Tensor, error) {
return maskTensor, nil
}
func (c *Causal) moveCells(ctx ml.Context, src, dst, len int) {
func (c *Causal) moveCells(ctx ml.Context, src, dst, length int) {
for i, key := range c.keys {
if key == nil {
continue
@@ -275,8 +327,8 @@ func (c *Causal) moveCells(ctx ml.Context, src, dst, len int) {
numKVHeads := key.Dim(1)
rowSize := key.Stride(2)
kSrcView := key.View(ctx, rowSize*src, kHeadDim*numKVHeads*len)
kDstView := key.View(ctx, rowSize*dst, kHeadDim*numKVHeads*len)
kSrcView := key.View(ctx, rowSize*src, kHeadDim*numKVHeads*length)
kDstView := key.View(ctx, rowSize*dst, kHeadDim*numKVHeads*length)
value := c.values[i]
var vSrcView, vDstView ml.Tensor
@@ -284,14 +336,14 @@ func (c *Causal) moveCells(ctx ml.Context, src, dst, len int) {
vHeadDim := value.Dim(1)
elemSize := value.Stride(0)
vSrcView = value.View(ctx, elemSize*src, len, int(c.Capacity)*elemSize, vHeadDim*numKVHeads)
vDstView = value.View(ctx, elemSize*dst, len, int(c.Capacity)*elemSize, vHeadDim*numKVHeads)
vSrcView = value.View(ctx, elemSize*src, length, len(c.cells)*elemSize, vHeadDim*numKVHeads)
vDstView = value.View(ctx, elemSize*dst, length, len(c.cells)*elemSize, vHeadDim*numKVHeads)
} else {
vHeadDim := value.Dim(0)
rowSize := value.Stride(2)
vSrcView = value.View(ctx, rowSize*src, vHeadDim*numKVHeads*len)
vDstView = value.View(ctx, rowSize*dst, vHeadDim*numKVHeads*len)
vSrcView = value.View(ctx, rowSize*src, vHeadDim*numKVHeads*length)
vDstView = value.View(ctx, rowSize*dst, vHeadDim*numKVHeads*length)
}
ctx.Forward(
@@ -321,7 +373,8 @@ func (c *Causal) defrag() {
ctx := c.backend.NewContext()
// For every move, 6 tensors are required per layer (2 views and a
// copy for each of k and v).
// copy for each of k and v). We also need to refer to the original
// k and v cache tensors - once per layer, not per move.
layers := 0
for _, key := range c.keys {
if key == nil {
@@ -330,7 +383,7 @@ func (c *Causal) defrag() {
layers++
}
maxMoves := ctx.MaxGraphNodes() / (6 * layers)
maxMoves := (ctx.MaxGraphNodes() - 2*layers) / (6 * layers)
moves := 0
var pendingSrc, pendingDst, pendingLen int
@@ -479,14 +532,14 @@ func (c *Causal) Put(ctx ml.Context, key, value ml.Tensor) {
}
if _, ok := c.keys[c.curLayer]; !ok {
c.keys[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, kHeadDim, numKVHeads, int(c.Capacity))
c.keys[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, kHeadDim, numKVHeads, len(c.cells))
}
if _, ok := c.values[c.curLayer]; !ok {
if c.config.PermutedV {
c.values[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, int(c.Capacity), vHeadDim, numKVHeads)
c.values[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, len(c.cells), vHeadDim, numKVHeads)
} else {
c.values[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, vHeadDim, numKVHeads, int(c.Capacity))
c.values[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, vHeadDim, numKVHeads, len(c.cells))
}
}
@@ -497,7 +550,7 @@ func (c *Causal) Put(ctx ml.Context, key, value ml.Tensor) {
elemSize := c.values[c.curLayer].Stride(0)
value = value.Permute(ctx, 1, 2, 0, 3)
ctx.Forward(value.Copy(ctx, c.values[c.curLayer].View(ctx, elemSize*c.curLoc, batchSize, int(c.Capacity)*elemSize, vHeadDim*numKVHeads)))
ctx.Forward(value.Copy(ctx, c.values[c.curLayer].View(ctx, elemSize*c.curLoc, batchSize, len(c.cells)*elemSize, vHeadDim*numKVHeads)))
} else {
rowSize := c.values[c.curLayer].Stride(2)
@@ -528,6 +581,35 @@ func (c *Causal) CopyPrefix(srcSeq, dstSeq int, len int32) {
c.cellRanges[dstSeq] = seqRange
}
func (c *Causal) CanResume(seq int, pos int32) bool {
if c.windowSize == math.MaxInt32 {
return true
}
seqRange, ok := c.cellRanges[seq]
if !ok {
return false
}
// for sliding window, check that the window of the new sequence is contained in
// the window of what we are storing
var last int32 = -1
for i := seqRange.min; i <= seqRange.max; i++ {
if slices.Contains(c.cells[i].sequences, seq) {
last = max(last, c.cells[i].pos)
}
}
if last == -1 {
return false
}
lastWindowStart := max(0, last-c.windowSize)
posWindowStart := max(0, pos-c.windowSize)
return posWindowStart >= lastWindowStart
}
func (c *Causal) shift(seq int, beginIndex, offset int32) error {
if c.shiftFn == nil {
return ErrNotSupported
@@ -582,6 +664,12 @@ func (c *Causal) shift(seq int, beginIndex, offset int32) error {
}
func (c *Causal) Remove(seq int, beginIndex, endIndex int32) error {
// TODO(jessegross): We should check to see if removing the middle of the sequence will
// cause the sliding window to encompass tokens that we no longer have. If so, then we
// should return an error, which will trigger the runner to evaluate the full history and
// rebuild the window. However, if we have multimodal inputs in our history, this reuse
// results in use after free, so we don't do it for now.
var offset int32
if endIndex != math.MaxInt32 {
offset = beginIndex - endIndex
@@ -596,8 +684,7 @@ func (c *Causal) Remove(seq int, beginIndex, endIndex int32) error {
} else {
if c.cells[i].pos >= endIndex {
if slices.ContainsFunc(c.cells[i].sequences, func(s int) bool { return s != seq }) {
// TODO(jessegross): Need to be careful about data shared between sequences
return errors.New("shifting on cells shared by multiple sequences not yet implemented")
return errors.New("shifting cells shared by multiple sequences not supported")
}
c.cells[i].pos += offset

View File

@@ -25,7 +25,7 @@ func TestStore(t *testing.T) {
cache := NewCausalCache(nil)
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 16)
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
tests := []testCase{
{
@@ -58,11 +58,11 @@ func TestSWA(t *testing.T) {
cache := NewSWACache(1, nil)
defer cache.Close()
cache.Init(backend, ml.DTypeF32, 16)
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
tests := []testCase{
{
name: "SlidingWindow",
name: "FirstBatch",
in: []float32{1, 2, 3, 4},
inShape: []int{1, 1, 4},
seqs: []int{0, 0, 0, 0},
@@ -71,6 +71,16 @@ func TestSWA(t *testing.T) {
expectedShape: []int{1, 1, 4},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
},
{
name: "SecondBatch",
in: []float32{5, 6},
inShape: []int{1, 1, 2},
seqs: []int{0, 0},
pos: []int32{4, 5},
expected: []float32{5, 6, 3, 4},
expectedShape: []int{1, 1, 4},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1))},
},
}
testCache(t, backend, cache, tests)
@@ -81,7 +91,7 @@ func TestSequences(t *testing.T) {
cache := NewCausalCache(nil)
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 16)
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
tests := []testCase{
{
@@ -116,7 +126,7 @@ func TestRemove(t *testing.T) {
})
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 16)
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
tests := []testCase{
{
@@ -181,7 +191,7 @@ func TestDefrag(t *testing.T) {
})
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 16)
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
tests := []testCase{
{
@@ -229,7 +239,7 @@ func TestCopy(t *testing.T) {
cache := NewCausalCache(func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) { return key, nil })
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 16)
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
tests := []testCase{
{
@@ -270,7 +280,7 @@ func testCache(t *testing.T, backend ml.Backend, cache Cache, tests []testCase)
context := backend.NewContext()
defer context.Close()
err := cache.StartForward(context, input.Options{Positions: test.pos, Sequences: test.seqs})
err := cache.StartForward(context, input.Batch{Positions: test.pos, Sequences: test.seqs})
if err != nil {
panic(err)
}
@@ -290,6 +300,77 @@ func testCache(t *testing.T, backend ml.Backend, cache Cache, tests []testCase)
}
}
func TestCanResume(t *testing.T) {
backend := &testBackend{}
windowSize := int32(4)
cache := NewSWACache(windowSize, nil)
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
context := backend.NewContext()
defer context.Close()
err := cache.StartForward(context, input.Batch{
Positions: []int32{0, 1, 2, 3},
Sequences: []int{0, 0, 0, 0},
})
if err != nil {
t.Fatalf("StartForward failed: %v", err)
}
cache.SetLayer(0)
tensor, _ := context.FromFloatSlice([]float32{1, 2, 3, 4}, 1, 1, 4)
cache.Put(context, tensor, tensor)
// with window size 4, nothing has slid out of the window yet
if !cache.CanResume(0, 0) {
t.Errorf("CanResume(0, 0) = false, want true (within window)")
}
if !cache.CanResume(0, 1) {
t.Errorf("CanResume(0, 1) = false, want true (within window)")
}
if !cache.CanResume(0, 2) {
t.Errorf("CanResume(0, 2) = false, want true (within window)")
}
if !cache.CanResume(0, 3) {
t.Errorf("CanResume(0, 3) = false, want true (latest position)")
}
// shift window by adding position 4
err = cache.StartForward(context, input.Batch{
Positions: []int32{4, 5},
Sequences: []int{0, 0},
})
if err != nil {
t.Fatalf("StartForward failed: %v", err)
}
cache.SetLayer(0)
tensor, _ = context.FromFloatSlice([]float32{5, 6}, 1, 1, 2)
cache.Put(context, tensor, tensor)
// only the latest position has overlapping windows
if cache.CanResume(0, 0) {
t.Errorf("after shift: CanResume(0, 0) = true, want false (outside window)")
}
if cache.CanResume(0, 1) {
t.Errorf("after shift: CanResume(0, 1) = true, want false (outside window)")
}
if cache.CanResume(0, 2) {
t.Errorf("after shift: CanResume(0, 2) = true, want false (outside window)")
}
if cache.CanResume(0, 3) {
t.Errorf("after shift: CanResume(0, 3) = true, want false (outside window)")
}
if cache.CanResume(0, 4) {
t.Errorf("after shift: CanResume(0, 4) = true, want false (outside window)")
}
if !cache.CanResume(0, 5) {
t.Errorf("after shift: CanResume(0, 5) = false, want true (latest position)")
}
}
type testBackend struct{}
func (b *testBackend) Config() ml.Config {
@@ -352,7 +433,6 @@ func (c *testContext) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
}
func (c *testContext) Input() ml.Context { return c }
func (c *testContext) Output() ml.Context { return c }
func (c *testContext) Layer(int) ml.Context { return c }
func (c *testContext) Forward(...ml.Tensor) ml.Context { return c }

View File

@@ -49,7 +49,7 @@ func NewEncoderCache() *EncoderCache {
}
}
func (c *EncoderCache) Init(backend ml.Backend, dtype ml.DType, capacity int32) {
func (c *EncoderCache) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int) {
if c.config == nil {
var config ml.CacheConfig
if cc, ok := backend.(ml.BackendCacheConfig); ok {
@@ -58,6 +58,10 @@ func (c *EncoderCache) Init(backend ml.Backend, dtype ml.DType, capacity int32)
c.config = &config
}
if maxSequences > 1 {
panic(fmt.Errorf("encoder cache does not support multiple sequences; requested: %v", maxSequences))
}
if c.config.CachePadding != 0 && c.config.CachePadding != 1 {
panic(fmt.Errorf("encoder cache is unable to enforce requested CachePadding (%v)", c.config.CachePadding))
}
@@ -79,10 +83,10 @@ func (c *EncoderCache) Close() {
}
}
func (c *EncoderCache) StartForward(ctx ml.Context, opts input.Options) error {
func (c *EncoderCache) StartForward(ctx ml.Context, batch input.Batch) error {
// We work with the most recent image
if len(opts.Multimodal) > 0 {
c.curPos = opts.Positions[opts.Multimodal[len(opts.Multimodal)-1].Index]
if len(batch.Multimodal) > 0 {
c.curPos = batch.Positions[batch.Multimodal[len(batch.Multimodal)-1].Index]
}
return nil
@@ -130,6 +134,10 @@ func (c *EncoderCache) CopyPrefix(srcSeq, dstSeq int, len int32) {
panic("encoder cache does not support multiple sequences")
}
func (c *EncoderCache) CanResume(seq int, pos int32) bool {
return true
}
func (c *EncoderCache) Remove(seq int, beginIndex, endIndex int32) error {
if c.encoderPos >= beginIndex && c.encoderPos < endIndex {
c.encoderCached = false

View File

@@ -23,9 +23,9 @@ func NewWrapperCache(caches ...Cache) *WrapperCache {
}
}
func (c *WrapperCache) Init(backend ml.Backend, dtype ml.DType, capacity int32) {
func (c *WrapperCache) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int) {
for _, cache := range c.caches {
cache.Init(backend, dtype, capacity)
cache.Init(backend, dtype, maxSequences, capacity, maxBatch)
}
}
@@ -41,14 +41,14 @@ func (c *WrapperCache) Close() {
}
}
func (c *WrapperCache) StartForward(ctx ml.Context, opts input.Options) error {
func (c *WrapperCache) StartForward(ctx ml.Context, batch input.Batch) error {
for i, cache := range c.caches {
err := cache.StartForward(ctx, opts)
err := cache.StartForward(ctx, batch)
if err != nil {
// unwind on error - Remove with endIndex set to math.MaxInt32 does not fail
for j := i - 1; j >= 0; j-- {
for k := range opts.Positions {
_ = c.caches[j].Remove(opts.Sequences[k], opts.Positions[k], math.MaxInt32)
for k := range batch.Positions {
_ = c.caches[j].Remove(batch.Sequences[k], batch.Positions[k], math.MaxInt32)
}
}
return err
@@ -87,6 +87,16 @@ func (c *WrapperCache) CopyPrefix(srcSeq, dstSeq int, len int32) {
}
}
func (c *WrapperCache) CanResume(seq int, pos int32) bool {
for _, cache := range c.caches {
if !cache.CanResume(seq, pos) {
return false
}
}
return true
}
func (c *WrapperCache) Remove(seq int, beginIndex, endIndex int32) error {
// If the one of these fails, the caller is supposed to retry with endIndex set to math.MaxInt32, which should not fail
for _, cache := range c.caches {

View File

@@ -37,6 +37,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_MINICPM3, "minicpm3" },
{ LLM_ARCH_GEMMA, "gemma" },
{ LLM_ARCH_GEMMA2, "gemma2" },
{ LLM_ARCH_GEMMA3, "gemma3" },
{ LLM_ARCH_STARCODER2, "starcoder2" },
{ LLM_ARCH_MAMBA, "mamba" },
{ LLM_ARCH_XVERSE, "xverse" },
@@ -804,6 +805,24 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
},
},
{
LLM_ARCH_GEMMA3,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
},
},
{
LLM_ARCH_STARCODER2,
{

View File

@@ -41,6 +41,7 @@ enum llm_arch {
LLM_ARCH_MINICPM3,
LLM_ARCH_GEMMA,
LLM_ARCH_GEMMA2,
LLM_ARCH_GEMMA3,
LLM_ARCH_STARCODER2,
LLM_ARCH_MAMBA,
LLM_ARCH_XVERSE,

View File

@@ -878,6 +878,9 @@ void llama_model::load_hparams(llama_model_loader & ml) {
default: type = LLM_TYPE_UNKNOWN;
}
} break;
case LLM_ARCH_GEMMA3:
{
} break;
case LLM_ARCH_STARCODER2:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
@@ -2537,6 +2540,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
}
} break;
case LLM_ARCH_GEMMA3:
{
} break;
case LLM_ARCH_STARCODER2:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@@ -4029,6 +4035,7 @@ enum llama_rope_type llama_model_rope_type(const struct llama_model * model) {
case LLM_ARCH_PHIMOE:
case LLM_ARCH_GEMMA:
case LLM_ARCH_GEMMA2:
case LLM_ARCH_GEMMA3:
case LLM_ARCH_STARCODER2:
case LLM_ARCH_OPENELM:
case LLM_ARCH_GPTNEOX:

View File

@@ -737,6 +737,15 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
// This used to be a regex, but <regex> has an extreme cost to compile times.
bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
// don't quantize vision stuff
quantize &= name.find("v.blk.") == std::string::npos;
quantize &= name.find("mm.mm_input_projection.weight") == std::string::npos;
quantize &= name.find("mm.mm_soft_emb_norm.weight") == std::string::npos;
quantize &= name.find("v.patch_embedding.weight") == std::string::npos;
quantize &= name.find("v.position_embedding.weight") == std::string::npos;
quantize &= name.find("v.post_layernorm.weight") == std::string::npos;
// quantize only 2D and 3D tensors (experts)
quantize &= (ggml_n_dims(tensor) >= 2);

View File

@@ -166,6 +166,10 @@ func (c *Context) KvCacheDefrag() {
C.llama_kv_cache_defrag(c.c)
}
func (c *Context) KvCacheCanShift() bool {
return bool(C.llama_kv_cache_can_shift(c.c))
}
// Get the embeddings for a sequence id
func (c *Context) GetEmbeddingsSeq(seqId int) []float32 {
e := unsafe.Pointer(C.llama_get_embeddings_seq(c.c, C.int(seqId)))

View File

@@ -0,0 +1,113 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Patrick Devine <patrick@infrahq.com>
Date: Fri, 14 Mar 2025 16:33:23 -0700
Subject: [PATCH] gemma3 quantization
---
src/llama-arch.cpp | 19 +++++++++++++++++++
src/llama-arch.h | 1 +
src/llama-model.cpp | 7 +++++++
src/llama-quant.cpp | 9 +++++++++
4 files changed, 36 insertions(+)
diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp
index b6f20286..b443fcd3 100644
--- a/src/llama-arch.cpp
+++ b/src/llama-arch.cpp
@@ -37,6 +37,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_MINICPM3, "minicpm3" },
{ LLM_ARCH_GEMMA, "gemma" },
{ LLM_ARCH_GEMMA2, "gemma2" },
+ { LLM_ARCH_GEMMA3, "gemma3" },
{ LLM_ARCH_STARCODER2, "starcoder2" },
{ LLM_ARCH_MAMBA, "mamba" },
{ LLM_ARCH_XVERSE, "xverse" },
@@ -804,6 +805,24 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
},
},
+ {
+ LLM_ARCH_GEMMA3,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ { LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
+ },
+ },
{
LLM_ARCH_STARCODER2,
{
diff --git a/src/llama-arch.h b/src/llama-arch.h
index ec742224..aad92a5d 100644
--- a/src/llama-arch.h
+++ b/src/llama-arch.h
@@ -41,6 +41,7 @@ enum llm_arch {
LLM_ARCH_MINICPM3,
LLM_ARCH_GEMMA,
LLM_ARCH_GEMMA2,
+ LLM_ARCH_GEMMA3,
LLM_ARCH_STARCODER2,
LLM_ARCH_MAMBA,
LLM_ARCH_XVERSE,
diff --git a/src/llama-model.cpp b/src/llama-model.cpp
index ab1a07d1..70183041 100644
--- a/src/llama-model.cpp
+++ b/src/llama-model.cpp
@@ -878,6 +878,9 @@ void llama_model::load_hparams(llama_model_loader & ml) {
default: type = LLM_TYPE_UNKNOWN;
}
} break;
+ case LLM_ARCH_GEMMA3:
+ {
+ } break;
case LLM_ARCH_STARCODER2:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
@@ -2537,6 +2540,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
}
} break;
+ case LLM_ARCH_GEMMA3:
+ {
+ } break;
case LLM_ARCH_STARCODER2:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@@ -4029,6 +4035,7 @@ enum llama_rope_type llama_model_rope_type(const struct llama_model * model) {
case LLM_ARCH_PHIMOE:
case LLM_ARCH_GEMMA:
case LLM_ARCH_GEMMA2:
+ case LLM_ARCH_GEMMA3:
case LLM_ARCH_STARCODER2:
case LLM_ARCH_OPENELM:
case LLM_ARCH_GPTNEOX:
diff --git a/src/llama-quant.cpp b/src/llama-quant.cpp
index 6eb1da08..d2f3a510 100644
--- a/src/llama-quant.cpp
+++ b/src/llama-quant.cpp
@@ -737,6 +737,15 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
// This used to be a regex, but <regex> has an extreme cost to compile times.
bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
+ // don't quantize vision stuff
+ quantize &= name.find("v.blk.") == std::string::npos;
+
+ quantize &= name.find("mm.mm_input_projection.weight") == std::string::npos;
+ quantize &= name.find("mm.mm_soft_emb_norm.weight") == std::string::npos;
+ quantize &= name.find("v.patch_embedding.weight") == std::string::npos;
+ quantize &= name.find("v.position_embedding.weight") == std::string::npos;
+ quantize &= name.find("v.post_layernorm.weight") == std::string::npos;
+
// quantize only 2D and 3D tensors (experts)
quantize &= (ggml_n_dims(tensor) >= 2);

View File

@@ -0,0 +1,103 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Saman <saman.khatir@amd.com>
Date: Wed, 19 Mar 2025 14:02:26 -0700
Subject: [PATCH] add rdna4 support
---
ggml/src/ggml-cuda/common.cuh | 6 ++++--
ggml/src/ggml-cuda/mmq.cu | 2 +-
ggml/src/ggml-cuda/mmq.cuh | 4 ++--
ggml/src/ggml-cuda/mmvq.cu | 4 ++--
ggml/src/ggml-cuda/vendors/hip.h | 4 ++++
5 files changed, 13 insertions(+), 7 deletions(-)
diff --git a/ggml/src/ggml-cuda/common.cuh b/ggml/src/ggml-cuda/common.cuh
index adf0d3ec..b24593fc 100644
--- a/ggml/src/ggml-cuda/common.cuh
+++ b/ggml/src/ggml-cuda/common.cuh
@@ -61,11 +61,13 @@
#define GGML_CUDA_CC_RDNA1 (GGML_CUDA_CC_OFFSET_AMD + 0x1010) // RX 5000
#define GGML_CUDA_CC_RDNA2 (GGML_CUDA_CC_OFFSET_AMD + 0x1030) // RX 6000, minimum for dp4a
#define GGML_CUDA_CC_RDNA3 (GGML_CUDA_CC_OFFSET_AMD + 0x1100) // RX 7000, minimum for WMMA
+#define GGML_CUDA_CC_RDNA4 (GGML_CUDA_CC_OFFSET_AMD + 0x1200) // RX 9000
#define GGML_CUDA_CC_IS_RDNA(cc) (cc >= GGML_CUDA_CC_RDNA1)
#define GGML_CUDA_CC_IS_RDNA1(cc) (cc >= GGML_CUDA_CC_RDNA1 && cc < GGML_CUDA_CC_RDNA2)
#define GGML_CUDA_CC_IS_RDNA2(cc) (cc >= GGML_CUDA_CC_RDNA2 && cc < GGML_CUDA_CC_RDNA3)
-#define GGML_CUDA_CC_IS_RDNA3(cc) (cc >= GGML_CUDA_CC_RDNA3)
+#define GGML_CUDA_CC_IS_RDNA3(cc) (cc >= GGML_CUDA_CC_RDNA3 && cc < GGML_CUDA_CC_RDNA4)
+#define GGML_CUDA_CC_IS_RDNA4(cc) (cc >= GGML_CUDA_CC_RDNA4)
#define GGML_CUDA_CC_IS_GCN(cc) (cc > GGML_CUDA_CC_OFFSET_AMD && cc < GGML_CUDA_CC_CDNA)
#define GGML_CUDA_CC_IS_CDNA(cc) (cc >= GGML_CUDA_CC_CDNA && cc < GGML_CUDA_CC_RDNA1)
@@ -386,7 +388,7 @@ static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, i
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#if defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(RDNA2)
c = __builtin_amdgcn_sdot4(a, b, c, false);
-#elif defined(RDNA3)
+#elif defined(RDNA3) || defined(RDNA4)
c = __builtin_amdgcn_sudot4( true, a, true, b, c, false);
#elif defined(__gfx1010__) || defined(__gfx900__)
int tmp1;
diff --git a/ggml/src/ggml-cuda/mmq.cu b/ggml/src/ggml-cuda/mmq.cu
index 10f2ebb1..933d945c 100644
--- a/ggml/src/ggml-cuda/mmq.cu
+++ b/ggml/src/ggml-cuda/mmq.cu
@@ -149,5 +149,5 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
return !fp16_mma_hardware_available(cc) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
}
- return (!GGML_CUDA_CC_IS_RDNA3(cc) && !GGML_CUDA_CC_IS_CDNA(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
+ return (!GGML_CUDA_CC_IS_RDNA4(cc) && !GGML_CUDA_CC_IS_RDNA3(cc) && !GGML_CUDA_CC_IS_CDNA(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
}
diff --git a/ggml/src/ggml-cuda/mmq.cuh b/ggml/src/ggml-cuda/mmq.cuh
index 0451c65f..66ce2bc9 100644
--- a/ggml/src/ggml-cuda/mmq.cuh
+++ b/ggml/src/ggml-cuda/mmq.cuh
@@ -2577,9 +2577,9 @@ static __device__ void mul_mat_q_process_tile(
template <ggml_type type, int mmq_x, int nwarps, bool need_check>
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
+#if defined(RDNA4) || defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
__launch_bounds__(WARP_SIZE*nwarps, 2)
-#endif // defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
+#endif // defined(RDNA4) || defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
#else
#if __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
__launch_bounds__(WARP_SIZE*nwarps, 1)
diff --git a/ggml/src/ggml-cuda/mmvq.cu b/ggml/src/ggml-cuda/mmvq.cu
index 4fb466ca..23ae7abc 100644
--- a/ggml/src/ggml-cuda/mmvq.cu
+++ b/ggml/src/ggml-cuda/mmvq.cu
@@ -62,13 +62,13 @@ static __global__ void mul_mat_vec_q(
constexpr vec_dot_q_cuda_t vec_dot_q_cuda = get_vec_dot_q_cuda(type);
-#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3))
+#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3) || defined(RDNA4))
constexpr int nwarps = 1;
constexpr int rows_per_cuda_block = 1;
#else
constexpr int nwarps = ncols_y <= 4 ? 4 : 2;
constexpr int rows_per_cuda_block = ncols_y == 1 ? 1 : 2;
-#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3)
+#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3) && !defined(RDNA4)
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
const int row0 = rows_per_cuda_block*blockIdx.x;
diff --git a/ggml/src/ggml-cuda/vendors/hip.h b/ggml/src/ggml-cuda/vendors/hip.h
index 81964611..a62544b5 100644
--- a/ggml/src/ggml-cuda/vendors/hip.h
+++ b/ggml/src/ggml-cuda/vendors/hip.h
@@ -150,6 +150,10 @@
#define CDNA
#endif
+#if defined(__gfx1200__) || defined(__gfx1201__)
+#define RDNA4
+#endif
+
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__) || \
defined(__gfx1150__) || defined(__gfx1151__)
#define RDNA3

View File

@@ -15,12 +15,12 @@ import (
)
// This algorithm looks for a complete fit to determine if we need to unload other models
func PredictServerFit(allGpus discover.GpuInfoList, f *ggml.GGML, adapters, projectors []string, opts api.Options) (bool, uint64) {
func PredictServerFit(allGpus discover.GpuInfoList, f *ggml.GGML, adapters, projectors []string, opts api.Options, numParallel int) (bool, uint64) {
// Split up the GPUs by type and try them
var estimatedVRAM uint64
for _, gpus := range allGpus.ByLibrary() {
var layerCount int
estimate := EstimateGPULayers(gpus, f, projectors, opts)
estimate := EstimateGPULayers(gpus, f, projectors, opts, numParallel)
layerCount, estimatedVRAM = estimate.Layers, estimate.VRAMSize
if opts.NumGPU < 0 {
if layerCount > 0 && layerCount >= int(f.KV().BlockCount()+1) {
@@ -71,7 +71,7 @@ type MemoryEstimate struct {
// Given a model and one or more GPU targets, predict how many layers and bytes we can load, and the total size
// The GPUs provided must all be the same Library
func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []string, opts api.Options) MemoryEstimate {
func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []string, opts api.Options, numParallel int) MemoryEstimate {
// Graph size for a partial offload, applies to all GPUs
var graphPartialOffload uint64
@@ -137,13 +137,19 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
}
}
kv, graphPartialOffload, graphFullOffload := f.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)), kvct)
kv, graphPartialOffload, graphFullOffload := f.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)), numParallel, kvct)
// KV is proportional to the number of layers
layerSize += kv / f.KV().BlockCount()
if len(kv) > 0 {
layerSize += kv[0]
}
var kvTotal uint64
for _, kvLayer := range kv {
kvTotal += kvLayer
}
if graphPartialOffload == 0 {
graphPartialOffload = f.KV().GQA() * kv / 6
graphPartialOffload = f.KV().GQA() * kvTotal / 6
}
if graphFullOffload == 0 {
graphFullOffload = graphPartialOffload
@@ -217,7 +223,7 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
// Some models have inconsistent layer sizes
if blk, ok := layers[fmt.Sprintf("blk.%d", i)]; ok {
layerSize = blk.Size()
layerSize += kv / f.KV().BlockCount()
layerSize += kv[i]
memoryWeights += blk.Size()
}
@@ -315,7 +321,7 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
layersRequested: opts.NumGPU,
layersModel: int(f.KV().BlockCount()) + 1,
availableList: availableList,
kv: kv,
kv: kvTotal,
allocationsList: allocationsList,
memoryWeights: memoryWeights,
memoryLayerOutput: memoryLayerOutput,
@@ -374,7 +380,7 @@ func (m MemoryEstimate) LogValue() slog.Value {
slog.Group(
"weights",
// memory of the weights
"total", format.HumanBytes2(m.memoryWeights),
"total", format.HumanBytes2(m.memoryWeights+m.memoryLayerOutput),
// memory of repeating layers
"repeating", format.HumanBytes2(m.memoryWeights),
// memory of non-repeating layers

View File

@@ -61,7 +61,7 @@ func TestEstimateGPULayers(t *testing.T) {
projectors := []string{}
opts := api.DefaultOptions()
t.Run("cpu", func(t *testing.T) {
estimate := EstimateGPULayers(gpus, ggml, projectors, opts)
estimate := EstimateGPULayers(gpus, ggml, projectors, opts, 1)
assert.Equal(t, 0, estimate.Layers)
assert.Equal(t, uint64(0), estimate.Graph)
})
@@ -112,7 +112,7 @@ func TestEstimateGPULayers(t *testing.T) {
gpus[1].FreeMemory += gpuMinimumMemory + layerSize + s.layer1*layerSize + 1
gpus[0].FreeMemory += max(graphFullOffload, graphPartialOffload)
gpus[1].FreeMemory += max(graphFullOffload, graphPartialOffload)
estimate := EstimateGPULayers(gpus, ggml, projectors, opts)
estimate := EstimateGPULayers(gpus, ggml, projectors, opts, 1)
assert.Equal(t, int(s.expect0+s.expect1), estimate.Layers, "scenario %d: %v", i, s)
assert.Equal(t, fmt.Sprintf("%d,%d", s.expect0, s.expect1), estimate.TensorSplit, "scenario %d: %v", i, s)
var layerSums uint64

View File

@@ -109,7 +109,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, a
gpus = discover.GetCPUInfo()
}
estimate := EstimateGPULayers(gpus, f, projectors, opts)
estimate := EstimateGPULayers(gpus, f, projectors, opts, numParallel)
if len(gpus) > 1 || gpus[0].Library != "cpu" {
switch {
case gpus[0].Library == "metal" && estimate.VRAMSize > systemTotalMemory:
@@ -402,7 +402,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, a
s.cmd.Env = append(s.cmd.Env, visibleDevicesEnv+"="+visibleDevicesEnvVal)
}
slog.Info("starting llama server", "cmd", s.cmd.String())
slog.Info("starting llama server", "cmd", s.cmd)
if envconfig.Debug() {
filteredEnv := []string{}
for _, ev := range s.cmd.Env {
@@ -470,7 +470,7 @@ const ( // iota is reset to 0
ServerStatusError
)
func (s ServerStatus) ToString() string {
func (s ServerStatus) String() string {
switch s {
case ServerStatusReady:
return "llm server ready"
@@ -485,12 +485,9 @@ func (s ServerStatus) ToString() string {
}
}
type ServerStatusResp struct {
Status string `json:"status"`
SlotsIdle int `json:"slots_idle"`
SlotsProcessing int `json:"slots_processing"`
Error string `json:"error"`
Progress float32 `json:"progress"`
type ServerStatusResponse struct {
Status ServerStatus `json:"status"`
Progress float32 `json:"progress"`
}
func (s *llmServer) getServerStatus(ctx context.Context) (ServerStatus, error) {
@@ -502,7 +499,7 @@ func (s *llmServer) getServerStatus(ctx context.Context) (ServerStatus, error) {
}
if s.cmd.ProcessState.ExitCode() == -1 {
// Most likely a signal killed it, log some more details to try to help troubleshoot
slog.Warn("llama runner process no longer running", "sys", s.cmd.ProcessState.Sys(), "string", s.cmd.ProcessState.String())
slog.Warn("llama runner process no longer running", "sys", s.cmd.ProcessState.Sys(), "string", s.cmd.ProcessState)
}
return ServerStatusError, fmt.Errorf("llama runner process no longer running: %d %s", s.cmd.ProcessState.ExitCode(), msg)
}
@@ -527,21 +524,19 @@ func (s *llmServer) getServerStatus(ctx context.Context) (ServerStatus, error) {
return ServerStatusError, fmt.Errorf("read health request: %w", err)
}
var status ServerStatusResp
if err := json.Unmarshal(body, &status); err != nil {
var ssr ServerStatusResponse
if err := json.Unmarshal(body, &ssr); err != nil {
return ServerStatusError, fmt.Errorf("health unmarshal encode response: %w", err)
}
switch status.Status {
case "ok":
return ServerStatusReady, nil
case "no slot available":
return ServerStatusNoSlotsAvailable, nil
case "loading model":
s.loadProgress = status.Progress
return ServerStatusLoadingModel, nil
switch ssr.Status {
case ServerStatusLoadingModel:
s.loadProgress = ssr.Progress
return ssr.Status, nil
case ServerStatusReady, ServerStatusNoSlotsAvailable:
return ssr.Status, nil
default:
return ServerStatusError, fmt.Errorf("server error: %+v", status)
return ssr.Status, fmt.Errorf("server error: %+v", ssr)
}
}
@@ -616,7 +611,7 @@ func (s *llmServer) WaitUntilRunning(ctx context.Context) error {
status, _ := s.getServerStatus(ctx)
if lastStatus != status && status != ServerStatusReady {
// Only log on status changes
slog.Info("waiting for server to become available", "status", status.ToString())
slog.Info("waiting for server to become available", "status", status)
}
switch status {
case ServerStatusReady:
@@ -630,7 +625,7 @@ func (s *llmServer) WaitUntilRunning(ctx context.Context) error {
slog.Debug(fmt.Sprintf("model load progress %0.2f", s.loadProgress))
stallTimer = time.Now().Add(stallDuration)
} else if !fullyLoaded && int(s.loadProgress*100.0) >= 100 {
slog.Debug("model load completed, waiting for server to become available", "status", status.ToString())
slog.Debug("model load completed, waiting for server to become available", "status", status)
stallTimer = time.Now().Add(stallDuration)
fullyLoaded = true
}
@@ -671,63 +666,26 @@ type ImageData struct {
AspectRatioID int `json:"aspect_ratio_id"`
}
type completion struct {
Content string `json:"content"`
Model string `json:"model"`
Prompt string `json:"prompt"`
Stop bool `json:"stop"`
StoppedLimit bool `json:"stopped_limit"`
Timings struct {
PredictedN int `json:"predicted_n"`
PredictedMS float64 `json:"predicted_ms"`
PromptN int `json:"prompt_n"`
PromptMS float64 `json:"prompt_ms"`
}
}
type CompletionRequest struct {
Prompt string
Format json.RawMessage
Images []ImageData
Options *api.Options
Grammar string // set before sending the request to the subprocess
}
type CompletionResponse struct {
Content string
DoneReason string
Done bool
PromptEvalCount int
PromptEvalDuration time.Duration
EvalCount int
EvalDuration time.Duration
Content string `json:"content"`
DoneReason string `json:"done_reason"`
Done bool `json:"done"`
PromptEvalCount int `json:"prompt_eval_count"`
PromptEvalDuration time.Duration `json:"prompt_eval_duration"`
EvalCount int `json:"eval_count"`
EvalDuration time.Duration `json:"eval_duration"`
}
func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error {
request := map[string]any{
"prompt": req.Prompt,
"stream": true,
"n_predict": req.Options.NumPredict,
"n_keep": req.Options.NumKeep,
"main_gpu": req.Options.MainGPU,
"temperature": req.Options.Temperature,
"top_k": req.Options.TopK,
"top_p": req.Options.TopP,
"min_p": req.Options.MinP,
"typical_p": req.Options.TypicalP,
"repeat_last_n": req.Options.RepeatLastN,
"repeat_penalty": req.Options.RepeatPenalty,
"presence_penalty": req.Options.PresencePenalty,
"frequency_penalty": req.Options.FrequencyPenalty,
"mirostat": req.Options.Mirostat,
"mirostat_tau": req.Options.MirostatTau,
"mirostat_eta": req.Options.MirostatEta,
"seed": req.Options.Seed,
"stop": req.Options.Stop,
"image_data": req.Images,
"cache_prompt": true,
}
if len(req.Format) > 0 {
switch string(req.Format) {
case `null`, `""`:
@@ -735,7 +693,7 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
// these as "not set".
break
case `"json"`:
request["grammar"] = grammarJSON
req.Grammar = grammarJSON
default:
if req.Format[0] != '{' {
return fmt.Errorf("invalid format: %q; expected \"json\" or a valid JSON Schema object", req.Format)
@@ -746,10 +704,15 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
if g == nil {
return fmt.Errorf("invalid JSON schema in format")
}
request["grammar"] = string(g)
req.Grammar = string(g)
}
}
if req.Options == nil {
opts := api.DefaultOptions()
req.Options = &opts
}
if err := s.sem.Acquire(ctx, 1); err != nil {
if errors.Is(err, context.Canceled) {
slog.Info("aborting completion request due to client closing the connection")
@@ -770,7 +733,7 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
if err != nil {
return err
} else if status != ServerStatusReady {
return fmt.Errorf("unexpected server status: %s", status.ToString())
return fmt.Errorf("unexpected server status: %s", status)
}
// Handling JSON marshaling with special characters unescaped.
@@ -778,7 +741,7 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
enc := json.NewEncoder(buffer)
enc.SetEscapeHTML(false)
if err := enc.Encode(request); err != nil {
if err := enc.Encode(req); err != nil {
return fmt.Errorf("failed to marshal data: %v", err)
}
@@ -829,7 +792,7 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
evt = line
}
var c completion
var c CompletionResponse
if err := json.Unmarshal(evt, &c); err != nil {
return fmt.Errorf("error unmarshalling llm prediction response: %v", err)
}
@@ -853,20 +816,8 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
})
}
if c.Stop {
doneReason := "stop"
if c.StoppedLimit {
doneReason = "length"
}
fn(CompletionResponse{
Done: true,
DoneReason: doneReason,
PromptEvalCount: c.Timings.PromptN,
PromptEvalDuration: parseDurationMs(c.Timings.PromptMS),
EvalCount: c.Timings.PredictedN,
EvalDuration: parseDurationMs(c.Timings.PredictedMS),
})
if c.Done {
fn(c)
return nil
}
}
@@ -914,7 +865,7 @@ func (s *llmServer) Embedding(ctx context.Context, input string) ([]float32, err
if err != nil {
return nil, err
} else if status != ServerStatusReady {
return nil, fmt.Errorf("unexpected server status: %s", status.ToString())
return nil, fmt.Errorf("unexpected server status: %s", status)
}
data, err := json.Marshal(EmbeddingRequest{Content: input})
@@ -1059,12 +1010,3 @@ func (s *llmServer) EstimatedVRAMByGPU(gpuID string) uint64 {
}
return 0
}
func parseDurationMs(ms float64) time.Duration {
dur, err := time.ParseDuration(fmt.Sprintf("%fms", ms))
if err != nil {
panic(err)
}
return dur
}

View File

@@ -2,6 +2,7 @@ package ml
import (
"bytes"
"context"
"encoding/binary"
"fmt"
"os"
@@ -60,6 +61,10 @@ type CacheConfig struct {
// BackendParams controls how the backend loads and executes models
type BackendParams struct {
// Progress is a callback function that allows reporting percentage completion
// of model loading
Progress func(float32)
// NumThreads sets the number of threads to use if running on the CPU
NumThreads int
@@ -76,9 +81,9 @@ type BackendParams struct {
FlashAttention bool
}
var backends = make(map[string]func(*os.File, BackendParams) (Backend, error))
var backends = make(map[string]func(context.Context, *os.File, BackendParams) (Backend, error))
func RegisterBackend(name string, f func(*os.File, BackendParams) (Backend, error)) {
func RegisterBackend(name string, f func(context.Context, *os.File, BackendParams) (Backend, error)) {
if _, ok := backends[name]; ok {
panic("backend: backend already registered")
}
@@ -86,9 +91,9 @@ func RegisterBackend(name string, f func(*os.File, BackendParams) (Backend, erro
backends[name] = f
}
func NewBackend(f *os.File, params BackendParams) (Backend, error) {
func NewBackend(ctx context.Context, f *os.File, params BackendParams) (Backend, error) {
if backend, ok := backends["ggml"]; ok {
return backend(f, params)
return backend(ctx, f, params)
}
return nil, fmt.Errorf("unsupported backend")
@@ -105,12 +110,10 @@ type Context interface {
MaxGraphNodes() int
Close()
// Input returns a context appropriate for creating input tensors
// Input returns a context appropriate for creating tensors that are
// inputs to the model (which includes things like output locations)
Input() Context
// Output returns a context appropriate for creating output tensors
Output() Context
// Layer returns a context appropriate for creating intermediate tensors
Layer(int) Context
}

View File

@@ -9,15 +9,17 @@ package ggml
import "C"
import (
"errors"
"context"
"fmt"
"io"
"log/slog"
"maps"
"os"
"runtime"
"slices"
"strconv"
"strings"
"sync/atomic"
"unicode"
"unsafe"
@@ -46,9 +48,6 @@ type Backend struct {
// input is the backend used for inputs
input *C.struct_ggml_backend_buffer_type
// output is the backend used for outputs
output *C.struct_ggml_backend_buffer_type
// layers is the backend used for repeating layers
layers map[int]*C.struct_ggml_backend_buffer_type
@@ -58,7 +57,7 @@ type Backend struct {
maxGraphNodes int
}
func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend, error) {
meta, n, err := fs.Decode(r, -1)
if err != nil {
return nil, err
@@ -297,12 +296,16 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
}
}
// concurrently read in tensor data. uses a section reader which is safe for concurrent reads
sr := io.NewSectionReader(r, int64(meta.Tensors().Offset), n-int64(meta.Tensors().Offset))
var g errgroup.Group
var doneBytes atomic.Uint64
totalBytes := uint64(n) - meta.Tensors().Offset
g, ctx := errgroup.WithContext(ctx)
g.SetLimit(runtime.GOMAXPROCS(0))
for _, t := range meta.Tensors().Items() {
for _, target := range targets[t.Name] {
g.Go(func() error {
g.Go(func() error {
tts := make([]*C.struct_ggml_tensor, max(1, len(targets[t.Name])))
for i := range tts {
target := targets[t.Name][i]
if target == "" {
target = t.Name
}
@@ -312,23 +315,44 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
return fmt.Errorf("unassigned tensor: %s", t.Name)
}
bts := make([]byte, t.Size())
n, err := io.ReadFull(io.NewSectionReader(sr, int64(t.Offset), int64(t.Size())), bts)
tts[i] = tt
}
sr := io.NewSectionReader(r, int64(meta.Tensors().Offset+t.Offset), int64(t.Size()))
bts := make([]byte, 128*format.KibiByte)
var s uint64
for s < t.Size() {
n, err := io.ReadFull(sr, bts[:min(len(bts), int(t.Size()-s))])
if err != nil {
return err
}
if n != len(bts) {
return errors.New("short read")
for _, tt := range tts {
C.ggml_backend_tensor_set(tt, unsafe.Pointer(&bts[0]), C.size_t(s), C.size_t(n))
}
C.ggml_backend_tensor_set(tt, unsafe.Pointer(&bts[0]), 0, C.size_t(t.Size()))
return nil
})
}
s += uint64(n)
if params.Progress != nil {
done := doneBytes.Add(uint64(n))
params.Progress(float32(done) / float32(totalBytes))
}
}
return nil
})
}
if g.Wait() != nil {
// start a goroutine to cancel the errgroup if the parent context is done
go func() {
<-ctx.Done()
g.Go(func() error {
return ctx.Err()
})
}()
if err := g.Wait(); err != nil {
return nil, err
}
@@ -371,10 +395,9 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
(*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&schedBufts[0])),
C.int(len(schedBackends)),
C.size_t(maxGraphNodes),
true,
C._Bool(len(gpus) > 1 && slices.Contains(gpus, output.d)),
),
input: deviceBufferTypes[input.d],
output: deviceBufferTypes[output.d],
input: deviceBufferTypes[input.d],
layers: func() map[int]*C.struct_ggml_backend_buffer_type {
m := make(map[int]*C.struct_ggml_backend_buffer_type)
for i, layer := range layers {
@@ -455,19 +478,6 @@ func (c Context) Input() ml.Context {
return &c
}
func (c Context) Output() ml.Context {
if c.b.output != nil {
return &Context{
b: c.b,
ctx: c.ctx,
buft: c.b.output,
maxGraphNodes: c.maxGraphNodes,
}
}
return &c
}
func (c Context) Layer(i int) ml.Context {
if buft, ok := c.b.layers[i]; ok {
return &Context{

View File

@@ -61,11 +61,13 @@
#define GGML_CUDA_CC_RDNA1 (GGML_CUDA_CC_OFFSET_AMD + 0x1010) // RX 5000
#define GGML_CUDA_CC_RDNA2 (GGML_CUDA_CC_OFFSET_AMD + 0x1030) // RX 6000, minimum for dp4a
#define GGML_CUDA_CC_RDNA3 (GGML_CUDA_CC_OFFSET_AMD + 0x1100) // RX 7000, minimum for WMMA
#define GGML_CUDA_CC_RDNA4 (GGML_CUDA_CC_OFFSET_AMD + 0x1200) // RX 9000
#define GGML_CUDA_CC_IS_RDNA(cc) (cc >= GGML_CUDA_CC_RDNA1)
#define GGML_CUDA_CC_IS_RDNA1(cc) (cc >= GGML_CUDA_CC_RDNA1 && cc < GGML_CUDA_CC_RDNA2)
#define GGML_CUDA_CC_IS_RDNA2(cc) (cc >= GGML_CUDA_CC_RDNA2 && cc < GGML_CUDA_CC_RDNA3)
#define GGML_CUDA_CC_IS_RDNA3(cc) (cc >= GGML_CUDA_CC_RDNA3)
#define GGML_CUDA_CC_IS_RDNA3(cc) (cc >= GGML_CUDA_CC_RDNA3 && cc < GGML_CUDA_CC_RDNA4)
#define GGML_CUDA_CC_IS_RDNA4(cc) (cc >= GGML_CUDA_CC_RDNA4)
#define GGML_CUDA_CC_IS_GCN(cc) (cc > GGML_CUDA_CC_OFFSET_AMD && cc < GGML_CUDA_CC_CDNA)
#define GGML_CUDA_CC_IS_CDNA(cc) (cc >= GGML_CUDA_CC_CDNA && cc < GGML_CUDA_CC_RDNA1)
@@ -386,7 +388,7 @@ static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, i
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#if defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(RDNA2)
c = __builtin_amdgcn_sdot4(a, b, c, false);
#elif defined(RDNA3)
#elif defined(RDNA3) || defined(RDNA4)
c = __builtin_amdgcn_sudot4( true, a, true, b, c, false);
#elif defined(__gfx1010__) || defined(__gfx900__)
int tmp1;

View File

@@ -149,5 +149,5 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
return !fp16_mma_hardware_available(cc) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
}
return (!GGML_CUDA_CC_IS_RDNA3(cc) && !GGML_CUDA_CC_IS_CDNA(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
return (!GGML_CUDA_CC_IS_RDNA4(cc) && !GGML_CUDA_CC_IS_RDNA3(cc) && !GGML_CUDA_CC_IS_CDNA(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
}

View File

@@ -2577,9 +2577,9 @@ static __device__ void mul_mat_q_process_tile(
template <ggml_type type, int mmq_x, int nwarps, bool need_check>
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#if defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
#if defined(RDNA4) || defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
__launch_bounds__(WARP_SIZE*nwarps, 2)
#endif // defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
#endif // defined(RDNA4) || defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
#else
#if __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
__launch_bounds__(WARP_SIZE*nwarps, 1)

View File

@@ -62,13 +62,13 @@ static __global__ void mul_mat_vec_q(
constexpr vec_dot_q_cuda_t vec_dot_q_cuda = get_vec_dot_q_cuda(type);
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3))
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3) || defined(RDNA4))
constexpr int nwarps = 1;
constexpr int rows_per_cuda_block = 1;
#else
constexpr int nwarps = ncols_y <= 4 ? 4 : 2;
constexpr int rows_per_cuda_block = ncols_y == 1 ? 1 : 2;
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3)
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3) && !defined(RDNA4)
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
const int row0 = rows_per_cuda_block*blockIdx.x;

View File

@@ -150,6 +150,10 @@
#define CDNA
#endif
#if defined(__gfx1200__) || defined(__gfx1201__)
#define RDNA4
#endif
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__) || \
defined(__gfx1150__) || defined(__gfx1151__)
#define RDNA3

View File

@@ -1,5 +1,7 @@
package input
import "github.com/ollama/ollama/ml"
// Input represents one token in the input stream
type Input struct {
// Token is a single element of text.
@@ -15,6 +17,12 @@ type Input struct {
// stored in Multimodal, used for caching and comparing
// equality.
MultimodalHash uint64
// SameBatch forces the following number of tokens to be processed
// in a single batch, breaking and extending batches as needed.
// Useful for things like images that must be processed in one
// shot.
SameBatch int
}
// MultimodalIndex is a multimodal element (such as an image)
@@ -27,11 +35,24 @@ type MultimodalIndex struct {
Multimodal any
}
// Options contains the inputs for a model forward pass
type Options struct {
Inputs []int32
// Batch contains the inputs for a model forward pass
type Batch struct {
// Inputs is the input tokens, including placeholders for multimodal inputs.
Inputs ml.Tensor
// Multimodal is a set of multimodal embeddings previously created by
// EncodeMultimodal, along with an index into Inputs. Unused for text-only
// models or for batches without multimodal elements.
Multimodal []MultimodalIndex
Positions []int32
Sequences []int
Outputs []int32
// Positions is the position for each Input, relative to its sequence. Equal
// in length to Inputs.
Positions []int32
// Sequences is the sequence for each Input. Equal in length to Inputs.
Sequences []int
// Outputs are the set of indicies into Inputs for which output data should
// be returned.
Outputs []int32
}

View File

@@ -1,6 +1,7 @@
package model
import (
"context"
"errors"
"fmt"
_ "image/jpeg"
@@ -26,7 +27,7 @@ var ErrNoVisionModel = errors.New("this model is missing data required for image
// Model implements a specific model architecture, defining the forward pass and any model-specific configuration
type Model interface {
Forward(ml.Context, input.Options) (ml.Tensor, error)
Forward(ml.Context, input.Batch) (ml.Tensor, error)
Backend() ml.Backend
Config() config
@@ -60,7 +61,7 @@ type MultimodalProcessor interface {
// This function is also responsible for updating MultimodalHash for any Multimodal
// that is modified to ensure that there is a unique hash value that accurately
// represents the contents.
PostTokenize(ml.Context, []input.Input) ([]input.Input, error)
PostTokenize([]input.Input) ([]input.Input, error)
}
// Base implements the common fields and methods for all models
@@ -94,14 +95,14 @@ func Register(name string, f func(ml.Config) (Model, error)) {
}
// New initializes a new model instance with the provided configuration based on the metadata in the model file
func New(modelPath string, params ml.BackendParams) (Model, error) {
func New(ctx context.Context, modelPath string, params ml.BackendParams) (Model, error) {
r, err := os.Open(modelPath)
if err != nil {
return nil, err
}
defer r.Close()
b, err := ml.NewBackend(r, params)
b, err := ml.NewBackend(ctx, r, params)
if err != nil {
return nil, err
}
@@ -280,24 +281,30 @@ func canNil(t reflect.Type) bool {
t.Kind() == reflect.Slice
}
func Forward(ctx ml.Context, m Model, opts input.Options) (ml.Tensor, error) {
if len(opts.Positions) != len(opts.Sequences) {
return nil, fmt.Errorf("length of positions (%v) must match length of seqs (%v)", len(opts.Positions), len(opts.Sequences))
func Forward(ctx ml.Context, m Model, inputs []int32, batch input.Batch) (ml.Tensor, error) {
if len(batch.Positions) != len(batch.Sequences) {
return nil, fmt.Errorf("length of positions (%v) must match length of seqs (%v)", len(batch.Positions), len(batch.Sequences))
}
if len(opts.Positions) < 1 {
if len(batch.Positions) < 1 {
return nil, errors.New("batch size cannot be less than 1")
}
var err error
batch.Inputs, err = ctx.Input().FromIntSlice(inputs, len(inputs))
if err != nil {
return nil, err
}
cache := m.Config().Cache
if cache != nil {
err := cache.StartForward(ctx, opts)
err := cache.StartForward(ctx, batch)
if err != nil {
return nil, err
}
}
t, err := m.Forward(ctx, opts)
t, err := m.Forward(ctx, batch)
if err != nil {
return nil, err
}

View File

@@ -163,7 +163,7 @@ func TestGetTextProcessor(t *testing.T) {
type notTextProcessorModel struct{}
func (notTextProcessorModel) Forward(ml.Context, input.Options) (ml.Tensor, error) {
func (notTextProcessorModel) Forward(ml.Context, input.Batch) (ml.Tensor, error) {
panic("unimplemented")
}

View File

@@ -38,7 +38,6 @@ const (
func New(c ml.Config) (model.Model, error) {
m := Model{
SentencePieceModel: model.NewSentencePieceModel(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
@@ -168,23 +167,18 @@ func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Ten
return hiddenState.Add(ctx, residual)
}
func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
if err != nil {
return nil, err
}
positions, err := ctx.Input().FromIntSlice(opts.Positions, len(opts.Positions))
outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
if err != nil {
return nil, err
}
outputs, err := ctx.Output().FromIntSlice(opts.Outputs, len(opts.Outputs))
if err != nil {
return nil, err
}
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.Options.hiddenSize)))
if len(m.Layers) == gemma27BLayerCount {
@@ -211,8 +205,7 @@ func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
// final logit softcap
hiddenState = hiddenState.Scale(ctx, 1.0/float64(m.Options.finalLogitSoftcap))
hiddenState = hiddenState.Tanh(ctx)
hiddenState = hiddenState.Scale(ctx, float64(m.Options.finalLogitSoftcap))
return hiddenState.Rows(ctx, outputs), nil
return hiddenState.Scale(ctx, float64(m.Options.finalLogitSoftcap)), nil
}
func init() {

View File

@@ -2,10 +2,9 @@ package gemma3
import (
"bytes"
"encoding/binary"
"hash/fnv"
"image"
"math"
"slices"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
@@ -56,7 +55,6 @@ func (p *MultiModalProjector) Forward(ctx ml.Context, visionOutputs ml.Tensor, i
func New(c ml.Config) (model.Model, error) {
m := Model{
SentencePieceModel: model.NewSentencePieceModel(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
@@ -112,36 +110,23 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, er
return visionOutputs, nil
}
type imageToken struct {
embedding ml.Tensor
index int
}
func (m *Model) PostTokenize(ctx ml.Context, inputs []input.Input) ([]input.Input, error) {
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
var result []input.Input
fnvHash := fnv.New64a()
for _, inp := range inputs {
if inp.Multimodal == nil {
result = append(result, inp)
} else {
imageInputs := []input.Input{
{Token: 108}, // "\n\n"
{Token: 255999}, // "<start_of_image>""
}
result = append(result, imageInputs...)
// add image embeddings
inputMultimodal := inp.Multimodal.(ml.Tensor)
for i := range inputMultimodal.Dim(1) {
fnvHash.Reset()
binary.Write(fnvHash, binary.NativeEndian, inp.MultimodalHash)
fnvHash.Write([]byte{byte(i)})
result = append(result,
input.Input{Token: 108, SameBatch: inputMultimodal.Dim(1) + 3}, // "\n\n"
input.Input{Token: 255999}, // "<start_of_image>""
input.Input{Multimodal: inputMultimodal, MultimodalHash: inp.MultimodalHash}, // image data is on the first placeholder
)
imageToken := imageToken{embedding: inputMultimodal, index: i}
result = append(result, input.Input{Multimodal: imageToken, MultimodalHash: fnvHash.Sum64()})
}
// add image token placeholders
result = append(result, slices.Repeat([]input.Input{{Token: 0}}, inputMultimodal.Dim(1)-1)...)
result = append(result,
input.Input{Token: 256000}, // <end_of_image>
@@ -153,23 +138,18 @@ func (m *Model) PostTokenize(ctx ml.Context, inputs []input.Input) ([]input.Inpu
return result, nil
}
func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
if err != nil {
return nil, err
}
positions, err := ctx.Input().FromIntSlice(opts.Positions, len(opts.Positions))
outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
if err != nil {
return nil, err
}
outputs, err := ctx.Output().FromIntSlice(opts.Outputs, len(opts.Outputs))
if err != nil {
return nil, err
}
return m.TextModel.Forward(ctx, inputs, positions, outputs, opts, m.Cache), nil
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache), nil
}
func init() {

View File

@@ -45,7 +45,6 @@ func newTextModel(c ml.Config) *TextModel {
m := TextModel{
SentencePieceModel: model.NewSentencePieceModel(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
@@ -171,53 +170,20 @@ func (l *TextLayer) Forward(ctx ml.Context, layer int, hiddenState, positionIDs,
return hiddenState.Add(ctx, residual)
}
func setImageEmbeddings(ctx ml.Context, hiddenState ml.Tensor, multimodal []input.MultimodalIndex) []int {
var embedding ml.Tensor
var src, dst, length int
var except []int
for _, image := range multimodal {
imageToken := image.Multimodal.(imageToken)
imageSrc := imageToken.index
imageDst := image.Index
if embedding == nil {
embedding = imageToken.embedding
src = imageSrc
dst = imageDst
length = 1
} else if embedding == imageToken.embedding && imageSrc+1 == src && imageDst+1 == dst {
src = imageSrc
dst = imageDst
length++
} else if embedding == imageToken.embedding && src+length == imageSrc && dst+length == imageDst {
length++
} else {
visionOutputs := embedding.View(ctx, src*embedding.Stride(1), length*embedding.Dim(0))
ctx.Forward(visionOutputs.Copy(ctx, hiddenState.View(ctx, dst*hiddenState.Stride(1), length*hiddenState.Dim(0))))
embedding = imageToken.embedding
src = imageSrc
dst = imageDst
length = 1
}
except = append(except, imageDst)
}
if embedding != nil {
visionOutputs := embedding.View(ctx, src*embedding.Stride(1), length*embedding.Dim(0))
ctx.Forward(visionOutputs.Copy(ctx, hiddenState.View(ctx, dst*hiddenState.Stride(1), length*hiddenState.Dim(0))))
}
return except
}
func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor, opts input.Options, cache kvcache.Cache) ml.Tensor {
func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor, batch input.Batch, cache kvcache.Cache) ml.Tensor {
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.TextOptions.hiddenSize)))
except := setImageEmbeddings(ctx, hiddenState, opts.Multimodal)
// set image embeddings
var except []int
for _, image := range batch.Multimodal {
visionOutputs := image.Multimodal.(ml.Tensor)
ctx.Forward(visionOutputs.Copy(ctx, hiddenState.View(ctx, image.Index*hiddenState.Stride(1), visionOutputs.Dim(0)*visionOutputs.Dim(1))))
for i := range visionOutputs.Dim(1) {
except = append(except, image.Index+i)
}
}
for i, layer := range m.Layers {
// gemma alternates between the sliding window (local) and causal (global)

View File

@@ -139,23 +139,18 @@ func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Ten
return hiddenState.Add(ctx, residual)
}
func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
if err != nil {
return nil, err
}
positions, err := ctx.Input().FromIntSlice(opts.Positions, len(opts.Positions))
outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
if err != nil {
return nil, err
}
outputs, err := ctx.Output().FromIntSlice(opts.Outputs, len(opts.Outputs))
if err != nil {
return nil, err
}
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
for i, layer := range m.Layers {
m.Cache.SetLayer(i)

View File

@@ -106,17 +106,17 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, er
return m.Projector.Forward(ctx, crossAttentionStates), nil
}
func (m *Model) PostTokenize(ctx ml.Context, inputs []input.Input) ([]input.Input, error) {
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
var images []input.Input
fnvHash := fnv.New64a()
for i := range inputs {
if inputs[i].Multimodal == nil {
if len(images) > 0 {
inputs[i].Multimodal = images[0].Multimodal
inputs[i].Multimodal = []ml.Tensor{images[0].Multimodal.(ml.Tensor)}
inputs[i].MultimodalHash = images[0].MultimodalHash
for j := 1; j < len(images); j++ {
inputs[i].Multimodal = inputs[i].Multimodal.(ml.Tensor).Concat(ctx, images[j].Multimodal.(ml.Tensor), 3)
inputs[i].Multimodal = append(inputs[i].Multimodal.([]ml.Tensor), images[0].Multimodal.(ml.Tensor))
fnvHash.Reset()
binary.Write(fnvHash, binary.NativeEndian, inputs[i].MultimodalHash)
binary.Write(fnvHash, binary.NativeEndian, inputs[j].MultimodalHash)
@@ -135,29 +135,27 @@ func (m *Model) PostTokenize(ctx ml.Context, inputs []input.Input) ([]input.Inpu
return inputs, nil
}
func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
var crossAttentionStates ml.Tensor
if len(opts.Multimodal) > 0 {
crossAttentionStates = opts.Multimodal[len(opts.Multimodal)-1].Multimodal.(ml.Tensor)
if len(batch.Multimodal) > 0 {
images := batch.Multimodal[len(batch.Multimodal)-1].Multimodal.([]ml.Tensor)
if len(images) > 0 {
crossAttentionStates = images[len(images)-1]
}
}
inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
if err != nil {
return nil, err
}
positions, err := ctx.Input().FromIntSlice(opts.Positions, len(opts.Positions))
if err != nil {
return nil, err
}
outputs, err := ctx.Output().FromIntSlice(opts.Outputs, len(opts.Outputs))
outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
if err != nil {
return nil, err
}
// TODO: attention mask, cross attention mask
return m.TextModel.Forward(ctx, inputs, positions, outputs, nil, crossAttentionStates, nil, m.Cache.(*kvcache.WrapperCache)), nil
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, nil, crossAttentionStates, nil, m.Cache.(*kvcache.WrapperCache)), nil
}
func init() {

View File

@@ -1,29 +1,23 @@
package model
import (
"iter"
"container/heap"
"fmt"
"log/slog"
"strconv"
"strings"
"github.com/dlclark/regexp2"
queue "github.com/emirpasic/gods/v2/queues/priorityqueue"
)
const spmWhitespaceSep = "▁"
func replaceWhitespaceBySeperator(s string) string {
return strings.ReplaceAll(s, " ", spmWhitespaceSep)
}
type SentencePieceModel struct {
maxTokenLen int
pre *regexp2.Regexp
vocab *Vocabulary
}
var _ TextProcessor = (*SentencePieceModel)(nil)
func NewSentencePieceModel(pre string, vocab *Vocabulary) SentencePieceModel {
func NewSentencePieceModel(vocab *Vocabulary) SentencePieceModel {
slog.Debug("Tokens", "num tokens", len(vocab.Values), "vals", vocab.Values[:5], "scores", vocab.Scores[:5], "types", vocab.Types[:5])
counter := map[int]int{}
@@ -44,7 +38,6 @@ func NewSentencePieceModel(pre string, vocab *Vocabulary) SentencePieceModel {
return SentencePieceModel{
maxTokenLen: maxTokenLen,
pre: regexp2.MustCompile(pre, regexp2.Unicode|regexp2.RE2),
vocab: vocab,
}
}
@@ -53,20 +46,9 @@ func (spm SentencePieceModel) Is(id int32, special Special) bool {
return spm.vocab.Is(id, special)
}
func (spm *SentencePieceModel) split(s string) iter.Seq[string] {
return func(yield func(string) bool) {
for m, _ := spm.pre.FindStringMatch(s); m != nil; m, _ = spm.pre.FindNextMatch(m) {
if !yield(m.String()) {
break
}
}
}
}
func (spm SentencePieceModel) Encode(s string, addSpecial bool) ([]int32, error) {
fragments := []fragment{{value: s}}
for _, special := range spm.vocab.SpecialVocabulary() {
// TODO: process special tokens concurrently
id := spm.vocab.Encode(special)
for i := 0; i < len(fragments); i++ {
frag := fragments[i]
@@ -91,7 +73,6 @@ func (spm SentencePieceModel) Encode(s string, addSpecial bool) ([]int32, error)
fragments = append(fragments[:i], append(middle, fragments[i+1:]...)...)
}
}
slog.Debug("fragments", "frags", fragments)
var ids []int32
for _, frag := range fragments {
@@ -100,105 +81,96 @@ func (spm SentencePieceModel) Encode(s string, addSpecial bool) ([]int32, error)
continue
}
for split := range spm.split(frag.value) {
split = replaceWhitespaceBySeperator(split)
text := strings.ReplaceAll(frag.value, " ", spmWhitespaceSep)
var sb strings.Builder
sb.Write([]byte(split))
if id := spm.vocab.Encode(sb.String()); id >= 0 {
ids = append(ids, id)
continue
if id := spm.vocab.Encode(text); id >= 0 {
ids = append(ids, id)
continue
}
q := &queue{}
heap.Init(q)
runes := []rune(text)
merges := make([]merge, len(runes))
for r := range runes {
merges[r] = merge{
p: r - 1,
n: r + 1,
runes: []rune{runes[r]},
}
}
runes := []rune(sb.String())
pq := queue.NewWith(func(a, b any) int {
priA := a.(*candidate)
priB := b.(*candidate)
if priA.score > priB.score || (priA.score == priB.score && priA.a < priB.a) {
return -1
}
return 1
})
merges := make([]merge, len(runes))
for r := range runes {
merges[r] = merge{
p: r - 1,
n: r + 1,
runes: []rune{runes[r]},
}
}
slog.Debug("tokenizer", "merges", merges)
pairwise := func(a, b int) *candidate {
if a < 0 || b >= len(runes) {
return nil
}
left, right := string(merges[a].runes), string(merges[b].runes)
if id := spm.vocab.Encode(left + right); id >= 0 {
return &candidate{
a: a,
b: b,
score: spm.vocab.Scores[id],
}
}
pairwise := func(a, b int) *candidate {
if a < 0 || b >= len(runes) {
return nil
}
for i := range len(runes) - 1 {
if pair := pairwise(i, i+1); pair != nil {
pq.Enqueue(pair)
left, right := string(merges[a].runes), string(merges[b].runes)
if id := spm.vocab.Encode(left + right); id >= 0 {
return &candidate{
a: a,
b: b,
score: spm.vocab.Scores[id],
size: len(left) + len(right),
}
}
pqv := pq.Values()
for _, v := range pqv {
e := v.(*candidate)
slog.Debug("candidate", "candidate", e)
return nil
}
for i := range len(runes) - 1 {
if pair := pairwise(i, i+1); pair != nil {
heap.Push(q, pair)
}
}
for q.Len() > 0 {
pair := heap.Pop(q).(*candidate)
left, right := merges[pair.a], merges[pair.b]
if string(left.runes) == "" || string(right.runes) == "" || len(string(left.runes))+len(string(right.runes)) != pair.size {
continue
}
for !pq.Empty() {
v, _ := pq.Dequeue()
pair := v.(*candidate)
left, right := merges[pair.a], merges[pair.b]
merges[pair.a].runes = append(left.runes, right.runes...)
merges[pair.b].runes = nil
merges[pair.a].n = right.n
if right.n < len(merges) {
merges[right.n].p = pair.a
}
slog.Debug("pair", "left", left, "right", right)
if len(left.runes) == 0 || len(right.runes) == 0 {
if pair := pairwise(merges[pair.a].p, pair.a); pair != nil {
heap.Push(q, pair)
}
if pair := pairwise(pair.a, merges[pair.a].n); pair != nil {
heap.Push(q, pair)
}
}
for _, merge := range merges {
if token := string(merge.runes); token != "" {
id := spm.vocab.Encode(token)
if id >= 0 {
ids = append(ids, id)
continue
}
if id := spm.vocab.Encode(string(left.runes) + string(right.runes)); id < 0 {
continue
}
merges[pair.a].runes = append(left.runes, right.runes...)
merges[pair.b].runes = nil
merges[pair.a].n = right.n
if right.n < len(merges) {
merges[right.n].p = pair.a
}
if pair := pairwise(merges[pair.a].p, pair.a); pair != nil {
pq.Enqueue(pair)
}
if pair := pairwise(pair.a, merges[pair.a].n); pair != nil {
pq.Enqueue(pair)
}
}
slog.Debug("merges", "merges", merges)
for _, merge := range merges {
if len(merge.runes) > 0 {
if id := spm.vocab.Encode(string(merge.runes)); id >= 0 {
ids = append(ids, id)
// Fallback to byte tokenization
var result []int32
for _, b := range []byte(token) {
byteToken := fmt.Sprintf("<0x%02X>", b)
unknownID := spm.vocab.Encode(byteToken)
if unknownID >= 0 {
result = append(result, unknownID)
} else {
slog.Debug("missing token", "token", string(merge.runes))
slog.Debug("unknown byte token", "byte", b, "token", byteToken)
}
}
ids = append(ids, result...)
}
}
}
@@ -229,6 +201,30 @@ func (spm SentencePieceModel) Encode(s string, addSpecial bool) ([]int32, error)
type candidate struct {
a, b int
score float32
size int
}
type queue []*candidate
func (q queue) Len() int { return len(q) }
func (q queue) Less(i, j int) bool {
return (q[i].score > q[j].score) || (q[i].score == q[j].score && q[i].a < q[j].a)
}
func (q queue) Swap(i, j int) { q[i], q[j] = q[j], q[i] }
func (q *queue) Push(x interface{}) {
item := x.(*candidate)
*q = append(*q, item)
}
func (q *queue) Pop() interface{} {
old := *q
n := len(old)
item := old[n-1]
*q = old[0 : n-1]
return item
}
func (spm SentencePieceModel) Decode(ids []int32) (string, error) {
@@ -236,11 +232,26 @@ func (spm SentencePieceModel) Decode(ids []int32) (string, error) {
for _, id := range ids {
data := spm.vocab.Decode(id)
data = strings.ReplaceAll(data, spmWhitespaceSep, " ")
if _, err := sb.WriteString(data); err != nil {
return "", err
// For tokenizers that use byte tokens like "<0xEA>"
// convert them to the partial unicode character
// so they are buffered correctly by the runner instead
// of being sent back to the api as "<0xEA>"
if len(data) == 6 && strings.HasPrefix(data, "<0x") && strings.HasSuffix(data, ">") {
byteVal, err := strconv.ParseUint(data[1:5], 0, 8)
if err != nil {
return "", fmt.Errorf("failed to parse hex byte: %v", err)
}
if err := sb.WriteByte(byte(byteVal)); err != nil {
return "", err
}
} else {
if _, err := sb.WriteString(data); err != nil {
return "", err
}
}
}
slog.Debug("decoded", "ids", ids, "text", sb.String())
return sb.String(), nil
}

View File

@@ -25,8 +25,6 @@ func loadSentencePieceVocab(t *testing.T) SentencePieceModel {
t.Fatal(err)
}
preTokenizer := `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`
var v Vocabulary
for _, piece := range spm.GetPieces() {
@@ -47,7 +45,7 @@ func loadSentencePieceVocab(t *testing.T) SentencePieceModel {
}
}
return NewSentencePieceModel(preTokenizer, &v)
return NewSentencePieceModel(&v)
}
func TestSentencePieceEncode(t *testing.T) {
@@ -116,3 +114,59 @@ func TestSentencePieceEncode(t *testing.T) {
}
})
}
func TestSentencePieceModelDecodeByteTokens(t *testing.T) {
vocab := &Vocabulary{
Values: []string{
"normal",
"<0xEA>",
"<0x41>",
"<0xC3>",
"<0xA3>",
},
Types: []uint32{
TOKEN_TYPE_NORMAL,
TOKEN_TYPE_BYTE,
TOKEN_TYPE_BYTE,
TOKEN_TYPE_BYTE,
TOKEN_TYPE_BYTE,
},
Scores: []float32{0, 0, 0, 0, 0},
}
spm := NewSentencePieceModel(vocab)
tests := []struct {
name string
ids []int32
expected string
}{
{
name: "single byte token",
ids: []int32{1},
expected: "\xea",
},
{
name: "ASCII byte token",
ids: []int32{2},
expected: "A",
},
{
name: "multiple byte tokens forming UTF-8 character",
ids: []int32{3, 4},
expected: "ã",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
result, err := spm.Decode(tt.ids)
if err != nil {
t.Errorf("failed to decode token IDs %v: %v", tt.ids, err)
}
if result != tt.expected {
t.Errorf("got %q, want %q", result, tt.expected)
}
})
}
}

View File

@@ -23,10 +23,10 @@ import (
var finishReasonToolCalls = "tool_calls"
type Error struct {
Message string `json:"message"`
Type string `json:"type"`
Param interface{} `json:"param"`
Code *string `json:"code"`
Message string `json:"message"`
Type string `json:"type"`
Param any `json:"param"`
Code *string `json:"code"`
}
type ErrorResponse struct {
@@ -465,7 +465,7 @@ func fromChatRequest(r ChatCompletionRequest) (*api.ChatRequest, error) {
}
}
options := make(map[string]interface{})
options := make(map[string]any)
switch stop := r.Stop.(type) {
case string:

View File

@@ -219,7 +219,7 @@ func TestChatMiddleware(t *testing.T) {
{
Function: api.ToolCallFunction{
Name: "get_current_weather",
Arguments: map[string]interface{}{
Arguments: map[string]any{
"location": "Paris, France",
"format": "celsius",
},

View File

@@ -213,8 +213,16 @@ func (c *InputCache) ShiftDiscard(inputLen int, numKeep int) int {
return discard
}
// Frees up space in the KV cache by deleting the oldest half of history and shifting
// the newest half into that space (saving numKeep inputs at the beginning).
type ErrReprocessInputs struct {
Inputs []input
}
func (e *ErrReprocessInputs) Error() string {
return fmt.Sprintf("kv cache shift not supported, inputs need reprocessing (input count: %v)", len(e.Inputs))
}
// ShiftCacheSlot frees up space in the KV cache by deleting the oldest half of history
// and shifting the newest half into that space (saving numKeep inputs at the beginning).
//
// Assumes that at least 1 entry can be freed up by shifting (i.e. numKeep < numCtx)
func (c *InputCache) ShiftCacheSlot(slot *InputCacheSlot, numKeep int) error {
@@ -222,7 +230,8 @@ func (c *InputCache) ShiftCacheSlot(slot *InputCacheSlot, numKeep int) error {
return fmt.Errorf("unable to shift context - keep exceeds context (keep: %v context: %v)", numKeep, c.numCtx)
}
discard := c.ShiftDiscard(len(slot.Inputs), numKeep)
inputLen := len(slot.Inputs)
discard := c.ShiftDiscard(inputLen, numKeep)
if discard <= 0 {
return nil
@@ -231,16 +240,42 @@ func (c *InputCache) ShiftCacheSlot(slot *InputCacheSlot, numKeep int) error {
slog.Debug("context limit hit - shifting", "id", slot.Id, "limit", c.numCtx, "input", len(slot.Inputs),
"keep", numKeep, "discard", discard)
// TODO (jessegross): KV cache removal can fail for certain types of models
if !c.lc.KvCacheSeqRm(slot.Id, numKeep, numKeep+discard) {
return fmt.Errorf("unable to remove old kv cache entries (id: %v, keep: %v discard: %v)", slot.Id, numKeep, discard)
}
c.lc.KvCacheSeqAdd(slot.Id, numKeep+discard, len(slot.Inputs), -discard)
var shiftFailed bool
for i := numKeep + discard; i < len(slot.Inputs); i++ {
if c.lc.KvCacheCanShift() {
// For models that support shifting, attempt to shift the KV cache
if !c.lc.KvCacheSeqRm(slot.Id, numKeep, numKeep+discard) {
shiftFailed = true
slog.Debug("kv cache removal not supported, clearing cache and returning inputs for reprocessing", "id", slot.Id)
} else {
c.lc.KvCacheSeqAdd(slot.Id, numKeep+discard, inputLen, -discard)
}
} else {
// For models that don't support shifting
shiftFailed = true
slog.Debug("kv cache cannot shift, clearing cache and returning inputs for reprocessing", "id", slot.Id)
}
if shiftFailed {
// Create new input slice with preserved tokens (numKeep + remaining tokens after discard)
newInputs := make([]input, numKeep+inputLen-(numKeep+discard))
copy(newInputs[:numKeep], slot.Inputs[:numKeep])
copy(newInputs[numKeep:], slot.Inputs[numKeep+discard:])
// Clear the entire KV cache
_ = c.lc.KvCacheSeqRm(slot.Id, 0, -1)
// Reset the slot inputs since we've cleared the cache
slot.Inputs = []input{}
// Return error with inputs that need to be reprocessed
return &ErrReprocessInputs{Inputs: newInputs}
}
// Standard shift succeeded - update input array
for i := numKeep + discard; i < inputLen; i++ {
slot.Inputs[i-discard] = slot.Inputs[i]
}
slot.Inputs = slot.Inputs[:len(slot.Inputs)-discard]
slot.Inputs = slot.Inputs[:inputLen-discard]
return nil
}

View File

@@ -24,6 +24,7 @@ import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/llama"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/runner/common"
)
@@ -99,7 +100,7 @@ type NewSequenceParams struct {
embedding bool
}
func (s *Server) NewSequence(prompt string, images []ImageData, params NewSequenceParams) (*Sequence, error) {
func (s *Server) NewSequence(prompt string, images []llm.ImageData, params NewSequenceParams) (*Sequence, error) {
s.ready.Wait()
startTime := time.Now()
@@ -163,7 +164,7 @@ func (s *Server) NewSequence(prompt string, images []ImageData, params NewSequen
// inputs processes the prompt and images into a list of inputs
// by splitting the prompt on [img-<n>] tags, tokenizing text and
// generating image embeddings for each image
func (s *Server) inputs(prompt string, images []ImageData) ([]input, error) {
func (s *Server) inputs(prompt string, images []llm.ImageData) ([]input, error) {
var inputs []input
var parts []string
var matches [][]string
@@ -229,7 +230,7 @@ type Server struct {
image *ImageContext
// status for external health reporting - loading, ready to serve, etc.
status ServerStatus
status llm.ServerStatus
// current progress on loading the model
progress float32
@@ -388,7 +389,15 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
if len(seq.pendingInputs) == 0 {
err := s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
if err != nil {
return err
var reprocess *ErrReprocessInputs
if errors.As(err, &reprocess) {
// Prepend these inputs to the sequence's inputs queue for reprocessing
seq.inputs = append(reprocess.Inputs, seq.inputs...)
// Continue processing as normal
continue
} else {
return err
}
}
} else {
break
@@ -541,75 +550,18 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
return nil
}
// TODO (jmorganca): use structs from the api package to avoid duplication
// this way the api acts as a proxy instead of using a different api for the
// runner
type Options struct {
api.Runner
NumKeep int `json:"n_keep"`
Seed int `json:"seed"`
NumPredict int `json:"n_predict"`
TopK int `json:"top_k"`
TopP float32 `json:"top_p"`
MinP float32 `json:"min_p"`
TypicalP float32 `json:"typical_p"`
RepeatLastN int `json:"repeat_last_n"`
Temperature float32 `json:"temperature"`
RepeatPenalty float32 `json:"repeat_penalty"`
PresencePenalty float32 `json:"presence_penalty"`
FrequencyPenalty float32 `json:"frequency_penalty"`
Mirostat int `json:"mirostat"`
MirostatTau float32 `json:"mirostat_tau"`
MirostatEta float32 `json:"mirostat_eta"`
Stop []string `json:"stop"`
}
type ImageData struct {
Data []byte `json:"data"`
ID int `json:"id"`
AspectRatioID int `json:"aspect_ratio_id"`
}
type CompletionRequest struct {
Prompt string `json:"prompt"`
Images []ImageData `json:"image_data"`
Grammar string `json:"grammar"`
CachePrompt bool `json:"cache_prompt"`
Options
}
type Timings struct {
PredictedN int `json:"predicted_n"`
PredictedMS float64 `json:"predicted_ms"`
PromptN int `json:"prompt_n"`
PromptMS float64 `json:"prompt_ms"`
}
type CompletionResponse struct {
Content string `json:"content"`
Stop bool `json:"stop"`
Model string `json:"model,omitempty"`
Prompt string `json:"prompt,omitempty"`
StoppedLimit bool `json:"stopped_limit,omitempty"`
PredictedN int `json:"predicted_n,omitempty"`
PredictedMS float64 `json:"predicted_ms,omitempty"`
PromptN int `json:"prompt_n,omitempty"`
PromptMS float64 `json:"prompt_ms,omitempty"`
Timings Timings `json:"timings"`
}
func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
var req CompletionRequest
req.Options = Options(api.DefaultOptions())
var req llm.CompletionRequest
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
http.Error(w, "Bad request", http.StatusBadRequest)
return
}
if req.Options == nil {
opts := api.DefaultOptions()
req.Options = &opts
}
// Set the headers to indicate streaming
w.Header().Set("Content-Type", "application/json")
w.Header().Set("Transfer-Encoding", "chunked")
@@ -620,26 +572,28 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
return
}
var samplingParams llama.SamplingParams
samplingParams.TopK = req.TopK
samplingParams.TopP = req.TopP
samplingParams.MinP = req.MinP
samplingParams.TypicalP = req.TypicalP
samplingParams.Temp = req.Temperature
samplingParams.RepeatLastN = req.RepeatLastN
samplingParams.PenaltyRepeat = req.RepeatPenalty
samplingParams.PenaltyFreq = req.FrequencyPenalty
samplingParams.PenaltyPresent = req.PresencePenalty
samplingParams.Mirostat = req.Mirostat
samplingParams.MirostatTau = req.MirostatTau
samplingParams.MirostatEta = req.MirostatEta
samplingParams.Seed = uint32(req.Seed)
samplingParams.Grammar = req.Grammar
// Extract options from the CompletionRequest
samplingParams := llama.SamplingParams{
TopK: req.Options.TopK,
TopP: req.Options.TopP,
MinP: req.Options.MinP,
TypicalP: req.Options.TypicalP,
Temp: req.Options.Temperature,
RepeatLastN: req.Options.RepeatLastN,
PenaltyRepeat: req.Options.RepeatPenalty,
PenaltyFreq: req.Options.FrequencyPenalty,
PenaltyPresent: req.Options.PresencePenalty,
Mirostat: req.Options.Mirostat,
MirostatTau: req.Options.MirostatTau,
MirostatEta: req.Options.MirostatEta,
Seed: uint32(req.Options.Seed),
Grammar: req.Grammar,
}
seq, err := s.NewSequence(req.Prompt, req.Images, NewSequenceParams{
numPredict: req.NumPredict,
stop: req.Stop,
numKeep: req.NumKeep,
numPredict: req.Options.NumPredict,
stop: req.Options.Stop,
numKeep: req.Options.NumKeep,
samplingParams: &samplingParams,
embedding: false,
})
@@ -653,7 +607,7 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
if errors.Is(err, context.Canceled) {
slog.Info("aborting completion request due to client closing the connection")
} else {
slog.Error("Failed to acquire semaphore", "error", err)
http.Error(w, fmt.Sprintf("Failed to acquire semaphore: %v", err), http.StatusInternalServerError)
}
return
}
@@ -662,9 +616,10 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
found := false
for i, sq := range s.seqs {
if sq == nil {
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, true)
if err != nil {
s.mu.Unlock()
s.seqsSem.Release(1)
http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
return
}
@@ -680,6 +635,7 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
s.mu.Unlock()
if !found {
s.seqsSem.Release(1)
http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
return
}
@@ -691,7 +647,7 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
return
case content, ok := <-seq.responses:
if ok {
if err := json.NewEncoder(w).Encode(&CompletionResponse{
if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
Content: content,
}); err != nil {
http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
@@ -702,15 +658,17 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
flusher.Flush()
} else {
// Send the final response
if err := json.NewEncoder(w).Encode(&CompletionResponse{
Stop: true,
StoppedLimit: seq.doneReason == "limit",
Timings: Timings{
PromptN: seq.numPromptInputs,
PromptMS: float64(seq.startGenerationTime.Sub(seq.startProcessingTime).Milliseconds()),
PredictedN: seq.numDecoded,
PredictedMS: float64(time.Since(seq.startGenerationTime).Milliseconds()),
},
doneReason := "stop"
if seq.doneReason == "limit" {
doneReason = "length"
}
if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
Done: true,
DoneReason: doneReason,
PromptEvalCount: seq.numPromptInputs,
PromptEvalDuration: seq.startGenerationTime.Sub(seq.startProcessingTime),
EvalCount: seq.numDecoded,
EvalDuration: time.Since(seq.startGenerationTime),
}); err != nil {
http.Error(w, fmt.Sprintf("failed to encode final response: %v", err), http.StatusInternalServerError)
}
@@ -721,17 +679,8 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
}
}
type EmbeddingRequest struct {
Content string `json:"content"`
CachePrompt bool `json:"cache_prompt"`
}
type EmbeddingResponse struct {
Embedding []float32 `json:"embedding"`
}
func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
var req EmbeddingRequest
var req llm.EmbeddingRequest
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
http.Error(w, fmt.Sprintf("bad request: %s", err), http.StatusBadRequest)
return
@@ -752,7 +701,7 @@ func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
if errors.Is(err, context.Canceled) {
slog.Info("aborting embeddings request due to client closing the connection")
} else {
slog.Error("Failed to acquire semaphore", "error", err)
http.Error(w, fmt.Sprintf("Failed to acquire semaphore: %v", err), http.StatusInternalServerError)
}
return
}
@@ -761,9 +710,10 @@ func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
found := false
for i, sq := range s.seqs {
if sq == nil {
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, false)
if err != nil {
s.mu.Unlock()
s.seqsSem.Release(1)
http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
return
}
@@ -776,47 +726,24 @@ func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
s.mu.Unlock()
if !found {
s.seqsSem.Release(1)
http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
return
}
embedding := <-seq.embedding
if err := json.NewEncoder(w).Encode(&EmbeddingResponse{
if err := json.NewEncoder(w).Encode(&llm.EmbeddingResponse{
Embedding: embedding,
}); err != nil {
http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
}
}
type HealthResponse struct {
Status string `json:"status"`
Progress float32 `json:"progress"`
}
type ServerStatus int
const (
ServerStatusReady ServerStatus = iota
ServerStatusLoadingModel
ServerStatusError
)
func (s ServerStatus) ToString() string {
switch s {
case ServerStatusReady:
return "ok"
case ServerStatusLoadingModel:
return "loading model"
default:
return "server error"
}
}
func (s *Server) health(w http.ResponseWriter, r *http.Request) {
w.Header().Set("Content-Type", "application/json")
if err := json.NewEncoder(w).Encode(&HealthResponse{
Status: s.status.ToString(),
if err := json.NewEncoder(w).Encode(&llm.ServerStatusResponse{
Status: s.status,
Progress: s.progress,
}); err != nil {
http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
@@ -879,7 +806,7 @@ func (s *Server) loadModel(
panic(err)
}
s.status = ServerStatusReady
s.status = llm.ServerStatusReady
s.ready.Done()
}
@@ -937,7 +864,7 @@ func Execute(args []string) error {
parallel: *parallel,
seqs: make([]*Sequence, *parallel),
seqsSem: semaphore.NewWeighted(int64(*parallel)),
status: ServerStatusLoadingModel,
status: llm.ServerStatusLoadingModel,
}
var tensorSplitFloats []float32

View File

@@ -31,8 +31,10 @@ type InputCache struct {
cache kvcache.Cache
}
func NewInputCache(model model.Model, kvCacheType string, kvSize int32, numSlots int, multiUserCache bool) (*InputCache, error) {
if kvSize/int32(numSlots) < 1 {
func NewInputCache(model model.Model, kvCacheType string, kvSize int32, numSlots int, batchSize int, multiUserCache bool) (*InputCache, error) {
numCtx := kvSize / int32(numSlots)
if numCtx < 1 {
return nil, fmt.Errorf("must have at least one kv cache entry per parallel sequence (kv: %v parallel: %v)", kvSize, numSlots)
}
@@ -44,11 +46,11 @@ func NewInputCache(model model.Model, kvCacheType string, kvSize int32, numSlots
cache := model.Config().Cache
if cache != nil {
cache.Init(model.Backend(), kvCacheTypeFromStr(kvCacheType), kvSize)
cache.Init(model.Backend(), kvCacheTypeFromStr(kvCacheType), numSlots, int(numCtx), batchSize)
}
return &InputCache{
numCtx: kvSize / int32(numSlots),
numCtx: numCtx,
enabled: cache != nil,
slots: slots,
multiUserCache: multiUserCache,
@@ -89,7 +91,7 @@ type InputCacheSlot struct {
lastUsed time.Time
}
func (c *InputCache) LoadCacheSlot(prompt []input.Input, cachePrompt bool) (*InputCacheSlot, []input.Input, error) {
func (c *InputCache) LoadCacheSlot(prompt []input.Input) (*InputCacheSlot, []input.Input, error) {
var slot *InputCacheSlot
var numPast int32
var err error
@@ -107,10 +109,6 @@ func (c *InputCache) LoadCacheSlot(prompt []input.Input, cachePrompt bool) (*Inp
return nil, nil, err
}
if !cachePrompt {
numPast = 0
}
slot.InUse = true
slot.lastUsed = time.Now()
@@ -120,6 +118,10 @@ func (c *InputCache) LoadCacheSlot(prompt []input.Input, cachePrompt bool) (*Inp
}
if c.cache != nil {
if numPast > 0 && !c.cache.CanResume(slot.Id, numPast) {
numPast = 0
}
err = c.cache.Remove(slot.Id, numPast, math.MaxInt32)
if err != nil {
// Some models don't support partial erasure
@@ -227,6 +229,8 @@ func countCommonPrefix(a []input.Input, b []input.Input) int32 {
return count
}
// TODO(jessegross): If we need to reprocess the inputs we should ensure that
// we don't split up a SameBatch
func (c *InputCache) ShiftDiscard(inputLen int32, numKeep int32) int32 {
targetFree := (c.numCtx - numKeep) / 2
targetFree = max(targetFree, 1)
@@ -241,6 +245,14 @@ func (c *InputCache) ShiftDiscard(inputLen int32, numKeep int32) int32 {
return discard
}
type ErrReprocessInputs struct {
Inputs []input.Input
}
func (e *ErrReprocessInputs) Error() string {
return fmt.Sprintf("kv cache shift not supported, inputs need reprocessing (input count: %v)", len(e.Inputs))
}
// Frees up space in the KV cache by deleting the oldest half of history and shifting
// the newest half into that space (saving numKeep inputs at the beginning).
//
@@ -260,11 +272,23 @@ func (c *InputCache) ShiftCacheSlot(slot *InputCacheSlot, numKeep int32) error {
slog.Debug("context limit hit - shifting", "id", slot.Id, "limit", c.numCtx, "input", len(slot.Inputs),
"keep", numKeep, "discard", discard)
// TODO (jessegross): KV cache removal can fail for certain types of models
if c.cache != nil {
err := c.cache.Remove(slot.Id, numKeep, numKeep+discard)
if err != nil {
return fmt.Errorf("unable to remove old kv cache entries (id: %v, keep: %v discard: %v): %w", slot.Id, numKeep, discard, err)
slog.Debug("kv cache removal unsupported, clearing cache and returning inputs for reprocessing",
"id", slot.Id, "error", err)
// Create new input slice with preserved tokens (numKeep + remaining tokens after discard)
newInputs := make([]input.Input, numKeep+inputLen-(numKeep+discard))
copy(newInputs[:numKeep], slot.Inputs[:numKeep])
copy(newInputs[numKeep:], slot.Inputs[numKeep+discard:])
// Reset the cache
_ = c.cache.Remove(slot.Id, 0, -1)
slot.Inputs = []input.Input{}
// Return error with inputs that need to be reprocessed
return &ErrReprocessInputs{Inputs: newInputs}
}
}

View File

@@ -1,10 +1,13 @@
package ollamarunner
import (
"errors"
"fmt"
"image"
"testing"
"time"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model/input"
)
@@ -297,3 +300,220 @@ func TestShiftDiscard(t *testing.T) {
})
}
}
func TestLoadCacheSlot(t *testing.T) {
tests := []struct {
name string
cache InputCache
prompt []input.Input
wantErr bool
expectedSlotId int
expectedPrompt int // expected length of remaining prompt
}{
{
name: "Basic cache hit - single user",
cache: InputCache{
multiUserCache: false,
slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input.Input{{Token: 1}, {Token: 2}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []input.Input{},
InUse: false,
lastUsed: time.Now().Add(-2 * time.Second),
},
},
},
prompt: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
wantErr: false,
expectedSlotId: 0,
expectedPrompt: 1, // Only token 3 remains
},
{
name: "Basic cache hit - multi user",
cache: InputCache{
multiUserCache: true,
slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input.Input{{Token: 1}, {Token: 2}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []input.Input{},
InUse: false,
lastUsed: time.Now().Add(-2 * time.Second),
},
},
},
prompt: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
wantErr: false,
expectedSlotId: 0,
expectedPrompt: 1, // Only token 3 remains
},
{
name: "Exact match - leave one input",
cache: InputCache{
multiUserCache: false,
slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input.Input{{Token: 1}, {Token: 2}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
},
},
prompt: []input.Input{{Token: 1}, {Token: 2}},
wantErr: false,
expectedSlotId: 0,
expectedPrompt: 1, // Should leave 1 token for sampling
},
{
name: "No available slots",
cache: InputCache{
multiUserCache: false,
slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input.Input{{Token: 1}, {Token: 2}},
InUse: true,
lastUsed: time.Now().Add(-time.Second),
},
},
},
prompt: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
wantErr: true,
expectedSlotId: -1,
expectedPrompt: -1,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
slot, remainingPrompt, err := tt.cache.LoadCacheSlot(tt.prompt)
// Check error state
if (err != nil) != tt.wantErr {
t.Errorf("LoadCacheSlot() error = %v, wantErr %v", err, tt.wantErr)
return
}
if tt.wantErr {
return // Skip further checks if we expected an error
}
// Verify slot ID
if slot.Id != tt.expectedSlotId {
t.Errorf("LoadCacheSlot() slot ID = %v, expected %v", slot.Id, tt.expectedSlotId)
}
// Verify slot is now marked in use
if !slot.InUse {
t.Errorf("LoadCacheSlot() slot not marked InUse")
}
// Verify remaining prompt length
if len(remainingPrompt) != tt.expectedPrompt {
t.Errorf("LoadCacheSlot() remaining prompt length = %v, expected %v",
len(remainingPrompt), tt.expectedPrompt)
}
})
}
}
// Mock implementation of the Cache interface
type mockCache struct {
shouldFail bool
}
// Implement only the methods needed for the test
func (m *mockCache) Remove(seq int, beginIndex, endIndex int32) error {
if m.shouldFail {
return fmt.Errorf("mock cache removal error")
}
return nil
}
// Stub implementations for other interface methods
func (m *mockCache) SetLayer(layer int) {}
func (m *mockCache) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) { return nil, nil, nil }
func (m *mockCache) Put(ctx ml.Context, key, value ml.Tensor) {}
func (m *mockCache) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int) {}
func (m *mockCache) Close() {}
func (m *mockCache) StartForward(ctx ml.Context, batch input.Batch) error { return nil }
func (m *mockCache) CopyPrefix(srcSeq, dstSeq int, len int32) {}
func (m *mockCache) SetConfig(ml.CacheConfig) {}
func (m *mockCache) CanResume(seq int, pos int32) bool { return true }
func TestShiftCacheSlot(t *testing.T) {
tests := []struct {
name string
numCtx int32
inputs []input.Input
numKeep int32
cacheErr bool
wantErr any
wantInputsLen int
}{
{
name: "Normal shift",
numCtx: 10,
inputs: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}, {Token: 4}, {Token: 5}, {Token: 6}, {Token: 7}, {Token: 8}, {Token: 9}, {Token: 10}},
numKeep: 2,
cacheErr: false, // No error
wantErr: nil,
wantInputsLen: 6, // After discarding 4 tokens
},
{
name: "Cache removal fails",
numCtx: 10,
inputs: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}, {Token: 4}, {Token: 5}, {Token: 6}, {Token: 7}, {Token: 8}, {Token: 9}, {Token: 10}},
numKeep: 2,
cacheErr: true,
wantErr: &ErrReprocessInputs{},
wantInputsLen: 0, // Original inputs should be cleared
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
mock := &mockCache{shouldFail: tt.cacheErr}
c := InputCache{
numCtx: tt.numCtx,
cache: mock,
}
slot := &InputCacheSlot{
Id: 123,
Inputs: make([]input.Input, len(tt.inputs)),
}
copy(slot.Inputs, tt.inputs)
err := c.ShiftCacheSlot(slot, tt.numKeep)
if tt.wantErr != nil {
if err == nil {
t.Errorf("Expected error but got nil")
return
}
if !errors.As(err, &tt.wantErr) {
t.Errorf("Expected error of type %T but got %T: %v", tt.wantErr, err, err)
}
} else if err != nil {
t.Errorf("Unexpected error: %v", err)
}
if len(slot.Inputs) != tt.wantInputsLen {
t.Errorf("Slot inputs length after operation: got %v, want %v", len(slot.Inputs), tt.wantInputsLen)
}
})
}
}

View File

@@ -24,6 +24,7 @@ import (
"golang.org/x/sync/semaphore"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
@@ -33,10 +34,14 @@ import (
_ "github.com/ollama/ollama/model/models"
)
type contextList struct {
list []ml.Context
}
type Sequence struct {
// ctx for allocating tensors that last the lifetime of the sequence, such as
// ctxs are used for allocating tensors that last the lifetime of the sequence, such as
// multimodal embeddings
ctx ml.Context
ctxs *contextList
// batch index
iBatch int
@@ -94,13 +99,12 @@ type NewSequenceParams struct {
embedding bool
}
func (s *Server) NewSequence(prompt string, images []ImageData, params NewSequenceParams) (*Sequence, error) {
func (s *Server) NewSequence(prompt string, images []llm.ImageData, params NewSequenceParams) (*Sequence, error) {
s.ready.Wait()
startTime := time.Now()
ctx := s.model.Backend().NewContext()
inputs, err := s.inputs(ctx, prompt, images)
inputs, ctxs, err := s.inputs(prompt, images)
if err != nil {
return nil, fmt.Errorf("failed to process inputs: %w", err)
} else if len(inputs) == 0 {
@@ -116,8 +120,36 @@ func (s *Server) NewSequence(prompt string, images []ImageData, params NewSequen
if int32(len(inputs)) > s.cache.numCtx {
discard := int32(len(inputs)) - s.cache.numCtx
promptStart := params.numKeep + discard
// If we need to truncate in the middle of a unbreakable batch, remove the entire batch
sameBatch := 0
for i, inp := range inputs {
if sameBatch > 0 {
sameBatch--
if promptStart == int32(i) {
promptStart++
}
} else if promptStart == int32(i) {
break
}
if inp.SameBatch != 0 {
if int32(i) < params.numKeep {
return nil, fmt.Errorf("SameBatch may not be specified within numKeep (index: %v numKeep: %v SameBatch: %v)", i, params.numKeep, inp.SameBatch)
}
sameBatch = inp.SameBatch
}
}
if promptStart >= int32(len(inputs)) {
return nil, errors.New("entire prompt removed by truncation")
}
newInputs := inputs[:params.numKeep]
newInputs = append(newInputs, inputs[params.numKeep+discard:]...)
newInputs = append(newInputs, inputs[promptStart:]...)
slog.Warn("truncating input prompt", "limit", s.cache.numCtx, "prompt", len(inputs), "keep", params.numKeep, "new", len(newInputs))
inputs = newInputs
@@ -126,7 +158,7 @@ func (s *Server) NewSequence(prompt string, images []ImageData, params NewSequen
// TODO(jessegross): Ingest cached history for grammar
return &Sequence{
ctx: ctx,
ctxs: ctxs,
inputs: inputs,
numPromptInputs: len(inputs),
startProcessingTime: startTime,
@@ -145,7 +177,7 @@ func (s *Server) NewSequence(prompt string, images []ImageData, params NewSequen
// inputs processes the prompt and images into a list of inputs
// by splitting the prompt on [img-<n>] tags, tokenizing text and
// decoding images
func (s *Server) inputs(ctx ml.Context, prompt string, images []ImageData) ([]input.Input, error) {
func (s *Server) inputs(prompt string, images []llm.ImageData) ([]input.Input, *contextList, error) {
var inputs []input.Input
var parts []string
var matches [][]string
@@ -160,12 +192,19 @@ func (s *Server) inputs(ctx ml.Context, prompt string, images []ImageData) ([]in
parts = []string{prompt}
}
var contexts contextList
runtime.AddCleanup(&contexts, func(ctxs []ml.Context) {
for _, ctx := range ctxs {
ctx.Close()
}
}, contexts.list)
postTokenize := false
for i, part := range parts {
// text - tokenize
tokens, err := s.model.(model.TextProcessor).Encode(part, i == 0)
if err != nil {
return nil, err
return nil, nil, err
}
for _, t := range tokens {
@@ -185,12 +224,14 @@ func (s *Server) inputs(ctx ml.Context, prompt string, images []ImageData) ([]in
}
if imageIndex < 0 {
return nil, fmt.Errorf("invalid image index: %d", n)
return nil, nil, fmt.Errorf("invalid image index: %d", n)
}
ctx := s.model.Backend().NewContext()
contexts.list = append(contexts.list, ctx)
imageEmbeddings, err := multimodalProcessor.EncodeMultimodal(ctx, images[imageIndex].Data)
if err != nil {
return nil, err
return nil, nil, err
}
s.multimodalHash.Reset()
@@ -204,13 +245,13 @@ func (s *Server) inputs(ctx ml.Context, prompt string, images []ImageData) ([]in
if visionModel && postTokenize {
var err error
inputs, err = multimodalProcessor.PostTokenize(ctx, inputs)
inputs, err = multimodalProcessor.PostTokenize(inputs)
if err != nil {
return nil, err
return nil, nil, err
}
}
return inputs, nil
return inputs, &contexts, nil
}
type Server struct {
@@ -222,7 +263,7 @@ type Server struct {
model model.Model
// status for external health reporting - loading, ready to serve, etc.
status ServerStatus
status llm.ServerStatus
// current progress on loading the model
progress float32
@@ -251,6 +292,9 @@ type Server struct {
// KV cache
cache *InputCache
// next sequence for prompt processing to avoid starvation
nextSeq int
// multimodalHash generates hashes for comparing equality
// of non-text data
multimodalHash maphash.Hash
@@ -305,7 +349,6 @@ func (s *Server) removeSequence(seqIndex int, reason string) {
close(seq.responses)
close(seq.embedding)
seq.cache.InUse = false
seq.ctx.Close()
s.seqs[seqIndex] = nil
s.seqsSem.Release(1)
}
@@ -333,16 +376,22 @@ func (s *Server) processBatch() error {
}
defer s.mu.Unlock()
var options input.Options
var batchInputs []int32
var batch input.Batch
resumeSeq := -1
seqIdx := s.nextSeq - 1
for range s.seqs {
seqIdx = (seqIdx + 1) % len(s.seqs)
seq := s.seqs[seqIdx]
for i, seq := range s.seqs {
if seq == nil {
continue
}
// if past the num predict limit
if seq.numPredict > 0 && seq.numPredicted >= seq.numPredict {
s.removeSequence(i, "limit")
s.removeSequence(seqIdx, "limit")
continue
}
@@ -351,33 +400,61 @@ func (s *Server) processBatch() error {
seq.cache.Inputs = []input.Input{}
}
for j, inp := range seq.inputs {
if int32(len(seq.cache.Inputs)+len(seq.pendingInputs)+1) > s.cache.numCtx {
if len(seq.pendingInputs) == 0 {
err := s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
if err != nil {
return err
}
} else {
break
}
batchSize := s.batchSize
for i, inp := range seq.inputs {
// If we are required to put following inputs into a single batch then extend the
// batch size. Since we are only extending the size the minimum amount possible, this
// will cause a break if we have existing inputs.
minBatch := 1 + inp.SameBatch
if minBatch > batchSize {
batchSize = minBatch
}
if j >= s.batchSize {
// Stop if the required batch would put us over the total batch size (including tokens
// added by other sequences). If we haven't been able to add anything yet then pick up
// here again for the next batch to avoid starvation, though we can opportunistically
// check if other sequences can still squeeze something in.
if len(batchInputs)+minBatch > batchSize {
if len(seq.pendingInputs) == 0 && resumeSeq == -1 {
resumeSeq = seqIdx
}
break
}
options.Inputs = append(options.Inputs, inp.Token)
if inp.Multimodal != nil {
options.Multimodal = append(options.Multimodal, input.MultimodalIndex{Index: len(options.Inputs) - 1, Multimodal: inp.Multimodal})
// If the sum of our working set (already processed tokens, tokens we added to this
// batch, required following tokens) exceeds the context size, then trigger a shift
// now so we don't have to do one later when we can't break the batch.
if int32(len(seq.cache.Inputs)+len(seq.pendingInputs)+minBatch) > s.cache.numCtx {
if len(seq.pendingInputs) != 0 {
break
}
err := s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
if err != nil {
var reprocess *ErrReprocessInputs
if errors.As(err, &reprocess) {
// Prepend these inputs to the sequence's inputs queue for reprocessing
seq.inputs = append(reprocess.Inputs, seq.inputs...)
// Skip this sequence but continue processing the rest
continue
} else {
return err
}
}
}
options.Positions = append(options.Positions, int32(len(seq.cache.Inputs)+len(seq.pendingInputs)))
options.Sequences = append(options.Sequences, seq.cache.Id)
batchInputs = append(batchInputs, inp.Token)
if inp.Multimodal != nil {
batch.Multimodal = append(batch.Multimodal, input.MultimodalIndex{Index: len(batchInputs) - 1, Multimodal: inp.Multimodal})
}
seq.iBatch = len(options.Outputs)
if j+1 == len(seq.inputs) {
options.Outputs = append(options.Outputs, int32(len(options.Inputs)-1))
batch.Positions = append(batch.Positions, int32(len(seq.cache.Inputs)+len(seq.pendingInputs)))
batch.Sequences = append(batch.Sequences, seq.cache.Id)
seq.iBatch = len(batch.Outputs)
if i+1 == len(seq.inputs) {
batch.Outputs = append(batch.Outputs, int32(len(batchInputs)-1))
}
seq.pendingInputs = append(seq.pendingInputs, inp)
}
@@ -385,14 +462,20 @@ func (s *Server) processBatch() error {
seq.inputs = seq.inputs[len(seq.pendingInputs):]
}
if len(options.Inputs) == 0 {
if resumeSeq != -1 {
s.nextSeq = resumeSeq
} else {
s.nextSeq = seqIdx + 1
}
if len(batchInputs) == 0 {
return nil
}
ctx := s.model.Backend().NewContext()
defer ctx.Close()
modelOutput, err := model.Forward(ctx, s.model, options)
modelOutput, err := model.Forward(ctx, s.model, batchInputs, batch)
if err != nil {
return fmt.Errorf("failed to decode batch: %w", err)
}
@@ -432,7 +515,7 @@ func (s *Server) processBatch() error {
}
// sample a token
vocabSize := len(logits) / len(options.Outputs)
vocabSize := len(logits) / len(batch.Outputs)
token, err := seq.sampler.Sample(logits[seq.iBatch*vocabSize : (seq.iBatch+1)*vocabSize])
if err != nil {
@@ -501,75 +584,18 @@ func (s *Server) processBatch() error {
return nil
}
// TODO (jmorganca): use structs from the api package to avoid duplication
// this way the api acts as a proxy instead of using a different api for the
// runner
type Options struct {
api.Runner
NumKeep int `json:"n_keep"`
Seed int `json:"seed"`
NumPredict int `json:"n_predict"`
TopK int `json:"top_k"`
TopP float32 `json:"top_p"`
MinP float32 `json:"min_p"`
TypicalP float32 `json:"typical_p"`
RepeatLastN int `json:"repeat_last_n"`
Temperature float32 `json:"temperature"`
RepeatPenalty float32 `json:"repeat_penalty"`
PresencePenalty float32 `json:"presence_penalty"`
FrequencyPenalty float32 `json:"frequency_penalty"`
Mirostat int `json:"mirostat"`
MirostatTau float32 `json:"mirostat_tau"`
MirostatEta float32 `json:"mirostat_eta"`
Stop []string `json:"stop"`
}
type ImageData struct {
Data []byte `json:"data"`
ID int `json:"id"`
AspectRatioID int `json:"aspect_ratio_id"`
}
type CompletionRequest struct {
Prompt string `json:"prompt"`
Images []ImageData `json:"image_data"`
Grammar string `json:"grammar"`
CachePrompt bool `json:"cache_prompt"`
Options
}
type Timings struct {
PredictedN int `json:"predicted_n"`
PredictedMS float64 `json:"predicted_ms"`
PromptN int `json:"prompt_n"`
PromptMS float64 `json:"prompt_ms"`
}
type CompletionResponse struct {
Content string `json:"content"`
Stop bool `json:"stop"`
Model string `json:"model,omitempty"`
Prompt string `json:"prompt,omitempty"`
StoppedLimit bool `json:"stopped_limit,omitempty"`
PredictedN int `json:"predicted_n,omitempty"`
PredictedMS float64 `json:"predicted_ms,omitempty"`
PromptN int `json:"prompt_n,omitempty"`
PromptMS float64 `json:"prompt_ms,omitempty"`
Timings Timings `json:"timings"`
}
func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
var req CompletionRequest
req.Options = Options(api.DefaultOptions())
var req llm.CompletionRequest
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
http.Error(w, "Bad request", http.StatusBadRequest)
return
}
if req.Options == nil {
opts := api.DefaultOptions()
req.Options = &opts
}
// Set the headers to indicate streaming
w.Header().Set("Content-Type", "application/json")
w.Header().Set("Transfer-Encoding", "chunked")
@@ -591,18 +617,18 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
}
sampler := sample.NewSampler(
req.Temperature,
req.TopK,
req.TopP,
req.MinP,
req.Seed,
req.Options.Temperature,
req.Options.TopK,
req.Options.TopP,
req.Options.MinP,
req.Options.Seed,
grammar,
)
seq, err := s.NewSequence(req.Prompt, req.Images, NewSequenceParams{
numPredict: req.NumPredict,
stop: req.Stop,
numKeep: int32(req.NumKeep),
numPredict: req.Options.NumPredict,
stop: req.Options.Stop,
numKeep: int32(req.Options.NumKeep),
sampler: sampler,
embedding: false,
})
@@ -616,7 +642,7 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
if errors.Is(err, context.Canceled) {
slog.Info("aborting completion request due to client closing the connection")
} else {
slog.Error("Failed to acquire semaphore", "error", err)
http.Error(w, fmt.Sprintf("Failed to acquire semaphore: %v", err), http.StatusInternalServerError)
}
return
}
@@ -625,9 +651,10 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
found := false
for i, sq := range s.seqs {
if sq == nil {
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs)
if err != nil {
s.mu.Unlock()
s.seqsSem.Release(1)
http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
return
}
@@ -641,6 +668,7 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
s.mu.Unlock()
if !found {
s.seqsSem.Release(1)
http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
return
}
@@ -652,7 +680,7 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
return
case content, ok := <-seq.responses:
if ok {
if err := json.NewEncoder(w).Encode(&CompletionResponse{
if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
Content: content,
}); err != nil {
http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
@@ -663,15 +691,17 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
flusher.Flush()
} else {
// Send the final response
if err := json.NewEncoder(w).Encode(&CompletionResponse{
Stop: true,
StoppedLimit: seq.doneReason == "limit",
Timings: Timings{
PromptN: seq.numPromptInputs,
PromptMS: float64(seq.startGenerationTime.Sub(seq.startProcessingTime).Milliseconds()),
PredictedN: seq.numPredicted,
PredictedMS: float64(time.Since(seq.startGenerationTime).Milliseconds()),
},
doneReason := "stop"
if seq.doneReason == "limit" {
doneReason = "length"
}
if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
Done: true,
DoneReason: doneReason,
PromptEvalCount: seq.numPromptInputs,
PromptEvalDuration: seq.startGenerationTime.Sub(seq.startProcessingTime),
EvalCount: seq.numPredicted,
EvalDuration: time.Since(seq.startGenerationTime),
}); err != nil {
http.Error(w, fmt.Sprintf("failed to encode final response: %v", err), http.StatusInternalServerError)
}
@@ -682,43 +712,10 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
}
}
type EmbeddingRequest struct {
Content string `json:"content"`
CachePrompt bool `json:"cache_prompt"`
}
type EmbeddingResponse struct {
Embedding []float32 `json:"embedding"`
}
type HealthResponse struct {
Status string `json:"status"`
Progress float32 `json:"progress"`
}
type ServerStatus int
const (
ServerStatusReady ServerStatus = iota
ServerStatusLoadingModel
ServerStatusError
)
func (s ServerStatus) ToString() string {
switch s {
case ServerStatusReady:
return "ok"
case ServerStatusLoadingModel:
return "loading model"
default:
return "server error"
}
}
func (s *Server) health(w http.ResponseWriter, r *http.Request) {
w.Header().Set("Content-Type", "application/json")
if err := json.NewEncoder(w).Encode(&HealthResponse{
Status: s.status.ToString(),
if err := json.NewEncoder(w).Encode(&llm.ServerStatusResponse{
Status: s.status,
Progress: s.progress,
}); err != nil {
http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
@@ -737,6 +734,7 @@ func (m *multiLPath) String() string {
}
func (s *Server) loadModel(
ctx context.Context,
mpath string,
params ml.BackendParams,
lpath multiLPath,
@@ -746,7 +744,7 @@ func (s *Server) loadModel(
multiUserCache bool,
) {
var err error
s.model, err = model.New(mpath, params)
s.model, err = model.New(ctx, mpath, params)
if err != nil {
panic(err)
}
@@ -758,7 +756,7 @@ func (s *Server) loadModel(
panic("loras are not yet implemented")
}
s.cache, err = NewInputCache(s.model, kvCacheType, int32(kvSize), parallel, multiUserCache)
s.cache, err = NewInputCache(s.model, kvCacheType, int32(kvSize), parallel, s.batchSize, multiUserCache)
if err != nil {
panic(err)
}
@@ -772,7 +770,7 @@ func (s *Server) loadModel(
s.seqs = make([]*Sequence, s.parallel)
s.seqsSem = semaphore.NewWeighted(int64(s.parallel))
s.status = ServerStatusReady
s.status = llm.ServerStatusReady
s.ready.Done()
}
@@ -824,7 +822,7 @@ func Execute(args []string) error {
server := &Server{
batchSize: *batchSize,
status: ServerStatusLoadingModel,
status: llm.ServerStatusLoadingModel,
}
// TODO(jessegross): Parameters that need to be implemented:
@@ -842,6 +840,9 @@ func Execute(args []string) error {
}
params := ml.BackendParams{
Progress: func(progress float32) {
server.progress = progress
},
NumThreads: *threads,
NumGPULayers: *numGPULayers,
MainGPU: *mainGPU,
@@ -850,13 +851,13 @@ func Execute(args []string) error {
}
server.ready.Add(1)
go server.loadModel(*mpath, params, lpaths, *parallel, *kvCacheType, *kvSize, *multiUserCache)
server.cond = sync.NewCond(&server.mu)
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
go server.loadModel(ctx, *mpath, params, lpaths, *parallel, *kvCacheType, *kvSize, *multiUserCache)
server.cond = sync.NewCond(&server.mu)
go server.run(ctx)
addr := "127.0.0.1:" + strconv.Itoa(*port)

View File

@@ -26,6 +26,10 @@ type Sampler struct {
}
func (s *Sampler) Sample(logits []float32) (int32, error) {
if len(logits) == 0 {
return -1, errors.New("sample: no logits provided to sample")
}
tokens := make([]token, len(logits))
for i := range logits {
tokens[i].id = int32(i)
@@ -87,19 +91,13 @@ func (s *Sampler) sample(tokens []token) (token, error) {
// topK also sorts the tokens in descending order of logits
tokens = topK(tokens, s.topK)
tokens = temperature(tokens, s.temperature)
tokens = softmax(tokens)
// scale and normalize the tokens in place
temperature(tokens, s.temperature)
softmax(tokens)
tokens = topP(tokens, s.topP)
tokens = minP(tokens, s.minP)
// TODO: this should fall back to greedy sampling
// or topP, topK values etc should be such that
// there are always tokens to sample from
if len(tokens) == 0 {
return token{}, errors.New("no tokens to sample from")
}
var r float32
if s.rng != nil {
r = s.rng.Float32()
@@ -122,6 +120,9 @@ func (s *Sampler) sample(tokens []token) (token, error) {
return 1
})
if math.IsNaN(float64(sum)) {
return token{}, errors.New("sample: logits sum to NaN, check model output")
}
return tokens[idx], nil
}

View File

@@ -1,6 +1,7 @@
package sample
import (
"math"
"math/rand/v2"
"testing"
)
@@ -29,6 +30,29 @@ func TestWeighted(t *testing.T) {
if want != got {
t.Errorf("index mismatch: want %d, got %d", want, got)
}
// Test very high p
logits = []float32{1.0, 0.9999999999999999, 0.5, 0.1}
// Use extremely small topP to filter out all tokens
sampler = NewSampler(1.0, 0, 1e-10, 0, 0, nil)
got, err = sampler.Sample(logits)
if err != nil {
t.Error(err)
return
}
// Should get the token with the highest logit
want = int32(0)
if want != got {
t.Errorf("index mismatch: want %d, got %d", want, got)
}
logits = []float32{float32(math.NaN()), float32(math.NaN()), float32(math.NaN())}
sampler = NewSampler(1, 0, 0.95, 0.05, 0, nil)
got, err = sampler.Sample(logits)
if err == nil {
t.Errorf("expected error, got %d", got)
return
}
}
func BenchmarkSample(b *testing.B) {

View File

@@ -26,17 +26,16 @@ func (h *tokenHeap) Pop() any {
}
// temperature applies scaling to the logits
func temperature(ts []token, temp float32) []token {
func temperature(ts []token, temp float32) {
// Ensure temperature clipping near 0 to avoid numerical instability
temp = max(temp, 1e-7)
for i := range ts {
ts[i].value = ts[i].value / temp
}
return ts
}
// softmax applies normalization to the logits
func softmax(ts []token) []token {
func softmax(ts []token) {
// Find max logit for numerical stability
maxLogit := float32(math.Inf(-1))
for _, t := range ts {
@@ -56,8 +55,6 @@ func softmax(ts []token) []token {
for i := range ts {
ts[i].value /= sum
}
return ts
}
// topK limits the number of tokens considered to the k highest logits
@@ -99,6 +96,7 @@ func topK(ts []token, k int) []token {
}
// topP limits tokens to those with cumulative probability p
// requires ts to be sorted in descending order of probabilities
func topP(ts []token, p float32) []token {
if p == 1.0 {
return ts
@@ -109,37 +107,24 @@ func topP(ts []token, p float32) []token {
for i, t := range ts {
sum += t.value
if sum > float32(p) {
ts = ts[:i+1]
return ts
return ts[:i+1]
}
}
return ts
}
// minP limits tokens to those with cumulative probability p
// minP filters tokens with probabilities >= p * max_prob
// requires ts to be sorted in descending order of probabilities
func minP(ts []token, p float32) []token {
if p == 1.0 {
return ts
}
maxProb := ts[0].value
maxProb := float32(math.Inf(-1))
for _, token := range ts {
if token.value > maxProb {
maxProb = token.value
threshold := maxProb * p
for i, t := range ts {
if t.value < threshold {
return ts[:i]
}
}
threshold := maxProb * float32(p)
// Filter tokens in-place
validTokens := ts[:0]
for i, token := range ts {
if token.value >= threshold {
validTokens = append(validTokens, ts[i])
}
}
ts = validTokens
return ts
}

View File

@@ -34,17 +34,22 @@ func compareLogits(t *testing.T, name string, want []float32, got []token) {
func TestTemperature(t *testing.T) {
input := []float32{1.0, 4.0, -2.0, 0.0}
got := temperature(toTokens(input), 0.5)
tokens := toTokens(input)
temperature(tokens, 0.5)
want := []float32{2.0, 8.0, -4.0, 0.0}
compareLogits(t, "temperature(0.5)", want, got)
compareLogits(t, "temperature(0.5)", want, tokens)
got = temperature(toTokens(input), 1.0)
input = []float32{1.0, 4.0, -2.0, 0.0}
tokens = toTokens(input)
temperature(tokens, 1.0)
want = []float32{1.0, 4.0, -2.0, 0.0}
compareLogits(t, "temperature(1)", want, got)
compareLogits(t, "temperature(1)", want, tokens)
got = temperature(toTokens(input), 0.0)
input = []float32{1.0, 4.0, -2.0, 0.0}
tokens = toTokens(input)
temperature(tokens, 0.0)
want = []float32{1e7, 4e7, -2e7, 0.0}
compareLogits(t, "temperature(0)", want, got)
compareLogits(t, "temperature(0)", want, tokens)
}
func TestSoftmax(t *testing.T) {
@@ -90,16 +95,17 @@ func TestSoftmax(t *testing.T) {
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
got := softmax(toTokens(tt.input))
tokens := toTokens(tt.input)
softmax(tokens)
if tt.expected != nil {
compareLogits(t, tt.name, tt.expected, got)
compareLogits(t, tt.name, tt.expected, tokens)
return
}
// Check probabilities sum to 1
var sum float32
for _, token := range got {
for _, token := range tokens {
sum += token.value
if token.value < 0 || token.value > 1 {
t.Errorf("probability out of range [0,1]: got %f", token.value)
@@ -114,38 +120,44 @@ func TestSoftmax(t *testing.T) {
func TestTopK(t *testing.T) {
input := []float32{0.026986899, 0.043722924, 0.036774673, 0.27755088, 0.0046718004, 0.08582123, 0.20409796, 0.00412893, 0.15720603, 0.045046154, 0.0030491839, 0.01681367}
// Test k=5
got := topK(toTokens(input), 5)
if len(got) != 5 {
t.Errorf("topK(5): wrong length: want 5, got %d", len(got))
tokens := toTokens(input)
tokens = topK(tokens, 5)
if len(tokens) != 5 {
t.Errorf("topK(5): wrong length: want 5, got %d", len(tokens))
}
// Should keep highest 3 values in descending order
want := []float32{0.27755088, 0.20409796, 0.15720603, 0.08582123, 0.045046154}
compareLogits(t, "topK(3)", want, got)
compareLogits(t, "topK(3)", want, tokens)
got = topK(toTokens(input), 20)
if len(got) != len(input) {
t.Errorf("topK(20): wrong length: want %d, got %d", len(input), len(got))
tokens = toTokens(input)
tokens = topK(tokens, 20)
if len(tokens) != len(input) {
t.Errorf("topK(20): wrong length: want %d, got %d", len(input), len(tokens))
}
// Test k=-1
input = []float32{0.026986899, 0.043722924, 0.036774673, 0.27755088, 0.0046718004, 0.08582123, 0.20409796, 0.00412893, 0.15720603, 0.045046154, 0.0030491839, 0.01681367}
want = []float32{0.27755088, 0.20409796, 0.15720603, 0.08582123, 0.045046154, 0.043722924, 0.036774673, 0.026986899, 0.01681367, 0.0046718004, 0.00412893, 0.0030491839}
got = topK(toTokens(input), -1)
if len(got) != len(input) {
t.Errorf("topK(-1): wrong length: want %d, got %d", len(input), len(got))
tokens = toTokens(input)
tokens = topK(tokens, -1)
if len(tokens) != len(input) {
t.Errorf("topK(-1): wrong length: want %d, got %d", len(input), len(tokens))
}
compareLogits(t, "topK(-1)", want, got)
compareLogits(t, "topK(-1)", want, tokens)
// Test k=0
input = []float32{0.026986899, 0.043722924, 0.036774673, 0.27755088, 0.0046718004, 0.08582123, 0.20409796, 0.00412893, 0.15720603, 0.045046154, 0.0030491839, 0.01681367}
want = []float32{0.27755088, 0.20409796, 0.15720603, 0.08582123, 0.045046154, 0.043722924, 0.036774673, 0.026986899, 0.01681367, 0.0046718004, 0.00412893, 0.0030491839}
got = topK(toTokens(input), 0)
if len(got) != len(input) {
t.Errorf("topK(-1): wrong length: want %d, got %d", len(input), len(got))
tokens = toTokens(input)
tokens = topK(tokens, 0)
if len(tokens) != len(input) {
t.Errorf("topK(-1): wrong length: want %d, got %d", len(input), len(tokens))
}
compareLogits(t, "topK(-1)", want, tokens)
input = []float32{-1e7, -2e7, -3e7, -4e7}
tokens = toTokens(input)
tokens = topK(tokens, 1)
if len(tokens) < 1 {
t.Error("topK should keep at least one token")
}
compareLogits(t, "topK(-1)", want, got)
}
func TestTopP(t *testing.T) {
@@ -153,50 +165,134 @@ func TestTopP(t *testing.T) {
tokens := toTokens(input)
// First apply temperature and softmax to get probabilities
tokens = softmax(tokens)
softmax(tokens)
tokens = topK(tokens, 20)
// Then apply topP
got := topP(tokens, 0.95)
// Test with very high p value
got := topP(tokens, 1.0)
// Should keep all tokens since p is 1
if len(got) != len(input) {
t.Errorf("topP(1.0): should keep all tokens, got %d, want %d", len(got), len(input))
}
// Test with normal p value
got = topP(tokens, 0.95)
// Should keep tokens until cumsum > 0.95
if len(got) > 3 {
t.Errorf("topP(0.95): kept too many tokens: got %d", len(got))
t.Errorf("topP(0.95): kept too many tokens: got %d", len(tokens))
t.Logf("got: %v", got)
}
// Test edge case - ensure at least one token remains
input = []float32{-1e6, -1e6, -1e7}
tokens = toTokens(input)
tokens = topK(tokens, 20)
softmax(tokens)
got = topP(tokens, 0.0)
if len(got) < 1 {
t.Error("topP should keep at least one token")
}
// Test with zero p value
got = topP(tokens, 0.0)
// Should keep only the highest probability token
if len(got) != 1 {
t.Errorf("topP(0.0): should keep only one token, got %d", len(got))
t.Logf("got: %v", got)
}
tokens = toTokens(input)
tokens = topK(tokens, 20)
softmax(tokens)
got = topP(tokens, 1e-10)
if len(got) == 0 {
t.Errorf("topP(1e-10): should keep at least one token, got %d", len(got))
t.Logf("got: %v", got)
}
}
func TestMinP(t *testing.T) {
input := []float32{-3, -2, -1, 0, 1, 2, 4, 3}
input := []float32{-2, 0, -1, -3, 2, 1, 4, 3}
tokens := toTokens(input)
// First apply temperature and softmax
tokens = softmax(tokens)
tokens = topK(tokens, 20)
softmax(tokens)
// Then apply minP
got := minP(tokens, 0.2)
tokens = minP(tokens, 1.0)
if len(tokens) != 1 {
t.Errorf("minP(1.0): should keep all tokens, got %d, want %d", len(tokens), len(tokens))
}
// Test with normal p value
tokens = toTokens(input) // Reset tokens
tokens = topK(tokens, 20)
softmax(tokens)
tokens = minP(tokens, 0.2)
// Should keep tokens with prob >= 0.2 * max_prob
if len(got) > 3 {
t.Errorf("minP(0.2): kept too many tokens: got %d", len(got))
if len(tokens) > 3 {
t.Errorf("minP(0.2): kept too many tokens: got %d", len(tokens))
t.Logf("got: %v", tokens)
}
}
func TestSortLogits(t *testing.T) {
input := []float32{0.026986899, 0.043722924, 0.036774673, 0.27755088, 0.0046718004, 0.08582123, 0.20409796, 0.00412893, 0.15720603, 0.045046154, 0.0030491839, 0.01681367}
tokens := toTokens(input)
// Test with zero p value
tokens = toTokens(input) // Reset tokens
tokens = topK(tokens, 20)
softmax(tokens)
tokens = minP(tokens, 0.0)
for i := 1; i < len(tokens); i++ {
if tokens[i].value > tokens[i-1].value {
t.Errorf("sortLogits: tokens not sorted in descending order at index %d: %f > %f",
i, tokens[i].value, tokens[i-1].value)
// Should keep only the highest probability token
if len(tokens) != len(input) {
t.Errorf("minP(0.0): should keep only one token, got %d", len(tokens))
t.Logf("got: %v", tokens)
}
// Test with single token
tokens = toTokens(input[:1])
tokens = topK(tokens, 20)
softmax(tokens)
tokens = minP(tokens, 0.1)
// Should keep only the highest probability token
if len(tokens) != 1 {
t.Errorf("minP(0.1): should return single token, got %d", len(tokens))
t.Logf("got: %v", tokens)
}
input = []float32{1e-10, 1e-10, 1e-10}
tokens = toTokens(input)
softmax(tokens)
tokens = minP(tokens, 1.0)
if len(tokens) < 1 {
t.Error("minP should keep at least one token even with extreme probabilities")
got := minP(tokens, 1.0)
if len(got) != 1 {
t.Errorf("minP(1.0): should keep all tokens, got %d, want %d", len(got), len(tokens))
}
// Test with normal p value
got = minP(tokens, 0.2)
// Should keep tokens with prob >= 0.2 * max_prob
if len(got) > 3 {
t.Errorf("minP(0.2): kept too many tokens: got %d", len(got))
t.Logf("got: %v", got)
}
// Test with zero p value
got = minP(tokens, 0.0)
// Should keep only the highest probability token
if len(got) != len(tokens) {
t.Errorf("minP(0.0): should keep only one token, got %d", len(got))
t.Logf("got: %v", got)
}
}
want := []float32{0.27755088, 0.20409796, 0.15720603, 0.08582123, 0.045046154, 0.043722924, 0.036774673, 0.026986899, 0.01681367, 0.0046718004, 0.00412893, 0.0030491839}
compareLogits(t, "sortLogits", want, tokens)
}
func BenchmarkTransforms(b *testing.B) {
@@ -231,7 +327,7 @@ func BenchmarkTransforms(b *testing.B) {
b.ResetTimer()
for b.Loop() {
copy(tokensCopy, tokens)
topK(tokensCopy, 10)
tokens = topK(tokensCopy, 10)
}
})
@@ -239,7 +335,7 @@ func BenchmarkTransforms(b *testing.B) {
b.ResetTimer()
for b.Loop() {
copy(tokensCopy, tokens)
topP(tokensCopy, 0.9)
tokens = topP(tokensCopy, 0.9)
}
})
@@ -247,7 +343,7 @@ func BenchmarkTransforms(b *testing.B) {
b.ResetTimer()
for b.Loop() {
copy(tokensCopy, tokens)
minP(tokensCopy, 0.2)
tokens = minP(tokensCopy, 0.2)
}
})
@@ -255,7 +351,7 @@ func BenchmarkTransforms(b *testing.B) {
b.ResetTimer()
for b.Loop() {
copy(tokensCopy, tokens)
topK(tokensCopy, 200000)
tokens = topK(tokensCopy, 200000)
}
})
}

View File

@@ -8,7 +8,7 @@ usage() {
exit 1
}
export VERSION=${VERSION:-$(git describe --tags --dirty)}
export VERSION=${VERSION:-$(git describe --tags --first-parent --abbrev=7 --long --dirty --always | sed -e "s/^v//g")}
export GOFLAGS="'-ldflags=-w -s \"-X=github.com/ollama/ollama/version.Version=${VERSION#v}\" \"-X=github.com/ollama/ollama/server.mode=release\"'"
export CGO_CPPFLAGS='-mmacosx-version-min=11.3'

View File

@@ -29,8 +29,9 @@ import (
const maxRetries = 6
var (
errMaxRetriesExceeded = errors.New("max retries exceeded")
errPartStalled = errors.New("part stalled")
errMaxRetriesExceeded = errors.New("max retries exceeded")
errPartStalled = errors.New("part stalled")
errMaxRedirectsExceeded = errors.New("maximum redirects exceeded (10) for directURL")
)
var blobDownloadManager sync.Map
@@ -236,7 +237,7 @@ func (b *blobDownload) run(ctx context.Context, requestURL *url.URL, opts *regis
newOpts.CheckRedirect = func(req *http.Request, via []*http.Request) error {
if len(via) > 10 {
return errors.New("maximum redirects exceeded (10) for directURL")
return errMaxRedirectsExceeded
}
// if the hostname is the same, allow the redirect

View File

@@ -35,14 +35,9 @@ var (
errCapabilityCompletion = errors.New("completion")
errCapabilityTools = errors.New("tools")
errCapabilityInsert = errors.New("insert")
)
type Capability string
const (
CapabilityCompletion = Capability("completion")
CapabilityTools = Capability("tools")
CapabilityInsert = Capability("insert")
errCapabilityVision = errors.New("vision")
errCapabilityEmbedding = errors.New("embedding")
errInsecureProtocol = errors.New("insecure protocol http")
)
type registryOptions struct {
@@ -65,52 +60,83 @@ type Model struct {
System string
License []string
Digest string
Options map[string]interface{}
Options map[string]any
Messages []api.Message
Template *template.Template
}
// Capabilities returns the capabilities that the model supports
func (m *Model) Capabilities() []model.Capability {
capabilities := []model.Capability{}
// Check for completion capability
r, err := os.Open(m.ModelPath)
if err == nil {
defer r.Close()
f, _, err := ggml.Decode(r, 0)
if err == nil {
if _, ok := f.KV()[fmt.Sprintf("%s.pooling_type", f.KV().Architecture())]; ok {
capabilities = append(capabilities, model.CapabilityEmbedding)
} else {
capabilities = append(capabilities, model.CapabilityCompletion)
}
if _, ok := f.KV()[fmt.Sprintf("%s.vision.block_count", f.KV().Architecture())]; ok {
capabilities = append(capabilities, model.CapabilityVision)
}
} else {
slog.Error("couldn't decode ggml", "error", err)
}
} else {
slog.Error("couldn't open model file", "error", err)
}
if m.Template == nil {
return capabilities
}
// Check for tools capability
if slices.Contains(m.Template.Vars(), "tools") {
capabilities = append(capabilities, model.CapabilityTools)
}
// Check for insert capability
if slices.Contains(m.Template.Vars(), "suffix") {
capabilities = append(capabilities, model.CapabilityInsert)
}
return capabilities
}
// CheckCapabilities checks if the model has the specified capabilities returning an error describing
// any missing or unknown capabilities
func (m *Model) CheckCapabilities(caps ...Capability) error {
func (m *Model) CheckCapabilities(want ...model.Capability) error {
available := m.Capabilities()
var errs []error
for _, cap := range caps {
switch cap {
case CapabilityCompletion:
r, err := os.Open(m.ModelPath)
if err != nil {
slog.Error("couldn't open model file", "error", err)
continue
}
defer r.Close()
// TODO(mxyng): decode the GGML into model to avoid doing this multiple times
f, _, err := ggml.Decode(r, 0)
if err != nil {
slog.Error("couldn't decode ggml", "error", err)
continue
}
// Map capabilities to their corresponding error
capToErr := map[model.Capability]error{
model.CapabilityCompletion: errCapabilityCompletion,
model.CapabilityTools: errCapabilityTools,
model.CapabilityInsert: errCapabilityInsert,
model.CapabilityVision: errCapabilityVision,
model.CapabilityEmbedding: errCapabilityEmbedding,
}
if _, ok := f.KV()[fmt.Sprintf("%s.pooling_type", f.KV().Architecture())]; ok {
errs = append(errs, errCapabilityCompletion)
}
case CapabilityTools:
if !slices.Contains(m.Template.Vars(), "tools") {
errs = append(errs, errCapabilityTools)
}
case CapabilityInsert:
vars := m.Template.Vars()
if !slices.Contains(vars, "suffix") {
errs = append(errs, errCapabilityInsert)
}
default:
for _, cap := range want {
err, ok := capToErr[cap]
if !ok {
slog.Error("unknown capability", "capability", cap)
return fmt.Errorf("unknown capability: %s", cap)
}
if !slices.Contains(available, cap) {
errs = append(errs, err)
}
}
if err := errors.Join(errs...); err != nil {
if len(errs) > 0 {
return fmt.Errorf("%w %w", errCapabilities, errors.Join(errs...))
}
@@ -479,7 +505,7 @@ func PushModel(ctx context.Context, name string, regOpts *registryOptions, fn fu
fn(api.ProgressResponse{Status: "retrieving manifest"})
if mp.ProtocolScheme == "http" && !regOpts.Insecure {
return errors.New("insecure protocol http")
return errInsecureProtocol
}
manifest, _, err := GetManifest(mp)
@@ -543,7 +569,7 @@ func PullModel(ctx context.Context, name string, regOpts *registryOptions, fn fu
}
if mp.ProtocolScheme == "http" && !regOpts.Insecure {
return errors.New("insecure protocol http")
return errInsecureProtocol
}
fn(api.ProgressResponse{Status: "pulling manifest"})

360
server/images_test.go Normal file
View File

@@ -0,0 +1,360 @@
package server
import (
"bytes"
"encoding/binary"
"os"
"path/filepath"
"strings"
"testing"
"github.com/ollama/ollama/template"
"github.com/ollama/ollama/types/model"
)
// Constants for GGUF magic bytes and version
var (
ggufMagic = []byte{0x47, 0x47, 0x55, 0x46} // "GGUF"
ggufVer = uint32(3) // Version 3
)
// Helper function to create mock GGUF data
func createMockGGUFData(architecture string, vision bool) []byte {
var buf bytes.Buffer
// Write GGUF header
buf.Write(ggufMagic)
binary.Write(&buf, binary.LittleEndian, ggufVer)
// Write tensor count (0 for our test)
var numTensors uint64 = 0
binary.Write(&buf, binary.LittleEndian, numTensors)
// Calculate number of metadata entries
numMetaEntries := uint64(1) // architecture entry
if vision {
numMetaEntries++
}
// Add embedding entry if architecture is "bert"
if architecture == "bert" {
numMetaEntries++
}
binary.Write(&buf, binary.LittleEndian, numMetaEntries)
// Write architecture metadata
archKey := "general.architecture"
keyLen := uint64(len(archKey))
binary.Write(&buf, binary.LittleEndian, keyLen)
buf.WriteString(archKey)
// String type (8)
var strType uint32 = 8
binary.Write(&buf, binary.LittleEndian, strType)
// String length
strLen := uint64(len(architecture))
binary.Write(&buf, binary.LittleEndian, strLen)
buf.WriteString(architecture)
if vision {
visionKey := architecture + ".vision.block_count"
keyLen = uint64(len(visionKey))
binary.Write(&buf, binary.LittleEndian, keyLen)
buf.WriteString(visionKey)
// uint32 type (4)
var uint32Type uint32 = 4
binary.Write(&buf, binary.LittleEndian, uint32Type)
// uint32 value (1)
var countVal uint32 = 1
binary.Write(&buf, binary.LittleEndian, countVal)
}
// Write embedding metadata if architecture is "bert"
if architecture == "bert" {
poolKey := architecture + ".pooling_type"
keyLen = uint64(len(poolKey))
binary.Write(&buf, binary.LittleEndian, keyLen)
buf.WriteString(poolKey)
// uint32 type (4)
var uint32Type uint32 = 4
binary.Write(&buf, binary.LittleEndian, uint32Type)
// uint32 value (1)
var poolingVal uint32 = 1
binary.Write(&buf, binary.LittleEndian, poolingVal)
}
return buf.Bytes()
}
func TestModelCapabilities(t *testing.T) {
// Create a temporary directory for test files
tempDir, err := os.MkdirTemp("", "model_capabilities_test")
if err != nil {
t.Fatalf("Failed to create temp directory: %v", err)
}
defer os.RemoveAll(tempDir)
// Create different types of mock model files
completionModelPath := filepath.Join(tempDir, "model.bin")
visionModelPath := filepath.Join(tempDir, "vision_model.bin")
embeddingModelPath := filepath.Join(tempDir, "embedding_model.bin")
// Create a simple model file for tests that don't depend on GGUF content
simpleModelPath := filepath.Join(tempDir, "simple_model.bin")
err = os.WriteFile(completionModelPath, createMockGGUFData("llama", false), 0o644)
if err != nil {
t.Fatalf("Failed to create completion model file: %v", err)
}
err = os.WriteFile(visionModelPath, createMockGGUFData("llama", true), 0o644)
if err != nil {
t.Fatalf("Failed to create completion model file: %v", err)
}
err = os.WriteFile(embeddingModelPath, createMockGGUFData("bert", false), 0o644)
if err != nil {
t.Fatalf("Failed to create embedding model file: %v", err)
}
err = os.WriteFile(simpleModelPath, []byte("dummy model data"), 0o644)
if err != nil {
t.Fatalf("Failed to create simple model file: %v", err)
}
toolsInsertTemplate, err := template.Parse("{{ .prompt }}{{ if .tools }}{{ .tools }}{{ end }}{{ if .suffix }}{{ .suffix }}{{ end }}")
if err != nil {
t.Fatalf("Failed to parse template: %v", err)
}
chatTemplate, err := template.Parse("{{ .prompt }}")
if err != nil {
t.Fatalf("Failed to parse template: %v", err)
}
toolsTemplate, err := template.Parse("{{ .prompt }}{{ if .tools }}{{ .tools }}{{ end }}")
if err != nil {
t.Fatalf("Failed to parse template: %v", err)
}
testModels := []struct {
name string
model Model
expectedCaps []model.Capability
}{
{
name: "model with completion capability",
model: Model{
ModelPath: completionModelPath,
Template: chatTemplate,
},
expectedCaps: []model.Capability{model.CapabilityCompletion},
},
{
name: "model with completion, tools, and insert capability",
model: Model{
ModelPath: completionModelPath,
Template: toolsInsertTemplate,
},
expectedCaps: []model.Capability{model.CapabilityCompletion, model.CapabilityTools, model.CapabilityInsert},
},
{
name: "model with tools and insert capability",
model: Model{
ModelPath: simpleModelPath,
Template: toolsInsertTemplate,
},
expectedCaps: []model.Capability{model.CapabilityTools, model.CapabilityInsert},
},
{
name: "model with tools capability",
model: Model{
ModelPath: simpleModelPath,
Template: toolsTemplate,
},
expectedCaps: []model.Capability{model.CapabilityTools},
},
{
name: "model with vision capability",
model: Model{
ModelPath: visionModelPath,
Template: chatTemplate,
},
expectedCaps: []model.Capability{model.CapabilityCompletion, model.CapabilityVision},
},
{
name: "model with vision, tools, and insert capability",
model: Model{
ModelPath: visionModelPath,
Template: toolsInsertTemplate,
},
expectedCaps: []model.Capability{model.CapabilityCompletion, model.CapabilityVision, model.CapabilityTools, model.CapabilityInsert},
},
{
name: "model with embedding capability",
model: Model{
ModelPath: embeddingModelPath,
Template: chatTemplate,
},
expectedCaps: []model.Capability{model.CapabilityEmbedding},
},
}
// compare two slices of model.Capability regardless of order
compareCapabilities := func(a, b []model.Capability) bool {
if len(a) != len(b) {
return false
}
aCount := make(map[model.Capability]int)
for _, cap := range a {
aCount[cap]++
}
bCount := make(map[model.Capability]int)
for _, cap := range b {
bCount[cap]++
}
for cap, count := range aCount {
if bCount[cap] != count {
return false
}
}
return true
}
for _, tt := range testModels {
t.Run(tt.name, func(t *testing.T) {
// Test Capabilities method
caps := tt.model.Capabilities()
if !compareCapabilities(caps, tt.expectedCaps) {
t.Errorf("Expected capabilities %v, got %v", tt.expectedCaps, caps)
}
})
}
}
func TestModelCheckCapabilities(t *testing.T) {
// Create a temporary directory for test files
tempDir, err := os.MkdirTemp("", "model_check_capabilities_test")
if err != nil {
t.Fatalf("Failed to create temp directory: %v", err)
}
defer os.RemoveAll(tempDir)
visionModelPath := filepath.Join(tempDir, "vision_model.bin")
simpleModelPath := filepath.Join(tempDir, "model.bin")
embeddingModelPath := filepath.Join(tempDir, "embedding_model.bin")
err = os.WriteFile(simpleModelPath, []byte("dummy model data"), 0o644)
if err != nil {
t.Fatalf("Failed to create simple model file: %v", err)
}
err = os.WriteFile(visionModelPath, createMockGGUFData("llama", true), 0o644)
if err != nil {
t.Fatalf("Failed to create vision model file: %v", err)
}
err = os.WriteFile(embeddingModelPath, createMockGGUFData("bert", false), 0o644)
if err != nil {
t.Fatalf("Failed to create embedding model file: %v", err)
}
toolsInsertTemplate, err := template.Parse("{{ .prompt }}{{ if .tools }}{{ .tools }}{{ end }}{{ if .suffix }}{{ .suffix }}{{ end }}")
if err != nil {
t.Fatalf("Failed to parse template: %v", err)
}
chatTemplate, err := template.Parse("{{ .prompt }}")
if err != nil {
t.Fatalf("Failed to parse template: %v", err)
}
toolsTemplate, err := template.Parse("{{ .prompt }}{{ if .tools }}{{ .tools }}{{ end }}")
if err != nil {
t.Fatalf("Failed to parse template: %v", err)
}
tests := []struct {
name string
model Model
checkCaps []model.Capability
expectedErrMsg string
}{
{
name: "completion model without tools capability",
model: Model{
ModelPath: simpleModelPath,
Template: chatTemplate,
},
checkCaps: []model.Capability{model.CapabilityTools},
expectedErrMsg: "does not support tools",
},
{
name: "model with all needed capabilities",
model: Model{
ModelPath: simpleModelPath,
Template: toolsInsertTemplate,
},
checkCaps: []model.Capability{model.CapabilityTools, model.CapabilityInsert},
},
{
name: "model missing insert capability",
model: Model{
ModelPath: simpleModelPath,
Template: toolsTemplate,
},
checkCaps: []model.Capability{model.CapabilityInsert},
expectedErrMsg: "does not support insert",
},
{
name: "model missing vision capability",
model: Model{
ModelPath: simpleModelPath,
Template: toolsTemplate,
},
checkCaps: []model.Capability{model.CapabilityVision},
expectedErrMsg: "does not support vision",
},
{
name: "model with vision capability",
model: Model{
ModelPath: visionModelPath,
Template: chatTemplate,
},
checkCaps: []model.Capability{model.CapabilityVision},
},
{
name: "model with embedding capability",
model: Model{
ModelPath: embeddingModelPath,
Template: chatTemplate,
},
checkCaps: []model.Capability{model.CapabilityEmbedding},
},
{
name: "unknown capability",
model: Model{
ModelPath: simpleModelPath,
Template: chatTemplate,
},
checkCaps: []model.Capability{"unknown"},
expectedErrMsg: "unknown capability",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
// Test CheckCapabilities method
err := tt.model.CheckCapabilities(tt.checkCaps...)
if tt.expectedErrMsg == "" {
if err != nil {
t.Errorf("Expected no error, got: %v", err)
}
} else {
if err == nil {
t.Errorf("Expected error containing %q, got nil", tt.expectedErrMsg)
} else if !strings.Contains(err.Error(), tt.expectedErrMsg) {
t.Errorf("Expected error containing %q, got: %v", tt.expectedErrMsg, err)
}
}
})
}
}

View File

@@ -25,6 +25,7 @@ import (
"os"
"path/filepath"
"runtime"
"runtime/debug"
"slices"
"strconv"
"strings"
@@ -36,7 +37,6 @@ import (
"golang.org/x/sync/errgroup"
"github.com/ollama/ollama/server/internal/cache/blob"
"github.com/ollama/ollama/server/internal/internal/backoff"
"github.com/ollama/ollama/server/internal/internal/names"
_ "embed"
@@ -59,6 +59,11 @@ var (
// ErrCached is passed to [Trace.PushUpdate] when a layer already
// exists. It is a non-fatal error and is never returned by [Registry.Push].
ErrCached = errors.New("cached")
// ErrIncomplete is returned by [Registry.Pull] when a model pull was
// incomplete due to one or more layer download failures. Users that
// want specific errors should use [WithTrace].
ErrIncomplete = errors.New("incomplete")
)
// Defaults
@@ -212,12 +217,6 @@ type Registry struct {
// request. If zero, [DefaultChunkingThreshold] is used.
ChunkingThreshold int64
// MaxChunkSize is the maximum size of a chunk to download. If zero,
// the default is [DefaultMaxChunkSize].
//
// It is only used when a layer is larger than [MaxChunkingThreshold].
MaxChunkSize int64
// Mask, if set, is the name used to convert non-fully qualified names
// to fully qualified names. If empty, [DefaultMask] is used.
Mask string
@@ -259,6 +258,7 @@ func DefaultRegistry() (*Registry, error) {
}
var rc Registry
rc.UserAgent = UserAgent()
rc.Key, err = ssh.ParseRawPrivateKey(keyPEM)
if err != nil {
return nil, err
@@ -274,6 +274,27 @@ func DefaultRegistry() (*Registry, error) {
return &rc, nil
}
func UserAgent() string {
buildinfo, _ := debug.ReadBuildInfo()
version := buildinfo.Main.Version
if version == "(devel)" {
// When using `go run .` the version is "(devel)". This is seen
// as an invalid version by ollama.com and so it defaults to
// "needs upgrade" for some requests, such as pulls. These
// checks can be skipped by using the special version "v0.0.0",
// so we set it to that here.
version = "v0.0.0"
}
return fmt.Sprintf("ollama/%s (%s %s) Go/%s",
version,
runtime.GOARCH,
runtime.GOOS,
runtime.Version(),
)
}
func (r *Registry) maxStreams() int {
return cmp.Or(r.MaxStreams, runtime.GOMAXPROCS(0))
}
@@ -400,26 +421,19 @@ func (r *Registry) Push(ctx context.Context, name string, p *PushParams) error {
return err
}
func canRetry(err error) bool {
var re *Error
if !errors.As(err, &re) {
return false
}
return re.Status >= 500
}
// trackingReader is an io.Reader that tracks the number of bytes read and
// calls the update function with the layer, the number of bytes read.
//
// It always calls update with a nil error.
type trackingReader struct {
r io.Reader
n *atomic.Int64
l *Layer
r io.Reader
update func(l *Layer, n int64, err error)
}
func (r *trackingReader) Read(p []byte) (n int, err error) {
n, err = r.r.Read(p)
r.n.Add(int64(n))
r.update(r.l, int64(n), nil)
return
}
@@ -435,6 +449,11 @@ func (r *Registry) Pull(ctx context.Context, name string) error {
if err != nil {
return err
}
// TODO(bmizerany): decide if this should be considered valid. Maybe
// server-side we special case '{}' to have some special meaning? Maybe
// "archiving" a tag (which is how we reason about it in the registry
// already, just with a different twist).
if len(m.Layers) == 0 {
return fmt.Errorf("%w: no layers", ErrManifestInvalid)
}
@@ -444,11 +463,7 @@ func (r *Registry) Pull(ctx context.Context, name string) error {
return err
}
exists := func(l *Layer) bool {
info, err := c.Get(l.Digest)
return err == nil && info.Size == l.Size
}
// TODO(bmizerany): work to remove the need to do this
layers := m.Layers
if m.Config != nil && m.Config.Digest.IsValid() {
layers = append(layers, m.Config)
@@ -456,99 +471,124 @@ func (r *Registry) Pull(ctx context.Context, name string) error {
// Send initial layer trace events to allow clients to have an
// understanding of work to be done before work starts.
var expected int64
t := traceFromContext(ctx)
skip := make([]bool, len(layers))
for i, l := range layers {
for _, l := range layers {
t.update(l, 0, nil)
if exists(l) {
skip[i] = true
t.update(l, l.Size, ErrCached)
}
expected += l.Size
}
g, ctx := errgroup.WithContext(ctx)
var received atomic.Int64
var g errgroup.Group
g.SetLimit(r.maxStreams())
for i, l := range layers {
if skip[i] {
for _, l := range layers {
info, err := c.Get(l.Digest)
if err == nil && info.Size == l.Size {
received.Add(l.Size)
t.update(l, l.Size, ErrCached)
continue
}
var wg sync.WaitGroup
chunked, err := c.Chunked(l.Digest, l.Size)
if err != nil {
t.update(l, 0, err)
continue
}
defer chunked.Close()
var progress atomic.Int64
for cs, err := range r.chunksums(ctx, name, l) {
if err != nil {
t.update(l, progress.Load(), err)
// Chunksum stream interrupted. Note in trace
// log and let in-flight downloads complete.
// This will naturally trigger ErrIncomplete
// since received < expected bytes.
t.update(l, 0, err)
break
}
cacheKey := fmt.Sprintf(
"v1 pull chunksum %s %s %d-%d",
l.Digest,
cs.Digest,
cs.Chunk.Start,
cs.Chunk.End,
)
cacheKeyDigest := blob.DigestFromBytes(cacheKey)
_, err := c.Get(cacheKeyDigest)
if err == nil {
received.Add(cs.Chunk.Size())
t.update(l, cs.Chunk.Size(), ErrCached)
continue
}
wg.Add(1)
g.Go(func() (err error) {
defer func() { t.update(l, progress.Load(), err) }()
for _, err := range backoff.Loop(ctx, 3*time.Second) {
if err != nil {
return err
}
err := func() error {
req, err := http.NewRequestWithContext(ctx, "GET", cs.URL, nil)
if err != nil {
return err
}
req.Header.Set("Range", fmt.Sprintf("bytes=%d-%d", cs.Chunk.Start, cs.Chunk.End))
res, err := sendRequest(r.client(), req)
if err != nil {
return err
}
defer res.Body.Close()
// Count bytes towards
// progress, as they arrive, so
// that our bytes piggyback
// other chunk updates on
// completion.
defer func() {
if err == nil {
// Ignore cache key write errors for now. We've already
// reported to trace that the chunk is complete.
//
// This tactic is enough to
// show "smooth" progress given
// the current CLI client. In
// the near future, the server
// should report download rate
// since it knows better than
// a client that is measuring
// rate based on wall-clock
// time-since-last-update.
body := &trackingReader{r: res.Body, n: &progress}
// Ideally, we should only report completion to trace
// after successful cache commit. This current approach
// works but could trigger unnecessary redownloads if
// the checkpoint key is missing on next pull.
//
// Not incorrect, just suboptimal - fix this in a
// future update.
_ = blob.PutBytes(c, cacheKeyDigest, cacheKey)
err = chunked.Put(cs.Chunk, cs.Digest, body)
if err != nil {
return err
}
return nil
}()
if !canRetry(err) {
return err
received.Add(cs.Chunk.Size())
} else {
t.update(l, 0, err)
}
wg.Done()
}()
req, err := http.NewRequestWithContext(ctx, "GET", cs.URL, nil)
if err != nil {
return err
}
return nil
req.Header.Set("Range", fmt.Sprintf("bytes=%d-%d", cs.Chunk.Start, cs.Chunk.End))
res, err := sendRequest(r.client(), req)
if err != nil {
return err
}
defer res.Body.Close()
body := &trackingReader{l: l, r: res.Body, update: t.update}
return chunked.Put(cs.Chunk, cs.Digest, body)
})
}
// Close writer immediately after downloads finish, not at Pull
// exit. Using defer would keep file descriptors open until all
// layers complete, potentially exhausting system limits with
// many layers.
//
// The WaitGroup tracks when all chunks finish downloading,
// allowing precise writer closure in a background goroutine.
// Each layer briefly uses one extra goroutine while at most
// maxStreams()-1 chunks download in parallel.
//
// This caps file descriptors at maxStreams() instead of
// growing with layer count.
g.Go(func() error {
wg.Wait()
chunked.Close()
return nil
})
}
if err := g.Wait(); err != nil {
return err
}
if received.Load() != expected {
return fmt.Errorf("%w: received %d/%d bytes", ErrIncomplete, received.Load(), expected)
}
// store the manifest blob
md := blob.DigestFromBytes(m.Data)
if err := blob.PutBytes(c, md, m.Data); err != nil {
return err
}
// commit the manifest with a link
return c.Link(m.Name, md)
}
@@ -587,6 +627,30 @@ func (m *Manifest) Layer(d blob.Digest) *Layer {
return nil
}
func (m *Manifest) All() iter.Seq[*Layer] {
return func(yield func(*Layer) bool) {
if !yield(m.Config) {
return
}
for _, l := range m.Layers {
if !yield(l) {
return
}
}
}
}
func (m *Manifest) Size() int64 {
var size int64
if m.Config != nil {
size += m.Config.Size
}
for _, l := range m.Layers {
size += l.Size
}
return size
}
// MarshalJSON implements json.Marshaler.
//
// NOTE: It adds an empty config object to the manifest, which is required by
@@ -729,20 +793,32 @@ func (r *Registry) chunksums(ctx context.Context, name string, l *Layer) iter.Se
return
}
// A chunksums response is a sequence of chunksums in a
// simple, easy to parse line-oriented format.
// The response is a sequence of chunksums.
//
// Example:
// Chunksums are chunks of a larger blob that can be
// downloaded and verified independently.
//
// >> GET /v2/<namespace>/<model>/chunksums/<digest>
// The chunksums endpoint is a GET request that returns a
// sequence of chunksums in the following format:
//
// << HTTP/1.1 200 OK
// << Content-Location: <blobURL>
// <<
// << <digest> <start>-<end>
// << ...
// > GET /v2/<namespace>/<model>/chunksums/<digest>
//
// The blobURL is the URL to download the chunks from.
// < HTTP/1.1 200 OK
// < Content-Location: <blobURL>
// <
// < <digest> <start>-<end>
// < ...
//
// The <blobURL> is the URL to download the chunks from and
// each <digest> is the digest of the chunk, and <start>-<end>
// is the range the chunk in the blob.
//
// Ranges may be used directly in Range headers like
// "bytes=<start>-<end>".
//
// The chunksums returned are guaranteed to be contiguous and
// include all bytes of the layer. If the stream is cut short,
// clients should retry.
chunksumsURL := fmt.Sprintf("%s://%s/v2/%s/%s/chunksums/%s",
scheme,

View File

@@ -9,21 +9,41 @@ import (
"fmt"
"io"
"io/fs"
"math/rand/v2"
"net"
"net/http"
"net/http/httptest"
"os"
"path"
"reflect"
"slices"
"strings"
"sync/atomic"
"testing"
"time"
"github.com/ollama/ollama/server/internal/cache/blob"
"github.com/ollama/ollama/server/internal/testutil"
)
func ExampleRegistry_cancelOnFirstError() {
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
ctx = WithTrace(ctx, &Trace{
Update: func(l *Layer, n int64, err error) {
if err != nil {
// Discontinue pulling layers if there is an
// error instead of continuing to pull more
// data.
cancel()
}
},
})
var r Registry
if err := r.Pull(ctx, "model"); err != nil {
// panic for demo purposes
panic(err)
}
}
func TestManifestMarshalJSON(t *testing.T) {
// All manifests should contain an "empty" config object.
var m Manifest
@@ -56,21 +76,21 @@ func (rr recordRoundTripper) RoundTrip(req *http.Request) (*http.Response, error
// newClient constructs a cache with predefined manifests for testing. The manifests are:
//
// empty: no data
// zero: no layers
// single: one layer with the contents "exists"
// multiple: two layers with the contents "exists" and "here"
// notfound: a layer that does not exist in the cache
// null: one null layer (e.g. [null])
// sizemismatch: one valid layer, and one with a size mismatch (file size is less than the reported size)
// invalid: a layer with invalid JSON data
// empty: no data
// zero: no layers
// single: one layer with the contents "exists"
// multiple: two layers with the contents "exists" and "here"
// notfound: a layer that does not exist in the cache
// null: one null layer (e.g. [null])
// sizemismatch: one valid layer, and one with a size mismatch (file size is less than the reported size)
// invalid: a layer with invalid JSON data
//
// Tests that want to ensure the client does not communicate with the upstream
// registry should pass a nil handler, which will cause a panic if
// communication is attempted.
//
// To simulate a network error, pass a handler that returns a 499 status code.
func newClient(t *testing.T, h http.HandlerFunc) (*Registry, *blob.DiskCache) {
func newClient(t *testing.T, upstreamRegistry http.HandlerFunc) (*Registry, *blob.DiskCache) {
t.Helper()
c, err := blob.Open(t.TempDir())
@@ -88,7 +108,7 @@ func newClient(t *testing.T, h http.HandlerFunc) (*Registry, *blob.DiskCache) {
r := &Registry{
Cache: c,
HTTPClient: &http.Client{
Transport: recordRoundTripper(h),
Transport: recordRoundTripper(upstreamRegistry),
},
}
@@ -315,15 +335,8 @@ func TestPushCommitRoundtripError(t *testing.T) {
}
}
func checkNotExist(t *testing.T, err error) {
t.Helper()
if !errors.Is(err, fs.ErrNotExist) {
t.Fatalf("err = %v; want fs.ErrNotExist", err)
}
}
func TestRegistryPullInvalidName(t *testing.T) {
rc, _ := newClient(t, nil)
rc, _ := newRegistryClient(t, nil)
err := rc.Pull(t.Context(), "://")
if !errors.Is(err, ErrNameInvalid) {
t.Errorf("err = %v; want %v", err, ErrNameInvalid)
@@ -339,197 +352,16 @@ func TestRegistryPullInvalidManifest(t *testing.T) {
}
for _, resp := range cases {
rc, _ := newClient(t, func(w http.ResponseWriter, r *http.Request) {
rc, _ := newRegistryClient(t, func(w http.ResponseWriter, r *http.Request) {
io.WriteString(w, resp)
})
err := rc.Pull(t.Context(), "x")
err := rc.Pull(t.Context(), "http://example.com/a/b")
if !errors.Is(err, ErrManifestInvalid) {
t.Errorf("err = %v; want invalid manifest", err)
}
}
}
func TestRegistryPullNotCached(t *testing.T) {
check := testutil.Checker(t)
var c *blob.DiskCache
var rc *Registry
d := blob.DigestFromBytes("some data")
rc, c = newClient(t, func(w http.ResponseWriter, r *http.Request) {
if strings.Contains(r.URL.Path, "/blobs/") {
io.WriteString(w, "some data")
return
}
fmt.Fprintf(w, `{"layers":[{"digest":%q,"size":9}]}`, d)
})
// Confirm that the layer does not exist locally
_, err := rc.ResolveLocal("model")
checkNotExist(t, err)
_, err = c.Get(d)
checkNotExist(t, err)
err = rc.Pull(t.Context(), "model")
check(err)
mw, err := rc.Resolve(t.Context(), "model")
check(err)
mg, err := rc.ResolveLocal("model")
check(err)
if !reflect.DeepEqual(mw, mg) {
t.Errorf("mw = %v; mg = %v", mw, mg)
}
// Confirm successful download
info, err := c.Get(d)
check(err)
if info.Digest != d {
t.Errorf("info.Digest = %v; want %v", info.Digest, d)
}
if info.Size != 9 {
t.Errorf("info.Size = %v; want %v", info.Size, 9)
}
data, err := os.ReadFile(c.GetFile(d))
check(err)
if string(data) != "some data" {
t.Errorf("data = %q; want %q", data, "exists")
}
}
func TestRegistryPullCached(t *testing.T) {
cached := blob.DigestFromBytes("exists")
rc, _ := newClient(t, func(w http.ResponseWriter, r *http.Request) {
if strings.Contains(r.URL.Path, "/blobs/") {
w.WriteHeader(499) // should not be called
return
}
if strings.Contains(r.URL.Path, "/manifests/") {
fmt.Fprintf(w, `{"layers":[{"digest":%q,"size":6}]}`, cached)
}
})
var errs []error
var reads []int64
ctx := WithTrace(t.Context(), &Trace{
Update: func(d *Layer, n int64, err error) {
t.Logf("update %v %d %v", d, n, err)
reads = append(reads, n)
errs = append(errs, err)
},
})
ctx, cancel := context.WithTimeout(ctx, 3*time.Second)
defer cancel()
err := rc.Pull(ctx, "single")
testutil.Check(t, err)
want := []int64{0, 6}
if !errors.Is(errors.Join(errs...), ErrCached) {
t.Errorf("errs = %v; want %v", errs, ErrCached)
}
if !slices.Equal(reads, want) {
t.Errorf("pairs = %v; want %v", reads, want)
}
}
func TestRegistryPullManifestNotFound(t *testing.T) {
rc, _ := newClient(t, func(w http.ResponseWriter, r *http.Request) {
w.WriteHeader(http.StatusNotFound)
})
err := rc.Pull(t.Context(), "notfound")
checkErrCode(t, err, 404, "")
}
func TestRegistryPullResolveRemoteError(t *testing.T) {
rc, _ := newClient(t, func(w http.ResponseWriter, r *http.Request) {
w.WriteHeader(http.StatusInternalServerError)
io.WriteString(w, `{"errors":[{"code":"an_error"}]}`)
})
err := rc.Pull(t.Context(), "single")
checkErrCode(t, err, 500, "an_error")
}
func TestRegistryPullResolveRoundtripError(t *testing.T) {
rc, _ := newClient(t, func(w http.ResponseWriter, r *http.Request) {
if strings.Contains(r.URL.Path, "/manifests/") {
w.WriteHeader(499) // force RoundTrip error
return
}
})
err := rc.Pull(t.Context(), "single")
if !errors.Is(err, errRoundTrip) {
t.Errorf("err = %v; want %v", err, errRoundTrip)
}
}
// TestRegistryPullMixedCachedNotCached tests that cached layers do not
// interfere with pulling layers that are not cached
func TestRegistryPullMixedCachedNotCached(t *testing.T) {
x := blob.DigestFromBytes("xxxxxx")
e := blob.DigestFromBytes("exists")
y := blob.DigestFromBytes("yyyyyy")
for i := range 10 {
t.Logf("iteration %d", i)
digests := []blob.Digest{x, e, y}
rand.Shuffle(len(digests), func(i, j int) {
digests[i], digests[j] = digests[j], digests[i]
})
manifest := fmt.Sprintf(`{
"layers": [
{"digest":"%s","size":6},
{"digest":"%s","size":6},
{"digest":"%s","size":6}
]
}`, digests[0], digests[1], digests[2])
rc, c := newClient(t, func(w http.ResponseWriter, r *http.Request) {
switch path.Base(r.URL.Path) {
case "latest":
io.WriteString(w, manifest)
case x.String():
io.WriteString(w, "xxxxxx")
case e.String():
io.WriteString(w, "exists")
case y.String():
io.WriteString(w, "yyyyyy")
default:
panic(fmt.Sprintf("unexpected request: %v", r))
}
})
ctx := WithTrace(t.Context(), &Trace{
Update: func(l *Layer, n int64, err error) {
t.Logf("update %v %d %v", l, n, err)
},
})
// Check that we pull all layers that we can.
err := rc.Pull(ctx, "mixed")
if err != nil {
t.Fatal(err)
}
for _, d := range digests {
info, err := c.Get(d)
if err != nil {
t.Fatalf("Get(%v): %v", d, err)
}
if info.Size != 6 {
t.Errorf("info.Size = %v; want %v", info.Size, 6)
}
}
}
}
func TestRegistryResolveByDigest(t *testing.T) {
check := testutil.Checker(t)
@@ -567,26 +399,6 @@ func TestInsecureSkipVerify(t *testing.T) {
testutil.Check(t, err)
}
func TestCanRetry(t *testing.T) {
cases := []struct {
err error
want bool
}{
{nil, false},
{errors.New("x"), false},
{ErrCached, false},
{ErrManifestInvalid, false},
{ErrNameInvalid, false},
{&Error{Status: 100}, false},
{&Error{Status: 500}, true},
}
for _, tt := range cases {
if got := canRetry(tt.err); got != tt.want {
t.Errorf("CanRetry(%v) = %v; want %v", tt.err, got, tt.want)
}
}
}
func TestErrorUnmarshal(t *testing.T) {
cases := []struct {
name string
@@ -738,17 +550,23 @@ func TestParseNameExtended(t *testing.T) {
func TestUnlink(t *testing.T) {
t.Run("found by name", func(t *testing.T) {
rc, _ := newClient(t, nil)
check := testutil.Checker(t)
rc, _ := newRegistryClient(t, nil)
// make a blob and link it
d := blob.DigestFromBytes("{}")
err := blob.PutBytes(rc.Cache, d, "{}")
check(err)
err = rc.Cache.Link("registry.ollama.ai/library/single:latest", d)
check(err)
// confirm linked
_, err := rc.ResolveLocal("single")
if err != nil {
t.Errorf("unexpected error: %v", err)
}
_, err = rc.ResolveLocal("single")
check(err)
// unlink
_, err = rc.Unlink("single")
testutil.Check(t, err)
check(err)
// confirm unlinked
_, err = rc.ResolveLocal("single")
@@ -757,7 +575,7 @@ func TestUnlink(t *testing.T) {
}
})
t.Run("not found by name", func(t *testing.T) {
rc, _ := newClient(t, nil)
rc, _ := newRegistryClient(t, nil)
ok, err := rc.Unlink("manifestNotFound")
if err != nil {
t.Fatal(err)
@@ -767,3 +585,369 @@ func TestUnlink(t *testing.T) {
}
})
}
// Many tests from here out, in this file are based on a single blob, "abc",
// with the checksum of its sha256 hash. The checksum is:
//
// "abc" -> sha256:ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad
//
// Using the literal value instead of a constant with fmt.Xprintf calls proved
// to be the most readable and maintainable approach. The sum is consistently
// used in the tests and unique so searches do not yield false positives.
func checkRequest(t *testing.T, req *http.Request, method, path string) {
t.Helper()
if got := req.URL.Path; got != path {
t.Errorf("URL = %q, want %q", got, path)
}
if req.Method != method {
t.Errorf("Method = %q, want %q", req.Method, method)
}
}
func newRegistryClient(t *testing.T, h http.HandlerFunc) (*Registry, context.Context) {
s := httptest.NewServer(h)
t.Cleanup(s.Close)
cache, err := blob.Open(t.TempDir())
if err != nil {
t.Fatal(err)
}
ctx := WithTrace(t.Context(), &Trace{
Update: func(l *Layer, n int64, err error) {
t.Log("trace:", l.Digest.Short(), n, err)
},
})
rc := &Registry{
Cache: cache,
HTTPClient: &http.Client{Transport: &http.Transport{
Dial: func(network, addr string) (net.Conn, error) {
return net.Dial(network, s.Listener.Addr().String())
},
}},
}
return rc, ctx
}
func TestPullChunked(t *testing.T) {
var steps atomic.Int64
c, ctx := newRegistryClient(t, func(w http.ResponseWriter, r *http.Request) {
switch steps.Add(1) {
case 1:
checkRequest(t, r, "GET", "/v2/library/abc/manifests/latest")
io.WriteString(w, `{"layers":[{"size":3,"digest":"sha256:ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad"}]}`)
case 2:
checkRequest(t, r, "GET", "/v2/library/abc/chunksums/sha256:ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad")
w.Header().Set("Content-Location", "http://blob.store/v2/library/abc/blobs/sha256:ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad")
fmt.Fprintf(w, "%s 0-1\n", blob.DigestFromBytes("ab"))
fmt.Fprintf(w, "%s 2-2\n", blob.DigestFromBytes("c"))
case 3, 4:
checkRequest(t, r, "GET", "/v2/library/abc/blobs/sha256:ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad")
switch rng := r.Header.Get("Range"); rng {
case "bytes=0-1":
io.WriteString(w, "ab")
case "bytes=2-2":
t.Logf("writing c")
io.WriteString(w, "c")
default:
t.Errorf("unexpected range %q", rng)
}
default:
t.Errorf("unexpected steps %d: %v", steps.Load(), r)
http.Error(w, "unexpected steps", http.StatusInternalServerError)
}
})
c.ChunkingThreshold = 1 // force chunking
err := c.Pull(ctx, "http://o.com/library/abc")
testutil.Check(t, err)
_, err = c.Cache.Resolve("o.com/library/abc:latest")
testutil.Check(t, err)
if g := steps.Load(); g != 4 {
t.Fatalf("got %d steps, want 4", g)
}
}
func TestPullCached(t *testing.T) {
c, ctx := newRegistryClient(t, func(w http.ResponseWriter, r *http.Request) {
checkRequest(t, r, "GET", "/v2/library/abc/manifests/latest")
io.WriteString(w, `{"layers":[{"size":3,"digest":"sha256:ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad"}]}`)
})
check := testutil.Checker(t)
// Premeptively cache the blob
d, err := blob.ParseDigest("sha256:ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad")
check(err)
err = blob.PutBytes(c.Cache, d, []byte("abc"))
check(err)
// Pull only the manifest, which should be enough to resolve the cached blob
err = c.Pull(ctx, "http://o.com/library/abc")
check(err)
}
func TestPullManifestError(t *testing.T) {
c, ctx := newRegistryClient(t, func(w http.ResponseWriter, r *http.Request) {
checkRequest(t, r, "GET", "/v2/library/abc/manifests/latest")
w.WriteHeader(http.StatusNotFound)
io.WriteString(w, `{"errors":[{"code":"MANIFEST_UNKNOWN"}]}`)
})
err := c.Pull(ctx, "http://o.com/library/abc")
if err == nil {
t.Fatalf("expected error")
}
var got *Error
if !errors.Is(err, ErrModelNotFound) {
t.Fatalf("err = %v, want %v", got, ErrModelNotFound)
}
}
func TestPullLayerError(t *testing.T) {
c, ctx := newRegistryClient(t, func(w http.ResponseWriter, r *http.Request) {
checkRequest(t, r, "GET", "/v2/library/abc/manifests/latest")
io.WriteString(w, `!`)
})
err := c.Pull(ctx, "http://o.com/library/abc")
if err == nil {
t.Fatalf("expected error")
}
var want *json.SyntaxError
if !errors.As(err, &want) {
t.Fatalf("err = %T, want %T", err, want)
}
}
func TestPullLayerChecksumError(t *testing.T) {
var step atomic.Int64
c, _ := newRegistryClient(t, func(w http.ResponseWriter, r *http.Request) {
switch step.Add(1) {
case 1:
checkRequest(t, r, "GET", "/v2/library/abc/manifests/latest")
io.WriteString(w, `{"layers":[{"size":3,"digest":"sha256:ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad"}]}`)
case 2:
checkRequest(t, r, "GET", "/v2/library/abc/chunksums/sha256:ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad")
w.Header().Set("Content-Location", "http://blob.store/v2/library/abc/blobs/sha256:ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad")
fmt.Fprintf(w, "%s 0-1\n", blob.DigestFromBytes("ab"))
fmt.Fprintf(w, "%s 2-2\n", blob.DigestFromBytes("c"))
case 3:
w.WriteHeader(http.StatusNotFound)
io.WriteString(w, `{"errors":[{"code":"BLOB_UNKNOWN"}]}`)
case 4:
io.WriteString(w, "c")
default:
t.Errorf("unexpected steps %d: %v", step.Load(), r)
http.Error(w, "unexpected steps", http.StatusInternalServerError)
}
})
c.MaxStreams = 1
c.ChunkingThreshold = 1 // force chunking
var written atomic.Int64
ctx := WithTrace(t.Context(), &Trace{
Update: func(l *Layer, n int64, err error) {
t.Log("trace:", l.Digest.Short(), n, err)
written.Add(n)
},
})
err := c.Pull(ctx, "http://o.com/library/abc")
var got *Error
if !errors.As(err, &got) || got.Code != "BLOB_UNKNOWN" {
t.Fatalf("err = %v, want %v", err, got)
}
if g := written.Load(); g != 1 {
t.Fatalf("wrote %d bytes, want 1", g)
}
}
func TestPullChunksumStreamError(t *testing.T) {
var step atomic.Int64
c, ctx := newRegistryClient(t, func(w http.ResponseWriter, r *http.Request) {
switch step.Add(1) {
case 1:
checkRequest(t, r, "GET", "/v2/library/abc/manifests/latest")
io.WriteString(w, `{"layers":[{"size":3,"digest":"sha256:ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad"}]}`)
case 2:
w.Header().Set("Content-Location", "http://blob.store/v2/library/abc/blobs/sha256:ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad")
// Write one valid chunksum and one invalid chunksum
fmt.Fprintf(w, "%s 0-1\n", blob.DigestFromBytes("ab")) // valid
fmt.Fprint(w, "sha256:!") // invalid
case 3:
io.WriteString(w, "ab")
default:
t.Errorf("unexpected steps %d: %v", step.Load(), r)
http.Error(w, "unexpected steps", http.StatusInternalServerError)
}
})
c.ChunkingThreshold = 1 // force chunking
got := c.Pull(ctx, "http://o.com/library/abc")
if !errors.Is(got, ErrIncomplete) {
t.Fatalf("err = %v, want %v", got, ErrIncomplete)
}
}
type flushAfterWriter struct {
w io.Writer
}
func (f *flushAfterWriter) Write(p []byte) (n int, err error) {
n, err = f.w.Write(p)
f.w.(http.Flusher).Flush() // panic if not a flusher
return
}
func TestPullChunksumStreaming(t *testing.T) {
csr, csw := io.Pipe()
defer csw.Close()
var step atomic.Int64
c, _ := newRegistryClient(t, func(w http.ResponseWriter, r *http.Request) {
switch step.Add(1) {
case 1:
checkRequest(t, r, "GET", "/v2/library/abc/manifests/latest")
io.WriteString(w, `{"layers":[{"size":3,"digest":"sha256:ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad"}]}`)
case 2:
w.Header().Set("Content-Location", "http://blob.store/v2/library/abc/blobs/sha256:ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad")
fw := &flushAfterWriter{w} // ensure client gets data as it arrives by aggressively flushing
_, err := io.Copy(fw, csr)
if err != nil {
t.Errorf("copy: %v", err)
}
case 3:
io.WriteString(w, "ab")
case 4:
io.WriteString(w, "c")
default:
t.Errorf("unexpected steps %d: %v", step.Load(), r)
http.Error(w, "unexpected steps", http.StatusInternalServerError)
}
})
c.ChunkingThreshold = 1 // force chunking
update := make(chan int64, 1)
ctx := WithTrace(t.Context(), &Trace{
Update: func(l *Layer, n int64, err error) {
t.Log("trace:", l.Digest.Short(), n, err)
if n > 0 {
update <- n
}
},
})
errc := make(chan error, 1)
go func() {
errc <- c.Pull(ctx, "http://o.com/library/abc")
}()
// Send first chunksum and ensure it kicks off work immediately
fmt.Fprintf(csw, "%s 0-1\n", blob.DigestFromBytes("ab"))
if g := <-update; g != 2 {
t.Fatalf("got %d, want 2", g)
}
// now send the second chunksum and ensure it kicks off work immediately
fmt.Fprintf(csw, "%s 2-2\n", blob.DigestFromBytes("c"))
if g := <-update; g != 1 {
t.Fatalf("got %d, want 1", g)
}
csw.Close()
testutil.Check(t, <-errc)
}
func TestPullChunksumsCached(t *testing.T) {
var step atomic.Int64
c, _ := newRegistryClient(t, func(w http.ResponseWriter, r *http.Request) {
switch step.Add(1) {
case 1:
checkRequest(t, r, "GET", "/v2/library/abc/manifests/latest")
io.WriteString(w, `{"layers":[{"size":3,"digest":"sha256:ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad"}]}`)
case 2:
w.Header().Set("Content-Location", "http://blob.store/v2/library/abc/blobs/sha256:ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad")
fmt.Fprintf(w, "%s 0-1\n", blob.DigestFromBytes("ab"))
fmt.Fprintf(w, "%s 2-2\n", blob.DigestFromBytes("c"))
case 3, 4:
switch rng := r.Header.Get("Range"); rng {
case "bytes=0-1":
io.WriteString(w, "ab")
case "bytes=2-2":
io.WriteString(w, "c")
default:
t.Errorf("unexpected range %q", rng)
}
default:
t.Errorf("unexpected steps %d: %v", step.Load(), r)
http.Error(w, "unexpected steps", http.StatusInternalServerError)
}
})
c.MaxStreams = 1 // force serial processing of chunksums
c.ChunkingThreshold = 1 // force chunking
ctx, cancel := context.WithCancel(t.Context())
defer cancel()
// Cancel the pull after the first chunksum is processed, but before
// the second chunksum is processed (which is waiting because
// MaxStreams=1). This should cause the second chunksum to error out
// leaving the blob incomplete.
ctx = WithTrace(ctx, &Trace{
Update: func(l *Layer, n int64, err error) {
if n > 0 {
cancel()
}
},
})
err := c.Pull(ctx, "http://o.com/library/abc")
if !errors.Is(err, context.Canceled) {
t.Fatalf("err = %v, want %v", err, context.Canceled)
}
_, err = c.Cache.Resolve("o.com/library/abc:latest")
if !errors.Is(err, fs.ErrNotExist) {
t.Fatalf("err = %v, want nil", err)
}
// Reset state and pull again to ensure the blob chunks that should
// have been cached are, and the remaining chunk was downloaded, making
// the blob complete.
step.Store(0)
var written atomic.Int64
var cached atomic.Int64
ctx = WithTrace(t.Context(), &Trace{
Update: func(l *Layer, n int64, err error) {
t.Log("trace:", l.Digest.Short(), n, err)
if errors.Is(err, ErrCached) {
cached.Add(n)
}
written.Add(n)
},
})
check := testutil.Checker(t)
err = c.Pull(ctx, "http://o.com/library/abc")
check(err)
_, err = c.Cache.Resolve("o.com/library/abc:latest")
check(err)
if g := written.Load(); g != 3 {
t.Fatalf("wrote %d bytes, want 3", g)
}
if g := cached.Load(); g != 2 { // "ab" should have been cached
t.Fatalf("cached %d bytes, want 3", g)
}
}

View File

@@ -200,7 +200,7 @@ type params struct {
//
// Unfortunately, this API was designed to be a bit awkward. Stream is
// defined to default to true if not present, so we need a way to check
// if the client decisively it to false. So, we use a pointer to a
// if the client decisively set it to false. So, we use a pointer to a
// bool. Gross.
//
// Use [stream()] to get the correct value for this field.
@@ -280,17 +280,17 @@ func (s *Local) handlePull(w http.ResponseWriter, r *http.Request) error {
progress := make(map[*ollama.Layer]int64)
progressCopy := make(map[*ollama.Layer]int64, len(progress))
pushUpdate := func() {
flushProgress := func() {
defer maybeFlush()
// TODO(bmizerany): This scales poorly with more layers due to
// needing to flush out them all in one big update. We _could_
// just flush on the changed ones, or just track the whole
// download. Needs more thought. This is fine for now.
// TODO(bmizerany): Flushing every layer in one update doesn't
// scale well. We could flush only the modified layers or track
// the full download. Needs further consideration, though it's
// fine for now.
mu.Lock()
maps.Copy(progressCopy, progress)
mu.Unlock()
for l, n := range progress {
for l, n := range progressCopy {
enc.Encode(progressUpdateJSON{
Digest: l.Digest,
Total: l.Size,
@@ -298,19 +298,26 @@ func (s *Local) handlePull(w http.ResponseWriter, r *http.Request) error {
})
}
}
defer flushProgress()
t := time.NewTicker(time.Hour) // "unstarted" timer
t := time.NewTicker(1000 * time.Hour) // "unstarted" timer
start := sync.OnceFunc(func() {
pushUpdate()
flushProgress() // flush initial state
t.Reset(100 * time.Millisecond)
})
ctx := ollama.WithTrace(r.Context(), &ollama.Trace{
Update: func(l *ollama.Layer, n int64, err error) {
if n > 0 {
start() // flush initial state
// Block flushing progress updates until every
// layer is accounted for. Clients depend on a
// complete model size to calculate progress
// correctly; if they use an incomplete total,
// progress indicators would erratically jump
// as new layers are registered.
start()
}
mu.Lock()
progress[l] = n
progress[l] += n
mu.Unlock()
},
})
@@ -323,9 +330,9 @@ func (s *Local) handlePull(w http.ResponseWriter, r *http.Request) error {
for {
select {
case <-t.C:
pushUpdate()
flushProgress()
case err := <-done:
pushUpdate()
flushProgress()
if err != nil {
var status string
if errors.Is(err, ollama.ErrModelNotFound) {

View File

@@ -82,7 +82,7 @@ func detectChatTemplate(layers []*layerGGML) ([]*layerGGML, error) {
for _, layer := range layers {
if s := layer.GGML.KV().ChatTemplate(); s != "" {
if t, err := template.Named(s); err != nil {
slog.Debug("template detection", "error", err)
slog.Debug("template detection", "error", err, "template", s)
} else {
layer, err := NewLayer(t.Reader(), "application/vnd.ollama.image.template")
if err != nil {

View File

@@ -31,9 +31,10 @@ const (
var (
ErrInvalidImageFormat = errors.New("invalid image format")
ErrInvalidDigestFormat = errors.New("invalid digest format")
ErrInvalidProtocol = errors.New("invalid protocol scheme")
ErrInsecureProtocol = errors.New("insecure protocol http")
ErrInvalidDigestFormat = errors.New("invalid digest format")
ErrModelPathInvalid = errors.New("invalid model path")
)
func ParseModelPath(name string) ModelPath {
@@ -73,8 +74,6 @@ func ParseModelPath(name string) ModelPath {
return mp
}
var errModelPathInvalid = errors.New("invalid model path")
func (mp ModelPath) GetNamespaceRepository() string {
return fmt.Sprintf("%s/%s", mp.Namespace, mp.Repository)
}

View File

@@ -26,7 +26,6 @@ func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.
var system []api.Message
isMllama := checkMllamaModelFamily(m)
isGemma3 := checkGemma3ModelFamily(m)
var imageNumTokens int
// TODO: Ideally we would compute this from the projector metadata but some pieces are implementation dependent
@@ -41,7 +40,7 @@ func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.
n := len(msgs) - 1
// in reverse, find all messages that fit into context window
for i := n; i >= 0; i-- {
if (isMllama || isGemma3) && len(msgs[i].Images) > 1 {
if isMllama && len(msgs[i].Images) > 1 {
return "", nil, errTooManyImages
}
@@ -158,12 +157,3 @@ func checkMllamaModelFamily(m *Model) bool {
}
return false
}
func checkGemma3ModelFamily(m *Model) bool {
for _, arch := range m.Config.ModelFamilies {
if arch == "gemma3" {
return true
}
}
return false
}

View File

@@ -72,7 +72,7 @@ var (
errBadTemplate = errors.New("template error")
)
func modelOptions(model *Model, requestOpts map[string]interface{}) (api.Options, error) {
func modelOptions(model *Model, requestOpts map[string]any) (api.Options, error) {
opts := api.DefaultOptions()
if err := opts.FromMap(model.Options); err != nil {
return api.Options{}, err
@@ -87,7 +87,7 @@ func modelOptions(model *Model, requestOpts map[string]interface{}) (api.Options
// scheduleRunner schedules a runner after validating inputs such as capabilities and model options.
// It returns the allocated runner, model instance, and consolidated options if successful and error otherwise.
func (s *Server) scheduleRunner(ctx context.Context, name string, caps []Capability, requestOpts map[string]any, keepAlive *api.Duration) (llm.LlamaServer, *Model, *api.Options, error) {
func (s *Server) scheduleRunner(ctx context.Context, name string, caps []model.Capability, requestOpts map[string]any, keepAlive *api.Duration) (llm.LlamaServer, *Model, *api.Options, error) {
if name == "" {
return nil, nil, nil, fmt.Errorf("model %w", errRequired)
}
@@ -144,7 +144,7 @@ func (s *Server) GenerateHandler(c *gin.Context) {
return
}
model, err := GetModel(name.String())
m, err := GetModel(name.String())
if err != nil {
switch {
case errors.Is(err, fs.ErrNotExist):
@@ -159,7 +159,7 @@ func (s *Server) GenerateHandler(c *gin.Context) {
// expire the runner
if req.Prompt == "" && req.KeepAlive != nil && int(req.KeepAlive.Seconds()) == 0 {
s.sched.expireRunner(model)
s.sched.expireRunner(m)
c.JSON(http.StatusOK, api.GenerateResponse{
Model: req.Model,
@@ -176,9 +176,9 @@ func (s *Server) GenerateHandler(c *gin.Context) {
return
}
caps := []Capability{CapabilityCompletion}
caps := []model.Capability{model.CapabilityCompletion}
if req.Suffix != "" {
caps = append(caps, CapabilityInsert)
caps = append(caps, model.CapabilityInsert)
}
r, m, opts, err := s.scheduleRunner(c.Request.Context(), name.String(), caps, req.Options, req.KeepAlive)
@@ -203,7 +203,7 @@ func (s *Server) GenerateHandler(c *gin.Context) {
return
}
isMllama := checkMllamaModelFamily(model)
isMllama := checkMllamaModelFamily(m)
if isMllama && len(req.Images) > 1 {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "this model only supports one image: more than one image sent"})
return
@@ -211,7 +211,7 @@ func (s *Server) GenerateHandler(c *gin.Context) {
images := make([]llm.ImageData, len(req.Images))
for i := range req.Images {
if isMllama && len(model.ProjectorPaths) > 0 {
if isMllama && len(m.ProjectorPaths) > 0 {
data, opts, err := mllama.Preprocess(bytes.NewReader(req.Images[i]))
if err != nil {
c.AbortWithStatusJSON(http.StatusInternalServerError, gin.H{"error": "error processing image"})
@@ -422,7 +422,7 @@ func (s *Server) EmbedHandler(c *gin.Context) {
return
}
r, m, opts, err := s.scheduleRunner(c.Request.Context(), name.String(), []Capability{}, req.Options, req.KeepAlive)
r, m, opts, err := s.scheduleRunner(c.Request.Context(), name.String(), []model.Capability{}, req.Options, req.KeepAlive)
if err != nil {
handleScheduleError(c, req.Model, err)
return
@@ -530,7 +530,7 @@ func (s *Server) EmbeddingsHandler(c *gin.Context) {
return
}
r, _, _, err := s.scheduleRunner(c.Request.Context(), name.String(), []Capability{}, req.Options, req.KeepAlive)
r, _, _, err := s.scheduleRunner(c.Request.Context(), name.String(), []model.Capability{}, req.Options, req.KeepAlive)
if err != nil {
handleScheduleError(c, req.Model, err)
return
@@ -777,7 +777,7 @@ func (s *Server) ShowHandler(c *gin.Context) {
func GetModelInfo(req api.ShowRequest) (*api.ShowResponse, error) {
name := model.ParseName(req.Model)
if !name.IsValid() {
return nil, errModelPathInvalid
return nil, ErrModelPathInvalid
}
name, err := getExistingName(name)
if err != nil {
@@ -813,19 +813,20 @@ func GetModelInfo(req api.ShowRequest) (*api.ShowResponse, error) {
}
resp := &api.ShowResponse{
License: strings.Join(m.License, "\n"),
System: m.System,
Template: m.Template.String(),
Details: modelDetails,
Messages: msgs,
ModifiedAt: manifest.fi.ModTime(),
License: strings.Join(m.License, "\n"),
System: m.System,
Template: m.Template.String(),
Details: modelDetails,
Messages: msgs,
Capabilities: m.Capabilities(),
ModifiedAt: manifest.fi.ModTime(),
}
var params []string
cs := 30
for k, v := range m.Options {
switch val := v.(type) {
case []interface{}:
case []any:
for _, nv := range val {
params = append(params, fmt.Sprintf("%-*s %#v", cs, k, nv))
}
@@ -1335,7 +1336,7 @@ func Serve(ln net.Listener) error {
return nil
}
func waitForStream(c *gin.Context, ch chan interface{}) {
func waitForStream(c *gin.Context, ch chan any) {
c.Header("Content-Type", "application/json")
for resp := range ch {
switch r := resp.(type) {
@@ -1468,9 +1469,9 @@ func (s *Server) ChatHandler(c *gin.Context) {
return
}
caps := []Capability{CapabilityCompletion}
caps := []model.Capability{model.CapabilityCompletion}
if len(req.Tools) > 0 {
caps = append(caps, CapabilityTools)
caps = append(caps, model.CapabilityTools)
}
name := model.ParseName(req.Model)

View File

@@ -20,6 +20,7 @@ import (
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/types/model"
)
type LlmRequest struct {
@@ -37,7 +38,7 @@ type Scheduler struct {
pendingReqCh chan *LlmRequest
finishedReqCh chan *LlmRequest
expiredCh chan *runnerRef
unloadedCh chan interface{}
unloadedCh chan any
loaded map[string]*runnerRef
loadedMu sync.Mutex
@@ -67,7 +68,7 @@ func InitScheduler(ctx context.Context) *Scheduler {
pendingReqCh: make(chan *LlmRequest, maxQueue),
finishedReqCh: make(chan *LlmRequest, maxQueue),
expiredCh: make(chan *runnerRef, maxQueue),
unloadedCh: make(chan interface{}, maxQueue),
unloadedCh: make(chan any, maxQueue),
loaded: make(map[string]*runnerRef),
newServerFn: llm.NewLlamaServer,
getGpuFn: discover.GetGPUInfo,
@@ -195,7 +196,7 @@ func (s *Scheduler) processPending(ctx context.Context) {
}
// Embedding models should always be loaded with parallel=1
if pending.model.CheckCapabilities(CapabilityCompletion) != nil {
if pending.model.CheckCapabilities(model.CapabilityCompletion) != nil {
numParallel = 1
}
@@ -617,8 +618,8 @@ func (runner *runnerRef) needsReload(ctx context.Context, req *LlmRequest) bool
// a before and after GPU memory allocation. The returned channel
// will be notified when we're done waiting, or have timed out and should
// proceed anyway
func (runner *runnerRef) waitForVRAMRecovery() chan interface{} {
finished := make(chan interface{}, 1)
func (runner *runnerRef) waitForVRAMRecovery() chan any {
finished := make(chan any, 1)
// CPU or Metal don't need checking, so no waiting required
// windows can page VRAM, only cuda currently can report accurate used vram usage
@@ -711,7 +712,7 @@ func pickBestFullFitByLibrary(req *LlmRequest, f *ggml.GGML, gpus discover.GpuIn
req.opts.NumCtx = req.origNumCtx * p
if !envconfig.SchedSpread() {
for _, g := range sgl {
if ok, estimatedVRAM = llm.PredictServerFit([]discover.GpuInfo{g}, f, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok {
if ok, estimatedVRAM = llm.PredictServerFit([]discover.GpuInfo{g}, f, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts, p); ok {
slog.Info("new model will fit in available VRAM in single GPU, loading", "model", req.model.ModelPath, "gpu", g.ID, "parallel", p, "available", g.FreeMemory, "required", format.HumanBytes2(estimatedVRAM))
*numParallel = p
return []discover.GpuInfo{g}
@@ -727,7 +728,7 @@ func pickBestFullFitByLibrary(req *LlmRequest, f *ggml.GGML, gpus discover.GpuIn
// Now try all the GPUs
for _, p := range numParallelToTry {
req.opts.NumCtx = req.origNumCtx * p
if ok, estimatedVRAM = llm.PredictServerFit(sgl, f, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok {
if ok, estimatedVRAM = llm.PredictServerFit(sgl, f, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts, p); ok {
slog.Info("new model will fit in available VRAM, loading", "model", req.model.ModelPath, "library", sgl[0].Library, "parallel", p, "required", format.HumanBytes2(estimatedVRAM))
*numParallel = p
return sgl
@@ -750,7 +751,7 @@ func pickBestPartialFitByLibrary(req *LlmRequest, f *ggml.GGML, gpus discover.Gp
var bestEstimate uint64
var bestFit int
for i, gl := range byLibrary {
_, estimatedVRAM := llm.PredictServerFit(gl, f, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts)
_, estimatedVRAM := llm.PredictServerFit(gl, f, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts, *numParallel)
if estimatedVRAM > bestEstimate {
bestEstimate = estimatedVRAM
bestFit = i
@@ -825,7 +826,7 @@ func (s *Scheduler) expireRunner(model *Model) {
// If not, pick a runner to unload, else return nil and the request can be loaded
func (s *Scheduler) maybeFindCPURunnerToUnload(req *LlmRequest, f *ggml.GGML, gpus discover.GpuInfoList) *runnerRef {
slog.Debug("evaluating if CPU model load will fit in available system memory")
estimate := llm.EstimateGPULayers(gpus, f, req.model.ProjectorPaths, req.opts)
estimate := llm.EstimateGPULayers(gpus, f, req.model.ProjectorPaths, req.opts, req.opts.NumCtx/req.origNumCtx)
if estimate.TotalSize <= gpus[0].FreeMemory {
slog.Debug("cpu inference mode, model fits in available system memory", "model", format.HumanBytes2(estimate.TotalSize), "available", format.HumanBytes2(gpus[0].FreeMemory))
return nil

View File

@@ -0,0 +1,13 @@
{{- range $i, $_ := .Messages }}
{{- $last := eq (len (slice $.Messages $i)) 1 }}
{{- if eq .Role "user" }}<start_of_turn>user
{{- if and (eq $i 1) $.System }}
{{ $.System }}
{{ end }}
{{ .Content }}<end_of_turn>
{{ else if eq .Role "assistant" }}<start_of_turn>model
{{ .Content }}<end_of_turn>
{{ end }}
{{- if $last }}<start_of_turn>model
{{ end }}
{{- end }}

View File

@@ -0,0 +1,6 @@
{
"stop": [
"<end_of_turn>"
],
"temperature": 0.1
}

View File

@@ -87,6 +87,10 @@
"template": "{{ bos_token }}{% if messages[0]['role'] == 'system' %}{{ raise_exception('System role not supported') }}{% endif %}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if (message['role'] == 'assistant') %}{% set role = 'model' %}{% else %}{% set role = message['role'] %}{% endif %}{{ '<start_of_turn>' + role + '\n' + message['content'] | trim + '<end_of_turn>\n' }}{% endfor %}{% if add_generation_prompt %}{{'<start_of_turn>model\n'}}{% endif %}",
"name": "gemma-instruct"
},
{
"template": "{{ bos_token }}\n{%- if messages[0]['role'] == 'system' -%}\n {%- if messages[0]['content'] is string -%}\n {%- set first_user_prefix = messages[0]['content'] + '\n\n' -%}\n {%- else -%}\n {%- set first_user_prefix = messages[0]['content'][0]['text'] + '\n\n' -%}\n {%- endif -%}\n {%- set loop_messages = messages[1:] -%}\n{%- else -%}\n {%- set first_user_prefix = \"\" -%}\n {%- set loop_messages = messages -%}\n{%- endif -%}\n{%- for message in loop_messages -%}\n {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}\n {{ raise_exception(\"Conversation roles must alternate user/assistant/user/assistant/...\") }}\n {%- endif -%}\n {%- if (message['role'] == 'assistant') -%}\n {%- set role = \"model\" -%}\n {%- else -%}\n {%- set role = message['role'] -%}\n {%- endif -%}\n {{ '<start_of_turn>' + role + '\n' + (first_user_prefix if loop.first else \"\") }}\n {%- if message['content'] is string -%}\n {{ message['content'] | trim }}\n {%- elif message['content'] is iterable -%}\n {%- for item in message['content'] -%}\n {%- if item['type'] == 'image' -%}\n {{ '<start_of_image>' }}\n {%- elif item['type'] == 'text' -%}\n {{ item['text'] | trim }}\n {%- endif -%}\n {%- endfor -%}\n {%- else -%}\n {{ raise_exception(\"Invalid content type\") }}\n {%- endif -%}\n {{ '<end_of_turn>\n' }}\n{%- endfor -%}\n{%- if add_generation_prompt -%}\n {{'<start_of_turn>model\n'}}\n{%- endif -%}\n",
"name": "gemma3-instruct"
},
{
"template": "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}",
"name": "llama3-instruct"

View File

@@ -0,0 +1,10 @@
<start_of_turn>user
You are a helpful assistant.
Hello, how are you?<end_of_turn>
<start_of_turn>model
I'm doing great. How can I help you today?<end_of_turn>
<start_of_turn>user
I'd like to show off how chat templating works!<end_of_turn>
<start_of_turn>model

View File

@@ -0,0 +1,4 @@
<start_of_turn>user
Hello, how are you?<end_of_turn>
<start_of_turn>model

View File

@@ -0,0 +1,8 @@
<start_of_turn>user
Hello, how are you?<end_of_turn>
<start_of_turn>model
I'm doing great. How can I help you today?<end_of_turn>
<start_of_turn>user
I'd like to show off how chat templating works!<end_of_turn>
<start_of_turn>model

15
types/model/capability.go Normal file
View File

@@ -0,0 +1,15 @@
package model
type Capability string
const (
CapabilityCompletion = Capability("completion")
CapabilityTools = Capability("tools")
CapabilityInsert = Capability("insert")
CapabilityVision = Capability("vision")
CapabilityEmbedding = Capability("embedding")
)
func (c Capability) String() string {
return string(c)
}