Compare commits

...

178 Commits

Author SHA1 Message Date
Parth Sareen
5f8051180e Enable index tracking for tools - openai api support (#7888) 2024-11-29 20:00:09 -08:00
Jeffrey Morgan
39e29ae5dd llama: fix typo and formatting in readme (#7876) 2024-11-28 17:27:11 -08:00
TheCookingSenpai
30a9f063c9 readme: add SpaceLlama, YouLama, and DualMind to community integrations (#7216) 2024-11-28 15:16:27 -08:00
Parth Sareen
ce7455a8e1 api: enable tool streaming (#7836) 2024-11-27 13:40:57 -08:00
ItzCrazyKns
e3936d4fb3 Support Multiple LoRa Adapters (#7667)
Closes #7627
2024-11-27 11:00:04 -08:00
Bruce MacDonald
940e62772e openai: remove unused error code (#7850)
The writeError takes a code argument which is no longer used. Remove it for clarity.
2024-11-26 16:08:09 -08:00
Jesse Gross
71e6a0d0d1 runner.go: Don't try to extract image tags for text models
When processing a prompt, we look for image tags of the form
[img-0], which are inserted by the Ollama server process.
However, this can cause errors if the original prompt has these
tags - typically an image not found error is returned.

This changes tag searching behavior to be similar to the 0.3.x
series, which will largely avoid these problems. However,they can
still happen when input text with these tags is used with image
models. The correct solution is to escape the tags but this is a
larger issue with special sequences in general so this is an
incremental fix that should avoid the problem for the majority
of cases.
2024-11-26 13:23:24 -08:00
Jesse Gross
2cd11ae365 runner.go: Add unit tests for context shifting
This also makes it easier to truncate long inputs the same as
shifting but does not actually implement it. This type of
truncation has a trade off between quality and time to first
token.
2024-11-26 11:21:35 -08:00
jake83741
52bbad12f9 readme: update description for vnc-lm community integration (#7832) 2024-11-25 17:56:30 -08:00
frob
30e88d7f31 cmd: don't submit svg files as images for now (#7830) 2024-11-25 16:43:29 -08:00
Blake Mizerany
2b7ed61ca2 server: fix Transport override (#7834)
This changes makeRequest to update the http client Transport if and only
if testMakeRequestDialContext is set. This is to avoid overriding the
default Transport when testMakeRequestDialContext is nil, which broke
existing behavior, included proxies, timeouts, and other behaviors.

Fixes #7829
Fixes #7788
2024-11-25 15:08:34 -08:00
Shikhar Bakhda
647513a7d4 readme: add HoneyHive to community integrations (#7831) 2024-11-25 09:55:33 -08:00
Bruce MacDonald
a210ec74d2 cmd: print location of model after pushing (#7695)
After a user pushes their model it is not clear what to do next. Add a link
to the output of `ollama push` that tells the user where their model can now
be found.
2024-11-25 09:40:16 -08:00
Simon Schampijer
cfb1ddd6fc examples: update langchain-python-simple (#3591)
- better formatting of input prompt
- use invoke instead of predict
2024-11-24 16:06:22 -08:00
reid41
3987acd7ec readme: add descriptions for QA-Pilot and shell-pilot community integrations (#4303) 2024-11-24 15:55:09 -08:00
frob
fda1e6b563 llm: bring fileTypes into alignment with llama.cpp (#7819) 2024-11-24 10:33:33 -08:00
Adarsh Mishra
3440ffb37b readme: add description for OpenTalkGpt in community integrations (#7818) 2024-11-24 10:32:23 -08:00
Patcher
a820d2b267 readme: add observability section with OpenLIT to community-integrations 2024-11-23 18:03:12 -08:00
Meng Zhuo
2ebdb54fb3 all: update math32 go mod to v1.11.0 (#6627) 2024-11-23 15:21:54 -08:00
josc146
bb52abfa55 readme: add ChatGPTBox and RWKV-Runner to community integrations (#4118) 2024-11-23 13:31:27 -08:00
oza6ut0ne
31cb1ca9e5 openai: accept X-Stainless-Retry-Count header (#6910) 2024-11-23 12:39:05 -08:00
Rodrigo Ribeiro Gomes
78f779a323 readme: add powershai, a powershell module with ollama support to community integrations (#7438) 2024-11-23 10:08:59 -08:00
Jesse Gross
3478b2cf14 runner.go: Fix deadlock with many concurrent requests
If there are no avilable slots for new sequences then a request
will not be added to the processing queue but will continue on
to wait for a response that never comes. Besides never giving a
response to the request, this prevents the model from being
unloaded due to the outstanding request.

To prevent this, there are semaphores that prevent more requests
from being processed than there are slots - one in the Ollama
server and one in the runner.
 - The Ollama server one works but it is not designed to protect
the runner's data internal structures and the runner can return a
final response before clearing its data structures.
 - The internal runner semaphore has similar behavior where it
 can release the semaphore when it issues a response. This is
 wrong - it should only release the semaphore after it has
 cleared the data structure.

In addition, we should return an error if a slot is not found
rather than deadlocking in the event we ever get to this spot.

Fixes #7779
2024-11-22 16:14:51 -08:00
Bruce MacDonald
7b5585b9cb server: remove out of date anonymous access check (#7785)
In the past the ollama.com server would return a JWT that contained
information about the user being authenticated. This was used to return
different error messages to the user. This is no longer possible since the
token used to authenticate does not contain information about the user
anymore. Removing this code that no longer works.

Follow up changes will improve the error messages returned here, but good to
clean up first.
2024-11-22 11:57:35 -08:00
Daniel Hiltgen
f0a351810c tests: fix max queue integration test (#7782)
This had fallen out of sync with the envconfig behavior, where max queue default was not zero.
2024-11-22 08:05:45 -08:00
Daniel Hiltgen
b85520bfb9 logs: explain client aborts better (#7783)
Users get confused by "Failed to acquire semaphore" error="context canceled"
messages in the logs, which are actually clients giving up.  While there could be
a legitimate hang bug in the system, sometimes this is just short client timeouts
with an overloaded system, so this should help users understand what's going on
better.
2024-11-22 08:05:32 -08:00
Daniel Hiltgen
d88972ea48 Be quiet when redirecting output (#7360)
This avoids emitting the progress indicators to stderr, and the interactive
prompts to the output file or pipe.  Running "ollama run model > out.txt"
now exits immediately, and "echo hello | ollama run model > out.txt"
produces zero stderr output and a typical response in out.txt
2024-11-22 08:04:54 -08:00
Leon Sander
25c9339e2d readme: add Local Multimodal AI Chat app to community integrations (#6931) 2024-11-21 20:39:38 -08:00
Mikel Olasagasti Uranga
597072ef1b readme: update google/uuid module (#7310)
update uuid.New().String() to uuid.NewString()
2024-11-21 19:37:04 -08:00
Dustin
84b3e07f1b readme: add ollamarama-matrix to community integrations (#7325) 2024-11-21 17:49:30 -08:00
Edwin.JH.Lee
422d52858c readme: add x-cmd ollama module to community integrations (#5191) 2024-11-21 16:55:25 -08:00
Elias
723f285813 readme: add OrionChat to community integrations (#7084)
OrionChat is a free web-based chat interface that simplifies interactions
with multiple AI model providers. It provides a unified platform for chatting
and exploring multiple large language models (LLMs).
2024-11-21 11:23:42 -08:00
湛露先生
eaaf5d309d cmd: delete duplicated call to sb.Reset() (#7308)
Signed-off-by: zhanluxianshen <zhanluxianshen@163.com>
2024-11-21 11:20:48 -08:00
Jeffrey Morgan
27d9c749d5 docs: remove tutorials, add cloud section to community integrations (#7784) 2024-11-21 09:59:53 -08:00
R0CKSTAR
b7bddeebc1 env.sh: cleanup unused RELEASE_IMAGE_REPO (#6855)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2024-11-21 08:28:04 -08:00
Paul Robello
6a0c2ec50f readme: add terminal tool ParLlama to community integrations (#5623) 2024-11-21 02:55:35 -08:00
毛巳煜
baa41be2aa readme: add a community made ollama web management tool (#7126) 2024-11-21 02:51:45 -08:00
xuyangbocn
2157b1232e readme: add Terraform AWS Ollama & Open WebUI community example (#5633) 2024-11-21 02:28:57 -08:00
emrgnt-cmplxty
37711578a2 readme: add R2R to community integrations (#5587) 2024-11-21 02:09:36 -08:00
Cyril Blaecke
fb2c9594e0 readme: Add Nosia to Community Integrations (#5381) 2024-11-21 02:07:17 -08:00
Christian Tzolov
7fbcd55da3 readme: Add Spring AI library reference (#5981) 2024-11-21 02:02:14 -08:00
Philippe Charrière
b4348bdd25 readme: add Parakeet to community integrations
Parakeet is a GoLang SDK for Ollama

---------

Co-authored-by: Parth Sareen <parth.sareen@ollama.com>
2024-11-21 02:00:32 -08:00
Marcin Szczygliński
155734e09a readme: add community integration py-gpt (#6503) 2024-11-21 01:54:39 -08:00
Michael
883d80e097 readme: add Promptery to community integrations (#7093) 2024-11-21 01:46:20 -08:00
Jakub Burkiewicz
e4c9f75b23 readme: add node-red-contrib-ollama to community integrations (#4648) 2024-11-21 01:09:37 -08:00
Dezoito
f5ec7cc872 readme: add ollama grid search, a community project (#4301) 2024-11-21 01:02:46 -08:00
Franco Lombardo
811bafba82 readme: Add LLPhant to community integrations (#5679) 2024-11-21 00:54:26 -08:00
Aarushi
431075fcbb readme: add autogpt integration to list of community integrations (#6459) 2024-11-21 00:51:38 -08:00
Kevin Brake
c4f27225ac readme: add community contribution to readme ollama-kis (#5575) 2024-11-21 00:31:27 -08:00
chyok
b7aa5ee06c readme: Add tkinter-based client to community based integrations (#5412) 2024-11-21 00:19:24 -08:00
Nico
3f87f71755 readme: add Shinkai Desktop to community integrations (#4877) 2024-11-21 00:16:18 -08:00
Laurent Eschenauer
20623cec13 readme: add OpenGPA to community integrations (#5497) 2024-11-21 00:13:54 -08:00
Andy Gill
0e5f31a86d readme: add Haverscript to community integrations (#6945)
Haverscript uses classical functional programming techniques to provide a composable interface for interacting with ollama-hosted LLMs.
2024-11-21 00:11:39 -08:00
drunkwcodes
7e92091751 readme: Terminal app bb7 to community integrations (#7064) 2024-11-21 00:03:11 -08:00
boessu
1a742f54c9 readme: update AMD ROCm links (#7213) 2024-11-20 23:48:55 -08:00
奶茶叔叔
6a89dcf848 readme: flutter-based chat app to community integrations (#7221) 2024-11-20 23:30:10 -08:00
Alexander F. Rødseth
c5e238e8e5 readme: orbiton to community integrations (#7770) 2024-11-20 23:24:05 -08:00
Nikita Ganzikov
fce30f407a app: typo in wintray messages const (#7705) 2024-11-20 22:01:58 -08:00
Daniel Hiltgen
d863298210 docs: Link to AMD guide on multi-GPU guidance (#7744) 2024-11-20 16:00:46 -08:00
Jesse Gross
c4b34f2a2a runner.go: Truncate inputs that exceed context rather than shifting
Previous versions of the runner would truncate inputs to the context
window before beginning processing. The main processing loop relied
on this behavior if the context needed to be shifted later (due to
token generation). If truncation did not occur then invariants
would be broken, causing crashes or infinite loops.

Later versions attempted to fix these bugs and make the logic less
subtle so that all inputs could be handled. Truncation was removed
to make things consistent.

However, truncation is much faster than processing and shifting, so
removing it caused performance problems when the input vastly exceeded
the context size. This restores the input truncation as a performance
optimization while keeping the more robust processing logic.

Fixes #7762
2024-11-20 12:49:24 -08:00
Jesse Gross
c3ff916431 runner.go: Don't add inputs to cache view until actually processed
We need to track which tokens are in the cache ourselves. We currently
add tokens to the cache tracker when we add them to batch but they are
not actually in the cache until we call Decode. This can cause
confusion when we are shifting the cache.

Avoids "could not find a KV slot for the batch" issues.

Bug #7545
2024-11-20 12:49:24 -08:00
Jesse Gross
3fc1dc0e6f runner.go: Hard fail on errors rather than potentially infinite looping
We try to recover from errors by dropping the tokens that caused the
problem and re-trying. However, dropping the tokens is not correct
and continuing often leads to infinite loops. To avoid, this we
end the sequence if such a condition is detected, which is also
surprising.

At this point, it is better to just report the error. This will make
it easier to find problems and the alternatives are perhaps even more
surprising to users.

This is not a very satisfactory solution either - we should isolate
the error and return it to the user without killing the whole process.
However, this is an incremental step and consistent with most other
failures (which either manifest as abort() or panic).
2024-11-20 12:49:24 -08:00
Jesse Gross
7121dfa309 runner.go: Retry decoding after defragmentation if needed
Fragmentation of the KV cache can occur due to cache shifting or
different sequences getting processed. Decode uses a heuristic to
decide if it should defrag. However, this heuristic isn't 100%
accurate, so decoding can sometimes fail by surprise.

For these cases, if decode indicates that there is no KV cache space,
we should defrag and then try again.
2024-11-20 12:49:24 -08:00
Jesse Gross
5f68fcab12 runner.go: Use correct index when retrieving embedding results
This doesn't have any impact currently because NUM_PARALLEL is forced
to 1 for embeddings, so both indicies will always be 0.
2024-11-20 12:49:24 -08:00
Emir Sahin
ecf41eed05 readme: add llm-axe to community integrations (#5931) 2024-11-20 10:53:14 -08:00
Marcus Ziadé
b8c66d3307 readme: add a swift community integration (#7383) 2024-11-20 10:49:15 -08:00
thewh1teagle
303f4bc79e readme: add vibe app to community integrations (#7607) 2024-11-20 10:45:10 -08:00
Adarsh Mishra
d2a25206b1 readme: add opentalkgpt to community integrations (#7707) 2024-11-20 10:42:55 -08:00
rohitanshu
2f0a8c8778 docs: fix minor typo in import.md (#7764)
change 'containg' to 'containing'
2024-11-20 09:57:32 -08:00
Gordon Kamer
bfd30f4286 readme: add Abbey to community integrations (#7746) 2024-11-19 21:37:15 -08:00
Jonathan Hecl
0ef17ede89 readme: add Gollama to community integrations (#7756) 2024-11-19 21:31:43 -08:00
Daniel Hiltgen
909a88c5c0 Improve crash reporting (#7728)
Many model crashes are masked behind "An existing connection was forcibly closed by the remote host"
This captures that common error message and wires in any detected errors from the log.

This also adds the deepseek context shift error to the known errors we capture.
2024-11-19 16:26:57 -08:00
Daniel Hiltgen
f602ab4de4 expose underlying error on embedding failure (#7743)
Avoid a round-trip asking users for logs to see what went wrong.
2024-11-19 16:26:05 -08:00
Gabe Goodhart
807ace5b1f fix(runner): Set logits to 0 if false on Batch.Add
https://github.com/ollama/ollama/issues/7656
Branch: Granite3StoppingBug-7656

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2024-11-19 15:45:37 -08:00
Blake Mizerany
4b8a2e341a server: allow mixed-case model names on push, pull, cp, and create (#7676)
This change allows for mixed-case model names to be pushed, pulled,
copied, and created, which was previously disallowed because the Ollama
registry was backed by a Docker registry that enforced a naming
convention that disallowed mixed-case names, which is no longer the
case.

This does not break existing, intended, behaviors.

Also, make TestCase test a story of creating, updating, pulling, and
copying a model with case variations, ensuring the model's manifest is
updated correctly, and not duplicated across different files with
different case variations.
2024-11-19 15:05:57 -08:00
frob
e66c29261a Better error suppresion when getting terminal colours (#7739)
Co-authored-by: Richard Lyons <frob@cloudstaff.com>
2024-11-19 08:33:52 -08:00
Patrick Devine
712d63c3f0 update the docs (#7731) 2024-11-18 21:17:38 -08:00
Patrick Sy
6cdf27d154 readme: add Alfred Ollama to community integrations (#7724) 2024-11-18 19:33:23 -08:00
frob
5c18e66384 Notify the user if systemd is not running (#6693)
Co-authored-by: Richard Lyons <frob@cloudstaff.com>
2024-11-18 15:02:41 -08:00
Daniel Hiltgen
35096a7eff win: add right click menu support (#7727)
Enable both left and right click on the pop-up menu
2024-11-18 14:39:52 -08:00
Daniel Hiltgen
81d55d3e4d fix index out of range on zero layer metal load (#7696)
If the model doesn't fit any layers on metal, and we load zero layers
we would panic trying to look up the GPU size during scheduling ops
2024-11-18 11:48:13 -08:00
Vinh Nguyen
a14f76491d readme: improve Community Integrations section (#7718) 2024-11-17 19:30:22 -08:00
Nicolas Bonamy
760cfa27e5 readme: add Witsy and multi-llm-ts to community integrations (#7713) 2024-11-17 16:33:10 -08:00
Darius Kocar
c9a5aca3da readme: add Perfect Memory AI to community integrations (#7431) 2024-11-17 15:19:26 -08:00
Tushar Adhatrao
d5da2ab7e8 readme: add ollama-haskell library to community integrations (#7451) 2024-11-17 15:18:04 -08:00
Vinh Nguyen
1c04117114 readme: add the VT app to the community integrations section (#7706) 2024-11-17 14:35:41 -08:00
Jeffrey Morgan
8b4b243f5f server: fix warnings in prompt_test.go (#7710) 2024-11-17 13:01:04 -08:00
Jeffrey Morgan
b42a596425 docs: add customization section in linux.md (#7709) 2024-11-17 11:48:12 -08:00
Daniel Hiltgen
4759d879f2 Install support for jetpacks (#7632)
Follow up to #7217 - merge after release
2024-11-15 16:47:54 -08:00
Jesse Gross
d875e99e46 runner.go: Propagate panics back to the user.
This is a partial revert of 8a35bb92
"runner.go: Increase survivability of main processing loop", removing
the panic handler.

Although we want to avoid errors taking down the runner, we also
should make the user aware of problems when they happen. In the
future, we can restructure things so both parts are true.
2024-11-15 11:52:25 -08:00
Jesse Gross
8a35bb926e runner.go: Increase survivability of main processing loop
Currently, if an error occurs during the prep stages (such as
tokenizing) of a single request, it will only affect that request.
However, if an error happens during decoding, it can take down the
entire runner.

Instead, it's better to drop the tokens that triggered the error and try to
keep going. However, we also need to stop when we run out of tokens,
otherwise, this just causes an infinite loop. This is likely the cause
of at least some of the hanging issues that have been reported.

Bug #7573
2024-11-14 17:18:41 -08:00
Daniel Hiltgen
a0ea067b63 build: fix arm container image (#7674)
Fix a rebase glitch from the old C++ runner build model
2024-11-14 16:02:01 -08:00
Patrick Devine
4efb98cb4f add line numbers for parser errors (#7326) 2024-11-14 13:59:44 -08:00
Bruce MacDonald
0679d491fe chore(deps): bump golang.org/x dependencies (#7655)
- golang.org/x/sync v0.3.0 -> v0.9.0
- golang.org/x/image v0.14.0 -> v0.22.0
- golang.org/x/text v0.15.0 -> v0.20.0
2024-11-14 13:58:25 -08:00
Jesse Gross
c25ffde91d runner.go: Don't trim whitespace from inputs
It's possible to get prompts that consist entirely of whitespace -
this is most likely to happen when generating embeddings. Currently,
we will trim this away, leaving an empty prompt, which will then
generate an error.

Generating embeddings from whitespace should not trigger an error,
as this may break pipelines. It's better to just leave the whitespace
in place and process what we are given. This is consistent with
past versions of Ollama.

Bug #7578
2024-11-14 11:23:06 -08:00
Jesse Gross
17b386a891 runner.go: Enforce NUM_PARALLEL directly in the runner
NUM_PARALEL is currently enforced by the Ollama server process - it
will only issue requests to the runner if the maximum number of
concurrent requests has not been exceeded. Although this should
be sufficient, it is good for the runner to protect its own data
structures. Currently, if too many requests get through to the
runner, they will just get stuck and never return.

This may help with reports of Ollama hanging, though it is unclear
how it would actually occur.

Bug #7573
2024-11-14 11:21:59 -08:00
Michael Yang
549c2bdfcf Merge pull request #7657 from ollama/mxyng/sync
fix(mllama): sync backend between batches
2024-11-14 09:40:04 -08:00
Blake Mizerany
67691e410d cmd: preserve exact bytes when displaying template/system layers (#7586) 2024-11-13 23:53:30 -08:00
Michael Yang
5b3393b6a2 fix(mllama): sync backend between batches 2024-11-13 16:37:21 -08:00
Jesse Gross
d7eb05b936 runner.go: Fix off-by-one for num predicted 2024-11-12 11:35:57 -08:00
Daniel Hiltgen
636a743c2b CI: give windows lint more time (#7635)
It looks like 8 minutes isn't quite enough and we're seeing sporadic timeouts
2024-11-12 11:22:39 -08:00
Daniel Hiltgen
df011054fa Jetpack support for Go server (#7217)
This adds support for the Jetson JetPack variants into the Go runner
2024-11-12 10:31:52 -08:00
Daniel Hiltgen
ac07160c8d doc: capture numeric group requirement (#6941)
Docker uses the container filesystem for name resolution, so we can't guide users
to use the name of the host group.  Instead they must specify the numeric ID.
2024-11-12 09:13:23 -08:00
Daniel Hiltgen
6606e4243c docs: Capture docker cgroup workaround (#7519)
GPU support can break on some systems after a while.  This captures a
known workaround to solve the problem.
2024-11-12 09:12:50 -08:00
Jesse Gross
65973ceb64 runner.go: Make KV entry accounting more robust
The structure of the accounting for KV cache shifting was carried
over from the old runner but it now doesn't feel natural with the new
runner. There are a number of invariants that should hold true but
are difficult to reason about. There is at least one bug report
that would imply that the invariants are not holding.

This reduces the number of implicit assumptions and is more forgiving
of unexpected situations. It also improves behavior around which input
tokens are kept when truncation occurs.

Bug #7545
2024-11-11 20:23:03 -08:00
Joey Zheng
bebef1e50d readme: add aichat terminal app to community integrations (#7418) 2024-11-11 16:44:46 -08:00
Evan
d48c1c5a44 api: fix typos in Go Doc comments (#7620) 2024-11-11 16:21:58 -08:00
Prasad Bhalerao
36a8372b28 readme: add GoLamify to community integrations (#7521) 2024-11-10 22:38:18 -08:00
Ivo Stoykov
4e94227b5d readme: add browser extension that enables using Ollama for interacting with web pages (#5827) 2024-11-10 22:14:22 -08:00
frances720
479d551766 docs: add mentions of Llama 3.2 (#7517) 2024-11-10 19:04:23 -08:00
Evan
76b2b723b2 api: fix typo in python ClientFromEnvironment docs (#7604) 2024-11-10 17:30:27 -08:00
Arhan Busam
b8d77cdeab readme: add llama3.2-vision to model list (#7580) 2024-11-10 13:36:25 -08:00
Jesse Gross
c2e8cbaa14 runner.go: Check for zero length images
If we get a request with a zero length image, it will result in
an out-of-bounds error when we pass the data to the image encoder.
2024-11-08 09:39:32 -08:00
Edward J. Schwartz
771fab1dd8 docs: update langchainpy.md with proper model name (#7527) 2024-11-08 09:36:17 -08:00
Daniel Hiltgen
3a5239e6bf Set macos min version for all architectures (#7579) 2024-11-08 09:27:04 -08:00
Daniel Hiltgen
3d25e7bf8c win: remove preview title from installer (#7529)
This should have been in #7347 but was overlooked.
2024-11-07 14:26:47 -08:00
Daniel Hiltgen
1618700c5a Workaround buggy P2P ROCm copy on windows (#7466)
This enables the workaround code only for windows which should help windows users with muliple AMD GPUs
2024-11-07 14:26:31 -08:00
Daniel Hiltgen
b111aa5a91 Debug logging for nvcuda init (#7532)
Some users are reporting crashes during nvcuda.dll initialization
on windows.  This should help narrow down where things are going bad.
2024-11-07 14:25:53 -08:00
Daniel Hiltgen
9e83e550e1 Align rocm compiler flags (#7467)
Bring consistency with the old generate script behavior
2024-11-07 10:20:50 -08:00
Daniel Hiltgen
fc2a0715df Be explicit for gpu library link dir (#7560)
On linux nvcc isn't automatically linking to the same cuda version.
2024-11-07 09:20:40 -08:00
Jesse Gross
3020d2dc58 docs: OLLAMA_NEW_RUNNERS no longer exists 2024-11-06 14:39:02 -08:00
Jesse Gross
a909417602 runner.go: Remove unused arguments
Now that server.cpp is gone, we don't need to keep passing arguments
that were only ignored and only kept for compatibility.
2024-11-06 13:32:18 -08:00
Jesse Gross
6cd566872b sched: Lift parallel restriction for multimodal models except mllama
The Go runner does not have a problem with supporting parallel
requests for most multimodal models. Now that we won't be potentially
falling back to server.cpp, this restriction can be lifted.

However, the new mllama model can't support parallel requests, so we
will need to keep a restriction for that.
2024-11-06 13:32:18 -08:00
RAPID ARCHITECT
9d71bcc3e2 Update README.md (#7516)
added reddit rate below hexabot, ollama powered reddit search and analysis with streamlit for the intervace
2024-11-05 15:07:25 -08:00
Daniel Hiltgen
a4c70fe157 One corrupt manifest should not wedge model operations (#7515)
One potential failure mode is an empty file which bubbles up as an EOF error,
leading to all pulls and listing operations failing.  Instead, continue and
warn about the corrupt manifest.  This also allows re-pulling the corrupt
manifest to repair the system.
2024-11-05 14:21:45 -08:00
Jesse Gross
34a75102f7 prompt: Use a single token when estimating mllama context size
Currently we assume that images take 768 tokens of context size for
the purposes of clipping old messages that exceed the context window.
However, our mllama implementation stores the full image embedding
in a single token. As a result, there is significant waste of context
space.

Ideally, we would handle this more generically and have the
implementation report the number of tokens. However, at the moment
this would just result in a similar set of 'if' conditions in the
runner plus APIs to report it back. So for now, we just keep this
simple.
2024-11-05 10:11:50 -08:00
Med Marrouchi
4157d1f7b6 readme: add Hexabot to the list of community integrations 2024-11-05 09:06:38 -08:00
Daniel Hiltgen
4ebfa2cb91 Quiet down debug log of image payload (#7454)
Avoid excessive log spew and make consistent with chat logging
2024-11-04 13:05:16 -08:00
Daniel Hiltgen
046054fa3b CI: Switch to v13 macos runner (#7498) 2024-11-04 13:02:07 -08:00
Daniel Hiltgen
95483f348b CI: matrix strategy fix (#7496)
Github actions matrix strategy can't access env settings
2024-11-04 10:48:35 -08:00
Michael Yang
f247a6233e Merge pull request #7456 from ollama/mxyng/llama3.2-vision-mem
update llama3.2 vision memory estimation
2024-11-04 09:48:43 -08:00
Daniel Hiltgen
44bd9e5994 Sign windows arm64 official binaries (#7493) 2024-11-04 09:15:14 -08:00
suncloudsmoon
18237be9b2 readme: add TextCraft to community integrations (#7377) 2024-11-03 16:53:51 -08:00
Daniel Hiltgen
29ab9fa7d7 nvidia libs have inconsistent ordering (#7473)
The runtime and management libraries may not always have
identical ordering, so use the device UUID to correlate instead of ID.
2024-11-02 16:35:41 -07:00
Daniel Hiltgen
b8d5036e33 CI: omit unused tools for faster release builds (#7432)
This leverages caching, and some reduced installer scope to try
to speed up builds. It also tidies up some windows build logic
that was only relevant for the older generate/cmake builds.
2024-11-02 13:56:54 -07:00
Jesse Gross
312d9de1d1 llama: Improve error handling
Check for NULL return values from llama.cpp in more places and
convert them into Go errors, which should make debugging easier
in the future rather than having hidden surprises in our data
structures.
2024-11-02 13:37:55 -07:00
Jesse Gross
a103dae01e runner.go: Only allocate 1 element embedding batches for mllama
Mllama has large embeddings (100 MB per image) and each embedding is
represented as 1 token when passed to llama.cpp. Batches are pre-
allocated for the size of the tokens times the batch size, so this
results in allocations of over 50 GB at the default batch size.
On some systems, these mallocs will fail.

Since an image is represented as a single token and mllama doesn't
support more than 1 image per request, we only need to allocate a
batch size of 1, which is much more reasonable. In addition, for
non-multimodal models, we don't need to allocate the embedding
batches at all.

Fixes #7464
2024-11-02 13:37:55 -07:00
Michael Yang
d07cf41a97 refactor kv estimation 2024-11-01 16:23:55 -07:00
Michael Yang
8c238e70ab mllama cross attention 2024-11-01 16:23:55 -07:00
Daniel Hiltgen
8a9bb0d000 Add basic mllama integration tests (#7455) 2024-10-31 17:25:48 -07:00
Jesse Gross
26acdcf44e runner.go: Don't set cross attention before sending embeddings
Currently if an input has embeddings at any point then we will set
cross attention to true from the beginning. This means that any
tokens before the embeddings are sent will incorrectly have cross
attention layers applied.

This only sets cross attention when we have an embedding, either
previously in this sequence or in the cache. It also makes cross
attention capable of supporting parallelism at the runner level,
though the mllama implementation doesn't support that yet.
2024-10-31 13:56:08 -07:00
Daniel Hiltgen
921779bb10 Give unicode test more time to run (#7437)
* Give unicode test more time to run

Some slower GPUs (or partial CPU/GPU loads) can take more than the default 30s to complete this test

* Give more time for concurrency test

CPU inference can be very slow under stress
2024-10-31 13:35:31 -07:00
Daniel Hiltgen
16f4eabe2d Refine default thread selection for NUMA systems (#7322)
Until we have full NUMA support, this adjusts the default thread selection
algorithm to count up the number of performance cores across all sockets.
2024-10-30 15:05:45 -07:00
Jesse Gross
c826e57475 runner.go: Better abstract vision model integration
-Update mllama to take the cross attention state as embeddings in
a batch, more similar to how Llava handles it. This improves
integration with the input cache.
-Pass locations in a prompt for embeddings using tags similar to Llava.
-Abstract interface to vision models so the main runner accesses Clip
and Mllama similarly

Co-authored-by: Michael Yang <mxyng@pm.me>
2024-10-30 14:53:43 -07:00
Daniel Hiltgen
712e99d477 Soften windows clang requirement (#7428)
This will no longer error if built with regular gcc on windows.  To help
triage issues that may come in related to different compilers, the runner now
reports the compier used by cgo.
2024-10-30 12:28:36 -07:00
Daniel Hiltgen
b754f5a6a3 Remove submodule and shift to Go server - 0.4.0 (#7157)
* Remove llama.cpp submodule and shift new build to top

* CI: install msys and clang gcc on win

Needed for deepseek to work properly on windows
2024-10-30 10:34:28 -07:00
Daniel Hiltgen
a805e5947e Move windows app out of preview (#7347) 2024-10-30 09:24:59 -07:00
Daniel Hiltgen
91dfbb1bba windows: Support alt install paths, fit and finish (#6967)
* windows: Support alt install paths

Advanced users are leveraging innosetup's /DIR switch to target
an alternate location, but we get confused by things not existing in the LocalAppData dir.
This also hardens the server path lookup code for a future attempt to unify with a ./bin prefix

* Fit and finish improvements for windows app

Document alternate install location instructions for binaries and model.
Pop up progress UI for upgrades (automatic, with cancel button).
Expose non-default port in menu to disambiguate mutiple instances.
Set minimum Windows version to 10 22H2
2024-10-30 09:24:31 -07:00
Patrick Devine
db1842b9e1 add more tests for getting the optimal tiled canvas (#7411) 2024-10-29 16:28:02 -07:00
Daniel Hiltgen
c9ca386131 Switch windows to clang (#7407)
* Switch over to clang for deepseek on windows

The patch for deepseek requires clang on windows. gcc on windows
has a buggy c++ library and can't handle the unicode characters

* Fail fast with wrong compiler on windows

Avoid users mistakenly building with GCC when we need clang
2024-10-29 13:15:04 -07:00
Jesse Gross
078f666f73 tests: Add test for Unicode processing 2024-10-28 18:12:29 -07:00
Jesse Gross
de1557a0dc runner.go: Better handle return NULL values from llama.cpp
Llama.cpp sometimes returns NULL as a return value to report an
error. We should explicitly check for this and convert it to a Go
error rather than putting NULL in our data structures and waiting
for it to blow up later.
2024-10-28 18:12:29 -07:00
Patrick Devine
084929c293 add mllama image processing to the generate handler (#7384) 2024-10-28 13:51:19 -07:00
Daniel Hiltgen
abd5dfd06a Bump to latest Go 1.22 patch (#7379) 2024-10-26 17:03:37 -07:00
Daniel Hiltgen
099f7077a1 Fix deepseek deseret regex (#7369)
On windows compiled with gcc the c++ regex library failed to handle
the characters
2024-10-26 14:58:54 -07:00
Daniel Hiltgen
d7c94e0ca6 Better support for AMD multi-GPU on linux (#7212)
* Better support for AMD multi-GPU

This resolves a number of problems related to AMD multi-GPU setups on linux.

The numeric IDs used by rocm are not the same as the numeric IDs exposed in
sysfs although the ordering is consistent.  We have to count up from the first
valid gfx (major/minor/patch with non-zero values) we find starting at zero.

There are 3 different env vars for selecting GPUs, and only ROCR_VISIBLE_DEVICES
supports UUID based identification, so we should favor that one, and try
to use UUIDs if detected to avoid potential ordering bugs with numeric IDs

* ROCR_VISIBLE_DEVICES only works on linux

Use the numeric ID only HIP_VISIBLE_DEVICES on windows
2024-10-26 14:04:14 -07:00
Daniel Hiltgen
35ec7f079f Fix unicode output on windows with redirect to file (#7358)
If we're not writing out to a terminal, avoid setting the console mode
on windows, which corrupts the output file.
2024-10-25 13:43:16 -07:00
Daniel Hiltgen
5231ae52d9 Fix incremental build file deps (#7361)
The common src/hdr defs should be in the common definitions, not gpu specific.
2024-10-25 11:50:45 -07:00
Daniel Hiltgen
3085c47bea Improve dependency gathering logic (#7345)
This unfies the rocm/cuda dependency logic into the makefile
and fixes a missing define which broke windows rocm
2024-10-24 09:51:53 -07:00
Bill Wang
0ccc73251a fix #7247 - invalid image input (#7249)
---------

Co-authored-by: Bill Wang <bill.wang@bill.wang>
2024-10-23 10:31:04 -07:00
Daniel Hiltgen
dc6fe82051 integration: harden embedding test (#7306)
Use cosine similarity to make the embeddings tests more robust
2024-10-22 15:25:22 -07:00
Patrick Devine
d78fb62056 default to "FROM ." if a Modelfile isn't present (#7250) 2024-10-22 13:32:24 -07:00
Daniel Hiltgen
5c44461ccf Fix rocm windows build and clean up dependency gathering (#7305)
On windows ensure windows version define is properly set for rocm.
Remove duplicate rocm arch flags.
Resolve wildcards in the targets so parallel builds don't race.
Use readlink to resolve rocm dependencies since wildcards omit libelf
Keep windows rocm deps aligned with unified packaging model
2024-10-22 12:54:15 -07:00
Jesse Gross
03e40efa51 runner.go: Merge partial unicode characters before sending
We check for partial unicode characters and accumulate them before
sending. However, when we did send, we still sent each individual piece
separately, leading to broken output. This combines everything into
a single group, which is also more efficient.

This also switches to the built-in check for valid unicode characters,
which is stricter. After this, we should never send back an invalid
sequence.

Fixes #7290
2024-10-22 12:07:51 -07:00
Mattt
23f746508d readme: add Ollama for Swift to the community integrations (#7295) 2024-10-21 22:29:11 -07:00
Jeffrey Morgan
48708ca0d5 server: allow vscode-webview origin (#7273) 2024-10-19 14:06:41 -07:00
Patrick Devine
c7cb0f0602 image processing for llama3.2 (#6963)
Co-authored-by: jmorganca <jmorganca@gmail.com>
Co-authored-by: Michael Yang <mxyng@pm.me>
Co-authored-by: Jesse Gross <jesse@ollama.com>
2024-10-18 16:12:35 -07:00
Daniel Hiltgen
bf4018b9ec llama: Decouple patching script from submodule (#7139)
* Refine llama.cpp vendoring workflow tools

Switch from the sync.sh over to make based tooling

* Run new make sync and patch flow
2024-10-17 15:03:09 -07:00
Daniel Hiltgen
f86d00cd95 llama: add compiler tags for cpu features (#7137)
This adds the ability to customize the default runner with user specified flags
2024-10-17 13:43:20 -07:00
Gabe Goodhart
f2890a4494 IBM granite/granitemoe architecture support (#6760)
* fix(ext_server): Port llama.cpp sampling refactors to ext_server

This was a fairly large changeset. I closely followed the changes here:
df270ef745

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(server.cpp): Refactor server.cpp logging for llama.cpp overhaul

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Bump llama.cpp to the latest master with `granite` support

This does not yet have granite MoE support, but that can come in a
follow up PR

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(patches): Update all patches (except solar-pro) to work with bumped llama.cpp

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(solar): Update solar patch for llama.cpp bump

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat(llama.cpp): Bump llama.cpp for granitemoe support

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat(llama.cpp): Bump llama.cpp for granitemoe support

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(solar): Update the solar-pro patch for latest llama.cpp bump

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat(llama.cpp): Bump to the latest master of llama.cpp

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(patches): Update all patches for latest bump

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat(llama): Always run sync.sh from the right directory

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llama/patches): Update llama patches

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat(llama)!: Rough sync with llama.cpp submodule

There are a number of changes that will need to be propagated to llama.go
before any of this works!

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llama/patches): Add a patch and update for missing ggml-impl.h include

This include is where the ggml_cgraph struct is defined. It is included in
many of the .c files to define the forward declartion in ggml.h. It seems
that with the subset of code included here, the import was somehow lost (or
out-of-order) when building, so adding this include to llama.cpp fixes the
missing definition.

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llama/sync): Add missing ggml-cpu-impl.h copy-over in sync.sh

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llama): Add missing log.cpp

This was added as part of the logging overhaul done in llama.cpp

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llama): Overhaul use of sampling module for llama.cpp changes

The changes here reflect the changes made in the big llama.cpp sampling PR
https://github.com/ggerganov/llama.cpp/pull/9294

The sampling functionality is now broken into the base interface
(llama_sampler) and the generation implementation (gpt_sampler). The
changes here reflect that. Since the sampling.h/sampling.cpp code uses c++
STL headers, the sampling_ext.[h|cpp] wrapper is maintained to allow go to
access a pure-C interface.

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llama): Fix the impl of SampleTokenGreedy for new sampling

I don't think this method is currently used, so it could probably just be
removed so that all sampling goes through the GPT interface, but in the
interest of doing no harm, this should keep the method working as expected.

Branch: IBMGraniteArchitectureSupport

* fix(llama): Remove unused SampleTokenGreedy

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(sync): Remove bash-specific change to sync.sh

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* chore(gofumpt): Format on llama.go to pass linting

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llm): Fix missing <thread> include in ext_server

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llama): Remove TODO about grammar_first

This feature was not used/needed previously so should be fine without
plumbing it through now.

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llama): Better naming for sampling wrapper and args

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llama): Fix patch 05 to use new wrapper api and re-sync

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* runner: Flush pending responses before returning

If there are any pending reponses (such as from potential stop
tokens) then we should send them back before ending the sequence.
Otherwise, we can be missing tokens at the end of a response.

Fixes #6707

* fix(llama/sampling): Use gpt_sampler with a forward declaration

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llama): Remove unnecessary patch for gguf impl header

This was caused by an earlier mistake in the embeddings patch that was
dereferencing the pointer instead of using the wrapper API.

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llm): Remove use of deprecated --log-disable flag

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2024-10-17 11:59:52 -07:00
Daniel Hiltgen
05cd82ef94 Rename gpu package discover (#7143)
Cleaning up go package naming
2024-10-16 17:45:00 -07:00
Daniel Hiltgen
7d6eb0d4c3 Move macos v11 support flags to build script (#7203)
Having v11 support hard-coded into the cgo settings causes warnings
for newer Xcode versions.  This should help keep the build clean for users
building from source with the latest tools, while still allow us to target
the older OS via our CI processes.
2024-10-16 12:49:46 -07:00
Daniel Hiltgen
24636dfa87 Discovery CPU details for default thread selection (#6264)
On windows, detect large multi-socket systems and reduce to the number of cores
in one socket for best performance
2024-10-15 11:36:08 -07:00
JHubi1
1d7fa3ad2d Adding 'Ollama App' as community integrations (#6465) 2024-10-15 09:57:32 -07:00
frob
09035b71cd Add missing BF16 tensor type. (#7193)
Co-authored-by: Richard Lyons <frob@cloudstaff.com>
2024-10-14 17:06:35 -07:00
Daniel Hiltgen
f3c8b898cd Track GPU discovery failure information (#5820)
* Expose GPU discovery failure information

* Remove exposed API for now
2024-10-14 16:26:45 -07:00
Daniel Hiltgen
5dd0477fd4 Fix regression on older macos versions (#7192)
The new cgo compilation requires a flag to target older macos versions
2024-10-13 10:47:42 -07:00
Daniel Hiltgen
c3d321d405 llm: Remove GGML_CUDA_NO_PEER_COPY for ROCm (#7174)
This workaround logic in llama.cpp is causing crashes for users with less system memory than VRAM.
2024-10-12 09:56:49 -07:00
408 changed files with 24362 additions and 27896 deletions

View File

@@ -3,9 +3,7 @@ ollama
app
macapp
dist
llm/llama.cpp
.env
.cache
test_data
llm/build
llama/build

1
.gitattributes vendored
View File

@@ -1,4 +1,3 @@
llm/ext_server/* linguist-vendored
llama/**/*.cpp linguist-vendored
llama/**/*.hpp linguist-vendored
llama/**/*.h linguist-vendored

View File

@@ -1,5 +1,9 @@
name: release
env:
ROCM_WINDOWS_URL: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe
MSYS2_URL: https://github.com/msys2/msys2-installer/releases/download/2024-07-27/msys2-x86_64-20240727.exe
on:
push:
tags:
@@ -8,7 +12,7 @@ on:
jobs:
# Full build of the Mac assets
build-darwin:
runs-on: macos-12
runs-on: macos-13
environment: release
steps:
- uses: actions/checkout@v4
@@ -39,8 +43,8 @@ jobs:
APPLE_PASSWORD: ${{ secrets.APPLE_PASSWORD }}
APPLE_TEAM_ID: ${{ vars.APPLE_TEAM_ID }}
APPLE_ID: ${{ vars.APPLE_ID }}
SDKROOT: /Applications/Xcode_13.4.1.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk
DEVELOPER_DIR: /Applications/Xcode_13.4.1.app/Contents/Developer
SDKROOT: /Applications/Xcode_14.1.0.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk
DEVELOPER_DIR: /Applications/Xcode_14.1.0.app/Contents/Developer
run: |
./scripts/build_darwin.sh
@@ -48,8 +52,8 @@ jobs:
with:
name: dist-darwin
path: |
dist/*arwin*
!dist/*-cov
dist/Ollama-darwin.zip
dist/ollama-darwin
# Windows builds take a long time to both install the dependencies and build, so parallelize
# CPU generation step
@@ -60,51 +64,34 @@ jobs:
KEY_CONTAINER: ${{ vars.KEY_CONTAINER }}
steps:
- uses: actions/checkout@v4
- name: Set make jobs default
run: |
echo "MAKEFLAGS=--jobs=$((Get-ComputerInfo -Property CsProcessors).CsProcessors.NumberOfCores)" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
- name: Set Version
shell: bash
run: echo "VERSION=${GITHUB_REF_NAME#v}" >> $GITHUB_ENV
- uses: 'google-github-actions/auth@v2'
with:
project_id: 'ollama'
credentials_json: '${{ secrets.GOOGLE_SIGNING_CREDENTIALS }}'
- run: echo "${{ vars.OLLAMA_CERT }}" > ollama_inc.crt
- name: install Windows SDK 8.1 to get signtool
- name: Add msys paths
run: |
$ErrorActionPreference = "Stop"
write-host "downloading SDK"
Invoke-WebRequest -Uri "https://go.microsoft.com/fwlink/p/?LinkId=323507" -OutFile "${env:RUNNER_TEMP}\sdksetup.exe"
Start-Process "${env:RUNNER_TEMP}\sdksetup.exe" -ArgumentList @("/q") -NoNewWindow -Wait
write-host "Win SDK 8.1 installed"
gci -path 'C:\Program Files (x86)\Windows Kits\' -r -fi 'signtool.exe'
- name: install signing plugin
echo "c:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- name: Install msys2 tools
run: |
$ErrorActionPreference = "Stop"
write-host "downloading plugin"
Invoke-WebRequest -Uri "https://github.com/GoogleCloudPlatform/kms-integrations/releases/download/cng-v1.0/kmscng-1.0-windows-amd64.zip" -OutFile "${env:RUNNER_TEMP}\plugin.zip"
Expand-Archive -Path "${env:RUNNER_TEMP}\plugin.zip" -DestinationPath ${env:RUNNER_TEMP}\plugin\
write-host "Installing plugin"
& "${env:RUNNER_TEMP}\plugin\*\kmscng.msi" /quiet
write-host "plugin installed"
Start-Process "c:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang") -NoNewWindow -Wait
- uses: actions/setup-go@v5
with:
go-version-file: go.mod
cache: true
- run: go get ./...
- run: |
$gopath=(get-command go).source | split-path -parent
& "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1"
cd $env:GITHUB_WORKSPACE
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
$env:PATH="$gopath;$env:PATH"
go generate -x ./...
name: go generate
import-module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -vsinstallpath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -skipautomaticlocation -DevCmdArguments '-arch=x64 -no_logo'
if (!(gcc --version | select-string -quiet clang)) { throw "wrong gcc compiler detected - must be clang" }
make
name: make
- uses: actions/upload-artifact@v4
with:
name: generate-windows-cpu
path: |
build/**/*
build/**/*.a
llm/build/**/*.a
dist/windows-amd64/**
# ROCm generation step
@@ -115,74 +102,55 @@ jobs:
KEY_CONTAINER: ${{ vars.KEY_CONTAINER }}
steps:
- uses: actions/checkout@v4
- name: Set make jobs default
run: |
echo "MAKEFLAGS=--jobs=$((Get-ComputerInfo -Property CsProcessors).CsProcessors.NumberOfCores)" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
- name: Set Version
shell: bash
run: echo "VERSION=${GITHUB_REF_NAME#v}" >> $GITHUB_ENV
- uses: 'google-github-actions/auth@v2'
with:
project_id: 'ollama'
credentials_json: '${{ secrets.GOOGLE_SIGNING_CREDENTIALS }}'
- run: echo "${{ vars.OLLAMA_CERT }}" > ollama_inc.crt
- name: install Windows SDK 8.1 to get signtool
- name: Add msys paths
run: |
$ErrorActionPreference = "Stop"
write-host "downloading SDK"
Invoke-WebRequest -Uri "https://go.microsoft.com/fwlink/p/?LinkId=323507" -OutFile "${env:RUNNER_TEMP}\sdksetup.exe"
Start-Process "${env:RUNNER_TEMP}\sdksetup.exe" -ArgumentList @("/q") -NoNewWindow -Wait
write-host "Win SDK 8.1 installed"
gci -path 'C:\Program Files (x86)\Windows Kits\' -r -fi 'signtool.exe'
- name: install signing plugin
echo "c:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- name: Install msys2 tools
run: |
$ErrorActionPreference = "Stop"
write-host "downloading plugin"
Invoke-WebRequest -Uri "https://github.com/GoogleCloudPlatform/kms-integrations/releases/download/cng-v1.0/kmscng-1.0-windows-amd64.zip" -OutFile "${env:RUNNER_TEMP}\plugin.zip"
Expand-Archive -Path "${env:RUNNER_TEMP}\plugin.zip" -DestinationPath ${env:RUNNER_TEMP}\plugin\
write-host "Installing plugin"
& "${env:RUNNER_TEMP}\plugin\*\kmscng.msi" /quiet
write-host "plugin installed"
Start-Process "c:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang") -NoNewWindow -Wait
- uses: actions/setup-go@v5
with:
go-version-file: go.mod
cache: true
- name: 'Install ROCm'
# ROCM installation steps
- name: 'Cache ROCm installer'
id: cache-rocm
uses: actions/cache@v4
with:
path: rocm-install.exe
key: ${{ env.ROCM_WINDOWS_URL }}
- name: 'Conditionally Download ROCm'
if: steps.cache-rocm.outputs.cache-hit != 'true'
run: |
$ErrorActionPreference = "Stop"
write-host "downloading AMD HIP Installer"
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
write-host "Installing AMD HIP"
Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
write-host "Completed AMD HIP"
Invoke-WebRequest -Uri "${env:ROCM_WINDOWS_URL}" -OutFile "rocm-install.exe"
- name: 'Install ROCm'
run: |
Start-Process "rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
- name: 'Verify ROCm'
run: |
& 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' --version
- run: go get ./...
- run: |
$gopath=(get-command go).source | split-path -parent
& "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1"
cd $env:GITHUB_WORKSPACE
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
$env:PATH="$gopath;$env:PATH"
$env:OLLAMA_SKIP_CPU_GENERATE="1"
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
go generate -x ./...
name: go generate
- name: 'gather rocm dependencies'
echo "HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path | select -first 1)" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
- name: make rocm runner
run: |
$HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
md "dist\deps\bin\rocblas\library"
cp "${HIP_PATH}\bin\hipblas.dll" "dist\deps\bin\"
cp "${HIP_PATH}\bin\rocblas.dll" "dist\deps\bin\"
cp "${HIP_PATH}\bin\rocblas\library\*" "dist\deps\bin\rocblas\library\"
import-module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -vsinstallpath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -skipautomaticlocation -DevCmdArguments '-arch=x64 -no_logo'
if (!(gcc --version | select-string -quiet clang)) { throw "wrong gcc compiler detected - must be clang" }
make -C llama print-HIP_PATH print-HIP_LIB_DIR
make rocm
- uses: actions/upload-artifact@v4
with:
name: generate-windows-rocm
path: |
build/**/*
dist/windows-amd64/**
- uses: actions/upload-artifact@v4
with:
name: windows-rocm-deps
path: dist/deps/*
# CUDA generation step
generate-windows-cuda:
@@ -191,88 +159,80 @@ jobs:
strategy:
matrix:
cuda:
- version: "11"
url: 'https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe'
- version: "12"
url: 'https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_551.61_windows.exe'
- version: "11.3"
url: https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe
- version: "12.4"
url: https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_551.61_windows.exe
env:
KEY_CONTAINER: ${{ vars.KEY_CONTAINER }}
steps:
- uses: actions/checkout@v4
- name: Set make jobs default
run: |
echo "MAKEFLAGS=--jobs=$((Get-ComputerInfo -Property CsProcessors).CsProcessors.NumberOfCores)" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
- name: Set Version
shell: bash
run: echo "VERSION=${GITHUB_REF_NAME#v}" >> $GITHUB_ENV
- uses: 'google-github-actions/auth@v2'
with:
project_id: 'ollama'
credentials_json: '${{ secrets.GOOGLE_SIGNING_CREDENTIALS }}'
- run: echo "${{ vars.OLLAMA_CERT }}" > ollama_inc.crt
- name: install Windows SDK 8.1 to get signtool
- name: Install msys2
run: |
$ErrorActionPreference = "Stop"
write-host "downloading SDK"
Invoke-WebRequest -Uri "https://go.microsoft.com/fwlink/p/?LinkId=323507" -OutFile "${env:RUNNER_TEMP}\sdksetup.exe"
Start-Process "${env:RUNNER_TEMP}\sdksetup.exe" -ArgumentList @("/q") -NoNewWindow -Wait
write-host "Win SDK 8.1 installed"
gci -path 'C:\Program Files (x86)\Windows Kits\' -r -fi 'signtool.exe'
- name: install signing plugin
$msys2_url="https://github.com/msys2/msys2-installer/releases/download/2024-07-27/msys2-x86_64-20240727.exe"
write-host "Downloading msys2"
Invoke-WebRequest -Uri "${msys2_url}" -OutFile "${env:RUNNER_TEMP}\msys2.exe"
write-host "Installing msys2"
Start-Process "${env:RUNNER_TEMP}\msys2.exe" -ArgumentList @("in", "--confirm-command", "--accept-messages", "--root", "C:/msys64") -NoNewWindow -Wait
echo "c:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- name: Install msys2 tools
run: |
$ErrorActionPreference = "Stop"
write-host "downloading plugin"
Invoke-WebRequest -Uri "https://github.com/GoogleCloudPlatform/kms-integrations/releases/download/cng-v1.0/kmscng-1.0-windows-amd64.zip" -OutFile "${env:RUNNER_TEMP}\plugin.zip"
Expand-Archive -Path "${env:RUNNER_TEMP}\plugin.zip" -DestinationPath ${env:RUNNER_TEMP}\plugin\
write-host "Installing plugin"
& "${env:RUNNER_TEMP}\plugin\*\kmscng.msi" /quiet
write-host "plugin installed"
Start-Process "c:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang", "make") -NoNewWindow -Wait
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- name: verify tools
run: |
get-command gcc
gcc --version
get-command make
make --version
- uses: actions/setup-go@v5
with:
go-version-file: go.mod
cache: true
- name: 'Install CUDA ${{ matrix.cuda.version }}'
# CUDA installation steps
- name: 'Cache CUDA installer'
id: cache-cuda
uses: actions/cache@v4
with:
path: cuda-install.exe
key: ${{ matrix.cuda.url }}
- name: 'Conditionally Download CUDA'
if: steps.cache-cuda.outputs.cache-hit != 'true'
run: |
$ErrorActionPreference = "Stop"
write-host "downloading CUDA Installer"
Invoke-WebRequest -Uri "${{ matrix.cuda.url }}" -OutFile "${env:RUNNER_TEMP}\cuda-install.exe"
write-host "Installing CUDA"
Start-Process "${env:RUNNER_TEMP}\cuda-install.exe" -ArgumentList '-s' -NoNewWindow -Wait
write-host "Completed CUDA"
Invoke-WebRequest -Uri "${{ matrix.cuda.url }}" -OutFile "cuda-install.exe"
- name: 'Install CUDA'
run: |
$subpackages = @("cudart", "nvcc", "cublas", "cublas_dev") | foreach-object {"${_}_${{ matrix.cuda.version }}"}
Start-Process "cuda-install.exe" -ArgumentList (@("-s") + $subpackages) -NoNewWindow -Wait
- name: 'Verify CUDA'
run: |
& (resolve-path "c:\Program Files\NVIDIA*\CUDA\v*\bin\nvcc.exe")[0] --version
$cudaPath=((resolve-path "c:\Program Files\NVIDIA*\CUDA\v*\bin\nvcc.exe")[0].path | split-path | split-path)
$cudaVer=($cudaPath | split-path -leaf ) -replace 'v(\d+).(\d+)', '$1_$2'
echo "$cudaPath\bin" >> $env:GITHUB_PATH
echo "CUDA_PATH=$cudaPath" >> $env:GITHUB_ENV
echo "CUDA_PATH_V${cudaVer}=$cudaPath" >> $env:GITHUB_ENV
echo "CUDA_PATH_VX_Y=CUDA_PATH_V${cudaVer}" >> $env:GITHUB_ENV
- name: 'Verify CUDA'
run: nvcc -V
- run: go get ./...
- name: go generate
echo "$cudaPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "CUDA_PATH=$cudaPath" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
echo "CUDA_PATH_V${cudaVer}=$cudaPath" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
echo "CUDA_PATH_VX_Y=CUDA_PATH_V${cudaVer}" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
- name: make cuda runner
run: |
$gopath=(get-command go).source | split-path -parent
$cudabin=(get-command nvcc).source | split-path
& "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1"
cd $env:GITHUB_WORKSPACE
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
$env:PATH="$gopath;$cudabin;$env:PATH"
$env:OLLAMA_SKIP_CPU_GENERATE="1"
go generate -x ./...
- name: 'gather cuda dependencies'
run: |
$NVIDIA_DIR=(resolve-path 'C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\*\bin\')[0]
md "dist\deps"
cp "${NVIDIA_DIR}\cudart64_*.dll" "dist\deps\"
cp "${NVIDIA_DIR}\cublas64_*.dll" "dist\deps\"
cp "${NVIDIA_DIR}\cublasLt64_*.dll" "dist\deps\"
import-module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -vsinstallpath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -skipautomaticlocation -DevCmdArguments '-arch=x64 -no_logo'
if (!(gcc --version | select-string -quiet clang)) { throw "wrong gcc compiler detected - must be clang" }
make cuda_v$(($env:CUDA_PATH | split-path -leaf) -replace 'v(\d+).*', '$1')
- uses: actions/upload-artifact@v4
with:
name: generate-windows-cuda-${{ matrix.cuda.version }}
path: |
build/**/*
dist/windows-amd64/**
- uses: actions/upload-artifact@v4
with:
name: windows-cuda-deps-${{ matrix.cuda.version }}
path: dist/deps/*
# windows arm64 generate, go build, and zip file (no installer)
# Output of this build is aggregated into the final x86 build
@@ -292,6 +252,30 @@ jobs:
choco install -y --no-progress git gzip
echo "C:\Program Files\Git\cmd" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "C:\ProgramData\chocolatey\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
# pacman is buggy on win arm64, so we avoid using it, but rely on the binary artifacts
# we download the sfx (7zip bundle) which isn't fully set up, but the binaries we need to build work
- name: Install msys2 x64
run: |
$url="https://github.com/msys2/msys2-installer/releases/download/2024-07-27/msys2-base-x86_64-20240727.sfx.exe"
write-host "Downloading MSYS2"
Invoke-WebRequest -Uri "$url" -outfile "${env:RUNNER_TEMP}\msys2.exe"
write-host "Installing msys2"
Start-Process "${env:RUNNER_TEMP}\msys2.exe" -ArgumentList @(
'-y', '-oC:\'
) -NoNewWindow -Wait
echo "c:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
# since pacman isn't reliable, we just download the tar file and extract directly
- name: Downloading and extracting msys2 make tar file
run: |
$url="https://mirror.msys2.org/msys/x86_64/make-4.4.1-2-x86_64.pkg.tar.zst"
write-host "Downloading make"
Invoke-WebRequest -Uri "$url" -outfile c:\msys64\make.tar.zst
cd c:\msys64; tar -xf make.tar.zst
rm c:\msys64\make.tar.zst
- name: Verify Make works properly
run: |
echo $env:PATH
make --version
- name: Install Visual Studio 2022
run: |
$components = @(
@@ -385,13 +369,12 @@ jobs:
- run: |
$gopath=(get-command go).source | split-path -parent
$gccpath=(get-command gcc).source | split-path -parent
& "C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\Tools\Launch-VsDevShell.ps1"
cd $env:GITHUB_WORKSPACE
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
$env:PATH="$gopath;$gccpath;$env:PATH;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\CMake\CMake\bin"
import-module 'C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -Arch arm64 -vsinstallpath 'C:\Program Files\Microsoft Visual Studio\2022\Community' -skipautomaticlocation
$env:PATH="$gopath;$gccpath;$env:PATH"
echo $env:PATH
$env:ARCH="arm64"
.\scripts\build_windows.ps1 buildOllama buildApp gatherDependencies distZip
.\scripts\build_windows.ps1 buildOllama buildApp gatherDependencies sign distZip
name: 'Windows Build'
- uses: actions/upload-artifact@v4
with:
@@ -441,6 +424,24 @@ jobs:
write-host "Installing plugin"
& "${env:RUNNER_TEMP}\plugin\*\kmscng.msi" /quiet
write-host "plugin installed"
- name: Install msys2
run: |
$msys2_url="https://github.com/msys2/msys2-installer/releases/download/2024-07-27/msys2-x86_64-20240727.exe"
write-host "Downloading msys2"
Invoke-WebRequest -Uri "${msys2_url}" -OutFile "${env:RUNNER_TEMP}\msys2.exe"
write-host "Installing msys2"
Start-Process "${env:RUNNER_TEMP}\msys2.exe" -ArgumentList @("in", "--confirm-command", "--accept-messages", "--root", "C:/msys64") -NoNewWindow -Wait
echo "c:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- name: Install msys2 tools
run: |
Start-Process "c:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang", "make") -NoNewWindow -Wait
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- name: verify tools
run: |
get-command gcc
gcc --version
get-command make
make --version
- uses: actions/setup-go@v5
with:
go-version-file: go.mod
@@ -451,19 +452,10 @@ jobs:
name: generate-windows-cpu
- uses: actions/download-artifact@v4
with:
name: generate-windows-cuda-11
name: generate-windows-cuda-11.3
- uses: actions/download-artifact@v4
with:
name: generate-windows-cuda-12
- uses: actions/download-artifact@v4
with:
name: windows-cuda-deps-11
- uses: actions/download-artifact@v4
with:
name: windows-cuda-deps-12
- uses: actions/download-artifact@v4
with:
name: windows-rocm-deps
name: generate-windows-cuda-12.4
- uses: actions/download-artifact@v4
with:
name: generate-windows-rocm
@@ -473,12 +465,11 @@ jobs:
path: dist
- run: dir build
- run: |
$gopath=(get-command go).source | split-path -parent
& "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1"
cd $env:GITHUB_WORKSPACE
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
$env:PATH="$gopath;$env:PATH"
import-module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -vsinstallpath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -skipautomaticlocation -DevCmdArguments '-arch=x64 -no_logo'
$env:OLLAMA_SKIP_GENERATE="1"
$env:ARCH="amd64"
if (!(gcc --version | select-string -quiet clang)) { throw "wrong gcc compiler detected - must be clang" }
& .\scripts\build_windows.ps1
- uses: actions/upload-artifact@v4
with:

View File

@@ -1,5 +1,11 @@
name: test
env:
ROCM_WINDOWS_URL: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe
MSYS2_URL: https://github.com/msys2/msys2-installer/releases/download/2024-07-27/msys2-x86_64-20240727.exe
CUDA_12_WINDOWS_URL: https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_551.61_windows.exe
CUDA_12_WINDOWS_VER: 12.4
concurrency:
# For PRs, later CI runs preempt previous ones. e.g. a force push on a PR
# cancels running CI jobs and starts all new ones.
@@ -21,9 +27,6 @@ jobs:
changes:
runs-on: ubuntu-latest
outputs:
GENERATE: ${{ steps.changes.outputs.GENERATE }}
GENERATE_CUDA: ${{ steps.changes.outputs.GENERATE_CUDA }}
GENERATE_ROCM: ${{ steps.changes.outputs.GENERATE_ROCM }}
RUNNERS: ${{ steps.changes.outputs.RUNNERS }}
steps:
- uses: actions/checkout@v4
@@ -39,53 +42,12 @@ jobs:
}
{
echo GENERATE=$(changed 'llm/llama.cpp' 'llm/patches/**' 'llm/ext_server/**' 'llm/generate/**')
echo GENERATE_CUDA=$(changed 'llm/llama.cpp' 'llm/patches/**' 'llm/ext_server/**' 'llm/generate/**')
echo GENERATE_ROCM=$(changed 'llm/llama.cpp' 'llm/patches/**' 'llm/ext_server/**' 'llm/generate/**')
echo RUNNERS=$(changed 'llama/**')
} >>$GITHUB_OUTPUT
generate:
runners-linux-cuda:
needs: [changes]
if: ${{ needs.changes.outputs.GENERATE == 'True' }}
strategy:
matrix:
os: [ubuntu-latest, macos-latest, windows-2019]
arch: [amd64, arm64]
exclude:
- os: ubuntu-latest
arch: arm64
- os: windows-2019
arch: arm64
runs-on: ${{ matrix.os }}
env:
GOARCH: ${{ matrix.arch }}
CGO_ENABLED: '1'
steps:
- uses: actions/checkout@v4
- uses: actions/setup-go@v5
with:
go-version-file: go.mod
cache: true
- run: go get ./...
- run: |
$gopath=(get-command go).source | split-path -parent
$gccpath=(get-command gcc).source | split-path -parent
& "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1"
cd $env:GITHUB_WORKSPACE
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
$env:PATH="$gopath;$gccpath;$env:PATH"
echo $env:PATH
go generate -x ./...
if: ${{ startsWith(matrix.os, 'windows-') }}
name: 'Windows Go Generate'
- run: go generate -x ./...
if: ${{ ! startsWith(matrix.os, 'windows-') }}
name: 'Unix Go Generate'
- run: go build .
generate-cuda:
needs: [changes]
if: ${{ needs.changes.outputs.GENERATE_CUDA == 'True' }}
if: ${{ needs.changes.outputs.RUNNERS == 'True' }}
strategy:
matrix:
cuda-version:
@@ -95,8 +57,6 @@ jobs:
steps:
- run: |
apt-get update && apt-get install -y git build-essential curl
curl -fsSL https://github.com/Kitware/CMake/releases/download/v3.28.1/cmake-3.28.1-linux-x86_64.tar.gz \
| tar -zx -C /usr --strip-components 1
env:
DEBIAN_FRONTEND: noninteractive
- uses: actions/checkout@v4
@@ -107,12 +67,11 @@ jobs:
- run: go get ./...
- run: |
git config --global --add safe.directory /__w/ollama/ollama
go generate -x ./...
env:
OLLAMA_SKIP_CPU_GENERATE: '1'
generate-rocm:
cores=$(grep '^core id' /proc/cpuinfo |sort -u|wc -l)
make -j $cores cuda_v11
runners-linux-rocm:
needs: [changes]
if: ${{ needs.changes.outputs.GENERATE_ROCM == 'True' }}
if: ${{ needs.changes.outputs.RUNNERS == 'True' }}
strategy:
matrix:
rocm-version:
@@ -122,8 +81,6 @@ jobs:
steps:
- run: |
apt-get update && apt-get install -y git build-essential curl rocm-libs
curl -fsSL https://github.com/Kitware/CMake/releases/download/v3.28.1/cmake-3.28.1-linux-x86_64.tar.gz \
| tar -zx -C /usr --strip-components 1
env:
DEBIAN_FRONTEND: noninteractive
- uses: actions/checkout@v4
@@ -134,14 +91,13 @@ jobs:
- run: go get ./...
- run: |
git config --global --add safe.directory /__w/ollama/ollama
go generate -x ./...
env:
OLLAMA_SKIP_CPU_GENERATE: '1'
cores=$(grep '^core id' /proc/cpuinfo |sort -u|wc -l)
make -j $cores rocm
# ROCm generation step
generate-windows-rocm:
runners-windows-rocm:
needs: [changes]
if: ${{ needs.changes.outputs.GENERATE_ROCM == 'True' }}
if: ${{ needs.changes.outputs.RUNNERS == 'True' }}
runs-on: windows
steps:
- uses: actions/checkout@v4
@@ -149,35 +105,50 @@ jobs:
with:
go-version-file: go.mod
cache: true
- name: 'Install ROCm'
- name: Set make jobs default
run: |
echo "MAKEFLAGS=--jobs=$((Get-ComputerInfo -Property CsProcessors).CsProcessors.NumberOfCores)" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
# ROCM installation steps
- name: 'Cache ROCm installer'
id: cache-rocm
uses: actions/cache@v4
with:
path: rocm-install.exe
key: ${{ env.ROCM_WINDOWS_URL }}
- name: 'Conditionally Download ROCm'
if: steps.cache-rocm.outputs.cache-hit != 'true'
run: |
$ErrorActionPreference = "Stop"
write-host "downloading AMD HIP Installer"
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
write-host "Installing AMD HIP"
Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
write-host "Completed AMD HIP"
Invoke-WebRequest -Uri "${env:ROCM_WINDOWS_URL}" -OutFile "rocm-install.exe"
- name: 'Install ROCm'
run: |
Start-Process "rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
- name: 'Verify ROCm'
run: |
& 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' --version
- run: go get ./...
- run: |
$gopath=(get-command go).source | split-path -parent
& "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1"
cd $env:GITHUB_WORKSPACE
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
$env:PATH="$gopath;$env:PATH"
$env:OLLAMA_SKIP_CPU_GENERATE="1"
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
go generate -x ./...
name: go generate
env:
OLLAMA_SKIP_CPU_GENERATE: '1'
echo "HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path | select -first 1)" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
- name: Add msys paths
run: |
echo "c:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- name: Install msys2 tools
run: |
Start-Process "c:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang") -NoNewWindow -Wait
- name: make rocm runner
run: |
import-module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -vsinstallpath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -skipautomaticlocation -DevCmdArguments '-arch=x64 -no_logo'
if (!(gcc --version | select-string -quiet clang)) { throw "wrong gcc compiler detected - must be clang" }
make -C llama print-HIP_PATH print-HIP_LIB_DIR
make rocm
# CUDA generation step
generate-windows-cuda:
runners-windows-cuda:
needs: [changes]
if: ${{ needs.changes.outputs.GENERATE_CUDA == 'True' }}
if: ${{ needs.changes.outputs.RUNNERS == 'True' }}
runs-on: windows
steps:
- uses: actions/checkout@v4
@@ -185,37 +156,51 @@ jobs:
with:
go-version-file: go.mod
cache: true
- name: 'Install CUDA'
- name: Set make jobs default
run: |
echo "MAKEFLAGS=--jobs=$((Get-ComputerInfo -Property CsProcessors).CsProcessors.NumberOfCores)" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
# CUDA installation steps
- name: 'Cache CUDA installer'
id: cache-cuda
uses: actions/cache@v4
with:
path: cuda-install.exe
key: ${{ env.CUDA_12_WINDOWS_URL }}
- name: 'Conditionally Download CUDA'
if: steps.cache-cuda.outputs.cache-hit != 'true'
run: |
$ErrorActionPreference = "Stop"
write-host "downloading CUDA Installer"
Invoke-WebRequest -Uri "https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe" -OutFile "${env:RUNNER_TEMP}\cuda-install.exe"
write-host "Installing CUDA"
Start-Process "${env:RUNNER_TEMP}\cuda-install.exe" -ArgumentList '-s' -NoNewWindow -Wait
write-host "Completed CUDA"
Invoke-WebRequest -Uri "${env:CUDA_12_WINDOWS_URL}" -OutFile "cuda-install.exe"
- name: 'Install CUDA'
run: |
$subpackages = @("cudart", "nvcc", "cublas", "cublas_dev") | foreach-object {"${_}_${{ env.CUDA_12_WINDOWS_VER }}"}
Start-Process "cuda-install.exe" -ArgumentList (@("-s") + $subpackages) -NoNewWindow -Wait
- name: 'Verify CUDA'
run: |
& (resolve-path "c:\Program Files\NVIDIA*\CUDA\v*\bin\nvcc.exe")[0] --version
$cudaPath=((resolve-path "c:\Program Files\NVIDIA*\CUDA\v*\bin\nvcc.exe")[0].path | split-path | split-path)
$cudaVer=($cudaPath | split-path -leaf ) -replace 'v(\d+).(\d+)', '$1_$2'
echo "$cudaPath\bin" >> $env:GITHUB_PATH
echo "CUDA_PATH=$cudaPath" >> $env:GITHUB_ENV
echo "CUDA_PATH_V${cudaVer}=$cudaPath" >> $env:GITHUB_ENV
echo "CUDA_PATH_VX_Y=CUDA_PATH_V${cudaVer}" >> $env:GITHUB_ENV
- name: 'Verify CUDA'
run: nvcc -V
- run: go get ./...
- name: go generate
run: |
$gopath=(get-command go).source | split-path -parent
$cudabin=(get-command nvcc).source | split-path
& "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1"
cd $env:GITHUB_WORKSPACE
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
$env:PATH="$gopath;$cudabin;$env:PATH"
$env:OLLAMA_SKIP_CPU_GENERATE="1"
go generate -x ./...
env:
OLLAMA_SKIP_CPU_GENERATE: '1'
echo "$cudaPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "CUDA_PATH=$cudaPath" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
echo "CUDA_PATH_V${cudaVer}=$cudaPath" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
echo "CUDA_PATH_VX_Y=CUDA_PATH_V${cudaVer}" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
runners:
- name: Add msys paths
run: |
echo "c:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- name: Install msys2 tools
run: |
Start-Process "c:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang") -NoNewWindow -Wait
- name: make cuda runner
run: |
import-module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -vsinstallpath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -skipautomaticlocation -DevCmdArguments '-arch=x64 -no_logo'
if (!(gcc --version | select-string -quiet clang)) { throw "wrong gcc compiler detected - must be clang" }
make cuda_v$(($env:CUDA_PATH | split-path -leaf) -replace 'v(\d+).*', '$1')
runners-cpu:
needs: [changes]
if: ${{ needs.changes.outputs.RUNNERS == 'True' }}
strategy:
@@ -238,21 +223,30 @@ jobs:
with:
go-version-file: go.mod
cache: true
- run: go get ./...
- name: Add msys paths
if: ${{ startsWith(matrix.os, 'windows-') }}
run: |
echo "c:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- name: Install msys2 tools
if: ${{ startsWith(matrix.os, 'windows-') }}
run: |
Start-Process "c:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang") -NoNewWindow -Wait
- name: 'Build Windows Go Runners'
if: ${{ startsWith(matrix.os, 'windows-') }}
run: |
$gopath=(get-command go).source | split-path -parent
$gccpath=(get-command gcc).source | split-path -parent
& "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1"
cd $env:GITHUB_WORKSPACE
import-module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -vsinstallpath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -skipautomaticlocation -DevCmdArguments '-arch=x64 -no_logo'
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
$env:PATH="$gopath;$gccpath;$env:PATH"
echo $env:PATH
make -C llama -j 4
if (!(gcc --version | select-string -quiet clang)) { throw "wrong gcc compiler detected - must be clang" }
make -j 4
- name: 'Build Unix Go Runners'
if: ${{ ! startsWith(matrix.os, 'windows-') }}
run: make -C llama -j 4
run: make -j 4
- run: go build .
lint:
@@ -287,7 +281,7 @@ jobs:
shell: bash
- uses: golangci/golangci-lint-action@v6
with:
args: --timeout 8m0s -v
args: --timeout 10m0s -v
test:
strategy:
matrix:
@@ -302,9 +296,6 @@ jobs:
env:
GOARCH: ${{ matrix.arch }}
CGO_ENABLED: '1'
OLLAMA_CPU_TARGET: 'static'
OLLAMA_SKIP_CPU_GENERATE: '1'
OLLAMA_SKIP_METAL_GENERATE: '1'
steps:
- uses: actions/checkout@v4
with:
@@ -319,7 +310,6 @@ jobs:
arm64) echo ARCH=arm64 ;;
esac >>$GITHUB_ENV
shell: bash
- run: go generate ./...
- run: go build
- run: go test -v ./...
@@ -333,4 +323,4 @@ jobs:
submodules: recursive
- name: Verify patches carry all the changes
run: |
cd llama && ./sync.sh && git diff --compact-summary --exit-code .
make apply-patches sync && git diff --compact-summary --exit-code llama

3
.gitignore vendored
View File

@@ -14,4 +14,5 @@ llm/build
build/*/*/*
!build/**/placeholder
llama/build
__debug_bin*
__debug_bin*
llama/vendor

4
.gitmodules vendored
View File

@@ -1,4 +0,0 @@
[submodule "llama.cpp"]
path = llm/llama.cpp
url = https://github.com/ggerganov/llama.cpp.git
shallow = true

View File

@@ -1,189 +1,204 @@
ARG GOLANG_VERSION=1.22.5
ARG GOLANG_VERSION=1.22.8
ARG CMAKE_VERSION=3.22.1
ARG CUDA_VERSION_11=11.3.1
ARG CUDA_V11_ARCHITECTURES="50;52;53;60;61;62;70;72;75;80;86"
ARG CUDA_VERSION_12=12.4.0
ARG CUDA_V12_ARCHITECTURES="60;61;62;70;72;75;80;86;87;89;90;90a"
ARG ROCM_VERSION=6.1.2
ARG JETPACK_6=r36.2.0
ARG JETPACK_5=r35.4.1
# Copy the minimal context we need to run the generate scripts
FROM scratch AS llm-code
COPY .git .git
COPY .gitmodules .gitmodules
COPY llm llm
FROM --platform=linux/amd64 nvidia/cuda:$CUDA_VERSION_11-devel-centos7 AS cuda-11-build-amd64
ARG CMAKE_VERSION
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
ENV PATH=/opt/rh/devtoolset-10/root/usr/bin:$PATH
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
ARG CGO_CFLAGS
ARG CUDA_V11_ARCHITECTURES
ENV GOARCH=amd64
RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_SKIP_STATIC_GENERATE=1 \
OLLAMA_SKIP_CPU_GENERATE=1 \
CMAKE_CUDA_ARCHITECTURES="${CUDA_V11_ARCHITECTURES}" \
CUDA_VARIANT="_v11" \
bash gen_linux.sh
FROM --platform=linux/amd64 nvidia/cuda:$CUDA_VERSION_12-devel-centos7 AS cuda-12-build-amd64
ARG CMAKE_VERSION
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
ENV PATH=/opt/rh/devtoolset-10/root/usr/bin:$PATH
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
ARG CGO_CFLAGS
ARG CUDA_V12_ARCHITECTURES
ENV GOARCH=amd64
RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_SKIP_STATIC_GENERATE=1 \
OLLAMA_SKIP_CPU_GENERATE=1 \
CMAKE_CUDA_ARCHITECTURES="${CUDA_V12_ARCHITECTURES}" \
CUDA_VARIANT="_v12" \
OLLAMA_CUSTOM_CUDA_DEFS="-DGGML_CUDA_USE_GRAPHS=on" \
bash gen_linux.sh
FROM --platform=linux/arm64 nvidia/cuda:$CUDA_VERSION_11-devel-rockylinux8 AS cuda-11-build-runner-arm64
ARG CMAKE_VERSION
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
ENV PATH=/opt/rh/gcc-toolset-10/root/usr/bin:$PATH
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
ARG CGO_CFLAGS
ARG CUDA_V11_ARCHITECTURES
ENV GOARCH=arm64
RUN OLLAMA_SKIP_STATIC_GENERATE=1 \
OLLAMA_SKIP_CPU_GENERATE=1 \
CMAKE_CUDA_ARCHITECTURES="${CUDA_V11_ARCHITECTURES}" \
CUDA_VARIANT="_v11" \
bash gen_linux.sh
FROM --platform=linux/arm64 nvidia/cuda:$CUDA_VERSION_12-devel-rockylinux8 AS cuda-12-build-runner-arm64
ARG CMAKE_VERSION
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
ENV PATH=/opt/rh/gcc-toolset-10/root/usr/bin:$PATH
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
ARG CGO_CFLAGS
ARG CUDA_V12_ARCHITECTURES
ENV GOARCH=arm64
RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_SKIP_STATIC_GENERATE=1 \
OLLAMA_SKIP_CPU_GENERATE=1 \
CMAKE_CUDA_ARCHITECTURES="${CUDA_V12_ARCHITECTURES}" \
CUDA_VARIANT="_v12" \
OLLAMA_CUSTOM_CUDA_DEFS="-DGGML_CUDA_USE_GRAPHS=on" \
bash gen_linux.sh
FROM --platform=linux/amd64 rocm/dev-centos-7:${ROCM_VERSION}-complete AS rocm-build-amd64
ARG CMAKE_VERSION
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
ENV PATH=/opt/rh/devtoolset-10/root/usr/bin:$PATH
ENV LIBRARY_PATH=/opt/amdgpu/lib64
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
ARG CGO_CFLAGS
ARG AMDGPU_TARGETS
ENV GOARCH=amd64
RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_SKIP_CPU_GENERATE=1 bash gen_linux.sh
RUN mkdir -p ../../dist/linux-amd64-rocm/lib/ollama && \
(cd /opt/rocm/lib && tar cf - rocblas/library) | (cd ../../dist/linux-amd64-rocm/lib/ollama && tar xf - )
FROM --platform=linux/amd64 centos:7 AS cpu-builder-amd64
### To create a local image for building linux binaries on mac or windows with efficient incremental builds
#
# docker build --platform linux/amd64 -t builder-amd64 -f Dockerfile --target unified-builder-amd64 .
# docker run --platform linux/amd64 --rm -it -v $(pwd):/go/src/github.com/ollama/ollama/ builder-amd64
#
### Then incremental builds will be much faster in this container
#
# make -j 10 && go build -trimpath -o dist/linux-amd64/ollama .
#
FROM --platform=linux/amd64 rocm/dev-centos-7:${ROCM_VERSION}-complete AS unified-builder-amd64
ARG CMAKE_VERSION
ARG GOLANG_VERSION
ARG CUDA_VERSION_11
ARG CUDA_VERSION_12
COPY ./scripts/rh_linux_deps.sh /
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:/usr/local/cuda/bin:$PATH
ENV LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/cuda/lib64
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs:/opt/amdgpu/lib64
RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
ENV PATH=/opt/rh/devtoolset-10/root/usr/bin:$PATH
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
ARG OLLAMA_CUSTOM_CPU_DEFS
ARG CGO_CFLAGS
ENV GOARCH=amd64
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
RUN yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel7/x86_64/cuda-rhel7.repo && \
dnf clean all && \
dnf install -y \
zsh \
cuda-$(echo ${CUDA_VERSION_11} | cut -f1-2 -d. | sed -e "s/\./-/g") \
cuda-$(echo ${CUDA_VERSION_12} | cut -f1-2 -d. | sed -e "s/\./-/g")
# TODO intel oneapi goes here...
ENV GOARCH amd64
ENV CGO_ENABLED 1
WORKDIR /go/src/github.com/ollama/ollama/
ENTRYPOINT [ "zsh" ]
FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu-build-amd64
RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu" bash gen_linux.sh
FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu_avx-build-amd64
RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu_avx" bash gen_linux.sh
FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu_avx2-build-amd64
RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu_avx2" bash gen_linux.sh
FROM --platform=linux/arm64 rockylinux:8 AS cpu-builder-arm64
### To create a local image for building linux binaries on mac or linux/arm64 with efficient incremental builds
# Note: this does not contain jetson variants
#
# docker build --platform linux/arm64 -t builder-arm64 -f Dockerfile --target unified-builder-arm64 .
# docker run --platform linux/arm64 --rm -it -v $(pwd):/go/src/github.com/ollama/ollama/ builder-arm64
#
FROM --platform=linux/arm64 rockylinux:8 AS unified-builder-arm64
ARG CMAKE_VERSION
ARG GOLANG_VERSION
ARG CUDA_VERSION_11
ARG CUDA_VERSION_12
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
ENV PATH=/opt/rh/gcc-toolset-10/root/usr/bin:$PATH
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
ARG OLLAMA_CUSTOM_CPU_DEFS
ARG CGO_CFLAGS
ENV GOARCH=arm64
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
RUN yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/sbsa/cuda-rhel8.repo && \
dnf config-manager --set-enabled appstream && \
dnf clean all && \
dnf install -y \
zsh \
cuda-toolkit-$(echo ${CUDA_VERSION_11} | cut -f1-2 -d. | sed -e "s/\./-/g") \
cuda-toolkit-$(echo ${CUDA_VERSION_12} | cut -f1-2 -d. | sed -e "s/\./-/g")
ENV PATH /opt/rh/gcc-toolset-10/root/usr/bin:$PATH:/usr/local/cuda/bin
ENV LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/cuda/lib64
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs:/opt/amdgpu/lib64
ENV GOARCH amd64
ENV CGO_ENABLED 1
WORKDIR /go/src/github.com/ollama/ollama/
ENTRYPOINT [ "zsh" ]
FROM --platform=linux/arm64 cpu-builder-arm64 AS cpu-build-arm64
FROM --platform=linux/amd64 unified-builder-amd64 AS runners-amd64
COPY . .
ARG OLLAMA_SKIP_CUDA_GENERATE
ARG OLLAMA_SKIP_CUDA_11_GENERATE
ARG OLLAMA_SKIP_CUDA_12_GENERATE
ARG OLLAMA_SKIP_ROCM_GENERATE
ARG CUDA_V11_ARCHITECTURES
ARG CUDA_V12_ARCHITECTURES
ARG OLLAMA_FAST_BUILD
RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu" bash gen_linux.sh
if grep "^flags" /proc/cpuinfo|grep avx>/dev/null; then \
make -j $(expr $(nproc) / 2 ) ; \
else \
make -j 5 ; \
fi
FROM --platform=linux/arm64 unified-builder-arm64 AS runners-arm64
COPY . .
ARG OLLAMA_SKIP_CUDA_GENERATE
ARG OLLAMA_SKIP_CUDA_11_GENERATE
ARG OLLAMA_SKIP_CUDA_12_GENERATE
ARG CUDA_V11_ARCHITECTURES
ARG CUDA_V12_ARCHITECTURES
ARG OLLAMA_FAST_BUILD
RUN --mount=type=cache,target=/root/.ccache \
make -j 5
# Jetsons need to be built in discrete stages
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK_5} AS runners-jetpack5-arm64
ARG GOLANG_VERSION
RUN apt-get update && apt-get install -y git curl ccache && \
curl -s -L https://dl.google.com/go/go${GOLANG_VERSION}.linux-arm64.tar.gz | tar xz -C /usr/local && \
ln -s /usr/local/go/bin/go /usr/local/bin/go && \
ln -s /usr/local/go/bin/gofmt /usr/local/bin/gofmt && \
apt-get clean && rm -rf /var/lib/apt/lists/*
WORKDIR /go/src/github.com/ollama/ollama/
COPY . .
ARG CGO_CFLAGS
ENV GOARCH arm64
RUN --mount=type=cache,target=/root/.ccache \
make -j 5 cuda_v11 \
CUDA_ARCHITECTURES="72;87" \
GPU_RUNNER_VARIANT=_jetpack5 \
CGO_EXTRA_LDFLAGS_LINUX=-L/usr/local/cuda/lib64/stubs \
DIST_LIB_DIR=/go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack5/lib/ollama \
DIST_GPU_RUNNER_DEPS_DIR=/go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack5/lib/ollama/cuda_jetpack5
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK_6} AS runners-jetpack6-arm64
ARG GOLANG_VERSION
RUN apt-get update && apt-get install -y git curl ccache && \
curl -s -L https://dl.google.com/go/go${GOLANG_VERSION}.linux-arm64.tar.gz | tar xz -C /usr/local && \
ln -s /usr/local/go/bin/go /usr/local/bin/go && \
ln -s /usr/local/go/bin/gofmt /usr/local/bin/gofmt && \
apt-get clean && rm -rf /var/lib/apt/lists/*
WORKDIR /go/src/github.com/ollama/ollama/
COPY . .
ARG CGO_CFLAGS
ENV GOARCH arm64
RUN --mount=type=cache,target=/root/.ccache \
make -j 5 cuda_v12 \
CUDA_ARCHITECTURES="87" \
GPU_RUNNER_VARIANT=_jetpack6 \
CGO_EXTRA_LDFLAGS_LINUX=-L/usr/local/cuda/lib64/stubs \
DIST_LIB_DIR=/go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack6/lib/ollama \
DIST_GPU_RUNNER_DEPS_DIR=/go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack6/lib/ollama/cuda_jetpack6
# Intermediate stages used for ./scripts/build_linux.sh
FROM --platform=linux/amd64 cpu-build-amd64 AS build-amd64
ENV CGO_ENABLED=1
FROM --platform=linux/amd64 centos:7 AS builder-amd64
ARG CMAKE_VERSION
ARG GOLANG_VERSION
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
ENV CGO_ENABLED 1
ENV GOARCH amd64
WORKDIR /go/src/github.com/ollama/ollama
FROM --platform=linux/amd64 builder-amd64 AS build-amd64
COPY . .
COPY --from=cpu_avx-build-amd64 /go/src/github.com/ollama/ollama/build/ build/
COPY --from=cpu_avx2-build-amd64 /go/src/github.com/ollama/ollama/build/ build/
COPY --from=cuda-11-build-amd64 /go/src/github.com/ollama/ollama/dist/ dist/
COPY --from=cuda-11-build-amd64 /go/src/github.com/ollama/ollama/build/ build/
COPY --from=cuda-12-build-amd64 /go/src/github.com/ollama/ollama/dist/ dist/
COPY --from=cuda-12-build-amd64 /go/src/github.com/ollama/ollama/build/ build/
COPY --from=rocm-build-amd64 /go/src/github.com/ollama/ollama/dist/ dist/
COPY --from=rocm-build-amd64 /go/src/github.com/ollama/ollama/build/ build/
COPY --from=runners-amd64 /go/src/github.com/ollama/ollama/dist/ dist/
COPY --from=runners-amd64 /go/src/github.com/ollama/ollama/build/ build/
ARG GOFLAGS
ARG CGO_CFLAGS
ARG OLLAMA_SKIP_ROCM_GENERATE
RUN --mount=type=cache,target=/root/.ccache \
go build -trimpath -o dist/linux-amd64/bin/ollama .
RUN cd dist/linux-$GOARCH && \
tar --exclude runners -cf - . | pigz --best > ../ollama-linux-$GOARCH.tgz
RUN cd dist/linux-$GOARCH-rocm && \
tar -cf - . | pigz --best > ../ollama-linux-$GOARCH-rocm.tgz
RUN if [ -z ${OLLAMA_SKIP_ROCM_GENERATE} ] ; then \
cd dist/linux-$GOARCH-rocm && \
tar -cf - . | pigz --best > ../ollama-linux-$GOARCH-rocm.tgz ;\
fi
FROM --platform=linux/arm64 cpu-build-arm64 AS build-arm64
ENV CGO_ENABLED=1
FROM --platform=linux/arm64 rockylinux:8 AS builder-arm64
ARG CMAKE_VERSION
ARG GOLANG_VERSION
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
ENV PATH /opt/rh/gcc-toolset-10/root/usr/bin:$PATH
ENV CGO_ENABLED 1
ENV GOARCH arm64
WORKDIR /go/src/github.com/ollama/ollama
FROM --platform=linux/arm64 builder-arm64 AS build-arm64
COPY . .
COPY --from=cuda-11-build-runner-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
COPY --from=cuda-11-build-runner-arm64 /go/src/github.com/ollama/ollama/build/ build/
COPY --from=cuda-12-build-runner-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
COPY --from=cuda-12-build-runner-arm64 /go/src/github.com/ollama/ollama/build/ build/
COPY --from=runners-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
COPY --from=runners-arm64 /go/src/github.com/ollama/ollama/build/ build/
COPY --from=runners-jetpack5-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
COPY --from=runners-jetpack5-arm64 /go/src/github.com/ollama/ollama/build/ build/
COPY --from=runners-jetpack6-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
COPY --from=runners-jetpack6-arm64 /go/src/github.com/ollama/ollama/build/ build/
ARG GOFLAGS
ARG CGO_CFLAGS
RUN --mount=type=cache,target=/root/.ccache \
go build -trimpath -o dist/linux-arm64/bin/ollama .
RUN cd dist/linux-$GOARCH && \
tar --exclude runners -cf - . | pigz --best > ../ollama-linux-$GOARCH.tgz
RUN cd dist/linux-$GOARCH-jetpack5 && \
tar --exclude runners -cf - . | pigz --best > ../ollama-linux-$GOARCH-jetpack5.tgz
RUN cd dist/linux-$GOARCH-jetpack6 && \
tar --exclude runners -cf - . | pigz --best > ../ollama-linux-$GOARCH-jetpack6.tgz
FROM --platform=linux/amd64 scratch AS dist-amd64
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/ollama-linux-*.tgz /
FROM --platform=linux/arm64 scratch AS dist-arm64
COPY --from=build-arm64 /go/src/github.com/ollama/ollama/dist/ollama-linux-*.tgz /
FROM dist-$TARGETARCH as dist
FROM dist-$TARGETARCH AS dist
# Optimized container images do not cary nested payloads
FROM --platform=linux/amd64 cpu-builder-amd64 AS container-build-amd64
FROM --platform=linux/amd64 builder-amd64 AS container-build-amd64
WORKDIR /go/src/github.com/ollama/ollama
COPY . .
ARG GOFLAGS
@@ -191,7 +206,7 @@ ARG CGO_CFLAGS
RUN --mount=type=cache,target=/root/.ccache \
go build -trimpath -o dist/linux-amd64/bin/ollama .
FROM --platform=linux/arm64 cpu-builder-arm64 AS container-build-arm64
FROM --platform=linux/arm64 builder-arm64 AS container-build-arm64
WORKDIR /go/src/github.com/ollama/ollama
COPY . .
ARG GOFLAGS
@@ -199,48 +214,55 @@ ARG CGO_CFLAGS
RUN --mount=type=cache,target=/root/.ccache \
go build -trimpath -o dist/linux-arm64/bin/ollama .
# For amd64 container images, filter out cuda/rocm to minimize size
FROM runners-amd64 AS runners-cuda-amd64
RUN rm -rf \
./dist/linux-amd64/lib/ollama/libggml_hipblas.so \
./dist/linux-amd64/lib/ollama/runners/rocm*
FROM runners-amd64 AS runners-rocm-amd64
RUN rm -rf \
./dist/linux-amd64/lib/ollama/libggml_cuda*.so \
./dist/linux-amd64/lib/ollama/libcu*.so* \
./dist/linux-amd64/lib/ollama/runners/cuda*
FROM --platform=linux/amd64 ubuntu:22.04 AS runtime-amd64
RUN apt-get update && \
apt-get install -y ca-certificates && \
apt-get clean && rm -rf /var/lib/apt/lists/*
COPY --from=container-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/bin/ /bin/
COPY --from=cpu-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
COPY --from=cpu_avx-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
COPY --from=cpu_avx2-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
COPY --from=cuda-11-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
COPY --from=cuda-12-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
COPY --from=runners-cuda-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
FROM --platform=linux/arm64 ubuntu:22.04 AS runtime-arm64
RUN apt-get update && \
apt-get install -y ca-certificates && \
apt-get clean && rm -rf /var/lib/apt/lists/*
COPY --from=container-build-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/bin/ /bin/
COPY --from=cpu-build-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
COPY --from=cuda-11-build-runner-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
COPY --from=cuda-12-build-runner-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
COPY --from=runners-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
COPY --from=runners-jetpack5-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack5/lib/ /lib/
COPY --from=runners-jetpack6-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack6/lib/ /lib/
# ROCm libraries larger so we keep it distinct from the CPU/CUDA image
FROM --platform=linux/amd64 ubuntu:22.04 AS runtime-rocm
# Frontload the rocm libraries which are large, and rarely change to increase chance of a common layer
# across releases
COPY --from=rocm-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64-rocm/lib/ /lib/
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64-rocm/lib/ /lib/
RUN apt-get update && \
apt-get install -y ca-certificates && \
apt-get clean && rm -rf /var/lib/apt/lists/*
COPY --from=container-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/bin/ /bin/
COPY --from=cpu-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
COPY --from=cpu_avx-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
COPY --from=cpu_avx2-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
COPY --from=rocm-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
COPY --from=runners-rocm-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
EXPOSE 11434
ENV OLLAMA_HOST=0.0.0.0
ENV OLLAMA_HOST 0.0.0.0
ENTRYPOINT ["/bin/ollama"]
CMD ["serve"]
FROM runtime-$TARGETARCH
EXPOSE 11434
ENV OLLAMA_HOST=0.0.0.0
ENV OLLAMA_HOST 0.0.0.0
ENV PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility

4
Makefile Normal file
View File

@@ -0,0 +1,4 @@
GOALS := $(or $(MAKECMDGOALS),all)
.PHONY: $(GOALS)
$(GOALS):
$(MAKE) -C llama $@

114
README.md
View File

@@ -12,7 +12,7 @@ Get up and running with large language models.
[Download](https://ollama.com/download/Ollama-darwin.zip)
### Windows preview
### Windows
[Download](https://ollama.com/download/OllamaSetup.exe)
@@ -47,26 +47,28 @@ Ollama supports a list of models available on [ollama.com/library](https://ollam
Here are some example models that can be downloaded:
| Model | Parameters | Size | Download |
| ------------------ | ---------- | ----- | ------------------------------ |
| Llama 3.2 | 3B | 2.0GB | `ollama run llama3.2` |
| Llama 3.2 | 1B | 1.3GB | `ollama run llama3.2:1b` |
| Llama 3.1 | 8B | 4.7GB | `ollama run llama3.1` |
| Llama 3.1 | 70B | 40GB | `ollama run llama3.1:70b` |
| Llama 3.1 | 405B | 231GB | `ollama run llama3.1:405b` |
| Phi 3 Mini | 3.8B | 2.3GB | `ollama run phi3` |
| Phi 3 Medium | 14B | 7.9GB | `ollama run phi3:medium` |
| Gemma 2 | 2B | 1.6GB | `ollama run gemma2:2b` |
| Gemma 2 | 9B | 5.5GB | `ollama run gemma2` |
| Gemma 2 | 27B | 16GB | `ollama run gemma2:27b` |
| Mistral | 7B | 4.1GB | `ollama run mistral` |
| Moondream 2 | 1.4B | 829MB | `ollama run moondream` |
| Neural Chat | 7B | 4.1GB | `ollama run neural-chat` |
| Starling | 7B | 4.1GB | `ollama run starling-lm` |
| Code Llama | 7B | 3.8GB | `ollama run codellama` |
| Llama 2 Uncensored | 7B | 3.8GB | `ollama run llama2-uncensored` |
| LLaVA | 7B | 4.5GB | `ollama run llava` |
| Solar | 10.7B | 6.1GB | `ollama run solar` |
| Model | Parameters | Size | Download |
| ------------------ | ---------- | ----- | -------------------------------- |
| Llama 3.2 | 3B | 2.0GB | `ollama run llama3.2` |
| Llama 3.2 | 1B | 1.3GB | `ollama run llama3.2:1b` |
| Llama 3.2 Vision | 11B | 7.9GB | `ollama run llama3.2-vision` |
| Llama 3.2 Vision | 90B | 55GB | `ollama run llama3.2-vision:90b` |
| Llama 3.1 | 8B | 4.7GB | `ollama run llama3.1` |
| Llama 3.1 | 70B | 40GB | `ollama run llama3.1:70b` |
| Llama 3.1 | 405B | 231GB | `ollama run llama3.1:405b` |
| Phi 3 Mini | 3.8B | 2.3GB | `ollama run phi3` |
| Phi 3 Medium | 14B | 7.9GB | `ollama run phi3:medium` |
| Gemma 2 | 2B | 1.6GB | `ollama run gemma2:2b` |
| Gemma 2 | 9B | 5.5GB | `ollama run gemma2` |
| Gemma 2 | 27B | 16GB | `ollama run gemma2:27b` |
| Mistral | 7B | 4.1GB | `ollama run mistral` |
| Moondream 2 | 1.4B | 829MB | `ollama run moondream` |
| Neural Chat | 7B | 4.1GB | `ollama run neural-chat` |
| Starling | 7B | 4.1GB | `ollama run starling-lm` |
| Code Llama | 7B | 3.8GB | `ollama run codellama` |
| Llama 2 Uncensored | 7B | 3.8GB | `ollama run llama2-uncensored` |
| LLaVA | 7B | 4.5GB | `ollama run llava` |
| Solar | 10.7B | 6.1GB | `ollama run solar` |
> [!NOTE]
> You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
@@ -296,7 +298,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [AnythingLLM (Docker + MacOs/Windows/Linux native app)](https://github.com/Mintplex-Labs/anything-llm)
- [Ollama Basic Chat: Uses HyperDiv Reactive UI](https://github.com/rapidarchitect/ollama_basic_chat)
- [Ollama-chats RPG](https://github.com/drazdra/ollama-chats)
- [QA-Pilot](https://github.com/reid41/QA-Pilot) (Chat with Code Repository)
- [QA-Pilot](https://github.com/reid41/QA-Pilot) (Interactive chat tool that can leverage Ollama models for rapid understanding and navigation of GitHub code repositories)
- [ChatOllama](https://github.com/sugarforever/chat-ollama) (Open Source Chatbot based on Ollama with Knowledge Bases)
- [CRAG Ollama Chat](https://github.com/Nagi-ovo/CRAG-Ollama-Chat) (Simple Web Search with Corrective RAG)
- [RAGFlow](https://github.com/infiniflow/ragflow) (Open-source Retrieval-Augmented Generation engine based on deep document understanding)
@@ -306,11 +308,17 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Ollama RAG Chatbot](https://github.com/datvodinh/rag-chatbot.git) (Local Chat with multiple PDFs using Ollama and RAG)
- [BrainSoup](https://www.nurgo-software.com/products/brainsoup) (Flexible native client with RAG & multi-agent automation)
- [macai](https://github.com/Renset/macai) (macOS client for Ollama, ChatGPT, and other compatible API back-ends)
- [RWKV-Runner](https://github.com/josStorer/RWKV-Runner) (RWKV offline LLM deployment tool, also usable as a client for ChatGPT and Ollama)
- [Ollama Grid Search](https://github.com/dezoito/ollama-grid-search) (app to evaluate and compare models)
- [Olpaka](https://github.com/Otacon/olpaka) (User-friendly Flutter Web App for Ollama)
- [OllamaSpring](https://github.com/CrazyNeil/OllamaSpring) (Ollama Client for macOS)
- [LLocal.in](https://github.com/kartikm7/llocal) (Easy to use Electron Desktop Client for Ollama)
- [Shinkai Desktop](https://github.com/dcSpark/shinkai-apps) (Two click install Local AI using Ollama + Files + RAG)
- [AiLama](https://github.com/zeyoyt/ailama) (A Discord User App that allows you to interact with Ollama anywhere in discord )
- [Ollama with Google Mesop](https://github.com/rapidarchitect/ollama_mesop/) (Mesop Chat Client implementation with Ollama)
- [R2R](https://github.com/SciPhi-AI/R2R) (Open-source RAG engine)
- [Ollama-Kis](https://github.com/elearningshow/ollama-kis) (A simple easy to use GUI with sample custom LLM for Drivers Education)
- [OpenGPA](https://opengpa.org) (Open-source offline-first Enterprise Agentic Application)
- [Painting Droid](https://github.com/mateuszmigas/painting-droid) (Painting app with AI integrations)
- [Kerlig AI](https://www.kerlig.com/) (AI writing assistant for macOS)
- [AI Studio](https://github.com/MindWorkAI/AI-Studio)
@@ -318,6 +326,8 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [LLMStack](https://github.com/trypromptly/LLMStack) (No-code multi-agent framework to build LLM agents and workflows)
- [BoltAI for Mac](https://boltai.com) (AI Chat Client for Mac)
- [Harbor](https://github.com/av/harbor) (Containerized LLM Toolkit with Ollama as default backend)
- [PyGPT](https://github.com/szczyglis-dev/py-gpt) (AI desktop assistant for Linux, Windows and Mac)
- [AutoGPT](https://github.com/Significant-Gravitas/AutoGPT/blob/master/docs/content/platform/ollama.md) (AutoGPT Ollama integration)
- [Go-CREW](https://www.jonathanhecl.com/go-crew/) (Powerful Offline RAG in Golang)
- [PartCAD](https://github.com/openvmp/partcad/) (CAD model generation with OpenSCAD and CadQuery)
- [Ollama4j Web UI](https://github.com/ollama4j/ollama4j-web-ui) - Java-based Web UI for Ollama built with Vaadin, Spring Boot and Ollama4j
@@ -327,9 +337,34 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)
- [Archyve](https://github.com/nickthecook/archyve) (RAG-enabling document library)
- [crewAI with Mesop](https://github.com/rapidarchitect/ollama-crew-mesop) (Mesop Web Interface to run crewAI with Ollama)
- [Tkinter-based client](https://github.com/chyok/ollama-gui) (Python tkinter-based Client for Ollama)
- [LLMChat](https://github.com/trendy-design/llmchat) (Privacy focused, 100% local, intuitive all-in-one chat interface)
- [Local Multimodal AI Chat](https://github.com/Leon-Sander/Local-Multimodal-AI-Chat) (Ollama-based LLM Chat with support for multiple features, including PDF RAG, voice chat, image-based interactions, and integration with OpenAI.)
- [ARGO](https://github.com/xark-argo/argo) (Locally download and run Ollama and Huggingface models with RAG on Mac/Windows/Linux)
- [OrionChat](https://github.com/EliasPereirah/OrionChat) - OrionChat is a web interface for chatting with different AI providers
- [G1](https://github.com/bklieger-groq/g1) (Prototype of using prompting strategies to improve the LLM's reasoning through o1-like reasoning chains.)
- [Web management](https://github.com/lemonit-eric-mao/ollama-web-management) (Web management page)
- [Promptery](https://github.com/promptery/promptery) (desktop client for Ollama.)
- [Ollama App](https://github.com/JHubi1/ollama-app) (Modern and easy-to-use multi-platform client for Ollama)
- [SpaceLlama](https://github.com/tcsenpai/spacellama) (Firefox and Chrome extension to quickly summarize web pages with ollama in a sidebar)
- [YouLama](https://github.com/tcsenpai/youlama) (Webapp to quickly summarize any YouTube video, supporting Invidious as well)
- [DualMind](https://github.com/tcsenpai/dualmind) (Experimental app allowing two models to talk to each other in the terminal or in a web interface)
- [ollamarama-matrix](https://github.com/h1ddenpr0cess20/ollamarama-matrix) (Ollama chatbot for the Matrix chat protocol)
- [ollama-chat-app](https://github.com/anan1213095357/ollama-chat-app) (Flutter-based chat app)
- [Perfect Memory AI](https://www.perfectmemory.ai/) (Productivity AI assists personalized by what you have seen on your screen, heard and said in the meetings)
- [Hexabot](https://github.com/hexastack/hexabot) (A conversational AI builder)
- [Reddit Rate](https://github.com/rapidarchitect/reddit_analyzer) (Search and Rate Reddit topics with a weighted summation)
- [OpenTalkGpt](https://github.com/adarshM84/OpenTalkGpt) (Chrome Extension to manage open-source models supported by Ollama, create custom models, and chat with models from a user-friendly UI)
- [VT](https://github.com/vinhnx/vt.ai) (A minimal multimodal AI chat app, with dynamic conversation routing. Supports local models via Ollama)
- [Nosia](https://github.com/nosia-ai/nosia) (Easy to install and use RAG platform based on Ollama)
- [Witsy](https://github.com/nbonamy/witsy) (An AI Desktop application avaiable for Mac/Windows/Linux)
- [Abbey](https://github.com/US-Artificial-Intelligence/abbey) (A configurable AI interface server with notebooks, document storage, and YouTube support)
### Cloud
- [Google Cloud](https://cloud.google.com/run/docs/tutorials/gpu-gemma2-with-ollama)
- [Fly.io](https://fly.io/docs/python/do-more/add-ollama/)
- [Koyeb](https://www.koyeb.com/deploy/ollama)
### Terminal
@@ -345,7 +380,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Oatmeal](https://github.com/dustinblackman/oatmeal)
- [cmdh](https://github.com/pgibler/cmdh)
- [ooo](https://github.com/npahlfer/ooo)
- [shell-pilot](https://github.com/reid41/shell-pilot)
- [shell-pilot](https://github.com/reid41/shell-pilot)(Interact with models via pure shell scripts on Linux or macOS)
- [tenere](https://github.com/pythops/tenere)
- [llm-ollama](https://github.com/taketwo/llm-ollama) for [Datasette's LLM CLI](https://llm.datasette.io/en/stable/).
- [typechat-cli](https://github.com/anaisbetts/typechat-cli)
@@ -353,11 +388,19 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [tlm](https://github.com/yusufcanb/tlm)
- [podman-ollama](https://github.com/ericcurtin/podman-ollama)
- [gollama](https://github.com/sammcj/gollama)
- [ParLlama](https://github.com/paulrobello/parllama)
- [Ollama eBook Summary](https://github.com/cognitivetech/ollama-ebook-summary/)
- [Ollama Mixture of Experts (MOE) in 50 lines of code](https://github.com/rapidarchitect/ollama_moe)
- [vim-intelligence-bridge](https://github.com/pepo-ec/vim-intelligence-bridge) Simple interaction of "Ollama" with the Vim editor
- [x-cmd ollama](https://x-cmd.com/mod/ollama)
- [bb7](https://github.com/drunkwcodes/bb7)
- [SwollamaCLI](https://github.com/marcusziade/Swollama) bundled with the Swollama Swift package. [Demo](https://github.com/marcusziade/Swollama?tab=readme-ov-file#cli-usage)
- [aichat](https://github.com/sigoden/aichat) All-in-one LLM CLI tool featuring Shell Assistant, Chat-REPL, RAG, AI tools & agents, with access to OpenAI, Claude, Gemini, Ollama, Groq, and more.
- [PowershAI](https://github.com/rrg92/powershai) PowerShell module that brings AI to terminal on Windows, including support for Ollama
- [orbiton](https://github.com/xyproto/orbiton) Configuration-free text editor and IDE with support for tab completion with Ollama.
### Apple Vision Pro
- [Enchanted](https://github.com/AugustDev/enchanted)
### Database
@@ -379,9 +422,11 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [LangChain](https://python.langchain.com/docs/integrations/llms/ollama) and [LangChain.js](https://js.langchain.com/docs/integrations/chat/ollama/) with [example](https://js.langchain.com/docs/tutorials/local_rag/)
- [Firebase Genkit](https://firebase.google.com/docs/genkit/plugins/ollama)
- [crewAI](https://github.com/crewAIInc/crewAI)
- [Spring AI](https://github.com/spring-projects/spring-ai) with [reference](https://docs.spring.io/spring-ai/reference/api/chat/ollama-chat.html) and [example](https://github.com/tzolov/ollama-tools)
- [LangChainGo](https://github.com/tmc/langchaingo/) with [example](https://github.com/tmc/langchaingo/tree/main/examples/ollama-completion-example)
- [LangChain4j](https://github.com/langchain4j/langchain4j) with [example](https://github.com/langchain4j/langchain4j-examples/tree/main/ollama-examples/src/main/java)
- [LangChainRust](https://github.com/Abraxas-365/langchain-rust) with [example](https://github.com/Abraxas-365/langchain-rust/blob/main/examples/llm_ollama.rs)
- [LLPhant](https://github.com/theodo-group/LLPhant?tab=readme-ov-file#ollama)
- [LlamaIndex](https://docs.llamaindex.ai/en/stable/examples/llm/ollama/) and [LlamaIndexTS](https://ts.llamaindex.ai/modules/llms/available_llms/ollama)
- [LiteLLM](https://github.com/BerriAI/litellm)
- [OllamaFarm for Go](https://github.com/presbrey/ollamafarm)
@@ -406,16 +451,26 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Portkey](https://portkey.ai/docs/welcome/integration-guides/ollama)
- [PromptingTools.jl](https://github.com/svilupp/PromptingTools.jl) with an [example](https://svilupp.github.io/PromptingTools.jl/dev/examples/working_with_ollama)
- [LlamaScript](https://github.com/Project-Llama/llamascript)
- [llm-axe](https://github.com/emirsahin1/llm-axe) (Python Toolkit for Building LLM Powered Apps)
- [Gollm](https://docs.gollm.co/examples/ollama-example)
- [Gollama for Golang](https://github.com/jonathanhecl/gollama)
- [Ollamaclient for Golang](https://github.com/xyproto/ollamaclient)
- [High-level function abstraction in Go](https://gitlab.com/tozd/go/fun)
- [Ollama PHP](https://github.com/ArdaGnsrn/ollama-php)
- [Agents-Flex for Java](https://github.com/agents-flex/agents-flex) with [example](https://github.com/agents-flex/agents-flex/tree/main/agents-flex-llm/agents-flex-llm-ollama/src/test/java/com/agentsflex/llm/ollama)
- [Parakeet](https://github.com/parakeet-nest/parakeet) is a GoLang library, made to simplify the development of small generative AI applications with Ollama.
- [Haverscript](https://github.com/andygill/haverscript) with [examples](https://github.com/andygill/haverscript/tree/main/examples)
- [Ollama for Swift](https://github.com/mattt/ollama-swift)
- [Swollama for Swift](https://github.com/marcusziade/Swollama) with [DocC](https://marcusziade.github.io/Swollama/documentation/swollama/)
- [GoLamify](https://github.com/prasad89/golamify)
- [Ollama for Haskell](https://github.com/tusharad/ollama-haskell)
- [multi-llm-ts](https://github.com/nbonamy/multi-llm-ts) (A Typescript/JavaScript library allowing access to different LLM in unified API)
### Mobile
- [Enchanted](https://github.com/AugustDev/enchanted)
- [Maid](https://github.com/Mobile-Artificial-Intelligence/maid)
- [Ollama App](https://github.com/JHubi1/ollama-app) (Modern and easy-to-use multi-platform client for Ollama)
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)
### Extensions & Plugins
@@ -423,6 +478,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Raycast extension](https://github.com/MassimilianoPasquini97/raycast_ollama)
- [Discollama](https://github.com/mxyng/discollama) (Discord bot inside the Ollama discord channel)
- [Continue](https://github.com/continuedev/continue)
- [Vibe](https://github.com/thewh1teagle/vibe) (Transcribe and analyze meetings with Ollama)
- [Obsidian Ollama plugin](https://github.com/hinterdupfinger/obsidian-ollama)
- [Logseq Ollama plugin](https://github.com/omagdy7/ollama-logseq)
- [NotesOllama](https://github.com/andersrex/notesollama) (Apple Notes Ollama plugin)
@@ -445,14 +501,24 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [AI Telegram Bot](https://github.com/tusharhero/aitelegrambot) (Telegram bot using Ollama in backend)
- [AI ST Completion](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) (Sublime Text 4 AI assistant plugin with Ollama support)
- [Discord-Ollama Chat Bot](https://github.com/kevinthedang/discord-ollama) (Generalized TypeScript Discord Bot w/ Tuning Documentation)
- [ChatGPTBox: All in one browser extension](https://github.com/josStorer/chatGPTBox) with [Integrating Tutorial](https://github.com/josStorer/chatGPTBox/issues/616#issuecomment-1975186467)
- [Discord AI chat/moderation bot](https://github.com/rapmd73/Companion) Chat/moderation bot written in python. Uses Ollama to create personalities.
- [Headless Ollama](https://github.com/nischalj10/headless-ollama) (Scripts to automatically install ollama client & models on any OS for apps that depends on ollama server)
- [vnc-lm](https://github.com/jk011ru/vnc-lm) (A containerized Discord bot with support for attachments and web links)
- [Terraform AWS Ollama & Open WebUI](https://github.com/xuyangbocn/terraform-aws-self-host-llm) (A Terraform module to deploy on AWS a ready-to-use Ollama service, together with its front end Open WebUI service.)
- [node-red-contrib-ollama](https://github.com/jakubburkiewicz/node-red-contrib-ollama)
- [Local AI Helper](https://github.com/ivostoykov/localAI) (Chrome and Firefox extensions that enable interactions with the active tab and customisable API endpoints. Includes secure storage for user prompts.)
- [vnc-lm](https://github.com/jake83741/vnc-lm) (Discord bot for messaging with LLMs through Ollama and LiteLLM. Seamlessly move between local and flagship models.)
- [LSP-AI](https://github.com/SilasMarvin/lsp-ai) (Open-source language server for AI-powered functionality)
- [QodeAssist](https://github.com/Palm1r/QodeAssist) (AI-powered coding assistant plugin for Qt Creator)
- [Obsidian Quiz Generator plugin](https://github.com/ECuiDev/obsidian-quiz-generator)
- [TextCraft](https://github.com/suncloudsmoon/TextCraft) (Copilot in Word alternative using Ollama)
- [Alfred Ollama](https://github.com/zeitlings/alfred-ollama) (Alfred Workflow)
### Supported backends
- [llama.cpp](https://github.com/ggerganov/llama.cpp) project founded by Georgi Gerganov.
### Observability
- [OpenLIT](https://github.com/openlit/openlit) is an OpenTelemetry-native tool for monitoring Ollama Applications & GPUs using traces and metrics.
- [HoneyHive](https://docs.honeyhive.ai/integrations/ollama) is an AI observability and evaluation platform for AI agents. Use HoneyHive to evaluate agent performance, interrogate failures, and monitor quality in production.

View File

@@ -55,7 +55,7 @@ func checkError(resp *http.Response, body []byte) error {
// ClientFromEnvironment creates a new [Client] using configuration from the
// environment variable OLLAMA_HOST, which points to the network host and
// port on which the ollama service is listenting. The format of this variable
// port on which the ollama service is listening. The format of this variable
// is:
//
// <scheme>://<host>:<port>

View File

@@ -12,7 +12,7 @@ import (
"time"
)
// StatusError is an error with and HTTP status code.
// StatusError is an error with an HTTP status code and message.
type StatusError struct {
StatusCode int
Status string
@@ -57,7 +57,7 @@ type GenerateRequest struct {
Template string `json:"template"`
// Context is the context parameter returned from a previous call to
// Generate call. It can be used to keep a short conversational memory.
// [Client.Generate]. It can be used to keep a short conversational memory.
Context []int `json:"context,omitempty"`
// Stream specifies whether the response is streaming; it is true by default.
@@ -90,14 +90,14 @@ type ChatRequest struct {
// Messages is the messages of the chat - can be used to keep a chat memory.
Messages []Message `json:"messages"`
// Stream enable streaming of returned response; true by default.
// Stream enables streaming of returned responses; true by default.
Stream *bool `json:"stream,omitempty"`
// Format is the format to return the response in (e.g. "json").
Format string `json:"format"`
// KeepAlive controls how long the model will stay loaded into memory
// followin the request.
// following the request.
KeepAlive *Duration `json:"keep_alive,omitempty"`
// Tools is an optional list of tools the model has access to.
@@ -146,6 +146,7 @@ type ToolCall struct {
}
type ToolCallFunction struct {
Index int `json:"index,omitempty"`
Name string `json:"name"`
Arguments ToolCallFunctionArguments `json:"arguments"`
}
@@ -203,8 +204,8 @@ type Metrics struct {
EvalDuration time.Duration `json:"eval_duration,omitempty"`
}
// Options specified in [GenerateRequest], if you add a new option here add it
// to the API docs also.
// Options specified in [GenerateRequest]. If you add a new option here, also
// add it to the API docs.
type Options struct {
Runner
@@ -236,7 +237,7 @@ type Runner struct {
NumGPU int `json:"num_gpu,omitempty"`
MainGPU int `json:"main_gpu,omitempty"`
LowVRAM bool `json:"low_vram,omitempty"`
F16KV bool `json:"f16_kv,omitempty"`
F16KV bool `json:"f16_kv,omitempty"` // Deprecated: This option is ignored
LogitsAll bool `json:"logits_all,omitempty"`
VocabOnly bool `json:"vocab_only,omitempty"`
UseMMap *bool `json:"use_mmap,omitempty"`
@@ -613,7 +614,6 @@ func DefaultOptions() Options {
NumGPU: -1, // -1 here indicates that NumGPU should be set dynamically
NumThread: 0, // let the runtime decide
LowVRAM: false,
F16KV: true,
UseMLock: false,
UseMMap: nil,
},

View File

@@ -11,10 +11,12 @@ import (
"github.com/ollama/ollama/app/store"
"github.com/ollama/ollama/app/tray"
"github.com/ollama/ollama/envconfig"
)
func Run() {
InitLogging()
slog.Info("app config", "env", envconfig.Values())
ctx, cancel := context.WithCancel(context.Background())
var done chan int

View File

@@ -36,8 +36,13 @@ func init() {
ServerLogFile = filepath.Join(AppDataDir, "server.log")
UpgradeLogFile = filepath.Join(AppDataDir, "upgrade.log")
// Executables are stored in APPDATA
AppDir = filepath.Join(localAppData, "Programs", "Ollama")
exe, err := os.Executable()
if err != nil {
slog.Warn("error discovering executable directory", "error", err)
AppDir = filepath.Join(localAppData, "Programs", "Ollama")
} else {
AppDir = filepath.Dir(exe)
}
// Make sure we have PATH set correctly for any spawned children
paths := strings.Split(os.Getenv("PATH"), ";")
@@ -64,7 +69,7 @@ func init() {
}
// Make sure our logging dir exists
_, err := os.Stat(AppDataDir)
_, err = os.Stat(AppDataDir)
if errors.Is(err, os.ErrNotExist) {
if err := os.MkdirAll(AppDataDir, 0o755); err != nil {
slog.Error(fmt.Sprintf("create ollama dir %s: %v", AppDataDir, err))

View File

@@ -18,11 +18,17 @@ func getCLIFullPath(command string) string {
var cmdPath string
appExe, err := os.Executable()
if err == nil {
// Check both the same location as the tray app, as well as ./bin
cmdPath = filepath.Join(filepath.Dir(appExe), command)
_, err := os.Stat(cmdPath)
if err == nil {
return cmdPath
}
cmdPath = filepath.Join(filepath.Dir(appExe), "bin", command)
_, err = os.Stat(cmdPath)
if err == nil {
return cmdPath
}
}
cmdPath, err = exec.LookPath(command)
if err == nil {

View File

@@ -26,19 +26,15 @@ func DoUpgrade(cancel context.CancelFunc, done chan int) error {
slog.Info("starting upgrade with " + installerExe)
slog.Info("upgrade log file " + UpgradeLogFile)
// When running in debug mode, we'll be "verbose" and let the installer pop up and prompt
// make the upgrade show progress, but non interactive
installArgs := []string{
"/CLOSEAPPLICATIONS", // Quit the tray app if it's still running
"/LOG=" + filepath.Base(UpgradeLogFile), // Only relative seems reliable, so set pwd
"/FORCECLOSEAPPLICATIONS", // Force close the tray app - might be needed
}
// make the upgrade as quiet as possible (no GUI, no prompts)
installArgs = append(installArgs,
"/SP", // Skip the "This will install... Do you wish to continue" prompt
"/SUPPRESSMSGBOXES",
"/SP", // Skip the "This will install... Do you wish to continue" prompt
"/NOCANCEL", // Disable the ability to cancel upgrade mid-flight to avoid partially installed upgrades
"/SILENT",
"/VERYSILENT",
)
}
// Safeguard in case we have requests in flight that need to drain...
slog.Info("Waiting for server to shutdown")

View File

@@ -53,8 +53,8 @@ RestartIfNeededByRun=no
; https://jrsoftware.org/ishelp/index.php?topic=setup_wizardimagefile
WizardSmallImageFile=.\assets\setup.bmp
; TODO verifty actual min windows version...
; OG Win 10
; Ollama requires Windows 10 22H2 or newer for proper unicode rendering
; TODO: consider setting this to 10.0.19045
MinVersion=10.0.10240
; First release that supports WinRT UI Composition for win32 apps
@@ -136,7 +136,7 @@ Type: filesandordirs; Name: "{%TEMP}\ollama*"
Type: filesandordirs; Name: "{%LOCALAPPDATA}\Programs\Ollama"
[Messages]
WizardReady=Ollama Windows Preview
WizardReady=Ollama
ReadyLabel1=%nLet's get you up and running with your own large language models.
SetupAppRunningError=Another Ollama installer is running.%n%nPlease cancel or finish the other installer, then click OK to continue with this install, or Cancel to exit.

View File

@@ -64,7 +64,7 @@ func initStore() {
slog.Debug(fmt.Sprintf("unexpected error searching for store: %s", err))
}
slog.Debug("initializing new store")
store.ID = uuid.New().String()
store.ID = uuid.NewString()
writeStore(getStorePath())
}

View File

@@ -11,12 +11,13 @@ import (
)
const (
updateAvailableMenuID = 1
updateMenuID = updateAvailableMenuID + 1
separatorMenuID = updateMenuID + 1
diagLogsMenuID = separatorMenuID + 1
diagSeparatorMenuID = diagLogsMenuID + 1
quitMenuID = diagSeparatorMenuID + 1
_ = iota
updateAvailableMenuID
updateMenuID
separatorMenuID
diagLogsMenuID
diagSeparatorMenuID
quitMenuID
)
func (t *winTray) initMenus() error {
@@ -38,7 +39,7 @@ func (t *winTray) UpdateAvailable(ver string) error {
if err := t.addOrUpdateMenuItem(updateAvailableMenuID, 0, updateAvailableMenuTitle, true); err != nil {
return fmt.Errorf("unable to create menu entries %w", err)
}
if err := t.addOrUpdateMenuItem(updateMenuID, 0, updateMenutTitle, false); err != nil {
if err := t.addOrUpdateMenuItem(updateMenuID, 0, updateMenuTitle, false); err != nil {
return fmt.Errorf("unable to create menu entries %w", err)
}
if err := t.addSeparatorMenuItem(separatorMenuID, 0); err != nil {

View File

@@ -10,6 +10,6 @@ const (
quitMenuTitle = "Quit Ollama"
updateAvailableMenuTitle = "An update is available"
updateMenutTitle = "Restart to update"
updateMenuTitle = "Restart to update"
diagLogsMenuTitle = "View logs"
)

View File

@@ -361,7 +361,7 @@ func (t *winTray) showMenu() error {
boolRet, _, err = pTrackPopupMenu.Call(
uintptr(t.menus[0]),
TPM_BOTTOMALIGN|TPM_LEFTALIGN,
TPM_BOTTOMALIGN|TPM_LEFTALIGN|TPM_RIGHTBUTTON,
uintptr(p.X),
uintptr(p.Y),
0,

View File

@@ -67,6 +67,7 @@ const (
SW_HIDE = 0
TPM_BOTTOMALIGN = 0x0020
TPM_LEFTALIGN = 0x0000
TPM_RIGHTBUTTON = 0x0002
WM_CLOSE = 0x0010
WM_USER = 0x0400
WS_CAPTION = 0x00C00000

View File

@@ -19,9 +19,7 @@ import (
"os"
"os/signal"
"path/filepath"
"regexp"
"runtime"
"slices"
"strconv"
"strings"
"sync/atomic"
@@ -36,39 +34,67 @@ import (
"golang.org/x/term"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/auth"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/parser"
"github.com/ollama/ollama/progress"
"github.com/ollama/ollama/server"
"github.com/ollama/ollama/types/errtypes"
"github.com/ollama/ollama/types/model"
"github.com/ollama/ollama/version"
)
var (
errModelNotFound = errors.New("no Modelfile or safetensors files found")
errModelfileNotFound = errors.New("specified Modelfile wasn't found")
)
func getModelfileName(cmd *cobra.Command) (string, error) {
fn, _ := cmd.Flags().GetString("file")
filename := fn
if filename == "" {
filename = "Modelfile"
}
absName, err := filepath.Abs(filename)
if err != nil {
return "", err
}
_, err = os.Stat(absName)
if err != nil {
return fn, err
}
return absName, nil
}
func CreateHandler(cmd *cobra.Command, args []string) error {
filename, _ := cmd.Flags().GetString("file")
filename, err := filepath.Abs(filename)
if err != nil {
return err
}
client, err := api.ClientFromEnvironment()
if err != nil {
return err
}
p := progress.NewProgress(os.Stderr)
defer p.Stop()
f, err := os.Open(filename)
if err != nil {
return err
}
defer f.Close()
var reader io.Reader
modelfile, err := parser.ParseFile(f)
filename, err := getModelfileName(cmd)
if os.IsNotExist(err) {
if filename == "" {
reader = strings.NewReader("FROM .\n")
} else {
return errModelfileNotFound
}
} else if err != nil {
return err
} else {
f, err := os.Open(filename)
if err != nil {
return err
}
reader = f
defer f.Close()
}
modelfile, err := parser.ParseFile(reader)
if err != nil {
return err
}
@@ -83,6 +109,11 @@ func CreateHandler(cmd *cobra.Command, args []string) error {
p.Add(status, spinner)
defer p.Stop()
client, err := api.ClientFromEnvironment()
if err != nil {
return err
}
for i := range modelfile.Commands {
switch modelfile.Commands[i].Name {
case "model", "adapter":
@@ -221,7 +252,7 @@ func tempZipFiles(path string) (string, error) {
// covers consolidated.x.pth, consolidated.pth
files = append(files, pt...)
} else {
return "", errors.New("no safetensors or torch files found")
return "", errModelNotFound
}
// add configuration files, json files are detected as text/plain
@@ -422,6 +453,10 @@ func RunHandler(cmd *cobra.Command, args []string) error {
if len(prompts) > 0 {
interactive = false
}
// Be quiet if we're redirecting to a pipe or file
if !term.IsTerminal(int(os.Stdout.Fd())) {
interactive = false
}
nowrap, err := cmd.Flags().GetBool("nowordwrap")
if err != nil {
@@ -453,7 +488,7 @@ func RunHandler(cmd *cobra.Command, args []string) error {
return err
}
opts.MultiModal = slices.Contains(info.Details.Families, "clip")
opts.MultiModal = len(info.ProjectorInfo) != 0
opts.ParentModel = info.Details.ParentModel
if interactive {
@@ -478,47 +513,6 @@ func RunHandler(cmd *cobra.Command, args []string) error {
return generate(cmd, opts)
}
func errFromUnknownKey(unknownKeyErr error) error {
// find SSH public key in the error message
sshKeyPattern := `ssh-\w+ [^\s"]+`
re := regexp.MustCompile(sshKeyPattern)
matches := re.FindStringSubmatch(unknownKeyErr.Error())
if len(matches) > 0 {
serverPubKey := matches[0]
localPubKey, err := auth.GetPublicKey()
if err != nil {
return unknownKeyErr
}
if runtime.GOOS == "linux" && serverPubKey != localPubKey {
// try the ollama service public key
svcPubKey, err := os.ReadFile("/usr/share/ollama/.ollama/id_ed25519.pub")
if err != nil {
return unknownKeyErr
}
localPubKey = strings.TrimSpace(string(svcPubKey))
}
// check if the returned public key matches the local public key, this prevents adding a remote key to the user's account
if serverPubKey != localPubKey {
return unknownKeyErr
}
var msg strings.Builder
msg.WriteString(unknownKeyErr.Error())
msg.WriteString("\n\nYour ollama key is:\n")
msg.WriteString(localPubKey)
msg.WriteString("\nAdd your key at:\n")
msg.WriteString("https://ollama.com/settings/keys")
return errors.New(msg.String())
}
return unknownKeyErr
}
func PushHandler(cmd *cobra.Command, args []string) error {
client, err := api.ClientFromEnvironment()
if err != nil {
@@ -565,6 +559,8 @@ func PushHandler(cmd *cobra.Command, args []string) error {
}
request := api.PushRequest{Name: args[0], Insecure: insecure}
n := model.ParseName(args[0])
if err := client.Push(cmd.Context(), &request, fn); err != nil {
if spinner != nil {
spinner.Stop()
@@ -572,18 +568,19 @@ func PushHandler(cmd *cobra.Command, args []string) error {
if strings.Contains(err.Error(), "access denied") {
return errors.New("you are not authorized to push to this namespace, create the model under a namespace you own")
}
host := model.ParseName(args[0]).Host
isOllamaHost := strings.HasSuffix(host, ".ollama.ai") || strings.HasSuffix(host, ".ollama.com")
if strings.Contains(err.Error(), errtypes.UnknownOllamaKeyErrMsg) && isOllamaHost {
// the user has not added their ollama key to ollama.com
// re-throw an error with a more user-friendly message
return errFromUnknownKey(err)
}
return err
}
p.Stop()
spinner.Stop()
destination := n.String()
if strings.HasSuffix(n.Host, ".ollama.ai") || strings.HasSuffix(n.Host, ".ollama.com") {
destination = "https://ollama.com/" + strings.TrimSuffix(n.DisplayShortest(), ":latest")
}
fmt.Printf("\nYou can find your model at:\n\n")
fmt.Printf("\t%s\n", destination)
return nil
}
@@ -766,9 +763,9 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
case "parameters":
fmt.Println(resp.Parameters)
case "system":
fmt.Println(resp.System)
fmt.Print(resp.System)
case "template":
fmt.Println(resp.Template)
fmt.Print(resp.Template)
}
return nil
@@ -1284,7 +1281,7 @@ func NewCLI() *cobra.Command {
log.SetFlags(log.LstdFlags | log.Lshortfile)
cobra.EnableCommandSorting = false
if runtime.GOOS == "windows" {
if runtime.GOOS == "windows" && term.IsTerminal(int(os.Stdout.Fd())) {
console.ConsoleFromFile(os.Stdin) //nolint:errcheck
}
@@ -1316,7 +1313,7 @@ func NewCLI() *cobra.Command {
RunE: CreateHandler,
}
createCmd.Flags().StringP("file", "f", "Modelfile", "Name of the Modelfile")
createCmd.Flags().StringP("file", "f", "", "Name of the Modelfile (default \"Modelfile\"")
createCmd.Flags().StringP("quantize", "q", "", "Quantize model to this level (e.g. q4_0)")
showCmd := &cobra.Command{

View File

@@ -4,6 +4,7 @@ import (
"bytes"
"context"
"encoding/json"
"io"
"net/http"
"net/http/httptest"
"os"
@@ -270,3 +271,226 @@ func TestDeleteHandler(t *testing.T) {
t.Fatalf("DeleteHandler failed: expected error about stopping non-existent model, got %v", err)
}
}
func TestGetModelfileName(t *testing.T) {
tests := []struct {
name string
modelfileName string
fileExists bool
expectedName string
expectedErr error
}{
{
name: "no modelfile specified, no modelfile exists",
modelfileName: "",
fileExists: false,
expectedName: "",
expectedErr: os.ErrNotExist,
},
{
name: "no modelfile specified, modelfile exists",
modelfileName: "",
fileExists: true,
expectedName: "Modelfile",
expectedErr: nil,
},
{
name: "modelfile specified, no modelfile exists",
modelfileName: "crazyfile",
fileExists: false,
expectedName: "crazyfile",
expectedErr: os.ErrNotExist,
},
{
name: "modelfile specified, modelfile exists",
modelfileName: "anotherfile",
fileExists: true,
expectedName: "anotherfile",
expectedErr: nil,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
cmd := &cobra.Command{
Use: "fakecmd",
}
cmd.Flags().String("file", "", "path to modelfile")
var expectedFilename string
if tt.fileExists {
tempDir, err := os.MkdirTemp("", "modelfiledir")
defer os.RemoveAll(tempDir)
if err != nil {
t.Fatalf("temp modelfile dir creation failed: %v", err)
}
var fn string
if tt.modelfileName != "" {
fn = tt.modelfileName
} else {
fn = "Modelfile"
}
tempFile, err := os.CreateTemp(tempDir, fn)
if err != nil {
t.Fatalf("temp modelfile creation failed: %v", err)
}
expectedFilename = tempFile.Name()
err = cmd.Flags().Set("file", expectedFilename)
if err != nil {
t.Fatalf("couldn't set file flag: %v", err)
}
} else {
if tt.modelfileName != "" {
expectedFilename = tt.modelfileName
err := cmd.Flags().Set("file", tt.modelfileName)
if err != nil {
t.Fatalf("couldn't set file flag: %v", err)
}
}
}
actualFilename, actualErr := getModelfileName(cmd)
if actualFilename != expectedFilename {
t.Errorf("expected filename: '%s' actual filename: '%s'", expectedFilename, actualFilename)
}
if tt.expectedErr != os.ErrNotExist {
if actualErr != tt.expectedErr {
t.Errorf("expected err: %v actual err: %v", tt.expectedErr, actualErr)
}
} else {
if !os.IsNotExist(actualErr) {
t.Errorf("expected err: %v actual err: %v", tt.expectedErr, actualErr)
}
}
})
}
}
func TestPushHandler(t *testing.T) {
tests := []struct {
name string
modelName string
serverResponse map[string]func(w http.ResponseWriter, r *http.Request)
expectedError string
expectedOutput string
}{
{
name: "successful push",
modelName: "test-model",
serverResponse: map[string]func(w http.ResponseWriter, r *http.Request){
"/api/push": func(w http.ResponseWriter, r *http.Request) {
if r.Method != http.MethodPost {
t.Errorf("expected POST request, got %s", r.Method)
}
var req api.PushRequest
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
http.Error(w, err.Error(), http.StatusBadRequest)
return
}
if req.Name != "test-model" {
t.Errorf("expected model name 'test-model', got %s", req.Name)
}
// Simulate progress updates
responses := []api.ProgressResponse{
{Status: "preparing manifest"},
{Digest: "sha256:abc123456789", Total: 100, Completed: 50},
{Digest: "sha256:abc123456789", Total: 100, Completed: 100},
}
for _, resp := range responses {
if err := json.NewEncoder(w).Encode(resp); err != nil {
http.Error(w, err.Error(), http.StatusInternalServerError)
return
}
w.(http.Flusher).Flush()
}
},
},
expectedOutput: "\nYou can find your model at:\n\n\thttps://ollama.com/test-model\n",
},
{
name: "unauthorized push",
modelName: "unauthorized-model",
serverResponse: map[string]func(w http.ResponseWriter, r *http.Request){
"/api/push": func(w http.ResponseWriter, r *http.Request) {
w.Header().Set("Content-Type", "application/json")
w.WriteHeader(http.StatusUnauthorized)
err := json.NewEncoder(w).Encode(map[string]string{
"error": "access denied",
})
if err != nil {
t.Fatal(err)
}
},
},
expectedError: "you are not authorized to push to this namespace, create the model under a namespace you own",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
mockServer := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
if handler, ok := tt.serverResponse[r.URL.Path]; ok {
handler(w, r)
return
}
http.Error(w, "not found", http.StatusNotFound)
}))
defer mockServer.Close()
t.Setenv("OLLAMA_HOST", mockServer.URL)
cmd := &cobra.Command{}
cmd.Flags().Bool("insecure", false, "")
cmd.SetContext(context.TODO())
// Redirect stderr to capture progress output
oldStderr := os.Stderr
r, w, _ := os.Pipe()
os.Stderr = w
// Capture stdout for the "Model pushed" message
oldStdout := os.Stdout
outR, outW, _ := os.Pipe()
os.Stdout = outW
err := PushHandler(cmd, []string{tt.modelName})
// Restore stderr
w.Close()
os.Stderr = oldStderr
// drain the pipe
if _, err := io.ReadAll(r); err != nil {
t.Fatal(err)
}
// Restore stdout and get output
outW.Close()
os.Stdout = oldStdout
stdout, _ := io.ReadAll(outR)
if tt.expectedError == "" {
if err != nil {
t.Errorf("expected no error, got %v", err)
}
if tt.expectedOutput != "" {
if got := string(stdout); got != tt.expectedOutput {
t.Errorf("expected output %q, got %q", tt.expectedOutput, got)
}
}
} else {
if err == nil || !strings.Contains(err.Error(), tt.expectedError) {
t.Errorf("expected error containing %q, got %v", tt.expectedError, err)
}
}
})
}
}

View File

@@ -319,8 +319,6 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
opts.Messages = append(opts.Messages, newMessage)
}
fmt.Println("Set system message.")
sb.Reset()
sb.Reset()
continue
default:
@@ -494,35 +492,29 @@ func buildModelfile(opts runOptions) string {
}
func normalizeFilePath(fp string) string {
// Define a map of escaped characters and their replacements
replacements := map[string]string{
"\\ ": " ", // Escaped space
"\\(": "(", // Escaped left parenthesis
"\\)": ")", // Escaped right parenthesis
"\\[": "[", // Escaped left square bracket
"\\]": "]", // Escaped right square bracket
"\\{": "{", // Escaped left curly brace
"\\}": "}", // Escaped right curly brace
"\\$": "$", // Escaped dollar sign
"\\&": "&", // Escaped ampersand
"\\;": ";", // Escaped semicolon
"\\'": "'", // Escaped single quote
"\\\\": "\\", // Escaped backslash
"\\*": "*", // Escaped asterisk
"\\?": "?", // Escaped question mark
}
for escaped, actual := range replacements {
fp = strings.ReplaceAll(fp, escaped, actual)
}
return fp
return strings.NewReplacer(
"\\ ", " ", // Escaped space
"\\(", "(", // Escaped left parenthesis
"\\)", ")", // Escaped right parenthesis
"\\[", "[", // Escaped left square bracket
"\\]", "]", // Escaped right square bracket
"\\{", "{", // Escaped left curly brace
"\\}", "}", // Escaped right curly brace
"\\$", "$", // Escaped dollar sign
"\\&", "&", // Escaped ampersand
"\\;", ";", // Escaped semicolon
"\\'", "'", // Escaped single quote
"\\\\", "\\", // Escaped backslash
"\\*", "*", // Escaped asterisk
"\\?", "?", // Escaped question mark
).Replace(fp)
}
func extractFileNames(input string) []string {
// Regex to match file paths starting with optional drive letter, / ./ \ or .\ and include escaped or unescaped spaces (\ or %20)
// and followed by more characters and a file extension
// This will capture non filename strings, but we'll check for file existence to remove mismatches
regexPattern := `(?:[a-zA-Z]:)?(?:\./|/|\\)[\S\\ ]+?\.(?i:jpg|jpeg|png|svg)\b`
regexPattern := `(?:[a-zA-Z]:)?(?:\./|/|\\)[\S\\ ]+?\.(?i:jpg|jpeg|png)\b`
re := regexp.MustCompile(regexPattern)
return re.FindAllString(input, -1)
@@ -535,10 +527,9 @@ func extractFileData(input string) (string, []api.ImageData, error) {
for _, fp := range filePaths {
nfp := normalizeFilePath(fp)
data, err := getImageData(nfp)
if err != nil {
if os.IsNotExist(err) {
continue
}
if errors.Is(err, os.ErrNotExist) {
continue
} else if err != nil {
fmt.Fprintf(os.Stderr, "Couldn't process image: %q\n", err)
return "", imgs, err
}
@@ -546,7 +537,7 @@ func extractFileData(input string) (string, []api.ImageData, error) {
input = strings.ReplaceAll(input, fp, "")
imgs = append(imgs, data)
}
return input, imgs, nil
return strings.TrimSpace(input), imgs, nil
}
func getImageData(filePath string) ([]byte, error) {

View File

@@ -12,44 +12,45 @@ import (
func TestExtractFilenames(t *testing.T) {
// Unix style paths
input := ` some preamble
./relative\ path/one.png inbetween1 ./not a valid two.jpg inbetween2
/unescaped space /three.jpeg inbetween3 /valid\ path/dir/four.png "./quoted with spaces/five.svg`
./relative\ path/one.png inbetween1 ./not a valid two.jpg inbetween2 ./1.svg
/unescaped space /three.jpeg inbetween3 /valid\ path/dir/four.png "./quoted with spaces/five.JPG`
res := extractFileNames(input)
assert.Len(t, res, 5)
assert.Contains(t, res[0], "one.png")
assert.Contains(t, res[1], "two.jpg")
assert.Contains(t, res[2], "three.jpeg")
assert.Contains(t, res[3], "four.png")
assert.Contains(t, res[4], "five.svg")
assert.Contains(t, res[4], "five.JPG")
assert.NotContains(t, res[4], '"')
assert.NotContains(t, res, "inbtween")
assert.NotContains(t, res, "inbetween1")
assert.NotContains(t, res, "./1.svg")
// Windows style paths
input = ` some preamble
c:/users/jdoe/one.png inbetween1 c:/program files/someplace/two.jpg inbetween2
/absolute/nospace/three.jpeg inbetween3 /absolute/with space/four.png inbetween4
./relative\ path/five.svg inbetween5 "./relative with/spaces/six.png inbetween6
d:\path with\spaces\seven.svg inbetween7 c:\users\jdoe\eight.png inbetween8
d:\program files\someplace\nine.png inbetween9 "E:\program files\someplace\ten.svg some ending
./relative\ path/five.JPG inbetween5 "./relative with/spaces/six.png inbetween6
d:\path with\spaces\seven.JPEG inbetween7 c:\users\jdoe\eight.png inbetween8
d:\program files\someplace\nine.png inbetween9 "E:\program files\someplace\ten.PNG some ending
`
res = extractFileNames(input)
assert.Len(t, res, 10)
assert.NotContains(t, res, "inbtween")
assert.NotContains(t, res, "inbetween2")
assert.Contains(t, res[0], "one.png")
assert.Contains(t, res[0], "c:")
assert.Contains(t, res[1], "two.jpg")
assert.Contains(t, res[1], "c:")
assert.Contains(t, res[2], "three.jpeg")
assert.Contains(t, res[3], "four.png")
assert.Contains(t, res[4], "five.svg")
assert.Contains(t, res[4], "five.JPG")
assert.Contains(t, res[5], "six.png")
assert.Contains(t, res[6], "seven.svg")
assert.Contains(t, res[6], "seven.JPEG")
assert.Contains(t, res[6], "d:")
assert.Contains(t, res[7], "eight.png")
assert.Contains(t, res[7], "c:")
assert.Contains(t, res[8], "nine.png")
assert.Contains(t, res[8], "d:")
assert.Contains(t, res[9], "ten.svg")
assert.Contains(t, res[9], "ten.PNG")
assert.Contains(t, res[9], "E:")
}

View File

@@ -29,7 +29,7 @@ type tensorData struct {
Shape []int `json:"shape"`
}
func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, llm.Tensors) {
func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, *llm.Tensors) {
t.Helper()
f, err := os.CreateTemp(t.TempDir(), "f16")
@@ -60,7 +60,7 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, llm.Tensors) {
return r, m.KV(), m.Tensors()
}
func generateResultsJSON(t *testing.T, f *os.File, kv llm.KV, tensors llm.Tensors) map[string]string {
func generateResultsJSON(t *testing.T, f *os.File, kv llm.KV, tensors *llm.Tensors) map[string]string {
actual := make(map[string]string)
for k, v := range kv {
if s, ok := v.(json.Marshaler); !ok {

View File

@@ -1,6 +1,6 @@
//go:build linux || windows
package gpu
package discover
import (
"errors"
@@ -37,19 +37,6 @@ func GetSupportedGFX(libDir string) ([]string, error) {
return ret, nil
}
func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
ids := []string{}
for _, info := range gpuInfo {
if info.Library != "rocm" {
// TODO shouldn't happen if things are wired correctly...
slog.Debug("rocmGetVisibleDevicesEnv skipping over non-rocm device", "library", info.Library)
continue
}
ids = append(ids, info.ID)
}
return "HIP_VISIBLE_DEVICES", strings.Join(ids, ",")
}
func commonAMDValidateLibDir() (string, error) {
// Favor our bundled version

View File

@@ -1,4 +1,4 @@
package gpu
package discover
import (
"errors"
@@ -64,7 +64,7 @@ func NewHipLib() (*HipLib, error) {
return hl, nil
}
// The hip library only evaluates the HIP_VISIBLE_DEVICES variable at startup
// The hip library only evaluates the ROCR_VISIBLE_DEVICES variable at startup
// so we have to unload/reset the library after we do our initial discovery
// to make sure our updates to that variable are processed by llama.cpp
func (hl *HipLib) Release() {

View File

@@ -1,4 +1,4 @@
package gpu
package discover
import (
"bufio"
@@ -47,10 +47,11 @@ var (
)
// Gather GPU information from the amdgpu driver if any supported GPUs are detected
func AMDGetGPUInfo() []RocmGPUInfo {
// Only called once during bootstrap
func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
resp := []RocmGPUInfo{}
if !AMDDetected() {
return resp
return resp, fmt.Errorf("AMD GPUs not detected")
}
// Opportunistic logging of driver version to aid in troubleshooting
@@ -63,16 +64,13 @@ func AMDGetGPUInfo() []RocmGPUInfo {
// Determine if the user has already pre-selected which GPUs to look at, then ignore the others
var visibleDevices []string
hipVD := envconfig.HipVisibleDevices() // zero based index only
rocrVD := envconfig.RocrVisibleDevices() // zero based index or UUID, but consumer cards seem to not support UUID
rocrVD := envconfig.RocrVisibleDevices() // zero based index or UUID
gpuDO := envconfig.GpuDeviceOrdinal() // zero based index
switch {
// TODO is this priorty order right?
case hipVD != "":
visibleDevices = strings.Split(hipVD, ",")
case rocrVD != "":
visibleDevices = strings.Split(rocrVD, ",")
// TODO - since we don't yet support UUIDs, consider detecting and reporting here
// all our test systems show GPU-XX indicating UUID is not supported
case hipVD != "":
visibleDevices = strings.Split(hipVD, ",")
case gpuDO != "":
visibleDevices = strings.Split(gpuDO, ",")
}
@@ -98,7 +96,7 @@ func AMDGetGPUInfo() []RocmGPUInfo {
}
return a < b
})
cpuCount := 0
gpuCount := 0
for _, match := range matches {
slog.Debug("evaluating amdgpu node " + match)
fp, err := os.Open(match)
@@ -107,11 +105,6 @@ func AMDGetGPUInfo() []RocmGPUInfo {
continue
}
defer fp.Close()
nodeID, err := strconv.Atoi(filepath.Base(filepath.Dir(match)))
if err != nil {
slog.Debug("failed to parse node ID", "error", err)
continue
}
scanner := bufio.NewScanner(fp)
isCPU := false
@@ -185,24 +178,19 @@ func AMDGetGPUInfo() []RocmGPUInfo {
// do reliably report VRAM usage.
if isCPU {
cpuCount++
continue
}
// CPUs are always first in the list
gpuID := nodeID - cpuCount
// Shouldn't happen, but just in case...
if gpuID < 0 {
slog.Error("unexpected amdgpu sysfs data resulted in negative GPU ID, please set OLLAMA_DEBUG=1 and report an issue")
return nil
}
if int(major) < RocmComputeMin {
slog.Warn(fmt.Sprintf("amdgpu too old gfx%d%x%x", major, minor, patch), "gpu", gpuID)
// Skip over any GPUs that are masked
if major == 0 && minor == 0 && patch == 0 {
slog.Debug("skipping gpu with gfx000")
continue
}
// Keep track of numeric IDs based on valid GPUs
gpuID := gpuCount
gpuCount += 1
// Look up the memory for the current node
totalMemory := uint64(0)
usedMemory := uint64(0)
@@ -270,19 +258,20 @@ func AMDGetGPUInfo() []RocmGPUInfo {
break
}
// iGPU detection, remove this check once we can support an iGPU variant of the rocm library
if totalMemory < IGPUMemLimit {
slog.Info("unsupported Radeon iGPU detected skipping", "id", gpuID, "total", format.HumanBytes2(totalMemory))
continue
}
var name string
// TODO - PCI ID lookup
if vendor > 0 && device > 0 {
name = fmt.Sprintf("%04x:%04x", vendor, device)
}
slog.Debug("amdgpu memory", "gpu", gpuID, "total", format.HumanBytes2(totalMemory))
slog.Debug("amdgpu memory", "gpu", gpuID, "available", format.HumanBytes2(totalMemory-usedMemory))
// Favor UUIDs if available to reduce possibility of getting the numeric IDs wrong
var ID string
if uniqueID != 0 {
ID = fmt.Sprintf("GPU-%016x", uniqueID)
} else {
ID = strconv.Itoa(gpuID)
}
gpuInfo := RocmGPUInfo{
GpuInfo: GpuInfo{
Library: "rocm",
@@ -290,7 +279,7 @@ func AMDGetGPUInfo() []RocmGPUInfo {
TotalMemory: totalMemory,
FreeMemory: (totalMemory - usedMemory),
},
ID: strconv.Itoa(gpuID),
ID: ID,
Name: name,
Compute: fmt.Sprintf("gfx%d%x%x", major, minor, patch),
MinimumMemory: rocmMinimumMemory,
@@ -298,19 +287,51 @@ func AMDGetGPUInfo() []RocmGPUInfo {
DriverMinor: driverMinor,
},
usedFilepath: usedFile,
index: gpuID,
}
// iGPU detection, remove this check once we can support an iGPU variant of the rocm library
if totalMemory < IGPUMemLimit {
reason := "unsupported Radeon iGPU detected skipping"
slog.Info(reason, "id", gpuID, "total", format.HumanBytes2(totalMemory))
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
Reason: reason,
})
continue
}
if int(major) < RocmComputeMin {
reason := fmt.Sprintf("amdgpu too old gfx%d%x%x", major, minor, patch)
slog.Warn(reason, "gpu", gpuID)
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
Reason: reason,
})
continue
}
slog.Debug("amdgpu memory", "gpu", gpuID, "total", format.HumanBytes2(totalMemory))
slog.Debug("amdgpu memory", "gpu", gpuID, "available", format.HumanBytes2(totalMemory-usedMemory))
// If the user wants to filter to a subset of devices, filter out if we aren't a match
if len(visibleDevices) > 0 {
include := false
for _, visible := range visibleDevices {
if visible == gpuInfo.ID {
if visible == gpuInfo.ID || visible == strconv.Itoa(gpuInfo.index) {
include = true
break
}
}
if !include {
slog.Info("filtering out device per user request", "id", gpuInfo.ID, "visible_devices", visibleDevices)
reason := "filtering out device per user request"
slog.Info(reason, "id", gpuInfo.ID, "visible_devices", visibleDevices)
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
Reason: reason,
})
continue
}
}
@@ -320,25 +341,41 @@ func AMDGetGPUInfo() []RocmGPUInfo {
if libDir == "" {
libDir, err = AMDValidateLibDir()
if err != nil {
slog.Warn("unable to verify rocm library, will use cpu", "error", err)
return nil
err = fmt.Errorf("unable to verify rocm library: %w", err)
slog.Warn(err.Error())
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
Reason: err.Error(),
})
return nil, err
}
}
gpuInfo.DependencyPath = libDir
gpuInfo.DependencyPath = []string{libDir}
if gfxOverride == "" {
// Only load supported list once
if len(supported) == 0 {
supported, err = GetSupportedGFX(libDir)
if err != nil {
slog.Warn("failed to lookup supported GFX types, falling back to CPU mode", "error", err)
return nil
err = fmt.Errorf("failed to lookup supported GFX types: %w", err)
slog.Warn(err.Error())
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
Reason: err.Error(),
})
return nil, err
}
slog.Debug("rocm supported GPUs", "types", supported)
}
gfx := gpuInfo.Compute
if !slices.Contains[[]string, string](supported, gfx) {
slog.Warn("amdgpu is not supported", "gpu", gpuInfo.ID, "gpu_type", gfx, "library", libDir, "supported_types", supported)
reason := fmt.Sprintf("amdgpu is not supported (supported types:%s)", supported)
slog.Warn(reason, "gpu_type", gfx, "gpu", gpuInfo.ID, "library", libDir)
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
Reason: reason,
})
// TODO - consider discrete markdown just for ROCM troubleshooting?
slog.Warn("See https://github.com/ollama/ollama/blob/main/docs/gpu.md#overrides for HSA_OVERRIDE_GFX_VERSION usage")
continue
@@ -358,13 +395,16 @@ func AMDGetGPUInfo() []RocmGPUInfo {
resp = append(resp, gpuInfo)
}
if len(resp) == 0 {
slog.Info("no compatible amdgpu devices detected")
err := fmt.Errorf("no compatible amdgpu devices detected")
slog.Info(err.Error())
return nil, err
}
if err := verifyKFDDriverAccess(); err != nil {
slog.Error("amdgpu devices detected but permission problems block access", "error", err)
return nil
err = fmt.Errorf("amdgpu devices detected but permission problems block access: %w", err)
slog.Error(err.Error())
return nil, err
}
return resp
return resp, nil
}
// Quick check for AMD driver so we can skip amdgpu discovery if not present
@@ -476,3 +516,20 @@ func verifyKFDDriverAccess() error {
fd.Close()
return nil
}
func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
ids := []string{}
for _, info := range gpuInfo {
if info.Library != "rocm" {
// TODO shouldn't happen if things are wired correctly...
slog.Debug("rocmGetVisibleDevicesEnv skipping over non-rocm device", "library", info.Library)
continue
}
ids = append(ids, info.ID)
}
// There are 3 potential env vars to use to select GPUs.
// ROCR_VISIBLE_DEVICES supports UUID or numeric so is our preferred on linux
// GPU_DEVICE_ORDINAL supports numeric IDs only
// HIP_VISIBLE_DEVICES supports numeric IDs only
return "ROCR_VISIBLE_DEVICES", strings.Join(ids, ",")
}

View File

@@ -1,8 +1,9 @@
package gpu
package discover
import (
"bytes"
"errors"
"fmt"
"log/slog"
"os"
"path/filepath"
@@ -26,12 +27,13 @@ var (
RocmStandardLocations = []string{"C:\\Program Files\\AMD\\ROCm\\6.1\\bin"} // TODO glob?
)
func AMDGetGPUInfo() []RocmGPUInfo {
// Only called once during bootstrap
func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
resp := []RocmGPUInfo{}
hl, err := NewHipLib()
if err != nil {
slog.Debug(err.Error())
return nil
return nil, err
}
defer hl.Release()
@@ -41,15 +43,18 @@ func AMDGetGPUInfo() []RocmGPUInfo {
slog.Debug("error looking up amd driver version", "error", err)
}
// Note: the HIP library automatically handles subsetting to any HIP_VISIBLE_DEVICES the user specified
// Note: the HIP library automatically handles subsetting to any *_VISIBLE_DEVICES the user specified
count := hl.HipGetDeviceCount()
if count == 0 {
return nil
err := fmt.Errorf("no compatible amdgpu devices detected")
slog.Info(err.Error())
return nil, err
}
libDir, err := AMDValidateLibDir()
if err != nil {
slog.Warn("unable to verify rocm library, will use cpu", "error", err)
return nil
err = fmt.Errorf("unable to verify rocm library: %w", err)
slog.Warn(err.Error())
return nil, err
}
var supported []string
@@ -57,8 +62,9 @@ func AMDGetGPUInfo() []RocmGPUInfo {
if gfxOverride == "" {
supported, err = GetSupportedGFX(libDir)
if err != nil {
slog.Warn("failed to lookup supported GFX types, falling back to CPU mode", "error", err)
return nil
err = fmt.Errorf("failed to lookup supported GFX types: %w", err)
slog.Warn(err.Error())
return nil, err
}
} else {
slog.Info("skipping rocm gfx compatibility check", "HSA_OVERRIDE_GFX_VERSION", gfxOverride)
@@ -87,21 +93,6 @@ func AMDGetGPUInfo() []RocmGPUInfo {
slog.Debug("hip device", "id", i, "name", name, "gfx", gfx)
// slog.Info(fmt.Sprintf("[%d] Integrated: %d", i, props.iGPU)) // DOESN'T REPORT CORRECTLY! Always 0
// TODO Why isn't props.iGPU accurate!?
if strings.EqualFold(name, iGPUName) {
slog.Info("unsupported Radeon iGPU detected skipping", "id", i, "name", name, "gfx", gfx)
continue
}
if gfxOverride == "" {
// Strip off Target Features when comparing
if !slices.Contains[[]string, string](supported, strings.Split(gfx, ":")[0]) {
slog.Warn("amdgpu is not supported", "gpu", i, "gpu_type", gfx, "library", libDir, "supported_types", supported)
// TODO - consider discrete markdown just for ROCM troubleshooting?
slog.Warn("See https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md for HSA_OVERRIDE_GFX_VERSION usage")
continue
} else {
slog.Debug("amdgpu is supported", "gpu", i, "gpu_type", gfx)
}
}
freeMemory, totalMemory, err := hl.HipMemGetInfo()
if err != nil {
@@ -109,14 +100,6 @@ func AMDGetGPUInfo() []RocmGPUInfo {
continue
}
// iGPU detection, remove this check once we can support an iGPU variant of the rocm library
if totalMemory < IGPUMemLimit {
slog.Info("amdgpu appears to be an iGPU, skipping", "gpu", i, "total", format.HumanBytes2(totalMemory))
continue
}
slog.Debug("amdgpu memory", "gpu", i, "total", format.HumanBytes2(totalMemory))
slog.Debug("amdgpu memory", "gpu", i, "available", format.HumanBytes2(freeMemory))
gpuInfo := RocmGPUInfo{
GpuInfo: GpuInfo{
Library: "rocm",
@@ -128,7 +111,7 @@ func AMDGetGPUInfo() []RocmGPUInfo {
UnreliableFreeMemory: true,
ID: strconv.Itoa(i), // TODO this is probably wrong if we specify visible devices
DependencyPath: libDir,
DependencyPath: []string{libDir},
MinimumMemory: rocmMinimumMemory,
Name: name,
Compute: gfx,
@@ -138,10 +121,38 @@ func AMDGetGPUInfo() []RocmGPUInfo {
index: i,
}
// iGPU detection, remove this check once we can support an iGPU variant of the rocm library
if strings.EqualFold(name, iGPUName) || totalMemory < IGPUMemLimit {
reason := "unsupported Radeon iGPU detected skipping"
slog.Info(reason, "id", gpuInfo.ID, "total", format.HumanBytes2(totalMemory))
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
Reason: reason,
})
continue
}
// Strip off Target Features when comparing
if !slices.Contains[[]string, string](supported, strings.Split(gfx, ":")[0]) {
reason := fmt.Sprintf("amdgpu is not supported (supported types:%s)", supported)
slog.Warn(reason, "gpu_type", gfx, "gpu", gpuInfo.ID, "library", libDir)
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
Reason: reason,
})
// HSA_OVERRIDE_GFX_VERSION not supported on windows
continue
} else {
slog.Debug("amdgpu is supported", "gpu", i, "gpu_type", gfx)
}
slog.Debug("amdgpu memory", "gpu", i, "total", format.HumanBytes2(totalMemory))
slog.Debug("amdgpu memory", "gpu", i, "available", format.HumanBytes2(freeMemory))
resp = append(resp, gpuInfo)
}
return resp
return resp, nil
}
func AMDValidateLibDir() (string, error) {
@@ -190,3 +201,20 @@ func (gpus RocmGPUInfoList) RefreshFreeMemory() error {
}
return nil
}
func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
ids := []string{}
for _, info := range gpuInfo {
if info.Library != "rocm" {
// TODO shouldn't happen if things are wired correctly...
slog.Debug("rocmGetVisibleDevicesEnv skipping over non-rocm device", "library", info.Library)
continue
}
ids = append(ids, info.ID)
}
// There are 3 potential env vars to use to select GPUs.
// ROCR_VISIBLE_DEVICES supports UUID or numeric but does not work on Windows
// HIP_VISIBLE_DEVICES supports numeric IDs only
// GPU_DEVICE_ORDINAL supports numeric IDs only
return "HIP_VISIBLE_DEVICES", strings.Join(ids, ",")
}

View File

@@ -1,4 +1,4 @@
package gpu
package discover
import (
"os"

View File

@@ -1,6 +1,6 @@
//go:build linux || windows
package gpu
package discover
import (
"log/slog"

View File

@@ -1,6 +1,6 @@
//go:build linux || windows
package gpu
package discover
/*
#cgo linux LDFLAGS: -lrt -lpthread -ldl -lstdc++ -lm
@@ -54,6 +54,13 @@ var (
nvmlLibPath string
rocmGPUs []RocmGPUInfo
oneapiGPUs []OneapiGPUInfo
// If any discovered GPUs are incompatible, report why
unsupportedGPUs []UnsupportedGPUInfo
// Keep track of errors during bootstrapping so that if GPUs are missing
// they expected to be present this may explain why
bootstrapErrors []error
)
// With our current CUDA compile flags, older than 5.0 will not work properly
@@ -70,16 +77,17 @@ func initCudaHandles() *cudaHandles {
cHandles := &cudaHandles{}
// Short Circuit if we already know which library to use
// ignore bootstrap errors in this case since we already recorded them
if nvmlLibPath != "" {
cHandles.nvml, _ = LoadNVMLMgmt([]string{nvmlLibPath})
cHandles.nvml, _, _ = loadNVMLMgmt([]string{nvmlLibPath})
return cHandles
}
if nvcudaLibPath != "" {
cHandles.deviceCount, cHandles.nvcuda, _ = LoadNVCUDAMgmt([]string{nvcudaLibPath})
cHandles.deviceCount, cHandles.nvcuda, _, _ = loadNVCUDAMgmt([]string{nvcudaLibPath})
return cHandles
}
if cudartLibPath != "" {
cHandles.deviceCount, cHandles.cudart, _ = LoadCUDARTMgmt([]string{cudartLibPath})
cHandles.deviceCount, cHandles.cudart, _, _ = loadCUDARTMgmt([]string{cudartLibPath})
return cHandles
}
@@ -102,18 +110,21 @@ func initCudaHandles() *cudaHandles {
if len(NvmlGlobs) > 0 {
nvmlLibPaths := FindGPULibs(NvmlMgmtName, NvmlGlobs)
if len(nvmlLibPaths) > 0 {
nvml, libPath := LoadNVMLMgmt(nvmlLibPaths)
nvml, libPath, err := loadNVMLMgmt(nvmlLibPaths)
if nvml != nil {
slog.Debug("nvidia-ml loaded", "library", libPath)
cHandles.nvml = nvml
nvmlLibPath = libPath
}
if err != nil {
bootstrapErrors = append(bootstrapErrors, err)
}
}
}
nvcudaLibPaths := FindGPULibs(NvcudaMgmtName, nvcudaMgmtPatterns)
if len(nvcudaLibPaths) > 0 {
deviceCount, nvcuda, libPath := LoadNVCUDAMgmt(nvcudaLibPaths)
deviceCount, nvcuda, libPath, err := loadNVCUDAMgmt(nvcudaLibPaths)
if nvcuda != nil {
slog.Debug("detected GPUs", "count", deviceCount, "library", libPath)
cHandles.nvcuda = nvcuda
@@ -121,11 +132,14 @@ func initCudaHandles() *cudaHandles {
nvcudaLibPath = libPath
return cHandles
}
if err != nil {
bootstrapErrors = append(bootstrapErrors, err)
}
}
cudartLibPaths := FindGPULibs(CudartMgmtName, cudartMgmtPatterns)
if len(cudartLibPaths) > 0 {
deviceCount, cudart, libPath := LoadCUDARTMgmt(cudartLibPaths)
deviceCount, cudart, libPath, err := loadCUDARTMgmt(cudartLibPaths)
if cudart != nil {
slog.Debug("detected GPUs", "library", libPath, "count", deviceCount)
cHandles.cudart = cudart
@@ -133,6 +147,9 @@ func initCudaHandles() *cudaHandles {
cudartLibPath = libPath
return cHandles
}
if err != nil {
bootstrapErrors = append(bootstrapErrors, err)
}
}
return cHandles
@@ -143,14 +160,19 @@ func initOneAPIHandles() *oneapiHandles {
oHandles := &oneapiHandles{}
// Short Circuit if we already know which library to use
// ignore bootstrap errors in this case since we already recorded them
if oneapiLibPath != "" {
oHandles.deviceCount, oHandles.oneapi, _ = LoadOneapiMgmt([]string{oneapiLibPath})
oHandles.deviceCount, oHandles.oneapi, _, _ = loadOneapiMgmt([]string{oneapiLibPath})
return oHandles
}
oneapiLibPaths := FindGPULibs(OneapiMgmtName, OneapiGlobs)
if len(oneapiLibPaths) > 0 {
oHandles.deviceCount, oHandles.oneapi, oneapiLibPath = LoadOneapiMgmt(oneapiLibPaths)
var err error
oHandles.deviceCount, oHandles.oneapi, oneapiLibPath, err = loadOneapiMgmt(oneapiLibPaths)
if err != nil {
bootstrapErrors = append(bootstrapErrors, err)
}
}
return oHandles
@@ -197,6 +219,7 @@ func GetGPUInfo() GpuInfoList {
if !bootstrapped {
slog.Info("looking for compatible GPUs")
bootstrapErrors = []error{}
needRefresh = false
cpuCapability = GetCPUCapability()
var memInfo C.mem_info_t
@@ -206,7 +229,10 @@ func GetGPUInfo() GpuInfoList {
slog.Warn("error looking up system memory", "error", err)
}
depPath := LibraryDir()
details, err := GetCPUDetails()
if err != nil {
slog.Warn("failed to lookup CPU details", "error", err)
}
cpus = []CPUInfo{
{
GpuInfo: GpuInfo{
@@ -214,14 +240,17 @@ func GetGPUInfo() GpuInfoList {
Library: "cpu",
Variant: cpuCapability.String(),
ID: "0",
DependencyPath: depPath,
DependencyPath: []string{depPath},
},
CPUs: details,
},
}
// Fallback to CPU mode if we're lacking required vector extensions on x86
if cpuCapability < GPURunnerCPUCapability && runtime.GOARCH == "amd64" {
slog.Warn("CPU does not have minimum vector extensions, GPU inference disabled", "required", GPURunnerCPUCapability, "detected", cpuCapability)
err := fmt.Errorf("CPU does not have minimum vector extensions, GPU inference disabled. Required:%s Detected:%s", GPURunnerCPUCapability, cpuCapability)
slog.Warn(err.Error())
bootstrapErrors = append(bootstrapErrors, err)
bootstrapped = true
// No need to do any GPU discovery, since we can't run on them
return GpuInfoList{cpus[0].GpuInfo}
@@ -253,10 +282,6 @@ func GetGPUInfo() GpuInfoList {
C.free(unsafe.Pointer(memInfo.err))
continue
}
if memInfo.major < CudaComputeMin[0] || (memInfo.major == CudaComputeMin[0] && memInfo.minor < CudaComputeMin[1]) {
slog.Info(fmt.Sprintf("[%d] CUDA GPU is too old. Compute Capability detected: %d.%d", i, memInfo.major, memInfo.minor))
continue
}
gpuInfo.TotalMemory = uint64(memInfo.total)
gpuInfo.FreeMemory = uint64(memInfo.free)
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
@@ -268,21 +293,32 @@ func GetGPUInfo() GpuInfoList {
gpuInfo.DriverMinor = driverMinor
variant := cudaVariant(gpuInfo)
if depPath != "" {
gpuInfo.DependencyPath = depPath
gpuInfo.DependencyPath = []string{depPath}
// Check for variant specific directory
if variant != "" {
if _, err := os.Stat(filepath.Join(depPath, "cuda_"+variant)); err == nil {
gpuInfo.DependencyPath = filepath.Join(depPath, "cuda_"+variant)
gpuInfo.DependencyPath = []string{filepath.Join(depPath, "cuda_"+variant), depPath}
}
}
}
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
gpuInfo.Variant = variant
if memInfo.major < CudaComputeMin[0] || (memInfo.major == CudaComputeMin[0] && memInfo.minor < CudaComputeMin[1]) {
unsupportedGPUs = append(unsupportedGPUs,
UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
})
slog.Info(fmt.Sprintf("[%d] CUDA GPU is too old. Compute Capability detected: %d.%d", i, memInfo.major, memInfo.minor))
continue
}
// query the management library as well so we can record any skew between the two
// which represents overhead on the GPU we must set aside on subsequent updates
if cHandles.nvml != nil {
C.nvml_get_free(*cHandles.nvml, C.int(gpuInfo.index), &memInfo.free, &memInfo.total, &memInfo.used)
uuid := C.CString(gpuInfo.ID)
defer C.free(unsafe.Pointer(uuid))
C.nvml_get_free(*cHandles.nvml, uuid, &memInfo.free, &memInfo.total, &memInfo.used)
if memInfo.err != nil {
slog.Warn("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
C.free(unsafe.Pointer(memInfo.err))
@@ -334,14 +370,17 @@ func GetGPUInfo() GpuInfoList {
gpuInfo.FreeMemory = uint64(memInfo.free)
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
gpuInfo.DependencyPath = depPath
gpuInfo.DependencyPath = []string{depPath}
oneapiGPUs = append(oneapiGPUs, gpuInfo)
}
}
}
}
rocmGPUs = AMDGetGPUInfo()
rocmGPUs, err = AMDGetGPUInfo()
if err != nil {
bootstrapErrors = append(bootstrapErrors, err)
}
bootstrapped = true
if len(cudaGPUs) == 0 && len(rocmGPUs) == 0 && len(oneapiGPUs) == 0 {
slog.Info("no compatible GPUs were discovered")
@@ -380,7 +419,9 @@ func GetGPUInfo() GpuInfoList {
}
for i, gpu := range cudaGPUs {
if cHandles.nvml != nil {
C.nvml_get_free(*cHandles.nvml, C.int(gpu.index), &memInfo.free, &memInfo.total, &memInfo.used)
uuid := C.CString(gpu.ID)
defer C.free(unsafe.Pointer(uuid))
C.nvml_get_free(*cHandles.nvml, uuid, &memInfo.free, &memInfo.total, &memInfo.used)
} else if cHandles.cudart != nil {
C.cudart_bootstrap(*cHandles.cudart, C.int(gpu.index), &memInfo)
} else if cHandles.nvcuda != nil {
@@ -526,92 +567,114 @@ func FindGPULibs(baseLibName string, defaultPatterns []string) []string {
return gpuLibPaths
}
func LoadCUDARTMgmt(cudartLibPaths []string) (int, *C.cudart_handle_t, string) {
// Bootstrap the runtime library
// Returns: num devices, handle, libPath, error
func loadCUDARTMgmt(cudartLibPaths []string) (int, *C.cudart_handle_t, string, error) {
var resp C.cudart_init_resp_t
resp.ch.verbose = getVerboseState()
var err error
for _, libPath := range cudartLibPaths {
lib := C.CString(libPath)
defer C.free(unsafe.Pointer(lib))
C.cudart_init(lib, &resp)
if resp.err != nil {
slog.Debug("Unable to load cudart", "library", libPath, "error", C.GoString(resp.err))
err = fmt.Errorf("Unable to load cudart library %s: %s", libPath, C.GoString(resp.err))
slog.Debug(err.Error())
C.free(unsafe.Pointer(resp.err))
} else {
return int(resp.num_devices), &resp.ch, libPath
err = nil
return int(resp.num_devices), &resp.ch, libPath, err
}
}
return 0, nil, ""
return 0, nil, "", err
}
func LoadNVCUDAMgmt(nvcudaLibPaths []string) (int, *C.nvcuda_handle_t, string) {
// Bootstrap the driver library
// Returns: num devices, handle, libPath, error
func loadNVCUDAMgmt(nvcudaLibPaths []string) (int, *C.nvcuda_handle_t, string, error) {
var resp C.nvcuda_init_resp_t
resp.ch.verbose = getVerboseState()
var err error
for _, libPath := range nvcudaLibPaths {
lib := C.CString(libPath)
defer C.free(unsafe.Pointer(lib))
C.nvcuda_init(lib, &resp)
if resp.err != nil {
// Decide what log level based on the type of error message to help users understand why
msg := C.GoString(resp.err)
switch resp.cudaErr {
case C.CUDA_ERROR_INSUFFICIENT_DRIVER, C.CUDA_ERROR_SYSTEM_DRIVER_MISMATCH:
slog.Warn("version mismatch between driver and cuda driver library - reboot or upgrade may be required", "library", libPath, "error", msg)
err = fmt.Errorf("version mismatch between driver and cuda driver library - reboot or upgrade may be required: library %s", libPath)
slog.Warn(err.Error())
case C.CUDA_ERROR_NO_DEVICE:
slog.Info("no nvidia devices detected", "library", libPath)
err = fmt.Errorf("no nvidia devices detected by library %s", libPath)
slog.Info(err.Error())
case C.CUDA_ERROR_UNKNOWN:
slog.Warn("unknown error initializing cuda driver library", "library", libPath, "error", msg)
slog.Warn("see https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md for more information")
err = fmt.Errorf("unknown error initializing cuda driver library %s: %s. see https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md for more information", libPath, C.GoString(resp.err))
slog.Warn(err.Error())
default:
msg := C.GoString(resp.err)
if strings.Contains(msg, "wrong ELF class") {
slog.Debug("skipping 32bit library", "library", libPath)
} else {
slog.Info("unable to load cuda driver library", "library", libPath, "error", msg)
err = fmt.Errorf("Unable to load cudart library %s: %s", libPath, C.GoString(resp.err))
slog.Info(err.Error())
}
}
C.free(unsafe.Pointer(resp.err))
} else {
return int(resp.num_devices), &resp.ch, libPath
err = nil
return int(resp.num_devices), &resp.ch, libPath, err
}
}
return 0, nil, ""
return 0, nil, "", err
}
func LoadNVMLMgmt(nvmlLibPaths []string) (*C.nvml_handle_t, string) {
// Bootstrap the management library
// Returns: handle, libPath, error
func loadNVMLMgmt(nvmlLibPaths []string) (*C.nvml_handle_t, string, error) {
var resp C.nvml_init_resp_t
resp.ch.verbose = getVerboseState()
var err error
for _, libPath := range nvmlLibPaths {
lib := C.CString(libPath)
defer C.free(unsafe.Pointer(lib))
C.nvml_init(lib, &resp)
if resp.err != nil {
slog.Info(fmt.Sprintf("Unable to load NVML management library %s: %s", libPath, C.GoString(resp.err)))
err = fmt.Errorf("Unable to load NVML management library %s: %s", libPath, C.GoString(resp.err))
slog.Info(err.Error())
C.free(unsafe.Pointer(resp.err))
} else {
return &resp.ch, libPath
err = nil
return &resp.ch, libPath, err
}
}
return nil, ""
return nil, "", err
}
func LoadOneapiMgmt(oneapiLibPaths []string) (int, *C.oneapi_handle_t, string) {
// bootstrap the Intel GPU library
// Returns: num devices, handle, libPath, error
func loadOneapiMgmt(oneapiLibPaths []string) (int, *C.oneapi_handle_t, string, error) {
var resp C.oneapi_init_resp_t
num_devices := 0
resp.oh.verbose = getVerboseState()
var err error
for _, libPath := range oneapiLibPaths {
lib := C.CString(libPath)
defer C.free(unsafe.Pointer(lib))
C.oneapi_init(lib, &resp)
if resp.err != nil {
slog.Debug("Unable to load oneAPI management library", "library", libPath, "error", C.GoString(resp.err))
err = fmt.Errorf("Unable to load oneAPI management library %s: %s", libPath, C.GoString(resp.err))
slog.Debug(err.Error())
C.free(unsafe.Pointer(resp.err))
} else {
err = nil
for i := range resp.oh.num_drivers {
num_devices += int(C.oneapi_get_device_count(resp.oh, C.int(i)))
}
return num_devices, &resp.oh, libPath
return num_devices, &resp.oh, libPath, err
}
}
return 0, nil, ""
return 0, nil, "", err
}
func getVerboseState() C.uint16_t {
@@ -669,3 +732,23 @@ func LibraryDir() string {
slog.Warn("unable to locate gpu dependency libraries")
return ""
}
func GetSystemInfo() SystemInfo {
gpus := GetGPUInfo()
gpuMutex.Lock()
defer gpuMutex.Unlock()
discoveryErrors := []string{}
for _, err := range bootstrapErrors {
discoveryErrors = append(discoveryErrors, err.Error())
}
if len(gpus) == 1 && gpus[0].Library == "cpu" {
gpus = []GpuInfo{}
}
return SystemInfo{
System: cpus[0],
GPUs: gpus,
UnsupportedGPUs: unsupportedGPUs,
DiscoveryErrors: discoveryErrors,
}
}

View File

@@ -1,6 +1,6 @@
//go:build darwin
package gpu
package discover
/*
#cgo CFLAGS: -x objective-c
@@ -10,7 +10,9 @@ package gpu
import "C"
import (
"log/slog"
"runtime"
"syscall"
"github.com/ollama/ollama/format"
)
@@ -66,3 +68,34 @@ func (l GpuInfoList) GetVisibleDevicesEnv() (string, string) {
// No-op on darwin
return "", ""
}
func GetSystemInfo() SystemInfo {
mem, _ := GetCPUMem()
query := "hw.perflevel0.physicalcpu"
perfCores, err := syscall.SysctlUint32(query)
if err != nil {
slog.Warn("failed to discover physical CPU details", "query", query, "error", err)
}
query = "hw.perflevel1.physicalcpu"
efficiencyCores, _ := syscall.SysctlUint32(query) // On x86 xeon this wont return data
// Determine thread count
query = "hw.logicalcpu"
logicalCores, _ := syscall.SysctlUint32(query)
return SystemInfo{
System: CPUInfo{
GpuInfo: GpuInfo{
memInfo: mem,
},
CPUs: []CPU{
{
CoreCount: int(perfCores + efficiencyCores),
EfficiencyCoreCount: int(efficiencyCores),
ThreadCount: int(logicalCores),
},
},
},
GPUs: GetGPUInfo(),
}
}

View File

@@ -4,6 +4,7 @@
#include "gpu_info_nvcuda.h"
void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
LOG(resp->ch.verbose, "initializing %s\n", nvcuda_lib_path);
CUresult ret;
resp->err = NULL;
resp->num_devices = 0;
@@ -57,8 +58,10 @@ void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
resp->cudaErr = -1;
return;
}
LOG(resp->ch.verbose, "dlsym: %s - %p\n", l[i].s, *l[i].p);
}
LOG(resp->ch.verbose, "calling cuInit\n");
ret = (*resp->ch.cuInit)(0);
if (ret != CUDA_SUCCESS) {
LOG(resp->ch.verbose, "cuInit err: %d\n", ret);
@@ -75,15 +78,18 @@ void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
resp->ch.driver_minor = 0;
// Report driver version if we're in verbose mode, ignore errors
LOG(resp->ch.verbose, "calling cuDriverGetVersion\n");
ret = (*resp->ch.cuDriverGetVersion)(&version);
if (ret != CUDA_SUCCESS) {
LOG(resp->ch.verbose, "cuDriverGetVersion failed: %d\n", ret);
} else {
LOG(resp->ch.verbose, "raw version 0x%x\n", version);
resp->ch.driver_major = version / 1000;
resp->ch.driver_minor = (version - (resp->ch.driver_major * 1000)) / 10;
LOG(resp->ch.verbose, "CUDA driver version: %d.%d\n", resp->ch.driver_major, resp->ch.driver_minor);
}
LOG(resp->ch.verbose, "calling cuDeviceGetCount\n");
ret = (*resp->ch.cuDeviceGetCount)(&resp->num_devices);
if (ret != CUDA_SUCCESS) {
LOG(resp->ch.verbose, "cuDeviceGetCount err: %d\n", ret);
@@ -94,6 +100,7 @@ void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
resp->cudaErr = ret;
return;
}
LOG(resp->ch.verbose, "device count %d\n", resp->num_devices);
}
const int buflen = 256;

View File

@@ -17,7 +17,7 @@ void nvml_init(char *nvml_lib_path, nvml_init_resp_t *resp) {
} l[] = {
{"nvmlInit_v2", (void *)&resp->ch.nvmlInit_v2},
{"nvmlShutdown", (void *)&resp->ch.nvmlShutdown},
{"nvmlDeviceGetHandleByIndex", (void *)&resp->ch.nvmlDeviceGetHandleByIndex},
{"nvmlDeviceGetHandleByUUID", (void *)&resp->ch.nvmlDeviceGetHandleByUUID},
{"nvmlDeviceGetMemoryInfo", (void *)&resp->ch.nvmlDeviceGetMemoryInfo},
{NULL, NULL},
};
@@ -67,20 +67,20 @@ void nvml_init(char *nvml_lib_path, nvml_init_resp_t *resp) {
}
void nvml_get_free(nvml_handle_t h, int device_id, uint64_t *free, uint64_t *total, uint64_t *used) {
void nvml_get_free(nvml_handle_t h, char *uuid, uint64_t *free, uint64_t *total, uint64_t *used) {
nvmlDevice_t device;
nvmlMemory_t memInfo = {0};
nvmlReturn_t ret;
ret = (*h.nvmlDeviceGetHandleByIndex)(device_id, &device);
ret = (*h.nvmlDeviceGetHandleByUUID)((const char *)(uuid), &device);
if (ret != NVML_SUCCESS) {
LOG(1, "unable to get device handle %d: %d", device_id, ret);
LOG(1, "unable to get device handle %s: %d", uuid, ret);
*free = 0;
return;
}
ret = (*h.nvmlDeviceGetMemoryInfo)(device, &memInfo);
if (ret != NVML_SUCCESS) {
LOG(1, "device memory info lookup failure %d: %d", device_id, ret);
LOG(1, "device memory info lookup failure %s: %d", uuid, ret);
*free = 0;
return;
}

View File

@@ -25,7 +25,7 @@ typedef struct nvml_handle {
uint16_t verbose;
nvmlReturn_t (*nvmlInit_v2)(void);
nvmlReturn_t (*nvmlShutdown)(void);
nvmlReturn_t (*nvmlDeviceGetHandleByIndex)(unsigned int, nvmlDevice_t *);
nvmlReturn_t (*nvmlDeviceGetHandleByUUID)(const char *, nvmlDevice_t *);
nvmlReturn_t (*nvmlDeviceGetMemoryInfo)(nvmlDevice_t, nvmlMemory_t *);
} nvml_handle_t;
@@ -41,7 +41,7 @@ typedef struct nvml_compute_capability {
} nvml_compute_capability_t;
void nvml_init(char *nvml_lib_path, nvml_init_resp_t *resp);
void nvml_get_free(nvml_handle_t ch, int device_id, uint64_t *free, uint64_t *total, uint64_t *used);
void nvml_get_free(nvml_handle_t ch, char *uuid, uint64_t *free, uint64_t *total, uint64_t *used);
void nvml_release(nvml_handle_t ch);
#endif // __GPU_INFO_NVML_H__

199
discover/gpu_linux.go Normal file
View File

@@ -0,0 +1,199 @@
package discover
import (
"bufio"
"fmt"
"io"
"os"
"reflect"
"regexp"
"sort"
"strings"
"github.com/ollama/ollama/format"
)
var CudartGlobs = []string{
"/usr/local/cuda/lib64/libcudart.so*",
"/usr/lib/x86_64-linux-gnu/nvidia/current/libcudart.so*",
"/usr/lib/x86_64-linux-gnu/libcudart.so*",
"/usr/lib/wsl/lib/libcudart.so*",
"/usr/lib/wsl/drivers/*/libcudart.so*",
"/opt/cuda/lib64/libcudart.so*",
"/usr/local/cuda*/targets/aarch64-linux/lib/libcudart.so*",
"/usr/lib/aarch64-linux-gnu/nvidia/current/libcudart.so*",
"/usr/lib/aarch64-linux-gnu/libcudart.so*",
"/usr/local/cuda/lib*/libcudart.so*",
"/usr/lib*/libcudart.so*",
"/usr/local/lib*/libcudart.so*",
}
var NvmlGlobs = []string{}
var NvcudaGlobs = []string{
"/usr/local/cuda*/targets/*/lib/libcuda.so*",
"/usr/lib/*-linux-gnu/nvidia/current/libcuda.so*",
"/usr/lib/*-linux-gnu/libcuda.so*",
"/usr/lib/wsl/lib/libcuda.so*",
"/usr/lib/wsl/drivers/*/libcuda.so*",
"/opt/cuda/lib*/libcuda.so*",
"/usr/local/cuda/lib*/libcuda.so*",
"/usr/lib*/libcuda.so*",
"/usr/local/lib*/libcuda.so*",
}
var OneapiGlobs = []string{
"/usr/lib/x86_64-linux-gnu/libze_intel_gpu.so*",
"/usr/lib*/libze_intel_gpu.so*",
}
var (
CudartMgmtName = "libcudart.so*"
NvcudaMgmtName = "libcuda.so*"
NvmlMgmtName = "" // not currently wired on linux
OneapiMgmtName = "libze_intel_gpu.so*"
)
func GetCPUMem() (memInfo, error) {
var mem memInfo
var total, available, free, buffers, cached, freeSwap uint64
f, err := os.Open("/proc/meminfo")
if err != nil {
return mem, err
}
defer f.Close()
s := bufio.NewScanner(f)
for s.Scan() {
line := s.Text()
switch {
case strings.HasPrefix(line, "MemTotal:"):
_, err = fmt.Sscanf(line, "MemTotal:%d", &total)
case strings.HasPrefix(line, "MemAvailable:"):
_, err = fmt.Sscanf(line, "MemAvailable:%d", &available)
case strings.HasPrefix(line, "MemFree:"):
_, err = fmt.Sscanf(line, "MemFree:%d", &free)
case strings.HasPrefix(line, "Buffers:"):
_, err = fmt.Sscanf(line, "Buffers:%d", &buffers)
case strings.HasPrefix(line, "Cached:"):
_, err = fmt.Sscanf(line, "Cached:%d", &cached)
case strings.HasPrefix(line, "SwapFree:"):
_, err = fmt.Sscanf(line, "SwapFree:%d", &freeSwap)
default:
continue
}
if err != nil {
return mem, err
}
}
mem.TotalMemory = total * format.KibiByte
mem.FreeSwap = freeSwap * format.KibiByte
if available > 0 {
mem.FreeMemory = available * format.KibiByte
} else {
mem.FreeMemory = (free + buffers + cached) * format.KibiByte
}
return mem, nil
}
const CpuInfoFilename = "/proc/cpuinfo"
type linuxCpuInfo struct {
ID string `cpuinfo:"processor"`
VendorID string `cpuinfo:"vendor_id"`
ModelName string `cpuinfo:"model name"`
PhysicalID string `cpuinfo:"physical id"`
Siblings string `cpuinfo:"siblings"`
CoreID string `cpuinfo:"core id"`
}
func GetCPUDetails() ([]CPU, error) {
file, err := os.Open(CpuInfoFilename)
if err != nil {
return nil, err
}
return linuxCPUDetails(file)
}
func linuxCPUDetails(file io.Reader) ([]CPU, error) {
reColumns := regexp.MustCompile("\t+: ")
scanner := bufio.NewScanner(file)
cpuInfos := []linuxCpuInfo{}
cpu := &linuxCpuInfo{}
for scanner.Scan() {
line := scanner.Text()
if sl := reColumns.Split(line, 2); len(sl) > 1 {
t := reflect.TypeOf(cpu).Elem()
s := reflect.ValueOf(cpu).Elem()
for i := range t.NumField() {
field := t.Field(i)
tag := field.Tag.Get("cpuinfo")
if tag == sl[0] {
s.FieldByName(field.Name).SetString(sl[1])
break
}
}
} else if strings.TrimSpace(line) == "" && cpu.ID != "" {
cpuInfos = append(cpuInfos, *cpu)
cpu = &linuxCpuInfo{}
}
}
if cpu.ID != "" {
cpuInfos = append(cpuInfos, *cpu)
}
// Process the sockets/cores/threads
socketByID := map[string]*CPU{}
coreBySocket := map[string]map[string]struct{}{}
threadsByCoreBySocket := map[string]map[string]int{}
for _, c := range cpuInfos {
if _, found := socketByID[c.PhysicalID]; !found {
socketByID[c.PhysicalID] = &CPU{
ID: c.PhysicalID,
VendorID: c.VendorID,
ModelName: c.ModelName,
}
coreBySocket[c.PhysicalID] = map[string]struct{}{}
threadsByCoreBySocket[c.PhysicalID] = map[string]int{}
}
if c.CoreID != "" {
coreBySocket[c.PhysicalID][c.PhysicalID+":"+c.CoreID] = struct{}{}
threadsByCoreBySocket[c.PhysicalID][c.PhysicalID+":"+c.CoreID]++
} else {
coreBySocket[c.PhysicalID][c.PhysicalID+":"+c.ID] = struct{}{}
threadsByCoreBySocket[c.PhysicalID][c.PhysicalID+":"+c.ID]++
}
}
// Tally up the values from the tracking maps
for id, s := range socketByID {
s.CoreCount = len(coreBySocket[id])
s.ThreadCount = 0
for _, tc := range threadsByCoreBySocket[id] {
s.ThreadCount += tc
}
// This only works if HT is enabled, consider a more reliable model, maybe cache size comparisons?
efficiencyCoreCount := 0
for _, threads := range threadsByCoreBySocket[id] {
if threads == 1 {
efficiencyCoreCount++
}
}
if efficiencyCoreCount == s.CoreCount {
// 1:1 mapping means they're not actually efficiency cores, but regular cores
s.EfficiencyCoreCount = 0
} else {
s.EfficiencyCoreCount = efficiencyCoreCount
}
}
keys := make([]string, 0, len(socketByID))
result := make([]CPU, 0, len(socketByID))
for k := range socketByID {
keys = append(keys, k)
}
sort.Strings(keys)
for _, k := range keys {
result = append(result, *socketByID[k])
}
return result, nil
}

2097
discover/gpu_linux_test.go Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -1,6 +1,6 @@
//go:build linux || windows
package gpu
package discover
import (
"log/slog"

View File

@@ -1,4 +1,4 @@
package gpu
package discover
import (
"runtime"

234
discover/gpu_windows.go Normal file
View File

@@ -0,0 +1,234 @@
package discover
import (
"fmt"
"log/slog"
"syscall"
"unsafe"
)
type MEMORYSTATUSEX struct {
length uint32
MemoryLoad uint32
TotalPhys uint64
AvailPhys uint64
TotalPageFile uint64
AvailPageFile uint64
TotalVirtual uint64
AvailVirtual uint64
AvailExtendedVirtual uint64
}
var (
k32 = syscall.NewLazyDLL("kernel32.dll")
globalMemoryStatusExProc = k32.NewProc("GlobalMemoryStatusEx")
sizeofMemoryStatusEx = uint32(unsafe.Sizeof(MEMORYSTATUSEX{}))
GetLogicalProcessorInformationEx = k32.NewProc("GetLogicalProcessorInformationEx")
)
var CudartGlobs = []string{
"c:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v*\\bin\\cudart64_*.dll",
}
var NvmlGlobs = []string{
"c:\\Windows\\System32\\nvml.dll",
}
var NvcudaGlobs = []string{
"c:\\windows\\system*\\nvcuda.dll",
}
var OneapiGlobs = []string{
"c:\\Windows\\System32\\DriverStore\\FileRepository\\*\\ze_intel_gpu64.dll",
}
var (
CudartMgmtName = "cudart64_*.dll"
NvcudaMgmtName = "nvcuda.dll"
NvmlMgmtName = "nvml.dll"
OneapiMgmtName = "ze_intel_gpu64.dll"
)
func GetCPUMem() (memInfo, error) {
memStatus := MEMORYSTATUSEX{length: sizeofMemoryStatusEx}
r1, _, err := globalMemoryStatusExProc.Call(uintptr(unsafe.Pointer(&memStatus)))
if r1 == 0 {
return memInfo{}, fmt.Errorf("GlobalMemoryStatusEx failed: %w", err)
}
return memInfo{TotalMemory: memStatus.TotalPhys, FreeMemory: memStatus.AvailPhys, FreeSwap: memStatus.AvailPageFile}, nil
}
type LOGICAL_PROCESSOR_RELATIONSHIP uint32
const (
RelationProcessorCore LOGICAL_PROCESSOR_RELATIONSHIP = iota
RelationNumaNode
RelationCache
RelationProcessorPackage
RelationGroup
RelationProcessorDie
RelationNumaNodeEx
RelationProcessorModule
)
const RelationAll LOGICAL_PROCESSOR_RELATIONSHIP = 0xffff
type GROUP_AFFINITY struct {
Mask uintptr // KAFFINITY
Group uint16
Reserved [3]uint16
}
type PROCESSOR_RELATIONSHIP struct {
Flags byte
EfficiencyClass byte
Reserved [20]byte
GroupCount uint16
GroupMask [1]GROUP_AFFINITY // len GroupCount
}
// Omitted unused structs: NUMA_NODE_RELATIONSHIP CACHE_RELATIONSHIP GROUP_RELATIONSHIP
type SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX struct {
Relationship LOGICAL_PROCESSOR_RELATIONSHIP
Size uint32
U [1]byte // Union len Size
// PROCESSOR_RELATIONSHIP
// NUMA_NODE_RELATIONSHIP
// CACHE_RELATIONSHIP
// GROUP_RELATIONSHIP
}
func (group *GROUP_AFFINITY) IsMember(target *GROUP_AFFINITY) bool {
if group == nil || target == nil {
return false
}
return group.Mask&target.Mask != 0
}
type winPackage struct {
groups []*GROUP_AFFINITY
coreCount int // performance cores = coreCount - efficiencyCoreCount
efficiencyCoreCount int
threadCount int
}
func (pkg *winPackage) IsMember(target *GROUP_AFFINITY) bool {
for _, group := range pkg.groups {
if group.IsMember(target) {
return true
}
}
return false
}
func getLogicalProcessorInformationEx() ([]byte, error) {
buf := make([]byte, 1)
bufSize := len(buf)
ret, _, err := GetLogicalProcessorInformationEx.Call(
uintptr(RelationAll),
uintptr(unsafe.Pointer(&buf[0])),
uintptr(unsafe.Pointer(&bufSize)),
)
if ret != 0 {
return nil, fmt.Errorf("failed to determine size info ret:%d %w", ret, err)
}
buf = make([]byte, bufSize)
ret, _, err = GetLogicalProcessorInformationEx.Call(
uintptr(RelationAll),
uintptr(unsafe.Pointer(&buf[0])),
uintptr(unsafe.Pointer(&bufSize)),
)
if ret == 0 {
return nil, fmt.Errorf("failed to gather processor information ret:%d buflen:%d %w", ret, bufSize, err)
}
return buf, nil
}
func processSystemLogicalProcessorInforationList(buf []byte) []*winPackage {
var slpi *SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX
// Find all the packages first
packages := []*winPackage{}
for bufOffset := 0; bufOffset < len(buf); bufOffset += int(slpi.Size) {
slpi = (*SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX)(unsafe.Pointer(&buf[bufOffset]))
if slpi.Relationship != RelationProcessorPackage {
continue
}
pr := (*PROCESSOR_RELATIONSHIP)(unsafe.Pointer(&slpi.U[0]))
pkg := &winPackage{}
ga0 := unsafe.Pointer(&pr.GroupMask[0])
for j := range pr.GroupCount {
gm := (*GROUP_AFFINITY)(unsafe.Pointer(uintptr(ga0) + uintptr(j)*unsafe.Sizeof(GROUP_AFFINITY{})))
pkg.groups = append(pkg.groups, gm)
}
packages = append(packages, pkg)
}
slog.Info("packages", "count", len(packages))
// To identify efficiency cores we have to compare the relative values
// Larger values are "less efficient" (aka, more performant)
var maxEfficiencyClass byte
for bufOffset := 0; bufOffset < len(buf); bufOffset += int(slpi.Size) {
slpi = (*SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX)(unsafe.Pointer(&buf[bufOffset]))
if slpi.Relationship != RelationProcessorCore {
continue
}
pr := (*PROCESSOR_RELATIONSHIP)(unsafe.Pointer(&slpi.U[0]))
if pr.EfficiencyClass > maxEfficiencyClass {
maxEfficiencyClass = pr.EfficiencyClass
}
}
if maxEfficiencyClass > 0 {
slog.Info("efficiency cores detected", "maxEfficiencyClass", maxEfficiencyClass)
}
// then match up the Cores to the Packages, count up cores, threads and efficiency cores
for bufOffset := 0; bufOffset < len(buf); bufOffset += int(slpi.Size) {
slpi = (*SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX)(unsafe.Pointer(&buf[bufOffset]))
if slpi.Relationship != RelationProcessorCore {
continue
}
pr := (*PROCESSOR_RELATIONSHIP)(unsafe.Pointer(&slpi.U[0]))
ga0 := unsafe.Pointer(&pr.GroupMask[0])
for j := range pr.GroupCount {
gm := (*GROUP_AFFINITY)(unsafe.Pointer(uintptr(ga0) + uintptr(j)*unsafe.Sizeof(GROUP_AFFINITY{})))
for _, pkg := range packages {
if pkg.IsMember(gm) {
pkg.coreCount++
if pr.Flags == 0 {
pkg.threadCount++
} else {
pkg.threadCount += 2
}
if pr.EfficiencyClass < maxEfficiencyClass {
pkg.efficiencyCoreCount++
}
}
}
}
}
// Sumarize the results
for i, pkg := range packages {
slog.Info("", "package", i, "cores", pkg.coreCount, "efficiency", pkg.efficiencyCoreCount, "threads", pkg.threadCount)
}
return packages
}
func GetCPUDetails() ([]CPU, error) {
buf, err := getLogicalProcessorInformationEx()
if err != nil {
return nil, err
}
packages := processSystemLogicalProcessorInforationList(buf)
cpus := make([]CPU, len(packages))
for i, pkg := range packages {
cpus[i].CoreCount = pkg.coreCount
cpus[i].EfficiencyCoreCount = pkg.efficiencyCoreCount
cpus[i].ThreadCount = pkg.threadCount
}
return cpus, nil
}

File diff suppressed because one or more lines are too long

View File

@@ -1,4 +1,4 @@
package gpu
package discover
import (
"fmt"
@@ -10,11 +10,11 @@ import (
type memInfo struct {
TotalMemory uint64 `json:"total_memory,omitempty"`
FreeMemory uint64 `json:"free_memory,omitempty"`
FreeSwap uint64 `json:"free_swap,omitempty"`
FreeSwap uint64 `json:"free_swap,omitempty"` // TODO split this out for system only
}
// Beginning of an `ollama info` command
type GpuInfo struct {
type GpuInfo struct { // TODO better name maybe "InferenceProcessor"?
memInfo
Library string `json:"library,omitempty"`
@@ -25,7 +25,7 @@ type GpuInfo struct {
MinimumMemory uint64 `json:"-"`
// Any extra PATH/LD_LIBRARY_PATH dependencies required for the Library to operate properly
DependencyPath string `json:"lib_path,omitempty"`
DependencyPath []string `json:"lib_path,omitempty"`
// Extra environment variables specific to the GPU as list of [key,value]
EnvWorkarounds [][2]string `json:"envs,omitempty"`
@@ -49,6 +49,17 @@ type GpuInfo struct {
type CPUInfo struct {
GpuInfo
CPUs []CPU
}
// CPU type represents a CPU Package occupying a socket
type CPU struct {
ID string `cpuinfo:"processor"`
VendorID string `cpuinfo:"vendor_id"`
ModelName string `cpuinfo:"model name"`
CoreCount int
EfficiencyCoreCount int // Performance = CoreCount - Efficiency
ThreadCount int
}
type CudaGPUInfo struct {
@@ -76,6 +87,11 @@ type OneapiGPUInfoList []OneapiGPUInfo
type GpuInfoList []GpuInfo
type UnsupportedGPUInfo struct {
GpuInfo
Reason string `json:"reason"`
}
// Split up the set of gpu info's by Library and variant
func (l GpuInfoList) ByLibrary() []GpuInfoList {
resp := []GpuInfoList{}
@@ -146,3 +162,24 @@ func (c CPUCapability) String() string {
return "no vector extensions"
}
}
type SystemInfo struct {
System CPUInfo `json:"system"`
GPUs []GpuInfo `json:"gpus"`
UnsupportedGPUs []UnsupportedGPUInfo `json:"unsupported_gpus"`
DiscoveryErrors []string `json:"discovery_errors"`
}
// Return the optimal number of threads to use for inference
func (si SystemInfo) GetOptimalThreadCount() int {
if len(si.System.CPUs) == 0 {
return 0
}
coreCount := 0
for _, c := range si.System.CPUs {
coreCount += c.CoreCount - c.EfficiencyCoreCount
}
return coreCount
}

View File

@@ -355,7 +355,6 @@ curl http://localhost:11434/api/generate -d '{
"num_gpu": 1,
"main_gpu": 0,
"low_vram": false,
"f16_kv": true,
"vocab_only": false,
"use_mmap": true,
"use_mlock": false,
@@ -831,10 +830,30 @@ Create a model from a [`Modelfile`](./modelfile.md). It is recommended to set `m
### Parameters
- `name`: name of the model to create
- `model`: name of the model to create
- `modelfile` (optional): contents of the Modelfile
- `stream`: (optional) if `false` the response will be returned as a single response object, rather than a stream of objects
- `path` (optional): path to the Modelfile
- `quantize` (optional): quantize a non-quantized (e.g. float16) model
#### Quantization types
| Type | Recommended |
| --- | :-: |
| q2_K | |
| q3_K_L | |
| q3_K_M | |
| q3_K_S | |
| q4_0 | |
| q4_1 | |
| q4_K_M | * |
| q4_K_S | |
| q5_0 | |
| q5_1 | |
| q5_K_M | |
| q5_K_S | |
| q6_K | |
| q8_0 | * |
### Examples
@@ -846,14 +865,14 @@ Create a new model from a `Modelfile`.
```shell
curl http://localhost:11434/api/create -d '{
"name": "mario",
"model": "mario",
"modelfile": "FROM llama3\nSYSTEM You are mario from Super Mario Bros."
}'
```
##### Response
A stream of JSON objects. Notice that the final JSON object shows a `"status": "success"`.
A stream of JSON objects is returned:
```json
{"status":"reading model metadata"}
@@ -869,13 +888,43 @@ A stream of JSON objects. Notice that the final JSON object shows a `"status": "
{"status":"success"}
```
#### Quantize a model
Quantize a non-quantized model.
##### Request
```shell
curl http://localhost:11434/api/create -d '{
"model": "llama3.1:quantized",
"modelfile": "FROM llama3.1:8b-instruct-fp16",
"quantize": "q4_K_M"
}'
```
##### Response
A stream of JSON objects is returned:
```
{"status":"quantizing F16 model to Q4_K_M"}
{"status":"creating new layer sha256:667b0c1932bc6ffc593ed1d03f895bf2dc8dc6df21db3042284a6f4416b06a29"}
{"status":"using existing layer sha256:11ce4ee3e170f6adebac9a991c22e22ab3f8530e154ee669954c4bc73061c258"}
{"status":"using existing layer sha256:0ba8f0e314b4264dfd19df045cde9d4c394a52474bf92ed6a3de22a4ca31a177"}
{"status":"using existing layer sha256:56bb8bd477a519ffa694fc449c2413c6f0e1d3b1c88fa7e3c9d88d3ae49d4dcb"}
{"status":"creating new layer sha256:455f34728c9b5dd3376378bfb809ee166c145b0b4c1f1a6feca069055066ef9a"}
{"status":"writing manifest"}
{"status":"success"}
```
### Check if a Blob Exists
```shell
HEAD /api/blobs/:digest
```
Ensures that the file blob used for a FROM or ADAPTER field exists on the server. This is checking your Ollama server and not Ollama.ai.
Ensures that the file blob used for a FROM or ADAPTER field exists on the server. This is checking your Ollama server and not ollama.com.
#### Query Parameters
@@ -980,7 +1029,7 @@ Show information about a model including details, modelfile, template, parameter
### Parameters
- `name`: name of the model to show
- `model`: name of the model to show
- `verbose`: (optional) if set to `true`, returns full data for verbose response fields
### Examples
@@ -989,7 +1038,7 @@ Show information about a model including details, modelfile, template, parameter
```shell
curl http://localhost:11434/api/show -d '{
"name": "llama3.2"
"model": "llama3.2"
}'
```
@@ -1069,7 +1118,7 @@ Delete a model and its data.
### Parameters
- `name`: model name to delete
- `model`: model name to delete
### Examples
@@ -1077,7 +1126,7 @@ Delete a model and its data.
```shell
curl -X DELETE http://localhost:11434/api/delete -d '{
"name": "llama3:13b"
"model": "llama3:13b"
}'
```
@@ -1095,7 +1144,7 @@ Download a model from the ollama library. Cancelled pulls are resumed from where
### Parameters
- `name`: name of the model to pull
- `model`: name of the model to pull
- `insecure`: (optional) allow insecure connections to the library. Only use this if you are pulling from your own library during development.
- `stream`: (optional) if `false` the response will be returned as a single response object, rather than a stream of objects
@@ -1105,7 +1154,7 @@ Download a model from the ollama library. Cancelled pulls are resumed from where
```shell
curl http://localhost:11434/api/pull -d '{
"name": "llama3.2"
"model": "llama3.2"
}'
```
@@ -1167,7 +1216,7 @@ Upload a model to a model library. Requires registering for ollama.ai and adding
### Parameters
- `name`: name of the model to push in the form of `<namespace>/<model>:<tag>`
- `model`: name of the model to push in the form of `<namespace>/<model>:<tag>`
- `insecure`: (optional) allow insecure connections to the library. Only use this if you are pushing to your library during development.
- `stream`: (optional) if `false` the response will be returned as a single response object, rather than a stream of objects
@@ -1177,7 +1226,7 @@ Upload a model to a model library. Requires registering for ollama.ai and adding
```shell
curl http://localhost:11434/api/push -d '{
"name": "mattw/pygmalion:latest"
"model": "mattw/pygmalion:latest"
}'
```

View File

@@ -1,183 +1,5 @@
# Development
> [!IMPORTANT]
> The `llm` package that loads and runs models is being updated to use a new [Go runner](#transition-to-go-runner): this should only impact a small set of PRs however it does change how the project is built.
Install required tools:
- cmake version 3.24 or higher
- go version 1.22 or higher
- gcc version 11.4.0 or higher
### MacOS
```bash
brew install go cmake gcc
```
Optionally enable debugging and more verbose logging:
```bash
# At build time
export CGO_CFLAGS="-g"
# At runtime
export OLLAMA_DEBUG=1
```
Get the required libraries and build the native LLM code:
```bash
go generate ./...
```
Then build ollama:
```bash
go build .
```
Now you can run `ollama`:
```bash
./ollama
```
### Linux
#### Linux CUDA (NVIDIA)
_Your operating system distribution may already have packages for NVIDIA CUDA. Distro packages are often preferable, but instructions are distro-specific. Please consult distro-specific docs for dependencies if available!_
Install `cmake` and `golang` as well as [NVIDIA CUDA](https://developer.nvidia.com/cuda-downloads)
development and runtime packages.
Typically the build scripts will auto-detect CUDA, however, if your Linux distro
or installation approach uses unusual paths, you can specify the location by
specifying an environment variable `CUDA_LIB_DIR` to the location of the shared
libraries, and `CUDACXX` to the location of the nvcc compiler. You can customize
a set of target CUDA architectures by setting `CMAKE_CUDA_ARCHITECTURES` (e.g. "50;60;70")
Then generate dependencies:
```
go generate ./...
```
Then build the binary:
```
go build .
```
#### Linux ROCm (AMD)
_Your operating system distribution may already have packages for AMD ROCm and CLBlast. Distro packages are often preferable, but instructions are distro-specific. Please consult distro-specific docs for dependencies if available!_
Install [CLBlast](https://github.com/CNugteren/CLBlast/blob/master/doc/installation.md) and [ROCm](https://rocm.docs.amd.com/en/latest/) development packages first, as well as `cmake` and `golang`.
Typically the build scripts will auto-detect ROCm, however, if your Linux distro
or installation approach uses unusual paths, you can specify the location by
specifying an environment variable `ROCM_PATH` to the location of the ROCm
install (typically `/opt/rocm`), and `CLBlast_DIR` to the location of the
CLBlast install (typically `/usr/lib/cmake/CLBlast`). You can also customize
the AMD GPU targets by setting AMDGPU_TARGETS (e.g. `AMDGPU_TARGETS="gfx1101;gfx1102"`)
```
go generate ./...
```
Then build the binary:
```
go build .
```
ROCm requires elevated privileges to access the GPU at runtime. On most distros you can add your user account to the `render` group, or run as root.
#### Advanced CPU Settings
By default, running `go generate ./...` will compile a few different variations
of the LLM library based on common CPU families and vector math capabilities,
including a lowest-common-denominator which should run on almost any 64 bit CPU
somewhat slowly. At runtime, Ollama will auto-detect the optimal variation to
load. If you would like to build a CPU-based build customized for your
processor, you can set `OLLAMA_CUSTOM_CPU_DEFS` to the llama.cpp flags you would
like to use. For example, to compile an optimized binary for an Intel i9-9880H,
you might use:
```
OLLAMA_CUSTOM_CPU_DEFS="-DGGML_AVX=on -DGGML_AVX2=on -DGGML_F16C=on -DGGML_FMA=on" go generate ./...
go build .
```
#### Containerized Linux Build
If you have Docker available, you can build linux binaries with `./scripts/build_linux.sh` which has the CUDA and ROCm dependencies included. The resulting binary is placed in `./dist`
### Windows
Note: The Windows build for Ollama is still under development.
First, install required tools:
- MSVC toolchain - C/C++ and cmake as minimal requirements
- Go version 1.22 or higher
- MinGW (pick one variant) with GCC.
- [MinGW-w64](https://www.mingw-w64.org/)
- [MSYS2](https://www.msys2.org/)
- The `ThreadJob` Powershell module: `Install-Module -Name ThreadJob -Scope CurrentUser`
Then, build the `ollama` binary:
```powershell
$env:CGO_ENABLED="1"
go generate ./...
go build .
```
#### Windows CUDA (NVIDIA)
In addition to the common Windows development tools described above, install CUDA after installing MSVC.
- [NVIDIA CUDA](https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html)
#### Windows ROCm (AMD Radeon)
In addition to the common Windows development tools described above, install AMDs HIP package after installing MSVC.
- [AMD HIP](https://www.amd.com/en/developer/resources/rocm-hub/hip-sdk.html)
- [Strawberry Perl](https://strawberryperl.com/)
Lastly, add `ninja.exe` included with MSVC to the system path (e.g. `C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\Common7\IDE\CommonExtensions\Microsoft\CMake\Ninja`).
#### Windows arm64
The default `Developer PowerShell for VS 2022` may default to x86 which is not what you want. To ensure you get an arm64 development environment, start a plain PowerShell terminal and run:
```powershell
import-module 'C:\\Program Files\\Microsoft Visual Studio\\2022\\Community\\Common7\\Tools\\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -Arch arm64 -vsinstallpath 'C:\\Program Files\\Microsoft Visual Studio\\2022\\Community' -skipautomaticlocation
```
You can confirm with `write-host $env:VSCMD_ARG_TGT_ARCH`
Follow the instructions at https://www.msys2.org/wiki/arm64/ to set up an arm64 msys2 environment. Ollama requires gcc and mingw32-make to compile, which is not currently available on Windows arm64, but a gcc compatibility adapter is available via `mingw-w64-clang-aarch64-gcc-compat`. At a minimum you will need to install the following:
```
pacman -S mingw-w64-clang-aarch64-clang mingw-w64-clang-aarch64-gcc-compat mingw-w64-clang-aarch64-make make
```
You will need to ensure your PATH includes go, cmake, gcc and clang mingw32-make to build ollama from source. (typically `C:\msys64\clangarm64\bin\`)
## Transition to Go runner
The Ollama team is working on moving to a new Go based runner that loads and runs models in a subprocess to replace the previous code under `ext_server`. During this transition period, this new Go runner is "opt in" at build time, and requires using a different approach to build.
After the transition to use the Go server exclusively, both `make` and `go generate` will build the Go runner.
Install required tools:
- go version 1.22 or higher
@@ -201,7 +23,7 @@ export OLLAMA_DEBUG=1
Get the required libraries and build the native LLM code: (Adjust the job count based on your number of processors for a faster build)
```bash
make -C llama -j 5
make -j 5
```
Then build ollama:
@@ -238,7 +60,7 @@ a set of target CUDA architectures by setting `CMAKE_CUDA_ARCHITECTURES` (e.g. "
Then generate dependencies: (Adjust the job count based on your number of processors for a faster build)
```
make -C llama -j 5
make -j 5
```
Then build the binary:
@@ -263,7 +85,7 @@ the AMD GPU targets by setting AMDGPU_TARGETS (e.g. `AMDGPU_TARGETS="gfx1101;gfx
Then generate dependencies: (Adjust the job count based on your number of processors for a faster build)
```
make -C llama -j 5
make -j 5
```
Then build the binary:
@@ -286,7 +108,7 @@ Custom CPU settings are not currently supported in the new Go server build but w
#### Containerized Linux Build
If you have Docker available, you can build linux binaries with `OLLAMA_NEW_RUNNERS=1 ./scripts/build_linux.sh` which has the CUDA and ROCm dependencies included. The resulting binary is placed in `./dist`
If you have Docker available, you can build linux binaries with `./scripts/build_linux.sh` which has the CUDA and ROCm dependencies included. The resulting binary is placed in `./dist`
### Windows
@@ -296,16 +118,19 @@ The following tools are required as a minimal development environment to build C
- https://go.dev/dl/
- Git
- https://git-scm.com/download/win
- GCC and Make. There are multiple options on how to go about installing these tools on Windows. We have verified the following, but others may work as well:
- clang with gcc compat and Make. There are multiple options on how to go about installing these tools on Windows. We have verified the following, but others may work as well:
- [MSYS2](https://www.msys2.org/)
- After installing, from an MSYS2 terminal, run `pacman -S mingw-w64-ucrt-x86_64-gcc make` to install the required tools
- Assuming you used the default install prefix for msys2 above, add `c:\msys64\ucrt64\bin` and `c:\msys64\usr\bin` to your environment variable `PATH` where you will perform the build steps below (e.g. system-wide, account-level, powershell, cmd, etc.)
- After installing, from an MSYS2 terminal, run `pacman -S mingw-w64-clang-x86_64-gcc-compat mingw-w64-clang-x86_64-clang make` to install the required tools
- Assuming you used the default install prefix for msys2 above, add `C:\msys64\clang64\bin` and `c:\msys64\usr\bin` to your environment variable `PATH` where you will perform the build steps below (e.g. system-wide, account-level, powershell, cmd, etc.)
> [!NOTE]
> Due to bugs in the GCC C++ library for unicode support, Ollama should be built with clang on windows.
Then, build the `ollama` binary:
```powershell
$env:CGO_ENABLED="1"
make -C llama -j 8
make -j 8
go build .
```

View File

@@ -50,6 +50,9 @@ sudo systemctl restart docker
docker run -d --gpus=all -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
```
> [!NOTE]
> If you're running on an NVIDIA JetPack system, Ollama can't automatically discover the correct JetPack version. Pass the environment variable JETSON_JETPACK=5 or JETSON_JETPACK=6 to the container to select version 5 or 6.
### AMD GPU
To run Ollama using Docker with AMD GPUs, use the `rocm` tag and the following command:

View File

@@ -74,6 +74,10 @@ would set `HSA_OVERRIDE_GFX_VERSION="10.3.0"` as an environment variable for the
server. If you have an unsupported AMD GPU you can experiment using the list of
supported types below.
If you have multiple GPUs with different GFX versions, append the numeric device
number to the environment variable to set them individually. For example,
`HSA_OVERRIDE_GFX_VERSION_0=10.3.0` and `HSA_OVERRIDE_GFX_VERSION_1=11.0.0`
At this time, the known supported GPU types on linux are the following LLVM Targets.
This table shows some example GPUs that map to these LLVM targets:
| **LLVM Target** | **An Example GPU** |
@@ -99,9 +103,10 @@ Reach out on [Discord](https://discord.gg/ollama) or file an
### GPU Selection
If you have multiple AMD GPUs in your system and want to limit Ollama to use a
subset, you can set `HIP_VISIBLE_DEVICES` to a comma separated list of GPUs.
subset, you can set `ROCR_VISIBLE_DEVICES` to a comma separated list of GPUs.
You can see the list of devices with `rocminfo`. If you want to ignore the GPUs
and force CPU usage, use an invalid GPU ID (e.g., "-1")
and force CPU usage, use an invalid GPU ID (e.g., "-1"). When available, use the
`Uuid` to uniquely identify the device instead of numeric value.
### Container Permission

View File

@@ -32,7 +32,7 @@ ollama run my-model
Ollama supports importing adapters based on several different model architectures including:
* Llama (including Llama 2, Llama 3, and Llama 3.1);
* Llama (including Llama 2, Llama 3, Llama 3.1, and Llama 3.2);
* Mistral (including Mistral 1, Mistral 2, and Mixtral); and
* Gemma (including Gemma 1 and Gemma 2)
@@ -67,14 +67,12 @@ ollama run my-model
Ollama supports importing models for several different architectures including:
* Llama (including Llama 2, Llama 3, and Llama 3.1);
* Llama (including Llama 2, Llama 3, Llama 3.1, and Llama 3.2);
* Mistral (including Mistral 1, Mistral 2, and Mixtral);
* Gemma (including Gemma 1 and Gemma 2); and
* Phi3
This includes importing foundation models as well as any fine tuned models which which have been _fused_ with a foundation model.
This includes importing foundation models as well as any fine tuned models which have been _fused_ with a foundation model.
## Importing a GGUF based model or adapter
If you have a GGUF based model or adapter it is possible to import it into Ollama. You can obtain a GGUF model or adapter by:
@@ -83,7 +81,7 @@ If you have a GGUF based model or adapter it is possible to import it into Ollam
* converting a Safetensors adapter with the `convert_lora_to_gguf.py` from Llama.cpp; or
* downloading a model or adapter from a place such as HuggingFace
To import a GGUF model, create a `Modelfile` containg:
To import a GGUF model, create a `Modelfile` containing:
```dockerfile
FROM /path/to/file.gguf

View File

@@ -112,6 +112,21 @@ sudo systemctl status ollama
> https://www.amd.com/en/support/linux-drivers for best support of your Radeon
> GPU.
## Customizing
To customize the installation of Ollama, you can edit the systemd service file or the environment variables by running:
```
sudo systemctl edit ollama
```
Alternatively, create an override file manually in `/etc/systemd/system/ollama.service.d/override.conf`:
```ini
[Service]
Environment="OLLAMA_DEBUG=1"
```
## Updating
Update Ollama by running the install script again:
@@ -129,7 +144,7 @@ sudo tar -C /usr -xzf ollama-linux-amd64.tgz
## Installing specific versions
Use `OLLAMA_VERSION` environment variable with the install script to install a specific version of Ollama, including pre-releases. You can find the version numbers in the [releases page](https://github.com/ollama/ollama/releases).
Use `OLLAMA_VERSION` environment variable with the install script to install a specific version of Ollama, including pre-releases. You can find the version numbers in the [releases page](https://github.com/ollama/ollama/releases).
For example:

View File

@@ -120,7 +120,7 @@ FROM <model directory>
The model directory should contain the Safetensors weights for a supported architecture.
Currently supported model architectures:
* Llama (including Llama 2, Llama 3, and Llama 3.1)
* Llama (including Llama 2, Llama 3, Llama 3.1, and Llama 3.2)
* Mistral (including Mistral 1, Mistral 2, and Mixtral)
* Gemma (including Gemma 1 and Gemma 2)
* Phi3

View File

@@ -37,7 +37,7 @@ response = client.chat.completions.create(
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": "iVBORw0KGgoAAAANSUhEUgAAAG0AAABmCAYAAADBPx+VAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAA3VSURBVHgB7Z27r0zdG8fX743i1bi1ikMoFMQloXRpKFFIqI7LH4BEQ+NWIkjQuSWCRIEoULk0gsK1kCBI0IhrQVT7tz/7zZo888yz1r7MnDl7z5xvsjkzs2fP3uu71nNfa7lkAsm7d++Sffv2JbNmzUqcc8m0adOSzZs3Z+/XES4ZckAWJEGWPiCxjsQNLWmQsWjRIpMseaxcuTKpG/7HP27I8P79e7dq1ars/yL4/v27S0ejqwv+cUOGEGGpKHR37tzJCEpHV9tnT58+dXXCJDdECBE2Ojrqjh071hpNECjx4cMHVycM1Uhbv359B2F79+51586daxN/+pyRkRFXKyRDAqxEp4yMlDDzXG1NPnnyJKkThoK0VFd1ELZu3TrzXKxKfW7dMBQ6bcuWLW2v0VlHjx41z717927ba22U9APcw7Nnz1oGEPeL3m3p2mTAYYnFmMOMXybPPXv2bNIPpFZr1NHn4HMw0KRBjg9NuRw95s8PEcz/6DZELQd/09C9QGq5RsmSRybqkwHGjh07OsJSsYYm3ijPpyHzoiacg35MLdDSIS/O1yM778jOTwYUkKNHWUzUWaOsylE00MyI0fcnOwIdjvtNdW/HZwNLGg+sR1kMepSNJXmIwxBZiG8tDTpEZzKg0GItNsosY8USkxDhD0Rinuiko2gfL/RbiD2LZAjU9zKQJj8RDR0vJBR1/Phx9+PHj9Z7REF4nTZkxzX4LCXHrV271qXkBAPGfP/atWvu/PnzHe4C97F48eIsRLZ9+3a3f/9+87dwP1JxaF7/3r17ba+5l4EcaVo0lj3SBq5kGTJSQmLWMjgYNei2GPT1MuMqGTDEFHzeQSP2wi/jGnkmPJ/nhccs44jvDAxpVcxnq0F6eT8h4ni/iIWpR5lPyA6ETkNXoSukvpJAD3AsXLiwpZs49+fPn5ke4j10TqYvegSfn0OnafC+Tv9ooA/JPkgQysqQNBzagXY55nO/oa1F7qvIPWkRL12WRpMWUvpVDYmxAPehxWSe8ZEXL20sadYIozfmNch4QJPAfeJgW3rNsnzphBKNJM2KKODo1rVOMRYik5ETy3ix4qWNI81qAAirizgMIc+yhTytx0JWZuNI03qsrgWlGtwjoS9XwgUhWGyhUaRZZQNNIEwCiXD16tXcAHUs79co0vSD8rrJCIW98pzvxpAWyyo3HYwqS0+H0BjStClcZJT5coMm6D2LOF8TolGJtK9fvyZpyiC5ePFi9nc/oJU4eiEP0jVoAnHa9wyJycITMP78+eMeP37sXrx44d6+fdt6f82aNdkx1pg9e3Zb5W+RSRE+n+VjksQWifvVaTKFhn5O8my63K8Qabdv33b379/PiAP//vuvW7BggZszZ072/+TJk91YgkafPn166zXB1rQHFvouAWHq9z3SEevSUerqCn2/dDCeta2jxYbr69evk4MHDyY7d+7MjhMnTiTPnz9Pfv/+nfQT2ggpO2dMF8cghuoM7Ygj5iWCqRlGFml0QC/ftGmTmzt3rmsaKDsgBSPh0/8yPeLLBihLkOKJc0jp8H8vUzcxIA1k6QJ/c78tWEyj5P3o4u9+jywNPdJi5rAH9x0KHcl4Hg570eQp3+vHXGyrmEeigzQsQsjavXt38ujRo44LQuDDhw+TW7duRS1HGgMxhNXHgflaNTOsHyKvHK5Ijo2jbFjJBQK9YwFd6RVMzfgRBmEfP37suBBm/p49e1qjEP2mwTViNRo0VJWH1deMXcNK08uUjVUu7s/zRaL+oLNxz1bpANco4npUgX4G2eFbpDFyQoQxojBCpEGSytmOH8qrH5Q9vuzD6ofQylkCUmh8DBAr+q8JCyVNtWQIidKQE9wNtLSQnS4jDSsxNHogzFuQBw4cyM61UKVsjfr3ooBkPSqqQHesUPWVtzi9/vQi1T+rJj7WiTz4Pt/l3LxUkr5P2VYZaZ4URpsE+st/dujQoaBBYokbrz/8TJNQYLSonrPS9kUaSkPeZyj1AWSj+d+VBoy1pIWVNed8P0Ll/ee5HdGRhrHhR5GGN0r4LGZBaj8oFDJitBTJzIZgFcmU0Y8ytWMZMzJOaXUSrUs5RxKnrxmbb5YXO9VGUhtpXldhEUogFr3IzIsvlpmdosVcGVGXFWp2oU9kLFL3dEkSz6NHEY1sjSRdIuDFWEhd8KxFqsRi1uM/nz9/zpxnwlESONdg6dKlbsaMGS4EHFHtjFIDHwKOo46l4TxSuxgDzi+rE2jg+BaFruOX4HXa0Nnf1lwAPufZeF8/r6zD97WK2qFnGjBxTw5qNGPxT+5T/r7/7RawFC3j4vTp09koCxkeHjqbHJqArmH5UrFKKksnxrK7FuRIs8STfBZv+luugXZ2pR/pP9Ois4z+TiMzUUkUjD0iEi1fzX8GmXyuxUBRcaUfykV0YZnlJGKQpOiGB76x5GeWkWWJc3mOrK6S7xdND+W5N6XyaRgtWJFe13GkaZnKOsYqGdOVVVbGupsyA/l7emTLHi7vwTdirNEt0qxnzAvBFcnQF16xh/TMpUuXHDowhlA9vQVraQhkudRdzOnK+04ZSP3DUhVSP61YsaLtd/ks7ZgtPcXqPqEafHkdqa84X6aCeL7YWlv6edGFHb+ZFICPlljHhg0bKuk0CSvVznWsotRu433alNdFrqG45ejoaPCaUkWERpLXjzFL2Rpllp7PJU2a/v7Ab8N05/9t27Z16KUqoFGsxnI9EosS2niSYg9SpU6B4JgTrvVW1flt1sT+0ADIJU2maXzcUTraGCRaL1Wp9rUMk16PMom8QhruxzvZIegJjFU7LLCePfS8uaQdPny4jTTL0dbee5mYokQsXTIWNY46kuMbnt8Kmec+LGWtOVIl9cT1rCB0V8WqkjAsRwta93TbwNYoGKsUSChN44lgBNCoHLHzquYKrU6qZ8lolCIN0Rh6cP0Q3U6I6IXILYOQI513hJaSKAorFpuHXJNfVlpRtmYBk1Su1obZr5dnKAO+L10Hrj3WZW+E3qh6IszE37F6EB+68mGpvKm4eb9bFrlzrok7fvr0Kfv727dvWRmdVTJHw0qiiCUSZ6wCK+7XL/AcsgNyL74DQQ730sv78Su7+t/A36MdY0sW5o40ahslXr58aZ5HtZB8GH64m9EmMZ7FpYw4T6QnrZfgenrhFxaSiSGXtPnz57e9TkNZLvTjeqhr734CNtrK41L40sUQckmj1lGKQ0rC37x544r8eNXRpnVE3ZZY7zXo8NomiO0ZUCj2uHz58rbXoZ6gc0uA+F6ZeKS/jhRDUq8MKrTho9fEkihMmhxtBI1DxKFY9XLpVcSkfoi8JGnToZO5sU5aiDQIW716ddt7ZLYtMQlhECdBGXZZMWldY5BHm5xgAroWj4C0hbYkSc/jBmggIrXJWlZM6pSETsEPGqZOndr2uuuR5rF169a2HoHPdurUKZM4CO1WTPqaDaAd+GFGKdIQkxAn9RuEWcTRyN2KSUgiSgF5aWzPTeA/lN5rZubMmR2bE4SIC4nJoltgAV/dVefZm72AtctUCJU2CMJ327hxY9t7EHbkyJFseq+EJSY16RPo3Dkq1kkr7+q0bNmyDuLQcZBEPYmHVdOBiJyIlrRDq41YPWfXOxUysi5fvtyaj+2BpcnsUV/oSoEMOk2CQGlr4ckhBwaetBhjCwH0ZHtJROPJkyc7UjcYLDjmrH7ADTEBXFfOYmB0k9oYBOjJ8b4aOYSe7QkKcYhFlq3QYLQhSidNmtS2RATwy8YOM3EQJsUjKiaWZ+vZToUQgzhkHXudb/PW5YMHD9yZM2faPsMwoc7RciYJXbGuBqJ1UIGKKLv915jsvgtJxCZDubdXr165mzdvtr1Hz5LONA8jrUwKPqsmVesKa49S3Q4WxmRPUEYdTjgiUcfUwLx589ySJUva3oMkP6IYddq6HMS4o55xBJBUeRjzfa4Zdeg56QZ43LhxoyPo7Lf1kNt7oO8wWAbNwaYjIv5lhyS7kRf96dvm5Jah8vfvX3flyhX35cuX6HfzFHOToS1H4BenCaHvO8pr8iDuwoUL7tevX+b5ZdbBair0xkFIlFDlW4ZknEClsp/TzXyAKVOmmHWFVSbDNw1l1+4f90U6IY/q4V27dpnE9bJ+v87QEydjqx/UamVVPRG+mwkNTYN+9tjkwzEx+atCm/X9WvWtDtAb68Wy9LXa1UmvCDDIpPkyOQ5ZwSzJ4jMrvFcr0rSjOUh+GcT4LSg5ugkW1Io0/SCDQBojh0hPlaJdah+tkVYrnTZowP8iq1F1TgMBBauufyB33x1v+NWFYmT5KmppgHC+NkAgbmRkpD3yn9QIseXymoTQFGQmIOKTxiZIWpvAatenVqRVXf2nTrAWMsPnKrMZHz6bJq5jvce6QK8J1cQNgKxlJapMPdZSR64/UivS9NztpkVEdKcrs5alhhWP9NeqlfWopzhZScI6QxseegZRGeg5a8C3Re1Mfl1ScP36ddcUaMuv24iOJtz7sbUjTS4qBvKmstYJoUauiuD3k5qhyr7QdUHMeCgLa1Ear9NquemdXgmum4fvJ6w1lqsuDhNrg1qSpleJK7K3TF0Q2jSd94uSZ60kK1e3qyVpQK6PVWXp2/FC3mp6jBhKKOiY2h3gtUV64TWM6wDETRPLDfSakXmH3w8g9Jlug8ZtTt4kVF0kLUYYmCCtD/DrQ5YhMGbA9L3ucdjh0y8kOHW5gU/VEEmJTcL4Pz/f7mgoAbYkAAAAAElFTkSuQmCC",
"image_url": "",
},
],
}
@@ -86,7 +86,7 @@ const response = await openai.chat.completions.create({
{ type: "text", text: "What's in this image?" },
{
type: "image_url",
image_url: "iVBORw0KGgoAAAANSUhEUgAAAG0AAABmCAYAAADBPx+VAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAA3VSURBVHgB7Z27r0zdG8fX743i1bi1ikMoFMQloXRpKFFIqI7LH4BEQ+NWIkjQuSWCRIEoULk0gsK1kCBI0IhrQVT7tz/7zZo888yz1r7MnDl7z5xvsjkzs2fP3uu71nNfa7lkAsm7d++Sffv2JbNmzUqcc8m0adOSzZs3Z+/XES4ZckAWJEGWPiCxjsQNLWmQsWjRIpMseaxcuTKpG/7HP27I8P79e7dq1ars/yL4/v27S0ejqwv+cUOGEGGpKHR37tzJCEpHV9tnT58+dXXCJDdECBE2Ojrqjh071hpNECjx4cMHVycM1Uhbv359B2F79+51586daxN/+pyRkRFXKyRDAqxEp4yMlDDzXG1NPnnyJKkThoK0VFd1ELZu3TrzXKxKfW7dMBQ6bcuWLW2v0VlHjx41z717927ba22U9APcw7Nnz1oGEPeL3m3p2mTAYYnFmMOMXybPPXv2bNIPpFZr1NHn4HMw0KRBjg9NuRw95s8PEcz/6DZELQd/09C9QGq5RsmSRybqkwHGjh07OsJSsYYm3ijPpyHzoiacg35MLdDSIS/O1yM778jOTwYUkKNHWUzUWaOsylE00MyI0fcnOwIdjvtNdW/HZwNLGg+sR1kMepSNJXmIwxBZiG8tDTpEZzKg0GItNsosY8USkxDhD0Rinuiko2gfL/RbiD2LZAjU9zKQJj8RDR0vJBR1/Phx9+PHj9Z7REF4nTZkxzX4LCXHrV271qXkBAPGfP/atWvu/PnzHe4C97F48eIsRLZ9+3a3f/9+87dwP1JxaF7/3r17ba+5l4EcaVo0lj3SBq5kGTJSQmLWMjgYNei2GPT1MuMqGTDEFHzeQSP2wi/jGnkmPJ/nhccs44jvDAxpVcxnq0F6eT8h4ni/iIWpR5lPyA6ETkNXoSukvpJAD3AsXLiwpZs49+fPn5ke4j10TqYvegSfn0OnafC+Tv9ooA/JPkgQysqQNBzagXY55nO/oa1F7qvIPWkRL12WRpMWUvpVDYmxAPehxWSe8ZEXL20sadYIozfmNch4QJPAfeJgW3rNsnzphBKNJM2KKODo1rVOMRYik5ETy3ix4qWNI81qAAirizgMIc+yhTytx0JWZuNI03qsrgWlGtwjoS9XwgUhWGyhUaRZZQNNIEwCiXD16tXcAHUs79co0vSD8rrJCIW98pzvxpAWyyo3HYwqS0+H0BjStClcZJT5coMm6D2LOF8TolGJtK9fvyZpyiC5ePFi9nc/oJU4eiEP0jVoAnHa9wyJycITMP78+eMeP37sXrx44d6+fdt6f82aNdkx1pg9e3Zb5W+RSRE+n+VjksQWifvVaTKFhn5O8my63K8Qabdv33b379/PiAP//vuvW7BggZszZ072/+TJk91YgkafPn166zXB1rQHFvouAWHq9z3SEevSUerqCn2/dDCeta2jxYbr69evk4MHDyY7d+7MjhMnTiTPnz9Pfv/+nfQT2ggpO2dMF8cghuoM7Ygj5iWCqRlGFml0QC/ftGmTmzt3rmsaKDsgBSPh0/8yPeLLBihLkOKJc0jp8H8vUzcxIA1k6QJ/c78tWEyj5P3o4u9+jywNPdJi5rAH9x0KHcl4Hg570eQp3+vHXGyrmEeigzQsQsjavXt38ujRo44LQuDDhw+TW7duRS1HGgMxhNXHgflaNTOsHyKvHK5Ijo2jbFjJBQK9YwFd6RVMzfgRBmEfP37suBBm/p49e1qjEP2mwTViNRo0VJWH1deMXcNK08uUjVUu7s/zRaL+oLNxz1bpANco4npUgX4G2eFbpDFyQoQxojBCpEGSytmOH8qrH5Q9vuzD6ofQylkCUmh8DBAr+q8JCyVNtWQIidKQE9wNtLSQnS4jDSsxNHogzFuQBw4cyM61UKVsjfr3ooBkPSqqQHesUPWVtzi9/vQi1T+rJj7WiTz4Pt/l3LxUkr5P2VYZaZ4URpsE+st/dujQoaBBYokbrz/8TJNQYLSonrPS9kUaSkPeZyj1AWSj+d+VBoy1pIWVNed8P0Ll/ee5HdGRhrHhR5GGN0r4LGZBaj8oFDJitBTJzIZgFcmU0Y8ytWMZMzJOaXUSrUs5RxKnrxmbb5YXO9VGUhtpXldhEUogFr3IzIsvlpmdosVcGVGXFWp2oU9kLFL3dEkSz6NHEY1sjSRdIuDFWEhd8KxFqsRi1uM/nz9/zpxnwlESONdg6dKlbsaMGS4EHFHtjFIDHwKOo46l4TxSuxgDzi+rE2jg+BaFruOX4HXa0Nnf1lwAPufZeF8/r6zD97WK2qFnGjBxTw5qNGPxT+5T/r7/7RawFC3j4vTp09koCxkeHjqbHJqArmH5UrFKKksnxrK7FuRIs8STfBZv+luugXZ2pR/pP9Ois4z+TiMzUUkUjD0iEi1fzX8GmXyuxUBRcaUfykV0YZnlJGKQpOiGB76x5GeWkWWJc3mOrK6S7xdND+W5N6XyaRgtWJFe13GkaZnKOsYqGdOVVVbGupsyA/l7emTLHi7vwTdirNEt0qxnzAvBFcnQF16xh/TMpUuXHDowhlA9vQVraQhkudRdzOnK+04ZSP3DUhVSP61YsaLtd/ks7ZgtPcXqPqEafHkdqa84X6aCeL7YWlv6edGFHb+ZFICPlljHhg0bKuk0CSvVznWsotRu433alNdFrqG45ejoaPCaUkWERpLXjzFL2Rpllp7PJU2a/v7Ab8N05/9t27Z16KUqoFGsxnI9EosS2niSYg9SpU6B4JgTrvVW1flt1sT+0ADIJU2maXzcUTraGCRaL1Wp9rUMk16PMom8QhruxzvZIegJjFU7LLCePfS8uaQdPny4jTTL0dbee5mYokQsXTIWNY46kuMbnt8Kmec+LGWtOVIl9cT1rCB0V8WqkjAsRwta93TbwNYoGKsUSChN44lgBNCoHLHzquYKrU6qZ8lolCIN0Rh6cP0Q3U6I6IXILYOQI513hJaSKAorFpuHXJNfVlpRtmYBk1Su1obZr5dnKAO+L10Hrj3WZW+E3qh6IszE37F6EB+68mGpvKm4eb9bFrlzrok7fvr0Kfv727dvWRmdVTJHw0qiiCUSZ6wCK+7XL/AcsgNyL74DQQ730sv78Su7+t/A36MdY0sW5o40ahslXr58aZ5HtZB8GH64m9EmMZ7FpYw4T6QnrZfgenrhFxaSiSGXtPnz57e9TkNZLvTjeqhr734CNtrK41L40sUQckmj1lGKQ0rC37x544r8eNXRpnVE3ZZY7zXo8NomiO0ZUCj2uHz58rbXoZ6gc0uA+F6ZeKS/jhRDUq8MKrTho9fEkihMmhxtBI1DxKFY9XLpVcSkfoi8JGnToZO5sU5aiDQIW716ddt7ZLYtMQlhECdBGXZZMWldY5BHm5xgAroWj4C0hbYkSc/jBmggIrXJWlZM6pSETsEPGqZOndr2uuuR5rF169a2HoHPdurUKZM4CO1WTPqaDaAd+GFGKdIQkxAn9RuEWcTRyN2KSUgiSgF5aWzPTeA/lN5rZubMmR2bE4SIC4nJoltgAV/dVefZm72AtctUCJU2CMJ327hxY9t7EHbkyJFseq+EJSY16RPo3Dkq1kkr7+q0bNmyDuLQcZBEPYmHVdOBiJyIlrRDq41YPWfXOxUysi5fvtyaj+2BpcnsUV/oSoEMOk2CQGlr4ckhBwaetBhjCwH0ZHtJROPJkyc7UjcYLDjmrH7ADTEBXFfOYmB0k9oYBOjJ8b4aOYSe7QkKcYhFlq3QYLQhSidNmtS2RATwy8YOM3EQJsUjKiaWZ+vZToUQgzhkHXudb/PW5YMHD9yZM2faPsMwoc7RciYJXbGuBqJ1UIGKKLv915jsvgtJxCZDubdXr165mzdvtr1Hz5LONA8jrUwKPqsmVesKa49S3Q4WxmRPUEYdTjgiUcfUwLx589ySJUva3oMkP6IYddq6HMS4o55xBJBUeRjzfa4Zdeg56QZ43LhxoyPo7Lf1kNt7oO8wWAbNwaYjIv5lhyS7kRf96dvm5Jah8vfvX3flyhX35cuX6HfzFHOToS1H4BenCaHvO8pr8iDuwoUL7tevX+b5ZdbBair0xkFIlFDlW4ZknEClsp/TzXyAKVOmmHWFVSbDNw1l1+4f90U6IY/q4V27dpnE9bJ+v87QEydjqx/UamVVPRG+mwkNTYN+9tjkwzEx+atCm/X9WvWtDtAb68Wy9LXa1UmvCDDIpPkyOQ5ZwSzJ4jMrvFcr0rSjOUh+GcT4LSg5ugkW1Io0/SCDQBojh0hPlaJdah+tkVYrnTZowP8iq1F1TgMBBauufyB33x1v+NWFYmT5KmppgHC+NkAgbmRkpD3yn9QIseXymoTQFGQmIOKTxiZIWpvAatenVqRVXf2nTrAWMsPnKrMZHz6bJq5jvce6QK8J1cQNgKxlJapMPdZSR64/UivS9NztpkVEdKcrs5alhhWP9NeqlfWopzhZScI6QxseegZRGeg5a8C3Re1Mfl1ScP36ddcUaMuv24iOJtz7sbUjTS4qBvKmstYJoUauiuD3k5qhyr7QdUHMeCgLa1Ear9NquemdXgmum4fvJ6w1lqsuDhNrg1qSpleJK7K3TF0Q2jSd94uSZ60kK1e3qyVpQK6PVWXp2/FC3mp6jBhKKOiY2h3gtUV64TWM6wDETRPLDfSakXmH3w8g9Jlug8ZtTt4kVF0kLUYYmCCtD/DrQ5YhMGbA9L3ucdjh0y8kOHW5gU/VEEmJTcL4Pz/f7mgoAbYkAAAAAElFTkSuQmCC",
image_url: "",
},
],
},
@@ -142,7 +142,7 @@ curl http://localhost:11434/v1/chat/completions \
{
"type": "image_url",
"image_url": {
"url": "iVBORw0KGgoAAAANSUhEUgAAAG0AAABmCAYAAADBPx+VAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAA3VSURBVHgB7Z27r0zdG8fX743i1bi1ikMoFMQloXRpKFFIqI7LH4BEQ+NWIkjQuSWCRIEoULk0gsK1kCBI0IhrQVT7tz/7zZo888yz1r7MnDl7z5xvsjkzs2fP3uu71nNfa7lkAsm7d++Sffv2JbNmzUqcc8m0adOSzZs3Z+/XES4ZckAWJEGWPiCxjsQNLWmQsWjRIpMseaxcuTKpG/7HP27I8P79e7dq1ars/yL4/v27S0ejqwv+cUOGEGGpKHR37tzJCEpHV9tnT58+dXXCJDdECBE2Ojrqjh071hpNECjx4cMHVycM1Uhbv359B2F79+51586daxN/+pyRkRFXKyRDAqxEp4yMlDDzXG1NPnnyJKkThoK0VFd1ELZu3TrzXKxKfW7dMBQ6bcuWLW2v0VlHjx41z717927ba22U9APcw7Nnz1oGEPeL3m3p2mTAYYnFmMOMXybPPXv2bNIPpFZr1NHn4HMw0KRBjg9NuRw95s8PEcz/6DZELQd/09C9QGq5RsmSRybqkwHGjh07OsJSsYYm3ijPpyHzoiacg35MLdDSIS/O1yM778jOTwYUkKNHWUzUWaOsylE00MyI0fcnOwIdjvtNdW/HZwNLGg+sR1kMepSNJXmIwxBZiG8tDTpEZzKg0GItNsosY8USkxDhD0Rinuiko2gfL/RbiD2LZAjU9zKQJj8RDR0vJBR1/Phx9+PHj9Z7REF4nTZkxzX4LCXHrV271qXkBAPGfP/atWvu/PnzHe4C97F48eIsRLZ9+3a3f/9+87dwP1JxaF7/3r17ba+5l4EcaVo0lj3SBq5kGTJSQmLWMjgYNei2GPT1MuMqGTDEFHzeQSP2wi/jGnkmPJ/nhccs44jvDAxpVcxnq0F6eT8h4ni/iIWpR5lPyA6ETkNXoSukvpJAD3AsXLiwpZs49+fPn5ke4j10TqYvegSfn0OnafC+Tv9ooA/JPkgQysqQNBzagXY55nO/oa1F7qvIPWkRL12WRpMWUvpVDYmxAPehxWSe8ZEXL20sadYIozfmNch4QJPAfeJgW3rNsnzphBKNJM2KKODo1rVOMRYik5ETy3ix4qWNI81qAAirizgMIc+yhTytx0JWZuNI03qsrgWlGtwjoS9XwgUhWGyhUaRZZQNNIEwCiXD16tXcAHUs79co0vSD8rrJCIW98pzvxpAWyyo3HYwqS0+H0BjStClcZJT5coMm6D2LOF8TolGJtK9fvyZpyiC5ePFi9nc/oJU4eiEP0jVoAnHa9wyJycITMP78+eMeP37sXrx44d6+fdt6f82aNdkx1pg9e3Zb5W+RSRE+n+VjksQWifvVaTKFhn5O8my63K8Qabdv33b379/PiAP//vuvW7BggZszZ072/+TJk91YgkafPn166zXB1rQHFvouAWHq9z3SEevSUerqCn2/dDCeta2jxYbr69evk4MHDyY7d+7MjhMnTiTPnz9Pfv/+nfQT2ggpO2dMF8cghuoM7Ygj5iWCqRlGFml0QC/ftGmTmzt3rmsaKDsgBSPh0/8yPeLLBihLkOKJc0jp8H8vUzcxIA1k6QJ/c78tWEyj5P3o4u9+jywNPdJi5rAH9x0KHcl4Hg570eQp3+vHXGyrmEeigzQsQsjavXt38ujRo44LQuDDhw+TW7duRS1HGgMxhNXHgflaNTOsHyKvHK5Ijo2jbFjJBQK9YwFd6RVMzfgRBmEfP37suBBm/p49e1qjEP2mwTViNRo0VJWH1deMXcNK08uUjVUu7s/zRaL+oLNxz1bpANco4npUgX4G2eFbpDFyQoQxojBCpEGSytmOH8qrH5Q9vuzD6ofQylkCUmh8DBAr+q8JCyVNtWQIidKQE9wNtLSQnS4jDSsxNHogzFuQBw4cyM61UKVsjfr3ooBkPSqqQHesUPWVtzi9/vQi1T+rJj7WiTz4Pt/l3LxUkr5P2VYZaZ4URpsE+st/dujQoaBBYokbrz/8TJNQYLSonrPS9kUaSkPeZyj1AWSj+d+VBoy1pIWVNed8P0Ll/ee5HdGRhrHhR5GGN0r4LGZBaj8oFDJitBTJzIZgFcmU0Y8ytWMZMzJOaXUSrUs5RxKnrxmbb5YXO9VGUhtpXldhEUogFr3IzIsvlpmdosVcGVGXFWp2oU9kLFL3dEkSz6NHEY1sjSRdIuDFWEhd8KxFqsRi1uM/nz9/zpxnwlESONdg6dKlbsaMGS4EHFHtjFIDHwKOo46l4TxSuxgDzi+rE2jg+BaFruOX4HXa0Nnf1lwAPufZeF8/r6zD97WK2qFnGjBxTw5qNGPxT+5T/r7/7RawFC3j4vTp09koCxkeHjqbHJqArmH5UrFKKksnxrK7FuRIs8STfBZv+luugXZ2pR/pP9Ois4z+TiMzUUkUjD0iEi1fzX8GmXyuxUBRcaUfykV0YZnlJGKQpOiGB76x5GeWkWWJc3mOrK6S7xdND+W5N6XyaRgtWJFe13GkaZnKOsYqGdOVVVbGupsyA/l7emTLHi7vwTdirNEt0qxnzAvBFcnQF16xh/TMpUuXHDowhlA9vQVraQhkudRdzOnK+04ZSP3DUhVSP61YsaLtd/ks7ZgtPcXqPqEafHkdqa84X6aCeL7YWlv6edGFHb+ZFICPlljHhg0bKuk0CSvVznWsotRu433alNdFrqG45ejoaPCaUkWERpLXjzFL2Rpllp7PJU2a/v7Ab8N05/9t27Z16KUqoFGsxnI9EosS2niSYg9SpU6B4JgTrvVW1flt1sT+0ADIJU2maXzcUTraGCRaL1Wp9rUMk16PMom8QhruxzvZIegJjFU7LLCePfS8uaQdPny4jTTL0dbee5mYokQsXTIWNY46kuMbnt8Kmec+LGWtOVIl9cT1rCB0V8WqkjAsRwta93TbwNYoGKsUSChN44lgBNCoHLHzquYKrU6qZ8lolCIN0Rh6cP0Q3U6I6IXILYOQI513hJaSKAorFpuHXJNfVlpRtmYBk1Su1obZr5dnKAO+L10Hrj3WZW+E3qh6IszE37F6EB+68mGpvKm4eb9bFrlzrok7fvr0Kfv727dvWRmdVTJHw0qiiCUSZ6wCK+7XL/AcsgNyL74DQQ730sv78Su7+t/A36MdY0sW5o40ahslXr58aZ5HtZB8GH64m9EmMZ7FpYw4T6QnrZfgenrhFxaSiSGXtPnz57e9TkNZLvTjeqhr734CNtrK41L40sUQckmj1lGKQ0rC37x544r8eNXRpnVE3ZZY7zXo8NomiO0ZUCj2uHz58rbXoZ6gc0uA+F6ZeKS/jhRDUq8MKrTho9fEkihMmhxtBI1DxKFY9XLpVcSkfoi8JGnToZO5sU5aiDQIW716ddt7ZLYtMQlhECdBGXZZMWldY5BHm5xgAroWj4C0hbYkSc/jBmggIrXJWlZM6pSETsEPGqZOndr2uuuR5rF169a2HoHPdurUKZM4CO1WTPqaDaAd+GFGKdIQkxAn9RuEWcTRyN2KSUgiSgF5aWzPTeA/lN5rZubMmR2bE4SIC4nJoltgAV/dVefZm72AtctUCJU2CMJ327hxY9t7EHbkyJFseq+EJSY16RPo3Dkq1kkr7+q0bNmyDuLQcZBEPYmHVdOBiJyIlrRDq41YPWfXOxUysi5fvtyaj+2BpcnsUV/oSoEMOk2CQGlr4ckhBwaetBhjCwH0ZHtJROPJkyc7UjcYLDjmrH7ADTEBXFfOYmB0k9oYBOjJ8b4aOYSe7QkKcYhFlq3QYLQhSidNmtS2RATwy8YOM3EQJsUjKiaWZ+vZToUQgzhkHXudb/PW5YMHD9yZM2faPsMwoc7RciYJXbGuBqJ1UIGKKLv915jsvgtJxCZDubdXr165mzdvtr1Hz5LONA8jrUwKPqsmVesKa49S3Q4WxmRPUEYdTjgiUcfUwLx589ySJUva3oMkP6IYddq6HMS4o55xBJBUeRjzfa4Zdeg56QZ43LhxoyPo7Lf1kNt7oO8wWAbNwaYjIv5lhyS7kRf96dvm5Jah8vfvX3flyhX35cuX6HfzFHOToS1H4BenCaHvO8pr8iDuwoUL7tevX+b5ZdbBair0xkFIlFDlW4ZknEClsp/TzXyAKVOmmHWFVSbDNw1l1+4f90U6IY/q4V27dpnE9bJ+v87QEydjqx/UamVVPRG+mwkNTYN+9tjkwzEx+atCm/X9WvWtDtAb68Wy9LXa1UmvCDDIpPkyOQ5ZwSzJ4jMrvFcr0rSjOUh+GcT4LSg5ugkW1Io0/SCDQBojh0hPlaJdah+tkVYrnTZowP8iq1F1TgMBBauufyB33x1v+NWFYmT5KmppgHC+NkAgbmRkpD3yn9QIseXymoTQFGQmIOKTxiZIWpvAatenVqRVXf2nTrAWMsPnKrMZHz6bJq5jvce6QK8J1cQNgKxlJapMPdZSR64/UivS9NztpkVEdKcrs5alhhWP9NeqlfWopzhZScI6QxseegZRGeg5a8C3Re1Mfl1ScP36ddcUaMuv24iOJtz7sbUjTS4qBvKmstYJoUauiuD3k5qhyr7QdUHMeCgLa1Ear9NquemdXgmum4fvJ6w1lqsuDhNrg1qSpleJK7K3TF0Q2jSd94uSZ60kK1e3qyVpQK6PVWXp2/FC3mp6jBhKKOiY2h3gtUV64TWM6wDETRPLDfSakXmH3w8g9Jlug8ZtTt4kVF0kLUYYmCCtD/DrQ5YhMGbA9L3ucdjh0y8kOHW5gU/VEEmJTcL4Pz/f7mgoAbYkAAAAAElFTkSuQmCC"
"url": ""
}
}
]

View File

@@ -95,13 +95,21 @@ If none of those resolve the problem, gather additional information and file an
On linux, AMD GPU access typically requires `video` and/or `render` group membership to access the `/dev/kfd` device. If permissions are not set up correctly, Ollama will detect this and report an error in the server log.
When running in a container, in some Linux distributions and container runtimes, the ollama process may be unable to access the GPU. Use `ls -ld /dev/kfd /dev/dri /dev/dri/*` on the host system to determine the group assignments on your system, and pass additional `--group-add ...` arguments to the container so it can access the required devices.
When running in a container, in some Linux distributions and container runtimes, the ollama process may be unable to access the GPU. Use `ls -lnd /dev/kfd /dev/dri /dev/dri/*` on the host system to determine the **numeric** group IDs on your system, and pass additional `--group-add ...` arguments to the container so it can access the required devices. For example, in the following output `crw-rw---- 1 0 44 226, 0 Sep 16 16:55 /dev/dri/card0` the group ID column is `44`
If Ollama initially works on the GPU in a docker container, but then switches to running on CPU after some period of time with errors in the server log reporting GPU discovery failures, this can be resolved by disabling systemd cgroup management in Docker. Edit `/etc/docker/daemon.json` on the host and add `"exec-opts": ["native.cgroupdriver=cgroupfs"]` to the docker configuration.
If you are experiencing problems getting Ollama to correctly discover or use your GPU for inference, the following may help isolate the failure.
- `AMD_LOG_LEVEL=3` Enable info log levels in the AMD HIP/ROCm libraries. This can help show more detailed error codes that can help troubleshoot problems
- `OLLAMA_DEBUG=1` During GPU discovery additional information will be reported
- Check dmesg for any errors from amdgpu or kfd drivers `sudo dmesg | grep -i amdgpu` and `sudo dmesg | grep -i kfd`
## Multiple AMD GPUs
If you experience gibberish responses when models load across multiple AMD GPUs on Linux, see the following guide.
- https://rocm.docs.amd.com/projects/radeon/en/latest/docs/install/native_linux/mgpu.html#mgpu-known-issues-and-limitations
## Windows Terminal Errors
Older versions of Windows 10 (e.g., 21H1) are known to have a bug where the standard terminal program does not display control characters correctly. This can result in a long string of strings like `←[?25h←[?25l` being displayed, sometimes erroring with `The parameter is incorrect` To resolve this problem, please update to Win 10 22H1 or newer.

View File

@@ -1,83 +0,0 @@
# Running Ollama on Fly.io GPU Instances
Ollama runs with little to no configuration on [Fly.io GPU instances](https://fly.io/docs/gpus/gpu-quickstart/). If you don't have access to GPUs yet, you'll need to [apply for access](https://fly.io/gpu/) on the waitlist. Once you're accepted, you'll get an email with instructions on how to get started.
Create a new app with `fly apps create`:
```bash
fly apps create
```
Then create a `fly.toml` file in a new folder that looks like this:
```toml
app = "sparkling-violet-709"
primary_region = "ord"
vm.size = "a100-40gb" # see https://fly.io/docs/gpus/gpu-quickstart/ for more info
[build]
image = "ollama/ollama"
[http_service]
internal_port = 11434
force_https = false
auto_stop_machines = true
auto_start_machines = true
min_machines_running = 0
processes = ["app"]
[mounts]
source = "models"
destination = "/root/.ollama"
initial_size = "100gb"
```
Then create a [new private IPv6 address](https://fly.io/docs/reference/private-networking/#flycast-private-load-balancing) for your app:
```bash
fly ips allocate-v6 --private
```
Then deploy your app:
```bash
fly deploy
```
And finally you can access it interactively with a new Fly.io Machine:
```
fly machine run -e OLLAMA_HOST=http://your-app-name.flycast --shell ollama/ollama
```
```bash
$ ollama run openchat:7b-v3.5-fp16
>>> How do I bake chocolate chip cookies?
To bake chocolate chip cookies, follow these steps:
1. Preheat the oven to 375°F (190°C) and line a baking sheet with parchment paper or silicone baking mat.
2. In a large bowl, mix together 1 cup of unsalted butter (softened), 3/4 cup granulated sugar, and 3/4
cup packed brown sugar until light and fluffy.
3. Add 2 large eggs, one at a time, to the butter mixture, beating well after each addition. Stir in 1
teaspoon of pure vanilla extract.
4. In a separate bowl, whisk together 2 cups all-purpose flour, 1/2 teaspoon baking soda, and 1/2 teaspoon
salt. Gradually add the dry ingredients to the wet ingredients, stirring until just combined.
5. Fold in 2 cups of chocolate chips (or chunks) into the dough.
6. Drop rounded tablespoons of dough onto the prepared baking sheet, spacing them about 2 inches apart.
7. Bake for 10-12 minutes, or until the edges are golden brown. The centers should still be slightly soft.
8. Allow the cookies to cool on the baking sheet for a few minutes before transferring them to a wire rack
to cool completely.
Enjoy your homemade chocolate chip cookies!
```
When you set it up like this, it will automatically turn off when you're done using it. Then when you access it again, it will automatically turn back on. This is a great way to save money on GPU instances when you're not using them. If you want a persistent wake-on-use connection to your Ollama instance, you can set up a [connection to your Fly network using WireGuard](https://fly.io/docs/reference/private-networking/#discovering-apps-through-dns-on-a-wireguard-connection). Then you can access your Ollama instance at `http://your-app-name.flycast`.
And that's it!

View File

@@ -1,77 +0,0 @@
# Using LangChain with Ollama using JavaScript
In this tutorial, we are going to use JavaScript with LangChain and Ollama to learn about something just a touch more recent. In August 2023, there was a series of wildfires on Maui. There is no way an LLM trained before that time can know about this, since their training data would not include anything as recent as that. So we can find the [Wikipedia article about the fires](https://en.wikipedia.org/wiki/2023_Hawaii_wildfires) and ask questions about the contents.
To get started, let's just use **LangChain** to ask a simple question to a model. To do this with JavaScript, we need to install **LangChain**:
```bash
npm install @langchain/community
```
Now we can start building out our JavaScript:
```javascript
import { Ollama } from "@langchain/community/llms/ollama";
const ollama = new Ollama({
baseUrl: "http://localhost:11434",
model: "llama3.2",
});
const answer = await ollama.invoke(`why is the sky blue?`);
console.log(answer);
```
That will get us the same thing as if we ran `ollama run llama3.2 "why is the sky blue"` in the terminal. But we want to load a document from the web to ask a question against. **Cheerio** is a great library for ingesting a webpage, and **LangChain** uses it in their **CheerioWebBaseLoader**. So let's install **Cheerio** and build that part of the app.
```bash
npm install cheerio
```
```javascript
import { CheerioWebBaseLoader } from "langchain/document_loaders/web/cheerio";
const loader = new CheerioWebBaseLoader("https://en.wikipedia.org/wiki/2023_Hawaii_wildfires");
const data = await loader.load();
```
That will load the document. Although this page is smaller than the Odyssey, it is certainly bigger than the context size for most LLMs. So we are going to need to split into smaller pieces, and then select just the pieces relevant to our question. This is a great use for a vector datastore. In this example, we will use the **MemoryVectorStore** that is part of **LangChain**. But there is one more thing we need to get the content into the datastore. We have to run an embeddings process that converts the tokens in the text into a series of vectors. And for that, we are going to use **Tensorflow**. There is a lot of stuff going on in this one. First, install the **Tensorflow** components that we need.
```javascript
npm install @tensorflow/tfjs-core@3.6.0 @tensorflow/tfjs-converter@3.6.0 @tensorflow-models/universal-sentence-encoder@1.3.3 @tensorflow/tfjs-node@4.10.0
```
If you just install those components without the version numbers, it will install the latest versions, but there are conflicts within **Tensorflow**, so you need to install the compatible versions.
```javascript
import { RecursiveCharacterTextSplitter } from "langchain/text_splitter"
import { MemoryVectorStore } from "langchain/vectorstores/memory";
import "@tensorflow/tfjs-node";
import { TensorFlowEmbeddings } from "langchain/embeddings/tensorflow";
// Split the text into 500 character chunks. And overlap each chunk by 20 characters
const textSplitter = new RecursiveCharacterTextSplitter({
chunkSize: 500,
chunkOverlap: 20
});
const splitDocs = await textSplitter.splitDocuments(data);
// Then use the TensorFlow Embedding to store these chunks in the datastore
const vectorStore = await MemoryVectorStore.fromDocuments(splitDocs, new TensorFlowEmbeddings());
```
To connect the datastore to a question asked to a LLM, we need to use the concept at the heart of **LangChain**: the chain. Chains are a way to connect a number of activities together to accomplish a particular tasks. There are a number of chain types available, but for this tutorial we are using the **RetrievalQAChain**.
```javascript
import { RetrievalQAChain } from "langchain/chains";
const retriever = vectorStore.asRetriever();
const chain = RetrievalQAChain.fromLLM(ollama, retriever);
const result = await chain.call({query: "When was Hawaii's request for a major disaster declaration approved?"});
console.log(result.text)
```
So we created a retriever, which is a way to return the chunks that match a query from a datastore. And then connect the retriever and the model via a chain. Finally, we send a query to the chain, which results in an answer using our document as a source. The answer it returned was correct, August 10, 2023.
And that is a simple introduction to what you can do with **LangChain** and **Ollama.**

View File

@@ -1,85 +0,0 @@
# Using LangChain with Ollama in Python
Let's imagine we are studying the classics, such as **the Odyssey** by **Homer**. We might have a question about Neleus and his family. If you ask llama2 for that info, you may get something like:
> I apologize, but I'm a large language model, I cannot provide information on individuals or families that do not exist in reality. Neleus is not a real person or character, and therefore does not have a family or any other personal details. My apologies for any confusion. Is there anything else I can help you with?
This sounds like a typical censored response, but even llama2-uncensored gives a mediocre answer:
> Neleus was a legendary king of Pylos and the father of Nestor, one of the Argonauts. His mother was Clymene, a sea nymph, while his father was Neptune, the god of the sea.
So let's figure out how we can use **LangChain** with Ollama to ask our question to the actual document, the Odyssey by Homer, using Python.
Let's start by asking a simple question that we can get an answer to from the **Llama2** model using **Ollama**. First, we need to install the **LangChain** package:
`pip install langchain_community`
Then we can create a model and ask the question:
```python
from langchain_community.llms import Ollama
ollama = Ollama(
base_url='http://localhost:11434',
model="llama3"
)
print(ollama.invoke("why is the sky blue"))
```
Notice that we are defining the model and the base URL for Ollama.
Now let's load a document to ask questions against. I'll load up the Odyssey by Homer, which you can find at Project Gutenberg. We will need **WebBaseLoader** which is part of **LangChain** and loads text from any webpage. On my machine, I also needed to install **bs4** to get that to work, so run `pip install bs4`.
```python
from langchain.document_loaders import WebBaseLoader
loader = WebBaseLoader("https://www.gutenberg.org/files/1727/1727-h/1727-h.htm")
data = loader.load()
```
This file is pretty big. Just the preface is 3000 tokens. Which means the full document won't fit into the context for the model. So we need to split it up into smaller pieces.
```python
from langchain.text_splitter import RecursiveCharacterTextSplitter
text_splitter=RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
all_splits = text_splitter.split_documents(data)
```
It's split up, but we have to find the relevant splits and then submit those to the model. We can do this by creating embeddings and storing them in a vector database. We can use Ollama directly to instantiate an embedding model. We will use ChromaDB in this example for a vector database. `pip install chromadb`
We also need to pull embedding model: `ollama pull nomic-embed-text`
```python
from langchain.embeddings import OllamaEmbeddings
from langchain.vectorstores import Chroma
oembed = OllamaEmbeddings(base_url="http://localhost:11434", model="nomic-embed-text")
vectorstore = Chroma.from_documents(documents=all_splits, embedding=oembed)
```
Now let's ask a question from the document. **Who was Neleus, and who is in his family?** Neleus is a character in the Odyssey, and the answer can be found in our text.
```python
question="Who is Neleus and who is in Neleus' family?"
docs = vectorstore.similarity_search(question)
len(docs)
```
This will output the number of matches for chunks of data similar to the search.
The next thing is to send the question and the relevant parts of the docs to the model to see if we can get a good answer. But we are stitching two parts of the process together, and that is called a chain. This means we need to define a chain:
```python
from langchain.chains import RetrievalQA
qachain=RetrievalQA.from_chain_type(ollama, retriever=vectorstore.as_retriever())
res = qachain.invoke({"query": question})
print(res['result'])
```
The answer received from this chain was:
> Neleus is a character in Homer's "Odyssey" and is mentioned in the context of Penelope's suitors. Neleus is the father of Chloris, who is married to Neleus and bears him several children, including Nestor, Chromius, Periclymenus, and Pero. Amphinomus, the son of Nisus, is also mentioned as a suitor of Penelope and is known for his good natural disposition and agreeable conversation.
It's not a perfect answer, as it implies Neleus married his daughter when actually Chloris "was the youngest daughter to Amphion son of Iasus and king of Minyan Orchomenus, and was Queen in Pylos".
I updated the chunk_overlap for the text splitter to 20 and tried again and got a much better answer:
> Neleus is a character in Homer's epic poem "The Odyssey." He is the husband of Chloris, who is the youngest daughter of Amphion son of Iasus and king of Minyan Orchomenus. Neleus has several children with Chloris, including Nestor, Chromius, Periclymenus, and Pero.
And that is a much better answer.

View File

@@ -1,15 +0,0 @@
# Running Ollama on NVIDIA Jetson Devices
Ollama runs well on [NVIDIA Jetson Devices](https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/) and should run out of the box with the standard installation instructions.
The following has been tested on [JetPack 5.1.2](https://developer.nvidia.com/embedded/jetpack), but should also work on JetPack 6.0.
- Install Ollama via standard Linux command (ignore the 404 error): `curl https://ollama.com/install.sh | sh`
- Pull the model you want to use (e.g. mistral): `ollama pull mistral`
- Start an interactive session: `ollama run mistral`
And that's it!
# Running Ollama in Docker
When running GPU accelerated applications in Docker, it is highly recommended to use [dusty-nv jetson-containers repo](https://github.com/dusty-nv/jetson-containers).

View File

@@ -1,22 +1,15 @@
# Ollama Windows Preview
# Ollama Windows
Welcome to the Ollama Windows preview.
Welcome to Ollama for Windows.
No more WSL required!
Ollama now runs as a native Windows application, including NVIDIA and AMD Radeon GPU support.
After installing Ollama Windows Preview, Ollama will run in the background and
After installing Ollama for Windows, Ollama will run in the background and
the `ollama` command line is available in `cmd`, `powershell` or your favorite
terminal application. As usual the Ollama [api](./api.md) will be served on
`http://localhost:11434`.
As this is a preview release, you should expect a few bugs here and there. If
you run into a problem you can reach out on
[Discord](https://discord.gg/ollama), or file an
[issue](https://github.com/ollama/ollama/issues).
Logs will often be helpful in diagnosing the problem (see
[Troubleshooting](#troubleshooting) below)
## System Requirements
* Windows 10 22H2 or newer, Home or Pro
@@ -25,6 +18,32 @@ Logs will often be helpful in diagnosing the problem (see
Ollama uses unicode characters for progress indication, which may render as unknown squares in some older terminal fonts in Windows 10. If you see this, try changing your terminal font settings.
## Filesystem Requirements
The Ollama install does not require Administrator, and installs in your home directory by default. You'll need at least 4GB of space for the binary install. Once you've installed Ollama, you'll need additional space for storing the Large Language models, which can be tens to hundreds of GB in size. If your home directory doesn't have enough space, you can change where the binaries are installed, and where the models are stored.
### Changing Install Location
To install the Ollama application in a location different than your home directory, start the installer with the following flag
```powershell
OllamaSetup.exe /DIR="d:\some\location"
```
### Changing Model Location
To change where Ollama stores the downloaded models instead of using your home directory, set the environment variable `OLLAMA_MODELS` in your user account.
1. Start the Settings (Windows 11) or Control Panel (Windows 10) application and search for _environment variables_.
2. Click on _Edit environment variables for your account_.
3. Edit or create a new variable for your user account for `OLLAMA_MODELS` where you want the models stored
4. Click OK/Apply to save.
If Ollama is already running, Quit the tray application and relaunch it from the Start menu, or a new terminal started after you saved the environment variables.
## API Access
Here's a quick example showing API access from `powershell`
@@ -34,10 +53,6 @@ Here's a quick example showing API access from `powershell`
## Troubleshooting
While we're in preview, `OLLAMA_DEBUG` is always enabled, which adds
a "view logs" menu item to the app, and increases logging for the GUI app and
server.
Ollama on Windows stores files in a few different locations. You can view them in
the explorer window by hitting `<cmd>+R` and type in:
- `explorer %LOCALAPPDATA%\Ollama` contains logs, and downloaded updates
@@ -52,6 +67,10 @@ the explorer window by hitting `<cmd>+R` and type in:
The Ollama Windows installer registers an Uninstaller application. Under `Add or remove programs` in Windows Settings, you can uninstall Ollama.
> [!NOTE]
> If you have [changed the OLLAMA_MODELS location](#changing-model-location), the installer will not remove your downloaded models
## Standalone CLI
The easiest way to install Ollama on Windows is to use the `OllamaSetup.exe`

View File

@@ -72,6 +72,7 @@ func Origins() (origins []string) {
"app://*",
"file://*",
"tauri://*",
"vscode-webview://*",
)
return origins
@@ -264,9 +265,9 @@ func AsMap() map[string]EnvVar {
if runtime.GOOS != "darwin" {
ret["CUDA_VISIBLE_DEVICES"] = EnvVar{"CUDA_VISIBLE_DEVICES", CudaVisibleDevices(), "Set which NVIDIA devices are visible"}
ret["HIP_VISIBLE_DEVICES"] = EnvVar{"HIP_VISIBLE_DEVICES", HipVisibleDevices(), "Set which AMD devices are visible"}
ret["ROCR_VISIBLE_DEVICES"] = EnvVar{"ROCR_VISIBLE_DEVICES", RocrVisibleDevices(), "Set which AMD devices are visible"}
ret["GPU_DEVICE_ORDINAL"] = EnvVar{"GPU_DEVICE_ORDINAL", GpuDeviceOrdinal(), "Set which AMD devices are visible"}
ret["HIP_VISIBLE_DEVICES"] = EnvVar{"HIP_VISIBLE_DEVICES", HipVisibleDevices(), "Set which AMD devices are visible by numeric ID"}
ret["ROCR_VISIBLE_DEVICES"] = EnvVar{"ROCR_VISIBLE_DEVICES", RocrVisibleDevices(), "Set which AMD devices are visible by UUID or numeric ID"}
ret["GPU_DEVICE_ORDINAL"] = EnvVar{"GPU_DEVICE_ORDINAL", GpuDeviceOrdinal(), "Set which AMD devices are visible by numeric ID"}
ret["HSA_OVERRIDE_GFX_VERSION"] = EnvVar{"HSA_OVERRIDE_GFX_VERSION", HsaOverrideGfxVersion(), "Override the gfx used for all detected AMD GPUs"}
ret["OLLAMA_INTEL_GPU"] = EnvVar{"OLLAMA_INTEL_GPU", IntelGPU(), "Enable experimental Intel GPU detection"}
}

View File

@@ -68,6 +68,7 @@ func TestOrigins(t *testing.T) {
"app://*",
"file://*",
"tauri://*",
"vscode-webview://*",
}},
{"http://10.0.0.1", []string{
"http://10.0.0.1",
@@ -86,6 +87,7 @@ func TestOrigins(t *testing.T) {
"app://*",
"file://*",
"tauri://*",
"vscode-webview://*",
}},
{"http://172.16.0.1,https://192.168.0.1", []string{
"http://172.16.0.1",
@@ -105,6 +107,7 @@ func TestOrigins(t *testing.T) {
"app://*",
"file://*",
"tauri://*",
"vscode-webview://*",
}},
{"http://totally.safe,http://definitely.legit", []string{
"http://totally.safe",
@@ -124,6 +127,7 @@ func TestOrigins(t *testing.T) {
"app://*",
"file://*",
"tauri://*",
"vscode-webview://*",
}},
}
for _, tt := range cases {

View File

@@ -1,6 +1,6 @@
from langchain.llms import Ollama
input = input("What is your question?")
input = input("What is your question?\n> ")
llm = Ollama(model="llama3.2")
res = llm.predict(input)
res = llm.invoke(input)
print (res)

11
go.mod
View File

@@ -1,18 +1,18 @@
module github.com/ollama/ollama
go 1.22.5
go 1.22.8
require (
github.com/containerd/console v1.0.3
github.com/emirpasic/gods v1.18.1
github.com/gin-gonic/gin v1.10.0
github.com/golang/protobuf v1.5.4 // indirect
github.com/google/uuid v1.1.2
github.com/google/uuid v1.6.0
github.com/olekukonko/tablewriter v0.0.5
github.com/spf13/cobra v1.7.0
github.com/stretchr/testify v1.9.0
github.com/x448/float16 v0.8.4
golang.org/x/sync v0.3.0
golang.org/x/sync v0.9.0
)
require (
@@ -22,13 +22,14 @@ require (
github.com/mattn/go-runewidth v0.0.14
github.com/nlpodyssey/gopickle v0.3.0
github.com/pdevine/tensor v0.0.0-20240510204454-f88f4562727c
golang.org/x/image v0.22.0
)
require (
github.com/apache/arrow/go/arrow v0.0.0-20211112161151-bc219186db40 // indirect
github.com/bytedance/sonic/loader v0.1.1 // indirect
github.com/chewxy/hm v1.0.0 // indirect
github.com/chewxy/math32 v1.10.1 // indirect
github.com/chewxy/math32 v1.11.0 // indirect
github.com/cloudwego/base64x v0.1.4 // indirect
github.com/cloudwego/iasm v0.2.0 // indirect
github.com/davecgh/go-spew v1.1.1 // indirect
@@ -72,7 +73,7 @@ require (
golang.org/x/net v0.25.0 // indirect
golang.org/x/sys v0.20.0
golang.org/x/term v0.20.0
golang.org/x/text v0.15.0
golang.org/x/text v0.20.0
google.golang.org/protobuf v1.34.1
gopkg.in/yaml.v3 v3.0.1 // indirect
)

17
go.sum
View File

@@ -21,8 +21,8 @@ github.com/census-instrumentation/opencensus-proto v0.2.1/go.mod h1:f6KPmirojxKA
github.com/chewxy/hm v1.0.0 h1:zy/TSv3LV2nD3dwUEQL2VhXeoXbb9QkpmdRAVUFiA6k=
github.com/chewxy/hm v1.0.0/go.mod h1:qg9YI4q6Fkj/whwHR1D+bOGeF7SniIP40VweVepLjg0=
github.com/chewxy/math32 v1.0.0/go.mod h1:Miac6hA1ohdDUTagnvJy/q+aNnEk16qWUdb8ZVhvCN0=
github.com/chewxy/math32 v1.10.1 h1:LFpeY0SLJXeaiej/eIp2L40VYfscTvKh/FSEZ68uMkU=
github.com/chewxy/math32 v1.10.1/go.mod h1:dOB2rcuFrCn6UHrze36WSLVPKtzPMRAQvBvUwkSsLqs=
github.com/chewxy/math32 v1.11.0 h1:8sek2JWqeaKkVnHa7bPVqCEOUPbARo4SGxs6toKyAOo=
github.com/chewxy/math32 v1.11.0/go.mod h1:dOB2rcuFrCn6UHrze36WSLVPKtzPMRAQvBvUwkSsLqs=
github.com/client9/misspell v0.3.4/go.mod h1:qj6jICC3Q7zFZvVWo7KLAzC3yx5G7kyvSDkc90ppPyw=
github.com/cloudwego/base64x v0.1.4 h1:jwCgWpFanWmN8xoIUHa2rtzmkd5J2plF/dnLS6Xd/0Y=
github.com/cloudwego/base64x v0.1.4/go.mod h1:0zlkT4Wn5C6NdauXdJRhSKRlJvmclQ1hhJgA0rcu/8w=
@@ -113,8 +113,9 @@ github.com/google/go-cmp v0.5.6/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/
github.com/google/go-cmp v0.6.0 h1:ofyhxvXcZhMsU5ulbFiLKl/XBFqE1GSq7atu8tAmTRI=
github.com/google/go-cmp v0.6.0/go.mod h1:17dUlkBOakJ0+DkrSSNjCkIjxS6bF9zb3elmeNGIjoY=
github.com/google/gofuzz v1.0.0/go.mod h1:dBl0BpW6vV/+mYPU4Po3pmUjxk6FQPldtuIdl/M65Eg=
github.com/google/uuid v1.1.2 h1:EVhdT+1Kseyi1/pUmXKaFxYsDNy9RQYkMWRH68J/W7Y=
github.com/google/uuid v1.1.2/go.mod h1:TIyPZe4MgqvfeYDBFedMoGGpEw/LqOeaOT+nhxU+yHo=
github.com/google/uuid v1.6.0 h1:NIvaJDMOsjHA8n1jAhLSgzrAzy1Hgr+hNrb57e+94F0=
github.com/google/uuid v1.6.0/go.mod h1:TIyPZe4MgqvfeYDBFedMoGGpEw/LqOeaOT+nhxU+yHo=
github.com/grpc-ecosystem/grpc-gateway v1.16.0/go.mod h1:BDjrQk3hbvj6Nolgz8mAMFbcEtjT1g+wF4CSlocrBnw=
github.com/inconshreveable/mousetrap v1.1.0 h1:wN+x4NVGpMsO7ErUn/mUI3vEoE6Jt13X2s0bqwp9tc8=
github.com/inconshreveable/mousetrap v1.1.0/go.mod h1:vpF70FUmC8bwa3OWnCshd2FqLfsEA9PFc4w1p2J65bw=
@@ -230,6 +231,8 @@ golang.org/x/image v0.0.0-20200430140353-33d19683fad8/go.mod h1:FeLwcggjj3mMvU+o
golang.org/x/image v0.0.0-20200618115811-c13761719519/go.mod h1:FeLwcggjj3mMvU+oOTbSwawSJRM1uh48EjtB4UJZlP0=
golang.org/x/image v0.0.0-20201208152932-35266b937fa6/go.mod h1:FeLwcggjj3mMvU+oOTbSwawSJRM1uh48EjtB4UJZlP0=
golang.org/x/image v0.0.0-20210216034530-4410531fe030/go.mod h1:FeLwcggjj3mMvU+oOTbSwawSJRM1uh48EjtB4UJZlP0=
golang.org/x/image v0.22.0 h1:UtK5yLUzilVrkjMAZAZ34DXGpASN8i8pj8g+O+yd10g=
golang.org/x/image v0.22.0/go.mod h1:9hPFhljd4zZ1GNSIZJ49sqbp45GKK9t6w+iXvGqZUz4=
golang.org/x/lint v0.0.0-20181026193005-c67002cb31c3/go.mod h1:UVdnD1Gm6xHRNCYTkRU2/jEulfH38KcIWyp/GAMgvoE=
golang.org/x/lint v0.0.0-20190227174305-5b3e6a55c961/go.mod h1:wehouNa3lNwaWXcvxsM5YxQ5yQlVC4a0KAMCusXpPoU=
golang.org/x/lint v0.0.0-20190313153728-d0100b6bd8b3/go.mod h1:6SW0HCj/g11FgYtHlgUYUwCkIfeOF89ocIRzGO/8vkc=
@@ -263,8 +266,8 @@ golang.org/x/sync v0.0.0-20190423024810-112230192c58/go.mod h1:RxMgew5VJxzue5/jJ
golang.org/x/sync v0.0.0-20190911185100-cd5d95a43a6e/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20201020160332-67f06af15bc9/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20210220032951-036812b2e83c/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.3.0 h1:ftCYgMx6zT/asHUrPw8BLLscYtGznsLAnjq5RH9P66E=
golang.org/x/sync v0.3.0/go.mod h1:FU7BRWz2tNW+3quACPkgCx/L+uEAv1htQ0V83Z9Rj+Y=
golang.org/x/sync v0.9.0 h1:fEo0HyrW1GIgZdpbhCRO0PkJajUS5H9IFUztCgEo2jQ=
golang.org/x/sync v0.9.0/go.mod h1:Czt+wKu1gCyEFDUtn0jG5QVvpJ6rzVqr5aXyt9drQfk=
golang.org/x/sys v0.0.0-20180830151530-49385e6e1522/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20190215142949-d0b11bdaac8a/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20190312061237-fead79001313/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
@@ -289,8 +292,8 @@ golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
golang.org/x/text v0.3.3/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
golang.org/x/text v0.3.5/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
golang.org/x/text v0.3.6/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
golang.org/x/text v0.15.0 h1:h1V/4gjBv8v9cjcR6+AR5+/cIYK5N/WAgiv4xlsEtAk=
golang.org/x/text v0.15.0/go.mod h1:18ZOQIKpY8NJVqYksKHtTdi31H5itFRjB5/qKTNYzSU=
golang.org/x/text v0.20.0 h1:gK/Kv2otX8gz+wn7Rmb3vT96ZwuoxnQlY+HlJVj7Qug=
golang.org/x/text v0.20.0/go.mod h1:D4IsuqiFMhST5bX19pQ9ikHC2GsaKyk/oF+pn3ducp4=
golang.org/x/tools v0.0.0-20180525024113-a5b4c53f6e8b/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
golang.org/x/tools v0.0.0-20180917221912-90fa682c2a6e/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
golang.org/x/tools v0.0.0-20190114222345-bf090417da8b/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=

View File

@@ -1,92 +0,0 @@
package gpu
import (
"bufio"
"fmt"
"os"
"strings"
"github.com/ollama/ollama/format"
)
var CudartGlobs = []string{
"/usr/local/cuda/lib64/libcudart.so*",
"/usr/lib/x86_64-linux-gnu/nvidia/current/libcudart.so*",
"/usr/lib/x86_64-linux-gnu/libcudart.so*",
"/usr/lib/wsl/lib/libcudart.so*",
"/usr/lib/wsl/drivers/*/libcudart.so*",
"/opt/cuda/lib64/libcudart.so*",
"/usr/local/cuda*/targets/aarch64-linux/lib/libcudart.so*",
"/usr/lib/aarch64-linux-gnu/nvidia/current/libcudart.so*",
"/usr/lib/aarch64-linux-gnu/libcudart.so*",
"/usr/local/cuda/lib*/libcudart.so*",
"/usr/lib*/libcudart.so*",
"/usr/local/lib*/libcudart.so*",
}
var NvmlGlobs = []string{}
var NvcudaGlobs = []string{
"/usr/local/cuda*/targets/*/lib/libcuda.so*",
"/usr/lib/*-linux-gnu/nvidia/current/libcuda.so*",
"/usr/lib/*-linux-gnu/libcuda.so*",
"/usr/lib/wsl/lib/libcuda.so*",
"/usr/lib/wsl/drivers/*/libcuda.so*",
"/opt/cuda/lib*/libcuda.so*",
"/usr/local/cuda/lib*/libcuda.so*",
"/usr/lib*/libcuda.so*",
"/usr/local/lib*/libcuda.so*",
}
var OneapiGlobs = []string{
"/usr/lib/x86_64-linux-gnu/libze_intel_gpu.so*",
"/usr/lib*/libze_intel_gpu.so*",
}
var (
CudartMgmtName = "libcudart.so*"
NvcudaMgmtName = "libcuda.so*"
NvmlMgmtName = "" // not currently wired on linux
OneapiMgmtName = "libze_intel_gpu.so*"
)
func GetCPUMem() (memInfo, error) {
var mem memInfo
var total, available, free, buffers, cached, freeSwap uint64
f, err := os.Open("/proc/meminfo")
if err != nil {
return mem, err
}
defer f.Close()
s := bufio.NewScanner(f)
for s.Scan() {
line := s.Text()
switch {
case strings.HasPrefix(line, "MemTotal:"):
_, err = fmt.Sscanf(line, "MemTotal:%d", &total)
case strings.HasPrefix(line, "MemAvailable:"):
_, err = fmt.Sscanf(line, "MemAvailable:%d", &available)
case strings.HasPrefix(line, "MemFree:"):
_, err = fmt.Sscanf(line, "MemFree:%d", &free)
case strings.HasPrefix(line, "Buffers:"):
_, err = fmt.Sscanf(line, "Buffers:%d", &buffers)
case strings.HasPrefix(line, "Cached:"):
_, err = fmt.Sscanf(line, "Cached:%d", &cached)
case strings.HasPrefix(line, "SwapFree:"):
_, err = fmt.Sscanf(line, "SwapFree:%d", &freeSwap)
default:
continue
}
if err != nil {
return mem, err
}
}
mem.TotalMemory = total * format.KibiByte
mem.FreeSwap = freeSwap * format.KibiByte
if available > 0 {
mem.FreeMemory = available * format.KibiByte
} else {
mem.FreeMemory = (free + buffers + cached) * format.KibiByte
}
return mem, nil
}

View File

@@ -1,57 +0,0 @@
package gpu
import (
"fmt"
"syscall"
"unsafe"
)
type MEMORYSTATUSEX struct {
length uint32
MemoryLoad uint32
TotalPhys uint64
AvailPhys uint64
TotalPageFile uint64
AvailPageFile uint64
TotalVirtual uint64
AvailVirtual uint64
AvailExtendedVirtual uint64
}
var (
k32 = syscall.NewLazyDLL("kernel32.dll")
globalMemoryStatusExProc = k32.NewProc("GlobalMemoryStatusEx")
sizeofMemoryStatusEx = uint32(unsafe.Sizeof(MEMORYSTATUSEX{}))
)
var CudartGlobs = []string{
"c:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v*\\bin\\cudart64_*.dll",
}
var NvmlGlobs = []string{
"c:\\Windows\\System32\\nvml.dll",
}
var NvcudaGlobs = []string{
"c:\\windows\\system*\\nvcuda.dll",
}
var OneapiGlobs = []string{
"c:\\Windows\\System32\\DriverStore\\FileRepository\\*\\ze_intel_gpu64.dll",
}
var (
CudartMgmtName = "cudart64_*.dll"
NvcudaMgmtName = "nvcuda.dll"
NvmlMgmtName = "nvml.dll"
OneapiMgmtName = "ze_intel_gpu64.dll"
)
func GetCPUMem() (memInfo, error) {
memStatus := MEMORYSTATUSEX{length: sizeofMemoryStatusEx}
r1, _, err := globalMemoryStatusExProc.Call(uintptr(unsafe.Pointer(&memStatus)))
if r1 == 0 {
return memInfo{}, fmt.Errorf("GlobalMemoryStatusEx failed: %w", err)
}
return memInfo{TotalMemory: memStatus.TotalPhys, FreeMemory: memStatus.AvailPhys, FreeSwap: memStatus.AvailPageFile}, nil
}

View File

@@ -30,6 +30,48 @@ func TestOrcaMiniBlueSky(t *testing.T) {
GenerateTestHelper(ctx, t, req, []string{"rayleigh", "scattering"})
}
func TestUnicode(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), 3*time.Minute)
defer cancel()
// Set up the test data
req := api.GenerateRequest{
// DeepSeek has a Unicode tokenizer regex, making it a unicode torture test
Model: "deepseek-coder-v2:16b-lite-instruct-q2_K",
Prompt: "天空为什么是蓝色的?",
Stream: &stream,
Options: map[string]interface{}{
"temperature": 0,
"seed": 123,
// Workaround deepseek context shifting bug
"num_ctx": 8192,
"num_predict": 2048,
},
}
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
require.NoError(t, PullIfMissing(ctx, client, req.Model))
DoGenerate(ctx, t, client, req, []string{"散射", "频率"}, 120*time.Second, 120*time.Second)
}
func TestExtendedUnicodeOutput(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
defer cancel()
// Set up the test data
req := api.GenerateRequest{
Model: "gemma2:2b",
Prompt: "Output some smily face emoji",
Stream: &stream,
Options: map[string]interface{}{
"temperature": 0,
"seed": 123,
},
}
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
require.NoError(t, PullIfMissing(ctx, client, req.Model))
DoGenerate(ctx, t, client, req, []string{"😀", "😊", "😁", "😂", "😄", "😃"}, 120*time.Second, 120*time.Second)
}
func TestUnicodeModelDir(t *testing.T) {
// This is only useful for Windows with utf-16 characters, so skip this test for other platforms
if runtime.GOOS != "windows" {

View File

@@ -60,7 +60,8 @@ func TestMultiModelConcurrency(t *testing.T) {
for i := 0; i < len(req); i++ {
go func(i int) {
defer wg.Done()
DoGenerate(ctx, t, client, req[i], resp[i], 60*time.Second, 10*time.Second)
// Note: CPU based inference can crawl so don't give up too quickly
DoGenerate(ctx, t, client, req[i], resp[i], 90*time.Second, 30*time.Second)
}(i)
}
wg.Wait()

View File

@@ -10,7 +10,38 @@ import (
"github.com/ollama/ollama/api"
)
func TestLongInputContext(t *testing.T) {
// Setting NUM_PARALLEL to 1 ensures the allocated context is exactly what
// we asked for and there is nothing extra that we could spill over into
t.Setenv("OLLAMA_NUM_PARALLEL", "1")
// Longer needed for small footprint GPUs
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Minute)
defer cancel()
// Set up the test data
req := api.GenerateRequest{
Model: "llama2",
Prompt: "Oh, dont speak to me of Austria. Perhaps I dont understand things, but Austria never has wished, and does not wish, for war. She is betraying us! Russia alone must save Europe. Our gracious sovereign recognizes his high vocation and will be true to it. That is the one thing I have faith in! Our good and wonderful sovereign has to perform the noblest role on earth, and he is so virtuous and noble that God will not forsake him. He will fulfill his vocation and crush the hydra of revolution, which has become more terrible than ever in the person of this murderer and villain! We alone must avenge the blood of the just one.... Whom, I ask you, can we rely on?... England with her commercial spirit will not and cannot understand the Emperor Alexanders loftiness of soul. She has refused to evacuate Malta. She wanted to find, and still seeks, some secret motive in our actions. What answer did Novosíltsev get? None. The English have not understood and cannot understand the self-abnegation of our Emperor who wants nothing for himself, but only desires the good of mankind. And what have they promised? Nothing! And what little they have promised they will not perform! Prussia has always declared that Buonaparte is invincible, and that all Europe is powerless before him.... And I dont believe a word that Hardenburg says, or Haugwitz either. This famous Prussian neutrality is just a trap. I have faith only in God and the lofty destiny of our adored monarch. He will save Europe! What country is this referring to?",
Stream: &stream,
Options: map[string]interface{}{
"temperature": 0,
"seed": 123,
"num_ctx": 128,
},
}
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
if err := PullIfMissing(ctx, client, req.Model); err != nil {
t.Fatalf("PullIfMissing failed: %v", err)
}
DoGenerate(ctx, t, client, req, []string{"russia", "germany", "france", "england", "austria", "prussia"}, 120*time.Second, 10*time.Second)
}
func TestContextExhaustion(t *testing.T) {
// Setting NUM_PARALLEL to 1 ensures the allocated context is exactly what
// we asked for and there is nothing extra that we could spill over into
t.Setenv("OLLAMA_NUM_PARALLEL", "1")
// Longer needed for small footprint GPUs
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Minute)
defer cancel()

File diff suppressed because one or more lines are too long

View File

@@ -12,7 +12,7 @@ import (
"github.com/stretchr/testify/require"
)
func TestIntegrationMultimodal(t *testing.T) {
func TestIntegrationLlava(t *testing.T) {
image, err := base64.StdEncoding.DecodeString(imageEncoding)
require.NoError(t, err)
req := api.GenerateRequest{
@@ -39,6 +39,33 @@ func TestIntegrationMultimodal(t *testing.T) {
DoGenerate(ctx, t, client, req, []string{resp}, 120*time.Second, 30*time.Second)
}
func TestIntegrationMllama(t *testing.T) {
image, err := base64.StdEncoding.DecodeString(imageEncoding)
require.NoError(t, err)
req := api.GenerateRequest{
// TODO fix up once we publish the final image
Model: "x/llama3.2-vision",
Prompt: "what does the text in this image say?",
Stream: &stream,
Options: map[string]interface{}{
"seed": 42,
"temperature": 0.0,
},
Images: []api.ImageData{
image,
},
}
resp := "the ollamas"
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Minute)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
require.NoError(t, PullIfMissing(ctx, client, req.Model))
// mllama models on CPU can be quite slow to start,
DoGenerate(ctx, t, client, req, []string{resp}, 240*time.Second, 30*time.Second)
}
const imageEncoding = `iVBORw0KGgoAAAANSUhEUgAAANIAAAB4CAYAAACHHqzKAAAAAXNSR0IArs4c6QAAAIRlWElmTU0AKgAAAAgABQESAAMAAAABAAEAAAEaAAUAAAABAAAASgEb
AAUAAAABAAAAUgEoAAMAAAABAAIAAIdpAAQAAAABAAAAWgAAAAAAAABIAAAAAQAAAEgAAAABAAOgAQADAAAAAQABAACgAgAEAAAAAQAAANKgAwAEAAAAAQAA
AHgAAAAAXdsepgAAAAlwSFlzAAALEwAACxMBAJqcGAAAAVlpVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6

View File

@@ -16,7 +16,6 @@ import (
"github.com/stretchr/testify/require"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
)
func TestMaxQueue(t *testing.T) {
@@ -27,12 +26,8 @@ func TestMaxQueue(t *testing.T) {
// Note: This test can be quite slow when running in CPU mode, so keep the threadCount low unless your on GPU
// Also note that by default Darwin can't sustain > ~128 connections without adjusting limits
threadCount := 32
if maxQueue := envconfig.MaxQueue(); maxQueue != 0 {
threadCount = int(maxQueue)
} else {
t.Setenv("OLLAMA_MAX_QUEUE", strconv.Itoa(threadCount))
}
threadCount := 16
t.Setenv("OLLAMA_MAX_QUEUE", strconv.Itoa(threadCount))
req := api.GenerateRequest{
Model: "orca-mini",

View File

@@ -1,221 +0,0 @@
# Note: once we have fully transitioned to the Go server, this will replace the old Dockerfile at the top of the tree
ARG GOLANG_VERSION=1.22.5
ARG CMAKE_VERSION=3.22.1
ARG CUDA_VERSION_11=11.3.1
ARG CUDA_V11_ARCHITECTURES="50;52;53;60;61;62;70;72;75;80;86"
ARG CUDA_VERSION_12=12.4.0
ARG CUDA_V12_ARCHITECTURES="60;61;62;70;72;75;80;86;87;89;90;90a"
ARG ROCM_VERSION=6.1.2
### To create a local image for building linux binaries on mac or windows with efficient incremental builds
#
# docker build --platform linux/amd64 -t builder-amd64 -f Dockerfile.new --target unified-builder-amd64 .
# docker run --platform linux/amd64 --rm -it -v $(pwd):/go/src/github.com/ollama/ollama/ builder-amd64
#
### Then incremental builds will be much faster in this container
#
# make -C llama -j 10 && go build -trimpath -o dist/linux-amd64/ollama .
#
FROM --platform=linux/amd64 rocm/dev-centos-7:${ROCM_VERSION}-complete AS unified-builder-amd64
ARG CMAKE_VERSION
ARG GOLANG_VERSION
ARG CUDA_VERSION_11
ARG CUDA_VERSION_12
COPY ./scripts/rh_linux_deps.sh /
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:/usr/local/cuda/bin:$PATH
ENV LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/cuda/lib64
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs:/opt/amdgpu/lib64
RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
RUN yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel7/x86_64/cuda-rhel7.repo && \
dnf clean all && \
dnf install -y \
zsh \
cuda-$(echo ${CUDA_VERSION_11} | cut -f1-2 -d. | sed -e "s/\./-/g") \
cuda-$(echo ${CUDA_VERSION_12} | cut -f1-2 -d. | sed -e "s/\./-/g")
# TODO intel oneapi goes here...
ENV GOARCH amd64
ENV CGO_ENABLED 1
WORKDIR /go/src/github.com/ollama/ollama/
ENTRYPOINT [ "zsh" ]
### To create a local image for building linux binaries on mac or linux/arm64 with efficient incremental builds
# Note: this does not contain jetson variants
#
# docker build --platform linux/arm64 -t builder-arm64 -f Dockerfile.new --target unified-builder-arm64 .
# docker run --platform linux/arm64 --rm -it -v $(pwd):/go/src/github.com/ollama/ollama/ builder-arm64
#
FROM --platform=linux/arm64 rockylinux:8 AS unified-builder-arm64
ARG CMAKE_VERSION
ARG GOLANG_VERSION
ARG CUDA_VERSION_11
ARG CUDA_VERSION_12
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
RUN yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/sbsa/cuda-rhel8.repo && \
dnf config-manager --set-enabled appstream && \
dnf clean all && \
dnf install -y \
zsh \
cuda-toolkit-$(echo ${CUDA_VERSION_11} | cut -f1-2 -d. | sed -e "s/\./-/g") \
cuda-toolkit-$(echo ${CUDA_VERSION_12} | cut -f1-2 -d. | sed -e "s/\./-/g")
ENV PATH /opt/rh/gcc-toolset-10/root/usr/bin:$PATH:/usr/local/cuda/bin
ENV LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/cuda/lib64
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs:/opt/amdgpu/lib64
ENV GOARCH amd64
ENV CGO_ENABLED 1
WORKDIR /go/src/github.com/ollama/ollama/
ENTRYPOINT [ "zsh" ]
FROM --platform=linux/amd64 unified-builder-amd64 AS runners-amd64
COPY . .
ARG OLLAMA_SKIP_CUDA_GENERATE
ARG OLLAMA_SKIP_CUDA_11_GENERATE
ARG OLLAMA_SKIP_CUDA_12_GENERATE
ARG OLLAMA_SKIP_ROCM_GENERATE
ARG CUDA_V11_ARCHITECTURES
ARG CUDA_V12_ARCHITECTURES
ARG OLLAMA_FAST_BUILD
RUN --mount=type=cache,target=/root/.ccache \
if grep "^flags" /proc/cpuinfo|grep avx>/dev/null; then \
make -C llama -j $(expr $(nproc) / 2 ) ; \
else \
make -C llama -j 5 ; \
fi
FROM --platform=linux/arm64 unified-builder-arm64 AS runners-arm64
COPY . .
ARG OLLAMA_SKIP_CUDA_GENERATE
ARG OLLAMA_SKIP_CUDA_11_GENERATE
ARG OLLAMA_SKIP_CUDA_12_GENERATE
ARG CUDA_V11_ARCHITECTURES
ARG CUDA_V12_ARCHITECTURES
ARG OLLAMA_FAST_BUILD
RUN --mount=type=cache,target=/root/.ccache \
make -C llama -j 8
# Intermediate stages used for ./scripts/build_linux.sh
FROM --platform=linux/amd64 centos:7 AS builder-amd64
ARG CMAKE_VERSION
ARG GOLANG_VERSION
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
ENV CGO_ENABLED 1
ENV GOARCH amd64
WORKDIR /go/src/github.com/ollama/ollama
FROM --platform=linux/amd64 builder-amd64 AS build-amd64
COPY . .
COPY --from=runners-amd64 /go/src/github.com/ollama/ollama/dist/ dist/
COPY --from=runners-amd64 /go/src/github.com/ollama/ollama/build/ build/
ARG GOFLAGS
ARG CGO_CFLAGS
ARG OLLAMA_SKIP_ROCM_GENERATE
RUN --mount=type=cache,target=/root/.ccache \
go build -trimpath -o dist/linux-amd64/bin/ollama .
RUN cd dist/linux-$GOARCH && \
tar --exclude runners -cf - . | pigz --best > ../ollama-linux-$GOARCH.tgz
RUN if [ -z ${OLLAMA_SKIP_ROCM_GENERATE} ] ; then \
cd dist/linux-$GOARCH-rocm && \
tar -cf - . | pigz --best > ../ollama-linux-$GOARCH-rocm.tgz ;\
fi
FROM --platform=linux/arm64 rockylinux:8 AS builder-arm64
ARG CMAKE_VERSION
ARG GOLANG_VERSION
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
ENV PATH /opt/rh/gcc-toolset-10/root/usr/bin:$PATH
ENV CGO_ENABLED 1
ENV GOARCH arm64
WORKDIR /go/src/github.com/ollama/ollama
FROM --platform=linux/arm64 builder-arm64 AS build-arm64
COPY . .
COPY --from=runners-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
COPY --from=runners-arm64 /go/src/github.com/ollama/ollama/build/ build/
ARG GOFLAGS
ARG CGO_CFLAGS
RUN --mount=type=cache,target=/root/.ccache \
go build -trimpath -o dist/linux-arm64/bin/ollama .
RUN cd dist/linux-$GOARCH && \
tar --exclude runners -cf - . | pigz --best > ../ollama-linux-$GOARCH.tgz
FROM --platform=linux/amd64 scratch AS dist-amd64
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/ollama-linux-*.tgz /
FROM --platform=linux/arm64 scratch AS dist-arm64
COPY --from=build-arm64 /go/src/github.com/ollama/ollama/dist/ollama-linux-*.tgz /
FROM dist-$TARGETARCH AS dist
# Optimized container images do not cary nested payloads
FROM --platform=linux/amd64 builder-amd64 AS container-build-amd64
WORKDIR /go/src/github.com/ollama/ollama
COPY . .
ARG GOFLAGS
ARG CGO_CFLAGS
RUN --mount=type=cache,target=/root/.ccache \
go build -trimpath -o dist/linux-amd64/bin/ollama .
FROM --platform=linux/arm64 builder-arm64 AS container-build-arm64
WORKDIR /go/src/github.com/ollama/ollama
COPY . .
ARG GOFLAGS
ARG CGO_CFLAGS
RUN --mount=type=cache,target=/root/.ccache \
go build -trimpath -o dist/linux-arm64/bin/ollama .
# For amd64 container images, filter out cuda/rocm to minimize size
FROM runners-amd64 AS runners-cuda-amd64
RUN rm -rf \
./dist/linux-amd64/lib/ollama/libggml_hipblas.so \
./dist/linux-amd64/lib/ollama/runners/rocm*
FROM runners-amd64 AS runners-rocm-amd64
RUN rm -rf \
./dist/linux-amd64/lib/ollama/libggml_cuda*.so \
./dist/linux-amd64/lib/ollama/libcu*.so* \
./dist/linux-amd64/lib/ollama/runners/cuda*
FROM --platform=linux/amd64 ubuntu:22.04 AS runtime-amd64
RUN apt-get update && \
apt-get install -y ca-certificates && \
rm -rf /var/lib/apt/lists/*
COPY --from=container-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/bin/ /bin/
COPY --from=runners-cuda-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
FROM --platform=linux/arm64 ubuntu:22.04 AS runtime-arm64
RUN apt-get update && \
apt-get install -y ca-certificates && \
rm -rf /var/lib/apt/lists/*
COPY --from=container-build-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/bin/ /bin/
COPY --from=runners-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
# ROCm libraries larger so we keep it distinct from the CPU/CUDA image
FROM --platform=linux/amd64 ubuntu:22.04 AS runtime-rocm
# Frontload the rocm libraries which are large, and rarely change to increase chance of a common layer
# across releases
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64-rocm/lib/ /lib/
RUN apt-get update && \
apt-get install -y ca-certificates && \
rm -rf /var/lib/apt/lists/*
COPY --from=container-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/bin/ /bin/
COPY --from=runners-rocm-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
EXPOSE 11434
ENV OLLAMA_HOST 0.0.0.0
ENTRYPOINT ["/bin/ollama"]
CMD ["serve"]
FROM runtime-$TARGETARCH
EXPOSE 11434
ENV OLLAMA_HOST 0.0.0.0
ENV PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
ENV NVIDIA_VISIBLE_DEVICES=all
ENTRYPOINT ["/bin/ollama"]
CMD ["serve"]

View File

@@ -9,8 +9,7 @@ ifeq ($(OS),windows)
CUDA_BASE_DIR := $(dir $(shell cygpath -m -s "$(CUDA_PATH)\\.." 2>/dev/null))
CUDA_11:=$(shell ls -d $(CUDA_BASE_DIR)/v11.? 2>/dev/null)
CUDA_12:=$(shell ls -d $(CUDA_BASE_DIR)/v12.? 2>/dev/null)
HIP_PATH_83 := $(shell cygpath -m -s "$(subst \,/,$(HIP_PATH))" 2>/dev/null)
HIP_LIB_DIR := $(shell ls -d $(HIP_PATH_83)/lib 2>/dev/null)
HIP_LIB_DIR := $(shell ls -d $(HIP_PATH)/lib 2>/dev/null)
else ifeq ($(OS),linux)
HIP_PATH?=/opt/rocm
HIP_LIB_DIR := $(shell ls -d $(HIP_PATH)/lib 2>/dev/null)
@@ -41,8 +40,12 @@ runners: $(RUNNER_TARGETS)
$(RUNNER_TARGETS):
$(MAKE) -f make/Makefile.$@
help-sync apply-patches create-patches sync:
$(MAKE) -f make/Makefile.sync $@
clean:
rm -rf $(BUILD_DIR) $(DIST_RUNNERS) $(PAYLOAD_RUNNERS)
go clean -cache
clean-payload:
rm -rf $(addprefix $(RUNNERS_PAYLOAD_DIR)/, $(RUNNER_TARGETS) metal cpu cpu_avx cpu_avx2)

View File

@@ -55,7 +55,7 @@ go build -tags avx,cuda .
### ROCm
Install the [CUDA toolkit v11.3.1](https://developer.nvidia.com/cuda-11-3-1-download-archive):
Install [ROCm](https://rocm.docs.amd.com/en/latest/).
```shell
make ggml_hipblas.so
@@ -77,7 +77,7 @@ go build -tags avx,cuda .
### ROCm
Install [ROCm 5.7.1](https://rocm.docs.amd.com/en/docs-5.7.1/).
Install [ROCm](https://rocm.docs.amd.com/en/latest/).
```shell
make ggml_hipblas.dll
@@ -91,10 +91,70 @@ go build -tags avx,rocm .
make -j
```
## Syncing with llama.cpp
## Vendoring
To update this package to the latest llama.cpp code, use the `sync.sh` script:
Ollama currently vendors [llama.cpp](https://github.com/ggerganov/llama.cpp/) and [ggml](https://github.com/ggerganov/ggml) through a vendoring model. While we generally strive to contribute changes back upstream to avoid drift, we cary a small set of patches which are applied to the tracking commit. A set of make targets are available to aid developers in updating to a newer tracking commit, or to work on changes.
If you update the vendoring code, start by running the following command to establish the tracking llama.cpp repo in the `./vendor/` directory.
```
./sync.sh ../../llama.cpp
make apply-patches
```
### Updating Base Commit
**Pin to new base commit**
To update to a newer base commit, select the upstream git tag or commit and update `llama/vendoring`
#### Applying patches
When updating to a newer base commit, the existing patches may not apply cleanly and require manual merge resolution.
Start by applying the patches. If any of the patches have conflicts, the `git am` will stop at the first failure.
```
make apply-patches
```
If you see an error message about a conflict, go into the `./vendor/` directory, and perform merge resolution using your preferred tool to the patch commit which failed. Save the file(s) and continue the patch series with `git am --continue` . If any additional patches fail, follow the same pattern until the full patch series is applied. Once finished, run a final `create-patches` and `sync` target to ensure everything is updated.
```
make create-patches sync
```
Build and test Ollama, and make any necessary changes to the Go code based on the new base commit. Submit your PR to the Ollama repo.
### Generating Patches
When working on new fixes or features that impact vendored code, use the following model. First get a clean tracking repo with all current patches applied:
```
make apply-patches
```
Now edit the upstream native code in the `./vendor/` directory. You do not need to commit every change in order to build, a dirty working tree in the tracking repo is OK while developing. Simply save in your editor, and run the following to refresh the vendored code with your changes, build the backend(s) and build ollama:
```
make sync
make -j 8
go build .
```
> [!IMPORTANT]
> Do **NOT** run `apply-patches` while you're iterating as that will reset the tracking repo. It will detect a dirty tree and abort, but if your tree is clean and you accidentally ran this target, use `git reflog` to recover your commit(s).
Iterate until you're ready to submit PRs. Once your code is ready, commit a change in the `./vendor/` directory, then generate the patches for ollama with
```
make create-patches
```
> [!IMPORTANT]
> Once you have completed this step, it is safe to run `apply-patches` since your change is preserved in the patches.
In your `./vendor/` directory, create a branch, and cherry-pick the new commit to that branch, then submit a PR upstream to llama.cpp.
Commit the changes in the ollama repo and submit a PR to Ollama, which will include the vendored code update with your change, along with the patches.
After your PR upstream is merged, follow the **Updating Base Commit** instructions above, however first remove your patch before running `apply-patches` since the new base commit contains your change already.

28
llama/build-info.cpp vendored
View File

@@ -1,30 +1,4 @@
/**
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
*
* MIT License
*
* Copyright (c) 2023-2024 The ggml authors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
int LLAMA_BUILD_NUMBER = 0;
char const *LLAMA_COMMIT = "";
char const *LLAMA_COMMIT = "3f1ae2e32cde00c39b96be6d01c2997c29bae555";
char const *LLAMA_COMPILER = "";
char const *LLAMA_BUILD_TARGET = "";

155
llama/clip.cpp vendored
View File

@@ -1,5 +1,5 @@
/**
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
* llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
*
* MIT License
*
@@ -29,7 +29,6 @@
// I'll gradually clean and extend it
// Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
#include "clip.h"
#include "log.h"
#include "ggml.h"
#include "ggml-alloc.h"
#include "ggml-backend.h"
@@ -66,6 +65,11 @@
#include <cinttypes>
#include <limits>
#define LOG_INF(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
#define LOG_WRN(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
#define LOG_ERR(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
#define LOG_DBG(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
@@ -204,7 +208,7 @@ static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
static int get_key_idx(const gguf_context * ctx, const char * key) {
int i = gguf_find_key(ctx, key);
if (i == -1) {
LOG_TEE("key %s not found in file\n", key);
LOG_ERR("key %s not found in file\n", key);
throw std::runtime_error(format("Missing required key: %s", key));
}
@@ -309,7 +313,7 @@ static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
static void print_tensor_info(const ggml_tensor * tensor, const char * prefix = "") {
size_t tensor_size = ggml_nbytes(tensor);
LOG_TEE("%s: n_dims = %d, name = %s, tensor_size=%zu, shape:[%" PRId64 ", %" PRId64 ", %" PRId64 ", %" PRId64 "], type = %s\n",
LOG_INF("%s: n_dims = %d, name = %s, tensor_size=%zu, shape:[%" PRId64 ", %" PRId64 ", %" PRId64 ", %" PRId64 "], type = %s\n",
prefix, ggml_n_dims(tensor), tensor->name, tensor_size,
tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], ggml_type_name(tensor->type));
}
@@ -327,7 +331,7 @@ static projector_type clip_projector_type_from_string(const std::string & name)
static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
std::ofstream file(filename, std::ios::binary);
if (!file.is_open()) {
LOG_TEE("Failed to open file for writing: %s\n", filename.c_str());
LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
return;
}
@@ -346,7 +350,7 @@ static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::s
static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
std::ofstream file(filename, std::ios::binary);
if (!file.is_open()) {
LOG_TEE("Failed to open file for writing: %s\n", filename.c_str());
LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
return;
}
@@ -607,7 +611,7 @@ struct clip_ctx {
static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs, struct clip_image_size * load_image_size, bool is_inf = false) {
if (!ctx->has_vision_encoder) {
LOG_TEE("This gguf file seems to have no vision encoder\n");
LOG_ERR("This gguf file seems to have no vision encoder\n");
return nullptr;
}
@@ -621,7 +625,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
if (load_image_size == nullptr) {
load_image_size = clip_image_size_init();
}
LOG_TEE("%s: %d %d\n", __func__, load_image_size->width, load_image_size->height);
LOG_DBG("%s: %d %d\n", __func__, load_image_size->width, load_image_size->height);
image_size_width = load_image_size->width;
image_size_height = load_image_size->height;
if (is_inf) {
@@ -1086,21 +1090,21 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
const int idx_name = gguf_find_key(ctx, KEY_NAME);
if (idx_name != -1) { // make name optional temporarily as some of the uploaded models missing it due to a bug
const std::string name = gguf_get_val_str(ctx, idx_name);
LOG_TEE("%s: model name: %s\n", __func__, name.c_str());
LOG_INF("%s: model name: %s\n", __func__, name.c_str());
}
LOG_TEE("%s: description: %s\n", __func__, description.c_str());
LOG_TEE("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx));
LOG_TEE("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx));
LOG_TEE("%s: n_tensors: %d\n", __func__, n_tensors);
LOG_TEE("%s: n_kv: %d\n", __func__, n_kv);
LOG_TEE("%s: ftype: %s\n", __func__, ftype_str.c_str());
LOG_TEE("\n");
LOG_INF("%s: description: %s\n", __func__, description.c_str());
LOG_INF("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx));
LOG_INF("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx));
LOG_INF("%s: n_tensors: %d\n", __func__, n_tensors);
LOG_INF("%s: n_kv: %d\n", __func__, n_kv);
LOG_INF("%s: ftype: %s\n", __func__, ftype_str.c_str());
LOG_INF("\n");
}
const int n_tensors = gguf_get_n_tensors(ctx);
// kv
const int n_kv = gguf_get_n_kv(ctx);
LOG_TEE("%s: loaded meta data with %d key-value pairs and %d tensors from %s\n",
LOG_INF("%s: loaded meta data with %d key-value pairs and %d tensors from %s\n",
__func__, n_kv, n_tensors, fname);
{
std::map<enum ggml_type, uint32_t> n_type;
@@ -1111,7 +1115,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
n_type[type]++;
}
LOG_TEE("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
LOG_INF("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
for (int i = 0; i < n_kv; i++) {
const char * name = gguf_get_key(ctx, i);
const enum gguf_type type = gguf_get_kv_type(ctx, i);
@@ -1127,7 +1131,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
}
replace_all(value, "\n", "\\n");
LOG_TEE("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
LOG_INF("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
}
// print type counts
@@ -1136,7 +1140,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
continue;
}
LOG_TEE("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
LOG_INF("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
}
}
@@ -1151,7 +1155,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
size_t tensor_size = ggml_nbytes(cur);
model_size += tensor_size;
if (verbosity >= 3) {
LOG_TEE("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
LOG_INF("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
__func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
}
}
@@ -1178,27 +1182,27 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
#ifdef GGML_USE_CUDA
new_clip->backend = ggml_backend_cuda_init(0);
LOG_TEE("%s: CLIP using CUDA backend\n", __func__);
LOG_INF("%s: CLIP using CUDA backend\n", __func__);
#endif
#ifdef GGML_USE_METAL
new_clip->backend = ggml_backend_metal_init();
LOG_TEE("%s: CLIP using Metal backend\n", __func__);
LOG_INF("%s: CLIP using Metal backend\n", __func__);
#endif
#ifdef GGML_USE_CANN
new_clip->backend = ggml_backend_cann_init(0);
LOG_TEE("%s: CLIP using CANN backend\n", __func__);
LOG_INF("%s: CLIP using CANN backend\n", __func__);
#endif
#ifdef GGML_USE_VULKAN
new_clip->backend = ggml_backend_vk_init(0);
LOG_TEE("%s: CLIP using Vulkan backend\n", __func__);
LOG_INF("%s: CLIP using Vulkan backend\n", __func__);
#endif
if (!new_clip->backend) {
new_clip->backend = ggml_backend_cpu_init();
LOG_TEE("%s: CLIP using CPU backend\n", __func__);
LOG_INF("%s: CLIP using CPU backend\n", __func__);
}
// model size and capabilities
@@ -1233,16 +1237,16 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
new_clip->use_gelu = gguf_get_val_bool(ctx, idx);
if (verbosity >= 1) {
LOG_TEE("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder);
LOG_TEE("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder);
LOG_TEE("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector);
LOG_TEE("%s: minicpmv_projector: %d\n", __func__, new_clip->has_minicpmv_projector);
LOG_TEE("%s: model size: %.2f MB\n", __func__, model_size / 1024.0 / 1024.0);
LOG_TEE("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0);
LOG_INF("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder);
LOG_INF("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder);
LOG_INF("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector);
LOG_INF("%s: minicpmv_projector: %d\n", __func__, new_clip->has_minicpmv_projector);
LOG_INF("%s: model size: %.2f MB\n", __func__, model_size / 1024.0 / 1024.0);
LOG_INF("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0);
}
}
LOG_TEE("%s: params backend buffer size = % 6.2f MB (%i tensors)\n", __func__, model_size / (1024.0 * 1024.0), n_tensors);
LOG_INF("%s: params backend buffer size = % 6.2f MB (%i tensors)\n", __func__, model_size / (1024.0 * 1024.0), n_tensors);
// load tensors
{
@@ -1255,12 +1259,11 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
new_clip->ctx_data = ggml_init(params);
if (!new_clip->ctx_data) {
LOG_TEE("%s: ggml_init() failed\n", __func__);
LOG_ERR("%s: ggml_init() failed\n", __func__);
clip_free(new_clip);
gguf_free(ctx);
return nullptr;
}
#ifdef _WIN32
int wlen = MultiByteToWideChar(CP_UTF8, 0, fname, -1, NULL, 0);
if (!wlen) {
@@ -1285,7 +1288,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
auto fin = std::ifstream(fname, std::ios::binary);
#endif
if (!fin) {
LOG_TEE("cannot open model file for loading tensors\n");
LOG_ERR("cannot open model file for loading tensors\n");
clip_free(new_clip);
gguf_free(ctx);
return nullptr;
@@ -1307,7 +1310,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i);
fin.seekg(offset, std::ios::beg);
if (!fin) {
LOG_TEE("%s: failed to seek for tensor %s\n", __func__, name);
LOG_ERR("%s: failed to seek for tensor %s\n", __func__, name);
clip_free(new_clip);
gguf_free(ctx);
return nullptr;
@@ -1382,23 +1385,23 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
}
if (verbosity >= 2) {
LOG_TEE("\n%s: vision model hparams\n", __func__);
LOG_TEE("image_size %d\n", hparams.image_size);
LOG_TEE("patch_size %d\n", hparams.patch_size);
LOG_TEE("v_hidden_size %d\n", hparams.hidden_size);
LOG_TEE("v_n_intermediate %d\n", hparams.n_intermediate);
LOG_TEE("v_projection_dim %d\n", hparams.projection_dim);
LOG_TEE("v_n_head %d\n", hparams.n_head);
LOG_TEE("v_n_layer %d\n", hparams.n_layer);
LOG_TEE("v_eps %f\n", hparams.eps);
LOG_TEE("v_image_mean %f %f %f\n", new_clip->image_mean[0], new_clip->image_mean[1], new_clip->image_mean[2]);
LOG_TEE("v_image_std %f %f %f\n", new_clip->image_std[0], new_clip->image_std[1], new_clip->image_std[2]);
LOG_TEE("v_image_grid_pinpoints: ");
LOG_INF("\n%s: vision model hparams\n", __func__);
LOG_INF("image_size %d\n", hparams.image_size);
LOG_INF("patch_size %d\n", hparams.patch_size);
LOG_INF("v_hidden_size %d\n", hparams.hidden_size);
LOG_INF("v_n_intermediate %d\n", hparams.n_intermediate);
LOG_INF("v_projection_dim %d\n", hparams.projection_dim);
LOG_INF("v_n_head %d\n", hparams.n_head);
LOG_INF("v_n_layer %d\n", hparams.n_layer);
LOG_INF("v_eps %f\n", hparams.eps);
LOG_INF("v_image_mean %f %f %f\n", new_clip->image_mean[0], new_clip->image_mean[1], new_clip->image_mean[2]);
LOG_INF("v_image_std %f %f %f\n", new_clip->image_std[0], new_clip->image_std[1], new_clip->image_std[2]);
LOG_INF("v_image_grid_pinpoints: ");
for (int i = 0; i < 32 && (hparams.image_grid_pinpoints[i] != 0); ++i) {
LOG_TEE("%d ", hparams.image_grid_pinpoints[i]);
LOG_INF("%d ", hparams.image_grid_pinpoints[i]);
}
LOG_TEE("\n");
LOG_TEE("v_mm_patch_merge_type: %s\n", hparams.mm_patch_merge_type);
LOG_INF("\n");
LOG_INF("v_mm_patch_merge_type: %s\n", hparams.mm_patch_merge_type);
}
@@ -1436,7 +1439,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
vision_model.patch_embeddings = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD);
vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v"));
} catch(const std::exception& /*e*/) {
LOG_TEE("%s: failed to load vision model tensors\n", __func__);
LOG_ERR("%s: failed to load vision model tensors\n", __func__);
}
// LLaVA projection
@@ -1465,7 +1468,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
} catch (std::runtime_error & /*e*/) { }
try {
vision_model.image_newline = get_tensor(new_clip->ctx_data, TN_IMAGE_NEWLINE);
// LOG_TEE("%s: image_newline tensor (llava-1.6) found\n", __func__);
// LOG_INF("%s: image_newline tensor (llava-1.6) found\n", __func__);
} catch (std::runtime_error & /*e*/) { }
} else if (new_clip->proj_type == PROJECTOR_TYPE_LDP) {
// MobileVLM projection
@@ -1566,7 +1569,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch, nullptr, false);
ggml_gallocr_reserve(new_clip->compute_alloc, gf);
size_t compute_memory_buffer_size = ggml_gallocr_get_buffer_size(new_clip->compute_alloc, 0);
LOG_TEE("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0);
LOG_INF("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0);
}
return new_clip;
@@ -1617,7 +1620,7 @@ bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
int nx, ny, nc;
auto * data = stbi_load(fname, &nx, &ny, &nc, 3);
if (!data) {
LOG_TEE("%s: failed to load image '%s'\n", __func__, fname);
LOG_ERR("%s: failed to load image '%s'\n", __func__, fname);
return false;
}
build_clip_img_from_data(data, nx, ny, img);
@@ -1629,7 +1632,7 @@ bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length
int nx, ny, nc;
auto * data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3);
if (!data) {
LOG_TEE("%s: failed to decode image bytes\n", __func__);
LOG_ERR("%s: failed to decode image bytes\n", __func__);
return false;
}
build_clip_img_from_data(data, nx, ny, img);
@@ -1819,7 +1822,7 @@ static std::pair<int, int> select_best_resolution(const std::pair<int, int> & or
int downscaled_height = static_cast<int>(original_height * scale);
int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
int wasted_resolution = (width * height) - effective_resolution;
// LOG_TEE("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
// LOG_INF("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
max_effective_resolution = effective_resolution;
min_wasted_resolution = wasted_resolution;
@@ -1937,7 +1940,7 @@ static std::vector<std::vector<clip_image_u8 *>> uhd_slice_image(const clip_imag
const int multiple = fmin(ceil(ratio), max_slice_nums);
std::vector<std::vector<clip_image_u8 *>> images;
LOG_TEE("%s: multiple %d\n", __func__, multiple);
LOG_INF("%s: multiple %d\n", __func__, multiple);
images.push_back(std::vector<clip_image_u8 *>());
if (multiple <= 1) {
@@ -1952,17 +1955,17 @@ static std::vector<std::vector<clip_image_u8 *>> uhd_slice_image(const clip_imag
clip_image_u8 * source_image = clip_image_u8_init();
bicubic_resize(*img, *source_image, best_size.first, best_size.second);
// source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC)
LOG_TEE("%s: image_size: %d %d; source_image size: %d %d\n", __func__, img->nx, img->ny, best_size.first, best_size.second);
LOG_INF("%s: image_size: %d %d; source_image size: %d %d\n", __func__, img->nx, img->ny, best_size.first, best_size.second);
images[images.size()-1].push_back(source_image);
std::pair<int, int> best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio);
LOG_TEE("%s: image_size: %d %d; best_grid: %d %d\n", __func__, img->nx, img->ny, best_grid.first, best_grid.second);
LOG_INF("%s: image_size: %d %d; best_grid: %d %d\n", __func__, img->nx, img->ny, best_grid.first, best_grid.second);
auto refine_size = uhd_get_refine_size(original_size, best_grid, scale_resolution, patch_size, true);
clip_image_u8 * refine_image = clip_image_u8_init();
bicubic_resize(*img, *refine_image, refine_size.first, refine_size.second);
LOG_TEE("%s: refine_image_size: %d %d; refine_size: %d %d\n", __func__, refine_image->nx, refine_image->ny, refine_size.first, refine_size.second);
LOG_INF("%s: refine_image_size: %d %d; refine_size: %d %d\n", __func__, refine_image->nx, refine_image->ny, refine_size.first, refine_size.second);
// split_to_patches
int width = refine_image->nx;
@@ -2019,7 +2022,7 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
int idx = 0;
for (size_t i = 0; i < imgs.size(); ++i) {
for (size_t j = 0; j < imgs[i].size(); ++j) {
LOG_TEE("%s: %d %d\n", __func__,imgs[i][j]->nx,imgs[i][j]->ny);
LOG_DBG("%s: %d %d\n", __func__,imgs[i][j]->nx,imgs[i][j]->ny);
clip_image_f32 * res = clip_image_f32_init();
normalize_image_u8_to_f32(imgs[i][j], res, ctx->image_mean, ctx->image_std);
res_imgs->data[idx++] = *res;
@@ -2031,7 +2034,7 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
bool pad_to_square = true;
if (!ctx->has_vision_encoder) {
LOG_TEE("This gguf file seems to have no vision encoder\n");
LOG_ERR("This gguf file seems to have no vision encoder\n");
return false;
}
auto & params = ctx->vision_model.hparams;
@@ -2108,7 +2111,7 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
}
for (size_t i = 0; i < patches.size(); i++) {
// LOG_TEE("patch %d: %d %d\n", i, patches[i]->nx, patches[i]->ny);
// LOG_DBG("patch %d: %d %d\n", i, patches[i]->nx, patches[i]->ny);
clip_image_u8_free(patches[i]);
}
@@ -2344,7 +2347,7 @@ static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, co
bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
if (!ctx->has_vision_encoder) {
LOG_TEE("This gguf file seems to have no vision encoder\n");
LOG_ERR("This gguf file seems to have no vision encoder\n");
return false;
}
@@ -2356,7 +2359,7 @@ bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f3
bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs, float * vec) {
if (!ctx->has_vision_encoder) {
LOG_TEE("This gguf file seems to have no vision encoder\n");
LOG_ERR("This gguf file seems to have no vision encoder\n");
return false;
}
@@ -2505,16 +2508,10 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
ggml_backend_cpu_set_n_threads(ctx->backend, n_threads);
}
#ifdef GGML_USE_METAL
if (ggml_backend_is_metal(ctx->backend)) {
ggml_backend_metal_set_n_cb(ctx->backend, n_threads);
}
#endif
ggml_backend_graph_compute(ctx->backend, gf);
// the last node is the embedding tensor
struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 1];
struct ggml_tensor * embeddings = ggml_graph_node(gf, -1);
// copy the embeddings to the location passed by the user
ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
@@ -2586,7 +2583,7 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
new_type = type;
if (new_type >= GGML_TYPE_Q2_K && name.find("embd") != std::string::npos) {
new_type = GGML_TYPE_Q8_0; // ggml_get_rows needs non K type
// LOG_TEE("%s: quantizing %s to %s\n", __func__, name.c_str(), ggml_type_name(new_type));
// LOG_ERR("%s: quantizing %s to %s\n", __func__, name.c_str(), ggml_type_name(new_type));
}
const size_t n_elms = ggml_nelements(cur);
float * f32_data;
@@ -2605,7 +2602,7 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
f32_data = (float *)conv_buf.data();
break;
default:
LOG_TEE("Please use an input file in f32 or f16\n");
LOG_ERR("Please use an input file in f32 or f16\n");
gguf_free(ctx_out);
return false;
}
@@ -2632,7 +2629,7 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
fout.put(0);
}
LOG_TEE("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize,
LOG_INF("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize,
orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
}
@@ -2648,8 +2645,8 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
gguf_free(ctx_out);
{
LOG_TEE("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0);
LOG_TEE("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0);
LOG_INF("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0);
LOG_INF("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0);
}
return true;

2
llama/clip.h vendored
View File

@@ -1,5 +1,5 @@
/**
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
* llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
*
* MIT License
*

2004
llama/common.cpp vendored

File diff suppressed because it is too large Load Diff

187
llama/common.h vendored
View File

@@ -1,5 +1,5 @@
/**
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
* llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
*
* MIT License
*
@@ -30,18 +30,9 @@
#include "llama.h"
#include "sampling.h"
#define LOG_NO_FILE_LINE_FUNCTION
#include "log.h"
#include <cmath>
#include <string>
#include <vector>
#include <random>
#include <thread>
#include <unordered_map>
#include <tuple>
#include <sstream>
#ifdef _WIN32
#define DIRECTORY_SEPARATOR '\\'
@@ -80,19 +71,6 @@ struct llama_control_vector_load_info;
// CPU utils
//
int32_t cpu_get_num_physical_cores();
int32_t cpu_get_num_math();
//
// CLI argument parsing
//
// dimensionality reduction methods, used by cvector-generator
enum dimre_method {
DIMRE_METHOD_PCA,
DIMRE_METHOD_MEAN,
};
struct cpu_params {
int n_threads = -1;
bool cpumask[GGML_MAX_N_THREADS] = {false}; // CPU affinity mask.
@@ -102,9 +80,94 @@ struct cpu_params {
uint32_t poll = 50; // Polling (busywait) level (0 - no polling, 100 - mostly polling)
};
struct gpt_params {
uint32_t seed = LLAMA_DEFAULT_SEED; // RNG seed
int32_t cpu_get_num_physical_cores();
int32_t cpu_get_num_math();
//
// Common params
//
enum llama_example {
LLAMA_EXAMPLE_COMMON,
LLAMA_EXAMPLE_SPECULATIVE,
LLAMA_EXAMPLE_MAIN,
LLAMA_EXAMPLE_INFILL,
LLAMA_EXAMPLE_EMBEDDING,
LLAMA_EXAMPLE_PERPLEXITY,
LLAMA_EXAMPLE_RETRIEVAL,
LLAMA_EXAMPLE_PASSKEY,
LLAMA_EXAMPLE_IMATRIX,
LLAMA_EXAMPLE_BENCH,
LLAMA_EXAMPLE_SERVER,
LLAMA_EXAMPLE_CVECTOR_GENERATOR,
LLAMA_EXAMPLE_EXPORT_LORA,
LLAMA_EXAMPLE_LLAVA,
LLAMA_EXAMPLE_LOOKUP,
LLAMA_EXAMPLE_PARALLEL,
LLAMA_EXAMPLE_COUNT,
};
enum gpt_sampler_type {
GPT_SAMPLER_TYPE_NONE = 0,
GPT_SAMPLER_TYPE_TOP_K = 1,
GPT_SAMPLER_TYPE_TOP_P = 2,
GPT_SAMPLER_TYPE_MIN_P = 3,
GPT_SAMPLER_TYPE_TFS_Z = 4,
GPT_SAMPLER_TYPE_TYPICAL_P = 5,
GPT_SAMPLER_TYPE_TEMPERATURE = 6,
};
// dimensionality reduction methods, used by cvector-generator
enum dimre_method {
DIMRE_METHOD_PCA,
DIMRE_METHOD_MEAN,
};
// sampler parameters
struct gpt_sampler_params {
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
int32_t n_prev = 64; // number of previous tokens to remember
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
int32_t top_k = 40; // <= 0 to use vocab size
float top_p = 0.95f; // 1.0 = disabled
float min_p = 0.05f; // 0.0 = disabled
float tfs_z = 1.00f; // 1.0 = disabled
float typ_p = 1.00f; // typical_p, 1.0 = disabled
float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
float dynatemp_range = 0.00f; // 0.0 = disabled
float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
float penalty_repeat = 1.00f; // 1.0 = disabled
float penalty_freq = 0.00f; // 0.0 = disabled
float penalty_present = 0.00f; // 0.0 = disabled
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
float mirostat_tau = 5.00f; // target entropy
float mirostat_eta = 0.10f; // learning rate
bool penalize_nl = false; // consider newlines as a repeatable token
bool ignore_eos = false;
bool no_perf = false; // disable performance metrics
std::vector<enum gpt_sampler_type> samplers = {
GPT_SAMPLER_TYPE_TOP_K,
GPT_SAMPLER_TYPE_TFS_Z,
GPT_SAMPLER_TYPE_TYPICAL_P,
GPT_SAMPLER_TYPE_TOP_P,
GPT_SAMPLER_TYPE_MIN_P,
GPT_SAMPLER_TYPE_TEMPERATURE
};
std::string grammar; // optional BNF-like grammar to constrain sampling
std::vector<llama_logit_bias> logit_bias; // logit biases to apply
// print the parameters into a string
std::string print() const;
};
struct gpt_params {
int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 0; // context size
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
@@ -146,26 +209,25 @@ struct gpt_params {
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
// // sampling parameters
struct llama_sampling_params sparams;
struct gpt_sampler_params sparams;
std::string model = ""; // model path
std::string model_draft = ""; // draft model for speculative decoding
std::string model_alias = "unknown"; // model alias
std::string model_url = ""; // model url to download
std::string hf_token = ""; // HF token
std::string hf_repo = ""; // HF repo
std::string hf_file = ""; // HF file
std::string prompt = "";
std::string prompt_file = ""; // store the external prompt file name
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
std::string input_prefix = ""; // string to prefix user inputs with
std::string input_suffix = ""; // string to suffix user inputs with
std::string logdir = ""; // directory in which to save YAML log files
std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding
std::string logits_file = ""; // file for saving *all* logits
std::string rpc_servers = ""; // comma separated list of RPC servers
std::string model = ""; // model path // NOLINT
std::string model_draft = ""; // draft model for speculative decoding // NOLINT
std::string model_alias = "unknown"; // model alias // NOLINT
std::string model_url = ""; // model url to download // NOLINT
std::string hf_token = ""; // HF token // NOLINT
std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT
std::string prompt = ""; // NOLINT
std::string prompt_file = ""; // store the external prompt file name // NOLINT
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state // NOLINT
std::string input_prefix = ""; // string to prefix user inputs with // NOLINT
std::string input_suffix = ""; // string to suffix user inputs with // NOLINT
std::string logdir = ""; // directory in which to save YAML log files // NOLINT
std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding // NOLINT
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT
std::string logits_file = ""; // file for saving *all* logits // NOLINT
std::string rpc_servers = ""; // comma separated list of RPC servers // NOLINT
std::vector<std::string> in_files; // all input files
std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
@@ -209,15 +271,15 @@ struct gpt_params {
bool simple_io = false; // improves compatibility with subprocesses and limited consoles
bool cont_batching = true; // insert new sequences for decoding on-the-fly
bool flash_attn = false; // flash attention
bool no_perf = false; // disable performance metrics
bool ctx_shift = true; // context shift on inifinite text generation
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
bool ignore_eos = false; // ignore generated EOS tokens
bool logits_all = false; // return logits for all tokens in the batch
bool use_mmap = true; // use mmap for faster loads
bool use_mlock = false; // use mlock to keep model in memory
bool verbose_prompt = false; // print prompt tokens before generation
bool display_prompt = true; // print prompt before generation
bool infill = false; // use infill mode
bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
bool no_kv_offload = false; // disable KV offloading
bool warmup = true; // warmup run
@@ -227,7 +289,7 @@ struct gpt_params {
std::string cache_type_v = "f16"; // KV cache data type for the V
// multimodal models (see examples/llava)
std::string mmproj = ""; // path to multimodal projector
std::string mmproj = ""; // path to multimodal projector // NOLINT
std::vector<std::string> image; // path to image file(s)
// embedding
@@ -235,6 +297,7 @@ struct gpt_params {
int32_t embd_normalize = 2; // normalisation for embendings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
std::string embd_sep = "\n"; // separator of embendings
bool reranking = false; // enable reranking support on server
// server params
int32_t port = 8080; // server listens on this network port
@@ -243,15 +306,15 @@ struct gpt_params {
int n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
std::string hostname = "127.0.0.1";
std::string public_path = "";
std::string chat_template = "";
std::string system_prompt = "";
std::string public_path = ""; // NOLINT
std::string chat_template = ""; // NOLINT
std::string system_prompt = ""; // NOLINT
bool enable_chat_template = true;
std::vector<std::string> api_keys;
std::string ssl_file_key = "";
std::string ssl_file_cert = "";
std::string ssl_file_key = ""; // NOLINT
std::string ssl_file_cert = ""; // NOLINT
bool endpoint_slots = true;
bool endpoint_metrics = false;
@@ -301,15 +364,14 @@ struct gpt_params {
bool spm_infill = false; // suffix/prefix/middle pattern for infill
std::string lora_outfile = "ggml-lora-merged-f16.gguf";
// batched-bench params
bool batched_bench_output_jsonl = false;
};
void gpt_params_parse_from_env(gpt_params & params);
void gpt_params_handle_model_default(gpt_params & params);
bool gpt_params_parse_ex (int argc, char ** argv, gpt_params & params);
bool gpt_params_parse (int argc, char ** argv, gpt_params & params);
bool gpt_params_find_arg (int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param);
void gpt_params_print_usage(int argc, char ** argv, const gpt_params & params);
// call once at the start of a program if it uses libcommon
// initializes the logging system and prints info about the build
void gpt_init();
std::string gpt_params_get_system_info(const gpt_params & params);
@@ -346,6 +408,11 @@ static std::vector<T> string_split(const std::string & str, char delim) {
bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
void string_process_escapes(std::string & input);
std::string string_from(bool value);
std::string string_from(const std::vector<int> & values);
std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens);
std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch);
//
// Filesystem utils
//

3227
llama/ggml-aarch64.c vendored

File diff suppressed because it is too large Load Diff

View File

@@ -1,5 +1,5 @@
/**
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
* llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
*
* MIT License
*

8
llama/ggml-alloc.c vendored
View File

@@ -1,5 +1,5 @@
/**
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
* llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
*
* MIT License
*
@@ -320,6 +320,12 @@ static void ggml_dyn_tallocr_reset(struct ggml_dyn_tallocr * alloc) {
alloc->free_blocks[0].offset = 0;
alloc->free_blocks[0].size = SIZE_MAX/2; // restrict maximum size of a measure allocator to half size_t max to avoid overflows
alloc->max_size = 0;
#ifdef GGML_ALLOCATOR_DEBUG
for (int i = 0; i < 1024; i++) {
alloc->allocated_tensors[i].tensor = NULL;
}
#endif
}
static struct ggml_dyn_tallocr * ggml_dyn_tallocr_new(size_t alignment) {

2
llama/ggml-alloc.h vendored
View File

@@ -1,5 +1,5 @@
/**
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
* llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
*
* MIT License
*

View File

@@ -1,5 +1,5 @@
/**
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
* llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
*
* MIT License
*
@@ -64,15 +64,16 @@ extern "C" {
typedef void * ggml_backend_buffer_context_t;
struct ggml_backend_buffer_i {
const char * (*GGML_CALL get_name) (ggml_backend_buffer_t buffer);
void (*GGML_CALL free_buffer)(ggml_backend_buffer_t buffer);
void * (*GGML_CALL get_base) (ggml_backend_buffer_t buffer);
void (*GGML_CALL init_tensor)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
void (*GGML_CALL set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
void (*GGML_CALL get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
bool (*GGML_CALL cpy_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst); // dst is in the buffer, src may be in any buffer
void (*GGML_CALL clear) (ggml_backend_buffer_t buffer, uint8_t value);
void (*GGML_CALL reset) (ggml_backend_buffer_t buffer); // reset any internal state due to tensor initialization, such as tensor extras
const char * (*GGML_CALL get_name) (ggml_backend_buffer_t buffer);
void (*GGML_CALL free_buffer) (ggml_backend_buffer_t buffer);
void * (*GGML_CALL get_base) (ggml_backend_buffer_t buffer);
void (*GGML_CALL init_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
void (*GGML_CALL memset_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size);
void (*GGML_CALL set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
void (*GGML_CALL get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
bool (*GGML_CALL cpy_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst); // dst is in the buffer, src may be in any buffer
void (*GGML_CALL clear) (ggml_backend_buffer_t buffer, uint8_t value);
void (*GGML_CALL reset) (ggml_backend_buffer_t buffer); // reset any internal state due to tensor initialization, such as tensor extras
};
struct ggml_backend_buffer {

41
llama/ggml-backend.c vendored
View File

@@ -1,5 +1,5 @@
/**
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
* llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
*
* MIT License
*
@@ -277,6 +277,22 @@ GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void *
buf->iface.get_tensor(buf, tensor, data, offset, size);
}
GGML_API GGML_CALL void ggml_backend_tensor_memset(struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
GGML_ASSERT(buf != NULL && "tensor buffer not set");
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
if (!size) {
return;
}
GGML_ASSERT(buf->iface.memset_tensor != NULL && "memset not supported by backend buffer");
buf->iface.memset_tensor(buf, tensor, value, offset, size);
}
void ggml_backend_synchronize(ggml_backend_t backend) {
if (backend->iface.synchronize == NULL) {
return;
@@ -600,6 +616,12 @@ GGML_CALL static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t
free(buffer->context);
}
GGML_CALL static void ggml_backend_cpu_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
memset((char *)tensor->data + offset, value, size);
GGML_UNUSED(buffer);
}
GGML_CALL static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
memcpy((char *)tensor->data + offset, data, size);
@@ -631,6 +653,7 @@ static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
/* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
/* .get_base = */ ggml_backend_cpu_buffer_get_base,
/* .init_tensor = */ NULL, // no initialization required
/* .memset_tensor = */ ggml_backend_cpu_buffer_memset_tensor,
/* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
/* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
@@ -644,6 +667,7 @@ static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
/* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
/* .get_base = */ ggml_backend_cpu_buffer_get_base,
/* .init_tensor = */ NULL, // no initialization required
/* .memset_tensor = */ ggml_backend_cpu_buffer_memset_tensor,
/* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
/* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
@@ -858,6 +882,10 @@ GGML_CALL static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const
op->type != GGML_TYPE_IQ1_M; // missing type_traits.from_float
case GGML_OP_MUL_MAT:
return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_internal_get_type_traits(op->src[0]->type).vec_dot_type;
case GGML_OP_ROPE_BACK:
return op->src[2] == NULL && (op->op_params[2] & 4) == 0;
case GGML_OP_IM2COL_BACK:
return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32;
default:
return true;
}
@@ -1007,6 +1035,7 @@ static struct ggml_backend_buffer_i ggml_backend_multi_buffer_context_interface(
/* .free_buffer = */ ggml_backend_multi_buffer_free_buffer,
/* .get_base = */ NULL,
/* .init_tensor = */ NULL,
/* .memset_tensor = */ NULL,
/* .set_tensor = */ NULL,
/* .get_tensor = */ NULL,
/* .cpy_tensor = */ NULL,
@@ -1196,6 +1225,11 @@ static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, st
}
}
if (tensor->buffer || (tensor->view_src && tensor->view_src->buffer)) {
// since the tensor is pre-allocated, it cannot be moved to another backend
GGML_ABORT("pre-allocated tensor in a backend that cannot run the operation");
}
// graph input
if (tensor->flags & GGML_TENSOR_FLAG_INPUT) {
cur_backend_id = sched->n_backends - 1; // last backend (assumed CPU)
@@ -1675,7 +1709,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
sched->prev_leaf_backend_ids = tmp;
}
int graph_size = graph->n_nodes + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2;
int graph_size = MAX(graph->n_nodes, graph->n_leafs) + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sched->n_copies;
if (sched->graph.size < graph_size) {
sched->graph.size = graph_size;
sched->graph.nodes = realloc(sched->graph.nodes, graph_size * sizeof(struct ggml_tensor *));
@@ -1727,6 +1761,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
for (int c = 0; c < sched->n_copies; c++) {
struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c);
sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
assert(graph_copy->size > graph_copy->n_leafs);
graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
}
}
@@ -1740,6 +1775,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
for (int c = 0; c < sched->n_copies; c++) {
struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c);
sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
assert(graph_copy->size > graph_copy->n_leafs);
graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
}
}
@@ -1750,6 +1786,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
for (int i = 0; i < graph->n_leafs; i++) {
struct ggml_tensor * leaf = graph->leafs[i];
sched->leaf_backend_ids[graph_copy->n_leafs] = tensor_backend_id(leaf);
assert(graph_copy->size > graph_copy->n_leafs);
graph_copy->leafs[graph_copy->n_leafs++] = leaf;
}
}

View File

@@ -1,5 +1,5 @@
/**
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
* llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
*
* MIT License
*
@@ -92,6 +92,7 @@ extern "C" {
// "offset" refers to the offset of the tensor data for setting/getting data
GGML_API GGML_CALL void ggml_backend_tensor_set( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
GGML_API GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
GGML_API GGML_CALL void ggml_backend_tensor_memset( struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size);
GGML_API void ggml_backend_synchronize(ggml_backend_t backend);
@@ -148,7 +149,7 @@ extern "C" {
// The backend registry is a registry of all the available backends, and allows initializing backends in a generic way
GGML_API size_t ggml_backend_reg_get_count(void);
GGML_API size_t ggml_backend_reg_find_by_name(const char * name);
GGML_API size_t ggml_backend_reg_find_by_name(const char * name); // returns index of backend with name, or SIZE_MAX if not found
GGML_API ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str); // str is backend_name:params (params is optional)
GGML_API const char * ggml_backend_reg_get_name(size_t i);
GGML_API ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params); // params is backend-specific

3
llama/ggml-blas.cpp vendored
View File

@@ -1,5 +1,5 @@
/**
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
* llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
*
* MIT License
*
@@ -26,6 +26,7 @@
#ifdef GGML_USE_BLAS
#include "ggml-impl.h"
#include "ggml-blas.h"
#include "ggml-backend-impl.h"

2
llama/ggml-blas.h vendored
View File

@@ -1,5 +1,5 @@
/**
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
* llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
*
* MIT License
*

22
llama/ggml-common.h vendored
View File

@@ -1,5 +1,5 @@
/**
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
* llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
*
* MIT License
*
@@ -253,6 +253,25 @@ typedef struct {
} block_q8_0x8;
static_assert(sizeof(block_q8_0x8) == 8 * sizeof(ggml_half) + QK8_0 * 8, "wrong q8_0x8 block size/padding");
//
// Ternary quantization
//
// 1.6875 bpw
typedef struct {
uint8_t qs[(QK_K - 4 * QK_K / 64) / 5]; // 5 elements per byte (3^5 = 243 < 256)
uint8_t qh[QK_K/64]; // 4 elements per byte
ggml_half d;
} block_tq1_0;
static_assert(sizeof(block_tq1_0) == sizeof(ggml_half) + QK_K / 64 + (QK_K - 4 * QK_K / 64) / 5, "wrong tq1_0 block size/padding");
// 2.0625 bpw
typedef struct {
uint8_t qs[QK_K/4]; // 2 bits per element
ggml_half d;
} block_tq2_0;
static_assert(sizeof(block_tq2_0) == sizeof(ggml_half) + QK_K / 4, "wrong tq2_0 block size/padding");
//
// Super-block quantization structures
//
@@ -387,6 +406,7 @@ typedef struct {
} block_iq3_s;
static_assert(sizeof(block_iq3_s) == sizeof(ggml_half) + 13*(QK_K/32) + IQ3S_N_SCALE, "wrong iq3_s block size/padding");
// 1.5625 bpw
typedef struct {
ggml_half d;
uint8_t qs[QK_K/8];

640
llama/ggml-cpu-impl.h vendored Normal file
View File

@@ -0,0 +1,640 @@
/**
* llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
*
* MIT License
*
* Copyright (c) 2023-2024 The ggml authors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#pragma once
// GGML CPU internal header
#include "ggml.h"
#include "ggml-impl.h"
#include <stdlib.h> // load `stdlib.h` before other headers to work around MinGW bug: https://sourceforge.net/p/mingw-w64/bugs/192/
//#include <stddef.h>
#include <stdbool.h>
#include <string.h> // memcpy
#include <math.h> // fabsf
#ifdef __cplusplus
extern "C" {
#endif
#if defined(_MSC_VER)
#define m512bh(p) p
#define m512i(p) p
#else
#define m512bh(p) (__m512bh)(p)
#define m512i(p) (__m512i)(p)
#endif
/**
* Converts brain16 to float32.
*
* The bfloat16 floating point format has the following structure:
*
* ┌sign
* │
* │ ┌exponent
* │ │
* │ │ ┌mantissa
* │ │ │
* │┌──┴───┐┌─┴───┐
* 0b0000000000000000 brain16
*
* Since bf16 has the same number of exponent bits as a 32bit float,
* encoding and decoding numbers becomes relatively straightforward.
*
* ┌sign
* │
* │ ┌exponent
* │ │
* │ │ ┌mantissa
* │ │ │
* │┌──┴───┐┌─┴───────────────────┐
* 0b00000000000000000000000000000000 IEEE binary32
*
* For comparison, the standard fp16 format has fewer exponent bits.
*
* ┌sign
* │
* │ ┌exponent
* │ │
* │ │ ┌mantissa
* │ │ │
* │┌─┴─┐┌─┴──────┐
* 0b0000000000000000 IEEE binary16
*
* @see IEEE 754-2008
*/
static inline float ggml_compute_bf16_to_fp32(ggml_bf16_t h) {
union {
float f;
uint32_t i;
} u;
u.i = (uint32_t)h.bits << 16;
return u.f;
}
/**
* Converts float32 to brain16.
*
* This is binary identical with Google Brain float conversion.
* Floats shall round to nearest even, and NANs shall be quiet.
* Subnormals aren't flushed to zero, except perhaps when used.
* This code should vectorize nicely if using modern compilers.
*/
static inline ggml_bf16_t ggml_compute_fp32_to_bf16(float s) {
ggml_bf16_t h;
union {
float f;
uint32_t i;
} u;
u.f = s;
if ((u.i & 0x7fffffff) > 0x7f800000) { /* nan */
h.bits = (u.i >> 16) | 64; /* force to quiet */
return h;
}
h.bits = (u.i + (0x7fff + ((u.i >> 16) & 1))) >> 16;
return h;
}
#define GGML_FP32_TO_BF16(x) ggml_compute_fp32_to_bf16(x)
#define GGML_BF16_TO_FP32(x) ggml_compute_bf16_to_fp32(x)
// __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
#if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
#ifndef __FMA__
#define __FMA__
#endif
#ifndef __F16C__
#define __F16C__
#endif
#endif
// __SSE3__ and __SSSE3__ are not defined in MSVC, but SSE3/SSSE3 are present when AVX/AVX2/AVX512 are available
#if defined(_MSC_VER) && (defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__))
#ifndef __SSE3__
#define __SSE3__
#endif
#ifndef __SSSE3__
#define __SSSE3__
#endif
#endif
#if defined(__ARM_FEATURE_SVE)
#include <arm_sve.h>
#include <sys/prctl.h>
#endif
// 16-bit float
// on Arm, we use __fp16
// on x86, we use uint16_t
#if defined(__ARM_NEON)
// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
//
// $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
//
#include <arm_neon.h>
#ifdef _MSC_VER
typedef uint16_t ggml_fp16_internal_t;
#define ggml_vld1q_u32(w,x,y,z) { ((w) + ((uint64_t)(x) << 32)), ((y) + ((uint64_t)(z) << 32)) }
#else
typedef __fp16 ggml_fp16_internal_t;
#define ggml_vld1q_u32(w,x,y,z) { (w), (x), (y), (z) }
#endif // _MSC_VER
#if !defined(__aarch64__)
// 32-bit ARM compatibility
// vaddlvq_s16
// vpaddq_s16
// vpaddq_s32
// vaddvq_s32
// vaddvq_f32
// vmaxvq_f32
// vcvtnq_s32_f32
// vzip1_u8
// vzip2_u8
inline static int32_t vaddlvq_s16(int16x8_t v) {
int32x4_t v0 = vreinterpretq_s32_s64(vpaddlq_s32(vpaddlq_s16(v)));
return vgetq_lane_s32(v0, 0) + vgetq_lane_s32(v0, 2);
}
inline static int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) {
int16x4_t a0 = vpadd_s16(vget_low_s16(a), vget_high_s16(a));
int16x4_t b0 = vpadd_s16(vget_low_s16(b), vget_high_s16(b));
return vcombine_s16(a0, b0);
}
inline static int32x4_t vpaddq_s32(int32x4_t a, int32x4_t b) {
int32x2_t a0 = vpadd_s32(vget_low_s32(a), vget_high_s32(a));
int32x2_t b0 = vpadd_s32(vget_low_s32(b), vget_high_s32(b));
return vcombine_s32(a0, b0);
}
inline static int32_t vaddvq_s32(int32x4_t v) {
return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
}
inline static float vaddvq_f32(float32x4_t v) {
return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
}
inline static float vmaxvq_f32(float32x4_t v) {
return
MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
}
inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
int32x4_t res;
res[0] = roundf(vgetq_lane_f32(v, 0));
res[1] = roundf(vgetq_lane_f32(v, 1));
res[2] = roundf(vgetq_lane_f32(v, 2));
res[3] = roundf(vgetq_lane_f32(v, 3));
return res;
}
inline static uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
uint8x8_t res;
res[0] = a[0]; res[1] = b[0];
res[2] = a[1]; res[3] = b[1];
res[4] = a[2]; res[5] = b[2];
res[6] = a[3]; res[7] = b[3];
return res;
}
inline static uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
uint8x8_t res;
res[0] = a[4]; res[1] = b[4];
res[2] = a[5]; res[3] = b[5];
res[4] = a[6]; res[5] = b[6];
res[6] = a[7]; res[7] = b[7];
return res;
}
// vld1q_s16_x2
// vld1q_u8_x2
// vld1q_u8_x4
// vld1q_s8_x2
// vld1q_s8_x4
// TODO: double-check these work correctly
typedef struct ggml_int16x8x2_t {
int16x8_t val[2];
} ggml_int16x8x2_t;
inline static ggml_int16x8x2_t ggml_vld1q_s16_x2(const int16_t * ptr) {
ggml_int16x8x2_t res;
res.val[0] = vld1q_s16(ptr + 0);
res.val[1] = vld1q_s16(ptr + 8);
return res;
}
typedef struct ggml_uint8x16x2_t {
uint8x16_t val[2];
} ggml_uint8x16x2_t;
inline static ggml_uint8x16x2_t ggml_vld1q_u8_x2(const uint8_t * ptr) {
ggml_uint8x16x2_t res;
res.val[0] = vld1q_u8(ptr + 0);
res.val[1] = vld1q_u8(ptr + 16);
return res;
}
typedef struct ggml_uint8x16x4_t {
uint8x16_t val[4];
} ggml_uint8x16x4_t;
inline static ggml_uint8x16x4_t ggml_vld1q_u8_x4(const uint8_t * ptr) {
ggml_uint8x16x4_t res;
res.val[0] = vld1q_u8(ptr + 0);
res.val[1] = vld1q_u8(ptr + 16);
res.val[2] = vld1q_u8(ptr + 32);
res.val[3] = vld1q_u8(ptr + 48);
return res;
}
typedef struct ggml_int8x16x2_t {
int8x16_t val[2];
} ggml_int8x16x2_t;
inline static ggml_int8x16x2_t ggml_vld1q_s8_x2(const int8_t * ptr) {
ggml_int8x16x2_t res;
res.val[0] = vld1q_s8(ptr + 0);
res.val[1] = vld1q_s8(ptr + 16);
return res;
}
typedef struct ggml_int8x16x4_t {
int8x16_t val[4];
} ggml_int8x16x4_t;
inline static ggml_int8x16x4_t ggml_vld1q_s8_x4(const int8_t * ptr) {
ggml_int8x16x4_t res;
res.val[0] = vld1q_s8(ptr + 0);
res.val[1] = vld1q_s8(ptr + 16);
res.val[2] = vld1q_s8(ptr + 32);
res.val[3] = vld1q_s8(ptr + 48);
return res;
}
// NOTE: not tested
inline static int8x16_t ggml_vqtbl1q_s8(int8x16_t a, uint8x16_t b) {
int8x16_t res;
res[ 0] = a[b[ 0]];
res[ 1] = a[b[ 1]];
res[ 2] = a[b[ 2]];
res[ 3] = a[b[ 3]];
res[ 4] = a[b[ 4]];
res[ 5] = a[b[ 5]];
res[ 6] = a[b[ 6]];
res[ 7] = a[b[ 7]];
res[ 8] = a[b[ 8]];
res[ 9] = a[b[ 9]];
res[10] = a[b[10]];
res[11] = a[b[11]];
res[12] = a[b[12]];
res[13] = a[b[13]];
res[14] = a[b[14]];
res[15] = a[b[15]];
return res;
}
// NOTE: not tested
inline static uint8x16_t ggml_vqtbl1q_u8(uint8x16_t a, uint8x16_t b) {
uint8x16_t res;
res[ 0] = a[b[ 0]];
res[ 1] = a[b[ 1]];
res[ 2] = a[b[ 2]];
res[ 3] = a[b[ 3]];
res[ 4] = a[b[ 4]];
res[ 5] = a[b[ 5]];
res[ 6] = a[b[ 6]];
res[ 7] = a[b[ 7]];
res[ 8] = a[b[ 8]];
res[ 9] = a[b[ 9]];
res[10] = a[b[10]];
res[11] = a[b[11]];
res[12] = a[b[12]];
res[13] = a[b[13]];
res[14] = a[b[14]];
res[15] = a[b[15]];
return res;
}
#else
#define ggml_int16x8x2_t int16x8x2_t
#define ggml_uint8x16x2_t uint8x16x2_t
#define ggml_uint8x16x4_t uint8x16x4_t
#define ggml_int8x16x2_t int8x16x2_t
#define ggml_int8x16x4_t int8x16x4_t
#define ggml_vld1q_s16_x2 vld1q_s16_x2
#define ggml_vld1q_u8_x2 vld1q_u8_x2
#define ggml_vld1q_u8_x4 vld1q_u8_x4
#define ggml_vld1q_s8_x2 vld1q_s8_x2
#define ggml_vld1q_s8_x4 vld1q_s8_x4
#define ggml_vqtbl1q_s8 vqtbl1q_s8
#define ggml_vqtbl1q_u8 vqtbl1q_u8
#endif // !defined(__aarch64__)
#if !defined(__ARM_FEATURE_DOTPROD)
inline static int32x4_t ggml_vdotq_s32(int32x4_t acc, int8x16_t a, int8x16_t b) {
const int16x8_t p0 = vmull_s8(vget_low_s8 (a), vget_low_s8 (b));
const int16x8_t p1 = vmull_s8(vget_high_s8(a), vget_high_s8(b));
return vaddq_s32(acc, vaddq_s32(vpaddlq_s16(p0), vpaddlq_s16(p1)));
}
#else
#define ggml_vdotq_s32(a, b, c) vdotq_s32(a, b, c)
#endif // !defined(__ARM_FEATURE_DOTPROD)
#endif // defined(__ARM_NEON)
#if defined(__ARM_NEON) && !defined(_MSC_VER)
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
#define GGML_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
ggml_fp16_internal_t tmp;
memcpy(&tmp, &h, sizeof(ggml_fp16_t));
return (float)tmp;
}
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
ggml_fp16_t res;
ggml_fp16_internal_t tmp = f;
memcpy(&res, &tmp, sizeof(ggml_fp16_t));
return res;
}
#else
#ifdef __wasm_simd128__
#include <wasm_simd128.h>
#else
#ifdef __POWER9_VECTOR__
#include <altivec.h>
#undef bool
#define bool _Bool
#else
#if defined(_MSC_VER) || defined(__MINGW32__)
#include <intrin.h>
#else
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__) || defined(__SSE__)
#if !defined(__riscv)
#include <immintrin.h>
#endif
#endif
#endif
#endif
#endif
#ifdef __riscv_v_intrinsic
#include <riscv_vector.h>
#endif
#if defined(__loongarch64)
#if defined(__loongarch_asx)
#include <lasxintrin.h>
#endif
#if defined(__loongarch_sx)
#include <lsxintrin.h>
#endif
#endif
#if defined(__loongarch_asx)
typedef union {
int32_t i;
float f;
} ft_union;
/* float type data load instructions */
static __m128 __lsx_vreplfr2vr_s(float val) {
ft_union fi_tmpval = {.f = val};
return (__m128)__lsx_vreplgr2vr_w(fi_tmpval.i);
}
static __m256 __lasx_xvreplfr2vr_s(float val) {
ft_union fi_tmpval = {.f = val};
return (__m256)__lasx_xvreplgr2vr_w(fi_tmpval.i);
}
#endif
#ifdef __F16C__
#ifdef _MSC_VER
#define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
#define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
#else
#define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
#endif
#elif defined(__POWER9_VECTOR__)
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
/* the inline asm below is about 12% faster than the lookup method */
#define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
register float f;
register double d;
__asm__(
"mtfprd %0,%2\n"
"xscvhpdp %0,%0\n"
"frsp %1,%0\n" :
/* temp */ "=d"(d),
/* out */ "=f"(f):
/* in */ "r"(h));
return f;
}
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
register double d;
register ggml_fp16_t r;
__asm__( /* xscvdphp can work on double or single precision */
"xscvdphp %0,%2\n"
"mffprd %1,%0\n" :
/* temp */ "=d"(d),
/* out */ "=r"(r):
/* in */ "f"(f));
return r;
}
#else
// FP16 <-> FP32
// ref: https://github.com/Maratyszcza/FP16
static inline float fp32_from_bits(uint32_t w) {
union {
uint32_t as_bits;
float as_value;
} fp32;
fp32.as_bits = w;
return fp32.as_value;
}
static inline uint32_t fp32_to_bits(float f) {
union {
float as_value;
uint32_t as_bits;
} fp32;
fp32.as_value = f;
return fp32.as_bits;
}
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
const uint32_t w = (uint32_t) h << 16;
const uint32_t sign = w & UINT32_C(0x80000000);
const uint32_t two_w = w + w;
const uint32_t exp_offset = UINT32_C(0xE0) << 23;
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
const float exp_scale = 0x1.0p-112f;
#else
const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
#endif
const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
const uint32_t magic_mask = UINT32_C(126) << 23;
const float magic_bias = 0.5f;
const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
const uint32_t result = sign |
(two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
return fp32_from_bits(result);
}
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
const float scale_to_inf = 0x1.0p+112f;
const float scale_to_zero = 0x1.0p-110f;
#else
const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
#endif
float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
const uint32_t w = fp32_to_bits(f);
const uint32_t shl1_w = w + w;
const uint32_t sign = w & UINT32_C(0x80000000);
uint32_t bias = shl1_w & UINT32_C(0xFF000000);
if (bias < UINT32_C(0x71000000)) {
bias = UINT32_C(0x71000000);
}
base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
const uint32_t bits = fp32_to_bits(base);
const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
const uint32_t nonsign = exp_bits + mantissa_bits;
return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
}
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
#endif // __F16C__
#endif // defined(__ARM_NEON) && (!defined(__MSC_VER)
#ifdef __ARM_FEATURE_SVE
#include <arm_sve.h>
#endif // __ARM_FEATURE_SVE
// precomputed f32 table for f16 (256 KB)
// defined in ggml.c, initialized in ggml_init()
extern float ggml_table_f32_f16[1 << 16];
// On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
// so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
// This is also true for POWER9.
#if !defined(GGML_FP16_TO_FP32)
inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
uint16_t s;
memcpy(&s, &f, sizeof(uint16_t));
return ggml_table_f32_f16[s];
}
#define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
#endif
#if !defined(GGML_FP32_TO_FP16)
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
#endif
#ifdef __cplusplus
}
#endif

151
llama/ggml-cuda.cu vendored
View File

@@ -1,5 +1,5 @@
/**
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
* llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
*
* MIT License
*
@@ -25,7 +25,7 @@
*/
#include "ggml-cuda.h"
#include "ggml.h"
#include "ggml-impl.h"
#include "ggml-backend-impl.h"
#include "ggml-cuda/common.cuh"
@@ -47,16 +47,20 @@
#include "ggml-cuda/mmq.cuh"
#include "ggml-cuda/mmvq.cuh"
#include "ggml-cuda/norm.cuh"
#include "ggml-cuda/opt-step-adamw.cuh"
#include "ggml-cuda/out-prod.cuh"
#include "ggml-cuda/pad.cuh"
#include "ggml-cuda/pool2d.cuh"
#include "ggml-cuda/quantize.cuh"
#include "ggml-cuda/rope.cuh"
#include "ggml-cuda/scale.cuh"
#include "ggml-cuda/softmax.cuh"
#include "ggml-cuda/sum.cuh"
#include "ggml-cuda/sumrows.cuh"
#include "ggml-cuda/tsembd.cuh"
#include "ggml-cuda/unary.cuh"
#include "ggml-cuda/upscale.cuh"
#include "ggml-cuda/rwkv-wkv.cuh"
#include <algorithm>
#include <array>
@@ -158,7 +162,7 @@ static cudaError_t ggml_cuda_device_malloc(void ** ptr, size_t size, int device)
return res;
#else
#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA)
#if !defined(GGML_USE_HIPBLAS)
cudaError_t err;
if (getenv("GGML_CUDA_ENABLE_UNIFIED_MEMORY") != nullptr)
{
@@ -171,7 +175,7 @@ static cudaError_t ggml_cuda_device_malloc(void ** ptr, size_t size, int device)
return err;
#else
return cudaMalloc(ptr, size);
#endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA)
#endif // !defined(GGML_USE_HIPBLAS)
#endif
}
@@ -209,7 +213,7 @@ static ggml_cuda_device_info ggml_cuda_init() {
for (int id = 0; id < info.device_count; ++id) {
int device_vmm = 0;
#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) && !defined(GGML_USE_MUSA)
#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM)
CUdevice device;
CU_CHECK(cuDeviceGet(&device, id));
CU_CHECK(cuDeviceGetAttribute(&device_vmm, CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED, device));
@@ -221,7 +225,7 @@ static ggml_cuda_device_info ggml_cuda_init() {
alloc_prop.location.id = id;
CU_CHECK(cuMemGetAllocationGranularity(&info.devices[id].vmm_granularity, &alloc_prop, CU_MEM_ALLOC_GRANULARITY_RECOMMENDED));
}
#endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) && !defined(GGML_USE_MUSA)
#endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM)
info.devices[id].vmm = !!device_vmm;
cudaDeviceProp prop;
@@ -357,7 +361,7 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
};
// pool with virtual memory
#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) && !defined(GGML_USE_MUSA)
#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM)
struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
static const size_t CUDA_POOL_VMM_MAX_SIZE = 1ull << 35; // 32 GB
@@ -451,14 +455,14 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
GGML_ASSERT(ptr == (void *) (pool_addr + pool_used));
}
};
#endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) && !defined(GGML_USE_MUSA)
#endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM)
std::unique_ptr<ggml_cuda_pool> ggml_backend_cuda_context::new_pool_for_device(int device) {
#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) && !defined(GGML_USE_MUSA)
#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM)
if (ggml_cuda_info().devices[device].vmm) {
return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_vmm(device));
}
#endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) && !defined(GGML_USE_MUSA)
#endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM)
return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_leg(device));
}
@@ -522,6 +526,14 @@ GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t
}
}
GGML_CALL static void ggml_backend_cuda_buffer_memset_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
ggml_cuda_set_device(ctx->device);
CUDA_CHECK(cudaMemsetAsync((char *)tensor->data + offset, value, size, cudaStreamPerThread));
CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
}
GGML_CALL static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
@@ -573,6 +585,7 @@ static ggml_backend_buffer_i ggml_backend_cuda_buffer_interface = {
/* .free_buffer = */ ggml_backend_cuda_buffer_free_buffer,
/* .get_base = */ ggml_backend_cuda_buffer_get_base,
/* .init_tensor = */ ggml_backend_cuda_buffer_init_tensor,
/* .memset_tensor = */ ggml_backend_cuda_buffer_memset_tensor,
/* .set_tensor = */ ggml_backend_cuda_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_cuda_buffer_get_tensor,
/* .cpy_tensor = */ ggml_backend_cuda_buffer_cpy_tensor,
@@ -889,6 +902,7 @@ static struct ggml_backend_buffer_i ggml_backend_cuda_split_buffer_interface = {
/* .free_buffer = */ ggml_backend_cuda_split_buffer_free_buffer,
/* .get_base = */ ggml_backend_cuda_split_buffer_get_base,
/* .init_tensor = */ ggml_backend_cuda_split_buffer_init_tensor,
/* .memset_tensor = */ NULL,
/* .set_tensor = */ ggml_backend_cuda_split_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_cuda_split_buffer_get_tensor,
/* .cpy_tensor = */ NULL,
@@ -2197,6 +2211,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_REPEAT:
ggml_cuda_op_repeat(ctx, dst);
break;
case GGML_OP_REPEAT_BACK:
ggml_cuda_op_repeat_back(ctx, dst);
break;
case GGML_OP_GET_ROWS:
ggml_cuda_op_get_rows(ctx, dst);
break;
@@ -2210,6 +2227,7 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
ggml_cuda_dup(ctx, dst);
break;
case GGML_OP_ADD:
case GGML_OP_ADD1: // TODO: more efficient implementation
ggml_cuda_op_add(ctx, dst);
break;
case GGML_OP_SUB:
@@ -2226,6 +2244,12 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
break;
case GGML_OP_UNARY:
switch (ggml_get_unary_op(dst)) {
case GGML_UNARY_OP_NEG:
ggml_cuda_op_neg(ctx, dst);
break;
case GGML_UNARY_OP_STEP:
ggml_cuda_op_step(ctx, dst);
break;
case GGML_UNARY_OP_GELU:
ggml_cuda_op_gelu(ctx, dst);
break;
@@ -2250,6 +2274,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_UNARY_OP_HARDSWISH:
ggml_cuda_op_hardswish(ctx, dst);
break;
case GGML_UNARY_OP_EXP:
ggml_cuda_op_exp(ctx, dst);
break;
default:
return false;
}
@@ -2269,6 +2296,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_PAD:
ggml_cuda_op_pad(ctx, dst);
break;
case GGML_OP_UNPAD:
ggml_cuda_op_unpad(ctx, dst);
break;
case GGML_OP_ARANGE:
ggml_cuda_op_arange(ctx, dst);
break;
@@ -2292,6 +2322,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_MUL_MAT_ID:
ggml_cuda_mul_mat_id(ctx, dst);
break;
case GGML_OP_OUT_PROD:
ggml_cuda_out_prod(ctx, dst);
break;
case GGML_OP_SCALE:
ggml_cuda_op_scale(ctx, dst);
break;
@@ -2334,6 +2367,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_POOL_2D:
ggml_cuda_op_pool2d(ctx, dst);
break;
case GGML_OP_SUM:
ggml_cuda_op_sum(ctx, dst);
break;
case GGML_OP_SUM_ROWS:
ggml_cuda_op_sum_rows(ctx, dst);
break;
@@ -2348,6 +2384,15 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_CROSS_ENTROPY_LOSS:
ggml_cuda_cross_entropy_loss(ctx, dst);
break;
case GGML_OP_RWKV_WKV:
ggml_cuda_op_rwkv_wkv(ctx, dst);
break;
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
ggml_cuda_cross_entropy_loss_back(ctx, dst);
break;
case GGML_OP_OPT_STEP_ADAMW:
ggml_cuda_opt_step_adamw(ctx, dst);
break;
default:
return false;
}
@@ -2475,6 +2520,7 @@ static void set_ggml_graph_node_properties(ggml_tensor * node, ggml_graph_node_p
for (int i = 0; i < GGML_MAX_SRC; i++) {
graph_node_properties->src_address[i] = node->src[i] ? node->src[i]->data : nullptr;
}
memcpy(graph_node_properties->op_params, node->op_params, GGML_MAX_OP_PARAMS);
}
static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) {
@@ -2506,6 +2552,12 @@ static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_gra
return false;
}
}
if (node->op == GGML_OP_SCALE &&
memcmp(graph_node_properties->op_params, node->op_params, GGML_MAX_OP_PARAMS) != 0) {
return false;
}
return true;
}
@@ -2576,7 +2628,11 @@ GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_tensor * node = cgraph->nodes[i];
if (node->src[0] && ggml_backend_buffer_is_cuda_split(node->src[0]->buffer)) {
if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
continue;
}
if (node->src[0] && node->src[0]->buffer && ggml_backend_buffer_is_cuda_split(node->src[0]->buffer)) {
use_cuda_graph = false; // Split buffers are not supported by CUDA graph capture
#ifndef NDEBUG
GGML_CUDA_LOG_WARN("%s: disabling CUDA graphs due to split buffer\n", __func__);
@@ -2604,8 +2660,15 @@ GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t
cuda_ctx->cuda_graph->updated_kernel_arg.push_back((char **) &(node->src[1]->data));
// store a pointer to each copy op CUDA kernel to identify it later
void * ptr = ggml_cuda_cpy_fn(node->src[0], node->src[1]);
if (std::find(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), ptr) == ggml_cuda_cpy_fn_ptrs.end()) {
ggml_cuda_cpy_fn_ptrs.push_back(ptr);
if (!ptr) {
use_cuda_graph = false;
#ifndef NDEBUG
GGML_CUDA_LOG_WARN("%s: disabling CUDA graphs due to unsupported copy op\n", __func__);
#endif
} else {
if (std::find(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), ptr) == ggml_cuda_cpy_fn_ptrs.end()) {
ggml_cuda_cpy_fn_ptrs.push_back(ptr);
}
}
}
@@ -2706,7 +2769,9 @@ GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t
// First call with null argument gets number of nodes in graph
CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, nullptr, &cuda_ctx->cuda_graph->num_nodes));
// Subsequent call with non-null argument gets nodes
cuda_ctx->cuda_graph->nodes.clear();
cuda_ctx->cuda_graph->nodes.resize(cuda_ctx->cuda_graph->num_nodes);
cuda_ctx->cuda_graph->params.clear();
cuda_ctx->cuda_graph->params.resize(cuda_ctx->cuda_graph->num_nodes);
if (cuda_ctx->cuda_graph->num_nodes > 0) {
CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, cuda_ctx->cuda_graph->nodes.data(), &cuda_ctx->cuda_graph->num_nodes));
@@ -2773,6 +2838,8 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
switch (op->op) {
case GGML_OP_UNARY:
switch (ggml_get_unary_op(op)) {
case GGML_UNARY_OP_NEG:
case GGML_UNARY_OP_STEP:
case GGML_UNARY_OP_GELU:
case GGML_UNARY_OP_SILU:
case GGML_UNARY_OP_RELU:
@@ -2781,6 +2848,7 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
case GGML_UNARY_OP_HARDSWISH:
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_TANH:
case GGML_UNARY_OP_EXP:
return ggml_is_contiguous(op->src[0]);
default:
return false;
@@ -2797,6 +2865,12 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
if (op->op == GGML_OP_MUL_MAT && a->ne[3] != b->ne[3]) {
return false;
}
#ifdef GGML_USE_MUSA
if (b->type == GGML_TYPE_F16 && b->ne[2]*b->ne[3] > 1 &&
!ggml_is_transposed(a) && !ggml_is_transposed(b)) {
return false;
}
#endif // GGML_USE_MUSA
switch (a->type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
@@ -2820,11 +2894,18 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
#ifdef GGML_USE_MUSA
if (a->type == GGML_TYPE_Q3_K) {
return false;
}
#endif // GGML_USE_MUSA
return true;
default:
return false;
}
} break;
case GGML_OP_OUT_PROD:
return op->type == GGML_TYPE_F32 && op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->ne[2] == 1 && op->ne[3] == 1;
case GGML_OP_GET_ROWS:
{
switch (op->src[0]->type) {
@@ -2853,6 +2934,9 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q8_0) {
return true;
}
if (src0_type == GGML_TYPE_Q8_0 && src1_type == GGML_TYPE_F32) {
return true;
}
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_0) {
return true;
}
@@ -2874,10 +2958,19 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
return true;
}
if (src0_type == src1_type && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1])) {
return true;
}
return false;
} break;
case GGML_OP_DUP:
case GGML_OP_REPEAT:
{
ggml_type src0_type = op->src[0]->type;
return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16;
} break;
case GGML_OP_REPEAT_BACK:
return op->type == GGML_TYPE_F32 && op->src[0]->ne[3] == 1;
case GGML_OP_CONCAT:
{
ggml_type src0_type = op->src[0]->type;
@@ -2899,6 +2992,7 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
case GGML_OP_TRANSPOSE:
case GGML_OP_NORM:
case GGML_OP_ADD:
case GGML_OP_ADD1:
case GGML_OP_SUB:
case GGML_OP_MUL:
case GGML_OP_DIV:
@@ -2909,39 +3003,50 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
case GGML_OP_SIN:
case GGML_OP_COS:
case GGML_OP_CLAMP:
return true;
case GGML_OP_CONT:
return op->src[0]->type != GGML_TYPE_BF16;
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_SOFT_MAX:
return true;
case GGML_OP_ROPE:
return ggml_is_contiguous(op->src[0]);
case GGML_OP_IM2COL:
return op->src[0]->type == GGML_TYPE_F16;
case GGML_OP_POOL_2D:
case GGML_OP_SUM:
case GGML_OP_SUM_ROWS:
case GGML_OP_ARGSORT:
case GGML_OP_ACC:
case GGML_OP_GROUP_NORM:
case GGML_OP_UPSCALE:
case GGML_OP_PAD:
case GGML_OP_UNPAD:
case GGML_OP_ARANGE:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_LEAKY_RELU:
case GGML_OP_RWKV_WKV:
return true;
case GGML_OP_FLASH_ATTN_EXT:
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
return (op->src[0]->ne[0] == 64 && op->src[1]->type == GGML_TYPE_F16) || op->src[0]->ne[0] == 128;
#else
if (op->src[0]->ne[0] == 128) {
return true;
}
case GGML_OP_FLASH_ATTN_EXT: {
#ifndef FLASH_ATTN_AVAILABLE
return false;
#endif
if (op->src[0]->ne[0] == 64 && op->src[1]->type == GGML_TYPE_F16) {
return true;
}
return ggml_cuda_info().devices[cuda_ctx->device].cc >= CC_VOLTA &&
op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16;
if (op->src[0]->ne[0] == 128) {
return true;
}
if (op->src[0]->ne[0] == 256 && op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16) {
return true;
}
const int cc = ggml_cuda_info().devices[cuda_ctx->device].cc;
return cc >= CC_VOLTA && cc < CC_OFFSET_AMD && op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16;
}
case GGML_OP_CROSS_ENTROPY_LOSS:
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
case GGML_OP_OPT_STEP_ADAMW:
return true;
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
default:
return false;
}

2
llama/ggml-cuda.h vendored
View File

@@ -1,5 +1,5 @@
/**
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
* llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
*
* MIT License
*

Some files were not shown because too many files have changed in this diff Show More