Compare commits
447 Commits
Author | SHA1 | Date | |
---|---|---|---|
![]() |
7a01ad7614 | ||
![]() |
55ab9f371a | ||
![]() |
fefbf8f74b | ||
![]() |
b428ddd796 | ||
![]() |
ba7d31240e | ||
![]() |
d25efe3954 | ||
![]() |
36dfb906bb | ||
![]() |
a6f0f908b9 | ||
![]() |
3b1ddb2b3a | ||
![]() |
1579c4f06d | ||
![]() |
3519dd1c6e | ||
![]() |
e41c4cbea7 | ||
![]() |
ee048b76d4 | ||
![]() |
af68d60a58 | ||
![]() |
21aa666a1e | ||
![]() |
ee141cc821 | ||
![]() |
55e5776c44 | ||
![]() |
854a9195f3 | ||
![]() |
96a97adf9b | ||
![]() |
e75c6126e9 | ||
![]() |
cda6f5c66c | ||
![]() |
bebb6823c0 | ||
![]() |
31e472baa4 | ||
![]() |
657685e85d | ||
![]() |
a14912858e | ||
![]() |
eed11ded30 | ||
![]() |
b42aba40ed | ||
![]() |
25885e5335 | ||
![]() |
98d44fa39d | ||
![]() |
2099e2d267 | ||
![]() |
0c1041ad85 | ||
![]() |
c245b0406f | ||
![]() |
8b194b7520 | ||
![]() |
3e8b8a1933 | ||
![]() |
41dc280491 | ||
![]() |
53d2990d9b | ||
![]() |
e185c08ad9 | ||
![]() |
2412adf42b | ||
![]() |
be2ac1ed93 | ||
![]() |
dc13813a03 | ||
![]() |
d6af13efed | ||
![]() |
a59f665235 | ||
![]() |
688925aca9 | ||
![]() |
76e903cf9d | ||
![]() |
a5272130c4 | ||
![]() |
d7d7e99662 | ||
![]() |
2db96c18e7 | ||
![]() |
e12af460ed | ||
![]() |
3ad4bc8afe | ||
![]() |
0d694793f2 | ||
![]() |
e91ae3d47d | ||
![]() |
6ecd7f64ba | ||
![]() |
888855675e | ||
![]() |
b16367b4b2 | ||
![]() |
a499390648 | ||
![]() |
4df98f3eb5 | ||
![]() |
348b3e0983 | ||
![]() |
0b7e1676eb | ||
![]() |
314573bfe8 | ||
![]() |
4604b10306 | ||
![]() |
8c13cfa4dd | ||
![]() |
7cfd4aee4d | ||
![]() |
68bac1e0a6 | ||
![]() |
f53f4198c3 | ||
![]() |
2192a28eed | ||
![]() |
5d81c1a184 | ||
![]() |
5c5535c064 | ||
![]() |
e5bcc51ae1 | ||
![]() |
bd6a7d5e64 | ||
![]() |
14b5a9a150 | ||
![]() |
ba9ec3d05e | ||
![]() |
7c168b08c9 | ||
![]() |
3d4cc7833c | ||
![]() |
351a85d9ea | ||
![]() |
bda4ef6c56 | ||
![]() |
1e438b237c | ||
![]() |
d721a02e7d | ||
![]() |
778603a818 | ||
![]() |
3c874df46e | ||
![]() |
d2eb226c91 | ||
![]() |
e13e7c8d94 | ||
![]() |
78f403ff45 | ||
![]() |
5f8c03189e | ||
![]() |
08a299e1d0 | ||
![]() |
7b5d916a9a | ||
![]() |
33ad61b112 | ||
![]() |
716e365615 | ||
![]() |
3b4424ff98 | ||
![]() |
f9c7ead160 | ||
![]() |
5930aaeb1a | ||
![]() |
faf67db089 | ||
![]() |
0667baddc6 | ||
![]() |
d006e1e09b | ||
![]() |
df2680b4b9 | ||
![]() |
010313bb63 | ||
![]() |
5296f487a8 | ||
![]() |
f05774b04c | ||
![]() |
6600bd7d91 | ||
![]() |
ed443a0393 | ||
![]() |
6945617af5 | ||
![]() |
7916f55009 | ||
![]() |
d650ad398f | ||
![]() |
d223f3b697 | ||
![]() |
60830695c2 | ||
![]() |
01d9a46854 | ||
![]() |
d773b7d671 | ||
![]() |
4d4463b2bd | ||
![]() |
0e38297f87 | ||
![]() |
7e13f568dc | ||
![]() |
58245413f4 | ||
![]() |
8cf16063a5 | ||
![]() |
3a4449e2f1 | ||
![]() |
10d59d5f90 | ||
![]() |
a4f69a0191 | ||
![]() |
82658c3eec | ||
![]() |
378d6e1e6a | ||
![]() |
afa55bc70c | ||
![]() |
49df03da9a | ||
![]() |
0189bdd0b7 | ||
![]() |
f4711da7bd | ||
![]() |
38117fba83 | ||
![]() |
1f766c36fb | ||
![]() |
484a99e428 | ||
![]() |
ec6121c331 | ||
![]() |
b86c0a1500 | ||
![]() |
7e402ebb8c | ||
![]() |
b901a712c6 | ||
![]() |
abb8dd57f8 | ||
![]() |
a400df48c0 | ||
![]() |
6ab4ba4c26 | ||
![]() |
e8d4eb3e68 | ||
![]() |
ae7e368f75 | ||
![]() |
31acd1ebf9 | ||
![]() |
9a4757ae66 | ||
![]() |
7814019708 | ||
![]() |
b698f9a0d8 | ||
![]() |
32285a6d19 | ||
![]() |
1c198977ec | ||
![]() |
330b6c50b0 | ||
![]() |
928911bc68 | ||
![]() |
5b446cc815 | ||
![]() |
451c1596af | ||
![]() |
932bded12f | ||
![]() |
070ad913ac | ||
![]() |
8d8b9f83ae | ||
![]() |
f00d359a67 | ||
![]() |
291def6adb | ||
![]() |
cd3fbf1c49 | ||
![]() |
c852b8e021 | ||
![]() |
d8932c55e7 | ||
![]() |
63f0269f7f | ||
![]() |
4759ecae19 | ||
![]() |
65b7ecac7b | ||
![]() |
f9d2d89135 | ||
![]() |
669dc31cf3 | ||
![]() |
d4d338c224 | ||
![]() |
bfdeffc375 | ||
![]() |
e806184023 | ||
![]() |
50566113ac | ||
![]() |
ad22ace439 | ||
![]() |
f4321a421c | ||
![]() |
475333d533 | ||
![]() |
39fd89308c | ||
![]() |
548a9f56a6 | ||
![]() |
3f0cb36bdb | ||
![]() |
bea1f1fac6 | ||
![]() |
5d75d837ef | ||
![]() |
711648c9bb | ||
![]() |
dcfb7a105c | ||
![]() |
2ef3c803a1 | ||
![]() |
453e4d090b | ||
![]() |
ca2f9843c8 | ||
![]() |
294b6f5a22 | ||
![]() |
7bb356c680 | ||
![]() |
021817e59a | ||
![]() |
a420a453b4 | ||
![]() |
42cf4db601 | ||
![]() |
93a8daf285 | ||
![]() |
a041b4df7c | ||
![]() |
2539f2dbf9 | ||
![]() |
61676fb506 | ||
![]() |
f6f3713001 | ||
![]() |
a30f347201 | ||
![]() |
74ea4fb604 | ||
![]() |
6982e9cc96 | ||
![]() |
ab39872cb4 | ||
![]() |
84a2314463 | ||
![]() |
17fcdea698 | ||
![]() |
32bd37adf8 | ||
![]() |
9446c2c902 | ||
![]() |
9aa141d023 | ||
![]() |
8bccae4f92 | ||
![]() |
6ae2adc1af | ||
![]() |
1deafd8254 | ||
![]() |
57f038ec7b | ||
![]() |
cdf3a181dc | ||
![]() |
3919f4ba3d | ||
![]() |
2d33c4e97d | ||
![]() |
29a8975c66 | ||
![]() |
86a622cbdc | ||
![]() |
459d822b51 | ||
![]() |
844899440a | ||
![]() |
103db4216d | ||
![]() |
6daddcde01 | ||
![]() |
07f7e69b36 | ||
![]() |
b68e8e5727 | ||
![]() |
369fb529e2 | ||
![]() |
023e4bca14 | ||
![]() |
51af455f62 | ||
![]() |
ffe3549064 | ||
![]() |
928de9050e | ||
![]() |
36aea6154a | ||
![]() |
dd352ab27f | ||
![]() |
cb40d60469 | ||
![]() |
d8bab8ea44 | ||
![]() |
9ab62eb96f | ||
![]() |
290cf2040a | ||
![]() |
a72f2dce45 | ||
![]() |
08a832b482 | ||
![]() |
2ddc32d5c5 | ||
![]() |
2cde4b8817 | ||
![]() |
87f0a49fe6 | ||
![]() |
0f06a6daa7 | ||
![]() |
8f805dd74b | ||
![]() |
89d5e2f2fd | ||
![]() |
297ada6c87 | ||
![]() |
8c9fb8eb73 | ||
![]() |
b75ccfc5ec | ||
![]() |
7a81daf026 | ||
![]() |
60f75560a2 | ||
![]() |
e28f2d4900 | ||
![]() |
c216850523 | ||
![]() |
18f6a98bd6 | ||
![]() |
b1fd7fef86 | ||
![]() |
36d111e788 | ||
![]() |
9039c821a2 | ||
![]() |
581a4a5553 | ||
![]() |
cf4d7c52c4 | ||
![]() |
6a6328a5e9 | ||
![]() |
527cc97899 | ||
![]() |
a37f4a86a7 | ||
![]() |
46f74e0cb5 | ||
![]() |
7622ea21af | ||
![]() |
c5d3947084 | ||
![]() |
757eeacc1b | ||
![]() |
dd42acf737 | ||
![]() |
b9ccb3741e | ||
![]() |
abfdc4710f | ||
![]() |
82a02e18d9 | ||
![]() |
4879a234c4 | ||
![]() |
63269668c0 | ||
![]() |
900f64e6be | ||
![]() |
da09488fbf | ||
![]() |
7f0ccc8a9d | ||
![]() |
de52b6c2f9 | ||
![]() |
acd7d03266 | ||
![]() |
f6e87fd628 | ||
![]() |
aed1419c64 | ||
![]() |
c6c526275d | ||
![]() |
630e7dc6ff | ||
![]() |
eb8366d658 | ||
![]() |
4456012956 | ||
![]() |
539be43640 | ||
![]() |
1bdab9fdb1 | ||
![]() |
2b82c5a8a1 | ||
![]() |
55c3efa900 | ||
![]() |
1aedffad93 | ||
![]() |
ff6c2d6dc8 | ||
![]() |
d543b282a7 | ||
![]() |
5f8051180e | ||
![]() |
39e29ae5dd | ||
![]() |
30a9f063c9 | ||
![]() |
ce7455a8e1 | ||
![]() |
e3936d4fb3 | ||
![]() |
940e62772e | ||
![]() |
71e6a0d0d1 | ||
![]() |
2cd11ae365 | ||
![]() |
52bbad12f9 | ||
![]() |
30e88d7f31 | ||
![]() |
2b7ed61ca2 | ||
![]() |
647513a7d4 | ||
![]() |
a210ec74d2 | ||
![]() |
cfb1ddd6fc | ||
![]() |
3987acd7ec | ||
![]() |
fda1e6b563 | ||
![]() |
3440ffb37b | ||
![]() |
a820d2b267 | ||
![]() |
2ebdb54fb3 | ||
![]() |
bb52abfa55 | ||
![]() |
31cb1ca9e5 | ||
![]() |
78f779a323 | ||
![]() |
3478b2cf14 | ||
![]() |
7b5585b9cb | ||
![]() |
f0a351810c | ||
![]() |
b85520bfb9 | ||
![]() |
d88972ea48 | ||
![]() |
25c9339e2d | ||
![]() |
597072ef1b | ||
![]() |
84b3e07f1b | ||
![]() |
422d52858c | ||
![]() |
723f285813 | ||
![]() |
eaaf5d309d | ||
![]() |
27d9c749d5 | ||
![]() |
b7bddeebc1 | ||
![]() |
6a0c2ec50f | ||
![]() |
baa41be2aa | ||
![]() |
2157b1232e | ||
![]() |
37711578a2 | ||
![]() |
fb2c9594e0 | ||
![]() |
7fbcd55da3 | ||
![]() |
b4348bdd25 | ||
![]() |
155734e09a | ||
![]() |
883d80e097 | ||
![]() |
e4c9f75b23 | ||
![]() |
f5ec7cc872 | ||
![]() |
811bafba82 | ||
![]() |
431075fcbb | ||
![]() |
c4f27225ac | ||
![]() |
b7aa5ee06c | ||
![]() |
3f87f71755 | ||
![]() |
20623cec13 | ||
![]() |
0e5f31a86d | ||
![]() |
7e92091751 | ||
![]() |
1a742f54c9 | ||
![]() |
6a89dcf848 | ||
![]() |
c5e238e8e5 | ||
![]() |
fce30f407a | ||
![]() |
d863298210 | ||
![]() |
c4b34f2a2a | ||
![]() |
c3ff916431 | ||
![]() |
3fc1dc0e6f | ||
![]() |
7121dfa309 | ||
![]() |
5f68fcab12 | ||
![]() |
ecf41eed05 | ||
![]() |
b8c66d3307 | ||
![]() |
303f4bc79e | ||
![]() |
d2a25206b1 | ||
![]() |
2f0a8c8778 | ||
![]() |
bfd30f4286 | ||
![]() |
0ef17ede89 | ||
![]() |
909a88c5c0 | ||
![]() |
f602ab4de4 | ||
![]() |
807ace5b1f | ||
![]() |
4b8a2e341a | ||
![]() |
e66c29261a | ||
![]() |
712d63c3f0 | ||
![]() |
6cdf27d154 | ||
![]() |
5c18e66384 | ||
![]() |
35096a7eff | ||
![]() |
81d55d3e4d | ||
![]() |
a14f76491d | ||
![]() |
760cfa27e5 | ||
![]() |
c9a5aca3da | ||
![]() |
d5da2ab7e8 | ||
![]() |
1c04117114 | ||
![]() |
8b4b243f5f | ||
![]() |
b42a596425 | ||
![]() |
4759d879f2 | ||
![]() |
d875e99e46 | ||
![]() |
8a35bb926e | ||
![]() |
a0ea067b63 | ||
![]() |
4efb98cb4f | ||
![]() |
0679d491fe | ||
![]() |
c25ffde91d | ||
![]() |
17b386a891 | ||
![]() |
549c2bdfcf | ||
![]() |
67691e410d | ||
![]() |
5b3393b6a2 | ||
![]() |
d7eb05b936 | ||
![]() |
636a743c2b | ||
![]() |
df011054fa | ||
![]() |
ac07160c8d | ||
![]() |
6606e4243c | ||
![]() |
65973ceb64 | ||
![]() |
bebef1e50d | ||
![]() |
d48c1c5a44 | ||
![]() |
36a8372b28 | ||
![]() |
4e94227b5d | ||
![]() |
479d551766 | ||
![]() |
76b2b723b2 | ||
![]() |
b8d77cdeab | ||
![]() |
c2e8cbaa14 | ||
![]() |
771fab1dd8 | ||
![]() |
3a5239e6bf | ||
![]() |
3d25e7bf8c | ||
![]() |
1618700c5a | ||
![]() |
b111aa5a91 | ||
![]() |
9e83e550e1 | ||
![]() |
fc2a0715df | ||
![]() |
3020d2dc58 | ||
![]() |
a909417602 | ||
![]() |
6cd566872b | ||
![]() |
9d71bcc3e2 | ||
![]() |
a4c70fe157 | ||
![]() |
34a75102f7 | ||
![]() |
4157d1f7b6 | ||
![]() |
4ebfa2cb91 | ||
![]() |
046054fa3b | ||
![]() |
95483f348b | ||
![]() |
f247a6233e | ||
![]() |
44bd9e5994 | ||
![]() |
18237be9b2 | ||
![]() |
29ab9fa7d7 | ||
![]() |
b8d5036e33 | ||
![]() |
312d9de1d1 | ||
![]() |
a103dae01e | ||
![]() |
d07cf41a97 | ||
![]() |
8c238e70ab | ||
![]() |
8a9bb0d000 | ||
![]() |
26acdcf44e | ||
![]() |
921779bb10 | ||
![]() |
16f4eabe2d | ||
![]() |
c826e57475 | ||
![]() |
712e99d477 | ||
![]() |
b754f5a6a3 | ||
![]() |
a805e5947e | ||
![]() |
91dfbb1bba | ||
![]() |
db1842b9e1 | ||
![]() |
c9ca386131 | ||
![]() |
078f666f73 | ||
![]() |
de1557a0dc | ||
![]() |
084929c293 | ||
![]() |
abd5dfd06a | ||
![]() |
099f7077a1 | ||
![]() |
d7c94e0ca6 | ||
![]() |
35ec7f079f | ||
![]() |
5231ae52d9 | ||
![]() |
3085c47bea | ||
![]() |
0ccc73251a | ||
![]() |
dc6fe82051 | ||
![]() |
d78fb62056 | ||
![]() |
5c44461ccf | ||
![]() |
03e40efa51 | ||
![]() |
23f746508d | ||
![]() |
48708ca0d5 | ||
![]() |
c7cb0f0602 | ||
![]() |
bf4018b9ec | ||
![]() |
f86d00cd95 | ||
![]() |
f2890a4494 | ||
![]() |
05cd82ef94 | ||
![]() |
7d6eb0d4c3 | ||
![]() |
24636dfa87 | ||
![]() |
1d7fa3ad2d | ||
![]() |
09035b71cd | ||
![]() |
f3c8b898cd | ||
![]() |
5dd0477fd4 | ||
![]() |
c3d321d405 |
@@ -3,9 +3,9 @@ ollama
|
||||
app
|
||||
macapp
|
||||
dist
|
||||
llm/llama.cpp
|
||||
build
|
||||
.env
|
||||
.cache
|
||||
test_data
|
||||
llm/build
|
||||
llama/build
|
||||
.git
|
||||
|
||||
|
14
.gitattributes
vendored
14
.gitattributes
vendored
@@ -1,4 +1,3 @@
|
||||
llm/ext_server/* linguist-vendored
|
||||
llama/**/*.cpp linguist-vendored
|
||||
llama/**/*.hpp linguist-vendored
|
||||
llama/**/*.h linguist-vendored
|
||||
@@ -8,5 +7,18 @@ llama/**/*.cuh linguist-vendored
|
||||
llama/**/*.m linguist-vendored
|
||||
llama/**/*.metal linguist-vendored
|
||||
|
||||
ml/backend/**/*.c linguist-vendored
|
||||
ml/backend/**/*.h linguist-vendored
|
||||
ml/backend/**/*.cpp linguist-vendored
|
||||
ml/backend/**/*.hpp linguist-vendored
|
||||
ml/backend/**/*.cu linguist-vendored
|
||||
ml/backend/**/*.cuh linguist-vendored
|
||||
ml/backend/**/*.m linguist-vendored
|
||||
ml/backend/**/*.metal linguist-vendored
|
||||
ml/backend/**/CMakeLists.txt linguist-vendored
|
||||
|
||||
llama/build-info.cpp linguist-generated
|
||||
ml/backend/ggml/ggml/src/ggml-metal/ggml-metal-embed.s linguist-generated
|
||||
|
||||
* text=auto
|
||||
*.go text eol=lf
|
||||
|
8
.github/ISSUE_TEMPLATE/10_bug_report.yml
vendored
8
.github/ISSUE_TEMPLATE/10_bug_report.yml
vendored
@@ -9,6 +9,14 @@ body:
|
||||
description: What happened? What did you expect to happen?
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: logs
|
||||
attributes:
|
||||
label: Relevant log output
|
||||
description: Please copy and paste any relevant log output. See [Troubleshooting Guide](https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md#how-to-troubleshoot-issues) for details.
|
||||
render: shell
|
||||
validations:
|
||||
required: false
|
||||
- type: dropdown
|
||||
id: os
|
||||
attributes:
|
||||
|
1042
.github/workflows/release.yaml
vendored
1042
.github/workflows/release.yaml
vendored
File diff suppressed because it is too large
Load Diff
453
.github/workflows/test.yaml
vendored
453
.github/workflows/test.yaml
vendored
@@ -21,10 +21,7 @@ jobs:
|
||||
changes:
|
||||
runs-on: ubuntu-latest
|
||||
outputs:
|
||||
GENERATE: ${{ steps.changes.outputs.GENERATE }}
|
||||
GENERATE_CUDA: ${{ steps.changes.outputs.GENERATE_CUDA }}
|
||||
GENERATE_ROCM: ${{ steps.changes.outputs.GENERATE_ROCM }}
|
||||
RUNNERS: ${{ steps.changes.outputs.RUNNERS }}
|
||||
changed: ${{ steps.changes.outputs.changed }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
@@ -32,305 +29,213 @@ jobs:
|
||||
- id: changes
|
||||
run: |
|
||||
changed() {
|
||||
git diff-tree -r --no-commit-id --name-only \
|
||||
$(git merge-base ${{ github.event.pull_request.base.sha }} ${{ github.event.pull_request.head.sha }}) \
|
||||
${{ github.event.pull_request.head.sha }} \
|
||||
local BASE=${{ github.event.pull_request.base.sha }}
|
||||
local HEAD=${{ github.event.pull_request.head.sha }}
|
||||
local MERGE_BASE=$(git merge-base $BASE $HEAD)
|
||||
git diff-tree -r --no-commit-id --name-only "$MERGE_BASE" "$HEAD" \
|
||||
| xargs python3 -c "import sys; from pathlib import Path; print(any(Path(x).match(glob) for x in sys.argv[1:] for glob in '$*'.split(' ')))"
|
||||
}
|
||||
|
||||
{
|
||||
echo GENERATE=$(changed 'llm/llama.cpp' 'llm/patches/**' 'llm/ext_server/**' 'llm/generate/**')
|
||||
echo GENERATE_CUDA=$(changed 'llm/llama.cpp' 'llm/patches/**' 'llm/ext_server/**' 'llm/generate/**')
|
||||
echo GENERATE_ROCM=$(changed 'llm/llama.cpp' 'llm/patches/**' 'llm/ext_server/**' 'llm/generate/**')
|
||||
echo RUNNERS=$(changed 'llama/**')
|
||||
} >>$GITHUB_OUTPUT
|
||||
echo changed=$(changed 'llama/llama.cpp/**' 'ml/backend/ggml/ggml/**') | tee -a $GITHUB_OUTPUT
|
||||
|
||||
generate:
|
||||
linux:
|
||||
needs: [changes]
|
||||
if: ${{ needs.changes.outputs.GENERATE == 'True' }}
|
||||
if: needs.changes.outputs.changed == 'True'
|
||||
strategy:
|
||||
matrix:
|
||||
os: [ubuntu-latest, macos-latest, windows-2019]
|
||||
arch: [amd64, arm64]
|
||||
exclude:
|
||||
- os: ubuntu-latest
|
||||
arch: arm64
|
||||
- os: windows-2019
|
||||
arch: arm64
|
||||
runs-on: ${{ matrix.os }}
|
||||
env:
|
||||
GOARCH: ${{ matrix.arch }}
|
||||
CGO_ENABLED: '1'
|
||||
include:
|
||||
- preset: CPU
|
||||
- preset: CUDA
|
||||
container: nvidia/cuda:11.8.0-devel-ubuntu22.04
|
||||
flags: '-DCMAKE_CUDA_ARCHITECTURES=87'
|
||||
- preset: ROCm
|
||||
container: rocm/dev-ubuntu-22.04:6.1.2
|
||||
extra-packages: rocm-libs
|
||||
flags: '-DAMDGPU_TARGETS=gfx1010 -DCMAKE_PREFIX_PATH=/opt/rocm'
|
||||
runs-on: linux
|
||||
container: ${{ matrix.container }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version-file: go.mod
|
||||
cache: true
|
||||
- run: go get ./...
|
||||
- run: |
|
||||
$gopath=(get-command go).source | split-path -parent
|
||||
$gccpath=(get-command gcc).source | split-path -parent
|
||||
& "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1"
|
||||
cd $env:GITHUB_WORKSPACE
|
||||
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
|
||||
$env:PATH="$gopath;$gccpath;$env:PATH"
|
||||
echo $env:PATH
|
||||
go generate -x ./...
|
||||
if: ${{ startsWith(matrix.os, 'windows-') }}
|
||||
name: 'Windows Go Generate'
|
||||
- run: go generate -x ./...
|
||||
if: ${{ ! startsWith(matrix.os, 'windows-') }}
|
||||
name: 'Unix Go Generate'
|
||||
- run: go build .
|
||||
generate-cuda:
|
||||
needs: [changes]
|
||||
if: ${{ needs.changes.outputs.GENERATE_CUDA == 'True' }}
|
||||
strategy:
|
||||
matrix:
|
||||
cuda-version:
|
||||
- '11.8.0'
|
||||
runs-on: linux
|
||||
container: nvidia/cuda:${{ matrix.cuda-version }}-devel-ubuntu20.04
|
||||
steps:
|
||||
- run: |
|
||||
apt-get update && apt-get install -y git build-essential curl
|
||||
curl -fsSL https://github.com/Kitware/CMake/releases/download/v3.28.1/cmake-3.28.1-linux-x86_64.tar.gz \
|
||||
| tar -zx -C /usr --strip-components 1
|
||||
[ -n "${{ matrix.container }}" ] || sudo=sudo
|
||||
$sudo apt-get update
|
||||
$sudo apt-get install -y cmake ccache ${{ matrix.extra-packages }}
|
||||
env:
|
||||
DEBIAN_FRONTEND: noninteractive
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-go@v4
|
||||
- uses: actions/cache@v4
|
||||
with:
|
||||
go-version-file: go.mod
|
||||
cache: true
|
||||
- run: go get ./...
|
||||
path: /github/home/.cache/ccache
|
||||
key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }}
|
||||
- run: |
|
||||
git config --global --add safe.directory /__w/ollama/ollama
|
||||
go generate -x ./...
|
||||
env:
|
||||
OLLAMA_SKIP_CPU_GENERATE: '1'
|
||||
generate-rocm:
|
||||
cmake --preset ${{ matrix.preset }} ${{ matrix.flags }}
|
||||
cmake --build --preset ${{ matrix.preset }} --parallel
|
||||
|
||||
windows:
|
||||
needs: [changes]
|
||||
if: ${{ needs.changes.outputs.GENERATE_ROCM == 'True' }}
|
||||
if: needs.changes.outputs.changed == 'True'
|
||||
strategy:
|
||||
matrix:
|
||||
rocm-version:
|
||||
- '6.1.2'
|
||||
runs-on: linux
|
||||
container: rocm/dev-ubuntu-20.04:${{ matrix.rocm-version }}
|
||||
steps:
|
||||
- run: |
|
||||
apt-get update && apt-get install -y git build-essential curl rocm-libs
|
||||
curl -fsSL https://github.com/Kitware/CMake/releases/download/v3.28.1/cmake-3.28.1-linux-x86_64.tar.gz \
|
||||
| tar -zx -C /usr --strip-components 1
|
||||
env:
|
||||
DEBIAN_FRONTEND: noninteractive
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-go@v4
|
||||
with:
|
||||
go-version-file: go.mod
|
||||
cache: true
|
||||
- run: go get ./...
|
||||
- run: |
|
||||
git config --global --add safe.directory /__w/ollama/ollama
|
||||
go generate -x ./...
|
||||
env:
|
||||
OLLAMA_SKIP_CPU_GENERATE: '1'
|
||||
|
||||
# ROCm generation step
|
||||
generate-windows-rocm:
|
||||
needs: [changes]
|
||||
if: ${{ needs.changes.outputs.GENERATE_ROCM == 'True' }}
|
||||
include:
|
||||
- preset: CPU
|
||||
- preset: CUDA
|
||||
install: https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe
|
||||
flags: '-DCMAKE_CUDA_ARCHITECTURES=80'
|
||||
- preset: ROCm
|
||||
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q4-WinSvr2022-For-HIP.exe
|
||||
flags: '-DAMDGPU_TARGETS=gfx1010'
|
||||
runs-on: windows
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-go@v5
|
||||
- run: |
|
||||
choco install -y --no-progress ccache ninja
|
||||
ccache -o cache_dir=${{ github.workspace }}\.ccache
|
||||
- if: matrix.preset == 'CUDA' || matrix.preset == 'ROCm'
|
||||
id: cache-install
|
||||
uses: actions/cache/restore@v4
|
||||
with:
|
||||
go-version-file: go.mod
|
||||
cache: true
|
||||
- name: 'Install ROCm'
|
||||
path: |
|
||||
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA
|
||||
C:\Program Files\AMD\ROCm
|
||||
key: ${{ matrix.install }}
|
||||
- if: matrix.preset == 'CUDA'
|
||||
name: Install CUDA ${{ matrix.cuda-version }}
|
||||
run: |
|
||||
$ErrorActionPreference = "Stop"
|
||||
write-host "downloading AMD HIP Installer"
|
||||
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
|
||||
write-host "Installing AMD HIP"
|
||||
Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
|
||||
write-host "Completed AMD HIP"
|
||||
- name: 'Verify ROCm'
|
||||
run: |
|
||||
& 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' --version
|
||||
- run: go get ./...
|
||||
- run: |
|
||||
$gopath=(get-command go).source | split-path -parent
|
||||
& "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1"
|
||||
cd $env:GITHUB_WORKSPACE
|
||||
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
|
||||
$env:PATH="$gopath;$env:PATH"
|
||||
$env:OLLAMA_SKIP_CPU_GENERATE="1"
|
||||
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
|
||||
go generate -x ./...
|
||||
name: go generate
|
||||
env:
|
||||
OLLAMA_SKIP_CPU_GENERATE: '1'
|
||||
if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') {
|
||||
Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe"
|
||||
Start-Process -FilePath .\install.exe -ArgumentList (@("-s", "cudart_11.3", "nvcc_11.3", "cublas_11.3", "cublas_dev_11.3")) -NoNewWindow -Wait
|
||||
}
|
||||
|
||||
# CUDA generation step
|
||||
generate-windows-cuda:
|
||||
needs: [changes]
|
||||
if: ${{ needs.changes.outputs.GENERATE_CUDA == 'True' }}
|
||||
runs-on: windows
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version-file: go.mod
|
||||
cache: true
|
||||
- name: 'Install CUDA'
|
||||
$cudaPath = (Resolve-Path "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\*").path
|
||||
echo "$cudaPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
- if: matrix.preset == 'ROCm'
|
||||
name: Install ROCm ${{ matrix.rocm-version }}
|
||||
run: |
|
||||
$ErrorActionPreference = "Stop"
|
||||
write-host "downloading CUDA Installer"
|
||||
Invoke-WebRequest -Uri "https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe" -OutFile "${env:RUNNER_TEMP}\cuda-install.exe"
|
||||
write-host "Installing CUDA"
|
||||
Start-Process "${env:RUNNER_TEMP}\cuda-install.exe" -ArgumentList '-s' -NoNewWindow -Wait
|
||||
write-host "Completed CUDA"
|
||||
$cudaPath=((resolve-path "c:\Program Files\NVIDIA*\CUDA\v*\bin\nvcc.exe")[0].path | split-path | split-path)
|
||||
$cudaVer=($cudaPath | split-path -leaf ) -replace 'v(\d+).(\d+)', '$1_$2'
|
||||
echo "$cudaPath\bin" >> $env:GITHUB_PATH
|
||||
echo "CUDA_PATH=$cudaPath" >> $env:GITHUB_ENV
|
||||
echo "CUDA_PATH_V${cudaVer}=$cudaPath" >> $env:GITHUB_ENV
|
||||
echo "CUDA_PATH_VX_Y=CUDA_PATH_V${cudaVer}" >> $env:GITHUB_ENV
|
||||
- name: 'Verify CUDA'
|
||||
run: nvcc -V
|
||||
- run: go get ./...
|
||||
- name: go generate
|
||||
run: |
|
||||
$gopath=(get-command go).source | split-path -parent
|
||||
$cudabin=(get-command nvcc).source | split-path
|
||||
& "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1"
|
||||
cd $env:GITHUB_WORKSPACE
|
||||
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
|
||||
$env:PATH="$gopath;$cudabin;$env:PATH"
|
||||
$env:OLLAMA_SKIP_CPU_GENERATE="1"
|
||||
go generate -x ./...
|
||||
if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') {
|
||||
Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe"
|
||||
Start-Process -FilePath .\install.exe -ArgumentList '-install' -NoNewWindow -Wait
|
||||
}
|
||||
|
||||
$hipPath = (Resolve-Path "C:\Program Files\AMD\ROCm\*").path
|
||||
echo "$hipPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
echo "CC=$hipPath\bin\clang.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
|
||||
echo "CXX=$hipPath\bin\clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
|
||||
- if: ${{ !cancelled() && steps.cache-install.outputs.cache-hit != 'true' }}
|
||||
uses: actions/cache/save@v4
|
||||
with:
|
||||
path: |
|
||||
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA
|
||||
C:\Program Files\AMD\ROCm
|
||||
key: ${{ matrix.install }}
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/cache@v4
|
||||
with:
|
||||
path: ${{ github.workspace }}\.ccache
|
||||
key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }}
|
||||
- run: |
|
||||
Import-Module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
|
||||
Enter-VsDevShell -VsInstallPath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -SkipAutomaticLocation -DevCmdArguments '-arch=x64 -no_logo'
|
||||
cmake --preset "${{ matrix.preset }}" ${{ matrix.flags }}
|
||||
cmake --build --parallel --preset "${{ matrix.preset }}"
|
||||
env:
|
||||
OLLAMA_SKIP_CPU_GENERATE: '1'
|
||||
CMAKE_GENERATOR: Ninja
|
||||
|
||||
runners:
|
||||
needs: [changes]
|
||||
if: ${{ needs.changes.outputs.RUNNERS == 'True' }}
|
||||
strategy:
|
||||
matrix:
|
||||
os: [ubuntu-latest, macos-latest, windows-2019]
|
||||
arch: [amd64, arm64]
|
||||
exclude:
|
||||
- os: ubuntu-latest
|
||||
arch: arm64
|
||||
- os: windows-2019
|
||||
arch: arm64
|
||||
runs-on: ${{ matrix.os }}
|
||||
env:
|
||||
GOARCH: ${{ matrix.arch }}
|
||||
ARCH: ${{ matrix.arch }}
|
||||
CGO_ENABLED: '1'
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version-file: go.mod
|
||||
cache: true
|
||||
- run: go get ./...
|
||||
- name: 'Build Windows Go Runners'
|
||||
if: ${{ startsWith(matrix.os, 'windows-') }}
|
||||
run: |
|
||||
$gopath=(get-command go).source | split-path -parent
|
||||
$gccpath=(get-command gcc).source | split-path -parent
|
||||
& "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1"
|
||||
cd $env:GITHUB_WORKSPACE
|
||||
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
|
||||
$env:PATH="$gopath;$gccpath;$env:PATH"
|
||||
echo $env:PATH
|
||||
make -C llama -j 4
|
||||
- name: 'Build Unix Go Runners'
|
||||
if: ${{ ! startsWith(matrix.os, 'windows-') }}
|
||||
run: make -C llama -j 4
|
||||
- run: go build .
|
||||
|
||||
lint:
|
||||
strategy:
|
||||
matrix:
|
||||
os: [ubuntu-latest, macos-latest, windows-2019]
|
||||
arch: [amd64, arm64]
|
||||
exclude:
|
||||
- os: ubuntu-latest
|
||||
arch: arm64
|
||||
- os: windows-2019
|
||||
arch: arm64
|
||||
- os: macos-latest
|
||||
arch: amd64
|
||||
runs-on: ${{ matrix.os }}
|
||||
env:
|
||||
GOARCH: ${{ matrix.arch }}
|
||||
CGO_ENABLED: '1'
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: recursive
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version-file: go.mod
|
||||
cache: false
|
||||
- run: |
|
||||
case ${{ matrix.arch }} in
|
||||
amd64) echo ARCH=x86_64 ;;
|
||||
arm64) echo ARCH=arm64 ;;
|
||||
esac >>$GITHUB_ENV
|
||||
shell: bash
|
||||
- uses: golangci/golangci-lint-action@v6
|
||||
with:
|
||||
args: --timeout 8m0s -v
|
||||
test:
|
||||
strategy:
|
||||
matrix:
|
||||
os: [ubuntu-latest, macos-latest, windows-2019]
|
||||
arch: [amd64]
|
||||
exclude:
|
||||
- os: ubuntu-latest
|
||||
arch: arm64
|
||||
- os: windows-2019
|
||||
arch: arm64
|
||||
runs-on: ${{ matrix.os }}
|
||||
env:
|
||||
GOARCH: ${{ matrix.arch }}
|
||||
CGO_ENABLED: '1'
|
||||
OLLAMA_CPU_TARGET: 'static'
|
||||
OLLAMA_SKIP_CPU_GENERATE: '1'
|
||||
OLLAMA_SKIP_METAL_GENERATE: '1'
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: recursive
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version-file: go.mod
|
||||
cache: true
|
||||
- run: |
|
||||
case ${{ matrix.arch }} in
|
||||
amd64) echo ARCH=amd64 ;;
|
||||
arm64) echo ARCH=arm64 ;;
|
||||
esac >>$GITHUB_ENV
|
||||
shell: bash
|
||||
- run: go generate ./...
|
||||
- run: go build
|
||||
- run: go test -v ./...
|
||||
|
||||
patches:
|
||||
needs: [changes]
|
||||
if: ${{ needs.changes.outputs.RUNNERS == 'True' }}
|
||||
go_mod_tidy:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: check that 'go mod tidy' is clean
|
||||
run: go mod tidy --diff || (echo "Please run 'go mod tidy'." && exit 1)
|
||||
|
||||
test:
|
||||
strategy:
|
||||
matrix:
|
||||
os: [ubuntu-latest, macos-latest, windows-latest]
|
||||
runs-on: ${{ matrix.os }}
|
||||
env:
|
||||
CGO_ENABLED: '1'
|
||||
GOEXPERIMENT: 'synctest'
|
||||
steps:
|
||||
- name: checkout
|
||||
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # 4.2.2
|
||||
|
||||
- name: cache restore
|
||||
uses: actions/cache/restore@1bd1e32a3bdc45362d1e726936510720a7c30a57 # v4.2.0
|
||||
with:
|
||||
submodules: recursive
|
||||
- name: Verify patches carry all the changes
|
||||
# Note: unlike the other setups, this is only grabbing the mod download
|
||||
# cache, rather than the whole mod directory, as the download cache
|
||||
# contains zips that can be unpacked in parallel faster than they can be
|
||||
# fetched and extracted by tar
|
||||
path: |
|
||||
~/.cache/go-build
|
||||
~/go/pkg/mod/cache
|
||||
~\AppData\Local\go-build
|
||||
# NOTE: The -3- here should be incremented when the scheme of data to be
|
||||
# cached changes (e.g. path above changes).
|
||||
key: ${{ github.job }}-${{ runner.os }}-${{ matrix.goarch }}-${{ matrix.buildflags }}-go-3-${{ hashFiles('**/go.sum') }}-${{ github.run_id }}
|
||||
restore-keys: |
|
||||
${{ github.job }}-${{ runner.os }}-${{ matrix.goarch }}-${{ matrix.buildflags }}-go-3-${{ hashFiles('**/go.sum') }}
|
||||
${{ github.job }}-${{ runner.os }}-${{ matrix.goarch }}-${{ matrix.buildflags }}-go-3-
|
||||
|
||||
- name: Setup Go
|
||||
uses: actions/setup-go@v5
|
||||
with:
|
||||
# The caching strategy of setup-go is less than ideal, and wastes
|
||||
# time by not saving artifacts due to small failures like the linter
|
||||
# complaining, etc. This means subsequent have to rebuild their world
|
||||
# again until all checks pass. For instance, if you mispell a word,
|
||||
# you're punished until you fix it. This is more hostile than
|
||||
# helpful.
|
||||
cache: false
|
||||
|
||||
go-version-file: go.mod
|
||||
|
||||
# It is tempting to run this in a platform independent way, but the past
|
||||
# shows this codebase will see introductions of platform specific code
|
||||
# generation, and so we need to check this per platform to ensure we
|
||||
# don't abuse go generate on specific platforms.
|
||||
- name: check that 'go generate' is clean
|
||||
if: always()
|
||||
run: |
|
||||
cd llama && ./sync.sh && git diff --compact-summary --exit-code .
|
||||
go generate ./...
|
||||
git diff --name-only --exit-code || (echo "Please run 'go generate ./...'." && exit 1)
|
||||
|
||||
- name: go test
|
||||
if: always()
|
||||
run: go test -count=1 -benchtime=1x ./...
|
||||
|
||||
# TODO(bmizerany): replace this heavy tool with just the
|
||||
# tools/checks/binaries we want and then make them all run in parallel
|
||||
# across jobs, not on a single tiny vm on Github Actions.
|
||||
- uses: golangci/golangci-lint-action@v6
|
||||
with:
|
||||
args: --timeout 10m0s -v
|
||||
|
||||
- name: cache save
|
||||
# Always save the cache, even if the job fails. The artifacts produced
|
||||
# during the building of test binaries are not all for naught. They can
|
||||
# be used to speed up subsequent runs.
|
||||
if: always()
|
||||
|
||||
uses: actions/cache/save@1bd1e32a3bdc45362d1e726936510720a7c30a57 # v4.2.0
|
||||
with:
|
||||
# Note: unlike the other setups, this is only grabbing the mod download
|
||||
# cache, rather than the whole mod directory, as the download cache
|
||||
# contains zips that can be unpacked in parallel faster than they can be
|
||||
# fetched and extracted by tar
|
||||
path: |
|
||||
~/.cache/go-build
|
||||
~/go/pkg/mod/cache
|
||||
~\AppData\Local\go-build
|
||||
# NOTE: The -3- here should be incremented when the scheme of data to be
|
||||
# cached changes (e.g. path above changes).
|
||||
key: ${{ github.job }}-${{ runner.os }}-${{ matrix.goarch }}-${{ matrix.buildflags }}-go-3-${{ hashFiles('**/go.sum') }}-${{ github.run_id }}
|
||||
|
||||
patches:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Verify patches apply cleanly and do not change files
|
||||
run: |
|
||||
make -f Makefile.sync clean sync
|
||||
git diff --compact-summary --exit-code
|
||||
|
9
.gitignore
vendored
9
.gitignore
vendored
@@ -4,14 +4,13 @@
|
||||
.venv
|
||||
.swp
|
||||
dist
|
||||
ollama
|
||||
build
|
||||
.cache
|
||||
*.exe
|
||||
.idea
|
||||
test_data
|
||||
*.crt
|
||||
llm/build
|
||||
build/*/*/*
|
||||
!build/**/placeholder
|
||||
__debug_bin*
|
||||
llama/build
|
||||
__debug_bin*
|
||||
llama/vendor
|
||||
/ollama
|
||||
|
4
.gitmodules
vendored
4
.gitmodules
vendored
@@ -1,4 +0,0 @@
|
||||
[submodule "llama.cpp"]
|
||||
path = llm/llama.cpp
|
||||
url = https://github.com/ggerganov/llama.cpp.git
|
||||
shallow = true
|
@@ -6,10 +6,6 @@ linters:
|
||||
- bidichk
|
||||
- bodyclose
|
||||
- containedctx
|
||||
- contextcheck
|
||||
- errcheck
|
||||
- exportloopref
|
||||
- gci
|
||||
- gocheckcompilerdirectives
|
||||
- gofmt
|
||||
- gofumpt
|
||||
@@ -25,13 +21,12 @@ linters:
|
||||
- staticcheck
|
||||
- tenv
|
||||
- unconvert
|
||||
- unused
|
||||
- usestdlibvars
|
||||
- wastedassign
|
||||
- whitespace
|
||||
disable:
|
||||
- usestdlibvars
|
||||
- errcheck
|
||||
linters-settings:
|
||||
gci:
|
||||
sections: [standard, default, localmodule]
|
||||
staticcheck:
|
||||
checks:
|
||||
- all
|
||||
@@ -43,5 +38,4 @@ severity:
|
||||
- gofmt
|
||||
- goimports
|
||||
- intrange
|
||||
- usestdlibvars
|
||||
severity: info
|
||||
|
@@ -1,10 +0,0 @@
|
||||
{
|
||||
"trailingComma": "es5",
|
||||
"tabWidth": 2,
|
||||
"useTabs": false,
|
||||
"semi": false,
|
||||
"singleQuote": true,
|
||||
"jsxSingleQuote": true,
|
||||
"printWidth": 120,
|
||||
"arrowParens": "avoid"
|
||||
}
|
132
CMakeLists.txt
Normal file
132
CMakeLists.txt
Normal file
@@ -0,0 +1,132 @@
|
||||
cmake_minimum_required(VERSION 3.21)
|
||||
|
||||
project(Ollama C CXX)
|
||||
|
||||
include(CheckLanguage)
|
||||
|
||||
find_package(Threads REQUIRED)
|
||||
|
||||
set(CMAKE_BUILD_TYPE Release)
|
||||
set(BUILD_SHARED_LIBS ON)
|
||||
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
set(CMAKE_CXX_STANDARD_REQUIRED ON)
|
||||
set(CMAKE_CXX_EXTENSIONS OFF)
|
||||
|
||||
set(GGML_BUILD ON)
|
||||
set(GGML_SHARED ON)
|
||||
set(GGML_CCACHE ON)
|
||||
set(GGML_BACKEND_DL ON)
|
||||
set(GGML_BACKEND_SHARED ON)
|
||||
set(GGML_SCHED_MAX_COPIES 4)
|
||||
|
||||
set(GGML_LLAMAFILE ON)
|
||||
set(GGML_CUDA_PEER_MAX_BATCH_SIZE 128)
|
||||
set(GGML_CUDA_GRAPHS ON)
|
||||
set(GGML_CUDA_FA ON)
|
||||
|
||||
if((CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_OSX_ARCHITECTURES MATCHES "arm64")
|
||||
OR (NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_SYSTEM_PROCESSOR MATCHES "arm|aarch64|ARM64|ARMv[0-9]+"))
|
||||
set(GGML_CPU_ALL_VARIANTS ON)
|
||||
endif()
|
||||
|
||||
if (CMAKE_OSX_ARCHITECTURES MATCHES "x86_64")
|
||||
set(CMAKE_BUILD_RPATH "@loader_path")
|
||||
set(CMAKE_INSTALL_RPATH "@loader_path")
|
||||
endif()
|
||||
|
||||
set(OLLAMA_BUILD_DIR ${CMAKE_BINARY_DIR}/lib/ollama)
|
||||
set(OLLAMA_INSTALL_DIR ${CMAKE_INSTALL_PREFIX}/lib/ollama)
|
||||
|
||||
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${OLLAMA_BUILD_DIR})
|
||||
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY_DEBUG ${OLLAMA_BUILD_DIR})
|
||||
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY_RELEASE ${OLLAMA_BUILD_DIR})
|
||||
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${OLLAMA_BUILD_DIR})
|
||||
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY_DEBUG ${OLLAMA_BUILD_DIR})
|
||||
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY_RELEASE ${OLLAMA_BUILD_DIR})
|
||||
|
||||
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src)
|
||||
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/include)
|
||||
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cpu)
|
||||
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cpu/amx)
|
||||
|
||||
set(GGML_CPU ON)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src)
|
||||
set_property(TARGET ggml PROPERTY EXCLUDE_FROM_ALL TRUE)
|
||||
|
||||
get_target_property(CPU_VARIANTS ggml-cpu MANUALLY_ADDED_DEPENDENCIES)
|
||||
if(NOT CPU_VARIANTS)
|
||||
set(CPU_VARIANTS "ggml-cpu")
|
||||
endif()
|
||||
|
||||
install(TARGETS ggml-base ${CPU_VARIANTS}
|
||||
RUNTIME_DEPENDENCIES
|
||||
PRE_EXCLUDE_REGEXES ".*"
|
||||
RUNTIME DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT CPU
|
||||
LIBRARY DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT CPU
|
||||
FRAMEWORK DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT CPU
|
||||
)
|
||||
|
||||
check_language(CUDA)
|
||||
if(CMAKE_CUDA_COMPILER)
|
||||
if(CMAKE_VERSION VERSION_GREATER_EQUAL "3.24" AND NOT CMAKE_CUDA_ARCHITECTURES)
|
||||
set(CMAKE_CUDA_ARCHITECTURES "native")
|
||||
endif()
|
||||
|
||||
find_package(CUDAToolkit)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cuda)
|
||||
set(OLLAMA_CUDA_INSTALL_DIR ${OLLAMA_INSTALL_DIR}/cuda_v${CUDAToolkit_VERSION_MAJOR})
|
||||
install(TARGETS ggml-cuda
|
||||
RUNTIME_DEPENDENCIES
|
||||
DIRECTORIES ${CUDAToolkit_BIN_DIR} ${CUDAToolkit_LIBRARY_DIR}
|
||||
PRE_INCLUDE_REGEXES cublas cublasLt cudart
|
||||
PRE_EXCLUDE_REGEXES ".*"
|
||||
RUNTIME DESTINATION ${OLLAMA_CUDA_INSTALL_DIR} COMPONENT CUDA
|
||||
LIBRARY DESTINATION ${OLLAMA_CUDA_INSTALL_DIR} COMPONENT CUDA
|
||||
)
|
||||
endif()
|
||||
|
||||
set(WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX "^gfx(906|908|90a):xnack[+-]$"
|
||||
CACHE STRING
|
||||
"Regular expression describing AMDGPU_TARGETS not supported on Windows. Override to force building these targets. Default \"^gfx(906|908|90a):xnack[+-]$\"."
|
||||
)
|
||||
|
||||
check_language(HIP)
|
||||
if(CMAKE_HIP_COMPILER)
|
||||
set(HIP_PLATFORM "amd")
|
||||
|
||||
find_package(hip REQUIRED)
|
||||
if(NOT AMDGPU_TARGETS)
|
||||
list(FILTER AMDGPU_TARGETS INCLUDE REGEX "^gfx(900|94[012]|101[02]|1030|110[012])$")
|
||||
elseif(WIN32 AND WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX)
|
||||
list(FILTER AMDGPU_TARGETS EXCLUDE REGEX ${WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX})
|
||||
endif()
|
||||
|
||||
if(AMDGPU_TARGETS)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-hip)
|
||||
|
||||
if (WIN32)
|
||||
target_compile_definitions(ggml-hip PRIVATE GGML_CUDA_NO_PEER_COPY)
|
||||
endif()
|
||||
|
||||
target_compile_definitions(ggml-hip PRIVATE GGML_HIP_NO_VMM)
|
||||
|
||||
set(OLLAMA_HIP_INSTALL_DIR ${OLLAMA_INSTALL_DIR}/rocm)
|
||||
install(TARGETS ggml-hip
|
||||
RUNTIME_DEPENDENCIES
|
||||
DIRECTORIES ${HIP_BIN_INSTALL_DIR} ${HIP_LIB_INSTALL_DIR}
|
||||
PRE_INCLUDE_REGEXES hipblas rocblas amdhip64 rocsolver amd_comgr hsa-runtime64 rocsparse tinfo rocprofiler-register drm drm_amdgpu numa elf
|
||||
PRE_EXCLUDE_REGEXES ".*"
|
||||
POST_EXCLUDE_REGEXES "system32"
|
||||
RUNTIME DESTINATION ${OLLAMA_HIP_INSTALL_DIR} COMPONENT HIP
|
||||
LIBRARY DESTINATION ${OLLAMA_HIP_INSTALL_DIR} COMPONENT HIP
|
||||
)
|
||||
|
||||
foreach(HIP_LIB_BIN_INSTALL_DIR IN ITEMS ${HIP_BIN_INSTALL_DIR} ${HIP_LIB_INSTALL_DIR})
|
||||
if(EXISTS ${HIP_LIB_BIN_INSTALL_DIR}/rocblas)
|
||||
install(DIRECTORY ${HIP_LIB_BIN_INSTALL_DIR}/rocblas DESTINATION ${OLLAMA_HIP_INSTALL_DIR} COMPONENT HIP)
|
||||
break()
|
||||
endif()
|
||||
endforeach()
|
||||
endif()
|
||||
endif()
|
110
CMakePresets.json
Normal file
110
CMakePresets.json
Normal file
@@ -0,0 +1,110 @@
|
||||
{
|
||||
"version": 3,
|
||||
"configurePresets": [
|
||||
{
|
||||
"name": "Default",
|
||||
"binaryDir": "${sourceDir}/build",
|
||||
"installDir": "${sourceDir}/dist",
|
||||
"cacheVariables": {
|
||||
"CMAKE_BUILD_TYPE": "Release"
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "CPU",
|
||||
"inherits": [ "Default" ]
|
||||
},
|
||||
{
|
||||
"name": "CUDA",
|
||||
"inherits": [ "Default" ]
|
||||
},
|
||||
{
|
||||
"name": "CUDA 11",
|
||||
"inherits": [ "CUDA" ],
|
||||
"cacheVariables": {
|
||||
"CMAKE_CUDA_ARCHITECTURES": "50;52;53;60;61;70;75;80;86"
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "CUDA 12",
|
||||
"inherits": [ "CUDA" ],
|
||||
"cacheVariables": {
|
||||
"CMAKE_CUDA_ARCHITECTURES": "50;60;61;70;75;80;86;87;89;90;90a;120"
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "JetPack 5",
|
||||
"inherits": [ "CUDA" ],
|
||||
"cacheVariables": {
|
||||
"CMAKE_CUDA_ARCHITECTURES": "72;87"
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "JetPack 6",
|
||||
"inherits": [ "CUDA" ],
|
||||
"cacheVariables": {
|
||||
"CMAKE_CUDA_ARCHITECTURES": "87"
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "ROCm",
|
||||
"inherits": [ "Default" ],
|
||||
"cacheVariables": {
|
||||
"CMAKE_HIP_PLATFORM": "amd"
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "ROCm 6",
|
||||
"inherits": [ "ROCm" ],
|
||||
"cacheVariables": {
|
||||
"AMDGPU_TARGETS": "gfx900;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-"
|
||||
}
|
||||
}
|
||||
],
|
||||
"buildPresets": [
|
||||
{
|
||||
"name": "Default",
|
||||
"configurePreset": "Default",
|
||||
"configuration": "Release"
|
||||
},
|
||||
{
|
||||
"name": "CPU",
|
||||
"configurePreset": "Default",
|
||||
"targets": [ "ggml-cpu" ]
|
||||
},
|
||||
{
|
||||
"name": "CUDA",
|
||||
"configurePreset": "CUDA",
|
||||
"targets": [ "ggml-cuda" ]
|
||||
},
|
||||
{
|
||||
"name": "CUDA 11",
|
||||
"inherits": [ "CUDA" ],
|
||||
"configurePreset": "CUDA 11"
|
||||
},
|
||||
{
|
||||
"name": "CUDA 12",
|
||||
"inherits": [ "CUDA" ],
|
||||
"configurePreset": "CUDA 12"
|
||||
},
|
||||
{
|
||||
"name": "JetPack 5",
|
||||
"inherits": [ "CUDA" ],
|
||||
"configurePreset": "JetPack 5"
|
||||
},
|
||||
{
|
||||
"name": "JetPack 6",
|
||||
"inherits": [ "CUDA" ],
|
||||
"configurePreset": "JetPack 6"
|
||||
},
|
||||
{
|
||||
"name": "ROCm",
|
||||
"configurePreset": "ROCm",
|
||||
"targets": [ "ggml-hip" ]
|
||||
},
|
||||
{
|
||||
"name": "ROCm 6",
|
||||
"inherits": [ "ROCm" ],
|
||||
"configurePreset": "ROCm 6"
|
||||
}
|
||||
]
|
||||
}
|
@@ -6,8 +6,6 @@ Thank you for your interest in contributing to Ollama! Here are a few guidelines
|
||||
|
||||
See the [development documentation](./docs/development.md) for instructions on how to build and run Ollama locally.
|
||||
|
||||
## Pull requests
|
||||
|
||||
### Ideal issues
|
||||
|
||||
* [Bugs](https://github.com/ollama/ollama/issues?q=is%3Aissue+is%3Aopen+label%3Abug): issues where Ollama stops working or where it results in an unexpected error.
|
||||
@@ -26,11 +24,64 @@ See the [development documentation](./docs/development.md) for instructions on h
|
||||
* Changes that add significant friction to the user experience
|
||||
* Changes that create a large future maintenance burden for maintainers and contributors
|
||||
|
||||
### Best practices
|
||||
## Proposing a (non-trivial) change
|
||||
|
||||
* Commit messages: please leave both a title and a description in your commit messages. The title should be a short summary of the changes, with a leading word that explains the section of the code being changed (e.g. `api: fix parsing of prompt field`) . In the description, leave a short 2-3 sentences that explain more about the change and its impact.
|
||||
* Tests: please add test coverage to changes where possible.
|
||||
* Minimize dependencies: avoid adding new dependencies unless absolutely necessary.
|
||||
> By "non-trivial", we mean a change that is not a bug fix or small
|
||||
> documentation update. If you are unsure, please ask us on our [Discord
|
||||
> server](https://discord.gg/ollama).
|
||||
|
||||
Before opening a non-trivial Pull Request, please open an issue to discuss the change and
|
||||
get feedback from the maintainers. This helps us understand the context of the
|
||||
change and how it fits into Ollama's roadmap and prevents us from duplicating
|
||||
work or you from spending time on a change that we may not be able to accept.
|
||||
|
||||
Tips for proposals:
|
||||
|
||||
* Explain the problem you are trying to solve, not what you are trying to do.
|
||||
* Explain why the change is important.
|
||||
* Explain how the change will be used.
|
||||
* Explain how the change will be tested.
|
||||
|
||||
Additionally, for bonus points: Provide draft documentation you would expect to
|
||||
see if the change were accepted.
|
||||
|
||||
## Pull requests
|
||||
|
||||
**Commit messages**
|
||||
|
||||
The title should look like:
|
||||
|
||||
<package>: <short description>
|
||||
|
||||
The package is the most affected Go package. If the change does not affect Go
|
||||
code, then use the directory name instead. Changes to a single well-known
|
||||
file in the root directory may use the file name.
|
||||
|
||||
The short description should start with a lowercase letter and be a
|
||||
continuation of the sentence:
|
||||
|
||||
"This changes Ollama to..."
|
||||
|
||||
Examples:
|
||||
|
||||
llm/backend/mlx: support the llama architecture
|
||||
CONTRIBUTING: provide clairity on good commit messages, and bad
|
||||
|
||||
Bad Examples:
|
||||
|
||||
feat: add more emoji
|
||||
fix: was not using famous web framework
|
||||
chore: generify code
|
||||
|
||||
**Tests**
|
||||
|
||||
Please include tests. Strive to test behavior, not implementation.
|
||||
|
||||
**New dependencies**
|
||||
|
||||
Dependencies should be added sparingly. If you are adding a new dependency,
|
||||
please explain why it is necessary and what other ways you attempted that
|
||||
did not work without it.
|
||||
|
||||
## Need help?
|
||||
|
||||
|
327
Dockerfile
327
Dockerfile
@@ -1,250 +1,131 @@
|
||||
ARG GOLANG_VERSION=1.22.5
|
||||
ARG CMAKE_VERSION=3.22.1
|
||||
ARG CUDA_VERSION_11=11.3.1
|
||||
ARG CUDA_V11_ARCHITECTURES="50;52;53;60;61;62;70;72;75;80;86"
|
||||
ARG CUDA_VERSION_12=12.4.0
|
||||
ARG CUDA_V12_ARCHITECTURES="60;61;62;70;72;75;80;86;87;89;90;90a"
|
||||
ARG ROCM_VERSION=6.1.2
|
||||
# vim: filetype=dockerfile
|
||||
|
||||
# Copy the minimal context we need to run the generate scripts
|
||||
FROM scratch AS llm-code
|
||||
COPY .git .git
|
||||
COPY .gitmodules .gitmodules
|
||||
COPY llm llm
|
||||
ARG FLAVOR=${TARGETARCH}
|
||||
|
||||
FROM --platform=linux/amd64 nvidia/cuda:$CUDA_VERSION_11-devel-centos7 AS cuda-11-build-amd64
|
||||
ARG CMAKE_VERSION
|
||||
COPY ./scripts/rh_linux_deps.sh /
|
||||
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
|
||||
ENV PATH=/opt/rh/devtoolset-10/root/usr/bin:$PATH
|
||||
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
|
||||
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
|
||||
ARG CGO_CFLAGS
|
||||
ARG CUDA_V11_ARCHITECTURES
|
||||
ENV GOARCH=amd64
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
OLLAMA_SKIP_STATIC_GENERATE=1 \
|
||||
OLLAMA_SKIP_CPU_GENERATE=1 \
|
||||
CMAKE_CUDA_ARCHITECTURES="${CUDA_V11_ARCHITECTURES}" \
|
||||
CUDA_VARIANT="_v11" \
|
||||
bash gen_linux.sh
|
||||
ARG ROCMVERSION=6.3.3
|
||||
ARG JETPACK5VERSION=r35.4.1
|
||||
ARG JETPACK6VERSION=r36.4.0
|
||||
ARG CMAKEVERSION=3.31.2
|
||||
|
||||
FROM --platform=linux/amd64 nvidia/cuda:$CUDA_VERSION_12-devel-centos7 AS cuda-12-build-amd64
|
||||
ARG CMAKE_VERSION
|
||||
COPY ./scripts/rh_linux_deps.sh /
|
||||
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
|
||||
ENV PATH=/opt/rh/devtoolset-10/root/usr/bin:$PATH
|
||||
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
|
||||
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
|
||||
ARG CGO_CFLAGS
|
||||
ARG CUDA_V12_ARCHITECTURES
|
||||
ENV GOARCH=amd64
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
OLLAMA_SKIP_STATIC_GENERATE=1 \
|
||||
OLLAMA_SKIP_CPU_GENERATE=1 \
|
||||
CMAKE_CUDA_ARCHITECTURES="${CUDA_V12_ARCHITECTURES}" \
|
||||
CUDA_VARIANT="_v12" \
|
||||
OLLAMA_CUSTOM_CUDA_DEFS="-DGGML_CUDA_USE_GRAPHS=on" \
|
||||
bash gen_linux.sh
|
||||
|
||||
FROM --platform=linux/arm64 nvidia/cuda:$CUDA_VERSION_11-devel-rockylinux8 AS cuda-11-build-runner-arm64
|
||||
ARG CMAKE_VERSION
|
||||
COPY ./scripts/rh_linux_deps.sh /
|
||||
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
|
||||
# CUDA v11 requires gcc v10. v10.3 has regressions, so the rockylinux 8.5 AppStream has the latest compatible version
|
||||
FROM --platform=linux/amd64 rocm/dev-almalinux-8:${ROCMVERSION}-complete AS base-amd64
|
||||
RUN yum install -y yum-utils \
|
||||
&& yum-config-manager --add-repo https://dl.rockylinux.org/vault/rocky/8.5/AppStream/\$basearch/os/ \
|
||||
&& rpm --import https://dl.rockylinux.org/pub/rocky/RPM-GPG-KEY-Rocky-8 \
|
||||
&& dnf install -y yum-utils ccache gcc-toolset-10-gcc-10.2.1-8.2.el8 gcc-toolset-10-gcc-c++-10.2.1-8.2.el8 gcc-toolset-10-binutils-2.35-11.el8 \
|
||||
&& yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/x86_64/cuda-rhel8.repo
|
||||
ENV PATH=/opt/rh/gcc-toolset-10/root/usr/bin:$PATH
|
||||
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
|
||||
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
|
||||
ARG CGO_CFLAGS
|
||||
ARG CUDA_V11_ARCHITECTURES
|
||||
ENV GOARCH=arm64
|
||||
RUN OLLAMA_SKIP_STATIC_GENERATE=1 \
|
||||
OLLAMA_SKIP_CPU_GENERATE=1 \
|
||||
CMAKE_CUDA_ARCHITECTURES="${CUDA_V11_ARCHITECTURES}" \
|
||||
CUDA_VARIANT="_v11" \
|
||||
bash gen_linux.sh
|
||||
|
||||
FROM --platform=linux/arm64 nvidia/cuda:$CUDA_VERSION_12-devel-rockylinux8 AS cuda-12-build-runner-arm64
|
||||
ARG CMAKE_VERSION
|
||||
COPY ./scripts/rh_linux_deps.sh /
|
||||
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
|
||||
ENV PATH=/opt/rh/gcc-toolset-10/root/usr/bin:$PATH
|
||||
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
|
||||
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
|
||||
ARG CGO_CFLAGS
|
||||
ARG CUDA_V12_ARCHITECTURES
|
||||
ENV GOARCH=arm64
|
||||
FROM --platform=linux/arm64 almalinux:8 AS base-arm64
|
||||
# install epel-release for ccache
|
||||
RUN yum install -y yum-utils epel-release \
|
||||
&& dnf install -y clang ccache \
|
||||
&& yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/sbsa/cuda-rhel8.repo
|
||||
ENV CC=clang CXX=clang++
|
||||
|
||||
FROM base-${TARGETARCH} AS base
|
||||
ARG CMAKEVERSION
|
||||
RUN curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKEVERSION}/cmake-${CMAKEVERSION}-linux-$(uname -m).tar.gz | tar xz -C /usr/local --strip-components 1
|
||||
COPY CMakeLists.txt CMakePresets.json .
|
||||
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
|
||||
ENV LDFLAGS=-s
|
||||
|
||||
FROM base AS cpu
|
||||
RUN dnf install -y gcc-toolset-11-gcc gcc-toolset-11-gcc-c++
|
||||
ENV PATH=/opt/rh/gcc-toolset-11/root/usr/bin:$PATH
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
OLLAMA_SKIP_STATIC_GENERATE=1 \
|
||||
OLLAMA_SKIP_CPU_GENERATE=1 \
|
||||
CMAKE_CUDA_ARCHITECTURES="${CUDA_V12_ARCHITECTURES}" \
|
||||
CUDA_VARIANT="_v12" \
|
||||
OLLAMA_CUSTOM_CUDA_DEFS="-DGGML_CUDA_USE_GRAPHS=on" \
|
||||
bash gen_linux.sh
|
||||
cmake --preset 'CPU' \
|
||||
&& cmake --build --parallel --preset 'CPU' \
|
||||
&& cmake --install build --component CPU --strip --parallel 8
|
||||
|
||||
|
||||
FROM --platform=linux/amd64 rocm/dev-centos-7:${ROCM_VERSION}-complete AS rocm-build-amd64
|
||||
ARG CMAKE_VERSION
|
||||
COPY ./scripts/rh_linux_deps.sh /
|
||||
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
|
||||
ENV PATH=/opt/rh/devtoolset-10/root/usr/bin:$PATH
|
||||
ENV LIBRARY_PATH=/opt/amdgpu/lib64
|
||||
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
|
||||
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
|
||||
ARG CGO_CFLAGS
|
||||
ARG AMDGPU_TARGETS
|
||||
ENV GOARCH=amd64
|
||||
FROM base AS cuda-11
|
||||
ARG CUDA11VERSION=11.3
|
||||
RUN dnf install -y cuda-toolkit-${CUDA11VERSION//./-}
|
||||
ENV PATH=/usr/local/cuda-11/bin:$PATH
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_SKIP_CPU_GENERATE=1 bash gen_linux.sh
|
||||
RUN mkdir -p ../../dist/linux-amd64-rocm/lib/ollama && \
|
||||
(cd /opt/rocm/lib && tar cf - rocblas/library) | (cd ../../dist/linux-amd64-rocm/lib/ollama && tar xf - )
|
||||
cmake --preset 'CUDA 11' \
|
||||
&& cmake --build --parallel --preset 'CUDA 11' \
|
||||
&& cmake --install build --component CUDA --strip --parallel 8
|
||||
|
||||
FROM --platform=linux/amd64 centos:7 AS cpu-builder-amd64
|
||||
ARG CMAKE_VERSION
|
||||
ARG GOLANG_VERSION
|
||||
COPY ./scripts/rh_linux_deps.sh /
|
||||
RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
|
||||
ENV PATH=/opt/rh/devtoolset-10/root/usr/bin:$PATH
|
||||
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
|
||||
ARG OLLAMA_CUSTOM_CPU_DEFS
|
||||
ARG CGO_CFLAGS
|
||||
ENV GOARCH=amd64
|
||||
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
|
||||
|
||||
FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu-build-amd64
|
||||
FROM base AS cuda-12
|
||||
ARG CUDA12VERSION=12.8
|
||||
RUN dnf install -y cuda-toolkit-${CUDA12VERSION//./-}
|
||||
ENV PATH=/usr/local/cuda-12/bin:$PATH
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu" bash gen_linux.sh
|
||||
FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu_avx-build-amd64
|
||||
cmake --preset 'CUDA 12' \
|
||||
&& cmake --build --parallel --preset 'CUDA 12' \
|
||||
&& cmake --install build --component CUDA --strip --parallel 8
|
||||
|
||||
FROM base AS rocm-6
|
||||
ENV PATH=/opt/rocm/hcc/bin:/opt/rocm/hip/bin:/opt/rocm/bin:/opt/rocm/hcc/bin:$PATH
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu_avx" bash gen_linux.sh
|
||||
FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu_avx2-build-amd64
|
||||
cmake --preset 'ROCm 6' \
|
||||
&& cmake --build --parallel --preset 'ROCm 6' \
|
||||
&& cmake --install build --component HIP --strip --parallel 8
|
||||
|
||||
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK5VERSION} AS jetpack-5
|
||||
ARG CMAKEVERSION
|
||||
RUN apt-get update && apt-get install -y curl ccache \
|
||||
&& curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKEVERSION}/cmake-${CMAKEVERSION}-linux-$(uname -m).tar.gz | tar xz -C /usr/local --strip-components 1
|
||||
COPY CMakeLists.txt CMakePresets.json .
|
||||
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu_avx2" bash gen_linux.sh
|
||||
cmake --preset 'JetPack 5' \
|
||||
&& cmake --build --parallel --preset 'JetPack 5' \
|
||||
&& cmake --install build --component CUDA --strip --parallel 8
|
||||
|
||||
FROM --platform=linux/arm64 rockylinux:8 AS cpu-builder-arm64
|
||||
ARG CMAKE_VERSION
|
||||
ARG GOLANG_VERSION
|
||||
COPY ./scripts/rh_linux_deps.sh /
|
||||
RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
|
||||
ENV PATH=/opt/rh/gcc-toolset-10/root/usr/bin:$PATH
|
||||
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
|
||||
ARG OLLAMA_CUSTOM_CPU_DEFS
|
||||
ARG CGO_CFLAGS
|
||||
ENV GOARCH=arm64
|
||||
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
|
||||
|
||||
FROM --platform=linux/arm64 cpu-builder-arm64 AS cpu-build-arm64
|
||||
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK6VERSION} AS jetpack-6
|
||||
ARG CMAKEVERSION
|
||||
RUN apt-get update && apt-get install -y curl ccache \
|
||||
&& curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKEVERSION}/cmake-${CMAKEVERSION}-linux-$(uname -m).tar.gz | tar xz -C /usr/local --strip-components 1
|
||||
COPY CMakeLists.txt CMakePresets.json .
|
||||
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu" bash gen_linux.sh
|
||||
cmake --preset 'JetPack 6' \
|
||||
&& cmake --build --parallel --preset 'JetPack 6' \
|
||||
&& cmake --install build --component CUDA --strip --parallel 8
|
||||
|
||||
|
||||
# Intermediate stages used for ./scripts/build_linux.sh
|
||||
FROM --platform=linux/amd64 cpu-build-amd64 AS build-amd64
|
||||
FROM base AS build
|
||||
WORKDIR /go/src/github.com/ollama/ollama
|
||||
COPY go.mod go.sum .
|
||||
RUN curl -fsSL https://golang.org/dl/go$(awk '/^go/ { print $2 }' go.mod).linux-$(case $(uname -m) in x86_64) echo amd64 ;; aarch64) echo arm64 ;; esac).tar.gz | tar xz -C /usr/local
|
||||
ENV PATH=/usr/local/go/bin:$PATH
|
||||
RUN go mod download
|
||||
COPY . .
|
||||
ARG GOFLAGS="'-ldflags=-w -s'"
|
||||
ENV CGO_ENABLED=1
|
||||
WORKDIR /go/src/github.com/ollama/ollama
|
||||
COPY . .
|
||||
COPY --from=cpu_avx-build-amd64 /go/src/github.com/ollama/ollama/build/ build/
|
||||
COPY --from=cpu_avx2-build-amd64 /go/src/github.com/ollama/ollama/build/ build/
|
||||
COPY --from=cuda-11-build-amd64 /go/src/github.com/ollama/ollama/dist/ dist/
|
||||
COPY --from=cuda-11-build-amd64 /go/src/github.com/ollama/ollama/build/ build/
|
||||
COPY --from=cuda-12-build-amd64 /go/src/github.com/ollama/ollama/dist/ dist/
|
||||
COPY --from=cuda-12-build-amd64 /go/src/github.com/ollama/ollama/build/ build/
|
||||
COPY --from=rocm-build-amd64 /go/src/github.com/ollama/ollama/dist/ dist/
|
||||
COPY --from=rocm-build-amd64 /go/src/github.com/ollama/ollama/build/ build/
|
||||
ARG GOFLAGS
|
||||
ARG CGO_CFLAGS
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
go build -trimpath -o dist/linux-amd64/bin/ollama .
|
||||
RUN cd dist/linux-$GOARCH && \
|
||||
tar --exclude runners -cf - . | pigz --best > ../ollama-linux-$GOARCH.tgz
|
||||
RUN cd dist/linux-$GOARCH-rocm && \
|
||||
tar -cf - . | pigz --best > ../ollama-linux-$GOARCH-rocm.tgz
|
||||
RUN --mount=type=cache,target=/root/.cache/go-build \
|
||||
go build -trimpath -buildmode=pie -o /bin/ollama .
|
||||
|
||||
FROM --platform=linux/arm64 cpu-build-arm64 AS build-arm64
|
||||
ENV CGO_ENABLED=1
|
||||
ARG GOLANG_VERSION
|
||||
WORKDIR /go/src/github.com/ollama/ollama
|
||||
COPY . .
|
||||
COPY --from=cuda-11-build-runner-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
|
||||
COPY --from=cuda-11-build-runner-arm64 /go/src/github.com/ollama/ollama/build/ build/
|
||||
COPY --from=cuda-12-build-runner-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
|
||||
COPY --from=cuda-12-build-runner-arm64 /go/src/github.com/ollama/ollama/build/ build/
|
||||
ARG GOFLAGS
|
||||
ARG CGO_CFLAGS
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
go build -trimpath -o dist/linux-arm64/bin/ollama .
|
||||
RUN cd dist/linux-$GOARCH && \
|
||||
tar --exclude runners -cf - . | pigz --best > ../ollama-linux-$GOARCH.tgz
|
||||
FROM --platform=linux/amd64 scratch AS amd64
|
||||
COPY --from=cuda-11 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_v11
|
||||
COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12
|
||||
|
||||
FROM --platform=linux/amd64 scratch AS dist-amd64
|
||||
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/ollama-linux-*.tgz /
|
||||
FROM --platform=linux/arm64 scratch AS dist-arm64
|
||||
COPY --from=build-arm64 /go/src/github.com/ollama/ollama/dist/ollama-linux-*.tgz /
|
||||
FROM dist-$TARGETARCH as dist
|
||||
FROM --platform=linux/arm64 scratch AS arm64
|
||||
COPY --from=cuda-11 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_v11
|
||||
COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12
|
||||
COPY --from=jetpack-5 dist/lib/ollama/cuda_v11 lib/ollama/cuda_jetpack5
|
||||
COPY --from=jetpack-6 dist/lib/ollama/cuda_v12 lib/ollama/cuda_jetpack6
|
||||
|
||||
FROM scratch AS rocm
|
||||
COPY --from=rocm-6 dist/lib/ollama/rocm /lib/ollama/rocm
|
||||
|
||||
# Optimized container images do not cary nested payloads
|
||||
FROM --platform=linux/amd64 cpu-builder-amd64 AS container-build-amd64
|
||||
WORKDIR /go/src/github.com/ollama/ollama
|
||||
COPY . .
|
||||
ARG GOFLAGS
|
||||
ARG CGO_CFLAGS
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
go build -trimpath -o dist/linux-amd64/bin/ollama .
|
||||
FROM ${FLAVOR} AS archive
|
||||
COPY --from=cpu dist/lib/ollama /lib/ollama
|
||||
COPY --from=build /bin/ollama /bin/ollama
|
||||
|
||||
FROM --platform=linux/arm64 cpu-builder-arm64 AS container-build-arm64
|
||||
WORKDIR /go/src/github.com/ollama/ollama
|
||||
COPY . .
|
||||
ARG GOFLAGS
|
||||
ARG CGO_CFLAGS
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
go build -trimpath -o dist/linux-arm64/bin/ollama .
|
||||
|
||||
FROM --platform=linux/amd64 ubuntu:22.04 AS runtime-amd64
|
||||
RUN apt-get update && \
|
||||
apt-get install -y ca-certificates && \
|
||||
apt-get clean && rm -rf /var/lib/apt/lists/*
|
||||
COPY --from=container-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/bin/ /bin/
|
||||
COPY --from=cpu-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
|
||||
COPY --from=cpu_avx-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
|
||||
COPY --from=cpu_avx2-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
|
||||
COPY --from=cuda-11-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
|
||||
COPY --from=cuda-12-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
|
||||
|
||||
FROM --platform=linux/arm64 ubuntu:22.04 AS runtime-arm64
|
||||
RUN apt-get update && \
|
||||
apt-get install -y ca-certificates && \
|
||||
apt-get clean && rm -rf /var/lib/apt/lists/*
|
||||
COPY --from=container-build-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/bin/ /bin/
|
||||
COPY --from=cpu-build-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
|
||||
COPY --from=cuda-11-build-runner-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
|
||||
COPY --from=cuda-12-build-runner-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
|
||||
|
||||
# ROCm libraries larger so we keep it distinct from the CPU/CUDA image
|
||||
FROM --platform=linux/amd64 ubuntu:22.04 AS runtime-rocm
|
||||
# Frontload the rocm libraries which are large, and rarely change to increase chance of a common layer
|
||||
# across releases
|
||||
COPY --from=rocm-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64-rocm/lib/ /lib/
|
||||
RUN apt-get update && \
|
||||
apt-get install -y ca-certificates && \
|
||||
apt-get clean && rm -rf /var/lib/apt/lists/*
|
||||
COPY --from=container-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/bin/ /bin/
|
||||
COPY --from=cpu-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
|
||||
COPY --from=cpu_avx-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
|
||||
COPY --from=cpu_avx2-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
|
||||
COPY --from=rocm-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
|
||||
EXPOSE 11434
|
||||
ENV OLLAMA_HOST=0.0.0.0
|
||||
|
||||
ENTRYPOINT ["/bin/ollama"]
|
||||
CMD ["serve"]
|
||||
|
||||
FROM runtime-$TARGETARCH
|
||||
EXPOSE 11434
|
||||
ENV OLLAMA_HOST=0.0.0.0
|
||||
FROM ubuntu:20.04
|
||||
RUN apt-get update \
|
||||
&& apt-get install -y ca-certificates \
|
||||
&& apt-get clean \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
COPY --from=archive /bin /usr/bin
|
||||
ENV PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
|
||||
COPY --from=archive /lib/ollama /usr/lib/ollama
|
||||
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
|
||||
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
|
||||
ENV NVIDIA_VISIBLE_DEVICES=all
|
||||
|
||||
ENV OLLAMA_HOST=0.0.0.0:11434
|
||||
EXPOSE 11434
|
||||
ENTRYPOINT ["/bin/ollama"]
|
||||
CMD ["serve"]
|
||||
|
60
Makefile.sync
Normal file
60
Makefile.sync
Normal file
@@ -0,0 +1,60 @@
|
||||
UPSTREAM=https://github.com/ggerganov/llama.cpp.git
|
||||
WORKDIR=llama/vendor
|
||||
FETCH_HEAD=d7cfe1ffe0f435d0048a6058d529daf76e072d9c
|
||||
|
||||
.PHONY: help
|
||||
help:
|
||||
@echo "Available targets:"
|
||||
@echo " sync Sync with upstream repositories"
|
||||
@echo " checkout Checkout upstream repository"
|
||||
@echo " apply-patches Apply patches to local repository"
|
||||
@echo " format-patches Format patches from local repository"
|
||||
@echo " clean Clean local repository"
|
||||
@echo
|
||||
@echo "Example:"
|
||||
@echo " make -f $(lastword $(MAKEFILE_LIST)) clean sync"
|
||||
|
||||
.PHONY: sync
|
||||
sync: llama/build-info.cpp llama/llama.cpp ml/backend/ggml/ggml apply-patches
|
||||
|
||||
.PHONY: llama/build-info.cpp
|
||||
llama/build-info.cpp: llama/build-info.cpp.in
|
||||
sed -e 's|@FETCH_HEAD@|$(FETCH_HEAD)|' $< > $@
|
||||
|
||||
.PHONY: llama/llama.cpp
|
||||
llama/llama.cpp: llama/vendor/ apply-patches
|
||||
rsync -arvzc -f "merge $@/.rsync-filter" $< $@
|
||||
|
||||
.PHONY: ml/backend/ggml/ggml apply-patches
|
||||
ml/backend/ggml/ggml: llama/vendor/ggml/ apply-patches
|
||||
rsync -arvzc -f "merge $@/.rsync-filter" $< $@
|
||||
|
||||
PATCHES=$(wildcard llama/patches/*.patch)
|
||||
|
||||
.PHONY: apply-patches
|
||||
.NOTPARALLEL:
|
||||
apply-patches: $(addsuffix ed, $(PATCHES))
|
||||
|
||||
%.patched: %.patch
|
||||
@if git -c user.name=nobody -c 'user.email=<>' -C $(WORKDIR) am -3 $(realpath $<); then touch $@; else git -C $(WORKDIR) am --abort; exit 1; fi
|
||||
|
||||
.PHONY: checkout
|
||||
checkout: $(WORKDIR)
|
||||
git -C $(WORKDIR) fetch
|
||||
git -C $(WORKDIR) checkout -f $(FETCH_HEAD)
|
||||
|
||||
$(WORKDIR):
|
||||
git clone $(UPSTREAM) $(WORKDIR)
|
||||
|
||||
.PHONE: format-patches
|
||||
format-patches: llama/patches
|
||||
git -C $(WORKDIR) format-patch \
|
||||
--no-signature \
|
||||
--no-numbered \
|
||||
--zero-commit \
|
||||
-o $(realpath $<) \
|
||||
$(FETCH_HEAD)
|
||||
|
||||
.PHONE: clean
|
||||
clean: checkout
|
||||
$(RM) $(addsuffix ed, $(PATCHES))
|
217
README.md
217
README.md
@@ -1,24 +1,24 @@
|
||||
<div align="center">
|
||||
<img alt="ollama" height="200px" src="https://github.com/ollama/ollama/assets/3325447/0d0b44e2-8f4a-4e99-9b52-a5c1c741c8f7">
|
||||
<a href="https://ollama.com">
|
||||
<img alt="ollama" height="200px" src="https://github.com/ollama/ollama/assets/3325447/0d0b44e2-8f4a-4e99-9b52-a5c1c741c8f7">
|
||||
</a>
|
||||
</div>
|
||||
|
||||
# Ollama
|
||||
|
||||
[](https://discord.gg/ollama)
|
||||
|
||||
Get up and running with large language models.
|
||||
|
||||
### macOS
|
||||
|
||||
[Download](https://ollama.com/download/Ollama-darwin.zip)
|
||||
|
||||
### Windows preview
|
||||
### Windows
|
||||
|
||||
[Download](https://ollama.com/download/OllamaSetup.exe)
|
||||
|
||||
### Linux
|
||||
|
||||
```
|
||||
```shell
|
||||
curl -fsSL https://ollama.com/install.sh | sh
|
||||
```
|
||||
|
||||
@@ -33,11 +33,16 @@ The official [Ollama Docker image](https://hub.docker.com/r/ollama/ollama) `olla
|
||||
- [ollama-python](https://github.com/ollama/ollama-python)
|
||||
- [ollama-js](https://github.com/ollama/ollama-js)
|
||||
|
||||
### Community
|
||||
|
||||
- [Discord](https://discord.gg/ollama)
|
||||
- [Reddit](https://reddit.com/r/ollama)
|
||||
|
||||
## Quickstart
|
||||
|
||||
To run and chat with [Llama 3.2](https://ollama.com/library/llama3.2):
|
||||
|
||||
```
|
||||
```shell
|
||||
ollama run llama3.2
|
||||
```
|
||||
|
||||
@@ -47,26 +52,30 @@ Ollama supports a list of models available on [ollama.com/library](https://ollam
|
||||
|
||||
Here are some example models that can be downloaded:
|
||||
|
||||
| Model | Parameters | Size | Download |
|
||||
| ------------------ | ---------- | ----- | ------------------------------ |
|
||||
| Llama 3.2 | 3B | 2.0GB | `ollama run llama3.2` |
|
||||
| Llama 3.2 | 1B | 1.3GB | `ollama run llama3.2:1b` |
|
||||
| Llama 3.1 | 8B | 4.7GB | `ollama run llama3.1` |
|
||||
| Llama 3.1 | 70B | 40GB | `ollama run llama3.1:70b` |
|
||||
| Llama 3.1 | 405B | 231GB | `ollama run llama3.1:405b` |
|
||||
| Phi 3 Mini | 3.8B | 2.3GB | `ollama run phi3` |
|
||||
| Phi 3 Medium | 14B | 7.9GB | `ollama run phi3:medium` |
|
||||
| Gemma 2 | 2B | 1.6GB | `ollama run gemma2:2b` |
|
||||
| Gemma 2 | 9B | 5.5GB | `ollama run gemma2` |
|
||||
| Gemma 2 | 27B | 16GB | `ollama run gemma2:27b` |
|
||||
| Mistral | 7B | 4.1GB | `ollama run mistral` |
|
||||
| Moondream 2 | 1.4B | 829MB | `ollama run moondream` |
|
||||
| Neural Chat | 7B | 4.1GB | `ollama run neural-chat` |
|
||||
| Starling | 7B | 4.1GB | `ollama run starling-lm` |
|
||||
| Code Llama | 7B | 3.8GB | `ollama run codellama` |
|
||||
| Llama 2 Uncensored | 7B | 3.8GB | `ollama run llama2-uncensored` |
|
||||
| LLaVA | 7B | 4.5GB | `ollama run llava` |
|
||||
| Solar | 10.7B | 6.1GB | `ollama run solar` |
|
||||
| Model | Parameters | Size | Download |
|
||||
| ------------------ | ---------- | ----- | -------------------------------- |
|
||||
| DeepSeek-R1 | 7B | 4.7GB | `ollama run deepseek-r1` |
|
||||
| DeepSeek-R1 | 671B | 404GB | `ollama run deepseek-r1:671b` |
|
||||
| Llama 3.3 | 70B | 43GB | `ollama run llama3.3` |
|
||||
| Llama 3.2 | 3B | 2.0GB | `ollama run llama3.2` |
|
||||
| Llama 3.2 | 1B | 1.3GB | `ollama run llama3.2:1b` |
|
||||
| Llama 3.2 Vision | 11B | 7.9GB | `ollama run llama3.2-vision` |
|
||||
| Llama 3.2 Vision | 90B | 55GB | `ollama run llama3.2-vision:90b` |
|
||||
| Llama 3.1 | 8B | 4.7GB | `ollama run llama3.1` |
|
||||
| Llama 3.1 | 405B | 231GB | `ollama run llama3.1:405b` |
|
||||
| Phi 4 | 14B | 9.1GB | `ollama run phi4` |
|
||||
| Phi 4 Mini | 3.8B | 2.5GB | `ollama run phi4-mini` |
|
||||
| Gemma 2 | 2B | 1.6GB | `ollama run gemma2:2b` |
|
||||
| Gemma 2 | 9B | 5.5GB | `ollama run gemma2` |
|
||||
| Gemma 2 | 27B | 16GB | `ollama run gemma2:27b` |
|
||||
| Mistral | 7B | 4.1GB | `ollama run mistral` |
|
||||
| Moondream 2 | 1.4B | 829MB | `ollama run moondream` |
|
||||
| Neural Chat | 7B | 4.1GB | `ollama run neural-chat` |
|
||||
| Starling | 7B | 4.1GB | `ollama run starling-lm` |
|
||||
| Code Llama | 7B | 3.8GB | `ollama run codellama` |
|
||||
| Llama 2 Uncensored | 7B | 3.8GB | `ollama run llama2-uncensored` |
|
||||
| LLaVA | 7B | 4.5GB | `ollama run llava` |
|
||||
| Solar | 10.7B | 6.1GB | `ollama run solar` |
|
||||
|
||||
> [!NOTE]
|
||||
> You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
|
||||
@@ -85,17 +94,17 @@ Ollama supports importing GGUF models in the Modelfile:
|
||||
|
||||
2. Create the model in Ollama
|
||||
|
||||
```
|
||||
```shell
|
||||
ollama create example -f Modelfile
|
||||
```
|
||||
|
||||
3. Run the model
|
||||
|
||||
```
|
||||
```shell
|
||||
ollama run example
|
||||
```
|
||||
|
||||
### Import from PyTorch or Safetensors
|
||||
### Import from Safetensors
|
||||
|
||||
See the [guide](docs/import.md) on importing models for more information.
|
||||
|
||||
@@ -103,7 +112,7 @@ See the [guide](docs/import.md) on importing models for more information.
|
||||
|
||||
Models from the Ollama library can be customized with a prompt. For example, to customize the `llama3.2` model:
|
||||
|
||||
```
|
||||
```shell
|
||||
ollama pull llama3.2
|
||||
```
|
||||
|
||||
@@ -130,7 +139,7 @@ ollama run mario
|
||||
Hello! It's your friend Mario.
|
||||
```
|
||||
|
||||
For more examples, see the [examples](examples) directory. For more information on working with a Modelfile, see the [Modelfile](docs/modelfile.md) documentation.
|
||||
For more information on working with a Modelfile, see the [Modelfile](docs/modelfile.md) documentation.
|
||||
|
||||
## CLI Reference
|
||||
|
||||
@@ -138,13 +147,13 @@ For more examples, see the [examples](examples) directory. For more information
|
||||
|
||||
`ollama create` is used to create a model from a Modelfile.
|
||||
|
||||
```
|
||||
```shell
|
||||
ollama create mymodel -f ./Modelfile
|
||||
```
|
||||
|
||||
### Pull a model
|
||||
|
||||
```
|
||||
```shell
|
||||
ollama pull llama3.2
|
||||
```
|
||||
|
||||
@@ -152,13 +161,13 @@ ollama pull llama3.2
|
||||
|
||||
### Remove a model
|
||||
|
||||
```
|
||||
```shell
|
||||
ollama rm llama3.2
|
||||
```
|
||||
|
||||
### Copy a model
|
||||
|
||||
```
|
||||
```shell
|
||||
ollama cp llama3.2 my-model
|
||||
```
|
||||
|
||||
@@ -177,37 +186,39 @@ I'm a basic program that prints the famous "Hello, world!" message to the consol
|
||||
|
||||
```
|
||||
ollama run llava "What's in this image? /Users/jmorgan/Desktop/smile.png"
|
||||
The image features a yellow smiley face, which is likely the central focus of the picture.
|
||||
```
|
||||
|
||||
> **Output**: The image features a yellow smiley face, which is likely the central focus of the picture.
|
||||
|
||||
### Pass the prompt as an argument
|
||||
|
||||
```shell
|
||||
ollama run llama3.2 "Summarize this file: $(cat README.md)"
|
||||
```
|
||||
$ ollama run llama3.2 "Summarize this file: $(cat README.md)"
|
||||
Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.
|
||||
```
|
||||
|
||||
> **Output**: Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.
|
||||
|
||||
### Show model information
|
||||
|
||||
```
|
||||
```shell
|
||||
ollama show llama3.2
|
||||
```
|
||||
|
||||
### List models on your computer
|
||||
|
||||
```
|
||||
```shell
|
||||
ollama list
|
||||
```
|
||||
|
||||
### List which models are currently loaded
|
||||
|
||||
```
|
||||
```shell
|
||||
ollama ps
|
||||
```
|
||||
|
||||
### Stop a model which is currently running
|
||||
|
||||
```
|
||||
```shell
|
||||
ollama stop llama3.2
|
||||
```
|
||||
|
||||
@@ -223,13 +234,13 @@ See the [developer guide](https://github.com/ollama/ollama/blob/main/docs/develo
|
||||
|
||||
Next, start the server:
|
||||
|
||||
```
|
||||
```shell
|
||||
./ollama serve
|
||||
```
|
||||
|
||||
Finally, in a separate shell, run a model:
|
||||
|
||||
```
|
||||
```shell
|
||||
./ollama run llama3.2
|
||||
```
|
||||
|
||||
@@ -239,7 +250,7 @@ Ollama has a REST API for running and managing models.
|
||||
|
||||
### Generate a response
|
||||
|
||||
```
|
||||
```shell
|
||||
curl http://localhost:11434/api/generate -d '{
|
||||
"model": "llama3.2",
|
||||
"prompt":"Why is the sky blue?"
|
||||
@@ -248,7 +259,7 @@ curl http://localhost:11434/api/generate -d '{
|
||||
|
||||
### Chat with a model
|
||||
|
||||
```
|
||||
```shell
|
||||
curl http://localhost:11434/api/chat -d '{
|
||||
"model": "llama3.2",
|
||||
"messages": [
|
||||
@@ -296,7 +307,8 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [AnythingLLM (Docker + MacOs/Windows/Linux native app)](https://github.com/Mintplex-Labs/anything-llm)
|
||||
- [Ollama Basic Chat: Uses HyperDiv Reactive UI](https://github.com/rapidarchitect/ollama_basic_chat)
|
||||
- [Ollama-chats RPG](https://github.com/drazdra/ollama-chats)
|
||||
- [QA-Pilot](https://github.com/reid41/QA-Pilot) (Chat with Code Repository)
|
||||
- [IntelliBar](https://intellibar.app/) (AI-powered assistant for macOS)
|
||||
- [QA-Pilot](https://github.com/reid41/QA-Pilot) (Interactive chat tool that can leverage Ollama models for rapid understanding and navigation of GitHub code repositories)
|
||||
- [ChatOllama](https://github.com/sugarforever/chat-ollama) (Open Source Chatbot based on Ollama with Knowledge Bases)
|
||||
- [CRAG Ollama Chat](https://github.com/Nagi-ovo/CRAG-Ollama-Chat) (Simple Web Search with Corrective RAG)
|
||||
- [RAGFlow](https://github.com/infiniflow/ragflow) (Open-source Retrieval-Augmented Generation engine based on deep document understanding)
|
||||
@@ -306,11 +318,17 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [Ollama RAG Chatbot](https://github.com/datvodinh/rag-chatbot.git) (Local Chat with multiple PDFs using Ollama and RAG)
|
||||
- [BrainSoup](https://www.nurgo-software.com/products/brainsoup) (Flexible native client with RAG & multi-agent automation)
|
||||
- [macai](https://github.com/Renset/macai) (macOS client for Ollama, ChatGPT, and other compatible API back-ends)
|
||||
- [RWKV-Runner](https://github.com/josStorer/RWKV-Runner) (RWKV offline LLM deployment tool, also usable as a client for ChatGPT and Ollama)
|
||||
- [Ollama Grid Search](https://github.com/dezoito/ollama-grid-search) (app to evaluate and compare models)
|
||||
- [Olpaka](https://github.com/Otacon/olpaka) (User-friendly Flutter Web App for Ollama)
|
||||
- [OllamaSpring](https://github.com/CrazyNeil/OllamaSpring) (Ollama Client for macOS)
|
||||
- [LLocal.in](https://github.com/kartikm7/llocal) (Easy to use Electron Desktop Client for Ollama)
|
||||
- [Shinkai Desktop](https://github.com/dcSpark/shinkai-apps) (Two click install Local AI using Ollama + Files + RAG)
|
||||
- [AiLama](https://github.com/zeyoyt/ailama) (A Discord User App that allows you to interact with Ollama anywhere in discord )
|
||||
- [Ollama with Google Mesop](https://github.com/rapidarchitect/ollama_mesop/) (Mesop Chat Client implementation with Ollama)
|
||||
- [R2R](https://github.com/SciPhi-AI/R2R) (Open-source RAG engine)
|
||||
- [Ollama-Kis](https://github.com/elearningshow/ollama-kis) (A simple easy to use GUI with sample custom LLM for Drivers Education)
|
||||
- [OpenGPA](https://opengpa.org) (Open-source offline-first Enterprise Agentic Application)
|
||||
- [Painting Droid](https://github.com/mateuszmigas/painting-droid) (Painting app with AI integrations)
|
||||
- [Kerlig AI](https://www.kerlig.com/) (AI writing assistant for macOS)
|
||||
- [AI Studio](https://github.com/MindWorkAI/AI-Studio)
|
||||
@@ -318,6 +336,9 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [LLMStack](https://github.com/trypromptly/LLMStack) (No-code multi-agent framework to build LLM agents and workflows)
|
||||
- [BoltAI for Mac](https://boltai.com) (AI Chat Client for Mac)
|
||||
- [Harbor](https://github.com/av/harbor) (Containerized LLM Toolkit with Ollama as default backend)
|
||||
- [PyGPT](https://github.com/szczyglis-dev/py-gpt) (AI desktop assistant for Linux, Windows and Mac)
|
||||
- [Alpaca](https://github.com/Jeffser/Alpaca) (An Ollama client application for linux and macos made with GTK4 and Adwaita)
|
||||
- [AutoGPT](https://github.com/Significant-Gravitas/AutoGPT/blob/master/docs/content/platform/ollama.md) (AutoGPT Ollama integration)
|
||||
- [Go-CREW](https://www.jonathanhecl.com/go-crew/) (Powerful Offline RAG in Golang)
|
||||
- [PartCAD](https://github.com/openvmp/partcad/) (CAD model generation with OpenSCAD and CadQuery)
|
||||
- [Ollama4j Web UI](https://github.com/ollama4j/ollama4j-web-ui) - Java-based Web UI for Ollama built with Vaadin, Spring Boot and Ollama4j
|
||||
@@ -327,15 +348,60 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)
|
||||
- [Archyve](https://github.com/nickthecook/archyve) (RAG-enabling document library)
|
||||
- [crewAI with Mesop](https://github.com/rapidarchitect/ollama-crew-mesop) (Mesop Web Interface to run crewAI with Ollama)
|
||||
- [Tkinter-based client](https://github.com/chyok/ollama-gui) (Python tkinter-based Client for Ollama)
|
||||
- [LLMChat](https://github.com/trendy-design/llmchat) (Privacy focused, 100% local, intuitive all-in-one chat interface)
|
||||
- [Local Multimodal AI Chat](https://github.com/Leon-Sander/Local-Multimodal-AI-Chat) (Ollama-based LLM Chat with support for multiple features, including PDF RAG, voice chat, image-based interactions, and integration with OpenAI.)
|
||||
- [ARGO](https://github.com/xark-argo/argo) (Locally download and run Ollama and Huggingface models with RAG on Mac/Windows/Linux)
|
||||
- [OrionChat](https://github.com/EliasPereirah/OrionChat) - OrionChat is a web interface for chatting with different AI providers
|
||||
- [G1](https://github.com/bklieger-groq/g1) (Prototype of using prompting strategies to improve the LLM's reasoning through o1-like reasoning chains.)
|
||||
- [Web management](https://github.com/lemonit-eric-mao/ollama-web-management) (Web management page)
|
||||
- [Promptery](https://github.com/promptery/promptery) (desktop client for Ollama.)
|
||||
- [Ollama App](https://github.com/JHubi1/ollama-app) (Modern and easy-to-use multi-platform client for Ollama)
|
||||
- [chat-ollama](https://github.com/annilq/chat-ollama) (a React Native client for Ollama)
|
||||
- [SpaceLlama](https://github.com/tcsenpai/spacellama) (Firefox and Chrome extension to quickly summarize web pages with ollama in a sidebar)
|
||||
- [YouLama](https://github.com/tcsenpai/youlama) (Webapp to quickly summarize any YouTube video, supporting Invidious as well)
|
||||
- [DualMind](https://github.com/tcsenpai/dualmind) (Experimental app allowing two models to talk to each other in the terminal or in a web interface)
|
||||
- [ollamarama-matrix](https://github.com/h1ddenpr0cess20/ollamarama-matrix) (Ollama chatbot for the Matrix chat protocol)
|
||||
- [ollama-chat-app](https://github.com/anan1213095357/ollama-chat-app) (Flutter-based chat app)
|
||||
- [Perfect Memory AI](https://www.perfectmemory.ai/) (Productivity AI assists personalized by what you have seen on your screen, heard and said in the meetings)
|
||||
- [Hexabot](https://github.com/hexastack/hexabot) (A conversational AI builder)
|
||||
- [Reddit Rate](https://github.com/rapidarchitect/reddit_analyzer) (Search and Rate Reddit topics with a weighted summation)
|
||||
- [OpenTalkGpt](https://github.com/adarshM84/OpenTalkGpt) (Chrome Extension to manage open-source models supported by Ollama, create custom models, and chat with models from a user-friendly UI)
|
||||
- [VT](https://github.com/vinhnx/vt.ai) (A minimal multimodal AI chat app, with dynamic conversation routing. Supports local models via Ollama)
|
||||
- [Nosia](https://github.com/nosia-ai/nosia) (Easy to install and use RAG platform based on Ollama)
|
||||
- [Witsy](https://github.com/nbonamy/witsy) (An AI Desktop application available for Mac/Windows/Linux)
|
||||
- [Abbey](https://github.com/US-Artificial-Intelligence/abbey) (A configurable AI interface server with notebooks, document storage, and YouTube support)
|
||||
- [Minima](https://github.com/dmayboroda/minima) (RAG with on-premises or fully local workflow)
|
||||
- [aidful-ollama-model-delete](https://github.com/AidfulAI/aidful-ollama-model-delete) (User interface for simplified model cleanup)
|
||||
- [Perplexica](https://github.com/ItzCrazyKns/Perplexica) (An AI-powered search engine & an open-source alternative to Perplexity AI)
|
||||
- [Ollama Chat WebUI for Docker ](https://github.com/oslook/ollama-webui) (Support for local docker deployment, lightweight ollama webui)
|
||||
- [AI Toolkit for Visual Studio Code](https://aka.ms/ai-tooklit/ollama-docs) (Microsoft-official VSCode extension to chat, test, evaluate models with Ollama support, and use them in your AI applications.)
|
||||
- [MinimalNextOllamaChat](https://github.com/anilkay/MinimalNextOllamaChat) (Minimal Web UI for Chat and Model Control)
|
||||
- [Chipper](https://github.com/TilmanGriesel/chipper) AI interface for tinkerers (Ollama, Haystack RAG, Python)
|
||||
- [ChibiChat](https://github.com/CosmicEventHorizon/ChibiChat) (Kotlin-based Android app to chat with Ollama and Koboldcpp API endpoints)
|
||||
- [LocalLLM](https://github.com/qusaismael/localllm) (Minimal Web-App to run ollama models on it with a GUI)
|
||||
- [Ollamazing](https://github.com/buiducnhat/ollamazing) (Web extension to run Ollama models)
|
||||
- [OpenDeepResearcher-via-searxng](https://github.com/benhaotang/OpenDeepResearcher-via-searxng) (A Deep Research equivent endpoint with Ollama support for running locally)
|
||||
- [AntSK](https://github.com/AIDotNet/AntSK) (Out-of-the-box & Adaptable RAG Chatbot)
|
||||
- [MaxKB](https://github.com/1Panel-dev/MaxKB/) (Ready-to-use & flexible RAG Chatbot)
|
||||
- [yla](https://github.com/danielekp/yla) (Web interface to freely interact with your customized models)
|
||||
- [LangBot](https://github.com/RockChinQ/LangBot) (LLM-based instant messaging bots platform, with Agents, RAG features, supports multiple platforms)
|
||||
- [1Panel](https://github.com/1Panel-dev/1Panel/) (Web-based Linux Server Management Tool)
|
||||
- [AstrBot](https://github.com/Soulter/AstrBot/) (User-friendly LLM-based multi-platform chatbot with a WebUI, supporting RAG, LLM agents, and plugins integration)
|
||||
- [Reins](https://github.com/ibrahimcetin/reins) (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)
|
||||
|
||||
### Cloud
|
||||
|
||||
- [Google Cloud](https://cloud.google.com/run/docs/tutorials/gpu-gemma2-with-ollama)
|
||||
- [Fly.io](https://fly.io/docs/python/do-more/add-ollama/)
|
||||
- [Koyeb](https://www.koyeb.com/deploy/ollama)
|
||||
|
||||
### Terminal
|
||||
|
||||
- [oterm](https://github.com/ggozad/oterm)
|
||||
- [Ellama Emacs client](https://github.com/s-kostyaev/ellama)
|
||||
- [Emacs client](https://github.com/zweifisch/ollama)
|
||||
- [neollama](https://github.com/paradoxical-dev/neollama) UI client for interacting with models from within Neovim
|
||||
- [gen.nvim](https://github.com/David-Kunz/gen.nvim)
|
||||
- [ollama.nvim](https://github.com/nomnivore/ollama.nvim)
|
||||
- [ollero.nvim](https://github.com/marco-souza/ollero.nvim)
|
||||
@@ -345,7 +411,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [Oatmeal](https://github.com/dustinblackman/oatmeal)
|
||||
- [cmdh](https://github.com/pgibler/cmdh)
|
||||
- [ooo](https://github.com/npahlfer/ooo)
|
||||
- [shell-pilot](https://github.com/reid41/shell-pilot)
|
||||
- [shell-pilot](https://github.com/reid41/shell-pilot)(Interact with models via pure shell scripts on Linux or macOS)
|
||||
- [tenere](https://github.com/pythops/tenere)
|
||||
- [llm-ollama](https://github.com/taketwo/llm-ollama) for [Datasette's LLM CLI](https://llm.datasette.io/en/stable/).
|
||||
- [typechat-cli](https://github.com/anaisbetts/typechat-cli)
|
||||
@@ -353,25 +419,37 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [tlm](https://github.com/yusufcanb/tlm)
|
||||
- [podman-ollama](https://github.com/ericcurtin/podman-ollama)
|
||||
- [gollama](https://github.com/sammcj/gollama)
|
||||
- [ParLlama](https://github.com/paulrobello/parllama)
|
||||
- [Ollama eBook Summary](https://github.com/cognitivetech/ollama-ebook-summary/)
|
||||
- [Ollama Mixture of Experts (MOE) in 50 lines of code](https://github.com/rapidarchitect/ollama_moe)
|
||||
- [vim-intelligence-bridge](https://github.com/pepo-ec/vim-intelligence-bridge) Simple interaction of "Ollama" with the Vim editor
|
||||
- [x-cmd ollama](https://x-cmd.com/mod/ollama)
|
||||
- [bb7](https://github.com/drunkwcodes/bb7)
|
||||
- [SwollamaCLI](https://github.com/marcusziade/Swollama) bundled with the Swollama Swift package. [Demo](https://github.com/marcusziade/Swollama?tab=readme-ov-file#cli-usage)
|
||||
- [aichat](https://github.com/sigoden/aichat) All-in-one LLM CLI tool featuring Shell Assistant, Chat-REPL, RAG, AI tools & agents, with access to OpenAI, Claude, Gemini, Ollama, Groq, and more.
|
||||
- [PowershAI](https://github.com/rrg92/powershai) PowerShell module that brings AI to terminal on Windows, including support for Ollama
|
||||
- [orbiton](https://github.com/xyproto/orbiton) Configuration-free text editor and IDE with support for tab completion with Ollama.
|
||||
|
||||
### Apple Vision Pro
|
||||
|
||||
- [Enchanted](https://github.com/AugustDev/enchanted)
|
||||
|
||||
### Database
|
||||
|
||||
- [pgai](https://github.com/timescale/pgai) - PostgreSQL as a vector database (Create and search embeddings from Ollama models using pgvector)
|
||||
- [Get started guide](https://github.com/timescale/pgai/blob/main/docs/vectorizer-quick-start.md)
|
||||
- [MindsDB](https://github.com/mindsdb/mindsdb/blob/staging/mindsdb/integrations/handlers/ollama_handler/README.md) (Connects Ollama models with nearly 200 data platforms and apps)
|
||||
- [chromem-go](https://github.com/philippgille/chromem-go/blob/v0.5.0/embed_ollama.go) with [example](https://github.com/philippgille/chromem-go/tree/v0.5.0/examples/rag-wikipedia-ollama)
|
||||
- [Kangaroo](https://github.com/dbkangaroo/kangaroo) (AI-powered SQL client and admin tool for popular databases)
|
||||
|
||||
### Package managers
|
||||
|
||||
- [Pacman](https://archlinux.org/packages/extra/x86_64/ollama/)
|
||||
- [Gentoo](https://github.com/gentoo/guru/tree/master/app-misc/ollama)
|
||||
- [Homebrew](https://formulae.brew.sh/formula/ollama)
|
||||
- [Helm Chart](https://artifacthub.io/packages/helm/ollama-helm/ollama)
|
||||
- [Guix channel](https://codeberg.org/tusharhero/ollama-guix)
|
||||
- [Nix package](https://search.nixos.org/packages?channel=24.05&show=ollama&from=0&size=50&sort=relevance&type=packages&query=ollama)
|
||||
- [Nix package](https://search.nixos.org/packages?show=ollama&from=0&size=50&sort=relevance&type=packages&query=ollama)
|
||||
- [Flox](https://flox.dev/blog/ollama-part-one)
|
||||
|
||||
### Libraries
|
||||
@@ -379,9 +457,13 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [LangChain](https://python.langchain.com/docs/integrations/llms/ollama) and [LangChain.js](https://js.langchain.com/docs/integrations/chat/ollama/) with [example](https://js.langchain.com/docs/tutorials/local_rag/)
|
||||
- [Firebase Genkit](https://firebase.google.com/docs/genkit/plugins/ollama)
|
||||
- [crewAI](https://github.com/crewAIInc/crewAI)
|
||||
- [Yacana](https://remembersoftwares.github.io/yacana/) (User-friendly multi-agent framework for brainstorming and executing predetermined flows with built-in tool integration)
|
||||
- [Spring AI](https://github.com/spring-projects/spring-ai) with [reference](https://docs.spring.io/spring-ai/reference/api/chat/ollama-chat.html) and [example](https://github.com/tzolov/ollama-tools)
|
||||
- [LangChainGo](https://github.com/tmc/langchaingo/) with [example](https://github.com/tmc/langchaingo/tree/main/examples/ollama-completion-example)
|
||||
- [LangChain4j](https://github.com/langchain4j/langchain4j) with [example](https://github.com/langchain4j/langchain4j-examples/tree/main/ollama-examples/src/main/java)
|
||||
- [LangChainRust](https://github.com/Abraxas-365/langchain-rust) with [example](https://github.com/Abraxas-365/langchain-rust/blob/main/examples/llm_ollama.rs)
|
||||
- [LangChain for .NET](https://github.com/tryAGI/LangChain) with [example](https://github.com/tryAGI/LangChain/blob/main/examples/LangChain.Samples.OpenAI/Program.cs)
|
||||
- [LLPhant](https://github.com/theodo-group/LLPhant?tab=readme-ov-file#ollama)
|
||||
- [LlamaIndex](https://docs.llamaindex.ai/en/stable/examples/llm/ollama/) and [LlamaIndexTS](https://ts.llamaindex.ai/modules/llms/available_llms/ollama)
|
||||
- [LiteLLM](https://github.com/BerriAI/litellm)
|
||||
- [OllamaFarm for Go](https://github.com/presbrey/ollamafarm)
|
||||
@@ -406,23 +488,40 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [Portkey](https://portkey.ai/docs/welcome/integration-guides/ollama)
|
||||
- [PromptingTools.jl](https://github.com/svilupp/PromptingTools.jl) with an [example](https://svilupp.github.io/PromptingTools.jl/dev/examples/working_with_ollama)
|
||||
- [LlamaScript](https://github.com/Project-Llama/llamascript)
|
||||
- [llm-axe](https://github.com/emirsahin1/llm-axe) (Python Toolkit for Building LLM Powered Apps)
|
||||
- [Gollm](https://docs.gollm.co/examples/ollama-example)
|
||||
- [Gollama for Golang](https://github.com/jonathanhecl/gollama)
|
||||
- [Ollamaclient for Golang](https://github.com/xyproto/ollamaclient)
|
||||
- [High-level function abstraction in Go](https://gitlab.com/tozd/go/fun)
|
||||
- [Ollama PHP](https://github.com/ArdaGnsrn/ollama-php)
|
||||
- [Agents-Flex for Java](https://github.com/agents-flex/agents-flex) with [example](https://github.com/agents-flex/agents-flex/tree/main/agents-flex-llm/agents-flex-llm-ollama/src/test/java/com/agentsflex/llm/ollama)
|
||||
- [Parakeet](https://github.com/parakeet-nest/parakeet) is a GoLang library, made to simplify the development of small generative AI applications with Ollama.
|
||||
- [Haverscript](https://github.com/andygill/haverscript) with [examples](https://github.com/andygill/haverscript/tree/main/examples)
|
||||
- [Ollama for Swift](https://github.com/mattt/ollama-swift)
|
||||
- [Swollama for Swift](https://github.com/marcusziade/Swollama) with [DocC](https://marcusziade.github.io/Swollama/documentation/swollama/)
|
||||
- [GoLamify](https://github.com/prasad89/golamify)
|
||||
- [Ollama for Haskell](https://github.com/tusharad/ollama-haskell)
|
||||
- [multi-llm-ts](https://github.com/nbonamy/multi-llm-ts) (A Typescript/JavaScript library allowing access to different LLM in unified API)
|
||||
- [LlmTornado](https://github.com/lofcz/llmtornado) (C# library providing a unified interface for major FOSS & Commercial inference APIs)
|
||||
- [Ollama for Zig](https://github.com/dravenk/ollama-zig)
|
||||
- [Abso](https://github.com/lunary-ai/abso) (OpenAI-compatible TypeScript SDK for any LLM provider)
|
||||
- [Nichey](https://github.com/goodreasonai/nichey) is a Python package for generating custom wikis for your research topic
|
||||
|
||||
### Mobile
|
||||
|
||||
- [Enchanted](https://github.com/AugustDev/enchanted)
|
||||
- [Maid](https://github.com/Mobile-Artificial-Intelligence/maid)
|
||||
- [Ollama App](https://github.com/JHubi1/ollama-app) (Modern and easy-to-use multi-platform client for Ollama)
|
||||
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)
|
||||
- [Ollama Android Chat](https://github.com/sunshine0523/OllamaServer) (No need for Termux, start the Ollama service with one click on an Android device)
|
||||
- [Reins](https://github.com/ibrahimcetin/reins) (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)
|
||||
|
||||
### Extensions & Plugins
|
||||
|
||||
- [Raycast extension](https://github.com/MassimilianoPasquini97/raycast_ollama)
|
||||
- [Discollama](https://github.com/mxyng/discollama) (Discord bot inside the Ollama discord channel)
|
||||
- [Continue](https://github.com/continuedev/continue)
|
||||
- [Vibe](https://github.com/thewh1teagle/vibe) (Transcribe and analyze meetings with Ollama)
|
||||
- [Obsidian Ollama plugin](https://github.com/hinterdupfinger/obsidian-ollama)
|
||||
- [Logseq Ollama plugin](https://github.com/omagdy7/ollama-logseq)
|
||||
- [NotesOllama](https://github.com/andersrex/notesollama) (Apple Notes Ollama plugin)
|
||||
@@ -445,14 +544,30 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [AI Telegram Bot](https://github.com/tusharhero/aitelegrambot) (Telegram bot using Ollama in backend)
|
||||
- [AI ST Completion](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) (Sublime Text 4 AI assistant plugin with Ollama support)
|
||||
- [Discord-Ollama Chat Bot](https://github.com/kevinthedang/discord-ollama) (Generalized TypeScript Discord Bot w/ Tuning Documentation)
|
||||
- [ChatGPTBox: All in one browser extension](https://github.com/josStorer/chatGPTBox) with [Integrating Tutorial](https://github.com/josStorer/chatGPTBox/issues/616#issuecomment-1975186467)
|
||||
- [Discord AI chat/moderation bot](https://github.com/rapmd73/Companion) Chat/moderation bot written in python. Uses Ollama to create personalities.
|
||||
- [Headless Ollama](https://github.com/nischalj10/headless-ollama) (Scripts to automatically install ollama client & models on any OS for apps that depends on ollama server)
|
||||
- [vnc-lm](https://github.com/jk011ru/vnc-lm) (A containerized Discord bot with support for attachments and web links)
|
||||
- [Terraform AWS Ollama & Open WebUI](https://github.com/xuyangbocn/terraform-aws-self-host-llm) (A Terraform module to deploy on AWS a ready-to-use Ollama service, together with its front end Open WebUI service.)
|
||||
- [node-red-contrib-ollama](https://github.com/jakubburkiewicz/node-red-contrib-ollama)
|
||||
- [Local AI Helper](https://github.com/ivostoykov/localAI) (Chrome and Firefox extensions that enable interactions with the active tab and customisable API endpoints. Includes secure storage for user prompts.)
|
||||
- [vnc-lm](https://github.com/jake83741/vnc-lm) (Discord bot for messaging with LLMs through Ollama and LiteLLM. Seamlessly move between local and flagship models.)
|
||||
- [LSP-AI](https://github.com/SilasMarvin/lsp-ai) (Open-source language server for AI-powered functionality)
|
||||
- [QodeAssist](https://github.com/Palm1r/QodeAssist) (AI-powered coding assistant plugin for Qt Creator)
|
||||
- [Obsidian Quiz Generator plugin](https://github.com/ECuiDev/obsidian-quiz-generator)
|
||||
- [AI Summmary Helper plugin](https://github.com/philffm/ai-summary-helper)
|
||||
- [TextCraft](https://github.com/suncloudsmoon/TextCraft) (Copilot in Word alternative using Ollama)
|
||||
- [Alfred Ollama](https://github.com/zeitlings/alfred-ollama) (Alfred Workflow)
|
||||
- [TextLLaMA](https://github.com/adarshM84/TextLLaMA) A Chrome Extension that helps you write emails, correct grammar, and translate into any language
|
||||
- [Simple-Discord-AI](https://github.com/zyphixor/simple-discord-ai)
|
||||
- [LLM Telegram Bot](https://github.com/innightwolfsleep/llm_telegram_bot) (telegram bot, primary for RP. Oobabooga-like buttons, [A1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui) API integration e.t.c)
|
||||
|
||||
### Supported backends
|
||||
|
||||
- [llama.cpp](https://github.com/ggerganov/llama.cpp) project founded by Georgi Gerganov.
|
||||
|
||||
### Observability
|
||||
- [Lunary](https://lunary.ai/docs/integrations/ollama) is the leading open-source LLM observability platform. It provides a variety of enterprise-grade features such as real-time analytics, prompt templates management, PII masking, and comprehensive agent tracing.
|
||||
- [OpenLIT](https://github.com/openlit/openlit) is an OpenTelemetry-native tool for monitoring Ollama Applications & GPUs using traces and metrics.
|
||||
- [HoneyHive](https://docs.honeyhive.ai/integrations/ollama) is an AI observability and evaluation platform for AI agents. Use HoneyHive to evaluate agent performance, interrogate failures, and monitor quality in production.
|
||||
- [Langfuse](https://langfuse.com/docs/integrations/ollama) is an open source LLM observability platform that enables teams to collaboratively monitor, evaluate and debug AI applications.
|
||||
- [MLflow Tracing](https://mlflow.org/docs/latest/llms/tracing/index.html#automatic-tracing) is an open source LLM observability tool with a convenient API to log and visualize traces, making it easy to debug and evaluate GenAI applications.
|
||||
|
@@ -10,7 +10,7 @@
|
||||
// repository].
|
||||
//
|
||||
// [the API documentation]: https://github.com/ollama/ollama/blob/main/docs/api.md
|
||||
// [in the GitHub repository]: https://github.com/ollama/ollama/tree/main/examples
|
||||
// [in the GitHub repository]: https://github.com/ollama/ollama/tree/main/api/examples
|
||||
package api
|
||||
|
||||
import (
|
||||
@@ -55,7 +55,7 @@ func checkError(resp *http.Response, body []byte) error {
|
||||
|
||||
// ClientFromEnvironment creates a new [Client] using configuration from the
|
||||
// environment variable OLLAMA_HOST, which points to the network host and
|
||||
// port on which the ollama service is listenting. The format of this variable
|
||||
// port on which the ollama service is listening. The format of this variable
|
||||
// is:
|
||||
//
|
||||
// <scheme>://<host>:<port>
|
||||
@@ -132,7 +132,7 @@ func (c *Client) do(ctx context.Context, method, path string, reqData, respData
|
||||
const maxBufferSize = 512 * format.KiloByte
|
||||
|
||||
func (c *Client) stream(ctx context.Context, method, path string, data any, fn func([]byte) error) error {
|
||||
var buf *bytes.Buffer
|
||||
var buf io.Reader
|
||||
if data != nil {
|
||||
bts, err := json.Marshal(data)
|
||||
if err != nil {
|
||||
|
@@ -1,6 +1,13 @@
|
||||
package api
|
||||
|
||||
import (
|
||||
"context"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"net/http"
|
||||
"net/http/httptest"
|
||||
"net/url"
|
||||
"strings"
|
||||
"testing"
|
||||
)
|
||||
|
||||
@@ -43,3 +50,206 @@ func TestClientFromEnvironment(t *testing.T) {
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
// testError represents an internal error type with status code and message
|
||||
// this is used since the error response from the server is not a standard error struct
|
||||
type testError struct {
|
||||
message string
|
||||
statusCode int
|
||||
}
|
||||
|
||||
func (e testError) Error() string {
|
||||
return e.message
|
||||
}
|
||||
|
||||
func TestClientStream(t *testing.T) {
|
||||
testCases := []struct {
|
||||
name string
|
||||
responses []any
|
||||
wantErr string
|
||||
}{
|
||||
{
|
||||
name: "immediate error response",
|
||||
responses: []any{
|
||||
testError{
|
||||
message: "test error message",
|
||||
statusCode: http.StatusBadRequest,
|
||||
},
|
||||
},
|
||||
wantErr: "test error message",
|
||||
},
|
||||
{
|
||||
name: "error after successful chunks, ok response",
|
||||
responses: []any{
|
||||
ChatResponse{Message: Message{Content: "partial response 1"}},
|
||||
ChatResponse{Message: Message{Content: "partial response 2"}},
|
||||
testError{
|
||||
message: "mid-stream error",
|
||||
statusCode: http.StatusOK,
|
||||
},
|
||||
},
|
||||
wantErr: "mid-stream error",
|
||||
},
|
||||
{
|
||||
name: "successful stream completion",
|
||||
responses: []any{
|
||||
ChatResponse{Message: Message{Content: "chunk 1"}},
|
||||
ChatResponse{Message: Message{Content: "chunk 2"}},
|
||||
ChatResponse{
|
||||
Message: Message{Content: "final chunk"},
|
||||
Done: true,
|
||||
DoneReason: "stop",
|
||||
},
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
for _, tc := range testCases {
|
||||
t.Run(tc.name, func(t *testing.T) {
|
||||
ts := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
|
||||
flusher, ok := w.(http.Flusher)
|
||||
if !ok {
|
||||
t.Fatal("expected http.Flusher")
|
||||
}
|
||||
|
||||
w.Header().Set("Content-Type", "application/x-ndjson")
|
||||
|
||||
for _, resp := range tc.responses {
|
||||
if errResp, ok := resp.(testError); ok {
|
||||
w.WriteHeader(errResp.statusCode)
|
||||
err := json.NewEncoder(w).Encode(map[string]string{
|
||||
"error": errResp.message,
|
||||
})
|
||||
if err != nil {
|
||||
t.Fatal("failed to encode error response:", err)
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
if err := json.NewEncoder(w).Encode(resp); err != nil {
|
||||
t.Fatalf("failed to encode response: %v", err)
|
||||
}
|
||||
flusher.Flush()
|
||||
}
|
||||
}))
|
||||
defer ts.Close()
|
||||
|
||||
client := NewClient(&url.URL{Scheme: "http", Host: ts.Listener.Addr().String()}, http.DefaultClient)
|
||||
|
||||
var receivedChunks []ChatResponse
|
||||
err := client.stream(context.Background(), http.MethodPost, "/v1/chat", nil, func(chunk []byte) error {
|
||||
var resp ChatResponse
|
||||
if err := json.Unmarshal(chunk, &resp); err != nil {
|
||||
return fmt.Errorf("failed to unmarshal chunk: %w", err)
|
||||
}
|
||||
receivedChunks = append(receivedChunks, resp)
|
||||
return nil
|
||||
})
|
||||
|
||||
if tc.wantErr != "" {
|
||||
if err == nil {
|
||||
t.Fatal("expected error but got nil")
|
||||
}
|
||||
if !strings.Contains(err.Error(), tc.wantErr) {
|
||||
t.Errorf("expected error containing %q, got %v", tc.wantErr, err)
|
||||
}
|
||||
return
|
||||
}
|
||||
if err != nil {
|
||||
t.Errorf("unexpected error: %v", err)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestClientDo(t *testing.T) {
|
||||
testCases := []struct {
|
||||
name string
|
||||
response any
|
||||
wantErr string
|
||||
}{
|
||||
{
|
||||
name: "immediate error response",
|
||||
response: testError{
|
||||
message: "test error message",
|
||||
statusCode: http.StatusBadRequest,
|
||||
},
|
||||
wantErr: "test error message",
|
||||
},
|
||||
{
|
||||
name: "server error response",
|
||||
response: testError{
|
||||
message: "internal error",
|
||||
statusCode: http.StatusInternalServerError,
|
||||
},
|
||||
wantErr: "internal error",
|
||||
},
|
||||
{
|
||||
name: "successful response",
|
||||
response: struct {
|
||||
ID string `json:"id"`
|
||||
Success bool `json:"success"`
|
||||
}{
|
||||
ID: "msg_123",
|
||||
Success: true,
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
for _, tc := range testCases {
|
||||
t.Run(tc.name, func(t *testing.T) {
|
||||
ts := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
|
||||
if errResp, ok := tc.response.(testError); ok {
|
||||
w.WriteHeader(errResp.statusCode)
|
||||
err := json.NewEncoder(w).Encode(map[string]string{
|
||||
"error": errResp.message,
|
||||
})
|
||||
if err != nil {
|
||||
t.Fatal("failed to encode error response:", err)
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
w.Header().Set("Content-Type", "application/json")
|
||||
if err := json.NewEncoder(w).Encode(tc.response); err != nil {
|
||||
t.Fatalf("failed to encode response: %v", err)
|
||||
}
|
||||
}))
|
||||
defer ts.Close()
|
||||
|
||||
client := NewClient(&url.URL{Scheme: "http", Host: ts.Listener.Addr().String()}, http.DefaultClient)
|
||||
|
||||
var resp struct {
|
||||
ID string `json:"id"`
|
||||
Success bool `json:"success"`
|
||||
}
|
||||
err := client.do(context.Background(), http.MethodPost, "/v1/messages", nil, &resp)
|
||||
|
||||
if tc.wantErr != "" {
|
||||
if err == nil {
|
||||
t.Fatalf("got nil, want error %q", tc.wantErr)
|
||||
}
|
||||
if err.Error() != tc.wantErr {
|
||||
t.Errorf("error message mismatch: got %q, want %q", err.Error(), tc.wantErr)
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
if err != nil {
|
||||
t.Fatalf("got error %q, want nil", err)
|
||||
}
|
||||
|
||||
if expectedResp, ok := tc.response.(struct {
|
||||
ID string `json:"id"`
|
||||
Success bool `json:"success"`
|
||||
}); ok {
|
||||
if resp.ID != expectedResp.ID {
|
||||
t.Errorf("response ID mismatch: got %q, want %q", resp.ID, expectedResp.ID)
|
||||
}
|
||||
if resp.Success != expectedResp.Success {
|
||||
t.Errorf("response Success mismatch: got %v, want %v", resp.Success, expectedResp.Success)
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
18
api/examples/README.md
Normal file
18
api/examples/README.md
Normal file
@@ -0,0 +1,18 @@
|
||||
# Ollama API Examples
|
||||
|
||||
Run the examples in this directory with:
|
||||
|
||||
```shell
|
||||
go run example_name/main.go
|
||||
```
|
||||
|
||||
## Chat - Chat with a model
|
||||
- [chat/main.go](chat/main.go)
|
||||
|
||||
## Generate - Generate text from a model
|
||||
- [generate/main.go](generate/main.go)
|
||||
- [generate-streaming/main.go](generate-streaming/main.go)
|
||||
|
||||
## Pull - Pull a model
|
||||
- [pull-progress/main.go](pull-progress/main.go)
|
||||
|
48
api/types.go
48
api/types.go
@@ -10,9 +10,11 @@ import (
|
||||
"strconv"
|
||||
"strings"
|
||||
"time"
|
||||
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
)
|
||||
|
||||
// StatusError is an error with and HTTP status code.
|
||||
// StatusError is an error with an HTTP status code and message.
|
||||
type StatusError struct {
|
||||
StatusCode int
|
||||
Status string
|
||||
@@ -57,7 +59,7 @@ type GenerateRequest struct {
|
||||
Template string `json:"template"`
|
||||
|
||||
// Context is the context parameter returned from a previous call to
|
||||
// Generate call. It can be used to keep a short conversational memory.
|
||||
// [Client.Generate]. It can be used to keep a short conversational memory.
|
||||
Context []int `json:"context,omitempty"`
|
||||
|
||||
// Stream specifies whether the response is streaming; it is true by default.
|
||||
@@ -67,7 +69,7 @@ type GenerateRequest struct {
|
||||
Raw bool `json:"raw,omitempty"`
|
||||
|
||||
// Format specifies the format to return a response in.
|
||||
Format string `json:"format"`
|
||||
Format json.RawMessage `json:"format,omitempty"`
|
||||
|
||||
// KeepAlive controls how long the model will stay loaded in memory following
|
||||
// this request.
|
||||
@@ -90,14 +92,14 @@ type ChatRequest struct {
|
||||
// Messages is the messages of the chat - can be used to keep a chat memory.
|
||||
Messages []Message `json:"messages"`
|
||||
|
||||
// Stream enable streaming of returned response; true by default.
|
||||
// Stream enables streaming of returned responses; true by default.
|
||||
Stream *bool `json:"stream,omitempty"`
|
||||
|
||||
// Format is the format to return the response in (e.g. "json").
|
||||
Format string `json:"format"`
|
||||
Format json.RawMessage `json:"format,omitempty"`
|
||||
|
||||
// KeepAlive controls how long the model will stay loaded into memory
|
||||
// followin the request.
|
||||
// following the request.
|
||||
KeepAlive *Duration `json:"keep_alive,omitempty"`
|
||||
|
||||
// Tools is an optional list of tools the model has access to.
|
||||
@@ -146,6 +148,7 @@ type ToolCall struct {
|
||||
}
|
||||
|
||||
type ToolCallFunction struct {
|
||||
Index int `json:"index,omitempty"`
|
||||
Name string `json:"name"`
|
||||
Arguments ToolCallFunctionArguments `json:"arguments"`
|
||||
}
|
||||
@@ -203,8 +206,8 @@ type Metrics struct {
|
||||
EvalDuration time.Duration `json:"eval_duration,omitempty"`
|
||||
}
|
||||
|
||||
// Options specified in [GenerateRequest], if you add a new option here add it
|
||||
// to the API docs also.
|
||||
// Options specified in [GenerateRequest]. If you add a new option here, also
|
||||
// add it to the API docs.
|
||||
type Options struct {
|
||||
Runner
|
||||
|
||||
@@ -215,7 +218,6 @@ type Options struct {
|
||||
TopK int `json:"top_k,omitempty"`
|
||||
TopP float32 `json:"top_p,omitempty"`
|
||||
MinP float32 `json:"min_p,omitempty"`
|
||||
TFSZ float32 `json:"tfs_z,omitempty"`
|
||||
TypicalP float32 `json:"typical_p,omitempty"`
|
||||
RepeatLastN int `json:"repeat_last_n,omitempty"`
|
||||
Temperature float32 `json:"temperature,omitempty"`
|
||||
@@ -225,7 +227,6 @@ type Options struct {
|
||||
Mirostat int `json:"mirostat,omitempty"`
|
||||
MirostatTau float32 `json:"mirostat_tau,omitempty"`
|
||||
MirostatEta float32 `json:"mirostat_eta,omitempty"`
|
||||
PenalizeNewline bool `json:"penalize_newline,omitempty"`
|
||||
Stop []string `json:"stop,omitempty"`
|
||||
}
|
||||
|
||||
@@ -236,7 +237,7 @@ type Runner struct {
|
||||
NumGPU int `json:"num_gpu,omitempty"`
|
||||
MainGPU int `json:"main_gpu,omitempty"`
|
||||
LowVRAM bool `json:"low_vram,omitempty"`
|
||||
F16KV bool `json:"f16_kv,omitempty"`
|
||||
F16KV bool `json:"f16_kv,omitempty"` // Deprecated: This option is ignored
|
||||
LogitsAll bool `json:"logits_all,omitempty"`
|
||||
VocabOnly bool `json:"vocab_only,omitempty"`
|
||||
UseMMap *bool `json:"use_mmap,omitempty"`
|
||||
@@ -295,17 +296,21 @@ type EmbeddingResponse struct {
|
||||
|
||||
// CreateRequest is the request passed to [Client.Create].
|
||||
type CreateRequest struct {
|
||||
Model string `json:"model"`
|
||||
Modelfile string `json:"modelfile"`
|
||||
Stream *bool `json:"stream,omitempty"`
|
||||
Quantize string `json:"quantize,omitempty"`
|
||||
Model string `json:"model"`
|
||||
Stream *bool `json:"stream,omitempty"`
|
||||
Quantize string `json:"quantize,omitempty"`
|
||||
|
||||
From string `json:"from,omitempty"`
|
||||
Files map[string]string `json:"files,omitempty"`
|
||||
Adapters map[string]string `json:"adapters,omitempty"`
|
||||
Template string `json:"template,omitempty"`
|
||||
License any `json:"license,omitempty"`
|
||||
System string `json:"system,omitempty"`
|
||||
Parameters map[string]any `json:"parameters,omitempty"`
|
||||
Messages []Message `json:"messages,omitempty"`
|
||||
|
||||
// Deprecated: set the model name with Model instead
|
||||
Name string `json:"name"`
|
||||
|
||||
// Deprecated: set the file content with Modelfile instead
|
||||
Path string `json:"path"`
|
||||
|
||||
// Deprecated: use Quantize instead
|
||||
Quantization string `json:"quantization,omitempty"`
|
||||
}
|
||||
@@ -594,7 +599,6 @@ func DefaultOptions() Options {
|
||||
Temperature: 0.8,
|
||||
TopK: 40,
|
||||
TopP: 0.9,
|
||||
TFSZ: 1.0,
|
||||
TypicalP: 1.0,
|
||||
RepeatLastN: 64,
|
||||
RepeatPenalty: 1.1,
|
||||
@@ -603,17 +607,15 @@ func DefaultOptions() Options {
|
||||
Mirostat: 0,
|
||||
MirostatTau: 5.0,
|
||||
MirostatEta: 0.1,
|
||||
PenalizeNewline: true,
|
||||
Seed: -1,
|
||||
|
||||
Runner: Runner{
|
||||
// options set when the model is loaded
|
||||
NumCtx: 2048,
|
||||
NumCtx: int(envconfig.ContextLength()),
|
||||
NumBatch: 512,
|
||||
NumGPU: -1, // -1 here indicates that NumGPU should be set dynamically
|
||||
NumThread: 0, // let the runtime decide
|
||||
LowVRAM: false,
|
||||
F16KV: true,
|
||||
UseMLock: false,
|
||||
UseMMap: nil,
|
||||
},
|
||||
|
@@ -17,6 +17,6 @@ If you want to build the installer, youll need to install
|
||||
In the top directory of this repo, run the following powershell script
|
||||
to build the ollama CLI, ollama app, and ollama installer.
|
||||
|
||||
```
|
||||
```powershell
|
||||
powershell -ExecutionPolicy Bypass -File .\scripts\build_windows.ps1
|
||||
```
|
||||
|
@@ -11,10 +11,12 @@ import (
|
||||
|
||||
"github.com/ollama/ollama/app/store"
|
||||
"github.com/ollama/ollama/app/tray"
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
)
|
||||
|
||||
func Run() {
|
||||
InitLogging()
|
||||
slog.Info("app config", "env", envconfig.Values())
|
||||
|
||||
ctx, cancel := context.WithCancel(context.Background())
|
||||
var done chan int
|
||||
|
@@ -36,8 +36,13 @@ func init() {
|
||||
ServerLogFile = filepath.Join(AppDataDir, "server.log")
|
||||
UpgradeLogFile = filepath.Join(AppDataDir, "upgrade.log")
|
||||
|
||||
// Executables are stored in APPDATA
|
||||
AppDir = filepath.Join(localAppData, "Programs", "Ollama")
|
||||
exe, err := os.Executable()
|
||||
if err != nil {
|
||||
slog.Warn("error discovering executable directory", "error", err)
|
||||
AppDir = filepath.Join(localAppData, "Programs", "Ollama")
|
||||
} else {
|
||||
AppDir = filepath.Dir(exe)
|
||||
}
|
||||
|
||||
// Make sure we have PATH set correctly for any spawned children
|
||||
paths := strings.Split(os.Getenv("PATH"), ";")
|
||||
@@ -64,7 +69,7 @@ func init() {
|
||||
}
|
||||
|
||||
// Make sure our logging dir exists
|
||||
_, err := os.Stat(AppDataDir)
|
||||
_, err = os.Stat(AppDataDir)
|
||||
if errors.Is(err, os.ErrNotExist) {
|
||||
if err := os.MkdirAll(AppDataDir, 0o755); err != nil {
|
||||
slog.Error(fmt.Sprintf("create ollama dir %s: %v", AppDataDir, err))
|
||||
|
@@ -18,11 +18,17 @@ func getCLIFullPath(command string) string {
|
||||
var cmdPath string
|
||||
appExe, err := os.Executable()
|
||||
if err == nil {
|
||||
// Check both the same location as the tray app, as well as ./bin
|
||||
cmdPath = filepath.Join(filepath.Dir(appExe), command)
|
||||
_, err := os.Stat(cmdPath)
|
||||
if err == nil {
|
||||
return cmdPath
|
||||
}
|
||||
cmdPath = filepath.Join(filepath.Dir(appExe), "bin", command)
|
||||
_, err = os.Stat(cmdPath)
|
||||
if err == nil {
|
||||
return cmdPath
|
||||
}
|
||||
}
|
||||
cmdPath, err = exec.LookPath(command)
|
||||
if err == nil {
|
||||
|
@@ -26,19 +26,15 @@ func DoUpgrade(cancel context.CancelFunc, done chan int) error {
|
||||
slog.Info("starting upgrade with " + installerExe)
|
||||
slog.Info("upgrade log file " + UpgradeLogFile)
|
||||
|
||||
// When running in debug mode, we'll be "verbose" and let the installer pop up and prompt
|
||||
// make the upgrade show progress, but non interactive
|
||||
installArgs := []string{
|
||||
"/CLOSEAPPLICATIONS", // Quit the tray app if it's still running
|
||||
"/LOG=" + filepath.Base(UpgradeLogFile), // Only relative seems reliable, so set pwd
|
||||
"/FORCECLOSEAPPLICATIONS", // Force close the tray app - might be needed
|
||||
}
|
||||
// make the upgrade as quiet as possible (no GUI, no prompts)
|
||||
installArgs = append(installArgs,
|
||||
"/SP", // Skip the "This will install... Do you wish to continue" prompt
|
||||
"/SUPPRESSMSGBOXES",
|
||||
"/SP", // Skip the "This will install... Do you wish to continue" prompt
|
||||
"/NOCANCEL", // Disable the ability to cancel upgrade mid-flight to avoid partially installed upgrades
|
||||
"/SILENT",
|
||||
"/VERYSILENT",
|
||||
)
|
||||
}
|
||||
|
||||
// Safeguard in case we have requests in flight that need to drain...
|
||||
slog.Info("Waiting for server to shutdown")
|
||||
|
@@ -53,8 +53,8 @@ RestartIfNeededByRun=no
|
||||
; https://jrsoftware.org/ishelp/index.php?topic=setup_wizardimagefile
|
||||
WizardSmallImageFile=.\assets\setup.bmp
|
||||
|
||||
; TODO verifty actual min windows version...
|
||||
; OG Win 10
|
||||
; Ollama requires Windows 10 22H2 or newer for proper unicode rendering
|
||||
; TODO: consider setting this to 10.0.19045
|
||||
MinVersion=10.0.10240
|
||||
|
||||
; First release that supports WinRT UI Composition for win32 apps
|
||||
@@ -97,7 +97,6 @@ Source: "..\dist\windows-amd64\lib\ollama\*"; DestDir: "{app}\lib\ollama\"; Chec
|
||||
Source: "..\dist\windows-arm64\vc_redist.arm64.exe"; DestDir: "{tmp}"; Check: IsArm64() and vc_redist_needed(); Flags: deleteafterinstall
|
||||
Source: "..\dist\windows-arm64-app.exe"; DestDir: "{app}"; DestName: "{#MyAppExeName}" ;Check: IsArm64(); Flags: ignoreversion 64bit
|
||||
Source: "..\dist\windows-arm64\ollama.exe"; DestDir: "{app}"; Check: IsArm64(); Flags: ignoreversion 64bit
|
||||
Source: "..\dist\windows-arm64\lib\ollama\*"; DestDir: "{app}\lib\ollama\"; Check: IsArm64(); Flags: ignoreversion 64bit recursesubdirs
|
||||
#endif
|
||||
|
||||
Source: "..\dist\ollama_welcome.ps1"; DestDir: "{app}"; Flags: ignoreversion
|
||||
@@ -136,7 +135,7 @@ Type: filesandordirs; Name: "{%TEMP}\ollama*"
|
||||
Type: filesandordirs; Name: "{%LOCALAPPDATA}\Programs\Ollama"
|
||||
|
||||
[Messages]
|
||||
WizardReady=Ollama Windows Preview
|
||||
WizardReady=Ollama
|
||||
ReadyLabel1=%nLet's get you up and running with your own large language models.
|
||||
SetupAppRunningError=Another Ollama installer is running.%n%nPlease cancel or finish the other installer, then click OK to continue with this install, or Cancel to exit.
|
||||
|
||||
|
@@ -64,7 +64,7 @@ func initStore() {
|
||||
slog.Debug(fmt.Sprintf("unexpected error searching for store: %s", err))
|
||||
}
|
||||
slog.Debug("initializing new store")
|
||||
store.ID = uuid.New().String()
|
||||
store.ID = uuid.NewString()
|
||||
writeStore(getStorePath())
|
||||
}
|
||||
|
||||
|
@@ -98,7 +98,7 @@ func (t *winTray) wndProc(hWnd windows.Handle, message uint32, wParam, lParam ui
|
||||
}
|
||||
err = t.wcex.unregister()
|
||||
if err != nil {
|
||||
slog.Error(fmt.Sprintf("failed to uregister windo %s", err))
|
||||
slog.Error(fmt.Sprintf("failed to unregister window %s", err))
|
||||
}
|
||||
case WM_DESTROY:
|
||||
// same as WM_ENDSESSION, but throws 0 exit code after all
|
||||
|
@@ -11,12 +11,13 @@ import (
|
||||
)
|
||||
|
||||
const (
|
||||
updateAvailableMenuID = 1
|
||||
updateMenuID = updateAvailableMenuID + 1
|
||||
separatorMenuID = updateMenuID + 1
|
||||
diagLogsMenuID = separatorMenuID + 1
|
||||
diagSeparatorMenuID = diagLogsMenuID + 1
|
||||
quitMenuID = diagSeparatorMenuID + 1
|
||||
_ = iota
|
||||
updateAvailableMenuID
|
||||
updateMenuID
|
||||
separatorMenuID
|
||||
diagLogsMenuID
|
||||
diagSeparatorMenuID
|
||||
quitMenuID
|
||||
)
|
||||
|
||||
func (t *winTray) initMenus() error {
|
||||
@@ -38,7 +39,7 @@ func (t *winTray) UpdateAvailable(ver string) error {
|
||||
if err := t.addOrUpdateMenuItem(updateAvailableMenuID, 0, updateAvailableMenuTitle, true); err != nil {
|
||||
return fmt.Errorf("unable to create menu entries %w", err)
|
||||
}
|
||||
if err := t.addOrUpdateMenuItem(updateMenuID, 0, updateMenutTitle, false); err != nil {
|
||||
if err := t.addOrUpdateMenuItem(updateMenuID, 0, updateMenuTitle, false); err != nil {
|
||||
return fmt.Errorf("unable to create menu entries %w", err)
|
||||
}
|
||||
if err := t.addSeparatorMenuItem(separatorMenuID, 0); err != nil {
|
||||
|
@@ -10,6 +10,6 @@ const (
|
||||
|
||||
quitMenuTitle = "Quit Ollama"
|
||||
updateAvailableMenuTitle = "An update is available"
|
||||
updateMenutTitle = "Restart to update"
|
||||
updateMenuTitle = "Restart to update"
|
||||
diagLogsMenuTitle = "View logs"
|
||||
)
|
||||
|
@@ -361,7 +361,7 @@ func (t *winTray) showMenu() error {
|
||||
|
||||
boolRet, _, err = pTrackPopupMenu.Call(
|
||||
uintptr(t.menus[0]),
|
||||
TPM_BOTTOMALIGN|TPM_LEFTALIGN,
|
||||
TPM_BOTTOMALIGN|TPM_LEFTALIGN|TPM_RIGHTBUTTON,
|
||||
uintptr(p.X),
|
||||
uintptr(p.Y),
|
||||
0,
|
||||
|
@@ -67,6 +67,7 @@ const (
|
||||
SW_HIDE = 0
|
||||
TPM_BOTTOMALIGN = 0x0020
|
||||
TPM_LEFTALIGN = 0x0000
|
||||
TPM_RIGHTBUTTON = 0x0002
|
||||
WM_CLOSE = 0x0010
|
||||
WM_USER = 0x0400
|
||||
WS_CAPTION = 0x00C00000
|
||||
|
@@ -1 +0,0 @@
|
||||
This is here to make sure the build/ directory exists for the go:embed command
|
@@ -1 +0,0 @@
|
||||
This is here to make sure the build/ directory exists for the go:embed command
|
@@ -1,8 +0,0 @@
|
||||
package build
|
||||
|
||||
import "embed"
|
||||
|
||||
// Darwin payloads separated by architecture to avoid duplicate payloads when cross compiling
|
||||
|
||||
//go:embed darwin/amd64/*
|
||||
var EmbedFS embed.FS
|
@@ -1,8 +0,0 @@
|
||||
package build
|
||||
|
||||
import "embed"
|
||||
|
||||
// Darwin payloads separated by architecture to avoid duplicate payloads when cross compiling
|
||||
|
||||
//go:embed darwin/arm64/*
|
||||
var EmbedFS embed.FS
|
@@ -1,6 +0,0 @@
|
||||
package build
|
||||
|
||||
import "embed"
|
||||
|
||||
//go:embed linux/*
|
||||
var EmbedFS embed.FS
|
@@ -1,8 +0,0 @@
|
||||
//go:build !linux && !darwin
|
||||
|
||||
package build
|
||||
|
||||
import "embed"
|
||||
|
||||
// unused on windows
|
||||
var EmbedFS embed.FS
|
@@ -1 +0,0 @@
|
||||
This is here to make sure the build/ directory exists for the go:embed command
|
@@ -1 +0,0 @@
|
||||
This is here to make sure the build/ directory exists for the go:embed command
|
418
cmd/cmd.go
418
cmd/cmd.go
@@ -1,13 +1,11 @@
|
||||
package cmd
|
||||
|
||||
import (
|
||||
"archive/zip"
|
||||
"bufio"
|
||||
"bytes"
|
||||
"context"
|
||||
"crypto/ed25519"
|
||||
"crypto/rand"
|
||||
"crypto/sha256"
|
||||
"encoding/json"
|
||||
"encoding/pem"
|
||||
"errors"
|
||||
"fmt"
|
||||
@@ -19,9 +17,7 @@ import (
|
||||
"os"
|
||||
"os/signal"
|
||||
"path/filepath"
|
||||
"regexp"
|
||||
"runtime"
|
||||
"slices"
|
||||
"strconv"
|
||||
"strings"
|
||||
"sync/atomic"
|
||||
@@ -36,100 +32,115 @@ import (
|
||||
"golang.org/x/term"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/auth"
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/format"
|
||||
"github.com/ollama/ollama/llama"
|
||||
"github.com/ollama/ollama/parser"
|
||||
"github.com/ollama/ollama/progress"
|
||||
"github.com/ollama/ollama/runner"
|
||||
"github.com/ollama/ollama/server"
|
||||
"github.com/ollama/ollama/types/errtypes"
|
||||
"github.com/ollama/ollama/types/model"
|
||||
"github.com/ollama/ollama/version"
|
||||
)
|
||||
|
||||
func CreateHandler(cmd *cobra.Command, args []string) error {
|
||||
var errModelfileNotFound = errors.New("specified Modelfile wasn't found")
|
||||
|
||||
func getModelfileName(cmd *cobra.Command) (string, error) {
|
||||
filename, _ := cmd.Flags().GetString("file")
|
||||
filename, err := filepath.Abs(filename)
|
||||
|
||||
if filename == "" {
|
||||
filename = "Modelfile"
|
||||
}
|
||||
|
||||
absName, err := filepath.Abs(filename)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
_, err = os.Stat(absName)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
return absName, nil
|
||||
}
|
||||
|
||||
func CreateHandler(cmd *cobra.Command, args []string) error {
|
||||
p := progress.NewProgress(os.Stderr)
|
||||
defer p.Stop()
|
||||
|
||||
var reader io.Reader
|
||||
|
||||
filename, err := getModelfileName(cmd)
|
||||
if os.IsNotExist(err) {
|
||||
if filename == "" {
|
||||
reader = strings.NewReader("FROM .\n")
|
||||
} else {
|
||||
return errModelfileNotFound
|
||||
}
|
||||
} else if err != nil {
|
||||
return err
|
||||
} else {
|
||||
f, err := os.Open(filename)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
reader = f
|
||||
defer f.Close()
|
||||
}
|
||||
|
||||
modelfile, err := parser.ParseFile(reader)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
status := "gathering model components"
|
||||
spinner := progress.NewSpinner(status)
|
||||
p.Add(status, spinner)
|
||||
|
||||
req, err := modelfile.CreateRequest(filepath.Dir(filename))
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
spinner.Stop()
|
||||
|
||||
req.Name = args[0]
|
||||
quantize, _ := cmd.Flags().GetString("quantize")
|
||||
if quantize != "" {
|
||||
req.Quantize = quantize
|
||||
}
|
||||
|
||||
client, err := api.ClientFromEnvironment()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
p := progress.NewProgress(os.Stderr)
|
||||
defer p.Stop()
|
||||
|
||||
f, err := os.Open(filename)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
modelfile, err := parser.ParseFile(f)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
home, err := os.UserHomeDir()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
status := "transferring model data"
|
||||
spinner := progress.NewSpinner(status)
|
||||
p.Add(status, spinner)
|
||||
defer p.Stop()
|
||||
|
||||
for i := range modelfile.Commands {
|
||||
switch modelfile.Commands[i].Name {
|
||||
case "model", "adapter":
|
||||
path := modelfile.Commands[i].Args
|
||||
if path == "~" {
|
||||
path = home
|
||||
} else if strings.HasPrefix(path, "~/") {
|
||||
path = filepath.Join(home, path[2:])
|
||||
}
|
||||
|
||||
if !filepath.IsAbs(path) {
|
||||
path = filepath.Join(filepath.Dir(filename), path)
|
||||
}
|
||||
|
||||
fi, err := os.Stat(path)
|
||||
if errors.Is(err, os.ErrNotExist) && modelfile.Commands[i].Name == "model" {
|
||||
continue
|
||||
} else if err != nil {
|
||||
if len(req.Files) > 0 {
|
||||
fileMap := map[string]string{}
|
||||
for f, digest := range req.Files {
|
||||
if _, err := createBlob(cmd, client, f, digest, p); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if fi.IsDir() {
|
||||
// this is likely a safetensors or pytorch directory
|
||||
// TODO make this work w/ adapters
|
||||
tempfile, err := tempZipFiles(path)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
defer os.RemoveAll(tempfile)
|
||||
|
||||
path = tempfile
|
||||
}
|
||||
|
||||
digest, err := createBlob(cmd, client, path, spinner)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
modelfile.Commands[i].Args = "@" + digest
|
||||
fileMap[filepath.Base(f)] = digest
|
||||
}
|
||||
req.Files = fileMap
|
||||
}
|
||||
|
||||
if len(req.Adapters) > 0 {
|
||||
fileMap := map[string]string{}
|
||||
for f, digest := range req.Adapters {
|
||||
if _, err := createBlob(cmd, client, f, digest, p); err != nil {
|
||||
return err
|
||||
}
|
||||
fileMap[filepath.Base(f)] = digest
|
||||
}
|
||||
req.Adapters = fileMap
|
||||
}
|
||||
|
||||
bars := make(map[string]*progress.Bar)
|
||||
fn := func(resp api.ProgressResponse) error {
|
||||
if resp.Digest != "" {
|
||||
spinner.Stop()
|
||||
|
||||
bar, ok := bars[resp.Digest]
|
||||
if !ok {
|
||||
bar = progress.NewBar(fmt.Sprintf("pulling %s...", resp.Digest[7:19]), resp.Total, resp.Completed)
|
||||
@@ -149,145 +160,23 @@ func CreateHandler(cmd *cobra.Command, args []string) error {
|
||||
return nil
|
||||
}
|
||||
|
||||
quantize, _ := cmd.Flags().GetString("quantize")
|
||||
|
||||
request := api.CreateRequest{Name: args[0], Modelfile: modelfile.String(), Quantize: quantize}
|
||||
if err := client.Create(cmd.Context(), &request, fn); err != nil {
|
||||
if err := client.Create(cmd.Context(), req, fn); err != nil {
|
||||
if strings.Contains(err.Error(), "path or Modelfile are required") {
|
||||
return fmt.Errorf("the ollama server must be updated to use `ollama create` with this client")
|
||||
}
|
||||
return err
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func tempZipFiles(path string) (string, error) {
|
||||
tempfile, err := os.CreateTemp("", "ollama-tf")
|
||||
func createBlob(cmd *cobra.Command, client *api.Client, path string, digest string, p *progress.Progress) (string, error) {
|
||||
realPath, err := filepath.EvalSymlinks(path)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
defer tempfile.Close()
|
||||
|
||||
detectContentType := func(path string) (string, error) {
|
||||
f, err := os.Open(path)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
var b bytes.Buffer
|
||||
b.Grow(512)
|
||||
|
||||
if _, err := io.CopyN(&b, f, 512); err != nil && !errors.Is(err, io.EOF) {
|
||||
return "", err
|
||||
}
|
||||
|
||||
contentType, _, _ := strings.Cut(http.DetectContentType(b.Bytes()), ";")
|
||||
return contentType, nil
|
||||
}
|
||||
|
||||
glob := func(pattern, contentType string) ([]string, error) {
|
||||
matches, err := filepath.Glob(pattern)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
for _, safetensor := range matches {
|
||||
if ct, err := detectContentType(safetensor); err != nil {
|
||||
return nil, err
|
||||
} else if ct != contentType {
|
||||
return nil, fmt.Errorf("invalid content type: expected %s for %s", ct, safetensor)
|
||||
}
|
||||
}
|
||||
|
||||
return matches, nil
|
||||
}
|
||||
|
||||
var files []string
|
||||
if st, _ := glob(filepath.Join(path, "model*.safetensors"), "application/octet-stream"); len(st) > 0 {
|
||||
// safetensors files might be unresolved git lfs references; skip if they are
|
||||
// covers model-x-of-y.safetensors, model.fp32-x-of-y.safetensors, model.safetensors
|
||||
files = append(files, st...)
|
||||
} else if st, _ := glob(filepath.Join(path, "adapters.safetensors"), "application/octet-stream"); len(st) > 0 {
|
||||
// covers adapters.safetensors
|
||||
files = append(files, st...)
|
||||
} else if st, _ := glob(filepath.Join(path, "adapter_model.safetensors"), "application/octet-stream"); len(st) > 0 {
|
||||
// covers adapter_model.safetensors
|
||||
files = append(files, st...)
|
||||
} else if pt, _ := glob(filepath.Join(path, "pytorch_model*.bin"), "application/zip"); len(pt) > 0 {
|
||||
// pytorch files might also be unresolved git lfs references; skip if they are
|
||||
// covers pytorch_model-x-of-y.bin, pytorch_model.fp32-x-of-y.bin, pytorch_model.bin
|
||||
files = append(files, pt...)
|
||||
} else if pt, _ := glob(filepath.Join(path, "consolidated*.pth"), "application/zip"); len(pt) > 0 {
|
||||
// pytorch files might also be unresolved git lfs references; skip if they are
|
||||
// covers consolidated.x.pth, consolidated.pth
|
||||
files = append(files, pt...)
|
||||
} else {
|
||||
return "", errors.New("no safetensors or torch files found")
|
||||
}
|
||||
|
||||
// add configuration files, json files are detected as text/plain
|
||||
js, err := glob(filepath.Join(path, "*.json"), "text/plain")
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
files = append(files, js...)
|
||||
|
||||
// bert models require a nested config.json
|
||||
// TODO(mxyng): merge this with the glob above
|
||||
js, err = glob(filepath.Join(path, "**/*.json"), "text/plain")
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
files = append(files, js...)
|
||||
|
||||
if tks, _ := glob(filepath.Join(path, "tokenizer.model"), "application/octet-stream"); len(tks) > 0 {
|
||||
// add tokenizer.model if it exists, tokenizer.json is automatically picked up by the previous glob
|
||||
// tokenizer.model might be a unresolved git lfs reference; error if it is
|
||||
files = append(files, tks...)
|
||||
} else if tks, _ := glob(filepath.Join(path, "**/tokenizer.model"), "text/plain"); len(tks) > 0 {
|
||||
// some times tokenizer.model is in a subdirectory (e.g. meta-llama/Meta-Llama-3-8B)
|
||||
files = append(files, tks...)
|
||||
}
|
||||
|
||||
zipfile := zip.NewWriter(tempfile)
|
||||
defer zipfile.Close()
|
||||
|
||||
for _, file := range files {
|
||||
f, err := os.Open(file)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
fi, err := f.Stat()
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
zfi, err := zip.FileInfoHeader(fi)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
zfi.Name, err = filepath.Rel(path, file)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
zf, err := zipfile.CreateHeader(zfi)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
if _, err := io.Copy(zf, f); err != nil {
|
||||
return "", err
|
||||
}
|
||||
}
|
||||
|
||||
return tempfile.Name(), nil
|
||||
}
|
||||
|
||||
func createBlob(cmd *cobra.Command, client *api.Client, path string, spinner *progress.Spinner) (string, error) {
|
||||
bin, err := os.Open(path)
|
||||
bin, err := os.Open(realPath)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
@@ -300,18 +189,11 @@ func createBlob(cmd *cobra.Command, client *api.Client, path string, spinner *pr
|
||||
}
|
||||
fileSize := fileInfo.Size()
|
||||
|
||||
hash := sha256.New()
|
||||
if _, err := io.Copy(hash, bin); err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
if _, err := bin.Seek(0, io.SeekStart); err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
var pw progressWriter
|
||||
status := "transferring model data 0%"
|
||||
spinner.SetMessage(status)
|
||||
status := fmt.Sprintf("copying file %s 0%%", digest)
|
||||
spinner := progress.NewSpinner(status)
|
||||
p.Add(status, spinner)
|
||||
defer spinner.Stop()
|
||||
|
||||
done := make(chan struct{})
|
||||
defer close(done)
|
||||
@@ -322,15 +204,14 @@ func createBlob(cmd *cobra.Command, client *api.Client, path string, spinner *pr
|
||||
for {
|
||||
select {
|
||||
case <-ticker.C:
|
||||
spinner.SetMessage(fmt.Sprintf("transferring model data %d%%", int(100*pw.n.Load()/fileSize)))
|
||||
spinner.SetMessage(fmt.Sprintf("copying file %s %d%%", digest, int(100*pw.n.Load()/fileSize)))
|
||||
case <-done:
|
||||
spinner.SetMessage("transferring model data 100%")
|
||||
spinner.SetMessage(fmt.Sprintf("copying file %s 100%%", digest))
|
||||
return
|
||||
}
|
||||
}
|
||||
}()
|
||||
|
||||
digest := fmt.Sprintf("sha256:%x", hash.Sum(nil))
|
||||
if err = client.CreateBlob(cmd.Context(), digest, io.TeeReader(bin, &pw)); err != nil {
|
||||
return "", err
|
||||
}
|
||||
@@ -375,6 +256,7 @@ func StopHandler(cmd *cobra.Command, args []string) error {
|
||||
if strings.Contains(err.Error(), "not found") {
|
||||
return fmt.Errorf("couldn't find model \"%s\" to stop", args[0])
|
||||
}
|
||||
return err
|
||||
}
|
||||
return nil
|
||||
}
|
||||
@@ -422,6 +304,10 @@ func RunHandler(cmd *cobra.Command, args []string) error {
|
||||
if len(prompts) > 0 {
|
||||
interactive = false
|
||||
}
|
||||
// Be quiet if we're redirecting to a pipe or file
|
||||
if !term.IsTerminal(int(os.Stdout.Fd())) {
|
||||
interactive = false
|
||||
}
|
||||
|
||||
nowrap, err := cmd.Flags().GetBool("nowordwrap")
|
||||
if err != nil {
|
||||
@@ -453,7 +339,10 @@ func RunHandler(cmd *cobra.Command, args []string) error {
|
||||
return err
|
||||
}
|
||||
|
||||
opts.MultiModal = slices.Contains(info.Details.Families, "clip")
|
||||
// TODO(jessegross): We should either find another way to know if this is
|
||||
// a vision model or remove the logic. Also consider that other modalities will
|
||||
// need different behavior anyways.
|
||||
opts.MultiModal = len(info.ProjectorInfo) != 0 || envconfig.NewEngine()
|
||||
opts.ParentModel = info.Details.ParentModel
|
||||
|
||||
if interactive {
|
||||
@@ -478,47 +367,6 @@ func RunHandler(cmd *cobra.Command, args []string) error {
|
||||
return generate(cmd, opts)
|
||||
}
|
||||
|
||||
func errFromUnknownKey(unknownKeyErr error) error {
|
||||
// find SSH public key in the error message
|
||||
sshKeyPattern := `ssh-\w+ [^\s"]+`
|
||||
re := regexp.MustCompile(sshKeyPattern)
|
||||
matches := re.FindStringSubmatch(unknownKeyErr.Error())
|
||||
|
||||
if len(matches) > 0 {
|
||||
serverPubKey := matches[0]
|
||||
|
||||
localPubKey, err := auth.GetPublicKey()
|
||||
if err != nil {
|
||||
return unknownKeyErr
|
||||
}
|
||||
|
||||
if runtime.GOOS == "linux" && serverPubKey != localPubKey {
|
||||
// try the ollama service public key
|
||||
svcPubKey, err := os.ReadFile("/usr/share/ollama/.ollama/id_ed25519.pub")
|
||||
if err != nil {
|
||||
return unknownKeyErr
|
||||
}
|
||||
localPubKey = strings.TrimSpace(string(svcPubKey))
|
||||
}
|
||||
|
||||
// check if the returned public key matches the local public key, this prevents adding a remote key to the user's account
|
||||
if serverPubKey != localPubKey {
|
||||
return unknownKeyErr
|
||||
}
|
||||
|
||||
var msg strings.Builder
|
||||
msg.WriteString(unknownKeyErr.Error())
|
||||
msg.WriteString("\n\nYour ollama key is:\n")
|
||||
msg.WriteString(localPubKey)
|
||||
msg.WriteString("\nAdd your key at:\n")
|
||||
msg.WriteString("https://ollama.com/settings/keys")
|
||||
|
||||
return errors.New(msg.String())
|
||||
}
|
||||
|
||||
return unknownKeyErr
|
||||
}
|
||||
|
||||
func PushHandler(cmd *cobra.Command, args []string) error {
|
||||
client, err := api.ClientFromEnvironment()
|
||||
if err != nil {
|
||||
@@ -565,6 +413,8 @@ func PushHandler(cmd *cobra.Command, args []string) error {
|
||||
}
|
||||
|
||||
request := api.PushRequest{Name: args[0], Insecure: insecure}
|
||||
|
||||
n := model.ParseName(args[0])
|
||||
if err := client.Push(cmd.Context(), &request, fn); err != nil {
|
||||
if spinner != nil {
|
||||
spinner.Stop()
|
||||
@@ -572,18 +422,19 @@ func PushHandler(cmd *cobra.Command, args []string) error {
|
||||
if strings.Contains(err.Error(), "access denied") {
|
||||
return errors.New("you are not authorized to push to this namespace, create the model under a namespace you own")
|
||||
}
|
||||
host := model.ParseName(args[0]).Host
|
||||
isOllamaHost := strings.HasSuffix(host, ".ollama.ai") || strings.HasSuffix(host, ".ollama.com")
|
||||
if strings.Contains(err.Error(), errtypes.UnknownOllamaKeyErrMsg) && isOllamaHost {
|
||||
// the user has not added their ollama key to ollama.com
|
||||
// re-throw an error with a more user-friendly message
|
||||
return errFromUnknownKey(err)
|
||||
}
|
||||
|
||||
return err
|
||||
}
|
||||
|
||||
p.Stop()
|
||||
spinner.Stop()
|
||||
|
||||
destination := n.String()
|
||||
if strings.HasSuffix(n.Host, ".ollama.ai") || strings.HasSuffix(n.Host, ".ollama.com") {
|
||||
destination = "https://ollama.com/" + strings.TrimSuffix(n.DisplayShortest(), ":latest")
|
||||
}
|
||||
fmt.Printf("\nYou can find your model at:\n\n")
|
||||
fmt.Printf("\t%s\n", destination)
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
@@ -601,7 +452,7 @@ func ListHandler(cmd *cobra.Command, args []string) error {
|
||||
var data [][]string
|
||||
|
||||
for _, m := range models.Models {
|
||||
if len(args) == 0 || strings.HasPrefix(m.Name, args[0]) {
|
||||
if len(args) == 0 || strings.HasPrefix(strings.ToLower(m.Name), strings.ToLower(args[0])) {
|
||||
data = append(data, []string{m.Name, m.Digest[:12], format.HumanBytes(m.Size), format.HumanTime(m.ModifiedAt, "Never")})
|
||||
}
|
||||
}
|
||||
@@ -766,9 +617,9 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
|
||||
case "parameters":
|
||||
fmt.Println(resp.Parameters)
|
||||
case "system":
|
||||
fmt.Println(resp.System)
|
||||
fmt.Print(resp.System)
|
||||
case "template":
|
||||
fmt.Println(resp.Template)
|
||||
fmt.Print(resp.Template)
|
||||
}
|
||||
|
||||
return nil
|
||||
@@ -1038,10 +889,14 @@ func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
|
||||
return nil
|
||||
}
|
||||
|
||||
if opts.Format == "json" {
|
||||
opts.Format = `"` + opts.Format + `"`
|
||||
}
|
||||
|
||||
req := &api.ChatRequest{
|
||||
Model: opts.Model,
|
||||
Messages: opts.Messages,
|
||||
Format: opts.Format,
|
||||
Format: json.RawMessage(opts.Format),
|
||||
Options: opts.Options,
|
||||
}
|
||||
|
||||
@@ -1123,12 +978,16 @@ func generate(cmd *cobra.Command, opts runOptions) error {
|
||||
}
|
||||
}
|
||||
|
||||
if opts.Format == "json" {
|
||||
opts.Format = `"` + opts.Format + `"`
|
||||
}
|
||||
|
||||
request := api.GenerateRequest{
|
||||
Model: opts.Model,
|
||||
Prompt: opts.Prompt,
|
||||
Context: generateContext,
|
||||
Images: opts.Images,
|
||||
Format: opts.Format,
|
||||
Format: json.RawMessage(opts.Format),
|
||||
System: opts.System,
|
||||
Options: opts.Options,
|
||||
KeepAlive: opts.KeepAlive,
|
||||
@@ -1284,7 +1143,7 @@ func NewCLI() *cobra.Command {
|
||||
log.SetFlags(log.LstdFlags | log.Lshortfile)
|
||||
cobra.EnableCommandSorting = false
|
||||
|
||||
if runtime.GOOS == "windows" {
|
||||
if runtime.GOOS == "windows" && term.IsTerminal(int(os.Stdout.Fd())) {
|
||||
console.ConsoleFromFile(os.Stdin) //nolint:errcheck
|
||||
}
|
||||
|
||||
@@ -1316,7 +1175,7 @@ func NewCLI() *cobra.Command {
|
||||
RunE: CreateHandler,
|
||||
}
|
||||
|
||||
createCmd.Flags().StringP("file", "f", "Modelfile", "Name of the Modelfile")
|
||||
createCmd.Flags().StringP("file", "f", "", "Name of the Modelfile (default \"Modelfile\"")
|
||||
createCmd.Flags().StringP("quantize", "q", "", "Quantize model to this level (e.g. q4_0)")
|
||||
|
||||
showCmd := &cobra.Command{
|
||||
@@ -1414,6 +1273,19 @@ func NewCLI() *cobra.Command {
|
||||
RunE: DeleteHandler,
|
||||
}
|
||||
|
||||
runnerCmd := &cobra.Command{
|
||||
Use: "runner",
|
||||
Short: llama.PrintSystemInfo(),
|
||||
Hidden: true,
|
||||
RunE: func(cmd *cobra.Command, args []string) error {
|
||||
return runner.Execute(os.Args[1:])
|
||||
},
|
||||
FParseErrWhitelist: cobra.FParseErrWhitelist{UnknownFlags: true},
|
||||
}
|
||||
runnerCmd.SetHelpFunc(func(cmd *cobra.Command, args []string) {
|
||||
_ = runner.Execute(args[1:])
|
||||
})
|
||||
|
||||
envVars := envconfig.AsMap()
|
||||
|
||||
envs := []envconfig.EnvVar{envVars["OLLAMA_HOST"]}
|
||||
@@ -1448,6 +1320,7 @@ func NewCLI() *cobra.Command {
|
||||
envVars["OLLAMA_SCHED_SPREAD"],
|
||||
envVars["OLLAMA_TMPDIR"],
|
||||
envVars["OLLAMA_FLASH_ATTENTION"],
|
||||
envVars["OLLAMA_KV_CACHE_TYPE"],
|
||||
envVars["OLLAMA_LLM_LIBRARY"],
|
||||
envVars["OLLAMA_GPU_OVERHEAD"],
|
||||
envVars["OLLAMA_LOAD_TIMEOUT"],
|
||||
@@ -1469,6 +1342,7 @@ func NewCLI() *cobra.Command {
|
||||
psCmd,
|
||||
copyCmd,
|
||||
deleteCmd,
|
||||
runnerCmd,
|
||||
)
|
||||
|
||||
return rootCmd
|
||||
|
451
cmd/cmd_test.go
451
cmd/cmd_test.go
@@ -4,12 +4,13 @@ import (
|
||||
"bytes"
|
||||
"context"
|
||||
"encoding/json"
|
||||
"io"
|
||||
"net/http"
|
||||
"net/http/httptest"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"strings"
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
"github.com/google/go-cmp/cmp"
|
||||
"github.com/spf13/cobra"
|
||||
@@ -179,18 +180,14 @@ Weigh anchor!
|
||||
|
||||
t.Run("license", func(t *testing.T) {
|
||||
var b bytes.Buffer
|
||||
license, err := os.ReadFile(filepath.Join("..", "LICENSE"))
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
license := "MIT License\nCopyright (c) Ollama\n"
|
||||
if err := showInfo(&api.ShowResponse{
|
||||
Details: api.ModelDetails{
|
||||
Family: "test",
|
||||
ParameterSize: "7B",
|
||||
QuantizationLevel: "FP16",
|
||||
},
|
||||
License: string(license),
|
||||
License: license,
|
||||
}, &b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
@@ -270,3 +267,443 @@ func TestDeleteHandler(t *testing.T) {
|
||||
t.Fatalf("DeleteHandler failed: expected error about stopping non-existent model, got %v", err)
|
||||
}
|
||||
}
|
||||
|
||||
func TestGetModelfileName(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
modelfileName string
|
||||
fileExists bool
|
||||
expectedName string
|
||||
expectedErr error
|
||||
}{
|
||||
{
|
||||
name: "no modelfile specified, no modelfile exists",
|
||||
modelfileName: "",
|
||||
fileExists: false,
|
||||
expectedName: "",
|
||||
expectedErr: os.ErrNotExist,
|
||||
},
|
||||
{
|
||||
name: "no modelfile specified, modelfile exists",
|
||||
modelfileName: "",
|
||||
fileExists: true,
|
||||
expectedName: "Modelfile",
|
||||
expectedErr: nil,
|
||||
},
|
||||
{
|
||||
name: "modelfile specified, no modelfile exists",
|
||||
modelfileName: "crazyfile",
|
||||
fileExists: false,
|
||||
expectedName: "",
|
||||
expectedErr: os.ErrNotExist,
|
||||
},
|
||||
{
|
||||
name: "modelfile specified, modelfile exists",
|
||||
modelfileName: "anotherfile",
|
||||
fileExists: true,
|
||||
expectedName: "anotherfile",
|
||||
expectedErr: nil,
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
cmd := &cobra.Command{
|
||||
Use: "fakecmd",
|
||||
}
|
||||
cmd.Flags().String("file", "", "path to modelfile")
|
||||
|
||||
var expectedFilename string
|
||||
|
||||
if tt.fileExists {
|
||||
tempDir, err := os.MkdirTemp("", "modelfiledir")
|
||||
defer os.RemoveAll(tempDir)
|
||||
if err != nil {
|
||||
t.Fatalf("temp modelfile dir creation failed: %v", err)
|
||||
}
|
||||
var fn string
|
||||
if tt.modelfileName != "" {
|
||||
fn = tt.modelfileName
|
||||
} else {
|
||||
fn = "Modelfile"
|
||||
}
|
||||
|
||||
tempFile, err := os.CreateTemp(tempDir, fn)
|
||||
if err != nil {
|
||||
t.Fatalf("temp modelfile creation failed: %v", err)
|
||||
}
|
||||
|
||||
expectedFilename = tempFile.Name()
|
||||
err = cmd.Flags().Set("file", expectedFilename)
|
||||
if err != nil {
|
||||
t.Fatalf("couldn't set file flag: %v", err)
|
||||
}
|
||||
} else {
|
||||
expectedFilename = tt.expectedName
|
||||
if tt.modelfileName != "" {
|
||||
err := cmd.Flags().Set("file", tt.modelfileName)
|
||||
if err != nil {
|
||||
t.Fatalf("couldn't set file flag: %v", err)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
actualFilename, actualErr := getModelfileName(cmd)
|
||||
|
||||
if actualFilename != expectedFilename {
|
||||
t.Errorf("expected filename: '%s' actual filename: '%s'", expectedFilename, actualFilename)
|
||||
}
|
||||
|
||||
if tt.expectedErr != os.ErrNotExist {
|
||||
if actualErr != tt.expectedErr {
|
||||
t.Errorf("expected err: %v actual err: %v", tt.expectedErr, actualErr)
|
||||
}
|
||||
} else {
|
||||
if !os.IsNotExist(actualErr) {
|
||||
t.Errorf("expected err: %v actual err: %v", tt.expectedErr, actualErr)
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestPushHandler(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
modelName string
|
||||
serverResponse map[string]func(w http.ResponseWriter, r *http.Request)
|
||||
expectedError string
|
||||
expectedOutput string
|
||||
}{
|
||||
{
|
||||
name: "successful push",
|
||||
modelName: "test-model",
|
||||
serverResponse: map[string]func(w http.ResponseWriter, r *http.Request){
|
||||
"/api/push": func(w http.ResponseWriter, r *http.Request) {
|
||||
if r.Method != http.MethodPost {
|
||||
t.Errorf("expected POST request, got %s", r.Method)
|
||||
}
|
||||
|
||||
var req api.PushRequest
|
||||
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
|
||||
http.Error(w, err.Error(), http.StatusBadRequest)
|
||||
return
|
||||
}
|
||||
|
||||
if req.Name != "test-model" {
|
||||
t.Errorf("expected model name 'test-model', got %s", req.Name)
|
||||
}
|
||||
|
||||
// Simulate progress updates
|
||||
responses := []api.ProgressResponse{
|
||||
{Status: "preparing manifest"},
|
||||
{Digest: "sha256:abc123456789", Total: 100, Completed: 50},
|
||||
{Digest: "sha256:abc123456789", Total: 100, Completed: 100},
|
||||
}
|
||||
|
||||
for _, resp := range responses {
|
||||
if err := json.NewEncoder(w).Encode(resp); err != nil {
|
||||
http.Error(w, err.Error(), http.StatusInternalServerError)
|
||||
return
|
||||
}
|
||||
w.(http.Flusher).Flush()
|
||||
}
|
||||
},
|
||||
},
|
||||
expectedOutput: "\nYou can find your model at:\n\n\thttps://ollama.com/test-model\n",
|
||||
},
|
||||
{
|
||||
name: "unauthorized push",
|
||||
modelName: "unauthorized-model",
|
||||
serverResponse: map[string]func(w http.ResponseWriter, r *http.Request){
|
||||
"/api/push": func(w http.ResponseWriter, r *http.Request) {
|
||||
w.Header().Set("Content-Type", "application/json")
|
||||
w.WriteHeader(http.StatusUnauthorized)
|
||||
err := json.NewEncoder(w).Encode(map[string]string{
|
||||
"error": "access denied",
|
||||
})
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
},
|
||||
},
|
||||
expectedError: "you are not authorized to push to this namespace, create the model under a namespace you own",
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
mockServer := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
|
||||
if handler, ok := tt.serverResponse[r.URL.Path]; ok {
|
||||
handler(w, r)
|
||||
return
|
||||
}
|
||||
http.Error(w, "not found", http.StatusNotFound)
|
||||
}))
|
||||
defer mockServer.Close()
|
||||
|
||||
t.Setenv("OLLAMA_HOST", mockServer.URL)
|
||||
|
||||
cmd := &cobra.Command{}
|
||||
cmd.Flags().Bool("insecure", false, "")
|
||||
cmd.SetContext(context.TODO())
|
||||
|
||||
// Redirect stderr to capture progress output
|
||||
oldStderr := os.Stderr
|
||||
r, w, _ := os.Pipe()
|
||||
os.Stderr = w
|
||||
|
||||
// Capture stdout for the "Model pushed" message
|
||||
oldStdout := os.Stdout
|
||||
outR, outW, _ := os.Pipe()
|
||||
os.Stdout = outW
|
||||
|
||||
err := PushHandler(cmd, []string{tt.modelName})
|
||||
|
||||
// Restore stderr
|
||||
w.Close()
|
||||
os.Stderr = oldStderr
|
||||
// drain the pipe
|
||||
if _, err := io.ReadAll(r); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
// Restore stdout and get output
|
||||
outW.Close()
|
||||
os.Stdout = oldStdout
|
||||
stdout, _ := io.ReadAll(outR)
|
||||
|
||||
if tt.expectedError == "" {
|
||||
if err != nil {
|
||||
t.Errorf("expected no error, got %v", err)
|
||||
}
|
||||
if tt.expectedOutput != "" {
|
||||
if got := string(stdout); got != tt.expectedOutput {
|
||||
t.Errorf("expected output %q, got %q", tt.expectedOutput, got)
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if err == nil || !strings.Contains(err.Error(), tt.expectedError) {
|
||||
t.Errorf("expected error containing %q, got %v", tt.expectedError, err)
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestListHandler(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
args []string
|
||||
serverResponse []api.ListModelResponse
|
||||
expectedError string
|
||||
expectedOutput string
|
||||
}{
|
||||
{
|
||||
name: "list all models",
|
||||
args: []string{},
|
||||
serverResponse: []api.ListModelResponse{
|
||||
{Name: "model1", Digest: "sha256:abc123", Size: 1024, ModifiedAt: time.Now().Add(-24 * time.Hour)},
|
||||
{Name: "model2", Digest: "sha256:def456", Size: 2048, ModifiedAt: time.Now().Add(-48 * time.Hour)},
|
||||
},
|
||||
expectedOutput: "NAME ID SIZE MODIFIED \n" +
|
||||
"model1 sha256:abc12 1.0 KB 24 hours ago \n" +
|
||||
"model2 sha256:def45 2.0 KB 2 days ago \n",
|
||||
},
|
||||
{
|
||||
name: "filter models by prefix",
|
||||
args: []string{"model1"},
|
||||
serverResponse: []api.ListModelResponse{
|
||||
{Name: "model1", Digest: "sha256:abc123", Size: 1024, ModifiedAt: time.Now().Add(-24 * time.Hour)},
|
||||
{Name: "model2", Digest: "sha256:def456", Size: 2048, ModifiedAt: time.Now().Add(-24 * time.Hour)},
|
||||
},
|
||||
expectedOutput: "NAME ID SIZE MODIFIED \n" +
|
||||
"model1 sha256:abc12 1.0 KB 24 hours ago \n",
|
||||
},
|
||||
{
|
||||
name: "server error",
|
||||
args: []string{},
|
||||
expectedError: "server error",
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
mockServer := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
|
||||
if r.URL.Path != "/api/tags" || r.Method != http.MethodGet {
|
||||
t.Errorf("unexpected request to %s %s", r.Method, r.URL.Path)
|
||||
http.Error(w, "not found", http.StatusNotFound)
|
||||
return
|
||||
}
|
||||
|
||||
if tt.expectedError != "" {
|
||||
http.Error(w, tt.expectedError, http.StatusInternalServerError)
|
||||
return
|
||||
}
|
||||
|
||||
response := api.ListResponse{Models: tt.serverResponse}
|
||||
if err := json.NewEncoder(w).Encode(response); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
}))
|
||||
defer mockServer.Close()
|
||||
|
||||
t.Setenv("OLLAMA_HOST", mockServer.URL)
|
||||
|
||||
cmd := &cobra.Command{}
|
||||
cmd.SetContext(context.TODO())
|
||||
|
||||
// Capture stdout
|
||||
oldStdout := os.Stdout
|
||||
r, w, _ := os.Pipe()
|
||||
os.Stdout = w
|
||||
|
||||
err := ListHandler(cmd, tt.args)
|
||||
|
||||
// Restore stdout and get output
|
||||
w.Close()
|
||||
os.Stdout = oldStdout
|
||||
output, _ := io.ReadAll(r)
|
||||
|
||||
if tt.expectedError == "" {
|
||||
if err != nil {
|
||||
t.Errorf("expected no error, got %v", err)
|
||||
}
|
||||
if got := string(output); got != tt.expectedOutput {
|
||||
t.Errorf("expected output:\n%s\ngot:\n%s", tt.expectedOutput, got)
|
||||
}
|
||||
} else {
|
||||
if err == nil || !strings.Contains(err.Error(), tt.expectedError) {
|
||||
t.Errorf("expected error containing %q, got %v", tt.expectedError, err)
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestCreateHandler(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
modelName string
|
||||
modelFile string
|
||||
serverResponse map[string]func(w http.ResponseWriter, r *http.Request)
|
||||
expectedError string
|
||||
expectedOutput string
|
||||
}{
|
||||
{
|
||||
name: "successful create",
|
||||
modelName: "test-model",
|
||||
modelFile: "FROM foo",
|
||||
serverResponse: map[string]func(w http.ResponseWriter, r *http.Request){
|
||||
"/api/create": func(w http.ResponseWriter, r *http.Request) {
|
||||
if r.Method != http.MethodPost {
|
||||
t.Errorf("expected POST request, got %s", r.Method)
|
||||
}
|
||||
|
||||
req := api.CreateRequest{}
|
||||
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
|
||||
http.Error(w, err.Error(), http.StatusBadRequest)
|
||||
return
|
||||
}
|
||||
|
||||
if req.Name != "test-model" {
|
||||
t.Errorf("expected model name 'test-model', got %s", req.Name)
|
||||
}
|
||||
|
||||
if req.From != "foo" {
|
||||
t.Errorf("expected from 'foo', got %s", req.From)
|
||||
}
|
||||
|
||||
responses := []api.ProgressResponse{
|
||||
{Status: "using existing layer sha256:56bb8bd477a519ffa694fc449c2413c6f0e1d3b1c88fa7e3c9d88d3ae49d4dcb"},
|
||||
{Status: "writing manifest"},
|
||||
{Status: "success"},
|
||||
}
|
||||
|
||||
for _, resp := range responses {
|
||||
if err := json.NewEncoder(w).Encode(resp); err != nil {
|
||||
http.Error(w, err.Error(), http.StatusInternalServerError)
|
||||
return
|
||||
}
|
||||
w.(http.Flusher).Flush()
|
||||
}
|
||||
},
|
||||
},
|
||||
expectedOutput: "",
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
mockServer := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
|
||||
handler, ok := tt.serverResponse[r.URL.Path]
|
||||
if !ok {
|
||||
t.Errorf("unexpected request to %s", r.URL.Path)
|
||||
http.Error(w, "not found", http.StatusNotFound)
|
||||
return
|
||||
}
|
||||
handler(w, r)
|
||||
}))
|
||||
t.Setenv("OLLAMA_HOST", mockServer.URL)
|
||||
t.Cleanup(mockServer.Close)
|
||||
tempFile, err := os.CreateTemp("", "modelfile")
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
defer os.Remove(tempFile.Name())
|
||||
|
||||
if _, err := tempFile.WriteString(tt.modelFile); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
if err := tempFile.Close(); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
cmd := &cobra.Command{}
|
||||
cmd.Flags().String("file", "", "")
|
||||
if err := cmd.Flags().Set("file", tempFile.Name()); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
cmd.Flags().Bool("insecure", false, "")
|
||||
cmd.SetContext(context.TODO())
|
||||
|
||||
// Redirect stderr to capture progress output
|
||||
oldStderr := os.Stderr
|
||||
r, w, _ := os.Pipe()
|
||||
os.Stderr = w
|
||||
|
||||
// Capture stdout for the "Model pushed" message
|
||||
oldStdout := os.Stdout
|
||||
outR, outW, _ := os.Pipe()
|
||||
os.Stdout = outW
|
||||
|
||||
err = CreateHandler(cmd, []string{tt.modelName})
|
||||
|
||||
// Restore stderr
|
||||
w.Close()
|
||||
os.Stderr = oldStderr
|
||||
// drain the pipe
|
||||
if _, err := io.ReadAll(r); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
// Restore stdout and get output
|
||||
outW.Close()
|
||||
os.Stdout = oldStdout
|
||||
stdout, _ := io.ReadAll(outR)
|
||||
|
||||
if tt.expectedError == "" {
|
||||
if err != nil {
|
||||
t.Errorf("expected no error, got %v", err)
|
||||
}
|
||||
|
||||
if tt.expectedOutput != "" {
|
||||
if got := string(stdout); got != tt.expectedOutput {
|
||||
t.Errorf("expected output %q, got %q", tt.expectedOutput, got)
|
||||
}
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
@@ -13,11 +13,9 @@ import (
|
||||
"strings"
|
||||
|
||||
"github.com/spf13/cobra"
|
||||
"golang.org/x/exp/maps"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/parser"
|
||||
"github.com/ollama/ollama/readline"
|
||||
"github.com/ollama/ollama/types/errtypes"
|
||||
)
|
||||
@@ -213,10 +211,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
return err
|
||||
}
|
||||
|
||||
req := &api.CreateRequest{
|
||||
Name: args[1],
|
||||
Modelfile: buildModelfile(opts),
|
||||
}
|
||||
req := NewCreateRequest(args[1], opts)
|
||||
fn := func(resp api.ProgressResponse) error { return nil }
|
||||
err = client.Create(cmd.Context(), req, fn)
|
||||
if err != nil {
|
||||
@@ -319,8 +314,6 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
opts.Messages = append(opts.Messages, newMessage)
|
||||
}
|
||||
fmt.Println("Set system message.")
|
||||
sb.Reset()
|
||||
|
||||
sb.Reset()
|
||||
continue
|
||||
default:
|
||||
@@ -461,68 +454,51 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
}
|
||||
}
|
||||
|
||||
func buildModelfile(opts runOptions) string {
|
||||
var f parser.File
|
||||
f.Commands = append(f.Commands, parser.Command{Name: "model", Args: cmp.Or(opts.ParentModel, opts.Model)})
|
||||
func NewCreateRequest(name string, opts runOptions) *api.CreateRequest {
|
||||
req := &api.CreateRequest{
|
||||
Name: name,
|
||||
From: cmp.Or(opts.ParentModel, opts.Model),
|
||||
}
|
||||
|
||||
if opts.System != "" {
|
||||
f.Commands = append(f.Commands, parser.Command{Name: "system", Args: opts.System})
|
||||
req.System = opts.System
|
||||
}
|
||||
|
||||
keys := maps.Keys(opts.Options)
|
||||
slices.Sort(keys)
|
||||
for _, k := range keys {
|
||||
v := opts.Options[k]
|
||||
var cmds []parser.Command
|
||||
switch t := v.(type) {
|
||||
case []string:
|
||||
for _, s := range t {
|
||||
cmds = append(cmds, parser.Command{Name: k, Args: s})
|
||||
}
|
||||
default:
|
||||
cmds = append(cmds, parser.Command{Name: k, Args: fmt.Sprintf("%v", t)})
|
||||
}
|
||||
|
||||
f.Commands = append(f.Commands, cmds...)
|
||||
if len(opts.Options) > 0 {
|
||||
req.Parameters = opts.Options
|
||||
}
|
||||
|
||||
for _, msg := range opts.Messages {
|
||||
f.Commands = append(f.Commands, parser.Command{Name: "message", Args: fmt.Sprintf("%s: %s", msg.Role, msg.Content)})
|
||||
if len(opts.Messages) > 0 {
|
||||
req.Messages = opts.Messages
|
||||
}
|
||||
|
||||
return f.String()
|
||||
return req
|
||||
}
|
||||
|
||||
func normalizeFilePath(fp string) string {
|
||||
// Define a map of escaped characters and their replacements
|
||||
replacements := map[string]string{
|
||||
"\\ ": " ", // Escaped space
|
||||
"\\(": "(", // Escaped left parenthesis
|
||||
"\\)": ")", // Escaped right parenthesis
|
||||
"\\[": "[", // Escaped left square bracket
|
||||
"\\]": "]", // Escaped right square bracket
|
||||
"\\{": "{", // Escaped left curly brace
|
||||
"\\}": "}", // Escaped right curly brace
|
||||
"\\$": "$", // Escaped dollar sign
|
||||
"\\&": "&", // Escaped ampersand
|
||||
"\\;": ";", // Escaped semicolon
|
||||
"\\'": "'", // Escaped single quote
|
||||
"\\\\": "\\", // Escaped backslash
|
||||
"\\*": "*", // Escaped asterisk
|
||||
"\\?": "?", // Escaped question mark
|
||||
}
|
||||
|
||||
for escaped, actual := range replacements {
|
||||
fp = strings.ReplaceAll(fp, escaped, actual)
|
||||
}
|
||||
return fp
|
||||
return strings.NewReplacer(
|
||||
"\\ ", " ", // Escaped space
|
||||
"\\(", "(", // Escaped left parenthesis
|
||||
"\\)", ")", // Escaped right parenthesis
|
||||
"\\[", "[", // Escaped left square bracket
|
||||
"\\]", "]", // Escaped right square bracket
|
||||
"\\{", "{", // Escaped left curly brace
|
||||
"\\}", "}", // Escaped right curly brace
|
||||
"\\$", "$", // Escaped dollar sign
|
||||
"\\&", "&", // Escaped ampersand
|
||||
"\\;", ";", // Escaped semicolon
|
||||
"\\'", "'", // Escaped single quote
|
||||
"\\\\", "\\", // Escaped backslash
|
||||
"\\*", "*", // Escaped asterisk
|
||||
"\\?", "?", // Escaped question mark
|
||||
).Replace(fp)
|
||||
}
|
||||
|
||||
func extractFileNames(input string) []string {
|
||||
// Regex to match file paths starting with optional drive letter, / ./ \ or .\ and include escaped or unescaped spaces (\ or %20)
|
||||
// and followed by more characters and a file extension
|
||||
// This will capture non filename strings, but we'll check for file existence to remove mismatches
|
||||
regexPattern := `(?:[a-zA-Z]:)?(?:\./|/|\\)[\S\\ ]+?\.(?i:jpg|jpeg|png|svg)\b`
|
||||
regexPattern := `(?:[a-zA-Z]:)?(?:\./|/|\\)[\S\\ ]+?\.(?i:jpg|jpeg|png)\b`
|
||||
re := regexp.MustCompile(regexPattern)
|
||||
|
||||
return re.FindAllString(input, -1)
|
||||
@@ -535,10 +511,9 @@ func extractFileData(input string) (string, []api.ImageData, error) {
|
||||
for _, fp := range filePaths {
|
||||
nfp := normalizeFilePath(fp)
|
||||
data, err := getImageData(nfp)
|
||||
if err != nil {
|
||||
if os.IsNotExist(err) {
|
||||
continue
|
||||
}
|
||||
if errors.Is(err, os.ErrNotExist) {
|
||||
continue
|
||||
} else if err != nil {
|
||||
fmt.Fprintf(os.Stderr, "Couldn't process image: %q\n", err)
|
||||
return "", imgs, err
|
||||
}
|
||||
@@ -546,7 +521,7 @@ func extractFileData(input string) (string, []api.ImageData, error) {
|
||||
input = strings.ReplaceAll(input, fp, "")
|
||||
imgs = append(imgs, data)
|
||||
}
|
||||
return input, imgs, nil
|
||||
return strings.TrimSpace(input), imgs, nil
|
||||
}
|
||||
|
||||
func getImageData(filePath string) ([]byte, error) {
|
||||
|
@@ -3,105 +3,50 @@ package cmd
|
||||
import (
|
||||
"testing"
|
||||
|
||||
"github.com/google/go-cmp/cmp"
|
||||
"github.com/stretchr/testify/assert"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
)
|
||||
|
||||
func TestExtractFilenames(t *testing.T) {
|
||||
// Unix style paths
|
||||
input := ` some preamble
|
||||
./relative\ path/one.png inbetween1 ./not a valid two.jpg inbetween2
|
||||
/unescaped space /three.jpeg inbetween3 /valid\ path/dir/four.png "./quoted with spaces/five.svg`
|
||||
./relative\ path/one.png inbetween1 ./not a valid two.jpg inbetween2 ./1.svg
|
||||
/unescaped space /three.jpeg inbetween3 /valid\ path/dir/four.png "./quoted with spaces/five.JPG`
|
||||
res := extractFileNames(input)
|
||||
assert.Len(t, res, 5)
|
||||
assert.Contains(t, res[0], "one.png")
|
||||
assert.Contains(t, res[1], "two.jpg")
|
||||
assert.Contains(t, res[2], "three.jpeg")
|
||||
assert.Contains(t, res[3], "four.png")
|
||||
assert.Contains(t, res[4], "five.svg")
|
||||
assert.Contains(t, res[4], "five.JPG")
|
||||
assert.NotContains(t, res[4], '"')
|
||||
assert.NotContains(t, res, "inbtween")
|
||||
assert.NotContains(t, res, "inbetween1")
|
||||
assert.NotContains(t, res, "./1.svg")
|
||||
|
||||
// Windows style paths
|
||||
input = ` some preamble
|
||||
c:/users/jdoe/one.png inbetween1 c:/program files/someplace/two.jpg inbetween2
|
||||
/absolute/nospace/three.jpeg inbetween3 /absolute/with space/four.png inbetween4
|
||||
./relative\ path/five.svg inbetween5 "./relative with/spaces/six.png inbetween6
|
||||
d:\path with\spaces\seven.svg inbetween7 c:\users\jdoe\eight.png inbetween8
|
||||
d:\program files\someplace\nine.png inbetween9 "E:\program files\someplace\ten.svg some ending
|
||||
./relative\ path/five.JPG inbetween5 "./relative with/spaces/six.png inbetween6
|
||||
d:\path with\spaces\seven.JPEG inbetween7 c:\users\jdoe\eight.png inbetween8
|
||||
d:\program files\someplace\nine.png inbetween9 "E:\program files\someplace\ten.PNG some ending
|
||||
`
|
||||
res = extractFileNames(input)
|
||||
assert.Len(t, res, 10)
|
||||
assert.NotContains(t, res, "inbtween")
|
||||
assert.NotContains(t, res, "inbetween2")
|
||||
assert.Contains(t, res[0], "one.png")
|
||||
assert.Contains(t, res[0], "c:")
|
||||
assert.Contains(t, res[1], "two.jpg")
|
||||
assert.Contains(t, res[1], "c:")
|
||||
assert.Contains(t, res[2], "three.jpeg")
|
||||
assert.Contains(t, res[3], "four.png")
|
||||
assert.Contains(t, res[4], "five.svg")
|
||||
assert.Contains(t, res[4], "five.JPG")
|
||||
assert.Contains(t, res[5], "six.png")
|
||||
assert.Contains(t, res[6], "seven.svg")
|
||||
assert.Contains(t, res[6], "seven.JPEG")
|
||||
assert.Contains(t, res[6], "d:")
|
||||
assert.Contains(t, res[7], "eight.png")
|
||||
assert.Contains(t, res[7], "c:")
|
||||
assert.Contains(t, res[8], "nine.png")
|
||||
assert.Contains(t, res[8], "d:")
|
||||
assert.Contains(t, res[9], "ten.svg")
|
||||
assert.Contains(t, res[9], "ten.PNG")
|
||||
assert.Contains(t, res[9], "E:")
|
||||
}
|
||||
|
||||
func TestModelfileBuilder(t *testing.T) {
|
||||
opts := runOptions{
|
||||
Model: "hork",
|
||||
System: "You are part horse and part shark, but all hork. Do horklike things",
|
||||
Messages: []api.Message{
|
||||
{Role: "user", Content: "Hey there hork!"},
|
||||
{Role: "assistant", Content: "Yes it is true, I am half horse, half shark."},
|
||||
},
|
||||
Options: map[string]any{
|
||||
"temperature": 0.9,
|
||||
"seed": 42,
|
||||
"penalize_newline": false,
|
||||
"stop": []string{"hi", "there"},
|
||||
},
|
||||
}
|
||||
|
||||
t.Run("model", func(t *testing.T) {
|
||||
expect := `FROM hork
|
||||
SYSTEM You are part horse and part shark, but all hork. Do horklike things
|
||||
PARAMETER penalize_newline false
|
||||
PARAMETER seed 42
|
||||
PARAMETER stop hi
|
||||
PARAMETER stop there
|
||||
PARAMETER temperature 0.9
|
||||
MESSAGE user Hey there hork!
|
||||
MESSAGE assistant Yes it is true, I am half horse, half shark.
|
||||
`
|
||||
|
||||
actual := buildModelfile(opts)
|
||||
if diff := cmp.Diff(expect, actual); diff != "" {
|
||||
t.Errorf("mismatch (-want +got):\n%s", diff)
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("parent model", func(t *testing.T) {
|
||||
opts.ParentModel = "horseshark"
|
||||
expect := `FROM horseshark
|
||||
SYSTEM You are part horse and part shark, but all hork. Do horklike things
|
||||
PARAMETER penalize_newline false
|
||||
PARAMETER seed 42
|
||||
PARAMETER stop hi
|
||||
PARAMETER stop there
|
||||
PARAMETER temperature 0.9
|
||||
MESSAGE user Hey there hork!
|
||||
MESSAGE assistant Yes it is true, I am half horse, half shark.
|
||||
`
|
||||
actual := buildModelfile(opts)
|
||||
if diff := cmp.Diff(expect, actual); diff != "" {
|
||||
t.Errorf("mismatch (-want +got):\n%s", diff)
|
||||
}
|
||||
})
|
||||
}
|
||||
|
15
cmd/runner/main.go
Normal file
15
cmd/runner/main.go
Normal file
@@ -0,0 +1,15 @@
|
||||
package main
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"os"
|
||||
|
||||
"github.com/ollama/ollama/runner"
|
||||
)
|
||||
|
||||
func main() {
|
||||
if err := runner.Execute(os.Args[1:]); err != nil {
|
||||
fmt.Fprintf(os.Stderr, "error: %s\n", err)
|
||||
os.Exit(1)
|
||||
}
|
||||
}
|
@@ -9,7 +9,7 @@ import (
|
||||
"log/slog"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type ModelParameters struct {
|
||||
@@ -27,8 +27,8 @@ type AdapterParameters struct {
|
||||
} `json:"lora_parameters"`
|
||||
}
|
||||
|
||||
func (ModelParameters) KV(t *Tokenizer) llm.KV {
|
||||
kv := llm.KV{
|
||||
func (ModelParameters) KV(t *Tokenizer) ggml.KV {
|
||||
kv := ggml.KV{
|
||||
"general.file_type": uint32(1),
|
||||
"general.quantization_version": uint32(2),
|
||||
"tokenizer.ggml.pre": t.Pre,
|
||||
@@ -54,7 +54,7 @@ func (ModelParameters) KV(t *Tokenizer) llm.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p AdapterParameters) KV() llm.KV {
|
||||
func (p AdapterParameters) KV() ggml.KV {
|
||||
var alpha float32
|
||||
if p.LoraParameters.Alpha == 0 {
|
||||
alpha = float32(p.Alpha)
|
||||
@@ -62,7 +62,7 @@ func (p AdapterParameters) KV() llm.KV {
|
||||
alpha = p.LoraParameters.Alpha
|
||||
}
|
||||
|
||||
kv := llm.KV{
|
||||
kv := ggml.KV{
|
||||
"adapter.lora.alpha": alpha,
|
||||
"adapter.type": "lora",
|
||||
"general.file_type": uint32(1),
|
||||
@@ -79,19 +79,19 @@ func (ModelParameters) specialTokenTypes() []string {
|
||||
}
|
||||
}
|
||||
|
||||
func (ModelParameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
|
||||
return llm.WriteGGUF(ws, kv, ts)
|
||||
func (ModelParameters) writeFile(ws io.WriteSeeker, kv ggml.KV, ts []ggml.Tensor) error {
|
||||
return ggml.WriteGGUF(ws, kv, ts)
|
||||
}
|
||||
|
||||
func (AdapterParameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
|
||||
return llm.WriteGGUF(ws, kv, ts)
|
||||
func (AdapterParameters) writeFile(ws io.WriteSeeker, kv ggml.KV, ts []ggml.Tensor) error {
|
||||
return ggml.WriteGGUF(ws, kv, ts)
|
||||
}
|
||||
|
||||
type ModelConverter interface {
|
||||
// KV maps parameters to LLM key-values
|
||||
KV(*Tokenizer) llm.KV
|
||||
KV(*Tokenizer) ggml.KV
|
||||
// Tensors maps input tensors to LLM tensors. Model specific modifications can be done here.
|
||||
Tensors([]Tensor) []llm.Tensor
|
||||
Tensors([]Tensor) []ggml.Tensor
|
||||
// Replacements returns a list of string pairs to replace in tensor names.
|
||||
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
|
||||
Replacements() []string
|
||||
@@ -99,7 +99,7 @@ type ModelConverter interface {
|
||||
// specialTokenTypes returns any special token types the model uses
|
||||
specialTokenTypes() []string
|
||||
// writeFile writes the model to the provided io.WriteSeeker
|
||||
writeFile(io.WriteSeeker, llm.KV, []llm.Tensor) error
|
||||
writeFile(io.WriteSeeker, ggml.KV, []ggml.Tensor) error
|
||||
}
|
||||
|
||||
type moreParser interface {
|
||||
@@ -108,17 +108,17 @@ type moreParser interface {
|
||||
|
||||
type AdapterConverter interface {
|
||||
// KV maps parameters to LLM key-values
|
||||
KV(llm.KV) llm.KV
|
||||
KV(ggml.KV) ggml.KV
|
||||
// Tensors maps input tensors to LLM tensors. Adapter specific modifications can be done here.
|
||||
Tensors([]Tensor) []llm.Tensor
|
||||
Tensors([]Tensor) []ggml.Tensor
|
||||
// Replacements returns a list of string pairs to replace in tensor names.
|
||||
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
|
||||
Replacements() []string
|
||||
|
||||
writeFile(io.WriteSeeker, llm.KV, []llm.Tensor) error
|
||||
writeFile(io.WriteSeeker, ggml.KV, []ggml.Tensor) error
|
||||
}
|
||||
|
||||
func ConvertAdapter(fsys fs.FS, ws io.WriteSeeker, baseKV llm.KV) error {
|
||||
func ConvertAdapter(fsys fs.FS, ws io.WriteSeeker, baseKV ggml.KV) error {
|
||||
bts, err := fs.ReadFile(fsys, "adapter_config.json")
|
||||
if err != nil {
|
||||
return err
|
||||
@@ -187,8 +187,12 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
|
||||
conv = &gemma2Model{}
|
||||
case "Phi3ForCausalLM":
|
||||
conv = &phi3Model{}
|
||||
case "Qwen2ForCausalLM":
|
||||
conv = &qwen2Model{}
|
||||
case "BertModel":
|
||||
conv = &bertModel{}
|
||||
case "CohereForCausalLM":
|
||||
conv = &commandrModel{}
|
||||
default:
|
||||
return errors.New("unsupported architecture")
|
||||
}
|
||||
|
@@ -8,7 +8,7 @@ import (
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type bertModel struct {
|
||||
@@ -85,7 +85,7 @@ func (p *bertModel) parseMore(fsys fs.FS) error {
|
||||
return nil
|
||||
}
|
||||
|
||||
func (p *bertModel) KV(t *Tokenizer) llm.KV {
|
||||
func (p *bertModel) KV(t *Tokenizer) ggml.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "bert"
|
||||
kv["bert.attention.causal"] = false
|
||||
@@ -132,8 +132,8 @@ func (p *bertModel) KV(t *Tokenizer) llm.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *bertModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||
var out []llm.Tensor
|
||||
func (p *bertModel) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
var out []ggml.Tensor
|
||||
for _, t := range ts {
|
||||
if slices.Contains([]string{
|
||||
"embeddings.position_ids",
|
||||
@@ -143,7 +143,7 @@ func (p *bertModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||
continue
|
||||
}
|
||||
|
||||
out = append(out, llm.Tensor{
|
||||
out = append(out, ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
|
76
convert/convert_commandr.go
Normal file
76
convert/convert_commandr.go
Normal file
@@ -0,0 +1,76 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type commandrModel struct {
|
||||
ModelParameters
|
||||
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
HiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||
LayerNormEPS float32 `json:"layer_norm_eps"`
|
||||
RopeTheta float32 `json:"rope_theta"`
|
||||
UseQKNorm bool `json:"use_qk_norm"`
|
||||
MaxLength uint32 `json:"model_max_length"`
|
||||
LogitScale float32 `json:"logit_scale"`
|
||||
NCtx uint32 `json:"n_ctx"`
|
||||
}
|
||||
|
||||
var _ ModelConverter = (*commandrModel)(nil)
|
||||
|
||||
func (p *commandrModel) KV(t *Tokenizer) ggml.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "command-r"
|
||||
kv["general.name"] = "command-r"
|
||||
kv["command-r.context_length"] = cmp.Or(p.MaxLength, p.MaxPositionEmbeddings, p.NCtx)
|
||||
kv["command-r.embedding_length"] = p.HiddenSize
|
||||
kv["command-r.block_count"] = p.HiddenLayers
|
||||
kv["command-r.feed_forward_length"] = p.IntermediateSize
|
||||
kv["command-r.attention.head_count"] = p.NumAttentionHeads
|
||||
kv["command-r.attention.head_count_kv"] = p.NumKeyValueHeads
|
||||
kv["command-r.attention.layer_norm_epsilon"] = p.LayerNormEPS
|
||||
kv["command-r.rope.freq_base"] = p.RopeTheta
|
||||
kv["command-r.max_position_embeddings"] = cmp.Or(p.MaxLength, p.MaxPositionEmbeddings)
|
||||
kv["command-r.logit_scale"] = p.LogitScale
|
||||
kv["command-r.rope.scaling.type"] = "none"
|
||||
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *commandrModel) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
var out []ggml.Tensor
|
||||
for _, t := range ts {
|
||||
out = append(out, ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
})
|
||||
}
|
||||
|
||||
return out
|
||||
}
|
||||
|
||||
func (p *commandrModel) Replacements() []string {
|
||||
return []string{
|
||||
"self_attn.q_norm", "attn_q_norm",
|
||||
"self_attn.k_norm", "attn_k_norm",
|
||||
"model.layers", "blk",
|
||||
"input_layernorm", "attn_norm",
|
||||
"mlp.down_proj", "ffn_down",
|
||||
"mlp.gate_proj", "ffn_gate",
|
||||
"mlp.up_proj", "ffn_up",
|
||||
"self_attn.k_proj", "attn_k",
|
||||
"self_attn.o_proj", "attn_output",
|
||||
"self_attn.q_proj", "attn_q",
|
||||
"self_attn.v_proj", "attn_v",
|
||||
"model.norm", "output_norm",
|
||||
"model.embed_tokens", "token_embd",
|
||||
}
|
||||
}
|
@@ -6,7 +6,7 @@ import (
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type gemmaModel struct {
|
||||
@@ -23,7 +23,7 @@ type gemmaModel struct {
|
||||
|
||||
var _ ModelConverter = (*gemmaModel)(nil)
|
||||
|
||||
func (p *gemmaModel) KV(t *Tokenizer) llm.KV {
|
||||
func (p *gemmaModel) KV(t *Tokenizer) ggml.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "gemma"
|
||||
kv["gemma.context_length"] = p.MaxPositionEmbeddings
|
||||
@@ -42,14 +42,14 @@ func (p *gemmaModel) KV(t *Tokenizer) llm.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *gemmaModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||
var out []llm.Tensor
|
||||
func (p *gemmaModel) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
var out []ggml.Tensor
|
||||
for _, t := range ts {
|
||||
if strings.HasSuffix(t.Name(), "_norm.weight") {
|
||||
t.SetRepacker(p.addOne)
|
||||
}
|
||||
|
||||
out = append(out, llm.Tensor{
|
||||
out = append(out, ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
|
@@ -1,8 +1,6 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
import "github.com/ollama/ollama/fs/ggml"
|
||||
|
||||
type gemma2Model struct {
|
||||
gemmaModel
|
||||
@@ -11,7 +9,7 @@ type gemma2Model struct {
|
||||
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
|
||||
}
|
||||
|
||||
func (p *gemma2Model) KV(t *Tokenizer) llm.KV {
|
||||
func (p *gemma2Model) KV(t *Tokenizer) ggml.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "gemma2"
|
||||
kv["gemma2.context_length"] = p.MaxPositionEmbeddings
|
||||
|
@@ -6,7 +6,7 @@ import (
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type gemma2Adapter struct {
|
||||
@@ -15,14 +15,14 @@ type gemma2Adapter struct {
|
||||
|
||||
var _ AdapterConverter = (*gemma2Adapter)(nil)
|
||||
|
||||
func (p *gemma2Adapter) KV(baseKV llm.KV) llm.KV {
|
||||
func (p *gemma2Adapter) KV(baseKV ggml.KV) ggml.KV {
|
||||
kv := p.AdapterParameters.KV()
|
||||
kv["general.architecture"] = "gemma2"
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *gemma2Adapter) Tensors(ts []Tensor) []llm.Tensor {
|
||||
var out []llm.Tensor
|
||||
func (p *gemma2Adapter) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
var out []ggml.Tensor
|
||||
for _, t := range ts {
|
||||
shape := t.Shape()
|
||||
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
|
||||
@@ -31,7 +31,7 @@ func (p *gemma2Adapter) Tensors(ts []Tensor) []llm.Tensor {
|
||||
t.SetRepacker(p.repack)
|
||||
}
|
||||
|
||||
out = append(out, llm.Tensor{
|
||||
out = append(out, ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
|
@@ -9,7 +9,7 @@ import (
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type llamaModel struct {
|
||||
@@ -46,7 +46,7 @@ type llamaModel struct {
|
||||
|
||||
var _ ModelConverter = (*llamaModel)(nil)
|
||||
|
||||
func (p *llamaModel) KV(t *Tokenizer) llm.KV {
|
||||
func (p *llamaModel) KV(t *Tokenizer) ggml.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "llama"
|
||||
kv["llama.vocab_size"] = p.VocabSize
|
||||
@@ -120,11 +120,11 @@ func (p *llamaModel) KV(t *Tokenizer) llm.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *llamaModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||
var out []llm.Tensor
|
||||
func (p *llamaModel) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
var out []ggml.Tensor
|
||||
|
||||
if p.RopeScaling.factors != nil {
|
||||
out = append(out, llm.Tensor{
|
||||
out = append(out, ggml.Tensor{
|
||||
Name: "rope_freqs.weight",
|
||||
Kind: 0,
|
||||
Shape: []uint64{uint64(len(p.RopeScaling.factors))},
|
||||
@@ -138,7 +138,7 @@ func (p *llamaModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||
t.SetRepacker(p.repack)
|
||||
}
|
||||
|
||||
out = append(out, llm.Tensor{
|
||||
out = append(out, ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
|
@@ -7,7 +7,7 @@ import (
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type llamaAdapter struct {
|
||||
@@ -18,7 +18,7 @@ type llamaAdapter struct {
|
||||
|
||||
var _ AdapterConverter = (*llamaAdapter)(nil)
|
||||
|
||||
func (p *llamaAdapter) KV(baseKV llm.KV) llm.KV {
|
||||
func (p *llamaAdapter) KV(baseKV ggml.KV) ggml.KV {
|
||||
kv := p.AdapterParameters.KV()
|
||||
kv["general.architecture"] = "llama"
|
||||
kv["llama.attention.head_count"] = baseKV["llama.attention.head_count"]
|
||||
@@ -29,8 +29,8 @@ func (p *llamaAdapter) KV(baseKV llm.KV) llm.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *llamaAdapter) Tensors(ts []Tensor) []llm.Tensor {
|
||||
var out []llm.Tensor
|
||||
func (p *llamaAdapter) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
var out []ggml.Tensor
|
||||
for _, t := range ts {
|
||||
shape := t.Shape()
|
||||
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
|
||||
@@ -41,7 +41,7 @@ func (p *llamaAdapter) Tensors(ts []Tensor) []llm.Tensor {
|
||||
t.SetRepacker(p.repack)
|
||||
}
|
||||
|
||||
out = append(out, llm.Tensor{
|
||||
out = append(out, ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: shape,
|
||||
|
@@ -6,7 +6,7 @@ import (
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type mixtralModel struct {
|
||||
@@ -15,7 +15,7 @@ type mixtralModel struct {
|
||||
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
|
||||
}
|
||||
|
||||
func (p *mixtralModel) KV(t *Tokenizer) llm.KV {
|
||||
func (p *mixtralModel) KV(t *Tokenizer) ggml.KV {
|
||||
kv := p.llamaModel.KV(t)
|
||||
|
||||
if p.NumLocalExperts > 0 {
|
||||
@@ -29,7 +29,7 @@ func (p *mixtralModel) KV(t *Tokenizer) llm.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *mixtralModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||
func (p *mixtralModel) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
oldnew := []string{
|
||||
"model.layers", "blk",
|
||||
"w1", "ffn_gate_exps",
|
||||
@@ -56,10 +56,10 @@ func (p *mixtralModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||
return true
|
||||
})
|
||||
|
||||
var out []llm.Tensor
|
||||
var out []ggml.Tensor
|
||||
for n, e := range experts {
|
||||
// TODO(mxyng): sanity check experts
|
||||
out = append(out, llm.Tensor{
|
||||
out = append(out, ggml.Tensor{
|
||||
Name: n,
|
||||
Kind: e[0].Kind(),
|
||||
Shape: append([]uint64{uint64(len(e))}, e[0].Shape()...),
|
||||
|
@@ -8,7 +8,7 @@ import (
|
||||
"strings"
|
||||
"sync"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type phi3Model struct {
|
||||
@@ -37,7 +37,7 @@ type phi3Model struct {
|
||||
|
||||
var _ ModelConverter = (*phi3Model)(nil)
|
||||
|
||||
func (p *phi3Model) KV(t *Tokenizer) llm.KV {
|
||||
func (p *phi3Model) KV(t *Tokenizer) ggml.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "phi3"
|
||||
kv["phi3.context_length"] = p.MaxPositionEmbeddings
|
||||
@@ -68,19 +68,19 @@ func (p *phi3Model) KV(t *Tokenizer) llm.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *phi3Model) Tensors(ts []Tensor) []llm.Tensor {
|
||||
func (p *phi3Model) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
var addRopeFactors sync.Once
|
||||
|
||||
out := make([]llm.Tensor, 0, len(ts)+2)
|
||||
out := make([]ggml.Tensor, 0, len(ts)+2)
|
||||
for _, t := range ts {
|
||||
if strings.HasPrefix(t.Name(), "blk.0.") {
|
||||
addRopeFactors.Do(func() {
|
||||
out = append(out, llm.Tensor{
|
||||
out = append(out, ggml.Tensor{
|
||||
Name: "rope_factors_long.weight",
|
||||
Kind: 0,
|
||||
Shape: []uint64{uint64(len(p.RopeScaling.LongFactor))},
|
||||
WriterTo: p.RopeScaling.LongFactor,
|
||||
}, llm.Tensor{
|
||||
}, ggml.Tensor{
|
||||
Name: "rope_factors_short.weight",
|
||||
Kind: 0,
|
||||
Shape: []uint64{uint64(len(p.RopeScaling.ShortFactor))},
|
||||
@@ -89,7 +89,7 @@ func (p *phi3Model) Tensors(ts []Tensor) []llm.Tensor {
|
||||
})
|
||||
}
|
||||
|
||||
out = append(out, llm.Tensor{
|
||||
out = append(out, ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
|
78
convert/convert_qwen2.go
Normal file
78
convert/convert_qwen2.go
Normal file
@@ -0,0 +1,78 @@
|
||||
package convert
|
||||
|
||||
import "github.com/ollama/ollama/fs/ggml"
|
||||
|
||||
type qwen2Model struct {
|
||||
ModelParameters
|
||||
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
HiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||
RopeTheta float32 `json:"rope_theta"`
|
||||
RopeScaling struct {
|
||||
Type string `json:"type"`
|
||||
Factor ropeFactor `json:"factor"`
|
||||
OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
|
||||
} `json:"rope_scaling"`
|
||||
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||
}
|
||||
|
||||
var _ ModelConverter = (*qwen2Model)(nil)
|
||||
|
||||
func (q *qwen2Model) KV(t *Tokenizer) ggml.KV {
|
||||
kv := q.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "qwen2"
|
||||
kv["qwen2.block_count"] = q.HiddenLayers
|
||||
kv["qwen2.context_length"] = q.MaxPositionEmbeddings
|
||||
kv["qwen2.embedding_length"] = q.HiddenSize
|
||||
kv["qwen2.feed_forward_length"] = q.IntermediateSize
|
||||
kv["qwen2.attention.head_count"] = q.NumAttentionHeads
|
||||
kv["qwen2.attention.head_count_kv"] = q.NumKeyValueHeads
|
||||
kv["qwen2.rope.freq_base"] = q.RopeTheta
|
||||
kv["qwen2.attention.layer_norm_rms_epsilon"] = q.RMSNormEPS
|
||||
|
||||
switch q.RopeScaling.Type {
|
||||
case "":
|
||||
// no scaling
|
||||
case "yarn":
|
||||
kv["qwen2.rope.scaling.type"] = q.RopeScaling.Type
|
||||
kv["qwen2.rope.scaling.factor"] = q.RopeScaling.Factor
|
||||
default:
|
||||
panic("unknown rope scaling type")
|
||||
}
|
||||
return kv
|
||||
}
|
||||
|
||||
func (q *qwen2Model) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
var out []ggml.Tensor
|
||||
for _, t := range ts {
|
||||
out = append(out, ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
})
|
||||
}
|
||||
|
||||
return out
|
||||
}
|
||||
|
||||
func (p *qwen2Model) Replacements() []string {
|
||||
return []string{
|
||||
"lm_head", "output",
|
||||
"model.embed_tokens", "token_embd",
|
||||
"model.layers", "blk",
|
||||
"input_layernorm", "attn_norm",
|
||||
"self_attn.k_proj", "attn_k",
|
||||
"self_attn.v_proj", "attn_v",
|
||||
"self_attn.q_proj", "attn_q",
|
||||
"self_attn.o_proj", "attn_output",
|
||||
"mlp.down_proj", "ffn_down",
|
||||
"mlp.gate_proj", "ffn_gate",
|
||||
"mlp.up_proj", "ffn_up",
|
||||
"post_attention_layernorm", "ffn_norm",
|
||||
"model.norm", "output_norm",
|
||||
}
|
||||
}
|
@@ -20,7 +20,7 @@ import (
|
||||
|
||||
"golang.org/x/exp/maps"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type tensorData struct {
|
||||
@@ -29,7 +29,7 @@ type tensorData struct {
|
||||
Shape []int `json:"shape"`
|
||||
}
|
||||
|
||||
func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, llm.Tensors) {
|
||||
func convertFull(t *testing.T, fsys fs.FS) (*os.File, ggml.KV, ggml.Tensors) {
|
||||
t.Helper()
|
||||
|
||||
f, err := os.CreateTemp(t.TempDir(), "f16")
|
||||
@@ -48,7 +48,7 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, llm.Tensors) {
|
||||
}
|
||||
t.Cleanup(func() { r.Close() })
|
||||
|
||||
m, _, err := llm.DecodeGGML(r, math.MaxInt)
|
||||
m, _, err := ggml.Decode(r, math.MaxInt)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
@@ -60,7 +60,7 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, llm.Tensors) {
|
||||
return r, m.KV(), m.Tensors()
|
||||
}
|
||||
|
||||
func generateResultsJSON(t *testing.T, f *os.File, kv llm.KV, tensors llm.Tensors) map[string]string {
|
||||
func generateResultsJSON(t *testing.T, f *os.File, kv ggml.KV, tensors ggml.Tensors) map[string]string {
|
||||
actual := make(map[string]string)
|
||||
for k, v := range kv {
|
||||
if s, ok := v.(json.Marshaler); !ok {
|
||||
@@ -75,7 +75,7 @@ func generateResultsJSON(t *testing.T, f *os.File, kv llm.KV, tensors llm.Tensor
|
||||
}
|
||||
}
|
||||
|
||||
for _, tensor := range tensors.Items {
|
||||
for _, tensor := range tensors.Items() {
|
||||
sha256sum := sha256.New()
|
||||
sr := io.NewSectionReader(f, int64(tensors.Offset+tensor.Offset), int64(tensor.Size()))
|
||||
if _, err := io.Copy(sha256sum, sr); err != nil {
|
||||
@@ -108,6 +108,8 @@ func TestConvertModel(t *testing.T) {
|
||||
"Phi-3-mini-128k-instruct",
|
||||
"all-MiniLM-L6-v2",
|
||||
"gemma-2-9b-it",
|
||||
"Qwen2.5-0.5B-Instruct",
|
||||
"c4ai-command-r-v01",
|
||||
}
|
||||
|
||||
for i := range cases {
|
||||
@@ -330,7 +332,7 @@ func TestConvertAdapter(t *testing.T) {
|
||||
}
|
||||
defer r.Close()
|
||||
|
||||
m, _, err := llm.DecodeGGML(r, math.MaxInt)
|
||||
m, _, err := ggml.Decode(r, math.MaxInt)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
@@ -331,7 +331,7 @@ type TrainerSpec struct {
|
||||
// Reserved special meta tokens.
|
||||
// * -1 is not used.
|
||||
// * unk_id must not be -1.
|
||||
// Id must starts with 0 and be contigous.
|
||||
// Id must start with 0 and be contiguous.
|
||||
UnkId *int32 `protobuf:"varint,40,opt,name=unk_id,json=unkId,def=0" json:"unk_id,omitempty"` // <unk>
|
||||
BosId *int32 `protobuf:"varint,41,opt,name=bos_id,json=bosId,def=1" json:"bos_id,omitempty"` // <s>
|
||||
EosId *int32 `protobuf:"varint,42,opt,name=eos_id,json=eosId,def=2" json:"eos_id,omitempty"` // </s>
|
||||
|
@@ -213,7 +213,7 @@ message TrainerSpec {
|
||||
// Reserved special meta tokens.
|
||||
// * -1 is not used.
|
||||
// * unk_id must not be -1.
|
||||
// Id must starts with 0 and be contigous.
|
||||
// Id must start with 0 and be contiguous.
|
||||
optional int32 unk_id = 40 [default = 0]; // <unk>
|
||||
optional int32 bos_id = 41 [default = 1]; // <s>
|
||||
optional int32 eos_id = 42 [default = 2]; // </s>
|
||||
|
314
convert/testdata/Qwen2.5-0.5B-Instruct.json
vendored
Normal file
314
convert/testdata/Qwen2.5-0.5B-Instruct.json
vendored
Normal file
@@ -0,0 +1,314 @@
|
||||
{
|
||||
"general.architecture": "qwen2",
|
||||
"general.file_type": "1",
|
||||
"general.parameter_count": "494032768",
|
||||
"general.quantization_version": "2",
|
||||
"output_norm.weight": "93a01a6db3419e85320a244bbf8ae81c43033b1d10c342bea3797ff2ce348390",
|
||||
"qwen2.attention.head_count": "14",
|
||||
"qwen2.attention.head_count_kv": "2",
|
||||
"qwen2.attention.layer_norm_rms_epsilon": "1e-06",
|
||||
"qwen2.block_count": "24",
|
||||
"qwen2.context_length": "32768",
|
||||
"qwen2.embedding_length": "896",
|
||||
"qwen2.feed_forward_length": "4864",
|
||||
"qwen2.rope.freq_base": "1e+06",
|
||||
"token_embd.weight": "d74257dc547b48be5ae7b93f1c9af072c0c42dbbb85503078e25c59cd09e68d0",
|
||||
"tokenizer.ggml.add_eos_token": "false",
|
||||
"tokenizer.ggml.add_padding_token": "false",
|
||||
"tokenizer.ggml.eos_token_id": "151645",
|
||||
"tokenizer.ggml.merges": "6b1b1c58f1223d74f9095929d3e6416cdd74784440221a5507b87b8197f2bfd2",
|
||||
"tokenizer.ggml.model": "gpt2",
|
||||
"tokenizer.ggml.padding_token_id": "151643",
|
||||
"tokenizer.ggml.pre": "qwen2",
|
||||
"tokenizer.ggml.scores": "94e247e531e8b0fa3d248f3de09c9beae0c87da8106208a8edfaac0b8ec4b53d",
|
||||
"tokenizer.ggml.token_type": "b178dbc9d1b2e08f84d02918e00fc2de2619a250e6c188c91a6605f701860055",
|
||||
"tokenizer.ggml.tokens": "1d93f6679b23a1152b725f7f473792d54d53c1040c5250d3e46b42f81e0a1a34",
|
||||
"blk.0.attn_k.bias": "5ce6617845f66c34515978d23d52e729c298d8bffa28c356a0428bef17142cf1",
|
||||
"blk.0.attn_k.weight": "a960832a9e0e83e4d95402e5d1a01cc74300fcca0c381237162126330e1a7af8",
|
||||
"blk.0.attn_norm.weight": "32c7d51cd0958f1f1771174192db341f9770516d7595a2f0fd18a4d78bd5aba3",
|
||||
"blk.0.attn_output.weight": "c67e6e7e868354a11bf9121c70ee56c140b20eec611a8955e7dfe54a21d40a98",
|
||||
"blk.0.attn_q.bias": "3e9e994eb1f03bccfc82f8bb3c324c920d42d547e07de5be83be12c428645063",
|
||||
"blk.0.attn_q.weight": "dc12132f789b97cfa1e3f5775ceb835247fa67aa47400fd09c8f9f3769208583",
|
||||
"blk.0.attn_v.bias": "a3fd0757b31fdc78af5ec320332d239c1a79d34e8804df06c5454e86955e8cc9",
|
||||
"blk.0.attn_v.weight": "f43094a2134c7ee2dcc52aac3c8b7d9d64fb0295a8adb94cabfd49213f017b84",
|
||||
"blk.0.ffn_down.weight": "18c2aec92db14f21976838a8c35d5575f80d0e4b1e05ccc0d8388d5877e80147",
|
||||
"blk.0.ffn_gate.weight": "a3a1c4ef38f8f750eabadfe3d83bbb0f77941eec1cc1a388e51852e99c8691f6",
|
||||
"blk.0.ffn_norm.weight": "b59b779c42d44b5c4cec41e39b4eb61e0491a07c1b3e946ccb5b8d5c657eda3f",
|
||||
"blk.0.ffn_up.weight": "db64f09987ea59449e90abae5a2ffcc20efd9203f0eebec77a6aacb5809d6cff",
|
||||
"blk.1.attn_k.bias": "a5c8c5671703ec0aa0143ff70a20ffdd67b5d5790ca1dfa5bba4e87e4071ed9f",
|
||||
"blk.1.attn_k.weight": "835c7c7cc95b3cb2e55bd9cac585aa0760a033896621d3e06421f3378c540f7d",
|
||||
"blk.1.attn_norm.weight": "f4c36fb6c14fce721fab0de78cc118d6f66e3a3d3ea0017bb14aade24c3c5434",
|
||||
"blk.1.attn_output.weight": "cc1e80310c97cef068e48e40b7096f32fa2138519d6209c6a1a9994985999016",
|
||||
"blk.1.attn_q.bias": "bc332780e66b0aac80ec5e63ac32344919a840db2fcc8f87bcef16a43a54138e",
|
||||
"blk.1.attn_q.weight": "d766f06c925cce38d4b31b2165b3448e1fb49a7d561985f95d9cd2fcba52367a",
|
||||
"blk.1.attn_v.bias": "9f486626fb6ed9ac84970a71e9b9818dd2758501fd3f61bb1c08540dcc7a8631",
|
||||
"blk.1.attn_v.weight": "e873d1e5bd4f4d6abfd47c0f55119c2c111105838753ee273a03c5ccea25ce5c",
|
||||
"blk.1.ffn_down.weight": "b3ce82b093f187344de04284b1783a452de1b72640914609b8f830dc81580521",
|
||||
"blk.1.ffn_gate.weight": "5cd44ad237edaca525a28a3ac13975d1b565f576d6a8003237a341ae0d156f2e",
|
||||
"blk.1.ffn_norm.weight": "4ac774ee8afaee119610c46aa1ff89fc6c9084a29d226075bc4aa4d2f15f746c",
|
||||
"blk.1.ffn_up.weight": "042d81ab5f1983d85c81213232f3bfc05a9302d9dfaa98d931ebba326b6058b8",
|
||||
"blk.10.attn_k.bias": "767ecfeacd60a2c2221ac4d76c357190849dd9cdf64ced418d9d0c7949101401",
|
||||
"blk.10.attn_k.weight": "a9f3df343227537636be8202303453086375091944e498bad11e0b91e45e8c71",
|
||||
"blk.10.attn_norm.weight": "01acd0e7b3e363f873dbfde6f0995ffcce83f5aaa10ff91c31dbf775035f6d5a",
|
||||
"blk.10.attn_output.weight": "a531fe660769604ab869f01b203eb115e025cad4c0baeacdd1bcca99cf6d0264",
|
||||
"blk.10.attn_q.bias": "356a02c9163dd660c1340fbe1e049b335ac6178891e00996131bba9ab4cb3e59",
|
||||
"blk.10.attn_q.weight": "81be0cfb227339d83f954cd8dcf35828441211c6e1d184060e3eb76085041e2f",
|
||||
"blk.10.attn_v.bias": "ed0450653284b62f8bf2c2db19c0ff7a6cf3cda1324d0a044c5e3db7bb692bd3",
|
||||
"blk.10.attn_v.weight": "c1247ff7092babd2ed979883095b9aa022b2996cab1c77fb9e6176ddc1498d16",
|
||||
"blk.10.ffn_down.weight": "fda7544965dc9af874f1062c22151c6cefc8ba08cbe15dc67aa89979e77b2de4",
|
||||
"blk.10.ffn_gate.weight": "9f2632b1dee7304d10c70bd38d85bb1f148a628a8468f894f57975b8a2f1d945",
|
||||
"blk.10.ffn_norm.weight": "94f8cbd6b17a4d5aabd93fa32930a687db3b11f086142f1cd71c535c11adcad4",
|
||||
"blk.10.ffn_up.weight": "8dc2f8db0474939a277a3d89db34c3bcc3381cfea57bd05a8426a164634d9112",
|
||||
"blk.11.attn_k.bias": "3b8e5a662b19411e3f6530714b766aad2ee41eebc8161bec9db0bc82d383a6e0",
|
||||
"blk.11.attn_k.weight": "2c29f1ed1ce53ce9604e9ea3663c2c373157e909a0d6064a8920005f6d15dad9",
|
||||
"blk.11.attn_norm.weight": "48f68a99c3da4ab4c9e492677b606d1b8e0e3de1fdbf6a977523f97b8c21ec31",
|
||||
"blk.11.attn_output.weight": "5859f3838a94898b020c23040941ed88f4fcb132db400d0849f30a01f62c0f1c",
|
||||
"blk.11.attn_q.bias": "c5ad89a5628f2bd81252ef44ef6bbcbff15c33ad16fba66435509b959c2af6d3",
|
||||
"blk.11.attn_q.weight": "d102104e5d61c1e3219564f1d0149fd593db6c6daa9f3872460c84403323cfef",
|
||||
"blk.11.attn_v.bias": "8653f7d48c5f75a5b55630819f99ecf01c932f12d33fd1a3ee634613e70edde8",
|
||||
"blk.11.attn_v.weight": "e0a7c7d89b9f2d0d781ce85330022229126e130a8600a09d4a5f920f0bbd50b2",
|
||||
"blk.11.ffn_down.weight": "4a22b3361eba8bbe1d9a6fda1812618e894c49f13bcacb505defa9badb6b96a6",
|
||||
"blk.11.ffn_gate.weight": "484698b206760d3fd8df68b252a3c5bae65c8bf6392fb53a5261b021b6f39144",
|
||||
"blk.11.ffn_norm.weight": "da69e96338cbe30882cf5a9544004387f5bbc0bcb6038e61ba2baabbd2623bac",
|
||||
"blk.11.ffn_up.weight": "26ec74f1f504d1281715680dfbcc321db4e9900c53932fa40955daceb891b9aa",
|
||||
"blk.12.attn_k.bias": "f94b49ec3e498f14f6bc3ebefe1f82018935bbe594df03253bfffae36bc20751",
|
||||
"blk.12.attn_k.weight": "ae6323d0bbcfcea01f598d308993d1a7530317e78c1f64923e36d4b1649e9e73",
|
||||
"blk.12.attn_norm.weight": "3784536a7611a839a42a29a5cc538c74ee4f9793092e5efe1b227b48f8c4d37f",
|
||||
"blk.12.attn_output.weight": "46826c00b066829355db78293ab216e890f5eaaed3a70499ee68785189a6b0d9",
|
||||
"blk.12.attn_q.bias": "b14db2d327ce0deec97beda7d3965a56c43e1e63dc9181840fb176b114cf643a",
|
||||
"blk.12.attn_q.weight": "30f67df52ced06f76b6c85531657584276a454d6ec9bb7d0c7d2ca8f067f5551",
|
||||
"blk.12.attn_v.bias": "57ab4b7e43f4fc5853bca7bfbb2702f8c2c391a49252a760abbb7b26330dc4aa",
|
||||
"blk.12.attn_v.weight": "3ccd9da0cfe241cd33a63310f3ca6d81c5bc5a50d200bfea6612ac376166aca2",
|
||||
"blk.12.ffn_down.weight": "a095774413198a83c549ce132d7c9684c0baef33145eaa889be370ef9c881c81",
|
||||
"blk.12.ffn_gate.weight": "bb3b2bbdfb065d2a0a795909c53beec327781a4a7e974bf9f99c436cea459991",
|
||||
"blk.12.ffn_norm.weight": "3b486c6cd97eb4b17967d9d6c0cc3821a1a6ad73d96b4d8fbf980101b32b8dab",
|
||||
"blk.12.ffn_up.weight": "d020b82dd39a5d5a9d3881397bf53a567790a07f395284e6eb0f5fe0fef53de3",
|
||||
"blk.13.attn_k.bias": "69381f8254586eba3623eceb18697fe79f9b4d8f2c30136acb10d5926e3ba1d0",
|
||||
"blk.13.attn_k.weight": "c4d7a31495d71269f81b586203a50abea3a9e2985667faf258c9306ec6030f1d",
|
||||
"blk.13.attn_norm.weight": "907da11075d16eda668dabe548af3cfd794df26b8ab53939af1344d91bec6fba",
|
||||
"blk.13.attn_output.weight": "ca01cf6d2b8ece2fb3b0f56f1eb76194471ac27b54fe264f99c909f5eb7fef4a",
|
||||
"blk.13.attn_q.bias": "2f5ecebafe03b1d485b93c41cff756ca57fb65b02e9d8336f14a3d26ab5d159a",
|
||||
"blk.13.attn_q.weight": "f557f8acad7f0fa62da06b5da134182fe04a5bed8bdb269e316f970c9cc440fb",
|
||||
"blk.13.attn_v.bias": "a492a88ae131e95714b092545a8752eaea7c7d2f9cb77852628ca8296c415525",
|
||||
"blk.13.attn_v.weight": "d1220b1fe9f1cc0a5a88ee239d65fec900f5eaf6c448b6c2cbe74c81e15ed333",
|
||||
"blk.13.ffn_down.weight": "53184e33440b49848a896304eb16a983efbc6b8bee0b93de8c8de716e1585fcb",
|
||||
"blk.13.ffn_gate.weight": "684bf8896f148c851506c62717e45c426921b93c10d536ecdeb0fb28259a106d",
|
||||
"blk.13.ffn_norm.weight": "6cb4e547ad8665eb7c174855c08afe1e5490fece66122522c1e9e8132d9064eb",
|
||||
"blk.13.ffn_up.weight": "c64107897e38c06727075aba4ea7940b2cdd0e278b5c555dffb2790ef553bb57",
|
||||
"blk.14.attn_k.bias": "2814ca9b160b16ae39557c9b629482fbe3a7592d372c1e1bf1ac59a2d578fde1",
|
||||
"blk.14.attn_k.weight": "3377177396463afba667742972920ebb45dfdc37e9950e1f0e1d60a2f936b27d",
|
||||
"blk.14.attn_norm.weight": "5cae870477d51dd35a6d22aaeacfce4dff218ffba693820ede6a4e11f02afd6d",
|
||||
"blk.14.attn_output.weight": "3cfe9ccf3d48ae9e95b93a132a1c6240189a277d764f58590fb36fdbb714cad0",
|
||||
"blk.14.attn_q.bias": "6a75acc2f090b2e67bfc26f7fca080ae8bd7c7aa090ec252e694be66b8b8f038",
|
||||
"blk.14.attn_q.weight": "5ef45c86d7dda1df585aa1b827b89823adf679a6bb9c164bd0f97b2aa6eb96f1",
|
||||
"blk.14.attn_v.bias": "5534480443e10ed72c31a917f3d104b0f49df5e6dbfa58d0eb5e7318120e3aee",
|
||||
"blk.14.attn_v.weight": "58f45cf3240c4623626ec415c7d5441eaa8d2fb184f101aba973f222989422d1",
|
||||
"blk.14.ffn_down.weight": "2dc82a0f20c05b77512458738130d8d05ce150cc078680ae7ee6dd7ed68d955d",
|
||||
"blk.14.ffn_gate.weight": "d4a6c6f0fcccddfd1fcaa074846622f4a74cb22b9a654ab497abdc1d0dde9450",
|
||||
"blk.14.ffn_norm.weight": "777e444932a0212ff3feac98442444e17bd8a98cb758ea3356697d0846d12c56",
|
||||
"blk.14.ffn_up.weight": "6b75f6bd00195198447b69a417ed9d98f8ca28b3cb8be82f4bad908be0777d57",
|
||||
"blk.15.attn_k.bias": "2d07211a58e6c2f23aa3a6dc03c80a7d135dfb28726b60b0e0fdd0f35ea5c37b",
|
||||
"blk.15.attn_k.weight": "e77f3c0075a1810e70df956cc51fd08612f576cc09b6de8708dcae5daedb0739",
|
||||
"blk.15.attn_norm.weight": "379a10d90609a5d5ba67d633803eda1424fc61ba5cca8d3bffe70c8b18b58ebf",
|
||||
"blk.15.attn_output.weight": "402751c12ee9dbc9db5e3bf66a7b23ebe7d36c0500e0be67be4c8b1c4357fa62",
|
||||
"blk.15.attn_q.bias": "acb37fc409ee725ceedf7a3a41b40106086abc47b76780728f781942c5120208",
|
||||
"blk.15.attn_q.weight": "89cd3047a09b46ed2bb57c69dd687f67a1f0235149b30376fa31b525898e4a55",
|
||||
"blk.15.attn_v.bias": "f081a37289cbe811978feb4da3ef543bdeb7355414d476f44e09b498da10cb2c",
|
||||
"blk.15.attn_v.weight": "8404f242a11e6d512c9ead9b2f083cda031e9b269f8a0a83f57ee4c56934764e",
|
||||
"blk.15.ffn_down.weight": "93438f43ee8cc4f1a7fd3840a6afdd5f02123e76db4f0d9474430c0100d148fc",
|
||||
"blk.15.ffn_gate.weight": "ff935a2698843e87fad9dbf7125f53e460190ec71ee128b650b3fc027fe37bfc",
|
||||
"blk.15.ffn_norm.weight": "4be80f199841cba831982e988451e1833c3c938a4d6ca1169319087bf0bd723e",
|
||||
"blk.15.ffn_up.weight": "ee9ba63c66d71053e33551ddd519878bb30b88eeb03cfe047119c5c4000fb0a6",
|
||||
"blk.16.attn_k.bias": "3f5fbabed4510c620b99d9d542739295fa6a262a7157f3a00a4889253f8341b8",
|
||||
"blk.16.attn_k.weight": "8ca6eb139b281c257324cddea97a8e9aa7c048b53075cf00153123b967c27ee5",
|
||||
"blk.16.attn_norm.weight": "290157f005e5aa7dddf4bd60100e7ee7b0baa7f11ec5c2cea5e0ead2aad3a4c6",
|
||||
"blk.16.attn_output.weight": "b1f4d80a7447f08f1c331712527f750d00147f35c042442ade96fd029dadc5a1",
|
||||
"blk.16.attn_q.bias": "e3e4e442ad4416791b468cad8de0d0d2d68c7e7df8d06002f4d49b4da9cb25e4",
|
||||
"blk.16.attn_q.weight": "cc7392fa5bb1107d3816e7e7363de252d37efd4165d065e258806291ce0a147b",
|
||||
"blk.16.attn_v.bias": "a7629830f2f6293e018916849614636d40b1bcd11245f75dbc34d38abae8f324",
|
||||
"blk.16.attn_v.weight": "b6c7856c7d594437630929c8cf3b31d476e817875daf1095334ec08e40c5e355",
|
||||
"blk.16.ffn_down.weight": "f9c0a777a00170990a4982d5a06717511bf9b0dd08aeaab64d9040d59bcbebba",
|
||||
"blk.16.ffn_gate.weight": "ed88f11bc3176c9f22004e3559ccb9830a278b75edd05e11971d51c014bd5cd2",
|
||||
"blk.16.ffn_norm.weight": "ab24abdcc4957895e434c6bb3a5237a71ff5044efb9f76c1a9e76e280c128410",
|
||||
"blk.16.ffn_up.weight": "99f594dc8db37f554efa606e71d215fbc3907aa464a54038d6e40e9229a547ff",
|
||||
"blk.17.attn_k.bias": "f236625676f9b2faa6781c7184d12d84c089c130d2a9350a6cf70210990f6bf1",
|
||||
"blk.17.attn_k.weight": "c2a4f20cd3e98538308a13afe9cc5880bdd90d543449c6072dedd694b511ee1a",
|
||||
"blk.17.attn_norm.weight": "5a9da4ee168311f487a79fc9d065a035432c6cafa8adb963a84954cf32f57a2a",
|
||||
"blk.17.attn_output.weight": "d5df7031e354186ce65dc09d6f8a92eb721c0319816f8596b0c8a5d148ed0a2a",
|
||||
"blk.17.attn_q.bias": "3212d5eeaa7ed7fac93cc99e16544de93c01bb681ae9391256ed4a8671fc6b00",
|
||||
"blk.17.attn_q.weight": "d18cd9aa7ee10c551cb705549fa1ae974aea233f86471c9a19022dc29b63d0d5",
|
||||
"blk.17.attn_v.bias": "a74ad11a1f8357742f80e2a0c0b3a2578fc8bbaf14c8223000767e07a5d79703",
|
||||
"blk.17.attn_v.weight": "da18ac0e90884436a1cb0ad6a067f97a37f321b03c70b8b03bf481339fef5c80",
|
||||
"blk.17.ffn_down.weight": "81a8a5d7a194fb53d976558e0347efbe9fdb1effffde9634c70162e1a20eff51",
|
||||
"blk.17.ffn_gate.weight": "72870d83ab62f2dcd45f593924e291a45e4ae1b87f804b5b88aa34cfd76dd15e",
|
||||
"blk.17.ffn_norm.weight": "cae39ac69b9bdaeefab7533796fdf11dbb7a4bdbdeed601e20f209503aafe008",
|
||||
"blk.17.ffn_up.weight": "e7cb40b0842468507cec0e502bbed8a86428b51d439e3466bc12f44b2754e28f",
|
||||
"blk.18.attn_k.bias": "8bfc02b94f9587aa125e2d8bbc2b15f0a5eb8f378d8b3e64a8150ae0a8ca3df2",
|
||||
"blk.18.attn_k.weight": "434bc3b3332ea48afee890aa689eb458a75c50bc783492b0cbf64d42db40e8ad",
|
||||
"blk.18.attn_norm.weight": "d6ffc09396c42a70d1f0e97d81113eee704d3bfc9eeae2bed022075a5dd08075",
|
||||
"blk.18.attn_output.weight": "133f001f81f3b082468a7de67cb2e7a76508fce34bcc4dee7f0858e06eee082c",
|
||||
"blk.18.attn_q.bias": "758d0e28bf5e660b3090aafb70e2a3191b4f3bb218d65e9139a086ceacaf599f",
|
||||
"blk.18.attn_q.weight": "12d7b86fc1b09b9fa7f8b7ed43d8a410892cec8672d0c752f8346f6193343696",
|
||||
"blk.18.attn_v.bias": "9efd15bab0519462431d6c6e8a5b7dd4e151dc449468097ee0ddca369c0ecc2e",
|
||||
"blk.18.attn_v.weight": "f631231a79d4a2e9730fb2e386d8c18621eb3fb7900fbfdff5e6d52cc42db122",
|
||||
"blk.18.ffn_down.weight": "874a2dddf456f3ab56b958b0860d71c8c680a6f89322c9bf6b2f32a113592300",
|
||||
"blk.18.ffn_gate.weight": "4549ef8976c345a511df4a7133bdaf6fe387335f52dfd8a4605a8ae3f728c403",
|
||||
"blk.18.ffn_norm.weight": "80c258a2536a860e19bfcbd9f29afa13214fbb4c34bde0d4da51287d354e9a59",
|
||||
"blk.18.ffn_up.weight": "8b03308a581457a3c038b7a086f3cdf14941d7ad4107c4bd6d9d6b062fd00d73",
|
||||
"blk.19.attn_k.bias": "e77f7b0c8e3e0a9b0d61918cd88371047752a1b02b1576936f4ec807d4d870ee",
|
||||
"blk.19.attn_k.weight": "a2a318e93355230c0d0f95c441b080bf9c4914507255f363fb67a5e771d4d1e6",
|
||||
"blk.19.attn_norm.weight": "9a4bdeb3970be21ac74a94c2c81eb36986533db81b78db6edec48d9802910d59",
|
||||
"blk.19.attn_output.weight": "2369b103dd3947e2cef02b2669b405af5957fb3a7f9d0ff40646078c4b4317ad",
|
||||
"blk.19.attn_q.bias": "e20bf427bef69059ae84a5d9f98f7d688489627f198fb6153def018ff9fd2e34",
|
||||
"blk.19.attn_q.weight": "45a3bb3bdfd2f29dd76e5f78ddae73678b9a2a85dfaf609e460240ef5b7be2ad",
|
||||
"blk.19.attn_v.bias": "a441f58a3e02ed86ee1819eefc9bd4e8b70d11b864a929d58a2c2ac0aeb8203d",
|
||||
"blk.19.attn_v.weight": "30b0b04480c510450a7abb2ce9fa05c65b150a3cc4dc76f8916bf8d013f1b6be",
|
||||
"blk.19.ffn_down.weight": "eebb9ab8fdb6a6efcfff8cf383adac9ec2d64aeeff703d16ed60d3621f86c395",
|
||||
"blk.19.ffn_gate.weight": "3fef1493029298378886586478410b3d2e4e879f6aa83c07e210a7ce6481817f",
|
||||
"blk.19.ffn_norm.weight": "e1be99ea1e8fb9678f7b8ba200f3f37e03878f3574d65d57bcd3a9fd796e2112",
|
||||
"blk.19.ffn_up.weight": "f07cf25e09394fb69fe3ef324bdc0df9a4cecf3dc53070b8acc39e6d1689bf82",
|
||||
"blk.2.attn_k.bias": "b29baa8221f125eff6b8ac1a950fa1d7cfc1bce7bdc636bf3df7d4065ab6466c",
|
||||
"blk.2.attn_k.weight": "4bd0c179bced8bc37a09f5748c394e0cf50273942fb38a866e5cf50b6c96c437",
|
||||
"blk.2.attn_norm.weight": "07b3edc6a6325c3428aa12f29bcae0be0de363ce61a6af487bc5c93fb8c468d9",
|
||||
"blk.2.attn_output.weight": "056b5b31dbc81087c81b9d41c25960aa66c7190004c842ba343979644d7f4d88",
|
||||
"blk.2.attn_q.bias": "479b6212401e097767c9d52b12a1adb8961c0fce9fcaaab81f202a9d85744376",
|
||||
"blk.2.attn_q.weight": "f89196076f446a6dd8a9eee017f303504f9c03094c326449cee5a7fc0a97fade",
|
||||
"blk.2.attn_v.bias": "ef9b1b986dbd9d7291027a88b67dc31434435b20e76e4f1e9d6273ebd31224f0",
|
||||
"blk.2.attn_v.weight": "9322f4f00e85f8c0936845c51ca64b202a93df104f36886986a8452a8e4967a5",
|
||||
"blk.2.ffn_down.weight": "7beac0d2440dc49af33ededb85a6cc3ba23ab33ad3ffa5760714b2ef84d94f6e",
|
||||
"blk.2.ffn_gate.weight": "818a93864a5890c1f4dc66429004fad07645a50142350e9bff9a68fe24608a52",
|
||||
"blk.2.ffn_norm.weight": "152c924d5514942ad274aafb8cc91b35c1db3627c3d973d92f60ff75f3daf9ba",
|
||||
"blk.2.ffn_up.weight": "9c9579e600f209546db6015c9acfeda4f51b6d3cca6e8db4d20a04285fe61a37",
|
||||
"blk.20.attn_k.bias": "fd22bfeffb63d818ce2ff1ea2ace0db5d940f7a9489b6bfc1ec4a5398848d7fe",
|
||||
"blk.20.attn_k.weight": "f74439bc74c2f9252130c9c28384fd7352368b58bb7ce3f2444cf0288dfff861",
|
||||
"blk.20.attn_norm.weight": "5c15d2613df87be6495fb7546b7dcedd2801d12fa5ecc02c877df889330e8f37",
|
||||
"blk.20.attn_output.weight": "6731a39286a67f6859832f96695732e579e14e0c36956eccd1edce3db11595b8",
|
||||
"blk.20.attn_q.bias": "04466e5a3f454a19b9b433fc2585396feac780027ece7ccb4e4bb3e406fc14d8",
|
||||
"blk.20.attn_q.weight": "ead4c71daaeb17bf20d014a34c88b97f238456488e815ae0f281a5daf6fc99b8",
|
||||
"blk.20.attn_v.bias": "adcc848e043025de9bd55ccb14dd8fb6343e8b5185ed07e12964be41d0faf99f",
|
||||
"blk.20.attn_v.weight": "81bfc23f83526386a4761c2c16b6a93cd0bbf9d846c1a51b82c71f1474a465f1",
|
||||
"blk.20.ffn_down.weight": "9bf660af3bafad919d03173c89a65fc9c89440a76c42c9e55e4d171076f3c17f",
|
||||
"blk.20.ffn_gate.weight": "c04b4f3ccce44917ee228b998e2c19dd702aef10a43413afb152e808b5ac5c42",
|
||||
"blk.20.ffn_norm.weight": "3d5b555d7746a71220143c6b8fff5ce4eb63283d9d9c772f1233d848f69f4ff4",
|
||||
"blk.20.ffn_up.weight": "d7a196505c39e5469dfc7c6958bdbb54e93629ac1a047a6663ed96b318753094",
|
||||
"blk.21.attn_k.bias": "4db1f48e5c6a3bc5720a5da813bbef08283e6269e12d83f8a9c54e52715d8011",
|
||||
"blk.21.attn_k.weight": "c687b2f0e132a5e220a2a059b61aa2a537f37d8a674d7709f87880637b263b31",
|
||||
"blk.21.attn_norm.weight": "ec23b0ff847a4b45585ab8e04f10fc20bb1637c5f1fbcdc4d73f336bcb5d1bd0",
|
||||
"blk.21.attn_output.weight": "01255390576316c1731ef201e32c6e934eba356c28438cd06d9027ac6a3ff84f",
|
||||
"blk.21.attn_q.bias": "3098f37205a15418e1681e407c82b7ce7c6fda6c6826b0590a13e1b68a38a1ea",
|
||||
"blk.21.attn_q.weight": "30ea62cbb702a5359229dc96819df17ee535e2e9988d044b005c73ea536e1005",
|
||||
"blk.21.attn_v.bias": "7bbedb2c22a04737f21993115701d4a06b985b7ca3b64681f53cd1be8d7ea39e",
|
||||
"blk.21.attn_v.weight": "e11905e63579e36fbee978062af7599339ae29633765a4835628d79a795ec8df",
|
||||
"blk.21.ffn_down.weight": "84def2ffd8aca766f9ce12ed9ac76919ab81eb34bdeae44fa4224417c38af527",
|
||||
"blk.21.ffn_gate.weight": "4e99f05377b4a0b8d875045530a5c59dee6a46ac8a45597f6579f6fdfa800787",
|
||||
"blk.21.ffn_norm.weight": "af48f13d03fba38ff8794a5f5005e666e501f971ca2e30bbded2777a8096f37d",
|
||||
"blk.21.ffn_up.weight": "a29541c39a6acbc364be86994632a5bf55d701027cb7f23320f8c6d55ee42c91",
|
||||
"blk.22.attn_k.bias": "c97f84db6c75422df6ef5768676d4e9abefaa3b8337aa2730ff260f8fc350480",
|
||||
"blk.22.attn_k.weight": "af9a0c56f68779513e95be11611b7be6175ddae27d48bee9dd72fdbf05f6cbfa",
|
||||
"blk.22.attn_norm.weight": "1c7518eb5bcff4a202c6f4a2827f14abd76f9bcc64ce75fe9db60b69437a5c9c",
|
||||
"blk.22.attn_output.weight": "1abcf1f3caa2f59dd018646b93f9cf8fd30d49e98a473e6a8704419a751be46f",
|
||||
"blk.22.attn_q.bias": "7221e01cb692faf2f7f8c2eb6e2fac38a1b751a9c9fdb6a21a0a936eb0bf4b96",
|
||||
"blk.22.attn_q.weight": "faaf8fb7b6c19f343d47f3ea6b57151fb46c787e0b3bd2c292fd327d3d4d8e35",
|
||||
"blk.22.attn_v.bias": "3ec05942e82d735de99dfd0d8228d8425e63e2fc584da98b3326bdef89ecb2e5",
|
||||
"blk.22.attn_v.weight": "42e7b0ad06db76227837da9d4e74b2db97f3df4050ecb3a87cb9b55e08dfcb42",
|
||||
"blk.22.ffn_down.weight": "87ef98ad2d0e824b0fa5ad8aa18787162922e527c9b1b721a99bc07d3bf97c82",
|
||||
"blk.22.ffn_gate.weight": "562d6e5a1654b03aaa0e33864d23c10297fd4bcaa72d30fac69fb771ee1df9d6",
|
||||
"blk.22.ffn_norm.weight": "f8a405dee467749d59427ce05cdd4b9c11bb18934a89258ea461f013b7d251f5",
|
||||
"blk.22.ffn_up.weight": "90e1f4ae4062649d4d838399eb353e8bb8d56a49982b6a7f64aa3945377f7187",
|
||||
"blk.23.attn_k.bias": "9ad22178a85f3be7e25f5aff462f31627466364f2f5e92f265cc91db0da9a8a8",
|
||||
"blk.23.attn_k.weight": "d813beffb10f03278f5b58eea0f9d73cdcb7b5b4045ae025c379592e854f7dfd",
|
||||
"blk.23.attn_norm.weight": "f583c9836044bdb056d6f8911088ac28add68e500043ae1f97b5d9158fe3d769",
|
||||
"blk.23.attn_output.weight": "02789911ac3b97f6b761e958b7dd6dc7da61a46a1be92bd0b346039ca7ecd2b2",
|
||||
"blk.23.attn_q.bias": "38c4970fb9b4f7e4a139258a45639d848653814b4bc89ea9849709b13f16414b",
|
||||
"blk.23.attn_q.weight": "eb694be9a5ab5858b8dab064ee4cce247dc757424e65282989bd4d015b8580ce",
|
||||
"blk.23.attn_v.bias": "0a25f6533aa7e7a152a4b198cf6c411c2408a34afa4f161bb4d5ffba2f74e33f",
|
||||
"blk.23.attn_v.weight": "187e1bac6b70f74e6364de226565aa8275ee2854d09cbe5895451a689596049e",
|
||||
"blk.23.ffn_down.weight": "88880dd9ba7ee80ade972927f810b5d2c30a69520c615190b27f9daabc0a8c5a",
|
||||
"blk.23.ffn_gate.weight": "5abec63197935ab3eb8e6de0a5307396ec46cdb1cc5de25d87c845f3c4a3e887",
|
||||
"blk.23.ffn_norm.weight": "60e1f5e6310c3a531c554a6bb7cd883aed58db1e51853f739436ea461c1843d7",
|
||||
"blk.23.ffn_up.weight": "3d7f502771743f4a634188dfcd8b8a384fb07467ca8528366aee59ddb25b7bce",
|
||||
"blk.3.attn_k.bias": "0b6b442ebbac29c8c4b67e8e3876d0382dd2dc52efdf4ab0ebbc6f71b6252393",
|
||||
"blk.3.attn_k.weight": "480f40584fbda692c26f2cee45f5923780b236f8b4e8ec7bbee0237777a0918d",
|
||||
"blk.3.attn_norm.weight": "39872be2af31bc9cd6b583ebba6fb759f621d586d66e5a2fc0b85991615a8923",
|
||||
"blk.3.attn_output.weight": "924b2c80d8513bf637f8ebb3756a340d9cf2243de723fd08d7f5dccd46b3f8b6",
|
||||
"blk.3.attn_q.bias": "863c9d848156847a3fe9bbc44415a4395245b5d13e95673c014fdb71e494ab0a",
|
||||
"blk.3.attn_q.weight": "bff73ee5de92fba8f6c089bbb19ce57e17ab3c9c29295712804bb752711b882e",
|
||||
"blk.3.attn_v.bias": "e1b6fea126e86189112fcdfee79ffc66a087461527bc9c2dc52dc80f3b7de95e",
|
||||
"blk.3.attn_v.weight": "7812b7f5133636f06cdbb4dcc48ef7803206538641b6c960777b37f60a8e6752",
|
||||
"blk.3.ffn_down.weight": "00b393d6a7e3ad9b5224211ccdbc54a96aae151f24ed631764ac224972a6bc82",
|
||||
"blk.3.ffn_gate.weight": "cfd63fa3a038af05dc53c6eeb3c192f1602f26ff24cb840bcf1510fcb37b5513",
|
||||
"blk.3.ffn_norm.weight": "7389fc240a282949580ea2f5b0d7973ac79f32f76dc0155b537bb6b751f8e27a",
|
||||
"blk.3.ffn_up.weight": "2a945f47090df9cb16f92f1f06c520f156f8e232182eaaed09f257b8947a2a62",
|
||||
"blk.4.attn_k.bias": "62533c31f0de498187593f238c6597503fef2a92e920cd540a96bc5311b3b2a0",
|
||||
"blk.4.attn_k.weight": "93e829868bffd980a8e589b9c4566cd81e6ce4296a5f357a2ae93febe1284156",
|
||||
"blk.4.attn_norm.weight": "9e0aaa4bbdd1389890f8abec20533f3ab16d61b872b1a8dbd623023921c660a9",
|
||||
"blk.4.attn_output.weight": "74467d6f44357d67f452ac49da861468b38e98057017bd38bc9a449f9d3538e6",
|
||||
"blk.4.attn_q.bias": "8e6d9026fd69b314c1773c5946be2e11daf806ef22a5d91d744344fd30c58c59",
|
||||
"blk.4.attn_q.weight": "e5bfbafd94a4d530f3769f5edbba8cc08d9b5bee8f66ebf4cb54e69bc0b7f63b",
|
||||
"blk.4.attn_v.bias": "20c570f92022d9905eb85c0e41d1fdb30db22007a9628b51f512f8268d6c34a2",
|
||||
"blk.4.attn_v.weight": "9638d459d61da03c9dd34dad985e03c43b4f8a5bc9701a82153478329b0517e0",
|
||||
"blk.4.ffn_down.weight": "9d91b06e89d52f4365dece7eaeec50f81e52cb2407b333248a81e6e2f84c05b8",
|
||||
"blk.4.ffn_gate.weight": "bf6350a79c6a6ee9146edfd788b88d4a4c2b54db1aa0adcc1464dbba8a84b646",
|
||||
"blk.4.ffn_norm.weight": "11a70a6b9f7ce336292f4e3a2c6c92d366d4ee4306ad4fdb1870fde107e9cc31",
|
||||
"blk.4.ffn_up.weight": "64f23f493d02b147a72a59605e6b7dd1c4c74f6813a38a2a60818bd66f697347",
|
||||
"blk.5.attn_k.bias": "f6c2c279c0ed686f298ad1e5514b5cd882199341f896abbb2c2129d4c64ce9c5",
|
||||
"blk.5.attn_k.weight": "0e682f75870abf9efaca10dac5f04c580f42820ecf4e234d43af967019acb86f",
|
||||
"blk.5.attn_norm.weight": "01efae7653705e741932fcd79dff3be643d7e97f4b5719b887835dffe44b3a82",
|
||||
"blk.5.attn_output.weight": "69e841d00d196acc489cd70bc5ffbbb63530ac5fabb169d40c4fb3a32ebb8ed8",
|
||||
"blk.5.attn_q.bias": "f3304d76ccd44fed887565857c8e513b1211d89a5d3e81782de507ab3f6fc045",
|
||||
"blk.5.attn_q.weight": "98612a6b7920a247853ada95c240807d4ca8e43604279e7a2fc9bb265ae40469",
|
||||
"blk.5.attn_v.bias": "39940a9b353ceed3edfd4a39b985c9520490aa1b9f11749c94fdf6d879d1a259",
|
||||
"blk.5.attn_v.weight": "839f84b828cf83aecf479a0dc7bc86cce05145ef77dcf29916dc3e0680f5b665",
|
||||
"blk.5.ffn_down.weight": "1f48cbb0960f15e06ab8a3754ade792995a655856389ddbca629c07e89d1b114",
|
||||
"blk.5.ffn_gate.weight": "33d8219fce3189e1aab376039896eebd4ad36ebd26a8278cd19b26e4357e4f81",
|
||||
"blk.5.ffn_norm.weight": "0f4a0f83d37127fa4483f2905cb4f38ef6ddc71584b6cb05632c62a9af313dda",
|
||||
"blk.5.ffn_up.weight": "22a64a11e5f0a1ff45ca327bf9e1efa258f085ff6a96edc398b7474f725b4514",
|
||||
"blk.6.attn_k.bias": "baa91df99d4df2d25e8d590bca4e334b97f2d9aa3df8e748fedc8a6188499111",
|
||||
"blk.6.attn_k.weight": "121f3b9f4b9491996499392e2688a929cafe102a67920b4cb2a039349c43d8eb",
|
||||
"blk.6.attn_norm.weight": "b4cf987e923d71f2f84c58d20ea8af7576b225bf61952145b489fdd395e3d411",
|
||||
"blk.6.attn_output.weight": "a112642150a138d54b2a4038042fd33619035a35694771e966f3575856c635d6",
|
||||
"blk.6.attn_q.bias": "a97ea10469cdfa3fdddf8bad6de683ef99f6170eb8d29d15dcf6bf4bce37c5a3",
|
||||
"blk.6.attn_q.weight": "d80c787019317a87361de6bbc7df6701357216bdd9b404522cede34a719a5500",
|
||||
"blk.6.attn_v.bias": "d846269db9cd77ae28da26ba0914cace1b6754bd5301af9c44607085dfcbd2d7",
|
||||
"blk.6.attn_v.weight": "06567c433e8a391647633291b50828a076ad7c2436106bb9278c60a3f8fccb3b",
|
||||
"blk.6.ffn_down.weight": "f15f66f56b3c474eac8c6315c5fff07c3e29c6e483d7efd4d303c7f43814be91",
|
||||
"blk.6.ffn_gate.weight": "47768f89c6da8eefb29adb766ff4eb38c9dfd79320bbc1386248319fcbcf567f",
|
||||
"blk.6.ffn_norm.weight": "7f8195e6b148212967145fc9d86ce36b699cff0de026042245c2d344f1ef8510",
|
||||
"blk.6.ffn_up.weight": "53d7707ae4347aadb445289f9f87a008b72df5cb855b00080a605442fdd8edf3",
|
||||
"blk.7.attn_k.bias": "63e274df3217dde25b8369a383e480fe4f6b403a74385f15ac0b5db71dce2744",
|
||||
"blk.7.attn_k.weight": "f6fce88602f5945eee09767acbcad387d132614e6da39ae359f2bbf380d94b1f",
|
||||
"blk.7.attn_norm.weight": "bbf5dc7336c0f9a511afef6bf5efeffd78f1b83940850c3eb7eb20c621b75656",
|
||||
"blk.7.attn_output.weight": "d9fb907a138396a859cecbfcb377927308dc93c24c7fb52dba5eb59265feadec",
|
||||
"blk.7.attn_q.bias": "f02ba1318346af77e309f40aee716e2de7ee8cab67e67b17636db9bf40894fb0",
|
||||
"blk.7.attn_q.weight": "54a691e824be287a61c35c172edc01922ed792d2addeee029afc17ba6c7e11b9",
|
||||
"blk.7.attn_v.bias": "3a4f182f51e84ce862d558fb2751b91802b65d74596bb14d624808513a8a83ec",
|
||||
"blk.7.attn_v.weight": "a142fe6e106d3ab484e2dc6f9c72b8fc0a385279dde08deb1ad1fd05ac25deb1",
|
||||
"blk.7.ffn_down.weight": "8daf7e8c430d183a4d6ab3eb575fafa4b5e31689f68b290c8b370411ad9d0f12",
|
||||
"blk.7.ffn_gate.weight": "a2a786b45eb660994254b48e2aaf22f3e9821cfb383dee0ba04cc4350a2f8e72",
|
||||
"blk.7.ffn_norm.weight": "73828bbc8c9610cc139fcf03e96272648cdc291263251fe3a67367408deb69e1",
|
||||
"blk.7.ffn_up.weight": "e85dd0f63fed449ce16893c5795ea6a050a2d7a66d9534410a227e22c905dafa",
|
||||
"blk.8.attn_k.bias": "91a752a6e2c364e5ee6a015770fe289aece4911ae6c6bbfe74ac52f465465f93",
|
||||
"blk.8.attn_k.weight": "99c069e92c43a2efb74e23188256b3cabbbe06399878e681ce203a05d5da378a",
|
||||
"blk.8.attn_norm.weight": "c76d36d3cc06aa2a9edb1abf9f602bb7ed61ac9d61f8ef7ed736a1e619abe717",
|
||||
"blk.8.attn_output.weight": "ee5ff156a2625e1f203f65e69b514f9df04bd9a5e82b28e3876e16cf1c6f65c5",
|
||||
"blk.8.attn_q.bias": "8fbd868a93b330c8b0418b488c5301f42a7eb0c58445a4e515d56777f1d96ed5",
|
||||
"blk.8.attn_q.weight": "9f20ef86e80098ba52a3a31ebcc315bea3a614dac9cba7ac1db02f156db9b577",
|
||||
"blk.8.attn_v.bias": "c4813571d5d618742183a7890c0b89cd7f18e210c758f63aad564659bc38a26d",
|
||||
"blk.8.attn_v.weight": "ea88e1a4cf8bd56e9a88ada427d2b0cd352234827640757ee2a9ed594fb67a53",
|
||||
"blk.8.ffn_down.weight": "b0d1a7495811580b189aaa3e20ea871d6d01ed7b6c23e59825078ef786944ff2",
|
||||
"blk.8.ffn_gate.weight": "0a17c0caa0b06721c49b59b2a63a5dcbf744dd1cffa55962b404ba910c658a62",
|
||||
"blk.8.ffn_norm.weight": "f15f109d4a8e9d1ff7c71fa5bc6373df7ee80c5f7d1de3fa0d4849d747e36bcb",
|
||||
"blk.8.ffn_up.weight": "bbf4c5c4c5c8a0f9ae8b88e3cc8b86f81b98148722d5a350995af176c0b774f2",
|
||||
"blk.9.attn_k.bias": "a7f60d962686b8ca60f69643e0e0fa8614688be738fb0b1c6bd54de35c2beb5e",
|
||||
"blk.9.attn_k.weight": "dd80ce4adb00e338fc04b307e4c18a27071f4ba4397184a24d765e6e4a268ef4",
|
||||
"blk.9.attn_norm.weight": "721e6487547e2b3986ab4b4e2500ceade59d908bccf4436e1e8031f246deb2bd",
|
||||
"blk.9.attn_output.weight": "5a800af39107b363861e5f5173483cdcd644d8ac3b0c8a443b9c759d71285db8",
|
||||
"blk.9.attn_q.bias": "0a19b4925ea8ca8067acc909b058adc327de3874cfc94cc9eb4a106d3f370123",
|
||||
"blk.9.attn_q.weight": "93e84906684c0c7ede79967236d9fc8344da84a9f1daa04e8295c2c9b6b26a24",
|
||||
"blk.9.attn_v.bias": "615421f812f821e230ecde4e6da35d868823248355ce7e4e51e2d650ead565f9",
|
||||
"blk.9.attn_v.weight": "7f4913e289aefd9ceecbdaf9767b1e95303f5d59dd67ecb2cc15768477f4d08e",
|
||||
"blk.9.ffn_down.weight": "95d1b3933221e87dc4af70dd566daec9498bf358070b8d26f1fc70766a84a152",
|
||||
"blk.9.ffn_gate.weight": "530f2d04f6a1fbffaaa5f2fbc3a328ebed7b330e3af14b4fc7d8a51b13ad8d42",
|
||||
"blk.9.ffn_norm.weight": "28077de416217ea1df94b96017bef4cc562ab62e51b1a03a671c70abc29ce52a",
|
||||
"blk.9.ffn_up.weight": "b87b6190778aaee4695938e24ac6c90dbbee6dce7c5c2ab5bc26ba4564581822"
|
||||
}
|
344
convert/testdata/c4ai-command-r-v01.json
vendored
Normal file
344
convert/testdata/c4ai-command-r-v01.json
vendored
Normal file
@@ -0,0 +1,344 @@
|
||||
{
|
||||
"general.architecture": "command-r",
|
||||
"general.name": "command-r",
|
||||
"command-r.attention.head_count": "64",
|
||||
"command-r.attention.head_count_kv": "64",
|
||||
"command-r.attention.layer_norm_epsilon": "1e-05",
|
||||
"command-r.block_count": "40",
|
||||
"command-r.context_length": "131072",
|
||||
"command-r.embedding_length": "8192",
|
||||
"command-r.feed_forward_length": "22528",
|
||||
"command-r.logit_scale": "0.0625",
|
||||
"command-r.rope.freq_base": "8e+06",
|
||||
"command-r.rope.scaling.type": "none",
|
||||
"tokenizer.ggml.add_bos_token": "true",
|
||||
"tokenizer.ggml.add_eos_token": "false",
|
||||
"tokenizer.ggml.bos_token_id": "5",
|
||||
"tokenizer.ggml.eos_token_id": "255001",
|
||||
"tokenizer.ggml.merges": "902a060cac8884a5793d2a857dd2e53a259de46c8d08c4deb243c239671e1350",
|
||||
"tokenizer.ggml.model": "gpt2",
|
||||
"tokenizer.ggml.padding_token_id": "0",
|
||||
"tokenizer.ggml.token_type": "b7a352ccd1c99d4413bcf452c2db707b0526d0e1216616b865560fab80296462",
|
||||
"tokenizer.ggml.tokens": "815ac90ff23565081522d7258f46648c8a0619eb847a9c7c31b238a9b984e4ae",
|
||||
"blk.0.attn_k.weight": "6fcfdb466f9ceb1229404ce4ec4e480751b8d00da12707a11783dad7256cb864",
|
||||
"blk.0.attn_norm.weight": "6063317f731371864049c7704a70772f1eb632194201ebdc2ed0f8e483507c72",
|
||||
"blk.0.attn_output.weight": "920f49716a1e2fc73b6794ec777947f1c122701e63ed302422ac89e90f06e9da",
|
||||
"blk.0.attn_q.weight": "ddbcd7cde197e632564ac58e4f25d9e3a8ca52917329eeb6081eb41a797932ab",
|
||||
"blk.0.attn_v.weight": "318fc02a189d87420f0cbf57f47f11e00c21ec1ed472ce0a2a895b44f7fa0fca",
|
||||
"blk.0.ffn_down.weight": "aa71975b6eb1f4c77b03d2ac4a194cf8d95718efac741bb12f0f3ff79a27f9bc",
|
||||
"blk.0.ffn_gate.weight": "42967702fa0bc738b88dc50007ace26dbe74a5a9e0978124dd093f818241a9e1",
|
||||
"blk.0.ffn_up.weight": "5282c8788b086bd30f46525e7995a17464882a72703fd27165491afdd8bfd4af",
|
||||
"blk.1.attn_k.weight": "cd248882e64fd2c3402c44790ebe12440133dc671b6893fdad0564c461973adc",
|
||||
"blk.1.attn_norm.weight": "ba84e1c8fd30af6ec94208db4078befac8c921aad3acb887812887f3282ea2be",
|
||||
"blk.1.attn_output.weight": "2efa3ef7c5666ccceb05e339b83ad680cc0d2c3ec78203f5da5959f23a80e14f",
|
||||
"blk.1.attn_q.weight": "5106f2e255358a1303c22e8b5f0ec044852bb30a866c52cabefd30017a7a6b7d",
|
||||
"blk.1.attn_v.weight": "a211a634a1a5df1d5f973645438be0461dd922210f9747c6b04e386c7f1ebe95",
|
||||
"blk.1.ffn_down.weight": "37093afe48d32c578ec956c9ed85242cd000d6aa979e60526aafa10c822dbb10",
|
||||
"blk.1.ffn_gate.weight": "469860819e9159caefb1aad0bc66db790f3393f05fd87b08e52256a7ed256543",
|
||||
"blk.1.ffn_up.weight": "736742c97d35d1a011f9cafd3c0ce947ad559bb2fba6da73c816f6bfd0fa9aeb",
|
||||
"blk.2.attn_k.weight": "92c219d92804d832ab404bd6dc7339c90877bb7cf405dd030c121f8b27757739",
|
||||
"blk.2.attn_norm.weight": "61e4466069474b76b6d1e702566420eb669faf3556b00ff7b824784aca13a2d6",
|
||||
"blk.2.attn_output.weight": "d2fb38a2b2171fd91caf037faa585a62225819aa232d86fd4f7f9d2c3c8a45e9",
|
||||
"blk.2.attn_q.weight": "f6faf5cc6844e3daa4f9f68d90f5458c64879de68a7728860e38374e30c3429d",
|
||||
"blk.2.attn_v.weight": "f340ef8f7341d987a6f37c0e9afe0aef5be67be00c0ce5f57612daf73319cce1",
|
||||
"blk.2.ffn_down.weight": "c7be61a701d779860b621b143fb6365b607bf99ec7c0f153b07908ac8120885a",
|
||||
"blk.2.ffn_gate.weight": "b64f0878187bd3392abfa4c3e8ad2f8b4c133903e54246747ff8f3b4639ad83e",
|
||||
"blk.2.ffn_up.weight": "50b11c712652e90ee7428dbb45cffebb80662ac982bc72bd9eafff361b5eb5a8",
|
||||
"blk.3.attn_k.weight": "2b7bcbe9ee5c9c630c8c8d7483887e78b73581016f4cbb6933db2a147a25f431",
|
||||
"blk.3.attn_norm.weight": "0181dac7f4eee7252980323e8032cf339bef2046ce0a16c0fd72af7c98a8a37b",
|
||||
"blk.3.attn_output.weight": "aef8843b636ce231da9e7c9acbee197883cc15df0e2887709324c6a50f16da7b",
|
||||
"blk.3.attn_q.weight": "55404130fa10e81322d33eb378aa0de31a92990ce7730f1338c0ace0406bb1b1",
|
||||
"blk.3.attn_v.weight": "76f7fb8040d82b957d689ce34fea2302a6640ad5bbaa0052ad2b7ebce270c33d",
|
||||
"blk.3.ffn_down.weight": "648628933eff3b357c3729c33c5b1ae51c28e59b9c19acd1601a2ff7c5d5d9a5",
|
||||
"blk.3.ffn_gate.weight": "6a588885d16e98d5f50ebed05af089154f680085ca9c97691e5b489088630a4a",
|
||||
"blk.3.ffn_up.weight": "e12455a1d702f4986e1a663493e3d5102b367af74d45557522002a35d63ecac2",
|
||||
"blk.4.attn_k.weight": "40d943380a8a85e4eab147934bf6e16f23cc8ab753f6636526382c074d182288",
|
||||
"blk.4.attn_norm.weight": "4ab2c098983d4599fe540eef624c4df954adb7473faebda7471ef0ba4134814c",
|
||||
"blk.4.attn_output.weight": "d14b91e40f58bf4a3c8c2eca0b12bb541de406574af39027d56f6c588a147082",
|
||||
"blk.4.attn_q.weight": "e1224960a3562107488589f883fa32414bae41712fa8dbd47c5f3e3a7801452f",
|
||||
"blk.4.attn_v.weight": "063f297bc4aa6e709fc32c4c32e35af7d07d80e83cb939b76adbba858006c03d",
|
||||
"blk.4.ffn_down.weight": "f88a18020c5e1caaa29596895eb348e76ee5bfad27ed57651a86cd8cd1f9b5aa",
|
||||
"blk.4.ffn_gate.weight": "48e7e1eed3fb52e92e61d3557dd0ec002418327090e034ce4322fd68542266f8",
|
||||
"blk.4.ffn_up.weight": "1ca8a7aa17355b6ce0d9ad5539fdad3899fa47fd359c285fbfb31f19f47bf073",
|
||||
"blk.5.attn_k.weight": "2bdf15f8e73d068d972380f25d207004cf0bf3b5bfa46946803ba6fba07d9175",
|
||||
"blk.5.attn_norm.weight": "60448d7cde6e1b6467aa31bdea012e39cdb08c88081cee7d102dca4f93f766ef",
|
||||
"blk.5.attn_output.weight": "f9f687d7c457537f9fca8a4087a59f1c3bebfaf5537b94e42c831a13224f7799",
|
||||
"blk.5.attn_q.weight": "987db7a2ad68657a92625e1980effbb1f79697c2183f2b9f3b3a0570c51b0ab9",
|
||||
"blk.5.attn_v.weight": "cf696891148f3e4783ad1d20f93462ae091eb8651c656bba9b662253b6263e02",
|
||||
"blk.5.ffn_down.weight": "c0662b0bd0929136005fb9d691fdd9b2c33867d9ce9622339a6a456b720b059a",
|
||||
"blk.5.ffn_gate.weight": "200bbdfab615d7a3a84719b6ced7751e3ce52757ef212d96f87798bc1de5e987",
|
||||
"blk.5.ffn_up.weight": "df5d23e7e035fb1b9d163da7ddfdfe38da6a37e86e96534dc02ad20f011b55b3",
|
||||
"blk.6.attn_k.weight": "c0dae2d272a7c5a2fa004bbb8475dbab362fc1f6d008e73d5a4434a9382ac6ba",
|
||||
"blk.6.attn_norm.weight": "51c57ac8b55e04354d5dca6bb9c0cf4177639d3b038e80209e33036209688f64",
|
||||
"blk.6.attn_output.weight": "229d97892c62f85bcdf431675250e01c976ad69ffa450b01fb543bf88f14a2fb",
|
||||
"blk.6.attn_q.weight": "c20e49621821bd46ed156e6823864a5bda4f317750e71ab8dc54e44eb48cf7c2",
|
||||
"blk.6.attn_v.weight": "53ceb1a2ee43fce3c7b5b33c58a9fc5ee7f44dc1c6f29bc9dbefc37582102dc9",
|
||||
"blk.6.ffn_down.weight": "7923c943b7629d560a032d1efa210d1d75c6692140f1be94464ee7ed24f44ed0",
|
||||
"blk.6.ffn_gate.weight": "57593d350361af753a6a39f53b066282634c0fb44f396f6f2966a574b01d8f8c",
|
||||
"blk.6.ffn_up.weight": "327b6a7a387098b8899d3ded04a4d4e7c658ca61b80d4e7b17594be232721602",
|
||||
"blk.7.attn_k.weight": "9ca48b87a10116fd8868e62b76f211d4bb91f166096be9061439ee2e1c3a5c20",
|
||||
"blk.7.attn_norm.weight": "cd56cfcc4e2ad6b96e23ea7b0d32b4caf236107d99a0b22c56760b62e63c8cfd",
|
||||
"blk.7.attn_output.weight": "7352b509a03cae2491ffc060e577d189341a0f861233f18c96f9d275dc4234bf",
|
||||
"blk.7.attn_q.weight": "2b3791c8c008c33ddbe12bedba8191322ceea2dcce5cf0eb7a93d40ad254e672",
|
||||
"blk.7.attn_v.weight": "3ae721d52466487a3d48150581e57f6d64ea1e83ab929f23b28c3d777422eeb6",
|
||||
"blk.7.ffn_down.weight": "3b6fa8ececdb3c34af3a5363863d6f94289c1c95bf47fce3a3ddcf184c5f0848",
|
||||
"blk.7.ffn_gate.weight": "dbd7df6c5ae5eb4adb859f0d36453813a4e289a359a1ba8f72d67fcbf21c3e22",
|
||||
"blk.7.ffn_up.weight": "de68380a334b4c5cfd4c318b0e9854aec59bd79aa0f0c30af3f56414f83482b0",
|
||||
"blk.8.attn_k.weight": "7303c4e4480abc72a7ee271811311199245fb5c2ea27a2bd3b8cad3a53a03c27",
|
||||
"blk.8.attn_norm.weight": "2e3d1921898d1b943ce1a1b6818546c8b471d6d542da24f51a8b514b8c3dd4ef",
|
||||
"blk.8.attn_output.weight": "30421520887b66bf97a18dbcdc283bc8d0b60590b612fd638a319a6eae923227",
|
||||
"blk.8.attn_q.weight": "73e064d5433c9b500068a1c31744dbd53f4ade298fb450a0e8c97f62cf1f8a8d",
|
||||
"blk.8.attn_v.weight": "27e21f8b9a9a8533e8178ca34a72aa1d786393d57302b7806dcdf3e51de511a8",
|
||||
"blk.8.ffn_down.weight": "bf694bd8e00047982108000e7b3dee7b225db8b19abc595e5697b6bbefd92e7c",
|
||||
"blk.8.ffn_gate.weight": "d55fdbf8606d9141b774b0500c58944fd1253b9e69d1f765eaa9a680b9f2ca40",
|
||||
"blk.8.ffn_up.weight": "1ae3f580655e7c8e8dd6c34fa4ac574fdfc5e3f1a8536da0c5442d3a2976f0e7",
|
||||
"blk.9.attn_k.weight": "b18080626012d8aabcf78542d6c7bf31c712bf55a70172fbfe173fcf34481036",
|
||||
"blk.9.attn_norm.weight": "2e3620620dc09998c6d3063a7d5de5433fbbae8c11e5b00d13f145d39140e162",
|
||||
"blk.9.attn_output.weight": "69c3c0e27ef1c0fc933eeb7b612b70909f18cde238873c0d576a2ba9714ef174",
|
||||
"blk.9.attn_q.weight": "68330e5aa28a28873c9a6e67f032186ef651df2df5844e0f27094ba349fbe4ab",
|
||||
"blk.9.attn_v.weight": "3df8d45a102be082d0793a51cb82aa62a43cd0e9d047ba4115ca0f2414b39325",
|
||||
"blk.9.ffn_down.weight": "1d6cc162b73745b135b4f040a0aac3c06d5135a3dc5b2421e7ee2af48662fd7f",
|
||||
"blk.9.ffn_gate.weight": "034a9d40fb1e32b534b45f4bccd65cbe43c4a6a3f5d01132bd245ca0005de5fc",
|
||||
"blk.9.ffn_up.weight": "c838c38d0e1a0ac0da17eb2a66023ed31929f07d8fcfe1cc546df26096c91f0c",
|
||||
"blk.10.attn_k.weight": "a78507cb72f744b86ceaa032596e74e5571c822d0226d334881169addb32cbd5",
|
||||
"blk.10.attn_norm.weight": "35f48d0b28ee0e6b4cad4e983925737562d64824be5b168b3e26df3d6b260cf1",
|
||||
"blk.10.attn_output.weight": "53712db06796de39b131323e7abf9a58551b6d52da6db66a471580386d396252",
|
||||
"blk.10.attn_q.weight": "efe08429ba196026b81cd1c471e1c7418afd9e966659feb3936b674aa0803b58",
|
||||
"blk.10.attn_v.weight": "7ec6055e134f89da0cbe79ec9f13ef2e442ac584b1f03c3e13e7d0cdad0078bd",
|
||||
"blk.10.ffn_down.weight": "37e66af4bcd1f3079e841e892255b8255070655901864ea3a8c602a7f681a640",
|
||||
"blk.10.ffn_gate.weight": "1825282bc34830d371c6edcc3c1e73e6ecc1e10f4aea0122dbb7acc1d6f7b1bc",
|
||||
"blk.10.ffn_up.weight": "819b3b276a4d4c14a35ed6682d5ef18a5e8ed468e5ce3f12e8c75ec18ac20ec4",
|
||||
"blk.11.attn_k.weight": "5327e6a2af82dfff0619a14971f5864a15553c36fead84e1af42c7630f2729c6",
|
||||
"blk.11.attn_norm.weight": "fec363b3c4a43036d2c635fb8aa9e122dd87ee79811839f2f6cd955be3373e7b",
|
||||
"blk.11.attn_output.weight": "ccf7b38f18ee8798b8a6a35018e2df3eb3e007de62876befb68025dd66c79763",
|
||||
"blk.11.attn_q.weight": "da8c4a1c824ffe174e39f126cd72f7ef83c56aff1259d452a1212de80f98f5e9",
|
||||
"blk.11.attn_v.weight": "d17ae6bb77f03982b55d341eb67acb5969e9ad3da5994b96eafc09793dcfe3a0",
|
||||
"blk.11.ffn_down.weight": "a6bac521e2791345f22c57205fa1c2f2f687794dfd24d0e98d50ae0d0eb6088a",
|
||||
"blk.11.ffn_gate.weight": "5ed902c488cb51ba5635f3df08258c5f84f31a679a00211ea5f9d8b824ef6d9d",
|
||||
"blk.11.ffn_up.weight": "ee9f1437eb890d2cf9df2574afa1cecf20aafdd847cd75b152d7eb74419afd34",
|
||||
"blk.12.attn_k.weight": "5a069c06e1019b0f889088e67458f7a11ec77fa190ada6069e46211f62219947",
|
||||
"blk.12.attn_norm.weight": "194d7e5fcc8c49aea62daf1940532419cf3c505afdce6be377286b677db5db8f",
|
||||
"blk.12.attn_output.weight": "6534995fd4d6fecb55e317add4b1723aba4d825e1e9471d0b08813dfdc247176",
|
||||
"blk.12.attn_q.weight": "4ab51ca519b5995581fa34f846276feca3b907ef2b51f192f6cc0b3263c3f5a2",
|
||||
"blk.12.attn_v.weight": "5652ca3fa81ef9a1ac1543d71fc6813f8517f8ec54b25c701f6f98061614830f",
|
||||
"blk.12.ffn_down.weight": "4b2c263f54c88516b8eb273bb8d9615b01c5c8b484dc70358adb91b50b300edd",
|
||||
"blk.12.ffn_gate.weight": "8f50c3c3e3e8568991d6c1b0e74b500cf4f208e7700bbb8e87c3f6a6d359b6b5",
|
||||
"blk.12.ffn_up.weight": "1c1a581fec1fbe959e1427fa513f400100b5e1ee9d83932630be9905fb49c231",
|
||||
"blk.13.attn_k.weight": "efd7a38c46f08d8376d82974f33c644e3a02220e142d63b1704718699a8a884c",
|
||||
"blk.13.attn_norm.weight": "d28fa4f1bd75abbd063b0e622e08f579c89cd0c0c5ce63c1952ec9f944f8ee13",
|
||||
"blk.13.attn_output.weight": "71e0068a639288718bdb70a6cfdefd50bc8b3ec3993347a65129e70001ca5827",
|
||||
"blk.13.attn_q.weight": "b97077adc92cff07a2e07d80ee38f214ad8713571c69cd5c70ebd43dc501ac87",
|
||||
"blk.13.attn_v.weight": "79b3e2749ab4b459c81e96e322b215f1e8af645eb346e176c326bd00cf6ed2fd",
|
||||
"blk.13.ffn_down.weight": "9f8687d11effa1db7cfecf7bec5631734bcf2962aad74a9f519144491e08ec85",
|
||||
"blk.13.ffn_gate.weight": "7d14dfa0543852e7777fe8fff29ca533744cbcf1ebcf10067e5adfc4eb345e65",
|
||||
"blk.13.ffn_up.weight": "852b9527b97fdab211ff3f832a660ee1d93ccb56906144c50f01319a6e8ee615",
|
||||
"blk.14.attn_k.weight": "79e926b20f36f66d58226cb358881f2f68ae7b468787d33cafae5110287a14a0",
|
||||
"blk.14.attn_norm.weight": "97d481b63deb0df6142c2c6cd23043720c62eb609e390f47a7113751c79974ec",
|
||||
"blk.14.attn_output.weight": "aa6e94d7176d5c79fbb89b96e5f13ce75702ce3dd23ee52986446da436a6c3d6",
|
||||
"blk.14.attn_q.weight": "214becb6d1bb460da9fb8ace0f99b9a5afa9edf7aa7acc19606c7401b11d6305",
|
||||
"blk.14.attn_v.weight": "488b0e6d7f1a7a2ed0972aaa6d10ef9c775ee5373460324efcf5b3e3da9311df",
|
||||
"blk.14.ffn_down.weight": "29c7ad16cf9542e30996a1a01ab95b844533b28051f04cc7949c371afb796471",
|
||||
"blk.14.ffn_gate.weight": "b7ef208f2b054803665b377f5a5980c122c026841809cf855c6ba06d1c3a885a",
|
||||
"blk.14.ffn_up.weight": "76a5cc28100748d79c4398ce7b9176aab4d661548b6293a82f99144812e5b70e",
|
||||
"blk.15.attn_k.weight": "a6b8f9e98ab878fa7ebc5d080978ebf2d050acc2ab2fa8ea9188eb10e27702c8",
|
||||
"blk.15.attn_norm.weight": "a26d07a9752d6dccb68e3a8a2a49fd0752cdd0a415e05547819bc37d9ba63d5e",
|
||||
"blk.15.attn_output.weight": "c63616c69048ccbee801e05be4f56d21fda21aa0cc470f41d57c31b4d9283a4d",
|
||||
"blk.15.attn_q.weight": "fd595a67bf96c6ba16eb148a9d02fa52fa3c1d33ed10be28a08f851409fd6e64",
|
||||
"blk.15.attn_v.weight": "1c5c9d33fa07c05d5f4ed0032c6c4aa83d863f0d31c94a66109d239dcd03cea3",
|
||||
"blk.15.ffn_down.weight": "585ea62ab8aff7d7d212ea5c1a03226fda6b68370c890b776834af70c948dcbc",
|
||||
"blk.15.ffn_gate.weight": "a13c63f86f879b03a573d5dd2a25cfd1f4dc73e8132e6454ecc23e538b4cdf6f",
|
||||
"blk.15.ffn_up.weight": "f7112450f57c12fcd511f049e0dc0b541625a107a7901c3261ed9e984299f65c",
|
||||
"blk.16.attn_k.weight": "2d2c8b11dd71fba6d1c106aa1673c113a5448653cca7eab897c8739212ed5003",
|
||||
"blk.16.attn_norm.weight": "95c2ec7be9469690e18a9a1779684acb3e9da44b13e263a0da840305646fbf8a",
|
||||
"blk.16.attn_output.weight": "31a65046e677f54dae654ded4e733479fcc0f7283d83076b7dc7cbcae8528230",
|
||||
"blk.16.attn_q.weight": "bfc6292b9c6d49b7118d08060242a138182eb182d136ba5dfaf469437c16081d",
|
||||
"blk.16.attn_v.weight": "68f81d037340217d87c7853ff4d6edfbc46d9e827ee6d5bff7c3f6238e3a95ad",
|
||||
"blk.16.ffn_down.weight": "bbd6629691950cef4d5113e1c6670e91b216a9b872cb92cee02dfda4d6c4f7b8",
|
||||
"blk.16.ffn_gate.weight": "63cb56f282b7401ed6c76e5bb6fdf1bf68a64f9af0c82c014209b55bcb5191d0",
|
||||
"blk.16.ffn_up.weight": "b54f39a2541063cbfb6f713aa81c3b69a04100e999aa2ebbeec195dc382eceec",
|
||||
"blk.17.attn_k.weight": "3d9ba49799cc56664ec30a002bcad61eb651294212a68c3ddb573eb042aef5a4",
|
||||
"blk.17.attn_norm.weight": "42ee0db4b9d63257bca0012a30b12737ead1caafeb5ed3d93c8f48ffec4b46de",
|
||||
"blk.17.attn_output.weight": "a38fd100f05c9041c592bc739e287de0b10d08ef2bda41a879225bdca9002f71",
|
||||
"blk.17.attn_q.weight": "8a3bee285b0180a9eb35662e449ee4cbe16d992bdd48fb3a94bc4a347728cfa2",
|
||||
"blk.17.attn_v.weight": "d7f8f1b8b863494ed4392a1656775912e9b264ad36016547b12e832a1d6757d6",
|
||||
"blk.17.ffn_down.weight": "bb7ee58f61da8630972e25b621996fbe8ec06f4dc9ab1e268ab5b120c526ca28",
|
||||
"blk.17.ffn_gate.weight": "6b652dbf167fee09a45ebfd78d500ff6548fb2756dbe5343ffec3f7e6207179f",
|
||||
"blk.17.ffn_up.weight": "3b67f727e55e742715de978fab80457781e7a3762bc48f79d13b45dcb8de664c",
|
||||
"blk.18.attn_k.weight": "ff7fe57c57b90c6fcc0aefc39ec24593c3a7d1ea1c23770480075a015450e0f5",
|
||||
"blk.18.attn_norm.weight": "1d40faca082d2633ef0ccf19e121870dd6c7c3e2154607c7f3543fa96e99cb2d",
|
||||
"blk.18.attn_output.weight": "9adfecaaa397a92db4687efd5fcabfa0daef9e6b0493763b7ff5ebc185c43a6c",
|
||||
"blk.18.attn_q.weight": "ad1803eb9b291948639277afe981e666b07167eb3fcae903ba5b73bf86d8f50b",
|
||||
"blk.18.attn_v.weight": "308cf23399adccf27401a4ab60d74dac6fb9d4cd4b9c5940d9145118d1881b34",
|
||||
"blk.18.ffn_down.weight": "7de4ac9a561fb580619b745687dfd7ca8a69ef70471dee978741b80e9ff7bead",
|
||||
"blk.18.ffn_gate.weight": "0c66970f696b33bd5ee8f1f2fbcb41fd78fa5ccabdc927e11a4d5a4089f19c69",
|
||||
"blk.18.ffn_up.weight": "66a42e988e8a1f468fabf976c48e9e4bb045eaac6916ef16555ac101cd674abc",
|
||||
"blk.19.attn_k.weight": "a928ab50390bacbcebe2e4b66922498134ce22d7b93beaa87d6cf4ab52eb7174",
|
||||
"blk.19.attn_norm.weight": "b4a02c55b46c2a96aec9c64a254087cf48e6c1d4b6f31782c77a46fc4daebad1",
|
||||
"blk.19.attn_output.weight": "b768319c641dff1eac5d1f8ceb960c9899c795bf2b24c1d6bf70aa24fda45f77",
|
||||
"blk.19.attn_q.weight": "79ef3f57d187d3954a26362096e1b6c222d76f537dff73e034d6e9999935b8bc",
|
||||
"blk.19.attn_v.weight": "ce13d6b13e24fcb2d5bc6a2662e5bd295b31b12db10a6d0307f86cf29b8d5001",
|
||||
"blk.19.ffn_down.weight": "cf90d7e2137482cfd50934a8223ad774621d08554969da80a9712df5e6227eb0",
|
||||
"blk.19.ffn_gate.weight": "71ce30150f003b6eeb3bf7464e05b6ae615f135110d8e47f0a47fd973e537c0f",
|
||||
"blk.19.ffn_up.weight": "7f92aca0cc29866633feec701ec01a85a8ee2fd4e2b9630173a6cffb1d9d50ee",
|
||||
"blk.20.attn_k.weight": "a2df23159d6fb74ef28e14b61028fe8b00a693a2fc9234a980be74f20b958682",
|
||||
"blk.20.attn_norm.weight": "c6cd5f1b096fc5efa4eb59ca1c8c4bd28730f3dcedd59a63601663eccc6724ed",
|
||||
"blk.20.attn_output.weight": "896a8a166d0f006d4b09867ae4345426303cbc3fb13a18d3d4e1bde00f16dbdf",
|
||||
"blk.20.attn_q.weight": "01eb79588fe61baea0da43e99f4dc5939590e1bafd01e12dadb8326f102bfea2",
|
||||
"blk.20.attn_v.weight": "bd39630fdd5a7c859ac1addaf53e63faf524c3f32f5f4896d86b6e746b1d5c06",
|
||||
"blk.20.ffn_down.weight": "0304a5d39957a0e3f031c4bcc4549a135d396c8d97c8d276fd1c823ce86560c2",
|
||||
"blk.20.ffn_gate.weight": "117b79d595b1dca0c8b37586beaecc4d84411507276212dc286cde7fc36c9bef",
|
||||
"blk.20.ffn_up.weight": "6e799346db145c125f01783539749d3828fcc451cd4f10c5352f047a47e28714",
|
||||
"blk.21.attn_k.weight": "1c37e4c0664147e775bb006b226b9553e3421140cd96288ea755f81731ab80ba",
|
||||
"blk.21.attn_norm.weight": "00ae783a29000ccda5e4bdbff03df0752fb82805dc3f9b987500ebd80714476e",
|
||||
"blk.21.attn_output.weight": "7588b84f9fb19f15095b5265c60b4a4e7ae74bcc47d4607dfa5d0bfab6f136cb",
|
||||
"blk.21.attn_q.weight": "a65f1c0dd06d45bb97532d3e932689c1eecfe7359089b39174a96a149335cbc1",
|
||||
"blk.21.attn_v.weight": "4220b77e7d5e8709b4eef33a679b5dad11f297085ef44c9977f9e54ef08f7a2d",
|
||||
"blk.21.ffn_down.weight": "b8c082a0530d4b5328e67db0df84c5498f2af956de23c639fa0198ffea853950",
|
||||
"blk.21.ffn_gate.weight": "cd1b656ee72d00e9835ef667c19ef89a88de261eb8eb7c0e936e0f9ddf83ef9f",
|
||||
"blk.21.ffn_up.weight": "dc445f73e36ec7a3bd86884186b728f8e0187f32848c3b8b69d4d41f8571bf31",
|
||||
"blk.22.attn_k.weight": "e37cf0b893ec8b9ee8c78dd139b8d9c45cb997a3bc0c3d93a70ca1c3f6af8859",
|
||||
"blk.22.attn_norm.weight": "248a27838d3c46cc03a5c312facc84e2e0e2c990ef8401e93da25918497f88d1",
|
||||
"blk.22.attn_output.weight": "fc191a18f6d18332c66761f7ab28008bfe295dd1f5c8741a2488442f9e00d0f5",
|
||||
"blk.22.attn_q.weight": "4b193a2ab8bc2b085db18f2bf3eeba26e02b537b2cdd738160c8f14b165d0f5a",
|
||||
"blk.22.attn_v.weight": "7a60ce5ccac7e045e55ba1e1e85bd2a0f93f8c781daee96c5223665e22f0c666",
|
||||
"blk.22.ffn_down.weight": "e0a34fb4244e2c7168f3dbaa1904c15d339ec39999cdf27128bbaf619ee0a237",
|
||||
"blk.22.ffn_gate.weight": "8bac872d4b8549c8812f927efa309f1792b524f33601095fff61b826de5a5615",
|
||||
"blk.22.ffn_up.weight": "b67fa2b94dd901b6ec64c0853ce8ca2d86fe9cb1cc6d2f15fbbbe0e691c0c648",
|
||||
"blk.23.attn_k.weight": "2c32e66ad01942b819ac09a197c71579fe66f02226a264fdd72ad1e02c67a27e",
|
||||
"blk.23.attn_norm.weight": "825fdc94deb439cb93c713eeb077c1052b90ed658d6d464fc4ad3d611e911d48",
|
||||
"blk.23.attn_output.weight": "95ca6707a95b8750b0c7c5d379d368f0f2e7ebef631954e7d4d8ec0f41f13a3a",
|
||||
"blk.23.attn_q.weight": "6eccc84faca5fac015d1b26e2854501edcfd292a302228fe14cf99f5eb59a34b",
|
||||
"blk.23.attn_v.weight": "b343ac3d226040f1033ee049668aa1d89b1774bc18431965682e5dbdce78ccdc",
|
||||
"blk.23.ffn_down.weight": "9fc599befea8d3b1e342d564a110074f66d2542df406c4b90b6bdc5828fbb2b2",
|
||||
"blk.23.ffn_gate.weight": "488556c1b0c9f0b20b0c99b4bac2e0f4046b81edb601d7b91e7e5b3bab47d667",
|
||||
"blk.23.ffn_up.weight": "1088e291d7008dd9c7c2dd6830af686a8a84b724d123a016209bd5156d6898f1",
|
||||
"blk.24.attn_k.weight": "a923fbe35e61e009a53927d7828818e0592bb737d6a1106c4b0b5a1efc367e07",
|
||||
"blk.24.attn_norm.weight": "9b51aaaa939cefafdd9b13a7e5b74ac7fa2d603427e55a16a909d6f3f353750a",
|
||||
"blk.24.attn_output.weight": "1beb2baba56f8409466434b037771248c2f620ec5f53e15f44c271d5a2d9ecf4",
|
||||
"blk.24.attn_q.weight": "4b0194fe5bfae0c6bf6131dcf8cb6e2b994f6ea10b27cb03574f0f4f8cc0c950",
|
||||
"blk.24.attn_v.weight": "6ac34b1ab0f66226d85bca1194a7c212cd93d384ecbc8b8395de48aec0970a61",
|
||||
"blk.24.ffn_down.weight": "5508f74cb732a662c2936b32ac5e90742d172b9f961a747b0e5cba0e5906a89d",
|
||||
"blk.24.ffn_gate.weight": "095e39b8584403835f9bb1ac33e0e81f54175575e4800273d281b845bff381e7",
|
||||
"blk.24.ffn_up.weight": "2d43ec21637dda12973de367b0113ee9840b0d815bf6fce042f7c3f270b0b530",
|
||||
"blk.25.attn_k.weight": "9e2aee029f3d2c7f67dfc7926e72c8228fb978382c8e5a4701bbf82c93801419",
|
||||
"blk.25.attn_norm.weight": "220cd7164fb4cdbe22d26058e4153b26c27c7b5ce2bec8e95bf2c0ea08d23103",
|
||||
"blk.25.attn_output.weight": "a17f4a5dc6aa51f03dbd75602d98e9491767c205cdc2c3a5f8667fc54bbf7c64",
|
||||
"blk.25.attn_q.weight": "f60827496835c440c794bf57ce9780704d10a59d8229886bf75ebb18900ba4ef",
|
||||
"blk.25.attn_v.weight": "9cac217e9e9f4f4c85f14ee51165a77c580165bd4a34b202389169bbe61a1ced",
|
||||
"blk.25.ffn_down.weight": "a0f36949b663e80849581dfb71e7babcc73580793bbcb0c80ab26d5a6e000359",
|
||||
"blk.25.ffn_gate.weight": "df4d1be4d50d6afe5ad3ef0d0e0fac76a33e85c963dea769641d612dd53e7d13",
|
||||
"blk.25.ffn_up.weight": "992da76be762632e25ebc5ef4d03728eece1b43f7c4e31827df19ca724aea694",
|
||||
"blk.26.attn_k.weight": "34199ff856ac32a500c754539d070258574192a34ecba87a182897cb59fdff52",
|
||||
"blk.26.attn_norm.weight": "a8e9dfb2dae5d22b5c0aec5f3675991c0e3c3e6a44153db2579136b73f456e00",
|
||||
"blk.26.attn_output.weight": "1c4f257ffb0d7db0f11cfb275e38b4af736917b43ad82de1badce3f1d227da4d",
|
||||
"blk.26.attn_q.weight": "33d55786274c2e718cf61e8fbecf3dfa5ee0c208f0b716d42b061f55459acb3c",
|
||||
"blk.26.attn_v.weight": "684b636939cd4ffcfec5a6238a0790ffa43d853c95783af9b9e8275e74071a7a",
|
||||
"blk.26.ffn_down.weight": "89d0bf066db154e6d312b5433aed1714f6a28b40f4c52e3e1530ee07703303c8",
|
||||
"blk.26.ffn_gate.weight": "393d649bebe5e2940e1b043649f6c860b4b8b9f380f30e9da1744a830f358156",
|
||||
"blk.26.ffn_up.weight": "179edc85ababd9d8440cc6093eecd1004290aa1cb96434b26ecf7585b6cca17b",
|
||||
"blk.27.attn_k.weight": "334841445a7f1e14731b08f56eb0b1f0938c63823d28bc6d078c4c5f05b36f19",
|
||||
"blk.27.attn_norm.weight": "57344471bbda2e9deffdfdb2dd05a07aa47f8761e24de53525588639145bf551",
|
||||
"blk.27.attn_output.weight": "506126af9ee54b535d49f97e36f630e74834f480329f098d6d62e96246d8d65a",
|
||||
"blk.27.attn_q.weight": "dd984df1acb4783849e25ba7ae378bfd385cd9efc540fb798cd5bdd873f0118f",
|
||||
"blk.27.attn_v.weight": "b4b3fe9a4455d34c297ff20a2f537b647cef424741d840a747b265f23d320ac0",
|
||||
"blk.27.ffn_down.weight": "621fdb185ba0d35ba5476dae73d2c81ec1482a0e878d5bfd5c3b29fe837af013",
|
||||
"blk.27.ffn_gate.weight": "e4fbab45f2ec506fa374103251a0bdb7baa6f576080bdd796f3e9db92098e08f",
|
||||
"blk.27.ffn_up.weight": "a0c57e463e988002bbd6a6c6792baa21a65e6f89ae303a2c301951b0ae6e4bbe",
|
||||
"blk.28.attn_k.weight": "bac36cbd52ec5056841663865e1291ddab4b47ef9a2544dd285d4503bfb0e4a0",
|
||||
"blk.28.attn_norm.weight": "5774a9df2bbb2e86d1f70179c7b92d81e1f401160148b3328fb64db6646a5425",
|
||||
"blk.28.attn_output.weight": "e8712622d1569557000c75f26c3f55fad267fd300463c2c2cfe3afbfa1c8f908",
|
||||
"blk.28.attn_q.weight": "11677751fddee52cc739699c02836f7be54d96038be4240be5d4f53d00161608",
|
||||
"blk.28.attn_v.weight": "e5ee459b8958d65e1445997b9aa1e90e2f5d17761ebcf5357313119a45322507",
|
||||
"blk.28.ffn_down.weight": "3934518f9f85292da8475fe38a8edcbfc4e24ac56c351b472d6351f98750871e",
|
||||
"blk.28.ffn_gate.weight": "6ba735d57e98d0847e487f25ffaa25256deaa8abec76f428cb70bd9774279d83",
|
||||
"blk.28.ffn_up.weight": "977fae6e1e5353114fc645dd98429464749758765cbc6e6457593d596e57850c",
|
||||
"blk.29.attn_k.weight": "8122a457307d580ad6f1e0acea09a2f593d97f595ba0d6737f5fea16d2433642",
|
||||
"blk.29.attn_norm.weight": "d626f721e05aa1202439b01027031d4caf1adace61ed37870a277cb6297c77cc",
|
||||
"blk.29.attn_output.weight": "7fb7122ab1b6b1e6615ca746897da27bc52c92cb70d3147183cdde61795b72b3",
|
||||
"blk.29.attn_q.weight": "be43e94ff6b6e391024dc824101efa0ddf4005d5b002ac26cb03765c0c73c2fa",
|
||||
"blk.29.attn_v.weight": "af93c85ebff908f74f9935b81bde0516ca487c84139868a1ce079c3ae20036b1",
|
||||
"blk.29.ffn_down.weight": "39dae12340ed3120bd19c495fe0872b559613641e41fde69d02d8631900b84c0",
|
||||
"blk.29.ffn_gate.weight": "36fd482439840ef197c9f3b8905d86acfcea49bcf018544106ca465d4bf8d5c7",
|
||||
"blk.29.ffn_up.weight": "5243fbdfdc1e2a1dd84b6210a9869d18a014db9088897e345240cdc99990bd5d",
|
||||
"blk.30.attn_k.weight": "948f263616bd3788b2b968baafd69b9c5bd1b77578665f096c4b7e247b4cea42",
|
||||
"blk.30.attn_norm.weight": "e168df981e744874ff303faf2eb470e5f6868c2040ba5f383f6c5148669975e7",
|
||||
"blk.30.attn_output.weight": "4cf0ccca04b792573b756655a24fc89cfb1f272da8305633f0bc66ef14990b93",
|
||||
"blk.30.attn_q.weight": "21e07d6cba6c50d65350289258209717174a13c42be57e8141d69712cbaf32c1",
|
||||
"blk.30.attn_v.weight": "65a8ca29c7237b3182ccf03e2fc94e84f9a53d0e160fb679ab401c853170dd9c",
|
||||
"blk.30.ffn_down.weight": "8b00500a6d00d84058f6658ee1d6f06fb4fcae2f90d4341792259362923b3c13",
|
||||
"blk.30.ffn_gate.weight": "5bc0e19ab7a31b50ac2118ad1b36e31055271a322cd8ff661d47c3ac0210703c",
|
||||
"blk.30.ffn_up.weight": "f37a0561955725bd59ee2d064fa9f4e00a12a1b620b624db3bc3add5330bc321",
|
||||
"blk.31.attn_k.weight": "9a5663edda227f5d87533897146764f8e8a7481b9e71fae197c39204f8463221",
|
||||
"blk.31.attn_norm.weight": "060a4f438a1ee5e220b5b5278ad2f5c085a428bf38c515766781815597c87529",
|
||||
"blk.31.attn_output.weight": "6ada5d3cad9dea4780ffbb43302bb6ccc2f24eddd0fc4f5f84c9ce0fc0c6e5dd",
|
||||
"blk.31.attn_q.weight": "bb5d08c08603907981ad388d5d8b70fcc9b98034ba264b8474c8890cc0297af0",
|
||||
"blk.31.attn_v.weight": "e01b4252ea9c6a889c32b21144b441a347464d04536ef4f6572425be55759796",
|
||||
"blk.31.ffn_down.weight": "8ba4d679c36e93ba65ba03180385ef35ea86b3b7cdf2fded9df59369f1c09630",
|
||||
"blk.31.ffn_gate.weight": "e5b41dc93645f8b5e8eebae3ada3ea43a18f97ce2654228655170b07b463ccb0",
|
||||
"blk.31.ffn_up.weight": "25b88cdddc8b547af294ed107d3d1312e90b983cae87936fa6062ecd8ea02539",
|
||||
"blk.32.attn_k.weight": "4bcf86dc0858c8ca2fbdf6aa76674d43eb698f78979fdc1a38f556a7af1facc4",
|
||||
"blk.32.attn_norm.weight": "cdcc12f3b8b9773c6722736bfb748a2729230b21478cbcc4104859d3148df815",
|
||||
"blk.32.attn_output.weight": "d43f1196822995ed89a9365c97054753a8b30ce20b6e273c8edcc42673a1e141",
|
||||
"blk.32.attn_q.weight": "ebf2972bb3865cbc5be4840113a322089752038344beab2a0122c7cb4fb399b6",
|
||||
"blk.32.attn_v.weight": "714db81704ff34fa137512903c1013acee7877467473e46600728b9240582eb7",
|
||||
"blk.32.ffn_down.weight": "2cde3da1258bb170a79d5d3cdfe10c86a71eb34b77da46b74c5ed71e7f4fe274",
|
||||
"blk.32.ffn_gate.weight": "c7e1ed792532613ff9d4e5834b6536e2e0f47df2303bc0fdaa90aac0c1f4e8db",
|
||||
"blk.32.ffn_up.weight": "d8d6f13fe66a716e28f79101a29817f0c0d6f99969a6f017d51bafd1a16c600c",
|
||||
"blk.33.attn_k.weight": "a0a28f6cbca88da00cab2ca37094d9b0503bf9defdae77b91895b911c408cbb6",
|
||||
"blk.33.attn_norm.weight": "0251200c24cc8445607ace6dc8c5aa0566567997262b7cca53a11ac23cc564b2",
|
||||
"blk.33.attn_output.weight": "b2423205bdf6a1096d43c44d8d12f1a84fcd4e1bb70fcf6dc8542b8b8a71a13c",
|
||||
"blk.33.attn_q.weight": "00b425c3ef71065ce5e0234e702bf38143b4952da78a85f52ab2c2e3073d97ab",
|
||||
"blk.33.attn_v.weight": "035edd2335df816c42c765a5e66b9d9b9e15a822a8dc1863508145499c942c14",
|
||||
"blk.33.ffn_down.weight": "4894a923a3db75bae4496ba3ce5f28796ad31fe33996a066271fb8654964310e",
|
||||
"blk.33.ffn_gate.weight": "8f6c819b8bbfbe3357fae89e1ac5a3d58be85b3b04be3bacf7b62775869046ff",
|
||||
"blk.33.ffn_up.weight": "257c3544b5b544fd5d839665bf5caf107a329b59dbc3751efcaa24ae63c56179",
|
||||
"blk.34.attn_k.weight": "b6cd8bba892e38dac4a2ebc3ba1bce49e71b967fc436fde30c6d76f54a18935f",
|
||||
"blk.34.attn_norm.weight": "2b3c8e60a064cba9955752bbbbdd92c71ba5c2f1bd721097bdbe88b5abc68787",
|
||||
"blk.34.attn_output.weight": "8cc272551c9aaca9db5a660c6927bab94a0243d74a30b2bc165f06bd577714ea",
|
||||
"blk.34.attn_q.weight": "74b561eb4792484e6a94b58fe2583848c3ae28ff2f1bf3d02939a0cfdfa49990",
|
||||
"blk.34.attn_v.weight": "dba19e24ff05154dc5a1f55c023729303a583d13d68732ce22ea74d4410dc8f0",
|
||||
"blk.34.ffn_down.weight": "76eca5dfeb274c35774e0bf9f22ee420ed9085c8e99aa2cd5a236e4918b44c61",
|
||||
"blk.34.ffn_gate.weight": "9af0862d5fcbc24732846488e653db8242a467765c0cdbc00332b3a40256b4a6",
|
||||
"blk.34.ffn_up.weight": "2a03126bf73587eaba99ece2066103d12e47bcd4ce30ff6c17b2f383b81d40df",
|
||||
"blk.35.attn_k.weight": "52513fc0cd4e997a842729af7d21dd09399bce0a339558374738be266d0fa2f0",
|
||||
"blk.35.attn_norm.weight": "e5281fa911964263ccf1630b14762edbd41d0b9472d6ec695fc600fed4892c35",
|
||||
"blk.35.attn_output.weight": "b391d6705d5dc6f48326b5fd16573f679edf64109d86fb729a498819676590ca",
|
||||
"blk.35.attn_q.weight": "d16446921966db9b0e0539626ad22a2511ace780e59379d6a4162d8c5441440b",
|
||||
"blk.35.attn_v.weight": "9d8cdf23ffdb0c5c74106843390b94b24c9f33ef0eb9998d39f78c73390101ea",
|
||||
"blk.35.ffn_down.weight": "938eb6301f7bbf162d7dd965682a5ed11d0a4a530c6fedd7e5469ce80012fc17",
|
||||
"blk.35.ffn_gate.weight": "5ad84f5a0c8edcfea1ecf1a3e3d21d85ceda0c4ad9e3c6ca68885eeff8ed3c2f",
|
||||
"blk.35.ffn_up.weight": "1c4330d9dc71bf4c98812c34356c51f520f47610a534152aa6d29284b758090d",
|
||||
"blk.36.attn_k.weight": "ef720655e5ca2465f13db2dfc4732fb4ef2c9d53acde52f514fd4f301e974081",
|
||||
"blk.36.attn_norm.weight": "88f4b9310b3c8c2644e3029160cd35678c79dfa59280430e03f5c29a6fe84a58",
|
||||
"blk.36.attn_output.weight": "aec6f915fffd7bb72cd783273e871b4f09605950089d45e72059d1316b6c4b01",
|
||||
"blk.36.attn_q.weight": "72f9408a2405d42f8db6ce5fcf1d26a3660b6f225fc60e77d0277109cfcb82ed",
|
||||
"blk.36.attn_v.weight": "0f3b3d851dc44b3893ef53f6cca5b4acc9658bacfe1cc2d13c3d704ddd409b67",
|
||||
"blk.36.ffn_down.weight": "470aec48ce8c5129a6654d9fd26fcae72776f9fc1429a8bb05818072a876475d",
|
||||
"blk.36.ffn_gate.weight": "7f5f296d09cf55679767b5d15de3eff489c456782119f25204be4b1647f18dcf",
|
||||
"blk.36.ffn_up.weight": "b7ef74a1f7ffb4982711d93f1787be3a70edc3d2358d5203c41d8900508037d4",
|
||||
"blk.37.attn_k.weight": "c4ffa5412e4ff2dcfe1aed991c1f54169fd171a4c7638e4b9f21a1ca64c5e1d6",
|
||||
"blk.37.attn_norm.weight": "4eb6c888d841cccfacf5b963f8611120f6ff24b84af0b5714fd9ab36dcda422f",
|
||||
"blk.37.attn_output.weight": "db2a7bbf9682f9f6eea672dae8e150738f1bf74dbc80edc7022017a3f040c8ac",
|
||||
"blk.37.attn_q.weight": "e38c0462aff139afcbab289189823527e453abc9e541154adde5e7af88cacf0b",
|
||||
"blk.37.attn_v.weight": "952eb2492ed452a72f96bcc12d4b2affad9dfdf46ee39ce4a5d7b57a5dc301e5",
|
||||
"blk.37.ffn_down.weight": "25f23a8fbc44febf6dc4848fd7fe03a580e2822bd3b3b5a51f4990826bfe3e4e",
|
||||
"blk.37.ffn_gate.weight": "707da5eb40118b035305d3262444382351f170a20a537386a70e90c5a83a7817",
|
||||
"blk.37.ffn_up.weight": "d2d2ba5cfc4ef47338dd7384219e22bf030a5a2209e0354d88f5bbaaafd20e87",
|
||||
"blk.38.attn_k.weight": "abc4bb189dedf7ce661e79028427623a4f91ac091c2cd60e31b58bc62b1cda71",
|
||||
"blk.38.attn_norm.weight": "9f4803a7d03fd40fcb83d85f84eb1d5682ea4e5bb084f210c02850675d804c3d",
|
||||
"blk.38.attn_output.weight": "77cb66007f1a41df7135d0e7f900ceb499c2f667dfc3f1a6ac01a3203bbd3ccf",
|
||||
"blk.38.attn_q.weight": "d94a8b26cd375bf2bcaa76597e314aa8268ee50a479d00931e5e0e021feadb5d",
|
||||
"blk.38.attn_v.weight": "660c907888bc5016dc69b7d35fe6f55c7ded697c93be0e2d332a2f17aff88758",
|
||||
"blk.38.ffn_down.weight": "6f06173bae5b00ffaf88ef383619a8b9c6a8d0d5c6494695d17f6c1de1a68a13",
|
||||
"blk.38.ffn_gate.weight": "89f99be149d03f116527bfcabe073c50001c874de40fb6e817f6619027f3cd05",
|
||||
"blk.38.ffn_up.weight": "8d57557c8d5e2d2688b73f01dddf1ce8d5194990cda6358153320aea88aac7f8",
|
||||
"blk.39.attn_k.weight": "21be09c988b46c8393e6c2ec9230f3b5136eb7607dd1953ba92d0811c2f0dd75",
|
||||
"blk.39.attn_norm.weight": "ba7c1912dd1c4e2d16917201f62396fd0600e4a451137eaddff255548c209abd",
|
||||
"blk.39.attn_output.weight": "acfaf4abb3fd27fd899b5563c3877f176b597d8f6cdb2f2fd3f3a0bd4da15ed6",
|
||||
"blk.39.attn_q.weight": "e8adbc140d4c8f0db2a27ca584c5531d5b1e080555fe627e34d80d0814a92bed",
|
||||
"blk.39.attn_v.weight": "92f96b0e1f724e73a0f90a76c145654418844c04a6d4b14c05eb5af8a62bf8dc",
|
||||
"blk.39.ffn_down.weight": "4d9ee7c65fc16fe95d10c47b79ac6a525741947600a64b5fcea5d300a82c50de",
|
||||
"blk.39.ffn_gate.weight": "7e18507989f39b32191133d2657c2ee3b74f42f070579204d727eb72215793d1",
|
||||
"blk.39.ffn_up.weight": "22cda752269c9757ba918abede1df95bb0f83a5c772dea13c8deea3d5f2723d9",
|
||||
"output_norm.weight": "2858cf0e39d32caf52b7861378ace076000241e147f10b9eb21d8a5cd149e3cb"
|
||||
}
|
@@ -10,6 +10,7 @@ import (
|
||||
"log/slog"
|
||||
"os"
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"golang.org/x/exp/maps"
|
||||
)
|
||||
@@ -60,7 +61,25 @@ func parseTokenizer(fsys fs.FS, specialTokenTypes []string) (*Tokenizer, error)
|
||||
addedTokens[t.Content] = t
|
||||
}
|
||||
|
||||
t.Merges = tt.Model.Merges
|
||||
if len(tt.Model.Merges) == 0 {
|
||||
// noop; merges is empty
|
||||
} else if err := json.Unmarshal(tt.Model.Merges, &t.Merges); err == nil {
|
||||
// noop; merges is []string
|
||||
} else if merges, err := func() ([][]string, error) {
|
||||
var merges [][]string
|
||||
if err := json.Unmarshal(tt.Model.Merges, &merges); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return merges, nil
|
||||
}(); err == nil {
|
||||
t.Merges = make([]string, len(merges))
|
||||
for i := range merges {
|
||||
t.Merges[i] = strings.Join(merges[i], " ")
|
||||
}
|
||||
} else {
|
||||
return nil, fmt.Errorf("could not parse tokenizer merges. expected []string or [][]string: %w", err)
|
||||
}
|
||||
|
||||
sha256sum := sha256.New()
|
||||
for _, pt := range tt.PreTokenizer.PreTokenizers {
|
||||
@@ -81,6 +100,8 @@ func parseTokenizer(fsys fs.FS, specialTokenTypes []string) (*Tokenizer, error)
|
||||
t.Pre = "deepseek-llm"
|
||||
case "21cde974d587f0d54dc8d56b183cc1e6239600172035c68fbd6d4b9f8da0576e":
|
||||
t.Pre = "deepseek-coder"
|
||||
case "1ff7f41064896984db5d1bb6ff64fa4bc29007d08c1b439e505b7392777a319e":
|
||||
t.Pre = "qwen2"
|
||||
case "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855":
|
||||
// noop, empty pretokenizer
|
||||
default:
|
||||
@@ -156,9 +177,9 @@ func parseTokenizer(fsys fs.FS, specialTokenTypes []string) (*Tokenizer, error)
|
||||
type tokenizer struct {
|
||||
AddedTokens []token `json:"added_tokens"`
|
||||
Model struct {
|
||||
Type string `json:"type"`
|
||||
Vocab map[string]int `json:"vocab"`
|
||||
Merges []string `json:"merges"`
|
||||
Type string `json:"type"`
|
||||
Vocab map[string]int `json:"vocab"`
|
||||
Merges json.RawMessage `json:"merges"`
|
||||
} `json:"model"`
|
||||
|
||||
PreTokenizer struct {
|
||||
|
@@ -191,6 +191,62 @@ func TestParseTokenizer(t *testing.T) {
|
||||
Pre: "default",
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "list string merges",
|
||||
fsys: createTokenizerFS(t, t.TempDir(), map[string]io.Reader{
|
||||
"tokenizer.json": strings.NewReader(`{
|
||||
"model": {
|
||||
"merges": [
|
||||
"a b",
|
||||
"c d",
|
||||
"e f"
|
||||
]
|
||||
}
|
||||
}`),
|
||||
}),
|
||||
want: &Tokenizer{
|
||||
Vocabulary: &Vocabulary{
|
||||
Model: "gpt2",
|
||||
},
|
||||
Merges: []string{
|
||||
"a b",
|
||||
"c d",
|
||||
"e f",
|
||||
},
|
||||
Pre: "default",
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "list list string merges",
|
||||
fsys: createTokenizerFS(t, t.TempDir(), map[string]io.Reader{
|
||||
"tokenizer.json": strings.NewReader(`{
|
||||
"model": {
|
||||
"merges": [
|
||||
[
|
||||
"a", "b"
|
||||
],
|
||||
[
|
||||
"c", "d"
|
||||
],
|
||||
[
|
||||
"e", "f"
|
||||
]
|
||||
]
|
||||
}
|
||||
}`),
|
||||
}),
|
||||
want: &Tokenizer{
|
||||
Vocabulary: &Vocabulary{
|
||||
Model: "gpt2",
|
||||
},
|
||||
Merges: []string{
|
||||
"a b",
|
||||
"c d",
|
||||
"e f",
|
||||
},
|
||||
Pre: "default",
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range cases {
|
||||
|
@@ -1,6 +1,6 @@
|
||||
//go:build linux || windows
|
||||
|
||||
package gpu
|
||||
package discover
|
||||
|
||||
import (
|
||||
"errors"
|
||||
@@ -9,8 +9,6 @@ import (
|
||||
"path/filepath"
|
||||
"runtime"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
)
|
||||
|
||||
// Determine if the given ROCm lib directory is usable by checking for existence of some glob patterns
|
||||
@@ -37,30 +35,14 @@ func GetSupportedGFX(libDir string) ([]string, error) {
|
||||
return ret, nil
|
||||
}
|
||||
|
||||
func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
|
||||
ids := []string{}
|
||||
for _, info := range gpuInfo {
|
||||
if info.Library != "rocm" {
|
||||
// TODO shouldn't happen if things are wired correctly...
|
||||
slog.Debug("rocmGetVisibleDevicesEnv skipping over non-rocm device", "library", info.Library)
|
||||
continue
|
||||
}
|
||||
ids = append(ids, info.ID)
|
||||
}
|
||||
return "HIP_VISIBLE_DEVICES", strings.Join(ids, ",")
|
||||
}
|
||||
|
||||
func commonAMDValidateLibDir() (string, error) {
|
||||
// Favor our bundled version
|
||||
|
||||
// Installer payload location if we're running the installed binary
|
||||
exe, err := os.Executable()
|
||||
if err == nil {
|
||||
rocmTargetDir := filepath.Join(filepath.Dir(exe), envconfig.LibRelativeToExe(), "lib", "ollama")
|
||||
if rocmLibUsable(rocmTargetDir) {
|
||||
slog.Debug("detected ROCM next to ollama executable " + rocmTargetDir)
|
||||
return rocmTargetDir, nil
|
||||
}
|
||||
rocmTargetDir := filepath.Join(LibOllamaPath, "rocm")
|
||||
if rocmLibUsable(rocmTargetDir) {
|
||||
slog.Debug("detected ROCM next to ollama executable " + rocmTargetDir)
|
||||
return rocmTargetDir, nil
|
||||
}
|
||||
|
||||
// Prefer explicit HIP env var
|
@@ -1,4 +1,4 @@
|
||||
package gpu
|
||||
package discover
|
||||
|
||||
import (
|
||||
"errors"
|
||||
@@ -64,7 +64,7 @@ func NewHipLib() (*HipLib, error) {
|
||||
return hl, nil
|
||||
}
|
||||
|
||||
// The hip library only evaluates the HIP_VISIBLE_DEVICES variable at startup
|
||||
// The hip library only evaluates the ROCR_VISIBLE_DEVICES variable at startup
|
||||
// so we have to unload/reset the library after we do our initial discovery
|
||||
// to make sure our updates to that variable are processed by llama.cpp
|
||||
func (hl *HipLib) Release() {
|
@@ -1,4 +1,4 @@
|
||||
package gpu
|
||||
package discover
|
||||
|
||||
import (
|
||||
"bufio"
|
||||
@@ -47,10 +47,11 @@ var (
|
||||
)
|
||||
|
||||
// Gather GPU information from the amdgpu driver if any supported GPUs are detected
|
||||
func AMDGetGPUInfo() []RocmGPUInfo {
|
||||
// Only called once during bootstrap
|
||||
func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
|
||||
resp := []RocmGPUInfo{}
|
||||
if !AMDDetected() {
|
||||
return resp
|
||||
return resp, fmt.Errorf("AMD GPUs not detected")
|
||||
}
|
||||
|
||||
// Opportunistic logging of driver version to aid in troubleshooting
|
||||
@@ -63,23 +64,20 @@ func AMDGetGPUInfo() []RocmGPUInfo {
|
||||
// Determine if the user has already pre-selected which GPUs to look at, then ignore the others
|
||||
var visibleDevices []string
|
||||
hipVD := envconfig.HipVisibleDevices() // zero based index only
|
||||
rocrVD := envconfig.RocrVisibleDevices() // zero based index or UUID, but consumer cards seem to not support UUID
|
||||
rocrVD := envconfig.RocrVisibleDevices() // zero based index or UUID
|
||||
gpuDO := envconfig.GpuDeviceOrdinal() // zero based index
|
||||
switch {
|
||||
// TODO is this priorty order right?
|
||||
case hipVD != "":
|
||||
visibleDevices = strings.Split(hipVD, ",")
|
||||
case rocrVD != "":
|
||||
visibleDevices = strings.Split(rocrVD, ",")
|
||||
// TODO - since we don't yet support UUIDs, consider detecting and reporting here
|
||||
// all our test systems show GPU-XX indicating UUID is not supported
|
||||
case hipVD != "":
|
||||
visibleDevices = strings.Split(hipVD, ",")
|
||||
case gpuDO != "":
|
||||
visibleDevices = strings.Split(gpuDO, ",")
|
||||
}
|
||||
|
||||
gfxOverride := envconfig.HsaOverrideGfxVersion()
|
||||
var supported []string
|
||||
libDir := ""
|
||||
var libDir string
|
||||
|
||||
// The amdgpu driver always exposes the host CPU(s) first, but we have to skip them and subtract
|
||||
// from the other IDs to get alignment with the HIP libraries expectations (zero is the first GPU, not the CPU)
|
||||
@@ -98,7 +96,7 @@ func AMDGetGPUInfo() []RocmGPUInfo {
|
||||
}
|
||||
return a < b
|
||||
})
|
||||
cpuCount := 0
|
||||
gpuCount := 0
|
||||
for _, match := range matches {
|
||||
slog.Debug("evaluating amdgpu node " + match)
|
||||
fp, err := os.Open(match)
|
||||
@@ -107,11 +105,6 @@ func AMDGetGPUInfo() []RocmGPUInfo {
|
||||
continue
|
||||
}
|
||||
defer fp.Close()
|
||||
nodeID, err := strconv.Atoi(filepath.Base(filepath.Dir(match)))
|
||||
if err != nil {
|
||||
slog.Debug("failed to parse node ID", "error", err)
|
||||
continue
|
||||
}
|
||||
|
||||
scanner := bufio.NewScanner(fp)
|
||||
isCPU := false
|
||||
@@ -185,24 +178,19 @@ func AMDGetGPUInfo() []RocmGPUInfo {
|
||||
// do reliably report VRAM usage.
|
||||
|
||||
if isCPU {
|
||||
cpuCount++
|
||||
continue
|
||||
}
|
||||
|
||||
// CPUs are always first in the list
|
||||
gpuID := nodeID - cpuCount
|
||||
|
||||
// Shouldn't happen, but just in case...
|
||||
if gpuID < 0 {
|
||||
slog.Error("unexpected amdgpu sysfs data resulted in negative GPU ID, please set OLLAMA_DEBUG=1 and report an issue")
|
||||
return nil
|
||||
}
|
||||
|
||||
if int(major) < RocmComputeMin {
|
||||
slog.Warn(fmt.Sprintf("amdgpu too old gfx%d%x%x", major, minor, patch), "gpu", gpuID)
|
||||
// Skip over any GPUs that are masked
|
||||
if major == 0 && minor == 0 && patch == 0 {
|
||||
slog.Debug("skipping gpu with gfx000")
|
||||
continue
|
||||
}
|
||||
|
||||
// Keep track of numeric IDs based on valid GPUs
|
||||
gpuID := gpuCount
|
||||
gpuCount += 1
|
||||
|
||||
// Look up the memory for the current node
|
||||
totalMemory := uint64(0)
|
||||
usedMemory := uint64(0)
|
||||
@@ -270,19 +258,20 @@ func AMDGetGPUInfo() []RocmGPUInfo {
|
||||
break
|
||||
}
|
||||
|
||||
// iGPU detection, remove this check once we can support an iGPU variant of the rocm library
|
||||
if totalMemory < IGPUMemLimit {
|
||||
slog.Info("unsupported Radeon iGPU detected skipping", "id", gpuID, "total", format.HumanBytes2(totalMemory))
|
||||
continue
|
||||
}
|
||||
var name string
|
||||
// TODO - PCI ID lookup
|
||||
if vendor > 0 && device > 0 {
|
||||
name = fmt.Sprintf("%04x:%04x", vendor, device)
|
||||
}
|
||||
|
||||
slog.Debug("amdgpu memory", "gpu", gpuID, "total", format.HumanBytes2(totalMemory))
|
||||
slog.Debug("amdgpu memory", "gpu", gpuID, "available", format.HumanBytes2(totalMemory-usedMemory))
|
||||
// Favor UUIDs if available to reduce possibility of getting the numeric IDs wrong
|
||||
var ID string
|
||||
if uniqueID != 0 {
|
||||
ID = fmt.Sprintf("GPU-%016x", uniqueID)
|
||||
} else {
|
||||
ID = strconv.Itoa(gpuID)
|
||||
}
|
||||
|
||||
gpuInfo := RocmGPUInfo{
|
||||
GpuInfo: GpuInfo{
|
||||
Library: "rocm",
|
||||
@@ -290,7 +279,7 @@ func AMDGetGPUInfo() []RocmGPUInfo {
|
||||
TotalMemory: totalMemory,
|
||||
FreeMemory: (totalMemory - usedMemory),
|
||||
},
|
||||
ID: strconv.Itoa(gpuID),
|
||||
ID: ID,
|
||||
Name: name,
|
||||
Compute: fmt.Sprintf("gfx%d%x%x", major, minor, patch),
|
||||
MinimumMemory: rocmMinimumMemory,
|
||||
@@ -298,19 +287,54 @@ func AMDGetGPUInfo() []RocmGPUInfo {
|
||||
DriverMinor: driverMinor,
|
||||
},
|
||||
usedFilepath: usedFile,
|
||||
index: gpuID,
|
||||
}
|
||||
|
||||
// iGPU detection, remove this check once we can support an iGPU variant of the rocm library
|
||||
if totalMemory < IGPUMemLimit {
|
||||
reason := "unsupported Radeon iGPU detected skipping"
|
||||
slog.Info(reason, "id", gpuID, "total", format.HumanBytes2(totalMemory))
|
||||
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
|
||||
GpuInfo: gpuInfo.GpuInfo,
|
||||
Reason: reason,
|
||||
})
|
||||
continue
|
||||
}
|
||||
minVer, err := strconv.Atoi(RocmComputeMajorMin)
|
||||
if err != nil {
|
||||
slog.Error("invalid RocmComputeMajorMin setting", "value", RocmComputeMajorMin, "error", err)
|
||||
}
|
||||
if int(major) < minVer {
|
||||
reason := fmt.Sprintf("amdgpu too old gfx%d%x%x", major, minor, patch)
|
||||
slog.Warn(reason, "gpu", gpuID)
|
||||
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
|
||||
GpuInfo: gpuInfo.GpuInfo,
|
||||
Reason: reason,
|
||||
})
|
||||
|
||||
continue
|
||||
}
|
||||
|
||||
slog.Debug("amdgpu memory", "gpu", gpuID, "total", format.HumanBytes2(totalMemory))
|
||||
slog.Debug("amdgpu memory", "gpu", gpuID, "available", format.HumanBytes2(totalMemory-usedMemory))
|
||||
|
||||
// If the user wants to filter to a subset of devices, filter out if we aren't a match
|
||||
if len(visibleDevices) > 0 {
|
||||
include := false
|
||||
for _, visible := range visibleDevices {
|
||||
if visible == gpuInfo.ID {
|
||||
if visible == gpuInfo.ID || visible == strconv.Itoa(gpuInfo.index) {
|
||||
include = true
|
||||
break
|
||||
}
|
||||
}
|
||||
if !include {
|
||||
slog.Info("filtering out device per user request", "id", gpuInfo.ID, "visible_devices", visibleDevices)
|
||||
reason := "filtering out device per user request"
|
||||
slog.Info(reason, "id", gpuInfo.ID, "visible_devices", visibleDevices)
|
||||
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
|
||||
GpuInfo: gpuInfo.GpuInfo,
|
||||
Reason: reason,
|
||||
})
|
||||
|
||||
continue
|
||||
}
|
||||
}
|
||||
@@ -320,25 +344,41 @@ func AMDGetGPUInfo() []RocmGPUInfo {
|
||||
if libDir == "" {
|
||||
libDir, err = AMDValidateLibDir()
|
||||
if err != nil {
|
||||
slog.Warn("unable to verify rocm library, will use cpu", "error", err)
|
||||
return nil
|
||||
err = fmt.Errorf("unable to verify rocm library: %w", err)
|
||||
slog.Warn(err.Error())
|
||||
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
|
||||
GpuInfo: gpuInfo.GpuInfo,
|
||||
Reason: err.Error(),
|
||||
})
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
gpuInfo.DependencyPath = libDir
|
||||
gpuInfo.DependencyPath = []string{libDir}
|
||||
|
||||
if gfxOverride == "" {
|
||||
// Only load supported list once
|
||||
if len(supported) == 0 {
|
||||
supported, err = GetSupportedGFX(libDir)
|
||||
if err != nil {
|
||||
slog.Warn("failed to lookup supported GFX types, falling back to CPU mode", "error", err)
|
||||
return nil
|
||||
err = fmt.Errorf("failed to lookup supported GFX types: %w", err)
|
||||
slog.Warn(err.Error())
|
||||
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
|
||||
GpuInfo: gpuInfo.GpuInfo,
|
||||
Reason: err.Error(),
|
||||
})
|
||||
return nil, err
|
||||
}
|
||||
slog.Debug("rocm supported GPUs", "types", supported)
|
||||
}
|
||||
gfx := gpuInfo.Compute
|
||||
if !slices.Contains[[]string, string](supported, gfx) {
|
||||
slog.Warn("amdgpu is not supported", "gpu", gpuInfo.ID, "gpu_type", gfx, "library", libDir, "supported_types", supported)
|
||||
reason := fmt.Sprintf("amdgpu is not supported (supported types:%s)", supported)
|
||||
slog.Warn(reason, "gpu_type", gfx, "gpu", gpuInfo.ID, "library", libDir)
|
||||
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
|
||||
GpuInfo: gpuInfo.GpuInfo,
|
||||
Reason: reason,
|
||||
})
|
||||
|
||||
// TODO - consider discrete markdown just for ROCM troubleshooting?
|
||||
slog.Warn("See https://github.com/ollama/ollama/blob/main/docs/gpu.md#overrides for HSA_OVERRIDE_GFX_VERSION usage")
|
||||
continue
|
||||
@@ -358,13 +398,16 @@ func AMDGetGPUInfo() []RocmGPUInfo {
|
||||
resp = append(resp, gpuInfo)
|
||||
}
|
||||
if len(resp) == 0 {
|
||||
slog.Info("no compatible amdgpu devices detected")
|
||||
err := fmt.Errorf("no compatible amdgpu devices detected")
|
||||
slog.Info(err.Error())
|
||||
return nil, err
|
||||
}
|
||||
if err := verifyKFDDriverAccess(); err != nil {
|
||||
slog.Error("amdgpu devices detected but permission problems block access", "error", err)
|
||||
return nil
|
||||
err = fmt.Errorf("amdgpu devices detected but permission problems block access: %w", err)
|
||||
slog.Error(err.Error())
|
||||
return nil, err
|
||||
}
|
||||
return resp
|
||||
return resp, nil
|
||||
}
|
||||
|
||||
// Quick check for AMD driver so we can skip amdgpu discovery if not present
|
||||
@@ -476,3 +519,20 @@ func verifyKFDDriverAccess() error {
|
||||
fd.Close()
|
||||
return nil
|
||||
}
|
||||
|
||||
func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
|
||||
ids := []string{}
|
||||
for _, info := range gpuInfo {
|
||||
if info.Library != "rocm" {
|
||||
// TODO shouldn't happen if things are wired correctly...
|
||||
slog.Debug("rocmGetVisibleDevicesEnv skipping over non-rocm device", "library", info.Library)
|
||||
continue
|
||||
}
|
||||
ids = append(ids, info.ID)
|
||||
}
|
||||
// There are 3 potential env vars to use to select GPUs.
|
||||
// ROCR_VISIBLE_DEVICES supports UUID or numeric so is our preferred on linux
|
||||
// GPU_DEVICE_ORDINAL supports numeric IDs only
|
||||
// HIP_VISIBLE_DEVICES supports numeric IDs only
|
||||
return "ROCR_VISIBLE_DEVICES", strings.Join(ids, ",")
|
||||
}
|
@@ -1,10 +1,10 @@
|
||||
package gpu
|
||||
package discover
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"errors"
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"slices"
|
||||
"strconv"
|
||||
@@ -26,12 +26,13 @@ var (
|
||||
RocmStandardLocations = []string{"C:\\Program Files\\AMD\\ROCm\\6.1\\bin"} // TODO glob?
|
||||
)
|
||||
|
||||
func AMDGetGPUInfo() []RocmGPUInfo {
|
||||
// Only called once during bootstrap
|
||||
func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
|
||||
resp := []RocmGPUInfo{}
|
||||
hl, err := NewHipLib()
|
||||
if err != nil {
|
||||
slog.Debug(err.Error())
|
||||
return nil
|
||||
return nil, err
|
||||
}
|
||||
defer hl.Release()
|
||||
|
||||
@@ -41,15 +42,19 @@ func AMDGetGPUInfo() []RocmGPUInfo {
|
||||
slog.Debug("error looking up amd driver version", "error", err)
|
||||
}
|
||||
|
||||
// Note: the HIP library automatically handles subsetting to any HIP_VISIBLE_DEVICES the user specified
|
||||
// Note: the HIP library automatically handles subsetting to any *_VISIBLE_DEVICES the user specified
|
||||
count := hl.HipGetDeviceCount()
|
||||
if count == 0 {
|
||||
return nil
|
||||
err := fmt.Errorf("no compatible amdgpu devices detected")
|
||||
slog.Info(err.Error())
|
||||
return nil, err
|
||||
}
|
||||
|
||||
libDir, err := AMDValidateLibDir()
|
||||
if err != nil {
|
||||
slog.Warn("unable to verify rocm library, will use cpu", "error", err)
|
||||
return nil
|
||||
err = fmt.Errorf("unable to verify rocm library: %w", err)
|
||||
slog.Warn(err.Error())
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var supported []string
|
||||
@@ -57,8 +62,9 @@ func AMDGetGPUInfo() []RocmGPUInfo {
|
||||
if gfxOverride == "" {
|
||||
supported, err = GetSupportedGFX(libDir)
|
||||
if err != nil {
|
||||
slog.Warn("failed to lookup supported GFX types, falling back to CPU mode", "error", err)
|
||||
return nil
|
||||
err = fmt.Errorf("failed to lookup supported GFX types: %w", err)
|
||||
slog.Warn(err.Error())
|
||||
return nil, err
|
||||
}
|
||||
} else {
|
||||
slog.Info("skipping rocm gfx compatibility check", "HSA_OVERRIDE_GFX_VERSION", gfxOverride)
|
||||
@@ -87,21 +93,6 @@ func AMDGetGPUInfo() []RocmGPUInfo {
|
||||
slog.Debug("hip device", "id", i, "name", name, "gfx", gfx)
|
||||
// slog.Info(fmt.Sprintf("[%d] Integrated: %d", i, props.iGPU)) // DOESN'T REPORT CORRECTLY! Always 0
|
||||
// TODO Why isn't props.iGPU accurate!?
|
||||
if strings.EqualFold(name, iGPUName) {
|
||||
slog.Info("unsupported Radeon iGPU detected skipping", "id", i, "name", name, "gfx", gfx)
|
||||
continue
|
||||
}
|
||||
if gfxOverride == "" {
|
||||
// Strip off Target Features when comparing
|
||||
if !slices.Contains[[]string, string](supported, strings.Split(gfx, ":")[0]) {
|
||||
slog.Warn("amdgpu is not supported", "gpu", i, "gpu_type", gfx, "library", libDir, "supported_types", supported)
|
||||
// TODO - consider discrete markdown just for ROCM troubleshooting?
|
||||
slog.Warn("See https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md for HSA_OVERRIDE_GFX_VERSION usage")
|
||||
continue
|
||||
} else {
|
||||
slog.Debug("amdgpu is supported", "gpu", i, "gpu_type", gfx)
|
||||
}
|
||||
}
|
||||
|
||||
freeMemory, totalMemory, err := hl.HipMemGetInfo()
|
||||
if err != nil {
|
||||
@@ -109,14 +100,6 @@ func AMDGetGPUInfo() []RocmGPUInfo {
|
||||
continue
|
||||
}
|
||||
|
||||
// iGPU detection, remove this check once we can support an iGPU variant of the rocm library
|
||||
if totalMemory < IGPUMemLimit {
|
||||
slog.Info("amdgpu appears to be an iGPU, skipping", "gpu", i, "total", format.HumanBytes2(totalMemory))
|
||||
continue
|
||||
}
|
||||
|
||||
slog.Debug("amdgpu memory", "gpu", i, "total", format.HumanBytes2(totalMemory))
|
||||
slog.Debug("amdgpu memory", "gpu", i, "available", format.HumanBytes2(freeMemory))
|
||||
gpuInfo := RocmGPUInfo{
|
||||
GpuInfo: GpuInfo{
|
||||
Library: "rocm",
|
||||
@@ -128,7 +111,7 @@ func AMDGetGPUInfo() []RocmGPUInfo {
|
||||
UnreliableFreeMemory: true,
|
||||
|
||||
ID: strconv.Itoa(i), // TODO this is probably wrong if we specify visible devices
|
||||
DependencyPath: libDir,
|
||||
DependencyPath: []string{libDir},
|
||||
MinimumMemory: rocmMinimumMemory,
|
||||
Name: name,
|
||||
Compute: gfx,
|
||||
@@ -138,10 +121,38 @@ func AMDGetGPUInfo() []RocmGPUInfo {
|
||||
index: i,
|
||||
}
|
||||
|
||||
// iGPU detection, remove this check once we can support an iGPU variant of the rocm library
|
||||
if strings.EqualFold(name, iGPUName) || totalMemory < IGPUMemLimit {
|
||||
reason := "unsupported Radeon iGPU detected skipping"
|
||||
slog.Info(reason, "id", gpuInfo.ID, "total", format.HumanBytes2(totalMemory))
|
||||
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
|
||||
GpuInfo: gpuInfo.GpuInfo,
|
||||
Reason: reason,
|
||||
})
|
||||
continue
|
||||
}
|
||||
|
||||
// Strip off Target Features when comparing
|
||||
if !slices.Contains[[]string, string](supported, strings.Split(gfx, ":")[0]) {
|
||||
reason := fmt.Sprintf("amdgpu is not supported (supported types:%s)", supported)
|
||||
slog.Warn(reason, "gpu_type", gfx, "gpu", gpuInfo.ID, "library", libDir)
|
||||
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
|
||||
GpuInfo: gpuInfo.GpuInfo,
|
||||
Reason: reason,
|
||||
})
|
||||
// HSA_OVERRIDE_GFX_VERSION not supported on windows
|
||||
continue
|
||||
} else {
|
||||
slog.Debug("amdgpu is supported", "gpu", i, "gpu_type", gfx)
|
||||
}
|
||||
|
||||
slog.Debug("amdgpu memory", "gpu", i, "total", format.HumanBytes2(totalMemory))
|
||||
slog.Debug("amdgpu memory", "gpu", i, "available", format.HumanBytes2(freeMemory))
|
||||
|
||||
resp = append(resp, gpuInfo)
|
||||
}
|
||||
|
||||
return resp
|
||||
return resp, nil
|
||||
}
|
||||
|
||||
func AMDValidateLibDir() (string, error) {
|
||||
@@ -151,9 +162,7 @@ func AMDValidateLibDir() (string, error) {
|
||||
}
|
||||
|
||||
// Installer payload (if we're running from some other location)
|
||||
localAppData := os.Getenv("LOCALAPPDATA")
|
||||
appDir := filepath.Join(localAppData, "Programs", "Ollama")
|
||||
rocmTargetDir := filepath.Join(appDir, envconfig.LibRelativeToExe(), "lib", "ollama")
|
||||
rocmTargetDir := filepath.Join(LibOllamaPath, "rocm")
|
||||
if rocmLibUsable(rocmTargetDir) {
|
||||
slog.Debug("detected ollama installed ROCm at " + rocmTargetDir)
|
||||
return rocmTargetDir, nil
|
||||
@@ -171,7 +180,7 @@ func (gpus RocmGPUInfoList) RefreshFreeMemory() error {
|
||||
hl, err := NewHipLib()
|
||||
if err != nil {
|
||||
slog.Debug(err.Error())
|
||||
return nil
|
||||
return err
|
||||
}
|
||||
defer hl.Release()
|
||||
|
||||
@@ -190,3 +199,20 @@ func (gpus RocmGPUInfoList) RefreshFreeMemory() error {
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
|
||||
ids := []string{}
|
||||
for _, info := range gpuInfo {
|
||||
if info.Library != "rocm" {
|
||||
// TODO shouldn't happen if things are wired correctly...
|
||||
slog.Debug("rocmGetVisibleDevicesEnv skipping over non-rocm device", "library", info.Library)
|
||||
continue
|
||||
}
|
||||
ids = append(ids, info.ID)
|
||||
}
|
||||
// There are 3 potential env vars to use to select GPUs.
|
||||
// ROCR_VISIBLE_DEVICES supports UUID or numeric but does not work on Windows
|
||||
// HIP_VISIBLE_DEVICES supports numeric IDs only
|
||||
// GPU_DEVICE_ORDINAL supports numeric IDs only
|
||||
return "HIP_VISIBLE_DEVICES", strings.Join(ids, ",")
|
||||
}
|
@@ -1,25 +1,12 @@
|
||||
package gpu
|
||||
package discover
|
||||
|
||||
import (
|
||||
"os"
|
||||
"path/filepath"
|
||||
"runtime"
|
||||
"strings"
|
||||
|
||||
"golang.org/x/sys/cpu"
|
||||
)
|
||||
|
||||
func GetCPUCapability() CPUCapability {
|
||||
if cpu.X86.HasAVX2 {
|
||||
return CPUCapabilityAVX2
|
||||
}
|
||||
if cpu.X86.HasAVX {
|
||||
return CPUCapabilityAVX
|
||||
}
|
||||
// else LCD
|
||||
return CPUCapabilityNone
|
||||
}
|
||||
|
||||
func IsNUMA() bool {
|
||||
if runtime.GOOS != "linux" {
|
||||
// numa support in llama.cpp is linux only
|
@@ -1,6 +1,6 @@
|
||||
//go:build linux || windows
|
||||
|
||||
package gpu
|
||||
package discover
|
||||
|
||||
import (
|
||||
"log/slog"
|
||||
@@ -57,7 +57,8 @@ func cudaVariant(gpuInfo CudaGPUInfo) string {
|
||||
}
|
||||
}
|
||||
|
||||
if gpuInfo.computeMajor < 6 || gpuInfo.DriverMajor < 12 || (gpuInfo.DriverMajor == 12 && gpuInfo.DriverMinor == 0) {
|
||||
// driver 12.0 has problems with the cuda v12 library, so run v11 on those older drivers
|
||||
if gpuInfo.DriverMajor < 12 || (gpuInfo.DriverMajor == 12 && gpuInfo.DriverMinor == 0) {
|
||||
return "v11"
|
||||
}
|
||||
return "v12"
|
@@ -1,6 +1,6 @@
|
||||
//go:build linux || windows
|
||||
|
||||
package gpu
|
||||
package discover
|
||||
|
||||
/*
|
||||
#cgo linux LDFLAGS: -lrt -lpthread -ldl -lstdc++ -lm
|
||||
@@ -16,6 +16,7 @@ import (
|
||||
"os"
|
||||
"path/filepath"
|
||||
"runtime"
|
||||
"strconv"
|
||||
"strings"
|
||||
"sync"
|
||||
"unsafe"
|
||||
@@ -45,7 +46,6 @@ const (
|
||||
var (
|
||||
gpuMutex sync.Mutex
|
||||
bootstrapped bool
|
||||
cpuCapability CPUCapability
|
||||
cpus []CPUInfo
|
||||
cudaGPUs []CudaGPUInfo
|
||||
nvcudaLibPath string
|
||||
@@ -54,12 +54,23 @@ var (
|
||||
nvmlLibPath string
|
||||
rocmGPUs []RocmGPUInfo
|
||||
oneapiGPUs []OneapiGPUInfo
|
||||
|
||||
// If any discovered GPUs are incompatible, report why
|
||||
unsupportedGPUs []UnsupportedGPUInfo
|
||||
|
||||
// Keep track of errors during bootstrapping so that if GPUs are missing
|
||||
// they expected to be present this may explain why
|
||||
bootstrapErrors []error
|
||||
)
|
||||
|
||||
// With our current CUDA compile flags, older than 5.0 will not work properly
|
||||
var CudaComputeMin = [2]C.int{5, 0}
|
||||
// (string values used to allow ldflags overrides at build time)
|
||||
var (
|
||||
CudaComputeMajorMin = "5"
|
||||
CudaComputeMinorMin = "0"
|
||||
)
|
||||
|
||||
var RocmComputeMin = 9
|
||||
var RocmComputeMajorMin = "9"
|
||||
|
||||
// TODO find a better way to detect iGPU instead of minimum memory
|
||||
const IGPUMemLimit = 1 * format.GibiByte // 512G is what they typically report, so anything less than 1G must be iGPU
|
||||
@@ -70,16 +81,17 @@ func initCudaHandles() *cudaHandles {
|
||||
|
||||
cHandles := &cudaHandles{}
|
||||
// Short Circuit if we already know which library to use
|
||||
// ignore bootstrap errors in this case since we already recorded them
|
||||
if nvmlLibPath != "" {
|
||||
cHandles.nvml, _ = LoadNVMLMgmt([]string{nvmlLibPath})
|
||||
cHandles.nvml, _, _ = loadNVMLMgmt([]string{nvmlLibPath})
|
||||
return cHandles
|
||||
}
|
||||
if nvcudaLibPath != "" {
|
||||
cHandles.deviceCount, cHandles.nvcuda, _ = LoadNVCUDAMgmt([]string{nvcudaLibPath})
|
||||
cHandles.deviceCount, cHandles.nvcuda, _, _ = loadNVCUDAMgmt([]string{nvcudaLibPath})
|
||||
return cHandles
|
||||
}
|
||||
if cudartLibPath != "" {
|
||||
cHandles.deviceCount, cHandles.cudart, _ = LoadCUDARTMgmt([]string{cudartLibPath})
|
||||
cHandles.deviceCount, cHandles.cudart, _, _ = loadCUDARTMgmt([]string{cudartLibPath})
|
||||
return cHandles
|
||||
}
|
||||
|
||||
@@ -88,32 +100,27 @@ func initCudaHandles() *cudaHandles {
|
||||
|
||||
// Aligned with driver, we can't carry as payloads
|
||||
nvcudaMgmtPatterns := NvcudaGlobs
|
||||
|
||||
if runtime.GOOS == "windows" {
|
||||
localAppData := os.Getenv("LOCALAPPDATA")
|
||||
cudartMgmtPatterns = []string{filepath.Join(localAppData, "Programs", "Ollama", CudartMgmtName)}
|
||||
}
|
||||
libDir := LibraryDir()
|
||||
if libDir != "" {
|
||||
cudartMgmtPatterns = []string{filepath.Join(libDir, CudartMgmtName)}
|
||||
}
|
||||
cudartMgmtPatterns = append(cudartMgmtPatterns, filepath.Join(LibOllamaPath, "cuda_v*", CudartMgmtName))
|
||||
cudartMgmtPatterns = append(cudartMgmtPatterns, CudartGlobs...)
|
||||
|
||||
if len(NvmlGlobs) > 0 {
|
||||
nvmlLibPaths := FindGPULibs(NvmlMgmtName, NvmlGlobs)
|
||||
if len(nvmlLibPaths) > 0 {
|
||||
nvml, libPath := LoadNVMLMgmt(nvmlLibPaths)
|
||||
nvml, libPath, err := loadNVMLMgmt(nvmlLibPaths)
|
||||
if nvml != nil {
|
||||
slog.Debug("nvidia-ml loaded", "library", libPath)
|
||||
cHandles.nvml = nvml
|
||||
nvmlLibPath = libPath
|
||||
}
|
||||
if err != nil {
|
||||
bootstrapErrors = append(bootstrapErrors, err)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
nvcudaLibPaths := FindGPULibs(NvcudaMgmtName, nvcudaMgmtPatterns)
|
||||
if len(nvcudaLibPaths) > 0 {
|
||||
deviceCount, nvcuda, libPath := LoadNVCUDAMgmt(nvcudaLibPaths)
|
||||
deviceCount, nvcuda, libPath, err := loadNVCUDAMgmt(nvcudaLibPaths)
|
||||
if nvcuda != nil {
|
||||
slog.Debug("detected GPUs", "count", deviceCount, "library", libPath)
|
||||
cHandles.nvcuda = nvcuda
|
||||
@@ -121,11 +128,14 @@ func initCudaHandles() *cudaHandles {
|
||||
nvcudaLibPath = libPath
|
||||
return cHandles
|
||||
}
|
||||
if err != nil {
|
||||
bootstrapErrors = append(bootstrapErrors, err)
|
||||
}
|
||||
}
|
||||
|
||||
cudartLibPaths := FindGPULibs(CudartMgmtName, cudartMgmtPatterns)
|
||||
if len(cudartLibPaths) > 0 {
|
||||
deviceCount, cudart, libPath := LoadCUDARTMgmt(cudartLibPaths)
|
||||
deviceCount, cudart, libPath, err := loadCUDARTMgmt(cudartLibPaths)
|
||||
if cudart != nil {
|
||||
slog.Debug("detected GPUs", "library", libPath, "count", deviceCount)
|
||||
cHandles.cudart = cudart
|
||||
@@ -133,6 +143,9 @@ func initCudaHandles() *cudaHandles {
|
||||
cudartLibPath = libPath
|
||||
return cHandles
|
||||
}
|
||||
if err != nil {
|
||||
bootstrapErrors = append(bootstrapErrors, err)
|
||||
}
|
||||
}
|
||||
|
||||
return cHandles
|
||||
@@ -143,14 +156,19 @@ func initOneAPIHandles() *oneapiHandles {
|
||||
oHandles := &oneapiHandles{}
|
||||
|
||||
// Short Circuit if we already know which library to use
|
||||
// ignore bootstrap errors in this case since we already recorded them
|
||||
if oneapiLibPath != "" {
|
||||
oHandles.deviceCount, oHandles.oneapi, _ = LoadOneapiMgmt([]string{oneapiLibPath})
|
||||
oHandles.deviceCount, oHandles.oneapi, _, _ = loadOneapiMgmt([]string{oneapiLibPath})
|
||||
return oHandles
|
||||
}
|
||||
|
||||
oneapiLibPaths := FindGPULibs(OneapiMgmtName, OneapiGlobs)
|
||||
if len(oneapiLibPaths) > 0 {
|
||||
oHandles.deviceCount, oHandles.oneapi, oneapiLibPath = LoadOneapiMgmt(oneapiLibPaths)
|
||||
var err error
|
||||
oHandles.deviceCount, oHandles.oneapi, oneapiLibPath, err = loadOneapiMgmt(oneapiLibPaths)
|
||||
if err != nil {
|
||||
bootstrapErrors = append(bootstrapErrors, err)
|
||||
}
|
||||
}
|
||||
|
||||
return oHandles
|
||||
@@ -197,36 +215,38 @@ func GetGPUInfo() GpuInfoList {
|
||||
|
||||
if !bootstrapped {
|
||||
slog.Info("looking for compatible GPUs")
|
||||
cudaComputeMajorMin, err := strconv.Atoi(CudaComputeMajorMin)
|
||||
if err != nil {
|
||||
slog.Error("invalid CudaComputeMajorMin setting", "value", CudaComputeMajorMin, "error", err)
|
||||
}
|
||||
cudaComputeMinorMin, err := strconv.Atoi(CudaComputeMinorMin)
|
||||
if err != nil {
|
||||
slog.Error("invalid CudaComputeMinorMin setting", "value", CudaComputeMinorMin, "error", err)
|
||||
}
|
||||
bootstrapErrors = []error{}
|
||||
needRefresh = false
|
||||
cpuCapability = GetCPUCapability()
|
||||
var memInfo C.mem_info_t
|
||||
|
||||
mem, err := GetCPUMem()
|
||||
if err != nil {
|
||||
slog.Warn("error looking up system memory", "error", err)
|
||||
}
|
||||
depPath := LibraryDir()
|
||||
|
||||
details, err := GetCPUDetails()
|
||||
if err != nil {
|
||||
slog.Warn("failed to lookup CPU details", "error", err)
|
||||
}
|
||||
cpus = []CPUInfo{
|
||||
{
|
||||
GpuInfo: GpuInfo{
|
||||
memInfo: mem,
|
||||
Library: "cpu",
|
||||
Variant: cpuCapability.String(),
|
||||
ID: "0",
|
||||
DependencyPath: depPath,
|
||||
memInfo: mem,
|
||||
Library: "cpu",
|
||||
ID: "0",
|
||||
},
|
||||
CPUs: details,
|
||||
},
|
||||
}
|
||||
|
||||
// Fallback to CPU mode if we're lacking required vector extensions on x86
|
||||
if cpuCapability < GPURunnerCPUCapability && runtime.GOARCH == "amd64" {
|
||||
slog.Warn("CPU does not have minimum vector extensions, GPU inference disabled", "required", GPURunnerCPUCapability, "detected", cpuCapability)
|
||||
bootstrapped = true
|
||||
// No need to do any GPU discovery, since we can't run on them
|
||||
return GpuInfoList{cpus[0].GpuInfo}
|
||||
}
|
||||
|
||||
// Load ALL libraries
|
||||
cHandles = initCudaHandles()
|
||||
|
||||
@@ -253,10 +273,6 @@ func GetGPUInfo() GpuInfoList {
|
||||
C.free(unsafe.Pointer(memInfo.err))
|
||||
continue
|
||||
}
|
||||
if memInfo.major < CudaComputeMin[0] || (memInfo.major == CudaComputeMin[0] && memInfo.minor < CudaComputeMin[1]) {
|
||||
slog.Info(fmt.Sprintf("[%d] CUDA GPU is too old. Compute Capability detected: %d.%d", i, memInfo.major, memInfo.minor))
|
||||
continue
|
||||
}
|
||||
gpuInfo.TotalMemory = uint64(memInfo.total)
|
||||
gpuInfo.FreeMemory = uint64(memInfo.free)
|
||||
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
|
||||
@@ -267,22 +283,33 @@ func GetGPUInfo() GpuInfoList {
|
||||
gpuInfo.DriverMajor = driverMajor
|
||||
gpuInfo.DriverMinor = driverMinor
|
||||
variant := cudaVariant(gpuInfo)
|
||||
if depPath != "" {
|
||||
gpuInfo.DependencyPath = depPath
|
||||
// Check for variant specific directory
|
||||
if variant != "" {
|
||||
if _, err := os.Stat(filepath.Join(depPath, "cuda_"+variant)); err == nil {
|
||||
gpuInfo.DependencyPath = filepath.Join(depPath, "cuda_"+variant)
|
||||
}
|
||||
|
||||
// Start with our bundled libraries
|
||||
if variant != "" {
|
||||
variantPath := filepath.Join(LibOllamaPath, "cuda_"+variant)
|
||||
if _, err := os.Stat(variantPath); err == nil {
|
||||
// Put the variant directory first in the search path to avoid runtime linking to the wrong library
|
||||
gpuInfo.DependencyPath = append([]string{variantPath}, gpuInfo.DependencyPath...)
|
||||
}
|
||||
}
|
||||
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
|
||||
gpuInfo.Variant = variant
|
||||
|
||||
if int(memInfo.major) < cudaComputeMajorMin || (int(memInfo.major) == cudaComputeMajorMin && int(memInfo.minor) < cudaComputeMinorMin) {
|
||||
unsupportedGPUs = append(unsupportedGPUs,
|
||||
UnsupportedGPUInfo{
|
||||
GpuInfo: gpuInfo.GpuInfo,
|
||||
})
|
||||
slog.Info(fmt.Sprintf("[%d] CUDA GPU is too old. Compute Capability detected: %d.%d", i, memInfo.major, memInfo.minor))
|
||||
continue
|
||||
}
|
||||
|
||||
// query the management library as well so we can record any skew between the two
|
||||
// which represents overhead on the GPU we must set aside on subsequent updates
|
||||
if cHandles.nvml != nil {
|
||||
C.nvml_get_free(*cHandles.nvml, C.int(gpuInfo.index), &memInfo.free, &memInfo.total, &memInfo.used)
|
||||
uuid := C.CString(gpuInfo.ID)
|
||||
defer C.free(unsafe.Pointer(uuid))
|
||||
C.nvml_get_free(*cHandles.nvml, uuid, &memInfo.free, &memInfo.total, &memInfo.used)
|
||||
if memInfo.err != nil {
|
||||
slog.Warn("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
|
||||
C.free(unsafe.Pointer(memInfo.err))
|
||||
@@ -334,18 +361,23 @@ func GetGPUInfo() GpuInfoList {
|
||||
gpuInfo.FreeMemory = uint64(memInfo.free)
|
||||
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
|
||||
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
|
||||
gpuInfo.DependencyPath = depPath
|
||||
gpuInfo.DependencyPath = []string{LibOllamaPath}
|
||||
oneapiGPUs = append(oneapiGPUs, gpuInfo)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
rocmGPUs = AMDGetGPUInfo()
|
||||
rocmGPUs, err = AMDGetGPUInfo()
|
||||
if err != nil {
|
||||
bootstrapErrors = append(bootstrapErrors, err)
|
||||
}
|
||||
bootstrapped = true
|
||||
if len(cudaGPUs) == 0 && len(rocmGPUs) == 0 && len(oneapiGPUs) == 0 {
|
||||
slog.Info("no compatible GPUs were discovered")
|
||||
}
|
||||
|
||||
// TODO verify we have runners for the discovered GPUs, filter out any that aren't supported with good error messages
|
||||
}
|
||||
|
||||
// For detected GPUs, load library if not loaded
|
||||
@@ -380,7 +412,9 @@ func GetGPUInfo() GpuInfoList {
|
||||
}
|
||||
for i, gpu := range cudaGPUs {
|
||||
if cHandles.nvml != nil {
|
||||
C.nvml_get_free(*cHandles.nvml, C.int(gpu.index), &memInfo.free, &memInfo.total, &memInfo.used)
|
||||
uuid := C.CString(gpu.ID)
|
||||
defer C.free(unsafe.Pointer(uuid))
|
||||
C.nvml_get_free(*cHandles.nvml, uuid, &memInfo.free, &memInfo.total, &memInfo.used)
|
||||
} else if cHandles.cudart != nil {
|
||||
C.cudart_bootstrap(*cHandles.cudart, C.int(gpu.index), &memInfo)
|
||||
} else if cHandles.nvcuda != nil {
|
||||
@@ -463,34 +497,33 @@ func GetGPUInfo() GpuInfoList {
|
||||
|
||||
func FindGPULibs(baseLibName string, defaultPatterns []string) []string {
|
||||
// Multiple GPU libraries may exist, and some may not work, so keep trying until we exhaust them
|
||||
var ldPaths []string
|
||||
gpuLibPaths := []string{}
|
||||
slog.Debug("Searching for GPU library", "name", baseLibName)
|
||||
|
||||
// Start with our bundled libraries
|
||||
patterns := []string{filepath.Join(LibraryDir(), baseLibName)}
|
||||
// search our bundled libraries first
|
||||
patterns := []string{filepath.Join(LibOllamaPath, baseLibName)}
|
||||
|
||||
var ldPaths []string
|
||||
switch runtime.GOOS {
|
||||
case "windows":
|
||||
ldPaths = strings.Split(os.Getenv("PATH"), ";")
|
||||
ldPaths = strings.Split(os.Getenv("PATH"), string(os.PathListSeparator))
|
||||
case "linux":
|
||||
ldPaths = strings.Split(os.Getenv("LD_LIBRARY_PATH"), ":")
|
||||
default:
|
||||
return gpuLibPaths
|
||||
ldPaths = strings.Split(os.Getenv("LD_LIBRARY_PATH"), string(os.PathListSeparator))
|
||||
}
|
||||
|
||||
// Then with whatever we find in the PATH/LD_LIBRARY_PATH
|
||||
for _, ldPath := range ldPaths {
|
||||
d, err := filepath.Abs(ldPath)
|
||||
// then search the system's LD_LIBRARY_PATH
|
||||
for _, p := range ldPaths {
|
||||
p, err := filepath.Abs(p)
|
||||
if err != nil {
|
||||
continue
|
||||
}
|
||||
patterns = append(patterns, filepath.Join(d, baseLibName))
|
||||
patterns = append(patterns, filepath.Join(p, baseLibName))
|
||||
}
|
||||
|
||||
// finally, search the default patterns provided by the caller
|
||||
patterns = append(patterns, defaultPatterns...)
|
||||
slog.Debug("gpu library search", "globs", patterns)
|
||||
for _, pattern := range patterns {
|
||||
|
||||
// Nvidia PhysX known to return bogus results
|
||||
if strings.Contains(pattern, "PhysX") {
|
||||
slog.Debug("skipping PhysX cuda library path", "path", pattern)
|
||||
@@ -526,92 +559,114 @@ func FindGPULibs(baseLibName string, defaultPatterns []string) []string {
|
||||
return gpuLibPaths
|
||||
}
|
||||
|
||||
func LoadCUDARTMgmt(cudartLibPaths []string) (int, *C.cudart_handle_t, string) {
|
||||
// Bootstrap the runtime library
|
||||
// Returns: num devices, handle, libPath, error
|
||||
func loadCUDARTMgmt(cudartLibPaths []string) (int, *C.cudart_handle_t, string, error) {
|
||||
var resp C.cudart_init_resp_t
|
||||
resp.ch.verbose = getVerboseState()
|
||||
var err error
|
||||
for _, libPath := range cudartLibPaths {
|
||||
lib := C.CString(libPath)
|
||||
defer C.free(unsafe.Pointer(lib))
|
||||
C.cudart_init(lib, &resp)
|
||||
if resp.err != nil {
|
||||
slog.Debug("Unable to load cudart", "library", libPath, "error", C.GoString(resp.err))
|
||||
err = fmt.Errorf("Unable to load cudart library %s: %s", libPath, C.GoString(resp.err))
|
||||
slog.Debug(err.Error())
|
||||
C.free(unsafe.Pointer(resp.err))
|
||||
} else {
|
||||
return int(resp.num_devices), &resp.ch, libPath
|
||||
err = nil
|
||||
return int(resp.num_devices), &resp.ch, libPath, err
|
||||
}
|
||||
}
|
||||
return 0, nil, ""
|
||||
return 0, nil, "", err
|
||||
}
|
||||
|
||||
func LoadNVCUDAMgmt(nvcudaLibPaths []string) (int, *C.nvcuda_handle_t, string) {
|
||||
// Bootstrap the driver library
|
||||
// Returns: num devices, handle, libPath, error
|
||||
func loadNVCUDAMgmt(nvcudaLibPaths []string) (int, *C.nvcuda_handle_t, string, error) {
|
||||
var resp C.nvcuda_init_resp_t
|
||||
resp.ch.verbose = getVerboseState()
|
||||
var err error
|
||||
for _, libPath := range nvcudaLibPaths {
|
||||
lib := C.CString(libPath)
|
||||
defer C.free(unsafe.Pointer(lib))
|
||||
C.nvcuda_init(lib, &resp)
|
||||
if resp.err != nil {
|
||||
// Decide what log level based on the type of error message to help users understand why
|
||||
msg := C.GoString(resp.err)
|
||||
switch resp.cudaErr {
|
||||
case C.CUDA_ERROR_INSUFFICIENT_DRIVER, C.CUDA_ERROR_SYSTEM_DRIVER_MISMATCH:
|
||||
slog.Warn("version mismatch between driver and cuda driver library - reboot or upgrade may be required", "library", libPath, "error", msg)
|
||||
err = fmt.Errorf("version mismatch between driver and cuda driver library - reboot or upgrade may be required: library %s", libPath)
|
||||
slog.Warn(err.Error())
|
||||
case C.CUDA_ERROR_NO_DEVICE:
|
||||
slog.Info("no nvidia devices detected", "library", libPath)
|
||||
err = fmt.Errorf("no nvidia devices detected by library %s", libPath)
|
||||
slog.Info(err.Error())
|
||||
case C.CUDA_ERROR_UNKNOWN:
|
||||
slog.Warn("unknown error initializing cuda driver library", "library", libPath, "error", msg)
|
||||
slog.Warn("see https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md for more information")
|
||||
err = fmt.Errorf("unknown error initializing cuda driver library %s: %s. see https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md for more information", libPath, C.GoString(resp.err))
|
||||
slog.Warn(err.Error())
|
||||
default:
|
||||
msg := C.GoString(resp.err)
|
||||
if strings.Contains(msg, "wrong ELF class") {
|
||||
slog.Debug("skipping 32bit library", "library", libPath)
|
||||
} else {
|
||||
slog.Info("unable to load cuda driver library", "library", libPath, "error", msg)
|
||||
err = fmt.Errorf("Unable to load cudart library %s: %s", libPath, C.GoString(resp.err))
|
||||
slog.Info(err.Error())
|
||||
}
|
||||
}
|
||||
C.free(unsafe.Pointer(resp.err))
|
||||
} else {
|
||||
return int(resp.num_devices), &resp.ch, libPath
|
||||
err = nil
|
||||
return int(resp.num_devices), &resp.ch, libPath, err
|
||||
}
|
||||
}
|
||||
return 0, nil, ""
|
||||
return 0, nil, "", err
|
||||
}
|
||||
|
||||
func LoadNVMLMgmt(nvmlLibPaths []string) (*C.nvml_handle_t, string) {
|
||||
// Bootstrap the management library
|
||||
// Returns: handle, libPath, error
|
||||
func loadNVMLMgmt(nvmlLibPaths []string) (*C.nvml_handle_t, string, error) {
|
||||
var resp C.nvml_init_resp_t
|
||||
resp.ch.verbose = getVerboseState()
|
||||
var err error
|
||||
for _, libPath := range nvmlLibPaths {
|
||||
lib := C.CString(libPath)
|
||||
defer C.free(unsafe.Pointer(lib))
|
||||
C.nvml_init(lib, &resp)
|
||||
if resp.err != nil {
|
||||
slog.Info(fmt.Sprintf("Unable to load NVML management library %s: %s", libPath, C.GoString(resp.err)))
|
||||
err = fmt.Errorf("Unable to load NVML management library %s: %s", libPath, C.GoString(resp.err))
|
||||
slog.Info(err.Error())
|
||||
C.free(unsafe.Pointer(resp.err))
|
||||
} else {
|
||||
return &resp.ch, libPath
|
||||
err = nil
|
||||
return &resp.ch, libPath, err
|
||||
}
|
||||
}
|
||||
return nil, ""
|
||||
return nil, "", err
|
||||
}
|
||||
|
||||
func LoadOneapiMgmt(oneapiLibPaths []string) (int, *C.oneapi_handle_t, string) {
|
||||
// bootstrap the Intel GPU library
|
||||
// Returns: num devices, handle, libPath, error
|
||||
func loadOneapiMgmt(oneapiLibPaths []string) (int, *C.oneapi_handle_t, string, error) {
|
||||
var resp C.oneapi_init_resp_t
|
||||
num_devices := 0
|
||||
resp.oh.verbose = getVerboseState()
|
||||
var err error
|
||||
for _, libPath := range oneapiLibPaths {
|
||||
lib := C.CString(libPath)
|
||||
defer C.free(unsafe.Pointer(lib))
|
||||
C.oneapi_init(lib, &resp)
|
||||
if resp.err != nil {
|
||||
slog.Debug("Unable to load oneAPI management library", "library", libPath, "error", C.GoString(resp.err))
|
||||
err = fmt.Errorf("Unable to load oneAPI management library %s: %s", libPath, C.GoString(resp.err))
|
||||
slog.Debug(err.Error())
|
||||
C.free(unsafe.Pointer(resp.err))
|
||||
} else {
|
||||
err = nil
|
||||
for i := range resp.oh.num_drivers {
|
||||
num_devices += int(C.oneapi_get_device_count(resp.oh, C.int(i)))
|
||||
}
|
||||
return num_devices, &resp.oh, libPath
|
||||
return num_devices, &resp.oh, libPath, err
|
||||
}
|
||||
}
|
||||
return 0, nil, ""
|
||||
return 0, nil, "", err
|
||||
}
|
||||
|
||||
func getVerboseState() C.uint16_t {
|
||||
@@ -642,30 +697,22 @@ func (l GpuInfoList) GetVisibleDevicesEnv() (string, string) {
|
||||
}
|
||||
}
|
||||
|
||||
func LibraryDir() string {
|
||||
// On Windows/linux we bundle the dependencies at the same level as the executable
|
||||
appExe, err := os.Executable()
|
||||
if err != nil {
|
||||
slog.Warn("failed to lookup executable path", "error", err)
|
||||
func GetSystemInfo() SystemInfo {
|
||||
gpus := GetGPUInfo()
|
||||
gpuMutex.Lock()
|
||||
defer gpuMutex.Unlock()
|
||||
discoveryErrors := []string{}
|
||||
for _, err := range bootstrapErrors {
|
||||
discoveryErrors = append(discoveryErrors, err.Error())
|
||||
}
|
||||
cwd, err := os.Getwd()
|
||||
if err != nil {
|
||||
slog.Warn("failed to lookup working directory", "error", err)
|
||||
if len(gpus) == 1 && gpus[0].Library == "cpu" {
|
||||
gpus = []GpuInfo{}
|
||||
}
|
||||
// Scan for any of our dependeices, and pick first match
|
||||
for _, root := range []string{filepath.Dir(appExe), filepath.Join(filepath.Dir(appExe), envconfig.LibRelativeToExe()), cwd} {
|
||||
libDep := filepath.Join("lib", "ollama")
|
||||
if _, err := os.Stat(filepath.Join(root, libDep)); err == nil {
|
||||
return filepath.Join(root, libDep)
|
||||
}
|
||||
// Developer mode, local build
|
||||
if _, err := os.Stat(filepath.Join(root, runtime.GOOS+"-"+runtime.GOARCH, libDep)); err == nil {
|
||||
return filepath.Join(root, runtime.GOOS+"-"+runtime.GOARCH, libDep)
|
||||
}
|
||||
if _, err := os.Stat(filepath.Join(root, "dist", runtime.GOOS+"-"+runtime.GOARCH, libDep)); err == nil {
|
||||
return filepath.Join(root, "dist", runtime.GOOS+"-"+runtime.GOARCH, libDep)
|
||||
}
|
||||
|
||||
return SystemInfo{
|
||||
System: cpus[0],
|
||||
GPUs: gpus,
|
||||
UnsupportedGPUs: unsupportedGPUs,
|
||||
DiscoveryErrors: discoveryErrors,
|
||||
}
|
||||
slog.Warn("unable to locate gpu dependency libraries")
|
||||
return ""
|
||||
}
|
@@ -1,6 +1,6 @@
|
||||
//go:build darwin
|
||||
|
||||
package gpu
|
||||
package discover
|
||||
|
||||
/*
|
||||
#cgo CFLAGS: -x objective-c
|
||||
@@ -10,7 +10,9 @@ package gpu
|
||||
import "C"
|
||||
|
||||
import (
|
||||
"log/slog"
|
||||
"runtime"
|
||||
"syscall"
|
||||
|
||||
"github.com/ollama/ollama/format"
|
||||
)
|
||||
@@ -25,7 +27,6 @@ func GetGPUInfo() GpuInfoList {
|
||||
return []GpuInfo{
|
||||
{
|
||||
Library: "cpu",
|
||||
Variant: GetCPUCapability().String(),
|
||||
memInfo: mem,
|
||||
},
|
||||
}
|
||||
@@ -48,7 +49,6 @@ func GetCPUInfo() GpuInfoList {
|
||||
return []GpuInfo{
|
||||
{
|
||||
Library: "cpu",
|
||||
Variant: GetCPUCapability().String(),
|
||||
memInfo: mem,
|
||||
},
|
||||
}
|
||||
@@ -66,3 +66,34 @@ func (l GpuInfoList) GetVisibleDevicesEnv() (string, string) {
|
||||
// No-op on darwin
|
||||
return "", ""
|
||||
}
|
||||
|
||||
func GetSystemInfo() SystemInfo {
|
||||
mem, _ := GetCPUMem()
|
||||
query := "hw.perflevel0.physicalcpu"
|
||||
perfCores, err := syscall.SysctlUint32(query)
|
||||
if err != nil {
|
||||
slog.Warn("failed to discover physical CPU details", "query", query, "error", err)
|
||||
}
|
||||
query = "hw.perflevel1.physicalcpu"
|
||||
efficiencyCores, _ := syscall.SysctlUint32(query) // On x86 xeon this wont return data
|
||||
|
||||
// Determine thread count
|
||||
query = "hw.logicalcpu"
|
||||
logicalCores, _ := syscall.SysctlUint32(query)
|
||||
|
||||
return SystemInfo{
|
||||
System: CPUInfo{
|
||||
GpuInfo: GpuInfo{
|
||||
memInfo: mem,
|
||||
},
|
||||
CPUs: []CPU{
|
||||
{
|
||||
CoreCount: int(perfCores + efficiencyCores),
|
||||
EfficiencyCoreCount: int(efficiencyCores),
|
||||
ThreadCount: int(logicalCores),
|
||||
},
|
||||
},
|
||||
},
|
||||
GPUs: GetGPUInfo(),
|
||||
}
|
||||
}
|
@@ -4,6 +4,7 @@
|
||||
#include "gpu_info_nvcuda.h"
|
||||
|
||||
void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
|
||||
LOG(resp->ch.verbose, "initializing %s\n", nvcuda_lib_path);
|
||||
CUresult ret;
|
||||
resp->err = NULL;
|
||||
resp->num_devices = 0;
|
||||
@@ -57,8 +58,10 @@ void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
|
||||
resp->cudaErr = -1;
|
||||
return;
|
||||
}
|
||||
LOG(resp->ch.verbose, "dlsym: %s - %p\n", l[i].s, *l[i].p);
|
||||
}
|
||||
|
||||
LOG(resp->ch.verbose, "calling cuInit\n");
|
||||
ret = (*resp->ch.cuInit)(0);
|
||||
if (ret != CUDA_SUCCESS) {
|
||||
LOG(resp->ch.verbose, "cuInit err: %d\n", ret);
|
||||
@@ -75,15 +78,18 @@ void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
|
||||
resp->ch.driver_minor = 0;
|
||||
|
||||
// Report driver version if we're in verbose mode, ignore errors
|
||||
LOG(resp->ch.verbose, "calling cuDriverGetVersion\n");
|
||||
ret = (*resp->ch.cuDriverGetVersion)(&version);
|
||||
if (ret != CUDA_SUCCESS) {
|
||||
LOG(resp->ch.verbose, "cuDriverGetVersion failed: %d\n", ret);
|
||||
} else {
|
||||
LOG(resp->ch.verbose, "raw version 0x%x\n", version);
|
||||
resp->ch.driver_major = version / 1000;
|
||||
resp->ch.driver_minor = (version - (resp->ch.driver_major * 1000)) / 10;
|
||||
LOG(resp->ch.verbose, "CUDA driver version: %d.%d\n", resp->ch.driver_major, resp->ch.driver_minor);
|
||||
}
|
||||
|
||||
LOG(resp->ch.verbose, "calling cuDeviceGetCount\n");
|
||||
ret = (*resp->ch.cuDeviceGetCount)(&resp->num_devices);
|
||||
if (ret != CUDA_SUCCESS) {
|
||||
LOG(resp->ch.verbose, "cuDeviceGetCount err: %d\n", ret);
|
||||
@@ -94,6 +100,7 @@ void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
|
||||
resp->cudaErr = ret;
|
||||
return;
|
||||
}
|
||||
LOG(resp->ch.verbose, "device count %d\n", resp->num_devices);
|
||||
}
|
||||
|
||||
const int buflen = 256;
|
@@ -17,7 +17,7 @@ void nvml_init(char *nvml_lib_path, nvml_init_resp_t *resp) {
|
||||
} l[] = {
|
||||
{"nvmlInit_v2", (void *)&resp->ch.nvmlInit_v2},
|
||||
{"nvmlShutdown", (void *)&resp->ch.nvmlShutdown},
|
||||
{"nvmlDeviceGetHandleByIndex", (void *)&resp->ch.nvmlDeviceGetHandleByIndex},
|
||||
{"nvmlDeviceGetHandleByUUID", (void *)&resp->ch.nvmlDeviceGetHandleByUUID},
|
||||
{"nvmlDeviceGetMemoryInfo", (void *)&resp->ch.nvmlDeviceGetMemoryInfo},
|
||||
{NULL, NULL},
|
||||
};
|
||||
@@ -67,20 +67,20 @@ void nvml_init(char *nvml_lib_path, nvml_init_resp_t *resp) {
|
||||
}
|
||||
|
||||
|
||||
void nvml_get_free(nvml_handle_t h, int device_id, uint64_t *free, uint64_t *total, uint64_t *used) {
|
||||
void nvml_get_free(nvml_handle_t h, char *uuid, uint64_t *free, uint64_t *total, uint64_t *used) {
|
||||
nvmlDevice_t device;
|
||||
nvmlMemory_t memInfo = {0};
|
||||
nvmlReturn_t ret;
|
||||
ret = (*h.nvmlDeviceGetHandleByIndex)(device_id, &device);
|
||||
ret = (*h.nvmlDeviceGetHandleByUUID)((const char *)(uuid), &device);
|
||||
if (ret != NVML_SUCCESS) {
|
||||
LOG(1, "unable to get device handle %d: %d", device_id, ret);
|
||||
LOG(1, "unable to get device handle %s: %d", uuid, ret);
|
||||
*free = 0;
|
||||
return;
|
||||
}
|
||||
|
||||
ret = (*h.nvmlDeviceGetMemoryInfo)(device, &memInfo);
|
||||
if (ret != NVML_SUCCESS) {
|
||||
LOG(1, "device memory info lookup failure %d: %d", device_id, ret);
|
||||
LOG(1, "device memory info lookup failure %s: %d", uuid, ret);
|
||||
*free = 0;
|
||||
return;
|
||||
}
|
@@ -25,7 +25,7 @@ typedef struct nvml_handle {
|
||||
uint16_t verbose;
|
||||
nvmlReturn_t (*nvmlInit_v2)(void);
|
||||
nvmlReturn_t (*nvmlShutdown)(void);
|
||||
nvmlReturn_t (*nvmlDeviceGetHandleByIndex)(unsigned int, nvmlDevice_t *);
|
||||
nvmlReturn_t (*nvmlDeviceGetHandleByUUID)(const char *, nvmlDevice_t *);
|
||||
nvmlReturn_t (*nvmlDeviceGetMemoryInfo)(nvmlDevice_t, nvmlMemory_t *);
|
||||
} nvml_handle_t;
|
||||
|
||||
@@ -41,7 +41,7 @@ typedef struct nvml_compute_capability {
|
||||
} nvml_compute_capability_t;
|
||||
|
||||
void nvml_init(char *nvml_lib_path, nvml_init_resp_t *resp);
|
||||
void nvml_get_free(nvml_handle_t ch, int device_id, uint64_t *free, uint64_t *total, uint64_t *used);
|
||||
void nvml_get_free(nvml_handle_t ch, char *uuid, uint64_t *free, uint64_t *total, uint64_t *used);
|
||||
void nvml_release(nvml_handle_t ch);
|
||||
|
||||
#endif // __GPU_INFO_NVML_H__
|
199
discover/gpu_linux.go
Normal file
199
discover/gpu_linux.go
Normal file
@@ -0,0 +1,199 @@
|
||||
package discover
|
||||
|
||||
import (
|
||||
"bufio"
|
||||
"fmt"
|
||||
"io"
|
||||
"os"
|
||||
"reflect"
|
||||
"regexp"
|
||||
"sort"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/format"
|
||||
)
|
||||
|
||||
var CudartGlobs = []string{
|
||||
"/usr/local/cuda/lib64/libcudart.so*",
|
||||
"/usr/lib/x86_64-linux-gnu/nvidia/current/libcudart.so*",
|
||||
"/usr/lib/x86_64-linux-gnu/libcudart.so*",
|
||||
"/usr/lib/wsl/lib/libcudart.so*",
|
||||
"/usr/lib/wsl/drivers/*/libcudart.so*",
|
||||
"/opt/cuda/lib64/libcudart.so*",
|
||||
"/usr/local/cuda*/targets/aarch64-linux/lib/libcudart.so*",
|
||||
"/usr/lib/aarch64-linux-gnu/nvidia/current/libcudart.so*",
|
||||
"/usr/lib/aarch64-linux-gnu/libcudart.so*",
|
||||
"/usr/local/cuda/lib*/libcudart.so*",
|
||||
"/usr/lib*/libcudart.so*",
|
||||
"/usr/local/lib*/libcudart.so*",
|
||||
}
|
||||
|
||||
var NvmlGlobs = []string{}
|
||||
|
||||
var NvcudaGlobs = []string{
|
||||
"/usr/local/cuda*/targets/*/lib/libcuda.so*",
|
||||
"/usr/lib/*-linux-gnu/nvidia/current/libcuda.so*",
|
||||
"/usr/lib/*-linux-gnu/libcuda.so*",
|
||||
"/usr/lib/wsl/lib/libcuda.so*",
|
||||
"/usr/lib/wsl/drivers/*/libcuda.so*",
|
||||
"/opt/cuda/lib*/libcuda.so*",
|
||||
"/usr/local/cuda/lib*/libcuda.so*",
|
||||
"/usr/lib*/libcuda.so*",
|
||||
"/usr/local/lib*/libcuda.so*",
|
||||
}
|
||||
|
||||
var OneapiGlobs = []string{
|
||||
"/usr/lib/x86_64-linux-gnu/libze_intel_gpu.so*",
|
||||
"/usr/lib*/libze_intel_gpu.so*",
|
||||
}
|
||||
|
||||
var (
|
||||
CudartMgmtName = "libcudart.so*"
|
||||
NvcudaMgmtName = "libcuda.so*"
|
||||
NvmlMgmtName = "" // not currently wired on linux
|
||||
OneapiMgmtName = "libze_intel_gpu.so*"
|
||||
)
|
||||
|
||||
func GetCPUMem() (memInfo, error) {
|
||||
var mem memInfo
|
||||
var total, available, free, buffers, cached, freeSwap uint64
|
||||
f, err := os.Open("/proc/meminfo")
|
||||
if err != nil {
|
||||
return mem, err
|
||||
}
|
||||
defer f.Close()
|
||||
s := bufio.NewScanner(f)
|
||||
for s.Scan() {
|
||||
line := s.Text()
|
||||
switch {
|
||||
case strings.HasPrefix(line, "MemTotal:"):
|
||||
_, err = fmt.Sscanf(line, "MemTotal:%d", &total)
|
||||
case strings.HasPrefix(line, "MemAvailable:"):
|
||||
_, err = fmt.Sscanf(line, "MemAvailable:%d", &available)
|
||||
case strings.HasPrefix(line, "MemFree:"):
|
||||
_, err = fmt.Sscanf(line, "MemFree:%d", &free)
|
||||
case strings.HasPrefix(line, "Buffers:"):
|
||||
_, err = fmt.Sscanf(line, "Buffers:%d", &buffers)
|
||||
case strings.HasPrefix(line, "Cached:"):
|
||||
_, err = fmt.Sscanf(line, "Cached:%d", &cached)
|
||||
case strings.HasPrefix(line, "SwapFree:"):
|
||||
_, err = fmt.Sscanf(line, "SwapFree:%d", &freeSwap)
|
||||
default:
|
||||
continue
|
||||
}
|
||||
if err != nil {
|
||||
return mem, err
|
||||
}
|
||||
}
|
||||
mem.TotalMemory = total * format.KibiByte
|
||||
mem.FreeSwap = freeSwap * format.KibiByte
|
||||
if available > 0 {
|
||||
mem.FreeMemory = available * format.KibiByte
|
||||
} else {
|
||||
mem.FreeMemory = (free + buffers + cached) * format.KibiByte
|
||||
}
|
||||
return mem, nil
|
||||
}
|
||||
|
||||
const CpuInfoFilename = "/proc/cpuinfo"
|
||||
|
||||
type linuxCpuInfo struct {
|
||||
ID string `cpuinfo:"processor"`
|
||||
VendorID string `cpuinfo:"vendor_id"`
|
||||
ModelName string `cpuinfo:"model name"`
|
||||
PhysicalID string `cpuinfo:"physical id"`
|
||||
Siblings string `cpuinfo:"siblings"`
|
||||
CoreID string `cpuinfo:"core id"`
|
||||
}
|
||||
|
||||
func GetCPUDetails() ([]CPU, error) {
|
||||
file, err := os.Open(CpuInfoFilename)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return linuxCPUDetails(file)
|
||||
}
|
||||
|
||||
func linuxCPUDetails(file io.Reader) ([]CPU, error) {
|
||||
reColumns := regexp.MustCompile("\t+: ")
|
||||
scanner := bufio.NewScanner(file)
|
||||
cpuInfos := []linuxCpuInfo{}
|
||||
cpu := &linuxCpuInfo{}
|
||||
for scanner.Scan() {
|
||||
line := scanner.Text()
|
||||
if sl := reColumns.Split(line, 2); len(sl) > 1 {
|
||||
t := reflect.TypeOf(cpu).Elem()
|
||||
s := reflect.ValueOf(cpu).Elem()
|
||||
for i := range t.NumField() {
|
||||
field := t.Field(i)
|
||||
tag := field.Tag.Get("cpuinfo")
|
||||
if tag == sl[0] {
|
||||
s.FieldByName(field.Name).SetString(sl[1])
|
||||
break
|
||||
}
|
||||
}
|
||||
} else if strings.TrimSpace(line) == "" && cpu.ID != "" {
|
||||
cpuInfos = append(cpuInfos, *cpu)
|
||||
cpu = &linuxCpuInfo{}
|
||||
}
|
||||
}
|
||||
if cpu.ID != "" {
|
||||
cpuInfos = append(cpuInfos, *cpu)
|
||||
}
|
||||
|
||||
// Process the sockets/cores/threads
|
||||
socketByID := map[string]*CPU{}
|
||||
coreBySocket := map[string]map[string]struct{}{}
|
||||
threadsByCoreBySocket := map[string]map[string]int{}
|
||||
for _, c := range cpuInfos {
|
||||
if _, found := socketByID[c.PhysicalID]; !found {
|
||||
socketByID[c.PhysicalID] = &CPU{
|
||||
ID: c.PhysicalID,
|
||||
VendorID: c.VendorID,
|
||||
ModelName: c.ModelName,
|
||||
}
|
||||
coreBySocket[c.PhysicalID] = map[string]struct{}{}
|
||||
threadsByCoreBySocket[c.PhysicalID] = map[string]int{}
|
||||
}
|
||||
if c.CoreID != "" {
|
||||
coreBySocket[c.PhysicalID][c.PhysicalID+":"+c.CoreID] = struct{}{}
|
||||
threadsByCoreBySocket[c.PhysicalID][c.PhysicalID+":"+c.CoreID]++
|
||||
} else {
|
||||
coreBySocket[c.PhysicalID][c.PhysicalID+":"+c.ID] = struct{}{}
|
||||
threadsByCoreBySocket[c.PhysicalID][c.PhysicalID+":"+c.ID]++
|
||||
}
|
||||
}
|
||||
|
||||
// Tally up the values from the tracking maps
|
||||
for id, s := range socketByID {
|
||||
s.CoreCount = len(coreBySocket[id])
|
||||
s.ThreadCount = 0
|
||||
for _, tc := range threadsByCoreBySocket[id] {
|
||||
s.ThreadCount += tc
|
||||
}
|
||||
|
||||
// This only works if HT is enabled, consider a more reliable model, maybe cache size comparisons?
|
||||
efficiencyCoreCount := 0
|
||||
for _, threads := range threadsByCoreBySocket[id] {
|
||||
if threads == 1 {
|
||||
efficiencyCoreCount++
|
||||
}
|
||||
}
|
||||
if efficiencyCoreCount == s.CoreCount {
|
||||
// 1:1 mapping means they're not actually efficiency cores, but regular cores
|
||||
s.EfficiencyCoreCount = 0
|
||||
} else {
|
||||
s.EfficiencyCoreCount = efficiencyCoreCount
|
||||
}
|
||||
}
|
||||
keys := make([]string, 0, len(socketByID))
|
||||
result := make([]CPU, 0, len(socketByID))
|
||||
for k := range socketByID {
|
||||
keys = append(keys, k)
|
||||
}
|
||||
sort.Strings(keys)
|
||||
for _, k := range keys {
|
||||
result = append(result, *socketByID[k])
|
||||
}
|
||||
return result, nil
|
||||
}
|
2097
discover/gpu_linux_test.go
Normal file
2097
discover/gpu_linux_test.go
Normal file
File diff suppressed because it is too large
Load Diff
@@ -1,6 +1,6 @@
|
||||
//go:build linux || windows
|
||||
|
||||
package gpu
|
||||
package discover
|
||||
|
||||
import (
|
||||
"log/slog"
|
@@ -1,4 +1,4 @@
|
||||
package gpu
|
||||
package discover
|
||||
|
||||
import (
|
||||
"runtime"
|
234
discover/gpu_windows.go
Normal file
234
discover/gpu_windows.go
Normal file
@@ -0,0 +1,234 @@
|
||||
package discover
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"syscall"
|
||||
"unsafe"
|
||||
)
|
||||
|
||||
type MEMORYSTATUSEX struct {
|
||||
length uint32
|
||||
MemoryLoad uint32
|
||||
TotalPhys uint64
|
||||
AvailPhys uint64
|
||||
TotalPageFile uint64
|
||||
AvailPageFile uint64
|
||||
TotalVirtual uint64
|
||||
AvailVirtual uint64
|
||||
AvailExtendedVirtual uint64
|
||||
}
|
||||
|
||||
var (
|
||||
k32 = syscall.NewLazyDLL("kernel32.dll")
|
||||
globalMemoryStatusExProc = k32.NewProc("GlobalMemoryStatusEx")
|
||||
sizeofMemoryStatusEx = uint32(unsafe.Sizeof(MEMORYSTATUSEX{}))
|
||||
GetLogicalProcessorInformationEx = k32.NewProc("GetLogicalProcessorInformationEx")
|
||||
)
|
||||
|
||||
var CudartGlobs = []string{
|
||||
"c:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v*\\bin\\cudart64_*.dll",
|
||||
}
|
||||
|
||||
var NvmlGlobs = []string{
|
||||
"c:\\Windows\\System32\\nvml.dll",
|
||||
}
|
||||
|
||||
var NvcudaGlobs = []string{
|
||||
"c:\\windows\\system*\\nvcuda.dll",
|
||||
}
|
||||
|
||||
var OneapiGlobs = []string{
|
||||
"c:\\Windows\\System32\\DriverStore\\FileRepository\\*\\ze_intel_gpu64.dll",
|
||||
}
|
||||
|
||||
var (
|
||||
CudartMgmtName = "cudart64_*.dll"
|
||||
NvcudaMgmtName = "nvcuda.dll"
|
||||
NvmlMgmtName = "nvml.dll"
|
||||
OneapiMgmtName = "ze_intel_gpu64.dll"
|
||||
)
|
||||
|
||||
func GetCPUMem() (memInfo, error) {
|
||||
memStatus := MEMORYSTATUSEX{length: sizeofMemoryStatusEx}
|
||||
r1, _, err := globalMemoryStatusExProc.Call(uintptr(unsafe.Pointer(&memStatus)))
|
||||
if r1 == 0 {
|
||||
return memInfo{}, fmt.Errorf("GlobalMemoryStatusEx failed: %w", err)
|
||||
}
|
||||
return memInfo{TotalMemory: memStatus.TotalPhys, FreeMemory: memStatus.AvailPhys, FreeSwap: memStatus.AvailPageFile}, nil
|
||||
}
|
||||
|
||||
type LOGICAL_PROCESSOR_RELATIONSHIP uint32
|
||||
|
||||
const (
|
||||
RelationProcessorCore LOGICAL_PROCESSOR_RELATIONSHIP = iota
|
||||
RelationNumaNode
|
||||
RelationCache
|
||||
RelationProcessorPackage
|
||||
RelationGroup
|
||||
RelationProcessorDie
|
||||
RelationNumaNodeEx
|
||||
RelationProcessorModule
|
||||
)
|
||||
const RelationAll LOGICAL_PROCESSOR_RELATIONSHIP = 0xffff
|
||||
|
||||
type GROUP_AFFINITY struct {
|
||||
Mask uintptr // KAFFINITY
|
||||
Group uint16
|
||||
Reserved [3]uint16
|
||||
}
|
||||
|
||||
type PROCESSOR_RELATIONSHIP struct {
|
||||
Flags byte
|
||||
EfficiencyClass byte
|
||||
Reserved [20]byte
|
||||
GroupCount uint16
|
||||
GroupMask [1]GROUP_AFFINITY // len GroupCount
|
||||
}
|
||||
|
||||
// Omitted unused structs: NUMA_NODE_RELATIONSHIP CACHE_RELATIONSHIP GROUP_RELATIONSHIP
|
||||
|
||||
type SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX struct {
|
||||
Relationship LOGICAL_PROCESSOR_RELATIONSHIP
|
||||
Size uint32
|
||||
U [1]byte // Union len Size
|
||||
// PROCESSOR_RELATIONSHIP
|
||||
// NUMA_NODE_RELATIONSHIP
|
||||
// CACHE_RELATIONSHIP
|
||||
// GROUP_RELATIONSHIP
|
||||
}
|
||||
|
||||
func (group *GROUP_AFFINITY) IsMember(target *GROUP_AFFINITY) bool {
|
||||
if group == nil || target == nil {
|
||||
return false
|
||||
}
|
||||
return group.Mask&target.Mask != 0
|
||||
}
|
||||
|
||||
type winPackage struct {
|
||||
groups []*GROUP_AFFINITY
|
||||
coreCount int // performance cores = coreCount - efficiencyCoreCount
|
||||
efficiencyCoreCount int
|
||||
threadCount int
|
||||
}
|
||||
|
||||
func (pkg *winPackage) IsMember(target *GROUP_AFFINITY) bool {
|
||||
for _, group := range pkg.groups {
|
||||
if group.IsMember(target) {
|
||||
return true
|
||||
}
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
func getLogicalProcessorInformationEx() ([]byte, error) {
|
||||
buf := make([]byte, 1)
|
||||
bufSize := len(buf)
|
||||
ret, _, err := GetLogicalProcessorInformationEx.Call(
|
||||
uintptr(RelationAll),
|
||||
uintptr(unsafe.Pointer(&buf[0])),
|
||||
uintptr(unsafe.Pointer(&bufSize)),
|
||||
)
|
||||
if ret != 0 {
|
||||
return nil, fmt.Errorf("failed to determine size info ret:%d %w", ret, err)
|
||||
}
|
||||
|
||||
buf = make([]byte, bufSize)
|
||||
ret, _, err = GetLogicalProcessorInformationEx.Call(
|
||||
uintptr(RelationAll),
|
||||
uintptr(unsafe.Pointer(&buf[0])),
|
||||
uintptr(unsafe.Pointer(&bufSize)),
|
||||
)
|
||||
if ret == 0 {
|
||||
return nil, fmt.Errorf("failed to gather processor information ret:%d buflen:%d %w", ret, bufSize, err)
|
||||
}
|
||||
return buf, nil
|
||||
}
|
||||
|
||||
func processSystemLogicalProcessorInforationList(buf []byte) []*winPackage {
|
||||
var slpi *SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX
|
||||
// Find all the packages first
|
||||
packages := []*winPackage{}
|
||||
for bufOffset := 0; bufOffset < len(buf); bufOffset += int(slpi.Size) {
|
||||
slpi = (*SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX)(unsafe.Pointer(&buf[bufOffset]))
|
||||
if slpi.Relationship != RelationProcessorPackage {
|
||||
continue
|
||||
}
|
||||
pr := (*PROCESSOR_RELATIONSHIP)(unsafe.Pointer(&slpi.U[0]))
|
||||
pkg := &winPackage{}
|
||||
ga0 := unsafe.Pointer(&pr.GroupMask[0])
|
||||
for j := range pr.GroupCount {
|
||||
gm := (*GROUP_AFFINITY)(unsafe.Pointer(uintptr(ga0) + uintptr(j)*unsafe.Sizeof(GROUP_AFFINITY{})))
|
||||
pkg.groups = append(pkg.groups, gm)
|
||||
}
|
||||
packages = append(packages, pkg)
|
||||
}
|
||||
|
||||
slog.Info("packages", "count", len(packages))
|
||||
|
||||
// To identify efficiency cores we have to compare the relative values
|
||||
// Larger values are "less efficient" (aka, more performant)
|
||||
var maxEfficiencyClass byte
|
||||
for bufOffset := 0; bufOffset < len(buf); bufOffset += int(slpi.Size) {
|
||||
slpi = (*SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX)(unsafe.Pointer(&buf[bufOffset]))
|
||||
if slpi.Relationship != RelationProcessorCore {
|
||||
continue
|
||||
}
|
||||
pr := (*PROCESSOR_RELATIONSHIP)(unsafe.Pointer(&slpi.U[0]))
|
||||
if pr.EfficiencyClass > maxEfficiencyClass {
|
||||
maxEfficiencyClass = pr.EfficiencyClass
|
||||
}
|
||||
}
|
||||
if maxEfficiencyClass > 0 {
|
||||
slog.Info("efficiency cores detected", "maxEfficiencyClass", maxEfficiencyClass)
|
||||
}
|
||||
|
||||
// then match up the Cores to the Packages, count up cores, threads and efficiency cores
|
||||
for bufOffset := 0; bufOffset < len(buf); bufOffset += int(slpi.Size) {
|
||||
slpi = (*SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX)(unsafe.Pointer(&buf[bufOffset]))
|
||||
if slpi.Relationship != RelationProcessorCore {
|
||||
continue
|
||||
}
|
||||
pr := (*PROCESSOR_RELATIONSHIP)(unsafe.Pointer(&slpi.U[0]))
|
||||
ga0 := unsafe.Pointer(&pr.GroupMask[0])
|
||||
for j := range pr.GroupCount {
|
||||
gm := (*GROUP_AFFINITY)(unsafe.Pointer(uintptr(ga0) + uintptr(j)*unsafe.Sizeof(GROUP_AFFINITY{})))
|
||||
for _, pkg := range packages {
|
||||
if pkg.IsMember(gm) {
|
||||
pkg.coreCount++
|
||||
if pr.Flags == 0 {
|
||||
pkg.threadCount++
|
||||
} else {
|
||||
pkg.threadCount += 2
|
||||
}
|
||||
if pr.EfficiencyClass < maxEfficiencyClass {
|
||||
pkg.efficiencyCoreCount++
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Summarize the results
|
||||
for i, pkg := range packages {
|
||||
slog.Info("", "package", i, "cores", pkg.coreCount, "efficiency", pkg.efficiencyCoreCount, "threads", pkg.threadCount)
|
||||
}
|
||||
|
||||
return packages
|
||||
}
|
||||
|
||||
func GetCPUDetails() ([]CPU, error) {
|
||||
buf, err := getLogicalProcessorInformationEx()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
packages := processSystemLogicalProcessorInforationList(buf)
|
||||
cpus := make([]CPU, len(packages))
|
||||
|
||||
for i, pkg := range packages {
|
||||
cpus[i].CoreCount = pkg.coreCount
|
||||
cpus[i].EfficiencyCoreCount = pkg.efficiencyCoreCount
|
||||
cpus[i].ThreadCount = pkg.threadCount
|
||||
}
|
||||
return cpus, nil
|
||||
}
|
77
discover/gpu_windows_test.go
Normal file
77
discover/gpu_windows_test.go
Normal file
File diff suppressed because one or more lines are too long
56
discover/path.go
Normal file
56
discover/path.go
Normal file
@@ -0,0 +1,56 @@
|
||||
package discover
|
||||
|
||||
import (
|
||||
"os"
|
||||
"path/filepath"
|
||||
"runtime"
|
||||
)
|
||||
|
||||
// LibPath is a path to lookup dynamic libraries
|
||||
// in development it's usually 'build/lib/ollama'
|
||||
// in distribution builds it's 'lib/ollama' on Windows
|
||||
// '../lib/ollama' on Linux and the executable's directory on macOS
|
||||
// note: distribution builds, additional GPU-specific libraries are
|
||||
// found in subdirectories of the returned path, such as
|
||||
// 'cuda_v11', 'cuda_v12', 'rocm', etc.
|
||||
var LibOllamaPath string = func() string {
|
||||
exe, err := os.Executable()
|
||||
if err != nil {
|
||||
return ""
|
||||
}
|
||||
|
||||
if eval, err := filepath.EvalSymlinks(exe); err == nil {
|
||||
exe = eval
|
||||
}
|
||||
|
||||
var libPath string
|
||||
switch runtime.GOOS {
|
||||
case "windows":
|
||||
libPath = filepath.Join(filepath.Dir(exe), "lib", "ollama")
|
||||
case "linux":
|
||||
libPath = filepath.Join(filepath.Dir(exe), "..", "lib", "ollama")
|
||||
case "darwin":
|
||||
libPath = filepath.Dir(exe)
|
||||
}
|
||||
|
||||
cwd, err := os.Getwd()
|
||||
if err != nil {
|
||||
return ""
|
||||
}
|
||||
|
||||
paths := []string{
|
||||
libPath,
|
||||
|
||||
// build paths for development
|
||||
filepath.Join(filepath.Dir(exe), "build", "lib", "ollama"),
|
||||
filepath.Join(cwd, "build", "lib", "ollama"),
|
||||
}
|
||||
|
||||
for _, p := range paths {
|
||||
if _, err := os.Stat(p); err == nil {
|
||||
return p
|
||||
}
|
||||
}
|
||||
|
||||
return filepath.Dir(exe)
|
||||
}()
|
@@ -1,4 +1,4 @@
|
||||
package gpu
|
||||
package discover
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
@@ -10,11 +10,11 @@ import (
|
||||
type memInfo struct {
|
||||
TotalMemory uint64 `json:"total_memory,omitempty"`
|
||||
FreeMemory uint64 `json:"free_memory,omitempty"`
|
||||
FreeSwap uint64 `json:"free_swap,omitempty"`
|
||||
FreeSwap uint64 `json:"free_swap,omitempty"` // TODO split this out for system only
|
||||
}
|
||||
|
||||
// Beginning of an `ollama info` command
|
||||
type GpuInfo struct {
|
||||
type GpuInfo struct { // TODO better name maybe "InferenceProcessor"?
|
||||
memInfo
|
||||
Library string `json:"library,omitempty"`
|
||||
|
||||
@@ -25,7 +25,7 @@ type GpuInfo struct {
|
||||
MinimumMemory uint64 `json:"-"`
|
||||
|
||||
// Any extra PATH/LD_LIBRARY_PATH dependencies required for the Library to operate properly
|
||||
DependencyPath string `json:"lib_path,omitempty"`
|
||||
DependencyPath []string `json:"lib_path,omitempty"`
|
||||
|
||||
// Extra environment variables specific to the GPU as list of [key,value]
|
||||
EnvWorkarounds [][2]string `json:"envs,omitempty"`
|
||||
@@ -47,8 +47,26 @@ type GpuInfo struct {
|
||||
// TODO other performance capability info to help in scheduling decisions
|
||||
}
|
||||
|
||||
func (gpu GpuInfo) RunnerName() string {
|
||||
if gpu.Variant != "" {
|
||||
return gpu.Library + "_" + gpu.Variant
|
||||
}
|
||||
return gpu.Library
|
||||
}
|
||||
|
||||
type CPUInfo struct {
|
||||
GpuInfo
|
||||
CPUs []CPU
|
||||
}
|
||||
|
||||
// CPU type represents a CPU Package occupying a socket
|
||||
type CPU struct {
|
||||
ID string `cpuinfo:"processor"`
|
||||
VendorID string `cpuinfo:"vendor_id"`
|
||||
ModelName string `cpuinfo:"model name"`
|
||||
CoreCount int
|
||||
EfficiencyCoreCount int // Performance = CoreCount - Efficiency
|
||||
ThreadCount int
|
||||
}
|
||||
|
||||
type CudaGPUInfo struct {
|
||||
@@ -76,6 +94,11 @@ type OneapiGPUInfoList []OneapiGPUInfo
|
||||
|
||||
type GpuInfoList []GpuInfo
|
||||
|
||||
type UnsupportedGPUInfo struct {
|
||||
GpuInfo
|
||||
Reason string `json:"reason"`
|
||||
}
|
||||
|
||||
// Split up the set of gpu info's by Library and variant
|
||||
func (l GpuInfoList) ByLibrary() []GpuInfoList {
|
||||
resp := []GpuInfoList{}
|
||||
@@ -83,7 +106,7 @@ func (l GpuInfoList) ByLibrary() []GpuInfoList {
|
||||
for _, info := range l {
|
||||
found := false
|
||||
requested := info.Library
|
||||
if info.Variant != CPUCapabilityNone.String() {
|
||||
if info.Variant != "" {
|
||||
requested += "_" + info.Variant
|
||||
}
|
||||
for i, lib := range libs {
|
||||
@@ -124,25 +147,37 @@ func (a ByFreeMemory) Len() int { return len(a) }
|
||||
func (a ByFreeMemory) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
|
||||
func (a ByFreeMemory) Less(i, j int) bool { return a[i].FreeMemory < a[j].FreeMemory }
|
||||
|
||||
type CPUCapability uint32
|
||||
|
||||
// Override at build time when building base GPU runners
|
||||
var GPURunnerCPUCapability = CPUCapabilityAVX
|
||||
|
||||
const (
|
||||
CPUCapabilityNone CPUCapability = iota
|
||||
CPUCapabilityAVX
|
||||
CPUCapabilityAVX2
|
||||
// TODO AVX512
|
||||
)
|
||||
|
||||
func (c CPUCapability) String() string {
|
||||
switch c {
|
||||
case CPUCapabilityAVX:
|
||||
return "avx"
|
||||
case CPUCapabilityAVX2:
|
||||
return "avx2"
|
||||
default:
|
||||
return "no vector extensions"
|
||||
}
|
||||
type SystemInfo struct {
|
||||
System CPUInfo `json:"system"`
|
||||
GPUs []GpuInfo `json:"gpus"`
|
||||
UnsupportedGPUs []UnsupportedGPUInfo `json:"unsupported_gpus"`
|
||||
DiscoveryErrors []string `json:"discovery_errors"`
|
||||
}
|
||||
|
||||
// Return the optimal number of threads to use for inference
|
||||
func (si SystemInfo) GetOptimalThreadCount() int {
|
||||
if len(si.System.CPUs) == 0 {
|
||||
return 0
|
||||
}
|
||||
|
||||
coreCount := 0
|
||||
for _, c := range si.System.CPUs {
|
||||
coreCount += c.CoreCount - c.EfficiencyCoreCount
|
||||
}
|
||||
|
||||
return coreCount
|
||||
}
|
||||
|
||||
// For each GPU, check if it does NOT support flash attention
|
||||
func (l GpuInfoList) FlashAttentionSupported() bool {
|
||||
for _, gpu := range l {
|
||||
supportsFA := gpu.Library == "metal" ||
|
||||
(gpu.Library == "cuda" && gpu.DriverMajor >= 7) ||
|
||||
gpu.Library == "rocm"
|
||||
|
||||
if !supportsFA {
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
@@ -2,7 +2,7 @@
|
||||
|
||||
### Getting Started
|
||||
* [Quickstart](../README.md#quickstart)
|
||||
* [Examples](../examples)
|
||||
* [Examples](./examples.md)
|
||||
* [Importing models](./import.md)
|
||||
* [Linux Documentation](./linux.md)
|
||||
* [Windows Documentation](./windows.md)
|
||||
|
356
docs/api.md
356
docs/api.md
@@ -13,6 +13,7 @@
|
||||
- [Push a Model](#push-a-model)
|
||||
- [Generate Embeddings](#generate-embeddings)
|
||||
- [List Running Models](#list-running-models)
|
||||
- [Version](#version)
|
||||
|
||||
## Conventions
|
||||
|
||||
@@ -30,7 +31,7 @@ Certain endpoints stream responses as JSON objects. Streaming can be disabled by
|
||||
|
||||
## Generate a completion
|
||||
|
||||
```shell
|
||||
```
|
||||
POST /api/generate
|
||||
```
|
||||
|
||||
@@ -45,14 +46,18 @@ Generate a response for a given prompt with a provided model. This is a streamin
|
||||
|
||||
Advanced parameters (optional):
|
||||
|
||||
- `format`: the format to return a response in. Currently the only accepted value is `json`
|
||||
- `format`: the format to return a response in. Format can be `json` or a JSON schema
|
||||
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
|
||||
- `system`: system message to (overrides what is defined in the `Modelfile`)
|
||||
- `template`: the prompt template to use (overrides what is defined in the `Modelfile`)
|
||||
- `context`: the context parameter returned from a previous request to `/generate`, this can be used to keep a short conversational memory
|
||||
- `stream`: if `false` the response will be returned as a single response object, rather than a stream of objects
|
||||
- `raw`: if `true` no formatting will be applied to the prompt. You may choose to use the `raw` parameter if you are specifying a full templated prompt in your request to the API
|
||||
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
|
||||
- `context` (deprecated): the context parameter returned from a previous request to `/generate`, this can be used to keep a short conversational memory
|
||||
|
||||
#### Structured outputs
|
||||
|
||||
Structured outputs are supported by providing a JSON schema in the `format` parameter. The model will generate a response that matches the schema. See the [structured outputs](#request-structured-outputs) example below.
|
||||
|
||||
#### JSON mode
|
||||
|
||||
@@ -185,6 +190,52 @@ curl http://localhost:11434/api/generate -d '{
|
||||
}
|
||||
```
|
||||
|
||||
#### Request (Structured outputs)
|
||||
|
||||
##### Request
|
||||
|
||||
```shell
|
||||
curl -X POST http://localhost:11434/api/generate -H "Content-Type: application/json" -d '{
|
||||
"model": "llama3.1:8b",
|
||||
"prompt": "Ollama is 22 years old and is busy saving the world. Respond using JSON",
|
||||
"stream": false,
|
||||
"format": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"age": {
|
||||
"type": "integer"
|
||||
},
|
||||
"available": {
|
||||
"type": "boolean"
|
||||
}
|
||||
},
|
||||
"required": [
|
||||
"age",
|
||||
"available"
|
||||
]
|
||||
}
|
||||
}'
|
||||
```
|
||||
|
||||
##### Response
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "llama3.1:8b",
|
||||
"created_at": "2024-12-06T00:48:09.983619Z",
|
||||
"response": "{\n \"age\": 22,\n \"available\": true\n}",
|
||||
"done": true,
|
||||
"done_reason": "stop",
|
||||
"context": [1, 2, 3],
|
||||
"total_duration": 1075509083,
|
||||
"load_duration": 567678166,
|
||||
"prompt_eval_count": 28,
|
||||
"prompt_eval_duration": 236000000,
|
||||
"eval_count": 16,
|
||||
"eval_duration": 269000000
|
||||
}
|
||||
```
|
||||
|
||||
#### Request (JSON mode)
|
||||
|
||||
> [!IMPORTANT]
|
||||
@@ -255,7 +306,7 @@ curl http://localhost:11434/api/generate -d '{
|
||||
|
||||
#### Response
|
||||
|
||||
```
|
||||
```json
|
||||
{
|
||||
"model": "llava",
|
||||
"created_at": "2023-11-03T15:36:02.583064Z",
|
||||
@@ -337,7 +388,6 @@ curl http://localhost:11434/api/generate -d '{
|
||||
"top_k": 20,
|
||||
"top_p": 0.9,
|
||||
"min_p": 0.0,
|
||||
"tfs_z": 0.5,
|
||||
"typical_p": 0.7,
|
||||
"repeat_last_n": 33,
|
||||
"temperature": 0.8,
|
||||
@@ -355,7 +405,6 @@ curl http://localhost:11434/api/generate -d '{
|
||||
"num_gpu": 1,
|
||||
"main_gpu": 0,
|
||||
"low_vram": false,
|
||||
"f16_kv": true,
|
||||
"vocab_only": false,
|
||||
"use_mmap": true,
|
||||
"use_mlock": false,
|
||||
@@ -436,7 +485,7 @@ A single JSON object is returned:
|
||||
|
||||
## Generate a chat completion
|
||||
|
||||
```shell
|
||||
```
|
||||
POST /api/chat
|
||||
```
|
||||
|
||||
@@ -446,22 +495,26 @@ Generate the next message in a chat with a provided model. This is a streaming e
|
||||
|
||||
- `model`: (required) the [model name](#model-names)
|
||||
- `messages`: the messages of the chat, this can be used to keep a chat memory
|
||||
- `tools`: tools for the model to use if supported. Requires `stream` to be set to `false`
|
||||
- `tools`: list of tools in JSON for the model to use if supported
|
||||
|
||||
The `message` object has the following fields:
|
||||
|
||||
- `role`: the role of the message, either `system`, `user`, `assistant`, or `tool`
|
||||
- `content`: the content of the message
|
||||
- `images` (optional): a list of images to include in the message (for multimodal models such as `llava`)
|
||||
- `tool_calls` (optional): a list of tools the model wants to use
|
||||
- `tool_calls` (optional): a list of tools in JSON that the model wants to use
|
||||
|
||||
Advanced parameters (optional):
|
||||
|
||||
- `format`: the format to return a response in. Currently the only accepted value is `json`
|
||||
- `format`: the format to return a response in. Format can be `json` or a JSON schema.
|
||||
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
|
||||
- `stream`: if `false` the response will be returned as a single response object, rather than a stream of objects
|
||||
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
|
||||
|
||||
### Structured outputs
|
||||
|
||||
Structured outputs are supported by providing a JSON schema in the `format` parameter. The model will generate a response that matches the schema. See the [Chat request (Structured outputs)](#chat-request-structured-outputs) example below.
|
||||
|
||||
### Examples
|
||||
|
||||
#### Chat Request (Streaming)
|
||||
@@ -552,6 +605,54 @@ curl http://localhost:11434/api/chat -d '{
|
||||
}
|
||||
```
|
||||
|
||||
#### Chat request (Structured outputs)
|
||||
|
||||
##### Request
|
||||
|
||||
```shell
|
||||
curl -X POST http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{
|
||||
"model": "llama3.1",
|
||||
"messages": [{"role": "user", "content": "Ollama is 22 years old and busy saving the world. Return a JSON object with the age and availability."}],
|
||||
"stream": false,
|
||||
"format": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"age": {
|
||||
"type": "integer"
|
||||
},
|
||||
"available": {
|
||||
"type": "boolean"
|
||||
}
|
||||
},
|
||||
"required": [
|
||||
"age",
|
||||
"available"
|
||||
]
|
||||
},
|
||||
"options": {
|
||||
"temperature": 0
|
||||
}
|
||||
}'
|
||||
```
|
||||
|
||||
##### Response
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "llama3.1",
|
||||
"created_at": "2024-12-06T00:46:58.265747Z",
|
||||
"message": { "role": "assistant", "content": "{\"age\": 22, \"available\": false}" },
|
||||
"done_reason": "stop",
|
||||
"done": true,
|
||||
"total_duration": 2254970291,
|
||||
"load_duration": 574751416,
|
||||
"prompt_eval_count": 34,
|
||||
"prompt_eval_duration": 1502000000,
|
||||
"eval_count": 12,
|
||||
"eval_duration": 175000000
|
||||
}
|
||||
```
|
||||
|
||||
#### Chat request (With History)
|
||||
|
||||
Send a chat message with a conversation history. You can use this same approach to start the conversation using multi-shot or chain-of-thought prompting.
|
||||
@@ -694,7 +795,7 @@ curl http://localhost:11434/api/chat -d '{
|
||||
|
||||
##### Request
|
||||
|
||||
```
|
||||
```shell
|
||||
curl http://localhost:11434/api/chat -d '{
|
||||
"model": "llama3.2",
|
||||
"messages": [
|
||||
@@ -769,7 +870,7 @@ If the messages array is empty, the model will be loaded into memory.
|
||||
|
||||
##### Request
|
||||
|
||||
```
|
||||
```shell
|
||||
curl http://localhost:11434/api/chat -d '{
|
||||
"model": "llama3.2",
|
||||
"messages": []
|
||||
@@ -777,6 +878,7 @@ curl http://localhost:11434/api/chat -d '{
|
||||
```
|
||||
|
||||
##### Response
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "llama3.2",
|
||||
@@ -796,7 +898,7 @@ If the messages array is empty and the `keep_alive` parameter is set to `0`, a m
|
||||
|
||||
##### Request
|
||||
|
||||
```
|
||||
```shell
|
||||
curl http://localhost:11434/api/chat -d '{
|
||||
"model": "llama3.2",
|
||||
"messages": [],
|
||||
@@ -823,37 +925,69 @@ A single JSON object is returned:
|
||||
|
||||
## Create a Model
|
||||
|
||||
```shell
|
||||
```
|
||||
POST /api/create
|
||||
```
|
||||
|
||||
Create a model from a [`Modelfile`](./modelfile.md). It is recommended to set `modelfile` to the content of the Modelfile rather than just set `path`. This is a requirement for remote create. Remote model creation must also create any file blobs, fields such as `FROM` and `ADAPTER`, explicitly with the server using [Create a Blob](#create-a-blob) and the value to the path indicated in the response.
|
||||
Create a model from:
|
||||
* another model;
|
||||
* a safetensors directory; or
|
||||
* a GGUF file.
|
||||
|
||||
If you are creating a model from a safetensors directory or from a GGUF file, you must [create a blob](#create-a-blob) for each of the files and then use the file name and SHA256 digest associated with each blob in the `files` field.
|
||||
|
||||
### Parameters
|
||||
|
||||
- `name`: name of the model to create
|
||||
- `modelfile` (optional): contents of the Modelfile
|
||||
- `model`: name of the model to create
|
||||
- `from`: (optional) name of an existing model to create the new model from
|
||||
- `files`: (optional) a dictionary of file names to SHA256 digests of blobs to create the model from
|
||||
- `adapters`: (optional) a dictionary of file names to SHA256 digests of blobs for LORA adapters
|
||||
- `template`: (optional) the prompt template for the model
|
||||
- `license`: (optional) a string or list of strings containing the license or licenses for the model
|
||||
- `system`: (optional) a string containing the system prompt for the model
|
||||
- `parameters`: (optional) a dictionary of parameters for the model (see [Modelfile](./modelfile.md#valid-parameters-and-values) for a list of parameters)
|
||||
- `messages`: (optional) a list of message objects used to create a conversation
|
||||
- `stream`: (optional) if `false` the response will be returned as a single response object, rather than a stream of objects
|
||||
- `path` (optional): path to the Modelfile
|
||||
- `quantize` (optional): quantize a non-quantized (e.g. float16) model
|
||||
|
||||
#### Quantization types
|
||||
|
||||
| Type | Recommended |
|
||||
| --- | :-: |
|
||||
| q2_K | |
|
||||
| q3_K_L | |
|
||||
| q3_K_M | |
|
||||
| q3_K_S | |
|
||||
| q4_0 | |
|
||||
| q4_1 | |
|
||||
| q4_K_M | * |
|
||||
| q4_K_S | |
|
||||
| q5_0 | |
|
||||
| q5_1 | |
|
||||
| q5_K_M | |
|
||||
| q5_K_S | |
|
||||
| q6_K | |
|
||||
| q8_0 | * |
|
||||
|
||||
### Examples
|
||||
|
||||
#### Create a new model
|
||||
|
||||
Create a new model from a `Modelfile`.
|
||||
Create a new model from an existing model.
|
||||
|
||||
##### Request
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/create -d '{
|
||||
"name": "mario",
|
||||
"modelfile": "FROM llama3\nSYSTEM You are mario from Super Mario Bros."
|
||||
"model": "mario",
|
||||
"from": "llama3.2",
|
||||
"system": "You are Mario from Super Mario Bros."
|
||||
}'
|
||||
```
|
||||
|
||||
##### Response
|
||||
|
||||
A stream of JSON objects. Notice that the final JSON object shows a `"status": "success"`.
|
||||
A stream of JSON objects is returned:
|
||||
|
||||
```json
|
||||
{"status":"reading model metadata"}
|
||||
@@ -869,57 +1003,147 @@ A stream of JSON objects. Notice that the final JSON object shows a `"status": "
|
||||
{"status":"success"}
|
||||
```
|
||||
|
||||
### Check if a Blob Exists
|
||||
#### Quantize a model
|
||||
|
||||
Quantize a non-quantized model.
|
||||
|
||||
##### Request
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/create -d '{
|
||||
"model": "llama3.1:quantized",
|
||||
"from": "llama3.1:8b-instruct-fp16",
|
||||
"quantize": "q4_K_M"
|
||||
}'
|
||||
```
|
||||
|
||||
##### Response
|
||||
|
||||
A stream of JSON objects is returned:
|
||||
|
||||
```json
|
||||
{"status":"quantizing F16 model to Q4_K_M"}
|
||||
{"status":"creating new layer sha256:667b0c1932bc6ffc593ed1d03f895bf2dc8dc6df21db3042284a6f4416b06a29"}
|
||||
{"status":"using existing layer sha256:11ce4ee3e170f6adebac9a991c22e22ab3f8530e154ee669954c4bc73061c258"}
|
||||
{"status":"using existing layer sha256:0ba8f0e314b4264dfd19df045cde9d4c394a52474bf92ed6a3de22a4ca31a177"}
|
||||
{"status":"using existing layer sha256:56bb8bd477a519ffa694fc449c2413c6f0e1d3b1c88fa7e3c9d88d3ae49d4dcb"}
|
||||
{"status":"creating new layer sha256:455f34728c9b5dd3376378bfb809ee166c145b0b4c1f1a6feca069055066ef9a"}
|
||||
{"status":"writing manifest"}
|
||||
{"status":"success"}
|
||||
```
|
||||
|
||||
#### Create a model from GGUF
|
||||
|
||||
Create a model from a GGUF file. The `files` parameter should be filled out with the file name and SHA256 digest of the GGUF file you wish to use. Use [/api/blobs/:digest](#push-a-blob) to push the GGUF file to the server before calling this API.
|
||||
|
||||
|
||||
##### Request
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/create -d '{
|
||||
"model": "my-gguf-model",
|
||||
"files": {
|
||||
"test.gguf": "sha256:432f310a77f4650a88d0fd59ecdd7cebed8d684bafea53cbff0473542964f0c3"
|
||||
}
|
||||
}'
|
||||
```
|
||||
|
||||
##### Response
|
||||
|
||||
A stream of JSON objects is returned:
|
||||
|
||||
```json
|
||||
{"status":"parsing GGUF"}
|
||||
{"status":"using existing layer sha256:432f310a77f4650a88d0fd59ecdd7cebed8d684bafea53cbff0473542964f0c3"}
|
||||
{"status":"writing manifest"}
|
||||
{"status":"success"}
|
||||
```
|
||||
|
||||
|
||||
#### Create a model from a Safetensors directory
|
||||
|
||||
The `files` parameter should include a dictionary of files for the safetensors model which includes the file names and SHA256 digest of each file. Use [/api/blobs/:digest](#push-a-blob) to first push each of the files to the server before calling this API. Files will remain in the cache until the Ollama server is restarted.
|
||||
|
||||
##### Request
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/create -d '{
|
||||
"model": "fred",
|
||||
"files": {
|
||||
"config.json": "sha256:dd3443e529fb2290423a0c65c2d633e67b419d273f170259e27297219828e389",
|
||||
"generation_config.json": "sha256:88effbb63300dbbc7390143fbbdd9d9fa50587b37e8bfd16c8c90d4970a74a36",
|
||||
"special_tokens_map.json": "sha256:b7455f0e8f00539108837bfa586c4fbf424e31f8717819a6798be74bef813d05",
|
||||
"tokenizer.json": "sha256:bbc1904d35169c542dffbe1f7589a5994ec7426d9e5b609d07bab876f32e97ab",
|
||||
"tokenizer_config.json": "sha256:24e8a6dc2547164b7002e3125f10b415105644fcf02bf9ad8b674c87b1eaaed6",
|
||||
"model.safetensors": "sha256:1ff795ff6a07e6a68085d206fb84417da2f083f68391c2843cd2b8ac6df8538f"
|
||||
}
|
||||
}'
|
||||
```
|
||||
|
||||
##### Response
|
||||
|
||||
A stream of JSON objects is returned:
|
||||
|
||||
```shell
|
||||
{"status":"converting model"}
|
||||
{"status":"creating new layer sha256:05ca5b813af4a53d2c2922933936e398958855c44ee534858fcfd830940618b6"}
|
||||
{"status":"using autodetected template llama3-instruct"}
|
||||
{"status":"using existing layer sha256:56bb8bd477a519ffa694fc449c2413c6f0e1d3b1c88fa7e3c9d88d3ae49d4dcb"}
|
||||
{"status":"writing manifest"}
|
||||
{"status":"success"}
|
||||
```
|
||||
|
||||
## Check if a Blob Exists
|
||||
|
||||
```shell
|
||||
HEAD /api/blobs/:digest
|
||||
```
|
||||
|
||||
Ensures that the file blob used for a FROM or ADAPTER field exists on the server. This is checking your Ollama server and not Ollama.ai.
|
||||
Ensures that the file blob (Binary Large Object) used with create a model exists on the server. This checks your Ollama server and not ollama.com.
|
||||
|
||||
#### Query Parameters
|
||||
### Query Parameters
|
||||
|
||||
- `digest`: the SHA256 digest of the blob
|
||||
|
||||
#### Examples
|
||||
### Examples
|
||||
|
||||
##### Request
|
||||
#### Request
|
||||
|
||||
```shell
|
||||
curl -I http://localhost:11434/api/blobs/sha256:29fdb92e57cf0827ded04ae6461b5931d01fa595843f55d36f5b275a52087dd2
|
||||
```
|
||||
|
||||
##### Response
|
||||
#### Response
|
||||
|
||||
Return 200 OK if the blob exists, 404 Not Found if it does not.
|
||||
|
||||
### Create a Blob
|
||||
## Push a Blob
|
||||
|
||||
```shell
|
||||
```
|
||||
POST /api/blobs/:digest
|
||||
```
|
||||
|
||||
Create a blob from a file on the server. Returns the server file path.
|
||||
Push a file to the Ollama server to create a "blob" (Binary Large Object).
|
||||
|
||||
#### Query Parameters
|
||||
### Query Parameters
|
||||
|
||||
- `digest`: the expected SHA256 digest of the file
|
||||
|
||||
#### Examples
|
||||
### Examples
|
||||
|
||||
##### Request
|
||||
#### Request
|
||||
|
||||
```shell
|
||||
curl -T model.bin -X POST http://localhost:11434/api/blobs/sha256:29fdb92e57cf0827ded04ae6461b5931d01fa595843f55d36f5b275a52087dd2
|
||||
curl -T model.gguf -X POST http://localhost:11434/api/blobs/sha256:29fdb92e57cf0827ded04ae6461b5931d01fa595843f55d36f5b275a52087dd2
|
||||
```
|
||||
|
||||
##### Response
|
||||
#### Response
|
||||
|
||||
Return 201 Created if the blob was successfully created, 400 Bad Request if the digest used is not expected.
|
||||
|
||||
## List Local Models
|
||||
|
||||
```shell
|
||||
```
|
||||
GET /api/tags
|
||||
```
|
||||
|
||||
@@ -972,7 +1196,7 @@ A single JSON object will be returned.
|
||||
|
||||
## Show Model Information
|
||||
|
||||
```shell
|
||||
```
|
||||
POST /api/show
|
||||
```
|
||||
|
||||
@@ -980,7 +1204,7 @@ Show information about a model including details, modelfile, template, parameter
|
||||
|
||||
### Parameters
|
||||
|
||||
- `name`: name of the model to show
|
||||
- `model`: name of the model to show
|
||||
- `verbose`: (optional) if set to `true`, returns full data for verbose response fields
|
||||
|
||||
### Examples
|
||||
@@ -989,7 +1213,7 @@ Show information about a model including details, modelfile, template, parameter
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/show -d '{
|
||||
"name": "llama3.2"
|
||||
"model": "llama3.2"
|
||||
}'
|
||||
```
|
||||
|
||||
@@ -1038,7 +1262,7 @@ curl http://localhost:11434/api/show -d '{
|
||||
|
||||
## Copy a Model
|
||||
|
||||
```shell
|
||||
```
|
||||
POST /api/copy
|
||||
```
|
||||
|
||||
@@ -1061,7 +1285,7 @@ Returns a 200 OK if successful, or a 404 Not Found if the source model doesn't e
|
||||
|
||||
## Delete a Model
|
||||
|
||||
```shell
|
||||
```
|
||||
DELETE /api/delete
|
||||
```
|
||||
|
||||
@@ -1069,7 +1293,7 @@ Delete a model and its data.
|
||||
|
||||
### Parameters
|
||||
|
||||
- `name`: model name to delete
|
||||
- `model`: model name to delete
|
||||
|
||||
### Examples
|
||||
|
||||
@@ -1077,7 +1301,7 @@ Delete a model and its data.
|
||||
|
||||
```shell
|
||||
curl -X DELETE http://localhost:11434/api/delete -d '{
|
||||
"name": "llama3:13b"
|
||||
"model": "llama3:13b"
|
||||
}'
|
||||
```
|
||||
|
||||
@@ -1087,7 +1311,7 @@ Returns a 200 OK if successful, 404 Not Found if the model to be deleted doesn't
|
||||
|
||||
## Pull a Model
|
||||
|
||||
```shell
|
||||
```
|
||||
POST /api/pull
|
||||
```
|
||||
|
||||
@@ -1095,7 +1319,7 @@ Download a model from the ollama library. Cancelled pulls are resumed from where
|
||||
|
||||
### Parameters
|
||||
|
||||
- `name`: name of the model to pull
|
||||
- `model`: name of the model to pull
|
||||
- `insecure`: (optional) allow insecure connections to the library. Only use this if you are pulling from your own library during development.
|
||||
- `stream`: (optional) if `false` the response will be returned as a single response object, rather than a stream of objects
|
||||
|
||||
@@ -1105,7 +1329,7 @@ Download a model from the ollama library. Cancelled pulls are resumed from where
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/pull -d '{
|
||||
"name": "llama3.2"
|
||||
"model": "llama3.2"
|
||||
}'
|
||||
```
|
||||
|
||||
@@ -1159,7 +1383,7 @@ if `stream` is set to false, then the response is a single JSON object:
|
||||
|
||||
## Push a Model
|
||||
|
||||
```shell
|
||||
```
|
||||
POST /api/push
|
||||
```
|
||||
|
||||
@@ -1167,7 +1391,7 @@ Upload a model to a model library. Requires registering for ollama.ai and adding
|
||||
|
||||
### Parameters
|
||||
|
||||
- `name`: name of the model to push in the form of `<namespace>/<model>:<tag>`
|
||||
- `model`: name of the model to push in the form of `<namespace>/<model>:<tag>`
|
||||
- `insecure`: (optional) allow insecure connections to the library. Only use this if you are pushing to your library during development.
|
||||
- `stream`: (optional) if `false` the response will be returned as a single response object, rather than a stream of objects
|
||||
|
||||
@@ -1177,7 +1401,7 @@ Upload a model to a model library. Requires registering for ollama.ai and adding
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/push -d '{
|
||||
"name": "mattw/pygmalion:latest"
|
||||
"model": "mattw/pygmalion:latest"
|
||||
}'
|
||||
```
|
||||
|
||||
@@ -1224,7 +1448,7 @@ If `stream` is set to `false`, then the response is a single JSON object:
|
||||
|
||||
## Generate Embeddings
|
||||
|
||||
```shell
|
||||
```
|
||||
POST /api/embed
|
||||
```
|
||||
|
||||
@@ -1292,7 +1516,7 @@ curl http://localhost:11434/api/embed -d '{
|
||||
```
|
||||
|
||||
## List Running Models
|
||||
```shell
|
||||
```
|
||||
GET /api/ps
|
||||
```
|
||||
|
||||
@@ -1339,7 +1563,7 @@ A single JSON object will be returned.
|
||||
|
||||
> Note: this endpoint has been superseded by `/api/embed`
|
||||
|
||||
```shell
|
||||
```
|
||||
POST /api/embeddings
|
||||
```
|
||||
|
||||
@@ -1376,3 +1600,29 @@ curl http://localhost:11434/api/embeddings -d '{
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
## Version
|
||||
|
||||
```
|
||||
GET /api/version
|
||||
```
|
||||
|
||||
Retrieve the Ollama version
|
||||
|
||||
### Examples
|
||||
|
||||
#### Request
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/version
|
||||
```
|
||||
|
||||
#### Response
|
||||
|
||||
```json
|
||||
{
|
||||
"version": "0.5.1"
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
|
@@ -1,350 +1,159 @@
|
||||
# Development
|
||||
|
||||
Install prerequisites:
|
||||
|
||||
- [Go](https://go.dev/doc/install)
|
||||
- C/C++ Compiler e.g. Clang on macOS, [TDM-GCC](https://github.com/jmeubank/tdm-gcc/releases/latest) (Windows amd64) or [llvm-mingw](https://github.com/mstorsjo/llvm-mingw) (Windows arm64), GCC/Clang on Linux.
|
||||
|
||||
Then build and run Ollama from the root directory of the repository:
|
||||
|
||||
```shell
|
||||
go run . serve
|
||||
```
|
||||
|
||||
## macOS (Apple Silicon)
|
||||
|
||||
macOS Apple Silicon supports Metal which is built-in to the Ollama binary. No additional steps are required.
|
||||
|
||||
## macOS (Intel)
|
||||
|
||||
Install prerequisites:
|
||||
|
||||
- [CMake](https://cmake.org/download/) or `brew install cmake`
|
||||
|
||||
Then, configure and build the project:
|
||||
|
||||
```shell
|
||||
cmake -B build
|
||||
cmake --build build
|
||||
```
|
||||
|
||||
Lastly, run Ollama:
|
||||
|
||||
```shell
|
||||
go run . serve
|
||||
```
|
||||
|
||||
## Windows
|
||||
|
||||
Install prerequisites:
|
||||
|
||||
- [CMake](https://cmake.org/download/)
|
||||
- [Visual Studio 2022](https://visualstudio.microsoft.com/downloads/) including the Native Desktop Workload
|
||||
- (Optional) AMD GPU support
|
||||
- [ROCm](https://rocm.docs.amd.com/en/latest/)
|
||||
- [Ninja](https://github.com/ninja-build/ninja/releases)
|
||||
- (Optional) NVIDIA GPU support
|
||||
- [CUDA SDK](https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network)
|
||||
|
||||
Then, configure and build the project:
|
||||
|
||||
```shell
|
||||
cmake -B build
|
||||
cmake --build build --config Release
|
||||
```
|
||||
|
||||
> [!IMPORTANT]
|
||||
> The `llm` package that loads and runs models is being updated to use a new [Go runner](#transition-to-go-runner): this should only impact a small set of PRs however it does change how the project is built.
|
||||
> Building for ROCm requires additional flags:
|
||||
> ```
|
||||
> cmake -B build -G Ninja -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++
|
||||
> cmake --build build --config Release
|
||||
> ```
|
||||
|
||||
Install required tools:
|
||||
|
||||
- cmake version 3.24 or higher
|
||||
- go version 1.22 or higher
|
||||
- gcc version 11.4.0 or higher
|
||||
Lastly, run Ollama:
|
||||
|
||||
### MacOS
|
||||
|
||||
```bash
|
||||
brew install go cmake gcc
|
||||
```shell
|
||||
go run . serve
|
||||
```
|
||||
|
||||
Optionally enable debugging and more verbose logging:
|
||||
## Windows (ARM)
|
||||
|
||||
```bash
|
||||
# At build time
|
||||
export CGO_CFLAGS="-g"
|
||||
Windows ARM does not support additional acceleration libraries at this time. Do not use cmake, simply `go run` or `go build`.
|
||||
|
||||
# At runtime
|
||||
export OLLAMA_DEBUG=1
|
||||
## Linux
|
||||
|
||||
Install prerequisites:
|
||||
|
||||
- [CMake](https://cmake.org/download/) or `sudo apt install cmake` or `sudo dnf install cmake`
|
||||
- (Optional) AMD GPU support
|
||||
- [ROCm](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/quick-start.html)
|
||||
- (Optional) NVIDIA GPU support
|
||||
- [CUDA SDK](https://developer.nvidia.com/cuda-downloads)
|
||||
|
||||
> [!IMPORTANT]
|
||||
> Ensure prerequisites are in `PATH` before running CMake.
|
||||
|
||||
|
||||
Then, configure and build the project:
|
||||
|
||||
```shell
|
||||
cmake -B build
|
||||
cmake --build build
|
||||
```
|
||||
|
||||
Get the required libraries and build the native LLM code:
|
||||
Lastly, run Ollama:
|
||||
|
||||
```bash
|
||||
go generate ./...
|
||||
```shell
|
||||
go run . serve
|
||||
```
|
||||
|
||||
Then build ollama:
|
||||
## Docker
|
||||
|
||||
```bash
|
||||
go build .
|
||||
```shell
|
||||
docker build .
|
||||
```
|
||||
|
||||
Now you can run `ollama`:
|
||||
### ROCm
|
||||
|
||||
```bash
|
||||
./ollama
|
||||
```shell
|
||||
docker build --build-arg FLAVOR=rocm .
|
||||
```
|
||||
|
||||
### Linux
|
||||
## Running tests
|
||||
|
||||
#### Linux CUDA (NVIDIA)
|
||||
To run tests, use `go test`:
|
||||
|
||||
_Your operating system distribution may already have packages for NVIDIA CUDA. Distro packages are often preferable, but instructions are distro-specific. Please consult distro-specific docs for dependencies if available!_
|
||||
|
||||
Install `cmake` and `golang` as well as [NVIDIA CUDA](https://developer.nvidia.com/cuda-downloads)
|
||||
development and runtime packages.
|
||||
|
||||
Typically the build scripts will auto-detect CUDA, however, if your Linux distro
|
||||
or installation approach uses unusual paths, you can specify the location by
|
||||
specifying an environment variable `CUDA_LIB_DIR` to the location of the shared
|
||||
libraries, and `CUDACXX` to the location of the nvcc compiler. You can customize
|
||||
a set of target CUDA architectures by setting `CMAKE_CUDA_ARCHITECTURES` (e.g. "50;60;70")
|
||||
|
||||
Then generate dependencies:
|
||||
|
||||
```
|
||||
go generate ./...
|
||||
```shell
|
||||
go test ./...
|
||||
```
|
||||
|
||||
Then build the binary:
|
||||
|
||||
```
|
||||
go build .
|
||||
```
|
||||
|
||||
#### Linux ROCm (AMD)
|
||||
|
||||
_Your operating system distribution may already have packages for AMD ROCm and CLBlast. Distro packages are often preferable, but instructions are distro-specific. Please consult distro-specific docs for dependencies if available!_
|
||||
|
||||
Install [CLBlast](https://github.com/CNugteren/CLBlast/blob/master/doc/installation.md) and [ROCm](https://rocm.docs.amd.com/en/latest/) development packages first, as well as `cmake` and `golang`.
|
||||
|
||||
Typically the build scripts will auto-detect ROCm, however, if your Linux distro
|
||||
or installation approach uses unusual paths, you can specify the location by
|
||||
specifying an environment variable `ROCM_PATH` to the location of the ROCm
|
||||
install (typically `/opt/rocm`), and `CLBlast_DIR` to the location of the
|
||||
CLBlast install (typically `/usr/lib/cmake/CLBlast`). You can also customize
|
||||
the AMD GPU targets by setting AMDGPU_TARGETS (e.g. `AMDGPU_TARGETS="gfx1101;gfx1102"`)
|
||||
|
||||
```
|
||||
go generate ./...
|
||||
```
|
||||
|
||||
Then build the binary:
|
||||
|
||||
```
|
||||
go build .
|
||||
```
|
||||
|
||||
ROCm requires elevated privileges to access the GPU at runtime. On most distros you can add your user account to the `render` group, or run as root.
|
||||
|
||||
#### Advanced CPU Settings
|
||||
|
||||
By default, running `go generate ./...` will compile a few different variations
|
||||
of the LLM library based on common CPU families and vector math capabilities,
|
||||
including a lowest-common-denominator which should run on almost any 64 bit CPU
|
||||
somewhat slowly. At runtime, Ollama will auto-detect the optimal variation to
|
||||
load. If you would like to build a CPU-based build customized for your
|
||||
processor, you can set `OLLAMA_CUSTOM_CPU_DEFS` to the llama.cpp flags you would
|
||||
like to use. For example, to compile an optimized binary for an Intel i9-9880H,
|
||||
you might use:
|
||||
|
||||
```
|
||||
OLLAMA_CUSTOM_CPU_DEFS="-DGGML_AVX=on -DGGML_AVX2=on -DGGML_F16C=on -DGGML_FMA=on" go generate ./...
|
||||
go build .
|
||||
```
|
||||
|
||||
#### Containerized Linux Build
|
||||
|
||||
If you have Docker available, you can build linux binaries with `./scripts/build_linux.sh` which has the CUDA and ROCm dependencies included. The resulting binary is placed in `./dist`
|
||||
|
||||
### Windows
|
||||
|
||||
Note: The Windows build for Ollama is still under development.
|
||||
|
||||
First, install required tools:
|
||||
|
||||
- MSVC toolchain - C/C++ and cmake as minimal requirements
|
||||
- Go version 1.22 or higher
|
||||
- MinGW (pick one variant) with GCC.
|
||||
- [MinGW-w64](https://www.mingw-w64.org/)
|
||||
- [MSYS2](https://www.msys2.org/)
|
||||
- The `ThreadJob` Powershell module: `Install-Module -Name ThreadJob -Scope CurrentUser`
|
||||
|
||||
Then, build the `ollama` binary:
|
||||
|
||||
```powershell
|
||||
$env:CGO_ENABLED="1"
|
||||
go generate ./...
|
||||
go build .
|
||||
```
|
||||
|
||||
#### Windows CUDA (NVIDIA)
|
||||
|
||||
In addition to the common Windows development tools described above, install CUDA after installing MSVC.
|
||||
|
||||
- [NVIDIA CUDA](https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html)
|
||||
|
||||
|
||||
#### Windows ROCm (AMD Radeon)
|
||||
|
||||
In addition to the common Windows development tools described above, install AMDs HIP package after installing MSVC.
|
||||
|
||||
- [AMD HIP](https://www.amd.com/en/developer/resources/rocm-hub/hip-sdk.html)
|
||||
- [Strawberry Perl](https://strawberryperl.com/)
|
||||
|
||||
Lastly, add `ninja.exe` included with MSVC to the system path (e.g. `C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\Common7\IDE\CommonExtensions\Microsoft\CMake\Ninja`).
|
||||
|
||||
#### Windows arm64
|
||||
|
||||
The default `Developer PowerShell for VS 2022` may default to x86 which is not what you want. To ensure you get an arm64 development environment, start a plain PowerShell terminal and run:
|
||||
|
||||
```powershell
|
||||
import-module 'C:\\Program Files\\Microsoft Visual Studio\\2022\\Community\\Common7\\Tools\\Microsoft.VisualStudio.DevShell.dll'
|
||||
Enter-VsDevShell -Arch arm64 -vsinstallpath 'C:\\Program Files\\Microsoft Visual Studio\\2022\\Community' -skipautomaticlocation
|
||||
```
|
||||
|
||||
You can confirm with `write-host $env:VSCMD_ARG_TGT_ARCH`
|
||||
|
||||
Follow the instructions at https://www.msys2.org/wiki/arm64/ to set up an arm64 msys2 environment. Ollama requires gcc and mingw32-make to compile, which is not currently available on Windows arm64, but a gcc compatibility adapter is available via `mingw-w64-clang-aarch64-gcc-compat`. At a minimum you will need to install the following:
|
||||
|
||||
```
|
||||
pacman -S mingw-w64-clang-aarch64-clang mingw-w64-clang-aarch64-gcc-compat mingw-w64-clang-aarch64-make make
|
||||
```
|
||||
|
||||
You will need to ensure your PATH includes go, cmake, gcc and clang mingw32-make to build ollama from source. (typically `C:\msys64\clangarm64\bin\`)
|
||||
|
||||
|
||||
## Transition to Go runner
|
||||
|
||||
The Ollama team is working on moving to a new Go based runner that loads and runs models in a subprocess to replace the previous code under `ext_server`. During this transition period, this new Go runner is "opt in" at build time, and requires using a different approach to build.
|
||||
|
||||
After the transition to use the Go server exclusively, both `make` and `go generate` will build the Go runner.
|
||||
|
||||
Install required tools:
|
||||
|
||||
- go version 1.22 or higher
|
||||
- gcc version 11.4.0 or higher
|
||||
|
||||
|
||||
### MacOS
|
||||
|
||||
[Download Go](https://go.dev/dl/)
|
||||
|
||||
Optionally enable debugging and more verbose logging:
|
||||
|
||||
```bash
|
||||
# At build time
|
||||
export CGO_CFLAGS="-g"
|
||||
|
||||
# At runtime
|
||||
export OLLAMA_DEBUG=1
|
||||
```
|
||||
|
||||
Get the required libraries and build the native LLM code: (Adjust the job count based on your number of processors for a faster build)
|
||||
|
||||
```bash
|
||||
make -C llama -j 5
|
||||
```
|
||||
|
||||
Then build ollama:
|
||||
|
||||
```bash
|
||||
go build .
|
||||
```
|
||||
|
||||
Now you can run `ollama`:
|
||||
|
||||
```bash
|
||||
./ollama
|
||||
```
|
||||
|
||||
#### Xcode 15 warnings
|
||||
|
||||
If you are using Xcode newer than version 14, you may see a warning during `go build` about `ld: warning: ignoring duplicate libraries: '-lobjc'` due to Golang issue https://github.com/golang/go/issues/67799 which can be safely ignored. You can suppress the warning with `export CGO_LDFLAGS="-Wl,-no_warn_duplicate_libraries"`
|
||||
|
||||
### Linux
|
||||
|
||||
#### Linux CUDA (NVIDIA)
|
||||
|
||||
_Your operating system distribution may already have packages for NVIDIA CUDA. Distro packages are often preferable, but instructions are distro-specific. Please consult distro-specific docs for dependencies if available!_
|
||||
|
||||
Install `make`, `gcc` and `golang` as well as [NVIDIA CUDA](https://developer.nvidia.com/cuda-downloads)
|
||||
development and runtime packages.
|
||||
|
||||
Typically the build scripts will auto-detect CUDA, however, if your Linux distro
|
||||
or installation approach uses unusual paths, you can specify the location by
|
||||
specifying an environment variable `CUDA_LIB_DIR` to the location of the shared
|
||||
libraries, and `CUDACXX` to the location of the nvcc compiler. You can customize
|
||||
a set of target CUDA architectures by setting `CMAKE_CUDA_ARCHITECTURES` (e.g. "50;60;70")
|
||||
|
||||
Then generate dependencies: (Adjust the job count based on your number of processors for a faster build)
|
||||
|
||||
```
|
||||
make -C llama -j 5
|
||||
```
|
||||
|
||||
Then build the binary:
|
||||
|
||||
```
|
||||
go build .
|
||||
```
|
||||
|
||||
#### Linux ROCm (AMD)
|
||||
|
||||
_Your operating system distribution may already have packages for AMD ROCm and CLBlast. Distro packages are often preferable, but instructions are distro-specific. Please consult distro-specific docs for dependencies if available!_
|
||||
|
||||
Install [CLBlast](https://github.com/CNugteren/CLBlast/blob/master/doc/installation.md) and [ROCm](https://rocm.docs.amd.com/en/latest/) development packages first, as well as `make`, `gcc`, and `golang`.
|
||||
|
||||
Typically the build scripts will auto-detect ROCm, however, if your Linux distro
|
||||
or installation approach uses unusual paths, you can specify the location by
|
||||
specifying an environment variable `ROCM_PATH` to the location of the ROCm
|
||||
install (typically `/opt/rocm`), and `CLBlast_DIR` to the location of the
|
||||
CLBlast install (typically `/usr/lib/cmake/CLBlast`). You can also customize
|
||||
the AMD GPU targets by setting AMDGPU_TARGETS (e.g. `AMDGPU_TARGETS="gfx1101;gfx1102"`)
|
||||
|
||||
Then generate dependencies: (Adjust the job count based on your number of processors for a faster build)
|
||||
|
||||
```
|
||||
make -C llama -j 5
|
||||
```
|
||||
|
||||
Then build the binary:
|
||||
|
||||
```
|
||||
go build .
|
||||
```
|
||||
|
||||
ROCm requires elevated privileges to access the GPU at runtime. On most distros you can add your user account to the `render` group, or run as root.
|
||||
|
||||
#### Advanced CPU Settings
|
||||
|
||||
By default, running `make` will compile a few different variations
|
||||
of the LLM library based on common CPU families and vector math capabilities,
|
||||
including a lowest-common-denominator which should run on almost any 64 bit CPU
|
||||
somewhat slowly. At runtime, Ollama will auto-detect the optimal variation to
|
||||
load.
|
||||
|
||||
Custom CPU settings are not currently supported in the new Go server build but will be added back after we complete the transition.
|
||||
|
||||
#### Containerized Linux Build
|
||||
|
||||
If you have Docker available, you can build linux binaries with `OLLAMA_NEW_RUNNERS=1 ./scripts/build_linux.sh` which has the CUDA and ROCm dependencies included. The resulting binary is placed in `./dist`
|
||||
|
||||
### Windows
|
||||
|
||||
The following tools are required as a minimal development environment to build CPU inference support.
|
||||
|
||||
- Go version 1.22 or higher
|
||||
- https://go.dev/dl/
|
||||
- Git
|
||||
- https://git-scm.com/download/win
|
||||
- GCC and Make. There are multiple options on how to go about installing these tools on Windows. We have verified the following, but others may work as well:
|
||||
- [MSYS2](https://www.msys2.org/)
|
||||
- After installing, from an MSYS2 terminal, run `pacman -S mingw-w64-ucrt-x86_64-gcc make` to install the required tools
|
||||
- Assuming you used the default install prefix for msys2 above, add `c:\msys64\ucrt64\bin` and `c:\msys64\usr\bin` to your environment variable `PATH` where you will perform the build steps below (e.g. system-wide, account-level, powershell, cmd, etc.)
|
||||
|
||||
Then, build the `ollama` binary:
|
||||
|
||||
```powershell
|
||||
$env:CGO_ENABLED="1"
|
||||
make -C llama -j 8
|
||||
go build .
|
||||
```
|
||||
|
||||
#### GPU Support
|
||||
|
||||
The GPU tools require the Microsoft native build tools. To build either CUDA or ROCm, you must first install MSVC via Visual Studio:
|
||||
|
||||
- Make sure to select `Desktop development with C++` as a Workload during the Visual Studio install
|
||||
- You must complete the Visual Studio install and run it once **BEFORE** installing CUDA or ROCm for the tools to properly register
|
||||
- Add the location of the **64 bit (x64)** compiler (`cl.exe`) to your `PATH`
|
||||
- Note: the default Developer Shell may configure the 32 bit (x86) compiler which will lead to build failures. Ollama requires a 64 bit toolchain.
|
||||
|
||||
#### Windows CUDA (NVIDIA)
|
||||
|
||||
In addition to the common Windows development tools and MSVC described above:
|
||||
|
||||
- [NVIDIA CUDA](https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html)
|
||||
|
||||
#### Windows ROCm (AMD Radeon)
|
||||
|
||||
In addition to the common Windows development tools and MSVC described above:
|
||||
|
||||
- [AMD HIP](https://www.amd.com/en/developer/resources/rocm-hub/hip-sdk.html)
|
||||
|
||||
#### Windows arm64
|
||||
|
||||
The default `Developer PowerShell for VS 2022` may default to x86 which is not what you want. To ensure you get an arm64 development environment, start a plain PowerShell terminal and run:
|
||||
|
||||
```powershell
|
||||
import-module 'C:\\Program Files\\Microsoft Visual Studio\\2022\\Community\\Common7\\Tools\\Microsoft.VisualStudio.DevShell.dll'
|
||||
Enter-VsDevShell -Arch arm64 -vsinstallpath 'C:\\Program Files\\Microsoft Visual Studio\\2022\\Community' -skipautomaticlocation
|
||||
```
|
||||
|
||||
You can confirm with `write-host $env:VSCMD_ARG_TGT_ARCH`
|
||||
|
||||
Follow the instructions at https://www.msys2.org/wiki/arm64/ to set up an arm64 msys2 environment. Ollama requires gcc and mingw32-make to compile, which is not currently available on Windows arm64, but a gcc compatibility adapter is available via `mingw-w64-clang-aarch64-gcc-compat`. At a minimum you will need to install the following:
|
||||
|
||||
```
|
||||
pacman -S mingw-w64-clang-aarch64-clang mingw-w64-clang-aarch64-gcc-compat mingw-w64-clang-aarch64-make make
|
||||
```
|
||||
|
||||
You will need to ensure your PATH includes go, cmake, gcc and clang mingw32-make to build ollama from source. (typically `C:\msys64\clangarm64\bin\`)
|
||||
> NOTE: In rare cirumstances, you may nedd to change a package using the new
|
||||
> "synctest" package in go1.24.
|
||||
>
|
||||
> If you do not have the "synctest" package enabled, you will not see build or
|
||||
> test failures resulting from your change(s), if any, locally, but CI will
|
||||
> break.
|
||||
>
|
||||
> If you see failures in CI, you can either keep pushing changes to see if the
|
||||
> CI build passes, or you can enable the "synctest" package locally to see the
|
||||
> failures before pushing.
|
||||
>
|
||||
> To enable the "synctest" package for testing, run the following command:
|
||||
>
|
||||
> ```shell
|
||||
> GOEXPERIMENT=synctest go test ./...
|
||||
> ```
|
||||
>
|
||||
> If you wish to enable synctest for all go commands, you can set the
|
||||
> `GOEXPERIMENT` environment variable in your shell profile or by using:
|
||||
>
|
||||
> ```shell
|
||||
> go env -w GOEXPERIMENT=synctest
|
||||
> ```
|
||||
>
|
||||
> Which will enable the "synctest" package for all go commands without needing
|
||||
> to set it for all shell sessions.
|
||||
>
|
||||
> The synctest package is not required for production builds.
|
||||
|
||||
## Library detection
|
||||
|
||||
Ollama looks for acceleration libraries in the following paths relative to the `ollama` executable:
|
||||
|
||||
* `./lib/ollama` (Windows)
|
||||
* `../lib/ollama` (Linux)
|
||||
* `.` (macOS)
|
||||
* `build/lib/ollama` (for development)
|
||||
|
||||
If the libraries are not found, Ollama will not run with any acceleration libraries.
|
||||
|
@@ -2,7 +2,7 @@
|
||||
|
||||
### CPU only
|
||||
|
||||
```bash
|
||||
```shell
|
||||
docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
|
||||
```
|
||||
|
||||
@@ -11,50 +11,57 @@ Install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-
|
||||
|
||||
#### Install with Apt
|
||||
1. Configure the repository
|
||||
```bash
|
||||
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey \
|
||||
| sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg
|
||||
curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list \
|
||||
| sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' \
|
||||
| sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
|
||||
sudo apt-get update
|
||||
```
|
||||
|
||||
```shell
|
||||
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey \
|
||||
| sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg
|
||||
curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list \
|
||||
| sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' \
|
||||
| sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
|
||||
sudo apt-get update
|
||||
```
|
||||
|
||||
2. Install the NVIDIA Container Toolkit packages
|
||||
```bash
|
||||
sudo apt-get install -y nvidia-container-toolkit
|
||||
```
|
||||
|
||||
```shell
|
||||
sudo apt-get install -y nvidia-container-toolkit
|
||||
```
|
||||
|
||||
#### Install with Yum or Dnf
|
||||
1. Configure the repository
|
||||
|
||||
```bash
|
||||
curl -s -L https://nvidia.github.io/libnvidia-container/stable/rpm/nvidia-container-toolkit.repo \
|
||||
| sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo
|
||||
```
|
||||
```shell
|
||||
curl -s -L https://nvidia.github.io/libnvidia-container/stable/rpm/nvidia-container-toolkit.repo \
|
||||
| sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo
|
||||
```
|
||||
|
||||
2. Install the NVIDIA Container Toolkit packages
|
||||
|
||||
```bash
|
||||
sudo yum install -y nvidia-container-toolkit
|
||||
```
|
||||
```shell
|
||||
sudo yum install -y nvidia-container-toolkit
|
||||
```
|
||||
|
||||
#### Configure Docker to use Nvidia driver
|
||||
```
|
||||
|
||||
```shell
|
||||
sudo nvidia-ctk runtime configure --runtime=docker
|
||||
sudo systemctl restart docker
|
||||
```
|
||||
|
||||
#### Start the container
|
||||
|
||||
```bash
|
||||
```shell
|
||||
docker run -d --gpus=all -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> If you're running on an NVIDIA JetPack system, Ollama can't automatically discover the correct JetPack version. Pass the environment variable JETSON_JETPACK=5 or JETSON_JETPACK=6 to the container to select version 5 or 6.
|
||||
|
||||
### AMD GPU
|
||||
|
||||
To run Ollama using Docker with AMD GPUs, use the `rocm` tag and the following command:
|
||||
|
||||
```
|
||||
```shell
|
||||
docker run -d --device /dev/kfd --device /dev/dri -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama:rocm
|
||||
```
|
||||
|
||||
@@ -62,7 +69,7 @@ docker run -d --device /dev/kfd --device /dev/dri -v ollama:/root/.ollama -p 114
|
||||
|
||||
Now you can run a model:
|
||||
|
||||
```
|
||||
```shell
|
||||
docker exec -it ollama ollama run llama3.2
|
||||
```
|
||||
|
||||
|
20
docs/examples.md
Normal file
20
docs/examples.md
Normal file
@@ -0,0 +1,20 @@
|
||||
# Examples
|
||||
|
||||
This directory contains different examples of using Ollama.
|
||||
|
||||
## Python examples
|
||||
Ollama Python examples at [ollama-python/examples](https://github.com/ollama/ollama-python/tree/main/examples)
|
||||
|
||||
|
||||
## JavaScript examples
|
||||
Ollama JavaScript examples at [ollama-js/examples](https://github.com/ollama/ollama-js/tree/main/examples)
|
||||
|
||||
|
||||
## OpenAI compatibility examples
|
||||
Ollama OpenAI compatibility examples at [ollama/examples/openai](../docs/openai.md)
|
||||
|
||||
|
||||
## Community examples
|
||||
|
||||
- [LangChain Ollama Python](https://python.langchain.com/docs/integrations/chat/ollama/)
|
||||
- [LangChain Ollama JS](https://js.langchain.com/docs/integrations/chat/ollama/)
|
50
docs/faq.md
50
docs/faq.md
@@ -24,7 +24,7 @@ By default, Ollama uses a context window size of 2048 tokens.
|
||||
|
||||
To change this when using `ollama run`, use `/set parameter`:
|
||||
|
||||
```
|
||||
```shell
|
||||
/set parameter num_ctx 4096
|
||||
```
|
||||
|
||||
@@ -46,10 +46,15 @@ Use the `ollama ps` command to see what models are currently loaded into memory.
|
||||
|
||||
```shell
|
||||
ollama ps
|
||||
NAME ID SIZE PROCESSOR UNTIL
|
||||
llama3:70b bcfb190ca3a7 42 GB 100% GPU 4 minutes from now
|
||||
```
|
||||
|
||||
> **Output**:
|
||||
>
|
||||
> ```
|
||||
> NAME ID SIZE PROCESSOR UNTIL
|
||||
> llama3:70b bcfb190ca3a7 42 GB 100% GPU 4 minutes from now
|
||||
> ```
|
||||
|
||||
The `Processor` column will show which memory the model was loaded in to:
|
||||
* `100% GPU` means the model was loaded entirely into the GPU
|
||||
* `100% CPU` means the model was loaded entirely in system memory
|
||||
@@ -66,7 +71,7 @@ If Ollama is run as a macOS application, environment variables should be set usi
|
||||
1. For each environment variable, call `launchctl setenv`.
|
||||
|
||||
```bash
|
||||
launchctl setenv OLLAMA_HOST "0.0.0.0"
|
||||
launchctl setenv OLLAMA_HOST "0.0.0.0:11434"
|
||||
```
|
||||
|
||||
2. Restart Ollama application.
|
||||
@@ -81,14 +86,14 @@ If Ollama is run as a systemd service, environment variables should be set using
|
||||
|
||||
```ini
|
||||
[Service]
|
||||
Environment="OLLAMA_HOST=0.0.0.0"
|
||||
Environment="OLLAMA_HOST=0.0.0.0:11434"
|
||||
```
|
||||
|
||||
3. Save and exit.
|
||||
|
||||
4. Reload `systemd` and restart Ollama:
|
||||
|
||||
```bash
|
||||
```shell
|
||||
systemctl daemon-reload
|
||||
systemctl restart ollama
|
||||
```
|
||||
@@ -151,7 +156,7 @@ Refer to the section [above](#how-do-i-configure-ollama-server) for how to set e
|
||||
|
||||
Ollama runs an HTTP server and can be exposed using a proxy server such as Nginx. To do so, configure the proxy to forward requests and optionally set required headers (if not exposing Ollama on the network). For example, with Nginx:
|
||||
|
||||
```
|
||||
```nginx
|
||||
server {
|
||||
listen 80;
|
||||
server_name example.com; # Replace with your domain or IP
|
||||
@@ -221,16 +226,19 @@ properties.
|
||||
If you are using the API you can preload a model by sending the Ollama server an empty request. This works with both the `/api/generate` and `/api/chat` API endpoints.
|
||||
|
||||
To preload the mistral model using the generate endpoint, use:
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/generate -d '{"model": "mistral"}'
|
||||
```
|
||||
|
||||
To use the chat completions endpoint, use:
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/chat -d '{"model": "mistral"}'
|
||||
```
|
||||
|
||||
To preload a model using the CLI, use the command:
|
||||
|
||||
```shell
|
||||
ollama run llama3.2 ""
|
||||
```
|
||||
@@ -250,11 +258,13 @@ If you're using the API, use the `keep_alive` parameter with the `/api/generate`
|
||||
* '0' which will unload the model immediately after generating a response
|
||||
|
||||
For example, to preload a model and leave it in memory use:
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/generate -d '{"model": "llama3.2", "keep_alive": -1}'
|
||||
```
|
||||
|
||||
To unload the model and free up memory use:
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/generate -d '{"model": "llama3.2", "keep_alive": 0}'
|
||||
```
|
||||
@@ -285,4 +295,28 @@ Note: Windows with Radeon GPUs currently default to 1 model maximum due to limit
|
||||
|
||||
## How does Ollama load models on multiple GPUs?
|
||||
|
||||
Installing multiple GPUs of the same brand can be a great way to increase your available VRAM to load larger models. When you load a new model, Ollama evaluates the required VRAM for the model against what is currently available. If the model will entirely fit on any single GPU, Ollama will load the model on that GPU. This typically provides the best performance as it reduces the amount of data transfering across the PCI bus during inference. If the model does not fit entirely on one GPU, then it will be spread across all the available GPUs.
|
||||
When loading a new model, Ollama evaluates the required VRAM for the model against what is currently available. If the model will entirely fit on any single GPU, Ollama will load the model on that GPU. This typically provides the best performance as it reduces the amount of data transferring across the PCI bus during inference. If the model does not fit entirely on one GPU, then it will be spread across all the available GPUs.
|
||||
|
||||
## How can I enable Flash Attention?
|
||||
|
||||
Flash Attention is a feature of most modern models that can significantly reduce memory usage as the context size grows. To enable Flash Attention, set the `OLLAMA_FLASH_ATTENTION` environment variable to `1` when starting the Ollama server.
|
||||
|
||||
## How can I set the quantization type for the K/V cache?
|
||||
|
||||
The K/V context cache can be quantized to significantly reduce memory usage when Flash Attention is enabled.
|
||||
|
||||
To use quantized K/V cache with Ollama you can set the following environment variable:
|
||||
|
||||
- `OLLAMA_KV_CACHE_TYPE` - The quantization type for the K/V cache. Default is `f16`.
|
||||
|
||||
> Note: Currently this is a global option - meaning all models will run with the specified quantization type.
|
||||
|
||||
The currently available K/V cache quantization types are:
|
||||
|
||||
- `f16` - high precision and memory usage (default).
|
||||
- `q8_0` - 8-bit quantization, uses approximately 1/2 the memory of `f16` with a very small loss in precision, this usually has no noticeable impact on the model's quality (recommended if not using f16).
|
||||
- `q4_0` - 4-bit quantization, uses approximately 1/4 the memory of `f16` with a small-medium loss in precision that may be more noticeable at higher context sizes.
|
||||
|
||||
How much the cache quantization impacts the model's response quality will depend on the model and the task. Models that have a high GQA count (e.g. Qwen2) may see a larger impact on precision from quantization than models with a low GQA count.
|
||||
|
||||
You may need to experiment with different quantization types to find the best balance between memory usage and quality.
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user